

The Programmable Solutions Company ${ }^{\circledR}$

High Speed / End Applications
Tuesday, June 01, 2004

REVISION HISTORY

DATE	REV		
$11 / 25 / 2003$	1.0	Released document	Comments

1 FORM FACTOR 3
2 CONNECTORS, SWITCHES, AND EDGE COMPONENTS 4
2.1 DDR DIMM-184 Connector (XU1) 4
2.2 DB-9 RS-232 Edge Connectors (J49) 4
2.3 RJ-45 Ethernet Connector (RJ1) 4
2.4 ByteBlaster JTAG Configuration Headers (J31) 4
2.5 Altera 3.3V Proto1 Daughtercard Headers (J24, J25, J26) 4
3 CONSTRUCTION 5
3.1 Geometries 5
3.1.1 Trace Geometries 5
3.1.2 Via Geometries 6
3.1.3 General routing rules 6
3.2 Stackup 6
3.1.4 Overview 6
3.1.5 Power and Ground Planes. 7
4 CRITICAL TRACES 8
4.1 Stratix Signals (U13) 8
4.2 DDR SDRAM Signals 9
4.3 RLDRAM SDRAM Signals 14
4.4 Clocks 18
4.4.1 Stratix Clock Inputs 18
4.4.2 Stratix Clock Outputs 19
4.5 Configuration22

5.

Stratix Memory Board 1

Figure I: \quad Stratix Memory Board 1-Level/Block Diagram

1 Form Factor

This board is stand-alone.

```
PCB Height:
\(8.0^{\prime \prime}\)
PCB Length:
\begin{tabular}{ll} 
Thickness: & \(0.062 "\) \\
Maximum Layers: & 12 \\
Board Material: & FR4 \\
Impedance: & 50 Ohm single-ended, 100 Ohm differential
\end{tabular}

\section*{2 Connectors, Switches, and Edge Components}

\subsection*{2.1 DDR DIMM-184 Connector (XU1)}

This 184-pin DDR DIMM Connector is a through hole connector that has a socket for DDR memory modules. The module is another board that inserts vertically to this PCB and contains memory chips on both top and bottom of it. The placement of the DIMM connector should be close to the Stratix device to accommodate the matched length requirements for the interfaced signals. Please follow Micron DDR routing guidelines document for details.

\subsection*{2.2 DB-9 RS-232 Edge Connectors (J12)}

The dual RS-232 DB-9 connector shouldhang off of the PCB. The layout design in Allegro shows this placement.
Mounting holes are also required for each connector (sized per connector datasheet recommendations).

\subsection*{2.3 RJ-45 Ethernet Connector (RJ1)}

The Ethernet RJ-45 connector assembly has surface-mount pins, through-hole pins, as well as two larger plastic mounting posts that require mounting holes as well.

The connector shall be mounted such that it protrudes slightly from the board edge. It should be placed close to the 10/100 Ethernet MAC/PHY device (U6). The signal names ENET* should be matched as close as possible.

\subsection*{2.4 ByteBlaster JTAG Configuration Headers (J27)}

The 10-pin ByteBlaster Header is made up of a right-angle keyed \(2 \times 5\) 100-mil through-hole header. It should be located on a board edge.

\subsection*{2.5 Altera 3.3V Proto1 Daughtercard Headers (J31, J32, J37)}

The 3.3V Proto1 daughtercard headers are made up of three 100 -mil headers. These are arranged in two columns. The two columns are made up of one combination of J32 a 2 X 7 header and J 31 a 2 X 10 header. The other header J37 is made up of a single \(2 \times 20\) header. These headers are surface mount headers that have a 100 mil pin pitch.

These headers are to be placed according to the placement guidelines drawing where J 32 is F 1 , J 31 is F 3 , and J 37 is F 2 . Relative placement is according to the drawing below. The dimensions of the placement are detailed as well.


The dimension are showinion niches
Figure II: Proto1 Daughtereard Dimensions

\section*{3 Construction}

The Stratix Memory board 1 is constructed using standard FR4 material. All vias on the board are through hole and are not blind or buried. The Stratix Memory board 1 utilizes dual stripline in its stack yp, but signals on the adjacent layers are orthogonal to each other. All signals should avoid crossing split power planes on the adjacent layers as much as possible.

\subsection*{3.1 Geometries}

\subsection*{3.1.1 Trace Geometries}

For all dual-stripline layers power-signal-signal-power (P-S-S-P), ensure that the traces on the first signal layer are routed orthogonal to the traces on the second signal layer.

Signals should try to avoid crossing over split power planes on the adjacent layer. This may not be possible so it is recommended that this be minimized for the critical traces.

All unused via pads need to be removed from the board. Leaving the unused via pads in adds capacitance to the signal which in turn degrades the signal integrity.

Trace geometries are dictated by trace impedance requirements and the components used to deliver these high speed signals to the Stratix device.

