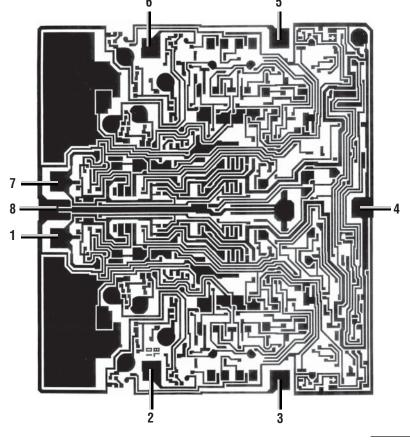


DICE SPECIFICATION

RH1078M Micropower, Dual, Single-Supply Precision Op Amp

DIE CROSS REFERENCE



Please refer to LTC standard product data sheet for other applicable product information.

PAD FUNCTION

- 1. OUTA
- 2. -INA
- 3. +INA
- 1. –V
- 5. +INB
- 6. -INB
- 7. OUTB
- 8. +V

12mils thick, backside (substrate) is an alloyed gold layer. Connect backside to V–.

 90×97 mils

T, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DICE ELECTRICAL TEST LIMITS $T_A = 25^{\circ}C$, $V_S = 5V$, $V_{CM} = 0.1V$, $V_{OUT} = 1.4V$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage			120	μV
I _{OS}	Input Offset Current			0.8	nA
I_{B}	Input Bias Current			15	nA
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3.5V V _{CM} = 0.05V to 3.2V	94		dB dB
PSRR	Power Supply Rejection Ratio	V _S = 2.3V to 12V V _S = 3.1V to 12V	100		dB dB

RH1078M

DICE ELECTRICAL TEST LIMITS $T_A = 25^{\circ}C$, $V_S = 5V$, $V_{CM} = 0.1V$, $V_{OUT} = 1.4V$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
A _{VOL}	Large-Signal Voltage Gain	V_0 = 0.03V to 4V, No Load V_0 = 0.03V to 3.5V, R_L = 50k V_0 = 0.05V to 4V, No Load V_0 = 0.05V to 3.5V, R_L = 50k	150 120		V/mV V/mV V/mV V/mV
V _{OUT}	Output Voltage Swing	Output Low, No Load Output Low, 2k to GND Output Low, I _{SINK} = 100µA Output High, No Load Output High, 2k to GND	4.2 3.5	6 2 130	mV mV mV V
SR	Slew Rate	$A_V = 1$, $V_S = \pm 2.5V$	0.04		V/µs
Is	Supply Current	Per Amplifier		75	μА
	Minimum Supply Voltage	Note 2		2.3	V

$T_A = 25$ °C, $V_S = \pm 15$ V, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage			350	μV
I _{0S}	Input Offset Current			0.8	nA
I _B	Input Bias Current			15	nA
	Input Voltage Range		13.5 -15.0		V
CMRR	Common Mode Rejection Ratio	V _{CM} = 13.5V, -15V V _{CM} = 13V, -14.9V	97		dB dB
PSRR	Power Supply Rejection Ratio	V _S = 5V, 0V to ±18V	100		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 50k$ $V_0 = \pm 10V, R_L = 2k$ $V_0 = \pm 10V, R_L = 5k$	1000 300		V/mV V/mV V/mV
V _{OUT}	Output Voltage Swing	RL = 50k RL = 2k RL = 5k	±13 ±11		V V V
SR	Slew Rate		0.06		V/µs
Is	Supply Current	Per Amplifier		100	μA

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Power supply rejection ratio is measured at the minimum supply voltage.

Wafer level testing is performed per the indicated specifications for dice. Considerable differences in performance can often be observed for dice versus packaged units due to the influences of packaging and assembly on certain devices and/or parameters. Please consult factory for more information on dice performance and lot qualifications via lot sampling test procedures.

Dice data sheet subject to change. Please consult factory for current revision in production.

LT 0314 REV B • PRINTED IN USA

TECHNOLOGY

LINEAR TECHNOLOGY CORPORATION 2005