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Introduction 
The advance of modern highly paralleled 
processors, such as the Analog Devices 
TigerSHARC® family of processors, requires 
finding efficient ways to parallel 
implementations of many standard algorithms. 
This applications note not only explains how the 
fastest 16-bit FFT implementation on the 
TigerSHARC works, but also provides guidance 
about algorithm development, so you can apply 
similar techniques to other algorithms. 

Generally, most algorithms have several levels of 
optimization, which are discussed in detail in this 
note. The first and most straightforward level of 
optimization is the paralleling of instructions, as 
permitted by the processor's architecture. This is 
simple and boring. The second level of 
optimization is loop unrolling and software 
pipelining to achieve maximum parallelism and 
to avoid pipeline stalls. Although more complex 
than the simple parallelism of level one, this can 
be done in prescribed steps without a firm 
understanding of the algorithm and, thus, 
requires little ingenuity. The third level is 
restructuring the math of the algorithm to still 
produce valid results, but fit the processor’s 
architecture better. This requires a thorough 
understanding of the algorithm and, unlike 
software pipelining, there are no prescribed steps 
that lead to the optimal solution. This is where 
most of the fun in writing optimized code lies. 

In practical applications, it is often unnecessary 
to go through all of these levels. When all of the 

levels are required, it is best to perform these 
levels of optimization in reverse order. By the 
time the code is fully pipelined, it is too late to 
try to change the fundamental underlying 
algorithm. Thus, a programmer would have to 
think about the algorithm structure first and 
organize the code accordingly. Then, levels one 
and two (paralleling, unrolling, and pipelining) 
are usually done at the same time. 

The code to which this note refers is supplied by 
Analog Devices. A 256-point FFT is used as the 
specific example, but the mathematics and ideas 
apply equally to other sizes (no smaller than 16 
points).  

As we will see, the restructured algorithm breaks 
down the FFT into much smaller parts that can 
then be paralleled. In the case of the 256-point 
FFT (its code listing is at the end of this 
applications note), the FFT is split into 16 FFTs 
of 16 points each and each, 16-point FFT is done 
in radix-4 fashion (i.e., each has only two 
stages). If we were to do a 512=point FFT, we 
would have to do 16 FFTs of 32 points each 
(and, also, 32 FFTs of 16 points each), each 32-
point FFT would have the first two stages done 
in radix-4 and the last stage in radix-2. These 
differences imply that it would be difficult to 
write the code that is FFT size-generic. Although 
the implemented algorithm is generic and applies 
equally well to all sizes, the code is not, and it 
must be hand-tuned to each point size to be able 
to take full advantage of its optimization. 
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With all this in mind, let us dive into the 
fascinating world of fixed-point FFTs in the land 
of the TigerSHARC. 

Standard Radix-2 FFT Algorithm 
Figure 1 shows a standard 16-point radix-2 FFT 
implementation, after the input has been bit-
reversed. Traditionally, in this algorithm, stages 

1 and 2 are combined with the required bit 
reversing into a single optimized loop (since 
these two stages require no multiplies, only adds 
and subtracts). Each of the remaining stages is 
usually done by combining the butterflies that 
share the same twiddle factors together into 
groups (so the twiddles need only to be fetched 
once for each group).  

 

 

Figure 1. Standard Structure of the 16-Point FFT 

Since TigerSHARC processors offer vectorized 
16-bit processing on packed data, we would like 
to parallel this algorithm into at least as many 
parallel processes as the TigerSHARC can 
handle. An add/subtract instruction of the 
TigerSHARC (which is instrumental in 

computing a fundamental butterfly) can be 
paralleled to be performed on eight 16-bit values 
per cycle (four in each compute block of the 
TigerSHARC processor). Since data is complex, 
this equates to four add/subtracts of data per 
cycle. Thus, we would like to break the FFT into 
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at least four parallel processes. Looking at the 
diagram of Figure 1, it is clear that we can do 
this by simply combining the data into blocks, 
four points at a time, i.e.:  

1st block   = {x(0), x(8), x(4), x(12)} 

2nd block  = {x(2), x(10), x(6), x(14)} 

3rd block  = {x(1), x(9), x(5), x(13)} 

4th block  = {x(3), x(11), x(7), x(15)} 

These groups have no interdependencies and will 
parallel very nicely for the first two stages of the 
FFT. After that we are in trouble and the 
parallelism is gone. At this point, however, we 
could re-arrange the data into different blocks to 
ensure that the rest of the way the new blocks do 
not crosstalk to each other and, thus, can be 
paralleled. A careful examination shows that the 
required re-arrangement is an operation of 
interleaving (or de-interleaving), with new 
blocks given by: 

1st block   = {x(0), x(2), x(1), x(3)} 

2nd block  = {x(8), x(10), x(9), x(11)} 

3rd block  = {x(4), x(6), x(5), x(7)} 

4th block  = {x(12), x(14), x(13), x(15)} 

Another way to look at these new blocks is as the 
4x4 matrix transpose (where blocks define the 
matrix rows). Of course, there is a significant 
side effect—after the data re-arrangement the last 
stages will parallel, but will not produce data in 
the correct order. Maybe we can compensate for 
this by starting with an order other than the bit-
reverse we had started with, but let us leave this 
detail for the rigorous mathematical analysis that 
comes later. 

At this time, the analysis of the 16 point FFT 
seems to suggest that, in general, given an N 
point FFT, we would like to view it in two 
dimensions as a NN ×  matrix of data and 
parallel-process the rows or columns, then 
transpose the matrix and parallel-process the 
rows or columns again. Another requirement that 

comes from this is that N must be a perfect 
square. As it turns out, we can dispose of this 
requirement, but that will be discussed later. At 
this time we are concerned with the 256-point 
FFT and, as luck would have it, 216256 = . 

So, which shall we parallel, the rows or the 
columns? The answer lies in the TigerSHARC 
processor’s vector architecture. When the 
TigerSHARC processor fetches data from 
memory, it fetches it in chunks of 128 bits at a 
time (i.e., four 16-bit complex data points) and 
packs it into quad or paired (for SIMD fetches) 
registers. Then it vectorizes processing across the 
register quad or pair. Thus, it is the columns of 
the matrix that we want to parallel (i.e., we 
would like to structure our math so that all the 
columns of the matrix are independent from one 
another). 

