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Preface

Analytical chemistry can look back on a long history. In the course of its de-
velopment, analytical chemistry has contributed essentially to the progress
of diverse ˇelds of science and technology. Signiˇcant progress in natu-
ral philosophy, chemistry and other disciplines has been founded on re-
sults and discoveries in analytical chemistry. Well known examples include
Archimedes' principle, iatrochemistry, emergence and overcoming of phlo-
giston theory, basic chemical laws on stoichiometry and mass proportions
as well as the discoveries of elements and of nuclear ˇssion.

As chemistry split into inorganic, organic and physical chemistry in the
middle of the nineteenth century, the question occasionally arose as to
whether analytical chemistry was likewise an autonomous ˇeld of chemistry.
At the beginning of the twentieth century, analytical chemistry was estab-
lished by Wilhelm Ostwald and other protagonists on the basis of chemical
and physicochemical laws and principles. In addition, analytical procedures
and instruments spread into other chemical ˇelds. However, in the 1950s
and 1960s a new generation of analysts opened their mind to ideas coming
from other scientiˇc ˇelds dealing with measurements from other points of
view such as information science, metrology, technometrics, etc.

As a result, efforts made towards the acceptance of analytical chem-
istry as an autonomous ˇeld of chemistry increased. Analysts in USA and
Europe founded organisations and forums that focussed ideas and devel-
opments in progressive directions. In this way, not only were national and
international societies formed but also regular conferences like Pittcon and
Euroanalysis. In this connection the so-called Lindau circle should be men-
tioned where analysts from Germany, Austria and Switzerland made public
relevant fundamentals of analytical chemistry derived from statistics, infor-
mation theory, system theory, signal theory, game theory, decision theory,
metrology, etc. In parallel with this, such modern principles have been suc-
cessfully applied in selected case studies, mainly by scientists from USA,
UK, and Canada. From this development, real theoretical and metrolog-
ical fundamentals of analytical chemistry have crystallized. However, the
acceptance of analytical chemistry as an automomous branch of chemistry
has not been realised. Gradually, however, progress in analytical chemistry
culminated in the 1990s in the proclamation of a new scientiˇc discipline,
analytical science. Protagonists of these activities included Michael Widmer
and Klaus Doerffel.



VI Preface

Today, analytical chemistry is still a discipline within chemistry. Al-
though characterized as an auxiliary science, analytical chemistry continues
to develop and grow just as before. It is no detraction being characterized
as an auxiliary discipline as mathematics shows. However, it is likely that
efforts to make analytical chemistry a more independent science will be
repeated in the future from time to time.

Analytical chemistry possesses today a sound basis of chemical, physical,
methodical, metrological, and theoretical fundamentals. The ˇrst of these
are usually taken as the basis of classical textbooks on analytical chemistry.
The others are found in diverse publications in the ˇeld of analytical chem-
istry and chemometrics. It is essential to state that chemometrics is not the
theoretical basis of analytical chemistry but it contributes signiˇcantly to
it. Frequently, analytical chemistry is considered to be a measuring science
in chemistry. Therefore, its object is the generation, evaluation, interpreta-
tion, and validation of measuring signals as well as the characterization of
their uncertainty. With this aim, the analyst needs knowledge of the general
analytical process, statistics, optimization, calibration, chemometrical data
analysis, and performance characteristics.

In this book the attempt is made to summarize all the components that
can be considered as building blocks of a theory of analytical chemistry.
The \building" constructed in this way is a provisional one. It is incomplete
and, therefore, extension, reconstruction and rebuilding have to be expected
in the future.

A large number of mathematical formulas will be found in the book. This
may be regarded as a disadvantage particularly because some of them are
not readily to apply in daily analytical practice. However, great scientists,
explicitly Emanuel Kant, said that a scientiˇc branch contains only so much
of science as it applies mathematics. Consequently, all the relationships
which can be described mathematically should be so described. It is true
despite Werner Heisenbergs statement: Although natural processes can be
described by means of simple laws which can be precisely formulated, these
laws, on the other hand, cannot directly be applied to actions in practice.

Wherever possible, ofˇcial deˇnitions of IUPAC, ISO and other inter-
national organizations have been used, in particular in the \Glossary of
Analytical Terms" compiled at the end of the book. However, uniformity
could not be achieved in every case. In a few instances, special comments
and proposals (characterized as such) have been added. Although progress
in the ˇeld of harmonization of nomenclature and deˇnitions has been con-
siderable, some things still remain to be done.

Some of the contents of various sections have been published previously
and are, of course quoted verbatim. In this connection the author is grateful
to Klaus Doerffel, Karel Eckschlager, G�unter Ehrlich, Andrzej Parczewski,
Karol Florian, Mikulas Matherny, G�unter Marx, Dieter Molch, Eberhard
Than, Ludwig K�uchler and others for long-standing collaboration resulting
in mutually complementary papers and books. A chapter on statistics was
previously published in another book (Accreditation and Quality Assurance



Preface VII

in Analytical Chemistry edited by Helmut G�unzler at Springer). Gratefully I
have adapted essential parts of the translation of Gaida Lapitajs here in this
book.

Stimulations and ideas have arisen from discussions with William Hor-
witz, Duncan Thorburn Burns, Alan Townshend, Koos van Staden, and other
members of diverse IUPAC Commissions and Task Groups as well as ofˇ-
cers of the Analytical Chemistry Division. From a 20-year membership of
various IUPAC bodies I have gained a variety of feedback and experience
which has proved to be useful in the writing of this book. In particular,
I owe Lloyd Currie and Mattias Otto a great debt of gratitude. They have
permitted me to use essential parts of common publications on calibration
quoted in Chap. 6. Many of the results stem from work carried out with
colleagues, collaborators, postdocs and graduate students. All of them are
deserving of my thanks but, due to the large numbers involved, this cannot
be done here. Some representative colleagues include J�urgen Einax, Hart-
mut Hobert, Werner Schr�on, Manfred Reichenb�acher, Reiner Singer, Diet-
rich Wienke, Christoph Fischbacher, Kai-Uwe Jagemann, Michael Wagner,
Katrin Venth, Raimund Horn, Gabriela Thiel, Demetrio de la Calle Garc��a,
and Balint Berente.

The author gratefully acknowledges the cooperation with and the support
of the editorial staff of Springer. Particularly I have to thank Peter Enders,
Birgit Kollmar-Thoni, and { last but not least { John Kirby, the English copy
editor, who has essentially improved the English. Many thanks for that.

No book is free of errors and this one will be no exception. Therefore,
the author would be grateful to readers who point out errors and mistakes
and suggest any improvement.

Jena, July 2006 Klaus Danzer
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Symbols

A Matrix of sensitivity factors in
multicomponent analysis (e.g., ab-
sorbance factors)

(6.66)

a Regression coefˇcient (calibration
coefˇcient): intercept (general and
regression in case of errors in both
variables)

ax Regression coefˇcient a for the esti-
mation of y from x

(6.9)

axw Regression coefˇcient a in case of
weighted calibration

(6.37)

ay Regression coefˇcient a for the esti-
mation of x from y

(6.10)

acc(x), acc(x) Accuracy of an analytical result x
and of a mean x, respectively

(7.10)
(7.11)

antilg x = 10x , antilogarithm of x

b Regression coefˇcient (calibration
coefˇcient): slope (general and in
case of regression having errors in
both variables)

bx Regression coefˇcient b for the esti-
mation of y from x

(6.8)

bxw Regression coefˇcient b in case of
weighted calibration

(6.36)

by Regression coefˇcient b for the esti-
mation of x from y

(6.10)

bias(x), bias(y ) Bias (systematic deviation) of an in-
dividual test value x (or y ) from the
(conventional) true value xtrue (or
ytrue)

(4.1)



XIV Symbols

bias(x), bias(y ) Bias of an average test value x (or y )
from the (conventional) true value
xtrue (or ytrue)

cnf(x), cnf(y ) Total (two-sided) conˇdence inter-
vall of a mean

(4.17)

cond(A) Condition number of the matrix A (6.80)

cov(pi; pj) Covariance of the quantities pi
and pj

CB Conˇdence band (of a calibration
line)

(6.26a)

CR Concordance rate (proportion of
correct test results in screening)

(4.53a)

dcrit Critical diameter (in microprobe
analysis)

dij Distance (in multivariate data) (8.12)

df Discriminant function (8.16)

dv Discriminant variable

E Information efˇciency

Ein Input energy

Eout Output energy

E Residual matrix (in multivariate data
analysis)

e, ex , ey Error term (general, in x, and in y ,
respectively), in concrete terms, ey
may be the deviation of an individual
value from the mean or the residual
of a mathematical model, see next
line (ex analogous)

ey = yi � y , deviation of an individual
measured value from the mean (also
dy )

ey = yi � ŷ , deviation of an individual
measured value from the estimate
of the corresponding mathematical
model

F̂ Test statistic (estimate) of the F test (4.37)



Symbols XV

F1�˛;�1;�2 Quantile of the F distribution at the
level of signiˇcance 1�˛ and for the
degrees of freedom �1 and �2

F̂max Test statistic (estimate) of Hartley's
test

(4.370)

FNR False negative rate (of screening
tests)

(4.51)

FPR False positive rate (of screening
tests)

(4.50)

fdet(: : :) Deterministic function of . . .

femp(: : :) Empirical function of . . .

Ĝ Test statistic (estimate) of Grubb's
outlier test

(4.36)

Ĝmax Test statistic (estimate) of Coch-
ran's test

(4.38)

G˛;n Signiˇcance limits of Grubb's out-
lier test for a risk of error ˛ and n
individual measurements

gaccept(n) Acceptance function in attribute
testing

greject(n) Rejection function in attribute test-
ing

gaccept(n; s; ˛) Acceptance function in variable test-
ing

gaccept(n; s; ˇ) Rejection function in variable testing

H 0 a posteriori information entropy

H a priori information entropy

H0 Null hypothesis

HA Alternative hypothesis

hom(A) Quantity characterizing the homo-
geneity of an analyte A in a sample

(2.9)

I Information content (9.1)

IAj Speciˇc strength of an in�uence fac-
tor j on the signal of analyte A

I(p ; p0) Divergence measure of information (9.9)

J Information �ow (9.40)



XVI Symbols

L Loading matrix (of principal compo-
nent analysis and factor analysis)

(6.44)
(8.19)

LCL Lower control limit (in quality con-
trol)

LWL Lower warning limit (in quality con-
trol)

lx , ly , lz Dimensions (lengths) in x-, y - and
z-direction, respectively

lb a Binary logarithm of a

M Information amount

M(n) Information amount of multicompo-
nent analysis (of n components)

(9.21)

madfyig Median absolute deviation (around
the median), i.e., the median of
the differences between an individ-
ual measured value and the median
of the series: madfyig = medfjyi �
medfyigjg

medfyig Median of a set of measured values (4.22)

N Number of repeated measurements
for the estimation of x by means of
a calibration function

Npp Noise amplitude, peak-to-peak noise

N (�; � 2) Normal distribution with mean �
and variance � 2

N (t) Time average of noise

NPR Negative prediction rate (in screen-
ing tests)

(4.55)

n Number of individual measurements
(also in establishing a calibration
model), number of objects (in a data
set)

n(t) Noise component of a signal func-
tion in the time domain

neti(t), net(i) Net function (propagation function)
in a neural network (layer i)

(6.117)

Oi(t), O (i) Output of a layer i of a neural net-
work

(6.119)
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P Two-sided level of signiˇcance of sta-
tistical tests (P = 1� ˛)

P One-sided level of signiˇcance of sta-
tistical tests (P = 1� ˛)

P (A) Probability of an event A (ratio of
the number of times the event occurs
to the total number of trials)

P (A) Probability that the analyte A is
present in the test sample

P (A) Probability of the opposite of the
event A (ratio of the number of times
the event does not occur to the total
number, P (A) + P (A) = 1)

P (A) Probability that the analyte A is
present in the test sample

P (AjB) Conditional probability: probability
of an event B on the condition that
another event A occurs

P (T +jA) Probability that the analyte A is
present in the test sample if a test
result T is positive

P Score matrix (of principal compo-
nent analysis)

(6.44)

PB Prediction band (of a calibration
line)

(6.26b)

PPR Positive prediction rate (in screening
tests)

(4.54)

PV Prevalency of screening tests: proba-
bility that the analyte A is present in
a given number of samples

(4.52)

p Number of primary samples (in sam-
pling);
Number of calibration points

pi, pj , pij In�uence parameters (4.25)

prec(x) Precision of an analytical result x (7.8)

prd(x), prd(a) Prediction interval of a quantity x
(and a, respectively)

q Number of subsamples (in sampling) (2.5)

q̂R Test statistic (estimate) of the David
test

(4.33)
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Q Categorial variable characterizing
chemical entities (species) being in-
vestigated, e.g., elements, isotopes,
ions, compounds

Q̂ Test statistic (estimate) of Dixon's
outlier test

(4.35)

Q(z) Evaluation relationship (of quanti-
ties characterizing qualitative prop-
erties) in form of a function, atlas,
or table

Q = f �1(z) Evaluation function of quantities
characterizing qualitative properties,
viz type of species, Q, in dependence
of signal position, z

R Range (R = ymax � ymin)

R Resolution power

R Correlation matrix (6.4)

RC Risk for customers (in quality assur-
ance)

(4.56b)

RM Redundancy (9.31a)

RM Risk for manufacturers (in quality
assurance)

(4.56a)

Rt Temporal resolution power (7.57)

Rz Analytical resolution power (7.53)

RMSP Root mean standard error of predic-
tion

(6.128)

RR Recovery rate

Rfqg Range of a quantity q

r Number of measurements at a sub-
sample

(2.4)

rM Relative redundancy (9.31b)

rxy Correlation coefˇcient between the
(random) variables x and y

(6.3)

rob(A=B : : : ; f1 : : :) Robustness of a procedure to deter-
mine an analyte A with regard to dis-
turbing components (B; : : :) and fac-
tors (f1; : : :)

(7.31)
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rug(A=B : : : ; f1 : : : ; u1 : : :) Ruggedness of a procedure to deter-
mine an analyte A with regard to dis-
turbing components (B; : : :), factors
(f1; : : :), and unknowns (u1; : : :)

(7.33)

S Sensitivity, derivative of the mea-
sured quantity (response) y with re-
spect to the analytical quantity x

Stotal Total multicomponent sensitivity (7.18)

S Covariance matrix
Sensitivity matrix

(6.5)
(7.17)

SAA Sensitivity of the response of the an-
alyte A with respect to the amount
xA of the analyte A (also SA)

(7.12)

SAB Cross sensitivity (partial sensitivity)
of the response of the analyte A with
respect to the amount xB of the com-
ponent B

SAi Cross sensitivity (partial sensitivity)
of the response of the analyte A with
respect to the amount xi of species i
(i = B; C; : : : N )

(3.11)

Sxx , Sy y Sum of squared deviations (of x and
y , respectively)

(6.30)

Sxy Sum of crossed deviations (of x and
y )

(6.30)

S�, S�i Sum over a variable index (e.g., at
constant i); the dot replaces the in-
dex over that the summation is car-
ried out

S(x) Sensitivity function (6.64)

s Estimate of the standard deviation
(SD of the sample)

(4.12)

s2 Estimate of the variance (variance of
the sample)

(4.10)

sN Standard deviation of noise (7.5)
spipj , s(pi; pj) Covariance of the quantities pi

and pj
(4.27)

sy :x Residual standard deviation (of the
calibration); estimate of the error of
the calibration model

(6.19)
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sel(A; B; : : : N ) Selectivity of a multicomponent
analysis with regard to the analytes
A; B; : : : N

(7.24)

snr(y ) Signal-to-noise ratio of an average
signal intensity y (related to Npp )

(7.6)

spec(A=B; : : : ; N ) Speciˇcity of the determination of an
analyte A with regard to the accom-
panying components B; : : : N

(7.26)

S=N Signal-to-noise ratio of an average
signal intensity y or a net intensity
y net (related to sy )

(7.1)

(S=N )c Critical signal-to-noise ratio (7.51)

SS Sum of squares

ssr(y ) Sum of squares of residuals (of y ) (6.12)

tW Test statistic (estimate) of the gener-
alized t test (Welch test)

(4.43)

TE Test efˇciency of screening tests (4.53b)

TNR True negative rate (of screening
tests)

(4.49)

TPR True positive rate (of screening tests) (4.48)

t̂ Test statistic (estimate) of Student's
t test

(4.41)

t1�˛;� Quantile of the t-distribution at the
level of signiˇcance 1� ˛ and for �
degrees of freedom

UCL Upper control limit (in quality con-
trol)

UWL Upper warning limit (in quality con-
trol)

u(x) Combined uncertainty of an analyti-
cal value x

(4.31)

u(x(p1; p2; : : :)) Uncertainty of an analytical value x,
combined from the uncertainties of
the parameters p1; p2; : : :

u(y ) Combined uncertainty of a measured
value y

u(y (p1; p2; : : :)) Uncertainty of a measured value y ,
combined from the uncertainties of
the parameters p1; p2; : : :

(4.25)
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U (x) Extended combined uncertainty
(limit) of an analytical value x

U (y ) Extended combined uncertainty
(limit) of a measured value y

(4.29)

unc(x) Uncertainty interval of a mean x (4.32)

unc(y ) Uncertainty interval of a mean y (4.30)

wyi , wi Weight coefˇcient (in weighted cali-
bration)

(6.34)

x Analytical value: analyte amount,
e.g., content, concentration

xLD Limit of detection (7.44)

xLQ Limit of quantitation (7.48)

xQ Analytical value (amount) of a
species Q

xtest Analytical value of a test sample

xtrue (Conventional) true value of a (cer-
tiˇed) reference sample

x Arithmetic mean of x (of the sample)

x̂ Estimate of x

x(Q) Sample composition (function)

x = f (Q) Analytical function in the sample do-
main, sample composition function

Y (!) Signal function in the frequency do-
main, Fourier transform of y (t)

y Measured value, response (e.g., in-
tensity of a signal)

yc Critical value (7.41)
yzi Measured value (e.g. intensity) of a

signal at position zi
y Arithmetic mean of y (of the sam-

ple)

y Total mean of several measured se-
ries

y BL Blank

y geom Geometric mean of y (of the sample)

ŷ Estimate of y
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y � Outlier-suspected value among the
measured values

y (t) Signal function in the time domain

ytrue(t) Component of the signal function in
the time domain that is considered
being true (in�uenced by noise)

y (z) Signal record (spectrum, chromato-
gram, etc.)

y = f (x) Calibration function (in the stricter
sense, i.e. of quantities characteriz-
ing quantitative properties, e.g., sig-
nal intensity vs analyte amount)

y = f (z) Signal function (measurement func-
tion, analytical function in the signal
domain)

z Signal position: measuring quantity
that depends on a qualitative prop-
erty of the measurand. Therefore,
analytes may be identiˇed by charac-
teristic signal positions. The z-scale
may be directly or reciprocally pro-
portional to an energy quantity or
time

z z-scores, standardized analytical val-
ues

(8.9)

z(Q) Signal assignment function (table,
atlas etc.)

z = f (Q) Calibration function of quantities
characterizing qualitative properties,
viz signal position as a function of
the type of species

˛ Risk of the error of the ˇrst kind
(two-sided)

˛ Regression coefˇcient (intercept) (4.2)

˛i Coefˇcient characterizing in�uences (5.3)

˛ Risk of the error of the ˇrst kind
(one-sided)

ˇ Risk of the error of the second kind
(two-sided)
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ˇ Regression coefˇcient (slope) (4.3)

ˇj Coefˇcient characterizing in�uences (5.4)

ˇ Risk of the error of the second kind
(one-sided)

�̂2 Test statistic (estimate) of the �2 test

�2
1�˛;� Quantile of the �2 distribution at the

signiˇcance level 1�˛ and for � de-
grees of freedom

�xcnf Conˇdence limit of a mean x

�xprd Prediction limit of a mean x

�y cnf Conˇdence limit of a mean y

�2 Test statistic (estimate) for von Neu-
mann's trend test

(4.34)

Ffx(t)g Fourier transform of the time func-
tion x(t) into the frequency function
X(!)

F�1fX(!)g Fourier backtransform of the fre-
quency function X(!) into the time
function x(t)

� Exponent characterizing nonlinear
errors

(4.5)

� Eigenvalue (characteristic root) of a
matrix

M Multiplet splitting according to rele-
vant rules

�x Mean of x of the population

�y Mean of y of the population

� Number of the statistical degrees of
freedom

� Dispersion factor (4.20)

� Standard deviation (of the popula-
tion)

� 2 Variance (of the population) (4.8)

� Kaiser's selectivity (7.21)
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	A Kaiser's speciˇcity with regard to
an analyte A

(7.22)

	xx(
) Autocorrelation function (ACF) of a
function x(t) with time lag 


(2.11)

(˛ˇ)ij Coefˇcient characterizing interac-
tions of in�uences ˛ and ˇ

(5.4)

(˛ˇ� )ijk Coefˇcient characterizing interac-
tions of in�uences ˛, ˇ, and �

(5.5)

fxig Set (series, sequence) of ana-
lytical results whose terms are
x1; x2; : : : ; xi; : : :

fyig Set of measured values (observations
of a measurement series) whose
terms are y1; y2; : : : ; yi; : : :

â; b̂ ; : : : Estimates of the quantities a; b; : : :

In general, variables are expressed by italics, vectors by bold small letters,
and matrices by bold capital letters.



Abbreviations and Acronyms

This list of abbreviations contains both acronyms which are generally used
in analytical chemistry and such applied in the book. In addition to terms
from analytical methods, essential statistical and chemometrical terms as
well as acronyms of institutions and organizations are included. Terms of
very particular interest are explained on that spot.

2D Two-Dimensional (e.g., 2D-NMR)
3D Three-Dimensional
AA Activation Analysis
AAS Atomic Absorption Spectrometry
ACF Autocorrelation Function
ACV Analytical value at critical (measuring) value
AEM Analytical Electron Microscopy
AES Auger Electron Spectroscopy
AES (Atomic Emission Spectrometry)! OAES, OES
AFM Atomic Force Microscopy
AFS Atomic Fluorescence Spectrometry
ANN Artiˇcial Neural Networks
ANOVA Analysis Of Variance
AOAC Association of Ofˇcial Analytical Chemists
ARM Atomic Resolution Microscopy
ARUPS Angle Resolved Ultraviolet Photoelectron Spectrometry
ASV Anodic Stripping Voltammetry
ATR Attenuated Total Re�ectance
BASIC Programming language: Beginners All-purpose Symbolic
BCA Beckman Glucose Analyzer
BIPM Bureau International des Ponds et Mesures
CA Chemical Analysis
CARS Coherent Anti-Stokes Raman Spectrometry
CCC Counter Current Chromatography
CCD Charge-Coupled Device
CE Capillary Electrophoresis
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C{E{R Calibration-Evaluation-Recovery (Function)
CFA Continuous Flow Analysis
CGC Capillary Gas Chromatography
CMP Chemical Measurement Process
CPAA Charged Particle Activation Analysis
CRM Certiˇed Reference Material
CV Critical value
CV-AAS Cold Vapour Atomic Absorption Spectrometry
DCM Dielectric Constant Measurement (Dielcometry)
Dendral Expert system: Dendritic Algorithm
DIN Deutsches Institut f�ur Normung
DSC Differential Scanning Calorimetry
DTA Differential Thermal Analysis
DTG Differential Thermogravimetry
EBV Errors in Both Variables (Model, Procedure)
ECA Electrochemical Analysis
ECD Electron Capture Detector
ED Electron Diffraction
EDX Energy-Dispersive X-Ray (Spectrometry)
ED-XFA Energy-Dispersive X-Ray Fluorescence Analysis
EDL Electrodeless Discharge Lamp
EELS Electron Energy Loss Spectrometry
EM Electron Microscopy
EMP Electron Microprobe
EN European Norm
EPA Environmental Protection Agency (USA)
EPH Electrophoresis
EPMA Electron Probe Microanalysis
ESAC Expert Systems in Analytical Chemistry
ESCA Electron Spectroscopy for Chemical Analysis
ESD Estimated Standard Deviation
ESR Electron Spin Resonance (Spectroscopy)
ETA Electrothermal Atomizer
ETA-AAS Electrothermal Atomizing Atomic Absorption Spectrometry
EXAFS Extended X-Ray Absorption Fine Structure (Spectrometry)
FAB Fast Atom Bombardment
FANES Furnace Atomization Non-Thermal Emission Spectrometry
FD Field Desorption
FEM Field Electron Microscopy
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FFT Fast Fourier Transform
FIA Flow Injection Analysis
FI-AP Field Ion Atom Probe
FID Flame-Ionization Detector
FIM Field Ion Microscopy
fn false negative (decisions in screening tests)
fp false positive (decisions in screening tests)
FNAA Fast Neutron Activation Analysis
Fortran Programming language: Formula Translation
FT Fourier Transform
FT-ICR-MS Fourier Transform Ion Cyclotron Resonance Mass Spectrom-

etry
FT-IR, FTIR Fourier Transform Infrared (Spectrometry)
FT-MS Fourier Transform Mass Spectrometry
FT-NMR Fourier Transform Nuclear Magnetic Resonance Spectrome-

try
FWHM Full Width at Half Maximum
GA Genetic Algorithm
GC Gas Chromatography
GC-IR Gas Chromatography Infrared Spectrometry Coupling
GC-MS Gas Chromatography Mass Spectrometry Coupling
GDL Glow Discharge Lamp
GDMS Glow Discharge Mass Spectrometry
GDOS Glow Discharge Optical Spectrometry
GF-AAS Graphite Furnace Atomic Absorption Spectrometry
GLC Gas Liquid Chromatography
GLS Gaussian least squares (regression)
GLP Good Laboratory Practice
GMP Good Manufacturing Practice
HCL Hollow Cathode Lamp
HEED High Energy Electron Diffraction
HEIS High Energy Ion Scattering
HG-AAS Hydride Generation Atomic Absorption Spectrometry
HPLC High Performance Liquid Chromatography
HPTLC High Performance Thin-Layer Chromatography
HR High Resolution
HRMS High Resolution Mass Spectrometry
IC Ion Chromatography
ICP Inductively Coupled Plasma (Spectrometry)
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ICP-MS Inductively Coupled Plasma Mass Spectrometry
ICP-OES Inductively Coupled Plasma Optical Emission Spectrometry
ICR Ion Cyclotron Resonance
ID Ion Diffraction
IDMS Isotope Dilution Mass Spectrometry
IEC Ion Exchange Chromatography
IEC International Electrotechnical Commission
IFCC International Federation of Clinical Chemistry
IM Ion Microscopy
IMS Ion Mobility Spectrometry
INAA Instrumental Neutron Activation Analysis
INDOR Internuclear Double Resonance
INS Inelastic Neutron Scattering
IR, IRS Infrared Spectroscopy
IRM Infrared Microscopy
ISE Ion-Selective Electrodes
IRS Internal Re�ectance Spectroscopy
ISO International Organisation for Standardization
ISS Ion Surface Scattering, Ion Scattering Spectrometry
IU Insulin unit
IUPAC International Union of Pure and Applied Chemistry
IUPAP International Union of Pure and Applied Physics
LAMMS Laser (Ablation) Micro Mass Spectrometry
LASER Light Ampliˇcation by Stimulated Emission of Radiation
LC Liquid Chromatography
LC-MS Liquid Chromatography Mass Spectrometry Coupling
LD Limit of Detection
LDMS Laser Desorption Mass Spectrometry
LEED Low Energy Electron Diffraction
LEIS Low Energy Ion Scattering
LEMS Laser Excited Mass Spectrometry
LIDAR Light Detection And Ranging (analogous to RADAR)
LIMS Laboratory Information Management Systems
LISP List Processing
LLC Liquid Liquid Chromatography
LM Light Microscopy
LMA Laser Microspectral Analysis
LM-OES Laser Micro Optical Emission Spectroscopy
LOD Limit Of Detection
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LOS, LoS Level of signiˇcance
LQ Limit of quantitation
LRMA Laser Raman Micro Analysis
MALDI Matrix-Assisted Laser Desorption and Ionization
MALDI-TOF MALDI Time-Of-Flight (Mass Spectrometry)
MEIS Medium Energy Ion Scattering
MES M�ossbauer Effect Spectroscopy
MIP Microwave-Induced Plasma
MLD Measured value at Limit of Detection
MLQ Measured value at Limit of Quantitation
MORD Magneto Optical Rotary Dispersion
M �OS M�ossbauer Spectrometry
MS Mass Spectrometry
MS-MS Tandem Mass Spectrometry
MSn n-fold Tandem Mass Spectrometry
M-OES Micro(spark) Optical Emission Spectroscopy
MWS Microwave Spectroscopy
NAA Neutron Activation Analysis
NBS National Bureau of Standards, USA (today: NIST)
ND Neutron Diffraction
NEXAFS Near-Edge X-Ray Absorption Fine Structure (Spectroscopy)
NIR, NIRS Near Infrared (Spectrometry)
NIST National Institute of Standards and Technology, USA
NMR Nuclear Magnetic Resonance (Spectroscopy)
NOE Nuclear Overhauser Effect
NQR Nuclear Quadrupole Resonance
OAES Optical Atomic Emission Spectroscopy
OCS Out-of-control situations (in quality control)
OES Optical Emission Spectroscopy
OIML Organisation Internationale de M�etrologie L�egale
OLS Ordinary least squares (regression)
ORD Optical Rotary Dispersion
PARC Pattern Recognition
PAS Photo Acoustic Spectroscopy
PASCAL Programming language called by Blaise Pascal (1623{1662)
PC Paper Chromatography
PCR Principal component regression
PES Photoelectron Spectrometry
PIXE Particle Induced X-Ray Emission
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PLS Partial least squares (regression)
PMT Photomultiplier Tube
ppm part per million (10�6 corresponding to 10�4 per cent)
ppb part per billion (10�9 corresponding to 10�7 per cent)
ppt part per trillion (10�12 corresponding to 10�10 per cent)
ppq part per quatrillion (10�15 corresponding to 10�13 per cent)
PROLOG Programming language: Programming in Logic

QCC Quality control charts
QMS Quadropol Mass Spectrometer
R&D Research and Development
RADAR Radiowave Detection And Ranging
RBS Rutherford Backscattering Spectrometry
REELS Re�ection Electron Energy Loss Spectrometry
REM Re�ection Electron Microscopy
RHEED Re�ection High Energy Electron Diffraction
RF Refractometry
RIMS Resonance Ionization Mass Spectrometry
RM Reference Material
RMSP Root mean standard error of prediction
RPC Reversed Phase Chromatography
RPLC Reversed Phase Liquid Chromatography
RRS Resonance Raman Scattering
RS Raman Spectroscopy
SAM Scanning Auger Microscopy
SAM Standard Addition Method
SEC Size Exclusion Chromatography
SEM Scanning Electron Microscopy
SERS Surface Enhanced Raman Scattering
SFC Supercritical Fluid Chromatography
SI Syst�eme International (d'Unit�es)
SIMS Secondary Ion Mass Spectrometry
SNMS Sputtered Neutrals Mass Spectrometry
SNR Signal-to-Noise Ratio
SOP Standard Operating Procedure
SPE Solid Phase Extraction
SPME Solid Phase Micro Extraction
SRM Standard Reference Material
SSMS Spark Source Mass Spectrometry
STEM Scanning Transmission Electron Microscopy
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STM Scanning Tunneling Microscopy
SV Standard value
TA Thermal Analysis
TCD Thermal Conductivity Detector
TEELS Transmission Electron Energy Loss Spectrometry
TEM Transmission Electron Microscopy
TG Thermogravimetry
TGA Thermogravimetric Analysis
THEED Transmission High Energy Electron Diffraction
TIC Total Ion Chromatogram
TID Thermoionic Detector
TLC Thin-Layer Chromatography
TMA Thermomechanical Analysis
tn true negative (decisions in screening tests)
TOF-(MS) Time-Of-Flight (Mass Spectrometry)
tp true positive (decisions in screening tests)
TXRF Total Re�ection X-ray Fluorescence (Spectrometry)
UPS Ultraviolet Photoelectron Spectrometry
UV Ultraviolet (radiation)
UV-VIS Ultraviolet-Visible (Spectrometry)
VIS Visible (radiation)
WD-XFA Wavelength-Dispersive X-Ray Fluorescence (Spectrometry)
XAS X-Ray Absorption Spectrometry
XD X-Ray Diffraction
XFA X-Ray Fluorescence Analysis
XFS X-Ray Fluorescence Spectrometry
XPS X-Ray Photoelectron Spectrometry
XRD X-Ray Diffraction
XRF X-Ray Fluorescence (Spectrometry)
ZAF Z (stands for atomic number) Absorption Fluorescence (Cor-

rection) (XFA)
ZAAS Zeeman Atomic Absorption Spectrometry



1 Object of Analytical Chemistry

Analytical chemistry is one of the oldest scientiˇc disciplines. Its history
can be traced back to the ancient Egyptians, about four to ˇve thousand
years ago (Szabadvary [1966], Malissa [1987], Yordanov [1987]). But
notwithstanding its long history, analytical chemistry is always an essential
factor in the development of modern scientiˇc and industrialised society.

The development of chemistry itself has progressed signiˇcantly by an-
alytical ˇndings over several centuries. Fundamental knowledge of general
chemistry is based on analytical studies, the laws of simple and multiple
proportions as well as the law of mass action. Most of the chemical ele-
ments have been discovered by the application of analytical chemistry, at
ˇrst by means of chemical methods, but in the last 150 years mainly by
physical methods. Especially spectacular were the spectroscopic discoveries
of rubidium and caesium by Bunsen and Kirchhoff, indium by Reich
and Richter, helium by Janssen, Lockyer, and Frankland, and rhenium
by Noddack and Tacke. Also, nuclear ˇssion became evident as Hahn
and Strassmann carefully analyzed the products of neutron-bombarded
uranium.

In recent times, analytical chemistry has stimulated not only chemistry
but many ˇelds of science, technology and society. Conversely, analyti-
cal chemistry itself has always been heavily in�uenced by ˇelds like nu-
clear engineering, materials science, environmental protection, biology, and
medicine. Figure 1.1 shows by which challenges analytical chemistry has
been stimulated to improved performances within the last half century.

Wilhelm Ostwald [1894], who published the ˇrst comprehensive
textbook on analytical chemistry, emphasized in it the service function
of analytical chemistry. This fact has not changed until now. Interactions
with all the ˇelds of application have always had a promoting in�uence on
analytical chemistry.

1.1
Deˇnition of Analytical Chemistry

In the second half of the twentieth century, analytical chemistry was deˇned
as the chemical discipline that gains information on the chemical composition
and structure of substances, particularly on the type of species, their amount,
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Fig. 1.1. Economic and social challenges and stimuli for the development of some impor-
tant branches of analytical chemistry

possible temporal and spatial changes, and structural relationships between
the constituents (see, e.g. Eckschlager and Danzer [1994]; Danzer et al.
[1976]). Sometimes the development of methods and instruments is included
or is central to such deˇnitions, e.g. that of WPAC [1993]: \Analytical chem-
istry is found to be a scientiˇc discipline that develops and applies methods,
instruments, and strategies to obtain information on the composition and
nature of matter in space and time" (Kellner et al. [1998]).

However, now and then analytical chemists feel uneasy with such kinds
of deˇnitions which do not re�ect completely the identity and independence
of analytical chemistry. Chemists of other branches (inorganic, organic, and
physical chemists) as well as physicists and bioscientists also obtain informa-
tion on inanimate or living matter using and developing high-performance
analytical instruments just as analytical chemists do.

Consequently, there exists a wide range of diverse deˇnitions. One of the
most appropriate is that of Reilley [1965]: \Analytical chemistry is what
analytical chemists do" which is, however, not really helpful.

The ˇrst deˇnition that is focused directly on the role of analytical signals
was given by Pungor who characterizes analytical chemistry as \a science
of signal production and interpretation" (Veress et al. [1987], Lewenstam
and Zytkow [1987]). Zolotov [1984] characterized chemical, physicochem-
ical and physical methods of analytical chemistry as follows: \All of them,
however, have the same feature: it is the dependence of signal on analyte
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concentration. The important task of analytical chemistry is therefore the
discovery and implantation of these dependencies into analytical procedures"
(Lewenstam and Zytkow [1987]).

To overcome the unsatisfactory situation in the understanding the mean-
ing of analytical chemistry at the end of the last century, an international
competition was organized in 1992 by noted European analytical chemists
and the Fresenius Journal of Analytical Chemistry to characterize analytical
chemistry as an autonomous ˇeld of science by a topical and proper deˇni-
tion. The title of this competition was \Analytical Chemistry { today's deˇ-
nition and interpretation" and 11 out of 21 contributions were published in
Fresenius J Anal Chem (Fresenius and Malissa [1992]; Cammann [1992];
Valcarcel [1992]; Zuckerman [1992]; Zhou Nan [1992]; Koch [1992];
Perez-Bustamante [1992]; Ortner [1992]; Danzer [1992]; Green [1992];
Stulik and Zyka [1992]; Kuznetsov [1992]).

The ˇrst prize winner { Cammann [1992] { deˇned analytical chem-
istry \as the self-reliant chemical sub-discipline which develops and delivers
appropriate methods and tools to gain information on the composition and
structure of matter, especially concerning type, number, energetic state and
geometrical arrangement of atoms and molecules in general or within any
given sample volume. . . . In analytical chemistry, special techniques are used
to transform measured chemical signals, derived mostly from speciˇc interac-
tion between matter and energy, into information and ordered knowledge".

Other remarkable aspects expressed in the published contributions of
the competition are the following: Analytical chemistry . . .

� \. . . is the chemical metrological science" (Valcarcel [1992])

� \. . . can also be considered applied physical chemistry"1 (Cammann
[1992])

� \. . . is a science devoted to the analytical cognition of substances: their
properties, composition, structure and state, steric and inner relations,
behaviour in chemical reaction systems at all levels of the chemical or-
ganisation of matter" (Zuckerman [1992])

� \. . . is a branch of science which comprises the theory and practice of
acquiring information about chemical characteristics of any matter of
system, present in particular state, from its bulk or from a speciˇed region
. . . " (Zhou Nan [1992])

� \. . . is a multidiscipline, comprising various ˇelds of chemistry with special
understanding of physics, mathematics, computer science, and engineer-
ing" (Koch [1992])

� \. . . uses chemical, physicochemical, and physical or even biological meth-
ods for analytical signal production, followed by problem- and matter-
related signal processing and signal interpretation in order to provide

1 Note of the author: this interpretation is not reversible: physical chemistry is not
theoretical analytical chemistry
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reliable (quality assured) qualitative, quantitative and/or structural in-
formation about a sample" (Koch [1992])

� \. . . is the branch of chemistry, the aim of which is the handling of any
type of matter in order to separate, identify, quantify and speciate its
components by extracting the pertinent information of analytical interest
contained in a representative sample" (Perez-Bustamante [1992])

� \. . . is based upon the symbiotic knowledge and application of chemistry,
physics and applied mathematics, to establish a congruent trinomium
involving: chemical species { instrumentation and metrology { data han-
dling and processing (chemometrics)" (Perez-Bustamante [1992])

� \. . . is the science of the creative derivation of information using proper
methods to answer the following four basic questions which also resemble
the relevant fundamental ˇelds of analytical chemistry: What and how
much? (Bulk analysis), How structured? (Structure analysis), How bound?
(Speciation), How distributed? (Topochemical analysis)" (Ortner [1992])

� \. . . embraces that domain of the physical sciences that allows the inter-
action of molecules and matter to be understood and their composition
to be determined." (Green [1992])

All these deˇnitions express essential aspects of analytical chemistry and
the analytical work. Some others { with originality { could be added, such
as that from Murray [1991] who characterized analytical chemistry brie�y
and aptly as \the science of chemical measurements".

Different opinions can be found about the status of analytical chemistry
as being a branch of chemistry independent from other chemical disciplines
or being a physical discipline (Green [1992]), or even being an autonomous
science, occasionally called Analytics or Analytical Sciences. On the other
hand, wide agreement can be stated about the aim to obtain information
on matter via representative samples and the inclusion of structural infor-
mation. Remarks on the general importance of analytical signals can be
repeatedly found.

Considering the recent development of analytical chemistry and the sig-
niˇcance of analytical signals for which reasons will be given in Chap. 3,
the following object characterization is proposed:

Analytical Chemistry is the science of chemical measurement. Its object
is the generation, treatment and evaluation of signals from which
information is obtained on the composition and structure of matter.

Principle goals are the identiˇcation and recognition of sample con-
stituents with regard to their type (elements, isotopes, ions, modiˇcations,
complexes, functional groups, compounds, viz. simple, macromolecular or
biomolecular, and occasionally sum parameters, too), their amount (abso-
lute or relative: content, concentration), and binding state (oxidation state,
binding form and type: inorganic, organic, or complex bound).
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Fig. 1.2. The analytical
trinity; according to
Betteridge [1976]

The opinions about the status of analytical chemistry { being an inde-
pendent or an auxiliary science { have varied over many decades. However,
it is not really a desirable to be independent among the scientiˇc or chem-
ical disciplines and is not a disadvantage to be thought of as an auxiliary
science. In some respects, various respectable sciences like mathematics,
physics, and biology have a service function, too. Therefore, the question
about independence is relative and of secondary importance.

In contrast to classical analysis, the concept of modern analytical chem-
istry has changed in so far as the problem that has to be solved is included
in the analytical process. The analytical chemist is considered as a \problem
solver" (Lucchesi [1980]) and the concept is represented in the form of the
\analytical trinity" (Betteridge [1976]) as shown in Fig. 1.2.

Nowadays, analytical chemistry has a large variety of methods, tech-
niques and apparatus at its disposal and is able to play its \instruments"
with high virtuosity. Therefore, the wide range of performance which ana-
lytical chemistry can achieve is extremely varied and extends from simple
binary decisions (qualitative analysis) to quantitative analysis at the ultra-
trace level, from structure elucidation and species identiˇcation to studies
of the dynamics and the topology of multispecies systems by means of tem-
porally and spatially high-resolving techniques.

1.2
Repertoire of Analytical Chemistry

The continual progress of analytical chemistry is attributed to the increasing
demands from science and technology as well as from society.

Performance parameters have rapidly and drastically improved by the
high demands of the main focuses of development. In Fig. 1.3 it is shown
how the efˇciency of analytical methods has successively improved in the
last 50 years.

The progress was caused by the development of completely new methods,
techniques, and principles (e.g. microprobe techniques) as well as the in-
troduction of new system components into common instruments (e.g. �ash
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Fig. 1.3. Technical progress in analytical chemistry with regard to sample mass m, limit of
detection LD , sample areas (cross-section) �l, and time expenditure/time resolution �t

excitation, capillary columns) and methods (e.g. enrichment techniques, hy-
phenated methods). Additionally, the use of chemometric procedures has
considerably improved the power and range of analytical methods.

Analytical investigations usually concern samples which are temporally
and locally invariant. This kind of analysis is denoted as bulk analysis (av-
erage analysis). On the other hand, analytical investigations can particularly
be directed to characterize temporal or local dependences of the compo-
sition or structure of samples. One has to perform dynamic analysis or
process analysis on the one hand and distribution analysis, local analysis,
micro analysis, and nano analysis on the other.

According to the demands of the analysis, analytical chemistry can be
classiˇed into analysis of major components (major component analysis,
precision analysis, investigation of stoichiometry), minor components, and
trace components (trace analysis, ultra trace analysis). On the other hand,
analytical problems are differentiated according to the number of analytes
involved. Accordingly, single component and multicomponent analysis are
distinguished.
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Fig. 1.4. The tetrahedron of the analytical repertoire

In principle, structure analysis can be considered as distribution analysis
in atomic dimensions. However, from the practical point of view it makes
sense to deal separately with structure analysis and to differentiate between
molecular structure analysis and crystal structure analysis. Further structure
investigations concern near-orders in solids and liquids (e.g. glass).

The relations between the questions that are answered by analytical
chemistry are shown in Fig. 1.4. The tetrahedron represents the basic ana-
lytical repertoire in a simpliˇed way. It can be seen that all the analytical
treatments are connected with each other.

In Fig. 1.5 the repertoire of analytical chemistry is classiˇed more in
detail according to element and structure analysis and according to the
extent of quantiˇcation.

The different ways of species analysis { qualitative and quantitative { are
well known. However, in structure analysis, they can also be differentiated
between qualitative and quantitative ways according to the type and amount
of information obtained (Eckschlager and Danzer [1994]). Identiˇcation
of a sample or a given constituent may have an intermediate position be-
tween species and structure analysis. In any case, identiˇcation is not the
same as qualitative analysis. The latter is the process of determining if a par-
ticular analyte is present in a sample (Prichard et al. [2001]). Qualitative
analysis seeks to answer the question of whether certain components are
present in a sample or not. On the other hand, identiˇcation is the process
of ˇnding out what unknown substance(s) is or are present (Eckschlager
and Danzer [1994]). In Sects 9.1 and 9.3 it will be shown that there is a
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Fig. 1.5. Survey of element and structure analytical standard procedures

clear difference between the information contents of qualitative analysis and
identiˇcation.

Another aspect of modern analytical chemistry is the possibility of multi-
component analysis. Especially spectroscopic and chromatographic methods
are able to detect and determine a large number of species simultaneously.
Therefore, such methods like ICP-OES, ICP-MS, TXRF, and chromatography
are the work-horses in today's analytical chemistry.

Notwithstanding the formal classiˇcation given in Fig. 1.5 there is no
fundamental difference between qualitative and quantitative analysis. In
each case a speciˇc signal is generated which may be evaluated to meet
any component of the following logical sequence:

Detection! Assurance! Semiquantifying! Quantifying

This chain of information can be broken and applied at each point according
to the special demands. By the way, even the detection limit involves a
numerical estimation.

A rough gradation of analyte amounts has been done by de Gramont [1922] who
investigated 82 elements in minerals, ores and alloys by means of atomic spec-
troscopy using so-called \raies ultimes" (last lines, ultimate lines, i.e. such lines
which disappear at deˇnite concentrations).

