
SHARC+ Core Programming Reference

(Includes ADSP-SC5xx and ADSP-215xx Processors)

Revision 1.4, May 2021

Part Number
82-100131-01

Analog Devices, Inc.
One Technology Way
Norwood, MA 02062-9106



Notices

Copyright Information

© 2021 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form
without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Ana-
log Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, Blackfin+, CrossCore, EngineerZone, EZ-Board, EZ-KIT Lite, EZ-KIT Mini,

EZ-Extender, SHARC, SHARC+, A2B, SigmaStudio, and VisualDSP++ are registered trademarks of Analog Devi-
ces, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

SHARC+ Core Programming Reference ii



Contents

Introduction

SHARC+ Core Design Advantages ................................................................................................................ 1–2

Architectural Overview .................................................................................................................................. 1–2

SHARC Processor.......................................................................................................................................... 1–2

SHARC+ Core............................................................................................................................................ 1–3

Differences from Previous SHARC Processors ............................................................................................... 1–7

Development Tools...................................................................................................................................... 1–12

Register File Registers and Core Memory-Mapped Registers

Features.......................................................................................................................................................... 2–1

Functional Description .................................................................................................................................. 2–1

Register File Registers................................................................................................................................. 2–1

Register Types and Classes ...................................................................................................................... 2–2

Data Registers ......................................................................................................................................... 2–4

Data Register Neighbor Pairing............................................................................................................... 2–4

Complementary Data Register Pairs........................................................................................................ 2–5

Data and Complementary Data Register Transfers.................................................................................. 2–5

Data and Complementary Data Register Access Priorities....................................................................... 2–6

Data and Complementary Data Register Swaps ...................................................................................... 2–6

System Register Bit Manipulation ........................................................................................................... 2–6

Combined Data Bus Exchange Register................................................................................................... 2–7

PX to Data Register Transfers .............................................................................................................. 2–8

Immediate 40-bit Data Register Load .................................................................................................. 2–8

PX to Memory Transfers ...................................................................................................................... 2–9

PX to Memory LW Transfers ............................................................................................................... 2–9

Uncomplementary Ureg to Memory LW Transfers............................................................................. 2–10

Core Memory Mapped Registers (CMMR) .............................................................................................. 2–10

Operating Modes ......................................................................................................................................... 2–11

SHARC+ Core Programming Reference iii



Alternate (Secondary) Data Registers........................................................................................................ 2–11

Alternate (Secondary) Data Registers SIMD Mode................................................................................... 2–11

Ureg/Sysreg SIMD Mode Transfers .......................................................................................................... 2–12

Interrupt Mode Mask ............................................................................................................................... 2–12

Processing Elements

Features.......................................................................................................................................................... 3–1

Functional Description .................................................................................................................................. 3–1

Single Cycle Processing............................................................................................................................... 3–2

Data Forwarding in Processing Units.......................................................................................................... 3–2

Data Format for Computation Units .......................................................................................................... 3–3

Arithmetic Status........................................................................................................................................ 3–3

Computation Status Update Priority ...................................................................................................... 3–3

SIMD Computation and Status Flags...................................................................................................... 3–4

Arithmetic Logic Unit (ALU)...................................................................................................................... 3–4

Functional Description............................................................................................................................ 3–4

ALU Instruction Types ............................................................................................................................ 3–5

Compare Accumulation Instruction ..................................................................................................... 3–5

Fixed-to-Float Conversion Instructions ................................................................................................ 3–5

Fixed-to-Float Conversion Instructions with Scaling............................................................................ 3–5

Reciprocal/Square Root Instructions .................................................................................................... 3–5

Divide Instruction................................................................................................................................ 3–5

Clip Instruction ................................................................................................................................... 3–6

Multiprecision Instructions .................................................................................................................. 3–6

Arithmetic Status..................................................................................................................................... 3–6

ALU Instruction Summary...................................................................................................................... 3–6

Multiplier ................................................................................................................................................... 3–9

Functional Description.......................................................................................................................... 3–10

Multiplier Inputs................................................................................................................................ 3–10

Multiplier Result Register ..................................................................................................................... 3–10

Multiply Register Instruction Types ...................................................................................................... 3–11

Clear MRx Instruction....................................................................................................................... 3–11

iv SHARC+ Core Programming Reference



Round MRx Instruction..................................................................................................................... 3–11

Multi Precision Instructions............................................................................................................... 3–11

Saturate MRx Instruction .................................................................................................................. 3–12

Arithmetic Status................................................................................................................................... 3–12

Multiplier Instruction Summary ........................................................................................................... 3–12

Barrel Shifter ............................................................................................................................................ 3–14

Functional Description.......................................................................................................................... 3–15

Shifter Instruction Types ....................................................................................................................... 3–15

Shift Compute Category .................................................................................................................... 3–15

Shift Immediate Category .................................................................................................................. 3–15

Bit Manipulation Instructions............................................................................................................ 3–15

Bit Field Manipulation Instructions ................................................................................................... 3–16

Bit Stream Manipulation Instructions................................................................................................ 3–17

Floating-Point Data Pack and Unpack Instructions ............................................................................... 3–19

Arithmetic Status................................................................................................................................... 3–19

Bit FIFO Status ..................................................................................................................................... 3–20

Shifter Instruction Summary ................................................................................................................. 3–20

Multifunction Computations.................................................................................................................... 3–21

Software Pipelining for Multifunction Instructions ............................................................................... 3–22

Multifunction and Data Move............................................................................................................... 3–22

Multifunction Input Operand Constraints ............................................................................................ 3–22

Multifunction Input Modifier Constraints ............................................................................................ 3–23

Multifunction Instruction Summary ..................................................................................................... 3–23

64-bit Instruction Overview............................................................................................................... 3–23

64-bit Data Register Coding .............................................................................................................. 3–25

64-bit Floating-Point Computation Data Hazards.................................................................................... 3–26

Case A - 64-bit Instruction SRC Operands are DST Operands Of Previous Compute Instructions ...... 3–26

Case B - 64-bit Instruction SRC Operands are DST Operands of Previous Cond Register Load........... 3–28

Case C - 64-bit Instruction DST Operand acts as SRC Operands of the Next non-DP Compute Instruc-

tion ................................................................................................................................................. 3–28

Combined Data Hazards (Combinations of Cases A, B, C)................................................................... 3–29

64-bit Floating-Point Instruction Execution Cycles .................................................................................. 3–30

SHARC+ Core Programming Reference v



64-bit Floating-Point Register Aliases in Long Word Memory Addressing................................................ 3–35

64-bit Floating-Point SIMD Mode........................................................................................................... 3–36

64-bit Floating-Point Computation Register Load Priorities .................................................................... 3–36

Operating Modes ......................................................................................................................................... 3–37

ALU Saturation ........................................................................................................................................ 3–37

Short Word Sign Extension....................................................................................................................... 3–37

Floating-Point Boundary Mode ................................................................................................................ 3–37

Rounding Mode ....................................................................................................................................... 3–38

Multiplier Result Register Swap................................................................................................................ 3–39

SIMD Mode............................................................................................................................................. 3–39

Conditional Computations in SIMD Mode.............................................................................................. 3–40

Interrupt Mode Mask ............................................................................................................................... 3–40

Arithmetic Exceptions.................................................................................................................................. 3–40

Arithmetic Exception Acknowledge .......................................................................................................... 3–41

SIMD Computation Exceptions ............................................................................................................... 3–41

Program Sequencer

Features.......................................................................................................................................................... 4–2

Functional Description .................................................................................................................................. 4–3

Instruction Pipeline .................................................................................................................................... 4–3

VISA Instruction Alignment Buffer (IAB)............................................................................................... 4–5

Linear Program Flow............................................................................................................................... 4–5

Direct Addressing .................................................................................................................................... 4–6

Illegal System Accesses Conditions ............................................................................................................. 4–6

Variation In Program Flow............................................................................................................................. 4–7

Functional Description ............................................................................................................................... 4–7

Hardware Stacks...................................................................................................................................... 4–7

PC Stack Access ................................................................................................................................... 4–8

PC Stack Status.................................................................................................................................... 4–8

PC Stack Manipulation........................................................................................................................ 4–9

PC Stack Access Priorities .................................................................................................................... 4–9

vi SHARC+ Core Programming Reference



Status Stack Access ............................................................................................................................... 4–9

Status Stack Status ............................................................................................................................. 4–10

Instruction Driven Branches ................................................................................................................. 4–10

Branch Prediction.................................................................................................................................. 4–11

Direct Versus Indirect Branches............................................................................................................. 4–14

Restrictions for VISA Operation ........................................................................................................ 4–14

Delayed Branches (DB)...................................................................................................................... 4–15

Branch Listings .................................................................................................................................. 4–15

Operating Mode ....................................................................................................................................... 4–20

Interrupt Branch Mode ......................................................................................................................... 4–21

Interrupt Processing Stages ................................................................................................................ 4–21

Interrupt Categories........................................................................................................................... 4–22

Interrupt Processing........................................................................................................................... 4–24

Latching Interrupts ............................................................................................................................ 4–25

Interrupt Acknowledge....................................................................................................................... 4–25

Interrupt (Pseudo) Self-Nesting ......................................................................................................... 4–25

Self-Nesting for the System Event Controller Interrupt (SECI).......................................................... 4–26

Release from IDLE............................................................................................................................. 4–28

Causes of Delayed Interrupt Processing ............................................................................................. 4–29

Interrupt Mask Mode............................................................................................................................ 4–29

Interrupt Nesting Mode ........................................................................................................................ 4–30

Loop Sequencer ........................................................................................................................................ 4–32

Loop Categories .................................................................................................................................... 4–32

Counter-Based F1-Active Loop .......................................................................................................... 4–33

Counter-Based E2-Active Loop .......................................................................................................... 4–35

Loop Categorization into F1-Active or E2-Active ............................................................................... 4–37

Arithmetic Loops ............................................................................................................................... 4–37

Indefinite Loops................................................................................................................................. 4–39

Loop Resources ..................................................................................................................................... 4–39

Loop Stack ......................................................................................................................................... 4–39

Loop Address Stack Access ................................................................................................................. 4–39

Loop Address Stack Status.................................................................................................................. 4–40

SHARC+ Core Programming Reference vii



Loop Address Stack Manipulation...................................................................................................... 4–40

Loop Counter Stack Access ................................................................................................................ 4–40

Loop Counter Stack Status................................................................................................................. 4–40

Loop Counter Stack Manipulation..................................................................................................... 4–41

Loop Counter Expired (If Not LCE Condition) in Counter-Based Loops .......................................... 4–41

Restrictions on Ending Loops................................................................................................................ 4–41

VISA-Related Restrictions on Hardware Loops ..................................................................................... 4–42

Nested Loops......................................................................................................................................... 4–42

Example For Six Nested Loops ........................................................................................................... 4–43

Restrictions on Ending Nested Loops................................................................................................. 4–44

Loop Abort............................................................................................................................................ 4–44

Interrupt Driven Loop Abort ............................................................................................................. 4–45

Loop Resource Manipulation ................................................................................................................ 4–46

Popping and Pushing Loop and PC Stack From an ISR ..................................................................... 4–46

Instruction-Conflict Cache Control.......................................................................................................... 4–48

Functional Description.......................................................................................................................... 4–48

Instruction Data Bus Conflicts........................................................................................................... 4–48

Cache Invalidate Instruction .............................................................................................................. 4–50

Operating Modes .................................................................................................................................. 4–50

Cache Restrictions.............................................................................................................................. 4–50

Cache Disable .................................................................................................................................... 4–51

Cache Freeze ...................................................................................................................................... 4–51

GPIO Flags .............................................................................................................................................. 4–51

Conditional Instruction Execution ........................................................................................................... 4–52

IF Conditions with Complements ......................................................................................................... 4–52

DO/UNTIL Terminations Without Complements ............................................................................... 4–54

Operating Modes .................................................................................................................................. 4–54

Conditional Instruction Execution in SIMD Mode............................................................................ 4–54

Pipeline Flushes and Stalls ........................................................................................................................ 4–63

Stalls Related to Memory Access............................................................................................................ 4–64

Stalls Related to Compute Operations................................................................................................... 4–65

Stalls Related to DAG Operations ......................................................................................................... 4–66

viii SHARC+ Core Programming Reference



Stalls and Flushes Related to Branch and Prediction Operations ........................................................... 4–66

Stalls Related to Data Move Operations ................................................................................................ 4–68

Core Event Controller Exceptions................................................................................................................ 4–69

Hardware Stack Exceptions....................................................................................................................... 4–70

HW Loop Stack Exceptions (RINSEQI)................................................................................................... 4–70

Software Interrupts................................................................................................................................... 4–70

Interrupt Priority and Vector Table........................................................................................................... 4–70

Internal Interrupt Vector Table Location .................................................................................................. 4–73

Core Interrupt Registers ........................................................................................................................... 4–73

All Interrupts Automatically Push Status .................................................................................................. 4–73

Self-Nesting Mode for System Event Controller Interrupt (SECI) ............................................................ 4–74

Interrupt Control Latencies ...................................................................................................................... 4–75

Hardware Status Stack Access Register...................................................................................................... 4–75

Core Interface to SEC............................................................................................................................... 4–75

Example SEC Handler Using Pseudo Self-Nesting ................................................................................... 4–76

Example SEC Handler in Self-Nesting Interrupt Mode ............................................................................ 4–77

Timer

Features.......................................................................................................................................................... 5–1

Functional Description .................................................................................................................................. 5–1

Timer Exceptions........................................................................................................................................... 5–3

Data Address Generators

Features.......................................................................................................................................................... 6–1

Functional Description .................................................................................................................................. 6–2

DAG Address Output ................................................................................................................................. 6–3

Address Versus Word Size ........................................................................................................................ 6–3

DAG Register-to-Bus Alignment............................................................................................................. 6–3

32-Bit Alignment ................................................................................................................................. 6–4

40-Bit Alignment ................................................................................................................................. 6–4

64-Bit Alignment ................................................................................................................................. 6–4

SHARC+ Core Programming Reference ix



DAG1 Versus DAG2 ............................................................................................................................... 6–4

Instruction Types ........................................................................................................................................... 6–5

Long Word Memory Access Restrictions..................................................................................................... 6–5

Forced Long Word (lw) Memory Access Instructions............................................................................... 6–5

Byte Word (bw) (bwse) and Short Word (sw) (swse) Memory Access Instructions................................... 6–6

Pre-Modify Instruction............................................................................................................................... 6–7

Post-Modify Instruction ............................................................................................................................. 6–7

Modify Instruction ..................................................................................................................................... 6–8

Enhanced Modify Instruction..................................................................................................................... 6–8

Immediate Modify Instruction ................................................................................................................... 6–9

Bit-Reverse Instruction............................................................................................................................... 6–9

Enhanced Bit-Reverse Instruction............................................................................................................... 6–9

Enhanced Modify Instruction for Address Scaling ...................................................................................... 6–9

Switch Address Instruction ....................................................................................................................... 6–15

Dual Data Move Instructions ................................................................................................................... 6–17

Conditional DAG Transfers...................................................................................................................... 6–17

DAG Breakpoint Units ............................................................................................................................. 6–17

DAG Instruction Restrictions................................................................................................................... 6–17

Instruction Summary................................................................................................................................... 6–18

Operating Modes ......................................................................................................................................... 6–21

Normal Word (40-Bit) Accesses ................................................................................................................ 6–21

Processing Unit versus Memory Load/Store Precision Accesses................................................................. 6–22

Extended Precision Access ........................................................................................................................ 6–22

Circular Buffering Mode........................................................................................................................... 6–23

Circular Buffer Programming Model..................................................................................................... 6–24

Wraparound Addressing ........................................................................................................................ 6–25

DAG Status ........................................................................................................................................... 6–26

Broadcast Load Mode ............................................................................................................................... 6–26

Bit-Reverse Mode .................................................................................................................................. 6–27

SIMD Mode............................................................................................................................................. 6–27

x SHARC+ Core Programming Reference



DAG Transfers in SIMD Mode ............................................................................................................. 6–28

Conditional DAG Transfers in SIMD Mode ......................................................................................... 6–29

Alternate (Secondary) DAG Registers ....................................................................................................... 6–29

Interrupt Mode Mask .............................................................................................................................. 6–30

DAG Exceptions .......................................................................................................................................... 6–30

Circular Buffer Exceptions........................................................................................................................ 6–30

Illegal Address Space Access Exceptions .................................................................................................... 6–31

Unintentional CMMR/SMMR Space Access Exceptions .......................................................................... 6–32

Unaligned Forced Long Word Access Exceptions ...................................................................................... 6–32

Unaligned Byte Word Access Exceptions................................................................................................... 6–32

L1 Memory Interface

Features.......................................................................................................................................................... 7–1

Von Neumann Versus Harvard Architectures ................................................................................................. 7–2

Super Harvard Architecture ........................................................................................................................ 7–2

Functional Description .................................................................................................................................. 7–3

Memory Access Types................................................................................................................................. 7–3

Byte Address Space Overview of Data Accesses........................................................................................... 7–4

Byte Access in SISD Mode ...................................................................................................................... 7–4

Byte Access in SIMD Mode..................................................................................................................... 7–5

Short-Word Access in SISD Mode........................................................................................................... 7–5

Short-Word Access in SIMD Mode ......................................................................................................... 7–5

Normal-Word Access in SISD Mode ....................................................................................................... 7–6

32-Bit Normal-Word Access in SIMD Mode........................................................................................... 7–6

Long-Word Accesses ................................................................................................................................ 7–7

Byte Accesses to a 3 column (40-bit) enabled Block ................................................................................ 7–7

Internal Memory Space............................................................................................................................... 7–8

Internal Memory Interface ...................................................................................................................... 7–8

Requester Ports ....................................................................................................................................... 7–8

Completer Ports ...................................................................................................................................... 7–8

Internal Memory Block Architecture ....................................................................................................... 7–9

SHARC+ Core Programming Reference xi



Normal Word Space 48-bit or 40-Bit Word Rotations........................................................................... 7–10

Rules for Wrapping Memory Layout ........................................................................................................ 7–11

Mixing Words in Normal Word Space ................................................................................................... 7–11

Mixing 32-Bit Words and 48-Bit Words................................................................................................ 7–12

32-Bit Word Allocation ......................................................................................................................... 7–12

Example: Calculating a Starting Address for 32-Bit Addresses ............................................................... 7–13

48-Bit Word Allocation ......................................................................................................................... 7–13

Memory Block Arbitration .................................................................................................................... 7–13

VISA Instruction Arbitration ............................................................................................................. 7–14

Using Single Ported Memory Blocks Efficiently .................................................................................... 7–14

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit) ....................................................................... 7–15

Byte Addressing of Single-Data in SISD Mode......................................................................................... 7–16

Byte Addressing of Dual-Data in SISD Mode........................................................................................... 7–17

Byte Word Addressing of Single-Data in SIMD Mode.............................................................................. 7–18

Byte Addressing of Dual-Data in SIMD Mode ......................................................................................... 7–19

Short Word Addressing of Single-Data in SISD Mode.............................................................................. 7–20

Short Word Addressing of Dual-Data in SISD Mode ............................................................................... 7–21

Short Word Addressing of Single-Data in SIMD Mode ............................................................................ 7–22

Short Word Addressing of Dual-Data in SIMD Mode.............................................................................. 7–23

32-Bit Normal Word Addressing of Single-Data in SISD Mode ............................................................... 7–24

32-Bit Normal Word Addressing of Dual-Data in SISD Mode ................................................................. 7–25

32-Bit Normal Word Addressing of Single-Data in SIMD Mode.............................................................. 7–26

32-Bit Normal Word Addressing of Dual-Data in SIMD Mode ............................................................... 7–27

Long Word Addressing of Single-Data...................................................................................................... 7–28

Extended-Precision Normal Word Addressing of Single-Data ................................................................... 7–29

Extended-Precision Normal Word Addressing of Dual-Data..................................................................... 7–30

Broadcast Load Access .............................................................................................................................. 7–31

Mixed-Word Width Addressing of Long Word with Short Word .............................................................. 7–39

Mixed-Word Width Addressing of Long Word with Extended Word ........................................................ 7–40

Internal Memory Access Listings (64-bit Floating-Point)............................................................................. 7–41

xii SHARC+ Core Programming Reference



64-bit Floating-Point Addressing of Single Data....................................................................................... 7–41

64-bit Floating-Point Addressing of Dual-Data in SISD Mode................................................................. 7–42

64-bit Floating-Point Addressing of Dual-Data in SIMD Mode ............................................................... 7–43

L1 Cache Controller

Functional Description .................................................................................................................................. 8–2

Tag Memories............................................................................................................................................. 8–4

Basic Cache Functionality........................................................................................................................... 8–5

Instruction Cache Features............................................................................................................................. 8–6

Instruction Cache Operation ...................................................................................................................... 8–6

Data Cache Features ...................................................................................................................................... 8–7

Data Cache Operations .............................................................................................................................. 8–7

Cache Hit Cases ...................................................................................................................................... 8–7

Cache Miss Cases .................................................................................................................................... 8–7

Coherency Between DM and PM Caches................................................................................................ 8–8

Misaligned Accesses in Data Cache ......................................................................................................... 8–8

Programming Model...................................................................................................................................... 8–9

Write Through Accesses............................................................................................................................... 8–10

Write Through Accesses............................................................................................................................ 8–10

Non-Cacheable Accesses ........................................................................................................................... 8–10

Locking .................................................................................................................................................... 8–10

Way-Based Locking ............................................................................................................................... 8–10

Address-Range-Based Locking............................................................................................................... 8–11

Cache Invalidation and Write Back Invalidation .......................................................................................... 8–11

Full Cache Invalidation and Write-Back Invalidation................................................................................... 8–11

Address-Range Based Invalidation and Write-Back Invalidation .................................................................. 8–12

Example Range Based Write-Back Validation/Invalidation ....................................................................... 8–12

Further Details on Range Based WBI/Invalidation................................................................................... 8–12

Prefetch Buffer (ADSP-2156x and ADSP-SC59x Only) .............................................................................. 8–13

Prefetch Range Selection Register ............................................................................................................ 8–16

SHARC+ Core Programming Reference xiii



Safety, Security, Multi-Core, and Low-Power Features

Parity Error Detection for L1 Accesses ........................................................................................................... 9–1

Parity Operations Programming Model...................................................................................................... 9–1

Parity Error Registers.................................................................................................................................. 9–2

Illegal Opcode Error Detection for Instruction Fetch..................................................................................... 9–2

Security Operations ....................................................................................................................................... 9–3

Memory Barrier (SYNC) Instruction ............................................................................................................. 9–3

Example Pipeline Behavior for Memory Barrier (SYNC) Instruction.......................................................... 9–4

SYNC Instruction and Interrupts ............................................................................................................... 9–4

Flushing the Pipeline .................................................................................................................................. 9–4

Semaphores (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only) ............................................................ 9–4

Resetting in Multicore Systems (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only) .............................. 9–6

Arm L2 Cache Sharing Address Range Registers (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only) .... 9–6

Low-Power Features (ADSP-2156x and ADSP-SC59x Only) ........................................................................ 9–7

Low-Power Memory Features ..................................................................................................................... 9–8

Memory Sleep Mode ............................................................................................................................... 9–8

Memory Shutdown Mode ....................................................................................................................... 9–8

Low-Power Idle Mode (Core Light Sleep)................................................................................................... 9–8

SHARC+ Core Debug Interface

Features........................................................................................................................................................ 10–1

Functional Description ................................................................................................................................ 10–1

Debug Interface........................................................................................................................................ 10–1

Breakpoints .............................................................................................................................................. 10–1

Software Breakpoints............................................................................................................................. 10–1

General Restrictions on Software Breakpoints.................................................................................... 10–2

Automatic Breakpoints .......................................................................................................................... 10–2

Hardware Breakpoints ........................................................................................................................... 10–2

Operating Modes ......................................................................................................................................... 10–2

Emulation Space Mode............................................................................................................................. 10–2

Emulation Control ................................................................................................................................... 10–3

xiv SHARC+ Core Programming Reference



Instruction and Data Breakpoints............................................................................................................. 10–3

Address Breakpoint Registers................................................................................................................. 10–3

Conditional Breakpoints........................................................................................................................... 10–3

Event Count Register ............................................................................................................................ 10–4

Emulation Cycle Counting.................................................................................................................... 10–5

Statistical Profiling ................................................................................................................................... 10–5

User Space Mode ...................................................................................................................................... 10–5

User Breakpoint Control ....................................................................................................................... 10–5

User Breakpoint Status .......................................................................................................................... 10–5

User Breakpoint System Exception Handling ........................................................................................ 10–6

User to Emulation Space Breakpoint Comparison................................................................................. 10–6

Programming Model User Breakpoints ................................................................................................. 10–6

Programming Examples......................................................................................................................... 10–6

Single Step Mode...................................................................................................................................... 10–7

Instruction Pipeline Fetch Inputs .......................................................................................................... 10–7

Differences Between Emulation and User Space Modes............................................................................ 10–8

Debug Interrupts ......................................................................................................................................... 10–8

Interrupt Types......................................................................................................................................... 10–8

Entering Into Emulation Space................................................................................................................. 10–8

Debug Register Effect Latency ..................................................................................................................... 10–9

References.................................................................................................................................................... 10–9

Program Trace Macrocell (PTM)

Features........................................................................................................................................................ 11–1

Functional Description ................................................................................................................................ 11–1

Address Comparators................................................................................................................................ 11–1

Context ID Comparators.......................................................................................................................... 11–2

Events....................................................................................................................................................... 11–2

Counters................................................................................................................................................... 11–2

Trace Security ........................................................................................................................................... 11–3

Programming Model.................................................................................................................................... 11–3

SHARC+ Core Programming Reference xv



References.................................................................................................................................................... 11–3

Instruction Set Reference

Instruction Groups ...................................................................................................................................... 12–1

Instruction Set Notation Summary........................................................................................................... 12–2

Group I Conditional Compute and Move or Modify Instruction

Type 1a ISA/VISA (compute + mem dual data move) .................................................................................. 13–3

DMACCESS (Type 1a) ............................................................................................................................ 13–5

PMACCESS (Type 1a) ............................................................................................................................. 13–6

Type 1b VISA (mem dual data move) .......................................................................................................... 13–6

DMACCESS (Type 1b) ............................................................................................................................ 13–8

PMACCESS (Type 1b) ............................................................................................................................. 13–8

Type 2a ISA/VISA (cond + compute)........................................................................................................... 13–8

Type 2b VISA (compute) ........................................................................................................................... 13–10

Type 2c VISA (short compute)................................................................................................................... 13–11

Type 3a ISA/VISA (cond + comp + mem data move) ................................................................................. 13–12

ACCESS (Type 3a) ................................................................................................................................. 13–15

Type 3b VISA (cond + mem data move) .................................................................................................... 13–16

ACCESS (Type 3b)................................................................................................................................. 13–18

BH (Type 3b) ......................................................................................................................................... 13–19

BHSE (Type 3b) ..................................................................................................................................... 13–19

Type 3c VISA (mem data move) ................................................................................................................ 13–20

ACCESS (Type 3c) ................................................................................................................................. 13–21

Type 3d ISA/VISA (cond + exclusive mem data move)............................................................................... 13–22

ACCESS (Type 3d)................................................................................................................................. 13–24

BH (Type 3d) ......................................................................................................................................... 13–24

BHSE (Type 3d) ..................................................................................................................................... 13–24

EX (Type 3d) .......................................................................................................................................... 13–24

LWEX (Type 3d) .................................................................................................................................... 13–25

WACCESS (Type 3d) ............................................................................................................................. 13–25

xvi SHARC+ Core Programming Reference



Type 4a ISA/VISA (cond + comp + mem data move with 6-bit immediate modifier)................................. 13–26

ACCESS (Type 4a) ................................................................................................................................. 13–29

Type 4b VISA (cond + mem data move with 6-bit immediate modifier) .................................................... 13–29

ACCESS (Type 4b)................................................................................................................................. 13–31

BH (Type 4b) ......................................................................................................................................... 13–32

BHSE (Type 4b) ..................................................................................................................................... 13–32

Type 4d ISA/VISA (cond + mem data move with 6-bit immediate modifier)............................................. 13–32

ACCESS (Type 4d)................................................................................................................................. 13–34

BH (Type 4d) ......................................................................................................................................... 13–35

BHSE (Type 4d) ..................................................................................................................................... 13–35

Type 5a ISA/VISA (cond + comp + reg data move) .................................................................................... 13–35

Type 5a ISA/VISA (cond + comp + reg data swap)..................................................................................... 13–37

Type 5b VISA (cond + reg data move)........................................................................................................ 13–39

Type 5b VISA (cond + reg data swap) ........................................................................................................ 13–40

Type 6a ISA/VISA (cond + shift imm + mem data move) .......................................................................... 13–42

ACCESS (Type 6a) ................................................................................................................................. 13–44

Type 6a ISA/VISA (cond + shift imm) ....................................................................................................... 13–44

Type 7a ISA/VISA (cond + comp + index modify) ..................................................................................... 13–46

BH (Type 7a).......................................................................................................................................... 13–48

MODIFY (Type 7a)................................................................................................................................ 13–48

Type 7b VISA (cond + index modify)......................................................................................................... 13–49

MODIFY (Type 7b) ............................................................................................................................... 13–50

Type 7d ISA/VISA (cond + comp + address switch) ................................................................................... 13–50

ACONV (Type 7d) ................................................................................................................................. 13–52

Group II Conditional Program Flow Control Instructions

Type 8a ISA/VISA (cond + branch).............................................................................................................. 14–2

ADDR (Type 8a) ...................................................................................................................................... 14–4

JUMP(Type 8a) ........................................................................................................................................ 14–4

Type 9a ISA/VISA (cond + Branch + comp/else comp) ................................................................................ 14–5

SHARC+ Core Programming Reference xvii



ADDRCLAUSE (Type 9a) ........................................................................................................................ 14–8

COMPUTECLAUSE (Type 9a) ............................................................................................................... 14–8

JUMPCLAUSE (Type 9a)......................................................................................................................... 14–8

Type 9b VISA (cond + Branch + comp/else) ................................................................................................ 14–9

ADDRCLAUSE (Type 9b)...................................................................................................................... 14–12

JUMPCLAUSE (Type 9b) ...................................................................................................................... 14–12

Type 10a ISA (cond + branch + else comp + mem data move..................................................................... 14–13

ACCESS (Type 10a) ............................................................................................................................... 14–16

ADDRCLAUSE (Type 10a) .................................................................................................................... 14–16

Type 11a ISA/VISA (cond + branch return + comp/else comp).................................................................. 14–16

COMPUTECLAUSE (Type 11a) ........................................................................................................... 14–19

RETURN (Type 11a) ............................................................................................................................. 14–19

Type 11c VISA (cond + branch return) ...................................................................................................... 14–20

RETURN (Type 11c) ............................................................................................................................. 14–22

Type 12a ISA/VISA (do until imm loop counter expired) .......................................................................... 14–23

Type 12a ISA/VISA (do until ureg loop counter expired)........................................................................... 14–24

Type 13a ISA/VISA (do until termination) ................................................................................................ 14–25

TERM (Type 13a) .................................................................................................................................. 14–27

Group III Immediate Data Move Instructions

Type 14a ISA/VISA (mem data move) ......................................................................................................... 15–2

Type 14d ISA/VISA (exclusive mem data move) .......................................................................................... 15–4

BH (Type 14d) ......................................................................................................................................... 15–6

BHEX (Type 14d) .................................................................................................................................... 15–6

BHSE (Type 14d) ..................................................................................................................................... 15–6

BHSEEX (Type 14d) ................................................................................................................................ 15–6

EX (Type 14d) .......................................................................................................................................... 15–7

LWEX (Type 14d) .................................................................................................................................... 15–7

Type 15a ISA/VISA (<data32> move) .......................................................................................................... 15–7

Type 15b VISA (<data7> move) ................................................................................................................. 15–10

xviii SHARC+ Core Programming Reference



Type 16a ISA/VISA (<data32> move) ........................................................................................................ 15–13

Type 16b VISA (<data16> move) ............................................................................................................... 15–14

Type 17a ISA/VISA (<data32> move) ........................................................................................................ 15–16

Type 17b VISA (<data16> move) ............................................................................................................... 15–17

Group IV Miscellaneous Instructions

Type 18a ISA/VISA (register bit manipulation) ........................................................................................... 16–2

BOP (Type 18a) ....................................................................................................................................... 16–4

Type 19a ISA/VISA (index modify) ............................................................................................................. 16–4

BH (Type 19a - modify) ........................................................................................................................... 16–6

Type 19a ISA/VISA (index bitrev)................................................................................................................ 16–6

Type 20a ISA/VISA (push/pop stack/manipulate cache) .............................................................................. 16–7

CACHE (Type 20a) .................................................................................................................................. 16–9

DMCACHE (Type 20a) ........................................................................................................................... 16–9

ICACHE (Type 20a)................................................................................................................................. 16–9

LOOP (Type 20a)................................................................................................................................... 16–10

PCSTK (Type 20a)................................................................................................................................. 16–10

PMCACHE (Type 20a) .......................................................................................................................... 16–10

STS (Type 20a)....................................................................................................................................... 16–11

Type 21a ISA/VISA (nop).......................................................................................................................... 16–11

Type 21c VISA (nop) ................................................................................................................................. 16–12

Type 22a ISA/VISA (idle/emuidle) ............................................................................................................ 16–13

Type 22c VISA (idle/emuidle).................................................................................................................... 16–14

Type 25a ISA/VISA (cjump direct) ............................................................................................................ 16–15

Type 25a ISA/VISA (cjump PC relative) .................................................................................................... 16–16

Type 25a ISA/VISA (rframe)...................................................................................................................... 16–17

Type 25c VISA (rframe)............................................................................................................................. 16–18

Type 26a ISA/VISA (sync) ......................................................................................................................... 16–19

Computation Opcode Reference

Compute (Compute) Opcode ...................................................................................................................... 17–2

SHARC+ Core Programming Reference xix



Short Compute (ShortCompute) Opcode .................................................................................................... 17–2

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only) ................................................................... 17–4

Single Function Instruction (SINGLEFN)................................................................................................... 17–4

ALUOP .................................................................................................................................................... 17–4

MULOP................................................................................................................................................... 17–7

MOD1.................................................................................................................................................. 17–9

MOD2.................................................................................................................................................. 17–9

MOD3................................................................................................................................................ 17–10

SHIFTOP/SHIFTIMM ......................................................................................................................... 17–10

Dual Add/Subtract ................................................................................................................................. 17–12

Register File ............................................................................................................................................... 17–12

Single Computation Encoding 32/40-bit................................................................................................ 17–12

Dual Add/Subtract Encoding 32/40-bit.................................................................................................. 17–13

Mul/ALU Encoding 32/40-bit ................................................................................................................ 17–13

Mul Dual Add/Subtract Encoding 32/40-bit .......................................................................................... 17–14

Short Compute 32/40-bit....................................................................................................................... 17–15

Single Function Floating-Point 64-bit .................................................................................................... 17–15

Multi-function Floating-Point 64-bit...................................................................................................... 17–15

MR Register Data Move (MRDATAMOVE) ............................................................................................. 17–17

ALU Fixed-Point Computations

RN = RX + RY; ............................................................................................................................................ 18–1

RN = RX – RY; ............................................................................................................................................ 18–2

RN = RX + RY + ci; ..................................................................................................................................... 18–3

RN = RX – RY + ci – 1; ............................................................................................................................... 18–3

RN = (RX + RY) / 2; .................................................................................................................................... 18–4

comp (RX, RY); ........................................................................................................................................... 18–5

compu (RX, RY); ......................................................................................................................................... 18–6

RN = RX + ci; .............................................................................................................................................. 18–6

RN = RX + ci – 1; ........................................................................................................................................ 18–7

RN = RX + 1;............................................................................................................................................... 18–8

xx SHARC+ Core Programming Reference



RN = RX – 1;............................................................................................................................................... 18–9

RN = –RX;................................................................................................................................................. 18–10

RN = abs RX;............................................................................................................................................. 18–10

RN = pass RX; ........................................................................................................................................... 18–11

RN = RX and RY; ...................................................................................................................................... 18–12

RN = RX or RY;......................................................................................................................................... 18–13

RN = RX xor RY; ....................................................................................................................................... 18–13

RN = not RX; ............................................................................................................................................ 18–14

RN = min (RX, RY); .................................................................................................................................. 18–15

RN = max (RX, RY);.................................................................................................................................. 18–15

RN = clip RX by RY;.................................................................................................................................. 18–16

ALU Floating-Point Computations

32-bit and 40-bit Operations ....................................................................................................................... 19–1

FN = FX + FY; .......................................................................................................................................... 19–1

FN = FX – FY; .......................................................................................................................................... 19–2

FN = abs (FX + FY); ................................................................................................................................. 19–3

FN = abs (FX – FY); ................................................................................................................................. 19–3

FN = (FX + FY) / 2; .................................................................................................................................. 19–4

comp (FX, FY);......................................................................................................................................... 19–5

FN = –FX; ................................................................................................................................................ 19–6

FN = abs FX; ............................................................................................................................................ 19–7

FN = pass FX;........................................................................................................................................... 19–7

FN = rnd FX;............................................................................................................................................ 19–8

FN = scalb FX by RY; ............................................................................................................................... 19–9

RN = mant FX;......................................................................................................................................... 19–9

RN = logb FX; ........................................................................................................................................ 19–10

RN = fix FX;........................................................................................................................................... 19–11

RN = fix FX by RY; ................................................................................................................................ 19–12

RN = trunc FX; ...................................................................................................................................... 19–13

SHARC+ Core Programming Reference xxi



RN = trunc FX by RY; ............................................................................................................................ 19–14

FN = float RX;........................................................................................................................................ 19–15

FN = float RX by RY; ............................................................................................................................. 19–16

FN = recips FX; ...................................................................................................................................... 19–16

FN = rsqrts FX;....................................................................................................................................... 19–18

FN = FX copysign FY; ............................................................................................................................ 19–19

FN = min (FX, FY); ................................................................................................................................ 19–20

FN = max (FX, FY);................................................................................................................................ 19–20

FN = clip FX by FY;................................................................................................................................ 19–21

64-bit Floating-Point Computations.......................................................................................................... 19–22

FM:N = FX:Y + FZ:W; ........................................................................................................................... 19–22

FM:N = FX:Y - FZ:W;............................................................................................................................ 19–23

comp (FX:Y, FZ:W);............................................................................................................................... 19–24

FM:N = - FX:Y; ...................................................................................................................................... 19–25

FM:N = abs FX:Y; .................................................................................................................................. 19–25

FM:N = pass FX:Y; ................................................................................................................................. 19–26

FM:N = scalb FX:Y by RY; ..................................................................................................................... 19–27

RN=fix FX:Y;

......................................................................................................................................................... 19–28

RN = fix FX:Y by RY; ............................................................................................................................. 19–29

RN = trunc FX:Y; ................................................................................................................................... 19–30

RN = trunc FX:Y by RY;......................................................................................................................... 19–32

FM:N = float RX; ................................................................................................................................... 19–33

FM:N = float RX by RY;......................................................................................................................... 19–34

FM:N = cvt FX; ...................................................................................................................................... 19–35

FN = cvt FX:Y;........................................................................................................................................ 19–36

MR Register Data Move Operations

(mrf | mrb) = RN;........................................................................................................................................ 20–1

xxii SHARC+ Core Programming Reference



RN = (mrf | mrb); ........................................................................................................................................ 20–2

Multiplier Fixed-Point Computations

(mrf | mrb) = MRF + RX * RY MOD1; ....................................................................................................... 21–1

RN = (mrf | mrb) + RX * RY MOD1;.......................................................................................................... 21–2

(mrf | mrb) = (mrf | mrb) – RX * RY MOD1;.............................................................................................. 21–3

RN = (mrf | mrb) – RX * RY MOD1;.......................................................................................................... 21–4

(RN | mrf | mrb) = RX * RY MOD1;........................................................................................................... 21–5

(RN | mrf | mrb) = rnd (mrf | mrb) MOD3; ................................................................................................ 21–5

(RN | mrf | mrb) = sat (mrf | mrb) MOD2; ................................................................................................. 21–6

(mrf | mrb) = 0;............................................................................................................................................ 21–7

Multiplier Floating-Point Computations

32-bit/40-bit Floating-Point Operations...................................................................................................... 22–1

FN = FX * FY; .......................................................................................................................................... 22–1

64-bit Floating-Point Operations................................................................................................................. 22–2

FM:N = FX:Y * FZ:W;.............................................................................................................................. 22–2

FM:N = FX:Y * FY; .................................................................................................................................. 22–3

FM:N = FX * FY;...................................................................................................................................... 22–4

Shifter Immediate Computations

RN = lshift RX by (RY | DATA8);................................................................................................................ 23–1

RN = RN or lshift RX by (RY | DATA8);..................................................................................................... 23–2

RN = ashift RX by (RY | DATA8); ............................................................................................................... 23–2

RN = RN or ashift RX by (RY | DATA8); .................................................................................................... 23–3

RN = rot RX by (RY | DATA); ..................................................................................................................... 23–3

RN = bclr RX by (RY | DATA8);.................................................................................................................. 23–4

RN = bset RX by (RY | DATA8); ................................................................................................................. 23–5

RN = btgl RX by (RY | DATA8); ................................................................................................................. 23–5

btst RX by (RY | DATA8); ........................................................................................................................... 23–6

RN = fdep RX by (RY | BIT6:LEN6);.......................................................................................................... 23–6

SHARC+ Core Programming Reference xxiii



RN = RN or fdep RX by (RY | BIT6:LEN6);............................................................................................... 23–8

RN = fdep RX by (RY | BIT6:LEN6) (se); ................................................................................................... 23–8

RN = RN or fdep RX by (RY | BIT6:LEN6) (se); ...................................................................................... 23–10

RN = fext RX by (RY | BIT6:LEN6);......................................................................................................... 23–11

RN = fext RX by (RY | BIT6:LEN6) (se); .................................................................................................. 23–12

RN = exp RX; ............................................................................................................................................ 23–13

RN = exp RX (ex); ..................................................................................................................................... 23–13

RN = leftz RX; ........................................................................................................................................... 23–14

RN = lefto RX;........................................................................................................................................... 23–14

RN = fpack FX;.......................................................................................................................................... 23–14

FN = funpack RX;...................................................................................................................................... 23–15

bitdep RX by (RY | BITLEN12); ............................................................................................................... 23–16

RN = bitext (RX | BITLEN12) (nu); ......................................................................................................... 23–17

bffwrp = (RN | DATA7);............................................................................................................................ 23–19

RN = bffwrp; ............................................................................................................................................. 23–19

Multi-Function Instruction Computations

32-Bit, 40-Bit Instructions........................................................................................................................... 24–1

64-Bit Instructions....................................................................................................................................... 24–2

Immediate (imm) and Constant (const) Opcodes

imm16visa Register Type ............................................................................................................................. 25–1

imm23pc Register Type ............................................................................................................................... 25–1

imm24 Register Type................................................................................................................................... 25–1

imm24pc Register Type ............................................................................................................................... 25–2

imm32 Register Type................................................................................................................................... 25–2

imm32c Register Type ................................................................................................................................. 25–2

imm32f Register Type.................................................................................................................................. 25–2

imm6 Register Type..................................................................................................................................... 25–2

imm6pc Register Type ................................................................................................................................. 25–3

imm6visa Register Type ............................................................................................................................... 25–3

xxiv SHARC+ Core Programming Reference



imm6visapc Register Type ........................................................................................................................... 25–3

imm7visa Register Type ............................................................................................................................... 25–3

imm8c12 Register Type ............................................................................................................................... 25–3

uimm12 Register Type................................................................................................................................. 25–4

uimm16 Register Type................................................................................................................................. 25–4

uimm5c12 Register Type ............................................................................................................................. 25–4

uimm6bit Register Type .............................................................................................................................. 25–4

uimm6len Register Type .............................................................................................................................. 25–4

uimm7c12 Register Type ............................................................................................................................. 25–5

Register (reg) Opcodes

B1REG Register Class ................................................................................................................................. 26–1

B2REG Register Class ................................................................................................................................. 26–1

DBLREG Register Type............................................................................................................................... 26–2

DBLREG3 Register Class ............................................................................................................................ 26–2

DBLXAREG Register Class ......................................................................................................................... 26–3

DBLXMREG Register Class ........................................................................................................................ 26–3

DBLYAREG Register Class.......................................................................................................................... 26–3

DBLYMREG Register Class ........................................................................................................................ 26–4

FREG Register Class.................................................................................................................................... 26–4

FXAREG Register Class............................................................................................................................... 26–5

FXMREG Register Class.............................................................................................................................. 26–5

FYAREG Register Class ............................................................................................................................... 26–5

FYMREG Register Class.............................................................................................................................. 26–6

I1REG Register Class .................................................................................................................................. 26–6

I2REG Register Class .................................................................................................................................. 26–6

M1REG Register Class ................................................................................................................................ 26–7

M2REG Register Class ................................................................................................................................ 26–7

MRXFBREG Register Class......................................................................................................................... 26–8

RFREG Register Class ................................................................................................................................. 26–8

SHARC+ Core Programming Reference xxv



RREG Register Class ................................................................................................................................... 26–9

RXAREG Register Class ............................................................................................................................ 26–10

RXMREG Register Class ........................................................................................................................... 26–10

RYAREG Register Class............................................................................................................................. 26–10

RYMREG Register Class ........................................................................................................................... 26–11

SREG Register Class.................................................................................................................................. 26–11

SYSREG Register Class.............................................................................................................................. 26–12

UREG Registers Class................................................................................................................................ 26–12

UREGDBL Register Class ......................................................................................................................... 26–17

UREGXDAG1 Register Class .................................................................................................................... 26–18

UREGXDAG1DBL Register Class ............................................................................................................ 26–22

UREGXDAG2 Register Class .................................................................................................................... 26–23

UREGXDAG2DBL Register Class ............................................................................................................ 26–26

Numeric Formats

IEEE Single-Precision Floating-Point Data Format...................................................................................... 27–1

IEEE Double-Precision Floating-Point (64-bit) Support .............................................................................. 27–2

Extended-Precision Floating-Point Format................................................................................................... 27–3

Short Word Floating-Point Format .............................................................................................................. 27–3

Packing for Floating-Point Data .................................................................................................................. 27–3

Fixed-Point Formats..................................................................................................................................... 27–4

SHARC-PLUS REGF Register Descriptions 

Arithmetic Status (PEx) Register ................................................................................................................. 28–3

Arithmetic Status (PEy) Register ................................................................................................................. 28–9

Base (Circular Buffer) Registers ................................................................................................................ 28–15

Current Loop Counter Register ................................................................................................................ 28–16

Decode Address Register ........................................................................................................................... 28–17

Emulation Counter Register ..................................................................................................................... 28–18

Emulation Counter Register 2 .................................................................................................................. 28–19

Instruction Pipeline Stage Address Register .............................................................................................. 28–20

xxvi SHARC+ Core Programming Reference



Flag I/O Register ...................................................................................................................................... 28–21

Interrupt Mask Register ............................................................................................................................ 28–24

Interrupt Mask Pointer Register ............................................................................................................... 28–28

Interrupt Latch Register ............................................................................................................................ 28–34

Index Registers .......................................................................................................................................... 28–39

Loop Address Stack Register ..................................................................................................................... 28–40

Loop Counter Register .............................................................................................................................. 28–41

Length (Circular Buffer) Registers ............................................................................................................ 28–42

Mode Mask Register ................................................................................................................................. 28–43

Mode Control 1 Register .......................................................................................................................... 28–47

Mode 1 Stack (Top Entry) Register ........................................................................................................... 28–52

Mode Control 2 Register .......................................................................................................................... 28–56

Multiplier Results 0 (PEx) Background Register ....................................................................................... 28–58

Multiplier Results 0 (PEx) Foreground Register ........................................................................................ 28–59

Multiplier Results 1 (PEx) Background Register ....................................................................................... 28–60

Multiplier Results 1 (PEx) Foreground Register ........................................................................................ 28–61

Multiplier Results 2 (PEx) Background Register ....................................................................................... 28–62

Multiplier Results 2 (PEx) Foreground Register ........................................................................................ 28–63

Multiplier Results (PEx) Background Register .......................................................................................... 28–64

Multiplier Results (PEx) Foreground Register ........................................................................................... 28–65

Multiplier Results 0 (PEy) Background Register ....................................................................................... 28–66

Multiplier Results 0 (PEy) Foreground Register ........................................................................................ 28–67

Multiplier Results 1 (PEy) Background Register ....................................................................................... 28–68

Multiplier Results 1 (PEy) Foreground Register ........................................................................................ 28–69

Multiplier Results 2 (PEy) Background Register ....................................................................................... 28–70

Multiplier Results 2 (PEy) Foreground Register ........................................................................................ 28–71

Multiplier Results (PEy) Background Register .......................................................................................... 28–72

Multiplier Results (PEy) Foreground Register ........................................................................................... 28–73

Modify Registers ....................................................................................................................................... 28–74

Program Counter Register ........................................................................................................................ 28–75

SHARC+ Core Programming Reference xxvii



Program Counter Stack Register ............................................................................................................... 28–76

Program Counter Stack Pointer Register ................................................................................................... 28–77

PMD-DMD Bus Exchange Register ......................................................................................................... 28–78

PMD-DMD Bus Exchange 1 Register ...................................................................................................... 28–79

PMD-DMD Bus Exchange 2 Register ...................................................................................................... 28–80

Register File (PEx) Data Registers (Rx, Fx) ............................................................................................... 28–81

Sticky Status (PEx) Register ...................................................................................................................... 28–82

Sticky Status (PEy) Register ...................................................................................................................... 28–85

Register File (PEy) Data Registers (Sx, SFx) .............................................................................................. 28–88

Timer Count Register ............................................................................................................................... 28–89

Timer Period Register ............................................................................................................................... 28–90

User-Defined Status 1 Register ................................................................................................................. 28–91

User-Defined Status 2 Register ................................................................................................................. 28–92

User-Defined Status 3 Register ................................................................................................................. 28–93

User-Defined Status 4 Register ................................................................................................................. 28–94

SHARC-PLUS CMMR Register Descriptions 

General-Purpose Parity Error Status Register .............................................................................................. 29–2

PFB No Caching Return 0 End Address Register ........................................................................................ 29–5

PFB No Caching Return 0 Start Address Register ....................................................................................... 29–6

Core Global Power Control Register ........................................................................................................... 29–7

L1 BANK SLEEP CONTROL ................................................................................................................... 29–8

L1 BANK SHUT DOWN CONTROL ...................................................................................................... 29–9

System Control Register ........................................................................................................................... 29–10

SHARC-PLUS SHBTB Register Descriptions 

Configuration Register ............................................................................................................................... 30–2

Lock Range End Register ............................................................................................................................ 30–4

Lock Range Start Register ........................................................................................................................... 30–5

SHARC-PLUS SHDBG Register Descriptions 

xxviii SHARC+ Core Programming Reference



Break Control Register ................................................................................................................................ 31–3

Break Status Register .................................................................................................................................. 31–6

Core ID Register ......................................................................................................................................... 31–8

Decode 1 Stage Address Register ................................................................................................................. 31–9

Decode 2 Stage Address Register ............................................................................................................... 31–10

Illegal Opcode Detected Register .............................................................................................................. 31–11

DM Data Address 1 End Register ............................................................................................................. 31–12

DM Data Address 1 Start Register ............................................................................................................ 31–13

DM Data Address 2 End Register ............................................................................................................. 31–14

DM Data Address 2 Start Register ............................................................................................................ 31–15

Execute 2 Stage Address Register .............................................................................................................. 31–16

Emulator Number (BP Hits) Register ....................................................................................................... 31–17

Fetch 1 Stage Address Register .................................................................................................................. 31–18

Fetch 2 Stage Address Register .................................................................................................................. 31–19

Fetch 3 Stage Address Register .................................................................................................................. 31–20

Fetch 4 Stage Address Register .................................................................................................................. 31–21

Memory 1 Stage Address Register ............................................................................................................. 31–22

Memory 2 Stage Address Register ............................................................................................................. 31–23

Memory 3 Stage Address Register ............................................................................................................. 31–24

Memory 4 Stage Address Register ............................................................................................................. 31–25

O/S Processor ID Register ........................................................................................................................ 31–26

PM Data Address 1 End Register .............................................................................................................. 31–27

PM Data Address 1 Start Register ............................................................................................................. 31–28

Program Sequence Address 1 End Register ............................................................................................... 31–29

Program Sequence Address 1 Start Register .............................................................................................. 31–30

Program Sequence Address 2 End Register ............................................................................................... 31–31

Program Sequence Address 2 Start Register .............................................................................................. 31–32

Program Sequence Address 3 End Register ............................................................................................... 31–33

Program Sequence Address 3 Start Register .............................................................................................. 31–34

Program Sequence Address 4 End Register ............................................................................................... 31–35

SHARC+ Core Programming Reference xxix



Program Sequence Address 4 Start Register .............................................................................................. 31–36

ID Code Register ...................................................................................................................................... 31–37

SEC Interrupt ID Register ........................................................................................................................ 31–38

SHARC-PLUS SHL1C Register Descriptions 

L1 Cache Configuration 1 Register ............................................................................................................. 32–2

Range Register Functionality Selection Register .......................................................................................... 32–5

Invalidation/Write Back Count 0 Register .................................................................................................. 32–8

Invalidation/Write Back Index Start 0 Register ........................................................................................... 32–9

Range End 0 (Inv, WB, WBI, and Lock) Register ..................................................................................... 32–10

Range End 1 (Inv, WB, WBI, and Lock) Register ..................................................................................... 32–11

Range End 2 (Non-cacheable and Lock) Register ...................................................................................... 32–12

Range End 3 (Non-cacheable and Lock) Register ...................................................................................... 32–13

Range End 4 (Non-cacheable and Write Through) Register ...................................................................... 32–14

Range End 5 (Non-cacheable and Write Through) Register ...................................................................... 32–15

Range End 6 (Non-cacheable and Write Through) Register ...................................................................... 32–16

Range End 7 (Non-cacheable and Write Through) Register ...................................................................... 32–17

Range Start 0 (Inv, WB, WBI, and Lock) Register .................................................................................... 32–18

Range Start 1 (Inv, WB, WBI, and Lock) Register .................................................................................... 32–19

Range Start 2 (Non-cacheable and Lock) Register ..................................................................................... 32–20

Range Start 3 (Non-cacheable and Lock) Register ..................................................................................... 32–21

Range Start 4 (Non-cacheable and Write Through) Register ..................................................................... 32–22

Range Start 5 (Non-cacheable and Write Through) Register ..................................................................... 32–23

Range Start 6 (Non-cacheable and Write Through) Register ..................................................................... 32–24

Range Start 7 (Non-cacheable and Write Through) Register ..................................................................... 32–25

SHARC-PLUS Register List 

Glossary

xxx SHARC+ Core Programming Reference



Preface

Thank you for purchasing and developing systems using SHARC+® processors from Analog Devices, Inc.

Purpose of This Manual
The SHARC+ Processor Programming Reference provides architectural and programming information about the
SHARC+ cores. The cores implement a single-instruction multiple-data (SIMD) architecture with an 11-stage in-
struction pipeline. The architectural descriptions cover functional blocks and buses, including features and processes
that they support. The manual also provides information on the I/O capabilities (flag pins, JTAG) supported by the
core. The programming information covers the instruction set and compute operations.

For information about the peripherals associated with these products, see the product family hardware reference. For
timing, electrical, and package specifications, see the processor-specific data sheet.

NOTE: Analog Devices is in the process of updating documentation to provide terminology and language that is
culturally appropriate. This is a process with a wide scope and will be phased in as quickly as possible.
Thank you for your patience.

Intended Audience
The primary audience for this manual is a programmer who is familiar with Analog Devices processors. The manual
assumes the audience has a working knowledge of the appropriate processor architecture and instruction set. Pro-
grammers who are unfamiliar with Analog Devices processors can use this manual, but should supplement it with
other texts, such as hardware and programming reference manuals that describe their target architecture.

Manual Contents
This manual provides detailed information about the processor family in the following chapters. Please note that
there are differences in this section from previous manual revisions.

• Chapter 1, Introduction. Provides an architectural overview of the SHARC+ core.

• Chapter 2, Register Files. Describes the core register files including the data exchange register (PX).

• Chapter 3, Processing Elements. Describes the arithmetic/logic units (ALUs), multiplier/accumulator units, and
shifter. The chapter also discusses data formats, data types, and register files.

• Chapter 4, Program Sequencer. Describes the operation of the program sequencer, which controls program
flow by providing the address of the next instruction to be executed. The chapter also discusses loops, subrou-
tines, jumps, interrupts, exceptions, and the IDLE instruction.

• Chapter 5, Timer. Describes the operation of the processor's core timer.
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• Chapter 6, Data Address Generators. Describes the Data Address Generators (DAGs), addressing modes, how
to modify DAG and pointer registers, memory address alignment, and DAG instructions.

• Chapter 7, L1 Memory. Describes aspects of processor memory including internal (L1) memory, address and
data bus structure, and memory accesses.

• Chapter 8, L1-Cache Controller. Describes the internal (L1) memory cache controller, including instruction
and data cache control and operations. It also discusses the Prefetch Buffer feature that is exclusive to the
ADSP-2156x and ADSP-SC59x processors.

• Chapter 9, Safety, Security, Multi-Core, and Low-Power Features. Describes support for processor saftey and
security features, including parity error detection, illegal opcode detection, and memory barrier operation. The
chapters also describes some power saving features that are exclusive to the ADSP-2156x and ADSP-SC59x
processors.

• Chapter 10, Debug Interface. Discusses the debug interface and how to use the SHARC processors in a test
environment.

• Chapter 11, Program Trace Macrocell (PTM). Discusses the PTM, which implements a subset of Coresight
Program Flow Trace Architecture (CSPFT) specification.

• Chapter 12, Instruction Set Reference. Provides reference information for the ISA and VISA instruction types,
including instruction opcodes.

• Chapter 13, Computation Reference. Describes each compute operation in detail, including computation opco-
des. Compute operations execute in the multiplier, the ALU, and the shifter.

• Appendix A, Numeric Formats. Provides descriptions of the supported data formats.

• Appendix B, Register File and Other Non-Memory Mapped Registers (REGF). Provides register descriptions
and bit descriptions.

• Appendix C, Core Memory-Mapped Registers (CMMR). Provides register descriptions and bit descriptions.

• Appendix D, Branch Target Buffer Registers (BTB). Provides register descriptions and bit descriptions.

• Appendix E, L1-Cache Controller Registers (L1C). Provides register descriptions and bit descriptions.

• Appendix F, Debug-Related Registers (DBG). Provides register descriptions and bit descriptions.
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What's New in This Manual
The Revision History table describes the major changes to the SHARC+ Core Programming Reference.

Table 1-1: Revision History

Revision Description of Changes

1.4 This revision corrects minor typographical errors and the following:

• Included content for the ADSP-2159x and ADSP-SC59x

• Added IIRxI bits in the REGF_IMASKP, REGF_IMASK and REGF_IRPTL registers
to support the ADSP-2159x and SC59x processors

• Added additional flags in the REGF_FLAGS register to support the ADSP-2159x and
SC59x processors

• Updated language surrounding the memory fabric infrastructure. The term master is re-
placed with requester and the term slave is replaced with completer. The master port is
now the requester port and the slave port is now the completer port.

1.3 This revision corrects minor typographical errors and the following issues:

• Updated code example for the recips functions in 32-bit and 40-bit Operations

• Updated code example for Fixed-to-Float Conversion Instructions with Scaling

• Updated PFB Invalidation instructions in Prefetch Buffer

1.2 This revision corrects minor typographical errors and the following issues:

• Added note to topic Coherency Between DM and PM Caches

• Updated definition of IIRI and FIRI bits for REGF_IMASKP, REGF_IMASK and
REGF_IRPTL registers

• Changed bit field associated with the ID Code register SHDBG_REVID from 4:7 to
0:3

• Updated SHL1C_CFG.PMCASIZ enum 0 description

• Updated Type 20a ISA/VISA (push/pop stack/manipulate cache) syntax for cache
flushing

• Added note to Address-Range Based Invalidation and Write-Back Invalidation topic

• Updated topic Further Details on Range Based WBI/Invalidation

• Added ADSP-2156x to SHDBG_CORE_ID register description
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Table 1-1: Revision History (Continued)

Revision Description of Changes

1.1 Not released. This revision introduces the ADSP-2156x series of SHARC+ processors and
its specific features:

• Prefetch Buffer (ADSP-2156x and ADSP-SC59x Only)

• Low-Power Features (ADSP-2156x and ADSP-SC59x Only)

It also corrects minor typographical errors and the following issues:

• Header Creation example in the Bit Stream Manipulation Instructions topic

• Storing and Restoring Bit FIFO State example in the Interrupts Using Bit FIFO Instruc-
tions topic

• Added description of the ILLOPI and ILLOPIA bit fields in the
SHDBG_DBGREG_ILLOP register

1.0 Initial release

Technical Support
You can reach Analog Devices processors and DSP technical support in the following ways:

• Post your questions in the processors and DSP support community at EngineerZone®:

http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:

http://www.analog.com/support

• E-mail your questions about processors, DSPs, and CrossCore Embedded Studio® (CCES) development soft-
ware tools:

Choose Help > Email Support. This creates an e-mail to processor.tools.support@analog.com and automatical-
ly attaches your CCES version information and license.dat file.

• E-mail your questions about processors and processor applications to:

processor.support@analog.com

processor.tools.support@analog.com

processor.china@analog.com

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor. Locate one at:

http://www.analog.com/adi-sales

• Send questions by mail to:
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Analog Devices, Inc.

Three Technology Way

P.O. Box 9106

Norwood, MA 02062-9106 USA

Supported Processors
The name "SHARC+" indicates a DSP core incorporated into an SoC from a family of high-performance, floating-
point embedded processors. Refer to the product data sheet for a complete list of supported processors.

Product Information
Product information can be obtained from the Analog Devices web site and the online help for the CCES develop-
ment environment.

Analog Devices Web Site
The Analog Devices Web site, http://www.analog.com, provides information about a broad range of products—ana-
log integrated circuits, amplifiers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to http://www.analog.com/processors/techni-
cal_library. The manuals selection opens a list of current manuals related to the product as well as a link to the
previous revisions of the manuals. When locating your manual title, note a possible errata check mark next to the
title that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site that allows customization of a Web page
to display only the latest information about products you are interested in. You can choose to receive weekly e-mail
notifications containing updates to the Web pages that meet your interests, including documentation errata against
all manuals. MyAnalog.com provides access to books, application notes, data sheets, code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It allows you direct access to ADI technical
support engineers. You can search FAQs and technical information to get quick answers to your embedded process-
ing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also use this
open forum to share knowledge and collaborate with the ADI support team and your peers. Visit http://
ez.analog.com to sign up.

SHARC+ Core Programming Reference xxxv

http://www.analog.com
http://www.analog.com/processors/technical_library
http://www.analog.com/processors/technical_library
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx
http://ez.analog.com
http://ez.analog.com


Notation Conventions
Text conventions used in this manual are identified and described as follows.

Example Description

File > Close Titles in bold style indicate the location of an item within the CrossCore Embedded Studio
IDE’s menu system (for example, the Close command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly brackets and separated
by vertical bars; read the example as this or that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and separated by vertical bars;
read the example as an optional this or that.

[this, …] Optional item lists in syntax descriptions appear within brackets delimited by commas and
terminated with an ellipsis; read the example as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with letter gothic
font.

filename Non-keyword placeholders appear in text with italic style format.

NOTE: NOTE: For correct operation, ...

A note provides supplementary information on a related topic. In the online version of this
book, the word Note appears instead of this symbol.

CAUTION: CAUTION: Incorrect device operation may result if ...

CAUTION: Device damage may result if ...

A caution identifies conditions or inappropriate usage of the product that could lead to un-
desirable results or product damage. In the online version of this book, the word Caution
appears instead of this symbol.

ATTENTION: ATTENTION Injury to device users may result if ...

A warning identifies conditions or inappropriate usage of the product that could lead to
conditions that are potentially hazardous for devices users. In the online version of this
book, the word Warning appears instead of this symbol.

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or write-1-to-clear (W1C), this information appears un-
der the name. Read/write is the default and is not noted. Additional descriptive text may follow.

• If any bits in the register do not follow the overall read/write convention, this is noted in the bit description
after the bit name.

• If a bit has a short name, the short name appears first in the bit description, followed by the long name in
parentheses.
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• The reset value appears in binary in the individual bits and in hexadecimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the reset value of registers that contain such bits is
undefined or dependent on pin values at reset.

• Shaded bits are reserved.

NOTE: To ensure upward compatibility with future implementations, write back the value that is read for reserved
bits in a register, unless otherwise specified.

The Register Diagram Example figure shows an example of these conventions.

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0]  (Timer Mode)

Reset = 0x00000

Timer Configurat ion Registers (TIMERx_CONFIG )

0 - Negative  action  pulse.
1 - Positive  action  pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output  modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock  counter .

0 - The effective state of PULSE_HI 
is the programmed state.
1 - The effective state of PULSE_HI 
alternates each period.

00 - No error .
01 - Counter  overflow error .
10 - Period register  programming error .
11 - Pulse width register  programming error .

00 - Reset state - unused .
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select )

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0]  (Error  Type)  - RO

PERIOD_CNT  (Period 
Count)

0 - Interrupt request 
disable.
1 - Interrupt request  enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA  (Interrupt 
Request Enable)

0 - Sample TMRx pin or 
PF1 pin.
1 - Sample UART RX pin 
or PPI_CLK pin.

TIN_SEL (Timer Input 
Select)

0 - Enable  pad in PWM_OUT mode.
1 - Disable  pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter  stops during emulation.
1 - Timer counter  runs during emulation.

EMU_RUN (Emulation Behavior Select)

Figure 1-1: Register Diagram Example
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1   Introduction

The SHARC® processors are high performance 32-bit/40-bit/64-bit fixed-point/floating-point processors used for
applications, such as:

• Medical imaging

• Communications

• Military

• Audio

• Test equipment

• 3D graphics

• Speech recognition

• Motor control

• Imaging

• Automotive

The on-chip SRAM, integrated I/O peripherals, extra processing element for single-instruction, multiple-data
(SIMD) support in the SHARC+ core and a rich instruction set builds on the ADSP-21000 family processor core.
This combination forms a complete system-on-a-chip (SOC).

The SHARC+ core family includes distinct groups of processors:

• ADSP-215xx processors (single and multiple SHARC+ cores)

• ADSP-SC5xx processors (single and multiple SHARC+ cores with an Arm® core)

These products are differentiated by number of processor cores, on-chip memories, peripheral choices, packaging,
and operating speeds. In all SHARC processors, the SHARC+ core operates in the same way. This uniform opera-
tion lets this manual apply to all groups. Where differences exist (such as external memory interfacing), they are
noted.

Introduction
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SHARC+ Core Design Advantages
The data format used by a digital signal processor determines its ability to handle signals of differing precision, dy-
namic range, and signal-to-noise ratios. Because floating-point math reduces the need for scaling and probability of
overflow, using a floating-point processor can ease algorithm and software development. The extent to which these
guidelines are true depends on the architecture of the floating-point processor. Consistency with IEEE workstation
simulations and the elimination of scaling are clearly two ease-of-use advantages. High-level-language programma-
bility, large address spaces, and wide dynamic range allow system development time to be spent on algorithms and
signal processing concerns. This architecture reduces time spent on coding in assembly language, managing code
placement on memory pages, and developing routines to handle errors. The processors are highly integrated, 32-
bit/40-bit/64-bit floating-point processors that provide many of these design advantages.

The SHARC processor architecture balances multiple high performance SHARC+ core with four high speed memo-
ry L1 blocks and two I/O buses. In the core, every instruction working with 32-bit or 40-bit data can execute in a
single cycle. Instructions working with 64-bit floating-point data require multiple cycles.

Architectural Overview
The following sections summarize the features of each functional block.

SHARC Processor
The SHARC processors form a complete system-on-a-chip, integrating the SHARC+ core plus a crossbar including
the instruction and data cache control (Internal memory interface), high-speed L1 SRAM blocks, two requester and
two completer ports for connection to the system or peripheral world.
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Figure 1-1: SHARC+ SIMD Core Block Diagram
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SHARC+ Core

The following sections provide details of the elements in the SHARC+ core.

System Event Controller Input (SEC)

The output of the SEC controller is forwarded to the SHARC+ Core Event Controller (CEC) to respond to all
system based interrupts. It also supports nesting including various SEC interrupt channel arbitration options. For all
SEC channels the processor automatically stacks the arithmetic status (REGF_ASTATX and REGF_ASTATY) reg-
isters and mode (REGF_MODE1) registers in parallel with the interrupt servicing.

Instruction and data caches

The processor includes one instruction cache (block 3) and two data caches (block 2 and block 1) in L1 memory.
These caches temporarily store instructions and data located in higher latency system L2 or L3 memories. The
blocks 1-3 of L1 memory can be configured as instruction cache, DM data cache and PM data cache. While instruc-
tion fetches are completed through the instruction cache, DM and PM data accesses are completed through the
DM- and PM-caches. The cache architecture provides a data coherence protocol between DM and PM data caches.
The sizes of each of the caches and other attributes are independently configurable.

Core Memory mapped Registers (CMMR)

The core memory mapped registers control L1 I/D cache, BTB, L2 system, parity error, system control, debug and
monitor functions.

SHARC+ Core Block Diagram

The SHARC+ core, shown in the SHARC+ SIMD Core Block Diagram figure, consists of two processing elements,
data register files, a program sequencer, conflict cache, a branch target buffer, two DAGs, timers, debug interface
and system interface.

SHARC Processor
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Figure 1-2: SHARC+ SIMD Core Block Diagram

Dual Processing Elements

The processor core contains two processing elements: PEx and PEy. Each element contains a data register file and
three independent computation units: an arithmetic logic unit (ALU), a multiplier with an 80-bit fixed-point accu-
mulator, and a shifter. For meeting a wide variety of processing needs, the computation units process data in a num-
ber of formats: 32-bit fixed-point integer/fractional formats (twos-complement and unsigned). 32-bit floating-point,
40-bit floating-point, and 64-bit floating-point. The floating-point operations are IEEE compatible.

The 32-bit and 64-bit floating-point compute units follow the standard IEEE format, whereas the 40-bit extended
precision format has eight additional least significant bits (LSBs) of mantissa for greater accuracy compared to the
32-bit single precision format.

The ALU performs a set of arithmetic and logic operations on both fixed-point and floating-point formats. The
multiplier performs floating-point or fixed-point multiplication and fixed-point multiply/ accumulate or multiply/
cumulative-subtract operations. The shifter performs logical and arithmetic shifts, bit manipulation, bit-wise field
deposit and extraction, and exponent derivation operations on 32-bit operands.

Some of the compute operations are pipelined, while others are not. All shifter operations, fixed point operations
performed in ALU are single cycle. Output of these operations may serve as input of any other operation in the next
cycle. All 32-bit single precision ALU and multiplier operations as fixed point multiplier operations are pipelined by
one cycle. A new operation in these units can be started in every cycle unless it requires an operand from one such
pipelined operation. The fixed point multiply-accumulate operation is an exception to this rule. This operation can
be started every cycle. Double precision floating-point operations are not fully pipelined. These operations stall the

SHARC Processor
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pipeline by 1-6 cycles. All units are connected in parallel, rather than serially. In a multifunction computation, the
ALU and multiplier perform independent, simultaneous operations.

Complementary Processing Element (PEy)

PEy processes each computational instruction in lock-step with PEx, but only processes these instructions when the
processors are in SIMD mode. Because many operations are influenced by this mode, more information on SIMD is
available in multiple locations:

• For information on PEy operations, see the Processing Elements chapter.

• For information on data accesses in SIMD mode, and data addressing in SIMD mode, see Internal Memory
Access Listings in the Memory chapter.

• For information on SIMD programming, see the Instruction Set Types and Computation Types chapters.

Data Register File

Each processing element has a general-purpose data register file that transfers data between the computation units
and the data buses and stores intermediate results. A register file has two sets (primary and secondary) of 16 general-
purpose registers each for fast context switching. All of the registers are 40 bits wide. The ten-port data register file
supports:

• write or read two operands to or from the register file,

• supply two operands to the ALU, supply two operands to the multiplier, and

• receive three results from the ALU and multiply accumulator (MAC). For more information, see the Register
Files chapter.

Fore/Background Registers

Many of the processor's registers have secondary registers that can be activated during interrupt servicing for a fast
context switch. The data registers in the register file, the DAG registers, and the multiplier result register all have
secondary registers. The primary registers are active at reset, while the secondary registers are activated by control
bits in a mode control register.

Core Buses

The processor core has two buses-PM data and DM data. The PM bus is used to fetch instructions from memory,
but may also be used to fetch data. The DM bus can only be used to fetch data from memory.

In conjunction with the instruction-conflict cache, this Super Harvard Architecture allows the core to fetch an in-
struction and two pieces of data in the same cycle that a data word is moved between memory and a peripheral. This
architecture allows dual data fetches, when the instruction is supplied by the conflict cache.

SHARC Processor
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Program Sequencer

The program sequencer supplies instruction addresses to program memory. It controls loop iterations and evaluates
conditional instructions. To achieve a high execution rate, the processor employs an eleven stage pipeline to process
instructions - four stages of fetch, two stages of decode, 4 stages for memory access and 2 stages for execution. The
processors support both delayed and non-delayed branches for more efficient control coding. For more information,
see Instruction Pipeline in the Program Sequencer chapter.

Conflict Cache

The program sequencer also includes a 32-word instruction cache that effectively provides three-bus operation for
fetching an instruction and two data values. The instruction-conflict is selective; only instructions whose fetches
conflict with data accesses using the PM bus are cached. This caching allows full speed execution of core, looped
operations such as digital filter multiply-accumulates, and FFT butterfly processing. For more information on the
cache, refer to Operating Modes in the Program Sequencer chapter.

Branch Target Buffer

Implementation of a hardware-based branch predictor (BP) and branch target buffer (BTB) reduce branch delay.
The program sequencer supports efficient branching using this branch target buffer (BTB) for conditional and un-
conditional instructions.

Core Event Controller (CEC)

The SHARC+ core IVT generates various core interrupts (arithmetic and circular buffer instruction flow exceptions)
and SEC events (peripherals). The CEC only responds to interrupts which are unmasked (IMASK register).

Loop Sequencer

Zero-overhead loops allow efficient program sequencing. In addition to this, the sequencer allows single cycle set-up
of loop. No explicit instruction is needed for counter decrement, counter check, loop-back and loop-termination.
Loops are both nest-able (six levels in hardware) and interruptible.

Data Address Generators (DAGs)

The DAGs provide memory addresses when data is transferred between memory and registers. Dual data address
generators enable the processor to output simultaneous addresses for two operand reads or writes. DAG1 supplies
32-bit addresses for accesses using the DM bus. DAG2 supplies 32-bit addresses for memory accesses over the PM
bus.

Each DAG keeps track of up to eight address pointers, eight address modifiers, and for circular buffering eight base-
address registers and eight buffer-length registers. A pointer used for indirect addressing can be modified by a value
in a specified register, either before (pre-modify) or after (post-modify) the access. A length value may be associated
with each pointer to perform automatic modulo addressing for circular data buffers. The circular buffers can be lo-
cated at arbitrary boundaries in memory. Each DAG register has a secondary register that can be activated for fast
context switching.

SHARC Processor
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Circular buffers allow efficient implementation of delay lines and other data structures required in digital signal
processing. They are also commonly used in digital filters and Fourier transforms. The DAGs automatically handle
address pointer wraparound, reducing overhead, increasing performance, and simplifying implementation.

Timer

The core's programmable interval timer provides periodic interrupt generation. When enabled, the timer decre-
ments a 32-bit count register every cycle. When this count register reaches zero, the processors generate an interrupt
and asserts their timer expired output. The count register is automatically reloaded from a 32-bit period register and
the countdown resumes immediately.

Debug Port

The JTAG port supports the IEEE standard 1149.1 Joint Test Action Group (JTAG) standard for system test. This
standard defines a method for serially scanning the I/O status of each component in a system. Emulators use the
JTAG port to monitor and control the processor during emulation.

Emulators using this port provide full speed emulation with access to inspect and modify memory, registers, and
processor stacks. JTAG-based emulation is non-intrusive and does not effect target system loading or timing.

Differences from Previous SHARC Processors
This section identifies differences between the current generation processors and previous SHARC processors:
ADSP-2146x/2136x/2126x/2116x and ADSP-2106x. Like the ADSP-2116x family, the current generation is based
on the original ADSP-2106x SHARC family. The current products preserve much of the ADSP-2106x architecture
and is code compatible to the ADSP-2116x, while extending performance and functionality. For background infor-
mation on SHARC and the ADSP-2106x Family processors, see the ADSP-2106x SHARC User's Manual.

The following tables show the high level differences between the SHARC processor families.

Table 1-1: Architectural Differences between SHARC Core Generations

Features ADSP-2106x ADSP-2116x/
2126x

ADSP-2136x/
2137x

ADSP-214xx ADSP-SC5xx/
215xx

Instruction Pipeline 3 stages 3 stages 5 stages 5 stages 11 stages

Branch Target buffer No No No No Yes

VISA No No No Yes Yes

DAG2 address/data width 24/48 32/64 32/64 32/64 32/64

Conflict cache 32 entries Yes Yes Yes Yes Yes

Conflict cache ext. instruction
fetch

Yes Yes Yes Yes No

L1 Instruction/Data cache No No No No Yes

L1 Internal memory blocks 2 2 4 4 4

Differences from Previous SHARC Processors
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Table 1-1: Architectural Differences between SHARC Core Generations (Continued)

Features ADSP-2106x ADSP-2116x/
2126x

ADSP-2136x/
2137x

ADSP-214xx ADSP-SC5xx/
215xx

L1 Ports/memory block Dual port Dual port Single Port Single Port Single Port

L1 parity No No No No Yes

Dual Processing Units PEx/PEy No Yes Yes Yes Yes

SEC Interrupt No No No No Yes

IRQ 2-0 Interrupts Yes Yes Yes Yes No

L1 ROM Yes Yes Yes Yes No

Security Control No No No No Yes

Table 1-2: L1 Memory Address Aliasing Differences between SHARC Core Generations

Features ADSP-2106x ADSP-2116x/
2126x

ADSP-2136x/
2137x

ADSP-214xx ADSP-SC5xx/
215xx

Byte word 8-bit No No No No Yes

Short word 16-bit Yes Yes Yes Yes Yes

Normal word 32-bit Yes Yes Yes Yes Yes

Normal word 40-bit Yes Yes Yes Yes Yes

Normal word 48-bot Yes Yes Yes Yes Yes

Long word 64-bit No Yes Yes Yes Yes

Table 1-3: Instruction Differences between SHARC Core Generations

Features ADSP-2106x ADSP-2116x/
2126x

ADSP-2136x/
2137x

ADSP-214xx ADSP-SC5xx/
215xx

COMPU(Rx,Ry); No Yes Yes Yes Yes

Rn = BFFWRP; No No No Yes Yes

BFFWRP = Rn | <data7>; No No No Yes Yes

Rn = BITEXT Rx | <bitlen12>;

Rn = BITEXT Rx | <bitlen12>
(NU);

No No No Yes Yes

BITDEP Rx by Ry | <bitlen12>; No No No Yes Yes

Ia=modify(Ia|<data32>); No No No Yes Yes

Ia=bitrev(Ia|<data32>); No No No Yes Yes

<64-bit floating-point instruction
set>

No No No No Yes

Differences from Previous SHARC Processors
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Table 1-4: Register Differences between SHARC Core Generations

Registers ADSP-2106x ADSP-2116x/2126x ADSP-2136x/2137x ADSP-214xx ADSP-SC5xx/215xx

SYSCTL/SYSCON
(MMR)

Yes Yes Yes Yes Yes

SYSCTL1 (MMR) No No No Yes Yes

FADDR Yes Yes Yes Yes Yes

DADDR Yes Yes Yes Yes Yes

PC Yes Yes Yes Yes Yes

PCSTK Yes Yes Yes Yes Yes

PCSTKP Yes Yes Yes Yes Yes

LADDR Yes Yes Yes Yes Yes

CURLCNTR Yes Yes Yes Yes Yes

LCNTR Yes Yes Yes Yes Yes

EMUCLK Yes Yes Yes Yes Yes

EMUCLK2 Yes Yes Yes Yes Yes

PX Yes Yes Yes Yes Yes

PX1 Yes Yes Yes Yes Yes

PX2 Yes Yes Yes Yes Yes

TPERIOD Yes Yes Yes Yes Yes

TCOUNT Yes Yes Yes Yes Yes

USTAT1 Yes Yes Yes Yes Yes

USTAT2 Yes Yes Yes Yes Yes

USTAT3 No Yes Yes Yes Yes

USTAT4 No Yes Yes Yes Yes

MODE1 Yes Yes Yes Yes Yes

MODE2 Yes Yes Yes Yes Yes

MMASK No Yes Yes Yes Yes

MODE1STK No No No No Yes

FLAGS Yes Yes Yes Yes Yes

ASTATx Yes Yes Yes Yes Yes

ASTATy No Yes Yes Yes Yes

STKX Yes Yes Yes Yes Yes

STKY No Yes Yes Yes Yes

IRPTL Yes Yes Yes Yes Yes

Differences from Previous SHARC Processors
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Table 1-4: Register Differences between SHARC Core Generations (Continued)

Registers ADSP-2106x ADSP-2116x/2126x ADSP-2136x/2137x ADSP-214xx ADSP-SC5xx/215xx

IMASK Yes Yes Yes Yes Yes

IMASKP Yes Yes Yes Yes Yes

LIRPTL Yes Yes Yes Yes No

Foreground

B0−B15 (base) Yes Yes Yes Yes Yes

I0−I15 (index) Yes Yes Yes Yes Yes

M0−M15 (modify) Yes Yes Yes Yes Yes

L0−L15 (length) Yes Yes Yes Yes Yes

R0−R15 (PEx regis-
ter)

Yes Yes Yes Yes Yes

S0−S15 (PEy regis-
ter)

No Yes Yes Yes Yes

MRF (PEx register) Yes Yes Yes Yes Yes

MSF (PEy register) No Yes Yes Yes Yes

Background

B0−B15 (base) Yes Yes Yes Yes Yes

I0−I15 (index) Yes Yes Yes Yes Yes

M0−M15 (modify) Yes Yes Yes Yes Yes

L0−L15 (length) Yes Yes Yes Yes Yes

R0−R15 (PEx regis-
ter)

Yes Yes Yes Yes Yes

S0−S15 (PEy regis-
ter)

No Yes Yes Yes Yes

MRB (PEx register) Yes Yes Yes Yes Yes

MSB (PEy register) No Yes Yes Yes Yes

Instruction Type Differences from Previous SHARC Processors

The following tables show the differences in instruction types between the current generation processors and previ-
ous SHARC processors.

Table 1-5: 48-bit Instruction Set Types

Instruction Types ADSP-2106x ADSP-2116x/2126x ADSP-2136x/2137x ADSP-214xx ADSP-SC5xx/215xx

1a Yes Yes Yes Yes Yes

2a Yes Yes Yes Yes Yes

Differences from Previous SHARC Processors
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Table 1-5: 48-bit Instruction Set Types (Continued)

Instruction Types ADSP-2106x ADSP-2116x/2126x ADSP-2136x/2137x ADSP-214xx ADSP-SC5xx/215xx

3a Yes Yes Yes Yes Yes

3d No No No No Yes

4a Yes Yes Yes Yes Yes

4d No No No No Yes

5a Yes Yes Yes Yes Yes

6a Yes Yes Yes Yes Yes

7a Yes Yes Yes Yes Yes

7d No No No No Yes

8a Yes Yes Yes Yes Yes

9a Yes Yes Yes Yes Yes

10a Yes Yes Yes Yes Yes

11a Yes Yes Yes Yes Yes

12a Yes Yes Yes Yes Yes

13a Yes Yes Yes Yes Yes

14a Yes Yes Yes Yes Yes

14d No No No No Yes

15a Yes Yes Yes Yes Yes

16a Yes Yes Yes Yes Yes

17a Yes Yes Yes Yes Yes

18a Yes Yes Yes Yes Yes

19a Yes Yes Yes Yes Yes

20a Yes Yes Yes Yes Yes

21a Yes Yes Yes Yes Yes

22a Yes Yes Yes Yes Yes

25a Yes Yes Yes Yes Yes

26a No No No No Yes

Table 1-6: 32-bit Instruction Set Types

Instruction Types ADSP-2106x ADSP-2116x/2126x ADSP-2136x/2137x ADSP-214xx ADSP-SC5xx/215xx

1b No No No Yes Yes

2b No No No Yes Yes

3b No No No Yes Yes

Differences from Previous SHARC Processors
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Table 1-6: 32-bit Instruction Set Types (Continued)

Instruction Types ADSP-2106x ADSP-2116x/2126x ADSP-2136x/2137x ADSP-214xx ADSP-SC5xx/215xx

4b No No No Yes Yes

5b No No No Yes Yes

7b No No No Yes Yes

9b No No No Yes Yes

15b No No No Yes Yes

16b No No No Yes Yes

17b No No No Yes Yes

Table 1-7: 16-bit Instruction Set Types

Instruction Types ADSP-2106x ADSP-2116x/2126x ADSP-2136x/2137x ADSP-214xx ADSP-SC5xx/215xx

2c No No No Yes Yes

3c No No No Yes Yes

11c No No No Yes Yes

21c No No No Yes Yes

22c No No No Yes Yes

25c No No No Yes Yes

Development Tools
The SHARC+ core is supported by a complete set of software and hardware development tools, including Analog
Devices' emulators and the CCES development environment. The emulator hardware that supports other Analog
Devices processors also emulates the SHARC+ core.

The development environments support advanced application code development and debug with features such as:

• Create, compile, assemble, and link application programs written in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access port to monitor and control the target board
processor during emulation. The emulator provides full speed emulation, allowing inspection and modification of
memory, registers, and processor stacks. Nonintrusive in-circuit emulation is assured by the use of the processor
JTAG interface-the emulator does not affect target system loading or timing.

Development Tools
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Software tools also include Board Support Packages (BSPs). Hardware tools also include standalone evaluation sys-
tems (boards and extenders). In addition to the software and hardware development tools available from Analog De-
vices, third parties provide a wide range of tools supporting the SHARC+ processors. Third party software tools in-
clude DSP libraries, real-time operating systems, and block diagram design tools.

Development Tools
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2   Register File Registers and Core Memory-
Mapped Registers

The SHARC+ core is controlled by register file based registers (using the instruction set) and by core memory-map-
ped registers (using addresses).

Features
The register files have the following features.

• The register file registers are called universal registers and can be used by almost all instructions

• Data registers are used for computation units

• Complementary data registers are used for the complementary computation units

• System registers are used for bit manipulation

NOTE: The register file based registers and the CMMR register are accessible by the local SHARC+ core only.

Functional Description
The following sections provide a functional description of the register files.

Register File Registers

The core architecture has the following register categories: 

• Register file based registers

• Data registers in the PEx unit (Dreg)

• Complementary data register in the PEy unit (CDreg)

• Multiplier results registers (MRx, MSx)

• Data address generator registers (Ia, Mb, Ic, Md, Ba, Bc)

• System registers (Sysreg) in bit manipulation units

Register File Registers and Core Memory-Mapped Registers
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• Universal registers (Ureg), includes almost all processor core registers

Most registers are universal registers; the data and system registers are subgroups of universal registers. This chapter
describes access handling for these registers. For register coding details, see the Instruction Set Reference chapter.

Register Types and Classes

The SHARC+ Core Register Types and Classes table list the SHARC+ core registers.

Table 2-1: SHARC+ Core Register Types and Classes

Register Type Register Classes Registers Function

Data Registers (Dreg) RREG*1 r0 - r15 Processing element X (PEx) register file
locations, fixed-point

FREG*2 f0 - f15 PEx register file locations, floating-point

RFREG r0 - r15
f0 - f15

PEx register file locations, fixed-point or
floating-point

RFREGDBL*3 r1:0 - r15:14 PEx 64-bit register file locations, fixed-
point 

f1:0 - f15:14 PEx 64-bit register file locations, float-
ing-point

Complementary Data Registers (CDreg) SREG, CDREG s0 - s15 Processing element Y (PEy) register file
locations, fixed-point

sf0 - sf15 PEy register file locations, floating-point

Multiply Result Registers (MR). All Mul-
tiply register are NOT part of sys register,
they have separate instuctions. 

MRXFBREG mrf, mr0f, mr1f,
mr2f

Multiplier results PEx, foreground

mrb, mr0b, mr1b,
mr2b

Multiplier results PEx, background

Multiply Result Registers (MS). All Mul-
tiply register are NOT part of sys register,
they have separate instuctions. 

MSXFBREG msf, ms0f, ms1f,
ms2f

Multiplier results PEy, foreground

msb, ms0b, ms1b,
ms2b

Multiplier results PEy, background

System Registers (Sysreg) SYSREG astat, astatx,
astaty

PE, PEx, PEy arithmetic status flags and
bit test flag

flags Flag pins input/output state 

imask Interrupt mask

imaskp Interrupt mask pointer (for nesting)

irptl Interrupt latch

mmask Mode mask

mode1 Mode 1 control and status

mode1stk Mode 1 stack (top-most entry)

Register File Registers
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Table 2-1: SHARC+ Core Register Types and Classes (Continued)

Register Type Register Classes Registers Function

mode2 Mode 2 control and status

stky, stkyx,
stkyy

PE, PEx, PEy sticky status flags and stack
status flags

ustat1, ustat2,
ustat3, ustat4

User status 1, 2, 3, and 4

Index Registers (Ia) I1REG i0 - i7 Index registers, Data Address Generator
1 (DAG1) 

Modifier Registers (Mb) M1REG m0 - m7 Modify registers, DAG1

Base Registers (Ba) B1REG b0 - b7 Base registers, DAG1

Index Registers (Ic) I2REG i8 - i15 Index registers, DAG2

Modifier Registers (Md) M2REG m8 - m15 Modify registers, DAG2

Base Registers (Bc) B2REG b8 - b15 Base registers, DAG2

Universal Register (Ureg)

Note that Ureg includes the registers
listed in the Registers column plus all of
the registers in the register classes: RFEG,
SREG, I1REG, I2REG, M1REG,
M2REG, B1REG, B2REG, and SYS-
REG.

UREG l0 - l7 Length registers, DAG1

l8 - l15 Length registers, DAG2

px PMD-DMD bus exchange PX1/PX2
(64-bit)

px1 PMD-DMD bus exchange 1 (32 bits)

px2 PMD-DMD bus exchange 2 (32 bits)

pc Program counter (read-only)

pcstk Top of PC stack

pcstkp PC stack pointer

faddr Fetch address (read-only)

daddr Decode address (read-only)

laddr Loop termination address, code; top of
loop address stack

curlcntr Current loop counter; top of loop count
stack

lcntr Loop count for next nested counter-con-
trolled loop

tperiod Timer period

tcount Timer counter

emuclk, emuclk2 Emulator clocks

Register File Registers
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Table 2-1: SHARC+ Core Register Types and Classes (Continued)

Register Type Register Classes Registers Function

Universal Register (Ureg) (additional
register classes)

UREGDBL f1:0 - f15:14
sf1:0 - sf15:14

PEx and PEy double-precision floating-
point data registers

UREGXDAG1 This is a sub-set of
UREG. See Function
column.

Same as UREG, but omits DAG1 specif-
ic index, modify, base, and length regis-
ters

UREGXDAG1DBL This is a sub-set of
UREG. See Function
column.

Same as UREGDBL

UREGXDAG2 This is a sub-set of
UREG. See Function
column.

Same as UREG, but omits DAG2 specif-
ic index, modify, base, and length regis-
ters

UREGXDAG2DBL This is a sub-set of
UREG. See Function
column.

Same as UREGDBL

 

*1 The RREG register class also contains a number of register sub-classes with restricted usage, including: RXAREG, RXMREG,
RYAREG, and RYMREG

*2 The FREG register class also contains a number of register sub-classes with restricted usage, including: FXAREG, FXMREG, FYAR-
EG, and FYMREG

*3 The RFREGDBL register class also contains a number of register sub-classes with restricted usage, including: DBLREG,
DBLREG3, DBLXAREG, DBLXMREG, DBLYAREG, and DBLYMREG

 

Data Registers

Each of the processor's processing elements has a data register file, which is a set of data registers that transfers data
between the data buses and the computational units. These registers also provide local storage for operands and re-
sults.

The two register files consist of 16 primary registers and 16 alternate (secondary) registers. The data registers are 40
bits wide. Within these registers, 32-bit data is left-justified. If an operation specifies a 32-bit data transfer to these
40-bit registers, the eight LSBs are ignored on register reads, and the LSBs are cleared to zeros on writes.

Program memory data accesses and data memory accesses to and from the register file(s) occur on the PM data
(PMD) bus and DM data (DMD) bus, respectively. One PMD bus access for each processing element and/or one
DMD bus access for each processing element can occur in one cycle. Transfers between the register files and the
DMD or PMD buses can move up to 64 bits of valid data on each bus.

Note that 16 data registers are sufficient to store the intermediate result of a FFT radix-4 butterfly stage.

Data Register Neighbor Pairing

In the long word (LW) address space, the sequencer or DAGs allow the loading and or storing of data to or from a
data register pair as shown in the Data Register Pairs (Neighbor and Complementary) for Long Word and SIMD
Mode Access table (see Complementary Data Register Pairs). Every even data register has an associated odd register

Register File Registers
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representing a register pair. For example, R1:0 are a neighbor data register pair. For more information, see DAG
Instruction Types in the Data Address Generators chapter.

Complementary Data Register Pairs

The computational units (ALU, multiplier, and shifter) in PEx and PEy processing elements are identical. The data
bus connections for the dual computational units permit asymmetric data moves to, from, and between the two
processing elements. Identical instructions execute on the PEx and PEy units; the difference is the data. The data
registers for PEy operations are identified (implicitly) from the PEx registers in the instruction. This implicit rela-
tionship between PEx and PEy data registers corresponds to the complementary register pairs in the Data Register
Pairs (Neighbor and Complementary) for Long Word and SIMD Mode Access table. For example, the R0 and S0
data registers are a complementary data register pair.

NOTE: Data moves directly to the complementary registers are possible in SISD mode. For PEy computations
SIMD mode is required. The instruction modifer (LW) overrides SIMD Mode. SIMD mode is not sup-
ported in LW space.

Table 2-2: Data Register Pairs (Neighbor and Complementary) for Long Word and SIMD Mode Access1

PEx

Neighbor Pairs (side-by-side in a PE) for LW

R1:0 is a neighbor register pair
Complementary Pairs (match across PE's) for SIMD

R0 and S0 are a complementary register 
pair

PEy Pairs

Neighbor Pairs (side-by-side in a PE) for LW

S1:0 is a neighbor register pair
Complementary Pairs (match across PE's) for SIMD

S0 and R0 are a complementary register 
pair

R0 R1 S0 S1

R2 R3 S2 S3

R4 R5 S4 S5

R6 R7 S6 S7

R8 R9 S8 S9

R10 R11 S10 S11

R12 R13 S12 S13

R14 R15 S14 S15

1 For fixed-point operations, the prefixes are Rx (PEx) or Sx (PEy). For floating-point operations, the prefixes are Fx
(PEx) or SFx (PEy).

Data and Complementary Data Register Transfers

These dual 16-register register files, combined with the enhanced Harvard architecture, allow unconstrained data
flow between computation units and internal memory.

To support SIMD operation, the elements support a variety of dual data move features. The dual processing ele-
ments execute the same instruction, but operate on different data.

Register File Registers
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Data and Complementary Data Register Access Priorities

If writes to the same location take place in the same cycle, only the write with higher precedence actually occurs.
The processor determines precedence for the write operation from the source of the data; from highest to lowest, the
precedence is:

1. DAG1 or universal register (UREG)

2. DAG2

3. PEx ALU

4. PEy ALU

5. PEx Multiplier

6. PEy Multiplier

7. PEx Shifter

8. PEy Shifter

It should be noted to avoid using multifunction instructions with multiple destination registers for the same source.
Examples:

• Rx = any compute, Rx = dm/pm();
• Rx = any compute, Ry = dm/pm () (LW); (Rx longword pair for Ry)

• Rx = any compute, Sx = Ry; (SIMD enabled)

• Rx = ALU (), Rx = MUL ();
• Rx = 64-bit-ALU, Ry = dm/pm(); (Rx and Ry are pairs)

Data and Complementary Data Register Swaps

Registers swaps use the special swap operator, <->. A register-to-register swap occurs when registers in different
processing elements exchange values; for example R0 <-> S1. Only single, 40-bit register-to-register swaps are
supported. Double register operations are also supported as shown in the example below.

R7 <-> S7;
R2 <-> S0;

NOTE: Regardless of SIMD/SISD mode, the processor supports bidirectional register-to-register swaps. The swap
occurs between one register in each processing element’s data register file.

Note that the processor supports unidirectional and bidirectional register-to-register transfers with the Conditional
Compute and Move instruction. For more information, see the Program Sequencer chapter.

System Register Bit Manipulation

The system registers (SREG) support fast bit manipulation. The next example uses the shifter for bit manipulations:

Register File Registers
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R1 = MODE1;
R1 = BSET R1 by 21;     /* sets PEYEN bit */
R1 = BSET R1 by 24;     /* sets CBUFEN bit */
MODE1 = R1;
However the following example is more efficient.

BIT SET MODE1 BITM_REGF_MODE1_PEYEN | BITM_REGF_MODE1_CBUFEN;    /* change both 
modes */
/* these macros are defined in the platform header, see #include <sys/platform.h> 
to get the definitions */
NOP;                           /* effect latency */
To set or test individual bits in a control register using the shifter:

R1 = dm(SYSCTL);
R1 = BSET R1 by 11;   /* sets IMDW2 bit 11 */
R1 = BSET R1 by 12;   /* sets IMDW3 bit 12 */
dm(SYSCTL) = R1;
BTST R1 by 11;        /* clears SZ bit */
IF SZ jump func;
BTST R1 by 12;        /* clears SZ bit */
IF SZ jump func;
The core has four user status registers also classified as system registers but for general-purpose use. These registers
allow flexible manipulation/testing of single or multiple individual bits in a register without affecting neighbor bits
as shown in the following example.

USTAT1=dm(SYSCTL);
BIT SET USTAT1 BITM_SHDBG_SYSCTL_IMDWBLK2 | BITM_SHDBG_SYSCTL_IMDWBLK3; /* sets 
bits 12-11 */
dm(SYSCTL)=USTAT1;
USTAT1=dm(SYSCTL);
BIT TST USTAT1 BITM_SHDBG_SYSCTL_IMDWBLK2 | BITM_SHDBG_SYSCTL_IMDWBLK3; /* test 
bits 12-11 */
 
IF TF r15=r15+1;            /* BTF = 1 PEx OR PEy */

Combined Data Bus Exchange Register

The two 64-bit data DMD and PMD buses allow programs to transfer the contents of any register in the processor
to any other register or to any internal memory location in a single cycle. As shown in the Bus Exchange (PX, PX1,
and PX2) Registers figure, the bus exchange (REGF_PX) register permits data to flow between the PMD and DMD
buses.

The REGF_PX register can work as one combined 64-bit register or as two 32-bit registers (REGF_PX1 and
REGF_PX2).

Register File Registers
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03263 31

0031 31

0x98001

PX = DM(0x98000)(LW); /* read from DMD bus */

PM(0x4C000) = PX;     /*  write to PMD bus */

PX1PX2

03263 31

0x4C000

0031 31

PX

0x98000

Figure 2-1: Bus Exchange (PX, PX1, and PX2) Registers

The REGF_USTAT1, REGF_USTAT4, REGF_PX1, and REGF_PX2 registers allow load and store operations
from memory. However, direct computations using universal registers is not supported and therefore a data move to
the data register is required.

The alignment of REGF_PX1 and REGF_PX2 within REGF_PX appears in the PX to Dreg Transfers figure. The
combined REGF_PX register is an universal register (UREG) that is accessible for register-to-register or memory-to-
register transfers. 

PX to Data Register Transfers

The PX register to data register transfers are either 40-bit transfers for the combined PX or 32-bit transfers for PX1
or PX2. The PX to Dreg Transfers figure shows the bit alignment and gives an example of instructions for register-
to-register transfers. shows that during a transfer between PX1 or PX2 and a data register (Dreg), the bus transfers
the upper 32 bits of the register file and zero-fills the eight least significant bits (LSBs). During a transfer between
the combined PX register and a register file, the bus transfers the upper 40 bits of PX and zero-fills the lower 24 bits.

Register File Transfer

PX1 or PX2

39 7 0

0x0

Register  File Transfer

39 0

0x0

02363

8

32 bits

31 024

40 bits

Combined PX

PX1PX2

R3 = PX; R3 = PX1; or R3 = PX2;

40 bits

R3 R3

PX 32 bits

Figure 2-2: PX to Dreg Transfers

All transfers between the PX register (or any other internal register or memory) and any I/O processor register are
32-bit transfers (least significant 32 bits of PX). All transfers between the PX register and Dreg/CDreg (R0-R15 or
S0-S15) are 40-bit transfers. The most significant 40 bits are transferred as shown in the PX to Dreg Transfers
figure.

Immediate 40-bit Data Register Load

Extended precision data cannot be loaded immediately by using the following code.

R0 = 0x123456789A; /* asm error data field max 32-bits*/

Combined Data Bus Exchange Register
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The next example is an alternative, which requires a combined PX1/PX2 register alignment for immediate load in
SISD mode:

PX2 = 0x12345678;     /* load data 39-8*/
PX1 = 0x9A000000;     /* load data 7-0*/
R1 = PX;              /* R1 load with 40-bit*/
PX to Memory Transfers

The PX register-to-internal memory transfers over the DMD or PMD bus are either 48-bit transfers for the com-
bined PX or 32-bit transfers (on bits 31-0 of the bus) for PX1 or PX2. The PX, PX1, PX2 Register-to-Memory
Transfers on DM or PM Data Bus figure shows these transfers.

The figure also shows that during a transfer between PX1 or PX2 and internal memory, the bus transfers the lower
32 bits of the register. During a transfer between the combined PX register and internal memory, the bus transfers
the upper 48 bits of PX and zero-fills the lower 16 bits.

PX = DM (0xB0000); PM(I7,M7) = PX1;

31

PX1 or PX2

32 bits

063

0x0

DM or PM Data Bus Transfer

31

15

 PX2

DM and PM Data Bus Transfer (not LW)

063

48 bits

16

15 03163 16

48 bits 0x0

0x0

 PX1

Combined PX

31

0

32 bits

Figure 2-3: PX, PX1, PX2 Register-to-Memory Transfers on DM or PM Data Bus

PX to Memory LW Transfers

The PX Register-to-Memory Transfers on PM Data Bus (LW) figure shows the transfer size between PX and internal
memory over the PMD or DMD bus when using the long word (LW) option.

The LW notation in the PX Register-to-Memory Transfers on PM Data Bus (LW) figure shows an important feature
of PX register-to-internal memory transfers over the PM or DM data bus for the combined PX register. The PX
register transfers to memory are 48-bit (three column) transfers on bits 63-16 of the PM or DM data bus, unless a
long word transfer is used, or the transfer is forced to be 64-bit (four column) with the LW (long word) mnemonic.

NOTE: The LW mnemonic affects data accesses that use the NW (normal word) addresses irrespective of the set-
tings of the PEYEN (processor element Y enable) and IMDWx (internal memory data width) bits.

Combined Data Bus Exchange Register
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Combined PX

DM (LW) or PM (LW)

03163

64 bits

03163

64 bits

Data Bus Transfer

PX = PM (0xB8000)(LW);

Figure 2-4: PX Register-to-Memory Transfers on PM Data Bus (LW)

Uncomplementary Ureg to Memory LW Transfers

If a register without a complementary register (such as the PC or LCNTR registers), or if immediate data is a source
for a transfer to a long word memory location, the 32 bit source data is replicated within the long word. This is
shown in the example below where the long word location 0x4F800 is written with the 64-bit data abbaabba_ab-
baabba. This is the case for all registers without pairs.

I0 = 0x4F800;
M0 = 0x1;
L0 = 0x0;
DM(I0,M0) = 0xabbaabba;
Long word accesses using the USTATx registers is shown below.

USTAT1 = DM (LW address);   /* Loads only USTAT1 in SISD mode */
DM (LW address) = USTAT1;   /* Stores both USTAT1 and USTAT2 */

Core Memory Mapped Registers (CMMR)

The SHARC+ SoC supports a core-based address range to control the following modules.

• System control MMR. This register is used for system control, 32/40 bit IEEE floating data transfer and SW
reset + Shared L2 Arm cache for data CMMR available for shared Arm L2 cache with SHARC+ data port.

• Miscellaneous Core MMRs. These registers include L1 Parity Control that are used for control and status of L1
Instruction, data and IO. See SHARC-PLUS CMMR Register Descriptions chapter.

• Branch Target buffer MMRs. These registers are used for control and status of L1 Branch target buffer and
branch prediction. See SHARC-PLUS SHBTB Register Descriptions chapter.

• L1 Instruction/Data cache MMRs. These registers available for control and status of L1 Instruction and data
caches. See SHARC-PLUS SHL1C Register Descriptions chapter.

• Emulation/Debug control MMRs. These registers are used for debugging the SHARC+ core. See SHARC-
PLUS SHDBG Register Descriptions chapter.

For the valid address range refer to the product data sheet.

NOTE: The CMMR registers are only accessible by the local SHARC+ core.

Combined Data Bus Exchange Register
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Operating Modes
The following sections detail the operation of the register files.

Alternate (Secondary) Data Registers

Each data register file has an alternate data register set. To facilitate fast context switching, the processor includes
alternate register sets for data, results, and data address generator registers. Bits in the REGF_MODE1 register control
when alternate registers become accessible. While inaccessible, the contents of alternate registers are not affected by
processor operations.

NOTE: Note that there is a one cycle latency from the time when writes are made to the MODE1 register until an
alternate register set can be accessed.

The alternate register sets for data and results are shown in the Alternate (Secondary) Data Register File figure. For
more information on alternate data address generator registers, see Alternate (Secondary) DAG Registers in the Reg-
isters appendix. Bits in the REGF_MODE1 register can activate independent alternate data register sets: the lower
half (R0-R7) and the upper half (R8-R15). To share data between contexts, a program places the data to be shared
in one half of either the current processing element's register file or the opposite processing element's register file
and activates the alternate register set of the other half. The register files consist of a primary set of 16 x 40-bit regis-
ters and an alternate set of 16 x 40-bit registers.

Alternate (Secondary) Data Registers SIMD Mode

Context switching between the two sets of data registers (SIMD mode) occurs in parallel between the two processing
elements. The Alternate (Secondary) Data Register File figure shows the lower half (S0-S7) and the upper half (S8-
S15) of the data register file.
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PEy
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DATA  
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Figure 2-5: Alternate (Secondary) Data Register File

Operating Modes
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Ureg/Sysreg SIMD Mode Transfers

The Complementary Register Pairs table shows the PX registers (Ureg), USTATx registers (Sysreg), and their
complementary registers (CUreg and CSysreg) relationships.

Table 2-3: Universal and System Register Complemen-
tary Pairs (CUreg and CSysreg)

USTAT1 USTAT2

USTAT3 USTAT4

PX1 PX2

There is no implicit move when the combined PX register is used in SIMD mode. For example, in SIMD mode, the
following moves occur:

PX1 = R0; /* R0 32-bit explicit move to PX1, and S0 32-bit implicit move to PX2 */
PX = R0;  /* R0 40-bit explicit move to PX, but no implicit move for S0 */
However, the following exceptions should be noted:

• Transfers between USTATx and PX registers as in the following example and figure (Transfers Between US-
TATx and PX Registers). Note that all user status registers behave in this manner.

PX = USTAT1; /* loads PX1 with USTAT1 and PX2 with USTAT2 */
USTAT1 = PX; /* loads only PX1 to USTAT1 */

• Transfers between DAG and other system registers and the PX register as shown in the following example:

I0 = PX;    /* Moves PX1 to I0 */
PX = I0;    /* Loads both PX1 and PX2 with I0 */
LCNTR = PX; /* Loads LCNTR with PX1 */
PX = PC;    /* Loads both PX1 and PX2 with PC */

USTAT1

031
32 bits

031

PX1

USTAT2

031

031

PX2

32 bits

32 bits 32 bits

PX = USTAT1;

Figure 2-6: Transfers Between USTATx and PX Registers

Interrupt Mode Mask

On the SHARC+ cores, programs can automatically mask individual operating mode bits of the REGF_MODE1
register when entering into an ISR by setting bits in the REGF_MMASK register. This improves interrupt handling
performance and helps ensure that interrupt handler code runs with operating modes set consistently.

For the data registers the alternate registers (SRRFH/L) are optional masks in use. For more information, see the
Program Sequencer chapter.

Operating Modes
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3   Processing Elements

The PEx and PEy processing elements perform numeric algorithm processing. Each element contains a data register
file and three computation units; an arithmetic/logic unit (ALU), a multiplier, and a barrel shifter. Computational
instructions for these elements include both fixed-point and floating-point operations, and each computational in-
struction operating on 32-bit or 40-bit data executes in a single cycle. Single precision floating-point/multiplier in-
structions are 2 cycle computes that include register file storage. Computational instructions operating on 64-bit
floating-point data (64-bits) require multiple cycles. 

Features
The processing elements have the following features.

• Data Formats. The units support 32-bit fixed-point and floating-point single precision data (IEEE 32-bit), ex-
tended precision data (40-bit), and 64-bit data (IEEE 64-bit).

• Arithmetic/logic unit. The ALU performs arithmetic and logic operations on fixed-point and floating-point da-
ta.

• Multiplier. The multiplier performs floating-point and fixed-point multiplication and executes fixed-point
multiply/add and multiply/subtract operations.

• Barrel Shifter. The barrel shifter performs bit shifts, bit field, and bit stream manipulation on 32-bit operands.
The shifter can also derive exponents.

• Multifunction. The ALU and Multiplier support simultaneous operations for fixed- and floating-point data
formats. The fixed-point multiplier can return results as 32 or 80 bits.

• One Cycle Arithmetic Pipeline. All computation instructions operating on 32-bit data and 40-bit data execute
in one cycle. Computational instructions operating on 64-bit data execute over multiple cycles.

• Multi Precision Arithmetic. The ALU and multiplier support instructions/options for 64-bit precision.

Functional Description
The computational units in a processing element handle different types of operations. 

Processing Elements
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Data flow paths through the computation units are arranged in parallel, as shown in the Computational Block fig-
ure. The output of any computation unit may serve as the input of any computation unit on the next instruction
cycle. Data moving in and out of the computation units goes through a 10-port register file, consisting of 16 pri-
mary and 16 alternate registers. Two ports on the register file connect to the PM and DM data buses, allowing data
transfers between the computation units and memory.

ASTATx

MULTIPLIER MULTIPLIER ALU
SUBSTRACT

RF
Rx/Fx
PEx

16x40-BIT

MRF
REGISTER

80-BIT

MRB
REGISTER

80-BIT ASTATy

Figure 3-1: Computational Block

Single Cycle Processing

All the unconditional fixed-point compute (excluding multiply) instructions take a single cycle to complete and the
results can be used in the immediately following instruction (compute or otherwise) without incurring any stalls.

For the conditional compute instruction, if the condition used was set in the immediately preceding instruction,
then the compute is treated as a double cycle compute.

Data Forwarding in Processing Units

Splitting the execute phases into two stages in the SHARC+ core results in additional dependencies and forwarding
logic paths. The fixed-point ALU compute is a single-cycle execute where forwarding across the immediately next
dependent compute instruction is possible (M4 to M3 pipeline stage). In cases of compute-compute dependency
involving either floating-point or multiply computations, a stall is generated if the dependent instruction immedi-
ately follows or data is forwarded in case of dependency across two cycles.

Data forwarding can occur across cycles, for example from the E2 to the M3 pipeline stage. The following sequence
of instructions illustrates the need for forwarding across cycles.

r0 = r1 + r2; 
nop; 
r3 = r0 + r4;

Functional Description

3–2 SHARC+ Core Programming Reference



The 3rd instruction operand r0 is forwarded from the first instruction result from its E2 phase. The compute in-
structions can be Fixed/Floating, ALU or multiply.

Special Considerations

In the following code sequence the second register move instruction is dependent on the first multiply instruction,
and the 3rd multiply instruction is dependent on the 2nd register transfer instruction. A forwarding path from the
E2 to the M4 to the M3 pipeline stage is introduced by forwarding the first multiplier result directly to the third
multiplier input. Two data forwarding paths are introduced, E2 to M4 and E2 to M3 pipeline stages.

r0 = r1*r2; 
r3=r0; 
r4= r3*r1; 

Data Format for Computation Units

The assembly language provides access to the data register files in both processing elements. The syntax allows pro-
grams to move data to and from these registers, specify a computation's data format and provide naming conven-
tions for the registers, all at the same time. For information on the data register names, see the Register Files chapter.

Note the register name(s) within the instruction specify input data type(s)-Fx for floating-point and Rx for fixed-
point.

NOTE: The computation input format is not an operating mode, it is based on the instruction prefix.

Arithmetic Status

The multiplier and ALU each provide exception information when executing floating-point or fixed-point opera-
tions.. Each unit updates overflow, underflow, and invalid operation flags in the processing element's arithmetic sta-
tus (REGF_ASTATX and REGF_ASTATY) registers and sticky status (REGF_STKYX and REGF_STKYY) regis-
ters. An underflow, overflow, or invalid operation from any unit also generates a maskable interrupt. There are three
ways to use floating-point or fixed-point exceptions from computations in program sequencing.

• Enable interrupts and use an interrupt service routine (ISR) to handle the exception condition immediately.
This method is appropriate if it is important to correct all exceptions as they occur. 

• Use conditional instructions to test the exception flags in the REGF_ASTATX or REGF_ASTATY registers
after the instruction executes. This method permits monitoring each instruction's outcome. 

• Use the bit test (BTST) instruction to examine exception flags in the REGF_STKYY register after a series of
operations. If any flags are set, some of the results are incorrect. Use this method when exception handling is
not critical. 

Computation Status Update Priority

Flag updates occur at the end of the cycle in which the status is generated and is available on the next cycle. If a
program writes the arithmetic status register or sticky status register explicitly in the same cycle that the unit is per-
forming an operation, the explicit write to the status register supersedes any flag update from the unit operation as
shown in the following example.

Functional Description
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R0=R1+R2, ASTATx=R6; /* R6 overrides ALU status */
F0=F1*F2, STKYx=F6;  /* F6 overrides MUL status */
For information on conditional instruction execution based on arithmetic status, see Conditional Instruction Execu-
tion in the Program Sequencer chapter.

SIMD Computation and Status Flags

When the processors are in SIMD mode, computations on both processing elements generate status flags, producing
a logical ORing of the exception status test on each processing element.

Table 3-1: Computation Status Reg-
ister Pairs

ASTATx ASTATy

STKYx STKYy

Arithmetic Logic Unit (ALU)

The ALU performs arithmetic operations on fixed-point or floating-point data and logical operations on fixed-point
data. ALU fixed-point instructions operate on 32-bit or 64-bit fixed-point operands and output 32-bit or 64-bit
fixed-point results. ALU floating-point instructions operate on 32-bit, 40-bit, or 64-bit floating-point operands and
output 32-bit, 40-bit, or 64-bit floating-point results. ALU instructions include:

• Floating-point addition, subtraction, add/subtract, average

• Fixed-point addition, subtraction, add/subtract, average

• Floating-point manipulation - binary log, scale, mantissa

• Fixed-point multi precision arithmetic (add with carry, subtract with borrow)

• Logical AND, OR, XOR, NOT

• Functions - ABS, PASS, MIN, MAX, CLIP, COMPARE

• Format conversion (fixed-point to/from floating-point, single-precision to/from 64-bit)

• Floating-point iterative reciprocal and reciprocal square root functions

Functional Description

ALU instructions take one or two inputs: X input and Y input. These inputs (known as operands) can be any data
registers in the register file. Most ALU operations return one result. However, in add/subtract operations, the ALU
operation returns two results and in compare operations the ALU returns no result (only flags are updated). ALU
results can be returned to any location in the register file.

If the ALU operation is fixed-point, the inputs are treated as 32-bit fixed-point operands. The ALU transfers the
upper 32 bits from the source location in the register file. For fixed-point operations, the result(s) are 32-bit fixed-
point values. Some floating-point operations (LOGB, MANT and FIX) can also yield fixed-point results.

Arithmetic Status
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The core transfers fixed-point results to the upper 32 bits of the data register and clears the lower eight bits of the
register. The format of fixed-point operands and results depends on the operation. In most arithmetic operations,
there is no need to distinguish between integer and fractional formats. Fixed-point inputs to operations such as scal-
ing a floating-point value are treated as integers. For purposes of determining status such as overflow, fixed-point
arithmetic operands and results are treated as two's-complement numbers.

ALU Instruction Types

The following sections provide details about the instruction types supported by the ALU.

Compare Accumulation Instruction

Bits 31-24 in the REGF_ASTATX and REGF_ASTATY registers store the flag results of up to eight ALU compare
operations. These bits form a right-shift register. When the core executes an ALU compare operation, it shifts the
eight bits toward the LSB (bit 24 is lost). Then it writes the MSB, bit 31, with the result of the compare operation.
If the X operand is greater than the Y operand in the compare instruction, the core sets bit 31. Otherwise, it clears
bit 31.

Applications can use the accumulated compare flags to implement two- and three-dimensional clipping operations.

Fixed-to-Float Conversion Instructions

The ALU supports conversion between floating and fixed point as shown in the following example.

Fn = FLOAT Rx; /* floating-point */
Rn = FIX Fx;   /* fixed-point */
Fixed-to-Float Conversion Instructions with Scaling

The ALU supports conversion between floating- and fixed-point by using a scaling factor as shown in the following
example.

Ry = -31;
Fn = FLOAT Rx BY Ry; /* floating-point [-1.0 to 1.0) */
Ry = 31;
Rn = FIX Fx BY Ry;   /* fixed-point 1.31 format */
Reciprocal/Square Root Instructions

The reciprocal/square root floating-point instruction types do not execute in a single cycle. Iterative algorithms are
used to compute both reciprocals and square roots. The RECIPS and RSQRTS operations are used to start these
iterative algorithms as shown below.

Fn = RECIPS Fx; /* creates seed for reciprocal */
Fn = RSQRTS Fx; /* creates seed for reciprocal square root */
Divide Instruction

The SHARC+ core supports a multi-cycle floating-point divide instruction. The RECIPS instruction is used to
simplify the divide implementation instruction by using an iterative convergence algorithm. For more information,
see the Computation Types chapter.

Arithmetic Logic Unit (ALU)
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Clip Instruction

The clip instruction (CLIP) is very similar to the multiplier saturate (SAT) instruction, however the clipping (satu-
ration) level is an operand within the instruction.

Rn = CLIP Rx by Ry; /* clip level stored in Ry register */
Multiprecision Instructions

The add with carry and the subtract with borrow allows the implementation of 64-bit operations.

Rn = Rx + Ry + CI;    /* adds with carry from status register */
Rn = Rx - Ry + CI -1; /* subtracts with borrow from status register */

Arithmetic Status

ALU operations update seven status flags in the processing element's arithmetic status (REGF_ASTATX or
REGF_ASTATY) registers. The following bits in the REGF_ASTATX or REGF_ASTATY registers flag the ALU
status (a 1 indicates the condition) of the most recent ALU operation. 

• ALU result zero or floating-point underflow, (AZ) 

• ALU overflow, (AV)

• ALU result negative, (AN) 

• ALU fixed-point carry, (AC) 

• ALU input sign for ABS, MANT operations, (AS) 

• ALU floating-point invalid operation, (AI)

• Last ALU operation was a floating-point operation, (AF) 

• Compare accumulation register results of last eight compare operations, (CACC) 

ALU operations also update four sticky status flags in the processing element's sticky status (REGF_STKYX and
REGF_STKYY) registers. The following bits in the REGF_STKYX or REGF_STKYY registers flag the ALU status
(a 1 indicates the condition). Once set, a sticky flag remains high until explicitly cleared.

• ALU floating-point underflow, (AUS) 

• ALU floating-point overflow, (AVS) 

• ALU fixed-point overflow, (AOS) 

• ALU floating-point invalid operation, (AIS) 

ALU Instruction Summary

The Fixed-Point ALU Instruction Summary (AF Flag = 0) and Floating-Point ALU Instruction Summary tables list
the ALU instructions and show how they relate to the ASTATx/ASTATy and STKYx/STKYy flags. For more in-
formation on assembly language syntax, see the Instruction Set Types chapter and the Computation Types chapter. In
these tables, note the meaning of the following symbols.

ALU Instruction Types
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• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as floating-point

• * indicates that the flag may be set or cleared, depending on the results of instruction

• ** indicates that the flag may be set (but not cleared), depending on the results of the instruction

• - indicates no effect

• In SIMD mode all instructions use the complement data registers

Table 3-2: Fixed-Point ALU Instruction Summary (AF Flag = 0)

Instruction ASTATx, ASTATy Status Flags STKYx, STKYy Status Flags

Fixed-Point: AZ AV AN AC AS AI CACC AUS AVS AOS AIS

RN = RX + RY; * * * * 0 0 - - - ** -

RN = RX – RY; * * * * 0 0 - - - ** -

RN = RX + RY + ci; * * * * 0 0 - - - ** -

RN = RX – RY + ci – 1; * * * * 0 0 - - - ** -

RN = (RX + RY) / 2; * 0 * * 0 0 - - - - -

comp (RX, RY); * 0 * 0 0 0 * - - - -

compu (RX, RY); * 0 * 0 0 0 * - - - -

RN = RX + ci; * * * * 0 0 - - - ** -

RN = RX + ci – 1; * * * * 0 0 - - - ** -

RN = RX + 1; * * * * 0 0 - - - ** -

RN = RX – 1; * * * * 0 0 - - - ** -

RN = –RX; * * * * 0 0 - - - ** -

RN = abs RX; * * 0 0 * 0 - - - ** -

RN = pass RX; * 0 * 0 0 0 - - - - -

RN = RX and RY; * 0 * 0 0 0 - - - - -

RN = RX or RY; * 0 * 0 0 0 - - - - -

RN = RX xor RY; * 0 * 0 0 0 - - - - -

RN = not RX; * 0 * 0 0 0 - - - - -

RN = min (RX, RY); * 0 * 0 0 0 - - - - -

RN = max (RX, RY); * 0 * 0 0 0 - - - - -

RN = clip RX by RY; * 0 * 0 0 0 - - - - -

Arithmetic Logic Unit (ALU)
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Table 3-3: Floating-Point ALU Instruction Summary (AF Flag = 1)

Instruction ASTATx, ASTATy Status Flags STKYx, STKYy Status Flags

Floating-Point: AZ AV AN AC AS AI CACC AUS AVS AOS AIS

FN = FX + FY; * * * 0 0 * - ** ** - **

FN = FX – FY; * * * 0 0 * - ** ** - **

FN = abs (FX + FY); * * 0 0 0 * - ** ** - **

FN = abs (FX – FY); * * 0 0 0 * - ** ** - **

FN = (FX + FY) / 2; * 0 * 0 0 * - ** - - **

comp (FX, FY); * 0 * 0 0 * * - - - **

FN = –FX; * 0 * 0 0 * - - - - **

FN = abs FX; * 0 0 0 * * - - - - **

FN = pass FX; * 0 * 0 0 * - - - - **

FN = rnd FX; * * * 0 0 * - - ** - **

FN = scalb FX by RY; * * * 0 0 * - ** ** - **

RN = mant FX; * * 0 0 * * - - ** - **

RN = logb FX; * * * 0 0 * - - ** - **

RN = fix FX; * * * 0 0 * - ** ** - **

RN = fix FX by RY; * * * 0 0 * - ** ** - **

RN = trunc FX; * 0 * 0 0 * - ** - - **

RN = trunc FX by RY; * 0 * 0 0 * - ** - - **

FN = float RX; * 0 * 0 0 0 - - - - -

FN = float RX by RY; * * * 0 0 0 - ** ** - -

FN = recips FX; * * * 0 0 * - ** ** - **

FN = rsqrts FX; * * * 0 0 * - - ** - **

FN = FX copysign FY; * 0 * 0 0 * - - - - **

FN = min (FX, FY); * 0 * 0 0 * - - - - **

FN = max (FX, FY); * 0 * 0 0 * - - - - **

FN = clip FX by FY; * 0 * 0 0 * - - - - **

Table 3-4: 64-bit Floating-Point ALU Instruction Summary (AF Flag = 1)

Instruction ASTATx, ASTATy Status Flags STKYx, STKYy Status Flags

64-bit Floating-Point: AZ AV AN AC AS AI CACC AUS AVS AOS AIS

FM:N = FX:Y + FZ:W; * * * 0 0 * - ** ** - **

FM:N = FX:Y - FZ:W; * * * 0 0 * - ** ** - **

Arithmetic Logic Unit (ALU)
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Table 3-4: 64-bit Floating-Point ALU Instruction Summary (AF Flag = 1) (Continued)

Instruction ASTATx, ASTATy Status Flags STKYx, STKYy Status Flags

64-bit Floating-Point: AZ AV AN AC AS AI CACC AUS AVS AOS AIS

comp (FX:Y, FZ:W); * 0 * 0 0 * * - - - **

FM:N = - FX:Y; * 0 * 0 0 * - - - - **

FM:N = abs FX:Y; * 0 0 0 * * - - - - **

FM:N = pass FX:Y; * 0 * 0 0 * - - - - **

FM:N = scalb FX:Y by RY; * * * 0 0 * - ** ** - **

RN=fix FX:Y;

* * * 0 0 * - ** ** - **

RN = fix FX:Y by RY; * * * 0 0 * - ** ** - **

RN = trunc FX:Y; * * * 0 0 * - ** ** - **

RN = trunc FX:Y by RY; * * * 0 0 * - ** ** - **

FM:N = float RX; * 0 * 0 0 0 - - - - -

FM:N = float RX by RY; * * * 0 0 0 - ** ** - -

FM:N = cvt FX; * 0 * 0 0 * - - - - **

FN = cvt FX:Y; * * * 0 0 * - ** ** - **

Multiplier

The multiplier performs fixed-point or floating-point multiplication and fixed-point multiply/accumulate opera-
tions. Fixed-point multiply/accumulates are available with cumulative addition or cumulative subtraction. Multiplier
floating-point instructions operate on 32-bit, 40-bit, or 64-bit floating-point operands and output 32-bit, 40-bit, or
64-bit floating-point results. Multiplier fixed-point instructions operate on 32-bit fixed-point data and produce 80-
bit results. Inputs are treated as fractional or integer, unsigned or two's-complement. Multiplier instructions include:

• Floating-point multiplication

• Fixed-point multiplication

• Fixed-point multiply/accumulate with addition, rounding optional

• Fixed-point multiply/accumulate with subtraction, rounding optional

• Rounding multiplier result register

• Saturating multiplier result register

• Fixed point multi-precision arithmetic (signed/signed, unsigned/unsigned or unsigned/signed options)

Functional Description
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Functional Description

The multiplier takes two inputs, X and Y. These inputs (also known as operands) can be any data registers in the
register file. The multiplier can accumulate fixed-point results in the local multiplier result (REGF_MRF/
REGF_MSF) registers or write results back to the register file. The results in REGF_MRF/REGF_MSF can also be
rounded or saturated in separate operations. Floating-point multiplies yield floating-point results, which the multi-
plier writes directly to the register file.

For fixed-point multiplies, the multiplier reads the inputs from the upper 32 bits of the data registers. Fixed-point
operands may be either both in integer format, or both in fractional format. The format of the result matches the
format of the inputs. Each fixed-point operand may be either an unsigned number or a two's-complement number.
If both inputs are fractional and signed, the multiplier automatically shifts the result left one bit to remove the re-
dundant sign bit. 

Multiplier Inputs

In cases of dual operand forwarding from a compute instruction in the previous cycle, wherein both the X and Y
inputs are required for multiplication, there are two cycles of stall. However, this is not a very common case in DSP
processing, and therefore high architectural efficiency is still achieved using an asymmetrical multiplier. For more
information, see the Program Sequencer chapter.

Multiplier Result Register

Fixed-point operations place 80-bit results in the multiplier's foreground register (REGF_MRF/REGF_MSF) or
background register (REGF_MRB/REGF_MSB), depending on which is active. For more information on selecting
the result register, see Alternate (Secondary) Data Registers in the Registers File chapter. 

The location of a result in the MRF register's 80-bit field depends on whether the result is in fractional or integer
format, as shown in the Multiplier Fixed-Point Result Placement figure. If the result is sent directly to a data register,
the 32-bit result with the same format as the input data is transferred, using bits 6332 for a fractional result or bits
310 for an integer result. The eight LSBs of the 40-bit register file location are zero-filled.

MR2F MR0F

OVERFLOW UNDERFLOWFRACTIONAL RESULT

OVERFLOW INTEGER RESULTOVERFLOW

MR1F

79 63 31 0

Figure 3-2: Multiplier Fixed-Point Result Placement

Fractional results can be rounded-to-nearest before being sent to the register file. If rounding is not specified, dis-
carding bits 310 effectively truncates a fractional result (rounds to zero). For more information on rounding, see
Rounding Mode.

The REGF_MRF register (see the MR to Data Register Transfers Formats figure) is comprised of the REGF_MR2F,
REGF_MR1F, and REGF_MR0F registers, which individually can be read from or written to the register file. Each

Multiplier
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of these registers has the same format. When data is read from the REGF_MR2F register (guard bits), it is sign-
extended to 32 bits. The processor core zero-fills the eight LSBs of the 40-bit register file location when data is
written from the REGF_MR2F, REGF_MR1F, or REGF_MR0F registers to a register file location. When data is
written into the REGF_MR2F, REGF_MR1F, or REGF_MR0F registers from the 32 MSBs of a register file loca-
tion, the eight LSBs are ignored. Data written to the REGF_MR1F register is sign-extended to REGF_MR2F, re-
peating the MSB of REGF_MR1F in the 16 bits of the REGF_MR2F register. Data written to the REGF_MR0F
register is not sign-extended.

Note that the multiply result register (REGF_MRF, REGF_MRB) is not an orthogonal register in the instruction set.
Only specific instructions decode it as an operand or as a result register (no universal register). For more informa-
tion, see Multiplier Fixed-Point Computations in the Computation Types chapter.

ZEROSSIGN-EXTEND MRF2

MRF0

MRF1

ZEROS

ZEROS

8 BITS

8 BITS

32 BITS

32 BITS

16 BITS 16 BITS 16 BITS

Figure 3-3: MR to Data Register Transfers Formats

Multiply Register Instruction Types

In addition to multiply, fixed-point operations include accumulate, round, and saturate fixed-point data. The three
MRx register instructions are described in the following sections.

Clear MRx Instruction

The clear operation (MRF = 0) resets the specified MRF register to zero. Often, it is best to perform this operation at
the start of a multiply/accumulate operation to remove the results of the previous operation. 

Round MRx Instruction

The RND operation (MRF = RND MRF) applies only to fractional results, integer results are not effected. This opera-
tion performs a round to nearest of the 80-bit MRF value at bit 32, for example, the MR1F- MR0F boundary.
Rounding a fixed-point result occurs as part of a multiply or multiply/ accumulate operation or as an explicit opera-
tion on the MRF register. The rounded result in MR1F can be sent to the register file or back to the same MRF
register. To round a fractional result to zero (truncation) instead of to nearest, a program transfers the unrounded
result from MR1F, discarding the lower 32 bits in MR0F.

Multi Precision Instructions

The multiplier supports the following data operations for 64-bit data.

MRF = Rx * Ry (SSF); /* signed x signed/fractional */
MRF = Rx * Ry (SUF); /* signed x unsigned/fractional */
MRF = Rx * Ry (USF); /* unsigned x signed/fractional */
MRF = Rx * Ry (UUF); /* unsigned x unsigned/fractional */

Multiplier
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Saturate MRx Instruction

The SAT operation (MRF = SAT MRF) sets MRF to a maximum value if the MRF value has overflowed. Overflow
occurs when the MRF value is greater than the maximum value for the data format-unsigned or two's-complement
and integer or fractional-as specified in the saturate instruction. The six possible maximum values appear in the
Fixed-Point Format Maximum Values (Saturation) table. The result from MRF saturation can be sent to the register
file or back to the same REGF_MRF register.

Table 3-5: Fixed-Point Format Maximum Values (Saturation)

Maximum Number (Hexadecimal)

MR2F MR1F MR0F

Two's-complement fractional (positive) 0000 7FFF FFFF FFFF FFFF

Two's-complement fractional (negative) FFFF 8000 0000 0000 0000

Two's-complement integer (positive) 0000 0000 0000 7FFF FFFF

Two's-complement integer (negative) FFFF FFFF FFFF 8000 0000

Unsigned fractional number 0000 FFFF FFFF FFFF FFFF

Unsigned integer number 0000 0000 0000 FFFF FFFF

Arithmetic Status

Multiplier operations update four status flags in the processing element's arithmetic status registers
(REGF_ASTATX and REGF_ASTATY). A 1 indicates the condition of the most recent multiplier operation and
are as follows.

• Multiplier result negative (MN)

• Multiplier overflow, (MV)

• Multiplier underflow, (MU)

• Multiplier floating-point invalid operation, (MI)

Multiplier operations also update four "sticky" status flags in the processing element's sticky status (REGF_STKYX
and REGF_STKYY) registers. Once set (a 1 indicates the condition), a sticky flag remains set until explicitly cleared.
The bits in the REGF_STKYX or REGF_STKYY registers are as follows.

• Multiplier fixed-point overflow, (MOS)

• Multiplier floating-point overflow, (MVS)

• Multiplier underflow, (MUS)

• Multiplier floating-point invalid operation, (MIS)

Multiplier Instruction Summary

The Fixed-Point Multiplier Instruction Summary and Floating-Point Multiplier Instruction Summary tables list the
multiplier instructions and describe how they relate to the ASTATX/ASTATY and STKYX /STKYY flags. For more

Multiply Register Instruction Types

3–12 SHARC+ Core Programming Reference



information on assembly language syntax, see the Instruction Set Types chapter and the Computation Types chapter.
In the tables, note the meaning of the following symbols:

• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as floating-point

• * indicates that the flag may be set or cleared, depending on results of instruction

• ** indicates that the flag may be set (but not cleared), depending on results of instruction

• - indicates no effect

• The Input Mods column indicates the types of optional modifiers that can be applied to the instruction inputs.
For a list of modifiers, see the Input Modifiers for Fixed-Point Multiplier Instruction table.

• In SIMD mode all instruction uses the complement data/multiply result registers.

Table 3-6: Multiplier Result (MR) Register Data Move Operations Summary

Instruction ASTATx, ASTATy Flags STKYx, STKYy Flags

Fixed-Point MU MN MV MI MUS MOS MVS MIS

(mrf | mrb) = RN; 0 0 0 0 - - - -

RN = (mrf | mrb); 0 0 0 0 - - - -

Table 3-7: Fixed-Point Multiplier Instruction Summary

Instruction ASTATx, ASTATy Flags STKYx, STKYy Flags

Fixed-Point MU MN MV MI MUS MOS MVS MIS

(mrf | mrb) = MRF + RX * RY MOD1; * * * 0 - ** - -

RN = (mrf | mrb) + RX * RY MOD1; * * * 0 - ** - -

(mrf | mrb) = (mrf | mrb) – RX * RY MOD1; * * * 0 - ** - -

RN = (mrf | mrb) – RX * RY MOD1; * * * 0 - ** - -

(RN | mrf | mrb) = RX * RY MOD1; * * * 0 - ** - -

(RN | mrf | mrb) = rnd (mrf | mrb) MOD3; * * * 0 - ** - -

(RN | mrf | mrb) = sat (mrf | mrb) MOD2; * * 0 0 - - - -

(mrf | mrb) = 0; 0 0 0 0 - - - -

Table 3-8: Input Modifiers for Fixed-Point Multiplier Instruction

Input Modes (1-2-3) from the Fixed-Point Multiplier Instruction
Summary table

Input Mods-Options For Fixed-Point Multiplier Instructions

1 (SSF), (SSI), (SSFR), (SUF), (SUI), (SUFR), (USF), (USI),
(USFR), (UUF), (UUI), or (UUFR)

Multiplier
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Table 3-8: Input Modifiers for Fixed-Point Multiplier Instruction (Continued)

Input Modes (1-2-3) from the Fixed-Point Multiplier Instruction
Summary table

Input Mods-Options For Fixed-Point Multiplier Instructions

2 (SF), (SI), (UF), or (UI) saturation only

3 (SF) or (UF) rounding only

Note the meaning of the following symbols in this table:

Signed input — S

Unsigned input — U

Integer input — I

Fractional input — F

Fractional inputs, Rounded output — FR

Note that (SF) is the default format for one-input operations, and (SSF) is the default format for two-input operations.