Now that we know what we would like the math 
to give us, it is time to do this rigorously in the 
language of mathematics. 

Mathematics of the Algorithm 
The following notation will be used: 

N = Number of points in the original FFT (256 in 
our example), 

NM = , 
∧

x  will stand for the Discrete Fourier Transform 
(henceforth abbreviated as DFT) of x. 

Now, given signal x, 
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and 
∧

mx  is this function’s M–point DFT. Now, we 
view the output index n as arranged in an M x M 
matrix (i.e., 1,0   , −<≤+= MtstMsn ) Thus, 
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since 
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mx , being an M–point DFT, is periodic 
with period = M. Thus, 
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and 
∧
*
tx  is this function’s M–point DFT. 

Implementation of the Algorithm 
Equations (1), (2), and (3) show how to compute 
the DFT of x using the following steps (here we 
go back to our specific example of N=256, 
M=16): 

1. Arrange the 256 points of the input data x(n) 
linearly, but think of it as a 16x16 matrix: 
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2. Using equation (1), re-write as:  
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3. We now compute parallel FFTs on columns 
(as mentioned before, TigerSHARC 
processors do this very efficiently) obtaining: 
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4. We point-wise multiply this by matrix  
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which, according to equation (3) is precisely 
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5. Now we would like to compute the 16-point 
FFTs of )(* mxt , but these are arranged to be 
paralleled in rows instead of columns. Thus, 
we have to transpose to obtain  
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6. We compute parallel FFTs on the columns 
and use equation (2) to obtain 
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This is the FFT result that we want, and it is in 
the correct order! The math is done, and we are 
ready to consider the programming 
implementation. In the following discussion, we 
will refer to the steps outlined above as Steps 1 
through 6. 

Programming Implementation 
We will go through the steps of the previous 
section, one step at a time. 

Steps 1 and 2 do not need to be programmed. 
The input data is already arranged in the proper 
order. 

Step 3 requires us to compute 16 parallel 16-
point FFTs on the columns of the input matrix. 
As mentioned before, the TigerSHARC can 
easily parallel four FFTs at a time, thanks to its 
vector processing, so we can do four FFTs at a 
time and repeat this process four times to 
compute all 16 FFTs. 16-point FFTs can be done 
very efficiently in radix-4, resulting in two 
stages, at four butterflies per stage. To minimize 
overhead, it is more efficient to compute only the 
first stage for each of the four sets of the four 
FFTs, followed by computing the second stage 

for each of the four sets of the four FFTs (instead 
of doing both stages for each set). 

Step 4 is a point-wise complex multiply (256 
multiplies in total), and Step 5 is a matrix 
transpose. These two steps can be combined—
while multiplying the data points we can store 
them in a transposed fashion. 

Step 6 is identical to Step 3—we have to 
compute 16 parallel 16-point FFTs on the 
columns of our new input matrix. This part need 
not need be written. We can simply branch to the 
code of Step 3, remembering to exit the routine 
once the FFTs are finished (instead of going on 
to the Step 4, as before). 

Figure 2 represent buffers containing the data, 
and arrows correspond to transformations of data 
between buffers. 

 

Figure 2. Block Diagram of the Code 
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Pipelining the Algorithm - Stage 1 
Let us concentrate on Step 3 first.  

Mnemonic Operation 

F1 Fetch 4 complex Input1 of the 4 
butterflies=4 32-bit values 

F2 Fetch 4 complex Input2 of the 4 
butterflies=4 32-bit values 

F3 Fetch 4 complex Input3 of the 4 
butterflies=4 32-bit values 

F4 Fetch 4 complex Input4 of the 4 
butterflies=4 32-bit values 

AS1 F1+/-F2 

AS2 F3+/-F4 

MPY1 
1st half of (F1-F2)*(-i)                  

Note that we can do only 2 complex 
mpys per cycle 

M1 Move MPY1 into compute block register 

MPY2 
2nd half of (F1-F2)*(-i)                 

Note that we can do only 2 complex 
mpys per cycle 

M2 Move MPY2 into compute block register 

AS3 (F3 + F4)+/-(F1+F2) =Output1 and 
Output3 of the 4 butterflies 

AS4 (F3 – F4)+/-(F1-F2)*(-i) =Output2 and 
Output 4 of the 4 butterflies 

S1 Store (Output1) of the 4 butterflies=4 32-
bit values 

S2 Store (Output2) of the 4 butterflies=4 32-
bit values 

S3 Store (Output3) of the 4 butterflies=4 32-
bit values 

S4 Store (Output4) of the 4 butterflies=4 32-
bit values 

Table 1. Single Butterfly of Stage 1 Done Linearly – 
Logical Implementation 

Table 1 lists the operations necessary to perform 
four parallel radix-4 complex butterflies of stage 
1 in vector fashion of the TigerSHARC 
processor. Actually, this portion is the same for 
stages other than first, except that the other 
stages also require a complex twiddle multiply at 
the beginning of the butterfly. This makes other 
stages more complicated, and they will be dealt 
with in the next section. 

Cycle/ 
Operat

ion 
JALU KA

LU MAC ALU 

1 F1 S4---  AS3-- 

2 F2 S1-- MPY1- AS2- 

3 F3 S2-- M1-, MPY2- AS4-- 

4 F4 S3-- M2- AS1 

5 F1+ S4--  AS3- 

6 F2+ S1- MPY1 AS2 

7 F3+ S2- M1, MPY2 AS4- 

8 F4+ S3- M2 AS1+ 

9 F1++ S4-  AS3 

10 F2++ S1 MPY1+ AS2+ 

11 F3++ S2 M1+, MPY2+ AS4 

12 F4++ S3 M2+ AS1++ 

13 F1+++ S4  AS3+ 

14 F2+++ S1+ MPY1++ AS2++ 

15 F3+++ S2+ M1++, MPY2++ AS4+ 

16 F4+++ S3+ M2++ AS1++
+ 

Table 2. Pipelined Butterflies – Stage 1 

Table 2 shows the butterflies pipelined. A “+” in 
the operation indicates the operation that 
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corresponds to the next set of the butterflies and 
a “-” corresponds to the operation in the previous 
set of butterflies. All instructions are paralleled, 
and there are no stalls.  