The application of combinatorial principles in chemical synthesis, particu-
larly in the search for active substances, requires analytical methods with
high throughput (von dem Bussche-H�unnefeld et al. [1997]). Screening
techniques can be used to analyse a large number of test samples in a short
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Fig. 1.6. Absolute masses of samples and analytes (a) and relative analyte amounts (b)
relevant in analytical investigations

time. Methods of screening must be inexpensive with regard to both time
and cost. Naturally they must be reliable enough that the risk of erroneous
decisions (false positive and false decisions, respectively) is low.

Structure elucidation of a compound follows another logical sequence:

Constituents! Gross composition! Sum formula! Constitution!
Conˇguration! Conformation! Quantitation: Intramolecular Dimen-
sions

This strengthens the case for treating structure analysis as a particular
ˇeld of analytical chemistry despite the fact that, from the philosophical
point of view, structure analysis can be considered as distribution analysis
(topochemical analysis) of species in atomic dimensions. Structure analysis
of solids follows a similar scheme like that given above. The characteristics
of molecules are then linked with those of crystals and elementary cells.

A quantiˇcation of the repertoire of analytical chemistry is shown in
Fig. 1.6. The ˇeld of operation covers over 30 orders of magnitude and
more when the amount of lots is included. On the other hand, the relative
amounts (contents, concentrations) with which the analyst has to do covers
20 orders and more because single atom detection has become reality now.

The ˇelds of application of analytical chemistry extend from research to
service, diagnosis, and process control, from science to technology and so-
ciety, from chemistry to biology, health services, production, environmental
protection, criminalogy and law as well as from chemical synthesis to ma-
terials sciences and engineering, microelectronics, and space �ight. In brief,
analytical chemistry plays an important role in every ˇeld of our life.
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Today, analytical chemistry has such a wide variety of methods and
techniques at its disposal that the search for general fundamentals seems
to be very difˇcult. But independent from the concrete chemical, physical
and technical basis on which analytical methods work, all the methods do
have one principle in common, namely the extraction of information from
samples by the generation, processing, calibration, and evaluation of signals
according to the logical steps of the analytical process.
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2 The Analytical Process

Analytical chemistry is a problem-solving science. Independent from the
concrete analytical method, the course of action, called analytical process, is
always very similar. The analytical process starts with the analytical question
on the subject of investigation and forms a closed chain to the answer to the
problem. Using a proper sampling technique a test sample is taken that is
adequately prepared and then measured. The measured data are evaluated
on the basis of a correct calibration and then interpreted with regard to the
object under study.

The analytical process in the broader sense is represented in Fig. 2.1.
Frequently { in a stricter sense { only the lower part (grey background)
from sample through to information (or essential parts from it) are regarded
as representing the analytical process.

The lower part of the analytical process (grey) is { mostly merged as a
black box { sometimes known as the chemical measurement process (CMP);
see Currie [1985, 1995, 1999].

         Sampling strategy                                                                                            Problem solving

                            

              Sampling                                                                                                   Interpretation

         

                                                                          

       1                         2                    3                         4                        5 

                                                                                              6                          7 

                           1  Sample preparation 
                           2  Measurement 
                           3  Signal validation 

4  Evaluation/calibration 
5  Data evaluation & interpretation 
6 & 7  Chemometrics 

Object under study 

Problem 

Measuring 
sample 

Test 
sample Signal

Measured 
values Information

Analytical 
data

Latent 
variables 

Fig. 2.1. The analytical process (Danzer [2004])
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Fig. 2.2. General principle of processing information

Different from former representations of the analytical process (Danzer
et al. [1976], Lucchesi [1980], Tyson [1989], Kellner et al. [1998]), signal
generation is inserted as a separate step. This is because at ˇrst signals
are produced from measuring samples and then measured values are taken
from the signals. For this, signals must be selected from a signal function.
After validation, parameters are chosen, the values of which are subject
to evaluation (e.g., signal position, differences of positions, signal intensity
measured in form of peak height or peak area).

In addition to the measured values and the analytical values (e.g. con-
tent, concentration), latent variables are included in the scheme. Latent
variables can be obtained from measured values or from analytical values
by means of mathematical operations (e.g. addition, subtraction, eigenanal-
ysis). By means of latent variables and their typical pattern (represented in
chemometric displays) special information can be obtained, e.g. on quality,
genuineness, authenticity, homogeneity, origin of products, and health of
patients.

The analytical process in the stricter sense or chemical measurement
process, respectively, has a conspicuous similarity with the general infor-
mation process which is shown in Fig. 2.2.

Interference plays an analogous role in the course of the analytical pro-
cess as well as noise, which is mainly manifested by random deviations.

The scheme given in Fig. 2.1 represents normal analytical procedures in
off-line analysis. It contains all the steps that must be considered in principle.
However, there could be reasons to reduce the course of action. Not in all
cases is the analyst able to take samples by himself or check the sampling
procedure. Sometimes he or she must accept a situation in which he or she
has to receive a given sample (e.g., in extreme cases, extraterrestrial samples,
autopsy matter).

In some cases the object under study has to be continuously monitored.
Then on-line analytical methods are applied by which the system can be
directly measured. The analytical process then runs without sampling and
sample preparation, as can be seen in Fig. 2.3a. The analytical process is
shortened even more in the case of in-line analysis where measurement and
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Fig. 2.3. The analytical process in case of on-line analysis (a) and in-line analysis (b)

control equipment are coupled with and installed in the object under study
(Fig. 2.3b).

Other forms of analytical investigations may also be applied, such as at-
line analysis (discontinuous direct analysis of objects, e.g., noninvasive blood
glucose monitoring) and trans-line analysis (remote sensing, teleanalysis).

In the following, the stages of the analytical process will be dealt with
in some detail, viz. sampling principles, sample preparation, principles of
analytical measurement, and analytical evaluation. Because of their signif-
icance, the stages signal generation, calibration, statistical evaluation, and
data interpretation will be treated in separate chapters.

2.1
Principles of Sampling

Sampling is the most important step in the course of the analytical process.
It is essential for obtaining reliable analytical results that the samples are
taken from the lot in a representative way. Therefore, sampling strategy
and design, sampling technique and sample size must be harmonized in
an optimum way. There exist general guidelines for sampling (Horwitz
[1990], Gy [1982, 1992], Kraft [1980], Wegscheider [1996]) as well as
special instructions for various ˇelds of application (e.g. Taggart [1945],
Keith [1988], Markert [1994] Barnard [1995]).

The general demand on sampling is that it has to be carried out in a
representative way, to be precise, representative with regard to both the
properties of the material and the analytical problem. This twofold repre-
sentativeness of the sample means that sampling strategies are different in
case of average analysis (bulk analysis) and testing homogeneity within a lot
of n batches. Figure 2.4 shows two possible sampling schemes for answering
both questions.

Sampling is a crucial step of the analytical process, particularly in cases
where there are large differences between the material under investigation
and the test sample (laboratory sample) with regard to both amounts and
properties, especially grain size, �uctuations of quality and inhomogeneities.
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. . . . . .
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..
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Fig. 2.4. Sampling schemes for bulk analysis (a) and for testing homogeneity of several
batches (b), according to Danzer [1995a] and following Horwitz [1990]

A material is regarded as being inhomogeneous if the chemical compo-
sition is not the same in all of its parts, i.e.

{ In spatial dimensions or in partial volumes of compact solids, or
{ In portions of bulk materials (grained and powdered substances) and
{ In time sequences of natural or technical processes.

The technical terms homogeneity and inhomogeneity deˇned in analyt-
ical chemistry must be distinguished from the physicochemical concept of
homogeneity and heterogeneity (Danzer and Ehrlich [1984]). Whereas
the thermodynamical deˇnition refers to morphology and takes one-phase-
or multi-phase states of matter as the criterion, the analytical-chemical def-
inition is based on the concentration function

x = f (l) (2.1)
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Fig. 2.5. Illustration of the terms homogeneity, heterogeneity and inhomogeneity from
the physicochemical and analytical viewpoint

and is statistically determined. Instead of the distance l applied in Eq. (2.1),
other spatial dimensions of the sample (area, surface or volume, respec-
tively) or even the time t may be of relevance.

In contrast to the physicochemical categorical properties of homogeneity
and heterogeneity, the transition from homogeneity to inhomogeneity in
analytical chemistry (the degree of homogeneity) may be characterized by a
variable, see, e.g., Eq. (2.9).

Figure 2.5 illustrates the state of affairs, and shows that heterogeneous
material may be characterized by an inhomogeneous (C) or homogeneous
(D) concentration function dependent on the relation between the total vari-
ation of concentration and the uncertainty of measurement on the one hand
and the sample amount (or microprobe diameter in case of distribution-
analytical investigations) on the other.

The sample A is homogeneous both from the physicochemical and the
analytical-chemical point of view because the variation of the concentration
is within the uncertainty of the analytical measurement unc(x). In con-
trast, sample B is homogeneous from the physico-chemical but not from
the analytical-chemical viewpoint because the systematical change of the
concentration exceeds unc(x). Whereas sample C is heterogeneous from
the physico-chemical point of view and inhomogenous from the analytical-
chemical viewpoint (the concentration deviations plainly exceed unc(x)),
sample D is heterogeneous from the physico-chemical standpoint. The an-
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a

x

b c d

l

The local frequency 1/ llocal is

practical zero
(constant concentration)
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(concentration gradient)
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(periodical fluctuation)

high
(stochastic fluctuation)

llocal

Fig. 2.6. Characteristic concentration functions and local frequencies

alytical decision about homogeneity depends on the diameter of the micro-
probe or the size of the portion of the test sample. If the sample size is large
enough the material may be characterized to be homogeneous as illustrated
in Fig. 2.5D.

In analogy to the time frequency, f , the spatial concentration behaviour
may be characterized by the local frequency, flocal = 1=llocal. In Fig. 2.6,
four types of spatial concentration functions are shown. These types and
combinations of them can characterize all the variations of concentration
in analytical practice both in one- and more-dimensional cases.

In addition to the local frequency, the amplitude of the concentration
�uctuation is a crucial parameter for the characterization of inhomogene-
ity (see Fig. 2.5, right hand side). It is essential for sampling problems that
inhomogeneities, as real concentration differences �x between parts of sam-
ple portions or areas, respectively, can only be ensured if �x is signiˇcantly
greater than the uncertainty U (x) of the analytical method. The criterion
for testing homogeneity is the F -test:

F =
� 2

total

� 2
anal

(2.2)

which takes as basis the addition of variances according to the model

� 2
total = � 2

anal + � 2
inhom : (2.3a)

The inhomogeneity variance � 2
inhom determines the sampling error � 2

samp
which can be estimated experimentally and which is crucial for representa-
tive sampling1

� 2
total = � 2

anal + � 2
samp (2.3b)

The relationship between the estimated variances s2 has to consider the
number of primary samples, p , subsamples, q, and test samples, q � r

1 The inhomogeneity- and the sampling variance are adequate only with a given risk

of error ˛: � 2
inhom

˛= � 2
samp
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s2
x =

s2
anal

q � r +
s2
samp

p � q : (2.4)

In the case of sampling according to the scheme given in Fig. 2.4a, the
critical number of samples required at least for reliable analytical results
can be derived from Eq. (2.4) (Danzer [1995b]):

q =
p s2

anal + r s2
samp

r p s2
x

(2.5)

General relationships such as Eq. (2.6) which has been created by Kraft
[1980]:

q =
( t � s

U

)2

(2.6)

lack information what s and U precisely mean (U is described as the pre-
cision of sampling plus analysis and relates to the combined uncertainty as
deˇned in Sect. 4.2 according to ISO [1993] in certain respect.

The critical weight of samples can be derived from the general condi-
tion of representativeness of sampling expressed by the null hypothesis H0:
� 2

total = � 2
anal which is tested by means of Fisher's F -test

F̂ =
s2
total

s2
anal

: (2.7)

The general principles of testing chemical homogeneity of solids are
given e.g. by Malissa [1973], Cochran [1977], and Danzer et al. [1979].
The terms of variation � 2

total and � 2
anal can be separated by analysis of vari-

ance (Sect. 5.1.1). According to Danzer and K�uchler [1977] there exists
an exponential dependence between the total variance and the reciprocal
sample mass

s2
total = s2

anal � exp
( a

m

)
(2.8a)

where a is material-speciˇc parameter. Developing Eq. (2.8a) into an arith-
metical progression, the following relationship results:

s2
total = s2

anal

(
1 +

a

m

)
(2.8b)

when the higher powers of m are neglected.
The exponentially decrease of the total variance with increasing sam-

ple mass is shown in Fig. 2.7. It can be seen that the uncertainty of sam-
pling, s2

samp, decreases and becomes statistically insigniˇcant when the sam-
ple amount m exceeds the critical sample mass. Instead of mcrit the propor-
tional critical sample volume vcrit may also be considered, represented, e.g.
by a critical microprobe diameter dcrit. Results of homogeneity investiga-
tions of alloys, ores, and lamellar eutectics by EPMA (Electron Microprobe
Analysis), which correspond to the curve of Fig. 2.7, have been presented
by Danzer and K�uchler [1977].
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Fig. 2.7. Dependence of the total variance on the sample amount characterized by mass;
mcrit is the critical sample mass. The statement of homogeneity or inhomogeneity is
always related to a given analyte A

In the course of time, several measures have been proposed to characterize ho-
mogeneity of solids, such as homogeneity constants, factors etc. (Gy [1982], Singer
and Danzer [1984], Kurf�urst [1991], Ingamells and Switzer [1973], Ingamells
[1974, 1976]). However, unfortunately, quantities like this have a special background
with regard to the material and, therefore, do not have any general decision power.
Taking the homogeneity number of Singer and Danzer [1984] as starting point, a
useful measure of homogeneity can be developed.

The state of affairs with regard to the distribution of a particular species A
in bulk material can be characterized by the quantity homogeneity deˇned by

hom(A) = 1� F̂

F1�˛;�1;�2
: (2.9)

This homogeneity value will become positive when the null hypothesis is
not rejected by Fisher's F -test (F̂ � F1�˛;�1;�2 ) and will be closer to 1 the
more homogeneous the material is. If inhomogeneity is statistically proved
by the test statistic F̂ > F1�˛;�1;�2 , the homogeneity value becomes negative.
In the limiting case F̂ = F1�˛;�1;�2 , hom(A) becomes zero.

In the case that inhomogeneities are not attributed to random variations
but to systematic changes as, e.g. shown in Fig. 2.5B, then other strategies
of sampling and evaluation must be used. Numerous different sampling
designs have been proposed. Surveys can be found, e.g. in Cochran [1977],
Gilbert [1987], Keith [1988] Nothbaum et al. [1994], and Einax et al.
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[1997]. Diverse systematical strategies of sampling require other statistical
evaluation procedures than simple analysis of variance (ANOVA) as applied
in case of stochastic sampling. In case of regular arrangements of sampling
points, the statistical evaluation can be carried out in several ways (Danzer
[1995b], Einax et al. [1997]):

(1) Two-way layout ANOVA according to Danzer and Marx [1979]. In
this way it is possible to obtain not only information on homogene-
ity/inhomogeneity, but also on certain preferred directions of inhomo-
geneities.

(2) Regression analysis by means of linear or quasi-linear models
(Parczewski [1981], Singer and Danzer [1984], Parczewski et al.
[1986]).

(3) Gradient analysis (Parczewski [1981], Singer and Danzer [1984],
Parczewski et al [1986], Parczewski and Danzer [1993]) which is
based on two-dimensional regression models and adds pictorial in-
formation to statistical decisions. Figure 3.12 shows such a graphical
representation of an element distribution on a surface.

(4) Pattern recognition methods (PARC) can be used if no a priori informa-
tion on the type of inhomogeneities (stochastic or systematic) is avail-
able. By reversing the aim of PARC (classifying objects into classes),
homogeneity is proved by the impossibility to form point classes having
signiˇcantly different concentrations (Danzer and Singer [1985]).

(5) Trigonometric functions have been used by Inczedy [1982] to describe
inhomogeneities quantitatively.

(6) Autocorrelation and time series analysis have been successfully applied
in testing spatial inhomogeneities (Ehrlich and Kluge [1989], Do-
erffel et al. [1990]). This techniques are generalized in the theory
of stochastic processes (Bohacek [1977a, b]) which is widely used in
chemical process analysis and about them.

The main goal of time-series analysis (Box and Jenkins [1976], Chat-
field [1989], Metzler and Nickel [1986]) apart from process analysis is
time-dependent sampling. In both cases �uctuations in time x(t) matter
and can be considered as a simple stochastic process or as time series.

Process sampling and analysis will be carried out with several aims
(Kateman [1990]):

{ Control, i.e. sampling, analysis and reconstruction of the process
{ Monitoring for process safety and warnings
{ Description, i.e. mathematical decomposition of the variability by time

series analysis

A time series x(t) can be decomposed according to Hartung et al.
[1991] into even (smooth) components, xeven(t), seasonal components,
xseas(t), and irregular components, xirreg(t):
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x(t) = xeven(t) + xseas(t) + xirreg(t) : (2.10)

Seasonal process components are of particular interest for environmental
studies and production processes. The different components of x(t) can be
estimated by smoothing and ˇltering methods.

The correlation of values within a time series plays an important role
in sampling. It can be characterized by means of the autocorrelation func-
tion (Doerffel and Wundrack [1986], Chatfield [1989], Hartung et al.
[1991])

	xx(
) = lim
T!1

1

2T

+T∫
�T

x(t) x(t + 
)dt (2.11)

where x(t) is the value of the time series at the time t , 
 the time lag (time
difference between two values), x(t + 
) the value for lag 
 in relation to t ,
and T the total time. The autocorrelation function corresponds to the time
average x(t) x(t + 
) of the function x(t). For stochastical time series the
autocorrelation function (ACF) is represented by a typical curve as shown
in Fig. 2.8.

The correlation time (time constant) corresponds to the lag at which the
maximum value 	xx(0) is decreased by the factor 1/e and the correlation
becomes practically zero. Correlation time is an important quantity in sam-

Fig. 2.8. Autocorrelation function (ACF) of a stochastic process. 
c is the correlation time
(time constant)
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pling because measured values x(t) and x(t + 
) at intervals 
 > 
c can be
regarded as independent from each other.

Similar models have been applied in geological exploration and environ-
mental studies. There semivariogram analysis (Akin and Siemens [1988],
Einax et al. [1997]) plays a comparable role than autocorrelation analysis
for the characterization of stochastic processes.

Representative sampling is the ˇrst and most important prerequisite
to produce accurate and precise analytical results. The fact that sampling
may be a crucial step with regard to reliable chemical measurements has
been well-known for years and has promoted the development of advanced
practical methods as well as the forming of theoretical fundamentals of
sampling. Excellent reviews are given by Kraft [1980], Kratochvil et al.
[1984], Gy [1992], Kateman [1990], and Kateman and Buydens [1993].
Nomenclature for sampling in analytical chemistry is given in Kratochvil
et al. [1984] and Horwitz [1990].

2.2
Sample Preparation

Only in a few cases are test samples measurable without any treatment. As
a rule, test samples have to be transformed into a measurable form that
optimally corresponds to the demands of the measuring technique. There-
fore, sample preparation is a procedure that converts a test sample into a
measuring sample. Whereas test samples represent the material in its origi-
nal form, measuring samples embodies a form that is able to interact with
the measuring system in an optimum way. In this sense, measuring samples
can be solutions, extracts, pellets, and melt-down samples, but also deˇnite
surface layers and volumes in case of micro- and nanoprobe techniques.

As an adaptation procedure, sample preparation has to fulˇll at least
one of the following aims:

(1) Making the test sample physically or chemically measurable by the
analytical technique

(2) Elimination of interferences
(3) Improving the relation between the amounts of analyte and matrix

Measuring samples are considered as being composed of the analyte
(Prichard et al. [2001]) and the matrix. The term \matrix" summa-
rizes all the sample constituents apart from the analyte. The relationships
between the amounts of sample, analyte, and matrix are given by:

{ The sample mass

msample = manalyte + mmatrix (2.12a)

{ The absolute mass of the analyte

manalyte = msample � xanalyte (2.12b)
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{ The relative mass of the analyte (content, concentration)

xanalyte =
manalyte

msample
=

manalyte

manalyte + mmatrix
(2.12c)

Sample preparation is directed to the conversion of test samples in a phys-
ically and chemically measurable form. The measuring sample can require
a deˇnite state (gaseous, liquid, or solid) or form (aqueous or organic solu-
tion, melt-down tests, and pellets). In other cases, measuring samples have
to become diluted or enriched to get an optimum concentration range. It
may also be necessary to remove interfering matrix constituents which dis-
turb the determination of the analyte.

Physical sample pretreatment. Almost all test samples, including those which
are measured by so-called \direct techniques", need physical pretreatment
in any form. The most applied physical techniques are:

{ Change in the physical state: freezing (freeze-drying), crystallizing, con-
densation, melting, pressure-pelletizing, vaporization etc.

{ Improvement of the form: grinding and homogenizing of solid and coarse
materials

{ Surface state: polishing, sputtering or etching of rough surfaces of spec-
imen

{ Preparation of electrically conductive mixtures and coatings on surfaces,
respectively

Chemical sample preparation. The most important chemical and physico-
chemical procedures of sample pretreatment are:

{ Dissolving the test sample by water, other solvents, acids, bases, melts,
and gases

{ Extraction of a group of analytes from complex matrices by liquid ex-
traction (in recent time increasingly by SPME)

{ Separation of interfering constituents to make the analyte determina-
tion possible or more speciˇc (in some cases masking serves the same
purpose)

{ Enrichment of the analyte to improve the signal-to noise-ratio and the
detection limit of the analytical method, respectively

{ Transforming the analyte in a chemical measurable form by means of
chemical reaction (e.g. redox reaction, complex forming)

In some cases, sample preparation techniques are linked directly with
analysing techniques using so-called multi-stage combined systems (T�olg
[1979]) which frequently work in a closed system. The principle is shown
in Fig. 2.9 in contrast to a direct analytical system.

Separation technique is a particularly wide ˇeld in sample pretreatment.
Some essential methods of analytical determination are based on separa-
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Fig. 2.9. Comparison of analytical multi-stage techniques (left) and direct instrumental
techniques (right)

tion principles, particularly mass spectrometry and chromatographic tech-
niques. In recent times these methods have been coupled amongst them-
selves and with other methods to achieve separations of high performance.
Also other techniques of sample preparation are directly coupled with de-
tection units. Today, such combined methods are called hyphenated tech-
niques (Hirschfeld [1980]) and play an important role in modern analyt-
ical chemistry.

In contrast to combined systems, hyphenated techniques consist of two
or more analytical systems each of which is independently applicable as
an analytical technique. Usually, the connection is realized by means of an
interface and the system is controlled by a computer. With regard to inte-
grated sample treatment, separation and transfer, hyphenated methods like
GC-MS, HPLC-MS, GC-IR, GC-IR-MS, GC-AAS, GC-ICP-MS, MS-MS, and
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Fig. 2.10. Composition of a test sample of wine (schematic representation in the middle;
the size of each area symbolizes the relative amount of the respective component or sort
of constituents) and of the measuring samples of inorganic and organic components,
respectively (left and right diagrams)

MSn are of particular interest. MSn stands for the n-fold coupling of mass
spectrometers, alternatively serving as separation and detection instrument.
By hyphenated techniques the dimensionality of analytical information (see
Sect. 3.4) and, therefore, also the information amount (see Sect. 9.3) is sig-
niˇcantly increased (Eckschlager and Danzer [1994]).

Sometimes it is necessary to apply two (or more) variants of sample
preparation to get different measuring samples from only one test sample.
This is the case if various problems have to be solved, e.g. determination
of major- and ultra trace constituents, comparison of depth- and surface
proˇles, or analysis of inorganic and organic trace components in the same
test sample. An example is shown in Fig. 2.10 where in a test sample of
wine both inorganic and organic trace constituents have to be determined
and, therefore, different measuring samples must be prepared.

2.3
Principles of Analytical Measurement

Measurement always involves comparison of an object with a suitable stan-
dard. Whereas physical elementary quantities like length and mass can be
compared directly, chemical quantities are mostly compared indirectly. It
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Fig. 2.11. Elastic and inelastic interactions between energy and measuring sample

is the goal of analytical measurements to make available the information
on the composition and structure, respectively, which is contained in the
sample in a latent way. This hidden (static) information must be released
from the measuring sample by chemical reactions or energetic interactions
by which real (dynamic) signals are generated.

The interactions to which the measuring samples are exposed can be of
elastic or inelastic type (in the physical sense). Figure 2.11 shows schemat-
ically the difference between elastic and inelastic interactions.

Elastic interactions are characterized by the condition that no energy is
exchanged between the measurement system and the measured sample:

�E = Ein � Eout = 0 (2.13)

In other words, Eout = Ein. The energy (electromagnetic radiation or particle
beam) is neither absorbed nor otherwise energetically changed while coming
into contact with or passing through the measuring sample. What happens
instead of this is a change in the spatial structure of the radiation by re-
fraction, re�ection, diffraction or scattering. From such structural changes
of the energy system Eout information can be obtained on the structural
arrangement of the constituents in the measuring sample.

The majority of analytical methods are based on inelastic interactions.
In contrast to elastic interactions, in case of inelastic interactions both the
energy of the measuring system, Ein, and the intrinsic energy of the con-
stituents of the measuring sample, E0, will be changed in such a way that
the following condition is fulˇlled:
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�Ekin =

∑
(Ein � Eout) =

∑
�U =

∑
(Eexc � E0) (2.14)

where each change in the kinetic energies �Ekin deˇnitely corresponds to
changes in the intrinsic energy �U of the sample constituents. The amounts
of kinetic and intrinsic energy, j�Ekinj and j�U j, characterize the sort of
sample constituents whereas the sum of all the energy quanta characterizes
the amount of these species.

As a result of the interchanges, signals are produced which contain both
information on the type of constituents and their amounts. �Ekin and �U
determine the signal position, z, and the intensities of each signal, y , cor-
respond to the amount of the belonging species.

The latent information of the measuring sample is transferred via an
energetic carrier into analytical information which is manifested by signals.
Their parameters correspond to the coding (encoding) process in informa-
tion systems. For the formal representation of the analytical coding the
following analytical quantities are introduced:

(a) The categorical quantities (discrete variables) Q = A; B; C; : : : ; N stand
for the chemical entities being investigated (elements, isotopes, ions,
modiˇcations, complexes, functional groups, compounds, viz. simple,
macromolecular or biomolecular, and occasionally sum parameters).
These entities are called analyte (Prichard et al. [2001]). All the com-
ponents of the sample other than the relevant are put together under
the term matrix.

(b) The quantity xQ , which is a continuous variable as a rule, characterizes
the amount of the analyte as an absolute or relative measure (e.g. mass,
content or concentration). The analyte amount xQ is the original goal
of quantitative analysis but is frequently determined indirectly. As the
quantity subjected to measurement, xQ is called measurand (Fleming
et al. [1997], Prichard et al. [2001]).

By the operations coding (analytical measurement) and decoding (analytical
evaluation) information will be transformed from the sample domain into
the signal domain and vice versa as shown in Fig. 2.12. Therefore, quantities
which correspond to that of the sample domain (Q and xQ) must also exist
in the signal domain. The characteristics in the signal domain are:

(c) The variables zi which characterize the values of the signal positions.
Respective zi-positions correspond to given Qs according to assignment
rules and tables and { in rare cases { natural and empirical laws and
equations, respectively. Such relationships between zi and Q represent
a special type of calibration (\qualitative" or \identity-" calibration).

(d) On the other hand, the variables yzi characterize the signal intensity at
given positions zi. The relationship between the intensity of a deˇnite
signal and the amount of the belonging constituent Q is rarely known
in form of theoretical connections. In most cases the relation between
yzi and xQ is modelled by experimental calibration.



2.3 Principles of Analytical Measurement 29

Fig. 2.12. Relationship between sample domain and signal domain in element analysis
(a) and structure analysis (b). The representation in the sample domains is shown in
different forms, as a block diagram and a list in case of (a) and as constitution formula
and structure matrix, respectively, in case (b)

A classiˇcation of the basis of these analytical quantities with regard
to their mutual relationships and dependencies from physical quantities
like space co-ordinates and time will be given in Sect. 3.4 according to the
dimensionality of analytical information.

Coding and decoding are reverse operations. Coding can be imagined to
consist of two steps:

{ Coding of the (latent) sample information on Q into energy signals j�U jQ
{ Coding of these energy quantities j�U jQ into measurable signals zi (mea-

suring quantities)

Both steps are characterized by the corresponding natural laws as well as
empirical relations caused by measuring instruments and conditions. All
such laws and rules are put together by the measuring function (calibration
function).

Taking the forms of intrinsic energy as the basis of the measuring prin-
ciple, analytical methods can be classiˇed according to the scheme given in
Fig. 2.13.

Another scheme arranged according to the forms of energy exchanged
between energy system and measuring sample is shown in Fig. 2.14 in form
of the so-called \Benninghoven matrix".

Both chemical reactions and physical measurements can leave some
\traces" in the measured signals. Chemical contaminations can come from
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Fig. 2.13. Analytical methods classiˇed according to the changes of the intrinsic energy
of analyte atoms, ions, molecules etc.

Fig. 2.14. Updated \Benninghoven matrix" of analytical methods in the context of in-
teractions between different forms of energy

the reaction system, e.g. in the form of residues of a reagent. On the other
hand, physical signal functions can contain disturbing primary radiation or
\contamination" coming from insufˇciencies of the measuring system, e.g.
inhomogeneous distribution of radiation or particle beams, ˇnite slit width
of optical systems, and noise of electronic components.

Therefore, signal functions y (z) always represent a convolution of the
true signal function y (z)true and the characteristic function of the analytical
instrument h(z) which characterizes all the insufˇciencies of the measuring
system:

y (z) = y (z)true � h(z) (2.15)
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Fig. 2.15. Changing of the
\true" sample signal by
the process of analytical
measurement

The mathematical symbol � is used for the convolution function which
means in detail

y (z) = y (z)true � h(z) =

+1∫
�1

ytrue(z � �)h(�)d� =

+1∫
�1

ytrue(�)h(z � �)d�

where � is the integration variable. Additionally, noise n(z) is added to the
signal function:

y (z) + n(z) = y (z)true � h(z) + n(z) (2.16)

The situation is illustrated in Fig. 2.15 where a signal is shown which
has been obtained in the analytical reality, distorted and disˇgured by noise
and broadening. All of these effects can be returned to a certain degree by
techniques of signal treatment like deconvolution, signal accumulation and
smoothing, etc.

2.4
Analytical Evaluation

Evaluation of signals is carried out effectively in a 'twofold manner', namely
according to:

(i) The analytical evaluation functions x = f �1(y ) and Q = f �1(z) which
are the respective reciprocal functions of the measuring functions (cal-
ibration functions) y = f (x) and z = f (Q), respectively (see Fig. 2.12)

(ii) The uncertainty of the analytical measurement and therefore, the un-
certainty of the analytical result

Regardless of whether quantitative results of element or structure analysis
are the matter of evaluation, analytical results have to be reported always
in the form

result(x) = mean(x)˙ unc(x) (2.17)
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z

y
x

x

Q
Q-z-calibration

(species identification,
qualitative analysis)

x-y-calibration
(quantitative analysis)

Fig. 2.16. Quasi-four-dimensional representation of the connection between qualitative
and quantitative evaluation according to Danzer [1995a], Danzer and Currie [1998]

Fig. 2.17. The four analytical quantities in sample and signal domain and the six funda-
mental functions between them; the functions Q = f �1(x) and z = f �1(y ) do not make
much sense in analytical practice
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see Sect. 8.1, where mean(x) is represented by the arithmetic mean x, as a
rule, but can also be given by the median, med(x) see Eq. (4.22) and the
geometric mean, see Eq. (4.18).

Starting with the relation between the analytical function x = f (Q) and
the signal function y = f (z) represented in Fig. 2.12, four quantities x, Q, y ,
and z have to be related to one another. The situation can be characterized
in Fig. 2.16 by a quasi-four-dimensional representation (Danzer [1995a],
Danzer and Currie [1998]).

The foreground of the representation depicts the relationship between
the species Q and their characteristic signals z, while behind that, the rela-
tionship between signals z, their intensities y , and the species amounts x
is established. Taken together, these relationships establish the composition
of the sample (the sample domain) and the signal domain, too.

Another illustration of the relationships between the four quantities x, Q,
y , and z together with the type and terms of the related functions between
them is shown in Fig. 2.17.

Whereas the x-y -relationships are represented by continuous functions
which are linear in most cases, the Q-z-relationships correspond mainly to
discrete functions as schematically shown in Fig. 2.18.

In analytical practice, Q-z-evaluation refers to the position of signals
on energy scales or scales that are related to energy, such as frequency-,

Fig. 2.18. Schematic representations for discrete functions of Q-z-relationships according
to natural or empirical laws (a Moseley type, b Kovats type) and empirical connections
(c Colthup type, d atomic spectra type)
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wavelength- or mass/charge coordinates of spectrometers or time coordi-
nates of chromatograms, respectively.

The evaluation function Q = f �1(z) that transfers measured z-values
into information on Q may be the reciprocal function of one of the following
calibration functions (Danzer [1995a]):

(a) Deterministic function on the basis of natural laws:

z = fdet(Q) (2.18a)

e.g. Moseley's law of the dependence of X-ray frequencies on the
atomic number (Moseley [1913])

(b) Empirical function

z = femp(Q) (2.18b)

like Kovats' indices of homologous compounds in their dependence
on retention data in gas chromatography (Kovats [1958])

(c) Empirical connection

z = emp(Q) (2.18c)

represented by tables and atlases, e.g. by tables of characteristic vibra-
tions (Colthup et al. [1975]) and iron-atlases in atomic spectroscopy
(Harrison [1939], De Gregorio and Savastano [1972]).

While the relations z = fdet(Q) can be derived on the basis of natural
laws, the estimation of an empirical function z = femp(Q) for the purpose of
identiˇcation and qualitative analysis is mostly carried out by (linear) least
squares to ˇt the observed z-values for a set of pure component standards
or a multicomponent standard. On the other hand, empirical relationships
z = emp(Q) in the form of tables, atlases and graphs are developed by
collection and classiˇcation of experimental results.

In general, the evaluation function for quantitative analysis is the inverse
of the calibration function y = f (x) (Currie [1995, 1999], IUPAC Orange
Book [1987, 1988]):

x = f �1(y ) (2.19)

provided that the relationship between the measured value y and the analyte
amount x has been estimated which is mainly the case in analytical chem-
istry. However, there are also other types of evaluation procedures, e.g. on
the basis of natural laws, depending on the nature of the analytical method.

The determination of the amounts of analytes can be based on absolute,
relative or reference measurements (Hulanicki [1995]) which are based on
equations of the general type

y = S � x (2.20)
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where S is the sensitivity; see Sect. 7.2. For the three mentioned types of
analytical measurements the sensitivity is given by mathematically well-
deˇned relations, namely in the case of:

(1) Absolute measurements by fundamental quantities like Faraday con-
stant and quotients of atomic and molar masses, respectively (coulom-
etry, electrogravimetry, gravimetry, gas volumetry)

(2) Deˇnitive measurements by fundamental quantities complemented by
an empirical factor, e.g. titre (titrimetry), as well as by well-known em-
pirical (transferable) constants like molar absorption coefˇcient (spec-
trophotometry), Nernst factor (potentiometry, ISE), and conductivity
at deˇnite dilution (conductometry)

(3) Direct reference measurements by the relation of measured value to
content (concentration) of a reference material (RM)

S =
yRM

xRM
(2.21)

On the other hand, indirect reference measurements are based on empirical
calibration functions obtained experimentally and frequently based on linear
models

y = a + bx + ey (2.22)

where the intercept a corresponds to the experimental blank and the slope
b to the sensitivity.

In analytical practice, some methods using deˇnitive measurements, in
principle, are also calibrated in an experimental way (e.g. spectrophotome-
try, polarography) to provide reliable estimates of S.

Calibration functions corresponding to Eq. (2.22) are not generally trans-
ferable over long times and not from one laboratory to another. However
in the case of blank-free or blank-corrected relations

y = bx + ey (2.23)

methods can be robustly calibrated under ˇxed experimental conditions.
Then the experimental sensitivity coefˇcients (sensitivity factors) are trans-
ferable over time and between laboratories under standard operating con-
ditions. Because of this transferability, such methods are occasionally
called \standard-free". Such standard-free methods (not to confuse with
\calibration-free" which characterizes absolute measurements) have been
developed, e.g., in the ˇeld of OES (Harvey [1947], Danzer [1976]), SS-MS
(Ramendik [1990]), and XFA (Sherman [1955], Fei He and van Espen
[1991]) for semi-quantitative multielement analysis.

For evaluation of multisignal measurements, e.g. in OES and MS, more
than one signal per analyte can be evaluated simultaneously by means of
multiple and multivariate calibration. The fundamentals of experimental
calibration and the relating models are given in Chap. 6.
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In principle, all measurements are subject to random scattering. Addi-
tionally measurements can be affected by systematic deviations. Therefore,
the uncertainty of each measurement and measured result has to be evalu-
ated with regard to the aim of the analytical investigation. The uncertainty
of a ˇnal analytical result is composed of the uncertainties of all the steps of
the analytical process and is expressed either in the way of classical statistics
by the addition of variances

� 2
total = � 2

sampling + � 2
preparation + � 2

measurement + � 2
evaluation (2.24)

or, increasingly in recent time, by means of the empirically calculated com-
bined uncertainty. The estimation of the uncertainty of analytical results is
given in Sects. 4.2 and 7.1.

Today, analytical evaluation is done on a large scale in a computerized
way by means of data bases and expert systems (Sect. 8.3.6). In particular,
a library search is a useful tool to identify pure compounds, conˇrm them
and characterize constituents in mixtures. Additionally, unknown new sub-
stances may be classiˇed by similarity analysis (Zupan [1986], Hippe [1991],
Warr [1993], Hobert [1995]). The library search has its main application
in such ˇelds where a large number of components has to be related with
large sets of data such as environmental and toxicological analysis (Scott
[1995], Pellizarri et al. [1985]).

In comparing spectra (and other signal records) with reference data, the
uncertainty of measurement of the signal position has to be considered.
The comparison of test spectra and reference spectra in form of data ˇles
may be regarded from the standpoint of set theory. In conventional set
theory (Cantor [1895]), individual data (elements, here intensity values at
given signal positions) follow a membership function m(x) that takes only
the values 1 and 0, characterizing an element belonging or not belonging
to a given set. Comparing such \hard" data sets, slight shifts of test data

Fig. 2.19. Various sets of analytical data: (A) Hard reference data set, mR(x). (B) Hard
test data set, mT (x), which is slightly shifted compared with (A). (C) Fuzzy set of test
data, mT (x) = exp

(�(x � a)2=b2
)
. (D) Intersection mT�R(x) of test data and reference

data which is empty in this case. (E) Intersection of fuzzed test data and reference data
with a membership value of about 0.8 in this case
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(which may be caused by the sample or measurement) result in an empty
intersection T \ R of the test and reference data as shown in Fig. 2.19D.

Zadeh [1975] extended the classical set theory to the so-called fuzzy
set theory, introducing membership functions that can take on any value
between 0 and 1. As illustrated by the intersection of the (hard) reference
data set (A) and the fuzzed test data set (C), the intersection (E) shows
an agreement of about 80%. Details on application of fuzzy set theory in
analytical chemistry can be found in Blaffert [1984], Otto and Bandemer
[1986a,b] and Otto et al. [1992].
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3 Signals in Analytical Chemistry

The analytical process is a procedure of gaining information. At ˇrst, sam-
ples contain only latent information on the composition and structure,
namely by their intrinsic properties (Malissa [1984]; Eckschlager and
Danzer [1994]). By interactions between the sample and the measuring
system this information is transformed step by step into signals, measured
results and useful chemical information.

3.1
Signals and Information

Information is always connected with signals. In general, signals are deˇnite
states or processes of material systems (Eckschlager and Danzer [1994];
Danzer [2004]). They can, therefore, be differentiated into static and dy-
namic signals. Examples of static signals are script, colors, images, ˇgures,
and buildings. On the other hand, dynamic signals result from electrical,
thermal, optical, acoustic, or chemical interactions. Nowadays, these signals
are converted in each case into electric signals, in which form they may
be treated and transmitted. Finally, the essential signal characteristics are
recorded in a suitable form. The process of signal generation and evaluation
is given by the chemical measurement process (CMP, Currie [1985, 1995])
which is shown in its analogy to the information process in Fig. 3.1.

Both the CMP and information process in Fig. 3.1 have been simpliˇed
in comparison with the representations in Figs. 2.1 and 2.2 because sample
preparation has not been considered here and the measurement begins with
the measuring sample as information source from which the signals are
obtained.

From the signal-theoretical point of view, signals must fulˇl the following
three functions to gain analytical information:

� A syntactic function which describes the relationship between equiva-
lent signals, the formation of signal sequences, and the transformation
of signals (knowledge of the genesis of signals). The syntactic function
characterizes the structure of signals and signal sequences.

� A semantic function which describes the meaning and signiˇcance of
signals and thus their unambiguous connection with the object to be
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Fig. 3.1. Chemical measurement process (above) and information process (below) 1 Mea-
surement, 2 Signal validation, 3 Evaluation/calibration, 4 Data evaluation, A Coding,
B Selection, C Decoding, data evaluation

characterized (knowledge of coding and decoding, assignment rules, and
calibration). The semantic function characterizes the meaning of signals.

� A pragmatic function which determines the relationship between signals
and persons who receive them. The pragmatic function, therefore, char-
acterizes the importance and beneˇt of signals.

All three of these functions should be harmonized to obtain the expected
information to the full extent and to avoid misinterpretation of signals.

3.2
Analytical Signals

The term \analytical signal" has a different meaning in signal theory and
analytical chemistry. In signal theory, analytical signals are of the type

z(t) = x(t) + j x̂(t) (3.1)

where x(t) is the signal function and x̂(t) = Hfx(t)g is the Hilbert transform
as imaginary part (Wolf [1999]).

Here, the term analytical signal is used for all the signals which are
produced by analytical methods and used (treated, evaluated and inter-
preted) in any form in analytical chemistry. Analytical signals can result
from test samples, reference samples, or data banks (reference spectra and
other recordings).

Analytical signals are generated by interactions between species of the
analyte, to be precise between certain forms of intrinsic energy of them (see
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Fig. 3.2. Overview of various forms of interactions taking place between measuring sam-
ples and different forms of matter and energy to produce analytical signals

Fig. 2.13), and an external system of matter and energy, respectively. These
systems and the resulting interactions are classiˇed in Fig. 3.2.

The type of interaction is characterized by the analytical technique ap-
plied. In detail, analytical signals can appear in form of:

� The product of chemical reactions, namely precipitations (their appear-
ance, color, and crystal shape), colors in solution, gases (their appearance,
bubbles, and color), and sublimates

� Changes of colors in �ames and other light sources, emission of radiation
� Differences between physical quantities like temperature, potential, volt-

age, and absorbance etc.

Analytical signals can be classiˇed according to different criteria. Accord-
ing to their genesis, analytical signals are frequently differentiated into chem-
ical and physical signals, notwithstanding that chemical signals are quanti-
ˇed ultimately by physical quantities (weight, volume, absorbance etc).

Analytical signals can also be differentiated according to their time char-
acteristics into dynamic, transient and static signals, and their complexity
into single signals, periodic signals, signal sequences and signal functions.

Most of the signals with which analysts have to do are manifest signals,
i.e. real observable signals from which real measured values can be taken.
But it is also possible to evaluate latent signals, i.e. non-real signals which
can be obtained mathematically from real signals, in the simplest cases by
calculating differences, ratios, and sums of manifest signals. Latent signals
are realized in the form of latent variables, e.g. differences of mass numbers
in mass spectra as well as isotope pattern of intensities of molecular peaks.
A special type of latent variables is represented by principle components,
eigenvalues, factors, and other chemometrically obtainable quantities.
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Hidden signals can be given in the form of non-resolved ˇne structures
of spectral bands or signals covered by background and noise. Hidden
signals can be detected by improving the experimental technique or by
applying chemometric procedures to improve the signal resolution and/or
signal-to-noise ratio.

In some cases it makes sense to record a signal not only in its original
form but also in its integrated form or in the form of its ˇrst, second or
higher derivation. In this way, the quantiˇcation of signal intensity can be
improved and the position of the signal can be measured more precisely,
respectively.

The generation of analytical signals is a complex process that takes place
in several steps. Methods of instrumental analysis often need ˇve steps,
namely (1) the genesis, (2) the appearance, (3) the detection and conversion,
(4) the registration, and (5) the presentation of signals; see Fig. 3.3.

The genesis of signals is directly connected with the interaction between
the entities of the sample (see Fig. 2.13) and the form of matter and energy
represented in Fig. 3.2. This interaction produces the signal as a result of a
chemical reaction, an electrochemical, physicochemical or physical process,
e.g. by a neutralization or precipitation reaction, an electrolytical process,
or by interactions between radiation and particles on the one hand and the
sample species on the other.

The appearance of signals takes place in form of a substance of a given
state (gaseous, liquid, precipitate), change of colors by absorption or re-
�ection of light, or emitted and absorbed radiation. Spectroscopic signals
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Fig. 3.3. Illustration of the steps of signal generation for different analytical principles
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appear in form of energy quanta h�� which are characterized qualitatively
and quantitatively by wavelengths, frequencies, and intensities. In this form
a signal might be visible or not but it cannot be stored, treated or evalu-
ated. Therefore, signals must be brought in an applicable form by a suitable
detection procedure.

By the detection step the signal is transformed into a form that is electri-
cally measurable. By means of photocells photons and ions can be generated
into electrons the number of which is greatly increased in multiplier tubes.
Several types of detection are shown in Fig. 3.3. It can be seen that, indepen-
dently of the genesis (chemical or physical), the manifested signal is always
converted into the form of a physical quantity like mass, volume, mostly,
however, into an electric quantity (current, voltage). Via the conversion step
the signals come into a form where current or voltage can be registered as
a continuous function of time or a time-proportional quantity.