Table 3-9: Floating-Point Multiplier Instruction Summary

Instruction ASTATx, ASTATy Flags STKYx, STKYy Flags

Floating-Point MU MN MV MI MUS MOS MVS MIS

FN = FX * FY; * * * * ** - ** **

Table 3-10: 64-bit Floating-Point Multiplier Instruction Summary

Instruction ASTATx, ASTATy Flags STKYx, STKYy Flags

64-bit Floating-Point MU MN MV MI MUS MOS MVS MIS

FM:N = FX:Y * FZ:W; * * * * ** - ** **

FM:N = FX:Y * FY; * * * * ** - ** **

FM:N = FX * FY; * * * * ** - ** **

Barrel Shifter

The barrel shifter is a combination of logic with X inputs and Y outputs and control logic that specifies how to shift
data between input and output within one cycle.

The shifter performs bit-wise operations on 32-bit fixed-point operands. Shifter operations include the following.

• Bit-wise operations such as shifts and rotates from off-scale left to off-scale right

• Bit-wise manipulation operations, including bit set, clear, toggle, and test

• Bit field manipulation operations, including extract and deposit

• Bit stream manipulation operations using a bit FIFO

• Bit field conversion operations including exponent extract, number of leading 1s or 0s

• Pack and unpack conversion between 16-bit and 32-bit floating-point

Functional Description

3–14 SHARC+ Core Programming Reference



• Optional immediate data for one input within the instruction

Functional Description

The shifter takes one to three inputs: X, Y, and Z. The inputs (known as operands) can be any register in the register
file. Within a shifter instruction, the inputs serve as follows.

• The X input provides data that is operated on.

• The Y input specifies shift magnitudes, bit field lengths, or bit positions.

• The Z input provides data that is operated on and updated.

The shifter does not make use of the ALU carry bit, it uses its own status bits.

Shifter Instruction Types

There are two shifter instruction categories: shift compute or shift immediate instructions. Both instruction types
operate identically. Only the Y input is either in an instruction or in a data register.

Shift Compute Category

The shift compute instruction uses a data register for the Y input. The data register operates based on the instruc-
tion's 12-bit field for the bit position start (bit6) and the bit field length (len6). Other instructions may use only
the 8-bit field.

Shift Immediate Category

The shift immediate instruction uses immediate data for the Y input. This input comes from the instruction's 12-bit
field for the bit position start (bit6) and the bit field length (len6). Other instructions may use only the 8-bit
field.

Bit Manipulation Instructions

In the following example, Rx is the X input, Ry is the Y input, and Rn is the Z input. The shifter returns one
output (Rn) to the register file.

Rn = Rn OR LSHIFT Rx BY Ry;
As shown in the Register File Fields for Shifter Instructions figure, the shifter fetches input operands from the upper
32 bits of a register file location (bits 39-8) or from an immediate value in the instruction.

The X input and Z input are always 32-bit fixed-point values. The Y input is a 32-bit fixed-point value or an 8-bit
field (SHF8), positioned in the register file. These inputs appear in the Register File Fields for Shifter Instructions
figure.

Some shifter operations produce 8 or 6-bit results. As shown in the Register File Fields for Shifter Instructions figure,
the shifter places these results in the SHF8 field or the bit6 field and sign-extends the results to 32 bits. The shift-
er always returns a 32-bit result.

Barrel Shifter
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39 7 0

39 15 7 0

SHF8

8-BIT Y INPUT OR RESULT

32-BIT Y INPUT OR RESULT

Figure 3-4: Register File Fields for Shifter Instructions

Bit Field Manipulation Instructions

The shifter supports bit field deposit and bit field extract instructions for manipulating groups of bits within an
input. The Y input for bit field instructions specifies two 6-bit values, bit6 and len6, which are positioned in the
Ry register as shown in the Register File Fields for FDEP, FEXT Instructions figure. The shifter interprets- bit6
and len6 as positive integers. The bit6 value is the starting bit position for the deposit or extract, and the len6
value is the bit field length, which specifies how many bits are deposited or extracted.

12-BIT Y INPUT

39 19 13 7 0

len6 bit6

Figure 3-5: Register File Fields for FDEP, FEXT Instructions

Field deposit (FDEP) instructions take a group of bits from the input register (starting at the LSB of the 32-bit
integer field) and deposit the bits as directed anywhere within the result register. The bit6 value specifies the start-
ing bit position for the deposit. The Bit Field Deposit Instruction figure shows how the inputs, bit6 and len6,
work in the following field deposit instruction.

Rn = FDEP Rx By Ry
The Bit Field Deposit Example figure shows bit placement for the following field deposit instruction.

R0 = FDEP R1 By R2;
Field extract (FEXT) instructions extract a group of bits as directed from anywhere within the input register and
place them in the result register, aligned with the LSB of the 32-bit integer field. The bit6 value specifies the start-
ing bit position for the extract.

39 19 13 7 0

len6RY

RN

RX

39 7 0

39 7 0

DEPOSIT FIELD

REFERENCE POINT

= NUMBER OF BITS TO TAKE FROM RX, STARTING FROM LSB OF 32-BIT FIELD

RY DETERMINES LENGTH OF BIT FIELD TO TAKE FROM RX AND STARTING POSITION
FOR DEPOSIT IN RN

BIT6 = STARTING BIT POSITION FOR DEPOSIT, REFERENCED FROM LSB OF 32-BIT FIELD

bit6

bit6

len6

Figure 3-6: Bit Field Deposit Instruction

Shifter Instruction Types
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16 8 0

0x0000 00FF 00R1

len6 bit6 len6 = 8
bit6 = 16

0x0000 0210 00R2

16 8 0

Starting bit position for deposit Reference point

0x00FF 0000 00R0

00000000

39 32 24 16 8 0

00000000 00000010 00010000 00000000

00000000

39 32 24 16 8 0

00000000 00000000 11111111 00000000

00000000

39 32 24 16 8 0

11111111 00000000 00000000 00000000

Figure 3-7: Bit Field Deposit Example

The Bit Field Extract Instruction figure shows bit placement for the following field extract instruction.

R3 = FEXT R4 By R5;

16 8 0

0x8780 0000 00R4

len6 bit6 len6 = 8
bit6 = 23

0x0000 0217 00R5

16 8 0

Starting bit position
for extraction Reference point

0x0000 000F 00R3

00000000

39 32 24 16 8 0

00000000 00000010 00010111 00000000

10000111

39 32 24 16 8 0

10000000 00000000 0000000 00000000

00000000

39 32 24 16 8 0

00000000 00001111 0000000000000000

Figure 3-8: Bit Field Extract Instruction

NOTE: The FEXT instruction bits to the left of the extracted field are cleared in the destination register. The
FDEP instruction bits to the left and to the right of the deposited field are cleared in the destination regis-
ter. Therefore programs can use the (SE) option, which sign extends the left bits, or programs can use a
logical OR instruction with the source register which does not clear the bits across the shifted field.

Bit Stream Manipulation Instructions

The bit stream manipulation operations, in conjunction with the bit FIFO write pointer (BFFWRP) instruction,
implement a bit FIFO used for modifying the bits in a contiguous bit stream.

NOTE: For meaningful results, only use SISD mode to execute all bit FIFO instructions.

The shifter supports bit stream manipulation to access the bit FIFO as follows: 

• The BITDEP instruction deposits bit field from an input stream into the bit FIFO

• The BITEXT instruction extracts bit field from the bit FIFO into an output stream

Shifter Instruction Types
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The bit FIFO consists of a 64-bit register internal to the shifter and an associated write pointer register which keeps
track of the number of valid bits in the FIFO. When the bit FIFO is empty, the write pointer is 0, when the FIFO is
full, the write pointer is 64. The bit FIFO register and write pointer can be accessed only through the BITDEP and
BITEXT instructions. For more information, see Shifter/Shift Immediate Computations in the Computation Types
chapter.

The Example of Header Extraction and Header Creation examples demonstrate the BITDEP instruction where 32-
bit words are appended to the bit FIFO whenever the total number of bits falls below 32. A variable number of bits
are read.

Example of Header Extraction
I13 = buffer_base;
M13 = 1;
BFFWRP = 0x0;                   /* initialize Bit FIFO */
R10 = pm(I13,M13);
If NOT SF BITDEP R10 by 32,
R10 = PM(I13,M13);              /* appends R10 to BFF */
    
R6 = BITEXT (6);                /* extracts 6 bits from head of BFF
and left-shifts BFF by that amount */
DM(Var_1) = R6;
If NOT SF BITDEP R10 by 32, R10 = PM(I13,M13);
R6 = BITEXT(3);                 /* extracts 3 bits */
DM(Var_2) = R6;

The bit extracts are in variable quantities, but the deposit is always in 32-bits whenever the total number of bits in
the bit FIFO increases beyond 32.

Header Creation
I13 = buffer_base;
M13 = 1;
BFFWRP=0x0;
R10 = dm(_var1);                   /* get the variable */
BITDEP R10 by 6;                   /* append it to BFF */
If SF R10 = BITEXT(32),
pm(I13,M13) = R10;                 /* if the balance > 32, transfer a word */
R10 = dm(Var_1);
BITDEP R10 by 3;
If SF R10 = BITEXT(32), pm(I13,M13) = R10;

The bit deposits are in variable quantities. However, the extract is always in 32-bits whenever the total number of
bits in the bit FIFO increases beyond 32.

Interrupts Using Bit FIFO Instructions

If the program vectors to an ISR during bit FIFO operations, and the ISR uses the bit FIFO for different other
purposes, then the state of the bit FIFO has to be preserved if the program needs to restart the previous bit FIFO
operations after returning from the ISR. This is shown in the Storing and Restoring Bit FIFO State example.

Bit Stream Manipulation Instructions

3–18 SHARC+ Core Programming Reference



Storing and Restoring Bit FIFO State
/* Storing Bit FIFO State */
R0 = BFFWRP;
BFFWRP = 64;
R1 = BITEXT 32;
R2 = BITEXT 32;

/* Restoring the Bit FIFO State */
BFFWRP = 0;
BITDEP R1 BY 32;
BITDEP R2 BY 32;

In the same way, the bit FIFO can be used to extract and create different headers in a kind of time-division multi-
plex fashion by storing and restoring the bit FIFO between two different sequences of bit FIFO operations.

NOTE: If a bit FIFO related instruction is interrupted and the ISR uses the bit FIFO, the state of the bit FIFO
must be preserved and restored by the ISR.

Floating-Point Data Pack and Unpack Instructions

The processor core supports a 16-bit floating-point storage format and provides instructions that convert the data
for 40-bit computations. The 16-bit floating-point format uses an 11-bit mantissa with a 4-bit exponent plus a sign
bit. The 16-bit data goes into bits 23 through 8 of a data register. Two shifter instructions, FPACK and FUNPACK,
perform the packing and unpacking conversions between 32-bit floating-point words and 16-bit floating-point
words. The FPACK instruction converts a 32-bit IEEE floating-point number in a data register into a 16-bit float-
ing-point number. FUNPACK converts a 16-bit floating-point number in a data register to a 32-bit IEEE floating-
point number. Each instruction executes in a single cycle.

When 16-bit data is written to bits 23 through 8 of a data register, the data is automatically extended into a 32-bit
integer (bits 39 through 8).

The 16-bit floating-point format supports gradual underflow. This method sacrifices precision for dynamic range.
When packing a number that would have underflowed, the exponent clears to zero and the mantissa (including a
"hidden" 1) right-shifts the appropriate amount. The packed result is a denormal, which can be unpacked into a
normal IEEE floating-point number.

The shifter instructions may help to perform data compression, converting 32-bit into 16-bit floating point, storing
the data into short word space, and, if required, fetching and converting them back for further processing.

Arithmetic Status

Shifter operations update four status flags in the processing element's arithmetic status registers (REGF_ASTATX or
REGF_ASTATY) where a 1 indicates the condition. The bits that indicate shifter status for the most recent ALU
operation are as follows.

• Shifter overflow of bits to left of MSB, (SV)

• Shifter result zero, (SZ)

Barrel Shifter
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• Shifter input sign for exponent extract only, (SS)

• Shifter bit FIFO status (SF)

Note that the shifter does not generate an exception handle.

Bit FIFO Status

The bit FIFO contains a status flag (shifter FIFO, SF) which reflects the current value of the write pointer - SF is
set when the write pointer is greater than or equal to 32, it is cleared otherwise. Another status flag SV, indicates the
exception condition such as overflow or underflow.

The SF flag has two related conditions - SF and NOT SF, which are for exclusive use in instructions involving the
bit FIFO.

NOTE: The shifter FIFO bit (SF in registers) reflects the status flag. Note this bit is a read-only bit unlike other
flags in the REGF_ASTATX or REGF_ASTATY registers. The value is pushed into the stack during a
PUSH operation but a POP operation does not restore this ASTAT bit.

Shifter Instruction Summary

Tables Shifter Instruction Summary and Shifter Bit FIFO Instruction Summary list the shifter instructions and
shows how they relate to the flags in the ASTATX or ASTATY registers. For more information on assembly lan-
guage syntax, see the Instruction Set Types chapter and the Computation Types chapter. In these tables, note the
meaning of the following symbols:

• The Rn, Rx, Ry operands indicate any register file location; bit fields used depend on instruction

• The Fn, Fx operands indicate any register file location; floating-point word

• The * symbol indicates that the flag may be set or cleared, depending on data

• In SIMD mode all instruction uses the complement data registers, immediate data are valid for both units

Table 3-11: Shifter Instruction Summary

Instruction ASTATx, ASTATy Flags

SZ SV SS

RN = lshift RX by (RY | DATA8); * * 0

RN = RN or lshift RX by (RY | DATA8); * * 0

RN = ashift RX by (RY | DATA8); * * 0

RN = RN or ashift RX by (RY | DATA8); * * 0

RN = rot RX by (RY | DATA); * 0 0

RN = bclr RX by (RY | DATA8); * * 0

RN = bset RX by (RY | DATA8); * * 0

RN = btgl RX by (RY | DATA8); * * 0

Barrel Shifter
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Table 3-11: Shifter Instruction Summary (Continued)

Instruction ASTATx, ASTATy Flags

SZ SV SS

btst RX by (RY | DATA8); * * 0

RN = fdep RX by (RY | BIT6:LEN6); * * 0

RN = RN or fdep RX by (RY | BIT6:LEN6); * * 0

RN = fdep RX by (RY | BIT6:LEN6) (se); * * 0

RN = RN or fdep RX by (RY | BIT6:LEN6) (se); * * 0

RN = fext RX by (RY | BIT6:LEN6); * * 0

RN = fext RX by (RY | BIT6:LEN6) (se); * * 0

RN = exp RX; * 0 *

RN = exp RX (ex); * 0 *

RN = leftz RX; * * 0

RN = lefto RX; * * 0

RN = fpack FX; 0 * 0

FN = funpack RX; 0 0 0

The SHARC+ cores support the instructions in the Shifter Instruction Summary table. Additionally these processors
support the shifter bit FIFO instructions shown in the Shifter Bit FIFO Instruction Summary table.

NOTE: SIMD mode must be disabled during bit FIFO operations.

Table 3-12: Shifter Bit FIFO Instruction Summary

Instruction ASTATx, ASTATy Flags

SZ SV SS SF

bitdep RX by (RY | BITLEN12); 0 * 0 *

RN = bitext (RX | BITLEN12) (nu); * * 0 *

bffwrp = (RN | DATA7); 0 * 0 *

RN = bffwrp; 0 0 0 *

Multifunction Computations

The processor core supports multiple parallel (multifunction) computations by using the parallel data paths within
its computational units. These instructions complete in a single cycle (except fixed-point multiply which is a two
cycle compute), and they combine parallel operation of the multiplier and the ALU or they perform dual ALU func-
tions. The multiple operations work as if they were in corresponding single function computations. Multifunction
computations also handle flags in the same way as the single function computations, except that in the dual add/
subtract computation, the ALU flags from the two operations are ORed together.

Functional Description
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To work with the available data paths, the computational units constrain which data registers hold the four input
operands for multifunction computations. These constraints limit which registers may hold the X input and Y input
for the ALU and multiplier.

Software Pipelining for Multifunction Instructions

Multifunction instructions are parallel operations of both the ALU and multiplier units where each unit has new
data available after 1 cycle. However, for floating-point MAC operations, the processor core needs to emulate the
MAC instruction with a multifunction instruction. Results from the 32-bit floating-point multiplier unit are availa-
ble in 2 cycles for the ALU unit. Coding these instructions requires interleaved software pipelining to avoid the
computation stall as shown below.
F8=0;                           /* clear acc0 */
F9=0;                      /* clear acc1
F12=F3*F7;                      /* first MUL */
lcntr=N/2, do MAC until lce;
F12=F3*F7, F8=F8+F12;           /* first ALU, loop body */
MAC:     F13=F3*F7, F9=F9+F13;  /* first ALU, loop body */
         F8=F8+F12;             /* last ALU */
         F10 = F8+F9;           /* add both MACs */

Since a single floating-point MAC operation takes at least 2 cycles (for a typical DSP application compute multiple
data) the same example exercised with a hardware loop body results in a throughput of 1 cycle per word assuming a
high word count.

Multifunction and Data Move

Another type of multifunction operation combines transfers between the results and data registers and transfers be-
tween memory and data registers. These parallel operations complete in a single cycle. For example, the core can
perform the following MAC and parallel read of data memory. However if data dependency exists, software pipeline
coding is required as shown in the MAC and Parallel Read With Software Pipeline Coding example.

MAC and Parallel Read With Software Pipeline Coding

MRF=0, R5 = DM(I1,M2), R6 = PM(I9,M9);              /* first data */
lcntr=N-1, do (pc,loopend) until lce;
loopend: MRF = MRF-R5*R6, R5 = DM(I1,M2), R6 = PM(I9,M9);    /* loop body */
MRF = MRF-R5*R6;                                    /* last MAC*/

Multifunction Input Operand Constraints

Each of the four input operands for multifunction computations are constrained to a different set of four register file
locations, as shown in the Permitted Input Registers for Multifunction Computations figure. For example, the X in-
put to the ALU must be R8, R9, R10, or R11. In all other compute operations, the input operands can be any
register file location.

The multiport data register file can normally be read from and written to without restriction. However, in multi-
function instructions, the ALU and multiplier input are restricted to particular sets of registers while the outputs are
unrestricted.

Multifunction Computations
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For any instruction with multiple operations executing in parallel, the destination registers should not be the same.

R0 - F0

R1 - F1

R2 - F2

R3 - F3

R4 - F4

R5 - F5

R6 - F6

R7 - F7

R9 - F9

R10 - F10

R11 - F11

R12 - F12

R13 - F13

R14 - F14

R15 - F15

MULTIPLIER

Any Register

ALU

REGISTER FILE

Any Register

R8 - F8

Figure 3-9: Permitted Input Registers for Multifunction Computations

Multifunction Input Modifier Constraints

The multifunction fixed-point computation does support the instruction input modifier signed/signed fractional
(SSF) and signed/signed fractional rounding (SSFR) only.

Multifunction Instruction Summary

The processors support the following multifunction instructions.

• Fixed-Point ALU (dual Add and Subtract)

• Floating-Point ALU (dual Add and Subtract)

• Fixed-Point Multiplier and ALU

• Floating Point Multiplier and ALU (dual Add and Subtract)

• Floating-Point Multiplier and ALU

• Fixed-Point Multiplier and ALU (dual Add and Subtract)

For more information see the Computation Types chapter. Note that these computations can be combined with
dual data move (type 1 instruction) or single data move with conditions (Group I instruction set types). For more
detail refer to the Instruction Set Types chapter.

64-bit Instruction Overview

The SHARC+ core supports 64-bit instruction set, based on ALU, Multiplier and Multifunction instructions. Addi-
tional information provided about number of execution cycles consumed by the instructions and the number of un-
conditional stalls that these instructions impose.

Multifunction Computations
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Table 3-13: 64-bit Floating-Point Instruction set for SHARC+ Core

Syntax No. of Execution
Cycles

No. of Stalls

(Unconditional)

Basic Function

ALU

Fm:n = Fx:y + Fz:w; 7 5 Addition

Fm:n = Fx:y - Fz:w; 7 5 Subtraction

COMP(Fx:y , Fz:w); 7 5 Compares the operands and sets flags.

Fm:n = Fx:y; 2 0 Complements the sign bit.

Fm:n = ABS Fx:y; 2 0 Returns the absolute value of the operand.

Fm:n = PASS Fx:y; 2 0 Passes operand in Fx:y through the ALU, to the 64-bit floating
point registers Fm:n.

Rn = FIX Fx:y; 4 2 Converts the operand in Fx:y to a twos-complement 32-bit fixed-
point integer result.

Rn = FIX Fx:y BY Rz; 4 2 Converts the operand in Fx:y to a twos-complement 32-bit fixed-
point integer result. Rz is added to the exponent of the operand in
Fx:y before the conversion.

Rn = TRUNC Fx:y; 4 2 Converts the operand in Fx:y to a twos-complement 32-bit fixed-
point integer result. The trunc operation always truncates towards
0.

Rn = TRUNC Fx:y BY Rz; 4 2 Converts the operand in Fx:y to a twos-complement 32-bit fixed-
point integer result. The trunc operation always truncates toward
0. Rz is added to the exponent of the operand in Fx:y before the
conversion.

Fm:n = FLOAT Rx; 2 0 Converts the fixed-point operand in Rx to a floating-point result.

Fm:n = FLOAT Rx BY Ry; 4 2 Converts the fixed-point operand in Rx to a floating-point result.
Ry is added to the exponent of the floating-point result.

Fm:n = CVT Fx; 2 0 Converts the 32/40-bit floating-point operand to 64-bit floating
point format.

Fn = CVT Fx:y; 4 2 Converts the 64-bit floating-point operand to single precision
floating point format.

Fm:n = SCALB Fx:y BY Rz; 2 0 Scales the exponent of the floating-point operand in Fx:y by add-
ing to it the fixed-point twos complement integer in Rz.

Multiplier (uses multiplier result register for temp processing)

Fm:n = Fx:y * Fz:w; 7 5 Multiplication of two 64-bit operands.

Fm:n = Fx:y * Fz; 7 5 64-bit operand Fx:y multiplied with single precision operand Fz.

Fm:n = Fx * Fy; 7 5 32/40-bit operand Fx multiplied with single precision operand Fy
and produces a double precision result.

Multifunction (uses multiplier result register for temp processing)

Multifunction Instruction Summary

3–24 SHARC+ Core Programming Reference



Table 3-13: 64-bit Floating-Point Instruction set for SHARC+ Core (Continued)

Syntax No. of Execution
Cycles

No. of Stalls

(Unconditional)

Basic Function

Fm:n = Fx:y * Fz:w, Fa:b =
Fp:q + Fr:s;

7 5 Multiply and Add in parallel

Fm:n = Fx:y * Fz:w, Fa:b =
Fp:q - Fr:s;

7 5 Multiply and Subtract in parallel

WARNING: 64-bit multiplier and multifunction instructions use the multiplier result register during execution. If
the multiplier result register contains valid data which may be required by the application, the pro-
gram must save the data from multiplier result register before executing this instruction (multiplier
result register = REGF_MRF or REGF_MRB register depending on the section of the
REGF_MODE1.SRCU bit).

64-bit Data Register Coding

R0 - F0

R1 - F1

R2 - F2

R3 - F3

R4 - F4

R5 - F5

R6 - F6

R7 - F7

R9 - F9

R10 - F10

R11 - F11

R12 - F12

R13 - F13

R14 - F14

R15 - F15

MULTIPLIER

Any Register

ALU

Any Register
R8 - F8

F1 - F0

32/40-BIT/
FIXED-POINT/FLOATING-POINT

REGISTER USAGE 

F3 - F2

F5 - F4

F7 - F6

F9 - F8

F11 - F10

F13 - F12

F15 - F14

64-BIT
FLOATING-POINT

REGISTER USAGE 

Figure 3-10: Permitted Input Registers for Multifunction Computations

The 64-bit floating-point registers are denoted as “Fx:y”. Neighboring data registers are used to construct 64-bit
data registers for 64-bit operations.

For example, in the F5:4 = F1:0 + F3:2 operation, the {R1, R0} register pair constitute F1:0; the {R3, R2} register
pair constitute F3:2; and the result loaded into the {R5, R4} register pair, for example F5:4.

The first index “x” of “Fx:y” has to be an odd register index and the second index “y” should be its neighboring
register with an even index.

NOTE: F4:5, F2:0, F10:7, F7:10 are examples of illegal DP registers.

The complementary 64-bit registers of Processing Element Y (PEY) are named “SFx:y”. For example, SF1:0 repre-
sent the register pair {S1, S0}.

Multifunction Instruction Summary
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The following figure shows how the registers R1 and R0 constitute a 64-bit register F1:0.

R1 

 

        R0 

 

       F1:0 
 
    S    Exponent   Significand   

39   38        28   27                                             8   7          0  

39               8    7         0 

63  62        52   51               0
   

Figure 3-11: 64-bit Register Construction

64-bit Floating-Point Computation Data Hazards

The 64-bit instructions require the registers to be updated in the register-file (RF) before performing the computa-
tions. The 64-bit operations cannot be performed on forwarded results of previous compute instructions. There are
several data-hazard conditions, which require stalls.

This section explains all the data hazard conditions that are explicitly related to 64-bit floating-point instructions.
Such data-hazard conditions are data dependencies from one COMPUTE instruction to the next COMPUTE in-
structions, when one of them is a 64-bit Compute instruction.

All the other RF related data hazard conditions that affect 32/40-bit floating-point instructions are applicable to 64-
bit instructions as well.

The backward and forward data dependencies are explained through instruction pipeline illustrations for each case.

Case A - 64-bit Instruction SRC Operands are DST Operands Of Previous Compute Instructions

This case describes data hazard (instruction pipeline stall) issues that occur when a 64-bit floating-point instruction
uses source (SRC) operands that are destination operands (DST) from the previously occuring two compute instruc-
tions.
< Instruction N-2 ; >
< Instruction N-1 ; >
F5:4 = F3:2 + F1:0; // Instruction N

In the Add, Subtract or Compare instructions above, the upper halves of the source 64-bit instruction's register F3:2
and F1:0 (for example, R3 and R1 respectively) are read in the first execution cycle and lower halves (R2 and R0) are
read in the second execution cycle. The applicable stalls are listed below in the descending order of priority.

• If the instruction N1 updates either R3 or R1, the instruction N is stalled for 2 cycles.

• If the instruction N1 updates either R2 or R0, the instruction N is stalled for 1 cycle.

• If the instruction N2 updates either R3 or R1, the instruction N is stalled for 1 cycle. This stall is not visible if
the instruction N1 also imposes one or more stalls.

• If the instruction N2 updates either R2 or R0, the instruction N is not stalled.

Functional Description
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< Instruction N-2 ; >
< Instruction N-1 ; >
F5:4 = F3:2 * F1:0 ; // Instruction N

In the Fm:n = Fx:y * Fz:w instruction above, the data registers are read in the following sequence.

• Execution Cycle-1: R2, R0

• Execution Cycle-2: R3, R0

• Execution Cycle-3: R2, R1

• Execution Cycle-4: R3, R1

The applicable stalls are listed below in the descending order of priority:

• If the instruction N1 updates either R2 or R0, the instruction N is stalled for 2 cycles.

• If the instruction N1 updates R3, the instruction N is stalled for 1 cycle.

• If the instruction N2 updates either R2 or R0, the instruction N is stalled for 1 cycle. This stall is not visible if
the instruction N1 also imposes one or more stalls.

• If the instruction N1 updates R1, or if the instruction N-2 updates either R3 or R1, the instruction N does not
stall.

< Instruction N-2 ; >
< Instruction N-1 ; >
F5:4 = F3:2 * F0 ; // Instruction N

In the Fm:n = Fx:y * Fz instruction above, the data registers are read in the following sequence.

• Execution Cycle-1: R2, R0

• Execution Cycle-2: R3, R0

The applicable stalls are listed below in the descending order of priority.

• If the instruction N1 updates either R2 or R0, the instruction N is stalled for 2 cycles.

• If the instruction N1 updates R3, the instruction N is stalled for 1 cycle.

• If the instruction N2 updates either R2 or R0, the instruction N is stalled for 1 cycle. This stall is not visible if
the instruction N1 also imposes one or more stalls.

• If the instruction N2 updates R3, the instruction N is not stalled.
< Instruction N-2 ; >
< Instruction N-1 ; >
F5:4 = F2 * F0 ; // Instruction N

In the Fm:n = Fx * Fy instruction above, the data registers are read in the following sequence.

• Execution Cycle-1: R2, R0

The stall conditions are listed below in the descending order of priority:

64-bit Floating-Point Computation Data Hazards

SHARC+ Core Programming Reference 3–27



• If the instruction N1 updates either R2 or R0, the instruction N is stalled for 2 cycles.

• If the instruction N2 updates either R2 or R0, the instruction N is stalled for 1 cycle. This stall is not visible if
the instruction N1 also imposes one or more stalls.

< Instruction N-2 ; >
< Instruction N-1 ; >
 F5:4 =SCALB F3:2 By R0 ; // Instruction N

In all the other 64-bit instructions (SCALB is shown above), all the involved source registers are read in the first
execution cycle where the following occur.

• If the instruction N1 updates any of the source registers, the instruction N is stalled for 2 cycles.

• If the instruction N2 updates any of the source registers, the instruction N is stalled for 1 cycle. This stall is not
visible if the instruction N1 also imposes one or more stalls.

Ry = destination of any compute instruction ; //Instruction 
N-2, Rx = Ry ; //Instruction N-1
64-bit instruction that uses Rx in first execution cycle; // Instruction N

For any 64-bit instruction (N), if the source registers, which are being used in first execution cycle of the 64-bit
instruction, are updated by Dreg-to-Dreg transfer in previous instruction (N1); and the source register of the
Dreg-to-Dreg transfer instruction (N1) is updated in its previous instruction (N2) which is a compute instruction,
then:

• The instruction N is stalled for 1-cycle.

Case B - 64-bit Instruction SRC Operands are DST Operands of Previous Cond Register Load

This case describes data hazard (instruction pipeline stall) issues that occur when a 64-bit floating-point instruction
uses source (SRC) operands that are destination operands (DST) from a previously occuring conditional register
load instruction.
If eq R0 = dm(I0,M0); // N-1
F5:4 = F3:2 * F1:0;   // N

In the DM, PM, Immediate, or Ureg to Ureg Load or Swap instruction above, if the N1 instruction is a conditional
register update instruction and if the N1 instruction updates one or all of the source operands of the instruction N
(which is a 64-bit instruction), the following occur.

• Instruction N is stalled for 1 cycle, if the source operand is read in first execution-cycle of the 64-bit instruc-
tion.

• Instruction N is not stalled, if the source operand is read in the second or later execution-cycles.

Case C - 64-bit Instruction DST Operand acts as SRC Operands of the Next non-DP Compute
Instruction

This case describes data hazard (instruction pipeline stall) issues that occur when a 64-bit floating-point instruction
uses destination (DST) operands that are source operands (SRC) for the next occuring non-64-bit compute instruc-
tion.

64-bit Floating-Point Computation Data Hazards
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This case applies only if the N instruction is a non-64-bit instruction and if instruction N1 is a 64-bit instruction. If
the instruction N is also a 64-bit instruction, this case is same as Case A. (See Case A - 64-bit Instruction SRC
Operands are DST Operands Of Previous Compute Instructions.)
(1) F5:4 = F3:2 * F1:0 ; // N-1 
    R11 = R5 + R4;       //N
(2) F5:4 = F3:2 + F1:0 ; // N-1 
    R11 = R5 + R4;       //N
(3) F5 = CVT F3:2 ;      // N-1 
    R11 = R5 + R4;       //N
(4) F5 = CVT F3:2 ;      // N-1
    R0 = ASTATX ;        //N

When any destination register of a 64-bit instruction (N-1) is a source operand of the next non-64-bit instruction,
the instruction N is stalled for 1 cycle. This stall occurs in addition to the stalls imposed by 64-bit instruction N-1.
The example code demonstrates these stalls as follows:

• In example line (1), instruction N1 (MULTIPLY) inherently imposes 5-stalls on instruction N. There is 1 ad-
ditional stall on instruction N, because the source operands of instruction N are the destination operands of
instruction N-1. Hence, instruction N is stalled for 6 cycles.

• Similarly, in example line (2), instruction N is stalled for 6-cycles.

• However, in example line (3), instruction N1 inherently imposes 2-stalls on instruction N. There is 1 addition-
al stall on instruction N, because of dependency. Hence, instruction N is stalled for 3-cycles.

• In example line (4), the instruction N1 inherently imposes 2-stalls on instruction N. There is 1 additional stall
on instruction N, because of dependency on the status flags. Instruction N is then stalled for 3-cycles.

Combined Data Hazards (Combinations of Cases A, B, C)

In all the described 64-bit data hazard cases (A, B, C), if multiple data hazard conditions arise simultaneously, the
number of stalls imposed is the maximum of the number of stalls imposed by each condition.

Example (1) : Case A Combination

In example (1), instruction N2 updates R1, which can stall instruction N for 1-cycle. Instruction N1 updates R3,
which can stall instruction N for 2-cycles. In this case, instruction N is stalled for 2-cycles.
R1 = R12 + R13; // Instruction N-2 
R3 = R10 + R11; // Instruction N-1 
F5:4 = F3:2 + F1:0 ; // Instruction N

Example (2) : Case A Combination

In example (2), instruction N2 updates R1, which can stall instruction N for 1-cycle. And, instruction N1 updates
R0, which can also stall instruction N for 1-cycle. In this case, instruction N is stalled for 1-cycle.
R1 = R12 + R13; // Instruction N-2 
R0 = R10 + R11; // Instruction N-1 
F5:4 = F3:2 + F1:0 ; // Instruction N

64-bit Floating-Point Computation Data Hazards
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Example (3) : Case A-C Combination

In example (3), instruction N2 updates R1, which can stall instruction N for 1-cycle. And, instruction N1 is an
instruction which unconditionally stalls N for 2-cycles, since it is a 64-bit CVT instruction. In this case, the instruc-
tion N is stalled for 2-cycle.
R1 = R12 + R13; // Instruction N-2 
F15 = CVT F11:10; // Instruction N-1 
F5:4 = F3:2 + F1:0 ; // Instruction N

64-bit Floating-Point Instruction Execution Cycles

7-cycle Execution of 64-bit Instructions (Add/Subtract/Compare Instructions)

Applies for 64-bit floating-point instructions:

Fm:n = Fx:y + Fz:w
Fm:n = Fx:y - Fz:w
COMP ( Fx:y, Fz:w )

Table 3-14: 7-cycle Execution of 64-bit Instructions (Add/Subtract/Compare Instructions)

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E2 n-2 n-1 n
(dp)

n+1

M4/
E1

n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M3 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M2 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M1 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

D2 n-2 n-1 n
(dp)

n+1 n+1 n+1 n+1 n+1 n+1 n+2

D1 n-2 n-1 n
(dp)

n+1 n+2 n+2 n+2 n+2 n+2 n+2

F4 n-2 n-1 n
(dp)

n+1 n+2

F3 n-2 n-1 n
(dp)

n+1 n+2 5-Cycles Stall

F2 n-1 n
(dp)

n+1 n+2

Functional Description
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Table 3-14: 7-cycle Execution of 64-bit Instructions (Add/Subtract/Compare Instructions) (Continued)

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F1 n
(dp)

n+1 n+2

NOTE: Rm, Rn, ASTAT, STKY available on cycle 17.

7-cycle Execution of 64-bit Instructions (Multiply Instructions)

Applies for 64-bit floating-point instructions:

Fm:n = Fx:y * Fz:w
Fm:n = Fx:y * Fz:w
Fm:n = Fx * Fy

4-cycle Execution of 64-bit Instructions

Applies for 64-bit floating-point instructions:

Rn  = FIX Fx:y
Rn = FIX Fx:y BY Rz
Rn = TRUNC Fx:y
Rn = TRUNC Fx:y BY Rz
Fm:n = FLOAT Rx BY Ry
Fn = CVT Fx:y

Table 3-15: 4-cycle Execution of 64-bit Instructions

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E2 E2 n-2 n-1 n
(dp)

n+1

M4/
E1

M4/
E1

n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M3 M3 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M2 M2 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M1 M1 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n+1 n+2

D2 D2 n-2 n-1 n
(dp)

n+1 n+1 n+1 n+2

D1 D1 n-2 n-1 n
(dp)

n+1 n+2 n+2 n+2

Functional Description
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Table 3-15: 4-cycle Execution of 64-bit Instructions (Continued)

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F4 F4 n-2 n-1 n
(dp)

n+1 n+2

F3 F3 n-2 n-1 n
(dp)

n+1 n+2 2-Cycles
Stall

F2 F2 n-1 n
(dp)

n+1 n+2

F1 E2 n
(dp)

n+1 n+2

NOTE: Rm, Rn, ASTAT, STKY available on cycle 15.

2-cycle Execution of 64-bit Instructions with Backward Dependency Stalls

Applies for 64-bit floating-point instructions:

Fm:n = - Fx:y
Fm:n = ABS Fx:y
Fm:n = PASS Fx:y
Fm:n = FLOAT Rx
Fm:n = CVT Fx
Fm:n = SCALB Fx:y BY Rz

Table 3-16: 2-cycle Execution of 64-bit Instructions with Backward Dependency Stalls

Cycles 1 2 3 4 5 6 7 8 9 10 11 12

E2 n-2 n-1 n (dp) n+1

M4/E1 n-2 n-1 n (dp) n+1 n+2

M3 n-2 n-1 n (dp) n (dp) n+2

M2 n-2 n-1 n (dp) n (dp) n (dp)

M1 n-2 n-1 n (dp) n (dp) n (dp) n+1

D2 n-2 n-1 n (dp) n+1 n+1 n+1 n+2

D1 n-2 n-1 n (dp) n+1 n+2 n+2 n+2

F4 n-2 n-1 n (dp) n+1 n+2

F3 n-2 n-1 n (dp) n+1 n+2

F2 n-1 n (dp) n+1 n+2

F1 n (dp) n+1 n+2

NOTE: Rm, Rn, ASTAT, STKY available on cycle 12.

Functional Description
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1-cycle Execution of 64-bit Instructions with Backward Dependency Stalls

Applies for 64-bit floating-point instructions with backward dependency (CASE-A and CASE-B of Data Hazards):

Fx = Fa + Fb; //Instruction n-1
Fm:n = Fx:y + Fz:w ; // Instruction N

Table 3-17: 1-cycle Execution of 64-bit Instructions with Backward Dependency Stalls

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E2 n-2 n-1 n-1 n-1 n
(dp)

n+1

M4/
E1

n-2 n-1 n-1 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M3 n-2 n-1 n-1 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M2 n-2 n-1 n-1 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M1 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

D2 n-2 n-1 n
(dp)

n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+2

D1 n-2 n-1 n
(dp)

n+1 n+2 n+2 n+2 n+2 n+2 n+2 n+2 n+2

F4 n-2 n-1 n
(dp)

n+1 n+2

F3 n-2 n-1 n
(dp)

n+1 n+2 2-Cycles
Stall

5-Cycles Stall

F2 n-1 n
(dp)

n+1 n+2

F1 n
(dp)

n+1 n+2

NOTE: Rm, Rn, ASTAT, STKY available on cycle 19.

1-cycle Execution of 64-bit Instructions with Forward Dependency Stalls

Applies for 64-bit floating-point instructions with forward dependency (Case C of Data Hazards):

Fy = Fa + Fb; //Instruction n-1
Fm:n = Fx:y + Fz:w ; // Instruction N

Functional Description
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Table 3-18: 1-cycle Execution of 64-bit Instructions with Forward Dependency Stalls

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

E2 n-2 n-1 n-1 n
(dp)

n+1

M4/
E1

n-2 n-1 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M3 n-2 n-1 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M2 n-2 n-1 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M1 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

D2 n-2 n-1 n
(dp)

n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+2

D1 n-2 n-1 n
(dp)

n+1 n+2 n+2 n+2 n+2 n+2 n+2 n+2

F4 n-2 n-1 n
(dp)

n+1 n+2

F3 n-2 n-1 n
(dp)

n+1 n+2 1-
Cy-
cle

Stall

5-Cycles Stall

F2 n-1 n
(dp)

n+1 n+2

F1 n
(dp)

n+1 n+2

NOTE: Rm, Rn, ASTAT, STKY available on cycle 18.

1-cycle Excution of 64-bit Instructions with Forward Dependency Stalls

Applies for 64-bit floating-point instructions with forward dependency (Case C of Data Hazards):

Fm:n = Fx:y + Fz:w ;; //Instruction N 
Rs = Rm + Rn ; // Instruction n+1

Table 3-19: 1-cycle Excution of 64-bit Instructions with Forward Dependency Stalls

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

E2 n-2 n-1 n
(dp)

n
(dp)

n+1

Functional Description
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Table 3-19: 1-cycle Excution of 64-bit Instructions with Forward Dependency Stalls (Continued)

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M4/
E1

n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M3 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M2 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

M1 n-2 n-1 n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n
(dp)

n+1 n+2

D2 n-2 n-1 n
(dp)

n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+2

D1 n-2 n-1 n
(dp)

n+1 n+2 n+2 n+2 n+2 n+2 n+2 n+2

F4 n-2 n-1 n
(dp)

n+1 n+2

F3 n-2 n-1 n
(dp)

n+1 n+2 5-Cycles Stall 1-
Cy-
cle

Stall

F2 n-1 n
(dp)

n+1 n+2

F1 n
(dp)

n+1 n+2

NOTE: Rm, Rn, ASTAT, STKY available on cycle 18.

64-bit Floating-Point Register Aliases in Long Word Memory Addressing

The 64-bit registers are made up of neighbor register pairs (for example, pair F1:0 consists of R1 and R0). The DP
registers can be loaded using Long-Word memory accesses.

The SHARC+ core assembler supports the following aliases of memory access instructions with 64-bit floating-point
registers:

Table 3-20: Alias of 64-bit Registers in Long Word Memory Access Instructions

Register Usage in SHARC+ Core Instruction Alias to 64-bit Floating-Point Register

Ry = dm() Fx:y = dm()

Ry = pm() Fx:y = pm()

dm() = Ry dm() = Fx:y

Functional Description

SHARC+ Core Programming Reference 3–35



Table 3-20: Alias of 64-bit Registers in Long Word Memory Access Instructions (Continued)

Register Usage in SHARC+ Core Instruction Alias to 64-bit Floating-Point Register

pm() = Ry pm() = Fx:y

For these aliased instructions, the assembler uses the even address of the neighboring registers (for example, Ry) in
place of a 64-bit register (for exmple Fx:y). This aliasing simplifies the long-word accesses because they are aligned to
a 64-bit boundary. The even memory locations are mapped to even registers and the odd memory locations are
mapped to odd registers. If the above register aliases are used with LW addressing, they can be used to transfer DP
data to or from memory. For example:

F1:0 = dm(I0,M0) (LW) // would behave same as R0 = dm(I0,M0) (LW). 
SF1:0 = dm(I0,M0) (LW) // would behave same as S0 = dm(I0,M0) (LW).
Note the following:

• If the LW attribute is not applied, these instructions are same as NW/SW/BW instructions, and the register
updated is the even-address register.

• These are only aliases of the existing instructions, not new instructions. All the restrictions and recommenda-
tions of using these existing instructions also are applicable to their aliases.

64-bit Floating-Point SIMD Mode

SIMD mode long-word accesses are not supported. In SIMD, the 64-bit registers can be loaded in one of these
ways:

• Using two 32-bit normal-word addressing of dual-data in SIMD mode, or

• Using two long-word addressing of dual-data in SISD mode by using the appropriate complementary registers
in both accesses.

In both the cases, the alignment of the DP data in memory could be very different. Moreover, there can be many
derived methods of updating 64-bit registers for SIMD, from existing methods discussed in the Memory chapter.

64-bit Floating-Point Computation Register Load Priorities

This section describes the register file (RF) bus conflicts that can arise for multifunction 64-bit floating-point (64-
bit) operations or 64-bit operations with register load instructions. The SHARC+ core uses the following rules, in
cases of RF bus conflicts.

1. Explicit or implicit destinations of DM register-load instructions have the highest priority over all other RF
Bus.

2. Explicit or implicit destinations of PM register-load instructions have the second highest priority.

• For long word addressing on the PM bus, if the explicit or implicit destination of PM bus is same as the
explicit or implicit destination of the DM bus, all the writes on the PM bus are blocked.

3. The result of a single ALU operation has the third highest priority.

Functional Description
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• For 64-bit ALU operations, if any of the destination registers (Fa or Fb in case of Fa:b) conflicts with ex-
plicit or implicit DM or PM destinations, the result of the DP ALU operation is blocked.

4. The result of multiplier (64-bit or non-64-bit) operations has the fourth highest priority.

• For 64-bit multiply operations, if any of the destination registers (Fm or Fn in case of Fm:n) conflicts
with the explicit/implicit DM or PM destinations or any of the DP ALU destinations, the result of a 64-
bit multiply is blocked.

5. The result of shifter and the result of subtract operations for dual-add-sub instructions have the least priority

Note:

• In all of these cases, only the writes to RF registers are blocked by higher priority buses, but the status registers
reflect the status of all operations that have occurred.

• For multiplication instructions, even if the results are not updated either fully or partially because of RF bus
conflicts, the MR registers are affected because of the execution of multiplication instructions.

Operating Modes
The MODE1 register controls the operating mode of the processing elements. The MODE1 Register Bit Descriptions
(RW) table in the Registers appendix lists the bits in the MODE1 register. The bits are described in the following
sections. 

ALU Saturation

When the REGF_MODE1.ALUSAT bit is set (= 1), the ALU is in saturation mode. In this mode, positive fixed-
point overflows return the maximum positive fixed-point number (0x7FFF FFFF), and negative overflows return the
maximum negative number (0x8000 0000). 

When the REGF_MODE1.ALUSAT bit is cleared (= 0), fixed-point results that overflow are not saturated, the up-
per 32 bits of the result are returned unaltered. 

Short Word Sign Extension

In short word space, the upper 16-bit word is not accessed. If the REGF_MODE1.SSE bit is set (1), the core sign-
extends the upper 16 bits. If the bit is cleared (0), the core zeros the upper 16 bits.

Floating-Point Boundary Mode

In the default boundary mode at reset, (REGF_MODE1.RND32 = 0), a 40-bit extended-precision floating-point
mode is supported. This mode has eight additional LSBs of the mantissa and is otherwise compliant with the IEEE
754/854 standards. Results when using this format are more precise than the IEEE single-precision standard will
achieve. Extended-precision floating-point data uses a 31-bit mantissa with a 8-bit exponent plus sign a bit.

For rounding mode the multiplier and ALU support a single-precision floating-point format, which is specified in
the IEEE 754/854 standard.

Operating Modes
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IEEE single-precision floating-point data (REGF_MODE1.RND32 = 1) uses a 23-bit mantissa with an 8-bit expo-
nent plus sign bit. In this case, the computation unit sets the eight LSBs of floating-point inputs to zeros before
performing the operation. The mantissa of a result rounds to 23 bits (not including the hidden bit), and the 8 LSBs
of the 40-bit result clear to zeros to form a 32-bit number, which is equivalent to the IEEE standard result.

NOTE: In fixed-point to floating-point conversion, the rounding boundary is always 40 bits, even if the
REGF_MODE1.RND32 bit is set.

For more information on this standard, see the Numeric Formats appendix. This format is IEEE 754/854 compati-
ble for single-precision floating-point operations in all respects except for the following.

• The core does not provide inexact flags. An inexact flag is an exception flag whose bit position is inexact. The
inexact exception occurs if the rounded result of an operation is not identical to the exact (infinitely precise)
result. Thus, an inexact exception always occurs when an overflow or an underflow occurs.

• NAN (Not-A-Number) inputs generate an invalid exception and return a quiet NAN (all 1s).

• Denormal operands, using denormalized (or tiny) numbers, flush to zero when input to a computational unit
and do not generate an underflow exception. A denormal operand is one of the floating-point operands with an
absolute value too small to represent with full precision in the significant. The denormal exception occurs if
one or more of the operands is a denormal number. This exception is never regarded as an error.

• The core supports round-to-nearest and round-toward-zero modes, but does not support round to +infinity
and round-to-infinity. 

• The sign bit of output NAN x NAN is a sign bit as the OR of two input sign bits.

Rounding Mode

The REGF_MODE1.TRUNCATE bit determines the rounding mode for all ALU operations, all floating-point mul-
tiplies, and fixed-point multiplies of fractional data. The core supports two rounding modes- round-toward-zero and
round-toward-nearest. The rounding modes comply with the IEEE 754 standard and have the following definitions.

• Round-toward-zero (REGF_MODE1.TRUNCATE = 1). If the result before rounding is not exactly representa-
ble in the destination format, the rounded result is the number that is nearer to zero. This is equivalent to
truncation.

• Round-toward-nearest (REGF_MODE1.TRUNCATE = 0). If the result before rounding is not exactly repre-
sentable in the destination format, the rounded result is the number that is nearer to the result before rounding.
If the result before rounding is exactly halfway between two numbers in the destination format (differing by an
LSB), the rounded result is the number that has an LSB equal to zero.

Statistically, rounding up occurs as often as rounding down, so there is no large sample bias. Because the maximum
floating-point value is one LSB less than the value that represents infinity, a result that is halfway between the maxi-
mum floating-point value and infinity rounds to infinity in this mode.

Operating Modes
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Though these rounding modes comply with standards set for floating-point data, they also apply for fixed-point
multiplier operations on fractional data. The same two rounding modes are supported, but only the round-to-near-
est operation is actually performed by the multiplier. Using its local result register for fixed-point operations, the
multiplier rounds-to-zero by reading only the upper bits of the result and discarding the lower bits.

Multiplier Result Register Swap

Each multiplier has a primary or foreground register (REGF_MR0F, REGF_MR2F) and alternate or background
results register (REGF_MR0B, REGF_MR2B). The REGF_MODE1.SRCU bit selects which result register receives
the result from the multiplier operation, swapping which register is the current MRF or MRB. This swapping facili-
tates context switching.

Unlike other registers that have alternates, both the MRF and MRB registers are coded into instructions, without re-
gard to the state of the REGF_MODE1 register as shown in the following example.

MRB = MRB - R3 * R2 (SSFR);
MRF = MRF + R4 * R12 (UUI);
With this arrangement, programs can use the result registers as primary and alternate accumulators, or programs can
use these registers as two parallel accumulators. This feature facilitates complex math. The REGF_MODE1 register
controls the access to alternate registers. In SIMD mode, swapping also occurs with the PEY unit based registers
(REGF_MS0F, REGF_MS2F, and REGF_MS0B, REGF_MS2B).

SIMD Mode

The SHARC+ core contains two sets of computational units and associated register files. As shown in the SHARC+
SIMD Core Block Diagram, these two processing elements (PEx and PEy) support Single Instruction Multiple Data
(SIMD) operation.

The REGF_MODE1 register controls the operating mode of the processing elements. The REGF_MODE1.PEYEN
bit (bit 21) enables or disables the PEy processing element. When REGF_MODE1.PEYEN is cleared (0), the core
operates in SISD mode, using only PEx. When the REGF_MODE1.PEYEN bit is set (1), the core operates in
SIMD mode, using both the PEx and PEy processing elements. There is a one cycle delay after
REGF_MODE1.PEYEN is set or cleared, before the mode change takes effect.

For shift immediate instructions the Y input is driven by immediate data from the instructions (and has no comple-
ment data as a register does). If using SIMD mode, the immediate data are valid for both PEx and PEy units as
shown in the Compute Instructions in SIMD Mode example.

Compute Instructions in SIMD Mode 

bit set MODE1 BITM_REGF_MODE1_PEYEN;    /* enable SIMD */
R0 = R1 + R2;                    /* explicit ALU instruction */
S0 = S1 + S2;                    /* implicit ALU instruction */
 
F0 = F1 *  F2;                   /* explicit MUL instruction */
SF0 = SF1 * SF2;                 /* implicit MUL instruction */
 
MRB = MRB - R3 * R2 (SSFR);      /* explicit MUL instruction */

Operating Modes
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MSB = MSB - S3 * S2 (SSFR);      /* implicit MUL instruction */
 
R5 = LSHIFT R6 by <data8>; /* explicit shift imm instruction */
S5 = LSHIFT S6 by <data8>; /* implicit shift imm instruction */
To support SIMD, the core performs these parallel operations:

• Dispatches a single instruction to both processing element's computational units.

• Loads two sets of data from memory, one for each processing element.

• Executes the same instruction simultaneously in both processing elements.

• Stores data results from the dual executions to memory.

NOTE: Using SIMD mode’s parallelism, it is possible to double the performance over similar algorithms running
in SISD (ADSP‑2106x processor compatible) mode.

The two processing elements are symmetrical; each contains the following functional blocks:

• ALU

• Multiplier primary and alternate result registers

• Shifter

• Data register file and alternate register file

Conditional Computations in SIMD Mode

Conditional computations allows the computation units to make computations conditional in SIMD mode. For
more information, see Conditional Instruction Execution in the Program Sequencer chapter.

Interrupt Mode Mask

On the SHARC+ cores, programs can mask automated individual operating mode bits in the REGF_MODE1 regis-
ter when entering into an ISR by setting bits in the REGF_MMASK register. This improves interrupt handling per-
formance and helps ensure that interrupt handler code runs with operating modes set consistently.

For the processing units, the short word sign extension (REGF_MODE1.SSE) the truncation
(REGF_MODE1.TRUNCATE) the ALU saturation (REGF_MODE1.ALUSAT) the floating-point boundary round-
ing (REGF_MODE1.RND32) and the multiply register swap (REGF_MODE1.SRCU) bits can be masked. For
more information, see the Program Sequencer chapter.

Arithmetic Exceptions
The following sections describe how the processor core handles arithmetic exceptions. Note that the shifter does not
generate interrupts for exception handling. For a complete list of interrupts, see the Interrupt Priority and Vector
Table.

Operating Modes
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NOTE: Interrupt processing starts two cycles after an arithmetic exception occurs because of the one cycle delay
between an arithmetic exception and the REGF_STKYX/REGF_STKYY register update

Table 3-21: Arithmetic Exceptions

Interrupt Source Interrupt

Condition

Return Register Return Instruc-
tion

IVT level

PEx/PEy Fixed-Point ALU/MUL overflow STKYx/y RTI 23, FIXI

Floating-Point ALU/MUL over-
flow

STKYx/y RTI 24, FLTOI

Floating-Point ALU/MUL under-
flow

STKYx/y RTI 25, FLTUI

Floating-Point ALU/MUL invalid STKYx/y RTI 26, FLTII

Arithmetic Exception Acknowledge

After an exception has been detected the ISR routine needs to clear the flag bit as shown in the following example.
  
ISR_ALU_Exception:
bit tst STKYx AVS; /* check condition */
IF TF jump ALU_Float_Overflow;
bit tst STKYx AOS; /* check condition */
IF TF jump ALU_Fixed_Overflow;
ALU_Fixed_Overflow:
bit clr STKYx AOS; /* clear sticky bit */
rti;
ALU_Float_Overflow:
bit clr STKYx AVS; /* clear sticky bit */
rti;

NOTE: Interrupt service routines for arithmetic interrupts (FIXI, FLTOI, FLTUI and FLTII) must clear the ap-
propriate STKYx or STKYy bits to clear the interrupt. If the bits are not cleared, the interrupt is still active
after the return from interrupt (RTI).

SIMD Computation Exceptions

If one of the four fixed-point or floating-point exceptions is enabled, an exception condition on one or both proces-
singelements generates an exception interrupt. Interrupt service routines (ISRs) must determine which of the proces-
singelements encountered the exception. Returning from a floating-point interrupt does not automatically clear the
STKY state. Program code must clear the sticky bits in both processing element's sticky status (REGF_STKYX and
REGF_STKYY) registers as part of the exception service routine. For more information, see Interrupt Branch Mode
in the Program Sequencer chapter.

Arithmetic Exceptions
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4   Program Sequencer

The program sequencer is responsible for the control flow of programs and data within the processor. The sequencer
controls nonsequential program flows such as jumps, calls, and loop instructions. The sequencer is closely connected
to the system interface, DAGs, and a special type of cache, called conflict instruction cache.

NOTE: The SHARC+ core provides instruction and data caches, which are not available on previous SHARC pro-
cessors. The instruction and data caches reduce average latency of instruction and data accesses from sys-
tem L2 memory or from external memories. By comparison, the conflict instruction cache reduces latency
of instruction access due only to instruction accesses conflicting with a data access over PM bus. For more
information, see Instruction-Conflict Cache Control.

The program sequencer controls program flow, as shown in the Program Flow figure, by constantly providing the
address of the next instruction to be fetched for execution. Program flow in the processors is mostly linear, with the
processor executing instructions sequentially. This linear flow varies occasionally when the program branches due to
nonsequential program structures, such as those described below. Nonsequential structures direct the processor to
execute an instruction that is not at the next sequential address following the current instruction.
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Figure 4-1: Program Flow
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Features
The sequencer controls the following operations.

• Loops. One sequence of instructions executes several times with zero overhead or significantly reduced pipeline
overhead (when compared to software loop).

• Subroutines. The processor temporarily breaks sequential flow to execute instructions from another part of pro-
gram memory.

• Jumps. Program flow is permanently transferred to another part of program memory.

• Interrupts. Subroutines in which a runtime event (not an instruction) triggers the execution of the routine.

• Idle. An instruction that causes the processor to cease operations and hold its current state until an interrupt
occurs. Then, the processor services the interrupt and continues normal execution.

• ISA or VISA instruction fetches. The fetch address is interpreted as an ISA (NW address, traditional) or VISA
instruction (SW address) this allows fast switching between both instruction types.

• Direct Addressing. Provides data address specified as absolute value in instruction.

The sequencer manages execution of these program structures by selecting the address of the next instruction to exe-
cute. As part of its process, the sequencer handles the following tasks:

• Increments the fetch address

• Maintains stacks

• Evaluates conditions

• Decrements the loop counter

• Calculates new addresses

• Maintains a special instruction cache known as instruction-conflict cache

• Predicts branches using the branch target buffer

• Interrupt control

To accomplish these tasks, the sequencer uses the blocks shown in the Sequencer Control Diagram figure. The se-
quencer's address multiplexer selects the value of the next fetch address from several possible sources. The fetch ad-
dress enters the instruction pipeline. The fetch address is the 24-bit address of the instruction currently being fetch-
ed, decoded, and executed. The program counter, coupled with the program counter stack, stores return addresses
and top-of-loop addresses. All addresses generated by the sequencer are 24-bit program memory instruction address-
es.

Features
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Figure 4-2: Sequencer Control Diagram

Functional Description
The sequencer uses the blocks shown in the Sequencer Control Diagram figure to execute instructions. The se-
quencer's address multiplexer selects the value of the next fetch address from several possible sources. These registers
contain the 24-bit addresses of the instructions currently being fetched, decoded, and executed. 

Instruction Pipeline

The program sequencer determines the next instruction address by examining both the current instruction being
executed and the current state of the processor. The branch predictor unit examines each fetch address to determine
whether it is a branch instruction. If the unit detects a branch instruction, the unit provides an address of the likely
next instruction. If no conditions require otherwise, the processor fetches and executes instructions from memory in
sequential order.

To achieve a high execution rate while maintaining a simple programming mode, the processor employs an 11 stage
interlocked pipeline, shown in the Instruction Pipeline Processing Stages table, to process instructions and simplify
programming models. All possible hazards are controlled by hardware.

The legacy Instruction Set Architecture (ISA) instructions are addressed using normal word (NW) address space,
whereas Variable Instruction Set Architecture (VISA) instructions are addressed using short word (SW) address
space. Switching between traditional ISA and VISA instruction spaces occurs automatically when branches (JUMP/
CALL or interrupts) take the execution from ISA address space to VISA address space or vice versa; no changes to
mode registers are required.

NOTE: The processor always emerges from reset in ISA mode, so the interrupt vector table must always reside in
ISA address space.

Functional Description
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The processor controls the fetch address, decode address, and program counter (REGF_FADDR, REGF_DADDR,
and REGF_PC) registers which store the Fetch1, decode, and execution phase addresses of the pipeline.

Table 4-1: Instruction Pipeline Processing Stages

Stage Stage ISA

Fetch1 F1 In this stage, the appropriate instruction address is chosen from various sources and driven
out to memory. The instruction address is matched with the instruction-conflict cache to
generate a condition for cache miss/hit in case the PM bus is busy for a data access. The
next NW address is auto incremented by one.

NOTE: VISA Extension: Next SW address is auto incremented by three for every 48-bit
fetch

Fetch2 F2 Memory data and instruction/conflict cache access stages.

Fetch3 F3

Fetch4 F4 This stage is the data phase of the instruction fetch-memory access wherein the data address
generator (DAG) performs some amount of pre-decode. Based on a hit or miss in the con-
flict cache, the instruction is read from conflict cache/driven from the memory instruction
data bus.

NOTE: VISA Extension: Stores 3 x 16-bit instruction data into the IAB buffer and
presents 1 instruction/cycle to the decoder

Decode1 D1 The instruction is decoded and various conditions that control instruction execution are
generated. The main active units in this stage are the DAGs, which generate the addresses
for various types of functions like data accesses (load/store) and indirect branches. DAG
pre-modify (M+I) operation is performed. For a cache miss, instruction data read from
memory are loaded into the instruction-conflict cache.

NOTE: VISA Extension: Decode Visa instruction; store its length information in short
words.

Decode2 D2

Memory access 1
(address)

M1 The addresses generated by the DAGs in the previous stage are driven to the memory
through memory interface logic. The addresses for the branch operation are made available
to the fetch unit. The target address predicted by BP/BTB is validated for unconditional
branch instructions. For instruction branches (Call/Jump) the address is forwarded to the
Fetch1 stage.

Memory access 2 M2

Memory access 3 M3

Memory access 4
(data/execute 1)

M4/E1 Memory access returns data for load operation. All the fixed point ALU and shifter instruc-
tions complete operations. First half of the floating point operations and multiplication op-
erations complete.

Execute2 E2 Second half of the two cycle compute operations complete. Results of computations, mem-
ory read operations are written back to destination registers. For conditional branch in-
structions, predictions made by BP/BTB are validated.

NOTE: VISA Extension: Executing VISA instructions the PC value is incremented by
1, 2, or 3; depending on length information from the Instruction decode.

Functional Description

4–4 SHARC+ Core Programming Reference



VISA Instruction Alignment Buffer (IAB)

The IAB, shown in the Instruction Alignment Buffer figure, is a 5 short-word (5 x 16-bit words) capacity FIFO that
is part of the program sequencer. The IAB is responsible for buffering 48 bits of code at a time from memory per
cycle and presenting one instruction per core clock cycle (CCLK) to the execution unit. When the instruction is
shorter than 48 bits, the IAB keeps the unused bits for the next cycle. When the IAB determines that it has no room
to accommodate 48 more bits from memory, it stalls the fetch engine. Consequently, the average fetch bandwidth
for executing VISA instructions is less than 48 bits per cycle.

FROM
MEMORY

16

48

16 16 16

TO
DECODER

2x48 DELAY
REGISTERS

LSBMSBIAB

16
“concatenate”

Figure 4-3: Instruction Alignment Buffer

A decode of the instruction indicates the length of the instruction in unit of short words. At the end of the current
decode cycle, the short words that are part of the current instruction are discarded and the remaining bits are shifted
left to align at the MSB of IAB. The three fetched short words in the following cycle are concatenated to the existing
bits of IAB. The next instruction, therefore, is always available in MSB aligned fashion. Because the fetch operations
being processed must complete (even after the sequencer stalls the fetch engine), added instruction storage is provid-
ed through two 48-bit delay registers.

Linear Program Flow

In the sequential program flow, when one instruction is being executed, the next ten instructions that follow are
being processed in other stages of the instruction pipeline. Sequential program flow usually has a throughput of one
instruction per cycle.

The ISA/VISA Linear Flow 48-bit Instructions Only table illustrates how the instructions starting at address n are
processed by the pipeline. While the instruction at address n is being executed, the subsequent instructions from n
+1 to n+10 are being processed in the subsequent stages of instruction pipeline from M4 to F1 stages respectively.
Note that---when executing ISA code---the instruction addresses are NW addresses.

Table 4-2: ISA Linear Flow 48-bit Instructions Only

cycles 1 2 3 4 5 6 7 8 9 10 11 12

E2 n n+1

M4 n n+1 n+2

Instruction Pipeline
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Table 4-2: ISA Linear Flow 48-bit Instructions Only (Continued)

cycles 1 2 3 4 5 6 7 8 9 10 11 12

M3 n n+1 n+2 n+3

M2 n n+1 n+2 n+3 n+4

M1 n n+1 n+2 n+3 n+4 n+5

D2 n n+1 n+2 n+3 n+4 n+5 n+6

D1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7

F4 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

F3 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

F2 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10

F1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11

When executing VISA instructions, the instruction addresses are SW addresses. The sequencer always fetches 48-bits
(3 short words) in each fetch operation. The fetch addresses always increment by 3. But, the PC may increment by
1, 2, or 3 based on the length of the instructions.

NOTE: On memory space boundaries, the instruction fetch does not halt and continues to fetch next address.

Direct Addressing

Similar to the DAGs, the sequencer also provides the data address for direct addressing types as shown in the follow-
ing example.

R0 = DM(NW_Address);   /* sequencer generated data address */
PM(NW_Address) = R7:   /* sequencer generated data address */

as compared to the DAG:

R0 = DM(I0,M0);   /* DAG1 generated data address */
PM(I8,M8) = R7:   /* DAG2 generated data address */

For more information, see the Data Address Generators chapter.

Illegal System Accesses Conditions

If the SHARC+ core as requester performs a system completer access (to peripherals, memories) via the system cross-
bar, the requests traverse through the system crossbar as follows.

1. The completer receives the request, grants and forwards it to the system crossbar.

2. The system fabric acknowledges and forwards the grant to the system core requester.

Once the core accepts the grant it executes the next instruction. In ADSP-SC58x product based systems illegal con-
ditions may be caused by:

• access to disabled peripherals

Instruction Pipeline
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• access to enabled unpopulated peripherals

• access to unavailable/private SMMR addresses

• access to secure completers (handled by the SPU/SMPU)

These violation conditions may lead to halt the entire requester-completer path because the completer does not
grant the request (system crossbar and few cycles later the core requester is stalled). To prevent illegal access condi-
tions, use the SMPU instances for exception handling and the system watchdogs for stall recognition. See also Com-
pleter Ports Warning.

Variation In Program Flow
While sequential execution takes one core clock cycle per instruction, nonsequential program flow can potentially
reduce the instruction throughput. Nonsequential program operations include:

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Functional Description

To manage these variations, the processor uses several mechanisms, primarily branch prediction and hardware stacks,
which are described in the following sections.

Hardware Stacks

If the programmed flow varies (nonsequential and interrupted), the processor requires hardware or software mecha-
nisms (stacks; see the Core Stack Overview table) to support changes of the regular program flow. The SHARC core
supports three hardware stack types which are implemented outside of the memory space and are used and accessed
for any nonsequential process. The stack types are:

• Program count stack  Used to store the return address (call, IVT branch, do until).

• Status stack  Used to store some context of status registers.

• Loop Stack for address and count  Used for hardware looping (unnested and nested). This stack is described in
Loop Sequencer section.

The SHARC+ core does not have a hardware stack (a memory area dedicated to the sole purpose of stack storage).
The DAG architecture allows programmers to implement a software stack, using the DAG instruction types: push
(post-modify) and pop (pre-modify).

NOTE: The stacks are fully controlled by hardware. Manipulation of these stacks by using explicit PUSH/POP
instructions and explicit writes to the REGF_PCSTK, REGF_LADDR, and REGF_CURLCNTR registers
may affect the correct functioning of the loop.

Variation In Program Flow
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Table 4-3: Core Stack Overview

Attribute PC Stack Loop Address Stack Loop Count Stack Status Stack

Stack Size 30 x 32 bits 6 x 32 bits 6 x 32 bits 15 x 3 x 32 bits

Top Entry Return Address, top of
loop address

Loop End Address Loop iteration count MODE1

ASTATx/ASTATy

Empty Flag PCEM LSEM SSEM

Full Flag PCFL LSOV SSOV

Stack Pointer PCSTKP No No

Exception IRQ SOVFI SOVFI SOVFI

Automated Access

Push Condition CALL,

IVT branch

DO UNTIL

DO UNTIL IVT Branch (for all inter-
rupts except EMUI and
RSTI)

Pop Condition RTS, RTI CURLCNTR = 1 or COND = true RTI (for all interrupts ex-
cept EMUI and RSTI)

Manual Access

Register Access PCSTK LADDR CURLCNTR MODE1STK

Explicit Push Push PCSTK Push Loop Push STS

Explicit Pop Pop PCSTK Pop Loop Pop STS

PC Stack Access

The sequencer includes a program counter (PC) stack pointer, as shown in the Sequencer Control Diagram figure.
At the start of a subroutine or loop, the sequencer pushes return addresses for subroutines (CALL instructions with
RTI/RTS) and top-of-loop addresses for loops (DO/UNTIL instructions) onto the PC stack. The sequencer pops
the PC stack during a return from interrupt (RTI), return from subroutine (RTS), and a loop termination. 

The program counter (PC) register is the last stage in the instruction pipeline. It contains the 24-bit address of the
instruction the processor executes on the next cycle. The PC stack register (REGF_PCSTK) stores return addresses
and top-of-loop addresses.

NOTE: Compared to ADSP-214xx processors, the PC stack register size on the SHARC+ processor has been en-
larged to 32-bits. Additional bits store various other information required for proper instruction sequenc-
ing.

PC Stack Status

The PC stack is 30 locations deep. The stack is full when all entries are occupied, is empty when no entries are
occupied, and is overflowed if a push occurs when the stack is full.

The following bits in the REGF_STKYX registers indicate the PC stack full and empty states.

Hardware Stacks
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• PC stack full. Bit 21 (REGF_STKYX.PCFL) indicates that the PC stack is full (=1) or not full (=0). This bit
is not sticky and is cleared by a pop.

• PC stack empty. Bit 22 (REGF_STKYX.PCEM) indicates that the PC stack is empty (=1) or not empty (=0).
This bit is not sticky and is cleared by a push.

To prevent a PC stack overflow, the PC stack full condition generates the (maskable) stack overflow interrupt
(REGF_IMASKP.SOVFI). This interrupt occurs when the PC stack has 29 of 30 locations filled (the almost full
state). The PC stack full interrupt occurs at this point because the PC stack full interrupt service routine needs that
last location for its return address.

PC Stack Manipulation

The REGF_PCSTK register contains the top entry on the PC stack. This register is readable and writable by the
core. Reading from and writing to the REGF_PCSTK register does not move the PC stack pointer. Only a stack
push or pop performed with explicit instructions moves the stack pointer. The REGF_PCSTK register contains the
value 0x7FFF FFFF when the PC stack is empty. A write to the REGF_PCSTK register has no effect when the PC
stack is empty. The Program Counter Stack Register (PCSTK) section in the Registers appendix lists the bits in this
register.

The address of the top of the PC stack is available in the PC stack pointer register (REGF_PCSTKP) . The value of
this register is zero when the PC stack is empty, is 1 through 30 when the stack contains data, and is 31 when the
stack overflows. A write to the REGF_PCSTKP register takes effect after one cycle of delay. If the PC stack is over-
flowed, a write to the register has no effect. For example, a write to REGF_PCSTKP = 3 deletes all entries except the
three oldest.

PC Stack Access Priorities

Since the architecture allows manipulation of the stack, simultaneous stack accesses may occur (writes to the
REGF_PCSTK register during a branch). In such a case the REGF_PCSTK register access has higher priority over
the push operation from the sequencer.

Status Stack Access

The sequencer's status stack eases the return from branches by eliminating some service overhead like register saves
and restores as shown in the following example.

CALL fft1024;        /* Where fft1024 is an address label */
fft1024: push sts;   /* save MODE1/ASTATx/y registers */
instruction;
instruction;
pop sts;             /* re-store MODE1/ASTATx/y registers */
rts;

For all interrupts except EMUI and RSTI, the sequencer automatically pushes the REGF_ASTATX,
REGF_ASTATY, and REGF_MODE1 registers onto the status stack. When the sequencer pushes an entry onto the
status stack, the processor uses the MMASK register to clear the corresponding bits in the REGF_MODE1 register. All
other bit settings remain the same. See the example in Interrupt Mask Mode.

Hardware Stacks
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NOTE: The REGF_MODE1STK register provides access to the REGF_MODE1 data in the top-level entry of the
status stack.

The sequencer automatically pops the REGF_ASTATX and REGF_ASTATY registers from the status stack during
the return from interrupt instruction (RTI). In one other case, JUMP (CI), the sequencer pops the stack. For more
information, see Interrupt (Pseudo) Self-Nesting.

Pushing the REGF_ASTATX, REGF_ASTATY, and REGF_MODE1 registers preserves the status and control bit
settings. This allows a service routine to alter these bits with the knowledge that the original settings are automatical-
ly restored upon return from the interrupt.

The top of the status stack contains the current values of the REGF_ASTATX, REGF_ASTATY, and
REGF_MODE1 registers. Explicit PUSH or POP instructions (not reading and writing these registers) are used to
move the status stack pointer. 

Status Stack Status

The status stack is fifteen locations deep. The stack is full when all entries are occupied, is empty when no entries are
occupied, and is overflowed if a push occurs when the stack is already full. Bits in the REGF_STKYX registers indi-
cate the status stack full and empty states as describe below.

• Status stack overflow. Bit 23 (REGF_STKYX.SSOV) indicates that the status stack is overflowed (=1) or not
overflowed (=0). This is a sticky bit.

• Status stack empty. Bit 24 ()REGF_STKYX.SSEM indicates that the status stack is empty (=1) or not empty
(=0). This bit is not sticky, cleared by a push.

Both REGF_ASTATX and REGF_ASTATY register values are pushed/popped regardless of SISD/SIMD mode.

Instruction Driven Branches

One type of nonsequential program flow that the sequencer supports is branching. A branch occurs when a JUMP
or CALL instruction moves execution to a location other than the next sequential address. For descriptions on how
to use JUMP and CALL instructions, see the Instruction Set Types and Computation Types chapters. Briefly, these
instructions operate as follows.

• A JUMP or a CALL instruction transfers program flow to another memory location. The difference between a
JUMP and a CALL is that a CALL automatically pushes the return address (the next sequential address after the
CALL instruction) onto the PC stack. This push makes the address available for the CALL instruction's match-
ing return instruction, (RTS) in the subroutine, allowing an easy return from the subroutine.

• A RTS instruction causes the sequencer to fetch the instruction at the return address, which is stored at the top
of the PC stack. The two types of return instructions are return from subroutine (RTS) and return from inter-
rupt (RTI). While the RTS instruction only pops the return address off the PC stack, the RTI pops the return
address and: 

1. Clears the interrupt's bit in the interrupt latch register (REGF_IRPTL) and the interrupt mask pointer
register (REGF_IMASKP).

Hardware Stacks
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This action lets another interrupt be latched in the REGF_IRPTL register and the interrupt mask pointer
(REGF_IMASKP) register.

2. Pops the status stack

The following are parameters that can be specified for branching instructions.

• JUMP and CALL instructions can be conditional. The program sequencer can evaluate the status conditions to
decide whether or not to execute a branch. If no condition is specified, the branch is always taken.

• JUMP and CALL instructions can be immediate or delayed. Because of the instruction pipeline, an immediate
branch incurs a number of lost (overhead) cycles, which is dependent on depth of the pipeline. The 11-deep
pipeline in the SHARC+ core core incorporates a branch predictor and a branch target buffer (BP/BTB) to
reduce or in some cases, completely eliminate overhead cycles.

As shown in the Table 4-5 Pipelined Execution Cycles for Immediate Branch (Jump or Call) and Table
4-6 Pipelined Execution Cycles for Immediate Branch (RTI) tables the processor may abort the six instructions
after the branch, which are in the Fetch1 through Decode stages, while instructions are fetched from the
branched address. Due to presence of BP/BTB in the SHARC+ core, the overhead is 2 cycles in cases involving
nondelayed branches. A delayed branch reduces the overhead by two cycles by allowing the two instructions
following the branch to propagate through the instruction pipeline and execute, reducing the overhead to zero
cycles. For more information, see Delayed Branches (DB).

• JUMP instructions that appear within a loop or within an interrupt service routine have additional options. For
information on the loop abort (LA) option, see Functional Description. For information on the clear interrupt
(CI) option, see Interrupt (Pseudo) Self-Nesting.

Branch Prediction

The SHARC+ core pipeline contains 11 stages. As the pipeline stages increase, the data hazards may also increase by
directly impacting branch operations (mainly conditional branches). To lessen this effect, a hardware based Branch-
Predictor (BP) and Branch-Target-Buffer (BTB) are added to the SHARC+ core. The branch predictor is generally
used for conditional branches and it determines whether the branch is to be taken or not and provides the branch
target address. When the branch is predicted correctly, several stalls are prevented. An incorrect prediction causes the
same number of stalls as operation without the branch predictor.

For all branches except hardware loops, RTI and jump (CI), the BP/BTB also provides the branch target address. As
it encounters branches, the BP/BTB builds history in the BTB RAM for that instruction, and it uses this history to
predict the outcome of that branch when encountering the branch again. The sequencer verifies the prediction for a
conditional branch at the final stage of the pipeline. If the prediction is found to be incorrect, then the entire pipe-
line is flushed and the correct target instruction is fetched. For an unconditional branch, the sequencer verifies the
correctness of the target address in the address (M1) stage of pipeline. If the target address is found to be incorrect,
then the six stages of the pipeline from the Fetch (F1) to Decode (D2) stages are flushed and the correct target in-
struction is fetched.

Functional Description
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BTB Function

The BP/BTB RAM contains storage for 256 entries organized as 2-way x 128 entries with associated VALID and
LRU bits and has a 2-bit saturating counter for each entry. Each fetch address generated by the sequencer is checked
for a HIT. When a HIT occurs, the counter value determines the conditional prediction of a branch. The branch is
predicted taken when the counter value is 10 or 11, and not taken otherwise.

The counter value is updated when the prediction is validated. For a taken branch, it is incremented, otherwise it is
decremented. If a branch instruction was not a HIT in BP/BTB at the final stage of the pipeline, one of the entries
is updated with its relevant PC.

The target address and other relevant attributes follow much of the same principles as a traditional instruction or
data cache. LRU based replacement policy is followed. The Logical Organization of BP/BTB figure shows the struc-
ture of the BP/BTB. In order to ensure there is only one branch in the fetch stage, the last short word of two
branches should not fall in one 48-bit window when using VISA mode.

2-WAYS

BRANCH
TYPE TAG

(17 BITS)
TARGET

ADDRESS
(24 BITS)

2-BIT SATURATING
COUNTER

(BRANCH PREDICTOR)

Figure 4-4: Logical Organization of BP / BTB

BTB Features

Disable and Freeze: The entire functionality of the BP/BTB can be disabled by clearing the SHBTB_CFG.DIS bit.
The contents of the BP/BTB can also be frozen by setting the SHBTB_CFG.FRZ bit. When frozen, the BP/BTB
continues to make predictions and provide target addresses, but its contents are not changed.

Lock: When the relevant bit is set in the SHBTB_CFG register, fetch addresses for all of the branches that fall within
a range of addresses and their target addresses are recorded in the BP/BTB and are protected from being overwritten.
The range of the addresses are programmed in the SHBTB_LOCK_START and SHBTB_LOCK_END registers.

Predicting return from subroutine: Return from subroutines (target address is provided from top of PC stack) con-
stitute a large portion of all branches. Return addresses that are predicted based on history are generally incorrect
because the same subroutine is called from many places in the code. The BP/BTB attempts to improve the predic-
tion accuracy of this class of branches by taking target addresses from other more relevant sources than the BTB.
These features are controlled by setting of relevant bits in the SHBTB_CFG register, which are enabled by default. If
disabled, the target address is provided by BTB.

Functional Description
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BTB Scenarios When Prediction Is Ignored

There are situations when the BP/BTB does not look up the fetch address and/or does not provide a predicted ad-
dress.

1. If the BTB predicts any branch as taken, the next two fetch addresses are ignored by the BTB for prediction.

2. If a BTB update occurs during the E2 pipeline stage, the instruction in the F1 pipeline stage is ignored by the
BTB for prediction.

3. For instructions inside hardware loops, BTB masking occurs in the following situations.

a. Up to 10 instructions that occur in the pipeline after a do-until instruction are ignored by the BTB for
prediction.

b. Branch instructions that occur in the last three instructions of the loop are ignored by the BTB for predic-
tion.

c. Branch instructions whose target address falls within the last 10 instructions of a loop may be ignored by
the BTB for prediction. But, a JUMP to last 10 instructions of an E2-active loop is not masked from BTB
prediction, provided there is no RTS instruction in the pipeline above JUMP.

4. In the pipeline vicinity of stack updates, BTB masking occurs:

a. RTS instructions that occur while a CALL or another RTS are in the pipeline are ignored by the BTB for
prediction.

b. While a loop stack manipulation instruction is in the pipeline, all instructions are ignored by the BP/BTB
for prediction.

When a predictable branch appears at the 1st stage of pipeline, the predicted target address appears in the pipeline
after two cycles. These two cycles are to facilitate the execution of branches with delayed slots. For branches without
delayed slots, these two cycles are added. The Stalls in the Presence of Branch Target Buffer table shows the positions
of branch and its related target instruction in the pipeline in the presence of the BP/BTB.

Table 4-4: Stalls in the Presence of Branch Target Buffer

Branch Condition Target Prediction Loss of cycles with
BTB (Non delayed

branch/delayed
branch)

Maximum # of loss
of cycles without
BTB (Non delayed
branch/delayed
branch)

Prediction Actual

Conditional Taken Taken HIT 2/0 11/9

Conditional Not Taken Not Taken HIT 0 0

Conditional Taken Not Taken MISS 11/11 0

Conditional Not Taken Taken MISS 11/9 11/9

Conditional Taken Taken HIT 6/4 11/9

Unconditional Always Taken Always Taken HIT 2/0 6/4

Functional Description
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BTB Registers

The BTB registers include the SHBTB_CFG, SHBTB_LOCK_START, and SHBTB_LOCK_END. Details can be
found in the Register Descriptions section

WARNING: After a write operation to the SHBTB_CFG, SHBTB_LOCK_START or SHBTB_LOCK_END regis-
ters, there must be at least twelve 48-bit (ISA) instructions, which do not involve any change of flow.
Similarly, after a branch there must be at least twelve 48-bit instructions. These twelve instructions
should not cross memory boundary.

Restrictions Related to the Branch Predictor

Note the following restrictions related to the branch predictor.

1. After every branch here should be at least 12 48-bit valid instructions in the code. This extra code should not
cross a memory boundary

2. In case of VISA encoding, two branches (partially or fully) should not come in any 48-bit window.

Direct Versus Indirect Branches

Branches can be direct or indirect. With direct branches the sequencer generates the address while for indirect
branches, the PM data address generator (DAG2) produces the address.

Direct branches are JUMP or CALL instructions that use an absolute address (a constant address that does not
change at run time such as a program label) or use a PC-relative address. Some instruction examples that cause a
direct branch are: 

CALL fft1024;  /* Where fft1024 is an address label */
JUMP (pc,10);  /* Where (pc,10) is 1O-relative addresses after this instruction */

Indirect branches are JUMP or CALL instructions that use a dynamic address that comes from the DAG2. Note that
this is useful for reconfigurable routines and jump tables. For more information refer to the instruction set types
(9a/b and 10a). Two instruction examples that cause an indirect branch are:

JUMP (M8, I12); /* Where (M8, I12) are DAG2 registers */
CALL (M9, I13); /* Where (M9, I13) are DAG2 registers */

Restrictions for VISA Operation

The following should be noted for VISA operation:

• The program counter (PC) now points to short word address space. The PC increments by one, two or three in
each cycle depending on the actual size of an instruction (16-bit, 32-bit, or 48-bit).

• Any source files that use hard-coded numbers (as opposed to labels) for branch offsets in the relative offset field
may not function correctly. What used to be N 48-bit instructions could be a different number of VISA in-
structions.

Functional Description

4–14 SHARC+ Core Programming Reference



The use of absolute addressing in programs is discouraged and these programs should be re-written. For example,
the following code sequence that uses absolute addressing will work in traditional ISA operations, but has unexpect-
ed behavior if it is not re-written for VISA operation:

I9 = my_jump_table;
M9 =  2;
JUMP (M9, I9);

my_jump_table:
JUMP function0;
JUMP function1;
JUMP function2;
. . .

The value of 2 in the modify register represents a jump of two 48-bit instructions for ISA SHARC processors. In
VISA however, this represents two 16-bit locations.

When the instructions take up more than two 16-bit units, the jump could go to an invalid memory location (not
to the start of a valid VISA instruction). Good programming practices suggest discouraging such usage of "absolute
addressing".

Delayed Branches (DB)

The instruction pipeline influences how the sequencer handles delayed branches (tables Pipelined Execution Cycles
for Immediate Branch (Jump or Call) through Pipelined Execution Cycles for Delayed Branch (RTS(db)) in Branch
Listings). For immediate branches in which JUMP and CALL instructions are not specified as delayed branches
(DB), some instruction cycles are lost (NOP) as the instruction pipeline empties and refills with instructions from
the new branch. 

Branch Listings

As shown in the Pipelined Execution Cycles for Immediate Branch (Jump or Call) and Pipelined Execution Cycles
for Immediate Branch (RTI) tables, the processor aborts the six instructions after the branch, which are present from
fetch1 to decode2 stages. For a CALL instruction, the address of the instruction after the CALL is the return ad-
dress.

In the tables that follow, shading indicates aborted instructions, which are followed by NOP instructions.

Table 4-5: Pipelined Execution Cycles for Immediate Branch (Jump or Call)

cycles 1 2 3 4 5 6 7 8 9 10 11 12

E2 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j

M4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+1

M3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2

M2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

M1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

D2 n+1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

Direct Versus Indirect Branches
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Table 4-5: Pipelined Execution Cycles for Immediate Branch (Jump or Call) (Continued)

cycles 1 2 3 4 5 6 7 8 9 10 11 12

D1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

F4 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

F3 n+4 n+5 n+6 j j+1 j+2 j+3

F2 n+5 n+6 j j+1 j+2 j+3

F1 n+6 j j+1 j+2 j+3

n is the branching instruction and j is the instruction branch address

cycle 1: n+1 instruction is suppressed

cycle 2: n+2 instruction is suppressed

cycle 3: n+3 instruction is suppressed

cycle 4: n+4 instruction is suppressed

cycle 5: n+5 instruction is suppressed and for call , n+1 address is pushed on to PC stack

cycle 6: n+6 instruction is suppressed

Table 4-6: Pipelined Execution Cycles for Immediate Branch (RTI)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12

E2 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 r

M4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 r r+1

M3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2

M2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

M1 n n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

D2 n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

D1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

F4 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

F3 n+4 n+5 n+6 r r+1 r+2 r+3

F2 n+5 n+6 r r+1 r+2 r+3

F1 n+6 r r+1 r+2 r+3

n is the branching instruction and r is the instruction at the return address

cycle 1: n+1 instruction is suppressed.

cycle 2: n+2 instruction is suppressed

cycle 3: n+3 instruction is suppressed

cycle 4: n+4 instruction is suppressed

cycle 5: n+5 instruction is suppressed and r address is popped from PC stack

Direct Versus Indirect Branches
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Table 4-6: Pipelined Execution Cycles for Immediate Branch (RTI) (Continued)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12

cycle 6: n+6 instruction is suppressed

Table 4-7: Pipelined Execution Cycles for Delayed Branch (JUMP or Call)

cycles 1 2 3 4 5 6 7 8 9 10 11 12

E2 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j

M4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+1

M3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2

M2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

M1 n n+1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

D2 n+1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

D1 n+2 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

F4 n+3 n+4 n+5 n+6 j j+1 j+2 j+3

F3 n+4 n+5 n+6 j j+1 j+2 j+3

F2 n+5 n+6 j j+1 j+2 j+3

F1 n+6 j j+1 j+2 j+3

n is the branching instruction and j is the instruction branch address

cycle 2: branch target address "j" is fetched in fetch1 stage

cycle 3: n+3 instruction is suppressed

cycle 4: n+4 instruction is suppressed

cycle 5: n+5 instruction is suppressed and for call, n+1 address is pushed on to PC stack

cycle 6: n+6 instruction is suppressed

Table 4-8: Pipelined Execution Cycles for Delayed Branch (RTS(db))

Cycles 1 2 3 4 5 6 7 8 9 10 11 12

E2 n-4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 r

M4 n-3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 r r+1

M3 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2

M2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

M1 n n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

D2 n+1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

D1 n+2 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

F4 n+3 n+4 n+5 n+6 r r+1 r+2 r+3

Direct Versus Indirect Branches
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Table 4-8: Pipelined Execution Cycles for Delayed Branch (RTS(db)) (Continued)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12

F3 n+4 n+5 n+6 r r+1 r+2 r+3

F2 n+5 n+6 r r+1 r+2 r+3

F1 n+6 r r+1 r+2 r+3

n is the branching instruction and r is the instruction at the return address

cycle 2: branch return address "r" is fetched in fetch1 stage

cycle 3: n+3 instruction is suppressed

cycle 4: n+4 instruction is suppressed

cycle 5: n+5 instruction is suppressed and r address is popped from PC stack

cycle 6: n+6 instruction is suppressed

In JUMP and CALL instructions that use the delayed branch (DB) modifier, four instruction cycles are lost in the
instruction pipeline. This is because the processor executes the two instructions after the branch and the rest (four)
are aborted while the instruction pipeline fills with instructions from the new location. This is shown in the sample
code below.

jump (pc, 3) (db):
instruction 1;
instruction 2;

As shown in the Pipelined Execution Cycles for Delayed Branch (JUMP or Call) and Pipelined Execution Cycles for
Delayed Branch (RTS(db)) tables, the processor executes the two instructions after the branch and the rest (four) are
aborted, while the instruction at the branch address is being processed at the M1 to E2 stages of the instruction
pipeline. In the case of a CALL instruction, the return address is the seventh address after the branch instruction.
While delayed branches use the instruction pipeline more efficiently than immediate branches, delayed branch code
can be harder to implement because of the instructions between the branch instruction and the actual branch. This
is described in the Restrictions When Using Delayed Branches section.

Atomic Execution of Delayed Branches

Delayed branches and the instruction pipeline also influence interrupt processing. Because the delayed branch in-
struction and the two instructions that follow it are atomic, the processor does not immediately process an interrupt
that occurs between a delayed branch instruction and either of the two instructions that follow. Any interrupt that
occurs during these instructions is latched and is not processed until the branch is complete.

This may be useful when two instructions must execute atomically (without interruption), such as when working
with semaphores. In the following example, instruction 2 immediately follows instruction 1 in all situations:

jump (pc, 3) (db):
instruction 1;
instruction 2;

Branch Listings
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Note that during a delayed branch, a program can read the PC stack register or PC stack pointer register. This read
shows the return address on the PC stack has already been pushed or popped, even though the branch has not yet
occurred.

IDLE Instruction in Delayed Branch

An interrupt is needed to come out of the IDLE instruction. If a program places an IDLE instruction inside the
delayed branch the processor remains in the idled state because interrupts are latched but not serviced until the pro-
gram exits a delayed branch.

Restrictions When Using Delayed Branches

Besides being more challenging to code, delayed branches impose some limitations that stem from the instruction
pipeline architecture. Because the delayed branch instruction and the two instructions that follow it must execute
sequentially, the instructions in the two locations that follow a delayed branch instruction cannot be any of those
described below.

NOTE: Development software for the processor should always flag the operations described below as code errors in
the two locations after a delayed branch instruction.

Two Subsequent Delayed Branch Instructions

Normally it is not valid to use two conditional instructions using the (DB) option following each other. But the
execution is allowed when these instructions are mutually exclusive:

If gt jump (pc, 7) (db);
If le jump (pc, 11) (db); 

As a general rule, if a branch is taken with a (DB) modifier (an unconditional branch or condition being true) then
it's (DB) slot instructions should not have any branch evaluating to true or be a unconditional branch.

Other Jumps or Branches

These instructions cannot be used when they follow a delayed branch instruction. This is shown in the following
code that uses the JUMP instruction.

jump foo(db);
jump my(db);
r0 = r0+r1;
r1 = r1+r2;

In this case, the delayed branch instruction r1 = r1+r2, is not executed. Further, the control jumps to my in-
stead of foo, where the delayed branch instruction is the execution of foo.

The exception is for the JUMP instruction, which applies for the mutually exclusive conditions EQ (equal), and NE
(not equal). If the first EQ condition evaluates true, then the NE conditional jump has no meaning and is the same
as a NOP instruction as shown below.

if eq jump label1 (db);
if ne jump label1 (db);

Branch Listings
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nop;
nop;

Explicit Pushes or Pops of the PC Stack

In this case a push of the PC stack in a delayed branch is followed by a pop. If a value is pushed in the delayed
branch of a call, it is first popped in the called subroutine. This is followed by an RTS instruction.

call foo (db);    /* first push because of call */
push PCSTK;       /* second push due to PCSTK */
nop;
foo;

The following instructions are executed prior to executing the RTS to return the to instruction foo.

pop PCSTK;
RTS (db);
nop;
nop;

If pushing the PC stack, a stack pop must be performed first, followed by an RTS instruction. If a PCSTK is pop-
ped inside a delayed call, the return address is lost. The program control returns to an unpredictable instruction
when the RTS is executed at the end of the subroutine.

NOTE: Manipulation of these stacks by using PUSH/POP instructions and explicit writes to these stacks may af-
fect the correct loop function.

Writes to the PCSTK or PCSTKP Registers Inside a Delayed Call

If a program writes to the PC stack in the delay slots of a call, the value that is pushed onto the PC stack (due to the
call) is overwritten by the value that the program writes to the PC stack. When a program performs an RTS, the
program returns to the address written to the PC stack and does not return to the address pushed while branching to
the subroutine. The following example demonstrates this operation.

[0x90100] call foo3 (db);
[0x90101] PCSTK = 0x90200;
[0x90102] nop;
[0x90103] nop;

The value 0x90103 is pushed onto the PC stack, while the value 0x90200 is written to the REGF_PCSTK register.
Accordingly, the value 0x90103 is overwritten by the value 0x90200 in the PC stack. When the program executes an
RTS, the return address is 0x90200 and not 0x90103.

Operating Mode

This section provides information on the operating modes (branching, masking, and nesting) that occur during in-
terrupt-related variations in program flow.

These descriptions of branching, masking, and nesting variations all assume that the SHARC+ core is operating in
interrupts enabled mode; the REGF_MODE1.IPERREN bit is set, enabling the interrupt controller.

Variation In Program Flow
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Interrupt Branch Mode

Interrupts are a special case of subroutines triggered by an event at runtime and are also another type of nonsequen-
tial program flow that the sequencer supports. Interrupts may stem from a variety of conditions, both internal and
external to the processor. In response to an interrupt, the sequencer processes a subroutine call to a predefined ad-
dress, called the interrupt vector. The processor assigns a unique vector to each type of interrupt and assigns a priori-
ty to each interrupt based on the Interrupt Vector Table (IVT) addressing scheme.

The core event controller (CEC) is enabled by setting the global REGF_MODE1.IRPTEN bit. An internal inter-
rupt can occur due to arithmetic exceptions, stack overflows, or circular data buffer overflows. Several factors control
the processor's response to an interrupt. When an interrupt occurs, the interrupt is synchronized and latched in the
interrupt latch register (REGF_IRPTL).

The processor responds to an interrupt request if:

• The processor is executing instructions or is in an idle state

• The interrupt is not masked

• Interrupts are globally enabled

• A higher priority request is not pending

When the processor responds to an interrupt, the sequencer branches the program execution with a call to the corre-
sponding interrupt vector address. Within the processor's program memory, the interrupt vectors are grouped in an
area called the interrupt vector table (IVT). The interrupt vectors in this table are spaced at 4-instruction intervals.
Longer service routines can be accommodated by branching to another region of memory. Program execution re-
turns to normal sequencing when the return from interrupt (RTI) instruction is executed. Each interrupt vector has
associated latch and mask bits. 

The following example uses delayed branches to reduce latency.

ISR_PARI: rti;
          rti;
          rti;
          rti;
ISR_ILOPI: instruction; /* IVT branch address */
          jump ISR (db);
          instruction;
          instruction;
ISR_CB7I: rti;
          rti;
          rti;
          rti;

Interrupt Processing Stages

To process an interrupt, the program sequencer:

1. Outputs the appropriate interrupt vector address.

Operating Mode
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2. Pushes the current PC value (the return address) onto the PC stack.

3. Pushes the current value of the REGF_ASTATX/REGF_ASTATY and REGF_MODE1 registers onto the status
stack.

4. Resets the appropriate bit in the interrupt latch register (REGF_IRPTL register).

5. Alters the interrupt mask pointer bits (REGF_IMASKP register) to reflect the current interrupt nesting state,
depending on the nesting mode. The REGF_MODE1.NESTM bit determines whether all the interrupts or only
the lower priority interrupts are masked during the service routine.

At the end of the interrupt service routine, the sequencer processes the RTI instruction and performs the following
sequence.

1. Returns to the address stored at the top of the PC stack.

2. Pops this value off the PC stack.

3. Pops the status stack.

4. Clears the appropriate bit in the interrupt mask pointer register (REGF_IMASKP).

Interrupt Categories

The three categories of interrupts are listed below and shown in the Interrupt Process Flow figure.

• Non maskable interrupts (RESET or emulator)

• Maskable interrupts (core or system)

• Software interrupts (core)

Except for reset and emulator, all interrupt service routines should end with a RTI instruction. After reset, the PC
stack is empty, so there is no return address. The last instruction of the reset service routine should be a JUMP to the
start of the main program.

Interrupt Branch Mode
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Figure 4-5: Interrupt Process Flow

The sequencer supports masking an interrupt or latching an interrupt, but does not support responding to it. Except
for the RESET and EMU interrupts, all interrupts are maskable. If a masked interrupt is latched, the processor re-
sponds to the latched interrupt if it is later unmasked. Interrupts can be masked globally or selectively. Bits in the
REGF_MODE1 and REGF_IMASK registers control interrupt masking.

All interrupts are masked at reset except for the non-maskable reset and emulator.

Sequencer Interrupt Response

The processor responds to interrupts in three stages:

1. Synchronization (1 cycle)

2. Latching and recognition (1 cycle)

3. Branching to the interrupt vector table (11 instruction cycles)

If the branch is taken from internal memory, the 11 instruction cycles corresponds to 11 core clock cycles. If the
branch is taken from external memory, the 11 instruction cycles may span over many more clock cycles depending
on the actual source of the instruction and the state and configuration of the system.

The Pipelined Execution Cycles for Interrupt Based During Single Cycle Instruction table shows the pipelined execu-
tion cycles for interrupt processing.

Interrupt Categories
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Table 4-9: Pipelined Execution Cycles for Interrupt Based During Single Cycle Instruction

cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E2 n-2 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 v v+1 v+2

M4 n-1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 v v+1 v+2

M3 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 v v+1 v+2

M2 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 v v+1 v+2

M1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 v v+1 v+2

D2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 v v+1 v+2

D1 n+4 n+5 n+6 n+7 n+8 n+9 n+10 v v+1 v+2

F4 n+5 n+6 n+7 n+8 n+9 n+10 v v+1 v+2

F3 n+6 n+7 n+8 n+9 n+10 v v+1 v+2

F2 n+7 n+8 n+9 n+10 v v+1 v+2

F1 n+8 n+9 n+10 v v+1 v+2

cycle1: Interrupt occurs

cycle2: interrupt is latched and recognized, but not processed

cycle3: n is pushed onto PC stack

cycle4: fetch of vector address "v" starts

NOTE: If the sequencer is executing one of the uninterruptable sequences when an interrupt occurs, a variable
amount of delay occurs before the interrrupt vector starts executing.

For most interrupts, both internal (core) and external (system), only one instruction is executed after the interrupt
occurs (and 11 instructions are aborted), before the processor fetches and decodes the first instruction of the service
routine.

If nesting is enabled and a higher priority interrupt occurs immediately after a lower priority interrupt, the service
routine of the higher priority interrupt is delayed until the first instruction of the lower priority interrupt's service
routine is executed. For more information, see Interrupt Nesting Mode.

Interrupt Processing

The next several sections discuss the ways in which the SHARC+ core processes interrupts.

Core Interrupt Sources

According the IVT table the core supports different groups of interrupts such as:

• Reset - hardware/software

• emulator - debugger, breakpoints

• core timer - high, low priority

Interrupt Branch Mode
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• illegal memory access and other illegal conditions - unaligned forced long word, SMMR space, illegal opcode,
parity error, and others

• stack exceptions - PC, Loop, Status

• SECI - interrupts generated by system (SEC allows local system channel priority)

• DAGs - Circular buffer wrap around

• Arithmetic exceptions - fixed-point, floating-point

• Software interrupts - programmed exceptions

Note that the interrupt priorities of the core are fixed and cannot be changed.

The interrupt latch bits in the REGF_IRPTL register correspond to interrupt mask bits in the REGF_IMASK
register. In both registers, the interrupt bits are arranged in order of priority. The interrupt priority is from 0 (high-
est) up to 31 (lowest). Interrupt priority determines which interrupt must be serviced first, when more than one
interrupt occurs in the same cycle. Priority also determines which interrupts are nested when the processor has inter-
rupt nesting enabled. For more information, see Interrupt Nesting Mode and the Core Interrupt Control appendix.

Latching Interrupts

When the processor recognizes an interrupt, the processor's interrupt latch register (REGF_IRPTL) sets a bit (latch)
to record that the interrupt occurred. The bits set in these registers indicate interrupts that are currently being latch-
ed and are pending for execution. Because these registers are readable and writable, any interrupt except reset
(RSTI) and emulator (EMUI) can be set or cleared in software.

Throughout the execution of the interrupt's service routine, the processor clears the latch bit during every cycle.
This prevents the same interrupt from being latched while its service routine is executing. After the RTI instruction,
the sequencer stops clearing the latch bit.

If necessary, an interrupt can be reused while it is being serviced by disabling this automatic clearing of the latch bit.

Interrupt Acknowledge

Every software routine that services core/system interrupts must clear the signaling interrupt request in the respective
interrupt channel. The individual channels provide customized mechanisms for clearing interrupt requests.

For system interrupts, refer to the processor-specific hardware reference manual.

Interrupt (Pseudo) Self-Nesting

When an interrupt occurs, the sequencer sets the corresponding bit in the REGF_IRPTL register. During execution
of the service routine, the sequencer keeps this bit cleared which prevents the same interrupt from being latched
while its service routine is executing. If necessary, programs may reuse an interrupt while it is being serviced. Using a
jump clear interrupt instruction, (JUMP (CI)) in the interrupt service routine clears the interrupt, allowing its
reuse while the service routine is executing.

NOTE: A different way of self-nesting is employed only for SECI (system event controller interrupt). For more
information, see Self-Nesting for the System Event Controller Interrupt (SECI).

Interrupt Branch Mode
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The JUMP (CI) instruction reduces an interrupt service routine to a normal subroutine, clearing the appropriate
bit in the interrupt latch and interrupt mask pointer registers and popping the status stack. After the JUMP (CI)
instruction, the processor stops automatically clearing the interrupt's latch bit, allowing the interrupt to latch again.
See the Pipelined Execution Cycles for Immediate Branch (Jump or Call) table in Branch Listings.

When returning from a subroutine that was entered with a JUMP (CI) instruction, a program must use a return
subroutine instruction (RTS), instead of using an RTI instruction. The following example shows an interrupt serv-
ice routine that is reduced to a subroutine with the (CI) modifier.

INSTR1;             /*  Interrupt entry from main program*/
JUMP(PC,4) (DB,CI); /*  Clear interrupt status*/
INSTR3;
INSTR4;
INSTR5;
INSTR6;
RTS;           /* Return from subroutine */

The JUMP(PC,4)(DB,CI) instruction only continues linear execution flow by jumping to the location PC +
4 (INSTR6). The two intervening instructions (INSTR3, INSTR4) are executed and INSTR5 is aborted be-
cause of the delayed branch (DB). This JUMP instruction is only an example-a JUMP (CI) can perform a JUMP
to any location.

This implementation is useful if two subsequent interrupt events are closer to each other than the execution time of
the ISR itself. If self-nesting is not used, the second interrupt event is lost. If used, the ISR itself should be coded
atomically, otherwise the second event forces the sequencer to immediately jump to the IVT location.

No Interrupt (Pseudo) Self-Nesting
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ISRx 
event

Latch 
ISRx event

ignored

ISRx

Main
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Figure 4-6: Interrupt (Pseudo) Self-Nesting

Self-Nesting for the System Event Controller Interrupt (SECI)

The mode bit, REGF_MODE2.SNEN bit, enables self-nesting interrupt mode for the SECI interrupt only. Self-
nesting requires an additional bit, REGF_MODE1.SINEST.

Interrupt Branch Mode
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NOTE: The System event controller (SECI) supports true interrupt nesting

1. The REGF_MODE2.SNEN bit enables self-nesting for SECI only.

• When REGF_MODE2.SNEN bit =1, REGF_IMASKP.SECI bit can latch even when SECI is currently
being serviced (is set in REGF_IMASKP register).

• If REGF_MODE1.IRPTEN =1, REGF_MODE1.NESTM =1 and REGF_MODE2.SNEN =1, and the
REGF_IMASKP.SECI bit is currently being serviced, the REGF_IMASKP.SECI bit is not masked
but lower priority interrupts are. If a higher priority interrupt interrupts the REGF_IMASKP.SECI bit
then it becomes masked.

2. The REGF_MODE1.SINEST and REGF_MODE1STK.SINEST bits controls whether
REGF_IMASKP.SECI bit is cleared and the interrupts that are implicitly masked in NESTM mode.

• When REGF_MODE2.SNEN, on vectoring to the SECI ISR, after automatically pushing the previous
value of the REGF_MODE1 resister, the REGF_MODE1.SINEST bit is automatically set.

• On executing RTI, when the current interrupt is SECI and REGF_MODE1STK.SINEST bit is set, the
REGF_IMASKP register and interrupt mask are not changed. Otherwise, the REGF_IMASKP and the
masked interrupts are modified as normal. After REGF_MODE1STK is tested, the RTI instruction pops
the mode stack as normal.

The interrupts masked implicitly in NESTM mode can always be calculated from the REGF_IMASKP register and
the REGF_MODE2.SNEN bit. When REGF_MODE2.SNEN =1 and the lowest numbered interrupt set in the
REGF_IMASKP register is SECI, all interrupts down to but not including SECI are masked. Otherwise, all inter-
rupts down to and including the lowest numbered bit set in the REGF_IMASKP register are masked, unless no bit
is set in the REGF_IMASKP register, indicating no interrupts are implicitly masked.

The global interrupt enable bit, REGF_MODE1.IRPTEN, and interrupt nesting enable bit,
REGF_MODE1.NESTM, take precedence over REGF_MODE2.SNEN. The SECI ISR is only interrupted by anoth-
er incoming SECI if REGF_MODE1.IRPTEN =1, REGF_MODE1.NESTM =1, and REGF_MODE2.SNEN =1.

Table 4-10: SNEN and NESTM Combination and its Effect

SNEN NESTM Effect

SECI Self Nesting*1 Higher Priority Interrupt
Nesting

0 0 NO NO

0 1 NO YES

1 1 YES YES

 

*1 SECI is not stored in IRPTL if already in an SEC IVR. So to avoid missing any SECI when already in an SEC IVR, self-nesting of
SECI must be enabled by setting SNEN bit in MODE2.
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Release from IDLE

The sequencer supports placing the processor in a low power halted state called idle. The processor is in this state
until an interrupt occurs. The execution of the ISR releases the processor from the idle state. When executing an
IDLE instruction (see the ISA/VISA Linear Flow 48-bit Instructions Only figure in Linear Program Flow and the
Pipelined Execution Cycles for IDLE Instruction table), the sequencer fetches six more instruction at the current
fetch address and then suspends operation. The processor's internal clock and core timer (if enabled) continue to
run while in the idle state. When an interrupt occurs, the processor responds normally after an eleven cycle latency
to fetch the first instruction of the interrupt service routine.

The processor's DMA engines are not affected by the IDLE instruction. DMA transfers to or from internal memory
continue uninterrupted.

NOTE: Idle instruction reduces the DMA bandwidth by 50% if executed from the same L1 bank in which DMA
operation happens.

NOTE: The debugger allows you to single step over the IDLE instruction in single step mode. This feature is ena-
bled by the emulator interrupt which is also a valid interrupt to release the processor from the IDLE in-
struction.

Table 4-11: Pipelined Execution Cycles for IDLE Instruction

cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

E2 n(idle) n+1

M4 n(idle) n+1 n+2

M3 n(idle) n+1 n+2 n+3

M2 n(idle) n+1 n+2 n+3 n+4

M1 n(idle) n+1 n+2 n+3 n+4 n+5

D2 n(id
le)

n+1 n+2 n+3 n+4 n+5 n+6

D1 n(id
le)

n+1 n+2 n+3 n+4 n+5 n+6 n+7

F4 n(id
le)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 v

F3 n(id
le)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 v v+1

F2 n(id
le)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 v v+1 v+2

F1 n(id
le)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 v v+1 v+2 v+3

cycle1:idle instruction is fetched at n

cycle14 : interrupt is latched and recognized

Interrupt Branch Mode
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Table 4-11: Pipelined Execution Cycles for IDLE Instruction (Continued)

cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

cycle16:interrupt branches to v

Causes of Delayed Interrupt Processing

Certain processor operations that span more than one cycle or which occur at a certain state of the sequencer can
delay interrupt processing. If an interrupt occurs during one of these operations, the processor synchronizes and
latches the interrupt, but delays its processing. The operations that have delayed interrupt processing are:

• During the start and termination of short loops encoded as F1 type.

• Up to four instructions after execution of DO..UNTIL.

• Up to nine instructions when loop terminates, that is, L-9 to L-1 instructions of unrolled short loop.

• Two instructions in delay slot of a delayed branch are uninterruptible.

• The last but one instruction in arithmetic loop is uninterruptible during the last iteration of the loop.

All cycles during a pipeline flush remain uninterruptible.

Interrupt Mask Mode

The SHARC+ core supports many different operating modes (SIMD, bit reversal, circular buffer, rounding). Inter-
rupt mask mode provides a mechanism that lets the core change its operating mode without performing an explicit
operation to perform masking through setting the REGF_MODE1 register bits. To accomplish this, a copy of the
REGF_MODE1 register is used to mask specific operating modes across interrupts.

Bits that are set in the REGF_MMASK register are used to clear bits in the REGF_MODE1 register when the process-
or's status stack is pushed. This effectively disables different modes when servicing an interrupt, or when executing a
PUSH STS instruction. The processor's status stack is pushed in two cases:

1. When executing a PUSH STS instruction explicitly in code.

2. When any interrupt occurs.

For example:

Before the PUSH STS instruction, the REGF_MODE1 register enabled the following bit configurations:

• Bit-reversing for register I8
• Secondary registers for DAG2 (high)

• Interrupt nesting

• ALU saturation

• SIMD

• Circular buffering

Interrupt Branch Mode
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The system needs to disable ALU saturation, SIMD, and bit-reversing for I8 after pushing the status stack then
pushing the REGF_MMASK register (these bit locations should = 1).

The value in the REGF_MODE1 register after PUSH STS instruction is:

• Secondary registers for DAG2 (high)

• Interrupt nesting enabled

• Circular buffering enabled

The other settings that were previously set in the REGF_MODE1 register remain the same. The only bits that are
affected are those that are set both in the REGF_MMASK and REGF_MODE1 registers. These bits are cleared after
the status stack is pushed.

ATTENTION: If the program does not make any changes to the REGF_MMASK register, the default setting auto-
matically disables SIMD when servicing any of the hardware interrupts mentioned above, or during
any push of the status stack.

Interrupt Nesting Mode

The sequencer supports interrupt nesting-responding to another interrupt while a previous interrupt is being serv-
iced. Bits in the REGF_MODE1and REGF_IMASKPregisters control interrupt nesting as described below.

The REGF_MODE1.NESTM bit directs the processor to enable (if 1) or disable (if 0) interrupt nesting.

When interrupt nesting is enabled, a higher priority interrupt can interrupt a lower priority interrupt's service rou-
tine (see Interrupt Nesting figure). Lower priority interrupts are latched as they occur, but the processor processes
them according to their priority after the nested routines finish.

The REGF_IMASKP register bits list the interrupts in priority order and provide a temporary interrupt mask for
each nesting level.

Operating Mode
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Figure 4-7: Interrupt Nesting

When interrupt nesting is disabled, a higher priority interrupt cannot interrupt a lower priority interrupt's service
routine. Interrupts are latched as they occur and the processor processes them in the order of their priority, after the
active routine finishes.

Programs should change the interrupt nesting enable bit (REGF_MODE1.NESTM) only while outside of an inter-
rupt service routine or during the reset service routine.

ATTENTION: If nesting is enabled and a higher priority interrupt occurs immediately after a lower priority inter-
rupt, the service routine of the higher priority interrupt is delayed. This delay allows the first instruc-
tion of the lower priority interrupt routine to be executed, before it is interrupted (see Interrupt Nest-
ing figure).

When servicing nested interrupts, the processor uses the interrupt mask pointer (REGF_IMASKP) to create a tem-
porary interrupt mask for each level of interrupt nesting, but the REGF_IMASK value is not effected. The processor
changes REGF_IMASKP each time a higher priority interrupt interrupts a lower priority service routine.

The bits in REGF_IMASKP correspond to the interrupts in their order of priority. When an interrupt occurs, the
processor sets its bit in the REGF_IMASKP. If nesting is enabled, the processor uses REGF_IMASKP to generate a
new temporary interrupt mask, masking all interrupts of equal or lower priority to the highest priority bit set in
REGF_IMASKP and keeping higher priority interrupts the same as in the REGF_IMASK. When a return from an
interrupt service routine (RTI) is executed, the processor clears the highest priority bit set in REGF_IMASKP and
generates a new temporary interrupt mask.

The processor masks all interrupts of equal or lower priority to the highest priority bit set in the REGF_IMASKP.
The bit set in the REGF_IMASKP that has the highest priority always corresponds to the priority of the interrupt
being serviced.

Operating Mode
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ATTENTION: The entire set of the REGF_IMASKP registers are for interrupt controller use only. Modifying these
bits interferes with the proper operation of the interrupt controller.

Loop Sequencer

The program sequencer includes special hardware to execute zero or low-overhead loops. The relevant state machine
is activated when a DO..UNTIL instruction executes. The state machine manages all the resources associated with
hardware loops such as loop counters, stacks and others. The number of times a loop iterates can be controlled by a
hardware counter (LCNTR) or by a flag in the REGF_ASTATX and REGF_ASTATY registers.

The main role of the sequencer is to generate the address for the next instruction fetch. In normal program flow, the
next fetch address is the previous fetch address plus one (plus three in VISA). When the program deviates from this
standard course, (for example with calls, returns, jumps, loops) the program sequencer uses a special logic. In cases
of program loops, the sequencer logic:

• Updates the PC stack with the top of loop address.

• Updates the loop stack with the address of the last instruction of the loop.

• Initializes the REGF_LCNTR and REGF_CURLCNTR registers and updates the loop counter stack, if the loop
is counter based ( do until lce ).

• Generates the loop-back (go to the beginning of loop) and loop abort (come out of loop, fetch next instruction
from “last instruction of loop plus one” address) signals, according to defined termination condition.

• Generates the abort signals to suppress some of the extra fetched instructions (in certain cases of loops, some
unwanted instructions may get fetched).

• Handles interrupts without distorting the intended loop-sequencing (until or unless interrupt service routine
deliberately manipulates the status of loop-sequencer resources).

A loop occurs when a DO/UNTIL instruction instructs the processor to repeat a sequence of instructions until a
condition tests true or indefinite by using FOREVER as termination condition. The SHARC+ core automatically
evaluates the loop termination condition and modify the program counter (REGF_PC) register appropriately. This
significantly speeds up execution of loops by eliminating flushed cycles in a pipelined processor. In many cases, the
number of lost cycles are completely eliminated.

Loop Categories

Based on the termination criteria of a loop, loops are categorized as follows:

• Counter based loop – These are started by a DO...UNTIL LCE instruction. Counter based loops are com-
prised of instructions that are set to run a specified number of iterations. These iterations are controlled by a
loop counter register (REGF_LCNTR). The REGF_LCNTR register is a non memory-mapped universal regis-
ter that is initialized to the count value and the loop counter expired (LCE) instruction is used to check the
termination condition. Expiration of LCE signals that the loop has completed the number of iterations as per
the count value in the REGF_LCNTR register.

Variation In Program Flow
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• Arithmetic Loops – these loops are started with conditions other than LCE. The sequencer iterates the instruc-
tions in the loop body until the specified condition tests true.

Counter based loops are handled by the loop state machine in one of the following modes:

• E2-active mode: REGF_CURLCNTR is decremented and is tested for zero when last instruction of the loop is in
E2 stage of the pipeline (default loop). Any loop is by default of E2-active type. Because the pipeline already
contains the instructions from loop for the next iteration, on completion of loop, the entire pipeline is flushed,
and fetch of instructions beyond loop body is started. Consequently, these loops have the overhead of an elev-
en-cycle pipeline flush on completion of the loop.

• F1-active mode: REGF_CURLCNTR is decremented and is tested for zero when the last instruction of the loop
is in F1 stage of the pipeline. On expiry of the counter (completion of the loop), the fetch of instruction be-
yond the loop is started in next cycle. Consequently, loops executed in this mode do not waste any cycles on
completion.

The F1-active mode of execution is preferred due to its zero overhead. However, presence of other branches in the
pipeline interfere with working of the loop state machine. So, for proper functioning, only loops that do not contain
branch or IDLE in last eleven instructions of the loop body are executed in F1-active mode. The mode in which a
counter based loop executes is determined by the opcode of the DO…UNTIL LCE instruction.

NOTE: The assembler generates appropriate opcode after examination of the loop body.

Counter-Based F1-Active Loop

For F1-active counter-based loop, the current loop counter decrement (REGF_CURLCNTR) and termination condi-
tions check happens in F1 stage of pipe.

Entering Loop Execution

When executing DO/UNTIL instruction, the program sequencer pushes the address of the loops last instruction and
its termination condition onto the loop address stack. The sequencer also pushes the top-of-loop address, (the ad-
dress of the instruction following the DO/UNTIL instruction), and the loop type onto the PC stack.

The processor tests the termination condition and decrements the counter when the end-of-loop address is in F1
stage, so that the next fetch either exits the loop or returns to the top. If the termination condition is not satisfied,
the processor re-fetches the instruction from the top-of-loop address stored on the top of PC stack.

Table 4-12: Loop Length 11, Entering into Loop Execution

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E2 n(DO) n+1 n+2 n+3 n+4

M4 n(DO) n+1 n+2 n+3 n+4 n+5

M3 n(DO) n+1 n+2 n+3 n+4 n+5 n+6

M2 n(DO) n+1 n+2 n+3 n+4 n+5 n+6 n+7

M1 n(DO) n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8
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Table 4-12: Loop Length 11, Entering into Loop Execution (Continued)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D2 n(DO) n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

D1 n(DO) n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10

F4 n(DO) n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11

F3 n(DO) n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1

F2 n(DO) n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2

F1 n(DO) n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3

cycle 1: DO UNTIL enters F1 stage

cycle 11: DO UNTIL reaches E2 stage and pushes loop state machine information on to the loop stack and the PC stack

cycle 12: end-of-loop address "n+11" appears in F1 stage, triggering loop back logic to occur in the next cycle

cycle 13: loop back occurs, resulting in top-of-loop address "n+1" appearing in F1 stage

Terminating Loop Execution

If the termination condition is true, the sequencer fetches the next instruction after the end of the loop and pops the
loop stack and PC stack.

For F1-active counter-based loop, termination condition is checked whenever a valid end-of-loop address appears in
F1-stage of pipe. And termination condition is considered true when the REGF_CURLCNTR register value is one
and valid end-of-loop address is present in F1 stage of pipe. Since the termination condition is checked in F1-stage
of pipe, F1-active counter-based loop causes zero cycle overhead.

Table 4-13: Loop Length 11, Terminating Loop Execution

Cycles 1 2 3 4 5

E2 n(DO) n+1 n+2 n+3 n+4

M4 n+1 n+2 n+3 n+4 n+5

M3 n+2 n+3 n+4 n+5 n+6

M2 n+3 n+4 n+5 n+6 n+7

M1 n+4 n+5 n+6 n+7 n+8

D2 n+5 n+6 n+7 n+8 n+9

D1 n+6 n+7 n+8 n+9 n+10

F4 n+7 n+8 n+9 n+10 n+11

F3 n+8 n+9 n+10 n+11 n+12

F2 n+9 n+10 n+11 n+12 n+13

F1 n+10 n+11 n+12 n+13 n+14
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Table 4-13: Loop Length 11, Terminating Loop Execution (Continued)

Cycles 1 2 3 4 5

cycle 2: end-of-loop address "n+11" appears in F1 stage. Loop termination condition is checked, and (if true) loop abort happens. Then,
the next consecutive address "n+12" (which is next to the end-of-loop) is fetched.

Counter-Based E2-Active Loop

E2-active loop is similar to F1-active loop in terms use of Loop stack, PC stack and loopback. But the counter decre-
ment and checking of expiry of the counter is performed when the last instruction of the loop body is in E2-stage of
pipe.

Entering Loop Execution

Similar to F1-active loop, E2-active loop also saves information on Loop stack and PC stack.

The processor tests the termination condition and decrements the counter when the end-of-loop address is in E2
stage. The loop back of E2-active loop also happens in F1 stage of pipe similar to F1-active loop. Whenever last-of-
loop address appears in F1 stage of pipe and loop has not yet terminated, loopback happens.

Table 4-14: Loop Length 11, Entering into Loop Execution

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E2 n(D
O)

n+1 n+2 n+3 n+4

M4 n(D
O)

n+1 n+2 n+3 n+4 n+5

M3 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6

M2 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6 n+7

M1 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

D2 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

D1 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10

F4 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11

F3 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1

F2 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2
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Table 4-14: Loop Length 11, Entering into Loop Execution (Continued)

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

F1 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3

cycle 1: DO UNTIL enters F1 stage

cycle 11: DO UNTIL reaches E2 stage and pushes loop state machine information on to the loop stack and PC stack

cycle 12: end-of-loop address "n+11" appears in F1 stage, triggers loop back logic to occur on the next cycle

cycle 13: loop back occurs, and top-of-loo address "n+1" appears in F1 stage

Terminating Loop Execution

If the termination condition is true, the sequencer pops the loop stack and PC stack, and immediately fetches in-
struction which is next to end-of-loop address, in the next cycle.

For E2-active C-Loop, termination condition is checked whenever a valid end-of-loop address appears in E2-stage of
pipe. And termination condition is considered true when CURLCNTR value is one and valid end-of-loop address is
present in E2 stage of pipe. Since the termination condition is checked in E2 stage of pipe, instructions present in
the pipe from M4 to F1 stages are flushed if the termination condition is found true. Consequently all E2-active
loops have this overhead of eleven lost cycles.

Table 4-15: Loop Length 11, Entering into Loop Execution

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E2 n(D
O)

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7

M4 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

M3 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

M2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10

M1 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11

D2 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+12

D1 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+12 n+13

F4 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+12 n+13

F3 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+12 n+13

F2 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+12 n+13

F1 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+12 n+13

cycle 12: end-of-loop address appears in E2 stage. The counter decrements, and the termination conditions is checked. If the termination
condition tests true, loop termination happens, and the loop stack and PC stack are popped.
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Table 4-15: Loop Length 11, Entering into Loop Execution (Continued)

Cy-
cles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cycle 14: after loop termination, the next address "n+12" to the end-of-lop address is fetched in the F1 stage.

Loop Categorization into F1-Active or E2-Active

Determination of F1-active or E2-active mode for a hardware counter based loop is based on the opcode. The as-
sembler identifies loops which are safe to execute in F1-active mode and uses the F1-active opcode. Loops not hav-
ing a change of flow (jump, call etc.) or IDLE in last eleven instructions of the loop body are safe to execute as F1-
active mode.

Short loops with few iterations where the total number of instructions of fully unrolled loop is less than eleven, al-
ways execute as E2-active mode irrespective of opcode. The REGF_MODE2.SLOWLOOP bit can be set to override
the opcode of F1-active loop.

NOTE: With the REGF_MODE2.SLOWLOOP bit =1, all counter based loops execute in E2-active mode. This
mode bit is intended to be primarily used by the debugger.

Arithmetic Loops

Arithmetic loops are loops where the termination condition in the DO/UNTIL loop is anything other than LCE. In
this type of loop, where the body has more than one instruction, the termination condition for loop length 3 and
above is checked when L-2nd instruction is in E2 stage of pipe. And for loop length 1 and 2, the termination condi-
tion is checked when the last instruction is in E2 stage of pipe. An example of an arithmetic loop is given below.

R7 = 14;
R6 = 10;
R5 = 6;
           
DO label UNTIL EQ;
R6 = R6 - 1;
R7 = R7 - 1;    /* if fetched EQ condition is tested */
R5 = R5 - 1;
nop;
nop;
Label: nop;     /* after loop termination R5 = 0; R6 = 4; R7 = 8;*/

If the termination condition tests false, the next instruction is fetched. If the termination condition tests true, one
more instruction (which is loop's 1st instruction) is allowed to execute and all the rest of the instructions in the
below stages of pipe are flushed. Also, the end-of-loop instruction is fetched in the F1 stage in the next cycle and
subsequent instructions (which are next to end-of-loop) are fetched in subsequent cycles.

NOTE: In nested arithmatic loops when the terminating condition is set for the outer loop during the execution of
a call instruction by the inner loop, the SHARC+ core iterates an arithmetic loop one additional time in
comparison to the 5-stage SHARC.

Loop Categories
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The Arithmetic Loop Length 11, Terminating Loop Execution table shows the execution cycles for an arithmetic
loop with eleven instructions.

Table 4-16: Arithmetic Loop Length 11, Terminating Loop Execution

Cycles 1 2 3 4 5 6 7 8 9 10 11 12

E2 n(DO) n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11

M4 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1

M3 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2

M2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3

M1 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4

D2 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5

D1 n+6 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6

F4 n+7 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7

F3 n+8 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

F2 n+9 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

F1 n+10 n+11 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+11

cycle 1: Do Until executes and pushes loop related information on the loop stack and PC stack

cycle 3: loop back occurs and top-of-loop address "=1" is fetched in F1 stage

cycle 10: A-loop termination condition is checked when loop 2nd instruction (for example, "n+9") is in E2 stage

cycle 11: after termination condition tests true, loop 1st instruction (for example, "n+10") is allowed to execute

cycle 12: endo-of-loop address (for example, "n+11") is fetched in F1 stage

Table 4-17: Arithmetic Loop Length 11, Terminating Loop Execution (continued)

Cycles 13 14 15 16 17 18 19 20 21

E2 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

M4 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+11

M3 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+11 n+12

M2 n+4 n+5 n+6 n+7 n+8 n+9 n+11 n+12 n+13

M1 n+5 n+6 n+7 n+8 n+9 n+11 n+12 n+13 n+14

D2 n+6 n+7 n+8 n+9 n+11 n+12 n+13 n+14 n+15

D1 n+7 n+8 n+9 n+11 n+12 n+13 n+14 n+15 n+16

F4 n+8 n+9 n+11 n+12 n+13 n+14 n+15 n+16 n+17

F3 n+9 n+11 n+12 n+13 n+14 n+15 n+16 n+17 n+18

F2 n+11 n+12 n+13 n+14 n+15 n+16 n+17 n+18 n+19

F1 n+12 n+13 n+14 n+15 n+16 n+17 n+18 n+19 n+20
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NOTE: For single instruction loops, the termination condition is checked in every cycle. For two-instruction
loops, the termination condition is checked when the end-of-loop instruction is executed. Since two more
instructions are always allowed to execute after the termination condition tests true, a single-instruction
loop executes for two more iterations and a two-instruction loop executes one more iteration before exiting
the loop.

Indefinite Loops

A DO FOREVER instruction executes a loop indefinitely, until an interrupt or reset intervenes as shown below.

DO label UNTIL FOREVER; /* pushed LCNTR onto Loop count stack */
R6 = DM(I0,M0);         /* pushed to PC stack */
R6 = R6 - 1;
IF EQ CALL SUB;
nop;
label: nop;             /* pushed to loop address stack */

Loop Resources

The sequencer provides a number of resources that support stack management and manipulation.

These resources include the following:

• Loop stack

• Loop address stack access

• Loop address stack status

• Loop address stack manipulation

• Loop counter stack access

• Loop counter stack status

• Loop counter stack manipulation

• Loop counter expired condition (for terminating counter-based loops)

Loop Stack

The loop controller supports a stack that controls saving various loop address and loop counts automatically. This is
required for nesting operations including loop abort calls or jumps.

NOTE: The loop controller uses the loop and program stack for its operation. Manipulation of these stacks by
using PUSH/POP instructions and explicit writes to these stacks may affect the correct functioning of the
loop.

Loop Address Stack Access

The sequencer's loop support, as shown in the Sequencer Control Diagram figure, includes a loop address stack. The
sequencer pushes the termination address, termination code and the loop type information (Cloop/Aloop/Forever)
onto the loop address stack when executing a DO/UNTIL instruction. For an F1-active loop the sequencer tests the
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termination condition when end-of-loop address is in F1 stage of pipe, the loop stack pops before the end-of-loop
address is excuted in E2-stage. If a program reads the REGF_LADDR register in the last ten instructions when loop
has terminated, the value is already the termination address for the next loop stack entry. For an E2-active loop,
since the termination condition is checked in E2 stage, the read REGF_LADDR value is always current loop stack
entry. 

Loop Address Stack Status

The loop address stack is six levels deep by 32 bits wide. A stack overflow occurs if a seventh entry (one more than
full) is pushed onto the loop stack. The stack is empty when no entries are occupied. Because the sequencer keeps
the loop stack and loop counter stack synchronized, the same overflow and empty status flags apply to both stacks.
These flags are in the sticky status register (REGF_STKYX). For more information on this register, see the STKYx
and STKYy Register Bit Descriptions (RW) table in the Registers appendix. For more information on how these flags
work with the loop stacks, see Loop Counter Stack Access. Note that a loop stack overflow causes a maskable inter-
rupt.

Loop Address Stack Manipulation

The REGF_LADDR register contains the top entry (tge) on the loop address stack. This register is readable and writ-
able over the DM data bus. Reading from and writing to the REGF_LADDR register does not move the loop address
stack pointer. Only a stack push or pop performed with explicit instructions moves the stack pointer. The
REGF_LADDR register contains the value 0xFFFF FFFF when the loop address stack is empty. The Loop Address
Stack Register (LADDR) table in the Registers appendix lists the bits in this register.

The PUSH LOOP instruction pushes the stack by changing the pointer only. It does not alter the contents of the
loop address stack. Therefore, the PUSH LOOP instruction should be usually followed by a write to the
REGF_LADDR register.

Loop Counter Stack Access

The sequencer's loop support, shown in the Sequencer Control Diagram figure in Features, also includes a loop
counter stack. The loop counter stack is six locations deep by 32 bits wide. The stack is full when all entries are
occupied, is empty when no entries are occupied, and is overflowed if a push occurs when the stack is already full.
Bits in the REGF_STKYX register indicate the loop counter stack full and empty states.

NOTE: A value of zero in the REGF_LCNTR register causes a loop to execute 232 times.

Loop Counter Stack Status

The loop counter stack is six locations deep by 32 bits wide. The stack is full when all entries are occupied, is empty
when no entries are occupied, and is overflowed if a push occurs when the stack is already full. Bits in the
REGF_STKYX register indicate the loop counter stack full and empty states. The Loop Address Stack Register
(LADDR) table in the Registers appendix lists the bits in the REGF_STKYX register. The following bits in the
REGF_STKYX register indicate the loop counter stack full and empty states.

• Loop stacks overflowed. Bit 25 (REGF_STKYX.LSOV) indicates that the loop counter stack and loop stack are
overflowed (if set to 1) or not overflowed (if set to 0)- LSOV is a sticky bit.

Loop Resources
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• Loop stacks empty. Bit 26 (REGF_STKYX.LSEM) indicates that the loop counter stack and loop stack are
empty (if set to 1) or not empty (if set to 0)-not sticky, cleared by a PUSH.

NOTE: The sequencer keeps the loop counter stack synchronized with the loop address stack. Both stacks always
have the same number of locations occupied. Because these stacks are synchronized, the same empty and
overflow status flags from the REGF_STKYX register apply to both stacks.

Loop Counter Stack Manipulation

The top entry in the loop counter stack always contains the current loop count. This entry is the
REGF_CURLCNTR register which is readable and writable by the core. Reading the REGF_CURLCNTR register
when the loop counter stack is empty returns the value 0xFFFF FFFF. A write to the REGF_CURLCNTR register
has no effect when the loop counter stack is empty.

Writing to the REGF_CURLCNTR register does not cause a stack push. If a program writes a new value to the
REGF_CURLCNTR, the count value of the loop currently executing is affected. When a DO/UNTIL LCE loop is
not executing, writing to REGF_CURLCNTR has no effect. Because the processor must use the REGF_CURLCNTR
to perform counter based loops, there are some restrictions as to when a program can write to the
REGF_CURLCNTR register. See Restrictions on Ending Loops for more information.

Loop Counter Expired (If Not LCE Condition) in Counter-Based Loops

Since a counter based loop can be either F1-active loop or E2-active loops, the REGF_CURLCNTR register value is
changed based on the presence of end-of-loop address either in F1-stage or in E2-stage. For a deterministic behavior
of IF NOT LCE condition it is advisable not to use this condition in the last eleven instruction of a counter based
loop.

Restrictions on Ending Loops

The sequencer's loop features (which optimize performance in many ways) limit the types of instructions that may
appear at or near the end of the loop. These restrictions include:

• For SHARC+ core pipeline increase, the natural extension of the LR rule is that it should be used if the call is
one of the last five instructions inside a loop. To keep the rule backward compatible, any RTS without LR will
also be treated as a RTS with a LR. This ensures that even if a call is placed at last 4th or 5th instruction inside
a loop and RTS for that call is not paired with LR, the loop counter is not decremented twice. (In 5-stage
pipeline SHARC products if a call is one of the last three instructions inside a loop, a RTS for that call had to
be paired with LR modifier to prevent the Loop counter from decrementing twice for the same iteration.)

• There is a one cycle latency between a multiplier status change and arithmetic loop abort (LA). This extra cycle
is a machine cycle, not an instruction cycle. Therefore, if there is a pipeline stall (due to external memory access
for example), then the latency is not applicable.

• An IF NOT LCE conditional instruction cannot be used as the instruction that follows a write to the
REGF_CURLCNTR register.

• The loop controller uses both the loop stack and the program control stack for its operation. Manipulation of
these stacks by using PUSH/POP instructions and explicit writes to these stacks may affect the correct function-
ing of the loop.

Loop Resources
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• The IDLE and EMUIDLE instructions should not be used in the last three instructions of any arithmetic loop.

Note that any modification of the loop resources (such as the PC stack, loop stack, and the REGF_CURLCNTR
register) within the loop may adversely affect the proper functioning of the looping operation and should be avoid-
ed. This is applicable even when the program execution branches to an interrupt service routine or a subroutine
from within a loop.

VISA-Related Restrictions on Hardware Loops

The last 11 instruction of a hardware loop must be encoded as legacy Instruction Set Architecture (ISA) instruc-
tions. These loop end instructions may not be encoded as Variable Instruction Set Architecture (VISA) instructions.

This restriction against VISA encoded instructions at the end of a loop is required for two reasons:

• To handle interrupts when the sequencer is fetching and executing the last few instructions.

• To reliably detect the fetch of the last instruction.

NOTE: As the last 11 instructions of a hardware loop must be encoded as ISA (traditional 48-bit) instructions, the
CrossCore Embedded Studio code-generation tools from Analog Devices automatically do encode these as
ISA instructions. For more information about ISA and VISA instructions, see Instruction Pipeline.

The assembler automatically identifies the last eight instructions of a hardware loop and treats them appropriately.

In cases of short loops (loops with a body shorter than 11 instructions), the above rule extends to state that all the
instructions in the loop are encoded as ISA instructions (left uncompressed).

Nested Loops

Signal processing algorithms like FFTs and matrix multiplications require nested loops. Nested loop constructs are
built using multiple DO/UNTIL instructions. If using counter based instructions, within the loop sequencer, two
separate loop counters operate:

• Loop counter (REGF_LCNTR) register has top level entry to loop counter stack

• Current loop counter (REGF_CURLCNTR) iterates in the current loop

The REGF_CURLCNTR register tracks iterations for a loop being executed, and the REGF_LCNTR register holds
the count value before the loop is executed. The two counters let the processor maintain the count for an outer loop,
while a program is setting up the count for an inner loop.

The loop counter stack is popped on termination of the loop. The cycle in which a loop is effectively terminated
depends on the type (F1- or E2-active) of the loop. When the loop counter stack is popped, the new top entry of the
stack becomes the REGF_CURLCNTR value—the count in effect for the executing loop.

