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"There are three branches of perspective: 
the first deals with the reason of the diminution of objects as they 
recede from the eye, and is known as perspective of diminution; 
the second contains the way in which colours vary as they recede 
from the eye; 
the third and last explains how objects should appear less distinct 
in proportion as they are more remote. 
And the names are as follows: linear perspective, the perspective 
of colour, the perspective of disappearance." 

Leonardo da Vinci 
Bibliotheque Nationale 2038 18r 

Ai miei genitori, Elisabetta e Francesco 



Preface 

This monograph presents some research carried out by the author into three­
dimensional visual reconstruction during his studies for the achievement of a 
Doctor of Philosophy Degree at the University of Oxford. This book consti­
tutes the author's D.Phil. dissertation which, having been awarded the British 
Computer Society Distinguished Dissertation Award for the year 2000,1 has 
kindly been published by Springer-Verlag London Ltd. 

The work described in this book develops the theory of computing world 
measurements (e.g. distances, areas etc.) from photographs of scenes and re­
constructing three-dimensional models of the scene. 

The main tool used is projective geometry which forms the basis for accu­
rate estimation algorithms. Novel methods are described for computing virtual 
reality-like environments from any kind of perspective image. 

The techniques presented employ uncalibrated images; no knowledge of the 
internal parameters of the camera (such as focal length and aspect ratio) nor 
its pose (position and orientation with respect to the viewed scene) are required 
at any time. Extensive use is made of geometric characteristics of the scene. 
Thus there is no need for specialized calibration devices. 

A hierarchy of novel, accurate and flexible techniques is developed to ad­
dress a number of different situations ranging from the absence of scene metric 
information to cases where some world distances are known but there is not 
sufficient information for a complete camera calibration. 

The geometry of single views is explored and monocular vision shown to 
be sufficient to obtain a partial or complete three-dimensional reconstruction 
of a scene. To achieve this, the properties of planar homographies and planar 
homologies are extensively exploited. The geometry of multiple views is also 
investigated, particularly the use of a parallax-based approach for structure and 
camera recovery. The duality between two-view and three-view configurations 
is described in detail. 

In order to prove meaningful, measured distances must be associated with 
a measurement accuracy. Therefore, an uncertainty propagation analysis is de­
veloped to take into account the possible sources of error and the way they 
affect the uncertainty in the final measurements. 

1 www.bcs.org.uk 
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The general techniques developed in this book can be applied to several 
areas. Examples of feasible commercial, industrial and artistic applications are 
detailed in the book. 

Redmond, WA, U.S.A. 
April 2001 Antonio Criminisi 
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1. Introduction 

Images or sequences of images potentially carry a tremendous amount of ge­
ometrical information about the scene represented. The aim of the work pre­
sented in this book is to extract this information in a quantifiable, accurate 
way. 

1.1 Accurate measurements from images 

General techniques are developed which find their engineering motivation in 
the realization of a flexible, fast and robust visual measuring device, capable of 
reconstructing a three-dimensional digital model of a scene from interpreting 
photographs (see Fig. 1.1). The principal idea is: 

• an operator takes one or more photographs of the scene (or object) to be 
measured; 

• a computer, by interpreting those images, creates a three-dimensional metric 
model of the viewed scene [5]; 

• the model is stored in a database which may be queried at any time for 
measurements via a graphical user interface. 

Such a device possesses several interesting features. (i) It is user friendly. In 
fact, once the images are taken and the model built, an operator can virtually 
walk through it, view the scene from different locations, take measurements 
querying the software interface and store them in a database (visual metrology), 
interact with the objects of the scene, place new, consistent virtual objects 
in the scene (augmented reality) and create convincing animations. (ii) The 
capture process is rapid, simple and minimally invasive since it only involves a 
camera to take pictures of the environment to be measured. (iii) The acquired 
data are stored digitally on a disk ready for reuse at any time negating the 
need to go back to the original scene when new measurements are needed. (iv) 
The hardware involved is cheap and easy to use. No new, dedicated hardware 
is necessary. 

All the work presented here is motivated by the necessity of understanding 
the mathematical theory underlying such a visual measurement device. 

A. Criminisi, Accurate Visual Metrology from Single and Multiple Uncalibrated Images
© Springer-Verlag London 2001



2 1. Introduction 
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Fig. 1.1. A three-dimensional visual measuring device: a photograph of a scene 
is taken; the image is transferred into a computer; the computer reconstructs the 
geometry of the viewed scene in a three-dimensional digital model. Once constructed 
the model can be interactively queried for measurements. 

The mathematical basis. 
The theory developed in this book proceeds from a strong and reliable math­
ematical basis, projective geometry [38, 58, 106). In particular, 2D-2D homo­
graphic transformations and more general3D-2D projectivities are investigated 
and used extensively. While much of the underlying theory already existed, in 
order to achieve the goal of this book a number of research areas had to be 
addressed. 

The algorithms developed require no knowledge of the camera's internal 
parameters (focal length, aspect ratio and principal point) or external ones 
(position and orientation); i.e. no internal or external camera calibration is 
needed. Camera calibration is replaced by the use of scene constraints (often 
referred to as scene calibration) such as planarity of points and parallelism of 
lines and planes. These geometric cues are inferred directly from the images; 
no scene markers or specialized sensors are required. 
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Fig. 1.2. Error propagation: the input data are processed by the transformation T to 
obtain the required output measurement. Input data and transformation are affected 
by error, leading to error in the output measurement 

A hierarchy of novel geometric techniques to calculate distance measure­
ments is investigated to address a range of different cases. The techniques 
span situations where no metric information is known about the world (com­
pletely un calibrated camera), through to cases where some reference distances 
are known but they are not sufficient for a complete camera calibration (partial 
calibration). This leads to extremely flexible algorithms which can be applied 
to a wide range of images such as: photographs of buildings and interiors, aerial 
images, archived images, photographs of crime scenes and even paintings. 

Both single- and multiple-view configurations are employed. Stereo vision 
has in the past been used to compute depth but, in this book, monocular 
vision proves to be sufficient, in many cases, to obtain partial or complete 
three-dimensional reconstruction. The use of multiple views in a parallax-based 
framework is also considered in cases where single-view metrology cannot be 
applied. 

Accuracy of measurements. 
The process of taking measurements is traditionally an engineering task and, 
like all engineering tasks, must be accurate and robust. Scene measurements 
are obtained from input data (e.g. image points) by a geometric transformation 
(e.g. a homography). Data and transformation are affected by error and so is 
the output measurement (see Fig. 1.2). A proper treatment of error and its 
propagation through the chain of computations is therefore necessary. 

The uncertainty analysis developed in this book takes into account all the 
possible sources of error (the accuracy of the device used, the error affecting the 
data acquisition process and the operator) and predicts how these affect the 
accuracy of the final measurement. Thus an uncertainty estimate is associated 
with each output measurement. 

This is achieved by using a first order error propagation. But first order anal­
ysis involves a linear approximation of the non-linear transformations relating 
input data to output measurements. Therefore the validity of the approach has 
to be assessed. This is done by employing Monte Carlo statistical tests. 
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1.2 Why use vision? 

Several different types of distance measurement devices have been used in the 
past. They can be categorized as active and passive. These two categories of 
measurement devices differ in that active devices send signals into the environ­
ment and receive them back. Information related to distances is retrieved by 
analyzing and comparing the outgoing and the returned signals. 

1.2.1 Active devices 

Ultrasonic devices. 
Many distance measuring systems have been based on ultrasonic technology. 
It is possible to buy relatively cheap ultrasonic devices capable of measuring 
the distance of the operator from an object (such as a wall), relying on an echo 
reflection time measurement system. 

Ultrasonic scanners have, for instance, been successfully used in medical 
imaging for three-dimensional reconstruction of the structure of bones [119] 
or other internal tissues. They have also been employed in robotics problems 
such as autonomous vehicle navigation [48], where the accuracy and speed of 
the localization system are vital. The main problem with such an approach is 
that the measurement returned is affected by poorly understood and almost 
unpredictable phenomena like multiple reflections of the ultrasound waves on 
various objects, thus leading to wrong estimates of the reflection time. 

Laser range finders. 
A second approach for measuring depths is the use of laser range finders. These 
devices work by directing laser beams onto the object to be measured and 
analysing the phase or echoing time of the reflected beams. 

Laser range finders are being successfully applied to metric shape recon­
struction of relatively small objects [8]. For instance, they have been employed 
in the Michelangelo Project [76] to create three-dimensional models of ancient 
statues such as Michelangelo's David in Florence. Laser devices have also been 
applied in autonomous robot navigation [63]. Those systems are extremely 
accurate but they suffer problems similar to those of ultrasonic devices. Laser­
based devices are usually tuned to detect a specific range of distances and they 
can be quite expensive and, sometimes, dangerous. 

Structured light. 
Other active devices employ cameras to acquire images of an object illuminated 
by a regular light pattern. Some auxiliary devices (a laser emitter or just a slide 
projector) project a light pattern or a set of patterns onto an object. The shape 
of the object is computed from the deformation of the projected grid. 

Structured light-based approaches have been used for accurate measurement 
of surfaces of close-range objects which do not possess enough texture [81]. 
Those methods have also been used to capture facial expressions [35, 97]. The 
need for auxiliary light projective devices leads to a loss in the flexibility of the 
measuring tool. 



1.3 Why is visual metrology hard? 5 

In general, the measurements obtained from all active devices can be badly 
affected by unexpected reflections or interferences and therefore need to be used 
with extreme care. Furthermore, such devices can only be applied to measure 
objects which are easily accessible, i.e. applied in situ. For instance, they are 
no use to measure scenes of which only images exist. 

1.2.2 Passive devices 

Passive devices such as cameras do not suffer from the above problems and are 
characterized by a wider range of application. 

They can be applied to measure the distance of the device from an object 
(like range finders) as well as the distance between two other points in space, 
areas of surfaces and angles. Speed is not an issue for such devices. 

Cameras return bi-dimensional data (rather than mono-dimensional ones) 
characterized by dense sampling within the field of view. They do not need to 
be tuned to a specific range of action but can measure distant objects as well 
as close ones. The accuracy of the measurements will depend though on the 
relative distance between the camera and the object to be measured, as will be 
investigated in detail throughout this book. 

Furthermore, since images are the only input data, visual metrology can 
successfully be applied to reconstructing objects from archived images, old 
footage, postcards and paintings (unlike active devices). 

1.3 Why is visual metrology hard? 

The previous section has described the advantages of using cameras as op­
posed to other measuring devices. However, taking measurements of the world 
from images is complicated by the fact that in the imaging process the three­
dimensional space is projected onto a planar image, with some unavoidable 
loss of information. Reconstructing the scene means retrieving that informa­
tion from the images. 

In particular, perspective distortions occur during the acquisition stage. 
For instance, objects which are far from the eye (or camera) look smaller than 
objects which are close1 . Examples of perspective distortion on real images are 
shown in Fig. 1.4. 

In the past, photogrammetrists have addressed the problem of establishing 
real measurements from images. Their techniques rely on knowing the internal 
parameters of the camera, its exact position with respect to the viewed scene 
or the position of marker points in the scene (georeferenced images). Unfortu­
nately, photogrammetric algorithms work well only if those values are known 
with great accuracy, and even a very small deviation can cause large errors 

1 This basic intuition was formalized first by Euclid in his Optica [36] and then 
employed by mathematicians and artists in the Italian Renaissance, among which 
Leonardo da Vinci is one of the outstanding examples (see Fig. 1.3). 
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a b c 

a b 

Fig. 1.3. First proofs of perspective effect: a Euclid's proof (ca. 300 BC); b Leonardo's 
proof: "Among objects of equal size that which is most remote from the eye will look 
smallest." Leonardo da Vinci (1452-1519), Codex Foster II 15v. 

a b 

Fig. 1.4. Perspective distortion in the image acquisition process: a A photo of a wall 
of Keble College in Oxford: the windows are foreshortened differently depending on 
their distance from the camera. b The four pillars have the same height in the world, 
although their images clearly are not of the same length because of perspective effects. 

in the final measurements. Furthermore, camera internal parameters are quite 
sensitive to changes of temperature and mechanical shock. Photogrammetric 
techniques cannot be applied to archived images and have no application for 
paintings. 

In this book, projective geometry is employed in a flexible way to model the 
perspective distortion and recover full or partial three-dimensional information 
from uncalibrated images and geometric cues inferred directly from the images. 

1.4 Applications and examples 

The theory presented here can be applied to solving many of the engineering 
and architectural problems which involve measuring objects. For instance, it 
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a b 

Fig. 1.5. Measuring distances and estimating their accuracy: a original image, a 
photograph of the facade of the Crystallography Laboratories in Oxford; b the height 
of different windows has been computed and the measurement accuracy estimated. 

is useful to photogrammetry researchers for measuring dimensions of buildings 
from aerial images as well as in video compression techniques. In fact, if a three­
dimensional model of a scene is known, then it is possible to eliminate all the 
unnecessary and redundant information and obtain a high-rate compression of 
the data space to be stored or transfered. 

This section analyses three of the many possible uses, which will be de­
scribed in detail in the following chapters. 

1.4.1 Architectural and indoor measurements 

An important application is in taking measurements of man-made scenes (mea­
suring objects such as: furniture, doors and windows). 

Geometry-based approaches are used here to compute distances on planar 
surfaces [24] (details in Chapter 4). For example, the edge of a window can be 
transformed from the image into the three-dimensional world by a geometric 
transformation, thus computing its real length (see Fig. 1.5) . The accuracy of 
the measurements is also estimated. 

Perspective distortions on planar surfaces are therefore modelled correctly 
and rectified (fronto-parallen views created (see Fig. 1.6). Once two images of 
a world plane have been corrected for projective distortion, they can also be 
stitched together to make a mosaic image (see Fig. 1. 7). 

Furthermore, using the metric information retrieved for each planar sur­
face and combining it with that computed for the others, an indoor environ­
ment can be modelled as a simple shoe-box room. Protrusions from planar 
surfaces (columns, pipes and windows sills) can be measured using two or more 
views [23] (details in Chapter 6). 

1.4.2 Forensic measurements 

An important application of this theoretical framework is in forensic science, 
to measure dimensions of objects and people in images taken by surveillance 
cameras [28]. 
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a b 

Fig. 1.6. Rectification of a planar surface: a original image, Keble College, Oxford; 
b rectified image. Perspective distortion has been removed; now the image appears to 
be front-on. The windows which have the same size in the world now have the same 
size in the image too. 

a 

c 

b 

Fig. 1.7. Mosaicing two images: a and b two images of The Queen's College Mid­
dle Common Room in Oxford; c mosaic image. The images have been perspectively 
corrected and stitched together. 

Because of the very bad quality of the images (taken by cheap security 
cameras), quite often it is not possible to recognize the face of the suspect 
or distinct features on his/her clothes. The height of the person may become, 
therefore, an extremely useful identification feature . The main problem is that 
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a b 

Fig. 1.8. The height of a person standing by a telephone box is computed: a original 
image; b the computed height of the person and the estimated uncertainty are shown. 

the suspect has usually left the scene of crime or the scene has changed (it 
might have been blown up) ; therefore, in order to compute his/her height we 
can rely only on the actual image. This is complicated by the fact that usually 
no more than one view of the scene is available. 

Chapter 5 will show how to solve this problem. It describes techniques to 
estimate the heights of people from a single uncalibrated view (see Fig. 1.8). 
Good results have been achieved in this field , some of which have already been 
applied successfully by the forensic science community [28]. 

1.4.3 Reconstructing from paintings 

Much interest has also been expressed in the possibility of building colourful 
three-dimensional models and creating beautiful animations of painted scenes, 
so that the observer can "dive" into the painting itself [24, 77] . 

The mathematical theory developed in this book is particularly applicable 
to paintings and drawings which follow the geometric rules of linear perspective. 

Linear perspective was invented at the beginning of the fifteenth century in 
Florence by the Italian architect Filippo Brunelleschi [67] and mathematically 
formalized by Leon Battista Alberti in 1435 [1]. Immediately after its invention, 
linear perspective was applied by the masters of the Italian Renaissance (e.g. 
Masaccio, Piero della Francesca, Leonardo and Raffaello) to paintings, drawings 
and engravings, providing them with new expressions of depth and space. 

A painting which follows the geometric rules of perspective behaves as a 
perspective image (like a photograph) and therefore the projective techniques 
described in this book can be successfully applied in such case (see Fig. 1.9) . 
However, a preliminary check on the correctness of the perspective (location of 
vanishing points, perspective effect etc.) becomes necessary. 
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a b 

Fig. 1.9. Three-dimensional reconstruction from a painting: a St Jerome in His Study 
(1630), by Hendrick V. Steenwick (1580- 1649), private collection (Joseph R. Rit­
man Collection), Amsterdam, The Netherlands; b a view of the reconstructed three­
dimensional model. Notice the reconstructed, beautiful window. 

1.5 Summary 

1.5.1 Contributions 

This book improves on the state of the art on various aspects of computer 
vision, understanding of photographs and visual art: 

• A hierarchy of novel, accurate and flexible techniques is developed to make 
measurements and reconstruct three-dimensional scenes from uncalibrated 
images. They range from cases where no information about the scene is 
known to situations where only partial calibration is available. 

• Affine and metric reconstruction is made possible from single views as well 
as pairs or sequences of images. 

• An analysis of the accuracy of the reconstruction is developed which predicts 
how errors affect the final measurements. The analytical theory is validated 
by means of statistical tests. 

• The general algebraic techniques developed here open new ways of interpret­
ing and understanding classical and modern works of art. 

1.5.2 Book outline 

Chapter 2 starts with a literature survey of the most relevant research con­
ducted in the fields of video metrology, three-dimensional reconstruction, error 
analysis and art history. 

In Chapter 3 some background material is presented: an introduction to 
the basic geometry employed (3D-2D and 2D-2D projective mappings); the 
notation used; fundamental image processing algorithms (edge detection and 
radial distortion correction); and the basics of error propagation theory. 
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Chapter 4 brings the underlying mathematics to life by developing algo­
rithms to perform metrology on planar surfaces. Different methods of accurately 
estimating plane-to-plane homographies are investigated. Planar homographies 
are then used to measure distances between points or parallel lines on a world 
plane. In order to estimate uncertainties in those measurements a first order 
error analysis has been developed, which takes account of all major sources of 
error. A simple working application is also presented. 

Chapter 5 extends measurements on planar surfaces to the three-dimensional 
case. Algorithms for recovery of partial and complete three-dimensional struc­
ture from single uncalibrated images are explored. The techniques make exten­
sive use of planar projective transformations like homographies and homologies, 
thus avoiding traditional problems like matching corresponding features over 
multiple views of a scene. Particular attention is paid in this chapter to: (i) mea­
suring distances between two parallel planes; (ii) measuring on parallel planes 
and comparing these measurements to those obtained in any other parallel 
plane; and (iii) determining the camera position. Uncertainties on the computed 
measurements are also estimated. This work is generalized to a parametrization 
of the three-dimensional space as a collection of three pencils of parallel planes 
in three different directions. 

Chapter 6 deals with multi-view geometry and describes the advantages 
of this approach over the single view. The geometry of two and three views 
gives rise to an elegant algebraic description of the three-dimensional space, 
employing planar homologies. It is shown that homologies encapsulate the fun­
damental geometric constraints: the epipolar constraint in the two-view case 
and the structure constraint in the three-view configuration. The elegance of 
this approach is highlighted by the duality relationship which arises naturally 
between the two-view and three-view configurations. Furthermore, a new inter­
pretation of the space based on a plane-plus-parallax approach leads to simple 
formulations for computing structure and camera location. 

Several examples on real images are provided in each chapter. Further ex­
amples are presented in the colour plates in Chapter 7. They show images of 
the models computed by applying the described techniques to photographs and 
paintings. 

Chapter 8 concludes the book with: a summary of the presented problems 
and the methods to solve them; a discussion of the advantages and disadvan­
tages of employing such approaches; a list of possible ways to improve the 
analyzed techniques and future directions of research. 



2. Related work 

This chapter presents a survey of the most significant work in the field of three­
dimensional reconstruction from two-dimensional images, and uncertainty es­
timation. 

Using images for measuring and reconstruction. 
Visual metrology and three-dimensional reconstruction of scenes from images 
have been, in the past few years, amongst the main aims of computer vision. 
Much effort has been put into pursuing such goals, and three main difficulties 
have been encountered: 

• reconstructing from multiple images fundamentally involves solving the "cor­
respondence" problem, i.e. which set of features in the images is genuinely 
the projection of a feature in the scene; 

• a reliable and well-defined geometric structure of the scene needs to be seen 
if a single-view approach is applied; 

• errors inevitably propagating along the computation chain cause a loss of 
accuracy of the measurements and thus the final structure. 

Several researchers have been interested in Euclidean or more simply affine 
or projective reconstruction. Most of them have employed multi-view ap­
proaches but only a few have investigated the problem of conducting a proper 
uncertainty analysis to assess the accuracy of the final structure. 

In this chapter different ways of recovering structure by using one or more 
views are analyzed, as well as various methods to estimate the associated un­
certainty. 

The articles considered range from single-view systems to bi- and multi-view 
ones. Work related to parallax-based approaches, the estimation of accuracy 
in metric reconstruction and geometric analysis of perspective paintings is also 
examined. 

2.1 Using one view 

In general, one view alone does not provide enough information for a com­
plete three-dimensional reconstruction. However some metric quantities can be 
computed from the knowledge of such geometrical information as the relative 
position of points, lines and planes in the scene. But in order to achieve this, 

A. Criminisi, Accurate Visual Metrology from Single and Multiple Uncalibrated Images
© Springer-Verlag London 2001
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Fig. 2.1. Tsai grid: camera parameters can be calibrated from the known pattern on 
the grid. 

in general the intrinsic parameters of the camera need to be known. These are 
focal length, principal point, skew and aspect ratio [38]. 

A number of visual algorithms have been developed to compute the intrinsic 
parameters of a camera from images in the cases where they are not known. 
This task is called camera calibration. Usually, calibration algorithms assume 
that some of the internal parameters are known, and derive the remaining 
ones. Common assumptions are: unit aspect ratio, zero skew or coincidence of 
principal point and image centre. The calibration techniques described in this 
section are based on a single-view approach. 

The work of Tsai [126] has been particularly influential in the field of cam­
era calibration. From a single image of a known, planar calibration grid (see 
Fig. 2.1) it estimates the focal length of the camera and its external position 
and orientation assuming known principal point. An attempt to analyze the 
accuracy of the estimated parameters has also been reported. 

Caprile and Torre, in their classical work [12], develop an algorithm to 
compute the internal and external parameters of the camera (they assume 
unit aspect ratio and zero skew) from single views. They make use of simple 
properties of vanishing points; these can be extracted directly from the image 
by intersecting images of parallel lines. A simple calibration device consisting 
of a cube with sets of parallel lines drawn on its faces is employed. In particular 
the authors demonstrate that the principal point of the camera coincides with 
the orthocentre of the triangle whose vertices are the three vanishing points 
for three orthogonal directions. An earlier work on this subject can be found 
in the photogrammetry literature [51] . 

The problem of calibrating a camera is discussed in [38] by Faugeras. He 
presents algorithms to compute the projection matrix (external calibration) 
and eventually the internal parameters of the camera from only one view of a 
known three-dimensional grid. He analyses linear and non-linear methods for 
estimating the 3D-2D projection matrix, the robustness of the estimate and 
the best location of the reference points. 

In Liebowitz and Zisserman's work [78] camera self-calibration is obtained 
simply from images of planar structures like building facades or walls, with 
distinguishable geometric structure. Use is made of scene constraints such as 
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Fig. 2.2. Stereo acquisition system scheme: two images of the same scene are captured 
from different viewpoints (0 1 and O 2 ). Three-dimensional structure can be computed 
by comparing those images. 

parallelism and orthogonality of lines and ratios of lengths. No specifically 
designed calibration object is required. 

An interesting problem is addressed in [68] by Kim et al. In this paper 
the authors compute the position of a ball from single images of a football 
match. By making use of shadows on the ground plane and simple geometric 
relationships based on similar triangles , the ball can be tracked throughout the 
sequence. 

This book develops a new approach to the reconstruct ruction of three­
dimensional scenes from single images which does not need a full camera cali­
bration (Chapter 5). 

2.2 Using two views 

The classical algorithms for three-dimensional reconstruction use stereo vision 
systems [37] . Stereo vision consists of capturing two images of a scene, taken 
from different viewpoints, and estimating the depth of the scene by analyzing 
the disparity between corresponding features (see Fig 2.2). This methodology 
finds its basis in trigonometry and triangulation and is employed by the human 
binocular vision system. 

The basic steps in reconstructing a scene from two images are: 

1. finding corresponding points on the two images. 
2. intersecting the corresponding rays in three-dimensional space. 
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The following shows a comparison of how a reconstruction can be achieved 
using calibrated or uncalibrated images. 

Calibrated route. 
The typical route for structure computation from pairs of calibrated images is 
as follows. Once two images of a scene with a calibration grid in it are captured 
by a fixed stereo rig, the 3D-2D projection matrices for each camera [44, 125] 
are computed (external calibration), together with the epipolar geometry [38]. 
Some interesting features are extracted in both images, mainly corners and 
edges of objects in the scene. Popular approaches to feature detection include 
the Harris detector [52] for retrieving corners and the Canny detector [9] for 
edges. Then the process of matching features in the two images is performed by 
using the computed epipolar constraint [93]. Computing the three-dimensional 
depth is now straightforward [38]. In fact the scene structure is computed via 
a ray triangulation task, achieved using an optimal algorithm such as the one 
described by Hartley and Sturm [57]. 

A classic work in this area is the one by Longuet-Higgins. In [79] the author 
presents an algorithm for computing the three-dimensional structure of a scene 
from a pair of perspective projections. If the images of eight world points can 
be located in both projections, then the three-dimensional location of other 
points and the relative geometry between the two viewpoints are obtained by 
solving a set of eight simultaneous linear equations. A fundamental application 
of this result is in the reconstruction of a scene from two calibrated views. 

A method for three-dimensional reconstruction based on homography map­
ping from calibrated stereo systems is described in [138]. Zhang and Hanson in­
vestigate the problem of recovering the metric structure of the scene by mapping 
one image into the other using homographies inducted by planar surfaces in 
the scene. Using at least four coplanar correspondences, the three-dimensional 
structure can be achieved in Euclidean space up to a scale factor (scaled Eu­
clidean structure) and two real solutions. In order to disambiguate the two 
solutions a third view is required. 

However, using a calibrated stereo rig has some disadvantages since the 
camera internal parameters may not always be constant. It might be necessary 
to adjust the focal length, or accidental mechanical and thermal events can 
affect it. In order to overcome those problems, new algorithms for computing 
three-dimensional structure from images with unknown camera calibration have 
been developed in the past few years (uncalibrated route). 

U ncalibrated route. 
If the two cameras used during the acquisition process are uncalibrated (un­
known internal parameters), then only a projective structure can be obtained [37]. 
Corresponding points on the two images can be matched and thus the epipo­
lar geometry estimated. The two projection matrices are computed from the 
fundamental matrix but only up to a projectivity. 

However, in order to use a pair of cameras as a world measuring device 
a complete metric reconstruction is required. In order to extend a projective 
structure to an Euclidean one, some additional geometric information about 
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the viewed scene is necessary. Several algorithms have been developed [39) to 
deal with this problem. 

Given a pair of uncalibrated images, the two cameras can be calibrated 
from the analysis of the point matches in the two views. A self-calibration, 
non-iterative algorithm, based on matrix factorization has been developed by 
Hartley [53]. In this work the camera intrinsic parameters are assumed to be 
constant. They are all known apart from the focal length which is computed, 
together with the relative pose of the cameras. No specialized calibration device 
is necessary. 

Koenderink and van Doorn in [69) introduce the notion of affine structure 
from two uncalibrated views. The authors present a method for recovering 
structure from motion in a stratified manner. The results can be reformulated 
in terms of motion parallax. 

In [87) Moons et al. present an algorithm for recovery of three-dimensional 
affine structure from two perspective views taken by a camera undergoing pure 
translation (equivalently: translating object and stationary camera). The im­
ages of five points in two views need to be seen. The algorithm is further 
specialized towards single views of regular objects, such as objects containing 
parallel structures. 

In [109) Shapiro et al. define the epipolar geometry between pairs of affine 
cameras and describe a robust algorithm to compute its special fundamental 
matrix. Least squares formulations are employed in a noise-resistant fashion. A 
statistical noise model is employed to estimate the uncertainty of the computed 
relative pose of the cameras. 

In [140) Zisserman et al. describe a technique to determine affine and metric 
calibration for a stereo rig that does not involve calibration objects but a single, 
general motion of the whole rig with fixed parameters. The internal camera 
parameters and the relative orientation of the cameras are retrieved robustly 
and automatically (see also [34)). This approach does not require solving the 
non-linear Kruppa equations [41, 70). 

Related to the previous work is the paper by Zhang et al. [139]. This de­
scribes an algorithm for the self-calibration of a stereo rig and metric scene 
reconstruction using, again, the motion of the entire stereo rig, but in this case 
a simplified camera model is used (the principal point is known). Because of 
the exploitation of information redundancy in the stereo system, this approach 
yields to a more robust calibration result than only considering a single camera. 

In [40] Faugeras et al. investigate a method to upgrade from projective to 
affine and finally metric structure from pairs of images by making use of scene 
constraints such as parallelism, orthogonality and known ratios of line segments. 
This work applies well to reconstructing architectural and aerial views from 
long sequences. A similar approach is used by Liebowitz et al. in [77) which 
make extensive use of circular points to elegantly upgrade from affine to metric 
structure. 
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2.3 Using three or more views 

Two views suffice to reconstruct a scene, but adding one more image, taken from 
a third point of view, can constrain the reconstruction problem more, therefore 
reducing the uncertainty in the estimated structure. This is particularly true if a 
line matching process is used rather than a point matching one (line matching 
is not possible with only two views). Furthermore, the use of three or more 
views allows a check to be made on the consistency of the features matched 
using the first two views. 

Faugeras was one of the first to investigate the problem of using more than 
two images. In [41] Faugeras et al. present a method for self-calibrating a cam­
era using triplets of images from a sequence. The authors demonstrate that 
it is possible to calibrate a camera just by pointing it at the environment, 
selecting points of interest and then tracking them in the image sequence as 
the camera moves (the internal parameters of the camera are assumed to be 
constant throughout the sequence). The motion of the camera does not need 
to be known. The solution is obtained by solving the Kruppa equations. 

Work on reconstruction from multiple views has been conducted by A vidan 
and Shashua in [4] and by Shashua in [112, 113], where the geometry involved 
in a three-dimensional reconstruction task from 2D images is analyzed in a very 
systematic and algebraic way. The concept of trifocal tensor, which encapsulates 
the geometric relationship between three views, is used [56, 116]. This theory is 
also found useful for solving the "rendering" problem, i.e. from the knowledge 
of two images, predicting what a third one will be if the camera is placed in a 
new, given position [43]. 

The problem of calibrating the camera and estimating the Euclidean struc­
ture of the scene using three or more uncalibrated images has been investi­
gated also by Armstrong et al. in [2, 3]. The authors, using only point matches 
between images, compute the internal camera parameters and the Euclidean 
structure of the viewed scene. The camera undergoes a planar motion. This 
method presents the advantage that it can be applied in active vision tasks, 
the Euclidean reconstruction can be obtained during normal operation with 
initially uncalibrated cameras; i.e. the cameras do not need to be calibrated 
off-line. The trifocal tensor is used here too. 

In [55] another approach for camera calibration using three or more images 
from a rotating camera is presented by Hartley. This method does not require 
the knowledge of the camera orientation and position and does not involve the 
epipolar geometry. In fact the images are taken from the same point of view 
and therefore the epipolar geometry cannot be used. The calibration process is 
based on image correspondences only and the internal parameters are assumed 
constant. 

In [94] Pollefeys et al. investigate the problem of self-calibration and re­
construction from sequences with varying camera parameters. By employing a 
linear approximation followed by a non-linear refinement step, they achieve an 
accurate three-dimensional metric structure of the viewed scene while comput­
ing the internal parameters in each frame. 
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More recently, many commercial products have been developed which re­
construct three-dimensional architectural scenes from images. In particular Fa­
cade [31] has been one of the most successful systems for modelling and render­
ing architectural buildings from photographs. It consists of a hybrid geometric­
and image-based approach. Realistic rendering is obtained by using "view­
dependent texture mapping". Unfortunately the model building process in­
volves considerable time and effort for the user. 

Canoma1 is a fast, interactive system to create three-dimensional scenes 
from single or multiple images which makes extensive use of three-dimensional 
templates. Another example is provided by PhotoModeler where a three­
dimensional model of the viewed scene is computed from the knowledge of 
some control points. 