For the analytical representation the signals have to be transformed from
time functions into conventional measuring functions. These are character-
ized by analytical quantities on abscissa and ordinate axes where the values
of them may be relativized in some cases (e.g. MS). Such a transforma-
tion of quantities is mostly carried out on the basis of instrument-internal
adjustment and calibration.

The presentation of signals takes place in the form of records of sin-
gle signals and of signal functions (displays and prints of spectra, chro-
matograms, or images). The presentation occurs in the signal domain as
schematically shown in Fig. 2.12 on the right side. Because the signal func-
tion cannot be reversibly stored in this analogous form, an analogue-to-
digital conversion may follow where a sequence of numbers is obtained
that is discretely arranged on a time axis. Signals in digital form are resis-
tant to disturbances and can be reversibly stored. In particular, there is no
limitation in the treatment of digital data. Therefore, some additional pro-
cedures can be followed where the signals are chemometrically evaluated
and improved, respectively.

3.3
Types and Properties of Analytical Signals

Signals used in analytical chemistry have a deˇnite origin from particular
species or given structural relationships between constituents of samples.
The relation of the sample domain and the signals domain, i.e. the coding
and decoding process as represented in Fig. 2.12, must be as unambiguous
as possible.

The reliability of signals depends on the information amount (see
Chap. 9), particularly on the signal resolving power of the analytical method
and, therefore, on the fact how narrow the signals are. The smaller the signal
half-width (width of the signal at half the maximum height) is, the more
unambiguous are the connections to the belonging species.
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This has led to such cases in the history of chemistry that spectroscopic signals have
been unidentiˇed till newly discovered elements was found (e.g. rubidium, caesium,
indium, helium, rhenium) or new species (highly ionized atoms, e.g. in northern
lights [aura borealis], luminous phenomena in cosmic space and sun aura, such
as \nebulium", \coronium", \geocoronium", \asterium", which was characterized
at ˇrst to be new elements; see Bowen [1927]; Grotrian [1928]; Rabinowitsch
[1928]).

There are a lot of forms in which signals are represented in general, and
particularly in analytical chemistry. The common form of a signal is bell-
shaped (of Gauss-, Lorentz- or Voigt type; see, e.g. Kelly and Horlick
[1974]). But there are also various other types of signal forms, e.g. differen-
tiated (ESR, AES), integrated (polarography, NMR), bar diagrams (MS), and
dynamic signal functions the form of which may be changing (chromatog-
raphy). By means of modern instrumental methods, multispecies analysis
is carried out where, therefore, signal functions are obtained that contain a
certain number of single signals.

Signal functions may have a very different character even in case of one
and the same analytical method as Fig. 3.4 shows.

Figure 3.4 shows (i) a line spectrum (one-dimensional dispersive spec-
trographic record), (ii) a spectrometric record, (iii) an interferogram ob-
tained by a Fourier transform spectrometer, and (iv, v) two- and three-
dimensional double dispersive spectra recorded e.g. by Echelle spectrome-
ters. In principle, all forms may be obtained by OES.

In general, signal functions will be obtained in analogous form and con-
sist of a large number of arranged measured points which form a data
vector. There are three types of signal functions, which contain:

� Exactly one signal for each species or phenomenon provided it is present
in the sample (e.g. chromatography)

� A number of signals per species (e.g. XRF, MS), sometimes up to several
thousand per element (OES; see, e.g. Harrison [1939]; De Gregorio
and Savastano [1972])

� Not only original signals (one or several) but additional combined signals
(overtones, coupled oscillations, e.g. NIR) and latent signals in form of
relations between original signals (differences, e.g. MS)

Occasionally, typical pattern can be observed which can be formed ac-
cording to special rules like multiplets in ESR-, NMR-, and OES spectroscopy
or isotopic ratios in MS (molecular peak pattern). There can also be ran-
domly formed pattern within such spectra, being rich in signals like OES (e.g.
the known sodium doublet (Na-D) 589.6 and 589.0 nm, and the magnesium
\quintet" 277.67, 277.83, 277.98, 278.14, and 278.30 nm). The identiˇcation
of species is always made easier when pattern { whatever type { can be
compared instead of a number of signals that are irregularly arranged.

Only such signals are used in analytical chemistry, as a rule, which can
reliably be related to the species or phenomenon under investigation. To
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Fig. 3.4. Different types of signal recordings (schematic) obtained by various types of
instruments and registering in OES

guarantee the correct recognition and identiˇcation of signals, several pro-
cedures are applicable. As mentioned in Sect. 2.4, a reliable evaluation func-
tion Q = f �1(z) is the basis of an unambiguous recognition of the analyte.
If, nevertheless, uncertainties remain, there are some theoretical and exper-
imental possibilities to guarantee reliably the identity. Such procedures are,
e.g. addition of the analyte in a deˇnite form, isotope dilution, and isotope
substitution (e.g. deuterization of characteristic groups).

Signal functions are inspected in several ways:

{ By \XX" (expert's experience), or objectively
{ By comparison with reference lists or diagrams in form of tables or

atlases, respectively, and increasingly computerized (mainly in the case
of spectra)

{ By comparison with reference spectra (RS), mainly by automated spectra
search (data banks)

For library searches, test spectra (TS) have to be available in digitalized
form. The demands on the quality of reference spectra are high. They have to
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be free from systematic deviations and impairing noise and must be unam-
biguously coded. Both reference and test spectra must be pretreated in the
same way concerning background correction, standardization, and encod-
ing. Sometimes it may be advantageous to use test spectra which are fuzzed
to a certain degree to compare them successfully with reference spectra (see
Sect. 2.4, Fig. 2.19, Blaffert [1984]).

Efˇcient techniques which can be applied also for spectra comparisons
are subtraction (TS{RS) and cross-correlation of TS and RS (Danzer et al.
[1991]). The cross-correlation function (CCF) is calculated according to the
relationship

 yT SyRS (
) = yT S(t) yRS(t + 
) = lim
T!1

1

2T

+T∫
�T

yT S(t) yRS(t + 
) dt (3.2)

The CCF has a sharp maximum at 
=0 in case of total agreement of the
TS and RS. The correlation coefˇcient then becomes unity. Values less than
1 characterize a certain degree of agreement.

Within the signal domain the signal functions can be represented in two
sub-domains, namely the original (signal) domain and the image domain
which are commonly called time domain and frequency domain. The records
of spectra in the time and frequency domain may look like (ii) and (iii) in
Fig. 3.4. The transition between the both domains is carried out mathemati-
cally by means of the Fourier transformation1. The relations between signal
functions in original (time) and Fourier domains (frequency ! = 1=t) are
represented in Fig. 3.5.

Fourier pairs not only exist in time-/frequency domain but also in any
other domain combined by a quantity q and the belonging dimension-
inverted quantity 1=q.

Signals are characterized by typical parameters. In Fig. 3.6 the funda-
mental signal parameters of a common bell-shaped signal are given.

Signals are determined by the following parameters:

� Position zA: the quantity which corresponds to the energy or motion,
respectively, of species of the analyte A. As detailed in Sect. 3.5, the
signal position is not a totally ˇxed parameter but is variable to a certain
degree.

� Intensity yA: the quantity which corresponds to the amount of the analyte
A (species or phenomenon). Both maximum intensity, yAmax , and integral
intensity, yAint , are used depending on the analytical procedure. In the
case of maximum intensity, frequently the net intensity yAnet

yAnet = yAmax � y0 (3.3)

1 There are other transformations, too, e.g. Laplace transformation which is fre-
quently used in technical systems.
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Signal function in the time domain Signal function in the frequency domain
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which characterizes the number of analyte species in the measuring sam-
ple, is applied. The integral intensity corresponds to the area under the
signal and is estimated by

yAint =

fwb(z)∫
y (z) dz (3.4)

In some cases, the integral intensity is recorded additionally to the orig-
inal signal function.

� Shape, symmetry, and width: these parameters can be in�uenced both by
properties of the analyte species and their interactions, e.g. with neigh-
boring species, and by disturbing effects of the measuring system (e.g.
tailing effects in chromatography and peak widening in general). Peak
shape can be considered as a convolution of the \true" signal function
and the measuring function (see Fig. 2.15).

� Fine structure and splitting: under given conditions of the measuring
technique (e.g. state of the sample, high-resolution instruments, mag-
netic ˇelds) signals may produce a ˇne structure or split up to multiplet
pattern. Splitting follows given rules.

� Background and noise: sometimes signals are affected by a background
(zero signal) y0 which can be corrected experimentally or by calculation.
On the other hand, noise is an inherent component of signals, and may
appear weak or strong. Noise has effects in both z- and y -directions
and causes random variations of the analytical quantities z and y . Noise
in the z-direction is mostly and rightly disregarded but can become
signiˇcant in special cases, e.g. in remote sensing where laser pulses may
be blurred in both z- and y -direction (Kozlov [2004]).

A signal function y (z), which is mostly treated as a time-dependent
function, y (t), can be regarded as consisting of the original \true" signal
function ytrue(t) which is superposed by a noise function n(t); see Fig. 2.15:

y (t) = ytrue(t) + n(t) (3.5)

Noise is generally added to the signal function; the types of noise are
schematically shown in Fig. 3.7.

In analytical instruments, all types of noise can be produced simulta-
neously { white and �icker noise as well as interference. The following
procedures can be applied to improve the signal-to-noise ratio S=N : signal
averaging (accumulation), digital ˇltering (Williams [1986]), autocorrela-
tion, and smoothing of the signal function.

The applicability of these techniques depends on the type and form of
the power spectra of both signal and noise. The only method that can be
universally applied, is signal averaging. If the signal function is measured n
times, the S=N ratio increases by

p
n.
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Fig. 3.7. Power spectra of the most important types of noise (schematic representation in
the frequency domain)

3.4
Dimensionality of Analytical Signals and Information

The dimensionality of a functional relationship will be deˇned here (ax-
iomatically) by the number of dependent and independent variables in such
a function. Therefore, functions of the type a = f (b) are two-dimensional, of
the type a = f (b1,b2) three-dimensional, and of the type a = f (b1; b2; : : : bn)
are (n + 1)-dimensional. The representation of various realizations of only
one variable (either y or z) is one-dimensional (Danzer et al. [2002]).

Dimensionality in analytical chemistry comprises different types of di-
mensions displayed by different sorts of variables, which can be discrete or
continuous:

� Chemical dimensions (dimensions in the sample domain): type (Q), num-
ber (n) and amount (x) of analytes, i.e. distinct chemical species; see
Fig. 2.12 (left)

� Measuring dimensions (signal-theoretical dimensions in the signal do-
main): signal position z (given by the signal's energy- or time character-
istics) and signal intensity y ; see Fig. 2.12 (right)

� Physical dimensions: time (t) and space, characterized by the variables
latitude (lx), longitude (ly ), and altitude (lz)

� Statistical dimensions: number of variables (manifest or latent) taken
into account in evaluation. Statistical dimensions deˇne the type of data
handling and evaluation, e.g. univariate, bivariate, multivariate

As a result of analytical measurements, signals are obtained and, in the
case of instrumental measurements, signals functions, y = f (z). The record
of the signal intensity as a function of the signal position, Fig. 3.8, represents
a two-dimensional signal function which can be back-transformed into two-
dimensional analytical information, x = f (Q).

The abscissa in Fig. 3.8 may represent an energy-related scale, e.g.,
wavelength-, frequency-, or mass/charge coordinates of spectrometers or re-
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Fig. 3.8. Two-dimensional
analytical information in
form of a signal function

tention time coordinates of chromatograms (Danzer and Currie [1998]).
The evaluation of such signal functions is carried out in both dimensions
as a rule.

An evaluation of only one of the two quantities concerns:

(a) The intensity yA of a given signal in position zA which is known to be
characteristic for a certain species A; see Fig. 3.9 (left-hand side)

(b) The appearance of certain signals zi that indicate the presence of the
corresponding species in the sample (Fig. 3.10)

In this case, the z-axis is inspected as to whether a signal (and therefore
the belonging species) is found (+) or not (�). Therefore, one-dimensional
analytical evaluation of signals corresponds to the quantitative analysis of
one given analyte by typical single species methods like AAS, as shown in
Fig. 3.9 (left side) on the one hand, and qualitative multielement analysis,
frequently carried out in form of inspection analysis, by typical multielement
methods like OES. The basis of testing the presence of a certain species Q
involves the exceeding of the critical value, yQ > yQcrit (Currie [1995]).

Quasi-multidimensional information as shown in Fig. 3.9 (right side)
can be obtained in different ways, mostly by sequential measurements, for
example:

� By changing detecting channels, thus, measuring one analyte after an-
other (e.g., spectrophotometry)

� By changing excitation source (e.g., hollow cathode lamps in AAS)

� By measurement the same element, which is temporally separated in
different species (e.g. GC-AAS)

The most frequent case in analytical chemistry is the evaluation of two-
dimensional signal functions in the form of spectra, chromatograms, ther-
mograms, current-voltage curves, etc. (Fig. 3.8).
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Fig. 3.9. One-dimensional information (in y -direction) of a single signal at a ˇxed z-value
(left-hand side) and quasi-multidimensional information on several analytes A; B; : : : ; N
as a sequence of one-dimensional information (right-hand side)

Fig. 3.10. One-dimensional
information in z-direction
(signal inspection): qual-
itative evaluation, signal
identiˇcation

Additional dimensions in signal functions can be given by:

� Successive separation steps, e.g. in two-dimensional chromatography
(two-dimensional thin-layer chromatography) that result in three-
dimensional signal functions y = f (z1; z2), as schematically shown
in Fig. 3.4(v).

� Two-dimensional excitation experiments (two wavelengths excitation in
�uorescence spectroscopy or two frequency experiments in 2D-NMR)
also generate three-dimensional signal functions.

� Time-dependent analytical measurements, which give three-dimensional
information of the type y = f (z; t) as shown schematically in Fig. 3.11a.
The same characteristic holds for distribution analysis in one spatial di-
rection, i.e., line scans, y = f (z; lx). Such signal functions are frequently
represented in form of multiple diagrams as shown in Fig. 3.11b.



56 3 Signals in Analytical Chemistry

Fig. 3.11. Temporally (t) or spatially (l) dependent analytical measurements, e.g., a line
scan of electron microprobe analysis represented in a three-dimensional (a) and quasi-
three-dimensional way (b)

� Distribution-analytical investigations in which spatial directions of the
sample represent additional variables such as:

{ Line scans of microprobes y = f (z; lx) for several analytes giving im-
ages like that represented in Fig. 3.11

{ Surface scans of microprobes y = f (z; lx ; ly ) for a given analyte, see
Fig. 3.12a,b

{ Component images z = f (lx ; ly ) for one or two analytes by black and
white representations like Fig. 3.12c, for more components by color
images

{ So-called \3D" images of SIMS, which in fact represent four- or ˇve-
dimensional analytical information depending on the actual function
y = f (lx ; ly ), y = f (lx ; ly ; lz), or y = f (z; lx ; ly ; lz), respectively

� Coupled (hyphenated) analytical techniques of a separation method and
a method of analytical determination, e.g. GC-MS, see Fig. 3.13, by which
higher-dimensional signal functions are obtained. Strictly speaking, the
dimension is 2(n + 1) in the case that n mass spectra are recorded.

Alternative characterization of the dimensionality. The SIMS example
demonstrates that the dimensionality of analytical information and of signal
functions occasionally follow other principles than those given above, where
the dimensionality of a functional relationship is determined by the number
of dependent and independent variables in such a function.
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Fig. 3.12. Different types of surface scans: a two-
dimensional isoline representation of the Mn dis-
tribution on a steel surface measured by M-OES;
b the same Mn distribution in a three-dimensional
representation (Danzer [1995]); c EPMA scan of
Si in a binary eutectic Al-Si alloy

Fig. 3.13. Higher-dimensional system of signal functions in case of coupled techniques,
e.g., GC-MS
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Fig. 3.14. Line with a fractal dimension of about 1.8

Table 3.1. Selection of signal functions in analytical chemistry and their dimensionality

Signal function Information Dimension

zy ; lx ; ly ; lz ; t Qualitative analysis (y , lx , ly , lz , t=const) for several
analytes, e.g., by a sequence of spot tests

1

yz; lx ; ly ; lz ; t Quantitative average analysis (z, lx , ly , lz , t=const) for
one given analyte, e.g., by gravimetry or AAS

1

y = f (z) lx ; ly ; lz ; t Quantitative average analysis (lx , ly , lz , t=const) for sev-
eral analytes, e.g., by ICP-OES

2

y = f (lx)z; ly ; lz ; t Line analysis: determination of the variation (distribu-
tion) of the amount of one analyte (given z) along a line
lx across the sample, e.g., by EPMA

2

y = f (t)z; lx ; ly ; lz Quantitative process analysis: recording the amount of
one given analyte z in dependence of time, e.g., by �ow
techniques

2

y = f (z; lx)ly ; lz ; t Line analysis of several analytes: determination of the
variation (distribution) of the amounts along lx , see
Fig. 3.11, e.g., by EPMA

3

z = f (lx ; ly )y ; lz ; t Surface analysis: qualitative representation of the pres-
ence (distribution) of several analytes across a surface
area, see Fig. 3.12c obtained by EPMA

3

y = f (lx ; ly )z; lz ; t Surface analysis: quantitative representation of the vari-
ation (distribution) of the amount of a given analyte z
across a surface area, see Fig. 3.12b obtained by micro
spark OES

3

y = f (lx ; ly ; lz)z; t Volume distribution of one given analyte: SIMS data
(representation mostly by categorial y , e.g., color-
coded)

4

...
...

y = f (z; lx ; ly ; lz ; t) Quantitative determination of several analytes in de-
pendence of space and time: spatial-resolved dynamic
quantitative multicomponent analysis, e.g., by a series
of 3D-SIMS images for several elements and at different
times

6
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In contrast with this, in signal theory the dimensionality of signal func-
tions is frequently determined only by the number of independent variables.
The dependent quantities are ignored. Therefore, a signal curve representing
the dependence of the signal intensity from a given independent variable
(mostly time) is characterized as being one-dimensional. Also, in analytical
practice such a characterization of analytical functions is sometimes used,
especially in relation to analytical images. So, spectra are sometimes con-
sidered as one-dimensional images and analytical element distribution like
those given in Fig. 3.12b,c as two-dimensional element images.

A different point of view is also adopted by Booksh and Kowalski
[1994], who start from an order of instruments or methods in such a way
that a classiˇcation is given according to the type of data which is generated.
An instrument (or method) is called a zero-order instrument if it gener-
ates a single datum per sample. This terminology comes from mathematics
where a single number is considered a zero-order tensor. Examples for zero-
order instruments are ion sensitive electrodes (ISE) and single-wavelength
photometers. First-order instruments are represented by common spectro-
meters, chromatographs and similar equipment. They usually produce data
vectors (e.g., spectral intensities at multiple wavelengths). Second-order in-
struments yield a data matrix per sample as is the case in coupled (hyphen-
ated) techniques like GC-MS, MS-MS, HPLC-MS, etc. Similar to the way of
looking at dimensions in signal theory, the tensorial theory of instruments
neglects one of the dimensions. But whereas in signal theory the ordinate
values (e.g., the intensity y ) are ignored, in tensorial theory the abscissa
values z (e.g., wavelengths or retention times) are disregarded. Notwith-
standing, the classiˇcation according to the order of instruments and meth-
ods, respectively, represents a suitable basis for theoretical fundamentals of
analytical chemistry.

From the most general point of view, the theory of fractals (Mandelbrot [1977]),
one-, two-, three-, m-dimensional ˇgures are only borderline cases. Only a straight
line is strictly one-dimensional, an even area strictly two-dimensional, and so on.
Curves such as in Fig. 3.11 may have a fractal dimension of about 1.1 to 1.3 ac-
cording to the principles of fractals; areas such as in Fig. 3.12b may have a fractal
dimension of about 2.2 to 2.4 and the ˇgure given in Fig. 3.14 drawn by one line may
have a dimension of about 1.9 (Mandelbrot [1977]). Fractal dimensions in analyt-
ical chemistry may be of importance in materials characterization and problems of
sample homogeneity (Danzer and K�uchler [1977]).

Analytical functions of different dimensionality have been listed in some
detail by Danzer et al. [1987]. The most important signal functions of
practical relevance are given in Table 3.1.

Dimensionality of analytical data. Analytical data are present either in the
form of measured values yi or analytical results xi. Multivariate data, i.e.,
results of m variables (e.g., analyte concentrations) measured at n different
samples, are mostly represented in the form of data sets and data matrices:
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X =

⎛
⎜⎜⎝
x11 x12 � � � x1m

x21 x22 � � � x2m
...

...
...

xn1 xn2 � � � xnm

⎞
⎟⎟⎠ (3.6)

where m is the number of components (distinct analytes) determined in n
objects (samples). The matrix at Eq. (3.6) has the dimension n�m, and the
related data set is called m-dimensional. It is the aim of multivariate data
analysis to reduce the dimensions of data sets (matrices) by exclusion of
redundant variables (components which are correlated) up to such a number
that can be displayed two- or three-dimensionally. Details of how to achieve
reduction of dimensionality in data sets will be given in Sect. 8.3.1 and are
available in the chemometric literature (e.g., Sharaf et al. [1986]; Massart
et al. [1988]; Frank and Todeschini [1994]; Danzer et al. [2001]).

3.5
Mathematical Model of Signal Generation

In an ideal case, the signal yA = f (zA), as shown in Fig. 3.6, is determined
only by the analyte A (or the phenomenon of interest), namely both the posi-
tion, zA = f (A), and intensity, yA = f (xA). But in real samples, matrix con-
stituents are present which can principally interfere with the analyte signal.
In structure analysis the same holds for the neighboring relationships (the
\environment" of the species A of interest). Therefore, signal parameters are
additionally in�uenced by the matrix (or the \neighborhood", respectively),
namely the species B; C; : : : ; N , and follow then the complex relationships
zA = f (A;B; C; : : : ; N ), yA = f (xA; xB; xC ; : : : ; xN ). Additionally, in�uencing
factors a; b; : : : ; m, background, y0, and noise (random deviations eA) may
become relevant and have to be considered.

The signal position is given by a characteristic value zA0 which is de-
termining for the species A according to evaluation rules for identiˇcation
and qualitative analysis; see Sect. 2.4, Eq. (2.18a{c). Additional changes in
position such as:

{ Chemical shifts �z
{ Fine structures such as rotation structure of vibration bands
{ Multiplet splitting

can arise from neighboring effects, interactions, and couplings, in accor-
dance with natural laws and rules (multiplet structure). In�uencing factors
such as temperature, pressure, solvent, etc., can also alter the signal position
which holds in general:

zA = f (A;B; C; : : : ; N ; a; b; : : : ; m) (3.7)

The real signal position and structure then is given by
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zA =M
⎧⎨
⎩zA0 +

N∑
i=B

ı zAi +
m∑
j=a

�zAj

⎫⎬
⎭ (3.8)

whereM is the multiplet structure according to relevant rules. In the case of
even-numbered multiplets, zA0 can become latent and is then represented
by the mean of the multiplet. The sum of ızAQ comprises the resulting
chemical shift, that of �zAj , the additional shift by in�uencing factors.

The signal intensity is in�uenced by the entire matrix (Q = A; B; C; : : : ; N )
with preference of A. In ideal case, yA would be only caused by xA:

yA = f (xA) = SAA xA + eA (3.9)

where the factor SAA represents the sensitivity SAA = @yA=@xA of the de-
termination of A; see Sect. 7.2. But in reality, the accompanying species
i = B; C; : : : ; N can contribute to the signal intensity to variable degree:

yA = f (xA; xB; xC ; : : : ; xN ) = SAA xA +
N∑
i=B

SAixi + eA (3.10)

The factors SAi represent the cross sensitivities (partial sensitivities according
to Kaiser [1972]) characterizing how the signal y (zA) is in�uenced by the
species i:

SAi =
@yA
@xi

(3.11)

The deviation eA represents the unavoidable experimental error of the de-
termination of A.

Only in exceptional cases is it possible to estimate all or part of the
in�uences of interfering species because their amount is mostly unknown.
In such cases, the sum of SAixi is considered an additional term of deviation
ei caused by the interferents:

yA = f (xA; xB; xC ; : : : ; xN ) = SAA xA + ei + eA = SAA xA + eAi (3.12)

where eAi = ei + eA is the summarized deviation term of the deviations of
interferences ei and the experimental deviations.

In addition, the signal intensity is in�uenced by effects of various factors
a; b; : : : ; m of the operating conditions, e.g., temperature, pressure, pH value,
and instrumental adjustments. Taking these factors into account the model
becomes

yA = f (xA; xB; xC ; : : : ; xN ; a; b; : : : ; m)

= SAA xA +
N∑
i=B

SAixi +
m∑
j=a

IAjxj + eA (3.13)

The quantity IAj represent the speciˇc strength of the in�uence factor j
on the signal yA, IAj = @yA=@xj . Their products with the given in�uence
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values xj yield the actual factor effects. Analogous to the interferences i,
the in�uences of the factors j are also hard to quantify. It can be done by
means of a multifactorial design on the basis of a model like Eq. (3.13); see
Sect. 5.1. But usually the sum of in�uences is also considered as a further
additive term of deviations ej :

yA = f (xA; xB; xC ; : : : ; xN ; a; b; : : : ; m)

= SAA xA + ei + ej + eA = SAA xA + eAij (3.14)

The signiˇcance of in�uences, namely both the interferences and several
factors can be studied in two ways:

(i) By hypothesis testing where the null hypotheses H0: ei = 0, and H0:
ej = 0, differently formulated H0: eAi = eA, H0: eAj = eA, and H0:
eAij = eA are veriˇed by Fisher's F -test (see Sect. 4.3.3). In this way,
all the factors can only be summarily tested.

(ii) By experimental design each in�uence variable can be examined sep-
arately but in interaction to the other variables. This can be done by
using a multifactorial design according to a linear model that contains
all the factors of interest (see Sect. 5.1). Mostly models of the type

y �A = f (xB; xC ; : : : ; xN ; a; b; : : : ; m) (3.15)

are applied, i.e., the study is carried out at a constant analyte con-
centration. The values of the in�uence factors then are varied between
sensible levels. The differences of the levels should be, on the one hand,
large enough to recognize the effects and, on the other hand, not too
large to avoid concealing of (mostly nonlinear) effects.

Taking into account that an experimental blank yA0 has to be considered,
Eqs. (3.12){(3.14) can be summarized as follows:

Gross Blank Analyte Signal contributions by Random
signal signal other species in�uence factors deviations

yA = yA0 + SAAxA +
N∑
i=B

SAixi︸ ︷︷ ︸
+

m∑
j=a

IAixj

︸ ︷︷ ︸
+eA0 (3.16a)

yA = yA0 + SAAxA +ei +ej +eA0 (3.16b)

︸ ︷︷ ︸
yA = yA0 + SAAxA +eAij (3.16c)

Taking into account that Eqs. (3.16) may also contain some unknown in�u-
ences uk which reveal themselves in interlaboratory comparisons but may
normally be hidden in the term eA0 , the fundamental signal model is given by
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yA = yA0 + SAA xA +
N∑
i=B

SAixi +
m∑
j=a

IAjxj +
∑
k

uk + eA (3.17)

The terms of the signal model at Eq. (3.17) are of particular interest for
both theoretical and practical aspects of analytical chemistry, viz. in detail:

(i) 0Ay Blank see Sect. 6.2

Detection limit Sect. 7.5
(ii) AAS Sensitivity  Sect. 7.2

(iii) ∑
=

N

Bi
iAixS Strength of interferences 

SAi Cross sensitivity 
 Specificity Sect. 7.3

 Robustness Sect. 7.4
(iv) ∑

=

m

aj
jAj xI Strength of influences 

IAj Specific influence 
 Sect. 5.1

 Ruggedness Sect. 7.4
(v) ∑

k
ku Unknown influences  

(vi) Ae Random deviation  Precision Sect. 7.1.1

In the following chapters, these analytical quantities and parameters will
be considered in more detail in the given relationships.
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4 Statistical Evaluation of Analytical Results

Both qualitative observations and quantitative measurements cannot be re-
produced with absolute reliability. By reason of inevitable deviations, mea-
sured results vary within certain intervals and observations, mostly in form
of decision tests, may fail. The reliability of analytical tests depends on the
sample or the process to be controlled and the amount of the analyte, as
well as on the analytical method applied and on the economical expenditure
available.

4.1
Reliability of Analytical Observations and Measurements

Analytical measurements are fundamentally subject of uncertainty where
various types of deviations (errors) can appear and these may be in�uenced
to varying degree. Even when instrument readings are sufˇciently accurate,
repeated measurements of a sample lead, in general, to measured results
which deviate by varying amounts from each other and from the true value
of the sample.

Before the different types of deviations are characterized in detail, some
essential terms have to be considered.

In analytical chemistry, the term error (used in the sense of deviation)
is deˇned by the difference between the test result (xtest) and the true value
(xtrue, i.e., the accepted reference value, see ISO 3534-1 [1993]; Fleming
et al. [1997]). The term may be related both to measured value y and ana-
lytical value x which correspond to each other according to the sensitivity
factor b of an analytical procedure.

According to their character and magnitude, the following types of de-
viations can be distinguished.

Random deviations (errors) of repeated measurements manifest them-
selves as a distribution of the results around the mean of the sample where
the variation is randomly distributed to higher and lower values. The ex-
pected mean of all the deviations within a measuring series is zero. Random
deviations characterize the reliability of measurements and therefore their
precision. They are estimated from the results of replicates. If relevant, it is
distinguished in repeatability and reproducibility (see Sect. 7.1)
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Systematic deviations (errors) displace the individual results of measure-
ment one-sided to higher or lower values, thus leading to incorrect results.
In contrast to random deviations, it is possible to avoid or eliminate system-
atic errors if their causes become known. The existence and magnitude of
systematic deviations are characterized by the bias. The bias of a measured
result is deˇned as a consistent difference between the measured value ytest
and the true value ytrue:

bias(y ) = ytest � ytrue (4.1a)

The absence of a bias characterizes the accuracy of a measured result. The
same holds for the analytical value:

bias(x) = xtest � xtrue (4.1b)

Outliers are random errors in principle. However, they have to be eliminated
because of their disproportionate deviation, so that the mean will not be
misrepresented.

Gross errors are generated by human mistakes or by instrumental or
computational error sources. Depending on whether they are short- or long-
term effects, they may have systematic or random character. Frequently, it
is easy to perceive and to correct for them. They will not play any role in
the following discussion.

The relation between systematic and random deviations as well as the
character of outliers is shown in Fig. 4.1. The scattering of the measured
values is manifested by the range of random deviations (conˇdence interval
or uncertainty interval, respectively). Measurement errors outside this range
are described as outliers. Systematic deviations are characterized by the
relation of the true value � and the mean y of the measurements, and, in
general, can only be recognized if they are situated beyond the range of
random variables on one side.

Conventionally, a measured result is said to be correct if the true value
is situated within the conˇdence interval of the observed mean (�1, case 1
in Fig. 4.1). If the true value is located outside of the range of random
deviations (�2, case 2 in Fig. 4.1) then the result is incorrect.

Fig. 4.1. Schematic representation of systematic and random deviations
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It is not always possible to tell strictly the difference between random and
systematic deviations, especially as the latter are deˇned by random errors.
The total deviation of an analytical measurement, frequently called the \total
analytical error", is, according to the law of error propagation, composed of
deviations resulting from the measurement as well as from other steps of the
analytical process (see Chap. 2). These uncertainties include both random
and systematic deviations, as a rule.

4.1.1
Systematic Deviations

Systematic deviations, in addition to random deviations, may be produced
at all steps of the analytical process, to be precise, for example during

{ Sampling by incorrect (non-representative) treatment of individual sam-
ple fractions.

{ Sample preparation by incomplete dissolution, separation or enrichment
operations.

{ Measurement caused by concurrent reactions or incomplete reaction pro-
cesses in the case of chemical principles, and by instrumental deviations
and wrong adjustment in the case of physical methods. A frequently
encountered reason for the occurrence of systematic deviations is erro-
neous calibration due to unsuitable calibration standards, matrix effects,
or insufˇcient methodical or theoretical foundation.

{ Even data evaluation, often thought free of errors to a large extent,
can generate systematic deviations by reason of incorrect or incomplete
algorithms.

According to their in�uence on the measurand, one can distinguish (see
Fig. 4.2):

(i) Additive deviations altering the measured values by a constant value
˛. Instead of the true value xtrue , the falsiˇed value

xtest = xtrue + ˛ (4.2)

is measured. A reason may be, for example, an unrecognized blank.

(ii) Multiplicative deviations, proportional to the measured value and
changing the slope of the calibration curve and thus sensitivity, be-
cause, instead of the true value y the misrepresented value

xtest = ˇ � xtrue (4.3)

is measured. They are often generated by erroneous calibration factors.

(iii) Nonlinear, response-depending errors causing an incorrect value

xtest = (xtrue)
� (4.4)



68 4 Statistical Evaluation of Analytical Results

Fig. 4.2. Effects of system-
atic errors on test values
according to Eqs. (4.2){
(4.4); the line of 45ı (bro-
ken) corresponds to ideal
recovery (line of true mea-
surements, xtest = xtrue)

to be measured instead of the true value. As a result, the calibration
linear relationship between measured value and analytical value is lost.
In OES, for example, self-absorption of resonance signals generates
such an effect.

Several of the types of systematic deviations mentioned can frequently occur
in combination with each other:

xtest = ˛ + ˇ (xtrue)
� (4.5)

In analytical practice, they are best recognized by the determination of xtest
as a function of the true value xtrue, and thus, by analysis of certiˇed ref-
erence materials (CRMs). If such standards are not available the use of an
independent analytical method or a balancing study may provide informa-
tion on systematic errors (Doerffel et al. [1994]; Kaiser [1971]). In simple
cases, it may be possible, to estimate the parameters ˛, ˇ, and � , in Eq. (4.5)
by eliminating the unknown true value through appropriate variation of the
weight of the test portions or standard additions to the test sample. But
in the framework of quality assurance, the use of reference materials is
indispensable for validation of analytical methods.

Commonly the absence of systematic errors is tested by recovery studies.
The estimation of recovery by analyzing only one standard, as frequently
be done, can give misleading results as can be seen from Fig. 4.2. In case
of combined and nonlinear systematic deviations there can occur points of
accidental congruence that can be hit. Therefore, if at all possible, there
should be estimated the entire recovery function. However, at least two dif-
ferent standards should be analyzed.
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4.1.2
Random Variations

Repeated measurements of the same measurand on a series of identical
measuring samples result in random variations (random errors), even under
carefully controlled constant experimental conditions. These should include
the same operator, same apparatus, same laboratory, and short interval of
the time between measurements. Conditions such as these are called repeata-
bility conditions (Prichard et al. [2001]). The random variations are caused
by measurement-related technical facts (e.g., noise of radiation and voltage
sources), sample properties (e.g., inhomogeneities), as well as chemical or
physical procedure-speciˇc effects.

By careful proceeding of measurements random variations can be mini-
mized, but fundamentally not eliminated. The appearance of random errors
follow a natural law (often called the \Gauss law"). Therefore, random vari-
ations may be characterized by mathematical statistics, namely, by the laws
of probability and error propagation.

Classifying varying measured values by their magnitude does not, as a
rule, result in a uniform distribution over the whole variation range, but
gives rise to a frequency distribution around the mean value, as shown, e.g.,
by the bar graph in Fig. 4.3a.

Increasing the number of repeated measurements to inˇnity, while de-
creasing more and more the width of classes (bars), normally leads to a
symmetrical bell-shaped distribution of the measured values, which is called
Gaussian or normal distribution.

The frequency density of the measured values p (y ) shown in Fig. 4.3b
is given by the relation

p (y ) =
1

�y
p

2�
exp

(
� (y � �y )2

2� 2
y

)
(4.6a)

with the parameters �y being the maximum (mean value) and �y being half
the distance of the in�ection points of the curve (standard deviation). The
same characteristics hold for the analytical values

p (x) =
1

�x
p

2�
exp

(
� (x � �x)2

2� 2
x

)
(4.6b)

where their parameters �x and �x are related to that of y according to the
linear calibration function (see Chap. 6).

Using standardized values with z = (x � �x)=�x or z = (y � �y )=�y
leads to

p (z) =
1p
2�

exp

(
�1

2
z2

)
(4.6c)

with a mean of zero and a standard deviation of 1, see Fig. 4.3d.
In analytical practice, not the population but random samples are studied.
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Fig. 4.3. Schematic frequency distribution of measured values y (a), Gaussian normal
distributions of measured values y (b) as well as of analytical values x(c), and standard
normal distribution (d)

The term \sample" is used here in a statistical way and not in chemical sense as
mentioned above (Sect. 2.1). A sample is a part of the population taken from it by
random sampling which has to be representative. Examples from the daily life are
predictions by TED (TEle Dialogue) for election results or popularity of persons or
groups of people. In a technical process the population may be given by the total
daily production. For the reason of quality assurance several a day test samples
are taken from which conclusions on the total quality are derived. To distinguish
between population and samples from the statistical point of view, different symbols
are used. Greek symbols (�, � ) characterize the population and normal letters (e.g.,
x, s) the sample. The distributions of samples differ from the normal distribution and
are characterized instead of this by the so-called t-distribution (Student [1908]).
Figure 4.4 shows the relation between the normal distribution of a given population
and some possible sample distributions.
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p(y)

1y 2y 3y 4y y

µ

Fig. 4.4. Distribution of
the population (parents
distribution) and the dis-
tributions of four samples
taken from this population

The parameters of the normal distribution (the population parameters)
are calculated as follows, namely the mean

�y =
1

N

N∑
i=1

yi (4.7)

and the variance

� 2
y =

N∑
i=1

(yi � �y )2

N
(4.8)

where N is the total number of objects of the population. On the other
hand, the sample parameters which represent the estimates of � and � 2,
respectively, are calculated by

y =
1

n

n∑
i=1

yi (4.9)

and

s2
y =

n∑
i=1

(yi � y )2

n � 1
(4.10)

where n is the number of objects (sub-samples) of the respective sampling
procedure. The variances � 2 and s2, respectively, are additive quantities.
Therefore, the variance of a mean y is given by

s2
y =

s2
y

n
(4.11)

From the variance some measures of dispersion are derived. The most
commonly used are
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� Standard deviation as the square root of the variance

sy =

√√√√√ n∑
i=1

(yi � y )2

n � 1
(4.12)

The standard deviation can also be obtained from repetition measure-
ments of different samples with various contents:

sy =

√√√√√ nA∑
i=1

m∑
j=1

(yij � y i)
2

n �m
(4.13)

where m is the number of samples (series), nA the number of repetitions
for each of the m samples and with it n = m � nA the total number
of determinations (yij single measured values, y i sample means (means
of series), the number of degrees of freedom is df = n � m in this
case). For this proceeding, the standard deviation of the samples should
not differ signiˇcantly within the actual range of content. In the case of
double-measurements of m samples it holds that

sy =

√√√√√ m∑
j=1

(y 0j � y 00j )2

2m
(4.14)

where y 0j and y 00j are connected values of double-measurements. The
number of degrees of freedom is df = m.

� Relative standard deviation syrel , srel, or r sd(y )

syrel =
sy
y

(4.15)

as a measure that is independent of the magnitude of the observation
(the term \coefˇcient of variation" instead of relative standard deviation
is not recommended by IUPAC, see IUPAC Orange Book [1997, 2000])

� Conˇdence intervals { measured values, following a Gaussian distribu-
tion, see Eq. (4.6a), may occur principally in the whole range of deˇnition,
�1 < y < +1, even though great positive and negative deviations of �
show only very small probability p (y ), see Fig. 4.3b. Therefore, it is use-
ful to deˇne dispersion ranges including a certain number of measured
values with a given high level of signiˇcance P (and therefore a slight
risk of error, ˛ = 1� P ). The statistical reliability is determined by the
integration limits ˙u(P ) � � . The integration intervals given in Fig. 4.5
correspond to the levels of signiˇcance listed in Table 4.1.
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Fig. 4.5. Integration in-
tervals of the Gaussian
distribution

Table 4.1. Corresponding integration intervals and levels of signiˇcance

� ˙ � : P = 0:683 � ˙ 1:96� : P = 0:95
� ˙ 2� : P = 0:955 � ˙ 2:58� : P = 0:99
� ˙ 3� : P = 0:907 � ˙ 3:29� : P = 0:999

In the case of ˇnite sample size in analytical practice, the quantiles of Stu-
dent's t-distribution are used as realistic limits.

The distance between a mean y and its conˇdence limits is calculated
according to

�y = sy t1�˛;� =
sy t1�˛;�p

n
(4.16)

with sy being the standard deviation of a measurement series of n individual
values from which y has been determined; � is the number of degrees of
freedom. The level of signiˇcance P = 1� ˛ has explicitly to be ˇxed.

The total (two-sided) conˇdence interval includes the mean and is given
in the form

cnf(y ) = y ˙ �y (4.17)

In general, this interval includes P � 100% of all measured values, i.e., in the
case of n = 20 individual measurements, one value outside the conˇdence
interval corresponds to the statistical expectation for P = 1� ˛ = 0:95.

One-sided conˇdence intervals cnf(y ) = y + �y and cnf(y ) = y � �y ,
respectively, are of importance for the control of limiting values and for test
statistics.

Of interest for analytical chemistry are at least two further distributions,
the logarithmic normal distribution for analytical results at the trace- and
ultra-trace level, and the Poisson distribution for discrete results (e.g., counts
of impulse summator in XRF).

In the ˇrst case it is not the measured values themselves that are nor-
mally distributed but their logarithms. Consequently, the parameters of
logarithmic-normal-distributed results are estimated as geometric mean
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y geom = n

√√√√ n∏
i=1

yi = antilg

(
1

n

n∑
i=1

lg yi

)
(4.18)

and the variance of the logarithms

s2
lg y =

n∑
i=1

(lg yi � lg y )2

n � 1
=

n∑
i=1

(lg yi)2 �
(

n∑
i=1

lgyi

)2

n

n � 1
(4.19)

Because this is an unwieldy quantity, for the characterization of the unsym-
metrical scattering of the results the dispersion factor (scattering factor) �
is used:

� = antilg slgy = 10slgy (4.20)

In case of unsymmetric distributed measured values, the dispersion factor
� can be used to estimate a relative dispersion measure that has the character
of rsd(y ):

s(lgy )rel = � � 1 (4.21)

Sometimes there exists doubt about normal and log-normal distribution
and the actual character of the distribution is unknown. Then so-called
\distribution-free" (robust) parameters can be applied. The mostly used of
them is the (common) median1

medfyig =

{
y(n+1)=2 if n is odd
(yn=2 + yn=2+1)=2 if n is even (4.22)

For this type of estimation the results of the measurements have to be
arranged in numerical order. Together with the median also robust measures
of dispersion, such as median absolute deviation, madfyig = medfjyi �
medfyigjg, and interquantile ranges (Sachs [1992]) should be used.

In case of unsymmetric distributions both geometric mean and median
are smaller than the arithmetic mean. In the same way as the distribution
converges towards a normal one, geometric mean and median turn into the
arithmetic mean.

The discrete Poisson distribution is only characterized by one param-
eter, the mean Y . The standard deviation is given by sY =

p
Y and the

relative standard deviation by sYrel = 1=
p
Y .

In general, the total variation of a measured result y is composed of
several variation components y1; y2; : : : ; ym . In the course of the analytical
process, all the steps of the analytical procedure (e.g., sampling, sample
preparation, separation, and measurement) and of single operations (e.g.,

1 There exist a large number of \medians" on which an overwiew can be found, e.g.,
in Danzer [1989]; Huber [1981]; Hampel et al. [1986]; Rousseeuw and Leroy
[1987].
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difference and comparative measurements) contribute to the total error. The
combination of the individual errors is determined partly by statistics and
partly by functional relationships of the form y = f (y1; y2; : : : ; ym). In the
case of independent variables y1; y2; : : : ; ym , the total error can be estimated
according to the Gaussian law of error propagation

� 2
y =

(
@f

@y1

)2

� 2
y1

+

(
@f

@y2

)2

� 2
y2

+ � � � +

(
@f

@ym

)2

� 2
ym

(4.23)

whereby it follows for the simplest and most often used relations:

y = y1 + y2

y = y1 � y2

}
� 2
y = � 2

y1
+ � 2

y2
(4.24a)

y = y1 � y2

y =
y1

y2

⎫⎬
⎭

(
�y
y

)2

=

(
�y1

y1

)2

+

(
�y2

y2

)2

(4.24b)

as well as Eq. (4.11). In the case of difference measurements of values of
equal order , e.g. for blank correction, the total error is mostly given by
�y =

p
2�y1 because of �y1 � �y2 .

In case of correlated parameters, the corresponding covariances have
to be considered. For example, correlated quantities occur in regression
and calibration (for the difference between them see Chap. 6), where the
coefˇcients of the linear model y = a + b � x show a negative mutual
dependence.

4.2
Uncertainty Concept

Traditionally, analytical chemists and physicists have treated uncertainties
of measurements in slightly different ways. Whereas chemists have ori-
ented towards classical error theory and used their statistics (Kaiser [1936];
Kaiser and Specker [1956]), physicists commonly use empirical uncertain-
ties (from knowledge and experience) which are consequently added accord-
ing to the law of error propagation. Both ways are combined in the modern
uncertainty concept. Uncertainty of measurement is deˇned as \Parameter,
associated with the result of a measurement that characterizes the dispersion
of the values that could reasonably be attributed to the measurand" (ISO
3534-1 [1993]; EURACHEM [1995]).

Such a parameter may be, e.g., standard deviation, or a given multiple of
it, or a one-sided conˇdence interval attributed to a ˇxed level of conˇdence.
In general, uncertainty of measurement comprises many components. These
uncertainty components are subdivided into

(i) Such that may be evaluated from the statistical distribution of the
results of series of measurements and can be characterized by experi-
mental standard deviations.
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(ii) Such that can be evaluated from assumed probability distributions
based on experience or other information (these components can also
be characterized by standard deviations or corresponding parameters).

Occasionally, both these uncertainty components are denoted (i) as \type
A"- and (ii) as \type B" uncertainties.

