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INTRODUCTION 
The ADuCM350 is an ultralow power, integrated mixed-signal 
metering solution that includes a microcontroller subsystem for 
processing, control, and connectivity. The processor subsystem 
is based on a low power ARM® Cortex™-M3 processor, a 
collection of digital peripherals, embedded SRAM and flash 
memory, and an analog subsystem which provides clocking, 
reset, and power management capability. 

The ADuCM350 has the ability to perform a 2048 point single 
frequency discrete Fourier transform (DFT). It takes the 16-bit 
ADC output as input and outputs the real and imaginary parts 
of the complex impedance. 

The configurable switch matrix on the ADuCM350 allows  
you to choose from a 2-wire, 3-wire, or 4-wire impedance 
measurement. 

This application note details how to set up the ADuCM350 to 
optimally measure the impedance of an RC type sensor, using 
4-wire techniques, while targeting IEC-60601 standards.  

To target the IEC-60601 standard, the ADuCM350 is used  
in conjunction with an external instrumentation amplifier 
(AD8226), to complete high precision absolute measurements 
using a 4-wire measurement technique.  

 
 

12
16

8-
10

1

 
Figure 1. EVAL-ADuCM350EBZ Motherboard and 4-Wire Bio-configuration Daughter Board 
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CONFIGURATIONS
The ADuCM350 offers three configurations for measuring the 
impedance of a sensor. 

2-WIRE SYSTEM 
In the presence of varying access resistance to the unknown 
impedance, this configuration provides relative accuracy 
measurements for impedance magnitude and impedance phase. 
For further details on optimizing the ADuCM350 for 2-wire 
impedance measurements, refer to the AN-1271 Application 
Note, Optimizing the ADuCM350 for Impedance Conversion. 

The 2-wire system measures the relative accuracy of Impedance 
magnitude and phase. 

4-WIRE SYSTEM 
This configuration provides absolute accuracy for both 
impedance magnitude and impedance phase measurements 
because access resistances are calibrated out. This configuration 
does not operate where ac coupling capacitors are required to 
isolate sensor from device, that is, capacitors in series with the 
access resistances. Refer to the AN-1271 Application Note, 
Optimizing the ADuCM350 for Impedance Conversion, for 

information on optimizing the ADuCM350 for 4-wire 
measurements. 

The 4-wire system measures the absolute accuracy of 
impedance magnitude and phase, however isolation capacitors 
are not allowed. 

4-WIRE BIO-ISOLATED SYSTEM 
If isolation capacitors are required between sensor and device, 
then an external instrumentation amplifier is required to 
measure the differential voltage across the sensor. It is not 
possible for the ADuCM350 to do this measurement as a single 
chip solution because the isolation capacitors cause instability 
when included on the sense (P and N channel) paths.  

The 4-wire bio-isolated system measures the absolute accuracy 
of impedance magnitude in the presence of isolation capacitors, 
however this system is not targeted for accurate phase 
measurements. 
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BASIC 4-WIRE IMPEDANCE MEASUREMENT 
To measure the impedance of an unknown sensor, Z, a 
ratiometric measurement technique is employed using the 
ADuCM350. 

1. Measure the impedance of a known precision resistor, 
RCAL, as shown in Figure 2. An excitation voltage is 
applied at RCAL 1 with associated D and P switches closed 
in the switch matrix. The resultant excitation current is 
measured through RCAL 2, with associated T and N 
switches closed in the switch matrix. This current is 
converted to a voltage using the TIA amplifier, where RTIA 
is optimized for the maximum current seen by the ADC, 
and is converted to a voltage using the ADC. A 2048 point 
Hann sample is performed on the data to give real and 
imaginary components of the impedance.  

2. Change the switch matrix configuration, as shown in  
Figure 3, and excite the sensor measuring the response 

current. The DFT engine now calculates the real and 
imaginary components of the unknown impedance, Z.  

3. Calculate the unknown impedance magnitude on the core 
using the following equation: 

RCAL
RCAL
ZUNK

ZUNKNOWN
MAG

MAG
MAG ×=  

4. Calculate the unknown impedance phase on the core using 
the following equation: 

PHASEPHASEPHASE RCALZUNKZUNKNOWN −=  

This 4-wire measurement approach to measuring impedances 
operates if there are no isolation requirements on the sensor. 
However, if an isolation capacitor, such as CISO, need to be 
included in series with the access resistor, RACCESS, in a 4-wire 
measurement, then a single chip solution is not possible. 
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Figure 2. 4-Wire Topology for ADuCM350—Measuring RCAL 
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Figure 3. 4-Wire Topology for ADuCM350—Measuring Z 
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THE 4-WIRE BIO-ISOLATED METHOD 
BASIC 4-WIRE THEORY 
In a classic 4-wire /4-terminal sensing system, a differential 
current source is used to force a known current into the sensor. 
This forced current generates a potential difference across the 
Unknown Z, which is to be measured according to Ohm’s Law 
where: 

