ANALOG
DEVICES

AN-330
'APPLICATION NOTE

ONE TECHNOLOGY WAY e P.0. BOX 9106 ¢ NORWOOD, MASSACHUSETTS 02062-9106 @ 617/329-4700

Animation Using the Pixel Read Mask Register of the
ADV47X Series of Video RAM-DACs

by Bill Slattery & Eamonn Gormiey

INTRODUCTION

The Pixel Read Mask Register, which is an integral part
of IBM's VGA* graphics system, can be used as a
hardware-level Pixel Processing Unit. This allows real
time motion or animation to be implemented with min-
imal software overhead. This application note examines
the operation and structure of such a pixel processing
unit with the pixel read mask register as the central
controller. A practical application which uses the pixel
read mask register to animate a picture scene is
described. A complete listing of the Turbo-C source code
is given in the appendix.

No additional hardware is required for existing VGA
graphics systems to implement this application.

VIDEO RAM-DAC

Analog Devices produces a range of video RAM-DACs,
which are specifically designed for IBM’'s Personal
System/2* VGA. The range includes the ADV478,
ADV471 and ADV476, all of which are monolithic +5V
CMOS video RAM-DACs. These parts are specified over

Vaa Vaa Vaa Vaa [Vs
4 2% 37
AEFERENCE
CLOCK ADVATRADVAT1 OPA
come
r DAC on
] "
” LN Mo N assxaume
S {maski|® w.mn:.ﬂlﬂl
TR (s v neG [~ P DAC 06
LATCH
O
LN 15x2018)
oue (e9) 4 OVERLAY o8 | Dac 108
. —t]
ou 2018
seTUP
n [[
ROGISTER
[U)
T BUS CONTROL 2) W8 (NC)
s
3 ORI D 07D OO0
GND GND [07 A5 W ree ASY RS2
NOTES

N PARENTHESIS INOICATE PIN NAMES FOR THE ADV4TY.
NC=NO CONNECT

Figure 1. ADV478/ADV471 Functional Block Diagram

-

*IBM, VGA, Personal System/2 and 8514/A are trademarks of
international Business Machines Corp.

a number of speed grades; 35 MHz, 50 MHz, 66 MHz and
80 MHz. The RAM-DACs are packaged as 44-pin PLCC
and 28-pin plastic DIP devices.

The ADV471 and ADV476 each contain a triple 6-bit
digital-to-analog converter and a 256 location by 18 bits
deep color look-up table. The devices also include an
asynchronous pixel input port and bidirectional micro-
processor (MPU) port. These devices and the associated
control circuitry allow for flexible interface to many
graphics systems configurations. The ADV478 differs
from the ADV471 only in terms of its color resolution.
The ADV478 has a triple 6-bit/8-bit D/A converter with a
256 x 24/18 color look-up table. The color resolution of
the ADV478 is user selectable between 6 bits and 8 bits.
The higher 8-bit performance can be used with IBM’s
8514/A* graphics standard (upgrade on standard VGA).
More detailed information on these and other video
RAM-DACs can be obtained in the relevant product data
sheets.

Built into all three devices is an 8-bit register known as
the Pixel Read Mask Register. Figures 1 and 2 are block
diagrams of the ADV478/ADV471 and ADV476 which
show the Pixel Read Mask Register.

B

T |

Ve (GND)

Figure 2. ADV476 Functional Block Diagram

DIGITAL-TO-ANALOG CONVERTERS 8-257

Some of the uses to which the Pixel Read Mask Register
can be put include on-screen special effects such as real
time animation, flashing objects and overlays.

PIXEL READ MASK REGISTER
. The Pixel Read Mask Register is piaced in the path of the
pixel input stream of data as shown in Figure 3.

The input pixel data stream (P0-P7) is gated with the
contents of the Pixel Read Mask Register. The operation
is a bitwise logical ANDing of the pixel data. The con-
tents of the Pixel Read Mask Register can be accessed
and altered at any time by the MPU (D0-D7). Table |
shows the relevant control signais. Under normal oper-
ating conditions, this register is loaded with all 1s, i.e.,
transparent mode.

In a VGA graphics system, the Pixel Read Mask Register
is memory mapped and is accessible (read/write)} by
addressing memory location 36CH.

