

Neutron Irradiation Test Results of the RH1009MW 2.5V Reference

19 March 2015

Duc Nguyen, Sana Rezgui

Acknowledgements

The authors would like to thank the Signal Conditioning Product and Test Engineering Group from Linear Technology for the data collection pre- and post-irradiations. Special thanks are also for Thomas Regan from University of Massachusetts, Lowell (UMASS) for the help with the neutrons irradiation tests.

Neutron Radiation Test Results of the RH1009MW 2.5V Reference

Part Type Tested: RH1009MW 2.5V Reference

Traceability Information: Fab Lot# WP1399.1; Wafer # 5; Assembly Lot # 601397.1, Date Code 1047A. See photograph of unit under test in Appendix A.

Quantity of Units: 7 units received, 2 units for control, and 5 units for unbiased irradiation. Serial numbers 335-339 were placed in an anti-static foam during irradiation. Serial numbers 345 and 346 were used as control. See Appendix B for the radiation bias connection tables.

Radiation Dose: Total fluence of 1E12 neutron/cm².

Radiation Test Standard: MIL-STD-883 TM1017 and Linear Technology RH1009 I.D. No. 66-10-0174 Rev. C 0607.

Test Hardware and Software: LTX test program EQ1CR136.00

Facility and Radiation Source: University of Massachusetts, Lowell and Reactor Facility-FNI.

Irradiation and Test Temperature: Room temperature controlled to 24°C±6°C per MIL-STD-883 and MIL-STD-750.

SUMMARY

ALL FIVE PARTS PASSED THE ELECTRICAL TEST LIMITS AS SPECIFIED IN THE DATASHEET AFTER IRRADIATION TO 1E12 N/cm². ADDITIONAL INFORMATION CAN BE PROVIDED PER REQUEST.

1.0 Overview and Background

Neutron particles incident on semiconductor materials lose energy along their paths. The energy loss produces electron-hole pairs (ionization) and displaces atoms in the material lattice (displacement damage defects or DDD). DDD induces a mixture of isolated and clustered defects or broken bonds. Such defects elevate the energy level of the material and consequently change material and electrical properties. The altering energy level creates the combination of any of the following processes, thermal generation of electron-hole pairs, recombination, trapping, compensation, tunneling, affecting hence the devices' basic features.

Bipolar technology is susceptible to neutron displacement damage around a fluence level of 1E12 neutron/cm². The neutron radiation test for the RH1009MW determines the change in device performance as a function of neutrons' fluence.

2.0 Radiation Facility:

Five samples were irradiated unbiased at the University of Massachusetts, Lowell, using the Reactor Facility-FNI. The neutron flux was determined by system S/P-32, method ASTM E-265, to be 4.05E9 N/cm²-s (1MeV equivalent) for each irradiation step. Refer to Appendix C for the certificate of dosimetry.

3.0 Test Conditions

Five samples and two control units were electrically tested at 25°C prior to irradiation. The testing was performed on the two control units to confirm the operation of the test system prior to the electrical testing of the 7 units (5 irradiated and 2 control). During irradiation, devices were placed into an anti-static bag. Devices were then vertically aligned with the radiation source.

The criteria to pass the neutron displacement damage test is that five irradiated samples must pass the datasheet limits. If any of the tested parameters of these five units do not meet the required limits then a failure-analysis of the part should be conducted in accordance with method 5004, MIL-STD-883, and if valid the lot will be scrapped.

4.0 Tested Parameters

The following parameters were measured pre- and post-irradiations:

- Reverse Breakdown Voltage V_z (V)
- Reverse Breakdown Voltage Change with Current $\Delta V_z/\Delta I_z$ (mV)
- Reverse Dynamic Impedance $r_z(\Omega)$

Appendix D details the test conditions, minimum and maximum values at different accumulated doses.

5.0 Test Results

All five samples passed the post-irradiation electrical tests. All measurements of the three listed parameters in section 4.0 are within the specification limits.

The used statistics in this report are based on the tolerance limits, which are bounds to gage the quality of the manufactured products. It assumes that if the quality of the items is normally distributed with known mean and known standard deviation, the two-sided tolerance limits can be calculated as follows:

 $+K_{TL} = mean + (K_{TL})$ (standard deviation)

 $-K_{TL} = mean - (K_{TL})$ (standard deviation)

Where $+K_{TL}$ is the upper tolerance limit and $-K_{TL}$ is the lower tolerance limit. These tolerance limits are defined in a table of inverse normal probability distribution.

However, in most cases, mean and standard deviations are unknown and therefore it is practical to estimate both of them from a sample. Hence the tolerance limit depends greatly on the sample size. The Ps90%/90% K_{TL} factor for a lot quality P of 0.9, confidence C of 0.9 with a sample size of 5, can be found from the tabulated table (MIL-HDBK-814, page 94, table IX-B). The K_{TL} factor in this report is 2.742.

In the plots, the dashed lines with X-markers are the measured data points of five post-irradiated samples. The solid lines with square symbols are the computed KTL values of five post-irradiated samples with the application of the K_{TL} statistics. The orange solid lines with circle markers are the datasheet specification limits.