An easy-to-use system is PhotoBuilder3 developed by Cipolla et al. [16]. 
The user interactively selects corresponding points on two or more photographs. 
Then the system, making use of parallelism and orthogonality constraints, com­
putes the intrinsic and extrinsic parameters of the cameras and thus recovers 
metric models of architectural buildings. 

2.4 Partial calibration 

Not much work has been reported in the literature about metric reconstruction 
from only partial calibration. A partially calibrated scene can provide only 
partial metric information. 

In [96] Proesmans et al. use minimal information about the scene (vanishing 
points and known vertical reference heights) to compute the heights of people 
from forensic photographs. The authors make extensive use of the properties 
of cross-ratios and address the possibility of employing geometric information 
extracted from shadows. They also propose the Cascaded Hough Transform 
algorithm for the automatic computation of vanishing points in single views. 

In [130] Weinshall et al. make use of partial scene calibration, inferred di­
rectly from multiple images to obtain ordinal distances. A stratified approach 
is presented to upgrade the reconstruction to affine and finally Euclidean, us­
ing the available scene information. This technique employs two views and a 
plane-plus-parallax approach. 

The ideas presented in all the above work are explored and generalized in 
the novel, single- and multi-view reconstruction techniques presented in this 
book. 

1 http://www.metacreations.com 
2 http://www.photomodeler.com 
3 http://www-svr.eng.cam.ac.uk/photobuilder/download.html 
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Fig. 2.3. Parallax geometry: the parallax vector detected on the second view is 
related to the distance of the three-dimensional point X from the wall plane. 

2.5 Parallax-based approaches 

Some other reconstruction methods in the literature make use of the concept 
of parallax. 

One view only constrains each image point to lie on its projection ray but, 
in order to obtain the depth of a three-dimensional point with respect to a 
reference plane (or a generic surface), a second view is in general necessary. The 
parallax vector seen in the second image (see Fig. 2.3) is, in fact, a function of 
the depth of the point from the reference plane. 

The parallax approach has been used by Cipolla in [15) and by Cipolla and 
Giblin in [17) as a way to estimate robustly the curvature of surfaces. They show 
that, in order to recover depth from motion, usually the rotational velocity must 
be known accurately. But this dependence can be removed if, instead of using 
raw motion, the difference of the image motions of points (parallax) is used. 
The deletion of the rotational component of the motion field from the process of 
depth estimation can considerably improve the accuracy of the reconstruction. 

Cipolla et al. employed affine parallax in [74) for epipolar geometry compu­
tation using the parallax field; and in [75) for the estimation of the ego-motion 
of a mobile robot. Cipolla et al. also need this technique in [18) for three­
dimensional structure estimation. Such work establishes once more the validity 
and effectiveness of this approach. 

In his thesis [115) Sinclair discusses a method of analyzing sequences of 
images and identifying points which do not lie on the same planar surface. This 
work makes extensive use of planar projectivities (homographies). The parallax 
effect shown by points not lying on the same plane is employed for obstacle 
detection purposes. An analysis of the point localization error is developed to 



2.6 Investigation of accuracy 21 

assess the limit to which noisy points can be considered to belong to the same 
plane. 

In [105] Sawhney presents a formulation for three-dimensional motion and 
structure recovery that employs the parallax concept with respect to an arbi­
trary plane in the environment (real or virtual dominant plane). He shows that, 
if an image coordinate system is warped using a plane-to-plane homography 
with respect to a reference view, then the residual image motion depends only 
on the epipoles and has a simple relation to the three-dimensional structure. 

Directly related to the work of Sawhney is that of Kumar et al. [71] where 
the authors show that the magnitude of the parallax vector associated with a 
point is directly proportional to its distance from a reference plane and inversely 
proportional to its depth from the camera. Furthermore in [72] they show how 
scenes can be represented implicitly as a collection of images. In this work 
a parallax-based approach is very effective for independent motion detection, 
pose estimation and construction of mosaic representations. 

The geometry of the reconstruction problem has been discussed in depth 
and used by several researchers. In fact, a good understanding of the geometric 
properties of the acquisition system can be very useful for computing invariant 
quantities which increase the robustness and accuracy of the process [38, 58, 89]. 

The idea of using parallax to compute geometric invariants has been inves­
tigated by Irani and Anandan in [61] and Irani et al. in [62]. They present an 
analytical relationship between the image motion of pairs of points and several 
invariant quantities which can be derived from that relationship. This is shown 
to be useful for scene structure recovery from more than two images as well as 
for the detection of moving objects and the synthesis of new camera views. 

In this book a plane-plus-parallax approach is developed in Chapter 6 for 
computing scene structure and camera location, and for recovering motion and 
structure constraints. 

2.6 Investigation of accuracy 

The above sections have presented an overview of the relevant work done in 
reconstructing three-dimensional models of a scene from the analysis of planar 
images. 

But metric information is no use without an appropriate estimation of the 
uncertainties on the computed distances. In fact, visual metrology must be 
treated as a precision engineering task; i.e. in a reliable, efficient and accurate 
way [38]. 

Faugeras [38] and Kanatani [64] have presented general analytical methods 
for error analysis propagation based on analysis of covariances and how these 
are affected by the chain of computations. Formulae to compute uncertainties 
of matrices, vectors and points are discussed and the powerful implicit function 
theorem introduced. 

The problem of error estimation is discussed in [132] by Weng et al. In 
this work the authors present an algorithm to estimate motion parameters and 
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three-dimensional scene structure from two perspective images. They also in­
vestigate how the noise corrupting the perspective projections of feature points 
affects the computed motion parameters. This is achieved by means of a first 
order matrix perturbation theory [50, 120]. 

In [107] Shapiro and Brady analyze an outlier rejection algorithm based 
on a principal component regression framework. An error estimation method is 
conducted using the matrix perturbation theory and employed to identify and 
reject outliers. The authors also provide an error analysis for the optimal solu­
tion once the outliers have been removed. The validity of the proposed scheme is 
demonstrated by applying it to a structure-from-motion (SFM) problem where 
only affine cameras are considered. 

Csurka et al. in [29] and Zhang in [135] compute the uncertainty related 
to the epipolar geometry between two cameras. They use the eight-point al­
gorithm to compute the fundamental matrix and then estimate the associated 
covariance matrix. Two approaches are used to compute the uncertainty in the 
fundamental matrix: the first one is statistical and therefore as accurate as 
required but time consuming; the second is analytical and much simpler. 

The first order estimation theory is analyzed and used extensively in this 
book, including examples of propagating uncertainty through explicit trans­
formations, transformations defined by implicit functions and even implicit 
functions with constraints. Working examples are presented showing how the 
theory developed can be applied to well-known reconstruction problems. 

In [73] Kumar and Hanson, using the parallax approach try to estimate 
robustly the camera location and orientation (camera pose) from a matched 
set of three-dimensional model and two-dimensional landmark features. Robust 
techniques for pose determination are developed to handle data contaminated 
by fewer than 50% outliers. The sensitivity of pose determination to incorrect 
estimates of camera parameters is analyzed. 

Mohr et al. in [86] discuss methods for accurate reconstruction from mul­
tiple images. The cameras internal parameters are unknown. The projective 
reconstruction is upgraded to Euclidean by identifying the plane at infinity 
and then imposing metric constraints. A simple theory for analysing the accu­
racy of the reconstructed scene is presented. The need for a sub-pixel image 
point detection is shown to be necessary to obtain accurate three-dimensional 
structure. 

2.7 Projective geometry and history of art 

This work also presents contributions in understanding visual arts. Since art 
history has always been perceived as a non-scientific area, little attempt has 
been made to analyze paintings in a mathematical way and, possibly, recon­
struct the represented scenes. 

In [67] Kemp investigates Western art from a scientific point of view. In 
particular he describes the theory of linear perspective and its usage in the Re­
naissance period. The application of perspective rules to paintings is described 



2.7 Projective geometry and history of art 23 

in his work by analyzing (by construction) shapes and location of painted ob­
jects. It is quite interesting to approach the same problems from an algebraic, 
projective geometry-based, point of view. The author also investigates the the­
ory of light and colour up to the French movements of the nineteenth century. 

Kemp's book demonstrates that art history would benefit from the powerful 
tools offered by computer vision. On the other hand, vision researchers, in an 
attentive analysis of the relevant paintings, would find new explanations and a 
better understanding of the perception of three-dimensional space. 

In [47] Field et al. meticulously describe the geometric technique they have 
employed to analyze the perspective in Masaccio's fresco La Trinitd (La Trinitd 
con la Vergine e San Giovanni, fresco, 1427/28, Santa Maria Novella, Firenze, 
Italy; see Fig. 7.2a and colour plate 2). Masaccio's Florentine masterpiece is 
recognized by many as the first painting where Brunelleschi's perspective rules 
have been applied. Probably this is the first perspective image in history. 

The same fresco has also been investigated by De Mey [30]. By analyzing 
the construction lines (visible in X rays beneath the surface of the fresco), he 
computed a three-dimensional CAD model of the painted chapel and created 
animations. The location of the vantage point is also computed. 

Much interest has been generated in paintings by Piero della Francesca 
(1416-1492), a very skilled artist and mathematician [32] from the Renaissance 
period. In particular, his ability with perspective drawings and his "religious" 
care of details have made his masterpiece Flagellazione (approx. 1453, Galleria 
Nazionale delle Marche, Urbino, Italia) one of the most studied perspective 
paintings [45]. 

Judith Field, in her recent book [46], presents a history of the evolution of 
mathematics and optics, and their usage in visual arts from the middle ages 
to the seventeenth century. She also describes how, after the seventeenth cen­
tury, a number of mathematicians (e.g. Desargues, Pascal and Taylor) become 
increasingly interested in linear perspective [122], thus setting the foundations 
of modern projective geometry. 

In this book, projective geometry-based methods for computing the struc­
ture of painted scenes and creating convincing animations are presented in 
Chapter 5. Results and examples are also shown in Chapter 7. 



3. Background geometry and notation 

Projective geometry [7, 38,106] provides this book with the basic mathematical 
background, on top of which an effective and robust metrology framework is 
developed. This chapter presents the notation conventions and specific details 
of projective geometry which will be employed in the later chapters. 

Notation. 
This book employs quite standard notation conventions: 

• three-dimensional points in general positions are denoted by upper case bold 
symbols (e.g. x) j 

• image positions and vectors are denoted by lower case bold symbols (e.g. x, 
JLp)j 

• scalars are denoted by italic face symbols (e.g. d, Zp)j 
• matrices are denoted by typewriter style capitals (e.g. P, H) j 
• the line through two points Xl and X2 is denoted by < XIX2 >. 
When necessary, further notation conventions will be described in each chapter. 

3.1 Camera models and perspective mappings 

The image formation process must be modelled in a rigorous mathematical way. 
This section describes the camera models and the projective transformations 
which are relevant in the remainder of the book. 

3.1.1 Pinhole camera model 

The most general linear camera model is the well-known central projection 
(pinhole camera). 

Description. 
A three-dimensional point in space is projected onto the image plane by means 
of straight visual rays. The corresponding image point is the intersection of 
the image plane with the visual ray connecting the optical centre and the 
three-dimensional point (d. Leonardo's "Perspectograph" in Fig. 3.1 and the 
schematic pinhole camera model in Fig. 3.2). 

A. Criminisi, Accurate Visual Metrology from Single and Multiple Uncalibrated Images
© Springer-Verlag London 2001
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Fig. 3.1. "Perspectograph" (detail), by Leonardo da Vinci (1452- 1519), Codex At­
lanticus c.5r. Property of the Ambrosian Library, Milano. All rights reserved. Repro­
duction is forbidden. 
"The things approach the point of the eye in pyramids, and these pyramids are inter­
sected on the glass plane." 

World 

x .-----

Image plane 
y o 

--. "> x ... --
----

Fig. 3.2. Pinhole camera model: a point X in the three-dimensional space is imaged 
as x. Euclidean coordinates X, Y, Z and x, y are used for the world and image reference 
systems, respectively. 0 is the centre of projection, the viewer. 

Algebraic parametrization. 
The projection of a world point X onto the image point x (Fig. 3.2) is described 
by the following equation: 

x=PX (3.1) 

where P is the projection matrix, a 3 x 4 homogeneous matrix, and "=" is equal­
ity up to scale. The world and image points are represented by homogeneous 
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Fig. 3.3. An image of a planar surface induced by a homography: the homography 
relates points on the world plane to points on the image and viceversa. 

vectors as X = (X, Y, Z, W)T and x = (x, y, w) T. The scale of the matrix does 
not affect the equation, so only the eleven degrees of freedom corresponding to 
the ratio of the matrix elements are significant. 

The camera model is completely specified once the matrix P is determined. 
The matrix can be computed from the relative positioning of the world points 
and camera centre, and from the camera internal parameters; however, it can 
also be computed directly from image-to-world point correspondences. 

3.1.2 Planar homography 

An interesting specialization of the general central projection described above 
is a plane-to-plane projection: a 2D-2D projective mapping. 

Description. 
The camera model for perspective images of planes, mapping points on a world 
plane to points on the image plane (and viceversa), is well known [106]. Points 
on a plane are mapped to points on another plane by a plane-to-plane homog­
raphy, also known as a plane projective transformation. It is a bijective (thus 
invertible) mapping induced by the star of rays centred in the camera centre 
(centre of projection). Planar homographies arise, for instance, when a world 
planar surface is imaged (see Fig. 3.3). 

Algebraic parametrization. 
A homography is described by a 3 x 3 non-singular matrix. Figure 3.4 shows 
the imaging process. Under perspective projection, corresponding points are 
related by [88, 106]: 

(3.2) 

where Hi is the 3 x 3 homogeneous matrix which describes the homography, 
and "=" is equality up to scale. The world and image points are represented 
by homogeneous 3-vectors as X = (X, Y, W) T and x = (x, y, w) T respectively. 
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Image plane 

j y 0 x ______ .) .. --

Fig. 3.4. Plane-to-plane camera model: a point X on the world plane is imaged 
as x. Euclidean coordinates X, Y and x, yare used for the world and image planes, 
respectively. 0 is the viewer's position. 

The scale of the matrix does not affect the equation, thus only the eight degrees 
of freedom corresponding to the ratio of the matrix elements are significant. 

Since we are interested in recovering world quantities from images, and the 
homography is an invertible transformation, in the following Chapters (3.2) 
will be written as: 

X=Hx (3.3) 

with H = Hi 1 the homography mapping image points into world points. 
The camera model is completely specified once the matrix H is determined. 

Here too the matrix can be computed from the relative positioning of the two 
planes and camera centre, and the camera internal parameters; however, it can 
also be computed directly from image-to-world correspondences. In particular, 
it can be shown that at least four world-to-image feature (point or line) cor­
respondences (no three points collinear or no three lines concurrent) suffice to 
define the homography. The relative geometric position of the world features 
(referred to as computation points/lines) must be known. This computation is 
described in section 4.1. 

Inter-image homography. 
A planar surface viewed from two different viewpoints induces a homography 
between the two images. Points on the world plane can be transferred from 
one image to the other (Fig. 3.5) by means of a homography mapping. This 
situation is considered in Chapter 6 where the parallax effect of points off the 
distinguished plane is analyzed. 

3 .1.3 Planar homology 

In this section another interesting projective transformation is described: a 
planar homology. This is used extensively in the following chapters. 
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Fig. 3.5. Inter-image homography: the floor of a chapel viewed in both images induces 
a homography. Points can be mapped from one image to the other. 

Vertex~,V 
, , 

\qI 
. . . ~ 

Fig. 3.6. A planar homology is defined by a vertex (the point v), an axis (the line a) 
and a characteristic ratio: its characteristic invariant ratio is given by the cross-ratio 
< v, PI, P2, ip > where PI and P2 are any pair of points mapped by the homology 
and ip is the intersection of the line through PI and P2 and the axis. The point PI is 
projected onto the point P2 under the homology, and similarly for ql and q2. Note 
also that < v, PI, P2, ip > = < v, ql, q2, i q >. 

Description. 
A planar homology is a plane-to-plane projective transformation and a special­
ization of the homography. It is characterized by a line of fixed points called the 
axis, and a distinct fixed point not on the axis known as the vertex (Fig. 3.6). 
Planar homologies arise in several imaging situations, for instance when differ­
ent light sources cast shadows of an object onto the same plane. 
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Algebraic parametrization. 
Such a transformation is defined by a 3 x 3 non-singular matrix H, with one 
distinct eigenvalue whose corresponding eigenvector is the vertex, and two re­
peated eigenvalues whose corresponding eigenvectors span the axis. A planar 
homology can be interpreted as a particular planar homography. 

The projective transformation representing the homology can be parame­
trized directly in terms of the 3-vector representing the axis a, the 3-vector 
representing the vertex v, and a scalar factor f.L as [129]: 

vaT 
H=I+f.L­

v·a 
(3.4) 

The factor f.L is the characteristic ratio and it can be computed as the cross­
ratio of four aligned points as illustrated in Fig. 3.6. Thus v and a specify 
four degrees of freedom of the homology (the scales of v and a have no effect) 
and f.L specifies one more. Then, the H matrix has only five degrees of freedom, 
(while a homography has eight dof) and thus it can be determined by 2.5 point 
correspondences. 

Examples. 
Here we show two of the most common situations where planar homologies 
arise. 

Images of planes related by a perspectivity. 
A perspectivity relating two planes in 3-space is imaged as a homology [128]. 
A particular case is when two parallel planes in the world are related by a 
parallel projection (as in Fig. 3.7). The vanishing line of the pencil of parallel 
planes is the axis, and the vanishing point of the direction of projection is the 
vertex of the homology which relates the images of the two planes in the pencil 
(Fig. 3.7b). Therefore, from (3.4), the homology can be parametrized as: 

vlT 
H= I+f.L-I v· 

(3.5) 

where v is the vanishing point, I is the plane vanishing line and f.L is the char­
acteristic cross-ratio. 

The parameter f.L in (3.5) is uniquely determined from any pair of image 
points which correspond between the two planes. Once the matrix H is com­
puted, each point on a plane can be transferred into the corresponding point on 
the parallel plane. An example of this homology mapping is shown in Fig. 3.7c. 

This configuration is extremely useful in Chapter 5 to compute affine mea­
surements from single views. Notice that homologies arise in the equivalent 
case, when a sequence of images of one plane is taken by a purely translat­
ing camera; this is described in section 4.4. A homology also relates images of 
points on a plane in different views taken by a camera purely rotating about 
the axis orthogonal to the plane. 

Desargues configuration. 
Two triangles on a plane related such that the lines joining their correspond­
ing vertices are concurrent are said to be in a Desargues configuration. De­
sargues' theorem states that the intersections of their corresponding sides are 
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a b 

c d 

Fig. 3.7. Homology mapping of points from one plane to a parallel one, the two planes 
being related in the world by a parallel projection. a Original image, the floor and the 
top of the filing cabinet are parallel planes. b Their common vanishing line (axis of the 
homology, shown in white) has been computed by intersecting two sets of horizontal 
edges. The vertical vanishing point (vertex of the homology) has been computed by 
intersecting vertical edges. c Two reference corresponding points rand r' are selected 
on the two planes and the characteristic ratio of the homology computed. Three 
corners of the top plane of the cabinet have been selected and their corresponding 
points on the floor computed by the homology. Occluded corners have been retrieved 
too. d The wire-frame model shows the structure of the cabinet ; occluded sides are 
dashed. 

collinear [106] (see Fig. 3.8). Such triangles are related by a planar homology, 
with the common point of intersection being the vertex of the transformation, 
and the axis being the line containing the intersections of corresponding sides. 
Conversely, any triplet of points in correspondence under a homology must be 
in a Desargues configuration. 

This configuration arises in real images, for example, when shadows of ob­
jects, originating from several light sources, are cast onto the same plane (see 
section 5.6). In section 6.2 the link between homologies and the structure and 
motion is derived in a plane-plus-parallax framework. 
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Vertex 
v 

Fig. 3.S. Desargues configuration: the two triangles PI, ql, rl and P2, q2, r2 are in a 
Desargues configuration; the lines joining their corresponding vertices are concurrent 
and, as stated by Desargues theorem, the intersections of their corresponding sides 
are collinear. The two triangles are related by a planar homology where v is the vertex 
and a the axis. 

3.2 Radial distortion correction 

A prerequisite of the theory treated in this book is that the camera behaves 
according to the pinhole model. 

The problem. 
This requirement is violated by cheap wide-angle lenses, such as those used in 
security systems. Those cameras, in fact, tend to distort the image, especially 
near its boundaries. In such cases the grossest distortions from the pinhole 
model are usually radial. 

One of the main features of a pinhole camera is that it maps straight lines 
in the world into straight lines in the image. A radially distorted image, in 
contrast, shows straight scene lines mapped into curves. This may affect con­
siderably any metrology algorithm. A correction step is, therefore, necessary 
before any metrology process may be performed. 

Image correction. 
Several possible methods have been investigated [65, 118] to correct such a 
distortion. A simple one has been proposed by Devernay and Faugeras [33], 
where only one image of the scene is necessary, and the radial distortion model 
is computed from the deformation of images of world straight edges. 

Devernay's algorithm has been implemented here employing a slightly more 
complex radial distortion model to increase the correction accuracy: 

(3.6) 

with: 
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!(Td) = 1 + klTd + k2T~ + k3d + k4Td, Td = d(Xd, c) 

where Xd is a point in the distorted image and Xc the corresponding point in 
the corrected image. c is the centre of distortion. !(Td) is the correction factor; 
it depends on the radius T d (d( a, b) is the distance between the points a and b) 
and the correction coefficients k i • Therefore, if the values of the k i coefficients 
are known, then (3.6) can be applied and the distorted image corrected. 

In the model, account is taken of the fact that the centre of distortion might 
not coincide with the principal point of the image. Point coordinates are taken 
with respect to the centre of the image and normalized. Unit aspect-ratio and 
square pixels have also been assumed. The radial correction algorithm simply 
computes the best distortion parameters (c, k i Vi = 1···4) which transform 
the selected curved edges into straight ones. 

An example. 
Figure 3.9a shows an image captured from a cheap security-type camera which 
exhibited radial distortion (note how straight edges in the scene appear curved 
in the image). 

Edges have been extracted automatically by a Canny edge detector [10]. A 
set of edges assumed to be straight in the scene has been selected (Fig. 3.9b) 
and from those the distortion parameters computed and the image corrected 
accordingly (Fig. 3.9c). Note that now images of straight edges in the world 
are straight (for example, the left edge of the filing cabinet). Such an image is 
now perspective, and metrology algorithms can safely be performed. 

3.3 Vanishing points and vanishing lines 

Vanishing points and vanishing lines are extremely powerful geometric cues; 
they convey a lot of information about the direction of lines and orientation of 
planes. These entities can be estimated directly from the images and no explicit 
knowledge of the relative geometry between the camera and the viewed scene 
is required [21, 78, 84, 114]. Often they lie outside the physical image (as in 
Fig. 3.7b), but this does not affect the computations. 

Straight edges. 
The first step towards the computation of vanishing points and lines is the accu­
rate detection of straight edges of objects. Straight-line segments are detected 
in an image at sub-pixel accuracy by using a Canny edge detector [10] followed 
by edge linking, then segmentation of the edgel chain at high curvature points 
and finally straight-line fitting by orthogonal regression to the resulting chain 
segments (an example is shown in Fig. 3.10b). 

Furthermore, lines which are the projection of a physical edge in the scene 
might appear broken in the image because of occlusions. A simple merging al­
gorithm based on orthogonal regression has been implemented to merge several 
manually selected edges together. Merging aligned edges to create longer ones 
increases the accuracy of their location and orientation. An example is shown 
in Fig. 3.10c. 
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a b 

c d 

Fig. 3.9. Radial distortion correction: a original image showing radial distortion, 
note that straight edges in the scene appear curved in the image (e.g. the left edge of 
the filing cabinet); b lines corresponding to straight world edges have been selected 
in image (a) and used to compute the following distortion parameters: kJ = 0.092, 
k2 = -0.007, k3 = 0.053, k4 = -0.012 (the centre of distortion has been assumed 
in this case at the centre of the image); c corrected image; d edges from corrected 
image; images of straight scene edges are now straight . 

Computing vanishing points. 
Images of parallel world lines intersect each other in the same vanishing point. 
This is , therefore, defined by at least two such lines. However, if more than two 
lines are available, a maximum likelihood estimate (MLE) algorithm is employed 
to estimate the point [78] (see Fig. 3.11). 

Computing vanishing lines. 
Images of lines parallel to each other and to a plane intersect in points on the 
plane vanishing line. Therefore two sets of those lines with different directions 
are sufficient to define the plane vanishing line (see Fig. 3.12) . A maximum 
likelihood estimation algorithm is employed if more than two orientations are 
available. 

3.4 Uncertainty analysis 

This section describes the basic ideas underlying the analysis of uncertainties 
treated in this book. 
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a 

\ 

b e 

Fig. 3.10. Computing and merging straight edges: a original image; b some of the 
edges detected by the Canny edge detector. Straight lines have been fitted to them. 
e edges after the merging process - different segments belonging to the same edge in 
space are merged together. 

The metrology algorithms described in the following chapters rely on apply­
ing non-linear transformations to image and world quantities (e.g. points and 
reference distances) to compute world measurements (e.g. distances between 
points and ratios of areas). Since the input quantities and the transformations 
are uncertain, the output measurements are uncertain too (Fig. 1.2). In or­
der to determine how the uncertainty propagates from input to output of the 
computation chain and estimate the measurement accuracy, two methods are 
considered: a statistical one and an analytical one. 

Uncertainties are modelled as Gaussian noise and described by the associ­
ated covariance matrix. For example, the uncertainty in the localization of a 
world point X is modelled as a bi-dimensional Gaussian (see Fig. 3.13) centred 
on the point itself. The uncertainty is described by a covariance matrix Ax 
and can be visualized also as an ellipse whose axes are given by the principal 
components of the related covariance matrix. It is not strictly necessary to have 
such idealized distributions but this has not been found to be a restriction in 
practice. 

Statistical method. 
This consists of an iterative algorithm which makes use of the law of large 
numbers. 

II 
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Fig. 3.11. Computing the vanishing point of the vertical direction: images of parallel 
edges of the tower (Magdalen College, Oxford) intersect in the vanishing point (white 
circle); only two such lines are sufficient. 
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Fig. 3.12. Computing the vanishing line of the ground plane, the horizon. The van­
ishing line of the ground is shown in solid black. The planks on both sides of the shed 
define two sets of lines parallel to the ground (dashed); they intersect in points on 
the vanishing line. Two such points suffice to define the plane vanishing line. 

By denoting with the input data by x and the geometric transformation 
that maps the input x into the final measurements y by f, we can write: 

y = f(x) (3.7) 

At each iteration i, a random set of input data Xi is generated (according 
to its covariance Ax); then a random output measurement, Yi, is obtained 
from (3.7). 

The process is repeated a large number of times N , thus obtaining a dis­
tribution of measurements around the true mean y. If N is large enough, then 
the mean measurement y can be approximated by: 

- 2:~1 Yi 
y,;:::; N 

and its covariance by: 

(3.8) 
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Fig. 3.13. Typical isotropic Gaussian density probability function: this is used to 
model the uncertainty in the localization of points on planes. 

The covariance matrix Ay encodes the uncertainty of the measurements. 
This method is very costly in terms of CPU time, and in fact it returns re­
liable results only after a very large number of iterations. It will be used in 
the following chapters to validate the much faster analytical method described 
below. 

Analytical method. 
The analytical method takes account of the fact that the measurement y is 
related to the input data x by an analytical function f (generally non-linear). 
This relationship is approximated with a linear one by means of a first order 
Taylor series expansion. By assuming noise only on the input data x and not 
on the transformation, (3.7) becomes [20, 38]: 

f(x + Llx) = f(x) + Vf(x)Llx + O(IILlxW) 

from which, ignoring second order terms, it is easy to compute the mean value 
of the output measurement: 

y ~ E [f(x) + Vf(x)Llx] = E[f(x)] = f(x) 

and consequently the covariance of the measurement Ay is: 

Ay = E([f(x + Llx) - y][f(x + Llx) - y]T) 

~ E([f(x + Llx) - f(x)][f(x + Llx) - f(x)]T) 
~ E(VfLlxLlx TVfT) 

= VfAxVfT 

In the case the relationship between input data and final measurement 
is described by an implicit function , then the covariance Ay is obtained by 
making use of the implicit function theorem [20, 38]. Further analysis must be 
carried out in both the statistical and analytical methods in cases where the 
transformation f is also uncertain. When necessary these cases will be addressed 
in the relevant chapters. 

The advantage in using such an analytical method is that it provides a 
non-iterative and therefore fast algorithm. The main disadvantage is that it 
introduces an approximation of the non-linear mapping function . Therefore a 
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further analysis to check how much this approximation affects the final results 
is required. 

In the past, only the first order theory has been used. This book will still 
use the linear approximation but only after having proved that it is sufficient 
for the purposes of this work. The check on the suitability of the first order 
analysis is done by comparing the first order results with the second order 
ones and with a number of Monte Carlo simulations, i.e. the statistical method 
described above is used as a test of fitness of the analytical approach. 

Example. 
In this example we compute the uncertainty in the localization of a point x' 
obtained from a homographic mapping of an uncertain point x on a different 
plane. The homography is described by the matrix H (such that x' = Hx) and 
is assumed to be known and exact. Uncertainty is assumed on the input point 
x, its covariance being Ax. 

Analytical method. 
From the first order error analysis the uncertainty of the location of the point 
x' is: 

(3.9) 

Validation of first order analysis. 
The statistical Monte Carlo method is now employed to assess the validity 
of (3.9). The test algorithm consists of the following three steps: 

• 10 000 Gaussian random points centred about a mean value x with covariance 
Ax are generated on the first plane; 

• each point is transferred onto the second plane by the homography H, thus 
creating a distribution of points; 

• the covariance of this distribution is computed from (3.8) and compared to 
the one obtained from (3.9). 

Figure 3.14 shows the results for synthetic data. Analytical and simulated 
covariance ellipses are almost overlapping, thus proving the validity of the first 
order approximation in this case. 

Further details and examples on real data are presented in Chapter 4. 
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Fig. 3.14. Example of validation of first order error analysis by using a Monte Carlo 
test. a 10000 Gaussian points have been randomly generated about the mean position 
x with covariance Ax on the first plane. The corresponding 3-standard deviation 
ellipse is shown. b Distribution of the output points x' on the second plane. Both 
analytical and simulated 3-standard deviation ellipses are drawn. They overlap almost 
perfectly, confirming the validity of the analytical prediction. 



4. Metrology on planes 

This chapter develops an algorithm to measure distances on planar surfaces (see 
also [24]). The position, orientation and internal parameters of the camera are 
unknown. The imaging process is modelled as in section 3.1.2 as a homographic 
mapping between the world plane and the image plane. 

Once the image-to-world homography matrix is determined, the back­
projection of an image point to a point on the world plane is straightforward. 
The distance between two points on the world plane is then simply computed 
from the Euclidean distance between their back-projected images. The estima­
tion ofthe homography matrix is described in section 4.1, and then that is used 
to obtain a number of world measurements. 

Estimating the accuracy (or uncertainty) on planar distance measurements 
requires a careful treatment of the sources of error; not just the error in selecting 
the image points but also the error in the homography matrix itself. The latter 
arises from error in localization of the point correspondences from which the 
matrix is computed (computation points). 

The uncertainty analysis developed here builds on and extends previous 
analysis of the uncertainty in relations estimated from homogeneous equations, 
for example homographies [99, 100] and epipolar geometry [29, 38]. It extends 
these results because it covers the cases both of where the matrix is exactly 
and where is over-determined by the world-image correspondences, and it is 
not adversely affected when the estimation matrix is near singular. 

In this chapter, first order analysis is proved to be sufficient in typical imag­
ing arrangement. It is also proved to be exact for the affine part of the homog­
raphy and to be only an approximation for the non-linear part. An expression 
for the covariance of the estimated H matrix is derived in section 4.2.2. The 
correctness of the uncertainty predictions is tested both by Monte Carlo simu­
lation (section 4.2.3) and by numerous experiments on real images (section 4.3). 
Examples on interior and architectural measurements are shown, together with 
examples on rectification of planes in images of real scenes and paintings from 
the Italian Renaissance. Finally, in section 4.4, further properties of the image 
rectification process are investigated. 

A. Criminisi, Accurate Visual Metrology from Single and Multiple Uncalibrated Images
© Springer-Verlag London 2001
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Fig. 4.1. Computing the plane-to-plane homography: at least four corresponding 
points (or lines) are necessary to determine the homography between two planes. 