Pipelining the Algorithm - Stage 2 
To do a butterfly for stage 2, one must perform 
the same computations as for stage 1, except for 
an additional complex multiply of each of the 16 
(4 paralleled x 4 points) inputs at the beginning. 
This creates a problem. The original butterfly has 
two SIMD complex multiplies in it already. 
Adding 8 more makes 10 complex multiplies, 
while ALU, fetch, and store remain at 4. This 
would make the algorithm unbalanced—too 
many multiplies and too few other compute units 
will not parallel well. The best that can be done 
this way is 10 cycles per vector of butterflies. 

It turns out that each of the two original 
multiplies (being multiplies by -i) can be 
replaced by one short ALU (negate) and one long 
rotate. In addition, two register moves are 
required to ensure that the data is back to being 
packed in long registers for the parallel 
add/subtracts that follow. For the vectored 
butterfly, this would leave a total of 8 multiplies, 
6 ALUs (4 add/subtracts and 2 negates), and 2 
shifts (rotates)—perfectly balanced for an 8-
cycle execution. Also, 4 fetches and 4 stores 
leave plenty of room for register moves. 

Table 3 lists the operations necessary to perform 
vectored (i.e., four parallel) radix-4 complex 
butterflies of stage 2 on the TigerSHARC 
processor. Things have gotten significantly more 
complex! 

Table 4 shows the butterflies pipelined. A “+” in 
the operation indicates the operation that 
corresponds to the next set of the butterflies, and 
a “-” corresponds to the operation in the previous 
set of the butterflies. 

 

 

Mnemonic Operation 

F1 Fetch 4 complex Input1 of the 4 
butterflies=4 32-bit values 

F2 Fetch 4 complex Input2 of the 4 
butterflies=4 32-bit values 

F3 Fetch 4 complex Input3 of the 4 
butterflies=4 32-bit values 

F4 Fetch 4 complex Input4 of the 4 
butterflies=4 32-bit values 

MPY1 1st half of F1*twiddle                   

M1 Move MPY1 into compute block register 

MPY2 2nd half of F1*twiddle                   

M2 Move MPY2 into compute block register 

MPY3 1st half of F2*twiddle                   

M3 Move MPY3 into compute block register 

MPY4 2nd half of F2*twiddle                   

M4 Move MPY4 into compute block register 

MPY5 1st half of F3*twiddle                   

M5 Move MPY5 into compute block register 

MPY6 2nd half of F3*twiddle                   

M6 Move MPY6 into compute block register 

MPY7 1st half of F4*twiddle                   

M7 Move MPY7 into compute block register 

MPY8 2nd half of F4*twiddle                   

M8 Move MPY8 into compute block register 

AS1 M1,M2+/-M3,M4 

AS2 M5,M6+/-M7,M8 

A1 Negate  (M1-M3) 

MV1 Move (M1-M3) into a pair of the register 
that contains A1 
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R1 Rotate the long result of A1,MV1 – now    
the low register contains (M1-M3)*(-i) 

A2 Negate (M2-M4) 

MV2 Move (M2-M4) into a pair of the register 
that contains A2 

R2 Rotate the long result of A2,MV2 – now    
the low register contains (M2-M4)*(-i) 

AS3 (F3 + F4)+/-(F1+F2) 

AS4 
(F3 – F4)+/-(F1-F2)*(-i)                 

Here (F1-F2)*(-i) was obtained by R1 
and R2 

S1 Store 1 of the 4 butterflies=4 32-bit values 

S2 Store 2 of the 4 butterflies=4 32-bit values 

S3 Store 3 of the 4 butterflies=4 32-bit values 

S4 Store 4 of the 4 butterflies=4 32-bit values 

Table 3. Single Butterfly of Stage 2 Done Linearly – 
Logical Implementation 

All instructions are paralleled, and there are no 
stalls. There is still a question of twiddle fetch 
which was not addressed, but there are so many 
JALU and KALU instruction slots still available 
that scheduling twiddle fetches will not cause 
any problems (they are actually the same value 
per vector, so broadcast reads will bring them in 
efficiently). 

Cycle/ 
Operat

ion 
JALU KALU MAC ALU

1 F1 MV1-- M3-, MPY4- A1-- 

2 F2  M4-, MPY5- A2-- 

3  S3--- M5-, MPY6- R1-- 

4  S4--- M6-, MPY7- R2-- 

5 F3 MV2-- M7-, MPY8- AS3-- 

6 F4  M8-, MPY1 AS1- 

7  S1-- M1, MPY2 AS4-- 

8  S2-- M2, MPY3 AS2- 

9 F1+ MV1- M3, MPY4 A1- 

10 F2+  M4, MPY5 A2- 

11  S3-- M5, MPY6 R1- 

12  S4-- M6, MPY7 R2- 

13 F3+ MV2- M7, MPY8 AS3- 

14 F4+  M8, MPY1+ AS1 

15  S1- M1+, MPY2+ AS4- 

16  S2- M2+, MPY3+ AS2 

17 F1++ MV1 M3+, MPY4+ A1 

18 F2++  M4+, MPY5+ A2 

19  S3- M5+, MPY6+ R1 

20  S4- M6+, MPY7+ R2 

21 F3++ MV2 M7+, MPY8+ AS3 

22 F4++  M8+, MPY1++ AS1+ 

23  S1 M1++, MPY2++ AS4 

24  S2 M2++, MPY3++ AS2+ 

25 F1+++ MV1+ M3++, MPY4++ A1+ 

26 F2+++  M4++, MPY5++ A2+ 

27  S3 M5++, MPY6++ R1+ 

28  S4 M6++, MPY7++ R2+ 

Table 4. Pipelined Butterflies – Stage 2 

The multiplies and transpose of Steps 4 and 5 are 
very simple to pipeline. They involve only 
fetches, multiplies, and stores, so the pipelining 
of these parts of the algorithm is not discussed in 
detail here. 
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The Code 
Now, writing the code is trivial. The ADSP-
TS201 TigerSHARC processor is so flexible that 
it takes all the challenge right out of it. Just 
follow the pipelines of Table 2 and Table 4 and 
the code is done. The resulting code is shown in 
Listing 1. 

