
SOFTWARE USERS GUIDE DC2100A

1

DESCRIPTION

This document covers the application of the source
code provided for Demonstration Circuit DC2100A.
Source code for the firmware programmed into the
DC2100A and for the GUI for a Windows PC are pro-
vided. The source code can be obtained from
http://www.linear.com/solutions/5126. Reference the
demo manual for the DC2100A at http://www.lin-
ear.com/docs/44975 for a description of the hardware,
and the operation of the board with the GUI.

The source code was developed to satisfy 2 require-
ments:

1. The firmware must communicate with the GUI soft-

ware to allow evaluation of the LTC3300-1 and
LTC6804-2 ICs. Note that the GUI has a special
mode when attached to a SuperCap Demo System

available to LTC sales personnel, which demon-
strates the value of active balancing in a simple
low-capacity system.

2. The firmware code must provide a reference design

for a battery monitor and balancing system using
the LTC3300-1 and the LTC6804-2. The algorithms
in the source code provide solutions for the com-
plexities of active balancing such that the user
merely needs to interface them to SOC algorithms
for their battery chemistry.

L, LTC, LTM, LT, Burst Mode, OPTI-LOOP, Over-The-Top and PolyPhase are registered

trademarks of Linear Technology Corporation. Adaptive Power, C-Load, DirectSense, Easy

Drive, FilterCAD, Hot Swap, LinearView, µModule, Micropower SwitcherCAD, Multimode Dim-

ming, No Latency ΔΣ, No Latency Delta-Sigma, No RSENSE, Operational Filter, PanelProtect,

PowerPath, PowerSOT, SmartStart, SoftSpan, Stage Shedding, SwitcherCAD, ThinSOT, Ultra-

Fast and VLDO are trademarks of Linear Technology Corporation. Other product names may

be trademarks of the companies that manufacture the products.

Figure 1 - DC2100A-C PCB

DEMO CIRCUIT DC2100A
SOFTWARE USERS GUIDE

Bi-Directional Cell Balancer Using
the LTC3300-1 and the LTC6804-2

SOFTWARE USERS GUIDE DC2100A

 2

SOFTWARE OVERVIEW

The DC2100A source files can be downloaded from http://www.linear.com/solutions/5126. They consist of 2 collections
of code for the PIC18 on the DC2100A-C, and 2 collections of code for a Windows computer (XP/7/8 supported). The
interaction between this code is shown in Figure 2.

• Application Firmware (App FW), executing in the
PIC18F47J53 microcontroller on the DC2100A-C PCB,
is written in C for the CCS PCH compiler v5.027
(www.ccsinfo.com) with an MPLab v8.92 project. If
the CCS compiler is purchased, the PCWH package
must be used to get the RTOS library used by the
DC2100A App FW.

• Bootloader Firmware (Boot FW), executing in the
PIC18F47J53 microcontroller on the DC2100A-C PCB,
is written in PIC18 assembly with MPLab v8 project.
This code is a modification of the open source PIC18
bootloader from Diolan.
(www.diolan.com/pic/bootloader.html).

• GUI Software (GUI SW), developed for Windows
XP/7/8 computers with v4.5 of the .NET framework, is
written in Visual Basic using Microsoft Visual Studio
2010.

• Firmware Update Software (Update SW), developed as
a console application for Windows XP/7/8 computers,
is written in Visual C++ using Microsoft Visual Studio
2010. This code is a modification of the open source
update software from Diolan.
(www.diolan.com/pic/bootloader.html).

.

Figure 2 - DC2100A Code Communication Diagram

SOFTWARE USERS GUIDE DC2100A

3

As shown in Figure 2, the Update SW communicates with
the Boot FW through the HID Windows driver where the
GUI SW communicates with the App FW through the
WinUSB Windows driver.

The Boot FW uses the USB Control Transfer Interface to
erase and write new App FW into the PIC18. The Boot FW
does not communicate with any of the ICs on the
DC2100A. It does use D15 and D16 to indicate the state
of the code, however, and does use pins on JP7 to as a
method to enter the bootloader as described in the
BOOTLOADER FIRMWARE section.

The App FW primarily uses the USB Bulk Transfer Interface
to pass commands and responses to the GUI SW. The
App FW provides communication to the ICs and I/O lo-
cated on the DC2100A boards and relays this information
back to the GUI SW. The App FW interfaces with all of the
ICs on the DC2100A as described here:

• LTC6820: converts SPI from PIC18 into isoSPI for the

LTC6804-2s on each DC2100A.
• LTC6804-2: measures battery voltage and thermistor

inputs. This IC also passes I2C and SPI communica-
tion to the other ICs.

• LTC3300-1: provides active balancing, receiving com-
mands from the PIC18 through the LTC6804-2. The
PIC18 sends the SPI commands to these ICs over the
SPI commands it sends to the LTC6804-2.

• LTC1380: analog multiplexors connect one thermistor
input to the LTC6804-2 GPIO input at a time. The
PIC18 sends the I2C commands to these ICs over the
SPI commands it sends to the LTC6804-2.

• 24AA64: manufacturing and user data is stored in this
64kbit I2C EEPROM. The PIC18 sends the I2C com-
mands to this IC over the SPI commands it sends to
the LTC6804-2.

The App FW uses all of the I/O hardware interfaces on the
DC2100A:

• D15/D16: LEDs are used to indicate the state of the

DC2100A system. The Green LED indicates the FW
state, where the Amber LED indicates the USB Com-
munication state.

• JP7: SPI signals are passed through this connector to
the LTC6820. This also offers a place to disconnect
the PIC18 from the rest of the system, so that cus-
tomers may use an alternative embedded system to
control the ICs on the DC2100A.

• J1/J18: these connectors pass the isoSPI signals be-
tween each DC2100A.

• J17: twelve 10kΩ NTC thermistors interface to this
connector. These thermistor signals pass through the
two LTC1380 multiplexors to be converted by the ADC
converter in the LTC6804-2. The DC2100A ships with
a PCB attached to J17 (shown in Figure 3) that is pop-
ulated with resistors ranging from 147Ω to 340kΩ.
These simulate 10kΩ thermistors at temperatures
ranging from -40°C to 160°C. It is intended for these
resistors to be removed and have the turrets con-
nected to actual 10kΩ thermistors in the customer’s
application.

• J21: General purpose I/O is available on this port, con-
figurable to be analog, digital, or communication sig-
nals. The App FW’s usage of these pins is defined in
the DC2100A Application Files section as Table 6. Fig-
ure 4 shows the physical location of this I/O interface.