\subsection*{3.1.2 Via Geometries}
- Via Masking:


Component (top-side) vias masked (not exposed)
Backside vias tinned (exposed for probing)

\subsection*{3.1.3 General routing rules}

Angles: \(\quad 45^{\circ}\) or Rounded corners (no right-angles)

\subsection*{3.2 Stackup}

\subsection*{3.1.4 Overview}

This board will have the following stack up (component side is layer 1 on top). This stack up can be modified to ensure the correct impedances and board thickness is maintained.
\begin{tabular}{|c|c|}
\hline 1 & TOP - SIGNAL (50-ohm) \\
\hline 2 & POWER \\
\hline 3 & SIGNAL (50-ohm) \\
\hline 4 & SIGNAL (50-ohm) \\
\hline 5 & GND \\
\hline 6 & SIGNAL (50-ohm) \\
\hline 7 & SIGNAL (50-ohm) \\
\hline 8 & PLL_GND \\
\hline 9 & SIGNAL (50-ohm) \\
\hline 10 & SIGNAL (50-ohm) \\
\hline 11 & POWER \\
\hline 12 & BOTTOM - SIGNAL (50-ohm) \\
\hline
\end{tabular}

Figure III: General Stackup

\subsection*{3.1.5 Power and Ground Planes}

Ground Planes
- GND
- PLL_GND

\subsection*{3.1.5.1 Solid Planes}

The GND and PLL_GND are solid planes. The other power planes will be split power planes. The ground planes shall be tied together using multiple ferrite beads.

\subsection*{3.1.5.2 Power Nets}

Power nets can be run on signal layers as needed. A 15 -mil routing keepout shall be associated around ALL power nets with respect to signal traces and other features. This is not possible underneath the BGA but do NOT "snake" a power net and a signal trace through the same via gaps as a pair.

The power nets can be embedded in the other Power and GND planes as makes sense in the design phase so long as no signals cross the gap or runs directly above it. If some signal absolutely must cross the gaps then we must go back and add a 0.01uF cap for every 4 nets that cross the plane gap to provide an AC return path for switching signals. This is not necessary for switches, LEDs, or push-button nets.

\subsection*{3.1.5.2.1 Switching Power Supply Layout}

When laying out the Stratix Memory board follow ope of the two suggested approaches. The simple board layout requires a dedicated ground plane layer. Also, tor higher currents, also use the multilayer board to help with heat sinking power components.
o The ground plane layer should not have any traces and it should be as close as possible to the layer with power MOSFETs (Q2, Q3).
o Place CIN (C41, C46, C43), COUT (C34), MOSFETs (Q2, Q3), Diode (D9) and inductor (L4) all in one compact area. It may help to have some components on the bottom side of the boakd.
o Place LTC1778 chip with pins 9 to 16 facing the power components (Q2, and Q3). Keep the components connected to pins 1 to 8 close to LTC1778 (noise sensitive components).
o Use an immediate via to connect the components to ground plane including SGND and PGND of LTC1778. Use several bigger vias for power components.
o Use compact plane for switch node (3.3V_SOURCE) to improve cooling of the MOSFETs and to keep EMI down.
o Use planes for PWR_IN and 3.3V_OUT to maintain good voltage filtering and to keep power losses low.
o Flood all unused areas on all layers with copper. Flooding with copper will reduce the temperature rise of power component. You can connect the copper areas to any DC net (PWR_IN, 3.3V_OUT, GND or to any other DC rail in your system).

\subsection*{3.1.5.2.2 Routing Requirements for All Power Regulators}

Each regulator draws a calculated amount of current. A worst-case scenario was calculated and the minimum trace width has been associated for the power regulators shown in the table below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Voltage & Function & Net Name & Reference Designator & Power & current & oz. per ft & internal & external & oz. per ft & internal & external \\
\hline +16.0V & Input Power & PWR_IN/ & J3, U5, Q1 & 60W & 3.75 & 1 & 243 & 70 & 0.5 & 486 & 140 \\
\hline +3.3V & VCCIO & 3.3V_S_1O & U5,Q1,Q2,L9,F3,L7 & 11.6W & 4.3 & 1 & 293 & 86 & 0.5 & 585 & 172 \\
\hline & VCC & 3.3 V / & U5, Q1, Q2,L9,F4,L8 & & 5 & 1 & 359 & 108 & 0.5 & 718 & 215 \\
\hline & VCC_PLL & 3.3 V PLL \({ }^{\text {a }}\) & し6,Q1,Q2,L9,F5,L10 & & 1 & 1 & 41 & 10 & 0.5 & 81 & 20 \\
\hline +1.5V & VCCINT & 1.5 V INT \(\longrightarrow\) & U39,F10 & 1.5W & 2 & 1 & 104 & 28 & 0.5 & 207 & 55 \\
\hline & VCCPLL & 1.5V_PLL < & Ш38,F9 & 1.5W & 1 & 1 & 41 & 10 & 0.5 & 81 & 20 \\
\hline +2.6V/+1.8V & VDD+Vtt & 2.6 V _TERM & U6,F8,L-13 & 5.6W & 2.16 & 1 & 115 & 31 & 0.5 & 230 & 62 \\
\hline & VCCIO & VCC_S_IO & U6,F7,L12 & 8.7W & 3.4 & 1 & 213 & 61 & 0.5 & 425 & 121 \\
\hline & & VCC_IO_RLDRAM & U6,Q3,F6,L11 & 3.2W & 2 & 1 & 104 & 28 & 0.5 & 207 & 55 \\
\hline +1.25V & Vtt & VTT & & 1.25W & 1 & & & & & & \\
\hline +2.5V & Vext & 2.5 V & U9,F12 & 7.5W & 3 & 1 & 180 & 51 & 0.5 & 359 & 101 \\
\hline +1.8V & VDD & 1.8 V & U8,F11 / & 1,8W & 1 & 1 & 41 & 10 & 0.5 & 81 & 20 \\
\hline +1.5V & VDDQ & & & 1.5 W & 1 & & & & & & \\
\hline \(+0.75 \mathrm{~V}\) & Vtt & VTT & U1,F1 & 1.5W & 2 & 1 & 104 & 28 & 0.5 & 207 & 55 \\
\hline
\end{tabular}

\section*{4 Critical Traces}

\subsection*{4.1 Stratix Signals (U20)}

Match the following in length:
FSE_*
FLAS \(\bar{S}_{-}\)*
Match the following in length:
PROTO1_IO*[40..0]
Match the following in length:
\[
\begin{aligned}
& \text { RS232A_* } \\
& \text { RS232B_* }
\end{aligned}
\]


Match the following in length: ENET_*

Match the following in length:
SRAM_*
Match the following in length:
MAX_LED*

Match the following in length:
PB*

\subsection*{4.2 DDR SDRAM Signals}

These high-speed DDR SDRAM signals are single-ended signals. There are four termination schemes used to terminate the DDR devices and two schemes for the DDR DIMM. These termination schemes are shown in the figure below. Our target impedance for ALL signals in this interface should be 50 -ohms. The termination scheme shows a series damping resistor RS and a fly-by pull-up resistor to VTT.