[P—— N PIXEL

-
™ V] REGISTER W

ZTO=A>r

P ——

COLOR PALETTE
RAM

BIDIRECTIONAL MPU DATA BUS

DO---D7

Figure 3. Video RAM-DAC Pixel & Data Ports Showing
the Pixel Read Mask Register

RS2* | RS1 | RSO | Addressed by MPU

0 0 0 Address Register (RAM Write Mode)
0 1 1 Address Register (RAM Read Mode)
0 0 1 Color Palette RAM

0 1 0 Pixel Read Mask Register

*RS2 is only present on ADVA78/ADV471

Table I. Control Input Truth Table for Video RAM-DAC

Figure 4 shows the internal architecture of the pixel
input port. The input word Pi, which corresponds to an
~ on-screen pixel location, is ANDed with the contents of
the Pixel Read Mask Register, Pm.

8-258 DIGITAL-TO-ANALOG CONVERTERS

PIXEL SELECT INPUT Pi PIXEL SELECT OUTPUT Po

D— |

— TO COLOR
PALETTE (258}
—N\ 1 e—

i

i
[T1T11]
-

[]

[

PIXEL MASK WORD, Pm

FROM DATA BUS. D0-D7

Figure 4. Internal Architecture of Pixel input Port

The resuiting output word, Po, determines which loca-
tion in the color palette will be assigned to a particular
on-screen pixel. Figure 5 shows the logical diagram for
this masking operation.

Pi

Po

Pm

Figure 5. Equivalent Logical Representation of Masking
Operation

Po = Pi - Pm (1)
If Pm = 1, transparent mode, then
Po = Pi (2)

The pixel stream of data, Po, which arrives at the color
palette is a function of both the pixel input stream, Pi,
from the Frame Buffer and the contents of the Pixel Read
Mask Register, Pm. In the case of an animation applica-
tion, which will be discussed later in this application
note, the rate at which the pixel mask word is changed
will determine the motion speed of the scene.

This pixel masking operation can be used to alter the
displayed colors without changing the contents of either
the video Frame Buffer or the Color Palette RAM. One
interpretation of this operation is to consider the pixel
input structure of the video RAM-DAC as an on board
Pixel Processing Unit.

PIXEL PROCESSING UNIT

The Pixel Input Port (Pi), Pixel Read Mask Register (Pm)
and Data Input Port (MPU) within the video RAM-DAC,
are the hardware components of this Pixel Processing
Unit (PPU). An associated software routine to control the
operation is the final element in the complete PPU sys-
tem. This interpretation enables the color palette to be
configured as a muitidimensional, paged memory
address space, see Figure 6.

In the case of the ADV471 and ADV476 the color palette
can be perceived as being broken into an even number
of 18-bit color planes instead of just one 18-bit deep
color plane. (In the case of the ADV478, each plane is 24
bits deep.)

The palette can therefore be partitioned to produce up to
a total of 256 discrete contiguous color memory planes,
some of which are shown in Figure 6. A tradeoff, how-
ever, must be considered when dividing the color palette
into muitiple color planes. The number of simuita-
neously displayable screen colors is inversely propor-
tional to the number of color planes within the color
palette. Table Il illustrates this relationship. This contig-
uous configuration is not, however, the sole way of seg-
menting the memory within the palette. Other non-
contiguous configurations including interieaving can be
implemented. The choice of memory configuration will
be determined by the particular application so as to
make most efficient use of the available video memory
{Image Frame Buffer and Color Palette RAM).

Number Number of Simultaneously
of Color Pianes | Displayable Colors
1 256
2 128
4 64
256 1

Table Il. Simultaneously Displayable Screan Colors ver-
sus Number of Color Planes

To operate the PPU, two principal steps must be taken:

1. Load the image data in the correct paged configura-
tion to both the frame buffer and color look-up table,
e.g., four frame composite images to the frame buffer
corresponding to four discrete planes of color to the
palette RAM.

2. Generate the corresponding pixel mask words. These
words are individually written to the Pixel Read Mask
Register, Pm (at VGA memory location 36CH) and
select which of the color planes is to be assigned to
the incoming pixel data stream. In the case where
four planes are implemented (see Figure 6), four pixel
mask words are required.

The overall VGA System Block Diagram showing the
PPU and an associated 8-page memory configuration of
the color palette is shown in Figure 7.