SOFTWARE USERS GUIDE DC2100A

 4

APPLICATION FIRMWARE

BUILDING AND LOADING APP FW

The App FW for the DC2100A is built from the
DC2100A.mcp project for Microchip MPLab v8.92 and
CCS PCH compiler v5.027 or later. The DC2100A.hex file
that is created by this project is optimal for loading
through the Boot FW and Update SW. See BOOTLOADER
FIRMWARE section for details about loading new App FW
using the bootloader.

If the user wishes to use MPLab and the In-Circuit Serial
Programming interface to load new App FW, this is an op-
tion through J20 on the DC2100A-C.

Pin Function

1 N/C

2 PGC

3 PGD

4 /MCLR

5 3.3V VCC

6 GND

Table 1 - J20 Interface for ICSP

Care must be taken to not erase the memory regions de-
fined in Table 2 to avoid overwriting the bootloader FW and
manufacturing data in the DC2100A. See BOOTLOADER
FIRMWARE section for details about hex image placement
in the PIC18 program memory.

Memory Addresses Memory Contents

0x00-0x7FF Boot FW

0x1F800-0x1FFFF Mfg Data

Table 2 – Memory Addresses to Preserve in PIC18

ALTERNATIVE MICROCONTROLLER CONNECTION

If the user wishes to use their own microcontroller to
monitor and control the DC2100A hardware, JP7 offers an
option to disconnect the PIC18 from the system and con-
nect an alternative microcontroller. To do this, remove the

DC2100A-ASSY PCB and connect to the pins as shown in
Figure 5:

Pin Function

1C LTC6820 ENABLE

2C SPI MOSI

3C SPI MISO

4C SPI SCK

5C SPI CS

6C GND

Table 3 - JP7 Interface for Alternative Micro

The core components of the App FW were designed to be
portable to other microcontrollers preferred by the user.
They are distinguished in Figure 6 as the Reference De-
sign Files.

SOFTWARE USERS GUIDE DC2100A

5

App FW Architecture
Figure 6 shows the architecture of the files that comprise
the DC2100A App FW. While all of the files are required to
make the DC2100A function with the GUI and SuperCap
Demo Systems, the outlined files form the foundation of a
reference project for a battery monitor and balancing sys-
tem using the LTC6804-2 and LTC3300-1. The files are
collected into four groups:

• PIC18 Driver Files provide access to the PIC18
hardware necessary to support the other code
modules. A customer using the DC2100A code in
an alternative microprocessor would need to re-
place these files with drivers specific to their sys-
tem.

• LTC Driver Files provide access to the services of
LTC parts. They are intended to be independent
of the DC2100A and the PIC18 hardware. They
provide an API to the LTC6804-2, LTC3300-1, and
LTC1380 ICs.

• Reference Application Files are examples of how

the LTC6804-2/LTC3300-1 would be used to mon-
itor and balance a customer’s battery system.
They are intended to be independent of the
DC2100A and the PIC18 hardware. They provide
Voltage monitoring, Temperature monitoring, Bal-
ancer control, and EEPROM data storage through
the LTC6804-2/LTC3300-1.

• DC2100A Application Files are specific to the
DC2100A demo board system. They satisfy the
requirement to demonstrate the demo circuit
functionality through the GUI SW and to operate
the SuperCap Demo Systems. A customer will
want to replace these files with their own sched-
uling, State of Charge, and communication code
to interface to the reference design files.

SOFTWARE USERS GUIDE DC2100A

 6

PIC18 DRIVER FILES
These files are specific to the PIC18 hardware, and serve
as documentation of what microprocessor resources are
necessary to use the DC2100A reference code.

PIC18FXXJ_Timer.c/.h: This code uses Timer0 of the
PIC18 to provide time measurements and time stamps to
the other code modules:

• LTC6804-2.c uses timestamps to determine when the

part has entered its STANDBY and SLEEP states, so
that communication to the ICs can be preceded by the
appropriate wakeup signaling.

• Voltage.c and Temperature.c attach timestamps to
each group of ADC samples, so that the algorithms
consuming this data can process it in real time.

PIC18FXXJ_SPI.c/.h: This code provides an interface to
the SPI port on the PIC18 used to communicate with the
LTC6804-2. DMA is used so that other tasks, such as CRC
calculation, can be performed as bytes as sent to and re-
ceived from the SPI bus. The SPI driver can be configured
for different baud rates, so that communication with each
IC can occur at its maximum rate:

• The PIC18 only communicates directly to the

LTC6804-2 Driver. Due to the amount of processing
required to calculate the PEC for the LTC6804-2, the
SPI driver is buffered so that these calculations are
performed as bytes are being sent and received. The
other ICs that have communication passed through
the LTC6804-2 have lower baud rate requirements,
which are achieved by lowering the baud rate only for
the portion of communication where the bytes are
passed through the LTC6804-2.

pic18_usb.c/.h: This code is supplied by CCS with their
PCH compiler. It is a USB driver, specific to the PIC18
hardware.

LTC DRIVER FILES
These files provide access to the services of LTC parts.
They are intended to be independent of the DC2100A and
the PIC18 hardware. The API to these drivers are detailed
in the doxygen documentation included with the source
code.

All of the LTC Driver Files are architected to allow their re-
use with minimal modification. Figure 7 shows the rela-
tionship between the LTC Driver code and the other code
in a system.

The LTCxxxx.c and LTCxxxx_Registers.h files contain all of
the details from the LTC datasheet that are necessary to
use the device, but do not need to be exposed to the Ap-
plication code wishing to use the driver. Register names,
bit positions of data in the registers, and data integrity
checks are examples of datasheet details that would be
found in these files. It is not intended for these files to
require modification, in order for the LTC Driver code to be
reused.

The LTCxxxx_Config.h file contains macros that configure
the LTC Driver to the particular system in which it’s being
used. It serves as documentation of what resources are
necessary to use an LTC Driver file. HW driver functions
and system Timer variables are examples of configuration
items that would be located in this file. Each

Figure 7 - LTC Driver Code Module Architecture

SOFTWARE USERS GUIDE DC2100A

7

LTCxxxx_Config.h is configured for the DC2100A, but ex-
amples are given in the comments for how the configura-
tion options would be changed for other systems.

The LTCxxxx.h file contains the API to the LTC Driver. It
provides the details necessary for Application code to use
the driver at a functional level. While some datasheet de-
tails may be in the file, they are the details necessary for
Application code to use the driver. For example, the differ-
ent sampling modes for the LTC6804-2 would be in this
file as different Application code modules may need to
sample at different rates. The register bits that need to be
modified to achieve these sample rates, however, would
not be in this API file.