Two examples of nested loops are shown in the Nested Counter-Based Loop and Nested Mixed-Base Loop examples.

Nested Counter-Based Loop

LCNTR = S, DO the_end UNTIL LCE;    /*outer Loop*/
Instruction;
Instruction;

Loop Sequencer
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LCNTR = N, DO the_end1 UNTIL LCE;   /*inner Loop */
           instruction;
the_end1:instruction;               /*inner loop end address */
the_end: instruction;               /*outer loop end address*/

Nested Mixed-Based Loop

DO the_end UNTIL EQ;                /*outer Loop*/
Instruction;
Instruction;
LCNTR = N, DO the_end1 UNTIL LCE;   /*inner Loop */
           instruction;
the_end1:instruction;               /*inner loop end address */
Instruction;
the_end: instruction;               /*outer loop end address*/

Example For Six Nested Loops

A DO/UNTIL instruction pushes the value of LCNTR onto the loop counter stack, making that value the new
CURLCNTR value. The following procedure and the Pushing the Loop Counter Stack for Nested Loops figure dem-
onstrate this process for a set of nested loops. The previous CURLCNTR value is preserved one location down in the
stack.

1. The processor is not executing a loop, and the loop counter stack is empty (LSEM bit =1). The program se-
quencer loads the REGF_LCNTR register with AAAA AAAA.

2. The processor is executing a single loop. The program sequencer loads LCNTR with the value BBBB BBBB
(LSEM bit =0).

3. The processor is executing two nested loops. The program sequencer loads the REGF_LCNTR register with the
value CCCC CCCC.

4. The processor is executing three nested loops. The program sequencer loads the REGF_LCNTR register with
the value DDDD DDDD.

5. The processor is executing four nested loops. The program sequencer loads the REGF_LCNTR register with
the value EEEE EEEE.

6. The processor is executing five nested loops. The program sequencer loads the REGF_LCNTR register with the
value FFFF FFFF.

7. The processor is executing six nested loops. The loop counter stack (LCNTR) is full (REGF_STKYX.LSOV bit
=1).

A read of the REGF_LCNTR register when the loop counter stack is full results in invalid data. When the loop
counter stack is full, the processor discards any data written to LCNTR.

Nested Loops
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Figure 4-8: Pushing the Loop Counter Stack for Nested Loops

Restrictions on Ending Nested Loops

The sequencer's loop features (which optimize performance in several ways) limit the types of instructions that may
appear at or near the end of the loop.

These restrictions include the following:

• Nested loops cannot use the same end-of-loop instruction address. The sequencer resolves whether to loop back
or not, based on the termination condition. If multiple nested loops end on the same instruction, the sequencer
exits all the loops when the termination condition for the current loop tests true. There may be other sequenc-
ing errors.

• Nested loops with an arithmetic loop as the outer loop must place the end address of the outer loop at least two
addresses after the end address of the inner loop.

• Nested loops with an arithmetic based loop as the outer loop that use the loop abort instruction, JUMP
(LA), to abort the inner loop, may not use JUMP (LA) to the last instruction of the outer loop.

Loop Abort

The hardware loop state machine maintains and manages various state information. Normally branches are allowed
within a loop body. It is allowed for these branches to even transfer control outside of the loop body. A CALL is an
example of this. For the purposes of the looped execution, these instructions executed even outside of loop body are
effectively part of the loop. Loops normally terminate when the specified loop termination condition tests true.

A special case of loop termination is the loop abort instruction, JUMP (LA). This instruction causes an automatic
loop abort when it occurs inside a loop. When the loop aborts, the sequencer pops the PC and loop address stacks
once. If the aborted loop was nested, the single pop of the stack leaves the correct values in place for the outer loop.
However, as only one pop is performed, the loop abort cannot be used to jump more than one level of loop nesting
as shown in the following listing.

Nested Loops
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/* Example: Loop Abort Instruction, JUMP (LA) */
            
LCNTR = N, DO the_end UNTIL LCE; /*Loop iteration*/
instruction;
instruction;
instruction;
instruction;
IF EQ JUMP LABEL(LA); /* jump outside of loop */
instruction;
the_end: instruction; /*Last instruction in loop*/         

NOTE: In 5-stage SHARC products and earlier, if a CALL is one of the last three instructions inside a loop, the
RTS instruction for that call had to be paired with a LR. This prevents the loop counter from decrement-
ing twice for the same iteration. The LR (loop re-entry) modifier for RTS has been deprecated in the
SHARC+ core. The situations where use of RTS(LR) was required have been eliminated by introducing
E2-active mode of execution of some of the loops.

Interrupt Driven Loop Abort

For servicing the interrupt, eleven instructions in the various stages of the pipeline are replaced with NOP instruc-
tions. Accordingly, the hardware loop logic freezes the REGF_CURLCNTR for the required fetch cycles on return
from an ISR. The hardware determines this based on the sequencer executing a RTI instruction.

The Pipeline Interrupt in a Loop table shows a pipeline where an interrupt is being serviced in a loop. e = end-of-
loop instruction, b = top-of-loop instruction. e-1 is the return address.

NOTE: There is one situation where an ISR returns into the loop body using the RTS instruction. This situation
occurs when JUMP (CI) is used to convert an ISR to a normal subroutine. Therefore, an RTS cannot
be used to determine that the sequencer branched off to a subroutine or ISR. For this reason, the hardware
sets an additional bit in the REGF_PCSTK register, before branching off to an ISR so that on return, ei-
ther with a RTI or JUMP (CI) + RTS CURLCNTR instruction can be frozen for required number of
cycles.

Table 4-18: Pipeline Interrupt in a Loop

Cy-
cles

1 2 3 4 5 6 7 8 ~ n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n
+10

n
+11

n
+12

E2 e-2 e-1 e RTI e-1

M4 e-2 e-1 e RTI e-1 e

M3 e-2 e-1 e RTI e-1 e b

M2 e-2 e-1 e RTI e-1 e b b+1

M1 e-1 e e-1 e b b+1 b+2

D2 e e-1 e b b+1 b+2

D1 e-1 e b b+1 b+2

Loop Abort
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Table 4-18: Pipeline Interrupt in a Loop (Continued)

Cy-
cles

1 2 3 4 5 6 7 8 ~ n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n
+10

n
+11

n
+12

F4 e-1 e b b+1 b+2

F3 v(IS
R)

e-1 e b b+1 b+2

F2 v(IS
R)

v+1 e-1 e b b+1 b+2

F1 v(IS
R)

v+1 v+2 e-1 e b b+1 b+2

cycle 4: interrupt is recognized; e-1 is pushed to PC stack; pipeline flushed

cycle 6: instruction from ISR is fetched in F1 stage

cycle n+1: PC returns back from ISR and e-1 is fetched in F1 stage. From CURLCNTR is frozen for required number of cycles.

Loop Resource Manipulation

The SHARC+ core prohibits any modification of loop resources, such as the REGF_PCSTK, REGF_LADDR, and
REGF_CURLCNTR registers within the loop (including subroutines and ISRs starting from a loop) as doing this
may adversely affect the proper function of the looping operation. The manipulation of these resources are allowed
only when it is done in accordance with the loop restrictions (for example, restrictions on ending loops and other
restrictions).

The loop hardware state machine maintains certain information of the ongoing loops on loop stack and PC stack.
The processor relies on this information for correct execution of loops under various conditions. Popping and push-
ing REGF_LADDR/REGF_CURLCNTR and REGF_PCSTK registers with new values generally interferes with
proper loop function. However, popping and pushing the loop and PC stack to temporarily vacate the stacks can
still be performed from an ISR by following the procedure described in Popping and Pushing Loop and PC Stack
From an ISR.

NOTE: A fundamental requirement for processors using a real-time operating system (RTOS) is support for con-
text switching. A context switch of the processor forces a save all core registers on the software stack, in-
cluding the core stack registers.

Popping and Pushing Loop and PC Stack From an ISR

Use the following sequence to pop and push REGF_LADDR/REGF_CURLCNTR and REGF_PCSTK to temporari-
ly vacate the stacks.

1. Pop LOOP and PCSTK after storing the value of the REGF_CURLCNTR, REGF_LADDR, and REGF_PC
registers.

2. Use the empty entry/entries of stacks.

3. Recreate the loops by performing the following steps in the proscribed sequence.

a. Push LOOP stack.

Loop Sequencer
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b. Load the value of REGF_CURLCNTR.

c. Load the REGF_LADDR.

d. Push the PCSTK.

e. Load the REGF_PC with the stored value.

The Sequence for Pop and Push of Two-deep Nested Loops code listing provides an example of the sequence of opera-
tions. The sequence of operations is critical and must be followed exactly. Any number of unrelated instructions may
be executed during step 2 of the sequence ("Use the empty entry/entries of stacks").

Interrupts should not be triggered during this sequence of operations. Disable the interrupts by clearing the
REGF_MODE1.IRPTEN bit. Consider the two cycles of effect latency before the restoration sequence, starting
with the first instruction of the sequence and ending with setting the REGF_MODE1.IRPTEN bit after the last
instruction in the sequence (following completion of restoration).

In the Sequence for Pop and Push of Two-deep Nested Loops example, REGF_LADDR is restored after
REGF_CURLCNTR. This order of restoration ensures that when REGF_LADDR is restored, the correct value of
loop count is available. At the time of REGF_LADDR restoration, the hardware recreates the information about the
exact characterization of the loop.

Sequence for Pop and Push of Two-deep Nested Loops

/* --- Step 1: Pop and Store --- */
R1 = LADDR;
R2 = CURLCNTR;
R3 = PCSTK;
POP LOOP;
POP PCSTK;
NOP;
R4 = LADDR;
R5 = CURLCNTR;
R6 = PCSTK;
POP LOOP;
POP PCSTK;
NOP;
/* --- Store the registers to memory here --- */
/* --- Step 2: Miscellaneous instruction or instructions related or unrelated to 
hardware loops --- */
/* --- Load the registers from memory here --- */
/* --- Step 3: Push and Load --- */
PUSH LOOP;
CURLCNTR = R5;
LADDR = R4;
PUSH PCSTK;
PCSTK = R6;
PUSH LOOP;
CURLCNTR = R2;
LADDR = R1;

Loop Resource Manipulation
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PUSH PCSTK;
PCSTK = R3;

Instruction-Conflict Cache Control

This section on instruction-conflict cache control describes a special type of cache that is related to instruction fetch.

Functional Description

The SHARC+ core has a traditional instruction conflict cache (Support for Super Harvard Architecture), and new
instruction/data caches. This section describes the traditional instruction conflict cache which affects internal mem-
ory only. For information about the instruction/data caches refer to the L1 Cache Controller chapter.

NOTE: The instruction conflict cache is the "cache" which is available as part of all generations of the SHARC
and SHARC+ cores. The instruction cache and data cache are available on the SHARC+ cores.

Instruction Data Bus Conflicts

A bus conflict occurs when the PM data bus, normally used to fetch an instruction in each cycle, is used to fetch an
instruction and to access data in the same cycle. If an instruction at the M1 stage uses the PM bus to access data, it
creates a conflict with the instruction fetch at the Fetch1 stage, assuming sequential executions.

In the event of such bus conflict, the bus operations are serialized. The instruction conflict cache stores only those
instructions whose fetch operation involves a bus conflict. In subsequent instance of fetch of these stored instruc-
tions, conflict-cache supplies the instruction, avoiding the bus conflict altogether.

Cache Miss

In the instruction PM(Ip,Mq) = Ureg, the data access over the PMD bus conflicts with the fetch of instruction
n+5 (shown in the PM Access Conflict table). In this case the data access completes first. This is true of any program
memory data access type instruction. This stall occurs only when the instruction to be fetched is not cached.

Table 4-19: PM Access Conflict

cycles 1 2 3 4 5 6 7

E2 pm(ip,mq)=ureg

M4 pm(ip,mq)=ureg n

M3 pm(ip,mq)=ureg n n+1

M2 pm(ip,mq)=ureg n n+1 n+2

M1 pm(ip,mq)=ureg n n+1 n+2 n+3

D2 pm(ip,mq)=ureg n n+1 n+2 n+3 n+4

D1 n+1 n+2 n+3 n+4 n+5

F4 n+2 n+3 n+4 n+5 n+6

F3 n+3 n+4 n+5 n+6 n+7

F2 n+4 n+5 n+6 n+7 n+8

Variation In Program Flow
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Table 4-19: PM Access Conflict (Continued)

cycles 1 2 3 4 5 6 7

F1 n+5 n+5 n+6 n+7 n+8 n+9

cycle2:n+5 instruction fetch postponed

cycle3:stall cycle

Note that the instruction-conflict cache stores the fetched instruction (n+5), not the instruction requiring the pro-
gram memory data access.

When the processor first encounters a bus conflict, it must stall for one cycle while the data is transferred, and then
fetch the instruction in the following cycle. To prevent the same delay from happening again, the processor automat-
ically writes the fetched instruction to the instruction-conflict cache. The sequencer checks the instruction cache on
every data access using the PM bus. If the instruction needed is in the cache, a cache hit occurs. The instruction
fetch from the cache happens in parallel with the program memory data access, without incurring a delay.

If the instruction needed is not in the cache, a cache miss occurs, and the instruction fetch (from memory) takes
place in the cycle following the program memory data access, incurring one cycle of overhead. The fetched instruc-
tion is loaded into the cache (if the cache is enabled and not frozen), so that it is available the next time the same
instruction (that requires program memory data) is executed.

The Instruction Cache Architecture figure shows a block diagram of the 2-way set associative instruction cache. The
instruction-conflict cache holds 32 instruction-address pairs. These pairs (or cache entries) are arranged into 16
(15-0) cache sets according to the four least significant bits (3-0) of their address. The two entries in each set (entry
0 and entry 1) have a valid bit, indicating whether the entry contains a valid instruction. The least recently used
(LRU) bit for each set indicates which entry was not placed in the cache last (0 = entry 0 and 1 = entry 1).

The cache places instructions in entries according to the four LSBs of the instruction's address. When the sequencer
checks for an instruction to fetch from the cache, it uses the four address LSBs as an index to a cache set. Within
that set, the sequencer checks the addresses of the two entries as it looks for the needed instruction. If the cache
contains the instruction, the sequencer uses the entry and updates the LRU bit (if necessary) to indicate the entry
did not contain the needed instruction.

Instruction Data Bus Conflicts
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Figure 4-9: Instruction Cache Architecture

When the instruction-conflict cache does not contain a needed instruction, it loads a new instruction and address
and places them in the least recently used entry of the appropriate cache set. The cache then toggles the LRU bit, if
necessary.

Cache Invalidate Instruction

The FLUSH CACHE instruction allows programs to explicitly invalidate the cache content by clearing all valid bits.
The execution of the FLUSH CACHE instruction is independent of the cache enable bit in the
REGF_MODE2.CADIS register.

The FLUSH CACHE instruction has a 1 cycle instruction latency while executing from internal memory and has a
2 cycle instruction latency while executing from external memory. Using an instruction that contains a PM data
access immediately following a FLUSH CACHE instruction is prohibited.

This instruction is required in systems using software overlay programming techniques. With these overlays, soft-
ware functions are loaded via DMA during runtime into the internal RAM. Since the cache entries are still valid
from any previous function, it is essential to flush all the valid cache entries to prevent system crashes.

Operating Modes

The following sections describe the instruction-conflict cache operating modes.

NOTE: After power-up and or reset, the cache content is not predicable in that it may contain valid/invalid in-
structions, be unfrozen and enabled. However, all LRU and valid bits are cleared. So after a processor pow-
er-up or reset, the cache performs only cache miss/cache entry until the same entry causes later hits.

Cache Restrictions

The following restrictions on instruction-conflict cache usage should be noted.

• If the REGF_MODE2.CAFRZ is set by instruction n, then this feature is effective from the n+2 instruction
onwards. This results from the effect latency of the REGF_MODE2 register.

• When a program changes the instruction-conflict cache mode, an instruction containing a program memory
data access must not be placed directly after a cache enable or cache disable instruction. This is because the

Functional Description
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processor must wait at least one cycle before executing the PM data access. A program should have a NOP (no
operation) or other non-conflicting instruction inserted after the cache enable or cache disable instruction.

Cache Disable

The cache disable bit (bit 4, REGF_MODE2.CADIS) directs the sequencer to disable the instruction-conflict cache
(if 1) or enable the instruction-conflict cache (if 0).

Note that the FLUSH CACHE instruction has a 1 cycle instruction latency while executing next Instruction/data
from internal memory and a 2 cycle instruction latency while executing next instruction/data from external memory.

Cache Freeze

The cache freeze bit (REGF_MODE2.CAFRZ) directs the sequencer to freeze the contents of the instruction-con-
flict cache (if 1) or let new entries displace the entries in the cache (if 0).

Freezing the cache prevents any changes to its contents-a cache miss does not result in a new instruction being stored
in the instruction-conflict cache. Disabling the cache stops its operation completely-all instruction fetches conflict-
ing with program memory data accesses are delayed. These functions are selected by the REGF_MODE2.CADIS
(cache enable/disable) and REGF_MODE2.CAFRZ bits.

GPIO Flags

The SHARC+ core has a number of general-purpose I/O flags. The I/O flags provide direct instruction support for
setting, resetting, or reading the state of these FLAG pins. The SHARC+ core Flag pins based on SHARC instruc-
tion set, (shown in the IF Condition Mnemonics table) are multiplexed with other peripheral pins in the Peripheral
Port block. Refer to the General-Purpose Port chapter in the product related hardware reference manual or the prod-
uct data sheet for the number of flag pins supported.

NOTE: Programs cannot change the output selects of the FLAGS register and provide a new value in the same
instruction. Instead, programs must use two write instructions—the first to change the output select of a
particular FLAG pin, and the second to provide the new value as shown.

bit set flags FLG2O; /* set flag2 as output */
bit clr flags FLG2;  /* set flag2 output low */

The FLAGS register is used to control all FLAGx pins. Based on FLAGS register effect latency and internal timings
there must be at least 4 wait states in order to toggle the same flag correctly as shown in the following example. The
total number of wait cycles can be more than four cycles, depending on the product. For total number of wait cycles,
refer to the specific product data sheet.

bit tgl flags FLG2;
nop; nop; nop; nop;  /* wait 4 cycles */
bit tgl flags FLG2;
nop; nop; nop; nop;  /* wait 4 cycles */
bit tgl flags FLG2;

Operating Modes
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Conditional Instruction Execution

Conditional instructions provide many options for program execution which are discussed in this section. There are
three types of conditional instructions:

• Conditional compute (ALU/Multiplier/Shifter)

• Conditional data move (reg-to-reg, reg-to-memory)

• Conditional branch (direct branch, indirect branch)

If the condition is evaluated as true, the operation is performed, if it is false, it gets aborted as shown in the example
below.

R10 = R12-R13;
If LT R0=R1+R2; /* if ALU less than zero, do computation */

If an if-then-else construct is used, the else evaluates the inverse of the if condition:

R10 = R12-R13;
If LT CALL SUB, ELSE R0=R1+R2; /* do computation if condition is false */

The processor records status for the PEx element in the REGF_ASTATX and REGF_STKYX registers and the PEy
element in the REGF_ASTATY and REGF_STKYY registers.

IF Conditions with Complements

Each condition that the processor evaluates has an assembler mnemonic. The condition mnemonics for conditional
instructions appear in the IF Condition Mnemonics table. For most conditions, the sequencer can test both true and
false (complement) states. For example, the sequencer can evaluate ALU equal-to-zero (EQ) and its complement
ALU not-equal-to-zero (NE).

Note that since the IF condition is optional, and if the condition is omitted from the instruction, the condition is
always true. 

Table 4-20: IF Condition Mnemonics

Condition From Description True If Mnemonic

ALU or exclusive access ALU = 0 or exclusive access suc-
cessful

AZ = 1*1 EQ

ALU ≠ 0 or exclusive access failed AZ = 0 NE

ALU ALU > 0 or unordered footnote*2

footnote*3

GT

ALU < 0 footnote*4 LT

ALU ≥ 0 or unordered footnote*5

footnote*6

GE

Variation In Program Flow
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Table 4-20: IF Condition Mnemonics (Continued)

Condition From Description True If Mnemonic

ALU ≤ 0 footnote*7 LE

ALU carry AC = 1 AC

ALU not carry AC = 0 NOT AC

ALU overflow AV = 1 AV

ALU not overflow AV = 0 NOT AV

Multiplier Multiplier overflow MV = 1 MV

Multiplier not overflow MV= 0 NOT MV

Multiplier sign MN = 1 MS

Multiplier not sign MN = 0 NOT MS

Shifter Shifter overflow SV = 1 SV

Shifter not overflow SV = 0 NOT SV

Shifter zero SZ = 1 SZ

Shifter not zero SZ = 0 NOT SZ

Shifter bit FIFO overflow*8 SF = 1 SF

Shifter bit FIFO not overflow SF = 0 NOT SF

System Register Bit test flag true BTF = 1 TF

Bit test flag false BTF = 0 NOT TF

Flag 3-0 Input Flag0 asserted Flag0 = 1 FLAG0_IN

Flag0 not asserted Flag0 = 0 NOT FLAG0_IN

Flag1 asserted Flag1 = 1 FLAG1_IN

Flag1 not asserted Flag1 = 0 NOT FLAG1_IN

Flag2 asserted*9 Flag2 = 1 FLAG2_IN

Flag2 not asserted *10 Flag2 = 0 NOT FLAG2_IN

Flag3 asserted Flag3 = 1 FLAG3_IN

Flag3 not asserted Flag3 = 0 NOT FLAG3_IN

Loop Sequencer Loop counter not expired CURLCNTR 1 NOT LCE*11

 

*1 Instruction type 3d/14d support exclusive access (modifier EX)

*2 ALU greater than (GT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 0

*3 The unordered condition arises from floating-point instructions in which an operand is NaN (Not a Number). Note that by the
inclusion of this case, the GT and GE conditions (GT and GE) differ from the IEEE 754 definitions.

*4 ALU less than (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 1

*5 ALU greater equal (GE) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 0

Conditional Instruction Execution
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*6 The unordered condition arises from floating-point instructions in which an operand is NaN (Not a Number). Note that by the
inclusion of this case, the GT and GE conditions (GT and GE) differ from the IEEE 754 definitions.

*7 ALU lesser or equal (LE) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 1

*8 For ADSP-214xx processors and beyond.

*9 Support for conditional selection of PEx or PEy.

*10 Support for conditional selection of PEx or PEy.

*11 Does not have a complement.
 

DO/UNTIL Terminations Without Complements

Programs should use FOREVER and LCE to specify loop (DO/UNTIL) termination. A DO FOREVER instruction
executes a loop indefinitely, until an interrupt or reset intervenes. There are some restrictions on how programs may
use conditions in DO UNTIL loops. For more information, see Restrictions on Ending Loops.

Table 4-21: DO/UNTIL Termination Mnemonics

Condition From Description True If Mnemonic

Loop Sequencer Loop counter expired REGF_CURLCNTR = 1 LCE

Always false (Do) Always FOREVER

Operating Modes

The following sections describe the operating modes for conditional instruction execution.

Conditional Instruction Execution in SIMD Mode

Because the two processing elements can generate different outcomes, the sequencer must evaluate conditions from
both elements (in SIMD mode) for conditional (IF) instructions and loop (DO/UNTIL) terminations. The process-
or records status for the PEx element in the REGF_ASTATX and REGF_STKYX registers and PEy element in
theREGF_ASTATY and REGF_STKYY registers.

NOTE: Even though the processor has dual processing elements PEx and PEy, the sequencer does not have dual
sets of stacks.

The sequencer has one PC stack, one loop address stack, and one loop counter stack. The status bits for stacks are in
the REGF_STKYX register and are not duplicated in the REGF_STKYY register.

The processor handles conditional execution differently in SISD versus SIMD mode. There are a number of ways
that conditionals differ in SIMD mode. These are described below and in the Conditional SIMD Execution Sum-
mary table.

• In conditional computation and data move (IF ... compute/move) instructions, each processing element exe-
cutes the computation/move based on evaluating the condition in that processing element. See the Instruction
Set Types chapter for coding information.

• In conditional branch (if ... jump/call) instructions, the program sequencer executes the jump/call based on a
logical AND of the conditions in both processing elements.

Conditional Instruction Execution
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• In conditional indirect branch (if ... pc, reladdr/Md, Ic) instructions with an ELSE clause, each processing ele-
ment executes the ELSE computation/data move based on evaluating the inverse of the condition (NOT IF) in
that processing element.

• Enhanced conditions for FLAG2_IN/NOT FLAG2_IN. These instruction conditions together with SISD/
SIMD modes enables selective condition for PEx or PEy unit. For more information, see Conditional Execu-
tion by Selection of Processing Unit X or Y.

Table 4-22: Conditional SIMD Execution Summary

Conditional Operation Conditional Outcome Depends On

Compute Operations Executes in each PE independently depending on condition test in
each PE

Register-to-register Move Ureg/CUreg to Ureg/CUreg (from com-

plementary pair*1 to complementary
pair)

Executes move in each PE (and/or memory) independently depend-
ing on condition test in each PE

Ureg to Ureg/CUreg (from uncomple-
mentary register to complementary
pair)

Executes move in each PE (and/or memory) independently depend-
ing on condition test in each PE; Ureg is source for each move

Ureg/CUreg to Ureg (from complemen-
tary pair to uncomplementary regis-

ter)*2)

Executes explicit move to uncomplementary universal register de-
pending on the condition test in PEx only; no implicit move occurs

Register-to-memory
Move

DAG post-modify Executes memory move depending on OR'ing condition test on
both PE's

DAG pre-modify Pre-modify operations always occur independent of the conditions

Branches and Loops Executes in sequencer depending on AND'ing condition test on
both PEs

 

*1 Complementary universal register pairs (CUreg) are registers with SIMD complements, include PEx/y data registers and US-
TAT1/2, USTAT3/4, ASTATx/y, STKYx/y, and PX1/2 Uregs.

*2 Uncomplementary registers are Uregs that do not have SIMD complements.
 

NOTE: SIMD must be disabled during bit FIFO operations.

Bit Test Flag in SIMD Mode

In SIMD mode, two independent bit tests can occur from individual registers as shown in the following example.

bit set mode1 PEYEN;
r2=0x80000000;
ustat1=r2;
bit TST ustat1 BIT_31; /* test bit 31 in ustat1/ustat2 */
if TF call SUB;        /* branch if both cond are true */
if TF r10=r10+1;       /* compute on any cond */

Conditional Instruction Execution in SIMD Mode

SHARC+ Core Programming Reference 4–55



Conditional Compute

While in SIMD mode, a conditional compute operation can execute on both processing elements, either element, or
neither element, depending on the outcome of the status flag test. Flag testing is independently performed on each
processing element. 

Conditional Data Move

The execution of a conditional (IF) data move (register-to-register and register-to/from-memory) instruction de-
pends on three factors:

• The explicit data move depends on the evaluation of the conditional test in the PEx processing element.

• The implicit data move depends on the evaluation of the conditional test in the PEy processing element.

• Both moves depend on the types of registers used in the move.

• For conditional broadcast instructions, the condition depends on the PEx status only.

Conditional Execution by Selection of Processing Unit X or Y

An application can select which execution unit X or Y should be active while executing a conditional computation.
The execution unit is selected using the REGF_MODE1.SELPE bit and using both conditional instructions IF
FLAG2_IN and IF NOT FLAG2_IN (or IF PEX and IF NOT PEX). If the REGF_MODE1.SELPE bit is set
then the instruction IF FLAG2_IN always performs the computation in PEx only, and the instruction IF NOT
FLAG2_IN is always performed in PEy only.

In the following example the REGF_MODE1.SELPE bit is set and only the R0 value is updated and not the S0
value.

IF FLAG2_IN, R0=R1+R2;
In the next example the REGF_MODE1.SELPE bit is set only S0 value is updated and not the R0 value.

IF NOT FLAG2_IN, R0=R1+R2;
In this mode when the REGF_MODE1.SELPE bit set, the instruction IF FLAG2_IN and IF NOT
FLAG2_IN should only be used for data move/compute operations where only one of the execution units need to
be active as shown in the above example. These two conditional instructions, if used for any purpose other than data
move/compute operations, will not have desired effect, because these condition is always true for other related in-
struction, such as:

IF FLAG2_IN jump or IF NOT FLAG2_IN jump, both execute irrespective of the state of FLAG2.

SISD versus SIMD Operating Mode

SISD If PEx tests true and if PEy tests false: Execution in PEX No operation in PEy

SIMD If PEx tests true and if PEy tests false: Execution in PEx. If PEy tests true and if PEx tests false: Execution in
PEy

Conditional Instruction Execution in SIMD Mode
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Table 4-23: SIMD Modes and IF FLAG2 Conditions Truth Table

MODE1.PEYEN MODE1.SELPE Condition Execution PEx Execution PEy

ON ON If FLAG2_IN yes no

ON ON If NOT_FLAG2_IN no yes

ON OFF If FLAG2_IN yes yes

ON OFF If NOT_FLAG2_IN yes yes

OFF ON If FLAG2_IN yes no

OFF ON If NOT_FLAG2_IN no no

OFF OFF If FLAG2_IN yes no

OFF OFF If NOT_FLAG2_IN yes no

Listings for Conditional Register-to-Register Moves

In this section the various register files move types are listed and illustrated with examples.

Listing 1 - Dreg/CDreg to Dreg/CDreg Register Moves/Swaps

When register-to-register swaps are unconditional, they operate the same in SISD mode and SIMD mode. If a con-
dition is added to the instruction in SISD mode, the condition tests only in the PEx element and controls the entire
operation. If a condition is added in SIMD mode, the condition tests in both the PEx and PEy elements separately
and the halves of the operation are controlled as detailed in the Dreg/CDreg Register Moves Summary (SISD Versus
SIMD) table.

Table 4-24: Dreg/CDreg Register Moves Summary (SISD Versus SIMD)

Mode Instruction Explicit Transfer Executed Ac-
cording to PEx

Implicit Transfer Executed Ac-
cording to PEy

SISD*1 IF condition Rx = Ry; Rx loaded from Ry None

IF condition Rx = Sy; Rx loaded from Sy None

IF condition Sx = Ry; Sx loaded from Ry None

IF condition Sx = Sy; Sx loaded from Sy None

IF condition Rx <-> Sy; Rx loaded from Sy Sy loaded from Rx

SIMD*2 IF condition Rx = Ry; Rx loaded from Ry Sx loaded from Sy

IF condition Rx = Sy; Rx loaded from Sy Sx loaded from Ry

IF condition Sx = Ry; Sx loaded from Ry Rx loaded from Sy

IF condition Sx = Sy; Sx loaded from Sy Rx loaded from Ry

IF condition Rx <-> Sy; Rx loaded from Sy Sy loaded from Rx

 

*1 In SISD mode, the conditional applies only to the entire operation and is only tested against PEx's flags. When the condition tests
true, the entire operation occurs.
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*2 In SIMD mode, the conditional applies separately to the explicit and implicit transfers. Where the condition tests true (PEx for the
explicit and PEy for the implicit), the operation occurs in that processing element.

 

Listing 2 - Ureg/CUreg to Ureg/CUreg Register Moves

For the following instructions, the processors are operating in SIMD mode and registers in the PEx data register file
are used as the explicit registers. The data movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in the Register-to-Register Moves - Complementary Pairs table.

IF EQ R9 = R2;
IF EQ PX1 = R2;
IF EQ USTAT1 = R2;

Table 4-25: Register-to-Register Moves - Complementary Pairs

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occur

0 1 No data move to registers r9, px1, and us-
tat1 occurs

s2 transfers to registers s9, px2 and ustat2

1 0 r2 transfers to registers r9, px1, and ustat1 No data move to s9, px2, and ustat2 oc-
curs

1 1 r2 transfers to registers r9, px1, and ustat1 s2 transfers to registers s9, px2, and ustat2

Listing 3 - CUreg/Ureg to Ureg/CUreg Registers Moves

For the following instructions, the processors are operating in SIMD mode and registers in the PEy data register file
are used as explicit registers. The data movement resulting from the evaluation of the conditional test in the PEx and
PEy processing elements is shown in the Register-to-Register Moves - Complementary Pairs table.

IF EQ R9 = S2;
IF EQ PX1 = S2;
IF EQ USTAT1 = S2;

Table 4-26: Register-to-Register Moves - Complementary Pairs

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occur

0 1 No data move to registers r9, px1, and
ustat1 occurs

r2 transfers to registers s9, px2 and ustat2

1 0 s2 transfers to registers r9, px1, and us-
tat1

No data move to s9, px2, or ustat2 oc-
curs

1 1 s2 transfers to registers r9, px1, and us-
tat1

r2 transfers to registers s9, px2, and us-
tat2

Listings for Conditional Register-to-Register Moves
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Listing 4 - Ureg to Ureg/CUreg Register Moves

In this case, data moves from an uncomplementary register (Ureg without a SIMD complement) to a complemen-
tary register pair. The processor executes the explicit move depending on the evaluation of the conditional test in the
PEx processing element. The processor executes the implicit move depending on the evaluation of the conditional
test in the PEy processing element. In each processing element where the move occurs, the content of the source
register is duplicated in the destination register.

Note that while REGF_PX1 and REGF_PX2 registers have complements, the REGF_PX register has no comple-
mentary register.

For the following instruction the processors are operating in SIMD mode. The data movement resulting from the
evaluation of the conditional test in the PEx and PEy processing elements is shown in the Uncomplementary-to-
Complementary Register Move table.

IF EQ R1 = PX;

Table 4-27: Uncomplementary-to-Complementary Register Move

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 r1 remains unchanged s1 remains unchanged

0 1 r1 remains unchanged s1 gets px value

1 0 r1 gets px value s1 remains unchanged

1 1 r1 gets px value s1 gets px value

Listing 5 - Ureg/CUreg to Ureg Register Moves

In this case data moves from a complementary register pair to an uncomplementary register. The processor executes
the explicit move to the un complemented universal register, depending on the condition test in the PEx processing
element only. The processor does not perform an implicit move.

For all of the following instructions, the processors are operating in SIMD mode. The data movement resulting
from the evaluation of the conditional test in the PEx and PEy processing elements for all of the example code sam-
ples are shown in the Complementary-to-Uncomplementary Register Move table.

IF EQ R1 = PX;
Uncomplementary register to DAG move:

if EQ m1 = PX;
DAG to uncomplementary register move:

if EQ PX = m1;
For more information, see the Register Files chapter.

Note that the REGF_PX1 and REGF_PX2 registers have complements, but REGF_PX as a register is uncomple-
mentary.
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DAG to DAG move:
if EQ m1 = i15;
Complementary register to DAG move:
if EQ i6 = r9;
In all the cases described above, the behavior is the same. If the condition in PEx is true, then only the transfer
occurs.

Table 4-28: Complementary-to-Uncomplementary Register Move

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 px remains unchanged No implicit move

0 1 px remains unchanged No implicit move

1 0 r1 40-bit explicit move to px No implicit move

1 1 r1 40-bit explicit move to px No implicit move

Listing 6 - UREG to UREG Register Moves

In this case data moves from an uncomplementary register to an uncomplementary register. The processor executes
the explicit move, depending on the condition test in the PEx or PEy processing. The processor does not perform an
implicit move.

if lt tperiod = dm(i3, m3);
Listings for Conditional Register-to-Memory Moves

Conditional post-modify DAG operations update the DAG register based on OR'ing of the condition tests on both
processing elements. Actual data movement involved in a conditional DAG operation is based on independent eval-
uation of condition tests in PEx and PEy. Only the post-modify update is based on the OR'ing of these conditional
tests.

NOTE: Conditional pre-modify DAG operations behave differently. The DAGs always pre-modify an index, inde-
pendent of the outcome of the condition tests on each processing element.

Listing 1 - Dreg to Memory

For this instruction, the processors are operating in SIMD mode, a register in the PEx data register file is the explicit
register, and I0 is pointing to an even address in internal memory or external memory. Indirect addressing is shown
in the instructions in the example. However, the same results occur using direct addressing. The data movement
resulting from the evaluation of the conditional test in the PEx and PEy processing elements is shown in the Regis-
ter-to-Memory Moves-Complementary Pairs (PEx Explicit Register) table.

IF EQ DM(I0,M0) = R2;

Listings for Conditional Register-to-Register Moves
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Table 4-29: Register-to-Memory Moves-Complementary Pairs (PEx Explicit Register)

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move occurs from r2 to lo-
cation I0

s2 transfers to location (I0+n*1)

1 0 r2 transfers to location I0 No data move occurs from s2 to lo-

cation (I0+n1)

1 1 r2 transfers to location I0 s2 transfers to location (I0+n1)

 

*1 In NW space n = 1, in SW space n = 2, in BW space, n = 4.
 

Listing 2 - CDreg to Memory

For the following instruction, the processors are operating in SIMD mode, a register in the PEy data register file is
the explicit register and I0 is pointing to an even address in internal memory. The data movement resulting from
the evaluation of the conditional test in the PEx and PEy processing elements is shown in the Register-to-Memory
Moves - Complementary Pairs (PEy Explicit Register) table.

IF EQ DM(I0,M0) = S2;

Table 4-30: Register-to-Memory Moves - Complementary Pairs (PEy Explicit Register)

Condition in PEx Condition in PEy Result

AZx AZy Explicit Implicit*1

0 0 No data move occurs No data move occurs

0 1 No data move occurs from s2 to lo-
cation I0

r2 transfers to location I0+n

1 0 s2 transfers to location I0 No data move occurs from r2 to lo-
cation I0 + n

1 1 s2 transfers to location I0 r2 transfers to location I0 + n

 

*1 In NW space n = 1, in SW space n = 2, in BW space, n=4.
 

Listing 3 - Dreg/CDreg to SMMR Memory Space

For the following instructions the processors are operating in SIMD mode and the explicit register is either a PEx
register or PEy register. I0 points to SMMR memory space. This example shows indirect addressing. However, the
same results occur using direct addressing.

IF EQ DM(I0,M0) = R2;
IF EQ DM(I0,M0) = S2;

Listings for Conditional Register-to-Memory Moves
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Listing 4 - Ureg to SMMR Memory Space

In the case of memory-to-DAG register moves, the transfer does not occur when both PEx and PEy are false. Other-
wise, if either PEx or PEy is true, transfers to the DAG register occur. For example:

if EQ m13 = dm(i0,m1);

NOTE: Conditional data moves from a complementary register pair to an uncomplementary register with an ac-
cess to IOP memory space results in unexpected behavior and should not be used.

Conditional Branches

The processor executes a conditional branch (JUMP or CALL with RTI/RTS) or loop (DO/UNTIL) based on the
result of AND'ing the condition tests on both PEx and PEy. A conditional branch or loop in SIMD mode occurs
only when the condition is true in PEx and PEy.

Using complementary conditions (for example EQ and NE), programs can produce an OR'ing of the condition tests
for branches and loops in SIMD mode. A conditional branch or loop that uses this technique must consist of a
series of conditional compute operations. These conditional computes generate NOPs on the processing element
where a branch or loop does not execute. For more information on programming in SIMD mode, see the Instruc-
tion Set Types and Computation Types chapters.

IF Conditional Branch Instructions

The IF conditional direct branch instruction is available in Type 8 instruction. The IF conditional indirect branch
instruction is available in the Type 9, 10, and 11 instructions. The instructions are shown in the IF Conditional
Branch Execution (SISD mode) and If Conditional Branch Instruction (SIMD Mode) tables.

Table 4-31: IF Conditional Branch Execution (SISD mode)

Conditional Test Execution for Instruction Types 8-11

0 (false) IF not exe

1 (true) IF exe

Table 4-32: If Conditional Branch Instruction (SIMD Mode)

Conditional Test

Execution for Instruction Types 8-11PEx PEy

0 (false) 0 (false) IF not exe

0 (false) 1 (true) IF not exe

1 (true) 0 (false) IF not exe

1 (true) 1 (true) IF exe

IF Then ELSE Conditional Indirect Branch Instructions

The conditional IF then ELSE construct for indirect branch instructions is available in the Type 9, 10, and 11
instructions. The instructions are shown in the IF then ELSE Conditional Branch Execution (SISD mode) and IF
Then ELSE Conditional Branch Instruction (SIMD Mode) tables.
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4–62 SHARC+ Core Programming Reference



Table 4-33: IF then ELSE Conditional Branch Execution (SISD mode)

Conditional Test Execution for Instruction Types 9-11

0 (false) IF not exe ELSE exe

1 (true) IF exe ELSE not exe

Table 4-34: IF Then ELSE Conditional Branch Instruction (SIMD Mode)

Conditional Test

Execution for Instruction Types 9-11PEx PEy

0 (false) 0 (false) IF not exe ELSE PEx exe - PEY exe

0 (false) 1 (true) IF not exe ELSE PEx exe - PEY not exe

1 (true) 0 (false) IF not exe ELSE PEx not exe - PEY exe

1 (true) 1 (true) IF exe ELSE PEx not exe - PEY not exe

For more information and examples, see the following instruction reference pages in the Instruction Set Types chap-
ter.

• Type 8a ISA/VISA (cond + branch)

• Type 9a ISA/VISA (cond + Branch + comp/else comp)

• Type 10a ISA (cond + branch + else comp + mem data move)

• Type 11a ISA/VISA (cond + branch return + comp/else comp) and Type 11c VISA (cond + branch return)

IF Conditional Branch Limitations in VISA

Type 10 instructions are the most infrequently used instructions in the Instruction Set Architecture:

/* Template: */
IF COND JUMP (Md, Ic), ELSE compute, DM(Ia, Mb) = dreg ;
To make maximum use of available opcode combinations, the SHARC+ core uses the Type 10 instruction opcode to
encode a simpler and more commonly used compute instructions such as:

Rm = Rn + Rm;

NOTE: Code generated by the CrossCore Embedded Studio C compiler does not use the Type 10 instruction.

If assembly code containing Type 10 instructions is run through the code generation tools, the assembler issues an
error message stating that a Type 10 instruction is not supported while in VISA short word space.

Pipeline Flushes and Stalls

The SHARC+ core uses pipeline flush and pipeline stalls to ensure correct and efficient program execution. It is
helpful for programmers to be aware of different scenarios that result in flushes or stalls of pipeline stages.

The sequencer uses pipeline stalls in the following situations:
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• Stalls occur in case of structural hazards. Such stalls are incurred when different instructions at various stages of
the instruction pipeline attempt to use the same processor resources simultaneously. For example, when pro-
cessor issues data access on PM bus, it conflicts with instruction request being issued by the sequencer on the
same bus.

• Stalls occur in case of data and control hazards. Such stalls are incurred when an instruction attempts to read a
value from a register or from a condition flag that has been updated by an earlier instruction, before the value
becomes available. For example, an index register based data address generation, which happens in early stage of
pipeline, stalls when index register is being loaded in previous instruction.

• Stalls occur in some cases to achieve high performance when the processor executes a certain sequence of in-
structions. For example, when both the input operands are forwarded to the multiplier from previous compute
instruction, this scenerio causes stall to accommodate additional operations.

• Stalls occur in some cases to retain effect latency. These cases provide operation that is compatible with earlier
SHARC processors. One such example is 64-bit compute in the newer versions of SHARC+ core.

The sequencer uses pipeline flushes when the processor branches to new location due to an interrupt, a jump, a call,
a loop-abort, or other branch situations. These situation leave some extra instructions in the pipeline (from previous
flow) that must be flushed.

For complete information on stalls, refer to the Engineer-to-Engineer Note EE-375: Migrating Legacy SHARC to
ADSP-SC58x/2158x SHARC+ Processors on the Analog Devices web site.

Stalls Related to Memory Access

Table 4-35: Stalls Related to Memory Access

Details Example Stall type SHARC+
Stalls

Conflict cache miss on PM data access r0 = pm(Addr); Structural 1

Two accesses on same block in same cycle r0 = dm(Block0-addr1); back-
ground DMA access to Block0

Structural 1

Conditional store –to- any load If eq DM(A) = Fz;
Fa = DM(A/B)

Timing 1

Pipeline Flushes and Stalls
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Stalls Related to Compute Operations

Table 4-36: Stalls Related to Compute Operations - Non 64-bit Floating Point Computations

Details Example Stall type SHARC+ Stalls

1 Data forwarding to compute operation

Floating point compute/multiply operationto-
next compute dependency

Fx = PASS Fy;
Fz = Fx + Fa;

Data dependence 1

If previous instruction is conditional fixed
point compute or conditional register read and
condition set is just before

Rx = PASS Ry;
IF eq Rz = Ra + Rb;
Fc = Fz + Fd;

ASTATx/y register update to- carry or overflow
dependent instruction

ASTATx = DM(..);
Rx = Ry + Rz + CI;

2 Dual forwarding to multiplier

Dual forwarding to multiply operation from N
−2 to Nth location.

Fx=Fa+Fb, Fy=FaFb;
[unrelated instr];
Fz = Fx * Fy;

Timing 1

Dual forwarding to multiply operation from N
−1 to Nth location

Fx=Fa+Fb,Fy=FaFb;
Fz = Fx * Fy;

2

3 Floating point multiply operation to next fixed
point ALU

Fz = Fx * Fy;
Ra = Rz + Rb;

0

Table 4-37: Stalls Related to Compute Operations - 64-bit Floating Point Computations with Data Forwarding from N-2/N-1 to Nth
Instruction

Case Example Stall type SHARC+ Stalls

Data forwarding to/from any compute,
load and 64-bit compute

Fx:y = .;
Fa:b = Fx:y + 1;

Data dependence 2

Data forwarding to/from any compute,
load and 64-bit compute

Fx:y = .;
[Unrelated instr];
Fa:b = Fx:y + 1;

1

Pipeline Flushes and Stalls
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Stalls Related to DAG Operations

Table 4-38: Stalls Related to DAG Operations

# Details Example Stall type SHARC+
Stalls*

1 Unconditional DAG register load -to- use Ix = DM(..);
DM(Ix…) = …;

Data de-
pendence

4

2 Conditional DAG register load (with condi-
tion set just before) -to- use

Rx = PASS Ry;
IF eq Ix = DM(..);
DM(Ix…) = …;

5

3 Condition set -to- conditional post modify
DAG operation on Ix -to- any DAG opera-
tion on same Ix

Rx = PASS Ry;
IF eq DM(Ix,..);
DM(Ix…) = …;

5

4 Load of DAG register with immediate value
–to- use

Ix = [IMM VALUE];
DM(Ix..)..

0

*An additional stall occurs if :

• the condition that is set happens through a write to the REGF_ASTATX register, and

• a register load is used with the sign extension modifier.

Stalls and Flushes Related to Branch and Prediction Operations

These stalls and pipeline flushes include those related to jumps, calls, returns, rframe, and cjump.

In most of the cases, any branch instruction flushes the pipeline and some cycles are lost. Branch prediction attempts
to minimize the loss of cycles. The following table describes the number of lost cycles when BTB is disabled or the
branch entry is not present in BTB (for example, a BTB miss). If the branch is the one with a delay slot of two
instructions, the number of flushed instruction is lesser by 2.

Table 4-39: Stalls and Flushes Related to Branch and Prediction Operations - Jump and Pass

# Details Example Stall type SHARC+ Stalls

(non-delayed vs. de-
layed)

1 Unconditional branch Jump(My,Ix); Pipeline flush 6/4**

2 Condition set -to- conditional
branch

Rx = PASS Ry;
IF eq Jump(My,Ix);

Control dependence 11/9*

In addition to the above stalls, there are other data and control dependence stalls in relation to branch instructions.
The cycles in the table below are additive to the cycles incurred due to other reasons as described in the tables above
in this section.
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Table 4-40: Stalls and Flushes Related to Branch and Prediction Operations - Cjump, Rframe, Pass, and Jump

# Details Example Stall type SHARC+
Stalls

1 CJUMP/RFRAME –to- use of I6 CJUMP;
DM(I6,..) = …;

Data dependence 6

2 CJUMP/RFRAME –to- read of I6/7 RFRAME;
R0 = I6;

6

3 Unconditional DAG register load -to- use in
indirect branch

Ix = DM(..);
Jump(Ix…) = …;

4†

4 Conditional DAG register load (with condi-
tion set just before) -to- use in indirect jump

Rx = PASS Ry;
IF eq Ix = DM(..);
Jump(Ix…) = …;

Data and control de-
pendence

5*†

† One additional cycle of stall if register load is used with sign extension modifier

* One additional cycle of stall if condition set happens through write to the REGF_ASTATX or REGF_ASTATY
register.

** As an exception, RTI (DB) and RTI causes 7 cycles of pipeline flush.

***Total of two cycles of stall for multiplier generated conditions

Table 4-41: Stalls and Flushes Related to Branch and Prediction Operations - Hardware Loops

Case Example Stall type SHARC+
Stalls

On termination of E2 active and
short loops

LCNTR = 4, DO (PC,2) UNTIL LCE; Pipeline
flush

11

On termination of arithmetic con-
dition based loops

DO (PC,2) UNTIL EQ; 11

Write to CCNTR to LCE based
instruction

CCNTR = 4;
If not LCE R0 = R1;

Timing 1

Start of 1,2,4 instruction loop LCNTR = 4, DO (PC,2) UNTIL LCE; 0

Table 4-42: Stalls and Flushes Related to Branch and Prediction Operations - Miscellaneous

Case Example Stall type SHARC+
Stalls

During the execution of first four instruc-
tions of an unrolled loop, when COF
(change of flow) is at Nth position in loop
from top, where N = 0-3

 Loop state
machine

4-N
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Table 4-42: Stalls and Flushes Related to Branch and Prediction Operations - Miscellaneous (Continued)

Case Example Stall type SHARC+
Stalls

If RTS/RTI is returning to a loop at “Last-
Addr”-N, where N = 0-3

 Data de-
pendence

4-N

Jump with loop abort Jump <Target> (LA); 4

Target/next-to-target of CALL/RTS/RTI it-
self being an RTS/RTI

 3

Target of CALL/RTS/RTI itself being a
Jump

 1

Loop-stack modification followed by
RTS/RTI/Jump

 5

SREG or SYSCTL update to N+2 instruc-
tion

Bit set MODE1 CBUFEN;
[Instr];
DM(I0…);

Control de-
pendence

5

Bit set/clear MODE1 PEYEN to N+2 in-
struction

Bit set MODE1 PEYEN;
[Instr];
DM(I0…);

0

Stalls Related to Data Move Operations

Table 4-43: Stalls Related to Data Move Operations

Case Example Stall type SHARC+ Stalls

Floating point compute or any multiplier operation fol-
lowed by move of the result to any register outside the rele-
vant PE

F1 = F2+F3;
USTAT1 = F1;

Timing 1

Condition set followed by a conditional load of a DAG reg
followed by move of that reg to any other Ureg

R0 = R1 + 1;
IF EQ I0=PM(<Addr>);
USTAT1=I0;

1

Access of any Timer core register TCOUNT = USTAT1; 1

Read of these registers: IRPTL, IMASKP, MODE1STK,
LPSTK, CCNTR, LCNTR, PCSTK, PCSTKP, MODE1,
FLAGS, ASTATx/y, STKYx/y, FADDR, DADDR

R0 = IRPTL; 1

Write Followed by Read of these registers: IMASK, US-
TAT, MMASK, MODE2

USTAT1=DM(<Addr>);
R0= USTAT1;

1

Read and write of any CMMR R0 = dm(SYSCTL); 0-4

Pipeline Flushes and Stalls
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Table 4-44: DAG Register Loading for SHARC Product Families

Model DAG Stall Condition Stall Examples Stall Cycles

ADSP-2106x*1 Any DAG registers in same DAG i0=>i5, b3=>b3;

m12=>l15

1

ADSP-2116x1 Any same DAG register number in same
DAG

i0=>b0, b3=>b3;

m12=>l12

1

ADSP-2126x1 Any same DAG register number in same
DAG (except M regs, stall only if same reg-
ister is reused)

i0=>b0, b3=>b3;

i10=>l10,

(m2=>l2 no stall)

1

ADSP-2136x*2ADSP-2137x2

ADSP-214xx2

ADSP-SC58x

2

 

*1 Three stage pipeline. These products are not included in this manual.

*2 Five stage pipeline. These products are not included in this manual.
 

Core Event Controller Exceptions
The SHARC+ core uses the system bus infrastructure that appears on many processors from Analog Devices. In this
bus architecture, external interrupts are managed by the System Event Controller (SEC).

NOTE: If porting code from previous SHARC processors, modify the code to interface with the SEC and remove
existing support for external interrupts.

Table 4-45: Core Event Controller Exceptions

Interrupt Source Interrupt Condition Return Register Return Instruction IVT level

HW stack PC stack overflow STKYx RTI 5, SOVFI

HW stack Loop stack overflow STKYx RTI 5, SOVFI

HW stack Status stack overflow STKYx RTI 5, SOVFI

HW stack Restricted instruction se-
quence

N/A RTI 20, RINSEQI

L1 Memory Parity error*1 N/A RTI 3, PARI

Sequencer Illegal opcode detect*2 N/A RTI 4, ILOPI

System System event interrupt*3 SEC_ID RTI 15, SECI

SW Bit set IRPTL SFT0I N/A RTI 28, SFT0I

SW Bit set IRPTL SFT1I N/A RTI 29, SFT1I

SW Bit set IRPTL SFT2I N/A RTI 30, SFT2I

SW Bit set IRPTL SFT3I N/A RTI 31, SFT3I

 

*1 See Parity Error Detection for L1 Accesses.
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*2 See Illegal Opcode Error Detection for Instruction Fetch.

*3 See the ADSP-SC58x SHARC Processor Hardware Reference.
 

Hardware Stack Exceptions

The hardware stack (status stack, loop stack and PC stack) conditions trigger a maskable interrupt shown in the
Hardware Stack Interrupt Overview table. The overflow and full flags provide diagnostic aid only. Programs should
not use these flags for runtime recovery from overflow. The empty flags can ease stack saves to memory. Programs
can monitor the empty flag when saving a stack to memory to determine when the processor has transferred all the
values. For a complete interrupt list, see the Interrupt Priority and Vector Table.

HW Loop Stack Exceptions (RINSEQI)

Because of re-timing in the 11 stage pipeline, the following are situations when the restricted instruction sequence
interrupt (RINSEQI) is generated.

1. In a nested loop, where the outer loop is an arithmetic loop and the inner loop is a counter based loop. Also the
LADDR of the inner loop coincides with LADDR-2 of the outer loop. Then the LADDR of the inner counter
based loop cannot be a branch instruction.

2. Last five instructions of an Arithmetic Loop cannot be a delayed branch.

Software Interrupts

Software interrupts (or programmed exceptions) are instructions which explicitly generate an exception. The inter-
rupt overview is shown in the Software Interrupt Overview table. For a complete interrupt list, see the Interrupt
Priority and Vector Table.

The REGF_IRPTL register provides four software interrupts. When a program sets the latch bit for one of these
interrupts (REGF_IRPTL.SFT0I, REGF_IRPTL.SFT1I, REGF_IRPTL.SFT2I, or
REGF_IRPTL.SFT3I), the sequencer services the interrupt, and the processor branches to the corresponding in-
terrupt routine. Software interrupts have the same behavior as all other maskable interrupts. For more information,
see the Core Interrupt Control appendix.

If programs force an interrupt by writing to a bit in the REGF_IRPTL register, the processor recognizes the inter-
rupt in the following cycle, and eleven cycles of branching to the interrupt vector follow the recognition cycle.

Interrupt Priority and Vector Table

There are 32 core interrupts supported by SHARC+ core. The various interrupts caused by external events on previ-
ous SHARC processors have been replaced by the single SECI interrupt. The relative priorities of the remaining
interrupts are unchanged, except for CB7I. As the interrupt numbers are different the vector offsets are also changed
from previous SHARC processors.

CB7I is used to trap software stack overflow. Having this interrupt at a high priority enables stack overflow to be
detected in high priority handlers.
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NOTE: Any reset asserted to SHARC+ core is not honored if execution control is in Emulation space. Also the
reset asserted is not latched if the core is in Emulation space, so if the program wants to reset the core, then
the core should be first brought out of Emulation space and then reset should be asserted.

NOTE: Interrupt numbers 3, 4, 8, 15, 20 have been added for the SHARC+ core.

Table 4-46: Interrupt Priority and Vectors

Interrupt Num-
ber

Vector Offset Interrupt Name Function

0 0x00 EMUI Emulator (HIGHEST PRIORITY)

1 0x04 RSTI Reset

2 0x08 Reserved Reserved

3 0x0C PARI L1 Parity Error

4 0x10 ILOPI Illegal opcode detected

5 0x14 CB7I Software stack (Circular Buffer 7) Overflow

6 0x18 IICDI Unaligned LW/BW access + unintentional CMMR/SMMR ac-
cess

7 0x1C SOVFI Status loop or mode stack overflow; or PC stack full

8 0x20 ILADI Illegal Address Space detected

9 0x24 IIR2 (For
ADSP-SC59x)

IIR2 Interrupt (For ADSP-SC59x)

Reserved
(ADSP-SC57x,
ADSP-SC58x,
and
ADSP-2156x)

Reserved (ADSP-SC57x, ADSP-SC58x, and ADSP-2156x)

10 0x28 IIR3 (For
ADSP-SC59x)

IIR3 Interrupt (For ADSP-SC59x)

Reserved
(ADSP-SC57x,
ADSP-SC58x,
and
ADSP-2156x)

Reserved (ADSP-SC57x, ADSP-SC58x, and ADSP-2156x)

11 0x2C TMZHI Core Timer (high priority option)

12 0x30 BKPI User Hardware Breakpoint
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Table 4-46: Interrupt Priority and Vectors (Continued)

Interrupt Num-
ber

Vector Offset Interrupt Name Function

13 0x34 FIR (For
ADSP-2156x)

FIR Interrupt (For ADSP-2156x)

FIR0 (For
ADSP-SC59x)

FIR0 Interrupt (For ADSP-SC59x)

Reserved (For
ADSP-SC57x
and ADSP-
SC58x)

Reserved (For ADSP-SC57x and ADSP-SC58x)

14 0x38 IIR (For
ADSP-2156x)

IIR Interrupt (For ADSP-2156x)

IIR0 (For
ADSP-SC59x)

IIR0 Interrupt (For ADSP-SC59x)

Reserved (For
ADSP-SC57x
and ADSP-
SC58x)

Reserved (For ADSP-SC57x and ADSP-SC58x)

15 0x3C SECI System event controller interrupt

16 0x40 IIR1 (For
ADSP-SC59x)

IIR1 Interrupt (For ADSP-SC59x)

Reserved
(ADSP-SC57x,
ADSP-SC58x,
and
ADSP-2156x)

Reserved (ADSP-SC57x, ADSP-SC58x, and ADSP-2156x)

17 0x44 Reserved Reserved

18 0x48 Reserved Reserved

19 0x4C Reserved Reserved

20 0x50 RINSEQI Restricted Instruction Sequence

21 0x54 CB15I Circular Buffer 15 Overflow

22 0x58 TMZLI Core Timer (Low Priority Option)

23 0x5C FIXI Fixed-point overflow exception

24 0x60 FLTOI Floating-point overflow exception

25 0x64 FLTUI Floating-point underflow exception

26 0x68 FLTII Floating-point invalid exception

27 0x6C EMULI Emulator low priority interrupt

28 0x70 SFTOI User software interrupt 0
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Table 4-46: Interrupt Priority and Vectors (Continued)

Interrupt Num-
ber

Vector Offset Interrupt Name Function

29 0x74 SFT1I User software interrupt 1

30 0x78 SFT2I User software interrupt 2

31 0x7C SFT3I User software interrupt 3 (LOWEST PRIORITY)

Internal Interrupt Vector Table Location

The default location of the SHARC processor's interrupt vector table (IVT) depends on control bits:
CMMR_SYSCTL.IIVT and CMMR_SYSCTL.EIVT bits determine the IVT location. The following table sum-
marizes the selection of IVT location. 

Table 4-47: IVT Location Selections

EIVT IIVT IVT location

1 0 L3

0 0 L2 ROM (default)

0 1 L1

Exact address in each memory can be found in detailed address map. Reset routine address is always fixed for a given
product. This address is also available in detailed address map.

The internal interrupt vector table CMMR_SYSCTL.IIVT bit in the register overrides the default placement of the
vector table. If CMMR_SYSCTL.IIVT is set (=1), the interrupt vector table starts at internal RAM regardless of the
booting mode. If CMMR_SYSCTL.IIVT is cleared (=0), the interrupt vector table starts in the L2 ROM.

For information about processor booting, see the processor-specific hardware manual.

Core Interrupt Registers

All core interrupts are programmed through the REGF_IRPTL, REGF_IMASK, and REGF_IMASKP registers.
The bit for each interrupt in these registers is indexed by interrupt number.

NOTE: Unlike previous SHARC processors, the SHARC+ core does not have an LIRPTL register.

All Interrupts Automatically Push Status

On the SHARC+ core, all interrupts push the status stack.

NOTE: This functionality is an extension of the push of the status stack which was provided by only the IRQ and
core timer interrupts on previous SHARC processors.

The sequencer automatically pushes the current value of the REGF_ASTATX, REGF_ASTATY, and
REGF_MODE1 registers on the status stack. Then, the sequencer clears the bits in the REGF_MODE1 that are set in
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the REGF_MMASK register, before branching to an interrupt vector. If the REGF_MMASK.IRPTEN bit is cleared
by this operation, interrupts are disabled globally before another (higher priority) interrupt can preempt the current
interrupt.

The JUMP(CI) and RTI instructions always automatically pop the status stack.

Self-Nesting Mode for System Event Controller Interrupt (SECI)

The SHARC+ core provides a mode bit, REGF_MODE2.SNEN. This bit enables self-nesting interrupt mode for the
SECI interrupt only. Self-nesting operation also uses the nesting bit, REGF_MODE1STK.NESTM.

1. The REGF_MODE2.SNEN bit enables self-nesting for SECI only.

• When REGF_MODE2.SNEN =1, the REGF_IMASKP.SECI bit can latch even when it is currently be-
ing serviced.

• If REGF_MODE1.IRPTEN =1, REGF_MODE1.NESTM =1 and REGF_MODE2.SNEN =1 and the
REGF_IMASKP.SECI bit is currently being serviced, the REGF_IMASKP.SECI bit is not masked
but lower priority interrupts are. If a higher priority interrupt interrupts the REGF_IMASKP.SECI bit
then it becomes masked.

2. The REGF_MODE1.NESTM and REGF_MODE1STK.NESTM bits control whether the
REGF_IMASKP.SECI bit is cleared and controls whether the interrupts are implicitly masked in NESTM
mode.

• When REGF_MODE2.SNEN =1, on vectoring to the SECI ISR, after automatically pushing the previous
value of the REGF_MODE1 register, the REGF_MODE1.NESTM bit is automatically set.

• On executing RTI, when the current interrupt is SECI and the REGF_MODE1STK.NESTM bit is set, the
REGF_IMASKP register and interrupt mask are not changed. Otherwise, the REGF_IMASKP register
and the masked interrupts are modified as normal. After the REGF_MODE1STK register is tested, the
RTI instruction pops the mode stack as normal.

The interrupts masked implicitly in NESTM mode can always be calculated from the REGF_IMASKP register and
REGF_MODE2.SNEN bit. When REGF_MODE2.SNEN =1 and the lowest numbered interrupt set in the
REGF_IMASKP register is SECI, all interrupts down to but not including SECI are masked. Otherwise, all inter-
rupts down to and including the lowest numbered bit set in the REGF_IMASKP register are masked, unless no bit
is set in the REGF_IMASKP register, indicating no interrupts are implicitly masked.

The global interrupt enable bit, REGF_MODE1.IRPTEN, and interrupt nesting enable bit,
REGF_MODE1.NESTM, take precedence over REGF_MODE2.SNEN. The SECI ISR is only interrupted by anoth-
er incoming SECI if REGF_MODE1.IRPTEN =1, REGF_MODE1.NESTM =1, and REGF_MODE2.SNEN =1.
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Table 4-48: SNEN and NESTM Combination and its Effect

SNEN NESTM Effect

SECI Self Nesting*1 Higher Priority Interrupt
Nesting

0 0 NO NO

0 1 NO YES

1 0 YES NO

1 1 YES YES

 

*1 SECI is not stored in IRPTL if already in an SEC ISR. So to avoid missing any SECI when already in an SEC ISR, self-nesting of
SECI must be enabled by setting SNEN bit in MODE2.

 

Interrupt Control Latencies

The latency for changes to the REGF_IMASK to take effect is up to one cycle.

The latency for changes to the REGF_MODE1.IRPTEN is up to one cycle.

The latency for changes to the REGF_MODE1.NESTM is up to one cycle.

The latency for changes to the REGF_MODE2.SNEN is up to one cycle.

Hardware Status Stack Access Register

It is possible to read and write the MODE1 value at the top of the status stack using the REGF_MODE1STK univer-
sal register.

NOTE: The REGF_MODE1STK register is not available on previous SHARC processors.

This makes it possible to save the top of the status stack to memory without enabling any undesired modes when
the REGF_MODE1 register is popped.

REGF_MODE1STK can be an operand of the Type 18 register bit manipulation instructions.

For example, this code sequence copies the top of the status stack to the software stack without re-enabling inter-
rupts as would be the case had the value pushed on entry to an interrupt handler been popped.

DM(I7,M7) = MODE1STK;       //save original MODE1
MODE1STK = RND32|TRUNC|NESTM; 
POP STS;                    // MODE1 set to known safe value
DM(I7,M7) = ASTATX;         // save original ASTATX
DM(I7,M7) = ASTATY;         // save original ASTATY

Core Interface to SEC

The interface to the System Exception Controller (SEC) is similar to the interface used on other processors from
Analog Devices. A core memory mapped register, CEC_SID, is provided. This register is read within the SECI
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interrupt handler to identify the external event that caused the interrupt. It is also written, with any value, to ac-
knowledge the interrupt and allow the SEC to raise a new interrupt.

When CEC_SID is read by the core, the SID value from the SEC is returned. When it is written, it sends the ACK
signal to the SEC.

Example SEC Handler Using Pseudo Self-Nesting

This handler, or something like it, must be added to the verification suite to ensure system interrupts can be serviced
at a higher priority than low priority core interrupts while being preemptable by higher priority core and system
interrupts. The system exception controller prioritizes external interrupts destined for the core. SECI is raised again
if a higher priority interrupt than the one being serviced comes in.

As SHARC+ processors do not allow a core interrupt to latch while it is being handled, this handler exits interrupt
level with a JUMP (CI) instruction and manipulates the REGF_IMASK explicitly to prevent lower priority core
interrupts from preempting the system interrupt while allowing higher priority system interrupts to do so.

/* prior to interrupt IRPTEN=1, NESTM=1, SNEN=0 */
sec_ivt:            /*IVT+0x3c*/ /* status pushed automatically */
DM(I7,M7) = PX1;
JUMP sec_handler (DB);  /* Jump to avoid next IVT entry. */
DM(I7,M7) = PX2;
PX = R0;       /* Use PX to save all 40-bits of R-registers on 32-bit stack. */
sec_handler:
DM(I7,M7) = PX1;
DM(I7,M7) = PX2;
DM(I7,M7) = I8;
DM(I7,M7) = M8;
/* Save imask somewhere other than s/w stack as it is not part of
thread context. We only want to save the mask when leaving
thread level. Use a counter to see when that happens. */
I8 = saved_imask;
R0 = PM(count_imask_saves);
R0 = PASS R0;
IF EQ PM(M13,I8) = IMASK;
R0 = R0 + 1;
PM(count_imask_saves) = R0;
BIT CLR IMASK 0xffff0000; /* Mask lower priority core interrupts. */
M8 = DM(SEC_ID); /* Source Interrupt identifier (SID) from SEC */
/* Save pc and status on software stack with rest of thread context,
and leave interrupt level so SECI can latch again. */
DM(I7,M7) = PCSTK;
DM(I7,M7) = MODE1STK;
MODE1STK = safe_mode1_value;
JUMP sec_handler_at_thread_level (CI, DB); /* Jump to exit interrupt level. */
POP PCSTK;
I8 = sec_id_vector;
sec_handler_at_thread_level:
DM(SEC_ID) = M8; /* Tell SEC interrupts can latch again */
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/* Higher priority system interrupts may latch from here. */
DM(I7,M7) = ASTATX; /* Save rest of thread status */
DM(I7,M7) = ASTATY;
I8 = PM(M8,I8); /* Call 2nd level handler based on SID */
CALL (M13,I8) (DB);
R0 = M8; /* Pass SEC_ID */
NOP;
/* Assume 2nd level handler returns in same state as it is called:
interrupts globally disabled and SID in r0. */
DM(SEC_END) = R0; /* Tell SEC interrupt is handled. */
/* Lower priority system interrupts may latch from here. */
ASTATY = DM(1,I7); /* Push status and pc back on h/w stacks. */
ASTATX = DM(2,I7);
PUSH STS, PUSH PCSTK;
MODE1STK = DM(3,I7);
PCSTK = DM(4,I7);
I8 = saved_imask; /* Restore IMASK if returning to thread level */
R0 = PM(count_imask_saves);
R0 = R0 - 1;
IF EQ IMASK = PM(M13,I8);
PM(count_imask_saves) = R0;
M8 = DM(5,I7);
I8 = DM(6,I7);
PX2 = DM(7,I7);
PX1 = DM(8,I7);
R0 = PX;
PX2 = DM(9,i7);
PX1 = DM(10,I7);
RTS (DB);
MODIFY(I7, 10);
POP STS;   

Example SEC Handler in Self-Nesting Interrupt Mode

This handler, or something like it, must also be added to the verification suite to test self-nesting interrupt mode.
/* prior to interrupt IRPTEN=1, NESTM=1, SNEN=1 */
sec_ivt: /*IVT+0x3c*/
/* status pushed automatically */
DM(I7,M7) = PX1;
JUMP sec_handler (DB); /* Jump to avoid next IVT entry. */
DM(I7,M7) = PX2;
PX = R0; /* Use PX to save all 40-bits of R-registers on 32-bit stack. */
sec_handler:
DM(I7,M7) = PX1;
DM(I7,M7) = PX2;
DM(I7,M7) = I8;
DM(I7,M7) = M8;
M8 = DM(SEC_ID); /* Source Interrupt identifier (SID) from SEC */
DM(SEC_ID) = M8; /* Acknowledge */
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/* Higher priority system interrupts may latch from here. */
/* Save pc and status on software stack with rest of thread context */
DM(I7,M7) = PCSTK;
DM(I7,M7) = MODE1STK;
MODE1STK = safe_mode1_value;
POP PCSTK, POP STS;
DM(I7,M7) = ASTATX; /* Save rest of thread status */
DM(I7,M7) = ASTATY;
I8 = sec_id_vector;
I8 = PM(M8,I8); /* Call 2nd level handler based on SID */
CALL (M13,I8) (DB);
R0 = M8; /* Pass SID */
NOP;
/* Assume 2nd level handler returns in same state as it is called:
interrupts globally disabled and SID in r0. */
DM(SEC_END) = R0; /* Tell SEC interrupt is handled. */
/* Lower priority system interrupts may latch from here. */
ASTATY = DM(1,I7); /* Push status and pc back on h/w stacks. */
ASTATX = DM(2,I7);
PUSH STS, PUSH PCSTK;
MODE1STK = DM(3,I7);
PCSTK = DM(4,I7);
M8 = DM(5,I7); /*Restore context and return */
I8 = DM(6,I7);
PX2 = DM(7,I7);
PX1 = DM(8,I7);
R0 = PX;
PX2 = DM(9,i7);
RTI (DB);
PX1 = DM(10, I7);
MODIFY(I7, 10);
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5   Timer

The SHARC+ core includes a programmable interval timer. The REGF_MODE2, REGF_TCOUNT, and
REGF_TPERIOD registers control timer operations.

Features
The timer has the following features:

• Simple programming model of three registers for interval timer

• Provides high or low priority interrupt

• If counter expired timer expired pin is asserted

• If core is in emulation space timer halts

Functional Description
The bits that control the timer are given as follows:

• Timer Enable (REGF_MODE2.TIMEN): This bit directs the processor to enable (if 1) or disable (if 0) the tim-
er.

• Timer Count (REGF_TCOUNT): This register contains the decrementing timer count value, counting down
the cycles between timer interrupts.

• Timer Period (REGF_TPERIOD): This register contains the timer period, indicating the number of cycles be-
tween timer interrupts. The REGF_TCOUNT register contains the timer counter.

To start and stop the timer, programs use the REGF_MODE2.TIMEN bit. With the timer disabled
(REGF_MODE2.TIMEN = 0), the program loads REGF_TCOUNT with an initial count value and loads
REGF_TPERIOD with the number of cycles for the desired interval. Then, the program enables the timer
(REGF_MODE2.TIMEN=1) to begin the count.

On the core clock cycle after REGF_TCOUNT reaches zero, the timer automatically reloads REGF_TCOUNT from
the REGF_TPERIODregister. The REGF_TPERIOD value specifies the frequency of timer interrupts.

The number of cycles between interrupts is TPERIOD + 1. The maximum value of TPERIOD is 232 - 1.

Timer
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The timer decrements the REGF_TCOUNT register during each clock cycle. When the REGF_TCOUNT value
reaches zero, the timer generates an interrupt and asserts the TMREXP output pin high for several cycles (when the
timer is enabled), as shown in the Core Timer Block Diagram figure. For more information about TMREXP pin
muxing refer to system design chapter in the processor-specific hardware reference.

Programs can read and write the REGF_TPERIOD and REGF_TCOUNT registers by using universal register trans-
fers. Reading the registers does not effect the timer. Note that an explicit write to REGF_TPERIODtakes priority
over the sequencer's loading REGF_TCOUNT from REGF_TPERIOD and the timer's decrementing of
REGF_TCOUNT. Also note that REGF_TCOUNT and REGF_TPERIOD are not initialized at reset. Programs
should initialize these registers before enabling the timer.

DATA BUS

TPERIOD

32

MULTIPLEXER

32

TCOUNT

DECREMENT

TCOUNT=0

32

INTERRUPT, 
ASSERT TMREXP PIN

NO

YES

32

32

32

Figure 5-1: Core Timer Block Diagram

To start and stop the timer, the REGF_MODE2.TIMEN has to be set or cleared respectively. The latency of this bit
is two core clock cycles at the start of the counter and one core clock cycle at the stop of the counter shown in the
Timer Enable and Disable figure.

Functional Description
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in MODE2
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Figure 5-2: Timer Enable and Disable

Timer Exceptions
The timer expired event REGF_TCOUNT decrements to zero) generates two interrupts, TMZHI and TMZLI. For
information on latching and masking these interrupts to select timer expired priority, see Latching Interrupts section
in the Program Sequencer chapter.

The Timer exception overview is shown in the Timer Exceptions table. For a complete interrupt list, see Interrupt
Priority and Vector Table.

One event can cause multiple exceptions. The timer decrementing to zero causes two timer expired interrupts to be
latched, TMZHI (high priority) and TMZLI (low priority). This feature allows selection of the priority for the tim-
er interrupt. Programs should unmask the timer interrupt with the desired priority and leave the other one masked.
If both interrupts are unmasked, the processor services the higher priority interrupt first and then services the lower
priority interrupt.

Table 5-1: Timer Exceptions

Interrupt Source Interrupt Condition Return Register Return Instruction IVT level

Core Timer Timer Priority high n/a RTI 11, TMZHI

Timer Priority low n/a RTI 22, TMZLI

Timer Exceptions
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6   Data Address Generators

The data address generators (DAGs) generate addresses for data moves to and from data memory (DM) and pro-
gram memory (PM). By generating addresses, the DAGs let programs refer to addresses indirectly, using a DAG
register instead of an absolute address. The DAG's architecture, which appears in the Data Address Generator
(DAG) Block Diagram figure (see Features), supports several functions that minimize overhead in data access rou-
tines.

Features
The data address generators have the following features.

• Supply address and post-modify. Provides an address during a data move and auto-increments the stored ad-
dress for the next move.

• Supply pre-modified (indexed) address. Provides a modified address during a data move without incrementing
the stored address.

• Modify address. Increments the stored address without performing a data move.

• Bit-reverse address. Provides a bit-reversed address during a data move without reversing the stored address, as
well as an instruction to explicitly bit-reverse the supplied address.

• Byte/Normal Word Space Conversion. Converts byte space address to normal word space address and vice versa.

• Broadcast data loads. Performs dual data moves to complementary registers in each processing element to sup-
port single-instruction multiple-data (SIMD) mode. 

• Circular Buffering. Supports addressing a data buffer at any address with predefined boundaries, wrapping
around to cycle through this buffer repeatedly in a circular pattern.

• Indirect Branch Addressing. DAG2 supports indirect branch addressing which provides index and modify ad-
dress registers used for dynamic instruction driven branch jumps (Md,Ic) or calls (Md,Ic). For more informa-
tion, see Direct Versus Indirect Branches in the Program Sequencer chapter.

• Semaphores. Semaphores are essential for shared memory multi-core systems where multiple cores are compet-
ing for the same shared resource and the access needs to be atomic. DAGs support issuing of exclusive accesses
on the AXI channel to support semaphores.

Data Address Generators
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• Scaled Address Arithmetic. When addressing byte address space, the access size options (SW, NW, LW) provide
address scaling for modify, load, and store operations.

Functional Description
As shown in the Data Address Generator (DAG) Block Diagram figure, each DAG has four types of registers. These
registers hold the values that the DAG uses for generating addresses. The four types of registers are:

• Index registers (I0-I7 for DAG1 and I8-I15 for DAG2). An index register holds an address and acts as a pointer
to memory. For example, the DAG interprets DM(I0,0) and PM(I8,0) syntax in an instruction as address-
es. 

• Modify registers (M0-M7 for DAG1 and M8-M15 for DAG2). A modify register provides the increment or
step size by which an index register is pre- or post-modified (indexed) during a register move. For example, the
DM(I0,M1) instruction directs the DAG to output the address in register I0 then modify the contents of I0
using the M1 register.

• Length and base registers (L0-L7 and B0-B7 for DAG1 and L8-L15 and B8-B15 for DAG2). Length and base
registers set the range of addresses and the starting address for a circular buffer. For more information on circu-
lar buffers, see Circular Buffering Mode.
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(4x2)

32

32

6464

DM ADDRESS BUS (DAG1)
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I0/I8 UPDATE
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BITREV  INSTRUCTION
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FOR ALL I REGISTERS
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B REGISTER
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(4x2)

I REGISTER
NEIGHBOR PAIRS

(4x2)

M REGISTER
NEIGHBOR PAIRS

(4x2)

Figure 6-1: Data Address Generator (DAG) Block Diagram

NOTE: The DAG provides scaling for the value from a Modify register if making a long word, word, or short
word access to byte space address. The same scaling factor is used for long word and word accesses.

Functional Description
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DAG Address Output

The following sections describe how the DAGs output addresses.

Address Versus Word Size

The internal memory accommodates the following word sizes:

• 64-bit long word data (lw)

• 40-bit extended-precision normal word data (nw, 48-bit)

• 32-bit normal word data (nw, 32-bit)

• 16-bit short word data (sw, 16-bit)

• 8-bit byte data (bw, 8-bit)

NOTE: For short word, normal word, or long word accesses, the address space determines which memory word
size is accessed. An important item to note is that the DAG automatically adjusts the output address per
the word size of the address location. An exception to this rule is that the (lw) qualifier allows 64-bit access
using a normal word address.

The address space does not select the memory word size for byte addresses. Accesses to byte addresses obey
the size of the opcode (lw, unqualified, sw, or bw) not the address space.

The address adjustment allows internal memory to use the address directly as shown in the following example.

I15=LW_addr;
pm(i15,0)=r0;   /* 64-bit transfer */
I7=NW_addr;
dm(i7,0)=r8;    /* 32-bit transfer */
I7=SW_addr;
dm(i7,0)=r14;   /* 16-bit transfer */
I7=BW_addr;
dm(i7,0)=r14;   /* byte transfer */

DAG Register-to-Bus Alignment

There are a number of word alignment types for DAG registers and PM or DM data buses:

• Byte word (8-bit)

• Short word (16-bit)

• Normal word (32-bit)

• Extended-precision normal word (40-bit)

• Long word (64-bit)

Functional Description
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32-Bit Alignment

The DAGs align normal word (32-bit) addressed transfers to the low order bits of the buses. These transfers between
memory and 32-bit DAG1 or DAG2 registers use the 64-bit DM and PM data buses. The Normal Word (32-Bit)
DAG Register Memory Transfers figure illustrates these transfers.

DAG1 OR DAG2 REGISTERS

03163
0X0000 0000

DM OR PM DATA BUS

031

Figure 6-2: Normal Word (32-Bit) DAG Register Memory Transfers

40-Bit Alignment

The DAGs align register-to-register transfers to bits 39-8 of the buses. These transfers between a 40-bit data register
and 32-bit DAG1 or DAG2 registers use the 64-bit DM and PM data buses. The DAG Register-to-Data Register
Transfers figure illustrates these transfers.

DAG1 OR DAG2 REGISTERS

031

04063

0X00 00 00

DM OR PM DATA BUS

0X00
839 7

Figure 6-3: DAG Register-to-Data Register Transfers

64-Bit Alignment

Long word (64-bit) addressed transfers between memory and 32-bit DAG1 or DAG2 registers target double DAG
registers and use the 64-bit DM and PM data buses. The Long Word DAG Register-to-Data Register Transfers figure
illustrates how the bus works in these transfers.

EXPLICIT (NAMED)
DAG1 OR DAG2 REGISTERS

031

31 063

DM OR PM DATA BUS

IMPLICIT (NAMED + OR - 1)
DAG1 OR DAG2 REGISTERS

031

Figure 6-4: Long Word DAG Register-to-Data Register Transfers

DAG1 Versus DAG2

DAG registers are part of the universal register (Ureg) set. Programs may load the DAG registers from memory,
from another universal register, or with an immediate value. Programs may store the DAG registers' contents to
memory or to another universal register.

Both DAGs are identical in their operation modes and can access the entire memory-mapped space. However, the
following differences should be noted.

DAG Register-to-Bus Alignment
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• Only DAG1 is capable of supporting compiler specific instructions like RFRAME and CJUMP.

• Only DAG2 is capable of supporting flow control instruction for indirect branches. Additionally DAG2 access
can cause instruction-conflict cache miss/hits for internal memory execution.

Instruction Types
The DAGs perform several types of operations to generate data addresses. As shown in the Data Address Generator
(DAG) Block Diagram figure, the DAG registers and the MODE1 and MODE2 registers contribute to DAG opera-
tions. The STKYx registers may be affected by the DAG operations and are used to check the status of a DAG
operation.

NOTE: SISD/SIMD mode, access word size, and data location (internal) all influence data access operations.

Long Word Memory Access Restrictions

If the long word transfer specifies an even numbered DAG register (REGF_I[n]0 or 2), then the even numbered
register value transfers on the lower half of the 64-bit bus, and the even numbered register + 1 value transfers on the
upper half (bits 63-32) of the bus as shown below.

I8 = DM(I2,M2);   /* I2 loads to I8/9 pair */
PM(I14,M14) = M5; /* stores M5/4 pair to I14*/

If the long word transfer specifies an odd numbered DAG register (REGF_I[n]1 or REGF_B[n] 3), the odd
numbered register value transfers on the lower half of the 64-bit bus, and the odd numbered register  1 value
(REGF_I[n]0 or REGF_B[n] 2 in this example) transfers on the upper half (bits 63-32) of the bus.

In both the even and odd numbered cases, the explicitly specified DAG register sources or sinks bits 31-0 of the long
word addressed memory.

Table 6-1: Neighbor DAG Register for Long Word Accesses (x = B, I, L, M)

DAG Neighbor Registers

x0 and x1 x8 and x9

x2 and x3 x10 and x11

x4 and x5 x12 and x13

x6 and x7 x14 and x15

Alignment requirements in byte space are summarized in the Sizes and Alignment Restrictions in SISD and SIMD
Modes table in the Byte Address Space Overview of Data Accesses section.

Forced Long Word (lw) Memory Access Instructions

When data is accessed using long word addressing, the data is always long word aligned on 64-bit boundaries in
internal memory space. When data is accessed using normal word addressing and the lw mnemonic, the program
should maintain this alignment by using an even normal word address (least significant bit of address = 0 for lw and

Instruction Types
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lower 3 bits = 0 for bw addresses). This register selection aligns the normal word or byte word address with a 64-bit
boundary (long word address). For more information, see Unaligned Forced Long Word Access in the Memory chap-
ter.

NOTE: The forced long word (lw) access only effects normal word address and byte address accesses and overrides
all other factors (REGF_MODE1.PEYEN, CMMR_SYSCTL.IMDWBLK3).

All long word accesses load or store two consecutive 32-bit data values. The register file source or destination of a
long word access is a set of two neighboring data registers (the Neighbor DAG Register for Long Word Accesses table)
in a processing element. In a forced long word access (using the lw mnemonic), the even (normal word address)
location moves to or from the explicit register in the neighbor-pair, and the odd (normal word address) location
moves to or from the implicit register in the neighbor-pair. In the Long Word Move Options example, the following
long word moves can occur.

Long Word Move Options

DM(NW_Address) = R0 (lw);
             
/* The data in R0 moves to location DM(NW_Address), and the data in R1 moves to 
location DM(NW_Address) */
             
R15 = DM(NW_Address)(lw);
             
/* The data at location DM(NW_Address) moves to R14, and the data at location 
DM(NW_Address) moves to R15 */
           

Byte Word (bw) (bwse) and Short Word (sw) (swse) Memory Access Instructions

When data is accessed in byte space, 8-bit data may be accessed with the bw and bwse modifiers, and 16-bit data
with sw and swse modifiers. Unmodified and lw modified loads and stores behave as they do in normal word
space. This is summarised in the Byte Address Access Modifiers table.

The bw, bwse, sw and swse modifiers may only be used when byte space is addressed. Attempts to access other
address spaces with these instructions cause an Illegal address space access interrupt. See Byte Address Space Over-
view of Data Accesses for details of byte space.

Modifier Size in memory Value loaded to register Value stored

(bw) 8-bits Zero extended to 32-bits Low 8-bits of 32-bit register value

(bwse) 8-bits Sign extend to 32-bits Not allowed, use (bw)

(sw) 16-bits Zero extended to 32-bits Low 16-bits of 32-bit register value

(swse) 16-bits Sign extended to 32-bits Not allowed, use (sw)

32-bits or 40-bits Value in memory 32-bit or 40-bit register value

(lw) 64-bits Value in memory 64-bit value in register pair

Long Word Memory Access Restrictions
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Pre-Modify Instruction

As shown in the Pre-Modify and Post-Modify Operations figure, the DAGs support two types of modified address-
ing, pre- and post-modify. Modified addressing is used to generate an address that is incremented by a value or a
register.

When addressing byte space, address scaling affects the output, but does not change the values in the registers. For
more information about address scaling arithmetic, see Enhanced Modify Instruction for Address Scaling.

I

M

+

OUTPUT I+M

PRE-MODIFY
NO I REGISTER UPDATE

SYNTAX: PM(MX, IX)
DM(MX, IX)

1. OUTPUT I

M

I+M

+

2. UPDATE

POST-MODIFY
I REGISTER UPDATE

SYNTAX: PM(IX, MX)
DM(IX, MX)

Figure 6-5: Pre-Modify and Post-Modify Operations

In pre-modify (indexed) addressing, the DAG adds an offset (modifier), which is either an M register or an immedi-
ate value, to an I register and outputs the resulting address. Pre-modify addressing does not change or update the I
register.

NOTE: Pre-modify addressing operations must not change the memory space of the address.

Post-Modify Instruction

The DAGs support post-modify addressing. Modified addressing is used to generate an address that is incremented
by a value or a register. In post-modify addressing, the DAG outputs the I register value unchanged, then adds an M
register or immediate value, updating the I register value.

When addressing byte space, address scaling affects the output, but does not change the values in the registers. For
more information about address scaling arithmetic, see Enhanced Modify Instruction for Address Scaling.

I

M

+

OUTPUT I+M

PRE-MODIFY
NO I REGISTER UPDATE

SYNTAX: PM(MX, IX)
DM(MX, IX)

1. OUTPUT I

M

I+M

+

2. UPDATE

POST-MODIFY
I REGISTER UPDATE

SYNTAX: PM(IX, MX)
DM(IX, MX)

Figure 6-6: Pre-Modify and Post-Modify Operations

The DAG post-modify addressing type can be used to emulate the push (save of registers) to a sw stack.

Post-Modify Addressing

Instruction Types
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BIT CLR MODE1 CBUFEN; /* clear circular buffer*/
nop;
I1 = buffer;          /* Index Pointer */
M1 = 1;               /* Modify */
instruction;          /* stall, any non-DAG instruction */
instruction;          /* stall, any non-DAG instruction */
R3 = dm(I1,M1);       /* 1st access */
R3 = dm(I1,M1);       /* 2nd access */

Modify Instruction

The DAGs support two operations that modify an address value in an index register without outputting an address.
These two operations, address bit-reversal and address modify, are useful for bit-reverse addressing and maintaining
pointers.

The MODIFY instruction modifies addresses in any DAG index register (I0-I15) without accessing memory.

The syntax for the MODIFY instruction is similar to post-modify addressing (index, then modifier). The MODIFY
instruction accepts either a 32-bit immediate value or an M register as the modifier. The following example adds 4 to
I1 and updates I1 with the new value.

MODIFY(I1,4);

NOTE: If the I register’s corresponding B and L registers are set up for circular buffering, a MODIFY instruction
performs the specified buffer wraparound (if needed).

The MODIFY instruction executes independent of the state of the REGF_MODE1.CBUFEN bit. The MODIFY
instruction always performs circular buffer modify of the index registers if the corresponding B and L registers are
configured, independent of the state of the REGF_MODE1.CBUFEN bit.

Enhanced Modify Instruction

Ib = MODIFY(Ia,Mc); is an enhanced version of the MODIFY instruction. This instruction loads the modi-
fied index pointer into another index register. If the source and destination registers are different, then:

• The source register (Ia) is not updated.

• The destination register (Ib) receives the result of the modify.

If the B and L registers corresponding to the source I register (Ia) are set up for circular buffering, the MODIFY
instruction performs specified buffer wraparound if it is needed.

The following example assumes that the La and Ba registers that correspond to the source Ia register are set up for
circular buffering, the modify operation executes circular buffer wraparound if it is needed, and the Ib register is
updated with the value after wraparound.

B0 = 0x40000;
L0 = 0x10000;
I0 = 0x4ffff;
I1 = modify(I0, 2); // I1 == 0x40001

Instruction Types
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Immediate Modify Instruction

Instructions can also use a number (immediate value), instead of an M register, as the modifier. The size of an imme-
diate value that can modify an I register depends on the instruction type. For all single data access operations, modi-
fy immediate values can be up to 32 bits wide. Instructions that combine DAG addressing with computations limit
the size of the modify immediate value. In these instructions (multifunction computations), the modify immediate
values can be up to 6 bits wide. The following example instruction accepts up to 32-bit modifiers: 

R1 = DM(0x40000000,I1);    /* DM address = I1 + 0x4000 0000 */
The following example instruction accepts up to 6-bit modifiers:

R0 = R1 + R2, PM(I8, 0x0B) = R3;       /* PM address = I8, I8 = I8 + 0x0B */

Bit-Reverse Instruction

The BITREV instruction modifies and bit-reverses addresses in any DAG index register (I0-I15) without access-
ing memory. This instruction is independent of the bit-reverse mode. The BITREV instruction adds a 32-bit imme-
diate value to a DAG index register, bit-reverses the result, and writes the result back to the same index register. The
following example adds 4 to I1, bit-reverses the result, and updates I1 with the new value:

BITREV(I1,4);

NOTE: Bit-reverse mode is supported. See Operating Modes. However bit-reverse mode does NOT support ad-
dress scaling for byte space accesses. For more information, see Enhanced Modify Instruction for Address
Scaling.

Enhanced Bit-Reverse Instruction

An enhanced version of the BITREV instruction, that loads the bit reversed index pointer into another index regis-
ter is shown below:

I6 = BITREV(I1,0);

Enhanced Modify Instruction for Address Scaling

When addressing byte address space, the access size options (for example, short word (sw)) provide address scaling
for modify, load, and store operations.

The need to scale indices of arrays of words by 4 for byte-addressed pointer arithmetic necessitates a modify by a
scaled increment. Likewise, scaling is supported in the addressing modes of loads and stores.

Scaling occurs automatically for pointers in the byte-addressed space. In the word-addressed space, scaling of the
offset does not occur. For loads and stores, scaling is by the size of the access (except in the case of (lw)), while for
modifies it is dependent on the instruction, specified in the (sw) or (nw) flag. Circular buffering interprets the
length in terms of the unit size too, so the value in the length register is also scaled.

Instruction Types
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Byte or short word access to any space other than byte address space results in an illegal address space (ILAD) inter-
rupt and the access ignores the size information. Modify instructions with (sw) flag with the I-register in non-byte
addressed space and (nw) flag in any long word or short word address space also results in ILAD interrupt.

The existing modify instruction is defined to do no scaling on its index, regardless of whether the I-register is in the
byte- or word-address space. This is for backwards compatibility. The (sw) or (nw) version performs conditional
scaling of the index if the I-register is in the byte address space (see Type 7a ISA/VISA (cond + comp + index modi-
fy).

For example:

Existing enhanced MODIFY instruction (ADSP-214xx)
Ia = MODIFY(Ib,Mc);     /* Add Mc bytes, Ia=Ib+Mc */
Does not scale the modifier, whatever the address space
            
Enhanced MODIFY instructions 
Ia = MODIFY(Ib,Mc) (sw);     /* Add Mc shorts, Ia=Ib+(2xMc) */
Ia = MODIFY(Ib,Mc) (nw);     /* Add Mc words, Ia=Ib+(4xMc) */
Scales the modifier if Ib contains byte address        

There is a complication for bit-reverse addressing. Note that the base address is tested to see which address space it is
in after any bit-reversing that is necessary due to the mode1 register. The scaling of the offset for bit-reverse address-
ing is in the opposite direction (shift down) than for normal addressing. This is because the offset is itself reversed,
so the extra zero bits are required at the top of the offset word. This is applicable for modify instruction also. The
Legal and Illegal Accesses to Byte Space With or Without Address Scaling table illustrates all conditions for address
scaling. If scaling applies to 40-bit NW space (extended precision) refer to the Table 6-3 Operand Addressed in
Non-Byte Space or Byte Space for Extended Precision Accesses (40-bit) table.

Table 6-2: Legal and Illegal Accesses to Byte Space With or Without Address Scaling

Modify Instruction Operand Ireg in ...

Non-Byte-Addressed Space

Operand Ireg in ...

Byte-Addressed Space

Im = modify(In, mod) if ((In + data) >= (Bn + 
Ln))
 Im ← In + mod - Ln
else if ((In + data) < Bn)
 Im ← In + mod + Ln
else
 Im ← In + mod

if ((In + mod) >= (Bn + Ln))
 Im ← In + mod - Ln
else if ((In + mod) < Bn)
 Im ← In + mod + Ln
else
 Im ← In + mod

Im = modify(In, mod) (sw) Illegal address space 
interrupt

if ( (In == I0 && BR0) 
 || (In == I8 && BR8))
{
 scaled_mod = mod >> 1;
 scaled_len = Ln >> 1;
}
else
{
 scaled_mod = mod << 1;
 scaled_len = Ln << 1;
}

Instruction Types
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Table 6-2: Legal and Illegal Accesses to Byte Space With or Without Address Scaling (Continued)

Modify Instruction Operand Ireg in ...

Non-Byte-Addressed Space

Operand Ireg in ...

Byte-Addressed Space

if ((In + scaled_mod) >= (Bn + 
scaled_len))
 Im ← In + scaled_ mod – scaled_len
else if ((In + scaled_mod) < Bn)
 Im ← In + scaled_ mod + scaled_len
else
 Im ← In + scaled_ mod

Im = modify(In, mod) (nw) if ((In + mod) >= (Bn + Ln))
 Im ← In + mod – Ln
else if ((In + mod) < Bn)
 Im ← In + mod + Ln
else
 Im ← In + mod

if ( (In == I0 && BR0) 
 || (In == I8 && BR8))
 {
 scaled_mod = mod >> 2;
 scaled_len = Ln << 2;
 }
else
 {
 scaled_mod = mod << 2;
 scaled_len = Ln << 2;
 }
if ((In + scaled_mod) >= (Bn + 
scaled_len))
 Im ← In + scaled_ mod – scaled_len
else if ((In + scaled_mod) < Bn)
 Im ← In + scaled_ mod + scaled_len
else
 Im ← In + scaled_ mod

Data Move Instructions

Rm = dm(mod, In) 
Rm = dm(mod, In) (lw)

if ( (In == I0 && BR0) 
 || (In == I8 && BR8)) {
 Rm ← dm(reverse(In + mod))
} else {
 Rm ← dm(In + mod )
}

if ( (In == I0 && BR0) 
 || (In == I8 && BR8)) {
 scaled_mod = mod >> 2;
 Rm ← dm(reverse(In + scaled_mod))
} else {
 scaled_mod = mod << 2;
 Rm ← dm(In + scaled_mod)
}

Rm = dm(In, mod) 
Rm = dm(In, mod) (lw)

if ( (In == I0 && BR0) 
 || (In == I8 && BR8)) {
 Rm ← dm(reverse(In))
} else {
 Rm ← dm(In)
}if ((In + mod) >= (Bn + 
Ln))
 I n ← In + mod - Ln
else if ((In + mod) < Bn)
 In ← In + mod + Ln
else
 In ← In + mod

if ( (In == I0 && BR0) 
 || (In == I8 && BR8)) {
 Rm ← dm(reverse(In))
 scaled_mod = mod >> 2;
 scaled_len = Ln >> 2;
} else {
 Rm ← dm(In)
 scaled_mod = mod << 2;
 scaled_len = Ln << 2;
}
if ((In + scaled_mod) >= (Bn + 
scaled_len))
 Im ← In + scaled_ mod – scaled_len
else if ((In + scaled_mod) < Bn)
 Im ← In + scaled_ mod + scaled_len
else

Instruction Types
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Table 6-2: Legal and Illegal Accesses to Byte Space With or Without Address Scaling (Continued)

Modify Instruction Operand Ireg in ...

Non-Byte-Addressed Space

Operand Ireg in ...

Byte-Addressed Space

 Im ← In + scaled_ mod
Rm = dm(mod, In) (bw) Illegal address space 

interrupt
if ( (In == I0 && BR0) 
 || (In == I8 && BR8)) {
 Rm ← dm(reverse(In + mod))
} else {
 Rm ← dm(In + mod)
}

Rm = dm(In, mod) (bw) Illegal address space 
interrupt

if ( (In == I0 && BR0) 
 || (In == I8 && BR8)) {
 Rm ← dm(reverse(In))
} else {
 Rm ← dm(In)
}
if ((In + mod) >= (Bn + Ln))
 I n ← In + mod - Ln
else if ((In + mod) < Bn)
 In ← In + mod + Ln
else
 In ← In + mod

Rm = dm(mod, In) (sw) Illegal address space 
interrupt

if ( (In == I0 && BR0) 
 || (In == I8 && BR8)) {
 scaled_mod = mod >> 1;
 Rm ← dm(reverse(In + scaled_mod))
} else {
 scaled_mod = mod << 1;
 Rm ← dm(In + scaled_mod)
}

Rm = dm(In, mod) (sw) Illegal address space 
interrupt

if ( (In == I0 && BR0) 
 || (In == I8 && BR8)) {
 Rm ← dm(reverse(In))
 scaled_mod = mod >> 1;
 scaled_len = Ln >> 1;
} else {
 Rm ← dm(In)
 scaled_mod = mod << 1;
 scaled_len = Ln << 1;
}
if ((In + scaled_mod) >= (Bn + 
scaled_len))
 I n ← In + scaled_ mod – scaled_len
else if ((In + scaled_mod) < Bn)
 I n ← In + scaled_ mod + scaled_len
else
 I n ← In + scaled_ mod

Instruction Types
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Table 6-3: Operand Addressed in Non-Byte Space or Byte Space for Extended Precision Accesses (40-bit)

Data Move Instructions Operand I-reg in non-byte-addressed

space*1
Operand I-reg in byte-addressed space

Rm = dm(mod, In) if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
  offset = reverse(In+mod) % 2;
  Rm ← dm((3/2 * reverse(In + 
mod)) << 1 + offset)
} else {
  Offset = (In + data) % 2;
  Rm ← dm((3/2 * (In + mod)) << 
1 + offset)
}

if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
  scaled_mod = mod >> 2;
  byteoffset = reverse(In+scaled_mod)  % 4;
  wordoffset = (reverse(In+scaled_mod)>>2) % 
2;
  Rm ← dm((3/2 * reverse(In + scaled_mod) >> 
2 + wordoffset)
<< 2 + byteoffset)
} else {
  scaled_mod = data << 2;
  byteoffset = (In+scaled_mod) % 4;
  wordoffset = ((In+scaled_mod) >> 2) % 2;
  Rm ← dm(((3/2 * (In + scaled_mod) >> 2 + 
wordoffset)
<< 2) + byteoffset)
}

Rm = dm(In, mod) if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
 offset = reverse(In) % 2;
  Rm ← dm((3/2 * reverse(In) << 
1) + offset)
} else {
 offset = In % 2;
  Rm ← dm((3/2 * In) << 1 + 
offset)
}
if ((In + mod) >= (Bn + Ln))
  In ← In + mod - Ln
else if ((In + mod) < Bn)
  In ← In + mod + Ln
else
  In ← In + mod

if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
 byteoffset = reverse(In) % 4;
 wordoffset = (reverse(In) >> 2) % 2;
  Rm ← dm(((3/2 * reverse(In) >> 2 + 
wordoffset) << 2)
+ byteoffset)
   scaled_mod = mod >> 2;
  scaled_len = Ln >> 2;
} else {
 byteoffset = In % 4;
 wordoffset = (In >> 2) % 2;
  Rm ← dm(((3/2 * In >> 2 + wordoffset) << 2)
+ byteoffset)
  scaled_mod = mod << 2;
  scaled_len = Ln << 2;
}
if ((In + scaled_mod) >= (Bn + scaled_len))
  In ← In + scaled_mod  scaled_len
else if ((In + scaled_mod) < Bn)
  In ← In + scaled_mod + scaled_len
else
  In ← In + scaled_mod

Rm = dm(mod, In) (bw) Illegal address space interrupt if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
   byteoffset = reverse(In+mod)  % 4;
   wordoffset = (reverse(In+mod) >> 2) % 2;
  Rm ← dm((3/2 * reverse(In + mod) >> 2 + 
wordoffset)
<< 2 + byteoffset + 2)
} else {
  byteoffset = (In+mod) % 4;
  wordoffset = (In+mod) >>2 % 2;
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Table 6-3: Operand Addressed in Non-Byte Space or Byte Space for Extended Precision Accesses (40-bit) (Continued)

Data Move Instructions Operand I-reg in non-byte-addressed

space*1
Operand I-reg in byte-addressed space

  Rm ← dm(((3/2 * (In + mod) >> 2 + 
wordoffset) << 2)
+ byteoffset + 2)
}

Rm = dm(In, mod) (bw) Illegal address space interrupt if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
 byteoffset = reverse(In) % 4;
 wordoffset = reverse(In) >> 2 % 2;
  Rm ← dm(((3/2 * reverse(In) >> 2 + 
wordoffset) << 2) + byteoffset + 2)
} else {
  byteoffset = In % 4;
 wordoffset = In >> 2 % 2;
  Rm ← dm(((3/2 * In >> 2 + wordoffset) << 
2) + byteoffset + 2)
}
if ((In + mod) >= (Bn + Ln))
  In ← In + mod  Ln
else if ((In + mod) < Bn)
  In ← In + mod + Ln
else
  In ← In + mod

Rm = dm(mod, In) (sw) Illegal address space interrupt if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
  scaled_mod = mod >> 1;
  byteoffset = reverse(In+scaled_mod)  % 4;
 wordoffset = reverse(In+scaled_mod) >> 2 % 
2;
  Rm ← dm((3/2 * reverse(In + scaled_mod) >> 
2 + wordoffset)
<< 2 + byteoffset + 2)
} else {
  scaled_mod = data << 2;
  byteoffset = (In+scaled_mod) % 4;
  wordoffset = (In+scaled_mod)>> 2 % 2;
  Rm ← dm(((3/2 * (In + scaled_mod) >> 2 + 
wordoffset)
<< 2) + byteoffset + 2)
}

Rm = dm(In, mod) (sw) Illegal address space interrupt if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
 byteoffset = reverse(In) % 4;
 wordoffset = reverse(In) >> 2 % 2;
  Rm ← dm(((3/2 * reverse(In) >> 2 + 
wordoffset) << 2)
+ byteoffset)
   scaled_mod = mod >> 1;
  scaled_len = Ln >> 1;
} else {
  byteoffset = In % 4;
 wordoffset = In >> 2 % 2;
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Table 6-3: Operand Addressed in Non-Byte Space or Byte Space for Extended Precision Accesses (40-bit) (Continued)

Data Move Instructions Operand I-reg in non-byte-addressed

space*1
Operand I-reg in byte-addressed space

  Rm ← dm(((3/2 * In >> 2 + wordoffset) << 2)
+ byteoffset)
  scaled_mod = mod << 1;
 scaled_len = Ln << 1;
}
if ((In + scaled_mod) >= (Bn + scaled_len))
  In ← In + scaled_mod  scaled_len
else if ((In + scaled_mod) < Bn)
  In ← In + scaled_mod + scaled_len
else
  In ← In + scaled_mod

Rm = dm(mod, In) (lw) if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
  Rm ← dm(reverse(In + mod))
} else {
  Rm ← dm(In + mod)
}

if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
  scaled_mod = mod >> 2;
  Rm ← dm(reverse(In + scaled_mod))
} else {
  scaled_mod = mod << 2;
  Rm ← dm(In + scaled_mod)
}

Rm = dm(In, mod) (lw) if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
  Rm ← dm(reverse(In))
} else {
  Rm ← dm(In)
}if ((In + mod) >= (Bn + Ln))
  In ← In + mod - Ln
else if ((In + mod) < Bn)
  In ← In + mod + Ln
else
  In ← In + mod

if  (   (In == I0 && BR0) 
      || (In == I8 && BR8)) {
  Rm ← dm(reverse(In))
  scaled_mod = mod >> 2;
  scaled_len = Ln >> 2;
} else {
  Rm ← dm(In)
  scaled_mod = mod << 2;
   scaled_len = Ln << 2;
}
if ((In + scaled_mod) >= (Bn + scaled_len))
  Im ← In + scaled_mod  scaled_len
else if ((In + scaled_mod) < Bn)
  Im ← In + scaled_mod + scaled_len
else
  Im ← In + scaled_mod

 

*1 Access addresses shown are short word addresses i.e. Rm <- dm(shortword address), 40/48 bits will be fetched starting from the short
word address

 

Switch Address Instruction

New instructions are provided to convert pointers between the byte and the legacy term word.

IF COND  compute  Id = B2W(Is); 
   compute  Id = W2B(Is); 
   compute  Bd = B2W(Bs); 
   compute  Bd = W2B(Bs); 

NOTE: In case of B2W or W2B instruction on any B register, the corresponding I register is not implicitly updat-
ed. These instructions have the following semantics:

Instruction Types
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Table 6-4: Switch Address Instruction Semantics

Instruction Base addr in word-addressed space Base addr in byte-addressed space

Id = B2W(Is) Id = Is Convert byte pointer to word pointer.

Likely semantics

Id <- Is >> 2

Exact semantics depend on address map and must
work correctly for all addresses in both internal and
external memory.

In case of byte addresses not having word space equiv-
alent Is will be retained as is i.e. Id = Is and illegal ad-
dress space (ILAD) interrupt is generated.

Id = W2B(Is) Convert word pointer to byte pointer.

Likely semantics

Id <- Is << 2

Exact semantics depend on address map and must
work correctly for all addresses in both internal and
external memory.

In case of word addresses not having byte space equiv-
alent Is will be retained as is i.e. Id = Is and illegal ad-
dress space (ILAD) interrupt is generated.

Id = Is

Bd = B2W(Bs) Bd = Bs Convert byte pointer to word pointer.

Likely semantics

Bd <- Bs >> 2

Exact semantics depend on address map and must
work correctly for all addresses in both internal and
external memory.

In case of byte addresses not having word space equiv-
alent Bs are retained as is i.e. Bd = Bs and illegal ad-
dress space (ILAD) interrupt is generated.

Bd = W2B(Bs) Convert word pointer to byte pointer.

Likely semantics

Bd <- Bs << 2

Exact semantics depend on address map and must
work correctly for all addresses in both internal and
external memory.

In case of word addresses not having byte space equiv-
alent Bs are retained as is i.e. Bd = Bs and illegal ad-
dress space (ILAD) interrupt is generated.

Bd = Bs
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Dual Data Move Instructions

The number of transfers that occur in a clock cycle influences the data access operation. As described in Internal
Memory Space in the Memory chapter, the processor core supports single cycle, dual-data accesses to and from inter-
nal memory for register-to-memory and memory-to-register transfers. Dual-data accesses occur over the PM and
DM bus and act independently of SIMD/SISD mode setting. Though only available for transfers between memory
and data registers, dual-data transfers are extremely useful because they double the data throughput over single-data
transfers.

Note that the explicit use of complementary registers (CDreg) is not supported for dual data access.

Examples:

f0=f3*f4, f8=f8+f10, f3=dm(i2,m2), f4= pm(i9,m9); /* DREG*/
f0=f3*f4, f8=f8+f10, s3=dm(i2,m2), s4= pm(i9,m9); /* asm error*/
f0=f3*f4, f8=f8+f10, s3=dm(i2,m2); /* SDREG */

ATTENTION: On SHARC+ cores, it is illegal to use the DAGs in Type 1 instructions to access MMR space. Exter-
nal memory space access is legal.

        R8 = DM(I4,M3), PM(I12,M13) = R0; /* Dual access */
    R0 = DM(I5,M5);                   /* Single access */

For examples of data flow paths for single and dual-data transfers, see the Register Files chapter.

The processor core can use its complementary registers explicitly. They support single data access as shown in the
example below.

S8 = DM(I4,M3);
PM (I12,M13) = S12;
COMP, S8 = DM(I5,M5);
COMP, DM(I5,M5) = S14;

Conditional DAG Transfers

Conditions with DAG transfers allows programs to make memory accesses conditional. For more information, see
the Program Sequencer chapter.

DAG Breakpoint Units

Both DAGs are connected to the breakpoint units used for hardware breakpoints. They are used if user breakpoints
are enabled. For more information, see the Program Trace Macrocell (PTM) chapter.

DAG Instruction Restrictions

Modify (M) registers can work with any index (I) register in the same DAG (DAG1 or DAG2).

The DAGs do allow transfers involving registers on the two DAG, as in the following example.

DM(M2,I1) = I12;
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L7 = PM(M12,I12);
However, transfers using registers on one DAG are not allowed, as in the following example. In this case, the assem-
bler returns an error message.

DM(M2,I1) = I0; /* generates asm error */

Instruction Summary
The DAG Instruction Types Summary table lists the instruction types associated with DAG transfer instructions.
Note that instruction set types may have more options (conditions or compute). For more information see the In-
struction Set Types chapter. In these tables, note the meaning of the following symbols:

• Ia indicates a DAG1 index register (I7-0), Ic indicates a DAG2 index register (I15-8)

• Mb indicates a DAG1 modify register (M7-0), Md indicates a DAG2 modify register (M15-8)

• Ba indicates a DAG1 base register (B7-0), Bc indicates a DAG2 base register (B15-8)

• Ureg indicates any universal register, Dreg indicates any data register

Table 6-5: DAG Instruction Types Summary

Instruction
Type

DAG Instruction Syntax Description

1a/b DM(Ia,Mb)=Dreg, PM(Ic,Md)=Dreg; 
Dreg=DM(Ia,Mb), Dreg=PM(Ic,Md); 
Dreg=DM(Ia,Mb), PM(Ic,Md)=Dreg; 
DM(Ia,Mb)=Dreg, Dreg=PM(Ic,Md);

DAG1/2, post-modify, Dreg, Dual data move

3a DM(Ia,Mb)=Ureg (lw); 
PM(Ic,Md)=Ureg (lw); 
Ureg=DM(Ia,Mb) (lw); 
Ureg=PM(Ic,Md) (lw); 

DM(Mb,Ia)=Ureg (lw); 
PM(Md,Ic)=Ureg (lw); 
Ureg=DM(Mb,Ia) (lw); 
Ureg=PM(Mc,Id) (lw);

DAG1/2, post/pre modify, Ureg, forced long word ac-
cess

3b DM(Ia,Mb)=Ureg (bw/sw); 
PM(Ic,Md)=Ureg (bw/sw); 
Ureg=DM(Ia,Mb) (bw/bwse/sw/swse); 
Ureg=PM(Ic,Md) (bw/bwse/sw/swse); 

DM(Mb,Ia)=Ureg (bw/sw); 
PM(Md,Ic)=Ureg (bw/sw); 
Ureg=DM(Mb,Ia) (bw/bwse/sw/swse); 
Ureg=PM(Mc,Id) (bw/bwse/sw/swse);

DAG1/2, post/pre modify, Ureg, byte (bw), byte with
sign extend (bwse), short word (sw), short word with
sign extend (swse)

3c DM(Ia,Mb)=Dreg; 
Dreg=DM(Ia,Mb);

DAG1, Post modify, Dreg
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Table 6-5: DAG Instruction Types Summary (Continued)

Instruction
Type

DAG Instruction Syntax Description

3d Ureg=DM(Ia,Mb) (lw/nw/sw/bw,ex);
Ureg=PM(Ic,Md) (lw/nw/sw/bw,ex);
Ureg=DM(Ia,Mb) (bwse/swse,ex);
Ureg=PM(Ic,Md) (bwse/swse,ex);

DM(Ia,Mb)=Ureg (lw/nw/sw/bw,ex);
PM(Ic,Md)=Ureg (lw/nw/sw/bw,ex);
DM(Ia,Mb)=Ureg 
PM(Ic,Md)=Ureg 

Ureg=DM(Mb,Ia) (lw/nw/sw/bw,ex);
Ureg=PM(Md,Ic) (lw/nw/sw/bw,ex);
Ureg=DM(Mb,Ia) (bwse/swse,ex);
Ureg=PM(Md,Ic) (bwse/swse,ex);

DM(Mb,Ia)=Ureg (lw/nw/sw/bw,ex);
PM(Md,Ic)=Ureg (lw/nw/sw/bw,ex);
DM(Mb,Ia)=Ureg
PM(Md,Ic)=Ureg

DAG1/2, pre/post modify, exclusive access, Ureg

4a/b Dreg=DM(Ia,data6);
Dreg=PM(Ic,data6);
DM(Ia,data6)=Dreg;
PM(Ic,data6)=Dreg;

Dreg=DM(data6,Ia);
Dreg=PM(data6,Ic);
DM(data6,Ia)=Dreg;
PM(data6,Ic)=Dreg;

DAG1/2, pre/post modify, Dreg, immediate modify

4d Dreg=DM(Ia,data6) (bw/bwse/sw/swse);
Dreg=PM(Ic,data6) (bw/bwse/sw/swse);
DM(Ia,data6)=Dreg (bw/sw);
PM(Ic,data6)=Dreg (bw/sw);

Dreg=DM(data6, Ia) (bw/bwse/sw/swse);
Dreg=PM(data6, Ic) (bw/bwse/sw/swse);
DM(data6, Ia)=Dreg (bw/sw);
PM(data6, Ic)=Dreg (bw/sw);

DAG1/2, pre/post modify, Dreg, immediate modify,
byte (bw), byte with sign extend (bwse), short word
(sw), short word with sign extend (swse)

6a Dreg=DM(Ia,Mb);
Dreg=PM(Ic,Md);
DM(Ia,Mb)=Dreg;
PM(Ic,Md)=Dreg;

Dreg=DM(Mb,Ia);
Dreg=PM(Md,Ic);
DM(Mb,Ia)=Dreg;
PM(Md,Ic)=Dreg;

DAG1/2, pre/post modify, Dreg

7a/b MODIFY(Ia,Mb);
MODIFY(Ic,Md);
Ia=MODIFY(Ia,Mb);

DAG1/2, Index Modify, short word (sw) or normal
word (nw).
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Table 6-5: DAG Instruction Types Summary (Continued)

Instruction
Type

DAG Instruction Syntax Description

Ic=MODIFY(Ic,Md);
Ia=MODIFY(Ia,Mb) (sw);
Ic=MODIFY(Ic,Md) (sw);
Ia=MODIFY(Ia,Mb) (nw);
Ic=MODIFY(Ic,Md) (nw);

7d Ia=B2W(Ia);
Ic=B2W(Ic);
Ia=W2B(Ia);
Ic=W2B(Ic);
Ba=B2W(Ba);
Bc=B2W(Bc);
Ba=W2B(Ba);
Bc=W2B(Bc);

DAG1/2, scaled address arithmetic

10a DM(Ia,Mb)=Dreg;
Dreg=DM(Ia,Mb);

DAG1, post modify, Dreg

14a DM(addr32)=Ureg (lw); 
PM(addr32)=Ureg (lw); 

Ureg=DM(addr32) (lw); 
Ureg=PM(addr32) (lw);

DAG1/2, direct address, Ureg, LW option

14d Dreg=DM(addr32) (lw/nw/sw/bw/ex);
Dreg=DM(addr32) (nwse/swse/bwse/ex);
DM(addr32)=Dreg (lw/nw/sw/bw/ex);

DAG1, direct address, Dreg, byte (bw), byte with sign
extend (bwse), short word (sw), short word with sign
extend (swse), exclusive access (ex)

15a DM(data32,Ia)=Ureg (lw); 
PM(data32,Ic)=Ureg (lw); 

Ureg=DM(data32,Ia) (lw); 
Ureg=PM(data32,Ic) (lw);

DAG1/2, pre modify, Ureg, LW option, immediate
modify

15b DM(data7,Ia)=Ureg (lw); 
PM(data7,Ic)=Ureg (lw); 

Ureg=DM(data7,Ia) (lw); 
Ureg=PM(data7,Ic) (lw);

DAG1/2, pre modify, Ureg, LW option, immediate
modify

16a DM(Ia,Mb)=data32; 
PM(Ic,Md)=data32;

DAG1/2, post modify, immediate data

16b DM(Ia,Mb)=data16; 
PM(Ic,Md)=data16;

DAG1/2, post modify, immediate data

19a MODIFY(Ia,data32);
MODIFY(Ic,data32);
Ia=MODIFY(Ia,data32);
Ic=MODIFY(Ic,data32);
Ia=MODIFY(Ia,data32) (sw);
Ic=MODIFY(Ic,data32) (sw);

DAG1/2, Index Modify, with optional scaled address
arithmetic: short word (sw) or normal word (nw), im-
mediate modify
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Table 6-5: DAG Instruction Types Summary (Continued)

Instruction
Type

DAG Instruction Syntax Description

Ia=MODIFY(Ia,data32) (nw);
Ic=MODIFY(Ic,data32) (nw);

19a BITREV(Ia,data32);
BITREV(Ic,data32);
Ia=BITREV(Ia,data32);
Ic=BITREV(Ic,data32);

DAG1/2, Bit reverse

Operating Modes
This section describes all modes related to the DAG which are enabled by a control bit in the REGF_MODE1,
REGF_MODE2, and CMMR_SYSCTL registers.

Normal Word (40-Bit) Accesses

A program makes an extended-precision normal word (40-bit) access to internal memory using an access to a nor-
mal word address when that internal memory block's IMDWx bit is set (=1) for 40-bit words. The address ranges for
internal memory accesses appear in the product-specific data sheet. For more information on configuring memory
for extended-precision normal word accesses, see Extended-Precision Normal Word Addressing of Single-Data in the
Memory chapter.

The processor core transfers the 40-bit data to internal memory as a 48-bit value, zero-filling the least significant 8
bits on stores and truncating these 8 bits on loads. The register file source or destination of such an access is a single
40-bit data register as shown in the Normal Word (40-Bit) Accesses example.

Normal Word (40-Bit) Accesses

bit clr MODE1 CBUFEN;
nop;
I9=0x90500;                   /* start of 40-bit block 0 */
M9=1;
I5=0xB8000;                   /* start of 32-bit block 1 */
M5=1;
USTAT1 = dm(SYSCTL);
bit set USTAT1 IMDW0;         /* Blk0 access 40-bit precision */
dm(SYSCTL) = USTAT1;
NOP;                          /* effect latency */
DM(I5,M5)=R0, PM(I9,M9)=R4;   /* DAG1 32-bit, DAG2 40-bit */ 

The sequencer uses 48-bit memory accesses for instruction fetches. Programs can make 48-bit accesses with the
REGF_PX register moves, which default to 48 bits.

Input Sections Definition for 32/40-bit Data Access in LDF File
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/* block 0 */
seg_pmco       /* TYPE(PM RAM) START(0x00090200) END(0x000904FF) WIDTH(48) */
seg_pmda_40    /* TYPE(PM RAM) START(0x00090500) END(0x00090FFF) WIDTH(48) */

/* block 1 */
seg_dmda_32    /* TYPE(DM RAM) START(0x000B8000) END(0x000B87FF) WIDTH(32)*/

Processing Unit versus Memory Load/Store Precision Accesses

The REGF_MODE1.RND32 bit and the CMMR_SYSCTL.IMDWBLK3-0 bits control how floating-point data are
treated by the processing units versus L1 memory depending on the REGF_MODE1.PEYEN bit.

• REGF_MODE1.RND32 =0, CMMR_SYSCTL.IMDWBLK3-0 =0 (default). See Figure 7-17 Normal Word
Addressing of Single-Data in SIMD Mode.

• Processing Units: 40-bit boundary to/from register file (SIMD)

• Load/Store: 32-bit floating to/from memory (SIMD)

• REGF_MODE1.RND32 =0, CMMR_SYSCTL.IMDWBLK3-0 =1. See Figure 7-21 Extended-Precision Nor-
mal Word Addressing of Dual-Data in SISD Mode.

• Processing Units: 40-bit boundary to/from register file (SIMD)

• Load/Store: 40-bit floating to/from memory (SISD)

• REGF_MODE1.RND32 =1, CMMR_SYSCTL.IMDWBLK3-0 =1. See Figure 7-21 Extended-Precision Nor-
mal Word Addressing of Dual-Data in SISD Mode.

• Processing Units: 32-bit boundary to/from register file (SIMD)

• Load/Store: 40-bit floating to/from memory (SISD)

Extended Precision Access

All 3/2* operations in the Operand Addressed in Non-Byte Space or Byte Space for Extended Precision Accesses table
are assumed to implicitly perform a floor operation on the result, by rounding off the result to the lowest non-frac-
tional value.

Note that the lw mnemonic overrides the IMDW setting as can be seen from the Operand Addressed in Non-Byte
Space or Byte Space for Extended Precision Accesses table. The addresses calculated using the formulae in the above
tables will be subject to force alignment as per alignment restrictions listed previously.

Also, SIMD accesses to a bank with the IMDW bit set results in the explicit access occurring irrespective of the size
of the access only (consistent with legacy behavior for extended precision accesses in normal word space).

The data accessed by extended precision normal word accesses is shown in the Extended Precision Normal Word
Access (Byte address or normal word address space) table, showing how 48-bit data elements are laid out contiguous-
ly in memory. By contrast, when Short Word or Byte Word accesses are performed, the low 16 bits of each 48-bit
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word are skipped, as shown in the Extended Precision Byte Word Access (Byte Address Space) and Extended Precision
Short Word Access (Byte Address Space) tables.

Table 6-6: Extended Precision Normal Word Access (Byte address or normal word address space)

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

EP WORD X3 EP WORD X2 ...

... EP WORD X2 EP WORD X1 ...

... EP WORD X1 EP WORD X0

Table 6-7: Extended Precision Byte Word Access (Byte Address Space)

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

BYTE WORD
X15

BYTE WORD
X14

BYTE WORD
X13

BYTE WORD
X12

BYTE WORD
X11

BYTE WORD
X10

BYTE WORD
X9

BYTE WORD
X8

BYTE WORD
X7

BYTE WORD
X6

BYTE WORD
X5

BYTE WORD
X4

BYTE WORD
X3

BYTE WORD
X2

BYTE WORD
X1

BYTE WORD
X0

Table 6-8: Extended Precision Short Word Access (Byte Address Space)

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

SHORT WORD X7 SHORT WORD X6 SHORT WORD X5

SHORT WORD X4 SHORT WORD X3 SHORT WORD X2

SHORT WORD X1 SHORT WORD X0

Circular Buffering Mode

The REGF_MODE1.CBUFEN bit enables circular buffering-a mode where the DAG supplies addresses that range
within a constrained buffer length (set with an L register). Circular buffers start at a base address (set with a B
register), and increment addresses on each access by a modify value (set with an M register).

The circular buffer enable bit (CBUFEN) in the MODE1 register is cleared (= 0) at reset.

NOTE: It is recommended to statically enable the REGF_MODE1.CBUFEN bit. During processing the individual
DAG length registers enable (L>0) or disable (L=0) circular buffering.

When using circular buffers, the DAGs can generate an interrupt on buffer overflow (wraparound). For more infor-
mation, see DAG Status.

Circular buffering is defined as addressing a range of addresses which contain data that the DAG steps through re-
peatedly, wrapping around to repeat stepping through the range of addresses in a circular pattern. To address a circu-
lar buffer, the DAG steps the index pointer (I register) through the buffer, post-modifying and updating the index
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on each access with a positive or negative modify value (M register or immediate value). If the index pointer falls
outside the buffer, the DAG subtracts or adds the buffer length to the index value, wrapping the index pointer back
within the start and end boundaries of the buffer. The DAG's support for circular buffer addressing appears in the
Data Address Generator (DAG) Block Diagram figure (see Features), and an example of circular buffer addressing
appears in Circular Buffer Programming Model.

The starting address that the DAG wraps around is called the buffer's base address (B register). There are no restric-
tions on the value of the base address for a circular buffer.

NOTE: Circular buffering starting at any address may only use post-modify addressing.

It is important to note that the DAGs do not detect memory map overflow or underflow. If the address post-modify
produces I - M < 0 or I + M > 0xFFFFFFFF, circular buffering may not function correctly. For byte space accesses,
the M value in the I+M or the I-M is the scaled M value. Also, the length of a circular buffer should not let the
buffer straddle the top of the memory map. For more information on the core memory map, see Internal Memory
Space in the Memory chapter and the product-specific data sheet.

Circular Buffer Programming Model

As shown in the Circular Data Buffers With Positive Modifier figure, programs use the following steps to set up a
circular buffer:

1. Enable circular buffering (BIT SET MODE1 CBUFEN;). This operation is only needed once in a program.
This operation is done by default when setting up the C runtime.

2. Load the buffer's base address into the B register. This operation automatically loads the corresponding I regis-
ter. If an offset is required the I register can be changed accordingly.

3. Load the buffer's length into the corresponding L register. For example, L0 corresponds to B0.

4. Load the modify value (step size) into an M register in the corresponding DAG. For example, M0 through M7
correspond to B0. Alternatively, the program can use an immediate value for the modifier.
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THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS
NOTE THAT “0” ABOVE IS BASE ADDRESS. THE SEQUENCE REPEATS ON SUBSEQUENT PASSES

THE FOLLOWING SYNTAX SETS UP AND ACCESSES A CIRCULAR BUFFER WITH:
LENGTH = 11
BASE ADDRESS = 0X80500
MODIFIER = 4

BIT SET MODE1 CBUFEN; /* ENABLES CIRCULAR BUFFER ADDRESSING JUST ONCE IN A PROGRAM */
B0 = 0X80500; /* LOADS B0 AND I0 REGISTERS WITH BASE ADDRESS */
L0 = 11; /* LOADS L0 REGISTER WITH LENGTH OF BUFFER */
M1 = 4; /* LOADS M1 WITH MODIFIER OR STEP SIZE */
LCNTR = 11, DO MY_CIR_BUFFER UNTIL LCE; /* SETS UP A LOOP CONTAINING BUFFER ACCESSES */
R0 = DM(I0,M1); /* AN ACCESS WITHIN THE BUFFER USES POST MODIFY ADDRESSING */

... /* OTHER INSTRUCTIONS IN THE MY_CIR_BUFFER LOOP */
MY_CIR_BUFFER: NOP; /* END OF MY_CIR_BUFFER LOOP */

Figure 6-7: Circular Data Buffers With Positive Modifier

The Circular Data Buffers With Negative Modifier figure shows a circular buffer with the same syntax as in the
Circular Data Buffers With Positive Modifier figure, but with a negative modifier (M1=-4).
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Figure 6-8: Circular Data Buffers With Negative Modifier

After circular buffering is set up, the DAGs use the modulus logic in the Data Address Generator (DAG) Block Dia-
gram figure (in Features) to process circular buffer addressing.

NOTE: Using circular buffering with odd length in SIMD mode allows the implicit move to exceed the circular
buffer limits. For example if the circular buffer requires an odd length, add one location (zero init) to the
SW buffer (even count).

Wraparound Addressing

When circular buffering is enabled, on the first post-modify access to the buffer, the DAG outputs the I register
value on the address bus then modifies the address by adding the modify value. If the updated index value is within
limits of the buffer, the DAG writes the value to the I register. If the updated value is outside the buffer limits, the
DAG subtracts (for positive M) or adds (for negative M) the L register value before writing the updated index value to
the I register. In equation form, these post-modify and wraparound operations work as follows.

• If M is positive:

• Inew = Iold + M if Iold + M < Buffer base + length (end of buffer)

• Inew = Iold + M - L if Iold + M ≥ buffer base + length

• If M is negative:

• Inew = Iold + M if Iold + M ≥ buffer base (start of buffer)

• Inew = Iold + M + L if Iold + M < buffer base (start of buffer)

NOTE: Scaled M and L values are used for byte space access.

The DAGs use all four types of DAG registers for addressing circular buffers. These registers operate as follows for
circular buffering.

• The index (I) register contains the value that the DAG outputs on the address bus.

• The modify (M) register contains the post-modify value (positive or negative) that the DAG adds to the I
register at the end of each memory access. The M register can be any M register in the same DAG as the I
register and does not have to have the same number. The modify value can also be an immediate value instead

Circular Buffering Mode
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of an M register. The size of the modify value, whether from an M register or immediate, must be less than the
length (L register) of the circular buffer.

• The length (L) register sets the size of the circular buffer and the address range that the DAG circulates the I
register through. The L register must be positive and cannot have a value greater than 231 - 1. For byte accesses,

the scaled length value cannot have a value greater than 231 - 1. If an L register's value is zero, its circular buffer
operation is disabled.

• The DAG compares the base (B) register, or the B register plus the L register, to the modified I value after each
access. When the B register is loaded, the corresponding I register is simultaneously loaded with the same val-
ue. When I is loaded, B is not changed. Programs can read the B and I registers independently.

Clearing the CBUFEN bit disables circular buffering for all data load and store operations. The DAGs perform nor-
mal post-modify load and store accesses, ignoring the B and L register values. Note that a write to a B register modi-
fies the corresponding I register, independent of the state of the CBUFEN bit.

DAG Status

The DAGs can provide buffer overflow information when executing circular buffer addressing for the I7 or I15
registers. When a buffer overflow occurs (a circular buffering operation increments the I register past the end of the
buffer or decrements below the start of the buffer), the appropriate DAG updates a buffer overflow flag in a sticky
status (STKYx) register. Use the BITTST instruction to examine overflow flags in the STKY register after a series of
operations. If an overflow flag is set, the buffer has overflowed or wrapped around at least once. This method is
useful when overflow handling is not time sensitive.

Broadcast Load Mode

The REGF_MODE1.BDCST1 and REGF_MODE1.BDCST9 bits in the control broadcast register loading. When
broadcast loading is enabled, the processor core writes to complementary registers or complementary register pairs in
each processing element on writes that are indexed with DAG1 register I1 (if REGF_MODE1.BDCST1 =1) or
DAG2 register I9 (if REGF_MODE1.BDCST9 =1). Broadcast load accesses are similar to SIMD mode accesses in
that the core transfers both an explicit (named) location and an implicit (unnamed, complementary) location. How-
ever, broadcast loading only influences writes to registers and writes identical data to these registers.

Broadcast mode is independent of SIMD mode. Broadcast load mode is a hybrid between SISD and SIMD modes
that transfers dual-data under special conditions.

NOTE: Broadcast Load Mode performs memory reads only. Broadcast mode only operates with data registers
(Dreg) or complement data registers (CDreg). Enabling either DAG register to perform a broadcast load
has no effect on register stores or loads to universal registers (Ureg). For example

R0=DM(I1,M1);  /* I1 load to R0 and S0 */
S10=PM(I9,M9); /* I9 load to S10 and R10 */

The Instruction Summary Broadcast Load table shows examples of Broadcast load instructions.

Circular Buffering Mode
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Table 6-9: Instruction Summary Broadcast Load

Explicit, PEx Operation Implicit, PEy operation

Rx = dm(i1,ma);
Rx = pm(i9,mb);
Rx = dm(i1,ma), Ry = pm(i9,mb);

Sx = dm(i1,ma);
Sx = pm(i9,mb);
Sx = dm(i1,ma), Sy = pm(i9,mb);

NOTE: The REGF_MODE1.PEYEN bit (SISD/SIMD mode select) does not influence broadcast operations.
Broadcast loading is particularly useful in SIMD applications where the algorithm needs identical data
loaded into each processing element. For more information on SIMD mode (in particular, a list of com-
plementary data registers), see Data Register Neighbor Pairing in the Register Files chapter.

Bit-Reverse Mode

The bit reserve mode is useful for FFT calculations, if using a DIT (decimation in time) FFT, all inputs must be
scrambled before running the FFT, thus the output samples are directly interpretable. For DIF (decimation in fre-
quency) FFT the process is reversed. This mode automates bit reversal, no specific instruction is required.

The REGF_MODE1.BR0 and REGF_MODE1.BR8 bits in the enable the bit-reverse addressing mode where ad-
dresses are output in reverse bit order. When REGF_MODE1.BR0 is set (= 1), DAG1 bit-reverses 32-bit addresses
output from I0. When REGF_MODE1.BR8 is set (= 1), DAG2 bit-reverses 32-bit addresses output from I8. The
DAGs bit-reverse only the address output from I0 or I8; the contents of these registers are not reversed.

The Bit Reverse Addressing example demonstrates how bit-reverse mode effects address output.

Bit Reverse Addressing

BIT SET MODE1 BR0;   /* Enables bit-rev. addressing for DAG1 */
IO = 0x83000         /* Loads I0 with the bit reverse of the
                        buffer's base address DM(0xC1000) */
M0 = 0x4000000;      /* Loads M0 with value for post-modify, which
                        is the bit reverse value of the modifier
                        value M0 = 32 */
R1 = DM(I0,M0);      /* Loads R1 with contents of DM address
                        DM(0xC1000), which is the bit-reverse of 0x83000,
                        then post-modifies I0 for the next access with
                        (0x83000 + 0x4000000) = 0x4083000, which is the
                        bit-reverse of DM(0xC1020) */

SIMD Mode

When the REGF_MODE1.PEYEN bit is set (=1), the processors are in single-instruction, multiple-data (SIMD)
mode. In SIMD mode, many data access operations differ from the default single-instruction, single-data (SISD)
mode. These differences relate to doubling the amount of data transferred for each data access.

For example, processing two channels in parallel requires a more complex data layout. This complexity stems from
the need for all inputs and outputs for the two channels have to be interleaved. The layout lets the even array ele-
ments represent one channel, while all odd elements represent the other channel.

Broadcast Load Mode
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DAG Transfers in SIMD Mode

Accesses in SIMD mode transfer both an explicit (named) location and an implicit (unnamed, complementary) lo-
cation (the DAG Address vs. Access Modes table). The explicit transfer is a data transfer between the explicit register
and the explicit address, and the implicit transfer is between the implicit register and the implicit address.

Table 6-10: DAG Address vs. Access Modes

DAG Instruction Post-Modify Pre-Modify (M+I, no I update)

Explicit Access Implicit Access Explicit Access Implicit Access

SISD/40-bit DM(Ia, Mb)

PM(Ic, Md)

− DM(Mb, Ia)

PM(Md, Ic)

−

SIMD

k=1 NW

k=2 SW

k=4 BW

DM(Ia+k, Mb)

PM(Ic+k, Md)

DM(Ia+k, Mb)

PM(Ic+k, Md)

Broadcast DM(Ia, Mb)

PM(Ic, Md)

DM(Mb, Ia)

PM(Md, Ic)

NOTE: In SIMD mode, both aligned (explicit even address) and unaligned (explicit odd address) transfers are sup-
ported.

R0=DM(I1,M1);      /* I1 points to nw space */
S0=DM(I1+1,M1);    /* implicit instruction */
R10=PM(I10,M11);   /* I1 points to sw space */
S10=PM(I10+2,M11); /* implicit instruction */

NOTE: SIMD mode can be overridden with 40-bit mode, broadcast mode, byte word or with the long word
modifier. Refer to the instruction types for more information.