PIXEL READ MASK REGISTER CONTENTS (Pm)

258 x 24 (18)
COLOR PALETTE

Pm = FRH [1[1]1]1]1]1]1]]

TRANSPARENT MODE

Pm=FrH [F[1]1]1]1]{1]1]]
pm =774 [O[1] 1] 1[1{1]1]1]

2 MEMORY PLANES

pm=FrH [A]3[1]1f1f1]1]1]

Pm=BFH [BJO[1]1]1]1]1]9]
Pm=7FH [Of2]3]1[1]111]1]
Pm =3fH [OJO[1]2]{1]111]1]

4 MEMORY PLANES

Figure 6. Some Color Palette RAM Configurations Showing
Paged Memory Planes and Associated Pixel Read Mask Word (Pm)

DIGITAL-TO-ANALOG CONVERTERS 8-259

lo

VIDEO
FRAME BUFFER
MEMORY

TO-APr

> RED

- GREEN

P © O

- SLUE

i

BIDIRECTIONAL DATA/ADDRESS BUS

I

HOST COMPUTER INTERFACE

Figure 7. VGA System Block Diagram Showing Color Palette Broken into a

Number of Color Planes

ANIMATION

Real time animation using the Pixel Processing Unit is
based on the principle that rapidly changing the colors
of a stationary object gives the illusion of motion. in
other words, a number of similar images or frames,
differing only by the relative position of the various col-
ors, displayed in quick succession, can result in motion.

A simple example to explain the idea of animation is
illustrated opposite. The animated image consists of
three frames; each of the three frames is initially drawn
as one composite picture (Frame Buffer image). The
color palette contains three discrete, memory blocks or
planes of color information, corresponding to three
stages of animation. The animation effect in this exam-
ple is “arm waving” of the cartoon character. By assign-
ing the color planes one by one to the image in the
Frame Buffer, the effect of animation can be perceived
on the screen. The color plane assigned to the compos-
ite image is determined by the PPU which is controlied
by the word in the Pixel Read Mask Register. Frame 1 is
assigned Color Plane 0, this colors the down arm posi-
tion in black, while the up and horizontal arm positions
take on the background color. Frame number 2 is
assigned Color Plane 1, this colors the horizontal arm
position in black while the other two arm positions are
assigned the back ground color.

R (P PLANE 2

COMPOSITE PLANE 1
IMAGE PIXEL
PROCESSING
FRAME BUFFER UNIT (PPU)
PLANE 0
COLOR PALETTE

Finally, Frame 3 takes on Color Plane 2. This process is
then repeated giving the illusion of motion. The rate at
which each frame is selected determines the rapidity of
the arm waving.

8-260 DIGITAL-TO-ANALOG CONVERTERS

ANIMATION USING THE PPU

This section describes a particular animation example.
The scene used in this example consists of traveling
space ships and rotating planets. The program which
draws the scene and implements the animation is
described in the flow diagram of Figure 8. The associ-
ated source code, written in Borland’'s Turbo-C, is given
in the Appendix. This application implements 8-stage
animation.

INITIALIZATION
SECTION

Figure 8. Flow Diagram Representation of Animation
Using the PPU

The complete image is drawn to the Frame Buffer. This
composite picture contains eight frames of information.
The corresponding color pianes for each of the eight
frames in this composite image, are drawn to the color
palette. The color information is arranged in a paged
memory format corresponding to that shown in
Figure 7. Each of these eight color planes has similar
color data; they differ from each other only in terms of
the relevant position of the particular colors. For exam-
ple, Plane 0 could have blue in its first location and color
yellow in its second location, while Plane 1 could have
the opposite, yellow in Location 1 and blue in Location 2.
During the display period, the color palette will only
allocate colors to one of the eight frames (i.e., one color
plane) at a particular instant. Each plane of color infor-
mation is mapped to a particular frame within the Frame
Buffer. The user-defined value of the Pixel Read Mask
Register determines which of the color planes within the
palette will be chosen for display at any particular
instant. The hex codes, written to the Pixel Read Mask
Register Pm, which correspond to each of the color
planes (Plane 0 to Plane 7) are listed in Table .