LTC6804-2.c/.h: This code module implements a driver
for the LTC6804-2 Multicell Battery Monitor. The driver
performs the following operations to interface to the
LTC6804-2:

• State Management: The LTC6804-2 enters different

states in order to minimize its power consumption.
The ability to perform certain functions and maintain
certain data depends upon this state, and must be
managed by FW. Page 20 of the LTC6804 datasheet
contains the documentation for these states, with a
state diagram in Figure 1 of that document.

• Command Communication: The LTC6804-2 has
many commands used to operate the part. These
commands are listed in Table 34 of the LTC6804
datasheet. Many of these commands are used to send
data to and receive data from 6 byte register groups.
These register groups are documented in Table 36
through Table 45 of the LTC6804 datasheet.

• Clocking the GPIO Implemented I2C/SPI Bus: One of
the LTC6804-2 commands causes I/O ports GPIO3,
GPIO4 and GPIO5 on the LTC6804-2 to act as an I2C
or SPI master. Table 19 and Table 20 in the LTC6804
datasheet contain the relationship between the input
IsoSPI clock for the LTC6804-2 and the output clock
on the GPIO Implemented I2C/SPI bus.

Two of the more important functions using the LTC6804-2
are detailed in “Appendix A - Voltage Monitoring using
LTC6804-2” and “Appendix B - LTC6804-2 I2C/SPI
Master Using GPIOS” sections of this document.

LTC3300-1.c/.h: This code module implements a driver
for the LTC3300-1 High Efficiency Bidirectional Multicell
Battery Balancer. The driver performs the following oper-
ations to interface to the LTC3300-1:

• Watchdog Timer Management: The LTC3300-1 pro-

vides a means of shutting down all active balancing in
the event that communication is lost. The LTC3300-1
driver provides functions to keep the IC from shutting
down, when no other communication is needed.

• Balance Command Execution: The primary function
of the LTC3300-1 is to move charge between cell
groups for the purpose of achieving balance. The
LTC3300-1 driver provides functions to write, execute,
and suspend balance commands.

• Balancer Status: The LTC3300-1 status register con-
tains information about whether the part is actively
balancing, or if the part is damaged.

In the DC2100A code, the communication to the LTC3300-
1 is performed through the GPIO Implemented SPI Bus of
the LTC6804-2. Therefore, an LTC6804-2 identifier is input
to each of the functions in this code module. The
“Appendix B - LTC6804-2 I2C/SPI Master Using
GPIOS” section of this document contains an execution
diagram for a write balance command sent to the
LTC3300-1 through the LTC6804-2.

LTC1380.c/.h: This code module implements a driver for
the LTC1380 Single-Ended 8-Channel/Differential 4-Chan-
nel Analog Multiplexer with SMBus Interface. The driver
performs the following operations to interface to the
LTC1380:

• Enable MUX Channel: The driver provides a means

of turning on one channel on the MUX.
• Disable MUX: The driver provides a means of turning

off all channels on the MUX.

In the DC2100A code, the communication to the LTC1380-
1 is performed through the GPIO Implemented I2C Bus of
the LTC6804-2. Therefore, an LTC6804-2 identifier is input
to each of the functions in this code module.

SOFTWARE USERS GUIDE DC2100A

 8

REFERENCE APPLICATION FILES

These files are examples of how the LTC6804-2 and
LTC3300-1 could be used to monitor and balance a cus-
tomer’s battery system. They are intended to be inde-
pendent of the DC2100A and the PIC18 hardware. They
provide Voltage monitoring, Temperature monitoring, Bal-
ancer control, and EEPROM Data storage through the
LTC6804-2. The API to this application code is detailed in
the doxygen documentation included with the source
code.

Voltage.c/.h: This code contains the Voltage Monitor Task
to read the voltages in the DC2100A System at a rate set
by VOLTAGE_TASK_RATE. The code module performs the
following operations to monitor the voltage:

• Communication is performed with each LTC6804 in

the system to measure the cell voltages.
• If the cell voltage measurements are successful, the

sum-of-cells voltages are calculated.
• A timestamp is attached to each set of voltages, as

well as whether any balancers were turned on. This
allows algorithms consuming this information to pro-
cess it appropriately.

• Each cell is monitored for UV and OV conditions. If

either condition is present, then balancing operations

are immediately suspended.

Temperature.c/.h: This code contains a task to read the

temperature sensors in the DC2100A System at a rate set

by TEMPERATURE_TASK_RATE. The code module per-

forms the following operations to monitor the tempera-

ture:

• Communication is performed with each LTC6804 in

the system to measure the one thermistor ADC value
connected to GPIO2.

• If the temperature measurement is successful, the
thermistor ADC value is converted to temperature by
linearly interpolating from the Temperature_Table[]
lookup table pictured in Figure 8. This table assumes
the resistors are of the 10kΩ Curve Type 1 from
Vishay.

• The raw ADC values are stored for one board selected
by the GUI.

• The LTC1830 MUXes are controlled to connect the
next thermistor to the LTC6804 to be read.

• Note that the large time constant that results from
switching thermistors is not waited for in the task.
The rate at which this task is called is expected to be
longer than the settling time for the circuit.

Figure 8 - Relationship between °C and ADC values stored in Temperature_Table[]

SOFTWARE USERS GUIDE DC2100A

9

Balancer.c/.h: This code contains a task to control the

balancers in the DC2100A System with a resolution set

by BALANCER_TASK_RATE. The code module performs

the following operations to control the balancers:

• Communication is performed with each LTC3300-1 in

the system to control the active balancers, depending
upon their desired state.

• Communication is performed with each LTC3300-1 to
monitor their status.

• Passive balancers connected to the S-pins of the
LTC6804-2 are turned on or off.

The states with which the Balancer Control Task controls
the balancers is shown in Code Sample 1.

Typical usage will be for the Balancer Control Task to be in
the OFF state until a higher level function determines bal-
ancing is needed. The task will then be placed in the
SETUP state as the balancing times are calculated and the
LTC3300s are configured for the desired balance com-
mands. The task is then placed in the ON state in which
the LTC3300s will execute the desired commands as the
task counts the time for each cell’s active balancing.
When all of the cell balancing is complete, the task will
return to the OFF state.

The most sophisticated Balancer Control state is the ON
state, in which the task will turn on each active balancer
for a period of time. The amount of time and direction
for each balancer to be controlled is contained in the
variable detailed in Code Sample 2.

The functions available to set this variable are shown in
Code Sample 3.

 The first Balancer_Set() function simply loads the varia-
ble with the times and directions specified. This is the
function that is used by the standard GUI, to perform a
timed balancing function via USB. The second Bal-
ancer_Set() function would be used by a reference design
in which a State of Charge function determines the amount
of charge imbalance in a battery, and wishes to load the

optimal set of balance times for the Balancer
Task to move that appropriate amount of
charge. This function is used by the SuperCap
Demo System version of the GUI. The details
of the calculation are described in “Appendix C
- Setting Balancer Times from Charge Imbal-
ance.”