Now, for the bottom line—how much did the 
cycle count improve? Table 5 lists cycle counts 
for the old and new implementations of the 16-
bit complex input FFTs. As shown, the cycle 
counts have improved considerably. 

Points 

N 

Old 
Implementation 

New 
Implementation 

64 302 147 

256 886 585 

1024 3758 2725 

2048 7839 5776 

4096 16600 12546 

Table 5. Core Clock Cycles for N-Point 16-bit 
Complex FFT 

Usage Rules 
The C-callable complex FFT routine is called as 

fft256pt(&(input), &(ping_pong_buffer1), 
             &(ping_pong_buffer2), &(output)); 

where: 

input -> FFT input buffer, 

output -> FFT output buffer, 

ping_pong_bufferx are the ping pong buffers. 

All buffers are packed complex values in normal 
(not bit-reversed) order. 

ping_pong_buffer1 and ping_pong_buffer2 must 
be two distinct buffers. However, depending on 
the routine’s user requirements, some memory 

optimization is possible. ping_pong_buffer1 can 
be made the same as input if input does not need 
to be preserved. Also, output can be made the 
same as ping_pong_buffer2. Below is an 
example of the routine usage with minimal use of 
memory: 

fft256pt (&(input), &( input),  
         &( output), &(output)); 

To eliminate memory block access conflicts, 
input and ping_pong_buffer1 must reside in a 
different memory block than ping_pong_buffer2 
and output, and the twiddle factors must reside in 
a different memory block than the ping-pong 
buffers. Of course, all code must reside in a 
block that is different from all the data buffers, as 
well. 

Remarks 
The example examined here is that of a 256-
point FFT. At the time of writing this note, 64-
point, 1024-point, 2048-point and 4096-point 
FFT examples using the algorithm described 
above have also been written. In those cases, the 
FFTs were viewed as 8x8, 32x32, 32x64, and 
64x64 matrices, respectively. The 32-point FFTs 
were done in radix-4 (all the way to the last 
stage) and the last stage was done in the 
traditional radix-2. 

The 2048-point FFT was arranged in a matrix of 
32 columns and 64 rows. 32 FFTs of 64 points 
each are done in parallel on the columns. 
Applying a point-wise multiply and transpose 
gives a matrix of 64 columns and 32 rows. Doing 
64 FFTs of 32 points each in parallel on the 
columns completes the algorithm. The only side 
effect is that the parallel FFT portion of the code 
cannot be re-used (remember, the algorithm 
needs it twice) because the number of rows and 
columns is no longer the same. This results in 
longer source code, but the cycle count 
efficiency is just as good. 
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Appendix 

Complete Source Code of the Optimized FFT 

/****************************************************************************************************************************************** 
 
   fft256pt.asm 
    
 Prelim rev. August 10, 2004 BL 
 
 This is assembly routine for the complex C-callable 256-point 16-bit FFT on 
 TigerSHARC family of DSPs. 
 
 I. Description of Calling. 
 
  1. Inputs: 
   j4 -> input 
   j5 -> ping_pong_buffer1 
   j6 -> ping_pong_buffer2 
   j7 -> output 
    
  2. C-Calling Example: 
   Fft256pt(&(input), &(ping_pong_buffer1), &(ping_pong_buffer2), &(output)); 
 
  3. Limitations: 
   a. All buffers must be aligned on memory boundary which is a multiple of 4. 
   b. Buffers input.and ping_pong_buffer2 must be aligned on memory boundary 
      which is a multiple of 256. 
   c. If memory space savings are required and input does not have to be 
      preserved, ping_pong_buffer1 can be the same buffer as input with no 
      degradation in performance. 
   d. If memory space savings are required, output can be the same buffer 
      as ping_pong_buffer2 with no degradation in performance. 
 
  4. For the code to yield optimal performance, the following must be observed: 
   a. Buffer input must have been cached previously. This is reasonable to 
      assume since any engine that would have brought the data into internal 
      memory, such as a DMA, would also have cached it. 
   b. input and ping_pong_buffer2 must be located in different memory blocks.    
   c. ping_pong_buffer1 and ping_pong_buffer2 must be located in different 
      memory blocks.    
   d. ping_pong_buffer1 and output must be located in different memory blocks.    
   e. twiddles and input must be located in different memory blocks.    
   f. AdjustMatrix and ping_pong_buffer1 must be located in different memory 
      blocks.    
  
 II. Description of the FFT algorithm. 
 
  1. All data is treated as complex packed data. 
  2. An application note will be provided for the description of the math of 
     the algorithm. 
    
 
******************************************************************************************************************************************/ 
 
//************************* Includes ****************************************************************************************************** 
 
#include <defTS201.h> 
 
//***************************************************************************************************************************************** 
.section data6a; 
.align 4;                                                                    // allign to quad 
.var _AdjustMatrix[256] = "MatrixCoeffs.dat";          
 
.align 4;                                                                     // allign to quad 
.var _twiddles16[32] = "Twiddles16.dat"; 
 
//***************************************************************************************************************************************** 
.section program; 
.global _fft256pt; 
 
//************************************** Start of code ************************************************************************************ 
_fft256pt: 
 
j2=j4+64;; 
j0=j4+0;        k1=j6;; 
j3=j4+(128+64);        LC1=2;;                     // ------------------------------------ 
r5:4  =br Q[j2+=32];    k3=k31+(_twiddles16+2);;                 //|F1--   |       |     |       |      | 
j1=j4+128;;                        // ------------------------------------ 
     
.align_code 4; 
_VerticalLoop:  
  