\section*{Circuit 2 - SSTL2 Double Termination Far}


Circuit 3 -SSTL2 Single Termination Near


Circuit 4 - SSTL2 Single Termination Far

Figure IV: SSTL-2 Termination


Figure V: SSTL-2 DDR Shared Termination

DDR I SDRAM DIMM interface signals:
\begin{tabular}{|l|l|l|l|}
\hline Function & Stratix-side Net & DIMM-side Net & fermination Circuit \\
\hline Data & DDRE_DQ[63:0] & DDRE_DATAQ[63:0] & Circuit 4 \\
\hline Check Bit & DDRE_CB[7:0] & DDRE_CKB[7:0] & Circuit 4 \\
\hline Data Mask & DDRE_DM[8:0] & DDRE_DMASK[8:0] & Circuit 4 \\
\hline Data Strobe & DDRE_DQS[8:0] & DDRE_STROBE[8:0] & Circuit 4 \\
\hline Address & DDRE_A[12:0] & DDRE_ADR[12:0] & Circuit 3 \\
\hline Bank Address & DDRE_BA[1:0] & DDRE_BANK[1:0] & Circuit 3 \\
\hline Row Command & DDRE_RASn & DDRE_ROWn & Circuit 3 \\
\hline Column Command & DDRE_CASn & DDRE_COLn & Circuit 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Write Command & DDRE_WEn & DDRE_WRITEn & Circuit 3 \\
\hline Chip Select & DDRE_CSn & DDRE_SELn & Circuit 3 \\
\hline Clock Enable & DDRE_CKE & DDRE_CLKE & Circuit 3 \\
\hline Clock Enable1 & DDRE_CKE1 & DDRE_CLKE1 & Circuit 3 \\
\hline
\end{tabular}

Diff. Clocks = DDRE_CK_P0/N0, DDRE_CK_P1/N1, DDRE_CK_P2/N2

\section*{DDR I DIMM "Byte Lane Groups":}

Data signals are grouped with their associated strobe and mask bit. These grouping of bits are called a "Byte Lane" and are routed such that an individual Byte Lane must have matched lengths within the 10 bits. However, each Byte Lane may vary in length from one another by \(+/-0.25\) inches. The bits that make up each Byte Lane are shown below.
\begin{tabular}{lllllll} 
Lane \(0=\) DDRE_DQ[7:0] & DDRE_DATAQ[7:0] & DDRE_DM[0] & DDRE_DMASK[0] & DDRE_DQS[0] & DDRE_STROBE[0] \\
Lane 1 = DDRE_DQ[15:8] & DDRE_DATAQ[15:8] & DDRE_DM[1] & DDRE_DMASK[1] & DDRE_DQS[1] & DDRE_STROBE[1] \\
Lane \(2=\) DDRE_DQ[23:16] & DDRE_DATAQ[23:16] & DDRE_DM[2] & DDRE_DMASK[2] & DDRE_DQS[2] & DDRE_STROBE[2] \\
Lane 3 = DDRE_DQ[31:24] & DDRE_DATAQ[31:24] & DDRE_DM[3] & DDRE_DMASK[3] & DDRE_DQS[3] & DDRE_STROBE[3] \\
Lane 4 = DDRE_DQ[39:32] & DDRE_DATAQ[39:32] & DDRE_DM[4] & DDRE_DMASK[4] & DDRE_DQS[4] & DDRE_STROBE[4] \\
Lane \(5=\) DDRE_DQ[47:40] & DDRE DATAQ[47:40] & DDRE_DM[5] & DDRE_DMASK[5] & DDRE_DQS[5] & DDRE_STROBE[5] \\
Lane \(6=\) DDRE_DQ[55:48] & DDRE_DATAQ[55:48] & DDRE_DM[6] & DDRE_DMASK[6] & DDRE_DQS[6] & DDRE_STROBE[6] \\
Lane \(7=\) DDRE_DQ[63:56] & DDRE_DATAQ[63:56] & DDRE_DM[7] & DDRE_DMASK[7] & DDRE_DQS[7] & DDRE_STROBE[7] \\
Lane \(8=\) DDRE_CB[7:0] & DDRE_CKB[7:0] & DDRE_DM[8] & DDRE_DMASK[8] & DDRE_DQS[8] & DDRE_STROBE[8]
\end{tabular}

\section*{Routing Rules}
1. All signals within a given "Byte Lane Group" should be matched length from the pin on FBGA U20 to the pin on DDR connector XU1. Maximum deviation is \(+/-0.050\) inches.