4.1 Estimating the homography 

As seen in the introduction, the main problem is to estimate the homography 
between the viewed world plane and the image plane. This can be done di­
rectly from a set of known image-world correspondences (points or lines). In 
fact, if we consider only point correspondences, from (3.3) each image-to-world 
point correspondence provides two equations which are linear in the H matrix 
elements. They are: 

hux + h12 y + h13 = h31 XX + h32 yX + h33X 

h21 X + h22 y + h23 = h31 xY + h32 yY + h33Y 

For n correspondences we obtain a system of 2n equations in eight un­
knowns. If n = 4 (as in Fig. 4.1) then an exact solution is obtained. Otherwise, 
if n > 4, the matrix is over-determined, and H is estimated by a suitable mini­
mization scheme. 

The covariance of the estimated H matrix depends both on the errors in 
the position of the points used for its computation and the estimation method 
employed. 

There are three standard methods for estimating H: 

i. Non-homogeneous linear solution. One of the nine matrix elements is given 
a fixed value, usually unity, and the resulting simultaneous equations for the 
other eight elements are then solved using a pseudo-inverse. This is the most 
commonly used method. It has the disadvantage that poor estimates are ob­
tained if the chosen element should actually have the value zero.l 

ii. Homogeneous solution. The solution is obtained using SVD (see section 4.1.1). 
This is the method used here and is explained in more detail below. It does 
not have the disadvantage of the non-homogeneous method but it minimizes 
an algebraic error which does not have a geometric meaning. 

1 This occurs, for instance, if we choose h33 = 1 and the origin of the image coordi­
nate system lies on the vanishing line of the plane under consideration. 
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iii. Non-linear geometric solution. In this case the summed Euclidean distances 
between the measured and the mapped point is minimized, i.e. minimizing the 
following cost function: 

t{[(Xi) __ 1 ((HXih)]2+[(Xi)_ 1 ((H-IXih)]2} 
i=l Yi (HXih (HXih Yi (H-I Xih (WI Xih 

This returns the maximum likelihood estimation of the H matrix. This 
method has the advantage, over the above two algebraic methods, that the 
quantity minimized is meaningful and corresponds to the error involved in the 
measurement (similar minimizations are used to estimate the fundamental ma­
trix and trifocal tensor [123, 137]). There is no closed form solution in this 
case and a numerical minimization scheme, such as Levenberg-Marquardt [95], 
is employed. Usually an initial solution is obtained by method (ii), and then 
"polished" using this method. 

4.1.1 Homogeneous estimation method 

Writing the H matrix as a 9-vector 

h = (hll' h12 , h13 , h21' h22' h23 , h31' h32' h33) T 

the homogeneous equation (3.3) for n points become 

Ah = 0 

with A the 2n x 9 matrix: 

Xl YI 1 0 0 0 -XIXI -yIXI -Xl 
o 0 0 Xl YI 1 -xIYI -YIYI -YI 

X2 Y2 1 0 0 0 -X2X2 -Y2X2 -X2 
A = 0 0 0 X2 Y2 1 -X2Y2 -Y2Y2 -Y2 

Xn Yn 1 0 0 0 -xnXn -YnXn -Xn 
o 0 0 Xn Yn 1 -xnYn -YnYn -Yn 

The problem of computing the h vector is now reduced to the constrained 
minimization of the following cost function: 

( 4.1) 

subject to the constraint that Ilhll = 1. The corresponding Lagrange function 
is: 

(4.2) 

Differentiating this with respect to h and setting these derivatives equal to zero 
we obtain: 

~~ = 2A T Ah - 2,\h = 0 

i.e. 
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Therefore the solution h is an unit eigenvector of the matrix AT A and A = h TAT Ah 
is the corresponding eigenvalue. 

In order to minimize the C function, only the eigenvector ii corresponding 
to the minimum eigenvalue .\ should be considered. This eigenvector can be 
obtained directly from the Singular Value Decomposition (SVD) of A. In the 
case of n = 4, h is the null-vector of A and the residuals are zero. 

4.2 Uncertainty analysis 

As shown in section 3.1.2, if x is a point on the image plane its back-projection 
onto the world plane is given by (3.3) (in homogeneous coordinates). However 
the input image point x is uncertain because of localization errors on the image. 
Furthermore, the homography is uncertain because it is obtained from n 2': 4 
pairs of uncertain computation points (their location is known but uncertain). 
These two sources of error affect the localization of the output point X on the 
world plane and consequently the distance between two world points. 

The goal here is to model the uncertainty in the localization of a world 
point and in the distance between two world points once the uncertainty in the 
localization of image points and computation pairs is known. 

4.2.1 First and second order uncertainty analysis 

In order to avoid unnecessarily complicated algebra, the comparison between 
first and second order analysis is developed for a line-to-line homography (see 
Fig. 4.2). The one-dimensional case illustrates all the ideas involved, and the 
algebraic expressions are easily interpreted. The generalization to 3 x 3 matrices 
is straightforward and does not provide any new insights here. 

In the one-dimensional case, (3.3) reduces to: 

where H2x2 is a 2 x 2 homography matrix. For the geometry shown in Fig. 4.2 
the matrix is given by: 

H2x 2 = (~ n 
with parameters a = 'co~(w) - }tan(w) and /-L 
projection an image point x maps as: 

x -t X = hu x + h12 = ax + t 
h21 X + h22 /-LX + 1 

tan(w) Under back­--,-

This non-linear mapping (in inhomogeneous coordinates) can be expanded in a 
Taylor series. Statistical moments of X, such as the variance, are then computed 
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Fig. 4.2. One-dimensional camera model: the camera centre is at distance f (the 
focal length) from the image line. The ray at the principal point p is perpendicular 
to the image line, and intersects the world line at P, with world ordinate t. The angle 
between the world and image lines is w. 

in terms of the Taylor coefficients and the moments of x [22, 102]. It is assumed 
here that the homography is exact (no errors) and the measurement of the 
image test point x is subject to Gaussian noise with standard deviation ax. 
The Taylor series is developed about the point's mean position denoted as x. 

First order. 
If the Taylor series is truncated to first order in (x - x) then the mapping is 
linearized: 

ax + t a - /Lt _ 
X :::::: --=--1 + (- 1)2 (x - x) 

/Lx + /Lx + 
The mean of X is: 

X:::::: ax + t 
/Lx + 1 

(4.3) 

since the mean is a linear operator. The variance of X can be shown to be: 

2 (a-/Lt)22 
ax:::::: a 

(/LX + 1)4 x 
(4.4) 

Second order. 
Usually only the first order approximation is used for error propagation [19, 
29,38,99, 100]. Here the Taylor expansion is extended to second order so that 
the approximation involved in truncating to first order can be bounded. It can 
be shown that to second order in (x - x): 

X ax + t a - /Lt ( _) /L(a - /Lt ) ( -)2 
:::::: /Lx + 1 + (/LX + 1)2 x - X - (/LX + 1)3 x - x 

The mean of X is: 

X :::::: ax + t _ /L(a - /Lt) a2 
/LX + 1 (/LX + 1)3 x 

(4.5) 
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(4.6) 

Comparison. 
A comparison between the first order approximation of the perspectivity func­
tion and the second order one is now required. We are interested in the error 
made in the estimation of the mean X and of the variance (]"~ of the world 
point X. 

Bias on mean. 
In order to find out whether the first order approximation mean is biased or 
not, a bias quantity bx is defined as follows: 

_1 8 ' _2nd J.L(a - J.Lt) 2 

bx = X - X = (J.LX + 1)3 (]" '" 

Then the bias bx is just the difference between the mean of X computed from 
the first order series truncation and that computed from the second order one. 
The bias has dimensions of length. 

The Lagrange remainder of the Taylor series [121] provides an upper bound 
for the error on the mean if the series is truncated to first order instead of 
using the complete expansion. Using the first order truncation of the Taylor 
expansion with the Lagrange remainder we obtain: 

X = ax + t _ J.L(a - J.Lt) (]"2", 

J.Lx+1 (J.L~+1)3 

with ~ E]X, xl. Therefore the upper bound of the error (absolute value) on the 
mean of X is: 

J.Lla - J.Ltl 2 

Errx = (J.L~ + 1)3 (]" '" 

Thus a measure, Mb, can be defined as the bias in the mean between first and 
second order approximation using the ratio of the Lagrange upper bound of 
the mean X to the mean itself: 

(4.7) 

Error in variance. 
Two new measures are defined here. They are used to assess the error in the 
standard deviation (or variance) in truncating to first order. The first, M V1 ' 

measures the ratio of the second order variance to the first order one. Compar­
ing (4.4) and (4.6) this ratio is: 

(4.8) 

The second measure, M V2 ' is obtained from the Lagrange remainder of the 
Taylor series; this provides an upper bound on the error if the series is truncated 
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to first order instead of using the complete expansion. From Taylor's theorem 
the variance a1- is: 

2 (a-f-Lt)2 2 2f-L2(a-f-Lt)2 4 
ax = a + a 

(f-Lx+1)4 x (f-L~+1)6 x 

This is the sum of the first order term and the Lagrange remainder, which 
for some ~ such that Ix-~I < lx-xl is an exact equation, not an approximation. 
The measure MV2 is then obtained as the ratio of this truncation error to the 
first order term: 

f-L2(f-LX+ 1)4 2 

MV2 = 2 (f-L~ + 1)6 a x 
(4.9) 

and we compute the worst case of ~ = x - a x for this bound in the range x ± a x' 

Typical results. 
The significance of these measures is that they depend only on the elements of 
the homography matrix. Thus, once a matrix has been estimated the need for 
a second order approximation can be immediately assessed. All these measures 
are dimensionless and it makes sense to compare their values to unity. 

In Fig. 4.3 a graph plot of the measures defined is given in order to visualize 
their behaviour with respect to variations of the angle w. The three linearity 
measures are computed for the following values: f = 8.5 mm, d = 5 m, t = 1 m, 
x = 50 pixels, ax = 1 pixel, and w varies from 0° to 85° (cf. Fig. 4.2). For angle 
values close to 70° - 80° the non-linearity of the projection function suddenly 
increases and the first error analysis is near the limit of its usefulness. 

The same analysis is reported in the table below for discrete values of the 
angle w: 

w II 30° 40° 50° 60° 70° 80° 

Mb 5.9.10 -0 1.1. 10 ·n 1.9.10 ·n 3.9.10 -b 9.5 ·10-n 4.2.10 -4 

MVl 1.5 . 10 '0 3.3·10'0 6.9.10-0 1.6.10 -n 4.8 ·10-n 3.7.10- 4 

MV2 1.5.10 ·0 3.3.10 ·0 6.9.10-0 1.6.10-0 4.6.10 -0 3.4·10-'1 

Note the very small values of the three measures that apply also for large 
values of the angle w; that proves that second order terms are not required in 
typical imaging situations. 

When is first order exact? 
If f-L = 0 in (4.6) (for instance when w = 0°), then the second order correction 
is zero and all the three above measures are null. With f-L = 0 the homography 
reduces to an affine transformation, i.e. it is linear. This illustrates the general 
result that if the homography is affine the first order analysis is exact. 

Generally, the H matrix can be decomposed into the product of matrices 
representing linear (affine) and non-linear (projective) transformations on in­
homogeneous coordinates as: 

H =AP 

where: 
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Fig. 4.3. Comparison of measures of fitness of first order approximation vs. second 
order: a bias measure Mbj b first variance measure MVl j c second variance measure 
MV2 • 

A = (~~~ ~~~ ~~:), p = (~ ~ ~) 
o 0 1 h31 h32 1 

with (Xij = h ij - h3jhi3 for i,j = 1,2. 
If H is purely an affinity (linear on inhomogeneous coordinates) then P is 

the identity and the first order theory exact. 
In the previous section, the first order error propagation theory was proved 

to be good enough for typical values in the case of the mono-dimensional camera 
model. In the following, the first order analysis is extended to the bi-dimensional 
camera model in the case of uncertainty affecting the projection process also. 
Then, in section 4.2.3 its correctness is proved via Monte Carlo statistical tests. 

4.2.2 Computing uncertainties 

There may be errors in the world and image points used to compute the ho­
mography, and there may be errors in the image points back-projected to make 
world measurements. All of these sources of uncertainty must be taken into ac­
count in order to compute a cumulative uncertainty for the world measurement 
(cf. Fig. 1.2). 

In this section, formulae to compute the uncertainty for planar measure­
ments under various error situations are developed. The first order analysis is 
assumed sufficient. 

All the computation image- and world-points are assumed to be measured 
with error modelled as a bi-dimensional Gaussian noise process (see Fig. 3.13). 
Ax. and Ax. are the covariance matrices of the image computation point Xi 

and the world computation point Xi respectively. The two sources of error (the 
uncertainty on the homography and the uncertainty in image point localization) 
are first considered to operate separately, and finally they are merged in order 
to compute an unique formula embracing both cases. 
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Uncertainty of the homography H given uncertain computation points. 

The covariance of the homography H estimated from n image-world point cor­
respondences is computed here. 

From section 4.1.1 we seek the eigenvector h with smallest eigenvalue A of 
the 3 x 3 matrix AT A. But if the n computation correspondences are affected by 
a localization error also, the A matrix will be uncertain and hence the 9-vector 
h. This vector is then characterized by a 9 x 9 covariance matrix Ah computed 
as shown in Appendix A. 

The algorithm in Appendix A has a double advantage over other methods 
such as [19, 38] which require the inverse of AT A in order to compute A h . 
These methods are poorly conditioned if only four correspondences are used, 
or if n > 4 and the correspondences are (almost) noise-free. In both cases the 
A T A matrix is singular and thus not invertible. Since the derivation of (A.2) 
does not involve the inverse, it is well conditioned in both cases. 

Uncertainty in point localization. 
This section lists the formulae used to compute the uncertainty for measure­
ments under various error situations. The first order analysis is assumed suf­
ficient. The uncertainty in the homography is computed as described in the 
previous section. 

Notation. 
New notation is introduced here to simplify the formulae. Equation (3.3) can 
be rewritten as: 

x=Bh 

where B is a 3 x 9 matrix in the form: 

B = (~~ ~~ ~~) 
OT OT x T 

(4.10) 

In the following we will determine the 3 x 3 covariance matrix Ax of the 
homogeneous world point X. The conversion to a 2 x 2 covariance matrix A;(2 
for inhomogeneous coordinates is given by: A~x2 = V fAx V fT where X = 
(X, Y, W)T and: 

Vf = IjW2 (W 0 -X) o W-Y 

f is the function mapping homogeneous to inhomogeneous coordinates. The 
opposite conversion, from inhomogeneous to homogeneous coordinates, for an 
image point x is simply given by: 

It is easy to prove that, given two homogeneous 3-vectors Xl and X2 related 
by: 
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(4.11) 

with A a scale factor, and their associated 3 x 3 covariance matrices AXl and 
A then A2X2 = A 2x2 where A 2X2 and A2x2 are the corresponding inho-

X2' X2 Xl Xl X2 

mogeneous covariance matrices. In fact from (4.11): 

1 
AX2 = A2 AXl and Vh = AV/t 

Since from first order error analysis Ai~2 = V hAx2 V fi, by substitution: 

2x2 1 2 1 T 
AX2 = AV/tA AXl AV/t 

and since V /tAXl V /t T = Ai~2 then Ai:2 = Ai~2. Therefore, as expected, 
the inhomogeneous covariance matrices are identical and one of the homoge­
neous covariances is the scaled version (with positive scale factor) of the other. 

Uncertainty in X, given an uncertain H and exact x. 
If noise is assumed only on the homography and the input point x is exact, 
then the covariance of the corresponding world point X is: 

Ax = BAhB T (4.12) 

Uncertainty in X, given an exact H and uncertain x. 
Instead, if noise is assumed only in the input image point and the homography 
is exact then: 

( 4.13) 

Uncertainty in X, given an uncertain H and uncertain x. 
If noise is assumed in both the homography H and the input point x then the 
covariance Ax is given by the sum of the previous two equations (4.12,4.13): 

Ax = (B : H) (~~ .;. 0) (::) 
o . Ax 

if H and x are statistically independent. 

Uncertainty in distance measurement. 

(4.14) 

The distance d between two world points UI and U2 (inhomogeneous) also has 
an associated uncertainty. 

Let the two end points of the image of the segment to be measured be 
UI = (UI,vt)T and U2 = (U2,V2)T (in inhomogeneous coordinates). The 
two corresponding points on the world plane in homogeneus coordinates are: 
Xl = (XI,YI,WI)T and X2 = (X2,Y2,W2)T where Xi = H(ui,vi,l)T. In 
inhomogeneus coordinates they are: Ui = (Ui, Vi)T with Ui = Xi/Wi and 
Vi = Yi/Wi . Then the Euclidean distance between the two points UI and U2 
on the world plane is: 

d = J(UI - U2 )2 + (VI - V2 )2 

and its uncertainty is computed below. 
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Uncertainty on point distance, given an uncertain H and exact Ul, U2. 
It can be shown that the gradient of the distance d with respect to his: 

ad = !(Ul -U2)T(Al-A2) 
ah d 

where the 2 x 9 matrices Al and A2 are: 

A- _ 2.. (Ui Vi 1 0 0 0 -UiUi -ViUi -Ui) 
t - Wi 0 0 0 Ui Vi 1 -uiVi -viVi -Vi 

If noise is assumed only in the homography, then for the first order analysis, 
the variance of d is given by: 

2 ad adT 
ad=ahAhah (4.15) 

Uncertainty in distance, given exact H and uncertain Ul and U2. 
The gradient of the distance with respect to the 4-vector, = (Ul' Vl, U2, V2) T 

is given by: 

ad 1 T ( . ) a, = d(Ul - U2) Bl: B2 

where the matrices Bl and B2 are defined as follows: 

B. - 2.. (hl1 - h3l Ui hl2 - h32Ui) 
• - Wi h2l - h3l Vi h22 - h32 Vi 

If noise is assumed only in the input points Ul, U2, and the two points are 
independent, then the variance a~ is: 

(4.16) 

Uncertainty in distance, given uncertain H and uncertain Ul and U2. 
Finally, if both the homography H and the input points Ul, U2 are uncertain 
then the variance a~ is given by the sum of (4.15) and (4.16): 

Ah 0 0 

a~ = ( 8d : 8d ) 0 Au! 0 C() ( 4.17) 
8h . 8C 8d T 

8C 

0 0 AU2 

with Ah the 9 x 9 covariance of the homography and Au! and AU2 the 2 x 2 
inhomogeneous covariance matrices of the input image points. 
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4.2.3 Validation of uncertainty analysis 

The previous sections have described a complete theory for computing: 

• the ellipse of uncertainty for the localization of a world plane point; 
• the uncertainty range of the distance between two world points given uncer­

tain homography computation points and uncertain image input points. 

This section demonstrates that, for typical imaging situations, this linear 
approximation is sufficiently accurate. That has already been proven analyt­
ically in the mono-dimensional case. Now the Monte Carlo statistical test is 
applied to the bi-dimensional camera model theory. In all of the following, 
error is assumed to be in both computation points and measurement points. 

Test on uncertainty of point localization. 
The performed Monte Carlo test is described in Table 4.1. 

• Repeat N times 
- Generate n ~ 4 image computation points (Gaussian distributed); 
- Generate n ~ 4 world computation points (Gaussian distributed); 
- Compute the homography relating the two sets of points. 
- Generate an image point x (Gaussian distributed); 
- Back-project the point x onto the world plane point X. 

• Compute the statistical uncertainty ellipse of the distribution of points X 
and compare it with the analytical uncertainty. 

Table 4.1. Monte Carlo test. 

Figure 4.4a shows a comparison between the covariance ellipse obtained by 
the first order analysis and that obtained by a Monte Carlo evaluation of the 
actual non-linear homography mapping. The number N of iterations involved 
in each simulation is 10 000. Note that the predicted ellipse and the simulated 
one are almost overlapping. These figures are obtained using parameters related 
to a real situation. 

Similar test has been performed in section 3.4 for a homographic mapping 
between two generic planes, using synthetic data. 

Increasing the number of computation points. 
Figure 4.4b shows what happens if the number of computation points used to 
estimate the homography matrix increases. Six ellipses are drawn, three have 
been predicted by the analytical theory and another three obtained from the 
Monte Carlo test. For each of these three cases it is very hard to distinguish 
between the simulated and the predicted ellipses. 

Furthermore, as expected, increasing the number of computation points 
increases the accuracy of the H matrix and also the accuracy of the final position 
of points X (smaller ellipses). 
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Fig. 4.4. Uncertainty in point localization. a H is computed from the theory of 
sections 4.1.1 and 4.2.2 using only four computation points. Ten thousand image 
points are randomly generated from a Gaussian distribution centred on an image 
test point x and then back-projected onto the world plane. The statistical covariance 
ellipse of the world points is computed and plotted, together with the predicted 
one. Three standard deviations are visualized for each uncertainty ellipse. b The 
areas of the first order and simulated uncertainty ellipses decrease as the number of 
computation points increase from four to five to ten as expected from the theory. c 
Areas of the predicted ellipses and of the simulated ones increase as the uncertainty of 
the image computation points increases. d Areas of the predicted ellipses and of the 
simulated ones increase as the uncertainty of the world computation points increases. 
Three standard deviations (99.7% of probability level) are visualized in all diagrams. 

Increasing the standard deviation of the image computation points. 
Figure 4.4c shows how the area of the uncertainty ellipses increases with the un­
certainty of the image computation points. Three predicted ellipses are drawn, 
together with the corresponding simulated ones. The standard deviation of the 
noise in the world points varies from 1 pixel to 3 pixels. 

Increasing the standard deviation of the world computation points. 
The increase of the uncertainty ellipses with uncertainty in the localization of 
the world computation points is shown in Fig. 4.4d. The three predicted ellipses 
and the corresponding simulated ones are also drawn in this case. The standard 
deviation of the noise in the world points varies from 1 mm to 3 mm. 
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Fig. 4.5. Uncertainty in distance measurement. a H is computed from the theory of 
sections 4.1.1 and 4.2.2 using only four noisy computation points. Ten thousand image 
points are randomly generated from a Gaussian distribution centred on an image test 
point Xl and another 10 000 points generated from a Gaussian distribution centred 
on another image test point X2. The points are back-projected onto the world plane 
and the distances between the pairs are computed. The statistical distribution of the 
distances is computed and plotted together with the predicted one. Three standard 
deviations are visualized for each curve. b The first order and simulated uncertainties 
decrease as the number of computation points increases from 4 to 8. 

Test on uncertainty of distance measurements. 
The Monte Carlo test performed is described in Table 4.2. 

Figure 4.5 demonstrates the uncertainty in distance measurements. A com­
parison between the Gaussian distribution obtained by the first order analysis 
and, again, the distribution obtained by a Monte Carlo evaluation of the non­
linear homography mapping is shown. The predicted curve and the simulated 
one are again indistinguishable. 

• Repeat N times 
Generate n ~ 4 image computation points (Gaussian distributed); 
Generate n ~ 4 world computation points (Gaussian distributed); 
Compute the homography relating the two sets of points. 
Generate an image point Xl (Gaussian distributed); 
Back-project the point Xl onto the world plane point Xl. 

Generate an image point X2 (Gaussian distributed); 
- Back-project the point X2 onto the world plane point X2. 

- Compute the distance d between Xl and X2. 

• Compute the statistical variance of the distribution of distances d and 
compare it with the predicted variance. 

Table 4.2. Monte Carlo test. 

Increasing the number of computation points. 
Figure 4.5b illustrates what happens if the number of computation points used 
to estimate the homography matrix increases. 
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Fig. 4.6. A plane measuring device: measuring world distances from images. The 
real dimensions of the window are measured directly on the image. 

Four curves are drawn, two have been predicted by the analytical theory 
and the other two have been obtained from the Monte Carlo test. As expected, 
increasing the number of computation points increases the accuracy of the 
distance d (smaller output standard deviation, sharper peaks). 

Figures 4.4 and 4.5 are obtained using data from images of real scenes. In 
all the previous examples, the simulated ellipses almost exactly overlap the 
analytically predicted ones, which justifies the use of the first order theory. 

4.3 Application - a plane measuring device 

In this section a typical application of the described plane metrology algorithm 
and the uncertainty theory is presented. 

4.3.1 Description 

The device shown here is meant to take distance measurements on real-world 
planes, such as floors, walls and doors, just using images acquired with con­
ventional video cameras (see Fig. 4.6). The entire measurement process can be 
split into two main stages: the calibration stage and the measuring stage. 

Calibration stage. 

\ 

, 
I 

First of all, computation of the transformation between the viewed plane and 
the image plane is necessary. This is achieved via the knowledge of a set of 
world-image point correspondences as already discussed. 

Once we have defined how the n chosen world-plane computation points are 
projected onto the image it is possible to apply the theory of sections 4.1 and 4.2 
to compute the H matrix and its covariance. The choice of computation points 
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Fig. 4.7. A Plane Measuring Device: Graphical User Interface, example of the mea­
surement stage. It involves an easy-to-use interface; the user is only required to select 
the two end points of the segment to measure and the distance measure and related 
uncertainty pop up. 

is not completely arbitrary; in fact their number and location with respect to 
the camera have a significant effect on measurement uncertainties. 

In section 4.3.2 some examples are provided to show the variation of the 
uncertainties according to a variation in the number or location of the compu­
tation points. 

Measurement stage. 
Once the homography has been computed two points on the image are se­

lected; they are back-projected onto the world plane and the distance between 
them computed and shown (see Fig. 4.7) . The uncertainty in the distance be­
tween them is also computed using the formulae presented. 

Once the homography is known it is possible to retrieve other useful in­
formation such as parallelism of lines lying on a plane. This application is as 
follows: draw a line, draw the parallel line (parallel in the world and not in the 
image) passing through a chosen point, and compute the orthogonal distance 
between the two lines. 

The strength of this device is in its ease of use; the operator interacts with 
the system just via a friendly graphic interface, both during the calibration 
stage and the measuring one. The measurement queries are sent to the system 
via a pointing device such as a mouse. 

4.3.2 Examples 

In this section a number of examples are presented showing possible uses of 
the described theory, and demonstrating the applicability of the uncertainty 
analysis to real images. 
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a b 

c 

Fig. 4.8. Rectification of a planar surface: a original image, Keble College, Oxford; 
b the relative location of the four corners of the marked window have been used as 
reference to compute the image-to-world plane homography; c rectified image; parallel 
lines in the world are parallel in the rectified image and angles are preserved. 

It is shown that the ground truth measurements always lie within the esti­
mated error bounds. Furthermore, the utility of the analysis is illustrated. The 
covariance expression predicts uncertainty given the number of image-world 
computation points and their distribution. It is thus possible to decide where 
further reference correspondences are required in order to achieve a particular 
desired measurement accuracy. 

Creating new views of planar surfaces. 

Rectification of a planar surface. 
Once the homography between a world plane and the image has been estimated, 
then it is easy to perform a franta-parallel transformation of the image. From 
a geometric point of view, this operation means the synthesis of a new image, 
the one seen from a new camera with its acquisition plane parallel to the world 
plane. 

Figure 4.8 shows an image of a college wall which is warped onto a fronto­
parallel view. Note that in the warped image (Fig. 4.8c) perspective distortion 
is corrected: angles and ratios of distances are recovered correctly. 
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a 

b c 

Fig. 4.9. Rectification of a plane in a painting. a The painting Flagellazione (approx. 
1453), by Piero della Francesca (1416- 1492) , Galleria Nazionale delle Marche, Urbino, 
Italia. Courtesy of Ministero per i Beni e Ie Attivita Culturali. b Original image with 
part of the floor highlighted. c Rectified image of the highlighted area. Notice that 
the beautiful geometrical tile pattern is repeated twice; the one behind the figure of 
Christ is barely visible in the original painting. 

Rectification of a plane in a painting. 
Figure 4.9 shows another example of plane rectification. Figure 4.9a is a paint­
ing by the Italian Renaissance painter Piero della Francesca (1416- 1492). The 
rectification is possible as a result of strict adherence to Renaissance perspective 
rules by the artist. The painting represents the geometry of the scene almost 
exactly as it would be captured by a perspective camera, thus the warping 
technique described is valid. 

Figure 4.9c shows the rectified view of the area of the floor highlighted in 
Fig. 4.9b, where Christ is standing. Note that the geometric pattern, barely 
visible in the original image, is clear at the bottom of the rectified one [67] . 
A second, identical pattern is visible (despite occlusions) on the top of the 
rectified image. 

The image-to-world homography has been computed from the assumption 
of a square floor pattern. 
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a 

c 

Fig. 4.10. Warping planes between images. a,b Original images from two different 
points of view; Crystallography Labs, Oxford. c First image warped onto the second 
by the computed inter-image homography. 

Warping planes between images. 
If the inter-image homography relating two images is known, it is possible to 
warp one image onto the other. 

An example is shown in Fig. 4.10 where two pictures of the same wall 
have been taken from two different viewpoints (the camera has undergone a 
translational and rotational movement) . The inter-image homography has been 
estimated from corresponding feature points on the wall and the first image 
warped onto the second one. All the points which do not lie on the facade 
are mapped into unexpected positions (Fig. 4.10c). The parallax effect shown 
by such points can be used for three-dimensional structural computation (see 
Chapter 6). 

Accuracy in point localization. 

Varying the location of the computation points. 
Figure 4.11 shows an example of an indoor scene. Fig. 4.11a is the original 
image and in Figs. 4.11b-d an uncertainty ellipse map is superimposed to show 
how the uncertainty ellipses change their shape according to a change only in 
the location of the computation points. The H matrix is computed using four 
computation points in all cases. The covariances used for the computations are: 
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c 

Fig. 4.11. Accuracy in point localization: a original image; b-d projectively unskewed 
back-projection. The computation points used to estimate H are marked by black 
asterisks. The location of the four computation points is different in each image. The 
uncertainty ellipses shown for test points are at the nine standard deviation level. 

a b 

c d 
Fig. 4.12. Accuracy in point localization: a original image; (b-d) projectively 
unskewed back-projection. The number of computation points (blak asteriscs) varies 
from four to six to eight. The uncertainty ellipses shown for test points are at the 
nine standard deviation level for clarity. 
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Ax = [~~] 
(in pixel2 ) in the image and: 

A = [0.25 ° ] 
x ° 0.25 

(in cm2 ) in the world. 
Several test points are shown with their uncertainty ellipses. Note that as 

the distance of the test point to computation points increases, the uncertainty 
increases. More spatially homogeneous uncertainties are achieved by distribut­
ing the computation points across the scene. 
Varying the number of computation points. 
Figure 4.12 shows the same scene as before. Figure 4.12a is the original image 
and Figs 4.12b-d show the uncertainty ellipses map. 

This time we modify the number of computation points. The H matrix is 
computed using four points in Fig. 4.12b, six point in Fig. 4.12c and eight 
points in Fig. 4.12d. The covariances used for the computations are as before: 

Ax = [~~] Ax = [0.~5 0.~5] 
The same test points are shown with their uncertainty ellipses. Smaller 

uncertainties are obtained by increasing the number of computation points. 
Accuracy of distances. 
A similar analysis is now conducted using images of an outside wall, computing 
distances instead of point locations. 
Varying the number of computation points. 

Figure 4.13b-d show length measurements for a homography computed 
from four, six and eight correspondences. The covariances used for the compu­
tations are: 

Ax = [~ ~] Ax = [~ ~] 
Measurements farther from the set of computation points present a larger 

uncertainty. Again, increasing the number of computation points reduces the 
uncertainties in all the measurements. Note that all the ranges of estimated 
measurements include the actual window width (ground truth is 139 cm). 
Different views, same computation points. 
Figure 4.14 illustrates that the uncertainties also depend on the observer view­
point. The computation points for both images are in the same zone of the 
image frame but the second image is affected by a more severe perspective dis­
tortion. In both cases the ground truth lies within the predicted measurement 
range, but this is larger in the second view, as expected. 

The figure also illustrates the computation of parallel world lines (see Ta­
ble 4.3). Once a line is selected in the image, the one-parameter family of lines 
parallel to it on the world plane is computed from the estimated H. When one 
of them is fixed, the orthogonal distance between them is computed and shown. 
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a 

c d 

Fig. 4.13. Accuracy of distances: a original image; b-d length measurements based on 
a homography computed from the points marked by black asterisks. The uncertainty 
bound is ±3 standard deviations. The actual width is 139 cm. 

a b 

Fig. 4.14. Different views, same computation points: a and b two images of Keble 
College, Oxford. The computation points are the same, but the viewpoint distortion 
is more severe in b. This is reflected in the larger (3 standard deviation) uncertainties. 
The actual width of the upper windows is 176 cm. Note the computed parallel lines. 