It is an important fact, that \it is understood that the result of the mea-
surement is the best estimate of the value of the measurand, and that all
components of uncertainty, including those arising from systematic effects,
such as components associated with corrections and reference standards, con-
tribute to the dispersion" (ISO 3534-1 [1993]). Therefore, uncertainty marks
the limits within which a result is accurate, i.e. precise and true (Fleming
et al. [1996]).

Uncertainty is estimated in various steps which can be summarized as
shown in Fig. 4.6.

Fig. 4.6. The uncertainty estimation process, according to EURACHEM [1995]; Fleming
et al. [1996]

At ˇrst, a clear statement should be made of the measured value y and
which relationship exists between y and the parameters p1; p2; : : : ; pm on
which it depends. If possible, that should be done in form of a mathemati-
cal equation, y = f (p1; p2; : : : ; pm). From this the sources of uncertainty for
each part of the process should be derived and listed. Some of the parame-
ters on their part depend from other variables pij . Also these dependencies
have to be considered in form of equations or schemes, where pictograms,
spreadsheets, and cause-effect diagrams (as schematically shown in Fig. 4.7)
may be applied as useful tools.

The quantiˇcation should start with a rough estimation of the order of
magnitude of each uncertainty contribution pi and pij . Insigniˇcant one can
be neglected because the uncertainty components are added according to a
squared model. The signiˇcant values should be reˇned in subsequent stages
and converted to parameters u(pi) which correspond to standard deviations.

In the case that the parameters pi are independent from each other, the
combined uncertainty is given by

u
(
y (p1; p2; : : :)

)
=√(

@y

@p1

)2

�(u(p1)
)2

+

(
@y

@p2

)2

�(u(p2)
)2
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(4.25)
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Fig. 4.7. Diagram of primary and secondary effects of parameters pi and pij on the
measured value y

If parameters are not independent but correlated with each other, then
the relationship is more complex because the covariance has to be consid-
ered:

u
(
y (p1; p2; � � � ; pm)

)
=√√√√(

@y

@p1

)2

�(u(p1)
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)
�
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@pj

)
� s (pi; pj) (4.26)

The terms s(pi; pj) are the covariances statistically deˇned by

s(pi; pj) = s(pi) � s(pj) � r (pi; pj) (4.27a)

and in connection with the combined uncertainty by

s(pi; pj) = u(pi; pj) = u(pi) � u(pj) � r (pi; pj) (4.27b)

According to Eq.(4.27a,b), the covariance is composed of the product of
the standard deviations or uncertainties, respectively, of the parameters pi
andpj and the correlation coefˇcient between them:

r (pi; pj) =

n∑
k=1

(pik � p i) (pjk � p j)√
n∑

k=1
(pik � p i)

2
n∑

k=1
(pjk � p j)

2

(4.28)

which is deˇned in the range �1 � r (pi; pj) � +1. If values of r (pi; pj)
approximate to +1 or �1, then a strong correlation (positive or negative,
respectively) is indicated. On the other hand, an approximation to 0 indi-
cates missing correlation.

From the combined uncertainty the extended uncertainty is calculated.
The extended combined uncertainty U (y ) represents an interval that con-
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tains a (sufˇciently) large part of the values of a series of measurements
that could reasonably be attributed to the measurand

U (y ) = k � u(y ) (4.29)

in which u(y ) = u
(
y (p1; p2; � � � ; pm)

)
as calculated according to Eqs. (4.25)

or (4.26), respectively. The coverage factor usually is chosen k = 2 : : : 3.
Table 4.1 shows that in case of normally distributed measured values, k = 2
covers an interval in which 95.5% of the values are found (k = 3 corre-
spondingly 99.7%). If the type of distribution is unknown, k = 2 does not
guarantee a sufˇcient level of conˇdence.

The uncertainty interval includes the estimated mean y and is given by

unc(y ) = y ˙ U (y ) (4.30)

In general, the uncertainties of measured values u(y ) are converted into
that of analytical values u(x) by means of the sensitivity S and its uncertainty
u(S):

u(x) =
u(y ; S)

S
: (4.31)

Therefore, the uncertainty interval of x are given by

unc(x) = x ˙ U (x) =
unc(y ; S)

S
=

y ˙ U (y ; S)

S
(4.32)

The signiˇcance of the uncertainty concept in analytical chemistry has
increased in the last century, notwithstanding that at ˇrst some confor-
mity was missed. But inconsistencies have been dispelled (see Thompson
[1995]; AMC [1995]) and operational approaches have been presented by
Hund et al. [2001]. Numerous examples of application have been given in
EURACHEM [1995].

The uncertainty concept is composed of both chemists' and physicists'
approaches of handling of random deviations and substitutes so classical
error theories in an advantageous way.

4.3
Statistical Tests

Statistical tests make it possible, objectively to compare and interpret exper-
imental data. They base on a test statistic to verify a statistical hypothesis
about a:

(i) Parameter
(ii) Distribution
(iii) Goodness of ˇt

Generalizations which go beyond the given data are normally not pos-
sible. Statistical tests can be carried out with measured values, y , and an-
alytical values, x, respectively, if there exists a linear relationship between
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them. If this not apply, it depends on the problem, which of the measures
has to be tested2, y or x.

4.3.1
Null Hypotheses

Statistical tests are based on hypotheses, so-called null hypotheses H0, the
statements of which are veriˇed by statistical tests. In this context, the fol-
lowing rules apply:

(i) Null hypotheses must always be formulated in an afˇrmative way, i.e.,
H0 : �1 = �2 (two subsets with the means x1 and x2 belong to the same
population �1 = �2), or H0 : � 2

1 = � 2
2 (the variances of two subsets are

identical).

(ii) Every null hypothesis H0 has an alternative hypothesis HA which is
conˇrmed if the null hypothesis is rejected, i.e., if the test leads to a
negative result, e.g., HA : �1 /= �2 (the compared means x1 and x2

differ signiˇcantly, and, thus, belong to different populations).

(iii) A non-rejection of a null hypothesis does not mean its acceptance.
If a test does not result in a signiˇcant difference of two compared
parameters, this merely means, that for reasons of the existing data,
the difference are not conclusive. Evidence for correspondence is not
provided. Such evidence can only be conˇrmed indirectly, see e.g.,
Doerffel [1990]; Doerffel et al. [1990].

(iv) Each test result is only valid for a certain (freely chosen) level of sig-
niˇcance P , underlying the test procedure. Thus, a test result carries a
risk of ˛ = 1 � P . In general, a level of signiˇcance P = 0:95 is cho-
sen (corresponding to ˛ = 0:05). In cases where great signiˇcance or
consequence is attached to the test result, a higher level of signiˇcance
(P = 0:99) has to be chosen. The following decisions have to be made:

{ H0 for P = 0:95 not rejected: the difference is considered to be non
conclusive.

{ H0 for P = 0:95 rejected: the difference is regarded as guaranteed
in the normal case.

{ H0 for P = 0:99 rejected: the difference is highly signiˇcant.

(v) Every statistical test may possibly result in two different kinds of error,
as shown in Table 4.2, i.e.,

{ To reject the null hypothesis erroneously although it is true (error
of ˇrst kind, false-negative, risk ˛).

{ Not to reject the null hypothesis by erroneously though the alterna-
tive hypothesis is true (error of second kind, false-positive, risk ˇ).

2 Therefore, both quantities will be used in the following to formulate the tests
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Table 4.2. Types of errors for statistical tests of null hypotheses

�����������
H0 is
by the test

H0 is
True False

Error of second kind
Not rejected Test result OK \consumer risk"

\false alarm"

Error of ˇrst kind
Rejected \producer risk" Test result OK

\false alarm"

Means and standard deviations calculated according to Eqs. (4.9) and
(4.12) or the following, respectively, are only characteristic for sample sub-
sets if certain pre-requisites are satisˇed, the fulˇlment of these can be
veriˇed by tests. The observed values of measurement series have to

(i) Be normally distributed
(ii) Vary randomly and show no systematic trend
(iii) Be free of outliers

This, on the one hand, is in order to determine correct estimates of the
mean and the variation of the measurement series, and, on the other hand,
to allow the statistical comparison of these parameters to those of other
measurement series.

4.3.2
Test for Measurement Series

(1) Rapid test for normal distribution: Range test of David et al. [1954]

q̂R =
R

s
(4.33)

with R = ymax � ymin being the range and s being the standard devia-
tion. If the calculated test value q̂R is not within the limits of the tabulated
values (which can be found, e.g., by Sachs [1992]; Graf et al. [1987]), a
normal distribution of the measured values may not be assumed. Then, it
can be tested if a normal distribution is obtained after transformation of
the measured values, e.g., a logarithmic one. If there is still no success, the
measurement series should be evaluated by methods of robust statistics (see
e.g. Danzer [1989]).

The existence of a normal distribution can only be conˇrmed by
a goodness-of-ˇt test (e.g., �2, according to Kolmogoroff [1941] and
Smirnoff [1948]).

(2) Test for a trend

For a measurement series y1, y2, . . . , yn (in the sequence of the measurement,
not classiˇed) the test parameter
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�2 =
n∑
i=2

(yi�1 � yi)2

n � 1
(4.34)

has to be formed (von Neumann et al. [1941]). The measured values can be
regarded as independent and, therefore, as varying at random for �2 � 2s2.
A trend has to be considered if �2 < 2s2. For an exact test �2=s2 has to be
calculated and compared to the limits given e.g. in Sachs [1992].

(3) Test for outliers

Among numerous tests for outliers presented in the literature, in analytical
practice the following have turned out to be especially useful:

a) For measurement series of limited size (n � 25): Test for outliers
according to Dean and Dixon [1951]; Dixon [1953]:

The measured values are sorted in ascending or descending order, de-
pending on whether the suspected outlier value y �1 deviates to higher
or lower values. The test statistic is formed depending on the data set

Q̂ =

∣∣y �1 � yb
∣∣∣∣y �1 � yk
∣∣ (4.35)

where indices b and k may have the following values depending on the
measurement series (n is the number of measured values):

b = 2 for 3 � n � 10; b = 3 for 11 � n � 25
k = n for 3 � n � 7; k = n � 1 for 8 � n � 13;
k = n � 2 for 14 � n � 25

The comparison is done with the signiˇcance limits Q(n; ˛), given, e.g.
in Sachs [1992]; Graf et al. [1987].

b) For nearly any measurement series (3 � n � 150): Test for outliers
according to Grubbs [1969]:

Ĝ =

∣∣y � � y
∣∣

s
(4.36)

The test statistic is compared with the signiˇcance limits G(n; ˛), given
e.g. in Graf et al. [1987].

4.3.3
Comparison of Standard Deviations

Two standard deviations, s1 and s2, with corresponding degrees of freedom,
�1 and �2, are compared by means of the F -test. The test statistic

F̂ =
s2
1

s2
2

(4.37)
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normally with s1 > s2, is compared to the corresponding quantile of the
F -distribution; see Doerffel [1990] Sachs [1992]; Graf et al. [1987]. For
F̂ > F1�˛;�1;�2 it is proven that s1 is signiˇcantly larger than s2.

Comparison of Several Standard Deviations:

(1) For measurement series of equal size (n1 = n2 = n3=. . . ): Hartley test
(Fmax-test, Hartley [1950]):

F̂max =
s2
max

s2
min

(4.370)

Tables with the signiˇcance limits are given in Sachs [1992]; Graf
et al. [1987].

(2) Cochran test (Cochran [1941]):

Ĝmax =
s2
max

s2
1 + s2

2 + � � �+ s2
k

(4.38)

preferentially applied to compare k samples if one of the variances
is essentially larger than all others. Tables are given in Sachs [1992];
Graf et al. [1987].

(3) Bartlett test (Bartlett [1937a, b]):

�̂2 =
2:3026

c

(
� lg s2 �

k∑
i=1

�i lg s2
i

)
(4.39)

with � = n � k =
∑

�i being the total number of degrees of freedom
(k number of groups), s2 =

∑
�is

2
i =� being the weighted variance, s2

i
being the variances of the i-th group with degrees of freedom �i and

c = 1 +

k∑
i=1

1
�i
� 1

�

3(k � 1)
(4.40)

which has the character of a correction factor; if the number of degrees
of freedom �i is not too small, c approximates 1. The test statistic �2

will be compared to the corresponding quantile of the �2-distribution
�2
˛;� ; see Doerffel [1990]; Sachs [1992]; Graf et al. [1987].

4.3.4
Comparison of Measured Values

(1) Comparison of two means y 1 and y 2 of different measurement series
with n1 resp. n2 measurements having the standard deviations s1 resp.
s2 is done by the t-test:
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t̂ =

∣∣y 1 � y 2

∣∣
sav

�
√

n1 n2

n1 + n2
(4.41)

with the (weighted) average standard deviation

sav =

√
(n1 � 1)s2

1 + (n2 � 1)s2
2

n1 + n2 � 2
(4.42)

The t-test in this form can only be applied under the condition that
the variances of the two sample subsets, s2

1 and s2
2 , do not differ signiˇ-

cantly. This has to be checked by the F -test beforehand. The test statis-
tic t̂ has to be compared to the related quantile of the t-distribution
t1�˛;� where � = n1 + n2 � 2.

If the variances s2
1 and s2

2 , differ signiˇcantly, a generalized t-test
(tW�test) according to Welch [1937] can be applied:

tW =

∣∣y 1 � y 2

∣∣√
s2
1
n1

+ s2
2
n2

(4.43)

The comparison is done again with t1�˛;� , but in this case it is

� =

(
s2
1
n1

+ s2
2
n2

)2

(
s21
n1

)2

n1�1 +

(
s22
n2

)2

n2�1

(4.44)

If more than two means have to be compared, the t-test cannot be
applied in a multiple way. Instead of this, an indirect comparison by
analysis of variance (ANOVA) has to be used, see (3) below.

(2) Comparison of an experimental mean with a prescribed resp. true value:
simpliˇed t-test:

The decision, if a mean of a sample, y , differs randomly or signiˇcantly
from a prescribed mean, �, leads to the question, if the conˇdence
interval of the experimental mean, cnf(y ), includes the mean � or
not, i.e., is the absolute difference

∣∣y � �
∣∣ smaller or larger than the

interval: �y = s � t1�˛;� =
p
n:

t̂ =

∣∣y � �
∣∣

s

p
n (4.45)
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(3) Comparison of several means: analysis of variance (ANOVA):

Because no direct way exists to test simultaneously more than two
means for signiˇcant differences, the comparison of several means,
y 1; y 2; : : : ; y k , is traced back to the comparison of variances.

One-way analysis of variance is based on a linear model like the fol-
lowing:

yi = y + ai + ei (4.46)

where three different models have to be distinguished (Eisenhart
[1947]):

(i) Model I with ˇxed effects (model \ˇxed") which is suitable for
comparisons of means on the basis of the null hypothesis H0:
�1 = �2 = : : : = �k

(ii) Model II with random effects (model \random") that bases on the
null hypothesis H0: � 2

a = 0 (\proper" analysis of variance)

(iii) Model \mixed"

Regarding the comparison of means, ai and ei can be interpreted as to
correspond to the deviations between the measurement series and within
them, � 2

between and � 2
within, respectively. Therefore, the comparison is carried

out according to

F̂ =
� 2

between

� 2
within

=

1
k�1

k∑
i=1

ni
(
y i � y

)2

1
n�k

k∑
i=1

s2
i (n � 1)

(4.47)

with k number of means to be compared, y i mean of the i-th measure-
ment series with ni individual values, si standard deviation of the i-th mea-
surement series, n =

∑
ni total number of all individual measurements,

y = 1
n

∑
niy i weighted total mean. The degrees of freedom are �1 and �2.

F̂ exceeds the corresponding quantile of the F -distribution F1�˛;�1;�2 if
at least one of the means differs signiˇcantly from the others. This global
statement of variance analysis may be speciˇed in the way to detect which of
the mean(s) differ(s) from the others. This can be done by pairwise multiple
comparisons (Tukey [1949]: Games and Howell [1976]: see Sachs [1992]).

In the simplest case, if all sample sub groups have the same size, n1 =
n2 = : : : = nk , Dixon's test for outliers can be used (see Sect. 4.3.2). Then,
in Eq. (4.35), instead of the individual values, the means are entered.
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4.4
Reliability of Qualitative Analytical Tests

In principle, there is no fundamental contrast between qualitative, (semi-
quantitative), and quantitative analyses. The analytical signal is generated
in the same way, only the detection and evaluation is done on the basis of a
more rough scale, in qualitative analysis only in form of a yes/no decision.

Today an increasing importance of qualitative analysis can be stated
in certain ˇelds. This is due to an increasing number of materials under
study, especially active agents of interest on the one hand, and the many
and diverse ways of synthesis (e.g., by combinatorial chemistry) on the
other hand as well as the increasing demands on quality. Because analytical
laboratories in research and routine control would be overtaxed in their
capacity if full quantitative analyses were done generally, screening methods
become more and more signiˇcant.

Screening techniques can be understood as to be ˇltering procedures of
samples. The principle of screening consists in giving an overview on con-
stituents in certain samples, namely:

(i) Whether a threshold value (speciˇcation limit) is exceeded or not

(ii) Whether constituents are present in addition to such that are well-
known, in general, to specify the type of the sample (e.g., identiˇcation
of the type of steel by recognizing typical alloying constituents addi-
tionally to that always present like C, S, P, Si, and Mn)

Although the term \screening methods" is often used as a synonym for
qualitative analysis, it is mostly related to (i) the scheme of which is given
in Fig. 4.8; see also Trullols et al. [2004].

Samples

–
+

+
+

+
+

+
+

–
– –

–
–

–
–

–

Screening
technique:

Discrimination
yi ≤ ySL

yi > ySL

Further procedures, e.g.
quantitative analysis

No further procedures

+
+

+
+

+
+ +

––
– –

–
––

–
–

Fig. 4.8. Principle of screening techniques. �+ samples for which yi > ySL, �� samples for
which yi � ySL; ySL is the speciˇcation limit

Screening methods may be classiˇed according to the detection of signals
into:

(a) Sensorial detection (mostly visibility) traced back to changes in absorp-
tion or transmission (e.g., color of solution or test strips, turbidity).

(b) Instrumental detection, where in principle any instrumental technique
may be used. Screening by instrumental analysis can be done by means
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of reduced calibration expense where only a comparison with a refer-
ence sample containing the analyte at the speciˇcation level, xSL, giving
so a response ySL, is carried out.

According to the practical equipment there are useful tools, so-called test
kits, which are units that contain all the reagents and a simple instrumenta-
tion in form of plates, tubes and wells. The test kits work rapidly, are easily
to handle and ˇeld-portable. Frequently, biochemical principles are applied,
especially immunoassay techniques which use body-antibody reactions.

The discrimination limit in screening may have different character. It
may be a detection limit or a pre-set value set by a responsible authority,
e.g., an ofˇcial agency, medical institutions, or clients.

Although screening tests are evaluated qualitatively, as a rule, quantita-
tive aspects of test statistics and probability theory have to be considered.
In this respect, validation of qualitative analytical procedures has been in-
cluded in international programs and concepts, see Trullols et al. [2004].

The application of screening methods requires that proper reference
samples are available. These must contain the analyte exactly at or close
to the speciˇcation level. Such reference samples have to be veriˇed by
quantitative analysis using reference methods.

The reliability of screening methods is usually expressed in terms of
probability theory. In this regard, the conditional probability, P (BjA), char-
acterizing the probability of an event B given that another event A occurs,
plays an important role.

(1) True positive rate3: probability that the test result is positive in case
that the analyte A is present (above the speciˇcation limit) in the test
sample

TPR = P (T + jA ) =
tp

tp + f n
(4.48)

where tp are the true positives and fn the false negatives.

(2) True negative rate: probability that the test result is negative when the
analyte is not present, A (i.e. equal or below the speciˇcation limit,
respectively)

TNR = P (T �
∣∣A ) =

tn

tn + f p
(4.49)

where tn are the true negatives and fp the false positives.

3 In clinical chemistry and medical diagnostics the true positive rate is called \sen-
sitivity rate" and the true negative rate \speciˇcity rate" (O'Rangers and Condon
[2000]) without any relation to the general deˇnition of the terms sensitivity and
speciˇcity and their use in analytical chemistry (see Sects. 7.2 and 7.3).
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(3) False positive rate: probability that the test result is positive when the
analyte is not present, A

FPR = P (T +
∣∣A ) =

f p

tn + f p
(4.50)

(4) False negative rate: probability that the test result is negative when the
analyte is present

FNR = P (T � jA ) =
f n

tp + f n
(4.51)

Some other important quantities in test theory are:

(5) Prevalency: probability that A is present in n samples:

PV = P (A) =
tp + f n

n
(4.52)

where n = tp + tn + f p + f n is the total number of samples (tests).

(6) Concordancy rate: proportion of correct test results:

CR =
tp + tn

n
(4.53a)

where CR � 1.

The correctness of test is also expressed by

(7) Test efˇciency:

T E = P (A
∣∣T + ) + P (A jT � ) � 2 (4.53b)

The problem of test efˇciency and concordance may be illustrated by a
scheme (Table 4.3) which corresponds to that given in Table 4.2.

Table 4.3. Scheme of test results for screening procedures; tp true positive, fp false positive,
tn true negative, fn false negative, n total number of tests

���������Situation
Test result

Positive (T +) Negative (T �) Sum of situations

A is present (A) tp fn tp + fn
Error of second kind

A is not present (A) fp tn tn + fp
Error of ˇrst kind

Sum of test results tp + fp tn + fn n = tp + tn + fp + fn
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From the decision variants and probabilities given above, the prediction
values as applied in Eq. (4.53b) play an important role in decision theory,
namely:

{ Positive prediction rate: proportion of samples which are positively tested
when the analyte A is present in the sample

P P R = P (A
∣∣T + ) =

P (A) � P (T + jA )

P (A) � P (T + jA ) + [1� P (A)] � [1� P (T �
∣∣A )]

(4.54)

=
P (A) � P (T + jA )

P (A) � P (T + jA ) + P (A) � P (T +
∣∣A )

and

{ Negative prediction rate: proportion of samples which are negatively
testes if the analyte is not present (A) in the sample

NP R = P (A jT � ) =
P (A) � P (T �

∣∣A )

P (A) � P (T �
∣∣A ) + P (A) � [1� P (T + jA )]

=
P (A) � P (T �

∣∣A )

P (A) � P (T �
∣∣A ) + P (A) � P (T � jA )

(4.55)

False positive and false negative decisions result from unreliabilities that
can be attributed to uncertainties of quantitative tests. According to Fig. 4.9
the belonging of test values to the distributions p (yLSP ) or p (ySCR), respec-
tively, may be affected by the risks of error ˛ and ˇ (see Sect. 4.3.1) which
corresponds to false positive (˛) and false negative (ˇ) test results.

Fig. 4.9. Distributions of measured values which belong to the content at the limit of
speciˇcation xLSP and at the screening limit xSCR; yDIS is the limit of discrimination
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Fig. 4.10. Performance
characteristic curves of
screening tests of binary
classiˇcations:
a ideal curve shape,
b experimentally obtained

curve
following Simonet et al.
[2004];
PPR is the probability
of obtaining positive re-
sponses, TPR true positive
rate (Eq. 4.48), TNR true
negative rate (Eq. 4.49),
FPR false positive rate
(Eq. 4.50), FNR false nega-
tive rate (Eq. 4.51), xl and
xu are the lower and upper
limits of the unreliability
region

Another way to characterize the performance of screening methods for
binary classiˇcation is the construction of performance curves. A perfor-
mance characteristic curve (PCC) represents the probability of positive test
results vs the concentration of the analyte as shown in Fig. 4.10.

The performance curve presents graphically the relationship between the
probability of obtaining positive results PPR, i.e. xi 	 xLSP on the one hand
and the content x within a region around the limit of discrimination xDIS
on the other. For its construction there must be carried out a larger number
of tests (n 	 30) with samples of well-known content (as a rule realized by
doped blank samples). As a result, curves such as shown in Fig. 4.10 will
be obtained, where Fig. 4.10a shows the ideal shape that can only be imag-
ined theoretically if \inˇnitely exact" decisions, corresponding to measured
values characterized by an \inˇnitely small" conˇdence interval, exist.

The curve illustrates the sharpness of tests depending on the discrimina-
tion limit. In this way, TPR and TNR may be recognized and the unreliability
region around the limit of speciˇcation can be estimated. Beyond the limits
of the unreliability interval, it is possible to classify samples correctly apart
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from a deˇned risk of error (Pulido et al. [2002]; Simonet et al. [2004];
Trullols et al. [2004]).

4.5
Statistical Quality Control

The principles of quality assurance are commonly related to product and
process control in manufacturing. Today the ˇeld of application greatly ex-
panded to include environmental protection and quality control within ana-
lytical chemistry itself, i.e., the quality assurance of analytical measurements.
In any ˇeld, features of quality cannot be reproduced with any absolute de-
gree of precision but only within certain limits of tolerance. These depend
on the uncertainties of both the process under control and the test proce-
dure and additionally from the expense of testing and controlling that may
be economically justiˇable.

4.5.1
Quality Criteria for Analytical Results

Analytical methods, particularly those used by accredited laboratories, have
to be validated according to ofˇcial rules and regulations to characterize ob-
jectively their reliability in any special ˇeld of application (Wegscheider
[1996]; EURACHEM/WELAC [1993]). Validation has to control the perfor-
mance characteristics of analytical procedures (see Chap. 7) such as accu-
racy, precision, sensitivity, selectivity, speciˇcity, robustness, ruggedness, and
limit values (e.g., limit of detection, limit of quantitation).

Within the scope of quality agreements in production, environment, or
laboratory, quality is often stipulated to a standard value x0 (target value).
For demands regarding quality, this standard value may be an upper limit
(e.g. in case of pollution and contamination) or a lower limit (e.g. for active
reagents). The statistical situation is the same when a quality criterion has
to exceed or fall below a standard value. The problem is illustrated here by
the practical situation of manufacturer and customer as shown in Fig. 4.11.

If an analytical test results in a lower value xi � x0, then the customer
may reject the product as to be defective. Due to the variation in the results
of analyses and their evaluation by means of statistical tests, however, a
product of good quality may be rejected or a defective product may be ap-
proved according to the facts shown in Table 4.2 (see Sect. 4.3.1). Therefore,
manufacturer and customer have to agree upon statistical limits (critical
values) which minimize false-negative decisions (errors of the ˇrst kind
which characterize the manufacturer risk) and false-positive decisions (er-
rors of the second kind which represent the customer risk) as well as test
expenditure. In principle, analytical precision and statistical security can be
increased almost to an unlimited extent but this would be re�ected by high
costs for both manufacturers and customers.
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Fig. 4.11. Distributions of analytical results for quality assurance; C is the distribution of
analytical results at the critical customer limit, M at the critical manufacturer limit, SV
is the distribution of the standard value

With the aid of consequences resulting from wrong decisions, risks R
can be given for the manufacturer M as well as for the customer C:

RM = w � ˛ � FM (4.56a)

RC = (1� w ) ˇ � FC (4.56b)

with w = P (x = xcrit(M)) representing the a priori probability that a de-
termined quality value x is equal to the critical manufacturer limit and
(1 � w ) = P (x = xcrit(C)) that is equal to the critical customer limit. The
parameters FM and FC characterize consequences (e.g. costs) resulting from
wrong decision for the manufacturer and customer, respectively; ˛ is the
(one-sided) manufacturer risk (error of the ˇrst kind) and ˇ the (one-sided)
customer risk (error of the second kind).

The relationship between the target value x0 and the distribution of the
critical values are illustrated in Fig. 4.11 for manufacturer (M) and customer
(C). For x > x0 the quality is better than agreed while x < x0 indicates poorer
quality.
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The critical values xcrit(C) and xcrit(M) being tolerance limits are derived
as conˇdence limits of x0. They are given by

xcrit(M) = x0 + s t1�˛;� =
p
n (4.57a)

for the upper tolerance limit with the standard deviation s of the analytical
procedure and n parallel determinations, as well as

xcrit(C) = x0 � s t1�ˇ;� =
p
n (4.57b)

for the lower tolerance limit. If manufacturer and customer have agreed
upon x0 not to be a target value but a guarantee value, x0;guar, with ˇxed
signiˇcance level P = 1 � ˛, then that has to supply at least the quality
xcrit(M). The statement whether an analytical value x = x0;guar is still accepted
(x 	 x0;guar) or not (x > x0;guar) is then also part of the agreement. In these
cases, the customer's risk is that in ˛ � 100% of all cases the quality can be
worse than x0.

Quality limits are often stipulated by laws, regulations, or standards;
however, they are frequently determined by mutual agreements, too. Con-
sidering the particular risks RM resp. RC, especially the values ˛ and ˇ have
to be reconciled, whereby, in practice, ˛ = ˇ is often taken as the basis.

4.5.2
Attribute Testing

In contrast to variable testing (comparison of measured values or analytical
values), attribute testing means testing of product or process quality (non-
conformity test, good-bad test) by samples. Important parameters are the
sample size n (the number of units within the random sample) as well as the
acceptance criterion naccept, both of which are determined according to the
lot size, N , and the proportion of defective items, p , within the lot, namely
by the related distribution function or by operational characteristics.

According to the number of defective items ndefect, which have been
determined in the sample results are required for,:

ndefect � naccept acceptance of the test items

ndefect > naccept rejection :

Attribute testing can also be effected on the basis of two or more
(m) samples. The disadvantage for the higher expenditure to deter-
mine the sample sizes n1; n2; : : : ; nm , the acceptance and rejection rates
naccept;1; naccept;2; : : : ; naccept;m resp. nrejet;1; nreject;2; : : : ; nreject;m must be set
against the advantage of the possibility of coming to unambiguous decisions
in clearly deˇned situations with only a ˇrst small random sample i = 1.

In contrast to classical statistical tests, three test outcomes exist:

(i) ndefect;i � naccept;i acceptance

(ii) ndefect;i > naccept;i rejection
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(iii) naccept;i < ndefect;i < nreject;i inspection of another sample

This model leads to sequential tests, which generally use three outcomes
and which represent the most effective variant of quality control.

4.5.3
Sequential Analysis

The principle of sequential analysis consists of the fact that, when comparing
two different populations A and B with pre-set probabilities of risks of
error, ˛ and ˇ, just as many items (individual samples) are examined as
necessary for decision making. Thus the sample size n itself becomes a
random variable.

Sequential investigations may be used for both attribute testing and
quantitative measurements (variable testing). The fact that it is enough to
perform only as many tests or measurements as are absolutely necessary, is
of great advantage in such cases if individual samples are either difˇcult to
obtain or expensive, or if the same is true for the measurement.

Based on the actual result of every individual measurement, it has to
be checked whether a decision may now be taken or whether studies have
to be continued. According to the ˇnal aim of sequential analysis, one can
differentiate between closed sequential test plans that always come to a de-
cision A > B or A < B (possibly with a large test expenditure) and open
sequential test plans, which also allow { after a certain test expenditure {
the statement A = B.

Data evaluation can be done by calculation or graphically. An example
of graphical sequential analysis is given in Fig. 4.12 for attribute testing.

In the case of attribute testing, limit curves for acceptance and rejec-
tion are normally straight lines. In case of variable testing, they are mostly
nonlinear functions (Graf et al. [1987]).

For variable testing, the analytical values x are represented on the ordi-
nate axis, and a decision is taken when the acceptance or rejection curve is
exceeded.

Decisions to be taken after every individual sample are as follows:

(a) For attribute testing:

ndefect;n � naccept;n = gaccept(n) acceptance

ndefect;n � nreject;n = greject(n) rejection

gaccept(n) < ndefect;n < greject(n) continue testing:
inspect another item

with ndefect;n being the number of defective items within n tested, naccept;n
resp. nreject;n being the actual acceptance resp. rejection criterion for the
current sample size n; gaccept(n) and greject(n) being the acceptance resp.
rejection functions.
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Fig. 4.12. Graphical evaluation of sequential analysis; gaccept(n) acceptance function,
greject(n) rejection function

(b) For variable testing (quantitative measurements):

xn � gaccept(n; s; ˛) acceptance

xn 	 greject(n; s; ˇ) rejection

gaccept(n; s; ˛) < xn < greject(n; s; ˇ) continue testing:
inspect another item

with xn being the actual analytical value after n measurements,
gaccept(n; s; ˛) and greject(n; s; ˇ) being the acceptance and rejection
functions (s standard deviation of the analytical procedure, and ˛ and
ˇ manufacturer and customer risk, respectively).

Sequential test plans are also suitable for the direct comparison of two
products or procedures based on subjective parameters as well as on mea-
sured results. This can be done without any computation, but only according
to the following three criteria:

{ A is better than B
{ B is better than A
{ There is no difference between A and B

A graphical evaluation scheme of such comparisons is given in Fig. 4.13.
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Fig. 4.13. Sequential test plan for direct characteristic comparison

4.5.4
Statistical Quality Control

Continuous quality control is based on principles that ˇrstly were used in
the system of \quality control charts" (QCC, Shewhart [1931]). Today,
admittedly the monitoring of the characteristics of a process or product in
order to detect deviations from the target value is not tied to charts but is
mostly done by computer, although it is frequently still called a \control
chart" system.

On the one hand, statistical quality control is an important tool for qual-
ity assurance within analytical chemistry itself (monitoring of test methods),
and on the other for quality control of processes and products by means of
analytical methods.

In each case, the aim of quality control charts4 (QCC) is the representa-
tion of quality target values x0 (standard values) and their statistical limits.
A control chart usually consists of ˇve lines as shown in Fig. 4.14.

QCC contain { as quality target values Q { standard or reference values,
x0, resp. optimum values as well as their limits. The inner pair of limits are
called warning limits and the outer pair control limits (action limits). When

4 may it now represented by a paper card or a computer
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Fig. 4.14. General scheme of a quality control chart; LoS: level of signiˇcance

the warning limits are exceeded, attention must be increased to recognize
a possible tangency or exceeding of the control limit. The latter requires
corrective action.

The results of sample tests are marked in the charts as a series of points.
Their sequence allows discerning quickly typical situations as some are
shown in Fig. 4.15.

Case A represents a normal inconspicuous process, while the other cases
show out-of-control situations (OCS), namely for various reasons. Case B
show the typical OCS: a value is situated outside the upper control limit and
demands instantaneous action. An OCS is also indicated if a given number of
successive points are above resp. below the target value (namely 7 out of 7,
see case C, 10 of 11, 12 of 14, 16 out of 20). The same holds true for steadily
increasing or decreasing tendencies (case D). Whereas a single crossing of
the warning limit only demands closer attention, 2 out of 3 successive values
exceeding the warning limit, as shown by example E, indicate OCS.

The cases F, G and H illustrate exceptional situations, demanding instant
attention as the process is threatening to get out of control. F shows periodic
alterations, G a long-term trend, while in case H a particular great number
of values are close to the control limit.

According to the character of the target value Q several types of control
charts can be distinguished:

{ Single value charts
{ Mean value charts (charts on x, median charts, blank charts)
{ Variation charts (standard deviation charts, s resp. srel, range charts, R)
{ Recovery rate charts
{ Cusum charts
{ Combination charts (e.g., charts on x � s and on x � R)
{ Correlation charts (e.g., charts on xA and xB).
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Fig. 4.15. Conspicuous plots of control charts

Single value charts are only used for special purposes, e.g. as original value
chard for the determination of warning and control limits or, for data anal-
ysis of time series (Shumway [1988]; Montgomery et al. [1990]). All the
other types of charts are used relatively often and have their special advan-
tages (Besterfield [1979]; Montgomery [1985]; Wheeler and Cham-
bers [1990]).

For the limits of means (x = x0 = Q), the following bounds are
chosen: UCL = x + tP =0:99;� s=

p
n, UWL = x + tP =0:95;� s=

p
n, LWL =

x�tP =0:95;� s=
p
n, and LCL = x�tP =0:99;� s=

p
n. The limits WL = x˙2s=

p
n

and CL = x ˙ 3s=
p
n are also often used.

Parameters for the most important of the above mentioned quality con-
trol charts are given in Table 4.4.

Appropriately designed, Cusum control charts give sensitive and instruc-
tive impressions on process changes. Cumulative sums Sn =

∑n
i=1 (xi � x0)

also contain information on actual as well as on previously obtained values.
Therefore their display enables one to perceive earlier changes leading to
OCS than by means of the chart of original values (see Woodward and
Goldsmith [1964]; Marshall [1977]; Doerffel [1990]).
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Table 4.4. Control parameters for QCCs

Target value Upper limits Lower limits

Mean value x LU = x + t˛;� s=
p
n LL = x � t˛;� s=

p
n

Standard deviation s LU = s

√
�2
n�1;1�˛=2
n � 1

LL = s

√
�2
n�1;˛=2

n � 1

Range R LU = DU R LL = DL R

Recovery rate RR = ˇ LU = RR + t˛;� sRR=
p
n LL = RR� t˛;� sRR=

p
n

(slope of the recovery function,
see Eq. (4.3))

The corresponding factors of the t- and �2-distribution can be found in all textbooks on
statistics, e.g., Dixon and Massey [1969]; Davies and Goldsmith [1984]; Graf et al.
[1987]; Arnold [1990]; Sachs [1992]. For DU and DL see e.g. GRAF et al. [1987].
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5 Studying In�uences and Optimizing Analytical
Procedures

According to Sect. 3.5 the in�uencing of an analytical signal by the envi-
ronment of the experiment (in�uence factors), i.e. interferences and other
stimuli can be estimated either in a way basing on chemical facts (Eq. 3.16a)
or in a statistical way (Eq. 3.16b,c). Therefore, two ways are feasible to study
the signiˇcance of in�uences as a requirement of a subsequent optimization.

5.1
Testing the Signiˇcance of In�uencing Factors

In analytical chemistry, the optimality criterion is frequently the relative
increase of that share of the analytical gross signal that is caused by the
analyte itself, namely SAAxA=yA. According to Eq. (3.16a):

yA = yA0 + SAAxA +
N∑
i=1

SAixi +
m∑
j=1

IAjxj + eA0 (5.1)

which is tantamount to the minimization of the interferences,
∑

SAixi, and
in�uencing factors,

∑
IAjxj . The quantities SAi are the cross sensitivities of

the interferents i and IAj , the speciˇc strength of the in�uence factors j . On
the basis of this relationship the signiˇcance of interferents and factors can
be studied using so-called multifactorial designs.

On the other hand, Eqs. (3.16a) and (5.1), respectively, can also be inter-
preted as being composed of the analyte signal and diverse (more or less)
anonymous deviations ei,ej or eAij , respectively, see Eq. (3.16b,c):

yA = yA0 + SAAxA + ei + ej + eA0 (5.2)

On this basis, an analysis of variance (ANOVA) can be carried out to test
the signiˇcance of the variations ei =

∑
SAixi, ej =

∑
IAjxj , or more in

detail, eB = SABxB , eC = SACxC etc.

5.1.1
Analysis of Variance (ANOVA)

ANOVA was developed by Fisher [1925, 1935] as a statistical procedure that
investigates in�uences (effects) of factors on a target quantity y according
to a linear model which holds in the simplest case
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Table 5.1. Measurement and evaluation scheme of one-way ANOVA

Levels i of the factor a
1 2 . . . m

Number j 1 y11 y21 . . . ym1

of single 2 y12 y22 . . . ym2

measurement ...
...

...
...

n y1n y2n . . . ymn

Sum S1 =
∑

y1j S2 =
∑

y2j . . . Sm =
∑

ymj

Mean y 1 y 2 . . . y m

Overall mean y

Table 5.2. Variance components in one-way ANOVA

Source of
Sum of squares Degrees of freedom Variance F -test

variation

Between SSa = n
m∑
i=1

(y i � y )2 �a = m � 1 s2
a =

SSa
m � 1

F̂ =
s2
a

s2
resthe factor

levels

Residual SSres =
m∑
i=1

n∑
j=1

(yij � y i)
2 �res = m(n � 1) s2

res =
SSres

m(n � 1)
(analytical
random
error)

Total SStotal = SSa + SSres �total = m � n � 1

yij = y + ˛i + eij (5.3)

with yij being the actual value, y the overall mean, ˛i an additive in�uence
of the factor a at level i, and eij the residual deviation (one-way analysis
of variance, see Sect. 4.3.4). By means of ANOVA it is possible to compare
both variances and means where two different models exist:

� Model I (model \ˇxed") that compares means on the basis of the null
hypothesis H0: �1 = �2 = : : : = �m and

� Model II (model \random") by which variances are compared on the
basis of the null hypothesis H0: � 2

1 = � 2
2 = : : : = � 2

m (corresponding to
H0: � 2

a = 0)

and additionally a mixed one (see Sect. 4.3.4 and Eisenhart [1947]).
Variance analysis should advantageously be carried out on the basis of

balanced experiments where the number of observations per factor level is
equal (n1 = n2 = : : : = nm = n).
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The measurement scheme of One-way analysis of variance is given in Ta-
ble 5.1 for i = 1 : : : m levels of the factor a (in analytical practice frequently
a factor is studied only on two levels to compare, e.g., two laboratories, two
operators, two different techniques, etc).

The variance components are calculated according to Table 5.2.
The estimated F̂ value has to be compared with the quantile of the F -

distribution, F1�˛;� , the tables of which can be found in textbooks of statistics
(e.g., Hald [1960]; Neave [1981]; Dixon and Massey [1983]; Graf et al.
[1987]; Sachs [1992]). The in�uence of the factor a is signiˇcant when F̂
exceeds F1�˛;� . In case of unbalanced experiments the different size of mea-
surement series and, therefore, degrees of freedom have to be considered as
a result of which both the evaluation scheme and the variance decomposi-
tion become more complicated (see Dixon and Massey [1983]; Graf et al.
[1987]).

By means of Two-way ANOVA two factors can be studied simultaneously.
The model

yij = y + ˛i + ˇj + (˛ˇ)ij + eij (5.4)

considers the in�uences ˛i of the factor a at levels i, ˇj of the factor b
at levels j , and additionally the interactions (correlations), (˛ˇ)ij , of both
the factors (yij actual value, y overall mean, eij residual deviation, i.e.,
experimental error). The scheme of measurement and evaluation of two-way
ANOVA is given in Table 5.3 and the corresponding variance decomposition
in Table 5.4.

On the basis of two-way ANOVA two null hypotheses can be tested,
namely

� Ha: ˛1 = ˛2 = : : : = ˛m = 0 by means of F̂a compared with
F1�˛;�1=m�1;�2=(m�1)(n�1),

� Hb : ˇ1 = ˇ2 = : : : = ˇm = 0 by means of F̂b compared with
F1�˛;�1=n�1;�2=(m�1)(n�1).

Table 5.3. Evaluation scheme of two-way ANOVA (ab model: single measurements in each
point; the index point marks that levels over which is actually added up or averaged,
respectively)

Levels i of the factor a
Sum Mean

1 2 . . . m

Levels j 1 y11 y21 . . . ym1 S�1 =
∑

yi1 y�1
of the 2 y12 y22 . . . ym2 S�2 =

∑
yi2 y�2

factor b ...
...

...
...

...
...

n y1n y2n . . . ymn S�m =
∑

yim y�n

Sum S1� =
∑

y1j S2� =
∑

y2j . . . Sm� =
∑

ymj S�� {

Mean y1� y2� . . . ym� { y��
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Table 5.4. Variance components in two-way ANOVA (ab model)

Source of
Sum of squares Degrees of freedom Variance F -test

variation

Between SSa =
m∑
i=1

S2
�j
n
� S2

��
m � n �a = m ��1 s2

a =
SSa

m � 1
F̂a =

s2
a

s2
resthe levels

of factor a

Between SSb =
n∑
i=1

S2
i�
m
� S2

��
m � n �b = n � 1 s2

b =
SSb
n � 1

F̂b =
s2
b

s2
resthe levels

of factor b

Total SStotal =
m∑
i=1

n∑
j=1

y 2
ij �

S2
��

m � n �total = m � n�1 s2
total =

SStotal

m � n � 1

Residual

(analytical SSres = SStotal � SSa � SSb �res = (m � 1)(n � 1) s2
res =

SSres

(m � 1)(n � 1)
random
error)

As a rule, interactions (˛ˇ)ij cannot be estimated if only single obser-
vations at each point of the measurement matrix are carried out. In case
of single measurements, the residual error contains both experimental er-
ror and interactions, the separation of which is possible only in special
cases, e.g., testing of homogeneity of solids when certain assumptions can
be made. Danzer and Marx [1979] have investigated the homogeneity of
steel samples by means of a destructive OES procedure. Consequently, no
repeated measurements could be carried out and the residual error must be
corrected by interaction terms estimated according to Mandel [1961].

If possible, two-way ANOVA should be applied doing repetitions at each
level. In case of double measurements the 2ab model represented in Ta-
bles 5.5 and 5.6 is taken as the basis of evaluation and variance decompo-
sition.

On the basis of this 2ab ANOVA it is possible to test three null hypothe-
ses, namely

� Ha: ˛1 = ˛2 = : : : = ˛m = 0 by means of F̂a compared with
F1�˛;�1=m�1;�2=(m�1)(n�1),

� Hb : ˇ1 = ˇ2 = : : : = ˇm = 0 by means of F̂b compared with
F1�˛;�1=n�1;�2=(m�1)(n�1), and

� Hab : (˛ˇ)11 = (˛ˇ)12 = : : : = (˛ˇ)mm = 0 by means of F̂ab compared
with F1�˛;�1=n�1;�2=m n).

In the case that interactions prove to be insigniˇcant, it should be gone
over to the ab model the estimations of which for the various variance
components is more reliable than that of the 2ab model. A similar scheme
can be used for three-way ANOVA when the factor c is varied at two levels.
In the general, three-way analysis bases on block-designed experiments as
shown in Fig. 5.1.
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Table 5.5. Evaluation scheme of two-way ANOVA (2ab model: double measurements in
each point)

Levels i of the factor a
Sum Mean

1 2 . . . m

Levels j 1 y111, y112 y211, y212 . . . ym11, ym12 S�1� y�1�
of the 2 y121, y122 y221, y222 . . . ym21, ym22 S�2� y�2�
factor b ...

...
...

...
...