Table 4 shows the level of control available

from the Balancer Control Module when a 250ms task rate
is used.

Table 4 - Balancer Control with a 250ms Task Rate

Balancer Control Characteristic A (2A) C (4A) Unit

Min balance time 0.25 0.25 sec

Max balance time 2.28 2.28 hrs

Max charge moved in min balance time. 0.65 1.08 As

Min charge moved in max balance time. 5.01 7.74 Ah

Code Sample 1 - Balancer Control States

Code Sample 2 - Balancer Active State Variable

Code Sample 3 - Functions to Set Balancer Times in ON State

SOFTWARE USERS GUIDE DC2100A

 10

EEPROM.c/.h: This code provides access to reading,
writing, and setting defaults for EEPROM data stored on
each DC2100A PCB. The EEPROM Code Module is not
implemented as a task, but as a series of functions that
are called by the other Application code.

The items that are stored in the EEPROM are shown in

Table 5. When creating custom code for the DC2100A,

there is much value in preserving these values as some

are calibrated in the Linear factory.

Data Description

MFG_DATA

Manufacturing Board ID Data (Model, Serial

Number, SuperCap Demo Configuration).

MFG_CAP

Linear factory calibrated capacity values

(used by SuperCap Demo only).

MFG_CURRENT

Linear factory calibrated balance current val-

ues.

USER_CAP User entered capacity values.

USER_CURRENT User entered balance current values.

Table 5 - DC2100A EEPROM Data

When values are retrieved from the EEPROM, copies are

made in RAM due to the communication time required to

retrieve the data. Some items have two copies in the

EEPROM: The Manufacturing value (written in the Linear

factory when the board is manufactured) and the User

value (available for general use). This allows the factory

values to be maintained, while allowing the user to enter

new values if the board configuration is changed.

Each piece of data is stored with a CRC so that the data

can be checked for consistency when it is retrieved from

the EEPROM. The EEPROM code module loads the val-

ues in this order:

• If the User values have a valid CRC, they are loaded

into RAM.

• If the User values do not have a valid CRC, but the

Manufacturing values have a valid CRC, the Manu-

facturing values are loaded into RAM.

• If neither the User nor Manufacturing values have a

valid CRC, then the nominal values from Flash are

loaded into RAM.

The balance currents are used by the Balancer Code Mod-
ule when calculating the optimal balance times required to
move a desired amount of charge. The capacities are used
by the SuperCap Demo System, or a custom State-of-
Charge algorithm developed by the user.

24AA64.c/.h: This code provides an interface to the
24AA64 64 Kbit Electrically Erasable PROM located on
each DC2100A PCB. It would typically be considered a
driver, although it was not documented as such for the
DC2100A as it is not an LTC chip.

The EEPROM Code Module writes and reads its non-vola-
tile data through the 24AA64 code module using the func-
tions shown in Code Sample 1.

Note that these functions are blocking, so a lot of execu-
tion time will be used if long streams of data are sent to or
retrieved from the EEPROM at one time.

Code Sample 1 - Functions to Interface to 24AA64 EEPROM

SOFTWARE USERS GUIDE DC2100A

11

DC2100A APPLICATION FILES

These files are specific to the DC2100A when used as an
evaluation board through the GUI.

DC2100A.c/.h: The DC2100A hardware definition is con-
tained in these files. It is intended to contain the details of
the DC2100A schematic necessary for App FW code to op-
erate. The DC2100A has GPIO available on J21 for use by
the App FW. The usage of this GPIO by the App FW is
shown in Table 6.

The App FW identification, App FW configuration, and
Code scheduling is also located in these files. This code
uses the RTOS included with the CCS compiler to sched-
ule the App FW tasks as per Table 7. The main() function
initializes the tasks and the hardware, before starting the

RTOS which executes them according to their desired pe-
riodic rate. Figure 9 shows the execution of these tasks,
by using the GPIO available on J21.

Note that much of the USB Parser is located in DC2100A,
as the CCS compiler requires code to be located in the
main() file in order to use the rtos_await() function. It is
also a convention of the CCS compiler to have one file in-
cluded in a project, with the called code modules included
as .c files.

The only interrupt operating in the system is the USB In-
terrupt, managed by the CCS USB driver.

Table 6 - J21 GPIO Configuration

Pin
Schematic

Name FW Name Function

1 GND N/A GND

2 VCC_3V3 N/A 3.3V

3 AN1 DISCHARGER_OUT_PIN Output to control discharger in SuperCap Demo System
*

4 /AN0 !CHARGER_OUT_PIN Buffered output to control charger in SuperCap Demo System
*

5 AN3 DEBUG0_OUT_PIN Toggled in Task_Status() at same rate as Green LED D15

6 AN0 CHARGER_OUT_PIN Output to control charger in SuperCap Demo System*

7 AN5 DEBUG1_OUT_PIN Lowered in Task_Parser() as USB Communication is Processed

8 AN2 DEBUG2_OUT_PIN Lowered in Task_Voltage() when voltage sampling is started.

9 AN7 DEBUG3_OUT_PIN Lowered in Task_Temperature() when temperature sampling is started.

10 AN6 DEBUG_AIN_PIN

Monitors one A/D input referenced between VDD and VSS

(future implementation).

11 SDO2 DEBUG4_OUT_PIN Lowered in Task_Balancer() when balancer state machine is started.

12 SS2 DEBUG5_OUT_PIN Lowered in Task_Error() when error detection is started.

13 SCL2 DISCHARGER_IN_PIN Input to indicate discharge mode (future implementation).

14 SDI2 CHARGER_IN_PIN Input to indicate charge mode (future implementation).

15 GND N/A GND
*

16 VCC_5V N/A 5V

*
Pins used by SuperCap Demo System

SOFTWARE USERS GUIDE DC2100A

 12

Task

Name

Period

(ms)

Period

#define

Task

Function

Task_Status() 100 STATUS_TASK_RATE Indicates the status of the DC2100A system

Task_Get_USB() 50 USB_TASK_RATE

Receives bytes from the USB bulk endpoint.

Must be its own task to receive bytes while

Task_Parser is pending.