Different views, different computation points. 
Figure 4.15 shows, again, two different views of a wall. Four different computa­
tion points are used in the two images. All the measurements are taken between 
parallel lines and although the angle between camera and wall plane is large, 
the parallel lines are correctly computed. 
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A line Ion the image defines a back-projected plane 1rl in space. The inter­
section of the plane 1rl with a distinguished world planar surface 1r defines a 
line L. 
Given the homography H betweeen the image plane and the plane 1r and the 
line I on the image, the one-parameter family of lines parallel to L in the 
world is defined. 
In fact, given a line I and a point x in the image, we can find the line I' 
through x whose back-projection L' is parallel to L on the world plane. This 
is simply l' = x x v where v is the vanishing point for that direction; v is 

given :y=v(= :i~R~)-TI with R the following filter matrix: 

000 
Once a pair of lines I, I' is selected, the orthogonal world distance between 
them can be easily computed by applying (3.3). 

Table 4.3. Computing images of parallel lines and measuring their distance. 

Note that the distance measurements are invariant to the choice of compu­
tation points, and the ground truth is always in the uncertainty range returned 
by the system (see caption). 

a b 

Fig. 4.15. Different views, different computation points. a and b two images of the 
Crystallography Labs, Oxford. The actual height of all the windows is 174 em, the 
door width is lOOem. Notice the correct computation of parallel lines. 

Mosaicing and measuring. 
If the inter-image homography between two views is known, then one image 
can be warped and stitched to the other, thus making a mosaic image. Note, 
though, that in general only the points lying on the same plane are registered 
correctly by the homography, while the ones off the plane are warped into 
unexpected positions [11] because of the parallax effect. 

In the case of a purely rotating camera, no parallax can be detected and 
therefore all the points are registered correctly by the homography. An example 
of a mosaic created from a rotating camera is shown in Fig. 4.16. Figure 4.16a 
and b are two different images of an indoor scene taken from the same point 
of view (no parallax effect). The inter-image homography is computed from 
the overlapping area between the two images and the second image warped 
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c d 

b 

Fig. 4.16. Mosaicing two images: a and b original images of The Queen's College 
Middle Common Room (MCR), Oxford; the two images are taken from the same 
viewpoint, just rotating the camera (no parallax effect); c mosaic image; d mosaic 
with measurements superimposed. 

and stitched to the first one to make the mosaic in Fig. 4.16c. If the homog­
raphy between the original images and the world plane is known, then from 
the mosaicing process the homography between the final image and the world 
plane can be computed and measurements taken directly on the mosaic image 
as shown in Fig. 4.16d. 

4.4 Duality and homologies 

We have reserved the last section of this chapter to the investigation of some 
interesting properties of the plane rectification process and its relationship with 
homologies. 

In an image of a planar surface in general position the plane appears pro­
jectively warped; the image plane, in contrast, is by definition front-on. By 
rectifying the image of the world plane via the estimated homography, a new 
image is obtained where the world plane is front-on but the original image plane 
is now projectively skewed; its boundary rectangle is warped into a projectively 
skewed quadrilateral (the solid quadrilateral around the image in Fig. 4.17c). 
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a 

c 

Fig. 4.17. Duality between an image of a plane and its rectification: a original image, 
Keble College, Oxford; b the vanishing line of the plane of the wall has been computed 
and superimposed; c rectified image; this configuration is dual to the one in a, see 
text. The boundaries of the image are the intersections of the original visual pyramid 
with the plane of the wall. Joining the intersections of the opposite sides of this 
quadrilateral we obtain the line i, the dual of the plane vanishing line. 

The relationship between the image plane and the world plane is investigated 
via an example on a real scene. 

Figure 4.17h shows the perspective image of a planar wall (seen before in 
Fig. 4.8a) , the image plane is front-on (solid rectangle). Figure 4.17c is the 
image obtained by rectifying the wall plane. The edges of the image now make 
a non-rectangular quadrilateral. This is the perspectively distorted version of 
the rectangular boundary of the image in Fig. 4.17a; it can be interpreted as 
the intersection of the visual pyramid with the plane of the wall. 

In Fig. 4.17h the vanishing line 1 for the wall plane has been computed by 
joining the intersections of two sets of parallel world edges lying on the wall. The 
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A\ 

a b 

Fig. 4.18. a Original image showing further image planes for a forward translating 
camera. In this special case the centre of the images is the epipole. b The transformed 
boundary quadrilaterals obtained for a sequence of images from a forward translating 
camera are related by a homology whose axis is the line i and whose vertex is the 
point v (warped epipole). 

line I is the image of the axis of the pencil of planes parallel to the wall and also 
the intersection of a plane parallel to the wall through the camera centre with 
the image plane. Algebraically, if H is the image-to-world plane homography 
such that X = Hx, where x is an image point and X the corresponding world 
point, then I is the third row of the matrix H. 

On the other hand, the line i in Fig. 4.17 c joins the intersections of the 
opposite sides of the external quadrilateral. i is the intersection of the focal 
plane with the plane of the wall and can be considered as the dual of the plane 
vanishing line l. Algebraically i is the third row of the matrix H-1 . 

Furthermore, section 3.1.3 has shown that images of parallel planes related 
by a parallel projection are related by a planar homology whose axis is the 
plane vanishing line and whose vertex is the vanishing point of the direction 
of projection. Dually we can imagine having a pencil of parallel image planes; 
this corresponds to having a sequence taken by a purely translating camera. By 
rectifying all the images in the sequence via the homographies induced by the 
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world plane, we obtain the configuration illustrated in Fig. 4.18h. The corners 
of the warped image boundaries are related by a planar homology whose axis is 
the line i and whose vertex is the rectified epipole. Figures 4.18a and h show an 
example of a special case where the camera is translating towards the college 
wall. 



5. Single-view metrology 

The previous chapter has investigated how measurements can be taken on pla­
nar surfaces from uncalibrated images. However, the world is not just one big 
plane (as Cristoforo Colombo discovered five centuries ago); it is a complex 
three-dimensional structure. Therefore, a more general analysis of the three­
dimensional scene is required; this is achieved in this chapter. In particular, 
this chapter describes how aspects of the affine three-dimensional geometry of 
a scene may be measured from a single perspective image (see also [25, 26, 28]). 
The techniques described still concentrate on scenes containing planes and 
parallel lines, although the methods are not so restricted. The algorithms 
developed here extend and generalize previous results on single-view metrol­
ogy [59, 68, 96, 100). 

In this chapter we assume that the vanishing line of a reference plane in 
the scene may be determined from the image (see section 3.3), together with 
a vanishing point for a reference direction (not parallel to the plane). We are 
then concerned with three canonical types of measurement: 

• measurements of the distance between any of the planes which are parallel to 
the reference plane; 

• measurements on these planes (and comparison of these measurements with 
those obtained on any parallel plane); 

• determining the camera's position in terms of the reference plane and direc­
tion. 

The measurement methods developed here are independent of the camera 
internal parameters: focal length, aspect ratio, principal point and skew (un­
calibrated camera, unknown internal parameters). We analyze situations where 
the projection matrix (external calibration) can only be partially determined 
from landmarks in the scene. This is an intermediate situation between cali­
brated reconstruction (where metric entities like angles between rays can be 
computed) and completely uncalibrated cameras (where a reconstruction can 
be obtained only up to a projective transformation). 

The ideas in this chapter can be seen as reversing the rules for drawing per­
spective images given by Leon Battista Alberti [1) in his treatise on perspective 
(1435). These are the rules followed by the Italian Renaissance painters of the 
fifteenth century, and indeed the correctness of their mastery of perspective is 
demonstrated by analyzing the famous painting Flagellazione by Piero della 
Francesca (Fig. 4.9a). 

A. Criminisi, Accurate Visual Metrology from Single and Multiple Uncalibrated Images
© Springer-Verlag London 2001
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a b 

Fig. 5.1. Measuring distances of points from a reference plane (the ground) in a 
single image: a the four pillars have the same height in the world, although their 
images clearly are not of the same length because of perspective effects; b as shown, 
however, all pillars are correctly measured to have the same height. 

Section 5.1 gives simple geometric derivations of how, in principle, three­
dimensional affine information may be extracted from one image (Fig. 5.1). 
Section 5.2 introduces an algebraic representation of the problem and shows 
that this representation unifies the three canonical measurement types, lead­
ing to simple formulae in each case. Section 5.3 describes how errors in image 
measurements propagate to errors in the three-dimensional measurements, and 
hence how to compute confidence intervals on the measurements, i.e. a quanti­
tative assessment of accuracy. A generalization of the algorithm for recovering 
affine three-dimensional structure is presented in section 5.4. The work has a 
variety of applications, and three important ones are presented in section 5.5: 
forensic measurements, virtual modelling and furniture measurements. 

5.1 Geometry 

The camera model employed here is the central projection (described in sec­
tion 3.1.1). We assume that the vanishing line of a reference plane in the scene 
may be computed from image measurements, together with a vanishing point 
for a direction not parallel to the plane (see section 3.3) . Effects such as ra­
dial distortion, which corrupt the central projection model, can generally be 
removed as shown in section 3.2 and are therefore not. detrimental to these 
methods. Although the schematic figures show the camera centre at a finite lo­
cation, the results derived apply also to the case of a camera centre at infinity, 
i.e. where the images are obtained by parallel projection. 

The basic geometry of the plane vanishing line and the vanishing point 
are illustrated in Fig. 5.2. The vanishing line 1 of the reference plane is the 
projection of the line at infinity of the reference plane into the image. The 
vanishing point v is the image of the point at infinity in the reference direction. 
Note that the reference direction need not be vertical, although for clarity we 
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Fig. 5.2. Basic single· view geometry. a The plane's vanishing line 1 is the intersection 
of the image plane with a plane parallel to the reference plane and passing through 
the camera centre C. The vanishing point v is the intersection of the image plane with 
a line parallel to the reference direction through the camera centre. b The vanishing 
line partitions the space in the set of points closer to the reference plane than the 
camera and the set of points which are farther than the camera. 

will often refer to the vanishing point as the "vertical" vanishing point. The 
vanishing point is then the image of the vertical "footprint" of the camera 
centre on the reference plane. Likewise, the reference plane will often, but 
not necessarily, be the ground plane, in which case the vanishing line is more 
commonly known as the "horizon". 

It can be seen (for example, by inspection of Fig. 5.2) that the vanishing 
line partitions all points in the scene space. Any scene point which projects 
onto the vanishing line is at the same distance from the plane as the camera 
centre; if it lies "above" the line it is farther from the plane, and if "below" the 
vanishing line then it is closer to the plane than the camera centre. 

We now give the following definition: 

Definition 5.1.1. Two points on separate planes (parallel to the reference 
plane) correspond if the line joining them is parallel to the reference direction. 



72 5. Single-view metrology 

·V 
Vanishing poinl 

t Point at infinity 

X 
1t' 1 Vanishing line 

T 
z 

1 
a b 

Fig. 5.3. Distance between two planes relative to the distance of the camera centre 
from one of the two planes: a in the world; b in the image. The point x on the plane 
1f corresponds to the point x' on the plane 1f'. The four aligned points v, x, x' and 
the intersection c of the line joining them with the vanishing line define a cross-ratio. 
The value of the cross-ratio determines a ratio of distances between planes in the 
world; see text. 

Hence the image of each point and the vanishing point are collinear (see 
Fig. 5.3b). For example, if the direction is vertical, then the top of an upright 
person's head and the sole of his/her foot correspond. If the world distance 
between the two points is known, we term this a reference distance. 

5.1.1 Measurements between parallel planes 

We wish to measure the distance (in the reference direction) between two paral­
lel planes, specified by the image points x and x'. Figure 5.3 shows the geometry, 
with points x and x' in correspondence. The following theorem holds: 

Theorem 5.1.1. Given the vanishing line of a reference plane and the van­
ishing point for a reference direction, then distances from the reference plane 
parallel to the reference direction can be computed from their imaged end points 
up to a common scale factor. The scale factor can be determined from one 
known reference length. 

Proof. The four points x, x', c and v marked on Fig. 5.3b define a cross­
ratio [117]. The vanishing point is the image of a point at infinity in the scene 
and the point c, since it lies on the vanishing line, is the image of a point at 
distance Zc from the plane 1f', where Zc is the distance of the camera centre 
from 1f'. In the world, the value of the cross-ratio provides an affine length 
ratio, which determines the distance Z between the planes containing X' and 
X (in Fig. 5.3a) relative to the camera's distance Zc from the plane 1f' (or 
1f" depending on the ordering of the cross-ratio). Note that the distance Z 
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Fig. 5.4. Distance between two planes relative to the distance between two other 
planes: a in the world; b in the image. The point x on the plane 'Tr corresponds to 
the point x' on the plane 'Tr' . The point S1 corresponds to the point S2. The point 
r1 corresponds to the point r2. The distance Zr in the world between R1 and R2 is 
known and used as reference to compute the distance Z; see text. 

can alternatively be computed using a line-to-line homography avoiding the 
ordering ambiguity of the cross-ratio. For the case in Fig. 5.3b we obtain: 

~ = 1 _ d(X' , c) d(x, v) 
Zc d(x,c) d(X', v) 

(5.1) 

where d( XI, X2) is the distance between two generic image points x 1 and X2. 

The absolute distance Z can be obtained from the distance ratio (5.1) once 
the camera's distance Zc is specified. However it is usually more practical to 
determine the distance Z via a second measurement in the image, that of 
a known reference length. In fact, given a known reference distance Zr , the 
distance of the camera Zc can be computed from (5.1) and then the distance 
Z determined by applying (5.1) to a new pair of end points. 0 

Theorem 5.1.1 can be generalized to the following: 

Theorem 5.1.2. Given a set of linked parallel planes, the distance between 
any pair of planes is sufficient to determine the absolute distance between any 
other pair. The link is provided by a chain of point correspondences between the 
set of planes. 

Proof. Figure 5.4 shows a diagram where four parallel planes are imaged. They 
all share the same vanishing line which is the image of the axis of the pencil. 
The distance Zr between two of them can be used as reference to compute the 
distance Z between the other two as follows: 

• from the cross-ratio defined by the four aligned points v, c r , r 2, rl and the 
known distance Zr between the world points Rl and R2, the distance of the 
camera from the plane 7r r can be computed; 

• that camera distance and the cross-ratio defined by the four aligned points v, 
C s , 82, 81, determine the distance between the planes 7r rand 7r. The distance 
Zc of the camera from the plane 7r is therefore determined too; 
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b 

Fig. 5.5. Measuring the height of a person from a single image: a original image; b 
the height of the person is computed from the image as 178.8cm; the true height is 
180 cm, but note that the person is leaning down a bit on his right foot. The vanishing 
line is shown in white; the vertical vanishing point is not shown since it lies well below 
the image. The reference distance is in white (the height of the window frame on the 
right). Compare the marked points with the ones in Fig. 5.4 . 

• the distance Zc can now be used in (5.1) to compute the distance Z between 
the two planes 7(" and 7("'. 

o 
Section 5.2.1 presents an algebraic derivation of these results which avoids 

the need to compute the distance of the camera explicitly and simplifies the 
measurement procedure. 

Example. 
Figure 5.5 shows that a person's height may be computed from an image given a 
vertical reference distance elsewhere in the scene. The ground plane is reference. 
The height of the frame of the window has been measured on site and used as 
the reference distance (it corresponds to the distance between Rl and R2 in 
the world in Fig. 5.4a). This situation corresponds to the one in Fig. 5.4 where 
the two points 82 and Rl (and therefore 82 and rd coincide. The height of the 
person is computed from the cross-ratio defined by the points x' , c, x and the 



5.1 Geometry 75 

·V 

J 

R~----------~ __ -J 

r 

R 
a b 

Fig. 5.6. Homology mapping between imaged parallel planes related by parallel 
projection. a In the world a point X on the plane 1t' is mapped into the point X' on 
1t" by a parallel projection. b In the image the mapping between the images of the 
two planes is a homology, where v is the vertex and I the axis. The correspondence 
r -t r' fixes the remaining degree of freedom of the homology from the cross-ratio of 
the four points v, C r , r' and r . 

vanishing point (Fig. 5.4b) as described in the proof above. Since the points 
S2 and Rl coincide, the derivation is simpler. 

5.1.2 Measurements on parallel planes 

If the reference plane 1t' is affine calibrated (its vanishing line is known), then 
from image measurements we can compute: 

1. ratios of lengths of parallel line segments on the plane; 
2. ratios of areas on the plane. 

Moreover, the vanishing line is shared by the pencil of planes parallel to the 
reference plane, hence affine measurements may be obtained for any other plane 
in the pencil. However, although affine measurements, such as an area ratio, 
may be made on a particular plane, the areas of regions lying on two parallel 
planes cannot be compared directly. If the region is parallel projected in the 
scene from one plane onto the other, affine measurements can then be made 
from the image since both regions are now on the same plane, and parallel 
projection between parallel planes does not alter affine properties. 

A map in the world between parallel planes induces a map in the image 
between images of points on the two planes. As stated in section 3.1.3, this 
image map is a planar homology. The geometry is illustrated in Fig. 5.6. In 
this case the vanishing line of the plane, and the vertical vanishing point, are, 
respectively, the axis and vertex of the homology which relates a pair of planes 
in the pencil. 

The homology H can then be parametrized as in (3.5): 
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a b 

Fig. 5.7. Measuring the ratio of lengths of parallel line segments lying on two parallel 
scene planes. a Original image, the facade of a building. The two front-facing planes 
are parallel. We want to compare lengths of parallel segments on the two planes. b 
The points rand r' (together with the plane vanishing line and the vanishing point) 
define the homology between the two front-facing planes. 

(5.2) 

where v is the vanishing point, I is the plane vanishing line and J1, is the char­
acteristic ratio. Thus v and I specify four of the five degrees of freedom of the 
homology. The remaining degree of freedom of the homology, J1" is uniquely de­
termined from any pair of image points which correspond between the planes 
(points rand r' in figure 5.6). 

Once the matrix H is computed each point on a plane can be transferred 
into the corresponding point on a parallel plane as x' = Hx. An example of this 
homology mapping is shown in figure 3.7. Consequently measurements made on 
two separate planes can be compared. In particular, we may compute: 

1. the ratio between two parallel lengths, one length on each plane; 
2. the ratio between two areas, one area on each plane. 

In fact all points can be transferred from one plane to the reference plane 
using the homology. Since the reference plane's vanishing line is known, affine 
measurements in the plane can be made (e.g. parallel length or area ratios). 

Example. 
Figure 5.7 shows an example. The vanishing line of the two front-facing walls 
and the vanishing point are known, as is the point correspondence r, r' in the 
reference direction. The ratio of the length of parallel line segments is computed 
by using the formulae given in section 5.2.2. Notice that errors in the selection 
of point positions affect the computations; the veridical values of the ratios in 
Fig. 5.7b are exact integers. A proper error analysis is necessary to estimate 
the uncertainty of these affine measurements. 
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5.1.3 Determining the camera position 

Section 5.1.1 computes the distances between planes as a ratio relative to the 
camera's distance from the reference plane. Conversely, the camera's distance 
Zc from a particular plane can be obtained knowing a single reference distance 
Zr. 

Furthermore, Fig. 5.2 shows that the location of the camera relative to 
the reference plane is the back-projection of the vertical vanishing point onto 
the reference plane. This back-projection is accomplished by a homography 
which maps the image to the reference plane (and vice versa). Although the 
choice of the world coordinate frame is somewhat arbitrary, fixing this frame 
immediately defines the homography uniquely and hence the complete camera 
position. 

5.2 Algebraic representation 

The measurements described in the previous section are computed in terms of 
cross-ratios. This section develops a uniform algebraic approach to the problem 
which has a number of advantages over direct geometric construction: (i) it 
avoids potential problems with ordering for the cross-ratio; (ii) it allows to deal 
with both minimal or over-constrained configurations uniformly; (iii) different 
types of measurement are unified within one representation; (iv) in section 5.3 
this algebraic representation is used to develop an uncertainty analysis for 
measurements. 

To begin, an affine coordinate system XY Z is defined in space [69, 98]. Let 
the origin of the coordinate frame lie on the reference plane, with the X-and 
Y-axes spanning the plane. The Z-axis is the reference direction, which is thus 
any direction not parallel to the plane. The image coordinate system is the 
usual xy affine image frame, and a point X in space is projected to the image 
point x via a 3 x 4 projection matrix Pas: 

x = PX = [pi P2 P3 P4] X 

where x and X are homogeneous vectors in the form: x (x, y, w) T, 

X = (X, Y, Z, W)T, and "=" means equality up to scale. 
Denoting the vanishing points for the X, Y and Z directions as (respec­

tively) v x, Vy and v, it is clear by inspection [38] that the first three columns 
of P are the vanishing points: Vx = Pi, Vy = P2 and v = P3; and that the 
final column of P is the projection of the origin of the world coordinate system: 
o = P4. Since our choice of coordinate frame has the X and Y axes in the 
reference plane Pi = v x and P2 = Vy are two distinct points on the vanishing 
line. Choosing these fixes the X and Y affine coordinate axes. The vanishing 
line is denoted by I, and to emphasize that the vanishing points v x and Vy lie 
on it, we denote them by It, It, with It . I = O. 

Columns 1, 2 and 4 of the projection matrix are the three columns of the 
reference plane to image homography. This homography must have rank three, 
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otherwise the reference plane to image map is degenerate. Consequently, the 
final column (the origin of the coordinate system) must not lie on the vanishing 
line, since if it does then all three columns are points on the vanishing line, and 
thus are not linearly independent. Hence we set it to be 0 = P4 = 1/11111 = 1. 

Therefore the final parameterization of the projection matrix Pis: 

P = [ It It QV I ] (5.3) 

where Q is a scale factor, which has an important role to play in the remainder 
of the chapter. 

Note that the vertical vanishing point v imposes two constraints on the P 
matrix, the vanishing line I two constraints also and the Q parameter only one 
for a total of five independent constraints. In general, however, the P matrix has 
eleven degrees of freedom, which can be regarded as comprising eight for the 
world-to-image homography induced by the reference plane, two for the vanish­
ing point and one for the affine parameter Q. In the present case the vanishing 
line determines two of the eight degrees of freedom of the homography. 

The following sections show how to compute various measurements from 
this projection matrix. Measurements of distances between planes are indepen­
dent of the first two (in general under-determined) columns of P. If v and I are 
specified, the only unknown quantity for these measurements is Q. Coordinate 
measurements within the planes depend on the first two and the fourth columns 
of P. They define an affine coordinate frame within the plane. Affine measure­
ments (e.g. area ratios), though, are independent of the actual coordinate frame 
and depend only on the fourth column of P. If any metric information on the 
plane is known, that can be used to impose constraints on the choice of the 
frame. 

5.2.1 Measurements between parallel planes 

Distance of a plane from the reference plane 1f". 

We wish to measure the distance between scene planes specified by a point X 
and a point Xl in the scene (see Fig. 5.3a). These points may be chosen as 
respectively X = (X, Y, 0) T and XI = (X, Y, Z) T, and their images are x and 
Xl (Fig. 5.8). If P is the projection matrix, then the image coordinates are: 

The equations above can be rewritten as: 

x = P(XPl + Yp2 + P4) 

x' = p'(XPl + Yp2 + ZP3 + P4) 

(5.4) 

(5.5) 

where p and p' are unknown scale factors, and Pi is the ith column of the P 
matrix. 
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Fig. 5.8. Measuring the distance of a plane 7r' from the parallel reference plane 7r : 

a in the world; b in the image. 

Since PI . I = P2 . I = 0 and P4 . I = 1, taking the scalar product of (5.4) 
with I yields p = I· x and therefore (5.5) can be rewritten as: 

x' = p' (; + azv) (5.6) 

By taking the vector product of both terms of (5.6) with x' we obtain 

x X x' = -aZp(v x x') (5.7) 

and, finally, taking the norm of both sides of (5.7) yields: 

aZ = _ Ilx x x'II 
(I · x)llv x x'II 

(5.8) 

Since aZ scales linearly with a, we have obtained affine structure. If a is 
known, then we immediately obtain a metric value for Z as: 

Z = _ Ilx x x'II 
(P4 . x)llp3 x x'II (5 .9) 

Conversely, if Z is known (i.e. it is a reference distance) then (5.8) provides 
a means of computing a , and hence removing the affine ambiguity. 

Metric calibration from multiple references. 
If more than one reference distance is known, then an estimate of a can be 
derived from an error minimization algorithm. Here a special case is considered 
where all distances are measured from the same reference plane and an algebraic 
error is minimized. An optimal minimization algorithm will be described in 
section 5.3.2. 

For the i t h reference distance Zi with end points ri and r~, we define: f3i = 
Ilri x rill, Pi = I· ri, Ii = Ilv x rill· Therefore, from (5 .8) : 

(5.10) 
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Fig. 5.9. Measuring heights using parallel lines: The vertical vanishing point and the 
vanishing line for the ground plane have been computed. The distance of the top of 
the window on the left wall from the ground is known and used as reference. The 
distance of the top of the window on the right wall from the ground is computed from 
the distance between the two horizontal lines whose images are Ixl and Ix. The top 
line Ix' is defined by the top edge of the window, and the line Ix is the corresponding 
one on the ground plane. The distance between them is computed to be 294.3 cm. 

Note that all the points ri are images of world points Ri on the reference plane 
7r. By reorganizing (5.10) the following matrix A is defined: 

ZIPl')'l /31 

ZnPn')'n /3n 

where n is the number of reference distances. 
If the references are not affected by measurement error or n 

As = 0 where s = (81 82) T is a homogeneous 2-vector and 

81 
a=-

82 

1, then 

(5.11) 

In general , n > 1 and uncertainty is present in the reference distances. In 
this case we find the solution s which minimizes IIAsll. That is the eigenvector 
of the 2 x 2 matrix M = AT A corresponding to its minimum eigenvalue. The 
parameter a is finally computed from (5.11). With more reference distances 
Zi, a is estimated more accurately (see section 5.3), but no more constraints 
are added on the P matrix. 
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- Worked Example -
Objective: In Fig. 5.9 the distance of a horizontal line from the ground is 
measured. 

• The vertical vanishing point v is computed by intersecting vertical (scene) 
edges. 

All images of lines parallel to the ground plane intersect in points on the 
horizon, therefore: 

• a vanishing point Vl on the horizon is computed by intersecting the edges 
of the planks on the right side of the shed; 

• a second vanishing point V2 is computed by intersecting the edges of the 
planks on the left side of the shed and the parallel edges on the roof; 

• the plane vanishing line 1 is computed by joining those two points: 1 = Vl x 
V2; 

• the distance of the top of the frame of the window on the left from the 
ground has been measured on site and used as reference to compute Q, as 
in (5.8). 

• the line lx" the image of a horizontal line, is selected in the image by 
choosing any two points on it; 

• the associated vanishing point Vh is computed as Vh = lx, x 1; 
• the line lx, which is the image of a line parallel to lx, in the scene is 

constrained to pass through v h, therefore Ix is specified by choosing one 
additional point on it; 

• a point x' is selected along the line lx, and its corresponding point x on 
the line Ix computed as x = (x' x v) x Ix; 

• equation (5.9) is now applied to the pair of points x, x' to compute the 
distance Z = 294.3 cm. 

Distance between any two parallel planes. 
The projection matrix P from the world to the image is defined in (5.3) with 
respect to a coordinate frame on the reference plane (Fig. 5.8). In this section 
we determine the projection matrix p' referred to the parallel plane 7r' and we 
show how distances from the plane 7r' can be computed. 

Suppose the world coordinate system is translated by Zr from the plane 
7r onto the plane 7r' along the reference direction (Fig. 5.10), then the new 
projection matrix p' can be parametrized as: 

P' = [ PI P2 P3 ZrP3 + P4 ] (5.12) 

Note that only the last column has changed, and if Zr = 0 then p' = P, as 
expected. 

The distance Z' of the plane 7r" from the plane 7r' in space can be computed 
as (cf. (5.9)). 

Z' = _ Ilx' x xliii 
p'IIp3 x xliii with 

P4· x' p' = -:---=-c=-__ _ 

1 + ZrP3· P4 
(5.13) 
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I 

Zr 

Fig. 5.10. Measuring the distance between any two planes 7r' and 7r" parallel to the 
reference plane 7r: the geometry. 

Fig. 5.11. Measuring heights of objects on separate planes: the height of the desk is 
known and the height of the file on the desk is computed. 

- Worked Example -
Objective: In Fig. 5.11 the height of a file on a desk is computed from the 
height of the desk itself: 

• the ground is the reference plane 7r and the top of the desk is the plane 
denoted as 7r' in Fig. 5.10; 

• the plane vanishing line and vertical vanishing point are computed as usual 
by intersecting parallel edges; 

• the distance Zr between the points rand r' is known (the height of the 
desk has been measured on site) and used to compute the Q parameter 
from {5.8}; 

• equation (5.13) is now applied to the end points of the marked segment to 
compute the height Z' = 32.0 cm. 
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5.2.2 Measurements on parallel planes 

As described in section 5.1.2, given the homology between two planes 7r and 7r' 

in the pencil, we can transfer all points from one plane to the other and make 
affine measurements in either plane. 

The homology between the planes can be derived directly from the two 
projection matrices (5.3) and (5.12). The plane-to-image homographies may be 
extracted from the projection matrices P and p', ignoring the third column, to 
give: 

H = [ Pl P2 P4 ], H' = [ Pl P2 Zr P3 + P4 ] 

Then H = H'H-1 maps image points on the plane 7r onto points on the plane 
7r' and so defines the homology. By inspection, since Pl . P4 = 0 and P2 . P4 = 0 
then (I + ZrP3pnH = H', hence the homology matrix His: 

- T H = I + ZrP3P4 (5.14) 
Alternatively from (5.3) the homology matrix can be written as: 

- -T 
H = I + 1/1vl (5.15) 

with 1/1 = aZr • 

If the distance Zr and the last two columns of the matrix P are known 
then the homology between the two planes 7r and 7r' is computed as in (5.14). 
Otherwise, if only v and I are known and two corresponding points rand r' 
are viewed, then the homology characteristic parameter 1/1 in (5.15) can be 
computed from (5.8). In fact: 

aZr = 1/1 = _ Ilr x r'll (5.16) 
(I· r)llv x r'll 

knowing either the distance Zr between the two planes or the a parameter. 
Examples of homology transfer and affine measurements are shown in 

Figs 5.7 and 5.12. 

- Worked Example -
Objective: In Fig. 5.12 the ratio between the areas of two windows :1; in the 
world is computed: 

• the orthogonal vanishing point v is computed by intersecting the edges of 
the small windows linking the two front planes; 

• the plane vanishing line I (common to both front planes) is computed by 
intersecting two sets of parallel edges on the two planes; 

• the only remaining parameter '¢ of the homology H in (5.15) is computed 
from (5.16); 

• each of the four corners of the window on the left is transferred by the 
homology H onto the corresponding points on the plane of the other window 
(Fig. 5.12b); 

Now we have two quadrilaterals on the same plane: 

• the image is affine-warped by pulling the plane vanishing line to infin­
ity [78]; 

• the ratio between the two areas in the world is computed as the ratio 
between the areas in the affine-warped image; we obtain :1; = 1.45. 
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a b 

Fig. 5.12. Measuring ratios of areas on separate planes: a original image with two 
windows highlighted; b the left window is transferred onto the plane identified by 
r' by the homology mapping (5.15). The two areas now lie on the same plane and 
can, therefore, be compared. The ratio between the areas of the two windows is then 
computed as: 4; = 1.45. 

5.2.3 Determining the camera position 

Suppose the camera centre is C = (Xc , Yc, Zc, We) T in affine coordinates (see 
Fig. 5.2). Then since PC = 0 we have 

(5.17) 

The solution to this set of equations is given (using Cramer's rule) by: 

X c = -det [ P2 P3 P4], Yc = det [ Pl P3 P4] , 

Zc = -det [ Pl P2 P4] , We = det [ Pl P2 P3] (5.18) 

If P is entirely known the location of the camera centre is metric defined. If a 
is unknown we can write: 

Xc = -det [ P2 v P4] , Ye = det [ Pl V P4] , 

aZe = -det [ PI P2 P4] , We = det [ Pl P2 v] (5.19) 

and obtain the distance Ze of the camera centre from the plane up to the 
affine scale factor a. As before, the distance Ze can be upgraded to metric 
with knowledge of a, or use knowledge of the camera height to compute a and 
upgrade the affine structure. 

Note that affine viewing conditions (where the camera centre is at infinity) 
present no problem in expressions (5.18) and (5.19), since in this case we have 

j = [00 *]T and v = [* * O]T. Hence We = 0, thus a camera centre on 
the plane at infinity is obtained, as expected. This point on 7r 00 represents the 
viewing direction for the parallel projection. 
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Fig. 5.13. Computing the location of the camera: equations (5.18) are used to obtain: 
Xc = -381.0 cm, Yc = -653.7 cm, Zc = 162.8 cm. 