3C6F : Address of Pixel Read Mask Register (Pm)
8FH — Pm : Plane 0 Selected Pm = 1000 1111
9FH — Pm : Plane 1 Selected Pm = 1001 1111
AFH — Pm : Plane 2 Selected Pm = 1010 1111
BFH — Pm : Plane 3 Selected Pm = 1011 1111
CFH — Pm : Plane 4 Selected Pm = 1100 1111
DFH — Pm : Plane 5 Selected Pm = 1101 1111
EFH —» Pm : Plane 6 Selected Pm= 1110111
FFH — Pm :APIane7SeIected Pm = 1111 1111

Table Ill. Value Written to Pixel Read Mask Register and
Associated Color Plane

Pressing the “Spacebar’’ increments the pixel read mask
register corresponding to a jump of 16 iocations in the
color palette. As there are 16 colors in each color plane,
a jump of 16 locations will select the corresponding
color in the next highest plane. Continuously pressing
the “Spacebar’”’ cycles the incoming pixel stream of data
through each of the eight color planes within the palette.
This results in the apparent motion or animation of the
image.

DIGITAL-TO-ANALOG CONVERTERS 8-261

8-262

APPENDIX

C Program for ANIMATION EXAMPLE

Pixel Processing Using Video RAM-DACs
“Rotating Planets & Spaceships”

#include <stdlib.h> /* Turbo C include files */
#include <math.h> /* these are available under most vexsions */
#include <dos.h> /* of C for the IBM & compatibles */

#include <graphics.h>

void palette(int col,int red,int green,int blue);

void plotl3(int x,int y,int col);

void model3();

/* function definitions */

void circlel3(int x,int y,int r,double tilt);

void planets();
void stars();

void linel3(int x1,int yl,int x2,int y2,int col);

void triangle();
main()

int gd=0,gm=0,0pt;
union REGS reg;
detectgraph(&gd,&gm);
if (gd 1= 9){

printf("This program cannot find a VGA

/*

printf("A VGA card is necessary to run

exit(1l); }

planets();

reg.h.ah = 0x00;
reg.h.al = 0x03;
int86(0x10,®,&req);
}

void model3()

union REGS reg;
reg.x.ax = 0x0013;
int86(0x10,&xeg,®);
}

/t

/>

/*
/*
/*

/™

check for a VGA card */

card installed in this computer.\n");
the tests.");

do demo */

return to text mode when finished */

set up mode hex 13 = decimal 19 */
this is a 256 color mode with */
320 x 200 pixel resolution */

set mode 0x13 */

void palette(int col,int red,int green,int blue)
/* assigns a physical color to a logical color */

union REGS regq;
reg.x.ax 0x1010;
reg.x.bx = col;
reg.h.dh = red;
reg.h.ch = green;
reg.h.cl = blue;

int86(0x10,®, kreq);

void plotl3(int x,int y,int col)

union REGS reg;

if(x>=0 && y>=0 && x <320 && y<200){
/* set up registers */

reg.x.dx = y;
reg.xX.Cx = X;

reg.h.ah = 0x0c;

reg.h.al = col;
}}

int86(0x10,®,sreg);

void circlell(int x,int y,

{

DIGITAL-TO-ANALOG CONVERTERS

/* call bios routine to change palette */

/* special plot routine for mode 0x13 */

/* call bios plot routine */

int r,double tilt)
/* routine draws a single planet */

int la,yy;
double ang,oldx,oldy,newx,newy,sintl,costl,rcos,rsin;
for(la = -r; la < r; la++)
{ /* routine uses a fairly simple */
yy = sqrt(r*r - larla) + 1; /* algorithm to draw a solid circle */
linel3(la+x,y-yy,la+x,y+yy,14); }

costl = cos(tilt); /* set up some variables */

sintl = sin(tilt);

yy = 240; /* To draw lines of longitude: */
for(la = r; la >= -r; la-=r/15) /* draw portions of ellipses */

{ /* and rotate them by tilt radians */
oldx = x-r*sintl; .
oldy = y+r*costl;

for(ang = -1.57jang <1.57;ang+=.195) {

newx = x+la*cos(ang)*costl+r*sin(ang)*sintl;

n = y-r*lin(lnq)*cont1+1ntc01(anq)'lintl;
linel3(newx,newy,oldx,oldy,yy); /* line segment of ellipse */

oldx = newx; /* store endpoints */
oldy = newy;)}
YY = (Yy==247) ? 240 : ++yy; /* incrememt color used */

for(ang=-1.57;ang<l1.57;ang+=.39) /* draw lines of latitude */
{ /* ie sloped lines */
rcos = r*cos(ang);
rsin = r*sin(ang);
11n013(x+rcou'cout1-rl£n*lintl,y+rlln'¢0:tl+rc0|'s1ntl
,x-rcoo*contl-:tin*lintl,y+rlin*c0ltl-rc0l*|incl,15);
}}

void planets() /* routine to draw and animate the planets */

int la,lb;

model3();

palette(7,255,255,255);

printf(” Pixel Read Mask Demo\n");
printf (" \n*);

r
printf(" This program contains an animated picture scene which ");
printf(“is initially drawn on the screen and then ANIMATED ");
printf("using the Pixel Read Mask Register.\n");
printf(“\n Press the spacebar to draw scene and hold it down