Task_Parser() 50 USB_TASK_RATE

Parses bytes received from the USB bulk endpoints

for commands,

and sends the responses to the commands

Task_Voltage() 100 VOLTAGE_TASK_RATE Monitors the voltages in the DC2100A system

Task_Balancer() 250 BALANCER_TASK_RATE Controls the balancers in the DC2100A system

Task_Temperature() 600 TEMPERATURE_TASK_RATE Monitors the temperatures in the DC2100A system

Task_Error() 1000 ERROR_TASK_RATE Detect errors in the DC2100A system

Task_Detect() 1000 DETECT_TASK_RATE Detect new boards in the DC2100A system

Table 7 - DC2100A RTOS Tasks

Figure 9 - Task Execution in System with 3 DC2100A

SOFTWARE USERS GUIDE DC2100A

13

System.c/.h: This code detects and manages the state of
the DC2100A system and indicates it through the Green
LED D15. The states of the system are listed in Table 8.
Most of the tasks in the DC2100A system will only begin
to operate once the system has reached the AWAKE state.

A DC2100A system can contain up to 8 boards, and these
boards can have 16 different physical addresses set by
JP1-JP4. For example, Figure 10 shows a 5 board system
with physical addresses 0x00, 0x04, 0x08, 0x0A, and
0x0C. Note that the limitation of 8 boards is due to the
50Volt rating of transformer T15.

The number of boards and the mapping between the logi-
cal and physical addresses are maintained by this code
module and made available to the rest of the FW and SW.
Note that the DC2100A containing the PIC must have a
special address as defined by
DC2100A_PIC_BOARD_NUM, where the remaining phys-
ical addresses are free for the DC2100A-D boards con-
nected to the system.

As boards are detected they are initialized and their man-
ufacturing data is retrieved. If the boards cease commu-
nication, they are assumed to still be present but in a state
where the 6804-2 does not have sufficient voltage for
communication. This code module detects this condition
and reinitializes the boards as they regain communication
with the PIC18.

A customer using the DC2100A code as part of a reference
design, would likely replace the functionality in these files
with a fixed system configuration. The need to detect and
configure an arbitrary number of boards at an arbitrary
number of addresses is only needed when the code is
used as part of a generic demonstration circuit.

System State Description D15 Indication

OFF The PIC is not powered (HW state) Off

PIC_BOARD_INIT

The PIC is powered and is being initialized. The PIC must estab-

lish comm with the LTC6804-2 on its PCB to leave this state.

Quickly Flashing

(toggles every 200ms)

INIT

The PIC has initialized the LTC6804-2 on its PCB, and is now

searching for attached DC2100A-D PCBs.

Quickly Flashing

(toggles every 200ms)

AWAKE

The PIC has monitoring and controlling all of the DC2100A in

the system.

Slowly Flashing

(toggles every 1s)

SLEEP

The PIC is allowing the DC2100A system to enter a low power

mode (future implementation).

Very Slowly Flashing

(toggles every 10s)

Table 8 - DC2100A States

USB.c/.h: This code is supplied by CCS with their PCH
compiler. It is a USB driver, abstracted away from the
PIC18 hardware. The CCS driver was modified to support
descriptors in RAM. Note that this USB driver operates in
an interrupt service routine.

USB_Descriptors.c/.h: This code contains the USB de-
scriptors used by the DC2100A to identify itself to the con-
nected PC. This code is used with a modified version of
the CCS USB driver as the original driver did not support
strings in RAM.

Figure 10 - Logical and Physical Addresses in 5 Board System

SOFTWARE USERS GUIDE DC2100A

 14

USB_Parser.c/.h: This code contains the commands used
to receive commands from and send responses to the
DC2100A GUI.

The current implementation is minimally documented
here. A future implementation of this code module will
address throughput issues when many boards are in the
system, as well as ensuring data consistency through
atomically designed messages. This future implementa-
tion will be fully documented to allow customers to create
their own software to interface to the DC2100A.

Error.c/.h: This code collects information about errors in
the DC2100A system so that they can be recorded in the
GUI Software’s Event Log. It is very minimal, providing
only an error code and 12 bytes specific to the error. It
was primarily intended to expose communication issues
with the ICs on the DC2100A through the GUI.

Each type of error is counted, but the full data is only col-
lected for one error per ERROR_TASK_RATE ms. This
prevents this code module from hijacking all of the USB
bandwidth when a fault occurs.

SOC.c/.h: This code calculates the charge imbalance in
the SuperCap Demo system used by the Linear Sales
team. It is very simple, using the relationship between
charge and voltage on a capacitor: ΔQ = C ΔV. The charge
imbalance is then passed to the Balancer_Set() function
described in “Appendix C - Setting Balancer Times from
Charge.” to calculate the optimal time for each balancer to
be turned on to balance the SuperCap Demo system. Fig-
ure 11 shows the data flow as the SuperCap Demo GUI
orders the SOC calculation to result in balancing activity.

When the DC2100A code is used as a reference applica-
tion for the customer, the SOC calculation would contain
the state of charge algorithm for the user’s battery chem-
istry. It would likely run as its own task to estimate the ΔQ
of the battery cells from voltage, current, temperature, and
time information from the other code modules. When the
ΔQ imbalance is unacceptable, the task would instruct the

Balance Control Task to move charge for correction of the
imbalance. The EEPROM has nonvolatile memory re-
served for the customer’s cell capacities, as the state of
charge must be calculated as a percentage of the total cell
capacity.

Figure 11 - SuperCap Demo Balancing Code Flow

SOFTWARE USERS GUIDE DC2100A

15

GUI SOFTWARE

The GUI SW displays data from and sends commands to
the App FW. Although the source code is provided, only a
high level description is given in this document.

The GUI contains 5 windows, where a different window is
displayed if the DC2100A is configured as part of a Super-
Cap Demo System. The navigation between these win-
dows is shown in Figure 12. The windows are briefly de-
scribed here:

• Control Panel: this is the main form for the GUI, dis-

playing real time data for the system as well as con-
trol of the LTC3300-1 balancers. It is also used to
launch the other windows.

• Calibration Data: displays the User data stored in

EEPROM, and allows it to be reset back to the Manu-
facturing values.

• Event Log: displays events and errors that occur in
the App FW or the GUI SW.

• Graph View/SuperCap Demo: displays a graph of
signals available in the DC2100A. The SuperCap
Demo window will display if the DC2100A is part of a
SuperCap Demo System.

• Graph View Options: allows configuration of the
Graph View and SuperCap Demo windows.

See the DC2100A Demo Manual and the DC2100A Super-
Cap Demo Manual for documentation about the function-
ality in these windows.

Figure 12 - DC2100A GUI Window Navigation Diagram

SOFTWARE USERS GUIDE DC2100A

 16

The DC2100A GUI Software files are pictured in Fig-
ure 13, as well as the data path between the GUI and
the Application FW. The files are briefly described
here:

• DC2100A.vb – contains the control panel window
and all of the USB communication between to the
FW. The voltages, temperatures, LTC3300 registers,
and balancing times are all regularly polled and rec-
orded by this file.