...
n y1n1, y1n2 y2n1, y2n2 . . . ymn1, ymn2 S�m� y�n�

Sum S1�� S2�� . . . Sm�� S��� {

Mean y1�� y2�� . . . ym�� { y���

Table 5.6. Variance components in two-way ANOVA (2ab model)

Source of
Sum of squares Degrees of freedom Variance F -test

variation

Between SSa =
m∑
i=1

S2
�j�
2n
� S2

���
2mn

�a = m � 1 s2
a =

SSa
m � 1

F̂a =
s2
a

s2
r esthe levels

of factor a

Between SSb =
n∑
i=1

S2
i��

2m
� S2

���
2mn

�b = n � 1 s2
b =

SSb
n � 1

F̂b =
s2
b

s2
r esthe levels

of factor b

Interaction SSab = SStotal � SSa � SSb � SSres �ab = (m � 1)(n � 1) s2
ab =

SSab
(m � 1)(n � 1)

F̂ab =
s2
ab

s2
r esbetween

a and b

Residual SSres =
m∑
i=1

n∑
j=1

2∑
k=1

y 2
ijk �

m∑
i=1

n∑
j=1

S2
ij� m � n s2

res =
SSres

m n
(analytical
random
error)

Total SStotal =
m∑
i=1

n∑
j=1

y 2
ij �

S2
��

2mn
�total = 2m � n � 1 s2

total =
SStotal

2mn � 1

Following the scheme given in Fig. 5.1, the in�uence of three factors a,
band c can be studied on the basis of the linear model

yijk = y + ˛i + ˇj + �k + (˛ˇ)ij + (˛� )ik + (ˇ� )jk + (˛ˇ� )ijk + eijk (5.5)

The estimation of all the terms of Eq. (5.5) is possible for the balanced case
and q repeated measurements in each cell of the data block represented in
Fig. 5.1. Schemes for this and some reduced variants of three-way ANOVA
are given in Scheff�e [1961]; Ahrens [1967]; Dunn and Clark [1974];
Graf et al. [1987]; Sachs [1992].

By means of the three-way variance analysis according to the model at
Eq. (5.5) and Table 5.7 the in�uence of the factors a, b and c can be tested
as well as that of the interactions, i.e. the null hypotheses:
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Fig. 5.1. Principle of three-way ANOVA: data are arranged in rows, columns, and layers
(some examples of data pixels are given)

� Ha: ˛1 = ˛2 = : : : = ˛m = 0 by means of F̂a comp
 ��!

1

F1�˛;�1=m�1;�2=mnp�1,

� Hb : ˇ1 = ˇ2 = : : : = ˇm = 0 by means of F̂b comp
 ��!

F1�˛;�1=n�1;�2=mnp�1,

� Hc : �1 = �2 = : : : = �m = 0 by means of F̂c comp
 ��!

F1�˛;�1=p�1;�2=mnp�1,

� Hab : (˛ˇ)11 = (˛ˇ)12 = : : : = (˛ˇ)mn = 0 by means of F̂ab comp
 ��!

F1�˛;�1=(m�1)(n�1);�2=m np�1),

� Hac : (˛� )11 = (˛� )12 = : : : = (˛� )mp = 0 by means of F̂ac comp
 ��!

F1�˛;�1=(m�1)(p�1);�2=m np�1),

� Hbc : (ˇ� )11 = (ˇ� )12 = : : : = (ˇ� )np = 0 by means of F̂ab comp
 ��!

F1�˛;�1=(n�1)(p�1);�2=m np�1), and

� Habc : (˛ˇ� )111 = (˛ˇ� )121 = : : : = (˛ˇ� )mnp = 0 by F̂ab comp
 ��!

F1�˛;�1=(m�1)(n�1)(p�1);�2=m np�1).

1 comp
 ��!

symbolizes \compared with"
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In some cases interactions are improbable and information on them is
not needed. Then reduced variants of three-way ANOVA can be applied by
which the effects of the main factors can be estimated more reliable (see
Dunn and Clark [1974]; Graf et al. [1987]; Sachs [1992]). Concentrat-
ing on the main effects, the design of the experiments can be aimed at a
minimum number of observations.

5.1.2
Experimental Design

Methods of variance analysis are helpful tools to evaluate effects of fac-
tors on the results of experiments afterwards. On the other hand, it may
be advantageous to plan experiments in a comparative way (comparative
experiments).

Statistical experimental design is characterized by the three basic prin-
ciples: Replication, Randomization and Blocking (block division, planned
grouping). Latin square design is especially useful to separate nonrandom
variations from random effects which interfere with the former. An example
may be the identiˇcation of (slightly) different samples, e.g. sorts of wine,
by various testers and at several days. To separate the day-to-day and/or
tester-to-tester (laboratory-to-laboratory) variations from that of the wine
sorts, an m�m Latin square design may be used. In case of m = 3 all three
wine samples (a, b , c) are tested be three testers at three days, e.g. in the
way represented in Table 5.8:

Table 5.8. Latin square design for m = 3

Tester 1 Tester 2 Tester 3

1st day a b c

2nd day b c a

3rd day c a b

The results of the experiments are evaluated by means of three-way
ANOVA in its simplest form, m = n = p and q = 1. The signiˇcance of
the sample effect can principally be guaranteed also in the case that both
testers and days have signiˇcant in�uence (Sharaf et al. [1986]).

In contrast to common statistical techniques, by modern experimental
design in�uencing factors are studied simultaneously (multifactorial design,
MFD). The aim of MFD consists in an arrangement of factors in such a
way that their in�uences can be quantiˇed, compared and separated from
random variations.

Frequently the signal intensity of the analyte A is the target quantity, the
in�uences on which are described by Eq. (3.16a). Handling all the in�uences
(interferences and other factors) in the same way and holding xA at any
constant value so that ˛0 = yA0 + SAAxA, Eq. (3.16a) can be written
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Table 5.9. Design matrix for three factors at two levels (+ and � stand for +1 and �1)

Run (z0) z1 z2 z3 z1z2 z1z3 z2z3 z1z2z3 Target value

1 + + + + + + + + y1

2 + + + � + � � � y2

3 + + � + � + � � y3

4 + + � � � � + + y4

5 + � + + � � + � y5

6 + � + � � + � + y6

7 + � � + + � � + y7

8 + � � � + + + � y8

yA = ˛0 + ˛1x1 + ˛2x2 + ˛3x3 + ˛12x1x2 + ˛13x1x3 + ˛23x2x3 + ˛123x1x2x3 (5.6)

in case of three in�uence factors. From the various types of treatment and
design, two-level factorial design is mostly applied. That means that the
in�uence factors are varied between a higher and a lower level, xmax and
xmin. Using complete factorial design (CFD) the number of experiments is
N = 2m for m factors. In the case of m = 3 as given in Eq. (5.6), N = 8
experiments have to be carried out.

Expediently, factorial design is done on the basis of transformed factors
zi, calculated from the xi by

zi =
xi � x

1
2 (xmax � xmin)

(5.7)

where x = 1
2(xmax + xmin) so that zmax = xmax�xmin

xmax�xmin
= +1, zmin = xmin�xmax

xmax�xmin
=

�1, and z = 0.
With the transformation at Eq. (5.7), Eq. (5.6) becomes

y = a0(z0) + a1z1 + a2z2 + a3z3 + a12z1z2 + a13z1z3 + a23z2z3 + a123z1z2z3 (5.8)2

The coefˇcients ai are estimated from the results of experiments carried
out according to a design matrix such as Table 5.9 which shows a 23 plan
matrix. The signiˇcance of the several factors are tested by comparing the
coefˇcients with the experimental error, to be exact, by testing whether the
conˇdence intervals �ai include 0 or not. The experimental error can be
estimated by repeated measurements of each experiment or { as it is done
frequently in a more effective way { by replications at the centre of the plan
(so-called \zero replications"), see Fig. 5.2.

The coefˇcients are estimated according to

ai =
1

N
zTi y (5.9)

2 the target value yA is symbolized here y
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Fig. 5.2. Geometrical representation of a complete two level factorial matrix (three in�u-
ence factors) with experiments in the centre point (0,0,0)

with zTi the corresponding transposed z vector and y the vector of target
values obtained as the result of the runs. N is the number of experiments
(N = 2m , here N = 8). As an example, the coefˇcients ai in Eq. (5.8)
corresponding to the design matrix at Eq. (5.9) are estimated by

a0 =
1

8
(+y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8)

a1 =
1

8
(+y1 + y2 + y3 + y4 � y5 � y6 � y7 � y8)

a2 =
1

8
(+y1 + y2 � y3 � y4 + y5 + y6 � y7 � y8)

a3 =
1

8
(+y1 � y2 + y3 � y4 + y5 � y6 + y7 � y8)

a12 =
1

8
(+y1 + y2 � y3 � y4 � y5 � y6 + y7 + y8)

...

a123 =
1

8
(+y1 � y2 � y3 + y4 � y5 + y6 + y7 � y8)
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according to the vector expression

a = ZT y (5.10)

with ZT being the transposed z matrix.
Because the experimental expenditure increases strongly with the in-

creasing number of in�uence factors, fractional factorial design FFD (partial
factorial design) is applied in such cases. It is not possible to evaluate all
the interactions by FFDs but only the main effects.

Plackett and Burman [1946] have developed a special fractional design
which is widely applied in analytical optimization. By means of N runs up
to m = N � 1 variables (where some of them may be dummy variables
which can help to estimate the experimental error) can be studied under
the following prerequisites and rules:

� The number of experiments (runs) must be a multiple of l2 (l is the num-
ber of levels), that is N = 8; 12; 16; 24; : : : in case of two-level experiments
(l = 2).

� The ˇrst rows of the design matrixes are

N = 8: + + +�+��
N = 12: + +�+ + +���+�
N = 16: + + + +�+�+ +��+��� etc.

in case of two-level design.

� The following rows of the design matrix is generated by shifting the ˇrst
row cyclically one place (N � 2 times).

� The last row has minus in all factors.

� The procedure can be controlled as follows: each row contains m=2 times
the higher level (+) and (m=2 � 1) times the lower (�), the columns
contain each m=2 times + and �.

Fractional factorial design is especially useful in case of a high number
of in�uence variables from which the insigniˇcant one have to be screened.

An example of a Plackett Burman plan for l = 2 levels, m = 7
in�uence factors (including dummy variables) and, therefore, N = 8 runs
is given in Table 5.10.

The coefˇcients ai of the main effects of the model

y = a0z0 + a1z1 + a2z2 + a3z3 + a4z4 + a5z5 + a6z6 + a7z7 (5.11)

are obtained by the vector equation

a = (ZT Z)�1ZT y (5.12)

The coefˇcients characterize the effect of the belonging factor. The in�uence
is signiˇcant in the case that

jaij 	 acrit = �a = sa t1�˛;� (5.13)
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Table 5.10. Plackett-Burman design matrix for N = 8 experiments and consequently
m = 7 factors (including dummy variables) at two levels

Run z1 z2 z3 z4 z5 z6 z7 Target value

1 + + + � + � � y1

2 + + � + � � + y2

3 + � + � � + + y3

4 � + � � + + + y4

5 + � � + + + � y5

6 � � + + + � + y6

7 � + + + � + � y7

8 � � � � � � � y8

i.e., the in�uence of zi (and therefore xi) is insigniˇcant if the conˇdence
interval ai ˙ �a includes zero. Multifactorial experiments with a low num-
ber of factors can also be evaluated by ANOVA (see Danzer et al. [2001],
Sect. 5.1.1).

If nonlinear effects are expected the variables must be varied at more
than two levels. A screening plan comparable to the Plackett Burman
design but on three levels is that of Box and Behnken [1960].

In case of special conditions, viz. internal correlations, interactions can
be estimated in addition to the main effects by means of a 2m�1 design.

Multifactorial experiments are used in analytical chemistry for diverse
applications, e.g., checking up signiˇcant in�uences before optimization pro-
cedures, recognizing matrix effects, and testing the robustness of analytical
procedures (Wegscheider [1996]).

5.2
Optimization of Analytical Procedures

Analytical procedures should always run under optimum conditions. That
means that for Eq. (5.6), which is here used only with two factors, the
coefˇcients have to be chosen in such a way that y becomes an optimum

y = ˛0 + ˛1x1 + ˛2x2
!
= opt (5.14)

In analytical chemistry the target quantity y which has to be optimized
is frequently the signal intensity, absolute or relative (signal-to-noise ratio),
but occasionally other parameters like yields of extractions or chemical reac-
tions, too. The classical way to optimize in�uences, e.g., in an optimization
space as shown in Fig. 5.3a is to study the factors independently one after
the other. In Fig. 5.3b,c it can be seen that an individual optimum will be
found in this way.
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Fig. 5.3. Contour plot of the response surface y = f (x1; x2); the optimum is situated at
point � (a); Response curves of y in dependence of x1 as result of a ˇrst run (b) and
x2 as result of a second run (c)

However, the optima of x1 and x2 found in this way do not meet the
global optimum of the response surface which is situated at x1 = 80 and
x2 = 150. Because the global optimum is rarely found by such an obsolete
proceeding, multivariate techniques of optimization should be applied.

The most reliable technique to ˇnd the global optimum by means of com-
mon methods is the transition from the quasi-two-dimensional approach
(Fig. 5.3b,c) to a complete two-dimensional one. It consists of a certain
number of experiments as shown in Fig. 5.4.

On the basis of the grid experiments a mathematical function y =
f (x1; x2; x3; : : :), called the response surface, is estimated that characterizes
the response as a function of the factors. In case of only two factors the
response surface can be visualized by plots like that in Fig. 5.5.

Response surfaces are mostly described mathematically by polynomial
approximations of 1st and 2nd degree. Grid search corresponds to a com-
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Fig. 5.4. Grid experiments for estimating the response surface y = f (x1; x2)

Fig. 5.5. Response surface as a result of grid experiments according to Fig. 5.4

plete factorial design. When the resolution of the variables is high enough,
each optimum { the global one and all the local maxima and minima { can
be found. But the high number of experiments imposes limits in this regard
how it is generally in response surface technique.

The number of experiments can considerably be decreased by itera-
tive optimization methods which starts at an area that can be selected
by experience, supposition or randomly. This start area is moved step by
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Fig. 5.6. Schematic representation of the Box-Wilson optimization with step width h

step in direction to the optimum following the gradient of the function
y = f (x1; x2; x3; : : :), i.e. the steepest ascent3.

The well-known Box-Wilson optimization method (Box and Wilson
[1951]; Box [1954, 1957]; Box and Draper [1969]) is based on a linear
model (Fig. 5.6). For a selected start hyperplane, in the given case an area
A0(x1; x2), described by a polynomial of ˇrst order, with the starting point
y0, the gradient grad[y0] is estimated. Then one moves to the next area
in direction of the steepest ascent (the gradient) by a step width of h, in
general

yi+1 = yi + h grad[yi] (5.15)

Near the optimum both the step width and the model of the hyperplane
are changed, the latter mostly from a ˇrst order model to a second order
model. The vicinity of the optimum can be recognized by the coefˇcients
a1; a2; : : : of Eq. (5.14) which approximate to zero or change their sign,
respectively. For the second order model mostly a Box-Behnken design is
used.

Because this proceeding is relatively expensive, an effective semi-
quantitative method is widely used in optimization, the sequential simplex
optimization. Simplex optimization is done without estimation of gradients
and setting step widths. Instead of this, the progress of the optimization

3 steepest descent in case of minima
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Table 5.11. Basic simplex operations

Operation Movement Condition

Re�exion 1

2

3

4 y1 < y2 � y3

Expansion

2

3

4 5 y4 > y2 � y3

Contraction

2

3

46 y4 � y2 � y3

Strong contraction

2

3

47 y4 < y2 � y3

procedure results directly from the quality of the preceded experimental
values.

A simplex is a geometric ˇgure formed by p+1 points in a p -dimensional
space. In the two-dimensional case y = f (x1; x2) the simplex is a triangle,
in the three-dimensional case a tetrahedron etc. With regard to its form, the
simplex may be regular, rectangular, or irregular. The simplex optimization
starts with a set of p + 1 parameters (here p + 1 = 3). The movement of
the simplex takes place according to the rules given in Table 5.11.

As an example, in Fig. 5.7 a simplex optimization is shown in a sim-
pliˇed way, i.e., only by re�exions and with simplexes of invariable size.
The approach to the optimum is indicated by rotation or oscillation of the
simplex. Then contractions should be included into the operations.

The optimum found by sequential proceeding, both by Box-Wilson and
simplex technique, is that local optimum situated nearest the starting point.
It must not inevitably be identical with the global optimum. Therefore, it
may be useful to repeat the optimization procedure one or several times.

5.3
Global Optimization by Natural Design

Some natural processes and principles have stimulated researchers to de-
velop algorithms that imitate concepts of nature and are, therefore, sum-
marized under the name natural computation (Kateman [1990]; Lucasius
[1994]). The most prominent methods are:
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Fig. 5.7. Simplex optimization within a response surface of two factors x1 and x2 with
simplexes of invariable size

� Thermal computation which comprises algorithms inspired by multi-
particle systems like Brownian motion (Brownian search, Monte Carlo
search) on the one hand and simulated annealing which is inspired by
Boltzmanns statistics on the other hand.

� Evolutionary computation which is learned by watching population dy-
namics; the most important programming are genetic algorithms which
are inspired by the evolutionary processes of mutation, recombination,
and natural selection in biology.

� Connectionist computation which is inspired by multi-cellular systems
like artiˇcial neural networks that mimic the way of working of the
human brain.

Simulated annealing is a category of global optimization procedures the
name of which is derived from the statistical mechanics simulating the
atomic equilibrium according to the Boltzmann statistics. By means of
simulated annealing it is searched for the most probable conˇguration of
parameters on the basis of simulating the evolution of a substance to thermal
equilibrium (Kirkpatrick et al. [1983]; Frank and Todeschini [1994]).
The distribution of conˇgurations x can be described by the Boltzmann
distribution

P (x) =
exp (�C(x)=c)∑

w
exp (�C(xw )=c)

(5.16)
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where C(x) is the function to be optimized, xw are other conˇgurations and
c is a control parameter. From the initial conˇguration x another conˇgu-
ration xr in the neighborhood of x is generated by modifying one randomly
selected variable. The new conˇguration is accepted when the difference
�C(xr ; x) � 0, otherwise the probability

P = exp (��C(xr ; x)=c) (5.17)

is compared with a random number generated from a uniform distribu-
tion [0; 1]. If P is larger than that random number, the new conˇguration
is also accepted, otherwise it is declined. The iteration is continued un-
til convergence is reached. Afterwards the optimization runs are continued
with lowered control parameter c. More detailed information on simulated
annealing can be found in van Laarhoven and Aarts [1987]; Kalivas
[1992].

Genetic Algorithms (GA) are the most important global optimization
techniques. GA base on mimicking the evolution process by variation of
populations according to the Darwin rules [Darwin 1859] such as selection,
reproduction, crossover (recombination), and mutation. Genetic algorithms
have been pioneered by Holland [1975], detailed representations can be
found in Goldberg [1989]; Davis [1991], Rechenberg [1973].

The initial data are binary coded in form of a bit sequence (bit string4).
Start values of the variables x1; x2,. . . ,xm could be, e.g., 011001011; 100101100,
: : : ; 010010101. This initial population is undertaken an evolution process
such as schematically represented in Fig. 5.8.

In the course of each run corresponding to Fig. 5.8 the ˇtness of the
members of the population is tested by means of an objective criterion
(e.g., maximum correlation of a regression model or minimum random de-
viation of a response surface) that is compared with a break-off criterion
ˇxed in advance. According to their ˇtness, the members from the present
population (generation) are selected and reproduced by doubling. On the
other hand, less ˇt members are omitted from the population. In the recom-
bination step, parts of the bit-string are exchanged, namely by single-, two-
or three-point-, uniform-, or circular crossover. In this way (by \mating"),
from two parent bit strings two offspring are generated. Finally, by muta-
tion only a small number of genes from the whole population is changed
by �ipping to the opposite value (0! 1 and 1! 0, respectively).

For the selection and reproduction step the idea of \�elitism" plays a role
in so far as individuals of high quality should not become extinct. On the
other hand, a larger number of �elitists produces untimely a homogenisation
of the population.

The advantage of Genetic Algorithms, in contrast to the traditional op-
timization methods, is the fact that a large number of variables can be
included into the process. Also in the presence of local optima, GA can ˇnd
rapidly the global optimum.

4 Also called \chromosome"; a bit in this chromosome is then called \gen".
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Fig. 5.8. Flow chart of a Genetic Algorithm

In many practical problems, interactions between the variables appear
so that the absolute global optimum can be found heavily. As an example,
wavelength selection in NIR determination of blood glucose (see Sect. 6.2.6)
is considered. The aim of the selection is to ˇnd such combinations of
wavelengths with which calibration models are obtained their prediction
quality is as near at the global optimum as possible (Danzer et al. [2001],
p 174). The number of combinations C for the selection of k wavelengths
from n channels of the spectrometer is given by

C =

(
n
k

)
=

n!

k!(n � k)!
(5.18)

So, for the selection of 15 wavelengths out of 86 the number of 2:1784�1016

combinations can be generated. Because of the existence of background,
noise and strong multicollinearities in the NIR spectra, a large number of
quasi-optimum solutions are available between which cannot be differenti-
ated signiˇcantly. In Fig. 5.9 the wavelength selection 15 out of 86 is shown,
carried out to improve the quality of the calibration model. Whereas the
cross validated PRESS value s2

(c� )res (see Eq. 6.105) is 295.6 mmol2/L2 when
86 equidistant wavelengths are used, PRESSCV improves to 147.0 mmol2/L2

for 15 GA-selected wavelengths.
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Fig. 5.9. Wavelength selection by Genetic Algorithm: a 15 optimum wavelength selected
from 86 of the full spectrum; b relative ˇtness (rf/104) of the run in dependence of the
number of generations, above: ˇtness of the best solution, middle: mean, below: ˇtness
of the worst solution (Fischbacher et al. [1994/96;1995])

In connection with the NIR determination of blood glucose, GA has
been used also to select spectra according to the quality of recordings
(Fischbacher et al. [1994/96;1995]).

Optimization problems in general and, in particular in analytical chem-
istry, have been reported by Goldberg [1989]; Davis [1991]; Lucasius
et al. [1991]; Lucasius and Kateman [1993]; Wienke et al. [1992, 1993],
and others.

In analytical chemistry, Artiˇcial Neural Networks (ANN) are mostly
used for calibration, see Sect. 6.5, and classiˇcation problems. On the other
hand, feedback networks are usefully to apply for optimization problems,
especially nets of Hopfield type (Hopfield [1982]; Lee and Sheu [1990]).
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6 Calibration in Analytical Chemistry

In measurement sciences, calibration is an operation that establish a rela-
tionship between an output quantity, qout, with an input quantity, qin, for
a measuring system under speciˇed conditions (qin ! qout). The result of
calibration is a model that may have the form of a conversion factor, a
mathematical equation, or a graph. By means of this model, then it is pos-
sible to estimate qin-values from measured qout-values (qout ! qin) as can
be seen in an abstracted form in Fig. 6.1.

Fig. 6.1. Abstract represen-
tation of the calibration
procedure by conversion
of qin into qout and the
reverse evaluation proce-
dure

From the information-theoretical point of view, calibration corresponds to
the coding of the input quantity into the output quantity and, vice versa,
the evaluation process corresponds to decoding of output data. From the
mathematical viewpoint, qin is the independent quantity in the calibration
step and qout the dependent one. In the evaluation step, the situation is
reverse: qout is the independent, and qin the dependent quantity. From the
statistical standpoint, qout is a random variable both in calibration and eval-
uation whereas qin is a ˇxed variable in the calibration step and a random
variable in the evaluation step. This rather complicated situation has some
consequences on which will be returned in Sect. 6.1.2.
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Table 6.1. Input quantities, qin, and output quantities, qout, in analytical calibration

qin qout Analytical technique Calibration function
x y Quantitative analysis y = f (x) (see Sect. 6.2)
Q z Identiˇcation, qualitative analysis z = f (Q) (see Sect. 2.4)

x(Q) y (z) Quantitative multicomponent
analysis

Y = f (X) (see Sect. 6.4)

I, S y (z) Identity, structure analysis Comparison with reference signal
functions (see Sect. 2.4)

6.1
General Fundamentals of Calibration

In analytical chemistry, calibration represents a set of operations that con-
nects quantities in the sample domain with quantities in the signal domain
(see Sect. 2.3, Fig. 2.12). In Table 6.1 the real analytical quantities and prop-
erties behind the abstract input and output quantities are listed.

Calibration in analytical chemistry relates mostly to quantitative anal-
ysis of selected species and, therefore, to calibration functions of the kind
y = f (x).

6.1.1
Fundamental and Experimental Calibration

Depending on the type of relationships between the measured quantity and
the measurand (analytical quantity) it can be distinguished (Danzer and
Currie [1998]) between calibrations based on absolute measurements (one
calibration is valid for all1 on the basis of the simple proportion y = b � x,
where the sensitivity factor b is a fundamental quantity; see Sect. 2.4; Hula-
nicki [1995]; IUPAC Orange Book [1997, 2000]), deˇnitive measurements
(b is given either by a fundamental quantity complemented by an empirical
factor or a well-known empirical (transferable) constant like molar absorp-
tion coefˇcient and Nernst factor), and experimental calibration.

In the simplest case, experimental calibration can be carried out by di-
rect reference measurements where the sensitivity factor b is given by the
relation of measured value to concentration of a reference material (RM),
b = yRM=xRM. Direct reference calibration is frequently used in NAA and
X-ray analytical techniques (XRF, EPMA, TXRF).

On the other hand, indirect reference measurements which result in an
empirical calibration function, frequently based on a linear model, y =
a+ b � x + ey ; see Sect. 2.4, Eq. (2.22), where the intercept a corresponds to

1 Apart from the fact that both the fundamental constants b and the conditions under
which they are valid (e.g. under which a reaction proceeds quantitatively) sometime
were determined and have to be updated from time to time (e.g., on the basis of
IUPAC documents).
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the experimental blank and the slope b to the experimental sensitivity; ey
is the error of the y -measurement.

In analytical practice, some methods using deˇnitive measurements, in
principle, are also calibrated by indirect reference measurements using least
squares estimating to provide reliable estimates of b (spectrophotometry,
potentiometry, ISE, polarography).

Because calibration is the prerequisite of reliable evaluations and, there-
fore, of analytical results which are both accurate and precise, calibration
itself has to be carried out in a very reliable way. For this reason, the fol-
lowing experimental and fundamental conditions have to be realized:

(i) The standards used for the calibration measurements should be both
reliable and traceable. Traceability is the property of the result of a
measurement or the value of a standard whereby it can be related to
stated references, usually national or international standards, through
an unbroken chain of comparisons all having stated uncertainties (ISO
[1993]; H�asselbarth [1995]). The connection to the International Sys-
tem of Units (SI, ISO [1993]) is given in particular by the amount of
substance (mole) and mass (kg) and is realized in detail by certiˇed
reference materials (CRMs). If laboratory standards are used for cali-
bration then these have to be validated by CRMs.

(ii) The measurement strategy of experimental calibration have to be ˇxed.
Speciˇcally:
{ The independence of the diverse calibration samples have to be

guaranteed, that means that each sample must be prepared sepa-
rately and not by down-diluting of a master sample.

{ The number of calibration points, p , their distance and measure
at the concentration scale, the number of replicate measurements,
ni, in each point carried out with independent calibration samples
(and not by repetition measurements on one and the same sample),
and their distribution at the calibration points (equally distributed,
n1 = n2 = : : : = np , or in large numbers at the ends of the calibra-
tion range, n1 > n2 = n3 = : : : = np�1 < np ).

(iii) The type of the calibration model, linear or nonlinear, univariate, bi-
variate, or multi-variate, respectively.

(iv) The statistical character of the variables and, therefore, the type of the
regression model (Danzer et al. [2004]), classical (reverse calibration,
direct or indirect) or inverse, respectively, unweighted or weighted.

As mentioned above, the random character of the input and output
variables are of importance with regard to the calibration model and its
estimation by calculus of regression. Because of the different character of
the analytical quantity x in the calibration step (no random variables but
ˇxed variables which are selected deliberately) and in the evaluation step
(random variables like the measured values), the closed loop of Fig. 6.1
does not correctly describe the situation. Instead of this, a linear progress
as shown in Fig. 6.2 takes place.
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Fig. 6.2. Real representation of the calibration procedure in analytical chemistry

As a consequence, the relationship between y on the one hand and xcalibr
and xsample on the other hand has to be represented in a three-dimensional
way (Danzer [1995]).

6.1.2
The General Three-Dimensional Calibration Model

The three-dimensional model of calibration and the spatial relationships of
calibration, evaluation, and recovery is given in Fig. 6.3.

It should be noted that the spatial model contains additionally to the
calibration and evaluation functions the recovery function, too. These three
functions represent the projection of the spatial C-E-R function onto the
corresponding planes, as shown in Fig. 6.3.

From the different character of xstandard and xsample (Figs. 6.2 and 6.3) it
can be seen that the relationship between the calibration function

y = f (x) = a + b � x + ey (6.1)

and the evaluation function

x = f �1(y ) =
y � a

b
+ ex (6.2)

must not be necessarily reversible. This fact has to be checked by validation.
Commonly the equivalence is tested by recovery experiments to rule out
systematic deviations (see Sect. 4.1.1). The conˇrmation that xtest = xtrue, i.e.
xstandard = xsample in the calibration procedure, is an important step to ensure
the traceability of analytical results on the basis of the given calibration.
Only in the case when the mutual equivalence of Eqs. (6.1) and (6.2) in the
three-dimensional model have been proved, it can be used { as usual { in
a two-dimensional way. Pictorially this may be imagined by folding up the
planes of the calibration function and of the evaluation function (B and C
in Fig. 6.3) to a single plane containing a common calibration-evaluation
function as it is usual in analytical chemistry.

Consequences of various types of systematic deviations between xtest and
xtrue, and therefore, xstandard and xsample are discussed in Danzer [1995].

The different statistical character of the three variables becomes most
clear in the different uncertainties of the calibration and evaluation lines.
Notwithstanding the fundamental differences between xstandard and xsample,
the calculation of the calibration coefˇcients is carried out by regression
calculus.
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A

y
xsample

xstandard

B

y

xstandard

C

xsample

xstandard

D

xsample

y

Fig. 6.3. Three-dimensional model of calibration, analytical evaluation and recovery: spa-
tial model (A); the three relevant planes are given separately in (B) as the calibration
function with conˇdence interval, in (C) as the recovery function with conˇdence inter-
val, and in (C) as the evaluation function with prediction interval (D)

6.1.3
Regression and Calibration

Having two random variables, x and y , e.g. values measured independently
from each other and each of them being normally distributed, then the
following questions may be of interest:

(i) Does a relation exist between y and x and how strong is it?

(ii) How the relation can functionally be described, i.e. how can y be es-
timated from x and vice versa?

Whereas the ˇrst question is answered by correlation analysis, the second
one is subject of regression analysis.

Correlation analysis investigates stochastic relationships between random
variables on the basis of samples. The interdependence of two variables x
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and y is characterized by the correlation coefˇcient rxy (Pearson's correla-
tion coefˇcient)2.

For the calculation of measures in correlation and regression analysis the following
sums are of relevance:

Sxx =
n∑
i=1

(xi � x)2 ; Sy y =
n∑
i=1

(yi � y )2 ;

Sxy =
n∑
i=1

(xi � x) (yi � y )

(6.30)

With this the correlation coefˇcient of x and y is calculated by

rxy =
Sxy√
Sxx Syy

=
sxy√
s2
x s

2
y

=
sxy

sx sy
(6.3)

As the last term in Eq. (6.3) shows, the correlation coefˇcient corresponds
to the covariance of x and y , cov(x; y ) = sxy, divided by the standard
deviations sx and sy .

Concrete values of correlation coefˇcients indicate the following situa-
tions:

� rxy = +1, rxy = �1 perfect (positive and reverse, respectively) interde-
pendence of x and y

� 0 < jrxy j < 1 stochastic interdependence

� rxy = 0 missing dependence.

The pairwise correlation of more than two variables x1; x2; : : : ; xm is char-
acterized by the correlation matrix R

R =

⎛
⎜⎜⎝

1 rx1x2 � � � rx1xm
rx2x1 1 � � � rx2xm

...
...

...
rxmx1 rxmx2 � � � 1

⎞
⎟⎟⎠ (6.4)

In multivariate data analysis frequently the covariance matrix S is used

S =

⎛
⎜⎜⎝

var(x1) cov(x1; x2) � � � cov(x1; xm)
cov(x2; x1) var(x2) � � � cov(x2; xm)

...
...

...
cov(xm; x1) cov(xm; x2) � � � var(xm)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

s2
x1

sx1x2 � � � sx1xm
sx2x1 s2

x2
� � � sx2xm

...
...

...
sx1x2 sx1x2 � � � s2

xm

⎞
⎟⎟⎠

(6.5)

2 The correlation coefˇcient rxy of a sample is an estimate of the correlation coefˇcient

xy of the population.
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In contrast to correlation matrix the covariance matrix is scale-dependent.
In case of autoscaled variables the covariance matrix equals the correlation
matrix.

In analytical calibration, there exists { strictly speaking { no correlation
problem for the following two reasons:

(1) The interdependence of the measured values, y , and the analytical
values, x, is well-known a priori { mostly by natural laws { and is,
therefore, not subject of veriˇcation as a rule

(2) The analytical values of the calibration standards, xstandard, are no ran-
dom variables but ˇxed one and carefully selected.

Two consequences result from this fact:

� The correlation coefˇcient, which is a characteristic for the relation-
ship between random variables, is not meaningful in calibration (Currie
[1995]; Danzer and Currie [1998]) and should, therefore, not be used
to characterize the quality of calibration (instead of rxy the residual stan-
dard deviation sy :x should be applied; see Eq. (6.19)).

� From the diverse possible regression calculi, a certain algorithm has to
be selected, namely that of the regression of y onto x; see Eq. (6.6).

The general pre-conditions for the estimation of regression parameters
(regression coefˇcients a and b as well as the uncertainties of the model
and the relevant estimates) are the following:

(i) Real replication measurements must be carried out (runs with the same
treatment), not only repeated measurements at the same samples

(ii) Normal distribution of the x- and y -values

(iii) Homoscedasticity, i.e. homogeneity of variances in the diverse calibra-
tion points

Depending on whether x can be considered to be free or almost free of
errors (sx 
 sy =b) or vice versa3 (sy =b 
 sx), a regression of y onto x

ŷ = ax + bx x (6.6)

by minimizing the y -deviations according to the Gaussian least squares
criterion or a regression of x onto y

x̂ = ay + by y (6.7)

by minimizing the x�deviations have to be carried out.
The situation is illustrated in Fig. 6.4 from which can be seen that the re-

version of the dependent and independent variables gives different estimates
ŷ and x̂.

The regression coefˇcients in Eq. (6.6), bx and ax , for the estimation of
y from x are estimated by the following expressions:

3 This model usually does not have any relevance in analytical calibration.
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Fig. 6.4. Different regression models as a result of the minimization of the x- and the
y -deviations, respectively

bx =
Sxy
Sxx

(6.8)

ax =

∑
y � bx

∑
x

n
: (6.9)

Because of the irrelevant condition sy =b 
 sx), the reverse model, viz.
the estimation of x from y , according to Eq. (6.7) and therefore the co-
efˇcients by and ay , are not of direct relevance in analytical calibration.
Notwithstanding, their estimates will be given here for completion and as
auxiliary quantities for further calculations:

by =
Sxy
Sy y

; ay =

∑
x � by

∑
y

n
: (6.10)

All the special cases that may be appear in analytical calibration in de-
pendence from the speciˇc conditions as well as the uncertainties of the
calibration measures will be given in the following.

6.2
Single Component Calibration

6.2.1
Linear Calibration Model

On the condition that the errors of the measurement have a zero mean and
are uncorrelated, the linear function (Eq. 6.1) can be ˇtted to the measured
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values by means of the Gaussian least squares estimation (GLS, or ordinary
least square estimation, OLS, respectively; see Danzer and Currie [1998]).

With the fundamental relations

� Model: yi = a + b xi + eyi (6.11a)

� Estimate: ŷi = â + b̂ xi (6.11b)

� Residual: eyi = yi � ŷi = yi � â � b̂ xi (6.11c)

the general least squares criterion expressed by the sum of squares of resid-
uals, ssr(y ), reads (Danzer [1990])

ssr(y ) =
n∑
i=1

(
yi � ŷi
si

)2

=
n∑
i=1

(
eyi
si

)2

(6.12)

where si is the estimated standard deviation at the given point i and n the
total number of calibration measurements which are equal to the sum of
measurements nj in each calibration point p

n =
p∑
j=1

nj (6.13a)

which is simpliˇed to

n = p � nj (6.13b)

if an equal number nj of repetitions in each calibration point is carried out.
The sum of squares of residuals has to be minimized according to the

general least squares (LS) criterion
n∑
i=1

(
eyi
si

)2
!= min (6.14)

Depending on the fulˇlment of the conditions mentioned above, namely
(i) to (iii) and following, the least squares criterion has to be modiˇed as
follows:

1. The errors are only or essentially in the measured values y as the de-
pendent variable (bsx 
 sy ) and in addition, the errors sy are constant
in the several calibration points (Homoscedasticity):

s2
y1

˛= s2
y2

˛= � � � ˛= s2
yp

˛= s2
y (6.15)

where
˛= means equality for a given risk of error ˛. Only in this ho-

moscedastic case and if errors in x can be neglected, the LS criterion is
reduced to

n∑
i=1

e2
yi

!= min (6.16)
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and the ordinary least squares estimation of the calibration model ac-
cording to Eqs. (6.6), (6.8) and (6.9) can be applied. The evaluation of
analyses carried out on the basis of the inverted calibration function
(Eq. 6.6)

x̂ =
ŷ � â

b̂
(6.17)

and not according to Eq. (6.7) that holds for other statistical assump-
tions. On the other hand, Centner et al. [1998] found that predictions
on the basis of inverse calibration (Eq. 6.7) may be more reliable, espe-
cially in the case of less precise measurements.

2. In case that the measuring errors sy vary and therefore heteroscedasticity
must be assumed, the original LS criterion (Eq. 6.14) must be applied
and the model of weighted least squares (WLS) results from this criterion
as will be shown in Sect. 6.2.3.

3. In the most general case, if both variables are subject to error and,
therefore, neither the condition sx 
 sy =b nor sy =b 
 sx is fulˇlled,
the following total error results:

s2
i = s2

yi + b2 s2
xi : (6.18)

In this case, in which there are errors in both variables, y and x, the
resulting error e2

x+y has to be minimized (see Fig. 6.5) and orthogonal
least squares ˇtting must be carried out as will be shown in Sect. 6.2.4.

4. Sometimes the basic conditions for the use of LS are not fulˇlled, either
by measurement values being not-normally distributed or by strongly

Fig. 6.5. Regression model of errors in both variables in comparison to the model given
in Fig. 6.4
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deviating calibration points (leverage points, see Rousseeuw and Leroy
[1987]). In such cases, methods of robust calibration may be used; see
Sect. 6.2.6.

5. In addition to statistical peculiarities, special features may also result
from certain properties of samples and standards which make it neces-
sary to apply special calibration techniques. In cases when matrix effects
appear and matrix-matched calibration standards are not available, the
standard addition method (SAM, see Sect. 6.2.6) can be used.

Measurements in living things, e.g. patients, is occasionally done by sam-
pling in a non-invasive way. Because no \standard patients" are available
which can be selected for calibration, another principle of calibration
must be applied, e.g., by a reference method that measures parallel to
the actual measuring method. So, the calibration consists in a compar-
ison of the measured results with that of the reference method which
are considered to be true (that have been validated beforehand). An
example of a reference calibration is represented by non-invasive blood
glucose determination by means of NIR spectroscopy (M�uller et al.
[1997]; Fischbacher et al. [1997]; Danzer et al. [1998], see Sect. 6.2.6).

The several variants deriving from the items 1 to 4 are represented in the
�ow sheet given in Fig. 6.6. Common calibration by Gaussian least squares
estimation (OLS) can only be applied if the measured values are indepen-
dent and normal-distributed, free from outliers and leverage points and are
characterized by homoscedastic errors. Additionally, the error of the values
in the analytical quantity x (measurand) must be negligible compared with
the errors of the measured values y .

From the chemical point of view, in cases where matrix effects appear and
no suitable certiˇed reference materials are available, the calibration may
be performed in the sample matrix itself by means of standard addition.

In analytical practice, linear calibration by ordinary least squares is
mostly used. Therefore, the estimates are summarized before the uncer-
tainties of the estimates will be given:

OLS estimates: ŷ = ax + bx x (6.6)

Evaluation estimate: x̂ =
ŷ � ax
bx

(6.17)

Slope (sensitivity): bx =
Sxy
Sxx

(6.8)

Intercept (\blank"): ax =

∑
y � bx

∑
x

n
(6.9)
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Fig. 6.6. Flow sheet of several calibration models in dependence of the fulˇlment of certain
statistical and chemical conditions

6.2.2
Errors in Linear Calibration

Fundamentally, the uncertainties of measured values ŷ estimated by calibra-
tion, e.g. according to Eq. (6.6), on the one hand and of analytical results x̂
(analyte contents, concentrations) estimated by means of a calibration func-
tion, e.g. according to Eq. (6.17), on the other hand differ from one another
as can be seen from Fig. 6.3B,C, and Fig. 6.7. Whereas the uncertainty of y
values in calibration is characterized by the conˇdence interval cnf(ŷ ), the
uncertainty of estimated x values is characterized by the prediction interval
prd(x̂).
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Fig. 6.7. Calibration straight line with relevant upper and lower conˇdence and prediction
bands

The uncertainty of OLS calibration is characterized by the following spe-
cial standard deviations and uncertainty intervals:

(1) Residual standard deviation

sy :x =

√√√√√ n∑
i=1

(yi � ŷi)2

n � 2
=

√√√√√ n∑
i=1

(yi � âx � b̂xxi)2

n � 2
(6.19)

In calibration, the number of degrees of freedom depends on the number of
parameters estimated by the given model. In case of the two-parametric model
(Eq. 6.6) � = n � 2, in case of linear calibration through the coordinate origin
(a = 0) � = n� 1, and in case of a three-parametric nonlinear calibration model
(y = a + bx + cx2) � = n � 3.

(2) Estimated standard deviation (ESD) of the estimated intercept
(blank) â

sâ = sy :x

√
1

n
+

x2

Sxx
(6.20)

with n being the total number of calibration measurements, x the
mean of all the x values of the calibration experiment, and Sxx the
sum of the squared x deviations.
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(3) ESD of the estimated slope b̂

sb̂ =
sy :xp
Sxx

(6.21)

(4) ESD of an estimated mean ŷ at position xi

sŷ = sy :x

√
1

n
+

(xi � x)2

Sxx
(6.22)

(5) ESD of a predicted single value ŷp rd at position xi

sŷprd = sy :x

√
1 +

1

n
+

(xi � x)2

Sxx
(6.23)

(6) ESD of a predicted mean ŷ p rd from N repetitions in position xi

sŷ prd
= sy :x

√
1

N
+

1

n
+

(xi � x)2

Sxx
(6.24)

(7) ESD of a predicted mean x̂p rd from N repetitions for a measured
value yi

sx̂prd
=

sy :x
b

√
1

N
+

1

n
+

(yi � y )2

b2 Sxx
(6.25)

(8) The conˇdence band, CB, of the entire calibration straight line as
shown in Fig. 6.7 is given by

CB = ŷ ˙ sŷ
√

2F1�˛;�1=2;�2=n�2 (6.26a)

and the prediction band, PB

P B = ŷprd ˙ sŷprd

√
2F1�˛;�1=2;�2=n�2 (6.26b)

The following uncertainty intervals resulting from Eqs. (6.19) to (6.25)
are of practical interest:

(9) Conˇdence interval of the intercept (blank) â

cnf(â) = â ˙ sâ t1�˛;�=n�2 (6.27)
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(10) Prediction interval prd(a) of a single a-value by Eq. (6.28) and that of
an average a from N repetition measurements according to Eq. (6.29)

prd(a) = a ˙ sy :x t1�˛;�=n�2

√
1 +

1

n
+

x2

Sxx
(6.28)

prd(a) = a ˙ sy :x t1�˛;�=n�2

√
1

N
+

1

n
+

x2

Sxx
(6.29)

The latter is important with regard to the estimation of the detection
limit from blanks

(11) Conˇdence interval of an estimated mean ŷ i at position xi

cnf(ŷ i) = ŷ i ˙ sy :x t1�˛;�=n�2

√
1

n
+

(xi � x)2

Sxx
(6.30)

(12) Prediction interval of a single value ŷprd at position xi

prd(ŷi) = ŷi ˙ sy :x t1�˛;�=n�2

√
1 +

1

n
+

(xi � x)2

Sxx
(6.31)

(13) Prediction interval of a mean ŷ prd from N repetitions at position xi

prd(ŷ i) = ŷ i ˙ sy :x t1�˛;�=n�2

√
1

N
+

1

n
+

(xi � x)2

Sxx
(6.32)

(14) Prediction interval of a mean x̂prd from N repetitions for a measured
value yi

prd(x̂ i) = x̂ i ˙
sy :x
b

t1�˛;�=n�2

√
1

N
+

1

n
+

(yi � y )2

b2 Sxx
(6.33)

6.2.3
Weighted Linear Least Squares Estimation (WLS)

In cases in that homoscedasticity according to Eq. (6.15) is not given, the es-
timated standard deviation is frequently a function of the measured quantity,
sy = f (y ). In this case the calibration system is heteroscedastic and weighted
least squares ˇtting has to be applied (Garden et al. [1980]; Draper and
Smith [1981]). In general, least squares ˇtting starts from Eq. (6.14) and
only in the case of homoscedasticity Eq. (6.16) can be taken as the basis.
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From Eq. (6.14) it suggests itself that squared variance weighting wyi � 1=s2
yi

should be applied. In analytical practice, frequently relative weights

wyi =

1

s2
yi

1

p

p∑
i=1

1

s2
yi

(6.34)

are used for the p calibration points in which each nj repetitions are made,
see Eq. (3.13a,b).

