SHARC+ Core Programming Reference

(Includes ADSP-SCb5xx and ADSP-215xx Processors)

Revision 1.4, May 2021

Part Number
82-100131-01

Analog Devices, Inc.

One Technology Way

Norwood, MA 02062-9106 ANALOG
DEVICES

Notices

Copyright Information
© 2021 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form

without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Ana-
log Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, Blackfin+, CrossCore, EngineerZone, EZ-Board, EZ-KIT Lite, EZ-KIT Mini,
EZ-Extender, SHARC, SHARC+, A2B, SigmaStudio, and Visual DSP++ are registered trademarks of Analog Devi-

ces, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

SHARC+ Core Programming Reference

il

Contents

Introduction
SHARC+ Core Design AdVantagesceevueririiiiiiiniinininiitiiineneneisssessessessesssssessessessessessssssessessesses 1-2
ATCRItECTUIAL DVEIVIEW ...vveeeniiieeeeeiiieeeieiieeeeeeisteeeeeessaeeeeessseeeeeessseseeessssssesessssssesesssssseessssssseessssssesessssssesessssnns 1-2
SHARQC PrOCESSOL ccvvvvuruueieeieeiereeeriieeeeeeerrrrerssneeeseeeessrssssnnsessssssssesssssssssssssssssssssssessssssssssssssssssssssssssssnsessssssnes 1-2
SHARCQCH COLE..ceirirrnniiiieieeieietitieeeeeeererttssneeeseeesssssssssnessssesssssssssssssessssssssssssssesssssssssssssssessesssssssssnnssesesssses 1-3
Differences from Previous SHARQC ProOCESSOISccccerveeeeerirveeeeeiirveeeesirsreeessssseeeeessssseessssssseessssssssesssssssssesnns 1-7
Development Tools.......ccoiviiiiiiiiiiiiiiiiiiiiictecct ettt ae e 1-12

Register File Registers and Core Memory-Mapped Registers

FeatUIEs. . .coiiiiiiiiiiiiiiiiii s ae s eaes 2-1
Functional DesCIiPtionccuevuiviiiiiiiiiiiniiiiniiiccicc e s a e n b aes 2-1
Register File ReGISTErS....ccucvuiruiiuiiiiiiiiiiiiiiiiiiiicicccntt ettt ss s s s s et n b aes 2-1
Register Types and Classescccoivviiiiiiniiniiiiiniiiicience et ss s s 2-2
Data REGISTELS c..couiiuiiiiiiiiiiiiiiiiictic e 2-4
Data Register Neighbor Pairing.........cocceiiiiiiiiiiniininiiiiiiiiicinicntccrcicnesttteresresese s ssene 2-4
Complementary Data Register Pairs.........ccccovevuiniiniiniiiiiiiiiiiiiiicicccc s 2-5
Data and Complementary Data Register Transfers..........cccouvvuevininiiniiniiniinininiiiiiiicccncnncrceenn 2-5
Data and Complementary Data Register Access PHOFItIEscceivuiriiiiiiiniiniiiiiniciciciccccnene 2-6
Data and Complementary Data Register SWapsccceviiiiviiniiniiiiiiiiiiiniciccccncecnenns 2-6
System Register Bit Manipulationcocuvviiviiviinininiiiiniinicninciicrccnecsceresresse s s 2-6
Combined Data Bus Exchange Register.........cocooiiininiiiiiniiniiiiiiiiiiiicncnnccnescneneessesesenes 2-7

PX to Data Register Transferscocuviiviiiiiniinininiiiiiiiiiiiiinciccccresese e eseneaens 2-8
Immediate 40-bit Data Register Loadccccveviiiiiiniiniinininiiiiiiiiicccntccrcrccccet s 2-8

PX t0 Memory Transfersccoueveriririiiiiiiienieninietetereee ettt sttt sr et sn e s s 2-9

PX t0 Memory LW Transfersccoveerueriirennienierieenteetesee et sse st ssessae st saeesaesne st e ne e 2-9
Uncomplementary Ureg to Memory LW Transfers........c.cccocuvueviiiiininiiiiininiiiiiciccicicnnns 2-10

Core Memory Mapped Registers (CMMR)c.ccovuiviiniiiiiiiiiiiiiniiiiiiccnncecnenessesscensensenens 2-10
Operating Modes.......coevuiiiiiiiiniiniiniiiiii bbb b s a s et 2-11

SHARC+ Core Programming Reference iii

Alternate (Secondary) Data RegiSters.......ccoevuiririiiiiniiniininiiiiiiicicnintnt ettt esnens 2-11

Alternate (Secondary) Data Registers SIMD Mode..........cocovuiiiiiiiiniininiiiiiiiiiciiciccncsneenennns 2-11
Ureg/Sysreg SIMD Mode Transferscocociviiiiiiiiiniiniiiiiiiiiiiiininncnciccsnsssesesesaessessesssessesnens 2-12
Interrupt Mode Maskcoeviruiiiiiiiiiiiininiiiiiiciciccnct et 2-12

Processing Elements

R 3-1
Functional DESCIIPTION «...c..civiviriiriiiiiititecicrtetetctetcee ettt sttt e sb s sttt sb e bt besbenes 3-1
Single Cycle Processing........cocviiiiiiniiniininiiiiiiiiic e 3-2
Data Forwarding in Processing UnIES.........cociiiiiiiiniinininiiiiiiiiicitcncncsesicnessesessessessessssnsessessessesses 3-2
Data Format for Computation URitscecceiriiiiniinininiiiiiiiiicicnitctcrcicsiese st ssessessessesse s esessessesses 3-3
Arithmetic STATUS..c..eevuiiiiiiiiiiiiiitrtet ettt bbb s a e s bbb b e nt e 3-3
Computation Status Update POtyccccevvvuiviininiiiiiiiiiiiiiinciccc s 3-3
SIMD Computation and Status Flags...........ccccceveriririiiiiniinininiiiiiiiiccncctrccese e 34
Arithmetic Logic Unit (ALU).....ccccoiiiiiiiiiiiiniiiiiiiiiciicictcicin s sssesessesss e esseaesnes 34
Functional DesCription......c..coiiiiiiniininiiiiiiiiiciiicciec ettt s a e 34
ALU InStruction TYPes.....cocvcviiviiiiiiiiiiiiiiiiniiic ettt saess s s sassases s esasssaessesasens 3-5
Compare Accumulation INStructioncooeevieriiiiiiiniiiniiniiiettccnrccc ettt 3-5
Fixed-to-Float Conversion INStrUCONScovueriiiiirierienieenrereeetee ettt 3-5
Fixed-to-Float Conversion Instructions with Scaling.........cccoevivivuiniininininiiinniniiiicnen, 3-5
Reciprocal/Square ROOt INStrUCHIONScovvivuiviiniiiiiiniiiiiiiiii et 3-5
Divide INStrUCHON.evuiruiiiiiiiiiiiiiitcttcrcc ettt sr et b e a e ae 3-5

CLP INSTIUCHON .ottt et a e s bbb e b s b st s sat s sbe s b e bt enesane 3-6
Multiprecision INSTIUCHONSc.covviriiriiiiiiiiiicini et n s aean 3-6
Arithmetic STAtUS......coviiiuiiiiiiiict e 3-6
ALU INStruction SUIMMATYc.cevvuiiiuiiiiuiiiiiiiiiiieiieenieestesatestessseessessssessasssssessssesssessssssssessssessssssssesss 3-6

Y LR 5T o) T3 PO 3-9
Functional DesCription......cc.ceiiiiiiiiiniininiiiiiiicicnicntet ettt sttt sa st b b e sae st sesaesnes 3-10
Multiplier INPULS...c..coouiiieiiiiiiiiiircttctetete ettt 3-10
Multiplier Result ReGISTErcc.coiiiiiiiiiriiniiiiiiiiiiiiiennt et sa e s 3-10
Multiply Register Instruction TYPesccceviiiiviiniiiiiniiniiiiiiiice e esenes 3-11
Clear MRX INSTIUCHOMNcouviiiiitiitiitiitiiiiinict ittt a b s s enssnnens 3-11

iv SHARC+ Core Programming Reference

ROUNA IMRX INSTIUCHION . ccceiiiiiiiiiiiiiiiiiittieteettettteetteteteeetettetettetttttttttttttttttttetttettttttttttttttttettettteeteeeteeene 3-11

Multi Precision INSTrUCHONS «...cuvivuiiiiiriiriiiiiiictcteittet ettt ae st et sae b e sanene s 3-11
Saturate MRX INSTIUCHON coivuuiiiiiiiiiiiiiiiitiiictten ettt re e e s s are e e s ane e e e e 3-12
ALTRMETC STATUS. ...coutiiiriiiiiiiitetcrc ettt sttt e b e b sttt besbesbesse st e st esnens 3-12
Multiplier Instruction SUMMATYc.coceiviiiiiiiiiiiiiiiciecteterct ettt ae s s 3-12
Barrel SHIfter ..ccueeeiieiiieiieteeeee ettt ettt et s e s r et s ae e et e e e e s neesaeesnaesnannns 3-14
FUunctional DesCIiPtion......cc.ceuiiiiiiiieriininiiiiiiicicsientet ettt ettt sr s st b e b e sae s se e e aenes 3-15
Shifter Instruction TYPesccviiiiiiiniiiiniiiiiii s 3-15
Shift Compute CateZOrYcccevueruiruiiiiiiiriiriiniititeresese ettt et besbesae s e et et esaessessesssessensens 3-15
Shift Immediate Categorycoeviiuiriiriiiiiiiiniiiiiiice e 3-15

Bit Manipulation INStructions...........cceuivueriniiiiiiniinininiirccesc et 3-15

Bit Field Manipulation INStructionscccoveririiiiinieniininiiiiiiicicncnc sttt sre s sse s esnens 3-16

Bit Stream Manipulation InStructions...........coceeieviiviniiniiiiiniiiiicenceccrcrc e 3-17
Floating-Point Data Pack and Unpack Instructions...........cccceuevueviriniiiiniiniininininiiicicnencncneenennes 3-19
ALTTRMETIC STATUS. c..coutiteiiiiiiiiiitetetcct ettt ettt et b ettt e sbesbesse et et esnens 3-19
Bit FIFO Statusccciiiiiiiiiiiiiiiitiiiettceete ettt st saee st e s saes e s s aaa e e s sssbae s s s nsnae s 3-20
Shifter INStruction SUMMALYccciiuiiiiiriiriereeecteceeeeteee ettt et e st re st e st e sessessnessesasenas 3-20
Multifunction COmMPULALIONS.ccuerutiiiriirrerieriiietetertestee ettt sre ettt e st e s sbe s st st st e sbesbessessesneensennes 3-21
Software Pipelining for Multifunction Instructions............ccoeuevvivinininiiniininininiiiiiicenceenennes 3-22
Multifunction and Data MOVe.........ccucvuiririniiiiiiniinicncnintercice ettt ss s sss s sss e 3-22
Multifunction Input Operand COonStraintscecuevverrerereritirtesreseseneetestesresressesstetessessessessessesseensenne 3-22
Multifunction Input Modifier CoOnStraingsccevvevuiriiiiiiniiniininineieceseseet e ese 3-23
Multifunction InStruction SUMMALYccccccceivueerieriierierenentert ettt ssresee st e sseesseseesstessessesaneneas 3-23
64-Dit INStruction OVEIVIEWcccuviiuiieiiireieiiteeieeetteeteeete et s te st e s ste e sat e e saeseste s st esseessstesssessssesasesnns 3-23
64-bit Data Register Codingcccuvviiviiriiririiiiiiiiniininiittircicnest sttt ssessessesssessessens 3-25
64-bit Floating-Point Computation Data Hazards...........ccccoeviviniiniiinininiiniiiniiiiicicciccnne 3-26
Case A - 64-bit Instruction SRC Operands are DST Operands Of Previous Compute Instructions...... 3-26
Case B - 64-bit Instruction SRC Operands are DST Operands of Previous Cond Register Load........... 3-28
Case C - 64-bit Instruction DST Operand acts as SRC Operands of the Next non-DP Compute Instruc-

1 10 o PPN 3-28
Combined Data Hazards (Combinations of Cases A, B, C)...covviiiiviiimrriieiiiiiiiiirieeieeeeeeesnnnenreeeeecennnns 3-29
64-bit Floating-Point Instruction Execution Cyclesccoovviiiiniiniininiiiiiiiiniiniiiiicicnccns 3-30

SHARC+ Core Programming Reference v

64-bit Floating-Point Register Aliases in Long Word Memory Addressing...........cccoveviviniiiiincnicnieninncne 3-35

64-bit Floating-Point SIMD Mode.........cccoiiiiiiiiiiniiniiiiiiiiiiii s esnens 3-36
64-bit Floating-Point Computation Register Load Prioritiescccocevivviiiiniiniinininiiiiiiniincncnciiinns 3-36
OPperating MoOdes........couevuiiiiiiiiniiiiiniiiiiiicc et a s s a e b a e s et en e 3-37
ALU SATUFATION .uveuiiiiiiiiiiciinitcte ettt et et a s b e ab e s b e b e b e s as e bs et e sab s e bbesbseabseabeebsesbseabeeans 3-37
Short Word Sign EXtension.........cccvviviiviiniiniiiiiiiiiiicniiiicicc e 3-37
Floating-Point Boundary Mode...........coccviviiiiiiiiiiiniiniiiiiiiiiicinnciccnienc e essesnens 3-37
RoUNING MOAEuoniiiiiiiiiiiiiiiiictcicecn ettt st a st b bbb st et n e 3-38
Multiplier Result Register SWap........cccvviiriniiiiiiiiniiiiiiiiiciccncnerese e 3-39
SIMD MoOde....cuiiiiiiiiiiiiiiiiiiictittctct ettt b et e sb et s s sb et s b bbbt sae e 3-39
Conditional Computations in SIMD Mode.........cccceuireriniiiiniiniinininiiiiiciccenceeese s 3-40
Interrupt Mode MasKccevviriiiiiiiiiiiiiinictctctcictt ettt ettt st sa b s 3-40
Arithmetic EXCEPUONS.ccuviiuiiiiiiiiitiiiiititetctrtr ettt ettt et s sr et b e s bt e be b s b e 3-40
Arithmetic Exception ACKnowledgec.coevuiniiiiiiiiniinininiiiiiiiiincc s 3-41
SIMD Computation EXCEPHONScevviviivviriniiiiiititcicnitctctcresicest et sessesse s s snes 3-41

Program Sequencer

D 4-2
Functional DeSCriPtioncocuciiivuiiiiiiiiniiniiiiiniiiiiiicnt ettt re s st as s a e sr et aesnesn s 4-3
INStruction PIPEline......cocueiiiiuiiiiiiiiiiiiiiiiinictetrtetct ettt ettt s a e s s ae s 4-3
VISA Instruction Alignment Buffer (IAB)ccccviviniiiiiiniiniinininiiiniciccccncrcence e 4-5
Linear Program FLOW.......ccccoviiiniiniiiiiiiiiiiiiicicicceecnes e sse s sessne 4-5
Direct Addressing........coeviiiiiiniiniiniiniiniiiiii e s s a e 4-6
Illegal System Accesses CONAItIONSccuevueruiruiiiiniiiiiiiniiiitirereene ettt b s sae st s s e saene 4-6
Variation In Program FLow..........cccociviiiiiniiiiiiiniiiiiiiiiicicecenet e 4-7
Functional DesCriPtionc...cciivuiinieiiiiiiiiiieiieitiicrrcst ettt et sae b et s sa e s bt s b s nesanes 4-7
Hardware STACKSccveeiieuiiiirieceeeeeete ettt sttt ettt ettt ne e s s resnn s 4-7

PC SACK ACCESS «vvenveuiiiiiiiiiterteieeitet ettt ettt ettt st b e bbbt st sttt e b e be st et et ebenessens 4-8

PC Stack STatisccueeeuiiiiiiiiiiiiiieeiectee ettt sttt s b et a et a e st 4-8

PC Stack Manipulation..........cccuevueririiiiiiiiiniincninittiiecent sttt ss st sssnesaessens 4-9

PC Stack Access PrIOLITIES ...c..cevuiivuiiiiiiiiiiiiiiiicitcitcientctce sttt et sae b e satesaesn e s s saessne 4-9

vi SHARC+ Core Programming Reference

Status Stack AACCESS ceeeeieeeeeeeeeeeeeeseeeeeeereeeseeeeeeeeeeeseesseasseessaasssasseasseaasanssssnssssssnnsssnnsnnnsnnnsnnssnnnnnnnnnnnnnnnnn 4—9

Status StACK STATUS ...ovviviiiiiiiiiiiiiiicttc e 4-10
Instruction Driven Branchesoccooeeiiiiiiiiniiniiiiiicncceereeeee ettt sne e 4-10
Branch Prediction.........cooiiiiiiiiniiiiiiiiiiiiicii e 4-11
Direct Versus Indirect Branches.........cccocoviiiiiiiiininininiiiiiiiiiiiiicescc e 4-14

Restrictions for VISA Operationcceveveriiiiiinicnininiiiiiincesesessesessessesessessessessessessssssessens 4-14

Delayed Branches (DB).......ccueoueiiiiiiiniiniiniiiininieicscnencnt ettt st et sae st enens 4-15

Branch LiStINgs ...c..cocevuiiiiiiiiniiniiiiiiiiiiciiic ettt 4-15

OPerating MOdecoiiiiviininiiiiiiiiiiiee ettt st s a s s e b bbb e et n e 4-20
Interrupt Branch Modecc.cooiiiiiiiniiiiiiiiiieicccteceet ettt 4-21

Interrupt Processing Stagescc.cevueiiiiiiiiiiiiiiiiiiiiicic e 4-21

INtErrupt CategOries. .. .couiivuiiiiiuiiiiiiiiiiiiiiicnict ettt sa s s e sa s b a e st e s s b e saseae s 4-22

INEerrupt Processing.........couivuevuivuiiiiiiiiniiniiniiiiicicicn e 4-24

Latching INTELTUPLS c..cvivuiiiiiiiiiiiiiiiiicictc et sb et s e sa b ae s sssennens 4-25

Interrupt ACKnowledge..........coueviiiiiiiiiiiiiiiiiiiii e 4-25

Interrupt (Pseudo) Self-INestingcoevueviriiiiiiniiniiniiiiiiicc e 4-25

Self-Nesting for the System Event Controller Interrupt (SECI)....ccccoceviiiiviiniinininiiniiniincnenenninns 4-26

Release from IDLE........c.cooiiiiiiiiiiiiiicicienentteecrerc ettt saesre et n e 4-28

Causes of Delayed Interrupt Processingcocevvvevuivuininiiiiniiniinininiiiiicieneneesesessessessesssesenens 4-29
Interrupt Mask Mode.....cc.coiiuiiiiiiiiiiiiiiiiiiiiiccnctt ettt sb e sae st s 4-29
Interrupt Nesting Modecoviiiiiiiiiininiiiiiiiiiiict e s 4-30

LOOP SEQUEICET «..uuniiiiiiiitiiiiiicctct e b e 4-32
LOOP CAtEGOTIESuviruriuiiiiiiiiiiiiiiitiicit ettt s a s s s s ae b b e s a e b e s b e bt e bessbesasesnn s 4-32

Counter-Based F1-Active LOOP ...cc.covueruiiiiiiiiiiiiiiitiiinicitctceentet et res et saesne st s s 4-33

Counter-Based E2-Active LOOPco.coiiiiviiriiniiiiiiiiiininiiitcicnicncscs s ssesessessessessssssessens 4-35

Loop Categorization into F1-Active or E2-ACtive.........ccoiviiviiiiiiiiniiniiiiiciiiciccicicceen 4-37

ALTTRMETC LOOPS -evenviiiiieiiiieieteetee ettt sttt s sttt b e s bttt aesa e se s e e e een 4-37

INdefinite Loops...c.coiiiiiiiiniiiiniiniiictcicct ettt 4-39
LOOP RESOULCES ...couviuiiiiiiiiiiiiiiiiiitiictcitctcctct ettt ettt sb s bbb s b e bt s b e ssbessnenn s 4-39

T N T TR 4-39

LoOp Address Stack ACCESScc.ceueruiiiiniiriiriniiiiiiienientnt sttt sttt sre st sae s se st sssesnens 4-39

Loop Address Stack Status.......cc.coeuiivieiiiiiiiiiiiiiiiiiitetetcrcsret et 4-40

SHARC+ Core Programming Reference vii

Loop Address Stack Manipulation..........coceeriiiiiiiniinininiiiiiiicncncicetcrcresiesestetessessessesseessesnens 4-40

Loop Counter Stack ACCESScc.civuirnuiriiiiiiiiiiiiniiitiiteietcst ettt et sae s st e st ssaessbesanesaees 4-40
Loop Counter Stack STats........coeviiiiiiniininiiiiiiiiccncnt et ssessessesss s esnens 4-40
Loop Counter Stack Manipulation.........ccceeeiiiiiieniinininiiiiiiicncncncetereresesestete s ssessesseessessens 4-41
Loop Counter Expired (If Not LCE Condition) in Counter-Based Loopscccccceeuviiivuiniinuininninnnns 4-41
Restrictions on Ending Loops........cocveriniiiiiiniinininiiiiiiciciceetcncressessesesessessessessesssessennes 4-41
VISA-Related Restrictions on Hardware Loopsccccocviriiiiniinieniniiiiieiccncnenecececreiesesceeenne 4-42
INESTEA LOOPS...cviuiiniiniiiiiiiiiiiitictc et a e 4-42
Example For Six Nested LoOPSccevueririiiiniiniiniininiititiicicicntntstercsnessese s esesessessessesseessesnens 4-43
Restrictions on Ending Nested Loops........cocviiiiiiiininiiiiiiiiiiiiiiiccncnccnencncsnssneennennens 4-44
LOOP ADOITuueiiiiiiiiiiiiiiiiitctcc e st 4-44
Interrupt Driven Loop ADOITcuciuiiiiiiiiiriiniiiiicicicnccnt ettt sr st et esnens 4-45
Loop Resource Manipulationccocueeieiiiiiiniiniiniiiinictctcientcctce ettt ne st s 4-46
Popping and Pushing Loop and PC Stack From an ISR.........cccccoeiniiiiininininniiiiciciccicicn 4-46
Instruction-Conflict Cache Control..........ccovviiiiiiniiiiininiiiii e 4-48
Functional Description........coiiiiiiiiiniininiiiiiiiiiiniiccicese et sae s as s s s 4-48
Instruction Data Bus Conflicts.........cccovuiveriniiiiiiiniininiiiiiiiiiccnencncrcseseetetesresressessesenens 4-48
Cache Invalidate INSEIUCHON «...cuviuiiuiiiiiiiiiiiiiiicicc e 4-50
Operating MOdescouevuiiuiiuiiiiiiiiiiiii ettt 4-50
CaChe RESTICHONS. ..c..cutiuiiiiiiieiirititctccrcnt ettt st b b s b sttt e b e besses st entennens 4-50
Cache DiSAbIeoouiiiiiiiiiiiiiiiiic e s 4-51
CACKE FLEEZE ...ttt ettt st st s e st b e n et ne s 4-51
GPIO FIagS ..ocuveveiiiiiiiiiiciinienitctet ettt ettt et st b e bbbt st b e bbb st e b 4-51
Conditional Instruction EXeCutioncoccviviiiiiiniiniiniiiiiiiiiiiicncciccnnc e essennens 4-52
IF Conditions with Complements...........cociviiiiviiniininiiiiiiiiici e enes 4-52
DO/UNTIL Terminations Without Complements..........cceeuevuereriiiiniiniinicnenininiiiereneseneseeeenes 4-54
Operating MOdescouivuiiiiiuiiiiiiiiiiiicci et 4-54
Conditional Instruction Execution in SIMD Mode......ccccocuevireirniiniiniienienieeeieeeeceeeeeee e 4-54
Pipeline Flushes and Stalls.........c.ccocuiviiiiiiiiiiiiiiiiiiiciitteicccttecse ettt nens 4-63
Stalls Related t0 Memory ACCESS........couivuiiuiiiiiiniiniiniiniiiiiiiiiicsieseet ettt essesaesassas s ensesnes 4-64
Stalls Related to Compute OPerations...........coceevuevueiiininiiiiininiiiiicieiee e sseseenens 4-65
Stalls Related t0 DAG OPerations........ceeeeeieierierierieniiiitenienresseseetetestessessessesstetessessessessessesseensenses 4-66

viii SHARC+ Core Programming Reference

Stalls and Flushes Related to Branch and Prediction Operationsccoevvevuererirniiniiniencncnncnnceneenne. 4-66

Stalls Related to Data Move OPerationscccocevievuiivueriieniineiniennientinreeniestestessesssesstessesssesssessesssesns 4-68
Core Event Controller EXCEPtIONS.......coviiiiiviiniiniiiiiiiiiciinintincicicicnt et aesse s essesnens 4-69
Hardware Stack EXCEPUIONS.....co.ciiiiiiiiiviiriiniiiiiitiicictntct ettt b s st enens 4-70
HW Loop Stack Exceptions (RINSEQI)....cc.coctiiiiiiiininiiiiiiieicieentntnteteeesescsc et eeenens 4-70
SOFEWATE INTEITUPLS ..couviiiiiiiiiiiiiieteteteet ettt sttt sa et ae s bt sbe s b e s b e sesnesas 4-70
Interrupt Priority and Vector Table.........coccoeviiiiiiiiiniininiiiiiiiiiiiiniirccccecnns 4-70
Internal Interrupt Vector Table LoCationcocuccviviivieiiniiiiiiiniiiininininicicccncsc e 4-73
Core Interrupt REGISTErS c..cuovuivuiiuiiiiiiiiiiiiiiitcc e 4-73
All Interrupts Automatically Push Statusccocceiiiiiiiviininiiiiiiiiiicens 4-73
Self-Nesting Mode for System Event Controller Interrupt (SECI) ...c..coceviriiniivinininniiniiiiinicncneniciinns 4-74
Interrupt Control Latenciescocuiviiviiriiriiriiiiiiiiicicieetnt ettt sttt sbesae bt snens 4-75
Hardware Status Stack Access Register.......cocoiiiiiiiiniiniiiiiiiiiiiiiiiiii s 4-75
Core Interface 10 SEC.......coiiiiiiiiiiiiiieieeeterte ettt ettt et r s sae st aesne s e e se s neeas 4-75
Example SEC Handler Using Pseudo Self-Nestingcccceceviiviiniivienininiiniiniinicncniniitcicsrcneseseceennes 4-76
Example SEC Handler in Self-Nesting Interrupt Modecooevviviiiiinininiiininiciiiiincncncncnennenns 4-77
Timer

Feattres. ..cuueeeiieiieiiieieieeeieeeeeeeeeeeteereeeeteetteeeeeeteeeeteeteeeeteeteeeseeeeeeeteeeseeeseeeeteeeeeeeeesteeeteeeteeseteeteeeteettteeteeettertterreenne 5-1
Functional DeSCIIPtionccucvuiviiniiiiiiiiiiiiiiiiccicc et b s s n b aes 5-1
Timer EXCEPUONS....cucivuiiiiiiiiiiiiiiiciccc s e a s b s s e b e es 5-3

Data Address Generators

FEAtUIES....eeiiiiiiiiiiiiiiiiiiictc s a e b s s b e s aae e san 6-1
FUunctional DESCIIPTION «...c..civiviiviiririiiititecicectetete ettt sttt e sb sttt et sb e bt besnenes 6-2
DAG Address OULPUL......eevuiiiuiiiiiiiiiiiiicieeenteet ettt sttt sae e bt s atesbe s b e s st e saessbessbesntsnesanesanes 6-3
Address Versus WOord SIzec..cocueeueriiiiiiiniieiieitieeteeesee ettt ssesste st st s sae st e ssessesanessaessesnesnaesntens 6-3
DAG Register-to-Bus ALIGNMENT........ccueiiiriiiiiiiniiniiiiiiciiiiccen e enes 6-3
32-Bit ALINMENT...uiitiiiiiiiiitiiiiiictiiccc e 64
40-Bit ALIGNIMENT ...coiiiiiiiiiiiiiiiiicictt et et b b 64
64-Bit ALIGNMENT ..cuviiiiiiiiiiiiiiiiiiict e 64

SHARC+ Core Programming Reference ix

DAGI VErsus DAG2neeeeeeeeeeeeeeceeeceeeeeeeeeseesseeeseesseeesesessesssesssesssssssssssssssssssnsnsssssnssssnssnssnnssnnnnnnnnnnnen 6—4

INStruction TYPes....ccoviivuiiiiiiiiiiiiiiicicc s s a e s 6-5
Long Word Memory Access ReSTriCtONS.coueiuiiiiiiiiiniiniiiiiiiiiiciccnt et aesae e 6-5
Forced Long Word (Iw) Memory Access INStructions.........cc.cevevuereriiiiniiniencninininiirencneneseesessessenne 6-5
Byte Word (bw) (bwse) and Short Word (sw) (swse) Memory Access Instructions..........cccccevvervevuenncnee. 6-6
Pre-Modify INStrUCHONovivuiiuiiiiiiiiiiiict et sa st n b aes 6-7
Post-Modify INSTIUCHON «..cvevuiruiiiiiiiiiiiniiniit ettt st sa s s s e ss b e saeaes 6-7
MOdify INSEIUCHON ..eevenieeiiieeieetecieeteet ettt s et s te st e st s st s sbe st e s st e se et e s st essesssesstesstessesssesnsensesasesnsen 6-8
Enhanced Modify INStructioncccecueivieiiiiiiniiiiititiientctee ettt ettt saesre s sne s 6-8
Immediate Modify INSTIUCHON «....ooviiiiiiiiiiiiiiiiciciccc st aesaeaes 6-9
Bit-ReVErse INStITCHIONuuviieiiciieeeccciteeceeit e et e e seestee e s e taeeeeseaaaesessasaaessssssaaeesssssaaeessssseessssssaeesassenes 6-9
Enhanced Bit-Reverse INStIUCION.ciiieieeeiiiireeeeeeeeeeeiitrteeeeeeeeeeeesaeeeeeeeeesessssssssssseesssesssssssssssesssssnsssnnns 6-9
Enhanced Modify Instruction for Address Scalingccooeuivuiiiiniiniiniiininiiiiiccccns 6-9
SWitch Address INSEIUCHION c...c..uuuvvririeeeeiiiiiiiirreeeeeeeeeesitrreeeeeeeeeessssssssreeeeeeessssssssseesssssssssssssssseessesssssssnsnns 6-15
Dual Data Move INSEIUCHONSuvvveeeeeriiieeeeiieeeeeeiieeeeeeiteeeeeeseeeeessssssesesssssseessssssseesssssssessssssessssssssessssnes 6-17
Conditional DAG Transfers......cccuuiieieiiiieieeiiieeieeceeeeeerrteeeeeieeeeeeesteeeesssaeesesssssesessssssessessssssessssssssssssnnns 6-17
DAG Breakpoint Units.....coccviviiiiiiiiiniininiiiiiiiiicicicnteiciecst st ssessesaessessesssessesnens 6-17
DAG Instruction ReESTIICHONSuuuuuueeeeeeeneeuenneeneenenennneenneennnnennnnnnnnnnnnsennnsnnssssssnnsssssssssssssnnnssnsssnnnnnnnnnnnnnnen 6-17
INStruction SUMMATYcooiiiiiiiiiiiiiii s sas s b e ba e sae s as e s bt e s b e ssbsesnneeans 6-18
Operating Modes.......couevuiiiiiiiiniiniiiiiii bbb b 6-21
Normal Word (40-Bit) ACCESSES ...ccuvvreererrrreeeeirreeeeersreeeeeissseeeeessssseessssssssesssssssssesssssessssssssssssssssssssssssssssnns 6-21
Processing Unit versus Memory Load/Store Precision AcCesses........couevuiriiniinienereneiniiniinienseneneneenennens 6-22
ExXtended Precision ACCESSccccvvvrrveeeeeiieeiiirirreeeeeeeeeeesssssseeeeeeesesssesssssssnnes 6-22
Circular Buffering Mode.........cocooiiiiiiniiniininiiiiiiiiiciic e ens 6-23
Circular Buffer Programming Model..........ccoouiviiviriniiiiniiniiniininininiiiicceetstercsrescse e 6-24
Wraparound AddrIessingccevviviiviininiiiiiiiiiiii e 6-25
IDAG STALUS ceeevvvviiiiiieeieeeeietitiieeeeeeeeetttessreeeseeeesssssssssseseesssssssssnssesessesssssssssssssesesssssssssssnnesssssssssssnnnnessenens 6-26
Broadcast Load IMOdEuueeieeiirieieeiieeeeecieeeeeeiteeeeeerteeeeeessseeeessssseeesssssessssssssessssssssesssssssessssssssesesnsns 6-26
Bit-REVEISE IMOMEuurrrireeieeiiiiiiiiieeee e eeeeertteeeeeeeeeeesssassseeeeeeseesssssseseeseeesssssssssssseesesssssssssssseesessnnns 6-27
SIMD MOE...ccoiiiiiiiitiiiieeeeeeeieitrtreeeeeeeeessssreeeeeeeeeessssssssseeesesessssssssssesesessssssssssssssesesssssssssssseessssssssnssnnns 6-27

SHARC+ Core Programming Reference

DAG Transfers in SIIMID IMOdeeeiiieeeieiieeieeeeeeeeeeeeeeeeeee e eeeeeeeeeeeseeessesssesssesssesssssssesssssssesssssssesssesss 6-28

Conditional DAG Transfers in SIMD Modecoccoiiiiiiiiiiniininiiiiiiiiec s 6-29
Alternate (Secondary) DAG RegiSters........coeviriiiiiiniiniininiiiiiiiiicnini s esesessesaessesssessessens 6-29
Interrupt Mode Maskccceiruiiiiiiiniiniiniininiicicicicct ettt 6-30

DAG EXCEPUONS c..vviinniiiiiiiiiiiiiniiiiitinic sttt at s b s b ssas e sae e sba s s bt e s ae s bsesaessasesasessbessnsesnnsesns 6-30
Circular Buffer EXCePtions.........cocviiiiiviiniiniiiiiiiiiicicicit s ens 6-30
Illegal Address Space Access EXCEPUONScvuevuiiuiiiiiiiniiniiiiiiiiiiicicnicntst e ssesse e esnens 6-31
Unintentional CMMR/SMMR Space Access EXCEPUIONScccvevuivuerieruiriiiiniiniencnintnietcssesresesceeennen 6-32
Unaligned Forced Long Word Access EXCEPionscc.couivuiiuiiiiniiniiniiniiiiiiiiicicncnicicncsncsnceneennennens 6-32
Unaligned Byte Word Access EXCEPHions.......cccoviiiviiriininiiiiiiiiiiininincrccsiescssesenessessessesssessesnens 6-32

L1 Memory Interface

FOAtULES....ciiiiiiiiiiiiiiiiiiict s aa e s ae e san 7-1
Von Neumann Versus Harvard ArchiteCturesocoovvivvevieriniiiiniiniiniininiiiicicnicseetenessessessessessesessessens 7-2
Super Harvard ArChItECTULEcoviiiiiiriiriiriiiiitctctccceete ettt sb b e sae s st be b nes 7-2
Functional DeSCrPLONc.eeviiuiiriiiiiiiiiiiiitnicntctcc ettt ettt sb s b e st ae s a e sb et s aesnesnes 7-3
MemoOory ACCess TYPES....ccuivuiiiiiiiiiiiiiiiic e s 7-3
Byte Address Space Overview of Data ACCESSES.......coueruiruiiiiiiniiniiniininiitirerenene sttt resaeaes 74
Byte Access in SISD Modecoouiiiiiiiiiiiiiiiiiitiinetctcscst ettt r s 74
Byte Access in SIMD Mode......c..couivuininiiiiiiiiiiniiniicieicnc et ssesse s s s s s 7-5
Short-Word Access in SISD Mode.....c.couiiiiiiiiiniininiiiiiiicicenent ettt sre s e 7-5
Short-Word Access in SIMD Modeccuovuiiiiiiiiiiiiiiienicticiieetcitetes ettt sre st ssre e 7-5
Normal-Word Access in SISD MOodec..coivuiiiiiiniininiiiiiiicicncttcncnccnese et esessessens 7-6
32-Bit Normal-Word Access in SIMD Mode........cccociiiiiiiiiininiiiiiiiiicicnicicne e 7-6
Long-WOrd ACCESSEScvivuiruiiniiiiiiiiiiiit ittt e a bbb 7-7
Byte Accesses to a 3 column (40-bit) enabled Blockccceoiiviriieniiiiiinienieeeenteeee e 7-7
Internal Memory SPace......ccccovuiiiiiiiiiiiniiniiiiiiiitctct ettt ettt e a e s bbb s 7-8
Internal Memory INTErfacecouivuiiiiiiiiiiiiiiiieteeeete ettt 7-8
ReqUeSter POITSueiiiiiiiiiiiiiiiiiiiicciiccccc s 7-8
COMPLEtEr POITSeeruviiiiiiiiiiiiitiitcctct ettt ettt e sb e st b s 7-8
Internal Memory Block ArchiteCtureccoviviiviiniiniiiiiiiiicniinecccrceet e 7-9

SHARC+ Core Programming Reference xi

Normal Word Space 48-bit or 40-Bit Word Rotations...........ccceevevuereriniiniinieneneniniiiercneneneneenenne 7-10

Rules for Wrapping Memory Layoutcocvveviiiiiniiiiininiiiiiiciiiccncssesesesssessessesessssessessesesne 7-11
Mixing Words in Normal Word Space.........cocevviiiiviiniinininiiiiiiiiiinciecnsneecsessesse e 7-11
Mixing 32-Bit Words and 48-Bit Words.........ccccevuevuiririniiiiniiniiicninintcncrciecnentetereeessese e 7-12
32-Bit Word AllOCAtIONcocueiuiiiuiiiiiiiiiiiitiitntertet ettt ettt ae st et ae s b e b e snesneeas 7-12
Example: Calculating a Starting Address for 32-Bit Addresses........coccoceviiviiviinienininiiiiniincnenenninenn 7-13
48-Bit WOIrd AlOCAtION «..c.everurieuienuiiieiiieeieetesteeteeteetesteetestesseesse et e st e s st ssestessessseesesseesstesesnsesssensens 7-13
Memory Block Arbitrationcc.coviiiiiiiiiiiiiiiiiiicitettt e 7-13

VISA Instruction ArDITIAtionc.c.ceeeeueereeriueritereereerteeeeeteteeteseesseessestesseesseessessnesseessesssesanessesssesas 7-14
Using Single Ported Memory Blocks Efficientlycccocevuiiiininiiniiininiiniiiiicininciciicnciencenens 7-14
Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)cccoeevuivuirininiiniiiiiininiiiciciciceeeeens 7-15

Byte Addressing of Single-Data in SISD Mode.........c.cocevuiriiiiiiniinininiiiiiiicicnicncnecnennceneeeeeenens 7-16

Byte Addressing of Dual-Data in SISD Mode..........ccccuvuiniiiiininiiiiiiiniiiiiiicicicccneeeneseneans 7-17

Byte Word Addressing of Single-Data in SIMD Mode.........cccccevuiniinininiiiiiiniiniiniiiiicicicnncnceenenns 7-18

Byte Addressing of Dual-Data in SIMD Modeccccoceviriiiiiiniiniininiiiiiiiiiinicncecnecnesceeenenens 7-19

Short Word Addressing of Single-Data in SISD Mode.........ccccouevuivuirininniiiiiniiniinininiiiiieicsenceeeeenens 7-20

Short Word Addressing of Dual-Data in SISD Modecc.ccevivuiniiniiiiiniiniiiiiiiiiiccncenennenns 7-21

Short Word Addressing of Single-Data in SIMD Modeccovuivuinininiiiiniiniiniiniiiiiiicicencnneenns 7-22

Short Word Addressing of Dual-Data in SIMD Mode.........cccouvviirinininniniiniininininiiincicneneseenenens 7-23

32-Bit Normal Word Addressing of Single-Data in SISD Modecccccceviriiniinieneninninniiniinicncncncenenes 7-24

32-Bit Normal Word Addressing of Dual-Data in SISD Mode.........cccocevuiiiiinniinininiiiiiiicnicncininenes 7-25

32-Bit Normal Word Addressing of Single-Data in SIMD Mode.........cocevriiviiniinininininiinicnicncnncinenes 7-26

32-Bit Normal Word Addressing of Dual-Data in SIMD Modeccccoceririiniiniininininiinicnicncneneceenes 7-27

Long Word Addressing of Single-Data..........cocvueiriiriiiiininiiniiiniiiiiiicicncneneeeseses e 7-28

Extended-Precision Normal Word Addressing of Single-Data.........c.cccceuvviiiiniiniininininiiiniiniinininiinene. 7-29

Extended-Precision Normal Word Addressing of Dual-Data..........ccccoeririiiiniiniininininiiiinicncncneinenes 7-30

Broadcast Load ACCESScoeueiruerieniriieienientesteeteste st steste st e st sre st e st sesesbe st e s st e sseste s st essesbesntesseerenas 7-31

Mixed-Word Width Addressing of Long Word with Short Wordccccccvueviiiiininiiinincniiiiinicicinne 7-39

Mixed-Word Width Addressing of Long Word with Extended Wordcccovvuininininiiniinincniniinnne. 7-40

Internal Memory Access Listings (64-bit Floating-Point)ccceevevuevuirininniiniiniincninniniincnencneneenenens 7-41

xii SHARC+ Core Programming Reference

64-bit Floating-Point Addressing of Single Data........cc.cccceiriiiiniininininiiiiiiccncncceceeeeeeenens 7-41
64-bit Floating-Point Addressing of Dual-Data in SISD Mode..........ccccvuvruiirininiininininiiiiinenicieinenns 7—42
64-bit Floating-Point Addressing of Dual-Data in SIMD Mode..........cccoviriiniiniinininiiiiiiniiniinenniienns 7—43

L1 Cache Controller

Functional DesCriptionccucvuiviiiuiiiiiiiiiiiiiiiiccicic et a e n b aes 8-2
TAG MEIMIOTIES ...ccuvirriiiiiiiiiicicierit ettt bbb a bbbt s et e b e b b s b et e b e b e b e as s bt s b e b ebesne 84
Basic Cache FUNCHONALILY.....covireiriiieienieeeteetecteeeteete sttt et e et ae e s e st e s st e st s sae s b e sneessesnesanes 8-5

Instruction Cache FEattres........uuiiiieiiiiiiiiiiieeccccieeeecctee e ee et e e eeeite e e e e eaee e e e s raaeesessaseesssnsaaesssssasassnsssaesnnnns 8-6
Instruction Cache OPerationcevueviiriniiiiiiniinincniie e s e s s saeaes 8-6

Data Cache FEattrescuveiieieieiieeeiieieiieeeiteeeiteeseeeessteesssaeesssaeesssaeesssessssaeessssessssaeessssessssssesssesssssasssssassnns 8-7
Data Cache OPerationsccccovueivieiiiiiiniiiiiiniiiticiicntet ettt et e sa s b e st saessae s b e s st sssesnesanes 8-7

(O] T 5 L 0T RS 8-7
CaChe MSS CaSES ..uvveeeureererieieirreieirteeeiteeseitteeesseesesseeessseeassseesssssesssseessssesssssessssssssssssesssssssssesesssessssssessnees 8-7
Coherency Between DM and PM Caches........cccucoiivuiiiiiniiiiiiiiiicniiiiicnictcicnicntce et snesnees 8-8
Misaligned Accesses in Data Cachecocoiviiiiiiniinininiiiiiircc e 8-8

Programming Model..........ccoouiviiviiiiiiiiiiiiiiiiicc et 8-9

Write Through ACCESSEs......c.oiiiiiiiniiiiiiiiiiiiii e 8-10
Write Through ACCeSSes......couevuiiuiiiiiiiiiiiiiiiiii e 8-10
INON-CAChEADIE ACCESSES ..eeeeurrrreeeerrreeeeeiieeeeeerareeeeesreeeeesssaeeeeesssseeessssssesssssssessessssseesesssssesssssssssesssssssssnns 8-10
LOCKING «.vviiiiiiiniitiicictccnictc bbb b et b e 8-10

Way-Based LOCKINGcoovuiiiiiiiiiiiiiiiiiitiiciiiiccst et 8-10
Address-Range-Based LocKing..........cocevuiviiiiiiniiniiniininiiiiiiicicncnintiicncncscscssssenesnessessesssesesnens 8-11

Cache Invalidation and Write Back Invalidationccccuveeeiiieiiiiieeiiieiciieccieeceeeceereceree e caee e veeeeaaeeeaeas 8-11

Full Cache Invalidation and Write-Back Invalidation...........ccceeiieiiiiieeieiiiieeecciieecccreeeecceee e ctee e veeee e 8-11

Address-Range Based Invalidation and Write-Back Invalidationcocevviiiiiiniininininiinincnincncnnnn, 8-12
Example Range Based Write-Back Validation/Invalidationccoeeeviniiiiniincnininninniiniinicncncncceene. 8-12
Further Details on Range Based WBI/Invalidation..........ccccueviviniiniiininiiniiiiiniiniiiicncncnciennenenenne 8-12

Prefetch Buffer (ADSP-2156x and ADSP-SC59x Only) ...cc.cooirvuiiiiiniiiiiiiiiienietceeieneecteieseeseesesneae 8-13
Prefetch Range Selection Registerccccoveviiiiiiiiiiiniiniiiiiiiiiciccincccenc e 8-16

SHARC+ Core Programming Reference xiii

Safety, Security, Multi-Core, and Low-Power Features

Parity Error Detection for L1 ACCESSESeoueruerririiiiniiniiniiniteititetesiesest ettt sttt ssesses e sse et enesaenes 9-1
Parity Operations Programming Model...........ccccooiiiiiiiininiiiiics 9-1
Parity Error RegISters........covuiiiiiiiiiiiiiiiiiiiiiictccc s 9-2

Illegal Opcode Error Detection for Instruction Fetch.......ccccociiiiiiiiinininininniiiinininiiiiciccnccccneeees 9-2

SeCUTILY OPEIaAtioNsccivuiiiiiiiuiiiiiiiiiiiitiiiit ittt et a e s b s sa e s bbb e s b e ab e s be e sbbessasessbeesnsessnsssnsesanns 9-3

Memory Barrier (SYNC) INStIUCHON «..c.vcoviiiiiiiiiiiiiiiiiiiicitctciict e nesaesaes 9-3
Example Pipeline Behavior for Memory Barrier (SYNC) Instruction..........ccceeeveviniiiinicvcncnineinnennennenn. 9-4
SYNC Instruction and INTEITUPLSccuevveruiriiiiiiiiiiniirieitnteterereieee sttt st sresse s st snesaenes 9—-4
Flushing the Pipeline........cccociiiiiiiiiiiniiniiiiiiiiiic e 94

Semaphores (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only)cc.covvviiviiniinininiiiiniincneneiicnenennes 9-4

Resetting in Multicore Systems (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only)ccccovviininuinncnnne. 9-6

Arm L2 Cache Sharing Address Range Registers (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only) 9-6

Low-Power Features (ADSP-2156x and ADSP-SC59% Only)cocueeiiiiiiiiiiiniiiiienicntceceeneececeeeeees 9-7
Low-Power Memory FEaturescooviiiviiiiiiiiiiiiiiiiiiiiiciiicciccnc e 9-8

MemOry SIeep MOEcouimiuiiiiiiiieieictcteteteere ettt sttt b e et n b b 9-8
Memory Shutdown Mode ..ottt aeaens 9-8
Low-Power Idle Mode (Core Light Sleep)cccocvvviiviiviriniiiiiiiiiiniiiiiiiiicicenttcncnccnesesnesesaenne 9-8

SHARC+ Core Debug Interface

FATUIES. c.euneeeeeeieeeeeeieeeeetteee ettt eeeeeteeeeesean e eersaneseesssnessesssnnssesssnnssesssnnssessssnsnessssnsnsessssnnsesssnnnsessannnsessnnnnsennen 10-1
Functional DeSCIIPUONc..ciuiiiriiriiiiiiiiitiieeeetetet ettt ettt b e bt e besbesbesse st et esnans 10-1
Debug Interface...........couivviiiniiiiiiiiiiiiiii e 10-1
BreakpPoiInits ..cvevuiiuiiiiiiiiiiiiiiiiicici e s b s s e 10-1
Software Breakpoints......ccceieiiiiniiiiiniininiiiiiiicicncnt ettt s 10-1
General Restrictions on Software Breakpoints..........ccccevveviiiiiniiniiiniiniicniciiicccniccccceeneenees 10-2
Automatic Breakpoints.....c.cviiiiiiiiiniininiiiiiiiiiiici e 10-2
Hardware Breakpoints.......coceiiiiniinieniininiiiiieicicncntetcteresresese ettt et saesae s st nes 10-2
Operating Modes........couevuiiiiiiiiniiniiiiiiiic bbb e e 10-2
Emulation Space Mode.........coovinuiiiiiiiiiniininiiiiiiicicncce e 10-2
EmUlation Controlooccuieieeiiiiieeceiiieeeeiieeeeeesteeeeeeiseeeeeesseeeeessssseeeessssssesssssssseesssssssessssssssessssssessessnes 10-3

Xiv SHARC+ Core Programming Reference

Instruction and Data Breakpoints.........ccceceveiiiiiiiiiiinininiiiiiiicicintnttcrcncsese sttt nens 10-3

Address Breakpoint RegISters.........couivuiviiniiiiiiiiniiniiniiiiiiiiiiiicicntet et snens 10-3
Conditional Breakpoints.........cociiiiiiiiiiiiniiniiiiiiiiiiiic e 10-3
Event Count ReGISTrcccivviiiiiiiiiiiiiiiiiiiiiiiciccicicnctt st a st sa s a e asene s 104
Emulation Cycle Counting..........ccccevviiiriiniiniiiiiiiiiniiiiiiiiiicncceeeresese e esassassss s snsens 10-5
Statistical Profilingcocoveviriiiiniiniiniiiiiiiiiii e 10-5
USEr SPACe MOMEuuiniiiiiiiiiiiiiiiitttce ettt et sb bbb bbb s 10-5
User Breakpoint Controlcocueviiviiiiiiiiiiiiiniiiiiinictctnictctec ettt sse s eas 10-5
User Breakpoint STatusco.evuiiiiiiiiiniininiiiiicicicicnciciec et ss s sse s s esesn s 10-5
User Breakpoint System Exception Handlingcccocceiiiiiiiiiniinininiiniiniiiicnininicicicscncncseeeees 10-6
User to Emulation Space Breakpoint Comparison..........coceeiiviiiienniiiiineinieniiniienecntesieseeseeseeeens 10-6
Programming Model User Breakpointsccevuevueriniiiiniiniinicnininiiiiiinccnennnssncsessessessessenennes 10-6
Programming EXamples.........cccouiviiiiniiniiniiiiiiiiiiiiiiiiicc e 10-6
Single Step Mode......cviuiiiiiiiiiiiiic s 10-7
Instruction Pipeline Fetch INPULscocviviiiiiiiiininiiiiiiiiiiccc s 10-7
Differences Between Emulation and User Space Modes..........cccuevuevuerenininiinienicncncniiieicsicncncseeeenes 10-8
Debug INTEITUPTLS ...ccuviniiiiiiiiniiiiiiiiit bbb s et b b a e bbbt et ens 10-8
INEEITUPE TYPES..ciuiiiiiiiiiiiiiicc bbb 10-8
Entering Into EMulation Space..........ocovviviiviriiiiiiniiiiiniiiiiiiicicctttccrce st 10-8
Debug Register Effect Latencyccoiviiiiiniiniiiiiniiiiiiiiiiiiincnnnensseieneeessessesssessessessssesnes 10-9
REfEIEICES ...ttt a et b et e a e s bt s b 10-9

Program Trace Macrocell (PTM)

FatULES.ccevuuneieeiieeeeiiireeee e eeeeeetttreeeeeeeeeeeeeass i eeeeeeeserasssnnnssseesssssssssnssssssessssssssnnnnsssessssssssssnnneseesessssnssnnnssseeens 11-1
Functional DeSCIIPUionccuiiiviiriiiiiiiiiiiiienitittciecs st besae st besbesaesaessssssesnens 11-1
Address COMPATALOLS. ...c..ceuvitiruerririiiiiititerierieete ettt sttt sa et s st st et et e b e be s st et et esbesaessesstestensans 11-1
Context ID CompParators.......c.ouevuiiviiiiiiiiiiiiiiniiiiiinitcicee ettt aessssesssessssessasesaessssesssessns 11-2
EVEIES ettt reeee e eeeereres s e eeeeeeesasasss s eeeeeessarasssanaaeeeesrrasssrnnaeeesesrarannranseseeeerersnrnraneneeeans 11-2
COUIEETS...uuuuuueueueeennnennnnnnesensennnsnssssssssssnsssssssssssssssnsssssssssssssssnsssssssnsssnsssnssssssnsnssnnssnnssnsnnnssnnnnsnnnnnnnnnnnnnnnnnnen 11-2
THACE SECULILY woevviiiiiiiiiitiiiiiiicct e as s b s s s ae e an e sas e baesnsessneeans 11-3
Programming Model............cccoouiviiiiiiiiiiiiiiiiiii s 11-3

SHARC+ Core Programming Reference XV

Refer L5200 11-3

Instruction Set Reference
INSEIUCION GIOUPS ...vvviniiiiiiiiiiiiiiiicc s sae s ab s b e s b eanssaaeeans 12-1

Instruction Set Notation SUMMATY.......cccoiviiiiiiniiiiiiniiiiieie et sae e sae s aessasessaeeans 12-2

Group I Conditional Compute and Move or Modify Instruction

Type 1a ISA/VISA (compute + mem dual data move)ccccevevuiiviiiiiiniiniiniiniiniiiiiicrctcceeeeene 13-3
DMACCESS (TYPE 12) w.ueeverreriiriiieieienieneetetetestessesee st et e stestessessesst st st e saessessessesaeetessessessessesseentensens 13-5
PMACCESS (TYPe 1@) weouiiiiiiiiiiiiiiiiiiicitcicnicnnt ettt ae s sas b s st s ae s sas b saeens 13-6

Type 1b VISA (mem dual data MOVe)ccceueruiiiiiiiiiiiiiriiinieiiteercnett ettt sre st et nens 13-6
DMACCESS (TYPE 1D) ettt ettt seesses e st st st sae s ssesse st st esaesaessessesseessennens 13-8
PMAGCCESS (TYPE 1D) ceeutiiiiiiiiiiiiiiiiiicictetnctctetsetet ettt et ss s e be st besn et s 13-8

Type 2a ISA/VISA (cOnd + COMPULE) ..cuviveruiruiiniiiiiiiiniinieetiteteresesiest ettt et essesaessessesssessenens 13-8

Type 2b VISA (COMPULE) ..cvviuiiiiiiiiiiiiiiiiiieiicnitciteresr sttt sa s s s b s s s et s sae s b e s s esasesnasnne 13-10

Type 2¢ VISA (Short Compute).......ccovuivuiruiiuiiiiiiiiiiniiiicici e a s 13-11

Type 3a ISA/VISA (cond + comp + mem data MOVE)coceeiiviiriininiiiiiiniinienieneirereresess st essessesne 13-12
ACCESS (TYPE 3) ueeuviiiiiiiiiiiiiiiiiinitcitirente sttt et s b st s as s b s s s st s b sab e s s esaesbesnsesasens 13-15

Type 3b VISA (cond + mem data MOVE)cceevueruiiiuiiiiiiiiiniiiiiiinictnt ettt r et sae e 13-16
ACCESS (TYPE 3D) ettt sttt ettt re s e s et e et e s b e s s e st et et e saessesaessesae et enaesennes 13-18
133 3 B 0TI]) SRR 13-19
BHSE (TYPE 3) oo eeeeeeeeeeessesssssssssssssssssssssssasssssssssssssssssssssssssesssssssssesssssssssssssssssssssssssssenes 13-19

Type 3¢ VISA (mem data MOVE)cocueeuiiiuiiiiiiiiiiiitiicnrertcic ettt re et sseesr e s n et e sne e 13-20
ACCESS (TYPE 3C) cuevirenririrrerieniiitiienteteteresset et eresre sttt be bt s b bt st s b s b et et be st et sbesse b estssessesneneen 13-21

Type 3d ISA/VISA (cond + exclusive mem data Move)........cccevvevuereniiiiiiniinicniniircrceese e 13-22
ACCESS (TYPE 3d) ettt sttt ettt et et sbe st st b e sbesbesse s st st e b e snebesnes 13-24
BH (TYPE 3d) c.evenieiiiiiiieeteteeetee ettt sttt et s a e st at b sb et e b snesanes 13-24
BHSE (TYPE 3) vrrrrrrrreeesesseseeeseeseeseeeeeeseeeeeeeeseessesssessssessessessesssssmmesssssssssssssssssssssssssssssssesssssssessesseseeeees 13-24
EX (TYPE 3) e eesesesssssssssssssssssssssssssss s sse s sssssssssssssssssssssssnessnne 13-24
EWEX (TYPE 3d) ceeeeeiiiiiiiiiiiiiienietet ettt ettt sttt s a e st be bbbt bt s b e s b et e sne e 13-25
WACCESS (TYPe 3d) c.eeveviiiiiiinieiiieiiicietetneietet sttt ss et sbesa et sb et st sbesne st s s s saesne e 13-25

xvi SHARC+ Core Programming Reference

Type 4a ISA/VISA (cond + comp + mem data move with 6-bit immediate modifier)..........ccoevvvriuinunnnnncns 13-26

ACCESS (TYPE 42) «.eververiiniiniiiiienierieetetete ettt ettt ettt b e bt s st s b e b e b e s se s st st et e saesesnes 13-29
Type 4b VISA (cond + mem data move with 6-bit immediate modifier)ccoceviviiiiviinininininiiinnne 13-29
ACCESS (TYPE 4D) ettt ettt ettt a et a e sa e s besa e 13-31
BH (TYPE 4D) .ottt ettt sttt s 13-32
BHSE (TYPE 4b) ..ttt ettt ettt st sb e b st e a e sne s ne 13-32
Type 4d ISA/VISA (cond + mem data move with 6-bit immediate modifier)ccceevvvuivuirininiiiinenne. 13-32
ACCESS (TYPe 4d) c.cveveuiiniiiiiiiiiiinintitetcrice ettt ettt sb et st b e sb b e st s sa e b e b esnes 13-34
BH (TYPE 4d) ettt sttt ettt sb et st sb e b a st a e b e sa e 13-35
BHSE (TYPe 4d) -.cveeuieieieieeeeteteeeeee ettt ettt et et ettt et sb e s e sesme st e e e s ssenne 13-35
Type 5a ISA/VISA (cond + comp + reg data MOVE)c..coeriiiiiiiniireniiiiiiiiicnent s 13-35
Type 5a ISA/VISA (cond + comp + reg data SWap).....cccceceeeeiivreneneniiniiniinienienentetetesressessesse st essessessenne 13-37
Type 5b VISA (cond + reg data Move)........coceeiiiiiiniiniiiiiiiiiiiicicncic s 13-39
Type 5b VISA (cond + reg data SWap)cocceeviiiiniiniininiiiiiiicicnintscrcncsressestest e esesesaesne 13-40
Type 6a ISA/VISA (cond + shift imm + mem data Move)cccceueveriiiiiiniiniininiiie e 13-42
ACCESS (TYPE 6a) «.evnvenriniiniiniiiinieieeitetete ettt sttt sae sttt s bbbt st st esbesbesse s st st et esnesesnes 13-44
Type 6a ISA/VISA (cond + shift imm) .c..coceiviiiiiiiiiiiiiiiiiice e 13—-44
Type 7a ISA/VISA (cond + comp + index modify)cocceeriiiiniiniininiiiiiiiiiciie e 13-46
133 5 B0 0 T) RS TRR 13-48
MODIEY (TYPE 7@) cuutiviriiiniiiiiiiniiiiiitiiestcstesit ettt s saesae st s sae b s b et s bt s b s b e st s st s sae s b esatesassnne 13-48
Type 7b VISA (cond + index modify)......cccceuiiiiiiviiniininiiiiiiiiiiicc e 13-49
MODIFY (TYPE 7D) ceveruiiiiiiiiiniiiiiiitiiiicnientit ettt esses sttt saesaesse st e b e b esaessesnssnssssessessens 13-50
Type 7d ISA/VISA (cond + comp + address SWitch)ccccoceeiiviirieneniiiiiiiiiicneetccccee e 13-50
ACONYV (TYPE 7d) wurereeriiieieteeieneetetete ettt sttt sae ettt b e sbe s s st e e e e sbenes 13-52

Group II Conditional Program Flow Control Instructions

Type 8a ISA/VISA (cond + branch).........cocceviiiiiiiiiiniiiiiiiiiiiincctcecttcenrctee e 14-2
ADDR (TYPE 8Q) c.uvirririuiiniiiiiiiiniiiiitiicicesit ettt b b et b bbb st eaben 144
LAY (7 ST T) R 144

Type 9a ISA/VISA (cond + Branch + comp/else comp)ccccovvevuiiviiriiiniiiiininniiiiiiiiiniciccniceccceens 14-5

SHARC+ Core Programming Reference xvii

ADDRCLAUSE (TYPe 92) c..cuviiiiiiiiniiniiiiiiiiiicctcictcninn ettt sae s sas s sss s s s s ensennens 14-8

COMPUTECLAUSE (TYPe 92) ..couviiuiiiiiiiiiiniiiitiitiicntcntiie sttt sssesstesstessesssesssesssessessnesssesssssesas 14-8
JUMPCLAUSE (TYPE 92) ...ccuvereieeiienieietenienieeitete e ste e ssesse st stessessessesse st e stessessessessesstensessessessesseentensens 14-8
Type 9b VISA (cond + Branch + comp/else)ccuevuivuiruininiiiiiiniiiiniiiiiiciciicncne e 14-9
ADDRCLAUSE (TP 9D)...utiiiiiiiiiniiiiiiitesieient sttt sttt sre sttt sbe s s s st saesaesae s 14-12
JUMPCLAUSE (TYPE 9D) ..ttt ettt sttt sre sttt se e b s s s st saesaessenes 14-12
Type 10a ISA (cond + branch + else comp + mem data Move........cccceueriiiiiiniinininiiiiii 14-13
WO O DN (5 T 1 T 14-16
ADDRCLAUSE (TYPe 10@) c..couviruirieriiniiiiiieienieneniestetetesresseseste st stessessessesst st sssessessessessessssssessessenses 14-16
Type 11a ISA/VISA (cond + branch return + comp/else comp).....ccceeveevuerveriiiniiniinenniiniinecenieceeeeee 14-16
COMPUTECLAUSE (TYPe 118) w.vvvveeeeeeeeeeeeeeeeesseeseeeeeeeseeeseeesesssssssssssssssssssssssssssssssssssssseeseeereeeeseeeeeseeees 14-19
RETURN (TYPE 112) crreereereeeeeeeeeeeeeeeeseseeesessessssseseseesssmsesssaesssssssssssssssssssssssssssessesssessssssssssssssseeeeeeeemeennne 14-19
Type 11c VISA (cond + branch return)cccccevveiiiiiiiiiiiiiiniiiiiiiiicinenecstce et n et 14-20
L LB A T) O 14-22
Type 12a ISA/VISA (do until imm loop counter expired)cccceereririiniiniinienininiiiiiiceeecreneane 14-23
Type 12a ISA/VISA (do until ureg loop counter expired).........coevvriririiiiiininiiniiininiiiiicccees 14-24
Type 13a ISA/VISA (do until termination)ceceevuievieiiieriiniiiinicnintrereceeceresree et 14-25
S0 LY B T 1 R 14-27

Group III Immediate Data Move Instructions

Type 14a ISA/VISA (mem data MOVe)cocvuiriiiiiiiiiiininiiniiiieicneic et s s s sse s et esnens 15-2
Type 14d ISA/VISA (exclusive mem data MOVE)c.cceveriruiiiiniinienininiiiitenresese st essessessesseeseessesaens 154
BH (TYPe 14d) weouveieiiiiiiiteieeentete ettt ettt b ettt et sa e s b st st b e b e b s e sesaenes 15-6
BHEX (TYPE 14d) «.cneeueiieieeieeietitetestesiesee ettt sttt seess e s st st st e b ae s s s st st et e e e aessesne e st et eneens 15-6
BHSE (Type 14d) c..couviiiiiiiiiiiiiiiiiiicicnicitctctcrcicncit sttt st st ss s s s sasnesa s e sesnssssssnens 15-6
BHSEEX (TYPe 14d) ..cueeiiiiiiiiniiiiiiiiiiecnenteteteteieseeit ettt sttt sae st ss bbb sse e s e nes 15-6
EX (TYPE 14Ad) ettt ettt ettt st st b e s b st e st st b e b e besneene e e ennes 15-7
EWEX (TYPe 14d) .oucovieiiiiiiniiniiiiinicietetnetctetsete ettt esse st et be st st sb ettt b e bt besn et s ne 15-7
Type 15a ISA/VISA (<data32> MOVE) ..c.eevueruiriiiiiiiiiiiniiniinitititeresesstet et essesse st snesaessesseessessenens 15-7
Type 15b VISA (<Aata7> MOVE)eiiiueriiriiiiiiiiieierienentstetestesie sttt esbe sttt sa b sse st st enesnesaesne 15-10

xviii SHARC+ Core Programming Reference

Type 16a ISA/VISA (<data32> MOVE) ..c.evuiruiiiiiiiniiriiniiniiiiiiirenicsese ettt et ssessesse s st ssesesaene 15-13

Type 16b VISA (<datal6> MOVE)eovuiuiruiriiiiiiiiiiieienitetet ettt sse sttt sa s esse st st aesaesne e 15-14
Type 17a ISA/VISA (<data32> MOVE) ..c.ovuiruiiiiiiiiiiriiniiiiiiiiiicieni ettt ss s sae e 15-16
Type 17b VISA (<AAtal 0> MOVE)ueruirriiiuiiiiietiieitricteteiteiete e etsreste st st esse st et esessesae e sessenessessenenees 15-17

Group IV Miscellaneous Instructions

Type 18a ISA/VISA (register bit manipulation)cccceeveviiiiiiiniiiinininiiiiieee s 162
BOP (TYPE 18) ..cuviuiiiiiiiiiiiiiiiitetesteiesiest ettt ettt sb bttt b e b st s bt st st b e b e b e se s e e st ennens 164
Type 19a ISA/VISA (index modify)ccceevveriiiiiiiiiiiiiiiiiiiintetitnrctct ettt sne e 164
BH (Type 192 - MOdify) c..ccuevuiriiiiiiiiiiiiiniiiiiiiiiiiicnccrcct e aesa s s ens 16-6
Type 192 ISA/VISA (IndeX DItrev).....cccevvevueririiiiiiiiiiniinieniititciceiet sttt sr s sse e et enens 16-6
Type 20a ISA/VISA (push/pop stack/manipulate cache)cceeuevuevuevuerirniiiiiniinininininteeeeseneeeeeeene 16-7
CACHE (TYPe 20@)ueiiriiniiiiiiiiiiiiiniciiciitcnre ettt ae s sst s sat e aesstesaeseasesnsessbessnsesnsesans 16-9
DMCACHE (TYPe 20Q) ...cueiiuiiiiiiiiiiiiiiiciinicitciccicst et sae e s sae s a s s assae s s e sas s bsssbeens 16-9
ICACHE (TYPE 20@).....cccuireriiriiiniiiiiiiesienient ettt ettt sb sttt b e aesaesae st st s b e saebessessaessennens 16-9
LOOP (TYPE 200).rrrrreeereeeeeeeeeessssssesessessessseemmeeessssssssssssssssssseseesssssssssssssssssssssemmssssssssssssssssssememensssen 16-10
PCSTEK (TYPE 20@) ..eeruviiiriiiiiiiiiiiiiiiiieiitcnte sttt esae st satssaresat s ae s sbaessae s naessasssnesstessbessnaesssess 16-10
e (7X@ 5 B T 16-10
STS (TYPE 200) ...ucuuiiuiiniiiiiiiinitititeteriert sttt sttt et b bt et sb e b e bt e st et s b e b e besatsatssnenessenne 16-11
Type 212 ISA/VISA (NOP) «evveruiirriiiiiiinitiitiieeterte ittt ettt st sae st et b e s b e et s be s b e s b e st e sbe e 16-11
TYPe 210 VISA (NOP) wevvinritiiiiticticntctetett ettt a bbb eas s n e ae s 16-12
Type 22a ISA/VISA (idle/emuidle)cccoueruiriiiiiiiiniininiiiiiiicicnenenttrereeet ettt resre e 16-13
Type 22¢ VISA (idle/emuidle)cc.covueriiiiiiiiiiiiiiiiiiiiiiiiiiniinicttcrct et 16-14
Type 25a ISA/VISA (GJUMP dIFECt) c.couviuiriiiiiiniiiiiiiiniiniicrci et sa e 16-15
Type 25a ISA/VISA (ump PC relative)cevveuiiiiiniiiiiiiiiiiiiiiiiccccceseses s 16-16
Type 252 ISA/VISA (£frame)......coeevueieviininiiiiiiicicencntctcretcse ettt ettt sb s st s n e sae e 16-17
Type 25¢ VISA (Iframie) c...coueeeuieiuiiiiiiiiiiiiiiiciictctccstet ettt st r e et sa e sb e s b st e sne e 16-18
Type 26a ISA/VISA (SYNIC) c.eeiuiiiiiiiiiiiitiiiiiiicccicc it a s 16-19

Computation Opcode Reference

Compute (Compute) OPCodecouivuiiiiiiiiiniiniiniiiiiiiii et a s esaesaesssessesaens 17-2

SHARC+ Core Programming Reference xix

Short Compute (ShortCompute) OPeode........couevuiruiiiiniiniininiiiiiiiiicentnt et sre e eetenens 17-2

