
Engineer To Engineer Note EE-174

a

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation
Contributed by Boris Lerner April 01, 2003

Introduction
This EE-note explains the functional operation of
the power-on booting procedure and the boot
loader kernels for the ADSP-TS101S
TigerSHARC® processor. A loader kernel is a
program executed by the DSP that is appended to
your application code by the linker utility
(linker.exe) of the VisualDSP++™ development
tools which is executed by the DSP at boot time
to allow the processor to initialize its internal and
external memory sections defined in the
application code.

The loader kernel is a self-modifying program
which is transferred into the DSP’s internal
memory. The ADSP-TS101 supports three
booting methods; EPROM booting (via the
external port), host booting (via an external host
processor or another TigerSHARC), or link
booting (via the DSP’s link ports.) Therefore,
there are three distinct loader kernels to support
each of the processor’s booting modes.

Booting Procedure For The
ADSP-TS101S
The booting mode is selected by the /BMS pin of
the DSP. While the processor is held in reset, the
/BMS pin is an active input. If /BMS is sampled
low during reset, EPROM boot mode is selected;
after the /RESET signal of the DSP is de-
asserted, the /BMS pin becomes an output acting
as the EPROM chip select. If /BMS is sampled
high during reset, the TigerSHARC will be in an

IDLE state, waiting for a host boot or a link port
boot to occur.

Additionally, there is a weak internal pull-down
resistor on the /BMS pin, but it is important to
note here that the pull-down may not be
sufficient, depending upon the external line
loading on this pin. Thus, an external pull-down
resistor may be necessary to select EPROM
booting mode. If host or link boot is desired,
/BMS must be held high during reset and may be
tied directly to VCC.

Each booting method is described in detail in the
following sections.

EPROM Boot
When EPROM boot mode is selected, the
TigerSHARC initializes its external port DMA
channel 0 to transfer 256 32-bit words of code
from the boot EPROM into the TigerSHARC’s
internal memory block 0, locations 0x00-0xFF.
The corresponding interrupt vector (for DMA
channel 0) is initialized to 0. Thus, upon
completion of the DMA, the TigerSHARC
continues its program execution from location
0x00. It is intended that these 256 words of code
act as a boot loader to initialize the rest of the
TigerSHARC’s memory. Analog Devices
provides a default boot loader kernel source file
with the VisualDSP++ development tools, called
“TS101_prom.asm”, which can be used as a
reference.

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

The default EPROM boot loader works in
conjunction with the loader utility (elfloader.exe)

 a
supplied with the VisualDSP++ tools. The loader
utility takes the user’s executable file (*.dxe)
from their project and the boot loader executable
file (default: TS101_prom.dxe) and produces the
EPROM loader output file (*.ldr). This loader
output file defines how the various blocks of
TigerSHARC’s internal and external memory are
to be initialized during the booting process. Its
format is described in figure 1. The format of the
block tag word is described in figure 2.

Figure 1 EPROM Loader Format

Type: 0=Final init, 1=Non-zero init, 2=Zero Init

ID: ID of the processor to which the block belongs

COUNT: Number of 32-bit words in the block

Figure 2 Tag Word Format

The supplied boot loader (TS101_prom.dxe)
operates as described below:

1. After the boot loader kernel is loaded into the
internal memory block 0 of the DSP, the
DMA0 interrupt exits the TigerSHARC from
its idle state. The DSP then begins execution
of the boot loader at location 0x00000000. At
this stage, the TigerSHARC is at the interrupt
level of DMA0 and, thus, further DMA0 and
global (PMASK[60]) interrupts are disabled.

2. The boot loader kernel sets the NMOD bit in
the SQCTL register to ensure that the DSP
will be running in supervisor mode. An RDS
instruction reduces the current interrupt to a
subroutine level. Next, DMA0 and global
interrupts are enabled again.