The minimizing criterion (Eq. 6.14) now becomes
n∑
i=1

wyi e
2
yi

!= min (6.35)

and the calibration coefˇcients are calculated analogous to Eqs. (6.8) and
(6.9) by means of the weights (wyi = wi)

bxw =
n
∑

wixiyi �
∑

wixi
∑

wiyi

n
∑

wix2
i �

(∑
wixi

)2 (6.36)

axw =

∑
wiyi � bxw

∑
wixi

n
(6.37)

As a rule the calibration coefˇcients do not alter signiˇcantly when WLS
is applied instead of OLS. On the other hand, the uncertainty in the lower
range of calibration is reduced in a remarkable way. The estimate of the
residual standard deviation is

s(y :x)w =

√∑
wi(yi � ŷi)2

n � 2
(6.38)

Other quantities characterizing uncertainties can be estimated in analogy to
Eqs. (6.20){(6.33). Today, software packages for regression analysis usually
allow one to enter an estimate of the functional dependence sy = f (y ) and
to carry out a suitable weighting with this or other functions offered.

In general, the decision on weighted or unweighted least squares can be
reached on the basis of a statistical test, (see Eq. 6.2.5), or on the basis of a
theoretical model.

6.2.4
Linear Least Squares Fitting in Case of Errors in Both Variables

In Fig. 6.5 three different calibration functions are given. First, the model to
estimate y from (practically) error-free x values. This model is commonly
used for analytical calibration in form of OLS, ŷ = ax + bxx (Eq. 6.6).
Another model (usually without relevance in analytical calibration because
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the measured values y are considered to be practically error-free) has been
formulated in Eq. (6.7), x̂ = ay + by y . The third model represented in
Fig. 6.5,

ŷ = a + b x (6.39)

is the so-called error in both variables model (EBV model) and has to be
estimated by orthogonal least squares minimizing, that means the errors in
both the dependent and the independent variable are minimized simulta-
neously. So, the general condition at Eq. (6.14) becomes, with Eq. (6.18):

n∑
i=1

e2
yi

s2
yi + b2s2

xi

!= min (6.40)

The EBV model has to be applied if both the measured values y and the
analytical value x are error-affected quantities. The calibration coefˇcients
of the model at Eq. (6.39) cannot be determined directly for the general case,
but only according to certain assumptions or by approximations (Danzer
et al. [1995]) from which three will be given here:

(1) Mandel's approximation (MA, see Mandel [1984])

b̂MA =
Sy y � Sxx +

√
(Sxx � Sy y )2 + 4 S2

xy

2 Sxy
(6.41)

with Sxx , Sy y , and Sxy as deˇned in Eq. (6.30).

(2) Wald's approximation (WA, see Wald [1940]; Sharaf et al. [1986])

b̂W A =

g∑
i=1

yi �
n∑

j=h
yj

g∑
i=1

xi �
n∑

j=h
xj

(6.42)

with n being the number of calibration measurements and the index
g = n=2 = h � 1 if n is even, and g = 1=2(n + 1) = h if n is uneven.

(3) Geometrical averaging (GA, see Danzer [1990]; Danzer et al. [1995])

b̂GA = tan

(
arctan bx + arctan b�1

y

2

)
(6.43)

with bx according to Eq. (6.8) and by according to Eq. (6.10). The in-
tercepts âMA, âW A, and âGA are each estimated analogously to Eq. (6.9)
using b̂MA, b̂W A, and b̂GA instead of bx .
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Furthermore it should be mentioned that the ˇrst principal component p1

of a principal component analysis (PCA) gives a good approximation of
the orthogonal calibration line (Danzer et al. [1995]). Principal component
analysis is a useful method to extract new uncorrelated variables from a
data matrix X. The mathematical fundamentals of PCA can be found in
Sect. 8.3, Malinowski and Howery [1980]; Flury [1988]; Martens and
N�s [1989]. The PC principle may be explained graphically as follows: In an
m-dimensional data space a new coordinate system is spread by principal
components in such a way that the ˇrst principle component p1 stretches in
the direction of the largest variation of the data, the second one, p2, in the
direction of the largest remaining variation, orthogonal to p1, and so on. In
case of calibration mean-centered data have to be used and the complete
principal component solution is relevant. There exist only two principle
components, p1 and p2, where the ˇrst, p1, ˇts very good the EBV calibration
straight line and the second, p2, represents the orthogonal scattering of the
data around the straight line.

The complete principal component decomposition of the data matrix X
into a score matrix P and a loading matrix P is given by

X = P � LT : (6.44)

By means of the transposed loading matrix

LT =

(
l11 l12

l21 l22

)
(6.45)

the slope of the EBV (orthogonal) calibration line can be estimated accord-
ing to

b̂P C =
l12

l11
(6.46)

and âP C again analogously to Eq. (6.9) using b̂P C instead of bx .
Diverse procedures of EBV calibration and OLS have been compared for

both simulated and real analytical data in Danzer et al. [1995]. Especially in
cases when large errors in the x values (concentration) exist, EBV calibration
should be used instead of OLS.

6.2.5
Statistical Tests and Validation of Calibration

A calibration procedure has to be validated with regard to general and spe-
ciˇc requirements under which the calibration model has been developed.
For this purpose, it is important to test whether the conditions represented
in Fig. 6.6 are fulˇlled. On the other hand, it is to assure by experimental
studies that certain performance features (accuracy, precision, sensitivity,
selectivity, speciˇcity, linearity, working range, limits of detection and of
quantiˇcation, robustness, and ruggedness, see Chap. 7) fulˇl the expected
requirements.
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Fig. 6.8. Typical plots of residual deviations: random scattering (a), systematic deviations
indicating nonlinearity (b), and trumpet-like form of heteroscedasticity (c)

The underlying calibration procedure of a newly developed analytical
method has to be examined by basic validation studies to determine the
reliability of the method and its efˇciency in comparison with traditional
methods. In order to ensure long-term stability, it is necessary to perform
revalidations, which can be combined with the use of quality control charts,
over meaningful time periods.

Regarding calibration, it is of special importance to characterize the
following features:

(i) Accuracy of analytical results

(ii) Precision of calibration and analytical values

(iii) Calibration model (linear/nonlinear) and scope (working range, sensi-
tivity, limits of application/detection/quantitation)

Commercial software packages are usually able to represent graphically
the residual errors (deviations) of a given calibration model which can be
examined visually. Typical plots as shown in Fig. 6.8 may give information
on the character of the residuals and therefore on the tests that have to be
carried out, such as randomness, normality, linearity, homoscedasticity, etc.

Accuracy. In general, the accuracy of analytical results is assured by re-
covery studies (Wegscheider [1996]; Danzer [1995]; Burns et al. [2002]).
According to the recovery function in the general three-dimensional calibra-
tion model (see Fig. 6.3), common studies on systematic deviations (Fig. 4.3),
and Eqs. (4.2) and (4.3) the following recovery formulae

xtest = ˛ + ˇ xtrue (xsample = ˛ + ˇ xstandard) (6.47a)

xtest(I) = ˛ + ˇ xtrue(II) (6.47b)

have to be tested. By means of selected standard samples (if possible, certi-
ˇed reference materials) with known (\true") analyte amounts the recovery
function (validation function (see Danzer [1995]; Burns et al. [2002]) has
to be determined by normal linear regression4. The measures ˛ and ˇ repre-

4 It should be noted that a recovery factor obtained using a single reference material
or single spike addition experiment does not indicate the absence of systematic
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sent here the validation coefˇcients with the analytical meaning of a constant
bias (intercept ˛) and a proportional bias (slope ˇ). The estimates of ˛ and
ˇ can be determined analogous to Eqs. (6.8) and (6.9). By testing the null
hypotheses H0: ˛ = 0 and H0: ˇ = 1 according to

t̂(˛) =
˛

s˛
(6.48a)

t̂(ˇ) =
ˇ

sˇ
(6.48b)

the absence of systematic deviations can be veriˇed. For this purpose, the
estimated t̂-values have to be compared with the corresponding quantiles
of the t-distribution t1�˛;�=n�2.

Systematic deviations are also detected if the corresponding conˇdence
intervals of the validation coefˇcients do not include 0 or 1, respectively,
namely

(i) An additive bias if ˛ + �˛ < 0 or ˛ � �˛ > 0 (˛ > j�˛j)
(ii) A proportional bias if ˇ + �ˇ < 1 or ˇ � �ˇ > 1 (ˇ > j�ˇj)

Another way to verify the accuracy of a method (I) under validation is the
analysis of a given set of test samples with graduated analyte concentrations
by both methods, (I), and an independent one (II), which is known to be
accurate. The special recovery function in this case is given by Eq. (6.47b).

Because both quantities, xtest(I) and xtest(II) are subject to error in this
processing, EBV ˇtting according to Eqs. (6.41){(6.43) or principal compo-
nent analysis (Eq. 6.46) must be applied. The test on signiˇcant deviations
from ˛ = 0 and ˇ = 1 are carried out as above.

Precision. The precision of the calibration is characterized by the conˇ-
dence interval cnf(ŷ i) of the estimated y values at position xi according
to Eq. (6.30). In contrast, the precision of analysis is expressed by the pre-
diction intervals prd(ŷ i) and prd(x̂ i), respectively, according to Eqs. (6.32)
and (6.33). The precision of analytical results on the basis of experimental
calibration is closely related to the adequacy of the calibration model.

Linearity. Whether the chosen linear model is adequate can be seen from the
residuals ey over the x values. In Fig. 6.8a the deviations scatter randomly
around the zero line indicating that the model is suitable. On the other
hand, in Fig. 6.8b it can be seen that the errors show systematic deviations
and even in the given case where the deviations alternate in the real way,
it is indicated that the linear model is inadequate and a nonlinear model
must be chosen. The hypothesis of linearity can be tested:

error or that an analytical procedure has successfully been validated (Wegscheider
[1996]; Burns et al. [2002])
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(a) A priori (no actual nonlinear model is considered) by comparison of
the deviations of the means from the calibration line (the residual
standard deviations sy :x ; see Eq. (6.19)) with that of the y values from
their means (sy ):

F̂ =
s2
y :x

s2
y

=

1

p � 2

p∑
i=1

ni(y i � ŷi)
2

1

n � p

p∑
i=1

ni∑
j=1

(yij � y i)
2

(6.49)

with ni being the number of measurements in the p calibration points,
see Eq. (6.13a,b). The test is carried out by comparison of the quo-
tient (Eq. 6.49) with the corresponding quantile of the F -distribution.
In case that F̂ exceeds F1�˛;�1=p�2;�2=n�p a linear relationship cannot
be assumed. This kind of ANOVA (Sharaf et al. [1986]) is usually
implemented into software packages of regression.

(b) A posteriori by comparison of the residual standard deviation of the
linear model, s2

y :x lin
, with that of a certain nonlinear model, s2

y :x non
:

F̂ =
s2
y :xlin

s2
y :xnon

=

1

�lin

n∑
i=1

(yi � ŷi)
2

1

�non

n∑
i=1

(yi � ŷi)
2

(6.50)

The number of degrees of freedom in case of linear models is �lin =
n � 2 or n � 1, respectively, depending on whether two parameters
are estimated according to Eq. (6.6) or (6.39) or only one parameter
according to ŷ = b x. In the nonlinear case, �non results from the actual
model (e.g., for a quadratic equation, ŷ = a + b x + c x2, �non = n{
3). A suitable test for Eq. (6.50) can also be carried out according to
Mandel [1964]:

F̂ =
s2
y :xlin
� s2

y :xnon

s2
y :xnon

(6.51)

by comparison with F1�˛;�1=1;�2=�non . In each case where F̂ 	 F1�˛;�1;�2 ,
the linear model cannot be applied.

Homoscedasticity. Unequal variances are recognizable from residual plots as
in Fig. 6.8c where frequently ey is a function of x in the given trumpet-like
form. In such a case, the test of homoscedasticity can be carried out in a
simple way by means of the Hartley test (Fmax test), F̂max = s2

max=s
2
min, see

Sect. 4.3.4 (1).
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In cases in which the situation is more obscure as represented in Fig. 6.8c,
the Bartlett test of homogeneity of variances (see Sect. 4.3.4 (3)) has to be
applied. The test statistic �̂2 has to be compared with the critical value and
the null hypothesis H0: � 2

1 = � 2
2 = � � � = � 2

p must be rejected if �̂2 	 �2
1�˛;� .

In this case, instead of normal OLS calibration, the weighted calibration
has to be chosen. For WLS the dependence of the variance of the measure-
ment values, s2

y , on the analytical values x(and therefore on the measured
values y , too) has to be determined in preliminary studies. Then the result-
ing variance function, s2

y = f (y ), can be entered for weighting directly in
corresponding calibration programs, e.g. in the form w = 1=s2

y = 1 = 1=y ;
see Sect. 6.2.3.

Sometimes, as an alternative to the weighted calibration, it is recom-
mended to restrict the working range to those partial ranges in which ho-
moscedasticity can be supposed. Considering the relatively frequent occur-
rence of heteroscedastic calibration data, however, in analytical practice, the
possibility of applying WLS should, in general, be taken into account to a
stronger extent. In this way, more reliable analytical results can be obtained
with a higher precision which is constant to a large extent and covers the
whole working range.

6.2.6
Alternative Calibration Procedures

If the basic conditions for the use of least squares ˇtting are not fulˇlled
(Fig. 6.6), especially if strongly deviating calibration points appear (\out-
liers" or, more exactly, leverage points), the OLS method fails, i.e., the es-
timated calibration are biased and, therefore, are not representative for the
relation between x and y . Whereas normality of the measured values can
be frequently obtained by a suitable transformation, especially in the case of
outlying calibration points, robust calibration has to be applied (Rousseeuw
and Leroy [1987]; Danzer [1989] Danzer and Currie [1998]).

Robust calibration. The Gaussian OLS criterion according to Eq. (6.16) is
strongly sensitive against outliers. Therefore, robust methods of ˇtting have
been developed following two strategies (Rousseeuw and Leroy [1987]):

(i) Recognition and selection of outliers and ˇtting of the remaining data
by OLS (outlier diagnostics)

(ii) Fitting of only the representative data by means of robust techniques
(robust regression in the stricter sense)

It has been known for a long time (Edgeworth [1887]) that minimizing of
the linear sums of deviations

n∑
i=1

eyi
!= min (6.52)
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Fig. 6.9. Schematic repre-
sentation of some of the
slopes bij between eight
calibration points5 in-
cluding an outlier (black
marked)

is more insensitive against outliers than that of squared sums according
to Eq. (6.16). Robust regression techniques are also based on linear devi-
ation criteria and use special minimization functions (Huber [1981]) and
in�uence functions (Hampel [1980]; Hampel et al. [1986]):

n∑
i=1

q � eyi
!= min (6.53)

On the other hand, least trimmed squares (LTS) can be used to estimate
the calibration parameters: that points which produce the (n � h) largest
deviation squares are rejected and the remaining h points are used for the
LTS ˇtting:

h∑
i=1

e2
yi

!= min (6.54)

Another way is the robust parameter estimation on the basis of me-
dian statistics (see Sect. 4.1.2; Danzer [1989]; Danzer and Currie
[1998]). For this, all possible slopes between all the calibration points
bij = (yj � yi)=(xj � xi) for j > i are calculated. After arranging the bij
according to increasing values, the average slope can be estimated as the
median by

~b = medfbijg (6.55)

where medfbijg is determined according to Eq. (4.22). The principle of the
procedure is illustrated in Fig. 6.9.

5 The total number nb of all the single slopes bij is given by the combinations of n

calibration points to the 2nd class: nb = C2
n =

(
n
2

)
= 1

2n(n � 1), i.e., in this case

nb=28.
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The intercept ~a will then be obtained by

~a = medfyi � ~b xig (6.56)

Estimates of the variance and uncertainty intervals in robust calibration can
be taken from the literature (Huber [1981]; Rousseeuw and Leroy [1987]).

Robust calibration corresponds in most cases to the problem of outlying
calibration points (leverage points). In consideration of that, attention must
be directed to the linearity of the relationship in general and the randomness
of the residuals.

Calibration by Standard Addition Method (SAM). When matrix effects ap-
pear or are to be expected and matrix-matched calibration samples are
not available, the standard addition method (SAM) can be the calibration
method of choice.

Especially in the case of biochemical and environmental systems and
generally in ultra trace analysis, SAM is frequently applied. By addition of
standard solutions to the sample a similar behaviour of the calibration set
and the sample is created provided that the analyte is added in form of
same species.

The model of standard addition is based on the prerequisite that blanks
do not appear, y = bx, or can be eliminated, y � a = ynet = bx:

y0 = bx0 (6.57)

where y0 is the measured value of the unspiked test sample and x0 the initial
content of the analyte. Known amounts xi of the analyte are added to the
sample; in doing so it is recommendable to use equimolar amounts of xi in
the range of

x1 � x0; x2 = 2x1; : : : ; xp = px1

where frequently p = 3 or 4 is used. Therefore, some ideas about the initial
concentration x0 should exist. The principle of SAM is illustrated in Fig. 6.10.

The standard addition calibration function is estimated by least squares
ˇtting. The slope b (sensitivity of the SAM) will be obtained according to

b =
ŷp � ŷ0

xp
(6.58)

This procedure is justiˇed if the sensitivity of the determination of the
species in the sample is the same as of the species added:

b(AD) =
�y

�x
=

y0

x0

!= b(SA) =
ŷp � ŷ0

xp
(6.580)

The proceeding is simpliˇed for such cases in which the volume of the
added analyte amounts can be neglected in comparison with that of the
initial sample (solution). Otherwise, a procedure using volume-corrected
measurement values has to be applied (see Sharaf et al. [1986]).
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Fig. 6.10. Calibration by the standard addition method (SAM)

The estimation of the analyte content x is given by the SA analytical
function (the inverse function of Eq. (6.57)) whose extrapolation for y = 0
yields

x0 =
ŷ0

b
=

xp ŷ0

ŷp � ŷ0
(6.59)

with the conˇdence interval

cnf (x0) = x0 ˙
sy :x t1�˛;�

b

√
1

n
+

(�x0 � xp
2

)2

Sxx
(6.60)

This conˇdence interval is wider as compared to normal calibration (see
Eq. 6.33) because of the extrapolation to xi = �x0. The number of calibra-
tion measurements n results from n0 + p � ni or n0 +

∑p ni, respectively,
where n0 is the number of measurements of y0.

When a blank appears, it has to be estimated from a sufˇciently large
number of blank measurements and the measured values must be corrected
in this respect. To ensure the adequateness of the SA calibration model,
p 	 2 additions should be carried out. Only in the case when it is deˇnitely
known that the linear model holds true, then one single addition (ni times
repeated) may be carried out. In general, linearity can be tested according
to Eqs. (6.49){(6.51).

Although standard addition calibration is an unreliable method if lin-
earity in the range x < x0 is not experimentally veriˇed but only supposed,
there is scarcely an alternative in trace and ultra trace analysis when matrix
effects are seriously suspected.

Individual Three-Dimensional Calibration. In general, the intensity y of a
signal is determined by both the analyte content x and the sample weight
w . This is because the direct quantity that causes the value of the measur-
ing quantity is the number of analyte species, N , in the measuring sample
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Fig. 6.11. Calibration lines by using several CRM samples (S: soil BHB-1, T: Tibet soil
GBW 8302, R: river sediment CRM 320, Ga: Gabbro MRG-1, A: Andesite AGV-1, Gr:
Granodiorite GSP-1) and varying the sample weight (Zn 307.6 nm)

(sample solution, sample vapour, plasma etc), as it is expressed, e.g., by the
general law of absorption, y = y0 exp(�kN ). In most cases, conditions of
the analytical procedures are ˇxed which provide the direct connection be-
tween the signal intensity and the analyte content (e.g. constant measuring
volumina or sample weights).

Not in all cases can such constant conditions be realized. In Solid Sam-
pling AAS (SS-AAS), calibration is commonly carried out by using only one
suitable calibration sample (frequently a certiˇed reference material, CRM)
and varying its weight. The absolute analyte amount of the analyte is then
used as the independent quantity and calibrated vs the dependent signal
intensity (peak height or area, respectively). The second variant, the use of
several CRMs with varying analyte content, can only rarely applied because
of high costs of CRMs and matrix in�uences that will be distinct under the
given conditions.

By combination of both calibration variants it can be shown (Danzer
et al. [1998]) that strong matrix effects appear which are represented by the
different sensitivities in Fig. 6.11.

To overcome these matrix in�uences, other calibration strategies can be
used (Danzer et al. [1998]). According to one of them, a specialized three-
dimensional calibration model, the relation between signal intensity and
both sample weight and content is evaluated. The relationship between the
three quantities, y = f (x; w ) is demonstrated in Fig. 6.12 by the example
of Zn determination represented above.

Both planar and curved surfaces can be ˇtted by statistical software
packages like Statistica [1993]. In the general case, the 3-D calibration
surface is given by
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Fig. 6.12. Three-dimensional calibration plot for the zinc determination using a plain
model for the relationship peak height vs zinc content and sample weight

y = a + b1x + b2w + b3x
2 + b4xw + b5w

2 (6.61)

where y is the signal intensity (peak height or area, respectively), x the
analyte content, w the sample weight, and a as well as the bi are the 3D cal-
ibration coefˇcients. Upper and lower conˇdence planes can be estimated by
bootstrapping (Efron [1982]; Efron and Tibshirani [1993]) as described
in detail by Nimmerfall and Schr�on [2001].

Calibration by means of results of another method. In life science and other
ˇelds there can exist cases in which no real calibration samples are avail-
able. That may concern substances of metabolism in living organisms like
cholesterol and glucose in blood.

Intensiˇed metabolic control, especially in case of diabetes, demands
minimal-invasive or non-invasive methods of analytical measurement. For
this goal, a method has been developed to measure the blood glucose con-
tent in vivo, in direct contact with the skin, by means of diffuse re�ection
near infrared (NIR) spectroscopy on the basis of multivariate calibration
and neural networks (M�uller et al. [1997]; Fischbacher et al. [1997];
Danzer et al. [1998]). Because no patients with any \standard blood glu-
cose value" are available in principle, a method of indirect calibration has



150 6 Calibration in Analytical Chemistry

Fig. 6.13. Proˇle of blood
glucose concentration for
a single test person;
# taking of carbohy-
drates/g, " insulin injec-
tion/IU

Fig. 6.14. Indirect calibration of NIR measure-
ments vs BGA measurements for several test
persons

to be applied. For this aim, type-1 diabetes patients (involved into an inten-
siˇed conventional insulin therapy) have been selected in which variations
of blood glucose values were provoked by subcutaneous or intramuscular
injections of 2{5 units of regular insulin and by carbohydrate supply. While
recording the NIR spectra at the right hand ˇnger, blood samples were
taken from a cannula placed in the dorsum of the left hand. The reference
concentrations were measured by a Beckman Glucose Analyzer (BGA).

A typical blood glucose proˇle obtained in this way is represented in
Fig. 6.13 (M�uller et al. [1997]; Fischbacher et al. [1997]). On the other
hand, Fig. 6.14 shows the calibration of the NIR measurements vs the BGA
reference measurements.

In contrast to the common calibration procedure measuring y =
f (xstandard) as shown in the front plane of Fig. (6.3a,b), the glucose ref-
erence calibration takes place in the base area of the three-dimensional
model, xsample = f (xstandard); see Sect. 6.1.2.

Calibration with imprecise signals and analytical values (concentrations)
based on fuzzy theory has been dealt with by Otto and Bandemer [1986].
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6.2.7
Nonlinear Calibration

Nonlinear relationships between analytical quantities and measured values
results from different reasons. In most cases, the relating natural laws can
determine the nonlinearity. On the other hand, factors and conditions can
in�uence an analytical system in such a way that relationships which are
originally linear can become curved. Absorption of electro-magnetic radia-
tion is an example that can illustrate both phenomena. The Lambert-Beer
law of absorption describes a nonlinear dependence of the radiation inten-
sity after the absorption step, I , on the number of absorbing species N ,
namely I = I0 exp(�kN ). I0 is the incident intensity and k an absorption
coefˇcient. It is well-known that this relationship mostly is used in its lin-
earized form, the so-called Beer law, A = � log (I0=I)) = k � N = " � l � c
with A absorbance, k absorption coefˇcient, " molar absorptivity, l length
of the absorbing cell, and c concentration of the absorbing species. Beer's
law usually is only valid for dilute solutions (c � 0:1 mol/L). At higher
concentrations deviations from the linear calibration curve may occur.

Because nonlinear calibration needs higher expense both in experimental
and computational respects, linear models are mostly preferred.

Nonlinear calibration is carried out by nonlinear regression where two types have
to be distinguished: (1) real (intrinsic) nonlinear regression and (2) quasilinear
(intrinsic linear) regression. The latter is characterized by the fact that only the data
but not the regression parameters are nonlinear. Typical examples are polynomials
and trigonometric functions.

When nonlinearity is detected, either by visual inspection, test on linearity,
or logical reasons, the following possibilities can be used:

(i) Transformation of the analytical values and/or measured values

xtrans = f (x); ytrans = f (y ) (6.62)

and modelling of the linear function

ytrans = a� + b�xtrans (6.63)

(ii) Modelling of a nonlinear relationship between y and x by means of a
suitable function, some of them are given in Table 6.2.

(iii) Multi-range calibration corresponding to a multi-range regression; see,
e.g., Sachs [1992]. Several working ranges are ˇtted by diverse cali-
bration straight lines where in analytical practice the use of only two
ranges is customary.

(iv) Spline functions ˇt small intervals of the calibration function by polyno-
mials of low (2nd or 3rd) order under the condition that the resulting
overall curve represents a continuous function (Wold [1974]).
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Table 6.2. Suitable nonlinear calibration functions, their normal equations and sensitivity
functions

Calibration function Normal equations Sensitivity function S(x)

y = a0 + a1x + a2x2 a0n + a1
∑

x + a2
∑

x2 =
∑

y
dy

dx
= a1 + 2a2xa0

∑
x + a1

∑
x2 + a2

∑
x3 =

∑
xy

a0
∑

x2 + a1
∑

x3 + a2
∑

x4 =
∑

x2y

y = a0 + a1x + a2x2 + a3x3 a0n + a1
∑

x + a2
∑

x2 + a3
∑

x3 =
∑

y

dy

dx
= a1 + 2a2x + 3a3x

2a0
∑

x + a1
∑

x2 + a2
∑

x3 + a3
∑

x4 =
∑

xy

a0
∑

x2 + a1
∑

x3 + a2
∑

x4 + a3
∑

x5 =
∑

x2y

a0
∑

x3 + a1
∑

x4 + a2
∑

x5 + a3
∑

x6 =
∑

x3y

y = a0 + a1 lg x a0n + a1
∑

lg x =
∑

y dy

dx
=

1
x

lg e =
1

x ln 10a0
∑

lg x + a1
∑

(lg x)2 =
∑

(y lg x)

lg y = a0 + a1 lg x a0n + a1
∑

lg x =
∑

lg y d lg y
d lg x

= a1
a0

∑
lg x + a1

∑
(lg x)2 =

∑
(lg x lg y )

y = a � bx corresponding to n lg a + lg b
∑

x =
∑

lg y dy

dx
= bx ln b

lg y = lg a + x lg b lg a
∑

x + lg b
∑

x2 =
∑

(x lg y )

In general, from nonlinear calibrations result variable sensitivities expressed
by sensitivity functions S(x):

S(x) = y 0 = f 0(x) =
dy

dx
=

df (x)

dx
(6.64)

For the purpose of comparisons, the sensitivity of the centre of the cal-
ibration curve S(x) having the character of an average sensitivity can be
used. Sensitivity functions corresponding to diverse calibration functions
are given in Table 6.2.

6.3
Multisignal Calibration

By diverse spectroscopic techniques not only a single signal is generated by
given species but several their number can be lower (XRF, MS) or higher
(OES). Whereas especially in OES several spectral lines are used for identiˇ-
cation and qualitative analysis, quantitative analysis of a given analyte is car-
ried out by means of only one single line. In doing so, mostly the most sen-
sitive, undisturbed line is selected whereas all the other signals are ignored.

It has been shown (Danzer and Wagner [1993]; Danzer and Venth
[1994]; Venth et al. [1996]) that the reliability of quantitative analyses can
be increased when several signals are used for calibration and evaluation.
From theoretical considerations it is expected that a multivariate evaluation
increases both the sensitivity and the precision and, therefore, the detection
power, too.

Multisignal evaluation is carried out by means of Principal Component
Analysis (PCA) or (Partial Least Squares (PLS) regression. The fundamentals
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Fig. 6.15. A Principle of the derivation of a
latent intensity yApc from original intensities
yA1 and yA2 . B Sensitivity of the pc intensity
in comparison to the ˇve original intensities
of the lines Mn 279.8 nm, Mn 280.1 nm, Mn
293.3 nm, Mn 403.3 nm, and Mn 403.4 nm
(Danzer and Venth [1994]). C pc intensity
of Si resulting from Si 251.5 nm, Si 252.9 nm
and Si 288.2 nm (Danzer et al. [1991])

of these chemometric methods can be found in Chapter 8: Dillon and
Goldstein [1984] Martens and N�s [1989]; Danzer and Venth [1994];
Venth et al. [1996].

The principle of multisignal calibration will be represented here in a
more illustrative way. Starting with two signal intensities of one and the
same analyte A, namely yA1 and yA2 . Plotting yA1 vs yA2 as done in Fig. 6.15A,
it can be seen that the resulting (latent) intensity yApc is larger then the both
original values of the same species. Figure (6.15B,C) shows the results of
experimental studies that conˇrm the theoretical expectations.

Because the ˇrst principal component is always situated in direction of
the largest variation of the data, the intensity of ypc should be increased
compared with the original intensities from which it was calculated, namely
theoretically according to the n-dimensional Pythagoras' principle

ypcmax =

√√√√ n∑
i=1

I2
n (6.65)

According to the fundamentals of PCA, simultaneously the precision should
be improved because the noise is preferably to ˇnd in the higher pcs as
shown by simulations and experimentally in Danzer and Wagner [1993],
OES determination of Mn, Ni, and Cr in steel (Danzer and Venth [1994])
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Table 6.3. Spectral interferences in ICP-MS of the ˇve most abundant cadmium isotopes
relevant for the cadmium determination in Mo-Zr alloys; additional Cd isotopes: 106Cd
1.25%, 108Cd 0.89%, 116Cd 7.49%

Mass Abundance Molecule ion Abundance Isobaric Abundance
(%) interferences (%) interferences (%)

ZrO 17.49

110 12.49 ZrF 11.20 Pd 11.72

MoO 9.31

ZrOH 17.31

ZrF 17.10

111 12.80 MoO 15.86

MoF 14.80

MoOH 9.10

MoO 16.68

112 24.13 MoOH 15.66 Sn 0.97

ZrO 2.83

ZrF 17.50

MoOH 16.46 In 4.30

113 12.22 MoO 9.58

MoF 9.3

ZrOH 2,79

MoO 24.07

114 28.73 MoF 15.90 Sn 0.65

MoOH 9.43

and ICP-MS determination of Sb, Cd, In, Pd, Ag, and Sn in Mo-Zr alloys
(Venth et al. [1996]). The advantage of multisignal calibration was shown
impressively in case of cadmium. Its determination on the basis of single
signal evaluation is practically impossible because each signal of the Cd
isotopes is disturbed as shown in Table 6.3.

By means of the most sensitive signal Cd-114 only a relative uncertainty
of 22% could be observed. In contrast, PCA calibration including the ˇve
isotopes given in Table 6.3 yields an uncertainty of 0.6% with nearly 100%
recovery. This example demonstrates that not only undisturbed signals can
be included in the calibration but also disturbed ones.
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6.4
Multicomponent Calibration

The most important techniques in multicomponent analysis are spec-
troscopy (of radiation of various wavelengths as well as of particles) and
chromatography. Spectroscopic and chromatographic methods are able to
analyze diverse species in a more or less selective way. For the determi-
nation of n species Qi (i = 1; 2; : : : ; n), see 2.3, at least n signals must be
measured, which should be well-separated in the ideal case.

In analytical practice, the situation can be different as shown in Fig. 6.16;
see Eckschlager and Danzer [1994]; Danzer et al. [2004]. The given
detail of a spectrum may show either well-separated signals as represented
in (a) or signals that are overlapped to different degree; see (b) and (c).

A =

⎛
⎝ a11 0 0

0 a22 0
0 0 a33

⎞
⎠ (6.66)

A =

⎛
⎝ a11 a12 0
a21 a22 a23

0 a32 a33

⎞
⎠ (6.67)

A =

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ (6.68)

Fig. 6.16. Evaluation of multicomponent analysis in cases of various signal relations: well-
separated (a), moderately overlapped (b), and strongly overlapped (c) in form of spectra
(left) and relevant matrices { Eqs. (6.66) to (6.68) (right); Q1, Q2; Q3 are different species
(analytes), z1, z2, z3 wavelengths at which the intensities y1, y2, y3 are measured, A are
the matrixes of absorbances and aij absorption coefˇcient of species i at wavelength j
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In case (a) each species can be calibrated and evaluated independently
from the other. In this fully selective case, the following equation system
corresponds to the matrix A in Eq. (6.66):

y1 = a10 + a11x1 + e1

y2 = a20 + a22x2 + e2
...
ym = am0 + amnxn + em

(6.69)

where the number of measured signal absorbances, m, usually is equal to the
number of species, n. On the other hand, case (b), in which neighbouring
signals overlap to a certain degree, can be handled by means of multiple
linear calibration provided that the absorbances yi are additive and related
signal maxima can be measured for each species:

y1 = a10 + a11x1 + a12x2 + � � �+ a1nxn + e1

y2 = a20 + a21x1 + a22x2 + � � �+ a2nxn + e2
...
ym = am0 + am1x1 + am2x2 + � � �+ amnxn + em

(6.70a)

or, in matrix form,

y = Ax + ey (6.70b)

Multicomponent systems of the kind shown in Fig. 6.16b can be calibrated
with a high degree of reliability when the preconditions mentioned above
are valid. The uncertainties ei contain both deviations from the model and
random errors.

In the case of strongly overlapped signals, see Fig. 6.16c, multiple linear
calibration cannot be used for the following reasons:

(i) In real analytical systems, not all the sample constituents are known.
In such cases, an alternative way may be the application of the inverse
calibration model of Eq. (6.70a):

x = Y a + ex (6.71)

where Y is a matrix of spectra with m given wavelengths for n compo-
nent mixtures in which other variations like baseline effects must be
included. The vector of the sensitivity coefˇcients a can be estimated by

â = (YT Y)�1 YT x (6.72)6

(ii) In principle, for spectra like that in Fig. 6.16c, multicollinearities have
to be expected. That means that overlapping signal functions and con-
sequently the resulting sum curve are correlated and the measured
absorbance values at the respective wavelengths are not independent

6 YT is the transposed of the matrix Y.
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Fig. 6.17. Multivariate calibration methods (according to Danzer et al. [2001, 2004])

from each other. Therefore, Eq. (6.72) becomes unstable and other
methods of estimation of the a values must be used. These methods
use overdetermined equation systems as their basis, such as

A =

(
a11 a12 a13 � � � a1m

a21 a22 a23 � � � a2m

a31 a32 a33 � � � anm

)
(6.73)

instead of Eq. (6.68). The number of wavelengths, m (sensors, detecting
channels, respectively), is usually much higher than the number of
species n (here n = 3). The estimation of the calibration coefˇcients
is then carried out by multivariate calibration.

Depending on whether the spectra Y are calibrated as dependent on analyte
amounts X or conversely, different methods of multicomponent calibration,
as represented in Fig. 6.17, can be applied.

6.4.1
Classical Multivariate Calibration

The classical multivariate calibration represents the transition of common
single component analysis from one dependent variable y (measured value)
to m dependent variables (e.g., wavelengths or sensors) which can be simul-
taneously included in the calibration model. The classical linear calibration
(Danzer and Currie [1998]; Danzer et al. [2004]) is therefore represented
by the generalized matrix relation

Y = X A (6.74)

where Y is the (p �m) matrix of dependent variables (e.g., absorbances at
m wavelengths or responses at m sensors), p is the number of calibration
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standards (calibration mixtures) that is identical with the number of spectra
or similar measured records, X is the (p�n) matrix of independent variables
(e.g., the concentration of the n components), and A is the (n �m) matrix
of the calibration coefˇcients, often called the sensitivity matrix (Kaiser
[1972]; Martens and N�s [1989]; Danzer [2001]). The rows of the matrix
A correspond to the spectra of the pure components, which can be directly
measured or indirectly estimated.

Direct calibration can be applied when the calibration coefˇcients are
known, otherwise { in case of indirect calibration { the calibration co-
efˇcients are computed by means of experimentally estimated spectra-
concentrations relations.

Classical calibration procedure can only be applied when all the species
that contribute to the form of the spectra are known and can be included
into the calibration. Additionally, there is the constraint that no interac-
tions between the analytes and other species (e.g. solvent) or effects (e.g. of
temperature) should occur.

The analytical values (concentrations) are estimated by

x̂ = Y A+ (6.75)

where A+ is the so-called Moore-Penrose generalized pseudo inverse
(Moore [1920]; Penrose [1955])

A+ = (ATA)�1AT (6.76)

with the same dimensions (m � p ) as the transposed matrix.
In case of baseline shift, the sensitivity matrix in Eqs. (6.74) and (6.75)

must be complemented by a vector 1:

A = (1 A) =

⎛
⎝1 a11 � � � a1m

...
...

...
1 ap1 � � � apm

⎞
⎠ (6.77)

Instead of the addition of the 1-vector the calibration data may be cen-
tered (yi�y and xi�x, respectively). Even if the spectra of the pure species
cannot be measured directly then the A-matrix can be estimated indirectly
from the spectra provided that all components of the analytical system are
known:

Â = (XTX)�1XTY (6.78)7

For inversion of the matrix XT X it is necessary that a sufˇcient num-
ber of spectra for different concentration steps have been measured. The
concentration vectors must vary independently from each other. For this
reason, experimental design (see, e.g., Deming and Morgan [1993]) can be

7 Instead of the symbol A and the term sensitivity matrix also the symbol K (matrix of
calibration coefˇcients, matrix of linear response constants etc) is used. Because of
the direct metrological and analytical meaning of the sensitivities aij in the A-matrix
the term sensitivity matrix is preferred.
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used. In the case that the preparation of samples of deˇned composition
is impossible, then the samples should be selected as representative and as
uncorrelated as possible (natural design, see Martens and N�s [1989]).

The prediction of analytical values X according to the classical indirect
calibration model follows Eq. (6.75):

X̂ = Y Â
+

(6.79)

The desired independence between the variables of the different analyt-
ical signals corresponds directly with the selectivity of the analytical system
(Kaiser [1972]; Danzer [2001], and Sect. 7.3). In case of multivariate cal-
ibration, the selectivity is characterized by means of the condition number

cond(A) = kAk � kA�1k (6.80)

where kAk is the matrix norm of A and kA�1k the norm of the inverse
matrix. The matrix norm of A is calculated from

p
�max , the square root of

the largest eigenvalue �max, and the norm of A�1 from the reciprocal square
root of the lowest eigenvalue �min:

cond(A) =

p
�maxp
�min

(6.81)

Equation (6.79) is valid for exactly determined systems (m = n). In case of
overdetermined systems, m > n, the condition number is given by

cond(A) =
√

cond(ATA) (6.82)

If systems are well-conditioned the selectivity is expressed by condition
numbers close to 1.

The uncertainty in multivariate calibration is characterized with respect
to the evaluation functions at Eqs. (6.75) and (6.79). The prediction of a
row vector x of dimension n from a row vector y of dimension m results
from

x = y AT(A AT)�1 (6.83)

The relative uncertainty for the prediction of the x-values can be esti-
mated by

kıxk
kxk = cond A

(kıyk
kyk +

kıAk
kAk

)
(6.84)

where kıyk=kyk is the relative uncertainty of the y -values (error of measure-
ment) and kıAk=kAk the relative uncertainty of the estimation of A (mod-
eling error). The condition number is calculated from Eqs. (6.80){(6.82).

6.4.2
Inverse Calibration

The classical direct or indirect calibration is carried out by OLS minimiza-
tion according to Gauss. Error-free analytical values x are assumed or at
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least that the errors in x are very small compared with those of the y -values
(Danzer and Currie [1998]). Additionally all the components in the an-
alytical system must be known and included in the calibration. If these
preconditions are not fulˇlled the inverse calibration must be applied.

The inverse calibration regresses the analytical values (concentrations),
x, on the measured values, y . Although with it a prerequisite of the Gaussian
least squares minimization is violated because the y -values are not error-
free, it has been proved that predictions with inverse calibration are more
precise than those with the classical calibration (Centner et al. [1998]).
This holds true particularly for multivariate inverse calibration.

In chemometrics, the inverse calibration model is also denoted as the
P-matrix model (the dimension of P is m � n):

X = Y P (6.85)

The calibration coefˇcients are elements of the matrix P which can be esti-
mated by

P̂ = Y+ � X = (YTY)�1YTX (6.86)

The analysis of an unknown sample is carried out by multiplication of
the measured spectrum y by the P-matrix

x̂ = y P̂ (6.87)

In the case that the original variables, the measured values y, are used for
inverse calibration, there are no signiˇcant advantages of the procedure
apart from the fact that no second matrix inversion has to be carried out
in the analysis step; see Eq. (6.87). On the contrary, it is disadvantageous
that the calibration coefˇcients (elements of the P-matrix) do not have any
physical meaning because they do not re�ect the spectra of the single species.
In addition, multicollinearities may appear which can make inversion of the
Y-matrix difˇcult; see Eq. (6.86).

On the other hand, when latent variables instead of the original vari-
ables are used in inverse calibration then powerful methods of multivariate
calibration arise which are frequently used in multispecies analysis and sin-
gle species analysis in multispecies systems. These so-called \soft modeling
methods" are based, like the P-matrix, on the inverse calibration model by
which the analytical values are regressed on the spectral data:

X = Y B (6.88)

where B is the (m � n)-matrix of calibration coefˇcients, in concrete terms
the matrix of B-coefˇcients. In contrast to the P-matrix, not all the di-
mensions of the spectra (the Y-matrix) are used but only those that are
signiˇcant are realized by certain principal components. Therefore, the esti-
mation of the matrix of B-coefˇcients can be carried out by PCR (Principal
Component Regression) or PLS (Partial Least Squares) Regression.

Both PCR and PLS form latent variables T (principal components, fac-
tors) from the original variables, viz., from the matrix of measured values
according to
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Y = T LT + EY (6.89)

where T is the factor (score) matrix and L the loading matrix with the di-
mension m�n; EY is the matrix of non-signiˇcant factors which is regarded
as an error matrix. Additionally, in PLS the matrix of analytical values (e.g.
concentrations) is decomposed in the same way:

X = T QT + EX (6.90)

PCR and PLS have in common the following steps:

(1) Estimation of a weight matrix (eigenvalues) V (from Y in PCR and
from Y and X in PLS)

(2) Calculation of the factor matrix T = ZV by means of the standardized
variables Z

(3) Calculation of the matrices P and Q according to

PT = T+Y (6.91)

QT = T+X (6.92)

In PCR the calibration coefˇcients (B-matrix) are estimated column by col-
umn according to

b̂ = V QT (6.93)

and

b̂0 = x� Y b̂ (6.94)

The prediction then is carried out by

x̂ = Y b̂ + b̂0 (6.95)

The signiˇcance and non-signiˇcance of principal components are decided
on the basis of the variance that is explained by each them. Normally, in
analytical methods the main variance is caused by the analyte concentra-
tion. But sometimes properties of the sample, such as moisture or surface
roughness, or effects of the measuring procedure such as spectral baselines
or scattered light, can exceed the effect of analyte concentration. Therefore,
additional tests should be made as to what degree the principal components
postulated to be non-signiˇcant by the software are correlated with the an-
alytical values. Principal components which are highly correlated with the
variable of interest (e.g., concentration) should be included in the calibration
procedure notwithstanding their share in the variance.

In PLS both the matrices of measured values Y and analytical values X
are decomposed according to Eqs. (6.89) and (6.90): Y = TPT + EY and
X = T QT + EX and thus relations between spectra and concentrations are
considered from the outset. The B-matrix of calibration coefˇcients is esti-
mated by

B̂ = V(PT V)�1QT (6.96)
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Because the Y-matrix and X-matrix are interdependently decomposed the
B-matrix ˇts better and more robust than in PCR the calibration. The eval-
uation is carried out by Eq. (6.88) according to X̂ = YB̂. The application of
PLS to only one y -variable is denoted as PLS 1. When several y -variables
are considered in the form of a matrix the procedure is denoted PLS 2
(Manne [1987]; H�skuldsson [1988]: Martens and N�s [1989]: Faber
and Kowalski [1997a, b]).

6.4.3
Validation of Multivariate Calibration

The reliability of multispecies analysis has to be validated according to the
usual criteria: selectivity, accuracy (trueness) and precision, conˇdence and
prediction intervals and, calculated from these, multivariate critical values
and limits of detection. In multivariate calibration collinearities of vari-
ables caused by correlated concentrations in calibration samples should be
avoided. Therefore, the composition of the calibration mixtures should not
be varied randomly but by principles of experimental design (Deming and
Morgan [1993]; Morgan [1991]).

Selectivity. In general, selectivity of analytical multicomponent systems can
be expressed qualitatively (Vessman et al. [2001]) and estimated quan-
titatively according to a statement of Kaiser [1972] and advanced models
(Danzer [2001]). In multivariate calibration, selectivity is mostly quantiˇed
by the condition number; see Eqs. (6.80){(6.82). Unfortunately, the condi-
tion number does not consider the concentrations of the species and gives
therefore only an aid to orientation of maximum expectable analytical er-
rors. Inclusion of the concentrations of calibration standards into selectivity
models makes it possible to derive multivariate limits of detection.