Shift Immediate (Shiftlmm) Opcode (Type 6 Instruction only)cccceeererniiniinienenenienninieieneneneeeeene 17-4
Single Function Instruction (SINGLEFN)cccociiiiiiniiniiniiiiiiiiiicnnnccciecsces e essesnens 17-4
ALUQORP ..ttt ettt e e e e s s s seneeeeeeesssssssssssaaeesssessssssssntaesesesssssssssseeesessesssssssssseaseesesssssssssnaeees 17-4
IMIULOP ...ttt ettt ettt et e s e st e st st e st e st s b e st e s st e bt s b e st e st sese e b esate st easasstesstensesnsesssensessenas 17-7
IMODI ittt ettt s et s st e st e s st e b st e s st et e st e s st e se e b e st e s st e ese e b e et e s e e s e e s e et e saa et aentanatennaan 17-9
IMIODR2 ...ttt ettt et e e s e e raere et e e e e e s s s s sase e e e e e easssssssssaaaaaeeeessssssnnraaaaeeeasssssnrnraaaaeeeeasssssrrrrnaaaees 17-9
IMOD B .ttt ettt e e s et e e s s e bt e s s e s saa e s s s s sb e e s s s aba e e e s ab e e s e s st e e seen st aesee st aeseernaaeesnn 17-10
SHIFTOP/SHIFTIMMutiiiiiiiiinierienieeitesteseestesstesesssesssessessesssessesssessasssesssesssessesssesssesssessesssesnses 17-10
DUl Ad/SUDEIACE «.nvviiiiiiieeiteeteetee ettt ettt s et st e st e ae s sre e s se e ssaesssessanesnaesssassseesasens 17-12
Register File.....cuoiiiiiiiiiiiiiiiiiiciccc e 17-12
Single Computation Encoding 32/40-bit.........cccoovuiiiiiiiniiniiiiiiiiiiiiiicc 17-12
Dual Add/Subtract Encoding 32/40-bit..........cccoevuininininiiiiiiniinininiiiiiiieccneeee 17-13
Mul/ALU Encoding 32/40-Dit.......ccccouiviiiiiniiiiiiiiiiiiiiiiiiictcscees e ssaesesenes 17-13
Mul Dual Add/Subtract Encoding 32/40-bitcccceueuiviiiiiiiiiiiiiiiiiiiiiiienans 17-14
Short Compute 32/40-Dit.......ccceeriiriiriiriiiiiiiiiiiiiii e 17-15
Single Function Floating-Point G4-bitccccociviiviiniiriniiiiiiiiiininiiiiciccccercrccnc e 17-15
Multi-function Floating-Point 64-Dit.......cccccceviriiiiiniiriniiiiiiiiiininiitcicrccetercree et ereaens 17-15
MR Register Data Move (MRDATAMOVE)cociviiniiiiiniiiiiiiniiciiniecncscinscsesesssessesessssessessenees 17-17

ALU Fixed-Point Computations

RN = RX 4 RY ettt ettt s e e st e s ae e s st e s s saesemnnes 18-1
RIN = RX — RY ettt s et e s st e s et e s e e e s st e s e s e e s e st e s e neesenntesennaesennnes 18-2
RIN = RX 4 RY 4 o5 eieiniiiiiiiiiiiiiiiieeiiiettieietieeersteeeseetessssesssssessesessssesssssessssessssesssssessssessssssssssessesessssesssssennnne 18-3
RIN 2= R X - RY 4 Ol = L ettt ettt tteetaetaneeaneeansesssenssesssensssnsssnsssnsssnsesnsesnsenssenssenssessssnsssnssonssnnnes 18-3
RIN = (RX 4 RY) /25 ettt ettt sttt ettt st e s st s et s st e s b e s sst e e b e st e s st e ssbesentesasessnaasaneenns 184
comp (RX, RY); coeviiiiiiiiiiiiiccc e s 18-5
COmMPU (RX, RY); coiiiiiiiiiiiiiiiiiiicit et a s a s s ea 18-6
RIN = RX €l eettuneiiuneiiinerennerennesssnsessnsessssssssnsessssessssssssnssssssesssssssssssssssesssssssssssssasessssssssnssssnssssnsssssnssssnsessnnnss 18-6
RIN 2 RO €0 L ttiiiiiieiieeeee et et et ste st ssnesnnssnnssnsssnsssnsssnsssnsssnsssnsssnssnnssnsssnsssnnsensssnsssnssensssnsssnssnnssnnase 18-7
RIN = RX 4 L5eeeereerieeiieeereeeteeeeeeeeeeeeeeereeereeereeereeeteermeeemeerreeeseesmeeereeemeesmeemmeeemeeemeeemmeemmemmterremmrmeetmeemmemmmesmmessmmsne 18-8

XX SHARC+ Core Programming Reference

RIN = R ettt ettt et st st b e e s e e s bt e s r e e s sa e e s nnas 18-10
RIN = a8 ROttt ettt ettt ettt e e e e e s e et etaas s eeeseseatasanassssessssssessnnnnssnssssessssasnnnnsssssessesesnnnnnnnnns 18-10
RN = pass RX; .o 18-11
RIN = RX AN RY; ottt ettt st s aess e st e st s s st e st e s st e s e st e s st esseessesasesatesesasesanen 18-12
RIN = RX 08 RY ittt ettt st e st e s e s ae e s n e e s sne e s ennes 18-13
RIN = R KOOI RY ittt et e e e s es e e e e s st e e e sssaeeesssseseessssssessssssnsesssssnsesssssnsesssnnnsens 18-13
RIN = 00T RXG ottt sttt et et b e s b e s be s sb e s bt e b e s nneene s 18-14
RIN = N (RX, RY) j ettttitiiiitiiiiiietiiitrieetieetteeeteetreeereeseerreeerreesassr—essrssssssssessrssssssssssssssrsssssssssssssssssssssss.. 18-15
RIN = Max (RX, RY)5 uueeeiiieieiieeitecteeteeet ettt st st e st s et e s st e st e s st e st e e s st e e s e s e stesseeestesestesssessneesasens 18-15
RN = clip RX DY RY ittt ss s s s s s saenes 18-16

ALU Floating-Point Computations

32-bit and 40-bit OPerations........cccceeviiiiiiirininiiiiiiiiicnett ettt resaesae st enens 19-1
A IR 2, T T P 19-1
FIN = FX — FY ittt ettt ettt et e s ettt s e st s s st e st e s st s b e e s e s st e s aeessasbesstesseessesasesatesessaas 19-2
FIN = aD8 (FX 4 FY)5 uttiiiiiiiiieiccciteee ettt eeetteeseectee e s e e aaeeeesesaseeeeessaaesessssasesessssaassasssaessnsssasessssssessannnns 19-3
FIN = QD8 (FX — FY)5 tttttiiiiiiiiiiiiiitieeee e eeeettrtee e e e e e eesssssssseeeeeeesessssssssssseesssesssssssssssessssssssssssssssseesssesssnnnsnnns 19-3
FIN = (FX 4 FY) 2 oeeeeieeiiieeiieiieeeieeeieessessnssssssnnnnnn 19-4
COMP (FX; FY)5ttt sttt st e a s bbb s b s b e s b 19-5
FIN = —FX; ittt st st et e st e st e sae st e st e s st e sae et e st e sse e se st e s st esseese e seestesse e sae b asstesseenbessesssensaensanas 19-6
FIN = 2D FXG iiiiiiiiiieeeeeeeeeeeeteneaeeeeessseesssennssessssssssssnssssnssssssesssnssssssssssssssssassssnssssssssssensssnsssssssssnnnssnnsssssans 19-7
FIN = Pass FXGuuiiiiiiiiiiiiiiiiiictctt s 19-7
| S\ SRR ¢ 111 B 2D, TR URRRRRR PRIt 19-8
FN = 8€alb FX DY RY; .ottt sttt st s s e se e st sse s s s e s e e s sesneas 19-9
RN = mant EXG....oooiiiiiiiiiiiiiiiiiiiiicniecnirtc ittt aar s s aaa s s saane 19-9
RIN =108b EXG .ot 19-10
RIN = £ FXG autututuiiiiuiueeuuieieeeresreesseesssssssessnnes 19-11
RN = fiX FX DY RY ettt ettt ee sttt s s st e sse st e s e e st e sseesae st e s st esneenne 19-12
RN = trUDC FXG oottt ettt et 19-13

SHARC+ Core Programming Reference xxi

M 1 14
RN = trunc FX by | 2 PR 9—

FIN = 0@t RX . iiiiieeueeeeeeeereeerenenneseeeessssssssnsssssssssssssssnnssssssssssssssansssssssssssssssnssssssssssssssnnssssssssssssssssnnnssssnnss 19-15
FN = float RX DY RY; ..ottt sttt ettt s sn et sne s 19-16
FIN = 1eCiPs FX; ooviniiiiiiiccc s s 19-16
FIN = 18Qrts FXGunniiiiiiiiiiiiiicc s 19-18
FN = FX copysign FY; ..o 19-19
FIN = M0 (FX, FY)5 ettt ettt ettt e st e s et s st e s st e aae s s st e s b e s s e e s sessneesneesasassnnesasens 19-20
FIN = X (FX FY)5 ttttttttittitititiiierieetieerieetrereeeeseessessssesssesssessnsssssssssssnses 19-20
FN = clip FX DY FYjuuiiiiiiiiiiiiiiiiiiiciitctctnttctnc ettt sa st sas s sae s st ssnesanesanes 19-21
64-bit Floating-Point COmMPULAtions..........civuiriiiiiiiiniiiiiciec et sas b eae e 19-22
| Y B\ D, O T 2V 2 £ 19-22
IV = B LY = B ittt etteettaeestaesttasestasestsnssssnssssnsssessssssnssssssssssssssssssssssssessssessssssnsssennsseen 19-23
COMP (FXLY, FZW)5ttt sttt s b s bt ae s b s b et sae s 19-24
| Y T 2, € R 19-25
FIMEN = aD8 FXIY oottt ettt st et st e et st st st s st e st s ae s s e st e nesanesanes 19-25
FME:N = pass FEXCY oottt 19-26
FM:N = 5calb FX:Y By RY; ..ottt et aesn et sne s 19-27
RN=fix FX:Y;
... 19-28
RN = fiX FX:Y DY RY; ettt sa et sa e sse s st snesnen 19-29
A R 0 a1 13 Yol 2, € SRR 19-30
RN = trunc FXCY By RY .ottt sttt ettt s et s e s e st e nesnesmnes 19-32
FIMEN = 10t RXG covereeieeeerieeeremenneeeeesesessssnsssssssssssssssnnssssssssssssssnnsssssssssssssssnsssssssssssssssnnsssssssssssssssnnnssnnnnss 19-33
FM:N = float RX By RYG oottt ettt ettt saesae st snesnesanes 19-34
FIMEN = 0V FXG ottt st e s et s e e st e st s at e s se e st e s ss e e s s e s eseessessanesssaesssasseesasens 19-35
BN = OVt B Y uiiiiiieeeteeeee ittt eeeeeetaeeesetnesssesnaseesessasesssssasssssssesssssesasssssesanssssesanssssesnnssssssnnssssessnssesssnanses 19-36

MR Register Data Move Operations
(Mrf | MID) = RN ittt ettt b et b b et b s et 20-1

xxii SHARC+ Core Programming Reference

= H 20 2
RN = (I | MID); ettt ettt sttt st et s e st et e e e s b e sae st e e ssassesaeaesnas —

Multiplier Fixed-Point Computations

(mrf | mrb) = MRF 4+ RX ¥ RY MODITS ...couiiiiiiniinieieieesiesteteesiestestetssessest et e essesse st ssassessessssassessessenessens 21-1
RN = (mrf | mrb) + RX * RY MOD L..cuciuiiuiiiiiiniinieieieienieteteeerestete e ssessest et ssesseste st e e ssesse st s e ssessesessesnes 21-2
(mrf | mrb) = (mrf | mrb) — RX * RY MOD Ls...ucouiiiiiiieiirienieieeeiestentetesesteste e essesee st esessessestenessessesseneesens 21-3
RN = (mrf | mrb) — RX * RY MOD L..cuceiruiieieieinieieieiesiententeesiestestetssesse st esessesseste st esassesseseesessessensenesnes 21-4
(RN | mrf | mrb) = RX ¥ RY MOD L5u...ciiueirieinieinieenieieneeietsietssestesentesesessesessesessssestesensesensesesessenessenensne 21-5
(RN | mrf | mrb) = rnd (mrf | mrb) MOD3; ...ttt ettt sse st s 21-5
(RN | mrf | mrb) = sat (mrf | mrb) MOD2; ..ottt ettt se st 21-6
(IEF | MD) 2 05ttt ettt a st ettt st et b et et e s et et e e rens 21-7

Multiplier Floating-Point Computations

32-bit/40-bit Floating-Point OPerations..........cocceeriiiiriinueriniiiiiinienieneneitetessessesesesssessessessessesseessessens 22-1
2N 25 G 2 OO 22-1
64-bit Floating-Point OPerations...........ccoevuivuiruininiiiiniininiiiiiiiciiic et saessessssssessessens 22-2
| Y BN 2, O Gl Y2\ 22-2
FMEN = FXCY * FY; ittt ae s s 22-3
FIMEN = FX F FY ittt b st s sa et s a s s s b e sa st 22-4

Shifter Immediate Computations

RN = Ishift RX by (RY | DATAS);.........crvveeeerseesesseness 23-1
RN = RN or Ishift RX by (RY | DATAS);ccrvveeereveeesesessnees 23-2
RN = ashift RX by (RY | DATAS);coueurveeerveeeeeseosssssesssnses 23-2
RN = RN or ashift RX by (RY | DATAS);ovoemrreeeenneesseesesssssssesssssesssenes 23-3
RN = 10t RX by (RY | DATA);ooourvveenreeesessssssessssssssssssssssssssssssssssnsssssssssssssssssssssssssssssssssssnsssssssenees 23-3
RN = belt RX by (RY | DATAS);...cu..vveernrveeenesessssesssnsnees 23-4
RN = bset RX by (RY | DATAS); ..cc..vvverrvereesssseesssssessssssssssssssssessssssesssnness 23-5
RN = btgl RX by (RY | DATAS); ..co..vveeereeeeessessessseness 23-5
btst RX by (RY | DATAS); ..oovervveenreeesnssssssessnssssssssnees 23-6
RN = fdep RX by (RY | BITG:LENG);.......ovoeernrveeeeseeeesssessnssses 23-6

SHARC+ Core Programming Reference xxiii

RN = RN or fdep RX by (RY | BITG:LENG);......ccecerueerurreerientrientneeenseenseseneeseessestssesessesessesessesensesessesenees 23-8

RN = fdep RX by (RY | BITG:LENG) (S€); «..cveveuerueruerueerrenrenuetesessensetenessessetesessessessentesessessentesessessenseneeses 23-8
RN = RN or fdep RX by (RY | BITG:LENG) (S€); «..ceveuveueeueruerueienerienseteessesseseeneesessessentesessessensenessessessenens 23-10
RN = £ext RX by (RY | BITG:LENG); cevvvereenrsesssssssesssesssseessesessesssessessessessssssessessssssesssesessensnnnnnnsssssssssssssss 23-11
RN = fext RX by (RY | BITG:LENG) (SE); -eveueeveuerreueruerererrenerreersenenseneseesessesessesentesentesenessenessesensesenseseneesens 23-12
I o 4 I 2 T 23-13
A I 4 s 20, G (3 23-13
RIN = LEftZ R ettt ettt sttt sttt et s s e s e st e b e st e st e sae e s e sane s st enesasesanes 23-14
RIN = LEft0 RXG.ecieeiieieieeteetete ettt sttt et et a e st s e st s s st e st e st e b e et e s st esaeessesatesneessasasesanas 23-14
RIN = fPaCK FXG ittt sttt e b e st sa e s st 23-14
FN = funpack RXG...ooviviiiiiiiiiiiciciiticcit ettt ss s s s sr e 23-15
bitdep RX by (RY | BITLENI2);ccucctruetrreirienenteentesenteseteseneesenessesessesessesessesentesentesenessesessesensesenseseneesens 23-16
RN = bitext (RX | BITLENTL2) (IL); cveoteteueerentetrensenteneeessensetestssessestesessessessentesessesseteneesessenseneesessensenees 23-17
BEFWID = (RIN | DATAT); ueeueveeeteieieneenteiteieetetet et sse st et et sbeste st et sse st et et ssesse st et e st sse st et e st ssesbentenessessensenees 23-19
RIN = DEWIP; ottt s 23-19

Multi-Function Instruction Computations
32-Bit, 40-Bit INSTITCTIONS. t.vvvevrerrreerreerreeereeereerteetteeeteeeteeeteetteetteeeteeetee.tee..te........................... 24-1
L U D110 4 Lo 2 (o) s LTINS 24-2

Immediate (imm) and Constant (const) Opcodes

IMm16visa Register TYPe.....cuoviviiiiiiiiiiiiiiiiiiiicc e 25-1
Imm23pc Register TYPe ...cuivuiiiiiiiiiiiiiiii s 25-1
IMM24 Register TYPe....cvuiiiiiiiiiiriiiiiiiiiiiiiii et a b saesa s s enens 25-1
Imm24pc Register TYPe c..cocvivuiiiuiiiiiiiiiiiiiiiiniictr e e 25-2
IMmM32 Register TYPe....couiiiiiiiiiiiiiiiiiicc e 25-2
IMM32¢ ReGIStEr TYPe ..cuuiiuiiiiiiiiiiiiiiiiiictc e 25-2
IMM32f ReGISTEr TYPE..ucruiiuiiiiiiiiiiiiiiiiiiiiciccct ettt e b bbb sbs et esnens 25-2
IMmMO Re@ister TYPe......oouiiiiiiiiiiiiiiiiic e 25-2
IMmMOPC ReGISter TYPe ..c..civiiiiiiiiiiiiiiiiic e 25-3
IMmOVisa RegiSter TYPecc.civiiiiiiiiiiiiiiiiiiiici e 25-3

XXIV SHARC+ Core Programming Reference

ImMmOVisapc Register TYPe ...c..oviiiiiiiiiiiiiiiiiiiccc e 25-3

Imm7visa ReGISter TYPecouiiiiiiiiiiiiiiiiiiiciicicc e 25-3
imm8c12 Register TYPe ...cuevuiiiiiiiiiiiiiiii s 25-3
wimm12 Re@ister Type.....cooiiiiiiiiiiiiiiiiiiiiiiii e 25-4
WimMmMIG6 Re@ISter TYPe.....coiiiiiiiiiiiiiiiiiiiii e 25-4
uimm5cl2 Register TYPe ...cciiiiiiiiiiiiiiiiiiiiiit e 25-4
wimmODbit Register TYPe ...c.coiiiiviiiiiiiiiiiiiiiii et 25-4
wimmOGlen Register TYPecoouiviiviiiiiiiiiiiiiiciitcttcc ettt sr e sa st 254
wimm7cl2 ReGISter TYPe ..cveiuiiiiiiiiiiiiiiiiciicicc bbb 25-5

Register (reg) Opcodes

BIREG Register Classcocevuiiiiniiniiiiiiiiiiiiiiiciieicnetessiesetesssses et sesae s sssessessssessessesssnenes 26-1
B2REG RegiSter Classccouiviiviiniiiiiiiiiiiiiiiiiiicicienctesen ettt esaes st essesaesaessssnssnsennns 26-1
DBLREG Register TYPe.......coouiiuiiiiiiiiiiiiiiiiiiinicitcicict sttt ae s sas s asssa s s asssneens 26-2
DBLREG3 Register Classcc.couiivuiniiniiiiiniiiiiiiiciiiniiciceieieesssese s sessesssssssessesssnesnes 26-2
DBLXAREG Register Classcc.cooiviiiiiiiiniiiiniiiiiiiiiiiiiniicicicics st essessessessssssessennens 26-3
DBLXMREG Register Classc.coceviiiiiiniiniininiiiiiiiiicniiiiniincseicssessssesesessessesssesessessessessesssessessens 26-3
DBLYAREG Register Class........ccceeriiiiiiiiininiiniiiiiiiiicnienititisessessessese st ssessessessessesssessessessessessesssessens 26-3
DBLYMREG Register Classccoevuiriiininiiniiiiiniiiiiiiiiiitciiesetesssesessssssessessessessssessessessssessessssssnes 26-4
FREG Register Class........cccviiiiiniiniiniiiiiiiiiiiiiiiiiciciessnntest sttt st essessessesss st sssssaessesssssssnsensens 26-4
FXAREG Register Class........ccouevuiriniiiiiiiiiiiininiiiiiiieniiitit et ssessessessessesssessessessessessssssensens 26-5
FXMREG Re@ister Class.........ccevueririniiiiniiniiniiniinitiiiienicnientststessessesses st stessessessessessesaessessessessssssessens 26-5
FYAREG Register Classc.coevuivuiiiiiiiiiiiiniiiiniiiiicicinccteicsss sttt essesssaessssnsensennens 26-5
FYMREG Register Class.........cocevuiniiiiiiiiniiniiniiniiiiiiiiieicniciisnssessessess st esessessessesssessessessessessessssssensons 26-6
TTREG Re@iSter Classcccceviiviiviiriiriiiiiiiiniiniiniititincicsiest st esessesse st ssessesses e st essessessessesssessensens 26-6
I2ZREG Re@iSter Classcccouiviiiiuiniiniiiiiiiiiiiiiiicicsiicseteesses et ssess et ae e ae st saessesssnesnes 26-6
MIREG Register Classcccovuiviivuiniiiiiiiiiiiiiiiiiciiienicsenessiessess st es st sss s saesassnssnsennens 26-7
M2REG Register Classcocuevuiriiruiniiiiiiiiiiiiniiiiincienienitet sttt essessessessessssssessessessesssessensens 26-7
MRXFBREG Register Class.......ccceeririiiiniininininiiiiieniesientitssessessessesessessessessessessesssessessessessesssessessens 26-8
RFREG Register Classccevuiviiiiiiiiiiiiiiiiiiiiiicicicnincc ittt ssaesaessssnsensennns 26-8

SHARC+ Core Programming Reference XXV

RREG Register Classccovuiviiiiiniiniiiiiiiiciiiiiiiiicnccsies e ssess et ae st sa s snssaes 26-9

RXAREG Register Classccouevuiviiniiniiiiiiiiiiiiiiiiiicicicncenete sttt saesas s snssssesaesaes 26-10
RXMREG Register Classccccvuiruiruininiiiiiiiiiiiiiiniiiciciesicscetetenssesssssssss st essessesssssssssensessessesses 26-10
RYAREG RegiSter Class......ccuevuiiiruiririniiiiiiiiinicniiititiiesessesiesestetesessessessesssessessessessessesssssssnsessessesses 26-10
RYMREG Register Classccceviirinuiniiiiiniiiiiiiiciiieiiciciestssessessessses st sssssessessessssessessenssssssessenses 26-11
SREG Register Class........coceiuiiiiiiiiiniiniiiiiniiiiiiiciiicitcict s essesaesaeaes 26-11
SYSREG RegiSter Class.......coueviiiiniirininiiiiiiiiniiniitiiiiescssessesestesesssssessessessssssessessessessessssnsessessessesses 26-12
UREG Registers Class......cccouiiiniiniinininiiiiiiiinenititeieressesseseetetessssessessesstssssssessessessessssssensessessesses 26-12
UREGDBL Register Classccciviviruiniiiiiniiiiiiiniiiiiinicieieisesiesessssessessessessssessessessssessessessssessessenses 26-17
UREGXDAGI Register Classccccviriiuiiiiniiniiniiniiiiiiiiiiiieiictenencsessesssstesesessessssssssssssessessessesses 26-18
UREGXDAGIDBL Register Classcocueviiviiniiniininiiiiiiiiiiicneniitincreiesestssssessessessesssssessessessesses 26-22
UREGXDAG2 Register Classccuevueririiiiniiniinieniiiiiititesseneseetetesessessessesstesssssessessessessesssessessessesses 26-23
UREGXDAG2DBL Register Classcccccuiviiiiniiniiiiiiiiiiiiniiiiiicieiccnteresenessesssssssnsessessessesses 26-26

Numeric Formats

IEEE Single-Precision Floating-Point Data Format..........cccocoviiiiiiiiniininiiiiiiiiininiiiiccscnnccnennns 27-1
IEEE Double-Precision Floating-Point (64-bit) SUPPOIt.......ccceviiiiviiviiriiiiiiiiiiicnnentccrercseeenenns 27-2
Extended-Precision Floating-Point FOrmat..........ccccceuevuiririniniiiniininininiiiiiciciccncnectenesressessesseenenens 27-3
Short Word Floating-Point FOrmatcccccvuiviiiiiniiniiiiiniiiiiiiiciiccccicneecsesesscssesesenenes 27-3
Packing for Floating-Point Dataccccuevuiviininiiiiiiiiiiiiiiiiciiic et esnens 27-3
Fixed-Point FOIMAats......ccccociiiiiiiniininiiiiiiiiiicicic ettt sa b saessssnsesnens 27-4

SHARC-PLUS REGF Register Descriptions

Arithmetic Status (PEX) ReGISTEr ...coevuiiiiiiiiiiiiniiiiiiiiiiciccnncccct e 28-3
Arithmetic Status (PEy) REGISTEL ...coevuiiiiiiiniiriiniiiiiiiiiicienentntctcrcsiesesitet ettt sr s s 28-9
Base (Circular Buffer) Registersc.coiviiiniiniiiiiniiniiiiiiiiciiicicncncne st ssessessenees 28-15
Current Loop Counter Registerccoiiviiiiiiiiiiiiiiiiiiicicicctctcc s 28-16
Decode Address REGISTELccuiiiruiriiriiniiiiiiiiiicnintitctcr ettt st ss s esae s st ebesaenes 28-17
Emulation Counter REIStErcccoiiiviiiiiiiniiiiiiiiiiiiiin e sae s 28-18
Emulation Counter Register 2cocoviviiiiiiiiiiiiniiniiiiiiiiciicn s 28-19
Instruction Pipeline Stage Address Registerccociviiiiiiiiiniinininiiiiiiiciccc e 28-20

xxVvi SHARC+ Core Programming Reference

Flag I/O REGISTETcouiiiuiiiiiiiiiiiiiiiiiiciictce et b bbb s b b nsnt e 28-21

Interrupt Mask RegISterccouiiiiiiiininiiiiiiiiiiii e 28-24
Interrupt Mask Pointer RegISterocvviiiiiiiiiiiiniiiiiiiiiiiiice e saenes 28-28
Interrupt Latch REGISTErccuviiiiiiiiiiiniiiiiiiiiiiiiciinn ettt sr s s st nesaeaes 28-34
INdEX REGISTELSvvviiiiiiniiiiiiiiiiicicc bbb e sb b 28-39
Loop Address Stack ReGISTercooviviiiiiiiiiiiniiniiiiiiiiiiicie e sa s 28-40
Loop Counter REGISTErcocuiiuiiiiiiiiiiiiiiiiiiicici e 28-41
Length (Circular Buffer) RegISterscocvviiviiviiriininiiiiiiiiicncninitccrcicet et enesrenes 2842
Mode Mask ReEGISTELcviiiuiniiiiiiiiniiiiiiiiiictiet ettt s et e b e s eas b aenene s 28-43
Mode Control 1 ReIStErcccuiviiiiiriiriiiiiiiiiiiiiii e n b aes 28-47
Mode 1 Stack (Top Entry) RegiStercocuvviiviiiiiriiniiiiiiiiiiiiiinicntitcncrcicetet s esenessesaes 28-52
Mode Control 2 REISTETcccuiviiriiruiriiiiiiiiiiienitntte ettt ettt st sb b ae sttt sb e b nes 28-56
Multiplier Results 0 (PEx) Background Registerccooviviiviiviiiniiiiiiiiniiiiiiiciccncnccncseicienes 28-58
Multiplier Results 0 (PEx) Foreground Registeroceviiviiviinininiiiiiiiiiininiiccicicnicscscesenenenes 28-59
Multiplier Results 1 (PEx) Background Registercocoviiviiviirininiiiiniiniininininiiecrcnicncseseenenesnenes 28-60
Multiplier Results 1 (PEx) Foreground Registercccovvinuiniiiiininiiniiiiiniiiiiincicncnescnensessenenees 28-61
Multiplier Results 2 (PEx) Background Registerccovuiviiviiniininiiiiiiiiiniiiiicicccnccseseecnenes 28-62
Multiplier Results 2 (PEx) Foreground Registercocuiviiviiviinininiiiiiiiiinininniiciciccncseesenesnenes 28-63
Multiplier Results (PEx) Background Registercccoviiviiviiviininiiniiiiiiicnicninietctcrcsicnicscseesenesvenes 28-64
Multiplier Results (PEx) Foreground Registerccoviiiiiiniiniiniiiiiiiiiiiiiiicicicicnccnescncnenes 28-65
Multiplier Results 0 (PEy) Background Registercccovviviiviiniininiiiiiiiiiiniiniicicicncncsccseneeenes 28-66
Multiplier Results 0 (PEy) Foreground Registerccccouvuiviiiiiiiniininiiiiiiciiiciciccccienes 28-67
Multiplier Results 1 (PEy) Background Registerccccoviviiiiiiiniiniiiiiniiiiiiinciciecicnccsceenenees 28-68
Multiplier Results 1 (PEy) Foreground Registercccoviiviiviiniininiiiiiiiiiiniiiiciciciccncccseicnenes 28-69
Multiplier Results 2 (PEy) Background Registercccovuiviiviininiiiiiiiiiiiininiiiinccicicncsccseneeenes 28-70
Multiplier Results 2 (PEy) Foreground Registerocoviiviiviirininiiiiiiiniinicninititcrcicnicncseesenesvenes 28-71
Multiplier Results (PEy) Background Registercccooiiiiiiviiniiniiiiiiiiiiiiiiicicicicncccccnenes 28-72
Multiplier Results (PEy) Foreground Registercocvviiiiviiviiniininiiiiiiiiiiiiiciciciccceesenenenes 28-73
MOdIfy REGISTELS ...couviviririiiniiiiiiiiciitint ettt et b et bbb b b e s b s s st s b esbesnes 28-74
Program Counter ReGIStercoiiviiiiiiiiiniiiiiiiiiicici s 28-75

SHARC+ Core Programming Reference xxvii

Program Counter Stack REGISTErcccoviruiiiiiiiiiiriiniiiiiiiiiiiccttcrceet et resrenes 28-76

Program Counter Stack Pointer RegIStercoccviviviiiiiiiiniiniiniiiiiiiccci s 28-77
PMD-DMD Bus Exchange Registerccoovviiviininiiiiiiniiiiiiniiiiiiicicncncicicnesess s esessenes 28-78
PMD-DMD Bus Exchange 1 RegiStercccevuiriiririniiniiniiniiniininiiiccciccttsn e esesessesses 28-79
PMD-DMD Bus Exchange 2 RegiStercoccviiiiniiniiiiiniiniiiiiiiiciiiicncsecnsesesessssessessessssessessenses 28-80
Register File (PEx) Data Registers (RX, FX) ...cccccoviniiiniiniiniiniiiiiiiiiiiiiccc e 28-81
Sticky Status (PEX) ReGISTErcouivuiriiriiiiiiiiiiiiniiiiicrcicn ettt nesaeaes 28-82
Sticky Status (PEy) ReIStErccuevuiririiiiiiiiiiiiniiittcctccttcere ettt nesaenes 28-85
Register File (PEy) Data Registers (S, SFX)ccccoviviiiiiiiiiiiiiiniiniiiiiicccc e 28-88
Timer Count RegiSterccoviiiiiiiiiiiiiiiiiii e 28-89
Timer Period ReGISTErcoeviiiiiiiiiiiiiiiiiiiiiiictccn et a s s s st s s b sa e 28-90
User-Defined Status 1 ReGISTErccuevuivuiiiiiiiiiiiiiiiiniiiiiiieicicicntetcter ettt ssesae st aenesrenes 28-91
User-Defined Status 2 RegiStercooviiiiiiiiiiiiniiniiiiiiiiiiciiiccciee e enesaesaes 28-92
User-Defined Status 3 RegiStercocviviiiiiiiiiiniiniiiiiiiiiiicicnctcncciecst e essenesseaes 28-93
User-Defined Status 4 RegISTErcoceviiiiiiiiiiniiniiniiiiiiiiiiicnienenttercesreest et sressesse e se s ssesaenes 28-94

SHARC-PLUS CMMR Register Descriptions

General-Purpose Parity Error Status Registerccovuiviiviininiiiiniiniiniininiiiiiciccicncnccnercicseseenenns 29-2
PFB No Caching Return 0 End Address Registerccccvuiviiiiininiiiiiniiniiiiiiicniiccncnecsnesesenenes 29-5
PFB No Caching Return 0 Start Address Registercccoceviviiiiiiiiiniininiiiiiiiiiciciccccnens 29-6
Core Global Power Control Registercoceviviriiiiiiniiniininiiiiiiiiiccencncncresese st enesessessesssessesnens 29-7
L1 BANK SLEEP CONTROLccooiiiiiiiiiiiiitiicinicicicictesreses s sssse s s ssessssssnssnes 29-8
L1 BANK SHUT DOWN CONTROLcoceviiiriiiiiiitiniiiiiicnctessienesssssessesesesessessessssessessessssesses 29-9
System Control REZISTErccciiviiiiiiiniiiiiiiiiiir e 29-10

SHARC-PLUS SHBTB Register Descriptions

Configuration ReGISTErccuiviiviiiiiiiiiiiiiiiiii e a e a s 30-2
Lock Range End ReGIStercccvuiviruiiiiiiiiiniiiiniiiiiiicicicntntcctcncicsc sttt s s saessesseessesnens 30—4
Lock Range Start ReGIStErc..ccuiiiuiriiiiiiiiiniiiiiiiiciciiicicctces e ssesa e saes 30-5

SHARC-PLUS SHDBG Register Descriptions

xxviii SHARC+ Core Programming Reference

Break Control REGISTErcooviiiiviiiiiiiiiiiiiicieitcttcictt ettt et a b e sae st e n e 31-3

Break Status ReGISTErcoivuiviiiiiiiiiiiiiiiiicicc bbb 31-6
Core ID REGISTEL ...eoiuuiiiiiiiiiiiiiiteccc e e e 31-8
Decode 1 Stage Address REGISTErcc.couiiiiiiiniininiiiiiiiiiiciinin et sr st enens 31-9
Decode 2 Stage Address RegiStercc.cvviuiiiniiiiiiiniiiiiiiiiiincicnc et 31-10
Illegal Opcode Detected ReISTErcouivuiiuiiiiiiniiniiiiiiiiiiiiiic e aeaes 31-11
DM Data Address 1 End RegISTercocoviiiiiiiiiniiniiiiiiiiiiiiiintctccciesets s essessessesses 31-12
DM Data Address 1 Start REGISTELccccoiriiiiiviiriiniiiiiiiiiiieneneetter ettt ssesse s ss et esesaenes 31-13
DM Data Address 2 End RegIStercc.coiviviiniiiiiniiniiiiiniiiiiincicncnccnetesnsesesessssessessessssessesenses 31-14
DM Data Address 2 Start ReGISTErcocvviiiiiviiriiniiiiiiiiiiiiiiinceet et esesaeaes 31-15
Execute 2 Stage Address RegIStercocoiviiiiiiiiniininiiiiiiiiicccice et 31-16
Emulator Number (BP Hits) REZISTEL ...couevuiiiiiiiiiiriiriiiiiiiiiicicncntctctcrctcicitst ettt snene 31-17
Fetch 1 Stage Address RegiStercooiviiiiiiiiiiiniiniiiiiiiiiiiicic e 31-18
Fetch 2 Stage Address ReGISTErc.coiviviiiiiiiiiiniiniiiiiiiiiicccrc e saeaes 31-19
Fetch 3 Stage Address Registercccouiviiiiiiiiiiiiiiniiiiiiiicic e 31-20
Fetch 4 Stage Address Registercccouiviiiiiniiiiiiiiniiiiiiiciccccc et sae s 31-21
Memory 1 Stage Address RegISTErcociiiiiiiiiiviiniiiiiiiiiiiiiicictee e saeaes 31-22
Memory 2 Stage Address ReGISTErcocviiiiiiiiiriiniiiiiiiiiiiiiiccnt et s s saeaes 31-23
Memory 3 Stage Address REGISTELcoevuiiiiiiiiiiriiniiiiiiiiiiicreneet ettt ettt besaenes 31-24
Memory 4 Stage Address RegISTErccviiiiiiiniiniiniiiiiiiiiic e 31-25
O/S Processor ID RegIStercouiiiuiiiiiiiiiiiiiiiiiiccicctcc s s 31-26
PM Data Address 1 End ReGISTErc.couivuiiiiiiiiiiniiniiiiiiiiiiicicnentcten et ssesscsse s sas s enesaesnes 31-27
PM Data Address 1 Start RegIStercc.coivivuiiiiiiinicniiiiiniiiiicincicnsce et ssesseaeneen 31-28
Program Sequence Address 1 End Registerocociviiiiiiiiiniinininiiiiiiiiicitcicicicnc e 31-29
Program Sequence Address 1 Start Registerccocviiiiiiniiniinininiiiiiiicicnccce e 31-30
Program Sequence Address 2 End Registercccocviriiiiniiniininiiniiiiiiicicninintctctcicicnese e 31-31
Program Sequence Address 2 Start Registercocviiiiiiiiiniinininiiiiiiii e 31-32
Program Sequence Address 3 End Registerocociviiiiiiiiiniinininiiiiiiiiiccnccccce e 31-33
Program Sequence Address 3 Start Registercccoceviiiiniiiiiniinininiiiiiiiccicccce e 31-34
Program Sequence Address 4 End Registerccooviviiiiiiiiniiiiininiiiiiniiiiccncnccncnensssenenenees 31-35

SHARC+ Core Programming Reference XXix

Program Sequence Address 4 Start Registercccocviiiiniiniiiiinininiiiiiiicicitcccrcce e 31-36
ID Code REGISTETuvoviiiiiiiiniiniiiiiiiitcccctci ettt ab b as 31-37
SEC Interrupt ID ReGISTErc..covuiiiiiiiiiiiiiiiiiiicicccc s 31-38

SHARC-PLUS SHL1C Register Descriptions

L1 Cache Configuration 1 RegISTerccceuivuiruiriiiiiiniiiiiiniiiiiciiiccn et ennens 32-2
Range Register Functionality Selection Registerccoivueririiiiiiiiiiniiniiiiiiiiiccncncntcncncsscssesneenenens 32-5
Invalidation/Write Back Count 0 Registercccoviviiviiiiiniiniiiiiniiiiiiiicicicccecenes s 32-8
Invalidation/Write Back Index Start 0 Registercccovuivuininiiiiniiniiniiniiiiiiiiiciccciceseeneennennns 32-9
Range End 0 (Inv, WB, WBI, and Lock) Registercccovvuivuinininiiiiniiiiniininiiiiiciccncneescncnene 32-10
Range End 1 (Inv, WB, WBI, and Lock) Registercccovviivuinininiiiiniiniiniinininiiicicicncncnecscnenenes 32-11
Range End 2 (Non-cacheable and Lock) Registerccccvuivuiiiininiiniiiiiniiiiiincicncicicnccscnenenees 32-12
Range End 3 (Non-cacheable and Lock) Registercccovvuiviiniininiiiiiiiiiiniiiiiiiciccccncicnenes 32-13
Range End 4 (Non-cacheable and Write Through) Registercccoceviiiiniininininiiniinininincnccncrcnennes 32-14
Range End 5 (Non-cacheable and Write Through) Registerccccocueviiviiniineniniiniiiniinicnincninececrenenes 32-15
Range End 6 (Non-cacheable and Write Through) Registerccccooviviiiinininiiiiiininininiiciciciene, 32-16
Range End 7 (Non-cacheable and Write Through) Registerccocceviiiiniininininiiniininininnicncicnenes 32-17
Range Start 0 (Inv, WB, WBI, and Lock) Registerccccevuivuirininiiiiiniiniinininiiiiiciciccncnccncncnenes 32-18
Range Start 1 (Inv, WB, WBI, and Lock) Registercccocvvuiiiininiiniiininiiiiicicicicincicnecscnenenees 32-19
Range Start 2 (Non-cacheable and Lock) Registerccovuiviiniiniiiiiiiiiiniinininiiiciicciceenes 32-20
Range Start 3 (Non-cacheable and Lock) Registercovvviviinininiiiiiiniinininiiiiicciccncnecncnceennes 32-21
Range Start 4 (Non-cacheable and Write Through) Registerc..cocceviiviiniinininiiniiniinicncncnciciecreeenes 32-22
Range Start 5 (Non-cacheable and Write Through) Registercccoovvviiinininiiiiiiniininiiiciciciee, 32-23
Range Start 6 (Non-cacheable and Write Through) Registercccoevvviiiininininiiniininininciiciciciene, 32-24
Range Start 7 (Non-cacheable and Write Through) Registercccoccouviiinininiiininiiiiiniiciiicns 32-25

SHARC-PLUS Register List

Glossary

XXX SHARC+ Core Programming Reference

Preface

Thank you for purchasing and developing systems using SHARC+® processors from Analog Devices, Inc.

Purpose of This Manual

The SHARC+ Processor Programming Reference provides architectural and programming information about the
SHARCH+ cores. The cores implement a single-instruction multiple-data (SIMD) architecture with an 11-stage in-
struction pipeline. The architectural descriptions cover functional blocks and buses, including features and processes
that they support. The manual also provides information on the I/O capabilities (flag pins, JTAG) supported by the

core. The programming information covers the instruction set and compute operations.

For information about the peripherals associated with these products, see the product family hardware reference. For
timing, electrical, and package specifications, see the processor-specific data sheet.

NOTE: Analog Devices is in the process of updating documentation to provide terminology and language that is
culturally appropriate. This is a process with a wide scope and will be phased in as quickly as possible.
Thank you for your patience.

Intended Audience

The primary audience for this manual is a programmer who is familiar with Analog Devices processors. The manual
assumes the audience has a working knowledge of the appropriate processor architecture and instruction set. Pro-
grammers who are unfamiliar with Analog Devices processors can use this manual, but should supplement it with
other texts, such as hardware and programming reference manuals that describe their target architecture.

Manual Contents

This manual provides detailed information about the processor family in the following chapters. Please note that
there are differences in this section from previous manual revisions.

* Chapter 1, Introduction. Provides an architectural overview of the SHARC+ core.
* Chapter 2, Register Files. Describes the core register files including the data exchange register (PX).

* Chapter 3, Processing Elements. Describes the arithmetic/logic units (ALUs), multiplier/accumulator units, and
shifter. The chapter also discusses data formats, data types, and register files.

* Chapter 4, Program Sequencer. Describes the operation of the program sequencer, which controls program
flow by providing the address of the next instruction to be executed. The chapter also discusses loops, subrou-
tines, jumps, interrupts, exceptions, and the IDLE instruction.

* Chapter 5, Timer. Describes the operation of the processor's core timer.

SHARC+ Core Programming Reference xxxi

* Chapter 6, Data Address Generators. Describes the Data Address Generators (DAGs), addressing modes, how
to modify DAG and pointer registers, memory address alignment, and DAG instructions.

* Chapter 7, L1 Memory. Describes aspects of processor memory including internal (L1) memory, address and
data bus structure, and memory accesses.

* Chapter 8, LI-Cache Controller. Describes the internal (L1) memory cache controller, including instruction
and data cache control and operations. It also discusses the Prefetch Buffer feature that is exclusive to the

ADSP-2156x and ADSP-SC59x processors.

* Chapter 9, Safety, Security, Multi-Core, and Low-Power Features. Describes support for processor saftey and
security features, including parity error detection, illegal opcode detection, and memory barrier operation. The
chapters also describes some power saving features that are exclusive to the ADSP-2156x and ADSP-SC59x
processors.

* Chapter 10, Debug Interface. Discusses the debug interface and how to use the SHARC processors in a test

environment.

* Chapter 11, Program Trace Macrocell (PTM). Discusses the PTM, which implements a subset of Coresight
Program Flow Trace Architecture (CSPFT) specification.

* Chapter 12, Instruction Set Reference. Provides reference information for the ISA and VISA instruction types,
including instruction opcodes.

* Chapter 13, Computation Reference. Describes each compute operation in detail, including computation opco-
des. Compute operations execute in the multiplier, the ALU, and the shifter.

* Appendix A, Numeric Formats. Provides descriptions of the supported data formats.

* Appendix B, Register File and Other Non-Memory Mapped Registers (REGF). Provides register descriptions
and bit descriptions.

* Appendix C, Core Memory-Mapped Registers (CMMR). Provides register descriptions and bit descriptions.
* Appendix D, Branch Target Buffer Registers (BTB). Provides register descriptions and bit descriptions.

* Appendix E, L1-Cache Controller Registers (L1C). Provides register descriptions and bit descriptions.

* Appendix F, Debug-Related Registers (DBG). Provides register descriptions and bit descriptions.

SHARC+ Core Programming Reference xxxii

What's New in This Manual

The Revision History table describes the major changes to the SHARC+ Core Programming Reference.

Table 1-1: Revision History

Revision

Description of Changes

1.4

This revision corrects minor typographical errors and the following:

¢ Included content for the ADSP-2159x and ADSP-SC59x

* Added ITRxI bits in the REGF TMASKP, REGF IMASK and REGF TRPTL registers
to support the ADSP-2159x and SC59x processors

* Added additional flags in the REGF FLAGS register to support the ADSP-2159x and
SC59x processors

* Updated language surrounding the memory fabric infrastructure. The term master is re-
placed with requester and the term slave is replaced with completer. The master port is
now the requester port and the slave port is now the completer port.

1.3

This revision corrects minor typographical errors and the following issues:
* Updated code example for the recips functions in 32-bit and 40-bit Operations
* Updated code example for Fixed-to-Float Conversion Instructions with Scaling

* Updated PFB Invalidation instructions in Prefetch Buffer

1.2

This revision corrects minor typographical errors and the following issues:
* Added note to topic Coherency Between DM and PM Caches

* Updated definition of IIRI and FIRI bits for REGF IMASKP, REGF IMASK and
REGFEF IRPTL registers

* Changed bit field associated with the ID Code register SHDBG REVID from 4:7 to
0:3
* Updated SHL1C CFG.PMCASIZ enum 0 description

* Updated Type 20a ISA/VISA (push/pop stack/manipulate cache) syntax for cache
flushing

* Added note to Address-Range Based Invalidation and Write-Back Invalidation topic
* Updated topic Further Details on Range Based WBI/Invalidation
* Added ADSP-2156x to SHDBG CORE_ ID register description

SHARC+ Core Programming Reference

xxxiii

Table 1-1: Revision History (Continued)

Revision Description of Changes

1.1

Not released. This revision introduces the ADSP-2156x series of SHARC+ processors and
its specific features:

* Prefetch Buffer (ADSP-2156x and ADSP-SC59x Only)
* Low-Power Features (ADSP-2156x and ADSP-SC59x Only)
It also corrects minor typographical errors and the following issues:
* Header Creation example in the Bit Stream Manipulation Instructions topic

* Storing and Restoring Bit FIFO State example in the Interrupts Using Bit FIFO Instruc-
tions topic

* Added description of the ILLOPI and ILLOPIA bic fields in the
SHDBG_DBGREG_ILLOP register

1.0

Initial release

Technical Support

You can reach Analog Devices processors and DSP technical support in the following ways:

Post your questions in the processors and DSP support community at EngineerZone®:
http://ez.analog.com/community/dsp
Submit your questions to technical support directly at:

http://www.analog.com/support

E-mail your questions about processors, DSPs, and CrossCore Embedded Studio® (CCES) development soft-
ware tools:

Choose Help > Email Support. This creates an e-mail to processor.tools.support@analog.com and automatical-
ly attaches your CCES version information and 1icense.dat file.

E-mail your questions about processors and processor applications to:
processor.support@analog.com

processor.tools.support@analog.com

processor.china@analog.com

In the USA only, call 1-800-ANALOGD (1-800-262-5643)

Contact your Analog Devices sales office or authorized distributor. Locate one at:
http://www.analog.com/adi-sales

Send questions by mail to:

SHARC+ Core Programming Reference XXXiV

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.tools.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales

Analog Devices, Inc.

Three Technology Way

RO. Box 9106

Norwood, MA 02062-9106 USA

Supported Processors

The name "SHARC+" indicates a DSP core incorporated into an SoC from a family of high-performance, floating-
point embedded processors. Refer to the product data sheet for a complete list of supported processors.

Product Information

Product information can be obtained from the Analog Devices web site and the online help for the CCES develop-
ment environment.

Analog Devices Web Site

The Analog Devices Web site, http://www.analog.com, provides information about a broad range of products—ana-
log integrated circuits, amplifiers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to http://www.analog.com/processors/techni-
cal_library. The manuals selection opens a list of current manuals related to the product as well as a link to the
previous revisions of the manuals. When locating your manual title, note a possible errata check mark next to the
title that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site that allows customization of a Web page
to display only the latest information about products you are interested in. You can choose to receive weekly e-mail
notifications containing updates to the Web pages that meet your interests, including documentation errata against
all manuals. MyAnalog.com provides access to books, application notes, data sheets, code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail address.

EngineerZone

EngineerZone is a technical support forum from Analog Devices, Inc. It allows you direct access to ADI technical
support engineers. You can search FAQs and technical information to get quick answers to your embedded process-
ing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also use this
open forum to share knowledge and collaborate with the ADI support team and your peers. Visit http://
ez.analog.com to sign up.

SHARC+ Core Programming Reference XXXV

http://www.analog.com
http://www.analog.com/processors/technical_library
http://www.analog.com/processors/technical_library
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx
http://ez.analog.com
http://ez.analog.com

Notation Conventions

Text conventions used in this manual are identified and described as follows.

Example

Description

File > Close

Titles in bold style indicate the location of an item within the CrossCore Embedded Studio
IDE’s menu system (for example, the Close command appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly brackets and separated
by vertical bars; read the example as this or that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and separated by vertical bars;
read the example as an optional this or that.

[this, ..]

Optional item lists in syntax descriptions appear within brackets delimited by commas and
terminated with an ellipsis; read the example as an optional comma-separated list of this.

.SECTION

Commands, directives, keywords, and feature names are in text with letter gothic
font.

filename

Non-keyword placeholders appear in text with italic style format.

NOTE:

NOTE: For correct operation, ...

A note provides supplementary information on a related topic. In the online version of this
book, the word Note appears instead of this symbol.

CAUTION:

CAUTION: Incorrect device operation may result if ...
CAUTION: Device damage may result if ...

A caution identifies conditions or inappropriate usage of the product that could lead to un-
desirable results or product damage. In the online version of this book, the word Caution
appears instead of this symbol.

ATTENTION:

ATTENTION Injury to device users may result if ...

A warning identifies conditions or inappropriate usage of the product that could lead to
conditions that are potentially hazardous for devices users. In the online version of this
book, the word Warning appears instead of this symbol.

Register Diagram Conventions

Register diagrams use the following conventions:

* The descriptive name of the register appears at the top, followed by the short form of the name in parentheses.

* If the register is read-only (RO), write-1-to-set (W1S), or write-1-to-clear (W1C), this information appears un-

der the name. Read/write is the default and is not noted. Additional descriptive text may follow.

* If any bits in the register do not follow the overall read/write convention, this is noted in the bit description
after the bit name.

* If a bit has a short name, the short name appears first in the bit description, followed by the long name in

parentheses.

SHARC+ Core Programming Reference

* The reset value appears in binary in the individual bits and in hexadecimal to the right of the register.

* Bits marked x have an unknown reset value. Consequently, the reset value of registers that contain such bits is
undefined or dependent on pin values at reset.

* Shaded bits are reserved.

NOTE: To ensure upward compatibility with future implementations, write back the value that is read for reserved
bits in a register, unless otherwise specified.

The Register Diagram Example figure shows an example of these conventions.

Timer Configuration Registers (TIMERx_CONFIG)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
[oJoJoJoJo JoJoJoJoJo JoJoJoJoJo]o] Reset=oxo000

ERR_TYP[1:0] (Error Type) - RO TMODE[1:0] (Timer Mode)

00 - No error. 00 - Reset state - unused.

01 - Counter overflow error. 01 - PWM_OUT mode.

10 - Period register programming error. 10 - WDTH_CAP mode.

11 - Pulse width register programming error. 11 - EXT_CLK mode.
L PULSE_HI

EMU_RUN (Emulation Behavior Select) 0 - Negative action pulse.

0 - Timer counter stops during emulation. 1 - Positive action pulse.

1 - Timer counter runs during emulation. L PERIOD_CNT (Period

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)— Count)

0 - The effective state of PULSE_HI 0 - Count to end of width.

is the programmed state. 1 - Count to end of period.

1 - The effective state of PULSE_HI L IRQ_ENA (Interrupt

alternates each period. Request Enable)

CLK_SEL (Timer Clock Select) —m™M@8 ————— 0 - Interrupt request

This bit must be set to 1, when operat- disable.

ing the PPl in GP Output modes. 1 - Interrupt request enable

0 - Use system clock SCLK for counter. TIN_SEL (Timer Input

1 - Use PWM_CLK to clock counter. L Select)

OUT_DIS (Output Pad Disable) ——— | 0 - Sample TMRx pin or

0 - Enable pad in PWM_OUT mode. PF1 pin. X

1 - Disable pad in PWM_OUT mode. 1 - Sample UART RX pin

or PPI_CLK pin.

Figure 1-1: Register Diagram Example

SHARC+ Core Programming Reference xxxvii

Introduction

1 Introduction

The SHARC® processors are high performance 32-bit/40-bit/64-bit fixed-point/floating-point processors used for

applications, such as:
* Medical imaging
¢ Communications
- Military
* Audio
* Test equipment
* 3D graphics
* Speech recognition
* Motor control
* Imaging
* Automotive

The on-chip SRAM, integrated 1/O peripherals, extra processing element for single-instruction, multiple-data
(SIMD) support in the SHARC+ core and a rich instruction set builds on the ADSP-21000 family processor core.
This combination forms a complete system-on-a-chip (SOC).

The SHARC+ core family includes distinct groups of processors:
* ADSP-215xx processors (single and multiple SHARC+ cores)

ADSP-SC5xx processors (single and multiple SHARC+ cores with an Arm® core)

These products are differentiated by number of processor cores, on-chip memories, peripheral choices, packaging,
and operating speeds. In all SHARC processors, the SHARC+ core operates in the same way. This uniform opera-
tion lets this manual apply to all groups. Where differences exist (such as external memory interfacing), they are
noted.

SHARC+ Core Programming Reference 1-1

SHARC+ Core Design Advantages

SHARC+ Core Design Advantages

The data format used by a digital signal processor determines its ability to handle signals of differing precision, dy-
namic range, and signal-to-noise ratios. Because floating-point math reduces the need for scaling and probability of
overflow, using a floating-point processor can ease algorithm and software development. The extent to which these
guidelines are true depends on the architecture of the floating-point processor. Consistency with IEEE workstation
simulations and the elimination of scaling are clearly two ease-of-use advantages. High-level-language programma-
bility, large address spaces, and wide dynamic range allow system development time to be spent on algorithms and
signal processing concerns. This architecture reduces time spent on coding in assembly language, managing code
placement on memory pages, and developing routines to handle errors. The processors are highly integrated, 32-
bit/40-bit/64-bit floating-point processors that provide many of these design advantages.

The SHARC processor architecture balances multiple high performance SHARC+ core with four high speed memo-
ry L1 blocks and two I/O buses. In the core, every instruction working with 32-bit or 40-bit data can execute in a
single cycle. Instructions working with 64-bit floating-point data require multiple cycles.

Architectural Overview

The following sections summarize the features of each functional block.

SHARC Processor

The SHARC processors form a complete system-on-a-chip, integrating the SHARC+ core plus a crossbar including
the instruction and data cache control (Internal memory interface), high-speed L1 SRAM blocks, two requester and
two completer ports for connection to the system or peripheral world.

()
©
I-CACHE D-CACHE D-CACHE BO m
RAM
3 2 o1 SIMD Processor
RAM RAM RAM

B3 (64)

B2 (64)
v “
B1 (64)

= CCLK DOMAIN
' =4 '
o
»
\

¥, 10 (32 10 (32
AN \ * COMPLETER =
AN \ \ PORT 1
A\
INTEFN\{AL MEMORY INTERFACE (IMIF)
/D CACHE\GONTROLY, 10 (32) 10 (32)
, \ \ =) CIF"
N \ \ PORT 2
N,

\
N

SYSTEM FABRIC
SYSCLK
DOMAIN

DM (64)
PM (64)

CMD (64)
REQUESTER
PORT DATA

SHARC+ N
SIMD CORE \ PS (64/48) CMI (64)

)| REQUESTER
PORT INSTRUCTION

- INTERRUPT

(& J

Figure 1-1: SHARC+ SIMD Core Block Diagram

1-2 SHARC+ Core Programming Reference

SHARC Processor

SHARC+ Core

The following sections provide details of the elements in the SHARCH+ core.
System Event Controller Input (SEC)

The output of the SEC controller is forwarded to the SHARC+ Core Event Controller (CEC) to respond to all
system based interrupts. It also supports nesting including various SEC interrupt channel arbitration options. For all
SEC channels the processor automatically stacks the arithmetic status (REGE ASTATX and REGF ASTATY) reg-
isters and mode (REGF MODE1) registers in parallel with the interrupt servicing.

Instruction and data caches

The processor includes one instruction cache (block 3) and two data caches (block 2 and block 1) in L1 memory.
These caches temporarily store instructions and data located in higher latency system L2 or L3 memories. The
blocks 1-3 of L1 memory can be configured as instruction cache, DM data cache and PM data cache. While instruc-
tion fetches are completed through the instruction cache, DM and PM data accesses are completed through the
DM- and PM-caches. The cache architecture provides a data coherence protocol between DM and PM data caches.
The sizes of each of the caches and other attributes are independently configurable.

Core Memory mapped Registers (CMMR)

The core memory mapped registers control L1 I/D cache, BTB, L2 system, parity error, system control, debug and
monitor functions.

SHARC+ Core Block Diagram
The SHARC+ core, shown in the SHARC+ SIMD Core Block Diagram figure, consists of two processing elements,

data register files, a program sequencer, conflict cache, a branch target buffer, two DAGs, timers, debug interface
and system interface.

SHARC+ Core Programming Reference 1-3

SHARC Processor

4 ey A
DEBUG BTB CONFLICT
FLAGS CEC
SIMD Core TRACE BP CACHE
A A A
Y Y
PM DATA 48
DMD/PMD 64 - 11-STAGE
y PROGRAM SEQUENCER
— } PM ADDRESS 24
DAG1 DAG2 I !
16 % 32 16 x 32 :
H PM ADDRESS 32 . -
H
4 H DM ADDRESS 32 . SYIS/:EM -
H TO
PM DATA 64 - _IMIF
] T USTAT
H PX
H DM DATA 64 . » .

(|
[

Craa]] L Im

_>|MULTIPLIER SHIFTER AL
REGISTER REGISTER

N o H ,
RN ! [
o [
o glastanx | i [astary | i MsB MSF
STYKx STYKy 80-BIT 80-BIT

DATA S‘fVA'L DATA ALU ||SHIFTER |MULTIPLIER

Figure 1-2: SHARC+ SIMD Core Block Diagram

Dual Processing Elements

The processor core contains two processing elements: PEx and PEy. Each element contains a data register file and
three independent computation units: an arithmetic logic unit (ALU), a multiplier with an 80-bit fixed-point accu-
mulator, and a shifter. For meeting a wide variety of processing needs, the computation units process data in a num-
ber of formats: 32-bit fixed-point integer/fractional formats (twos-complement and unsigned). 32-bit floating-point,
40-bit floating-point, and 64-bit floating-point. The floating-point operations are IEEE compatible.

The 32-bit and 64-bit floating-point compute units follow the standard IEEE format, whereas the 40-bit extended
precision format has eight additional least significant bits (LSBs) of mantissa for greater accuracy compared to the
32-bit single precision format.

The ALU performs a set of arithmetic and logic operations on both fixed-point and floating-point formats. The
multiplier performs floating-point or fixed-point multiplication and fixed-point multiply/ accumulate or multiply/
cumulative-subtract operations. The shifter performs logical and arithmetic shifts, bit manipulation, bit-wise field
deposit and extraction, and exponent derivation operations on 32-bit operands.

Some of the compute operations are pipelined, while others are not. All shifter operations, fixed point operations
performed in ALU are single cycle. Output of these operations may serve as input of any other operation in the next
cycle. All 32-bit single precision ALU and multiplier operations as fixed point multiplier operations are pipelined by
one cycle. A new operation in these units can be started in every cycle unless it requires an operand from one such
pipelined operation. The fixed point multiply-accumulate operation is an exception to this rule. This operation can
be started every cycle. Double precision floating-point operations are not fully pipelined. These operations stall the

1-4 SHARC+ Core Programming Reference

SHARC Processor

pipeline by 1-6 cycles. All units are connected in parallel, rather than serially. In a multifunction computation, the
ALU and multiplier perform independent, simultaneous operations.

Complementary Processing Element (PEy)

PEy processes each computational instruction in lock-step with PEx, but only processes these instructions when the
processors are in SIMD mode. Because many operations are influenced by this mode, more information on SIMD is
available in multiple locations:

* For information on PEy operations, see the Processing Elements chapter.

* For information on data accesses in SIMD mode, and data addressing in SIMD mode, see Internal Memory

Access Listings in the Memory chapter.

* For information on SIMD programming, see the Instruction Set Types and Computation Types chapters.

Data Register File

Each processing element has a general-purpose data register file that transfers data between the computation units
and the data buses and stores intermediate results. A register file has two sets (primary and secondary) of 16 general-
purpose registers each for fast context switching. All of the registers are 40 bits wide. The ten-port data register file
supports:

* write or read two operands to or from the register file,
* supply two operands to the ALU, supply two operands to the multiplier, and

* receive three results from the ALU and multiply accumulator (MAC). For more information, see the Register
Files chapter.

Fore/Background Registers

Many of the processor's registers have secondary registers that can be activated during interrupt servicing for a fast
context switch. The data registers in the register file, the DAG registers, and the multiplier result register all have
secondary registers. The primary registers are active at reset, while the secondary registers are activated by control
bits in a mode control register.

Core Buses

The processor core has two buses-PM data and DM data. The PM bus is used to fetch instructions from memory,
but may also be used to fetch data. The DM bus can only be used to fetch data from memory.

In conjunction with the instruction-conflict cache, this Super Harvard Architecture allows the core to fetch an in-
struction and two pieces of data in the same cycle that a data word is moved between memory and a peripheral. This
architecture allows dual data fetches, when the instruction is supplied by the conflict cache.

SHARC+ Core Programming Reference 1-5

SHARC Processor

Program Sequencer

The program sequencer supplies instruction addresses to program memory. It controls loop iterations and evaluates
conditional instructions. To achieve a high execution rate, the processor employs an eleven stage pipeline to process
instructions - four stages of fetch, two stages of decode, 4 stages for memory access and 2 stages for execution. The
processors support both delayed and non-delayed branches for more efficient control coding. For more information,
see Instruction Pipeline in the Program Sequencer chapter.

Conflict Cache

The program sequencer also includes a 32-word instruction cache that effectively provides three-bus operation for
fetching an instruction and two data values. The instruction-conflict is selective; only instructions whose fetches
conflict with data accesses using the PM bus are cached. This caching allows full speed execution of core, looped
operations such as digital filter multiply-accumulates, and FFT butterfly processing. For more information on the
cache, refer to Operating Modes in the Program Sequencer chapter.

Branch Target Buffer

Implementation of a hardware-based branch predictor (BP) and branch target buffer (BTB) reduce branch delay.
The program sequencer supports efficient branching using this branch target buffer (BTB) for conditional and un-
conditional instructions.

Core Event Controller (CEC)

The SHARC+ core IVT generates various core interrupts (arithmetic and circular buffer instruction flow exceptions)
and SEC events (peripherals). The CEC only responds to interrupts which are unmasked (IMASK register).

Loop Sequencer

Zero-overhead loops allow efficient program sequencing. In addition to this, the sequencer allows single cycle set-up
of loop. No explicit instruction is needed for counter decrement, counter check, loop-back and loop-termination.
Loops are both nest-able (six levels in hardware) and interruptible.

Data Address Generators (DAGs)

The DAGs provide memory addresses when data is transferred between memory and registers. Dual data address
generators enable the processor to output simultaneous addresses for two operand reads or writes. DAG1 supplies
32-bit addresses for accesses using the DM bus. DAG2 supplies 32-bit addresses for memory accesses over the PM
bus.

Each DAG keeps track of up to eight address pointers, eight address modifiers, and for circular buffering eight base-
address registers and eight buffer-length registers. A pointer used for indirect addressing can be modified by a value
in a specified register, either before (pre-modify) or after (post-modify) the access. A length value may be associated
with each pointer to perform automatic modulo addressing for circular data buffers. The circular buffers can be lo-
cated at arbitrary boundaries in memory. Each DAG register has a secondary register that can be activated for fast
context switching.

1-6 SHARC+ Core Programming Reference

Differences from Previous SHARC Processors

Circular buffers allow efficient implementation of delay lines and other data structures required in digital signal
processing. They are also commonly used in digital filters and Fourier transforms. The DAGs automatically handle
address pointer wraparound, reducing overhead, increasing performance, and simplifying implementation.

Timer

The core's programmable interval timer provides periodic interrupt generation. When enabled, the timer decre-
ments a 32-bit count register every cycle. When this count register reaches zero, the processors generate an interrupt
and asserts their timer expired output. The count register is automatically reloaded from a 32-bit period register and
the countdown resumes immediately.

Debug Port
The JTAG port supports the IEEE standard 1149.1 Joint Test Action Group (JTAG) standard for system test. This

standard defines a method for serially scanning the I/O status of each component in a system. Emulators use the
JTAG port to monitor and control the processor during emulation.

Emulators using this port provide full speed emulation with access to inspect and modify memory, registers, and
processor stacks. JTAG-based emulation is non-intrusive and does not effect target system loading or timing.

Differences from Previous SHARC Processors

This section identifies differences between the current generation processors and previous SHARC processors:
ADSP-2146x/2136x/2126x/2116x and ADSP-2106x. Like the ADSP-2116x family, the current generation is based
on the original ADSP-2106x SHARC family. The current products preserve much of the ADSP-2106x architecture
and is code compatible to the ADSP-2116x, while extending performance and functionality. For background infor-
mation on SHARC and the ADSP-2106x Family processors, see the ADSP-2106x SHARC User's Manual.

The following tables show the high level differences between the SHARC processor families.

Table 1-1: Architectural Differences between SHARC Core Generations

Features ADSP-2106x |ADSP-2116x/ |ADSP-2136x/ |ADSP-214xx ADSP-SC5xx/
2126x 2137x 215xx

Instruction Pipeline 3 stages 3 stages 5 stages 5 stages 11 stages

Branch Target buffer No No No No Yes

VISA No No No Yes Yes

DAG?2 address/data width 24/48 32/64 32/64 32/64 32/64

Conflict cache 32 entries Yes Yes Yes Yes Yes

Conflict cache ext. instruction Yes Yes Yes Yes No

fetch

L1 Instruction/Data cache No No No No Yes

L1 Internal memory blocks 2 2 4 4 4

SHARC+ Core Programming Reference

Differences from Previous SHARC Processors

Table 1-1: Architectural Differences between SHARC Core Generations (Continued)

Features ADSP-2106x |ADSP-2116x/ |ADSP-2136x/ |ADSP-214xx ADSP-SC5xx/
2126x 2137x 215xx
L1 Ports/memory block Dual port Dual port Single Port Single Port Single Port
L1 parity No No No No Yes
Dual Processing Units PEx/PEy No Yes Yes Yes Yes
SEC Interrupt No No No No Yes
IRQ 2-0 Interrupts Yes Yes Yes Yes No
L1 ROM Yes Yes Yes Yes No
Security Control No No No No Yes
Table 1-2: L1 Memory Address Aliasing Differences between SHARC Core Generations
Features ADSP-2106x |ADSP-2116x/ |ADSP-2136x/ |ADSP-214xx | ADSP-SC5xx/
2126x 2137x 215xx
Byte word 8-bit No No No No Yes
Short word 16-bit Yes Yes Yes Yes Yes
Normal word 32-bit Yes Yes Yes Yes Yes
Normal word 40-bit Yes Yes Yes Yes Yes
Normal word 48-bot Yes Yes Yes Yes Yes
Long word 64-bit No Yes Yes Yes Yes
Table 1-3: Instruction Differences between SHARC Core Generations
Features ADSP-2106x |ADSP-2116x/ |ADSP-2136x/ |ADSP-214xx ADSP-SC5xx/
2126x 2137x 215xx
COMPU(Rx,Ry); No Yes Yes Yes Yes
Rn = BFFWRP; No No No Yes Yes
BFFWRP = Rn | <data7>; No No No Yes Yes
Rn = BITEXT Rx | <bitlen12>; No No No Yes Yes
Rn = BITEXT Rx | <bitlen12>
(NU);
BITDEP Rx by Ry | <bitlen12>; | No No No Yes Yes
la=modify(la|<data32>); No No No Yes Yes
Ta=bitrev(la|<data32>); No No No Yes Yes
<64-bit floating-point instruction | No No No No Yes
set>
1-8 SHARC+ Core Programming Reference

Table 1-4: Register Differences between SHARC Core Generations

Differences from Previous SHARC Processors

Registers ADSP-2106x ADSP-2116x/2126x | ADSP-2136x/2137x | ADSP-214xx ADSP-SC5xx/215xx
SYSCTL/SYSCON | Yes Yes Yes Yes Yes
(MMR)

SYSCTL1 (MMR) |No No No Yes Yes
FADDR Yes Yes Yes Yes Yes
DADDR Yes Yes Yes Yes Yes
PC Yes Yes Yes Yes Yes
PCSTK Yes Yes Yes Yes Yes
PCSTKP Yes Yes Yes Yes Yes
LADDR Yes Yes Yes Yes Yes
CURLCNTR Yes Yes Yes Yes Yes
LCNTR Yes Yes Yes Yes Yes
EMUCLK Yes Yes Yes Yes Yes
EMUCLK2 Yes Yes Yes Yes Yes
PX Yes Yes Yes Yes Yes
PX1 Yes Yes Yes Yes Yes
PX2 Yes Yes Yes Yes Yes
TPERIOD Yes Yes Yes Yes Yes
TCOUNT Yes Yes Yes Yes Yes
USTAT1 Yes Yes Yes Yes Yes
USTAT2 Yes Yes Yes Yes Yes
USTAT?3 No Yes Yes Yes Yes
USTAT4 No Yes Yes Yes Yes
MODEI1 Yes Yes Yes Yes Yes
MODE2 Yes Yes Yes Yes Yes
MMASK No Yes Yes Yes Yes
MODEISTK No No No No Yes
FLAGS Yes Yes Yes Yes Yes
ASTATx Yes Yes Yes Yes Yes
ASTATy No Yes Yes Yes Yes
STKX Yes Yes Yes Yes Yes
STKY No Yes Yes Yes Yes
IRPTL Yes Yes Yes Yes Yes

SHARC+ Core Programming Reference

Differences from Previous SHARC Processors

Table 1-4: Register Differences between SHARC Core Generations (Continued)

Registers ADSP-2106x ADSP-2116x/2126x | ADSP-2136x/2137x | ADSP-214xx ADSP-SC5xx/215xx
IMASK Yes Yes Yes Yes Yes
IMASKP Yes Yes Yes Yes Yes
LIRPTL Yes Yes Yes Yes No
Foreground

B0-B15 (base) Yes Yes Yes Yes Yes
10-115 (index) Yes Yes Yes Yes Yes
MO0-M15 (modify) | Yes Yes Yes Yes Yes
L0-L15 (length) Yes Yes Yes Yes Yes
RO-R15 (PEx regis- | Yes Yes Yes Yes Yes
ter)

S0-S15 (PEy regis- | No Yes Yes Yes Yes
ter)

MREF (PEx register) | Yes Yes Yes Yes Yes
MSF (PEy register) No Yes Yes Yes Yes
Background

B0-B15 (base) Yes Yes Yes Yes Yes
10-115 (index) Yes Yes Yes Yes Yes
MO0-M15 (modify) | Yes Yes Yes Yes Yes
L0-L15 (length) Yes Yes Yes Yes Yes
RO-R15 (PEx regis- | Yes Yes Yes Yes Yes
ter)

S0-S15 (PEy regis- |No Yes Yes Yes Yes
ter)

MRB (PEx register) | Yes Yes Yes Yes Yes
MSB (PEy register) | No Yes Yes Yes Yes

Instruction Type Differences from Previous SHARC Processors

The following tables show the differences in instruction types between the current generation processors and previ-
ous SHARC processors.