The DAG registers support the bidirectional register-to-register transfers that are described in SIMD Mode. When
the DAG register is a source of the transfer, the destination can be a register file data register. This transfer results in
the contents of the single source register being duplicated in complementary data registers in each processing ele-
ment as shown below.

BIT SET MODE1 PEYEN;   /* SIMD */
R5 = I8;               /* Loads R5 and S5 with I8 */

In SIMD mode, if the DAG register is a destination of a transfer from a register file data register source, the core
executes the explicit move only on the condition in PEx becoming true, whereas the implicit move is not performed.
This is also true when both the source and the destination is a DAG register.

BIT SET MODE1 PEYEN;  /* SIMD */
I8 = R5;              /* Loads I8 with R5 */

SIMD Mode
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Conditional DAG Transfers in SIMD Mode

Conditions in SIMD allows programs to make memory accesses conditional. For more information, see the Program
Sequencer chapter.

IF EQ S8 = DM(I4,M3);        /* S8 load with I4, R8 load with I4+1*/
IF NOT AV PM(I12,M13) = S12; /* I12 load with S12, I12+1 load with R12*/

Alternate (Secondary) DAG Registers

To facilitate fast context switching, the processor core has alternate register sets for all DAG registers. Bits in the
REGF_MODE1 register control when alternate registers become accessible. While inaccessible, the contents of alter-
nate registers are not affected by core operations. Note that there is a one cycle latency between writing to
REGF_MODE1 and being able to access an alternate register set. The alternate register sets for the DAGs are descri-
bed in this section. For more information on alternate data and results registers, see Alternate (Secondary) Data Reg-
isters in the Register Files chapter.

Bits in the REGF_MODE1 register can activate alternate register sets within the DAGs: the lower half of DAG1 (I,
M, L, B0-3), the upper half of DAG1 (I, M, L, B4-7), the lower half of DAG2 (I, M, L, B8-11), and the upper
half of DAG2 (I, M, L, B12-15). The DAG Primary and Alternate Registers figure shows the primary and alter-
nate register sets of the DAGs.
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Figure 6-9: DAG Primary and Alternate Registers

To share data between contexts, a program places the data to be shared in one half of either the current data address
generator's registers or the other DAG's registers and activates the alternate register set of the other half. The follow-
ing examples demonstrate how the code handles the one cycle latency from the instruction that sets the bit in
REGF_MODE1 to when the alternate registers may be accessed. Note that programs can use a NOP instruction or
any other instruction not related to the DAG to take care of this latency.

Example 1

SIMD Mode
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BIT SET MODE1 SRD1L; /* Activate alternate dag1 lo regs */
NOP;                 /* Wait for access to alternates */
R0 = DM(i0,m1);

Example 2

BIT SET MODE1 SRD1L; /*activate alternate dag1 lo registers */
R13 = R12 + R11;     /* Any unrelated instruction */
R0 = DM(I0,M1);

Interrupt Mode Mask

On the SHARC+ cores, programs can mask automated individual operating mode bits in the REGF_MODE1 regis-
ter when entering into an ISR by setting bits in the REGF_MMASK register. This improves interrupt handling per-
formance and helps ensure that interrupt handler code runs with operating modes set consistently.

For the DAGs, the alternate registers (REGF_MODE1.SRD1H/REGF_MODE1.SRD1L and
REGF_MODE1.SRD2H/REGF_MODE1.SRD2L), circular buffer (REGF_MODE1.CBUFEN), bit-reverse
(REGF_MODE1.BR0/REGF_MODE1.BR8) and broadcast (REGF_MODE1.BDCST1/REGF_MODE1.BDCST9)
are optional masks in use. For more information, see the Program Sequencer chapter.

DAG Exceptions
The DAG exceptions are shown in the following sections. For a complete list, see the Interrupt Priority and Vector
Table.

Table 6-11: DAG Exceptions

Interrupt Source Interrupt Condition Return Register Return Instruc-
tion

IVT level

DAG Circular Buffer 7 overflow STKYx RTI 5, CB7I

Circular Buffer 15 overflow STKYx RTI 21, CB15I

Unintentional CMMR/SMMR ac-
cess

STKYx RTI 6, IICDI

Illegal Input Condition Detect STKYx RTI 6, IICDI

Illegal Address Switch n/a RTI 8, ILADI

Circular Buffer Exceptions

There is one set of registers (I7 and I15) in each DAG that can generate an interrupt on circular buffer overflow
(address wraparound). See DAG Status.

When a program needs to use I7 or I15 without circular buffering, and circular buffer overflow interrupts are
unmasked, the program should disable the generation of these interrupts by setting the B7/B15 and L7/L15 regis-
ters to values that prevent the interrupts from occurring. If, for example, I7 is accessing the address range 0x1000 -
0x2000, the program could set B7 = 0x0000 and L7 = 0xFFFF. Because the circular buffer interrupt is based on the

Operating Modes
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wraparound equations (see Wraparound Addressing), setting the L register to zero does not necessarily achieve the
desired results. If the program is using either of the circular buffer overflow interrupts, it should avoid using the
corresponding I register(s) (I7 or I15) where interrupt branching is not needed.

There are two special situations to be aware of when using circular buffers:

1. In the case of circular buffer overflow interrupts, if REGF_MMASK.CBUFEN = 1 and register L7 = 0 (or L15
= 0), then the CB7I (or CB15I) interrupt occurs at every change of I7 (or I15), after the index register (I7
or I15) crosses the base register (B7 or B15) value. This behavior is independent of the context of both pri-
mary and alternate DAG registers.

2. When a lw access, SIMD access, or normal word access with the lw option crosses the end of the circular buf-
fer, the processor core completes the access before responding to the end of buffer condition.

Enable interrupts and use an interrupt service routine (ISR) to handle the overflow condition immediately. This
method is appropriate if it is important to handle all overflows as they occur; for example in a "ping-pong" or swap
I/O buffer pointers routine.

Illegal Address Space Access Exceptions

The Accesses Causing Illegal Address Space Interrupt table lists all the scenarios which results in Illegal Address Space
(ILAD) interrupt.

Table 6-12: Accesses Causing Illegal Address Space Interrupt

Instruction/Quantifier Source Address Space

Long Word Space Normal Word
Space

Short Word Space Byte Word Space

Memory Access Instruction

Byte word (example: dm(i0,m0)=r0(bw);) Illegal Illegal Illegal Legal

Short word (example: dm(i0,m0)=r0(sw);) Illegal Illegal Illegal Legal

Normal Word (example:

dm(i0,m0)=r0(nw);)*1
Legal Legal Legal Legal

Extended Precision (example:
dm(i0,m0)=r0(nw);)

Legal Legal Legal Legal

Long Word (example: dm(i0,m0)=r0(lw);) Legal Legal Illegal Legal

Modify Instruction

Byte word (example: i5=modify (i2,m3);)*2 Legal Legal Legal Legal

Short word (example: i5=modify (i2,m3)
(sw);)

Illegal Illegal Illegal Legal

Normal Word (example: i5=modify (i2,m3)
(nw);)

Illegal Legal*3 Illegal Legal

DAG Exceptions
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Table 6-12: Accesses Causing Illegal Address Space Interrupt (Continued)

Instruction/Quantifier Source Address Space

Long Word Space Normal Word
Space

Short Word Space Byte Word Space

Address Switch Instructions

Byte to word (example: i5=B2W(i3);) Illegal Legal Illegal Illegal if no eqiva-
lent

Word to byte (example: i5=W2B(i3);) Illegal Legal Illegal Legal

 

*1 Normal word is the default access size. No interrupt will be raised for any address space. Normal word sized access would be done in
byte address space. In other address spaces, access would be as per the address space.

*2 No interrupt raised as this is the default modifier.

*3 Behavior is same as BW modifier in NW space.
 

Unintentional CMMR/SMMR Space Access Exceptions

Execution or data access from SMMR space can create problems, as many peripheral FIFOs are mapped in this
space. To help programs detect any such accesses, the processor provides the illegal MMR access interrupt. This logic
detects accesses both to core MMRs and to system MMRs. Setting the REGF_MODE2.IIRAE bit enables this in-
terrupt.

Unaligned Forced Long Word Access Exceptions

The processor monitors for unaligned 64-bit memory accesses (access from two successive rows) if the unaligned 64-
bit memory accesses (REGF_MODE2.U64MAE) bit is set (=1). Accesses not following alignment in the Sizes and
Alignment in SISD and SIMD Modes table cause this interrupt. When detected, this condition is an input that can
cause an illegal input condition detected interrupt if the interrupt is enabled in the REGF_IMASK.IICDI. For
more information, see Mode Control 2 Register (MODE2) in the Registers appendix. 

The following code example shows the access for even and odd addresses. When accessing an odd address, the sticky
bit is set to indicate the unaligned access.

bit set mode2 U64MAE;    /* set bit for aligned or unaligned 64-bit access*/
r0 = 0x11111111;
r1 = 0x22222222;
pm(NW_Address1) = r0(lw);    /* even address in 32-bit, access is aligned */
pm(NW_Address2) = r0(lw);    /* odd address in 32-bit, sticky bit is set */
        

Unaligned Byte Word Access Exceptions

The following table details all the alignment requirements. Any access which does not adhere to applicable restric-
tions will cause IICDI (Illegal Input Condition Detected) interrupt if unaligned memory access
(REGF_MODE2.U64MAE) is set. Such accesses are force-aligned to the immediately lower legally aligned address
for the given data size.

DAG Exceptions
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Table 6-13: Sizes and Alignment Restrictions in SISD and SIMD Modes

Access Size Alignment Restriction Exclusive Accesses Restrictions

SISD SIMD SISD SIMD

Byte None None None Short word boundary

Short Word None None*1 Short word boundary Normal word boun-
dary

Normal Word None Normal word boun-
dary

Normal word boun-
dary

Long word boundary

Long Word Long word boundary Long word boundary*2 None None

External memory space short word
and IMDW mode

Short word boundary Short word boundary None None

External memory space normal word
and IMDW mode

Normal word boun-
dary

Normal word boun-
dary

None None

 

*1 Note that SIMD accesses using short word (SW) address space behave differently than using byte address space.

*2 Behavior similar to those in any other address space after forced alignment.
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7   L1 Memory Interface

The SHARC processors contain from to 3 to 5M bits of internal RAM. This memory is organized into four inde-
pendent single ported memory blocks. This organization allows greater system flexibility in regards to code, data and
stack or heap allocation. For information and a block diagram about the the exact size and maximum number of
data or instruction words that can fit into internal memory, see the processor-specific data sheet.

Features
The following are the memory interface features.

• Four independent internal memory blocks comprised of RAM. Contents of all the four banks can be parity
protected. There is one parity bit for each byte.

• Each block can be configured for different combinations of code and data storage.

• Each block consists of eight columns and each column is 8 bits wide.

• Each block maps to separate regions in memory address space and can be accessed as 8-bit, 16-bit, 32-bit, 48-
bit or 64-bit words.

• Memory aliasing allows access of same space from different word sizes.

• Block 0 has 256 addresses reserved for internal interrupt vector table (IVT). Controller jumps after interrupt
latch to a specific IVT address.

• Unified memory space (both DAGs can support the same address).

• Only the end address regions of blocks are assigned to I/D cache if enabled.

While each memory block can store combinations of code and data, accesses are most efficient when the DM bus
accesses data from block 1, the PM bus accesses data and instructions from block 2 and two I/O buses access data
from blocks 3 and 4. Using the DM and PM buses in this way assures single-cycle execution with two data transfers
where the instruction must be available in the instruction-conflict cache.

NOTE: The address map between the L1 memory blocks is not sequential.

L1 Memory Interface
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Von Neumann Versus Harvard Architectures
Most microprocessors use a single address and a single-data bus for memory accesses. This type of memory architec-
ture is referred to as the Von Neumann architecture. Because processors require greater data throughput than the
Von Neumann architecture provides, many processors use memory architectures that have separate data and address
buses for instruction and data storage. These two sets of buses let the processor retrieve data and instructions simul-
taneously. This type of memory architecture is called Harvard architecture. 

Super Harvard Architecture

SHARC processors go a step further by using a Super Harvard architecture. This four bus architecture has two ad-
dress buses and two data buses, but provides a single, unified address space for program and data storage. While the
data memory (DM) bus only carries data, the program memory (PM) bus handles both instructions and data, allow-
ing dual-data accesses in a single.

The following code examples and the Pipelined Execution Cycles table illustrate the differences between Harvard
and Super Harvard capabilities.

Standard Harvard Architecture
Compute, r0=dm(i0,m0); /* instruction performs 2 accesses */
  /* cycle 6: Instruction Fetch conflict cache, PM Data fetch F1 */

Super Harvard Architecture
Compute, r0=dm(i0,m0), r1=pm(i8,m8); /* instruction performs 3 accesses */
       /* cycle 6: Instruction Fetch conflict cache, PM Data fetch F1 and DM Data 
Fetch D2 */
       /* cycle 6: See d2 and f1 in cycle 6 in the table below */

The Pipelined Execution Cycles table illustrates multiple accesses in the instruction pipeline.

Table 7-1: Pipelined Execution Cycles

cycles 1 2 3 4 5 6 7 8 9 10 11 12

e2 n n+1

m4 n n+1 n+2

m3 n n+1 n+2 n+3

m2 n n+1 n+2 n+3 n+4

m1 n n+1 n+2 n+3 n+4 n+5

d2 n n+1 n+2 n+3 n+4 n+5 n+6

d1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7

f4 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

f3 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

f2 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10

Von Neumann Versus Harvard Architectures
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Table 7-1: Pipelined Execution Cycles (Continued)

cycles 1 2 3 4 5 6 7 8 9 10 11 12

f1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11

When instructions and data passing over the PM bus cause a conflict, the instruction-conflict cache resolves them
using hardware that act as a third bus feeding the sequencer's pipeline with instructions.

Processor core and CMMR/SMMR accesses to internal memory are completely independent and transparent to one
another. Each block of memory can be accessed by the processor core and DMA in every cycle provided the accesses
are to different blocks of the memory.

Functional Description
The following sections provide detail about the processor's memory function.

The SHARC processor’s memory map appears in the product-specific data sheet. See the data sheet for address de-
coding of memory space.

Memory Access Types

The memory interface of processor is responsible for servicing all of the accesses that are generated by core or com-
ing to core from outside system. The Access Types figure shows summary of all the accesses serviced by this interface
and the associated ports.

All accesses 
(RD/WR)

System driven accesses 
to L1 (core is completer)

Ports: S1 & S2

Core driven accesses 
(core is requester) 

Ports: L1, cMMR, I & D

Instruction
Data 

(DM/PM)

Uncached Cached

Internal 
memory

External  
memory

Uncached 
Port: D-port

Cached   
Port: D-port

SMMR
Port: D-port

L1 
Ports: L1 blocks[0-3] CMMR 

External memory 
Port: I-port

Internal memory 
Ports: L1-blocks[0-3]

completer

Figure 7-1: Access Types

Other than instruction accesses, all the accesses can be both read and write. Access to L1 blocks can be serviced
without any pipeline stall if block conflicts are avoided. All other accesses can cause a pipeline stall. Precise number
of stall depends on delay in outside system and type of completer port used. Though system related delay cannot be
predicted by the core but port related components are predictable.

Functional Description
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Byte Address Space Overview of Data Accesses

The byte address space is universal address space for the core and SoC. It has the following properties.

1. Data access of all sizes can be done using byte address space.

2. The size of an access is determined by the instruction encoding.

• The CMMR_SYSCTL.IMDWBLK0 and CMMR_SYSCTL.IMDWBLK3 bits must be referred to in order
to select between 32-bit and 40-bit accesses.

3. The entire system memory-map is byte-addressed. A cores byte space address map matches very closely with the
address map view of other cores and access requesters (for example, DMAs).

• All physical memory can be addressed using the byte addressable memory space. By contrast, there is some
physical memory which has no corresponding normal word or short word alias.

4. Sign extension OR zero filling is based on the sign extension modifier of the instruction encoding. As a result,
the sign extension mode bit is ignored for short word and byte accesses in byte space.

5. In byte space SIMD pairs are contents of explicit address and contents of next location, while in short word space
SIMD pairs are alternate locations.

6. The impact of the IMDW bit on byte space accesses are slightly different than normal word space accesses. For
more information, see the Normal-Word Access in SISD Mode section and the Normal-Word Access in SIMD
Mode section.

7. Alignment requirements in byte space are summarized in the Sizes and Alignment Restrictions in SISD and
SIMD Modes table.

The following sections describe how all sizes of internal memory accesses can be accomplished in byte space and the
corresponding valid data alignments. Note each column supports 16 bits of data.

Byte Access in SISD Mode

All alignments are allowed in this mode.
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Byte Access in SIMD Mode

Where byte access in byte space with SIMD mode is enabled, the PEX and PEY units take data from consecutive
locations. The explicit register is updated with the content of the explicit address location while its SIMD pair is
updated with the content of the explicit address + 1-byte memory location. Accesses of all alignments are allowed in
this mode.
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Short-Word Access in SISD Mode

Accesses of all alignments are allowed in this mode.
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Short-Word Access in SIMD Mode

Where short word access in byte space with SIMD mode is enabled, the PEX and PEY unit take data from consecu-
tive locations. Explicit register is updated with content of explicit address location while its SIMD pair gets updated
with content of explicit address + 2-byte memory location. Accesses of all alignments are allowed in this mode.

Byte Address Space Overview of Data Accesses
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Normal-Word Access in SISD Mode

Accesses of all the alignments are allowed in this mode.
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32-Bit Normal-Word Access in SIMD Mode

Where normal word access in byte space with SIMD mode is enabled, the X and Y unit take data from consecutive
locations. The explicit register is updated with the content of the explicit address location while its SIMD pair gets
updated with the content of the “explicit address + 4-byte” memory location. In this case accesses must be aligned
on normal word boundaries (byte space address = 4 n, where n = 0, 1, 2, 3 and so on).

Byte Address Space Overview of Data Accesses
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Long-Word Accesses

Long word accesses in byte space must be aligned on long word boundaries (byte space address = 8 n, where n = 0,
1, 2,and so on).
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Byte Accesses to a 3 column (40-bit) enabled Block

Byte space access to an internal memory block having its CMMR_SYSCTL.IMDWBLK0 and
CMMR_SYSCTL.IMDWBLK3 bit set behaves differently than 32-bit accesses discussed in previous sections. A sum-
mary of byte addressed accesses with IMDW set are as follows:

1. Address arithmetic on byte addresses using normal word accesses or using the modify (nw) instruction scales
the modifier by 6 as there are 6 bytes per word.

2. Only 4 bytes (out of 6) can be accessed using the byte modifier.

a. Byte n accesses the 3rd byte of a given 6-byte chunk. Similarly n + 1 goes to the 4th byte and finally n+3
goes to the 6th byte.

b. This way least significant (unused) byte and the 2nd byte remain inaccessible in this mode.

c. However each and every byte becomes accessible to byte access as soon as IMDW is turned off (as shown
in previous sub-section).

Byte Address Space Overview of Data Accesses
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Table 7-2: Extended Precision Normal Word Access (Byte address or normal word address space)

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

EP WORD X3 EP WORD X2 ...

... EP WORD X2 EP WORD X1 ...

... EP WORD X1 EP WORD X0

3. Only 4 bytes (out of 6) can be accessed using the SW modifier.

a. A short word access starting with byte address n accesses the 3rd and 4th bytes of a given 6-byte chunk. A
short word access starting with byte address n + 2 accesses the 5th and 6th bytes of a given 6-byte chunk.

b. This way least significant (unused) byte and 2nd byte remain inaccessible in this mode.

c. However each and every byte is accessible to byte access as soon as IMDW is turned off (as shown in
previous sub-section).

4. Normal word accesses the entire 6-bytes and ignores the least significant unused byte to create 40-bit data.

5. Long word accesses in byte space memory override the IMDW setting (see Byte Accesses to a 3 column (40-bit)
enabled Block.

6. SIMD accesses to bank with the IMDW bit set results only in the explicit access occurring irrespective of the
size of the access.

Internal Memory Space

The SHARC processor's internal memory address space is divided into four SRAM banks and one Core-MMR
group. See the memory-map in the product specific data sheet for exact address details.

Internal Memory Interface

The internal memory interface is responsible for all address and strobe generation for internal memory accesses. It
also performs the necessary 48-bit address rotation, pin multiplexing and other interface tasks for instruction fetch
or 40-bit data access. All data writes to the internal memory blocks pass through a shadow write FIFO logic. Apart
from performing a memory access, the interface also performs bus-switching for the various buses. The crossbar
switches between the data memory bus (DM), program memory bus (PM), completer 1 (S1) and completer 2 bus
(S2) to the single ported memory blocks.

Requester Ports

The SHARC core has two 32-bit bidirectional requester ports: a 64-bit PM port is used to fetch instruction or data
and a 64-bit DM port used for data transfers.

The requester ports are used when the core performs a system access into the cross bar.

Completer Ports

The SHARC core has two 32-bit bidirectional completer ports. The ports can be used by any external requester to
access any amount of data from the core's L1 memory. Some important points related to the completer ports.

Functional Description
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• Both the ports are 32-bit wide and run at system clock speed (SYSCLK).

• L1 memory accesses cannot be performed when the core is in reset.

• Read and write requests that occur at the same time on the same port causes arbitration within that completer
port.

• Both of the completer ports share same arbitration logic with core accesses. When one completer access collides
with a core access on any of the internal memory banks, the other completer port also sees the bandwidth re-
duction.

• Completer ports do not return an error response for unpopulated spaces within the address range. Accesses to
unpopulated memory space should be avoided because the access may be mapped to some other space.

NOTE: For ADSP-SC58x based products two system requesters can concurrently access two completer ports
(for address map refer to product DS)

For ADSP-SC57x based products completer port 2 is hard wired for the Max BW MDMA. Therefore
any system requester on completer port 1 can have concurrent access with the Max BW MDMA

WARNING: Speculative read accesses launched on a pipeline flush may lead the system to hang under certain con-
ditions.

The SHARC+ core launches all non MMR reads speculatively based on the current values of the in-
dex and modifier registers. Speculative accesses are the accesses which are launched ahead of their exe-
cute stage. These accesses can be killed when the pipe is flushed or during an abort such as when a
condition is false. When a pipeline flush occurs after a branch or a loop for example, MMR reads can
launch extra accesses based on a Ix = Ix + My operation or on the stale value of index registers. If a
MMR read lands on a memory interface that is not functional (either not initialized or is blocked by
the SMPU), then such accesses may hang the system.

Programs should use SMPU instances to disable accesses to system memory that may not be popula-
ted or needs to be initialized before being accessed. That way, when attempting to speculatively access
non-populated/non-activated memory completers, the system receives a protection-violation response
rather than hanging the system. This avoids the possibility of an infinite stall in the system due to a
speculative access to a disabled or uninitialized memory. The preload and init code executables provi-
ded in CCES for the ADSP-SC584 and ADSP-SC589 EZ-Board have code that disables unused
DMC, PCIe and SMC memory using the SMPU. See Illegal System Accesses Conditions for more
information.

Internal Memory Block Architecture

The internal memory of the processor is organized as four 16-bit columns. The organization further divides each
column into two bytes to support byte access. The size of the data access can be from one byte to up to 64-bits as
follows:

• 0.5 column = 8-bit words (byte)

• 1 column = 16-bit words

Internal Memory Space
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• 2 columns = 32-bit words

• 3 columns = 48- or 40-bit words

• 4 columns = 64-bit words

Each block is physically comprised of four 16-bit columns. Wrapping, as shown in the Short Word Addressing of
Single-Data in SISD Mode figure (see Short Word Addressing of Dual-Data in SISD Mode), is a method where
memory can efficiently store different combinations of 8-bit, 16-bit, 32-bit, 48-bit or 64-bit wide words.

The width of the data word fetched from memory depends on:

• Type of address space used,

• Type of access size modifier used in instruction encoding, and

• Instruction mode (SISD or SIMD mode)

The same physical location in memory can be accessed using four different addresses.

NOTE: The memory data width access is only address space dependent and NOT on instruction type. This is very
unique for SHARC processors. Memory aliasing allows to access the same physical location via different
memory aliases.

Extended-precision normal word (40-bit) data is only accessible if the CMMR_SYSCTL.IMDWBLK0 and
CMMR_SYSCTL.IMDWBLK3 bits are set. It is left-justified within a three column location using bits 478 of the
location. 

Normal Word Space 48-bit or 40-Bit Word Rotations

When the processor core addresses memory, the word width of the access determines how many columns within the
memory are accessed. For instruction word (48 bits) or extended-precision normal word data (40 bits), the word
width is 48 bits, and the processor accesses the memory's 16-bit columns in groups of three. Because these sets of
three column accesses are packed into a 4 column matrix, there are four possible rotations of the columns for storing
40- or 48-bit data. The three column word rotations within the four column matrix appear in the 48-Bit Word
Rotations figure.

Column 0Column 1Column 2Column 3

150150150150A
d

d
re

ss
es

0 noitatoR1 noitatoR

Rotation  1Rotation  2

Rotation 3 Rotation 2

Figure 7-2: 48-Bit Word Rotations

Extended precision floating-point (40-bit) data and instruction fetches (48-bit) need a different type of manipula-
tion of their addresses to derive the corresponding row addresses. Since each row contains 4 columns while 48-bit

Internal Memory Space
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words span across 3 columns, the address is multiplied by 3/2 (add address to its left-shifted version, right-shift the
result by two bit-positions) to derive the first row address. The next address is the incremented version of the first
one. Note that this assumes that the starting address of the 48-bit/32-bit/64-bit addresses are aligned.

For long word (64 bits), normal word (32 bits) and short word (16 bits) memory accesses accomplished using
LW/NW/SW address space of memory map, the processor selects from fixed columns in memory. No rotations of
words within columns occur for these data types. 16-bit and 32-bit accesses that the processor performs using the
byte space of the address map may result in rotation, depending on the starting point of the accessed data.

The Mixed Instructions and Data with No Unused Locations figure in Mixing Words in Normal Word Space shows
the memory ranges for each data size in the processor's internal memory.

Rules for Wrapping Memory Layout

The following sections describe memory wrapping, a method where programs can efficiently store different combi-
nations of 16-bit, 32-bit, 48-bit or 64-bit wide words.

Mixing Words in Normal Word Space

The processor's memory organization lets programs freely place memory words of all sizes (see Internal Memory
Block Architecture) with few restrictions (see Mixing 32-Bit Words and 48-Bit Words). This memory organization
also lets programs mix (place in adjacent addresses) words of all sizes. This section discusses how to mix odd (three
column) and even (four column) data words in the processor's memory.

Transition boundaries between 48-bit (three column) data and any other data size can occur only at any 64-bit ad-
dress boundary within the internal memory block. Depending on the ending address of the 48-bit words, there are
zero, one, or two empty locations at the transition between the 48-bit (three column) words and the 64-bit (four
column) words. These empty locations result from the column rotation for storing 48-bit words. The three possible
transition arrangements appear in figures Mixed Instructions and Data with No Unused Locations, Mixed Instruc-
tions and Data With One Unused Location, and Mixed Instructions and Data With Two Unused Locations.
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Figure 7-3: Mixed Instructions and Data with No Unused Locations
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Figure 7-5: Mixed Instructions and Data With Two Unused Locations

Mixing 32-Bit Words and 48-Bit Words

There are some restrictions that stem from the memory column rotations for three column data (48 or 40-bit words)
and they relate to the way that three column data can mix with two column data (32-bit words) in memory. These
restrictions apply to mixing 48 and 32-bit words because the processor uses a normal word address to access both of
these types of data even though 48-bit data maps onto three columns of memory and 32-bit data maps onto two
columns of memory.

When a system has a range of three column (48-bit) words followed by a range of two column (32-bit) words, there
is often a gap of empty 16-bit locations between the two address ranges. The size of the address gap varies with the
ending address of the range of 48-bit words. Because the addresses within the gap alias to both 48 and 32-bit words,
a 48-bit write into the gap corrupts 32-bit locations, and a 32-bit write into the gap corrupts 48-bit locations. The
locations within the gap are only accessible with short word (16-bit) accesses.

32-Bit Word Allocation

Calculating the starting address for two column data that minimizes the gap after three column data is useful for
programs that are mixing three and two column data. Given the last address of the three column (48-bit) data, the
starting address of the 32-bit range that most efficiently uses memory can be determined by the equation:

m = B + (3/2 (n - B)) + 1)

Rules for Wrapping Memory Layout
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where:

• n is the first unused address after the end of 48-bit words

• B is the base normal word / 48-bit address of the internal memory block 

• m is the first 32-bit normal word address to use after the end of 48-bit words.

ATTENTION: Note that the linker verifies the wrapping rules of different output sections and returns an overlap
error message during project build if the rules are violated.

Example: Calculating a Starting Address for 32-Bit Addresses

If, in the SHARC address map for example, the block 0 starting point of a normal word and 48-bit address is
0x90000, and given a block of words in the range 0x90000 to 0x92694, the next valid address is 0x92695. The
number of 48-bit words (n) is:

n = 0x92695 - 0x90000 = 0x02695
When 0x12695 is converted to decimal representation, the result is 9877.

The base (B) normal word address of the internal memory block is 0x80000. The first 32-bit normal word address
to use after the end of the 48-bit words is given by:
m = 0x90000 + (3/2 (9877)) + 1
m = 0x90000 + 0x039E0
m = 0x90000 + 0x039E0 = 0x939E0

The first valid starting 32-bit address is 0x9B9E0.

48-Bit Word Allocation

Another useful calculation for programs that are mixing two and three column data is to calculate the amount of
three column data that minimizes the gap before starting four column data. Given the starting address of the two
column (32-bit) data, the number of 48-bit words that most efficiently uses memory can be determined by the
equation:

n = B + (2/3 (m - B)) - 1
where:

• m is the first 32-bit normal word address after the end of 32-bit words (m values falls in the valid normal word
address space)

• B is the base normal word / 48-bit address of the internal memory block 

• n is the address of the first 48-bit word to use after the end of 32-bit words

Memory Block Arbitration

A memory access conflict can occur when the processor attempts two or more accesses to the same internal memory
block in the same cycle. When this conflict, known as a block conflict occurs, the memory interface logic resolves it

Rules for Wrapping Memory Layout

SHARC+ Core Programming Reference 7–13



according the following rules. The instruction that causes this conflict may take two or three core clock cycles to
complete execution.

1. DMA access completer ports1-2 (highest priority)*

2. Core access to L1 over DM bus

3. Core access to L1 over PM bus

4. Core instruction access to L1

5. Core access (D-Cache) external memory over DM bus

6. Core access (D-Cache) external memory over PM bus

7. Core access (I-Cache) external memory over Instr. bus (lowest priority)

* In case both DMA completer ports access the same block completer port 1 is given higher priority

During a single-cycle, dual-data access, the processor core uses the independent PM and DM buses to simultaneous-
ly access data from two memory blocks. Though dual-data accesses provide greater data throughput, it is important
to note some limitations on how programs may use them. The limitations on single cycle, dual-data accesses are:

• The two pieces of data must come from different memory blocks.

• If the core accesses two words from the same memory block in a single instruction, an extra cycle is needed.

• The data access execution may not conflict with an instruction fetch operation. The PM data bus tries to fetch
an instruction in every cycle. If a data fetch is also attempted over the PM bus, an extra cycle may be required
depending on the availability of victim instruction in conflict cache.

• If the conflict cache contains the conflicting instruction, the data access completes in a single cycle and the
sequencer uses the cached instruction. If the conflicting instruction is not in the instruction-conflict cache, an
extra cycle is needed to complete the data access and cache the conflicting instruction. For more information,
see Instruction-Conflict Cache for External Instruction Fetch in the Program Sequencer chapter.

For more information on how the buses access memory blocks, see Requester Ports.

VISA Instruction Arbitration

With standard arbitration processes, 48-bits of data are fetched at a time. In VISA operation, this data may either be
1, 2, or 3 instructions. This is an advantage of VISA operation-during the execution of a typical VISA application
there are fewer accesses to internal memory from the core, causing less conflict on the internal buses with other pe-
ripheral DMAs or dedicated hardware accelerators using the same bus.

Using Single Ported Memory Blocks Efficiently

Because the SHARC+ cores are designed with four single-ported memory blocks, software needs to be designed so
that data is continuously being processed and there are no memory block conflicts.

Typically data is pushed into memory using the DMA infrastructure. The core loads the data from memory, per-
forms a computation, and stores the data back into memory. Then the DMA drives this data off-chip.

Memory Block Arbitration
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To ensure continuous data streams, mechanisms like ping-pong buffers, together with chained DMA transfers, can
be implemented as shown in the DMA Flow figure. Designs should ensure that while the DMA moves data to the
primary memory block, the core processes the secondary block's data. Then, after the DMA interrupt is generated,
the memory block processing between core and DMA is flipped which prevents memory block conflicts between the
core and DMA.

For complete information on using DMA, see the product-specific hardware reference, "Direct Memory Access
(DMA)" chapter.

CORE

DMA

BLOCK 1BLOCK 0

Figure 7-6: DMA versus Core Flow

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)
The processor's DM and PM buses support many combinations of register-to-memory data access options in byte-
word, short-word, normal-word, and long-word address spaces. The following factors influence the data access type:

• Size of words - short word, normal word, extended-precision normal word, or long word

• Number of words - single or dual-data move

• Processor mode - SISD, SIMD, or broadcast load

• Instruction modifiers, such as long word (LW), short word (SW or SWSE) and byte word (BW or BWSE)

The following list shows the processor's possible memory transfer modes and provides a cross-reference to examples
of each memory access option that stems from the processor's data access options.

These modes include the transfer options that stem from the following data access options:

• The mode of the processor: SISD, SIMD, or Broadcast Load

• The size of access words: long, extended-precision normal word, normal word, short word, or byte word

• The number of transferred words

To take advantage of the processor's data accesses to three and four column locations, programs must adjust the
interleaving of data into memory locations to accommodate the memory access mode. The following guidelines pro-
vide overviews of how programs should interleave data in memory locations. For more information and examples,
see Instruction Set Types in the Instruction Set Types chapter, and Computation Types in the Computation Types
chapter.

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)
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• Programs can use odd or even modify values (1, 2, 3, ) to step through a buffer in single- or dual-data, SISD or
broadcast load mode regardless of the data word size (long word, extended-precision normal word, normal
word, short word, or byte word).

• Programs should use a multiple of 2 modify values (2, 4, 6, ) to step through buffers of 8-, 16- or 32-bit data
using the byte address space.

• Programs should use a multiple of 4 modify values (4, 8, 12, ) to step through a buffer of short word data in
single- or dual-data, SIMD mode. Programs must step through a buffer twice, once for addressing even short
word addresses and once for addressing odd short word addresses.

• Programs should use a multiple of 2 modify values (2, 4, 6, ) to step through a buffer of normal word data in
single- or dual-data SIMD mode.

• Programs can use odd or even modify values (1, 2, 3, ) to step through a buffer of long word or extended-
precision normal word data in single- or dual-data SIMD modes.

NOTE: Where a cross (†) appears in the PEx registers in any of the following figures, it indicates that the process-
or zero-fills or sign-extends the most significant bits of the data register while loading the byte/short word
value into a 40-bit data register. Zero-filling or sign-extending depends on the state of the SSE bit in the
MODE1 system register. For byte/short word transfers, the least significant 8 bits of the data register are
always zero.

Byte Addressing of Single-Data in SISD Mode

The Byte Addressing of Single-Data in SISD Mode figure shows the SISD single-data, byte word addressed access
mode. For byte addressing, the processor treats the data buses as eight 8-bit short word lanes. The 8-bit value for the
byte access is transferred using the least significant byte lane of the PM or DM data bus. The processor drives the
other byte lanes of the data buses with zeros.

In SISD mode, the instruction accesses the PEx registers to transfer data from memory. This instruction accesses
BYTE X0, whose short word address has "00" for its least significant two bits of address. Other locations within this
row have addresses with least significant two bits of "01", "10", or "11" and select BYTE X1, BYTE X2, or BYTE
X3 from memory respectively. The syntax targets register RX in PEx.

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, BYTE WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(BYTE ADDRESS);
UREG = DM(BYTE ADDRESS);
PM(BYTE ADDRESS) = UREG;
DM(BYTE ADDRESS) = UREG;

0X0000†0X0000†0X0000†

Figure 7-7: Byte Addressing of Single-Data in SISD Mode

Byte Addressing of Dual-Data in SISD Mode

The Byte Addressing of Dual-Data in SISD Mode figure shows the SISD, dual-data, byte addressed access mode.
For byte addressing, the processor treats the data buses as eight 8-bit short word lanes. The 8-bit values for byte
accesses are transferred using the least significant byte lanes of the PM and DM data buses. The processor drives the
other byte lanes of the data buses with zeros.

In SISD mode, the instruction explicitly accesses PEx registers. This instruction accesses BYTE X0 in any block and
BYTE Y0 in any other block. Each of these words has a short word address with "00" for its least significant two bits
of address. Other accesses within these four column locations have addresses with their least significant two bits as
"01", "10", or "11" and select BYTE X1/Y1, BYTE X2/Y2, or BYTE X3/Y3 from memory respectively. The syntax
explicitly accesses registers RX and RA in PEx.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, , DUAL-DATA TRANSFERS ARE:
DREG = PM( ADDRESS), DREG = DM(BYTE ADDRESS);
PM( ADDRESS) = DREG, DM( ADDRESS) = DREG;

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM( X0 ADDRESS), RA = PM( Y0 ADDRESS);

BYTE
BYTE

BYTE

BYTEBYTE

BYTE

0X0000† 0X0000†0X0000†0X0000†
0X0000† 0X0000†0X0000†0X0000†

Figure 7-8: Byte Addressing of Dual-Data in SISD Mode

Byte Word Addressing of Single-Data in SIMD Mode

The Byte Addressing of Single-Data in SIMD Mode figure shows the SIMD, single-data, byte addressed access
mode. For byte addressing, the processor treats the data buses as eight four 16-bit byte lanes. The explicitly ad-
dressed (named in the instruction) 16-bit value is transferred using the least significant byte lane of the PM or DM
data bus. The implicitly addressed (not named in the instruction, but inferred from the address in SIMD mode)
byte value is transferred using the 47-32 bit byte lane of the PM or DM data bus. The processor drives the other
byte lanes of the PM or DM data buses with zeros (31-16 bit lane and 63-48 bit lane). The instruction explicitly
accesses the register RX and implicitly accesses that register's complementary register, SX. This instruction uses a
PEx register with an RX mnemonic. If the syntax named the PEy register SX as the explicit target, the processor uses
that register's complement RX as the implicit target.

For more information on complementary registers, see SIMD Mode in the Processing Elements chapter.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, BYTE SINGLE-DATA TRANSFERS ARE:
UREG = PM(BYTE ADDRESS);
UREG = DM(BYTE ADDRESS);
PM(BYTE ADDRESS) = UREG;
DM(BYTE ADDRESS) = UREG;

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(BYTE X0 ADDRESS);

0X0000†

0X0000†

0X0000†0X0000†

0X0000†0X0000†0X0000†0X0000†

Figure 7-9: Byte Addressing of Single-Data in SIMD Mode

Byte Addressing of Dual-Data in SIMD Mode

The Byte Addressing of Dual-Data in SIMD Mode figure shows the SIMD, dual-data, byte addressed access. For
byte addressing, the processor treats the data buses as four 16-bit byte lanes. The explicitly addressed 16-bit values
are transferred using the least significant byte lanes of the PM and DM data bus. The implicitly addressed byte val-
ues are transferred using the 47-32 bit byte lanes of the PM and DM data buses. The processor drives the other byte
lanes of the PM and DM data buses with zeros. The instruction explicitly accesses registers RX and RA, and implic-
itly accesses the complementary registers, SX and SA. This instruction uses PEx registers with the RX and RA mne-
monics. The second word from any other block is shown as x2 on the data bus and in the Sx register. It is shown as
Y2 and Y0 respectively in the left side of the block. The Sx and SA registers are transparent and look similar to Rx
and RA. All bits should be shown as in Rx and RA. For more information on arranging data in memory to take
advantage of byte addressing of dual-data in SIMD mode, see the Long Word Addressing of Dual-Data in Broadcast
Load figure in Broadcast Load Access.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD ,BYTE, DUAL-DATA TRANSFERS ARE:
DREG = PM(BYTE ADDRESS), DREG = DM(BYTE ADDRESS);
PM(BYTE ADDRESS) = DREG, DM(BYTE ADDRESS) = DREG;

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM (BYTE X0 ADDRESS), RA = PM (BYTE Y0 ADDRESS);

0X0000†0X0000†

0X0000†0X0000† 0X0000†0X0000†

0X0000†0X0000† 0X0000†0X0000†

0X0000†0X0000† 0X0000†0X0000†

Figure 7-10: Byte Addressing of Dual-Data in SIMD Mode

Short Word Addressing of Single-Data in SISD Mode

The Short Word Addressing of Single-Data in SISD Mode figure shows the SISD single-data, short word addressed
access mode. For short word addressing, the processor treats the data buses as four 16-bit short word lanes. The 16-
bit value for the short word access is transferred using the least significant short word lane of the PM or DM data
bus. The processor drives the other short word lanes of the data buses with zeros.

In SISD mode, the instruction accesses the PEx registers to transfer data from memory. This instruction accesses
WORD X0, whose short word address has "00" for its least significant two bits of address. Other locations within
this row have addresses with least significant two bits of "01", "10", or "11" and select WORD X1, WORD X2, or
WORD X3 from memory respectively. The syntax targets register RX in PEx.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

0X0000 0X0000

Figure 7-11: Short Word Addressing of Single-Data in SISD Mode

Short Word Addressing of Dual-Data in SISD Mode

The Short Word Addressing of Dual-Data in SISD Mode figure shows the SISD, dual-data, short word addressed
access mode. For short word addressing, the processor treats the data buses as four 16-bit short word lanes. The 16-
bit values for short word accesses are transferred using the least significant short word lanes of the PM and DM data
buses. The processor drives the other short word lanes of the data buses with zeros.

In SISD mode, the instruction explicitly accesses PEx registers. This instruction accesses WORD X0 in any block
and WORD Y0 in any other block. Each of these words has a short word address with "00" for its least significant
two bits of address. Other accesses within these four column locations have addresses with their least significant two
bits as "01", "10", or "11" and select WORD X1/Y1, WORD X2/Y2, or WORD X3/Y3 from memory respectively.
The syntax explicitly accesses registers RX and RA in PEx.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;
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THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

WORD Y0 0X0000

WORD Y00X0000† 0X00

0X00000X0000 0
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Figure 7-12: Short Word Addressing of Dual-Data in SISD Mode

Short Word Addressing of Single-Data in SIMD Mode

The Short Word Addressing of Single-Data in SIMD Mode figure shows the SIMD, single-data, short word ad-
dressed access mode. For short word addressing, the processor treats the data buses as four 16-bit short word lanes.
The explicitly addressed (named in the instruction) 16-bit value is transferred using the least significant short word
lane of the PM or DM data bus. The implicitly addressed (not named in the instruction, but inferred from the
address in SIMD mode) short word value is transferred using the 47-32 bit short word lane of the PM or DM data
bus. The processor drives the other short word lanes of the PM or DM data buses with zeros (31-16 bit lane and
63-48 bit lane).

The instruction explicitly accesses the register RX and implicitly accesses that register's complementary register, SX.
This instruction uses a PEx register with an RX mnemonic. If the syntax named the PEy register SX as the explicit
target, the processor uses that register's complement RX as the implicit target. For more information on complemen-
tary registers, see SIMD Mode in the Processing Elements chapter.

The Short Word Addressing of Single-Data in SIMD Mode figure shows the data path for one transfer. The process-
or accesses short words sequentially in memory. For more information on arranging data in memory to take advant-
age of this access pattern, see the Long Word Addressing of Single-Data in Broadcast Load figure in Broadcast Load
Access.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X2 0X00000X0000

WORD X00X0000† 0X00

7-023-839-24

RX

7-023-839-24

RA
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SA

WORD X20X0000† 0X00

MEMORY ANY OTHER BLOCKANY BLOCK

Figure 7-13: Short Word Addressing of Single-Data in SIMD Mode

Short Word Addressing of Dual-Data in SIMD Mode

The Short Word Addressing of Dual-Data in SIMD Mode figure shows the SIMD, dual-data, short word addressed
access. For short word addressing, the processor treats the data buses as four 16-bit short word lanes. The explicitly
addressed 16-bit values are transferred using the least significant short word lanes of the PM and DM data bus. The
implicitly addressed short word values are transferred using the 47-32 bit short word lanes of the PM and DM data
buses. The processor drives the other short word lanes of the PM and DM data buses with zeros.

The instruction explicitly accesses registers RX and RA, and implicitly accesses the complementary registers, SX and
SA. This instruction uses PEx registers with the RX and RA mnemonics.

The second word from any other block is shown as x2 on the data bus and in the Sx register. It is shown as Y2 and
Y0 respectively in the left side of the block. The Sx and SA registers are transparent and look similar to Rx and RA.
All bits should be shown as in Rx and RA. For more information on arranging data in memory to take advantage of
short word addressing of dual-data in SIMD mode, see the Long Word Addressing of Dual-Data in Broadcast Load
figure in Broadcast Load Access.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM (SHORT WORD X0 ADDRESS), RA = PM (SHORT WORD Y0 ADDRESS);

WORD Y0 0X0000

WORD Y00X0000† 0X00

0X00000X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ANY OTHER BLOCKANY BLOCK

WORD Y2 WORD X2

WORD X20X0000† 0X00

7-023-839-247-023-839-24

WORD Y20X0000† 0X00

Figure 7-14: Short Word Addressing of Dual-Data in SIMD Mode

32-Bit Normal Word Addressing of Single-Data in SISD Mode

The Normal Word Addressing of Single-Data in SISD Mode figure shows the SISD, single-data, 32-bit normal word
addressed access mode. For normal word addressing, the processor treats the data buses as two 32-bit normal word
lanes. The 32-bit value for the normal word access completes a transfer using the least significant normal word lane
of the PM or DM data bus. The processor drives the other normal word lanes of the data buses with zeros.

In SISD mode, the instruction accesses a PEx register. This instruction accesses WORD X0 whose normal word
address has "0" for its least significant address bit. The other access within this four column location has an address
with a least significant bit of "1" and selects WORD X1 from memory. The syntax targets register RX in PEx.

NOTE: For normal word accesses, the processor zero-fills the least significant 8 bits of the data register on loads
and truncates these bits on stores to memory.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X0
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Figure 7-15: Normal Word Addressing of Single-Data in SISD Mode

32-Bit Normal Word Addressing of Dual-Data in SISD Mode

The Normal Word Addressing of Dual-Data in SISD Mode figure shows the SISD dual-data, 32-bit normal word
addressed access mode. For normal word addressing, the processor treats the data buses as two 32-bit normal word
lanes. The 32-bit values for normal word accesses transfer using the least significant normal word lanes of the PM
and DM data buses. The processor drives the other normal word lanes of the data buses with zeros.

In the Normal Word Addressing of Dual-Data in SISD Mode figure, the access targets the PEx registers in a SISD
mode operation. This instruction accesses WORD X0 in any other block and WORD Y0 in any block. Each of these
words has a normal word address with 0 for its least significant address bit. Other accesses within these four column
locations have addresses with the least significant bit of 1 and select WORD X1/Y1 from memory. The syntax tar-
gets registers RX and RA in PEx.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RA = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);
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WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0
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0X00

Figure 7-16: Normal Word Addressing of Dual-Data in SISD Mode

32-Bit Normal Word Addressing of Single-Data in SIMD Mode

The Normal Word Addressing of Single-Data in SIMD Mode figure shows the SIMD, single-data, normal word ad-
dressed access mode. For normal word addressing, the processor treats the data buses as two 32-bit normal word
lanes. The explicitly addressed (named in the instruction) 32-bit value completes a transfer using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed (not named in the instruction, but inferred
from the address in SIMD mode) normal word value completes a transfer using the most significant normal word
lane of the PM or DM data bus.

In the Normal Word Addressing of Single-Data in SIMD Mode figure, the explicit access targets the named register
RX, and the implicit access targets that register's complementary register, SX. This instruction uses a PEx register
with an RX mnemonic. If the syntax named the PEy register SX as the explicit target, the processor would use that
register's complement, RX, as the implicit target. For more information on complementary registers, see SIMD
Mode in the Processing Elements chapter.

The Normal Word Addressing of Single-Data in SIMD Mode figure shows the data path for one transfer. The pro-
cessor accesses normal words sequentially in memory. For more information on arranging data in memory to take
advantage of this access pattern, see the Long Word Addressing of Dual-Data in Broadcast Load figure in Broadcast
Load Access.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

DM DATA
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X1

WORD X0 0X00

7-023-839-24

RX

7-023-839-24

RA

7-023-839-24

SX

7-023-839-24

SA

WORD X1 0X00

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2
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Figure 7-17: Normal Word Addressing of Single-Data in SIMD Mode

32-Bit Normal Word Addressing of Dual-Data in SIMD Mode

The Normal Word Addressing of Dual-Data in SIMD Mode figure shows the SIMD, dual-data, 32-bit normal word
addressed access mode. For normal word addressing, the processor treats the data buses as two 32-bit normal word
lanes. The explicitly addressed (named in the instruction) 32-bit values are transferred using the least significant nor-
mal word lane of the PM or DM data bus. The implicitly addressed (not named in the instruction, but inferred
from the address in SIMD mode) normal word values are transferred using the most significant normal word lanes
of the PM and DM data bus.

In the Normal Word Addressing of Dual-Data in SIMD Mode figure, the explicit access targets the named registers
RX and RA, and the implicit access targets those register's complementary registers SX and SA. This instruction uses
the PEx registers with the RX and RA mnemonics.

The Normal Word Addressing of Dual-Data in SISD Mode figure in 32-Bit Normal Word Addressing of Dual-Data
in SIMD Mode shows the data path for one transfer. The processor accesses normal words sequentially in memory.
For more information on arranging data in memory to take advantage of this access pattern, see the Long Word
Addressing of Dual-Data in Broadcast Load figure in Broadcast Load Access.
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WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RA = PM(NORMAL WORD Y0 ADDRESS);

WORD Y0 WORD X1

WORD Y0 0X00

WORD X1WORD Y1

WORD Y1

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4
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WORD Y1 WORD Y0
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Figure 7-18: Normal Word Addressing of Dual-Data in SIMD Mode

Long Word Addressing of Single-Data

The Long Word Addressing of Single-Data figure displays one possible single-data, long word addressed access. For
long word addressing, the processor treats each data bus as a 64-bit long word lane. The 64-bit value for the long
word access completes a transfer using the full width of the PM or DM data bus.

In the Long Word Addressing of Single-Data figure, the access targets a PEx register in a SISD or SIMD mode oper-
ation. Long word single-data access operate the same in SISD or SIMD mode. This instruction accesses WORD X0
with syntax that explicitly targets register RX and implicitly targets its neighbor register, RY, in PEx. The processor
zero-fills the least significant 8 bits of both the registers. The example targets PEy registers when using the syntax
SX. For more information on how neighbor registers work, see Data Register Neighbor Pairing in the Register Files
chapter.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, LONG WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);
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Figure 7-19: Long Word Addressing of Single-Data

Extended-Precision Normal Word Addressing of Single-Data

The Extended-Precision Normal Word Addressing of Single-Data figure displays a possible single-data, 40-bit ex-
tended-precision normal word addressed access. For extended-precision normal word addressing, the processor treats
each data bus as a 40-bit extended-precision normal word lane. The 40-bit value for the extended-precision normal
word access is transferred using the most significant 40 bits of the PM or DM data bus. The processor drives the
lower 24 bits of the data buses with zeros.

In the Extended-Precision Normal Word Addressing of Single-Data figure, the access targets a PEx register in a
SISD or SIMD mode operation; extended-precision normal word single-data access operate the same in SISD or
SIMD mode. This instruction accesses WORD X0 with syntax that targets register RX in PEx. The example targets
a PEy register when using the syntax SX. 

NOTE: Extended precision cannot be supported in SIMD mode. The PM and DM data buses are limited to 64-
bits, but would require 80-bits to support this format and mode.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, EXT. PREC. NORMAL WORD, SINGLE-DATA
TRANSFERS ARE:

UREG = PM(EXTENDED PRECISION NORMAL WORD ADDRESS);
UREG = DM(EXTENDED PRECISION NORMAL WORD ADDRESS);
PM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;
DM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED PRECISION NORMAL WORD X0 ADDRESS);
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WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3
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WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

MEMORY ANY OTHER BLOCKANY BLOCK

Figure 7-20: Extended-Precision Normal Word Addressing of Single-Data

Extended-Precision Normal Word Addressing of Dual-Data

The Extended-Precision Normal Word Addressing of Dual-Data in SISD Mode figure shows the SISD, dual-data,
40-bit extended-precision normal word addressed access mode. For extended-precision normal word addressing, the
processor treats each data bus as a 40-bit extended-precision normal word lane. The 40-bit values for the extended-
precision normal word accesses are transferred using the most significant 40 bits of the PM and DM data bus. The
processor drives the lower 24 bits of the data buses with zeros.

In the Extended-Precision Normal Word Addressing of Dual-Data in SISD Mode figure, the access targets the PEx
registers in a SISD mode operation. This instruction accesses WORD X0 in block 1 and WORD Y0 in block 0 with
syntax that targets registers RX and RY in PEx. The example targets a PEy register when using the syntax SX or
SY.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, EXTENDED PRECISION NORMAL WORD, DUAL-DATA
TRANSFERS ARE:

DREG = PM(EXT. PREC. NORMAL WORD ADDRESS), DREG = DM(EXT. PREC. NORMAL WORD ADDRESS);
PM(EXT. PREC. NORMAL WORD ADDRESS) = DREG, DM(EXT. PREC. NORMAL WORD ADDRESS) = DREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RA = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0
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Figure 7-21: Extended-Precision Normal Word Addressing of Dual-Data in SISD Mode

Broadcast Load Access

Figures Short Word Addressing of Single-Data in Broadcast Load through Long Word Addressing of Dual-Data in
Broadcast Load provide examples of broadcast load accesses for single and dual-data transfers. These read examples
show that the broadcast load's to register access from memory is a hybrid of the corresponding non-broadcast SISD
and SIMD mode accesses. The exceptions to this relation are broadcast load dual-data, extended-precision normal
word and long word accesses. These broadcast accesses differ from their corresponding non-broadcast mode accesses.
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS);
DREG = DM(SHORT WORD ADDRESS);

DM DATA
BUS
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00
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Figure 7-22: Short Word Addressing of Single-Data in Broadcast Load
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST,
SHORT WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RY = PM(SHORT WORD Y0 ADDRESS);
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Figure 7-23: Short Word Addressing of Dual-Data in Broadcast Load
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS);
DREG = DM(NORMAL WORD ADDRESS);

DM DATA
BUS

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);
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Figure 7-24: Normal Word Addressing of Single-Data in Broadcast Load
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RA = PM(NORMAL WORD Y0 ADDRESS);
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Figure 7-25: Normal Word Addressing of Dual-Data in Broadcast Load
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
DREG = PM(EP NORMAL WORD ADDRESS);
DREG = DM(EP NORMAL WORD ADDRESS);
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED PRECISION NORMAL WORD X0 ADDRESS);
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Figure 7-26: Extended-Precision Normal Word Addressing of Single-Data in Broadcast Load
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(EP NORMAL WORD ADDRESS), DREG = DM(EPNORMAL WORD ADDRESS);
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RA = PM(EP NORMAL WORD Y0 ADDR.);
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Figure 7-27: Extended-Precision Normal Word Addressing of Dual-Data in Broadcast Load
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, SINGLE-DATA TRANSFERS ARE:

DREG = PM(LONG WORD ADDRESS);
DREG = DM(LONG WORD ADDRESS);
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);
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Figure 7-28: Long Word Addressing of Single-Data in Broadcast Load
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(LONG WORD ADDRESS), DREG = DM(LONG WORD ADDRESS);
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);
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Figure 7-29: Long Word Addressing of Dual-Data in Broadcast Load

Mixed-Word Width Addressing of Long Word with Short Word

The mixed mode requires a dual data access in all cases. Modes like SISD, SIMD and Broadcast in conjunction with
the address types LW, NW-40, NW-32 and SW will result in many different mixed word width access types to use
in parallel between the two memory blocks.

The Mixed-Word Width Addressing of Dual-Data in SISD Mode figure shows an example of a mixed-word width,
dual-data, SISD mode access. This example shows how the processor transfers a long word access on the DM bus
and transfers a short word access on the PM bus.

NOTE: The assembler generates an error if the same register is written by both memory accesses in the instruction.
For more information on how the processor prioritizes accesses, see Register Files in the Register Files chap-
ter.

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)
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SHORT WORD ACCESS
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, MIXED WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT, NORMAL, EP NORMAL, LONG ADD), DREG = DM(SHORT, NORMAL, EP NORMAL, LONG ADD);
PM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG, DM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);
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Figure 7-30: Mixed-Word Width Addressing of Dual-Data in SISD Mode

Mixed-Word Width Addressing of Long Word with Extended Word

The Mixed-Word Width Addressing of Dual-Data in SIMD Mode figure shows an example of a mixed-word width,
dual-data, SISD mode access. This example shows how the processor transfers a long word access on the DM bus
and transfers an extended-precision normal word access on the PM bus.

Internal Memory Data Access Options (8-, 16-, 32-, 40-bit)

7–40 SHARC+ Core Programming Reference



EXTENDED PRECISION NORMAL
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, MIXED WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(ADDRESS), DREG = DM(ADDRESS);
PM(ADDRESS) = DREG, DM(ADDRESS) = DREG;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(EP NORMAL WORD Y0 ADDRESS);
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Figure 7-31: Mixed-Word Width Addressing of Dual-Data in SIMD Mode

Internal Memory Access Listings (64-bit Floating-Point)
SIMD mode for long-word or 64-bit accesses are not supported. In SIMD, the 64-bit registers can be loaded in one
of these ways:

• Using two 32-bit normal-word addressing of dual-data in SIMD mode, or

• Using two long-word addressing of dual-data in SISD mode by using appropriate complementary registers in
both accesses.

In both the cases, the alignment of the 64-bit data in memory could be very different.

64-bit Floating-Point Addressing of Single Data

The Long Word Addressing of Single-Data figure displays one possible single-data, long word addressed access. For
long word addressing, the processor treats each data bus as a 64-bit long word lane. The 64-bit value for the long
word access completes a transfer using the full width of the PM or DM data bus.

In the Long Word Addressing of Single-Data figure, the access targets a PEx register in a SISD or SIMD mode oper-
ation. Long word single-data access operate the same in SISD or SIMD mode. This instruction accesses WORD X0
with syntax that explicitly targets register RX and implicitly targets its neighbor register, RY, in PEx. The processor
zero-fills the least significant 8 bits of both the registers. The example targets PEy registers when using the syntax

Internal Memory Access Listings (64-bit Floating-Point)
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SX. For more information on how neighbor registers work, see Data Register Neighbor Pairing in the Register Files
chapter.

0X00

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, LONG WORD, SINGLE-DATA TRANSFERS ARE:

UREG Pair = PM(LONG WORD ADDRESS);
UREG Pair = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG Pair;
DM(LONG WORD ADDRESS) = UREG Pair;
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THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
Fx:y = DM(LONG WORD X0 ADDRESS)
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Figure 7-32: 64-bit Floating-Point Addressing of Single-Data

64-bit Floating-Point Addressing of Dual-Data in SISD Mode

The 64-bit Floating-Point Addressing of Dual-Data figure shows the SISD, dual-data, long word addressed access
mode. For long word addressing, the processor treats each data bus as a 64-bit long word lane. The 64-bit values for
the long word accesses completes a transfer using the full width of the PM or DM data bus.

In the 64-bit Floating-Point Addressing of Dual-Data figure, the access targets PEx registers in SISD mode opera-
tion. This instruction accesses WORD X0 and WORD Y0 with syntax that explicitly targets registers RX and RA and
implicitly targets their neighbor registers RY and RB in PEx. The processor zero-fills the least significant 8 bits of all
the registers. For more information on how neighbor registers work, see the Neighbor DAG Register for Long Word
Accesses table in Long Word Memory Access Restrictions, the Data Address Generators chapter.

Programs must be careful not to explicitly target neighbor registers in this instruction. While the syntax lets pro-
grams target these registers, one of the explicit accesses targets the implicit target of the other access. The processor
resolves this conflict by performing only the access with higher priority. For more information on the priority order
of data register file accesses, see the Register Files chapter.

Internal Memory Access Listings (64-bit Floating-Point)
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OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, LONG WORD, DUAL-DATA TRANSFERS ARE:
DREG PAIR = PM(LONG WORD ADDRESS), = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DM(LONG WORD ADDRESS) =

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
Fx:y = DM(LONG WORD X0 ADDRESS), Fa:b = PM(LONG WORD Y0 ADDRESS);
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DREG PAIR,
DREG PAIR

DREG PAIR;

Figure 7-33: 64-bit Floating-Point Addressing of Dual-Data

64-bit Floating-Point Addressing of Dual-Data in SIMD Mode
Fx:y = dm(long-word address) (LW), Fa:b = pm(long-word address) (LW);
The following figure shows the SISD, dual-data, long word addressed access mode.

The access targets PEx registers Fx:y and Fa:b in SISD or SIMD mode. This instruction accesses WORD X0 and
WORD Y0 and targets registers Fx:y and Fa:b in PEx. The least significant 8 bits of all the registers are zero-filled.

NOTE: Programs must be careful not to target the same register as destinations of both buses. The processor re-
solves this conflict by performing only the access with higher priority.

Internal Memory Access Listings (64-bit Floating-Point)
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8   L1 Cache Controller

The SHARC+ core supports code and data storage within itself (L1), on-chip memories outside core (L2) and exter-
nal memories (L3) as well. Access to L1 memories takes a single cycle whereas access to external memories (L2 or
L3) takes multiple cycles. The highest performance from the SHARC+ core is achieved when the code and data
storage is in on-chip L1 memory. The SHARC+ core adds on-chip data and instruction caches (D-cache and I-cache
respectively) to eliminate need for software controlled overlay-based data and code management.

Features

L1 Cache gives significant performance advantage as in most of DSP applications data is located in close vicinity
and the same data is reused several times (such as coefficients). In this document, both L2 and L3 accesses are refer-
red to as external accesses.

Table 8-1: L1 Instruction Cache Operations Features

Parameter Description

Block Size*1 Configurable – 128K bits, 256K bits, 512K bits, or 1024K bits

Associativity Two-way

Line size 512 bits

Write policy N/A

Replacement policy LRU based

Supported accesses Misaligned even/odd memory separation, ISA/VISA instructions

Additional features Full-cache and address range based locking range based non-cacheable

 

*1 L1 cache uses upper portion of L1 memory block. Do not configure the cache size bigger than the block size. Cache size more than
block size can not be used in product generics that have smaller memory blocks than the original product.

 

Table 8-2: L1 Data Cache Operation Features

Parameter Description

Block Size*1 Configurable – 128K bits, 256K bits, 512K bits, or 1024K bits

Associativity Two-way

Line size 512 bits

L1 Cache Controller
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Table 8-2: L1 Data Cache Operation Features (Continued)

Parameter Description

Write policy Write allocate – Write back (Default policy)

No write allocate – Write through*2

Replacement policy LRU based

Supported accesses Misaligned access additional stalls

Byte, short, normal and long word accesses

SISD and SIMD modes

Additional features Full-cache and address range based Locking, write-back and invalidation.

Range-based Non-cacheable and write through

DM-PM cache coherencey

 

*1 L1 cache uses upper portion of the L1 memory block. Do not configure the cache size bigger than the block size. Cache size more
than block size cannot be used in product generics that have smaller memory blocks than the original product.

*2 Non-burst/special access zones should be marked as non-cacheable.
 

Functional Description
The Memory Interface Buses and Ports figure shows the typical memory hierarchy of the SHARC+ core. Note that
the arrows refer to the address bus only. Their direction describes the source and destination of that address.
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Figure 8-1: Memory Interface Buses and Ports

The cache controller uses part of on chip L1-SRAM as cache memory for its operation. Since the on-chip L1-SRAM
has effectively single cycle read/write latencies, cache stores only L2 and L3 based code and data.

Functional Description
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The Memory Cache Signal Flow figure shows the on chip memory system of the SHARC+ core. There are two data
caches (D-cache) and one instruction cache (I-cache) per SHARC+ core. The data cache is shared with (and uses)
block1 which caches all the external memory access requests from the DM bus. Similarly the other data cache is
shared with (and uses) block2 which caches all external memory data access requests from the PM bus. Instruction
cache is shared with (and uses) block3. In this chapter the data cache used by the DM bus is referred to as DM
cache and the data cache used by the PM bus is referred to as PM cache.

The SHARC+ core supports two combinations of these caches:

1. Instruction cache mode: I-cache is enabled but DM- and PM- caches are disabled

2. Data cache mode: All three caches are enabled

NOTE: These are the only configuration options as the PM and DM caches cannot be configured independently.

Cache shares the physical memories of block1, block2 and block3. Cache sizes can be selected from 1/4 to 1 Mbits
in four steps. Regular L1 accesses in those blocks should be outside of those regions used by the cache controller.

NOTE: Usage of remaining L1 space may be impacted in the following ways: Code segments should not be placed
in block1 and block2 when data caches are enabled in those blocks. During certain cache operations
DMAs/system requests may be delayed.

The size of each cache can be set independently.

L1 instruction and data access types are spread over four stages of core pipeline; address preprocessing and conflict
generation, address to memory block, data from memory block and data merging. L1 Cache operation has to fit
within this four stages of core pipeline. In case of cache hit, all the operations complete in four core clock cycles. In
case of a cache miss, the fourth stage of the access takes multiple cycles.

The operation of the data cache and the instruction cache are similar. The most important difference is that instruc-
tion cache does not support writes to the cached content for the simple reason that the core can only read the in-
struction. The operation of the data cache is described in detail in next section. A brief description of instruction
cache that highlights the differences follows.

Functional Description
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Figure 8-2: Memory Cache Signal Flows

Tag Memories

Besides access to L1 memory (instruction/data), the L1 cache controller enables additional SRAM blocks to store tag
and state bits. The size of these Tag SRAM is dependent on the configuration of the cache controller.

NOTE: The Tag RAMs do not support parity protection for the ADSP-SC58x/2158x processors (unlike data/
instruction SRAM).

Functional Description
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Figure 8-3: Tag Memory Blocks

Basic Cache Functionality

The address of an incoming access is first converted to an equivalent byte address (also called normalization) and
then decomposed into Index, Tag and Offset, depending on Cache size.

The table shows the decomposition of the data address after it has been normalized. Since the size of lines is a fixed
512 bits, the offset field remains the same 6 bits. The size of the index field varies depending on the size of the cache
– bigger caches have more sets. For a cache size of 128K bits, the line size is 512 and there are 2 ways so the number
of lines per way (indexes) is 128. Therefore, the index needs 7 bits and other 19 bits comprise the tag. D Cache
maintains four entries for each index.

1. Tag

2. Valid bit

3. Dirty (or modified)

4. LRU

Functional Description
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Figure 8-4: Data Cache Hit / Miss Generation Process for a Single Bank

Table 8-3: Data Cache Address Decompositions

Cache size 31...............16 15 14 13 12.....
6

5....0

128K bits Tag (Addr[31:13] - 19 bits) Index (7
bits)

Offset

256K bits Tag (Addr[31:14] - 18 bits) Index (8 bits) Offset

512K bits Tag (Addr[31:15] - 17 bits) Index (9 bits) Offset

1024K bits Tag (Addr[31:16] - 16 bits) Index (10 bits) Offset

Instruction Cache Features

Instruction Cache Operation

The Instruction cache (I-cache) functions like the data cache for read accesses. The SHARC+ core supports two
modes of instruction: VISA and non-VISA. A VISA address increments for every short word and a non-VISA ad-
dress increments for every 48-bit word. The instruction cache supports misaligned accesses for instructions strad-
dling two cache lines.

Misaligned accesses are treated as a single access in cases of a cache hits. No stall is generated for a misaligned hit.
Miss-processing may take longer if fetching two lines is required.

Instruction Cache Features
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Data Cache Features
The following sections provide a descriptions of L1 Cache controller.

Data Cache Operations

As discussed in the previous section, the core has two data caches to support two external memory data requests per
cycle. The DM cache handles access requests over the DM bus while the PM cache handles access requests over the
PM bus. The DM and PM caches are functionally identical. This section discusses the details of these caches.

NOTE: D-cache does not support 40-bit floating point data.

The size of DM-cache and PM-cache can be independently set in the configuration register. Some of the additional
features such as locking/invalidation cannot be independently exercised for the DM and PM cache separately but
can be on the D-cache as a whole.

Cache Hit Cases

The cache hit cases are read hit and write hit.

Read Hit

For external memory data accesses data is simultaneously read from both of the cache ways in L1 RAM. Tag and
valid bits are also read simultaneously. Based on the source of a hit, data is selected from one of the ways of cache.
Due to this simultaneous data reads and tagging both cache ways, cache hits do not stall the pipe. L1 memory is
structured to support simultaneous reads from both the ways.

Write Hit

Similar to read hits, write operations also do not stall the pipe on cache hits. The only difference is that write opera-
tions set the relevant dirty bits at the end of the accesses.

Cache Miss Cases

The cache miss cases are read miss and write miss.

Read Miss

A read miss occurs on an attempt to read data that is not available in the cache. In such cases tag matching fails and
the cache returns a miss. Various actions are initiated by the cache controller to service the request and cache the
relevant line for future accesses.

The following is the sequence of events that takes place after read miss detection:

1. If lines in both of the cache ways of the identified set are valid then the least recently used line is written back
to the external memory (if the line is dirty) or discarded.

2. Read requests are sent to external memory for complete line fill. A request sequence starts with a critical word
(the first word of a complete line (burst access)).

Data Cache Features
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3. Once the complete line is received, the tag, valid, LRU and dirty bits are updated for the new line.

4. Stall release requests are sent to the core and requested data is serviced from L1 memory.

5. Cache events like misses and hits are all uninterruptible. Interrupt processing may be delayed when these events
occur.

Write Miss

Write misses are processed same way as the read misses except that the write operation sets the dirty bit for the rele-
vant line at the end of the access.

Coherency Between DM and PM Caches

The SHARC+ core has two data caches per core – one cache for an access request over the DM bus and another for
an access request over the PM bus. Because both buses share same address range, both caches may cache overlapping
regions of external memory. To avoid this potential overlap leading to an incoherent view of memory, where two
copies of a single piece of data have different values, the L1-cache controller supports a DM-PM data coherence
mechanism (also called cross-check) in hardware.

Once a cache miss is detected in the native cache, the access is launched to the remote cache. Cross checking re-
quires two extra stall cycles in cross-check-hit (cc-hit) cases.

If DM and PM both try to access data belonging to same cache line in any type-1 instruction, and if it returns
misses from both the data caches, then that access is converted to a through access to avoid creation of two copies of
the line in two caches. For type-1 instructions, if the DM and PM buses try to access the same address which is
already cached by a previous access, a self hit occurs first for the native cache where the data exists and then a cc-hit
access occurs in the other cache.

NOTE: Unlike the SHARC core in older SHARC processors, the SHARC+ core allows the usage of the same L1
memory as both a cache memory and a regular L1 memory. This dual role introduces the potential for a
bank conflict between a cached and regular L1 memory access when accessing the same resource. There are
various mechanisms in the cache controller such as line fill, write back and cross check that can halt the
DMA accesses to L1 memory. If there are sequential cross-check events, the DMA-to-L1 memory access
can be halted for long time.

Stalling DMA accesses for peripherals without flow control for a long time can cause buffer underflow or
overflow. To avoid this scenario, use the same bus (DM/PM) to access the cacheable memory regions as
much as possible. If it is not possible, minimize the usage of PM accesses when the data cache is enabled
(minimize the DM-PM cache overlap). Use DM accesses when possible – except in the case of type 1 ac-
cesses (or any other restrictions as applicable).

Misaligned Accesses in Data Cache

Misaligned accesses (accesses straddling two cache lines) are supported in the data cache. Eight stall cycles are gener-
ated in cases of cache hits. Miss-processing can take longer as two lines may be required to be fetched in the worst
case (both lines miss). Interrupts are delayed until the entire miss-processing is completed.

Data Cache Operations
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Programming Model
The configuration registers enable the cache, select the cacheable area, control cache locking and select other cache
features.

Programming Model for Changing Cache Configuration

• The addresses specified in the range registers (SHL1C_RANGE_START0 through SHL1C_RANGE_START7
and SHL1C_RANGE_END0 through SHL1C_RANGE_END7) must be in byte form for data caches and it
should be native address for instruction cache. The property should be set in the SHL1C_CFG2 register first
and range values should be filled in selected registers later.

• Range register addresses must start or end at cache line boundary.

• Last six bits of the range register must be 0 for data caches.

• Last five bits of the range register must be 0 for instruction cache.

• Twelve instructions after any cache MMR access should be unrelated and uncompressed (48-bit).

• After writing to the SHL1C_CFG or SHL1C_CFG2 registers, the next twelve instructions should not
contain any cache operations. This guideline includes access to non L1 locations, access to cache MMRs,
or any other cache operation.

• However separation of one instruction is sufficient while configuring start and end registers of any range
register pair.

• Cache configuration or range registers should not be accessed when executing from external memory. Accesses

should be unconditional and should be done through the DM bus. *1 *2

• Address spaces should not be mixed in one range.

• Programs should write-back and invalidate the cache before changing its size or any other property.

• When Range registers are filled with values A and B, the effective range starts with A and finishes before B, in
other words A <= range < B.

NOTE: If the system only requires the data cache, both the data cache and the instruction cache (DM and
PM cache) need to be enabled.

 

*1 This guideline requires that range-based WBI or Invalidation operations should be done from internal memory.

*2 A loop using a cache invalidate (Range Based Write-Back-Invalidation) also accesses the SHL1C_CFG and range registers and
should execute from L1 memory.

 

Configurable Range Registers

L1-cache controller contains a number of range register pairs to specify ranges for non-cacheability, write-through
write policy selection, locking and range-based invalidation/WBI. One range register pair consists of start address
register and end address register. See the SHARC+ L1C Register Descriptions.

Programming Model
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Write Through Accesses
In some cases the cache controller does not perform a line-fill after detecting a miss and services the miss directly
from the requested memory location (for example, L2 or DDR). The following list identifies situations when a miss
access is serviced as a through access.

1. Accesses belonging to a non-cachable range

2. Write accesses belong to a write-through range

3. System MMR and exclusive accesses

4. If both cache ways are locked and have valid entries

5. For a Type 1 instruction, both DM and PM caches encounter a miss and belong to same cache line

For through accesses, the access request is forwarded to external memory only if it is found to be un-cached.
Through accesses are launched after checking the conditions listed above and take more cycles than un-cached ac-
cesses.

Write Through Accesses

Write through is supported by the L1C controller for particular ranges that are defined using the range registers. If
an address range that is specified by a range register is write through, all writes falling in that range reflect to the
external or L2 memory.

Four range register pairs, SHL1C_RANGE_START4 through SHL1C_RANGE_START7 and
SHL1C_RANGE_END4 through SHL1C_RANGE_END7 can be used to specify write through ranges.

If an access is to a write through address range, the following can occur:

• If the write access is a hit or a cc hit, the write updates both the cached copy and the external memory. The
pipe is held until the write access completes.

• If the write access is a miss, the write becomes a through access and only external memory is updated. The line-
fill does not occur.

Non-Cacheable Accesses

Cache controller supports non-cacheable ranges. Such ranges can be defined by using six range register pairs
(SHL1C_RANGE_START2 through SHL1C_RANGE_START7 and SHL1C_RANGE_END2 through
SHL1C_RANGE_END7).

Locking

The cache supports way-based locking and range-based locking.

Way-Based Locking

Locking is useful to avoid thrashing and to ensure availability of useful buffers in cache. Two ways of DM/PM/I-
cache can be independently locked by setting appropriate bits in the SHL1C_CFG register. While these bits are set,

Write Through Accesses
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a valid line in the respective way is not replaced. However, invalid cache lines of a locked way can still be filled.
Priority is given to the invalid line of a locked way over LRU status while filling a cache line. This property ensures
that after cache invalidation, the needed-to-be-locked buffer goes to locked way only. If both the ways are locked and
invalid then way0 gets the priority.

For example if a specific code or data section needs to be locked in the cache (so that section cannot be replaced)
invalidate the cache and lock one or both the ways just prior to executing that code or accessing the data section. As
the instructions or data are accessed the cache is filled. Once the relevant ways are completely filled additional ac-
cesses result in a miss but no replacement.

When both ways of a cache contain valid data, are locked and there is a read/write miss, that request is directly
serviced from external memory.

Address-Range-Based Locking

A data buffer or a section of code can also be locked using range registers. A pair of range registers can be selected to
define lockable data and code ranges. Once a range is set, any data or code of this range cannot be replaced. A lock-
ing eligible data or code cannot be cached if required lines/ways are already locked with valid data or code.

Cache Invalidation and Write Back Invalidation
The SHARC+ core wakes up in a cache disabled state after reset is removed. This action prevent false hits with un-
initialized tag memory. After completing the necessary booting sequence and before enabling the cache, all cache
entries must be invalidated.

A cache can be invalidated at any other time also. For example, once DMA updates the buffer in L3, the stale copy
in L1-cache must be invalidated. There are times when invalidation is required to clear the cache unconditionally
and other times when the cache must be cleared while ensuring that any updated copy is not cleared without writing
back to L2 or L3. This is called write-back invalidation.

Cache invalidation and write-back invalidation occurs the following ways:

• Full-cache

• Address-range based

Full Cache Invalidation and Write-Back Invalidation
Write-back-invalidation (WBI/flush) ensures that all the modified data is written back to L3. This operation can be
initiated by setting the appropriate bits in the SHL1C_CFG register.

A WBI requires the WB and Invalidation bits to be simultaneously set for the corresponding caches while invalida-
tion requires only invalidation bit to be set for the corresponding caches.

NOTE: Invalidation and WBI should not be mixed. Any cache operation requires that that cache is enabled.

Both invalidation and write-back-invalidation takes multiple core clock cycles. The core pipeline is stalled during
this time and interrupt servicing is delayed. Write-back takes more cycles than invalidation as this operation occurs

Locking
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line by line with possible L3 accesses. The exact number of cycles to complete a WB/WBI operation depends on
number of dirty lines in a given data cache and available L3 throughput. Invalidation for both D-cache and I-cache
takes about 32 cycles.

Address-Range Based Invalidation and Write-Back Invalida-
tion
In some situations it is more appropriate and efficient to invalidate or write-back-invalidate only a buffer of data.
For example when DMA updates a data buffer in L3, L1-cache copy becomes stale and should be invalidated. Simi-
larly when an output buffer has been created on L1-cache, to perform DMA it must be written back to L3. In such
cases address range based invalidation and write-back-invalidation is more efficient.

Pairs of range registers can be filled with the start and end address of the data/code segment to be invalidated or
written back. Once these registers are filled and properties selected, the cache controller internally computes the
starting index corresponding to start address and the number of indexes to be invalidated based on end address. These
values are available in the SHL1C_INV_IXSTART0 and SHL1C_INV_CNT0 registers. These registers are run-
ning registers, which means that after clearing one index, the value of the index register increments and the value of
the count register decrements. Do not access these registers when invalidation or flushing is in progress.

NOTE: The range register start address and end address must be cache line aligned (64 bytes). To make the cache
line align, program the end address with the address of the last byte of the last cache line to be flushed plus
one or the start address of the next line.

Example Range Based Write-Back Validation/Invalidation

The following sequence is the range of instructions that invalidate or flush the cache based on a given address range.

CAINV_START0 = <Start address of data/code segment>;
CAINV_END0 = <End address of data/code segment>;
12 un-compressed NOPs 
LCNTR = dm(CAINV_COUNTER0);
Do … until LCE;
FLUSH (ICINV|DMINV|PMINV|DMWB|PMWB);

This sequence goes through each and every index of a specified cache/caches and whenever a matching entry is
found, the line is invalidated and/or written back. Write-back operations occur only for dirty lines.

Further Details on Range Based WBI/Invalidation

• The value of the SHL1C_INV_CNT0/SHL1C_INV_IXSTART0 registers is automatically determined by the
cache controller based on the start and end address and the count.

NOTE: To reload these registers, reload the SHL1C_CFG2 and range registers. A write path to the
SHL1C_INV_IXSTART0 register has been provided to resume the process where it has been inter-
rupted and left out.

Address-Range Based Invalidation and Write-Back Invalidation
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• Mix of invalidation and write-back-invalidation options are not allowed.

• DM/PM caches should be WBI/invalidated together.

• Use full cache invalidation after the core reset removal.

• Program either the instruction cache or the data cache pair (DM/PM) at one time as a WBI/invalidated pair.

• Locking is not honored

Prefetch Buffer (ADSP-2156x and ADSP-SC59x Only)
A prefetch buffer (PFB) works with L1 cache memory to expedite the filling of cache lines. It prefetches the instruc-
tions and/or data for the next cache line in the background when there are no cache misses. This feature is enabled
using the CMMR_SYSCTL.DPORT_PFB_EN and CMMR_SYSCTL.IPORT_PFB_EN bits for the data and in-
struction caches, respectively.

Features

The figure shows the block diagram of a prefetch buffer in the system.

Completer Ports
Processor

Core          Cache and 
L1 Memory Controller

Core Assist
(Instruction)

L1 Memory

Write Invalidation Bus

Core Assist
    (Data)

  L2

  DDR
Memory

       
          AXI 
   Interconnect

  DDR
Interface

Figure 8-5: Prefetch Buffer

The following are the additional features of the prefetch buffer:

• Tiny cache: if the PFB is enabled with L1 cache off, it starts working as a tiny L1 cache (8 lines, single way) and
reduces the external instruction and data latency.

• Range-based return zero: when this feature is enabled (CMMR_SYSCTL.UNINT_RET_0 = 1), the prefetch
buffer returns all zeros if the requested line address falls in the range specified in the range start
(CMMR_PFB_NOCHRT0_ST) and range end (CMMR_PFB_NOCHRT0_END) registers, thus reducing the
cache line fill time for output and all zero input buffers.

• Invalidation:

Prefetch Buffer (ADSP-2156x and ADSP-SC59x Only)
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• The PFB is manually invalidated by setting the invalidate prefetch buffer bit
(CMMR_SYSCTL.PFB_INVAL = 1) and then clearing it (CMMR_SYSCTL.PFB_INVAL = 0), when
the data and instruction port pre-fetch buffers are enabled (CMMR_SYSCTL.DPORT_PFB_EN =
CMMR_SYSCTL.IPORT_PFB_EN = 1).

• The PFB is invalidated upon core reset.

• A line in the PFB is invalidated whenever the same line is invalidated by L1 cache.

NOTE: Explicitly invalidate the prefetch buffer, after range based invalidation, write-back, or both, by
setting the invalidate prefetch buffer bit CMMR_SYSCTL.PFB_INVAL = 1 and then clearing
it CMMR_SYSCTL.PFB_INVAL = 0.

• Range-based prefetching:

• Prefetching can be disabled for up to sixteen address ranges by clearing the appropriate bit in the Prefetch
Range Selection Register (REG_MISCREG_PFB_RANGE_SELECT). The IPORT_RANGE_SELECT
bits control the range selection for the instruction cache. The DPORT_RANGE_SELECT bits control the
range selection for the data cache.

• The Prefetch Address Range table provides the address range associated with each bit in the
REG_MISCREG_PFB_RANGE_SELECT register. By default, all ranges are enabled. Any specific range
can be disabled by clearing the associated input bit.

Table 8-4: Prefetch Address Range

Input Bit Prefetch Address Range

REG_MISCREG_PFB_RANGE_SELECT[0] 0x00000000 – 0x0FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[1] 0x10000000 – 0x1FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[2] 0x20000000 – 0x2FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[3] 0x30000000 – 0x3FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[4] 0x40000000 – 0x4FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[5] 0x50000000 – 0x5FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[6] 0x60000000 – 0x6FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[7] 0x70000000 – 0x7FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[8] 0x80000000 – 0x8FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[9] 0x90000000 – 0x9FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[10] 0xA0000000 – 0xAFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[11] 0xB0000000 – 0xBFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[12] 0xC0000000 – 0xCFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[13] 0xD0000000 - 0xDFFFFFFF

Prefetch Buffer (ADSP-2156x and ADSP-SC59x Only)
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Table 8-4: Prefetch Address Range (Continued)

Input Bit Prefetch Address Range

REG_MISCREG_PFB_RANGE_SELECT[14] 0xE0000000 – 0xEFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[15] 0xF0000000 – 0xFFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[16] 0x00000000 – 0x0FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[17] 0x10000000 – 0x1FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[18] 0x20000000 – 0x2FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[19] 0x30000000 – 0x3FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[20] 0x40000000 – 0x4FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[21] 0x50000000 – 0x5FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[22] 0x60000000 – 0x6FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[23] 0x70000000 – 0x7FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[24] 0x80000000 – 0x8FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[25] 0x90000000 – 0x9FFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[26] 0xA0000000 – 0xAFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[27] 0xB0000000 – 0xBFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[28] 0xC0000000 – 0xCFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[29] 0xD0000000 - 0xDFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[30] 0xE0000000 – 0xEFFFFFFF

REG_MISCREG_PFB_RANGE_SELECT[31] 0xF0000000 – 0xFFFFFFFF

Prefetch Buffer (ADSP-2156x and ADSP-SC59x Only)
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Prefetch Range Selection Register

Prefetching can be disabled for up to sixteen address ranges by clearing the appropriate bit in this register.
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Figure 8-6: MISCREG_PFB_RANGE_SELECT Register Diagram

Table 8-5: REG_MISCREG_PFB_RANGE_SELECT

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

IPORT_RANGE_SELECT Prefetch Range Selection for IPORT.

It controls the range selection for the instruction cache.

15:0

(R/W)

DPORT_RANGE_SE-
LECT

Prefetch Range Selection for DPORT.

It controls the range selection for the data cache.

Prefetch Buffer (ADSP-2156x and ADSP-SC59x Only)
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9   Safety, Security, Multi-Core, and Low-Power
Features

The SHARC+ core provides features related to application safety and security, and the processors that feature multi-
ple cores have provisions for multi-core management. This chapter discusses these features, as well as some power-
saving features that are exclusive to the ADSP-2156x and ADSP-SC59x processors:

• Parity Error Detection for L1 Accesses

• Illegal Opcode Error Detection for Instruction Fetch

• Security Operations

• Memory Barrier (SYNC) Instruction

• Semaphores (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only)

• Resetting in Multicore Systems (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only)

• Arm L2 Cache Sharing Address Range Registers (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only)

• Low-Power Features (ADSP-2156x and ADSP-SC59x Only)

Parity Error Detection for L1 Accesses
Detection of single-bit soft errors is important for overall system security. The SHARC+ core uses a hardware-based
single-bit soft error detection scheme. In the event of a single-bit error in L1, tag, LRU and dirty cache memories, a
read generates an error interrupt that is routed to both the REGF_IRPTL register and the system parity error con-
troller. This error condition can be handled using a local interrupt service rotuine (ISR) or via system-level control.

Parity Operations Programming Model

The REGF_MODE1.SPERREN, REGF_MODE1.DPERREN, and REGF_MODE1.IPERREN bits enable parity
checking for instruction fetch, data read (through DM/PM bus) and DMA read, respectively. For all applications,
these parity enable bits must all be configured in a single write to the REGF_MODE1 register. When any of the
REGF_MODE1.SPERREN, REGF_MODE1.DPERREN, or REGF_MODE1.IPERREN bits are enabled, the parity
bit updates whenever the corresponding RAM is written, and parity checking occurs whenever any RAM is read. If

Safety, Security, Multi-Core, and Low-Power Features
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an error is detected, the parity debug register is updated, and the error is routed to the REGF_IRPTL register (if it
is enabled) and to the system-level parity error controller (if it is enabled).

When the parity interrupt in the REGF_IRPTL register is enabled, it will be latched upon detection.

CAUTION: Parity error interrupts can occur during core cycles that are typically not interruptible. As a result, the
RTI register may be unreliable as the continuation point after the parity ISR executes.

Error Generation:

Parity errors are indicated in the CMMR_GPERR_STAT register. Once a bit is set, it is locked until an explicit write
of 0x0 clears the CMMR_GPERR_STAT register. Register writes should be done with care, as writing an artificial
error also causes an interrupt. The CMMR_GPERR_STAT register is cleared by a core reset.

Error Handling

There are two ways to handle parity errors:

• Through the system-level parity error controller.

• Through a local ISR serving interrupts latched in the REGF_IRPTL register.

Either of the two methods can be used to clear the error condition.

Parity Error Registers

Parity status registers are core MMR registers.

Once an error condition is registered in the debug registers, it gets locked and remains locked until all the bits are
written with zeros (clearing the error status manually) or the core is reset.

For more information on the Parity Error register, see the SHARC-PLUS CMMR Register Descriptions chapter.

Illegal Opcode Error Detection for Instruction Fetch
Illegal opcode detection is similar to instruction parity error detection. The primary difference is that parity error
detection works for L1 instruction and data accesses, while illegal opcode detection works for all kinds of instruction
fetches. When an opcode which is not defined in the supported instruction set is encountered, an illegal opcode
interrupt is generated.

NOTE: For double-precision floating-point compute operations, unused register bits are not checked by this logic.

The Illegal Opcode Error Status register (SHDBG_DBGREG_ILLOP) captures the status of the opcode error. On
core reset, all the bits in the register are set to zero. Once an error is detected, the content of the register remains
locked until it is manually cleared by writing zero to the register or the core is reset.

Parity Error Detection for L1 Accesses
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For more information on the Opcode Error Status Register, see the SHARC-PLUS CMMR Register Descriptions
chapter.

Security Operations
The SHARC+ core does not generate nor change its security status. The following scheme has been used to imple-
ment a security gate on the SHARC+ processor core:

• The system protection unit (SPU) and the System Memory Protection Unit (SMPU) maintain the security sta-
tus of each SHARC+ core in the SoC.

• This security status signal is fed to all the ports of the core: requester instruction/data port and both completer
ports.

• If the SHARC+ core is secure, all the accesses originating from the requester instruction/data ports carry that
status so they can access secure system resources.

• All accesses coming to the completer ports are checked for security status. Decode error responses are sent when
there is a security mismatch.

NOTE: Enabling and disabling of debug and trace feature access from the debug port is controlled by the system-
level DBGEN input to the SHARC+ core. If DBGEN is asserted, all the debug and trace configuration
registers can be accessed. If DBGEN is deasserted, only a limited set of debug and trace configuration reg-
isters can be accessed. This limited set provides information on debug and trace features supported by the
SHARC+ core, but none of the debug and trace features can be enabled and used.

Memory Barrier (SYNC) Instruction
On shared-memory multi-requester systems, data written by one requester must be visible to other requesters before
proceeding with the rest of the communication task. For example, core A may write to an external shared space and
signal core B that it can now read the data from the shared space. However, core A needs to have a mechanism to
ensure that the write has actually been completed before it sends the signal to core B.

Even though the SHARC+ core does not reorder any transactions, it has write buffers on both the system SCB inter-
face and the L1 IMIF. The system interface operates on the bus protocol, where any write is deemed to have been
completed only when the write response is returned. This could take many cycles, depending on the number of reg-
ister slices in the system fabric. Waiting for the write response for each write transaction results in numerous multi-
cycle stalls. Instead, these writes are posted on the bus channel, and the pipeline is allowed to move without waiting
for the response. The SHARC+ memory barrier (SYNC) instruction flushes these write buffers and awaits the write
responses.

NOTE: Executing the SYNC instruction does not flush dirty data cache lines and does not invalidate the instruc-
tion cache. Write-back-invalidation can be used to flush dirty data cache lines, and invalidation can be
used to invalidate the instruction cache (if required) before using the SYNC instruction.

Security Operations
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Upon executing the SYNC instruction, the core is stalled until all pending writes on the System Interface and all
pending writes in the write FIFO on the Internal Memory (L1) interface have completed.

SYNC instructions are required before starting any read or write DMA targeting L1 memory. This also applies to
sharing data with other processors. It is furthermore advised to use the SYNC instruction between writing and sub-
sequently reading any peripheral or core MMR.

Example Pipeline Behavior for Memory Barrier (SYNC) Instruction

In the Pipeline View of Parity Error Detection During Core Data Read table, note the STALL cycles and the CMP
(complete) cycle. The STALL label indicates the pipeline stalls that occur while waiting for the system interace or for
the L1 interface to complete pending writes. The CMP label indicates the cycle in which the processor completes
pending writes and releases the stall.

Table 9-1: Pipeline View of Parity Error Detection During Core Data Read

 STALL CMP

e2       SYNC SYNC SYNC SYNC SYNC SYNC

m4      SYNC SYNC SYNC SYNC SYNC SYNC SYNC

m3     SYNC SYNC SYNC SYNC SYNC SYNC SYNC SYNC

m2    SYNC SYNC SYNC SYNC SYNC SYNC  SYNC SYNC SYNC N+1

m1   SYNC SYNC SYNC SYNC  SYNC SYNC SYNC SYNC SYNC SYNC N+1

d2  SYNC  N+1 N+1 N+1 N+1 N+1  N+1 N+1 N+1 N+1 N+1

d1 SYNC N+1 N+2 N+2 N+2 N+2 N+2 N+2 N+2 N+2 N+2  

SYNC Instruction and Interrupts

Once a memory barrier (SYNC) instruction reaches the execution (E2) stage of the pipeline, it can no longer be
interrupted. This can make the SYNC instruction and the previous or next instruction uninterruptible. This can
also potentially make a larger number of cycles uninterruptible as the SYNC instruction awaits all pending system
and L1 interface writes to complete.

Flushing the Pipeline

To ensure instructions are refetched from memory after a SYNC instruction, software must arrange for the processor
pipeline to be flushed, which is done by placing a JUMP instruction after the SYNC instruction. This operation is
most conveniently achieved by putting the SYNC instruction in a subroutine. There is, however, no need to disable
the BTB.

Semaphores (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x On-
ly)
Semaphores are essential for shared memory multi-core systems where multiple cores are competing for the same
shared resource and the access needs to be atomic. Semaphores are supported in SHARC+ using the exclusive access

Memory Barrier (SYNC) Instruction
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feature of the system fabric. Load and store exclusive instructions can be used to implement software semaphores to
control interaction among multiple cores.

Exclusive reads and writes are supported with the following addressing modes.

• Indirect addressing (register modify) Type 3d (see Instruction Summary)

• Direct addressing Type 14d (see Instruction Summary)

NOTE: Exclusive load/store operation is not supported in multifunction compute instructions.

As can be seen from the table in Instruction Summary, all possible access sizes (byte, short-word, word and long
word) are supported with exclusive accesses. Success of the exclusive store/load access sets the REGF_ASTATX.AZ
bit for SISD and the REGF_ASTATY.AZ bit for SIMD. Programs must ensure that exclusive stores are only at-
tempted to locations from which there has been a successful exclusive load, indicated by a zero AZ flag

ATTENTION: Application code should abort when this operation fails.

Example Usage

Typical exclusive access instruction usage (spin-lock) is shown below:

R1 = 0x1;
 SPIN:
 R0 = DM(M0,I0) (EX);
 IF NE JUMP _abort;      // Unrecoverable error
 R0 = PASS R0;             // is semaphore unlocked?
 IF NE JUMP SPIN;          // no – try again
 DM(M0,I0) = R1 (EX);      // try to lock
 IF NE JUMP SPIN ;         // failed – try again

 // CRITICAL SECTION
 R1 = 0;                   // unlocked value
 DM(M0,I0) = R1;           // unlock

Exclusive Access Usage Restrictions

The following are restrictions applying to exclusive load and store accesses:

• Exclusive accesses are not supported to local L1 and multi-memory space.

• When performing an exclusive access to L2/L3 space, the region being accessed should be marked as non-
cacheable, otherwise the access is not seen by the memory peripheral as an exclusive access.

• Refer to the product-specific hardware reference manual for memory regions supporting exclusive accesses.
When an exclusive access is attempted to a region that does not support exclusive accesses, the failed access is
indicated by a set AZ flag.

• Refer to the Sizes and Alignment Restrictions in SISD and SIMD Modes in Byte Address Space Overview of
Data Accesses for exclusive access alignment restrictions.

Semaphores (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only)
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Resetting in Multicore Systems (ADSP-SC57x, ADSP-SC58x, and
ADSP-SC59x Only)
The SHARC+ core has support for a RCU disable request and acknowledge mechanism. On receiving a disable re-
quest from the Reset Control Unit (RCU), the SHARC+ stops all further accesses on the requester port and stalls
the completer port on a clean access boundary. It then sends an acknowledge back to the RCU. This activity can be
polled by another core to decide when it is safe to reset the first core. This ensures that any ongoing DMA to the L1
(when the first core was reset) can seamlessly resume when it is brought out of reset.

Refer to the RCU chapter in the product specific hardware reference manual for details on this mechanism.

Arm L2 Cache Sharing Address Range Registers (ADSP-SC57x,
ADSP-SC58x, and ADSP-SC59x Only)
To achieve data coherency between the Arm and SHARC+ core at the L2 cache level, the processor provides a con-
nection between the SHARC and the L2 cache of the Arm.

As shown in the Data Cache Hit / Miss Generation Process for a Single Bank figure, the SHARC core can access
system memory directly or via Arm L2 cache. When the L2 cache address register pair is cleared, the SHARC+ data
port read data directly from system memories (L2/L3) through the system fabric. However when the L2 cache ad-
dress register pair have L2/L3 addresses configured the SHARC+ data port reads data via the A5 L2 cache from the
system memories.
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Solid lines = A5 core request via L2 cache - core fabric – L2 port 0 (SRAM0). 
                      Any SHARC+ request via core fabric – L2 port 0 (SRAM0)

Dotted lines = Any SHARC+ D-port request via core fabric - L2 cache – core fabric – L2 port 0 (SRAM0)
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Figure 9-1: Arm L2 Cache Sharing

Resetting in Multicore Systems (ADSP-SC57x, ADSP-SC58x, and ADSP-SC59x Only)
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Secure versus Non-secure Access through A5 L2 Cache

The Arm L2 cache treats secure and non-secure data as being part of two different memory spaces. System designs
should ensure that all completers that share data are using the same level of security.

When using the L2 cache to perform an access through the L2 cache, the SHARC+ core always performs the access
in read/write allocate and write-back mode.

If a non-secure SHARC core attempts a write access on a secure completer, the core receives an OK response. If a
write miss occurs, the core first performs a read on the completer, then performs a line fill and finally attempts to
perform a write. Note that a read error is not returned to the SHARC core for the write attempt. If data is currently
in the cache the L2 cache treats secure and non-secure accesses as different and doesn’t generate an error (an OK
response is returned). A L2 cache read response interrupt must be used to see the write error.

NOTE: • When the SHARC performs an access through the L2 cache it is always configured in write-back and
read/write allocate mode. Configure the Arm A5 accordingly.

• Core memory-mapped registers (CMMRs) are not accessible by rest of the system.

• Performing an access through the L2 cache does not guarantee data coherency between the Arm A5
and SHARC+ cores. However it eases the coherency implementation on software.

• If the Arm A5 is in reset, this feature should not be used.

• Programs should perform a L2 cache write-back invalidation before changing the value of the L2
cache address register pair.

• All completers that are accessed through L2 cache should be either read/write both secure or both
non-secure. In case of partial security coherency is not guaranteed and behavior is unexpected.

• Insert a SYNC instruction before and after modifying a core memory-mapped register. Otherwise any
transactions pending in the FIFOs in the requester bridge may see the effect of the writes.

• Programs must not perform a write if a data access occurs on ROM through the L2 cache because a
write may cause corruption in the cache.

For more information, see the ADSP-SC58x SHARC Processor Hardware Reference "L2 Memory Controller
(L2CTL)" chapter.

Low-Power Features (ADSP-2156x and ADSP-SC59x Only)
The ADSP-2156x and ADSP-SC59x SHARC+ processors provide additional power-saving features to reduce power
consumption in on-chip L1 memory and when the core is idle, as discussed in the following sections.

Low-Power Features (ADSP-2156x and ADSP-SC59x Only)
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Low-Power Memory Features

Many applications may not require the entire 5 Mb of L1 memory. If certain banks are unused or predictably not
being accessed, they can be put into either of two low-power modes, Memory Sleep or Memory Shutdown. Depend-
ing on the application requirements, a suitable mix of both modes can be configured on a bank-wise basis, as
discussed in the following sections.

Memory Sleep Mode

Memory Sleep mode reduces idle memory power consumption while retaining the memory content. Banks 0
through 3 can individually be put into and taken out of Memory Sleep mode by manipulating the corresponding
BANK0 through BANK3 bits of the CMMR_PWR_L1_LS_CTL register. Setting (=1) any of these bits places the
associated bank into Memory Sleep mode, while clearing (=0) any of these bits takes the associated bank out of
Memory Sleep mode. As the reset states of these bits are 0, Memory Sleep mode is disabled by default for all banks.

There is an 11-cycle latency associated with removing a bank from Memory Sleep mode. If any read/write access to a
bank being removed from Memory Sleep mode takes place prior to this delay, it may result in an unexpected out-
come (reads are always 0 and writes do not take place).

NOTE: Initial 0.25 MB of Bank 0 is always fully enabled and is unaffected by changes to the Bank 0 power mode.

CAUTION: Do not enable both Memory Shutdown and Memory Sleep modes on the same bank of memory.

Memory Shutdown Mode

If memory content does not need to be maintained for the banks that are being placed into a low-power state, the
Memory Shutdown mode can be used instead of Memory Sleep to reduce power even further. This mode is control-
led exactly as with the Memory Sleep mode, except the bank-wise control over enabling and disabling Memory
Shutdown mode is via the CMMR_PWR_L1_SD_CTL register.

As Memory Shutdown feature can cause entire banks of memory to lose content, access to this feature must be ena-
bled separately by setting the L1 shutdown enable bit (CMMR_SYSCTL.L1_SD_EN = 1).

There is an 11-cycle latency associated with removing a bank from Memory Shutdown mode. If any read/write ac-
cess to a bank being removed from Memory Shutdown mode takes place prior to this delay, it may fail.

NOTE: Initial 0.25 MB of Bank 0 is always fully enabled and is unaffected by changes to the Bank 0 power mode.

CAUTION: Do not enable both Memory Shutdown and Memory Sleep modes on the same bank of memory.

Low-Power Idle Mode (Core Light Sleep)

When the core goes into the idle state upon executing the IDLE instruction, there is still active/switching power
associated with all active clocks despite the fact that there is no activity inside the core. To reduce this power, a core
clock gating mechanism (Core Light Sleep) can be used to switch off these clocks when the core becomes idle by
programming the Core Light Sleep Enable field (CMMR_PWR_GLB_CTL.CORE_SLP = 1).

Low-Power Features (ADSP-2156x and ADSP-SC59x Only)
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NOTE: To ensure backwards compatibility with previous ADSP-SC5xx processors, the disable CCLK gating bit
can be used to disable this feature (CMMR_SYSCTL.DIS_CCLKG = 1).

The following are associated with use of the Core Light Sleep feature:

• The IMIF, completer ports, and requester ports are awake, but the remaining clocks become gated when the
IDLE instruction reaches the E2 stage of the pipeline. Therefore, DMA reads and writes are allowed to all four
banks.

• The core timer freezes.

• An interrupt-driven wakeup event (SEC interrupt arriving to the core) disables gating of the clocks.

• DBGEN can also be used to wake from the Core Light Sleep mode to serve debug requests.

Low-Power Features (ADSP-2156x and ADSP-SC59x Only)
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10   SHARC+ Core Debug Interface

The Analog Devices Tools JTAG emulator is a development tool for debugging programs running in real time on
target system hardware.

Because the JTAG emulator controls the target system's processor through the processor's debug interface, non-in-
trusive in-circuit emulation is assured.

Features
The debug interface has the following features.

• Standard emulation-start stop and single step

• Enhanced standard emulation with instruction and data breakpoints, event count, valid and invalid address
range detection

• Statistical profiling for benchmarking

• Support for setting user breakpoints

Functional Description
The following sections provide descriptions about debug functionality.

Debug Interface

The core provides a peripheral bus completer interface to access the debug functionality. Debug registers are memo-
ry-mapped and accessible over the peripheral bus.

Breakpoints

This section explains the different types of breakpoint and conditions to hit breakpoints.

Software Breakpoints

Software breakpoints are implemented by the processor as a special type of instruction. The instruction, EMUIDLE
is not a public instruction, and is only decoded by the processor when specific bits are set in emulation control. If

SHARC+ Core Debug Interface
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the processor encounters the EMUIDLE instruction and the specific bits are not set in emulation control, then the
processor executes a NOP instruction. The EMUIDLE instruction triggers a high emulator interrupt. When
EMUIDLE is executed, the emulation clock counter halts immediately.

General Restrictions on Software Breakpoints

Based on the 11-stage instruction pipeline, programs can not set software breakpoints at the following locations.

• If a breakpoint interrupt comes at a point when a program is coming out of an interrupt service routine of a
prior breakpoint, then in some cases the breakpoint status does not reflect that the second breakpoint interrupt
has occurred.

• If an instruction address breakpoint is placed just after a short loop, a spurious breakpoint is generated.

• Delay slots of delayed branch instructions.

• Counter based loops of length one two and three

• Last three instructions of any arithmetic loop

Automatic Breakpoints

The IDDE (tools environment) places software breakpoints automatically at the labels _main and
__lib_prog_term. For example, if the program places the (_main) label at the beginning of user code, it sim-
plifies halting the start of code execution after reset (for example, in a DDR2/SDRAM initialization or a runtime
environment).

For more information, refer to the tools documentation.

Hardware Breakpoints

Hardware breakpoints allow much greater flexibility than the software breakpoints provided by the EMUIDLE in-
struction. At the simplest level, hardware breakpoints are helpful when debugging ROM code where the emulation
software can not replace instructions with the EMUIDLE instruction. At a minimum, an effective hardware break-
point unit has the capability to trigger a break on a load, store, and fetch activity. 

Additionally, address ranges, both inclusive (bounded) and exclusive (unbounded) can be specified.

Operating Modes
The following sections detail the operation of the debug interface.

Emulation Space Mode

The processor emulation features halt the processor at a predefined point to examine the state of the processor, exe-
cute arbitrary code, restore the original state, and continue execution. If the processor hits a valid breakpoint it trig-
gers an emulator interrupt which puts the processor into emulation space (core halt). In this state, the processor waits
until the emulator continues to scan new instructions into the processor over the debug interface. If the emulator
scans an RTI instruction into the processor, it is released back into user space (core run).

Software Breakpoints
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The emulator uses the debug interface to access the internal space of the processor, allowing the developer to:

• Load code

• Set SW/HW breakpoints

• Set user breakpoints

• Observe variables

• Observe memory

• Examine registers

• Perform cycle counting

The processor must be halted to send data and commands, but once an operation is completed by the emulator, the
system is set running at full speed with no impact on system timing. The emulator does not impact target loading or
timing. The emulator's in-circuit probe connects to a variety of host computers (USB or PCI) with plug-in boards.

Emulation Control

The processor is free running. In order to observe the state of the core, the emulator must first halt instruction exe-
cution and enter emulation mode. In this mode, the emulation software sets up a halt condition by setting the
HALT bit in the Run-Control-Status (RCS) register.

Instruction and Data Breakpoints

The SHARC processors contain sets of emulation breakpoint registers. Each set consists of a start and an end register
which describe an address range, with the start register setting the lower end of the address range. Each breakpoint
set monitors a particular address bus. When a valid address is in the address range, then a breakpoint signal is gener-
ated. The address range includes start and end addresses.

Instruction breakpoints monitor the program memory address bus while data breakpoints monitor the data or pro-
gram memory address bus.

Address Breakpoint Registers

The address breakpoint registers are described in the SHARC-PLUS SHDBG Register Descriptions chapter. These
registers are used by the emulator and the user breakpoint control to specify address ranges to verify if specific condi-
tions become true. The reset values are not defined.

Conditional Breakpoints

The breakpoint sets are grouped into four types:

• 4x instruction breakpoints (IA)

• 2x data breakpoints for DM bus (DA)

• 1x data breakpoints for PM bus (PA)

Operating Modes
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The individual breakpoint signals in each group are logically OR'ed together to create a composite breakpoint signal
per group.

Each breakpoint group has an enable bit in the SHDBG_BRKCTL register. When set, these bits add the specified
breakpoint group into the generation of the effective breakpoint signal. If cleared, the specified breakpoint group is
not used in the generation of the effective breakpoint signal. This allows the user to trigger the effective breakpoint
from a subset of the breakpoint groups.

These composite signals can be optionally AND'ed or OR'ed together to create the effective breakpoint event signal
used to generate an emulator interrupt. The SHDBG_BRKCTL.ANDBKP bit register selects the function used.

NOTE: The SHDBG_BRKCTL.ANDBKP bit has no impact within the same group of breakpoints (DA group, IA
group). It has significance when the program uses different groups of breakpoints (IA, DM, PM) and the
resultant breakpoint is logically AND'ed of all those breakpoints which are enabled.

To provide further flexibility, each individual breakpoint can be programmed to trigger if the address is in range
AND one of these conditions is met: READ access, WRITE access, or ANY access. The control bits for this feature
are also located in DBG_BRKCTL register.

NOTE: Note the following restrictions on breakpoints.

1. At least two breakpoints must be enabled prior to enabling the SHDBG_BRKCTL.ANDBKP bit.

2. Enabling of the SHDBG_BRKCTL.ANDBKP bit should not be done in the same instruction.

For index range violations in user code, the address ranges of the emulation breakpoint registers are negated (twos
complement) by setting the appropriate SHDBG_BRKCTL register.

Each breakpoint can be disabled by setting the start address larger than the end address.

NOTE: The instruction address breakpoints monitor the address of the instruction being executed, not the address
of the instruction being fetched.

If the current execution is aborted, the breakpoint signal does not occur even if the address is in range. Data address
breakpoints (DA and PA only) are also ignored during aborted instructions.

The breakpoint sets can be found in Programming Model User Breakpoints.

Event Count Register

The SHDBG_EMUN register is a 32-bit memory-mapped I/O register and can be accessed in user space. The core
can write to it in user space. This register is used to detect the Nth breakpoint. This SHDBG_EMUN register allows
the breakpoint to occur at Nth count. If the register is loaded with N, the processor is interrupted only after the
detection of N breakpoint conditions. At every breakpoint occurrence the processor decrements the SHDBG_EMUN
register and it generates an interrupt when the contents of the SHDBG_EMUN register is zero and a breakpoint event
occurs.

Note that programs must load this register with a value greater or equal to zero for proper breakpoint generation
under the condition that bit 25 (SHDBG_BRKCTL.UMODE bit) is set.

Conditional Breakpoints
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Emulation Cycle Counting

The emulation clock counter consists of a 32-bit count register, REGF_EMUCLK and a 32 bit scaling register,
REGF_EMUCLK2. The REGF_EMUCLK register counts clock cycles while the user has control of the chip and
stops counting when the emulator gains control. This allows a user to gauge the amount of time spent executing a
particular section of code. The REGF_EMUCLK2 register is used to extend the time REGF_EMUCLK can count by
incrementing itself each time the EMUCLK value rolls over to Zero. Both REGF_EMUCLK and REGF_EMUCLK2
are emulation registers,which can only be written in emulation space. Reads of REGF_EMUCLK and
REGF_EMUCLK2 can be performed in user space. This allows simple benchmarking of code.

Statistical Profiling

Statistical profiling allows the emulation software to sample the processors PC value while the processor is running.
By sampling at random intervals, a profile can be created which can aid the developer in tuning performance critical
code sections. As a second use, statistical profiling can also aid in finding dead code as well as being used to make
code partition decisions. Fundamentally, statistical profiling is supported by the debug register called EMUPC. The
EMPUC register is a 24-bit register which samples the program counter whenever any transaction (read or write)
happens on the debug interface. This register is used for statistical profiling.

User Space Mode

The following sections describe user space mode operation.

User Breakpoint Control

By default, the emulator has control over the breakpoint unit. However, if there is a need for faster system debug
without the delay incurred when the core halts and enters emulations space, then the core can gain control by set-
ting the SHDBG_BRKCTL.UMODE bit.

Conversely, if the SHDBG_BRKCTL.UMODE (bit 25) is cleared, only the emulator has breakpoint control over the
TAP.

NOTE: If the SHDBG_BRKCTL.UMODE bit is set, all address breakpoint registers can be written in user space.

For more information, see SHARC-PLUS SHDBG Register Descriptions chapter.

User Breakpoint Status

The DBG_BRKSTAT register acts as the breakpoint status register for the SHARC+ processors. This register is a
memory-mapped IOP register. The processor core can access this register if the DBG_BRKCTL.UMODE bit (bit 25)
is set.

The DBG_BRKSTAT register indicates which breakpoint hit occurred. All the breakpoint status bits are cleared
when the program exits the ISR with an RTI instruction. Such interrupts may contain error handling if the process-
or accesses any of the addresses in the address range defined in the breakpoint registers.

NOTE: Status update of the DBG_BRKSTAT register does not work in single step mode for user break points.

For more information, see SHARC-PLUS SHDBG Register Descriptions chapter.

Conditional Breakpoints
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User Breakpoint System Exception Handling

Through the proper configuration of the SHDBG_BRKCTL and SHDBG_BRKSTAT registers, and by using differ-
ent logical combined address breakpoint regions in conjunction with event count registers for core or DMA opera-
tions, programs can take advantage of system specific exception handling based on specified conditions which trigger
the low priority emulator interrupt (BKPI).

User to Emulation Space Breakpoint Comparison

The primary difference between user and emulation space breakpoints are that user breakpoints are user instruction
driven while emulation space breakpoints happen via the debug interface.

Programming Model User Breakpoints

To set up the user controlled breakpoint functionality use the following steps.

1. Unmask the BKPI interrupt (low priority interrupt).

2. Set the SHDBG_BRKCTL.UMODE bit.

3. Set the breakpoint count in the SHDBG_EMUN register to the required value.

4. Initialize the breakpoint address registers with required address ranges.

5. Enable the breakpoint conditions as required in the SHDBG_BRKCTL register.

6. Enable the logical AND'ing of breakpoints if required in the SHDBG_BRKCTL register.

Programming Examples

The Trigger an Exception for a Valid Address example shows how to trigger an exception for a valid address.

Trigger an Exception for a Valid Address

bit set IMASK BKPI;    /* unmask BKPI */
bit set MODE1 IRPTEN;  /* enable global int */
r5 = ADDR_S;           /* valid start addr for the break */
r6 = ADDR_E;           /* valid end addr for the break */
r3 = UMODE | DA1MODE;  /* set the user mode and dm access functionality for r/w 
access */
dm(BRKCTL) = r3;
dm(DMA1S) = r5;        /* start addr for break */
dm(DMA1E) = r6;        /* end addr for break */
r5 = 0x15;
dm(EMUN) = r5;         /* set event count */
 
USTAT1 = dm(BRKCTL);
BIT SET USTAT1 ENBDA;  /* enable the dm access break points */
dm(BRKCTL) = USTAT1; 
 
ISR_BKPI:

User Space Mode
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r4 = dm(BRKSTAT);     /* read status bits */
rti;                  /* status register cleared */

The Trigger an Exception for an Invalid Address Range example shows how to trigger an exception for an invalid
address range.

Trigger an Exception for an Invalid Address Range

bit set IMASK BKPI;                /* unmask BKPI */
bit set MODE1 IRPTEN;              /* enable global int */
r4 = ADDR_S;                       /* valid start address for the break */
r5 = ADDR_E;                       /* valid end address for the break */
 
USTAT1 = UMODE | DA2MODE | NEGDA2; /* set the user mode and negate dm access
                                      functionality for r/w access */
dm(BRKCTL) = USTAT1;
 
dm(DMA2S) = r4;
dm(DMA2E) = r5;
r5 = 0x0;                          /* no event count */
 
dm(EMUN) = r5;
 
USTAT1 = dm(BRKCTL);
BIT SET USTAT1 ENBDA;              /* enable the dm access break points */
dm(BRKCTL) = USTAT1;
ISR_BKPI:
r4 = dm(BRKSTAT);                  /* read status bits */
rti;                               /* status register cleared */

Single Step Mode

When the single step bit in the emulation control register is set, single step mode is enabled. In single step mode, the
processor executes a single instruction, and then automatically generates an internal emulator interrupt to return to
emulation space. While in emulation space the emulator can execute a RTI instruction to do a single step again.
Each user instruction execution in single step mode clears the instruction pipeline when the part reenters user space.

Instruction Pipeline Fetch Inputs

The instruction pipeline is fed by four inputs:

1. Instruction fetch from memory, this is the user mode (also known as user space) and described in the sequencer
chapter

2. Instruction fetch from boot channel, during boot operation (256 instruction words) the pipeline is fed with the
IDLE instruction until the peripheral's interrupt is generated

Operating Modes
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3. Instruction fetch from an emulator register, by using tools (debugger) in single step mode (also known as emu-
lation space) the instruction pipeline is deactivated. In this mode, each instruction is fetched from an emula-
tion register over the JTAG interface (rather from memory) and executed in isolation. The process is repetitive
for all the next instructions in single step mode.

4. Instruction fetched from instruction-conflict cache during an cache hit. If a hit occurs, the instruction is loaded
from instruction-conflict cache and not from memory.

Differences Between Emulation and User Space Modes

The primary difference between user space and emulation space operation is that in emulation space, the processor
holds while the instruction is scanned in, while in user space, the instruction is taken from an emulation instruction
register, rather than from the PMD bus. In emulation space, the program counter also stops incrementing. All other
aspects of instruction execution are the same in both modes.

Debug Interrupts
The Debug Interrupt Overview table provides an overview of the interrupts associated with the debug interface. For
a complete list of interrupts, see the Interrupt Priority and Vector Table.

Table 10-1: Debug Interrupt Overview

Interrupt Source Interrupt Condition Return Register Return Instruction IVT Level

JTAG Emulation Space N/A N/A 0, EMUHI

Instruction/Data Address HW Breakpoint Hit BRKSTAT RTI 12, BKPI

Interrupt Types

The following different types of interrupts/breakpoints are generated.

• External emulator generates EMUI interrupt via Halt bit (highest priority)

• Breakpoint generates an internal EMUI interrupt (highest priority)

• User space breakpoint generates an internal BKPI interrupt (lower priority)

Entering Into Emulation Space

When the core receives emulator interrupt, the following sequence occurs:

1. The PC stack is pushed and the PC vectors to reset location

2. The core is idle, waiting for an emulator instruction

3. The core timer and emulation counter stop counting

4. The instruction-conflict cache is disabled

5. DMA operation may be optionally stalled

Operating Modes
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6. The core notifies emulation space via the HALTED bit in RCS register.

Debug Register Effect Latency
Instruction address and program memory breakpoint negates have an effect latency of four core clock cycles.

References
• IEEE Standard 1149.1-1990. Standard Test Access Port and Boundary-Scan Architecture. To order a copy,

contact the IEEE society.

• Maunder, C.M. and R. Tulloss. Test Access Ports and Boundary Scan Architectures. IEEE Computer Society
Press, 1991.

Debug Register Effect Latency
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11   Program Trace Macrocell (PTM)

The processor core implements Program Trace Macrocell (PTM) which implements a subset of Coresight Program
Flow Trace Architecture (CSPFT) specification by Arm and provides instruction trace capability. For Cortex A5
trace unit features refer to the Embedded Trace Macrocell (ETM) chapter the hardware reference manual.

Features
The trace module has the following features

• Address comparators and Context ID comparators for filtering trace data and use as event resources.

• External inputs and outputs for use as event resources.

• Events can be created using address comparators, context ID comparators and external inputs.

• Counters to count events occurrences.

Functional Description
The following section describes the features available in the trace module.

Address Comparators

The trace module provides 4 address comparators. Program the Address Comparator Value register with the address
to be matched and the corresponding Address Comparator Access Type register with additional information about
the required comparison shown in the following list.

• Include or exclude range

• Linking the address comparison with Context ID comparator

Address comparators can be used

• Individually, as single address comparators (SACs)

• In pairs, as address range comparators (ARCs), in which case two adjacent address comparators form an ARC.

Program Trace Macrocell (PTM)
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Context ID Comparators

The trace module provides 1 Context ID comparator.

The Context ID comparator consists of a Context ID Comparator Value Register which can hold a Context ID
value, for comparison with the current Context ID and a Context ID Comparator Mask Register which can hold a
mask value, which is used to mask all Context ID comparisons. If Context ID Comparator Mask Register is pro-
grammed to zero then no mask is applied to the Context ID comparisons.

Events

The trace module includes a number of event resources, address comparators, context ID comparators and external
inputs.

Event resources can be used to define events. Event register can be programmed to define the corresponding event as
the result of a logical operation involving one or two event resources.

Each event resource is either active or inactive, active event resource generates a logical TRUE signal and an inactive
event resource generates a logic FALSE signal. An event is logical combinational of event resources, therefore at any
given time each event is either TRUE or FALSE.

Counters

The trace module provides 2 counters that are controlled using events. Each 16-bit counter can count from 0 to
65535. Counter behavior is controlled by the following registers.

Counter Enable Event Register

Enables the counter and counts down while the counter enable event is TRUE.

Counter Reload Event Register

Reloades the counter from the Counter Reload Value Register when a counter reload event occurs.

Counter Reload Value Register

Holds the value that is loaded into the counter when the counter reload event is TRUE.

Counter Value Register

Finds the current value of the counter at any time through a read and writes a new value into the counter
when programming the trace module.

Functional Description
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Trace Security

The trace module supports that is controlled by the Debug Enable input signal. It controls whether the trace mod-
ule is allowed to trace instructions. If this signal is deasserted, all tracing will stop, all internal resources are disabled
and trace module’s state is held.

Programming Model
The trace module registers are memory-mapped in a 4KB region as per CoreSight programmers model.

References
• CoreSight™ Program Flow Trace™ Architecture Specification - Arm IHI 0035B – Available at http://infocen-

ter.arm.com

• CoreSight™ Architecture Specification - Arm IHI 0029B – Available at http://infocenter.arm.com

Functional Description
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12   Instruction Set Reference

In the SHARC+ core family two different instruction types are supported.

• Instruction Set Architecture (ISA) is the traditional instruction set and is supported by all the SHARC and
SHARC+ processors.

• Variable Instruction Set Architecture (VISA) is supported by the newer (ADSP-214xx and beyond) processors.

The instruction types linked into normal word space are valid ISA instructions (48-bit). When linked into short
word space they become valid VISA instructions (48/32/16 bits).

Many ISA instruction types have conditions and compute/data move options. However, as programmer there may
be situations where options in an instruction are not required. Moreover, many instructions have spare bits which
are unused. For ISA instructions the opcode always consumes 48 bits, which results in wasted memory space. For
VISA instruction types, all possible options have been extracted to generate new sub instructions resulting in 32-bit
or 16-bit instructions.

This chapter provides information on the instructions associated with the SHARC+ core. Each instruction group
has an overview table of its instruction types. The opcodes relating to the instruction types are shown with each
instruction. For information on computation types and their associated opcodes (ALU, multiplier, shifter, multi-
function) see the Computation Reference chapter.

Instruction Groups
The instruction groups are:

• Group I Conditional Compute and Move or Modify Instruction

• Group II Conditional Program Flow Control Instructions

• Group III Immediate Data Move Instructions

• Group IV Miscellaneous Instructions

The following tables provide an overview of the Group I-IV instructions. The letter after the instruction type de-
notes the instruction size as follows: a = 48-bit, b = 32-bit, c = 16-bit, d = 48-bit. Note that items in italics are
optional. In the Introduction chapter the differences in instruction set are listed versus previous SHARC processor
generations.

Instruction Set Reference
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Instruction Set Notation Summary

The conventions for instruction syntax descriptions appear in the Instruction Set Notation table. Other parts of the
instruction syntax and opcode information also appear in this section.

Table 12-1: Instruction Set Notation

Notation Meaning

UPPERCASE Explicit syntax—assembler keyword (notation only; assembler is case-insensitive and lower-
case is the preferred programming convention)

; Semicolon (instruction terminator)

, Comma (separates parallel operations in an instruction)

italics Optional part of instruction

| option1 | |
option2 |

List of options between vertical bars (choose one)

compute ALU, multiplier, shifter or multifunction operation. (See the Computation Reference chap-
ter.)

shiftimm Shifter immediate operation. (See the Computation Reference chapter.)

cond Status condition (see condition codes in the Program Sequencer chapter)

termination Loop termination condition (see condition codes in the Program Sequencer chapter)

ureg Universal register

cureg Complementary universal register (see the Register Files chapter)

sreg System register

csreg Complementary system register (see the Register Files chapter)

dreg Data register (register file): R15–R0 or F15–F0

cdreg Complementary data register (register file): S15–S0 or SF15–SF0 (see the Register Files
chapter)

Ia I7–I0 (DAG1 index register)

Mb M7–M0 (DAG1 modify register)

Ic I15–I8 (DAG2 index register)

Md M15–M8 (DAG2 modify register)

<datan> n-bit immediate data value

<addrn> n-bit immediate address value

<reladdrn> n-bit immediate PC-relative address value

+k the implicit incremental address depending on SISD, SIMD or Broadcast mode

RTS Return from subroutine

RTI Return from interrupt

Instruction Groups
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Table 12-1: Instruction Set Notation (Continued)

Notation Meaning

(DB) Delayed branch

(LA) Loop abort (pop loop and PC stacks on branch)

(CI) Clear interrupt

(LR) Loop reentry

(lw) Long Word (forces long word access in normal word range)

(nw) Normal word

(sw) Short word

(bw) Byte word

(se) Sign extension

(ex) Exclusive access

The list of UREGs (universal registers) can be found in the Register Files chapter.

Instruction Groups
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13   Group I Conditional Compute and Move
or Modify Instruction

The group I instructions contain a condition, a computation, and a data move operation.

The COND field selects whether the operation specified in the COMPUTE field and a data move is executed. If
the COND is true, the compute and data move are executed. If no condition is specified, COND is true condition,
and the compute and data move are executed.

The COMPUTE field specifies a compute operation using the ALU, multiplier, or shifter. Because there are a large
number of options available for computations, these operations are described separately in the Computation Refer-
ence chapter.

Table 13-1: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

1a ISA

VISA

compute, DM(Ia,Mb) = Dreg,  PM(Ic,Md) = 
Dreg;
Dreg = PM(Ic,Md), Dreg = 
DM(Ia,Mb);

1b VISA DM(Ia,Mb) = Dreg,  PM(Ic,Md) = 
Dreg;
Dreg = PM(Ic,Md), Dreg = 
DM(Ia,Mb);

2a ISA

VISA

IF cond compute;

2b VISA compute;

2c VISA short compute;

3a ISA

VISA

IF cond compute, DM(Ia,Mb) = Ureg
DM(Mb,Ia) = Ureg
PM(Ic,Md) = Ureg
PM(Md,Ic) = Ureg
Ureg = DM(Ia,Mb)
Ureg = DM(Mb,Ia)
Ureg = PM(Ic,Md)
Ureg = PM(Md,Ic)

(lw);

Group I Conditional Compute and Move or Modify Instruction
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Table 13-1: Group I Instructions by Instruction Type (Continued)

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

3b VISA IF cond DM(Ia,Mb) = Ureg
DM(Mb,Ia) = Ureg
PM(Ic,Md) = Ureg
PM(Md,Ic) = Ureg

(bw/sw);

Ureg = DM(Ia,Mb)
Ureg = DM(Mb,Ia)
Ureg = PM(Ic,Md)
Ureg = PM(Md,Ic)

(bw/sw);
(bwse,swse);

3c VISA Dreg = DM(Ia,Mb);
DM(Ia,Mb) = Dreg;

3d ISA

VISA

IF cond DM(Ia,Mb) = Ureg
DM(Mb,Ia) = Ureg
PM(Ic,Md) = Ureg
PM(Md,Ic) = Ureg

(bw/sw/lw,ex);

Ureg = DM(Ia,Mb)
Ureg = DM(Mb,Ia)
Ureg = PM(Ic,Md)
Ureg = PM(Md,Ic)

(bw/sw/lw,ex);
(bwse/swse,ex);

4a ISA

VISA

IF cond compute, DM(Ia, <data6>) = Dreg;
DM(<data6>,Ia) = Dreg;
PM(Ic, <data6>) = Dreg;
PM(<data6>,Ic) = Dreg;
Dreg = DM(Ia, <data6>);
Dreg = DM(<data6>,Ia);
Dreg = PM(Ic, <data6>);
Dreg = PM(<data6>,Ic);

4b VISA IF cond DM(Ia, <data6>) = Dreg;
DM(<data6>,Ia) = Dreg;
PM(Ic, <data6>) = Dreg;
PM(<data6>,Ic) = Dreg;
Dreg = DM(Ia, <data6>);
Dreg = DM(<data6>,Ia);
Dreg = PM(Ic, <data6>);
Dreg = PM(<data6>,Ic);

4d ISA

VISA

IF cond DM(Ia, <data6>) = Dreg;
DM(<data6>,Ia) = Dreg;
PM(Ic, <data6>) = Dreg;
PM(<data6>,Ic) = Dreg;

(bw/sw);

Dreg = DM(Ia, <data6>);
Dreg = DM(<data6>,Ia);
Dreg = PM(Ic, <data6>);
Dreg = PM(<data6>,Ic);

(bw/sw);
(bwse/swse);

5a
(move)

ISA

VISA

IF cond compute, Ureg1 = Ureg2;

5a
(swap)

ISA

VISA

IF cond compute, Dreg <-> CDreg;

Group I Conditional Compute and Move or Modify Instruction

13–2 SHARC+ Core Programming Reference



Table 13-1: Group I Instructions by Instruction Type (Continued)

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

5b
(move)

VISA IF cond Ureg1 = Ureg2;

5b
(swap)

VISA IF cond Dreg <-> CDreg;

6a
(mem)

ISA

VISA

IF cond shif-
timm,

DM(Ia,Mb) = Dreg;
PM(Ic,Md) = Dreg;
Dreg = DM(Ia,Mb);
Dreg = PM(Ic,Md);

6a (no-
mem)

ISA

VISA

IF cond shiftimm;

7a ISA

VISA

IF cond compute, MODIFY(Ia,Mb);
MODIFY(Ic,Md);
Ia = MODIFY(Ia,Mb)
Ic = MODIFY(Ic,Md)

(nw/sw);

7b VISA IF cond MODIFY(Ia,Mb);
MODIFY(Ic,Md);
Ia = MODIFY(Ia,Mb)
Ic = MODIFY(Ic,Md)

7d ISA

VISA

IF cond compute, Ia = B2W(Ia);
Ic = B2W(Ic);
Ia = W2B(Ia);
Ic = W2B(Ic);
Ba = B2W(Ba);
Bc = B2W(Bc);
Ba = W2B(Ba);
Bc = W2B(Bc);

Type 1a ISA/VISA (compute + mem dual data move)
Syntax Summary

Table 13-2: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Operation (Option)

1a ISA

VISA

compute, DM(Ia,Mb) = Dreg, PM(Ic,Md) =
Dreg;
Dreg = PM(Ic,Md), Dreg =
DM(Ia,Mb);

The following table provides the opcode field values (compute) and the instruction syntax overview (Syntax)

Compute Syntax

00000000000000000000000 DMACCESS (Type 1a) , PMACCESS (Type 1a) ;

Type 1a ISA/VISA (compute + mem dual data move)
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Compute Syntax

----------------------- COMPUTE , DMACCESS (Type 1a) , PMACCESS (Type 1a) ;

For more information about compute syntax, see the Computation Reference chapter.

Abstract

Compute with a parallel memory (data and program) transfer

Description

It is important to understand how this instruction operates differently in SISD, SIMD, and Broadcast modes.

SISD Mode

In SISD mode, the Type 1 instruction provides parallel accesses to data and program memory from the register
file. The specified I registers address data and program memory. The I values are post-modified and updated
by the specified M registers. Pre-modify offset addressing is not supported. For more information on register
restrictions, see the Data Address Generators chapter.

SIMD Mode

In SIMD mode, the Type 1 instruction provides the same parallel accesses to data and program memory from
the register file as are available in SISD mode, but provides these operations simultaneously for the X and Y
processing elements. The X element uses the specified I registers to address data and program memory, and the
Y element adds one to the specified I registers to address data and program memory. The I values are post-
modified and updated by the specified M registers. Pre-modify offset addressing is not supported. For more
information on register restrictions, see the Data Address Generators chapter. The X element uses the specified
Dreg registers, and the Y element uses the complementary registers (Cdreg) that correspond to the Dreg regis-
ters. For a list of complementary registers, see the Complementary Data Register Pairs description in the Reg-
ister Files chapter.

Broadcast Mode

If the broadcast control read bits—REGF_MODE1.BDCST1 (for I1) or REGF_MODE1.BDCST9 (for I9)—
are set, both processing units (PEx/PEy) share the same index address. The following code compares the Type
1 instruction’s explicit and implicit operations in SIMD and Broadcast modes.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

compute, DM(Ia, Mb) = dreg , PM(Ic, Md) = dreg ;
compute, dreg = DM(Ia, Mb) , dreg= PM(Ic, Md) ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

compute, DM(Ia+k, 0) = cdreg , PM(Ic+k, 0) = cdreg ;

Type 1a ISA/VISA (compute + mem dual data move)
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compute, cdreg = DM(Ia+k, 0) , cdreg = PM(Ic+k, 0) ;
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Example

R7=BSET R6 BY R0, DM(I0,M3)=R5, PM(I11,M15)=R4;
R8=DM(I4,M1), PM(I12 M12)=R0;
When the processors are in SISD mode, the first instruction in this example performs a computation along with two
memory writes. DAG1 is used to write to DM and DAG2 is used to write to PM. In the second instruction, a read
from data memory to register R8 and a write to program memory from register R0 are performed.

When the processors are in SIMD mode, the first instruction in this example performs the same computation and
performs two writes in parallel on both PEx and PEy. The R7 register on PEx and S7 on PEy both store the results
of the Bset computations. Also, simultaneous dual memory writes occur with DM and PM, writing in values from
R5, S5 (DM) and R4, S4 (PM) respectively. In the second instruction, values are simultaneously read from data
memory to registers R8 and S8 and written to program memory from registers R0 and S0.

R0=DM(I1,M1);
When the processors are in broadcast mode (the BDCST1 bit is set in the MODE1 system register), the R0 (PEx)
data register in this example is loaded with the value from data memory utilizing the I1 register from DAG1, and S0
(PEy) is loaded with the same value.

Type 1a Instruction Opcode

Type1a

pmdreg[3:0]

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

dmd
dmi[2:0]
dmm[2:0]

pmi[2:2]

pmd

pmi[1:0]
pmm[2:0]

compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dmdreg[3:0]

Figure 13-1: Type1a Instruction

DMACCESS (Type 1a)

DMACCESS Encode Table

dmd Syntax

0 RFREG Register Class = dm(I1REG Register Class, M1REG Register Class)

Type 1a ISA/VISA (compute + mem dual data move)
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dmd Syntax

1 dm(I1REG Register Class, M1REG Register Class) = RFREG Register Class

PMACCESS (Type 1a)

PMACCESS Encode Table

pmd Syntax

0 RFREG Register Class = pm(I2REG Register Class, M2REG Register Class)

1 pm(I2REG Register Class, M2REG Register Class) = RFREG Register Class

Type 1b VISA (mem dual data move)
Syntax Summary

Table 13-3: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

1b VISA DM(Ia,Mb) = Dreg, PM(Ic,Md)
= Dreg;
Dreg = PM(Ic,Md), Dreg =
DM(Ia,Mb);

The following table provides the instruction syntax overview (Syntax)

Syntax

DMACCESS (Type 1b) , PMACCESS (Type 1b) ;

Abstract

Parallel memory (data and program) transfer

Description

It is important to understand how this instruction operates differently in SISD, SIMD, and Broadcast modes.

SISD Mode

In SISD mode, the Type 1 instruction provides parallel accesses to data and program memory from the register
file. The specified I registers address data and program memory. The I values are post-modified and updated
by the specified M registers. Pre-modify offset addressing is not supported. For more information on register
restrictions, see the Data Address Generators chapter.

Type 1a ISA/VISA (compute + mem dual data move)
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SIMD Mode

In SIMD mode, the Type 1 instruction provides the same parallel accesses to data and program memory from
the register file as are available in SISD mode, but provides these operations simultaneously for the X and Y
processing elements. The X element uses the specified I registers to address data and program memory, and the
Y element adds one to the specified I registers to address data and program memory. The I values are post-
modified and updated by the specified M registers. Pre-modify offset addressing is not supported. For more
information on register restrictions, see the Data Address Generators chapter. The X element uses the specified
Dreg registers, and the Y element uses the complementary registers (Cdreg) that correspond to the Dreg regis-
ters. For a list of complementary registers, see the Complementary Data Register Pairs description in the Reg-
ister Files chapter.