V = I × R 

When the current is being forced, the access wires to Z also lead 
to a drop in voltage, which causes inaccuracies in a measure-
ment. To remove this loss from the actual measurement of Z, a 
differential pair of sense lines are connected to Z at the points 
labeled A and B in Figure 2.  
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Figure 4. Basic 4-Wire Topology 

The differential sense lines are designed with very high input 
impedance stages so that no current flows through them and 
there is no voltage drop across them. The impedance Z is then 
measured using the equation 

Z = VMETER/IAC 

4-WIRE BIO-ISOLATED THEORY IN APPLICATION 
An alternative approach is to use a high precision excitation 
voltage source as the force signal. Apply this voltage to Z and 
measure the response current using a high accuracy current 
meter (see Figure 3). The unknown impedance Z is then 
measured by the equation 

Z = VMETER/IMETER
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Figure 5. 4-Wire Bio-Isolated Topology  

Referring back to Figure 3, it is possible to measure 4-wire 
impedance using the ADuCM350.The excitation stage  
excites the sensor with a known voltage, which is accurately 
differentially sensed using the internal instrumentation loop. 
The current response is measured through the TIA channel and 
converted to a voltage. 

In a real-world application, such as those governed by the  
IEC-60601 standards, the Z (or sensor) allows a limited dc 
voltage across it. The restrictions on ac current forced on sensor 
are more relaxed. The ac voltage source is selected for the  
force connection to the sensor to utilize the ADuCM350 DFT 
capability.  

In Figure 5, CISO1 and CISO2 are discrete isolation capacitors that 
ensure that no dc voltage appears across the sensor. RACCESS1 and 
RACCESS2 are access or lead resistance inherent in the connections 
to the sensor. RLIMIT is an extra level of security to guarantee the 
maximum allowable excitation current seen by the sensor in  
a scenario where the RACCESS resistance is removed from the 
measurement. 
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A 4-WIRE BIO-ISOLATED SOLUTION  
Referring to Figure 5, the following is required: 

• Precision ac voltage source 
• High precision current meter 
• Precision differential voltage meter 

Precision AC Voltage Source 

The ADuCM350 has a high precision excitation control loop, 
which drives a precision ac voltage to the sensor. An internal 
differential sense configuration guarantees the accuracy of the 
voltage source (see Figure 6). The positive sense, P, is tied to the 
drive terminal, D, in the configurable switch matrix. A DDS 
based sine wave generator is used to generate the ac stimulus 
through a 12-bit DAC. For more information regarding the 
transmit stage, refer to the ADuCM350 Hardware Reference 
Manual (UG-587).  

High Precision Current Meter 

The ADuCM350 utilizes a TIA amplifier for current to voltage 
conversion for measurement by the high precision ADC, the 
gain of which is set by an external resistor, RTIA. The TIA 
channel sinks the sensor excitation current and the channel is 
precisely biased on a common mode of 1.1 V. Significant analog 
and digital filtering is performed on measurement for rejection 
of interferers and noise. The T and N channels are tied together 
using the switch matrix for accurate sense capability on the 
current measured (see Figure 7). 

The ADC converts the current measurement with a 160 kSPS 
ADC. A 2048 sample point DFT is performed on the data; 
resulting real and imaginary components for the current 
measurement are calculated.
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Figure 6. AC Voltage Source on the ADuCM350 
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Figure 7. High Precision Current Meter 
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Precision Differential Voltage Meter 

To differentially sense the voltage across the sensor, a low power 
instrumentation amplifier with excellent noise and common-
mode rejection is required (see Figure 8). The AD8226 is 
selected for this application. It is referenced off the common 
mode of the system set by the VBIAS voltage on the TIA channel. 
The output of the in-amp is fed back into the ADuCM350 
through one of the auxiliary channels, for example, AN_A. 

The ADC converts the auxiliary voltage measurement with a 
160 kSPS ADC. A 2048 sample point DFT is performed on the 

data, and resulting real and imaginary components for the 
voltage measurement are calculated. 

4-Wire, Bio-Isolated Measurement System Block 
Diagram 

Figure 9 shows the combination of the following:  

• Precision ac voltage source (ADuCM350 excitation stage) 
• High precision current meter (ADuCM350 TIA channel 

stage) 
• Precision differential voltage meter (AD8226 

instrumentation amplifier) 
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Figure 8. High Precision Differential Voltage Meter  
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Figure 9. 4-Wire Measurement System using the ADuCM350 and the Instrumentation Amplifier (AD8226)  
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How to Calculate the Unknown Z 

After obtaining the current and voltage DFT measurements, the 
part can exit the AFE Sequencer and calculate the impedance of 
the sensor using the following equations: 

Voltage measurement magnitude = SQRT(r2 + i2) 

Voltage measurement phase = ATan(i/r) 

Current measurement magnitude = SQRT(r2 + i2) 

Current measurement phase = ATan(i/r) 

where r and i are the real and imaginary components from the 
voltage and current DFT measurements, respectively.  