//*************************************** Stage 1 ***************************************************************************************** 
// 1st time: From j0,j1,j2,j3->_input to k1->_ping_pong_buffer2 
// 2nd time: From _ping_pong_buffer2 to _ping_pong_buffer1  
                         // ------------------------------------ 
r7:6  =br Q[j3+=32];    kL1=k31+252;;                   //|F2--   |       |     |       |      | 
r1:0  =br Q[j0+=32];    r31=0x80000000;;                   //|F3--   |       |     |       |      | 
r3:2  =br Q[j1+=32];    kB3=k31+_twiddles16;         sr13:12=r5:4+r7:6,  sr15:14=r5:4-r7:6;;  //|F4--   |       |     |AS1--  |      | 
r5:4  =br Q[j2+=32];    kB1=k1+4;;                    //|F1-    |       |     |       |      | 
                            // ------------------------------------ 
r7:6  =br Q[j3+=32];    jL0=252;      mr1:0+=r14**r31(C);  sr9:8=r1:0+r3:2,  sr11:10=r1:0-r3:2;;     //|F2-    |MPY1-- |     |AS2--  |      | 
r1:0  =br Q[j0+=32];    kL3=k31+32;     r24=mr1:0,  mr1:0+=r15**r31(C);;             //|F3-    |MPY2-- |M1-- |       |      | 
r3:2  =br Q[j1+=32];    LC0=4;      r25=mr1:0, mr1:0+=r15**r31(C);  sr29:28=r5:4+r7:6,  sr15:14=r5:4-r7:6;;     //|F4-    |       |M2-- |AS1-   |      | 
r5:4  =br Q[j2+=32];    jB0=kB1;           sr17:16=r9:8+r13:12,   sr21:20=r9:8-r13:12;;   //|F1     |       |     |AS3--  |      |
                            // ------------------------------------
.align_code 4;                                                              
_VerFFTStage1:                        // ------------------------------------ 
r7:6  =br Q[j3+=32];    cb Q[k1+=32]=r17:16;    mr1:0+=r14**r31(C);  sr9:8=r1:0+r3:2,       sr27:26=r1:0-r3:2;;  //|F2     |MPY1-  |     |AS2-   |S1--  | 
r1:0  =br Q[j0+=32];    cb Q[k1+=-16]=r21:20; r24=mr1:0, mr1:0+=r15**r31(C);  sr19:18=r11:10+r25:24, sr23:22=r11:10-r25:24;; //|F3     |MPY2-  |M1-  |AS4--  |S2--  | 
r3:2  =br Q[j1+=32];    cb Q[k1+=32]=r19:18;  r25=mr1:0,  mr1:0+=r15**r31(C);  sr13:12=r5:4+r7:6,  sr15:14=r5:4-r7:6;;  //|F4     |       |M2-  |AS1    |S3--  | 
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r5:4  =   Q[j2+=-44];   cb Q[k1+=16]=r23:22;         sr17:16=r9:8+r29:28,   sr21:20=r9:8-r29:28;; //|F1+    |       |     |AS3-   |S4--  |
                            // ------------------------------------ 
r7:6  =   Q[j3+=-44];   cb Q[k1+=32]=r17:16;       mr1:0+=r14**r31(C);  sr9:8=r1:0+r3:2,       sr11:10=r1:0-r3:2;;  //|F2+    |MPY1   |     |AS2    |S1-   | 
r1:0  =   Q[j0+=-44];   cb Q[k1+=-16]=r21:20; r24=mr1:0,  mr1:0+=r15**r31(C);  sr19:18=r27:26+r25:24, sr23:22=r27:26-r25:24;; //|F3+    |MPY2   |M1   |AS4-   |S2-   | 
r3:2  =   Q[j1+=-44];   cb Q[k1+=32]=r19:18;  r25=mr1:0,  mr1:0+=r15**r31(C);  sr29:28=r5:4+r7:6,  sr15:14=r5:4-r7:6;;  //|F4+    |       |M2   |AS1+   |S3-   | 
r5:4  =br Q[j2+=32];    cb Q[k1+=16]=r23:22;         sr17:16=r9:8+r13:12,   sr21:20=r9:8-r13:12;; //|F1++   |       |     |AS3    |S4-   |
                            // ------------------------------------ 
r7:6  =br Q[j3+=32];    cb Q[k1+=32]=r17:16;       mr1:0+=r14**r31(C);  sr9:8=r1:0+r3:2,       sr27:26=r1:0-r3:2;;  //|F2++   |MPY1+  |     |AS2+   |S1    | 
r1:0  =br Q[j0+=32];    cb Q[k1+=-16]=r21:20; r24=mr1:0,  mr1:0+=r15**r31(C);  sr19:18=r11:10+r25:24, sr23:22=r11:10-r25:24;; //|F3++   |MPY2+  |M1+  |AS4    |S2    | 
r3:2  =br Q[j1+=32];    cb Q[k1+=32]=r19:18;  r25=mr1:0,  mr1:0+=r15**r31(C);  sr13:12=r5:4+r7:6,  sr15:14=r5:4-r7:6;;  //|F4++   |       |M2+  |AS1++  |S3    | 
r5:4  =br Q[j2+=32];    cb Q[k1+=16]=r23:22;         sr17:16=r9:8+r29:28,   sr21:20=r9:8-r29:28;; //|F1+++  |       |     |AS3+   |S4    | 
                            // ------------------------------------ 
r7:6  =br Q[j3+=32];    cb Q[k1+=32]=r17:16;       mr1:0+=r14**r31(C);  sr9:8=r1:0+r3:2,       sr11:10=r1:0-r3:2;;  //|F2+++  |MPY1++ |     |AS2++  |S1+   | 
r1:0  =br Q[j0+=32];    cb Q[k1+=-16]=r21:20; r24=mr1:0,  mr1:0+=r15**r31(C);  sr19:18=r27:26+r25:24, sr23:22=r27:26-r25:24;; //|F3+++  |MPY2++ |M1++ |AS4+   |S2+   | 
r3:2  =br Q[j1+=32];    cb Q[k1+=32]=r19:18;  r25=mr1:0,  mr1:0+=r15**r31(C);  sr29:28=r5:4+r7:6,  sr15:14=r5:4-r7:6;;  //|F4+++  |       |M2++ |AS1+++ |S3+   | 
                            // ------------------------------------ 
.align_code 4; 
if NLC0E, jump _VerFFTStage1;                                      // ------------------------------------ 
r5:4  =br Q[j2+=32];    cb Q[k1+=16]=r23:22;         sr17:16=r9:8+r13:12,   sr21:20=r9:8-r13:12;; //|F1++++ |       |     |AS3++  |S4+   | 
                            // ------------------------------------ 
  