2. Keep the distance from the pin on XU 1 to the termination resistor pack (to 1.25 V ) to less than 1.25 inches. This puts the length for the entire net up to <match_length_rule1> + <termination_max_length_rule2>.
3. All signals must match lengths between pins (as in (1) above) within \(+/-0.250\) inches (address, control, data, all byte groups, etc...). Only nets within a byte lane group must be matched tighter as in rule 1.
4. All signals (other than address) are to maintain a spacing that is based on its parallelism with other nets. This is as follows:
a. 5 mils for parallel runs \(<0.5\) inches
( \(\sim 1 \mathrm{X}\) spacing relative to plane distance)
b. 10 mils for parallel runs between 0.5 and 1.0 inches
c. 15 mils for parallel runs between 1.0 and 6.0 inches
( \(\sim 2 \mathrm{X}\) spacing relative to plane distance)
( \(\sim 3 X\) spacing relative to plane distance)
5. All DDR SDRAM signals are to maintain 25 mil separation from other
6. Total net length from the Stratix to the VTT termination resistor must not exceed 6 inches.
7. DDR Address lines DDRE_A[12:0] and DDRE_ADR[12:0] should maintain a spacing that is based on its parallelism with other nets but more stringent than in rule 4a/b/cabove. This is as follows:
a. 10 mils for parallel runs \(<0.5\) inches
b. 15 mils for parallel runs between 0.5 and 1.0 inches
c. 20 mils for parallel runs between 1.0 and 6.0 inches
8. DDR Clocks in Clocking section

DDR I SDRAM "Device A, B, C, D" interface signals:
\begin{tabular}{|l|l|l|l|}
\hline Function & Stratix-side Net & DIMM-side Net & Termination Circuit \\
\hline \multicolumn{1}{|c|}{ Device \(\mathbf{A}\)} & DRA_DQ[15:0] & DDRA_DATAQ[15:0] & Circuit 1, fly-by \\
\hline Data & DDRA_LDM, _UDM & \begin{tabular}{l} 
DDRA_LDMASK, \\
UDMASK
\end{tabular} & Circuit 1, fly-by \\
\hline Data Mask & DDRA_LDQS, _UDQS & \begin{tabular}{l} 
DDRA_LSTROBE, \\
USTROBE
\end{tabular} & Circuit 1, fly-by \\
\hline Data Strobe & DDRA_CSn & DDRA_SELn & Circuit 3 \\
\hline Chip Select & DDRA_CLKE & Circuit 3 \\
\hline Clock Enable & DDRA_CKE & & \\
\hline \multicolumn{1}{|c|}{ Device B } & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Data & DDRB_DQ[15:0] & DDRB_DATAQ[15:0] & Circuit 2, fly-by \\
\hline Data Mask & DDRB_LDM, _UDM & DDRB LDMASK, UDMASK & Circuit 2, fly-by \\
\hline Data Strobe & DDRB_LDQS, _UDQS & DDRB_LSTROBE, USTROBE & Circuit 2, fly-by \\
\hline Chip Select & DDRB_CSn & DDRB_SELn & Circuit 3 \\
\hline Clock Enable & DDRB_CKE & DDRB_CLKE & Circuit 3 \\
\hline \multicolumn{4}{|l|}{Device C} \\
\hline Data & DDRC_DQ[15:0] & DDRC_DATAQ[15:0] & Circuit 1, non-fly-by \\
\hline Data Mask & DDRC_LDM, _UDM & DDRC_LDMASK, UDMAS̄K & Circuit 1, non-fly-by \\
\hline Data Strobe & DDRC_LDQS, _UDQS & DDRC_LSTROBE, USTRÖBE & Circuit 1, non-fly-by \\
\hline Chip Select & DDRC_CSn & DDRC_SELn & Circuit 3 \\
\hline Clock Enable & ODRC_CKE & DDRC_CLKE & Circuit 3 \\
\hline \multicolumn{4}{|l|}{Device D} \\
\hline Data & ODRD_DQ[15:0] & DDRD_DATAQ[15:0] & Circuit 2, non-fly-by \\
\hline Data Mask & DDRD_LDM, _UDM & DDRD_LDMASK, UDMASK & Circuit 2, non-fly-by \\
\hline Data Strobe & \[
\text { DDRD } \angle D Q S, \text { UDQS }
\] & DDRD LSTROBE, USTRÖBE & Circuit 2, non-fly-by \\
\hline Chip Select & DDRD_CSn & DDRD_SELn & Circuit 3 \\
\hline Clock Enable & DDRD_CKE & DDRD_CLKE & Circuit 3 \\
\hline Shared signals & & & \\
\hline Address & DDRA_A [12:0] & DDRA_ADR[12:0] & Circuit DDR Shared \\
\hline Bank Address & DDRA_BA[1:0] & DDRA_BANK[1:0] & Circuit DDR Shared \\
\hline Row Command & DDRA_RASn & DDRA_ROWn & Circuit DDR Shared \\
\hline Column Command & DDRA_CASn & DDRA_COLn & Circuit DDR Shared \\
\hline Write Command & DDRA_WEn & DDRA WRITEn & Circuit DDR Shared \\
\hline
\end{tabular}

Diff. Clocks = DDRA_CK_P/N, DDRE_CK_P1/N1,DDRE_CK_P2/N2

\section*{DDR I Device "Byte Lane Groups":}

Data signals are grouped with their associated strobe and mask bit. These grouping of bits are called a "Byte Lane" and are routed such that an individual Byte Lane must haye matched lengths within the 10 bits. However, each Byte Lane may vary in length from one another by \(+\mathbb{l}-0,25\) inches. The bits that make up each Byte Lane are shown below.