3. DMA0 is configured to move data from the
boot EPROM starting at address 0x0400 of
the EPROM (0x0000-0x03ff was the boot
loader) to the DSP’s internal memory starting
at address 0x00000000. The DMA routine
will start the DMA by programming the
TCBs, advance the prom pointer and sit in
IDLE until the DMA interrupt wakes it up and
sends the program sequencer to point to the
DMA0 interrupt vector. There, an RTI
instruction returns to the DMA routine, which
in turn, returns to continue execution of the
boot loader kernel.

4. Since this is not a link port boot, all of the link
port DMA channel control registers are reset
and all of the link port DMAs are disabled.

5. The processor ID (for this processor) is
computed and stored in register xR10.

6. Next, the boot loader kernel parses the blocks
of data from the EPROM. Two words are
moved to memory locations 0x00000000 and
0x00000001. These are the tag words of the
block to follow. In the first word, bits 31:30
are the block TYPE (0=final init, 1=non-zero
init, 2=zero init), bits 29:27 are the processor
ID, bits 26:16 are reserved, and bits 15:0 are

ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation (EE-174) Page 2 of 9

 a
the block COUNT. The second tag word is a
pointer to the DESTINATION address.

7. The ID of the block is compared to the
processor ID stored in register xR10. If the
two IDs are not the same, then this EPROM
block is skipped. The size of the block to be
skipped is obtained using the values from
TYPE and COUNT.

8. If the IDs are the same, then the TYPE is
examined.

9. If the TYPE is 1, COUNT number of words
are moved one word at a time via location
0x00000000 to the DESTINATION address.
Once finished, the algorithm returns to step 5
and repeats.

10. If the TYPE is 2, COUNT number of zeros
are moved to the DESTINATION address.
Once finished, the algorithm returns to step 5
and repeats.

11. If TYPE is 0, the boot loader kernel performs
the “Final Init”, i.e. it overwrites itself with
the user application code. A final DMA of
256 words into addresses 0x00000000-
0x000000ff with a wake up from an IDLE
condition would do this, but in this case, this
would begin execution of the user application
code at interrupt level of DMA0. To avoid
this scenario, the following algorithm is used:

a. The first four instructions of the user
application code (destined to reside in
locations 0x00000000-0x00000003) are
DMAed from the EPROM and stored in
the registers xR11:8.

b. The following code is written into
locations 0x00000000-0x00000003:
RETI = 0;;

NOP;;

RTI (NP); Q[j31+=0] = xR11:8;;

c. The DMA0 interrupt vector is set to
0x00000000.

d. The Branch Target Buffer is invalidated
(BTBINV) to clear any cached branches.

e. The DMA is setup to transfer 252 words of
user code destined to 0x00000004-
0x000000ff.

f. The DMA is started by writing to the
TCBs; then processor goes into an IDLE
state.

g. When the DMA is finished, the DMA
complete interrupt wakes the TigerSHARC
up and the program sequencer jumps to the
to code inserted at 0x00000000 in step b,
and begins execution of this code.

h. This code executes the following
instruction,

RTI (NP); Q[j31+=0]=xR11:8;;

which reduces the interrupt level to none,
puts the user application code into
locations 0x00000000-0x00000003, and
the sequencer jumps to address
0x00000000 to continue execution (since
RETI is set to 0x00000000). The user
application code starts cleanly at
0x00000000, with no interrupt level. Note
that the “no predict” (NP) option is
necessary so that this RTI instruction does
not cache into the BTB.

It is important to note if external memory which
is being used in the system requires special
initialization (such as SDRAM, for example),
then this memory needs to be configured by the
boot loader kernel. This memory configuration
must precede its initialization in the boot loader
kernel. Thus, the boot loader has to be modified
by the user and re-built to their specific
application and system requirements.

Host Boot
When a host or link boot is selected, the
TigerSHARC enters an idle state after reset,
waiting for the external host processor or link
port to boot it. Host booting uses the

ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation (EE-174) Page 3 of 9

 a
TigerSHARC’s AUTODMA (either channel),
both of which are initialized to transfer 256
words of code to the TigerSHARC’s internal
memory block 0, locations 0x00-0xFF. The
corresponding interrupt vector is initialized to
point to address 0x00. Thus, upon completion of
the DMA, the TigerSHARC continues its
execution at memory location 0x00. It is
intended that these 256 words of code act as a
boot loader to initialize the rest of the
TigerSHARC’s memory. Analog Devices
supplies a default boot loader, named
“TS101_host.asm”, with the VisualDSP++
development tools.