Table 1-5: 48-bit Instruction Set Types

Instruction Types ADSP-2106x ADSP-2116x/2126x | ADSP-2136x/2137x | ADSP-214xx ADSP-SC5xx/215xx
la Yes Yes Yes Yes Yes

2a Yes Yes Yes Yes Yes

1-10 SHARC+ Core Programming Reference

Table 1-5: 48-bit Instruction Set Types (Continued)

Differences from Previous SHARC Processors

Instruction Types ADSP-2106x ADSP-2116x/2126x | ADSP-2136x/2137x | ADSP-214xx ADSP-SC5xx/215xx
3a Yes Yes Yes Yes Yes
3d No No No No Yes
4a Yes Yes Yes Yes Yes
4d No No No No Yes
5a Yes Yes Yes Yes Yes
6a Yes Yes Yes Yes Yes
7a Yes Yes Yes Yes Yes
7d No No No No Yes
8a Yes Yes Yes Yes Yes
9a Yes Yes Yes Yes Yes
10a Yes Yes Yes Yes Yes
11a Yes Yes Yes Yes Yes
12a Yes Yes Yes Yes Yes
13a Yes Yes Yes Yes Yes
14a Yes Yes Yes Yes Yes
14d No No No No Yes
15a Yes Yes Yes Yes Yes
16a Yes Yes Yes Yes Yes
17a Yes Yes Yes Yes Yes
18a Yes Yes Yes Yes Yes
19a Yes Yes Yes Yes Yes
20a Yes Yes Yes Yes Yes
21a Yes Yes Yes Yes Yes
22a Yes Yes Yes Yes Yes
25a Yes Yes Yes Yes Yes
26a No No No No Yes
Table 1-6: 32-bit Instruction Set Types
Instruction Types ADSP-2106x ADSP-2116x/2126x | ADSP-2136x/2137x | ADSP-214xx ADSP-SC5xx/215xx
1b No No No Yes Yes
2b No No No Yes Yes
3b No No No Yes Yes

SHARC+ Core Programming Reference

1-11

Development Tools

Table 1-6: 32-bit Instruction Set Types (Continued)

Instruction Types ADSP-2106x ADSP-2116x/2126x | ADSP-2136x/2137x | ADSP-214xx ADSP-SC5xx/215xx
4b No No No Yes Yes
5b No No No Yes Yes
7b No No No Yes Yes
9b No No No Yes Yes
15b No No No Yes Yes
16b No No No Yes Yes
17b No No No Yes Yes

Table 1-7: 16-bit Instruction Set Types

Instruction Types ADSP-2106x ADSP-2116x/2126x | ADSP-2136x/2137x | ADSP-214xx ADSP-SC5xx/215xx
2c No No No Yes Yes
3c No No No Yes Yes
11c No No No Yes Yes
21c No No No Yes Yes
22c No No No Yes Yes
25¢ No No No Yes Yes

Development Tools

The SHARC+ core is supported by a complete set of software and hardware development tools, including Analog

Devices' emulators and the CCES development environment. The emulator hardware that supports other Analog

Devices processors also emulates the SHARC+ core.

The development environments support advanced application code development and debug with features such as:

Create, compile, assemble, and link application programs written in C++, C, and assembly
Load, run, step, halt, and set breakpoints in application programs

Read and write data and program memory

Read and write core and peripheral registers

Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access port to monitor and control the target board
processor during emulation. The emulator provides full speed emulation, allowing inspection and modification of

memory, registers, and processor stacks. Nonintrusive in-circuit emulation is assured by the use of the processor

JTAG interface-the emulator does not affect target system loading or timing.

1-12 SHARC+ Core Programming Reference

Development Tools

Software tools also include Board Support Packages (BSPs). Hardware tools also include standalone evaluation sys-
tems (boards and extenders). In addition to the software and hardware development tools available from Analog De-
vices, third parties provide a wide range of tools supporting the SHARC+ processors. Third party software tools in-
clude DSP libraries, real-time operating systems, and block diagram design tools.

SHARC+ Core Programming Reference 1-13

Register File Registers and Core Memory-Mapped Registers

2 Register File Registers and Core Memory-
Mapped Registers

The SHARC+ core is controlled by register file based registers (using the instruction set) and by core memory-map-
ped registers (using addresses).

Features

The register files have the following features.
* The register file registers are called universal registers and can be used by almost all instructions
* Data registers are used for computation units
* Complementary data registers are used for the complementary computation units

* System registers are used for bit manipulation

NOTE: The register file based registers and the CMMR register are accessible by the local SHARC+ core only.

Functional Description

The following sections provide a functional description of the register files.

Register File Registers
The core architecture has the following register categories:
* Register file based registers
* Data registers in the PEx unit (Dreg)
* Complementary data register in the PEy unit (CDreg)
* Multiplier results registers (MRx, MSx)
* Data address generator registers (Ia, Mb, Ic, Md, Ba, Bc)

* System registers (Sysreg) in bit manipulation units

SHARC+ Core Programming Reference 2-1

Register File Registers

* Universal registers (Ureg), includes almost all processor core registers

Most registers are universal registers; the data and system registers are subgroups of universal registers. This chapter
describes access handling for these registers. For register coding details, see the Instruction Set Reference chapter.

Register Types and Classes

The SHARC+ Core Register Types and Classes table list the SHARC+ core registers.

Table 2-1: SHARC+ Core Register Types and Classes

Register Type Register Classes Registers Function
Data Registers (Dreg) RREG™! r0-rl5 Processing element X (PEx) register file
locations, fixed-point
FREG™ f0-£f15 PEx register file locations, floating-point
RFREG r0-rl5 PEx register file locations, fixed-point or
£0-£15 floating-point
RFREGDBL™3 rl:0-rl15:14 PEx 64-bit register file locations, fixed-
point
f1:0-£f15:14 PEx 64-bit register file locations, float-
ing-point
Complementary Data Registers (CDreg) | SREG, CDREG s0-s15 Processing element Y (PEy) register file
locations, fixed-point
sf0-sflb PEy register file locations, floating-point
Multiply Result Registers (MR). All Mul- | MRXFBREG mrf,mrO0f, mrlf, Multiplier results PEx, foreground
tiply register are NOT part of sys register, mr2f
they have separate instuctions. mrb, mrOb, mrlb, |Multplier results PEx, background
mr2b
Multiply Result Registers (45). All Mul- | MSXFBREG msf,msO0f, ms1f, Multiplier results PEy, foreground
tiply register are NOT part of sys register, ms2f
they have separate instuctions. msb, msOb, ms1b, |Multiplier results PEy, background
ms2b
System Registers (Sysreg) SYSREG astat, astatx, PE, PEx, PEy arithmetic status flags and
astaty bit test flag
flags Flag pins input/output state
imask Interrupt mask
imaskp Interrupt mask pointer (for nesting)
irptl Interrupt latch
mmask Mode mask
model Mode 1 control and status
modelstk Mode 1 stack (top-most entry)

2-2

SHARC+ Core Programming Reference

Table 2-1: SHARC+ Core Register Types and Classes (Continued)

Register File Registers

Register Type Register Classes Registers Function
mode?2 Mode 2 control and status
stky, stkyx, PE, PEx, PEy sticky status flags and stack
stkyy status flags

ustatl, ustat?2,
ustat3,ustatd

User status 1, 2, 3, and 4

Index Registers (Ia) I1IREG i0-17 Index registers, Data Address Generator
1 (DAG1)
Modifier Registers (Mb) MIREG m0 -m7 Modify registers, DAG1
Base Registers (Ba) BIREG b0 -b7 Base registers, DAG1
Index Registers (Ic) 12REG i8-115 Index registers, DAG2
Modifier Registers (Md) M2REG m8 -ml5 Modify registers, DAG2
Base Registers (Bc) B2REG b8 -bl5 Base registers, DAG2
Universal Register (Ureg) UREG 10-17 Length registers, DAG1
Note that Ureg includes the registers 18-115 Length registers, DAG2
listed in the Registers column plus all of
the registers in the register classes: RFEG, bx PMD__DMD bus exchange PX1/PX2
SREG, I1REG, I2REG, M1REG, (64-bic)
M2REG, BIREG, B2REG, and SYS- px1 PMD-DMD bus exchange 1 (32 bits)
REG.
px2 PMD-DMD bus exchange 2 (32 bits)
pc Program counter (read-only)
pcstk Top of PC stack
pcstkp PC stack pointer
faddr Fetch address (read-only)
daddr Decode address (read-only)
laddr Loop termination address, code; top of
loop address stack
curlcntr Current loop counter; top of loop count
stack
lentr Loop count for next nested counter-con-
trolled loop
tperiod Timer period
tcount Timer counter

emuclk, emuclk?2

Emulator clocks

SHARC+ Core Programming Reference

2-3

Register File Registers

Table 2-1: SHARC+ Core Register Types and Classes (Continued)

Register Type Register Classes Registers Function
Universal Register (Ureg) (additional UREGDBL £f1:0-£f15:14 PEx and PEy double-precision floating-
register classes) Sfl:0-sf15:14 point data registers
UREGXDAG1 This is a sub-set of Same as UREG, but omits DAG1 specif-
UREG. See Function | ic index, modify, base, and length regis-
column. ters
UREGXDAGIDBL | This is a sub-set of Same as UREGDBL
UREG. See Function
column.
UREGXDAG2 This is a sub-set of Same as UREG, but omits DAG2 specif-
UREG. See Function | ic index, modify, base, and length regis-
column. ters
UREGXDAG2DBL | This is a sub-set of Same as UREGDBL
UREG. See Function
column.

*1 The RREG register class also contains a number of register sub-classes with restricted usage, including: RXAREG, RXMREG,
RYAREG, and RYMREG

*2 The FREG register class also contains a number of register sub-classes with restricted usage, including: FXAREG, FXMREG, FYAR-
EG, and FYMREG

*3 The RFREGDBL register class also contains a number of register sub-classes with restricted usage, including: DBLREG,
DBLREG3, DBLXAREG, DBLXMREG, DBLYAREG, and DBLYMREG

Data Registers

Each of the processor's processing elements has a data register file, which is a set of data registers that transfers data
between the data buses and the computational units. These registers also provide local storage for operands and re-
sults.

The two register files consist of 16 primary registers and 16 alternate (secondary) registers. The data registers are 40
bits wide. Within these registers, 32-bit data is left-justified. If an operation specifies a 32-bit data transfer to these
40-bit registers, the eight LSBs are ignored on register reads, and the LSBs are cleared to zeros on writes.

Program memory data accesses and data memory accesses to and from the register file(s) occur on the PM data
(PMD) bus and DM data (DMD) bus, respectively. One PMD bus access for each processing element and/or one
DMD bus access for each processing element can occur in one cycle. Transfers between the register files and the
DMD or PMD buses can move up to 64 bits of valid data on each bus.

Note that 16 data registers are sufficient to store the intermediate result of a FFT radix-4 butterfly stage.
Data Register Neighbor Pairing

In the long word (LW) address space, the sequencer or DAGs allow the loading and or storing of data to or from a
data register pair as shown in the Data Register Pairs (Neighbor and Complementary) for Long Word and SIMD
Mode Access table (see Complementary Data Register Pairs). Every even data register has an associated odd register

2-4 SHARC+ Core Programming Reference

Register File Registers

representing a register pair. For example, R1 : 0 are a neighbor data register pair. For more information, see DAG
Instruction Types in the Data Address Generators chapter.

Complementary Data Register Pairs

The computational units (ALU, multiplier, and shifter) in PEx and PEy processing elements are identical. The data
bus connections for the dual computational units permit asymmetric data moves to, from, and between the two
processing elements. Identical instructions execute on the PEx and PEy units; the difference is the data. The data
registers for PEy operations are identified (implicitly) from the PEx registers in the instruction. This implicit rela-
tionship between PEx and PEy data registers corresponds to the complementary register pairs in the Data Register
Pairs (Neighbor and Complementary) for Long Word and SIMD Mode Access table. For example, the RO and SO

data registers are a complementary data register pair.

NOTE: Data moves directly to the complementary registers are possible in SISD mode. For PEy computations
SIMD mode is required. The instruction modifer (LW) overrides SIMD Mode. SIMD mode is not sup-

ported in LW space.
Table 2-2: Data Register Pairs (Neighbor and Complementary) for Long Word and SIMD Mode Access'
PEx PEy Pairs
Neighbor Pairs (side-by-side in a PE) for LW Neighbor Pairs (side-by-side in a PE) for LW
R1:0 is a neighbor register pair S1:0 is a neighbor register pair
Complementary Pairs (match across PE's) for SIMD Complementary Pairs (match across PE's) for SIMD
RO and SO are a complementary register S0 and RO are a complementary register
pair pair
RO R1 SO S1
R2 R3 S2 S3
R4 R5 S4 S5
R6 R7 S6 S7
R8 R9 S8 S9
R10 R11 S10 S11
R12 R13 S12 S13
R14 R15 S14 S15

I For fixed-point operations, the prefixes are Rx (PEx) or Sx (PEy). For floating-point operations, the prefixes are Fx
(PEx) or SFx (PEy).

Data and Complementary Data Register Transfers

These dual 16-register register files, combined with the enhanced Harvard architecture, allow unconstrained data
flow between computation units and internal memory.

To support SIMD operation, the elements support a variety of dual data move features. The dual processing ele-
ments execute the same instruction, but operate on different data.

SHARC+ Core Programming Reference 2-5

Register File Registers

Data and Complementary Data Register Access Priorities

If writes to the same location take place in the same cycle, only the write with higher precedence actually occurs.
The processor determines precedence for the write operation from the source of the data; from highest to lowest, the
precedence is:

1. DAGI or universal register (UREG)
DAG2

PEx ALU

PEy ALU

PEx Multiplier

PEy Multiplier

PEx Shifter

PEy Shifter

S N S T

It should be noted to avoid using multifunction instructions with multiple destination registers for the same source.
Examples:

* Rx=any compute, Rx = dm/pm () ;
* Rx=anycompute, Ry = dm/pm () (LW); (Rxlongword pair for Ry)
* Rx=any compute, Sx = Ry; (SIMD enabled)
+ Rx = ALU (), Rx = MUL ();
* Rx=064-bit-ALU, Ry = dm/pm () ; (Rx and Ry are pairs)
Data and Complementary Data Register Swaps

Registers swaps use the special swap operator, <->. A register-to-register swap occurs when registers in different
processing elements exchange values; for example RO <-> S1. Only single, 40-bit register-to-register swaps are
supported. Double register operations are also supported as shown in the example below.

R7 <-> 87;
R2 <-> S0;

NOTE: Regardless of SIMD/SISD mode, the processor supports bidirectional register-to-register swaps. The swap
occurs between one register in each processing element’s data register file.

Note that the processor supports unidirectional and bidirectional register-to-register transfers with the Conditional
Compute and Move instruction. For more information, see the Program Sequencer chapter.

System Register Bit Manipulation

The system registers (SREG) support fast bit manipulation. The next example uses the shifter for bit manipulations:

2-6 SHARC+ Core Programming Reference

Register File Registers

R1 = MODE1;
R1 = BSET R1 by 21; /* sets PEYEN bit */
R1 = BSET R1 by 24; /* sets CBUFEN bit */
MODE1 = R1;

However the following example is more efficient.

BIT SET MODEl BITM REGF MODEl PEYEN | BITM REGF MODE1 CBUFEN; /* change both
modes */

/* these macros are defined in the platform header, see #include <sys/platform.h>
to get the definitions */

NOP; /* effect latency */

To set or test individual bits in a control register using the shifter:

R1 = dm(SYSCTL) ;

R1 = BSET Rl by 11; /* sets IMDW2 bit 11 */
R1 = BSET R1 by 12; /* sets IMDW3 bit 12 */
dm (SYSCTL) = R1;

BTST R1 by 11; /* clears SZ bit */

IF SZ jump func;

BTST R1 by 12; /* clears SZ bit */

IF SZ jump func;

The core has four user status registers also classified as system registers but for general-purpose use. These registers
allow flexible manipulation/testing of single or multiple individual bits in a register without affecting neighbor bits
as shown in the following example.

USTAT1=dm (SYSCTL) ;

BIT SET USTAT1 BITM SHDBG SYSCTL IMDWBLK2 | BITM SHDBG SYSCTL IMDWBLK3; /* sets
bits 12-11 */

dm (SYSCTL) =USTATL1;

USTAT1=dm (SYSCTL) ;

BIT TST USTAT1 BITM SHDBG SYSCTL IMDWBLKZ2 | BITM SHDBG SYSCTL IMDWBLK3; /* test
bits 12-11 */

IF TF rlb5=rlb5+1; /* BTF = 1 PEx OR PEy */

Combined Data Bus Exchange Register

The two 64-bit data DMD and PMD buses allow programs to transfer the contents of any register in the processor
to any other register or to any internal memory location in a single cycle. As shown in the Bus Exchange (PX, PX1,
and PX2) Registers figure, the bus exchange (REGF PX) register permits data to flow between the PMD and DMD

buses.

The REGF PX register can work as one combined 64-bit register or as two 32-bit registers (REGE PX1 and
REGF PX2).

SHARC+ Core Programming Reference 2-7

Combined Data Bus Exchange Register

PX = DM(0x98000) (LW); /* read from DMD bus */

PM(0x4C000) = PX; /* write to PMD bus */
T
‘ 0x98001 ‘ 0x98000 ‘ ’ 0x4C000 ‘
63 3231 0 63 4 3231 4 0
v y
‘ PX2 ‘ PX1 ‘ ’ PX
31 031 0 31 031 0

Figure 2-1: Bus Exchange (PX, PX1, and PX2) Registers

The REGF USTAT1, REGF USTAT4, REGF PX1,and REGF PX2 registers allow load and store operations
from memory. However, direct computations using universal registers is not supported and therefore a data move to
the data register is required.

The alignment of REGF PX1 and REGF PX2 within REGF PX appears in the PX to Dreg Transfers figure. The
combined REGF PX register is an universal register (UREG) that is accessible for register-to-register or memory-to-
register transfers.

PX to Data Register Transfers

The PX register to data register transfers are either 40-bit transfers for the combined PX or 32-bit transfers for PX1
or PX2. The PX to Dreg Transfers figure shows the bit alignment and gives an example of instructions for register-
to-register transfers. shows that during a transfer between PX1 or PX2 and a data register (Dreg), the bus transfers
the upper 32 bits of the register file and zero-fills the eight least significant bits (LSBs). During a transfer between
the combined PX register and a register file, the bus transfers the upper 40 bits of PX and zero-fills the lower 24 bits.

R3 = PX; R3 = PX1; or R3 = PX2;

Register File Transfer Register File Transfer

39 I 0 39 I 87 0
] I

63 24 23 0 31 0
PX2 PX1 PX1 or PX2

Combined PX

Figure 2-2: PX to Dreg Transfers

All transfers between the PX register (or any other internal register or memory) and any I/O processor register are
32-bit transfers (least significant 32 bits of PX). All transfers between the PX register and Dreg/Cbreg (RO-R15 or
S0-S15) are 40-bit transfers. The most significant 40 bits are transferred as shown in the PX to Dreg Transfers
figure.

Immediate 40-bit Data Register Load
Extended precision data cannot be loaded immediately by using the following code.

RO = 0x123456789A; /* asm error data field max 32-bits*/

2-8 SHARC+ Core Programming Reference

Combined Data Bus Exchange Register

The next example is an alternative, which requires a combined PX1/PX2 register alignment for immediate load in

SISD mode:

PX2 = 0x12345678; /* load data 39-8%*/
PX1 = 0x9A000000; /* load data 7-0*/
R1 = PX; /* R1 load with 40-bit*/

PX to Memory Transfers

The PX register-to-internal memory transfers over the DMD or PMD bus are either 48-bit transfers for the com-
bined PX or 32-bit transfers (on bits 31-0 of the bus) for PX1 or PX2. The PX, PX1, PX2 Register-to-Memory
Transfers on DM or PM Data Bus figure shows these transfers.

The figure also shows that during a transfer between PX1 or PX2 and internal memory, the bus transfers the lower
32 bits of the register. During a transfer between the combined PX register and internal memory, the bus transfers
the upper 48 bits of PX and zero-fills the lower 16 bits.

PX = DM (0xB0000); PM(I7,M7) = PX1;
DM and PM Data Bus Transfer (not LW) DM or PM Data Bus Transfer
T
48 bits 0x0 0x0 ‘ 32 bits ‘

|

63 I 31 I 1615 0 63 31 I 0
T
L

63 pxp 3 opyg 10180 31 pxiorpx2 0

Combined PX

Figure 2-3: PX, PX1, PX2 Register-to-Memory Transfers on DM or PM Data Bus
PX to Memory LW Transfers

The PX Register-to-Memory Transfers on PM Data Bus (LW) figure shows the transfer size between PX and internal
memory over the PMD or DMD bus when using the long word (W) option.

The LW notation in the PX Register-to-Memory Transfers on PM Data Bus (LW) figure shows an important feature
of PX register-to-internal memory transfers over the PM or DM data bus for the combined PX register. The PX
register transfers to memory are 48-bit (three column) transfers on bits 63-16 of the PM or DM data bus, unless a
long word transfer is used, or the transfer is forced to be 64-bit (four column) with the LW (long word) mnemonic.

NOTE: The LW mnemonic affects data accesses that use the NW (normal word) addresses irrespective of the set-
tings of the PEYEN (processor element Y enable) and IMDWx (internal memory data width) bits.

SHARC+ Core Programming Reference 2-9

Combined Data Bus Exchange Register

PX = PM (0xB8000)(LW) ;

DM (LW) or PM (LW)
Data Bus Transfer

T

‘ 64 bits ‘
1

63 31 0

v | v

‘ 64 bits ‘
|

63 31 0

Combined PX

Figure 2-4: PX Register-to-Memory Transfers on PM Data Bus (LW)

Uncomplementary Ureg to Memory LW Transfers

If a register without a complementary register (such as the PC or LCNTR registers), or if immediate data is a source
for a transfer to a long word memory location, the 32 bit source data is replicated within the long word. This is

shown in the example below where the long word location 0x4F800 is written with the 64-bit data abbaabba_ab-
baabba. This is the case for all registers without pairs.

I0 = 0x4Fr800;

MO = 0x1;
LO = 0x0;
DM(I0,M0) = Oxabbaabba;

Long word accesses using the USTATx registers is shown below.

USTAT1 = DM (LW address); /* Loads only USTAT1 in SISD mode */
DM (LW address) = USTATI1; /* Stores both USTAT1 and USTAT2 */

Core Memory Mapped Registers (CMMR)
The SHARC+ SoC supports a core-based address range to control the following modules.

* System control MMR. This register is used for system control, 32/40 bit IEEE floating data transfer and SW
reset + Shared L2 Arm cache for data CMMR available for shared Arm L2 cache with SHARC+ data port.

* Miscellaneous Core MMRs. These registers include L1 Parity Control that are used for control and status of L1
Instruction, data and 1O. See SHARC-PLUS CMMR Register Descriptions chapter.

* Branch Target buffer MMRs. These registers are used for control and status of L1 Branch target buffer and
branch prediction. See SHARC-PLUS SHBTB Register Descriptions chapter.

* L1 Instruction/Data cache MMRs. These registers available for control and status of L1 Instruction and data

caches. See SHARC-PLUS SHL1C Register Descriptions chapter.

* Emulation/Debug control MMRs. These registers are used for debugging the SHARC+ core. See SHARC-
PLUS SHDBG Register Descriptions chapter.

For the valid address range refer to the product data sheet.

NOTE: The CMMR registers are only accessible by the local SHARC+ core.

2-10 SHARC+ Core Programming Reference

Operating Modes

Operating Modes

The following sections detail the operation of the register files.

Alternate (Secondary) Data Registers

Each data register file has an alternate data register set. To facilitate fast context switching, the processor includes
alternate register sets for data, results, and data address generator registers. Bits in the REGF MODE1 register control
when alternate registers become accessible. While inaccessible, the contents of alternate registers are not affected by

processor operations.

NOTE: Note that there is a one cycle latency from the time when writes are made to the MODE1 register until an
alternate register set can be accessed.

The alternate register sets for data and results are shown in the Alternate (Secondary) Data Register File figure. For
more information on alternate data address generator registers, sece Alternate (Secondary) DAG Registers in the Reg-
isters appendix. Bits in the REGF MODEL register can activate independent alternate data register sets: the lower
half (R0-R7) and the upper half (R8-R15). To share data between contexts, a program places the data to be shared
in one half of either the current processing element's register file or the opposite processing element's register file
and activates the alternate register set of the other half. The register files consist of a primary set of 16 x 40-bit regis-
ters and an alternate set of 16 x 40-bit registers.

Alternate (Secondary) Data Registers SIMD Mode

Context switching between the two sets of data registers (SIMD mode) occurs in parallel between the two processing
elements. The Alternate (Secondary) Data Register File figure shows the lower half (S0-S7) and the upper half (S8-
S15) of the data register file.

44

RF DATA RF
RX/Fx SWARL| Sx/SFx
PEX PEy
16x40-BIT 16x40-BIT

R —

SRRFL SRRFH SRRFL SRRFH
RO [] rR8 [] so [] s8]
rR1 [RO [] st [s9]
rR2 [R0 [] s2 [sio [
Rz [] R11 [] s3] s []
ra] ri2 || sa M s12 M
rRs [T riz [T ss [si3 [
rRe [T R4 [T ss [s [T
R Ris [st [sis []

L L — | — |

AVAILABLE REGISTERS -SISD MODE PEx UNIT AVAILABLE REGISTERS -SIMD MODE PEy UNIT

Figure 2-5: Alternate (Secondary) Data Register File

SHARC+ Core Programming Reference 2-11

Operating Modes

Ureg/Sysreg SIMD Mode Transfers

The Complementary Register Pairs table shows the PX registers (Ureg), USTATX registers (Sysreg), and their
complementary registers (CUreg and CSysreg) relationships.

Table 2-3: Universal and System Register Complemen-
tary Pairs (CUreg and CSysreg)

USTAT1 USTAT2
USTAT3 USTAT4
PX1 PX2

There is no implicit move when the combined PX register is used in SIMD mode. For example, in SIMD mode, the
following moves occur:

PX1 = RO; /* RO 32-bit explicit move to PX1l, and SO0 32-bit implicit move to PX2 */
PX = R0O; /* RO 40-bit explicit move to PX, but no implicit move for S0 */

However, the following exceptions should be noted:

* Transfers between USTATx and PX registers as in the following example and figure (Zransfers Between US-
TATx and PX Registers). Note that all user status registers behave in this manner.

PX = USTAT1; /* loads PX1l with USTAT1 and PX2 with USTAT2 */
USTAT1 = PX; /* loads only PX1l to USTAT1 */

* Transfers between DAG and other system registers and the PX register as shown in the following example:

10 = PX; /* Moves PX1 to I0 */
PX = I0; /* Loads both PX1 and PX2 with IO */
LCNTR = PX; /* Loads LCNTR with PX1 */
PX = PC; /* Loads both PX1 and PX2 with PC */
PX = USTATL;
PX1 PX2
31 0 31 0
31 0 31 0
USTAT1 USTAT2

Figure 2-6: Transfers Between USTATx and PX Registers

Interrupt Mode Mask

On the SHARCH+ cores, programs can automatically mask individual operating mode bits of the REGF MODE1
register when entering into an ISR by setting bits in the REGE MMASK register. This improves interrupt handling
performance and helps ensure that interrupt handler code runs with operating modes set consistently.

For the data registers the alternate registers (SRRFH/L) are optional masks in use. For more information, see the
Program Sequencer chapter.

2-12 SHARC+ Core Programming Reference

Processing Elements

3 Processing Elements

The PEx and PEy processing elements perform numeric algorithm processing. Each element contains a data register

file and three computation units; an arithmetic/logic unit (ALU), a multiplier, and a barrel shifter. Computational

instructions for these elements include both fixed-point and floating-point operations, and each computational in-

struction operating on 32-bit or 40-bit data executes in a single cycle. Single precision floating-point/multiplier in-

structions are 2 cycle computes that include register file storage. Computational instructions operating on 64-bit

floating-point data (64-bits) require multiple cycles.

Features

The processing elements have the following features.

Data Formats. The units support 32-bit fixed-point and floating-point single precision data (IEEE 32-bit), ex-
tended precision data (40-bit), and 64-bit data (IEEE 64-bit).

Arithmetic/logic unit. The ALU performs arithmetic and logic operations on fixed-point and floating-point da-
ta.

Multiplier. The multiplier performs floating-point and fixed-point multiplication and executes fixed-point
multiply/add and multiply/subtract operations.

Barrel Shifter. The barrel shifter performs bit shifts, bit field, and bit stream manipulation on 32-bit operands.
The shifter can also derive exponents.

Multifunction. The ALU and Multiplier support simultaneous operations for fixed- and floating-point data
formats. The fixed-point multiplier can return results as 32 or 80 bits.

One Cycle Arithmetic Pipeline. All computation instructions operating on 32-bit data and 40-bit data execute
in one cycle. Computational instructions operating on 64-bit data execute over multiple cycles.

Multi Precision Arithmetic. The ALU and multiplier support instructions/options for 64-bit precision.

Functional Description

The computational units in a processing element handle different types of operations.

SHARC+ Core Programming Reference 3-1

Functional Description

Data flow paths through the computation units are arranged in parallel, as shown in the Computational Block fig-
ure. The output of any computation unit may serve as the input of any computation unit on the next instruction
cycle. Data moving in and out of the computation units goes through a 10-port register file, consisting of 16 pri-
mary and 16 alternate registers. Two ports on the register file connect to the PM and DM data buses, allowing data
transfers between the computation units and memory.

4 ,7\
RF
| muLTIPLIER MULTIPLIER ALU RF:(I/EFx
X
i SRR 16x40-BIT
L

]

RN ASTATx
MRF MRB Wy -
REGISTER REGISTER
80-BIT 80-BIT ASTATy

v
\ I)

Figure 3-1: Computational Block

Single Cycle Processing

All the unconditional fixed-point compute (excluding multiply) instructions take a single cycle to complete and the
results can be used in the immediately following instruction (compute or otherwise) without incurring any stalls.

For the conditional compute instruction, if the condition used was set in the immediately preceding instruction,

then the compute is treated as a double cycle compute.

Data Forwarding in Processing Units

Splitting the execute phases into two stages in the SHARC+ core results in additional dependencies and forwarding
logic paths. The fixed-point ALU compute is a single-cycle execute where forwarding across the immediately next
dependent compute instruction is possible (M4 to M3 pipeline stage). In cases of compute-compute dependency
involving either floating-point or multiply computations, a stall is generated if the dependent instruction immedi-

ately follows or data is forwarded in case of dependency across two cycles.

Data forwarding can occur across cycles, for example from the E2 to the M3 pipeline stage. The following sequence

of instructions illustrates the need for forwarding across cycles.

r0O = rl + r2;
nop;
r3 = r0 + r4;

3-2 SHARC+ Core Programming Reference

Functional Description

The 3rd instruction operand r0 is forwarded from the first instruction result from its E2 phase. The compute in-
structions can be Fixed/Floating, ALU or multiply.

Special Considerations

In the following code sequence the second register move instruction is dependent on the first multiply instruction,
and the 3rd multiply instruction is dependent on the 2nd register transfer instruction. A forwarding path from the
E2 to the M4 to the M3 pipeline stage is introduced by forwarding the first multiplier result directly to the third
multiplier input. Two data forwarding paths are introduced, E2 to M4 and E2 to M3 pipeline stages.

r0 = rl*r2;
r3=r0;
rd= r3*rl;

Data Format for Computation Units

The assembly language provides access to the data register files in both processing elements. The syntax allows pro-
grams to move data to and from these registers, specify a computation's data format and provide naming conven-
tions for the registers, all at the same time. For information on the data register names, see the Register Files chapter.

Note the register name(s) within the instruction specify input data type(s)-Fx for floating-point and Rx for fixed-
point.

NOTE: The computation input format is not an operating mode, it is based on the instruction prefix.

Arithmetic Status

The multiplier and ALU each provide exception information when executing floating-point or fixed-point opera-
tions.. Each unit updates overflow, underflow, and invalid operation flags in the processing element's arithmetic sta-
tus (REGF ASTATX and REGF ASTATY) registers and sticky status (REGF STKYX and REGF STKYY) regis-
ters. An underflow, overflow, or invalid operation from any unit also generates a maskable interrupt. There are three
ways to use floating-point or fixed-point exceptions from computations in program sequencing,.

* Enable interrupts and use an interrupt service routine (ISR) to handle the exception condition immediately.
This method is appropriate if it is important to correct all exceptions as they occur.

* Use conditional instructions to test the exception flags in the REGE ASTATX or REGE ASTATY registers
after the instruction executes. This method permits monitoring each instruction's outcome.

* Use the bit test (BTST) instruction to examine exception flags in the REGE STKYY register after a series of
operations. If any flags are set, some of the results are incorrect. Use this method when exception handling is
not critical.

Computation Status Update Priority

Flag updates occur at the end of the cycle in which the status is generated and is available on the next cycle. If a
program writes the arithmetic status register or sticky status register explicitly in the same cycle that the unit is per-
forming an operation, the explicit write to the status register supersedes any flag update from the unit operation as
shown in the following example.

SHARC+ Core Programming Reference 3-3

Arithmetic Status

RO=R1+R2, ASTATx=R6; /* R6 overrides ALU status */
FO=F1*F2, STKYx=F6; /* F6 overrides MUL status */

For information on conditional instruction execution based on arithmetic status, see Conditional Instruction Execu-
tion in the Program Sequencer chapter.

SIMD Computation and Status Flags
When the processors are in SIMD mode, computations on both processing elements generate status flags, producing

a logical ORing of the exception status test on each processing element.

Table 3-1: Computation Status Reg-
ister Pairs

ASTATx ASTATy
STKYx STKYy

Arithmetic Logic Unit (ALU)

The ALU performs arithmetic operations on fixed-point or floating-point data and logical operations on fixed-point
data. ALU fixed-point instructions operate on 32-bit or 64-bit fixed-point operands and output 32-bit or 64-bit
fixed-point results. ALU floating-point instructions operate on 32-bit, 40-bit, or 64-bit floating-point operands and
output 32-bit, 40-bit, or 64-bit floating-point results. ALU instructions include:

* Floating-point addition, subtraction, add/subtract, average
* Fixed-point addition, subtraction, add/subtract, average
* Floating-point manipulation - binary log, scale, mantissa
* Fixed-point multi precision arithmetic (add with carry, subtract with borrow)
* Logical AND, OR, XOR, NOT
* Functions - ABS, PASS, MIN, MAX, CLIE, COMPARE
* Format conversion (fixed-point to/from floating-point, single-precision to/from 64-bit)
¢ Floating-point iterative reciprocal and reciprocal square root functions
Functional Description

ALU instructions take one or two inputs: X input and Y input. These inputs (known as operands) can be any data
registers in the register file. Most ALU operations return one result. However, in add/subtract operations, the ALU
operation returns two results and in compare operations the ALU returns no result (only flags are updated). ALU
results can be returned to any location in the register file.

If the ALU operation is fixed-point, the inputs are treated as 32-bit fixed-point operands. The ALU transfers the
upper 32 bits from the source location in the register file. For fixed-point operations, the result(s) are 32-bit fixed-
point values. Some floating-point operations (LOGB, MANT and FIX) can also yield fixed-point results.

34 SHARC+ Core Programming Reference

Arithmetic Logic Unit (ALU)

The core transfers fixed-point results to the upper 32 bits of the data register and clears the lower eight bits of the
register. The format of fixed-point operands and results depends on the operation. In most arithmetic operations,
there is no need to distinguish between integer and fractional formats. Fixed-point inputs to operations such as scal-
ing a floating-point value are treated as integers. For purposes of determining status such as overflow, fixed-point
arithmetic operands and results are treated as two's-complement numbers.

ALU Instruction Types

The following sections provide details about the instruction types supported by the ALU.

Compare Accumulation Instruction

Bits 31-24 in the REGF ASTATX and REGF ASTATY registers store the flag results of up to eight ALU compare
operations. These bits form a right-shift register. When the core executes an ALU compare operation, it shifts the

eight bits toward the LSB (bit 24 is lost). Then it writes the MSB, bit 31, with the result of the compare operation.
If the X operand is greater than the Y operand in the compare instruction, the core sets bit 31. Otherwise, it clears

bit 31.

Applications can use the accumulated compare flags to implement two- and three-dimensional clipping operations.
Fixed-to-Float Conversion Instructions

The ALU supports conversion between floating and fixed point as shown in the following example.

Fn = FLOAT Rx; /* floating-point */
Rn FIX Fx; /* fixed-point */

Fixed-to-Float Conversion Instructions with Scaling

The ALU supports conversion between floating- and fixed-point by using a scaling factor as shown in the following

example.

Ry = =-31;

Fn = FLOAT Rx BY Ry; /* floating-point [-1.0 to 1.0) */
Ry = 31;

Rn = FIX Fx BY Ry; /* fixed-point 1.31 format */
Reciprocal/Square Root Instructions
The reciprocal/square root floating-point instruction types do not execute in a single cycle. Iterative algorithms are

used to compute both reciprocals and square roots. The RECIPS and RSQRTS operations are used to start these
iterative algorithms as shown below.

Fn = RECIPS Fx; /* creates seed for reciprocal */
Fn = RSQRTS Fx; /* creates seed for reciprocal square root */

Divide Instruction
The SHARC+ core supports a multi-cycle floating-point divide instruction. The RECIPS instruction is used to

simplify the divide implementation instruction by using an iterative convergence algorithm. For more information,
see the Computation Types chapter.

SHARC+ Core Programming Reference 3-5

ALU Instruction Types

Clip Instruction

The clip instruction (CLIP) is very similar to the multiplier saturate (SAT) instruction, however the clipping (satu-
ration) level is an operand within the instruction.

Rn = CLIP Rx by Ry; /* clip level stored in Ry register */

Multiprecision Instructions
The add with carry and the subtract with borrow allows the implementation of 64-bit operations.

Rn = Rx + Ry + CI; /* adds with carry from status register */
Rn = Rx - Ry + CI -1; /* subtracts with borrow from status register */

Arithmetic Status

ALU operations update seven status flags in the processing element's arithmetic status (REGE ASTATX or
REGFE ASTATY) registers. The following bits in the REGF ASTATX or REGF_ASTATY registers flag the ALU
status (a 1 indicates the condition) of the most recent ALU operation.

* ALU result zero or floating-point underflow, (AZ)

* ALU overflow, (AV)

* ALU result negative, (AN)

* ALU fixed-point carry, (AC)

* ALU input sign for ABS, MANT operations, (AS)

* ALU floating-point invalid operation, (AT)

* Last ALU operation was a floating-point operation, (AF)

* Compare accumulation register results of last eight compare operations, (CACC)

ALU operations also update four sticky status flags in the processing element's sticky status (REGF STKYX and
REGE STKYY) registers. The following bits in the REGF STKYX or REGE STKYY registers flag the ALU status
(a 1 indicates the condition). Once set, a sticky flag remains high until explicitly cleared.

* ALU floating-point underflow, (AUS)

* ALU floating-point overflow, (AVS)

* ALU fixed-point overflow, (AOS)

* ALU floating-point invalid operation, (AIS)
ALU Instruction Summary

The Fixed-Point ALU Instruction Summary (AF Flag = 0) and Floating-Point ALU Instruction Summary tables list
the ALU instructions and show how they relate to the ASTATx/ASTATy and STKYx/STKYYy flags. For more in-
formation on assembly language syntax, see the Instruction Set Types chapter and the Computation Types chapter. In
these tables, note the meaning of the following symbols.

3-6 SHARC+ Core Programming Reference

* Rn, Rx, Ry indicate any register file location; treated as fixed-point
* Fn, Fx, Fy indicate any register file location; treated as floating-point

* *indicates that the flag may be set or cleared, depending on the results of instruction

Arithmetic Logic Unit (ALU)

* **indicates that the flag may be set (but not cleared), depending on the results of the instruction

* - indicates no effect

* In SIMD mode all instructions use the complement data registers

Table 3-2: Fixed-Point ALU Instruction Summary (AF Flag = 0)

Instruction

ASTATx, ASTATy Status Flags

STKYx, STKYy Status Flags

Fixed-Point:

AV

AN

AC

AS

Al

CACC

AUS

AVS

AOS

AIS

RN = RX + RY;

*

*

*ok

RN = RX - RY;

*

*

ok

RN = RX + RY + ci3

*%

RN=RX-RY +ci—1;

%%

RN = (RX + RY) / 2;

comp (RX, RY);

compu (RX, RY);

RN = RX + ci;

*%

RN =RX +ci—1;

%%

RN =RX + 1;

*ok

RN =RX - 1;

*ok

RN = -RX;

S|l o | o |l oo ||l ool oo o] o

ok

RN = abs RX;

*

%%

RN = pass RX;

RN = RX and RY;

RN = RX or RY;

RN = RX xor RY;

RN = not RX;

RN = min (RX, RY);

RN = max (RX, RY);

RN = clip RX by RY;

S|l ol o | ool o o ©

S| oo |l ol ool oo O

S|l o | ool o of ©

o |l ol o ||l ool o] ool ool oo ool ool ool oo

SHARC+ Core Programming Reference

Arithmetic Logic Unit (ALU)

Table 3-3: Floating-Point ALU Instruction Summary (AF Flag = 1)

Instruction ASTATx, ASTATy Status Flags STKYx, STKYy Status Flags
Floating-Point: AZ AV AN AC AS Al CACC [AUS [AVS |[AOS |AIS
FN = EX + FY; * * * 0 0 * - ok ok - ok
EN = FX — FY; * * * 0 0 * ; ok ok ; ok
FN = abs (FX + FY); * * 0 0 0 * - oK X - ok
FN = abs (FX — FY); * * 0 0 0 * - oK ok - *x
FN = (FEX + FY) / 2; * 0 * 0 0 * - ok - - ok
comp (FX, FY); * 0 * 0 0 * * - - - ok
FN = -FX; * 0 * 0 0 * - - - - ok
FN = abs FX; * 0 0 0 * * - - - - ok
FN = pass FX; * 0 * 0 0 * - - - - ok
FN = rnd FX; * * * 0 0 * - - Hox - ok
EN = scalb FX by RY; * * * 0 0 * - *ok ok _ *k
RN = mant FX; * * 0 0 * * - - *ok _ ok
RN = logb FX; * * * 0 0 * - - ok _ *ok
RN = fix FX; * * * 0 0 * } ok sk } ok
RN = fix FX by RY; * * * 0 0 * } ok ok } ok
RN = trunc FX; * 0 * 0 0 * - ok - - ok
RN = trunc FX by RY; * 0 * 0 0 * - ok _ _ ok
FN = float RX; * 0 * 0 0 0 - - _ _ _
FN = float RX by RY; * * * 0 0 0 - ok ok _ -
EN = recips FX; * * * 0 0 * - o ok - h
FN = rsqrts FX; * * * 0 0 * - - *ok _ *K
FN = FX copysign FY; * 0 * 0 0 * - - - _ *ok
FN = min (FX, FY); * 0 * 0 0 * - - - - *ok
FN = max (FX, FY); * 0 * 0 0 * - - - - ok
FN = clip FX by FY; * 0 * 0 0 *]]]] -
Table 3-4: 64-bit Floating-Point ALU Instruction Summary (AF Flag = 1)
Instruction ASTATx, ASTATy Status Flags STKYx, STKYy Status Flags
64-bit Floating-Point: AZ AV AN AC AS Al CACC [AUS [AVS [AOS |AIS
FM:N = FX:Y + FZ:W; * * * 0 0 * - *K ok - *K
FM:N = EX:Y - FZ:W; * * * 0 0 * - *x x - Hok

3-8

SHARC+ Core Programming Reference

Table 3-4: 64-bit Floating-Point ALU Instruction Summary (AF Flag = 1) (Continued)

Functional Description

Instruction ASTATx, ASTATy Status Flags STKYx, STKYy Status Flags
64-bit Floating-Point: AZ AV AN AC AS Al CACC |[AUS |AVS |AOS |AIS
comp (EX:Y, FZ:W); * 0 * 0 0 * * - - - *ok
FM:N = - EX:Y; * 0 * 0 0 * - - - - o
FM:N = abs FX:Y; * 0 0 0 * * - - - - ok
FM:N = pass FX:Y; * 0 * 0 0 * - - _ _ *K
FM:N = scalb FX:Y by RY; * * * 0 0 * - *K ok - *K
* * * 0 0 * _ ok ok B ok
RN=fix FX:Y;
RN = fix FX:Y by RY: * * * 0 0 . _ - -] -
RN = trunc EX:Y; * * * 0 0 * - ok *ok _ *x
RN = trunc FX:Y by RY; * * * 0 0 * - ok K - ok
FM:N = float RX; * 0 * 0 0 0 - - _ _ _
FM:N = float RX by RY; * * * 0 0 0 - ok K - -
FM:N = cvt FX; * 0 * 0 0 * - - - - ok
FN = cvt FX:Y; * * * 0 0 * _ *k ok B ok
Multiplier

The multiplier performs fixed-point or floating-point multiplication and fixed-point multiply/accumulate opera-

tions. Fixed-point multiply/accumulates are available with cumulative addition or cumulative subtraction. Multiplier

floating-point instructions operate on 32-bit, 40-bit, or 64-bit floating-point operands and output 32-bit, 40-bit, or

64-bit floating-point results. Multiplier fixed-point instructions operate on 32-bit fixed-point data and produce 80-

bit results. Inputs are treated as fractional or integer, unsigned or two's-complement. Multiplier instructions include:

* Floating-point multiplication

* Fixed-point multiplication

¢ Fixed-point multiply/accumulate with addition, rounding optional

¢ Fixed-point multiply/accumulate with subtraction, rounding optional

* Rounding multiplier result register

* Saturating multiplier result register

* Fixed point multi-precision arithmetic (signed/signed, unsigned/unsigned or unsigned/signed options)

SHARC+ Core Programming Reference

Multiplier

Functional Description

The multiplier takes two inputs, X and Y. These inputs (also known as operands) can be any data registers in the
register file. The multiplier can accumulate fixed-point results in the local multiplier result (REGE MRFE/

REGF MSF) registers or write results back to the register file. The results in REGE MRE/REGFE MSF can also be
rounded or saturated in separate operations. Floating-point multiplies yield floating-point results, which the multi-
plier writes directly to the register file.

For fixed-point multiplies, the multiplier reads the inputs from the upper 32 bits of the data registers. Fixed-point
operands may be either both in integer format, or both in fractional format. The format of the result matches the
format of the inputs. Each fixed-point operand may be either an unsigned number or a two's-complement number.
If both inputs are fractional and signed, the multiplier automatically shifts the result left one bit to remove the re-
dundant sign bit.

Multiplier Inputs

In cases of dual operand forwarding from a compute instruction in the previous cycle, wherein both the X and Y
inputs are required for multiplication, there are two cycles of stall. However, this is not a very common case in DSP
processing, and therefore high architectural efficiency is still achieved using an asymmetrical multiplier. For more
information, see the Program Sequencer chapter.

Multiplier Result Register

Fixed-point operations place 80-bit results in the multiplier's foreground register (REGE MRF/REGE MSF) or
background register (REGE MRB/REGE MSB), depending on which is active. For more information on selecting
the result register, see Alternate (Secondary) Data Registers in the Registers File chapter.

The location of a result in the MRF register's 80-bit field depends on whether the result is in fractional or integer
format, as shown in the Multiplier Fixed-Point Result Placement figure. If the result is sent directly to a data register,
the 32-bit result with the same format as the input data is transferred, using bits 6332 for a fractional result or bits
310 for an integer result. The eight LSBs of the 40-bit register file location are zero-filled.

79 63 31 0

| MR2F | MR1F | MROF |

FVERFLOW| FRACTIONAL RESULT| UNDERFLOW |
|OVERFLOW| OVERFLOW | INTEGER RESULT |

Figure 3-2: Multiplier Fixed-Point Result Placement

Fractional results can be rounded-to-nearest before being sent to the register file. If rounding is not specified, dis-
carding bits 310 effectively truncates a fractional result (rounds to zero). For more information on rounding, see

Rounding Mode.

The REGF MRF register (see the MR to Data Register Transfers Formats figure) is comprised of the REGF MR2F,
REGEF MRI1F, and REGE MROF registers, which individually can be read from or written to the register file. Each

3-10 SHARC+ Core Programming Reference

Multiplier

of these registers has the same format. When data is read from the REGF MR2F register (guard bits), it is sign-
extended to 32 bits. The processor core zero-fills the eight LSBs of the 40-bit register file location when data is
written from the REGF MR2F, REGF MR1F, or REGF MROF registers to a register file location. When data is
written into the REGF MR2F, REGE MRI1F, or REGF MROF registers from the 32 MSBs of a register file loca-
tion, the eight LSBs are ignored. Data written to the REGF MRIF register is sign-extended to REGF MR2F, re-
peating the MSB of REGF MRI1F in the 16 bits of the REGE MR2F register. Data written to the REGE MROF
register is not sign-extended.

Note that the multiply result register (REGF MRF, REGF MRB) is not an orthogonal register in the instruction set.
Only specific instructions decode it as an operand or as a result register (no universal register). For more informa-
tion, see Multiplier Fixed-Point Computations in the Computation Types chapter.

16 BITS 16 BITS 16 BITS

SIGN-EXTEND MRF2 ZEROS |

32 BITS 8BITS

MRF1 ZEROS

32BITS 8BITS

MRFO

ZEROS |

Figure 3-3: MR to Data Register Transfers Formats

Multiply Register Instruction Types

In addition to multiply, fixed-point operations include accumulate, round, and saturate fixed-point data. The three
MRx register instructions are described in the following sections.

Clear MRx Instruction

The clear operation (MRF = 0) resets the specified MRF register to zero. Often, it is best to perform this operation at
the start of a multiply/accumulate operation to remove the results of the previous operation.

Round MRx Instruction

The RND operation (MRF = RND MRF) applies only to fractional results, integer results are not effected. This opera-
tion performs a round to nearest of the 80-bit MRF value at bit 32, for example, the MR1F- MROF boundary.
Rounding a fixed-point result occurs as part of a multiply or multiply/ accumulate operation or as an explicit opera-
tion on the MRF register. The rounded result in MR1F can be sent to the register file or back to the same MRF
register. To round a fractional result to zero (truncation) instead of to nearest, a program transfers the unrounded
result from MR1F, discarding the lower 32 bits in MROF.

Multi Precision Instructions

The multiplier supports the following data operations for 64-bit data.

MRF = Rx * Ry (SSF); /* signed x signed/fractional */

MRF = Rx * Ry (SUF); /* signed x unsigned/fractional */
MRF = Rx * Ry (USF); /* unsigned x signed/fractional */
MRF = Rx * Ry (UUF); /* unsigned x unsigned/fractional */

SHARC+ Core Programming Reference 3-11

Multiply Register Instruction Types

Saturate MRx Instruction

The SAT operation (MRF = SAT MRF) sets MRF to a maximum value if the MRF value has overflowed. Overflow
occurs when the MRF value is greater than the maximum value for the data format-unsigned or two's-complement
and integer or fractional-as specified in the saturate instruction. The six possible maximum values appear in the
Fixed-Point Format Maximum Values (Saturation) table. The result from MRF saturation can be sent to the register
file or back to the same REGF MRF register.

Table 3-5: Fixed-Point Format Maximum Values (Saturation)

Maximum Number (Hexadecimal)
MR2F MRI1F MROF
Two's-complement fractional (positive) 0000 7FFF FFFF FFFF FFFF
Two's-complement fractional (negative) FFFF 8000 0000 0000 0000
Two's-complement integer (positive) 0000 0000 0000 7FFF FFFF
Two's-complement integer (negative) FFFF FFFF FFFF 8000 0000
Unsigned fractional number 0000 FFFF FFFF FFFF FFFF
Unsigned integer number 0000 0000 0000 FFFF FFFF

Arithmetic Status

Multiplier operations update four status flags in the processing element's arithmetic status registers
(REGF ASTATX and REGF ASTATY). A 1 indicates the condition of the most recent multiplier operation and
are as follows.

* Multiplier result negative (MN)

* Multiplier overflow, (MV)

* Muldplier underflow, (MU)

* Multiplier floating-point invalid operation, (MI)

Multiplier operations also update four "sticky" status flags in the processing element's sticky status (REGE STKYX
and REGF STKYY) registers. Once set (a 1 indicates the condition), a sticky flag remains set until explicitly cleared.
The bits in the REGE STKYX or REGE STKYY registers are as follows.

* Multiplier fixed-point overflow, (MOS)

* Multiplier floating-point overflow, (MVS)

* Multiplier underflow, (MUS)

* Multiplier floating-point invalid operation, (MIS)
Multiplier Instruction Summary

The Fixed-Point Multiplier Instruction Summary and Floating-Point Multiplier Instruction Summary tables list the
multiplier instructions and describe how they relate to the ASTATX/ASTATY and STKYX /STKYY flags. For more

3-12 SHARC+ Core Programming Reference

Multiplier

information on assembly language syntax, see the Instruction Set Types chapter and the Computation Types chapter.
In the tables, note the meaning of the following symbols:

* Rn, Rx, Ry indicate any register file location; treated as fixed-point

* Fn, Fx, Fy indicate any register file location; treated as floating-point

* *indicates that the flag may be set or cleared, depending on results of instruction

* **indicates that the flag may be set (but not cleared), depending on results of instruction
* - indicates no effect

* The Input Mods column indicates the types of optional modifiers that can be applied to the instruction inputs.
For a list of modifiers, see the Input Modifiers for Fixed-Point Multiplier Instruction table.

* In SIMD mode all instruction uses the complement data/multiply result registers.

Table 3-6: Multiplier Result (MR) Register Data Move Operations Summary

Instruction ASTATx, ASTATy Flags STKYx, STKYy Flags
Fixed-Point MU [(MN |MV |[MI |MUS |MOS |MVS |MIS
(mrf | mrb) = RN; 0 0 0 0 . - - -
RN = (mrf | mrb); 0 0 0 0 . - - n

Table 3-7: Fixed-Point Multiplier Instruction Summary

Instruction ASTATx, ASTATy Flags STKYx, STKYy Flags
Fixed-Point MU MN MV MI MUS |MOS |MVS |MIS
(mrf | mrb) = MRF + RX * RY MOD1; * * * 0 - > - -
RN = (mrf | mrb) + RX * RY MODI; * * * 0 - o - -
(mrf | mrb) = (mrf | mrb) — RX * RY MOD1; * * * 0 - o - -
RN = (mrf | mrb) — RX * RY MOD1; * * * 0 - * - -
(RN | mef | mrb) = RX * RY MODI; * * * 0 - =]]
(RN | mrf | mrb) = rnd (mrf | mrb) MOD3; * * * 0 - * - -
(RN | mrf | mrb) = sat (mrf | mrb) MOD2; * * 0 0 - - - -
(mrf | mrb) = 0; 0 0 0 0 - - - -

Table 3-8: Input Modifiers for Fixed-Point Multiplier Instruction

Input Modes (1-2-3) from the Fixed-Point Multiplier Instruction | Input Mods-Options For Fixed-Point Multiplier Instructions
Summary table

1 (SSF), (88D), (SSFR), (SUF), (SUI), (SUFR), (USF), (USI),
(USER), (UUEF), (UUI), or (UUFR)

SHARC+ Core Programming Reference 3-13

Functional Description

Table 3-8: Input Modifiers for Fixed-Point Multiplier Instruction (Continued)

Input Modes (1-2-3) from the Fixed-Point Multiplier Instruction | Input Mods-Options For Fixed-Point Multiplier Instructions
Summary table

2 (SF), (8I), (UF), or (U]) saturation only

3 (SF) or (UF) rounding only

Note the meaning of the following symbols in this table:

Signed inpur — S

Unsigned input — U

Integer input — 1

Fractional input — F

Fractional inputs, Rounded outputr — FR

Note that (SF) is the default format for one-input operations, and (SSF) is the default format for two-input operations.

Table 3-9: Floating-Point Multiplier Instruction Summary

Instruction ASTATx, ASTATy Flags STKYx, STKYy Flags
Floating-Point MU MN MV MI MUS [MOS [(MVS |MIS

Table 3-10: 64-bit Floating-Point Multiplier Instruction Summary

Instruction ASTATx, ASTATy Flags STKYx, STKYy Flags

64-bit Floating-Point MU |[MN MV |MI MUS |MOS |MVS |MIS
FM:N = FX:Y * FZ:W; . N N N - - - -
FM:N = FX:Y * FY; " . . . - - - -
FM:N = FX * FY; ¥ . . N - - - "
Barrel Shifter

The barrel shifter is a combination of logic with X inputs and Y outputs and control logic that specifies how to shift
data between input and output within one cycle.

The shifter performs bit-wise operations on 32-bit fixed-point operands. Shifter operations include the following.
* Bit-wise operations such as shifts and rotates from off-scale left to off-scale right
* Bit-wise manipulation operations, including bit set, clear, toggle, and test
* Bit field manipulation operations, including extract and deposit
* Bit stream manipulation operations using a bit FIFO
* Bit field conversion operations including exponent extract, number of leading 1s or Os

* Pack and unpack conversion between 16-bit and 32-bit floating-point

3-14 SHARC+ Core Programming Reference

Barrel Shifter

* Optional immediate data for one input within the instruction
Functional Description

The shifter takes one to three inputs: X, Y, and Z. The inputs (known as operands) can be any register in the register
file. Within a shifter instruction, the inputs serve as follows.

* The X input provides data that is operated on.
* The Y input specifies shift magnitudes, bit field lengths, or bit positions.
* The Z input provides data that is operated on and updated.

The shifter does not make use of the ALU carry bit, it uses its own status bits.

Shifter Instruction Types

There are two shifter instruction categories: shift compute or shift immediate instructions. Both instruction types
operate identically. Only the Y input is either in an instruction or in a data register.

Shift Compute Category

The shift compute instruction uses a data register for the Y input. The data register operates based on the instruc-

tion's 12-bit field for the bit position start (b1t 6) and the bit field length (1en6). Other instructions may use only
the 8-bit field.

Shift Immediate Category
The shift immediate instruction uses immediate data for the Y input. This input comes from the instruction's 12-bit

field for the bit position start (b1t 6) and the bit field length (Len6). Other instructions may use only the 8-bit
field.

Bit Manipulation Instructions

In the following example, Rx is the X input, Ry is the Y input, and Rn is the Z input. The shifter returns one
output (Rn) to the register file.

Rn = Rn OR LSHIFT Rx BY Ry;

As shown in the Register File Fields for Shifter Instructions figure, the shifter fetches input operands from the upper
32 bits of a register file location (bits 39-8) or from an immediate value in the instruction.

The X input and Z input are always 32-bit fixed-point values. The Y input is a 32-bit fixed-point value or an 8-bit
field (SHF'8), positioned in the register file. These inputs appear in the Register File Fields for Shifter Instructions
figure.

Some shifter operations produce 8 or 6-bit results. As shown in the Register File Fields for Shifter Instructions figure,
the shifter places these results in the SHF8 field or the bit 6 field and sign-extends the results to 32 bits. The shift-
er always returns a 32-bit result.

SHARC+ Core Programming Reference 3-15

Shifter Instruction Types

39 7 0

32-BIT Y INPUT OR RESULT

39 15 7 0

| s | |

8-BIT Y INPUT OR RESULT

Figure 3-4: Register File Fields for Shifter Instructions

Bit Field Manipulation Instructions

The shifter supports bit field deposit and bit field extract instructions for manipulating groups of bits within an
input. The Y input for bit field instructions specifies two 6-bit values, bit 6 and 1en6, which are positioned in the
Ry register as shown in the Register File Fields for FDEDR, FEXT Instructions figure. The shifter interprets- bit 6
and len6 as positive integers. The bit 6 value is the starting bit position for the deposit or extract, and the 1en6
value is the bit field length, which specifies how many bits are deposited or extracted.

39 19 13 7 0

len6 bit6

12-BIT Y INPUT

Figure 3-5: Register File Fields for FDEP, FEXT Instructions

Field deposit (FDEP) instructions take a group of bits from the input register (starting at the LSB of the 32-bit
integer field) and deposit the bits as directed anywhere within the result register. The bit 6 value specifies the start-
ing bit position for the deposit. The Bit Field Deposit Instruction figure shows how the inputs, bit6 and lené,
work in the following field deposit instruction.

Rn = FDEP Rx By Ry
The Bit Field Deposit Example figure shows bit placement for the following field deposit instruction.
RO = FDEP R1 By R2;

Field extract (FEXT) instructions extract a group of bits as directed from anywhere within the input register and
place them in the result register, aligned with the LSB of the 32-bit integer field. The bit 6 value specifies the start-
ing bit position for the extract.

39 19 13 7 0

RY

len6 bit6

RY DETERMINES LENGTH OF BIT FIELD TO TAKE FROM RX AND STARTING POSITION
FOR DEPOSIT IN RN
39 7 0

R><| -

len6 = NUMBER OF BITS TO TAKE FROM RX, STARTING FROM LSB OF 32-BIT FIELD
39 7 0

RN

DEPOSIT FIELD |

?

bité REFERENCE POINT

BIT6 = STARTING BIT POSITION FOR DEPOSIT, REFERENCED FROM LSB OF 32-BIT FIELD

Figure 3-6: Bit Field Deposit Instruction

3-16 SHARC+ Core Programming Reference

39

32

24

16

R21" 00000000 00000000 00000010 00010000 00000000
— N
len6 bit6 len6 =8
bit6 = 16
39 32 24 16 8 0
R1| 00000000 00000000 00000000 11111111 00000000
16 EF’—/ 0
39 32 l 24 16 8 0
RO[00000000 11111111 00000000 00000000 00000000

Figure 3-7: Bit Field Deposit Example

16

8

Starting bit position for deposit

0

}

Reference point

Shifter Instruction Types

0x0000 0210 00

0x0000 0OFF 00

0x00FF 0000 00

The Bit Field Extract Instruction figure shows bit placement for the following field extract instruction.

R3

FEXT R4 By R5;

39

32

24

16

R5

00000000

00000000

00000010

00010111

00000000

R4

len6 bité len6 =8
bit6 = 23
39 32 24 16 8 0
10000111 10000000 00000000 0000000 00000000
N ; 16 8 0
? Starting bit position
for extraction Reference point
39 32 24 16 ¢ 8 0
00000000 00000000 00000000 00001111 00000000

R3

Figure 3-8: Bit Field Extract Instructi

on

16

0x0000 0217 00

0x8780 0000 00

0x0000 000F 00

NOTE: The FEXT instruction bits to the left of the extracted field are cleared in the destination register. The
FDEP instruction bits to the left and to the right of the deposited field are cleared in the destination regis-
ter. Therefore programs can use the (SE) option, which sign extends the left bits, or programs can use a
logical OR instruction with the source register which does not clear the bits across the shifted field.

Bit Stream Manipulation Instructions

The bit stream manipulation operations, in conjunction with the bit FIFO write pointer (BEFWRP) instruction,
implement a bit FIFO used for modifying the bits in a contiguous bit stream.

NOTE: For meaningful results, only use SISD mode to execute all bit FIFO instructions.

The shifter supports bit stream manipulation to access the bit FIFO as follows:

The BITDEP instruction deposits bit field from an input stream into the bit FIFO

The BITEXT instruction extracts bit field from the bit FIFO into an output stream

SHARC+ Core Programming Reference

3-17

Bit Stream Manipulation Instructions

The bit FIFO consists of a 64-bit register internal to the shifter and an associated write pointer register which keeps

track of the number of valid bits in the FIFO. When the bit FIFO is empty, the write pointer is 0, when the FIFO is
full, the write pointer is 64. The bit FIFO register and write pointer can be accessed only through the BITDEP and

BITEXT instructions. For more information, see Shifter/Shift Immediate Computations in the Computation Types

chapter.

The Example of Header Extraction and Header Creation examples demonstrate the BITDEP instruction where 32-
bit words are appended to the bit FIFO whenever the total number of bits falls below 32. A variable number of bits
are read.

Example of Header Extraction

I13 = buffer base;
M13 = 1;
BFFWRP = 0x0; /* initialize Bit FIFO */
R10 = pm(I13,M13);

If NOT SF BITDEP R10 by 32,

R10 = PM(I13,M13); /* appends R10 to BFF */

R6 = BITEXT (6); /* extracts 6 bits from head of BFF
and left-shifts BFF by that amount */

DM (Var 1) = R6;

If NOT SF BITDEP R10 by 32, R10 = PM(I13,M13);

R6 = BITEXT (3); /* extracts 3 bits */

DM (Var 2) = R6;

The bit extracts are in variable quantities, but the deposit is always in 32-bits whenever the total number of bits in

the bit FIFO increases beyond 32.

Header Creation
I13 = buffer base;

M13 = 1;

BEFFWRP=0x0;

R10 = dm(varl); /* get the variable */

BITDEP R10 by 6; /* append it to BFF */

If SF R10 = BITEXT (32),

pm(I13,M13) = R10; /* 1f the balance > 32, transfer a word */

R10 = dm(Var 1);
BITDEP R10 by 3;
If SF R10 = BITEXT(32), pm(I1l3,M13) = R10;

The bit deposits are in variable quantities. However, the extract is always in 32-bits whenever the total number of
bits in the bit FIFO increases beyond 32.

Interrupts Using Bit FIFO Instructions

If the program vectors to an ISR during bit FIFO operations, and the ISR uses the bit FIFO for different other

purposes, then the state of the bit FIFO has to be preserved if the program needs to restart the previous bit FIFO
operations after returning from the ISR. This is shown in the Storing and Restoring Bit FIFO State example.

3-18 SHARC+ Core Programming Reference

Barrel Shifter

Storing and Restoring Bit FIFO State

/* Storing Bit FIFO State */
RO = BFEWRP;

BEFWRP = 64;

Rl = BITEXT 32;

R2 BITEXT 32;

/* Restoring the Bit FIFO State */
BEFWRP = 0;

BITDEP R1 BY 32;

BITDEP R2 BY 32;

In the same way, the bit FIFO can be used to extract and create different headers in a kind of time-division multi-
plex fashion by storing and restoring the bit FIFO between two different sequences of bit FIFO operations.

NOTE: If a bit FIFO related instruction is interrupted and the ISR uses the bit FIFO, the state of the bit FIFO
must be preserved and restored by the ISR.

Floating-Point Data Pack and Unpack Instructions

The processor core supports a 16-bit floating-point storage format and provides instructions that convert the data
for 40-bit computations. The 16-bit floating-point format uses an 11-bit mantissa with a 4-bit exponent plus a sign
bit. The 16-bit data goes into bits 23 through 8 of a data register. Two shifter instructions, FPACK and FUNPACK,
perform the packing and unpacking conversions between 32-bit floating-point words and 16-bit floating-point
words. The FPACK instruction converts a 32-bit IEEE floating-point number in a data register into a 16-bit float-
ing-point number. FUNPACK converts a 16-bit floating-point number in a data register to a 32-bit IEEE floating-
point number. Each instruction executes in a single cycle.

When 16-bit data is written to bits 23 through 8 of a data register, the data is automatically extended into a 32-bit
integer (bits 39 through 8).

The 16-bit floating-point format supports gradual underflow. This method sacrifices precision for dynamic range.
When packing a number that would have underflowed, the exponent clears to zero and the mantissa (including a
"hidden" 1) right-shifts the appropriate amount. The packed result is a denormal, which can be unpacked into a
normal IEEE floating-point number.

The shifter instructions may help to perform data compression, converting 32-bit into 16-bit floating point, storing
the data into short word space, and, if required, fetching and converting them back for further processing.

Arithmetic Status

Shifter operations update four status flags in the processing element's arithmetic status registers (REGF ASTATX or
REGF ASTATY) where a 1 indicates the condition. The bits that indicate shifter status for the most recent ALU
operation are as follows.

* Shifter overflow of bits to left of MSB, (SV)

 Shifter result zero, (SZ)

SHARC+ Core Programming Reference 3-19

Barrel Shifter

* Shifter input sign for exponent extract only, (SS)

» Shifter bit FIFO status (SF)
Note that the shifter does not generate an exception handle.
Bit FIFO Status

The bit FIFO contains a status flag (shifter FIFO, SF) which reflects the current value of the write pointer - SF is
set when the write pointer is greater than or equal to 32, it is cleared otherwise. Another status flag SV, indicates the
exception condition such as overflow or underflow.

The SF flag has two related conditions - SF and NOT SF, which are for exclusive use in instructions involving the

bit FIFO.

NOTE: The shifter FIFO bit (SF in registers) reflects the status flag. Note this bit is a read-only bit unlike other
flags in the REGF ASTATX or REGE ASTATY registers. The value is pushed into the stack during a
PUSH operation but a POP operation does not restore this ASTAT bit.