The post-irradiation test limits are using Linear Technology datasheets 100 Krads(Si) specification limits.

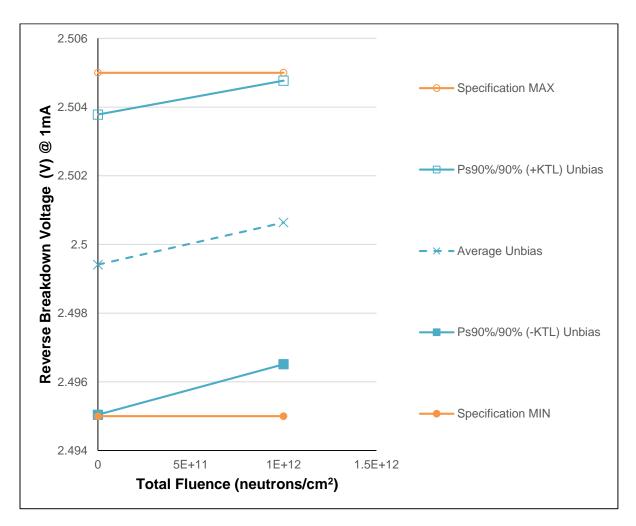


Figure 5.1 Plot of Reverse Breakdown Voltage V_{ref} versus Total Fluence

Table 5.1: Raw data table for Reverse Breakdown Voltage of pre- and post-irradiation (1E12 N/cm²) including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).

Parameter	Reverse Breakdown Voltage @1mA	Total Fluences (N/cm ²)		
Units	(V)	0	1E+12	
335	Unbias Irradiation	2.49930	2.4994	
336	Unbias Irradiation	2.49987	2.5011	
337	Unbias Irradiation	2.49917	2.5010	
338	Unbias Irradiation	2.49714	2.4990	
339	Unbias Irradiation	2.50158	2.5028	
345	Control Unit	2.50212	2.5021	
346	Control Unit	2.50222	2.5022	
	Unbias Irradiation Statistics			
	Average Unbias		2.50064	
	Std Dev Unbias		0.00151	
	Ps90%/90% (+KTL) Unbias		2.50477	
	Ps90%/90% (-KTL) Unbias		2.49651	
	Specification MIN	2.495	2.495	
	Status (Measurements)	PASS	PASS	
	Specification MAX	2.505	2.505	
	Status (Measurements)	PASS	PASS	
	Status (-KTL) Unbias	PASS	PASS	
	Status (+KTL) Unbias	PASS	PASS	

Figure 5.2: Plot of Delta V_Z/I_z versus Total Fluence

Parameter Delta V_Z/I_Z @ I_R=400uA TO 10mA Total Fluence (N/cm²) 0 1E+12 Units (mV)335 Unbias Irradiation -3.90911 -4.22287 336 Unbias Irradiation -3.47710 -4.35066 337 Unbias Irradiation -4.03786 -4.80652 -4.14276 338 Unbias Irradiation -3.35693 339 Unbias Irradiation -4.56238 -3.49522 345 Control Unit -3.47233 -3.55148 346 Control Unit -3.53909 -3.57533 **Unbias Irradiation Statistics** Average Unbias -3.65524 -4.41704 Std Dev Unbias 0.29882 0.26933 Ps90%/90% (+KTL) Unbias -2.83588 -3.67854 Ps90%/90% (-KTL) Unbias -4.47461 -5.15554 Specification MIN -10 -6 Status (Measurements) PASS PASS **Specification MAX** Status (Measurements) Status (-KTL) Unbias PASS PASS Status (+KTL) Unbias

Table 5.2: Raw data table for Delta V_z/I_z of pre- and post-irradiation (1E12 N/cm²) including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).

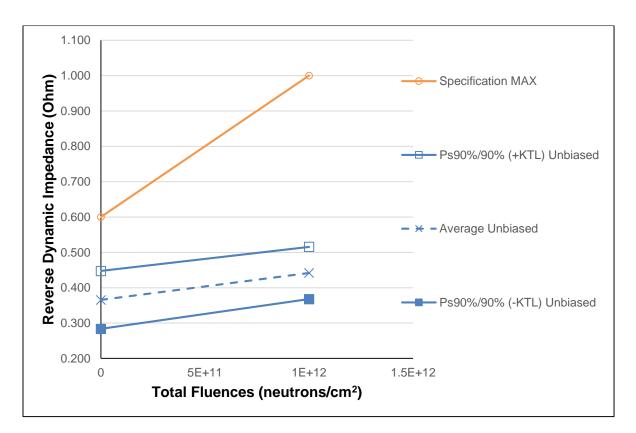


Figure 5.3: Plot of Reverse Dynamic Impedance R_Z versus Total Fluence

Table 5.3: Raw data table for Reverse Dynamic Impedance of pre- and post-irradiation (1E12 N/cm²) including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL).