The default host boot loader works in
conjunction with the loader utility supplied with
the VisualDSP++ development tools. The loader
utility takes the user’s project executable file and
the boot loader executable (“TS101_host.dxe”)
and produces the host loader file, with the
filename extension, *.LDR. The host loader file
defines how the various blocks of the
TigerSHARC’s internal and external memory
segments are to be initialized. Its format is
described in figure 1. Format of the block tag
word is described in figure 2.

In the following procedure, the AUTODMA0
register can be replaced with the AUTODMA1
register, with the appropriate changes made to
the boot loader code to reflect this change in
register usage.

The supplied boot loader uses the AUTODMA0
register and works as described below:

1. After the boot loader is loaded, the
AUTODMA0 interrupt wakes the
TigerSHARC up and starts the execution of
the host boot loader kernel at location
0x00000000. At this stage, the TigerSHARC
is at the interrupt level of the AUTODMA0
and, thus, further AUTODMA0 in this
channel and global (PMASK[60]) interrupts
are disabled.

2. The ADSP-TS101 AUTODMA0 channel is, at
reset, initialized for quad-word DMAs. This

boot loader uses single word DMAs to
facilitate block parsing of the *. LDR file,
(which may not be quad-word aligned). Thus,
before any loading, the host must properly
initialize the AUTODMA0 TCB register. This
bootloader resides in an ASCII or an
INCLUDE file, occupying locations 0x0000 -
0x0ff. Thus, the host must first initialize the
AUTODMA0 TCB to move 256 words of
data into 0x00000000-0x000000ff of the
TigerSHARC in normal (i.e. 32-bit) words,
then generate an interrupt that will vector to
address 0x00000000 (the AUTODMA0
interrupt vector is already preset to address
0x00000000, by default.) Since the TCB is
active at reset and since writing to an active
TCB causes an error, the TCB must be
disabled first. Thus, the following values must
be loaded into the TCB:

To disable the TCB:
DP = 0x00000000
DX, DY, DI - do not matter

To re-enable the TCB:
DP = 0x53000000
DY - does not matter
DX = 0x01000001
DI = 0x00000000

3. The host, using the AUTODMA0 channel it
just initialized, transfers all of the words of
the *. LDR file to the TigerSHARC. The first
256 words of this loader file get
AUTODMAed to the TigerSHARC’s memory
locations 0x00000000-0x000000ff. At this
point the interrupt takes over and vectors the
program sequencer to begin execution to
location 0x00000000, i.e. the beginning of the
loader. At this stage, the TigerSHARC is at
interrupt level of AUTODMA0 and, thus,
further AUTODMA0 and global
(PMASK[60]) interrupts are disabled.
Subsequent words sent by the host get parsed
by the loader, as described below.

4. The loader sets the NMOD bit in the SQCTL
register to ensure supervisor mode. Then, an
RDS instruction reduces the interrupt to a

ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation (EE-174) Page 4 of 9

 a
subroutine level. Next, AUTODMA0 and
global interrupts are enabled again.

5. The AUTODMA0 interrupt vector is set to the
address of the label “_dma_int”.

6. The processor ID is computed and stored in
register xR10.

7. Since this is not a link port boot, all of the link
port controls are reset and all link port DMAs
are disabled.

8. Registers xR3:0 will be used to start
AUTODMA0. Register xR1 contains the
count which will vary (and modify which is
always one), thus xR1 will be set individually
before starting AUTODMA0. Register xR3 is
set to 0x53000000 and xR0 is set to
0x00000000, i.e. to normal word, interrupt
enabled, destination 0x00000000 of
TigerSHARC's internal memory.

9. Next, the loader parses the blocks of data from
the host. It sets up to transfer two words.
These are the tag words of the block to follow.
In the first word, bits 31:30 are block TYPE
(0=final init, 1=non-zero init, 2=zero init),
bits 29:27 are the processor ID, bits 26:16 are
reserved and bits 15:0 are the block COUNT.
The second tag word is pointer to the
DESTINATION address.