Shifter Instruction Summary

Tables Shifter Instruction Summary and Shifter Bit FIFO Instruction Summary list the shifter instructions and
shows how they relate to the flags in the ASTATX or ASTATY registers. For more information on assembly lan-
guage syntax, see the Instruction Set Types chapter and the Computation Types chapter. In these tables, note the
meaning of the following symbols:

* The Rn, Rx, Ry operands indicate any register file location; bit fields used depend on instruction
* The Fn, Fx operands indicate any register file location; floating-point word
* The * symbol indicates that the flag may be set or cleared, depending on data

* In SIMD mode all instruction uses the complement data registers, immediate data are valid for both units

Table 3-11: Shifter Instruction Summary

Instruction ASTATx, ASTATy Flags
SZ SV SS

RN = Ishift RX by (RY | DATAS); * * 0
RN = RN or Ishifc RX by (RY | DATAS); * * 0
RN = ashift RX by (RY | DATAS); * * 0
RN = RN or ashift RX by (RY | DATAS); * * 0
RN = rot RX by (RY | DATA); * 0 0
RN = bclr RX by (RY | DATAS); * * 0
RN = bset RX by (RY | DATAS); * * 0
RN = btgl RX by (RY | DATAS); * * 0

3-20 SHARC+ Core Programming Reference

Functional Description

Table 3-11: Shifter Instruction Summary (Continued)

Instruction ASTATx, ASTATy Flags
Sz % SS

btst RX by (RY | DATAS); * * 0
RN = fdep RX by (RY | BIT6:LENG); * . 0
RN = RN or fdep RX by (RY | BITG:LENG); . . 0
RN = fdep RX by (RY | BITG:LENG) (se); . . 0
RN = RN or fdep RX by (RY | BIT6:LENG) (se); * * 0
RN = fext RX by (RY | BITG:LENG); * * 0
RN = fext RX by (RY | BITG:LENG) (se); . . 0
RN = exp RX; . 0 .
RN = exp RX (ex); * 0 *
RN = leftz RX; * * 0
RN = lefto RX; * * 0
RN = fpack FX; 0 * 0
EN = funpack RX; 0 0 0

The SHARC+ cores support the instructions in the Shifter Instruction Summary table. Additionally these processors
support the shifter bit FIFO instructions shown in the Shifter Bit FIFO Instruction Summary table.

NOTE: SIMD mode must be disabled during bit FIFO operations.

Table 3-12: Shifter Bit FIFO Instruction Summary

Instruction ASTATx, ASTATy Flags

Sz SV SS SF
bitdep RX by (RY | BITLEN12); 0 * 0 *
RN = bitext (RX | BITLEN12) (nu); * * 0 *
bffwrp = (RN | DATA7); 0 * 0 *
RN = bffwrp; 0 0 0 *

Multifunction Computations

The processor core supports multiple parallel (multifunction) computations by using the parallel data paths within
its computational units. These instructions complete in a single cycle (except fixed-point multiply which is a two
cycle compute), and they combine parallel operation of the multiplier and the ALU or they perform dual ALU func-
tions. The multiple operations work as if they were in corresponding single function computations. Multifunction
computations also handle flags in the same way as the single function computations, except that in the dual add/
subtract computation, the ALU flags from the two operations are ORed together.

SHARC+ Core Programming Reference 3-21

Multifunction Computations

To work with the available data paths, the computational units constrain which data registers hold the four input
operands for multifunction computations. These constraints limit which registers may hold the X input and Y input

for the ALU and multiplier.
Software Pipelining for Multifunction Instructions

Multifunction instructions are parallel operations of both the ALU and multiplier units where each unit has new
data available after 1 cycle. However, for floating-point MAC operations, the processor core needs to emulate the
MAC instruction with a multifunction instruction. Results from the 32-bit floating-point multiplier unit are availa-
ble in 2 cycles for the ALU unit. Coding these instructions requires interleaved software pipelining to avoid the
computation stall as shown below.

F8=0; /* clear accO */

F9=0; /* clear accl

F12=F3*F7; /* first MUL */

lentr=N/2, do MAC until lce;

F12=F3*F7, F8=F8+F12; /* first ALU, loop body */

MAC : F13=F3*F7, FO9=F9+F13; /* first ALU, loop body */
F8=F8+F12; /* last ALU */
F10 = F8+F9; /* add both MACs */

Since a single floating-point MAC operation takes at least 2 cycles (for a typical DSP application compute multiple
data) the same example exercised with a hardware loop body results in a throughput of 1 cycle per word assuming a
high word count.

Multifunction and Data Move

Another type of multifunction operation combines transfers between the results and data registers and transfers be-
tween memory and data registers. These parallel operations complete in a single cycle. For example, the core can
perform the following MAC and parallel read of data memory. However if data dependency exists, software pipeline
coding is required as shown in the MAC and Parallel Read With Software Pipeline Coding example.

MAC and Parallel Read With Software Pipeline Coding

MRF=0, R5 = DM(I1,M2), R6 = PM(I9,M9); /* first data */
lcntr=N-1, do (pc,loopend) until lce;

loopend: MRF = MRF-R5*R6, R5 = DM(I1,M2), R6 = PM(I9,M9); /* loop body */
MREF = MRF-R5*R6; /* last MAC*/

Multifunction Input Operand Constraints

Each of the four input operands for multifunction computations are constrained to a different set of four register file
locations, as shown in the Permitted Input Registers for Multifunction Computations figure. For example, the X in-
put to the ALU must be R8, R9, R10, or R11. In all other compute operations, the input operands can be any
register file location.

The multiport data register file can normally be read from and written to without restriction. However, in multi-
function instructions, the ALU and multiplier input are restricted to particular sets of registers while the outputs are
unrestricted.

3-22 SHARC+ Core Programming Reference

Multifunction Computations

For any instruction with multiple operations executing in parallel, the destination registers should not be the same.

REGISTER FILE

RO - FO

R1-F1
R2-F2

/ R3-F3
MULTIPLIER
\ R4 -F4

R5-F5

R6 - F6
R7 -F7

Any Register

Any Register R8-F8

R9 -F9

R10 - F10

R11-F11

R12-F12

N
vl

R13-F13

R14 - F14

R15- F15

Figure 3-9: Permitted Input Registers for Multifunction Computations

Multifunction Input Modifier Constraints

The multifunction fixed-point computation does support the instruction input modifier signed/signed fractional

(SSF) and signed/signed fractional rounding (SSFR) only.
Multifunction Instruction Summary
The processors support the following multifunction instructions.
* Fixed-Point ALU (dual Add and Subtract)
* Floating-Point ALU (dual Add and Subtract)
* Fixed-Point Multiplier and ALU
* Floating Point Multiplier and ALU (dual Add and Subtract)
* Floating-Point Multiplier and ALU
* Fixed-Point Multiplier and ALU (dual Add and Subtract)

For more information see the Computation Types chapter. Note that these computations can be combined with
dual data move (type 1 instruction) or single data move with conditions (Group I instruction set types). For more
detail refer to the Instruction Set Types chapter.

64-bit Instruction Overview
The SHARC+ core supports 64-bit instruction set, based on ALU, Multiplier and Multifunction instructions. Addi-

tional information provided about number of execution cycles consumed by the instructions and the number of un-
conditional stalls that these instructions impose.

SHARC+ Core Programming Reference 3-23

Multifunction Instruction Summary

Table 3-13: 64-bit Floating-Point Instruction set for SHARC+ Core

Syntax No. of Execution | No. of Stalls Basic Function
Cycles (Unconditional)

ALU

Fm:n = Fx:y + Fziw; 7 5 Addition

Fm:n = Fx:y - Fzow; 7 5 Subtraction

COMP(Fx:y , Fziw); 7 5 Compares the operands and sets flags.

Fm:n = Fxty; 2 0 Complements the sign bit.

Fm:n = ABS Fx:y; 2 0 Returns the absolute value of the operand.

Fm:n = PASS Fx:y; 2 0 Passes operand in Fx:y through the ALU, to the 64-bit floating
point registers Fm:n.

Rn = FIX Fx:y; 4 2 Converts the operand in Fx:y to a twos-complement 32-bit fixed-
point integer result.

Rn = FIX Fx:y BY Rz; 4 2 Converts the operand in Fx:y to a twos-complement 32-bit fixed-
point integer result. Rz is added to the exponent of the operand in
Fx:y before the conversion.

Rn = TRUNC Fx:y; 4 2 Converts the operand in Fx:y to a twos-complement 32-bit fixed-
point integer result. The trunc operation always truncates towards
0.

Rn = TRUNC Fx:y BY Rz; 4 2 Converts the operand in Fx:y to a twos-complement 32-bit fixed-
point integer result. The trunc operation always truncates toward
0. Rz is added to the exponent of the operand in Fx:y before the
conversion.

Fm:n = FLOAT Rx; 2 0 Converts the fixed-point operand in Rx to a floating-point result.

Fm:n = FLOAT Rx BY Ry; 4 2 Converts the fixed-point operand in Rx to a floating-point result.
Ry is added to the exponent of the floating-point result.

Fm:n = CVT Fx; 2 0 Converts the 32/40-bit floating-point operand to 64-bit floating
point format.

Fn = CVT Fxuy; 4 2 Converts the 64-bit floating-point operand to single precision
floating point format.

Fm:n = SCALB Fx;y BY Rz; |2 0 Scales the exponent of the floating-point operand in Fx:y by add-
ing to it the fixed-point twos complement integer in Rz.

Multiplier (uses multiplier result register for temp processing)

Fm:n = Fx:y * Fziw; 7 5 Multiplication of two 64-bit operands.

Fm:n = Fxiy * Fz; 7 5 64-bit operand Fx:y multiplied with single precision operand Fz.

Fm:n = Fx * Fy; 7 5 32/40-bit operand Fx multiplied with single precision operand Fy
and produces a double precision result.

Multifunction (uses multiplier result register for temp processing)

3-24

SHARC+ Core Programming Reference

Multifunction Instruction Summary

Table 3-13: 64-bit Floating-Point Instruction set for SHARC+ Core (Continued)

Syntax No. of Execution | No. of Stalls Basic Function

Cycles (Unconditional)
Fm:n = Fx:y * Fz:w, Fa:b = 7 5 Multiply and Add in parallel
Fp:q + Fr:s;
Fm:n = Fx:y * Fz:w, Fa:b = 7 5 Multiply and Subtract in parallel
Fp:q - Fr:s;

WARNING: 64-bit multiplier and multifunction instructions use the multiplier result register during execution. If
the multiplier result register contains valid data which may be required by the application, the pro-
gram must save the data from multiplier result register before executing this instruction (multiplier
result register = REGE MRF or REGEF MRB register depending on the section of the
REGF MODEL . SRCU bit).

64-bit Data Register Coding

32/40-BIT/
FIXED-POINT/FLOATING-POINT 64-BIT
REGISTER USAGE FLOATING-POINT

— REGISTER USAGE
RO - FO

R1-F1 F1-FO
R2-F2 F3-F2
R3-F3

R4-F4

MULTIPLIER

RS - F5 F5-F4

R6-F6 F7-F6

L RT-F7 Any Register
DR —

Any Register
R8 - F8

RO - F9
R10 - F10 \
R11-F11

R12-F12

F9-F8

F11 - F10

R13- F13 F13-F12

F15-F14

R14-F14

R15- F15

Figure 3-10: Permitted Input Registers for Multifunction Computations

The 64-bit floating-point registers are denoted as “Fx:y”. Neighboring data registers are used to construct 64-bit
data registers for 64-bit operations.

For example, in the F5:4 = F1:0 + F3:2 operation, the {R1, RO} register pair constitute F1:0; the {R3, R2} register
pair constitute F3:2; and the result loaded into the {R5, R4} register pair, for example F5:4.

“_»

The first index “x” of “Fx:y” has to be an odd register index and the second index “y” should be its neighboring

register with an even index.

NOTE: F4:5, F2:0, F10:7, F7:10 are examples of illegal DP registers.

The complementary 64-bit registers of Processing Element Y (PEY) are named “SFx:y”. For example, SF1:0 repre-
sent the register pair {S1, SO}.

SHARC+ Core Programming Reference 3-25

Functional Description

The following figure shows how the registers R1 and RO constitute a 64-bit register F1:0.

Rl
| 39| 38 28|27 8|7 0 |
” RO
| 39 8| 7 0 |
F1:0 T
| 63|62 52|51 0 |
S Exponent Significand

Figure 3-11: 64-bit Register Construction

64-bit Floating-Point Computation Data Hazards

The 64-bit instructions require the registers to be updated in the register-file (RF) before performing the computa-
tions. The 64-bit operations cannot be performed on forwarded results of previous compute instructions. There are
several data-hazard conditions, which require stalls.

This section explains all the data hazard conditions that are explicitly related to 64-bit floating-point instructions.
Such data-hazard conditions are data dependencies from one COMPUTE instruction to the next COMPUTE in-
structions, when one of them is a 64-bit Compute instruction.

All the other RF related data hazard conditions that affect 32/40-bit floating-point instructions are applicable to 64-
bit instructions as well.

The backward and forward data dependencies are explained through instruction pipeline illustrations for each case.

Case A - 64-bit Instruction SRC Operands are DST Operands Of Previous Compute Instructions

This case describes data hazard (instruction pipeline stall) issues that occur when a 64-bit floating-point instruction
uses source (SRC) operands that are destination operands (DST) from the previously occuring two compute instruc-
tions.

< Instruction N-2 ; >
< Instruction N-1 ; >
F5:4 = F3:2 + F1:0; // Instruction N

In the Add, Subtract or Compare instructions above, the upper halves of the source 64-bit instruction's register F3:2
and F1:0 (for example, R3 and R1 respectively) are read in the first execution cycle and lower halves (R2 and RO) are
read in the second execution cycle. The applicable stalls are listed below in the descending order of priority.

* If the instruction N1 updates either R3 or R1, the instruction N is stalled for 2 cycles.
* If the instruction N1 updates either R2 or RO, the instruction N is stalled for 1 cycle.

* If the instruction N2 updates either R3 or R1, the instruction N is stalled for 1 cycle. This stall is not visible if
the instruction N1 also imposes one or more stalls.

* If the instruction N2 updates either R2 or RO, the instruction N is not stalled.

3-26 SHARC+ Core Programming Reference

64-bit Floating-Point Computation Data Hazards

< Instruction N-2 ; >
< Instruction N-1 ; >
F5:4 = F3:2 * F1:0 ; // Instruction N

In the Fm:n = Fx:y * Fz:w instruction above, the data registers are read in the following sequence.
* Execution Cycle-1: R2, RO
* Execution Cycle-2: R3, RO
* Execution Cycle-3: R2, R1
* Execution Cycle-4: R3, R1
The applicable stalls are listed below in the descending order of priority:
* If the instruction N1 updates either R2 or RO, the instruction N is stalled for 2 cycles.
* If the instruction N1 updates R3, the instruction N is stalled for 1 cycle.

* If the instruction N2 updates either R2 or RO, the instruction N is stalled for 1 cycle. This stall is not visible if
the instruction N1 also imposes one or more stalls.

* If the instruction N1 updates R1, or if the instruction N-2 updates either R3 or R1, the instruction N does not
stall.

< Instruction N-2 ; >
< Instruction N-1 ; >
F5:4 = F3:2 * FO ; // Instruction N

In the Fm:n = Fx:y * Fz instruction above, the data registers are read in the following sequence.
* Execution Cycle-1: R2, RO
* Execution Cycle-2: R3, RO
The applicable stalls are listed below in the descending order of priority.
* If the instruction N1 updates either R2 or RO, the instruction N is stalled for 2 cycles.
* If the instruction N1 updates R3, the instruction N is stalled for 1 cycle.

* If the instruction N2 updates either R2 or RO, the instruction N is stalled for 1 cycle. This stall is not visible if
the instruction N1 also imposes one or more stalls.

* If the instruction N2 updates R3, the instruction N is not stalled.

< Instruction N-2 ; >
< Instruction N-1 ; >
F5:4 = F2 * FO ; // Instruction N

In the Fm:n = Fx * Fy instruction above, the data registers are read in the following sequence.
* Execution Cycle-1: R2, RO

The stall conditions are listed below in the descending order of priority:

SHARC+ Core Programming Reference 3-27

64-bit Floating-Point Computation Data Hazards

* If the instruction N1 updates either R2 or RO, the instruction N is stalled for 2 cycles.

e If the instruction N2 updates either R2 or RO, the instruction N is stalled for 1 cycle. This stall is not visible if
the instruction N1 also imposes one or more stalls.

< Instruction N-2 ; >
< Instruction N-1 ; >
F5:4 =SCALB F3:2 By RO ; // Instruction N

In all the other 64-bit instructions (SCALB is shown above), all the involved source registers are read in the first
execution cycle where the following occur.

* If the instruction N1 updates any of the source registers, the instruction N is stalled for 2 cycles.

* If the instruction N2 updates any of the source registers, the instruction N is stalled for 1 cycle. This stall is not
visible if the instruction N1 also imposes one or more stalls.

Ry = destination of any compute instruction ; //Instruction
N-2, Rx = Ry ; //Instruction N-1
64-bit instruction that uses Rx in first execution cycle; // Instruction N

For any 64-bit instruction (N), if the source registers, which are being used in first execution cycle of the 64-bit
instruction, are updated by Dreg-to-Dreg transfer in previous instruction (N1); and the source register of the
Dreg-to-Dreg transfer instruction (N1) is updated in its previous instruction (N2) which is a compute instruction,
then:

* The instruction N is stalled for 1-cycle.
Case B - 64-bit Instruction SRC Operands are DST Operands of Previous Cond Register Load

This case describes data hazard (instruction pipeline stall) issues that occur when a 64-bit floating-point instruction
uses source (SRC) operands that are destination operands (DST) from a previously occuring conditional register
load instruction.

If eq RO = dm(I0,MO); // N-1
F5:4 = F3:2 * F1:0; // N

In the DM, PM, Immediate, or Ureg to Ureg Load or Swap instruction above, if the N1 instruction is a conditional
register update instruction and if the N1 instruction updates one or all of the source operands of the instruction N
(which is a 64-bit instruction), the following occur.

* Instruction N is stalled for 1 cycle, if the source operand is read in first execution-cycle of the 64-bit instruc-
tion.

* Instruction N is not stalled, if the source operand is read in the second or later execution-cycles.

Case C - 64-bit Instruction DST Operand acts as SRC Operands of the Next non-DP Compute
Instruction

This case describes data hazard (instruction pipeline stall) issues that occur when a 64-bit floating-point instruction
uses destination (DST) operands that are source operands (SRC) for the next occuring non-64-bit compute instruc-

tion.

3-28 SHARC+ Core Programming Reference

64-bit Floating-Point Computation Data Hazards

This case applies only if the N instruction is a non-64-bit instruction and if instruction N1 is a 64-bit instruction. If
the instruction N is also a 64-bit instruction, this case is same as Case A. (See Case A - 64-bit Instruction SRC
Operands are DST Operands Of Previous Compute Instructions.)

(1) F5:4 = F3:2 * F1:0 ; // N-1

R11 = R5 + R4; / /N
(2) F5:4 = F3:2 + F1:0 ; // N-1
R11 = R5 + R4; / /N
(3) F5 = CVT F3:2 ; // N-1
R11 = R5 + R4; / /N
(4) F5 = CVT F3:2 ; // N-1
RO = ASTATX ; / /N

When any destination register of a 64-bit instruction (N-1) is a source operand of the next non-64-bit instruction,
the instruction N is stalled for 1 cycle. This stall occurs in addition to the stalls imposed by 64-bit instruction N-1.
The example code demonstrates these stalls as follows:

* In example line (1), instruction N1 (MULTIPLY) inherently imposes 5-stalls on instruction N. There is 1 ad-
ditional stall on instruction N, because the source operands of instruction N are the destination operands of
instruction N-1. Hence, instruction N is stalled for 6 cycles.

* Similarly, in example line (2), instruction N is stalled for 6-cycles.

* However, in example line (3), instruction N1 inherently imposes 2-stalls on instruction N. There is 1 addition-
al stall on instruction N, because of dependency. Hence, instruction N is stalled for 3-cycles.

* In example line (4), the instruction N1 inherently imposes 2-stalls on instruction N. There is 1 additional stall
on instruction N, because of dependency on the status flags. Instruction N is then stalled for 3-cycles.

Combined Data Hazards (Combinations of Cases A, B, C)

In all the described 64-bit data hazard cases (A, B, C), if multiple data hazard conditions arise simultaneously, the
number of stalls imposed is the maximum of the number of stalls imposed by each condition.

Example (1) : Case A Combination

In example (1), instruction N2 updates R1, which can stall instruction N for 1-cycle. Instruction N1 updates R3,
which can stall instruction N for 2-cycles. In this case, instruction N is stalled for 2-cycles.
Rl = R12 + R13; // Instruction N-2

R3 = R10 + R11; // Instruction N-1
F5:4 = F3:2 + F1:0 ; // Instruction N

Example (2) : Case A Combination

In example (2), instruction N2 updates R1, which can stall instruction N for 1-cycle. And, instruction N1 updates
RO, which can also stall instruction N for 1-cycle. In this case, instruction N is stalled for 1-cycle.
Rl = R12 + R13; // Instruction N-2

RO R10 + R11; // Instruction N-1
F5:4 = F3:2 + F1:0 ; // Instruction N

SHARC+ Core Programming Reference 3-29

Functional Description

Example (3) : Case A-C Combination

In example (3), instruction N2 updates R1, which can stall instruction N for 1-cycle. And, instruction N1 is an
instruction which unconditionally stalls N for 2-cycles, since it is a 64-bit CVT instruction. In this case, the instruc-
tion N is stalled for 2-cycle.

Rl = R12 + R13; // Instruction N-2
F15 = CVT F11:10; // Instruction N-1
F5:4 = F3:2 + F1:0 ; // Instruction N

64-bit Floating-Point Instruction Execution Cycles
7-cycle Execution of 64-bit Instructions (Add/Subtract/Compare Instructions)

Applies for 64-bit floating-point instructions:

Fm:n = Fx:y + Fz:w
Fm:n = Fx:y - Fz:w
COMP (Fx:y, Fz:w)

Table 3-14: 7-cycle Execution of 64-bit Instructions (Add/Subtract/Compare Instructions)

Cy- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
cles
E2 n-2 | n-1 n n+1
(dp)
M4/ n-2 | n-1 n n n n n n n+l | n+2
E1 (dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M3 n-2 | n-1 n n n n n n n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M2 n-2 | n-1 n n n n n n n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M1 n-2 | n-1 n n n n n n n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp)
D2 n-2 | n-1 n n+l | n+l | n+1 | n+1 | n+1 | n+1 | n+2
(dp)
D1 n-2 | n-1 n n+tl | n+2 | n+2 | n+2 | n+2 | n+2 | n+2
(dp)
F4 n-2 | n-1 n n+l | n+2
(dp)
F3 | n-2 | n-1 n | n+l | n+2 5-Cycles Stall
(dp)
F2 | n-1 n n+l | n+2
(dp)

3-30 SHARC+ Core Programming Reference

Functional Description

Table 3-14: 7-cycle Execution of 64-bit Instructions (Add/Subtract/Compare Instructions) (Continued)

Cy- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | 17

cles

F1 n n+l | n+2
(dp)

NOTE: Rm, Rn, ASTAT, STKY available on cycle 17.

7-cycle Execution of 64-bit Instructions (Multiply Instructions)

Applies for 64-bit floating-point instructions:

Fm:n = Fx:y * Fz:w
Fm:n = Fx:y * Fz:w
Fm:n = Fx * Fy

4-cycle Execution of é4-bit Instructions

Applies for 64-bit floating-point instructions:

Rn = FIX Fx:y

Rn = FIX Fx:y BY Rz
Rn = TRUNC Fx:y

Rn = TRUNC Fx:y BY Rz
Fm:n = FLOAT Rx BY Ry
Fn = CVT Fx:y

Table 3-15: 4-cycle Execution of 64-bit Instructions

Cy- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cles
E2 E2 n-2 | n-1 n n+l
(dp)
M4/ | M4/ n-2 | n-1 n n n n+l | n+2
El | E1 (dp) | (dp) | (dp)
M3 | M3 n-2 | n-1 n n n n+l | n+2
(dp) | (dp) | (dp)
M2 | M2 n-2 | n-1 n n n n+l | n+2
(dp) | (dp) | (dp)
M1 | M1 n-2 | n-1 n n n n+l | n+2
(dp) | (dp) | (dp)
D2 | D2 n-2 | n-1 n n+l | n+l | n+l | n+2
(dp)
D1 | D1 n-2 | n-1 n n+l | n+2 | n+2 | n+2
(dp)

SHARC+ Core Programming Reference 3-31

Functional Description

Table 3-15: 4-cycle Execution of 64-bit Instructions (Continued)

Cy- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cles

F4 | F4 n-2 | n-1 n | n+l | n+2

(dp)
F3 | F3 | n-2 | n-1 n | n+l | n+2 2-Cycles
(dp) Stall
F2 F2 | n-1 n | n+l | n+2
(dp)
F1 E2 n | n+l | n+2
(dp)

NOTE: Rm, Rn, ASTAT, STKY available on cycle 15.

2-cycle Execution of é4-bit Instructions with Backward Dependency Stalls

Applies for 64-bit floating-point instructions:

Fm:n = - Fx:y

Fm:n = ABS Fx:y

Fm:n = PASS Fx:y

Fm:n = FLOAT Rx

Fm:n = CVT Fx

Fm:n = SCALB Fx:y BY Rz

Table 3-16: 2-cycle Execution of 64-bit Instructions with Backward Dependency Stalls

Cycles 1 2 3 4 5 6 7 8 9 10 11 12
E2 n-2 n-1 n(dp) | n+l
M4/E1 n-2 n-1 | n(dp) | n+l n+2
M3 n-2 n-1 | n(dp) | n(dp) | n+2
M2 n-2 n-1 n(dp) | n(dp) | n(dp)
M1 n-2 n-1 n(dp) | n(dp) | n(dp) n+l
D2 n-2 n-1 n(dp) | n+l n+l n+l n+2
D1 n2 | nl |n(p) | n+el | ne2 | ne2 | ne2
F4 n-2 n-1 | n(dp) | n+l n+2

F3 n-2 n-1 n (dp) n+l n+2

F2 n-1 n (dp) n+l n+2

F1 n(dp) | n+l n+2

NOTE: Rm, Rn, ASTAT, STKY available on cycle 12.

3-32 SHARC+ Core Programming Reference

Functional Description

1-cycle Execution of é4-bit Instructions with Backward Dependency Stalls
Applies for 64-bit floating-point instructions with backward dependency (CASE-A and CASE-B of Data Hazards):

Fx = Fa + Fb; //Instruction n-1
Fm:n = Fx:y + Fz:w ; // Instruction N

Table 3-17: 1-cycle Execution of 64-bit Instructions with Backward Dependency Stalls

Cy- 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 14 | 15 16 | 17 | 18 | 19
cles
E2 n-2 | n-1 | n-1 | n-1 n n+l
(dp)
M4/ n-2 | n-1 | n-1 | n-1 n n n n n n | n+l | n+2
El (dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M3 n-2 | n-1 | n-1 | n-1 n n n n n n n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M2 n-2 | n-1 | n-1 | n-1 n n n n n n n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M1 n-2 | n-1 n n n n n n n n | n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp) | (dp) | (dp)
D2 n-2 | n-1 n | n+l | n+l | n+l | n+1 | n+1 | n+1 | n+1 | n+1 | n+2
(dp)
D1 n-2 | n-1 n | n+l | n+2 | n+2 | n+2 | n+2 | n+2 | n+2 | n+2 | n+2
(dp)
F4 n-2 | n-1 n | n+l | n+2
(dp)
F3 | n-2 | n-1| n | n+l | n+2 2-Cycles 5-Cycles Stall
(dp) Stall
F2 | n-1 n n+l | n+2
(dp)
F1 n n+l | n+2
(dp)
NOTE: Rm, Rn, ASTAT, STKY available on cycle 19.

1-cycle Execution of é4-bit Instructions with Forward Dependency Stalls

Applies for 64-bit floating-point instructions with forward dependency (Case C of Data Hazards):

Fy = Fa + Fb; //Instruction n-1
Fm:n = Fx:y + Fz:w ; // Instruction N

SHARC+ Core Programming Reference 3-33

Functional Description

Table 3-18: 1-cycle Execution of 64-bit Instructions with Forward Dependency Stalls

Cy- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
cles
E2 n-2 | n-1 | n-1 n n+l
(dp)
M4/ n-2 | n-1 | n-1 n n n n n n n+l | n+2
El (dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M3 n-2 | n-1 | n-1 n n n n n n n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M2 n-2 | n-1 | n-1 n n n n n n n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M1 n-2 | n-1 n n n n n n n | n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp) | (dp)
D2 n-2 | n-1 n n+l | n+l | n+l | n+1 | n+1 | n+1 | n+1 | n+2
(dp)
D1 n-2 | n-1 n n+tl | n+2 | n+2 | n+2 | n+2 | n+2 | n+2 | n+2
(dp)
F4 n-2 | n-1 n | n+l | n+2
(dp)
F3 | n-2 | n-1 | n | n+l | n+2 1- 5-Cycles Stall
(dp) Cy-

cle

Stall
F2 n-1 n n+l | n+2

(dp)
F1 n | n+l | n+2
(dp)

NOTE: Rm, Rn, ASTAT, STKY available on cycle 18.

1-cycle Excution of 64-bit Instructions with Forward Dependency Stalls
Applies for 64-bit floating-point instructions with forward dependency (Case C of Data Hazards):

Fm:n = Fx:y + Fz:w ;; //Instruction N
Rs = Rm + Rn ; // Instruction n+1l

Table 3-19: 1-cycle Excution of 64-bit Instructions with Forward Dependency Stalls

Cy- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | 17 18

cles

E2 n-2 | n-1 n n n+l
(dp) | (dp)

3-34 SHARC+ Core Programming Reference

Functional Description

Table 3-19: 1-cycle Excution of 64-bit Instructions with Forward Dependency Stalls (Continued)

Cy-| 1 | 2|3 | 4|5 |6 | 7|8 |9 |10]|11|12]13]|14]|15]16] 17| 18
cles
M4/ n-2 | n-1 n n n n n n n n+l | n+2
El (dp) | (dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M3 n-2 | n-1 n n n n n n n n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M2 n-2 | n-1 n n n n n n n n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp) | (dp)
M1 n-2 | n-1 n n n n n n n | n+l | n+2
(dp) | (dp) | (dp) | (dp) | (dp) | (dp) | (dp)
D2 n-2 | n-1 n n+l | n+l | n+1 | n+1 | n+1 | n+1 | n+1 | n+2
(dp)
D1 n-2 | n-1 n n+tl | n+2 | n+2 | n+2 | n+2 | n+2 | n+2 | n+2
(dp)
F4 n-2 | n-1 n n+l | n+2
(dp)
F3 | n-2 | n-1 | n | n+l | n+2 5-Cycles Stall 1-
(dp) Cy-
cle
Stall
F2 n-1 n n+l | n+2
(dp)
F1 n n+l | n+2
(dp)
NOTE: Rm, Rn, ASTAT, STKY available on cycle 18.

64-bit Floating-Point Register Aliases in Long Word Memory Addressing

The 64-bit registers are made up of neighbor register pairs (for example, pair F1:0 consists of R1 and R0). The DP
registers can be loaded using Long-Word memory accesses.

The SHARC+ core assembler supports the following aliases of memory access instructions with 64-bit floating-point
registers:

Table 3-20: Alias of 64-bit Registers in Long Word Memory Access Instructions

Register Usage in SHARC+ Core Instruction Alias to 64-bit Floating-Point Register
Ry = dm() Fxiy = dm()
Ry = pm() Fxiy = pm()
dm() = Ry dm() = Fxy

SHARC+ Core Programming Reference 3-35

Functional Description

Table 3-20: Alias of 64-bit Registers in Long Word Memory Access Instructions (Continued)

Register Usage in SHARC+ Core Instruction Alias to 64-bit Floating-Point Register

pm() = Ry pm() = Fx:y

For these aliased instructions, the assembler uses the even address of the neighboring registers (for example, Ry) in
place of a 64-bit register (for exmple Fx:y). This aliasing simplifies the long-word accesses because they are aligned to
a 64-bit boundary. The even memory locations are mapped to even registers and the odd memory locations are
mapped to odd registers. If the above register aliases are used with LW addressing, they can be used to transfer DP
data to or from memory. For example:

F1:0 = dm(I0,M0) (LW) // would behave same as RO = dm(IO0,M0) (LW).
SF1:0 = dm(I0,MO0) (LwW) // would behave same as SO0 = dm(IO0,MO0) (LW).

Note the following:

 If the LW attribute is not applied, these instructions are same as NW/SW/BW instructions, and the register
updated is the even-address register.

* These are only aliases of the existing instructions, not new instructions. All the restrictions and recommenda-
tions of using these existing instructions also are applicable to their aliases.

64-bit Floating-Point SIMD Mode

SIMD mode long-word accesses are not supported. In SIMD, the 64-bit registers can be loaded in one of these
ways:

* Using two 32-bit normal-word addressing of dual-data in SIMD mode, or

* Using two long-word addressing of dual-data in SISD mode by using the appropriate complementary registers
in both accesses.

In both the cases, the alignment of the DP data in memory could be very different. Moreover, there can be many
derived methods of updating 64-bit registers for SIMD, from existing methods discussed in the Memory chapter.

64-bit Floating-Point Computation Register Load Priorities

This section describes the register file (RF) bus conflicts that can arise for multifunction 64-bit floating-point (64-
bit) operations or 64-bit operations with register load instructions. The SHARC+ core uses the following rules, in
cases of RF bus conflicts.

1. Explicit or implicit destinations of DM register-load instructions have the highest priority over all other RF
Bus.

2. Explicit or implicit destinations of PM register-load instructions have the second highest priority.

* For long word addressing on the PM bus, if the explicit or implicit destination of PM bus is same as the
explicit or implicit destination of the DM bus, all the writes on the PM bus are blocked.

3. The result of a single ALU operation has the third highest priority.

3-36 SHARC+ Core Programming Reference

Operating Modes

* For 64-bit ALU operations, if any of the destination registers (Fa or Fb in case of Fa:b) conflicts with ex-
plicit or implicit DM or PM destinations, the result of the DP ALU operation is blocked.

4. The result of multiplier (64-bit or non-64-bit) operations has the fourth highest priority.

* For 64-bit multiply operations, if any of the destination registers (Fm or Fn in case of Fm:n) conflicts
with the explicit/implicit DM or PM destinations or any of the DP ALU destinations, the result of a 64-
bit multiply is blocked.

5. The result of shifter and the result of subtract operations for dual-add-sub instructions have the least priority

Note:

* In all of these cases, only the writes to RF registers are blocked by higher priority buses, but the status registers
reflect the status of all operations that have occurred.

* For multiplication instructions, even if the results are not updated either fully or partially because of RF bus
conflicts, the MR registers are affected because of the execution of multiplication instructions.

Operating Modes

The MODEL1 register controls the operating mode of the processing elements. The MODEI Register Bit Descriptions
(RW) table in the Registers appendix lists the bits in the MODE1 register. The bits are described in the following
sections.

ALU Saturation

When the REGF_MODEL .ALUSAT bit is set (= 1), the ALU is in saturation mode. In this mode, positive fixed-
point overflows return the maximum positive fixed-point number (0x7FFF FFFF), and negative overflows return the
maximum negative number (0x8000 0000).

When the REGF_MODEL .ALUSAT bit is cleared (= 0), fixed-point results that overflow are not saturated, the up-
per 32 bits of the result are returned unaltered.

Short Word Sign Extension

In short word space, the upper 16-bit word is not accessed. If the REGE MODE1 . SSE bit is set (1), the core sign-
extends the upper 16 bits. If the bit is cleared (0), the core zeros the upper 16 bits.

Floating-Point Boundary Mode

In the default boundary mode at reset, (REGF MODE1 .RND32 = 0), a 40-bit extended-precision floating-point
mode is supported. This mode has eight additional LSBs of the mantissa and is otherwise compliant with the IEEE
754/854 standards. Results when using this format are more precise than the IEEE single-precision standard will
achieve. Extended-precision floating-point data uses a 31-bit mantissa with a 8-bit exponent plus sign a bit.

For rounding mode the multiplier and ALU support a single-precision floating-point format, which is specified in

the IEEE 754/854 standard.

SHARC+ Core Programming Reference 3-37

Operating Modes

IEEE single-precision floating-point data (REGF MODE1 .RND32 = 1) uses a 23-bit mantissa with an 8-bit expo-
nent plus sign bit. In this case, the computation unit sets the eight LSBs of floating-point inputs to zeros before
performing the operation. The mantissa of a result rounds to 23 bits (not including the hidden bit), and the 8 LSBs
of the 40-bit result clear to zeros to form a 32-bit number, which is equivalent to the IEEE standard result.

NOTE: In fixed-point to floating-point conversion, the rounding boundary is always 40 bits, even if the
REGF MODEL.RND32 bit is set.

For more information on this standard, see the Numeric Formats appendix. This format is IEEE 754/854 compati-
ble for single-precision floating-point operations in all respects except for the following.

* The core does not provide inexact flags. An inexact flag is an exception flag whose bit position is inexact. The
inexact exception occurs if the rounded result of an operation is not identical to the exact (infinitely precise)
result. Thus, an inexact exception always occurs when an overflow or an underflow occurs.

* NAN (Not-A-Number) inputs generate an invalid exception and return a quiet NAN (all 1s).

* Denormal operands, using denormalized (or tiny) numbers, flush to zero when input to a computational unit
and do not generate an underflow exception. A denormal operand is one of the floating-point operands with an
absolute value too small to represent with full precision in the significant. The denormal exception occurs if
one or more of the operands is a denormal number. This exception is never regarded as an error.

* The core supports round-to-nearest and round-toward-zero modes, but does not support round to +infinity
and round-to-infinity.

* The sign bit of output NAN x NAN is a sign bit as the OR of two input sign bits.

Rounding Mode

The REGF MODE1 . TRUNCATE bit determines the rounding mode for all ALU operations, all floating-point mul-
tiplies, and fixed-point multiplies of fractional data. The core supports two rounding modes- round-toward-zero and
round-toward-nearest. The rounding modes comply with the IEEE 754 standard and have the following definitions.

* Round-toward-zero (REGF _MODEL.TRUNCATE = 1). If the result before rounding is not exactly representa-
ble in the destination format, the rounded result is the number that is nearer to zero. This is equivalent to
truncation.

* Round-toward-nearest (REGF MODE1 . TRUNCATE = 0). If the result before rounding is not exactly repre-
sentable in the destination format, the rounded result is the number that is nearer to the result before rounding.
If the result before rounding is exactly halfway between two numbers in the destination format (differing by an
LSB), the rounded result is the number that has an LSB equal to zero.

Statistically, rounding up occurs as often as rounding down, so there is no large sample bias. Because the maximum
floating-point value is one LSB less than the value that represents infinity, a result that is halfway between the maxi-
mum floating-point value and infinity rounds to infinity in this mode.

3-38 SHARC+ Core Programming Reference

Operating Modes

Though these rounding modes comply with standards set for floating-point data, they also apply for fixed-point
multiplier operations on fractional data. The same two rounding modes are supported, but only the round-to-near-
est operation is actually performed by the multiplier. Using its local result register for fixed-point operations, the
multiplier rounds-to-zero by reading only the upper bits of the result and discarding the lower bits.

Multiplier Result Register Swap

Each multiplier has a primary or foreground register (REGF MROF, REGF MR2F) and alternate or background
results register (REGF MROB, REGE MR2B). The REGF MODE1L . SRCU bit selects which result register receives
the result from the multiplier operation, swapping which register is the current MRF or MRB. This swapping facili-
tates context switching.

Unlike other registers that have alternates, both the MRF and MRB registers are coded into instructions, without re-
gard to the state of the REGF MODEL1 register as shown in the following example.

MRB = MRB - R3 * R2 (SSFR);
MRF = MRF + R4 * R12 (UUI);

With this arrangement, programs can use the result registers as primary and alternate accumulators, or programs can
use these registers as two parallel accumulators. This feature facilitates complex math. The REGE MODEL register
controls the access to alternate registers. In SIMD mode, swapping also occurs with the PEY unit based registers
(REGF MSOF, REGF MS2F, and REGF_MSOB, REGF MS2B).

SIMD Mode

The SHARC+ core contains two sets of computational units and associated register files. As shown in the SHARC+
SIMD Core Block Diagram, these two processing elements (PEx and PEy) support Single Instruction Multiple Data
(SIMD) operation.

The REGF MODEL register controls the operating mode of the processing elements. The REGF _MODE1 . PEYEN
bit (bit 21) enables or disables the PEy processing element. When REGF_MODEL . PEYEN is cleared (0), the core
operates in SISD mode, using only PEx. When the REGF_MODE1 . PEYEN bit is set (1), the core operates in
SIMD mode, using both the PEx and PEy processing elements. There is a one cycle delay after

REGF MODEL.PEYEN is set or cleared, before the mode change takes effect.

For shift immediate instructions the Y input is driven by immediate data from the instructions (and has no comple-
ment data as a register does). If using SIMD mode, the immediate data are valid for both PEx and PEy units as
shown in the Compute Instructions in SIMD Mode example.

Compute Instructions in SIMD Mode

bit set MODEl BITM REGF MODEl PEYEN; /* enable SIMD */

RO = R1 + R2; /* explicit ALU instruction */
S0 = S1 + S2; /* implicit ALU instruction */
FO = F1 * F2; /* explicit MUL instruction */
SFO = SF1 * SF2; /* implicit MUL instruction */
MRB = MRB - R3 * R2 (SSFR); /* explicit MUL instruction */

SHARC+ Core Programming Reference 3-39

Operating Modes

MSB = MSB - S3 * S2 (SSFR); /* implicit MUL instruction */

R5 LSHIFT R6 by <data8>; /* explicit shift imm instruction */
S5 = LSHIFT S6 by <data8>; /* implicit shift imm instruction */

To support SIMD, the core performs these parallel operations:
* Dispatches a single instruction to both processing element's computational units.
* Loads two sets of data from memory, one for each processing element.
* Executes the same instruction simultaneously in both processing elements.

* Stores data results from the dual executions to memory.

NOTE: Using SIMD mode’s parallelism, it is possible to double the performance over similar algorithms running
in SISD (ADSP-2106x processor compatible) mode.

The two processing elements are symmetrical; each contains the following functional blocks:
 ALU
* Multiplier primary and alternate result registers
* Shifter

* Data register file and alternate register file

Conditional Computations in SIMD Mode

Conditional computations allows the computation units to make computations conditional in SIMD mode. For
more information, see Conditional Instruction Execution in the Program Sequencer chapter.

Interrupt Mode Mask

On the SHARCH+ cores, programs can mask automated individual operating mode bits in the REGF MODE1 regis-
ter when entering into an ISR by setting bits in the REGF MMASK register. This improves interrupt handling per-
formance and helps ensure that interrupt handler code runs with operating modes set consistently.

For the processing units, the short word sign extension (REGF MODEL . SSE) the truncation
(REGF_MODEL.TRUNCATE) the ALU saturation (REGF MODEL .ALUSAT) the floating-point boundary round-
ing (REGF_MODE1 .RND32) and the multiply register swap (REGF MODEL . SRCU) bits can be masked. For
more information, see the Program Sequencer chapter.

Arithmetic Exceptions

The following sections describe how the processor core handles arithmetic exceptions. Note that the shifter does not
generate interrupts for exception handling. For a complete list of interrupts, see the Interrupt Priority and Vector

Table.

3-40 SHARC+ Core Programming Reference

Arithmetic Exceptions

NOTE: Interrupt processing starts two cycles after an arithmetic exception occurs because of the one cycle delay

between an arithmetic exception and the REGF STKYX/REGE STKYY register update

Table 3-21: Arithmetic Exceptions

Interrupt Source | Interrupt Return Register Return Instruc- |IVT level
Condition tion

PEx/PEy Fixed-Point ALU/MUL overflow | STKYx/y RTI 23, FIXI
Floating-Point ALU/MUL over- STKYx/y RTI 24, FLTOI
flow
Floating-Point ALU/MUL under- | STKYx/y RTI 25, FLTUI
flow
Floating-Point ALU/MUL invalid | STKYx/y RTI 26, FLTII

Arithmetic Exception Acknowledge

After an exception has been detected the ISR routine needs to clear the flag bit as shown in the following example.

ISR ALU Exception:

bit tst STKYx AVS; /* check condition */
IF TF jump ALU Float Overflow;

bit tst STKYx AOS; /* check condition */
IF TF jump ALU Fixed Overflow;

ALU Fixed Overflow:

bit clr STKYx AOS; /* clear sticky bit */
rti;

ALU Float Overflow:

bit clr STKYx AVS; /* clear sticky bit */
rti;

NOTE: Interrupt service routines for arithmetic interrupts (FIXI, FLTOI, FLTUI and FLTTI) must clear the ap-
propriate STKYx or STKYy bits to clear the interrupt. If the bits are not cleared, the interrupt is still active

after the return from interrupt (RTT).

SIMD Computation Exceptions

If one of the four fixed-point or floating-point exceptions is enabled, an exception condition on one or both proces-

singelements generates an exception interrupt. Interrupt service routines (ISRs) must determine which of the proces-

singelements encountered the exception. Returning from a floating-point interrupt does not automatically clear the
STKY state. Program code must clear the sticky bits in both processing element's sticky status (REGF STKYX and

REGE STKYY) registers as part of the exception service routine. For more information, see Interrupt Branch Mode

in the Program Sequencer chapter.

SHARC+ Core Programming Reference

3-41

4 Program Sequencer

Program Sequencer

The program sequencer is responsible for the control flow of programs and data within the processor. The sequencer

controls nonsequential program flows such as jumps, calls, and loop instructions. The sequencer is closely connected

to the system interface, DAGs, and a special type of cache, called conflict instruction cache.

NOTE: The SHARC+ core provides instruction and data caches, which are not available on previous SHARC pro-

cessors. The instruction and data caches reduce average latency of instruction and data accesses from sys-

tem L2 memory or from external memories. By comparison, the conflict instruction cache reduces latency

of instruction access due only to instruction accesses conflicting with a data access over PM bus. For more

information, see Instruction-Conflict Cache Control.

The program sequencer controls program flow, as shown in the Program Flow figure, by constantly providing the

address of the next instruction to be fetched for execution. Program flow in the processors is mostly linear, with the

processor executing instructions sequentially. This linear flow varies occasionally when the program branches due to
nonsequential program structures, such as those described below. Nonsequential structures direct the processor to

execute an instruction that is not at the next sequential address following the current instruction.

LINEAR FLOW

ADDRESS N

N+1 [INSTRUCTION

N+2 | INSTRUCTION

N+3 | INSTRUCTION

N+4 1 INSTRUCTION

N+5 | INSTRUCTION

SUBROUTINE

CALL

’ INSTRUCTION
INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

— RTS

Figure 4-1: Program Flow

b5}
O

LOOP

DO UNTIL

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INTERRUPT

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

RTI

N TIMES

VECTOR

JUMP

JUMP

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

IDLE

IDLE

©

INSTRUCTION

WAITING

INSTRUCTION

FOR IRQ

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

SHARC+ Core Programming Reference

Features

Features

The sequencer controls the following operations.

* Loops. One sequence of instructions executes several times with zero overhead or significantly reduced pipeline
overhead (when compared to software loop).

* Subroutines. The processor temporarily breaks sequential flow to execute instructions from another part of pro-
gram memory.

* Jumps. Program flow is permanently transferred to another part of program memory.
* Interrupts. Subroutines in which a runtime event (not an instruction) triggers the execution of the routine.

* Idle. An instruction that causes the processor to cease operations and hold its current state until an interrupt
occurs. Then, the processor services the interrupt and continues normal execution.

ISA or VISA instruction fetches. The fetch address is interpreted as an ISA (NW address, traditional) or VISA
instruction (SW address) this allows fast switching between both instruction types.

* Direct Addressing. Provides data address specified as absolute value in instruction.

The sequencer manages execution of these program structures by selecting the address of the next instruction to exe-
cute. As part of its process, the sequencer handles the following tasks:

* Increments the fetch address

* Maintains stacks

* Evaluates conditions

* Decrements the loop counter

* Calculates new addresses

* Maintains a special instruction cache known as instruction-conflict cache
* Predicts branches using the branch target buffer

* Interrupt control

To accomplish these tasks, the sequencer uses the blocks shown in the Sequencer Control Diagram figure. The se-
quencer's address multiplexer selects the value of the next fetch address from several possible sources. The fetch ad-
dress enters the instruction pipeline. The fetch address is the 24-bit address of the instruction currently being fetch-
ed, decoded, and executed. The program counter, coupled with the program counter stack, stores return addresses
and top-of-loop addresses. All addresses generated by the sequencer are 24-bit program memory instruction address-
es.

4-2 SHARC+ Core Programming Reference

Functional Description

INSTRUCTION BUS MODEL
PMD[63:16]
ASTATX
CONFLICT INPUT
CACHE LOOP STACK l ASTATY
l TADDR ADDREiSﬁ ?TACK
INSTRUCTION
LATCH TR COUNT STACK CONL%E‘C(’:NAL STATUS STACK
[Cronr 1 6x32 > 15x3x 32
[~
PROGRAM
INTERRUPTS ~ —
DAG2 SEQUENCER |NTERRLLJE_ICCF?NTROL
E’Z' - —] PC (E) MASK
MASK POINTER
LooP SKPO
: —| SEQUENCER |
H_FADDR (F1) e
l PC STACK [_PosTk]
30x 32
BTB
Branch PCSTKP
Target VISA ISA
Buffer +3 +1
NEXT ADDRESS
Indirect Direct PC Relative Predicted — Next IDLE Next RTS, RTI T

Branch Branch Branch Branch Fetch Fetch TOP of loop Branch

Figure 4-2: Sequencer Control Diagram

Functional Description

The sequencer uses the blocks shown in the Sequencer Control Diagram figure to execute instructions. The se-
quencer's address multiplexer selects the value of the next fetch address from several possible sources. These registers
contain the 24-bit addresses of the instructions currently being fetched, decoded, and executed.

Instruction Pipeline

The program sequencer determines the next instruction address by examining both the current instruction being
executed and the current state of the processor. The branch predictor unit examines each fetch address to determine
whether it is a branch instruction. If the unit detects a branch instruction, the unit provides an address of the likely
next instruction. If no conditions require otherwise, the processor fetches and executes instructions from memory in
sequential order.

To achieve a high execution rate while maintaining a simple programming mode, the processor employs an 11 stage
interlocked pipeline, shown in the Instruction Pipeline Processing Stages table, to process instructions and simplify
programming models. All possible hazards are controlled by hardware.

The legacy Instruction Set Architecture (ISA) instructions are addressed using normal word (NW) address space,
whereas Variable Instruction Set Architecture (VISA) instructions are addressed using short word (SW) address
space. Switching between traditional ISA and VISA instruction spaces occurs automatically when branches (JUMP/
CALL or interrupts) take the execution from ISA address space to VISA address space or vice versa; no changes to
mode registers are required.

NOTE: The processor always emerges from reset in ISA mode, so the interrupt vector table must always reside in

ISA address space.

SHARC+ Core Programming Reference 4-3

Functional Description

The processor controls the fetch address, decode address, and program counter (REGF FADDR, REGEF DADDR,
and REGF PC) registers which store the Fetchl, decode, and execution phase addresses of the pipeline.

Table 4-1: Instruction Pipeline Processing Stages

Stage Stage |ISA

Fetchl F1 In this stage, the appropriate instruction address is chosen from various sources and driven
out to memory. The instruction address is matched with the instruction-conflict cache to
generate a condition for cache miss/hit in case the PM bus is busy for a data access. The
next NW address is auto incremented by one.

NOTE: VISA Extension: Next SW address is auto incremented by three for every 48-bit
fetch

Fetch2 F2 Memory data and instruction/conflict cache access stages.

Fetch3 F3

Fetch4 F4 This stage is the data phase of the instruction fetch-memory access wherein the data address
generator (DAG) performs some amount of pre-decode. Based on a hit or miss in the con-
flict cache, the instruction is read from conflict cache/driven from the memory instruction
data bus.

NOTE: VISA Extension: Stores 3 x 16-bit instruction data into the IAB buffer and
presents 1 instruction/cycle to the decoder

Decodel D1 The instruction is decoded and various conditions that control instruction execution are

Decode2 D2 generated. The main active units in this stage are the DAGs, which generate the addresses
ecode . L o

for various types of functions like data accesses (load/store) and indirect branches. DAG
pre-modify (M+]) operation is performed. For a cache miss, instruction data read from

memory are loaded into the instruction-conflict cache.

NOTE: VISA Extension: Decode Visa instruction; store its length information in short
words.

Memory access 1 M1 The addresses generated by the DAGs in the previous stage are driven to the memory
(address) through memory interface logic. The addresses for the branch operation are made available
to the fetch unit. The target address predicted by BP/BTB is validated for unconditional
branch instructions. For instruction branches (Call/Jump) the address is forwarded to the
Memory access 3 M3 Fetch1 stage.

Memory access 2 M2

Memory access 4 M4/E1 | Memory access returns data for load operation. All the fixed point ALU and shifter instruc-
(data/execute 1) tions complete operations. First half of the floating point operations and multiplication op-
erations complete.

Execute2 E2 Second half of the two cycle compute operations complete. Results of computations, mem-
ory read operations are written back to destination registers. For conditional branch in-
structions, predictions made by BP/BTB are validated.

NOTE: VISA Extension: Executing VISA instructions the PC value is incremented by
1, 2, or 3; depending on length information from the Instruction decode.

4-4 SHARC+ Core Programming Reference

Instruction Pipeline

VISA Instruction Alignment Buffer (IAB)

The IAB, shown in the Instruction Alignment Buffer figure, is a 5 short-word (5 x 16-bit words) capacity FIFO that
is part of the program sequencer. The IAB is responsible for buffering 48 bits of code at a time from memory per
cycle and presenting one instruction per core clock cycle (CCLK) to the execution unit. When the instruction is
shorter than 48 bits, the IAB keeps the unused bits for the next cycle. When the IAB determines that it has no room
to accommodate 48 more bits from memory, it stalls the fetch engine. Consequently, the average fetch bandwidth
for executing VISA instructions is less than 48 bits per cycle.

me [wss | | | [ese | | L]

16 16 16 } 16 16 '|
“concatenate”

TO
DECODER

Figure 4-3: Instruction Alignment Buffer

A decode of the instruction indicates the length of the instruction in unit of short words. At the end of the current
decode cycle, the short words that are part of the current instruction are discarded and the remaining bits are shifted
left to align at the MSB of IAB. The three fetched short words in the following cycle are concatenated to the existing
bits of IAB. The next instruction, therefore, is always available in MSB aligned fashion. Because the fetch operations
being processed must complete (even after the sequencer stalls the fetch engine), added instruction storage is provid-
ed through two 48-bit delay registers.

Linear Program Flow

In the sequential program flow, when one instruction is being executed, the next ten instructions that follow are
being processed in other stages of the instruction pipeline. Sequential program flow usually has a throughput of one
instruction per cycle.

The ISA/VISA Linear Flow 48-bit Instructions Only table illustrates how the instructions starting at address n are
processed by the pipeline. While the instruction at address n is being executed, the subsequent instructions from n
+1 to n+10 are being processed in the subsequent stages of instruction pipeline from M4 to F1 stages respectively.

Note that---when executing ISA code---the instruction addresses are N'W addresses.

Table 4-2: ISA Linear Flow 48-bit Instructions Only

cycles 1 2 3 4 5 6 7 8 9 10 11 12

E2 n n+1

M4 n n+l | n+2

SHARC+ Core Programming Reference 4-5

Instruction Pipeline

Table 4-2: ISA Linear Flow 48-bit Instructions Only (Continued)

cycles 1 2 3 4 5 6 7 8 9 10 11 12
M3 n n+l | n+2 | n+3
M2 n n+l | n+2 | n+3 | n+4
M1 n n+l | n+2 | n+3 | n+4 | n+5
D2 n n+l | n+2 | n+3 | n+4 | n+5 | n+6
D1 n n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7
F4 n n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8
F3 n n+l | n+2 | n+3 | n+4d | n+5 | n+6 | n+7 | n+8 | n+9
F2 n n+tl | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10
F1 n n+tl | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10 | n+11

When executing VISA instructions, the instruction addresses are SW addresses. The sequencer always fetches 48-bits
(3 short words) in each fetch operation. The fetch addresses always increment by 3. But, the PC may increment by
1, 2, or 3 based on the length of the instructions.

NOTE: On memory space boundaries, the instruction fetch does not halt and continues to fetch next address.
Direct Addressing

Similar to the DAGs, the sequencer also provides the data address for direct addressing types as shown in the follow-
ing example.

RO = DM (NW Address) ; /* sequencer generated data address */
PM(NW_ Address) = R7: /* sequencer generated data address */

as compared to the DAG:

RO = DM (IO,MO) ; /* DAGl generated data address */
PM(I8,M8) = R7: /* DAG2 generated data address */

For more information, see the Data Address Generators chapter.

lllegal System Accesses Conditions

If the SHARC+ core as requester performs a system completer access (to peripherals, memories) via the system cross-
bar, the requests traverse through the system crossbar as follows.

1. The completer receives the request, grants and forwards it to the system crossbar.
2. The system fabric acknowledges and forwards the grant to the system core requester.

Once the core accepts the grant it executes the next instruction. In ADSP-SC58x product based systems illegal con-
ditions may be caused by:

* access to disabled peripherals

4-6 SHARC+ Core Programming Reference

Variation In Program Flow

* access to enabled unpopulated peripherals
* access to unavailable/private SMMR addresses

* access to secure completers (handled by the SPU/SMPU)

These violation conditions may lead to halt the entire requester-completer path because the completer does not
grant the request (system crossbar and few cycles later the core requester is stalled). To prevent illegal access condi-
tions, use the SMPU instances for exception handling and the system watchdogs for stall recognition. See also Com-
pleter Ports Warning.

Variation In Program Flow

While sequential execution takes one core clock cycle per instruction, nonsequential program flow can potentially
reduce the instruction throughput. Nonsequential program operations include:

* Jumps
e Subroutine calls and returns
* Interrupts and returns

* Loops

Functional Description

To manage these variations, the processor uses several mechanisms, primarily branch prediction and hardware stacks,
which are described in the following sections.

Hardware Stacks

If the programmed flow varies (nonsequential and interrupted), the processor requires hardware or software mecha-
nisms (stacks; see the Core Stack Overview table) to support changes of the regular program flow. The SHARC core
supports three hardware stack types which are implemented outside of the memory space and are used and accessed
for any nonsequential process. The stack types are:

* Program count stack Used to store the return address (call, IVT branch, do until).
* Status stack Used to store some context of status registers.

* Loop Stack for address and count Used for hardware looping (unnested and nested). This stack is described in
Loop Sequencer section.

The SHARC+ core does not have a hardware stack (a memory area dedicated to the sole purpose of stack storage).
The DAG architecture allows programmers to implement a software stack, using the DAG instruction types: push
(post-modify) and pop (pre-modify).

NOTE: The stacks are fully controlled by hardware. Manipulation of these stacks by using explicit PUSH/POP
instructions and explicit writes to the REGF PCSTK, REGF LADDR, and REGF CURLCNTR registers
may affect the correct functioning of the loop.

SHARC+ Core Programming Reference 4-7

Hardware Stacks

Table 4-3: Core Stack Overview

Attribute PC Stack Loop Address Stack Loop Count Stack Status Stack

Stack Size 30 x 32 bits 6 x 32 bits 6 x 32 bits 15 x 3 x 32 bits

Top Entry Return Address, top of | Loop End Address Loop iteration count MODE1
loop address ASTATx/ASTATy

Empty Flag PCEM LSEM SSEM

Full Flag PCFL LSOV SSOV

Stack Pointer PCSTKP No No

Exception IRQ SOVFI SOVFI SOVFI

Automated Access

Push Condition CALL, DO UNTIL IVT Branch (for all inter-
IVT branch rupts except EMUI and
DO UNTIL RSTD

Pop Condition RTS, RTI CURLCNTR =1 or COND = true RTI (for all interrupts ex-

cept EMUI and RSTI)

Manual Access

Register Access PCSTK LADDR CURLCNTR MODEISTK

Explicit Push Push PCSTK Push Loop Push STS

Explicit Pop Pop PCSTK Pop Loop Pop STS

PC Stack Access

The sequencer includes a program counter (PC) stack pointer, as shown in the Sequencer Control Diagram figure.

At the start of a subroutine or loop, the sequencer pushes return addresses for subroutines (CALL instructions with
RTI/RTS) and top-of-loop addresses for loops (DO/UNTIL instructions) onto the PC stack. The sequencer pops
the PC stack during a return from interrupt (RTI), return from subroutine (RTS), and a loop termination.

The program counter (PC) register is the last stage in the instruction pipeline. It contains the 24-bit address of the

instruction the processor executes on the next cycle. The PC stack register (REGE PCSTK) stores return addresses

and top-of-loop addresses.

NOTE: Compared to ADSP-214xx processors, the PC stack register size on the SHARC+ processor has been en-
larged to 32-bits. Additional bits store various other information required for proper instruction sequenc-

1ng.
PC Stack Status

The PC stack is 30 locations deep. The stack is full when all entries are occupied, is empty when no entries are

occupied, and is overflowed if a push occurs when the stack is full.

The following bits in the REGF STKYX registers indicate the PC stack full and empty states.

4-8 SHARC+ Core Programming Reference

Hardware Stacks

* PCstack full. Bit 21 (REGF_STKYX.PCFL) indicates that the PC stack is full (=1) or not full (=0). This bit
is not sticky and is cleared by a pop.

* PCstack empry. Bit 22 (REGF STKYX.PCEM) indicates that the PC stack is empty (=1) or not empty (=0).
This bit is not sticky and is cleared by a push.

To prevent a PC stack overflow, the PC stack full condition generates the (maskable) stack overflow interrupt
(REGF IMASKP.SOVFTI). This interrupt occurs when the PC stack has 29 of 30 locations filled (the almost full
state). The PC stack full interrupt occurs at this point because the PC stack full interrupt service routine needs that
last location for its return address.

PC Stack Manipulation

The REGF PCSTK register contains the top entry on the PC stack. This register is readable and writable by the
core. Reading from and writing to the REGF PCSTK register does not move the PC stack pointer. Only a stack
push or pop performed with explicit instructions moves the stack pointer. The REGF PCSTK register contains the
value 0x7FFF FFFF when the PC stack is empty. A write to the REGF PCSTK register has no effect when the PC
stack is empty. The Program Counter Stack Register (PCSTK) section in the Registers appendix lists the bits in this

register.

The address of the top of the PC stack is available in the PC stack pointer register (REGF PCSTKP) . The value of
this register is zero when the PC stack is empty, is 1 through 30 when the stack contains data, and is 31 when the
stack overflows. A write to the REGE PCSTKP register takes effect after one cycle of delay. If the PC stack is over-
flowed, a write to the register has no effect. For example, a write to REGF PCSTKP = 3 deletes all entries except the
three oldest.

PC Stack Access Priorities
Since the architecture allows manipulation of the stack, simultaneous stack accesses may occur (writes to the

REGF PCSTK register during a branch). In such a case the REGF PCSTK register access has higher priority over
the push operation from the sequencer.

Status Stack Access

The sequencer's status stack eases the return from branches by eliminating some service overhead like register saves
and restores as shown in the following example.

CALL fft1024; /* Where fftl1024 is an address label */
£f£ft1024: push sts; /* save MODE1/ASTATx/y registers */
instruction;

instruction;

pop sts; /* re-store MODE1l/ASTATx/y registers */
rts;

For all interrupts except EMUI and RSTI, the sequencer automatically pushes the REGE ASTATX,

REGF ASTATY, and REGF MODE] registers onto the status stack. When the sequencer pushes an entry onto the
status stack, the processor uses the MMASK register to clear the corresponding bits in the REGF MODE1 register. All
other bit settings remain the same. See the example in Interrupt Mask Mode.

SHARC+ Core Programming Reference 4-9

Hardware Stacks

NOTE: The REGF MODEILSTK register provides access to the REGE MODEL data in the top-level entry of the
status stack.

The sequencer automatically pops the REGE ASTATX and REGE ASTATY registers from the status stack during
the return from interrupt instruction (RTI). In one other case, JUMP (CI), the sequencer pops the stack. For more
information, see Interrupt (Pseudo) Self-Nesting.

Pushing the REGF ASTATX, REGF ASTATY, and REGF MODEL registers preserves the status and control bit
settings. This allows a service routine to alter these bits with the knowledge that the original settings are automatical-
ly restored upon return from the interrupt.

The top of the status stack contains the current values of the REGF ASTATX, REGE ASTATY, and
REGEF MODEL registers. Explicit PUSH or POP instructions (not reading and writing these registers) are used to
move the status stack pointer.

Status Stack Status

The status stack is fifteen locations deep. The stack is full when all entries are occupied, is empty when no entries are
occupied, and is overflowed if a push occurs when the stack is already full. Bits in the REGF STKYX registers indi-
cate the status stack full and empty states as describe below.

e Status stack overflow. Bit 23 (REGF STKYX. SSOV) indicates that the status stack is overflowed (=1) or not
overflowed (=0). This is a sticky bit.

* Status stack empty. Bit 24 (J)REGF STKYX.SSEM indicates that the status stack is empty (=1) or not empty
(=0). This bit is not sticky, cleared by a push.

Both REGF ASTATX and REGE ASTATY register values are pushed/popped regardless of SISD/SIMD mode.

Instruction Driven Branches

One type of nonsequential program flow that the sequencer supports is branching. A branch occurs when a JUMP

or CALL instruction moves execution to a location other than the next sequential address. For descriptions on how
to use JUMP and CALL instructions, see the Instruction Set Types and Computation Types chapters. Briefly, these
instructions operate as follows.

* A JUMP or a CALL instruction transfers program flow to another memory location. The difference between a
JUMP and a CALL is that a CALL automatically pushes the return address (the next sequential address after the
CALL instruction) onto the PC stack. This push makes the address available for the CALL instruction's match-
ing return instruction, (RTS) in the subroutine, allowing an easy return from the subroutine.

* ARTS instruction causes the sequencer to fetch the instruction at the return address, which is stored at the top
of the PC stack. The two types of return instructions are return from subroutine (RTS) and return from inter-
rupt (RTI). While the RTS instruction only pops the return address off the PC stack, the RTT pops the return
address and:

1. Clears the interrupt's bit in the interrupt latch register (REGF IRPTL) and the interrupt mask pointer
register (REGE IMASKP).

4-10 SHARC+ Core Programming Reference

Functional Description

This action lets another interrupt be latched in the REGE IRPTL register and the interrupt mask pointer
(REGF IMASKP) register.

2. Pops the status stack
The following are parameters that can be specified for branching instructions.

* JUMP and CALL instructions can be conditional. The program sequencer can evaluate the status conditions to
decide whether or not to execute a branch. If no condition is specified, the branch is always taken.

* JUMP and CALL instructions can be immediate or delayed. Because of the instruction pipeline, an immediate
branch incurs a number of lost (overhead) cycles, which is dependent on depth of the pipeline. The 11-deep
pipeline in the SHARCH+ core core incorporates a branch predictor and a branch target buffer (BP/BTB) to
reduce or in some cases, completely eliminate overhead cycles.

As shown in the Table 4-5 Pipelined Execution Cycles for Immediate Branch (Jump or Call) and Table

4-6 Pipelined Execution Cycles for Immediate Branch (RTT) tables the processor may abort the six instructions
after the branch, which are in the Fetch1 through Decode stages, while instructions are fetched from the
branched address. Due to presence of BP/BTB in the SHARC+ core, the overhead is 2 cycles in cases involving
nondelayed branches. A delayed branch reduces the overhead by two cycles by allowing the two instructions
following the branch to propagate through the instruction pipeline and execute, reducing the overhead to zero
cycles. For more information, see Delayed Branches (DB).

* JUMP instructions that appear within a loop or within an interrupt service routine have additional options. For
information on the loop abort (LA) option, see Functional Description. For information on the clear interrupt
(CI) option, see Interrupt (Pseudo) Self-Nesting.

Branch Prediction

The SHARC+ core pipeline contains 11 stages. As the pipeline stages increase, the data hazards may also increase by
directly impacting branch operations (mainly conditional branches). To lessen this effect, a hardware based Branch-
Predictor (BP) and Branch-Target-Buffer (BTB) are added to the SHARC+ core. The branch predictor is generally
used for conditional branches and it determines whether the branch is to be taken or not and provides the branch
target address. When the branch is predicted correctly, several stalls are prevented. An incorrect prediction causes the
same number of stalls as operation without the branch predictor.

For all branches except hardware loops, RTT and jump (CI), the BP/BTB also provides the branch target address. As
it encounters branches, the BP/BTB builds history in the BTB RAM for that instruction, and it uses this history to
predict the outcome of that branch when encountering the branch again. The sequencer verifies the prediction for a
conditional branch at the final stage of the pipeline. If the prediction is found to be incorrect, then the entire pipe-
line is flushed and the correct target instruction is fetched. For an unconditional branch, the sequencer verifies the
correctness of the target address in the address (M1) stage of pipeline. If the target address is found to be incorrect,
then the six stages of the pipeline from the Fetch (F1) to Decode (D2) stages are flushed and the correct target in-
struction is fetched.

SHARC+ Core Programming Reference 4-11

Functional Description

BTB Function

The BP/BTB RAM contains storage for 256 entries organized as 2-way x 128 entries with associated VALID and
LRU bits and has a 2-bit saturating counter for each entry. Each fetch address generated by the sequencer is checked
for a HIT. When a HIT occurs, the counter value determines the conditional prediction of a branch. The branch is
predicted taken when the counter value is 10 or 11, and not taken otherwise.

The counter value is updated when the prediction is validated. For a taken branch, it is incremented, otherwise it is
decremented. If a branch instruction was not a HIT in BP/BTB at the final stage of the pipeline, one of the entries
is updated with its relevant PC.

The target address and other relevant attributes follow much of the same principles as a traditional instruction or
data cache. LRU based replacement policy is followed. The Logical Organization of BP/BTB figure shows the struc-
ture of the BP/BTB. In order to ensure there is only one branch in the fetch stage, the last short word of two
branches should not fall in one 48-bit window when using VISA mode.