Parameter	Reverse Dynamic Impedance	Total Fluences (N/cm ²		
Units	(Ohms)	0	1E+12	
335	Unbiased Irradiation	0.39091	0.42229	
336	Unbiased Irradiation	0.34771	0.43507	
337	Unbiased Irradiation	0.40379	0.48065	
338	Unbiased Irradiation	0.33569	0.41428	
339	Unbiased Irradiation	0.34952	0.45624	
345	Control Unit	0.34723	0.35515	
346	346 Control Unit		0.35753	
	Unbiased Irradiation Statistics			
	Average Unbiased		0.44170	
	Std Dev Unbiased		0.02693	
	Ps90%/90% (+KTL) Unbiased		0.51555	
	Ps90%/90% (-KTL) Unbiased		0.36785	
	Specification MIN			
	Status (Measurements) Unbiased			
	Specification MAX	0.6	1	
	Status (Measurements) Unbiased		PASS	
	Status (+KTL) Unbiased			
	Status (-KTL) Unbiased	PASS	PASS	

Appendix A

Pictures of one among five samples used in the test.

Figure A1: Top View showing part number and date code

Figure A2: Bottom View showing serial number

Appendix B

Radiation Bias Connection Table

Table B1: Unbiased condition

Pin	Function	Connection
1	NC	Float
2	NC	Float
3	NC	Float
4	V ⁻	Float
5	NC	Float
6	NC	Float
7	ADJ	Float
8	V+	Float
9	NC	Float
10	NC	Float

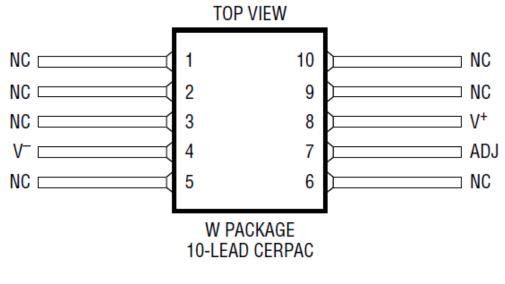


Figure B1: Pin-Out

DDD RH1009MW WP1399.1 W5

Appendix C

niversity of Aassachusetts owell

7/2/2012 Linear Technology Corporation Attention: Sana Rezgui 1530 Buckeye Drive Milpitas, CA 95035

Subject:

Product:

Irradiation Date: Irradiation Facility: Dosimetry system:

Neutron Dosimetry Results:

Pinanski Building One University Avenue Lowell, Massachusetts 01854 978,934,3548 tel 978.934.4067 fax. e-mail: Thomas Regan@uml.edu Thomas Regan Reactor Engine

RADIATION LABORATORY

Certificate of Neutron Exposure

Multiple products see attached table

June, 27th, 2012 Reactor Facility- FNI S/P-32, ASTM E-265

Irradiation	Requested Fluence (n/cm ²)	Reactor Power (kW)	Time (s)	Fluence Rate (n/cm ² -s) ^(2,3)	Gamma Dose rad (Si) ⁽¹⁾	Measured Fluence (n/cm ²) ⁽⁴⁾	Total Integral Fluence (n/cm ²)
Group 1	1.00E+12	45.0	228	4.05E+09	117	1.03E+12	1.03E+12
Group 2	1.00E+12	45.0	228	4.05E+09	117	9.41E+11	9.41E+11
Group 3	1.00E+13	475	234	4.28E+10	1266	9.22E+12	9.22E+12
Group 4	1.00E+13	90	1235	8.10E+09	1266	9.03E+12	9.03E+12

(1) Based on reactor power at 1,000kW, the gamma dose is 41+/- 5.3% krad(Si)/hr as mapped by TLD-based dosimetry

(2) Dosimetry method: ASTM E-265

The neutron fluence rate is determined from "Initial Testing of the New Ex-Core Fast Neutron Irradiator at UMass Lowell " (6/18/02) Validated by S-32 flux monitors Ì)

(4)

The neutron fluence for this irradiation was determined using the previously measured neutron radiation field for this facility, measured with ASTM E-265 "Measuring Reaction Rates and Fast Neutron Fluence by Radioactivation of Sulfur-32" and correlated to the measured reactor power level.

Group 1	Average Integrated Neutron Fluence (1 MeV Si Eq.) =1.03E12 n/cm^2
Group 2	Average Integrated Neutron Fluence (1 MeV Si Eq.) =9.41E11 n/cm^2
Group 3	Average Integrated Neutron Fluence (1 MeV Si Eq.) =9.22E12 n/cm^2
Group 4	Average Integrated Neutron Fluence (1 MeV Si Eq.) =9.03E12 n/cm^2

Reviewed by Thomas Regan Reactor Engineer

Appendix D

Table D1: Electrical Characteristics of Device-Under-Test

Parameter	Pre-irradiation MIN MAX	10 Krad(Si) MIN MAX	20 Krad(Si) MIN MAX	50 Krad(Si) MIN MAX	100 Krad(Si) MIN MAX	200 Krad(Si) MIN MAX	Units
Vz	2.495 2.505	2.495 2.505	2.495 2.505	2.495 2.505	2.495 2.505	2.495 2.505	V
Delta V _z /I _z	6	6	6	8	10	12	mV
r _z	0.6	0.6	0.6	0.8	1.0	1.4	ohm