//*************************************** Stage 2 ***************************************************************************************** 
// 1st time: From j0->_ping_pong_buffer2 to k1->_ping_pong_buffer1 
// 2nd time: From j0->_ping_pong_buffer1 to k1->_output  
 
.align_code 4; 
j0=j6+12*16;        j1=-4*16;;                    // ------------------------------------ 
r7:6  =   Q[j0+=-4*16]; r31:30=   L[k3+=-2];;                  //| F1--  |       |     |       |      | 
r5:4  =cb Q[j0+=-4*16]; r29:28=cb L[k3+=6];    mr1:0+=r7**r31(C);;           //| F2--  |MPY1-- |     |       |      | 
r3:2  =   Q[j0+=-4*16]; LC0=7;    r15=mr1:0,  mr1:0+=r6**r31(C);;           //| F3--  |MPY2-- |M1-- |       |      | 
r1:0  =cb Q[j0+=28*16]; j2=28*16;   r14=mr1:0,  mr1:0+=r5**r30(C);;           //| F4--  |MPY3-- |M2-- |       |      | 
                            // ------------------------------------ 
r7:6  =cb Q[j0+=-4*16]; k1=j5;    r13=mr1:0,  mr1:0+=r4**r30(C);;           //| F1-   |MPY4-- |M3-- |       |      | 
r5:4  =cb Q[j0+=j1];      r12=mr1:0,  mr1:0+=r3**r29(C);;           //| F2-   |MPY5-- |M4-- |       |      | 
        r11=mr1:0,  mr1:0+=r2**r29(C);;           //|       |MPY6-- |M5-- |       |      | 
        r10=mr1:0,  mr1:0+=r1**r28(C);;           //|       |MPY7-- |M6-- |       |      | 
                            // ------------------------------------ 
r3:2  =   Q[j0+=j1];      r9=mr1:0,  mr1:0+=r0**r28(C);;           //| F3-   |MPY8-- |M7-- |       |      | 
r1:0  =cb Q[j0+=28*16];      r8=mr1:0,  mr1:0+=r7**r31(C); sr21:20=r13:12+r15:14, sr23:22=r13:12-r15:14;; //| F4-   |MPY1-  |M8-- |AS1--  |      | 
        r15=mr1:0,  mr1:0+=r6**r31(C);;           //|       |MPY2-  |M1-  |       |      | 
      kB1=k1+4;    r14=mr1:0,  mr1:0+=r5**r30(C); sr17:16=r9:8  +r11:10, sr19:18=r9:8  -r11:10;; //|       |MPY3-  |M2-  |AS2--  |      | 
r7:6  =cb Q[j0+=j1]; r8=r23;    r13=mr1:0,  mr1:0+=r4**r30(C); sr9=-r23;;        //| F1    |MPY4-  |M3-  |A1--   |MV1-- | 
r5:4  =cb Q[j0+=j1]; r31:30=cb L[k3+=-2];  r12=mr1:0,  mr1:0+=r3**r29(C); sr23=-r22;;        //| F2    |MPY5-  |M4-  |A2--   |      | 
        r11=mr1:0,  mr1:0+=r2**r29(C); lr9:8=rot r9:8 by -16;;      //|       |MPY6-  |M5-  |R1--   |      | 
      k5=k31+4*16;   r10=mr1:0,  mr1:0+=r1**r28(C); lr23:22=rot r23:22 by -16;;     //|       |MPY7-  |M6-  |R2--   |      | 
                         // ------------------------------------ 
.align_code 4;                                                                     
_VerFFTStage2:                        // ------------------------------------ 
r3:2  =   Q[j0+=j1]; r23=r8;    r9=mr1:0,  mr1:0+=r0**r28(C); sr17:16=r17:16+r21:20, sr21:20=r17:16-r21:20;; //| F3    |MPY8-  |M7-  |AS3--  |MV2-- | 
r1:0  =cb Q[j0+=j2]; r29:28=cb L[k3+=6];   r8=mr1:0,  mr1:0+=r7**r31(C); sr25:24=r13:12+r15:14, sr27:26=r13:12-r15:14;; //| F4    |MPY1   |M8-  |AS1-   |      | 
cb Q[k1+=k5]=r17:16;      r15=mr1:0,  mr1:0+=r6**r31(C); sr19:18=r19:18+r23:22, sr23:22=r19:18-r23:22;; //| S1--  |MPY2   |M1   |AS4--  |      | 
cb Q[k1+=k5]=r19:18;      r14=mr1:0,  mr1:0+=r5**r30(C); sr17:16=r9:8  +r11:10, sr19:18=r9:8  -r11:10;; //| S2--  |MPY3   |M2   |AS2-   |      | 
r7:6  =cb Q[j0+=j1]; r8=r27;    r13=mr1:0,  mr1:0+=r4**r30(C); sr9=-r27;;        //| F1+   |MPY4   |M3   |A1-    |MV1-  | 
r5:4  =cb Q[j0+=j1];      r12=mr1:0,  mr1:0+=r3**r29(C); sr27=-r26;;        //| F2+   |MPY5   |M4   |A2-    |      | 
cb Q[k1+=k5]=r21:20;      r11=mr1:0,  mr1:0+=r2**r29(C); lr9:8=rot r9:8 by -16;;      //| S3--  |MPY6   |M5   |R1-    |      | 
cb Q[k1+=k5]=r23:22;      r10=mr1:0,  mr1:0+=r1**r28(C); lr27:26=rot r27:26 by -16;;     //| S4--  |MPY7   |M6   |R2-    |      | 
                            // ------------------------------------ 
r3:2  =   Q[j0+=j1]; r27=r8;    r9=mr1:0,  mr1:0+=r0**r28(C); sr17:16=r17:16+r25:24, sr25:24=r17:16-r25:24;; //| F3+   |MPY8   |M7   |AS3-   |MV2-  | 
r1:0  =cb Q[j0+=j2];      r8=mr1:0,  mr1:0+=r7**r31(C); sr21:20=r13:12+r15:14, sr23:22=r13:12-r15:14;; //| F4+   |MPY1+  |M8   |AS1    |      | 
cb Q[k1+=k5]=r17:16;      r15=mr1:0,  mr1:0+=r6**r31(C); sr19:18=r19:18+r27:26, sr27:26=r19:18-r27:26;; //| S1-   |MPY2+  |M1+  |AS4-   |      | 
cb Q[k1+=k5]=r19:18;      r14=mr1:0,  mr1:0+=r5**r30(C); sr17:16=r9:8  +r11:10, sr19:18=r9:8  -r11:10;; //| S2-   |MPY3+  |M2+  |AS2    |      | 
r7:6  =cb Q[j0+=j1]; r8=r23;    r13=mr1:0,  mr1:0+=r4**r30(C); sr9=-r23;;        //| F1++  |MPY4+  |M3+  |A1     |MV1   | 
r5:4  =cb Q[j0+=j1]; r31:30=cb L[k3+=-2];  r12=mr1:0,  mr1:0+=r3**r29(C); sr23=-r22;;        //| F2++  |MPY5+  |M4+  |A2     |      | 
cb Q[k1+=k5]=r25:24;      r11=mr1:0,  mr1:0+=r2**r29(C); lr9:8=rot r9:8 by -16;;      //| S3-   |MPY6+  |M5+  |R1     |      | 
.align_code 4;                                                                    // ------------------------------------ 
if NLC0E, jump _VerFFTStage2;                                      // ------------------------------------ 
cb Q[k1+=k5]=r27:26;      r10=mr1:0,  mr1:0+=r1**r28(C); lr23:22=rot r23:22 by -16;;     //| S4-   |MPY7+  |M6+  |R2     |      | 
                            // ------------------------------------ 
.align_code 4;                        // ------------------------------------ 
      r23=r8;    r9=mr1:0,  mr1:0+=r0**r28(C); sr17:16=r17:16+r21:20, sr21:20=r17:16-r21:20;; //|       |MPY8+  |M7+  |AS3    |MV2   | 
k3=k31+_AdjustMatrix;      r8=mr1:0,  mr1:0+=r7**r31(C); sr25:24=r13:12+r15:14, sr27:26=r13:12-r15:14;; //|       |       |M8+  |AS1+   |      | 
                         // ------------------------------------ 
cb Q[k1+=k5]=r17:16; k2=-236;           sr19:18=r19:18+r23:22, sr23:22=r19:18-r23:22;; //| S1    |       |     |AS4    |      | 
cb Q[k1+=k5]=r19:18; j10=j31+j6;          sr17:16=r9:8  +r11:10, sr19:18=r9:8  -r11:10;; //| S2    |       |     |AS2+   |      | 
                            // ------------------------------------ 
cb Q[k1+=k5]=r21:20; j9=j31+j5;; 
 