• Cell_Balancer.vb - implements a class for each ac-
tive cell balancer and each LTC3300 IC.

• Data_Log.vb – retrieves data from DC2100A.vb at a
periodic rate, to save to a CSV file.

• Mfg_File.vb –used by Linear Technology in the fac-
tory, to configure boards as they are manufactured.

• DataInputPopup.vb – contains the Calibration Data
Window, to provide a method of displaying and mod-
ifying the Capacity and Balance current data stored in
the DC2100A.

• ErrorLogPopup.vb – contains the Event Log Window,
to display events and errors that are reported by the
GUI and App FW.

• GraphData.vb – contains the Graph View Window to
display data retrieved from DC2100A.vb real time.

• CapBoardPopup.vb – Contains the SuperCap Demo
Window, to send charge, discharge, and balance to a
SuperCap Demo System while displaying the cell
voltages real time.

• Graph_Signal.vb – implements a class for groups of
signals displayed on a graph.

Figure 13 - GUI SW Architecture

SOFTWARE USERS GUIDE DC2100A

17

BOOTLOADER FIRMWARE

The Boot FW functions with the Update SW to load new
App FW into the DC2100A-C. This code is a modification
of the open source PIC18 bootloader from Diolan. Alt-
hough the source code is provided, the user is directed to
the documentation on the Diolan website for details
(www.diolan.com/pic/bootloader.html).

The boot.inc file is used by both the Boot FW and the App
FW to define the memory spaces for each piece of code.
In addition, a page of program memory stores Manufac-
turing Data for the App FW. Figure 14 shows how the pro-
gram memory is defined by the boot.inc file.

Figure 14 also shows the execution flow between the
Boot FW and the App FW. When the PIC18 is powered
up or resets, it immediately jumps to the Boot FW (Jump
1). If the Boot FW detects that the App FW is present, it
will jump to the memory location defined as the App Re-
set Vector (Jump 2). The actual start of the App FW is
then jumped to from the App Reset Vector (Jump 3).
When the App FW wishes to re-enter the bootloader to
upload FW into the PIC18, it sets a flag and resets the
processor (Jump 4). When the Boot FW sees this flag
set, it will enter the bootloader mode to accept new FW
into the PIC18.

Note that the Boot FW does not use the PIC18 interrupts.
Instead it points the PIC18 Interrupt Vectors to the App
Interrupt Vectors (Interrupt Jump 1), which then jump to
the actual Interrupt Service Routines in the App FW (In-
terrupt Jump 2).

Any new code compiled for the PIC18 on the DC2100A,
must maintain the addresses in the boot.inc file to main-
tain compatibility with the Boot FW.

Figure 14 - DC2100A PIC18 Program Memory

SOFTWARE USERS GUIDE DC2100A

 18

FW UPDATE SOFTWARE

The Update SW functions with the Boot FW to load new
App FW into the DC2100A-C. This code is a modification
of the open source PIC18 bootloader from Diolan. Alt-
hough the source code is provided, the user is directed to
the documentation on the Diolan website for details
(www.diolan.com/pic/bootloader.html).

Before the Update SW can communicate with the
DC2100A-C, the PIC18 must first be switched to the
bootloader mode. The “Firmware Update” button on the
Control Panel of the DC2100A GUI will achieve this after
it establishes communication with the DC2100A-C.

Alternatively, the PIC18 can be placed in bootloader
mode upon power up if JP7 pins 2A and 3A are shorted
together upon power up or reset. This is shown in Fig-
ure 15.

Once bootloader mode has been entered, the DC2100A
will begin to flicker the Green LED with a 1 second pe-
riod, indicating that it is ready to accept code. The
fw_update.exe program can be run at the command line
with the format:

fw_update.exe -e -w -vid 0x1272 -pid 45067 -ix DC2100A.hex

As the bootloader accepts commands to erase and write

program memory, the Amber LED will light while the com-

mands are being executed. Note that the erase operation

can take several seconds as the full App FW space is

erased.

Figure 16 shows the command line following a successful

upload of new FW through the FW Update Software.

Figure 15 - JP7 Placement to Force Bootloader Mode

Figure 16 - Successful FW Update Command

SOFTWARE USERS GUIDE DC2100A

19

One of the most basic functions of the LTC6804-2 is to

monitor the cell voltages in a battery. This section de-

tails the DC2100A code available to perform cell voltage

measurements with the LTC6804-2.

Many commands and register groups are used to moni-

tor the voltages through the LTC6804-2. They are pic-

tured in Figure 17.

The following commands are used to perform voltage

monitoring:

• RDCFG and WRCFG are used to read the Configura-

tion Register Group, modify it, and write it back to

the LTC6804-2. The following bits in this register

group are pertinent to voltage monitoring:

1. REFON – this bit turns on the ADC reference, so

that the sampling and conversion time is the

only delay between starting and reading ADC

samples.

2. ADCOPT – this bit partially controls the conver-

sion mode of the ADC.

3. VUV/VOV – these bits set the thresholds used for

detecting overvoltage (OV) and undervoltage

(UV) conditions for each set of ADC samples.

• CLRCELL is used to clear the last set of ADC sam-

ples, so that it can be detected when a new set of

ADC samples do not start due to a failure to com-

municate with the device.

• ADCV begins the ADC sampling and conversion of

the cell voltages. Bits in this command, along with

the ADCOPT bit in the Configuration Register Group,

control the mode of the ADC conversion. When the

conversion is complete, the results are stored in Cell

Voltage Register Groups A, B, C, and D. The OV and

UV status flags are set in Status Register Group B af-

ter these ADC samples are compared to the new ADC

conversion results.

• The RDCVA, RDCVB, RDCVC, and RDCVD com-

mands retrieve the ADC results from Cell Voltage

Register Groups A, B, C, and D.

• The RDSTATB command retrieves the UV and OV

flags from Status Register Group B.

To aid the customer that wishes to monitor the voltage

without managing the details of these commands and

register groups, the DC2100A code provides several

public function.

Some of the LTC6804-2 functions only need to be called

once after the IC has left the SLEEP state. These func-

tions are shown in Code Sample 5.

Appendix A - Voltage Monitoring using LTC6804-2

Figure 17 - Commands and Register Groups used for Voltage
Monitoring

SOFTWARE USERS GUIDE DC2100A

 20

The LTC6804_RefOn_Set() function turns on the reference
for ADC conversions. The FW must wait for tREFUP after
turning on the reference before starting an ADC conver-
sion. This action will bring the IC from the STANDBY state
to the REFUP state. Note that reference can be left off in
order for the LTC6804-2 to consume less power, but it will
require the FW to wait for the tREFUP delay for each ADC con-
version.