10. The ID of the block is compared to the ID
stored in xR10. If the IDs are not the same,
the block is skipped (if TYPE=0 or 1, by
getting 255 or COUNT number of words from
the host without any store) and steps starting
with 9 are repeated.

11. If the IDs are the same, the TYPE field is
examined.

12. If the TYPE field is 1, COUNT number of
words are moved one word at a time via
AUTODMA0 to the DESTINATION. Once
finished, the steps starting with 9 are repeated.

13. If the TYPE field is 2, COUNT number of
zeros are moved to the DESTINATION

address. Once finished, the steps starting with
9 are repeated.

14. If the TYPE field is 0, the loader performs
the “final init”, i.e. it overwrites itself with the
user application code. An AUTODMA0 of
256 words to addresses 0x00000000-
0x000000ff with a wake up from IDLE would
do this, but this scenario would start user
application code execution at the interrupt
level of AUTODMA0. To avoid this, the
following algorithm is used:

a. The first four instructions of the user code
(destined to locations 0x00000000-
0x00000003) are AUTODMAed from the
host and stored in the registers xR11:8.

b. The following code is written into
locations 0x00000000-0x00000003:

RETI = 0;;
IMASKH = yR0;;
RTI (NP); Q[j31+=0] = xR11:8;;

c. The AUTODMA0 interrupt vector is set to
0x00000000.

d. Register yR0 is preset to the value
0x80000000. This will be the new value
for IMASKH to disable all interrupts
except emulation.

e. The Branch Target Buffer is invalidated
(BTBINV) to clear any cached branches.

f. AUTODMA0 is setup to transfer 252
words of user code destined to addresses
0x00000004-0x000000ff.

g. AUTODMA0 is started by writing to the
TCBs and then processor goes into IDLE.

h. When the AUTODMA0 is finished, its
interrupt wakes the TigerSHARC up and
jumps execution to code inserted at
0x00000000 in step b.

i. The following code is executed:
IMASKH = yR0;;

which disables all global interrupts, then
the following instruction line is executed:

ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation (EE-174) Page 5 of 9

 a
RTI (NP); Q[j31+=0]=xR11:8;;

which reduces the interrupt level to none,
puts user code into locations 0x00000000-
0x00000003 and jumps execution to
0x00000000 (since RETI is set to
0x00000000). The user code starts cleanly
at 0x00000000, with no interrupt level.
Note that (NP) option is necessary so that
RTI does not cache into BTB.

It is important to note that if external memory
that requires special setup (such as SDRAM)
needs to be initialized by the loader, then that
memory’s setup has to precede its initialization
in the boot loader. Thus, the boot loader has to be
modified by the user and re-built.

Also, it is important to note that the host has to
be careful not to overrun the AUTODMA0
buffer. Thus, the host has to monitor the
AUTODMA0 status and start a new DMA only
when the status is “active” (i.e. the DMA has
freed the AUTODMA0 buffer). During this
monitoring the host has to be careful to allow the
DSP access to the external bus, otherwise
software deadlock may occur, (i.e. a situation
where the DSP never finishes an external
transaction and the host never gets an
acknowledge to start a new transaction.)

An example code of a TigerSHARC acting as a
master, host booting another TigerSHARC is
provided with the examples of VisualDSP;
source code is in the file called, “mpmaster.asm”.

Link Boot
When a host or link boot is selected, the
TigerSHARC enters an idle state after reset,
waiting for the host or link port to boot it. A link
boot can use any one of the TigerSHARC’s link
ports, all of whose DMAs are initialized to
transfer 256 words of code to TigerSHARC’s
memory block 0, locations 0x00-0xFF. The
corresponding DMA interrupt vectors are
initialized to 0. Thus, upon completion of the
link DMA, TigerSHARC continues its execution
at location 0x00. It is intended that these 256

words of code act as a boot loader to initialize
the rest of TigerSHARC’s memory. Analog
Devices supplies a default boot loader, called
“TS101_link.asm” with the VisualDSP set of
tools.