2-WAYS [
[1T]
[10 1
[10]
O
O
O
O
[]] I?I -
A y
BRANCH
TYPE TAG TARGET 2-BIT SATURATING
(17 BITS) ADDRESS COUNTER
(24 BITS) (BRANCH PREDICTOR)

Figure 4-4: Logical Organization of BP / BTB

BTB Features

Disable and Freeze: The entire functionality of the BP/BTB can be disabled by clearing the SHBTB CFG.DIS bit.
The contents of the BP/BTB can also be frozen by setting the SHBTB CFG. FRZ bit. When frozen, the BP/BTB
continues to make predictions and provide target addresses, but its contents are not changed.

Lock: When the relevant bit is set in the SHBTB CFG register, fetch addresses for all of the branches that fall within
a range of addresses and their target addresses are recorded in the BP/BTB and are protected from being overwritten.
The range of the addresses are programmed in the SHBTB LOCK START and SHBTB LOCK END registers.

Predicting return from subroutine: Return from subroutines (target address is provided from top of PC stack) con-
stitute a large portion of all branches. Return addresses that are predicted based on history are generally incorrect
because the same subroutine is called from many places in the code. The BP/BTB attempts to improve the predic-
tion accuracy of this class of branches by taking target addresses from other more relevant sources than the BTB.
These features are controlled by setting of relevant bits in the SHBTB CFG register, which are enabled by default. If
disabled, the target address is provided by BTB.

4-12 SHARC+ Core Programming Reference

BTB Scenarios When Prediction Is Ignored

Functional Description

There are situations when the BP/BTB does not look up the fetch address and/or does not provide a predicted ad-

dress.

1. If the BTB predicts any branch as taken, the next two fetch addresses are ignored by the BTB for prediction.

2. If a BTB update occurs during the E2 pipeline stage, the instruction in the F1 pipeline stage is ignored by the
BTB for prediction.

3. For instructions inside hardware loops, BT B masking occurs in the following situations.

a. Up to 10 instructions that occur in the pipeline after a do-until instruction are ignored by the BTB for
prediction.

b. Branch instructions that occur in the last three instructions of the loop are ignored by the BTB for predic-

tion.

c. Branch instructions whose target address falls within the last 10 instructions of a loop may be ignored by
the BTB for prediction. But, a JUMP to last 10 instructions of an E2-active loop is not masked from BTB
prediction, provided there is no RTS instruction in the pipeline above JUMP,

4. In the pipeline vicinity of stack updates, BT B masking occurs:

a. RTS instructions that occur while a CALL or another RTS are in the pipeline are ignored by the BTB for
prediction.

b. While a loop stack manipulation instruction is in the pipeline, all instructions are ignored by the BP/BTB
for prediction.

When a predictable branch appears at the 1st stage of pipeline, the predicted target address appears in the pipeline

after two cycles. These two cycles are to facilitate the execution of branches with delayed slots. For branches without
delayed slots, these two cycles are added. The Stalls in the Presence of Branch Target Buffer table shows the positions
of branch and its related target instruction in the pipeline in the presence of the BP/BTB.

Table 4-4: Stalls in the Presence of Branch Target Buffer

Branch Condition Target Prediction Loss of cycles with | Maximum # of loss

T8 on bl o
branch) branch/delayed
branch)

Conditional Taken Taken HIT 2/0 11/9

Conditional Not Taken Not Taken HIT 0 0

Conditional Taken Not Taken MISS 11/11 0

Conditional Not Taken Taken MISS 11/9 11/9

Conditional Taken Taken HIT 6/4 11/9

Unconditional Always Taken Always Taken HIT 2/0 6/4

SHARC+ Core Programming Reference 4-13

Functional Description

BTB Registers
The BTB registers include the SHBTB CFG, SHBTB LOCK START, and SHBTB LOCK END. Details can be

found in the Register Descriptions section

WARNING: After a write operation to the SHBTB CFG, SHBTB LOCK START or SHBTB LOCK END regis-
ters, there must be at least twelve 48-bit (ISA) instructions, which do not involve any change of flow.
Similarly, after a branch there must be at least twelve 48-bit instructions. These twelve instructions
should not cross memory boundary.

Restrictions Related to the Branch Predictor
Note the following restrictions related to the branch predictor.

1. After every branch here should be at least 12 48-bit valid instructions in the code. This extra code should not
cross a memory boundary

2. In case of VISA encoding, two branches (partially or fully) should not come in any 48-bit window.

Direct Versus Indirect Branches

Branches can be direct or indirect. With direct branches the sequencer generates the address while for indirect

branches, the PM data address generator (DAG2) produces the address.

Direct branches are JUMP or CALL instructions that use an absolute address (a constant address that does not
change at run time such as a program label) or use a PC-relative address. Some instruction examples that cause a
direct branch are:

CALL ££ft1024; /* Where fftl1024 is an address label */
JUMP (pc,10); /* Where (pc,10) is 10-relative addresses after this instruction */

Indirect branches are JUMP or CALL instructions that use a dynamic address that comes from the DAG2. Note that
this is useful for reconfigurable routines and jump tables. For more information refer to the instruction set types
(9a/b and 10a). Two instruction examples that cause an indirect branch are:

JUMP (M8, I12); /* Where (M8, Il2) are DAG2 registers */
CALL (M9, I13); /* Where (M9, I13) are DAG2 registers */
Restrictions for VISA Operation

The following should be noted for VISA operation:

* The program counter (PC) now points to short word address space. The PC increments by one, two or three in
each cycle depending on the actual size of an instruction (16-bit, 32-bit, or 48-bit).

* Any source files that use hard-coded numbers (as opposed to labels) for branch offsets in the relative offset field
may not function correctly. What used to be N 48-bit instructions could be a different number of VISA in-
structions.

4-14 SHARC+ Core Programming Reference

Direct Versus Indirect Branches

The use of absolute addressing in programs is discouraged and these programs should be re-written. For example,
the following code sequence that uses absolute addressing will work in traditional ISA operations, but has unexpect-
ed behavior if it is not re-written for VISA operation:

I9 my jump table;
M9 = 2;
JUMP (M9, I9);

my jump table:
JUMP functionO;
JUMP functionl;
JUMP function?2;

The value of 2 in the modify register represents a jump of two 48-bit instructions for ISA SHARC processors. In
VISA however, this represents two 16-bit locations.

When the instructions take up more than two 16-bit units, the jump could go to an invalid memory location (not
to the start of a valid VISA instruction). Good programming practices suggest discouraging such usage of "absolute
addressing”.

Delayed Branches (DB)

The instruction pipeline influences how the sequencer handles delayed branches (tables Pipelined Execution Cycles
for Immediate Branch (Jump or Call) through Pipelined Execution Cycles for Delayed Branch (RTS(db)) in Branch
Listings). For immediate branches in which JUMP and CALL instructions are not specified as delayed branches

(DB) , some instruction cycles are lost (NOP) as the instruction pipeline empties and refills with instructions from
the new branch.

Branch Listings

As shown in the Pipelined Execution Cycles for Immediate Branch (Jump or Call) and Pipelined Execution Cycles
for Immediate Branch (RTI) tables, the processor aborts the six instructions after the branch, which are present from
fetchl to decode2 stages. For a CALL instruction, the address of the instruction after the CALL is the return ad-
dress.

In the tables that follow, shading indicates aborted instructions, which are followed by NOP instructions.

Table 4-5: Pipelined Execution Cycles for Immediate Branch (Jump or Call)

cycles 1 2 3 4 5 6 7 8 9 10 11 12
E2 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j
M4 n-3 n-2 n-1 n n+l n+2 n+3 n+4 n+5 n+6 j j+l
M3 n-2 n-1 n n+l n+2 n+3 n+4 n+5 n+6 j j+l j+2
M2 n-1 n n+l n+2 n+3 n+4 n+5 n+6 j j+l j+2 j+3
M1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+l j+2 j+3
D2 n+1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

SHARC+ Core Programming Reference 4-15

Direct Versus Indirect Branches

Table 4-5: Pipelined Execution Cycles for Immediate Branch (Jump or Call) (Continued)

cycles 1 2 3 4 5 6 7 8 9 10 11 12
D1 n+2 n+3 n+4 n+5 n+6 j j+l j+2 j+3
F4 n+3 n+4 n+5 n+6 j jl j+2 j+3
F3 n+4 n+5 n+6 j j+1 j+2 j+3
F2 ns | ns6 j el j+2 j+3
F1 n+6 i i1 2 j+3

n is the branching instruction and j is the instruction branch address

cycle 1: n+1 instruction is suppressed

cycle 2: n+2 instruction is suppressed

cycle 3: n+3 instruction is suppressed

cycle 4: n+4 instruction is suppressed

cycle 5: n+5 instruction is suppressed and for call , n+1 address is pushed on to PC stack

cycle 6: n+6 instruction is suppressed

Table 4-6: Pipelined Execution Cycles for Immediate Branch (RTT)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12
E2 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 r
M4 n-3 n-2 n-1 n n+l n+2 n+3 n+4 n+5 n+6 r r+1
M3 n-2 n-1 n n+l n+2 n+3 n+4 n+5 n+6 r r+1 r+2
M2 n-1 n n+l n+2 n+3 n+4 n+5 n+6 r r+1 r+2 +3
Ml n n+l n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3
D2 n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3
D1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3
F4 n+3 n+4 n+5 n+6 r r+l r+2 r+3
F3 n+4 n+5 n+6 r r+1 r+2 r+3
F2 n+5 n+6 r r+1 r+2 r+3
F1 n+6 r r+1 r+2 r+3

n is the branching instruction and r is the instruction at the return address

cycle 1: n+1 instruction is suppressed.

cycle 2: n+2 instruction is suppressed

cycle 3: n+3 instruction is suppressed

cycle 4: n+4 instruction is suppressed

cycle 5: n+5 instruction is suppressed and r address is popped from PC stack

4-16 SHARC+ Core Programming Reference

Direct Versus Indirect Branches

Table 4-6: Pipelined Execution Cycles for Immediate Branch (RTT) (Continued)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12

cycle 6: n+6 instruction is suppressed

Table 4-7: Pipelined Execution Cycles for Delayed Branch (JUMP or Call)

cycles 1 2 3 4 5 6 7 8 9 10 11 12
E2 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j
M4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+l
M3 n-2 n-1 n n+l n+2 n+3 n+4 n+5 n+6 j j+1 j+2
M2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j jl j+2 j+3
M1 n n+l n+2 n+3 n+4 n+5 n+6 j j+l j+2 j+3
D2 n+l n+2 n+3 n+4 n+5 n+6 j j+l j+2 j+3
D1 n+2 n+3 n+4 n+5 n+6 j j+l j+2 j+3
F4 n+3 n+4 n+5 n+6 j j+l j+2 j+3
F3 ned | nsS | ne6 j j+1 j+2 j+3
F2 n+5 n+6 i j+1 j+2 i+3
F1 n+6 i j+1 j+2 i+3

n is the branching instruction and j is the instruction branch address

cycle 2: branch target address "j" is fetched in fetchl stage

cycle 3: n+3 instruction is suppressed

cycle 4: n+4 instruction is suppressed

cycle 5: n+5 instruction is suppressed and for call, n+1 address is pushed on to PC stack

cycle 6: n+6 instruction is suppressed

Table 4-8: Pipelined Execution Cycles for Delayed Branch (RTS(db))

Cycles 1 2 3 4 5 6 7 8 9 10 11 12
E2 n-4 n-3 n-2 n-1 n n+l1 n+2 n+3 n+4 n+5 n+6 r
M4 n-3 n-2 n-1 n n+l n+2 n+3 n+4 n+5 n+6 r r+1
M3 n-2 n-1 n n+l n+2 n+3 n+4 n+5 n+6 r r+l r+2
M2 n-1 n n+l1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3
M1 n n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3
D2 n+l n+2 n+3 n+4 n+5 n+6 r r+l r+2 r+3
D1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3
F4 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

SHARC+ Core Programming Reference 4-17

Branch Listings

Table 4-8: Pipelined Execution Cycles for Delayed Branch (RTS(db)) (Continued)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12
F3 n+4 n+5 n+6 r r+1 r+2 r+3
F2 n+5 n+6 r r+1 r+2 r+3
F1 n+6 r r+l1 r+2 r+3

n is the branching instruction and r is the instruction at the return address

cycle 2: branch return address "r" is fetched in fetchl stage

cycle 3: n+3 instruction is suppressed

cycle 4: n+4 instruction is suppressed

cycle 5: n+5 instruction is suppressed and r address is popped from PC stack

cycle 6: n+6 instruction is suppressed

In JUMP and CALL instructions that use the delayed branch (DB) modifier, four instruction cycles are lost in the
instruction pipeline. This is because the processor executes the two instructions after the branch and the rest (four)
are aborted while the instruction pipeline fills with instructions from the new location. This is shown in the sample
code below.

jump (pc, 3) (db):
instruction 1;
instruction 2;

As shown in the Pipelined Execution Cycles for Delayed Branch (JUMP or Call) and Pipelined Execution Cycles for
Delayed Branch (RTS(db)) tables, the processor executes the two instructions after the branch and the rest (four) are
aborted, while the instruction at the branch address is being processed at the M1 to E2 stages of the instruction
pipeline. In the case of a CALL instruction, the return address is the seventh address after the branch instruction.
While delayed branches use the instruction pipeline more efficiently than immediate branches, delayed branch code
can be harder to implement because of the instructions between the branch instruction and the actual branch. This
is described in the Restrictions When Using Delayed Branches section.

Atomic Execution of Delayed Branches

Delayed branches and the instruction pipeline also influence interrupt processing. Because the delayed branch in-
struction and the two instructions that follow it are atomic, the processor does not immediately process an interrupt
that occurs between a delayed branch instruction and either of the two instructions that follow. Any interrupt that
occurs during these instructions is latched and is not processed until the branch is complete.

This may be useful when two instructions must execute atomically (without interruption), such as when working
with semaphores. In the following example, instruction 2 immediately follows instruction 1 in all situations:

jump (pc, 3) (db):
instruction 1;
instruction 2;

4-18 SHARC+ Core Programming Reference

Branch Listings

Note that during a delayed branch, a program can read the PC stack register or PC stack pointer register. This read
shows the return address on the PC stack has already been pushed or popped, even though the branch has not yet
occurred.

IDLE Instruction in Delayed Branch

An interrupt is needed to come out of the IDLE instruction. If a program places an IDLE instruction inside the
delayed branch the processor remains in the idled state because interrupts are latched but not serviced until the pro-
gram exits a delayed branch.

Restrictions When Using Delayed Branches

Besides being more challenging to code, delayed branches impose some limitations that stem from the instruction
pipeline architecture. Because the delayed branch instruction and the two instructions that follow it must execute
sequentially, the instructions in the two locations that follow a delayed branch instruction cannot be any of those

described below.

NOTE: Development software for the processor should always flag the operations described below as code errors in
the two locations after a delayed branch instruction.

Two Subsequent Delayed Branch Instructions

Normally it is not valid to use two conditional instructions using the (DB) option following each other. But the
execution is allowed when these instructions are mutually exclusive:

If gt jump (pc, 7) (db);
If le jump (pc, 11) (db);

As a general rule, if a branch is taken with a (DB) modifier (an unconditional branch or condition being true) then
it's (DB) slot instructions should not have any branch evaluating to true or be a unconditional branch.

Other Jumps or Branches

These instructions cannot be used when they follow a delayed branch instruction. This is shown in the following
code that uses the JUMP instruction.

jump foo (db) ;
Jump my (db) ;
r0 = rO+rl;
rl = rl+r2;

In this case, the delayed branch instruction r1 = rl+r2, is not executed. Further, the control jumps to my in-
stead of foo, where the delayed branch instruction is the execution of foo.

The exception is for the JUMP instruction, which applies for the mutually exclusive conditions EQ (equal), and NE
(not equal). If the first EQ condition evaluates true, then the NE conditional jump has no meaning and is the same
as a NOP instruction as shown below.

if eq jump labell (db);
if ne jump labell (db);

SHARC+ Core Programming Reference 4-19

Variation In Program Flow

nop;
nop;

Explicit Pushes or Pops of the PC Stack

In this case a push of the PC stack in a delayed branch is followed by a pop. If a value is pushed in the delayed
branch of a call, it is first popped in the called subroutine. This is followed by an RTS instruction.

call foo (db); /* first push because of call */
push PCSTK; /* second push due to PCSTK */
nop;

foo;

The following instructions are executed prior to executing the RTS to return the to instruction foo.

pop PCSTK;
RTS (db);
nop;
nop;

If pushing the PC stack, a stack pop must be performed first, followed by an RTS instruction. If a PCSTK is pop-
ped inside a delayed call, the return address is lost. The program control returns to an unpredictable instruction
when the RTS is executed at the end of the subroutine.

NOTE: Manipulation of these stacks by using PUSH/POP instructions and explicit writes to these stacks may af-
fect the correct loop function.

Writes to the PCSTK or PCSTKP Registers Inside a Delayed Call

If a program writes to the PC stack in the delay slots of a call, the value that is pushed onto the PC stack (due to the
call) is overwritten by the value that the program writes to the PC stack. When a program performs an RTS, the
program returns to the address written to the PC stack and does not return to the address pushed while branching to
the subroutine. The following example demonstrates this operation.

[0x90100] call foo3 (db):;
[0x90101] PCSTK = 0x90200;
[0x90102] nop;
[0x90103] nop;

The value 0x90103 is pushed onto the PC stack, while the value 0x90200 is written to the REGF PCSTK register.

Accordingly, the value 0x90103 is overwritten by the value 0x90200 in the PC stack. When the program executes an
RTS, the return address is 0x90200 and not 0x90103.

Operating Mode

This section provides information on the operating modes (branching, masking, and nesting) that occur during in-
terrupt-related variations in program flow.

These descriptions of branching, masking, and nesting variations all assume that the SHARC+ core is operating in
interrupts enabled mode; the REGF MODEL . IPERREN bit is set, enabling the interrupt controller.

4-20 SHARC+ Core Programming Reference

Operating Mode

Interrupt Branch Mode

Interrupts are a special case of subroutines triggered by an event at runtime and are also another type of nonsequen-
tial program flow that the sequencer supports. Interrupts may stem from a variety of conditions, both internal and
external to the processor. In response to an interrupt, the sequencer processes a subroutine call to a predefined ad-
dress, called the interrupt vector. The processor assigns a unique vector to each type of interrupt and assigns a priori-

ty to each interrupt based on the Interrupt Vector Table (IVT) addressing scheme.

The core event controller (CEC) is enabled by setting the global REGF MODE1.IRPTEN bit. An internal inter-
rupt can occur due to arithmetic exceptions, stack overflows, or circular data buffer overflows. Several factors control
the processor's response to an interrupt. When an interrupt occurs, the interrupt is synchronized and latched in the
interrupt latch register (REGF IRPTL).

The processor responds to an interrupt request if:
* The processor is executing instructions or is in an idle state
* The interrupt is not masked
* Interrupts are globally enabled
* A higher priority request is not pending

When the processor responds to an interrupt, the sequencer branches the program execution with a call to the corre-
sponding interrupt vector address. Within the processor's program memory, the interrupt vectors are grouped in an
area called the interrupt vector table (IVT). The interrupt vectors in this table are spaced at 4-instruction intervals.
Longer service routines can be accommodated by branching to another region of memory. Program execution re-
turns to normal sequencing when the return from interrupt (RTI) instruction is executed. Each interrupt vector has
associated latch and mask bits.

The following example uses delayed branches to reduce latency.

ISR PARI: rti;
rti;
rti;
rti;

ISR ILOPI: instruction; /* IVT branch address */
jump ISR (db);
instruction;
instruction;

ISR CB7I: rti;
rti;
rti;
rti;

Interrupt Processing Stages
To process an interrupt, the program sequencer:

1. Outputs the appropriate interrupt vector address.

SHARC+ Core Programming Reference 4-21

Interrupt Branch Mode

2. Pushes the current PC value (the return address) onto the PC stack.

3. Pushes the current value of the REGE ASTATX/REGEF ASTATY and REGF MODEL registers onto the status
stack.

4. Resets the appropriate bit in the interrupt latch register (REGF IRPTL register).

5. Alters the interrupt mask pointer bits (REGE IMASKP register) to reflect the current interrupt nesting state,
depending on the nesting mode. The REGF MODE1 .NESTM bit determines whether all the interrupts or only
the lower priority interrupts are masked during the service routine.

At the end of the interrupt service routine, the sequencer processes the RTT instruction and performs the following
sequence.

1. Returns to the address stored at the top of the PC stack.
2. Pops this value off the PC stack.
3. Pops the status stack.

4. Clears the appropriate bit in the interrupt mask pointer register (REGE IMASKP).

Interrupt Categories

The three categories of interrupts are listed below and shown in the Interrupt Process Flow figure.
* Non maskable interrupts (RESET or emulator)
* Maskable interrupts (core or system)
* Software interrupts (core)

Except for reset and emulator, all interrupt service routines should end with a RTT instruction. After reset, the PC
stack is empty, so there is no return address. The last instruction of the reset service routine should be a JUMP to the
start of the main program.

4-22 SHARC+ Core Programming Reference

Interrupt Categories

CEC SYSTEM
INPUTS
SECI
Core Interrupt]
Sources SEC
Reset,
Emulation
Core
Sources
Latch Level IRPTL Register
Mask Level IMASK Register
Nesting Level IMASK P Register
l l v
Branch Level Interrupt Branch

\ 4
Interrupt Vector
Table

Figure 4-5: Interrupt Process Flow

The sequencer supports masking an interrupt or latching an interrupt, but does not support responding to it. Except

for the RESET and EMU interrupts, all interrupts are maskable. If a masked interrupt is latched, the processor re-
sponds to the latched interrupt if it is later unmasked. Interrupts can be masked globally or selectively. Bits in the
REGF MODEL and REGF IMASK registers control interrupt masking.

All interrupts are masked at reset except for the non-maskable reset and emulator.

Sequencer Interrupt Response
The processor responds to interrupts in three stages:
1. Synchronization (1 cycle)
2. Latching and recognition (1 cycle)
3. Branching to the interrupt vector table (11 instruction cycles)

If the branch is taken from internal memory, the 11 instruction cycles corresponds to 11 core clock cycles. If the
branch is taken from external memory, the 11 instruction cycles may span over many more clock cycles depending
on the actual source of the instruction and the state and configuration of the system.

The Pipelined Execution Cycles for Interrupt Based During Single Cycle Instruction table shows the pipelined execu-
tion cycles for interrupt processing,.

SHARC+ Core Programming Reference 4-23

Interrupt Branch Mode

Table 4-9: Pipelined Execution Cycles for Interrupt Based During Single Cycle Instruction
cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
E2 n-2 | n-1 n ntl | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 [n+l0 | v v+l | v+2
M4 n-1 n n+tl | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 [n+l0 | v v+l | v+2
M3 n n+tl | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+l0 | v vel | v+2
M2 ntl | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10 v v+l | v+2
M1 n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10 v v+l | v+2
D2 n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 [n+l0| v vl | v+2
D1 n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+l0 | v v+l | ve2
F4 n+5 | n+6 | n+7 | n+8 | n+9 [n+l0| v vel | v+2
F3 n+6 | n+7 | n+8 | n+9 | n+10 v v+l | v+2
F2 n+7 | n+8 | n+9 | n+10 v v+l | v+2
F1 n+8 | n+9 | n+10 v v+l | v+2
cyclel: Interrupt occurs
cycle2: interrupt is latched and recognized, but not processed
cycle3: n is pushed onto PC stack
cycle4: fetch of vector address "v" starts

NOTE: If the sequencer is executing one of the uninterruptable sequences when an interrupt occurs, a variable

For most interrupts, both internal (core) and external (system), only one instruction is executed after the interrupt
occurs (and 11 instructions are aborted), before the processor fetches and decodes the first instruction of the service

routine.

If nesting is enabled and a higher priority interrupt occurs immediately after a lower priority interrupt, the service
routine of the higher priority interrupt is delayed until the first instruction of the lower priority interrupt's service

amount of delay occurs before the interrrupt vector starts executing.

routine is executed. For more information, see Interrupt Nesting Mode.

Interrupt Processing

The next several sections discuss the ways in which the SHARC+ core processes interrupts.

Core Interrupt Sources

According the IVT table the core supports different groups of interrupts such as:

e Reset - hardware/software

* emulator - debugger, breakpoints

* core timer - high, low priority

4-24

SHARC+ Core Programming Reference

Interrupt Branch Mode

* illegal memory access and other illegal conditions - unaligned forced long word, SMMR space, illegal opcode,
parity error, and others

* stack exceptions - PC, Loop, Status
* SECI - interrupts generated by system (SEC allows local system channel priority)
* DAG:s - Circular buffer wrap around
* Arithmetic exceptions - fixed-point, floating-point
* Software interrupts - programmed exceptions
Note that the interrupt priorities of the core are fixed and cannot be changed.

The interrupt latch bits in the REGE IRPTL register correspond to interrupt mask bits in the REGE IMASK
register. In both registers, the interrupt bits are arranged in order of priority. The interrupt priority is from 0 (high-
est) up to 31 (lowest). Interrupt priority determines which interrupt must be serviced first, when more than one
interrupt occurs in the same cycle. Priority also determines which interrupts are nested when the processor has inter-
rupt nesting enabled. For more information, see Interrupt Nesting Mode and the Core Interrupt Control appendix.

Latching Interrupts

When the processor recognizes an interrupt, the processor's interrupt latch register (REGF IRPTL) sets a bit (latch)
to record that the interrupt occurred. The bits set in these registers indicate interrupts that are currently being latch-
ed and are pending for execution. Because these registers are readable and writable, any interrupt except reset
(RSTI) and emulator (EMUI) can be set or cleared in software.

Throughout the execution of the interrupt's service routine, the processor clears the latch bit during every cycle.
This prevents the same interrupt from being latched while its service routine is executing. After the RTT instruction,
the sequencer stops clearing the latch bit.

If necessary, an interrupt can be reused while it is being serviced by disabling this automatic clearing of the latch bit.
Interrupt Acknowledge

Every software routine that services core/system interrupts must clear the signaling interrupt request in the respective
interrupt channel. The individual channels provide customized mechanisms for clearing interrupt requests.

For system interrupts, refer to the processor-specific hardware reference manual.

Interrupt (Pseudo) Self-Nesting

When an interrupt occurs, the sequencer sets the corresponding bit in the REGF IRPTL register. During execution
of the service routine, the sequencer keeps this bit cleared which prevents the same interrupt from being latched
while its service routine is executing. If necessary, programs may reuse an interrupt while it is being serviced. Using a

jump clear interrupt instruction, (JUMP (CI)) in the interrupt service routine clears the interrupt, allowing its
reuse while the service routine is executing.

NOTE: A different way of self-nesting is employed only for SECI (system event controller interrupt). For more
information, see Self-Nesting for the System Event Controller Interrupt (SECI).

SHARC+ Core Programming Reference 4-25

Interrupt Branch Mode

The JUMP (CI) instruction reduces an interrupt service routine to a normal subroutine, clearing the appropriate
bit in the interrupt latch and interrupt mask pointer registers and popping the status stack. After the JUMP (CI)
instruction, the processor stops automatically clearing the interrupt's latch bit, allowing the interrupt to latch again.

See the Pipelined Execution Cycles for Immediate Branch (Jump or Call) table in Branch Listings.

When returning from a subroutine that was entered with a JUMP (CI) instruction, a program must use a return
subroutine instruction (RTS), instead of using an RT I instruction. The following example shows an interrupt serv-

ice routine that is reduced to a subroutine with the (CI) modifier.

INSTRI; /* Interrupt entry from main program*/
JUMP (PC, 4) (DB,CI); /* Clear interrupt status*/

INSTR3;

INSTR4;

INSTRS5;

INSTRG6;

RTS; /* Return from subroutine */

The JUMP (PC, 4) (DB, CI) instruction only continues linear execution flow by jumping to the location PC +
4 (INSTR6). The two intervening instructions (INSTR3, INSTR4) are executed and INSTRS is aborted be-
cause of the delayed branch (DB) . This JUMP instruction is only an example-a JUMP (CI) can perform a JUMP

to any location.

This implementation is useful if two subsequent interrupt events are closer to each other than the execution time of
the ISR itself. If self-nesting is not used, the second interrupt event is lost. If used, the ISR itself should be coded
atomically, otherwise the second event forces the sequencer to immediately jump to the IVT location.

ISR
PRIORITY No Interrupt (Pseudo) Self-Nesting
A
JumP RTI JumMP RTI

ISRx ISRx ISRx
A h

Main B -

Latch Latch Latch Latch
ISRx ISRx event ISRx ISRx event

event ignored event ignored

ISR
PRIORITY

A
JUMP(CI) RTS(LR) JUMP(CI) RTS(LR)

ISRx ISRx (atomic) ISRx (atomic)
h A

Main .

cmmmmmm==" PUPPPTY L i
Py sea

Latch Latch Latch
ISRx ISRx ISRx

Figure 4-6: Interrupt (Pseudo) Self-Nesting
Self-Nesting for the System Event Controller Interrupt (SECI)

The mode bit, REGF MODEZ2 . SNEN bit, enables self-nesting interrupt mode for the SECI interrupt only. Self-
nesting requires an additional bit, REGF_MODE1.SINEST.

4-26 SHARC+ Core Programming Reference

Interrupt Branch Mode

NOTE: The System event controller (SECI) supports #7ue interrupt nesting
1. The REGF MODEZ2 . SNEN bit enables self-nesting for SECI only.

* When REGF MODEZ2.SNEN bit =1, REGF IMASKP.SECI bit can latch even when SECI is currently
being serviced (is set in REGF IMASKP register).

* IfREGF MODEl.IRPTEN =1, REGF MODEI.NESTM =1 and REGF_MODEZ2.SNEN =1, and the
REGF IMASKP.SECI bit is currently being serviced, the REGF IMASKP . SECT bit is not masked

but lower priority interrupts are. If a higher priority interrupt interrupts the REGF IMASKP. SECT bit
then it becomes masked.

2. The REGF MODE1.SINEST and REGF MODE1STK.SINEST bits controls whether
REGF IMASKP.SECT bit is cleared and the interrupts that are implicitly masked in NESTM mode.

* When REGF MODEZ2 . SNEN, on vectoring to the SECI ISR, after automatically pushing the previous
value of the REGF MODEL resister, the REGF MODEL.SINEST bit is automatically set.

* On executing RTT, when the current interrupt is SECI and REGF_MODE1STK.SINEST bit is set, the
REGF IMASKP register and interrupt mask are not changed. Otherwise, the REGE IMASKP and the
masked interrupts are modified as normal. After REGF MODE1STK is tested, the RTT instruction pops
the mode stack as normal.

The interrupts masked implicitly in NESTM mode can always be calculated from the REGF IMASKP register and
the REGF_MODEZ2 . SNEN bit. When REGF_MODEZ2 . SNEN =1 and the lowest numbered interrupt set in the
REGE IMASKP register is SECI, all interrupts down to but not including SECI are masked. Otherwise, all inter-
rupts down to and including the lowest numbered bit set in the REGF IMASKP register are masked, unless no bit
is set in the REGF IMASKP register, indicating no interrupts are implicitly masked.

The global interrupt enable bit, REGF_MODE1 . IRPTEN, and interrupt nesting enable bit,
REGF MODEL .NESTW, take precedence over REGF MODEZ2 . SNEN. The SECI ISR is only interrupted by anoth-
er incoming SECI if REGF_MODE1 . IRPTEN =1, REGF_MODE1 .NESTM =1, and REGF_MODE2 . SNEN =1.

Table 4-10: SNEN and NESTM Combination and its Effect

SNEN NESTM Effect
SECI Self Nesting ! Higher Priority Interrupt
Nesting
0 0 NO NO
0 1 NO YES
1 1 YES YES

*1 SECI s not stored in IRPTL if already in an SEC IVR. So to avoid missing any SECI when already in an SEC IVR, self-nesting of
SECI must be enabled by setting SNEN bit in MODE2.

SHARC+ Core Programming Reference 4-27

Interrupt Branch Mode

Release from IDLE

The sequencer supports placing the processor in a low power halted state called idle. The processor is in this state
until an interrupt occurs. The execution of the ISR releases the processor from the idle state. When executing an
IDLE instruction (see the ISA/VISA Linear Flow 48-bit Instructions Only figure in Linear Program Flow and the
Pipelined Execution Cycles for IDLE Instruction table), the sequencer fetches six more instruction at the current
fetch address and then suspends operation. The processor's internal clock and core timer (if enabled) continue to
run while in the idle state. When an interrupt occurs, the processor responds normally after an eleven cycle latency
to fetch the first instruction of the interrupt service routine.

The processor's DMA engines are not affected by the IDLE instruction. DMA transfers to or from internal memory
continue uninterrupted.

NOTE: Idle instruction reduces the DMA bandwidth by 50% if executed from the same L1 bank in which DMA
operation happens.

NOTE: The debugger allows you to single step over the IDLE instruction in single step mode. This feature is ena-
bled by the emulator interrupt which is also a valid interrupt to release the processor from the IDLE in-
struction.

Table 4-11: Pipelined Execution Cycles for IDLE Instruction

cycles | 1 2 3 4 5 6 7 8 9 10 | 11 [12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21
E2 n(idle) n+l
M4 n(idle) n+l | n+2
M3 n(idle) n+l | n+2 | n+3
M2 n(idle) n+l | n+2 | n+3 | n+4
M1 n(idle) n+l | n+2 | n+3 | n+4 | n+5
D2 n(id n+l n+2 | n+3 | n+4 | n+5 | n+6

le)
D1 n(id | n+1 n+2 n+3 | n+4 | n+5 | n+6 | n+7
le)
F4 n(id | n+1 | n+2 n+3 n+4 | n+5 [n+6 | n+7 | v
le)
F3 n(id | n+1 | n+2 | n+3 n+4 n+5 [n+6 [n+7 | v | v+l
le)
F2 n(id | n+1 | n+2 | n+3 | n+4 n+5 n+6 | n+7 | v | v+l | v+2
le)
F1 n(id | n+1 | n+2 | n+3 | n+4 | n+5 n+6 n+7 | v | v+l | v42 | v43
le)

cyclel:idle instruction is fetched at n

cyclel4 : interrupt is latched and recognized

4-28 SHARC+ Core Programming Reference

Interrupt Branch Mode

Table 4-11: Pipelined Execution Cycles for IDLE Instruction (Continued)

cycles | 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21

cyclel6:interrupt branches to v

Causes of Delayed Interrupt Processing

Certain processor operations that span more than one cycle or which occur at a certain state of the sequencer can
delay interrupt processing. If an interrupt occurs during one of these operations, the processor synchronizes and
latches the interrupt, but delays its processing. The operations that have delayed interrupt processing are:

* During the start and termination of short loops encoded as F1 type.
* Up to four instructions after execution of DO..UNTIL.
* Up to nine instructions when loop terminates, that is, L-9 to L-1 instructions of unrolled short loop.
* Two instructions in delay slot of a delayed branch are uninterruptible.
* The last but one instruction in arithmetic loop is uninterruptible during the last iteration of the loop.
All cycles during a pipeline flush remain uninterruptible.
Interrupt Mask Mode

The SHARC+ core supports many different operating modes (SIMD, bit reversal, circular buffer, rounding). Inter-
rupt mask mode provides a mechanism that lets the core change its operating mode without performing an explicit
operation to perform masking through setting the REGE MODE1 register bits. To accomplish this, a copy of the
REGF MODEL register is used to mask specific operating modes across interrupts.

Bits that are set in the REGE MMASK register are used to clear bits in the REGF MODE1 register when the process-
or's status stack is pushed. This effectively disables different modes when servicing an interrupt, or when executing a
PUSH STS instruction. The processor's status stack is pushed in two cases:

1. When executing a PUSH STS instruction explicitly in code.
2. When any interrupt occurs.
For example:
Before the PUSH STS instruction, the REGE MODEL register enabled the following bit configurations:
* Bit-reversing for register I8
* Secondary registers for DAG2 (high)
* Interrupt nesting
* ALU saturation
+ SIMD

* Circular buffering

SHARC+ Core Programming Reference 4-29

Operating Mode

The system needs to disable ALU saturation, SIMD, and bit-reversing for I8 after pushing the status stack then
pushing the REGF MMASK register (these bit locations should = 1).

The value in the REGF MODE1 register after PUSH STS instruction is:
* Secondary registers for DAG2 (high)
* Interrupt nesting enabled
* Circular buffering enabled

The other settings that were previously set in the REGE MODE1 register remain the same. The only bits that are
affected are those that are set both in the REGF MMASK and REGF MODE] registers. These bits are cleared after
the status stack is pushed.

ATTENTION: If the program does not make any changes to the REGE MMASK register, the default setting auto-
matically disables SIMD when servicing any of the hardware interrupts mentioned above, or during
any push of the status stack.

Interrupt Nesting Mode

The sequencer supports interrupt nesting-responding to another interrupt while a previous interrupt is being serv-
iced. Bits in the REGF MODEland REGF IMASKPregisters control interrupt nesting as described below.

The REGF MODE1 .NESTM bit directs the processor to enable (if 1) or disable (if 0) interrupt nesting.

When interrupt nesting is enabled, a higher priority interrupt can interrupt a lower priority interrupt's service rou-
tine (see Interrupt Nesting figure). Lower priority interrupts are latched as they occur, but the processor processes
them according to their priority after the nested routines finish.

The REGF IMASKP register bits list the interrupts in priority order and provide a temporary interrupt mask for
each nesting level.

4-30 SHARC+ Core Programming Reference

Operating Mode

ISR No Interrupt Nesting (NESTM bit = 0)
priority
A
ISR2 ISR2
... ‘
Y s | [T T
____________ \ SRR RS
A 4 \4
Main A >
Latch ISR1 Latch ISR2
Event Event
ISR Interrupt Nesting (NESTM bit = 1)
priority p g
a
sk2 | T sz T
ISR1 ISRL ISR1

Latch ISR1 Latch ISR2
Event Event

Figure 4-7: Interrupt Nesting

When interrupt nesting is disabled, a higher priority interrupt cannot interrupt a lower priority interrupt's service
routine. Interrupts are latched as they occur and the processor processes them in the order of their priority, after the
active routine finishes.

Programs should change the interrupt nesting enable bit (REGF MODE1 . NESTM) only while outside of an inter-
rupt service routine or during the reset service routine.

ATTENTION: If nesting is enabled and a higher priority interrupt occurs immediately after a lower priority inter-
rupt, the service routine of the higher priority interrupt is delayed. This delay allows the first instruc-
tion of the lower priority interrupt routine to be executed, before it is interrupted (see Interrupt Nest-
ing figure).

When servicing nested interrupts, the processor uses the interrupt mask pointer (REGF IMASKP) to create a tem-
porary interrupt mask for each level of interrupt nesting, but the REGF TIMASK value is not effected. The processor
changes REGE IMASKP each time a higher priority interrupt interrupts a lower priority service routine.

The bits in REGE IMASKP correspond to the interrupts in their order of priority. When an interrupt occurs, the
processor sets its bit in the REGE IMASKP. If nesting is enabled, the processor uses REGE IMASKP to generate a
new temporary interrupt mask, masking all interrupts of equal or lower priority to the highest priority bit set in
REGEF IMASKP and keeping higher priority interrupts the same as in the REGF IMASK. When a return from an
interrupt service routine (RTI) is executed, the processor clears the highest priority bit set in REGF IMASKP and
generates a new temporary interrupt mask.

The processor masks all interrupts of equal or lower priority to the highest priority bit set in the REGF IMASKP.
The bit set in the REGF IMASKP that has the highest priority always corresponds to the priority of the interrupt
being serviced.

SHARC+ Core Programming Reference 4-31

Variation In Program Flow

ATTENTION: The entire set of the REGE IMASKP registers are for interrupt controller use only. Modifying these
bits interferes with the proper operation of the interrupt controller.

Loop Sequencer

The program sequencer includes special hardware to execute zero or low-overhead loops. The relevant state machine
is activated when a DO..UNTIL instruction executes. The state machine manages all the resources associated with
hardware loops such as loop counters, stacks and others. The number of times a loop iterates can be controlled by a
hardware counter (LCNTR) or by a flag in the REGF ASTATX and REGF ASTATY registers.

The main role of the sequencer is to generate the address for the next instruction fetch. In normal program flow, the
next fetch address is the previous fetch address plus one (plus three in VISA). When the program deviates from this
standard course, (for example with calls, returns, jumps, loops) the program sequencer uses a special logic. In cases
of program loops, the sequencer logic:

* Updates the PC stack with the top of loop address.
* Updates the loop stack with the address of the last instruction of the loop.

* Initializes the REGF LCNTR and REGF CURLCNTR registers and updates the loop counter stack, if the loop
is counter based (do until Ice).

* Generates the loop-back (go to the beginning of loop) and loop abort (come out of loop, fetch next instruction
from “last instruction of loop plus one” address) signals, according to defined termination condition.

* Generates the abort signals to suppress some of the extra fetched instructions (in certain cases of loops, some
unwanted instructions may get fetched).

* Handles interrupts without distorting the intended loop-sequencing (until or unless interrupt service routine
deliberately manipulates the status of loop-sequencer resources).

A loop occurs when a DO/UNTIL instruction instructs the processor to repeat a sequence of instructions until a
condition tests true or indefinite by using FOREVER as termination condition. The SHARC+ core automatically
evaluates the loop termination condition and modify the program counter (REGE PC) register appropriately. This
significantly speeds up execution of loops by eliminating flushed cycles in a pipelined processor. In many cases, the
number of lost cycles are completely eliminated.

Loop Categories
Based on the termination criteria of a loop, loops are categorized as follows:

* Counter based loop — These are started by a DO. . .UNTIL LCE instruction. Counter based loops are com-
prised of instructions that are set to run a specified number of iterations. These iterations are controlled by a
loop counter register (REGF LCNTR). The REGF LCNTR register is a non memory-mapped universal regis-
ter that is initialized to the count value and the loop counter expired (LCE) instruction is used to check the
termination condition. Expiration of LCE signals that the loop has completed the number of iterations as per
the count value in the REGF LCNTR register.

4-32 SHARC+ Core Programming Reference

Loop Categories

* Arithmetic Loops — these loops are started with conditions other than LCE. The sequencer iterates the instruc-
tions in the loop body until the specified condition tests true.

Counter based loops are handled by the loop state machine in one of the following modes:

* E2-active mode: REGF CURLCNTR is decremented and is tested for zero when last instruction of the loop is in
E2 stage of the pipeline (default loop). Any loop is by default of E2-active type. Because the pipeline already
contains the instructions from loop for the next iteration, on completion of loop, the entire pipeline is flushed,
and fetch of instructions beyond loop body is started. Consequently, these loops have the overhead of an elev-
en-cycle pipeline flush on completion of the loop.

* Fl-active mode: REGE CURLCNTR is decremented and is tested for zero when the last instruction of the loop
is in F1 stage of the pipeline. On expiry of the counter (completion of the loop), the fetch of instruction be-
yond the loop is started in next cycle. Consequently, loops executed in this mode do not waste any cycles on
completion.

The F1-active mode of execution is preferred due to its zero overhead. However, presence of other branches in the
pipeline interfere with working of the loop state machine. So, for proper functioning, only loops that do not contain
branch or IDLE in last eleven instructions of the loop body are executed in Fl-active mode. The mode in which a
counter based loop executes is determined by the opcode of the DO..UNTIL LCE instruction.

NOTE: The assembler generates appropriate opcode after examination of the loop body.

Counter-Based F1-Active Loop

For F1-active counter-based loop, the current loop counter decrement (REGF CURLCNTR) and termination condi-
tions check happens in F1 stage of pipe.

Entering Loop Execution

When executing DO/UNTIL instruction, the program sequencer pushes the address of the loops last instruction and
its termination condition onto the loop address stack. The sequencer also pushes the top-of-loop address, (the ad-
dress of the instruction following the DO/UNTIL instruction), and the loop type onto the PC stack.

The processor tests the termination condition and decrements the counter when the end-of-loop address is in F1
stage, so that the next fetch either exits the loop or returns to the top. If the termination condition is not satisfied,
the processor re-fetches the instruction from the top-of-loop address stored on the top of PC stack.

Table 4-12: Loop Length 11, Entering into Loop Execution

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
E2 n(DO)| n+l | n+2 | n+3 | n+d
M4 n(DO)| n+l n+2 n+3 n+4 n+5
M3 n(DO)| n+l n+2 n+3 n+4 n+5 n+6
M2 n(DO)| n+l n+2 n+3 n+4 n+5 n+6 n+7
M1 n(DO) | n+l n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8

SHARC+ Core Programming Reference 4-33

Loop Categories

Table 4-12: Loop Length 11, Entering into Loop Execution (Continued)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D2 n(DO)| n+l n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9
D1 n(DO)| n+l n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 | n+10
F4 n(DO)| n+l n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 | n+10 | n+11
F3 n(DO)| n+l n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 | n+10 | n+l11 n+l
F2 n(DO)| n+l n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 | n+10 | n+l1 n+l n+2
F1 [n(DO)| n+l n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 | n+10 | n+11 n+1 n+2 n+3

cycle 1: DO UNTIL enters F1 stage

cycle 11: DO UNTIL reaches E2 stage and pushes loop state machine information on to the loop stack and the PC stack

cycle 12: end-of-loop address "n+11" appears in F1 stage, triggering loop back logic to occur in the next cycle

cycle 13: loop back occurs, resulting in top-of-loop address "n+1" appearing in F1 stage

Terminating Loop Execution

If the termination condition is true, the sequencer fetches the next instruction after the end of the loop and pops the

loop stack and PC stack.

For F1-active counter-based loop, termination condition is checked whenever a valid end-of-loop address appears in
F1-stage of pipe. And termination condition is considered true when the REGE CURLCNTR register value is one

and valid end-of-loop address is present in F1 stage of pipe. Since the termination condition is checked in F1-stage

of pipe, F1-active counter-based loop causes zero cycle overhead.

Table 4-13: Loop Length 11, Terminating Loop Execution

Cycles 1 2 3 4 5
E2 n(DO) n+1 n+2 n+3 n+4
M4 n+1 n+2 n+3 n+4 n+5
M3 n+2 n+3 n+4 n+5 n+6
M2 n+3 n+4 n+5 n+6 n+7
Ml n+4 n+5 n+6 n+7 n+8
D2 n+5 n+6 n+7 n+8 n+9
D1 n+6 n+7 n+8 n+9 n+10
F4 n+7 n+8 n+9 n+10 n+11
F3 n+8 n+9 n+10 n+l1 n+12
F2 n+9 n+10 n+l1 n+12 n+13
F1 n+10 n+11 n+12 n+13 n+14

4-34

SHARC+ Core Programming Reference

Loop Categories

Table 4-13: Loop Length 11, Terminating Loop Execution (Continued)

Cycles 1 2 3 4 5

cycle 2: end-of-loop address "n+11" appears in F1 stage. Loop termination condition is checked, and (if true) loop abort happens. Then,
the next consecutive address "n+12" (which is next to the end-of-loop) is fetched.

Counter-Based E2-Active Loop

E2-active loop is similar to F1-active loop in terms use of Loop stack, PC stack and loopback. But the counter decre-
ment and checking of expiry of the counter is performed when the last instruction of the loop body is in E2-stage of

pipe.
Entering Loop Execution

Similar to F1-active loop, E2-active loop also saves information on Loop stack and PC stack.

The processor tests the termination condition and decrements the counter when the end-of-loop address is in E2
stage. The loop back of E2-active loop also happens in F1 stage of pipe similar to F1-active loop. Whenever last-of-
loop address appears in F1 stage of pipe and loop has not yet terminated, loopback happens.

Table 4-14: Loop Length 11, Entering into Loop Execution

Cy- |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |18 19
cles

E2 n(D | n+l | n+2 | n+3 | n+4

0)
M4 n(D | n+l | n+2 | n+3 | n+4 | n+5
)
M3 n(D | n+l | n+2 | n+3 | n+4 | n+5 | n+6
O)
M2 n(D | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7
)
M1 n(D | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8
0)
D2 n(D | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9
)
D1 n(D | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10
0)
F4 n(D | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 |n+10 | n+11
)
F3 n(D | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10 | n+11| n+1
0)
F2 n(D | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10 | n+11| n+1 | n+2
)

SHARC+ Core Programming Reference 4-35

Loop Categories

Table 4-14: Loop Length 11, Entering into Loop Execution (Continued)

Cy- |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cles

F1 nD | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 [n+10 |n+11| n+1 | n+2 | n+3

0)
cycle 1: DO UNTIL enters F1 stage

cycle 11: DO UNTIL reaches E2 stage and pushes loop state machine information on to the loop stack and PC stack

cycle 12: end-of-loop address "n+11" appears in F1 stage, triggers loop back logic to occur on the next cycle

cycle 13: loop back occurs, and top-of-loo address "n+1" appears in F1 stage

Terminating Loop Execution

If the termination condition is true, the sequencer pops the loop stack and PC stack, and immediately fetches in-
struction which is next to end-of-loop address, in the next cycle.

For E2-active C-Loop, termination condition is checked whenever a valid end-of-loop address appears in E2-stage of
pipe. And termination condition is considered true when CURLCNTR value is one and valid end-of-loop address is
present in E2 stage of pipe. Since the termination condition is checked in E2 stage of pipe, instructions present in
the pipe from M4 to F1 stages are flushed if the termination condition is found true. Consequently all E2-active
loops have this overhead of eleven lost cycles.

Table 4-15: Loop Length 11, Entering into Loop Execution

Cy- |1 2 3 4 5 6 7 8 9 10 |11 12 (13 |14 |15 16 |17 |18 (19

cles

E2 n(D | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 |n+10 |n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7
0)

M4 | n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 |n+10|n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8

M3 n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 |n+10|n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9

M2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10|n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 [n+10

M1 n+4d | n+5 | n+6 | n+7 | n+8 | n+9 |n+10|n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 [n+10 |n+11

D2 n+5 | n+6 | n+7 | n+8 | n+9 |n+10|n+11| n+l1 | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 |n+10 [n+11 | n+12

D1 n+6 | n+7 | n+8 | n+9 |n+10|{n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 [n+10|n+11|n+12 |n+13

F4 n+7 | n+8 | n+9 |n+10|n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10 [n+11l [n+12|n+13

F3 n+8 | n+9 [n+10|n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 |n+10 [n+ll | n+12 | n+13

F2 n+9 [n+10 |n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 |n+10|n+ll | n+12 [n+13

F1 n+l10|{n+11| n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 [n+10|n+11|n+12 |n+13

cycle 12: end-of-loop address appears in E2 stage. The counter decrements, and the termination conditions is checked. If the termination
condition tests true, loop termination happens, and the loop stack and PC stack are popped.

4-36 SHARC+ Core Programming Reference

Loop Categories

Table 4-15: Loop Length 11, Entering into Loop Execution (Continued)

Cy- |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cles

cycle 14: after loop termination, the next address "n+12" to the end-of-lop address is fetched in the F1 stage.

Loop Categorization into F1-Active or E2-Active

Determination of Fl-active or E2-active mode for a hardware counter based loop is based on the opcode. The as-
sembler identifies loops which are safe to execute in F1-active mode and uses the F1-active opcode. Loops not hav-
ing a change of flow (jump, call etc.) or IDLE in last eleven instructions of the loop body are safe to execute as F1-
active mode.

Short loops with few iterations where the total number of instructions of fully unrolled loop is less than eleven, al-
ways execute as E2-active mode irrespective of opcode. The REGF MODEZ2 . SLOWLOOP bit can be set to override
the opcode of Fl-active loop.

NOTE: With the REGF MODEZ2 . SLOWLOOP bit =1, all counter based loops execute in E2-active mode. This
mode bit is intended to be primarily used by the debugger.

Arithmetic Loops

Arithmetic loops are loops where the termination condition in the DO/UNTIL loop is anything other than LCE. In
this type of loop, where the body has more than one instruction, the termination condition for loop length 3 and
above is checked when L-2nd instruction is in E2 stage of pipe. And for loop length 1 and 2, the termination condi-
tion is checked when the last instruction is in E2 stage of pipe. An example of an arithmetic loop is given below.

R7 = 14;
R6 = 10;
R5 = 6;

DO label UNTIL EQ;
R6 = Ro - 1;

R7 = R7 - 1; /* if fetched EQ condition is tested */

R5 = R5 - 1;

nop;

nop;

Label: nop; /* after loop termination R5 = 0; R6 = 4; R7 = 8;%*/

If the termination condition tests false, the next instruction is fetched. If the termination condition tests true, one
more instruction (which is loop's 1st instruction) is allowed to execute and all the rest of the instructions in the
below stages of pipe are flushed. Also, the end-of-loop instruction is fetched in the F1 stage in the next cycle and
subsequent instructions (which are next to end-of-loop) are fetched in subsequent cycles.

NOTE: In nested arithmatic loops when the terminating condition is set for the outer loop during the execution of
a call instruction by the inner loop, the SHARC+ core iterates an arithmetic loop one additional time in
comparison to the 5-stage SHARC.

SHARC+ Core Programming Reference 4-37

Loop Categories

The Arithmetic Loop Length 11, Terminating Loop Execution table shows the execution cycles for an arithmetic

loop with eleven instructions.

Table 4-16: Arithmetic Loop Length 11, Terminating Loop Execution

Cycles 1 2 3 4 5 6 7 8 9
E2 n(DO) | n+l n+2 n+3 n+4 n+5 n+6 n+7 n+8
M4 n+l n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9
M3 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10
M2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 | n+11
M1 n+4 n+5 n+6 n+7 n+8 n+9 n+10 | n+11 n+l
D2 n+5 n+6 n+7 n+8 n+9 n+10 | n+l1l n+l n+2
D1 n+6 n+7 n+8 n+9 n+10 | n+ll n+l n+2 n+3
F4 n+7 n+8 n+9 n+10 | n+l1l n+l n+2 n+3 n+4
F3 n+8 n+9 n+10 | n+11 n+l n+2 n+3 n+4 n+5
F2 n+9 n+10 | n+11 n+l n+2 n+3 n+4 n+5 n+6
F1 n+10 | n+l11 n+l n+2 n+3 n+4 n+5 n+6 n+7

cycle 1: Do Until executes and pushes loop related information on the loop stack and PC stack

cycle 3: loop back occurs and top-of-loop address "=1" is fetched in F1 stage

cycle 10: A-loop termination condition is checked when loop 2nd instruction (for example, "n+9") is in E2 stage

cycle 11: after termination condition tests true, loop 1st instruction (for example, "n+10") is allowed to execute

cycle 12: endo-of-loop address (for example, "n+11") is fetched in F1 stage

Table 4-17: Arithmetic Loop Length 11, Terminating Loop Execution (continued)

F2 n+l11 n+12 n+13 n+l4 n+15 n+16 n+17 n+18 n+19
F1 n+12 n+13 n+l4 n+15 n+16 n+17 n+18 n+19 n+20
4-38 SHARC+ Core Programming Reference

Loop Categories

NOTE: For single instruction loops, the termination condition is checked in every cycle. For two-instruction
loops, the termination condition is checked when the end-of-loop instruction is executed. Since two more
instructions are always allowed to execute after the termination condition tests true, a single-instruction
loop executes for two more iterations and a two-instruction loop executes one more iteration before exiting

the loop.

Indefinite Loops

A DO FOREVER instruction executes a loop indefinitely, until an interrupt or reset intervenes as shown below.

DO label UNTIL FOREVER; /* pushed LCNTR onto Loop count stack */
R6 DM (IO0,MO0) ; /* pushed to PC stack */

R6 = Ro - 1;

IF EQ CALL SUB;

nop;

label: nop; /* pushed to loop address stack */

Loop Resources
The sequencer provides a number of resources that support stack management and manipulation.
These resources include the following:

* Loop stack

* Loop address stack access

* Loop address stack status

* Loop address stack manipulation

* Loop counter stack access

* Loop counter stack status

* Loop counter stack manipulation

* Loop counter expired condition (for terminating counter-based loops)
Loop Stack

The loop controller supports a stack that controls saving various loop address and loop counts automatically. This is
required for nesting operations including loop abort calls or jumps.

NOTE: The loop controller uses the loop and program stack for its operation. Manipulation of these stacks by
using PUSH/POP instructions and explicit writes to these stacks may affect the correct functioning of the
loop.

Loop Address Stack Access

The sequencer's loop support, as shown in the Sequencer Control Diagram figure, includes a loop address stack. The
sequencer pushes the termination address, termination code and the loop type information (Cloop/Aloop/Forever)
onto the loop address stack when executing a DO/UNTIL instruction. For an Fl-active loop the sequencer tests the

SHARC+ Core Programming Reference 4-39

Loop Resources

termination condition when end-of-loop address is in F1 stage of pipe, the loop stack pops before the end-of-loop
address is excuted in E2-stage. If a program reads the REGF LADDR register in the last ten instructions when loop
has terminated, the value is already the termination address for the next loop stack entry. For an E2-active loop,
since the termination condition is checked in E2 stage, the read REGF LADDR value is always current loop stack
entry.

Loop Address Stack Status

The loop address stack is six levels deep by 32 bits wide. A stack overflow occurs if a seventh entry (one more than
full) is pushed onto the loop stack. The stack is empty when no entries are occupied. Because the sequencer keeps
the loop stack and loop counter stack synchronized, the same overflow and empty status flags apply to both stacks.
These flags are in the sticky status register (REGF STKYX). For more information on this register, see the STKYx
and STKYy Register Bit Descriptions (RW) table in the Registers appendix. For more information on how these flags
work with the loop stacks, see Loop Counter Stack Access. Note that a loop stack overflow causes a maskable inter-
rupt.

Loop Address Stack Manipulation

The REGF LADDR register contains the top entry (tge) on the loop address stack. This register is readable and writ-
able over the DM data bus. Reading from and writing to the REGF LADDR register does not move the loop address
stack pointer. Only a stack push or pop performed with explicit instructions moves the stack pointer. The

REGE LADDR register contains the value 0OxXFFFF FFFF when the loop address stack is empty. The Loop Address
Stack Register (LADDR) table in the Registers appendix lists the bits in this register.

The PUSH LOOP instruction pushes the stack by changing the pointer only. It does not alter the contents of the
loop address stack. Therefore, the PUSH LOOP instruction should be usually followed by a write to the
REGF LADDR register.

Loop Counter Stack Access

The sequencer's loop support, shown in the Sequencer Control Diagram figure in Features, also includes a loop
counter stack. The loop counter stack is six locations deep by 32 bits wide. The stack is full when all entries are
occupied, is empty when no entries are occupied, and is overflowed if a push occurs when the stack is already full.
Bits in the REGF STKYX register indicate the loop counter stack full and empty states.

NOTE: A value of zero in the REGF LCNTR register causes a loop to execute 232 times.

Loop Counter Stack Status

The loop counter stack is six locations deep by 32 bits wide. The stack is full when all entries are occupied, is empty
when no entries are occupied, and is overflowed if a push occurs when the stack is already full. Bits in the

REGF STKYX register indicate the loop counter stack full and empty states. The Loop Address Stack Register
(LADDR) table in the Registers appendix lists the bits in the REGF STKYX register. The following bits in the
REGF STKYX register indicate the loop counter stack full and empty states.

* Loop stacks overflowed. Bit 25 (REGF STKYX.LSOV) indicates that the loop counter stack and loop stack are
overflowed (if set to 1) or not overflowed (if set to 0)- LSOV is a sticky bit.

4-40 SHARC+ Core Programming Reference

Loop Resources

* Loop stacks empry. Bit 26 (REGF STKYX.LSEM) indicates that the loop counter stack and loop stack are
empty (if set to 1) or not empty (if set to 0)-not sticky, cleared by a PUSH.

NOTE: The sequencer keeps the loop counter stack synchronized with the loop address stack. Both stacks always
have the same number of locations occupied. Because these stacks are synchronized, the same empty and
overflow status flags from the REGF STKYX register apply to both stacks.

Loop Counter Stack Manipulation

The top entry in the loop counter stack always contains the current loop count. This entry is the

REGE CURLCNTR register which is readable and writable by the core. Reading the REGF CURLCNTR register
when the loop counter stack is empty returns the value OxXFFFF FFFE. A write to the REGE CURLCNTR register
has no effect when the loop counter stack is empty.

Writing to the REGE CURLCNTR register does not cause a stack push. If a program writes a new value to the
REGEF CURLCNTR, the count value of the loop currently executing is affected. When a DO/UNTIL LCE loop is
not executing, writing to REGF CURLCNTR has no effect. Because the processor must use the REGF CURLCNTR
to perform counter based loops, there are some restrictions as to when a program can write to the

REGF CURLCNTR register. See Restrictions on Ending Loops for more information.

Loop Counter Expired (If Not LCE Condition) in Counter-Based Loops

Since a counter based loop can be either F1-active loop or E2-active loops, the REGF CURLCNTR register value is
changed based on the presence of end-of-loop address either in F1-stage or in E2-stage. For a deterministic behavior
of IF NOT LCE condition it is advisable not to use this condition in the last eleven instruction of a counter based

loop.
Restrictions on Ending Loops

The sequencer's loop features (which optimize performance in many ways) limit the types of instructions that may
appear at or near the end of the loop. These restrictions include:

* For SHARCH+ core pipeline increase, the natural extension of the LR rule is that it should be used if the call is
one of the last five instructions inside a loop. To keep the rule backward compatible, any RTS without LR will
also be treated as a RTS with a LR. This ensures that even if a call is placed at last 4th or 5th instruction inside
a loop and RTS for that call is not paired with LR, the loop counter is not decremented twice. (In 5-stage
pipeline SHARC products if a call is one of the last three instructions inside a loop, a RTS for that call had to
be paired with LR modifier to prevent the Loop counter from decrementing twice for the same iteration.)

* There is a one cycle latency between a multiplier status change and arithmetic loop abort (LA). This extra cycle
is a machine cycle, not an instruction cycle. Therefore, if there is a pipeline stall (due to external memory access
for example), then the latency is not applicable.

e An IF NOT LCE conditional instruction cannot be used as the instruction that follows a write to the
REGEF CURLCNTR register.

* The loop controller uses both the loop stack and the program control stack for its operation. Manipulation of
these stacks by using PUSH/POP instructions and explicit writes to these stacks may affect the correct function-

ing of the loop.

SHARC+ Core Programming Reference 4-41

Loop Sequencer

* The IDLE and EMUIDLE instructions should not be used in the last three instructions of any arithmetic loop.

Note that any modification of the loop resources (such as the PC stack, loop stack, and the REGE CURLCNTR
register) within the loop may adversely affect the proper functioning of the looping operation and should be avoid-
ed. This is applicable even when the program execution branches to an interrupt service routine or a subroutine
from within a loop.

VISA-Related Restrictions on Hardware Loops

The last 11 instruction of a hardware loop must be encoded as legacy Instruction Set Architecture (ISA) instruc-
tions. These loop end instructions may not be encoded as Variable Instruction Set Architecture (VISA) instructions.

This restriction against VISA encoded instructions at the end of a loop is required for two reasons:
* To handle interrupts when the sequencer is fetching and executing the last few instructions.

* To reliably detect the fetch of the last instruction.

NOTE: As the last 11 instructions of a hardware loop must be encoded as ISA (traditional 48-bit) instructions, the
CrossCore Embedded Studio code-generation tools from Analog Devices automatically do encode these as
ISA instructions. For more information about ISA and VISA instructions, see Instruction Pipeline.

The assembler automatically identifies the last eight instructions of a hardware loop and treats them appropriately.

In cases of short loops (loops with a body shorter than 11 instructions), the above rule extends to state that all the
instructions in the loop are encoded as ISA instructions (left uncompressed).

Nested Loops

Signal processing algorithms like FFTs and matrix multiplications require nested loops. Nested loop constructs are
built using multiple DO/UNTIL instructions. If using counter based instructions, within the loop sequencer, two
separate loop counters operate:

* Loop counter (REGF LCNTR) register has top level entry to loop counter stack
* Current loop counter (REGF CURLCNTR) iterates in the current loop

The REGF CURLCNTR register tracks iterations for a loop being executed, and the REGF LCNTR register holds
the count value before the loop is executed. The two counters let the processor maintain the count for an outer loop,
while a program is setting up the count for an inner loop.

The loop counter stack is popped on termination of the loop. The cycle in which a loop is effectively terminated
depends on the type (F1- or E2-active) of the loop. When the loop counter stack is popped, the new top entry of the
stack becomes the REGF CURLCNTR value—the count in effect for the executing loop.

Two examples of nested loops are shown in the Nested Counter-Based Loop and Nested Mixed-Base Loop examples.
Nested Counter-Based Loop

LCNTR = S, DO the end UNTIL LCE; /*outer Loop*/
Instruction;
Instruction;

4-42 SHARC+ Core Programming Reference

Nested Loops

LCNTR = N, DO the endl UNTIL LCE; /*inner Loop */
instruction;

the endl:instruction; /*inner loop end address */

the end: instruction; /*outer loop end address*/

Nested Mixed-Based Loop

DO the end UNTIL EQ; /*outer Loop*/

Instruction;

Instruction;

LCNTR = N, DO the endl UNTIL LCE; /*inner Loop */
instruction;

the endl:instruction; /*inner loop end address */

Instruction;

the end: instruction; /*outer loop end address*/

Example For Six Nested Loops

A DO/UNTIL instruction pushes the value of LCNTR onto the loop counter stack, making that value the new
CURLCNTR value. The following procedure and the Pushing the Loop Counter Stack for Nested Loops figure dem-
onstrate this process for a set of nested loops. The previous CURLCNTR value is preserved one location down in the
stack.

1. The processor is not executing a loop, and the loop counter stack is empty (LSEM bit =1). The program se-
quencer loads the REGF LCNTR register with AAAA AAAA.

2. The processor is executing a single loop. The program sequencer loads LCNTR with the value BBBB BBBB
(LSEM bit =0).

3. The processor is executing two nested loops. The program sequencer loads the REGF LCNTR register with the
value CCCC CCCC.

4. The processor is executing three nested loops. The program sequencer loads the REGE LCNTR register with
the value DDDD DDDD.

5. The processor is executing four nested loops. The program sequencer loads the REGF LCNTR register with
the value EEEE EEEE.

6. The processor is executing five nested loops. The program sequencer loads the REGE LCNTR register with the
value FFFF FFFE

7. The processor is executing six nested loops. The loop counter stack (LCNTR) is full (REGF STKYX.LSOV bit
=1).

A read of the REGF LCNTR register when the loop counter stack is full results in invalid data. When the loop
counter stack is full, the processor discards any data written to LCNTR.

SHARC+ Core Programming Reference 4-43

Nested Loops

LCNTR| AAAA AAAA
CURLCNTR | OXFFFF FFFF
CURLCNTR e e
LCNTR —»»] AAAA AAAA — | Anaa Aaaa | AAAA AAAA AAAA AAAA
LCNTR CURLCNTR,
—»| BBBE BBBB | —»[BBBE BBEB BBBB BBBB

LCNTR CURLCNTR
| | | | ™| CCcC ccce CCCC ccce
LCNTR
| |) —
AAAA AAAA AAAA AAAA
CCCC cccc CCccC cccc CCCC cccc
CURLCNTR
" o 5500 o000
LCNTR CURLCNTR
D e e
LCNTR CURLCNTR
— N e R

Figure 4-8: Pushing the Loop Counter Stack for Nested Loops

Restrictions on Ending Nested Loops

The sequencer's loop features (which optimize performance in several ways) limit the types of instructions that may
appear at or near the end of the loop.

These restrictions include the following:

* Nested loops cannot use the same end-of-loop instruction address. The sequencer resolves whether to loop back
or not, based on the termination condition. If multiple nested loops end on the same instruction, the sequencer
exits all the loops when the termination condition for the current loop tests true. There may be other sequenc-
ing errors.

* Nested loops with an arithmetic loop as the outer loop must place the end address of the outer loop at least two
addresses after the end address of the inner loop.

* Nested loops with an arithmetic based loop as the outer loop that use the loop abort instruction, JUMP
(LA), to abort the inner loop, may not use JUMP (LA) to the last instruction of the outer loop.

Loop Abort

The hardware loop state machine maintains and manages various state information. Normally branches are allowed
within a loop body. It is allowed for these branches to even transfer control outside of the loop body. A CALL is an

example of this. For the purposes of the looped execution, these instructions executed even outside of loop body are
effectively part of the loop. Loops normally terminate when the specified loop termination condition tests true.

A special case of loop termination is the loop abort instruction, JUMP (LA) . This instruction causes an automatic
loop abort when it occurs inside a loop. When the loop aborts, the sequencer pops the PC and loop address stacks
once. If the aborted loop was nested, the single pop of the stack leaves the correct values in place for the outer loop.
However, as only one pop is performed, the loop abort cannot be used to jump more than one level of loop nesting
as shown in the following listing.

4-44 SHARC+ Core Programming Reference

Loop Abort

/* Example: Loop Abort Instruction, JUMP (LA) */

LCNTR = N, DO the end UNTIL LCE; /*Loop iteration*/
instruction;

instruction;

instruction;

instruction;

IF EQ JUMP LABEL (LA); /* jump outside of loop */
instruction;

the end: instruction; /*Last instruction in loop*/

NOTE: In 5-stage SHARC products and earlier, if a CALL is one of the last three instructions inside a loop, the

RTS instruction for that call had to be paired with a LR. This prevents the loop counter from decrement-
ing twice for the same iteration. The LR (loop re-entry) modifier for RTS has been deprecated in the
SHARCH+ core. The situations where use of RTS (LR) was required have been eliminated by introducing
E2-active mode of execution of some of the loops.

Interrupt Driven Loop Abort

For servicing the interrupt, eleven instructions in the various stages of the pipeline are replaced with NOP instruc-

tions. Accordingly, the hardware loop logic freezes the REGF CURLCNTR for the required fetch cycles on return

from an ISR. The hardware determines this based on the sequencer executing a RTT instruction.

The Pipeline Interrupt in a Loop table shows a pipeline where an interrupt is being serviced in a loop. e = end-of-

loop instruction, b = top-of-loop instruction. e-1 is the return address.

NOTE: There is one situation where an ISR returns into the loop body using the RTS instruction. This situation

occurs when JUMP (CI) is used to convert an ISR to a normal subroutine. Therefore, an RTS cannot
be used to determine that the sequencer branched off to a subroutine or ISR. For this reason, the hardware
sets an additional bit in the REGF PCSTK register, before branching off to an ISR so that on return, ei-
ther with a RTT or JUMP (CI) + RTS CURLCNTR instruction can be frozen for required number of

cycles.

