

High-Speed Analo N-Channel DMOS FETs

SD211/SD213/SD215

FEATURES

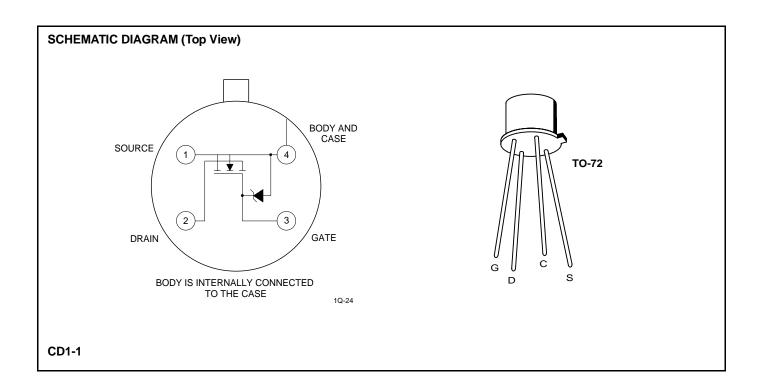
•	High Input to Output Isolation 120dB
•	Low On Resistance
•	Low Feedthrough and Feedback Transients
•	Low Capacitance:
	- Input (Gate) 2.4pF typ.
	- Output 1.3pF typ.
	- Feedback 0.3pF typ.
•	Built-in Protection Diode from Gate to Substrate

APPLICATIONS

SD211:

Analog Switch Driver

SD213 and SD215:


- Analog Switches
- High-Speed Digital Switches
- Multiplexers
- A to D Converters
- D to A Converters
- Choppers
- Sample & Hold

DESCRIPTION

The Calogic SD211 is a 30V analog switch driver with built-in protection diode from gate to substrate The SD211 is used with SD213 and SD215 DMOS analog switches.

ORDERING INFORMATION

Part	Package	Temperature Range
SD211E	Hermetic TO-72 Package	-55°C to +125°C
XSS211	Sorted Chips in Carriers	-55°C to +125°C
SD213DE	Hermetic TO-72 Package	-55°C to +125°C
XSD213	Sorted Chips in Carriers	-55°C to +125°C
SD215DE	Hermetic TO-72 Package	-55°C to +125°C
XSD215	Sorted Chips in Carriers	-55°C to +125°C

SD211/SD213/SD215

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	SD211	SD212	SD215	UNIT
V_{DS}	Drain-to-Source	+30	+10	+20	V_{dc}
V_{SD}	Source-to-Drain	+10	+10	+20	V_{dc}
V_{DB}	Drain-to-Body	+30	+15	+25	V _{dc}
V _{SB}	Source-to-Body	+15	+15	+25	V _{dc}
V _{GS}	Gate-to-Source	-15 +25	-15 +25	-25 +30	V_{dc}
V _{GB}	Gate-to-Body	-0.3 +25	-0.3 +25	-0.3 +30	V _{dc}
V_{GD}	Gate-to-Drain	-30 +25	-15 +25	-25 +30	V _{dc}

DC CHARACTERISTICS (T_A = 25°C, unless otherwise specified)

SYMBOL	PARAMETER	SD211			SD213			SD215			LINUTO	TEST SOURIEISUS
STWBUL		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	TEST CONDITIONS
BREAKDO	WN VOLTAGE											
BVns	Drain-to-Source	30	35									$V_{GS} = V_{BS} = 0V$, $I_D = 10\mu A$
DVD5	Diam-to-Source	10	25		10	25		20	25			$V_{GS} = V_{BS} = -5V$, $I_{S} = 10nA$
BV _{SD}	Source-to Drain	10			10			20			V	$V_{GD} = V_{BD} = -5V$, $I_D = 10$ nA
BV _{DB}	Drain-to-Body	15			15			25				V _{GB} = 0V, source OPEN, I _D = 10nA
BV _{SB}	Source-to-Body	15			15			25				$V_{GB} = 0V$, drain OPEN, $I_S = 10\mu A$
LEAKAGE	CURRENT											
I _{DS} (OFF)	Drain-to-Source		1	10		1	10				nA	$V_{GS} = V_{BS} = -5V, V_{DS} = +10V$
וטא (טו די)									1	10		$V_{GS} = V_{BS} = -5V, V_{DS} = +20V$
I _{SD} (OFF)	F) Source-to-Drain		1	10		1	10					V _{GS} = V _{BD} = -5V, V _{SD} = +10V
ISD (OFF)	Source-to-Drain								1	10		V _{GS} = V _{BD} = -5V, V _{SD} = +20V
IGBS	Gate			10			10			10		$V_{DB} = V_{SB} = 0V$, $V_{GS} = \pm 40V$
VT	Threshold Voltage	0.5	1.0	2.0	0.1	1.0	2.0	0.1	1.0	2.0	V	$V_{DS} = V_{GS} = V_T$, $I_S = 1\mu A$, $V_{SB} = 0V$
			50	70		50	70		50	70		$I_D = 1.0 \text{mA}, V_{SB} = 0, V_{GS} = +5 \text{V}$
	Designate Course		30	45		30	45		30	45	Ω	$I_D = 1.0 \text{mA}, V_{SB} = 0, V_{GS} = +10 \text{V}$
r _{DS} (ON)	Drain-to-Source Resistance		23			23			23			$I_D = 1.0 \text{mA}, V_{SB} = 0, V_{GS} = +15 \text{V}$
			19			19			19			$I_D = 1.0 \text{mA}, V_{SB} = 0, V_{GS} = +20 \text{V}$
									17			$I_D = 1.0 \text{mA}, V_{SB} = 0, V_{GS} = +25 \text{V}$

AC ELECTRICAL CHARACTERISTICS

CVMPOL	PARAMETER	SD211			SD213			SD215			LINUTO	TEST CONDITIONS	
SYMBOL		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
gfs	Forward Transconductance	10	15		10	15		10	15		ms	$V_{DS} = 10V, V_{SB} = 0V,$ $I_{D} = 20mA, f = 1kHz$	
SMALL SIGNAL CAPACITANCES													
C _{ISS}	Gate Node		2.4	3.5		2.4	3.5		2.4	3.5			
Coss	Drain Node		1.3	1.5		1.3	1.5		1.3	1.5	pF	$V_{DS} = 10V, f = 1MHz$ $V_{GS} = V_{BS} = -15V$	
C _{RSS}	Source Node		0.3	0.5		0.3	0.5		0.3	0.5			

Information furnished by Calogic is believed to be accurate and reliable. However, no responsibility is assumed for its use: nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Calogic.