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline DRA_DQ[15:8] & DDRA_DATAQ[15:8 & DDRA_UDM & DDRA_UDMASK DDRA UDQS & \\
\hline Lane 2 = DDRB_DQ[7:0] & DDRB_DATAQ[7:0] & DDRB_LDM & DDRB LDMASK DDRB_LDQS & DDRB_LSTROBE \\
\hline Lane 3 = DDRB_DQ[15:8] & DDRB_DATAQ[15:8] & DDRB_UDM & DDRB_UDMASK DDRB_UDQS & DDRB_USTROBE \\
\hline Lane 4 = DDRC_DQ[7:0] & DDRC_DATAQ[7:0] & DDRC_LDM & DDRC_LDMASK DDRC_LDQS & DDRC_LSTROBE \\
\hline Lane 5 = DDRC_DQ[15:8] & DDRC_DATAQ[15:8] & DDRC_UDM & DDRC_UDMASK DDRC_U & BE \\
\hline Lane 6 = DDRD_DQ[7:0] & DDRD_DATAQ[7:0] & DDRD_LDM & DDRD_LDMASK DDRD & DDRD_LSTROBE \\
\hline Lane 7 = DDRD_DQ[15:8] & DDRD_DATAQ[15:8] & DDRD_UDM & DDRD_UDMASK DDRD_UDQS & DDRD USTROBE \\
\hline
\end{tabular}

\section*{Routing Rules}
9. All signals within a given "Byte Lane Group" should be matched length from the pin on FBGA U20 to the pin on DDR devices U15, U17, and U22. Maximum deviation is \(+/-0.050\) inches. Distance from U20 to U24 needs to be 1 inch longer.
10. Keep the distance from the pin on DDR devices U15, U17, and U22to the termination resistor pack (to 1.25 V ) to less than 1.25 inches. This puts the length for the entire net up to <match_length_rule1> + <termination_max_length_rule2>.
11. All signals must match lengths between pins (as in (9) above) within \(+/-0.250\) inches (address, control, data, all byte groups, etc...) Only nets within a byte lane group must be matched tighter as in rule 9.
12. All signals (other than address) are to maintain a spacing that is based on its parallelism with other nets. This is as follows:
a. 5 mils for parallel runs \(<0.5\) inches
b. 10 mils for parallel runs between 0.5 and 1.0 inches
c. 15 mils for parallel runs between 1.0 and 6.0 inches
( \(\sim 1 X\) spacing relative to plane distance)
( \(\sim 2 X\) spacing relative to plane distance)
( \(\sim 3 X\) spacing relative to plane distance)
13. All DDR SDRAM signals are to maintain 25 mil separation from other
14. Total net length from the Stratix to the VTT termination resistor must not exceed 6 inches.
15. DDR Address lines DDRA_A[12:0] and DDRA_ADR[12:0] should maintain a spacing that is based on its parallelism with other nets but more stringent than in rule \(12 \mathrm{a} / \mathrm{b} / \mathrm{c}\) above. This is as follows:
a. 10 mils for parallel runs \(<0.5\) inches
b. 15 mils for parallel runs between 0.5 and 1.0 inches
( \(\sim 1 X\) spacing relative to plane distance)
( \(\sim 2 X\) spacing relative to plane distance)
( \(\sim 3 X\) spacing relative to plane distance)
16. DDR Clocks in elocking section

\subsection*{4.3 RLDRAM SDRAM Signals}

These high-speed RLDRAM SDRAM signals are single-ended signals. There are three termination schemes used to terminate the RLDRAM devices. These termination schemes are shown in the figure below. Our target impedance for ALL signals in this interface should be \(\mathbf{5 0}\)-ohms. The termination scheme shows a fly-by pull-up resistor to VTT.