Precision. The uncertainty of calibration and prediction of unknown concen-
trations are expressed by the standard error of calibration (SEC), deˇned as

ŝcal =

√√√√√ n∑
i=1

(
yicalc � y (cs)

itrue

)2

n
(6.97)

and the standard error of prediction (SEP), deˇned as

ŝpred =

√√√√√ n∑
i=1

(
yicalc � y (ts)

itrue

)2

n
(6.98)

where y (cs)
itrue

are the true values of the calibration samples (cs, e.g. standards),

y (ts)
itrue

the true values of test samples (ts) with which the prediction power
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independently is estimated, and yicalc are the respective y -values calculated
by the model.

Another measure for the precision of multivariate calibration is the so-
called PRESS-value (predictive residual sum of squares, see Frank and
Todeschini [1994]), deˇned as

s2
res =

n∑
i=1

e2
i =

n∑
i=1

(yicalc � yitrue)
2 (6.99)

It can be calculated as usual for SEP, see Eq. (6.98) by use of test samples.
It is also possible to estimate the PRESS-value on the basis of standard
samples only applying cross validation by means of the so-called hat matrix
H (Faber and Kowalski [1997a, b]; Frank and Todeschini [1994]):

H = X(XT X)�1XT (6.100)

The n�n hat matrix transforms the vector of the measured y -values to the
vector of the estimated-values. An element hij of the hat matrix is calculated
by

hij = xTi (XT X)�1xj (6.101)

From the elements of the hat matrix some important relations can be de-
rived, e.g. the rank of the X-matrix from the sum of the signiˇcant diagonal
elements of the hat matrix

rank(X) =
n∑
i=1

hii (6.102)

(the rank of the hat matrix is equal to its trace) and the residuals

ê = y� ŷ = y� X(XT X)�1XT y = [I� X(XT X)�1XT ] y = [I� H] y (6.103)

The residuals can be calculated from a given set of calibration samples in
a different way. Cross validation is an important procedure to estimate a
realistic prediction error like PRESS. The data for k samples are removed
from the data matrix and then predicted by the model. The residual errors
of prediction of cross-validation in this case are given by

e(cv) =
ê(k)

1� hkk
(6.104)

The PRESS value of cross-validation is given by the sum of all the k varia-
tions

s2
(cv)res =

∑
ê2

(cv) (6.105)

Prediction limits for the estimation of an unknown concentration xi can
be calculated. The calculation depends on the speciˇc multivariate calibra-
tion model

�xi;pred = x̂ i ˙ �x̂ = x̂ i ˙ sx t1�˛;� (6.106)



164 6 Calibration in Analytical Chemistry

where xi;pred is the mean of the predicted unknown concentration and sx is
the standard deviation of prediction estimated from

s2
x =

n∑
i=1

(yi � ŷi)2

m � p
(6.107)

with t1�˛;� being the Student-t statistic for � degrees of freedom at the
1� ˛ conˇdence level. The variance s2

x depends on the number of sensors
or wavelengths, m, the number of species, n, the number of parameters p
and a factor � which takes the form

� = (BT B)�1 (6.108)

in the case of classical multivariate calibration. For inverse calibration,

� = 1 + yT
0 (YTY)�1y0 (6.109)

and for cross-validation when the leverage values are applied in calibration,

� = 1 + hkk (6.110)

Trueness. Absence of systematic errors can be tested traditionally by means
of recovery functions; see Sect. 6.1.2, Fig. 6.3C; Burns et al. [2002]. For this
reason the concentration estimated by the model, x̂, is compared with the
true concentration value, xtrue, by a regression model

x̂ = ˛ + ˇxtrue (6.111)

where the xtrue can be the known values of an independent set of test sam-
ples or reference values estimated on the same samples by means of an
independent method which yields true values as is well known. The regres-
sion coefˇcients have to be ˛ = 0 and ˇ = 1 where values outside of the
conˇdence interval ˙�˛ indicate additive (constant) systematic errors and
values exceeding the conˇdence interval 1˙�ˇ upwards or downwards show
proportional systematic errors. By means of recovery studies both accuracy
can be tested and precision can be estimated.

Multivariate limit of detection. Starting from a model like Eq. (6.74) in
which the background vector y0 is included:

y = AX + y0 (6.112)8

and its solution for the concentration vector

x = A+(y� y0) (6.113)

Bauer et al. [1991a] derived the following propagation of uncertainty for x

dx = �A+(dY� dY0 )X+x + dXX+x + A+(dy� dy0 ) (6.114)

8 To avoid confusion, A is used here as symbol for the sensitivity matrix; Bauer et
al. [1991a, b] use S for this purpose and B for the background vector (here y0).
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where the d-vectors and -matrixes are errors of the respective quantities.
From Eq. (6.114) the variances s2

xk
of the contents xk are obtained:

s2
xk

=
P∑

p=1

N∑
n=1

K∑
k=1

(A+X+x)2(s2
Y + s2

Y0
)

+
N∑
n

K∑
k

(X+x)2s2
X +

P∑
p

(A+)2(s2
y + s2

y0
) :

(6.115)

By means of these variances the limits of detection xkLD of the k analytes
under investigation can be estimated in analogy to the univariate case (see
Sect. 7.5), namely on the basis of the critical values ynetk;c of the net signals
their vector is denoted yk;c in the last term of Eq. (6.116b):

xkLD = u˛ � sxk (6.116a)

xkLD = u˛ �
√√√√ P∑

p=1

N∑
n=1

K∑
k=1

(A+X+x)2(s2
Y + s2

Y0
) +

N∑
n

K∑
k

(X+x)2s2
X +

P∑
p

(A+)2(s2
yk;c

+ s2
y0

) (6.116b)

A detailed derivation can be found in Bauer et al. [1991b]. The limit
of detection according to Eq. (6.116a) corresponds to Kaiser's so-called 3�
criterion; see Sect. 7.5., Lorber and Kowalski [1988] as well as Faber and
Kowalski [1997b] take into account errors of the ˇrst and second kind. The
multivariate detection limits are estimated then in analogy to the univariate
limits being twice the 3� -limit (with u˛ = uˇ); see Sect. 7.5 and Ehrlich
and Danzer [2006]).

6.5
Calibration by Artiˇcial Neural Networks

Neural networks are systems of information processing that consists of a
large number of units which transmit information to another by means
of directed connections activating other units. Artiˇcial neural networks
(ANN) are simpliˇed and idealised replicas of biological neural networks.
An ANN can be considered as a parallel machine that uses a large number of
processor units, the neurons, with a high degree of connectivity (Zupan and
Gasteiger [1991]; Frank and Todeschini [1994]; Danzer et al. [2001]).
Neurons are arranged in layers of which modern ANNs contain at least
three:

� The input layer, their neurons correspond to the prediction variables
(the analytical values xi); input layers are counted to be layer 0

� A hidden layer (sometimes more than one), representing the model of
calculation and having not connection to the outside world

� The output layer, producing the output quantities (the measured val-
ues yj)



166 6 Calibration in Analytical Chemistry

Fig. 6.18. Schematic representation of a multilayer perceptron with two input neurons,
three hidden neurons (with sigmoid transfer functions), and two output neurons (with
sigmoid transfer functions, too)

Fig. 6.19. Components and connection of two artiˇcial neurons, according to Danzer et
al. [2001]

In general, there is no connection between neurons within the same layer,
but each neuron is connected with each neuron of the next layer. The struc-
ture of an ANN can be seen from Fig. 6.18.

Neural networks are characterized by their weights, wij , and their respec-
tive sums are given by the weight matrixes, W(j), between the diverse layers.
The weights represent the strength of the directed connection between neu-
rons i and j ; see Fig. 6.19.

Neurons have one or more inputs, an output, oi, an activation state, Ai,
an activation function, fact, and an output function, fout. The propagation
function (net function)

neti(t) =
k∑
i=1

OiWij (6.117)

characterizes how the input of the neuron are computed from the outputs
Oi of the other neurons and the respective weights Wij .

The activation state Ai of a neuron i at time (or iteration step) t + 1 is
given by
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Ai(t + 1) = fact

(
Ai(t); neti(t); �i

)
(6.118)

with fact being the activation function (transfer function), neti(t) the input
and �i the threshold value (bias) of the neuron. This threshold must be
exceeded so that the neuron becomes active (\ˇres").

The output Oi(t) of the neuron is estimated by means of the output
function fout

Oi(t) = fout

(
Ai(t)

)
(6.119)

Often the identity function is chosen as output function. Then the output
becomes

Oi = fact

(
neti(t)

)
(6.120)

ANNs need supervised learning schemes and can so be applied for both
classiˇcation and calibration. Because ANNs are nonlinear and model-free
approaches, they are of special interest in calibration.

By means of the learning algorithm the parameters of the ANN are
altered in such a way that the net inputs produce adequate net outputs.
Mostly this is affected only by changing the weights (other procedures like
adding or removing of neurons and modiˇcation of activation functions are
rarely used; see Zell [1994]).

The most popular techniques of multilayer perceptrons (MLP) are back-
propagation networks (Wythoff [1993]; Jagemann [1998]). The weight ma-
trixes W are estimated by minimizing the net error

E =
1

2

n∑
i=1

(Yi � Oi)
2 (6.121)

on the basis of the generalized delta rule. According to this algorithm also
the weights of inner neurons can be modiˇed. The weights are estimated
from the net outputs Oi by means of Eqs. (6.117) and (6.120). Then the
error function of the neurons can be calculated according to

ıij =

⎧⎪⎨
⎪⎩
f 0act netij(Yij � Oij) if j is an output neuron

f 0act netij
nl∑
k=1

ıikWjk if j is an hidden neuron
(6.122)

where f 0act is the ˇrst derivation of the activation function, Yij the jth element
of the teaching input and nl the number of neurons in the respective hidden
layer (k is indexing the neurons in the next layer). The correction of the
weights in the nth run is carried out by

�Wjk(n + 1) = � ıij Oik + ˛ �Wjk(n) (6.123)

where � is the learning rate (step size parameter) and ˛ the momentum
term.

In case of MLP, the activation function has to be monotonous and dif-
ferentiable (because of Eq. 6.122). Frequently used is the sigmoid function
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Fig. 6.20. Sigmoid activation function with diverse values of the steepness parameter �

fact = Oj =
1

1 + exp(�� netj)
(6.124)

with � being the steepness parameter of the activation function; see Fig. 6.20.
The outputs are between 0 and 1.

Although for each neuron a speciˇc activation function can be deˇned,
the most applications use the same function for the neurons of a given layer.
When the activation function has a limited range, then X and Y must be
scaled correspondingly.

The threshold values � of the neuron are considered by using an addi-
tional neuron in the hidden layer (\on neuron", bias neuron) the output of
which is always +1.

The popular radial basis function nets (RBF nets) model nonlinear rela-
tionships by linear combinations of basis functions (Zell [1994]; Jagemann
[1998]; Zupan and Gasteiger [1993]). Functions are called to be radial
when their values, starting from a central point, monotonously ascend or
descend such as the Cauchy function or the modiˇed Gauss function at
Eq. (6.125):

hj(xi) = exp

(
� (Xi �W(1)

j )2

r 2

)
(6.125)

where W(1) is the vector of the centres of the basis functions and r a scaling
parameter. Figure 6.21 shows the dependence of the Gaussian basis function
on the scaling factor. The local character of activation gets lost in case of
high values of r .

The determination of the weights W(2) of the output layer is simple in
so far as they base on a linear model and can be calculated in one step, in
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Fig. 6.21. Gaussian radial
basis function with di-
verse values of the scaling
parameter r

Fig. 6.22. Structure of a
RBF net with one hidden
layer with bias neuron
and one output unit as
used for single component
calibration (according
to Fischbacher et al.
[1997]; Jagemann [1998])

contrast to backpropagation nets in which the weights must be estimated
iteratively. The architecture of a RBF net is given in Fig. 6.22.

At ˇrst, the input of the hidden layer is calculated from the n � m net
input X and the k �m weight matrix W(1) according to

net(1)
i =

√√√√ k∑
j=1

(Xi �W(1)
j )2 (6.126)

With Eq. (6.126) and a Gaussian activation function the output of the hidden
neurons (the RBF design matrix) becomes
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Fig. 6.23. A Glucose proˇle of a single test person (comparable to that of Fig. 6.13),
cgluc reference value of glucose concentration, ı, and the predicted glucose values of NIR
measurements, �, evaluated by PLS. B Recovery function and ˇtted calibration line of the
PLS calibration (number of included wavelengths n = 56; 6 factors). C Recovery function
and ˇtted calibration line of the RBF calibration (number of included wavelengths n =
56; 10 hidden layers), according to Fischbacher et al. [1995]

O(1) = exp

(
�net(1)

r

)2

(6.127)

Neural networks are applied in analytical chemistry in many and di-
verse ways. Used in calibration, ANNs have especially advantages in case
of nonlinear relationships, multicomponent systems and single component
analysis in case of various disturbances.

The latter applies to NIR spectroscopy used for the non-invasive de-
termination of blood glucose by means of a ˇbre-optical measuring-head
(Jagemann et al. [1995]; M�uller et al. [1997]; Danzer et al. [1998]). In
addition to the weak overtone and combination bands resulting from glu-
cose, strongly disturbing absorption of water, that is the main component
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Fig. 6.24. Comparison for cross-validated PLS and RBF calibration model for different
test persons (Jagemann et al. [1995])

of living tissue, takes place. Furthermore, baseline effects and some time-
dependent biological processes like pulse and respiration appear. Therefore,
multicomponent calibration by PLS 1 (see Sects. 6.2.6 and 6.4.2) and cali-
bration by a RBF net have been applied.

The results of PLS- and RBF calibration are compared in Fig. 6.23. It can
be seen that the calibration points in case of the RBF net deviate slightly
lower than that of PLS. This fact can be expressed quantitatively by means
of the RMSP value (root mean standard error of prediction):

RMSP =

√√√√√ n∑
i=1

(x̂i � xi)2

n
(6.128)

that can be estimated by using leaving-one-out cross validation. Concerning
the calibration represented in Fig. 6.23, PLS is characterized by RMSP =
1:8 mmol/L and RBF by RMSP = 1:4 mmol/L.

More generally, the comparison is represented in Fig. 6.24 where the
RMSP values of 14 calibration models (n = 349 test persons) are given. In
most cases the RBF models greatly surpasses the PLS models.
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7 Analytical Performance Characteristics

As a measuring science, analytical chemistry has to guarantee the quality of
its results. Each kind of measurement is objectively affected by uncertain-
ties which can be composed of random scattering and systematic deviations.
Therefore, the measured results have to be characterized with regard to their
quality, namely both the precision and accuracy and { if relevant { their
information content (see Sect. 9.1). Also analytical procedures need char-
acteristics that express their potential power regarding precision, accuracy,
sensitivity, selectivity, speciˇcity, robustness, and detection limit.

Notwithstanding that a large number of deˇnitions exist that have been
produced and harmonized by many commissions of international organi-
zations (e.g., IUPAC, IUPAP, ISO, BIPM, IEC, IFCC, OIML), there are still
ofˇcial recommendations and deˇnitions which are not completely satisfy-
ing and sometimes confusing (Prichard et al. [2001]).

In general, it is well-known that analytical results can be assessed and
how it is done in detail. On the other hand, an assessment of analytical
operations, carried out within the hierarchy of analytical techniques, meth-
ods, procedures, and SOPs, takes place scarcely according to standardized
viewpoints.

Figure 7.1 shows how the terms of analytical proceedings (see Chap. 9)
can be classiˇed as belonging to the steps of the analytical process which is
differently represented here in comparison to Fig. 2.1. The classiˇcation is
descended from Gottschalk [1975], Danzer et al. [1987], Taylor [1983],
and Prichard et al. [2001]. Table 7.1 illustrates by examples how different
the degree of concretization of analytical proceedings is.
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Problem

Object

Sampling

Pre-treatment

Excitation

Analytical
interactions

Analytical
Technique

Analytical
Method

Analytical
Procedure

Standard Operating
Procedure (SOP, see

ISO 78-2 [1999]).
Complete Analytical
Procedure, according

to KAISER [1965]

Detection

Evaluation

Validation

Fig. 7.1. The meaning of the terms of analytical proceedings in relation to the steps of
the analytical process

Table 7.1. Examples of the various degree of concretization of analytical activities

Ex Analytical Analytical
Analytical procedure Standard operating procedure

# technique method

1 OES ICP-OES Direct ICP-OES of Complete analytical procedure
wines see Thiel and Danzer [1997]

2 GC GC-MS SPME-CGC of wines Complete analytical procedure
as described by
De la Calle Garc��a et al. [1998]

3 IR NIR Non-invasive NIR Complete analytical procedure
of blood-glucose see Danzer et al. [1998]

7.1
Reliability of Analytical Measurements

For the characterization of the reliability of analytical measurements the
terms precision, accuracy, and trueness have a deˇnite meaning.

7.1.1
Precision

Precision is deˇned as \the closeness of agreement between independent
test results obtained under stipulated conditions" (Fleming et al. [1996b];
Prichard et al. [2001]). Precision characterizes the random component of
the measurement error and, therefore, it does not relate to the true value.
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According to the conditions under which the measurements are carried out,
it is to distinguish between

{ Repeatability, the \precision under repeatability conditions" (ISO 3534-1
[1993]) and

{ Reproducibility, the \precision under reproducibility conditions" (ISO
3534-1 [1993]).

Repeatability is \the closeness of the agreement between the results of succes-
sive measurements of the same measurand carried out under the same con-
ditions of measurement". Repeatability conditions include: the same mea-
surement procedure, the same observer, the same measuring instrument,
used under the same conditions, the same location, and repetition over a
short period of time (ISO 3534-1 [1993]).

On the other hand, reproducibility is the \closeness of the agreement
between the results of measurements of the same measurand carried out un-
der changed conditions of measurement". The changed conditions include:
principle of measurement, method of measurement, observer, measuring
instrument, reference standards, location, conditions of use, and time. Such
variable conditions are typical for interlaboratory studies (laboratory inter-
comparisons).

It should be clearly distinguished whether given terms characterize an-
alytical results or methods. In this respect, there exist some contradictory
views, as can be illustrated by the example of repeatability. According to
ISO 3534-1 [1993] and Prichard et al. [2001] repeatability characterizes
\results of measurements", on the other hand, according to Fleming et al.
[1996a] repeatability \ is a characteristic of a method not of a result". Such
different interpretation of terms can occasionally be observed.

Quantiˇcation: Precision can be quantiˇed by suitable dispersion charac-
teristics. It is proposed to characterize precision by standard deviation, see
Eqs. (4.12){(4.14) and relative standard deviation, see Eq. (4.15) (Fleming
et al. [1996b]; Prichard et al. [2001]). Because of some uncertainty, the
characterization of analytical proceedings in their hierarchy (see Fig. 7.1)
and of analytical results, respectively, will be considered in detail.

� Precision of analytical techniques should only be described verbally or
comparatively (e.g., \the precision of coulometry is high" or \the preci-
sion of spectrophotometry is better then that of OES").

� Precision of analytical methods is usually characterized semi-quantita-
tively by giving a rough value of the relative standard deviation (e.g.,
\the precision of arc-excited OES is about 20%").

� Precision of an analytical procedure is commonly expressed by an average
relative standard deviation (e.g., \the precision of the determination of
Mn in steel by XRF in a given routine control is 1.5%").
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� Precision of a complete analytical procedure, i.e., a standard operation
procedure (SOP), should be characterized by the uncertainty of measure-
ment (absolute or relative) as exactly as validation it stipulates.

� Precision of a result of measurement (y ) is characterized by the conˇdence
interval of the result (see Sect. 4.1.2, Fig. 4.5 and Eqs. (4.16) and (4.17))
or the corresponding uncertainty interval (see Sect. 4.2 and Eqs. (4.29){
(4.32)).

� Precision of an analytical result (x) is expressed by the prediction inter-
val which include not only the dispersion of the measured results but
additionally the uncertainty of the calibration on which the estimation
of x is based; see Sect. 6.2.2.

� Precision of a measuring system and with it also of signals and signal
functions obtained by instrumental analytical methods, is characterized
by the signal-to-noise ratio.

In analogy to other measuring sciences, also in analytical chemistry the
signal-to-noise ratio

S

N
=

y

sy
=

1

syrel

(7.1)

is used. The mean of y is mostly applied in the form of the background-
corrected net value ynet

S

N
=

y net

synet

=
y � y 0

synet

=
y � y0

synet

(7.2)

where y0 is the background signal (blank) and sy0 its standard deviation; see
Fig. 7.2.

y

0
y pp

t

N

Fig. 7.2. Signal function with
noise; Npp noise amplitude
(peak-to-peak noise)
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The net value y�y 0 may be also estimated by averaging of the individual
differences y � y0. In both cases using differences, the belonging standard
deviation synet increases in comparison with sy

synet =

√
(ny � 1) s2

y + (ny0 � 1) s2
y0

ny + ny0 � 2

(
ny + ny0

ny � ny0

)
(7.3)

provided that the standard deviations sy and sy0 of the analyte signal and
the background signal do not differ signiˇcantly from each other. In the
case that both are estimated by an equal number of measurements (ny =
ny0 = n) and sy � sy0 , Eq. (7.3) is simpliˇed as follows:

synet = sy

√
2

n
(7.4)

Noise N (t) is characterized by the following characteristics:

� Time average (temporal mean), N (t), where ideally is N (t) = 0, in case
that there exist a background, N (t) = y 0

� Noise amplitude (peak-to-peak noise), Npp = N (t)max � N (t)min; if the
difference cannot be estimated directly, an approximation can be ob-
tained by Npp � 2�y 0 (with P = 0:999)

� Noise variance (squared mean), � 2
N = N (t)2

� Standard deviation of noise, �N , which be roughly estimated by means
of the peak-to-peak distance according to

sN �
Npp

5
(7.5a)

(Doerffel et al. [1990]) and more exactly by

sN �
Npp

�
(7.5b)

where � can be found in tables (Sachs [1992]; Lieck [1998]).

Signal-to-noise ratio characterizes recorded signals and signal functions
with regard of their quality, i.e., their precision. Unfortunately, the signal-
to-noise is not uniformly used in analytical chemistry. In addition to the
deˇnitions given in Eqs. (7.1) and (7.2), there exist another one, related to
the peak-to-peak noise Npp :

snr(y ) =
y net

Npp
=

y � y 0

Npp
� y � y 0

2(�y 0)0:999
(7.6)

The signal-to-noise ratio snr(y ) deˇned in this way, can differ from S=N de-
ˇned by Eq. (7.2) considerably, namely according to S=N � (

5
√

n
2

)
snr(y ) =(

3; 536
p
n
)

snr(y ) and snr(y ) �
(

1
5

√
2
n

)
S=N =

(
0;2828p

n

)
S=N , respectively.
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Therefore, it is necessary to inform on the type of deˇnition which is
applied, snr(y ) or S=N , to avoid confusion.

The signal-to-noise ratio has been used in analytical chemistry since the
1960s. At ˇrst, atomic spectroscopy prepared the way for application, and
some other spectroscopic disciplines and chromatography are important
domains of use.

7.1.2
Precision of Trace Analyses

It is a well-known fact that the precision in trace analysis decreases with
diminishing concentration in a similar way as it does with decreasing sample
weight (Sect. 2.1). The dependency of the repeatability and reproducibility
standard deviation on the concentration of analytes has been investigated
systematically at ˇrst by Horwitz et al. [1980] on the basis of thousands of
pieces of interlaboratory data (mostly from food analysis). The result of the
study has been represented in form of the well-known \Horwitz trumpet"
which is represented in Fig. 7.3.

The Horwitz relationship agrees with the experience of analysts and
has been conˇrmed in various ˇelds of trace analysis, not only in its quali-
tative form but also quantitatively. Thompson et al. [2004] have estimated
the mathematical form of the Horwitz functiontextscHorwitz function be-
ing sH = 0:02 x0:85, or linearized, log sH = 0:85 log x. The agreement of this
equation is usually good and, therefore, the Horwitz functiontextscHorwitz
function is sometimes used as a bench-mark for the performance of analyt-
ical methods. For this purpose, the so-called \Horrat" (Horwitz ratio) has
been deˇned, Horrat = sactual=sH , by which the actual standard deviation
is compared with the estimate of the Horwitz function. Serious deviations

Fig. 7.3. The so-called
\Horwitz trumpet": De-
pendency of the relative
standard deviation, rsd(x)
on the concentration (x)
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of the Horrat from 1 can be used to reject results from interlaboratory
comparisons (Thompson et al. [2004]).

In general, in trace analysis concessions must be made with regard to
precision and accuracy. However, accuracy has strictly to be distinguished
from precision.

7.1.3
Accuracy and Trueness

Accuracy is deˇned in the name of BIPM, IEC, IFCC, ISO, IUPAC, IUPAP,
and OIML as \the closeness of agreement between the result of a measurement
and the true value of the measurand" (ISO 3534-1 [1993]; Fleming et al.
[1996b]). Accuracy characterizes the absence of a relevant bias of a measured
value. As can be seen from Fig. 4.1, accuracy is a measure that combines
the effects of both random and systematic deviations. Therefore, a bias can
only be detected if it exceeds the range of random error.

In contrast to accuracy which relates to single test results, trueness is de-
ˇned as \closeness of agreement between the average value obtained from a
large series of test results and an accepted reference value" (IUPAC Orange
Book [1997, 2000]; Fleming et al. [1996c]). Both terms, conventional true
value and accepted reference value describe practical approaches to a true
value which is by nature indeterminable (ISO 3534-1 [1993]). Conventional
true value is deˇned as a \value attributed to a particular quantity and
accepted, sometimes by convention, as having an uncertainty appropriate
for a given purpose" (ISO 3534-1 [1993]; Prichard et al. [2001]). Accuracy
is a qualitative concept (ISO 3534-1 [1993]). However, in analytical prac-
tice, accuracy is frequently characterized in a quantitative way by the bias
(Fleming et al. [1996b]); see Eq.(4.1).

The ISO recommendation [1993] should be followed and accuracy used only as a
qualitative term. In case of quantitative characterization (by means of the bias), a
problem may appear which is similar to that of precision, namely that a quality cri-
terion is quantiˇed by a measure that has a reverse attribute regarding the property
which have to be characterized. If the basic idea of measures can be accepted, which
is that a high quality becomes a high value and vice versa, bias is an unsuited mea-
sure of accuracy (and trueness). In this sense, accuracy could be deˇned by means
of a measure proposed in the next paragraph.

7.1.4
Remark on the Quantiˇcation of Precision, Accuracy and Trueness

Precision, accuracy and trueness are important performance characteristics
in analytical chemistry. Each of them is well-deˇned in a positive sense
(\closeness of agreement . . . "). However, their quantifying is done by means
of unfavourable measures, namely by error quantities like, e.g., standard
deviation and bias, respectively, which indeed do quantify imprecision and
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inaccuracy. This inconsistency has been stated by Kaiser and Specker
[1956] who criticized that \It is unsightly that the conˇdence interval is
narrow when the conˇdence is high and vice versa". Therefore, they proposed
an alternative measure to characterize properly the precision of an analytical
measurement, namely in the form of the reciprocal value of the relative
standard deviation

� =
x

s
=

1

srel
(7.7)

It is difˇcult to comprehend why this measure has not been applied in
analytical chemistry. Instead of this, in the last decades the signal-to-noise
ratio has increasingly been used. Signal-to-noise ratio, see Eq. (7.1), is the
measure that corresponds to � in the signal domain. In principle, quan-
tities like S=N (Eq. (7.1)) and � (Eq. (7.7)) could represent measures
of precision, but they have an unfavourable range of deˇnition, namely
range[� ] = range[S=N ] = 0 : : :1.

Useful measures of precision could be derived from relative dispersion
measures, namely by their differences from 1, e.g., the precision of an ana-
lytical procedure

prec(x) = 1� rsd(x) = 1� sx
x

(7.8)

The numerical value of this measure increases with decreasing error. The
range is normally range[prec(x)] = 1 : : : 0, i.e. for dispersion-free mea-
surements (sx ! 0) the precision becomes 1. On the other hand, if the
dispersion amounts to 100% (sx ! x) the precision becomes 0. Therefore,
high precision is characterized by a high value of prec(x). The precision
becomes negative if the error exceeds the measured value what corresponds
to rsd(x) > 100%. But such cases should appear very rarely in analytical
chemistry.

The precision of an analytical result can be quantiˇed by means of the
relative conˇdence interval

prec(x) = 1� �x

x
(7.9)

The interpretation is similar to that of the precision of analytical procedures.
Accuracy and trueness have been deˇned above and it was mentioned

that these terms base on qualitative concepts (ISO 3534-1 [1993]). If it is
necessary to have quantitative information, the bias, which is a measure of
inaccuracy, should not be used to quantify accuracy and trueness, respec-
tively. Instead of this, the following measures might be applied

acc(x) = 1� bias(x)

�x
(7.10)

and

acc(x) = 1� bias(x)

�x
= trn(x) : (7.11)
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Table 7.2. Analytical results of trace elements in blood plasma analyses (Streck [2004])

Analyte
Reference values/ Analytical results Recovery Precision Trueness Comment:

µmol/L x ˙ �x=(µmol/L) prec(x) acc(x) The result is
Ca 2200 2170˙ 170 0.986 0.922 0.824 Correct

Cu 20.0 19:5˙ 0:4 0.975 0.979 {0.250 Incorrecta

Zn 23.0 22:8˙ 0:9 0.991 0.961 0.778 Correct
a The reference value is outside the (upper) conˇdence limit and therefore the result is
classiˇed to be incorrect. This can also be proved by the t-test

These expressions are characterized by a deˇnition range range[acc(x)] =
1 : : : �1. The following cases can appear:

(i) If the range of accuracy (trueness) is 1 	 acc(x) > 0, then the measured
result is conventionally correct (see Fig. 4.1). The more the systematic
error decreases the more acc(x) approaches to 1. On the other hand,
acc(x) approaches to 0 with increasing bias.

(ii) If the range is acc(x) < 0, then the measured result is conventionally
incorrect. The evidence of that can be seen in Fig. 4.1 and shown by
means of the t-test, see Eq. (4.45).

The advantage of the measures as suggested here is that they point into the
same direction as it is done by the verbal deˇnitions. High precision and a
high degree of accuracy, respectively, are characterized by high numerical
values of the measures which approximate to 1 in the ideal case (absence
of random and systematic deviations, respectively) and approximate to 0 if
the deviations approach to 100%. In the worst cases, the numerical values
fprec(x)g and facc(x)g become negative which indicates that the relative
random or systematic error exceeds 100%.

The example given in Table 7.2 is taken from a study to verify the true-
ness of clinical analyses (Streck [2004]). Recovery rates have been used as
the criterion to accept a good agreement between the measured results and
the reference values as it is frequently done by analysts.

The evaluation by means of the performance characteristics prec(x) and
acc(x) shows that they are meaningful measures which can usefully be ap-
plied in the daily analytical practice. From the example can also be seen
that the recovery rate { solely used { can mislead the analyst if the relation
of bias to conˇdence interval is disregarded.

7.2
Sensitivity

Sensitivity is a signiˇcant characteristic in all scientiˇc disciplines which
have to do with measurements. Sensitivity is deˇned from the viewpoint
of instrumental measuring as \the change in the response of a measur-
ing instrument divided by the corresponding change in the stimulus" (ISO
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Fig. 7.4. Sensitivity in the case of a calibration straight line (a) and a curved calibration
function (b)

3534-1 [1993]; IUPAC Orange Book [1997, 2000]; Fleming et al. [1997b],
Prichard et al. [2001]).

In analytical chemistry, the sensitivity SAA of an analytical procedure (of
the determination of an analyte A) is deˇned as the change in the measured
value divided by the corresponding analytical value (analyte amount or
concentration, respectively):

SAA =
dyA
dxA

(7.12)

In case of a linear calibration function (see Chap. 6), the sensitivity
becomes SAA = �yA=�xA and corresponds to the slope b of the calibration
straight line; see Fig. 7.4a. If the calibration function is a curved line, then
the sensitivity will vary according to the analyte amount or concentration
as Fig. 7.4b shows.

It should be noted that the term \sensitivity" sometimes may alternatively be used,
namely in analytical chemistry and other disciplines. Frequently the term \sensitiv-
ity" is associated with detection limit or detection capability. This and other misuses
are not recommended by IUPAC (Orange Book [1997, 2000]). In clinical chem-
istry and medicine another matter is denoted by \sensitivity", namely \the ability
of a method to detect truly positive samples as positive" (O'Rangers and Condon
[2000], cited according to Trullols et al. [2004]). However, this seems to be more
a problem of trueness than of sensitivity.
It is regrettable that a uniˇed use of such an essential term like sensitivity could
not be reached until now. All the more so, as the term \sensitivity" is deˇned in
metrology and analytical chemistry in the same sense as it is used in daily life,
namely as \reactio per actio" (effect/cause, output/input). A person is called to be
sensitive if it strongly reacts on a given impulse (accusation, nudge, or stroke of
fate, respectively), and insensitive vice versa. The stock market reacts sensitive (or
insensitive) on changes of political and economical facts.
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Fig. 7.5. Enhancement
of signal intensity by
merging two single signals
into a latent signal

Some analytical methods open possibilities to evaluate more than only
one signal (e.g., OES, MS, XRF). In such cases, the relevant signals yA1 ; yA2 ; : : :
(the evaluation of each of which corresponds to another analytical procedure,
see Fig. 7.1), do have different sensitivities SAA1 ; SAA2 ; : : :, from which the best
will be selected, as a rule.

On the other hand, it is possible to evaluate simultaneously more then
one signal per analyte (Danzer and Wagner [1993]) and enhance so the
sensitivity of the determination of a given analyte A. The principle can
be seen in Fig. 7.5 in which the intensities of two signals yA1 and yA2 are
represented towards each other. The intensity of the combined signal, which
is in fact a latent signal, is given by

yAlatent = yA1+2 =
√
y 2
A1

+ y 2
A2

(7.13)

When merging more than two signals, yAlatent is obtained either by the n-
dimensional principle of Pythagoras or { better { by principal component
analysis (PCA, eigenanalysis; see Sect. 6.3; Danzer [1990]).

Because all the intensities in Fig. 7.5, yA1 , yA2 , and yAlatent , are caused by
the same analyte concentration, the sensitivity also increases according to

SAlatent = SA1+2 =
√
S2
A1

+ S2
A2

(7.14)

By multisignal evaluation, detection capability can be improved as has
been shown for OES and MS by Danzer and Venth [1994] and Venth et
al. [1996].

In multicomponent systems, the number of signals is (at least) equal in
size to the number of components:
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yA = yA0 + SAAxA + SABxB + � � �+ SANxN + eA
yB = yB0 + SBAxA + SBBxB + � � � + SBNxN + eB

...
yN = yN0 + SNAxA + SNBxB + � � �+ SNNxN + eN

(7.15)

The sensitivity of each component is given by SAA; SBB; : : : ; SNN , analogous
to Eq. (7.12). The interferences which appear between the species can be
characterized by cross sensitivities as deˇned in Eq. (3.11):

SAi =
@yA
@xi

(7.16)

More extensive, multicomponent system are described by the sensitivity
matrix (matrix of partial sensitivities according to Kaiser [1972], also called
K-matrix according to Jochum et al. [1981]):

S =

⎛
⎜⎜⎝
SAA SAB � � � SAN
SBA SBB � � � SBN

...
...

...
SNA SNB � � � SNN

⎞
⎟⎟⎠ (7.17)

In the ideal case only the diagonal elements of the sensitivity matrix
are different from zero. Then no component disturbs any other and the
analytical procedure works selectively (see Sect. 7.3). The K-matrix is deˇned
analogously except that the elements are called kIJ , their deˇnition is the
same as the SIJ according to Eq. (7.16).

It may be useful to characterize multicomponent analyses not only by
the single sensitivities of each component, but additionally by a total mul-
ticomponent sensitivity Stotal. In the case of undisturbed measurements it is
given by

Stotal =
N∏
i=A

Sii (7.18)

If interferences and overlappings appear, the total (multicomponent) sen-
sitivity is calculated as the determinant of the (squared) sensitivity matrix
(Eq. (7.17)); (Kaiser [1972]; Sharaf et al. [1986]; Bergmann et al. [1987];
Massart et al. [1988]):

Stotal = jdet(S)j (7.19)

In case of serious overlappings, multivariate techniques (see Sect. 6.4) are
used and p � n sensors (measuring points zk) are measured for n com-
ponents. From this an overdetermined systems of equations results and,
therefore, non-squared sensitivity matrixes. Then the total multicomponent
sensitivity is given by

Stotal =
√

det(STS) (7.20)

(Sharaf et al. [1986]; Bergmann et al. [1987]; Massart et al. [1988]).
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Some simple examples should illustrate the problem of sensitivity in multicomponent
systems. At ˇrst, single component analysis of a system that contains 1 mol/L of the
analyte A as well as 0.1 and 0.1 mol/L of the accompanying components B and C , i.e.
the concentration vector is x = (1; 0:1; 0:1); let the sensitivity be SAA = 5 au/(mol/L)1

and the cross sensitivities SAB = 0:1 au/(mol/L) and SAC = 0:2 au/(mol/L)

(i) Analysis of A in presence of the disturbing components yields the following
real sensitivity according to Eq. (7.13): SAA;i = (5 + 0:01 + 0:01) au/(mol/L) =
5.03 au/(mol/L).

(ii) In case that the concentrations of all the three components are equal, e.g.
x = (1; 1; 1) it results for the real sensitivity: SAA;i = (5 + 1 + 2) au/(mol/L) =
8.00 au/(mol/L).

(iii) In case of simultaneous multicomponent analysis, at ˇrst it should be assumed
a full selective analytical procedure corresponding to the sensitivity matrix S(1)

S(1) =

⎛
⎝ 5 0 0

0 3 0
0 0 6

⎞
⎠ ; S(2) =

⎛
⎝ 5 0:1 0:2

0:1 3 0:1
0:1 0:2 6

⎞
⎠ ; S(3) =

⎛
⎝ 5 1 2

1 3 1
1 2 6

⎞
⎠ :

The three single sensitivities can be found at the diagonal of the matrix
S(1). The total multicomponent sensitivity according to Eq. (7.18) is Stotal =
90 au3/(mol/L)3.

(iv) Multicomponent analysis in the case of slight disturbances as expressed by
the sensitivity matrix S(2). According to Eq. (7.19) the total multicomponent
sensitivity is Stotal = det(S(2)) = (5� 3� 6 + 0:1� 0:1� 0:1 + 0:2� 0:1� 0:2)�
(0:2�3�0:1+5�0:1�0:2+0:1�0:1�6) = (90:005�0:22) = 89:785 au3/(mol/L)3.

(v) Serious disturbances as given by the sensitivity matrix S(3) results in the fol-
lowing total sensitivity: Stotal = det(S(3)) = (5� 3� 6 + 1� 1� 1 + 2� 1� 2)�
(2� 3� 1 + 5� 1� 2 + 1� 1� 6) = (95� 22) = 73 au3/(mol/L)3.

7.3
Selectivity and Speciˇcity

The concepts selectivity and speciˇcity are associated with real analytical
multicomponent systems. Both selectivity and speciˇcity refer to a given
state of the analytical system as well as the analytical method, i.e., a com-
pletely deˇned procedure (SOP), as characterized in Fig. 7.1. Each change
in operating and physicochemical conditions like pH value, temperature as
well as changed composition of the system (accompanying species, mask-
ing reagents etc) will alter the procedure and therefore cause a change of
sensitivity and speciˇcity.

In such a well-deˇned analytical system the term selectivity is relevant
to multicomponent analysis. Selectivity of an analytical procedure character-
izes the extent to which n given analytes can be measured simultaneously by
n sensors (detecting channels) without interferences by other components

1 au: arbitrary unit
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and, therefore, can be detected or determined independently and undis-
turbedly (Kaiser [1972]; Danzer [2001, 2004]).

On the other hand, speciˇcity refers to single component analysis and
means that the one individual analyte can be undisturbedly measured in
a real sample by a speciˇc reagent, a particular sensor or a comparable
measuring system (e.g., measurement of emitted or absorbed radiation at a
ˇxed wavelength).

Selectivity and speciˇcity are important performance characteristics of analytical
procedures, especially in connection with validation processes. Nevertheless, both
terms are used mostly verbal and a quantiˇcation is avoided, as a rule (IUPAC;
see Vessman et al. [2001]). Moreover, the concepts of selectivity and speciˇcity
are used interchangeably and synonymously. Occasionally, speciˇcity is regarded
as an intensiˇcation of selectivity, viz. the ultimate of selectivity (den Boef and
Hulanicki [1983]; Persson and Vessman [1998, 2001]; Prichard et al. [2001]).

A clear differentiation between selectivity and speciˇcity was ˇrstly given
by Kaiser [1972] together with a quantiˇcation of the both characteristics.
According to him an analytical procedure is known as \selective" if it can de-
tect and determine simultaneously several components independently from
each other. On the other hand, a procedure is known as \speciˇc" if only
one species can be detected and determined independently from all the other
components which are present in the sample but does not contribute to the
signal in this case.

Starting from a relationship like Eq. (6.70a), Kaiser [1972] deˇned sensitivity, partial
sensitivities (cross sensitivities, Eq. (7.16)), and the sensitivity matrix Eq. (7.17). From
these quantities he derived the following measures:

� Selectivity:

� = min
I=1:::N

⎛
⎜⎜⎜⎝

SIJ
N∑
J=1

∣∣SIJ ∣∣� jSII j
� 1

⎞
⎟⎟⎟⎠ (7.21)

� Speciˇcity:

	A =
SAA

N∑
J=1

∣∣SJJ ∣∣� jSAAj
� 1 (7.22)

These quantiˇcations are inconvenient in two respects:

(i) The range2 of both quantities is Rf� g = Rf	Ag = (�1 : : : +1) and therefore,
an interpretation of a given value of � and 	A in the sense that the selectiv-
ity/speciˇcity is high or less, may be difˇcult.

(ii) The deˇnitions at Eqs. (7.21) and (7.22) do not consider the concentration of
the disturbing components. However, not only the cross sensitivity but also the
concentration of trouble-making components is crucial for the appearance and
intensity of disturbing effects; see Eq. (3.10)

2 The range Rfxg of values of a quantity x corresponds to its deˇnition range
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The last item has been taken into account by Fujiwara et al. [1980] who introduced
a \total selectivity" similar to Kaiser's selectivity (Eq. 7.21) but products SIJ �cJ instead
of the partial sensitivities. However, this deˇnition range is (�1 : : : +1). A more
acceptable range of \selectivity" results from Doerffel's \coefˇcient of selectivity
CSA" (Doerffel et al. [1986]):

CSA =
yA
N∑
I=A

yI

=
SAA � cA
N∑
I=A

SAI � cI
(7.23)

(SAA sensitivity of the detection channel A for the analyte A; SIA partial sensitivities
of all components I = A; B; : : : ; N at the detection channel A; cA concentration of the
analyte A; cI concentrations of all components I = A; B; : : : ; N ). But unfortunately,
Doerffel's \selectivity" according to Eq. (7.23) proves to be speciˇcity because it
corresponds to Kaiser's Eq. (4.54).

Starting from the sensitivity matrix, Eq. (7.17), as it is illustrated in Fig. 7.6a,
selectivity can be deˇned as follows:

sel(A; B; : : : ; N ) =

N∑
I=A

SII � xI
N∑
I=A

N∑
J=A

SIJ � xJ
(7.24)

Fig. 7.6. Selectivity matrix (a) and speciˇcity vector of the detecting channel A (b) with
the simpliˇed formulas (all the xI and xJ = 1) for selectivity and speciˇcity (on the right)
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In the ideal case, only the diagonal elements of the matrix at Eq. (7.17)
are different from zero and all the off-diagonal elements SIJ = 0 (for I /= J ),
sel(A; B; : : : ; N ) becomes 1. For real analytical systems, Eq. (7.24) expresses
a certain degree of selectivity depending on the sensitivities of the analytes
I , their contents xI , and all the cross sensitivities SIJ and contents xJ of
potentially disturbing species.

For the characterization of speciˇcity only the detecting channel of the
analyte, A, is relevant and therefore only the corresponding vector

sA = (SAA; SAB; : : : ; SAN ) (7.25)

is of interest. It contains the sensitivity SAA and the cross sensitivities SAJ at
the channel (sensor, wavelength, etc.) A; see Fig. 7.6b.

Speciˇcity of an analyte A with reference to the accompanying compo-
nents B; C; : : : ; N can be deˇned by

spec(A=B; : : : ; N ) =
SAA � xA
N∑
J=A

SAJ � xJ
(7.26)

The problem is illustrated in a simpliˇed way in Fig. 7.6. The quantities
sel(A; B; : : : ; N ) and spec(A; B; : : : ; N ) not only deˇne absolute characteris-
tics but also a certain degree of selectivity and speciˇcity of an analytical
procedure. The measures can take values from 1 for fully selective or to-
tally speciˇc procedures, respectively. The range of selectivity Rfselg and the
range of speciˇcity Rfspecg are given by

Rfselg = Rfspecg = (0 : : : + 1) (7.27)

For practical purposes, it can be supposed that values of sel > 0:9 and
spec > 0:9 indicate fair selectivity and speciˇcity, respectively, whereas
smaller values show more and more insufˇcient selectivity and speciˇcity.

To obtain some impression on the characteristics, the same examples as dealt with
in Sect. 7.2 (iii){(v) will be considered in Table 7.3. Some more examples from the
application of sensors, photometry, and ion sensitive electrodes have been given by
Danzer [2001].

Not only components from the set A; : : : ; N can interfere with the an-
alytes but also additional species which may be partly unknown or will be
formed during the measuring process. Such situations occur especially in
ICP-MS, where the signal of an isotope Ai may be interfered by isotopes
of other elements, Bj , Ck etc., and additionally by molecule ions formed
in the plasma (e.g., argon compound ions and ions formed from solvent
constituents).

In such cases the sensitivity matrix, Eq. (7.17), will be extended into

S =

⎛
⎜⎜⎝
SAA SAB � � � SAN SA;N+1 � � � SA;N+p

SBA SBB � � � SBN SB;N+1 � � � SB;N+q
...

...
...

...
...