-). -
printf("when scense is ready for animation. When finished, "); ’ .

printf(“press any other key......");
while(getch() I= * ’); /* wait for keypress */
model3();
for (la=8;la<l6;la++) /* set up the palette for animation */
{
for (1b=0;1b<8;1b++)
palette(la*16+1b,0,10,63); /* set planet lines to blue */
for (1b=8;1b<16;1b++)
palette(la*16+1b,0,0,0); /* stars are initially black */
}
for (la=128;la<256;la+=17)
palette(la, 63,63,63), /* define one line on planet to white */
palette(la+8,63,63,0); /* and one star to yellow, per frame */
palette(15,255,255,255); /* set color 15 to pure white */
palette(7,20,255,0); /* color 7 to green */
palette(14,0,10,63); /* color 14 used for planet background */
stars(); /* draw stars in background */
circlel3(30,30,30,0.9); /* draw the actual planets */
circlel3(280,35,35,4.0);
circlel3(130,100,70,-0.8);

DIGITAL-TO-ANALOG CONVERTERS 8-263

circlel3(40,240,125,0.5); :
triangle(); /* draw the spaceship thingy */
gotoxy(30,21);printf("Space to");
gotoxy(30,22);printf("animate.");
gotoxy(30,24);printf ("Other key");
gotoxy(30,25);printf("to stop.");

/* on screen instructions */

la=143; /* 143 = $10001111 */
do
outportb(0x3c6,la), /* this part does the actual animation */
la = (la<255) ? la+l6 : 143; /* loop through the palette */
while((lb = getch()) == ' ’); /* while the spacebar is being pressed */
}
void stars() /* routine to plot in the stars */
int la,lb,lc,1ld,le,col = 248;
long q;
srand(time(&q) & 37); /* set up random background */

for (la=0;1a<200;la+=5) ({
lc = (rand()&0x7)-0x4;
1d = la;
le = (rand()&7)+3;
for (lb=1;1b<320;1lb+=le,ld=la+lc*1lb/64)

ploti3(1lb,1d,col), /* plot the star */
col = (col == 255) ? 248 : ++col;
}}
void linel3(int x1,int yl,int x2,int y2,int col)
{ /* this routine draws a line in */
int la,lb,lc; /* graphics mode 13H */
if (abs(xl1-x2) > abs(yl-y2)) { /* line longer in x or y direction ? */
lc = (x2-x1);1b = (x2 - x1 >=0) ? 1 : -1;
for (la=xl;la!=x2;la+=1lb) /* loop works out the points on */

plotl3(la,yl+(la-xl1)*(y2-yl)/ic,col); /* the line and plots them */

else { .

lc = (y2-yl);lb = (y2 - yl >=0) ? 1 3 -1;
for (la=yl;lal=y2;la+=1b)
plotl3(x1+(la-yl)*(x2-x1)/1c,la,col);

3

void triangle() /+* This routine draws a simple spacecraft-type */
{ /* object for animation. */

int la,lb=19,col=248; /* starting size = 19, color = 248 */

double tilt=0.5236; /* starting tilt */

for (la=200;1b>0;la-=1b,1lb~-,tilt += .3)

{ /* loop to draw 19 objects */

linel3(200+la/2+1b*cos(tilt),la+lb*sin(tilt),
200+1a/2+1bvcos(tilt+2.0944),la+lb*sin(tilt+2.0944),col);

11n013(200+1a/2+1b'c0l(t11t+2.09‘4),1a+lb'lin(tllt+2.0944),
200+la/2+1b*cos(tilt+4.1888),la+lb*sin(tilt+4.1888),col);

lin013(200+1a/2+1b'co-(ti1t+4.1898),1a*lb*lin(ti1t+4.1888),200+1a/2,1a,c01);

1inel3(200+la/2,1a,200+1a/2+1b*cos(tilt), la+lb*sin(tilt),col);

col = (col==255) ? 248 : ++col; /* col = col + 1 until col = 255, when */

}} /* col returns to zero */

8-264 DIGITAL-TO-ANALOG CONVERTERS