Figure VI: HSTL-2 Termination


Figure VII: HSTL-2 RLDC Shared Termination

RLDRAM II SDRAM interface signals:
\begin{tabular}{|l|l|l|}
\hline Function & Net & Termination Circuit \\
\hline \multicolumn{1}{|c|}{ RLDRAM SIO } & & \\
\hline Data (Read) & RLDS_Q[17:0] & Circuit 7 \\
\hline Data (Write) Mask & RLDS__DM & Circuit 6 \\
\hline Data (Read) Valid & RLDS_QVLD & Circuit 7 \\
\hline Data (Read) Clock & RLDS_QK_P[1:0], \\
_N[1:0] & Differential RLDS \\
\hline Data (Write) & RLDS_D[17:0] & Circuit 6 \\
\hline Data (Write) Clock & RLDS_CK_P,_N & Differential RLDS \\
\hline Address & RLDS__A[22:0] & Circuit 6 \\
\hline Bank Address & RLDS_BA[2:0] & Circuit 6 \\
\hline Ref Command & RLDS_REFn & Circuit 6 \\
\hline Write Command & RLDS_WEn & Circuit 6 \\
\hline Chip Select & RLDS_CSn & Circuit 6 \\
\hline RLDRAM CIO 1 & & \\
\hline Data & RLDC_DQ[15:0] & Circuit 5 \\
\hline Data Mask & RLDC_DM & Circuit 5 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Data Valid & RLDC_QVLD & Circuit 7 \\
\hline Data Clock & \begin{tabular}{l} 
RLDC_QK_P[1:0], \\
N[1:0]
\end{tabular} & Differential RLDC \\
\hline Chip Select & RLDC_CSn & Circuit 6 \\
\hline RLDRAM CIO 2 & & \\
\hline Data & RLDC2_DQ[15:0] & Circuit 5 \\
\hline Data Mask & RLDC2_DM & Circuit 5 \\
\hline Data Valid & RLDC2_QVLD & Circuit 7 \\
\hline Data Clock & \begin{tabular}{l} 
RLDC2_QK_P[1:0], \\
N[1:0]
\end{tabular} & Differential RLDC \\
\hline Chip Select & RLDC2_CSn & Circuit 6 \\
\hline Shared CIO signals & & RLDC_A[12:0] \\
\hline Address & Circuit RLDC Shared \\
\hline Bank Address & RLDC_BA:2:0] & Circuit RLDC Shared \\
\hline Ref Command & RLDC_REFn & Circuit RLDC Shared \\
\hline Write Command & RLDC_WEn & Circuit RLDC Shared \\
\hline
\end{tabular}

\section*{RLDRAM II Device "Byte Lane Groups":}

Data signals are grouped with their associated strobe and mask bit. These grouping of bits are called a "Byte Lane" and are routed such that an individual Byte Lane must have matched lengths within the 10 bits. However, each Byte Lane may vary in length from one another by \(+/-0.25\) inches. The bits that make up each Byte Lane are shown below.
```

Lane 0 SIO (Read) = RLDS_Q[8:0] RLDS_QVLD RLDS_QK_PO, _NO
Lane 0 SIO (Write) = RLDS_D[8:0] RLDS_DM RLDS_C\overline{K_P,_N}
Lane 1 SIO (Read) = RLDS_Q[17:9] RLDS_QK_P1, _N1
Lane 1 SIO (Read) = RLDS_D[17:9]
Lane 0 CIO = RLDC_DQ[8:0] RLDC_DM RLDC_QVLD RLDC_QK_PO,_NO
Lane 1 CIO = RLDC_DQ[17:9] RLDC_QK_P1,NN1
Lane 2 CIO = RLDC2_DQ[8:0] RLDC2_DM RLDC2_QVLD RLDC2_QK_P0,_NO
Lane 3 CIO = RLDC2_DQ[17:9] RLDC2_QK_P1, N1

```

\section*{Routing Rules}
17. All signals within a given "Byte Lane Group" should be matched length from the pin on FBGA U20 to the pin on RLDRAM devices U11, U12, and U13. Maximum deviafion is \(+/-0.050\) inches.
18. Keep the distance from the pin on RLDRAM devices U11, U12, and U13 to the termination resistor pack (to 1.25 V ) to less than 1.25 inches. This puts the length for the entire net up to <match_length_rule1> + <termination_max_length_rule2>.
19. All signals must match lengths between pins (as in (17) above) within \(+1-0.250\) inches (address, control, data, all byte groups, etc...). Only nets within a byte lane group must be matched tighter as in rule 17.
20. All signals (other than address) are to maintain a spacing that is based on its parallelism with other nets. This is as follows:
a. 5 mils for parallel runs \(<0.5\) inches
b. 10 mils for parallel runs between 0.5 and 1.0 inches
( \(1 \times\) spacing relative to plane distance)
c. 15 mils for parallel runs between 1.0 and 6.0 inches ( \(\sim 2 X\) spacing relative to plane distance) ( \(\sim 3 \times\) spacing relative to plane distance)
21. All RLDRAM SDRAM signals are to maintain 25 mil separation from other
22. Total net length from the Stratix to the VTT termination resistor must not exceed 6 inches.
23. RLDRAM Address lines RLDS_A[22:0], RLDC_A[22:0] should maintain a spacing that is based on its parallelism with other nets but more stringent than in rule 20a/b/c above. This is as follows:
a. 10 mils for parallel runs \(<0.5\) inches
b. \(\quad 15\) mils for parallel runs between 0.5 and 1.0 inches
c. 20 mils for parallel runs between 1.0 and 6.0 inches
( \(\sim 1 \mathrm{X}\) spacing relative to plane distance)
( \(\sim 2 \mathrm{X}\) spacing relative to plane distance)
( \(\sim 3 X\) spacing relative to plane distance)
24. RLDRAM Clocks in Clocking section

\subsection*{4.4 Clocks}
- Each clock trace segment should be minimal length (less than 1 inch if possible).