Broadcast Mode

If the broadcast control read bits—REGF_MODE1.BDCST1 (for I1) or REGF_MODE1.BDCST9 (for I9)—
are set, both processing units (PEx/PEy) share the same index address. The following code compares the Type
1 instruction’s explicit and implicit operations in SIMD and Broadcast modes.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(Ia, Mb) = dreg , PM(Ic, Md) = dreg ;
dreg = DM(Ia, Mb) , dreg= PM(Ic, Md) ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(Ia+k, 0) = cdreg , PM(Ic+k, 0) = cdreg ;
cdreg = DM(Ia+k, 0) , cdreg = PM(Ic+k, 0) ;
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Type1b Instruction Opcode

dmm[2:0]

pmi[2:2]
dmdreg[3:0]
pmd

Type1b

0 1 0 0 0 0 0 0 0 0 0 0 0 0 00
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1 0 0 0 0 0 0 0 0 1 1 1 1 1 11

dmi[2:0]
dmd

pmdreg[3:0]
pmm[2:0]
pmi[1:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Figure 13-2: Type1b Instruction

Type 1b VISA (mem dual data move)
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DMACCESS (Type 1b)

DMACCESS Encode Table

dmd Syntax

0 RFREG Register Class = dm(I1REG Register Class, M1REG Register Class)

1 dm(I1REG Register Class, M1REG Register Class) = RFREG Register Class

PMACCESS (Type 1b)

PMACCESS Encode Table

pmd Syntax

0 RFREG Register Class = pm(I2REG Register Class, M2REG Register Class)

1 pm(I2REG Register Class, M2REG Register Class) = RFREG Register Class

Type 2a ISA/VISA (cond + compute)
Syntax Summary

Table 13-4: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

2a ISA

VISA

IF cond compute;

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 COMPUTE ;

----- IFCOND COMPUTE ;

Abstract

Compute operation, condition

Description

SISD Mode

In SISD mode, the Type 2 instruction provides a conditional compute instruction. The instruction is exe-
cuted if the specified condition tests true.

Type 1b VISA (mem dual data move)
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SIMD Mode

In SIMD mode, the Type 2 instruction provides the same conditional compute instruction as is available in
SISD mode, but provides the operation simultaneously for the X and Y processing elements. The instruction
is executed in a processing element if the specified condition tests true in that element independent of the
condition result for the other element.

The following pseudo code compares the Type 2 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute ;

Example

IF MV R6=SAT MRF (UI);
When the processors are in SISD mode, the condition is evaluated in the PEx processing element. If the condition is
true, the computation is performed and the result is stored in register R6.

When the processors are in SIMD mode, the condition is evaluated on each processing element, PEx and PEy, inde-
pendently. The computation executes on both PEs, either one PE, or neither PE dependent on the outcome of the
condition. If the condition is true in PEx, the computation is performed and the result is stored in register R6. If the
condition is true in PEy, the computation is performed and the result is stored in register S6.

Type2a Instruction Opcode

Type2a

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

cond[4:0]

compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 13-3: Type2a Instruction

Type 2a ISA/VISA (cond + compute)
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Type 2b VISA (compute)
Syntax Summary

Table 13-5: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

2b VISA compute;

The following table provides the instruction syntax overview (Syntax)

Syntax

COMPUTE ;

Abstract

Compute operation, without the Type 2 condition

Description

SISD Mode

In SISD mode, the Type 2 instruction provides a compute instruction.

SIMD Mode

In SIMD mode, the Type 2 instruction provides the same compute instruction as is available in SISD mode,
but provides the operation simultaneously for the X and Y processing elements.

The following pseudo code compares the Type 2 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

compute ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

compute ;

Type 2b VISA (compute)
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Type2b Instruction Opcode

Type2b

compute[22:16]

compute[15:0]

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 0 0 0 0 0 0 0 0 0 0 0 0 0 01

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 13-4: Type2b Instruction

Type 2c VISA (short compute)
Syntax Summary

Table 13-6: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

2c VISA short compute;

The following table provides the instruction syntax overview (Syntax)

Syntax

SHORTCOMPUTE ;

Syntax

Short (16-bit) compute operation, without the Type 2 condition

Description

SISD Mode

In SISD mode, the Type 2 instruction provides a compute instruction.

SIMD Mode

In SIMD mode, the Type 2 instruction provides the same compute instruction as is available in SISD mode,
but provides the operation simultaneously for the X and Y processing elements.

The following pseudo code compares the Type 2 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

COND compute ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

Type 2c VISA (short compute)
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COND compute ;

Type2c Instruction Opcode

Type2c

compute[11:0]

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 13-5: Type2c Instruction

Type 3a ISA/VISA (cond + comp + mem data move)
Syntax Summary

Table 13-7: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

3a ISA

VISA

IF cond compute; DM(Ia,Mb) = Ureg
DM(Mb,Ia) = Ureg
PM(Ic,Md) = Ureg
PM(Md,Ic) = Ureg
Ureg = DM(Ia,Mb)
Ureg = DM(Mb,Ia)
Ureg = PM(Ic,Md)
Ureg = PM(Md,Ic)

(lw);

The following table provides the opcode field values (cond, compute) and the instruction syntax overview (Syntax)

cond compute Syntax

11111 00000000000000000000000 ACCESS (Type 3a) ;

11111 ----------------------- COMPUTE , ACCESS (Type 3a) ;

----- 00000000000000000000000 IFCOND ACCESS (Type 3a) ;

----- ----------------------- IFCOND COMPUTE , ACCESS (Type 3a) ;

Abstract

Transfer operation between data or program memory and universal register, condition, compute operation

Description

SISD Mode

In SISD mode, the Type 3a and 3b instruction provides access between data or program memory and a uni-
versal register. The specified I register addresses data or program memory. The I value is either pre-modified

Type 3a ISA/VISA (cond + comp + mem data move)
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(M, I order) or post-modified (I, M order) by the specified M register. If it is post-modified, the I register is
updated with the modified value. If a compute operation is specified, it is performed in parallel with the
data access. The optional (LW) in this syntax lets programs specify long word addressing, overriding default
addressing from the memory map. If a condition is specified, it affects the entire instruction. Note that
the Ureg may not be from the same DAG (that is, DAG1 or DAG2) as Ia/Mb or Ic/Md.

SIMD Mode

In SIMD mode, the Type 3a and 3b instruction provides the same access between data or program memory
and a universal register as is available in SISD mode, but provides this operation simultaneously for the X and
Y processing elements.

The X element uses the specified I register to address data or program memory. The I value is either pre-modi-
fied (M, I order) or post-modified (I, M order) by the specified M register. The Y element adds one/two (for
normal/short word access) to the specified I register (before pre-modify or post-modify) to address data or pro-
gram memory. If the I value post-modified, the I register is updated with the modified value from the specified
M register. The optional (LW) in this syntax lets programs specify long word addressing, overriding default
addressing from the memory map.

For the universal register, the X element uses the specified Ureg register, and the Y element uses the corre-
sponding complementary register (Cureg). Note that the Ureg may not be from the same DAG (DAG1 or
DAG2) as Ia/Mb or Ic/Md.

The compute operation is performed simultaneously on the X and Y processing elements in parallel with the
data access. If a condition is specified, it affects the entire instruction. The instruction is executed in a
processing element if the specified condition tests true in that element independent of the condition
result for the other element.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the specified I
and M registers without implicit address addition.

The following code compares the Type 3 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute, DM(Ia, Mb) = ureg (LW);
IF PEx COND compute, PM(Ic, Md) = ureg (LW);  
     
IF PEx COND compute, DM(Mb, Ia) = ureg (LW);
IF PEx COND compute, PM(Md, Ic) = ureg (LW);  
     
IF PEx COND compute, ureg = DM(Ia, Mb) (LW);
IF PEx COND compute, ureg = PM(Ic, Md) (LW);
     
IF PEx COND compute, ureg = DM(Mb, Ia) (LW);

Type 3a ISA/VISA (cond + comp + mem data move)
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IF PEx COND compute, ureg = PM(Md, Ic) (LW);
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute, DM(Ia+k, 0) = cureg (LW);
IF PEy COND compute, PM(Ic+k, 0) = cureg (LW);
    
IF PEy COND compute, DM(Mb+k, Ia) = cureg (LW);
IF PEy COND compute, PM(Md+k, Ic) = cureg (LW);
     
IF PEy COND compute, cureg = DM(Ia+k, 0) (LW);
IF PEy COND compute, cureg = PM(Ic+k, 0) (LW);
     
IF PEy COND compute, cureg = DM(Mb+k, Ia) (LW);
IF PEy COND compute, cureg = PM(Md+k, Ic) (LW);
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Example

R6=R3-R11, DM(I0,M1)=ASTATx;
IF NOT SV F8=CLIP F2 BY F14, F7=PM(I12,M12);
When the processors are in SISD mode, the computation and a data memory write in the first instruction are per-
formed in PEx. The second instruction stores the result of the computation in F8, and the result of the program
memory read into F7 if the condition’s outcome is true.

When the processors are in SIMD mode, the result of the computation in PEx in the first instruction is stored in
R6, and the result of the parallel computation in PEy is stored in S6. In addition, there is a simultaneous data mem-
ory write of the values stored in ASTATx and ASTATy. The condition is evaluated on each processing element,
PEx and PEy, independently. The computation executes on both PEs, either one PE, or neither PE, dependent on
the outcome of the condition. If the condition is true in PEx, the computation is performed, the result is stored in
register F8 and the result of the program memory read is stored in F7. If the condition is true in PEy, the computa-
tion is performed, the result is stored in register SF8, and the result of the program memory read is stored in SF7.

IF NOT SV F8=CLIP F2 BY F14, F7=PM(I9,M12);
When the processors are in broadcast mode (the BDCST9 bit is set in the MODE1 system register) and the condition
tests true, the computation is performed and the result is stored in register F8. Also, the result of the program mem-
ory read via the I9 register from DAG2 is stored in F7. The SF7 register is loaded with the same value from pro-
gram memory as F7.

Type 3a ISA/VISA (cond + comp + mem data move)
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Type3a Instruction Opcode

Type1a

pmdreg[3:0]

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

dmd
dmi[2:0]
dmm[2:0]

pmi[2:2]

pmd

pmi[1:0]
pmm[2:0]

compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dmdreg[3:0]

Figure 13-6: Type3a Instruction

ACCESS (Type 3a)

ACCESS Encode Table

u g d l Syntax

0 0 0 0 UREG Registers Class = dm(M1REG Register Class, I1REG Register Class)

0 0 1 0 dm(M1REG Register Class, I1REG Register Class) = UREGXDAG1 Register Class

0 1 0 0 UREG Registers Class = pm(M2REG Register Class, I2REG Register Class)

0 1 1 0 pm(M2REG Register Class, I2REG Register Class) = UREGXDAG2 Register Class

1 0 0 0 UREGXDAG1 Register Class = dm(I1REG Register Class, M1REG Register Class)

1 0 1 0 dm(I1REG Register Class, M1REG Register Class) = UREGXDAG1 Register Class

1 1 0 0 UREGXDAG2 Register Class = pm(I2REG Register Class, M2REG Register Class)

1 1 1 0 pm(I2REG Register Class, M2REG Register Class) = UREGXDAG2 Register Class

0 0 0 1 UREG Registers Class = dm(M1REG Register Class, I1REG Register Class) (lw)

0 0 1 1 dm(M1REG Register Class, I1REG Register Class) = UREGXDAG1 Register Class (lw)

0 1 0 1 UREG Registers Class = pm(M2REG Register Class, I2REG Register Class) (lw)

0 1 1 1 pm(M2REG Register Class, I2REG Register Class) = UREGXDAG2 Register Class (lw)

1 0 0 1 UREGXDAG1 Register Class = dm(I1REG Register Class, M1REG Register Class) (lw)

1 0 1 1 dm(I1REG Register Class, M1REG Register Class) = UREGXDAG1 Register Class (lw)

1 1 0 1 UREGXDAG2 Register Class = pm(I2REG Register Class, M2REG Register Class) (lw)

1 1 1 1 pm(I2REG Register Class, M2REG Register Class) = UREGXDAG2 Register Class (lw)

Type 3a ISA/VISA (cond + comp + mem data move)
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Type 3b VISA (cond + mem data move)
Syntax Summary

Table 13-8: Type 3b VISA (cond + mem data move)

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

3b VISA IF cond DM(Ia,Mb) = Ureg
DM(Mb,Ia) = Ureg
PM(Ic,Md) = Ureg
PM(Md,Ic) = Ureg

(bw/sw);

Ureg = DM(Ia,Mb)
Ureg = DM(Mb,Ia)
Ureg = PM(Ic,Md)
Ureg = PM(Md,Ic)

(bw/bwse/sw/swse);

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 ACCESS (Type 3b) ;

----- IFCOND ACCESS (Type 3b) ;

Abstract

Transfer operation between data or program memory and universal register, optional condition, without the Type 3
optional compute operation

Description

SISD Mode

In SISD mode, the Type 3a and 3b instruction provides access between data or program memory and a uni-
versal register. The specified I register addresses data or program memory. The I value is either pre-modified
(M, I order) or post-modified (I, M order) by the specified M register. If it is post-modified, the I register is
updated with the modified value. The optional (LW) in this syntax lets programs specify long word address-
ing, overriding default addressing from the memory map. If a condition is specified, it affects the entire
instruction. Note that the Ureg may not be from the same DAG (that is, DAG1 or DAG2) as Ia/Mb or
Ic/Md.

The optional (BW), (BWSE), (SW), and (SWSE), may only be used when the I-register addresses byte
space. (BW) specifies a byte access; the 8-bit value loaded into a register is zero extended to 32-bits and the
value stored is the low order 8-bits of the 32-bit value in the register. (SW) specifies a short word access; the
16-bit value loaded into a register is zero extended to 32-bits and the value stored is the low order 16-bits of

Type 3b VISA (cond + mem data move)
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the 32-bit value in the register. (BWSE) and (SWSE) may only be used on loads and specify the 8-bit value
is sign extended or 16-bit value is sign extended respectively.

SIMD Mode

In SIMD mode, the Type 3a and 3b instruction provides the same access between data or program memory
and a universal register as is available in SISD mode, but provides this operation simultaneously for the X and
Y processing elements.

The X element uses the specified I register to address data or program memory. The I value is either pre-modi-
fied (M, I order) or post-modified (I, M order) by the specified M register. The Y element adds one/two (for
normal/short word access) to the specified I register (before pre-modify or post-modify) to address data or pro-
gram memory. If the I value post-modified, the I register is updated with the modified value from the specified
M register.

The optional (LW) in this syntax lets programs specify long word addressing, overriding default addressing
from the memory map and overriding SIMD mode, so these loads always operate in SISD mode. The option-
al (BW), (BWSE), (SW), and (SWSE) work in SIMD mode but may only be used when the I-register ad-
dresses byte space. In each case the memory loaded or stored from the complementary register appears in
memory immediately after the location explicitly addressed. So a (BW) load loads the addressed byte to the
named register and next byte to its complementary register. (SW) and (SWSE) accesses do not work like
SIMD access to short word address space.

For the universal register, the X element uses the specified Ureg register, and the Y element uses the corre-
sponding complementary register (Cureg). Note that the Ureg may not be from the same DAG (DAG1 or
DAG2) as Ia/Mb or Ic/Md.

If a condition is specified, it affects the entire instruction. The instruction is executed in a processing ele-
ment if the specified condition tests true in that element independent of the condition result for the
other element.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the specified I
and M registers without implicit address addition.

The following code compares the Type 3 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND DM(Ia, Mb) = ureg (LW);
IF PEx COND PM(Ic, Md) = ureg (LW);  
     
IF PEx COND DM(Mb, Ia) = ureg (LW);
IF PEx COND PM(Md, Ic) = ureg (LW);  
     
IF PEx COND ureg = DM(Ia, Mb) (LW);
IF PEx COND ureg = PM(Ic, Md) (LW);

Type 3b VISA (cond + mem data move)
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IF PEx COND ureg = DM(Mb, Ia) (LW);
IF PEx COND ureg = PM(Md, Ic) (LW);
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND DM(Ia+k, 0) = cureg (LW);
IF PEy COND PM(Ic+k, 0) = cureg (LW);
    
IF PEy COND DM(Mb+k, Ia) = cureg (LW);
IF PEy COND PM(Md+k, Ic) = cureg (LW);
     
IF PEy COND cureg = DM(Ia+k, 0) (LW);
IF PEy COND cureg = PM(Ic+k, 0) (LW);
     
IF PEy COND cureg = DM(Mb+k, Ia) (LW);
IF PEy COND cureg = PM(Md+k, Ic) (LW);

If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Type3b Instruction Opcode

Type3b

1 0 0 0 0 0 0 0 0 0 0 0 0 0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 0 0 0 0 0 0 0 0 1 1 1 1 0 01

m[2:0]

g
cond[4:0]i[2:0]

u

w
ureg[6:0]

d x
l

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 13-7: Type3b Instruction

ACCESS (Type 3b)

ACCESS Encode Table

u g d l w x Syntax

0 0 0 1 1 1 UREG Registers Class = dm(M1REG Register Class, I1REG Register Class) (lw)

0 0 0 - - - UREG Registers Class = dm(M1REG Register Class, I1REG Register Class) BHSE (Type
3b)

0 0 1 1 1 1 dm(M1REG Register Class, I1REG Register Class) = UREGXDAG1 Register Class (lw)

0 0 1 - - - dm(M1REG Register Class, I1REG Register Class) = UREGXDAG1 Register Class BH
(Type 3b)

0 1 0 1 1 1 UREG Registers Class = pm(M2REG Register Class, I2REG Register Class) (lw)

Type 3b VISA (cond + mem data move)
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u g d l w x Syntax

0 1 0 - - - UREG Registers Class = pm(M2REG Register Class, I2REG Register Class) BHSE (Type
3b)

0 1 1 1 1 1 pm(M2REG Register Class, I2REG Register Class) = UREGXDAG2 Register Class (lw)

0 1 1 - - - pm(M2REG Register Class, I2REG Register Class) = UREGXDAG2 Register Class BH
(Type 3b)

1 0 0 1 1 1 UREGXDAG1 Register Class = dm(I1REG Register Class, M1REG Register Class) (lw)

1 0 0 - - - UREGXDAG1 Register Class = dm(I1REG Register Class, M1REG Register Class) BHSE
(Type 3b)

1 0 1 1 1 1 dm(I1REG Register Class, M1REG Register Class) = UREGXDAG1 Register Class (lw)

1 0 1 - - - dm(I1REG Register Class, M1REG Register Class) = UREGXDAG1 Register Class BH
(Type 3b)

1 1 0 1 1 1 UREGXDAG2 Register Class = pm(I2REG Register Class, M2REG Register Class) (lw)

1 1 0 - - - UREGXDAG2 Register Class = pm(I2REG Register Class, M2REG Register Class) BHSE
(Type 3b)

1 1 1 1 1 1 pm(I2REG Register Class, M2REG Register Class) = UREGXDAG2 Register Class (lw)

1 1 1 - - - pm(I2REG Register Class, M2REG Register Class) = UREGXDAG2 Register Class BH
(Type 3b)

BH (Type 3b)

BH Encode Table

l x w Syntax

0 1 1

0 0 0 (bw)

1 0 0 (sw)

BHSE (Type 3b)

BHSE Encode Table

l x w Syntax

0 1 1

0 0 0 (bw)

0 1 0 (bwse)

1 0 0 (sw)

Type 3b VISA (cond + mem data move)
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l x w Syntax

1 1 0 (swse)

Type 3c VISA (mem data move)
Syntax Summary

Table 13-9: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

3c VISA Dreg = DM(Ia,Mb);
DM(Ia,Mb) = Dreg;

The following table provides the instruction syntax overview (Syntax)

Syntax

ACCESS (Type 3c) ;

Abstract

Transfer operation between data memory and data register, without the Type 3 optional condition, without the Type
3 optional compute operation, without (LW) modifier.

Description

SISD Mode

In SISD mode, the Type 3d instruction provides access between data or program memory and a universal reg-
ister. The specified I register addresses data or program memory. The DAG1 I value is either pre-modified (M,
I order) or post-modified (I, M order) by the specified M register. If it is post-modified, the I register is updat-
ed with the modified value.

SIMD Mode

In SIMD mode, the Type 3d instruction provides the same access between data or program memory and a
universal register as is available in SISD mode, but provides this operation simultaneously for the X and Y
processing elements.

The X element uses the specified I register to address data or program memory. The DAG1 I value is either
pre-modified (M, I order) or post-modified (I, M order) by the specified M register. The Y element adds
one/two (for normal/short word access) to the specified I register (before pre-modify or post-modify) to ad-
dress data or program memory. If the I value post-modified, the I register is updated with the modified value
from the specified M register.

Type 3c VISA (mem data move)
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For the universal register, the X element uses the specified Ureg register, and the Y element uses the corre-
sponding complementary register (Cureg).

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the specified I
and M registers without implicit address addition.

The following code compares the Type 3 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(Ia, Mb) = ureg;
PM(Ic, Md) = ureg;
ureg = DM(Ia, Mb);
ureg = PM(Ic, Md);
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(Ia+k, 0) = cureg;
PM(Ic+k, 0) = cureg;
cureg = DM(Ia+k, 0);
cureg = PM(Ic+k, 0);
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Type3c Instruction Opcode

Type3c

0 0 1 0 0 0 0 0 0 0 1 0 0 0 01

dmm[2:0] d
dreg[3:0]dmi[2:0]

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 13-8: Type3c Instruction

ACCESS (Type 3c)

ACCESS Encode Table

d Syntax

0 RFREG Register Class = dm(I1REG Register Class, M1REG Register Class)

1 dm(I1REG Register Class, M1REG Register Class) = RFREG Register Class

Type 3c VISA (mem data move)
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Type 3d ISA/VISA (cond + exclusive mem data move)

Syntax Summary

NOTE: The 48-bit 3d instruction type is an extension to 3a instruction (exclusive access without compute option).

Table 13-10: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

3d ISA

VISA

IF cond DM(Ia,Mb) = Ureg
DM(Mb,Ia) = Ureg
PM(Ic,Md) = Ureg
PM(Md,Ic) = Ureg

(bw/sw/lw,ex);

Ureg = DM(Ia,Mb)
Ureg = DM(Mb,Ia)
Ureg = PM(Ic,Md)
Ureg = PM(Md,Ic)

(bw/sw/lw,ex);
(bwse/swse,ex);

The following table provides the opcode field values (w, cond) and the instruction syntax overview (Syntax)

w cond Syntax

0 11111 ACCESS (Type 3d) ;

1 11111 WACCESS (Type 3d) ;

0 ----- IFCOND ACCESS (Type 3d) ;

1 ----- IFCOND WACCESS (Type 3d) ;

Abstract

Transfer operation between data or program memory and universal register with options for byte address sub-word
access and exclusive access, condition, compute operation

Description

The type 3d exclusive instruction exists to provide a 48-bit encoding of some options of the Type 3 instruction that
is not supported by Type 3a. The (EX) specifies an exclusive access. The optional (BW), (BWSE), (SW), and
(SWSE), may only be used when the I-register addresses byte space. (BW) specifies a byte access; the 8-bit value
loaded into a register is zero extended to 32-bits and the value stored is the low order 8-bits of the 32-bit value in the
register. (SW) specifies a short word access; the 16-bit value loaded into a register is zero extended to 32-bits and
the value stored is the low order 16-bits of the 32-bit value in the register. (BWSE) and (SWSE) may only be used
on loads and specify the 8-bit value is sign extended or 16-bit value is sign extended respectively. These options may
be used in SISD and SIMD mode. This option may be combined with (LW), (BW), (BWSE), (SW), (SWSE)
which is written (LW, EX) etc., or used alone to specify a normal word exclusive access.

Type 3d ISA/VISA (cond + exclusive mem data move)
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Example

R1=R1+1, R3 = DM(I0,M4) (SWSE,EX);
(SWSE) may only be used with byte addresses so the contents of the I0 register is first checked and if it does not
address byte space the Illegal address space interrupt is raised. Otherwise execution proceeds as follows.

SISD Mode

When the processor is in SISD mode, the computation is performed on PEx and result written to R1. The
load reads 16-bits from the two byte addressed memory locations at I0 and I0+1 in little endian order. This
16-bit value is sign extended to 32-bits and the 32-bit value deposited left justified in the 40-bit R3 register.
So the 8-bits at the address in I0 are copied to bits 15 to 8 of R3 and the 8-bits at the address in I0 copies to
bits 23 to 16 of R3. Bits 39 to 24 are all set to the same value as bit 23 and bits 7 to 0 to zero. I0 is then
updated as for Scaled Address Arithmetic (see Enhanced Modify Instruction for Address Scaling) the value in
M4 is multiplied by two and added to I0.

SIMD Mode

When the processor is in SIMD mode, the computation is performed on both PEx and PEy. The result of the
computation on PEX is written to R1 and the result of the computation on PEy is written to S1. The load
reads 32-bits from the 4 byte addressed memory locations at I0 and I0+1, I0+2, I0+3. The 16-bit little endian
value at I0 is sign extended and deposited in R3 as described above, and the 16-bit little endian value at I0+2
is similarly sign extended and deposited in S3. I0 is then updated as for Scaled Address Arithmetic (see En-
hanced Modify Instruction for Address Scaling) the value in M4 is multiplied by two and added to I0.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9) are set, the Y element uses the specified I
and M registers without implicit address addition.

Type3d Instruction Opcode

Type3d

ureg[6:0]

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u
i[2:0]
m[2:0]

g

d
l

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1 0 0 0 0 0 0 0 0 1 1 0 0 0 01
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]

x

ex
w

Figure 13-9: Type3d Syntax

Type 3d ISA/VISA (cond + exclusive mem data move)
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ACCESS (Type 3d)

ACCESS Encode Table

u g d Syntax

0 0 0 UREG Registers Class = dm(M1REG Register Class, I1REG Register Class) BHSE (Type 3d)

0 0 1 dm(M1REG Register Class, I1REG Register Class) = UREGXDAG1 Register Class BH (Type 3d)

0 1 0 UREG Registers Class = pm(M2REG Register Class, I2REG Register Class) BHSE (Type 3d)

0 1 1 pm(M2REG Register Class, I2REG Register Class) = UREGXDAG2 Register Class BH (Type 3d)

1 0 0 UREGXDAG1 Register Class = dm(I1REG Register Class, M1REG Register Class) BHSE (Type 3d)

1 0 1 dm(I1REG Register Class, M1REG Register Class) = UREGXDAG1 Register Class BH (Type 3d)

1 1 0 UREGXDAG2 Register Class = pm(I2REG Register Class, M2REG Register Class) BHSE (Type 3d)

1 1 1 pm(I2REG Register Class, M2REG Register Class) = UREGXDAG2 Register Class BH (Type 3d)

BH (Type 3d)

BH Encode Table

l ex Syntax

0 1 (bw,ex)

1 1 (sw,ex)

BHSE (Type 3d)

BHSE Encode Table

l x ex Syntax

0 0 1 (bw,ex)

1 0 1 (sw,ex)

0 1 1 (bwse,ex)

1 1 1 (swse,ex)

EX (Type 3d)

EX Encode Table

Syntax

(ex)

Type 3d ISA/VISA (cond + exclusive mem data move)
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LWEX (Type 3d)

LWEX Encode Table

Syntax

(lw,ex)

WACCESS (Type 3d)

WACCESS Encode Table

u g d l ex Syntax

0 0 0 0 1 UREG Registers Class = dm(M1REG Register Class, I1REG Register Class) EX (Type 3d)

0 0 1 0 1 dm(M1REG Register Class, I1REG Register Class) = UREGXDAG1 Register Class EX (Type
3d)

0 1 0 0 1 UREG Registers Class = pm(M2REG Register Class, I2REG Register Class) EX (Type 3d)

0 1 1 0 1 pm(M2REG Register Class, I2REG Register Class) = UREGXDAG2 Register Class EX (Type
3d)

1 0 0 0 1 UREGXDAG1 Register Class = dm(I1REG Register Class, M1REG Register Class) EX (Type
3d)

1 0 1 0 1 dm(I1REG Register Class, M1REG Register Class) = UREGXDAG1 Register Class EX (Type
3d)

1 1 0 0 1 UREGXDAG2 Register Class = pm(I2REG Register Class, M2REG Register Class) EX (Type
3d)

1 1 1 0 1 pm(I2REG Register Class, M2REG Register Class) = UREGXDAG2 Register Class EX (Type
3d)

0 0 0 1 1 UREG Registers Class = dm(M1REG Register Class, I1REG Register Class) LWEX (Type 3d)

0 0 1 1 1 dm(M1REG Register Class, I1REG Register Class) = UREGXDAG1 Register Class LWEX
(Type 3d)

0 1 0 1 1 UREG Registers Class = pm(M2REG Register Class, I2REG Register Class) LWEX (Type 3d)

0 1 1 1 1 pm(M2REG Register Class, I2REG Register Class) = UREGXDAG2 Register Class LWEX
(Type 3d)

1 0 0 1 1 UREGXDAG1 Register Class = dm(I1REG Register Class, M1REG Register Class) LWEX
(Type 3d)

1 0 1 1 1 dm(I1REG Register Class, M1REG Register Class) = UREGXDAG1 Register Class LWEX
(Type 3d)

1 1 0 1 1 UREGXDAG2 Register Class = pm(I2REG Register Class, M2REG Register Class) LWEX
(Type 3d)

1 1 1 1 1 pm(I2REG Register Class, M2REG Register Class) = UREGXDAG2 Register Class LWEX
(Type 3d)

Type 3d ISA/VISA (cond + exclusive mem data move)
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Type 4a ISA/VISA (cond + comp + mem data move with 6-bit
immediate modifier)
Syntax Summary

Table 13-11: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

4a ISA

VISA

IF cond compute, DM(Ia, <data6>) = Dreg;
DM(<data6>,Ia) = Dreg;
PM(Ic, <data6>) = Dreg;
PM(<data6>,Ic) = Dreg;
Dreg = DM(Ia, <data6>);
Dreg = DM(<data6>,Ia);
Dreg = PM(Ic, <data6>);
Dreg = PM(<data6>,Ic);

The following table provides the opcode field values (cond, compute) and the instruction syntax overview (Syntax)

cond compute Syntax

11111 00000000000000000000000 ACCESS (Type 4a) ;

11111 ----------------------- COMPUTE , ACCESS (Type 4a) ;

----- 00000000000000000000000 IFCOND ACCESS (Type 4a) ;

----- ----------------------- IFCOND COMPUTE , ACCESS (Type 4a) ;

Abstract

Index-relative transfer between data or program memory and register file, optional condition, optional compute op-
eration

Description

SISD Mode

In SISD mode, the Type 4 instruction provides access between data or program memory and the register file.
The specified I register addresses data or program memory. The I value is either pre-modified (data order, I) or
post-modified (I, data order) by the specified immediate data. If it is post-modified, the I register is updated
with the modified value. If a compute operation is specified, it is performed in parallel with the data access.
If a condition is specified, it affects the entire instruction. For more information on register restrictions,
see the Register Files chapter and the Data Address Generator chapter.

Type 4a ISA/VISA (cond + comp + mem data move with 6-bit immediate modifier)
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SIMD Mode

In SIMD mode, the Type 4 instruction provides the same access between data or program memory and the
register file as is available in SISD mode, but provides the operation simultaneously for the X and Y processing
elements.

The X element uses the specified I register to address data or program memory. The I value is either pre-modi-
fied (data, I order) or post-modified (I, data order) by the specified immediate data. The Y element adds
one/two (for normal/short word access) to the specified I register (before pre-modify or post-modify) to ad-
dress data or program memory. If the I value post-modified, the I register is updated with the modified value
from the specified M register.

For the data register, the X element uses the specified Dreg register, and the Y element uses the corresponding
complementary register (Cdreg).

If a compute operation is specified, it is performed simultaneously on the X and Y processing elements in
parallel with the data access. If a condition is specified, it affects the entire instruction, not just the com-
putation. The instruction is executed in a processing element if the specified condition tests true in that
element independent of the condition result for the other element.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the specified I
and M registers without adding one.

The following pseudo code compares the Type 4 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute, DM(Ia, <data6>) = dreg ;
IF PEx COND compute, PM(Ic, <data6>) = dreg ;
 
IF PEx COND compute, DM(<data6>, Ia) = dreg ;
IF PEx COND compute, PM(<data6>, Ic) = dreg ;
 
IF PEx COND compute, dreg = DM(Ia, <data6>) ;
IF PEx COND compute, dreg = PM(Ic, <data6>) ;
 
IF PEx COND compute, dreg = DM(<data6>, Ia) ;
IF PEx COND compute, dreg = PM(<data6>, Ic) ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute, DM(Ia+k, 0) = cdreg ;
IF PEy COND compute, PM(Ic+k, 0) = cdreg ;
 
IF PEy COND compute, DM(<data6>+k, Ia)= cdreg ;
IF PEy COND compute, PM(<data6>+k, Ic)= cdreg ;
 
IF PEy COND compute, cdreg = DM(Ia+k, 0) ;

Type 4a ISA/VISA (cond + comp + mem data move with 6-bit immediate modifier)
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IF PEy COND compute, cdreg = PM(Ic+k, 0) ;
 
IF PEy COND compute, cdreg = DM(<data6>+k, Ia) ;
IF PEy COND compute, cdreg = PM(<data6>+k, Ic) ;
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Example

IF FLAG0_IN F1=F5*F12, F11=PM(I10,6);
R12=R3 AND R1, DM(6,I1)=R6;
When the processors are in SISD mode, the computation and program memory read in the first instruction are per-
formed in PEx if the condition’s outcome is true. The second instruction stores the result of the logical AND in
R12 and writes the value within R6 into data memory. 

When the processors are in SIMD mode, the condition is evaluated on each processing element, PEx and PEy, inde-
pendently. The computation and program memory read execute on both PEs, either one PE, or neither PE depend-
ent on the outcome of the condition. If the condition is true in PEx, the computation is performed, and the result is
stored in register F1, and the program memory value is read into register F11. If the condition is true in PEy, the
computation is performed, the result is stored in register SF1, and the program memory value is read into register
SF11.

If FLAG0_IN F1=F5*F12, F11=PM(I9,3);
When the processors are in broadcast mode (the BDCST9 bit is set in the MODE1 system register) and the condition
tests true, the computation is performed, the result is stored in register F1, and the program memory value is read
into register F11 via the I9 register from DAG2. The SF11 register is also loaded with the same value from pro-
gram memory as F11.

Type4a Instruction Opcode

i[2:0]
g

Type4a

dreg[3:0]

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

data[5:5]

u

data[4:0] compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]
d

Figure 13-10: Type4a Instruction

Type 4a ISA/VISA (cond + comp + mem data move with 6-bit immediate modifier)
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ACCESS (Type 4a)

ACCESS Encode Table

g d u Syntax

0 0 0 RFREG Register Class = dm(imm6 Register Type, I1REG Register Class)

0 0 1 RFREG Register Class = dm(I1REG Register Class, imm6 Register Type)

0 1 0 dm(imm6 Register Type, I1REG Register Class) = RFREG Register Class

0 1 1 dm(I1REG Register Class, imm6 Register Type) = RFREG Register Class

1 0 0 RFREG Register Class = pm(imm6 Register Type, I2REG Register Class)

1 0 1 RFREG Register Class = pm(I2REG Register Class, imm6 Register Type)

1 1 0 pm(imm6 Register Type, I2REG Register Class) = RFREG Register Class

1 1 1 pm(I2REG Register Class, imm6 Register Type) = RFREG Register Class

Type 4b VISA (cond + mem data move with 6-bit immediate
modifier)
Syntax Summary

Table 13-12: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

4b VISA IF cond DM(Ia, <data6>) = Dreg;
DM(<data6>,Ia) = Dreg;
PM(Ic, <data6>) = Dreg;
PM(<data6>,Ic) = Dreg;
Dreg = DM(Ia, <data6>);
Dreg = DM(<data6>,Ia);
Dreg = PM(Ic, <data6>);
Dreg = PM(<data6>,Ic);

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 ACCESS (Type 4b) ;

----- IFCOND ACCESS (Type 4b) ;

Type 4a ISA/VISA (cond + comp + mem data move with 6-bit immediate modifier)
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Abstract

Index-relative transfer between data or program memory and register file, optional condition, without the Type 4a
optional compute operation.

Description

SISD Mode

In SISD mode, the Type 4b instruction provides access between data or program memory and the register file.
The specified I register addresses data or program memory. The I value is either pre-modified (data order, I) or
post-modified (I, data order) by the specified immediate data. If it is post-modified, the I register is updated
with the modified value. If a condition is specified, it affects the entire instruction. For more information on
register restrictions, see the Register Files chapter and the Data Address Generator chapter.

SIMD Mode

In SIMD mode, the Type 4b instruction provides the same access between data or program memory and the
register file as is available in SISD mode, but provides the operation simultaneously for the X and Y processing
elements. The X element uses the specified I register to address data or program memory. The I value is either
pre-modified (data, I order) or post-modified (I, data order) by the specified immediate data. The Y element
adds one/two (for normal/short word access) to the specified I register (before pre-modify or post-modify) to
address data or program memory. If the I value post-modified, the I register is updated with the modified val-
ue from the specified M register. For the data register, the X element uses the specified Dreg register, and the Y
element uses the corresponding complementary register (Cdreg). If a condition is specified, it affects the entire
instruction. The instruction is executed in a processing element if the specified condition tests true in that
element independent of the condition result for the other element.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the specified I
and M registers without adding one.

The following pseudo code compares the Type 4 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND DM(Ia, <data6>) = dreg ;
IF PEx COND PM(Ic, <data6>) = dreg ;
 
IF PEx COND DM(<data6>, Ia) = dreg ;
IF PEx COND PM(<data6>, Ic) = dreg ;
 
IF PEx COND dreg = DM(Ia, <data6>) ;
IF PEx COND dreg = PM(Ic, <data6>) ;
 
IF PEx COND dreg = DM(<data6>, Ia) ;

Type 4b VISA (cond + mem data move with 6-bit immediate modifier)
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IF PEx COND dreg = PM(<data6>, Ic) ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND DM(Ia+k, 0) = cdreg ;
IF PEy COND PM(Ic+k, 0) = cdreg ;
 
IF PEy COND DM(<data6>+k, Ia)= cdreg ;
IF PEy COND PM(<data6>+k, Ic)= cdreg ;
 
IF PEy COND cdreg = DM(Ia+k, 0) ;
IF PEy COND cdreg = PM(Ic+k, 0) ;
 
IF PEy COND cdreg = DM(<data6>+k, Ia) ;
IF PEy COND cdreg = PM(<data6>+k, Ic) ;
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Type4b Instruction Opcode

Type4b
1 1 0 0 0 0 0 0 0 0 0 0 0 0 00

1 0 0 0 0 0 0 0 0 1 1 1 1 0 01

g

data[5:5
cond[4:0]

i[2:0]

w
dreg[6:0]

x

l

d
u

data[4:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 13-11: Type4b Instruction

ACCESS (Type 4b)

ACCESS Encode Table

g d u Syntax

0 0 0 RFREG Register Class = dm(imm6visa Register Type, I1REG Register Class) BHSE (Type 4b)

0 0 1 RFREG Register Class = dm(I1REG Register Class, imm6visa Register Type) BHSE (Type 4b)

0 1 0 dm(imm6visa Register Type, I1REG Register Class) = RFREG Register Class BH (Type 4b)

0 1 1 dm(I1REG Register Class, imm6visa Register Type) = RFREG Register Class BH (Type 4b)

1 0 0 RFREG Register Class = pm(imm6visa Register Type, I2REG Register Class) BHSE (Type 4b)

1 0 1 RFREG Register Class = pm(I2REG Register Class, imm6visa Register Type) BHSE (Type 4b)

1 1 0 pm(imm6visa Register Type, I2REG Register Class) = RFREG Register Class BH (Type 4b)

1 1 1 pm(I2REG Register Class, imm6visa Register Type) = RFREG Register Class BH (Type 4b)

Type 4b VISA (cond + mem data move with 6-bit immediate modifier)
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BH (Type 4b)

BH Encode Table

l x w Syntax

1 1 1

0 0 0 (bw)

1 0 0 (sw)

BHSE (Type 4b)

BHSE Encode Table

l x w Syntax

1 1 1

0 0 0 (bw)

1 0 0 (sw)

0 1 0 (bwse)

1 1 0 (swse)

Type 4d ISA/VISA (cond + mem data move with 6-bit immedi-
ate modifier)

Syntax Summary

NOTE: The 48-bit 4d instruction type is an extension to 4a instruction but does not support compute option.

Table 13-13: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

4d ISA

VISA

IF cond DM(Ia, <data6>) = Dreg;
DM(<data6>,Ia) = Dreg;
PM(Ic, <data6>) = Dreg;
PM(<data6>,Ic) = Dreg;

(bw/sw);

Dreg = DM(Ia, <data6>);
Dreg = DM(<data6>,Ia);
Dreg = PM(Ic, <data6>);
Dreg = PM(<data6>,Ic);

(bwse/swse);

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

Type 4b VISA (cond + mem data move with 6-bit immediate modifier)
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cond Syntax

11111 ACCESS (Type 4d) ;

----- IFCOND ACCESS (Type 4d) ;

Abstract

Index-relative transfer between data or program memory and register file, optional condition, with optional com-
pute operation supporting options for byte address sub-word access and exclusive access.

Description

The type 4d instruction exists to provide a 48-bit encoding of some options of the Type 4 instruction that is not
supported by Type 4a.

The optional (BW), (BWSE), (SW), and (SWSE), may only be used when the I-register addresses byte space.
(BW) specifies a byte access; the 8-bit value loaded into a register is zero extended to 32-bits and the value stored is
the low order 8-bits of the 32-bit value in the register. (SW) specifies a short word access; the 16-bit value loaded
into a register is zero extended to 32-bits and the value stored is the low order 16-bits of the 32-bit value in the
register. (BWSE) and (SWSE) may only be used on loads and specify the 8-bit value is sign extended or 16-bit
value is sign extended respectively.

These options may be used in SISD and SIMD mode.

Example

IF SV R4=R5*R6, R3 = DM(I0,2) (SWSE);
(SWSE) may only be used with byte addresses so the contents of the I0 register is first checked and if it does not
address byte space the Illegal address space interrupt is raised. Otherwise execution proceeds as follows.

When the processor is in SISD mode, if the SV flag in ASTATX is unset no operation is performed. If the SV flag in
ASTATX is set the multiply is executed on PEx and result written to R4. The load reads 16-bits from the two byte
addressed memory locations at I0 and I0+1 in little endian order. This 16-bit value is sign extended to 32-bits and
the 32-bit value deposited left justified in the 40-bit R3 register. So the 8-bits at the address in I0 are copied to bits
15 to 8 of R3 and the 8-bits at the address in I0 copies to bits 23 to 16 of R3. Bits 39 to 24 are all set to the same
value as bit 23 and bits 7 to 0 to zero. I0 is then updated as for Scaled Address Arithmetic (see Enhanced Modify
Instruction for Address Scaling) the literal modifier, 2, is multiplied by the size of a short word, 2, and added to the
value in I0. This advances the address in I0 by 4.

When the processor is in SIMD mode, the computation and load are performed on PEx if the SV flag is set in
ASTATX and on PEy if the SV flag is set in ASTATY. The result of the multiply on PEx if executed is written to R4
and the result the multiply on PEy to S4. The load on PEx reads 16-bits from the 2-bytes addressed by I0, sign
extends the 16-bit little endian to 32-bits and deposits in R3 as described above. The load on PEy reads 16-bits from

Type 4d ISA/VISA (cond + mem data move with 6-bit immediate modifier)
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the 2-bytes addressed by I0+2, sign extends the 16-bit little endian to 32-bits and deposits in S3. I0 is then updat-
ed as for Scaled Address Arithmetic (see Enhanced Modify Instruction for Address Scaling) the literal modifier, 2, is
multiplied by the size of a short word, 2, and added to the value in I0. This advances the address in I0 by 4.

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the specified I and
M registers without adding one.

If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Type4d Instruction Opcode

Type4d

dreg[3:0]

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

i[2:0]
g u
d

data[4:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1 0 0 0 0 0 0 0 0 1 1 0 0 0 01
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]

x

l
w

data[5:5]

Figure 13-12: Type4d Instruction

ACCESS (Type 4d)

ACCESS Encode Table

g d u Syntax

0 0 0 RFREG Register Class = dm(imm6 Register Type, I1REG Register Class) BHSE (Type 4d)

0 0 1 RFREG Register Class = dm(I1REG Register Class, imm6 Register Type) BHSE (Type 4d)

0 1 0 dm(imm6 Register Type, I1REG Register Class) = RFREG Register Class BH (Type 4d)

0 1 1 dm(I1REG Register Class, imm6 Register Type) = RFREG Register Class BH (Type 4d)

1 0 0 RFREG Register Class = pm(imm6 Register Type, I2REG Register Class) BHSE (Type 4d)

1 0 1 RFREG Register Class = pm(I2REG Register Class, imm6 Register Type) BHSE (Type 4d)

1 1 0 pm(imm6 Register Type, I2REG Register Class) = RFREG Register Class BH (Type 4d)

1 1 1 pm(I2REG Register Class, imm6 Register Type) = RFREG Register Class BH (Type 4d)

Type 4d ISA/VISA (cond + mem data move with 6-bit immediate modifier)
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BH (Type 4d)

BH Encode Table

l Syntax

0 (bw)

1 (sw)

BHSE (Type 4d)

BHSE Encode Table

l x Syntax

0 0 (bw)

1 0 (sw)

0 1 (bwse)

1 1 (swse)

Type 5a ISA/VISA (cond + comp + reg data move)
Syntax Summary

Table 13-14: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

5a ISA

VISA

IF cond compute, Ureg1 = Ureg2;

The following table provides the opcode field values (cond, compute) and the instruction syntax overview (Syntax)

cond compute Syntax

11111 00000000000000000000000 UREG Registers Class = UREG Registers Class ;

11111 ----------------------- COMPUTE , UREG Registers Class = UREG Registers Class ;

----- 00000000000000000000000 IFCOND UREG Registers Class = UREG Registers Class ;

----- ----------------------- IFCOND COMPUTE , UREG Registers Class = UREG Registers Class ;

Abstract

Transfer between two universal registers in each processing element, optional condition, optional compute operation

Type 4d ISA/VISA (cond + mem data move with 6-bit immediate modifier)
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Description

SISD Mode

In SISD mode, the Type 5 instruction provides transfer (=) from one universal register to another. If a
compute operation is specified, it is performed in parallel with the data access. If a condition is speci-
fied, it affects the entire instruction.

SIMD Mode

In SIMD mode, the Type 5 instruction provides the same transfer (=) from one register to another as is availa-
ble in SISD mode, but provides this operation simultaneously for the X and Y processing elements.

In the transfer (=), the X element transfers between the universal registers Ureg1 and Ureg2, and the Y ele-
ment transfers between the complementary universal registers Cureg1 and Cureg2. For a list of complemen-
tary registers, see the Register Files chapter.

If a compute operation is specified, it is performed simultaneously on the X and Y processing elements in
parallel with the transfer. If a condition is specified, it affects the entire instruction. The instruction is exe-
cuted in a processing element if the specified condition tests true in that element independent of the
condition result for the other element.

The following pseudo code compares the Type 5 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute, ureg1 = ureg2 ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute, cureg1 = cureg2 ;

Example

IF TF MRF=R2*R6(SSFR), M4=R0;
LCNTR=L7;
When the processors are in SISD mode, the condition in the first instruction is evaluated in the PEx processing
element. If the condition is true, MRF is loaded with the result of the computation and a register transfer occurs
between R0 and M4. The second instruction initializes the loop counter independent of the outcome of the first
instruction’s condition. The third instruction swaps the register contents between R0 and S1.

When the processors are in SIMD mode, the condition is evaluated on each processing element, PEx and PEy, inde-
pendently. The computation executes on both PEs, either one PE, or neither PE dependent on the outcome of the
condition. For the register transfer to complete, the condition must be satisfied in both PEx and PEy. The second
instruction initializes the loop counter independent of the outcome of the first instruction’s condition.

Type 5a ISA/VISA (cond + comp + reg data move)
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Type5a_move Instruction Opcode

srcureghigh[4:0]

Type5a_move

dstureg[6:0]

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

srcureglow[1:1]

compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]

srcureglow[0:0]

Figure 13-13: Type5a_move Instruction

Type 5a ISA/VISA (cond + comp + reg data swap)

Syntax Summary

Table 13-15: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

5a
(swap)

ISA

VISA

IF cond compute, Dreg1 <-> CDreg2;

The following table provides the opcode field values (cond, compute) and the instruction syntax overview (Syntax)

cond compute Syntax

11111 00000000000000000000000 RFREG Register Class <-> SREG Register Class ;

11111 ----------------------- COMPUTE , RFREG Register Class <-> SREG Register Class ;

----- 00000000000000000000000 IFCOND RFREG Register Class <-> SREG Register Class ;

----- ----------------------- IFCOND COMPUTE , RFREG Register Class <-> SREG Register Class ;

Abstract

Swap between a data register in each processing element, optional condition, optional compute operation

Type 5a ISA/VISA (cond + comp + reg data swap)
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Description

SISD Mode

In SISD mode, the Type 5 instruction provides a swap (<->) between a data register in the X processing ele-
ment and a data register in the Y processing element. If a compute operation is specified, it is performed in
parallel with the data access. If a condition is specified, it affects the entire instruction.

SIMD Mode

In SIMD mode, the swap (<->) operation does the same operation in SISD and SIMD modes; no extra swap
operation occurs in SIMD mode.

If a compute operation is specified, it is performed simultaneously on the X and Y processing elements in
parallel with the transfer. If a condition is specified, it affects the entire instruction. The instruction is exe-
cuted in a processing element if the specified condition tests true in that element independent of the
condition result for the other element.

The following pseudo code compares the Type 5 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute, dreg <-> cdreg ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute ;/* no implicit operation */

Example

R0 <-> S1;
The instruction swaps the register contents between R0 and S1—the SISD and SIMD swap operation is the same.

Type5a (swap) Instruction Opcode

cdreg[3:0]

Type5a_swap

dreg[3:0]

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]

Figure 13-14: Type5a (swap) Instruction

Type 5a ISA/VISA (cond + comp + reg data swap)
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Type 5b VISA (cond + reg data move)
Syntax Summary

Table 13-16: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

5b
(move)

VISA IF cond compute, Ureg1 = Ureg2;

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 UREG Registers Class = UREG Registers Class ;

----- IFCOND UREG Registers Class = UREG Registers Class ;

Abstract

Transfer between two universal registers optional condition.

Description

SISD Mode

In SISD mode, the Type 5 instruction provides transfer (=) from one universal register to another.

SIMD Mode

In SIMD mode, the Type 5 instruction provides the same transfer (=) from one register to another as is availa-
ble in SISD mode, but provides this operation simultaneously for the X and Y processing elements.

In the transfer (=), the X element transfers between the universal registers Ureg1 and Ureg2, and the Y ele-
ment transfers between the complementary universal registers Cureg1 and Cureg2. For a list of complemen-
tary registers, see the Register Files chapter.

If a condition is specified, it affects the entire instruction. The instruction is executed in a processing ele-
ment if the specified condition tests true in that element independent of the condition result for the
other element.

The following pseudo code compares the Type 5 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND ureg1 = ureg2 ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND cureg1 = cureg2 ;

Type 5b VISA (cond + reg data move)
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Example

IF TF MRF=R2*R6(SSFR), M4=R0;
LCNTR=L7;
When the processors are in SISD mode, the condition in the first instruction is evaluated in the PEx processing
element. If the condition is true, MRF is loaded with the result of the computation and a register transfer occurs
between R0 and M4. The second instruction initializes the loop counter independent of the outcome of the first
instruction’s condition. The third instruction swaps the register contents between R0 and S1.

When the processors are in SIMD mode, the condition is evaluated on each processing element, PEx and PEy, inde-
pendently. The computation executes on both PEs, either one PE, or neither PE dependent on the outcome of the
condition. For the register transfer to complete, the condition must be satisfied in both PEx and PEy. The second
instruction initializes the loop counter independent of the outcome of the first instruction’s condition.

Type5b (move) Instruction Opcode

srcureghigh[4:0]

Type5b_move

dstureg[6:0]

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

srcureglow[1:1]

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

cond[4:0]

srcureglow[0:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 13-15: Type5b (move) Instruction

Type 5b VISA (cond + reg data swap)

Syntax Summary

Table 13-17: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

5b
(swap)

VISA IF cond Dreg1 = CDreg2;

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 RFREG Register Class <-> SREG Register Class ;

----- IFCOND RFREG Register Class <-> SREG Register Class ;

Abstract

Swap between a data register in each processing element, optional condition.

Type 5b VISA (cond + reg data swap)
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Description

SISD Mode

In SISD mode, the Type 5 instruction provides a swap (<->) between a data register in the X processing ele-
ment and a data register in the Y processing element. If a condition is specified, it affects the entire in-
struction.

SIMD Mode

In SIMD mode the swap (<->) operation does the same operation in SISD and SIMD modes; no extra swap
operation occurs in SIMD mode.

The instruction is executed in a processing element if the specified condition tests true in that element
independent of the condition result for the other element.

The following pseudo code compares the Type 5 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND dreg <-> cdreg ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND ;/* no implicit operation */

Example

R0 <-> S1;
When the processors are in SISD mode, the condition in the first instruction is evaluated in the PEx processing
element. If the condition is true, MRF is loaded with the result of the computation and a register transfer occurs
between R0 and M4. The second instruction initializes the loop counter independent of the outcome of the first
instruction’s condition. The third instruction swaps the register contents between R0 and S1.

When the processors are in SIMD mode, the condition is evaluated on each processing element, PEx and PEy, inde-
pendently. The computation executes on both PEs, either one PE, or neither PE dependent on the outcome of the
condition. For the register transfer to complete, the condition must be satisfied in both PEx and PEy. The second
instruction initializes the loop counter independent of the outcome of the first instruction’s condition. The third
instruction swaps the register contents between R0 and S1—the SISD and SIMD swap operation is the same.

Type 5b VISA (cond + reg data swap)
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Type5b (swap) Instruction Opcode

cdreg[3:0]

Type5b_swap

dreg[3:0]

1 1 1 1 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 1 1 1 1 1 10

cond[4:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 13-16: Type5b (swap) Instruction

Type 6a ISA/VISA (cond + shift imm + mem data move)
Syntax Summary

Table 13-18: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

6a
(mem)

ISA

VISA

IF cond shiftimm, DM(Ia,Mb) = Dreg;
PM(Ic,Md) = Dreg;
Dreg = DM(Ia,Mb);
Dreg = PM(Ic,Md);

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 SHIFTIMM , ACCESS (Type 6a) ;

----- IFCOND SHIFTIMM , ACCESS (Type 6a) ;

Abstract

Immediate shift operation, optional condition, optional transfer between data or program memory and register file

Description

SISD Mode

In SISD mode, the Type 6 instruction provides an immediate shift, which is a shifter operation that takes im-
mediate data as its Y-operand. The immediate data is one 8-bit value or two 6-bit values, depending on the
operation. The X-operand and the result are register file locations.

If an access to data or program memory from the register file is specified, it is performed in parallel with the
shifter operation. The I register addresses data or program memory. The I value is post-modified by the speci-
fied M register and updated with the modified value. If a condition is specified, it affects the entire in-
struction.

Type 6a ISA/VISA (cond + shift imm + mem data move)
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SIMD Mode

In SIMD mode, the Type 6 instruction provides the same immediate shift operation as is available in SISD
mode, but provides this operation simultaneously for the X and Y processing elements.

If an access to data or program memory from the register file is specified, it is performed simultaneously on
the X and Y processing elements in parallel with the shifter operation.

The X element uses the specified I register to address data or program memory. The I value is post-modified
by the specified M register and updated with the modified value.The Y element adds one/two (for normal/
short word access) to the specified I register to address data or program memory.

If a condition is specified, it affects the entire instruction. The instruction is executed in a processing ele-
ment if the specified condition tests true in that element independent of the condition result for the
other element.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the specified I
and M registers without adding one.

The following code compares the Type 6 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND shiftimm, DM(Ia, Mb) = dreg ;
IF PEx COND shiftimm, PM(Ic, Md) = dreg ;
 
IF PEx COND shiftimm, dreg = DM(Ia, Mb) ;
IF PEx COND shiftimm, dreg = PM(Ic, Md) ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND shiftimm, DM(Ia+k, 0) = cdreg ;
IF PEy COND shiftimm, PM(Ic+k, 0) = cdreg ;
 
IF PEy COND shiftimm, cdreg = DM(Ia+k, 0) ;
IF PEy COND shiftimm, cdreg = PM(Ic+k, 0) ;
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Example

IF GT R2 = LSHIFT R6 BY 0x4, DM(I4,M4)=R0;
IF NOT SZ R3 = FEXT R1 BY 8:4;
When the processors are in SISD mode, the computation and data memory write in the first instruction are per-
formed in PEx if the condition’s outcome is true. In the second instruction, register R3 is loaded with the result of
the computation if the outcome of the condition is true.

Type 6a ISA/VISA (cond + shift imm + mem data move)
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When the processors are in SIMD mode, the condition is evaluated on each processing element, PEx and PEy, inde-
pendently. The computation and data memory write executes on both PEs, either one PE, or neither PE dependent
on the outcome of the condition. If the condition is true in PEx, the computation is performed, the result is stored
in register R2, and the data memory value is written from register R0. If the condition is true in PEy, the computa-
tion is performed, the result is stored in register S2, and the value within S0 is written into data memory. The
second instruction’s condition is also evaluated on each processing element, PEx and PEy, independently. If the out-
come of the condition is true, register R3 is loaded with the result of the computation on PEx, and register S3 is
loaded with the result of the computation on PEy.

R2 = LSHIFT R6 BY 0x4, F3=DM(I1,M3);
When the processors are in broadcast mode (the BDCST1 bit is set in the MODE1 system register), the computation
is performed, the result is stored in R2, and the data memory value is read into register F3 via the I1 register from
DAG1. The SF3 register is also loaded with the same value from data memory as F3.

Type6a (mem) Instruction Opcode

i[2:0]

Type6a_mem

dreg[3:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g

d
shiftimm[22:16]

shiftimm[15:0]

1
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]
m[2:0]

dataex[3:0]

Figure 13-17: Type6a (mem) Instruction

ACCESS (Type 6a)

ACCESS Encode Table

g d Syntax

0 0 RFREG Register Class = dm(I1REG Register Class, M1REG Register Class)

0 1 dm(I1REG Register Class, M1REG Register Class) = RFREG Register Class

1 0 RFREG Register Class = pm(I2REG Register Class, M2REG Register Class)

1 1 pm(I2REG Register Class, M2REG Register Class) = RFREG Register Class

Type 6a ISA/VISA (cond + shift imm)

Type 6a ISA/VISA (cond + shift imm + mem data move)
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Syntax Summary

Table 13-19: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

6a (no-
mem)

ISA

VISA

IF cond shiftimm;

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 SHIFTIMM ;

----- IFCOND SHIFTIMM ;

Abstract

Immediate shift operation, optional condition.

Description

SISD Mode

In SISD mode, the Type 6 instruction provides an immediate shift, which is a shifter operation that takes im-
mediate data as its Y-operand. The immediate data is one 8-bit value or two 6-bit values, depending on the
operation. The X-operand and the result are register file locations.

If a condition is specified, it affects the entire instruction.

SIMD Mode

In SIMD mode, the Type 6 instruction provides the same immediate shift operation as is available in SISD
mode, but provides this operation simultaneously for the X and Y processing elements.

If a condition is specified, it affects the entire instruction. The instruction is executed in a processing ele-
ment if the specified condition tests true in that element independent of the condition result for the
other element.

IF PEx COND shiftimm, ;
IF PEx COND shiftimm, ;
IF PEx COND shiftimm,  ;
IF PEx COND shiftimm, ;
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND shiftimm, ;
IF PEy COND shiftimm, ;
IF PEy COND shiftimm, ;
IF PEy COND shiftimm, ;

Type 6a ISA/VISA (cond + shift imm)
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Type6a (nomem) Instruction Opcode

Type6a_nomem
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

shiftimm[22:16]

shiftimm[15:0]

1
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]

dataex[3:0]

Figure 13-18: Type6a (nomem) Instruction

Type 7a ISA/VISA (cond + comp + index modify)
Syntax Summary

Table 13-20: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

7a ISA

VISA

IF cond compute, MODIFY(Ia,Mb);
MODIFY(Ic,Md);
Ia = MODIFY(Ia,Mb)
Ic = MODIFY(Ic,Md)

(nw);
(sw);

The following table provides the opcode field values (cond, compute) and the instruction syntax overview (Syntax)

cond compute Syntax

11111 00000000000000000000000 MODIFY (Type 7a) ;

11111 ----------------------- COMPUTE , MODIFY (Type 7a) ;

----- 00000000000000000000000 IFCOND MODIFY (Type 7a) ;

----- ----------------------- IFCOND COMPUTE , MODIFY (Type 7a) ;

Abstract

Index register modify, optional condition, optional compute operation

Description

SISD Mode

In SISD mode, the Type 7 instruction provides an update of the specified Ia/Ic register by the specified
Mb/Md register. If the destination register is not specified, Ia/Ic is used as destination register. Unless

Type 7a ISA/VISA (cond + comp + index modify)
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destination I register is specified or implied to be the same as the source I register, the source I register is left
unchanged. M register is always left unchanged. If a compute operation is specified, it is performed in paral-
lel with the data access. If a condition is specified, it affects the entire instruction.

NOTE: If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set up for circular
bufferring, the modify operation always executes circular buffer wraparound, independ-
ent of the state of the CBUFEN bit.

An optional (SW) specifies the MODIFY instruction should perform scaled address arithmetic for short words
in byte address space. The value in the M-register is multiplied by 2 before adding to the value in the I-regis-
ter. If the address in the I-register is not to the byte space then MODIFY (SW) will raise the Illegal address
space interrupt.

An optional (NW) specifies the MODIFY instruction should perform scaled address arithmetic for normal
words. If the value in the I-register addresses the normal word space then this instruction just adds the value in
the M-register to the value in the I-register, but if the I-register addresses byte space then the value in the M-
register is multiplied by 4 before adding to the value in the I-register. Thus the instruction increments the
address by Mb/Md normal words in both address spaces which helps to write address-space neutral code.
MODIFY (NW) raises the Illegal address space interrupt if the I-register addresses the long word or short
word spaces.

SIMD Mode

In SIMD mode, the Type 7 instruction provides the same update of the specified I register by the specified M
register as is available in SISD mode, but provides additional features for the optional compute operation.

If a compute operation is specified, it is performed simultaneously on the X and Y processing elements in
parallel with the transfer. If a condition is specified, it affects the entire instruction. The instruction is exe-
cuted in a processing element if the specified condition tests true in that element independent of the
condition result for the other element.

The index register modify operation, in SIMD mode, occurs based on the logical ORing of the outcome of
the conditions tested on both PEs. In the second instruction, the index register modify also occurs based on
the logical ORing of the outcomes of the conditions tested on both PEs. Because both threads of a SIMD
sequence may be dependent on a single DAG index value, either thread needs to be able to cause a modify of
the index.

Example

IF NOT FLAG2_IN R4=R6*R12(SUF), MODIFY(I10,M8);
IF FLAG2_IN R4=R6*R12(SUF), I9 = MODIFY(I10,M8);
IF NOT LCE MODIFY(I3,M1);
IF NOT LCE I0 = MODIFY(I3,M1);
MODIFY(I10,M9);
I15 = MODIFY(I11,M12);
I0 = MODIFY(I2,M2);

Type 7a ISA/VISA (cond + comp + index modify)
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I3 = MODIFY(I3,M5); /* Semantically same as MODIFY(I3,M5) */;

Type7a Instruction Opcode

Type7a
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

is[2:2]

idis[2:0]
compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 1 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]
g

toby

is[1:0]
breg

Figure 13-19: Type7a Instruction

BH (Type 7a)

BH Encode Table

w l Syntax

0 0

0 1 (sw)

1 0 (nw)

MODIFY (Type 7a)

MODIFY Encode Table

g Syntax

0 modify(I1REG Register Class, M1REG Register Class)

0 I1REG Register Class = modify(I1REG Register Class, M1REG Register Class) BH (Type 7a)

1 modify(I2REG Register Class, M2REG Register Class)

1 I2REG Register Class = modify(I2REG Register Class, M2REG Register Class) BH (Type 7a)

Type 7a ISA/VISA (cond + comp + index modify)

13–48 SHARC+ Core Programming Reference



Type 7b VISA (cond + index modify)
Syntax Summary

Table 13-21: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

7b VISA IF cond MODIFY(Ia,Mb);
MODIFY(Ic,Md);
Ia = MODIFY(Ia,Mb)
Ic = MODIFY(Ic,Md)

(nw);
(sw);

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 MODIFY (Type 7b) ;

----- IFCOND MODIFY (Type 7b) ;

Abstract

Index register modify, optional condition

Description

SISD Mode

In SISD mode, the Type 7 instruction provides an update of the specified Ia/Ic register by the specified
Mb/Md register. If the destination register is not specified, Ia/Ic is used as destination register. Unless destina-
tion I register is specified or implied to be the same as the source I register, the source I register is left un-
changed. M register is always left unchanged. If a condition is specified, it affects the entire instruction.

NOTE: If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set up for circular
bufferring, the modify operation always executes circular buffer wraparound, independ-
ent of the state of the CBUFEN bit.

SIMD Mode

In SIMD mode, the Type 7 instruction provides the same update of the specified I register by the specified M
register as is available in SISD mode, but provides additional features for the optional compute operation.

Type 7b VISA (cond + index modify)
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Type7b Instruction Opcode

g

Type7b
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

is[2:2]

idis[2:0]

0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 10

cond[4:0]

m[2:0]
is[1:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 13-20: Type7b Instruction

MODIFY (Type 7b)

MODIFY Encode Table

g Syntax

0 I1REG Register Class = modify(I1REG Register Class, M1REG Register Class)

1 I2REG Register Class = modify(I2REG Register Class, M2REG Register Class)

Type 7d ISA/VISA (cond + comp + address switch)

Syntax Summary

NOTE: The 48-bit 7d instruction type is an extension (address switch) to 7a instruction.

Table 13-22: Group I Instructions by Instruction Type

Type Addr Option1 Option2 Operation (Option) Modifier (Option)

7d ISA

VISA

IF cond compute, Ia = B2W(Ia);
Ic = B2W(Ic);
Ia = W2B(Ia);
Ic = W2B(Ic);
Ba = B2W(Ba);
Bc = B2W(Bc);
Ba = W2B(Ba);
Bc = W2B(Bc);

The following table provides the opcode field values (cond, compute) and the instruction syntax overview (Syntax)

cond compute Syntax

11111 00000000000000000000000 ACONV (Type 7d) ;

Type 7b VISA (cond + index modify)
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cond compute Syntax

11111 ----------------------- COMPUTE , ACONV (Type 7d) ;

----- 00000000000000000000000 IFCOND ACONV (Type 7d) ;

----- ----------------------- IFCOND COMPUTE , ACONV (Type 7d) ;

Abstract

Switch address unit, optional compute, and optional condition.

SISD Mode

In SISD mode, the Type 7d instruction converts an address in an I register or B register between normal word
and byte address spaces. The B2W instruction converts a byte address to a normal word and the W2B instruc-
tion converts a normal word address to a byte address. If the input value is already an address of the requested
type it is copied to the result register unchanged. If a compute operation is specified, it is performed in parallel
with the switch address unit. If a condition is specified, it affects the entire instruction.

SIMD Mode

In SIMD mode, the Type 7d instruction provides the same switch address as is available in SISD mode, but
provides additional features for the optional compute operation. If a compute operation is specified, it is per-
formed simultaneously on the X and Y processing elements in parallel with the transfer. If a condition is speci-
fied, it affects the entire instruction. The instruction is executed in a processing element if the specified condi-
tion tests true in that element independent of the condition result for the other element.

The index register modify operation, in SIMD mode, occurs based on the logical ORing of the outcome of
the conditions tested on both PEs. In the second instruction, the index register modify also occurs based on
the logical ORing of the outcomes of the conditions tested on both PEs. Because both threads of a SIMD
sequence may be dependent on a single DAG index value, either thread needs to be able to cause a modify of
the index.

Example

I0 = B2W(I2);
IF AV B4 = W2B(B1);
R1=R2-R3, I0 = B2W(I0);
IF AZ R1=R2-R3, I0 = B2W(I0);

Type 7d ISA/VISA (cond + comp + address switch)

SHARC+ Core Programming Reference 13–51



Type7d Instruction Opcode

Type7d
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

is[2:2]

idis[2:0]
compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 1 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]
g

toby

is[1:0]
breg

Figure 13-21: Type7d Instruction

ACONV (Type 7d)

ACONV Encode Table

breg toby g Syntax

0 0 0 I1REG Register Class = b2w(I1REG Register Class)

0 0 1 I2REG Register Class = b2w(I2REG Register Class)

0 1 0 I1REG Register Class = w2b(I1REG Register Class)

0 1 1 I2REG Register Class = w2b(I2REG Register Class)

1 0 0 B1REG Register Class = b2w(B1REG Register Class)

1 0 1 B2REG Register Class = b2w(B2REG Register Class)

1 1 0 B1REG Register Class = w2b(B1REG Register Class)

1 1 1 B2REG Register Class = w2b(B2REG Register Class)

Type 7d ISA/VISA (cond + comp + address switch)
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14   Group II Conditional Program Flow Control
Instructions

The group II instructions contain data move operation and COMPUTE/ELSE COMPUTE operation.

The COND field selects whether the operation specified in the COMPUTE field and branch are executed. If the COND
is true, the compute and branch are executed. If no condition is specified, COND is true condition, and the compute
and branch are executed.

The ELSE field selects whether the condition is not true, in this case the computation is performed. The ELSE
condition always requires an condition.

The COMPUTE field specifies a compute operation using the ALU, multiplier, or shifter. Because there are a large
number of options available for computations, these operations are described separately in in the Computation Ref-
erence chapter.

Type Addr Option 1 Operation Modifier 2 Option 3 SHARC 5 Stage
Core

8a ISA

VISA

IF cond CALL <addr24>
CALL (PC,<re-
laddr24>)

(DB); Yes

JUMP <addr24>
JUMP 
(PC,<reladdr24>)

(DB)(LA)(CI)(DB,LA)
(DB,CI);

Yes

9a ISA

VISA

IF cond CALL (Md, Ic)
CALL 
(PC,<reladdr6>)

(DB) ,ELSE 
compute;
, com-
pute;

Yes

JUMP (Md, Ic)
JUMP 
(PC,<reladdr6>)

(DB)(LA)(CI)
(DB,LA)(DB,CI)

Yes

9b VISA IF cond CALL (Md,Ic)
CALL 
(PC,<reladdr6>)

(DB); Yes

JUMP (Md,Ic)
JUMP 
(PC,<reladdr6>)

(DB)(LA)(CI)(DB,LA)
(DB,CI);

Yes

10a ISA IF cond JUMP (Md,Ic) ,ELSE compute; Yes

Group II Conditional Program Flow Control Instructions
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Type Addr Option 1 Operation Modifier 2 Option 3 SHARC 5 Stage
Core

JUMP 
(PC,<reladdr6>)

,ELSE DM(Ia,Mb) = Dreg;
,ELSE Dreg =DM(Ia,Mb);
,ELSE compute, DM(Ia,Mb) = 
Dreg;
,ELSE compute, Dreg 
=DM(Ia,Mb);

11a ISA

VISA

IF cond RTS (DB)(LR)(DB,LR) ,ELSEcom-
pute;
,compute;

Yes

RTI (DB) Yes

11c VISA IF cond RTS (DB)(LR)(DB,LR); Yes

RTI (DB); Yes

12a
(imm)

ISA

VISA

LCNTR = <data16>,
DO <addr24> UNTIL
LCE; 
LCNTR =<data16>,
DO (PC,<reladdr24>)
UNTIL LCE; 

Yes

12a
(ureg)

ISA

VISA

LCNTR = Ureg, DO <addr24> UNTIL
LCE; 
LCNTR = Ureg, DO(PC,<reladdr24>)
UNTIL LCE;

Yes

13a ISA

VISA

DO <addr24> UNTIL
termination; 
DO (PC,<reladdr24>)
UNTIL termination;

Yes

Type 8a ISA/VISA (cond + branch)
Syntax Summary

Type Addr Option 1 Operation Option 2 Option 3

8a ISA

VISA

IF cond CALL <addr24>
CALL (PC,<reladdr24>)

(DB); Yes

JUMP <addr24>
JUMP (PC,<reladdr24>)

(DB)(LA)(CI)(DB,LA)(DB,CI); Yes

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 JUMP(Type 8a) ;

----- IFCOND JUMP(Type 8a) ;

Abstract

Direct (or PC-relative) jump/call, optional condition

Type 8a ISA/VISA (cond + branch)
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Description

SISD Mode

In SISD mode, the Type 8 instruction provides a jump or call to the specified address or PC-relative address.
The PC-relative address is a 24-bit, twos-complement value. The Type 8 instruction supports the following
modifiers.

• (DB)—delayed branch—starts a delayed branch

• (LA)—loop abort—causes the loop stacks and PC stack to be popped when the jump is executed. Use
the (LA) modifier if the jump transfers program execution outside of a loop. Do not use (LA) if there
is no loop or if the jump address is within the loop.

• (CI)—clear interrupt—lets programs reuse an interrupt while it is being serviced

Normally, the processors ignore and do not latch an interrupt that reoccurs while its service routine is already
executing. Jump (CI) clears the status of the current interrupt without leaving the interrupt service routine,
This feature reduces the interrupt routine to a normal subroutine and allows the interrupt to occur again, as a
result of a -different event or task in the SHARC processor system. The jump (CI) instruction should be locat-
ed within the interrupt service routine.

To reduce the interrupt service routine to a normal subroutine, the jump (CI) instruction clears the appropri-
ate bit in the interrupt latch register (IRPTL) and interrupt mask pointer (IMASKP). The processor then al-
lows the interrupt to occur again.

When returning from a reduced subroutine, programs must use the (LR) modifier of the RTS if the interrupt
occurs during the last two instructions of a loop.

SIMD Mode

In SIMD mode, the Type 8 instruction provides the same jump or call operation as in SISD mode, but pro-
vides additional features for handling the optional condition.

If a condition is specified, the jump or call is executed if the specified condition tests true in both the
X and Y processing elements.

The following code compares the Type 8 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (Program Sequencer Operation Stated in the Instruction Syntax)

IF (PEx AND PEy COND) JUMP <addr24>  (options);
IF (PEx AND PEy COND) JUMP (PC, <reladdr24>) (options);
IF (PEx AND PEy COND) CALL <addr24> (options);
IF (PEx AND PEy COND) CALL (PC, <reladdr24>) (options);
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

/* No implicit PEy operation */

Type 8a ISA/VISA (cond + branch)
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Example

IF AV JUMP(PC,0x00A4) (LA);
CALL init (DB);   /* init is a program label */
JUMP (PC,2) (DB,CI);   /* clear current int. for reuse */
When the processors are in SISD mode, the first instruction performs a jump to the PC-relative address depending
on the outcome of the condition tested in PEx. In the second instruction, a jump to the program label init oc-
curs. A PC-relative jump takes place in the third instruction.

When the processors are in SIMD mode, the first instruction performs a jump to the PC-relative address depending
on the logical ANDing of the outcomes of the conditions tested in both PEs. In SIMD mode, the second and third
instructions operate the same as in SISD mode. In the second instruction, a jump to the program label init oc-
curs. A PC-relative jump takes place in the third instruction.

Type8a Instruction Syntax

Type8a
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

b

ci
addr[23:16]

addr[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]
r

j

a

Figure 14-1: Type8a Instruction

ADDR (Type 8a)

ADDR Encode Table

r Syntax

0 imm24 Register Type

1 (pc,imm24pc Register Type)

JUMP(Type 8a)

JUMP Encode Table

b a j ci Syntax

0 0 0 0 jump ADDR (Type 8a)

Type 8a ISA/VISA (cond + branch)
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b a j ci Syntax

0 0 0 1 jump ADDR (Type 8a) (ci)

0 0 1 0 jump ADDR (Type 8a) (db)

0 0 1 1 jump ADDR (Type 8a) (db,ci)

0 1 0 0 jump ADDR (Type 8a) (la)

0 1 1 0 jump ADDR (Type 8a) (db,la)

1 0 0 0 call ADDR (Type 8a)

1 0 1 0 call ADDR (Type 8a) (db)

Type 9a ISA/VISA (cond + Branch + comp/else comp)
Syntax Summary

Type Addr Option 1 Operation Modifier 2 Option 3

9a ISA

VISA

IF cond CALL (Md, Ic)
CALL (PC,<reladdr6>)

(DB) ,ELSE compute;
, compute;

Yes

JUMP (Md, Ic)
JUMP (PC,<reladdr6>)

(DB)(LA)(CI)(DB,LA)
(DB,CI)

Yes

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 JUMPCLAUSE (Type 9a) COMPUTECLAUSE (Type 9a) ;

----- IFCOND JUMPCLAUSE (Type 9a) COMPUTECLAUSE (Type 9a) ;

Abstract

Indirect (or PC-relative) jump/call, optional condition, optional compute operation

Description

SISD Mode

In SISD mode, the Type 9 instruction provides a jump or call to the specified PC-relative address or pre-modi-
fied I register value. The PC-relative address is a 6-bit, two’s-complement value. If an I register is specified, it
is modified by the specified M register to generate the branch address. The I register is not affected by the
modify operation. The Type 9 instruction supports the following modifiers:

• (DB)—delayed branch—starts a delayed branch

Type 9a ISA/VISA (cond + Branch + comp/else comp)
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• (LA)—loop abort—causes the loop stacks and PC stack to be popped when the jump is executed. Use
the (LA) modifier if the jump transfers program execution outside of a loop. Do not use (LA) if there is
no loop or if the jump address is within the loop.

• (CI)—clear interrupt—lets programs reuse an interrupt while it is being serviced

Normally, the processor ignores and does not latch an interrupt that reoccurs while its service routine is al-
ready executing. Jump (CI) clears the status of the current interrupt without leaving the interrupt service rou-
tine. This feature reduces the interrupt routine to a normal subroutine and allows the interrupt to occur again,
as a result of a different event or task in the system. The jump (CI) instruction should be located within the
interrupt service routine.

To reduce an interrupt service routine to a normal subroutine, the jump (CI) instruction clears the appropriate
bit in the interrupt latch register (IRPTL) and interrupt mask pointer (IMASKP). The processor then allows
the interrupt to occur again.

When returning from a reduced subroutine, programs must use the (LR) modifier of the RTS instruction if
the interrupt occurs during the last two instructions of a loop.

The jump or call is executed if the optional specified condition is true or if no condition is specified.
If a compute operation is specified without the ELSE, it is performed in parallel with the jump or call. If a
compute operation is specified with the ELSE, it is performed only if the condition specified is false.
Note that a condition must be specified if an ELSE compute clause is specified.

SIMD Mode

In SIMD mode, the Type 9 instruction provides the same jump or call operation as is available in SISD mode,
but provides additional features for the optional condition.

If a condition is specified, the jump or call is executed if the specified condition tests true in both the
X and Y processing elements.

If a compute operation is specified without the ELSE, it is performed by the processing element(s) in which
the condition test true in parallel with the jump or call. If a compute operation is specified with the
ELSE, it is performed in an element when the condition tests false in that element. Note that a
condition must be specified if an ELSE compute clause is specified.

Note that for the compute, the X element uses the specified registers and the Y element uses the comple-
mentary registers.

The following code compares the Type 9 instruction’s explicit and implicit operations in SIMD mode. 

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy COND) JUMP (Md, Ic) (options), (if PEx COND) compute ;
IF (PEx AND PEy COND) JUMP (PC, <reladdr6>) (options), (if PEx COND) compute ;
IF (PEx AND PEy COND) JUMP (Md, Ic) (options), ELSE (if NOT PEx) compute ;
IF (PEx AND PEy COND) JUMP (PC, <reladdr6>) (options), ELSE (if NOT PEx) 
compute ;

Type 9a ISA/VISA (cond + Branch + comp/else comp)
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IF (PEx AND PEy COND) CALL (Md, Ic) (options), (if PEx COND) compute;
IF (PEx AND PEy COND) CALL (PC, <reladdr6>) (options), (if PEx COND) compute;
IF (PEx AND PEy COND) CALL (Md, Ic) (options), ELSE (if NOT PEx) compute;
IF (PEx AND PEy COND) CALL (PC, <reladdr6>) (options), ELSE (if NOT PEx) 
compute;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy COND) JUMP (Md, Ic) (options), (if PEy COND) compute;
IF (PEx AND PEy COND) JUMP (PC, <reladdr6>) (options), (if PEy COND) compute;
IF (PEx AND PEy COND) JUMP (Md, Ic) (options), ELSE (if NOT PEy) compute;
IF (PEx AND PEy COND) JUMP (PC, <reladdr6>) (options), ELSE (if NOT PEy) 
compute;
 
IF (PEx AND PEy COND) CALL (Md, Ic)(options), (if PEy COND) compute;
IF (PEx AND PEy COND) CALL (PC, <reladdr6>)(options), (if PEy COND) compute;
IF (PEx AND PEy COND) CALL (Md, Ic)(options), ELSE (if NOT PEy) compute;
IF (PEx AND PEy COND) CALL (PC, <reladdr6>)(options), ELSE (if NOT PEy) 
compute;
 

Example

JUMP(M8,I12), R6=R6-1;
IF EQ CALL(PC,17)(DB), ELSE R6=R6-1;
When the processors are in SISD mode, the indirect jump and compute in the first instruction are performed in
parallel. In the second instruction, a call occurs if the condition is true, otherwise the computation is performed.

When the processors are in SIMD mode, the indirect jump in the first instruction occurs in parallel with both proc-
essing elements executing computations. In PEx, R6 stores the result, and S6 stores the result in PEy. In the second
instruction, the condition is evaluated independently on each processing element, PEx and PEy. The call executes
based on the logical ANDing of the PEx and PEy conditional tests. So, the call executes if the condition tests true in
both PEx and PEy. Because the ELSE inverts the conditional test, the computation is performed independently on
either PEx or PEy based on the negative evaluation of the condition code seen by that processing element. If the
computation is executed, R6 stores the result of the computation in PEx, and S6 stores the result of the computa-
tion in PEy.

Type 9a ISA/VISA (cond + Branch + comp/else comp)
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Type9a Instruction Syntax

rel
b

Type9a

ci

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

pmi[2:2]

a

pmm[2:0]
compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]

e

pmi[1:0]

j

Figure 14-2: Type9a Instruction

ADDRCLAUSE (Type 9a)

ADDRCLAUSE Encode Table

rel Syntax

0 (M2REG Register Class,I2REG Register Class)

1 (pc,imm6pc Register Type)

COMPUTECLAUSE (Type 9a)

COMPUTECLAUSE Encode Table

e compute Syntax

0 00000000000000000000000

0 ----------------------- , COMPUTE

1 ----------------------- , else COMPUTE

JUMPCLAUSE (Type 9a)

JUMPCLAUSE Encode Table

b a j ci Syntax

0 0 0 0 jump ADDRCLAUSE (Type 9a)

0 0 0 1 jump ADDRCLAUSE (Type 9a) (ci)

Type 9a ISA/VISA (cond + Branch + comp/else comp)
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b a j ci Syntax

0 0 1 0 jump ADDRCLAUSE (Type 9a) (db)

0 0 1 1 jump ADDRCLAUSE (Type 9a) (db,ci)

0 1 0 0 jump ADDRCLAUSE (Type 9a) (la)

0 1 1 0 jump ADDRCLAUSE (Type 9a) (db,la)

1 0 0 0 call ADDRCLAUSE (Type 9a)

1 0 1 0 call ADDRCLAUSE (Type 9a) (db)

Type 9b VISA (cond + Branch + comp/else)
Syntax Summary

Type Addr Option 1 Operation Modifier 2 Option 3

9b VISA IF cond CALL (Md,Ic)
CALL (PC,<reladdr6>)

(DB); Yes

JUMP (Md,Ic)
JUMP (PC,<reladdr6>)

(DB)(LA)(CI)(DB,LA)(DB,CI); Yes

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 JUMPCLAUSE (Type 9b) ;

----- IFCOND JUMPCLAUSE (Type 9b) ;

Abstract

Indirect (or PC-relative) jump/call, optional condition, optional compute operation

Description

SISD Mode

In SISD mode, the Type 9 instruction provides a jump or call to the specified PC-relative address or pre-modi-
fied I register value. The PC-relative address is a 6-bit, two’s-complement value. If an I register is specified, it
is modified by the specified M register to generate the branch address. The I register is not affected by the
modify operation. The Type 9 instruction supports the following modifiers:

• (DB)—delayed branch—starts a delayed branch

• (LA)—loop abort—causes the loop stacks and PC stack to be popped when the jump is executed. Use
the (LA) modifier if the jump transfers program execution outside of a loop. Do not use (LA) if there is
no loop or if the jump address is within the loop.

Type 9b VISA (cond + Branch + comp/else)
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• (CI)—clear interrupt—lets programs reuse an interrupt while it is being serviced

Normally, the processor ignores and does not latch an interrupt that reoccurs while its service routine is al-
ready executing. Jump (CI) clears the status of the current interrupt without leaving the interrupt service rou-
tine. This feature reduces the interrupt routine to a normal subroutine and allows the interrupt to occur again,
as a result of a different event or task in the system. The jump (CI) instruction should be located within the
interrupt service routine.

To reduce an interrupt service routine to a normal subroutine, the jump (CI) instruction clears the appropriate
bit in the interrupt latch register (IRPTL) and interrupt mask pointer (IMASKP). The processor then allows
the interrupt to occur again.

When returning from a reduced subroutine, programs must use the (LR) modifier of the RTS instruction if
the interrupt occurs during the last two instructions of a loop.

The jump or call is executed if the optional specified condition is true or if no condition is specified.
If a compute operation is specified without the ELSE, it is performed in parallel with the jump or call. If a
compute operation is specified with the ELSE, it is performed only if the condition specified is false.
Note that a condition must be specified if an ELSE compute clause is specified.

SIMD Mode

In SIMD mode, the Type 9 instruction provides the same jump or call operation as is available in SISD mode,
but provides additional features for the optional condition.

If a condition is specified, the jump or call is executed if the specified condition tests true in both the
X and Y processing elements.

If a compute operation is specified without the ELSE, it is performed by the processing element(s) in which
the condition test true in parallel with the jump or call. If a compute operation is specified with the
ELSE, it is performed in an element when the condition tests false in that element. Note that a
condition must be specified if an ELSE compute clause is specified.

Note that for the compute, the X element uses the specified registers and the Y element uses the comple-
mentary registers.

The following code compares the Type 9 instruction’s explicit and implicit operations in SIMD mode. 

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy COND) JUMP (Md, Ic) (options), (if PEx COND) compute ;
IF (PEx AND PEy COND) JUMP (PC, <reladdr6>) (options), (if PEx COND) compute ;
IF (PEx AND PEy COND) JUMP (Md, Ic) (options), ELSE (if NOT PEx) compute ;
IF (PEx AND PEy COND) JUMP (PC, <reladdr6>) (options), ELSE (if NOT PEx) 
compute ;
 
IF (PEx AND PEy COND) CALL (Md, Ic) (options), (if PEx COND) compute;
IF (PEx AND PEy COND) CALL (PC, <reladdr6>) (options), (if PEx COND) compute;
IF (PEx AND PEy COND) CALL (Md, Ic) (options), ELSE (if NOT PEx) compute;

Type 9b VISA (cond + Branch + comp/else)
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IF (PEx AND PEy COND) CALL (PC, <reladdr6>) (options), ELSE (if NOT PEx) 
compute;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy COND) JUMP (Md, Ic) (options), (if PEy COND) compute;
IF (PEx AND PEy COND) JUMP (PC, <reladdr6>) (options), (if PEy COND) compute;
IF (PEx AND PEy COND) JUMP (Md, Ic) (options), ELSE (if NOT PEy) compute;
IF (PEx AND PEy COND) JUMP (PC, <reladdr6>) (options), ELSE (if NOT PEy) 
compute;
 
IF (PEx AND PEy COND) CALL (Md, Ic)(options), (if PEy COND) compute;
IF (PEx AND PEy COND) CALL (PC, <reladdr6>)(options), (if PEy COND) compute;
IF (PEx AND PEy COND) CALL (Md, Ic)(options), ELSE (if NOT PEy) compute;
IF (PEx AND PEy COND) CALL (PC, <reladdr6>)(options), ELSE (if NOT PEy) 
compute;
 

Example

JUMP(M8,I12), R6=R6-1;
IF EQ CALL(PC,17)(DB), ELSE R6=R6-1;
When the processors are in SISD mode, the indirect jump and compute in the first instruction are performed in
parallel. In the second instruction, a call occurs if the condition is true, otherwise the computation is performed.

When the processors are in SIMD mode, the indirect jump in the first instruction occurs in parallel with both proc-
essing elements executing computations. In PEx, R6 stores the result, and S6 stores the result in PEy. In the second
instruction, the condition is evaluated independently on each processing element, PEx and PEy. The call executes
based on the logical ANDing of the PEx and PEy conditional tests. So, the call executes if the condition tests true in
both PEx and PEy. Because the ELSE inverts the conditional test, the computation is performed independently on
either PEx or PEy based on the negative evaluation of the condition code seen by that processing element. If the
computation is executed, R6 stores the result of the computation in PEx, and S6 stores the result of the computa-
tion in PEy.

Type 9b VISA (cond + Branch + comp/else)
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Type9b Instruction Syntax

rel
b

Type9b

ci

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

pmi[2:2]

a

pmm[2:0]

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]

pmi[1:0]
j

Figure 14-3: Type9b Instruction

ADDRCLAUSE (Type 9b)

ADDRCLAUSE Encode Table

rel Syntax

0 (M2REG Register Class,I2REG Register Class)

1 (pc,imm6visapc Register Type)

JUMPCLAUSE (Type 9b)

JUMPCLAUSE Encode Table

b a j ci Syntax

0 0 0 0 jump ADDRCLAUSE (Type 9b)

0 0 0 1 jump ADDRCLAUSE (Type 9b) (ci)

0 0 1 0 jump ADDRCLAUSE (Type 9b) (db)

0 0 1 1 jump ADDRCLAUSE (Type 9b) (db,ci)

0 1 0 0 jump ADDRCLAUSE (Type 9b) (la)

0 1 1 0 jump ADDRCLAUSE (Type 9b) (db,la)

1 0 0 0 call ADDRCLAUSE (Type 9b)

1 0 1 0 call ADDRCLAUSE (Type 9b) (db)

Type 9b VISA (cond + Branch + comp/else)
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Type 10a ISA (cond + branch + else comp + mem data move
Syntax Summary

Type Addr Option 1 Operation Option 2 Option 3

10a ISA IF cond JUMP (Md,Ic)
JUMP (PC,<reladdr6>)

,ELSE compute;
,ELSE DM(Ia,Mb) = Dreg;
,ELSE Dreg =DM(Ia,Mb);
,ELSE compute, DM(Ia,Mb) 
= Dreg;
,ELSE compute, Dreg 
=DM(Ia,Mb);

Yes

The following table provides the opcode field values (cond, compute) and the instruction syntax overview (Syntax)

cond compute Syntax

11111 00000000000000000000000 jump ADDRCLAUSE (Type 10a) , else ACCESS (Type 10a) ;

11111 ----------------------- jump ADDRCLAUSE (Type 10a) , else COMPUTE , ACCESS (Type 10a) ;

----- 00000000000000000000000 IFCOND jump ADDRCLAUSE (Type 10a) , else ACCESS (Type 10a) ;

----- ----------------------- IFCOND jump ADDRCLAUSE (Type 10a) , else COMPUTE , ACCESS
(Type 10a) ;

Abstract

Indirect (or PC-relative) jump or optional compute operation with transfer between data memory and register file.
This instruction is not supported in VISA address space.

Description

SISD Mode

In SISD mode, the Type 10a instruction provides a conditional jump to either specified PC-relative address or
pre-modified I register value. In parallel with the jump, this instruction also provides a transfer between data
memory and a data register with optional parallel compute operation. For this instruction, the If
condition and ELSE keywords are not optional and must be used. If the specified condition is true,
the jump is executed. If the specified condition is false, the data memory transfer and optional compute
operation are performed in parallel. Only the compute operation is optional in this instruction.

The PC-relative address for the jump is a 6-bit, twos-complement value. If an I register is specified (Ic), it is
modified by the specified M register (Md) to generate the branch address. The I register is not affected by the
modify operation. For this jump, programs may not use the delay branch (DB), loop abort (LA), or clear in-
terrupt (CI) modifiers.

Type 10a ISA (cond + branch + else comp + mem data move
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For the data memory access, the I register (Ia) provides the address. The I register value is post-modified by
the specified M register (Mb) and is updated with the modified value. Pre-modify addressing is not available
for this data memory access.

SIMD Mode

In SIMD mode, the Type 10a instruction provides the same conditional jump as is available in SISD mode,
but the jump is executed if the specified condition tests true in both the X or Y processing elements.

In parallel with the jump, this instruction also provides a transfer between data memory and a data register in
the X and Y processing elements. An optional parallel compute operation for the X and Y processing ele-
ments is also available.

For this instruction, the If condition and ELSE keywords are not optional and must be used. If the speci-
fied condition is true in both processing elements, the jump is executed. The the data memory transfer
and optional compute operation specified with the ELSE are performed in an element when the
condition tests false in that element.

Note that for the compute, the X element uses the specified Dreg register and the Y element uses the com-
plementary Cdreg register.

The addressing for the jump is the same in SISD and SIMD modes, but addressing for the data memory ac-
cess differs slightly. For the data memory access in SIMD mode, X processing element uses the specified I reg-
ister (Ia) to address memory. The I register value is post-modified by the specified M register (Mb) and is
updated with the modified value. The Y element adds one to the specified I register to address memory. Pre-
modify addressing is not available for this data memory access.

The following pseudo code compares the Type 10a instruction’s explicit and implicit operations in SIMD
mode.

Broadcast Mode

If the broadcast read bits—BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the specified I
register without adding one.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy COND) Jump (Md, Ic) , Else (if NOT PEx) compute, DM(Ia, Mb) = 
dreg ;
IF (PEx AND PEy COND) Jump (PC, <reladdr6>) , Else (if NOT PEx) compute, 
DM(Ia, Mb) = dreg ;
 
IF (PEx AND PEy COND) Jump (Md, Ic) , Else (if NOT PEx) compute, dreg = DM(Ia, 
Mb) ;
IF (PEx AND PEy COND) Jump (PC, <reladdr6>) , Else (if NOT PEx) compute, dreg 
= DM(Ia, Mb) ;

Type 10a ISA (cond + branch + else comp + mem data move
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SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy COND) Jump (Md, Ic) , Else (if NOT PEy) compute, DM(Ia + k, 
Mb) = dreg ;
IF (PEx AND PEy COND) Jump (PC, <reladdr6>) , Else (if NOT PEy) compute, DM(Ia 
+ k, Mb) = dreg ;
 
IF (PEx AND PEy COND) Jump (Md, Ic) , Else (if NOT PEy) compute, dreg = DM(Ia 
+ k, Mb) ;
IF (PEx AND PEy COND) Jump (PC, <reladdr6>) , Else (if NOT PEy) compute, dreg 
= DM(Ia + k, Mb) ;
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Example

IF TF JUMP(M8, I8),  ELSE R6=DM(I6, M1);
 
IF NE JUMP(PC, 0x20),  ELSE F12=FLOAT R10 BY R3, R6=DM(I5, M0);
When the processors are in SISD mode, the indirect jump in the first instruction is performed if the condition tests
true. Otherwise, R6 stores the value of a data memory read. The second instruction is much like the first, however,
it also includes an optional compute, which is performed in parallel with the data memory read.

When the processors are in SIMD mode, the indirect jump in the first instruction executes depending on the out-
come of the conditional in both processing element. The condition is evaluated independently on each processing
element, PEx and PEy. The indirect jump executes based on the logical ANDing of the PEx and PEy conditional
tests. So, the indirect jump executes if the condition tests true in both PEx and PEy. The data memory read is per-
formed independently on either PEx or PEy based on the negative evaluation of the condition code seen by that PE.

The second instruction is much like the first instruction. The second instruction, however, includes an optional
compute also performed in parallel with the data memory read independently on either PEx or PEy and based on
the negative evaluation of the condition code seen by that processing element.

IF TF JUMP(M8,I8), ELSE R6=DM(I1,M1);
When the processors are in broadcast mode (the BDCST1 bit is set in the MODE1 system register), the instruction
performs an indirect jump if the condition tests true. Otherwise, R6 stores the value of a data memory read via the
I1 register from DAG1. The S6 register is also loaded with the same value from data memory as R6.

Type 10a ISA (cond + branch + else comp + mem data move
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Type10a Instruction Syntax

Type10a

dreg[3:0]

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rel
d

dmi[2:0]

pmi[2:2]

dmm[2:0]

pmi[1:0]
pmm[2:0]

compute[22:16]

compute[15:0]

1
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond[4:0]

Figure 14-4: Type10a Instruction

ACCESS (Type 10a)

ACCESS Encode Table

d Syntax

0 RFREG Register Class = dm(I1REG Register Class, M1REG Register Class)

1 dm(I1REG Register Class, M1REG Register Class) = RFREG Register Class

ADDRCLAUSE (Type 10a)

ADDRCLAUSE Encode Table

rel Syntax

0 (M2REG Register Class,I2REG Register Class)

1 (pc,imm6pc Register Type)

Type 11a ISA/VISA (cond + branch return + comp/else comp)
Syntax Summary

Type Addr Option 1 Operation Modifier 2 Option 3

11a ISA

VISA

IF cond RTS (DB)(LR)(DB,LR) ,ELSEcompute;
,compute;

Yes

RTI (DB) Yes

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

Type 10a ISA (cond + branch + else comp + mem data move
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cond Syntax

11111 RETURN (Type 11a) COMPUTECLAUSE (Type 11a) ;

----- IFCOND RETURN (Type 11a) COMPUTECLAUSE (Type 11a) ;

Abstract

Indirect (or PC-relative) jump or optional compute operation with transfer between data memory and register file

Description

SISD Mode

In SISD mode, the Type 11 instruction provides a return from a subroutine (RTS) or return from an interrupt
service routine (RTI). A return causes the processor to branch to the address stored at the top of the PC stack.
The difference between RTS and RTI is that the RTS instruction only pops the return address off the PC
stack, while the RTI does that plus:

• Pops status stack if the ASTAT and MODE1 status registers have been pushed—if the interrupt was
IRQ2-0 or the timer interrupt

• Clears the appropriate bit in the interrupt latch register (IRPTL) and the interrupt mask pointer
(IMASKP)

The return executes when the optional If condition is true (or if no condition is specified). If a
compute operation is specified without the ELSE, it is performed in parallel with the return. If a compute
operation is specified with the ELSE, it is performed only when the If condition is false. Note that a
condition must be specified if an ELSE compute clause is specified.

RTS supports two modifiers (DB) and (LR); RTI supports one modifier, (DB). If the delayed branch (DB)
modifier is specified, the return is delayed; otherwise, it is non-delayed.

If the return is not a delayed branch and occurs as one of the last three instructions of a loop, programs must
use the loop reentry (LR) modifier with the subroutine’s RTS instruction. The (LR) modifier assures proper
reentry into the loop. For example, the processor checks the termination condition in counter-based loops
by decrementing the current loop counter (CURLCNTR) during execution of the instruction two locations be-
fore the end of the loop. In this case, the RTS (LR) instruction prevents the loop counter from being decre-
mented again, avoiding the error of decrementing twice for the same loop iteration.

Programs must also use the (LR) modifier for RTS when returning from a subroutine that has been reduced
from an interrupt service routine with a jump (CI) instruction. This case occurs when the interrupt occurs
during the last two instructions of a loop.

Type 11a ISA/VISA (cond + branch return + comp/else comp)
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SIMD Mode

In SIMD mode, the Type 11 instruction provides the same return operations as are available in SISD mode,
except that the return is executed if the specified condition tests true in both the X and Y processing
elements.

In parallel with the return, this instruction also provides a parallel compute or ELSE compute operation
for the X and Y processing elements. If a condition is specified, the optional compute is executed in a
processing element if the specified condition tests true in that processing element. If a compute opera-
tion is specified with the ELSE, it is performed in an element when the condition tests false in that ele-
ment.

Note that for the compute, the X element uses the specified registers, and the Y element uses the comple-
mentary registers.

The following pseudo code compares the Type 11 instruction’s explicit and implicit operations in SIMD
mode. 

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy COND) RTS (options), (if PEx COND) compute;
IF (PEx AND PEy COND) RTS (options), ELSE (if NOT PEx) compute;
 
IF (PEx AND PEy COND) RTI (options), (if PEx COND) compute;
IF (PEx AND PEy COND) RTI (options), ELSE (if NOT PEx) compute;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy COND) RTS (DB), (if PEy COND) compute;
IF (PEx AND PEy COND) RTS (DB), ELSE (if NOT PEy) compute;
 
IF (PEx AND PEy COND) RTI (options), (if PEy COND) compute;
IF (PEx AND PEy COND) RTI (options), ELSE (if NOT PEy) compute;
 

Example

RTI, R6=R5 XOR R1;
IF le RTS(DB);
IF sz RTS, ELSE R0=LSHIFT R1 BY R15;
When the processors are in SISD mode, the first instruction performs a return from interrupt and a computation in
parallel. The second instruction performs a return from subroutine only if the condition is true. In the third instruc-
tion, a return from subroutine is executed if the condition is true. Otherwise, the computation executes.

When the processors are in SIMD mode, the first instruction performs a return from interrupt and both processing
elements execute the computation in parallel. The result from PEx is placed in R6, and the result from PEy is placed
in S6. The second instruction performs a return from subroutine (RTS) if the condition tests true in both PEx or
PEy. In the third instruction, the condition is evaluated independently on each processing element, PEx and PEy.

Type 11a ISA/VISA (cond + branch return + comp/else comp)
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The RTS executes based on the logical ANDing of the PEx and PEy conditional tests. So, the RTS executes if the
condition tests true in both PEx and PEy. Because the ELSE inverts the conditional test, the computation is per-
formed independently on either PEx or PEy based on the negative evaluation of the condition code seen by that
processing element. The R0 register stores the result in PEx, and S0 stores the result in PEy if the computations are
executed.

Type11a Instruction Syntax

Type11a

lr

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

x
cond[4:0]

j
e compute[22:16]

compute[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 14-5: Type11a Instruction

COMPUTECLAUSE (Type 11a)

COMPUTECLAUSE Encode Table

e compute Syntax

0 00000000000000000000000

0 ----------------------- , COMPUTE

1 ----------------------- , else COMPUTE

RETURN (Type 11a)

RETURN Encode Table

x j lr Syntax

0 0 0 rts

0 0 1 rts (lr)

0 1 0 rts (db)

0 1 1 rts (db,lr)

1 0 0 rti

Type 11a ISA/VISA (cond + branch return + comp/else comp)
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x j lr Syntax

1 1 0 rti (db)

Type 11c VISA (cond + branch return)
Syntax Summary

Type Addr Option 1 Operation Option 2 Option 3

11c VISA IF cond RTS (DB)(LR)(DB,LR); Yes

RTI (DB); Yes

The following table provides the opcode field values (cond) and the instruction syntax overview (Syntax)

cond Syntax

11111 RETURN (Type 11c) ;

----- IFCOND RETURN (Type 11c) ;

Abstract

Indirect (or PC-relative) jump or optional compute operation with transfer between data memory and register file

Description

SISD Mode

In SISD mode, the Type 11 instruction provides a return from a subroutine (RTS) or return from an interrupt
service routine (RTI). A return causes the processor to branch to the address stored at the top of the PC stack.
The difference between RTS and RTI is that the RTS instruction only pops the return address off the PC
stack, while the RTI does that plus:

• Pops status stack if the ASTAT and MODE1 status registers have been pushed—if the interrupt was
IRQ2-0 or the timer interrupt

• Clears the appropriate bit in the interrupt latch register (IRPTL) and the interrupt mask pointer
(IMASKP)

The return executes when the optional If condition is true (or if no condition is specified). If a
compute operation is specified without the ELSE, it is performed in parallel with the return. If a compute
operation is specified with the ELSE, it is performed only when the If condition is false. Note that a
condition must be specified if an ELSE compute clause is specified.

RTS supports two modifiers (DB) and (LR); RTI supports one modifier, (DB). If the delayed branch (DB)
modifier is specified, the return is delayed; otherwise, it is non-delayed.

Type 11c VISA (cond + branch return)
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If the return is not a delayed branch and occurs as one of the last three instructions of a loop, programs must
use the loop reentry (LR) modifier with the subroutine’s RTS instruction. The (LR) modifier assures proper
reentry into the loop. For example, the processor checks the termination condition in counter-based loops
by decrementing the current loop counter (CURLCNTR) during execution of the instruction two locations be-
fore the end of the loop. In this case, the RTS (LR) instruction prevents the loop counter from being decre-
mented again, avoiding the error of decrementing twice for the same loop iteration.

Programs must also use the (LR) modifier for RTS when returning from a subroutine that has been reduced
from an interrupt service routine with a jump (CI) instruction. This case occurs when the interrupt occurs
during the last two instructions of a loop.

SIMD Mode

In SIMD mode, the Type 11 instruction provides the same return operations as are available in SISD mode,
except that the return is executed if the specified condition tests true in both the X and Y processing ele-
ments.

In parallel with the return, this instruction also provides a parallel compute or ELSE compute operation
for the X and Y processing elements. If a condition is specified, the optional compute is executed in a
processing element if the specified condition tests true in that processing element. If a compute opera-
tion is specified with the ELSE, it is performed in an element when the condition tests false in that ele-
ment.

Note that for the compute, the X element uses the specified registers, and the Y element uses the comple-
mentary registers.

The following pseudo code compares the Type 11 instruction’s explicit and implicit operations in SIMD
mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy COND) RTS (options), (if PEx COND) compute;
IF (PEx AND PEy COND) RTS (options), ELSE (if NOT PEx) compute;
 
IF (PEx AND PEy COND) RTI (options), (if PEx COND) compute;
IF (PEx AND PEy COND) RTI (options), ELSE (if NOT PEx) compute;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy COND) RTS (options), (if PEy COND) compute;
IF (PEx AND PEy COND) RTS (options), ELSE (if NOT PEy) compute;
 
IF (PEx AND PEy COND) RTI (options) , (if PEy COND) compute;
IF (PEx AND PEy COND) RTI (options) , ELSE (if NOT PEy) compute;
 

Type 11c VISA (cond + branch return)
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Example

RTI, R6=R5 XOR R1;
IF le RTS(DB);
IF sz RTS, ELSE R0=LSHIFT R1 BY R15;
When the processors are in SISD mode, the first instruction performs a return from interrupt and a computation in
parallel. The second instruction performs a return from subroutine only if the condition is true. In the third instruc-
tion, a return from subroutine is executed if the condition is true. Otherwise, the computation executes.

When the processors are in SIMD mode, the first instruction performs a return from interrupt and both processing
elements execute the computation in parallel. The result from PEx is placed in R6, and the result from PEy is placed
in S6. The second instruction performs a return from subroutine (RTS) if the condition tests true in both PEx or
PEy. In the third instruction, the condition is evaluated independently on each processing element, PEx and PEy.
The RTS executes based on the logical ANDing of the PEx and PEy conditional tests. So, the RTS executes if the
condition tests true in both PEx and PEy. Because the ELSE inverts the conditional test, the computation is per-
formed independently on either PEx or PEy based on the negative evaluation of the condition code seen by that
processing element. The R0 register stores the result in PEx, and S0 stores the result in PEy if the computations are
executed.

Type11c Instruction Syntax

Type11c

cond[4:0]

1 0 0 0 0 0 0 1 0 0 0 0 0 0 01
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x
j lr

Figure 14-6: Type11c Instruction

RETURN (Type 11c)

RETURN Encode Table

x j lr Syntax

0 0 0 rts

0 0 1 rts (lr)

0 1 0 rts (db)

0 1 1 rts (db,lr)

1 0 0 rti

1 1 0 rti (db)

Type 11c VISA (cond + branch return)
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Type 12a ISA/VISA (do until imm loop counter expired)
Syntax Summary

Table 14-1: Group I Instructions by Instruction Type

Type Addr Option1 Operation Option2 Option3

12a
(imm)

ISA

VISA

LCNTR = <data16>,
DO <addr24> UNTIL
LCE;
LCNTR =<data16>,
DO (PC,<reladdr24>)
UNTIL LCE

The following table provides the opcode field values (mode) and the instruction syntax overview (Syntax)

mode Syntax

0 lcntr = uimm16 Register Type, do (pc,imm23pc Register Type) until lce ;

1 lcntr = uimm16 Register Type, do (pc,imm23pc Register Type) until lce (f ) ;

Abstract

Load loop counter, do loop until loop counter expired

Description

SISD and SIMD Modes

In SISD or SIMD modes, the Type 12 instruction sets up a counter-based program loop. The loop counter
LCNTR is loaded with 16-bit immediate data or from a universal register. The loop start address is pushed on
the PC stack. The loop end address and the LCE termination condition are pushed on the loop address stack.
The end address can be either a label for an absolute 24-bit program memory address, or a PC-relative 24-bit
two’s-complement address. The LCNTR is pushed on the loop counter stack and becomes the CURLCNTR
value. The loop executes until the CURLCNTR reaches zero.

The Mode bit (bit 23) configures if this is an E2 active loop (=0) or a F1 active loop (=1)

Example

LCNTR=100, DO fmax UNTIL LCE;   /* fmax is a program label */
LCNTR=R12, DO (PC,16) UNTIL LCE;
The processor (in SISD or SIMD) executes the action at the indicated address for the duration of the loop.

Type 12a ISA/VISA (do until imm loop counter expired)
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Type12a_imm Instruction Syntax

Type12a_imm

mode

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

data[15:8]

data[7:0] reladdr[22:16]

reladdr[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 14-7: Type12a_imm Instruction

Type 12a ISA/VISA (do until ureg loop counter expired)
Syntax Summary

Table 14-2: Group I Instructions by Instruction Type

Type Addr Option1 Operation Option2 Option3

12a (imm) ISA

VISA

LCNTR = Ureg, DO <addr24> UNTIL
LCE;
LCNTR = Ureg, DO(PC,<reladdr24>)
UNTIL LCE;

The following table provides the opcode field values (mode) and the instruction syntax overview (Syntax)

mode Syntax

0 lcntr = UREG Registers Class, do (pc,imm23pc Register Type) until lce ;

1 lcntr = UREG Registers Class, do (pc,imm23pc Register Type) until lce (f ) ;

Abstract

Load loop counter, do loop until loop counter expired

Description

SISD and SIMD Modes

In SISD or SIMD modes, the Type 12 instruction sets up a counter-based program loop. The loop counter
LCNTR is loaded with 16-bit immediate data or from a universal register. The loop start address is pushed on
the PC stack. The loop end address and the LCE termination condition are pushed on the loop address stack.

Type 12a ISA/VISA (do until ureg loop counter expired)
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The end address can be either a label for an absolute 24-bit program memory address, or a PC-relative 24-bit
two’s-complement address. The LCNTR is pushed on the loop counter stack and becomes the CURLCNTR
value. The loop executes until the CURLCNTR reaches zero.

The Mode bit (bit 23) configures if this is an E2 active loop (=0) or a F1 active loop (=1)

Example

LCNTR=100, DO fmax UNTIL LCE;   /* fmax is a program label */
LCNTR=R12, DO (PC,16) UNTIL LCE;
The processor (in SISD or SIMD) executes the action at the indicated address for the duration of the loop.

Type12a_ureg Instruction Syntax

Type12a_ureg

mode

0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

ureg[6:0]

reladdr[22:16]

reladdr[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 14-8: Type12a_ureg Instruction

Type 13a ISA/VISA (do until termination)
Syntax Summary

Type Addr Option 1 Operation Option 2 Option 3

13a ISA

VISA

DO <addr24> UNTIL
termination; 
DO (PC,<reladdr24>)
UNTIL termination;

Yes

The following table provides the opcode field values (mode) and the instruction syntax overview (Syntax)

mode Syntax

0 do (pc,imm23pc Register Type) until TERM (Type 13a) ;

1 do (pc,imm23pc Register Type) until TERM (Type 13a) (f ) ;

Abstract

Do until termination

Type 13a ISA/VISA (do until termination)
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Description

SISD Mode

In SISD mode, the Type 13 instruction sets up a conditional program loop. The loop start address is pushed
on the PC stack. The loop end address and the termination condition are pushed on the loop stack. The
end address can be either a label for an absolute 24-bit program memory address or a PC-relative, 24-bit twos-
complement address. The loop executes until the termination condition tests true.

SIMD Mode

In SIMD mode, the Type 13 instruction provides the same conditional program loop as is available in SISD
mode, except that in SIMD mode the loop executes until the termination condition tests true in both the
X and Y processing elements.

The following code compares the Type 13 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (Program Sequencer Operation Stated in the Instruction Syntax

DO <addr24> UNTIL (PEx AND PEy) termination ;
DO (PC, <reladdr24>) UNTIL (PEx AND PEy) termination ;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

/* No implicit PEy operation */

Example

placeholder

Type13a Instruction Syntax

Type13a

mode

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

term[4:0]

reladdr[22:16]

reladdr[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 14-9: Type13a Instruction

Type 13a ISA/VISA (do until termination)
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TERM (Type 13a)

TERM Encode Table

term Syntax

00000 eq

00001 lt

00010 le

00011 ac

00100 av

00101 mv

00110 ms

00111 sv

01000 sz

01001 flag0_in

01010 flag1_in

01011 flag2_in

01100 flag3_in

01101 tf

01110 bm

01110 sf

01111 lce

10000 ne

10001 ge

10010 gt

10011 not ac

10100 not av

10101 not mv

10110 not ms

10111 not sv

11000 not sz

11001 not flag0_in

11010 not flag1_in

11011 not flag2_in

11100 not flag3_in

Type 13a ISA/VISA (do until termination)
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term Syntax

11101 not tf

11110 not bm

11110 not sf

11111 forever

Type 13a ISA/VISA (do until termination)
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15   Group III Immediate Data Move Instruc-
tions

The group III instructions contain data move operation with immediate data or indirect addressing.

Type Addr Operation Modifier SHARC 5 Stage Core

14a ISA

VISA

DM(<addr32>)
= Ureg
PM(<addr32>)
= Ureg
Ureg = DM(<addr32>)
Ureg = PM(<addr32>) 

(lw); Yes

14d ISA DM(<addr32>)
= Dreg

(lw/sw/bw/ex); No

Dreg = DM(<addr32>) (lw/sw/bw/ex);
(swse/bwse/ex);

No

15a ISA

VISA

DM(<data32>,Ia) = Ureg
PM(<data32>,Ic) = Ureg
Ureg = DM(<data32>,Ia)
Ureg = PM(<data32>,Ic)

(lw); Yes

15b VISA DM(<data7>,Ia) = Ureg
PM(<data7>,Ic) = Ureg
Ureg = DM(<data7>,Ia)
Ureg = PM(<data7>,Ic)

(lw); Yes

16a ISA

VISA

DM(Ia,Mb) = <data32>;
PM(Ic,Md) = <data32>;

Yes

16b VISA DM(Ia,Mb) = <data16>;
PM(Ic,Md) = <data16>;

Yes

17a ISA

VISA

Ureg = <data32>; Yes

17b VISA Ureg = <data16>; Yes

Group III Immediate Data Move Instructions
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Type 14a ISA/VISA (mem data move)
Syntax Summary

Type Addr Operation Modifier SHARC 5 Stage
Core

14a ISA

VISA

DM(<addr32>)
= Ureg
PM(<addr32>)
= Ureg
Ureg = DM(<addr32>)
Ureg = PM(<addr32>) 

(lw); Yes

The following table provides the opcode field values (g, d, l) and the instruction syntax overview (Syntax)

g d l Syntax

0 0 0 UREG Registers Class = dm(imm32 Register Type);

0 1 0 dm(imm32 Register Type) = UREG Registers Class;

1 0 0 UREG Registers Class = pm(imm32 Register Type);

1 1 0 pm(imm32 Register Type) = UREG Registers Class;

0 0 1 UREG Registers Class = dm(imm32 Register Type) (lw);

0 1 1 dm(imm32 Register Type) = UREG Registers Class (lw);

1 0 1 UREG Registers Class = pm(imm32 Register Type) (lw);

1 1 1 pm(imm32 Register Type) = UREG Registers Class (lw);

Abstract

Transfer between data or program memory and universal register, direct addressing, immediate address

Description

SISD Mode

In SISD mode, the Type 14 instruction sets up an access between data or program memory and a universal
register, with direct addressing. The entire data or program memory address is specified in the instruction. The
optional (LW) in this syntax lets programs specify long word addressing, overriding default addressing from
the memory map.

SIMD Mode

In SIMD mode, the Type 14 instruction provides the same access between data or program memory and a
universal register, with direct addressing, as is available in SISD mode, except that addressing differs slightly,
and the transfer occurs in parallel for the X and Y processing elements.

Type 14a ISA/VISA (mem data move)
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For the memory access in SIMD mode, the X processing element uses the specified 32-bit address to address
memory. The Y element adds k to the specified 32-bit address to address memory.

For the universal register, the X element uses the specified Ureg, and the Y element uses the complementary
register (Cureg) that corresponds to the Ureg register specified in the instruction. Note that only the Cureg
subset registers which have complementary registers are effected by SIMD mode.

The following code compares the Type 14 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<addr32>) = ureg ;
PM(<addr32>) = ureg ;
 
ureg = DM(<addr32>) ;
ureg = PM(<addr32>) ;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(<addr32>+k) = cureg ;
PM(<addr32>+k) = cureg ;
 
cureg = DM(<addr32>+k) ;
cureg = PM(<addr32>+k) ;
 
Note that if the instruction type uses optional forced long word modifier (LW) SIMD mode is overwritten
and register pair access is performed.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<addr32>) = ureg0/1 (LW);
PM(<addr32>) = ureg0/1 (LW);
ureg0/1 = DM(<addr32>) (LW);
ureg0/1 = PM(<addr32>) (LW);
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

no operations

Example

DM(temp)=MODE1; /* temp is a program label */
LCNTR=PM(0x90500);
When the processors are in SISD mode, the first instruction performs a direct memory write of the value in the
MODE1 register into data memory with the data memory destination address specified by the program label, temp.
The second instruction initializes the LCNTR register with the value found in the specified address in program
memory.

Type 14a ISA/VISA (mem data move)
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Because of the register selections in this example, these two instructions operate the same in SIMD and SISD mode.
The MODE1 (SREG) and LCNTR (UREG) registers have no complements, so they do not operate differently in
SIMD mode.

Type14a Instruction Opcode

Type14a

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

ureg[6:0]

addr[31:16]

addr[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

g
d

l

Figure 15-1: Type14a Instruction

Type 14d ISA/VISA (exclusive mem data move)

Syntax Summary

NOTE: The 48-bit 14d instruction type is an extension (exclusive access) to 14a instruction.

Type Addr Operation Option

14d ISA

VISA

DM(<addr32>) = Dreg (lw/sw/bw/ex);
Dreg = DM(<addr32>) (lw/sw/bw/ex);

(swse/bwse/ex);

The following table provides the opcode field values (w, ex, d, l) and the instruction syntax overview (Syntax)

w ex d l Syntax

1 1 0 0 RFREG Register Class = dm(imm32 Register Type) EX (Type 14d);

1 1 1 0 dm(imm32 Register Type) = RFREG Register Class EX (Type 14d);

0 1 0 - RFREG Register Class = dm(imm32 Register Type) BHSEEX (Type 14d);

0 1 1 - dm(imm32 Register Type) = RFREG Register Class BHEX (Type 14d);

0 0 0 - RFREG Register Class = dm(imm32 Register Type) BHSE (Type 14d);

0 0 1 - dm(imm32 Register Type) = RFREG Register Class BH (Type 14d);

1 1 0 1 RFREG Register Class = dm(imm32 Register Type) LWEX (Type 14d);

Type 14d ISA/VISA (exclusive mem data move)
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w ex d l Syntax

1 1 1 1 dm(imm32 Register Type) = RFREG Register Class LWEX (Type 14d);

Abstract

Transfer between data or program memory and register file, direct addressing, immediate address with options for
byte address sub-word access and exclusive access

Description

The type 14d instruction provides additional options for the Type 14 direct address instruction. The access is how-
ever restricted to the R register file, or in SIMD mode R and S registers, rather than the entire universal register set.

The optional (BW), (BWSE), (SW), and (SWSE), may only be used when the I-register addresses byte space.
(BW) specifies a byte access; the 8-bit value loaded into a register is zero extended to 32-bits and the value stored is
the low order 8-bits of the 32-bit value in the register. (SW) specifies a short word access; the 16-bit value loaded
into a register is zero extended to 32-bits and the value stored is the low order 16-bits of the 32-bit value in the
register. (BWSE) and (SWSE) may only be used on loads and specify the 8-bit value is sign extended or 16-bit
value is sign extended respectively. These options may be used in SISD and SIMD mode.

The (EX) specifies an exclusive access. This option may be combined with (LW), (BW), (BWSE), (SW),
(SWSE) which is written (LW, EX) etc., or used alone to specify a normal word exclusive access.

Example

R2 = DM(0x12456) (BW);
PM(symbolic_addr) = R12 (EX);

Type14d Instruction Opcode

Type14d

0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

dreg[3:0]

addr[31:16]

addr[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

d
ex

x
w

l

Figure 15-2: Type14d Instruction

Type 14d ISA/VISA (exclusive mem data move)
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BH (Type 14d)

BH Encode Table

l Syntax

0 (bw)

1 (sw)

BHEX (Type 14d)

BHEX Encode Table

l Syntax

0 (bw,ex)

1 (sw,ex)

BHSE (Type 14d)

BHSE Encode Table

l x Syntax

0 0 (bw)

1 0 (sw)

0 1 (bwse)

1 1 (swse)

BHSEEX (Type 14d)

BHSEEX Encode Table

l x Syntax

0 0 (bw,ex)

1 0 (sw,ex)

0 1 (bwse,ex)

1 1 (swse,ex)

Type 14d ISA/VISA (exclusive mem data move)
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EX (Type 14d)

EX Encode Table

Syntax

(ex)

LWEX (Type 14d)

LWEX Encode Table

Syntax

(lw,ex)

Type 15a ISA/VISA (<data32> move)
Syntax Summary

Type Addr Operation Option

15a ISA VISA DM(<data32>,Ia) = Ureg
PM(<data32>,Ic) = Ureg
Ureg = DM(<data32>,Ia)
Ureg = PM(<data32>,Ic)

(lw);

The following table provides the opcode field values (g, d, l) and the instruction syntax overview (Syntax)

g d l Syntax

0 0 0 UREG Registers Class = dm(imm32 Register Type, I1REG Register Class);

0 1 0 dm(imm32 Register Type, I1REG Register Class) = UREGXDAG1 Register Class;

1 0 0 UREG Registers Class = pm(imm32 Register Type, I2REG Register Class);

1 1 0 pm(imm32 Register Type, I2REG Register Class) = UREGXDAG2 Register Class;

0 0 1 UREG Registers Class = dm(imm32 Register Type, I1REG Register Class) (lw);

0 1 1 dm(imm32 Register Type, I1REG Register Class) = UREGXDAG1 Register Class (lw);

1 0 1 UREG Registers Class = pm(imm32 Register Type, I2REG Register Class) (lw);

1 1 1 pm(imm32 Register Type, I2REG Register Class) = UREGXDAG2 Register Class (lw);

Abstract

Transfer between data or program memory and universal register, indirect addressing, modify, optional modifier

Type 14d ISA/VISA (exclusive mem data move)
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Description

SISD Mode

In SISD mode, the Type 15 instruction sets up an access between data or program memory and a universal
register, with indirect addressing using I registers. The I register is pre-modified with an immediate value speci-
fied in the instruction. The I register is not updated. The Ureg may not be from the same DAG (that is,
DAG1 or DAG2) as Ia/Mb or Ic/Md. The optional (LW) in this syntax lets programs specify long word
addressing, overriding default addressing from the memory map.

SIMD Mode

In SIMD mode, the Type 15 instruction provides the same access between data or program memory and a
universal register, with indirect addressing using I registers, as is available in SISD mode, except that address-
ing differs slightly, and the transfer occurs in parallel for the X and Y processing elements.

The X processing element uses the specified I register—pre-modified with an immediate value—to address
memory. The Y processing element adds k to the pre-modified I value to address memory. The I register is not
updated.

The Ureg specified in the instruction is used for the X processing element transfer and may not be from the
same DAG (that is, DAG1 or DAG2) as Ia/Mb or Ic/Md. The Y element uses the complementary register
(Cureg) that correspond to the Ureg register specified in the instruction. Note that only the Cureg subset
registers which have complimentary registers are effected by SIMD mode.

The following code compares the Type 15 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<data32>, Ia) = ureg ;
PM(<data32>, Ic) = ureg ;
 
ureg = DM(<data32>, Ia) ;
ureg = PM(<data32>, Ic) ;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(<data32>+k, Ia) = cureg ;
PM(<data32>+k, Ic) = cureg ;
 
cureg = DM(<data32>+k, Ia) ;
cureg = PM(<data32>+k, Ic) ;
 
Note that if the instruction type uses optional forced long word modifier (LW) SIMD mode is overwritten
and register pair access is done

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

Type 15a ISA/VISA (<data32> move)
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DM(<data32>, Ia) = ureg0/1 (LW);
PM(<data32>, Ic) = ureg0/1 (LW);
ureg0/1 = DM(<data32>, Ia) (LW);
ureg0/1 = PM(<data32>, Ic) (LW);
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

no instructions

If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Example

DM(24,I5)=TCOUNT;
USTAT1=PM(offs,I13);   /* offs is a user-defined constant */
When the processors are in SISD mode, the first instruction performs a data memory write, using indirect address-
ing and the Ureg timer register, TCOUNT. The DAG1 register I5 is pre-modified with the immediate value of 24.
The I5 register is not updated after the memory access occurs. The second instruction performs a program memory
read, using indirect addressing and the system register, USTAT1. The DAG2 register I13 is pre-modified with the
immediate value of the defined constant, offs. The I13 register is not updated after the memory access occurs.

Because of the register selections in this example, the first instruction in this example operates the same in SIMD
and SISD mode. The TCOUNT (timer) register is not included in the Cureg subset, and therefore the first instruc-
tion operates the same in SIMD and SISD mode.

The second instruction operates differently in SIMD. The USTAT1 (system) register is included in the Cureg sub-
set. Therefore, a program memory read—using indirect addressing and the system register, USTAT1 and its compli-
mentary register USTAT2—is performed in parallel on PEx and PEy respectively. The DAG2 register I13 is pre-
modified with the immediate value of the defined constant, offs, to address memory on PEx. This same pre-
modified value in I13 is skewed by k to address memory on PEy. The I13 register is not updated after the memory
access occurs in SIMD mode.

Type 15a ISA/VISA (<data32> move)
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Type15a Instruction Opcode

Type15a

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

ureg[6:0]

addr[31:16]

addr[15:0]

1
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

g
i[2:0]

l
d

Figure 15-3: Type15a Instruction

Type 15b VISA (<data7> move)
Syntax Summary

Type Addr Operation Option

15b VISA DM(<data7>,Ia) = Ureg
PM(<data7>,Ic) = Ureg
Ureg = DM(<data7>,Ia)
Ureg = PM(<data7>,Ic)

(lw); Yes

The following table provides the opcode field values (g, d, l) and the instruction syntax overview (Syntax)

g d l Syntax

0 0 0 UREG Registers Class = dm(imm7visa Register Type, I1REG Register Class);

0 1 0 dm(imm7visa Register Type, I1REG Register Class) = UREGXDAG1 Register Class;

1 0 0 UREG Registers Class = pm(imm7visa Register Type, I2REG Register Class);

1 1 0 pm(imm7visa Register Type, I2REG Register Class) = UREGXDAG2 Register Class;

0 0 1 UREG Registers Class = dm(imm7visa Register Type, I1REG Register Class) (lw);

0 1 1 dm(imm7visa Register Type, I1REG Register Class) = UREGXDAG1 Register Class (lw);

1 0 1 UREG Registers Class = pm(imm7visa Register Type, I2REG Register Class) (lw);

1 1 1 pm(imm7visa Register Type, I2REG Register Class) = UREGXDAG2 Register Class (lw);

Abstract

Transfer (7-bit data) between data or program memory and universal register, indirect addressing, immediate modifi-
er

Type 15b VISA (<data7> move)
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Description

SISD Mode

In SISD mode, the Type 15 instruction sets up an access between data or program memory and a universal
register, with indirect addressing using I registers. The I register is pre-modified with an immediate value speci-
fied in the instruction. The I register is not updated. The Ureg may not be from the same DAG (that is,
DAG1 or DAG2) as Ia/Mb or Ic/Md. The optional (LW) in this syntax lets programs specify long word
addressing, overriding default addressing from the memory map.

SIMD Mode

In SIMD mode, the Type 15 instruction provides the same access between data or program memory and a
universal register, with indirect addressing using I registers, as is available in SISD mode, except that address-
ing differs slightly, and the transfer occurs in parallel for the X and Y processing elements.

The X processing element uses the specified I register—pre-modified with an immediate value—to address
memory. The Y processing element adds k to the pre-modified I value to address memory. The I register is not
updated.

The Ureg specified in the instruction is used for the X processing element transfer and may not be from the
same DAG (that is, DAG1 or DAG2) as Ia/Mb or Ic/Md. The Y element uses the complementary register
(Cureg) that correspond to the Ureg register specified in the instruction. Note that only the Cureg subset
registers which have complimentary registers are effected by SIMD mode.

The following code compares the Type 15 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<data7>, Ia) = ureg (LW);
PM(<data7>, Ic) = ureg (LW);
 
ureg = DM(<data7>, Ia) (LW);
ureg = PM(<data7>, Ic) (LW);
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(<data7>+k, Ia) = cureg (LW);
PM(<data7>+k, Ic) = cureg (LW);
 
cureg = DM(<data7>+k, Ia) (LW);
cureg = PM(<data7>+k, Ic) (LW);
 
Note that if the instruction type uses optional forced long word modifier (LW) SIMD mode is overwritten
and register pair access is done

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

Type 15b VISA (<data7> move)
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DM(<data7>, Ia) = ureg0/1 (LW);
PM(<data7>, Ic) = ureg0/1 (LW);
ureg0/1 = DM(<data7>, Ia) (LW);
ureg0/1 = PM(<data7>, Ic) (LW);
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

no instructions

If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Example

DM(24,I5)=TCOUNT;
USTAT1=PM(offs,I13);   /* offs is a user-defined constant */
When the processors are in SISD mode, the first instruction performs a data memory write, using indirect address-
ing and the Ureg timer register, TCOUNT. The DAG1 register I5 is pre-modified with the immediate value of 24.
The I5 register is not updated after the memory access occurs. The second instruction performs a program memory
read, using indirect addressing and the system register, USTAT1. The DAG2 register I13 is pre-modified with the
immediate value of the defined constant, offs. The I13 register is not updated after the memory access occurs.

Because of the register selections in this example, the first instruction in this example operates the same in SIMD
and SISD mode. The TCOUNT (timer) register is not included in the Cureg subset, and therefore the first instruc-
tion operates the same in SIMD and SISD mode.

The second instruction operates differently in SIMD. The USTAT1 (system) register is included in the Cureg sub-
set. Therefore, a program memory read—using indirect addressing and the system register, USTAT1 and its compli-
mentary register USTAT2—is performed in parallel on PEx and PEy respectively. The DAG2 register I13 is pre-
modified with the immediate value of the defined constant, offs, to address memory on PEx. This same pre-
modified value in I13 is skewed by k to address memory on PEy. The I13 register is not updated after the memory
access occurs in SIMD mode.

Type15b Instruction Opcode

Type15b

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

g

data[6:0]

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i[2:0]
l

d

ureg[6:0]

Figure 15-4: Type15b Instruction

Type 15b VISA (<data7> move)
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Type 16a ISA/VISA (<data32> move)
Syntax Summary

Type Addr Operation Option

16a ISA

VISA

DM(Ia,Mb) = <data32>;
PM(Ic,Md) = <data32>;

Yes

The following table provides the opcode field values (g) and the instruction syntax overview (Syntax)

g Syntax

0 dm(I1REG Register Class, M1REG Register Class) = imm32f Register Type;

1 pm(I2REG Register Class, M2REG Register Class) = imm32f Register Type;

Abstract

Immediate 32-bit data write to data or program memory

Description

SISD Mode

In SISD mode, the Type 16 instruction sets up a write of 32-bit immediate data to data or program memory,
with indirect addressing. The data is placed in the most significant 32 bits of the 40-bit memory word. The
least significant 8 bits are loaded with 0s. The I register is post-modified and updated by the specified M regis-
ter.

SIMD Mode

In SIMD mode, the Type 16 instruction provides the same write of 32-bit immediate data to data or program
memory, with indirect addressing, as is available in SISD mode, except that addressing differs slightly, and the
transfer occurs in parallel for the X and Y processing elements.

The X processing element uses the specified I register to address memory. The Y processing element adds k to
the I register to address memory. The I register is post-modified and updated by the specified M register.

The following code compares the Type 16 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(Ia, Mb) = <data32> ;
PM(Ic, Md) = <data32> ;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(Ia+k, 0) = <data32> ;

Type 16a ISA/VISA (<data32> move)
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PM(Ic+k, 0) = <data32> ;
 
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Example

DM(I4,M0)=19304;
PM(I14,M11)=count;   /* count is user-defined constant */
When the processors are in SISD mode, the two immediate memory writes are performed on PEx. The first instruc-
tion writes to data memory and the second instruction writes to program memory. DAG1 and DAG2 are used to
indirectly address the locations in memory to which values are written. The I4 and I14 registers are post-modified
and updated by M0 and M11 respectively.

When the processors are in SIMD mode, the two immediate memory writes are performed in parallel on PEx and
PEy. The first instruction writes to data memory and the second instruction writes to program memory. DAG1 and
DAG2 are used to indirectly address the locations in memory to which values are written. The I4 and I14 registers
are post-modified and updated by M0 and M11 respectively.

Type16a Instruction Opcode

Type16a
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

by

data[31:16]

data[15:0]

1
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

m[2:0]
i[2:0]

sl
g

Figure 15-5: Type16a Instruction

Type 16b VISA (<data16> move)
Syntax Summary

Type Addr Operation Option

16b VISA DM(Ia,Mb) = <data16>;
PM(Ic,Md) = <data16>;

Yes

The following table provides the opcode field values (g) and the instruction syntax overview (Syntax)

Type 16b VISA (<data16> move)
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g Syntax

0 dm(I1REG Register Class, M1REG Register Class) = imm16visa Register Type;

1 pm(I2REG Register Class, M2REG Register Class) = imm16visa Register Type;

Abstract

Immediate 16-bit data write to data or program memory

Description

SISD Mode

In SISD mode, the Type 16 instruction sets up a write of 16-bit immediate data to data or program memory,
with indirect addressing. The data is placed in the most significant 32 bits of the 40-bit memory word. The
least significant 8 bits are loaded with 0s. The I register is post-modified and updated by the specified M regis-
ter.

SIMD Mode

In SIMD mode, the Type 16 instruction provides the same write of 16-bit immediate data to data or program
memory, with indirect addressing, as is available in SISD mode, except that addressing differs slightly, and the
transfer occurs in parallel for the X and Y processing elements.

The X processing element uses the specified I register to address memory. The Y processing element adds k to
the I register to address memory. The I register is post-modified and updated by the specified M register.

The following code compares the Type 16 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(Ia, Mb) = <data16> ;
PM(Ic, Md) = <data16> ;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(Ia+k, 0) = <data16> ;
PM(Ic+k, 0) = <data16> ;
 
If Broadcast Load Mode memory read k=0. If SIMD mode NW access k=1, SW access k=2, BW access k=4.

Type 16b VISA (<data16> move)
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Type16b Instruction Opcode

Type16b

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

g

data[15:0]

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

i[2:0]
m[2:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 15-6: Type16b Instruction

Type 17a ISA/VISA (<data32> move)
Syntax Summary

Type Addr Operation Option

17a ISA

VISA

Ureg = <data32>; Yes

The following table provides the instruction syntax overview (Syntax)

Syntax

UREG Registers Class = imm32f Register Type ;

Abstract

Immediate 32-bit data write to universal register

Description

SISD Mode

In SISD mode, the Type 17 instruction writes 32-bit immediate data to a universal register. If the register is 40
bits wide, the data is placed in the most significant 32 bits, and the least significant 8 bits are loaded with 0s.

SIMD Mode

In SIMD mode, the Type 17 instruction provides the same write of 32-bit immediate data to universal register
as is available in SISD mode, but provides parallel writes for the X and Y processing elements.

The X element uses the specified Ureg, and the Y element uses the complementary Cureg. Note that only the
Cureg subset registers which have complimentary registers are effected by SIMD mode.

The following code compares the Type 17 instruction’s explicit and implicit operations in SIMD mode.