The default link boot loader works in
conjunction with the loader utility supplied with
VisualDSP. The loader utility takes the user’s
project executable file (*.DXE) and the boot
loader executable file, (default: TS101_link.dxe)
and produces the link loader file output file,
*.LDR. The LDR file defines how the various
blocks of TigerSHARC’s internal and external
memory are to be initialized. Its format is
described in figure 1. Format of the block tag
word is described in figure 2.

The supplied boot loader works as described
below:

1. After the boot loader is loaded, the link port’s
DMA interrupt wakes the TigerSHARC up
and starts the execution of the loader at
location 0x00000000. At this stage, the
TigerSHARC is at the interrupt level of the
link port DMA and, thus, further link port
DMA and global (PMASK[60]) interrupts are
disabled.

2. The constant LINK defines which link port is
used for booting. It is set to 1 (i.e. link port 1)
in this code. If a different link port is used, the
constant value has to be changed and the code
re-built.

3. The loader sets the NMOD bit in the SQCTL
register to insure supervisor mode. Then, an
RDS instruction reduces the interrupt to a
subroutine level. Next, link port DMAs and
global interrupts (PMASK[60]) are enabled
again.

4. The link port receive DMA interrupt vector is
set to the address of the label “_dma_int”.
Unused link ports are cleared and disabled,
and link port DMAs are disabled.

5. The Link port control registers are initialized.

ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation (EE-174) Page 6 of 9

 a
6. The DMA that will bring the data in from the

link port will do this one quad word at a time.
Registers XR3:0 are preset with the required
values for the TCB.

7. The data from the link port is read by the
subroutine “_read_word”. The data from the
link port is always in a quad-word format, but
the processor needs to parse it in as single 32-
bit words one at a time, an internal FIFO
buffer is maintained. This is implemented as a
circular buffer in memory locations 0x00-
0x03, register J2 is dedicated as the read
pointer to the buffer and, thus, J2, JB2 and
JL2 are all initialized accordingly. The
execution flow of “_read_word” is as follows:

a. First J2 is checked to see if it has wrapped
back to 0 (i.e. all the data in the buffer has
been read) and, if it has not, go to step "d"
to read the next piece of data from the
buffer.

b. Another quad word is brought into the
buffer from the link port. To avoid data
coming in at precisely the time the DMA is
started (which will cause data miss due to
silicon errata #147), the corresponding
LSTAT is monitored in a loop waiting for
the receive buffer to be full. Then, the
corresponding link port DMA is started by
writing registers XR3:0 to the TCB, and
the routine waits for the DMA interrupt in
IDLE.

c. When the new quad word arrives from the
link port, a DMA interrupt wakes the
processor up from IDLE and execution is
branched to “_dma_int”, where a “NOP;;”
instruction followed by an “RTI;;”
instruction returns it back to one
instruction past the IDLE. (Note that the
“NOP;;” instruction is necessary here,
since an “RTI;;” instruction is not allowed
to be the first instruction of an ISR.)

d. The data from the buffer pointed to by J2 is
read into xR4 and J2 is incremented
circularly.

8. Unlike other boot modes, here the processor
ID is not used, since this loader does not
support a multiprocessor (MP) boot.

9. Next, the loader parses the blocks of data from
the link port. Two words are moved to yR8
and J0. These are the tag words of the block to
follow. In the first word, bits 31:30 are block
TYPE (0=final init, 1=non-zero init, 2=zero
init), bits 29:16 are reserved and bits 15:0 are
the block COUNT. The second tag word is the
pointer to DESTINATION.

10. If TYPE is 1, COUNT number of words are
moved one word at a time via “_read_word”
to the DESTINATION address. Once
finished, the algorithm goes to step 9.

11. If TYPE is 2, the COUNT number of zeros
are moved to the DESTINATION address.
Once finished, the algorithm goes to step 9.