To calculate the Impedance Z, use Ohm’s law by dividing the 
voltage magnitude by the current magnitude while taking into 
account the gains of the signal chain. 

Z(Magnitude) = 
(Voltage magnitude/Current magnitude) ×  
(1.5/1.494) × RTIA  

The current measurement value is converted to a voltage, using 
the RTIA, for measurement purposes. This gain needs to be taken 
into account. 

The 1.5 gain in the equation is the ratio between the gain of the 
ADuCM350 current measurement channel, which is 1.5, vs. the 
gain of the ADuCM350 voltage measurement channel which  
is 1. 

The gain of the in-amp is determined by the selection of RG. 
For the AD8226, this is determined by  

RG = (49.4 kΩ)/(G − 1)  

Choosing  

RG = 100 kΩ  

results in a gain of 1.494. 

Note that these equations are taken into account in the example 
provided in the software development kit. 

http://www.analog.com/aducm350?doc=an-1302.pdf
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EXAMPLE OF A 4-WIRE BIO-ISOLATED SYSTEM 
SENSOR CONFIGURATION 
In the example described in this application note, measure the 
impedance of an RC type sensor, with the configuration shown 
in Figure 10, for a 30 kHz excitation signal. Note that TOL 
indicates tolerance. 

The sensor details are as follows: 

• CS = 220 pF 
• RS = 20 kΩ 
• RP = 100 kΩ 
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Figure 10. RC Sensor to be Measured 

The total impedance of the sensor needs to be calculated to 
verify the system accuracy. 

1. Calculate the complex sum of  

RS + CS = Zs =  
34962 ∠  −55.11  

2. Calculate Zs || with  

Rp = ZT = 28337.15 ∠  −41.66 

This is the total impedance of the RC sensor to be measured. 

4-WIRE BIO-ISOLATED NETWORK  
For this 4-wire example, select the following components: 

• A lead access resistor, RACCESS = 4.99 kΩ 

• An isolation capacitor, CISO, of 47 nF 

If Z is close to or less then RACCESS, a potential divider effect 
occurs which limits the bandwidth of the ADuCM350 thus 
degrading accuracy (see Figure 11). 
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Figure 11. 4-Wire, Bio-Isolated Measurement Network 
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AFE OPTIMIZATION 
Optimizing the ADuCM350 consists of the following steps: 

1. Calculate the RLIMIT resistor. 

2. Calculate RTIA. 

3. Calculate RG of the AD8226. 

4. Calculate RCAL.  

CALCULATE THE RLIMIT RESISTOR 
When calculating the RLIMIT resistor, note that 

Maximum output voltage from ADuCM350 = 600 mV peak 

Maximum allowed ac current at 30 kHz is  

300 μA rms (targeting IEC-60601) = 424 μA peak 

Being conservative, set the maximum allowable ac current to 
200 μA peak (<50%). 

RLIMIT ~= 600 mV peak/200 μA peak = 3 kΩ.  

This calculation ignores CISO due to its small size. 

CALCULATE RTIA 
RTIA  is the feedback resistor on the TIA to convert the current to 
a voltage.  

Minimum impedance/maximum current seen by the TIA is 

22 )()( narySumofimagiRealZPNMIN +=  

( )
( )2

21

2
21

MINMIN

MINMINMIN

ISOISO

ACCESSUNKNOWNACCESSLIMIT

XCXC

RZRR

+

++++
 

Assume 20 kΩ is the minimum impedance of ZUNKNOWN. 

RACCESS1 = RACCESS2 = 4.99 kΩ 

RLIMIT = 3 kΩ 

XCISO1 = XCISO2 = 289.37 Ω  

ZPNMIN = 32.985 kΩ 

Note the following: 

• Maximum voltage swing is 600 mV peak.  
• Highest signal current into TIA = 600 mV peak/32.98 kΩ  

= 18.19 μA peak. 
• Peak voltage at output of TIA (maximum allowed by the 

ADuCM350) = 750 mV peak. 
• RTIA resistor to give peak 750 mV voltage for peak signal 

current is as follows: 
RTIA = 750 mV/18.19 μA  
RTIA = 41.2 kΩ 
 

To prevent overranging of the ADC, put in a safety factor of  
1.2, that is, the minimum impedance is 1.2 times less than the 
specified minimum impedance of  

32.985 kΩ = 27 k Ω 
RTIA with safety factor included = 41.2 kΩ/1.2  
RTIA = 34.3 kΩ  

Note that 33 kΩ is used for this example. 