If the viewpoint is finite (Le. not affine viewing conditions) then the formula 
for aZc may be developed further by taking the scalar product of both sides of 
(5 .17) with the vanishing line 1. The result is: 

aZc = -(1 · v)-l (5.20) 

- Worked Example -
Objective: In Fig. 5.13 the position of the camera centre with respect to the 
chosen Cartesian coordinate system is determined. Note that in this case we 
have chosen P4 to be the point 0 in the figure instead of 1: 
• the ground plane (X , Y plane) is the reference; 
• the vertical vanishing point is computed by intersecting vertical edges; 
• the two sides of the rectangular base of the porch have been measured, thus 

providing the position of four points on the reference plane; the world-to­
image homography is computed from those points [24] ; 

• the distance of the top of the frame of the window on the left from the 
ground has been measured on site and used as reference to compute 0, as 
in (5.8); 

• the three-dimensional position of the camera centre is then computed sim­
ply by applying equations (5.18); we obtain 

Xc = -381.0cm Yc = -653.7cm Zc = 162.8cm 

In Fig. 5.23c, the camera has been superimposed into a virtual view of the 
reconstructed scene. 

5.3 Uncertainty analysis 

Feature detection and extraction, whether manual or automatic (e.g. using an 
edge detector), can only be achieved to a finite accuracy. Any features extracted 
from an image, therefore, are subject to measurements errors. In this section 
we consider how these errors propagate through the measurement formulae 
in order to quantify the uncertainty of the final measurements [38]. This is 
achieved by using a first order error analysis (see section 3.4) . 
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The uncertainty of the projection matrix is analyzed first, followed by the 
uncertainty of the distance measurements. 

5.3.1 Uncertainty of the P matrix 

The uncertainty in the projection matrix depends on the location of the van­
ishing line, the location ofthe vanishing point, and on 0:, the affine scale factor. 
Since only the final two columns contribute, the uncertainty in P is modelled 
as a 6 x 6 homogeneous covariance matrix, Ap. Since the two columns have 
only five degrees offreedom (two for v, two for I and one for 0:), the covariance 
matrix is singular, with rank five. 

Assuming statistical independence between the two column vectors P3 and 
P4, the 6 x 6 rank-five covariance matrix Ap can be written as: 

Ap = (Ap3 0 ) o Ap4 
(5.21) 

Furthermore, assuming statistical independence between 0: and v, since P3 = o:v: 

A 2A 2 T 
P3 = 0: v + 0' a VV (5.22) 

with Av the homogeneous 3 x 3 covariance of the vanishing point v, and the 
variance O'~ computed as in Appendix D. 

Since P4 = j = nhT its covariance is: 

OP4 OP4 T 
Ap4 = 81 AIm (5.23) 

where the 3 x 3 Jacobian W is: 
OP4 I . II - lIT 

81 (I.I)! 

5.3.2 Uncertainty of measurements between planes 

When making measurements between planes (5.9), uncertainty arises from the 
uncertain image locations of the points x and Xl and from the uncertainty in 
P. 

The uncertainty in the end points x, x' of the length to be measured (result­
ing largely from the finite accuracy with which these features may be located 
in the image) is modelled by covariance matrices Ax and Axl. 

Maximum likelihood estimation of the end points and uncertainties. 

In this section the P matrix is assumed noise-free; this assumption is removed 
below (5.26). 

Since in the error-free case, x and Xl must be aligned with the vertical 
vanishing point v, the maximum likelihood estimates (x and Xl) of their true 
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a b c 

Fig. 5.14. Maximum likelihood estimation of the end points. a Original image 
(closeup of Fig. 5.15). b The uncertainty ellipses of the end points, Ax and Ax" 
are shown. These ellipses are defined manually; they indicate a 3-standard deviation 
confidence region for localizing the points. c The computed MLE end points x and 
x' are aligned with the vertical vanishing point (outside the image). 

locations can be determined by minimizing the sum of the Mahalanobis dis­
tances between the input points x and x' and their MLE estimates x and x': 

subject to the alignment constraint 

v· (x X x') = 0 

(the subscript 2 indicates inhomogeneous 2-vectors). 

(5.24) 

(5.25) 

This is a constrained minimization problem. A closed form solution can be 
found (by the Lagrange multiplier method) in the special case where 

Ax~ = , ... ? AX2 

with 'Y a scalar, but unfortunately in the general case the problem has no 
closed-form solution. Nevertheless, in the general case, an initial solution can 
be computed by using the approximation given in Appendix B and then refining 
it by running a numerical algorithm, such as the Levenberg-Marquardt. 

Once the MLE end points have been estimated, standard techniques [20, 38] 
are employed to obtain a first order approximation to the 4 x 4, rank-three 

AT , 
covariance of the MLE 4-vector <: = (X2T xJ). Figure 5.14 illustrates the 
idea (see appendix C for details) . 

Uncertainty of distance measurements. 
Assuming noise in both the end points and the projection matrix, and statistical 
independence between , and P we obtain a first order approximation for the 
variance of the distance Z of a point from a plane: 
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a~ = V z ( ~, 1J V z T (5.26) 

where V z is the 1 x 10 (A, is 4 x 4 and Ap is 6 x 6) Jacobian matrix of 
the function (5.9) which maps the projection matrix and the end points x, x' 
to their world distance Z. The computation of V z is explained in detail in 
Appendix C. 

5.3.3 Uncertainty of the camera position 

The distance of the camera centre from the reference plane is computed ac­
cording to (5.20) which can be rewritten as: 

Zc = -(P4 . P3)-1 (5.27) 

If an exact P matrix is assumed, then the camera distance is exact too, in 
fact it depends only on the matrix elements of P. Similarly, the accuracy of Zc 
depends only on the accuracy of the P matrix. 

Equation (5.27) maps n6 into n, and the associated 1 x 6 Jacobian matrix 
V Zc is readily derived to be: 

VZc = Z; (pI pJ) 

and, from a first order analysis the variance of Zc is: 

a~c = VZcApVZcT 

where Ap is computed in section 5.3.1. 

(5.28) 

The variances at and a}c of the X, Y location of the camera can be com­
puted in a similar way [24]. 

5.3.4 Example - uncertainty of heights of people 

In this section we show the effects of the number of reference distances and 
image localization error on the predicted uncertainty in measurements. 

An image obtained from a poor-quality security camera is shown in Fig. 5.15a. 
It has been corrected for radial distortion using the method described in sec­
tion 3.2, and the floor taken as the reference plane. Vertical and horizontal 
lines are used to compute the P matrix of the scene. The vanishing line for the 
ground plane is shown in white at the top of each image. 

The scene is calibrated by identifying two points Vl, V2 on the reference 
plane'S vanishing line (shown in white at the top of each image) and the vertical 
vanishing point v. These points are computed by intersecting sets of parallel 
lines. The uncertainty of each point is assumed to be Gaussian and isotropic 
with standard deviation 0.1 pixels. The uncertainty of the vanishing line is 
derived from a first order propagation through the vector product operation 
1= Vl X V2. The projection matrix P is therefore uncertain with its covariance 
given by (5.21). 
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Fig. 5.15. Measuring heights and estimating their uncertainty. a Original image. 
b Image corrected for radial distortion and measurements superimposed. With only 
one supplied reference height the man's height has been measured to be Z == 190.4 
± 3.94 cm, (cf. ground truth value, 190 cm). The uncertainty has been estimated 
by using (5.26) (the uncertainty bound is at ± 3 standard deviations). c With two 
reference heights Z == 190.4 ± 3.47 cm. d With three reference heights Z == 190.4 ± 
3.27 cm. In the limit Ap == 0 (error-free P matrix), the height uncertainty reduces to 
2.16 cm for all (b, c , d); the residual error, in this case, is due only to the error on 
the two end points. 

In addition, the end points of the height to be measured are assumed to be 
uncertain and their covariances estimated as in section 5.3.2. The uncertain­
ties in the height measurements shown are computed as 3-standard deviation 
intervals. 

In Fig. 5.15b one reference height is used to compute the affine scale factor 
0: from (5.8) (the minimum number ofreferences is used) . Uncertainty has been 
assumed in the reference heights, vertical vanishing point and plane vanishing 
line. Once 0: is computed, other measurements in the same direction are metric. 
The height of the man has been computed and shown in the figure. It differs 
by 4 mm from the known true value. 

The uncertainty associated with the height of the man is computed from (5.26) 
and displayed in Fig. 5.15b. Note that the true height value falls always within 
the computed 3-standard deviation range, as expected. 
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a b 

c 

Fig. 5.16. Measuring heights and estimating their uncertainty, second point of view. 
a Original image. b The image has been corrected for radial distortion and height 
measurements computed and superimposed. With one supplied reference height Z = 
190.2 ± 5.01 cm (cf. ground truth value 190 cm). c With two reference heights Z = 
190.4 ± 3.34 cm. Compare with Fig. 5.15. 

As the number of reference distances is increased (see Figs 5.15c and d), 
the uncertainty of P (in fact, just on 0:) decreases, resulting in a decrease in 
uncertainty of the measured height, as theoretically expected (see Appendix C 
for details). Equation (5.11) has been employed here to metric calibrate the 
distance from the floor. 

Figure 5.16 shows images of the same scene with the same people, but 
acquired from a different point of view. As before, the uncertainty of the mea­
surements decreases as the number of references increases (Fig. 5.16b and c). 
The measurement is the same as in the previous view (Fig. 5.15) thus demon­
strating invariance to camera location. 

Figure 5.17 shows an example where the height of the woman and the re­
lated uncertainty are computed for two different orientations of the uncertainty 
ellipses of the end points. In Fig. 5.17b the two input ellipses of Fig. 5.17a have 
been rotated by an angle of approximately 40°, maintaining the size and posi­
tion of the centres. The angle between the direction defined by the major axes 
(direction of maximum uncertainty) of each ellipse and the measuring direction 
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Fig. 5.17. Estimating the uncertainty in height measurements for different orienta­
tions of the input 3-standard deviation uncertainty ellipses. (a) Cropped version of 
image 5.15b with measurements superimposed: Z = 169.8 ± 2.5 em (at three standard 
deviations). The ground truth is Z = 170 em, it lies within the computed range; (b) 
the input ellipses have been rotated keeping their size and position fixed: Z = 169.8 
± 3.1 em (at three standard deviations) . The height measurement is less accurate. 

is smaller than in Fig. 5.17a and the uncertainty in the measurements greater, 
as expected. 

5.3.5 Validation of uncertainty analysis 

In this section the first order error analysis previously described is validated by 
computing the uncertainty of the height of the man in Fig. 5.15e using Monte 
Carlo simulations as described in Table 5.1 and comparing it to the first order 
analytical result. Specifically, the statistical standard deviation of the man's 
height from a reference plane is computed and compared with the standard 
deviation obtained from the first order error analysis. 

Uncertainty is modelled as Gaussian noise and described by covariance ma­
trices (see section 3.4). Noise is assumed on the end points of the three reference 
distances and also on the vertical vanishing point, the plane vanishing line and 
on the end points of the height to be measured. 

Figure 5.18 shows the results of the test. The base point is randomly dis­
tributed according to a 2D non-isotropic Gaussian about the mean location x 
(on the feet of the man in Fig. 5.15) with covariance matrix Ax (Fig. 5.18a). 
Similarly the top point is randomly distributed according to a 2D non-isotropic 
Gaussian about the mean location x' (on the head of the man in Fig. 5.15), 
with covariance Ax' (Fig. 5.18b). 

The two covariance matrices are respectively: 

A _ (10.180.59) 
x - 0.59 6.52 

Ax' = (4.010.22) 
0.221.36 
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Fig. 5.18. Monte Carlo simulation of the example in Fig. 5.15d. a Distribution of the 
input base point x and the corresponding 3-standard deviation ellipse. b Distribution 
of the input top point x' and the corresponding 3-standard deviation ellipse. Figures 
a and b are drawn at the same scale. c The analytical and simulated distributions of 
the computed distance Z. The two curves are almost identical. 

Suitable values for the covariances of the three references, the vanishing 
point and the vanishing line have been used. The simulation has been run with 
N = 10 000 samples. 

Analytical and simulated distributions of Z are plotted in Fig. 5.18c; the 
two curves are almost identical. Any slight difference is due to the assumptions 
of statistical independence (5.21, 5.22 and 5.26) and first order truncation in­
troduced by the error analysis. 

A comparison between the statistical and the analytical standard deviations 
is reported in the table below with the corresponding relative error: 

First order Monte Carlo 

az az 
1.091 em 1.087 em 

Relative error 
luz -uz I 

u' 

0.37% 
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• For j=l to N (with N = number of samples) 
- For each reference: given the measured reference end points r (on the 

reference plane) and r', generate a random base point r j, a random top 
point rj and a random reference distance Zrj according to the associated 
covariances. 

- Generate a random vanishing point according to its covariance Av. 
- Generate a random plane vanishing line according to its covariance AI. 
- Compute the Q parameter by applying (5.11) to the references, and the 

current P matrix (5.3). 
- Generate a random base point Xj and a random top point xj for the 

distance to be computed according to their respective covariances Ax 
and Ax'. 

- Project the points Xj and xj onto the best fitting line through the 
vanishing point (see section 5.3.2). 

- Compute the current distance Zj by applying (5.9). 
• The statistical standard deviation of the population of simulated Zj values 

is computed as: 
N -2 

,2 ~j=l (Zj - Z) 
Uz= N-l 

and compared to the analytical one (5.26). 

Table 5.1. Monte Carlo simulation. 

Note that the height Z = 190.45 cm and the associated first order uncertainty 
3uz = 3.27 em is shown in Fig. 5.15d. 

In the limit Ap = 0 (error-free P matrix), the simulated and analytical 
results are even closer. 

This result shows the validity of the first order approximation in this case, 
and numerous other examples have followed the same pattern. However, some 
care must be exercised since as the input uncertainty increases, not only does 
the output uncertainty increase, but the relative error between the statistical 
and the analytical output standard deviations also increases. For large covari­
ances, the assumption of linearity is poorly founded; therefore the first order 
analysis no longer holds. 

This is illustrated in the table below where the relative error is shown for 
various increasing values of the input uncertainties. The uncertainties of the 
references distances and the end points are multiplied by the increasing factor "(. 
For instance, if Ax is the covariance ofthe image point x then Ax ("() = "(2 Ax. 

"( 1 5 10 20 30 

luzu-;uz l (%) 0.37 1.68 3.15 8.71 16.95 
z 

In the affine case (when the vertical vanishing point and the plane vanishing 
line are at infinity) the first order error propagation is exact (no longer just an 
approximation as in the general projective case), and the analytic and simulated 
results coincide. 
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5.4 Three-dimensional metrology from a single view 

This section describes a very simple but effective generalization of the theory 
described above. 

The single-view techniques for measuring distances between two planes in 
a pencil are extended to making full three-dimensional measurements in the 
observed scene. The key idea is a new description of the three-dimensional space 
as a collection of three pencils of parallel planes in three different directions [7]. 
That leads to a complete three-dimensional reconstruction from single images. 

5.4.1 The three-dimensional space as a collection of pencils of 
parallel planes 

If v x, V y and v z are the three vanishing points (with unit third coordinate) 
for three directions in space (not necessarily orthogonal to each other) and 0 

is the origin of the image coordinate system, then the P matrix can be written 
as [38]: 

(5.29) 

with ax, a y and a z three unknown scale factors. 
Equation (5.29) generalizes (5.3) and allows us to extend the theory dis­

cussed in section 5.2 to parametrizing the space as three pencils of planes rather 
than only one. Measurements can now be computed in three directions, thus 
specifying the complete three-dimensional affine position of world points. 

As explained in section 5.2, attention must be paid to the fact that the 
image point 0 can be chosen arbitrarily but, in order to avoid degeneracies in 
the parametrization, it must not lie on any of the three vanishing lines identified 
by the three vanishing points v x, V y and v z, i.e. 

o· (Vi X Vj) -:j:. 0 Vi,j = X,y,Z 

A possible choice of the point 0 may then be the average (centre of mass) 
of the three vanishing points in homogeneous coordinates: 

Li=x,y,z Vi 
0=--":':<":'--

3 

5.4.2 Three-dimensional location of points 

Generalizing (5.8), the X, Y, Z location of a three-dimensional point Q may be 
computed from single images applying the following formulae (see Fig. 5.19): 

axX = _ 0 ·lyz Ilqyz x qll (5.30) 
qyz ·lyz Ilvx x qll 

ayY=- o·lxz Iqxzxqll 
qxz ·lxz Ilvy x qll 

azZ = _ 0 ·lxy Ilqxy x qll 
qxy ·lxy Ilvz x qll 
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Fig. 5.19. Complete affine three-dimensional reconstruction from single images. The 
three-dimensional space is parametrized as three pencils of parallel planes (only one 
plane for each pencil is shown, the three pencils do not need to be orthogonal to each 
other) . The location of a world point Q can be computed by applying (5.30) (see 
also (5 .8» . 

Where q is the image of the world point Q, lij = V i X V j and qij is the 
intersection of the plane spanned by the axis i and j with the line through Q 
parallel to the direction k (Vi,j, k = x,y, z). If the O::i parameters are known, 
then metric structure can be computed for the point Q; otherwise only affine 
structure can be obtained. 

Only one of the points qxy, qyz and qxz is necessary. 
In images of real scenes it is quite rare to find a situation in which the three 
base points qxy , qyz and qxz are all visible. We now show that only one of 
those points needs to be known and that the other two can be computed. 

For instance, it is easy to prove that if q xy is known and ax and ay are the 
images of the chosen world coordinates axes X and Y, respectively, then: 

qyz = (q x Vx) x (vz x (ay x (qxy x vx))) 

qxz = (q x v y) x (v z x (ax x (qxy x v y))) 

(5.31 ) 

(5.32) 

The image points qyz and qxz can also be constructed geometrically as il­
lustrated in Fig. 5.20. These operations correspond, in the world, to parallel 
projections of the three-dimensional point Q into the plane Y Z along the X­
direction in (5.31); and into the plane X Z along the Y-direction in (5.32). 
Symmetrical formulae can be derived in cases where qyz or qxz are known. 

Equations (5.31) and (5.32) (or the symmetrical ones) may be substituted 
in (5.30) to obtain formulae which depend on one base point only. 

5.4.3 Three-dimensional location of the camera 

Equations (5.18) to compute the camera location still hold. But they can be 
rewritten in the light of this new parametrization, in the case of unknown 0:: 

parameters as: 
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! 
Fig. 5.20. Geometric construction of the point qyz: the points q, qxy, V x , V z and 
the line a y are known and the point qyz is constructed by line intersections. A similar 
construction applies for the point qxz. 

axXe = -det [v y V z P4], ayYe = det [vx V z P4], 

azZe = -det [vx Vy P4], We = det [vx Vy v z ] (5.33) 

and thus the affine location of the camera centre is computed. As before, metric 
structure is obtained if the a parameters are known. 

5.4.4 Camera calibration from a single view 

Full calibration. 
Given a world coordinate system XY Z with origin in 0 and an image coor­
dinate system xy, if we know the three vanishing points for the X, Y and Z 
directions and at least one world distance measurement along each direction, 
by applying (5.30) the three calibration parameters ai can be computed (see 
section 5.2.1) . We can choose the origin 0 to be the image of 0 and from (5.29) 
the full world-to-image projection matrix P is determined and the scene cali­
brated. In fact the origin 0 and each vanishing point provide two degrees of 
freedom. The three scalars ai provide three more degrees of freedom for a total 
of eleven independent degrees of freedom. Full external camera calibration is, 
therefore, obtained from a single image. 

Once the scene has been calibrated, metric structure of points and cam­
eras can be recovered from (5.30) and (5.33), respectively. Moreover, the three 
image-to-world homographies for each of the planes can be extracted directly 
from (5.29). 

If the homography between a world plane (e.g. the plane XY) and the image 
is known, then only the a parameter for the direction not on that plane (e.g. a z ) 

must be known to compute a complete metric three-dimensional reconstruction, 
since computing the two remaining calibration parameters (ax and a y) from 
the known homography is straightforward. 
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Partial calibration. 
There may be situations where only some of the calibration parameters a are 
known. In that case we obtain an intermediate, partially affine and partially 
metric structure. Partial calibration leads to a partial reconstruction of the 
scene. For instance, the situation analyzed in section 5.2.2 is characterized by 
affine calibration on the plane and metric off the plane (if a is known). This is 
sufficient to compute metric distances off the reference plane (but only affine 
measurements on the plane). 

The theory developed in section 5.2.1 concerning the use of homologies to 
transfer measurements and points from one plane to a parallel one, and in 
section 5.3 concerning the uncertainty analysis on distances between planes 
still applies. It can be employed to measurements within the same pencil of 
planes. 

5.5 Applications 

The validity of the metrology algorithm presented here is demonstrated in this 
section with a number of practical applications. 

5.5.1 Forensic science 

A common requirement in surveillance images is to obtain measurements from 
the scene, such as the height of a suspect. Although the suspect has usually 
left the scene, reference lengths can be measured from fixtures such as tables 
and windows. 

Figure 5.21 illustrates the computation of the height of the person standing 
next to a telephone box. The ground is the reference plane and the vertical is 
the reference direction. The edges of the paving stones are used to compute 
the vanishing line of the plane, the edges of the telephone box to compute 
the vertical vanishing point, and its height provides the metric calibration in 
the vertical direction (Fig. 5.21b). Only one reference height (minimal set) has 
been used in this example. The height of the person in the photograph is then 
computed using (5.9) and shown in Fig. 5.21c. The ground truth is 187 cm, 
but note that the person is leaning slightly down on his right foot. 

The associated uncertainty has also been estimated; two uncertainty ellipses 
have been defined manually, one on the head of the person and the other on 
the feet and then propagated across the chain of computations as described 
in section 5.3 to give the 2.2 cm three-standard deviation uncertainty range 
shown in Fig. 5.21c. 

5.5.2 Furniture measurements 

In this section another application is described. Heights of furniture such as 
shelves, tables or windows in an indoor environment are measured. 
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a b c 

Fig. 5.21. The height of a person standing by a public telephone is computed. a 
Original image. b The ground plane is the reference plane, and its vanishing line 
is computed from the paving stones on the floor. The vertical vanishing point is 
computed from the edges of the telephone box, whose height is known, and used as 
reference. The vanishing line and the reference height are shown. c The computed 
height of the person and the estimated uncertainty are shown. The veridical height 
is 187 cm, but note that the person is leaning slightly on his right foot . 

Figure 5.22a shows a desk in The Queen's College upper library in Oxford. 
The floor is the reference plane and its vanishing line has been computed from 
intersecting edges of the floorboards. The vertical vanishing point has been 
computed by intersecting the vertical edges of the bookshelf. The vanishing 
line is shown in Fig. 5.22b with the reference height used. 

The computed heights and associated uncertainties are shown in Fig. 5.22c. 
The uncertainty bound is ±3 standard deviations. Note that the ground truth 
always falls within the computed uncertainty range. The height of the camera 
is computed as 1.71 m from the floor. 

5 .5.3 Virtual modelling 

Figure 5.23 shows an example of a complete three-dimensional reconstruction 
of a real scene from a single image. Two sets of horizontal edges are used to 
compute the vanishing line for the ground plane, and vertical edges are used 
to compute the vertical vanishing point. 

The height of the window frame and the height of one of the pillars are used 
as reference heights. Furthermore, the two sides of the base of the porch have 
been measured, thus defining the metric calibration of the ground plane. 

Figure 5.23b shows a view of the reconstructed model. The person is rep­
resented as a flat silhouette. The position of the camera centre is also esti­
mated and superimposed on a different view of the three-dimensional model in 
Fig. 5.23c. 
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a b 

c 

Fig. 5.22. Measuring the height of furniture in The Queen's College upper library, 
Oxford. a Original image. b The plane vanishing line (white horizontal line) and 
reference height (white vertical line) are superimposed on the original image; the 
marked shelf is 156 cm high. (c) Computed heights and related uncertainties; the 
uncertainty bound is at ±3 standard deviations. The ground truth is: 115 cm for the 
right hand shelf, 97 cm for the chair and 149 cm for the shelf on the left . Note that 
the ground truth always falls within the computed uncertainty range. 

5.5.4 Modelling paintings 

Figure 5.24 shows a masterpiece of Italian Renaissance painting, Flagellazione 
by Piero della Francesca (1416- 1492). The painting, thanks to the artist's fa­
mous mathematical skills [32], faithfully follows the geometric rules of linear 
perspective, and therefore the techniques described can be applied to compute 
the structure of the scene. 

Unlike other techniques [59], whose main aim is to create convincing new 
views of the painting regardless of the correctness of the three-dimensional ge­
ometry, here a geometrically correct model of the viewed scene is reconstructed 
(see Fig. 5.24c and d). 

In the painting analyzed here, the ground plane is chosen as the reference 
and its vanishing line computed from the several parallel lines on it. The vert i-
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a b 

c 

Fig. 5.23. A complete three-dimensional reconstruction of a scene from a photograph: 
a original image; b a view of the reconstructed three-dimensional model; c a view 
of the reconstructed three-dimensional model which shows the camera position and 
height with respect to the scene. These results are also shown in colour plate 1. 

cal vanishing point follows from the vertical lines and consequently the relative 
heights of people and columns are defined. Figure 5.24h shows the painting 
with height measurements superimposed. Christ's height is taken as the refer­
ence and the heights of the other people are expressed as relative percentage 
differences. Notice the consistency between the height of the people in the fore­
ground with the height of the people in the background. 

By assuming a square floor pattern, the ground plane is rectified and the 
position of each object estimated [24, 77]. The scale of the floor relative to 
heights is set from the ratio between the height and the base of the frontoparallel 
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a b 

c d 

Fig. 5.24. A complete three-dimensional reconstruction of a Renaissance painting. 
a The painting Flagellazione (approx. 1453), by Piero della Francesca (1416- 1492), 
Galleria Nazionale delle Marche, Urbino, Italia. Courtesy of Ministero per i Beni 
e Ie Attivita Culturali. b Height measurements are superimposed on the original 
image. Christ's height is taken as the reference and the heights of all the other people 
are expressed as percent differences. The vanishing line is dashed. c A view of the 
reconstructed model. The patterned floor has been reconstructed in areas where it is 
occluded by taking advantage of the symmetry of its pattern. d Another view of the 
model with the roof removed to show the relative positions of people and architectural 
elements in the scene. Notice the repeated geometric pattern on the floor in the area 
delimited by the columns (barely visible in the painting). The people are represented 
simply as flat silhouettes since it is not possible to recover their volume from one 
image; they have been cut out manually from the original image. The columns have 
been approximated with cylinders. These results are also shown in colour plate 4 and 
colour plate 5. 

archway. The measurements, up to an overall scale factor, are used to compute 
a three-dimensional model of the scene (scaled Euclidean structure). 

Figure 5.24c shows a view of the reconstructed model. The people are rep­
resented again as flat silhouettes. The columns have been approximated with 
cylinders. The partially visible ceiling has been reconstructed correctly. Fig­
ure 5.24d shows a different view of the reconstructed model, where the roof 
has been removed to show the relative position of the people in the scene. 
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a b 

Fig. 5.25. Single-view metrology cannot be applied when the base point is not de­
fined: a original image - the lectern in The Queen's College chapel; b we want to 
measure the distance of the beak of the eagle from the floor, but the intersection of 
the ground plane with the vertical through the tip of the beak is not defined in the 
image and therefore single-view metrology cannot be applied. 

5.6 Missing base point 

A restriction on the single-view measurement algorithm presented in this chap­
ter is the need to identify corresponding points between planes. 

The problem. 
One case where the method does not apply, therefore, is that of measuring the 
distance of a general three-dimensional point to a reference plane where the 
corresponding point on the floor in undefined (see Fig. 5.25). Here the homology 
is under-determined, and the line joining the image of this point to the vertical 
reference vanishing direction gives the locus of points which may correspond 
(therefore an uncertainty range for the height may still be computed). 

Possible solutions. 
A second view provides another locus, and the intersection of these loci in ei­
ther view (transferred by the inter-image homography induced by the reference 
plane) uniquely defines the corresponding point on the reference plane. This 
construction was used in [100] to determine the vertical projection of a football 
onto the ground plane (see also [103] for a similar construction). The distance 
may then be computed as described in the main body of this chapter, or by 
using more direct formulae developed in the next chapter (see also [62]). 

Here one intermediate case of interest is explored: when only one view is 
provided and a light-source casts shadows onto the reference plane. The light­
source provides restrictions analogous to a second viewpoint [128], thus the pro­
jection (in the reference direction) of the three-dimensional point onto the ref­
erence plane may be determined as the intersection of a pair of one-dimensional 
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loci (Fig. 5.26). In [101] this method was used to compute the trajectory of a 
football. 

5.6.1 Using shadows 

We wish to compute the distance of a three-dimensional point X from a refer­
ence plane but the intersection of the vertical line through X with the plane 
(base point X') is not defined (Fig. 5.26a shows a schematic of the situation de­
scribed as it appears on the image plane). The single-view metrology algorithm 
is no use here, unless the image base point x' can be computed. 

A reference height needs to be considered where top and base points can 
both be identified (points rand r' in Fig. 5.26a). The light source s casts a 
shadow Xs on the reference plane for the point x and similarly it casts a shadow 
r s for the reference point r. The point r' corresponds to r along the reference 
direction. 

By representing points as homogeneous 3-vectors, the intersection of the 
line < XR > in space with the reference plane can be computed in the image 
as p = (x x r) x (xs x rs) (referred to as the piercing point, see Fig. 5.26b). If 
we assume the light source is at infinity, then the two shadow lines < R'Rs > 
and < X'X s > are parallel to each other in space and the point Vh is the 
vanishing point of their direction in the image plane. The point Vh can be 
computed by intersecting the reference shadow line and the vanishing line: 
Vh = (rs x r') x l. Therefore the image point x' on the plane can be computed 
as x' = (xs x Vh) x (p x r'). The algorithm described in section 5.2.1 may 
now be applied to compute the world distance between x and x'. Furthermore, 
the vanishing point v for the reference direction may easily be computed as 
v = (r x r') x (x x x'). 

The configuration described is analogous to the case of having one perspec­
tive and one affine camera described by Zhang et al. in [136]. 

Planar homology. 
It is interesting to notice that the two triangles r, r', r s and x, x' ,Xs are in 
a Desargues configuration and therefore they are related by a planar homol­
ogy whose vertex is the piercing point and whose axis is the line < SVh > 
(Fig. 5.26c). Therefore, an alternative, algebraic way to compute the point x' 
is: 

• estimate the homology H from its vertex (the point p), its axis (the line 
< SVh » and a pair of corresponding points (e.g. r, x or r s , x s ) by apply­
ing (3.4); 

• apply the homology projection to the reference point r' : 

x' = Hr' (5.34) 

From Desargues' theorem, the vanishing point v for the reference direction 
also lies on the axis of the homology: V· (s x Vh) = o. Often both v and S are 
known. In this case the position of the point x' is over-determined and it can 
be computed employing a maximum likelihood algorithm. 



104 5. Single-view metrology 

S 
Ughl source 

a 

c 

Piercing poinl 
...- p. ·X 

b 

Fig. 5.26. Using shadows to compute distances in single views. a We wish to compute 
the distance of the point x from the reference plane but the base point (x') is not 
defined. The reference point r (off the plane) and its base r' (on the plane) correspond 
along the reference direction. The light source 5 (at infinity) casts the shadow points 
rs and Xs onto the reference plane. b The position of the base point x' is computed 
by making use of the shadows on the reference plane (see text) . c The two triangles 
r, r' , r s and x, x' ,Xs are in a Desargues configuration and therefore related by a planar 
homology H. The piercing point p (image of the intersection of the line < XR > 
with the reference plane) is its vertex and the line joining the points sand Vh (on 
the plane at infinity) its axis. 
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The case of finite light source. 
In the case where the light source is finite, then the two shadow lines < R/RS > 
and < X/X S > are no longer parallel to each other and therefore the vanishing 
point Vh cannot be computed. 

Nevertheless if the vertical vanishing point v for the reference direction is 
known, then the axis of the homology is still defined: a = v x s; and the ho­
mology H can be computed. Hence the point x' can be computed from (5.34). 
Computing the world distance of x' from the reference plane is now straight­
forward. 



6. Metrology from planar parallax 

This chapter explores the geometry of two and three views in a plane-plus­
parallax framework. Algorithms for structure and camera computation are de­
veloped and the results compared with the single-view metrology described in 
the previous chapter (see also [23]; similar, independent work can be found 
in [62]). 

In particular, we address the problem of computing distances of points from 
planes when the intersection of the plane with the line through the point parallel 
to the reference direction is not defined (see Fig. 5.25). In such a case the single­
view metrology approach is not sufficient. In section 5.6 we have shown how 
to overcome the problem when a light source casts a shadow onto a plane. In 
the case where no shadows can be detected then one more view provides the 
solution. 