The LTC6804_UVOV_Thresholds_Set() function config-
ures the UV and OV thresholds for the LTC6804-2. After
each ADC conversion, the cell voltages are compared to
these thresholds, and the IC sets UV and OV flags if ether
threshold is violated. The UV and OV thresholds remain
set as long as the IC does not reenter the SLEEP state.

When cell voltage measurements are started, there are
several cell combinations that can be measured with sev-
eral conversion modes. These are shown in Code Sample
6. The cell combinations either begin sampling for one
pair or all 12 cells. The cells are sampled simultaneously,
and then converted a pair at a time. The conversion
modes offer a trade-off between conversion speed and ac-
curacy. The cell combination and conversion mode op-
tions are used as inputs to the functions available to start
and complete ADC conversions shown in Code Sample 7.

When using these functions to perform a voltage monitor-
ing task, the LTC6804_Cell_ADC_Clear() function would

be first sent to clear the ADC results. This would then be
followed by the LTC6804_Cell_ADC_Start() function
would then be called to start the conversion of a set of

cells using a specific conversion mode. Note that the
LTC6804_Cell_ADC_Start() function will only modify the
Configuration Register Group if necessary to change the
ADC conversion mode. Otherwise, it will only send the
appropriate ADCV command to the LTC6804-2 ICs. The
time required for the ADC conversion to complete is spec-
ified in Code Sample 8. Since these times are not insig-
nificant, the LTC6804-2 driver separates the
LTC6804_Cell_ADC_Start() function from the
LTC6804_Cell_ADC_Read() function so the application
code can perform other operations while the conversion
is underway. After the conversion delay is complete, the
LTC6804_Cell_ADC_Read() function is called to retrieve
the results and the LTC6804_UVOV_Flags_Get() function
is called to return the UV and OV flags.

Code Sample 6 - Cell Combinations and Conversion Modes

Code Sample 7 - Voltage Monitoring Functions

Code Sample 8 - ADC Conversion Times

SOFTWARE USERS GUIDE DC2100A

21

An example of how these functions are used to perform
voltage monitoring with a single board is shown in Code
Sample 3. The UV threshold was set to 2V and the OV
threshold was set to 4V. A diagram of the execution of this
code is shown in Figure 18, with Cell 1 set to 1.9V and
each successive cell voltage increased by 0.2V.

• LTC6804_UVOV_Thresholds_Set (detailed in Figure 19). This function would typ-
ically only be called during initialization, or when the thresholds are changed.

• LTC6804_Refon_Set (detailed in Figure 20). This function would typically be only
called during initialization, or before and after ADC conversions if power consump-
tion is to be minimized.

• LTC6804_TREFUP Delay. Figure 18 shows how much the ADC conversion rate is
limited if the reference is continuously turned on and off, although it does come at
the expense of extra power consumption.

• LTC6804_Cell_ADC_Clear (detailed in Figure 20). This function clears the ADC con-
version registers, so that an incomplete conversion can be detected by the firm-
ware.

• LTC6804_Cell_ADC_Start (detailed in Figure 24). This function begins the ADC
conversion at the 7kHz mode. Note that if the ADCOPT bit does not need to be
changed, only the ADCV command will be sent to the LTC6804.

• LTC6804_CONVERSIONS_ALL_7KHZ_DELAY. Figure 18 shows the required delay
when converting all cells using the 7kHz mode. As this time isn’t trivial, the firm-
ware would likely wish to perform some other task during this time.

• LTC6804_Cell_ADC_Read (detailed in Figure 23). This function reads the 12 cell
voltage out of the 4 register groups in which they are stored. The voltages meas-
ured are approximately 1.9V and increasing to 4.1V in 0.2V increments.

• LTC6804_UVOV_Flags_Get (Figure 22). The function reads the flags out of the
auxiliary register. In this example, only Cell 1 is undervoltage and only Cell 12 is
overvoltage.

Code Sample 3 - Example Usage of Voltage Monitoring Functions.

Figure 18 - Execution of Voltage Monitoring Function Usage Example

SOFTWARE USERS GUIDE DC2100A

 22

Figure 19 - LTC6804_UVOV_Thresholds_Set() with VUV = 2.0V and VOV = 4.0V

Figure 20 - LTC6804_Refon_Set() to turn on ADC reference.

Figure 21 - LTC6804_Cell_ADC_Clear() to Clear Previous ADC Conversions

SOFTWARE USERS GUIDE DC2100A

23

SOFTWARE USERS GUIDE DC2100A

 24

The DC2100A uses I/O ports GPIO3, GPIO4 and GPIO5

on the LTC6804-2 as an I2C and SPI master port to com-

municate to with the LTC3300-1, LTC1380, and 24AA64

slave devices.

The functionality is implemented through the COMM reg-

ister group, using the WRCOMM, RDCOMM, and

STCOMM commands. A diagram of this system is

shown in Figure 25.

The implementation of this communication can be com-

plex, due to the 6 byte COMM register group only being

capable of containing 3 data bytes at a time, with one

ICOM and FCOM code for each byte. In the LTC6804-2

datasheet, Table 15 shows the layout for the COMM reg-

ister group where Table 16 and Table 17 show the values

for ICOM and FCOM.

The following commands are used to pass SPI/I2C bytes

through the COMM register group to the IsoSPI inter-

face:

• WRCOMM is used to load data bytes, ICOM codes,

and FCOM codes into the COMM register group.

• RDCOMM is used to read data bytes, ICOM codes,

and FCOM from the COMM register group.

• STCOMM is used to transfer the data bytes from the

COMM register group to the GPIO implemented

I2C/SPI bus

To aid the customer that wishes to pass bytes through

the LTC6804-2 to the GPIO implemented I2C/SPI bus, the

DC2100A code provides the following functions shown

in Code Sample 4.

Code Sample 4 - Functions for LTC6804-2 GPIO SPI/I2C Comm.

Appendix B - LTC6804-2 I2C/SPI Master Using GPIOS

Figure 25 - Diagram of I2C/SPI Communication through LTC6804-2 on DC2100A

SOFTWARE USERS GUIDE DC2100A

25

The details of operation for one of these functions are

shown in Figure 26, for the LTC6804_SPI_Write() func-

tion. In order to write bytes through the LTC6804-2 to its

GPIO SPI port, the WRCOMM and STCOMM commands

must be used. Subroutines used by the LTC6804-2

driver are color-coded, as these are the pieces of code

that are common to all of the public functions exposed

through the API.