Table 4-18: Pipeline Interrupt in a Loop

Cy- |1 2 3 4 5 6 7 8 An+l |n+2 [n+3 |n+4 |n+5 |[n+6 |n+7 |n+8 [n+9 |n n n
cles +10 |+11 |+12
E2 e-2 |el |e RTI e-1
M4 e2 lel |e RTI el |e
M3 e-2 |el |e RTI el |e b
M2 |e2 el |e RTI el |e b b+1
M1 |e-1 |e e-l |e b b+1 |[b+2
D2 |e e-l1 e b b+1 |b+2

D1 el |e b b+1 |b+2

SHARC+ Core Programming Reference 4-45

Loop Sequencer

Table 4-18: Pipeline Interrupt in a Loop (Continued)

Cy- |1 2 3 4 5 6 7 8 An+l |n+2 |n+3 [n+4 [n+5 |n+6 |n+7 |n+8 |n+9 |n n n
cles +10 |+11 |+12
F4 e-l |e b b+l |b+2
F3 v(IS el |e b b+1 |b+2
R)
F2 v(IS |v+1 e-1 |e b b+l |b+2
R)
F1 v(IS [v+1 |v+2 el |e b b+1 |b+2
R)
cycle 4: interrupt is recognized; e-1 is pushed to PC stack; pipeline flushed
cycle 6: instruction from ISR is fetched in F1 stage
cycle n+1: PC returns back from ISR and e-1 is fetched in F1 stage. From CURLCNTR is frozen for required number of cycles.

Loop Resource Manipulation

The SHARC+ core prohibits any modification of loop resources, such as the REGF PCSTK, REGF LADDR, and
REGE CURLCNTR registers within the loop (including subroutines and ISRs starting from a loop) as doing this
may adversely affect the proper function of the looping operation. The manipulation of these resources are allowed
only when it is done in accordance with the loop restrictions (for example, restrictions on ending loops and other
restrictions).

The loop hardware state machine maintains certain information of the ongoing loops on loop stack and PC stack.
The processor relies on this information for correct execution of loops under various conditions. Popping and push-
ing REGF LADDR/REGF CURLCNTR and REGF PCSTK registers with new values generally interferes with
proper loop function. However, popping and pushing the loop and PC stack to temporarily vacate the stacks can
still be performed from an ISR by following the procedure described in Popping and Pushing Loop and PC Stack
From an ISR.

NOTE: A fundamental requirement for processors using a real-time operating system (RTOS) is support for con-
text switching. A context switch of the processor forces a save all core registers on the software stack, in-
cluding the core stack registers.

Popping and Pushing Loop and PC Stack From an ISR

Use the following sequence to pop and push REGF LADDR/REGF CURLCNTR and REGF PCSTK to temporari-
ly vacate the stacks.

1. Pop LOOP and PCSTK after storing the value of the REGF CURLCNTR, REGF LADDR, and REGF PC
registers.

2. Use the empty entry/entries of stacks.
3. Recreate the loops by performing the following steps in the proscribed sequence.

a. Push LOOP stack.

4-46 SHARC+ Core Programming Reference

b. Load the value of REGF CURLCNTR.

c. Load the REGF LADDR.

d. Push the PCSTK.

e. Load the REGF PC with the stored value.

Loop Resource Manipulation

The Sequence for Pop and Push of Two-deep Nested Loops code listing provides an example of the sequence of opera-

tions. The sequence of operations is critical and must be followed exactly. Any number of unrelated instructions may

be executed during step 2 of the sequence ("Use the empty entry/entries of stacks").

Interrupts should not be triggered during this sequence of operations. Disable the interrupts by clearing the
REGF MODEL.IRPTEN bit. Consider the two cycles of effect latency before the restoration sequence, starting
with the first instruction of the sequence and ending with setting the REGF_MODE1 . IRPTEN bit after the last

instruction in the sequence (following completion of restoration).

In the Sequence for Pop and Push of Two-deep Nested Loops example, REGF LADDR is restored after
REGF CURLCNTR. This order of restoration ensures that when REGE LADDR is restored, the correct value of
loop count is available. At the time of REGF LADDR restoration, the hardware recreates the information about the

exact characterization of the loop.

Sequence for Pop and Push of Two-deep Nested Loops

/* ——- Step 1: Pop and Store —--- */

R1 = LADDR;
R2 = CURLCNTR;

R3 = PCSTK;

POP LOOP;

POP PCSTK;

NOP;

R4 = LADDR;

R5 = CURLCNTR;

R6 = PCSTK;

POP LOOP;

POP PCSTK;

NOP;

/* —-—-- Store the registers to memory here --- */
/* ——- Step 2: Miscellaneous instruction or instructions related or unrelated to
hardware loops —--- */

/* —-—— Load the registers from memory here --- */
/* ——— Step 3: Push and Load ---

PUSH LOOP;

CURLCNTR = R5;

LADDR = R4;

PUSH PCSTK;

PCSTK = R6;

PUSH LOOP;

CURLCNTR = R2;

LADDR = R1;

SHARC+ Core Programming Reference

4-47

Variation In Program Flow

PUSH PCSTK;
PCSTK = R3;

Instruction-Conflict Cache Control

This section on instruction-conflict cache control describes a special type of cache that is related to instruction fetch.
Functional Description

The SHARC+ core has a traditional instruction conflict cache (Support for Super Harvard Architecture), and new
instruction/data caches. This section describes the traditional instruction conflict cache which affects internal mem-
ory only. For information about the instruction/data caches refer to the L1 Cache Controller chapter.

NOTE: The instruction conflict cache is the "cache" which is available as part of all generations of the SHARC
and SHARC+ cores. The instruction cache and data cache are available on the SHARC+ cores.

Instruction Data Bus Conflicts

A bus conflict occurs when the PM data bus, normally used to fetch an instruction in each cycle, is used to fetch an
instruction and to access data in the same cycle. If an instruction at the M1 stage uses the PM bus to access data, it
creates a conflict with the instruction fetch at the Fetchl stage, assuming sequential executions.

In the event of such bus conflict, the bus operations are serialized. The instruction conflict cache stores only those
instructions whose fetch operation involves a bus conflict. In subsequent instance of fetch of these stored instruc-
tions, conflict-cache supplies the instruction, avoiding the bus conflict altogether.

Cache Miss

In the instruction PM (Ip, Mg) = Ureg, the data access over the PMD bus conflicts with the fetch of instruction
n+5 (shown in the PM Access Conflict table). In this case the data access completes first. This is true of any program

memory data access type instruction. This stall occurs only when the instruction to be fetched is not cached.

Table 4-19: PM Access Conflict

cycles 1 2 3 4 5 6 7
E2 pm(ip,mq)=ureg

M4 pm(ip,mq)=ureg n
M3 pm(ip,mq)=ureg n n+l
M2 pm(ip,mq)=ureg n n+l1 n+2
M1 pm(ip,mq)=ureg n n+1 n+2 n+3
D2 | pm(ip,mq)=ureg n n+l n+2 n+3 n+4
D1 n+l n+2 n+3 n+4 n+5
F4 n+2 n+3 n+4 n+5 n+6
F3 n+3 n+4 n+5 n+6 n+7
F2 n+4 n+5 n+6 n+7 n+8

4-48 SHARC+ Core Programming Reference

Instruction Data Bus Conflicts

Table 4-19: PM Access Conflict (Continued)

cycles 1 2 3 4 5 6 7

F1 n+5 n+5 n+6 n+7 n+8 n+9

cycle2:n+5 instruction fetch postponed

cycle3:stall cycle

Note that the instruction-conflict cache stores the fetched instruction (n+5), not the instruction requiring the pro-
gram memory data access.

When the processor first encounters a bus conflict, it must stall for one cycle while the data is transferred, and then
fetch the instruction in the following cycle. To prevent the same delay from happening again, the processor automat-
ically writes the fetched instruction to the instruction-conflict cache. The sequencer checks the instruction cache on
every data access using the PM bus. If the instruction needed is in the cache, a cache hit occurs. The instruction
fetch from the cache happens in parallel with the program memory data access, without incurring a delay.

If the instruction needed is not in the cache, a cache miss occurs, and the instruction fetch (from memory) takes
place in the cycle following the program memory data access, incurring one cycle of overhead. The fetched instruc-
tion is loaded into the cache (if the cache is enabled and not frozen), so that it is available the next time the same
instruction (that requires program memory data) is executed.

The Instruction Cache Architecture figure shows a block diagram of the 2-way set associative instruction cache. The
instruction-conflict cache holds 32 instruction-address pairs. These pairs (or cache entries) are arranged into 16
(15-0) cache sets according to the four least significant bits (3-0) of their address. The two entries in each set (entry
0 and entry 1) have a valid bit, indicating whether the entry contains a valid instruction. The least recently used
(LRU) bit for each set indicates which entry was not placed in the cache last (0 = entry 0 and 1 = entry 1).

The cache places instructions in entries according to the four LSBs of the instruction's address. When the sequencer
checks for an instruction to fetch from the cache, it uses the four address LSBs as an index to a cache set. Within
that set, the sequencer checks the addresses of the two entries as it looks for the needed instruction. If the cache
contains the instruction, the sequencer uses the entry and updates the LRU bit (if necessary) to indicate the entry
did not contain the needed instruction.

SHARC+ Core Programming Reference 4-49

Functional Description

LRU VALID INSTRUCTIONS ADDRESSES ADDRESSES
BIT BIT BITS (23-4) BITS (3-0)

SET ENTRYO D

[o000]

ENTRY 1

SET ENTRYO []

ENTRY 1

SET ENTRYO [] [o010

ENTRY 1

IR

SET ENTRYO []
13

]
]
] [ooox
]
]
]

1101

ENTRY 1

SET ENTRYO D 1110

14

ENTRY 1

SET ENTRY O
i]

1111

OO0oO00-—0oOOoOoa

ENTRY 1

Figure 4-9: Instruction Cache Architecture

When the instruction-conflict cache does not contain a needed instruction, it loads a new instruction and address
and places them in the least recently used entry of the appropriate cache set. The cache then toggles the LRU bit, if
necessary.

Cache Invalidate Instruction
The FLUSH CACHE instruction allows programs to explicitly invalidate the cache content by clearing all valid bits.

The execution of the FLUSH CACHE instruction is independent of the cache enable bit in the
REGF_MODE2 .CADIS register.

The FLUSH CACHE instruction has a 1 cycle instruction latency while executing from internal memory and has a
2 cycle instruction latency while executing from external memory. Using an instruction that contains a PM data
access immediately following a FLUSH CACHE instruction is prohibited.

This instruction is required in systems using software overlay programming techniques. With these overlays, soft-
ware functions are loaded via DMA during runtime into the internal RAM. Since the cache entries are still valid
from any previous function, it is essential to flush all the valid cache entries to prevent system crashes.

Operating Modes
The following sections describe the instruction-conflict cache operating modes.
NOTE: After power-up and or reset, the cache content is not predicable in that it may contain valid/invalid in-

structions, be unfrozen and enabled. However, all LRU and valid bits are cleared. So after a processor pow-
er-up or reset, the cache performs only cache miss/cache entry until the same entry causes later hits.

Cache Restrictions
The following restrictions on instruction-conflict cache usage should be noted.

* If the REGF MODE2.CAFRZ is set by instruction 7, then this feature is effective from the n+2 instruction
onwards. This results from the effect latency of the REGF MODE?2 register.

* When a program changes the instruction-conflict cache mode, an instruction containing a program memory
data access must not be placed directly after a cache enable or cache disable instruction. This is because the

4-50 SHARC+ Core Programming Reference

Operating Modes

processor must wait at least one cycle before executing the PM data access. A program should have a NOP (no
operation) or other non-conflicting instruction inserted after the cache enable or cache disable instruction.

Cache Disable

The cache disable bit (bit 4, REGF MODEZ2 . CADIS) directs the sequencer to disable the instruction-conflict cache
(if 1) or enable the instruction-conflict cache (if 0).

Note that the FLUSH CACHE instruction has a 1 cycle instruction latency while executing next Instruction/data
from internal memory and a 2 cycle instruction latency while executing next instruction/data from external memory.

Cache Freeze

The cache freeze bit (REGF MODE2 . CAFRZ) directs the sequencer to freeze the contents of the instruction-con-
flict cache (if 1) or let new entries displace the entries in the cache (if 0).

Freezing the cache prevents any changes to its contents-a cache miss does not result in a new instruction being stored
in the instruction-conflict cache. Disabling the cache stops its operation completely-all instruction fetches conflict-
ing with program memory data accesses are delayed. These functions are selected by the REGF MODE2 .CADIS
(cache enable/disable) and REGF MODEZ2 . CAFRZ bits.

GPIO Flags

The SHARC+ core has a number of general-purpose I/O flags. The 1/O flags provide direct instruction support for
setting, resetting, or reading the state of these FLAG pins. The SHARC+ core Flag pins based on SHARC instruc-
tion set, (shown in the IF Condition Mnemonics table) are multiplexed with other peripheral pins in the Peripheral
Port block. Refer to the General-Purpose Port chapter in the product related hardware reference manual or the prod-
uct data sheet for the number of flag pins supported.

NOTE: Programs cannot change the output selects of the FLAGS register and provide a new value in the same
instruction. Instead, programs must use two write instructions—the first to change the output select of a
particular FLAG pin, and the second to provide the new value as shown.

bit set flags FLG20; /* set flag2 as output */
bit clr flags FLG2; /* set flag2 output low */

The FLAGS register is used to control all FLAGx pins. Based on FLAGS register effect latency and internal timings
there must be at least 4 wait states in order to toggle the same flag correctly as shown in the following example. The
total number of wait cycles can be more than four cycles, depending on the product. For total number of wait cycles,
refer to the specific product data sheet.

bit tgl flags FLG2;
nop; nop; nop; nop; /* wait 4 cycles */
bit tgl flags FLG2;
nop; nop; nop; nop; /* wait 4 cycles */
bit tgl flags FLG2;

SHARC+ Core Programming Reference 4-51

Variation In Program Flow

Conditional Instruction Execution

Conditional instructions provide many options for program execution which are discussed in this section. There are
three types of conditional instructions:

* Conditional compute (ALU/Multiplier/Shifter)
* Conditional data move (reg-to-reg, reg-to-memory)
* Conditional branch (direct branch, indirect branch)

If the condition is evaluated as true, the operation is performed, if it is false, it gets aborted as shown in the example
below.

R10 = R12-R13;
If LT RO=R1+R2; /* if ALU less than zero, do computation */

If an if-then-else construct is used, the else evaluates the inverse of the if condition:

R10 = R12-R13;
If LT CALL SUB, ELSE RO=R1+R2; /* do computation if condition is false */

The processor records status for the PEx element in the REGF ASTATX and REGF STKYX registers and the PEy
element in the REGF ASTATY and REGF STKYY registers.

IF Conditions with Complements

Each condition that the processor evaluates has an assembler mnemonic. The condition mnemonics for conditional
instructions appear in the IF Condition Mnemonics table. For most conditions, the sequencer can test both true and
false (complement) states. For example, the sequencer can evaluate ALU equal-to-zero (EQ) and its complement
ALU not-equal-to-zero (NE).

Note that since the IF condition is optional, and if the condition is omitted from the instruction, the condition is
always true.

Table 4-20: IF Condition Mnemonics

Condition From Description True If Mnemonic
ALU or exclusive access | ALU = 0 or exclusive access suc- |AZ = 1"1 EQ
cessful
ALU # 0 or exclusive access failed |AZ =0 NE
ALU ALU > 0 or unordered footnote 2 GT
footnote >
ALU <0 footnote 4 LT
ALU > 0 or unordered footnote > GE
footnote ™©

4-52 SHARC+ Core Programming Reference

Table 4-20: IF Condition Mnemonics (Continued)

Conditional Instruction Execution

Condition From Description True If Mnemonic
ALU<0 footnote’ LE
ALU carry AC=1 AC
ALU not carry AC=0 NOT AC
ALU overflow AV =1 AV
ALU not overflow AV=0 NOT AV
Multiplier Multiplier overflow MV =1 MV
Multiplier not overflow MV=0 NOT MV
Multiplier sign MN =1 MS
Multdiplier not sign MN =0 NOT MS
Shifter Shifter overflow SV=1 SV
Shifter not overflow SV=0 NOT SV
Shifter zero SZ-=1 \V4
Shifter not zero SZ=0 NOT SZ
Shifter bit FIFO overflow SF=1 SF
Shifter bit FIFO not overflow SF=0 NOT SF
System Register Bit test flag true BTF =1 TF
Bit test flag false BTF=0 NOT TF
Flag 3-0 Input Flag0 asserted Flag0 = 1 FLAGO_IN
Flag0 not asserted Flag0 = 0 NOT FLAGO_IN
Flag1 asserted Flagl =1 FLAG1_IN
Flagl not asserted Flagl =0 NOT FLAG1_IN
Flag2 asserted™ Flag2 = 1 FLAG2_IN
Flag2 not asserted "1° Flag2 = 0 NOT FLAG2_IN
Flag3 asserted Flag3 =1 FLAG3_IN
Flag3 not asserted Flag3 = 0 NOT FLAG3_IN
Loop Sequencer Loop counter not expired CURLCNTR 1 NOT LCE11

*1 Instruction type 3d/14d support exclusive access (modifier EX)
*2 ALU greater than (GT) is true if: [E and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ =0

*3 The unordered condition arises from floating-point instructions in which an operand is NaN (Not a Number). Note that by the

inclusion of this case, the GT and GE conditions (GT and GE) differ from the IEEE 754 definitions.
*4 ALU less than (LT) is true if: [ﬁ and (AN xor (AV and ALUSAT)) or (AF and AN and E)] =1
*5 ALU greater equal (GE) is true if: [E and (AN xor (AV and ALUSAT)) or (AF and AN and E)] =0

SHARC+ Core Programming Reference

Conditional Instruction Execution

*6 The unordered condition arises from floating-point instructions in which an operand is NaN (Not a Number). Note that by the

inclusion of this case, the GT and GE conditions (GT and GE) differ from the IEEE 754 definitions.
*7 ALU lesser or equal (LE) is true if: [E and (AN xor (AV and M)) or (AF and AN)] or AZ =1
*8 For ADSP-214xx processors and beyond.
*9 Support for conditional selection of PEx or PEy.
*10 Support for conditional selection of PEx or PEy.

*11 Does not have a complement.

DO/UNTIL Terminations Without Complements

Programs should use FOREVER and LCE to specify loop (DO/UNTIL) termination. A DO FOREVER instruction
executes a loop indefinitely, until an interrupt or reset intervenes. There are some restrictions on how programs may
use conditions in DO UNTIL loops. For more information, see Restrictions on Ending Loops.

Table 4-21: DO/UNTIL Termination Mnemonics

Condition From Description True If Mnemonic
Loop Sequencer Loop counter expired REGF CURLCNTR=1 |LCE

Always false (Do) Always FOREVER
Operating Modes

The following sections describe the operating modes for conditional instruction execution.

Conditional Instruction Execution in SIMD Mode

Because the two processing elements can generate different outcomes, the sequencer must evaluate conditions from
both elements (in SIMD mode) for conditional (IF) instructions and loop (DO/UNTIL) terminations. The process-
or records status for the PEx element in the REGF ASTATX and REGF STKYX registers and PEy element in
theREGF ASTATY and REGF STKYY registers.

NOTE: Even though the processor has dual processing elements PEx and PEy, the sequencer does not have dual
sets of stacks.

The sequencer has one PC stack, one loop address stack, and one loop counter stack. The status bits for stacks are in
the REGF STKYX register and are not duplicated in the REGF STKYY register.

The processor handles conditional execution differently in SISD versus SIMD mode. There are a number of ways
that conditionals differ in SIMD mode. These are described below and in the Conditional SIMD Execution Sum-
mary table.

* In conditional computation and data move (IF ... compute/move) instructions, each processing element exe-
cutes the computation/move based on evaluating the condition in that processing element. See the Instruction
Set Types chapter for coding information.

* In conditional branch (if ... jump/call) instructions, the program sequencer executes the jump/call based on a
logical AND of the conditions in both processing elements.

4-54 SHARC+ Core Programming Reference

Conditional Instruction Execution in SIMD Mode

* In conditional indirect branch (if ... pc, reladdr/Md, Ic) instructions with an ELSE clause, each processing ele-
ment executes the ELSE computation/data move based on evaluating the inverse of the condition (NOT IF) in
that processing element.

* Enhanced conditions for FLAG2_IN/NOT FLAG2_IN. These instruction conditions together with SISD/
SIMD modes enables selective condition for PEx or PEy unit. For more information, see Conditional Execu-
tion by Selection of Processing Unit X or Y.

Table 4-22: Conditional SIMD Execution Summary

Conditional Operation Conditional Outcome Depends On
Compute Operations Executes in each PE independently depending on condition test in
each PE

Register-to-register Move | Ureg/CUreg to Ureg/CUreg (from com- | Executes move in each PE (and/or memory) independently depend-

plementary pair'! to complementary ing on condition test in each PE

pair)

Ureg to Ureg/CUreg (from uncomple- | Executes move in each PE (and/or memory) independently depend-

mentary register to complementary ing on condition test in each PE; Ureg is source for each move

pair)

Ureg/CUreg to Ureg (from complemen- | Executes explicit move to uncomplementary universal register de-

tary pair to uncomplementary regis- pending on the condition test in PEx only; no implicit move occurs

ter) 2)
Register-to-memory DAG post-modify Executes memory move depending on OR'ing condition test on
Move both PE's

DAG pre-modify Pre-modify operations always occur independent of the conditions
Branches and Loops Executes in sequencer depending on AND'ing condition test on

both PEs

*1 Complementary universal register pairs (CUreg) are registers with SIMD complements, include PEx/y data registers and US-
TAT1/2, USTAT3/4, ASTATx/y, STKYx/y, and PX1/2 Uregs.

*2 Uncomplementary registers are Uregs that do not have SIMD complements.
NOTE: SIMD must be disabled during bit FIFO operations.
Bit Test Flag in SIMD Mode

In SIMD mode, two independent bit tests can occur from individual registers as shown in the following example.

bit set model PEYEN;
r2=0x80000000;

ustatl=r2;

bit TST ustatl BIT 31; /* test bit 31 in ustatl/ustat2 */
if TF call SUB; /* branch if both cond are true */
if TF rl10=rl10+1; /* compute on any cond */

SHARC+ Core Programming Reference 4-55

Conditional Instruction Execution in SIMD Mode

Conditional Compute

While in SIMD mode, a conditional compute operation can execute on both processing elements, either element, or
neither element, depending on the outcome of the status flag test. Flag testing is independently performed on each
processing element.

Conditional Data Move

The execution of a conditional (IF) data move (register-to-register and register-to/from-memory) instruction de-
g g g y
pends on three factors:

* The explicit data move depends on the evaluation of the conditional test in the PEx processing element.
* The implicit data move depends on the evaluation of the conditional test in the PEy processing element.
* Both moves depend on the types of registers used in the move.

* For conditional broadcast instructions, the condition depends on the PEx status only.

Conditional Execution by Selection of Processing Unit X or Y

An application can select which execution unit X or Y should be active while executing a conditional computation.
The execution unit is selected using the REGF MODEL . SELPE bit and using both conditional instructions IF
FLAG2 INand IF NOT FLAG2 IN (or IF PEXand IF NOT PEX). If the REGF MODE1 . SELPE bit is sct
then the instruction IF FLAG2 IN always performs the computation in PEx only, and the instruction IF NOT
FLAG2 1IN is always performed in PEy only.

In the following example the REGF MODEL . SELPE bit is set and only the RO value is updated and not the SO
value.

IF FLAGZ2 IN, RO=R1+R2Z;
In the next example the REGF_MODEL . SELPE bit is set only SO value is updated and not the RO value.
IF NOT FLAGZ IN, RO=RI1+R2;

In this mode when the REGF MODE1 . SELPE bit set, the instruction IF FLAG2 INand IF NOT

FLAG2 1IN should only be used for data move/compute operations where only one of the execution units need to
be active as shown in the above example. These two conditional instructions, if used for any purpose other than data
move/compute operations, will not have desired effect, because these condition is always true for other related in-
struction, such as:

IF FLAG2 IN jumpor IF NOT FLAG2 IN Jjump, both execute irrespective of the state of FLAG2.
SISD versus SIMD Operating Mode
SISD If PEx tests true and if PEy tests false: Execution in PEX No operation in PEy

SIMD If PEx tests true and if PEy tests false: Execution in PEx. If PEy tests true and if PEx tests false: Execution in
PEy

4-56 SHARC+ Core Programming Reference

Table 4-23: SIMD Modes and IF FLAG2 Conditions Truth Table

Conditional Instruction Execution in SIMD Mode

MODEI1.PEYEN MODEI1.SELPE Condition Execution PEx Execution PEy
ON ON If FLAG2_IN yes no
ON ON If NOT_FLAG2_IN no yes
ON OFF If FLAG2_IN yes yes
ON OFF If NOT_FLAG2_IN yes yes
OFF ON If FLAG2_IN yes no
OFF ON If NOT_FLAG2_IN no no
OFF OFF If FLAG2_IN yes no
OFF OFF If NOT_FLAG2_IN yes no

Listings for Conditional Register-to-Register Moves

In this section the various register files move types are listed and illustrated with examples.

Listing 1 - Dreg/CDreg to Dreg/CDreg Register Moves/Swaps

When register-to-register swaps are unconditional, they operate the same in SISD mode and SIMD mode. If a con-
dition is added to the instruction in SISD mode, the condition tests only in the PEx element and controls the entire
operation. If a condition is added in SIMD mode, the condition tests in both the PEx and PEy elements separately

and the halves of the operation are controlled as detailed in the Dreg/CDreg Register Moves Summary (SISD Versus

SIMD) table.
Table 4-24: Dreg/CDreg Register Moves Summary (SISD Versus SIMD)
Mode Instruction Explicit Transfer Executed Ac- | Implicit Transfer Executed Ac-
cording to PEx cording to PEy
SISD'! IF condition Rx = Ry; Rx loaded from Ry None
IF condition Rx = Sy; Rx loaded from Sy None
IF condition Sx = Ry; Sx loaded from Ry None
IF condition Sx = Sy; Sx loaded from Sy None
IF condition Rx <-> Sy; Rx loaded from Sy Sy loaded from Rx
SIMD ™2 IF condition Rx = Ry; Rx loaded from Ry Sx loaded from Sy
IF condition Rx = Sy; Rx loaded from Sy Sx loaded from Ry
IF condition Sx = Ry; Sx loaded from Ry Rx loaded from Sy
IF condition Sx = Sy; Sx loaded from Sy Rx loaded from Ry
IF condition Rx <-> Sy; Rx loaded from Sy Sy loaded from Rx

*1 In SISD mode, the conditional applies only to the entire operation and is only tested against PEx's flags. When the condition tests

true, the entire operation occurs.

SHARC+ Core Programming Reference

4-57

Listings for Conditional Register-to-Register Moves

*2 In SIMD mode, the conditional applies separately to the explicit and implicit transfers. Where the condition tests true (PEx for the
explicit and PEy for the implicit), the operation occurs in that processing element.

Listing 2 - Ureg/CUreg to Ureg/CUreg Register Moves

For the following instructions, the processors are operating in SIMD mode and registers in the PEx data register file
are used as the explicit registers. The data movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in the Register-to-Register Moves - Complementary Pairs table.

IF EQ R9 = R2;
IF EQ PX1 = R2;
IF EQ USTAT1 = R2;

Table 4-25: Register-to-Register Moves - Complementary Pairs

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occur

0 1 No data move to registers r9, px1, and us- |s2 transfers to registers s9, px2 and ustat2

tatl occurs

1 0 r2 transfers to registers r9, px1, and ustatl | No data move to s9, px2, and ustat2 oc-
curs
1 1 r2 transfers to registers r9, px1, and ustatl |s2 transfers to registers s9, px2, and ustat2

Listing 3 - CUreg/Ureg to Ureg/CUreg Registers Moves

For the following instructions, the processors are operating in SIMD mode and registers in the PEy data register file
are used as explicit registers. The data movement resulting from the evaluation of the conditional test in the PEx and
PEy processing elements is shown in the Register-to-Register Moves - Complementary Pairs table.

IF EQ R9 = S2;
IF EQ PX1 = S2;
IF EQ USTAT1 = S2;

Table 4-26: Register-to-Register Moves - Complementary Pairs

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occur

0 1 No data move to registers 19, px1, and | r2 transfers to registers s9, px2 and ustat2

ustat] occurs

1 0 s2 transfers to registers r9, px1, and us- | No data move to s9, px2, or ustat2 oc-
tatl curs

1 1 s2 transfers to registers r9, px1, and us- | r2 transfers to registers s9, px2, and us-
tatl tat2

4-58 SHARC+ Core Programming Reference

Listings for Conditional Register-to-Register Moves

Listing 4 - Ureg to Ureg/CUreg Register Moves

In this case, data moves from an uncomplementary register (Ureg without a SIMD complement) to a complemen-
tary register pair. The processor executes the explicit move depending on the evaluation of the conditional test in the
PEx processing element. The processor executes the implicit move depending on the evaluation of the conditional
test in the PEy processing element. In each processing element where the move occurs, the content of the source
register is duplicated in the destination register.

Note that while REGF PX1 and REGEF PX2 registers have complements, the REGF PX register has no comple-

mentary register.

For the following instruction the processors are operating in SIMD mode. The data movement resulting from the
evaluation of the conditional test in the PEx and PEy processing elements is shown in the Uncomplementary-to-

Complementary Register Move table.

IF EQ R1 = PX;

Table 4-27: Uncomplementary-to-Complementary Register Move

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 rl remains unchanged s1 remains unchanged
0 1 rl remains unchanged s1 gets px value

1 0 rl gets px value s1 remains unchanged
1 1 rl gets px value s1 gets px value

Listing 5 - Ureg/CUreg to Ureg Register Moves

In this case data moves from a complementary register pair to an uncomplementary register. The processor executes
the explicit move to the un complemented universal register, depending on the condition test in the PEx processing
element only. The processor does not perform an implicit move.

For all of the following instructions, the processors are operating in SIMD mode. The data movement resulting
from the evaluation of the conditional test in the PEx and PEy processing elements for all of the example code sam-
ples are shown in the Complementary-to-Uncomplementary Register Move table.

IF EQ Rl = PX;

Uncomplementary register to DAG move:

if EQ ml = PX;

DAG to uncomplementary register move:

if EQ PX = ml;

For more information, see the Register Files chapter.

Note that the REGF PX1 and REGEF PX2 registers have complements, but REGF PX as a register is uncomple-

mentary.

SHARC+ Core Programming Reference 4-59

Listings for Conditional Register-to-Register Moves

DAG to DAG move:
if EQ ml = 115;

Complementary register to DAG move:
if EQ i6 = r9;

In all the cases described above, the behavior is the same. If the condition in PEx is true, then only the transfer

occurs.

Table 4-28: Complementary-to-Uncomplementary Register Move

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 px remains unchanged No implicit move
0 1 px remains unchanged No implicit move
1 0 r1 40-bit explicit move to px No implicit move
1 1 r1 40-bit explicit move to px No implicit move

Listing 6 - UREG to UREG Register Moves

In this case data moves from an uncomplementary register to an uncomplementary register. The processor executes
the explicit move, depending on the condition test in the PEx or PEy processing. The processor does not perform an
implicit move.

if 1t tperiod = dm(i3, m3);

Listings for Conditional Register-to-Memory Moves

Conditional post-modify DAG operations update the DAG register based on OR'ing of the condition tests on both
processing elements. Actual data movement involved in a conditional DAG operation is based on independent eval-

uation of condition tests in PEx and PEy. Only the post-modify update is based on the OR'ing of these conditional
tests.

NOTE: Conditional pre-modify DAG operations behave differently. The DAGs always pre-modify an index, inde-
pendent of the outcome of the condition tests on each processing element.

Listing 1 - Dreg to Memory

For this instruction, the processors are operating in SIMD mode, a register in the PEx data register file is the explicit
register, and I0 is pointing to an even address in internal memory or external memory. Indirect addressing is shown
in the instructions in the example. However, the same results occur using direct addressing. The data movement
resulting from the evaluation of the conditional test in the PEx and PEy processing elements is shown in the Regis-

ter-to-Memory Moves-Complementary Pairs (PEx Explicit Register) table.

IF EQ DM(IO,M0) = R2;

4-60 SHARC+ Core Programming Reference

Listings for Conditional Register-to-Memory Moves

Table 4-29: Register-to-Memory Moves-Complementary Pairs (PEx Explicit Register)

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move occurs from r2 to lo- s2 transfers to location (I()+n*1)
cation 10

1 0 r2 transfers to location I0 No data move occurs from s2 to lo-

cation (I0+n?!)
1 1 12 transfers to location 10 s2 transfers to location (I0+n!)

*1 In NW space n = 1, in SW space n = 2, in BW space, n = 4.

Listing 2 - CDreg to Memory

For the following instruction, the processors are operating in SIMD mode, a register in the PEy data register file is
the explicit register and I0 is pointing to an even address in internal memory. The data movement resulting from
the evaluation of the conditional test in the PEx and PEy processing elements is shown in the Register-to-Memory

Moves - Complementary Pairs (PEy Explicit Register) table.

IF EQ DM(IO,M0) = S2;

Table 4-30: Register-to-Memory Moves - Complementary Pairs (PEy Explicit Register)

Condition in PEx Condition in PEy Result
AZx AZy Explicit Implicit !
0 0 No data move occurs No data move occurs
0 1 No data move occurs from s2 to lo- | r2 transfers to location I0+n
cation 10
1 0 s2 transfers to location 10 No data move occurs from r2 to lo-
cation I0 + n
1 1 s2 transfers to location 10 r2 transfers to location 10 + n

*1 In NW space n = 1, in SW space n = 2, in BW space, n=4.

Listing 3 - Dreg/CDreg to SMMR Memory Space

For the following instructions the processors are operating in SIMD mode and the explicit register is either a PEx
register or PEy register. I0 points to SMMR memory space. This example shows indirect addressing. However, the
same results occur using direct addressing.

IF EQ DM(IO,M0) = R2;
IF EQ DM(IO,M0) = S2;

SHARC+ Core Programming Reference 4-61

Listings for Conditional Register-to-Memory Moves

Listing 4 - Ureg to SMMR Memory Space

In the case of memory-to-DAG register moves, the transfer does not occur when both PEx and PEy are false. Other-
wise, if either PEx or PEy is true, transfers to the DAG register occur. For example:

if EQ ml3 = dm(i0,ml);

NOTE: Conditional data moves from a complementary register pair to an uncomplementary register with an ac-
cess to IOP memory space results in unexpected behavior and should not be used.

Conditional Branches

The processor executes a conditional branch (JUMP or CALL with RTI/RTS) or loop (DO/UNTIL) based on the
result of AND'ing the condition tests on both PEx and PEy. A conditional branch or loop in SIMD mode occurs
only when the condition is true in PEx and PEy.

Using complementary conditions (for example EQ and NE), programs can produce an OR'ing of the condition tests
for branches and loops in SIMD mode. A conditional branch or loop that uses this technique must consist of a
series of conditional compute operations. These conditional computes generate NOPs on the processing element
where a branch or loop does not execute. For more information on programming in SIMD mode, see the Instruc-
tion Set Types and Computation Types chapters.

IF Conditional Branch Instructions

The IF conditional direct branch instruction is available in Type 8 instruction. The IF conditional indirect branch
instruction is available in the Type 9, 10, and 11 instructions. The instructions are shown in the IF Conditional
Branch Execution (SISD mode) and If Conditional Branch Instruction (SIMD Mode) tables.

Table 4-31: IF Conditional Branch Execution (SISD mode)

Conditional Test Execution for Instruction Types 8-11
0 (false) IF not exe
1 (true) IF exe

Table 4-32: If Conditional Branch Instruction (SIMD Mode)

Conditional Test

PEx PEy Execution for Instruction Types 8-11
0 (false) 0 (false) IF not exe

0 (false) 1 (true) IF not exe

1 (true) 0 (false) IF not exe

1 (true) 1 (true) IF exe

IF Then ELSE Conditional Indirect Branch Instructions

The conditional IF then ELSE construct for indirect branch instructions is available in the Type 9, 10, and 11
instructions. The instructions are shown in the IF then ELSE Conditional Branch Execution (SISD mode) and IF
Then ELSE Conditional Branch Instruction (SIMD Mode) tables.

4-62 SHARC+ Core Programming Reference

Conditional Instruction Execution in SIMD Mode

Table 4-33: IF then ELSE Conditional Branch Execution (SISD mode)

Conditional Test Execution for Instruction Types 9-11
0 (false) IF not exe ELSE exe
1 (true) IF exe ELSE not exe

Table 4-34: IF Then ELSE Conditional Branch Instruction (SIMD Mode)

Conditional Test

PEx PEy Execution for Instruction Types 9-11
0 (false) 0 (false) IF not exe ELSE PEx exe - PEY exe

0 (false) 1 (true) IF not exe ELSE PEx exe - PEY not exe

1 (true) 0 (false) IF not exe ELSE PEx not exe - PEY exe

1 (true) 1 (true) IF exe ELSE PEx not exe - PEY not exe

For more information and examples, see the following instruction reference pages in the Instruction Set Types chap-
ter.

* Type 8a ISA/VISA (cond + branch)

* TDype 9a ISA/VISA (cond + Branch + complelse comp)

* Type 10a ISA (cond + branch + else comp + mem data move)

* TDype 11a ISA/VISA (cond + branch return + complelse comp) and Type 11c VISA (cond + branch return)

IF Conditional Branch Limitations in VISA
Type 10 instructions are the most infrequently used instructions in the Instruction Set Architecture:

/* Template: */
IF COND JUMP (Md, Ic), ELSE compute, DM(Ia, Mb) = dreg ;

To make maximum use of available opcode combinations, the SHARC+ core uses the Type 10 instruction opcode to
encode a simpler and more commonly used compute instructions such as:

Rm = Rn + Rm;
NOTE: Code generated by the CrossCore Embedded Studio C compiler does not use the Type 10 instruction.

If assembly code containing Type 10 instructions is run through the code generation tools, the assembler issues an
error message stating that a Type 10 instruction is not supported while in VISA short word space.

Pipeline Flushes and Stalls

The SHARC+ core uses pipeline flush and pipeline stalls to ensure correct and efficient program execution. It is
helpful for programmers to be aware of different scenarios that result in flushes or stalls of pipeline stages.

The sequencer uses pipeline stalls in the following situations:

SHARC+ Core Programming Reference 4-63

Pipeline Flushes and Stalls

Stalls occur in case of structural hazards. Such stalls are incurred when different instructions at various stages of
the instruction pipeline attempt to use the same processor resources simultaneously. For example, when pro-
cessor issues data access on PM bus, it conflicts with instruction request being issued by the sequencer on the
same bus.

Stalls occur in case of data and control hazards. Such stalls are incurred when an instruction attempts to read a
value from a register or from a condition flag that has been updated by an earlier instruction, before the value
becomes available. For example, an index register based data address generation, which happens in early stage of
pipeline, stalls when index register is being loaded in previous instruction.

Stalls occur in some cases to achieve high performance when the processor executes a certain sequence of in-
structions. For example, when both the input operands are forwarded to the multiplier from previous compute
instruction, this scenerio causes stall to accommodate additional operations.

Stalls occur in some cases to retain effect latency. These cases provide operation that is compatible with earlier
SHARC processors. One such example is 64-bit compute in the newer versions of SHARC+ core.

The sequencer uses pipeline flushes when the processor branches to new location due to an interrupt, a jump, a call,

a loop-abort, or other branch situations. These situation leave some extra instructions in the pipeline (from previous

flow)

For ¢

that must be flushed.

omplete information on stalls, refer to the Engineer-to-Engineer Note EE-375: Migrating Legacy SHARC to

ADSP-SC58x/2158x SHARC+ Processors on the Analog Devices web site.

Stalls Related to Memory Access

Table 4-35: Stalls Related to Memory Access

Details Example Stall type SHARC+
Stalls

Conflict cache miss on PM data access r0 = pm(Addr) ; Structural 1

Two accesses on same block in same cycle r0 = dm(BlockO-addrl) ; back- Structural 1

ground DMA access to Block0

Conditional store —to- any load If eq DM(A) = Fz; Timing 1

Fa = DM(A/B)

4-64

SHARC+ Core Programming Reference

Stalls Related to Compute Operations

Table 4-36: Stalls Related to Compute Operations - Non 64-bit Floating Point Computations

Pipeline Flushes and Stalls

Details Example Stall type SHARC+ Stalls
1 Data forwarding to compute operation
Floating point compute/multiply operationto- |Fx = PASS Fy; Data dependence | 1
next compute dependency Fz = Fx + Fa;
If previous instruction is conditional fixed Rx = PASS Ry;
point compute or conditional register read and | 1 eq Rz = Ra + Rb;
condition set is just before
Fc = Fz + Fd;
ASTATx/y register update to- carry or overflow | ASTATx = DM(..);
dependent instruction Rx = Ry + Rz + CI;
2 Dual forwarding to multiplier
Dual forwarding to multiply operation from N | Fx=Fa+Fb, Fy=FaFb; Timing 1
-2 to Nth location. [unrelated instr];
Fz = Fx * Fy;
Dual forwarding to multiply operation from N | Fx=Fa+Fb, Fy=FaFb; 2
-1 to Nth location Fz = Fx * Fy;
3 Floating point multiply operation to next fixed |Fz = Fx * Fy; 0
point ALU Ra = Rz + Rb;

Table 4-37: Stalls Related to Compute Operations - 64-bit Floating Point Computations with Data Forwarding from N-2/N-1 to Nth

Instruction
Case Example Stall type SHARC+ Stalls
Data forwarding to/from any compute, |Fx:y = .; Data dependence 2
load and 64-bit compute Fa:b = Fx:y + 1;
Data forwarding to/from any compute, |Fx:y = .; 1
load and 64-bit compute [Unrelated instr];
Fa:b = Fx:y + 1;

SHARC+ Core Programming Reference

4-65

Pipeline Flushes and Stalls

Stalls Related to DAG Operations

Table 4-38: Stalls Related to DAG Operations

| Details Example Stall type |SHARC+
Stalls*
1 | Unconditional DAG register load -to- use Ix = DM(..); Data de- 4
DM (Ix..) = ..; pendence
2 | Conditional DAG register load (with condi- |Rx = PASS Ry; 5
tion set just before) -to- use IF eq Ix = DM(..);
DM (IXx...) = ..;
3 | Condition set -to- conditional post modify |Rx = PASS Ry; 5
DAG operation on Ix -to- any DAG opera- | 1 egDM(Ix, ..);
tion on same Ix
DM(Ix..) = ..;
4 | Load of DAG register with immediate value |Ix = [IMM VALUE]; 0
—to- use DM (Ix..)..

*An additional stall occurs if :
* the condition that is set happens through a write to the REGE ASTATX register, and
* aregister load is used with the sign extension modifier.
Stalls and Flushes Related to Branch and Prediction Operations
These stalls and pipeline flushes include those related to jumps, calls, returns, rframe, and cjump.

In most of the cases, any branch instruction flushes the pipeline and some cycles are lost. Branch prediction attempts
to minimize the loss of cycles. The following table describes the number of lost cycles when BTB is disabled or the
branch entry is not present in BTB (for example, a BTB miss). If the branch is the one with a delay slot of two
instructions, the number of flushed instruction is lesser by 2.

Table 4-39: Stalls and Flushes Related to Branch and Prediction Operations - Jump and Pass

| Details Example Stall type SHARC+ Stalls
(non-delayed vs. de-
layed)

1 | Unconditional branch Jump (My, Ix) ; Pipeline flush 6/4**

2 | Condition set -to- conditional Rx = PASS Ry; Control dependence | 11/9*

branch IF eq Jump (My, Ix);

In addition to the above stalls, there are other data and control dependence stalls in relation to branch instructions.
The cycles in the table below are additive to the cycles incurred due to other reasons as described in the tables above
in this section.

4-66 SHARC+ Core Programming Reference

Pipeline Flushes and Stalls

Table 4-40: Stalls and Flushes Related to Branch and Prediction Operations - Cjump, Rframe, Pass, and Jump

indirect branch

Jump (Ix..) = ..;

| Details Example Stall type SHARC+
Stalls
1 | CJUMP/RFRAME —to- use of 16 CJUMP; Data dependence 6
DM(I6,..) = ..;
2 | CJUMP/RFRAME —to- read of 16/7 RFRAME ; 6
RO = I6;
3 | Unconditional DAG register load -to- use in | Ix = DM(..); 4+

4 | Conditional DAG register load (with condi-
tion set just before) -to- use in indirect jump

Rx = PASS Ry;
IF eq Ix = DM(..);
Jump (Ix..) = ..;

Data and control de- | 5*F

pendence

T One additional cycle of stall if register load is used with sign extension modifier

* One additional cycle of stall if condition set happens through write to the REGE ASTATX or REGE ASTATY

register.

** As an exception, RTT (DB) and RTT causes 7 cycles of pipeline flush.

***Total of two cycles of stall for multiplier generated conditions

Table 4-41: Stalls and Flushes Related to Branch and Prediction Operations - Hardware Loops

Case Example Stall type | SHARC+
Stalls
On termination of E2 active and LCNTR = 4, DO (PC,2) UNTIL LCE; Pipeline 11
short loops flush
On termination of arithmetic con- |DO (PC,2) UNTIL EQ; 11
dition based loops
Write to CCNTR to LCE based CCNTR = 4; Timing 1
instruction If not LCE RO = R1;
Start of 1,2,4 instruction loop LCNTR = 4, DO (PC,2) UNTIL LCE; 0
Table 4-42: Stalls and Flushes Related to Branch and Prediction Operations - Miscellaneous
Case Example Stall type | SHARC+
Stalls
During the execution of first four instruc- Loop state | 4-N
tions of an unrolled loop, when COF machine
(change of flow) is at Nth position in loop
from top, where N = 0-3

SHARC+ Core Programming Reference

4-67

Pipeline Flushes and Stalls

Table 4-42: Stalls and Flushes Related to Branch and Prediction Operations - Miscellaneous (Continued)

Case Example Stall type | SHARC+
Stalls

If RTS/RTTI is returning to a loop at “Last- Data de- 4-N
Addr”-N, where N = 0-3 pendence
Jump with loop abort Jump <Target> (LA); 4
Target/next-to-target of CALL/RTS/RTT it- 3
self being an RTS/RTT
Target of CALL/RTS/RTT itself being a 1
Jump
Loop-stack modification followed by 5
RTS/RT1/Jump
SREG or SYSCTL update to N+2 instruc- |Bit set MODE1l CBUFEN; Control de- |5
tion [Instr]; pendence

DM (I0..);
Bit set/clear MODE1 PEYEN to N+2 in- Bit set MODEl PEYEN; 0
struction [Instr];

DM (IO..);

Stalls Related to Data Move Operations

Table 4-43: Stalls Related to Data Move Operations

Case Example Stall type SHARC+ Stalls
Floating point compute or any multiplier operation fol- Fl1 = F2+F3; Timing 1
lowed by move of the result to any register outside the rele- | ysTaT1 = F1;
vant PE
Condition set followed by a conditional load of a DAG reg |[RO = R1 + 1; 1
followed by move of that reg to any other Ureg IF EQ I0=PM(<Addr>);

USTAT1=1I0;
Access of any Timer core register TCOUNT = USTATI1; 1
Read of these registers: IRPTL, IMASKP, MODEISTK, RO = IRPTL; 1
LPSTK, CCNTR, LCNTR, PCSTK, PCSTKE, MODEI1,
FLAGS, ASTATx/y, STKYx/y, FADDR, DADDR
Write Followed by Read of these registers: IMASK, US- USTAT1=DM (<Addr>) ; 1
TAT, MMASK, MODE2 R0 USTATI:
Read and write of any CMMR RO = dm(SYSCTL) ; 0-4

4-68 SHARC+ Core Programming Reference

Core Event Controller Exceptions

Table 4-44: DAG Register Loading for SHARC Product Families

Model DAG Stall Condition Stall Examples Stall Cycles
ADSP-2106x"! Any DAG registers in same DAG i0=>i5, b3=>b3; 1
ml12=>I15
ADSP-2116x! Any same DAG register number in same i0=>b0, b3=>b3; 1
DAG m12=5112
ADSP-2126x! Any same DAG register number in same i0=>b0, b3=>b3; 1

N DAG (except M regs, stall only if same reg- |:1_
ADSP-2136x 2ADSP-2137x2 © 8 |it0=>110,

ADSP-214xx?
ADSP-SC58x

ister is reused) (m2=>12 tall)
miz=> nos

*1 Three stage pipeline. These products are not included in this manual.

*2 Five stage pipeline. These products are not included in this manual.

Core Event Controller Exceptions

The SHARC+ core uses the system bus infrastructure that appears on many processors from Analog Devices. In this
bus architecture, external interrupts are managed by the System Event Controller (SEC).

NOTE: If porting code from previous SHARC processors, modify the code to interface with the SEC and remove
existing support for external interrupts.

Table 4-45: Core Event Controller Exceptions

Interrupt Source Interrupt Condition Return Register Return Instruction IVT level
HW stack PC stack overflow STKYx RTI 5, SOVFI
HW stack Loop stack overflow STKYx RTI 5, SOVFI
HW stack Status stack overflow STKYx RTI 5, SOVFI
HW stack Restricted instruction se- | N/A RTI 20, RINSEQI
quence
L1 Memory Parity error'! N/A RTI 3, PARI
Sequencer Tllegal opcode detect N/A RTI 4, ILOPI
System System event interrupt > | SEC_ID RTI 15, SECI
SW Bit set IRPTL SFTOI N/A RTI 28, SFTOI
SW Bit set IRPTL SFT1I N/A RTI 29, SFT1I
SwW Bit sec IRPTL SFT2I N/A RTI 30, SFT2I
SW Bit set IRPTL SFT3I N/A RTI 31, SFT3I

*1 See Parity Error Detection for L1 Accesses.

SHARC+ Core Programming Reference 4-69

Core Event Controller Exceptions

*2 See Illegal Opcode Error Detection for Instruction Fetch.
*3 See the ADSP-SC58x SHARC Processor Hardware Reference.

Hardware Stack Exceptions

The hardware stack (status stack, loop stack and PC stack) conditions trigger a maskable interrupt shown in the
Hardware Stack Interrupt Overview table. The overflow and full flags provide diagnostic aid only. Programs should
not use these flags for runtime recovery from overflow. The empty flags can ease stack saves to memory. Programs
can monitor the empty flag when saving a stack to memory to determine when the processor has transferred all the
values. For a complete interrupt list, see the Interrupt Priority and Vector Table.

HW Loop Stack Exceptions (RINSEQI)

Because of re-timing in the 11 stage pipeline, the following are situations when the restricted instruction sequence

interrupt (RINSEQ)I) is generated.

1. In a nested loop, where the outer loop is an arithmetic loop and the inner loop is a counter based loop. Also the
LADDR of the inner loop coincides with LADDR-2 of the outer loop. Then the LADDR of the inner counter
based loop cannot be a branch instruction.

2. Last five instructions of an Arithmetic Loop cannot be a delayed branch.

Software Interrupts

Software interrupts (or programmed exceptions) are instructions which explicitly generate an exception. The inter-
rupt overview is shown in the Software Interrupt Overview table. For a complete interrupt list, see the Interrupt
Priority and Vector Table.

The REGF IRPTL register provides four software interrupts. When a program sets the latch bit for one of these
interrupts (REGF_IRPTL .SFTOTI, REGF TIRPTL.SFT 171, REGF IRPTL. SFT21I, or

REGF IRPTL.SFT3I), the sequencer services the interrupt, and the processor branches to the corresponding in-
terrupt routine. Software interrupts have the same behavior as all other maskable interrupts. For more information,
see the Core Interrupt Control appendix.

If programs force an interrupt by writing to a bit in the REGF IRPTL register, the processor recognizes the inter-
rupt in the following cycle, and eleven cycles of branching to the interrupt vector follow the recognition cycle.

Interrupt Priority and Vector Table

There are 32 core interrupts supported by SHARC+ core. The various interrupts caused by external events on previ-
ous SHARC processors have been replaced by the single SECI interrupt. The relative priorities of the remaining
interrupts are unchanged, except for CB71. As the interrupt numbers are different the vector offsets are also changed
from previous SHARC processors.

CB71 is used to trap software stack overflow. Having this interrupt at a high priority enables stack overflow to be

detected in high priority handlers.

4-70 SHARC+ Core Programming Reference

Core Event Controller Exceptions

NOTE: Any reset asserted to SHARC+ core is not honored if execution control is in Emulation space. Also the
reset asserted is not latched if the core is in Emulation space, so if the program wants to reset the core, then
the core should be first brought out of Emulation space and then reset should be asserted.

NOTE: Interrupt numbers 3, 4, 8, 15, 20 have been added for the SHARC+ core.

Table 4-46: Interrupt Priority and Vectors

Interrupt Num- | Vector Offset Interrupt Name | Function
ber
0 0x00 EMUI Emulator (HIGHEST PRIORITY)
1 0x04 RSTI Reset
2 0x08 Reserved Reserved
3 0x0C PARI L1 Parity Error
4 0x10 ILOPI Illegal opcode detected
5 0x14 CB71 Software stack (Circular Buffer 7) Overflow
6 0x18 1ICDI Unaligned LW/BW access + unintentional CMMR/SMMR ac-
cess
7 0x1C SOVFI Status loop or mode stack overflow; or PC stack full
8 0x20 ILADI Illegal Address Space detected
9 0x24 IIR2 (For IIR2 Interrupt (For ADSP-SC59x)
ADSP-SC59x)
Reserved Reserved (ADSP-SC57x, ADSP-SC58x, and ADSP-2156x)
(ADSP-SC57x,
ADSP-SC58x,
and
ADSP-2156x)
10 0x28 1IR3 (For 1IR3 Interrupt (For ADSP-SC59x)
ADSP-SC59x)
Reserved Reserved (ADSP-SC57x, ADSP-SC58x, and ADSP-2156x)
(ADSP-SC57x,
ADSP-SC58x,
and
ADSP-2156x)
11 0x2C TMZHI Core Timer (high priority option)
12 0x30 BKPI User Hardware Breakpoint

SHARC+ Core Programming Reference 4-71

Core Event Controller Exceptions

Table 4-46: Interrupt Priority and Vectors (Continued)

Interrupt Num- | Vector Offset Interrupt Name | Function
ber
13 0x34 FIR (For FIR Interrupt (For ADSP-2156x)
ADSP-2156%)
FIRO (For FIRO Interrupt (For ADSP-SC59x)
ADSP-SC59x)
Reserved (For Reserved (For ADSP-SC57x and ADSP-SC58x)
ADSP-SC57x
and ADSP-
SC58x)
14 0x38 IIR (For IIR Interrupt (For ADSP-2156x)
ADSP-2156x)
IIRO (For IIRO Interrupt (For ADSP-SC59x)
ADSP-SC59x)
Reserved (For Reserved (For ADSP-SC57x and ADSP-SC58x)
ADSP-SC57x
and ADSP-
SC58x)
15 0x3C SECI System event controller interrupt
16 0x40 IIR1 (For IIR1 Interrupt (For ADSP-SC59x)
ADSP-SC59x)
Reserved Reserved (ADSP-SC57x, ADSP-SC58x, and ADSP-2156x)
(ADSP-SC57x,
ADSP-SC58x,
and
ADSP-2156x)
17 0x44 Reserved Reserved
18 0x48 Reserved Reserved
19 0x4C Reserved Reserved
20 0x50 RINSEQI Restricted Instruction Sequence
21 0x54 CB15I1 Circular Buffer 15 Overflow
22 0x58 TMZLI Core Timer (Low Priority Option)
23 0x5C FIXI Fixed-point overflow exception
24 0x60 FLTOI Floating-point overflow exception
25 0x64 FLTUI Floating-point underflow exception
26 0x68 FLTII Floating-point invalid exception
27 0x6C EMULI Emulator low priority interrupt
28 0x70 SFTOI User software interrupt 0
4-72 SHARC+ Core Programming Reference

Table 4-46: Interrupt Priority and Vectors (Continued)

Core Event Controller Exceptions

Interrupt Num- | Vector Offset Interrupt Name | Function

ber

29 0x74 SFT1I User software interrupt 1

30 0x78 SFT2I User software interrupt 2

31 0x7C SFT3I User software interrupt 3 (LOWEST PRIORITY)

Internal Interrupt Vector Table Location

The default location of the SHARC processor's interrupt vector table (IVT) depends on control bits:
CMMR SYSCTL.IIVTand CMMR SYSCTL.EIVT bits determine the IVT location. The following table sum-
marizes the selection of IVT location.

Table 4-47: IVT Location Selections

EIVT InvT IVT location

1 0 L3

0 0 L2 ROM (default)
0 1 L1

Exact address in each memory can be found in detailed address map. Reset routine address is always fixed for a given
product. This address is also available in detailed address map.

The internal interrupt vector table CMMR SYSCTL. IIVT bit in the register overrides the default placement of the
vector table. If CMMR SYSCTL.IIVT isset (=1), the interrupt vector table starts at internal RAM regardless of the
booting mode. If CMMR SYSCTL. IIVT is cleared (=0), the interrupt vector table starts in the L2 ROM.

For information about processor booting, see the processor-specific hardware manual.

Core Interrupt Registers

All core interrupts are programmed through the REGF IRPTL, REGF IMASK, and REGF IMASKP registers.
The bit for each interrupt in these registers is indexed by interrupt number.

NOTE: Unlike previous SHARC processors, the SHARC+ core does not have an LIRPTL register.

All Interrupts Automatically Push Status

On the SHARCH+ core, all interrupts push the status stack.

NOTE: This functionality is an extension of the push of the status stack which was provided by only the IRQ and

core timer interrupts on previous SHARC processors.

The sequencer automatically pushes the current value of the REGF ASTATX, REGF ASTATY, and
REGF MODEL registers on the status stack. Then, the sequencer clears the bits in the REGF MODE1 that are set in

SHARC+ Core Programming Reference

4-73

Core Event Controller Exceptions

the REGF MMASK register, before branching to an interrupt vector. If the REGF MMASK . IRPTEN bit is cleared
by this operation, interrupts are disabled globally before another (higher priority) interrupt can preempt the current
interrupt.

The JUMP(CI) and RTT instructions always automatically pop the status stack.

Self-Nesting Mode for System Event Controller Interrupt (SECI)

The SHARC+ core provides a mode bit, REGF MODEZ2 . SNEN. This bit enables self-nesting interrupt mode for the
SECI interrupt only. Self-nesting operation also uses the nesting bit, REGF MODE1STK.NESTM.

1. The REGF MODE2 . SNEN bit enables self-nesting for SECI only.

* When REGF_MODE2.SNEN =1, the REGF_IMASKP.SECT bit can latch even when it is currently be-
ing serviced.

* IfREGF MODE1.IRPTEN =1, REGF MODE1.NESTM =1 and REGF_MODE2 . SNEN =1 and the
REGF IMASKP.SECI bit is currently being serviced, the REGF IMASKP.SECI bit is not masked
but lower priority interrupts are. If a higher priority interrupt interrupts the REGF IMASKP.SECI bit
then it becomes masked.

2. The REGF_MODEL.NESTM and REGF_MODE1STK.NESTM bits control whether the
REGF_ IMASKP.SECI bit is cleared and controls whether the interrupts are implicitly masked in NESTM
mode.

* When REGF_MODE2 . SNEN =1, on vectoring to the SECI ISR, after automatically pushing the previous
value of the REGF MODEI register, the REGF MODE1 . NESTM bit is automatically set.

* On executing RTI, when the current interrupt is SECI and the REGF MODE1STK.NESTM bit is set, the
REGF IMASKP register and interrupt mask are not changed. Otherwise, the REGE IMASKP register
and the masked interrupts are modified as normal. After the REGE MODE1STK register is tested, the
RTT instruction pops the mode stack as normal.

The interrupts masked implicitly in NESTM mode can always be calculated from the REGE IMASKP register and
REGF_MODEZ2 . SNEN bit. When REGF_MODE2 . SNEN =1 and the lowest numbered interrupt set in the

REGF IMASKP register is SECI, all interrupts down to but not including SECI are masked. Otherwise, all inter-
rupts down to and including the lowest numbered bit set in the REGE IMASKP register are masked, unless no bit
is set in the REGF IMASKP register, indicating no interrupts are implicitly masked.

The global interrupt enable bit, REGF MODEL . IRPTEN, and interrupt nesting enable bit,
REGF MODEL .NESTM, take precedence over REGF MODEZ2 . SNEN. The SECI ISR is only interrupted by anoth-
er incoming SECI if REGF_MODE1.IRPTEN =1, REGF MODE1.NESTM =1, and REGF_MODE2 . SNEN =1.

4-74 SHARC+ Core Programming Reference

Core Event Controller Exceptions

Table 4-48: SNEN and NESTM Combination and its Effect

SNEN NESTM Effect
SECI Self Nesting ! Higher Priority Interrupt
Nesting
0 0 NO NO
0 1 NO YES
1 0 YES NO
1 1 YES YES

*1 SECI s not stored in IRPTL if already in an SEC ISR. So to avoid missing any SECI when already in an SEC ISR, self-nesting of
SECI must be enabled by setting SNEN bit in MODE2.

Interrupt Control Latencies

The latency for changes to the REGE IMASK to take effect is up to one cycle.
The latency for changes to the REGF MODE1 . IRPTEN is up to one cycle.
The latency for changes to the REGF_MODE1 .NESTM is up to one cycle.

The latency for changes to the REGF MODE2 . SNEN is up to one cycle.

Hardware Status Stack Access Register

It is possible to read and write the MODEL1 value at the top of the status stack using the REGF MODE1STK univer-
sal register.

NOTE: The REGF MODE1STK register is not available on previous SHARC processors.

This makes it possible to save the top of the status stack to memory without enabling any undesired modes when
the REGE MODELI register is popped.

REGF MODE1STK can be an operand of the Type 18 register bit manipulation instructions.

For example, this code sequence copies the top of the status stack to the software stack without re-enabling inter-
rupts as would be the case had the value pushed on entry to an interrupt handler been popped.

DM(I7,M7) = MODE1STK; //save original MODE1

MODE1STK = RND32 | TRUNC |NESTM;

POP STS; // MODEl set to known safe value
DM(I7,M7) = ASTATX; // save original ASTATX
DM(I7,M7) = ASTATY; // save original ASTATY

Core Interface to SEC

The interface to the System Exception Controller (SEC) is similar to the interface used on other processors from
Analog Devices. A core memory mapped register, CEC_SID, is provided. This register is read within the SECI

SHARC+ Core Programming Reference 4-75

Core Event Controller Exceptions

interrupt handler to identify the external event that caused the interrupt. It is also written, with any value, to ac-
knowledge the interrupt and allow the SEC to raise a new interrupt.

When CEC_SID is read by the core, the SID value from the SEC is returned. When it is written, it sends the ACK
signal to the SEC.

Example SEC Handler Using Pseudo Self-Nesting

This handler, or something like it, must be added to the verification suite to ensure system interrupts can be serviced
at a higher priority than low priority core interrupts while being preemptable by higher priority core and system
interrupts. The system exception controller prioritizes external interrupts destined for the core. SECI is raised again
if a higher priority interrupt than the one being serviced comes in.

As SHARC+ processors do not allow a core interrupt to latch while it is being handled, this handler exits interrupt
level with a JUMP (CI) instruction and manipulates the REGE IMASK explicitly to prevent lower priority core
interrupts from preempting the system interrupt while allowing higher priority system interrupts to do so.

/* prior to interrupt IRPTEN=1, NESTM=1, SNEN=0 */

sec_ivt: /*IVT+0x3c*/ /* status pushed automatically */

DM(I7,M7) = PX1;

JUMP sec handler (DB); /* Jump to avoid next IVT entry. */

DM(I7,M7) = PX2;

PX = RO; /* Use PX to save all 40-bits of R-registers on 32-bit stack. */
sec handler:

DM(I7,M7) = PX1;

DM(I7,M7) = PX2;

DM(I7,M7) = I8;

DM(I7,M7) = MS8;

/* Save imask somewhere other than s/w stack as it is not part of
thread context. We only want to save the mask when leaving
thread level. Use a counter to see when that happens. */

I8 = saved imask;

RO = PM(count imask saves);
RO = PASS RO;

IF EQ PM(M13,I8) = IMASK;
RO = RO + 1;
PM(count imask saves) = RO;

BIT CLR IMASK O0xffff0000; /* Mask lower priority core interrupts. */

M8 = DM(SEC ID); /* Source Interrupt identifier (SID) from SEC */

/* Save pc and status on software stack with rest of thread context,

and leave interrupt level so SECI can latch again. */

DM (I7,M7) = PCSTK;

DM(I7,M7) = MODELSTK;

MODE1STK = safe model value;

JUMP sec handler at thread level (CI, DB); /* Jump to exit interrupt level. */
POP PCSTK;

I8 = sec id vector;
sec_handler at thread level:
DM (SEC _ID) = MS8; /* Tell SEC interrupts can latch again */

4-76 SHARC+ Core Programming Reference

Core Event Controller Exceptions

/* Higher priority system interrupts may latch from here. */

DM (I7,M7) ASTATX; /* Save rest of thread status */

DM(I7,M7) ASTATY;

I8 = PM(M8,I8); /* Call 2nd level handler based on SID */

CALL (M13,I8) (DB):;

RO = M8; /* Pass SEC ID */

NOP;

/* Assume 2nd level handler returns in same state as it is called:
interrupts globally disabled and SID in r0. */

DM (SEC_END) = RO; /* Tell SEC interrupt is handled. */

/* Lower priority system interrupts may latch from here. */

ASTATY DM(1,I7); /* Push status and pc back on h/w stacks. */
ASTATX DM (2,1I7);

PUSH STS, PUSH PCSTK;

MODE1STK = DM(3,I7);

PCSTK = DM(4,17);

I8 = saved imask; /* Restore IMASK if returning to thread level */
RO = PM(count imask saves);

RO = RO - 1;

IF EQ IMASK = PM(M13,1I8);

PM(count imask saves) = RO;

M8 = DM(5,1I7);
I8 = DM(6,I7);
PX2 = DM(7,1I7);
PX1 = DM(8,1I7)

.
’

RO = PX;

PX2 = DM(9,17);
PX1 = DM(10,1I7);
RTS (DB) ;

MODIFY (I7, 10);
POP STS;

Example SEC Handler in Self-Nesting Interrupt Mode

This handler, or something like it, must also be added to the verification suite to test self-nesting interrupt mode.
/* prior to interrupt IRPTEN=1, NESTM=1, SNEN=1 */

sec_ivt: /*IVT+0x3c*/

/* status pushed automatically */

DM(I7,M7) = PX1;
JUMP sec handler (DB); /* Jump to avoid next IVT entry. */
DM(I7,M7) = PX2;

PX = RO; /* Use PX to save all 40-bits of R-registers on 32-bit stack. */
sec handler:

DM(I7,M7) = PX1;

DM(I7,M7) = PX2;

DM(I7,M7) = 18;

DM(I7,M7) = MS§;

M8 = DM(SEC ID); /* Source Interrupt identifier (SID) from SEC */
DM (SEC_ID) = M8; /* Acknowledge */

SHARC+ Core Programming Reference 4-77

Core Event Controller Exceptions

/* Higher priority system interrupts may latch from here. */

/* Save pc and status on software stack with rest of thread context */
DM (I7,M7) PCSTK;

DM (I7,M7) MODE1STK;

MODE1STK = safe model value;

POP PCSTK, POP STS;

DM(I7,M7) = ASTATX; /* Save rest of thread status */
DM(I7,M7) = ASTATY;

I8 = sec id vector;

I8 = PM(M8,I8); /* Call 2nd level handler based on SID */

CALL (M13,I8) (DB):;

RO = M8; /* Pass SID */

NOP;

/* Assume 2nd level handler returns in same state as it is called:
interrupts globally disabled and SID in r0. */

DM (SEC_END) = RO; /* Tell SEC interrupt is handled. */

/* Lower priority system interrupts may latch from here. */
ASTATY DM(1,I7); /* Push status and pc back on h/w stacks. */
ASTATX DM (2,1I7);

PUSH STS, PUSH PCSTK;

MODE1STK = DM(3,1I7);

PCSTK = DM(4,17) ;

M8 = DM(5,I7); /*Restore context and return */

I8 = DM(6,17);

PX2 = DM(7,1I7);
PX1 = DM (8,I7);
RO = PX;

PX2 = DM(9,1i7);
RTI (DB);

PX1 = DM(10, I7);
MODIFY (I7, 10);

4-78 SHARC+ Core Programming Reference

Timer

5 Timer

The SHARC+ core includes a programmable interval timer. The REGF MODEZ2, REGF TCOUNT, and
REGF TPERIOD registers control timer operations.

Features

The timer has the following features:
* Simple programming model of three registers for interval timer
* Provides high or low priority interrupt
* If counter expired timer expired pin is asserted

* If core is in emulation space timer halts

Functional Description
The bits that control the timer are given as follows:

* Timer Enable (REGF MODEZ2 . TIMEN): This bit directs the processor to enable (if 1) or disable (if 0) the tim-
er.

* Timer Count (REGF TCOUNT): This register contains the decrementing timer count value, counting down
the cycles between timer interrupts.

* Timer Period (REGF TPERIOD): This register contains the timer period, indicating the number of cycles be-
tween timer interrupts. The REGF TCOUNT register contains the timer counter.

To start and stop the timer, programs use the REGF MODE2 . TIMEN bit. With the timer disabled
(REGF_MODE2.TIMEN = 0), the program loads REGE TCOUNT with an initial count value and loads
REGE TPERIOD with the number of cycles for the desired interval. Then, the program enables the timer
(REGF_MODEZ2 . TIMEN=1) to begin the count.

On the core clock cycle after REGE TCOUNT reaches zero, the timer automatically reloads REGE TCOUNT from
the REGF TPERIODregister. The REGE TPERIOD value specifies the frequency of timer interrupts.

The number of cycles between interrupts is TPERIOD + 1. The maximum value of TPERIOD is 232 - 1.

SHARC+ Core Programming Reference 5-1

Functional Description

The timer decrements the REGE TCOUNT register during each clock cycle. When the REGF TCOUNT value
reaches zero, the timer generates an interrupt and asserts the TMREXP output pin high for several cycles (when the
timer is enabled), as shown in the Core Timer Block Diagram figure. For more information about TMREXP pin
muxing refer to system design chapter in the processor-specific hardware reference.

Programs can read and write the REGE TPERIOD and REGF TCOUNT registers by using universal register trans-
fers. Reading the registers does not effect the timer. Note that an explicit write to REGF TPERIODtakes priority
over the sequencer's loading REGF TCOUNT from REGF TPERIOD and the timer's decrementing of

REGE TCOUNT. Also note that REGF TCOUNT and REGF TPERIOD are not initialized at reset. Programs
should initialize these registers before enabling the timer.