12. If TYPE is 0, the loader performs the “final
init”, i.e. it overwrites itself with the user
application code. The following algorithm is
used:

a. The first 28 instructions of user application
code (destined to locations 0x00000000-
0x0000001B) are moved from the link port
via “_read_word” and stored in the
registers xR31:8 and yR31:28.

b. The interrupt service routine at “_dma_int”
is relocated to 0x04-0x05.

c. Twenty two instructions of the subroutine
“_last_patch_code” are relocated to
locations 0x06-0x1B.

d. The Branch Target Buffer is invalidated
(BTBINV) to clear cached branches.

e. The link port interrupt vector is set to
address 0x04 (the location now containing
the interrupt service routine as a result of
step b).

f. Register yR1 is initialized to the value
0x80000000; this value will be written to
IMASKH to disable global interrupts at

ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation (EE-174) Page 7 of 9

 a
start of user code (note that the emulation
interrupt is left enabled).

g. Register J0 is initialized to 0x1C (first
location past relocated “_last_patch_code”)
and LC0 is initialized to 0xE4 (number of
words left in the final init to be read).

h. At this stage, locations 0x04-0x1B are
initialized as follows:

0x04: _relocated_dma_int:
nop;;
rti(NP);;

0x06: _relocated_read_word:
// if J2 -> start of the buffer...
comp(j2,0);;
// ...bring in more data
if njeq, jump _relocated_read_buffer (NP);;

_relocated_wait_for_data:
yr2 = LSTATx;;
ybitest r2 by 3;;
if ySEQ, jump _relocated_wait_for_data NP);;

// start the DMA
DCx = xr3:0;;
// wait till DMA interrupts
idle;;

_relocated_read_buffer:
// read the word from the buffer
xr4 = cb[j2+=1];;
// and return
cjmp (ABS) (NP);;

0x0F: _relocated_final_init1:
//read word
call _read_word (NP);;
// write it
[j0 += 1] = xr4;;
if NLC0E, jump _relocated_final_init1 (NP);;

// disable all ints except emulation
IMASKH = yr1;;
// Link disable and clear
LCTLx = yr0;;

// overwrite 0x00-0x03
Q[j31 + 0] = xr11:8;;
// overwrite 0x04-0x07
Q[j31 + 4] = xr15:12;;
// overwrite 0x08-0x0b
Q[j31 + 8] = xr19:16;;
// overwrite 0x0c-0x0f

Q[j31 + 0xc] = xr23:20;;
// overwrite 0x10-0x13
Q[j31 + 0x10] = xr27:24;;
// overwrite 0x14-0x17
Q[j31 + 0x14] = xr31:28;;

// overwrite 0x18-0x1b, start at 0
jump 0 (ABS) (NP); Q[j31 + 0x18] = yr31:28;;

i. The code execution jumps to 0x0F, i.e.
“_relocated_final_init1” shown above.

j. Locations 0x1C-0xFF are filled with data
from the link port. Note that the instruction
“call _read_word (NP);;” at
“_relocated_final_init1” is a relative call.
Thus, it actually calls
“_relocated_read_word” and overwriting
the old code of “_read_word” does not
cause any problems.

k. Now link port receiving is finished, correct
data is in 0x1C-0xFF, and the data that
should be in 0x00-0x1B is in registers
xR31:8 and yR31:28. The remaining code
overwrites memory locations 0x00-0x17
with the data in xR31:8 and, finally, the
last line of code overwrites locations 0x18-
0x1B (including itself) with data from
yR31:28 while executing an absolute jump
to 0x00.

l. The user code starts at 0x00 cleanly.

It is important to note that if external memory
that requires special setup (such as SDRAM)
needs to be initialized by the loader, then that
memory’s setup has to precede its initialization
in the boot loader. Thus, the boot loader has to be
modified by the user and re-built.

ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation (EE-174) Page 8 of 9

 a
Document History

Version Description

April 01, 2003 by G. Fowler. Added Introduction and re-formatted document

Feb 01, 2002 by B. Lerner. Initial Draft Release

ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation (EE-174) Page 9 of 9

	Introduction
	Booting Procedure For The ADSP-TS101S
	EPROM Boot
	Host Boot
	Link Boot
	Document History