- Total trace length of any one clock trace (all segments) including passive components should be less than 3 inches.
- If a clock net has a series resistor, make sure the resistor is closest to the source.
- For clocks with differential pairs, they should be routed in close proximity throughout the trace length. The trace width should be 5 mils and spacing between the positive and negative traces should be 5 mils. Spacing between these traces and other signals should be a minimum of 30 mils. They should be matched in length.
- Placement should be adjusted to fix these issues.

\subsection*{4.4.1 Stratix Clock Inputs \\ Oscillators \\ - J36/Y1/U21 (net = CLKB_OSC/B)}

- Place J36 and Y 1 on top of each other.
- Place U21 close to J36/Y1
- Place SMA connector/J41 close to U21 and place J36/Y1, U21, and J41 and its associated components close to the Stratix device (U20).
- Place termination resistors (R42, R45, R46, R196, R205, R207, R208, R212, R216, and R481) near U21.
- Place TP5 and TP6 close to each other and near R196.
- Y2 (net = CLK_OSC_A)
- Place U23 and Y2 and its associated components close to the Stratix device (U20), however, net CLK_OSC_B has priority.
- Place termination resistors (R265 and R268) near U23.
- X1 (net CLK_25MHz)
- Place near U6 Ethernet chip as this is the only load for this oscillator.

\section*{SMA Clock Input}
- SMA J41 to route clock to U21 input and then terminate to R206 after route.

\section*{SMA CLK P, SMA CLK N}
- Same rules as differential clock.

\section*{SMA FB P, SMA FB N}
- Same rules as differential clock.

\section*{CLK FROM SCRUZ}
- No specific routing rules. This is least important of all clock nets and is actually rarely used. Keep R80 close to J31.

\section*{CLK1 OUT S, CLK1 OUT MAX, SCRUZ CLK OSC A}
- No specific routing rules.

\section*{CLK2 OUT S1, CLK2 OUT S2, CLK2 OUT MAX, CLK2 OUT S3, CLK2 OUT S4}
- No specific routing rules.

\subsection*{4.4.2 Stratix Clock Outputs}

\section*{DDR Module Clocks (U27)}
- These clocks should be matched in length within +/- 0.050".
- DDRE_CK_PO / DDRE_CK_N0 (differential)
- DDRE_CK_P1 / DDRE_CK_N1 (differential)
- DDRE_CK_P2 / DDRE_CK_N2
(differential)
- DDRE_FBCLK
(single-ended)
- DDRE_DLL_CLK
- DDRE_SMA_DLL_CLK
(single-ended)
(single-ended from SMA)
- The first three from the above list are differential pairs. They are to be routed "loosely coupled" with a separation of 2 track widths. Their lengths should be the same as the DDRE_DQS lines.
- The next net (DDRE_FBCLK) needs to match the combined length of DDRE_DQS lines plus the length of the DDRE_DQ lines plus 2.42 inches for unregistered DIMMs.
- The next net (DDRE_DLL_CLK) needs only to route between the two pins on the Stratix device.
- The last net (DDRE_SMA_DLL_CLK) needs only to route from the SMA to the Stratix device (length of trace is not critical).

\section*{DDR Devices Clocks (U15, U17, U22, U24)}
- These clocks shoutd be matched in length within +/- 0.050".
- DDRA_CK_P/DDRA_CK_N
(differential)
- DDR_FBCLK
(single-ended)
- The first net (DDRA_CK_P/DDRA_CK_N) is a differential pair. It is to be routed in a unique way because this clock pair is driving all \(D\) devices. Its length should be the same as the DDRA_DQS lines.
- The next net (DDR_FBCLK) needs to match the combined length of the DDRA_CK lines plus the length of the DDRA_DQS lines.

\section*{RLDRAM CIO Devices Clocks (U11, U12) (see figure and table below)}
- These clocks should be matched in length within \(+/-0.050\) ".
- RLDC_CK_P / RLDC_CK_N
- RLDC \({ }^{-} \mathrm{DK}^{-}\)P/RLDC \({ }^{-} \mathrm{DK}^{-} \mathrm{N}\)
- RLDC2_CK_P / RLDC2_CK_N
- RLDC2_DK_P / RLDC2_DK_N
- RLDC_QK_PO / RLDC_QK_N0
- RLDC_QK_P1 / RLDC_QK_N1
- RLDC2_QK_PO / RLDC̄2_QK_N0
- RLDC2_QK_P1 / RLDC2_QK_N1
- RLD_FB̄CL̄̄
- RLD_DLL_CLK
- RLD_SMA_DLL_CLK
(differential)
(differential)
(differential)
(differential)
(differential)
(differential)
(differential)
(differential)
(single-ended with termination)
(single-ended with termination)
(single-ended from SMA)
- The first two nets are differential pairs. Route these nets "loosely coupled" (spacing of 2 track widths) from U16 to U11 and then to the termination resistors.
- The next two nets are differential pairs. Route these nets "loosely coupled" (spacing of 2 track widths) from U16 to U12 and then to the termination resistors.
- The next two nets are also differential pairs. Route these nets "loosely coupled" (spacing of 2 track widths) from U11 to the Stratix device and then to the termination resistors.
- The next two nets are also differential pairs. Route these nets "loosely coupled" (spacing of 2 track widths) from U12 to the Stratix device and then to the termination resistors.