CALCULATE RG OF THE AD8226 
The maximum impedance of sensor  

MAXUNKNOWNZ = 28.337 kΩ 

A safety factor is incorporated on the RTIA to prevent the ADC 
from overranging. The same needs to be done here thus the 
maximum peak current is divided across differential inputs of 
AD8226 by a factor of 1.2.  

Peak current seen at VIN(AD8226) =  

(18.19 μA peak)/1.2 = 15.16 μA peak 

VIN(AD8226) =  
15.16 μA peak × 28.337 kΩ = 439.6 mV peak 

AD8226 G = 750 mV peak/(439.6 mV peak) = 1.706 

If a further safety factor of 1.1 is used on the peak-to-peak of 
the voltage (this may be unnecessary for the application), then 

AD8226 G = 750 mV peak/(1.1 × 439.6 mV peak) = 1.55 

AD8226 G = 1 + (49.4 kΩ/RG) = 1.55 

RG = (49.4K)/(1.55 − 1) = 89.8 kΩ 

Select an RG of 100 kΩ since it is a standard value. 

AD8226G = 1 + (49.4 kΩ/RG) =  

1 + (49.4 kΩ/100 kΩ) = 1.494 

Note that the AD8226 has bandwidth limitations. For a 
frequency of 50 kHz, the gain is limited to 10 (see Figure 12). 

http://www.analog.com/aducm350?doc=an-1302.pdf
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Figure 12. Gain vs. Frequency of AD8226 at 2.7 V 

CALCULATE RCAL 
The calibration of the auxiliary channel and TIA channel must 
take into account the gain through the system.  

• For the voltage measurement channel, the auxiliary 
channel is calibrated. 

• For the current measurement channel, the temperature 
sensor is calibrated and the results are loaded to the offset 
and gain registers of the TIA channel. This ensures that the 
difference between the voltage and current gain is exactly 
1.5.  

All this is done for the user in the 4-wire bio-isolated example 
code in the software development kit. 

 

http://www.analog.com/ad8226?doc=an-1302.pdf
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4-WIRE BIO-ISOLATED MEASUREMENTS 
HARDWARE SETUP FOR 4-WIRE BIO-
CONFIGURATON BOARD 
When setting up the EVAL-ADuCM350EBZ motherboard 

• For the voltage measurement, insert LK1 (Auxiliary 
Channel A). 

• Open LK6. 

For the ADuCM350 4-wire bio-configuration board 

• Insert LK7, LK8, LK9, and LK10.  
• To measure the network shown in Figure 10 and Figure 11, 

insert LK16, LK17, and LK21. The result should appear as 
shown in Figure 13. 

By default, the 4-wire configuration seen in Figure 10 and 
Figure 11 is setup on the 4-wire bio-configuration board. 

SOFTWARE SETUP FOR 4-WIRE BIO-
CONFIGURATION BOARD 
Firmware Example  

Code available in the ADuCM350 software development kit is 
designed to be used with the 4-wire bio-configuration board to 
validate the solution discussed in this application note. 

The Readme.txt in the example folder provides more details on 
the measurement. 

1. After downloading the software development kit, go to  
C:\Analog Devices\ADuCM350BBCZ\EVAL-
ADUCM350EBZ\examples.  

2. Click the BioImpedanceMeasurement_4Wire folder. 
3. Click the .eww file in IAR. 
4. During the download and debug stage, open the Terminal 

I/O window to read the returned results. 

Measurement Results 

Impedance Magnitude 

Measured result = 28405 Ω  

Theoretical value measured ZT = 28337 Ω 

However, the Cs of 220 pF used in the calculation had a 
tolerance of 1%.  

Upon analysis, the capacitor measured closer to 221 pF.   

In theory, a Cs of 221 pF would give a ZT of 28416 Ω vs. the 
measured result of 28405 Ω.  

For more details, refer to the Sensor Configuration section.  

Impedance Phase 

The current 4-wire-bio-isolated configuration is not capable of 
measuring accurate phase measurements.  

If an absolute phase measurement is required, use a single chip 
ADuCM350 4-wire measurement configuration. Note that this 
configuration does not have isolation capacitors (CISO).  

12
16

8-
01

1

 
Figure 13. 4-Wire Measurements Display on Terminal I/O 

http://www.analog.com/aducm350?doc=an-1302.pdf
http://www.analog.com/aducm350?doc=an-1302.pdf
http://www.analog.com/aducm350?doc=an-1302.pdf
http://www.analog.com/aducm350?doc=an-1302.pdf
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SCHEMATICS FOR THE 4-WIRE BIO-CONFIGURATION BOARD 
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Figure 14. Motherboard Connector 

 
4-WIRE BIO IMPEDANCE CONFIGURATION
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Figure 15. 4-Wire and Uncommitted Schematics 
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Figure 16. Miscellaneous Schematics 
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