Figure 26 - LTC6804_SPI_Write() Flowchart

An example of the execution of this function is detailed in

Figure 28, where 5 bytes {0xA9, 0xBB, 0xB3, 0xBB,

0xB3} are sent to board 0x00 at 1MHz. These bytes will

write a balance command to the two LTC3300-1 ICs on

that board.

The second function that will be detailed is the

LTC6804_I2C_Read() function shown in Figure 27. As

this function needs to receive data from the GPIO I2C

bus, it needs to use the RDCOMM command in addition

to the WRCOMM and STCOMM commands.

Figure 27 - LTC6804_I2C_Read() Flowchart

An example of the execution of this function is detailed in
Figure 29, where 3 bytes {0x00, 0x11, 0x22} are read from
I2C address 0x50 at 400kHz. Note that this function ac-
tually writes a byte as part of its execution, since it does
not make sense to read from I2C without first writing an
address to the bus. Also note that the acknowledgements
are not checked by this function, and error detection is left
to the higher level code.

The other two functions available to write to and read from
the GPIO implemented I2C/SPI bus operate similarly to
these two functions and will not be detailed.

SOFTWARE USERS GUIDE DC2100A

 26

Figure 28 - LTC6804_SPI_Write() Execution

Figure 29 - LTC6804_I2C_Read() Execution

SOFTWARE USERS GUIDE DC2100A

 28

The interactions between each of the cells in active balanc-
ing complicates the calculation for how the balancers
should be controlled in order to move a desired amount of
charge. To address this calculation, one of the Bal-
ancer_Set() functions available from the Balancer Code
Module accepts the amount of charge to move in each cell
(ΔQ*) as its input and calculates the optimal set of bal-
ancer commands to achieve this ΔQ*). At this time, this
function is only written to calculate the balance times for
one DC2100A balancing 12 cells.

Figure 30 shows the parameters involved for a ΔQ-to-Δt

calculation to be performed for Cell m on a DC2100A.

Through superposition, the effect of each balancer can

be calculated separately and the combined effect can

then be analyzed. The Balancer_Set(ΔQ*) function ini-

tially calculates the Δt necessary for the primary current

for the cell balancer to equal ΔQ*. An iterative loop is

then performed to adjust Δt until the actual amount of

charge moved in each cell is as close to ΔQ* as possible.

Most sets of ΔQ* do not have a set of Δt that will move

the exact amount of desired charge. An obvious example

is when ΔQ* equals zero for all cells except one. Since

the DC2100A circuit must move charge from one cell to

another, it is impossible to move charge from one cell but

not move any charge to the others. In addition, there will

be charge losses due to the balancing operation not be-

ing 100% efficient. To account for these discrepancies,

the Balancer_Set(ΔQ*) will iterate to a solution as close

as possible to the desired ΔQ* for each cell, and the dif-

ference between the desired ΔQ* and actual ΔQ is spread

equally amongst all of the cells.

For the Balancer_Set(ΔQ*) function to estimate the effect

of a balance operation, it must calculate the secondary

currents for a given primary current. Equation 1 shows

the energy balance equations that are used to derive the

equation for the balancer secondary currents. Since Vm =

Vn for all n when the cells are balanced, and it’s assumed

that the Balancer Control Task is used to prevent the cells

from ever becoming too imbalanced, these equations

simplify to those in Equation 2.

Appendix C - Setting Balancer Times from Charge Imbalance

With each iteration of the Balancer_Set(ΔQ*) function,

the total charge moved is calculated and used to better

estimate the balancer commands in the next iteration.

Equation 3 shows how each guess [k] for the primary

charge moved by the balance operation is calculated

from the previous guess [k-1] of the primary charge plus

two feedback terms: the Cell Charge Error and the Half-

Stack Charge Error Feedback Terms.

Equation 3 - Balancer_Set(ΔQ*) Iteration Equation

The Cell Charge Error Feedback Term, accounts for the dif-
ference between ΔQ* and the actual ΔQT moved in the cell.
The difference between ΔQ* and the actual ΔQT moved in
all of the cells is averaged and added to ΔQ* to account
for most sets of ΔQ* not having a set of Δt that will move
the exact amount of desired charge.

For many situations the Cell Charge Error Feedback Term
is adequate for the Balancer_Set(ΔQ*) function to con-
verge to a value. In some instances, however cells receiv-
ing secondary currents from but not supplying secondary
currents to Cell m will not be able to achieve balance un-
less Cell m adjusts its balance time. The Half Stack Charge
Error Feedback Term accounts for this condition to ensure
that the cells in the bottom half of the stack will continue
to adjust their balance times if the cells in the top half of
the stack have not converged to a solution. It achieves
this by continuing the iteration as long as the average dif-
ference between the desired ΔQ* and the actual ΔQT
moved in the cells of each half stack are not equal.

Each Feedback Term includes a damping factor Ƞ to con-
trol the rate at which the iterations settle upon a set of Δt.
The effect of these damping factors is shown in Figure 31.

Once the Balancer_Set(ΔQ*) function has converged on a
set of Δt, the actual ΔQT values are passed back to the call-
ing function. The purpose of this is to allow the higher
level function the option of redistributing the difference
between ΔQ* and the actual ΔQT due to differences in cell
capacity.

An example of where this is done is the SuperCap Demo
System where two of the cells are purposely given differ-
ent capacities than the other ten. The different capacities
cause the difference between ΔQ* and the actual ΔQT to
represent a different % SOC in each cell if they are spread
evenly across each cell. Figure 33 shows that even with a

Figure 31 - Effect of Damping Factor in Balanscer_Set(ΔQ*)

SOFTWARE USERS GUIDE DC2100A

 30

huge variation in the cell voltages, the Balancer_Set(ΔQ*)
function quickly converges to a set of balance times that
moves the desired charge in each cell with the difference
between ΔQ* and the actual ΔQT evenly distributed across
each cell. Because the charge losses are small, the Super-
Cap Demo system will still end relatively balanced with
55mV between the maximum and minimum cell voltages.
This can be seen in Figure 33.

The SuperCap Demo SOC function performs a second
pass, however, where it calls the Balancer_Set(ΔQ*) func-
tion again with its ΔQ* estimate adjusted with the , QLoss
returned from the first Balancer_Set(ΔQ*) call redistrib-
uted according to the cell capacities. Figure 32 shows that
after this second pass the cell voltages are now matched
within 6mV due to the QLoss values being applied less to
the cell with least capacity (cell 7) and applied more to the
cell with the most capacity (cell 6).

The Balancer_Set(ΔQ*) function is currently only imple-
mented for one DC2100A board using 12 cells.

Figure 33 - SuperCap Demo Balance Simulation Pass 1

Figure 32 - SuperCap Demo Balance Simulation Pass 2