//*************************************** MPY/Xpose *************************************************************************************** 
// 1st time: From _ping_pong_buffer1 to _ping_pong_buffer2 
                            // ----------------------------------- 
r29:28=Q[k3+=16];    r8=r27;           sr9=-r27;;        //|      |       |     |       |TF1-- | 
r1:0=   Q[j9+=16];   cb Q[k1+=k5]=r23:22;         sr27=-r26;;        //|F1--  |       |     |       |      | 
r3:2=   Q[j9+=16];   r31:30=Q[k3+=16];         lr9:8=rot r9:8 by -16;;      //|F2--  |       |     |       |TF2-- | 
r5:4=   Q[j9+=16];   r21:20=Q[k3+=16];           lr27:26=rot r27:26 by -16;;     //|F3--  |       |     |       |TF3-- | 
j4=j31+j6;     r27=r8;       mr1:0+=r2**r28(C); sr17:16=r17:16+r25:24, sr25:24=r17:16-r25:24;; //|      |MPY1-- |     |       |      | 
                            // ----------------------------------- 
r7:6=   Q[j9+=16];   r23:22=Q[k3+=16];  r8=mr1:0,  mr1:0+=r3**r29(C);;           //|F4--  |MPY2-- |M1-- |       |TF4-- | 
cb Q[k1+=k5]=r17:16; LC0=4;    r12=mr1:0,  mr1:0+=r0**r30(C); sr19:18=r19:18+r27:26, sr27:26=r19:18-r27:26;; //|      |MPY3-- |M2-- |       |      | 
cb Q[k1+=k5]=r19:18; j6=j5;    r9=mr1:0,  mr1:0+=r1**r31(C);;           //|      |MPY4-- |M3-- |       |      | 
cb Q[k1+=k5]=r25:24; k8=j4;    r13=mr1:0,  mr1:0+=r4**r20(C);;           //|      |MPY5-- |M4-- |       |      | 
                            // ----------------------------------- 
.align_code 4; 
if LC1E, CJMP(ABS);                       // ----------------------------------- 
cb Q[k1+=k5]=r27:26; j5=j7;    r10=mr1:0,  mr1:0+=r5**r21(C);;           //|      |MPY6-- |M5-- |       |      | 
                            // ----------------------------------- 
.align_code 4; 
_MultXposeLoop:                                                     // ----------------------------------- 
r1:0=   Q[j9+=16];   r17:16=Q[k3+=16];    r14=mr1:0,  mr1:0+=r6**r22(C);;           //|F1-   |MPY7-- |M6-- |       |TF1-  | 
r3:2=   Q[j9+=16];   r19:18=Q[k3+=16];    r11=mr1:0,  mr1:0+=r7**r23(C);;           //|F2-   |MPY8-- |M7-- |       |TF2-  | 
r5:4=   Q[j9+=16];   r21:20=Q[k3+=16];    r15=mr1:0,  mr1:0+=r0**r16(C);;           //|F3-   |MPY1-  |M8-- |       |TF3-  | 
r7:6=   Q[j9+=16];   r23:22=Q[k3+=16];    r24=mr1:0,  mr1:0+=r1**r17(C);;           //|F4-   |MPY2-  |M1-  |       |TF4-  | 
Q[j10+=16]=yr11:8;   j0=k8;    r28=mr1:0,  mr1:0+=r2**r18(C);;           //|S1--  |MPY3-  |M2-  |       |      | 
Q[j10+=16]=yr15:12;  k9=k8+128;        r25=mr1:0,  mr1:0+=r3**r19(C);;           //|S2--  |MPY4-  |M3-  |       |      | 
Q[j10+=16]=xr11:8;   j1=k9;        r29=mr1:0,  mr1:0+=r4**r20(C);;           //|S3--  |MPY5-  |M4-  |       |      | 
Q[j10+=-44]=xr15:12; k1=j6;         r26=mr1:0,  mr1:0+=r5**r21(C);;           //|S4--  |MPY6-  |M5-  |       |      | 
                            // ----------------------------------- 
r1:0=   Q[j9+=16];   r17:16=Q[k3+=16];    r30=mr1:0,  mr1:0+=r6**r22(C);;           //|F1    |MPY7-  |M6-  |       |TF1   | 