The plane-pIus-points configuration has received significant attention in the 
past, not least because it arises frequently in everyday scenes. A useful and 
popular approach to the problem decomposes the image motion into a planar 
homographic transfer plus a residual image parallax vector [61, 62, 72, 105]. 
This decomposition has the advantage that it partially factors out dependence 
on the relative rotation and internal parameters of the camera. 

In recent work, Carlsson and Weinshall et al. [13, 14, 131, 133] have demon­
strated the fundamental duality of the three-dimensional reconstruction prob­
lem. They show that for points and cameras in general position, the problem 
of computing camera locations from n points in m views is mathematically 
equivalent to the problem of reconstructing m + 4 points in n - 4 views. This 
chapter analyzes, in particular, the geometry of two views of seven points, four 
of which are coplanar, and the geometry of three views of six points, four of 
which are coplanar. We also prove that the two configurations are dual, and 
that the fundamental geometric constraints in each case are encapsulated by a 
planar homology [106, 127]. A summary of the duality results contrasted with 
the general-position cases is shown in table 6.l. 

The work here unifies a number of previously diverse results related to 
planar parallax [61, 72, 105], duality [13, 14, 131, 133] and planar homologies 
[127]. 

Formulae for computing the distance of the cameras from a distinguished 
world plane and formulae for structure computations, and associated uncer­
tainty, are presented in the second part of this chapter, where the trifocal 
tensor [56, 111, 116] is also derived in the plane-pIus-points case, showing that 

A. Criminisi, Accurate Visual Metrology from Single and Multiple Uncalibrated Images
© Springer-Verlag London 2001
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m n 
views pts 

2 7 

3 6 

general position 

3n + 7 = 28 dof 

2mn = 28 constr. 

F determined up to a 
three-fold ambiguity 

No further constraints 

3n + 18 = 36 dof 
2mn = 36 constr. 

T determined up to a 
three-fold ambiguity 

No further constraints 

coplanar 

3n - 1 + 7 = 27 dof 

2mn = 28 constraints 

F determined uniquely 
Motion constraint (one) in addition 

:3 homology: maps between views, 
vertex is epipole, i.e. intersection of 
plane and camera baseline, 
axis is intersection of plane with 
plane containing remaining three 
points 

3n - 1 + 18 = 35 dof 

2mn = 36 constraints 

T determined uniquely 
Structure constraint (one) in addi­
tion 

:3 homology: maps between points, 
vertex is intersection of plane and 
line joining the remaining two 
points, 
axis is intersection of plane and 
plane containing the camera cen­
tres. 

Table 6.1. Camera/point duality results for: (i) points in general position and (ii) four 
points lying on a distinguished plane. The fundamental matrix F has seven degrees 
of freedom and the trifocal tensor T has eighteen degrees of freedom. 

it is obtained uniquely. Structure and camera computations are obtained di­
rectly from image measurements, i.e. the parallax vectors, without needing to 
compute the epipolar geometry. 

The remainder of the chapter is organized as follows. We begin with a 
discussion of background material, notation and parallax geometry. Then the 
geometry of two views, seven points, four of which are coplanar, is described. We 
show that there exists a homology on the plane relating the two views and derive 
the necessary conditions for the homology directly in terms of the parallax 
measurements. Section 6.2.2 shows the duality of the geometry of three views, 
six points to the two-view, seven-point case, and hence obtain the analogous 
necessary conditions. We also derive the trifocal tensor and show that it is 
over-constrained. Section 6.3 derives expressions for the distance of the cameras 
from the specified, reference plane, and the structure of points in terms of affine 
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invariants; we also show how plane-plus-parallax geometry can be employed to 
compute the line of intersection between two planes. An uncertainty analysis 
on those measurements is performed in section 6.4 to estimate the confidence 
interval around each distance measurement. This analysis is validated, once 
again, by comparing the results with Monte Carlo statistical tests. Several 
examples on real images are presented. 

6.1 Background 

6.1.1 Notation 

The area of a triangle with general vertices a, band c is denoted A abc , and 
can be determined via the formula Aabc = ~Iabcl where the points a, b, and 
c are represented as homogeneous 3-vectors with the last component equal to 
one. 

Numbered subscripts are used to distinguish different views, with the first 
camera centre given by 0 1 , the second by O 2 and the third by 0 3 • The pro­
jection of an image point onto the distinguished world plane from the ith view 
is denoted by Xi (see Fig. 6.1). 

Superscripts identify projections of a three-dimensional point onto different 
views, thus the three-dimensional point X is imaged as X in the first image, x' 
in the second and x" in the third. The symbols· and·· indicate the homographic 
projection of a point from the second or third image into the first one, respec­
tively; thus x = H21X' and x = H31 X", where H21 is the homography that maps 
points from the second image onto the first one and H31 is the homography that 
maps points from the third image onto the first one. 

6.1.2 Planar parallax 

The underlying parallax geometry is shown in Fig. 6.2; two views and a refer­
ence world plane are shown. The distinguished world plane induces a homog­
raphy between the two views, meaning that the images of points on the plane 
can be transferred via the inter-image homography between views 1 and 2 (see 
section 3.1.2). The homography can be determined as usual from a minimum of 
four correspondences in the two views of points (or lines) on the distinguished 
plane. 

The parallax vector in the first view is the vector joining the image x of a 
world point X with the transferred location x ofx's image in the other view (the 
point x'). Furthermore, since the three planes (distinguished world plane and 
two image planes) are equivalent up to a plane projectivity we can also measure 
parallax in the second view or, if the image-to-world plane homographies are 
known, on the distinguished world plane. It is particularly advantageous to 
work with the world plane; in this case all dependence on the rotational and 
internal parameters of the cameras is removed (aggregated into the image-to­
world plane homographies), leaving only a dependence on the location of the 
camera centres. 
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Fig. 6.1. The notation of points and camera centres. a Three cameras are viewing 
a slanted reference plane. The point X does not lie on the plane. Therefore, the 
projections of the point X on the plane from the three cameras are three distinct 
points: Xl, X2 and X3 . b Points x and x on the first image are obtained by homographic 
projection from the second and third image respectively. 

Since the clarity of the underlying geometry is greatly increased, we depict 
all relevant points and vectors on the world plane in all of the figures. However, 
the computations do not require the image-to-world homographies to be known 
and they can be carried out from images directly. 

The parallax vector is directed towards (or away from) the epipole (see 
Fig. 6.2b), thus two such vectors are sufficient to compute its position, and 
the full epipolar geometry follows [6, 80, 85] . The magnitude of the parallax 
vector is related to the distance of the world point and cameras from the world 
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Fig. 6.2. Parallax geometry: a general configuration; parallax vectors are identified 
in both images and also on the world plane. b viewed only on the distinguished plane. 
The parallax vector < XIX2 > passes through the epipole e12. 

Camera 1 0, 

a b 

Fig. 6.3. The geometry of three points in two views: a the triangle PiqiXi is the 
"shadow" of PQX under the camera Oi; b the axis of the homology is given by the 
intersection of the plane PQX with the world plane, and the vertex (epipole e12) by 
the intersection of the baseline with the world plane. 

plane. Although others have described this function in detail [61, 72, 105], we 
re-derive the relationship in section 6.3. 

6.2 Geometry and duality 

6.2.1 Geometry of two views 

Let us consider the case of imaging seven points, four of which are coplanar 
from two distinct viewpoints. Each of the non-coplanar three points P, Q and 
X not on the plane gives rise to a parallax vector, which is depicted on the 
world plane in Fig. 6.3. 
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Fig. 6.4. Desargues configuration in the two view - three point (off the plane) case: 
three points in· two views relative to a known plane leads directly to a Desargues 
configuration between the two "shadow" triangles on the plane. 

The plane PQX (referred to as the tripoint plane) intersects the world plane 
in a line (referred to as the tripoint line), and the camera baseline intersects 
the world plane in a point, the epipole. It can be seen by inspection of Figs 6.3 
and 6.4 that the geometry under consideration (seven points, two views) leads 
directly to a Desargues configuration (see section 3.1.3) in which the epipole is 
the vertex of the homology and the tripoint line is the axis of the homology. 
The two triangles in the Desargues configuration are the two "shadows" of the 
space triangle PQX. This key observation underpins the results which follow. 

As stated in section 3.1.3, a homology has five degrees of freedom, and 
therefore three point correspondences over-determine it. The extra constraint 
available can be used as a test for the rigidity of the scene and is equivalent to 
the epipolar constraint. 

Clearly the constraint can be tested geometrica1ly by using point correspon­
dences either to construct the intersections of corresponding sides and testing 
their collinearity, or testing the concurrence of the parallax vectors . Alterna­
tively an algebraic test could, for example, compute the epipole using two point 
correspondences, use the epipole plus the three point correspondences to solve 
for a general homography, then test the homography to determine if it is a 
homology (a homology is represented by an invertible 3 x 3 matrix with two 
identical eigenvalues) . 

The geometric test has the disadvantage of requiring the construction of fea­
tures which may be far removed from the measured image features themselves, 
while the algebraic test gives little insight into the underlying geometry. 

Below we derive novel bilinear and trilinear constraints which are necessary 
conditions on the homology. We refer to these as motion constraints and they 
are equivalent to the epipolar constraint , but have the advantage that the com-
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putations involve only those features which can be measured directly, namely 
the parallax vectors. 

Motion constraints. 
Six points (four of which are coplanar) in two views uniquely define the epipo­
lar geometry. Therefore the two images of one more point off the plane are 
constrained to lie on each other's epipolar lines. 

Here we give the necessary conditions for the homology (which are therefore 
necessary for scene rigidity in two views) in the form of an identity involving 
only areas of triangles defined by three vertices, computable from the parallax 
vectors. Two such conditions and their symmetric forms can be determined. The 
first is derived from the collinearity of the epipole e12 and the corresponding 
points, and is bilinear in the areas. The second is derived from the collinearity 
of the points aqx , apx and apq (Fig. 6.3b) and leads to a constraint which is 
trilinear in the areas. 

Details about the derivations can be found in Appendix E. The results 
are summarized in table 6.2 which shows formulae for both the distinguished 
plane form (6.1-6.5) and the image form (6.6-6.10). In the plane form areas 
of triangles are computed on the distinguished plane and therefore knowledge 
of each world-to-image homography is required; while in the image form areas 
of triangles are computed directly in the first image (but either image can be 
used) and only the knowledge of the inter-image homography is necessary. 

Violation of any of (6.1-6.10) is a clear indication that there has been non­
rigid motion between the views. However if any (or all) of the points P, Q and 
X moves in its own epipolar plane, then all those equations are still satisfied 
and non-rigidity is not detected. 

Example. An example of motion detection is shown in Fig. 6.5. Here we demon­
strate two-view independent motion detection using the alternative forms of 
the epipolar constraint described. In this example the homography between 
the views induced by the world plane (the Wall) has been computed using four 
image correspondences on each view. Two points not on the wall have then 
been selected and used as reference. 

The bilinear motion constraint (6.6) is applied to each pair of corresponding 
points selected in Figs 6.5c and d. The independent motion of the person has 
been detected correctly (black marks). The epipolar lines have been shown for 
clarity in Fig. 6.5 but no explicit computation of the epipolar geometry (of the 
fundamental matrix) is necessary in our formulation of the motion constraint. 

6.2.2 Geometry of three views 

We now consider the geometry of six points, four of which are coplanar, in 
three views. This is the situation addressed by Irani and Anandan in [61]. The 
geometry is shown in Fig. 6.6. 

We begin by demonstrating the duality of this case to the two view case 
described in section 6.2.1, and obtain a structural constraint directly from the 
measured image features. Then the trifocal tensor is derived for the three-view, 
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c d 

Fig. 6.5. Consistency with the epipolar geometry. a and b Left and right view of 
an indoor scene in which the person has moved from one sofa to another. Four pairs 
of corresponding points on the wall (white circles) have been used to compute the 
inter-image homography. Two pairs of corresponding points not on the wall plane 
(white boxes) have been used to compute the parallax geometry (points p , p', q and 
q' in text) . c and d Some points have been selected on the left image (white crosses, 
point x in text) and the corresponding epipolar lines shown on the right image. The 
corresponding points (x' in text) have been selected on the right image. The points 
which conform to the motion of the camera (they satisfy (6.6)) are marked with white 
crosses, the ones which undergo an independent motion (they do not satisfy (6.6)) 
are marked with black crosses. 
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Motion Constraints 

Plane form 

Bl : ApIP2X2Aqlq2xl = APIP2xIAqlq2x2 (6.1) 

B2 : AXlx2P2Aqlq2Pl = AXlx2PlAqlq2P2 (6.2) 

B3 : ApIP2q2 AXlx2ql = ApIP2ql AXlx2q2 (6.3) 

Tl : APIP2Xl Aqlq2Pl AXlx2Ql = ApIP2Ql AQlQ2xl AXIX2Pl (6.4) 

T2 : APIP2X2 AQlQ2P2AxlX2Q2 = ApIP2Q2 AQlQ2X2 AXIX2P2 (6.5) 

Image form 

Bl : AppxAQqx = AppxAQqx (6.6) 

B2 : AxxpAqqp = AxxpAqqp (6.7) 

B3: AppqAxxq = AppqAxxq (6.8) 

Tl : AppxAqqpAxxq = AppqAqqxAxxp (6.9) 

T2 : AppxAqqpAxxq = AppqAqqxAxxp (6.10) 

Table 6.2. Motion constraints: two-view bilinear (B;) and trilinear (Ti ) motion con­
straints equivalent to the epipolar constraint, computed on the plane and on the 
image. Bilinear and trilinear constraints are projective invariant. 

a b 

Fig. 6.6. The geometry of three views with two points off the plane. a The tri­
angles PIP2P3 and qlq2q3 are "shadows" of 0 10 20 3 under the points P and Q, 
respectively. The piercing point a pq is the intersection of the line < PQ > with the 
world plane. b The three epipoles are collinear, lying on the trifocal line which is the 
intersection of the plane 010203 with the world plane. 

six-point (four coplanar) case. Since the trifocal tensor is over-constrained by 
six points, four of which are coplanar, another form of the structure constraint 
is also obtained. 

Duality. 
It is clear by inspection of Fig. 6.6 that the three view geometry is dual to 
that of Fig. 6.3 in which points off the plane have been exchanged for camera 
positions. The vertex of the homology is given by the intersection of the line 
< PQ > with the world plane (referred to as the piercing point, apq ), and 
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Fig. 6.7. Desargues configuration in the three-view - two-point case: the planar 
geometry in the three-view - two-point case is also clearly a Desargues configuration 
and point correspondences PI f-+ ql, P2 f-+ q2 and P3 f-+ q3 are related by a homology. 
This situation is clearly dual to that in Fig. 6.4. 

the axis by the intersection of the trifocal plane containing the three camera 
centres 0 1 , O 2 , 0 3 with the world plane (referred to as the trifocal line, see 
also Fig. 6.7). 

Having established the duality of the two situations, we are now in a position 
to invoke duality in order to prove further results. We make the substitutions 
reported in Table 6.3 into the equations in Table 6.2 and the dual trilinear and 
bilinear constraints given in table 6.4 follow. Note that the bilinear constraints 
(6.11- 6.13) are exactly the constraints given by Irani and Anandan [61]. All 
the other constraints are new. 

Geometrically the structure constraint simply means that it is not possible 
to arbitrarily select the images of two points off a plane from three views. 
The images of the two points are in fact constrained. For example, on the 
distinguished plane (see Fig. 6.6), once the projections PI, P2 and P3 for the 
point P and the projections ql and q2 of the point Q are known, then the point 
q3 is constrained to lie on the line < P3apq > (dual of the epipolar line). 

The trifocal tensor. 
This section demonstrates that the trifocal tensor is uniquely determined from 
three views of six points, four of which are coplanar. We begin with a familiar 
form of the trifocal tensor (after [54]) in which we consider the image projection 
matrices and image point locations. We then show how the form of the tensor is 
simplified when we consider all geometric objects (lines, points, etc.) projected 
onto the distinguished plane. 
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Duality Substitutions 

Plane form 

2 views II P1 I P2 I Xl I X2 I q1 1 q2 
3 views II P1 I q1 I P2 I q2 I P3 I q3 

Image form 

2 views II P I p I X I x I q I it 
3 views II P I q I p I it I p I q 

Table 6.3. Duality substitution of symbols for both the distinguished plane form and 
the image form. The epipole e12 in the two-view case is dual to the piercing point a pq 

in the three-view case. 

Structure Constraints 

Plane form 

B1 : Aqlq2Pl Ap2paqa = ApIP2ql Aq2qapa (6.11) 

B2 : Aqlq2P2AplPaqa = ApIP2q2Aqlqapa (6.12) 

B3 : AqlqaPl Ap2paq2 = ApIPaql Aq2qap2 (6.13) 

T1 : ApIP2qlAplPaqaAp2paQ2 = ApIPaqlAp2paqaAplP2q2 (6.14) 

T2 : Aqlq2PlAqlqapaAq2qap2 = AqlqaPlAq2qapaAqlq2P2 (6.15) 

Image form 

B1 : AqqpAppq = AppqAqqp (6.16) 

B2 : AqqpAppq = AppqAqqp (6.17) 

B3 : AqqpAppq = AppqAqqp (6.18) 

T1 : AppqAppqAppq = AppqAppqAppq (6.19) 

T2 : AqqpAqqpAqqp = AqqpAqqpAqqp (6.20) 

Table 6.4. Structure constraints: three-view bilinear (Bi) and trilinear (Ti) struc­
ture constraints, computed on the plane and on the image. Bilinear and trilinear 
constraints are projective invariant. 

Image form. 
Suppose the homographies induced by the plane of the points are H12 and H13, 
such that x' = H12X and x" = H13X for images of points on the plane. These 
homographies are computed from the images of the four coplanar points. 

The images of the first camera centre in the second and third images, de­
noted e ' and e", respectively, are the epipoles. They are determined by inter­
secting parallax vectors, as described in section 6.2.1, so that F12 = [e']XHI2' 
and F 13 = [e"] x H13' It is straightforward to show that the three camera pro­
jection matrices can be chosen as: 

p = [I I 0], p' = [H12 le'], p" = [H13 I Ae"] (6.21) 
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up to a homography of 3-space, where A is an unknown scalar. This unknown 
scalar is determined by line transfer. 

In fact, the line through the (non-coplanar) points P, Q is imaged as I = 
p x q, I' = p' x q', I" = p" x q" in the first, second and third views, respectively. 
It is then straightforward to show that lines transfer as follows (alternatively 
point transfer may be considered): 

I = A( e" . 1")H12 TI' - (e' . 1')H13 TI" (6.22) 

The scalar A is the only unknown in this equation. It is determined by taking 
the vector product with I 

(6.23) 

This provides two equations in the one unknown A and so we can solve uniquely 
for the trifocal tensor and obtain one further constraint, namely the rigidity 
condition that the imaged intersection of the line through P, Q is the same 
when computed from views one and two ( I X (H12 Tl')) as from views one and 
three (I x (H13 TI")). This is yet another form of the constraints (6.11-6.20). 
The scale factor A is obtained by normalizing both sides of (6.23): 

II(e' ·1')1 x (H13 TI")" A = -'-'-'----'---'-----::=_'_.:..:... 

"(e" ·1")1 x (H12 TI')" 
(6.24) 

Distinguished plane form. 
On the distinguished plane Hl2 = Hl3 = I, so the equivalent of (6.22) for point 
transfer is: 

(6.25) 

where Xl, X2, X3 are the distinguished plane images of a general three­
dimensional point X, and h is any line through X2. This equation depends 
only on the positions of the epipoles on the distinguished plane, with all de­
pendence on camera internals and relative rotations having been factored out 
into the image-to-plane homographies. 

Additionally the projection matrices have the very simple form: 

(6.26) 

Hence, representing a general three-dimensional point as X = (x; ), we de­

termine the distinguished plane images to be: 

Xl = PIX, X2 = P2X = Xl + pel2, X3 = P3X = Xl + PAel3 (6.27) 

We now give an interpretation of p and A on the distinguished plane (see 
Fig. 6.8). 

The ratio A depends only on the camera centres, not on the points, and 
can be determined as A = d(eI2' e23)/d(eI3, e23), where dO is the distance 
between the points on the distinguished plane. The parameter p is the relative 
affine invariant of Shashua [110], and is related to the point depth. On the 
distinguished plane it is obtained as p = d(X2' xd/d(X2' eI2). 
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Fig. 6.S. Point transfer in three views: the ratios of the distances between Xl, X2 and 
e12 and the three epipoles define the transfer of the point Xl to X3. The scalars A and 
p (see text) can be measured as ratios of point distances as: A = d(e12, e23)/d(e13, e23) 

and p = d(X2,xd/d(x2,e12). 

So point transfer using the trifocal tensor simply involves computing the 
ratio p from Xl, X2 and el2 and employing ,X to define the transferred point X3 

on the line between el3 and Xl as X3 = Xl + p,Xel3 in (6.27). This is identical 
to the point transfer of (6.25), as can be seen by considering similar triangles 
in Fig. 6.8. 

Trifocal transfer in the case of collinear camera centres is not degenerate. 
In the case where the three camera centres are collinear then the three epipoles 
e13, e23 and el2 coincide and the epipolar transfer would fail. The trifocal 
transfer, in contrast, does not present such a degeneracy. It is still well defined 
in the case of three concurrent (or almost concurrent) epipoles. In fact, the 
ratio ,X is defined and can be obtained using the distinguished plane equivalent 
of (6.24). 

6.3 Scene reconstruction 

In this section we discuss a number of useful structural computations which 
can be achieved using ratios of areas. This requires affine measurements on the 
world-plane, which can be obtained either from four world plane points known 
up to an affinity (and hence the image-to-world plane homographies, this is 
distinguished plane form case), or from the inter-image homography between 
two views and the vanishing line of the world plane in either image (this is 
the image form case). In either case we obtain results for the scene structure 
without resorting first to compute the epipolar geometry. 

A significant novel aspect of the formulae given in sections 6.3.1 and 6.3.2 
is that measurements can be computed without knowing the vanishing point 
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Fig. 6 .9. Parallax geometry of two points P and Q off the plane. 

for the reference direction and without seeing the base point in the image, in 
contrast to the single-view metrology approach described in Chapter 5. 

We begin by re-deriving the basic parallax relationship for the cases where 
the parallax is measured on the distinguished world plane (6.30) and on the 
image (6.31) . 

Distinguished plane form. 
Considering Fig. 6.9 and writing PI = 0 1 + Z z~z (P - Od, P2 = O2 + 

°1 P 

Z Zo.!z (p - O2) and e12 = O 2 + z Zo.!z (01 - O2). Then eliminating the 
02 p 02 p 

camera centres 0 1 and O 2 yields: 

Zp Llzo 
/-£p = Z - Z -Z (PI - e12) 

O 2 p 0 1 

(6.28) 

where /-£p = P2 - PI is the planar parallax vector and Llzo = Z01 - Z02 is the 
component of camera translation towards the plane. 

Let 'Y be the ratio of the distance of a point to the plane and the point 
to the first camera (measured in the same direction) , i.e. 'Yp = z z!'-z and 

°1 p 

'Yq = z Z~Z ' then combining the basic parallax equation (6.28) for two points °1 q 

P and Q gives: 

Llzo ( ) 'YqJLp - 'Yp JLq = 'Yp'Yq Z P2 - q2 
02 

(6.29) 

Finally, taking the cross-product of both sides of the equation with P2 - q2 
and taking magnitudes yields an expression for 1:1. as a ratio of areas (see 

'Yp 
Fig. 6.10) of the form 

'Yq _ IJLq X (P2 - q2)1 _ AqlQ2P2 

'Yp IJLp X (P2 - q2)1 ApIP2Q2 
(6.30) 

This ratio is computable solely from the parallax measurements , and, being a 
ratio of areas, is clearly affine invariant. 
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Fig. 6.10. The relative structure k can be expressed as a ratio of areas on the world 
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plane as in (6.30). 

Image form. 
In the case where the image-to-world homographies are unknown, since p = 
H21P' and it = H21q', equation (6.30) becomes (see section E.2 in Appendix E, 
for details): 

'"'(q _ Aqqp(l· p) 
'"'(p Appq (1 . q) 

(6.31) 

with 1 the vanishing line of the reference plane in the first image. A similar 
formula can be obtained with reference to the second image replacing the first 
one. 

This derivation is equivalent to Irani and Anandan's construction [61], but 
note that in our formulation only affine constructs have been used (no orthog­
onality has been assumed and the formulae are homogeneous) . Furthermore, 
thanks to the affine invariance of ratios of areas if the vanishing line 1 of the 
reference plane is known in either image, then the ratio (6.30) can be computed 
from image measurements only, thus obtaining (6.31). 

These results are derived for the two-view, seven-point case. However be­
cause of the fundamental duality proved in section 6.2.2, they are equally valid 
(with appropriate symbol substitutions, see Table 6.3) in the three-view, six­
point case. For example (6.38) can be used to compute the height of a third 
point given two other known heights in the two view, seven point case; dually, 
in the three view, six point case, it can be used to obtain the height of a third 
camera given the other two camera heights. 

6 .3.1 Determining the position of the cameras 

This section presents formulae to compute the position of the cameras from a 
pair of images, with respect to the reference plane. 
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Fig. 6.11. The order in the distances of the two cameras from the common reference 
plane can be estimated from a quick analysis of the relative location of epipoles and 
vanishing lines. 

Ordinal distances. 
To begin, we show that the position of the epipoles e and e' and the plane 
vanishing lines 1 and I' in the two images provide useful information about the 
relative location of the two cameras. Given the vanishing line 1 of the reference 
plane on the first image, its corresponding vanishing line I' in the second image 
is computed as: I' = H12TI (where x' = H12X for images of points on the 
reference plane) . 

As noted in section 5.1 the vanishing line of a plane partitions the scene 
points into the ones which are closer to the plane than the camera centre and the 
ones which are farther (see Fig. 5.2b) . This simple consideration, generalized 
in the two view case, leads to the following result. 

If we denote the epipoles in the two images with e and e', respectively, and 
the two vanishing lines of the reference plane with 1 and I' respectively, then: 

• e . 1 = 0 ~ e' . I' = 0 and in this case the two cameras have the same 
distance from the distinguished plane 7r, Z02 = ZOI ; 

• if e . 1 'I 0, one camera is higher than the other; for instance, if e lies above 
the vanishing line then e' lies below and Z02 > ZOI (see Fig. 6.11). The 
reverse is also true. 

Therefore we obtain ordering for the distances of the cameras from the reference 
plane 7r. 

Affine distances. 
If two reference points are seen in both images then affine distances of the 
cameras can be computed (cf. Fig. 6.9. The vanishing point of the measuring 
direction is not required. The following theorem holds: 

Theorem 6.3.1. Given the planar parallax vectors of two reference world 
points P and Q, the ratio of distances of these points from the world plane 
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¥ (measured in the same but arbitrary direction, with Zp =f. Zq), and affine 
q 

measurements on the world plane; then the affine distance of either camera to 
the world plane (measured in the same direction as Zp and Zq) can be computed. 

Distinguished plane form. Rearranging (6.30) provides the following expres­
sions for the distance of the cameras from the plane: 

(6.32) 

Image form. Taking into account (6.31), the previous equations can be com­
puted directly in the image as: 

ZOl _ (1· q)Appq - (1· p)Aqqp 
--- - Z 
Zp (1· q)Appq - ~(I. p)Aqqp 

(6.33) 

Z02 (1' . q')Appq - (1' . p')Aqqp = ~ __ ~-2~~~~~~~ 
Zp (1' . q')A . - ~(I' . p')A . ppq Zq qqp 

Since Z;l and ~ scale linearly with the unknown Zp, we have obtained 
p p 

affine structure. 
o 

Euclidean distances. 
An immediate corollary follows from the previous theorem. In fact, if the values 
of the reference distances Zp and Zq are known, then the above measurements 
can be upgraded to Euclidean. 

Distinguished plane form. From (6.32) we obtain: 

ZOl = ZpZq(AplP2q2 - Aqlq2P2) 
ZqAplP2q2 - ZpAqlq2P2 

Z02 = ZpZq(AplP2ql - Aqlq2Pl) 
ZqAplP2ql - ZpAqlq2Pl 

Image form. And from (6.33): 

Z ZpZq [(1· q)Appq - (1· p)Aqqp] 
o -

1 - Zq(I. q)Appq - Zp(I· p)Aqqp 

Zo = ZpZq [(1' . q')Appq - (1' . p')Aqqp] 
2 Z (1' . q')A . - Z (1' . p')A . q ppq p qqp 

(6.34) 

(6.35) 

Example. In the example in Fig. 6.16 we have used (6.34) to compute the 
heights of the cameras above the floor as 566 cm and 586 cm (left and right 
views respectively). 
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Fig. 6.12. Computing ordinal heights of points from parallax vectors and piercing 
point : if d(plapq ) > d(qlapq ) then Zp > Zq and viceversa (cf. Fig. 6.9). 

6.3.2 Distances of points from planes 

Ordinal distances. 
If two points off the distinguished plane P and Q are viewed in two images, 
then it is possible to obtain ordering for their distances from the plane. This is 
obtained by comparing the locations of the projections of the points onto the 
plane and the piercing point. By inspection of Fig. 6.12 if d(PI' apq ) > d( qI, apq ) 

then Zp > Zq and viceversa. Similar computation can be performed directly 
on the images. 

Affine distances. 
This section demonstrates that affine height of points can be computed from 
two references. As before, the vanishing point for the reference direction is not 
required. The following theorem holds (d. Fig. 6.3a): 

Theorem 6.3.2. Given the parallax vectors of three world points P, Q and 
X, the ratio of the distances of two of these points ¥ from the world plane 

q 

(measured in the same but arbitrary direction, with Zp f:. Zq), and affine mea­
surements on the world plane; then the affine distance of the third point X from 
the plane (measured in the same direction as Zp and Zq) can be computed. 

Distinguished plane form. From (6.30) we have that k = ~xpapl and 
TP PIP2Xl 

k = ~x, xaq, • After eliminating the camera distance between these equa-,q QlQ2 x l 

tions we obtain an expression for the ratio Zx/Zp where Zx is the distance of 
the point X from the plane (see Fig. 6.3): 

ZX IMII 
Zp IM21 

(6.36) 

where: 
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Image form. The ratio t in (6.36) can be computed directly in the image as: 
p 

Zo; IM!I 
Zp - IM21 

where: 

thus affine structure is recovered. 

(6.37) 

[
(1. q)Axxq Aqqx (1· X) Aqqx 1 

ZpjZq 0 -1 
(1· x)Appx Appx (1· p)Axxp 

o 
The fact that the above measurements are expressed in terms of ratios of 

determinants is a clear indication that they can be obtained by employing 
Grassman-Cayley algebra [42, 124). 
Euclidean distances. 
As for the camera, also in this case can the formulae above be upgraded to 
Euclidean if the absolute distances of the two reference points Zp and Zq are 
known. 
Distinguished plane form. From (6.36) we obtain: 

Z - ~ (6.38) 
0; - IM21 

where: 

Image form. And from (6.37): 

Z _ IMII 
0; - IM21 

where: 

(6.39) 

[
(1. q)Axxq Aqqx (1· x) Aqqx 1 

Zp 0 -Zq 
(1· x)Appx Appx (1· p)Axxp 

Derivations of these formulae are shown in Appendix E. 
Ambiguity in structure computation. 
As mentioned above, the distance Zo; is computed along the direction of the two 
reference distances Zp and Zq (parallel to each other in any fixed direction not 
on the reference plane, Fig. 6.13). But the reference direction is not known (its 
vanishing point is not needed in (6.38, 6.39)) and the position ofthe projection 
of the point X on the plane (its X and Y coordinates) cannot be completely 
determined. 

It can be proven, though, that the X, Y position of the world point X can 
be retrieved up to a one-parameter family. In fact, the X and Y coordinates are 
related by a linear function. Furthermore, knowledge of the X or Y coordinate 
of at least one of the two reference points (P or Q) completely constrains the 
X, Y position of the point X. Similar analysis applies to camera computation. 
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Tripo'nt plane 

X 

"1\Zx I \ 
I • • 

World plane 

Fig. 6.13. Ambiguity in the reconstruction using a plane-plus-parallax approach: the 
distance Zx of the point X from the world plane is computed using (6.38) or (6.39) 
but its X, Y coordinates are not defined since the reference direction (off the plane) 
is not defined. The only constraint is that Zx, Zp and Zq are all measured along the 
same direction. 

Degeneracy. 
Note that in the case where the reference heights coincide (Zp = Zq) then 
the matrices above are singular and (6.32- 6.39) are degenerate. However this 
situation can be avoided in practice. 