Type 17a ISA/VISA (<data32> move)
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SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

ureg = <data32> ;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

cureg = <data32> ;
 

Example

ASTATx=0x0;
M15=mod1;   /* mod1 is user-defined constant */
When the processors are in SISD mode, the two instructions load immediate values into the specified registers.

Because of the register selections in this example, the second instruction in this example operates the same in SIMD
and SISD mode. The ASTATx (system) register is included in the Cureg subset. In the first instruction, the imme-
diate data write to the system register ASTATx and its complimentary register ASTATy are performed in parallel
on PEx and PEy respectively. In the second instruction, the M15 register is not included in the Cureg subset. So,
the second instruction operates the same in SIMD and SISD mode.

Type17a Instruction Opcode

Type17a
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

data[31:16]

data[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i[2:0]

Figure 15-7: Type17a Instruction

Type 17b VISA (<data16> move)
Syntax Summary

Type Addr Operation Option

17b VISA Ureg = <data16>; Yes

The following table provides the instruction syntax overview (Syntax)

Type 17b VISA (<data16> move)
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Syntax

UREG Registers Class = imm16visa Register Type ;

Abstract

Immediate 16-bit data write to universal register

Description

SISD Mode

In SISD mode, the Type 17 instruction writes 16-bit immediate data to a universal register. If the register is 40
bits wide, the data is placed in the most significant 32 bits, and the least significant 8 bits are loaded with 0s.

SIMD Mode

In SIMD mode, the Type 17 instruction provides the same write of 16-bit immediate data to universal register
as is available in SISD mode, but provides parallel writes for the X and Y processing elements.

The X element uses the specified Ureg, and the Y element uses the complementary Cureg. Note that only the
Cureg subset registers which have complimentary registers are effected by SIMD mode.

The following code compares the Type 17 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

ureg = <data16> ;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

cureg = <data16> ;
 

Type17b Instruction Syntax

Type17b

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

data[15:0]

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ureg[6:0]

Figure 15-8: Type17b Instruction

Type 17b VISA (<data16> move)
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16   Group IV Miscellaneous Instructions

The group IV instructions contains miscellaneous operations.

Type Addr Operation SHARC 5 Stage
Core

18a ISA

VISA

BIT SET Sreg <data32>; 
BIT CLR Sreg <data32>;
BIT TGL Sreg <data32>;
BIT TST Sreg <data32>;
BIT XOR Sreg <data32>;

Yes

19a (modify) ISA

VISA

MODIFY (Ia,<data32>);
MODIFY (Ic,<data32>);
Ia = MODIFY (Ia,<data32>);
Ic = MODIFY (Ic,<data32>);

Yes

19a (bit rev) ISA

VISA

BITREV (Ia, <data32>);
BITREV (Ic, <data32>);
Ia = BITREV (Ia,<data32>);
Ic = BITREV (Ic,<data32>);

Yes

20a ISA

VISA

PUSH LOOP, PUSH STS, PUSH PCSTK, FLUSH CACHE; 
POP LOOP, POP STS, POP PCSTK, FLUSH CACHE; 

Yes

INVALIDATE I_CACHE; 
INVALIDATE DM_CACHE, INVALIDATE PM_CACHE;
WRITEBACK DM_CACHE, WRITEBACK PM_CACHE; 
FLUSH DM_CACHE, FLUSH PM_CACHE; 

No

21a ISA

VISA

NOP; Yes

21c VISA NOP; Yes

22a ISA

VISA

IDLE;
EMUIDLE;

Yes

22c VISA IDLE;
EMUIDLE;

Yes

2324 Reserved

Group IV Miscellaneous Instructions
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Type Addr Operation SHARC 5 Stage
Core

25a ISA

VISA

CJUMP <addr24> (db);
CJUMP (PC, <reladdr24>) (db);
RFRAME;

Yes

25a (direct) ISA

VISA

CJUMP <addr24> (db); Yes

25a (PC relative) ISA

VISA

CJUMP (PC, <reladdr24>) (db); Yes

25a (rframe) ISA RFRAME; Yes

25c VISA RFRAME; Yes

26a ISA

VISA

SYNC; No

Type 18a ISA/VISA (register bit manipulation)
Syntax Summary

Type Addr Operation

18a ISA

VISA

BIT SET Sreg <data32>; 
BIT CLR Sreg <data32>;
BIT TGL Sreg <data32>;
BIT TST Sreg <data32>;
BIT XOR Sreg <data32>;

Yes

The following table provides the instruction syntax overview (Syntax)

Syntax

bit BOP (Type 18a) SYSREG Register Class imm32c Register Type ;

Abstract

System register bit manipulation

Description

SISD Mode

In SISD mode, the Type 18 instruction provides a bit manipulation operation on a system register. This in-
struction can set, clear, toggle or test specified bits, or compare (XOR) the system register with a specified data
value. In the first four operations, the immediate data value is a mask.

The set operation sets all the bits in the specified system register that are also set in the specified data value.
The clear operation clears all the bits that are set in the data value. The toggle operation toggles all the bits

Type 18a ISA/VISA (register bit manipulation)
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that are set in the data value. The test operation sets the bit test flag (BTF in ASTATx/y) if all the bits that
are set in the data value are also set in the system register. The XOR operation sets the bit test flag (BTF in
ASTATx/y) if the system register value is the same as the data value.

SIMD Mode

In SIMD mode, the Type 18 instruction provides the same bit manipulation operations as are available in
SISD mode, but provides them in parallel for the X and Y processing elements.

The X element operation uses the specified Sreg, and the Y element operations uses the complementary Csreg.

The following code compares the Type 18 instruction’s explicit and implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

BIT SET sreg <data32> ;
BIT CLR sreg <data32> ;
BIT TGL sreg <data32> ;
BIT TST sreg <data32> ;
BIT XOR sreg <data32> ;
 
SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

BIT SET csreg <data32> ;
BIT CLR csreg <data32> ;
BIT TGL csreg <data32> ;
BIT TST csreg <data32> ;
BIT XOR csreg <data32> ;
 

Example

BIT SET MODE2 0x00000070;
BIT TST ASTATx 0x00002000;
When the processors are in SISD mode, the first instruction sets all of the bits in the MODE2 register that are also set
in the data value, bits 4, 5, and 6 in this case. The second instruction sets the bit test flag (BTF in ASTATx) if all
the bits set in the data value, just bit 13 in this case, are also set in the system register.

Because of the register selections in this example, the first instruction operates the same in SISD and SIMD, but the
second instruction operates differently in SIMD. Only the Cureg subset registers which have complimentary regis-
ters are affected in SIMD mode. The ASTATx (system) register is included in the Cureg subset, so the bit test
operations are performed independently on each processing element in parallel using these complimentary registers.
The BTF is set on both PEs (ASTATx and ASTATy), either one PE (ASTATx or ASTATy), or neither PE depend-
ent on the outcome of the bit test operation.

Type 18a ISA/VISA (register bit manipulation)
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Type18a Instruction Syntax

Type18a
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

data[31:16]

data[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sreg[3:0]bop[2:0]

Figure 16-1: Type18a Instruction

BOP (Type 18a)

BOP Encode Table

bop Syntax

000 set

001 clr

010 tgl

100 tst

101 xor

Type 19a ISA/VISA (index modify)
Syntax Summary

Type Addr Operation

19a (modi-
fy)

ISA

VISA

MODIFY (Ia,<data32>);
MODIFY (Ic,<data32>);
Ia = MODIFY (Ia,<data32>);
Ic = MODIFY (Ic,<data32>);

Yes

The following table provides the opcode field values (sc, g) and the instruction syntax overview (Syntax)

sc g Syntax

10 0 modify(I1REG Register Class,imm32 Register Type);

-- 0 I1REG Register Class = modify(I1REG Register Class,imm32 Register Type) BH (Type 19a - modi-
fy);

10 1 modify(I2REG Register Class,imm32 Register Type);

Type 18a ISA/VISA (register bit manipulation)
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sc g Syntax

-- 1 I2REG Register Class = modify(I2REG Register Class,imm32 Register Type) BH (Type 19a - modi-
fy);

Abstract

Immediate I register modify

Description

SISD and SIMD Modes

In SISD and SIMD modes, the Type 19 instruction modifies and adds the specified source Ia/Ic register with
an immediate 32-bit data value and stores the result to the specified destination Ia/Ic register. If no destination
register is specified then the source I register is updated. No address is output.

NOTE: If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set up for circular
bufferring, the modify operation always executes circular buffer wraparound, independ-
ent of the CBUFEN bit.

Example

MODIFY (I4, 304); 
   /* operation is the same as I4=MODIFY(I4,304) */
I3 = MODIFY (I2,0x123);
I9 = MODIFY (I9,0x1);

Type19a Instruction Opcode

Type19a
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

data[31:16]

data[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

is[2:0]sc[1:0]
w
g

idis[2:0]

Figure 16-2: Type19a Instruction

Type 19a ISA/VISA (index modify)
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BH (Type 19a - modify)

BH Encode Table

sc w Syntax

10 0

01 0 (sw)

01 1 (nw)

Type 19a ISA/VISA (index bitrev)
Syntax Summary

Type Addr Operation

19a (bit rev) ISA

VISA

BITREV (Ia, <data32>);
BITREV (Ic, <data32>);
Ia = BITREV (Ia,<data32>);
Ic = BITREV (Ic,<data32>);

Yes

The following table provides the opcode field values (g) and the instruction syntax overview (Syntax)

g Syntax

0 bitrev(I1REG Register Class,imm32 Register Type);

0 I1REG Register Class = bitrev(I1REG Register Class,imm32 Register Type);

1 bitrev(I2REG Register Class,imm32 Register Type);

1 I2REG Register Class = bitrev(I2REG Register Class,imm32 Register Type);

Abstract

Immediate I register bit-reverse

Description

SISD and SIMD Modes

In SISD and SIMD modes, if the address is to be bit-reversed (as specified by mnemonic), the modified value
is bit-reversed before being written back to the destination I register. No address is output.

NOTE: If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set up for circular
bufferring, the modify operation always executes circular buffer wraparound, independ-
ent of the CBUFEN bit.

Type 19a ISA/VISA (index modify)
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Example

4) */
BITREV (I7, space); 
   /* “space” is a user-defined constant,
      operation is the same as 
      I7=BITREV(I7,space) */
I2 = BITREV (I1,122); I15 =BITREV(I12,0x10);

Type19a_bitrev Instruction Opcode

Type19a_bitrev

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

data[31:16]

data[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

is[2:0]g
idis[2:0]

Figure 16-3: Type19a_bitrev Instruction

Type 20a ISA/VISA (push/pop stack/manipulate cache)

Syntax Summary

Type Addr Operation

20a ISA

VISA

PUSH LOOP, PUSH STS, PUSH PCSTK, FLUSH CACHE;POP LOOP, POP STS, 
POP PCSTK, 
FLUSH CACHE;
INVALIDATE I_CACHE;
INVALIDATE DM_CACHE, INVALIDATE PM_CACHE;
WRITEBACK DM_CACHE, WRITEBACK PM_CACHE; 
FLUSH DM_CACHE, FLUSH PM_CACHE; 

The following table lists the opcode fields and provides links to their values.

Bit Fields Control

fc flush cache (see CACHE (Type 20a))

ppu, ppo push/pop pcstk (see PCSTK (Type 20a))

spu, spo push/pop sts (see STS (Type 20a))

lpu, lpo push/pop loop (see LOOP (Type 20a))

Type 20a ISA/VISA (push/pop stack/manipulate cache)
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Bit Fields Control

l1ii invalidate L1 I-cache (see ICACHE (Type 20a))

l1di, l1dwb writeback, flush, or invalidate L1 DM-cache (see DMCACHE (Type 20a))

l1pi, l1pwb writeback, flush, or invalidate L1 PM-cache (see PMCACHE (Type 20a))

Abstract

Push or Pop of loop and/or status stacks, or cache maintenance instruction.

Description

SISD and SIMD Modes

In SISD and SIMD modes, the Type 20 instruction pushes or pops the loop address and loop counter stacks,
the status stack, and/or the PC stack, and/or clear the instruction-conflict cache. Any of set of pushes (push
loop, push sts, push pcstk) or pops (pop loop, pop sts, pop pcstk) may be combined in a single instruction,
but a push may not be combined with a pop. Flushing the instruction-conflict cache invalidates all entries in
the cache, and has an effect latency of one instruction when executing from internal memory, and two instruc-
tions when executing from external memory.

The Type 20 instruction also invalidates, flushes or writes back the L1 cache. These operations may not be
combined with any other.

Example
PUSH LOOP;           // push loop stack
POP LOOP:         // pop loop stack
PUSH STS;        // push status stack
POP STS;        // pop status stack
PUSH PCSTK;       // push PC stack
POP PCSTK;       // pop PC stack
FLUSH CACHE;    // flush instruction-conflict cache
INVALIDATE I_CACHE;    // invalidate one line in L1 instruction cache
INVALIDATE DM_CACHE, INVALIDATE PM_CACHE; // invalidate one line in L1 data cache
WRITEBACK DM_CACHE, WRITEBACK PM_CACHE;  // write back line in L1 data cache
FLUSH DM_CACHE, FLUSH PM_CACHE ;    // flush one line in L1 data cache
PUSH LOOP, PUSH STS;               // push loop and status stacks
POP PCSTK, FLUSH CACHE;    // pop PC stack and flush instruction-conflict cache

In SISD and SIMD, the first instruction pushes the loop stack and status stack. The second instruction pops the PC
stack and flushes the cache.

Type 20a ISA/VISA (push/pop stack/manipulate cache)
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Type20a Instruction Opcode

Type20a

lldi

0 0 1 0 1 1 1 0 0 0 0 0 0 0 0

lpu
lpo
spu

fc

llii
lldwb

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

llpi
llpwb

ppo
ppu
spo

Figure 16-4: Type20a Instruction

CACHE (Type 20a)

CACHE Encode Table

The following table provides the opcode field values (spu, spo) and the instruction syntax overview (Syntax)

spu spo Syntax

0 0

1 0 push sts

0 1 pop sts

DMCACHE (Type 20a)

DMCACHE Encode Table

The following table provides the opcode field values (l1di, l1dwb) and the instruction syntax overview (Syntax)

l1di l1dwb Syntax

0 0

1 0 invalidate dm_cache

0 1 writeback dm_cache

1 1 writeback dm_cache

ICACHE (Type 20a)

ICACHE Encode Table

The following table provides the opcode field values (l1ii) and the instruction syntax overview (Syntax)

Type 20a ISA/VISA (push/pop stack/manipulate cache)
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l1ii Syntax

0

1 invalidate
i_cache

LOOP (Type 20a)

LOOP Encode Table

The following table provides the opcode field values (lpu, lpo) and the instruction syntax overview (Syntax)

lpu lpo Syntax

0 0

1 0 push loop

0 1 pop loop

PCSTK (Type 20a)

PCSTK Encode Table

The following table provides the opcode field values (ppu, ppo) and the instruction syntax overview (Syntax)

pp
u

ppo Syntax

0 0

1 0 push pcstk

0 1 pop pcstk

PMCACHE (Type 20a)

PMCACHE Encode Table

The following table provides the opcode field values (l1pi, l1pwb) and the instruction syntax overview (Syntax)

l1pi l1pwb Syntax

0 0

1 0 invalidate pm_cache

0 1 writeback pm_cache

1 1 flush pm_cache

Type 20a ISA/VISA (push/pop stack/manipulate cache)
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STS (Type 20a)

STS Encode Table

The following table provides the opcode field values (spu, spo) and the instruction syntax overview (Syntax)

spu spo Syntax

0 0

1 0 push sts

0 1 pop sts

Type 21a ISA/VISA (nop)
Syntax Summary

Type Addr Operation

21a ISA

VISA

NOP; Yes

The following table provides the instruction syntax overview (Syntax)

Syntax

nop ;

Abstract

No Operation (NOP)

Description

SISD and SIMD Modes

In SISD and SIMD modes, the Type 21 instruction provides a null operation; it increments only the fetch
address.

Example

nop;

Type 20a ISA/VISA (push/pop stack/manipulate cache)
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Type21a Instruction Opcode

Type21a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 16-5: Type21a Instruction

Type 21c VISA (nop)
Syntax Summary

Type Addr Operation

21c VISA NOP; Yes

The following table provides the instruction syntax overview (Syntax)

Syntax

nop ;

Abstract

No Operation (NOP)

Description

SISD and SIMD Modes

In SISD and SIMD modes, the Type 21 instruction provides a null operation; it increments only the fetch
address.

Example

nop;

Type21c Instruction Opcode

Type21c

0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 16-6: Type21c Instruction

Type 21c VISA (nop)
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Type 22a ISA/VISA (idle/emuidle)
Syntax Summary

Type Addr Operation

22a ISA

VISA

IDLE;
EMUIDLE;

Yes

The following table provides the opcode field values (emu) and the instruction syntax overview (Syntax)

emu Syntax

0 idle ;

1 emuidle ;

Abstract

Low power/emulation halt instruction

Description

SISD and SIMD Modes

In SISD and SIMD modes, the Type 22 idle instruction puts the processor in a low power state. The pro-
cessor remains in the low power state until an interrupt occurs. On return from the interrupt, execution con-
tinues at the instruction following the Idle instruction. The emuidle instruction halts the core caused by a
software breakpoint hit and places the core in emulation space. An RTI instruction releases the core back to
user space.

Example

IDLE;
EMUIDLE;

Type22a Instruction Opcode

Type22a

0 0 0 0 0 0 0 1 0 0 0 0 0 0 00
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

emu

Figure 16-7: Type22a Instruction

Type 22a ISA/VISA (idle/emuidle)
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Type 22c VISA (idle/emuidle)
Syntax Summary

Type Addr Operation

22c VISA IDLE;
EMUIDLE;

Yes

The following table provides the opcode field values (emu) and the instruction syntax overview (Syntax)

emu Syntax

0 idle ;

1 emuidle ;

Abstract

Low power/emulation halt instruction

Description

SISD and SIMD Modes

In SISD and SIMD modes, the Type 22 idle instruction puts the processor in a low power state. The pro-
cessor remains in the low power state until an interrupt occurs. On return from the interrupt, execution con-
tinues at the instruction following the Idle instruction. The emuidle instruction halts the core caused by a
software breakpoint hit and places the core in emulation space. An RTI instruction releases the core back to
user space.

Example

IDLE;
EMUIDLE;

Type22c Instruction Syntax

Type22c

emu

0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 16-8: Type22c Instruction

Type 22c VISA (idle/emuidle)
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Type 25a ISA/VISA (cjump direct)
Syntax Summary

Type Addr Operation

25a (direct) ISA

VISA

CJUMP <addr24> (db); Yes

The following table provides the instruction syntax overview (Syntax)

Syntax

cjump imm24 Register Type (db) ;

Abstract

Cjump (Compiler-generated instruction)

Description

Function (SISD and SIMD)

In SISD mode, the Type 25 instruction (cjump) combines a direct jump with register transfer operations that
save the frame and stack pointers.

The Type 25 instruction is only intended for use by a C (or other high-level-language) compiler. Do not use
cjump in assembly programs. The cjump instruction should always use the DB modifier.

Example

Table 16-1: Operations Done by Forms of the Type 25 Instruction

Compiler-Generated Instruction Operations Performed in SISD Mode Operations Performed in SIMD Mode

CJUMP label (DB); JUMP label (DB), R2=I6, 
I6=I7;

JUMP label (DB), R2=I6, 
S2=I6, I6=I7;

CJUMP (PC,raddr) (DB); JUMP (PC,raddr) (DB), 
R2=I6, I6=I7;

JUMP (PC,raddr) (DB), 
R2=I6, S2=I6, I6=I7;

Type 25a ISA/VISA (cjump direct)
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Type25a_direct Instruction Opcode

Type25a_direct

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0

addr[23:16]

addr[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 16-9: Type25a_direct Instruction

Type 25a ISA/VISA (cjump PC relative)
Syntax Summary

Type Addr Operation

25a (PC rel-
ative)

ISA

VISA

CJUMP (PC, <reladdr24>) (db); Yes

The following table provides the instruction syntax overview (Syntax)

Syntax

cjump (pc,imm24pc Register Type) (db) ;

Abstract

Cjump (Compiler-generated instruction)

Description

Function (SISD and SIMD)

In SISD mode, the Type 25 instruction (cjump) combines a PC-relative jump with register transfer operations
that save the frame and stack pointers.

The Type 25 instruction is only intended for use by a C (or other high-level-language) compiler. Do not use
cjump in assembly programs. The cjump instruction should always use the DB modifier.

The different forms of this instruction perform the operations where raddr indicates a relative 24-bit ad-
dress.

Type 25a ISA/VISA (cjump PC relative)
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Type25a_pcrel Instruction Opcode

Type25a_pcrel

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0

reladdr[23:16]

reladdr[15:0]

0
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 16-10: Type25a_pcrel Instruction

Type 25a ISA/VISA (rframe)
Syntax Summary

Type Addr Operation

25a
(rframe)

ISA

VISA

RFRAME;

The following table provides the instruction syntax overview (Syntax)

Syntax

rframe ;

Abstract

Rframe (Compiler-generated instruction)

Description

Function (SISD and SIMD)

In SISD mode, the instruction (rframe) also reverses the register transfers to restore the frame and stack point-
ers.

The Type 25 instruction is only intended for use by a C (or other high-level-language) compiler. Do not use
rframe in assembly programs.

Type 25a ISA/VISA (rframe)
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Example

Table 16-2: Operations Done by Forms of the Type 25 Instruction

Compiler-Generated Instruction Operations Performed in SISD Mode Operations Performed in SIMD Mode

RFRAME; I7=I6, I6=DM(0,I6); I7=I6, I6=DM(0,I6);

Type25a rframe Instruction Opcode

Type25a_rframe

0 0 1 1 0 1 0 0 0 0 0 0 1 0 00
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 16-11: Type25a_rframe Opcode

Type 25c VISA (rframe)
Abstract

Rframe (Compiler-generated instruction)

Syntax Summary

Type Addr Operation

25c
(rframe)

VISA RFRAME;

The following table provides the instruction syntax overview (Syntax)

Syntax

(rframe)

Description

Function (SISD and SIMD)

In SISD mode, the instruction (rframe) also reverses the register transfers to restore the frame and stack point-
ers.

The Type 25 instruction is only intended for use by a C (or other high-level-language) compiler. Do not use
rframe in assembly programs.

Type 25c VISA (rframe)
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Example

Table 16-3: Operations Done by Forms of the Type 25 Instruction

Compiler-Generated Instruction Operations Performed in SISD Mode Operations Performed in SIMD Mode

RFRAME; I7=I6, I6=DM(0,I6); I7=I6, I6=DM(0,I6);

Description

Function (SISD and SIMD)

In SISD mode, the instruction (rframe) also reverses the register transfers to restore the frame and stack point-
ers.

The Type 25 instruction is only intended for use by a C (or other high-level-language) compiler. Do not use
rframe in assembly programs.

Example

Table 16-4: Operations Done by Forms of the Type 25 Instruction

Compiler-Generated Instruction Operations Performed in SISD Mode Operations Performed in SIMD Mode

RFRAME; I7=I6, I6=DM(0,I6); I7=I6, I6=DM(0,I6);

Type25c_rframe Instruction Opcode

Type25a_rframe

0 0 1 1 0 1 0 0 0 0 0 0 1 0 00
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Figure 16-12: Type25c_rframe Instruction

Type 26a ISA/VISA (sync)

Syntax Summary

Type Addr Operation

26a ISA

VISA

SYNC; No

The following table provides the instruction syntax overview (Syntax)

Syntax

Type 26a ISA/VISA (sync)
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Syntax

sync ;

Abstract

Synchronization insruction

Description

The SYNC instruction ensures completion of all pending writes on the system interface as well as the internal mem-
ory (L1) interface. The core pipeline is stalled until SYNC completes

Example

SYNC;

Type26a Sync Instruction Opcode

Type26a

0 0 0 0 0 0 0 0 1 0 0 0 0 0 00
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 16-13: Type26a Instruction

Type 26a ISA/VISA (sync)
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17   Computation Opcode Reference

This chapter describes the fields from the instruction set types (COMPUTE, SHORT COMPUTE and SHIFT
IMMEDIATE). The 23-bit compute field is a mini instruction within the ADSP-21xxx instruction. The following
compute operations can be specified:

• Single-function operations involve a single computation unit

• Shift immediate functions (type 6a only)

• Short compute functions (type 2c only)

• Multifunction operations specify parallel operation of the multiplier and the ALU

• The MR register transfer is a special type of compute operation used to access the fixed-point accumulator in
the multiplier

For each instruction, the assembly language syntax, including options, and its related functionality are described. All
related status flags are listed.

The following tables show the different compute field coding depending on single computations versus multi-com-
putation and its supported data format.

Table 17-1: Single Computation Instruction Coding SINGLEFN

MF bit

[22]

CU bit

[21:20]

Opcode bit

[19:12]

Computation Type Data Format

0 00 0xxx xxxx ALU 32-bit Fixed

0 00 1xxx xxxx 32/40-bit Float

0 00 0xx1 xxxx 64-bit Float

0 01 xxxx xxxx Multiply 32-bit Fixed

0 01 0011 0000 32/40-bit Float

0 01 0011 0011 64-bit Float

0 10 xxxx xxxx Shifter 32-bit Fixed

Computation Opcode Reference

SHARC+ Core Programming Reference 17–1



Table 17-2: Short Compute Instruction Coding SINGLEFN (type 2C only)

SC bit

[15:12]

Opcode bit

[11:8]

Computation Type Data Format

1100 xxxx Short Compute 32/40-bit Fixed/Float

Table 17-3: Single Compute Parallel Add/Subtract Instruction Coding SINGLEFN

MF bit

[22]

CU bit

[21:20]

Opcode bit

[19:16]

Computation Type Data Format

0 00 0111 Dual Add/Subtract 32-bit Fixed

0 00 1111 32/40-bit Float

Table 17-4: Multi Compute Instruction Coding MULTIFN

MF bit

[22]

Opcode bit

[21:16]

Computation Type Data Format

1 0xxxxx MUL/ALU 32-bit Fixed

1 011xxx 32/40-bit Float

1 00xx11 64-bit Float

1 10xxxx MUL Dual Add/Subtract 32-bit Fixed

1 11xxxx 32/40-bit Float

Compute (Compute) Opcode
Compute

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode[7:4]mf
cu[1:0]

ry[3:0]
rx[3:0]rn[3:0]

opcode[3:0]

Figure 17-1: Compute Instruction

Short Compute (ShortCompute) Opcode
The following compute instructions are supported as type 2c instructions in VISA space under the condition that
one source register and one destination register must be identical.

Compute (Compute) Opcode
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ShortCompute

1 0 0 0 0 0 0 0 0 0 0 0 0 0 01
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rx[3:0]
rn[3:0]

opcode[3:0]

Figure 17-2: ShortCompute Instruction

The following table provides the opcode field values (opcode), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

opcode (bits
11−8)

Syntax Instruction

0000 RREG Register Class = RREG Register Class +
RREG Register Class

RN = RN + RX

0001 RREG Register Class = RREG Register Class -
RREG Register Class

RN = RN - RX

0010 RREG Register Class = pass RREG Register
Class

RN = pass RX;

0011 comp (RREG Register Class, RREG Register
Class)

comp (RN, RX)

0100 RREG Register Class = not RREG Register
Class

RN = not RX;

0101 RREG Register Class = RREG Register Class +
1

RN = RX + 1;

0110 RREG Register Class = RREG Register Class -
1

RN = RX – 1;

0111 RREG Register Class = RREG Register Class *
RREG Register Class (ssi)

RN = RN * RX (ssi)

1000 FREG Register Class = FREG Register Class +
FREG Register Class

FN = FN + FX

1001 FREG Register Class = FREG Register Class -
FREG Register Class

FN = FN - FX

1010 FREG Register Class = float RREG Register
Class

FN = float RX

1011 comp (FREG Register Class, FREG Register
Class)

comp (FN, FX)

1100 RREG Register Class = RREG Register Class
and RREG Register Class

RN = RN and RX

1101 RREG Register Class = RREG Register Class
or RREG Register Class

RN = RN or RX

Short Compute (ShortCompute) Opcode
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opcode (bits
11−8)

Syntax Instruction

1110 RREG Register Class = RREG Register Class
xor RREG Register Class

RN = RN xor RX

1111 FREG Register Class = FREG Register Class *
FREG Register Class

FN = FN * FX

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)
Shiftimm

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

shiftop[5:0]dataex[3:0]

rx[3:0]
rn[3:0]

data[7:0]

Figure 17-3: ShiftImm Computation Opcode

Single Function Instruction (SINGLEFN)

ALUOP

Table 17-5: ALUOP Encoding (32-bit/40-bit fixed-point/floating-point operations)

opcode (bits
19−12)

Syntax Instruction

00000001 RREG Register Class = RREG Register Class + RREG Register
Class

RN = RX + RY;

00000010 RREG Register Class = RREG Register Class - RREG Register
Class

RN = RX – RY;

00000101 RREG Register Class = RREG Register Class + RREG Register
Class + ci

RN = RX + RY + ci;

00000110 RREG Register Class = RREG Register Class - RREG Register
Class + ci - 1

RN = RX – RY + ci – 1;

00001001 RREG Register Class = (RREG Register Class + RREG Register
Class) / 2

RN = (RX + RY) / 2;

00001010 comp(RREG Register Class, RREG Register Class) comp (RX, RY);

00001011 compu(RREG Register Class, RREG Register Class) compu (RX, RY);

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)
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Table 17-5: ALUOP Encoding (32-bit/40-bit fixed-point/floating-point operations) (Continued)

opcode (bits
19−12)

Syntax Instruction

00100001 RREG Register Class = pass RREG Register Class RN = pass RX;

00100010 RREG Register Class = - RREG Register Class RN = –RX;

00100101 RREG Register Class = RREG Register Class + ci RN = RX + ci;

00100110 RREG Register Class = RREG Register Class + ci − 1 RN = RX + ci – 1;

00101001 RREG Register Class = RREG Register Class + 1 RN = RX + 1;

00101010 RREG Register Class = RREG Register Class − 1 RN = RX – 1;

00110000 RREG Register Class = abs RREG Register Class RN = abs RX;

01000000 RREG Register Class = RREG Register Class and RREG Register
Class

RN = RX and RY;

01000001 RREG Register Class = RREG Register Class or RREG Register
Class

RN = RX or RY;

01000010 RREG Register Class = RREG Register Class xor RREG Register
Class

RN = RX xor RY;

01000011 RREG Register Class = not RREG Register Class RN = not RX;

01100001 RREG Register Class = min(RREG Register Class, RREG Register
Class)

RN = min (RX, RY);

01100010 RREG Register Class = max(RREG Register Class, RREG Register
Class)

RN = max (RX, RY);

01100011 RREG Register Class = clip RREG Register Class by RREG Regis-
ter Class

RN = clip RX by RY;

10000001 FREG Register Class = FREG Register Class + FREG Register Class FN = FX + FY;

10000010 FREG Register Class = FREG Register Class - FREG Register Class FN = FX – FY;

10001001 FREG Register Class = (FREG Register Class + FREG Register
Class) / 2

FN = (FX + FY) / 2;

10001010 comp(FREG Register Class, FREG Register Class) comp (FX, FY);

10010001 FREG Register Class = abs (FREG Register Class + FREG Register
Class)

FN = abs (FX + FY);

10010010 FREG Register Class = abs (FREG Register Class − FREG Register
Class)

FN = abs (FX – FY);

10100001 FREG Register Class = pass FREG Register Class FN = pass FX;

10100010 FREG Register Class = - FREG Register Class FN = –FX;

10100101 FREG Register Class = rnd FREG Register Class FN = rnd FX;

10101101 RREG Register Class = mant FREG Register Class RN = mant FX;

10110000 FREG Register Class = abs FREG Register Class FN = abs FX;

Single Function Instruction (SINGLEFN)
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Table 17-5: ALUOP Encoding (32-bit/40-bit fixed-point/floating-point operations) (Continued)

opcode (bits
19−12)

Syntax Instruction

10111101 FREG Register Class = scalb FREG Register Class by RREG Regis-
ter Class

FN = scalb FX by RY;

11000001 RREG Register Class = logb FREG Register Class RN = logb FX;

11000100 FREG Register Class = recips FREG Register Class FN = recips FX;

11000101 FREG Register Class = rsqrts FREG Register Class FN = rsqrts FX;

11001001 RREG Register Class = fix FREG Register Class RN = fix FX;

11001010 FREG Register Class = float RREG Register Class FN = float RX;

11001101 RREG Register Class = trunc FREG Register Class RN = trunc FX;

11011001 RREG Register Class = fix FREG Register Class by RREG Register
Class

RN = fix FX by RY;

11011010 FREG Register Class = float RREG Register Class by RREG Regis-
ter Class

FN = float RX by RY;

11011101 RREG Register Class = trunc FREG Register Class by RREG Regis-
ter Class

RN = trunc FX by RY;

11100000 FREG Register Class = FREG Register Class copysign FREG Regis-
ter Class

FN = FX copysign FY;

11100001 FREG Register Class = min(FREG Register Class, FREG Register
Class)

FN = min (FX, FY);

11100010 FREG Register Class = max(FREG Register Class, FREG Register
Class)

FN = max (FX, FY);

11100011 FREG Register Class = clip FREG Register Class by FREG Register
Class

FN = clip FX by FY;

Table 17-6: ALUOP Encoding (64-bit floating-point operations)

opcode (bits
19−12)

Syntax Instruction

00010001 DBLREG Register Type = DBLREG Register Type +
DBLREG Register Type

FM:N = FX:Y + FZ:W;

00010010 DBLREG Register Type = DBLREG Register Type - DBLREG
Register Type

FM:N = FX:Y - FZ:W;

00010011 comp(DBLREG Register Type, DBLREG Register Type) comp (FX:Y, FZ:W);

00010100 DBLREG Register Type = - DBLREG Register Type FM:N = - FX:Y;

00010101 DBLREG Register Type = abs DBLREG Register Type FM:N = abs FX:Y;

00010110 DBLREG Register Type = pass DBLREG Register Type FM:N = pass FX:Y;

00010111 RREG Register Class = fix DBLREG Register Type

Single Function Instruction (SINGLEFN)
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Table 17-6: ALUOP Encoding (64-bit floating-point operations) (Continued)

opcode (bits
19−12)

Syntax Instruction

RN=fix FX:Y;

00011000 RREG Register Class = fix DBLREG Register Type by RREG
Register Class

RN = fix FX:Y by RY;

00011001 RREG Register Class = trunc DBLREG Register Type RN = trunc FX:Y;

00011010 RREG Register Class = trunc DBLREG Register Type by
RREG Register Class

RN = trunc FX:Y by RY;

00011011 DBLREG Register Type = float RREG Register Class FM:N = float RX;

00011100 DBLREG Register Type = float RREG Register Class by
RREG Register Class

FM:N = float RX by RY;

00011101 DBLREG Register Type = cvt FREG Register Class FM:N = cvt FX;

00011110 FREG Register Class = cvt DBLREG Register Type FN = cvt FX:Y;

00011111 DBLREG Register Type = scalb DBLREG Register Type by
RREG Register Class

FM:N = scalb FX:Y by RY;

MULOP

This section describes the multiplier operations. These tables use the following symbols to indicate the location of
operands and other features:

• y = y-input (1 = signed, 0 = unsigned)

• x = x-input (1 = signed, 0 = unsigned)

• f = format (1 = fractional, 0 = integer)

• r = rounding (1 = yes, 0 = no)

Table 17-7: MULOP Encode Table (32-bit/40-bit fixed-point/floating-point operations)

opcode (bits
19−12)

Syntax Instruction

0000 F00x RREG Register Class = sat mrf MOD2 (RN | mrf | mrb) = sat (mrf | mrb) MOD2;

0000 F01x RREG Register Class = sat mrb MOD2 (RN | mrf | mrb) = sat (mrf | mrb) MOD2;

0000 F10x mrf = sat mrf MOD2 (RN | mrf | mrb) = sat (mrf | mrb) MOD2;

0000 F11x mrb = sat mrb MOD2 (RN | mrf | mrb) = sat (mrf | mrb) MOD2;

0001 0100 mrf = 0 (mrf | mrb) = 0;

0001 0110 mrb = 0 (mrf | mrb) = 0;

0001 100x RREG Register Class = rnd mrf MOD3 (RN | mrf | mrb) = rnd (mrf | mrb) MOD3;

Single Function Instruction (SINGLEFN)
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Table 17-7: MULOP Encode Table (32-bit/40-bit fixed-point/floating-point operations) (Continued)

opcode (bits
19−12)

Syntax Instruction

0001 101x RREG Register Class = rnd mrb MOD3 (RN | mrf | mrb) = rnd (mrf | mrb) MOD3;

0001 110x mrf = rnd mrf MOD3 (RN | mrf | mrb) = rnd (mrf | mrb) MOD3;

0001 111x mrb = rnd mrb MOD3 (RN | mrf | mrb) = rnd (mrf | mrb) MOD3;

01yx f00r RREG Register Class = RREG Register Class * RREG Register
Class MOD1

(RN | mrf | mrb) = RX * RY MOD1;

01yx F10r mrf = RREG Register Class * RREG Register Class MOD1 (RN | mrf | mrb) = RX * RY MOD1;

01yx F11r mrb = RREG Register Class * RREG Register Class MOD1 (RN | mrf | mrb) = RX * RY MOD1;

10yx F00r RREG Register Class = mrf + RREG Register Class * RREG
Register Class MOD1

RN = (mrf | mrb) + RX * RY MOD1;

10yx F01r RREG Register Class = mrb + RREG Register Class * RREG
Register Class MOD1

RN = (mrf | mrb) + RX * RY MOD1;

10yx F10r mrf = mrf + RREG Register Class * RREG Register Class
MOD1

(mrf | mrb) = MRF + RX * RY MOD1;

10yx F11r mrb = mrb + RREG Register Class * RREG Register Class
MOD1

(mrf | mrb) = MRF + RX * RY MOD1;

11yx F00r RREG Register Class = mrf - RREG Register Class * RREG
Register Class MOD1

RN = (mrf | mrb) – RX * RY MOD1;

11yx F01r RREG Register Class = mrb - RREG Register Class * RREG
Register Class MOD1

RN = (mrf | mrb) – RX * RY MOD1;

11yx F10r mrf = mrf - RREG Register Class * RREG Register Class
MOD1

(mrf | mrb) = (mrf | mrb) – RX * RY
MOD1;

11yx F11r mrb = mrb - RREG Register Class * RREG Register Class
MOD1

(mrf | mrb) = (mrf | mrb) – RX * RY
MOD1;

0011 0000 FN = FX * FY FLP_Mult

Table 17-8: MULOP Encode Table (64-bit floating-point operations)

opcode (bits
19−12)

Syntax Instruction

0011 0001 DBLREG Register Type = DBLREG Register Type *
DBLREG Register Type

FM:N = FX:Y * FZ:W;

0011 0010 DBLREG Register Type = DBLREG Register Type * FREG
Register Class

FM:N = FX:Y * FY;

0011 0011 DBLREG Register Type = FREG Register Class * FREG Regis-
ter Class

FM:N = FX * FY;

Single Function Instruction (SINGLEFN)

17–8 SHARC+ Core Programming Reference



MOD1

The Mod1 modifiers in the following table are optional modifiers. It is enclosed in parentheses and consists of three
or four letters that indicate whether:

• The x-input is signed (S) or unsigned (U).)

• The y-input is signed or unsigned.

• The inputs are in integer (I) or fractional (F) format.

• The result written to the register file will be rounded-to-nearest (R).

MOD1 Encode Table

Option Opcode

(SSI) _ _11 0_ _0

(SUI) _ _01 0_ _0

(USI) _ _10 0_ _0

(UUI) _ _00 0_ _0

(SSF) _ _11 1_ _0

(SUF) _ _01 1_ _0

(USF) _ _10 1_ _0

(UUF) _ _00 1_ _0

(SSFR) _ _11 1_ _1

(SUFR) _ _01 1_ _1

(USFR) _ _10 1_ _1

(UUFR) _ _00 1_ _1

MOD2

The Mod2 modifiers in the following table are optional modifiers, enclosed in parentheses, consisting of two letters
that indicate whether the input is signed (S) or unsigned (U) and whether the input is in integer (I) or fractional (F)
format.

MOD2 Encode Table

Option Opcode

(SI) _ _ _ _ 0 _ _ 1

(UI) _ _ _ _ 0 _ _ 0

(SF) _ _ _ _ 1 _ _ 1

MULOP
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Option Opcode

(UF) _ _ _ _ 1 _ _ 0

MOD3

MOD3 Encode Table

Option Opcode

(SF) _ _ _ _ 1 _ _ 1

(UF) _ _ _ _ 1 _ _ 0

SHIFTOP/SHIFTIMM

The following table provides opcode field values for the shiftimm instruction (see Shift Immediate (ShiftImm) Op-
code (Type 6 Instruction only)) and the Compute instruction (see Compute (Compute) Opcode).

Table 17-9: SHIFTOP/SHIFTIMM Encode Table (32-bit Fixed-Point Operations)

shiftimm
(bits 21-16)

Shiftimm Syntax, Type 6 Instruc-
tion

shiftop
(bits 19-12)

Shiftop Syntax Instruction

000000 RFREG Register Class = lshift
RREG Register Class by DATA8

00000000 RREG Register Class = lshift
RREG Register Class by RREG
Register Class

RN = lshift RX by (RY | DATA8);
DATA8

000001 RREG Register Class = ashift
RREG Register Class by DATA8

00000100 RREG Register Class = ashift
RREG Register Class by RREG
Register Class

FXP_ASHIFT_BY DATA8

000010 RREG Register Class = rot RREG
Register Class by DATA8

00001000 RREG Register Class = rot RREG
Register Class by RREG Register
Class

RN = rot RX by (RY | DATA);

001000 RREG Register Class = RREG
Register Class or lshift RREG Reg-
ister Class by DATA8

00100000 RREG Register Class = RREG
Register Class or lshift RREG Reg-
ister Class by RREG Register Class

FXP_OR_LSHIFT_BY

001001 RREG Register Class = RREG
Register Class or ashift RREG Reg-
ister Class by DATA8

00100100 RREG Register Class = RREG
Register Class or ashift RREG Reg-
ister Class by RREG Register Class

RN = RN or ashift RX by (RY |
DATA8);

010000 RREG Register Class = fext RREG
Register Class by BIT6:LEN6

01000000 RREG Register Class = fext RREG
Register Class by RREG Register
Class

RN = fext RX by (RY |
BIT6:LEN6);

010001 RREG Register Class = fdep RREG
Register Class by BIT6:LEN6

01000100 RREG Register Class = fdep RREG
Register Class by RREG Register
Class

RN = fdep RX by (RY |
BIT6:LEN6);BIT6:LEN6

MULOP
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Table 17-9: SHIFTOP/SHIFTIMM Encode Table (32-bit Fixed-Point Operations) (Continued)

shiftimm
(bits 21-16)

Shiftimm Syntax, Type 6 Instruc-
tion

shiftop
(bits 19-12)

Shiftop Syntax Instruction

010010 RREG Register Class = fext RREG
Register Class by BIT6:LEN6 (se)

01001000 RREG Register Class = fext RREG
Register Class by RREG Register
Class (se)

RN = fext RX by (RY |
BIT6:LEN6) (se);BIT6:LEN6

010011 RREG Register Class = fdep RREG
Register Class by BIT6:LEN6 (se)

01001100 RREG Register Class = fdep RREG
Register Class by RREG Register
Class (se)

FXP_BITEXT_bitlen12_NU
BIT6:LEN6

010100 RREG Register Class = bitext BI-
TLEN12 (nu)

01010000 RREG Register Class = bitext
RREG Register Class

FXP_BITEXT_bitlen12_NU

011001 RREG Register Class = bitext BI-
TLEN12 (nu)

01011000 RREG Register Class = bitext
RREG Register Class (nu)

RN = bitext (RX | BITLEN12)
(nu);

011011 RREG Register Class = RREG
Register Class or fdep RREG Reg-
ister Class by BIT6:LEN6

01100100 RREG Register Class = RREG
Register Class or fdep RREG Reg-
ister Class by RREG Register Class

RN = RN or fdep RX by (RY |
BIT6:LEN6);

011101 RREG Register Class = RREG
Register Class or fdep RREG Reg-
ister Class by BIT6:LEN6 (se)

01101100 RREG Register Class = RREG
Register Class or fdep RREG Reg-
ister Class by RREG Register Class
(se)

RN = RN or fdep RX by (RY |
BIT6:LEN6) (se);

N/A 01110000 RREG Register Class = bffwrp FXP_BFFWRP

011111 bffwrp = DATA7 01111100 bffwrp = RREG Register Class bffwrp = (RN | DATA7);

110000 RREG Register Class = bset RREG
Register Class by BITLEN12

11000000 RREG Register Class = bset RREG
Register Class by RREG Register
Class

RN = bset RX by (RY | DATA8);

110001 RREG Register Class = bclr RREG
Register Class by DATA7

11000100 RREG Register Class = bclr RREG
Register Class by RREG Register
Class

RN = bclr RX by (RY | DATA8);

110010 RREG Register Class = btgl RREG
Register Class by RREG Register
Class

11001000 RREG Register Class = btgl RREG
Register Class by RREG Register
Class

RN = btgl RX by (RY | DATA8);

110011 btst RREG Register Class by
RREG Register Class

11001100 btst RREG Register Class by
RREG Register Class

btst RX by (RY | DATA8);

10000000 RREG Register Class = exp RREG
Register Class

RN = exp RX;

10000100 bffwrp = DATA7 RN = exp RX; (ex)

10001000 RREG Register Class = leftz RREG
Register Class

RN = leftz RX;

10001100 RREG Register Class = lefto
RREG Register Class

RN = lefto RX;

Single Function Instruction (SINGLEFN)
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Table 17-9: SHIFTOP/SHIFTIMM Encode Table (32-bit Fixed-Point Operations) (Continued)

shiftimm
(bits 21-16)

Shiftimm Syntax, Type 6 Instruc-
tion

shiftop
(bits 19-12)

Shiftop Syntax Instruction

10010000 RREG Register Class = fpack
FREG Register Class

RN = fpack FX;

10010100 FREG Register Class = funpack
RREG Register Class

FN = funpack RX;

Dual Add/Subtract

Table 17-10: Dual add/subtract Encode Table (32-bit/40-bit fixed-point/floating-point operations)

Opcode (bits
19–16)

Syntax Instruction

0111 RREG Register Class = RREG Register Class + RREG Register
Class , RREG Register Class = RREG Register Class − RREG
Register Class

Ra = Rx + Ry , Rs = Rx – Ry

1111 FREG Register Class = FXAREG Register Class + FYAREG
Register Class , FREG Register Class = FXAREG Register Class
– FYAREG Register Class

Fa = Fx + Fy , Fs = Fx – Fy

Register File
This section covers all source and result register file encodings depending on compute instruction types.

Single Computation Encoding 32/40-bit

Table 17-11: Compute Field (Fixed-Point)

11 10 9 8 7 6 5 4 3 2 1 0

RN/FN Rx/Fx Ry/Fy

Table 17-12: Compute Field Bit Descriptions

Bit Description

RN Specifies fixed-point result register

Rx Specifies fixed-point X input register

Ry Specifies fixed-point Y input register

FN Specifies floating-point ALU addition result

Fx Specifies floating-point X input register

Single Function Instruction (SINGLEFN)
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Table 17-12: Compute Field Bit Descriptions (Continued)

Bit Description

Fy Specifies floating-point Y input register

Dual Add/Subtract Encoding 32/40-bit

Table 17-13: Compute Field (Fixed-Point)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rx/Fs Ra/Fa Rx/Fx Ry/Fy

Table 17-14: Compute Field Bit (Fixed-Point) Bit Descriptions

Bit Description

Rx Specifies fixed-point X input ALU register

Ry Specifies fixed-point Y input ALU register

Rs Specifies fixed-point ALU subtraction result

Ra Specifies fixed-point ALU addition result

Fx Specifies floating-point X input ALU register

Fy Specifies floating-point Y input ALU register

Fs Specifies floating-point ALU subtraction result

Fa Specifies floating-point ALU addition result

Mul/ALU Encoding 32/40-bit

Table 17-15: Compute Field (Fixed-Point)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rm Ra Rxm Rym Rxa Rya

Table 17-16: Compute Field (Floating-Point)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fm Fa Fxm Fym Fxa Fya

Table 17-17: Mul/ALU Encoding 32/40-bit Bit Descriptions

Bit Description

Rxa Specifies fixed-point X input ALU register (R11−8)

Rya Specifies fixed-point Y input ALU register (R15−12)

Ra Specifies fixed-point ALU result

Register File
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Table 17-17: Mul/ALU Encoding 32/40-bit Bit Descriptions (Continued)

Bit Description

Fxa Specifies floating-point X input ALU register (F11−8)

Fya Specifies floating-point Y input ALU register (F15−12)

Fa Specifies floating-point ALU result

Rxm Specifies fixed-point X input multiply register (R3−0)

Rym Specifies fixed-point Y input multiply register (R7−4)

Rm Specifies fixed-point multiply result register

Fxm Specifies floating-point X input multiply register (F3−0)

Fym Specifies floating-point Y input multiply register (F7−4)

Fm Specifies floating-point multiply result register

Mul Dual Add/Subtract Encoding 32/40-bit

Table 17-18: Compute Field (Fixed-Point)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs Rm Ra Rxm Rym Rxa Rya

Table 17-19: Compute Field (Floating-Point)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fs Fm Fa Fxm Fym Fxa Fya

Table 17-20: Mul dual Add/Subtract Encoding 32/40-bit Bit Descriptions

Bit Description

Rxa Specifies fixed-point X input ALU register (R11−8)

Rya Specifies fixed-point Y input ALU register (R15−12)

Rs Specifies fixed-point ALU subtraction result

Ra Specifies fixed-point ALU addition result

Fxa Specifies floating-point X input ALU register (F11−8)

Fya Specifies floating-point Y input ALU register (F15−12)

Fs Specifies floating-point ALU subtraction result

Fa Specifies floating-point ALU addition result

Rxm Specifies fixed-point X input multiply register (R3−0)

Rym Specifies fixed-point Y input multiply register (R7−4)

Register File
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Table 17-20: Mul dual Add/Subtract Encoding 32/40-bit Bit Descriptions (Continued)

Bit Description

Rm Specifies fixed-point multiply result register

Fxm Specifies floating-point X input multiply register (F3−0)

Fym Specifies floating-point Y input multiply register (F7−4)

Fm Specifies floating-point multiply result register

Short Compute 32/40-bit

Table 17-21: Compute Field (Fixed-Point)

7 6 5 4 3 2 1 0

RN/FN RX/FX

Table 17-22: Compute Field (Fixed-Point) Bit Descriptions

Bit Description

RX Specifies fixed-point X input register

RN Specifies fixed-point Y input and result register

FX Specifies floating-point X input register

FN Specifies floating-point Y input and result register

Single Function Floating-Point 64-bit

Table 17-23: Single Function Floating-Point 64-bit

11 10 9 8 7 6 5 4 3 2 1 0

Fm:n Fx:y Fz:w

Table 17-24: Single Function Floating-Point 64-bit Bit Descriptions

Bit Description

Fm:n Specifies the result register

Fx:y Specifies the source1 operand

Fz:w Specifies the source2 operand

Multi-function Floating-Point 64-bit

Register File
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Table 17-25: Multi-function Floating-point 64-bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fm:n Fa:b Fx:y Fz:w Fp:q Fr:s

Table 17-26: Multi-function Floating-point 64-bit Bit Descriptions

Bit Description

Fm:n Specifies the result register for the multiplier result

Fa:b Specifies the result register for the dual Add/Subtract result

Fx:y Specifies the source1 operand for the multiplier

Fz:w Specifies the source2 operand for the multiplier

Fp:q Specifies the source1 operand for the add/subtract operation

Fr:s Specifies the source2 operand for the add/subtract operation

Table 17-27: Source Register Encoding (64-bit float)

Opcode Multi-Function Multipli-
er Source 1

Multi-Function Multipli-
er Source 2

Multi-Function Dual
Add/Subtract Source 1

Multi-Function Dual
Add/Subtract Source 2

Fx:y Fz:w Fp:q Fr:s

00 F1:0 F5:4 F9:8 F13:12

01 – – – –

10 F3:2 F7:6 F11:10 F15:14

11 – – – –

Table 17-28: Result Register Encoding (64-bit float)

Opcode Single Computation Source/Destination Multi–Computation Destination

Fm:n/Fx:y/Fz:w Fn/Fx/Fy/Fz Rn/Rx/Ry/Rz Fm:n/Fa:b

0000 F1:0 F0 R0 F1:0

0001 – F1 R1 –

0010 F3:2 F2 R2 F3:2

0011 – F3 R3 –

0100 F5:4 F4 R4 F5:4

0101 – F5 R5 –

0110 F7:6 F6 R6 F7:6

0111 – F7 R7 –

1000 F9:8 F8 R8 F9:8

Register File
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Table 17-28: Result Register Encoding (64-bit float) (Continued)

Opcode Single Computation Source/Destination Multi–Computation Destination

Fm:n/Fx:y/Fz:w Fn/Fx/Fy/Fz Rn/Rx/Ry/Rz Fm:n/Fa:b

1001 – F9 R9 –

1010 F11:10 F10 R10 F11:10

1011 – F11 R11 –

1100 F13:12 F12 R12 F13:12

1101 – F13 R13 –

1110 F15:14 F14 R14 F15:14

1111 – F15 R15 –

MR Register Data Move (MRDATAMOVE)
The following table indicates how the opcode specifies the MR register, and RN specifies the data register. D-bit
determines the direction of the transfer (0 = to register file, 1 = to MR register).

Table 17-29: MRDATAMOVE Encode Table

D-bit[16] opcode[15:12] Syntax Instruction

x 0000 RN = MR0F/MR0F= RN FXP_MR_ST

x 0001 RN = MR1F/MR1F= RN

x 0010 RN = MR2F/MR2F= RN

x 0100 RN = MR0B/MR0B= RN

x 0101 RN = MR1B/MR1B= RN

x 0110 RN = MR2B/MR2B= RN

MR Register Data Move (MRDATAMOVE)

SHARC+ Core Programming Reference 17–17



18   ALU Fixed-Point Computations

This section describes the ALU Fixed-point operations (FXP_). For all of the instructions in this section, the status
flag AF bit is cleared (=0) indicating fixed-point operation. Note that the CACC flag bits are only set for the com-
pare instructions, otherwise they have no effect.

For information on syntax and opcodes, see Compute (Compute) Opcode.

For information on arithmetic status, see the "Register Descriptions".

RN = RX + RY;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class + RREG Register Class

Function

Adds the fixed-point fields in registers Rx and Ry. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. In saturation mode (the REGF_MODE1.ALUSAT bit is set)
positive overflows return the maximum positive number (0x7FFF FFFF), and negative overflows return the mini-
mum negative number (0x8000 0000).

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1, otherwise cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

ALU Fixed-Point Computations
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STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = RX – RY;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class - RREG Register Class

Function

Subtracts the fixed-point field in register Ry from the fixed-point field in register Rx. The result is placed in the
fixed-point field in register Rn. The floating-point extension field in Rn is set to all 0s. In saturation mode (the
REGF_MODE1.ALUSAT bit is set) positive overflows return the maximum positive number (0x7FFF FFFF), and
negative overflows return the minimum negative number (0x8000 0000).

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1, otherwise cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = RX – RY;
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RN = RX + RY + ci;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class + RREG Register Class + ci

Function

Adds with carry (AC from ASTAT) the fixed-point fields in registers Rx and Ry. The result is placed in the fixed-
point field in register Rn. The floating- point extension field in Rn is set to all 0s. In saturation mode (the
REGF_MODE1.ALUSAT bit is set) positive overflows return the maximum positive number (0x7FFF FFFF), and
negative overflows return the minimum negative number (0x8000 0000).

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1, otherwise cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = RX – RY + ci – 1;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class - RREG Register Class + ci - 1

Function

Subtracts with borrow (AC - 1 from ASTAT) the fixed-point field in register Ry from the fixed-point field in register
Rx. The result is placed in the fixed-point field in register Rn. The floating-point extension field in Rn is set to all

RN = RX + RY + ci;
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0s. In saturation mode (the REGF_MODE1.ALUSAT bit is set) positive overflows return the maximum positive
number (0x7FFF FFFF), and negative overflows return the minimum negative number (0x8000 0000).

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1, otherwise cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = (RX + RY) / 2;
General Form

Compute (Compute) Opcode

RREG Register Class = (RREG Register Class + RREG Register Class) / 2

Function

Adds the fixed-point fields in registers Rx and Ry and divides the result by 2. The result is placed in the fixed-point
field in register Rn. The floating- point extension field in Rn is set to all 0s. Rounding is to nearest (IEEE) or by
truncation, as defined by the REGF_MODE1.RND32 (rounding mode) bit.

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Cleared

RN = (RX + RY) / 2;
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AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

comp (RX, RY);
General Form

Compute (Compute) Opcode

comp(RREG Register Class, RREG Register Class)

Function

Compares the signed fixed-point field in register Rx with the fixed-point field in register Ry. Sets the AZ flag if the
two operands are equal, and the AN flag if the operand in register Rx is smaller than the operand in register Ry. The
ASTAT register stores the results of the previous eight ALU compare operations in CACC bits 3124. These bits are
shifted right (bit 24 is overwritten) whenever a fixed-point or floating-point compare instruction is executed.

ASTATx/y Flags

AC Cleared

AI Cleared

CACC The MSB bit of CACC is set if the X operand is greater than the Y operand (its value is the AND of AZ and
AN); otherwise cleared

AN Set if the signed operand in the Rx register is smaller than the operand in the Ry register, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the signed operands in registers Rx and Ry are equal, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

comp (RX, RY);
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AVS No effect

compu (RX, RY);
General Form

Compute (Compute) Opcode

compu(RREG Register Class, RREG Register Class)

Function

Compares the unsigned fixed-point field in register Rx with the fixed-point field in register Ry, Sets the AZ flag if
the two operands are equal, and the AN flag if the operand in register Rx is smaller than the operand in register Ry.
This operation performs a magnitude comparison of the fixed-point contents of Rx and Ry. The ASTAT register
stores the results of the previous eight ALU compare operations in CACC bits 3124. These bits are shifted right (bit
24 is overwritten) whenever a fixed-point or floating-point compare instruction is executed.

ASTATx/y Flags

AC Cleared

AI Cleared

CACC The MSB bit of CACC is set if the X operand is greater than the Y operand (its value is the AND of AZ and
AN); otherwise cleared

AN Set if the unsigned operand in the Rx register is smaller than the operand in the Ry register, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the unsigned operands in registers Rx and Ry are equal, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

RN = RX + ci;
General Form

Compute (Compute) Opcode

compu (RX, RY);
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RREG Register Class = RREG Register Class + ci

Function

Adds the fixed-point field in register Rx with the carry flag from the ASTAT register (AC). The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn is set to all 0s. In saturation mode (the
REGF_MODE1.ALUSAT bit is set) positive overflows return the maximum positive number (0x7FFF FFFF).

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1, otherwise cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = RX + ci – 1;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class + ci - 1

Function

Adds the fixed-point field in register Rx with the borrow from the ASTAT register (AC - 1). The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn is set to all 0s. In saturation mode (the
REGF_MODE1.ALUSAT bit is set) positive overflows return the maximum positive number (0x7FFF FFFF).

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

RN = RX + ci – 1;
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AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1, otherwise cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = RX + 1;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class + 1

Short Compute (ShortCompute) Opcode

RREG Register Class = RREG Register Class + 1

Function

Increments the fixed-point operand in register Rx. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. In saturation mode (the REGF_MODE1.ALUSAT bit is set),
overflow causes the maximum positive number (0x7FFF FFFF) to be returned.

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Set if the XOR of the carries of the two most significant adder, stages is 1, otherwise cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

RN = RX + 1;
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STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = RX – 1;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class - 1

Short Compute (ShortCompute) Opcode

RREG Register Class = RREG Register Class - 1

Function

Decrements the fixed-point operand in register Rx. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. In saturation mode (the REGF_MODE1.ALUSAT bit is set),
underflow causes the minimum negative number (0x8000 0000) to be returned.

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1, otherwise cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = RX – 1;
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RN = –RX;
General Form

Compute (Compute) Opcode

RREG Register Class = - RREG Register Class

Function

Negates the fixed-point operand in Rx by two's-complement. The result is placed in the fixed-point field in register
Rn. The floating-point extension field in Rn is set to all 0s. Negation of the minimum negative number (0x8000
0000) causes an overflow. In saturation mode (the REGF_MODE1.ALUSAT bit is set), overflow causes the maxi-
mum positive number (0x7FFF FFFF) to be returned.

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1

AS Cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1

AZ Set if the fixed-point output is all 0s

STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = abs RX;
General Form

Compute (Compute) Opcode

RREG Register Class = abs RREG Register Class

Function

Determines the absolute value of the fixed-point operand in Rx. The result is placed in the fixed-point field in regis-
ter Rn. The floating-point extension field in Rn is set to all 0s. The ABS of the minimum negative number (0x8000

RN = –RX;
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0000) causes an overflow. In saturation mode (the REGF_MODE1.ALUSAT bit is set), overflow causes the
maximum positive number (0x7FFF FFFF) to be returned.

ASTATx/y Flags

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Set if the fixed-point operand in Rx is negative, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1, otherwise cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS Sticky indicator for AV bit set

AIS No effect

AVS No effect

RN = pass RX;
General Form

Compute (Compute) Opcode

RREG Register Class = pass RREG Register Class

Short Compute (ShortCompute) Opcode

RREG Register Class = pass RREG Register Class

Function

Passes the fixed-point operand in Rx through the ALU to the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

RN = pass RX;
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AV Cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

RN = RX and RY;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class and RREG Register Class

Function

Logically ANDs the fixed-point operands in Rx and Ry. The result is placed in the fixed-point field in Rn. The
floating-point extension field in Rn is set to all 0s.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

RN = RX and RY;
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RN = RX or RY;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class or RREG Register Class

Function

Logically ORs the fixed-point operands in Rx and Ry. The result is placed in the fixed-point field in Rn. The float-
ing-point extension field in Rn is set to all 0s.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

RN = RX xor RY;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class xor RREG Register Class

Function

Logically XORs the fixed-point operands in Rx and Ry. The result is placed in the fixed-point field in Rn. The float-
ing-point extension field in Rn is set to all 0s.

RN = RX or RY;
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ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

RN = not RX;
General Form

Compute (Compute) Opcode

RREG Register Class = not RREG Register Class

Short Compute (ShortCompute) Opcode

RREG Register Class = not RREG Register Class

Function

Logically complements the fixed-point operand in Rx. The result is placed in the fixed-point field in Rn. The float-
ing-point extension field in Rn is set to all 0s.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

RN = not RX;
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STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

RN = min (RX, RY);
General Form

Compute (Compute) Opcode

RREG Register Class = min(RREG Register Class, RREG Register Class)

Function

Returns the smaller of the two fixed-point operands in Rx and Ry. The result is placed in the fixed-point field in
register Rn. The floating-point extension field in Rn is set to all 0s.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

RN = max (RX, RY);
General Form

Compute (Compute) Opcode

RN = min (RX, RY);
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RREG Register Class = max(RREG Register Class, RREG Register Class)

Function

Returns the larger of the two fixed-point operands in Rx and Ry. The result is placed in the fixed-point field in
register Rn. The floating-point extension field in Rn is set to all 0s.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

RN = clip RX by RY;
General Form

Compute (Compute) Opcode

RREG Register Class = clip RREG Register Class by RREG Register Class

Function

Returns the fixed-point operand in Rx if the absolute value of the operand in Rx is less than the absolute value of the
fixed-point operand in Ry. Otherwise, returns |Ry| if Rx is positive, and |Ry| if Rx is negative. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn is set to all 0s.

ASTATx/y Flags

AC Cleared

AI Cleared

RN = clip RX by RY;

18–16 SHARC+ Core Programming Reference



AN Set if the most significant output bit is 1, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the fixed-point output is all 0s, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

RN = clip RX by RY;
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19   ALU Floating-Point Computations

This section describes the 32/40/64-bit ALU floating-point operations. For all of the instructions is this section, the
status flag AF bit is set (=1) indicating floating-point operation. Note that the CACC flag bits are only set for the
compare instructions, otherwise they have no effect.

For information on syntax and opcodes, see Compute (Compute) Opcode.

For information on arithmetic status, see the "Register Descriptions" chapters

32-bit and 40-bit Operations

The following sections provide descriptions for the 32-bit and 40-bit operations.

FN = FX + FY;

General Form

Compute (Compute) Opcode

FREG Register Class = FREG Register Class + FREG Register Class

Function

Adds the floating-point operands in registers Fx and Fy. The normalized result is placed in register Fn. Rounding is
to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined by the rounding mode and
rounding boundary bits in MODE1. Post-rounded overflow returns ±infinity (round-to-nearest) or ±NORM.MAX
(round-to-zero). Post-rounded denormal returns ±zero. Denormal inputs are flushed to ±zero. A NAN input returns
an all 1s result.

REGF_ASTATX/REGF_ASTATY Flags

AC Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed infinities, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

ALU Floating-Point Computations
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AS Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), otherwise cleared

AZ Set if the post-rounded result is a denormal (unbiased exponent < -126) or zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator for AZ bit set

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

FN = FX – FY;

General Form

Compute (Compute) Opcode

FREG Register Class = FREG Register Class - FREG Register Class

Function

Subtracts the floating-point operand in register Fy from the floating-point operand in register Fx. The normalized
result is placed in register Fn. Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as
defined by the rounding mode (REGF_MODE1.TRUNCATE) and rounding boundary (REGF_MODE1.RND32)
bits. Post-rounded overflow returns ±infinity (round-to-nearest) or ±NORM.MAX (round-to-zero). Post-rounded
denormal returns ±zero. Denormal inputs are flushed to ±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, or if they are like-signed infinities, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), otherwise cleared

AZ Set if the post-rounded result is a denormal (unbiased exponent < -126) or zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator for AZ bit set

AOS No effect

AIS Sticky indicator for AI bit set

32-bit and 40-bit Operations
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AVS Sticky indicator for AV bit set

FN = abs (FX + FY);

General Form

Compute (Compute) Opcode

FREG Register Class = abs (FREG Register Class + FREG Register Class)

Function

Adds the floating-point operands in registers Fx and Fy, and places the absolute value of the normalized result in
register Fn. Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined by
rounding mode (REGF_MODE1.TRUNCATE) and rounding boundary (REGF_MODE1.RND32) bits. Post-
rounded overflow returns +infinity (round-to-nearest) or +NORM.MAX (round-to-zero). Post-rounded denormal
returns +zero. Denormal inputs are flushed to ±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed infinities, otherwise cleared

AN Cleared

AS Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), otherwise cleared

AZ Set if the post-rounded result is a denormal (unbiased exponent < -126) or zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator for AZ bit set

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

FN = abs (FX – FY);

General Form

Compute (Compute) Opcode

FREG Register Class = abs (FREG Register Class - FREG Register Class)

32-bit and 40-bit Operations
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Function

Subtracts the floating-point operand in Fy from the floating-point operand in Fx and places the absolute value of the
normalized result in register Fn. Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit boundary,
as defined by rounding mode (REGF_MODE1.TRUNCATE) and rounding boundary (REGF_MODE1.RND32)
bits. Post-rounded overflow returns +infinity (round-to-nearest) or +NORM.MAX (round-to-zero). Post-rounded
denormal returns +zero. Denormal inputs are flushed to ±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, or if they are like-signed infinities, otherwise cleared

AN Cleared

AS Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), otherwise cleared

AZ Set if the post-rounded result is a denormal (unbiased exponent < -126) or zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator for AZ bit set

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

FN = (FX + FY) / 2;

General Form

Compute (Compute) Opcode

FREG Register Class = (FREG Register Class + FREG Register Class) / 2

Function

Adds the floating-point operands in registers Fx and Fy and divides the result by 2, by decrementing the exponent of
the sum before rounding. The normalized result is placed in register Fn. Rounding is to nearest (IEEE) or by trunca-
tion, to a 32-bit or to a 40-bit boundary, as defined by the rounding mode (REGF_MODE1.TRUNCATE) and
rounding boundary (REGF_MODE1.RND32) bits. Post-rounded overflow returns ±infinity (round-to-nearest) or
±NORM.MAX (round-to-zero). Post-rounded denormal results return ±zero. A denormal input is flushed to ±zero.
A NAN input returns an all 1s result.

32-bit and 40-bit Operations
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ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed infinities, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the post-rounded result is a denormal (unbiased exponent < -126) or zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator for AZ bit set

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

comp (FX, FY);

General Form

Compute (Compute) Opcode

comp(FREG Register Class, FREG Register Class)

Function

Compares the floating-point operand in register Fx with the floating- point operand in register Fy. Sets the AZ flag
if the two operands are equal, and the AN flag if the operand in register Fx is smaller than the operand in register Fy.
The REGF_ASTATX/REGF_ASTATY register stores the results of the previous eight ALU compare operations in
CACC bits 31 through 24. These bits are shifted right (bit 24 is overwritten) whenever a fixed-point or floating-
point compare instruction is executed.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

CACC The MSB of CACC is set if the X operand is greater than the Y operand (its value is the AND of AZ and
AN); otherwise cleared

AN Set if the operand in the Fx register is smaller than the operand in the Fy register, otherwise cleared

AS Cleared

AV Cleared

32-bit and 40-bit Operations
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AZ Set if the operands in registers Fx and Fy are equal, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

FN = –FX;

General Form

Compute (Compute) Opcode

FREG Register Class = - FREG Register Class

Function

Complements the sign bit of the floating-point operand in Fx. The complemented result is placed in register Fn. A
denormal input is flushed to ±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the result operand is a ±zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

32-bit and 40-bit Operations
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FN = abs FX;

General Form

Compute (Compute) Opcode

FREG Register Class = abs FREG Register Class

Function

Returns the absolute value of the floating-point operand in register Fx by setting the sign bit of the operand to 0.
Denormal inputs are flushed to +zero. A NAN input returns an all 1s result.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Cleared

AS Set if the input operand is negative, otherwise cleared

AV Cleared

AZ Set if the result operand is +zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

FN = pass FX;

General Form

Compute (Compute) Opcode

FREG Register Class = pass FREG Register Class

Function

Passes the floating-point operand in Fx through the ALU to the floating- point field in register Fn. Denormal inputs
are flushed to ±zero. A NAN input returns an all 1s result.

32-bit and 40-bit Operations
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ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the result operand is a ±zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

FN = rnd FX;

General Form

Compute (Compute) Opcode

FREG Register Class = rnd FREG Register Class

Function

Rounds the floating-point operand in register Fx to a 32 bit boundary. Rounding is to nearest (IEEE) or by trunca-
tion, as defined by the REGF_MODE1.RND32 bit. Post-rounded overflow returns ±infinity (round-to-nearest) or
±NORM.MAX (round-to-zero). A denormal input is flushed to ±zero. A NAN input returns an all 1s result.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), otherwise cleared

AZ Set if the result operand is a ±zero, otherwise cleared

32-bit and 40-bit Operations
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STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

FN = scalb FX by RY;

General Form

Compute (Compute) Opcode

FREG Register Class = scalb FREG Register Class by RREG Register Class

Function

Scales the exponent of the floating-point operand in Fx by adding to it the fixed-point two's-complement integer in
Ry. The scaled floating-point result is placed in register Fn. Overflow returns ±infinity (round-to-nearest) or
±NORM.MAX (round-to-zero). Denormal returns ±zero. Denormal inputs are flushed to ±zero. A NAN input re-
turns an all 1s result.

ASTATx/y Flags

AC Cleared

AI Set if the input is a NAN, an otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Set if the result overflows (unbiased exponent > +127), otherwise cleared

AZ Set if the result is a denormal (unbiased exponent < -126) or zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator for AZ bit set

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

RN = mant FX;

General Form

32-bit and 40-bit Operations
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Compute (Compute) Opcode

RREG Register Class = mant FREG Register Class

Function

Extracts the mantissa (fraction bits with explicit hidden bit, excluding the sign bit) from the floating-point operand
in Fx. The unsigned-magnitude result is left-justified (1.31 format) in the fixed-point field in Rn. Rounding modes
are ignored and no rounding is performed because all results are inherently exact. Denormal inputs are flushed to
±zero. A NAN or an infinity input returns an all 1s result (1 in signed fixed-point format).

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Cleared

AS Set if the input is negative, otherwise cleared

AV Set if the input operand is an infinity, otherwise cleared

AZ Set if the result is zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

RN = logb FX;

General Form

Compute (Compute) Opcode

RREG Register Class = logb FREG Register Class

Function

Converts the exponent of the floating-point operand in register Fx to an unbiased two's-complement fixed-point
integer. The result is placed in the fixed-point field in register Rn. Unbiasing is done by subtracting 127 from the
floating-point exponent in Fx. If saturation mode (REGF_MODE1.ALUSAT) is not set, a ±infinity input returns a
floating-point +infinity and a ±zero input returns a floating-point -infinity. If saturation mode is set, a ±infinity in-
put returns the maximum positive value (0x7FFF FFFF), and a ±zero input returns the maximum negative value
(0x8000 0000). Denormal inputs are flushed to ±zero. A NAN input returns an all 1s result.

32-bit and 40-bit Operations
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ASTATx/y Flags

AC Cleared

AI Set if the input is a NAN, otherwise cleared

AN Set if the result is negative, otherwise cleared

AS Cleared

AV Set if the input operand is an infinity or a zero, otherwise cleared

AZ Set if the fixed-point result is zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

RN = fix FX;

General Form

Compute (Compute) Opcode

RREG Register Class = fix FREG Register Class

Function

Converts the floating-point operand in Fx to a two's-complement 32-bit fixed-point integer result. If the
REGF_MODE1.TRUNCATE bit =1, the Fix operation truncates the mantissa towards infinity. If the
REGF_MODE1.TRUNCATE bit =0, the Fix operation rounds the mantissa towards the nearest integer. The trunc
operation always truncates toward 0. The REGF_MODE1.TRUNCATE bit does not influence operation of the
trunc instruction. The result of the conversion is right-justified (32.0 format) in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all 0s.

In saturation mode (the REGF_MODE1.ALUSAT bit is set) positive overflows and +infinity return the maximum
positive number (0x7FFF FFFF), and negative overflows and infinity return the minimum negative number
(0x8000 0000). For the Fix operation, rounding is to nearest (IEEE) or by truncation, as defined by the
REGF_MODE1.RND32 bit. A NAN input returns a floating- point all 1s result. If saturation mode is not set, an
infinity input or a result that overflows returns a floating-point result of all 1s. All positive underflows return zero.
Negative underflows that are rounded-to-nearest return zero, and negative underflows that are rounded by trunca-
tion return 1 (0xFF FFFF FF00).
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ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN or, when saturation mode is not set, either input is an infinity or the result
overflows, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AS Cleared

AV Set if the conversion causes the floating-point mantissa to be shifted left, that is, if the floating-point exponent
+ scale bias is >157 (127 + 31 - 1) or if the input is ±infinity, otherwise cleared

AZ Set if the fixed-point result is zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator Set if the pre-rounded result is between -1.0 and 1.0 (except -1, 1, 0), otherwise not effected

RN = fix FX by RY;

General Form

Compute (Compute) Opcode

RREG Register Class = fix FREG Register Class by RREG Register Class

Function

Converts the floating-point operand in Fx to a two's-complement 32-bit fixed-point integer result. If the
REGF_MODE1.TRUNCATE bit =1, the Fix operation truncates the mantissa towards infinity. If the
REGF_MODE1.TRUNCATE bit =0, the Fix operation rounds the mantissa towards the nearest integer. The trunc
operation always truncates toward 0. The REGF_MODE1.TRUNCATE bit does not influence operation of the
trunc instruction. A scaling factor (Ry) is specified, the fixed-point two's-complement integer in Ry is added to the
exponent of the floating-point operand in Fx before the conversion. The result of the conversion is right-justified
(32.0 format) in the fixed-point field in register Rn. The floating-point extension field in Rn is set to all 0s.

In saturation mode (the REGF_MODE1.ALUSAT bit is set) positive overflows and +infinity return the maximum
positive number (0x7FFF FFFF), and negative overflows and infinity return the minimum negative number
(0x8000 0000). For the Fix operation, rounding is to nearest (IEEE) or by truncation, as defined by the
REGF_MODE1.RND32 bit. A NAN input returns a floating- point all 1s result. If saturation mode is not set, an
infinity input or a result that overflows returns a floating-point result of all 1s. All positive underflows return zero.
Negative underflows that are rounded-to-nearest return zero, and negative underflows that are rounded by trunca-
tion return 1 (0xFF FFFF FF00).

ASTATx/y Flags

Cleared

32-bit and 40-bit Operations
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AC

AI Set if the input operand is a NAN or, when saturation mode is not set, either input is an infinity or the result
overflows, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AS Cleared

AV Set if the conversion causes the floating-point mantissa to be shifted left, that is, if the floating-point exponent
+ scale bias is >157 (127 + 31 - 1) or if the input is ±infinity, otherwise cleared

AZ Set if the fixed-point result is zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator Set if the pre-rounded result is between -1.0 and 1.0 (except -1, 1, 0), otherwise not effected

RN = trunc FX;

General Form

Compute (Compute) Opcode

RREG Register Class = trunc FREG Register Class

Function

Converts the floating-point operand in Fx to a two's-complement 32-bit fixed-point integer result. If the
REGF_MODE1.TRUNCATE bit =1, the Fix operation truncates the mantissa towards -infinity. If the
REGF_MODE1.TRUNCATE bit =0, the Fix operation rounds the mantissa towards the nearest integer. The trunc
operation always truncates toward 0. The REGF_MODE1.TRUNCATE bit does not influence operation of the
trunc instruction. The result of the conversion is right-justified (32.0 format) in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all 0s.

In saturation mode (the REGF_MODE1.ALUSAT bit is set) positive overflows and +infinity return the maximum
positive number (0x7FFF FFFF), and negative overflows and infinity return the minimum negative number
(0x8000 0000). For the Fix operation, rounding is to nearest (IEEE) or by truncation, as defined by the
REGF_MODE1.RND32 bit. A NAN input returns a floating- point all 1s result. If saturation mode is not set, an
infinity input or a result that overflows returns a floating-point result of all 1s. All positive underflows return zero.
Negative underflows that are rounded-to-nearest return zero, and negative underflows that are rounded by trunca-
tion return 1 (0xFF FFFF FF00).

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN or, when saturation mode is not set, either input is an infinity or the result
overflows, otherwise cleared
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AN Set if the fixed-point result is negative, otherwise cleared

AS Cleared

AV Set if the conversion causes the floating-point mantissa to be shifted left, that is, if the floating-point exponent
+ scale bias is >157 (127 + 31 - 1) or if the input is ±infinity, otherwise cleared

AZ Set if the fixed-point result is zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator Set if the pre-rounded result is between -1.0 and 1.0 (except -1, 1, 0), otherwise not effected

RN = trunc FX by RY;

General Form

Compute (Compute) Opcode

RREG Register Class = trunc FREG Register Class by RREG Register Class

Function

Converts the floating-point operand in Fx to a two's-complement 32-bit fixed-point integer result. If the
REGF_MODE1.TRUNCATE bit =1, the Fix operation truncates the mantissa towards infinity. If the
REGF_MODE1.TRUNCATE bit =0, the Fix operation rounds the mantissa towards the nearest integer. The trunc
operation always truncates toward 0. The REGF_MODE1.TRUNCATE bit does not influence operation of the
trunc instruction. A scaling factor (Ry) is specified, the fixed-point two's-complement integer in Ry is added to the
exponent of the floating-point operand in Fx before the conversion. The result of the conversion is right-justified
(32.0 format) in the fixed-point field in register Rn. The floating-point extension field in Rn is set to all 0s.

In saturation mode (the REGF_MODE1.ALUSAT bit is set) positive overflows and +infinity return the maximum
positive number (0x7FFF FFFF), and negative overflows and infinity return the minimum negative number
(0x8000 0000). For the Fix operation, rounding is to nearest (IEEE) or by truncation, as defined by the rounding
mode bit in MODE1. A NAN input returns a floating- point all 1s result. If saturation mode is not set, an infinity
input or a result that overflows returns a floating-point result of all 1s. All positive underflows return zero. Negative
underflows that are rounded-to-nearest return zero, and negative underflows that are rounded by truncation return 1
(0xFF FFFF FF00).

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN or, when saturation mode is not set, either input is an infinity or the result
overflows, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AS Cleared

32-bit and 40-bit Operations
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AV Set if the conversion causes the floating-point mantissa to be shifted left, that is, if the floating-point exponent
+ scale bias is >157 (127 + 31 - 1) or if the input is ±infinity, otherwise cleared

AZ Set if the fixed-point result is zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator Set if the pre-rounded result is between -1.0 and 1.0 (except -1, 1, 0), otherwise not effected

FN = float RX;

General Form

Compute (Compute) Opcode

FREG Register Class = float RREG Register Class

Function

Converts the fixed-point operand in Rx to a floating-point result. The final result is placed in register Fn. Rounding
is to nearest (IEEE) or by truncation, as defined by the rounding mode, to a 40-bit boundary, regardless of the val-
ues of the rounding boundary bits in MODE1. The exponent scale bias may cause a floating-point overflow or a
floating-point underflow. Overflow generates a return of ±infinity (round-to-nearest) or ±NORM.MAX (round-to-
zero); underflow generates a return of ±zero.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the result is an unbiased exponent < -126, or zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator for AZ bit set

AOS No effect

AIS No effect

AVS Sticky indicator for AV bit set
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FN = float RX by RY;

General Form

Compute (Compute) Opcode

FREG Register Class = float RREG Register Class by RREG Register Class

Function

Converts the fixed-point operand in Rx to a floating-point result. A scaling factor (Ry) is specified, the fixed-point
two's-complement integer in Ry is added to the exponent of the floating-point result. The final result is placed in
register Fn. Rounding is to nearest (IEEE) or by truncation, as defined by the rounding mode, to a 40-bit boundary,
regardless of the values of the rounding boundary bits in MODE1. The exponent scale bias may cause a floating-
point overflow or a floating-point underflow. Overflow generates a return of ±infinity (round-to-nearest) or
±NORM.MAX (round-to-zero); underflow generates a return of ±zero.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the result is an unbiased exponent < -126, or zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator for AZ bit set

AOS No effect

AIS No effect

AVS Sticky indicator for AV bit set

FN = recips FX;

General Form

Compute (Compute) Opcode

FREG Register Class = recips FREG Register Class

32-bit and 40-bit Operations
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Function

Creates an 8-bit accurate seed for 1/Fx, the reciprocal of Fx. The mantissa of the seed is determined from a ROM
table using the 7 MSBs (excluding the hidden bit) of the Fx mantissa as an index. The unbiased exponent of the
seed is calculated as the two's-complement of the unbiased Fx exponent, decremented by one; that is, if e is the
unbiased exponent of Fx, then the unbiased exponent of Fn = -e - 1. The sign of the seed is the sign of the input. A
±zero returns ±infinity and sets the overflow flag. If the unbiased exponent of Fx is greater than +125, the result is
±zero. A NAN input returns an all 1s result.

The following code performs floating-point division using an iterative convergence algorithm.i The result is accurate
to one LSB in whichever format mode, 32-bit or 40-bit, is set. The following inputs are required: F0=numerator
and F12=denominator, F11=2.0. The quotient is returned in F0. (The two indented instructions can be removed if
only a ±1 LSB accurate single-precision result is necessary.) Note that, in the algorithm example's comments, refer-
ences to R0, R1, R2, and R3 do not refer to data registers. Rather, they refer to variables in the algorithm.
F0=RECIPS F12, F7=F0;     /* Get 8 bit seed R0=1/D */
F12=F0*F12;               /* D' = D*R0 */
F7=F0*F7, F0=F11-F12;     /* F0=R1=2-D', F7=N*R0 */
F12=F0*F12;               /* F12=D'-D'*R1 */
F7=F0*F7, F0=F11-F12;     /* F7=N*R0*R1, F0=R2=2-D' */
  F12=F0*F12;             /* F12=D'=D'*R2 */
  F7=F0*F7, F0=F11-F12;   /* F7=N*R0*R1*R2, F0=R3=2-D' */
F0=F0*F7;                 /* F7=N*R0*R1*R2*R3 */

To make this code segment a subroutine, add an RTS(DB) clause to the third-to-last instruction.

i Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 284.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Set if the input operand is negative, otherwise cleared

AS Cleared

AV Set if the input operand is ±zero, otherwise cleared

AZ Set if the floating-point result is ±zero (unbiased exponent of Fx is greater than +125), otherwise cleared

STKYx/y Flags

AUS Sticky indicator for AZ bit set

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set
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FN = rsqrts FX;

General Form

Compute (Compute) Opcode

FREG Register Class = rsqrts FREG Register Class

Function

Creates a 4-bit accurate seed for 1√(Fx)½, the reciprocal square root of Fx. The mantissa of the seed is determined
from a ROM table, using the LSB of the biased exponent of Fx concatenated with the six MSBs (excluding the
hidden bit of the mantissa) of Fx's index. The unbiased exponent of the seed is calculated as the two's-complement
of the unbiased Fx exponent, shifted right by one bit and decremented by one; that is, if e is the unbiased exponent
of Fx, then the unbiased exponent of Fn = INT[e/2]  1. The sign of the seed is the sign of the input. The input
±zero returns ±infinity and sets the overflow flag. The input +infinity returns +zero. A NAN input or a negative

nonzero input returns a result of all 1s. The following code calculates a floating-point reciprocal square root (1/(x)½)
using a Newton-Raphson iteration algorithm.1 The result is accurate to one LSB in whichever format mode, 32-bit
or 40-bit, is set. To calculate the square root, simply multiply the result by the original input. The following inputs
are required: F0=input, F8=3.0, F1=0.5. The result is returned in F4. (The four indented instructions can be re-
moved if only a ±1 LSB accurate single-precision result is necessary.)
F4=RSQRTS F0;            /* Fetch 4-bit seed */ 
F12=F4*F4;               /* F12=X0^2 */ 
F12=F12*F0;              /* F12=C*X0^2 */ 
F4=F1*F4, F12=F8-F12;    /* F4=.5*X0, F12=3-C*X0^2 */ 
F4=F4*F12;               /* F4=X1=.5*X0(3-C*X0^2) */ 
F12=F4*F4;               /* F12=X1^2 */

Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 278.
F12=F12*F0;             /* F12=C*X1^2 */ 
F4=F1*F4, F12=F8-F12;    /* F4=.5*X1, F12=3-C*X1^2 */ 
F4=F4*F12;               /* F4=X2=.5*X1(3-C*X1^2) */ 
F12=F4*F4;               /* F12=X2^2 */ 
F12=F12*F0;              /* F12=C*X2^2 */ 
F4=F1*F4, F12=F8-F12;    /* F4=.5*X2, F12=3-C*X2^2 */ 
F4=F4*F12;               /* F4=X3=.5*X2(3-C*X2^2) */ 

Note that this code segment can be made into a subroutine by adding an RTS(DB) clause to the third-to-last in-
struction.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is negative and nonzero, or a NAN, otherwise cleared

AN Set if the input operand is -zero, otherwise cleared
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AS Cleared

AV Set if the input operand is ±zero, otherwise cleared

AZ Set if the floating-point result is +zero (Fx = +infinity), otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

FN = FX copysign FY;

General Form

Compute (Compute) Opcode

FREG Register Class = FREG Register Class copysign FREG Register Class

Function

Copies the sign of the floating-point operand in register Fy to the floating- point operand from register Fx without
changing the exponent or the mantissa. The result is placed in register Fn. A denormal input is flushed to ±zero. A
NAN input returns an all 1s result.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the floating-point result is ±zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect
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FN = min (FX, FY);

General Form

Compute (Compute) Opcode

FREG Register Class = min(FREG Register Class, FREG Register Class)

Function

Returns the smaller of the floating-point operands in register Fx and Fy. A NAN input returns an all 1s result. The
MIN of +zero and -zero returns -zero. Denormal inputs are flushed to ±zero.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the floating-point result is ±zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

FN = max (FX, FY);

General Form

Compute (Compute) Opcode

FREG Register Class = max(FREG Register Class, FREG Register Class)

Function

Returns the larger of the floating-point operands in registers Fx and Fy. A NAN input returns an all 1s result. The
MAX of +zero and -zero returns +zero. Denormal inputs are flushed to ±zero.

32-bit and 40-bit Operations
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ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the floating-point result is ±zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

FN = clip FX by FY;

General Form

Compute (Compute) Opcode

FREG Register Class = clip FREG Register Class by FREG Register Class

Function

Returns the floating-point operand in Fx if the absolute value of the operand in Fx is less than the absolute value of
the floating-point operand in Fy. Else, returns | Fy | if Fx is positive, and -| Fy | if Fx is negative. A NAN input
returns an all 1s result. Denormal inputs are flushed to ±zero.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the floating-point result is ±zero, otherwise cleared
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STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

64-bit Floating-Point Computations
This section describes the 64-bit floating-point operations.

FM:N = FX:Y + FZ:W;

General Form

Compute (Compute) Opcode

DBLREG Register Type = DBLREG Register Type + DBLREG Register Type

Function

Adds the floating-point operands in register pairs Fx:y and Fz:w. The normalized result is placed in register Fm:n.

Rounding is to nearest (IEEE) or by truncation, as defined by the TRUNC bit in MODE1.

Post-rounded overflow returns ±infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).

Post-rounded denormal returns ±zero.

Denormal inputs are flushed to ±zero.

A NAN input returns an all 1s result.

This operation requires seven execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 7th execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed Infinities, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +1023), otherwise cleared

AZ Set if the post-rounded result is a denormal (unbiased exponent < –1022) or Zero, otherwise cleared
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STKYx/y Flags

AUS Set if the post-rounded result is a denormal (unbiased exponent < –1022)

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

FM:N = FX:Y - FZ:W;

General Form

Compute (Compute) Opcode

DBLREG Register Type = DBLREG Register Type - DBLREG Register Type

Function

Subtracts the floating-point operand in register pair Fz:w from the floating-point operand in register pair Fx:y. The
normalized result is placed in register pair Fm:n.

Rounding is to nearest (IEEE) or by truncation, as defined by the rounding mode and rounding boundary bits in
MODE1.

Post-rounded overflow returns ±infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).

Post-rounded denormal returns ±zero.

Denormal inputs are flushed to ±zero.

A NAN input returns an all 1s result.

This operation requires seven execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 7th execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed Infinities, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +1023), otherwise cleared

AZ Set if the post-rounded result is a denormal (unbiased exponent < –1022) or Zero, otherwise cleared
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STKYx/y Flags

AUS Sticky indicator sets if the post-rounded result is a denormal (unbiased exponent < –1022)

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

comp (FX:Y, FZ:W);

General Form

Compute (Compute) Opcode

comp(DBLREG Register Type, DBLREG Register Type)

Function

Compares the floating-point operand in register Fx:y with the floating-point operand in register Fz:w. Sets the AZ
flag if the two operands are equal, and the AN flag if the operand in register Fx:y is smaller than the operand in
register Fz:w.

The ASTAT register stores the results of the previous eight ALU compare operations in the CACC bits 31–24.
These bits are shifted right (bit 24 is overwritten) whenever a fixed-point or floating-point compare instruction is
executed.

This operation requires seven execution cycles. The status registers (ASTATx/y or STKYx/y) get updated at the end
of 7th execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

AN Set if the operand in the Fx:y register is smaller than the operand in the Fz:w register, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the operands in registers Fx:y and Fz:w are equal, otherwise cleared

CACC The MSB of CACC is set if the X operand is greater than the Y operand; otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect
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AIS Sticky indicator for AI bit set

AVS No effect

FM:N = - FX:Y;

General Form

Compute (Compute) Opcode

DBLREG Register Type = - DBLREG Register Type

Function

Complements the sign bit of the floating-point operand in Fx:y. The complemented result is placed in register
Fm:n.

A denormal input is flushed to ±zero.

A NAN input returns an all 1s result.

This operation requires 2 execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 2nd execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the result operand is a ±zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

FM:N = abs FX:Y;

General Form

64-bit Floating-Point Computations
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Compute (Compute) Opcode

DBLREG Register Type = abs DBLREG Register Type

Function

Returns the absolute value of the floating-point operand in register Fx:y by setting the sign bit of the operand to 0.

A denormal input is flushed to ±zero.

A NAN input returns an all 1s result.

This operation requires 2 execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 2nd execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Cleared

AS Set if the input operand is negative, otherwise cleared

AV Cleared

AZ Set if the result operand is +zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

FM:N = pass FX:Y;

General Form

Compute (Compute) Opcode

DBLREG Register Type = pass DBLREG Register Type

Function

Passes the floating-point operand in Fx:y through the ALU to the floating point register Fm:n.

A denormal input is flushed to ±zero.

A NAN input returns an all 1s result.

64-bit Floating-Point Computations
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This operation requires 2 execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 2nd execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the result operand is a ±zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set

AVS No effect

FM:N = scalb FX:Y by RY;

General Form

Compute (Compute) Opcode

DBLREG Register Type = scalb DBLREG Register Type by RREG Register Class

Function

Scales the exponent of the floating-point operand in Fx:y by adding to it the fixed-point two’s complement integer
in Ry. The scaled floating point result is placed in register Fm:n.

A denormal input is flushed to ±zero.

A NAN input returns an all 1s result.

An infinite input results into infinite output of same sign.

Rounding is to nearest (IEEE) or by truncation, as defined by the rounding mode.

The exponent scale bias may cause a floating-point overflow or a floating-point underflow.

Overflow generates a return of ±infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).

Underflow (denormal) returns ±zero.
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This operation requires 2 execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 2nd execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if the input is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Set if the post rounded result overflows (unbiased exponent > 1023), otherwise cleared

AZ Set if the post rounded result is a denormal (unbiased exponent < –1022) or zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator sets if the post-rounded result is a denormal, otherwise cleared

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

RN=fix FX:Y;

DPFLP_FIX

General Form

Compute (Compute) Opcode

RREG Register Class = fix DBLREG Register Type

Rn = Fix Fx:y

Function

Converts the floating-point operand in Fx:y to a two’s-complement 32-bit fixed-point integer result.

The result of the conversion is right-justified (32.0 format) in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

If the REGF_MODE1.TRUNCATE bit =0, the Fix operation rounds the mantissa towards the nearest integer.

In saturation mode (the REGF_MODE1.ALUSAT bit =1), positive overflows and +infinity return the maximum
positive number (0x7FFF FFFF), and negative overflows and –infinity return the minimum negative number
(0x8000 0000). If saturation mode is not set, an infinity input or a result that overflows returns a floating-point
result of all 1s.
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All positive underflows return zero. Negative underflows that are rounded-to-nearest or rounded-to-zero, return
zero; and negative underflows that are rounded by truncation return –1 (0xFFFF FFFF).

A denormal input is flushed to ±zero.

A NAN input returns a floating point all 1s result, (0xFFFFFFFF or 0xFFFFFFFFFF) depending on the
REGF_MODE1.RND32 bit value..

This operation requires four execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 4th execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN or, when saturation mode is not set, either input is an infinity or the result
overflows, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AS Cleared

AV Set if the pre-rounded result is outside the 2’s complement signed 32-bit integer range, or if the input is ±in-
finity, otherwise cleared

AZ Set if the fixed-point result is zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator sets if the pre-rounded result is between -1.0 and 1.0 (except -1, 1, 0), otherwise not effected

AOS No effect

AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

RN = fix FX:Y by RY;

General Form

Compute (Compute) Opcode

RREG Register Class = fix DBLREG Register Type by RREG Register Class

Function

Converts the floating-point operand in Fx:y to a two’s-complement 32-bit fixed-point integer result. If a scaling fac-
tor (Ry) is specified, the fixed-point two’s-complement integer in Ry is added to the exponent of the floating-point
operand in Fx:y before the conversion.

The result of the conversion is right-justified (32.0 format) in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.
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If the REGF_MODE1.TRUNCATE bit =1, the “Fix” operation truncates the mantissa towards –infinity. If this bit
=0, the “Fix” operation rounds the mantissa towards the nearest integer. The truncate operation always truncates
toward 0. The REGF_MODE1.TRUNCATE bit does not influence operation of the trunc instruction.

In saturation mode (the REGF_MODE1.ALUSAT bit =1), positive overflows and +infinity return the maximum
positive number (0x7FFF FFFF), and negative overflows and –infinity return the minimum negative number
(0x8000 0000). If saturation mode is not set, an infinity input or a result that overflows returns a floating-point
result of all 1s.

All positive underflows return zero. Negative underflows that are rounded-to-nearest or rounded-to-zero, return
zero; and negative underflows that are rounded by truncation return –1 (0xFFFF FFFF).

A denormal input is flushed to ±zero.

A NAN input returns a floating point all 1s result, (0xFFFFFFFF or 0xFFFFFFFFFF) depending on the
REGF_MODE1.RND32 bit value.

This operation requires four execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 4th execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN or, when saturation mode is not set, either input is an infinity or the result
overflows, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AS Cleared

AV Set if the pre-rounded result is outside the 2’s complement signed 32-bit integer range, or if the input is ±in-
finity, otherwise cleared

AZ Set if the fixed-point result is zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator sets if the pre-rounded result is between -1.0 and 1.0 (except -1, 1, 0), otherwise not effected

AOS No effect

AIS Sticky indicator for AI bit set This operation requires four execution cycles

AVS Sticky indicator for AV bit set

RN = trunc FX:Y;

General Form

Compute (Compute) Opcode
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RREG Register Class = trunc DBLREG Register Type

Function

Converts the floating-point operand in Fx:y to a two’s-complement 32-bit fixed-point integer result.

The result of the conversion is right-justified (32.0 format) in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

When the REGF_MODE1.TRUNCATE bit =1, the Fix operation truncates the mantissa towards –infinity. The
truncate operation always truncates toward 0. The REGF_MODE1.TRUNCATE bit does not influence operation of
the trunc instruction.

In saturation mode (the REGF_MODE1.ALUSAT bit =1), positive overflows and +infinity return the maximum
positive number (0x7FFF FFFF), and negative overflows and –infinity return the minimum negative number
(0x8000 0000). If saturation mode is not set, an infinity input or a result that overflows returns a floating-point
result of all 1s.

All positive underflows return zero. Negative underflows that are rounded-to-nearest or rounded-to-zero, return
zero; and negative underflows that are rounded by truncation return –1 (0xFFFF FFFF).

A denormal input is flushed to ±zero.

A NAN input returns a floating point all 1s result, (0xFFFFFFFF or 0xFFFFFFFFFF) depending on the
REGF_MODE1.RND32 bit value.

This operation requires four execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 4th execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN or, when saturation mode is not set, either input is an infinity or the result
overflows, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AS Cleared

AV Set if the pre-rounded result is outside the 2’s complement signed 32-bit integer range, or if the input is ±in-
finity, otherwise cleared

AZ Set if the fixed-point result is zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator sets if the pre-rounded result is between -1.0 and 1.0 (except -1, 1, 0), otherwise not effected

AOS No effect
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AIS Sticky indicator for AI bit set

AVS Sticky indicator for AV bit set

RN = trunc FX:Y by RY;

DPFLP_TRUNC_BY

General Form

Compute (Compute) Opcode

RREG Register Class = trunc DBLREG Register Type by RREG Register Class

Function

Converts the floating-point operand in Fx:y to a two’s-complement 32-bit fixed-point integer result. If a scaling fac-
tor (Ry) is specified, the fixed-point two’s-complement integer in Ry is added to the exponent of the floating-point
operand in Fx:y before the conversion.

The result of the conversion is right-justified (32.0 format) in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

If the MODE1 register TRUNC bit is 1, the “Fix” operation truncates the mantissa towards –infinity. If the
TRUNC bit=0, the “Fix” operation rounds the mantissa towards the nearest integer. The “Trunc” operation always
truncates toward 0. The TRUNC bit does not influence operation of the Trunc instruction.

In saturation mode (the ALUSAT bit in MODE1 set), positive overflows and +infinity return the maximum positive
number (0x7FFF FFFF), and negative overflows and – infinity return the minimum negative number (0x8000
0000). If saturation mode is not set, an infinity input or a result that overflows returns a floating-point result of all
1s.

All positive underflows return zero. Negative underflows that are rounded-to-nearest or rounded-to-zero, return
zero; and negative underflows that are rounded by truncation return -1 (0xFFFF FFFF).

A denormal input is flushed to ±zero.

A NAN input returns a floating point all 1s result, i.e. 0xFFFFFFFF or 0xFFFFFFFFFF depending on RND32 bit
value in MODE1 register.

The destination register Fm:n and status registers (ASTATx/y or STKYx/y) get updated at the end of 4th execution
cycle.

ASTATx/y Flags

AC Cleared
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AI Set if the input operand is a NAN or, when saturation mode is not set, either input is an infinity or the result
overflows, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AS Cleared

AV Set if the pre-rounded result is outside the 2’s complement signed 32-bit integer range, or if the input is ±in-
finity, otherwise cleared

AZ Set if the fixed-point result is zero, otherwise cleared

STKYx/y Flags

AUS Sticky indicator sets if the pre-rounded result is between -1.0 and 1.0 (except -1, 1, 0), otherwise not effected

AOS No effect

AIS Sticky indicator for AI bit set This operation requires four execution cycles

AVS Sticky indicator for AV bit set

FM:N = float RX;

General Form

Compute (Compute) Opcode

DBLREG Register Type = float RREG Register Class

Function

Converts the fixed-point operand in Rx to a 64-bit floating-point result.

The final result is placed in register Fm:n. Rounding is to nearest (IEEE) or by truncation, as defined by the round-
ing mode bit (REGF_MODE1.TRUNCATE ). The exponent scale bias may cause a floating-point overflow or a
floating-point underflow. Overflow produces ±infinity (round-to-nearest) or ±NORM.MAX (round-to-zero). Un-
derflow generates a return of ±zero.

This operation requires 2 execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 2nd execution cycle.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared
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AZ Set if the result is zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS No effect

AVS No effect

FM:N = float RX by RY;

General Form

Compute (Compute) Opcode

DBLREG Register Type = float RREG Register Class by RREG Register Class

Function

Converts the fixed-point operand in Rx to a Double Precision floating-point result, and then the fixed-point two’s-
complement integer in Ry is added to the exponent of the floating-point result. The final result is placed in register
Fm:n.

Rounding is to nearest (IEEE) or by truncation, as defined by the rounding mode bit
(REGF_MODE1.TRUNCATE ).

The exponent scale bias may cause a floating-point overflow or a floating-point underflow.

Overflow produces ±infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).

Underflow generates a return of ±zero.

This operation requires 4 execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 4th execution cycle.

ASTATx/y Flags

AC Cleared

AI Cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Set if the result overflows (unbiased exponent > 1023), otherwise cleared

AZ Set if the result is a denormal (unbiased exponent < –1022) or zero, otherwise cleared
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STKYx/y Flags

AUS Sticky indicator sets if the post-rounded result is a denormal, otherwise cleared

AOS No effect

AIS No effect

AVS Sticky indicator for AV bit set

FM:N = cvt FX;

General Form

Compute (Compute) Opcode

Function

Converts the single precision floating point operand in Fx register to double precision floating point format. The
converted result is placed in register Fm:n.

A denormal input is flushed to ±zero.

A NAN input returns an all 1s result.

An infinite input results into infinite output of same sign.

The input is treated as either 32-bit or 40-bit format, depending on the REGF_MODE1.RND32 bit.

This operation takes 2 cycles. The destination register Fm:n and status registers (ASTATx/y or STKYx/y) get updat-
ed at the end of 2nd execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Cleared

AZ Set if the result operand is a ±zero, otherwise cleared

STKYx/y Flags

AUS No effect

AOS No effect

AIS Sticky indicator for AI bit set
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AVS No effect

FN = cvt FX:Y;

General Form

Compute (Compute) Opcode

Function

Converts the double precision floating point operand in Fx:y register to single precision floating point format. The
converted result is placed in register FN.

A denormal input is flushed to ±zero.

A NAN input returns an all 1s result.

An infinite input results into infinite output of same sign.

The output can be either 32-bit or 40-bit format, depending on the REGF_MODE1.RND32 bit.

The REGF_MODE1.TRUNCATE specifies the rounding mode. If REGF_MODE1.TRUNCATE = 0, round to near-
est and if REGF_MODE1.TRUNCATE = 1, round by truncation. Round to nearest, can result in incrementing ex-
ponent and hence may overflow single/extended precision range.

Post-rounded overflow returns ±Infinite, if REGF_MODE1.TRUNCATE = 0.

Post-rounded overflow returns ±NORM.MAX, if REGF_MODE1.TRUNCATE = 1.

Post-rounded underflows are denormal for single-precision format. They are rounded to zero and underflow flag
should be set.

This operation requires 4 execution cycles. The destination register Fm:n and status registers (ASTATx/y or
STKYx/y) get updated at the end of 4th execution cycle.

ASTATx/y Flags

AC Cleared

AI Set if the input operand is a NAN, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AS Cleared

AV Set if the post-rounded result overflows (unbiased exponent > 127), otherwise cleared

AZ Set if the result operand is a ±zero, otherwise cleared
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STKYx/y Flags

AVS Sticky indicator for AV bit set

AOS No effect

AIS Sticky indicator for AI bit set

AUS Sticky indicator sets if the post-rounded result underflows (unbiased exponent <-126), otherwise cleared
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20   MR Register Data Move Operations

This section describes the multiplier result (MR) register data move operations.

For information on syntax and opcodes, see Compute (Compute) Opcode.

For information on arithmetic status, see REGF_ASTATX and REGF_ASTATYregisters.

(mrf | mrb) = RN;
General Form

MRXFBREG Register Class = RREG Register Class

Function

A transfer to an MR register places the fixed-point field of register Rn in the specified MR register. The floating-
point extension field in Rn is ignored.

ASTATx/y Flags

MU Cleared

MN Cleared

MI Cleared

MV Cleared

STKYx/y Flags

MOS No effect

MIS No effect

MVS No effect

MUS No effect
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RN = (mrf | mrb);
General Form

RREG Register Class = MRXFBREG Register Class

Function

The floating-point extension field in Rn is ignored. A transfer from an MR register places the specified MR register
in the fixed-point field in register Rn. The floating-point extension field in Rn is set to all 0s.

ASTATx/y Flags

MU Cleared

MN Cleared

MI Cleared

MV Cleared

STKYx/y Flags

MOS No effect

MIS No effect

MVS No effect

MUS No effect

RN = (mrf | mrb);
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21   Multiplier Fixed-Point Computations

This section describes the multiplier operations. Data moves between MR registers and data registers are considered
multiplier operations and are also covered.

Some of the instructions accept the following Mod1, Mod2, and Mod3 modifiers enclosed in parentheses and that
consist of three or four letters that indicate whether:

• The x-input is signed (S) or unsigned (U).

• The y-input is signed or unsigned.

• The inputs are in integer (I) or fractional (F) format.

• The result written to the register file is rounded-to-nearest (R).

For information on syntax and opcodes, see Compute (Compute) Opcode.

For information on arithmetic status, see REGF_ASTATX and REGF_ASTATY registers.

(mrf | mrb) = MRF + RX * RY MOD1;
General Form

Compute (Compute) Opcode

mrf = mrf + RREG Register Class * RREG Register Class MOD1

mrb = mrb + RREG Register Class * RREG Register Class MOD1

Function

Multiplies the fixed-point fields in registers Rx and Ry, and adds the product to the specified MR register value. If
rounding is specified (fractional data only), the result is rounded. The result is placed either in the fixed-point field
in register Rn or one of the MR accumulation registers, which must be the same MR register that provided the
input. If Rn is specified, only the portion of the result that has the same format as the inputs is transferred (bits 31-0
for integers, bits 63-32 for fractional). The floating- point extension field in Rn is set to all 0s. If MRF or MRB is
specified, the entire 80-bit result is placed in MRF or MRB.
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ASTATx/y Flags

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned result) or ones (signed result) and
the lower 32 bits are not all zeros; integer results do not underflow

MN Set if the result is negative, otherwise cleared

MI Cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed result); number of upper bits
depends on format; for a signed result, fractional=33, integer=49; for an unsigned result, fractional=32, inte-
ger=48

STKYx/y Flags

MOS Sticky indicator for MV bit set

MIS No effect

MVS No effect

MUS MUS No effect

RN = (mrf | mrb) + RX * RY MOD1;
General Form

Compute (Compute) Opcode

RREG Register Class = mrf + RREG Register Class * RREG Register Class MOD1

RREG Register Class = mrb + RREG Register Class * RREG Register Class MOD1

Function

Multiplies the fixed-point fields in registers Rx and Ry, and adds the product to the specified MR register value. If
rounding is specified (fractional data only), the result is rounded. The result is placed either in the fixed-point field
in register Rn or one of the MR accumulation registers, which must be the same MR register that provided the
input. If Rn is specified, only the portion of the result that has the same format as the inputs is transferred (bits 31-0
for integers, bits 63-32 for fractional). The floating- point extension field in Rn is set to all 0s. If MRF or MRB is
specified, the entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned result) or ones (signed result) and
the lower 32 bits are not all zeros; integer results do not underflow

MN Set if the result is negative, otherwise cleared

MI Cleared

RN = (mrf | mrb) + RX * RY MOD1;
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MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed result); number of upper bits
depends on format; for a signed result, fractional=33, integer=49; for an unsigned result, fractional=32, inte-
ger=48

STKYx/y Flags

MOS Sticky indicator for MV bit set

MIS No effect

MVS No effect

MUS No effect

(mrf | mrb) = (mrf | mrb) – RX * RY MOD1;
General Form

Compute (Compute) Opcode

mrf = mrf - RREG Register Class * RREG Register Class MOD1

mrb = mrb - RREG Register Class * RREG Register Class MOD1

Function

Multiplies the fixed-point fields in registers Rx and Ry, and subtracts the product from the specified MR register
value. If rounding is specified (fractional data only), the result is rounded. The result is placed either in the fixed-
point field in register Rn or in one of the MR accumulation registers, which must be the same MR register that
provided the input. If Rn is specified, only the portion of the result that has the same format as the inputs is trans-
ferred (bits 31-0 for integers, bits 63-32 for fractional). The floating- point extension field in Rn is set to all 0s. If
MRF or MRB is specified, the entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned result) or ones (signed result) and
the lower 32 bits are not all zeros; integer results do not underflow

MN Set if the result is negative, otherwise cleared

MI Cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed result); number of upper bits
depends on format; for a signed result, fractional=33, integer=49; for an unsigned result, fractional=32, inte-
ger=48

STKYx/y Flags

MOS Sticky indicator for MV bit set

(mrf | mrb) = (mrf | mrb) – RX * RY MOD1;
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MIS No effect

MVS No effect

MUS No effect

RN = (mrf | mrb) – RX * RY MOD1;
General Form

Compute (Compute) Opcode

RREG Register Class = mrf - RREG Register Class * RREG Register Class MOD1

RREG Register Class = mrb - RREG Register Class * RREG Register Class MOD1

Function

Multiplies the fixed-point fields in registers Rx and Ry, and subtracts the product from the specified MR register
value. If rounding is specified (fractional data only), the result is rounded. The result is placed either in the fixed-
point field in register Rn or in one of the MR accumulation registers, which must be the same MR register that
provided the input. If Rn is specified, only the portion of the result that has the same format as the inputs is trans-
ferred (bits 31-0 for integers, bits 63-32 for fractional). The floating- point extension field in Rn is set to all 0s. If
MRF or MRB is specified, the entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned result) or ones (signed result) and
the lower 32 bits are not all zeros; integer results do not underflow

MN Set if the result is negative, otherwise cleared

MI Cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed result); number of upper bits
depends on format; for a signed result, fractional=33, integer=49; for an unsigned result, fractional=32, inte-
ger=48

STKYx/y Flags

MOS Sticky indicator for MV bit set

MIS No effect

MVS No effect

MUS No effect

RN = (mrf | mrb) – RX * RY MOD1;
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(RN | mrf | mrb) = RX * RY MOD1;
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class * RREG Register Class MOD1

mrf = RREG Register Class * RREG Register Class MOD1

mrb = RREG Register Class * RREG Register Class MOD1

Function

Multiplies the fixed-point fields in registers Rx and Ry. If rounding is specified (fractional data only), the result is
rounded. The result is placed either in the fixed-point field in register Rn or one of the MR accumulation registers.
If Rn is specified, only the portion of the result that has the same format as the inputs is transferred (bits 31-0 for
integers, bits 63-32 for fractional). The floating-point extension field in Rn is set to all 0s. If MRF or MRB is speci-
fied, the entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned result) or ones (signed result) and
the lower 32 bits are not all zeros; integer results do not underflow

MN Set if the result is negative, otherwise cleared

MI Cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed result); number of upper bits
depends on format; for a signed result, fractional=33, integer=49; for an unsigned result, fractional=32, inte-
ger=48

STKYx/y Flags

MOS Sticky indicator for MV bit set

MIS No effect

MVS No effect

MUS No effect

(RN | mrf | mrb) = rnd (mrf | mrb) MOD3;
General Form

Compute (Compute) Opcode

RREG Register Class = rnd mrf MOD3

RREG Register Class = rnd mrb MOD3

(RN | mrf | mrb) = RX * RY MOD1;
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mrf = rnd mrf MOD3

mrb = rnd mrb MOD3

Function

Rounds the specified MR value to nearest at bit 32 (the MR1-MR0 boundary). The result is placed either in the
fixed-point field in register Rn or one of the MR accumulation registers, which must be the same MR register that
provided the input. If Rn is specified, only the portion of the result that has the same format as the inputs is trans-
ferred (bits 31-0 for integers, bits 63-32 for fractional). The floating-point extension field in Rn is set to all 0s. If
MRF or MRB is specified, the entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned result) or ones (signed result) and
the lower 32 bits are not all zeros; integer results do not underflow

MN Set if the result is negative, otherwise cleared

MI Cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed result); number of upper bits
depends on format; for a signed result, fractional=33, integer=49; for an unsigned result, fractional=32, inte-
ger=48

STKYx/y Flags

MOS Sticky indicator for MV bit set

MIS No effect

MVS No effect

MUS No effect

(RN | mrf | mrb) = sat (mrf | mrb) MOD2;
General Form

Compute (Compute) Opcode

RREG Register Class = sat mrf MOD2

RREG Register Class = sat mrb MOD2

mrf = sat mrf MOD2

mrb = sat mrb MOD2

(RN | mrf | mrb) = sat (mrf | mrb) MOD2;
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Function

If the value of the specified MR register is greater than the maximum value for the specified data format, the multi-
plier sets the result to the maximum value. Otherwise, the MR value is unaffected. The result is placed either in the
fixed-point field in register Rn or one of the MR accumulation registers, which must be the same MR register that
provided the input. If Rn is specified, only the portion of the result that has the same format as the inputs is trans-
ferred (bits 31-0 for integers, bits 63-32 for fractional). The floating-point extension field in Rn is set to all 0s. If
MRF or MRB is specified, the entire 80-bit result is placed in MRF or MRB.

ASTATx/y Flags

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned result) or ones (signed result) and
the lower 32 bits are not all zeros; integer results do not underflow

MN Set if the result is negative, otherwise cleared

MI Cleared

MV Cleared

STKYx/y Flags

MOS No effect

MIS No effect

MVS No effect

MUS No effect

(mrf | mrb) = 0;
General Form

Compute (Compute) Opcode

mrf = 0

mrb = 0

Function

Sets the value of the specified MR register to zero. All 80 bits (MR2, MR1, MR0, MS2, MS1, MS0) are cleared.

NOTE: Only only MRF/MRB=0 instructions are valid. MSF/MSB=0 instruction does not exist.

ASTATx/y Flags

MU Cleared

(mrf | mrb) = 0;

SHARC+ Core Programming Reference 21–7



MN Cleared

MI Cleared

MV Cleared

STKYx/y Flags

MOS No effect

MIS No effect

MVS No effect

MUS No effect

(mrf | mrb) = 0;
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22   Multiplier Floating-Point Computations

32/40/64-bit Multiplier floating-point operations are described in this section.

For information on syntax and opcodes, see Compute (Compute) Opcode.

For information on arithmetic status, see REGF_ASTATX and REGF_ASTATY registers.

32-bit/40-bit Floating-Point Operations
The following sections provide descriptions for the Multiplier 32-bit and 40-bit operations.

FN = FX * FY;

General Form

Compute (Compute) Opcode

FREG Register Class = FREG Register Class * FREG Register Class

Function

Multiplies the floating-point operands in registers Fx and Fy and places the result in the register Fn.

ASTATx/y Flags

MU Set if the unbiased exponent of the result is less than -126, otherwise cleared

MN Set if the result is negative, otherwise cleared

MI Set if either input is a NAN or if the inputs are ±infinity and ±zero, otherwise cleared

MV Set if the unbiased exponent of the result is greater than 127, otherwise cleared

STKYx/y Flags

MOS No effect

MIS Sticky indicator for MI bit set

MVS Sticky indicator for MV bit set

Multiplier Floating-Point Computations
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MUS Sticky indicator for MU bit set

64-bit Floating-Point Operations
The following sections provide descriptions for the Multiplier 64-bit Floating-Point operations.

FM:N = FX:Y * FZ:W;

General Form

Compute (Compute) Opcode

DBLREG Register Type = DBLREG Register Type * DBLREG Register Type

Function

Multiplies the floating-point operands in register Fx:y and Fz:w and places the result in the register Fm:n.

This instruction uses MR register for intermediate computations. The MR register could be MRF or MRB depend-
ing on the REGF_MODE1.SRCU bit.

WARNING: The data in MR register at the end of execution of this instruction is not valid.

Hence, if the MR register contains a valid data which may be required later, the user must save the
data in MR before executing this instruction.

This operation requires seven execution cycles. The lower half of the destination register Fm:n (for example Rn) gets
updated at the end of 6th execution cycle. The upper half of the destination register Fm:n (for example Rm) and
status registers (ASTATx/y or STKYx/y) get updated at the end of 7th execution cycle.

NOTE: For all 64-bit multiply operations, note the following:

• If only one of the operand of 64-bit Multiply operation is a NAN, the sign of the result will be the
sign of the input operand, which is a NAN.

• If both the operands of a 64-bit Multiply operation are NANs, the sign of the result will be OR of the
signs of the input operands.

ASTATx/y Flags

MI Set if either input is a NAN or if the inputs are ±infinity and ±zero, otherwise cleared

MN Set if the result is negative, otherwise cleared

MU Set if the unbiased exponent of the result is less than –1022, otherwise cleared

MV Set if the unbiased exponent of the result is greater than 1023, otherwise cleared

64-bit Floating-Point Operations
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STKYx/y Flags

MUS Sticky indicator for MU bit set

MOS No effect

MIS Sticky indicator for MI bit set

MVS Sticky indicator for MV bit set

FM:N = FX:Y * FY;

General Form

Compute (Compute) Opcode

DBLREG Register Type = DBLREG Register Type * FREG Register Class

Function

Multiplies the Double Precision floating-point operands in register Fx:y with Single precision floating-point operand
in register FY and places the double precision floating point result in the register Fm:n.

This instruction uses MR register for intermediate computations. The MR register could be MRF or MRB depend-
ing on the REGF_MODE1.SRCU bit.

WARNING: The data in MR register at the end of execution of this instruction is not valid.

Hence, if the MR register contains a valid data which may be required later, the user must save the
data in MR before executing this instruction.

This operation requires seven execution cycles.

The lower half of the destination register Fm:n (i.e. Rn) gets updated at the end of 6th execution cycle. The upper
half of the destination register Fm:n (i.e. Rm) and status registers (ASTATx/y or STKYx/y) get updated at the end of
7th execution cycle.

ASTATx/y Flags

MI Set if either input is a NAN or if the inputs are ±infinity and ±zero, otherwise cleared

MN Set if the result is negative, otherwise cleared

MU Set if the unbiased exponent of the result is less than –1022, otherwise cleared

MV Set if the unbiased exponent of the result is greater than 1023, otherwise cleared

STKYx/y Flags

MUS Sticky indicator for MU bit set

64-bit Floating-Point Operations
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MOS No effect

MIS Sticky indicator for MI bit set

MVS Sticky indicator for MV bit set

FM:N = FX * FY;

General Form

Compute (Compute) Opcode

DBLREG Register Type = FREG Register Class * FREG Register Class

Function

Multiplies the Single Precision floating-point operands in register FX with Single precision floating-point operand in
register FY and places the double precision floating-point result in the register Fm:n.

Caution

This instruction uses MR register for intermediate computations. The MR register could be MRF or MRB depend-
ing on the REGF_MODE1.SRCU bit.

WARNING: The data in MR register at the end of execution of this instruction is not valid.

Hence, if the MR register contains a valid data which may be required later, the user must save the
data in MR before executing this instruction.

This operation requires seven execution cycles.

The lower half of the destination register Fm:n (i.e. Rn) gets updated at the end of 6th execution

cycle. The upper half of the destination register Fm:n (i.e. Rm) and status registers (ASTATx/y or STKYx/y) get
updated at the end of 7th execution cycle.

ASTATx/y Flags

MI Set if either input is a NAN or if the inputs are ±infinity and ±zero, otherwise cleared

MN Set if the result is negative, otherwise cleared

MU Set if the unbiased exponent of the result is less than –1022, otherwise cleared

MV Set if the unbiased exponent of the result is greater than 1023, otherwise cleared

STKYx/y Flags

MUS Sticky indicator for MU bit set

MOS No effect

64-bit Floating-Point Operations
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MIS Sticky indicator for MI bit set

MVS Sticky indicator for MV bit set

64-bit Floating-Point Operations
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23   Shifter Immediate Computations

Shifter and shift immediate operations are described in this section. The succeeding pages provide detailed descrip-
tions of each operation. Some of the instructions accept the following modifiers.

Some of the instructions in this group accept the following modifiers enclosed in parentheses.

• (SE) = Sign extension of deposited or extracted field

• (EX) = Extended exponent extract

• (NU) = No update (bit FIFO)

For information on syntax and opcodes, see Compute (Compute) Opcode.

For information on arithmetic status, see REGF_ASTATX and REGF_ASTATY registers.

RN = lshift RX by (RY | DATA8);
General Form

Compute (Compute) Opcode

RREG Register Class = lshift RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = lshift RFREG Register Class by imm8c12 Register Type

Function

Logically shifts the fixed-point operand in register Rx by the 32-bit value in register Ry or by the 8-bit immediate
value in the instruction. The shifted result is placed in the fixed-point field of register Rn. The floating- point exten-
sion field of Rn is set to all 0s. The shift values are two's-complement numbers. Positive values select a left shift,
negative values select a right shift. The 8-bit immediate data can take values between -128 and 127 inclusive, allow-
ing for a shift of a 32-bit field from off-scale right to off-scale left.

ASTATx/y Flags

SS Cleared

Shifter Immediate Computations
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SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted to the left by more than 0, otherwise cleared

RN = RN or lshift RX by (RY | DATA8);
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class or lshift RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = RFREG Register Class or lshift RFREG Register Class by imm8c12 Register Type

Function

Logically shifts the fixed-point operand in register Rx by the 32-bit value in register Ry or by the 8-bit immediate
value in the instruction. The shifted result is logically ORed with the fixed-point field of register Rn and then writ-
ten back to register Rn. The floating-point extension field of Rn is set to all 0s. The shift values are two's-comple-
ment numbers. Positive values select a left shift, negative values select a right shift. The 8-bit immediate data can
take values between -128 and 127 inclusive, allowing for a shift of a 32-bit field from off-scale right to off-scale left.

ASTATx/y Flags

SS Cleared

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

RN = ashift RX by (RY | DATA8);
General Form

Compute (Compute) Opcode

RREG Register Class = ashift RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = ashift RFREG Register Class by imm8c12 Register Type

Function

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit value in register Ry or by the 8-bit immedi-
ate value in the instruction. The shifted result is placed in the fixed-point field of register Rn. The floating-point
extension field of Rn is set to all 0s. The shift values are two's-complement numbers. Positive values select a left

RN = RN or lshift RX by (RY | DATA8);
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shift, negative values select a right shift. The 8-bit immediate data can take values between -128 and 127 inclusive,
allowing for a shift of a 32-bit field from off-scale right to off-scale left.

ASTATx/y Flags

SS Cleared

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

RN = RN or ashift RX by (RY | DATA8);
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class or ashift RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = RFREG Register Class or ashift RFREG Register Class by imm8c12 Register Type

Function

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit value in register Ry or by the 8-bit immedi-
ate value in the instruction. The shifted result is logically ORed with the fixed-point field of register Rn and then
written back to register Rn. The floating-point extension field of Rn is set to all 0s. The shift values are two's-com-
plement numbers. Positive values select a left shift, negative values select a right shift. The 8-bit immediate data can
take values between -128 and 127 inclusive, allowing for a shift of a 32-bit field from off-scale right to off-scale left.

ASTATx/y Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

RN = rot RX by (RY | DATA);
General Form

Compute (Compute) Opcode

RREG Register Class = rot RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = rot RFREG Register Class by imm8c12 Register Type

RN = RN or ashift RX by (RY | DATA8);
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Function

Rotates the fixed-point operand in register Rx by the 32-bit value in register Ry or by the 8-bit immediate value in
the instruction. The rotated result is placed in the fixed-point field of register Rn. The floating-point extension field
of Rn is set to all 0s. The shift values are two's-complement numbers. Positive values select a rotate left; negative
values select a rotate right. The 8-bit immediate data can take values between -128 and 127 inclusive, allowing for a
rotate of a 32-bit field from full right wrap around to full left wrap around.

ASTATx/y Flags

SS Cleared

SZ Set if the rotated result is zero, otherwise cleared

SV Cleared

RN = bclr RX by (RY | DATA8);
General Form

Compute (Compute) Opcode

RREG Register Class = bclr RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = bclr RFREG Register Class by uimm5c12 Register Type

Function

Clears a bit in the fixed-point operand in register Rx. The result is placed in the fixed-point field of register Rn. The
floating-point extension field of Rn is set to all 0s. The position of the bit is the 32-bit value in register Ry or the 8-
bit immediate value in the instruction. The 8-bit immediate data can take values between 31 and 0 inclusive, allow-
ing for any bit within a 32-bit field to be cleared. If the bit position value is greater than 31 or less than 0, no bits are
cleared.

ASTATx/y Flags

SS Cleared

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

There is also a bit manipulation instruction (type 18 a) that affects one or more bits in a system register. The BIT
CLR Sysreg instruction should not be confused with the BCLR Dreg instruction. This shifter operation affects
only one bit in a data register file location. For more information, see System Register Bit Manipulation.

RN = bclr RX by (RY | DATA8);
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RN = bset RX by (RY | DATA8);
General Form

Compute (Compute) Opcode

RREG Register Class = bset RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = bset RFREG Register Class by uimm5c12 Register Type

Function

Sets a bit in the fixed-point operand in register Rx. The result is placed in the fixed-point field of register Rn. The
floating-point extension field of Rn is set to all 0s. The position of the bit is the 32-bit value in register Ry or the 8-
bit immediate value in the instruction. The 8-bit immediate data can take values between 31 and 0 inclusive, allow-
ing for any bit within a 32-bit field to be set. If the bit position value is greater than 31 or less than 0, no bits are set.

ASTATx/y Flags

SS Cleared

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

There is also a bit manipulation instruction (type 18 a) that affects one or more bits in a system register. The BIT
SET Sysreg instruction should not be confused with the BSET Dreg instruction. This shifter operation affects
only one bit in a data register file location. For more information, see System Register Bit Manipulation.

RN = btgl RX by (RY | DATA8);
General Form

Compute (Compute) Opcode

RREG Register Class = btgl RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = btgl RFREG Register Class by uimm5c12 Register Type

Function

Toggles a bit in the fixed-point operand in register Rx. The result is placed in the fixed-point field of register Rn.
The floating-point extension field of Rn is set to all 0s. The position of the bit is the 32-bit value in register Ry or
the 8-bit immediate value in the instruction. The 8-bit immediate data can take values between 31 and 0 inclusive,
allowing for any bit within a 32-bit field to be toggled. If the bit position value is greater than 31 or less than 0, no
bits are toggled.

RN = bset RX by (RY | DATA8);
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ASTATx/y Flags

SS Cleared

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

There is also a bit manipulation instruction (type 18 a) that affects one or more bits in a system register. The BIT
TGL Sysreg instruction should not be confused with the BTGL Dreg instruction. This shifter operation affects
only one bit in a data register file location. For more information, see System Register Bit Manipulation.

btst RX by (RY | DATA8);
General Form

Compute (Compute) Opcode

btst RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

btst RFREG Register Class by uimm5c12 Register Type

Function

Tests a bit in the fixed-point operand in register Rx. The SZ flag is set if the bit is a 0 and cleared if the bit is a 1.
The position of the bit is the 32-bit value in register Ry or the 8-bit immediate value in the instruction. The 8-bit
immediate data can take values between 31 and 0 inclusive, allowing for any bit within a 32-bit field to be tested. If
the bit position value is greater than 31 or less than 0, no bits are tested.

ASTATx/y Flags

SS Cleared

SZ Cleared if the tested bit is a 1, is set if the tested bit is a 0 or if the bit position is greater than 31

SV Set if the bit position is greater than 31, otherwise cleared

There is also a bit manipulation instruction (type 18 a) that affects one or more bits in a system register. The BIT
TST Sysreg instruction should not be confused with the BTST Dreg instruction. This shifter operation affects
only one bit in a data register file location. For more information, see System Register Bit Manipulation.

RN = fdep RX by (RY | BIT6:LEN6);
General Form

Compute (Compute) Opcode

btst RX by (RY | DATA8);
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RREG Register Class = fdep RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = fdep RFREG Register Class by uimm6bit Register Type : uimm6len Register Type

Function

Deposits a field from register Rx to register Rn. (See Field Alignment figure.) The input field is right-aligned within
the fixed-point field of Rx. Its length is determined by the len6 field in register Ry or by the immediate len6 field in
the instruction. The field is deposited in the fixed-point field of Rn, starting from a bit position determined by the
bit6 field in register Ry or by the immediate bit6 field in the instruction. Bits to the left and to the right of the
deposited field are set to 0. The floating-point extension field of Rn (bits 7–0 of the 40-bit word) is set to all 0s. Bit6
and len6 can take values between 0 and 63 inclusive, allowing for deposit of fields ranging in length from 0 to 32
bits, and to bit positions ranging from 0 to off-scale left.

39 19 13 7 0

39 0

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

bit6 = starting bit position for deposit,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

deposit field

bit6 reference point

len6 bit6

Figure 23-1: Field Alignment

If len6=14 and bit6=13, then the 14 bits of Rx are deposited in Rn bits 34-21 (of the 40-bit word).

39       31       23       15       7        0 
|--------|--------|--abcdef|ghijklmn|--------|   Rx 
                     \-------------/ 
                         14 bits 
39       31       23       15       7        0 
|00000abc|defghijk|lmn00000|00000000|00000000|   Rn 
      \--------------/ 
                      | 
                      bit position 13 (from reference point) 

ASTATx/y Flags

SS Cleared

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field (that is, if len6 + bit6 > 32),
otherwise cleared

RN = fdep RX by (RY | BIT6:LEN6);
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RN = RN or fdep RX by (RY | BIT6:LEN6);
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class or fdep RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = RFREG Register Class or fdep RFREG Register Class by uimm6bit Register Type : uimm6len
Register Type

Function

Deposits a field from register Rx to register Rn. The field value is logically ORed bitwise with the specified field of
register Rn and the new value is written back to register Rn. The input field is right-aligned within the fixed-point
field of Rx. Its length is determined by the len6 field in register Ry or by the immediate len6 field in the instruction.

The field is deposited in the fixed-point field of Rn, starting from a bit position determined by the bit6 field in
register Ry or by the immediate bit6 field in the instruction. Bit6 and len6 can take values between 0 and 63 inclu-
sive, allowing for deposit of fields ranging in length from 0 to 32 bits, and to bit positions ranging from 0 to off-
scale left.

39       31       23       15       7        0 
|--------|--------|--abcdef|ghijklmn|--------|    Rx 
                     \--------------/ 
                        len6 bits 
39       31       23       15       7        0 
|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn|    Rn old 
      \--------------/ 
                     | 
                     bit position bit6 (from reference point) 
39       31       23       15       7        0 
|abcdeopq|rstuvwxy|zabtuvwx|yzabcdef|ghijklmn|    Rn new 
      \--------OR result-------/

ASTATx/y Flags

SS Cleared

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field (that is, if len6 + bit6 > 32),
otherwise cleared

RN = fdep RX by (RY | BIT6:LEN6) (se);
General Form

RN = RN or fdep RX by (RY | BIT6:LEN6);
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Compute (Compute) Opcode

RREG Register Class = fdep RREG Register Class by RREG Register Class (se)

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = fdep RFREG Register Class by uimm6bit Register Type : uimm6len Register Type (se)

Function

Deposits and sign-extends a field from register Rx to register Rn. (See Field Alignment figure.) The input field is
right-aligned within the fixed-point field of Rx. Its length is determined by the len6 field in register Ry or by the
immediate len6 field in the instruction. The field is deposited in the fixed-point field of Rn, starting from a bit
position determined by the bit6 field in register Ry or by the immediate bit6 field in the instruction. The MSBs of
Rn are sign-extended by the MSB of the deposited field, unless the MSB of the deposited field is off-scale left. Bits
to the right of the deposited field are set to 0. The floating-point extension field of Rn (bits 7–0 of the 40-bit word)
is set to all 0s. Bit6 and len6 can take values between 0 and 63 inclusive, allowing for deposit of fields ranging in
length from 0 to 32 bits into bit positions ranging from 0 to off-scale left.

.

9193 13 7 0

len6 bit6

39 0

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

bit6 = starting bit position for deposit,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

sign bit extension deposit field

bit6 reference point

Figure 23-2: Field Alignment

39 19137 0 len6 bit6 Ry 39 70 Rx len6 = number of bits to take from Rx, starting from LSB of32-bitfield 39 70
bit6 = startingbit position for deposit, referenced from the LSB of the 32-bit field Rn signbit extension deposit field
bit6 reference point

39 31 23 15 7 0 
|--------|--------|--abcdef|ghijklmn|--------|    Rx 
                    \---------------/ 
                        len6 bits 
39       31       23       15       7        0 
|aaaaaabc|defghijk|lmn00000|00000000|00000000|    Rn 
\----/\--------------/ 
 sign                | 
extension            bit position bit6 
                     (from reference point) 

RN = fdep RX by (RY | BIT6:LEN6) (se);
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ASTATx/y Flags

SS Cleared

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field (that is, if len6 + bit6 > 32),
otherwise cleared

RN = RN or fdep RX by (RY | BIT6:LEN6) (se);
General Form

Compute (Compute) Opcode

RREG Register Class = RREG Register Class or fdep RREG Register Class by RREG Register Class (se)

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = RFREG Register Class or fdep RFREG Register Class by uimm6bit Register Type : uimm6len
Register Type (se)

Function

Deposits and sign-extends a field from register Rx to register Rn. The sign-extended field value is logically ORed
bitwise with the value of register Rn and the new value is written back to register Rn. The input field is right-aligned
within the fixed-point field of Rx. Its length is determined by the len6 field in register Ry or by the immediate len6
field in the instruction. The field is deposited in the fixed-point field of Rn, starting from a bit position determined
by the bit6 field in register Ry.

The bit position can also be determined by the immediate bit6 field in the instruction. Bit6 and len6 can take values
between 0 and 63 inclusive to allow the deposit of fields ranging in length from 0 to 32 bits into bit positions rang-
ing from 0 to off-scale left.

39       31       23       15       7        0 
|--------|--------|--abcdef|ghijklmn|--------|    Rx 
                     \-------------/ 
                        len6 bits 
39       31       23       15       7        0 
|aaaaaabc|defghijk|lmn00000|00000000|00000000| 
\----/\--------------/ 
 sign                | 
 extension           bit position bit6 
                    (from reference point) 
39       31       23       15       7        0 
|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn|    Rn old 
39       31       23       15       7        0 
|vwxyzabc|defghijk|lmntuvwx|yzabcdef|ghijklmn|    Rn new 
 \-----OR result-----/

RN = RN or fdep RX by (RY | BIT6:LEN6) (se);
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ASTATx/y Flags

SS Cleared

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field (that is, if len6 + bit6 > 32),
otherwise cleared

RN = fext RX by (RY | BIT6:LEN6);
General Form

Compute (Compute) Opcode

RREG Register Class = fext RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = fext RFREG Register Class by uimm6bit Register Type : uimm6len Register Type

Function

Extracts a field from register Rx to register Rn. (See Field Alignment figure.) The output field is placed right-aligned
in the fixed-point field of Rn. Its length is determined by the len6 field in register Ry or by the immediate len6 field
in the instruction. The field is extracted from the fixed-point field of Rx starting from a bit position determined by
the bit6 field in register Ry or by the immediate bit6 field in the instruction. Bits to the left of the extracted field are
set to 0 in register Rn. The floating-point extension field of Rn (bits 7–0 of the 40-bit word) is set to all 0s. Bit6 and
len6 can take values between 0 and 63 inclusive, allowing for extraction of fields ranging in length from 0 to 32 bits,
and from bit positions ranging from 0 to off-scale left.

