

Dual Ultra-Low V_{os} Matched Operational Amplifier

OP207

1.0 SCOPE

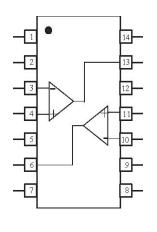
This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein. The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification http://www.analog.com/aerospace
This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/OP207

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number

Description

OP207-903Y


Dual Ultra-Low Vos Matched Operational Amplifier

Letter	Descriptive designator
Y	GDIP1-T14

<u>Case Outline (Lead Finish per MIL-PRF-38535)</u> 14-Lead ceramic dual-in-line package (CERDIP)

NOTES:

- Device may be operated even if insertion is reversed; this is due to inherent symmetry of pin locations of amplifiers A and B
- 2. V-(A) and V-(B) are internally connected via substrate resistance

V+ (A) 14 13 OUT (A) 12 V- (A) 11 +IN (B) 10 -IN (B) 9 NULL (B) 8 NULL (B) 7 V+ (B) 6 OUT (B) 5 V- (B) 4 +IN (A) 3 -IN (A) 2 NULL (A) 1 NULL (A)

Figure 1 - Terminal connections.

ASD0010727 Rev. F Information furnished by Analog Devices is believed to be accurate and

Information turnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2008 Analog Devices, Inc. All rights reserved.

OP207

3.0 **Absolute Maximum Ratings**. ($T_A = 25^{\circ}C$, unless otherwise noted)

Supply Voltage	±22V
Power Dissipation	500mW
Differential Input Voltage	±30V
Input Voltage (Note 1)	±22V
Output Short-Circuit Duration	.Indefinite
Operating Temperature Range	55°C to $+125$ °C
Storage Temperature Range	65°C to $+150$ °C
Lead Temperature (Soldering, 60 sec.)	+300°C
Junction Temperature (T _J)	.+150°C

NOTES:

For supply voltages less than $\pm 22V$, the absolute maximum input voltage is equal to the supply voltages.

3.1 Thermal Characteristics:

Thermal Resistance, CERDIP (Y) Package Junction-to-Case (Θ JC) = 29°C/W Max Junction-to-Ambient (Θ JA) = 91°C/W Max

4.0 **Electrical Table**:

Table I						
Parameter	Symbol	Conditions	Sub-	Limit	Limit	Units
See notes at end of table	1	Note 1	group	Min	Max	
			1		100	μV
Input Offset Voltage	V_{OS}		2, 3		230	
		M, D, L, R <u>3</u> /	1		500	
Average Input Offset Voltage Drift <u>4</u> /	TCV _{OS}	$TA = -55^{\circ}C, +25^{\circ}C, +125^{\circ}C$	1, 2, 3		1.3	μV/°C
	_		1		2.8	nA
Input Offset Current	I_{OS}		2, 3		5.6	
		M, D, L, R <u>3</u> /	1		25	
I D' C			1		±3.0	
Input Bias Current	I_B	M.D.I. D. 2/	2, 3		±5.6	
Legat Valtage Dange 4/	IVD	M, D, L, R <u>3/</u> Note 2	1 2 2	.12	±125	V
Input Voltage Range 4/	IVR	Note 2 $VCM = \pm 13V$	1, 2, 3	±13 106		dB
Common-Mode Rejection Ratio	CMRR	$VCNI = \pm 13 V$	2, 3	100		uВ
Power Supply Rejection Ratio	CIVIKK	$VS = \pm 3V$ to $\pm 18V$	2, 3	103	20	
Fower Supply Rejection Ratio $\frac{4}{4}$	PSRR	VS = ±3 V to ±18 V	2, 3		32	μV/V
4/		DI 10VO	4	±12.5	32	V
Outrot Waltaga Sering 4/	37	$RL = 10K\Omega$		±12.3		v
Output Voltage Swing 4/	V_{O}	$RL = 2K\Omega$	4, 5, 6			
		$RL = 1K\Omega$	4	±10		X7/X7
Lance C'anal Walter Ca'n		$VO = \pm 10V, RL = 2K\Omega$	4	200		V/mV
Large Signal Voltage Gain	A_{VO}	M.D.I. D. 2/	5, 6	150		
		M, D, L, R <u>3</u> /	4	100	0	4
Power Supply Current	I_{SY}	No Load, Both Amplifiers M, D, L, R 3/	1		8	mA
Input Noise Voltage 4/	e _n	$f_0 = 1$ Hz to 100 Hz	7		150	nV_{RMS}
Input Noise Current 4/	i _n	$f_0 = 1$ Hz to 100 Hz	7		8	pA_{RMS}
	V _{OS} adj+	$Rp = 20K\Omega$	1	0.5		mV
Offset Adjustment Range 4/	V _{OS} adj-	$Rp = 20K\Omega$	1		-0.5	
Y O.C XY 1 X 1 . 4/			1		90	μV
Input Offset Voltage Match 4/	ΔVOS		2, 3		180	•
Average Non- Inverting Bias	AID.		1		±3.5	nA
Current <u>4</u> /	$\Delta \mathrm{IB}+$		2, 3		±6.0	
Non Inventing Offset Cument 4/	AIOC		1		±3.5	
Non-Inverting Offset Current <u>4</u> /	ΔIOS+		2, 3		±6.5	
Inverting Offset Current 4/	ΔIOS-		1		±3.5	
			2, 3	102	±6.5	100
Common Mode Rejection Ratio Match <u>4</u> /	ΔCMRR		2, 3	103 100		dB
Power Supply Rejection Ratio	ΔPSRR	$V_S = \pm 3V$ to $\pm 18V$	1		32	μV/V
Match <u>4</u> /	ΔΓSKK		2, 3		51	
Output Short Circuit Current 4/	I _{SC} +		1	5	58	mA
_	I _{SC} -		1	-55	-5	
Channel Separation <u>4</u> /	CS		4	126		dB

TABLE I NOTES:

- $1/V_S = \pm 15V$, $R_S = 50$ ohm, unless otherwise specified
- $2/I_{VR}$ is defined as the V_{CM} range used for the CMRR test.
- 3/ Post irradiation limit. Subgroup 1 parameters without limit are read and recorded but not guaranteed.
- 4/ Not tested post irradiation.

4.1 Electrical Test Requirements:

Table II			
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)		
Interim Electrical Parameters	1		
Final Electrical Parameters	1, 2, 3, 4, 5, 6, 7 <u>1/2/</u>		
Group A Test Requirements	1, 2, 3, 4, 5, 6		
Group C end-point electrical parameters	1 <u>2/</u>		
Group D end-point electrical parameters	1		
Group E end-point electrical parameters	1		

Notes:

1/ PDA applies to subgroup 1. VOS and delta's excluded from PDA.

2/ See table III for delta limits.

4.2 Table III. Burn-in test delta limits.

		Table III		
TEST TITLE	BURN-IN ENDPOINT	LIFETEST ENDPOINT	DELTA LIMIT	UNITS
V _{OS}	±100	±175	±75	μV
$\pm I_{ m B}$	±3	±4	±1	nA

5.0 Life Test/Burn-In Circuit:

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005, test condition B.

Rev	Description of Change	Date
A	Initiate	Mar. 28, 2000
В	Update web address. Correct PSRR units from $V/\mu V$ to $\mu V/V$. Table I: reference to note 4 deleted, note 4 not in datasheet. Symbol for Inverting offset current should be Δ IOS Table II, note 1 add "VOS and delta's excluded from PDA". Update Table III with Life test end-point = datasheet + delta.	Mar. 19, 2002
С	Update web address. Add note 4 to indicate parameters not tested post irradiation	May 13, 2003
D	Delete burn-in and radiation bias circuits	Aug. 5, 2003
Е	Updated header/footer & added to scope description, and deleted OP207R903Y – part is no longer offered.	Feb. 14, 2008
F	Add Junction Temperature +150°C to 3.0 Absolute Maximum Ratings & remove "see figure 2" in 5.2 Burn-In Section because there is no figure 2	March 31, 2008