DATA BUS

A

32 1 32 1
\

TPERIOD

32 1
Y
MULTIPLEXER

32 1

32 1
Y

32 1 TCOUNT

Y

DECREMENT

YES INTERRUPT,

ASSERT TMREXP PIN

Figure 5-1: Core Timer Block Diagram

To start and stop the timer, the REGF MODE2 . TIMEN has to be set or cleared respectively. The latency of this bit
is two core clock cycles at the start of the counter and one core clock cycle at the stop of the counter shown in the

Timer Enable and Disable figure.

5-2 SHARC+ Core Programming Reference

Figure 5-2: Timer Enable an

Timer Except

TIMER ENABLE

CCLK

TIMER DISABLE

CCLK

d Disable

ions

Set TIMEN
in MODE2

TCOUNT=N

Clear TIMEN
in MODE2

TCOUNT=N+1 TCOUNT=N+2

Timer Active

TCOUNT=M-1 TCOUNT=M-2 TCOUNT=M-3

Timer Inactive

Timer Exceptions

The timer expired event REGE TCOUNT decrements to zero) generates two interrupts, TMZHI and TMZLI. For
information on latching and masking these interrupts to select timer expired priority, see Latching Interrupts section

in the Program Sequenc

er chapter.

The Timer exception overview is shown in the Timer Exceptions table. For a complete interrupt list, see Interrupt
Priority and Vector Table.

One event can cause multiple exceptions. The timer decrementing to zero causes two timer expired interrupts to be
latched, TMZHI (high priority) and TMZLI (low priority). This feature allows selection of the priority for the tim-

er interrupt. Programs should unmask the timer interrupt with the desired priority and leave the other one masked.

If both interrupts are unmasked, the processor services the higher priority interrupt first and then services the lower

priority interrupt.

Table 5-1: Timer Exceptions

Interrupt Source Interrupt Condition Return Register Return Instruction IVT level
Core Timer Timer Priority high n/a RTI 11, TMZHI
Timer Priority low n/a RTI 22, TMZLI

SHARC+ Core Programming Reference

6

Data Address Generators

Data Address Generators

The data address generators (DAGs) generate addresses for data moves to and from data memory (DM) and pro-
gram memory (PM). By generating addresses, the DAGs let programs refer to addresses indirectly, using a DAG
register instead of an absolute address. The DAG's architecture, which appears in the Data Address Generator

(DAG) Block Diagram figure (see Features), supports several functions that minimize overhead in data access rou-

tines.

Features

The data address generators have the following features.

Supply address and post-modify. Provides an address during a data move and auto-increments the stored ad-
dress for the next move.

Supply pre-modified (indexed) address. Provides a modified address during a data move without incrementing
the stored address.

Modify address. Increments the stored address without performing a data move.

Bit-reverse address. Provides a bit-reversed address during a data move without reversing the stored address, as
well as an instruction to explicitly bit-reverse the supplied address.

Byte/Normal Word Space Conversion. Converts byte space address to normal word space address and vice versa.

Broadcast data loads. Performs dual data moves to complementary registers in each processing element to sup-
port single-instruction multiple-data (SIMD) mode.

Circular Buffering. Supports addressing a data buffer at any address with predefined boundaries, wrapping
around to cycle through this buffer repeatedly in a circular pattern.

Indirect Branch Addressing. DAG2 supports indirect branch addressing which provides index and modify ad-
dress registers used for dynamic instruction driven branch jumps (Md,Ic) or calls (Md,Ic). For more informa-
tion, see Direct Versus Indirect Branches in the Program Sequencer chapter.

Semaphores. Semaphores are essential for shared memory multi-core systems where multiple cores are compet-
ing for the same shared resource and the access needs to be atomic. DAGs support issuing of exclusive accesses
on the AXI channel to support semaphores.

SHARC+ Core Programming Reference 6-1

Functional Description

* Scaled Address Arithmetic. When addressing byte address space, the access size options (SW, NW, LW) provide
address scaling for modify, load, and store operations.

Functional Description

As shown in the Data Address Generator (DAG) Block Diagram figure, each DAG has four types of registers. These
registers hold the values that the DAG uses for generating addresses. The four types of registers are:

* Index registers (10-17 for DAGI and 18-115 for DAG2). An index register holds an address and acts as a pointer
to memory. For example, the DAG interprets DM (I0,0) and PM (I8, 0) syntax in an instruction as address-
es.

* Modify registers (MO-M7 for DAGI and M8-M15 for DAG2). A modify register provides the increment or
step size by which an index register is pre- or post-modified (indexed) during a register move. For example, the
DM (I0,M1) instruction directs the DAG to output the address in register I0 then modify the contents of T0
using the M1 register.

* Length and base registers (LO-L7 and B0-B7 for DAG1 and L8-L15 and B8-B15 for DAG2). Length and base
registers set the range of addresses and the starting address for a circular buffer. For more information on circu-
lar buffers, see Circular Buffering Mode.

DM/PM DATA BUS

a

64

3

64

[]

L REGISTER
NEIGHBOR PAIRS

(4x2)

— |

y
B REGISTER
NEIGHBOR PAIRS

(4x2)

64

FROM
INSTRUCTION

v

64

[Y

I REGISTER
NEIGHBOR PAIRS
(4x2)

M REGISTER

y
J NEIGHBOR PAIRS J
(4x2)

A

32

< MODULAR
FOR INTERRUPTS LOGIC

32 7
¥
MUX \ MODEL
y MUX
BITREV MODE
10/18 UPDATE
32
32 — | sTkvx

BITREV INSTRUCTION
(OPTIONAL)
FOR ALL | REGISTERS
USING BITREV INSTRUCTIONS

32 32

PM ADDRESS BUS (DAG2)

v

-

DM ADDRESS BUS (DAG1)
<

v

Figure 6-1: Data Address Generator (DAG) Block Diagram

NOTE: The DAG provides scaling for the value from a Modify register if making a long word, word, or short
word access to byte space address. The same scaling factor is used for long word and word accesses.

6-2 SHARC+ Core Programming Reference

DAG Address Output

The following sections describe how the DAGs output addresses.

Address Versus Word Size

The internal memory accommodates the following word sizes:

64-bit long word data (Iw)

40-bit extended-precision normal word data (nw, 48-bit)
32-bit normal word data (nw, 32-bit)

16-bit short word data (sw, 16-bit)

8-bit byte data (bw, 8-bit)

Functional Description

NOTE: For short word, normal word, or long word accesses, the address space determines which memory word
size is accessed. An important item to note is that the DAG automatically adjusts the output address per
the word size of the address location. An exception to this rule is that the (Iw) qualifier allows 64-bit access

using a normal word address.

The address space does not select the memory word size for byte addresses. Accesses to byte addresses obey

the size of the opcode (lw, unqualified, sw, or bw) not the address space.

The address adjustment allows internal memory to use the address directly as shown in the following example.

I15=LW addr;

pm(i15,0)=r0; /* 64-bit transfer */
I7=NW_addr;

dm(17,0)=r8; /* 32-bit transfer */
I7=SW_addr;

dm(17,0)=rl4; /* 16-bit transfer */
I7=BW _addr;

dm(17,0)=rl4; /* byte transfer */

DAG Register-to-Bus Alignment

There are a number of word alignment types for DAG registers and PM or DM data buses:

Byte word (8-bit)

Short word (16-bit)

Normal word (32-bit)
Extended-precision normal word (40-bit)

Long word (64-bit)

SHARC+ Core Programming Reference

6-3

DAG Register-to-Bus Alignment

32-Bit Alignment

The DAGs align normal word (32-bit) addressed transfers to the low order bits of the buses. These transfers between
memory and 32-bit DAG1 or DAG2 registers use the 64-bit DM and PM data buses. The Normal Word (32-Bit)
DAG Register Memory Transfers figure illustrates these transfers.

DM OR PM DATA BUS

63 31 0
[0X0000 0000 [|
]

31 Y 0

DAG1 OR DAG2 REGISTERS

Figure 6-2: Normal Word (32-Bit) DAG Register Memory Transfers
40-Bit Alignment

The DAGs align register-to-register transfers to bits 39-8 of the buses. These transfers between a 40-bit data register
and 32-bit DAG1 or DAG2 registers use the 64-bit DM and PM data buses. The DAG Register-to-Data Register

Transfers figure illustrates these transfers.

DM OR PM DATA BUS
63 40 39 8 7 0

[0X00 00 00 [[oxoo |
Py

31 y 0

DAG1 OR DAG2 REGISTERS

Figure 6-3: DAG Register-to-Data Register Transfers
64-Bit Alignment

Long word (64-bit) addressed transfers between memory and 32-bit DAG1 or DAG2 registers target double DAG
registers and use the 64-bit DM and PM data buses. The Long Word DAG Register-to-Data Register Transfers figure

illustrates how the bus works in these transfers.

DM OR PM DATA BUS

63 31 0
[‘ [‘ |
31 y 0 31 ¥ 0
IMPLICIT (NAMED + OR - 1) EXPLICIT (NAMED)
DAG1 OR DAG2 REGISTERS DAG1 OR DAG2 REGISTERS

Figure 6-4: Long Word DAG Register-to-Data Register Transfers
DAG1 Versus DAG2

DAG registers are part of the universal register (Ureg) set. Programs may load the DAG registers from memory,
from another universal register, or with an immediate value. Programs may store the DAG registers' contents to
memory or to another universal register.

Both DAGs are identical in their operation modes and can access the entire memory-mapped space. However, the
following differences should be noted.

64 SHARC+ Core Programming Reference

Instruction Types

* Only DAGI is capable of supporting compiler specific instructions like RFERAME and CJUMP.

* Only DAG2 is capable of supporting flow control instruction for indirect branches. Additionally DAG2 access
can cause instruction-conflict cache miss/hits for internal memory execution.

Instruction Types

The DAGs perform several types of operations to generate data addresses. As shown in the Data Address Generator
(DAG) Block Diagram figure, the DAG registers and the MODE1 and MODE?2 registers contribute to DAG opera-
tions. The STKYx registers may be affected by the DAG operations and are used to check the status of a DAG
operation.

NOTE: SISD/SIMD mode, access word size, and data location (internal) all influence data access operations.

Long Word Memory Access Restrictions

If the long word transfer specifies an even numbered DAG register (REGE I [n]0 or 2), then the even numbered
register value transfers on the lower half of the 64-bit bus, and the even numbered register + 1 value transfers on the

upper half (bits 63-32) of the bus as shown below.

I8 = DM(I2,M2); /* 12 loads to I8/9 pair */
PM(I14,M14) = M5; /* stores M5/4 pair to I14%*/

If the long word transfer specifies an odd numbered DAG register (REGF I [n]1 or REGF B[n] 3), the odd
numbered register value transfers on the lower half of the 64-bit bus, and the odd numbered register 1 value
(REGF I[n]0orREGF BI[n] 2 in this example) transfers on the upper half (bits 63-32) of the bus.

In both the even and odd numbered cases, the explicitly specified DAG register sources or sinks bits 31-0 of the long
word addressed memory.

Table 6-1: Neighbor DAG Register for Long Word Accesses (x = B, I, L, M)

DAG Neighbor Registers
x0 and x1 x8 and x9
x2 and x3 x10 and x11
x4 and x5 x12 and x13
x6 and x7 x14 and x15

Alignment requirements in byte space are summarized in the Sizes and Alignment Restrictions in SISD and SIMD
Modes table in the Byte Address Space Overview of Data Accesses section.

Forced Long Word (Iw) Memory Access Instructions

When data is accessed using long word addressing, the data is always long word aligned on 64-bit boundaries in
internal memory space. When data is accessed using normal word addressing and the 1w mnemonic, the program
should maintain this alignment by using an even normal word address (least significant bit of address = 0 for Iw and

SHARC+ Core Programming Reference 6-5

Long Word Memory Access Restrictions

lower 3 bits = 0 for bw addresses). This register selection aligns the normal word or byte word address with a 64-bit
boundary (long word address). For more information, see Unaligned Forced Long Word Access in the Memory chap-
ter.

NOTE: The forced long word (1w) access only effects normal word address and byte address accesses and overrides
all other factors (REGF_MODE1 . PEYEN, CMMR SYSCTL. IMDWBLK3).

All long word accesses load or store two consecutive 32-bit data values. The register file source or destination of a
long word access is a set of two neighboring data registers (the Neighbor DAG Register for Long Word Accesses table)
in a processing element. In a forced long word access (using the 1w mnemonic), the even (normal word address)
location moves to or from the explicit register in the neighbor-pair, and the odd (normal word address) location
moves to or from the implicit register in the neighbor-pair. In the Long Word Move Options example, the following
long word moves can occur.

Long Word Move Options

DM (NW Address) = RO (lw);

/* The data in RO moves to location DM (NW Address), and the data in Rl moves to
location DM(NW Address) */

R15 = DM(NW_ Address) (1lw) ;

/* The data at location DM (NW Address) moves to R14, and the data at location
DM (NW_Address) moves to R15 */

Byte Word (bw) (bwse) and Short Word (sw) (swse) Memory Access Instructions

When data is accessed in byte space, 8-bit data may be accessed with the bw and bwse modifiers, and 16-bit data
with sw and swse modifiers. Unmodified and 1w modified loads and stores behave as they do in normal word

space. This is summarised in the Byte Address Access Modifiers table.

The bw, bwse, sw and swse modifiers may only be used when byte space is addressed. Attempts to access other
address spaces with these instructions cause an Illegal address space access interrupt. See Byte Address Space Over-
view of Data Accesses for details of byte space.

Modifier Size in memory Value loaded to register Value stored
(bw) 8-bits Zero extended to 32-bits Low 8-bits of 32-bit register value
(bwse) 8-bits Sign extend to 32-bits Not allowed, use (bw)
(sw) 16-bits Zero extended to 32-bits Low 16-bits of 32-bit register value
(swse) 16-bits Sign extended to 32-bits Not allowed, use (sw)

32-bits or 40-bits Value in memory 32-bit or 40-bit register value
(Iw) 64-bits Value in memory 64-bit value in register pair

6-6 SHARC+ Core Programming Reference

Instruction Types

Pre-Modify Instruction

As shown in the Pre-Modify and Post-Modify Operations figure, the DAGs support two types of modified address-
ing, pre- and post-modify. Modified addressing is used to generate an address that is incremented by a value or a

register.

When addressing byte space, address scaling affects the output, but does not change the values in the registers. For
more information about address scaling arithmetic, see Enhanced Modify Instruction for Address Scaling.

PRE-MODIFY POST-MODIFY

NO | REGISTER UPDATE | REGISTER UPDATE
SYNTAX: PM(MX, IX) SYNTAX: PM(IX, MX)
DM(MX, IX) DM(IX, MX)

2. UPDATE
D oo %
+ +

OUTPUT 1+M 1+M

Figure 6-5: Pre-Modify and Post-Modify Operations

In pre-modify (indexed) addressing, the DAG adds an offset (modifier), which is either an M register or an immedi-
ate value, to an T register and outputs the resulting address. Pre-modify addressing does not change or update the I

register.

NOTE: Pre-modify addressing operations must not change the memory space of the address.

Post-Modify Instruction

The DAGs support post-modify addressing. Modified addressing is used to generate an address that is incremented
by a value or a register. In post-modify addressing, the DAG outputs the I register value unchanged, then adds an M

register or immediate value, updating the T register value.

When addressing byte space, address scaling affects the output, but does not change the values in the registers. For
more information about address scaling arithmetic, see Enhanced Modify Instruction for Address Scaling,.

PRE-MODIFY POST-MODIFY
NO | REGISTER UPDATE | REGISTER UPDATE
SYNTAX: PM(MX, IX) SYNTAX: PM(IX, MX)
DM(MX, 1X) DM(IX, MX)

2. UPDATE
1. OUTPUT %

L +
]

OuTPUT 1+M 1+M

Figure 6-6: Pre-Modify and Post-Modify Operations

The DAG post-modify addressing type can be used to emulate the push (save of registers) to a sw stack.

Post-Modify Addressing

SHARC+ Core Programming Reference 6-7

Instruction Types

BIT CLR MODEl CBUFEN; /* clear circular buffer*/

nop;

I1 = buffer; /* Index Pointer */

ML = 1; /* Modify */

instruction; /* stall, any non-DAG instruction */
instruction; /* stall, any non-DAG instruction */
R3 = dm(I1,M1); /* lst access */

R3 = dm(I1,M1); /* 2nd access */

Modify Instruction

The DAGs support two operations that modify an address value in an index register without outputting an address.
These two operations, address bit-reversal and address modify, are useful for bit-reverse addressing and maintaining
pointers.

The MODIFY instruction modifies addresses in any DAG index register (I0-I15) without accessing memory.

The syntax for the MODIFY instruction is similar to post-modify addressing (index, then modifier). The MODIFY
instruction accepts either a 32-bit immediate value or an M register as the modifier. The following example adds 4 to
I1 and updates I1 with the new value.

MODIFY (I1,4);
NOTE: If the I register’s corresponding B and L registers are set up for circular buffering, a MODIFY instruction

performs the specified buffer wraparound (if needed).

The MODIFY instruction executes independent of the state of the REGF MODE1 .CBUFEN bit. The MODIFY
instruction always performs circular buffer modify of the index registers if the corresponding B and L registers are
configured, independent of the state of the REGF MODEL . CBUFEN bit.

Enhanced Modify Instruction

Ib = MODIFY (Ia,Mc) ; isan enhanced version of the MODIFY instruction. This instruction loads the modi-
fied index pointer into another index register. If the source and destination registers are different, then:

* The source register (Ia) is not updated.
* The destination register (Ib) receives the result of the modify.

If the B and L registers corresponding to the source I register (Ia) are set up for circular buffering, the MODIFY
instruction performs specified buffer wraparound if it is needed.

The following example assumes that the La and Ba registers that correspond to the source Ia register are set up for
circular buffering, the modify operation executes circular buffer wraparound if it is needed, and the IDb register is
updated with the value after wraparound.

BO = 0x40000;
LO = 0x10000;
I0 = Ox4ffff;
I1 = modify (IO, 2); // Il == 0x40001

6-8 SHARC+ Core Programming Reference

Instruction Types

Immediate Modify Instruction

Instructions can also use a number (immediate value), instead of an M register, as the modifier. The size of an imme-
diate value that can modify an T register depends on the instruction type. For all single data access operations, modi-
fy immediate values can be up to 32 bits wide. Instructions that combine DAG addressing with computations limit
the size of the modify immediate value. In these instructions (multifunction computations), the modify immediate
values can be up to 6 bits wide. The following example instruction accepts up to 32-bit modifiers:

R1 = DM(0x40000000,1I1); /* DM address = I1 + 0x4000 0000 */

The following example instruction accepts up to 6-bit modifiers:

RO = R1 + R2, PM(I8, 0xOB) = R3; /* PM address = I8, I8 = I8 + 0xO0B */

Bit-Reverse Instruction

The BITREV instruction modifies and bit-reverses addresses in any DAG index register (I0-I15) without access-
ing memory. This instruction is independent of the bit-reverse mode. The BITREV instruction adds a 32-bit imme-
diate value to a DAG index register, bit-reverses the result, and writes the result back to the same index register. The
following example adds 4 to I1, bit-reverses the result, and updates I1 with the new value:

BITREV (I1,4);
NOTE: Bit-reverse mode is supported. See Operating Modes. However bit-reverse mode does NOT support ad-

dress scaling for byte space accesses. For more information, see Enhanced Modify Instruction for Address

Scaling.

Enhanced Bit-Reverse Instruction

An enhanced version of the BITREV instruction, that loads the bit reversed index pointer into another index regis-
ter is shown below:

I6 = BITREV(I1,0);

Enhanced Modify Instruction for Address Scaling

When addressing byte address space, the access size options (for example, short word (sw)) provide address scaling
for modify, load, and store operations.

The need to scale indices of arrays of words by 4 for byte-addressed pointer arithmetic necessitates a modify by a
scaled increment. Likewise, scaling is supported in the addressing modes of loads and stores.

Scaling occurs automatically for pointers in the byte-addressed space. In the word-addressed space, scaling of the
offset does not occur. For loads and stores, scaling is by the size of the access (except in the case of (1w)), while for
modifies it is dependent on the instruction, specified in the (sw) or (nw) flag. Circular buffering interprets the
length in terms of the unit size too, so the value in the length register is also scaled.

SHARC+ Core Programming Reference 6-9

Instruction Types

Byte or short word access to any space other than byte address space results in an illegal address space (ILAD) inter-
rupt and the access ignores the size information. Modify instructions with (sw) flag with the I-register in non-byte
addressed space and (nw) flag in any long word or short word address space also results in ILAD interrupt.

The existing modify instruction is defined to do no scaling on its index, regardless of whether the I-register is in the
byte- or word-address space. This is for backwards compatibility. The (sw) or (nw) version performs conditional
scaling of the index if the I-register is in the byte address space (see Type 7a ISA/VISA (cond + comp + index modi-

fy).

For example:

Existing enhanced MODIFY instruction (ADSP-214xx)
Ia = MODIFY (Ib,Mc) ; /* Add Mc bytes, Ia=Ib+Mc */
Does not scale the modifier, whatever the address space

Enhanced MODIFY instructions

Ia MODIFEY (Ib,Mc) (sw); /* Add Mc shorts, Ia=Ib+ (2xMc) */
Ia = MODIFY (Ib,Mc) (nw); /* Add Mc words, Ia=Ib+ (4xMc) */
Scales the modifier if Ib contains byte address

There is a complication for bit-reverse addressing. Note that the base address is tested to see which address space it is
in after any bit-reversing that is necessary due to the model register. The scaling of the offset for bit-reverse address-
ing is in the opposite direction (shift down) than for normal addressing. This is because the offset is itself reversed,
so the extra zero bits are required at the top of the offset word. This is applicable for modify instruction also. The
Legal and Illegal Accesses to Byte Space With or Without Address Scaling table illustrates all conditions for address
scaling. If scaling applies to 40-bit NW space (extended precision) refer to the Table 6-3 Operand Addressed in
Non-Byte Space or Byte Space for Extended Precision Accesses (40-bit) table.

Table 6-2: Legal and Illegal Accesses to Byte Space With or Without Address Scaling

Modify Instruction Operand Ireg in ... Operand Ireg in ...
Non-Byte-Addressed Space Byte-Addressed Space
Im = modify(In, mod) if ((In + data) >= (Bn + if ((In + mod) >= (Bn + Ln))
Ln)) Im « In + mod - Ln
Im « In + mod - Ln else 1if ((In + mod) < Bn)
else if ((In + data) < Bn) Im « In + mod + Ln
Im « In + mod + Ln else
else Im « In + mod

Im « In + mod

Im = modify(In, mod) (sw) [Illegal address space if ((In == I0 && BRO)
interrupt |l (In == I8 && BRS8))
{
scaled mod = mod >> 1;
scaled len = Ln >> 1;
}
else
{
scaled mod = mod << 1;
scaled len = Ln << 1;

}

6-10 SHARC+ Core Programming Reference

Instruction Types

Table 6-2: Legal and Illegal Accesses to Byte Space With or Without Address Scaling (Continued)

Modify Instruction

Operand Ireg in ...
Non-Byte-Addressed Space

Operand Ireg in ...
Byte-Addressed Space

if ((In + scaled mod) >=
scaled len))

Im « In + scaled mod - scaled len
else if ((In + scaled mod) < Bn)

Im « In + scaled mod + scaled len
else

Im « In + scaled mod

(Bn +

Im = modify(In, mod)

(nw)

if ((In + mod) >= (Bn + Ln))
Im « In + mod — Ln

else 1if ((In + mod) < Bn)
Im « In + mod + Ln

else
Im « In + mod

if |
Il (In ==
{
scaled mod =
scaled len =
}
else
{
scaled mod
scaled len =
}
if ((In + scaled mod)
scaled len))
Im « In + scaled mod - scaled len
else if ((In + scaled mod) < Bn)
Im « In + scaled mod + scaled len
else
Im « In + scaled mod

(In == I0 && BRO)
I8 && BR8))

mod >> 2;
Ln << 2;

= mod << 2;
Ln << 2;

>= (Bn +

Data Move Instructions

In « In + mod

Rm = dm(mod, In) if ((In == I0 && BRO) if ((In == I0 && BRO)
Rm = dm(mod, In) (1lw) '] (In == I8 && BR8)) { |l (In == I8 && BR8)) {
Rm « dm(reverse(In + mod)) scaled mod = mod >> 2;
} else { Rm « dm(reverse(In + scaled mod))
Rm « dm(In + mod) } else {
} scaled mod = mod << 2;
Rm « dm(In + scaled mod)
}
Rm = dm(In, mod) if ((In == I0 && BRO) if ((In == I0 && BRO)
Rm = dm(In, mod) (lw) [l (In == I8 && BR8)) { [l (In == I8 && BR8)) {
Rm « dm(reverse(In)) Rm « dm(reverse(In))
} else { scaled mod = mod >> 2;
Rm « dm(In) scaled len = Ln >> 2;
}if ((In + mod) >= (Bn + } else {
Ln)) Rm « dm(In)
I ne< In + mod - Ln scaled mod = mod << 2;
else 1if ((In + mod) < Bn) scaled len = Ln << 2;
In « In + mod + Ln }
else if ((In + scaled mod) >= (Bn +

scaled len))

Im « In + scaled mod - scaled len
else if ((In + scaled mod) < Bn)

Im « In + scaled mod + scaled len
else

SHARC+ Core Programming Reference

6-11

Instruction Types

Table 6-2: Legal and Illegal Accesses to Byte Space With or Without Address Scaling (Continued)

Im « In + scaled mod

Rm = dm(mod, In) (bw) if ((In == I0 && BRO)
|| (In == I8 && BR8)) {
Rm « dm(reverse(In + mod))
} else {

Rm « dm(In + mod)
}

Rm = dm(In, mod) (bw) if ((In == I0 && BRO)
|| (In == I8 && BR8)) {
Rm « dm(reverse(In))
} else {

Rm « dm(In)
}
if ((In + mod) >= (Bn + Ln))
I n< In + mod - Ln
else if ((In + mod) < Bn)
In « In + mod + Ln
else
In « In + mod

Rm = dm(mod, In) (sw) if ((In == I0 && BRO)

|| (In == I8 && BR8)) {

scaled mod = mod >> 1;

Rm « dm(reverse (In + scaled mod))
} else {

scaled mod = mod << 1;

Rm « dm(In + scaled mod)

}

if ((In == I0 && BRO)

[l (In == I8 && BR8)) {

Rm « dm(reverse (In))

scaled mod = mod >> 1;

scaled len = Ln >> 1;

} else {

Rm ~ dm(In)

scaled mod = mod << 1;

scaled len In << 1;

}
if ((In + scaled mod) >= (Bn +
scaled len))

I n< In + scaled mod - scaled len

Rm = dm(In, mod) (sw)

else 1if ((In + scaIed_mod) < Bn)
I n«< In+ scaled mod + scaled len
else

I n< In + scaled mod

6-12 SHARC+ Core Programming Reference

Instruction Types

Table 6-3: Operand Addressed in Non-Byte Space or Byte Space for Extended Precision Accesses (40-bit)

Data Move Instructions

Operand I-reg in non-byte-addressed

Operand I-reg in byte-addressed space

space*l
R_tn:dm(mod’ In) if ((In == I0 && BRO) if ((In == I0 && BRO)
|l (In == I8 && BR8)) { |l (In == I8 && BR8)) {

offset = reverse(In+mod) % 2; scaled mod = mod >> 2;

Rm « dm((3/2 * reverse(In + byteoffset = reverse(In+scaled mod) S 4;
mod)) << 1 + offset) wordoffset = (reverse(In+scaled_mod)>>2) %
} else { 2;

Offset = (In + data) % 2; Rm « dm((3/2 * reverse(In + scaled mod) >>

Rm « dm((3/2 * (In + mod)) << |2 + wordoffset)

1 4+ offset) << 2 + byteoffset)
} } else {
scaled mod = data << 27
byteoffset = (Int+scaled mod) % 4;
wordoffset = ((In+scaled mod) >> 2) % 2;
Rm « dm(((3/2 * (In + scaled mod) >> 2 +
wordoffset)
<< 2) + byteoffset)
}
Rm = dm(In, mod) if | (In == I0 && BRO) if | (In == I0 && BRO)
|| (In == I8 && BR8)) { [l (In == I8 && BR8)) {
offset = reverse(In) % 2; byteoffset = reverse(In) % 4;
Rm « dm((3/2 * reverse(In) << wordoffset = (reverse (In) >> 2) % 2;
1) + offset) Rm « dm(((3/2 * reverse(In) >> 2 +
} else { wordoffset) << 2)
offset = In % 2; + byteoffset)

Rm « dm((3/2 * In) << 1 + scaled mod = mod >> 2;
offset) scaled len = Ln >> 2;

} } else {
if ((In + mod) >= (Bn + Ln)) byteoffset = In % 4;

In « In + mod - Ln wordoffset = (In >> 2) % 2;
else 1if ((In + mod) < Bn) Rm « dm(((3/2 * In >> 2 + wordoffset) << 2)

In « In + mod + Ln + byteoffset)
else scaled mod = mod << 2;

In « In + mod scaled len = Ln << 27

}
if ((In + scaled mod) >= (Bn + scaled len))
In « In + scaled mod scaled len
else if ((In + scaled mod) < Bn)
In « In + scaled mod + scaled len
else
In « In + scaled mod
Rm = dm(mod, In) (bw) |Illegal address space interrupt |if ((In == I0 && BRO)
|| (In == I8 && BR8)) {
byteoffset = reverse (Intmod) S 4;
wordoffset = (reverse (In+mod) >> 2) % 2;
Rm « dm((3/2 * reverse(In + mod) >> 2 +
wordoffset)
<< 2 + byteoffset + 2)
} else {
byteoffset = (Intmod) % 4;
wordoffset = (In+mod) >>2 % 2;
SHARC+ Core Programming Reference 6-13

Instruction Types

Table 6-3: Operand Addressed in Non-Byte Space or Byte Space for Extended Precision Accesses (40-bit) (Continued)

Data Move Instructions | Operand I-reg in non-byte-addressed Operand I-reg in byte-addressed space

*1
space

Rm « dm(((3/2 * (In + mod) >> 2 +
wordoffset) << 2)
+ byteoffset + 2)
}

Illegal address space interrupt |if ((In == I0 && BRO)

[l (In == I8 && BR8)) {
byteoffset = reverse(In) % 4;
wordoffset = reverse(In) >> 2 % 2;

Rm « dm(((3/2 * reverse(In) >> 2 +
wordoffset) << 2) + byteoffset + 2)
} else {

byteoffset = In % 4;

wordoffset = In >> 2 % 2;

Rm « dm(((3/2 * In >> 2 + wordoffset) <<

2) + byteoffset + 2)
}
if ((In + mod) >= (Bn + Ln))

In « In + mod Ln
else 1if ((In + mod) < Bn)

In « In + mod + Ln
else

In « In + mod

Illegal address space interrupt [if ((In == I0 && BRO)
[l (In == I8 && BR8)) {

scaled mod = mod >> 1;

byteoffset = reverse(Intscaled mod) % 4;
wordoffset = reverse(Intscaled mod) >> 2 %
2;

Rm « dm((3/2 * reverse(In + scaled mod) >>
2 + wordoffset)
<< 2 + byteoffset + 2)

} else {
scaled mod = data << 2;
byteoffset = (Int+scaled mod) % 4;
wordoffset = (Int+scaled mod)>> 2 % 2;
Rm « dm(((3/2 * (In + scaled mod) >> 2 +
wordoffset)

<< 2) + byteoffset + 2)
}

Illegal address space interrupt |if ((In == I0 && BRO)
|l (In == I8 && BR8)) {
byteoffset = reverse(In) % 4;
wordoffset = reverse(In) >> 2 % 2;

Rm « dm(((3/2 * reverse(In) >> 2 +
wordoffset) << 2)
+ byteoffset)

scaled mod = mod >> 1;

scaled len = Ln >> 1;
} else {

byteoffset = In % 4;
wordoffset = In >> 2

\

% 2;

6-14 SHARC+ Core Programming Reference

Instruction Types

Table 6-3: Operand Addressed in Non-Byte Space or Byte Space for Extended Precision Accesses (40-bit) (Continued)

Data Move Instructions | Operand I-reg in non-byte-addressed Operand I-reg in byte-addressed space

*1
Space

Rm « dm(((3/2 * In >> 2 + wordoffset) << 2)
+ byteoffset)
scaled mod = mod << 1;
scaled len = Ln << 1;
}
if ((In + scaled mod) >= (Bn + scaled len))
In « In + scaled mod scaled len

else if ((In + scaled mod) < Bn)
In « In + scaled mod + scaled_len
else

In « In + scaled mod

Rm = dm(mod, In) (Iw) if | (In == I0 && BRO) if | (In == I0 && BRO)
|| (In == I8 && BR8)) { || (In == I8 && BR8)) {
Rm « dm(reverse (In + mod)) scaled mod = mod >> 2;
} else { Rm « dm(reverse (In + scaled mod))
Rm « dm(In + mod) } else {
} scaled mod = mod << 2;

Rm « dm(In + scaled mod)

}

Rm = dm(In, mod) (Iw) if | (In == I0 && BRO) if | (In == I0 && BRO)
|| (In == I8 && BR8)) { [l (In == I8 && BR8)) {
Rm « dm(reverse(In)) Rm «— dm(reverse (In))
} else { scaled mod = mod >> 2;
Rm « dm(In) scaled len = Ln >> 2;
}if ((In + mod) >= (Bn + Ln)) } else {
In « In + mod - Ln Rm « dm(In)
else if ((In + mod) < Bn) scaled mod = mod << 2;
In « In + mod + Ln scaled len = Ln << 2;
else }
In « In + mod if ((In + scaled mod) >= (Bn + scaled len))

Im « In + scaled mod scaled len
else if ((In + scaled mod) < Bn)

Im « In + scaled mod + scaled len
else

Im « In + scaled mod

*1 Access addresses shown are short word addresses i.e. Rm <- dm(shortword address), 40/48 bits will be fetched starting from the short
word address

Switch Address Instruction
New instructions are provided to convert pointers between the byze and the legacy term word.

IF COND compute Id = B2W(Is);
compute Id = W2B(Is);
compute Bd B2W (Bs) ;
compute Bd W2B (Bs) ;

NOTE: In case of B2W or W2B instruction on any B register, the corresponding I register is not implicitly updat-
ed. These instructions have the following semantics:

SHARC+ Core Programming Reference 6-15

Instruction Types

Table 6-4: Switch Address Instruction Semantics

Instruction Base addr in word-addressed space Base addr in byte-addressed space

Id = B2W(Is) Id=1Is Convert byte pointer to word pointer.
Likely semantics
Id <-Is>> 2

Exact semantics depend on address map and must
work correctly for all addresses in both internal and
external memory.

In case of byte addresses not having word space equiv-
alent Is will be retained as is i.e. Id = Is and illegal ad-
dress space (ILAD) interrupt is generated.

Id = W2B(Is) Convert word pointer to byte pointer. Id=1Is
Likely semantics
Id <-Is << 2

Exact semantics depend on address map and must
work correctly for all addresses in both internal and
external memory.

In case of word addresses not having byte space equiv-
alent Is will be retained as is i.e. Id = Is and illegal ad-
dress space (ILAD) interrupt is generated.

Bd = B2W(Bs) |Bd =Bs Convert byte pointer to word pointer.
Likely semantics
Bd <- Bs >> 2

Exact semantics depend on address map and must
work correctly for all addresses in both internal and
external memory.

In case of byte addresses not having word space equiv-
alent Bs are retained as is i.e. Bd = Bs and illegal ad-
dress space (ILAD) interrupt is generated.

Bd = W2B(Bs) | Convert word pointer to byte pointer. Bd = Bs
Likely semantics
Bd <-Bs<<2

Exact semantics depend on address map and must
work correctly for all addresses in both internal and
external memory.

In case of word addresses not having byte space equiv-
alent Bs are retained as is i.e. Bd = Bs and illegal ad-

dress space (ILAD) interrupt is generated.

6-16 SHARC+ Core Programming Reference

Instruction Types

Dual Data Move Instructions

The number of transfers that occur in a clock cycle influences the data access operation. As described in Internal
Memory Space in the Memory chapter, the processor core supports single cycle, dual-data accesses to and from inter-
nal memory for register-to-memory and memory-to-register transfers. Dual-data accesses occur over the PM and
DM bus and act independently of SIMD/SISD mode setting. Though only available for transfers between memory
and data registers, dual-data transfers are extremely useful because they double the data throughput over single-data
transfers.

Note that the explicit use of complementary registers (CDreg) is not supported for dual data access.
Examples:

fO0=£f3*f4, £8=£f8+f10, f3=dm(i2,m2), f4= pm(i9,m9); /* DREG*/
fO0=£f3*f4, £8=£f8+f10, s3=dm(i2,m2), s4= pm(i9,m9); /* asm error*/
fO0=£f3*f4, f8=f8+f10, s3=dm(i2,m2); /* SDREG */

ATTENTION: On SHARCH+ cores, it is illegal to use the DAGs in Type 1 instructions to access MMR space. Exter-
nal memory space access is legal.

R8 = DM(I4,M3), PM(I12,M13) = RO; /* Dual access */
RO = DM(I5,M5); /* Single access */

For examples of data flow paths for single and dual-data transfers, see the Register Files chapter.

The processor core can use its complementary registers explicitly. They support single data access as shown in the
example below.

S8 = DM(I4,M3);
PM (I12, M13) = 12

COMP, 88 = DM(I5,M5);
COMP, DM (IS5, M5) = 514;

Conditional DAG Transfers

Conditions with DAG transfers allows programs to make memory accesses conditional. For more information, see
the Program Sequencer chapter.

DAG Breakpoint Units

Both DAGs are connected to the breakpoint units used for hardware breakpoints. They are used if user breakpoints
are enabled. For more information, see the Program Trace Macrocell (PTM) chapter.

DAG Instruction Restrictions
Modify (M) registers can work with any index (I) register in the same DAG (DAG1 or DAG2).

The DAGs do allow transfers involving registers on the two DAG, as in the following example.

DM (M2,I1) = I12;

SHARC+ Core Programming Reference 6-17

Instruction Summary

L7 = PM(M12,112);

However, transfers using registers on one DAG are not allowed, as in the following example. In this case, the assem-
bler returns an error message.

DM (M2,I1) = I0; /* generates asm error */

Instruction Summary

The DAG Instruction Types Summary table lists the instruction types associated with DAG transfer instructions.
Note that instruction set types may have more options (conditions or compute). For more information see the In-

struction Set Types chapter. In these tables, note the meaning of the following symbols:

* TIaindicates a DAGI index register (I7-0), Ic indicates a DAG2 index register (I15-8)

* Mb indicates a DAG1 modify register (M7-0), Md indicates a DAG2 modify register (M15-8)

* Ba indicates a DAGI base register (B7-0), Bc indicates a DAG2 base register (B15-8)

* Ureg indicates any universal register, Dreg indicates any data register

Table 6-5: DAG Instruction Types Summary

Instruction DAG Instruction Syntax Description
Type
la/b DM (Ia,Mb)=Dreg, PM(Ic,Md)=Dreg; DAG1/2, post-modify, Dreg, Dual data move
Dreg=DM (Ia,Mb), Dreg=PM(Ic,Md) ;
Dreg=DM (Ia,Mb), PM(Ic,Md)=Dreg;
DM (Ia,Mb)=Dreg, Dreg=PM(Ic,Md) ;
3a DM (Ia,Mb)=Ureg (lw); DAG1/2, post/pre modify, Ureg, forced long word ac-
PM(Ic,Md)=Ureg (1lw); cess
Ureg=DM (Ia,Mb) (lw);
Ureg=PM (Ic,Md) (lw);
DM (Mb, Ia)=Ureg (lw);
PM(Md, Ic)=Ureg (1lw);
Ureg=DM (Mb, Ia) (lw);
Ureg=PM (Mc, Id) (1lw)
3h DM (Ta,Mb)=Ureg (bow/sw); DAG1/2, post/pre modify, Ureg, byte (bw), byte with
PM(Ic,Md)=Ureg (bw/sw); sign extend (bwse), short word (sw), short word with
Ureg=DM (Ia,Mb) (bw/bwse/sw/swse); sign extend (swse)
Ureg=PM (Ic,Md) (bw/bwse/sw/swse) ;
DM (Mb, Ia)=Ureg (bw/sw) ;
PM(Md, Ic)=Ureg (bw/sw) ;
Ureg=DM (Mb, Ia) (bw/bwse/sw/swse) ;
Ureg=PM (Mc, Id) (bw/bwse/sw/swse) ;
3¢ DM (Ia,Mb)=Dreg; DAG]1, Post modify, Dreg
Dreg=DM (Ia,Mb) ;
6-18 SHARC+ Core Programming Reference

Table 6-5: DAG Instruction Types Summary (Continued)

Instruction Summary

Instruction

Type

DAG Instruction Syntax

Description

3d

Ureg=DM (Ia,Mb)
Ureg=PM (Ic,Md)
Ureg=DM (Ia,Mb)
Ureg=PM (Ic,Md)

DM (Ia,Mb)=Ureg
PM(Ic,Md)=Ureg
DM (Ia,Mb)=Ureg
PM(Ic,Md)=Ureg
Ureg=DM (Mb, Ia)
Ureg=PM (Md, Ic)
Ureg=DM (Mb, Ia)
Ureg=PM (Md, Ic)
Mb, Ia)=Ureg
Md, Ic)=Ureg

(lw/nw/sw/bw, ex) ;
(lw/nw/sw/bw, ex) ;
(bwse/swse, ex) ;
(bwse/swse, ex) ;

(lw/nw/sw/bw, ex) ;
(lw/nw/sw/bw, ex) ;

(lw/nw/sw/bw, ex) ;
(lw/nw/sw/bw, ex) ;
(bwse/swse, ex) ;
(bwse/swse, ex) ;

(lw/nw/sw/bw, ex) ;
(lw/nw/sw/bw, ex) ;

DM (
PM (
DM (Mb, Ia)=Ureg
PM(Md, Ic)=Ureg

DAG1/2, pre/post modify, exclusive access, Ureg

4a/b

Dreg=DM (Ia,datab) ;
Dreg=PM(Ic,datab) ;
DM (Ia,data6)=Dreg;
PM(Ic,data6)=Dreg;

Dreg=DM (datab6, Ia) ;
Dreg=PM (datab6, Ic) ;
DM (data6, Ia)=Dreg;
PM(data6, Ic)=Dreg;

DAG1/2, pre/post modify, Dreg, immediate modify

4d

Dreg=DM (Ia,datab)
Dreg=PM(Ic,datab)
DM(Ia,data6)=Dreg
PM(Ic,data6)=Dreg

Dreg=DM (data6, Ia)
Dreg=PM (data6, Ic)
DM (data6, Ia)=Dreg
PM(data6, Ic)=Dreg

(bw/bwse/sw/swse) ;
(bw/bwse/sw/swse) ;
(bw/sw) ;
(bw/sw) ;

(bw/bwse/sw/swse) ;
(bw/bwse/sw/swse) ;
(bw/sw) ;
(bw/sw) ;

DAG1/2, pre/post modify, Dreg, immediate modify,
byte (bw), byte with sign extend (bwse), short word

(sw), short word with sign extend (swse)

6a

Dreg=DM (Ia,Mb) ;
Dreg=PM(Ic,Md) ;
DM (Ia,Mb)=Dreg;
PM(Ic,Md)=Dreg;

Dreg=DM (Mb, Ia) ;
Dreg=PM (Md, Ic) ;
DM (Mb, Ia)=Dreg;
PM(Md, Ic)=Dreg;

DAG1/2, pre/post modify, Dreg

7alb

MODIFY (Ia,Mb) ;
MODIFY (Ic,Md) ;
Ia=MODIFY (Ia,Mb) ;

DAG1/2, Index Modify, short word (sw) or normal
word (nw).

SHARC+ Core Programming Reference

6-19

Instruction Summary

Table 6-5: DAG Instruction Types Summary (Continued)

Instruction DAG Instruction Syntax Description
Type
Ic=MODIFY (Ic,Md) ;
Ia=MODIFY (Ia,Mb) (sw):;
Ic=MODIFY (Ic,Md) (sw):;
Ia=MODIFY (Ia,Mb) (nw);
Ic=MODIFY (Ic,Md) (nw):;
7d Ia=B2W (Ia); DAG1/2, scaled address arithmetic
Ic=B2W (Ic) ;
Ta=W2B (Ia) ;
Ic=W2B (Ic) ;
Ba=B2W (Ba) ;
Bc=B2W (Bc) ;
Ba=W2B (Ba) ;
Bc=W2B (Bc) ;
10a DM (Ia,Mb)=Dreg; DAG1, post modify, Dreg
Dreg=DM (Ia,Mb) ;
14a DM (addr32)=Ureg (1lw); DAG1/2, direct address, Ureg, LW option
PM (addr32)=Ureg (lw);
Ureg=DM (addr32) (lw) ;
Ureg=PM (addr32) (lw) ;
14d Dreg=DM(addr32) (lw/nw/sw/bw/ex) ; DAGTI, direct address, Dreg, byte (bw), byte with sign
Dreg=DM (addr32) (nwse/swse/bwse/ex) ; extend (bwse), short word (sw), short word with sign
DM (addr32)=Dreg (lw/nw/sw/bw/ex); extend (swse), exclusive access (ex)
15a DM(data32, Ia)=Ureg (lw); DAG1/2, pre modify, Ureg, LW option, immediate
PM(data32, Ic)=Ureg (lw); modify
Ureg=DM (data32, Ia) (lw);
Ureg=PM(data32,Ic) (lw);
15b DM (data7,Ia)=Ureg (1lw); DAG1/2, pre modify, Ureg, LW option, immediate
PM(data7,Ic)=Ureg (lw); modify
Ureg=DM (data7,Ia) (1lw);
Ureg=PM (data7,Ic) (1lw);
16a DM (Ia,Mb)=data32; DAG1/2, post modify, immediate data
PM(Ic,Md)=data32;
16b DM (Ta,Mb)=datalé; DAG1/2, post modify, immediate data
PM(Ic,Md)=datalo6;
19a MODIFY (Ia,data32); DAG1/2, Index Modify, with optional scaled address
MODIFY (Ic,data32); arithmetic: short word (sw) or normal word (nw), im-
Ia=MODIFY (Ia,data32); mediate modify
Ic=MODIFY (Ic,data32);
Ia=MODIFY (Ia,data32) (sw);
Ic=MODIFY (Ic,data32) (sw);
6-20 SHARC+ Core Programming Reference

Operating Modes

Table 6-5: DAG Instruction Types Summary (Continued)

Instruction DAG Instruction Syntax Description
Type

Ia=MODIFY (Ia,data32) (nw);

Ic=MODIFY (Ic,data32) (nw);

19a BITREV (Ia,data32); DAG1/2, Bit reverse
BITREV (Ic,data32) ;

Ia=BITREV (Ia,data3?2);
Ic=BITREV (Ic,data3?2);

Operating Modes

This section describes all modes related to the DAG which are enabled by a control bit in the REGF MODEL,
REGF MODEZ2, and CMMR SYSCTL registers.

Normal Word (40-Bit) Accesses

A program makes an extended-precision normal word (40-bit) access to internal memory using an access to a nor-
mal word address when that internal memory block's IMDWx bit is set (=1) for 40-bit words. The address ranges for
internal memory accesses appear in the product-specific data sheet. For more information on configuring memory
for extended-precision normal word accesses, see Extended-Precision Normal Word Addressing of Single-Data in the
Memory chapter.

The processor core transfers the 40-bit data to internal memory as a 48-bit value, zero-filling the least significant 8
bits on stores and truncating these 8 bits on loads. The register file source or destination of such an access is a single
40-bit data register as shown in the Normal Word (40-Bit) Accesses example.

Normal Word (40-Bit) Accesses

bit clr MODEl CBUFEN;

nop;
I9=0x90500; /* start of 40-bit block 0 */
M9=1;

I5=0xB8000; /* start of 32-bit block 1 */
M5=1;

USTAT]1 = dm(SYSCTL) ;

bit set USTAT1 IMDWO; /* Blk0O access 40-bit precision */
dm (SYSCTL) = USTATI1;

NOP; /* effect latency */

DM (I5,M5)=R0O, PM(I9,M9)=R4; /* DAGl 32-bit, DAG2 40-bit */

The sequencer uses 48-bit memory accesses for instruction fetches. Programs can make 48-bit accesses with the
REGF PX register moves, which default to 48 bits.

Input Sections Definition for 32/40-bit Data Access in LDF File

SHARC+ Core Programming Reference 6-21

Operating Modes

/* block 0 */
seg_pmco /* TYPE (PM RAM) START (0x00090200) END(0x000904FF) WIDTH (48) */
seg_pmda_40 /* TYPE (PM RAM) START (0x00090500) END (0x00090FFF) WIDTH (48) */

/* block 1 */
seg _dmda 32 /* TYPE (DM RAM) START (0x000B8000) END(0xO00B87FF) WIDTH (32)*/
Processing Unit versus Memory Load/Store Precision Accesses

The REGF MODE1 .RND32 bit and the CMMR SYSCTL.IMDWBLK3-0 bits control how floating-point data are
treated by the processing units versus L1 memory depending on the REGF_MODE1 . PEYEN bit.

* REGF MODE1.RND32 =0, CMMR SYSCTL.IMDWBLK3-0 =0 (default). See Figure 7-17 Normal Word
Addressing of Single-Data in SIMD Mode.

* Processing Units: 40-bit boundary to/from register file (SIMD)
* Load/Store: 32-bit floating to/from memory (SIMD)

i REGF_MODE]_ .RND32 =0, CMMR_SYSCTL . IMDWBLK3-0 =1. See Figure 7-21 Extended-Precision Nor-
mal Word Addressing of Dual-Data in SISD Mode.

* Processing Units: 40-bit boundary to/from register file (SIMD)
* Load/Store: 40-bit floating to/from memory (SISD)

* REGF MODE1.RND32 =1, CMMR SYSCTL.IMDWBLK3-0 =1. See Figure 7-21 Extended-Precision Nor-
mal Word Addressing of Dual-Data in SISD Mode.

* Processing Units: 32-bit boundary to/from register file (SIMD)
* Load/Store: 40-bit floating to/from memory (SISD)

Extended Precision Access
All 3/2* operations in the Operand Addressed in Non-Byte Space or Byte Space for Extended Precision Accesses table

are assumed to implicitly perform a floor operation on the result, by rounding off the result to the lowest non-frac-

tional value.

Note that the lw mnemonic overrides the IMDW setting as can be seen from the Operand Addressed in Non-Byte
Space or Byte Space for Extended Precision Accesses table. The addresses calculated using the formulae in the above
tables will be subject to force alignment as per alignment restrictions listed previously.

Also, SIMD accesses to a bank with the IMDW bit set results in the explicit access occurring irrespective of the size
of the access only (consistent with legacy behavior for extended precision accesses in normal word space).

The data accessed by extended precision normal word accesses is shown in the Extended Precision Normal Word
Access (Byte address or normal word address space) table, showing how 48-bit data elements are laid out contiguous-
ly in memory. By contrast, when Short Word or Byte Word accesses are performed, the low 16 bits of each 48-bit

6-22 SHARC+ Core Programming Reference

Operating Modes

word are skipped, as shown in the Extended Precision Byte Word Access (Byte Address Space) and Extended Precision
Short Word Access (Byte Address Space) tables.

Table 6-6: Extended Precision Normal Word Access (Byte address or normal word address space)

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0
EP WORD X3 EP WORD X2 ...
... EP WORD X2 EP WORD X1 ...
... EP WORD X1 EP WORD X0
Table 6-7: Extended Precision Byte Word Access (Byte Address Space)

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0
BYTE WORD | BYTE WORD | BYTE WORD | BYTE WORD BYTE WORD | BYTE WORD
X15 X14 X13 X12 X11 X10
BYTE WORD | BYTE WORD BYTE WORD | BYTE WORD | BYTE WORD | BYTE WORD
X9 X8 X7 X6 X5 X4
BYTE WORD | BYTE WORD | BYTE WORD | BYTE WORD
X3 X2 X1 X0

Table 6-8: Extended Precision Short Word Access (Byte Address Space)

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0
SHORT WORD X7 SHORT WORD X6 SHORT WORD X5
SHORT WORD X4 SHORT WORD X3 SHORT WORD X2

SHORT WORD X1 SHORT WORD X0

Circular Buffering Mode

The REGF MODEL .CBUFEN bit enables circular buffering-a mode where the DAG supplies addresses that range
within a constrained buffer length (set with an L register). Circular buffers start at a base address (set with a B
register), and increment addresses on each access by a modify value (set with an M register).

The circular buffer enable bit (CBUFEN) in the MODE1 register is cleared (= 0) at reset.
NOTE: It is recommended to statically enable the REGF MODE1 . CBUFEN bit. During processing the individual
DAG length registers enable (L>0) or disable (L=0) circular buffering.

When using circular buffers, the DAGs can generate an interrupt on buffer overflow (wraparound). For more infor-
mation, see DAG Status.

Circular buffering is defined as addressing a range of addresses which contain data that the DAG steps through re-
peatedly, wrapping around to repeat stepping through the range of addresses in a circular pattern. To address a circu-
lar buffer, the DAG steps the index pointer (I register) through the buffer, post-modifying and updating the index

SHARC+ Core Programming Reference 6-23

Circular Buffering Mode

on each access with a positive or negative modify value (M register or immediate value). If the index pointer falls
outside the buffer, the DAG subtracts or adds the buffer length to the index value, wrapping the index pointer back
within the start and end boundaries of the buffer. The DAG's support for circular buffer addressing appears in the
Data Address Generator (DAG) Block Diagram figure (see Features), and an example of circular buffer addressing
appears in Circular Buffer Programming Model.

The starting address that the DAG wraps around is called the buffer's base address (B register). There are no restric-
tions on the value of the base address for a circular buffer.
NOTE: Circular buffering starting at any address may only use post-modify addressing.

It is important to note that the DAGs do not detect memory map overflow or underflow. If the address post-modify
produces I - M < 0 or I +M > OxFFFFFFFF, circular buffering may not function correctly. For byte space accesses,
the M value in the [+M or the I-M is the scaled M value. Also, the length of a circular buffer should not let the
buffer straddle the top of the memory map. For more information on the core memory map, see Internal Memory
Space in the Memory chapter and the product-specific data sheet.

Circular Buffer Programming Model

As shown in the Circular Data Buffers With Positive Modjifier figure, programs use the following steps to set up a

circular buffer:

1. Enable circular buffering (BIT SET MODE1 CBUFEN;). This operation is only needed once in a program.
This operation is done by default when setting up the C runtime.

2. Load the buffer's base address into the B register. This operation automatically loads the corresponding I regis-
ter. If an offset is required the I register can be changed accordingly.

3. Load the buffer's length into the corresponding L register. For example, LO corresponds to BO.

4. Load the modify value (step size) into an M register in the corresponding DAG. For example, MO through M7
correspond to BO. Alternatively, the program can use an immediate value for the modifier.

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5 5
6 6 6
7 7 7
8 8 8
9 9 9

© ® N o o » W N = O

10 10 10 9 10

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS
NOTE THAT “0” ABOVE IS BASE ADDRESS. THE E REPEATS ON SL IT PASSES

Figure 6-7: Circular Data Buffers With Positive Modifier

The Circular Data Buffers With Negative Modifier figure shows a circular buffer with the same syntax as in the
Circular Data Buffers With Positive Modjifier figure, but with a negative modifier (M1=-4).

6-24 SHARC+ Core Programming Reference

Circular Buffering Mode

© ©® N o o » W N = o
©Te N @& o & w N =2 o
© ® N o o A W N = ©°

0 o
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 10 10 4 10 10

Figure 6-8: Circular Data Buffers With Negative Modifier

After circular buffering is set up, the DAGs use the modulus logic in the Data Address Generator (DAG) Block Dia-

gram figure (in Features) to process circular buffer addressing.

NOTE: Using circular buffering with odd length in SIMD mode allows the implicit move to exceed the circular
buffer limits. For example if the circular buffer requires an odd length, add one location (zero init) to the

SW buffer (even count).

Wraparound Addressing

When circular buffering is enabled, on the first post-modify access to the buffer, the DAG outputs the T register
value on the address bus then modifies the address by adding the modify value. If the updated index value is within
limits of the buffer, the DAG writes the value to the T register. If the updated value is outside the buffer limits, the
DAG subtracts (for positive M) or adds (for negative M) the L register value before writing the updated index value to
the T register. In equation form, these post-modify and wraparound operations work as follows.

- If M is positive:
Lnew = Lold + M if I5i4 + M < Buffer base + length (end of buffer)
* ILiew=Ilold + M - Lif 154 + M > buffer base + length
* If M is negative:
Lhew = Lold + M if [jq + M > buffer base (start of buffer)

Lhew = Iold + M + Lif [jq + M < buffer base (start of buffer)

NOTE: Scaled M and L values are used for byte space access.

The DAGs use all four types of DAG registers for addressing circular buffers. These registers operate as follows for
circular buffering.

* The index (I) register contains the value that the DAG outputs on the address bus.

* The modify (M) register contains the post-modify value (positive or negative) that the DAG adds to the I
register at the end of each memory access. The M register can be any M register in the same DAG as the T
register and does not have to have the same number. The modify value can also be an immediate value instead

SHARC+ Core Programming Reference 6-25

Circular Buffering Mode

of an M register. The size of the modify value, whether from an M register or immediate, must be less than the
length (L register) of the circular buffer.

* The length (L) register sets the size of the circular buffer and the address range that the DAG circulates the T

231

register through. The L register must be positive and cannot have a value greater than 2°" - 1. For byte accesses,

the scaled length value cannot have a value greater than 231 1. Ifan L register's value is zero, its circular buffer
operation is disabled.

* The DAG compares the base (B) register, or the B register plus the L register, to the modified I value after each
access. When the B register is loaded, the corresponding I register is simultaneously loaded with the same val-
ue. When T is loaded, B is not changed. Programs can read the B and T registers independently.

Clearing the CBUFEN bit disables circular buffering for all data load and store operations. The DAGs perform nor-
mal post-modify load and store accesses, ignoring the B and L register values. Note that a write to a B register modi-
fies the corresponding I register, independent of the state of the CBUFEN bit.

DAG Status

The DAGs can provide buffer overflow information when executing circular buffer addressing for the I7 or I15
registers. When a buffer overflow occurs (a circular buffering operation increments the I register past the end of the
buffer or decrements below the start of the buffer), the appropriate DAG updates a buffer overflow flag in a sticky
status (STKYx) register. Use the BITTST instruction to examine overflow flags in the STKY register after a series of
operations. If an overflow flag is set, the buffer has overflowed or wrapped around at least once. This method is
useful when overflow handling is not time sensitive.

Broadcast Load Mode

The REGF MODE1.BDCST1 and REGF MODE1.BDCST bits in the control broadcast register loading. When
broadcast loading is enabled, the processor core writes to complementary registers or complementary register pairs in
each processing element on writes that are indexed with DAGI register I1 (if REGF MODE1.BDCST1 =1) or
DAG2 register I9 (if REGF_MODE1 .BDCST9 =1). Broadcast load accesses are similar to SIMD mode accesses in
that the core transfers both an explicit (named) location and an implicit (unnamed, complementary) location. How-
ever, broadcast loading only influences writes to registers and writes identical data to these registers.

Broadcast mode is independent of SIMD mode. Broadcast load mode is a hybrid between SISD and SIMD modes
that transfers dual-data under special conditions.

NOTE: Broadcast Load Mode performs memory reads only. Broadcast mode only operates with data registers
(Dreg) or complement data registers (CDreg). Enabling either DAG register to perform a broadcast load
has no effect on register stores or loads to universal registers (Ureg). For example

RO=DM (I1,M1); /* I1 load to RO and SO */
S10=PM(I9,M9); /* I9 load to S10 and R10 */

The Instruction Summary Broadcast Load table shows examples of Broadcast load instructions.

6-26 SHARC+ Core Programming Reference

Broadcast Load Mode

Table 6-9: Instruction Summary Broadcast Load

Explicit, PEx Operation Implicit, PEy operation

Rx = dm(il,ma); Sx = dm(il,ma);

Rx = pm(i9,mb) ; Sx = pm(i9,mb) ;

Rx = dm(il,ma), Ry = pm(i9,mb); Sx = dm(il,ma), Sy = pm(i9,mb);

NOTE: The REGF MODEL . PEYEN bit (SISD/SIMD mode select) does not influence broadcast operations.
Broadcast loading is particularly useful in SIMD applications where the algorithm needs identical data
loaded into each processing element. For more information on SIMD mode (in particular, a list of com-
plementary data registers), see Data Register Neighbor Pairing in the Register Files chapter.

Bit-Reverse Mode

The bit reserve mode is useful for FFT calculations, if using a DIT (decimation in time) FFT, all inputs must be
scrambled before running the FFT, thus the output samples are directly interpretable. For DIF (decimation in fre-
quency) FFT the process is reversed. This mode automates bit reversal, no specific instruction is required.

The REGF MODE1.BRO and REGF MODE1L . BR8 bits in the enable the bit-reverse addressing mode where ad-
dresses are output in reverse bit order. When REGE MODEL . BRO is set (= 1), DAG1 bit-reverses 32-bit addresses
output from I0. When REGF MODEL .BR8 is set (= 1), DAG2 bit-reverses 32-bit addresses output from I8. The
DAGs bit-reverse only the address output from I0 or I8; the contents of these registers are not reversed.

The Bit Reverse Addressing example demonstrates how bit-reverse mode effects address output.

Bit Reverse Addressing

BIT SET MODEl BRO; /* Enables bit-rev. addressing for DAGl */

IO = 0x83000 /* Loads IO with the bit reverse of the
buffer's base address DM(0xC1000) */

MO = 0x4000000; /* Loads MO with value for post-modify, which

is the bit reverse value of the modifier
value MO = 32 */

R1 = DM(I0,MO0) ; /* Loads Rl with contents of DM address
DM (0xC1000), which is the bit-reverse of 0x83000,
then post-modifies I0 for the next access with
(0x83000 + 0x4000000) = 0x4083000, which is the
bit-reverse of DM(0xC1020) */

SIMD Mode

When the REGF MODE1.PEYEN bit is set (=1), the processors are in single-instruction, multiple-data (SIMD)
mode. In SIMD mode, many data access operations differ from the default single-instruction, single-data (SISD)
mode. These differences relate to doubling the amount of data transferred for each data access.

For example, processing two channels in parallel requires a more complex data layout. This complexity stems from
the need for all inputs and outputs for the two channels have to be interleaved. The layout lets the even array ele-
ments represent one channel, while all odd elements represent the other channel.

SHARC+ Core Programming Reference 6-27

SIMD Mode

DAG Transfers in SIMD Mode

Accesses in SIMD mode transfer both an explicit (named) location and an implicit (unnamed, complementary) lo-
cation (the DAG Address vs. Access Modes table). The explicit transfer is a data transfer between the explicit register
and the explicit address, and the implicit transfer is between the implicit register and the implicit address.

Table 6-10: DAG Address vs. Access Modes

DAG Instruction Post-Modify Pre-Modify (M+1, no I update)
Explicit Access Implicit Access Explicit Access Implicit Access

SISD/40-bit DM(Ia, Mb) - DM (Mb, Ia) -

SIMD PM(Ic, Md) DM (Ia+k, Mb) PM(Md, Ic) DM (Ia+k, Mb)

k=1 NW PM(Ic+k, Md) PM(Ic+k, Md)

k=2 SW

k=4 BW

Broadcast DM(Ia, Mb) DM(Mb, Ia)

PM(Ic, Md) PM(Md, Ic)

NOTE: In SIMD mode, both aligned (explicit even address) and unaligned (explicit odd address) transfers are sup-

ported.
RO=DM (I1,M1) ; /* Il points to nw space */
SO0=DM (I1+1,M1) ; /* implicit instruction */

R10=PM(I10,M11) ; /* 11 points to sw space */
S10=PM(I10+2,M11); /* implicit instruction */

NOTE: SIMD mode can be overridden with 40-bit mode, broadcast mode, byte word or with the long word
modifier. Refer to the instruction types for more information.

The DAG registers support the bidirectional register-to-register transfers that are described in SIMD Mode. When
the DAG register is a source of the transfer, the destination can be a register file data register. This transfer results in
the contents of the single source register being duplicated in complementary data registers in each processing ele-
ment as shown below.

BIT SET MODE1l PEYEN;
R5 = I8;

/* SIMD */
/* Loads R5 and S5 with I8 */

In SIMD mode, if the DAG register is a destination of a transfer from a register file data register source, the core
executes the explicit move only on the condition in PEx becoming true, whereas the implicit move is not performed.
This is also true when both the source and the destination is a DAG register.

/* SIMD */
/* Loads I8 with R5 */

BIT SET MODEl PEYEN;
I8 = R5;

6-28 SHARC+ Core Programming Reference

SIMD Mode

Conditional DAG Transfers in SIMD Mode

Conditions in SIMD allows programs to make memory accesses conditional. For more information, see the Program
Sequencer chapter.

IF EQ S8 = DM(I4,M3); /* S8 load with I4, R8 load with I4+1%*/
IF NOT AV PM(I12,M13) = S12; /* I12 load with S12, Il12+1 load with R12*/

Alternate (Secondary) DAG Registers

To facilitate fast context switching, the processor core has alternate register sets for all DAG registers. Bits in the
REGE MODEL register control when alternate registers become accessible. While inaccessible, the contents of alter-
nate registers are not affected by core operations. Note that there is a one cycle latency between writing to

REGE MODEL and being able to access an alternate register set. The alternate register sets for the DAGs are descri-
bed in this section. For more information on alternate data and results registers, see Alternate (Secondary) Data Reg-
isters in the Register Files chapter.

Bits in the REGF MODE] register can activate alternate register sets within the DAGs: the lower half of DAG1 (T,
M, L, BO-3), the upper half of DAGI (I, M, L, B4~7), the lower half of DAG2 (I, M, L, B8-11), and the upper
half of DAG2 (I, M, L, B12-15). The DAG Primary and Alternate Registers figure shows the primary and alter-
nate register sets of the DAGs.

MODE1 SELECT BIT DAG1 REGISTERS

10 Mo Lo BO

11 M1 L1 Bl
SRD1L —_— H H H H
12 M2 L2 B2

13 M3 L3 B3

14 M4 L4 B4

15 M5 L5 BS
SRD1H — H H H H
16 M6 L6 B6

17 M7 L7 B7

DAG2 REGISTERS

18 M8 L8 B8

19 M9 L9 B9
SRD2L —_— H H H H
110 M10 L10 B10

112 M12 L12 B12

113 M13 L13 B13
SRD2H —_— H H H H
114 M14 L14 B14

115 M15 L15 B15

Figure 6-9: DAG Primary and Alternate Registers

To share data between contexts, a program places the data to be shared in one half of either the current data address
generator's registers or the other DAG's registers and activates the alternate register set of the other half. The follow-
ing examples demonstrate how the code handles the one cycle latency from the instruction that sets the bit in
REGE MODEL to when the alternate registers may be accessed. Note that programs can use a NOP instruction or
any other instruction not related to the DAG to take care of this latency.

Example 1

SHARC+ Core Programming Reference 6-29

Operating Modes

BIT SET MODEl SRD1L; /* Activate alternate dagl lo regs */
NOP; /* Wait for access to alternates */
RO = DM (i0,ml) ;

Example 2

BIT SET MODEl SRD1L; /*activate alternate dagl lo registers */
R13 = R12 + R11; /* Any unrelated instruction */
RO = DM(IO,M1) ;

Interrupt Mode Mask

On the SHARCH+ cores, programs can mask automated individual operating mode bits in the REGF MODE1 regis-
ter when entering into an ISR by setting bits in the REGF MMASK register. This improves interrupt handling per-
formance and helps ensure that interrupt handler code runs with operating modes set consistently.

For the DAGs, the alternate registers (REGF MODE1.SRD1H/REGF MODE1.SRD1L and

REGF MODEL.SRD2H/REGF MODEL.SRD2L), circular buffer (REGF MODEL .CBUFEN), bit-reverse
(REGF_MODEL.BRO/REGF MODEL.BRS8) and broadcast (REGF MODE1.BDCST1/REGF MODE1.BDCST9)
are optional masks in use. For more information, see the Program Sequencer chapter.

DAG Exceptions

The DAG exceptions are shown in the following sections. For a complete list, see the Interrupt Priority and Vector

Table.

Table 6-11: DAG Exceptions

Interrupt Source | Interrupt Condition Return Register | Return Instruc- | IVT level
tion

DAG Circular Buffer 7 overflow STKYx RTI 5, CB71
Circular Buffer 15 overflow STKYx RTI 21, CB15I
Unintentional CMMR/SMMR ac- | STKYx RTI 6, IICDI
cess
Illegal Input Condition Detect STKYx RTI 6, IICDI
Illegal Address Switch n/a RTI 8, ILADI

Circular Buffer Exceptions

There is one set of registers (I7 and I15) in each DAG that can generate an interrupt on circular buffer overflow
(address wraparound). See DAG Status.

When a program needs to use I7 or I15 without circular buffering, and circular buffer overflow interrupts are

unmasked, the program should disable the generation of these interrupts by setting the B7/B15 and L7/L15 regis-
ters to values that prevent the interrupts from occurring. If, for example, I7 is accessing the address range 0x1000 -
0x2000, the program could set B7 = 0x0000 and L7 = OxFFFE. Because the circular buffer interrupt is based on the

6-30 SHARC+ Core Programming Reference

DAG Exceptions

wraparound equations (see Wraparound Addressing), setting the L register to zero does not necessarily achieve the
desired results. If the program is using either of the circular buffer overflow interrupts, it should avoid using the
corresponding I register(s) (I7 or I15) where interrupt branching is not needed.

There are two special situations to be aware of when using circular buffers:

1. In the case of circular buffer overflow interrupts, if REGF MMASK.CBUFEN = 1 and register L7 = 0 (or L15
= 0), then the CB71T (or CB151) interrupt occurs at every change of I7 (or I15), after the index register (I7
or I15) crosses the base register (B7 or B15) value. This behavior is independent of the context of both pri-
mary and alternate DAG registers.

