

DICE/DWF SPECIFICATION

LT3680

36V, 3.5A, 2.4MHz Step-Down Switching Regulator with 75µA Quiescent Current

PAD FUNCTION

- 1. BD
- BOOST
 SW
- 4. V_{IN}
- 5. RÜN/SS
- 6. SYNC
- 7. PG
- 8. FB
- 9. V_C
- 10. RT
- 11. GND

DIE CROSS REFERENCE

LT® Finished	Order
Part Number	Part Number
LT®3680	LT3680DICE
LT3680	LT3680DWF*

Please refer to ADI standard product data sheet for other applicable product information.

All registered trademarks and trademarks are the property of their respective owners.

ABSOLUTE MAXIMUM RATINGS

(Note 1)

V _{IN} , RUN/SS Voltage	36V
BOOST Pin Voltage	
BOOST Pin Above SW Pin	
FB, RT, V _C Voltage	5V
PG, BD, SYNC Voltage	

^{*}DWF = DICE in wafer form.

LT3680

DICE/DWF ELECTRICAL TEST LIMITS $T_A = 25^{\circ}C$. $V_{IN} = 10V$, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	MAX	UNITS
Quiescent Current from V _{IN}	V _{RUN/SS} = 0.2V		0.5	μA
	V _{BD} = 0, Not Switching		160	μA
Quiescent Current from BD	V _{RUN/SS} = 0.2V		0.5	μА
	V _{BD} = 0, Not Switching		5	μА
Minimum Bias Voltage (BD Pin)			3	V
Feedback Voltage		780	800	mV
FB Voltage Line Regulation	4V < V _{IN} < 36V		0.01	%/V
Switching Frequency	$R_T = 8.66k$ $R_T = 29.4k$ $R_T = 187k$	2.2 1.0 200	2.7 1.25 260	MHz MHz kHz
Boost Schottky Reverse Leakage	$V_{BOOST} = 10V$, $V_{BD} = 0V$		2	μΑ
BOOST Pin Current	I _{SW} = 1A		50	mA
RUN/SS Pin Current	V _{RUN/SS} = 2.5V		8	μА
RUN/SS Input Voltage High			2.5	V
RUN/SS Input Voltage Low		0.2		V
PG Leakage	V _{PG} = 5V		1	μΑ
SYNC Low Threshold		0.5		V
SYNC High Threshold			0.7	μА

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Wafer level testing is performed per the indicated specifications for dice. Considerable differences in performance can often be observed for dice versus packaged units due to the influences of packaging and assembly on certain devices and/or parameters. Please consult factory for more information on dice performance and lot qualifications via lot sampling test procedures.

Dice data sheet subject to change. Please consult factory for current revision in production.