The degeneracy is understood in terms of the geometry as follows. In general 
we obtain a projective structure (since F is determined uniquely) . If in addition 
Zp i= Zq (Fig. 6.14a), the line < PQ > intersects the plane at infinity 7r00 in 
the vanishing point v pq which can be identified in both images since the four 
aligned points p, q, apq and v pq define a cross-ratio and the ratio ¥ is known 

q 

(Fig. 6.15). The point v pq and the vanishing line of the world plane, I, determine 
7r00 , hence we can obtain affine structure. When Zp = Zq (Fig. 6.14b) then the 
line < PQ > intersects 7r 00 on I and so no additional information about 7r 00 

is obtained; it is determined only up to a one-parameter family (the pencil of 
planes with I as its axis). 

Examples. 
Figure 6.16 shows an example in which point distances from the floor have 
been estimated. Two views of a dining hall are taken from above. The distance 
between the two cameras is about 5 m. The floor tiling and the perpendicular 
heights of two points in the hall were measured by hand with a tape mea­
sure and used as a reference. Correspondences (more than four corresponding 
points) on the patterned floor tiling have been used to compute the inter-image 
homography induced by the ground plane. Parallel lines identified by the floor 
pattern have been employed to compute the vanishing line of the floor in the left 
image (the horizon). The distances of several points have, then, been computed 
with the parallax- based method described above and shown in the figure. Note, 
for instance, that the step was computed to be l1.4cm high and measured by 
hand as 11.0 cm. Notice also how close the heights of the two chandeliers are to 
each other (322.1 cm and 326.0 cm). A second example is shown in Fig. 6.19. 
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Plane at infinity 

·Vpq 

.aql< 

• apq 

q Zq 
apl< 
• 

Tripoint line 

Zp World plane 

a 

Zq 

Tripoint line 

Zp World plane 

b 

Fig. 6.14. The plane-plus-parallax approach is degenerate if the two reference dis­
tances coincide: a if Zp # Zq the point v pq (vanishing point for the direction defined 
by the line < PQ » does not lie on the plane vanishing line 1, then the plane at 
infinity is defined. b if Zp = Zq the point v pq lies on the plane vanishing line 1 and 
the plane at infinity is not defined. 

6.3.3 Intersection between two planar surfaces 

Given two images of two planar surfaces, the line of intersection between them 
can be computed in different ways. In this section we show the advantages of 
using a plane-pIus-parallax approach over other methods. 
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p 

Zp 
Q 

World lane 

Fig. 6.15. Computing the vanishing point Vpq. The 
ishing point Vpq in Fig. 6.14a can be computed 
d(p,&pq) d(p,vpq) = d(P,Apq ) ~ I £ t ·t is 
d(q,apq ) d(q,vpq ) d(Q,Apq) Zq· n ac 1 

d(q,vpq ) = d(p,q)d(p,apq)j [i;d(q,apq ) -d(p,apq )]. 

Using two inter-image homographies. 

00 

position of the van­
from the cross-ratio: 
easy to prove that 

Given two views of two planar surfaces 7rl and 7r2 and the related inter-image 
homographies between the two images, the line of intersection I between the 
two planes can be computed in both images in the following way: let Hl be the 
homography which maps points on 7rl on the first image into the corresponding 
plane in the second image, and H2 the homography which maps points on 
7r2 in the first image into the corresponding ones on the second image (see 
Fig. 6.17). Furthermore, let I be the intersection line in the first image and I' 
the corresponding line on the second image, then: 

I' = HI TI, I' = H2" TI (6.40) 

from which [115]: 

HI = AIl (6.41) 

with H = Hl HI T. The 3 x 3 matrix H represents a homology, since it has a re­
peated eigenvalue (see section 3.1.3). The line 1 on the first image is the unique 
eigenvector corresponding to the different eigenvalue of the matrix H. The inter­
section line l' on the second image may be computed simply by applying (6.40). 

Using plane-plus-parallax. 
In the previous approach, the inter-image homographies Hl and H2 induced 
by both planes are required. Employing the plane-plus-parallax approach, the 
problem of computing the line of intersection between two planes reduces to: 

1. Choosing one plane as reference (e.g. 7rd and computing the inter-image 
homography induced by that plane between the two images (as usual from 
at least four correspondences)(e.g. the homography Hd. 

2. Defining three pairs of corresponding points on the second plane between 
the two images (they define the images of the tripoint plane). 

3. Projecting the three points selected in the first image into the second by 
the homography Hl and projecting the three corresponding points selected 
in the second image into the first by Hil. Thus, in each image we have de­
fined two shadow triangles. Those are in a Desargues configuration (see sec­
tion 3.1.3), therefore corresponding sides interesect in three aligned points. 
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c d 

Fig. 6.16. Estimating the heights of points from two views of The Queen's College 
dining hall: a and b original left and right images; c and d the heights of the two 
reference points, shown black on white, were measured by hand to be 76 cm (table 
top) and 230 cm (fireplace) . The heights of many other points have been computed 
by the parallax-based algorithm and the results shown in the image. Notice that all 
the top planes of the tables are about 76 cm from the floor. 

4. The intersection lines 1 and l' are the images of the tripoint line and are 
computed by fitting a line through the points of intersection of correspond­
ing sides of the two shadow triangles in each image. 

This approach has the advantage that the inter-image homography induced by 
the second plane does not need to be known, with only three point correspon­
dences sufficient (affine mapping, see point 2 of the algorithm above). Likewise 
it is straightforward to prove that also two line correspondences on the second 
plane are sufficient. 

Figure 6.18 shows an example. Figures 6.18a and b show two images of an 
indoor scene, taken from two different points of view. Figures 6.18c and d show 
the same images where we have marked the four points (corners of the poster) 
used to compute the inter-image homography induced by the left wall, the two 
shadow triangles (in Desargues configuration) and the computed intersection 
lines 1 and l' in the two images. 
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HI 

I 

image 1 image 2 

Fig. 6.17. Computing the line of intersection between two planar surfaces using 
planar homographies and two views. 

Since the two shadow triangles in each image are in a Desargues configu­
ration, in each image the lines joining corresponding vertices intersect in the 
epipole. Therefore the two triangles in each image are related by a homology 
whose vertex is the epipole and whose axis is the tripoint line, the line of 
intersection between the two world planes. 

An alternative derivation of the intersection line is as follows: from six points 
(four coplanar) , the fundamental matrix and the inter-image homography for 
one of the two planes are determined. From one more point off the plane the 
inter-image homography induced by the second plane is defined and therefore 
the first method can be applied. 

6.4 Uncertainty analysis 

As in section 5.3, here we analyze how input errors propagate through the 
computations in order to estimate the uncertainty of the final distance mea­
surements. This is achieved by employing, once more, first order error analysis. 
The validity of the approximation is assessed in section 6.4.4 by Monte Carlo 
statistical tests. 

The uncertainty analysis has been developed here for the case of distances 
computed directly from the images. However it can be easily extended to the 
distinguished plane case. 

6.4.1 Uncertainty of camera distances 

When computing distances of cameras from planes (6.35) uncertainty arises 
from the uncertain locations of the reference image pairs p, p' and q , q/, the 
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a 

c d 

Fig. 6.18. Computing the line of intersection between two planar surfaces: a and b 
original left and right views of a corner of a room; c and d the four vertices of the 
poster on the left wall (marked with white circles) have been used to compute the 
inter-image homography induced by the left wall; the selected three corresponding 
points on the right wall (black circles joined by solid black lines) define the trip oint 
triangle; these points have been projected via the homography (or its inverse) into 
the other view (black squares joined by dashed black lines); the two shadow triangles 
are in a Desargues configuration. The lines of intersection I and I' between the two 
walls have been computed by intersecting the corresponding sides of the two shadow 
triangles in each view and then joining up the intersection points. 
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uncertainty location of their three-dimensional counterparts, the uncertainty 
in the inter-image homography and the uncertainty in the plane vanishing 
line l. Uncertainties in image reference points and the plane vanishing line are 
modelled by 3 x 3 homogeneous covariance matrices. The uncertainty of the 
inter-image homography H is defined by a 9 x 9 homogeneous covariance matrix 
and can be computed as in section 4.2.2. 

By using a first order propagation, the variance of the distance ZOI of the 
first camera from the reference plane is given by: 

a~o = VZo Avio 1 1 1 
(6.42) 

where the 26 x 26 covariance matrix A is defined as: 

A = diag (A., A h , a~p' Ap, ApI, a~q' Aq, Aq/, ) 

with all the covariance matrices homogeneous and the 1 x 26 Jacobian V ZOI : 

V - (8Z0 1 8zo1 8zo1 8zo1 8zo1 8zo1 8zo1 8zo1 ) 
ZOI - 81 8h 8Zp 8p 8p' 8Zq 8q 8ql 

The computation of V ZOI is described in Appendix F. Similar analysis applies 
for the estimation of the variance of the height of the second camera a~02 • 

6.4.2 Uncertainty of distance of points 

When computing distances of points from planes (6.39), uncertainty arises from 
the sources analyzed in the previous section and from the uncertain image 
locations of the points x and x'. The uncertainty in each of the points x, x' 
(resulting largely from the finite accuracy with which these features may be 
located in the image) is modelled by 3 x 3 homogeneous covariance matrices 
Ax and Ax/. 

Maximum likelihood estimation of the input points. 
Note that here, as in Chapter 5, a constraint on the location of the two input 
points x and x' exists. In this case the epipolar geometry constrains the two 
points to lie on each other's epipolar line. Therefore, as in section 5.3.2, a 
maximum likelihood estimate of the true points x and x' can be performed [57]. 

Not considering this intermediate step introduces a further approximation 
into the uncertainty propagation procedure. Nevertheless, the degradation of 
results caused by neglecting the maximum likelihood estimation has proven 
smaller than the approximation introduced by the first order truncation in the 
case that the two points x and x' are sufficiently close to the relative epipolar 
lines. 

In order to keep the uncertainty analysis simple, then, the ML estimation 
of the true position of the input points has not been performed. The validity 
of the analysis is, as usual, assessed by Monte Carlo statistical tests. 
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Variance of distance. 
By using a first order uncertainty propagation and assuming statistical inde­
pendence in all the different sources of error, the variance of Zx is given by: 

a~. = V z.Avi. (6.43) 

where the 32 x 32 covariance matrix A is: 

A = diag (A\'Ah,a~p' Ap,Ap/ a~., Aq, Aq/ Ax, Ax/) 

with all the covariance matrices homogeneous and the 1 x 32 Jacobian V z.: 

V - (!tb.. !tb.. !tb.. !tb.. !tb.. oz. !tb.. !tb.. !tb.. !tb..) z. - ol 8h 8Zp 8p 8p' 8Z. 8q 8q' 8x 8x' (6.44) 

Detailed description of the computation of V Z. is given in Appendix F. 

6.4.3 Example 

Figure 6.19 shows an example where heights of points and the associated uncer­
tainties are computed for an indoor scene. Figures 6.19a and b are, respectively, 
left and right views of the interior of a chapel. We wish to measure the perpen­
dicular distances of points of the lectern from the floor. 

Two perpendicular heights have been measured by hand as references 
(marked in the images as white boxes). The inter-image homography between 
the two images has been estimated from four corresponding points on the floor 
tiling. Distances of several lectern points (marked as white circles) from the floor 
have been computed by using the described parallax method. A 3-standard de­
viation uncertainty ellipse has also been defined for each point, and then the 
3-standard deviation uncertainty associated with the final height measurement 
has been estimated and displayed. Notice in Fig. 6.19c that the ground truth 
height always falls within the computed uncertainty range. 

6.4.4 Validation of uncertainty analysis 

This section validates the first order error analysis described above by esti­
mating the uncertainty of the height of the beak of the eagle in the lectern in 
Fig. 6.19. It compares the results from the first order analytical method to the 
uncertainty derived from a Monte Carlo simulation, as described in Table 6.5. 
The diagrams in Fig. 6.20 illustrate the results. 

In the simulations Gaussian noise is assumed on the image points of the two 
reference distances and on their measured world height. Uncertainty is assumed 
also on the plane vanishing line, on the inter-image homography and on the 
image points of the height to be computed. 

The input point x on the left image is randomly distributed according to a 
2D non-isotropic Gaussian about the mean location, with covariance matrix Ax 

(Fig. 6.20a). Similarly the corresponding point on the right image is randomly 
distributed according to a 2D non-isotropic Gaussian about the mean location 
x', with covariance Ax' (Fig. 6.20b). 
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c d 
Measured 191.5 165.0 135.0 
Computed 191.5 ± 2.1 164.7 ± 1.2 134.8 ± 1.0 
Measured 109.1 35.0 22.9 
Computed 108.8 ± 1.3 34.9 ± 1.3 22.1 ± 2.0 

e 

Fig. 6 .19. Estimating heights and associated uncertainties from two views of the 
lectern in The Queen 's College chapel: a and b original left and right images; c and 
d the heights of the reference points (white squares) were measured by hand (± 
0.5 cm) to be 150 cm (top edge of lectern) , and 35 cm (height of foot stool). The 
heights of many other points have been computed and superimposed to the images. 
In e , all height measurements are given in centimetres. The error between the heights 
computed using the image parallax and the ones measured manually is always less 
than one centimetre. The 3-standard deviation uncertainties of the computed heights 
are also shown. The ground truth falls always within the computed uncertainty range. 
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distribution of the point x in the left imege distribution of the point x' in the right image 
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Fig. 6.20. Monte Carlo statistical test of the example in Fig. 6.19. a Distribution 
of the input point x on the left image and the corresponding 3-standard deviation 
ellipse. b Distribution of the input point x' on the right image and the corresponding 
3-standard deviation ellipse. Figures a and b are drawn at the same scale. c The 
analytical and simulated distributions of the computed distance Z. The two curves 
overlap almost perfectly. 

The two covariance matrices for the pair of input points are respectively 
(values in pixeI2 ): 

A = ( 0.255 -0.024) A = ( 0.484 -0.148) 
x -0.024 0.266 x, -0.148 0.566 

Suitable values for the covariances of the two references, and the vanishing 
line, have been used. The covariance of the inter-image homography has been 
computed as in section 4.2.2. The simulation was run with N = 10000 samples. 

Analytical and simulated distributions of Zx are plotted in Fig. 6.20c; the 
two curves are almost overlapping. Any slight difference is due to the assump­
tions of statistical independence and first order truncation introduced by the 
error analysis. 
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• For j=1 to N (with N = number of samples) 
- For each of the two references: given the measured reference points on 

the left and right image, generate a random point on the left image, a 
random point on the right image and a random reference world distance 
according to the associated covariances. 

- Generate a random plane vanishing line according to its covariance AI. 
- Generate random values for the inter-image homography ii: according to 

the computed 9 x 9 covariance matrix A h . 

- Generate a random point Xj on the left image and a random point xj on 
the right image according to their respective covariances Ax and Ax" 

- Compute the current distance Z",; by applying (6.35) . 
• The statistical standard deviation of the population of simulated Z",; val­

ues is computed as: 
N -2 

/2 L:j =l (Zj - Z) 
Uz= N-1 

and compared to the analytical one (6.43). 

Table 6.5. Monte Carlo test. 

A comparison between statistical and analytical standard deviations is 
shown in the table below with the corresponding relative error: 

First Order Monte Carlo 

0.7039 cm 0.7056 cm 

relative error 
luzz-u~," I 

O"~ 
0.24% 

The measurement Z = 191.8 cm and the associated first order uncertainty 
3 * uz.. = 2.11 cm is shown in Fig. 6.19d. 

Similar tests on several other examples consistently yielded the same results. 
This shows that in the plane-plus-parallax approach also, for typical imaging 
situations the first order approximation is a valid one. 

As usual, some care must be exercised since the relative error between sta­
tistical and analytical output standard deviations increases with the input un­
certainty. For large covariances, the assumption of linearity becomes less well 
founded. 
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This chapter shows examples of three-dimensional reconstructions obtained by 
employing the techniques described in Chapter 5. The algorithms have been 
applied to both photographs of real scenes and perspectively correct paintings. 
From the computed models, convincing animations and fly-throughs have also 
been created. 1 

7.1 Reconstruction from photographs 

Images of the three-dimensional model of a garden shed reconstructed from a 
single photograph appear in Fig. 7.1. A colour version of this figure is shown 
in colour plate 1. The reconstruction algorithm employed is described in sec­
tion 5.5. 

The height and position of the person are computed correctly but, since it is 
not possible to recover volume from one image alone, the person is represented 
as a flat silhouette. The outline of the silhouette was extracted by fitting a 
spline curve to the contour of the image. 

In the future, we may attempt to reconstruct the volume of people from 
single images by making use of: shading, silhouette and prior assumptions about 
the shape of the human body. This would help produce more realistic three­
dimensional environments. 

7.2 Reconstruction from paintings 

Linear perspective can be modelled mathematically by projective geometry. 
If a painting conforms to the rules of linear perspective (see section 1.4.3) 
then it behaves geometrically as a perspective image and it can be treated as a 
photograph. The metrology techniques previously described can thus be applied 
to compute the structure of the scene. Since no Euclidean scene measurements 
are known (usually the scenes depicted do not exist), the models are obtained 

1 The reconstructed three-dimensional environments can be "virtually explored" in 
the VR-CUBE at KTH, Stockholm. VRML three-dimensional models and MPEG 
animations can also be viewed at the following web pages: 

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/ 
http://www.research.microsoft.com/Users/antcrim/ 

A. Criminisi, Accurate Visual Metrology from Single and Multiple Uncalibrated Images
© Springer-Verlag London 2001
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a b 

c d 

Fig. 7.1. Three-dimensional reconstruction of a garden shed. a and b two views of 
the reconstructed three-dimensional model of the shed in Fig. 5.23a. See also colour 
plate 1. The person is represented as a fiat silhouette since it is not possible to 
recover its volume from one image. The silhouette has been cut out manually from 
the original image and positioned in the correct place. c and d are two more views of 
the three-dimensional model showing the computed camera position. 

up to a similarity transformation. This level of reconstruction is precisely that 
required for a graphical three-dimensional model where the absolute pose and 
scale are not necessary for visualization. 

Before reconstructing a painting though, it is necessary to check the cor­
rectness of its perspective. This has been assessed here simply by computing 
the location of vanishing points and vanishing lines. Perspective distortion in 
repeated patterns (e.g. the rate of diminution of the coffers on the curved vault 
in Fig. 7.2a, or the tiles on the floor in Fig. 7.4a) has been checked by using 
cross-ratios. 
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Fig. 7.2. Three-dimensional reconstruction of Trinitd: a Trinitd con la Vergine e San 
Giovanni (approx. 1426), by Masaccio (Tommaso di Ser Giovanni Guidi, 1401-1428) , 
Museo di Santa Maria Novella, Firenze, Italia. Courtesy of the Musei Comunali di 
Firenze. b A view of the reconstructed three-dimensional model of the chapel from 
the right. Notice the hemi-cylindrical vault. c View of the model from the left. d View 
of the model from below. e A more extreme view from the left side. The left wall has 
been removed to show the inside structure of the chapel. See also colour plate 2. 

7.2.1 Trinita, Masaccio 

Trinitd (in Fig. 7.2a) is a fresco. It is, arguably, the first perspective image in 
history; the first example of the application of Filippo Brunelleschi's rules of 
perspective (cf. colour plates 2 and 3 ). 

A three-dimensional model of the chapel represented in the fresco has been 
computed here by applying the algorithm described in Chapter 5. Different 
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views of the model are shown in Fig. 7.2b-e. Notice the hemi-cylindrical vault. 
The parts of the vault which are occluded by the capitals and by the head of 
God have been left blank. Their texture can be filled in by making use of the 
regularity of the pattern. 

Ambiguity in recovering depth. 
Since one image alone is used and no scene metric information is known (the 
chapel is not real), an ambiguity arises in the reconstruction: it is not possible 
to recover the depth of the chapel without making some assumptions about 
the geometry of the scene. Two equally valid assumptions can be made: either 
the coffers on the vault of the chapel are square (this is the assumption used 
in the model in Fig. 7.2) or the floor is square. 

Both models have been computed (the two reconstructions are mathemat­
ically related by a simple affine transformation, a scaling in the direction or­
thogonal to the plane of the fresco). Images of the floor of the chapel and of 
the pattern on the cylindrical vault are shown in Fig. 7.3 for both cases. 

This demonstrates that the two assumptions cannot coexist in the same 
reconstruction, even though the ambiguity is not apparent to the naive observer. 
Speculations about which of the two configurations is the one that most likely 
the artist wanted to represent are left to the reader. 

7.2.2 Flagellazione, Piero della Francesca 

Flagellazione (in Fig. 7.4a, and also in colour plates 4 and 5) is one of the 
most studied paintings from the Italian Renaissance period. Mainly because 
of the "obsessive" correctness of its perspective [67]. In the past, the painting 
has attracted the interest of several artists and art historians who, in different 
ways, have been studying its carefully represented geometry. 

Since this painting conforms faithfully to the rules of linear perspective the 
depicted scene can correctly be reconstructed in three dimensions by applying 
the algorithms described in Chapter 5. Images of the computed model, taken 
from different viewpoints, are shown in Fig. 7.4b-d. 

7.2.3 St Jerome in His Study, H. Steenwick 

St Jerome in His Study (in Fig. 7.5a, and also in colour plates 6 and 7 ) is an 
oil painting by the Dutch artist H. Steenwick (1580-1649). It is particularly 
interesting for two reasons: the correctness of the perspective (when this mas­
terpiece was realized linear perspective was a well-established theory) and the 
amazing management of light and shading. The sunlight streaming through the 
window gives the painting a beautiful photo-realistic touch. 

Numerous parallel lines and planar surfaces have been detected and em­
ployed to produce the reconstruction results illustrated in Fig. 7.5b-f. 
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Fig. 7.3. Comparing two possible reconstructions of Masaccio's Trinita. a and b 
View of the vault and view of the floor assuming square coffers. The base plane is 
rectangular. c and d View of the vault and view of the floor assuming square floor. 
The coffers are rectangular. A simple scaling in the direction orthogonal to the plane 
of the fresco (affine mapping) relates the two reconstructions. See also colour plate 3. 

Detecting inconsistencies in the perspective rendering. 
Figure 7.6a shows a fronto-parallel view of the big window on the left wall of 
the scene. This image has been obtained, as usual, by rectifying the original 
texture in the painting by inferring affine and metric information (parallel lines 
and right angles) on the wall plane. 

Notice that while parallelism and angles have been recovered correctly (look 
at the window pattern) an unexpected, asymmetric curvature of the top arch 
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a b 

d c 

Fig. 7.4. Three-dimensional reconstruction of Flagellazione. a The painting Flagel­
lazione (approx. 1453) , by Piero della Francesca (1416- 1492), Galleria Nazionale delle 
Marche, Urbino, Italia. Courtesy of Ministero per i Beni e Ie Attivita Culturali. b A 
view of the reconstructed three-dimensional model with the roof removed to show the 
relative positions of people and architectural elements in the scene. The occlusions on 
the floor have been left blank and the people are represented as flat silhouettes. The 
columns have been approximated by cylinders. c Another view of the reconstructed 
three-dimensional model where the patterned floor has been reconstructed in areas 
where it is occluded by taking advantage of the symmetry of its pattern. Notice the 
repeated geometric pattern on the floor in the area delimited by the columns (barely 
visible in the original painting). d Another view of the model with the roof. The 
partially visible ceiling has also been reconstructed . See also colour plates 4 and 5. 

can be detected. That is due to the fact that the artist has painted a fairly 
complicated curve on a very slanted view of the window (cf. the original painting 
in Fig. 7.5a). Large uncertainty characterizes the localization of points in such 
a situation (cf. examples in section 4.3.2) . The error is less evident in views 
taken from locations closer to the original viewpoint (Fig. 7.6b). 
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Fig. 7.5. Three-dimensional reconstruction of St Jerome in his Study: a St Jerome in 
his Study (1630), by Hendrick V. Steenwick (1580- 1649), private collection (Joseph 
R. Ritman Collection), Amsterdam, The Netherlands. b-f Different views of the re­
constructed three-dimensional model. b The left wall; the the partially seen windows 
have been reconstructed by making use of the symmetrical pattern in their textures. 
c The corner where St Jerome is working. d View of the right-hand side of the study. 
e View of the fireplace from above. f Another view of the fireplace. See also colour 
plate 6. 

7.2.4 The Music Lesson, Vermeer 

The Music Lesson (in Fig. 7.7a and colour plate 8) is another example of 
fine Dutch perspective. Here too we find a perfect geometric construction of 
the depicted indoor scene (probably real), together with a very skilled use of 
light and an in-depth knowledge of its effects on the overall atmosphere of the 
painting [92]. 

Notice that some of the fairly complex objects (e.g. the cello, the chair) 
represented in the painting have not been reconstructed in the simple final 
model. 
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a b 

Fig. 7.6. Detecting geometric inconsistencies in the painting St Jerome in his Study 
by comparing two views of a reconstructed window. a A fronto-parallel view of the 
window on the left wall of the reconstructed model of St Jerome in his Study. The 
right part of the arch is not correct . b It is harder to detect the error in the arch 
curvature from a point of view closer to the original one. See also colour plate 7. 

7.3 Discussion 

At this point I would like to invite the reader to reflect on a particular aspect 
of the relationship between science and art. 

Some computer vision researchers describe their field as a combination of 
maths, science and engineering [82]. But is that all? Is there any room left for 
art? Can art help us understand vision or vice-versa? 

For instance, when looking at photographs of a scene, visual cues such as 
converging straight lines, shading effects, texture, shadows and specularities are 
processed by our brain to retrieve consistent information about the surrounding 
three-dimensional world. 

The same cues are employed by artists in their paintings. However , since 
these works of art are not generated by an automatic imaging process (such 
as a camera) but by the skilled hands of a painter , they are prone to personal 
interpretation and inaccuracies. These visual signals might therefore not be 
consistent with each other (e.g. images of parallel lines may not intersect in 
exactly the same point). However, as a large amount of physiological research 
shows, our brain is capable of neglecting conflicting perspective cues; therefore, 
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Fig. 1.1. Three-dimensional reconstruction of another Dutch painting The Music 
Lesson. a A lady at the virginals with a gentleman (the music lesson) (1662-65), by Jo­
hannes Vermeer (1632-1675), The Royal Collection © 2000, Her Majesty Queen Eliz­
abeth II, London. b-f Different views of the reconstructed three-dimensional model. 
Some objects in the painting do not appear in our reconstruction (e.g. the cello and 
the chair). See also colour plate 8 and note the beautiful lighting that dominates the 
painting. Highly skilled perspectival techniques are demonstrated by the artist in the 
rendering of the floor pattern. 

slightly inaccurate perspective paintings may still convey the desired three­
dimensional illusion. 2 

2 see for instance the Arnolfini Portrait (1434, by Jan van Eyck (active from 1422-
1441), National Gallery, London) , or the Martyrdom of Savonarola (by anonymous, 
San Marco Museum, Firenze, Italy) 
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A number of questions arise: Which perceptual cues are more important to 
the three-dimensional illusion? To what extent do humans forgive wrong cues? 
Since paintings and single photographs are capable of conveying an illusion of 
the three-dimensional space, how necessary is stereo vision? These points may 
lead the way to further physiological speculations. 

On the other hand projective geometry can provide artists and art historians 
with fast and powerful mathematical tools (e.g. planar projections, cross-ratio) 
to answer questions like: How do I construct the geometry of the painting such 
that the perspective looks correct when viewed from such a viewpoint? How 
correct is the perspective (e.g. vanishing points, perspective distortion) in Luca 
Signorelli's Circoncisione? 3 What does the pattern on the floor in Domenico 
Veneziano's Pala di Santa Lucia4 look like? Is the height of the foreground 
figures consistent with the height of the background figures in Raffaello's Spos­
alizio? 5 And how does it compare to the Sposalizio by Perugino? 6 

In my opinion computer vision, art and art history are well-distinguished 
fields, each with its own aims and motivations. Nevertheless, each might learn 
from and be enriched by the others. Furthermore, the tools developed in one 
area may be useful in another. 

3 Circoncisione, by Luca Signorelli (1445-1461), National Gallery, London 
4 Santa Lucia dei Magnoli Altarpiece, 1444, by Domenico Veneziano (1400-1461), 

Uffizi, Firenze, Italy 
5 Sposalizio, 1504, by Raffaello Sanzio (1483-1520), Brera Museum, Milano, Italy 
6 It Matrimonio della Vergine, 1500-1504, by Pietro Perugino (1450-1523), Musee 

des Beaux Arts, Caen, France 



Colour plate 1 
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Three-dimensional reconstruction from a single, uncalibrated photograph. a and b 
Two views of the reconstructed three-dimensional model of the shed in Fig. 5.23a. 
The reconstruction algorithm is described in Chapters 5 and 7. Note that the person 
is represented as a flat silhouette. c and d Two more views of the three-dimensional 
model showing the computed, camera position. 
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e d 
Three-dimensional reconstruction of Masaccio's Trinitd: a The original painting: 
Trinitd con la Vergine e San Giovanni (approx. 1426), by Masaccio (Tommaso di Ser 
Giovanni Guidi, 1401- 1428), Museo di Santa Maria Novella, Firenze, Italia. Courtesy 
of the Musei Comunali di Firenze. The single-view reconstruction algorithm is de­
scribed in Chapter 5 and 7 and results are also shown in Fig. 7.2. b-e Different views 
of the reconstructed three-dimensional model of the chapel in the Florentine fresco. 
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Ambiguity in reconstructing the depth of the chapel in Masaccio's Trinitd: Comparing 
two possible reconstructions (see also Fig. 7.3 and colour plate 2). The table above 
shows that coffers and base plane cannot be both square at the same time. A simple 
scaling in the direction perpendicular to the original painting (affine mapping) relates 
the two reconstructions. More details are in Chapter 7. 



Colour plate 4 

b 
Three-dimensional reconstruction of Piero's Flagellazione: a the original painting 
Flagellazione (approx. 1453), by Piero della Francesca (1416- 92), Galleria Nazionale 
delle Marche, Urbino, Italia. Courtesy of Ministero per i Beni e Ie Attivita Culturalij 
See also Fig. 7.4. b A view of the reconstructed three-dimensional model with the 
roof removed to show the relative positions of people and architectural elements in 
the scene. The occluded regions on the floor have been left blank and the people 
are represented as flat silhouettes. The columns have been approximated by cylin­
ders. Two more reconstructed models are shown in colour plate 5. Details about the 
reconstruction algorithm are in Chap~ers 5 and 7. 



Colour plate 5 

c 

d 
Three-dimensional reconstruction of Piero's Flagellazione: Two more views of the re­
constructed three-dimensional model (see also colour plate 4 and Fig. 7.4). c The 
patterned floor has been reconstructed in areas where it is occluded by taking ad­
vantage of the symmetry of its pattern. Notice that the geometric pattern on the 
floor appears at both the back and front of the region enclosed by the columns (this 
pattern is barely visible in the original painting) . d The partially visible ceiling has 
also been reconstructed. 



Colour plate 6 

Three-dimensional reconstruction of a Dutch paint­
ing. (above) The original painting St Jerome in 
his Study (1630), by Hendrick V. Steenwick (1580-
1649) , private collection (Joseph R. Ritman Collec­
tion) , Amsterdam, The Netherlands. (right) The 
column on the right shows different views of the re­
constructed three-dimensional model. See chapter 
5 and 7 for more details on the algorithm, results 
are also shown in Fig. 7.5. 



8. Conel usion 

8.1 Summary 

This book has developed new, flexible and accurate algorithms for the use of a 
camera as a three-dimensional measuring device. 

A solid theoretical framework employing techniques drawn from projective 
geometry has been developed to compute measurements from single and mul­
tiple uncalibrated views. 

The process of measuring has been treated as a true engineering task, there­
fore particular attention has been paid to predicting the uncertainty of the final 
measurements arising from the uncertainty of the input data and of the mea­
suring process. 

The theory in this book has been developed in steps: from simpler metrology 
on planar surfaces to more complicated three-dimensional measurements and 
from single to multiple images. 

Metrology on planes. 
Earlier in this book we showed how to compute measurements on planar sur­
faces (Chapter 4). Distances between points and parallel lines, image rectifica­
tion and image mosaicing have been discussed in detail. 

The effectiveness of such techniques has been demonstrated with an appli­
cation capable of computing measurements from single images of indoor and 
outdoor scenes, as well as for rectifying projectively distorted views and rna­
saicing together several images of a planar structure. 

Planar projective mappings, such as homographies and homologies, have 
proven extremely useful, simple and powerful mathematical tools and they 
have been employed throughout the book. 