2. When a Iw access, SIMD access, or normal word access with the 1w option crosses the end of the circular buf-
fer, the processor core completes the access before responding to the end of buffer condition.

Enable interrupts and use an interrupt service routine (ISR) to handle the overflow condition immediately. This
method is appropriate if it is important to handle all overflows as they occur; for example in a "ping-pong" or swap
/O buffer pointers routine.

lllegal Address Space Access Exceptions

The Accesses Causing Illegal Address Space Interrupt table lists all the scenarios which results in Illegal Address Space
(ILAD) interrupt.

Table 6-12: Accesses Causing Illegal Address Space Interrupt

Instruction/Quantifier Source Address Space
Long Word Space Normal Word Short Word Space | Byte Word Space
Space

Memory Access Instruction

Byte word (example: dm (10, m0) =r0 (bw) ;) Hllegal Hllegal Hllegal Legal
Short word (example: dm (10, m0) =r0 (sw) ;) Hllegal Hllegal Hllegal Legal
Normal Word (example: Legal Legal Legal Legal
dm (10, m0)=r0 (nw) ;)"

Extended Precision (example: Legal Legal Legal Legal
dm (10, m0)=r0 (nw) ;)

Long Word (example: dm (10, m0) =r0 (1w) ;) Legal Legal 1llegal Legal
Modify Instruction

Byte word (example: 15=modify (i2,m3) ;)7 Legal Legal Legal Legal
Short word (example: 15=modify (i2,m3) 1llegal 1llegal 1llegal Legal
(sw) ;)
Normal Word (example: 15=modify (i2,m3) Lllegal Lega1*3 Lllegal Legal
(nw) ;)

SHARC+ Core Programming Reference 6-31

DAG Exceptions

Table 6-12: Accesses Causing Illegal Address Space Interrupt (Continued)

Instruction/Quantifier Source Address Space
Long Word Space Normal Word Short Word Space | Byte Word Space
Space
Address Switch Instructions
Byte to word (example: 15=B2W (13) ;) 1llegal Legal 1llegal Hllegal if no eqiva-
lent
Word to byte (example: 15=W2B (13) ;) Hllegal Legal Hllegal Legal

*1 Normal word is the default access size. No interrupt will be raised for any address space. Normal word sized access would be done in

byte address space. In other address spaces, access would be as per the address space.
*2 No interrupt raised as this is the default modifier.

*3 Behavior is same as BW modifier in NW space.

Unintentional CMMR/SMMR Space Access Exceptions

Execution or data access from SMMR space can create problems, as many peripheral FIFOs are mapped in this
space. To help programs detect any such accesses, the processor provides the illegal MMR access interrupt. This logic
detects accesses both to core MMRs and to system MMRs. Setting the REGF _MODEZ2 . IIRAE bit enables this in-

terrupt.

Unaligned Forced Long Word Access Exceptions

The processor monitors for unaligned 64-bit memory accesses (access from two successive rows) if the unaligned 64-
bit memory accesses (REGF MODEZ2 . U64MAE) bit is set (=1). Accesses not following alignment in the Sizes and
Alignment in SISD and SIMD Modes table cause this interrupt. When detected, this condition is an input that can
cause an illegal input condition detected interrupt if the interrupt is enabled in the REGF_IMASK.IICDI. For
more information, see Mode Control 2 Register (MODE?2) in the Registers appendix.

The following code example shows the access for even and odd addresses. When accessing an odd address, the sticky

bit is set to indicate the unaligned access.

bit set mode2 U64MAE; /* set bit for aligned or unaligned 64-bit access*/
r0 = 0x11111111;
rl = 0x22222222;
pm (NW Addressl) = r0(lw); /* even address in 32-bit, access is aligned */
pm (NW_Address2) /* odd address in 32-bit, sticky bit is set */

Il
]
(@]
—
=

Unaligned Byte Word Access Exceptions

The following table details all the alignment requirements. Any access which does not adhere to applicable restric-
tions will cause IICDI (Illegal Input Condition Detected) interrupt if unaligned memory access
(REGF MODEZ2.U64MAE) is set. Such accesses are force-aligned to the immediately lower legally aligned address

for the given data size.

6-32 SHARC+ Core Programming Reference

Table 6-13: Sizes and Alignment Restrictions in SISD and SIMD Modes

DAG Exceptions

and IMDW mode

dary

dary

Access Size Alignment Restriction Exclusive Accesses Restrictions
SISD SIMD SISD SIMD
Byte None None None Short word boundary
Short Word None None'! Short word boundary | Normal word boun-
dary
Normal Word None Normal word boun- Normal word boun- Long word boundary
dary dary
Long Word Long word boundary Long word boundary*z None None
External memory space short word | Short word boundary | Short word boundary | None None
and IMDW mode
External memory space normal word | Normal word boun- Normal word boun- None None

*1 Note that SIMD accesses using short word (SW) address space behave differently than using byte address space.

*2 Behavior similar to those in any other address space after forced alignment.

SHARC+ Core Programming Reference

6-33

L1 Memory Interface

7 L1 Memory Interface

The SHARC processors contain from to 3 to 5SM bits of internal RAM. This memory is organized into four inde-
pendent single ported memory blocks. This organization allows greater system flexibility in regards to code, data and
stack or heap allocation. For information and a block diagram about the the exact size and maximum number of
data or instruction words that can fit into internal memory, see the processor-specific data sheet.

Features

The following are the memory interface features.

* Four independent internal memory blocks comprised of RAM. Contents of all the four banks can be parity
protected. There is one parity bit for each byte.

* Each block can be configured for different combinations of code and data storage.
* Each block consists of eight columns and each column is 8 bits wide.

* Each block maps to separate regions in memory address space and can be accessed as 8-bit, 16-bit, 32-bit, 48-

bit or 64-bit words.
* Memory aliasing allows access of same space from different word sizes.

* Block 0 has 256 addresses reserved for internal interrupt vector table (IVT). Controller jumps after interrupt
latch to a specific IVT address.

* Unified memory space (both DAGs can support the same address).
* Only the end address regions of blocks are assigned to I/D cache if enabled.

While each memory block can store combinations of code and data, accesses are most efficient when the DM bus
accesses data from block 1, the PM bus accesses data and instructions from block 2 and two I/O buses access data
from blocks 3 and 4. Using the DM and PM buses in this way assures single-cycle execution with two data transfers
where the instruction must be available in the instruction-conflict cache.

NOTE: The address map between the L1 memory blocks is not sequential.

SHARC+ Core Programming Reference 7-1

Von Neumann Versus Harvard Architectures

Von Neumann Versus Harvard Architectures

Most microprocessors use a single address and a single-data bus for memory accesses. This type of memory architec-
ture is referred to as the Von Neumann architecture. Because processors require greater data throughput than the
Von Neumann architecture provides, many processors use memory architectures that have separate data and address
buses for instruction and data storage. These two sets of buses let the processor retrieve data and instructions simul-
taneously. This type of memory architecture is called Harvard architecture.

Super Harvard Architecture

SHARC processors go a step further by using a Super Harvard architecture. This four bus architecture has two ad-
dress buses and two data buses, but provides a single, unified address space for program and data storage. While the
data memory (DM) bus only carries data, the program memory (PM) bus handles both instructions and data, allow-
ing dual-data accesses in a single.

The following code examples and the Pipelined Execution Cycles table illustrate the differences between Harvard
and Super Harvard capabilities.

Standard Harvard Architecture

Compute, rO0=dm(i0,m0); /* instruction performs 2 accesses */
/* cycle 6: Instruction Fetch conflict cache, PM Data fetch F1 */

Super Harvard Architecture

Compute, rO=dm(i0,m0), rl=pm(i8,m8); /* instruction performs 3 accesses */

/* cycle 6: Instruction Fetch conflict cache, PM Data fetch F1 and DM Data
Fetch D2 */

/* cycle 6: See d2 and fl in cycle 6 in the table below */

The Pipelined Execution Cycles table illustrates multiple accesses in the instruction pipeline.

Table 7-1: Pipelined Execution Cycles

cycles 1 2 3 4 5 6 7 8 9 10 11 12
e2 n n+l
m4 n n+l | n+2
m3 n n+l | n+2 | n+3
m?2 n n+l | n+2 | n+3 | n+4
ml n n+l | n+2 | n+3 | n+4 | n+5
d2 n n+l | n+2 | n+3 | n+d | n+5 | n+6
d1 n n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7
t4 n n+l | n+2 | n+3 | n+d | n+5 | n+6 | n+7 | n+8
3 n n+l | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9
2 n ntl | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | n+8 | n+9 | n+10

7-2 SHARC+ Core Programming Reference

Functional Description

Table 7-1: Pipelined Execution Cycles (Continued)

cycles 1 2 3 4 5 6 7 8 9 10 11 12

f1 n ntl | n+2 | n+3 | n+4 | #+5 | n+6 | n+7 | n+8 | n+9 | n+10 | n+11

When instructions and data passing over the PM bus cause a conflict, the instruction-conflict cache resolves them
using hardware that act as a third bus feeding the sequencer's pipeline with instructions.

Processor core and CMMR/SMMR accesses to internal memory are completely independent and transparent to one
another. Each block of memory can be accessed by the processor core and DMA in every cycle provided the accesses
are to different blocks of the memory.

Functional Description

The following sections provide detail about the processor's memory function.

The SHARC processor’s memory map appears in the product-specific data sheet. See the data sheet for address de-
coding of memory space.

Memory Access Types

The memory interface of processor is responsible for servicing all of the accesses that are generated by core or com-
ing to core from outside system. The Access Types figure shows summary of all the accesses serviced by this interface
and the associated ports.

All accesses

(RD/WR)
Core driven accesses System driven accesses
(core is requester) to L1 (core is completer)
Ports: L1, cMMR, | & D Ports: S1 & S2
Instruction Data
(DM/PM)

External memory || Internal memory External Internal
Port: |-port Ports: L1-blocks[0-3] memory memory

Uncached Cached SMMR L1

Uncached Cached Port: D-port || Port: D-port || Port: D-port CMMR Ports: L1 blocks[0-3]

Figure 7-1: Access Types

Other than instruction accesses, all the accesses can be both read and write. Access to L1 blocks can be serviced
without any pipeline stall if block conflicts are avoided. All other accesses can cause a pipeline stall. Precise number
of stall depends on delay in outside system and type of completer port used. Though system related delay cannot be
predicted by the core but port related components are predictable.

SHARC+ Core Programming Reference 7-3

Functional Description

Byte Address Space Overview of Data Accesses

The byte address space is universal address space for the core and SoC. It has the following properties.

1.
2.

Data access of all sizes can be done using byte address space.
The size of an access is determined by the instruction encoding,.

* The CMMR SYSCTL.IMDWBLKO and CMMR SYSCTL.IMDWBLK3 bits must be referred to in order
to select between 32-bit and 40-bit accesses.

The entire system memory-map is byte-addressed. A cores byte space address map matches very closely with the
address map view of other cores and access requesters (for example, DMAs).

* All physical memory can be addressed using the byte addressable memory space. By contrast, there is some
physical memory which has no corresponding normal word or short word alias.

Sign extension OR zero filling is based on the sign extension modifier of the instruction encoding. As a result,
the sign extension mode bit is ignored for short word and byte accesses in byte space.

. In byte space SIMD pairs are contents of explicit address and contents of next location, while in short word space

SIMD pairs are alternate locations.

The impact of the IMDW bit on byte space accesses are slightly different than normal word space accesses. For
more information, see the Normal-Word Access in SISD Mode section and the Normal-Word Access in SIMD
Mode section.

Alignment requirements in byte space are summarized in the Sizes and Alignment Restrictions in SISD and
SIMD Modes table.

The following sections describe how all sizes of internal memory accesses can be accomplished in byte space and the

corresponding valid data alignments. Note each column supports 16 bits of data.

Byte Access in SISD Mode

All alignments are allowed in this mode.

Column-3 Column-2 Column-1 Column-0

Addr=n

Addr=4 Addr=3 Addr=2 Addr=1 Addr=0

Direction of address increment

<

<
Direction of address increment

74

SHARC+ Core Programming Reference

Byte Access in SIMD Mode

Byte Address Space Overview of Data Accesses

Where byte access in byte space with SIMD mode is enabled, the PEX and PEY units take data from consecutive
locations. The explicit register is updated with the content of the explicit address location while its SIMD pair is
updated with the content of the explicit address + 1-byte memory location. Accesses of all alignments are allowed in

this mode.

Column-3

Column-2

Column-1

Column-0

Implicit access

Explicit access

Implicit access

§ for addr=11 for addr=11 for addr=7
g Explicit access Implicit access | Explicit access
E for addr=7 for addr=0 for addr=0
%
:Direction of address increment
Short-Word Access in SISD Mode
Accesses of all alignments are allowed in this mode.
Column-3 Column-2 Column-1 Column-0
E, Access for | Access for Access for
g addr=11 addr=11 addr=7
g Access for Access for | Access for
£ addr=7 addr=0 addr=0
.g

<

<
Direction of address increment

Short-Word Access in SIMD Mode

Where short word access in byte space with SIMD mode is enabled, the PEX and PEY unit take data from consecu-
tive locations. Explicit register is updated with content of explicit address location while its SIMD pair gets updated

with content of explicit address + 2-byte memory location. Accesses of all alignments are allowed in this mode.

SHARC+ Core Programming Reference

Byte Address Space Overview of Data Accesses

Column-3

Column-2

Column-1

Column-0

Direction of address increment

Implicit ac-
cess for

addr=26

Implicit ac-
cess for

addr=26

Explicit ac-
cess for

addr=26

Explicit ac-
cess for

addr=26

Implicit ac-
cess for

addr=19

Implicit ac-
cess for

addr=19

Explicit ac-
cess for

addr=19

Explicit ac-
cess for

addr=19

Implicit ac-
cess for

addr=7

Implicit ac-
cess for

addr=7

Explicit ac-
cess for

addr=7

Explicit ac-

Implicit ac-

Implicit ac-

Explicit ac-

Explicit ac-

cess for cess for cess for cess for cess for
addr=7 addr=0 addr=0 addr=0 addr=0
:Direclion of address increment
Normal-Word Access in SISD Mode
Accesses of all the alignments are allowed in this mode.
Column-3 Column-2 Column-1 Column-0
Access for Access for Access for Access for
g addr=19 addr=19 addr=19 addr=19
£
8 Access for Access for Access for Access for
é addr=19 addr=19 addr=19 addr=19
§ Access for Access for Access for
s addr=7 addr=7 addr=7
5 Access for Access for Access for Access for Access for
addr=7 addr=0 addr=0 addr=0 addr=0

<

<
Direction of address increment

32-Bit Normal-Word Access in SIMD Mode

Where normal word access in byte space with SIMD mode is enabled, the X and Y unit take data from consecutive
locations. The explicit register is updated with the content of the explicit address location while its SIMD pair gets
updated with the content of the “explicit address + 4-byte” memory location. In this case accesses must be aligned

on normal word boundaries (byte space address = 4 n, where n = 0, 1, 2, 3 and so on).

7-6

SHARC+ Core Programming Reference

Byte Address Space Overview of Data Accesses

Column-3

Column-2

Column-1

Column-0

Direction of address increment

Implicit ac-
cess for

addr=24

Implicit ac-
cess for

addr=24

Implicit ac-
cess for

addr=24

Implicit ac-
cess for
addr=12

Explicit ac-
cess for
addr=20

Explicit ac-
cess for
addr=20

Explicit ac-
cess for
addr=20

Explicit ac-
cess for
addr=12

Implicit ac-
cess for

addr=0

Implicit ac-
cess for

addr=0

Implicit ac-
cess for

addr=0

Implicit ac-
cess for

addr=0

Explicit ac-
cess for

addr=0

Explicit ac-
cess for

addr=0

Explicit ac-
cess for

addr=0

Explicit ac-
cess for

addr=0

<

<
Direction of address increment

Long-Word Accesses

Long word accesses in byte space must be aligned on long word boundaries (byte space address = 8 n, where n = 0,
1, 2,and so on).

Column-3 Column-2 Column-1 Column-0
Explicit ac- | Explicit ac- | Explicit ac- | Explicit ac- | Explicit ac- | Explicit ac- | Explicit ac- | Explicit ac-
cess for cess for cess for cess for cess for cess for cess for cess for
addr=0 addr=0 addr=0 addr=0 addr=0 addr=0 addr=0 addr=0

Direction of address increment

<&

<
Direction of address increment

Byte Accesses to a 3 column (40-bit) enabled Block

Byte space access to an internal memory block having its CMMR SYSCTL . IMDWBLKO and
CMMR SYSCTL.IMDWBLKS3 bit set behaves differently than 32-bit accesses discussed in previous sections. A sum-
mary of byte addressed accesses with IMDW set are as follows:

1. Address arithmetic on byte addresses using normal word accesses or using the modify (nw) instruction scales
the modifier by 6 as there are 6 bytes per word.

2. Only 4 bytes (out of 6) can be accessed using the byte modifier.

a. Byte n accesses the 3rd byte of a given 6-byte chunk. Similarly n + 1 goes to the 4th byte and finally n+3
goes to the 6th byte.

b. This way least significant (unused) byte and the 2nd byte remain inaccessible in this mode.

c. However each and every byte becomes accessible to byte access as soon as IMDW is turned off (as shown
in previous sub-section).

SHARC+ Core Programming Reference 7-7

Functional Description

Table 7-2: Extended Precision Normal Word Access (Byte address or normal word address space)

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0
EP WORD X3 EP WORD X2 ...
... EP WORD X2 EP WORD X1 ...
... EP WORD X1 EP WORD X0

3. Only 4 bytes (out of 6) can be accessed using the SW modifier.

a. A short word access starting with byte address n accesses the 3rd and 4th bytes of a given 6-byte chunk. A
short word access starting with byte address n + 2 accesses the 5th and 6th bytes of a given 6-byte chunk.

b. This way least significant (unused) byte and 2nd byte remain inaccessible in this mode.

c. However each and every byte is accessible to byte access as soon as IMDW is turned off (as shown in
previous sub-section).

4. Normal word accesses the entire 6-bytes and ignores the least significant unused byte to create 40-bit data.

5. Long word accesses in byte space memory override the IMDW setting (see Byte Accesses to a 3 column (40-bit)
enabled Block.

6. SIMD accesses to bank with the IMDW bit set results only in the explicit access occurring irrespective of the
size of the access.

Internal Memory Space
The SHARC processor's internal memory address space is divided into four SRAM banks and one Core-MMR

group. See the memory-map in the product specific data sheet for exact address details.
Internal Memory Interface

The internal memory interface is responsible for all address and strobe generation for internal memory accesses. It
also performs the necessary 48-bit address rotation, pin multiplexing and other interface tasks for instruction fetch
or 40-bit data access. All data writes to the internal memory blocks pass through a shadow write FIFO logic. Apart
from performing a memory access, the interface also performs bus-switching for the various buses. The crossbar
switches between the data memory bus (DM), program memory bus (PM), completer 1 (S1) and completer 2 bus
(82) to the single ported memory blocks.

Requester Ports

The SHARC core has two 32-bit bidirectional requester ports: a 64-bit PM port is used to fetch instruction or data
and a 64-bit DM port used for data transfers.

The requester ports are used when the core performs a system access into the cross bar.
Completer Ports

The SHARC core has two 32-bit bidirectional completer ports. The ports can be used by any external requester to
access any amount of data from the core's L1 memory. Some important points related to the completer ports.

7-8 SHARC+ Core Programming Reference

Internal Memory Space

* Both the ports are 32-bit wide and run at system clock speed (SYSCLK).
* L1 memory accesses cannot be performed when the core is in reset.

* Read and write requests that occur at the same time on the same port causes arbitration within that completer

port.

* Both of the completer ports share same arbitration logic with core accesses. When one completer access collides
with a core access on any of the internal memory banks, the other completer port also sees the bandwidth re-
duction.

* Completer ports do not return an error response for unpopulated spaces within the address range. Accesses to
unpopulated memory space should be avoided because the access may be mapped to some other space.

NOTE: For ADSP-SC58x based products two system requesters can concurrently access two completer ports
(for address map refer to product DS)

For ADSP-SC57x based products completer port 2 is hard wired for the Max BW MDMA. Therefore
any system requester on completer port 1 can have concurrent access with the Max BW MDMA

WARNING: Speculative read accesses launched on a pipeline flush may lead the system to hang under certain con-

ditions.

The SHARC+ core launches all non MMR reads speculatively based on the current values of the in-
dex and modifier registers. Speculative accesses are the accesses which are launched ahead of their exe-
cute stage. These accesses can be killed when the pipe is flushed or during an abort such as when a
condition is false. When a pipeline flush occurs after a branch or a loop for example, MMR reads can
launch extra accesses based on a Ix = Ix + My operation or on the stale value of index registers. If a
MMR read lands on a memory interface that is not functional (either not initialized or is blocked by
the SMPU), then such accesses may hang the system.

Programs should use SMPU instances to disable accesses to system memory that may not be popula-
ted or needs to be initialized before being accessed. That way, when attempting to speculatively access
non-populated/non-activated memory completers, the system receives a protection-violation response
rather than hanging the system. This avoids the possibility of an infinite stall in the system due to a
speculative access to a disabled or uninitialized memory. The preload and init code executables provi-
ded in CCES for the ADSP-SC584 and ADSP-SC589 EZ-Board have code that disables unused
DMC, PCle and SMC memory using the SMPU. See Illegal System Accesses Conditions for more

information.

Internal Memory Block Architecture

The internal memory of the processor is organized as four 16-bit columns. The organization further divides each
column into two bytes to support byte access. The size of the data access can be from one byte to up to 64-bits as

follows:
* 0.5 column = 8-bit words (byte)

* 1 column = 16-bit words

SHARC+ Core Programming Reference 7-9

Internal Memory Space

e 2 columns = 32-bit words
* 3 columns = 48- or 40-bit words
* 4 columns = 64-bit words

Each block is physically comprised of four 16-bit columns. Wrapping, as shown in the Short Word Addressing of
Single-Data in SISD Mode figure (see Short Word Addressing of Dual-Data in SISD Mode), is a method where
memory can efficiently store different combinations of 8-bit, 16-bit, 32-bit, 48-bit or 64-bit wide words.

The width of the data word fetched from memory depends on:
* Type of address space used,
* Type of access size modifier used in instruction encoding, and
* Instruction mode (SISD or SIMD mode)

The same physical location in memory can be accessed using four different addresses.

NOTE: The memory data width access is only address space dependent and NOT on instruction type. This is very
unique for SHARC processors. Memory aliasing allows to access the same physical location via different

memory aliases.

Extended-precision normal word (40-bit) data is only accessible if the CMMR SYSCTL.IMDWBLKO and
CMMR_SYSCTL.IMDWBLKS3 bits are set. It is left-justified within a three column location using bits 478 of the

location.

Normal Word Space 48-bit or 40-Bit Word Rotations

When the processor core addresses memory, the word width of the access determines how many columns within the
memory are accessed. For instruction word (48 bits) or extended-precision normal word data (40 bits), the word
width is 48 bits, and the processor accesses the memory's 16-bit columns in groups of three. Because these sets of
three column accesses are packed into a 4 column matrix, there are four possible rotations of the columns for storing
40- or 48-bit data. The three column word rotations within the four column matrix appear in the 48-Bit Word
Rotations figure.

| | | | |
Rotation 3 Rotation 2
| |
Rotation 2 Rotation 1
g |
a Rotation 1 Rotation 0
[0}
5 | | | | |
2 0 15 0 15 0 5 0 15
Column 3 Column 2 Column 1 Column 0

Figure 7-2: 48-Bit Word Rotations

Extended precision floating-point (40-bit) data and instruction fetches (48-bit) need a different type of manipula-
tion of their addresses to derive the corresponding row addresses. Since each row contains 4 columns while 48-bit

7-10 SHARC+ Core Programming Reference

Functional Description

words span across 3 columns, the address is multiplied by 3/2 (add address to its left-shifted version, right-shift the
result by two bit-positions) to derive the first row address. The next address is the incremented version of the first
one. Note that this assumes that the starting address of the 48-bit/32-bit/64-bit addresses are aligned.

For long word (64 bits), normal word (32 bits) and short word (16 bits) memory accesses accomplished using
LW/NW/SW address space of memory map, the processor selects from fixed columns in memory. No rotations of
words within columns occur for these data types. 16-bit and 32-bit accesses that the processor performs using the
byte space of the address map may result in rotation, depending on the starting point of the accessed data.

The Mixed Instructions and Data with No Unused Locations figure in Mixing Words in Normal Word Space shows

the memory ranges for each data size in the processor's internal memory.

Rules for Wrapping Memory Layout

The following sections describe memory wrapping, a method where programs can efficiently store different combi-
nations of 16-bit, 32-bit, 48-bit or 64-bit wide words.

Mixing Words in Normal Word Space

The processor's memory organization lets programs freely place memory words of all sizes (see Internal Memory
Block Architecture) with few restrictions (see Mixing 32-Bit Words and 48-Bit Words). This memory organization
also lets programs mix (place in adjacent addresses) words of all sizes. This section discusses how to mix odd (three
column) and even (four column) data words in the processor's memory.

Transition boundaries between 48-bit (three column) data and any other data size can occur only at any 64-bit ad-
dress boundary within the internal memory block. Depending on the ending address of the 48-bit words, there are
zero, one, or two empty locations at the transition between the 48-bit (three column) words and the 64-bit (four
column) words. These empty locations result from the column rotation for storing 48-bit words. The three possible
transition arrangements appear in figures Mixed Instructions and Data with No Unused Locations, Mixed Instruc-
tions and Data With One Unused Location, and Mixed Instructions and Data With Two Unused Locations.

Transitioning from 48-bit to 32-bit
data with zero empty locations:
(48-bit word top address)

32-bit word 3 32-bit word 2

32-bit word 1 32-bit word 0

[\

48-bit word top 48-bit word top-1

[] l [

48-bit word top-1 | 48-bit word top-2

\ || |

48-bit word top-2 48-bit word top-3 |

[[T [T]

0 15 0 15 0 15 0 15
Column 3 Column 2 Column 1 Column 0

Addresses

Figure 7-3: Mixed Instructions and Data with No Unused Locations

SHARC+ Core Programming Reference 7-11

Rules for Wrapping Memory Layout

Transitioning from 48-bit to 32-bit
data with one empty locations:
(48-bit word top address)

L L

32-bit word 3 32-bit word 2

32-bit word 1 32-bit word 0

Empty 48-bit word top

48-bit word top-1 48-bit word top-P

| [|] |
0 15 0 15 0 15 0 15
Column 3 Column 2 Column 1 Column 0

48-bit word top-2 48-bit word top-3

Addresses

Figure 7-4: Mixed Instructions and Data With One Unused Location

Transitioning from 48-bit to 32-bit
data with two empty locations:
(48-bit word top address)

[I] [|

32-bit word 3 I 32-bit word 2 I

| [|

32-bit word 1 32-bit word 0 |

Empty Empty 48-bit word top

[\

28-bit word 48-bit word top-1 |

. [|
% 48-bit word top-2 48-bit word top-3

¢] B |

<

0 15 0 15 0 15 0 15
Column 3 Column 2 Column 1 Column 0

Figure 7-5: Mixed Instructions and Data With Two Unused Locations

Mixing 32-Bit Words and 48-Bit Words

There are some restrictions that stem from the memory column rotations for three column data (48 or 40-bit words)
and they relate to the way that three column data can mix with two column data (32-bit words) in memory. These
restrictions apply to mixing 48 and 32-bit words because the processor uses a normal word address to access both of
these types of data even though 48-bit data maps onto three columns of memory and 32-bit data maps onto two

columns of memory.

When a system has a range of three column (48-bit) words followed by a range of two column (32-bit) words, there
is often a gap of empty 16-bit locations between the two address ranges. The size of the address gap varies with the
ending address of the range of 48-bit words. Because the addresses within the gap alias to both 48 and 32-bit words,
a 48-bit write into the gap corrupts 32-bit locations, and a 32-bit write into the gap corrupts 48-bit locations. The
locations within the gap are only accessible with short word (16-bit) accesses.

32-Bit Word Allocation

Calculating the starting address for two column data that minimizes the gap after three column data is useful for
programs that are mixing three and two column data. Given the last address of the three column (48-bit) data, the
starting address of the 32-bit range that most efficiently uses memory can be determined by the equation:

m=B+ (3/2 (n - B)) + 1)

7-12 SHARC+ Core Programming Reference

Rules for Wrapping Memory Layout

where:
* 7 1is the first unused address after the end of 48-bit words
* B is the base normal word / 48-bit address of the internal memory block

* m is the first 32-bit normal word address to use after the end of 48-bit words.

ATTENTION: Note that the linker verifies the wrapping rules of different output sections and returns an overlap
error message during project build if the rules are violated.

Example: Calculating a Starting Address for 32-Bit Addresses

If, in the SHARC address map for example, the block 0 starting point of a normal word and 48-bit address is
0x90000, and given a block of words in the range 0x90000 to 0x92694, the next valid address is 0x92695. The
number of 48-bit words (n) is:

n = 0x92695 - 0x90000 = 0x02695
When 0x12695 is converted to decimal representation, the result is 9877.

The base (B) normal word address of the internal memory block is 0x80000. The first 32-bit normal word address
to use after the end of the 48-bit words is given by:

m = 0x90000 + (3/2 (9877)) + 1
m = 0x90000 + 0xO039EO
m = 0x90000 + Ox039E0 = 0x939EQ

The first valid starting 32-bit address is 0x9B9EO.
48-Bit Word Allocation

Another useful calculation for programs that are mixing two and three column data is to calculate the amount of
three column data that minimizes the gap before starting four column data. Given the starting address of the two
column (32-bit) data, the number of 48-bit words that most efficiently uses memory can be determined by the
equation:

n=B+ (2/3 (m - B)) -1
where:

* m is the first 32-bit normal word address after the end of 32-bit words (m values falls in the valid normal word

address space)
* B is the base normal word / 48-bit address of the internal memory block
* nis the address of the first 48-bit word to use after the end of 32-bit words
Memory Block Arbitration

A memory access conflict can occur when the processor attempts two or more accesses to the same internal memory
block in the same cycle. When this conflict, known as a block conflict occurs, the memory interface logic resolves it

SHARC+ Core Programming Reference 7-13

Memory Block Arbitration

according the following rules. The instruction that causes this conflict may take two or three core clock cycles to
complete execution.

1. DMA access completer ports1-2 (highest priority)*
. Core access to L1 over DM bus

. Core access to L1 over PM bus

. Core access (D-Cache) external memory over DM bus

2

3

4. Core instruction access to L1

5

6. Core access (D-Cache) external memory over PM bus
7

. Core access (I-Cache) external memory over Instr. bus (lowest priority)
* In case both DMA completer ports access the same block completer port 1 is given higher priority

During a single-cycle, dual-data access, the processor core uses the independent PM and DM buses to simultaneous-
ly access data from two memory blocks. Though dual-data accesses provide greater data throughput, it is important
to note some limitations on how programs may use them. The limitations on single cycle, dual-data accesses are:

* The two pieces of data must come from different memory blocks.
* If the core accesses two words from the same memory block in a single instruction, an extra cycle is needed.

* The data access execution may not conflict with an instruction fetch operation. The PM data bus tries to fetch
an instruction in every cycle. If a data fetch is also attempted over the PM bus, an extra cycle may be required
depending on the availability of victim instruction in conflict cache.

* If the conflict cache contains the conflicting instruction, the data access completes in a single cycle and the
sequencer uses the cached instruction. If the conflicting instruction is not in the instruction-conflict cache, an
extra cycle is needed to complete the data access and cache the conflicting instruction. For more information,
see Instruction-Conflict Cache for External Instruction Fetch in the Program Sequencer chapter.

For more information on how the buses access memory blocks, see Requester Ports.

VISA Instruction Arbitration
With standard arbitration processes, 48-bits of data are fetched at a time. In VISA operation, this data may either be
1, 2, or 3 instructions. This is an advantage of VISA operation-during the execution of a typical VISA application

there are fewer accesses to internal memory from the core, causing less conflict on the internal buses with other pe-
ripheral DMAs or dedicated hardware accelerators using the same bus.

Using Single Ported Memory Blocks Efficiently

Because the SHARC+ cores are designed with four single-ported memory blocks, software needs to be designed so
that data is continuously being processed and there are no memory block conflicts.

Typically data is pushed into memory using the DMA infrastructure. The core loads the data from memory, per-
forms a computation, and stores the data back into memory. Then the DMA drives this data off-chip.

7-14 SHARC+ Core Programming Reference

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

To ensure continuous data streams, mechanisms like ping-pong buffers, together with chained DMA transfers, can
be implemented as shown in the DMA Flow figure. Designs should ensure that while the DMA moves data to the
primary memory block, the core processes the secondary block's data. Then, after the DMA interrupt is generated,
the memory block processing between core and DMA is flipped which prevents memory block conflicts between the
core and DMA.

For complete information on using DMA, see the product-specific hardware reference, "Direct Memory Access
(DMA)" chapter.

CORE

~N
~
~
\
~N
~N
~N
N
N

DMA

Figure 7-6: DMA versus Core Flow

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

The processor's DM and PM buses support many combinations of register-to-memory data access options in byte-
word, short-word, normal-word, and long-word address spaces. The following factors influence the data access type:

* Size of words - short word, normal word, extended-precision normal word, or long word

* Number of words - single or dual-data move

e Processor mode - SISD, SIMD, or broadcast load

* Instruction modifiers, such as long word (LW), short word (SW or SWSE) and byte word (BW or BWSE)

The following list shows the processor's possible memory transfer modes and provides a cross-reference to examples
of each memory access option that stems from the processor's data access options.

These modes include the transfer options that stem from the following data access options:
* The mode of the processor: SISD, SIMD, or Broadcast Load
* The size of access words: long, extended-precision normal word, normal word, short word, or byte word
* The number of transferred words

To take advantage of the processor's data accesses to three and four column locations, programs must adjust the
interleaving of data into memory locations to accommodate the memory access mode. The following guidelines pro-
vide overviews of how programs should interleave data in memory locations. For more information and examples,
see Instruction Set Types in the Instruction Set Types chapter, and Computation Types in the Computation Types
chapter.

SHARC+ Core Programming Reference 7-15

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

* Programs can use odd or even modify values (1, 2, 3,) to step through a buffer in single- or dual-data, SISD or
broadcast load mode regardless of the data word size (long word, extended-precision normal word, normal
word, short word, or byte word).

* Programs should use a multiple of 2 modify values (2, 4, 6,) to step through buffers of 8-, 16- or 32-bit data
using the byte address space.

* Programs should use a multiple of 4 modify values (4, 8, 12,) to step through a buffer of short word data in
single- or dual-data, SIMD mode. Programs must step through a buffer twice, once for addressing even short
word addresses and once for addressing odd short word addresses.

* Programs should use a multiple of 2 modify values (2, 4, 6,) to step through a buffer of normal word data in
single- or dual-data SIMD mode.

* Programs can use odd or even modify values (1, 2, 3,) to step through a buffer of long word or extended-
precision normal word data in single- or dual-data SIMD modes.

NOTE: Where a cross (T) appears in the PEx registers in any of the following figures, it indicates that the process-
or zero-fills or sign-extends the most significant bits of the data register while loading the byte/short word
value into a 40-bit data register. Zero-filling or sign-extending depends on the state of the SSE bit in the
MODE1 system register. For byte/short word transfers, the least significant 8 bits of the data register are
always zero.

Byte Addressing of Single-Data in SISD Mode

The Byte Addressing of Single-Data in SISD Mode figure shows the SISD single-data, byte word addressed access
mode. For byte addressing, the processor treats the data buses as eight 8-bit short word lanes. The 8-bit value for the
byte access is transferred using the least significant byte lane of the PM or DM data bus. The processor drives the
other byte lanes of the data buses with zeros.

In SISD mode, the instruction accesses the PEx registers to transfer data from memory. This instruction accesses
BYTE X0, whose short word address has "00" for its least significant two bits of address. Other locations within this
row have addresses with least significant two bits of "01", "10", or "11" and select BYTE X1, BYTE X2, or BYTE

X3 from memory respectively. The syntax targets register RX in PEx.

7-16 SHARC+ Core Programming Reference

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
I BYTE Y23 | BYTE Y22 | BYTE Y21 | BYTE Y20| BYTE Y19 |BYTE Y18 | BYTE Y17 |BYTE Y16 T BYTE X23 | BYTE X22 | BYTE X21 | BYTE X20| BYTE X19 | BYTE X18 |BYTE X17 | BYTE X16
.,.
a o
4
E BYTE Y15 |BYTE Y14 | BYTE Y13| BYTE Y12| BYTE Y11 |BYTE Y10 | BYTE Y9 | BYTE Y8 E BYTE X15 |BYTE X14 | BYTE X13| BYTE X12| BYTE X11 |BYTE X10 | BYTE X9 | BYTE X8
o o
< <
BYTEY7 |BYTEY6 | BYTEY5 | BYTEY4 | BYTEY3 | BYTEY2 | BYTE Y1 | BYTE Y0 BYTEX7 |BYTEX6 | BYTEX5 | BYTE X4 | BYTE X3 | BYTE X2 | BYTE X1 | BYTE X0
\ NO ACCESS / \ BYTE ACCESS /

63-57 56-49

PM DATA
BUS

48-41

48-41

48-41

40-33

4033

4033

3225

3225

32-25

2417

2417

2417

16-8

7-0

|§|

16-8 70

63-57

56-49

48-41

4033

3225

2417

16-8

7-0

DM DATA
BUS

0X0000 | 0X0000 | 0X0000 |0xoooo

nxnnnnl 0X0000 | 0X0000 |BVTE xnl

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, BYTE WORD
UREG = PM(BYTE ADDRESS);

48-41

4033

3225 2417 1

7

6-8

| oxnnnntl oxoooorl oxnnnntl 0X00001|BVTE X0 |oxno|

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(BYTE X0 ADDRESS);

Figure 7-7: Byte Addressing of Single-Data in SISD Mode

UREG = DM(BYTE ADDRESS);|
PM(BYTE ADDRESS) = UREG;
DM(BYTE ADDRESS) = UREG;|

Byte Addressing of Dual-Data in SISD Mode
The Byte Addressing of Dual-Data in SISD Mode figure shows the SISD, dual-data, byte addressed access mode.

For byte addressing, the processor treats the data buses as eight 8-bit short word lanes. The 8-bit values for byte

48-41

4033

, SINGLE-DATA TRANSFERS ARE:

3225

24417

sX

168 7-0

accesses are transferred using the least significant byte lanes of the PM and DM data buses. The processor drives the

other byte lanes of the data buses with zeros.

In SISD mode, the instruction explicitly accesses PEx registers. This instruction accesses BYTE X0 in any block and
BYTE YO0 in any other block. Each of these words has a short word address with "00" for its least significant two bits
of address. Other accesses within these four column locations have addresses with their least significant two bits as
"01", "10", or "11" and select BYTE X1/Y1, BYTE X2/Y2, or BYTE X3/Y3 from memory respectively. The syntax
explicitly accesses registers RX and RA in PEx.

SHARC+ Core Programming Reference

7-17

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
I BYTE Y23 | BYTE Y22 | BYTE Y21 | BYTE Y20| BYTE Y19 |BYTE Y18 | BYTE Y17 |BYTE Y16 T BYTE X23 | BYTE X22 | BYTE X21 | BYTE X20| BYTE X19 | BYTE X18 |BYTE X17 | BYTE X16
] 2
2
E BYTE Y15 |BYTE Y14 | BYTE Y13| BYTE Y12| BYTE Y11 |BYTE Y10 | BYTE Y9 | BYTE Y8 g BYTE X15 |BYTE X14 | BYTE X13| BYTE X12| BYTE X11 |[BYTE X10 | BYTE X9 | BYTE X8
Q =]
< <
BYTEY7 |BYTEY6 | BYTEY5 | BYTEY4 | BYTEY3 | BYTEY2 | BYTEY1 | BYTE Y0 BYTE X7 |BYTE X6 | BYTEX5 | BYTEX4 | BYTE X3 | BYTE X2 | BYTE X1 | BYTE X0
\ BYTE ACCESS / BYTE ACCESS /
63-57 56-49 48-41 40-33 32-25 2417 16-8 7-0 63-57 56-49 48-41 40-33 32-25 2417 16-8 7-0
PM DATA DM DATA
BUS 0X0000 0X0000 0X0000 0X0000 [0X0000 0X0000 | BYTE YO BUS 0X0000 0X0000 0X0000 0 0X0000 | 0X0000 0X0000 | BYTE X0

48-41

[o

4033 3225 24417 168

|uxnnnur |axuuuur | nxnnnnrl nxmmnrl BYTE vnluxnnl

48-41 4033 3225 2417 16-8 7-0

0X0000t | 0X0000t | 0X0000t oxoooorlBVTExo |0X00|

48-41

SA
sX

4033 3225 2417 168 7-0 4841 4033 3225 24417 16-8 7-0

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(BYTE X0 ADDRESS), RA = PM(BYTE Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, BYTE, DUAL-DATA TRANSFERS ARE:
DREG = PM(BYTE ADDRESS), | DREG = DM(BYTE ADDRESS);
PM(BYTE ADDRESS) = DREG, | DM(BYTE ADDRESS) = DREG;!

Figure 7-8: Byte Addressing of Dual-Data in SISD Mode

Byte Word Addressing of Single-Data in SIMD Mode

The Byte Addressing of Single-Data in SIMD Mode figure shows the SIMD, single-data, byte addressed access
mode. For byte addressing, the processor treats the data buses as eight four 16-bit byte lanes. The explicitly ad-

dressed (named in the instruction) 16-bit value is transferred using the least significant byte lane of the PM or DM
data bus. The implicitly addressed (not named in the instruction, but inferred from the address in SIMD mode)
byte value is transferred using the 47-32 bit byte lane of the PM or DM data bus. The processor drives the other
byte lanes of the PM or DM data buses with zeros (31-16 bit lane and 63-48 bit lane). The instruction explicitly
accesses the register RX and implicitly accesses that register's complementary register, SX. This instruction uses a

PEx register with an RX mnemonic. If the syntax named the PEy register SX as the explicit target, the processor uses

that register's complement RX as the implicit target.

For more information on complementary registers, see SIMD Mode in the Processing Elements chapter.

7-18

SHARC+ Core Programming Reference

ANY BLOCK

MEMORY

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY OTHER BLOCK

BYTE Y23

BYTE Y22

BYTE Y21

BYTE Y20/

BYTE Y19

BYTE Y18

BYTE Y17

BYTE Y16

BYTE X23 | BYTE X22

BYTE X21 | BYTE X20| BYTE X19

BYTE X18 |BYTE X17 |BYTE X16

BYTE Y15

ADDRESS ——a»

BYTE Y14

BYTE Y13|

BYTE Y12

BYTE Y11

BYTE Y10

BYTE Y9

BYTE Y8

ADDRESS ——»

BYTE X15 | BYTE X14

BYTE X13| BYTE X12| BYTE X11

BYTE X10 | BYTE X9 | BYTE X8

BYTE Y7

BYTE Y6

BYTE Y5

BYTE Y4

BYTE Y3

BYTE Y2

BYTE Y1

BYTE Y0

BYTE X7 | BYTE X6

BYTEX5 | BYTEX4 | BYTEX3

BYTE X2 | BYTE X1 | BYTE X0

|

I

I

I

|

|

I

Pl

Pl

I
\

NO ACCESS

|
]

|
\

BYTE ACCESS

/

63-57

PM DATA
BUS

56-49

48-41

48-41

4033

4033 3225

3225

2417

16-8

2417 16-

7-0

g |

8 7-0

13
>|

48-41

4033 32-25

2417

16-8 7-0

63-57

56-49

48-41 4033 3225

2417 16-8 7-0

DM DATA
BUS

0X0000 | 0X0000 | 0X0000 |BVTEX4 0X0000

| 0X0000 | 0X0000 |BVYE xul

I

0X00001

48-41 4033

O

3225 24417 16-8 7-0

| 0X0000t | 0X0000t |

| 0X0000t | BYTE X0 |nxnn|

48-41 4033

sX

3225 24417 16-8 7-0

| 0X0000f | 0X0000f | 0X0000f | 0X0000t IEVTE X4 |nx00|

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:

RX = DM(BYTE X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, BYTE SINGLE-DATA TRANSFERS ARE:

Figure 7-9: Byte Addressing of Single-Data in SIMD Mode

Byte Addressing of Dual-Data in SIMD Mode

UREG = PM(BYTE ADDRESS);
UREG = DM(BYTE ADDRESS):
PM(BYTE ADDRESS) = UREG;
DM(BYTE ADDRESS) = UREG:

The Byte Addressing of Dual-Data in SIMD Mode figure shows the SIMD, dual-data, byte addressed access. For
byte addressing, the processor treats the data buses as four 16-bit byte lanes. The explicitly addressed 16-bit values
are transferred using the least significant byte lanes of the PM and DM data bus. The implicitly addressed byte val-
ues are transferred using the 47-32 bit byte lanes of the PM and DM data buses. The processor drives the other byte
lanes of the PM and DM data buses with zeros. The instruction explicitly accesses registers RX and RA, and implic-
itly accesses the complementary registers, SX and SA. This instruction uses PEx registers with the RX and RA mne-
monics. The second word from any other block is shown as x2 on the data bus and in the Sx register. It is shown as
Y2 and YO respectively in the left side of the block. The Sx and SA registers are transparent and look similar to Rx

and RA. All bits should be shown as in Rx and RA. For more information on arranging data in memory to take

advantage of byte addressing of dual-data in SIMD mode, see the Long Word Addressing of Dual-Data in Broadcast
Load figure in Broadcast Load Access.

SHARC+ Core Programming Reference

7-19

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
I BYTE Y23 | BYTE Y22 | BYTE Y21 | BYTE Y20| BYTE Y19 |BYTE Y18 | BYTE Y17 |BYTE Y16 T BYTE X23 | BYTE X22 | BYTE X21 | BYTE X20| BYTE X19 | BYTE X18 |BYTE X17 | BYTE X16
2 @
2 2
g BYTE Y15 |BYTE Y14 | BYTE Y13| BYTE Y12| BYTE Y11 |BYTE Y10 | BYTE Y9 | BYTE Y8 E BYTE X15 |BYTE X14 | BYTE X13| BYTE X12| BYTE X11 |[BYTE X10 | BYTE X9 | BYTE X8
Q =]
< K
BYTEY7 |BYTEY6 | BYTEY5 | BYTEY4 | BYTEY3 | BYTEY2 | BYTEY1 | BYTE Y0 BYTEX7 |BYTEX6 | BYTEX5 | BYTE X4 | BYTE X3 | BYTE X2 | BYTE X1 | BYTE X0
\ BYTE ACCESS / \ BYTE ACCESS /
63-57 56-49 48-41 40-33 32-25 2417 16-8 7-0
6357 5649 4841 4033 ¥ 3225 2417 168 70 DM DATA
PM DATA BUS 0X0000 0X0000 | 0X0000 | BYTE X2 § 0X0000 | 0X0000 0X0000 | BYTE X0
BUS | 0X0000 | 0X0000 | 0X0000 |BYTE Y4 | 0X0000 | 0X0000 | 0X0000 | BYTE Y0 |
£ RA L RX
48-41 40-33 32-25 24417 16-8 70 48-41 40-33 32-25 2417 16-8 7-0

| 0X0000t | oxooootl oxooootl nxoooml BYTE vnloxnnl

0X0000t| 0X0000t | 0X00001 | 0X0000t | BVTEX0|0X00|

SA

48-41

sX

4033 3225 2417 16-8 7-0

48-41 4033 3225 2447 16-8 7-0

|nx00001 oxooootl 0X00001 | 0X0000t B"TE"zl‘”“‘“l

| oxoooorl nx00001| nx00001| oxoooorl BYTE V4|ﬂX00|

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX =DM (BYTE X0 ADDRESS), RA = PM (BYTE Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD ,BYTE, DUAL-DATA TRANSFERS ARE:

DREG = PM(BYTE ADDRESS), | DREG = DM(BYTE ADDRESS);
PM(BYTE ADDRESS) = DREG, | DM(BYTE ADDRESS) = DREG;

Figure 7-10: Byte Addressing of Dual-Data in SIMD Mode

Short Word Addressing of Single-Data in SISD Mode

The Short Word Addressing of Single-Data in SISD Mode figure shows the SISD single-data, short word addressed
access mode. For short word addressing, the processor treats the data buses as four 16-bit short word lanes. The 16-
bit value for the short word access is transferred using the least significant short word lane of the PM or DM data

bus. The processor drives the other short word lanes of the data buses with zeros.

In SISD mode, the instruction accesses the PEx registers to transfer data from memory. This instruction accesses
WORD X0, whose short word address has "00" for its least significant two bits of address. Other locations within
this row have addresses with least significant two bits of "01", "10", or "11" and select WORD X1, WORD X2, or
WORD X3 from memory respectively. The syntax targets register RX in PEx.

7-20

SHARC+ Core Programming Reference

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
I WORD Y11|WORD Y10 WORD Y9 | WORD Y8 T WORD X11jWORD X10| WORD X9 | WORD X8
g g
g WORD Y7 | WORD Y6 | WORD Y5 | WORD Y4 g WORD X7 | WORD X6 | WORD X5 | WORD X4
2 2
WORD Y3 | WORD Y2 | WORD Y1 | WORD YO WORD X3 | WORD X2 | WORD X1 | WORD X0
A A A Y
Y A A y ¥
\ NO ACCESS / \ SHORT WORD ACCESS /

63-48 47-32 31-16 15-0 63-48 47-32 g 31-16 15-0

PM DATA DM DATA
RA H RX
7-

-0 39-24 23-8 7-0

39-24 23-8

_ 00000 |oRD 0] %00
SA SX
39-24 23-8 7-0 39-24 23-8 7-0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

Figure 7-11: Short Word Addressing of Single-Data in SISD Mode

Short Word Addressing of Dual-Data in SISD Mode

The Short Word Addressing of Dual-Data in SISD Mode figure shows the SISD, dual-data, short word addressed
access mode. For short word addressing, the processor treats the data buses as four 16-bit short word lanes. The 16-
bit values for short word accesses are transferred using the least significant short word lanes of the PM and DM data
buses. The processor drives the other short word lanes of the data buses with zeros.

In SISD mode, the instruction explicitly accesses PEx registers. This instruction accesses WORD X0 in any block
and WORD YO in any other block. Each of these words has a short word address with "00" for its least significant
two bits of address. Other accesses within these four column locations have addresses with their least significant two
bits as "01", "10", or "11" and select WORD X1/Y1, WORD X2/Y2, or WORD X3/Y3 from memory respectively.
The syntax explicitly accesses registers RX and RA in PEx.

SHARC+ Core Programming Reference 7-21

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
@ [WoRrD y11/woRD Y10[WORD Y9 [WORD Y8 o |WORD x11)WORD X10| WORD X9 [woRD x8
i 4
5 |WORD Y7|WORD Y6 [WORD Y5 [WORD v4 § | WORD X7 | WORD X6 | WORD X5 [WORD x4
< <
WORD Y3 | WORD Y2 | WORD Y1 | WORD Y0 WORD X3 | WORD X2 | WORD X1 | WORD X0
Y Y Y
A A Y Y Y Ad A
\ SHORT WORD ACCESS / \ SHORT WORD ACCESS /
6348 4732 y 31-16 150 63-48 4732 y 3116 150
PMDATA 1 9x0000 o 0X0000 [WORD YO DMDATA | ox0000 0 0X0000 [WORD X0
BUS BUS
VH RA VH RX
3924 238 70 3924 238 70
SA sx
3924 238 70 3924 238 70

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), | DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, | DM(SHORT WORD ADDRESS) = DREG;

Figure 7-12: Short Word Addressing of Dual-Data in SISD Mode

Short Word Addressing of Single-Data in SIMD Mode

The Short Word Addressing of Single-Data in SIMD Mode figure shows the SIMD, single-data, short word ad-
dressed access mode. For short word addressing, the processor treats the data buses as four 16-bit short word lanes.
The explicitly addressed (named in the instruction) 16-bit value is transferred using the least significant short word
lane of the PM or DM data bus. The implicitly addressed (not named in the instruction, but inferred from the
address in SIMD mode) short word value is transferred using the 47-32 bit short word lane of the PM or DM data

bus. The processor drives the other short word lanes of the PM or DM data buses with zeros (31-16 bit lane and
63-48 bit lane).

The instruction explicitly accesses the register RX and implicitly accesses that register's complementary register, SX.
This instruction uses a PEx register with an RX mnemonic. If the syntax named the PEy register SX as the explicit
target, the processor uses that register's complement RX as the implicit target. For more information on complemen-
tary registers, see SIMD Mode in the Processing Elements chapter.

The Short Word Addressing of Single-Data in SIMD Mode figure shows the data path for one transfer. The process-
or accesses short words sequentially in memory. For more information on arranging data in memory to take advant-
age of this access pattern, see the Long Word Addressing of Single-Data in Broadcast Load figure in Broadcast Load
Access.

7-22 SHARC+ Core Programming Reference

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
I WORD Y11{WORD Y10 WORD Y9 | WORD Y8 T WORD X11|WORD X10| WORD X9 | WORD X8
2 2
w
g WORD Y7 | WORD Y6 | WORD Y5 | WORD Y4 g 'WORD X7 | WORD X6 | WORD X5 | WORD X4
[a}
2 2
WORD Y3 | WORD Y2 | WORD Y1 | WORD YO 'WORD X3 | WORD X2 | WORD X1 | WORD X0
I' A Y A A
¥ v Y Y Y y v Y
\ NO ACCESS / \ SHORT WORD ACCESS /
63-48 47-32 31-16 15-0 63-48 47-32 y 31-16 15-0
PM DATA DM DATA

RA
39-24 23-8 7-

RX
39-24 23-8

0
ox0000" 0X00
SA

39-24 23-8 7-0 39-24 23-8
ox0000T [WORD x2]0x00
THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);
OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

41
.7“” .T‘
o X o

Figure 7-13: Short Word Addressing of Single-Data in SIMD Mode

Short Word Addressing of Dual-Data in SIMD Mode

The Short Word Addressing of Dual-Data in SIMD Mode figure shows the SIMD, dual-data, short word addressed
access. For short word addressing, the processor treats the data buses as four 16-bit short word lanes. The explicitly

addressed 16-bit values are transferred using the least significant short word lanes of the PM and DM data bus. The
implicitly addressed short word values are transferred using the 47-32 bit short word lanes of the PM and DM data
buses. The processor drives the other short word lanes of the PM and DM data buses with zeros.

The instruction explicitly accesses registers RX and RA, and implicitly accesses the complementary registers, SX and
SA. This instruction uses PEx registers with the RX and RA mnemonics.

The second word from any other block is shown as x2 on the data bus and in the Sx register. It is shown as Y2 and
YO respectively in the left side of the block. The Sx and SA registers are transparent and look similar to Rx and RA.
All bits should be shown as in Rx and RA. For more information on arranging data in memory to take advantage of
short word addressing of dual-data in SIMD mode, see the Long Word Addressing of Dual-Data in Broadcast Load

figure in Broadcast Load Access.

SHARC+ Core Programming Reference 7-23

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK

ANY OTHER BLOCK

WORD Y11{WORD Y10l WORD Y9 | WORD Y8

WORD X11|WORD X10| WORD X9 | WORD X8

WORD Y7 | WORD Y6 | WORD Y5 | WORD Y4

ADDRESS —»

WORD X7 | WORD X6 | WORD X5 | WORD X4

ADDRESS ——»

WORD Y3 | WORD Y2 | WORD Y1 | WORD YO

'WORD X3 | WORD X2 [WORD X1 | WORD X0

[A A

A, A4 Y Y

A A

A4 3 A4 A4

\ SHORT WORD ACCESS /

\ SHORT WORD ACCESS /

63-48 47-32 31-16 15-0

PM DATA

BUS | 0X0000 |WORD Y2

0X0000 |WORD YO |

[

23-8 7-0

WORD Y0[0X00

SA

39-24

0X00001

:

39-24 23-8 7-0

WORD Y2[0X00

0X0000F

63-48 47-32 y 31-16 15-0

DMB'?J‘;TA| 0X0000 |WORD x2| ox0000 |WORD xo|

P

23-8 7-0

WORD X0 [0X00

23-8

WORD X2 0XOt

39-24

0X00001

3¢ .
o X

39-24

0X00001

!

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM (SHORT WORD X0 ADDRESS), RA = PM (SHORT WORD YO0 ADDRESS);

DREG = PM(SHORT WORD ADDRESS),
PM(SHORT WORD ADDRESS) = DREG,

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FT

Figure 7-14: Short Word Addressing of Dual-Data in SIMD Mode

DREG = DM(SHORT WORD ADDRESS);

R SIMD, SHORT WORD, DUAL-DATA TRrNSFERS ARE:
DM(SHORT WORD ADDRESS) = DREG;

32-Bit Normal Word Addressing of Single-Data in SISD Mode

The Normal Word Addressing of Single-Data in SISD Mode figure shows the SISD, single-data, 32-bit normal word
addressed access mode. For normal word addressing, the processor treats the data buses as two 32-bit normal word
lanes. The 32-bit value for the normal word access completes a transfer using the least significant normal word lane
of the PM or DM data bus. The processor drives the other normal word lanes of the data buses with zeros.

In SISD mode, the instruction accesses a PEx register. This instruction accesses WORD X0 whose normal word
address has "0" for its least significant address bit. The other access within this four column location has an address
with a least significant bit of "1" and selects WORD X1 from memory. The syntax targets register RX in PEx.

NOTE: For normal word accesses, the processor zero-fills the least significant 8 bits of the data register on loads

and truncates these bits on stores to memory.

7-24

SHARC+ Core Programming Reference

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
T 'WORD Y5 WORD Y4 T WORD X5 WORD X4
2 | | 2 | |
w WORD Y3 WORD Y2 w WORD X3 WORD X2
5 | | g | |
< WORID Y1 WORID YO < WOR’ID X1 WORID X0
A Y Y A
Y ¥ Y Y Y ¥ Y
\ NO ACCESS / \ NORMAL WORD ACCESS /
63-48 47-32 31-16 15-0 63-48 47-32 31-16 15-0

T
PM DATA DM DATA
RA RY H RX

39-24 23-8 7-0 39-24 23-8 7-0
SA SX
39-24 23-8 7-0 39-24 23-8 7-0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

Figure 7-15: Normal Word Addressing of Single-Data in SISD Mode

32-Bit Normal Word Addressing of Dual-Data in SISD Mode
The Normal Word Addressing of Dual-Data in SISD Mode figure shows the SISD dual-data, 32-bit normal word

addressed access mode. For normal word addressing, the processor treats the data buses as two 32-bit normal word
lanes. The 32-bit values for normal word accesses transfer using the least significant normal word lanes of the PM
and DM data buses. The processor drives the other normal word lanes of the data buses with zeros.

In the Normal Word Addressing of Dual-Data in SISD Mode figure, the access targets the PEx registers in a SISD
mode operation. This instruction accesses WORD X0 in any other block and WORD YO in any block. Each of these
words has a normal word address with 0 for its least significant address bit. Other accesses within these four column
locations have addresses with the least significant bit of 1 and select WORD X1/Y1 from memory. The syntax tar-
gets registers RX and RA in PEx.

SHARC+ Core Programming Reference 7-25

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
T WORD Y5 WORD Y4 T WORD X5 WORD X4
” | | ” |
@ T T 4 T
% WORD Y3 WORD Y2 % 'WORD X3 WORD X2
a | | I} | |
8 T T a T T
< WORID Y1 WOR’ID YO < WORID X1 WORID X0
1 Y Y 1
Y Y Y v v y Y
\ NORMAL WORD ACCESS / \ NORMAL WORD ACCESS /
6348 4732 y 3116 150 6348 4732 y 3116 150
T T
PMDATA 1 ox0000 | 0X0000 WORD Y0 DM DATA | ox0000 | ox0000 WORD X0
us | BUS |
i RA l RX
39-24 23-8 70 39-24 238 70
SA sX
39-24 23-8 7-0 39-24 23-8 7-0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RA = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), | DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, | DM(NORMAL WORD ADDRESS) = DREG;

Figure 7-16: Normal Word Addressing of Dual-Data in SISD Mode

32-Bit Normal Word Addressing of Single-Data in SIMD Mode
The Normal Word Addressing of Single-Data in SIMD Mode figure shows the SIMD, single-data, normal word ad-

dressed access mode. For normal word addressing, the processor treats the data buses as two 32-bit normal word
lanes. The explicitly addressed (named in the instruction) 32-bit value completes a transfer using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed (not named in the instruction, but inferred
from the address in SIMD mode) normal word value completes a transfer using the most significant normal word

lane of the PM or DM data bus.

In the Normal Word Addressing of Single-Data in SIMD Mode figure, the explicit access targets the named register
RX, and the implicit access targets that register's complementary register, SX. This instruction uses a PEx register
with an RX mnemonic. If the syntax named the PEy register SX as the explicit target, the processor would use that
register's complement, RX, as the implicit target. For more information on complementary registers, see SIMD
Mode in the Processing Elements chapter.

The Normal Word Addressing of Single-Data in SIMD Mode figure shows the data path for one transfer. The pro-
cessor accesses normal words sequentially in memory. For more information on arranging data in memory to take
advantage of this access pattern, see the Long Word Addressing of Dual-Data in Broadcast Load figure in Broadcast
Load Access.

7-26 SHARC+ Core Programming Reference

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
T WORD Y5 WORD Y4 T WORD X5 WORD X4
2 | | 2 |
w T T i T
x WORD Y3 WORD Y2 x WORD X3 WORD X2
a | | a | |
< T T < T T
WORID Y1 WOR’ID Yo WORID X1 WORID X0
I Y Y I
Y A Y Ad Ad A Y
\ NO ACCESS / \ NORMAL WORD ACCESS /

63-48 47-32 31-16 15-0 63-48 47-32 31-16 15-0
T T
PM DATA DM DATA
e [N i [vopn [wopo]
RA ‘J RX
7-0

39-24 23-8 & 39-24 23-8 7-0
_ WoRpXe
SA SX
39-24 23-8 7-0 39-24 23-8

I
S
S

WORD X1 0X0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

Figure 7-17: Normal Word Addressing of Single-Data in SIMD Mode

32-Bit Normal Word Addressing of Dual-Data in SIMD Mode
The Normal Word Addressing of Dual-Data in SIMD Mode figure shows the SIMD, dual-data, 32-bit normal word

addressed access mode. For normal word addressing, the processor treats the data buses as two 32-bit normal word
lanes. The explicitly addressed (named in the instruction) 32-bit values are transferred using the least significant nor-
mal word lane of the PM or DM data bus. The implicitly addressed (not named in the instruction, but inferred
from the address in SIMD mode) normal word values are transferred using the most significant normal word lanes

of the PM and DM data bus.

In the Normal Word Addressing of Dual-Data in SIMD Mode figure, the explicit access targets the named registers
RX and RA, and the implicit access targets those register's complementary registers SX and SA. This instruction uses
the PEx registers with the RX and RA mnemonics.

The Normal Word Addressing of Dual-Data in SISD Mode figure in 32-Bit Normal Word Addressing of Dual-Data
in SIMD Mode shows the data path for one transfer. The processor accesses normal words sequentially in memory.
For more information on arranging data in memory to take advantage of this access pattern, see the Long Word

Addressing of Dual-Data in Broadcast Load figure in Broadcast Load Access.

SHARC+ Core Programming Reference 7-27

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK

MEMORY

ANY OTHER BLOCK

'WORD Y5 WORF Y4

WORD X5 WOF\'P X4

1
WORD Y3 WORF Y2

1
WORD X3 WORD X2

ADDRESS ——»

1
WORD Y1 WORD YO

ADDRESS —»

WORD X1

A A

A4 A A4

A A

Y A A4

\ NORMAL WORD ACCESS /

\ NORMAL WORD ACCESS /

63-48 47-32 31-16 15-0

T T
PM DATA WORD Y1 WORD YO
BUS i i

39-24 23-8

RA
7-0

SA
39-24 23-8

WORD Y1 0X00

Iy
IS

DM DATA
BUS

63-48 47-32 31-16 15-0

T T
| WORD X1 WORID X0 |
|

39-24 23-8 7-0

39-24 23-8

WORD X1 o

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RA = PM(NORMAL WORD YO ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(NORMAL WORD ADDRESS),
PM(NORMAL WORD ADDRESS) = DREG,

Figure 7-18: Normal Word Addressing of Dual-Data in SIMD Mode

Long Word Addressing of Single-Data

DREG = DM(NORMAL WORD ADDRESS);
DM(NORMAL WORD ADDRESS) = DREG;

The Long Word Addressing of Single-Data figure displays one possible single-data, long word addressed access. For

long word addressing, the processor treats each data bus as a 64-bit long word lane. The 64-bit value for the long

word access completes a transfer using the full width of the PM or DM data bus.

In the Long Word Addressing of Single-Data figure, the access targets a PEx register in a SISD or SIMD mode oper-
ation. Long word single-data access operate the same in SISD or SIMD mode. This instruction accesses WORD X0

with syntax that explicitly targets register RX and implicitly targets its neighbor register, RY, in PEx. The processor

zero-fills the least significant 8 bits of both the registers. The example targets PEy registers when using the syntax

SX. For more information on how neighbor registers work, see Data Register Neighbor Pairing in the Register Files

chapter.

7-28

SHARC+ Core Programming Reference

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK

T | WORID Y2 | T : WORID X2 :

@ T T T @ T T T

w WORD Y1 u WORD X1
=) | | | [a) | | |
a I T T g T T T
< WORD YO < WORD X0
! 1 ! 1] 1
1 Y Y 1
Y \J Y v v v Y
\ NO ACCESS / \ LONG WORD ACCESS /
63-48 47-32 31-16 15-0 63-48 47-32 k., 31-16 15-0
T
PM DATA DM DATA
BUS BUS | 1 WORlD X0 1 |
PEX REGISTERS RB RA ‘ RY ‘J RX
39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0
T T
_ [woroo.ss32 Jovor] [woro ko s10 Jowan
1 1

PEY REGISTERS SB SA Sy SX
39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, LONG WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

Figure 7-19: Long Word Addressing of Single-Data

Extended-Precision Normal Word Addressing of Single-Data

The Extended-Precision Normal Word Addressing of Single-Data tigure displays a possible single-data, 40-bit ex-
tended-precision normal word addressed access. For extended-precision normal word addressing, the processor treats
each data bus as a 40-bit extended-precision normal word lane. The 40-bit value for the extended-precision normal
word access is transferred using the most significant 40 bits of the PM or DM data bus. The processor drives the

lower 24 bits of the data buses with zeros.

In the Extended-Precision Normal Word Addressing of Single-Data figure, the access targets a PEX register in a

SISD or SIMD mode operation; extended-precision normal word single-data access operate the same in SISD or
SIMD mode. This instruction accesses WORD X0 with syntax that targets register RX in PEx. The example targets

a PEy register when using the syntax SX.

NOTE: Extended precision cannot be supported in SIMD mode. The PM and DM data buses are limited to 64-
bits, but would require 80-bits to support this format and mode.

SHARC+ Core Programming Reference

7-29

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

ANY BLOCK MEMORY ANY OTHER BLOCK
T | WoRD Y3 WORD Y251 T | WORD X3 WORD X2
%] 1 %] T
[—WORD Y2 WORD V1> @ <« WORD X2 WOT‘D X1->
['4 ['4
g I T Q T
2 “WORD Y1 WORD YO 2 +WORDX o
A A A A
Y A A Y Y Y A
\ NO ACCESS / \ EXTENDED PRECISION NORMAL /
WORD ACCESS

63-48 47-32 31-16 15-0 63-48 47-32 31-16 15-0
T
PM DATA DM DATA
v N >x [oo, oo oo
RA L RX

39-24 23-8 7-0 39-24 23-8 7-0
SA SX

39-24 23-8 7-0 39-24 23-8 7-0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED PRECISION NORMAL WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, EXT. PREC. NORMAL WORD, SINGLE-DATA
TRANSFERS ARE:

UREG = PM(EXTENDED PRECISION NORMAL WORD ADDRESS);

UREG = DM(EXTENDED PRECISION NORMAL WORD ADDRESS);

PM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;

DM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;

Figure 7-20: Extended-Precision Normal Word Addressing of Single-Data

Extended-Precision Normal Word Addressing of Dual-Data
The Extended-Precision Normal Word Addressing of Dual-Data in SISD Mode tigure shows the SISD, dual-data,

40-bit extended-precision normal word addressed access mode. For extended-precision normal word addressing, the
processor treats each data bus as a 40-bit extended-precision normal word lane. The 40-bit values for the extended-

precision normal word accesses are transferred using the most significant 40 bits of the PM and DM data bus. The

processor drives the lower 24 bits of the data buses with zeros.

In the Extended-Precision Normal Word Addressing of Dual-Data in SISD Mode figure, the access targets the PEx
registers in a SISD mode operation. This instruction accesses WORD X0 in block 1 and WORD YO in block 0 with
syntax that targets registers RX and RY in PEx. The example targets a PEy register when using the syntax SX or
SY.

7-30 SHARC+ Core Programming Reference

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

BUS BUS

ANY BLOCK MEMORY ANY OTHER BLOCK
T WORD Y3 WORD Y2 T | WORD X3 WORD X2
]
s 1 1 P 1
a % WORD Y2 WORD Y1-> éa «WORD X2 WORD X1->
o ['4
L | ‘| |
2 (—IWORD %! | WORD YOI 2 eIWORD X1 | WORD xol
1 Y Y 1
Y A A4 Ad Ad A Y
EXTENDED PRECISION NORMAL EXTENDED PRECISION NORMAL
WORD ACCESS WORD ACCESS
63-48 47-32 y 31-16 15-0 6348 4732 y 3116 15-0
T T
PM DATA | WORD YO |0><oo | 0X0000 | DM DATA | WIORD X0 | |o><00 | 0X0000 |

— .

— .

A
39-24 23-8 7-0 39-24 23-8 7-0
SA Sy SX
39-24 23-8 7-0 39-24 23-8 7-0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RA = PM(EP NORMAL WORD YO0 ADDR.);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, EXTENDED PRECISION NORMAL WORD, DUAL-DATA
TRANSFERS ARE:
DREG = PM(EXT. PREC. NORMAL WORD ADDRESS), | DREG = DM(EXT. PREC. NORMAL WORD ADDRESS);
PM(EXT. PREC. NORMAL WORD ADDRESS) = DREG, | DM(EXT. PREC. NORMAL WORD ADDRESS) = DREG;

Figure