9193 13 7 0

39 0

extracted bits placed in Rn, starting at LSB of 32-bit field

bit6 = starting bit position for extract,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

bit6 reference point

extract field

bit6len6

Figure 23-3: Field Alignment

39       31       23       15       7        0 
|-----abc|defghijk|lmn-----|--------|--------|    Rx 
      \--------------/ 
         len6 bits  | 
                    bit position bit6 
                   (from reference point) 
39       31       23       15       7        0 

RN = fext RX by (RY | BIT6:LEN6);
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|00000000|00000000|00abcdef|ghijklmn|00000000|    Rn 

ASTATx/y Flags

SS Cleared

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are extracted from the left of the 32-bit fixed-point, input field (that is, if len6 + bit6 > 32),
otherwise cleared

RN = fext RX by (RY | BIT6:LEN6) (se);
General Form

Compute (Compute) Opcode

RREG Register Class = fext RREG Register Class by RREG Register Class (se)

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = fext RFREG Register Class by uimm6bit Register Type : uimm6len Register Type (se)

Function

Extracts and sign-extends a field from register Rx to register Rn. The output field is placed right-aligned in the fixed-
point field of Rn. Its length is determined by the len6 field in register Ry or by the immediate len6 field in the
instruction. The field is extracted from the fixed-point field of Rx starting from a bit position determined by the
bit6 field in register Ry or by the immediate bit6 field in the instruction. The MSBs of Rn are sign-extended by the
MSB of the extracted field, unless the MSB is extracted from off-scale left.

The floating-point extension field of Rn (bits 7–0 of the 40-bit word) is set to all 0s. Bit6 and len6 can take values
between 0 and 63 inclusive, allowing for extraction of fields ranging in length from 0 to 32 bits and from bit posi-
tions ranging from 0 to off-scale left.

39 31 23 15 7 0 
|-----abc|defghijk|lmn-----|--------|--------|    Rx
      \--------------/ 
          len6 bits  | 
                     bit position bit6 
                     (from reference point) 
39       31       23       15       7        0 
|aaaaaaaa|aaaaaaaa|aaabcdef|ghijklmn|00000000|    Rn
\-------------------/ 
   sign extension  

ASTATx/y Flags

SS Cleared

RN = fext RX by (RY | BIT6:LEN6) (se);
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SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are extracted from the left of the 32-bit fixed-point input field (that is, if len6 + bit6 > 32),
otherwise cleared

RN = exp RX;
General Form

Compute (Compute) Opcode

RREG Register Class = exp RREG Register Class

Function

Extracts the exponent of the fixed-point operand in Rx. The exponent is placed in the shf8 field in register Rn. The
exponent is calculated as the two's-complement of: # leading sign bits in Rx - 1

ASTATx/y Flags

SS Set if the fixed-point operand in Rx is negative (bit 31 is a 1), otherwise cleared

SZ Set if the extracted exponent is 0, otherwise cleared

SV Cleared

RN = exp RX (ex);
General Form

Compute (Compute) Opcode

RREG Register Class = exp RREG Register Class (ex)

Function

Extracts the exponent of the fixed-point operand in Rx, assuming that the operand is the result of an ALU opera-
tion. The exponent is placed in the shf8 field in register Rn. If the AV status bit is set, a value of +1 is placed in the
shf8 field to indicate an extra bit (the ALU overflow bit). If the AV status bit is not set, the exponent is calculated as
the two's-complement of: # leading sign bits in Rx - 1

ASTATx/y Flags

SS Set if the exclusive OR of the AV status bit and the sign bit (bit 31) of the fixed-point operand in Rx is equal
to 1, otherwise cleared

SZ Set if the extracted exponent is 0, otherwise cleared

SV Cleared

RN = exp RX;
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RN = leftz RX;
General Form

Compute (Compute) Opcode

RREG Register Class = leftz RREG Register Class

Function

Extracts the number of leading 0s from the fixed-point operand in Rx. The extracted number is placed in the bit6
field in Rn.

ASTATx/y Flags

SS Cleared

SZ Set if the MSB of Rx is 1, otherwise cleared

SV Set if the result is 32, otherwise cleared

RN = lefto RX;
General Form

Compute (Compute) Opcode

RREG Register Class = lefto RREG Register Class

Function

Extracts the number of leading 1s from the fixed-point operand in Rx. The extracted number is placed in the bit6
field in Rn.

ASTATx/y Flags

SS Cleared

SZ Set if the MSB of Rx is 0, otherwise cleared

SV Set if the result is 32, otherwise cleared

RN = fpack FX;
General Form

Compute (Compute) Opcode

RREG Register Class = fpack FREG Register Class

RN = leftz RX;
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Function

Converts the IEEE 32-bit floating-point value in Fx to a 16-bit floating- mantissa with a four-bit exponent plus sign
bit. The 16-bit floating-point numbers reside in the lower 16 bits of the 32-bit floating-point field. The result of the
FPACK operation is:

135 < exp*1 Largest magnitude representation

120 < exp <= 135 Exponent is MSB of source exponent concatenated with the three LSBs of source
exponent; the packed fraction is the rounded upper 11 bits of the source fraction

109 < exp <= 120 Exponent=0; packed fraction is the upper bits (source exponent - 110) of the
source fraction prefixed by zeros and the "hidden" 1; the packed fraction is round-
ed

exp < 110 Packed word is all zeros exp = source exponent sign bit remains the same in all
cases

 

*1 exp = source exponent sign bit remains the same in all cases
 

The short float type supports gradual underflow. This method sacrifices precision for dynamic range. When packing
a number which would have underflowed, the exponent is set to zero and the mantissa (including "hidden" 1) is
right-shifted the appropriate amount. The packed result is a denormal which can be unpacked into a normal IEEE
floating-point number.

ASTATx/y Flags

SS Cleared

SZ Cleared

FN = funpack RX;
General Form

Compute (Compute) Opcode

FREG Register Class = funpack RREG Register Class

Function

Converts the 16-bit floating-point value in Rx to an IEEE 32-bit floating- point value stored in Fx. The result con-
sists of:

0 < exp*1 ≤ 15 Exponent is the three LSBs of the source exponent prefixed by the MSB of the source exponent and
four copies of the complement of the MSB; the unpacked fraction is the source fraction with 12
zeros appended

FN = funpack RX;
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exp = 0 Exponent is (120 – N) where N is the number of leading zeros in the source fraction; the unpacked
fraction is the remainder of the source fraction with zeros appended to pad it and the “hidden” 1
stripped away

 

*1 exp = source exponent sign bit remains the same in all cases
 

The short float type supports gradual underflow. This method sacrifices precision for dynamic range. When packing
a number that would have underflowed, the exponent is set to 0 and the mantissa (including “hidden” 1) is right-
shifted the appropriate amount. The packed result is a denormal, which can be unpacked into a normal IEEE float-
ing-point number.

ASTATx/y Flags

SS Cleared

SZ Cleared

SV Cleared

bitdep RX by (RY | BITLEN12);
General Form

Compute (Compute) Opcode

bitdep RREG Register Class by RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

bitdep RFREG Register Class by uimm12 Register Type

Function

Deposits the bitlen number of bits (specified by Ry or bitlen) in the bit FIFO from Rx. The bits read from Rx are
right justified. Write pointer incremented by the number of bit appended. To understand the BITDEP instruction,
it is easiest to observe how the data register and bit FIFO behave during instruction execution. If the data register,
Rx (40 Bits), contains:

                           39      32 
                           |--------| 
31       23       15       7        0 
|--------|----abcd|efghijkl|--------| 
              \-----------/ 
               bitlen bits 
And, the bit FIFO (64 Bits), before instruction execution contains:

63       55       47       39      32 
|qwertyui|opasdfgh|lmn-----|--------| 
                      ^- BFFWRP - Write Pointer 

bitdep RX by (RY | BITLEN12);
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31       23       15       7        0 
|--------|--------|--------|--------| 
Then, after instruction execution, the bit FIFO (64 Bits) contains:

63       55       47       39      32 
|qwertyui|opasdfgh|lmnabcde|fghijkl-| 
                                   ^- BFFWRP - Write Pointer 
31       23       15       7        0 
|--------|--------|--------|--------| 
This operation on the bit FIFO is equivalent to:

1. BFF = BFF OR FDEP Rx BY <64-(BFFWRP+bitlen)> : <bitlen>

2. BFFWRP = BFFWRP + <bitlen>

Note: Do not use the pseudo code above as instruction syntax.

The first operation is similar to the FDEP instruction, but the right and left shifters are modified to be 64-bit shift-
ers. The second operation provides write pointer update and flag update, which differs from the FDEP instruction.

SF is set or reset according to the value of write pointer. A data of more than 32 in the lower 6 bits of Ry or immedi-
ate field (bitlen12) is prohibited, and use of such data sets SV. Attempts to append more bits than the bit FIFO has
room for results in an undefined bit FIFO and write pointer. SV is set in that case, otherwise SV is cleared. SZ and
SS are cleared.

ASTATx/y Flags

SS Cleared

SZ Cleared

SF Set if updated BFFWRP>= 32, otherwise cleared

NOTE: SF has up-to one cycle of effect latency on conditional non-L1 accesses

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field (that is, if Ry or bitlen12 > 32),
otherwise cleared

RN = bitext (RX | BITLEN12) (nu);
General Form

Compute (Compute) Opcode

RREG Register Class = bitext RREG Register Class

RREG Register Class = bitext RREG Register Class (nu)

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

RFREG Register Class = bitext uimm12 Register Type

RN = bitext (RX | BITLEN12) (nu);
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RFREG Register Class = bitext uimm12 Register Type (nu)

Function

Extracts bitlen number of bits (specified by Rx or bitlen) from the bit FIFO and places the data in Rn. The bits in
Rn are right justified. Decrements write pointer by same number as read bits. Remaining content of the bit FIFO is
left-shifted so that it is MSB aligned. The optional modifier NU (no update) or query only, returns the requested
number of bits as usual but does not modify the bit FIFO or Write pointer. To understand the BITEXT instruction,
it is easiest to observe how the data register and bit FIFO behave during instruction execution. If the bit FIFO (64
bits) contains:

63       55       47       39      32
|abcdefgh|ijklmn--|--------|--------|
 \-----------/  ^ - BFFWRP Pointer 
bitlen bits 
31       23       15       7        0 
|--------|--------|--------|--------|
After instruction execution, the Rn register (40 bits) contains:

                           39      32 
                           |00000000| 
31       23       15       7        0 
|00000000|0000abcd|efghijkl|00000000| 
And the bit FIFO (64 Bits) contains:

63       55       47       39      32 
|mn------|--------|--------|--------| 
   ^- BFFWRP Pointer 
31       23       15       7        0 
|--------|--------|--------|--------| 
This operation on the Bit FIFO is equivalent to:

1. Rn = FEXT BFF[63:32] BY <(32-bitlen)>:<bitlen>

2. BFF = BFF << bitlen 3. BFFWRP = BFFWRP - bitlen

Note: Do not use the pseudo code above as instruction syntax.

The first operation is the same as an FEXT instruction operation.

The second operation (bit FIFO 64-bit register with a left shift) and third operation (write pointer update and flag
update) are unique to the bit FIFO operation.

ASTATx/y Flags

A value of more than 32 in the lower 6 bits of Rx or the bitlen immediate field is prohibited and use of such a value
sets SV. Attempts to get more bits than those in the bit FIFO results in undefined pointer and bit FIFO. SV is set in

RN = bitext (RX | BITLEN12) (nu);
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that case. SF is set if write pointer is greater than or equal to 32. SZ is set if output is zero, otherwise cleared. SS is
cleared. Usage of the NU modifier affects SV, SZ, and SS as described above and the SF flag is not updated.

SS Cleared

SZ Set if output is zero, otherwise cleared

SF Set if updated BFFWRP >= 32, otherwise cleared. If NU modifier is used SF reflects the un-updated Write
pointer status

NOTE: SF has up-to one cycle of effect latency on conditional non-L1 accesses

SV Set if an attempt is made to extract more bits than those in bit FIFO, otherwise cleared

bffwrp = (RN | DATA7);
General Form

Compute (Compute) Opcode

bffwrp = RREG Register Class

Shift Immediate (ShiftImm) Opcode (Type 6 Instruction only)

bffwrp = uimm7c12 Register Type

Function

Updates write pointer from Rn or the immediate 7 bit data specified. Only 7 least significant bits of Rn are written.
The maximum permissible data to be written into BFFWRP is 64. Examples For bit FIFO examples, see bitdep RX
by (RY | BITLEN12);.

ASTATx/y Flags

SS Cleared

SZ Cleared

SF Set if updated BFFWRP >= 32, otherwise cleared

NOTE: SF has up-to one cycle of effect latency on conditional non-L1 accesses

SV Set if written <data7> is > 64, otherwise cleared

RN = bffwrp;
General Form

Compute (Compute) Opcode

RREG Register Class = bffwrp

bffwrp = (RN | DATA7);
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Function

Transfers write pointer value to Rn. Examples For bit FIFO examples, see the BITDEP instruction bitdep RX by
(RY | BITLEN12);.

ASTATx/y Flags

SS Cleared

SZ Cleared

SV Cleared

SF Not affected

RN = bffwrp;
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24   Multi-Function Instruction Computations

Multifunction instructions are parallelized single ALU and Multiplier instructions. For functional description and
status flags and for parallel Multiplier and ALU instructions input operand constraints see the ALU Fixed-Point
Computations section and the Multiplier Fixed-Point Computations section. This section lists all possible instruc-
tion syntax options.

Note that the MRB register is not supported in multifunction instructions.

32-Bit, 40-Bit Instructions
Fixed-Point ALU (dual Add and Subtract)

Ra = Rx + Ry , Rs = Rx – Ry

Floating-Point ALU (dual Add and Subtract)

Fa = Fx + Fy , Fs = Fx – Fy

Fixed-Point Multiplier and ALU

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12

Rm = R3-0 * R7-4 (SSFR), Ra = (R11-8 + R15-12)/2

MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12

MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12

MRF = MRF + R3-0 * R7-4 (SSF), Ra = (R11-8 + R15-12)/2

Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12

Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12

Rm = MRF + R3-0 * R7-4 (SSFR), Ra =(R11-8 + R15-12)/2

MRF = MRF – R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12

MRF = MRF – R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12

Multi-Function Instruction Computations
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MRF = MRF – R3-0 * R7-4 (SSF), Ra = (R11-8 + R15-12)/2

Rm = MRF – R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12

Rm = MRF – R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12

Rm = MRF – R3-0 * R7-4 (SSFR), Ra =(R11-8 + R15-12)/2

Floating-Point Multiplier and ALU

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12

Fm = F3-0 * F7-4, Fa = F11-8 – F15-12

Fm = F3-0 * F7-4, Fa = FLOAT R11-8 by R15-12

Fm = F3-0 * F7-4, Ra = FIX F11-8 by R15-12

Fm = F3-0 * F7-4, Fa = (F11-8 + F15-12)/2

Fm = F3-0 * F7-4, Fa = ABS F11-8

Fm = F3-0 * F7-4, Fa = MAX (F11-8, F15-12)

Fm = F3-0 * F7-4, Fa = MIN (F11-8, F15-12)

Fixed-Point Multiplier and ALU (dual Add and Subtract)

Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12, Rs=R11-8 – R15-12

Floating-Point Multiplier and ALU (dual Add and Subtract)

Fm=F3-0 * F7-4, Fa=F11-8 + F15-12, Fs=F11-8 – F15-12

Note that both instructions above are typically used for fixed- or floating- point FFT butterfly calculations.

64-Bit Instructions
All 64-bit float instruction require a valid register pairing for source or destination register (for example F15:14,
F1:0)

Floating-Point Multiplier and ALU/add

Fm:n = F3/1:2/0 * F7/5:6/4, Fa:b = F11/9:10/8 + F15/13:14/12;

Fm:n = any valid register pair

Fa:b = any valid register pair

Floating-Point Multiplier and ALU/subtract

Fm:n = F3/1:2/0 * F7/5:6/4, Fa:b = F11/9:10/8 - F15/13:14/12;

Fm:n = any valid register pair

64-Bit Instructions
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Fa:b = any valid register pair

64-Bit Instructions
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25   Immediate (imm) and Constant (const)
Opcodes

This section provides opcodes for the immediate data and constant types.

imm16visa Register Type
imm16visa Attributes

range allow_label

-0x8000:0x7fff true

imm23pc Register Type
imm23pc Attributes

range allow_label

-0x400000:0x3fffff true

imm24 Register Type
imm24 Attributes

range allow_label

-0x800000:0x7fffff true

Immediate (imm) and Constant (const) Opcodes
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imm24pc Register Type
imm24pc Attributes

range allow_label

-0x800000:0x7fffff true

imm32 Register Type
imm32 Attributes

range allow_label

-0x80000000:0x7fffffff true

imm32c Register Type
imm32c Attributes

range allow_label

-0x80000000:0x7fffffff false

imm32f Register Type
imm32f Attributes

range allow_label

-0x80000000:0x7fffffff true

imm6 Register Type
imm6 Attributes

range allow_label

-0x20:0x1f true

imm24pc Register Type
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imm6pc Register Type
imm6pc Attributes

range allow_label

-0x20:0x1f true

imm6visa Register Type
imm6visa Attributes

range allow_label

-0x20:0x1f true

imm6visapc Register Type
imm6visapc Attributes

range allow_label

-0x20:0x1f true

imm7visa Register Type
imm7visa Attributes

range allow_label

-0x40:0x3f true

imm8c12 Register Type
imm8c12 Attributes

range

-0x80:0x7f

imm6pc Register Type
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uimm12 Register Type
uimm12 Attributes

range

0x0:0xfff

uimm16 Register Type
uimm16 Attributes

range allow_label

0x0:0xffff true

uimm5c12 Register Type
uimm5c12 Attributes

range

0x0:0x1f

uimm6bit Register Type
uimm6bit Attributes

range allow_label

0x0:0x3f true

uimm6len Register Type
uimm6len Attributes

range allow_label

0x0:0x3f true

uimm12 Register Type
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uimm7c12 Register Type
uimm7c12 Attributes

range

0x0:0x7f

uimm7c12 Register Type
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26   Register (reg) Opcodes

This section provides opcodes for the register types. These instructions are multi-issuable with compute.

B1REG Register Class
The B1REG (base registers, DAG1) class includes the base address registers from data address generator 1.

B1REG Syntax

Code Syntax

000 b0

001 b1

010 b2

011 b3

100 b4

101 b5

110 b6

111 b7

B2REG Register Class
The B2REG (base registers, DAG2) class includes the base address registers from data address generator 2.

B2REG Syntax

Code Syntax

000 b8

001 b9

010 b10

011 b11

Register (reg) Opcodes
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Code Syntax

100 b12

101 b13

110 b14

111 b15

DBLREG Register Type
The DBLREG (64-bit floating-point data registers, PEx) class includes the 64-bit floating-point data registers from
processing element x (PEx).

DBLREG Syntax

Code Syntax

0000 f1:0

0010 f3:2

0100 f5:4

0110 f7:6

1000 f9:8

1010 f11:10

1100 f13:12

1110 f15:14

DBLREG3 Register Class
The DBLREG3 (64-bit floating-point data registers, PEx) class includes the 64-bit floating-point data registers from
processing element x (PEx).

DBLREG3 Syntax

Code Syntax

000 f1:0

001 f3:2

010 f5:4

011 f7:6

100 f9:8

101 f11:10

DBLREG Register Type
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Code Syntax

110 f13:12

111 f15:14

DBLXAREG Register Class
The DBLXAREG (register file data register, 64-bit floating-point, input x, range "A") class includes register file loca-
tions, 64-bit floating-point, input x, range "A".

DBLXAREG Syntax

Code Syntax

0 f9:8

1 f11:10

DBLXMREG Register Class
The DBLXMREG (register file data register, 64-bit floating-point, input x, range "M") class includes register file
locations, 64-bit floating-point, input x, range "M".

DBLXMREG Syntax

Code Syntax

0 f1:0

1 f3:2

DBLYAREG Register Class
The DBLYAREG (register file data register, 64-bit floating-point, input y, range "A") class includes register file loca-
tions, 64-bit floating-point, input Y, range "A".

DBLYAREG Syntax

Code Syntax

0 f13:12

1 f15:14

DBLXAREG Register Class
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DBLYMREG Register Class
The DBLYMREG (register file data register, 64-bit floating-point, input y, range "M") class includes register file
locations, 64-bit floating-point, input y, range "M".

DBLYMREG Syntax

Code Syntax

0 f5:4

1 f7:6

FREG Register Class
The FREG (floating-point data registers, PEx) class includes the floating-point data registers from processing ele-
ment x (PEx).

FREG Syntax

Code Syntax

0000 f0

0001 f1

0010 f2

0011 f3

0100 f4

0101 f5

0110 f6

0111 f7

1000 f8

1001 f9

1010 f10

1011 f11

1100 f12

1101 f13

1110 f14

1111 f15

DBLYMREG Register Class
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FXAREG Register Class
The FXAREG (floating-point data registers, input x, range "A") class includes data register file locations, floating-
point, input x, range "A".

FXAREG Syntax

Code Syntax

00 f8

01 f9

10 f10

11 f11

FXMREG Register Class
The FXMREG (floating-point data registers, input x, range "M") class includes data register file locations, floating-
point, input x, range "M".

FXMREG Syntax

Code Syntax

00 f0

01 f1

10 f2

11 f3

FYAREG Register Class
The FYMREG (floating-point data registers, input y, range "A") class includes data register file locations, floating-
point, input y, range "A".

FYAREG Syntax

Code Syntax

00 f12

01 f13

10 f14

11 f15

FXAREG Register Class
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FYMREG Register Class
The FYMREG (floating-point data registers, input y, range "M") class includes data register file locations, floating-
point, input y, range "M".

FYMREG Syntax

Code Syntax

00 f4

01 f5

10 f6

11 f7

I1REG Register Class
The I1REG (index registers, DAG1) class includes the index address registers from data address generator 1.

I1REG Syntax

Code Syntax

000 i0

001 i1

010 i2

011 i3

100 i4

101 i5

110 i6

111 i7

I2REG Register Class
The I2REG (index registers, DAG2) class includes the index address registers from data address generator 2.

I2REG Syntax

Code Syntax

000 i8

001 i9

010 i10

FYMREG Register Class
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Code Syntax

011 i11

100 i12

101 i13

110 i14

111 i15

M1REG Register Class
The M1REG (modifier registers, DAG1) class includes the address modifier registers from data address generator 1.

M1REG Syntax

Code Syntax

000 m0

001 m1

010 m2

011 m3

100 m4

101 m5

110 m6

111 m7

M2REG Register Class
The M2REG (modifier registers, DAG2) class includes the address modifier registers from data address generator 2.

M2REG Syntax

Code Syntax

000 m8

001 m9

010 m10

011 m11

100 m12

101 m13

M1REG Register Class
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Code Syntax

110 m14

111 m15

MRXFBREG Register Class
The MRXFBREG (multipler results registers) class includes the foreground and background multiplier results regis-
ters. The register syntax provides access to each portion of the result.

MRXFBREG Syntax

Code Syntax

0000 mr0f

0001 mr1f

0010 mr2f

0100 mr0b

0101 mr1b

0110 mr2b

RFREG Register Class
The RFREG (register file data register) class includes:

• The r0 through r15 tokens indicate processing element X register file locations, fixed-point.

• The f0 through f15 tokens indicate processing element X register file locations, floating-point.

RFREG Syntax

Code Syntax Syntax Alias

0000 r0 f0

0001 r1 f1

0010 r2 f2

0011 r3 f3

0100 r4 f4

0101 r5 f5

0110 r6 f6

0111 r7 f7

MRXFBREG Register Class
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Code Syntax Syntax Alias

1000 r8 f8

1001 r9 f9

1010 r10 f10

1011 r11 f11

1100 r12 f12

1101 r13 f13

1110 r14 14

1111 r15 f15

RREG Register Class
The RREG (register file data register, PEx, fixed-point) class includes the processing element x register file locations,
fixed-point.

RREG Syntax

Code Syntax

0000 r0

0001 r1

0010 r2

0011 r3

0100 r4

0101 r5

0110 r6

0111 r7

1000 r8

1001 r9

1010 r10

1011 r11

1100 r12

1101 r13

1110 r14

1111 r15

RREG Register Class
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RXAREG Register Class
The RXAREG (register file data register, fixed-point, input x, range "A") class includes register file locations, fixed-
point, input x, range "A".

RXAREG Syntax

Code Syntax

00 r8

01 r9

10 r10

11 r11

RXMREG Register Class
The RXMREG (register file data register, fixed-point, input x, range "B") class includes register file locations, fixed-
point, input x, range "B".

RXMREG Syntax

Code Syntax

00 r0

01 r1

10 r2

11 r3

RYAREG Register Class
The RYAREG (register file data register, fixed-point, input y, range "A") class includes register file locations, fixed-
point, input y, range "A".

RYAREG Syntax

Code Syntax

00 r12

01 r13

10 r14

11 r15

RXAREG Register Class
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RYMREG Register Class
The RYMREG (register file data register, fixed-point, input y, range "M") class includes register file locations, fixed-
point, input y, range "M".

RYMREG Syntax

Code Syntax

00 r4

01 r5

10 r6

11 r7

SREG Register Class
The SREG (register file data register, PEy) class includes:

• The S0 through S15 tokens indicate processing element y register file locations, fixed-point.

• The SF0 through SF15 tokens indicate processing element y register file locations, floating-point.

When used in complementary data register operations, the SREG class registers are used as CDREG class registers.

SREG Syntax

Code Syntax Syntax Alias

0000 s0 sf0

0001 s1 sf1

0010 s2 sf2

0011 s3 sf3

0100 s4 sf4

0101 s5 sf5

0110 s6 sf6

0111 s7 sf7

1000 s8 sf8

1001 s9 sf9

1010 s10 sf10

1011 s11 sf11

1100 s12 sf12

1101 s13 sf13

RYMREG Register Class
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Code Syntax Syntax Alias

1110 s14 sf14

1111 s15 sf15

SYSREG Register Class
The SYSREG (system registers) class includes mode control registers, status registers, status stack register, flag regis-
ter, and interrupt control registers.

SYSREG Syntax

Code Syntax

0000 ustat1

0001 ustat2

0010 mode1

0011 mmask

0100 mode2

0101 flags

0110 astatx

0111 astaty

1000 stkyx

1001 stkyy

1010 irptl

1011 imask

1100 imaskp

1101 mode1stk

1110 ustat3

1111 ustat4

1100 astat

1110 stky

UREG Registers Class
The UREG (universal registers) class includes the registers from register classes: RFEG, SREG, I1REG, I2REG,
M1REG, M2REG, B1REG, B2REG, and SYSREG.

SYSREG Register Class
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UREG Syntax

Code Syntax Syntax Alias

0000000 r0 f0

0000001 r1 f1

0000010 r2 f2

0000011 r3 f3

0000100 r4 f4

0000101 r5 f5

0000110 r6 f6

0000111 r7 f7

0001000 r8 f8

0001001 r9 f9

0001010 r10 f10

0001011 r11 f11

0001100 r12 f12

0001101 r13 f13

0001110 r14 f14

0001111 r15 f15

0010000 i0 -

0010001 i1 -

0010010 i2 -

0010011 i3 -

0010100 i4 -

0010101 i5 -

0010110 i6 -

0010111 i7 -

0011000 i8 -

0011001 i9 -

0011010 i10 -

0011011 i11 -

0011100 i12 -

0011101 i13 -

0011110 i14 -

UREG Registers Class
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Code Syntax Syntax Alias

0011111 i15 -

0100000 m0 -

0100001 m1 -

0100010 m2 -

0100011 m3 -

0100100 m4 -

0100101 m5 -

0100110 m6 -

0100111 m7 -

0101000 m8 -

0101001 m9 -

0101010 m10 -

0101011 m11 -

0101100 m12 -

0101101 m13 -

0101110 m14 -

0101111 m15 -

0110000 l0 -

0110001 l1 -

0110010 l2 -

0110011 l3 -

0110100 l4 -

0110101 l5 -

0110110 l6 -

0110111 l7 -

0111000 l8 -

0111001 l9 -

0111010 l10 -

0111011 l11 -

0111100 l12 -

0111101 l13 -

0111110 l14 -

UREG Registers Class
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Code Syntax Syntax Alias

0111111 l15 -

1000000 b0 -

1000001 b1 -

1000010 b2 -

1000011 b3 -

1000100 b4 -

1000101 b5 -

1000110 b6 -

1000111 b7 -

1001000 b8 -

1001001 b9 -

1001010 b10 -

1001011 b11 -

1001100 b12 -

1001101 b13 -

1001110 b14 -

1001111 b15 -

1010000 s0 sf0

1010001 s1 sf1

1010010 s2 sf2

1010011 s3 sf3

1010100 s4 sf4

1010101 s5 sf5

1010110 s6 sf6

1010111 s7 sf7

1011000 s8 sf8

1011001 s9 sf9

1011010 s10 sf10

1011011 s11 sf11

1011100 s12 sf12

1011101 s13 sf13

1011110 s14 sf14

UREG Registers Class

SHARC+ Core Programming Reference 26–15



Code Syntax Syntax Alias

1011111 s15 sf15

1100000 faddr -

1100001 daddr -

1100011 pc -

1100100 pcstk -

1100101 pcstkp -

1100110 laddr -

1100111 curlcntr -

1101000 lcntr -

1101001 emuclk -

1101010 emuclk2 -

1101011 px -

1101100 px1 -

1101101 px2 -

1101110 tperiod -

1101111 tcount -

1110000 ustat1 -

1110010 mode1 -

1110011 mmask -

1110100 mode2 -

1110101 flags -

1110110 astatx -

1110111 astaty -

1111000 stkyx -

1111001 stkyy -

1111010 irptl -

1111011 imask -

1111100 imaskp -

1111101 lirptl -

1111101 mode1stk -

1111110 ustat3 -

1111111 ustat4 -

UREG Registers Class
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Code Syntax Syntax Alias

1111100 astat -

1111110 stky -

UREGDBL Register Class
The UREGDBL (universal registers,floating-point data registers, PEx and PEy) class includes 64-bit fixed- and float-
ing-point data register file locations for both processing elements.

UREGDBL Syntax

Code Syntax Syntax Alias

0000000 r1:0 f1:0

0000001 r0:1 f0:1

0000010 r3:2 f3:2

0000011 r2:3 f2:3

0000100 r5:4 f5:4

0000101 r4:5 f4:5

0000110 r7:6 f7:6

0000111 r6:7 f6:7

0001000 r9:8 f9:8

0001001 r8:9 f8:9

0001010 r11:10 f11:10

0001011 r10:11 f10:11

0001100 r13:12 F13:12

0001101 r12:13 f12:13

0001110 r15:14 f15:14

0001111 r14:15 f14:15

1010000 s1:0 sf1:0

1010001 s0:1 sf0:1

1010010 s3:2 sf3:2

1010011 s2:3 sf2:3

1010100 s5:4 sf5:4

1010101 s4:5 sf4:5

1010110 s7:6 sf7:6

1010111 s6:7 sf6:7

UREGDBL Register Class
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Code Syntax Syntax Alias

1011000 s9:8 sf9:8

1011001 s8:9 sf8:9

1011010 s11:10 sf11:10

1011011 s10:11 sf10:11

1011100 s13:12 sf13:12

1011101 s12:13 sf12:13

1011110 s15:14 sf15:14

1011111 s14:15 sf14:15

UREGXDAG1 Register Class
The UREGXDAG1 (universal registers, excluding DAG1) class includes the same registers as the UREG class, but
omits DAG1 specific index, modify, base, and length registers.

UREGXDAG1 Syntax

Code Syntax Syntax Alias

0000000 r0 f0

0000001 r1 f1

0000010 r2 f2

0000011 r3 f3

0000100 r4 f4

0000101 r5 f5

0000110 r6 f6

0000111 r7 f7

0001000 r8 f8

0001001 r9 f9

0001010 r10 f10

0001011 r11 f11

0001100 r12 f12

0001101 r13 f13

0001110 r14 f14

0001111 r15 f15

0011000 i8 -

UREGXDAG1 Register Class
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Code Syntax Syntax Alias

0011001 i9 -

0011010 i10 -

0011011 i11 -

0011100 i12 -

0011101 i13 -

0011110 i14 -

0011111 i15 -

0101000 m8 -

0101001 m9 -

0101010 m10 -

0101011 m11 -

0101100 m12 -

0101101 m13 -

0101110 m14 -

0101111 m15 -

0111000 l8 -

0111001 l9 -

0111010 l10 -

0111011 l11 -

0111100 l12 -

0111101 l13 -

0111110 l14 -

0111111 l15 -

1001000 b8 -

1001001 b9 -

1001010 b10 -

1001011 b11 -

1001100 b12 -

1001101 b13 -

1001110 b14 -

1001111 b15 -

1010000 s0 sf0

UREGXDAG1 Register Class
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Code Syntax Syntax Alias

1010001 s1 sf1

1010010 s2 sf2

1010011 s3 sf3

1010100 s4 sf4

1010101 s5 sf5

1010110 s6 sf6

1010111 s7 sf7

1011000 s8 sf8

1011001 s9 sf9

1011010 s10 sf10

1011011 s11 sf11

1011100 s12 sf12

1011101 s13 sf13

1011110 s14 sf14

1011111 s15 sf15

1100000 faddr -

1100001 daddr -

1100011 pc -

1100100 pcstk -

1100101 pcstkp -

1100110 laddr -

1100111 curlcntr -

1101000 lcntr -

1101001 emuclk -

1011001 emuclk -

1101010 emuclk2 -

1011000 emuclk2 -

1101011 px -

1011011 px -

1101100 px1 -

1011100 px1 -

1101101 px2 -

UREGXDAG1 Register Class
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Code Syntax Syntax Alias

1011101 px2 -

1101110 tperiod -

1011110 tperiod -

1101111 tcount -

1011111 tcount -

1110000 ustat1 -

1110001 ustat2 -

1110010 mode1 -

1111011 mode1 -

1110011 mmask -

1110100 mode2 -

1111010 mode2 -

1110101 flags -

1110110 astatx -

1110111 astaty -

1111000 stkyx -

1111001 stkyy -

1111010 irptl -

1111001 irptl -

1111011 imask -

1111101 imask -

1111100 imaskp -

1111111 imaskp -

1111101 lirptl -

1111101 mode1stk -

1111110 ustat3 -

1111111 ustat4 -

1111100 astat -

1111110 stky -

UREGXDAG1 Register Class
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UREGXDAG1DBL Register Class
The UREGXDAG1DBL (universal registers,floating-point data registers, PEx and PEy) class includes 64-bit fixed-
and floating-point data register file locations for both processing elements.

UREGXDAG1DBL Syntax

Code Syntax Syntax Alias

0000000 r1:0 f1:0

0000001 r0:1 f0:1

0000010 r3:2 f3:2

0000011 r2:3 f2:3

0000100 r5:4 f5:4

0000101 r4:5 f4:5

0000110 r7:6 f7:6

0000111 r6:7 f6:7

0001000 r9:8 f9:8

0001001 r8:9 f8:9

0001010 r11:10 f11:10

0001011 r10:11 f10:11

0001100 r13:12 f13:12

0001101 r12:13 f12:13

0001110 r15:14 f15:14

0001111 r14:15 f14:15

1010000 s1:0 sf1:0

1010001 s0:1 sf0:1

1010010 s3:2 sf3:2

1010011 s2:3 sf2:3

1010100 s5:4 sf5:4

1010101 s4:5 sf4:5

1010110 s7:6 sf7:6

1010111 s6:7 sf6:7

1011000 s9:8 sf9:8

1011001 s8:9 sf8:9

1011010 s11:10 sf11:10

1011011 s10:11 sf10:11

UREGXDAG1DBL Register Class
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Code Syntax Syntax Alias

1011100 s13:12 sf13:12

1011101 s12:13 sf12:13

1011110 s15:14 sf15:14

1011111 s14:15 sf14:15

UREGXDAG2 Register Class
The UREGXDAG2 (universal registers, excluding DAG2) class includes the same registers as the UREG class, but
omits DAG2 specific index, modify, base, and length registers.

UREGXDAG2 Syntax

Code Syntax Syntax Alias

0000000 r0 f0

0000001 r1 f1

0000010 r2 f2

0000011 r3 f3

0000100 r4 f4

0000101 r5 f5

0000110 r6 f6

0000111 r7 f7

0001000 r8 f8

0001001 r9 f9

0001010 r10 f10

0001011 r11 f11

0001100 r12 f12

0001101 r13 f13

0001110 r14 f14

0001111 r15 f15

0010000 i0 -

0010001 i1 -

0010010 i2 -

0010011 i3 -

0010100 i4 -

UREGXDAG2 Register Class
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Code Syntax Syntax Alias

0010101 i5 -

0010110 i6 -

0010111 i7 -

0100000 m0 -

0100001 m1 -

0100010 m2 -

0100011 m3 -

0100100 m4 -

0100101 m5 -

0100110 m6 -

0100111 m7 -

0110000 l0 -

0110001 l1 -

0110010 l2 -

0110011 l3 -

0110100 l4 -

0110101 l5 -

0110110 l6 -

0110111 l7 -

1000000 b0 -

1000001 b1 -

1000010 b2 -

1000011 b3 -

1000100 b4 -

1000101 b5 -

1000110 b6 -

1000111 b7 -

1010000 s0 sf0

1010001 s1 sf1

1010010 s2 sf2

1010011 s3 sf3

1010100 s4 sf4

UREGXDAG2 Register Class
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Code Syntax Syntax Alias

1010101 s5 sf5

1010110 s6 sf6

1010111 s7 sf7

1011000 s8 sf8

1011001 s9 sf9

1011010 s10 sf10

1011011 s11 sf11

1011100 s12 sf12

1011101 s13 sf13

1011110 s14 sf14

1011111 s15 sf15

1100000 faddr -

1100001 daddr -

1100011 pc -

1100100 pcstk -

1100101 pcstkp -

1100110 laddr -

1100111 curlcntr -

1101000 lcntr -

1101001 emuclk -

1011001 emuclk -

1101010 emuclk2 -

1011000 emuclk2 -

1101011 px -

1011011 px -

1101100 px1 -

1011100 px1 -

1101101 px2 -

1011101 px2 -

1101110 tperiod -

1011110 tperiod -

1101111 tcount -

UREGXDAG2 Register Class
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Code Syntax Syntax Alias

1011111 tcount -

1110000 ustat1 -

1110001 ustat2 -

1110010 mode1 -

1111011 mode1 -

1110011 mmask -

1110100 mode2 -

1111010 mode2 -

1110101 flags -

1110110 astatx -

1110111 astaty -

1111000 stkyx -

1111001 stkyy -

1111010 irptl -

1111001 irptl -

1111011 imask -

1111101 imask -

1111100 imaskp -

1111111 imaskp -

1111101 lirptl -

1111101 mode1stk -

1111110 ustat3 -

1111111 ustat4 -

1111100 astat -

1111110 stky -

UREGXDAG2DBL Register Class
The UREGXDAG2DBL (universal registers,floating-point data registers, PEx and PEy) class includes 64-bit fixed-
and floating-point data register file locations for both processing elements.

UREGXDAG2DBL Register Class
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UREGXDAG2DBL Syntax

Code Syntax Syntax Alias

0000000 r1:0 f1:0

0000001 r0:1 f0:1

0000010 r3:2 f3:2

0000011 r2:3 f2:3

0000100 r5:4 f5:4

0000101 r4:5 f4:5

0000110 r7:6 f7:6

0000111 r6:7 f6:7

0001000 r9:8 f9:8

0001001 r8:9 f8:9

0001010 r11:10 f11:10

0001011 r10:11 f10:11

0001100 r13:12 f13:12

0001101 r12:13 f12:13

0001110 r15:14 f15:14

0001111 r14:15 f14:15

1010000 s1:0 sf1:0

1010001 s0:1 sf0:1

1010010 s3:2 sf3:2

1010011 s2:3 sf2:3

1010100 s5:4 sf5:4

1010101 s4:5 sf4:5

1010110 s7:6 sf7:6

1010111 s6:7 sf6:7

1011000 s9:8 sf9:8

1011001 s8:9 sf8:9

1011010 s11:10 sf11:10

1011011 s10:11 sf10:11

1011100 s13:12 sf13:12

1011101 s12:13 sf12:13

1011110 s15:14 sf15:14

UREGXDAG2DBL Register Class
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Code Syntax Syntax Alias

1011111 s14:15 sf14:15

UREGXDAG2DBL Register Class
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27   Numeric Formats

The processor supports the 32-bit single-precision floating-point and 64-bit double-precision floating-point data
format defined in the IEEE Standard 754/854. In addition, the processor supports an extended-precision version of
the same format with eight additional bits in the mantissa (40 bits total). The processor also supports 32-bit fixed-
point formats-fractional and integer-which can be signed (two's-complement) or unsigned.

IEEE Single-Precision Floating-Point Data Format
The IEEE Standard 754/854 specifies a 32-bit single-precision floating-point format, shown in the IEEE 32-Bit
Single-Precision Floating-Point Format figure. A number in this format consists of a sign bit(s), a 24-bit significand,
and an 8-bit unsigned-magnitude exponent (e). 

NOTE: In this manual the Single-Precision Floating-Point standard is referred to as 32-bit or 32-bit floating-point.

For normalized numbers, the significand consists of a 23-bit fraction, f and a "hidden" bit of 1 that is implicitly
presumed to precede f22 in the significand. The binary point is presumed to lie between this hidden bit and f22. The
least significant bit (LSB) of the fraction is f0; the LSB of the exponent is e0.

The hidden bit effectively increases the precision of the floating-point significand to 24 bits from the 23 bits actually
stored in the data format. It also ensures that the significand of any number in the IEEE normalized number format
is always greater than or equal to one and less than two.

The unsigned exponent, e, can range between 1 ≤ e ≤ 254 for normal numbers in single-precision format. This
exponent is biased by +127. To calculate the true unbiased exponent, subtract 127 from e.

s e0

31 30 23 22 0

1 . f22 f0e7 • • •

HIDDEN BIT BINARY POINT

• • •

Figure 27-1: IEEE 32-Bit Single-Precision Floating-Point Format

The IEEE Standard also provides several special data types in the single-precision floating-point format:

• An exponent value of 255 (all ones) with a non-zero fraction is a not-a-number (NAN). NANs are usually used
as flags for data flow control, for the values of uninitialized variables, and for the results of invalid operations
such as 0 * ∞.

Numeric Formats
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• Infinity is represented as an exponent of 255 and a zero fraction. Note that because the fraction is signed, both
positive and negative infinity can be represented.

• Zero is represented by a zero exponent and a zero fraction. As with infinity, both positive zero and negative zero
can be represented.

The IEEE single-precision floating-point data types supported by the processor and their interpretations are sum-
marized in the IEEE Single-Precision Floating-Point Data Types table.

Table 27-1: IEEE Single-Precision Floating-Point Data Types

Type Exponent Fraction Value

NAN 255 Non-zero Undefined

Infinity 255 0 (-1)s Infinity

Normal 1 e 254 Any (-1)s (1.f22-0) 2e-127

Zero 0 0 0 (-1)s Zero

IEEE Double-Precision Floating-Point (64-bit) Support
This section describes the Double-Precision Floating-Point instructions supported in SHARC+ core, their assembly
language syntax, encoding of instructions and usage details.

NOTE: In this manual the Double-Precision Floating-Point standard is referred to as 64-bit or 64-bit floating-
point.

IEEE Standard 754-2008 specifies a binary64 floating-point (Also known as double-precision floating-point in
IEEE Standard 754-1985) format as shown in the following figure. A number represented in this format consists of
a sign bit s, an 11-bit Exponent e and a 53-bit mantissa. For normalized numbers, the mantissa consists of a 52-bit
fraction f and a “hidden” bit 1 that is implicitly presumed to precede bit-51. The binary point is presumed to reside
between this hidden bit and bit-51.

  63   62                52       51               0 

 

 Hidden bit      Binary Point 

s   e10  . . . . . . . . .  e0   1. f51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  f0 

Figure 27-2: IEEE 64-bit Double Precision floating point format

The unsigned exponent e is within the set [1, 2046] for normal numbers. The true exponent value is biased by
+1023 to produce e. To calculate the true unbiased exponent, 1023 must be subtracted from e. The range of num-
bers representable by double-precision format is listed in the table below:

Table 27-2: 64-bit Floating-Point Numbers

Sign Biased Exponent Mantissa Number

x 0 0 ±Zero

IEEE Double-Precision Floating-Point (64-bit) Support
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Table 27-2: 64-bit Floating-Point Numbers (Continued)

Sign Biased Exponent Mantissa Number

x 0 ≠0 Denormal

x 2047 0 ±Infinity

x 2047 ≠0 ±NAN

x 0 < biased exp < 2047 X Normal

Extended-Precision Floating-Point Format
The extended-precision floating-point format is 40 bits wide, with the same 8-bit exponent as in the IEEE standard
format but with a 32-bit significand. This format is shown in the 40-Bit Extended-Precision Floating-Point Format
figure. In all other respects, the extended-precision floating-point format is the same as the IEEE standard format.

s e0

39 38 31 30 0

1 . f30 f0e7 • • • • • •

HIDDEN BIT BINARY POINT

Figure 27-3: 40-Bit Extended-Precision Floating-Point Format

Short Word Floating-Point Format
The processor supports a 16-bit floating-point data type and provides conversion instructions for it. The short float
data format has an 11-bit mantissa with a 4-bit exponent plus sign bit, as shown in the 16-Bit Floating-Point For-
mat figure. The 16-bit floating-point numbers reside in the lower 16 bits of the 32-bit floating-point field. 

s e0

15 14 11 10 0

1 . f10 f0e3 • • • • • •

HIDDEN BIT BINARY POINT

Figure 27-4: 16-Bit Floating-Point Format

Packing for Floating-Point Data
Two shifter instructions, FPACK and FUNPACK, perform the packing and unpacking conversions between 32-bit
floating-point words and 16-bit floating-point words. The FPACK instruction converts a 32-bit IEEE floating-point
number to a 16-bit floating-point number. The FUNPACK instruction converts 16-bit floating-point numbers back
to 32-bit IEEE floating-point. Each instruction executes in a single cycle. The results of the FPACK and FUNPACK
operations appear in the FPACK Operations and FUNPACK Operations tables.

Extended-Precision Floating-Point Format
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Fixed-Point Formats
The processor supports two 32-bit fixed-point formats-fractional and integer. In both formats, numbers can be sign-
ed (two's-complement) or unsigned. The four possible combinations are shown in the 32-Bit Fixed-Point Formats
figure. In the fractional format, there is an implied binary point to the left of the most significant magnitude bit. In
integer format, the binary point is understood to be to the right of the LSB. Note that the sign bit is negatively
weighted in a two's-complement format.

If one operand is signed and the other unsigned, the result is signed. If both inputs are signed, the result is signed
and automatically shifted left one bit. The LSB becomes zero and bit 62 moves into the sign bit position. Normally
bit 63 and bit 62 are identical when both operands are signed. (The only exception is full-scale negative multiplied
by itself.) Thus, the left-shift normally removes a redundant sign bit, increasing the precision of the most significant
product. Also, if the data format is fractional, a single bit left-shift renormalizes the MSP to a fractional format. The
signed formats with and without left-shifting are shown in the 64-Bit Unsigned and Signed Fixed-Point Product
figure.

ALU outputs have the same width and data format as the inputs. The multiplier, however, produces a 64-bit prod-
uct from two 32-bit inputs. If both operands are unsigned integers, the result is a 64-bit unsigned integer. If both
operands are unsigned fractions, the result is a 64-bit unsigned fraction. These formats are shown in the 64-Bit Un-
signed and Signed Fixed-Point Product figure.

The multiplier has an 80-bit accumulator to allow the accumulation of 64-bit products. For more information on
the multiplier and accumulator, see Multiplier in the Processing Elements chapter. 
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28   SHARC-PLUS REGF Register Descriptions

SHARC+ Core (REGF) contains the following registers.

Table 28-1: SHARC-PLUS REGF Register List

Name Description

REGF_ASTATX Arithmetic Status (PEx) Register

REGF_ASTATY Arithmetic Status (PEy) Register

REGF_B[n] Base (Circular Buffer) Registers

REGF_CURLCNTR Current Loop Counter Register

REGF_DADDR Decode Address Register

REGF_EMUCLK Emulation Counter Register

REGF_EMUCLK2 Emulation Counter Register 2

REGF_FADDR Instruction Pipeline Stage Address Register

REGF_FLAGS Flag I/O Register

REGF_IMASK Interrupt Mask Register

REGF_IMASKP Interrupt Mask Pointer Register

REGF_IRPTL Interrupt Latch Register

REGF_I[n] Index Registers

REGF_LADDR Loop Address Stack Register

REGF_LCNTR Loop Counter Register

REGF_L[n] Length (Circular Buffer) Registers

REGF_MMASK Mode Mask Register

REGF_MODE1 Mode Control 1 Register

REGF_MODE1STK Mode 1 Stack (Top Entry) Register

REGF_MODE2 Mode Control 2 Register

REGF_MR0B Multiplier Results 0 (PEx) Background Register

REGF_MR0F Multiplier Results 0 (PEx) Foreground Register

SHARC-PLUS REGF Register Descriptions
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Table 28-1: SHARC-PLUS REGF Register List (Continued)

Name Description

REGF_MR1B Multiplier Results 1 (PEx) Background Register

REGF_MR1F Multiplier Results 1 (PEx) Foreground Register

REGF_MR2B Multiplier Results 2 (PEx) Background Register

REGF_MR2F Multiplier Results 2 (PEx) Foreground Register

REGF_MRB Multiplier Results (PEx) Background Register

REGF_MRF Multiplier Results (PEx) Foreground Register

REGF_MS0B Multiplier Results 0 (PEy) Background Register

REGF_MS0F Multiplier Results 0 (PEy) Foreground Register

REGF_MS1B Multiplier Results 1 (PEy) Background Register

REGF_MS1F Multiplier Results 1 (PEy) Foreground Register

REGF_MS2B Multiplier Results 2 (PEy) Background Register

REGF_MS2F Multiplier Results 2 (PEy) Foreground Register

REGF_MSB Multiplier Results (PEy) Background Register

REGF_MSF Multiplier Results (PEy) Foreground Register

REGF_M[n] Modify Registers

REGF_PC Program Counter Register

REGF_PCSTK Program Counter Stack Register

REGF_PCSTKP Program Counter Stack Pointer Register

REGF_PX PMD-DMD Bus Exchange Register

REGF_PX1 PMD-DMD Bus Exchange 1 Register

REGF_PX2 PMD-DMD Bus Exchange 2 Register

REGF_R[n] Register File (PEx) Data Registers (Rx, Fx)

REGF_STKYX Sticky Status (PEx) Register

REGF_STKYY Sticky Status (PEy) Register

REGF_S[n] Register File (PEy) Data Registers (Sx, SFx)

REGF_TCOUNT Timer Count Register

REGF_TPERIOD Timer Period Register

REGF_USTAT1 User-Defined Status 1 Register

REGF_USTAT2 User-Defined Status 2 Register

REGF_USTAT3 User-Defined Status 3 Register

REGF_USTAT4 User-Defined Status 4 Register

SHARC-PLUS REGF Register Descriptions
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Arithmetic Status (PEx) Register
The REGF_ASTATX register indicates status for processing element x (PEx) operations. If this register is loaded
manually, there is a one cycle effect latency before the new value in the REGF_ASTATX register can be used in a
conditional instruction.
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Figure 28-1: REGF_ASTATX Register Diagram
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Table 28-2: REGF_ASTATX Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

CACC7 Compare Accumulation 7.

The REGF_ASTATX.CACC7 bit indicates which operand was greater during the
most recent ALU compare operation: X input (if set, = 1) or Y input (if cleared, = 0).
The CACC bits form a right-shift register, each storing a previous compare accumula-
tion result. With each new compare, the processor right shifts the values of CACC,
storing the newest value in the REGF_ASTATX.CACC7 bit and storing the oldest
value in the REGF_ASTATX.CACC0 bit.

30

(R/W)

CACC6 Compare Accumulation 6.

The REGF_ASTATX.CACC6 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATX.CACC7
bit description.

29

(R/W)

CACC5 Compare Accumulation 5.

The REGF_ASTATX.CACC5 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATX.CACC7
bit description.

28

(R/W)

CACC4 Compare Accumulation 4.

The REGF_ASTATX.CACC4 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATX.CACC7
bit description.

27

(R/W)

CACC3 Compare Accumulation 3.

The REGF_ASTATX.CACC3 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATX.CACC7
bit description.

26

(R/W)

CACC2 Compare Accumulation 2.

The REGF_ASTATX.CACC2 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATX.CACC7
bit description.

25

(R/W)

CACC1 Compare Accumulation 1.

The REGF_ASTATX.CACC1 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATX.CACC7
bit description.

24

(R/W)

CACC0 Compare Accumulation 0.

The REGF_ASTATX.CACC0 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATX.CACC7
bit description.

Arithmetic Status (PEx) Register
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Table 28-2: REGF_ASTATX Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

BTF Bit Test Flag.

The REGF_ASTATX.BTF bit indicates whether the system register bit is true (if set,
= 1) or false (if cleared, = 0). The processor sets REGF_ASTATX.BTF when the bit(s)
in a system register and value in the Bit Tst instruction match. The processor also sets
REGF_ASTATX.BTF when the bit(s) in a system register and value in the Bit Xor
instruction match.

14

(R/NW)

SF Shifter Bit FIFO.

The REGF_ASTATX.SF bit indicates the current value of bit FIFO write pointer.
This bit is set (=1) when the write pointer is greater than or equal to 32 (FIFO is half
full). Otherwise, the bit is cleared.

13

(R/W)

SS Shifter Sign.

The REGF_ASTATX.SS bit indicates whether the most recent shifter operation's in-
put was negative (if set, = 1) or positive (if cleared, = 0). The shifter updates this bit for
all shifter operations.

12

(R/W)

SZ Shifter Zero.

The REGF_ASTATX.SZ bit indicates whether the most recent shifter operation's re-
sult was zero (if set, = 1) or non-zero (if cleared, = 0). The shifter updates this bit for
all shifter operations. The processor also sets REGF_ASTATX.SZ if the shifter opera-
tion performs a bit test on a bit outside of the 32-bit fixed-point field.

11

(R/W)

SV Shifter Overflow.

The REGF_ASTATX.SV bit indicates whether the most recent shifter operation's re-
sult overflowed (if set, = 1) or did not overflow (if cleared, = 0). The shifter updates
this bit for all shifter operations. The processor sets REGF_ASTATX.SV if the shifter
operation:

• Shifts the significant bits to the left of the 32-bit fixed-point field

• Tests, sets, or clears a bit outside of the 32-bit fixed-point field

• Extracts a field that is past or crosses the left edge of the 32-bit fixed-point field

• Performs a LEFTZ or LEFTO operation that returns a result of 32

10

(R/W)

AF ALU Floating-Point.

The REGF_ASTATX.AF bit indicates whether the most recent ALU operation was
floating-point (if set, = 1) or fixed-point (if cleared, = 0). The ALU updates
REGF_ASTATX.AF for all fixed-point and floating-point ALU operations.

Arithmetic Status (PEx) Register
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Table 28-2: REGF_ASTATX Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

MI Multiplier Invalid.

The REGF_ASTATX.MI bit indicates whether the most recent multiplier operation's
input was invalid (if set, = 1) or valid (if cleared, = 0). The multiplier updates this bit
for floating-point multiplier operations. The processor sets the MI bit and the
REGF_STKYX.MIS bit if the ALU operation:

• Receives a NAN input operand

• Receives an Infinity and zero as input operands

8

(R/W)

MU Multiplier Underflow.

The REGF_ASTATX.MU bit indicates whether the most recent multiplier operation's
result underflowed (if set, = 1) or did not underflow (if cleared, = 0). The multiplier
updates this bit for all fixed- and floating-point multiplier operations. For floating-
point results, the processor sets MU and the REGF_STKYX.MUS bit if the floating-
point result underflows (unbiased exponent < -126). Denormal operands are treated as
zeros. So, they never cause underflows. For fixed-point results, the processor sets MU
and the REGF_STKYX.MUS bit if the result of the multiplier operation is:

• Two's-complement, fractional: with upper 48 bits all zeros or all ones, lower 32
bits not all zeros

• Unsigned, fractional: with upper 48 bits all zeros, lower 32 bits not all zeros

If the multiplier operation directs a fixed-point, fractional result to an MR register, the
processor places the underflowed portion of the result in MR0.

7

(R/W)

MV Multiplier Overflow.

The REGF_ASTATX.MV bit indicates whether the most recent multiplier operation's
result overflowed (if set, = 1) or did not overflow (if cleared, = 0). The multiplier up-
dates this bit for all fixed-point and floating-point multiplier operations. For floating-
point results, the processor sets MV and the REGF_STKYX.MVS bit if the rounded
result overflows (unbiased exponent > 127). For fixed-point results, the processor sets
the MV bit and the REGF_STKYX.MOS bit register if the result of the multiplier op-
eration is:

• Two's-complement, fractional with the upper 17 bits of MR not all zeros or all
ones

• Two's-complement, integer with the upper 49 bits of MR not all zeros or all ones

• Unsigned, fractional with the upper 16 bits of MR not all zeros

• Unsigned, integer with the upper 48 bits of MR not all zeros

If the multiplier operation directs a fixed-point result to an MR register, the processor
places the overflowed portion of the result in MR1 and MR2 for an integer result or
places it in MR2 only for a fractional result.

Arithmetic Status (PEx) Register
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Table 28-2: REGF_ASTATX Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

MN Multiplier Negative.

The REGF_ASTATX.MN bit indicates whether the most recent multiplier operation's
result was negative (if set, = 1) or positive (if cleared, = 0). The multiplier updates this
bit for all fixed- and floating-point multiplier operations.

5

(R/W)

AI ALU Invalid.

The REGF_ASTATX.AI indicates whether the most recent ALU operation's input
was invalid (if set, = 1) or valid (if cleared, = 0). The ALU updates
REGF_ASTATX.AI for all fixed- and floating-point ALU operations. The processor
sets REGF_ASTATX.AI, REGF_STKYX.AIS, and REGF_STKYY.AIS if the
ALU operation:

• Receives a NAN input operand

• Adds opposite-signed infinities

• Subtracts like-signed infinities

• Overflows during a floating-point to fixed-point conversion when saturation mode
is not set

• Operates on an infinity during a floating-point to fixed-point operation when the
saturation mode is not set

4

(R/W)

AS ALU Sign.

The REGF_ASTATX.AS bit indicates whether the most recent ALU ABS or MANT
operation's input was negative (if set, = 1) or positive (if cleared, = 0). The ALU up-
dates REGF_ASTATX.AS only for fixed- and floating-point ABS and MANT opera-
tions. The ALU clears REGF_ASTATX.AS for all operations other than ABS and
MANT.

3

(R/W)

AC ALU Carry.

The REGF_ASTATX.AC bit indicates whether the the most recent fixed-point ALU
operation had a carry out of the MSB of the result (if set, = 1) or had no carry (if
cleared, = 0). The ALU updates REGF_ASTATX.AC for all fixed-point operations.
The processor clears REGF_ASTATX.AC during the fixed-point logic operations:
PASS, MIN, MAX, COMP, ABS, and CLIP. The ALU reads REGF_ASTATX.AC for
the fixed-point accumulate operations: Addition with Carry and Fixed-point Subtrac-
tion with Carry.

2

(R/W)

AN ALU Negative.

The REGF_ASTATX.AN bit indicates whether the most recent ALU operation's re-
sult was negative (if set, = 1) or positive (if cleared, = 0). The ALU updates
REGF_ASTATX.AN for all fixed-point and floating-point ALU operations.

Arithmetic Status (PEx) Register
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Table 28-2: REGF_ASTATX Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

AV ALU Overflow.

The REGF_ASTATX.AV bit indicates whether the most recent ALU operation's re-
sult overflowed (if set, = 1) or did not overflow (if cleared, = 0). The ALU updates
REGF_ASTATX.AV for all fixed-point and floating-point ALU operations. For fixed-
point results, the processor sets REGF_ASTATX.AV, REGF_STKYX.AOS, and
REGF_STKYY.AOS when the XOR of the two most significant bits (MSBs) is a 1.
For floating-point results, the processor sets REGF_ASTATX.AV,
REGF_STKYX.AVS, and REGF_STKYY.AVS when the rounded result overflows
(unbiased exponent > 127).

0

(R/W)

AZ ALU Zero.

The REGF_ASTATX.AZ bit indicates whether the most recent ALU operation's re-
sult was zero (if set, = 1) or non-zero (if cleared, = 0). The ALU updates
REGF_ASTATX.AZ for all fixed-point and floating-point ALU operations. This bit
also can indicate a floating-point underflow. During an ALU underflow (indicated by a
set (= 1) REGF_STKYY.AUS bit), the processor sets REGF_ASTATX.AZ if the
floating-point result is smaller than can be represented in the output format.

Arithmetic Status (PEx) Register

28–8 SHARC+ Core Programming Reference



Arithmetic Status (PEy) Register
The REGF_ASTATY register indicates status for processing element y (PEy) operations. If this register is loaded
manually, there is a one cycle effect latency before the new value in the REGF_ASTATY register can be used in a
conditional instruction.
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Figure 28-2: REGF_ASTATY Register Diagram
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Table 28-3: REGF_ASTATY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

CACC7 Compare Accumulation 7.

The REGF_ASTATY.CACC7 bit indicates which operand was greater during the
most recent ALU compare operation: X input (if set, = 1) or Y input (if cleared, = 0).
The CACC bits form a right-shift register, each storing a previous compare accumula-
tion result. With each new compare, the processor right shifts the values of CACC,
storing the newest value in the REGF_ASTATY.CACC7 bit and storing the oldest
value in the REGF_ASTATY.CACC0 bit.

30

(R/W)

CACC6 Compare Accumulation 6.

The REGF_ASTATY.CACC6 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATY.CACC7
bit description.

29

(R/W)

CACC5 Compare Accumulation 5.

The REGF_ASTATY.CACC5 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATY.CACC7
bit description.

28

(R/W)

CACC4 Compare Accumulation 4.

The REGF_ASTATY.CACC4 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATY.CACC7
bit description.

27

(R/W)

CACC3 Compare Accumulation 3.

The REGF_ASTATY.CACC3 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATY.CACC7
bit description.

26

(R/W)

CACC2 Compare Accumulation 2.

The REGF_ASTATY.CACC2 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATY.CACC7
bit description.

25

(R/W)

CACC1 Compare Accumulation 1.

The REGF_ASTATY.CACC1 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATY.CACC7
bit description.

24

(R/W)

CACC0 Compare Accumulation 0.

The REGF_ASTATY.CACC0 bit indicates which operand was greater during a previ-
ous ALU compare operation. For more information, see the REGF_ASTATY.CACC7
bit description.

Arithmetic Status (PEy) Register
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Table 28-3: REGF_ASTATY Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

BTF Bit Test Flag.

The REGF_ASTATY.BTF bit indicates whether the system register bit is true (if set,
= 1) or false (if cleared, = 0). The processor sets REGF_ASTATY.BTF when the bit(s)
in a system register and value in the Bit Tst instruction match. The processor also sets
REGF_ASTATY.BTF when the bit(s) in a system register and value in the Bit Xor
instruction match.

14

(R/NW)

SF Shifter Bit FIFO.

The REGF_ASTATY.SF bit indicates the current value of bit FIFO write pointer.
This bit is set (=1) when the write pointer is greater than or equal to 32 (FIFO is half
full). Otherwise, the bit is cleared.

13

(R/W)

SS Shifter Sign.

The REGF_ASTATY.SS bit indicates whether the most recent shifter operation's in-
put was negative (if set, = 1) or positive (if cleared, = 0). The shifter updates this bit for
all shifter operations.

12

(R/W)

SZ Shifter Zero.

The REGF_ASTATY.SZ bit indicates whether the most recent shifter operation's re-
sult was zero (if set, = 1) or non-zero (if cleared, = 0). The shifter updates this bit for
all shifter operations. The processor also sets REGF_ASTATY.SZ if the shifter opera-
tion performs a bit test on a bit outside of the 32-bit fixed-point field.

11

(R/W)

SV Shifter Overflow.

The REGF_ASTATY.SV bit indicates whether the most recent shifter operation's re-
sult overflowed (if set, = 1) or did not overflow (if cleared, = 0). The shifter updates
this bit for all shifter operations. The processor sets REGF_ASTATY.SV if the shifter
operation:

• Shifts the significant bits to the left of the 32-bit fixed-point field

• Tests, sets, or clears a bit outside of the 32-bit fixed-point field

• Extracts a field that is past or crosses the left edge of the 32-bit fixed-point field

• Performs a LEFTZ or LEFTO operation that returns a result of 32

10

(R/W)

AF ALU Floating-Point.

The REGF_ASTATY.AF bit indicates whether the most recent ALU operation was
floating-point (if set, = 1) or fixed-point (if cleared, = 0). The ALU updates
REGF_ASTATY.AF for all fixed-point and floating-point ALU operations.

Arithmetic Status (PEy) Register
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Table 28-3: REGF_ASTATY Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

MI Multiplier Invalid.

The REGF_ASTATY.MI bit indicates whether the most recent multiplier operation's
input was invalid (if set, = 1) or valid (if cleared, = 0). The multiplier updates this bit
for floating-point multiplier operations. The processor sets the MI bit and the
REGF_STKYY.MIS bit if the ALU operation:

• Receives a NAN input operand

• Receives an Infinity and zero as input operands

8

(R/W)

MU Multiplier Underflow.

The REGF_ASTATY.MU bit indicates whether the most recent multiplier operation's
result underflowed (if set, = 1) or did not underflow (if cleared, = 0). The multiplier
updates this bit for all fixed- and floating-point multiplier operations. For floating-
point results, the processor sets MU and the REGF_STKYY.MUS bit if the floating-
point result underflows (unbiased exponent < -126). Denormal operands are treated as
zeros. So, they never cause underflows. For fixed-point results, the processor sets MU
and the REGF_STKYY.MUS bit if the result of the multiplier operation is:

• Two's-complement, fractional: with upper 48 bits all zeros or all ones, lower 32
bits not all zeros

• Unsigned, fractional: with upper 48 bits all zeros, lower 32 bits not all zeros

If the multiplier operation directs a fixed-point, fractional result to an MR register, the
processor places the underflowed portion of the result in MR0.

7

(R/W)

MV Multiplier Overflow.

The REGF_ASTATY.MV bit indicates whether the most recent multiplier operation's
result overflowed (if set, = 1) or did not overflow (if cleared, = 0). The multiplier up-
dates this bit for all fixed-point and floating-point multiplier operations. For floating-
point results, the processor sets MV and the REGF_STKYY.MVS bit if the rounded
result overflows (unbiased exponent > 127). For fixed-point results, the processor sets
the MV bit and the REGF_STKYY.MOS bit register if the result of the multiplier op-
eration is:

• Two's-complement, fractional with the upper 17 bits of MR not all zeros or all
ones

• Two's-complement, integer with the upper 49 bits of MR not all zeros or all ones

• Unsigned, fractional with the upper 16 bits of MR not all zeros

• Unsigned, integer with the upper 48 bits of MR not all zeros

If the multiplier operation directs a fixed-point result to an MR register, the processor
places the overflowed portion of the result in MR1 and MR2 for an integer result or
places it in MR2 only for a fractional result.

Arithmetic Status (PEy) Register
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Table 28-3: REGF_ASTATY Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

MN Multiplier Negative.

The REGF_ASTATY.MN bit indicates whether the most recent multiplier operation's
result was negative (if set, = 1) or positive (if cleared, = 0). The multiplier updates this
bit for all fixed- and floating-point multiplier operations.

5

(R/W)

AI ALU Invalid.

The REGF_ASTATY.AI indicates whether the most recent ALU operation's input
was invalid (if set, = 1) or valid (if cleared, = 0). The ALU updates
REGF_ASTATY.AI for all fixed- and floating-point ALU operations. The processor
sets REGF_ASTATY.AI, REGF_STKYX.AIS, and REGF_STKYY.AIS if the
ALU operation:

• Receives a NAN input operand

• Adds opposite-signed infinities

• Subtracts like-signed infinities

• Overflows during a floating-point to fixed-point conversion when saturation mode
is not set

• Operates on an infinity during a floating-point to fixed-point operation when the
saturation mode is not set

4

(R/W)

AS ALU Sign.

The REGF_ASTATY.AS bit indicates whether the most recent ALU ABS or MANT
operation's input was negative (if set, = 1) or positive (if cleared, = 0). The ALU up-
dates REGF_ASTATY.AS only for fixed- and floating-point ABS and MANT opera-
tions. The ALU clears REGF_ASTATY.AS for all operations other than ABS and
MANT.

3

(R/W)

AC ALU Carry.

The REGF_ASTATY.AC bit indicates whether the the most recent fixed-point ALU
operation had a carry out of the MSB of the result (if set, = 1) or had no carry (if
cleared, = 0). The ALU updates REGF_ASTATY.AC for all fixed-point operations.
The processor clears REGF_ASTATY.AC during the fixed-point logic operations:
PASS, MIN, MAX, COMP, ABS, and CLIP. The ALU reads REGF_ASTATY.AC for
the fixed-point accumulate operations: Addition with Carry and Fixed-point Subtrac-
tion with Carry.

2

(R/W)

AN ALU Negative.

The REGF_ASTATY.AN bit indicates whether the most recent ALU operation's re-
sult was negative (if set, = 1) or positive (if cleared, = 0). The ALU updates
REGF_ASTATY.AN for all fixed-point and floating-point ALU operations.

Arithmetic Status (PEy) Register
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Table 28-3: REGF_ASTATY Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

AV ALU Overflow.

The REGF_ASTATY.AV bit indicates whether the most recent ALU operation's re-
sult overflowed (if set, = 1) or did not overflow (if cleared, = 0). The ALU updates
REGF_ASTATY.AV for all fixed-point and floating-point ALU operations. For fixed-
point results, the processor sets REGF_ASTATY.AV, REGF_STKYX.AOS, and
REGF_STKYY.AOS when the XOR of the two most significant bits (MSBs) is a 1.
For floating-point results, the processor sets REGF_ASTATY.AV,
REGF_STKYX.AVS, and REGF_STKYY.AVS when the rounded result overflows
(unbiased exponent > 127).

0

(R/W)

AZ ALU Zero.

The REGF_ASTATY.AZ bit indicates whether the most recent ALU operation's re-
sult was zero (if set, = 1) or non-zero (if cleared, = 0). The ALU updates
REGF_ASTATY.AZ for all fixed-point and floating-point ALU operations. This bit
also can indicate a floating-point underflow. During an ALU underflow (indicated by a
set (= 1) REGF_STKYX.AUS bit), the processor sets REGF_ASTATY.AZ if the
floating-point result is smaller than can be represented in the output format.

Arithmetic Status (PEy) Register
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Base (Circular Buffer) Registers
The data address generators (DAGs) control circular buffering operations with length (REGF_L[n]) registers and
base (REGF_B[n]) registers. Registers L0 through L7 and B0 through B7 are for DAG1, and registers L8 through
L15 and B8 through B15 are for DAG2. Length and base registers set up the range of addresses and the starting
address for a circular buffer.
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Figure 28-3: REGF_B[n] Register Diagram

Table 28-4: REGF_B[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_B[n].DATA bit field contains circular buffer base address data.

Base (Circular Buffer) Registers
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Current Loop Counter Register
The current loop counter (REGF_CURLCNTR) register provides access to the loop counter stack and tracks itera-
tions for the DO UNTIL LCE loop being executed. For more information about using the REGF_CURLCNTR
register, see the Loop Counter Stack Access section.
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Figure 28-4: REGF_CURLCNTR Register Diagram

Table 28-5: REGF_CURLCNTR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_CURLCNTR.DATA bit field contains data.

Current Loop Counter Register
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Decode Address Register
The decode address (REGF_DADDR) register reads the third stage (D) in the instruction pipeline and contains the
24-bit address of the instruction that the processor decodes on the next cycle.
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Figure 28-5: REGF_DADDR Register Diagram

Table 28-6: REGF_DADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

DATA Data.

The REGF_DADDR.DATA bit field contains decode address data.

Decode Address Register
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Emulation Counter Register
The REGF_EMUCLK register is read-only from user-space and can be written only when the processor is in emula-
tion space.

The emulation clock counter consists of a 32-bit count register (REGF_EMUCLK) and a 32-bit scaling register
(REGF_EMUCLK2). The REGF_EMUCLK counts core clock cycles while the user has control of the processor and
stops counting when the emulator gains control. These registers let you gauge the amount of time spent executing a
particular section of code. The REGF_EMUCLK2 register extends the time REGF_EMUCLK can count by incre-
menting each time the REGF_EMUCLK value rolls over to zero. The combined emulation clock counter can count
accurately for thousands of hours. Note that the counters increment during an idle instruction.
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Figure 28-6: REGF_EMUCLK Register Diagram

Table 28-7: REGF_EMUCLK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_EMUCLK.DATA bit field contains data.

Emulation Counter Register
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Emulation Counter Register 2
The REGF_EMUCLK2 register is read-only from user-space and can be written only when the processor is in emula-
tion space.

The emulation clock counter consists of a 32-bit count register (REGF_EMUCLK) and a 32-bit scaling register
(REGF_EMUCLK2). The REGF_EMUCLK counts core clock cycles while the user has control of the processor and
stops counting when the emulator gains control. These registers let you determine the amount of time spent execut-
ing a particular section of code. The REGF_EMUCLK2 register extends the time REGF_EMUCLK can count by in-
crementing each time the REGF_EMUCLK value rolls over to zero. The combined emulation clock counter can
count accurately for thousands of hours. Note that the counters increment during an idle instruction.

Data

Data

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-7: REGF_EMUCLK2 Register Diagram

Table 28-8: REGF_EMUCLK2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_EMUCLK2.DATA bit field contains data.

Emulation Counter Register 2
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Instruction Pipeline Stage Address Register
The instruction pipeline stage address REGF_FADDR register holds the addresses based on the pipeline stages.
There are 11 registers:

#define F1ADDR 0x300E0

#define F2ADDR 0x300E1

#define F3ADDR 0x300E2

#define F4ADDR 0x300E3

#define M1ADDR 0x300E6

#define M2ADDR 0x300E7

#define M3ADDR 0x300E8

#define M4ADDR 0x300E9

#define D1ADDR 0x300E4

#define D2ADDR 0x300E5

#define E2ADDR 0x300EA
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Figure 28-8: REGF_FADDR Register Diagram

Table 28-9: REGF_FADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

DATA Data.

The REGF_FADDR.DATA bit field contains fetch address data.

Instruction Pipeline Stage Address Register
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Flag I/O Register
The SHARC+ core provides direct instruction support for setting/resetting/reading the four FLAGs. The
REGF_FLAGS register indicates the state of the FLAGx pins. When a FLAGx pin is an output, the processor out-
puts a high in response to a program setting the bit in the REGF_FLAGS register. The I/O direction (input or
output) selection of each bit is controlled by its corresponding REGF_FLAGS.FLG0O, REGF_FLAGS.FLG1O,
REGF_FLAGS.FLG2O, or REGF_FLAGS.FLG3O bit.

Programs can not change the output selects of the REGF_FLAGS register and provide a new value in the same in-
struction. Instead, programs must use two write instructions-the first to change the output select of a particular
FLAG pin, and the second to provide the new value as shown in the example:

  bit set FLAGS FLG1O; /* set Flag1 IO output */
  bit set FLAGS FLG1; /* set Flag1 level 1 */
In the REGF_FLAGS register bit definitions, note that:

• For all FLGx bits, FLAGx values are as follows: 0 = low, 1 = high.

• For all FLGxO bits, FLAGx output selects are as follows: 0 = FLAGx Input, 1 = FLAGx Output.

• The REGF_FLAGS.FLG0, REGF_FLAGS.FLG1, REGF_FLAGS.FLG2, and REGF_FLAGS.FLG3 bits
can be immediately used for conditional instruction.

FLAG1 OutputFLAG2 State

FLAG1 StateFLAG2 Output

FLAG0 OutputFLAG3 State

FLAG0 StateFLAG3 Output

FLG1O (R/W)FLG2 (R/W)

FLG1 (R/W)FLG2O (R/W)

FLG0O (R/W)FLG3 (R/W)

FLG0 (R/W)FLG3O (R/W)
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Figure 28-9: REGF_FLAGS Register Diagram

Flag I/O Register
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Table 28-10: REGF_FLAGS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

FLG3O FLAG3 Output.

The REGF_FLAGS.FLG3O bit selects the I/O direction for the FLAG3 pin. The
I/O direction of the pin is programmed as an output (if bit set, = 1) or input (if bit
cleared, = 0).

0 Input

1 Output

6

(R/W)

FLG3 FLAG3 State.

The REGF_FLAGS.FLG3 bit indicates the state of the FLAG3 pin as high (if set, =
1) or low (if cleared, = 0).

5

(R/W)

FLG2O FLAG2 Output.

The REGF_FLAGS.FLG2O bit selects the I/O direction for the FLAG2 pin. The
I/O direction of the pin is programmed as an output (if bit set, = 1) or input (if bit
cleared, = 0).

0 Input

1 Output

4

(R/W)

FLG2 FLAG2 State.

The REGF_FLAGS.FLG2 bit indicates the state of the FLAG2 pin as high (if set, =
1) or low (if cleared, = 0).

3

(R/W)

FLG1O FLAG1 Output.

The REGF_FLAGS.FLG1O bit selects the I/O direction for the FLAG1 pin. The
I/O direction of the pin is programmed as an output (if bit set, = 1) or input (if bit
cleared, = 0).

0 Input

1 Output

2

(R/W)

FLG1 FLAG1 State.

The REGF_FLAGS.FLG1 bit indicates the state of the FLAG1 pin as high (if set, =
1) or low (if cleared, = 0).

1

(R/W)

FLG0O FLAG0 Output.

The REGF_FLAGS.FLG0O bit selects the I/O direction for the FLAG0 pin. The
I/O direction of the pin is programmed as an output (if bit set, = 1) or input (if bit
cleared, = 0).

0 Input

1 Output

Flag I/O Register
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Table 28-10: REGF_FLAGS Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

FLG0 FLAG0 State.

The REGF_FLAGS.FLG0 bit indicates the state of the FLAG0 pin as high (if set, =
1) or low (if cleared, = 0).

Flag I/O Register
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Interrupt Mask Register
Each bit in the REGF_IMASK register corresponds to a bit with the same name in the REGF_IRPTL register. The
bits in REGF_IMASK unmask (enable if set, =1), or mask (disable if cleared, = 0) the interrupts that are latched in
the REGF_IRPTL register. Except for the RSTI and EMUI bits, all interrupts are maskable.

When the REGF_IMASK register masks an interrupt, the masking disables the processor’s response to the interrupt.
The IRPTL register still latches an interrupt even when masked, and the processor responds to that latched interrupt
if it is later unmasked.

Stack Overflow Interrupt Mask

Illegal Input Cond Det Interrupt MaskIllegal Address Interrupt Mask

Circular Buffer I7 Interrupt MaskTimer Zero HP Interrupt Mask

Illegal Opcode Interrupt MaskBreakpoint (HW) Interrupt Mask

Parity Error (L1) Interrupt MaskFIR Channel Completion Interrupt Mask

Reset Interrupt MaskIIR Channel Completion Interrupt Mask

Emulator Interrupt MaskSEC Interrupt Mask

Floating-Point Unr Interrupt MaskFloating-Point Inv Interrupt Mask

Floating-Point Ovr Interrupt MaskEmulator LP Interrupt Mask

Fixed-Point Interrupt MaskSoftware 0 Interrupt Mask

Timer Zero LP Interrupt MaskSoftware 1 Interrupt Mask

Circular Buffer I15 Interrupt MaskSoftware 2 Interrupt Mask

Restricted Ins Seq Interrupt MaskSoftware 3 Interrupt Mask

SOVFI (R/W)

IICDI (R/W)ILADI (R/W)

CB7I (R/W)TMZHI (R/W)

ILOPI (R/W)BKPI (R/W)

PARI (R/W)FIRI (R/W)

RSTI (R)IIRI (R/W)

EMUI (R)SECI (R/W)
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Figure 28-10: REGF_IMASK Register Diagram

Interrupt Mask Register
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Table 28-11: REGF_IMASK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

SFT3I Software 3 Interrupt Mask.

The REGF_IMASK.SFT3I bit masks (if cleared, = 0) or unmasks (if set, = 1) the
software (user) 3 interrupt (SFT3I).

30

(R/W)

SFT2I Software 2 Interrupt Mask.

The REGF_IMASK.SFT2I bit masks (if cleared, = 0) or unmasks (if set, = 1) the
software (user) 2 interrupt (SFT2I).

29

(R/W)

SFT1I Software 1 Interrupt Mask.

The REGF_IMASK.SFT1I bit masks (if cleared, = 0) or unmasks (if set, = 1) the
software (user) 1 interrupt (SFT1I).

28

(R/W)

SFT0I Software 0 Interrupt Mask.

The REGF_IMASK.SFT0I bit masks (if cleared, = 0) or unmasks (if set, = 1) the
software (user) 0 interrupt (SFT0I).

27

(R/W)

EMULI Emulator LP Interrupt Mask.

The REGF_IMASK.EMULI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
emulator low-priority interrupt (EMULI).

26

(R/W)

FLTII Floating-Point Inv Interrupt Mask.

The REGF_IMASK.FLTII bit masks (if cleared, = 0) or unmasks (if set, = 1) the
floating-point invalid operation interrupt (FLTII).

25

(R/W)

FLTUI Floating-Point Unr Interrupt Mask.

The REGF_IMASK.FLTUI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
floating-point underflow interrupt (FLTUI).

24

(R/W)

FLTOI Floating-Point Ovr Interrupt Mask.

The REGF_IMASK.FLTOI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
floating-point overflow interrupt (FLTOI).

23

(R/W)

FIXI Fixed-Point Interrupt Mask.

The REGF_IMASK.FIXI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
fixed-point overflow interrupt (FIXI).

22

(R/W)

TMZLI Timer Zero LP Interrupt Mask.

The REGF_IMASK.TMZLI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
core timer zero (expired) low priority interrupt (TMZLI). A TMZLI occurs when the
timer decrements to zero.

Note that this event also triggers a TMZHI. Because the timer expired event
(TCOUNT decrements to zero) generates two interrupts (TMZHI and TMZLI), pro-
grams should unmask the timer interrupt with the desired priority and leave the other
one masked.

Interrupt Mask Register
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Table 28-11: REGF_IMASK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W)

CB15I Circular Buffer I15 Interrupt Mask.

The REGF_IMASK.CB15I bit masks (if cleared, = 0) or unmasks (if set, = 1) the
circular buffer overflow interrupt (CB15I).

20

(R/W)

RINSEQI Restricted Ins Seq Interrupt Mask.

The REGF_IMASK.RINSEQI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
restricted instruction sequence interrupt (RINSEQI).

15

(R/W)

SECI SEC Interrupt Mask.

The REGF_IMASK.SECI bit masks (if cleared, = 0) or unmasks (if set, = 1) the sys-
tem event controller (SEC) interrupt (SECI).

This masking functionality is augmented with the operation of the
REGF_MODE1.NESTM bit and REGF_MODE2.SNEN bit. If these bits are set (ena-
bling nest multiple interrupts and enabling SEC self nesting), a new SECI interrupt
may latch in REGF_IRPTL.SECI while an SECI interrupt is being serviced. SECI is
not masked but lower priority interrupts are. If a higher priority interrupt interrupts
SECI, SECI becomes masked.

14

(R/W)

IIRI IIR Channel Completion Interrupt Mask.

The REGF_IMASK.IIRI bit masks (if cleared, = 0) or unmasks (if set, = 1) the IIR
channel completion interrupt (IIRI). This bit is available in ADSP-2156x.

13

(R/W)

FIRI FIR Channel Completion Interrupt Mask.

The REGF_IMASK.FIRI bit masks (if cleared, = 0) or unmasks (if set, = 1) the FIR
channel completion interrupt (FIRI). This bit is only available in the ADSP-2156x
and the ADSP-SC59x/ADSP-2159x processors.

12

(R/W)

BKPI Breakpoint (HW) Interrupt Mask.

The REGF_IMASK.BKPI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
hardware breakpoint interrupt (BKPI).

11

(R/W)

TMZHI Timer Zero HP Interrupt Mask.

The REGF_IMASK.TMZHI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
core timer zero (expired) high priority interrupt (TMZHI). A TMZHI occurs when
the timer decrements to zero.

Note that this event also triggers a TMZLI. Because the timer expired event
(TCOUNT decrements to zero) generates two interrupts (TMZHI and TMZLI), pro-
grams should unmask the timer interrupt with the desired priority and leave the other
one masked.

8

(R/W)

ILADI Illegal Address Interrupt Mask.

The REGF_IMASK.ILADI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
illegal address space detected interrupt (ILADI).

Interrupt Mask Register
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Table 28-11: REGF_IMASK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

SOVFI Stack Overflow Interrupt Mask.

The REGF_IMASK.SOVFI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
stack overflow interrupt (SOVFI). A SOVFI occurs when a stack in the program se-
quencer overflows or is full.

6

(R/W)

IICDI Illegal Input Cond Det Interrupt Mask.

The REGF_IMASK.IICDI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
illegal input condition detected interrupt (IICDI).

5

(R/W)

CB7I Circular Buffer I7 Interrupt Mask.

The REGF_IMASK.CB7I bit masks (if cleared, = 0) or unmasks (if set, = 1) the cir-
cular buffer overflow interrupt (CB7I).

4

(R/W)

ILOPI Illegal Opcode Interrupt Mask.

The REGF_IMASK.ILOPI bit masks (if cleared, = 0) or unmasks (if set, = 1) the
illegal opcode detected interrupt (ILOPI).

3

(R/W)

PARI Parity Error (L1) Interrupt Mask.

The REGF_IMASK.PARI bit masks (if cleared, = 0) or unmasks (if set, = 1) the pari-
ty error on L1 access interrupt (PARI).

1

(R/NW)

RSTI Reset Interrupt Mask.

The REGF_IMASK.RSTI bit is read-only. The reset interrupt (RSTI) is non-maska-
ble.

0

(R/NW)

EMUI Emulator Interrupt Mask.

The REGF_IMASK.EMUI bit is read-only. The emulator interrupt (EMUI) is non-
maskable.

Interrupt Mask Register
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Interrupt Mask Pointer Register
Each bit in the REGF_IMASKP register corresponds to a bit with the same name in the REGF_IRPTL register.
The REGF_IMASKP register supports an interrupt nesting scheme that lets higher priority events interrupt an ISR
and keeps lower priority events from interrupting.

When interrupt nesting is enabled, the bits in the REGF_IMASKP register mask interrupts that have a lower priori-
ty than the interrupt that is currently being serviced. Other bits in this register unmask interrupts having higher
priority than the interrupt that is currently being serviced. Interrupt nesting is enabled using
REGF_MODE1.NESTM bit. The REGF_IRPTL register latches a lower priority interrupt even when masked, and
the processor responds to that latched interrupt if it is later unmasked.

When interrupt nesting is disabled (REGF_MODE1.NESTM =0), the bits in the REGF_IMASKP register mask all
interrupts while an interrupt is currently being serviced. The REGF_IRPTL register still latches these interrupts
even when masked, and the processor responds to the highest priority latched interrupt after servicing the current
interrupt.

Interrupt Mask Pointer Register
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Stack Overflow Interrupt Pointer
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Figure 28-11: REGF_IMASKP Register Diagram

Table 28-12: REGF_IMASKP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

SFT3I Software 3 Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.SFT3I bit masks (if cleared,
= 0) or unmasks (if set, = 1) the software (user) 3 interrupt (SFT3I) while the processor
is servicing a higher priority interrupt. For more information, see the REGF_IMASKP
register description.

Interrupt Mask Pointer Register
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Table 28-12: REGF_IMASKP Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W)

SFT2I Software 2 Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.SFT2I bit masks (if cleared,
= 0) or unmasks (if set, = 1) the software (user) 2 interrupt (SFT2I) while the processor
is servicing a higher priority interrupt. For more information, see the REGF_IMASKP
register description.

29

(R/W)

SFT1I Software 1 Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.SFT1I bit masks (if cleared,
= 0) or unmasks (if set, = 1) the software (user) 1 interrupt (SFT1I) while the processor
is servicing a higher priority interrupt. For more information, see the REGF_IMASKP
register description.

28

(R/W)

SFT0I Software 0 Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.SFT0I bit masks (if cleared,
= 0) or unmasks (if set, = 1) the software (user) 0 interrupt (SFT0I) while the processor
is servicing a higher priority interrupt. For more information, see the REGF_IMASKP
register description.

27

(R/W)

EMULI Emulator LP Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.EMULI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the emulator low-priority interrupt (EMULI) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

26

(R/W)

FLTII Floating-Point Inv Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.FLTII bit masks (if cleared,
= 0) or unmasks (if set, = 1) the floating-point invalid operation interrupt (FLTII)
while the processor is servicing a higher priority interrupt. For more information, see
the REGF_IMASKP register description.

25

(R/W)

FLTUI Floating-Point Unr Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.FLTUI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the floating-point underflow interrupt (FLTUI) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

24

(R/W)

FLTOI Floating-Point Ovr Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.FLTOI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the floating-point overflow interrupt (FLTOI) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

Interrupt Mask Pointer Register

28–30 SHARC+ Core Programming Reference



Table 28-12: REGF_IMASKP Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

23

(R/W)

FIXI Fixed-Point Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.FIXI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the fixed-point overflow interrupt (FIXI) while the pro-
cessor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

22

(R/W)

TMZLI Timer Zero LP Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.TMZLI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the core timer zero (expired) low priority interrupt
(TMZLI) while the processor is servicing a higher priority interrupt. For more infor-
mation, see the REGF_IMASKP register description.

21

(R/W)

CB15I Circular Buffer I15 Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.CB15I bit masks (if cleared,
= 0) or unmasks (if set, = 1) the circular buffer overflow interrupt (CB15I) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

20

(R/W)

RINSEQI Restricted Ins Seq Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.RINSEQI bit masks (if
cleared, = 0) or unmasks (if set, = 1) the restricted instruction sequence interrupt
(RINSEQI) while the processor is servicing a higher priority interrupt. For more infor-
mation, see the REGF_IMASKP register description.

15

(R/W)

SECI SEC Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.SECI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the system event controller (SEC) interrupt (SECI) while
the processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description. Note that this interrupt supports additional
nesting (self nesting) when enabled with the REGF_MODE2.SNEN bit.

14

(R/W)

IIRI IIR Channel Completion Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.IIRI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the IIR channel completion interrupt (IIRI) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description. This bit is available in ADSP-2156x.

13

(R/W)

FIRI FIR Channel Completion Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.FIRI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the FIR channel completion interrupt (FIRI) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description. This bit is available in the ADSP-2156x and the
ADSP-SC59x/ADSP-2159x processors.

Interrupt Mask Pointer Register

SHARC+ Core Programming Reference 28–31



Table 28-12: REGF_IMASKP Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

BKPI Breakpoint (HW) Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.BKPI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the hardware breakpoint interrupt (BKPI) while the pro-
cessor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

11

(R/W)

TMZHI Timer Zero HP Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.TMZHI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the core timer zero (expired) high priority interrupt
(TMZHI) while the processor is servicing a higher priority interrupt. For more infor-
mation, see the REGF_IMASKP register description.

8

(R/W)

ILADI Illegal Address Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.ILADI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the illegal address space detected interrupt (ILADI) while
the processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

7

(R/W)

SOVFI Stack Overflow Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.SOVFI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the stack overflow or full interrupt (SOVFI) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

6

(R/W)

IICDI Illegal Input Cond Det Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.IICDI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the illegal input condition detected interrupt (IICDI)
while the processor is servicing a higher priority interrupt. For more information, see
the REGF_IMASKP register description.

5

(R/W)

CB7I Circular Buffer I7 Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.CB7I bit masks (if cleared,
= 0) or unmasks (if set, = 1) the circular buffer overflow interrupt (CB7I) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

4

(R/W)

ILOPI Illegal Opcode Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.ILOPI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the illegal opcode detected interrupt (ILOPI) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

Interrupt Mask Pointer Register
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Table 28-12: REGF_IMASKP Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

PARI Parity Error (L1) Interrupt Pointer.

When interrupt nesting is enabled, the REGF_IMASKP.PARI bit masks (if cleared,
= 0) or unmasks (if set, = 1) the parity error on L1 access interrupt (PARI) while the
processor is servicing a higher priority interrupt. For more information, see the
REGF_IMASKP register description.

1

(R/NW)

RSTI Reset Interrupt Pointer.

The REGF_IMASKP.RSTI bit is read-only. The reset interrupt (RSTI) is non-mask-
able.

0

(R/NW)

EMUI Emulator Interrupt Pointer.

The REGF_IMASKP.EMUI bit is read-only. The emulator interrupt (EMUI) is non-
maskable.
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Interrupt Latch Register
The REGF_IRPTL register indicates latch status for core interrupts. The system event controller (SEC) of the pro-
cessor manages the configuration of all system event sources (such as interrupts). The SEC also manages the propa-
gation of system events to all connected SHARC cores and the system fault interface. For more information about
interrupt control, see the processor hardware reference.

The REGF_IRPTL register provides a number of software interrupts. When a program sets the latch bit for one of
these interrupts, the sequencer services the interrupt, and the processor branches to the corresponding interrupt rou-
tine. Software interrupts have the same behavior as all other maskable interrupts. For more information about inter-
rupt sequencing, see the Variations in Program Flow section of the Program Sequencer chapter.

Stack Overflow Interrupt Latch

Illegal Input Cond Det Interrupt LatchIllegal Address Interrupt Latch

Circular Buffer I7 Interrupt LatchTimer Zero HP Interrupt Latch

Illegal Opcode Interrupt LatchBreakpoint (HW) Interrupt Latch
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Figure 28-12: REGF_IRPTL Register Diagram
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Table 28-13: REGF_IRPTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

SFT3I Software 3 Interrupt Latch.

The REGF_IRPTL.SFT3I bit indicates whether the processor detected (latched) a
software (user) 3 interrupt (SFT3I). An SFT3I occurs when a program sets (= 1) this
bit.

30

(R/W)

SFT2I Software 2 Interrupt Latch.

The REGF_IRPTL.SFT2I bit indicates whether the processor detected (latched) a
software (user) 2 interrupt (SFT2I). An SFT2I occurs when a program sets (= 1) this
bit.

29

(R/W)

SFT1I Software 1 Interrupt Latch.

The REGF_IRPTL.SFT1I bit indicates whether the processor detected (latched) a
software (user) 1 interrupt (SFT1I). An SFT1I occurs when a program sets (= 1) this
bit.

28

(R/W)

SFT0I Software 0 Interrupt Latch.

The REGF_IRPTL.SFT0I bit indicates whether the processor detected (latched) a
software (user) 0 interrupt (SFT0I). An SFT0I occurs when a program sets (= 1) this
bit.

27

(R/W)

EMULI Emulator LP Interrupt Latch.

The REGF_IRPTL.EMULI bit indicates whether the processor detected (latched) an
emulator low-priority interrupt (EMULI). An EMULI occurs during background tele-
metry channel (BTC) operations. This interrupt has a lower priority than EMUI, but
higher priority than software interrupts.

26

(R/W)

FLTII Floating-Point Inv Interrupt Latch.

The REGF_IRPTL.FLTII bit indicates whether the processor detected (latched) a
floating-point operation invalid interrupt (FLTII). For more information about float-
ing-point invalid operations, see the descriptions of the status registers:
REGF_ASTATX and REGF_ASTATY.

25

(R/W)

FLTUI Floating-Point Unr Interrupt Latch.

The REGF_IRPTL.FLTUI bit indicates whether the processor detected (latched) a
floating-point underflow interrupt (FLTUI). For more information about floating-
point underflow, see the descriptions of the status registers: REGF_ASTATX and
REGF_ASTATY.

24

(R/W)

FLTOI Floating-Point Ovr Interrupt Latch.

The REGF_IRPTL.FLTOI bit indicates whether the processor detected (latched) a
floating-point overflow interrupt (FLTOI). For more information about floating-point
overflow, see the descriptions of the status registers: REGF_ASTATX and
REGF_ASTATY.

Interrupt Latch Register
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Table 28-13: REGF_IRPTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

23

(R/W)

FIXI Fixed-Point Interrupt Latch.

The REGF_IRPTL.FIXI bit indicates whether the processor detected (latched) a
fixed-point overflow interrupt (FIXI). For more information about fixed-point over-
flow, see the descriptions of the status registers: REGF_ASTATX and
REGF_ASTATY.

22

(R/W)

TMZLI Timer Zero LP Interrupt Latch.

The REGF_IRPTL.TMZLI bit indicates whether the processor detected (latched) a
core timer zero (expired) low priority interrupt (TMZLI). A TMZLI occurs when the
timer decrements to zero.

Note that this event also triggers a TMZHI. Because the timer expired event
(TCOUNT decrements to zero) generates two interrupts, TMZHI and TMZLI, pro-
grams should unmask the timer interrupt with the desired priority and leave the other
one masked.

21

(R/W)

CB15I Circular Buffer I15 Interrupt Latch.

The REGF_IRPTL.CB15I bit indicates whether the processor detected (latched) a
circular buffer overflow interrupt for a circular buffer indexed with data address gener-
ator (DAG) 2 index 15 (I15). A circular buffer overflow occurs when the DAG circu-
lar buffering operation increments the index register past the end of the buffer.

20

(R/W)

RINSEQI Restricted Ins Seq Interrupt Latch.

The REGF_IRPTL.RINSEQI bit indicates whether the processor detected (latched)
a restricted instruction sequence interrupt (RINSEQI). A RINSEQI occurs when the
processor executes as follows:

• In the case of nested loop where the inner loop is an e2-active Counter-based
Loop, the outer loop is an Arithmetic Loop, and the last instruction of both the
loops are separated by one instruction. The L-2 of inner loop cannot have any
branches.

The second last instruction of the inner loop should not have a branch instruction.

• If the Last 5 instructions of an Arithmetic-loop have a delayed branch instruction.

15

(R/W)

SECI SEC Interrupt Latch.

The REGF_IRPTL.SECI bit indicates whether the processor detected (latched) an
system event controller (SEC) interrupt (SECI). When SECI interrupt self nesting is
enabled with the REGF_MODE2.SNEN bit, an SECI can latch even when the inter-
rupt is currently being serviced (REGF_IMASKP.SECI bit is set). For a list of SEC
interrupts, see the SEC chapter in the processor hardware reference.

14

(R/W)

IIRI IIR Channel Completion Interrupt.

The REGF_IRPTL.IIRI bit indicates whether the processor detected (latched) IIR
channel completion interrupt (IIRI). This bit is available in ADSP-2156x.

Interrupt Latch Register
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Table 28-13: REGF_IRPTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W)

FIRI FIR Channel Completion Interrupt.

The REGF_IRPTL.FIRI bit indicates whether the processor detected (latched) FIR
channel completion interrupt (FIRI). This bit is available in the ADSP-2156x and
ADSP-SC59x/ADSP-2159x processors.

12

(R/W)

BKPI Breakpoint (HW) Interrupt Latch.

The REGF_IRPTL.BKPI bit indicates whether the processor detected (latched) a
hardware breakpoint interrupt (BKPI).

11

(R/W)

TMZHI Timer Zero HP Interrupt Latch.

The REGF_IRPTL.TMZHI bit indicates whether the processor detected (latched) a
core timer zero (expired) high priority interrupt (TMZHI). A TMZHI occurs when
the timer decrements to zero.

Note that this event also triggers a TMZLI. Because the timer expired event
(TCOUNT decrements to zero) generates two interrupts, TMZHI and TMZLI, pro-
grams should unmask the timer interrupt with the desired priority and leave the other
one masked.

8

(R/W)

ILADI Illegal Address Interrupt Latch.

The REGF_IRPTL.ILADI bit indicates whether the processor detected (latched) an
illegal address space detected interrupt (ILADI). An ILADI occurs when the processor
makes a byte or short word access to any space other than byte address space. An ILA-
DI also occurs when the processor executes a modify instruction with the (sw) flag us-
ing an index register in non-byte address space or with the (nw) flag using an index
register in any long word or short word address space. For more information about ille-
gal address conditions, see the descriptions of the sticky status registers:
REGF_STKYX and REGF_STKYX.

7

(R/W)

SOVFI Stack Overflow Interrupt Latch.

The REGF_IRPTL.SOVFI bit indicates whether the processor detected (latched) an
stack overflow or full interrupt (SOVFI). A SOVFI occurs when a stack in the pro-
gram sequencer overflows or is full.

6

(R/W)

IICDI Illegal Input Cond Det Interrupt Latch.

The REGF_IRPTL.IICDI bit indicates whether the processor detected (latched) an
illegal input condition interrupt (IICDI). An IICDI occurs when a TRUE results from
the logical OR'ing of the illegal I/O processor register access status bit (IIRA) bit and
unaligned 64-bit memory access status bit (U64MA). For more information about ille-
gal input conditions, see the descriptions of the sticky status registers: REGF_STKYX
and REGF_STKYX.
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Table 28-13: REGF_IRPTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

CB7I Circular Buffer I7 Interrupt Latch.

The REGF_IRPTL.CB7I bit indicates whether the processor detected (latched) a
circular buffer overflow interrupt for a circular buffer indexed with data address gener-
ator (DAG) 1 index 7 (I7). A circular buffer overflow occurs when the DAG circular
buffering operation increments the index register past the end of the buffer.

4

(R/W)

ILOPI Illegal Opcode Interrupt Latch.

The REGF_IRPTL.ILOPI bit indicates whether the processor detected (latched) an
illegal opcode detected interrupt (ILOPI). An ILOPI occurs when the processor per-
forms an instruction fetch and encounters an instruction that does not match with ex-
isting opcodes. For more information about illegal opcode conditions, see the descrip-
tions of the sticky status registers: REGF_STKYX and REGF_STKYX.

3

(R/W)

PARI Parity Error (L1) Interrupt Latch.

The REGF_IRPTL.PARI bit indicates whether the processor detected (latched) a
parity error on L1 access interrupt (PARI). A PARI occurs when the processor per-
forms an L1 memory access with parity check enabled and detects a parity error. Parity
checking is enabled with the IPERREN, DPERREN, and SPERREN bits in the
REGF_MODE1 register and (when enabled) checking occurs on writes to L1 and reads
of L1.

The PARI for core accesses is generated only for valid accesses. Accesses that are abort-
ed do not generate a parity error even if an error is detected. For more information
about parity check conditions, see the descriptions of the IPERREN, DPERREN, and
SPERREN bits in the REGF_MODE1 register.

1

(R/NW)

RSTI Reset Interrupt Latch.

The REGF_IRPTL.RSTI bit indicates whether the processor detected (latched) a re-
set interrupt (RSTI). An RSTI occurs as an external device asserts the SYS_HWRST
pin or after a software reset through the reset control unit (RCU). Note that this bit is
read-only and the RSTI interrupt is non-maskable.

0

(R/NW)

EMUI Emulator Interrupt Latch.

The REGF_IRPTL.EMUI bit indicates whether the processor detected (latched) an
emulator interrupt (EMUI). An EMUI occurs when the external emulator triggers an
interrupt or the core hits a emulator breakpoint. Note that this interrupt has highest
priority, is read-only, and is non-maskable.

Interrupt Latch Register
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Index Registers
The data address generators (DAGs) store addresses in index (REGF_I[n]) registers. Registers I0 through I7 for
are for DAG1, and registers I8 through I15 are for DAG2. An index register holds an address and acts as a pointer
to a memory location.
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Figure 28-13: REGF_I[n] Register Diagram

Table 28-14: REGF_I[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_I[n].DATA bit field contains index address data.

Index Registers
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Loop Address Stack Register
The REGF_LADDR register contains the top entry in the loop address stack. The loop address stack described is six
levels deep by 32 bits wide. The 32-bit word of each level consists of a 24-bit loop termination address, a 5-bit
termination code, and a 3-bit loop type code.
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Figure 28-14: REGF_LADDR Register Diagram

Table 28-15: REGF_LADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_LADDR.DATA bit field contains address data.

Loop Address Stack Register
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Loop Counter Register
The loop counter (REGF_LCNTR) register provides access to the loop counter stack and holds the count value be-
fore the DO UNTIL termination loop is executed. For more information about using the REGF_LCNTR register,
see the Loop Counter Stack Access section.
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Figure 28-15: REGF_LCNTR Register Diagram

Table 28-16: REGF_LCNTR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_LCNTR.DATA bit field contains data.

Loop Counter Register
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Length (Circular Buffer) Registers
The data address generators (DAGs) control circular buffering operations with length (REGF_L[n]) registers and
base (REGF_B[n]) registers. Registers L0 through L7 and B0 through B7 are for DAG1, and registers L8 through
L15 and B8 through B15 are for DAG2. Length and base registers set up the range of addresses and the starting
address for a circular buffer.
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Figure 28-16: REGF_L[n] Register Diagram

Table 28-17: REGF_L[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_L[n].DATA bit field contains circular buffer length data.

Length (Circular Buffer) Registers
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Mode Mask Register
Bits that are set in the REGF_MMASK register are used to clear bits in the REGF_MODE1 register when the process-
or's status stack is pushed. This effectively disables different modes when servicing an interrupt, or when executing a
push sts instruction. The processor's status stack is pushed:

• When executing a push sts instruction explicitly in code

• When any interrupt occurs

Secondary Regs DAG2 LowSecondary Regs Reg File High

Secondary Regs DAG2 HighSecondary Regs Reg File Low

Secondary Regs DAG1 LowNest Multiple Interrupts

Secondary Regs DAG1 HighGlobal Interrupt Enable

Secondary Regs Comp Unit (MRx)ALU Saturation

Bit-Reverse Addressing I0Select Sign Extension

Bit-Reverse Addressing I8Truncation Rounding Mode

Circular Buffer EnableSystem Transfer Parity Error Enable

Broadcast Load I1Data Parity Error Enable

Broadcast Load I9Instruction Parity Error Enable

PEy EnableSEC Interrupt Nesting

Round Data to 32-BitsSelective PEx or PEy Enable

SRD2L (R/W)SRRFH (R/W)
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0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0
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Figure 28-17: REGF_MMASK Register Diagram

Mode Mask Register
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Table 28-18: REGF_MMASK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

SELPE Selective PEx or PEy Enable.

Setting the REGF_MMASK.SELPE bit clears the REGF_MODE1.SELPE bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

30

(R/W)

SINEST SEC Interrupt Nesting.

Setting the REGF_MMASK.SINEST bit clears the REGF_MODE1.SINEST bit
when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

29

(R/W)

IPERREN Instruction Parity Error Enable.

Setting the REGF_MMASK.IPERREN bit clears the REGF_MODE1.IPERREN bit
when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

28

(R/W)

DPERREN Data Parity Error Enable.

Setting the REGF_MMASK.DPERREN bit clears the REGF_MODE1.DPERREN bit
when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

27

(R/W)

SPERREN System Transfer Parity Error Enable.

Setting the REGF_MMASK.SPERREN bit clears the REGF_MODE1.SPERREN bit
when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

24

(R/W)

CBUFEN Circular Buffer Enable.

Setting the REGF_MMASK.CBUFEN bit clears the REGF_MODE1.CBUFEN bit
when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

23

(R/W)

BDCST1 Broadcast Load I1.

Setting the REGF_MMASK.BDCST1 bit clears the REGF_MODE1.BDCST1 bit
when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

22

(R/W)

BDCST9 Broadcast Load I9.

Setting the REGF_MMASK.BDCST9 bit clears the REGF_MODE1.BDCST9 bit
when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

21

(R/W)

PEYEN PEy Enable.

Setting the REGF_MMASK.PEYEN bit clears the REGF_MODE1.PEYEN bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

16

(R/W)

RND32 Round Data to 32-Bits.

Setting the REGF_MMASK.RND32 bit clears the REGF_MODE1.RND32 bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

15

(R/W)

TRUNCATE Truncation Rounding Mode.

Setting the REGF_MMASK.TRUNCATE bit clears the REGF_MODE1.TRUNCATE
bit when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

Mode Mask Register

28–44 SHARC+ Core Programming Reference



Table 28-18: REGF_MMASK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W)

SSE Select Sign Extension.

Setting the REGF_MMASK.SSE bit clears the REGF_MODE1.SSE bit when the sta-
tus stack is pushed. All other bits in REGF_MODE1 are unaffected.

13

(R/W)

ALUSAT ALU Saturation.

Setting the REGF_MMASK.ALUSAT bit clears the REGF_MODE1.ALUSAT bit
when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

12

(R/W)

IRPTEN Global Interrupt Enable.

Setting the REGF_MMASK.IRPTEN bit clears the REGF_MODE1.IRPTEN bit
when the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

11

(R/W)

NESTM Nest Multiple Interrupts.

Setting the REGF_MMASK.NESTM bit clears the REGF_MODE1.NESTM bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

10

(R/W)

SRRFL Secondary Regs Reg File Low.

Setting the REGF_MMASK.SRRFL bit clears the REGF_MODE1.SRRFL bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

7

(R/W)

SRRFH Secondary Regs Reg File High.

Setting the REGF_MMASK.SRRFH bit clears the REGF_MODE1.SRRFH bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

6

(R/W)

SRD2L Secondary Regs DAG2 Low.

Setting the REGF_MMASK.SRD2L bit clears the REGF_MODE1.SRD2L bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

5

(R/W)

SRD2H Secondary Regs DAG2 High.

Setting the REGF_MMASK.SRD2H bit clears the REGF_MODE1.SRD2H bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

4

(R/W)

SRD1L Secondary Regs DAG1 Low.

Setting the REGF_MMASK.SRD1L bit clears the REGF_MODE1.SRD1L bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

3

(R/W)

SRD1H Secondary Regs DAG1 High.

Setting the REGF_MMASK.SRD1H bit clears the REGF_MODE1.SRD1H bit when
the status stack is pushed. All other bits in REGF_MODE1 are unaffected.

2

(R/W)

SRCU Secondary Regs Comp Unit (MRx).

Setting the REGF_MMASK.SRCU bit clears the REGF_MODE1.SRCU bit when the
status stack is pushed. All other bits in REGF_MODE1 are unaffected.

Mode Mask Register
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Table 28-18: REGF_MMASK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

BR0 Bit-Reverse Addressing I0.

Setting the REGF_MMASK.BR0 bit clears the REGF_MODE1.BR0 bit when the sta-
tus stack is pushed. All other bits in REGF_MODE1 are unaffected.

0

(R/W)

BR8 Bit-Reverse Addressing I8.

Setting the REGF_MMASK.BR8 bit clears the REGF_MODE1.BR8 bit when the sta-
tus stack is pushed. All other bits in REGF_MODE1 are unaffected.

Mode Mask Register
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Mode Control 1 Register
The REGF_MODE1 register controls operating modes for the computation units and other processor core resources,
see the bit descriptions for detailed information. The contents of REGF_MODE1, REGF_ASTATX, and
REGF_ASTATY may be manually pushed onto the status stack or popped off of the status stack. The
REGF_MODE1STK register provides access to the most recently pushed REGF_MODE1 value. The REGF_MMASK
register permits selecting REGF_MODE1 bits are cleared when the processor status stack is pushed. This effectively
disables different modes when servicing an interrupt, or when executing a push sts instruction. For more infor-
mation, see operating modes description in the Processing Elements chapter and see the functional description in
the Program Sequencer chapter.

Enable
Secondary Registers for DAG2 Low
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Figure 28-18: REGF_MODE1 Register Diagram

Mode Control 1 Register
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Table 28-19: REGF_MODE1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

SELPE Selective PEx or PEy Enable.

The REGF_MODE1.SELPE bit enables (if set, =1) or disables (if cleared, =0) selec-
tive, conditional execution in processing elements (PEx and PEy).

If a condition evaluates as true in one processing element and false in the other (for
example, true in PEx and false in PEy, or false in PEx and true in PEy), a special condi-
tion for selective execution in SIMD mode is available. To use these conditions, pro-
cessor must be in SIMD mode (REGF_MODE1.PEYEN bit is set) with the
REGF_MODE1.SELPE bit is set.

If the REGF_MODE1.SELPE bit is not set, these conditions behave as FLAG2_IN
(true PEx, false PEy) and NOT FLAG2_IN (false PEx, true PEy) both in SIMD and
SISD mode. In SISD mode, if the MODE1.SELPE bit is set, these conditions behave
as TRUE (true PEx, false PEy) and FALSE (false PEx, true PEy).

For more information about selective execution, see the Conditional Execution on
One PE in SIMD Mode section of the programming reference.

30

(R/W)

SINEST SEC Interrupt Nesting.

The REGF_MODE1.SINEST bit selects whether the SEC clears the
REGF_IMASKP.SECI bit and uses implicitly masking in nest-multiple interrupts
mode (REGF_MODE1.NESTM is set). The implicit masking occurs when
REGF_MODE1.SINEST is set and the REGF_MODE2.SNEN bit is set. In this
mode, the following occur:

• On vectoring to the SECI ISR, after automatically pushing the previous value of
the MODE1 resister, the NESTED bit in MODE1 is automatically set.

• On executing RTI, when the current interrupt is SECI and NESTED is set in the
REGF_MODE1STK register, the IMASKP register and interrupt mask are not
changed. Otherwise, IMASKP and the masked interrupts are modified as normal.
After the REGF_MODE1STK register is tested the RTI instruction pops the mode
stack as normal.

29

(R/W)

IPERREN Instruction Parity Error Enable.

The REGF_MODE1.IPERREN bit enables (if set, = 1) or disables (if cleared, = 0) in-
struction parity error detection for L1 instruction accesses. When this bit is set, the L1
memory interface generate a PARI interrupt when it detects a parity error during an
L1 instruction read by the processor core.

28

(R/W)

DPERREN Data Parity Error Enable.

The REGF_MODE1.DPERREN bit enables (if set, = 1) or disables (if cleared, = 0) da-
ta parity error detection for L1 data memory accesses. When this bit is set, the L1
memory interface generate a PARI interrupt when it detects a parity error during an
L1 data memory read by the processor core.

Mode Control 1 Register
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Table 28-19: REGF_MODE1 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

27

(R/W)

SPERREN System Transfer Parity Error Enable..

The REGF_MODE1.SPERREN bit enables (if set, = 1) or disables (if cleared, = 0) sys-
tem parity error detection for DMA access. When this bit is set, the L1 memory inter-
face generate a PARI interrupt when it detects a parity error during an L1 system
transfer (over the S1 or S2 port) by the processor core.

24

(R/W)

CBUFEN Circular Buffer Enable.

The REGF_MODE1.CBUFEN bit enables (circular if set, = 1) or disables (linear if
cleared, = 0) circular buffer addressing for buffers with loaded I, M, B, and L DAG
registers.

23

(R/W)

BDCST1 Broadcast Load I1.

The REGF_MODE1.BDCST1 bit enables (if set, = 1) or disables (if cleared, = 0)
broadcast register loads for loads that use the data address generator (DAG) index 1
(I1) register. When this bit is set, data register loads from the DM data bus that use
the I1 register are "broadcast" to a register or register pair in each processing element.

22

(R/W)

BDCST9 Broadcast Load I9.

The REGF_MODE1.BDCST9 bit enables (if set, = 1) or disables (if cleared, = 0)
broadcast register loads for loads that use the data address generator (DAG) index 9
(I9) register. When this bit is set, data register loads from the DM data bus that use
the I9 register are "broadcast" to a register or register pair in each processing element.

21

(R/W)

PEYEN PEy Enable.

The REGF_MODE1.PEYEN bit enables PEy (SIMD mode, if =1) or disables PEy
(SISD mode, if =0). When this bit is set, the processing element Y (PEy) accepts in-
struction dispatches. When cleared, PEy goes into a low power mode. If SIMD mode
is disabled, programs can load data to the secondary registers (for example,
s0=dm(i0,m0);), but the PEy computations do not execute.

16

(R/W)

RND32 Floating-Point Boundary Compute.

The REGF_MODE1.RND32 bit selects whether the computational units round float-
ing-point data to 32 bits (if =1) or round data to 40 bits (if =0).

15

(R/W)

TRUNCATE Truncation Rounding Mode Select.

The REGF_MODE1.TRUNCATE bit selects whether the ALU or multiplier units
round results with round-to-zero (if 1) or round-to-nearest (if 0).

14

(R/W)

SSE Select Sign Extension.

The REGF_MODE1.SSE bit selects whether the core unit sign-extend short-word,
16-bit data (if 1) or zero-fill the upper 16 bits (if 0).

13

(R/W)

ALUSAT ALU Saturation.

The REGF_MODE1.ALUSAT bit selects whether the computational units saturate re-
sults on positive or negative fixed-point overflows (if 1) or return unsaturated results (if
0).

Mode Control 1 Register
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Table 28-19: REGF_MODE1 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

IRPTEN Global Interrupt Enable.

The REGF_MODE1.IRPTEN bit enables (if set, = 1) or disables (if cleared, = 0) all
maskable interrupts. This bit provides a global control for interrupt masking, but it
does not replace individual interrupt mask or unmask settings.

11

(R/W)

NESTM Nest Multiple Interrupts Enable.

The REGF_MODE1.NESTM bit enables (nest if set, = 1) or disables (no nesting if
cleared, = 0) interrupt nesting in the interrupt controller. When interrupt nesting is
disabled, a higher priority interrupt can not interrupt a lower priority interrupt's serv-
ice routine. Other interrupts are latched as they occur, but the processor processes
them after the active routine finishes. When interrupt nesting is enabled, a higher pri-
ority interrupt can interrupt a lower priority interrupt's service routine. Lower inter-
rupts are latched as they occur, but the processor processes them after the nested rou-
tines finish.

10

(R/W)

SRRFL Secondary Registers for Register File Low Enable.

The REGF_MODE1.SRRFL bit enables (use secondary if set, = 1) or disables (use pri-
mary if cleared, = 0) secondary data registers for the lower half (R7-R0/S7-S0) of the
computational units.

7

(R/W)

SRRFH Secondary Registers for Register File High Enable.

The REGF_MODE1.SRRFH bit enables (use secondary if set, = 1) or disables (use pri-
mary if cleared, = 0) secondary data registers for the upper half (R15-R8/S15-S8) of
the computational units.

6

(R/W)

SRD2L Secondary Registers for DAG2 Low Enable.

The REGF_MODE1.SRD2L bit enables (use secondary if set, = 1) or disables (use pri-
mary if cleared, = 0) secondary DAG2 registers for the lower half (I, M, L, B11-8) of
the address generator.

5

(R/W)

SRD2H Secondary Registers for DAG2 High Enable.

The REGF_MODE1.SRD2H bit enables (use secondary if set, = 1) or disables (use pri-
mary if cleared, = 0) secondary DAG2 registers for the upper half (I, M, L, B15-12) of
the address generator.

4

(R/W)

SRD1L Secondary Registers for DAG1 Low Enable.

The REGF_MODE1.SRD1L bit enables (use secondary if set, = 1) or disables (use pri-
mary if cleared, = 0) secondary DAG1 registers for the lower half (I, M, L, B3-0) of the
address generator.

3

(R/W)

SRD1H Secondary Registers for DAG1 High Enable.

The REGF_MODE1.SRD1H bit enables (use secondary if set, = 1) or disables (use pri-
mary if cleared, = 0) secondary DAG1 registers for the upper half (I, M, L, B7-4) of
the address generator.

Mode Control 1 Register
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Table 28-19: REGF_MODE1 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

SRCU MRx Result Registers Swap Enable.

The REGF_MODE1.SRCU bit ... Enables the swapping of the MRF and MRB regis-
ters contents if set (= 1). This can be used as foreground and background registers. In
SIMD Mode the swapping also performed between MSF and MSB registers. This
works similar to the data register swapping instructions Rx<->Sx.

1

(R/W)

BR0 Bit-Reverse Addressing I0.

The REGF_MODE1.BR0 bit enables (if set, = 1) or disables (if cleared, = 0) bit-re-
versed addressing for accesses that are indexed with data address generator (DAG) in-
dex 0 (I1) register.

0

(R/W)

BR8 Bit-Reverse Addressing I8.

The REGF_MODE1.BR8 bit enables (if set, = 1) or disables (if cleared, = 0) bit-re-
versed addressing for accesses that are indexed with data address generator (DAG) in-
dex 8 (I8) register.

Mode Control 1 Register
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Mode 1 Stack (Top Entry) Register
It is possible to read and write the REGF_MODE1 register value in the top entry of the status stack through
REGF_MODE1STK register.

DAG2 Alternative Register Select (11-8)
R(15-8)
Register File Alternative Select for

DAG2 Alternative Register Select (15-12)R(7-0)
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Alternative Register Select for ComputeALU Saturation
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Bit-Reverse Addressing I8Truncation Rounding Mode Select
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Figure 28-19: REGF_MODE1STK Register Diagram

Table 28-20: REGF_MODE1STK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

SELPE Selective PEx or PEy Enable.

The REGF_MODE1STK.SELPE bit provides access to the most recently pushed
REGF_MODE1.SELPE bit on the status stack. For more information, see the
REGF_MODE1.SELPE bit description.

Mode 1 Stack (Top Entry) Register
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Table 28-20: REGF_MODE1STK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W)

SINEST SEC Interrupt Nesting.

The REGF_MODE1STK.SINEST bit provides access to the most recently pushed
REGF_MODE1.SINEST bit on the status stack. For more information, see the
REGF_MODE1.SINEST bit description.

29

(R/W)

IPERREN Instruction Parity Error Enable.

The REGF_MODE1STK.IPERREN bit provides access to the most recently pushed
REGF_MODE1.IPERREN bit on the status stack. For more information, see the
REGF_MODE1.IPERREN bit description.

28

(R/W)

DPERREN Data Parity Error Enable.

The REGF_MODE1STK.DPERREN bit provides access to the most recently pushed
REGF_MODE1.DPERREN bit on the status stack. For more information, see the
REGF_MODE1.DPERREN bit description.

27

(R/W)

SPERREN System Transfer Parity Error Enable.

The REGF_MODE1STK.SPERREN bit provides access to the most recently pushed
REGF_MODE1.SPERREN bit on the status stack. For more information, see the
REGF_MODE1.SPERREN bit description.

24

(R/W)

CBUFEN Circular Buffer Enable.

The REGF_MODE1STK.CBUFEN bit provides access to the most recently pushed
REGF_MODE1.CBUFEN bit on the status stack. For more information, see the
REGF_MODE1.CBUFEN bit description.

23

(R/W)

BDCST1 Broadcast Load I1.

The REGF_MODE1STK.BDCST1 bit provides access to the most recently pushed
REGF_MODE1.BDCST1 bit on the status stack. For more information, see the
REGF_MODE1.BDCST1 bit description.

22

(R/W)

BDCST9 Broadcast Load I9.

The REGF_MODE1STK.BDCST9 bit provides access to the most recently pushed
REGF_MODE1.BDCST9 bit on the status stack. For more information, see the
REGF_MODE1.BDCST9 bit description.

21

(R/W)

PEYEN PEy Enable.

The REGF_MODE1STK.PEYEN bit provides access to the most recently pushed
REGF_MODE1.PEYEN bit on the status stack. For more information, see the
REGF_MODE1.PEYEN bit description.

16

(R/W)

RND32 Round Data to 32-Bits.

The REGF_MODE1STK.RND32 bit provides access to the most recently pushed
REGF_MODE1.RND32 bit on the status stack. For more information, see the
REGF_MODE1.RND32 bit description.

Mode 1 Stack (Top Entry) Register
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Table 28-20: REGF_MODE1STK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

TRUNCATE Truncation Rounding Mode Select.

The REGF_MODE1STK.TRUNCATE bit provides access to the most recently pushed
REGF_MODE1.TRUNCATE bit on the status stack. For more information, see the
REGF_MODE1.TRUNCATE bit description.

14

(R/W)

SSE Select Sign Extension.

The REGF_MODE1STK.SSE bit provides access to the most recently pushed
REGF_MODE1.SSE bit on the status stack. For more information, see the
REGF_MODE1.SSE bit description.

13

(R/W)

ALUSAT ALU Saturation.

The REGF_MODE1STK.ALUSAT bit provides access to the most recently pushed
REGF_MODE1.ALUSAT bit on the status stack. For more information, see the
REGF_MODE1.ALUSAT bit description.

12

(R/W)

IRPTEN Global Interrupt Enable.

The REGF_MODE1STK.IRPTEN bit provides access to the most recently pushed
REGF_MODE1.IRPTEN bit on the status stack. For more information, see the
REGF_MODE1.IRPTEN bit description.

11

(R/W)

NESTM Nest Multiple Interrupts Enable.

The REGF_MODE1STK.NESTM bit provides access to the most recently pushed
REGF_MODE1.NESTM bit on the status stack. For more information, see the
REGF_MODE1.NESTM bit description.

10

(R/W)

SRRFL Register File Alternative Select for R(7-0).

The REGF_MODE1STK.SRRFL bit provides access to the most recently pushed
REGF_MODE1.SRRFL bit on the status stack. For more information, see the
REGF_MODE1.SRRFL bit description.

7

(R/W)

SRRFH Register File Alternative Select for R(15-8).

The REGF_MODE1STK.SRRFH bit provides access to the most recently pushed
REGF_MODE1.SRRFH bit on the status stack. For more information, see the
REGF_MODE1.SRRFH bit description.

6

(R/W)

SRD2L DAG2 Alternative Register Select (11-8).

The REGF_MODE1STK.SRD2L bit provides access to the most recently pushed
REGF_MODE1.SRD2L bit on the status stack. For more information, see the
REGF_MODE1.SRD2L bit description.

5

(R/W)

SRD2H DAG2 Alternative Register Select (15-12).

The REGF_MODE1STK.SRD2H bit provides access to the most recently pushed
REGF_MODE1.SRD2H bit on the status stack. For more information, see the
REGF_MODE1.SRD2H bit description.

Mode 1 Stack (Top Entry) Register
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Table 28-20: REGF_MODE1STK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

SRD1L DAG1 Alternative Register Select (3-0).

The REGF_MODE1STK.SRD1L bit provides access to the most recently pushed
REGF_MODE1.SRD1L bit on the status stack. For more information, see the
REGF_MODE1.SRD1L bit description.

3

(R/W)

SRD1H DAG1 Alternative Register Select (7-4).

The REGF_MODE1STK.SRD1H bit provides access to the most recently pushed
REGF_MODE1.SRD1H bit on the status stack. For more information, see the
REGF_MODE1.SRD1H bit description.

2

(R/W)

SRCU Alternative Register Select for Compute Units.

The REGF_MODE1STK.SRCU bit provides access to the most recently pushed
REGF_MODE1.SRCU bit on the status stack. For more information, see the
REGF_MODE1.SRCU bit description.

1

(R/W)

BR0 Bit-Reverse Addressing I0.

The REGF_MODE1STK.BR0 bit provides access to the most recently pushed
REGF_MODE1.BR0 bit on the status stack. For more information, see the
REGF_MODE1.BR0 bit description.

0

(R/W)

BR8 Bit-Reverse Addressing I8.

The REGF_MODE1STK.BR8 bit provides access to the most recently pushed
REGF_MODE1.BR8 bit on the status stack. For more information, see the
REGF_MODE1.BR8 bit description.

Mode 1 Stack (Top Entry) Register
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Mode Control 2 Register
The REGF_MODE2 register controls operating modes for the computation units and other processor core resources,
see the bit descriptions for detailed information.
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Figure 28-20: REGF_MODE2 Register Diagram

Table 28-21: REGF_MODE2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W)

U64MAE Unaligned 64-Bit Memory Access Enable.

The REGF_MODE2.U64MAE bit enables (if set, = 1) or disables (if cleared, = 0) de-
tection of unaligned long word accesses. If this bit is set, the processor flags an un-
aligned long word access by setting the U64MA bit in the REGF_STKYX register or
the REGF_STKYY register.

20

(R/W)

IIRAE Illegal MMR Register Access Enable.

The REGF_MODE2.IIRAE bit enables (if set, = 1) or disables (if cleared, = 0) illegal
CMMR/SMMR register accesses. When this bit is set, the illegal MMR register access-
es set the IIRA sticky status bit. For more information about illegal MMR register ac-
cess, see the descriptions of the sticky status registers: REGF_STKYX and
REGF_STKYY.

19

(R/W)

CAFRZ Conflict Cache Freeze.

The REGF_MODE2.CAFRZ bit freezes the conflict cache (retain contents if set, = 1)
or thaws the cache (allow new input if cleared, = 0).

7

(R/W)

SLOWLOOP Slow Loop (Debug Mode).

The REGF_MODE2.SLOWLOOP bit enables slow loop operation for user mode de-
bug operations. This bit can be set to override the opcode of a F1-active loop. When
the REGF_MODE2.SLOWLOOP bit is set, all counter-based loops execute in E2-active
mode. Used primarily for the debugger.

Mode Control 2 Register
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Table 28-21: REGF_MODE2 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

TIMEN Timer Enable.

The REGF_MODE2.TIMEN bit enables the core timer (starts, if set, = 1) or disables
the core timer (stops, if cleared, = 0).

4

(R/W)

CADIS Conflict Cache Disable.

The REGF_MODE2.CADIS bit disables the conflict cache (if set, = 1) or enables the
conflict cache (if cleared, = 0).

0

(R/W)

SNEN Self Nesting Enable for SECI.

The REGF_MODE2.SNEN bit enables self-nesting for the SEC interrupt (SECI).
When this bit is set, the SECI interrupt can latch even when SECI interrupt is current-
ly being serviced (bit is set in the REGF_IMASKP register). If the
REGF_MODE1.IRPTEN and REGF_MODE1.NESTM bits also are set and the SECI
interrupt is currently being serviced, the SECI interrupt is not masked, but lower pri-
ority interrupts are masked. If a higher priority interrupt interrupts SECI, the SECI
interrupt becomes masked.

Mode Control 2 Register
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Multiplier Results 0 (PEx) Background Register
The REGF_MR0B contains the least significant 32 bits of the REGF_MRB register. For more information, see the
REGF_MRB register description.
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Figure 28-21: REGF_MR0B Register Diagram

Table 28-22: REGF_MR0B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_MR0B.DATA bit field contains the least significant 32-bits of results data.

Multiplier Results 0 (PEx) Background Register
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Multiplier Results 0 (PEx) Foreground Register
The REGF_MR0F contains the least significant 32 bits of the REGF_MRF register. For more information, see the
REGF_MRF register description.
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Figure 28-22: REGF_MR0F Register Diagram

Table 28-23: REGF_MR0F Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_MR0F.DATA bit field contains the least significant 32-bits of results data.

Multiplier Results 0 (PEx) Foreground Register
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Multiplier Results 1 (PEx) Background Register
The REGF_MR1B contains 32 bits (bits 63-32) of the REGF_MRB register. For more information, see the
REGF_MRB register description.
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Figure 28-23: REGF_MR1B Register Diagram

Table 28-24: REGF_MR1B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_MR1B.DATA bit field contains 32-bits of results data (bits 63-32).

Multiplier Results 1 (PEx) Background Register
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Multiplier Results 1 (PEx) Foreground Register
The REGF_MR1F contains 32 bits (bits 63-32) of the REGF_MRF register. For more information, see the
REGF_MRF register description.
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Figure 28-24: REGF_MR1F Register Diagram

Table 28-25: REGF_MR1F Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_MR1F.DATA bit field contains 32-bits of results data (bits 63-32).

Multiplier Results 1 (PEx) Foreground Register
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Multiplier Results 2 (PEx) Background Register
The REGF_MR2B contains the most significant 16 bits of the REGF_MRB register. For more information, see the
REGF_MRB register description.
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Figure 28-25: REGF_MR2B Register Diagram

Table 28-26: REGF_MR2B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DATA Data.

The REGF_MR2B.DATA bit field contains the most significant 16-bits of results da-
ta.

Multiplier Results 2 (PEx) Background Register
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Multiplier Results 2 (PEx) Foreground Register
The REGF_MR2F contains the most significant 16 bits of the REGF_MRF register. For more information, see the
REGF_MRF register description.
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Figure 28-26: REGF_MR2F Register Diagram

Table 28-27: REGF_MR2F Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DATA Data.

The REGF_MR2F.DATA bit field contains the most significant 16-bits of results da-
ta.

Multiplier Results 2 (PEx) Foreground Register
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Multiplier Results (PEx) Background Register
Processing element x (PEx) has a foreground (primary) multiply result (MRF) register and background (alternate)
results (MRB) register. The multiply accumulator (MAC) places 80-bit results of fixed-point operations in the MRF
or MRB register, depending on which register has been selected (made active) through the REGF_MODE1 register.

Table 28-28: REGF_MRB Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

79:0

(R/W)

DATA Data.

The REGF_MRB.DATA bit field contains the full 80-bits of results data.

Multiplier Results (PEx) Background Register
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Multiplier Results (PEx) Foreground Register
Processing element x (PEx) has a foreground (primary) multiply result (MRF) register and background (alternate)
results (MRB) register. The multiply accumulator (MAC) places 80-bit results of fixed-point operations in the MRF
or MRB register, depending on which register has been selected (made active) through the REGF_MODE1 register.

Table 28-29: REGF_MRF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

79:0

(R/W)

DATA Data.

The REGF_MRF.DATA bit field contains the full 80-bits of results data.

Multiplier Results (PEx) Foreground Register
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Multiplier Results 0 (PEy) Background Register
The REGF_MS0B contains the least significant 32 bits of the REGF_MSB register. For more information, see the
REGF_MSB register description.
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Figure 28-27: REGF_MS0B Register Diagram

Table 28-30: REGF_MS0B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_MS0B.DATA bit field contains the least significant 32-bits of results data.

Multiplier Results 0 (PEy) Background Register
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Multiplier Results 0 (PEy) Foreground Register
The REGF_MS0F contains the least significant 32 bits of the REGF_MSF register. For more information, see the
REGF_MSF register description.
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Figure 28-28: REGF_MS0F Register Diagram

Table 28-31: REGF_MS0F Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_MS0F.DATA bit field contains the least significant 32-bits of results data.

Multiplier Results 0 (PEy) Foreground Register
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Multiplier Results 1 (PEy) Background Register
The REGF_MS1B contains 32 bits (bits 63-32) of the REGF_MSB register. For more information, see the
REGF_MSB register description.
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Figure 28-29: REGF_MS1B Register Diagram

Table 28-32: REGF_MS1B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_MS1B.DATA bit field contains 32-bits of results data (bits 63-32).

Multiplier Results 1 (PEy) Background Register
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Multiplier Results 1 (PEy) Foreground Register
The REGF_MS1F contains 32 bits (bits 63-32) of the REGF_MSF register. For more information, see the
REGF_MSF register description.
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Figure 28-30: REGF_MS1F Register Diagram

Table 28-33: REGF_MS1F Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_MS1F.DATA bit field contains 32-bits of results data (bits 63-32).

Multiplier Results 1 (PEy) Foreground Register
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Multiplier Results 2 (PEy) Background Register
The REGF_MS2B contains the most significant 16 bits of the REGF_MSB register. For more information, see the
REGF_MSB register description.
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Figure 28-31: REGF_MS2B Register Diagram

Table 28-34: REGF_MS2B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DATA Data.

The REGF_MS2B.DATA bit field contains the most significant 16-bits of results da-
ta.

Multiplier Results 2 (PEy) Background Register

28–70 SHARC+ Core Programming Reference



Multiplier Results 2 (PEy) Foreground Register
The REGF_MS2F contains the most significant 16 bits of the REGF_MSF register. For more information, see the
REGF_MSF register description.
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Figure 28-32: REGF_MS2F Register Diagram

Table 28-35: REGF_MS2F Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DATA Data.

The REGF_MS2F.DATA bit field contains the most significant 16-bits of results da-
ta.

Multiplier Results 2 (PEy) Foreground Register
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Multiplier Results (PEy) Background Register
Processing element y (PEy) has a foreground (primary) multiply result (MSF) register and background (alternate)
results (MSB) register. The multiply accumulator (MAC) places 80-bit results of fixed-point operations in the MSF
or MSB register, depending on which register has been selected (made active) through the REGF_MODE1 register.

Table 28-36: REGF_MSB Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

79:0

(R/W)

DATA Data.

The REGF_MSB.DATA bit field contains the full 80-bits of results data.

Multiplier Results (PEy) Background Register
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Multiplier Results (PEy) Foreground Register
Processing element y (PEy) has a foreground (primary) multiply result (MSF) register and background (alternate)
results (MSB) register. The multiply accumulator (MAC) places 80-bit results of fixed-point operations in the MSF
or MSB register, depending on which register has been selected (made active) through the REGF_MODE1 register.

Table 28-37: REGF_MSF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

79:0

(R/W)

DATA Data.

The REGF_MSF.DATA bit field contains the full 80-bits of results data.