- The next net (RLD_FBCLK) needs to match two times the length of the RLDC_CK clocks from the Stratix to the RLDRAM device. Route this net from U20 pin B12 to U20 pin B15 then to R152 and R153. The length from U20 pins B12 to B15 needs to be two times the length of the RLDC_CK clocks.
- The next net (RLD_DLL_CLK) needs only to route between the two pins on the Stratix device.
- The last net (RLD_SMA_DLL_CLK) needs only to route from the SMA to the Stratix device (length of trace is not critical).

RLDRAM SIO Devices Clocks (U13) (see figure and table below)
- These clocks should be matched in length within \(+/-0.050\) ".
- RLDS_CK_P/RLDS_CK_N
(differential)
- RLDS_QK_PO/RLDS̄_QK_NO
(differential)
- RLDS_QK_P1 / RLDS_QK_N1
(differential)
- The first net (RLDS_CK_P / RLDS_CK_N ) is a differential pair and should be routed as such.

RLDS_CK_P is to be routed from U20 pin F22 to U13 pin J12 to U13 pin K1 then to R84. RLDS_CK_N is to be routed from U20 pin G20 to U13 pin K12 to U13 pin K2 then to R77. Its length should be the same as the RLDS_D lines.
- The next two nets are also differential pairs. Route these nets from U13 to the Stratix device and then to the termination resistors.



As was stated before, all lengths for RLDRAM II devices and for that matter and high-speed memory interface should be 5 inches \(+/-.250\) inches. From the figure below, this would correspond to \(J\) and \(K\) for RLDRAM SIO and B for RLDRAM CIO. For RLDRAM CIO length A can be any length. The following table describes how each clock net corresponds with the RLDRAM II clock figure regarding their lengths.
\begin{tabular}{|c|c|c|}
\hline Function & Net Name & Net Length \\
\hline RLDS II Device Input Clock & RLDS_CK_P, N & K \\
\hline RLDS II Device Output Clocks & RLDS_QK_P[1:0], _N[1:0] & \(J\) \\
\hline RLDRAM II Device Feedback Clock & RLD_FBCLK & J + K \\
\hline RLDC II Clock Buffer Input Clocks & RLDC_REFCLK_P,_N & B \\
\hline & RLDC_CK_OUT & B \\
\hline RLDC II Clock Buffer Output Clocks & RLDC_CK_P,_N & A \\
\hline & RLDC_DK_P,_N & A \\
\hline & RLDC2_CK_P,_N & A \\
\hline & RLDC2_DK_P,_N & A \\
\hline RLDC II Clock Buffer Feedback Clock & BUF_FB_P,_N & A \\
\hline RLDC II Cloek Buffer Output Feedback Clock & RLD_BUF_FBCLK_P,_N & \(A+B\) \\
\hline
\end{tabular}

\section*{CLK TO SCRUZ}
- No specific routing rules. This is least important of all clock nets and is actually rarely used.

S SMB CLK
- No specific routing rules.

\section*{ENET LCLK}
- No specific routing rules.

\section*{CLKOUT P, CLKOUT N}
- Same rules as differential clock.

\subsection*{4.5 Configuration}

General Rule: Route signals on 5 mil traces with 3 to 1 spacing

\section*{JTAG Configuration}
1) Routing of nets for the JTAG interface

a. Route JTAG_TCK, and JTAG_TMS in matched length in a starburst fashion from J 27 to U20, U10, and J51. Make the route as short as possible.
i. For U10 make sure that the routed length of the individual nets JTAG_TCK and JTAG_TMS match the length of the sum of the two nets JTAG_CONN IDO + JTAG_MAX_TDI.
ii. For U20 make sure that the routed length of the individuat nets JTAG \(\overline{\mathcal{C}} \mathrm{C} K\) and JTAG_TMS match the length of the sum of the two nets JTAG_STRATIX_TD + JTAG_MAX_TDO.
iii. For J51 make sure that the routed length of the individual nets JTAG_TCK and JTAG_TMS match the length of the sum of the two nets JTAG_EXP_TDI + JTAG_CONN_TDO.
b. Route the following net JTAG_EXP_TDO, as short as possible.

\section*{Passive Configuration}
2) Routing of nets for the Fast Passive Parallel Configuration using the MAX/FLASH circuitry
a. Route the following nets from U 10 to \(\mathrm{U} 19, \mathrm{U} 20\) to U 19 . All address, data and control lines need to be matched in length within \(+/-100\) mils between the Max and Flash, and the Flash and Stratix devices. The following itemized nets need to be matched within +/- 100 mils and be routed as short as possible.
i. CONFIG_DCLK(U10-U20)
ii. EP1S_CONF_DONE (U10 - U20)
iii. EP1S_CONFIGn (U10 - U20)
iv. EP1S_STATUSn (U10 - U20)
v. CONFIG_D[7:0](U10-U20)
b. Route the following nets from J51 to U20. The following itemized nets need to be matched within \(+/-100\) mils and be routed as short as possible.
i. CONFIG_DCLK(J51 - U20)
ii. EP1S_CONF_DONE (J51 - U20)
iii. EP1S_CONFIGn (J51 - U20)
iv EP1S STATUSn (J51-U20)
v. CONFIG D[7:0] \((\mathrm{J} 51-\mathrm{U} 20)\)
```