Single-view metrology. 
We have also explored how three-dimensional affine measurements can be re­
trieved from single views (Chapter 5). The key has been the novel parametriza­
tion of the three-dimensional space as a collection of pencils of parallel planes. 
Three-dimensional geometry has been successfully described in terms of the 
relationships between homographies, homologies and 3D-2D projective map­
pings. 

This approach has made possible the reconstruction of the three-dimensional 
space in a stratified fashion. The available scene information may be used to 
upgrade the computed structure from affine to Euclidean. 

A. Criminisi, Accurate Visual Metrology from Single and Multiple Uncalibrated Images
© Springer-Verlag London 2001
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This work has been applied successfully to a number of different areas: 
scientific, artistic and commercial. Software applications employing some of 
the presented algorithms have been developed and they are currently used for 
forensic purposes. 

Metrology from planar parallax. 
The use of a multi-view approach in cases where single-view techniques are less 
adequate has been addressed. 

We have investigated the use of a plane-plus-parallax approach to make 
optimal use of the redundancies between different views of a scene. This has 
led to the discovery of elegant duality relationships between configurations of 
points and cameras, as described in Chapter 6. 

Furthermore, we have demonstrated that the fundamental geometric con­
straints (epipolar geometry and trifocal tensor) are captured by a planar ho­
mology relating the images of points across views. Consequently, a number of 
previously diverse results related to planar parallax, duality and planar ho­
mologies have been unified. 

Formulae for determining distances of cameras and points from a world 
plane have been presented, with the proper uncertainty analysis, and have 
been tested on real images. 

8.2 Discussion 

Advantages and disadvantages of the proposed metrology algorithms are dis­
cussed in this section. 

An accurate and reliable measuring device. 
The internal parameters of the camera are quite unstable and sensitive to vari­
ation in temperature or mechanical shock. Metrology algorithms which rely on 
the calibration of the camera are therefore strongly affected by such instability. 

The algorithms proposed in this book do not make use of internal cali­
bration, thus leading to greater robustness and reliability. Since no knowledge 
about the cameras is needed, the algortihms can be applied to existing, archived 
images. 

The accuracy of the measuring device described in this book has been mod­
elled mathematically, thus providing a tool to assess the precision of the output 
measurements, given uncertain input data and transformations. Moreover, the 
uncertainty analysis provides a powerful tool to increase the accuracy of the 
measurements. In fact, by observing the behaviour of the predicted accuracy, 
the ideal location of camera and references can be chosen such that the output 
uncertainty is minimized. This makes the device particularly effective in typ­
ical engineering or architectural applications such as modelling buildings and 
interior design (see section 4.3). 

As expected, the quality of the results increases with the resolution of the 
images. Nevertheless, a 1024 x 768 resolution has proven sufficient for the ap­
plications considered. 
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Robustness for noisy images. 
The images that the metrology device is required to deal with may contain a 
large amount of random noise. This happens quite often in forensic data, where 
the images are recorded on old tapes. 

Nevertheless, useful geometric cues (like edges) can still be detected even for 
large amount of noise. The precautions during the process of detecting lines and 
vanishing points (Canny edge detection, straight-line fitting, edge merging and 
maximum likelihood estimates of intersection points, cf. sec. 3.3) provide the 
proposed metrology algorithms with an increased robustness and insensitivity 
to noise. 

Flexibility. 
Since no internal camera calibration is required at any time this device can be 
applied to a wide range of input images: old footage, archived photographs, 
postcards and even paintings. Effectively the algorithms can deal with any 
perspective image, no matter how that is obtained or where it comes from. 

This is demonstrated, in particular, by the interest shown by researchers 
in fields like art history towards the capabilities offered by such techniques. 
Artists and art historians are becoming increasingly aware of the potential of 
modern technology. Some of the most fascinating applications, such as taking 
measurements on a painted scene (real or not), reconstructing it as a virtual 
reality model and creating animations and fly-throughs have been presented in 
this book. 

As mentioned above, these strongly geometrical techniques can only be ap­
plied to projective images. Therefore they are particularly useful when applied 
to paintings from the Italian Renaissance whose masters invented Linear Per­
spective [1]. Numerous perspective paintings are also found amongst the Dutch 
masterpieces of the seventeenth century and in some contemporary works of 
art. 

Apart from the obvious applications in art history and computer graphics, 
analyzing paintings can be a useful aid to the understanding of vision and the 
perception of the world around us. . 

Radial distortion correction. 
When a camera becomes part of a measuring device, the accuracy and sen­
sitivity of the camera itself has to be investigated. In particular, high-quality 
lenses and high-resolution CCD arrays may be required in order to get the most 
precise information from the viewed scene. 

Quite often, images taken with wide-angle-lens cameras (often pictures of 
indoor scenes) are corrupted by lens-generated distortions such as radial distor­
tion. These images, therefore, are not perspective. The unthinking application 
of calibrated or uncalibrated metrology techniques would therefore yield in­
correct results. This problem has been overcome, in this book, by employing 
a simple and robust preprocessing stage, where a radial correction algorithm 
(section 3.2) warps the image into a perspective one. 

This correction algorithm, though, is of no use when the camera lenses show 
more complicated aberrations. Most modern digital still or video cameras do 
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not suffer, however, this problem and therefore the correction step is unneces­
sary. 

Automation. 
The proposed metrology algorithms must be supervised. In fact, features of 
interest in images (e.g. edges and corners) are detected automatically and lo­
calized with great accuracy, but interactivity is necessary to make the right 
inference from the images: selecting a set of parallel lines or a set of planar 
points (orthogonality is not necessary); identifying reference distances and en­
tering their value; and selecting the end points of the length to be measured. 

While complete automation is desirable in the long term, and indeed some 
of the stages which are currently supervised could be automated (e.g. detecting 
concurrent lines and vanishing points [97]), this has not been a major issue in 
this book. 

8.3 Future work 

The described measurement and structure recovery algorithms work particu­
larly well for man-made environments. It is more complicated to apply those 
techniques to images of scenes where fewer regular structures and well defined 
geometric cues (e.g. parallel lines and planes) are present. In such cases different 
sources of geometric information must be used. 

Use of shadows, reflections, symmetries and repetitions in single 
views. 
As mentioned in section 5.6, shadows, reflections, symmetries and repetitions 
constitute an important source of pure geometric information (see Fig. 8.1). 
These cues provide restrictions analogous to a second viewpoint. It has been 
proven that projective or affine structure can be computed from single images 
with a plane of symmetry (e.g. a mirror, a lake) [60, 104]. Curved surfaces and 
non-planar objects can be reconstructed from single views by making good use 
of those geometric cues. 

Shadows, reflections, symmetries of planes and repetitions can be described 
by homologies. One of the future goals of this work is, then, to build a system­
atic interpretation of the single-view approach which makes further use of the 
generality of the homology mapping. 

A possible application is the reconstruction of complicated vault struc­
tures in churches from postcards, drawings and paintings [91]. For instance, 
in Fig. 8.2a the symmetry and repetition of the three-dimensional pattern in 
the vaults carry useful information about their shape and geometry. 1 

Being able to recover the shape of non-planar and generally curved objects 
may lead to an increase in the amount of detail present in reconstructed scenes. 

1 Note that the arches in Fig. 7.2 and Fig. 7.5 have been reconstructed with ease 
because they lie on fronto-parallel planes. In Fig. 7.2, the arch is simply a semicircle. 
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Fig. 8.1. Reconstructing curved surfaces from single views using reflections: a view 
of the bridge in the University Parks in Oxford. The reflection of the bridge on the 
water of the river provides information about the geometry of the bridge itself. 

Analyzing natural scenes. 
Currently we are trying to address the problem of dealing with "natural" scenes, 
where no strong geometric cues or straightforward geometric relationships (e.g. 
homologies) can be identified. This will probably require a statistical interpre­
tation of the texture and shading of surfaces. 

Less strictly geometry-based approaches may be applied in interpreting im­
ages of countryscapes and paintings. These images do not present many reliable 
geometric fixtures , but other less well-defined cues may convey the perception 
of depth, distance and shape of surfaces. Shape can be perceived, for instance, 
from the texture of surfaces [27, 49, 66] (see Fig. 8.2b, and also the famous 
"water-lilies" paintings by Claude Monet), and depth and distance from the 
variation of the intensity and saturation of the light. 2 This "atmospheric cue" 
might prove useful, not only to measure relative distances between objects (like 
buildings [90]) but, if reference distances are known, to measure the humidity 
or pollution of the air itself. 

Uncertainty analysis with bootstrap methods. 
On the error analysis front we are investigating alternative methods for pre­
dicting the uncertainty of the final measurements which avoid the sometimes 
tedious computation of Jacobian matrices required by first order error propa­
gation techniques. 

One possibility is to use numerical algorithms. Bootstrap methods [83] are 
currently under investigation. These techniques are very similar to the Monte 
Carlo approach, the main difference being that no knowledge about the sta­
tistical distribution of the input data is required (in this book, Gaussian noise 

2 "There is another kind of perspective which I call aerial, because by the difference 
in the atmosphere one is able to distinguish the various distances of different build­
ings, which appear based on a single line." Leonardo da Vinci {1452- 1519}. (cf. 
Leonardo's painting The Virgin of the Rocks, 1508, National Gallery, London.) 
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a b 

Fig. 8.2. Reconstructing curved surfaces from single views using symmetry and tex­
ture: a a postcard showing the interior of the Bodleian Library in Oxford; recon­
structing the beautiful and fairly complicated vaults is a challenge; b a photograph 
of the water-lilies pond in the University Parks in Oxford. 

has always been assumed in the input data). Bootstrap algorithms, however, 
like the Monte Carlo ones, are based on an iterative refinement of the solution 
and therefore can be very slow. 
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"Questa conclusione, benche trovata da povera gente, c'e parsa cosl 
giusta, che abbiam pensato di metterla qui, come il sugo di tutta la 
storia. 
La quale, se non v'e dispiaciuta affatto, vogliatene bene a chi l'ha scritta, 
e anche un pochino a chi l'ha raccomodata. Ma se in vece fossimo riusciti 
ad annoiarvi, credete che non s'e fatto apposta." 

da I Promessi Sposi (1826) di A. Manzoni (1785-1873) 

"This conclusion, though written by simple people, seems so apt that we 
have thought of putting it here, as the sauce for the whole story. 
Which, if you did not dislike it, then show some sympathy to those who 
wrote it, and also a little to those who mended it. If, instead, you found 
it tiresome, believe that we did not do it on purpose." 

from The Betrothal (1826) by A. Manzoni (1785-1873) 



A. Metrology on planes, computing uncertainty 
in the homography 

In section 4.1.1, in order to compute the planar homography H, we seek the 
eigenvector h with smallest eigenvalue>. of the matrix AT A. If the measured 
points are noise-free, or n = 4, then h = Null(A), and in general it can be 
assumed that for h the residual error h TAT Ah = >. ~ O. 

We now use matrix perturbation theory [50, 120, 134] to compute the co­
variance Ah of h based on this zero approximation. Let us define: 

z = (Xl Y1 X2 Y2 X3 Y3 ... Xn Yn ) T 

the vector of the 2n components of the n noisy image computation points, 
referred to an image coordinate system. Because of the noise we have: 

z = z + 8z = (Xl iil X2 ih X3 fi3 ... Xn fin) T + 

(8X1 8Y1 8X2 8Y2 8X3 8Y3 ... 8xn 8Yn ) T 

where the - indicates noiseless quantities. Similarly for the world-plane compu­
tation points we define: 

T 
Z = (Xl Y1 X2 Y2 X3 Y3 ... Xn Yn) 

the vector of the 2n components of the n noisy world-plane computation points 
referred to a world coordinate system and: 

Z = Z + 8Z = (Xl Y1 X 2 Y2 X3 Y3 ... Xn Yn ) T + 
(8X1 8Yi 8X2 8Y2 8X3 8Y3 ... 8Xn 8Yn ) T 

We assume that the noise is Gaussian with null mean and that there is 
no correlation between the noise of different computation points. That means: 
E(8zi8zj ) = 8iju; and E(8Zi8Zj ) = 8ij E; where 8ij is the Kronecker delta 

J: {Oii:i .. 1 2 Vij = 1 i = j , Z, J = ... n 

The generic odd row 1 x 9 vector of the A matrix is: 

aU-1 = (Xi Yi 1000 -XiXi -YiXi -Xi) 

and the even row 1 x 9 vector is: 
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with i = 1·· ·n. 
But a2i-1 = a2i-1 + 6a2i-1 and a2i = au + 6a2i and therefore: 

and: 

where: 

with Ax; the homogeneous covariance matrix of the image point Xi = (Xi, Yi, 1) T 

and Ax; the homogeneous covariance matrix of the world-point Xi in the form: 

[
a;; aXYi 0] 

AXi = art aJ; ~ , 
In the case of homogeneous and isotropic noise, the above equations simplify. 

Furthermore if we define the matrix M = AT A then: 

M= (A + 6A)T(A+ 6A) =ATA+6ATA+AT6A+6AT6A 

Thus M = M + 15M and for the first order approximation, 15M = 6A T A + AT 6A. 
Now let us define UI as the eigenvector corresponding to the null eigenvalue 

of the matrix M (the solution vector h). The other eigensolutions are: MUj = 
XjUj with j = 2···9. It has been proven [50, 107] that the variation of the 
solution is related to the noise of the matrix as in the following formula: 

9 - -T 

6U I = - L U~ Uk 6Mul 

k=2 Ak 

but 6Mul = 6A TAuI + AT 6Aul and we know that AUI = 0, thus: 
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8Mul = AT 8Aul 
--T - 9 iiiiT 

from where 8Ul = JA 8Aul with J = - :Ek==2 T. 
Therefore: 

Ab = Au! = E (8ul8ui) = JE (AT 8AulU! 8ATA) JT (A.l) 

~ jE (~ii(." O'h)(~i;(.i; Ou,)) jT 

~ JE (~ii(~i;U;r(.aJ .i;)U,») jT 

~ j (~"T(~ii;U;rE('''T .ii;)U,») JT 

having used the fact that (8ai . Ul) (8aj . Ul) = u! (8al8aj )Ul. 

Now considering that J is a symmetric matrix (JT = J) equation (A.l) can 
be written as: 

Ab = JsJ 
where S is a 9 x 9 matrix obtained as follows: 

i==l 

yielding: 

i==l 
- T - - T Soe - - T - - T Seo - ) a2i-l a2iu l i Ul + a2ia 2i-l Ul i Ul 

Note that many of the above equations require the true noise-free quantities, 
which in general are not available. Weng et al. [132] pointed out that if one 
writes, for instance, A = A - 8A and substitutes this in the relevant equations, 
the term in 8A disappears in the first order expression, allowing A to be simply 
interchanged with A, and so on. 

Finally the 9 x 9 covariance matrix Ab is: 

Ab = JSJ (A.2) 

where J = - :E~==2 Ukl'kk T , with Uk the kth eigenvector of the AT A matrix and 
Ak the corresponding eigenvalue. The 9 x 9 matrix Sis: 

n 

S =~) a~_l a2i-lh T Sfh + a~a2ih T S~h + (A.3) 
i==l 

a~_l a2ih T S~eh + a~a2i-lh T SiOh) 

with ai ith row vector of the A matrix; n is the number of computation points. 



B. Maximum likelihood estimation of end 
points for isotropic uncertainties 

Given two image points x and x' with distributions Ax and Ax' isotropic but 
not necessarily equal (Fig. B.I), we estimate the points x and x' such that the 
cost function (5.24) is minimized and the alignment constraint (5.25) satisfied. 
It is a constrained minimization problem; a closed-form solution exists in this 
case. 

The 2 x 2 covariance matrices Ax and Ax' for the two inhomogeneous end 
points x and x' define two circles with radius r = ax = ay and r' = ax, = ay' 
respectively. The line 1 through the vanishing point v that best fits the points 
x and x' can be computed as (in homogeneous form): 

( 
I+~ ) 

1 = ~ , 
-(1 + VI + ~2)vx - ~Vy 

r'dxdy + rd~d~ 
~ = 2 r'(d; _ d~) + r(d~2 - d~2) 

where: 

d = x - v, d' = x' - v 

Note that this formulation is valid if v is finite. 
The required estimates x and x' are the orthogonal projections of the points 

x and x' onto the line I: 

( 
iy(x· FI) -ixiw ) 

x = -ix(x . FI) -iyiw , 
i2 + i2 x Y 

. h [ 0 10] 
WIt F = -100 . 

( 
iy(x/ · FI) - ixiw ) 

x' = -ix(x' . FI) - iyiw 
i2 + i2 x y 

(B.I) 

The points x and x' obtained above are used to provide an initial solution 
in the general non-isotropic covariance case, for which a closed-form solution 
does not exist. In the general case, the non-isotropic covariance matrices Ax 
and Ax' are approximated by isotropic ones with radius 

r = Idet(AxW/4 r' = Idet(Ax' W/4 

Then (B.I) is applied and the solution end points are refined by using a 
Levenberg-Marquardt numerical algorithm to minimize the cost function (5.24) 
while satisfying the alignment constraint (5.25). 
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v 
Fig. B.lo Maximum likelihood estimation of the location of two points subject to 
the alignment constraint. The uncertainty of the input points x and x' is Gaussian 
and isotropic. The points x and x' are the maximum likelihood estimates. 



C. Single-view metrology, variance of distance 
between planes 

C.l Covariance of maximum likelihood estimation (MLE) 
end points 

In Appendix B we have shown how to estimate the MLE points x and x' 
given two end points x and x, characterized by non-isotropic uncertainties. 
This section demonstrates how to compute the 4 x 4 covariance matrix of the 

MLE 4-vector , = (x T x'T) T from the covariances of the input points x and 

x' and the covariance of the projection matrix. 
In order to simplify the following formulae we define the points: b = x 

(referred to as the base point) on the plane 71"; and t = x' (referred to as top 
point) on the plane 71"' corresponding to x. 

It can be shown that the 4 x 4 covariance matrix A, of the vector , = 

(b", by t", ty ) T (MLE top and base points, see section 5.3.2) can be computed 
by using the implicit function theorem [20, 38] as: 

A, = rlBA,B T r T (C.l) 

where, = (b", by t", ty Pl3 P23 P33 ) T and: 

A, = [~b 1t ~ 1 
o 0 Ap3 

(C.2) 

Ab and At are the 2 x 2 covariance matrices of the image points b and t 
respectively, and Ap3 is the 3 x 3 covariance matrix of the vector P3 = av 
defined in (5.3). The assumption of statistical independence in (C.2) is a valid 
one. 

The matrix A in (C.I) is the following 4 x 4 matrix: 

[ 
-ef . ~t -e~ . ~t -AP33Jt y AP33Jt z 1 

A - JezJby JeyJby - rAp33 -reil - AP33 Jby -reb - AP33Jby 

- r AP33 - Jez Jbz -Jey Jbz -reb + AP33Jbz -re~2 + AP33Jbz 
-Tl5ty rJtz r8by -rJbz 

where we have defined: 

• Et = At l and e~j its element in the (i,j) position; 
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e Eb = Ab l and er and e~ respectively its first and second row; 
e P=(PI3,P23)T, Ot=P33t-p, Ob=P33b-p, oe=e~-er; 

_ A A _ 6e .(b-b) 
er-(P3 xt)y-(P3 xt)x, A- T' 

The matrix B in (C.1) is the following 4 x 7 matrix: 

[ 
er . Ot e~· Ot 0 0 A6ty -A6t ,. -AVI] 

B _ -6e.6by -6ey 6by reil rei2 -A6by -A(r + 6bJ AV2 
- 6e.6b. 6ey 6b• rei2 re~2 A(~ + 6}J AA6b• A - AV3 

o 0 0 0 r(ty - by) r(bx - tx) rV4 

where we have defined: 

VI = ty~3tx - Pl3ty), V2 = by(P13 + P23) - P23(tx + ty) 

V3 = bx(P13 + P23) - Pl3(tx + ty), V4 = txby - tybx 

If the vanishing point is noise-free then A, has rank 3, as expected because 
of the alignment constraint. 

C.2 Variance of the distance measurement, O'~ 

As seen in section 5.3.2 the components of the vector, are used to compute 
the distance Z from (5.8) rewritten here as: 

z=- lI~xtll A 

(P4 . b)llp3 x til 

with the MLE points b, t homogeneous with unit third coordinate. 
The variance a~ of the measurement Z depends on the covariance of the 

, vector and the covariance of the 6-vector P = (PJ pI) T computed in sec­
tion 5.3.1. If, and P are statistically independent, then from first order error 
analysis: 

2 (A, 0) T az = Vz 0 Ap Vz (C.3) 

the 1 x 10 Jacobian V z is: 

F (txb) xi _ E.1.) 
{32 P 

F (bxi)Xb _ (P3 Xi)X P3 ) 
{32 ")'2 

(P3 xi) xi 

T 

Vz=Z 
")'2 

-~ 
P 

A A A A [100] where we have defined (3 = lib x til, 'Y = IIp3 x til, p = P4' band F = 010' 

Note that the assumption of statistical independence in (C.3) is an approxima­
tion. 



D. Single-view metrology, variance of the affine 
parameter a 

In section 5.2.1 the affine parameter a is obtained by computing the eigenvector 
s with the smallest eigenvalue of the matrix AT A (5.8). Ifthe measured reference 
points are noise-free, or n = 1, then s = Null(A) and in general we can assume 
that for s the residual error s TAT As = A ~ o. 

As in Appendix A we now use matrix perturbation theory [50, 120, 134) to 
compute the covariance As of the solution vector s based on this zero approx­
imation. 

Note that the ith row of the matrix A depends on the normalized vanishing 
line 1, on the vanishing point v, on the reference end points hi, ti and on refer­
ence distances Zi. Uncertainty in any of those elements induces an uncertainty 
in the matrix A and therefore uncertainty in the final solution s. Let us define 
the input vector: 

"., = (lx ly lw Vx Vy Vw Zl tlz tty b1• b1y Zn tn. tny bn• bny ) T 

which contains the plane vanishing line, the vanishing point and the 5n com­
ponents of the n references. Because of noise we have: 

--- ----- ----- T 
"., = iJ + 15"., = (lx ly lw Vx Vy Vw Zl tlz h y b1z b1y Zn tnz tny bn• bny ) + 

(t51 x t51 y t5lw t5vx t5vy t5vw t5Z1 t5t1• t5t1y t5Zn t5tn• t5tny t5bnz t5bny )T 

where the - indicates noiseless quantities. 
We assume that the noise is Gaussian with zero mean and also that different 

reference distances are uncorrelated. However, the rows of the A matrix are 
correlated by the presence of v and 1 in each of them. 

The 1 x 2 row-vector of the design matrix A is (see section 5.2.1): 

ai = (ZiPi'Yi {3i ) 

with i = 1 ... n. Because of the noise ai = Iii + t5~ and 

t5ai = (Pi'Yi t5Zi + Zi'Yi t5Pi + ZiPi t5'Yi t5{3i) 

It can be shown that t5Pi, t5'Yi and t5{3i can be computed as functions of 15"., 
and, therefore, taking account of the statistical dependence of the rows of the 
A matrix, the 2 x 2 matrices Eij = E(t5alt5aj) 'ii,j = 1··· n can be computed. 

Furthermore if we define the matrix M = AT A then: 

M = (A + t5A) T (A + t5A) = AT A + t5A TA + AT t5A + t5A T t5A 
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Thus M = H + 15M and for the first order approximation 15M = 6A T A + AT 6A. 
As already stated, the vector s is the eigenvector corresponding to the null 

eigenvalue of the matrix H; the other eigensolution is: Hii = ),2ii with ii the 
second eigenvector of the AT A matrix and ),2 the corresponding eigenvalue. 

It is proved in [50, 108] that the variation of the solutions is related to the 
noise of the matrix Mas: 

--T 
6s = - u~ 6Ms 

A2 

but since 6Ms = 6A TAs + AT 6As and As = 0 then 6Ms = AT 6As and thus: 

6s = jAT 6As 

where j is: 
_ iiii T 
J= --_­

A2 

Therefore: 

As = E [6s6s T] = jE [AT 6AssT 6ATA] jT 

~ JE [t, .. T ('" . 0) t, ";(,"; .0)] J T 

= jE [t a; (t ajsT (6a; 6aj )S)] jT 
.=1 3=1 

= j [tal (tajSTE(6a;6aj)s)] jT 
.=1 3=1 

making use of the fact that: 

(6ai . s)(8aj . s) = sT (8a; 6aj)s 

(D.l) 

Now considering that j is a symmetric matrix (J T = j), equation (D.l) can 
be written as: 

As = j8j 

where 8 is the following 2 x 2 matrix: 

with Eij = E(6a; 8aj). 
Note that many ofthe above equations require the true noise-free quantities, 

which in general are not available. As in Appendix A, if one writes, for instance, 
A = A - 6A and substitutes this in the relevant equations, the term in 6A 
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disappears in the first order expression, allowing A to be simply interchanged 
with A, and so on. Therefore the 2 x 2 covariance matrix As is simply: 

As = JSJ (D.2) 

T 
where J = - U~2 • The 2 x 2 matrix Sis: 

(D.3) 

with ai the ith 1 x 2 row-vector of the design matrix A and n the number of 
references. 

The 2 x 2 covariance matrix As of the vector s is therefore computed. 

Noise-free v and 1. In the case Al = ° and Av = 0, so (D.3) simply becomes: 

(D.4) 

In fact the rows of the A matrix are all statistically independent. 

Variance of a. It is easy to convert the 2 x 2 homogeneous covariance 
matrix As in equation (D.2) into inhomogeneous coordinates. In fact, since 

s = (s(l) 8(2)) T and a = ~ for a first order error analysis, the variance 
of the affine parameter a is: 

0"; = VaAs Va T 

with Va the 1 x 2 Jacobian matrix: 

1 
Va = -2 (s(2) -s(l)) 

s(2) 

(D.5) 



E. Metrology from planar parallax, derivations 

E.! Computing the motion constraints 

In this section we derive some of the motion constraints described in Chapter 6. 
Extensive use is made of the lemma given in Fig. E.l. 

Equation {6.4}: 

Proof. In Fig. 6.4 clearly we have: 

However by the lemma (substituting a --t Pl, b --t P2, C --t ql, d --t xt) 

AePIXl AXIX~Pl 
Aeqlxl = AXlx~ql 

Hence combining the identities above, we obtain the desired result: 

Equation {6.1}: 

Proof. Applying the lemma to Fig. 6.4 we can write: 

Also from the lemma: 

Combining the above yields: 

Aqlq~x~ _ Aex~ql 

Aqlq~xl Aexlql 

o 

o 
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~d 
e a b 

f\ead f\abd 

f\eac f\abc 

d d 

e a e a b 

Fig. E.!. Lemma: The equality of the area ratios is easily seen by considering the 
relative heights and base lengths of the triangles. 

E.2 Computing distances of points from planes directly in 
the images 

In this section we show how we obtain (6.39) from (6.38). 
First of all we need to compute the relationship between the area of a 

triangle on the distinguished plane and the area of its image. 

Areas of triangles on the images. 
For a generic triangle on the reference plane, the relation between its area and 
the area of its image on the first image can be computed as follows. 

Let us assume that HI and H2 are the image-to-world homographies for the 
first and second image respectively, such that: 

X = HIX X = H2XI 

for every point X on the distinguished plane 1f'. Consequently x = HX', where: 

H = HllH2 

is the inter-image homography. 
Then for the triangle of vertices PI , P2, Xl, on the world plane we have: 

IHIP H2P' HIXI 
(1· p)(l' . pl)(l. x) 

IHII 
= (1· p)(l' . p')(l · x) Ip 

(E.1) 

Hp' xl 
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IHll A . 
(I. p)(I' . p')(I. x) ppx 

with P = Hp'. The area of the corresponding triangle on the first image is Appx. 

Distances of points and cameras from the distinguished plane. 
The distance of a point X from the plane can be computed if both image-to­
world homographies are known by applying (6.38); but it can also be computed 
directly in the images if the inter-image homography H is known and the plane 
vanishing line 1 in either image is known. By applying (E.2) to (6.38), obtain­
ing (6.39) is straightforward. 

A similar procedure can be applied to compute the distance of the cameras 
in (6.35) from (6.34). 



F. Metrology from planar parallax, variance of 
distances 

As seen in section 6.4.2, the variance on the distance Zx of a point X from a 
plane can be computed employing the plane-plus-parallax approach as: 

a~ = VZzAVZT 
z z 

In this section we compute the 1 x 32 Jacobian V Zz. 

F.1 Definitions 

Equation (6.39) can be rewritten as: 

N 
Zx = ZpZq D 

where we define: 

• N = Nl - N 2; Nl = pqAxxqAppx; N2 = ppAqqxAxxp; 
• D = ZqDl + ZpD2; 
• Dl = Appx(pqAxxq - PrAqqx); 
• D2 = Aqqx(PrAppx - ppAxxp); 
• Pp = 1 . p; Pq = 1 . q; Pr = 1 . x. 

For a generic triplet of points a, b, c we define: the determinant Dabe = det [ abc] ; 
the area Aabe = IDabel; and the sign Sabe = ~ObC. 

Uncertainty is assumed on: the inter-image Bhomography H; the plane van­
ishing line 1; the two input references, their world distance and the position of 
the image points Zp, p, pi, Zq, q, q/; and the input image points x, Xl. 

F.2 Computing the Jacobian V z", 
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Furthermore for a generic vector v we have: 

8Zx = ZpZq (8N D _ N (Z 8D l + Z 8D2)) 
~ D2 ~ q~ p~ 

where v can be v = l,h,p,p',q,q',x,x'o 

• Since Dl = Appx(pqAxxq - PrAqqx) we have: 

8Dl 8I = Appx (Axxqq - Aqqxx) 

8Dl 8Appx (8Axxq 8Aqqx ) 
8h = 8h (PqAxxq - PrAqqx) + Appx Pq 8h - Pr 8h 

8Dl Dl (0 o)T --=--pxx 
8p Dppx 

8Dl Dl (0 )T --=--xxp H 
8p' Dppx 

8~l = Appx (AxxqlT - prSqqx(q x x)T) 

~~: = Appx (PqSxxq(x x iF - PrSqqx(x x q) T) H 

8~l = Appx (pqSxXq(x x q) T - Aqqx1T) 

~~: = (.~:x (p x p)T + Appx (pqSXXq(q X x)T - PrSqqx(q X q)T)) H 

8D2 8I = Aqqx (Appxx - Axxpp) 

8D2 8Aqqx ( ) (8Appx 8Axxp) 
8h = 8h PrAppx - PpAxxp + Aqqx Pr8h - PP8h 

8;;2 = Aqqx (PrSppx(P x x) T - AxxplT) 

:~ = Aqqx (prSppx(x x p)T - ppSxxp(x X x)T) H 

8D2 D2 (0 o)T --=--qxx 
8q Dqqx 

8D2 D2 (0 )T --=--xxq H 
8q' Dqqx 

8~2 = Aqqx (Appx1T - ppSxxp(x X P) T) 

~~ = (~:}q x q) T + Aqqx (PrSppx(p x p) T - ppSxxp(p x x) T)) H 
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aN m = AxxqAppxq - AqqxAxxpP 

aN (aAxxq aAppx) (8Aqqx aAxxp ) 
ah = {2q Appx ~ + Axxq ----ah - {2p Axxp ----ah + Aqqx----ah 

aN = ~(p x x)T _ N21T 
ap Dppx {2p 

aN (N1 • T N2 . T) - = --(x x p) - --(x x x) H 
ap' Dppx Dxxp 

aN = NIIT _ ~(q X x)T 
aq {2q Dqqx 

aN (Nl . T N2 . T) - = --(xxx) ---(xxq) H 
aq' Dxxq Dqqx 

aN Nl (. . )T N2 (. . )T -=--xxq ---xxp ax Dxxq Dxxp 

aN (Nl (. )T Nl ( .)T N2 ( .)T N2 (. )T) -= --qxx +--pxp ---qxq ---pxx H ax' Dxxq Dppx Dqqx Dxxp 

Finally: 

aAxxp co ( • )T ( . )T ) ~ = Qxxp P X X BTl + X X X Bpi 

aAxxq co ( • )T ( . )T ) ~ = Qxxq q X X BTl + X X X Bql 

aAppx co ( • )T ( . )T ) ----ah = Qppx X X P Bpi + P X P BTl 

aAqqxq ( . )T ( . )T ) ~ = '-'<Iqx X X q Bql + q X q BTl 

where for a generic point x: 

[
X TOO 1 

Bz = 0 X T 0 
o 0 x T 

The Jacobian ~zz is thus computed as: 

~ _ (!lb. !lb. ~ ~ ~ !lb. !lb. ~ !lb. ~) 
-Zz - 81 8h 8Zp 8p 8p' 8Zq 8q 8q' 8x 8x' 
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