Multiplier Results (PEy) Foreground Register
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Modify Registers
The data address generators (DAGs) update stored addresses using modify (REGF_M[n]) registers. Registers M0
through M7 are for DAG1, and registers M8 through M15 are for DAG2. A modify register provides the increment
or step size by which an index register is pre-modified or post-modified during a register move.
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Figure 28-33: REGF_M[n] Register Diagram

Table 28-38: REGF_M[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_M[n].DATA bit field contains address modifier data.

Modify Registers
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Program Counter Register
The program counter (REGF_PC) register reads the last stage (E) in the instruction pipeline and contains the 24-bit
address of the instruction that the processor executes on the next cycle. The PC register works with the program
counter stack, REGF_PCSTK register, which stores return addresses and top-of-loop addresses. All PC relative
branch instruction require access to the register.

  n: R0=PC; /* Execution address in PC */
  n+1: instruction1;
  n+2: instruction2;
  n+3: instruction3;
  n+4: instruction4;
  n+5: instruction5;
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Figure 28-34: REGF_PC Register Diagram

Table 28-39: REGF_PC Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

DATA Data.

The REGF_PC.DATA bit field contains address data.

Program Counter Register
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Program Counter Stack Register
The program counter stack (REGF_PCSTK) register contains the address of the top of the PC stack.
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Figure 28-35: REGF_PCSTK Register Diagram

Table 28-40: REGF_PCSTK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/W)

ISINT Is RTI or RTS (Pop Condition).

The REGF_PCSTK.ISINT bit indicates whether the REGF_PCSTK.RTNADDR bit
field contains an address for an RTS or RTI operation that is popped off of the stack.

24

(R/W)

ISCALL Is Call (Push Condition).

The REGF_PCSTK.ISCALL bit indicates whether the REGF_PCSTK.RTNADDR
bit field contains an address for a Call, IVT branch, or Do Until operation that is
pushed on to the stack.

23:0

(R/W)

RTNADDR Return Address.

The REGF_PCSTK.RTNADDR bit field contains the return address.

Program Counter Stack Register
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Program Counter Stack Pointer Register
The program counter stack pointer (REGF_PCSTKP) register contains the value of PCSTKP. This value is:

• 0 - when the PC stack is empty

• 1 through 30 - when the stack contains data

• 31 - when the stack overflows

A write to PCSTKP takes effect after a one-cycle delay. If the PC stack is overflowed, a write to PCSTKP has no
effect.
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Figure 28-36: REGF_PCSTKP Register Diagram

Table 28-41: REGF_PCSTKP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_PCSTKP.DATA bit field contains stack pointer data.

Program Counter Stack Pointer Register
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PMD-DMD Bus Exchange Register
The PM bus exchange (REGF_PX) register permits data to flow between the PM and DM data buses. This register
can work as one 64-bit register or as two 32-bit registers (REGF_PX1 and REGF_PX2). The REGF_PX1 register is
the lower 32 bits of the REGF_PX register, and the REGF_PX2 register is the upper 32 bits of the REGF_PX
register.

The REGF_PX register lets programs transfer data between the data buses, but cannot be an input or output in a
calculation. For more information about using the REGF_PX register, see the Combined Data Bus Exchange Regis-
ter section.

Table 28-42: REGF_PX Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

63:0

(R/W)

DATA Data.

The REGF_PX.DATA bit field contains 64-bits of PMD-DMD bus-exchange data.

PMD-DMD Bus Exchange Register

28–78 SHARC+ Core Programming Reference



PMD-DMD Bus Exchange 1 Register
The REGF_PX1 register is the lower 32 bits of the REGF_PX register. For more information, see the REGF_PX
register description.
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Figure 28-37: REGF_PX1 Register Diagram

Table 28-43: REGF_PX1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_PX1.DATA bit field contains the least significant 32-bits of PMD-DMD
bus-exchange data.

PMD-DMD Bus Exchange 1 Register
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PMD-DMD Bus Exchange 2 Register
The REGF_PX2 register is the upper 32 bits of the REGF_PX register. For more information, see the REGF_PX
register description.
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Figure 28-38: REGF_PX2 Register Diagram

Table 28-44: REGF_PX2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_PX2.DATA bit field contains the most significant 32-bits of PMD-DMD
bus-exchange data.

PMD-DMD Bus Exchange 2 Register
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Register File (PEx) Data Registers (Rx, Fx)
Each of the processing elements (PEx and PEy) has a data register file comprising 16 40-bit registers. The processing
elements use these 40-bit data registers to transfer data between the data buses and the computation units. These
registers also provide local storage for operands and results.

Each data register can be accessed using either an R or F prefixed name. For example R0 is the same register as F0.
The R or F prefixes on register names do not effect the 32-bit or 40-bit data transfer. The naming convention deter-
mines how the ALU, multiplier, and shifter treat the data and determines which processing element's data registers
are being used. For more information about using these registers, see the Register Files chapter.

Table 28-45: REGF_R[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

39:0

(R/W)

DATA Data.

The REGF_R[n].DATA bit field contains data, which is treated as fixed-point data
(Rn syntax) or floating-point data (Fn syntax).

Register File (PEx) Data Registers (Rx, Fx)
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Sticky Status (PEx) Register
The REGF_STKYX register indicates sticky status for processing element x (PEx) operations and some program se-
quencer stacks. This register only indicates status for PEx operations.

Note that sticky bits do not clear themselves after the condition is no longer true. They remain "sticky" until cleared
by the program.

The processor sets a sticky bit in response to a condition. For example, the processor sets the REGF_STKYX.AIS
bit when an invalid ALU floating-point operation sets the REGF_ASTATX.AI bit. The processor clears AI if the
next ALU operation is valid. However the AIS bit remains set until a program clears it. Interrupt service routines
(ISRs) must clear their interrupt's corresponding sticky bit so the processor can detect a re-occurrence of the condi-
tion. For example, an ISR for a floating-point underflow exception interrupt (FLTUI) clears the
REGF_STKYX.AUS bit near the beginning of the routine.
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Figure 28-39: REGF_STKYX Register Diagram

Sticky Status (PEx) Register
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Table 28-46: REGF_STKYX Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

26

(R/NW)

LSEM Loop Stack Empty.

The REGF_STKYX.LSEM bit indicates whether the loop counter stack and loop
stack are empty (if 1) or not empty (if 0). This bit is not sticky, and it is cleared by a
push operation.

25

(R/NW)

LSOV Loop Stack Overflow.

The REGF_STKYX.LSOV bit provides sticky status, indicating whether the loop
counter stack and loop stack are overflowed (if 1) or are not overflowed (if 0).

24

(R/NW)

SSEM Status Stack Empty.

The REGF_STKYX.SSEM bit indicates whether the status stack is empty (if 1) or not
empty (if 0)-not sticky. This bit is cleared by a push.

23

(R/NW)

SSOV Status Stack Overflow.

The REGF_STKYX.SSOV bit indicates whether the status stack is overflowed (if 1)
or not overflowed (if 0). This bit is a sticky bit.

22

(R/NW)

PCEM PC Stack Empty.

The REGF_STKYX.PCEM bit indicates whether the PC stack is empty (if 1) or not
empty (if 0). This bit is not sticky and is cleared by a push operation.

21

(R/NW)

PCFL PC Stack Full.

The REGF_STKYX.PCFL bit indicates whether the PC stack is full (if 1) or not full
(if 0). This bit is not a sticky bit and is cleared by a pop operation.

20

(R/W)

U64MA Unaligned 64-Bit Memory Access.

The REGF_STKYX.U64MA bit indicates whether (if set, = 1) a forced Normal word
access (LW mnemonic) addressing an uneven memory address has occurred or (if
cleared, =0) has not occurred.

19

(R/W)

IIRA Illegal IOP Register Access, Sticky.

The REGF_STKYX.IIRA bit provides a sticky indicator for the illegal I/O processor
(IOP) register accesses, which are detected when the REGF_MODE2.IIRAE bit is set.
For more information, see the REGF_MODE2.IIRAE bit description.

18

(R/W)

CB15S Circular Buffer I15 Interrupt Latch, Sticky.

The REGF_STKYX.CB15S bit provides a sticky indicator for the
REGF_IRPTL.CB15I bit. For more information, see the REGF_IRPTL.CB15I
bit description.

17

(R/W)

CB7S Circular Buffer I7 Interrupt Latch, Sticky.

The REGF_STKYX.CB7S bit provides a sticky indicator for the
REGF_IRPTL.CB7I bit. For more information, see the REGF_IRPTL.CB7I bit
description.

Sticky Status (PEx) Register
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Table 28-46: REGF_STKYX Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

MIS Multiplier Invalid, Sticky.

The REGF_STKYX.MIS bit provides a sticky status indicator for the multiplier
REGF_ASTATX.MI bit. For more information, see the REGF_ASTATX.MI bit de-
scription.

8

(R/W)

MUS Multiplier Underflow, Sticky.

The REGF_STKYX.MUS bit provides a sticky status indicator for the multiplier
REGF_ASTATX.MU bit. For more information, see the REGF_ASTATX.MU bit de-
scription.

7

(R/W)

MVS Multiplier Overflow, Sticky.

The REGF_STKYX.MVS bit provides a sticky status indicator for the multiplier
REGF_ASTATX.MV bit. For more information, see the REGF_ASTATX.MV bit de-
scription.

6

(R/W)

MOS Multiplier Overflow, Sticky.

The REGF_STKYX.MOS bit provides a sticky status indicator for the multiplier
fixed-point overflow (REGF_ASTATX.MV bit). For more information, see see the
REGF_ASTATX.MV bit description.

5

(R/W)

AIS ALU Invalid, Sticky.

The REGF_STKYX.AIS bit provides a sticky indicator for the REGF_ASTATX.AI
bit. For more information, see the REGF_ASTATX.AI bit description.

2

(R/W)

AOS ALU Overflow, Sticky.

The REGF_STKYX.AOS bit provides a sticky indicator for the REGF_ASTATX.AV
bit. For more information, see the REGF_ASTATX.AV bit description.

1

(R/W)

AVS ALU Overflow, Sticky.

The REGF_STKYX.AVS bit provides a sticky indicator for the REGF_ASTATX.AV
bit. For more information, see the REGF_ASTATX.AV bit description.

0

(R/W)

AUS ALU Underflow, Sticky.

The REGF_STKYX.AUS bit provides a sticky indicator for the REGF_ASTATX.AZ
bit. For more information, see the REGF_ASTATX.AZ bit description.

Sticky Status (PEx) Register
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Sticky Status (PEy) Register
The REGF_STKYY register indicates sticky status for processing element y (PEy) operations and some program se-
quencer stacks. This register only indicates status for PEy operations.

Note that sticky bits do not clear themselves after the condition is no longer true. They remain "sticky" until cleared
by the program.

The processor sets a sticky bit in response to a condition. For example, the processor sets the REGF_STKYY.AIS
bit when an invalid ALU floating-point operation sets the REGF_ASTATY.AI bit. The processor clears AI if the
next ALU operation is valid. However the AIS bit remains set until a program clears it. Interrupt service routines
(ISRs) must clear their interrupt's corresponding sticky bit so the processor can detect a re-occurrence of the condi-
tion. For example, an ISR for a floating-point underflow exception interrupt (FLTUI) clears the
REGF_STKYY.AUS bit near the beginning of the routine.
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Figure 28-40: REGF_STKYY Register Diagram

Sticky Status (PEy) Register
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Table 28-47: REGF_STKYY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

26

(R/NW)

LSEM Loop Stack Empty.

The REGF_STKYY.LSEM bit indicates whether the loop counter stack and loop
stack are empty (if 1) or not empty (if 0). This bit is not sticky, and it is cleared by a
push operation.

25

(R/NW)

LSOV Loop Stack Overflow.

The REGF_STKYY.LSOV bit provides sticky status, indicating whether the loop
counter stack and loop stack are overflowed (if 1) or are not overflowed (if 0).

24

(R/NW)

SSEM Status Stack Empty.

The REGF_STKYY.SSEM bit indicates whether the status stack is empty (if 1) or not
empty (if 0)-not sticky. This bit is cleared by a push.

23

(R/NW)

SSOV Status Stack Overflow.

The REGF_STKYY.SSOV bit indicates whether the status stack is overflowed (if 1)
or not overflowed (if 0). This bit is a sticky bit.

22

(R/NW)

PCEM PC Stack Empty.

The REGF_STKYY.PCEM bit indicates whether the PC stack is empty (if 1) or not
empty (if 0). This bit is not sticky and is cleared by a push operation.

21

(R/NW)

PCFL PC Stack Full.

The REGF_STKYY.PCFL bit indicates whether the PC stack is full (if 1) or not full
(if 0). This bit is not a sticky bit and is cleared by a pop operation.

20

(R/W)

U64MA Unaligned 64-Bit Memory Access.

The REGF_STKYY.U64MA bit indicates whether (if set, = 1) a forced Normal word
access (LW mnemonic) addressing an uneven memory address has occurred or (if
cleared, =0) has not occurred.

19

(R/W)

IIRA Illegal IOP Register Access, Sticky.

The REGF_STKYY.IIRA bit provides a sticky indicator for the illegal I/O processor
(IOP) register accesses, which are detected when the REGF_MODE2.IIRAE bit is set.
For more information, see the REGF_MODE2.IIRAE bit description.

18

(R/W)

CB15S Circular Buffer I15 Interrupt Latch, Sticky.

The REGF_STKYY.CB15S bit provides a sticky indicator for the
REGF_IRPTL.CB15I bit. For more information, see the REGF_IRPTL.CB15I
bit description.

17

(R/W)

CB7S Circular Buffer I7 Interrupt Latch, Sticky.

The REGF_STKYY.CB7S bit provides a sticky indicator for the
REGF_IRPTL.CB7I bit. For more information, see the REGF_IRPTL.CB7I bit
description.

Sticky Status (PEy) Register
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Table 28-47: REGF_STKYY Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

MIS Multiplier Invalid, Sticky.

The REGF_STKYY.MIS bit provides a sticky status indicator for the multiplier
REGF_ASTATY.MI bit. For more information, see the REGF_ASTATY.MI bit de-
scription.

8

(R/W)

MUS Multiplier Underflow, Sticky.

The REGF_STKYY.MUS bit provides a sticky status indicator for the multiplier
REGF_ASTATY.MU bit. For more information, see the REGF_ASTATY.MU bit de-
scription.

7

(R/W)

MVS Multiplier Overflow, Sticky.

The REGF_STKYY.MVS bit provides a sticky status indicator for the multiplier
REGF_ASTATY.MV bit. For more information, see the REGF_ASTATY.MV bit de-
scription.

6

(R/W)

MOS Multiplier Overflow, Sticky.

The REGF_STKYY.MOS bit provides a sticky status indicator for the multiplier
fixed-point overflow (REGF_ASTATY.MV bit). For more information, see see the
REGF_ASTATY.MV bit description.

5

(R/W)

AIS ALU Invalid, Sticky.

The REGF_STKYY.AIS bit provides a sticky indicator for the REGF_ASTATY.AI
bit. For more information, see the REGF_ASTATY.AI bit description.

2

(R/W)

AOS ALU Overflow, Sticky.

The REGF_STKYY.AOS bit provides a sticky indicator for the REGF_ASTATY.AV
bit. For more information, see the REGF_ASTATY.AV bit description.

1

(R/W)

AVS ALU Overflow, Sticky.

The REGF_STKYY.AVS bit provides a sticky indicator for the REGF_ASTATY.AV
bit. For more information, see the REGF_ASTATY.AV bit description.

0

(R/W)

AUS ALU Underflow, Sticky.

The REGF_STKYY.AUS bit provides a sticky indicator for the REGF_ASTATX.AZ
bit. For more information, see the REGF_ASTATX.AZ bit description.

Sticky Status (PEy) Register
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Register File (PEy) Data Registers (Sx, SFx)
Each of the processing elements (PEx and PEy) has a data register file comprising 16 40-bit registers. The processing
elements use these 40-bit data registers to transfer data between the data buses and the computation units. These
registers also provide local storage for operands and results.

Each data register can be accessed using either an S or SF prefixed name. For example S0 is the same register as SF0.
The S or SF prefixes on register names do not effect the 32-bit or 40-bit data transfer. The naming convention de-
termines how the ALU, multiplier, and shifter treat the data and determines which processing element's data regis-
ters are being used. For more information about using these registers, see the Register Files chapter.

Table 28-48: REGF_S[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

39:0

(R/W)

DATA Data.

The REGF_S[n].DATA bit field contains data, which is treated as fixed-point data
(Sn syntax) or floating-point data (SFn syntax).

Register File (PEy) Data Registers (Sx, SFx)
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Timer Count Register
The timer count REGF_TCOUNT register contains the decrementing timer count value, counting down the cycles
between timer interrupts. For more information about using the REGF_TCOUNT register, see the Timer chapter.
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Figure 28-41: REGF_TCOUNT Register Diagram

Table 28-49: REGF_TCOUNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_TCOUNT.DATA bit field contains timer-count data.

Timer Count Register
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Timer Period Register
The timer period REGF_TPERIOD register contains the timer period, indicating the number of cycles between
timer interrupts. For more information about using this register, see the Timer chapter.
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Figure 28-42: REGF_TPERIOD Register Diagram

Table 28-50: REGF_TPERIOD Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_TPERIOD.DATA bit field contains timer-period data.

Timer Period Register
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User-Defined Status 1 Register
The REGF_USTAT1 register is a user-defined, general-purpose status register. Programs can use this register with
bit-wise instructions (SET, CLEAR, TEST, and others). Often, programs use this register for low overhead, general-
purpose flags or for temporary 32-bit storage of data.
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Figure 28-43: REGF_USTAT1 Register Diagram

Table 28-51: REGF_USTAT1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_USTAT1.DATA bit field contains user-status data.

User-Defined Status 1 Register
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User-Defined Status 2 Register
The REGF_USTAT2 register is a user-defined, general-purpose status register. Programs can use this register with
bit-wise instructions (SET, CLEAR, TEST, and others). Often, programs use this register for low overhead, general-
purpose flags or for temporary 32-bit storage of data.
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Figure 28-44: REGF_USTAT2 Register Diagram

Table 28-52: REGF_USTAT2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The REGF_USTAT2.DATA bit field contains user-status data.

User-Defined Status 2 Register
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User-Defined Status 3 Register
The REGF_USTAT3 register is a user-defined, general-purpose status register. Programs can use this register with
bit-wise instructions (SET, CLEAR, TEST, and others). Often, programs use this register for low overhead, general-
purpose flags or for temporary 32-bit storage of data.

User Software Interrupt 3

User Software Interrupt 3
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Figure 28-45: REGF_USTAT3 Register Diagram

Table 28-53: REGF_USTAT3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA User Software Interrupt 3.

The REGF_USTAT3.DATA bit field contains user-status data.

User-Defined Status 3 Register
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User-Defined Status 4 Register
The REGF_USTAT4 register is a user-defined, general-purpose status register. Programs can use this register with
bit-wise instructions (SET, CLEAR, TEST, and others). Often, programs use this register for low overhead, general-
purpose flags or for temporary 32-bit storage of data.

User Software Interrupt 3.

User Software Interrupt 3.
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Figure 28-46: REGF_USTAT4 Register Diagram

Table 28-54: REGF_USTAT4 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA User Software Interrupt 3..

The REGF_USTAT4.DATA bit field contains user-status data.

User-Defined Status 4 Register
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29   SHARC-PLUS CMMR Register Descriptions

Miscellaneous core MMRs (CMMR) contains the following registers.

Table 29-1: SHARC-PLUS CMMR Register List

Name Description

CMMR_GPERR_STAT General-Purpose Parity Error Status Register

CMMR_PFB_NOCHRT0_END PFB No Caching Return 0 End Address Register

CMMR_PFB_NOCHRT0_ST PFB No Caching Return 0 Start Address Register

CMMR_PWR_GLB_CTL Core Global Power Control Register

CMMR_PWR_L1_LS_CTL L1 BANK SLEEP CONTROL

CMMR_PWR_L1_SD_CTL L1 BANK SHUT DOWN CONTROL

CMMR_SYSCTL System Control Register

SHARC-PLUS CMMR Register Descriptions
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General-Purpose Parity Error Status Register
The CMMR_GPERR_STAT register indicates parity error and interrupt status for L1 memory accesses. This register
is considered "general-purpose" because it indicates status for all types of L1 memory accesses. These include pro-
gram memory accesses, data memory accesses, accesses for system transfers, and all types of cache accesses.

After an error condition is registered, the condition is locked and remains locked until all of the status bits are
cleared (clearing the error status manually) in the CMMR_GPERR_STAT register. This operation requires writing
0x0 to this register. To avoid continuous generation of this interrupt, reset the core or write 0x0 to this register in
the Parity ISR.

For simultaneous errors between DM (DAG1) and PM (DAG2) data reads, only the DM error is indicated.

For simultaneous errors between completer port 1 (S1) and completer port 2 (S2), only the S1 error is indicated.

to S1
Parity Error Data Read for System Transfer

to S2
Parity Error Data Read for System Transfer

(Instruction Cache)
Parity Error Instruction Read by Core

Parity Error Data Read by Core (DAG2)

Cache)
Parity Error Data Read by Core (DMParity Error Data Read by Core (DAG1)

Cache)
Parity Error Data Read by Core (PM

(PM)
Parity Error Instruction Read by Core

Parity Interrupt Data Read by CoreParity Error Data Read by Core

Parity Error Data Read for System TransferCore
Parity Interrupt Instruction Read by

Transfer
Parity Interrupt Data Read for SystemParity Error Instruction Read by Core

PARE_DSS1 (R/W)

PARE_DSS2 (R/W)

PARE_ICIC (R/W)
PARE_DCD2 (R/W)
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0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PARI_DC (R/W)PARE_DC (R/W)

PARE_DS (R/W)
PARI_IC (R/W)

PARI_DS (R/W)PARE_IC (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-1: CMMR_GPERR_STAT Register Diagram

General-Purpose Parity Error Status Register
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Table 29-2: CMMR_GPERR_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

PARE_IC Parity Error Instruction Read by Core.

Write 0x0 to the CMMR_GPERR_STAT.PARE_IC bit in the Parity ISR to avoid
continuous generation of the Parity Interrupt.

30

(R/W)

PARI_IC Parity Interrupt Instruction Read by Core.

The CMMR_GPERR_STAT.PARI_IC bit indicates whether the processor has de-
tected (and latched in the REGF_IRPTL register) a parity interrupt (PARI) on an in-
struction read of L1 by the core.

29

(R/W)

PARE_DC Parity Error Data Read by Core.

The CMMR_GPERR_STAT.PARE_DC bit indicates whether the processor detected a
parity error on a data read of L1 by the core.

28

(R/W)

PARI_DC Parity Interrupt Data Read by Core.

The CMMR_GPERR_STAT.PARI_DC bit indicates whether the processor has de-
tected (and latched in the REGF_IRPTL register) a parity interrupt (PARI) on a data
read of L1 by the core.

27

(R/W)

PARE_DS Parity Error Data Read for System Transfer.

The CMMR_GPERR_STAT.PARE_DS bit indicates whether the processor detected a
parity error on a data read of L1 for a system transfer.

26

(R/W)

PARI_DS Parity Interrupt Data Read for System Transfer.

The CMMR_GPERR_STAT.PARI_DS bit indicates whether the processor has de-
tected (and latched in the REGF_IRPTL register) a parity interrupt (PARI) on a data
read of L1 by for a system transfer.

7

(R/W)

PARE_ICPM Parity Error Instruction Read by Core (PM).

The CMMR_GPERR_STAT.PARE_ICPM bit indicates whether the processor detect-
ed a parity error on an instruction read (fetch) of L1 by the core from program memo-
ry.

6

(R/W)

PARE_DCD1 Parity Error Data Read by Core (DAG1).

The CMMR_GPERR_STAT.PARE_DCD1 bit indicates whether the processor detect-
ed a parity error on a data read of L1 by the core for a data address generator 1
(DAG1) access.

5

(R/W)

PARE_DCD2 Parity Error Data Read by Core (DAG2).

The CMMR_GPERR_STAT.PARE_DCD2 bit indicates whether the processor detect-
ed a parity error on a data read of L1 by the core for a data address generator 2
(DAG2) access.

4

(R/W)

PARE_DSS2 Parity Error Data Read for System Transfer to S2.

The CMMR_GPERR_STAT.PARE_DSS2 bit indicates whether the processor detect-
ed a parity error on a data read of L1 for a system transfer through the S2 memory
port.

General-Purpose Parity Error Status Register
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Table 29-2: CMMR_GPERR_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

PARE_DSS1 Parity Error Data Read for System Transfer to S1.

The CMMR_GPERR_STAT.PARE_DSS1 bit indicates whether the processor detect-
ed a parity error on a data read of L1 for a system transfer through the S1 memory
port.

2

(R/W)

PARE_ICIC Parity Error Instruction Read by Core (Instruction Cache).

The CMMR_GPERR_STAT.PARE_ICIC bit indicates whether the processor detect-
ed a parity error on an instruction read of L1 by the core for an instruction cache ac-
cess.

1

(R/W)

PARE_DCDM Parity Error Data Read by Core (DM Cache).

The CMMR_GPERR_STAT.PARE_DCDM bit indicates whether the processor detect-
ed a parity error on a data read of L1 by the core for a data memory cache access.

0

(R/W)

PARE_DCPM Parity Error Data Read by Core (PM Cache).

The CMMR_GPERR_STAT.PARE_DCPM bit indicates whether the processor detect-
ed a parity error on a data read of L1 by the core for a program memory cache access.

General-Purpose Parity Error Status Register
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PFB No Caching Return 0 End Address Register
The CMMR_PFB_NOCHRT0_END register holds the PFB No caching return0 end address value register

End Address
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0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-2: CMMR_PFB_NOCHRT0_END Register Diagram

Table 29-3: CMMR_PFB_NOCHRT0_END Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR End Address.

The CMMR_PFB_NOCHRT0_END.ADDR bit field contains end address.

PFB No Caching Return 0 End Address Register
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PFB No Caching Return 0 Start Address Register
The CMMR_PFB_NOCHRT0_ST register holds the PFB No caching return0 start address value.

Start Address
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Figure 29-3: CMMR_PFB_NOCHRT0_ST Register Diagram

Table 29-4: CMMR_PFB_NOCHRT0_ST Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Start Address.

The CMMR_PFB_NOCHRT0_ST.ADDR bit field contains start address.

PFB No Caching Return 0 Start Address Register
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Core Global Power Control Register
This register controls various Core and L1-Memory power modes.

Core Light Sleep Enable
CORE_SLP (R/W)
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Figure 29-4: CMMR_PWR_GLB_CTL Register Diagram

Table 29-5: CMMR_PWR_GLB_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1:0

(R/W)

CORE_SLP Core Light Sleep Enable.

0 No Sleep Mode

1 Light Sleep

2 Reserved

3 Reserved

Core Global Power Control Register
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L1 BANK SLEEP CONTROL
This register controls the Sleep of 4 L1 -Banks

Sleep Enable for Bank 1Sleep Enable for Bank 2

Sleep Enable for Bank 0Sleep Enable for Bank 3

BANK_1_LS (R/W)BANK_2_LS (R/W)

BANK_0_LS (R/W)BANK_3_LS (R/W)
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Figure 29-5: CMMR_PWR_L1_LS_CTL Register Diagram

Table 29-6: CMMR_PWR_L1_LS_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

BANK_3_LS Sleep Enable for Bank 3.

2

(R/W)

BANK_2_LS Sleep Enable for Bank 2.

1

(R/W)

BANK_1_LS Sleep Enable for Bank 1.

0

(R/W)

BANK_0_LS Sleep Enable for Bank 0.

L1 BANK SLEEP CONTROL
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L1 BANK SHUT DOWN CONTROL
This register controls the Shut Down of 4 L1 -Banks

Shut Down Enable for Bank 1Shut Down Enable for Bank 2

Shut Down Enable for Bank 0Shut Down Enable for Bank 3

BANK_1_SD (R/W)BANK_2_SD (R/W)

BANK_0_SD (R/W)BANK_3_SD (R/W)
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Figure 29-6: CMMR_PWR_L1_SD_CTL Register Diagram

Table 29-7: CMMR_PWR_L1_SD_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

BANK_3_SD Shut Down Enable for Bank 3.

2

(R/W)

BANK_2_SD Shut Down Enable for Bank 2.

1

(R/W)

BANK_1_SD Shut Down Enable for Bank 1.

0

(R/W)

BANK_0_SD Shut Down Enable for Bank 0.

L1 BANK SHUT DOWN CONTROL
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System Control Register
The CMMR_SYSCTL register as it relates to the processor core configures data memory width memory use and in-
terrupts.

Int Memory Data Width BLK1
Int Memory Data Width BLK2

Int Memory Data Width BLK0
Int Memory Data Width BLK3

External Interrupt Vector Table
IPORT Prefetch Buffer Enable

Internal Interrupt Vector Table
DPORT Prefetch Buffer Enable

Software Reset
Location
PFB Return Zero from Uninitialized

Core Clock Gating Disable

Accelerator Interrupt EnableL1 Shutdown Enable

IPORT and DPORT PFB InvalidationSMC FIFO Disable

IMDWBLK1 (R/W)
IMDWBLK2 (R/W)

IMDWBLK0 (R/W)
IMDWBLK3 (R/W)

EIVT (R/W)
IPORT_PFB_EN (R/W)

IIVT (R/W)
DPORT_PFB_EN (R/W)

SRST (R/W)UNINT_RET_0 (R/W)
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Figure 29-7: CMMR_SYSCTL Register Diagram

Table 29-8: CMMR_SYSCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W)

SMCFIFO SMC FIFO Disable.

The CMMR_SYSCTL.SMCFIFO bit disables the SMC FIFO operation, disabling
speculative access on the SMC.

26

(R/W)

L1_SD_EN L1 Shutdown Enable.

25

(R/W)

DIS_CCLKG Core Clock Gating Disable.

17

(R/W)

ACC_INT_EN Accelerator Interrupt Enable.

System Control Register
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Table 29-8: CMMR_SYSCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W)

PFB_INVAL IPORT and DPORT PFB Invalidation.

15

(R/W)

UNINT_RET_0 PFB Return Zero from Uninitialized Location.

14

(R/W)

DPORT_PFB_EN DPORT Prefetch Buffer Enable.

13

(R/W)

IPORT_PFB_EN IPORT Prefetch Buffer Enable.

12

(R/W)

IMDWBLK3 Int Memory Data Width BLK3.

The CMMR_SYSCTL.IMDWBLK3 bits select the internal memory data width for for
block 3.

0 32-bit wide access

1 48-bit wide access

11

(R/W)

IMDWBLK2 Int Memory Data Width BLK2.

The CMMR_SYSCTL.IMDWBLK2 bits select the internal memory data width for for
block 2.

0 32-bit wide access

1 48-bit wide access

10

(R/W)

IMDWBLK1 Int Memory Data Width BLK1.

The CMMR_SYSCTL.IMDWBLK1 bits select the internal memory data width for for
block 1.

0 32-bit wide access

1 48-bit wide access

9

(R/W)

IMDWBLK0 Int Memory Data Width BLK0.

The CMMR_SYSCTL.IMDWBLK0 bits select the internal memory data width for for
block 0.

0 32-bit wide access

1 48-bit wide access

3

(R/W)

EIVT External Interrupt Vector Table.

The CMMR_SYSCTL.EIVT bit when set, maps the IVT to the external DDR_Ad-
dress 0x400000.

System Control Register
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Table 29-8: CMMR_SYSCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

IIVT Internal Interrupt Vector Table.

The CMMR_SYSCTL.IIVT bit when set maps the IVT to the internal memory Ad-
dress 0x900000. On reset, this bit is cleared and the IVT is mapped to L2CTL ROM1
boot memory address 0x500000.

0

(R/W)

SRST Software Reset.

The CMMR_SYSCTL.SRST bit initiates a software reset. This bit has an effect laten-
cy of 1 cycle, so the next instruction after a SYSCTL write for a soft reset will also be
executed.

System Control Register
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30   SHARC-PLUS SHBTB Register Descriptions

Branch Target Buffer (SHBTB) contains the following registers.

Table 30-1: SHARC-PLUS SHBTB Register List

Name Description

SHBTB_CFG Configuration Register

SHBTB_LOCK_END Lock Range End Register

SHBTB_LOCK_START Lock Range Start Register

SHARC-PLUS SHBTB Register Descriptions

SHARC+ Core Programming Reference 30–1



Configuration Register
The SHBTB_CFG register enables the BTB and configures BTB features, such as range-based locking and return
optimization.

Software Return Opt Disable

Freeze BTBHardware Return Opt Disable

Range LockInvalidate BTB

Disable BTBIndirect Branch Pred Disable

SRETDIS (R/W)

FRZ (R/W)HRETDIS (R/W)

RLOCK (R/W)INVAL (R/W)

DIS (R/W)INDBDIS (R/W)
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Figure 30-1: SHBTB_CFG Register Diagram

Table 30-2: SHBTB_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W)

INDBDIS Indirect Branch Pred Disable.

The SHBTB_CFG.INDBDIS bit disables indirect branch prediction for the BTB.
Setting this bit disables the predictions of any indirect branch.

7

(R/W)

INVAL Invalidate BTB.

The SHBTB_CFG.INVAL bit invalidates BTB contents. Setting this bit invalidates
the BTB memory.

4

(R/W)

HRETDIS Hardware Return Opt Disable.

The SHBTB_CFG.HRETDIS bit disables hardware return-from-subroutine (RTS)
optimization for the BTB. If this bit is cleared (=0), the target address for an RTS is
brought from the top of the PC stack. If this bit is set (=1), the target address is
brought from BTB memory.

3

(R/W)

SRETDIS Software Return Opt Disable.

The SHBTB_CFG.SRETDIS bit disables software return-from-subroutine (m14,i12)
optimization for the BTB. If this bit is cleared (=0), the target address value is brought
from I12 register and is added with 1 (instead of M14). If this bit is set (=1), the target
address is the address stored in the BTB memory during the last update of the branch.

2

(R/W)

FRZ Freeze BTB.

The SHBTB_CFG.FRZ bit freezes BTB contents. All of the valid and invalid loca-
tions remain unchanged.

Configuration Register
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Table 30-2: SHBTB_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

RLOCK Range Lock.

The SHBTB_CFG.RLOCK bit enables range-based lock operations of the BTB. Set-
ting this bit validates the values in the SHBTB_LOCK_START register and the
SHBTB_LOCK_END register. According to this range, the address locations in BTB
memory are locked. Program the SHBTB_LOCK_START register and the
SHBTB_LOCK_END register before enabling ranged-based locking.

0

(R/W)

DIS Disable BTB.

The SHBTB_CFG.DIS bit disables BTB operation.

Configuration Register
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Lock Range End Register
The SHBTB_LOCK_END register indicates the last address to lock a range of memory address in BTB memory.
This address is valid only after the SHBTB_CFG.RLOCK bit (range-based locking) is enabled. The
SHBTB_LOCK_END value should not be less than the value in the SHBTB_LOCK_START register.

End Address

End Address
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Figure 30-2: SHBTB_LOCK_END Register Diagram

Table 30-3: SHBTB_LOCK_END Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA End Address.

The SHBTB_LOCK_END.DATA bit field contains address data.

Lock Range End Register
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Lock Range Start Register
The SHBTB_LOCK_START register indicates the initial address to lock a range of address in BTB memory. This
address is valid only after the SHBTB_CFG.RLOCK bit (range-based locking mode) is enabled.

Start Address

Start Address
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Figure 30-3: SHBTB_LOCK_START Register Diagram

Table 30-4: SHBTB_LOCK_START Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Start Address.

The SHBTB_LOCK_START.DATA bit field contains address data.

Lock Range Start Register
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31   SHARC-PLUS SHDBG Register Descriptions

Debug Core (SHDBG) contains the following registers.

Table 31-1: SHARC-PLUS SHDBG Register List

Name Description

SHDBG_BRKCTL Break Control Register

SHDBG_BRKSTAT Break Status Register

SHDBG_CORE_ID Core ID Register

SHDBG_D1ADDR Decode 1 Stage Address Register

SHDBG_D2ADDR Decode 2 Stage Address Register

SHDBG_DBGREG_ILLOP Illegal Opcode Detected Register

SHDBG_DMA1E DM Data Address 1 End Register

SHDBG_DMA1S DM Data Address 1 Start Register

SHDBG_DMA2E DM Data Address 2 End Register

SHDBG_DMA2S DM Data Address 2 Start Register

SHDBG_E2ADDR Execute 2 Stage Address Register

SHDBG_EMUN Emulator Number (BP Hits) Register

SHDBG_F1ADDR Fetch 1 Stage Address Register

SHDBG_F2ADDR Fetch 2 Stage Address Register

SHDBG_F3ADDR Fetch 3 Stage Address Register

SHDBG_F4ADDR Fetch 4 Stage Address Register

SHDBG_M1ADDR Memory 1 Stage Address Register

SHDBG_M2ADDR Memory 2 Stage Address Register

SHDBG_M3ADDR Memory 3 Stage Address Register

SHDBG_M4ADDR Memory 4 Stage Address Register

SHDBG_OSPID O/S Processor ID Register

SHDBG_PMDAE PM Data Address 1 End Register

SHARC-PLUS SHDBG Register Descriptions
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Table 31-1: SHARC-PLUS SHDBG Register List (Continued)

Name Description

SHDBG_PMDAS PM Data Address 1 Start Register

SHDBG_PSA1E Program Sequence Address 1 End Register

SHDBG_PSA1S Program Sequence Address 1 Start Register

SHDBG_PSA2E Program Sequence Address 2 End Register

SHDBG_PSA2S Program Sequence Address 2 Start Register

SHDBG_PSA3E Program Sequence Address 3 End Register

SHDBG_PSA3S Program Sequence Address 3 Start Register

SHDBG_PSA4E Program Sequence Address 4 End Register

SHDBG_PSA4S Program Sequence Address 4 Start Register

SHDBG_REVID ID Code Register

SHDBG_SECI_ID SEC Interrupt ID Register

SHARC-PLUS SHDBG Register Descriptions
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Break Control Register
The SHDBG_BRKCTL register enables (=1) or disables (=0 default) breakpoint mode.

Negate Program Memory Address Breakpoint 1
Negate Data Memory Address Breakpoint 1

Mode
Slave Port1/Slave Port 2 TriggeringNegate Data Memory Address Breakpoint 2

DMDA 2 Triggering ModeNegate Instruction Address Breakpoint 1

DMDA 1 Triggering ModeNegate Instruction Address Breakpoint 2

Program Memory Address ModeNegate Instruction Address Breakpoint 3

Enable Instruction Address Breakpoint

Enable Data Memory Address Breakpoint
AND Breakpoint

Enable Program Memory Address Breakpoint
User Mode

2 Address Breakpoints
Negate Slave Port 1 and Slave PortIO Slave 2 Mode

Negate Instruction Address Breakpoint 4Slave 1 Mode

NEGPA1 (R/W)
NEGDA1 (R/W)

IOMODE (R/W)NEGDA2 (R/W)

DA2MODE (R/W)NEGIA1 (R/W)

DA1MODE (R/W)NEGIA2 (R/W)

PAMODE (R/W)NEGIA3 (R/W)

0
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ENBIA (R/W)

ENBDA (R/W)
ANDBKP (R/W)

ENBPA (R/W)
UMODE (R/W)

NEGIO1 (R/W)ENBIOY (R/W)

NEGIA4 (R/W)ENBIOX (R/W)

0
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Figure 31-1: SHDBG_BRKCTL Register Diagram

Table 31-2: SHDBG_BRKCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

27

(R/W)

ENBIOX Slave 1 Mode.

The SHDBG_BRKCTL.ENBIOX bit configures the slave 1 address breakpoint.

26

(R/W)

ENBIOY IO Slave 2 Mode.

The SHDBG_BRKCTL.ENBIOY bit configures slave 2 address breakpoint.

25

(R/W)

UMODE User Mode.

The SHDBG_BRKCTL.UMODE bit configures user mode.

Break Control Register
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Table 31-2: SHDBG_BRKCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

24

(R/W)

ANDBKP AND Breakpoint.

The SHDBG_BRKCTL.ANDBKP bit ANDs the composite breakpoints.

21

(R/W)

ENBIA Enable Instruction Address Breakpoint.

The SHDBG_BRKCTL.ENBIA bit configures

20

(R/W)

ENBDA Enable Data Memory Address Breakpoint.

The SHDBG_BRKCTL.ENBDA bit enables a data memory address breakpoint.

19

(R/W)

ENBPA Enable Program Memory Address Breakpoint.

The SHDBG_BRKCTL.ENBPA bit enables a program memory address breakpoint.

17

(R/W)

NEGIO1 Negate Slave Port 1 and Slave Port 2 Address Breakpoints.

The SHDBG_BRKCTL.NEGIO1 bit negates the slave port 1 and slave port 2 address
breakpoints.

16

(R/W)

NEGIA4 Negate Instruction Address Breakpoint 4.

The SHDBG_BRKCTL.NEGIA4 bit negates instruction breakpoint 4.

15

(R/W)

NEGIA3 Negate Instruction Address Breakpoint 3.

The SHDBG_BRKCTL.NEGIA3 bit negates instruction breakpoint 3.

14

(R/W)

NEGIA2 Negate Instruction Address Breakpoint 2.

The SHDBG_BRKCTL.NEGIA2 bit negates instruction breakpoint 2.

13

(R/W)

NEGIA1 Negate Instruction Address Breakpoint 1.

The SHDBG_BRKCTL.NEGIA1 bit negates instruction breakpoint 1.

12

(R/W)

NEGDA2 Negate Data Memory Address Breakpoint 2.

The SHDBG_BRKCTL.NEGDA2 bit negates data memory address breakpoint 2.

11

(R/W)

NEGDA1 Negate Data Memory Address Breakpoint 1.

The SHDBG_BRKCTL.NEGDA1 bit negates data memory address breakpoint 1.

10

(R/W)

NEGPA1 Negate Program Memory Address Breakpoint 1.

The SHDBG_BRKCTL.NEGPA1 bit negates program memory address breakpoint 1.

7:6

(R/W)

IOMODE Slave Port1/Slave Port 2 Triggering Mode.

The SHDBG_BRKCTL.IOMODE bit field configures slave port 1 and slave port 2
triggering mode.

5:4

(R/W)

DA2MODE DMDA 2 Triggering Mode.

The SHDBG_BRKCTL.DA2MODE bit field configures DMDA 2 breakpoint trigger-
ing mode.

Break Control Register
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Table 31-2: SHDBG_BRKCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3:2

(R/W)

DA1MODE DMDA 1 Triggering Mode.

The SHDBG_BRKCTL.DA1MODE bit field configures DMDA 1 breakpoint trigger-
ing mode.

1:0

(R/W)

PAMODE Program Memory Address Mode.

The SHDBG_BRKCTL.PAMODE bit field configures PMDA breakpoint triggering
mode.

Break Control Register
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Break Status Register
The SHDBG_BRKSTAT register provides information about breakpoint hits.

Status Instruction Address 1Status Instruction Address 2

Status Data Memory Address 2Status Instruction Address 3

Status Data Address 1Status Instruction Address 4

Status Program Memory AddressStatus Slave Port 1 Address

Status Slave Port 2 Address

STATIA0 (R)STATIA1 (R)

STATDA1 (R)STATIA2 (R)
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Figure 31-2: SHDBG_BRKSTAT Register Diagram

Table 31-3: SHDBG_BRKSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/NW)

STATIOY Status Slave Port 2 Address.

The SHDBG_BRKSTAT.STATIOY bit indicates a slave port 2 address breakpoint
hit.

7

(R/NW)

STATIOX Status Slave Port 1 Address.

The SHDBG_BRKSTAT.STATIOX bit indicates a slave port 1 address breakpoint
hit.

6

(R/NW)

STATIA3 Status Instruction Address 4.

The SHDBG_BRKSTAT.STATIA3 bit indicates instruction address breakpoint hit
#4.

5

(R/NW)

STATIA2 Status Instruction Address 3.

The SHDBG_BRKSTAT.STATIA2 bit indicates instruction address breakpoint hit
#3.

4

(R/NW)

STATIA1 Status Instruction Address 2.

The SHDBG_BRKSTAT.STATIA1 bit indicates instruction address breakpoint hit
#2.

Break Status Register
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Table 31-3: SHDBG_BRKSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/NW)

STATIA0 Status Instruction Address 1.

The SHDBG_BRKSTAT.STATIA0 bit indicates instruction address breakpoint hit
#1.

2

(R/NW)

STATDA1 Status Data Memory Address 2.

The SHDBG_BRKSTAT.STATDA1 bit indicates a data memory address breakpoint
hit #2.

1

(R/NW)

STATDA0 Status Data Address 1.

The SHDBG_BRKSTAT.STATDA0 bit indicates the data memory address break-
point hit #1.

0

(R/NW)

STATPA Status Program Memory Address.

The SHDBG_BRKSTAT.STATPA bit indicates a program memory data address
breakpoint hit.

Break Status Register
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Core ID Register
The value in the SHDBG_CORE_ID register indicates the SHARC Core ID. In the ADSP-SC5xx/ADSP-215xx
processors:

0 = SHARC+ core 0; applicable to ADSP-2156x processors

1 = SHARC+ core 1

2 = SHARC+ core 2

Data

Data
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Figure 31-3: SHDBG_CORE_ID Register Diagram

Table 31-4: SHDBG_CORE_ID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The SHDBG_CORE_ID.DATA bit fields contains the available core IDs.

Core ID Register
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Decode 1 Stage Address Register
The SHDBG_D1ADDR register holds the address of the pipeline Decode1 stage.

Data

Data

DATA[15:0] (R/W)
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Figure 31-4: SHDBG_D1ADDR Register Diagram

Table 31-5: SHDBG_D1ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Decode 1 Stage Address Register
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Decode 2 Stage Address Register
The SHDBG_D2ADDR register holds the address of the pipeline Decode2 stage.

Data

Data
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Figure 31-5: SHDBG_D2ADDR Register Diagram

Table 31-6: SHDBG_D2ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Decode 2 Stage Address Register
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Illegal Opcode Detected Register
The SHDBG_DBGREG_ILLOP register holds the address for which an illegal opcode interrupt is generated. The
SHDBG_DBGREG_ILLOP register also contains a bit to indicate whether the ILLOPI interrupt was generated
when there was an un-interruptible cycle active or inactive.

A dummy write to this register only clears its content.

Illegal Opcode Address

Illegal Opcode AddressIllegal Opcode Interrupt
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Figure 31-6: SHDBG_DBGREG_ILLOP Register Diagram

Table 31-7: SHDBG_DBGREG_ILLOP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

24

(R/W)

ILLOPI Illegal Opcode Interrupt.

The SHDBG_DBGREG_ILLOP.ILLOPI bit is set if the ILLOPI fires when un-in-
terruptible cycle is active. In this case simple RTI from the ISR does not ensure the
correct functioning of the program.

23:0

(R/W)

ILLOPIA Illegal Opcode Address.

The SHDBG_DBGREG_ILLOP.ILLOPIA bit field stores the address for which the
ILLOPI interrupt was generated.

Illegal Opcode Detected Register
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DM Data Address 1 End Register
The SHDBG_DMA1E register holds the Data memory address end #1.

End Address

End Address
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Figure 31-7: SHDBG_DMA1E Register Diagram

Table 31-8: SHDBG_DMA1E Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

END End Address.

The SHDBG_DMA1E.END bit field holds the Data memory end address #1.

DM Data Address 1 End Register
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DM Data Address 1 Start Register
The SHDBG_DMA1S register holds the Data memory address start #1.

Start Address

Start Address
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Figure 31-8: SHDBG_DMA1S Register Diagram

Table 31-9: SHDBG_DMA1S Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

START Start Address.

The SHDBG_DMA1S.START bit field holds the Data memory start address #1.

DM Data Address 1 Start Register
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DM Data Address 2 End Register
The SHDBG_DMA2E register holds the Data memory address end #2.

End Address

End Address
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Figure 31-9: SHDBG_DMA2E Register Diagram

Table 31-10: SHDBG_DMA2E Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

END End Address.

The SHDBG_DMA2E.END bit field holds the data memory data end address break-
point #1.

DM Data Address 2 End Register
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DM Data Address 2 Start Register
The SHDBG_DMA2S register holds the Data memory address start #2.

Start Address

Start Address
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Figure 31-10: SHDBG_DMA2S Register Diagram

Table 31-11: SHDBG_DMA2S Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

START Start Address.

The SHDBG_DMA2S.START bit field holds the Data memory start address #1.

DM Data Address 2 Start Register
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Execute 2 Stage Address Register
The SHDBG_E2ADDR register holds the address of the pipeline Execute2 stage.

Data

Data
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Figure 31-11: SHDBG_E2ADDR Register Diagram

Table 31-12: SHDBG_E2ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Execute 2 Stage Address Register
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Emulator Number (BP Hits) Register
The SHDBG_EMUN register provides the number of emulator breakpoint hits.

Emulator Breakpoint Hits

Emulator Breakpoint Hits
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Figure 31-12: SHDBG_EMUN Register Diagram

Table 31-13: SHDBG_EMUN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

EMUN Emulator Breakpoint Hits.

The SHDBG_EMUN.EMUN bit field provides the number of emulator breakpoint hits.

Emulator Number (BP Hits) Register
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Fetch 1 Stage Address Register
The SHDBG_F1ADDR register holds the address of the pipeline Fetch1 stage.
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Figure 31-13: SHDBG_F1ADDR Register Diagram

Table 31-14: SHDBG_F1ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Fetch 1 Stage Address Register
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Fetch 2 Stage Address Register
The SHDBG_F2ADDR register holds the address of the pipeline Fetch2 stage.
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Figure 31-14: SHDBG_F2ADDR Register Diagram

Table 31-15: SHDBG_F2ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Fetch 2 Stage Address Register
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Fetch 3 Stage Address Register
The SHDBG_F3ADDR register holds the address of the pipeline Fetch3 stage.
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Figure 31-15: SHDBG_F3ADDR Register Diagram

Table 31-16: SHDBG_F3ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Fetch 3 Stage Address Register
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Fetch 4 Stage Address Register
The SHDBG_F4ADDR register holds the address of the pipeline Fetch4 stage.
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Figure 31-16: SHDBG_F4ADDR Register Diagram

Table 31-17: SHDBG_F4ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Fetch 4 Stage Address Register
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Memory 1 Stage Address Register
The SHDBG_M1ADDR register holds the address of the pipeline Memory1 stage.
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0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-17: SHDBG_M1ADDR Register Diagram

Table 31-18: SHDBG_M1ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Memory 1 Stage Address Register
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Memory 2 Stage Address Register
The SHDBG_M2ADDR register holds the address of the pipeline Memory2 stage.
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Figure 31-18: SHDBG_M2ADDR Register Diagram

Table 31-19: SHDBG_M2ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Memory 2 Stage Address Register
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Memory 3 Stage Address Register
The SHDBG_M3ADDR register holds the address of the pipeline Memory3 stage.
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Figure 31-19: SHDBG_M3ADDR Register Diagram

Table 31-20: SHDBG_M3ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Memory 3 Stage Address Register
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Memory 4 Stage Address Register
The SHDBG_M4ADDR register holds the address of the pipeline Memory4 stage.
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Figure 31-20: SHDBG_M4ADDR Register Diagram

Table 31-21: SHDBG_M4ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

Memory 4 Stage Address Register
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O/S Processor ID Register
In a multi-tasking operating system, the operating system assigns a thread number for each thread or process. The
OS must write the process ID (thread ID) of the task into the SHDBG_OSPID register at the beginning of the
task’s slot.

Operating System Process ID
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Figure 31-21: SHDBG_OSPID Register Diagram

Table 31-22: SHDBG_OSPID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

OSPID Operating System Process ID.

The SHDBG_OSPID.OSPID bit field is the operating system process/thread ID val-
ue.

O/S Processor ID Register
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PM Data Address 1 End Register
The SHDBG_PMDAE register holds the Program memory data address end #1.

End Address
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Figure 31-22: SHDBG_PMDAE Register Diagram

Table 31-23: SHDBG_PMDAE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

END End Address.

The SHDBG_PMDAE.END bit field holds the program memory data end address 1
breakpoint.

PM Data Address 1 End Register

SHARC+ Core Programming Reference 31–27



PM Data Address 1 Start Register
The SHDBG_PMDAS register holds the Program memory data address start #1.

Start Address
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Figure 31-23: SHDBG_PMDAS Register Diagram

Table 31-24: SHDBG_PMDAS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

START Start Address.

The SHDBG_PMDAS.START bit field holds the program memory data start address
1 breakpoint.

PM Data Address 1 Start Register
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Program Sequence Address 1 End Register
The SHDBG_PSA1E register holds the Instruction address end #1.

End Address
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Figure 31-24: SHDBG_PSA1E Register Diagram

Table 31-25: SHDBG_PSA1E Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

END End Address.

The SHDBG_PSA1E.END bit field provides the instruction breakpoint #1 end ad-
dress.

Program Sequence Address 1 End Register
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Program Sequence Address 1 Start Register
The SHDBG_PSA1S register holds the Instruction address start #1.

Start Address

Start Address
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Figure 31-25: SHDBG_PSA1S Register Diagram

Table 31-26: SHDBG_PSA1S Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

START Start Address.

The SHDBG_PSA1S.START bit field provides the instruction breakpoint #1 start
address.

Program Sequence Address 1 Start Register
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Program Sequence Address 2 End Register
The SHDBG_PSA2E register holds the Instruction address end #2.

End Address

End Address

END[15:0] (R/W)
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Figure 31-26: SHDBG_PSA2E Register Diagram

Table 31-27: SHDBG_PSA2E Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

END End Address.

The SHDBG_PSA2E.END bit field provides the instruction breakpoint #1 end ad-
dress.

Program Sequence Address 2 End Register
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Program Sequence Address 2 Start Register
The SHDBG_PSA2S register holds the Instruction address start #2.

Start Address
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Figure 31-27: SHDBG_PSA2S Register Diagram

Table 31-28: SHDBG_PSA2S Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

START Start Address.

The SHDBG_PSA2S.START bit field provides the instruction breakpoint #1 start
address.

Program Sequence Address 2 Start Register
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Program Sequence Address 3 End Register
The SHDBG_PSA3E register holds the Instruction address end #3.

End Address
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Figure 31-28: SHDBG_PSA3E Register Diagram

Table 31-29: SHDBG_PSA3E Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

END End Address.

The SHDBG_PSA3E.END bit field provides the instruction breakpoint #1 end ad-
dress.

Program Sequence Address 3 End Register
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Program Sequence Address 3 Start Register
The SHDBG_PSA3S register holds the Instruction address start #3.

Start Address
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Figure 31-29: SHDBG_PSA3S Register Diagram

Table 31-30: SHDBG_PSA3S Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

START Start Address.

The SHDBG_PSA3S.START bit field provides the instruction breakpoint #1 start
address.

Program Sequence Address 3 Start Register
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Program Sequence Address 4 End Register
The SHDBG_PSA4E register holds the Instruction address end #4.

End Address
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Figure 31-30: SHDBG_PSA4E Register Diagram

Table 31-31: SHDBG_PSA4E Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

END End Address.

The SHDBG_PSA4E.END bit field provides the instruction breakpoint #1 end ad-
dress.

Program Sequence Address 4 End Register
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Program Sequence Address 4 Start Register
The SHDBG_PSA4S register holds the Instruction address start #4.

Start Address
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Figure 31-31: SHDBG_PSA4S Register Diagram

Table 31-32: SHDBG_PSA4S Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

START Start Address.

The SHDBG_PSA4S.START bit field provides the instruction breakpoint #1 start
address.

Program Sequence Address 4 Start Register
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ID Code Register
The SHDBG_REVID register provides the SHARC+ core revision ID value.

Data
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Figure 31-32: SHDBG_REVID Register Diagram

Table 31-33: SHDBG_REVID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

REVID Data.

ID Code Register
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SEC Interrupt ID Register
The SHDBG_SECI_ID registers holds the SID of the current SEC interrupt. This SID value is the same as the
SEC_SID register of the SEC module (Refer to the hardware reference manual). The ACK signal going to the SEC
from the core is asserted whenever a write operation is performed on the SECI_ID register.
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Figure 31-33: SHDBG_SECI_ID Register Diagram

Table 31-34: SHDBG_SECI_ID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The SHDBG_SECI_ID.DATA bit field holds the SID value which is the same as the
SEC_SID register of the SEC module.

SEC Interrupt ID Register
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32   SHARC-PLUS SHL1C Register Descriptions

SHARC+ L1-Cache Controller (SHL1C) contains the following registers.

Table 32-1: SHARC-PLUS SHL1C Register List

Name Description

SHL1C_CFG L1 Cache Configuration 1 Register

SHL1C_CFG2 Range Register Functionality Selection Register

SHL1C_INV_CNT0 Invalidation/Write Back Count 0 Register

SHL1C_INV_IXSTART0 Invalidation/Write Back Index Start 0 Register

SHL1C_RANGE_END0 Range End 0 (Inv, WB, WBI, and Lock) Register

SHL1C_RANGE_END1 Range End 1 (Inv, WB, WBI, and Lock) Register

SHL1C_RANGE_END2 Range End 2 (Non-cacheable and Lock) Register

SHL1C_RANGE_END3 Range End 3 (Non-cacheable and Lock) Register

SHL1C_RANGE_END4 Range End 4 (Non-cacheable and Write Through) Register

SHL1C_RANGE_END5 Range End 5 (Non-cacheable and Write Through) Register

SHL1C_RANGE_END6 Range End 6 (Non-cacheable and Write Through) Register

SHL1C_RANGE_END7 Range End 7 (Non-cacheable and Write Through) Register

SHL1C_RANGE_START0 Range Start 0 (Inv, WB, WBI, and Lock) Register

SHL1C_RANGE_START1 Range Start 1 (Inv, WB, WBI, and Lock) Register

SHL1C_RANGE_START2 Range Start 2 (Non-cacheable and Lock) Register

SHL1C_RANGE_START3 Range Start 3 (Non-cacheable and Lock) Register

SHL1C_RANGE_START4 Range Start 4 (Non-cacheable and Write Through) Register

SHL1C_RANGE_START5 Range Start 5 (Non-cacheable and Write Through) Register

SHL1C_RANGE_START6 Range Start 6 (Non-cacheable and Write Through) Register

SHL1C_RANGE_START7 Range Start 7 (Non-cacheable and Write Through) Register

SHARC-PLUS SHL1C Register Descriptions
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L1 Cache Configuration 1 Register
The SHL1C_CFG register enables the instruction cache, data memory cache, and program memory cache. This reg-
ister also selects the size of the caches and other features.

DM-Cache Enable

I-Cache InvalidateDM-Cache Size 0

I-Cache Lock Way 1DM-Cache Lock Way 0

I-Cache Lock Way 0DM-Cache Lock Way 1

I-Cache Size 0DM-Cache Invalidate

I-Cache EnableDM-Cache Write Back

PM-Cache Lock Way 1

PM-Cache Lock Way 0PM-Cache Invalidate

PM-Cache Size 0PM-Cache Write Back

PM-Cache EnableCache Fast ISR Enable

DMCAEN (R/W)

ICAINV (R/W)DMCASIZ (R/W)

ICALCK1 (R/W)DMCALCK0 (R/W)

ICALCK0 (R/W)DMCALCK1 (R/W)

ICASIZ (R/W)DMCAINV (R/W)

ICAEN (R/W)DMCAWB (R/W)
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Figure 32-1: SHL1C_CFG Register Diagram

Table 32-2: SHL1C_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

24

(R/W)

FISREN Cache Fast ISR Enable.

The SHL1C_CFG.FISREN bit enables fast interrupt service for both the instruction
and the data cache (I-Cache and D-Cache). Once enabled, the cache controller con-
verts cache line fill decisions to through access if an interrupt is pending.

23

(R/W)

PMCAWB PM-Cache Write Back.

The SHL1C_CFG.PMCAWB bit enables the program memory cache write-back oper-
ations.

L1 Cache Configuration 1 Register
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Table 32-2: SHL1C_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

22

(R/W)

PMCAINV PM-Cache Invalidate.

The SHL1C_CFG.PMCAINV bit invalidates the program memory cache entries.

21

(R/W)

PMCALCK1 PM-Cache Lock Way 1.

The SHL1C_CFG.PMCALCK1 bit locks program memory cache way 1.

20

(R/W)

PMCALCK0 PM-Cache Lock Way 0.

The SHL1C_CFG.PMCALCK0 bit locks program memory cache way 0.

18:17

(R/W)

PMCASIZ PM-Cache Size 0.

The SHL1C_CFG.PMCASIZ bit field selects the program memory cache size.

0 128K bits

1 256K bits

2 512K bits

3 1M bits

16

(R/W)

PMCAEN PM-Cache Enable.

The SHL1C_CFG.PMCAEN bit enables the program memory cache. This cache can
only be enabled in combination with the I-cache and the DM cache (all three caches
enabled together). The PM and DM caches cannot be configured independently.

15

(R/W)

DMCAWB DM-Cache Write Back.

The SHL1C_CFG.DMCAWB bit enables the data memory cache write-back opera-
tions.

14

(R/W)

DMCAINV DM-Cache Invalidate.

The SHL1C_CFG.DMCAINV bit invalidates the data memory cache entries.

13

(R/W)

DMCALCK1 DM-Cache Lock Way 1.

The SHL1C_CFG.DMCALCK1 bit locks data memory cache way 1.

12

(R/W)

DMCALCK0 DM-Cache Lock Way 0.

The SHL1C_CFG.DMCALCK0 bit locks data memory cache way 0.

10:9

(R/W)

DMCASIZ DM-Cache Size 0.

The SHL1C_CFG.DMCASIZ bit field selects the data memory cache size.

0 128K bits

1 256K bits

2 512K bits

3 1M bits

L1 Cache Configuration 1 Register
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Table 32-2: SHL1C_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W)

DMCAEN DM-Cache Enable.

The SHL1C_CFG.DMCAEN bit enables the data memory cache. This cache can only
be enabled in combination with both the I-cache and the PM cache (all three caches
enabled together). The PM and DM caches cannot be configured independently.

6

(R/W)

ICAINV I-Cache Invalidate.

The SHL1C_CFG.ICAINV bit invalidates the instruction cache entries.

5

(R/W)

ICALCK1 I-Cache Lock Way 1.

The SHL1C_CFG.ICALCK1 bit locks instruction cache way 1.

4

(R/W)

ICALCK0 I-Cache Lock Way 0.

The SHL1C_CFG.ICALCK0 bit locks instruction cache way 0.

2:1

(R/W)

ICASIZ I-Cache Size 0.

The SHL1C_CFG.ICASIZ bit field selects the instruction cache size.

0 128K bits

1 256K bits

2 512K bits

3 1M bits

0

(R/W)

ICAEN I-Cache Enable.

The SHL1C_CFG.ICAEN bit enables the instruction cache. Note that the I-Cache
can be enabled by itself or in combination with both the PM and DM caches. The PM
and DM caches cannot be configured independently.

L1 Cache Configuration 1 Register
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Range Register Functionality Selection Register
The SHL1C_CFG2 register selects the functionality of range register pairs, supporting a variety of cache operations.

Register Range 3 EnableRegister Range 4 Function
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Figure 32-2: SHL1C_CFG2 Register Diagram

Table 32-3: SHL1C_CFG2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

RR7EN Register Range 7 Enable.

The SHL1C_CFG2.RR7EN bit enables the function selected with the
SHL1C_CFG2.RR7SEL bit for this range.

14

(R/W)

RR7SEL Register Range 7 Function.

The SHL1C_CFG2.RR7SEL bit selects whether the register range is a cache write-
through range or a non-cacheable range.

0 Write-Through Range

1 Non-cacheable Range

13

(R/W)

RR6EN Register Range 6 Enable.

The SHL1C_CFG2.RR6EN bit enables the function selected with the
SHL1C_CFG2.RR6SEL bit for this range.

Range Register Functionality Selection Register

SHARC+ Core Programming Reference 32–5



Table 32-3: SHL1C_CFG2 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

RR6SEL Register Range 6 Function.

The SHL1C_CFG2.RR6SEL bit selects whether the register range is a cache write-
through range or a non-cacheable range.

0 Write-Through Range

1 Non-cacheable Range

11

(R/W)

RR5EN Register Range 5 Enable.

The SHL1C_CFG2.RR5EN bit enables the function selected with the
SHL1C_CFG2.RR5SEL bit for this range.

10

(R/W)

RR5SEL Register Range 5 Function.

The SHL1C_CFG2.RR5SEL bit selects whether the register range is a cache write-
through range or a non-cacheable range.

0 Write-Through Range

1 Non-cacheable Range

9

(R/W)

RR4EN Register Range 4 Enable.

The SHL1C_CFG2.RR4EN bit enables the function selected with the
SHL1C_CFG2.RR4SEL bit for this range.

8

(R/W)

RR4SEL Register Range 4 Function.

The SHL1C_CFG2.RR4SEL bit selects whether the register range is a cache write-
through range or a non-cacheable range.

0 Write-Through Range

1 Non-cacheable Range

7

(R/W)

RR3EN Register Range 3 Enable.

The SHL1C_CFG2.RR3EN bit enables the function selected with the
SHL1C_CFG2.RR3SEL bit for this range.

6

(R/W)

RR3SEL Register Range 3 Function.

The SHL1C_CFG2.RR3SEL bit selects whether the register range is a cache lock
range or a non-cacheable range.

0 Cache Lock Range

1 Non-cacheable Range

5

(R/W)

RR2EN Register Range 2 Enable.

The SHL1C_CFG2.RR2EN bit enables the function selected with the
SHL1C_CFG2.RR2SEL bit for this range.

Range Register Functionality Selection Register

32–6 SHARC+ Core Programming Reference



Table 32-3: SHL1C_CFG2 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

RR2SEL Register Range 2 Function.

The SHL1C_CFG2.RR2SEL bit selects whether the register range is a cache lock
range or a non-cacheable range.

0 Cache Lock Range

1 Non-cacheable Range

3

(R/W)

RR1EN Register Range 1 Enable.

The SHL1C_CFG2.RR1EN bit enables the function selected with the
SHL1C_CFG2.RR1SEL bit for this range.

2

(R/W)

RR1SEL Register Range 1 Function.

The SHL1C_CFG2.RR1SEL bit selects whether the register range is a cache lock
range or a cache write-back invalidate range.

0 Cache Lock Range

1 Write-Back Invalidate Range

1

(R/W)

RR0EN Register Range 0 Enable.

The SHL1C_CFG2.RR0EN bit enables the function selected with the
SHL1C_CFG2.RR0SEL bit for this range.

0

(R/W)

RR0SEL Register Range 0 Function.

The SHL1C_CFG2.RR0SEL bit selects whether the register range is a cache lock
range or a cache write-back invalidate range.

0 Cache Lock Range

1 Write-Back Invalidate Range

Range Register Functionality Selection Register
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Invalidation/Write Back Count 0 Register
The SHL1C_INV_CNT0 register selects a count value of the number of indexes to be Invalidated or WBI. These
registers are running registers, which means that after clearing one index, the value of the count register decrements.
When invalidation or flushing is in progress these registers should not be accessed.

Data

Data

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 32-3: SHL1C_INV_CNT0 Register Diagram

Table 32-4: SHL1C_INV_CNT0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The SHL1C_INV_CNT0.DATA bits hold the count value of the number of indexes
to be Invalidated or WBI. These registers are running registers, which means that after
clearing one index, value of count register decrements. When invalidation or flushing
is in progress these registers should not be accessed.

Invalidation/Write Back Count 0 Register
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Invalidation/Write Back Index Start 0 Register
The SHL1C_INV_IXSTART0 register contains the index value for address range-based cache write-back and
cache write-back invalidation operations.
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Figure 32-4: SHL1C_INV_IXSTART0 Register Diagram

Table 32-5: SHL1C_INV_IXSTART0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Data.

The SHL1C_INV_IXSTART0.DATA bit field holds the index value corresponding
to the start address of the configured Range register. Once the Range registers are filled
and properties selected, the cache controller internally computes the starting index that
corresponds to the start address and stores it in this bit field. This is a running register,
which means that after clearing one index, the value of the index register increments.
When invalidation or flushing is in progress this register should not be accessed.

Invalidation/Write Back Index Start 0 Register
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Range End 0 (Inv, WB, WBI, and Lock) Register
The SHL1C_RANGE_END0 register selects a end range address for cache invalidation, cache write-back replace-
ment, and cache write-back invalidation operations.
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Figure 32-5: SHL1C_RANGE_END0 Register Diagram

Table 32-6: SHL1C_RANGE_END0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range End.

The SHL1C_RANGE_END0.DATA bits hold the range end address.

Range End 0 (Inv, WB, WBI, and Lock) Register
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Range End 1 (Inv, WB, WBI, and Lock) Register
The SHL1C_RANGE_END1 register selects a end range address for cache invalidation, cache write-back replace-
ment, and cache write-back invalidation operations.
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Figure 32-6: SHL1C_RANGE_END1 Register Diagram

Table 32-7: SHL1C_RANGE_END1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range End.

The SHL1C_RANGE_END1.DATA bits hold the range end address.

Range End 1 (Inv, WB, WBI, and Lock) Register
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Range End 2 (Non-cacheable and Lock) Register
The SHL1C_RANGE_END2 register selects a end range address for non-cacheable and cache locking operations.
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Figure 32-7: SHL1C_RANGE_END2 Register Diagram

Table 32-8: SHL1C_RANGE_END2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range End.

The SHL1C_RANGE_END2.DATA bits hold the range end address.

Range End 2 (Non-cacheable and Lock) Register
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Range End 3 (Non-cacheable and Lock) Register
The SHL1C_RANGE_END3 register selects a end range address for non-cacheable and cache locking operations.
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Figure 32-8: SHL1C_RANGE_END3 Register Diagram

Table 32-9: SHL1C_RANGE_END3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range End.

The SHL1C_RANGE_END3.DATA bits hold the range end address.

Range End 3 (Non-cacheable and Lock) Register
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Range End 4 (Non-cacheable and Write Through) Register
The SHL1C_RANGE_END4 register selects a end range address for non-cacheable and cache write through opera-
tions.

Range End

Range End

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 32-9: SHL1C_RANGE_END4 Register Diagram

Table 32-10: SHL1C_RANGE_END4 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range End.

The SHL1C_RANGE_END4.DATA bits hold the range end address.

Range End 4 (Non-cacheable and Write Through) Register
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Range End 5 (Non-cacheable and Write Through) Register
The SHL1C_RANGE_END5 register selects a end range address for non-cacheable and cache write through opera-
tions.
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Figure 32-10: SHL1C_RANGE_END5 Register Diagram

Table 32-11: SHL1C_RANGE_END5 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range End.

The SHL1C_RANGE_END5.DATA bits hold the range end address.

Range End 5 (Non-cacheable and Write Through) Register
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Range End 6 (Non-cacheable and Write Through) Register
The SHL1C_RANGE_END6 register selects a end range address for non-cacheable and cache write through opera-
tions.
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Figure 32-11: SHL1C_RANGE_END6 Register Diagram

Table 32-12: SHL1C_RANGE_END6 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range End.

The SHL1C_RANGE_END6.DATA bits hold the range end address.

Range End 6 (Non-cacheable and Write Through) Register
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Range End 7 (Non-cacheable and Write Through) Register
The SHL1C_RANGE_END7 register selects a end range address for non-cacheable and cache write through opera-
tions.

Range End

Range End

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 32-12: SHL1C_RANGE_END7 Register Diagram

Table 32-13: SHL1C_RANGE_END7 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range End.

The SHL1C_RANGE_END7.DATA bits hold the range end address.

Range End 7 (Non-cacheable and Write Through) Register
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Range Start 0 (Inv, WB, WBI, and Lock) Register
The SHL1C_RANGE_START0 register selects a start range address for cache invalidation, cache write-back re-
placement, and cache write-back invalidation operations.
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Figure 32-13: SHL1C_RANGE_START0 Register Diagram

Table 32-14: SHL1C_RANGE_START0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range Start.

The SHL1C_RANGE_START0.DATA bits hold the range start address.

Range Start 0 (Inv, WB, WBI, and Lock) Register
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Range Start 1 (Inv, WB, WBI, and Lock) Register
The SHL1C_RANGE_START1 register selects a start range address for cache invalidation, cache write-back re-
placement, and cache write-back invalidation operations.
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Figure 32-14: SHL1C_RANGE_START1 Register Diagram

Table 32-15: SHL1C_RANGE_START1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range Start.

The SHL1C_RANGE_START1.DATA bits hold the range start address.

Range Start 1 (Inv, WB, WBI, and Lock) Register
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Range Start 2 (Non-cacheable and Lock) Register
The SHL1C_RANGE_START2 register selects a start range address for non cacheable and cache locking operations.

Range Start

Range Start

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 32-15: SHL1C_RANGE_START2 Register Diagram

Table 32-16: SHL1C_RANGE_START2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range Start.

The SHL1C_RANGE_START2.DATA bits hold the range start address.

Range Start 2 (Non-cacheable and Lock) Register
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Range Start 3 (Non-cacheable and Lock) Register
The SHL1C_RANGE_START3 register selects a start range address for non-cacheable and cache locking opera-
tions.
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Figure 32-16: SHL1C_RANGE_START3 Register Diagram

Table 32-17: SHL1C_RANGE_START3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range Start.

The SHL1C_RANGE_START3.DATA bits hold the range start address.

Range Start 3 (Non-cacheable and Lock) Register
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Range Start 4 (Non-cacheable and Write Through) Register
The SHL1C_RANGE_START4 register selects a start range address for non-cacheable and cache write through op-
erations.

Range Start

Range Start
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0
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Figure 32-17: SHL1C_RANGE_START4 Register Diagram

Table 32-18: SHL1C_RANGE_START4 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range Start.

The SHL1C_RANGE_START4.DATA bits hold the range start address.

Range Start 4 (Non-cacheable and Write Through) Register
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Range Start 5 (Non-cacheable and Write Through) Register
The SHL1C_RANGE_START5 register selects a start range address for non-cacheable and cache write through op-
erations.

Range Start

Range Start
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Figure 32-18: SHL1C_RANGE_START5 Register Diagram

Table 32-19: SHL1C_RANGE_START5 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range Start.

The SHL1C_RANGE_START5.DATA bits hold the range start address.

Range Start 5 (Non-cacheable and Write Through) Register
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Range Start 6 (Non-cacheable and Write Through) Register
The SHL1C_RANGE_START6 register selects a start range address for non-cacheable and cache write through op-
erations.

Range Start

Range Start
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Figure 32-19: SHL1C_RANGE_START6 Register Diagram

Table 32-20: SHL1C_RANGE_START6 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range Start.

The SHL1C_RANGE_START6.DATA bits hold the range start address.

Range Start 6 (Non-cacheable and Write Through) Register
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Range Start 7 (Non-cacheable and Write Through) Register
The SHL1C_RANGE_START7 register selects a start range address for non-cacheable and cache write through op-
erations.

Range Start

Range Start

DATA[15:0] (R/W)
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Figure 32-20: SHL1C_RANGE_START7 Register Diagram

Table 32-21: SHL1C_RANGE_START7 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Range Start.

The SHL1C_RANGE_START7.DATA bits hold the range start address.

Range Start 7 (Non-cacheable and Write Through) Register
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33   SHARC-PLUS Register List

This appendix lists Memory-Mapped Register address and register names. The modules are presented in alphabetical
order.

Table 33-1: SHARC-PLUS CMMR MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x30024 CMMR_SYSCTL CMMR System Control Register 0x00000000

0x3B000 CMMR_GPERR_STAT CMMR General-Purpose Parity Error Status Register 0x00000000

0x3B100 CMMR_PFB_NOCHRT0_S
T

CMMR PFB No Caching Return 0 Start Address Register 0x00000000

0x3B101 CMMR_PFB_NOCHRT0_E
ND

CMMR PFB No Caching Return 0 End Address Register 0x00000000

0x3E030 CMMR_PWR_L1_SD_CTL CMMR L1 BANK SHUT DOWN CONTROL 0x00000000

0x3E031 CMMR_PWR_GLB_CTL CMMR Core Global Power Control Register 0x00000000

0x3E032 CMMR_PWR_L1_LS_CTL CMMR L1 BANK SLEEP CONTROL 0x00000000

Table 33-2: SHARC-PLUS REGF MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x1010 REGF_MODE1 REGF Mode Control 1 Register 0x00000000

0x1020 REGF_MMASK REGF Mode Mask Register 0x00000000

0x1030 REGF_MODE1STK REGF Mode 1 Stack (Top Entry) Register 0x00000000

0x1040 REGF_MODE2 REGF Mode Control 2 Register 0x00000000

0x1050 REGF_FADDR REGF Instruction Pipeline Stage Address Register 0x00000000

0x1060 REGF_DADDR REGF Decode Address Register 0x00000000

0x1070 REGF_PC REGF Program Counter Register 0x00000000

0x1080 REGF_PCSTK REGF Program Counter Stack Register 0x00000000

0x1090 REGF_PCSTKP REGF Program Counter Stack Pointer Register 0x00000000
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Table 33-2: SHARC-PLUS REGF MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x10A0 REGF_LADDR REGF Loop Address Stack Register 0x00000000

0x10B0 REGF_LCNTR REGF Loop Counter Register 0x00000000

0x10C0 REGF_CURLCNTR REGF Current Loop Counter Register 0x00000000

0x10D0 REGF_TPERIOD REGF Timer Period Register 0x00000000

0x10E0 REGF_TCOUNT REGF Timer Count Register 0x00000000

0x10F0 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10F1 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10F2 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10F3 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10F4 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10F5 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10F6 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10F7 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10F8 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10F9 REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10FA REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10FB REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10FC REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10FD REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10FE REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x10FF REGF_R[n] REGF Register File (PEx) Data Registers (Rx, Fx) 0x00000000

0x1100 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1101 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1102 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1103 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1104 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1105 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1106 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1107 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1108 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1109 REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000
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Table 33-2: SHARC-PLUS REGF MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x110A REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x110B REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x110C REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x110D REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x110E REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x110F REGF_S[n] REGF Register File (PEy) Data Registers (Sx, SFx) 0x00000000

0x1110 REGF_MRF REGF Multiplier Results (PEx) Foreground Register 0xDEADD0D0

0x1120 REGF_MR0F REGF Multiplier Results 0 (PEx) Foreground Register 0x00000000

0x1130 REGF_MR1F REGF Multiplier Results 1 (PEx) Foreground Register 0x00000000

0x1140 REGF_MR2F REGF Multiplier Results 2 (PEx) Foreground Register 0x00000000

0x1150 REGF_MSF REGF Multiplier Results (PEy) Foreground Register 0xDEADD0D0

0x1160 REGF_MS0F REGF Multiplier Results 0 (PEy) Foreground Register 0x00000000

0x1170 REGF_MS1F REGF Multiplier Results 1 (PEy) Foreground Register 0x00000000

0x1180 REGF_MS2F REGF Multiplier Results 2 (PEy) Foreground Register 0x00000000

0x1190 REGF_MRB REGF Multiplier Results (PEx) Background Register 0xDEADD0D0

0x11A0 REGF_MR0B REGF Multiplier Results 0 (PEx) Background Register 0x00000000

0x11B0 REGF_MR1B REGF Multiplier Results 1 (PEx) Background Register 0x00000000

0x11C0 REGF_MR2B REGF Multiplier Results 2 (PEx) Background Register 0x00000000

0x11D0 REGF_MSB REGF Multiplier Results (PEy) Background Register 0xDEADD0D0

0x11E0 REGF_MS0B REGF Multiplier Results 0 (PEy) Background Register 0x00000000

0x11F0 REGF_MS1B REGF Multiplier Results 1 (PEy) Background Register 0x00000000

0x1200 REGF_MS2B REGF Multiplier Results 2 (PEy) Background Register 0x00000000

0x1210 REGF_PX REGF PMD-DMD Bus Exchange Register 0x00000000

0x1220 REGF_PX1 REGF PMD-DMD Bus Exchange 1 Register 0x00000000

0x1230 REGF_PX2 REGF PMD-DMD Bus Exchange 2 Register 0x00000000

0x1240 REGF_ASTATX REGF Arithmetic Status (PEx) Register 0x00000000

0x1250 REGF_ASTATY REGF Arithmetic Status (PEy) Register 0x00000000

0x1260 REGF_STKYX REGF Sticky Status (PEx) Register 0x00000000

0x1270 REGF_STKYY REGF Sticky Status (PEy) Register 0x00000000

0x1280 REGF_USTAT1 REGF User-Defined Status 1 Register 0x00000000

0x1290 REGF_USTAT2 REGF User-Defined Status 2 Register 0x00000000
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Table 33-2: SHARC-PLUS REGF MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x12A0 REGF_USTAT3 REGF User-Defined Status 3 Register 0x00000000

0x12B0 REGF_USTAT4 REGF User-Defined Status 4 Register 0x00000000

0x12C0 REGF_I[n] REGF Index Registers 0x00000000

0x12C1 REGF_I[n] REGF Index Registers 0x00000000

0x12C2 REGF_I[n] REGF Index Registers 0x00000000

0x12C3 REGF_I[n] REGF Index Registers 0x00000000

0x12C4 REGF_I[n] REGF Index Registers 0x00000000

0x12C5 REGF_I[n] REGF Index Registers 0x00000000

0x12C6 REGF_I[n] REGF Index Registers 0x00000000

0x12C7 REGF_I[n] REGF Index Registers 0x00000000

0x12C8 REGF_I[n] REGF Index Registers 0x00000000

0x12C9 REGF_I[n] REGF Index Registers 0x00000000

0x12CA REGF_I[n] REGF Index Registers 0x00000000

0x12CB REGF_I[n] REGF Index Registers 0x00000000

0x12CC REGF_I[n] REGF Index Registers 0x00000000

0x12CD REGF_I[n] REGF Index Registers 0x00000000

0x12CE REGF_I[n] REGF Index Registers 0x00000000

0x12CF REGF_I[n] REGF Index Registers 0x00000000

0x12D0 REGF_M[n] REGF Modify Registers 0x00000000

0x12D1 REGF_M[n] REGF Modify Registers 0x00000000

0x12D2 REGF_M[n] REGF Modify Registers 0x00000000

0x12D3 REGF_M[n] REGF Modify Registers 0x00000000

0x12D4 REGF_M[n] REGF Modify Registers 0x00000000

0x12D5 REGF_M[n] REGF Modify Registers 0x00000000

0x12D6 REGF_M[n] REGF Modify Registers 0x00000000

0x12D7 REGF_M[n] REGF Modify Registers 0x00000000

0x12D8 REGF_M[n] REGF Modify Registers 0x00000000

0x12D9 REGF_M[n] REGF Modify Registers 0x00000000

0x12DA REGF_M[n] REGF Modify Registers 0x00000000

0x12DB REGF_M[n] REGF Modify Registers 0x00000000

0x12DC REGF_M[n] REGF Modify Registers 0x00000000
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Table 33-2: SHARC-PLUS REGF MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x12DD REGF_M[n] REGF Modify Registers 0x00000000

0x12DE REGF_M[n] REGF Modify Registers 0x00000000

0x12DF REGF_M[n] REGF Modify Registers 0x00000000

0x12E0 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12E1 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12E2 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12E3 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12E4 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12E5 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12E6 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12E7 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12E8 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12E9 REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12EA REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12EB REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12EC REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12ED REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12EE REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12EF REGF_L[n] REGF Length (Circular Buffer) Registers 0x00000000

0x12F0 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12F1 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12F2 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12F3 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12F4 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12F5 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12F6 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12F7 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12F8 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12F9 REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12FA REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12FB REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000
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Table 33-2: SHARC-PLUS REGF MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x12FC REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12FD REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12FE REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x12FF REGF_B[n] REGF Base (Circular Buffer) Registers 0x00000000

0x1300 REGF_FLAGS REGF Flag I/O Register 0x00000000

0x1310 REGF_IRPTL REGF Interrupt Latch Register 0x00000000

0x1320 REGF_IMASK REGF Interrupt Mask Register 0x00000000

0x1330 REGF_IMASKP REGF Interrupt Mask Pointer Register 0x00000000

0x1340 REGF_EMUCLK REGF Emulation Counter Register 0x00000000

0x1350 REGF_EMUCLK2 REGF Emulation Counter Register 2 0x00000000

Table 33-3: SHARC-PLUS SHBTB MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x31400 SHBTB_CFG SHBTB Configuration Register 0x00000000

0x31401 SHBTB_LOCK_START SHBTB Lock Range Start Register 0x00000000

0x31402 SHBTB_LOCK_END SHBTB Lock Range End Register 0x00000000

Table 33-4: SHARC-PLUS SHDBG MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x30021 SHDBG_BRKSTAT SHDBG Break Status Register 0x00000000

0x30023 SHDBG_OSPID SHDBG O/S Processor ID Register 0x00000000

0x30025 SHDBG_BRKCTL SHDBG Break Control Register 0x00000000

0x30026 SHDBG_REVID SHDBG ID Code Register 0x00000000

0x300A0 SHDBG_PSA1S SHDBG Program Sequence Address 1 Start Register 0x00000000

0x300A1 SHDBG_PSA1E SHDBG Program Sequence Address 1 End Register 0x00000000

0x300A2 SHDBG_PSA2S SHDBG Program Sequence Address 2 Start Register 0x00000000

0x300A3 SHDBG_PSA2E SHDBG Program Sequence Address 2 End Register 0x00000000

0x300A4 SHDBG_PSA3S SHDBG Program Sequence Address 3 Start Register 0x00000000

0x300A5 SHDBG_PSA3E SHDBG Program Sequence Address 3 End Register 0x00000000

0x300A6 SHDBG_PSA4S SHDBG Program Sequence Address 4 Start Register 0x00000000
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Table 33-4: SHARC-PLUS SHDBG MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x300A7 SHDBG_PSA4E SHDBG Program Sequence Address 4 End Register 0x00000000

0x300AE SHDBG_EMUN SHDBG Emulator Number (BP Hits) Register 0x00000000

0x300B2 SHDBG_DMA1S SHDBG DM Data Address 1 Start Register 0x00000000

0x300B3 SHDBG_DMA1E SHDBG DM Data Address 1 End Register 0x00000000

0x300B4 SHDBG_DMA2S SHDBG DM Data Address 2 Start Register 0x00000000

0x300B5 SHDBG_DMA2E SHDBG DM Data Address 2 End Register 0x00000000

0x300B8 SHDBG_PMDAS SHDBG PM Data Address 1 Start Register 0x00000000

0x300B9 SHDBG_PMDAE SHDBG PM Data Address 1 End Register 0x00000000

0x300E0 SHDBG_F1ADDR SHDBG Fetch 1 Stage Address Register 0x00000000

0x300E1 SHDBG_F2ADDR SHDBG Fetch 2 Stage Address Register 0x00000000

0x300E2 SHDBG_F3ADDR SHDBG Fetch 3 Stage Address Register 0x00000000

0x300E3 SHDBG_F4ADDR SHDBG Fetch 4 Stage Address Register 0x00000000

0x300E4 SHDBG_D1ADDR SHDBG Decode 1 Stage Address Register 0x00000000

0x300E5 SHDBG_D2ADDR SHDBG Decode 2 Stage Address Register 0x00000000

0x300E6 SHDBG_M1ADDR SHDBG Memory 1 Stage Address Register 0x00000000

0x300E7 SHDBG_M2ADDR SHDBG Memory 2 Stage Address Register 0x00000000

0x300E8 SHDBG_M3ADDR SHDBG Memory 3 Stage Address Register 0x00000000

0x300E9 SHDBG_M4ADDR SHDBG Memory 4 Stage Address Register 0x00000000

0x300EA SHDBG_E2ADDR SHDBG Execute 2 Stage Address Register 0x00000000

0x300EB SHDBG_SECI_ID SHDBG SEC Interrupt ID Register 0x00000000

0x300EC SHDBG_DBGREG_ILLOP SHDBG Illegal Opcode Detected Register 0x00000000

0x300ED SHDBG_CORE_ID SHDBG Core ID Register 0x00000000

Table 33-5: SHARC-PLUS SHL1C MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x3E000 SHL1C_CFG SHL1C L1 Cache Configuration 1 Register 0x00000000

0x3E002 SHL1C_CFG2 SHL1C Range Register Functionality Selection Register 0x00000000

0x3E010 SHL1C_RANGE_START0 SHL1C Range Start 0 (Inv, WB, WBI, and Lock) Register 0x00000000

0x3E011 SHL1C_RANGE_END0 SHL1C Range End 0 (Inv, WB, WBI, and Lock) Register 0x00000000

0x3E012 SHL1C_RANGE_START1 SHL1C Range Start 1 (Inv, WB, WBI, and Lock) Register 0x00000000
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Table 33-5: SHARC-PLUS SHL1C MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x3E013 SHL1C_RANGE_END1 SHL1C Range End 1 (Inv, WB, WBI, and Lock) Register 0x00000000

0x3E014 SHL1C_RANGE_START2 SHL1C Range Start 2 (Non-cacheable and Lock) Register 0x00000000

0x3E015 SHL1C_RANGE_END2 SHL1C Range End 2 (Non-cacheable and Lock) Register 0x00000000

0x3E016 SHL1C_RANGE_START3 SHL1C Range Start 3 (Non-cacheable and Lock) Register 0x00000000

0x3E017 SHL1C_RANGE_END3 SHL1C Range End 3 (Non-cacheable and Lock) Register 0x00000000

0x3E018 SHL1C_RANGE_START4 SHL1C Range Start 4 (Non-cacheable and Write
Through) Register

0x00000000

0x3E019 SHL1C_RANGE_END4 SHL1C Range End 4 (Non-cacheable and Write Through)
Register

0x00000000

0x3E01A SHL1C_RANGE_START5 SHL1C Range Start 5 (Non-cacheable and Write
Through) Register

0x00000000

0x3E01B SHL1C_RANGE_END5 SHL1C Range End 5 (Non-cacheable and Write Through)
Register

0x00000000

0x3E01C SHL1C_RANGE_START6 SHL1C Range Start 6 (Non-cacheable and Write
Through) Register

0x00000000

0x3E01D SHL1C_RANGE_END6 SHL1C Range End 6 (Non-cacheable and Write Through)
Register

0x00000000

0x3E01E SHL1C_RANGE_START7 SHL1C Range Start 7 (Non-cacheable and Write
Through) Register

0x00000000

0x3E01F SHL1C_RANGE_END7 SHL1C Range End 7 (Non-cacheable and Write Through)
Register

0x00000000

0x3E020 SHL1C_INV_IXSTART0 SHL1C Invalidation/Write Back Index Start 0 Register 0x00000000

0x3E021 SHL1C_INV_CNT0 SHL1C Invalidation/Write Back Count 0 Register 0x00000000

Table 33-6: SHARC-PLUS PFM MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x30200 PFM_CFG PFM Configuration Register 0x00000000

0x30203 PFM_CNTR3 PFM Counter 3 Register 0x00000000

0x30204 PFM_CNTR4 PFM Counter 4 Register 0x00000000

0x30205 PFM_CNTR5 PFM Counter 5 Register 0x00000000

0x30206 PFM_CNTR6 PFM Counter 6 Register 0x00000000

0x3020D PFM_CNTR3START PFM Counter 3 Start Register 0x00000000

0x3020E PFM_CNTR3PAUSE PFM Counter 3 Pause Register 0x00000000
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Table 33-6: SHARC-PLUS PFM MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x3020F PFM_CNTR3CLR PFM Counter 3 Clear Register 0x00000000

0x30210 PFM_CNTR4START PFM Counter 4 Start Register 0x00000000

0x30211 PFM_CNTR4PAUSE PFM Counter 4 Pause Register 0x00000000

0x30212 PFM_CNTR4CLR PFM Counter 4 Clear Register 0x00000000

0x30213 PFM_CNTR5START PFM Counter 5 Start Register 0x00000000

0x30214 PFM_CNTR5PAUSE PFM Counter 5 Pause Register 0x00000000

0x30215 PFM_CNTR5CLR PFM Counter 5 Clear Register 0x00000000

0x30216 PFM_CNTR6START PFM Counter 6 Start Register 0x00000000

0x30217 PFM_CNTR6PAUSE PFM Counter 6 Pause Register 0x00000000

0x30218 PFM_CNTR6CLR PFM Counter 6 Clear Register 0x00000000
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34   Glossary

To make the best use of the FFTA, it is useful to understand the following terms.

Alternate Registers

See index registers in I/O Processor Register.

Arithmetic Logic Unit (ALU)

This part of a processing element performs arithmetic and logic operations on fixed-point and floatingpoint data.

Arm

The ADSP-ADSP-SC58x Processor includes an Arm® Cortex-A5®core. The Arm Cortex-A5 processor is the
smallest, lowest cost and lowest power Armv7 application processor.

Asynchronous Transfers

Communications in which data can be transmitted intermittently rather than in a steady stream.

Barrel Shifter

This part of a processing element completes logical shifts, arithmetic shifts, bit manipulation, field deposit, and field
extraction operations on 32-bit operands. Also, the shifter can derive exponents.

Base Address

The starting address of a circular buffer to which the DAG wraps around. This address is stored in a DAG Bx regis-
ter.

Base Register

A base (Bx) register is a data address generator (DAG) register that sets up the starting address for a circular buffer.
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Bit-Reverse Addressing

The data address generator (DAG) provides a bit-reversed address during a data move without reversing the stored
address.

Boot Modes

The boot mode determines how the processor starts up (loads its initial code). The processors can boot from various
sources based on the BMODE pins.

Branch Predictor

The branch predictor unit examines each fetch address to determine whether it is a branch instruction. If the unit
detects a branch instruction, the unit provides an address of the likely next instruction. If no conditions require oth-
erwise, the processor fetches and executes instructions from memory in sequential order.

Branch Target Buffer

Implementation of a hardware-based branch predictor (BP) and branch target buffer (BTB) reduce branch delay.
The program sequencer supports efficient branching using this branch target buffer (BTB) for conditional and un-
conditional instructions.

Broadcast Data Moves

The data address generator (DAG) performs dual data moves to complementary registers in each processing element
to support SIMD mode.

Cache Entry

The smallest unit of memory that is transferred to/from the next level of memory from/to a cache as a result of a
cache miss.

Cache Hit

A memory access that is satisfied by a valid, present entry in the cache.

Cache Miss

A memory access that does not match any valid entry in the cache.

Circular Buffer Addressing

The DAG uses the Ix, Mx and Lx register settings to constrain addressing to a range of addresses. This range con-
tains data that the DAG steps through repeatedly, "wrapping around" to repeat stepping through the range of ad-
dresses in a circular pattern.
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CCES

CrossCore® Embedded Studio (CCES) integrated development environment is the preferred programming tool set
for SHARC processors.

Companding (Compressing/Expanding)

This is the process of logarithmically encoding and decoding data to minimize the number of bits that must be sent
by the SPORTs.

Conditional Branches

These are JUMP or CALL/return instructions whose execution is based on testing an IF condition.

SHARC+ Core

The SHARC+ core is an SoC in the SHARC processor and consists of these functional blocks: SIMD Processing
units, dual DAGs, instruction sequencer, interrupt controller, loop controller, core timer, conflict cache and debug/
emulation interface.

Core memory-mapped registers (CMMR) are located in the core clock domain and accessed via an address. These
registers control sytem, BTB, I/D cache, debug and monitor

Register File Complementary Data (CDreg).

These are registers in the PEy processing element. These registers are hold operands for multiplier, ALU, or shifter
operations and are denoted as Sx when used for fixed point operations or SFx when used for floating-point opera-
tions.

Complementary Universal Registers (CUreg)

These are any core registers (data registers), any data address generator (DAG) registers, used in SIMD mode.

Data Address Generator (DAG)

The data address generators (DAGs) provide memory addresses when data is transferred between memory and regis-
ters.

Register File Data (Dreg)

These are registers in the PEx processing element. These registers are hold operands for multiplier, ALU, or shifter
operations and are denoted as Rx when used for fixed point operations or Fx when used for floating-point opera-
tions.
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Delayed Branches

In JUMP and CALL instructions that use the delayed branch (DB) modifier, one instruction cycle is lost in the
instruction pipeline. This is because the processor executes the two instructions after the branch and the third is
aborted while the instruction pipeline fills with instructions from the new location.

Denormal Operands

When the biased exponent is zero, smaller floating-point numbers can only be represented by making the integer bit
(and perhaps other leading bits) of the significant zero. The numbers in this range are called denormalized (or tiny)
numbers. The use of leading zeros with denormalized numbers allows smaller numbers to be represented.

Direct Branches

These are JUMP or CALL instructions that use an absolute-not changing at runtime-address (such as a program
label) or use a PC-relative address.

DMA (Direct Memory Accessing)

The processor supports DMA of data between processor memory and external memory, or peripherals. Each DMA
operation transfers an entire block of data.

DMA Chaining

The processor supports chaining together multiple DMA sequences. In chained DMA, the DMA loads the next
transfer control block (DMA parameters) into the DMA parameter registers when the current DMA finishes and
auto-initializes the next DMA sequence.

DMA Parameter Registers

These registers function similarly to data address generator registers, setting up a memory access process. These reg-
isters include internal index registers, internal modify registers, count registers, chain pointer registers, external index
registers, external modify registers, and external count registers.

DMA TCB Chain Loading

This is the process that the DMA uses for loading the TCB of the next DMA sequence into the parameter registers
during chained DMA. This term is also know as a DMA descriptor.

Double-Precision Floating-Point (64-bit)

IEEE Standard 754-2008 specifies a binary64 floating-point (Also known as double-precision floating-point in
IEEE Standard 754-1985) format. A number represented in this format consists of a sign bit s, an 11-bit Exponent e
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and a 53-bit mantissa. For normalized numbers, the mantissa consists of a 52-bit fraction f and a “hidden” bit 1 that
is implicitly presumed to precede bit-51. The binary point is presumed to reside between this hidden bit and bit-51.

E-2 Active loops

Zero-overhead loop where loop counter decrement and check of termination condition occurs in the E2 pipeline
stage.

Edge-Sensitive Interrupt

The processor detects this type of interrupt if the input signal is high (inactive) on one cycle and low (active) on the
next cycle when sampled on the rising edge of clock.

Endian Format, Little Versus Big

The processor uses big-endian format-moves data starting with most-significant-bit and finishing with least-signifi-
cant-bit-in almost all instances. There are some exceptions (such as serial port operations) which provide both little-
endian and big-endian format support to ensure their compatibility with different devices.

With byte-addressing, a normal-word load from a byte-address loads in little-endian format. A LW load to an even
register in normal-word address space also loads little-endian. When the compiler is used with the -char-size-32
command line option, it uses little endian. Note that the Arm core also uses little endian.

Explicit Versus Implicit Operations.

In SIMD mode, identical instructions execute on the PEx and PEy computational units; the difference is the data.
The data registers for PEy operations are identified (implicitly) from the PEx registers in the instruction. This im-
plicit relation between PEx and PEy data registers corresponds to complementary register pairs.

F-1 Active Loop

Zero-overhead loop where loop counter decrement and check of termination condition occurs in the F1 pipeline
stage.

Field Deposit (Fdep) Instructions

These shifter instructions take a group of bits from the input register (starting at the LSB of the 32-bit integer field)
and deposit the bits as directed anywhere within the result register.

Field Extract (Fext) Instructions

These shifter extract a group of bits as directed from anywhere within the input register and place them in the result
register (aligned with the LSB of the 32-bit integer field).

Glossary

SHARC+ Core Programming Reference 34–5



FIFO (First In, First Out)

A hardware buffer or data structure from which items are taken out in the same order they were put in.

Flag Pins (Programmable)

Flag pins can be programmed as input or output pins using bit settings in the FLAGS register. The status of the flag
pins is also given in the GPIO PORT register.

Flag Update

The processor's update to status flags occurs at the end of the cycle in which the status is generated and is available
on the next cycle.

General-Purpose Input/Output Pins

See programmable flag pins.

Harvard Architecture

Processor's use memory architectures that have separate buses for program and data storage. The two buses let the
processor get a data word and an instruction simultaneously.

IDLE

An instruction that causes the processor to cease operations, holding its current state until an interrupt occurs.
Then, the processor services the interrupt and continues normal execution.

Index Registers

An index register is a data address generator (DAG) register that holds an address and acts as a pointer to memory.

Indirect Branches

These are JUMP or CALL instructions that use a dynamic-changes at runtime-address that comes from the PM data
address generator.

Inexact Flags

An exception flag whose bit position is inexact.

Input Clock

Device that generates a steady stream of timing signals to provide the frequency, duty cycle, and stability to allow
accurate internal clock multiplication via the phase locked loop (PLL) module.
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Interleaved Data

SIMD mode requires a special memory layout since the implicit modifier is 1 or 2 based on NW or SW addresses.
This then requires data to be in an interleaved organization in the memory layout.

Internal Memory Address Space

Internal memory space refers to the processor's on-chip SRAM L1 blocks.

Internal Memory Interface (IMIF)

The SoC has a central logic which controls all busses (crossbar) to the internal memory blocks from the different
sources (SHARC core vs DMA vs co-processor).

Instruction Set Architecture (ISA)

48-bit Instruction Set Architecture, supported by all SHARC processors.

Interrupts

Subroutines in which a runtime event (not an instruction) triggers the execution of the routine.

IVT

The SHARC+ core has an Interrupt Vector Table with 256x48 SRAM locations to serve/control core and SEC based
interrupts. The IVT is located after reset in L2 memory. It may be allocated to L2/L3 mem based on the SYSCTL
registers.

JTAG Port

This port supports the IEEE standard 1149.1 Joint Test Action Group (JTAG) standard for system test. This stand-
ard defines a method for serially scanning the I/O status of each component in a system. This interface is also used
for processor debug.

Jumps

Program flow transfers permanently to another part of program memory.

Latency

Latency of memory access is the time between when an address is posted on the address bus and the core receives
data on the corresponding data bus.
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Length Registers

A length register is a data address generator (DAG) register that sets up the range of addresses a circular buffer.

Level-Sensitive Interrupts

The processor detects this type of interrupt if the signal input is low (active) when sampled on the rising edge of
clock.

Loops (zero overhead)

One sequence of instructions executes several times with zero overhead.

Memory Blocks and Banks

The processor's internal memory is divided into blocks that are each associated with different data address genera-
tors. The processor's external memory spaces is divided into banks, which may be addressed by either data address
generator.

Modified Addressing

The DAG generates an address that is incremented by a value or a register.

Modify Instruction

The data address generator (DAG) increments the stored address without performing a data move.

Modify Registers

A modify register is a data address generator (DAG) register that provides the increment or step size by which an
index register is pre- or post-modified during a register move.

Multifunction Computations

Using the many parallel data paths within its computational units, the processor supports parallel execution of mul-
tiple computational instructions. These instructions complete in a single cycle, and they combine parallel operation
of the multiplier and the ALU or dual ALU functions. The multiple operations perform the same as if they were in
corresponding single-function computations.

Multiplier

This part of a processing element does floating-point and fixed-point multiplication and executes fixedpoint multi-
ply/add and multiply/subtract operations.
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Neighbor Data Registers

In long word addressed accesses, the processor moves data to or from two neighboring data registers. The least-sig-
nificant-32 bits moves to or from the explicit (named) register in the neighbor register pair. In forced long word
accesses (normal word address with LW mnemonic), the processor converts the normal word address to long word,
placing the even normal word location in the explicit register and the odd normal word location in the other register
in the neighbor pair.

Nonzero numbers

Nonzero, finite numbers are divided into two classes: normalized and denormalized.

Normal Word 2colunm/3column

The internal memory supports 4x16-bit maximum width which represents a long word (4columns). It can also con-
trol 2x16-bit data which is a normal word (2columns). Another option is 3x16 data control which is also a normal
word (3columns). The IMDW bit (SYSCTL) bit controls about 2/3column normal word DAG access per block.

Peripherals

This refers to everything outside the processor core. The peripherals include internal memory, parallel port, I/O pro-
cessor, JTAG port, and any external devices that connect to the processor. Detailed information about the peripher-
als is found in the product-specific hardware reference.

Phase Locked Loop (PLL)

An on-chip frequency synthesizer that produces a full speed clock from a lower frequency input clock signal.

Post-Modify Addressing

The data address generator (DAG) provides an address during a data move and auto-increments the stored address
for the next move.

Precision.

The precision of a floating-point number depends on the number of bits after the binary point in the storage format
for the number. The processor supports two high precision floating-point formats: 32-bit IEEE single-precision
floating-point (which uses 8 bits for the exponent and 24 bits for the mantissa) and a 40-bit extended precision
version of the IEEE format plus an IEEE double-precision format.

Pre-Modify Addressing

The data address generator (DAG) provides a modified address during a data move without incrementing the stored
address.
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Register File Registers

This is the set of all core registers accessed directly by an instruction.

Register Swaps

This special type of register-to-register move instruction uses the special swap operator, <->. A registerto- register
swap occurs when registers in different processing elements exchange values.

Saturation (ALU Saturation Mode)

In this mode, all positive fixed-point overflows return the maximum positive fixed-point number (0x7FFF FFFF),
and all negative overflows return the maximum negative number (0x8000 0000).

SHARC processor

The SHARC processor is SoC based on the SHARC+ core + internal memory I/F, the L1 memory blocks, the In-
struction/data caches + two requester and two completer ports for communication to the system fabric.

SIMD (Single-Instruction, Multiple-Data)

SIMD mode of SHARC+ core provides mechanism to perform dual identical compute and/or data moves. This can
result in upto 2x performance improvement on any operation. This mode is very effective if intended operation can
be split into two perfectly identical sequences. However in many applications, finding perfectly identical sequence is
not possible but still major part can be parallelized. In such cases, effectiveness of SIMD mode reduces as it requires
switching off and on of SIMD mode and moving data to-and-fro from the second processing element (PEy) to the
primary processing element (PEx) to perform non-identical part of the application. This is because, non-identical
part of code requires SISD processing and that is possible only in PEx. This change of mode and data movement
reduces the effectiveness of SIMD. This affects both compilers as well assembly level programmers.

SISD (Single-Instruction, Single-Data)

A computer architecture or processor mode in which an instruction processes single data elements at a time. Con-
trast with SIMD.

Completer Ports

The SHARC SoC processors can be a bus completer to other processors. The current SoC post the address to the
completer ports (core or DMA) to access the local memory of the completer.

Stack, hardware

A data structure for storing items that are to be accessed in last in, first out (LIFO) order. When a data item is added
to the stack, it is "pushed"; when a data item is removed from the stack, it is "popped."
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Subroutines

The processor temporarily interrupts sequential flow to execute instructions from another part of program memory.

Stalls

The time spent waiting for an operation to take place. It may refer to a variable length of time a program has to wait
before it can be processed, or to a fixed duration of time, such as a machine cycle. When memory is too slow to
respond to the CPU's request for it, wait states are introduced until the memory can catch up.

System Clock (SYSCLK)

The system clock (SYSCLK) controls the processor's system fabric and is defined as (system clock) Clock Period = 2
tCCLK.

System Clock (SCLK0/1)

System Clock (SCLK0/1) are output clocks provided to the peripheral modules.

Three-State Versus Tri-state

Analog Devices documentation uses the term "three-state" instead of "tri-state" because Tri-state is a trademarked
term, which is owned by National Semiconductor.

Universal Registers (Ureg).

These are any processing element registers (data registers), any data address generator (DAG) registers, any program
sequencer registers.

Variable Instruction Set Architecture

Variable 48/32/16-bit Instruction Set Architecture (supported upon 214xx SHARC products) Also called non-VISA
or compressed instruction set.

Von Neumann Architecture

This is the architecture used by most (non-processor) microprocessors. This architecture uses a single address and
data bus for memory access.

Wait States

See Stalls
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timer (timing diagram)............................................. 5–2

examples
BITDEP instruction (bit deposit)...........................3–18
bit FIFO header creation........................................ 3–18
bit FIFO header extraction..................................... 3–18
bit FIFO store/restore.............................................3–19
shift immediate instruction, SIMD mode...............3–39
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Execute 2 Stage Address Register, SHDBG
(SHDBG_E2ADDR)...........................................31–16

exponent
unsigned.................................................................27–1

extended precision normal word
data access.............................................................. 7–29

F

Fetch 1 Stage Address Register, SHDBG
(SHDBG_F1ADDR)........................................... 31–18

Fetch 2 Stage Address Register, SHDBG
(SHDBG_F2ADDR)........................................... 31–19

Fetch 3 Stage Address Register, SHDBG
(SHDBG_F3ADDR)........................................... 31–20

Fetch 4 Stage Address Register, SHDBG
(SHDBG_F4ADDR)........................................... 31–21

FIFO, shifter..................................................................3–18
fixed-point

ALU instructions...................................................... 3–7
formats................................................................... 27–4
multiplier instructions............................................ 3–13
operands...................................................................3–5
product, 64-bit....................................................... 27–4
product, 64-bit unsigned........................................ 3–37
saturation values..................................................... 3–12

flag
update.................................................................... 3–19
use with NAN........................................................ 27–1

Flag I/O Register, REGF (REGF_FLAGS).................. 28–21
floating-point

ALU instructions...................................................... 3–8
data........................................................................ 3–39
multiplier instructions............................................ 3–14

flush cache command.................................................... 4–50
formats.......................................................................... 27–1

16-bit floating-point...............................................27–3
40-bit floating-point...............................................27–3
64-bit fixed-point................................................... 27–4
fixed-point.....................................................3–12,27–4
integer, fractional.............................................3–5,3–10
numeric.................................................................. 27–1
packing (Fpack/Funpack) instructions.................... 3–19
short word.............................................................. 27–3

FPACK/FUNPACK (floating-point pack/unpack) instruc-
tions....................................................................... 27–3

fractional
results............................................................ 3–10,27–4

freezing the cache...........................................................4–51
FUNPACK (floating-point unpack) computation..........3–19

G

General-Purpose Parity Error Status Register, CMMR
(CMMR_GPERR_STAT)......................................29–2

H

hardware breakpoints.....................................................10–6
Harvard architecture........................................................ 7–2

I

ID Code Register, SHDBG (SHDBG_REVID).......... 31–37
IEEE 754/854 standard................................................. 3–37
IEEE floating-point number conversion........................ 3–19
IEEE standard 754/854................................................. 27–1
IICD (illegal input condition interrupt) bit................... 6–32
IIVT (interrupt vector table) bit.................................... 4–73
ILADE (illegal address spaced detected enable) bit.........6–31
illegal address space detected enable (ILADE) bit...........6–31
illegal input condition detected (IICD) bit.................... 6–32
Illegal Opcode Detected Register, SHDBG

(SHDBG_DBGREG_ILLOP)............................. 31–11
IMDWx (internal memory data width) bits.....................2–8
implicit operations

complementary registers........................................... 2–5
Index Registers, REGF (REGF_I[n])........................... 28–39
infinity, round-to........................................................... 3–38
instruction

clip........................................................................... 3–6
conditional............................................................... 3–3
FDEP (field deposit)...............................................3–16
FPACK (floating-point pack)..................................27–3
FUNPACK (floating-point unpack)....................... 27–3
multiplier........................................................ 3–9,3–13
multiprecision...........................................................3–6

instruction alignment buffer (IAB).................................. 4–5
Instruction Pipeline Stage Address Register, REGF

(REGF_FADDR).................................................28–20
integer

results............................................................ 3–10,27–4
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interleaving data............................................................ 7–15
Interrupt Latch Register, REGF (REGF_IRPTL)........ 28–34
Interrupt Mask Pointer Register, REGF (REGF_IMASKP)...

.............................................................................28–29
Interrupt Mask Register, REGF (REGF_IMASK)....... 28–24
interrupts..............................................................6–31,6–32

and floating-point exceptions....................................3–3
JTAG......................................................................10–8
nesting....................................................................4–30
response in sequencer..............................................4–23

Invalidation/Write Back Count 0 Register, SHL1C
(SHL1C_INV_CNT0).......................................... 32–8

Invalidation/Write Back Index Start 0 Register, SHL1C
(SHL1C_INV_IXSTART0)................................... 32–9

J

JTAG
interrupts................................................................10–8
latency.................................................................... 10–9
performance........................................................... 10–9
specification, IEEE 1149.1..................................... 10–9

L

L1 BANK SHUT DOWN CONTROL, CMMR
(CMMR_PWR_L1_SD_CTL).............................. 29–9

L1 BANK SLEEP CONTROL, CMMR
(CMMR_PWR_L1_LS_CTL)............................... 29–8

L1 Cache Configuration 1 Register, SHL1C (SHL1C_CFG)
...............................................................................32–2

Length (Circular Buffer) Registers, REGF (REGF_L[n]).......
.............................................................................28–42

Lock Range End Register, SHBTB (SHBTB_LOCK_END).
...............................................................................30–4

Lock Range Start Register, SHBTB
(SHBTB_LOCK_START).....................................30–5

logical operations............................................................. 3–4
long word

single data......................................................7–28,7–41
SISD mode.............................................................7–42

long word, neighbor register pairs.................................... 2–5
Loop Address Stack Register, REGF (REGF_LADDR).........

.............................................................................28–40
Loop Counter Register, REGF (REGF_LCNTR)........28–41

M

memory
architecture...............................................................7–2
broadcast loading....................................................7–31
buses.........................................................................7–2
data bus alignment................................................... 2–8
data width (IMDWx) bits.........................................2–8
mixing 32-bit & 48-bit words.................................7–11
mixing 32-bit and 48-bit words.............................. 7–11
mixing 32-bit data and 48-bit instructions............. 7–10
mixing 40/48-bit and 16/32/64-bit data.................7–13
mixing instructions and data

two unused locations....................................... 7–13
mixing word width in SIMD mode........................ 7–40
mixing word width in SISD mode..........................7–39
program memory bus exchange (PX) register............2–8
regions......................................................................7–9
register-to-register moves.......................................... 2–8
transition from 32-bit/48-bit data...........................7–12

Memory 1 Stage Address Register, SHDBG
(SHDBG_M1ADDR)..........................................31–22

Memory 2 Stage Address Register, SHDBG
(SHDBG_M2ADDR)..........................................31–23

Memory 3 Stage Address Register, SHDBG
(SHDBG_M3ADDR)..........................................31–24

Memory 4 Stage Address Register, SHDBG
(SHDBG_M4ADDR)..........................................31–25

memory transfers
32-bit (normal word)..............................................7–24
40-bit (extended precision normal word)................ 7–29
64-bit (long word)......................................... 7–28,7–41
bus exchange (PX) registers.......................................2–8

MI (multiplier floating-point invalid) bit.......................3–12
MIS (multiplier floating-point invalid) bit.....................3–12
MISCREG_PFB_RANGE_SELECT (, MISCREG).....8–16
MN (multiplier negative) bit......................................... 3–12
MODE1 register...................................................3–37,3–38
Mode 1 Stack (Top Entry) Register, REGF

(REGF_MODE1STK).........................................28–52
Mode Control 1 Register, REGF (REGF_MODE1)....28–47
Mode Control 2 Register, REGF (REGF_MODE2)....28–56
Mode Mask Register, REGF (REGF_MMASK).......... 28–43
Modify Registers, REGF (REGF_M[n])...................... 28–74
MOS (multiplier fixed-point overflow) bit.....................3–12
move data...................................................................... 3–22
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MRF (multiplier foreground) registers.................. 3–22,13–9
MR register

instructions.............................................................3–13
MU (multiplier floating-point underflow) bit................ 3–12
multifunction computations................................. 3–21,3–22
multiplier

64-bit product........................................................ 27–4
clear operation........................................................3–11
fixed-point overflow status (MOS) bit.................... 3–12
floating-point invalid (MI) bit................................ 3–12
floating-point invalid status (MIS) bit.................... 3–12
floating-point overflow status (MVS) bit................ 3–12
floating-point underflow (MU) bit......................... 3–12
floating-point underflow status (MUS) bit............. 3–12
input modifiers..............................................3–13,3–14
instructions......................................................3–9,3–13
MRF/B (multiplier result foreground/background) reg-

isters................................................................3–10
operations......................................................3–10,3–12
overflow (MV) bit.................................................. 3–12
rounding.................................................................3–11
saturation............................................................... 3–12
status............................................................... 3–3,3–12

multiplier result registers..................................................2–2
Multiplier Results (PEx) Background Register, REGF

(REGF_MRB)......................................................28–64
Multiplier Results (PEx) Foreground Register, REGF

(REGF_MRF)......................................................28–65
Multiplier Results (PEy) Background Register, REGF

(REGF_MSB)...................................................... 28–72
Multiplier Results (PEy) Foreground Register, REGF

(REGF_MSF)...................................................... 28–73
Multiplier Results 0 (PEx) Background Register, REGF

(REGF_MR0B)....................................................28–58
Multiplier Results 0 (PEx) Foreground Register, REGF

(REGF_MR0F)....................................................28–59
Multiplier Results 0 (PEy) Background Register, REGF

(REGF_MS0B).................................................... 28–66
Multiplier Results 0 (PEy) Foreground Register, REGF

(REGF_MS0F).................................................... 28–67
Multiplier Results 1 (PEx) Background Register, REGF

(REGF_MR1B)....................................................28–60
Multiplier Results 1 (PEx) Foreground Register, REGF

(REGF_MR1F)....................................................28–61
Multiplier Results 1 (PEy) Background Register, REGF

(REGF_MS1B).................................................... 28–68

Multiplier Results 1 (PEy) Foreground Register, REGF
(REGF_MS1F).................................................... 28–69

Multiplier Results 2 (PEx) Background Register, REGF
(REGF_MR2B)....................................................28–62

Multiplier Results 2 (PEx) Foreground Register, REGF
(REGF_MR2F)....................................................28–63

Multiplier Results 2 (PEy) Background Register, REGF
(REGF_MS2B).................................................... 28–70

Multiplier Results 2 (PEy) Foreground Register, REGF
(REGF_MS2F).................................................... 28–71

multiply accumulator.......................................................3–9
see also multiplier

multiprecision instruction................................................3–6
MUS (multiplier floating-point underflow) bit.............. 3–12
MV (multiplier not overflow) bit................................... 3–12
MVS (multiplier floating-point overflow) bit.................3–12

N

nearest, round-to........................................................... 3–38
neighbor register pairs, long word.................................... 2–5
nesting interrupts...........................................................4–30
normal word

mixing 32-bit data and 48-bit instructions............. 7–10
SIMD mode.................................................. 7–26,7–27
SISD mode....................................................7–24,7–25

not-a-number (NAN).................................................... 3–38
numbers, infinity........................................................... 27–1

O

O/S Processor ID Register, SHDBG (SHDBG_OSPID).......
.............................................................................31–26

operands............................................................... 3–10,3–15
in ALU..................................................................... 3–4

operands for multifunction computations......................3–22
OR, logical.................................................................. 13–47
overflow and underflow................................................. 3–19

P

packing (16-to-32 data)................................................. 27–3
parallel operations..........................................................3–21
PEYEN (processing element Y enable) bit, SIMD mode3–39
PFB No Caching Return 0 End Address Register, CMMR

(CMMR_PFB_NOCHRT0_END).......................29–5
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PFB No Caching Return 0 Start Address Register, CMMR
(CMMR_PFB_NOCHRT0_ST)...........................29–6

pin
flag........................................................................... 2–2
timer expired (TMREXP).........................................5–2

pipeline use in..................................................................4–4
PM Data Address 1 End Register, SHDBG

(SHDBG_PMDAE).............................................31–27
PM Data Address 1 Start Register, SHDBG

(SHDBG_PMDAS)............................................. 31–28
PMD-DMD Bus Exchange 1 Register, REGF (REGF_PX1).

.............................................................................28–79
PMD-DMD Bus Exchange 2 Register, REGF (REGF_PX2).

.............................................................................28–80
PMD-DMD Bus Exchange Register, REGF (REGF_PX)......

.............................................................................28–78
precision

16-bit..................................................................... 3–19
processing elements..........................................................3–1

data flow...................................................................3–2
features..................................................................... 3–1

processing element Y enable (PEYEN) bit, SIMD mode3–39
processor core

memory block conflicts, preventing........................ 7–15
register types in.........................................................2–1
user status registers (USTAT)....................................2–7

Program Counter Register, REGF (REGF_PC)........... 28–75
Program Counter Stack Pointer Register, REGF

(REGF_PCSTKP)................................................28–77
Program Counter Stack Register, REGF (REGF_PCSTK).....

.............................................................................28–76
program memory bus exchange (PX) register................... 2–8
Program Sequence Address 1 End Register, SHDBG

(SHDBG_PSA1E)................................................31–29
Program Sequence Address 1 Start Register, SHDBG

(SHDBG_PSA1S)................................................ 31–30
Program Sequence Address 2 End Register, SHDBG

(SHDBG_PSA2E)................................................31–31
Program Sequence Address 2 Start Register, SHDBG

(SHDBG_PSA2S)................................................ 31–32
Program Sequence Address 3 End Register, SHDBG

(SHDBG_PSA3E)................................................31–33
Program Sequence Address 3 Start Register, SHDBG

(SHDBG_PSA3S)................................................ 31–34
Program Sequence Address 4 End Register, SHDBG

(SHDBG_PSA4E)................................................31–35

Program Sequence Address 4 Start Register, SHDBG
(SHDBG_PSA4S)................................................ 31–36

program sequencer
absolute address...................................................... 4–14
AC (ALU fixed-point carry) bit.............................. 4–53
addressing

storing top-of-loop addresses............................. 4–8
ALU

carry (AC) bit..................................................4–53
AND, logical.......................................................... 4–62
arithmetic

exception and interrupts..................................4–21
loops............................................................... 4–37

AV (ALU overflow) bit........................................... 4–53
bit test flag (BTF)................................................... 4–52
bit XOR instruction............................................... 4–52
boolean operator AND...........................................4–62
branch conditional..................................................4–62
branch delayed...............................................4–15,4–19
branch direct.......................................................... 4–14
branch indirect....................................................... 4–14
branching execution............................................... 4–10
branching execution direct and indirect branches... 4–14
BTF (bit test flag) bit..............................................4–52
buffer instruction......................................................4–5
cache freeze (CAFRZ) bit....................................... 4–51
cache hit................................................................. 4–49
cache miss...............................................................4–49
cache restrictions on use......................................... 4–50
CAFRZ (cache freeze) bit....................................... 4–51
CALL instructions..................................................4–10
complementary conditions..................................... 4–62
conditional branches...............................................4–62
conditional complementary conditions...................4–62
conditional compute operations..............................4–56
conditional conditions list............................. 4–52,4–54
conditional execution summary.............................. 4–55
conditional SIMD mode and conditionals..............4–54
condition codes...................................................... 4–53
conflicts bus............................................................4–48
DADDR (decode address) register............................4–3
delayed branch (DB) instruction....................4–15,4–19
delayed branch (DB) jump or call instruction.........4–18
delayed branch limitations...................................... 4–19
delayed interrupt processing, causes........................ 4–29
enable cache............................................................4–51
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enable nesting, interrupt.........................................4–24
equals (EQ) condition................................... 4–52,4–54
examples direct branch........................................... 4–14
examples interrupt service routine...........................4–26
fetch address............................................................. 4–2
flag input (FLAGx_IN) conditions......................... 4–53
greater or equals (GE) condition.............................4–52
greater than (GT) condition................................... 4–52
IDLE instruction......................................................4–2
indirect branch....................................................... 4–14
instruction bit XOR............................................... 4–52
instruction CALL................................................... 4–10
instruction delayed branch (DB)....................4–15,4–19
instruction delayed branch (DB) JUMP or CALL.. 4–18
instruction pipeline...................................................4–2
interrupt response...................................................4–23
interrupt sources.....................................................4–24
interrupts single-cycle instruction latency............... 4–24
JUMP instructions.......................................... 4–2,4–10
JUMP instructions clear interrupt (CI) register.......4–11
JUMP instructions loop abort (LA) register............4–11
JUMP instructions pops status stack with (CI)....... 4–10
LA (loop abort instruction).....................................4–11
latching interrupts.................................................. 4–25
latency.................................................................... 4–23
latency effect in MODE2 register........................... 4–50
loop abort (LA) modifier in a jump instruction..............

...............................................................4–11,4–41
loop address stack................................................... 4–40
loop defined............................................................. 4–2
loop restrictions...................................................... 4–41
masking interrupts..................................................4–23
mnemonics evaluation of........................................ 4–52
nesting multiple interrupts enable (NESTM) bit...... 4–9
not equal (NE).............................................. 4–52,4–54
pop program counter (PC) stack.............................4–10
pop status stack...................................................... 4–10
program flow branches.................................. 4–10,4–20
program flow hardware stacks and............................ 4–7
program flow nonsequential..................................... 4–7
program flow operating mode.................................4–21
program flow stack access an.....................................4–8
push loop counter stack.......................................... 4–41
push program counter (PC) stack........................... 4–10
push status stack....................................................... 4–9
register types.............................................................2–2

restrictions delayed branch......................................4–19
restrictions on ending loops.................................... 4–41
return (RTI/RTS) instructions................................4–10
RTI/RTS (return from/to interrupt) instructions....4–10
stacks status............................................................ 4–22
stacks status, current values in.................................4–10
status stack............................................................. 4–10
subroutines............................................................... 4–2
SV (shifter overflow) bit......................................... 4–53
termination codes, condition codes and loop termina-

tion................................................................. 4–53
test flag (TF) condition...........................................4–53
top-of-PC stack........................................................ 4–9
uncomplemented register........................................4–55
underflow, multiplier..............................................4–52
VISA instruction alignment buffer............................4–5

program sequencer bits
cache freeze (CAFRZ).............................................4–51
nesting multiple interrupt enable (NESTM).............4–9

program sequencer interrupts...........................................4–2
and sequencing....................................................... 4–21
delayed................................................................... 4–29
hold off...................................................................4–29
interrupt service routine (ISR)................................ 4–22
interrupt vector table.............................................. 4–21
interrupt vector table (IVT)....................................4–21
latch (IRPTL) register.............................................4–11
latching.................................................................. 4–25
latency.................................................................... 4–23
masking and latching.....................................4–23,4–25
nested interrupts.....................................................4–10
nesting enable (NESTM) bit.................................... 4–9
PC stack full............................................................. 4–9
processing...............................................................4–21
response..................................................................4–21
re-using.................................................................. 4–25

PX (program memory bus exchange) register................... 2–8

R

Range End 0 (Inv, WB, WBI, and Lock) Register, SHL1C
(SHL1C_RANGE_END0).................................. 32–10

Range End 1 (Inv, WB, WBI, and Lock) Register, SHL1C
(SHL1C_RANGE_END1).................................. 32–11

Range End 2 (Non-cacheable and Lock) Register, SHL1C
(SHL1C_RANGE_END2).................................. 32–12
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Range End 3 (Non-cacheable and Lock) Register, SHL1C
(SHL1C_RANGE_END3).................................. 32–13

Range End 4 (Non-cacheable and Write Through) Register,
SHL1C (SHL1C_RANGE_END4).....................32–14

Range End 5 (Non-cacheable and Write Through) Register,
SHL1C (SHL1C_RANGE_END5).....................32–15

Range End 6 (Non-cacheable and Write Through) Register,
SHL1C (SHL1C_RANGE_END6).....................32–16

Range End 7 (Non-cacheable and Write Through) Register,
SHL1C (SHL1C_RANGE_END7).....................32–17

Range Register Functionality Selection Register, SHL1C
(SHL1C_CFG2).................................................... 32–5

Range Start 0 (Inv, WB, WBI, and Lock) Register, SHL1C
(SHL1C_RANGE_START0)...............................32–18

Range Start 1 (Inv, WB, WBI, and Lock) Register, SHL1C
(SHL1C_RANGE_START1)...............................32–19

Range Start 2 (Non-cacheable and Lock) Register, SHL1C
(SHL1C_RANGE_START2)...............................32–20

Range Start 3 (Non-cacheable and Lock) Register, SHL1C
(SHL1C_RANGE_START3)...............................32–21

Range Start 4 (Non-cacheable and Write Through) Register,
SHL1C (SHL1C_RANGE_START4)..................32–22

Range Start 5 (Non-cacheable and Write Through) Register,
SHL1C (SHL1C_RANGE_START5)..................32–23

Range Start 6 (Non-cacheable and Write Through) Register,
SHL1C (SHL1C_RANGE_START6)..................32–24

Range Start 7 (Non-cacheable and Write Through) Register,
SHL1C (SHL1C_RANGE_START7)..................32–25

REGF_ASTATX (Arithmetic Status (PEx) Register, REGF)..
...............................................................................28–3

REGF_ASTATY (Arithmetic Status (PEy) Register, REGF)...
...............................................................................28–9

REGF_B[n] (Base (Circular Buffer) Registers, REGF).28–15
REGF_CURLCNTR (Current Loop Counter Register,

REGF)..................................................................28–16
REGF_DADDR (Decode Address Register, REGF).... 28–17
REGF_EMUCLK (Emulation Counter Register, REGF)......

.............................................................................28–18
REGF_EMUCLK2 (Emulation Counter Register 2, REGF).

.............................................................................28–19
REGF_FADDR (Instruction Pipeline Stage Address Register,

REGF)..................................................................28–20
REGF_FLAGS (Flag I/O Register, REGF).................. 28–21
REGF_I[n] (Index Registers, REGF)........................... 28–39
REGF_IMASK (Interrupt Mask Register, REGF)....... 28–24

REGF_IMASKP (Interrupt Mask Pointer Register, REGF)...
.............................................................................28–29

REGF_IRPTL (Interrupt Latch Register, REGF)........ 28–34
REGF_L[n] (Length (Circular Buffer) Registers, REGF).......

.............................................................................28–42
REGF_LADDR (Loop Address Stack Register, REGF).........

.............................................................................28–40
REGF_LCNTR (Loop Counter Register, REGF)........28–41
REGF_M[n] (Modify Registers, REGF)...................... 28–74
REGF_MMASK (Mode Mask Register, REGF).......... 28–43
REGF_MODE1 (Mode Control 1 Register, REGF)....28–47
REGF_MODE1STK (Mode 1 Stack (Top Entry) Register,

REGF)..................................................................28–52
REGF_MODE2 (Mode Control 2 Register, REGF)....28–56
REGF_MR0B (Multiplier Results 0 (PEx) Background Reg-

ister, REGF)......................................................... 28–58
REGF_MR0F (Multiplier Results 0 (PEx) Foreground Reg-

ister, REGF)......................................................... 28–59
REGF_MR1B (Multiplier Results 1 (PEx) Background Reg-

ister, REGF)......................................................... 28–60
REGF_MR1F (Multiplier Results 1 (PEx) Foreground Reg-

ister, REGF)......................................................... 28–61
REGF_MR2B (Multiplier Results 2 (PEx) Background Reg-

ister, REGF)......................................................... 28–62
REGF_MR2F (Multiplier Results 2 (PEx) Foreground Reg-

ister, REGF)......................................................... 28–63
REGF_MRB (Multiplier Results (PEx) Background Register,

REGF)..................................................................28–64
REGF_MRF (Multiplier Results (PEx) Foreground Register,

REGF)..................................................................28–65
REGF_MS0B (Multiplier Results 0 (PEy) Background Reg-

ister, REGF)......................................................... 28–66
REGF_MS0F (Multiplier Results 0 (PEy) Foreground Regis-

ter, REGF)............................................................28–67
REGF_MS1B (Multiplier Results 1 (PEy) Background Reg-

ister, REGF)......................................................... 28–68
REGF_MS1F (Multiplier Results 1 (PEy) Foreground Regis-

ter, REGF)............................................................28–69
REGF_MS2B (Multiplier Results 2 (PEy) Background Reg-

ister, REGF)......................................................... 28–70
REGF_MS2F (Multiplier Results 2 (PEy) Foreground Regis-

ter, REGF)............................................................28–71
REGF_MSB (Multiplier Results (PEy) Background Register,

REGF)..................................................................28–72
REGF_MSF (Multiplier Results (PEy) Foreground Register,

REGF)..................................................................28–73
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REGF_PC (Program Counter Register, REGF)........... 28–75
REGF_PCSTK (Program Counter Stack Register, REGF).....

.............................................................................28–76
REGF_PCSTKP (Program Counter Stack Pointer Register,

REGF)..................................................................28–77
REGF_PX (PMD-DMD Bus Exchange Register, REGF)......

.............................................................................28–78
REGF_PX1 (PMD-DMD Bus Exchange 1 Register, REGF).

.............................................................................28–79
REGF_PX2 (PMD-DMD Bus Exchange 2 Register, REGF).

.............................................................................28–80
REGF_R[n] (Register File (PEx) Data Registers (Rx, Fx),

REGF)..................................................................28–81
REGF_S[n] (Register File (PEy) Data Registers (Sx, SFx),

REGF)..................................................................28–88
REGF_STKYX (Sticky Status (PEx) Register, REGF)..28–82
REGF_STKYY (Sticky Status (PEy) Register, REGF).. 28–85
REGF_TCOUNT (Timer Count Register, REGF)..... 28–89
REGF_TPERIOD (Timer Period Register, REGF)..... 28–90
REGF_USTAT1 (User-Defined Status 1 Register, REGF).....

.............................................................................28–91
REGF_USTAT2 (User-Defined Status 2 Register, REGF).....

.............................................................................28–92
REGF_USTAT3 (User-Defined Status 3 Register, REGF).....

.............................................................................28–93
REGF_USTAT4 (User-Defined Status 4 Register, REGF).....

.............................................................................28–94
register file

register types.............................................................2–2
Register File (PEx) Data Registers (Rx, Fx), REGF

(REGF_R[n])....................................................... 28–81
Register File (PEy) Data Registers (Sx, SFx), REGF

(REGF_S[n])........................................................28–88
registers

ASTATxy...........................................................3–3,3–6
BRKCTL (breakpoint control)............................... 10–6
MODE1........................................................3–37,3–38
neighbor............................................... 7–28,7–41,7–42
program memory bus exchange (PX)........................ 2–8
restrictions on data registers.................................... 3–22

register-to-register data transfers.......................................2–8
restrictions

breakpoints, setting.................................................10–2
mixing 32- and 48-bit words.................................. 7–12

rounding........................................................................3–38
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sticky status (STKYx/y) register....................................... 3–3
System Control Register, CMMR (CMMR_SYSCTL) 29–10

T

test access port, , see TAP, emulator
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V

values, saturation maximum...........................................3–12
Von Neumann architecture.............................................. 7–2

W

word rotations............................................................... 7–11
write pointer instructio

write pointer instruction (BFFWRP)...................... 3–17

Z
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	FN = float RX;
	FN = float RX by RY;
	FN = recips FX;
	FN = rsqrts FX;
	FN = FX copysign FY;
	FN = min (FX, FY);
	FN = max (FX, FY);
	FN = clip FX by FY;

	64-bit Floating-Point Computations
	FM:N = FX:Y + FZ:W;
	FM:N = FX:Y - FZ:W;
	comp (FX:Y, FZ:W);
	FM:N = - FX:Y;
	FM:N = abs FX:Y;
	FM:N = pass FX:Y;
	FM:N = scalb FX:Y by RY;
	RN=fix FX:Y;
	RN = fix FX:Y by RY;
	RN = trunc FX:Y;
	RN = trunc FX:Y by RY;
	FM:N = float RX;
	FM:N = float RX by RY;
	FM:N = cvt FX;
	FN = cvt FX:Y;


	MR Register Data Move Operations
	(mrf | mrb) = RN;
	RN = (mrf | mrb);

	Multiplier Fixed-Point Computations
	(mrf | mrb) = MRF + RX * RY MOD1;
	RN = (mrf | mrb) + RX * RY MOD1;
	(mrf | mrb) = (mrf | mrb) – RX * RY MOD1;
	RN = (mrf | mrb) – RX * RY MOD1;
	(RN | mrf | mrb) = RX * RY MOD1;
	(RN | mrf | mrb) = rnd (mrf | mrb) MOD3;
	(RN | mrf | mrb) = sat (mrf | mrb) MOD2;
	(mrf | mrb) = 0;

	Multiplier Floating-Point Computations
	32-bit/40-bit Floating-Point Operations
	FN = FX * FY;

	64-bit Floating-Point Operations
	FM:N = FX:Y * FZ:W;
	FM:N = FX:Y * FY;
	FM:N = FX * FY;


	Shifter Immediate Computations
	RN = lshift RX by (RY | DATA8);
	RN = RN or lshift RX by (RY | DATA8);
	RN = ashift RX by (RY | DATA8);
	RN = RN or ashift RX by (RY | DATA8);
	RN = rot RX by (RY | DATA);
	RN = bclr RX by (RY | DATA8);
	RN = bset RX by (RY | DATA8);
	RN = btgl RX by (RY | DATA8);
	btst RX by (RY | DATA8);
	RN = fdep RX by (RY | BIT6:LEN6);
	RN = RN or fdep RX by (RY | BIT6:LEN6);
	RN = fdep RX by (RY | BIT6:LEN6) (se);
	RN = RN or fdep RX by (RY | BIT6:LEN6) (se);
	RN = fext RX by (RY | BIT6:LEN6);
	RN = fext RX by (RY | BIT6:LEN6) (se);
	RN = exp RX;
	RN = exp RX (ex);
	RN = leftz RX;
	RN = lefto RX;
	RN = fpack FX;
	FN = funpack RX;
	bitdep RX by (RY | BITLEN12);
	RN = bitext (RX | BITLEN12) (nu);
	bffwrp = (RN | DATA7);
	RN = bffwrp;

	Multi-Function Instruction Computations
	32-Bit, 40-Bit Instructions
	64-Bit Instructions
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