  a 

 

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 12 of 12 

r3:2=   Q[j9+=16];   r19:18=Q[k3+=16];    r27=mr1:0,  mr1:0+=r7**r23(C);;           //|F2    |MPY8-  |M7-  |       |TF2   | 
r5:4=   Q[j9+=16];   r21:20=Q[k3+=16];    r31=mr1:0,  mr1:0+=r0**r16(C);;           //|F3    |MPY1   |M8-  |       |TF3   | 
r7:6=   Q[j9+=16];   r23:22=Q[k3+=16];    r8=mr1:0,   mr1:0+=r1**r17(C);;           //|F4    |MPY2   |M1   |       |TF4   | 
Q[j10+=16]=yr27:24;  k9=k8+64;       r12=mr1:0,  mr1:0+=r2**r18(C);;           //|S1-   |MPY3   |M2   |       |      | 
Q[j10+=16]=yr31:28;  j2=k9;            r9=mr1:0,   mr1:0+=r3**r19(C);;           //|S2-   |MPY4   |M3   |       |      | 
Q[j10+=16]=xr27:24;  k9=k8+(128+64);       r13=mr1:0,  mr1:0+=r4**r20(C);;           //|S3-   |MPY5   |M4   |       |      | 
Q[j10+=-44]=xr31:28; j3=k9;            r10=mr1:0,  mr1:0+=r5**r21(C);;           //|S4-   |MPY6   |M5   |       |      | 
                            // ----------------------------------- 
r1:0=   Q[j9+=16];   r17:16=Q[k3+=16];    r14=mr1:0,  mr1:0+=r6**r22(C);;           //|F1+   |MPY7   |M6   |       |TF1+  | 
r3:2=   Q[j9+=16];   r19:18=Q[k3+=16];    r11=mr1:0,  mr1:0+=r7**r23(C);;           //|F2+   |MPY8   |M7   |       |TF2+  | 
r5:4=   Q[j9+=16];   r21:20=Q[k3+=16];    r15=mr1:0,  mr1:0+=r0**r16(C);;           //|F3+   |MPY1+  |M8   |       |TF3+  | 
r7:6=   Q[j9+=-236]; r23:22=Q[k3+=k2];  r24=mr1:0,  mr1:0+=r1**r17(C);;           //|F4+   |MPY2+  |M1+  |       |TF4+  | 
Q[j10+=16]=yr11:8;                  r28=mr1:0,  mr1:0+=r2**r18(C);;           //|S1    |MPY3+  |M2+  |       |      | 
Q[j10+=16]=yr15:12;       r25=mr1:0,  mr1:0+=r3**r19(C);;           //|S2    |MPY4+  |M3+  |       |      | 
Q[j10+=16]=xr11:8;          r29=mr1:0,  mr1:0+=r4**r20(C);;           //|S3    |MPY5+  |M4+  |       |      | 
Q[j10+=-44]=xr15:12;                   r26=mr1:0,  mr1:0+=r5**r21(C);;           //|S4    |MPY6+  |M5+  |       |      | 
                            // ----------------------------------- 
r1:0=   Q[j9+=16];   r17:16=Q[k3+=16];    r30=mr1:0, mr1:0+=r6**r22(C);;           //|F1++  |MPY7+  |M6+  |       |TF1++ | 
r3:2=   Q[j9+=16];   r19:18=Q[k3+=16];    r27=mr1:0,  mr1:0+=r7**r23(C);;           //|F2++  |MPY8+  |M7+  |       |TF2++ | 
r5:4=   Q[j9+=16];   r21:20=Q[k3+=16];    r31=mr1:0,  mr1:0+=r0**r16(C);;           //|F3++  |MPY1++ |M8+  |       |TF3++ | 
r7:6=   Q[j9+=16];   r23:22=Q[k3+=16];    r8=mr1:0,   mr1:0+=r1**r17(C);;           //|F4++  |MPY2++ |M1++ |       |TF4++ | 
Q[j10+=16]=yr27:24;                  r12=mr1:0,  mr1:0+=r2**r18(C);;           //|S1+   |MPY3++ |M2++ |       |      | 
Q[j10+=16]=yr31:28;                    r9=mr1:0,   mr1:0+=r3**r19(C);;           //|S2+   |MPY4++ |M3++ |       |      | 
Q[j10+=16]=xr27:24;                    r13=mr1:0,  mr1:0+=r4**r20(C);;           //|S3+   |MPY5++ |M4++ |       |      | 
.align_code 4;                        // ----------------------------------- 
if NLC0E, jump _MultXposeLoop;                     // ----------------------------------- 
Q[j10+=4]=xr31:28;                     r10=mr1:0,  mr1:0+=r5**r21(C);;           //|S4+   |MPY6++ |M5++ |       |      | 
                            // ----------------------------------- 
.align_code 4; 
jump _VerticalLoop;                       // Repeat the vertical loop 
r5:4=br Q[j2+=32];   k3=k31+(_twiddles16+2);;                  // with swapped pointers 
  
//******************************************* Done **************************************************************************************** 
_fft256pt.end:       
  

  

Listing 1. fft256pt.asm 
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