SNA SNB � � � SNN SN;N+1 � � � SN;N+r

⎞
⎟⎟⎠ (7.28)
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Table 7.3. Selectivities and speciˇcities in case of various sensitivity matrixes

Sensitivity matrix
Selectivity Speciˇcities

(see Sect. 7.2 (iii){(v))

spec(A=B; C) = 1:00
S(1) sel(A; B; C) = 1:00 spec(B=A; C) = 1:00

spec(C=A; B) = 1:00

spec(A=B; C) = 0:943
S(2) sel(A; B; C) = 0:946 spec(B=A; C) = 0:938

spec(C=A; B) = 0:952

spec(A=B; C) = 0:625
S(3) sel(A; B; C) = 0:636 spec(B=A; C) = 0:600

spec(C=A; B) = 0:667

The cross sensitivities SJ;N+i can easily be estimated in the case of neigh-
bouring isotopes, viz. from the isotope abundances. On the other hand,
estimation in case of molecule ions may be difˇcult and can only be done
experimentally.

The concept of selectivity and speciˇcity has been applied to characterize inter-
ferences appearing in two different ICP-MS techniques (Horn [2000]). Classical
ICP-MS with pneumatic nebulization and ETV-ICP-MS are compared for the de-
termination of traces of zinc in sea-water. Whereas spectral interferences decrease
using the ETV device, nonspectral interferences increase signiˇcantly (Bj�orn et al.
[1998]). A quantitative comparison of the both analytical procedures, here called
PN (pneumatic nebulization) and ETV (electrothermal vaporization, Sturgeon and
Lam [1999]) is possible by means the speciˇcity as a function of the Zn concentra-
tion (Horn [2000]). The spectral interferences on the four zinc isotopes are listed
in Table 7.4.

Table 7.4. Seawater components and their spectral interferences with zinc isotopes

Ion 64 amu 66 amu 67 amu 68 amu Concentration in CASS-3

Zn2+ n.a.a 48.6% n.a. 27.9% n.a. 4.1% n.a. 18.8% Certiˇed 1.24 ng/mL

Cl� { { 35Cl16O16O+ 35Cl16O17O+ About 16 mg/L

SO2�
4

32S16O16O+ 34S16O16O+ 33S34S+ 36S16O16O+

32S32S+ 32S34S+ 32S17O18O+ 34S36S+

33S33S+ 33S16O18O+ 34S17O17O+

32S17O17O+ 33S17O17O+ 34S16O18O+ About 2 mg/L
32S16O18O+ 34S16O17O+ 34S34S+

33S16O17O+ 33S17O18O+

32S18O18O+

Mg2+ 24Mg40Ar+ 26Mg40Ar+ { { About 1 mg/L
26Mg38Ar+

a Natural abundance
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The speciˇcity vectors of the four zinc isotopes are given in matrix form as follows:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�I64

�xZn2+

�I64

�xCl�
�I64

�xSO2�
4

�I64

�xMg2+

�I66

�xZn2+

�I66

�xCl�
�I66

�xSO2�
4

�I66

�xMg2+

�I67

�xZn2+

�I67

�xCl�
�I67

�xSO2�
4

�I67

�xMg2+

�I68

�xZn2+

�I68

�xCl�
�I68

�xSO2�
4

�I68

�xMg2+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.29)

The results for the PN- and ETV procedure are the following:

SP N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Zn2+ Cl� SO2�
4 Mg2+

64 amu 616 �1:22 � 10�3 1:68 � 10�2 2:85 � 10�2

66 amu 378 �3:48 � 10�4 6:48 � 10�4 1:43 � 10�2

67 amu 63 6:03 � 10�4 1:36 � 10�4 2:52 � 10�3

68 amu 265 �1:99 � 10�4 �2:15 � 10�4 8:97 � 10�2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

SET V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Zn2+ Cl� SO2�
4 Mg2+

64 amu 5669 �1:02 � 10�2 �1:30 � 10�2 �6:24 � 10�2

66 amu 3557 �5:67 � 10�3 �2:30 � 10�2 �5:69 � 10�2

67 amu 524 �1:01 � 10�3 �2:53 � 10�3 2:80 � 10�3

68 amu 2438 �4:13 � 10�3 �1:73 � 10�2 �4:40 � 10�2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the partial sensitivities are given in counts �mL � s�1 � ng�1. The partial sensi-
tivities are the result of both spectral and nonspectral interferences. It can be seen
that the partial sensitivities of the four masses due to the interfering ions Cl�, SO2�

4

and Mg2+ are low compared to the sensitivities of Zn2+. Furthermore it can be seen
that ETV-ICP-MS is about ten times more sensitive than PN-ICP-MS.
It is possible to calculate so-called speciˇcity functions which describe the speciˇcity
of a procedure in dependency of the concentration of the analyte, here Zn, in the
sample:

specP N;64 amu

(
Zn2+=Cl�; SO2�

4 ;Mg2+
)

=
616 � xZn2+

616 � xZn2+ + 93300

specET V;64 amu

(
Zn2+=Cl�; SO2�

4 ;Mg2+
)

=
5669 � xZn2+

5669 � xZn2+ + 153000

The both functions are represented in Fig. 7.7.
By means of the speciˇcity function, concentration-matrix ratios can be estimated
for which a reliable determination of analytes may be possible.

For speciˇc applications, measures like selectivity indices, selectivity fac-
tors, and selectivity coefˇcients have been introduced. Their signiˇcance is
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Fig. 7.7. Speciˇcity func-
tions of the determination
of Zn in seawater by
means of PN-ICP-MS and
ETV-ICP-MS

limited to certain ˇelds of analytical chemistry like sensors, ISE, and chro-
matography as well as concrete applications.

As expected, the concept of selectivity and speciˇcity is closely related to
that of sensitivity. The same may be anticipated for the concept of robustness
and ruggedness.

7.4
Robustness and Ruggedness

Methods can only usefully applied in analytical practice when they are suf-
ˇciently robust and therefore insensitive to small variations in method con-
ditions and equipment (replacement of a part), operator skill, environment
(temperature, humidity), aging processes (GC- or LC columns, reagents),
and sample composition. This demand makes robustness (ruggedness) to
an important validation criterion that has to be proved by experimental
studies. The concepts of robustness and ruggedness mostly have been de-
scribed verbally where it must be stated that their use is frequently inter-
changeably and synonymously (e.g., Hendricks et al. [1996]; Kellner et al.
[1998]; EURACHEM [1998]; ICH [1994, 1996]; W�unsch [1994]; Wildner
and W�unsch [1997]; Valcarcel [2000]; Kateman and Buydens [1993]).

Only in a few cases was there a distinction made between both concepts
by their use in intra laboratory studies (robustness) and interlaboratory
studies (ruggedness); see USP 23-NF18 [1995]; USP 24-NF19 [2000]; Ro-
driguez et al. [1998]; Zeaiter et al. [2004]. Wahlich and Carr [1990]
seem to be the ˇrst to use robustness and ruggedness in a hierarchical
sense but in a reverse meaning as given above.

ICH [1994] deˇnes robustness as follows: \The robustness of an analytical
procedure is a measure of its capacity to remain unaffected by small, but
deliberate variations in method parameters and provides an indication of its
reliability during normal use".
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USP 23-NF18 [1995] and USP 24-NF19 [2000] accept this deˇnition of ro-
bustness and deˇne ruggedness so: \The ruggedness of an analytical method
is the degree of reproducibility of test results obtained by the analysis of the
same samples under a variety of conditions such as different laboratories,
different analysts, different instruments, different lots of reagents, different
elapsed assay times, different assay temperatures, different days, etc. Rugged-
ness is normally expressed as the lack of in�uence on test results of opera-
tional and environmental factors of the analytical method. Ruggedness is a
measure of reproducibility of test results under the variation in conditions
normally expected from laboratory to laboratory and analyst to analyst."

Whereas this deˇnition of ruggedness directly refers to inter-laboratory
studies, the ICH deˇnition of robustness clearly is related to intra-laboratory
studies.

Consequently, it was proposed to deˇne (Burns et al. [2005]): \Robust-
ness of an analytical procedure is the property that indicates insensitivity
against changes of known operational parameters on the results of the method
and hence its suitability for its deˇned purpose" and \Ruggedness of an ana-
lytical procedure is the property that indicates insensitivity against changes of
known operational variables and in addition any variations (not discovered
in intra-laboratory experiments) which may be revealed by inter-laboratory
studies" (Burns et al. [2005]).

The conditions and factors which in�uence uncertainty and insensitivity
of analytical procedures obtained in a given laboratory or in different lab-
oratories can be considered in detail and described quantitatively (Danzer
[2004]; Burns et al. [2005]).

As a starting point the general Eq. (3.15), particularly Eq. (3.15a) will be
taken, which describes the gross signal in dependence from all signal effects
from the analyte as well as from blank, interferences, and in�uencing factors:

yA = f (xA; xB; xC ; : : : ; xN ; f1; : : : ; fm)

= yA0 + SAAxA +
N∑
i=B

SAixi +
m∑
j=1

IAjxj + eA
(7.30)

The robustness of an analytical procedure for the determination of the ana-
lyte A in presence of some accompanying species i = B; : : : ; N under in�u-
ence of various factors fj(j = 1; : : : ; m) according to Eq. (4.30) is in recip-
rocal proportion to the sum of all their cross sensitivities, SAi, multiplied by
the actual amounts, xi, and the speciˇc in�uencing strengths, IAj , of the fac-
tors multiplied by their actual values (in relation to xA); see Danzer (2004).
Because of the way measurements are obtained, the range of their values
is range = (0 : : :1), so it makes sense to calculate the relative robustness
which includes the analyte sensitivity and amount itself, SAA � xA, as follows:

rob(A=B; : : : ; N ; f1; : : : ; fm) =
SAAxA

SAAxA +
N∑
i=B
jSAij xi +

m∑
j=1

∣∣IAj∣∣ xj (7.31)
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Relative robustness will have values between 0 (no robustness) and 1
(ideal robustness). Burns et al. [2005] deˇnes the relative robustness of an
analytical procedure as \the ratio of the ideal signal for an unin�uenced
method compared to the signal for a method subject to known operational
parameters determined in an intra-laboratory experiment" (Burns et al.
[2005]).

For the deˇnition of ruggedness, which refers to inter-laboratory situa-
tions, some further (unknown) effects uAk must be added to Eq. (7.30):

yA = f (xA; xB; xC ; : : : ; xN ; f1; : : : ; fm ; u1 : : : ; up )

= yA0 + SAxA +
N∑
i=B

SAixi +
m∑
j=a

IAjxj +
p∑

k=1

uk + eA
(7.32)

and therefore, relative ruggedness is obtained according to

rug(A=B; : : : ; N ; f1; : : : ; fm ; u1; : : : ; up )

=
SAAxA

SAAxA +
N∑
i=B
jSAij xi +

m∑
j=1

∣∣IAj∣∣ xj +
p∑

k=1
jukj

(7.33)

The range of relative ruggedness is rangefrugg = (0 : : : 1), too. According
to Burns et al. [2005], the relative ruggedness of an analytical procedure
is given \by the ratio of the ideal signal for an unin�uenced method com-
pared to the signal for a method subject to known and unknown operational
parameters as determined in an inter-laboratory experiment".

The problem, particularly in analytical practice is that most of the pa-
rameters needed for the calculation of relative robustness and ruggedness
may frequently be unknown.

In such cases it may be possible to check on robustness and ruggedness
by means of statistical tests (see Sect. 4.3). All the variations to the measured
signal, apart from that of the analyte, can be considered in form of error
terms; see Eq. (3.6):

N∑
i=B

SAixi = ei (7.34a)

m∑
j=1

IAjxj = ej (7.34b)

p∑
k=1

uk = ek (7.34c)

and Eq. (7.30) turns into

yA = yA0 + SAxA + ei + ej + eA = yA0 + SAxA + eij + eA (7.35)
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(see Eqs. (3.16a){(3.16c)) and Eq. (7.32) turns into

yA = yA0 + SAxA + ei + ej + ek + eA = yA0 + SAxA + eijk + eA (7.36)

where the error contributions are additive: ei + ej = eij are the intra-
laboratory variations and ei + ej + ek = eijk the intra-laboratory variations.

� Test of robustness: On the basis of Eq. (7.35), robustness as an intra-
laboratory property can be tested in three ways:

(i) In�uence on precision can be tested as usual by Fisher's F -test
with the null hypothesis H0: �total = �A and therefore H 00: �ij = 0;
see Sect. 4.3.3:

F̂ =
� 2

total

� 2
A

=
� 2
ijA

� 2
A

=
� 2
ij + � 2

A

� 2
A

(7.37)

If F̂ � F1�˛;�1;�2 , then the null hypothesis cannot be rejected and
the procedure may be considered as to be robust (strictly speaking
robust with regard to method precision).

(ii) In�uence on sensitivity can be tested by Student's t-test. The null
hypothesis is H0: Sreal

AA = S ideal
AA where S ideal

AA is the sensitivity under
ideal, i.e. robust conditions and Sreal

AA the sensitivity under the in�u-
ence of i interferents and j factors:

t̂ =

∣∣S ideal
AA � Sreal

AA

∣∣
�SAAt˛;�

(7.38)

If t̂ > t1�˛;� then the real sensitivity differs signiˇcantly from the
ideal one and a nonlinear error is proved.

(iii) More in detail, each factor (interferents i and in�uence factors j)
can individually be tested by means of multifactorial experiments
where each factor is usually varied at two levels. The planning and
evaluation of such a multifactorial design is given in Sect. 5.1.2. The
signiˇcance of each cross sensitivity and factor can be tested by an
individual t-test:

t̂ =
jSAI j

�A t1�˛;�
; t̂ =

∣∣IAJ ∣∣
�A t1�˛;�

(7.39)

If jSAI j exceeds the conˇdence interval �At1�˛;� of the experimental
error eA, then the in�uence of the factor concerned is signiˇcant
and robustness against this factor is missing. On the other hand,
jSAI j < �A t1�˛;� shows robustness against the particular interferent
or factor, respectively.

� Test of ruggedness: Robustness is regarded to be an inter-laboratory prop-
erty. In this case, all the terms in Eq. (7.36) are relevant and ruggedness
can be tested similar to robustness in the same three ways:
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(iv) In�uence on precision:

F̂ =
� 2

total

� 2
A

=
� 2
ijkA

� 2
A

=
� 2
ij + � 2

k + � 2
A

� 2
A

(7.40)

The total error has to be calculated here in different way compared with
robustness. Whereas in (i) � 2

ijA is the variance within a laboratory, � 2
ijkA

is the variance between laboratories plus that within the laboratories,
� 2
ijkA = � 2

k + � 2
ijA. The interpretation is analogous to (i), if F̂ � F1�˛;�1;�2 ,

then the null hypothesis cannot be rejected and the procedure can be
considered as to be rugged. Advantageously, the test can be carried out
by schemes of ANOVA (analysis of variance) as given in Sect. 5.1.1.

In most cases, tests analogous to (ii) and (iii) which exceed the situation
of a single laboratory do not make much sense because there do not exist
an overall sensitivity for all the laboratories. Also the cross sensitivities are
individual for each lab, as a rule. Therefore, such individual measures will
not be merged.

In the following example, robustness and ruggedness of a procedure used in two
laboratories, L1 and L2, will be considered. It is supposed that they use the same
procedure to determine the analyte A in the presence of the interferents B and C
under the in�uence of the factors a, b , and c. The input data for the computation
are given in the following table.

Lab Sensitivity Cross sensitivities In�uence strengths Experimental Degrees of
SAA SAB SAC IAa IAb IAc error sA freedom �

L1 10 1.2 1.5 0.25 {0.13 0.08 1.2 10
L2 9 1.4 1.9 0.22 {0.14 0.10 1.5 10

(a) Robustness of the procedure in lab L1 where the following conditions exist:
xB = 0:11, xC = 0:08, xa = 1:5, xb = 0:7, xc = 1:3

robL1(A=B; C ; a; b; c)

=
10

10 + 0:132 + 0:120 + 0:375 + 0:091 + 0:104

=
10

10 + 0:822
= 0:924

Thus the relative robustness of the lab L1 is 92.4%.

Using the F -test,

F̂ = � 2
ijA=�

2
A

=
0:1322 + 0:122 + 0:3752 + 0:0912 + 0:1042 + 1:22

1:22

= 1:123 < F (0:05; 10; 10) = 2:79:

Hence the procedure is robust in lab L1.
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(b) Robustness in lab L2 where the following conditions exist:
xB = 0:14, xC = 0:13, xa = 1:8, xb = 1:7, xc = 1:6

robL2(A=B; C ; a; b; c)

=
10

10 + 0:196 + 0:247 + 0:396 + 0:238 + 0:160

=
10

10 + 1:237
= 0:808

Thus the relative robustness of the lab L2 is 80.8%.
Using the F -test,

F̂ = � 2
ijA=�

2
A

=
0:1962 + 0:2472 + 0:3962 + 0:2382 + 0:1602 + 1:52

1:52

= 1:15 < F (0:05; 10; 10) = 2:79:

Thus the procedure is robust in lab L2.

(c) Ruggedness of the procedure to determine analyte A in the two laboratories,
L1 and L2: The analysis of the same sample produced the following results:

L1: 1.47, 1.32, 1.11, 1.37, 1.21, 1.40, 1.51, 1.27, 1.72, 1.13, 1.05 (�=10),

L2: 1.38, 1.23, 1.71, 1.60, 1.58, 1.45, 1.67, 1.21, 1.48, 1.51, 1.42 (�=10), from
which have been estimated:

L1: x1 = 1:3236, s1 = 0:1988, s2
1 = 0:0395 (= 1

∑
e2
ijA=� ), 1

∑
eij = 0:822,

1
∑

e2
ij = 0:192 (from(a)),

L2: x2 = 1:4764, s2 = 0:1625, s2
2 = 0:0264 (= 2

∑
e2
ijA=� ), 2

∑
eij = 1:237,

2
∑

e2
ij = 0:338 (from(b))

The variance between the labs is 0.1284 and the variance within the labs is
0.03295; therefore the F -test gives:

F̂ =
s2
between

s2
within

=
0:1284
0:03295

= 3:897 > F (0:05; 10; 10) = 2:98

and ruggedness cannot be conˇrmed. The unknown in�uences,
∑

ek can be
estimated from the total variance s2

between =
∑

e2
ijkA=� and the averaged sums of

eijA. The sums of eij are given only for completeness. From this the robustness
of the separate procedures has been proven as shown in (a) and (b).
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7.5
Limit Values

Limits characterize the detection capability of analytical methods and can be
related to both analytical domains, sample domain as well as signal domain.
Although there are several limits, namely lower and upper limits3 as well
as thresholds, the most important problem in analytical chemistry is the
distinction between real measurement values and \zero" values or blanks,
respectively.

Notwithstanding different mathematical derivations and experimental
determination, the following three measures are necessary as well as sufˇ-
cient for the characterization of analytical procedures:

(1) The critical measurement value (critical value, CV), yc , being the lowest
signal which can signiˇcantly be distinguished from that of a blank
sample

(2) The limit of detection (detection limit, LD), xLD , being the lowest con-
tent (concentration) which produces a signal y 	 yc with high statis-
tical probability

(3) The limit of quantiˇcation (LQ, limit of determination, quantitation
limit), xLQ , being the lowest content which can quantitatively be deter-
mined with a given precision (mostly expressed by the relative uncer-
tainty of measurement)

These limits are the fundamental measures to characterize the detection
and quantiˇcation abilities of analytical procedures and make decisions on
measured values and analytical results. Whereas CV and LD can be deter-
mined in a general way on the basis of objective statistical conditions, LQ
can only be estimated on the basis of subjective demands resulting from a
given analytical problem.

In addition, there exist a lot of different terms, symbols, deˇnitions, and
meaning for limits within the scientiˇc community. Some of them seem to
be confusing in deˇnition and application and contradicting amongst them-
selves, too; see Currie [1992, 1995, 1997]; Ehrlich and Danzer [2006]. In
general the limits can be derived in a simple and understandable way but
care has to be taken in interpreting them.

Before dealing with the limits CV, LD, and LQ, their meaningful position within the
system of analytical domains will be shown (Table 7.5)
Whereas the limits ACV (Kaiser's \3�" limit, Kaiser and Specker [1956]), MLD,
and MLQ are only of special interest within the corresponding domains and, there-
fore, of indirect importance for analytical problems, CV, LD, and LQ are the rele-
vant quantities to characterize the performance of a complete analytical procedure
according to Kaiser [1965] and a SOP according to ISO 78-2 [1999].

3 Because the distinction from upper limits (100%) represents only the reverse situa-
tion to that from lower limits and is relatively infrequent, too, it will not be treated
here. The mathematical models are equivalent to that used for evaluation of lower
limits (Doerffel [1990], pp 97; Doerffel et al. [1990], pp 123)
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Table 7.5. Analytical limits within the signal and sample domain the most meaningful of
which are emphasized

Signal domain (measured values) Sample domain (analytical values)

Critical measuring value, CV Analytical value at CV (ACV)

Measured value at LD (MLD) Limit of detection, LD

Measured value at LQ (MLQ) (also min-
imum quantiˇable value, IUPAC [1995])

Limit of quantiˇcation, LQ

The statistical fundamentals of the deˇnition of CV and LD are illus-
trated by Fig. 7.8 showing a quasi-three-dimensional representation of the
relationship between measured values and analytical values which is char-
acterized by a calibration straight line y = a + bx and their two-sided
conˇdence limits and, in addition (in z-direction) the probability density
function the measured values.

The following assumptions are made for the statistical treatment of the
detection problem:

(i) Feasibility of repeated analyses, namely of the complete analytical pro-
cedure from sampling to data evaluation, not only repetitions of in-
strumental measurements

(ii) Normal distributions of the measured values

(iii) Homogeneity of variances (homoscedasticity)

(iv) Known calibration (absolutely known or estimated by calibration ex-
periments); in the last-mentioned case the uncertainty intervals of the
calibration function must be known

(v) Purpose of evaluation: it must be clear if the limits are estimated to
characterize the performance of an analytical procedure before of its
application (a priori) or to interpret an analytical result obtained by
this procedure (a posteriori)

The critical value yc represents the smallest measurement value that
can be distinguished from the blank yBL with a given level of signiˇcance
P = 1�˛. In the most general case, the critical value is estimated from the
average blank and its uncertainty interval U (y BL)

yc = y BL + U (y BL) : (7.41a)

As a rule, the average blank is estimated from repetition measurements
of a { not too small { number of blank samples as arithmetic mean y BL. If
there is information that another than normal distribution applies, then the
mean of this other distribution should be estimated (see textbook of applied
statistics; see Arnold [1990]; Davies and Goldsmith [1984]; Graf et al.
[1987]; Huber [1981]; Sachs [1992]).

The uncertainty of the blank (or the background noise) is estimated from
the blank scattering which is characterized by corresponding error quanti-
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Fig. 7.8. Schematic three-dimensional representation of a calibration straight line of the
form y = a+bx with the limits of its two-sided conˇdence interval and three probability
density function (pdf) p (y ) of measured values y belonging to the analytical values
(contents, concentrations) x(A) = 0 (A), x = x(B) (B) and x(C) = xLD (C); yc is the critical
value of the measurement quantity; a the intercept of the calibration function; y BL the
blank; x(B) the analytical value belonging to the critical value yc (which corresponds
approximately to Kaiser's \3� -limit"); xLD limit of detection

ties, viz statistical or combined one, such as standard deviation sBL or com-
bined standard uncertainty u(yBL); see Sect. 4.2; AMC [1995]; EURACHEM
[1995]; Thompson [1995]. The extended uncertainty will be obtained by
means of a coverage factor k according to Eq. (4.29). With this the critical
value is given by

yc = y BL + k � u(y BL) (7.41b)

and in the special case of statistical estimation

yc = y BL + k � sBL : (7.41c)

Applying Eq. (7.41b) or Eq. (7.42c), the factor k can be chosen in various
ways, namely

� k = 3: This value was proposed by Kaiser [1965] and it is high enough
to tolerate differences from the normal distribution; the levels of sig-
niˇcance are about P � 0:998 in case of normally distributed values,
P � 0:95 for non-normal unimodal distributions, and P � 0:90 for any
one distribution.

� k = 2: If the blanks are normally distributed with high probability, then
a signiˇcance level P = 0:95 is already given for a sample size of n = 6.

� k = f1�˛;� : The quantile of Student's t-distribution represents { also
assuming a normal distribution { an individual factor which considers
explicitly both the experimental expense (� = n�1) and the signiˇcance
level P = 1� ˛.
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� k may also be estimated by means of special knowledge of the concrete
distribution or on the basis of distribution-free estimations, e.g., resam-
pling techniques (see Ehrlich and Danzer [2006]).

When the critical value is exceeded, y 	 yc , then the analyte under
examination is proved to be present in the sample. A quantiˇcation of the
critical value by means of a calibration factor S = b or function y =
a + bx is not very meaningful, but when it is done notwithstanding, then
two consequences must be taken into account:

(1) The analytical value ACV (see Table 7.5) which corresponds to xACV =
x(B) in Fig. 7.8 have a relative error of about 33% if the calculation is
carried out according to Eq. (7.41c) with k = 3 (from xACV = 3sBL=b �
3sACV it results in sACV =xACV � 1=3 and, therefore, sACV;rel = 0:33. The
relative uncertainty of xACV is xACV =�xACV � xACV =3sACV = 1 and
amounts therefore to 100%

(2) As can be seen from the distribution function B in Fig. 7.8, an analytical
value xACV produces only in 50% of all cases signals y 	 yc . Whereas
the error of the ˇrst kind (classifying a blank erroneously as real mea-
surement value) by the choice of k = 2 : : : 3 can be aimed at ˛ � 0:05,
the error of the second kind (classifying a real measured value erro-
neously as blank) amounts ˇ � 0:5. Therefore, this analytical value {
which sometimes, promoted by the early publications of Kaiser [1965,
1966], plays a certain role in analytical detection { do not have any
signiˇcance as a reporting limit in case of y < yc , when no relevant
signal have been found. For this purpose, the limit of detection, xLD ,
has to be used.

The formal transformation of the critical value into the sample domain
is necessary to estimate correctly the limit of detection. If the sensitivity is
known and without of any uncertainty (e.g. in case of error-free calibration
constants b), then the analytical value at CV is calculated by

xACV = U (y BL)=b : (7.42)

In case of experimental calibration, the uncertainty of both the blank and
the calibration coefˇcient, U (y BL; b), have to be consider, e.g. according to

xACV =
U (y BL; b)

b
=

sBL t1�˛;�
b

√
1

N
+

1

n
(7.43)

with n being the number of blanks (� = n � 1 are the corresponding degrees
of freedom) and N being the number of repetition measurements at the
analysis. Because the relation at Eq. (7.43) is unsuited as a limit in the
concentration domain because of the large risk of error ˇ = 0:5, a useful
measure must be derived.

In order to obtain a comparable risk for the error of second kind (˛ =
ˇ � 0:05), a deˇnition of the limit of detection has to consider conˇdence
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intervals of both blanks and measurement values (Kaiser [1965, 1966];
Ehrlich [1969]; Currie [1992, 1995, 1997]):

xLD = xACV +
sCV t1�ˇ;�

b

√
1

N
+

1

n
(7.44)

Assuming that the standard deviation of the critical value is approximately
equal to the standard deviation of the blank, sCV � sBL, it results for ˛ = ˇ in

xLD = 2
sBL t1�˛;�

b

√
1

N
+

1

n
(7.45)

With this the LD is the double of the ACV (Eq. 7.43).
The limit of detection can also be estimated by means of data of the

calibration function, namely the intercept a which is taken as an estimate
of the blank, a � y BL, and the conˇdence interval of the calibration straight
line:

xLDcal = xACVcal + sx0 t1�ˇ;�

√
1

N
+

1

n
+
x2

cal

Sxx
(7.46)

with sx0 = sy :x=b being the standard deviation of the calibration procedure
at the position xi = 0, xcal is the average of all the calibration contents

(centre of calibration data) and Sxx =
n∑
i=1

(xi � x)2 is the sum of squares of

the contents of the calibration samples. The number of the degrees of free-
dom is � = n � 2 in this case. With sx0(xi = 0) � sx0(xi = xACV ) Eq. (7.46)
becomes

xLDcal = sx0

(
t1�˛;� + t1�ˇ;�

) √
1

N
+

1

n
+
x2
cal

Sxx

xLDcal = 2 sx0 t1�˛;�

√
1

N
+

1

n
+
x2
cal

Sxx
� 2 xACV(cal)

(7.47)

The limit of detection is that analytical value that always will be found,
apart from the small risk of error ˛ = ˇ. The detection limit characterizes
analytical procedures with regard to minimal value which can be detected
with high signiˇcance. The limit of detection can, therefore, be reported as
limit content when no signal is found.

The corresponding measured value at LD (see Table 7.5) is not of crucial
importance in analytical chemistry. It characterizes that signal which can
signiˇcantly be distinguished from the blank considering both types of error
(˛ and ˇ).

Because of its relatively high uncertainty of measurement of 50%, the
limit of detection is mainly used as a detection criterion that the analyte
is present in the sample. Taking as the basis a coverage factor of k = 6,
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contents at the LD are characterized by a relative standard deviation of about
17% (from xLD = 6sBL=b � 6sLD it results sLD=xLD � 1=6 and, therefore,
sLD;rel � 0:17). The relative uncertainty of xLD is xLD=�xLD � xLD=3sLD = 0:5
and amounts therefore to 50%.

For this reason, a number of analysts uses a further limit quantity,
namely the limit of quantiˇcation, xLQ , (limit of determination), from which
on the analyte can be determined quantitatively with a certain given preci-
sion (Kaiser [1965, 1966]; Long and Winefordner [1983]; Currie [1992,
1995, 1997]; IUPAC [1995]; Ehrlich and Danzer [2006]). This limit is
not a general one like the critical value and the detection limit which are
deˇned on an objective basis. In contrast, the limit of quantiˇcation is a
subjective measure depending on the precision, expressed by the reciprocal
uncertainty xLQ=�xLQ = k, which is needed and set in advance. The limit
of quantiˇcation can be estimated from blank measurements according to

xLQ = k
sBL t1�˛;�

b

√
1

N
+

1

n
(7.48)

or from calibration data

xLQcal = k sx0 t1�˛;�

√
1

N
+

1

n
+

(xLQcal � xcal)2

Sxx
(7.49)

In the analytical practice, LQ bases frequently on a precision that is char-
acterized by a relative uncertainty of 10% and, therefore, xLQ = 10u(xLQ)
is applied. A relative uncertainty of 5% would require xLQ = 20u(xLQ), 1%
requires xLQ = 100u(xLQ) and so on.

The quantiˇcation limit is relevant to concentration domain. Reporting
LQs should always be completed by the conditions of precision.

The limits CV , LD , and LQ are widely applied in analytical chemistry but,
unfortunately, not in a standardized manner. Various concepts are in use as
well as different terms, symbols, deˇnitions and meanings. Overviews are
given and consequences are shown among others by Currie [1995, 1997];
Long and Winefordner [1983]; Fleming et al. [1997a]; Gei� and Einax
[2001]; Ehrlich and Danzer [2006].

The term detection capability (detection power) represents a generic term
of the performance of analytical methods at the lower limit of applicability.
Mostly it is used descriptively (detection capability of a method is \high",
\good" or \sufˇcient") or for giving order of magnitudes (detection capa-
bility is in the \ppm-range" or \ppb-range").

A quantiˇcation of the detection power is possible, in principle, namely in analogy to
diverse deˇnitions of resolving power like spectral resolving power, e.g., R� = �=��,
or geometric resolving power, e.g. of microprobes, expressed by Ra = a=�a (a being
the area under investigation and �a the resolved area element) or by the number of
pixels as known from digital cameras, too.
For this purpose, Kaiser [1966] proposed the measure ˘ = 1=xACV being the recip-
rocal value of the analytical value which corresponds to the critical value (Kaiser's
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\3�"-limit). From today's experience, detection power, DP, should be expressed {
when quantiˇed { by the reciprocal value of detection limit

DP = 1=xLD (7.50)

For a detection limit of 0.5 µg/g, the detection power would amount 2 g/µg (2�106)
and of 1 ng/g, correspondingly 1 g/ng (109) and so on4.

As shown above, limits can be estimated on two ways: from blanks and
from calibration data. Modern analytical methods such as spectrometry and
chromatography use a third way to an increasing extent: the estimation of
detection limit by means of the signal-to-noise ratio SNR.

As shown in Sect. 7.1, signal-to-noise ratio S=N can be used to character-
ize the precision of analytical methods. Noise is a measure of the uncertainty
of dynamic blank measurements (of the \background").

Starting from the standard deviation of a net signal intensity synet , see
Eq. (7.3), and applying some simplifying conditions (pairwise measurement
of signal y and neighboured background y0, and, therefore, ny = ny0 = n),
Winefordner and Vickers [1964]; Winefordner et al. [1967] and St.
John et al. [1966, 1967] derived the following expression for the critical
signal-to-noise ratio:

(S=N )c = t1�˛;� =
yc � y 0

sy0

p
2=n

: (7.51)

In St. John et al. [1966], tables of the critical SNR have been given and, in
addition, the comparability of the SNR concept to that of Kaiser has been
shown. From Eq. (7.51):

yc = y 0 + t1�˛;� sy0

√
2=n =̂ yBL + k sBL (7.52)

can be directly derived. Similar ideas, called the SBR-RSDB concept, were
developed by Boumans [1991, 1994]. In analogy to the groups of Wine-
fordner and Vickers [1964], Winefordner et al. [1967], and St. John et
al. [1966, 1967], detection limits, mostly on the basis of (S=N )c = 3, have
been derived for a discrete measurement of background.

But the main advantage of the SNR concept in modern analytical chem-
istry is the fact that the signal function is recorded continuously and, there-
fore, a large number of both background and signal values is available. As
shown in Fig. 7.9, the principles of the evaluation of discrete and continuous
measurement values are somewhat different. The basic measure for the esti-
mation of the limit of detection is the conˇdence interval of the blank. It can
be calculated from Eq. (7.52). For n = 10 measurements of both blank and
signal values and a risk of error of ˛ = 0:05 one obtains a critical signal-to-
noise ratio (S=N )c = t0:95;9 = 1:83 and ˛ = 0:01: (S=N )c = t0:99;9 = 2:82. The
common value (S=N )c = 3 corresponds to a risk of error ˛ = 0:05 : : : 0:02
in case of a small number of measurements (n = 2 : : : 5). When n 	 6, a

4 This may be interpreted verbally that in 2 g, 1 µg of the analyte can be detected
resp. 1 µg in 1 g, or mass proportions of 2� 106 resp. 109 can be detected.
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Fig. 7.9. Evaluation of blank variations in case of discrete blank yBL measurements (A)
and continuous recording of the baseline (background) y0 (B)

Fig. 7.10. Critical values y c in case that the background noise is estimated from nB = 100
values and the signal value from ny = 100 (A), ny = 10 (B) and ny = 3 (C) values

signal-to-noise ratio of (S=N )c = 2 is sufˇcient to make signiˇcant differ-
entiations to the background (Lieck [1998]).

Modern analytical methods like spectrometry and chromatography pro-
duce a large amount of background data, sometime this is the case for
signal data, too. As a rule, it can be assumed that nB = 100 : : : 1000 base-
line values are available. Taking as a basis for computation nB = 100, in
Fig. 7.10 the signal-to-noise ratios for several numbers of signal values are
given (Ehrlich and Danzer [2006]).

Figure 7.10 shows that in case of a large number of baseline values
relative small differences between the baseline average and the critical value
results.

It must be considered, though, that limits derived from the SNR charac-
terize mainly instrumental noise and do not, as a rule, include \chemical"
noise, viz such variations of measurement values which come from sample
inhomogeneities, sample preparations in the course of the entire analytical
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process. This should be taken into account by carrying out real repetition
measurements at several samples, if it is possible, or ˇxing a higher critical
value (S=N )c = 2 or 3 as be done in ofˇcial regulations, e.g. ICH [1996].

7.6
Resolving Power

In modern analytical chemistry such methods play an increasing role which
have a high resolution with regard to:

� Signal range and signal separation
� Spatial resolution of microprobes
� Temporal resolution of time-resolved methods

Each type of resolved measurement increases the amount of information
obtainable by an analytical method, namely with regard to its capability of
multielemental, spatial or temporal differentiation.

The analytical resolving power (signal resolving power Rz) is determined
by the size of the recording range of the signals zmax � zmax and the signal
resolution �z. If the signal range is a linear one, as illustrated in Fig. 7.11a,
the analytical resolving power is given by

Rz =
zmax � zmin

�z
(7.53)

In case of variable signal half-width �z as shown in Fig. 7.11b the fol-
lowing general expression applies (Danzer [1975]):

Rz =

zmax∫
zmin

f (z) dz (7.54)

In the case of constant signal half-width it results in Eq. (7.53) whereas, in
the case of constant resolution R(z), it follows that (Kaiser [1970]; Danzer
[1975])

Fig. 7.11. Analytical resolving power for �z = const. (a) and (�z)�1 = f (z) (b)
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Rz = R(z) ln
zmax

zmin
(7.55)

The analytical resolving power is applied in several analytical ˇelds in
form of well-known expressions such as, e.g., spectral resolving power R� =
�=�� or mass resolving power RM = M=�M .

Estimated values of the analytical resolving power of several analytical methods as
given in Eckschlager and Danzer [1994] are shown in Table 7.6.

Table 7.6. Analytical resolving power Rz of several
analytical methods

Method Rz

Spot tests 1

Titration 10

Optical emission spectroscopy
by grating instruments 200,000
by prism instruments 10,000
by Quantometers 60

Mass spectroscopy 500
High-resolution MS 200,000

UV-Vis spectrophotometry 50

X-ray spectrometry
Wavelength-dispersive 5,000
Energy-dispersive 500

Infrared spectrometry 1,000

Gas chromatography 1,000
Capillary GC 10,000

The analytical resolving power can be interpreted as being the maximum
number of signals which can ˇnd place within a given registration range.
Therefore, it is evident that Rz is a measure of the multielement efˇciency
of analytical methods and in�uences strongly selectivity.

In the same way, spatial resolving power is a measure of the efˇciency
of distribution-analytical methods in micro- and surface analysis as well as
scanning methods. From all the systematic representations of distribution-
analytical problems given in Danzer et al. [1991], the mostly relevant are
represented in Fig. 7.12.

The spatial resolving power will be described for three concrete cases:

(i) Lateral resolving power characterizing line scans as shown in Fig. 7.12b

Rlateral =
l

�l
(7.56a)

where �l is the lateral resolution (e.g., spot diameter) and l the line
distance under inspection. Rlateral is also relevant to point analysis
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Fig. 7.12. Relevant types of distribution analysis

(Fig. 7.12a). In the special case where l is ˇxed perpendicular to the
surface of the sample the depth resolving power Rdepth = d=�d is rele-
vant which becomes important for depth proˇle and thin-ˇlm analysis.

(ii) Surface resolving power (area resolving power) characterizing surface
scans (Fig. 7.12c)

Rsurface =
a

�a
(7.56b)

with �a being the area resolution (spot area) and a the area under
inspection. Important methods for micro-, lateral- and surface analysis
are microprobe techniques like EPMA and SIMS, laser vaporization and
excitation techniques and analytical microscopes.

(iii) Volume resolving power characterizing \volume scans" practically real-
ized mostly by combination of lateral analytical methods and sputtering
techniques or by 3D-SIMS

Rvolume =
v

�v
(7.56c)

Estimated values of the lateral resolving power of some distribution-
analytical methods are shown in Table 7.7 (Eckschlager and Danzer
[1994])

In analogy to the spatial resolution a temporal resolution power Rt can
be deˇned:

Rt =
t

�t
(7.57)

with t being the duration of the process under control and �t the time
resolution of the analytical method. The order of magnitude of the pro-
cesses may be characterized by years, months and days for environmental
processes, quality control of production or laboratory processes on the one
hand and seconds up to femtoseconds in molecular-dynamic studies by
means of ultra-short time spectroscopy.
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Table 7.7. Spatial resolving power Rsurface of selected analytical methods. For reasons of
comparability an area of 1 mm2 has been taken; in the case of 3-D SIMS a volume of
� = 0:1 mm3 is taken as the basis

Method Rspatial

Microspark OES 1 : : : 100

Spark source mass spectroscopy 100 : : : 104

Laser OES, laser MS 100 : : : 104

Induced autoradiography 104 : : : 106

Electron probe microanalysis (EPMA) 104 : : : 106

Ion probe microanalysis (SIMS) Rsurface 104 : : : 106

3-D SIMS Rvolume 108 : : : 1010

Electron microscopy 108 : : : 1011

Field ion microscopy (atom probe) 1012 : : : 1014
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8 Presentation, Interpretation and Validation
of Analytical Results

Modern analytical chemistry has a large number of hightech methods at
its disposal which are able to carry out measurements with both high reli-
ability and high throughput. In this way, an enormous amount of data is
produced daily all over the world. Apart from the fact that a large part of
these data remain uninterpreted and land up in \data cemeteries", a certain
part (hopefully a small part) of analytical results is inadequately evaluated
and presented. This is the more regrettable as the measured results ob-
tained from the analytical instruments are not only highly reliable but also
expensive.

8.1
Presentation of Analytical Results

If it can be supposed that the measured values, y , obtained in the course
of the analytical process, are both precise and accurate, then the analyti-
cal results, x, do not have automatically the same quality. For this, some
preconditions must be fulˇlled, namely

(1) The analytical results have to be estimated from a correct evaluation
model; see Sects. 6.2.5 and 6.2.6.

(2) It is desirable that the sensitivity of calibration model S = �y =�x is
not lower than 1, otherwise the uncertainty of x will increase compared
with that of y , �x > �y ; see Sect. 6.2.2.

(3) A realistic uncertainty interval has to be estimated, namely by consider-
ing the statistical deviations as well as the non-statistical uncertainties
appearing in all steps of the analytical process. All the signiˇcant devia-
tions have to be summarized by means of the law of error propagation;
see Sect. 4.2.

It is in the nature of people to present results { whatever kind { with the
highest possible precision. From this point of view it seems to be unnatural
and absurd to collect facts which may decrease the precision and, therefore,
the quality of the measured data. However, that is asked of the analyst, not
only for the sake of truthfulness but also for responsible comparisons of
analytical results with reference values, as will be shown in Sect. 8.2.
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Analytical results should be given always in the form

(x ˙ U (x))�[x] (8.1)

provided it concerns an arithmetic mean x. According to Eq. (8.1), together
with the mean of the analytical value, x, its extended uncertainty, U (x), has
to be reported. Naturally, the unit of the measurand, [x], must be given.
The extended uncertainty U (x) is obtained by multiplying the combined
uncertainty u(x) by a reasonable covering factor k; see Sect. 4.2. It is rec-
ommended, that the type of uncertainty interval should be speciˇed as being,
e.g., a statistical conˇdence interval, cnf(x), prediction interval, prd(x), or
extended uncertainty interval, u(x). Useful additional information may be
the number n of replicate analyses from which the mean and the uncertainty
has been estimated, the belonging level of signiˇcance, P = 1� ˛, and { if
relevant { the sort of non-statistical uncertainties that have been considered.

For example, copper in sewage sludge is determined by ICP-MS. The reading (output)
of the instrument may be 2.58685 for the average of duplicate analyses and 0.09513
for its conˇdence limit; see Sect. 4.1.2, Eq. (4.16), each given in µg/g. As usual,
in the case of routine analyses, the conˇdence limit is calculated by means of a
standard deviation that has been estimated independently from a large number of
measurements. On the basis of the readings the analytical result should be given as
follows:

(2:59˙ 0:10) µg=g Cu (n = 2; P = 0:95)

or, in the case that nonstatistical uncertainties have been considered:

(2:59˙ 0:13) µg=g Cu (n = 2; k = 2; uncertainty considers sampling and
sample preparation)

In each case, the number of digits should be rounded in such a way that no insignif-
icant precision is feigned.

Results of ultra trace analyses are sometimes characterized by relatively
high uncertainties up to more than 100%. In such cases it is not allowed that
the lower uncertainty limit falls below zero. Results like, e.g., (0:07˙ 0:10)
must be replaced by such as (0:07+0:10=�0:07) or

(
0:07+0:10

�0:07

)
, respectively.

That means, the total uncertainty interval (conˇdence interval, prediction
interval is 0 : : : 0:17). In general, when the conˇdence interval includes a
negative content (concentration), the result has to be given in the form(

x+U (x)
�x

)
�[x] (8.2)

Other means like the median (see Eq. (4.22)) or the geometrical mean (see
Eq. (4.18)) etc. have to be reported in a similar way together with the
belonging uncertainty interval, e.g.,

(medfxig ˙ U (medfxig))�[x] (8.3)
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Together with a median it has to be said which type of median has been
computed (see the footnote in Sect. 4.1.2) and also which kind of uncertainty
(derived from median absolute deviation, madfxig, or quantiles; see Danzer
[1989]; Huber [1981]; Hampel et al. [1986]; Rousseeuw and Leroy [1987]).

Geometrical means have unsymmetrical uncertainty intervals which are
characterized by a dispersion factor � (see Sect. 4.1.2, Eq. (4.20)) and a
covering factor k (see Sect. 4.2). Corresponding results should be given in
the form(
xgeom �U (xgeom)˙1

)
[x] =

(
xgeom �10�xgeom

)
[x] =

(
xgeom �10k�slg x

)
[x] (8.4a)

That means the uncertainty interval covers the range x=
(
U (xgeom)

)
: : :

x �U (xgeom) = x=(k� ) : : : x �k� . Negative values of concentration at the lower
limit of uncertainty do not appear in this case.

Example: Uranium has been found in wine in a concentration of 2.0 ng/L. The
dispersion factor � has been estimated � = 1:2 and the coverage factor has been
chosen k = 2. Then the uncertainty factor amounts �� = 1:45 and the analytical
result has to be presented in one of the following ways:

{
(
2:0 � (2:4)˙1

) ng
L U (according to Eq. (8.4)) or

{ (0:83 : : : 4:8) ng
L U or

{
(
2:0+2:80
�1:17

) ng
L U.

8.2
Factual Interpretation of Analytical Results

Analytical investigations are always carried out to serve a deˇnite purpose.
In this respect analytical results have to be evaluated and interpreted. In
modern ˇelds of applications like environmental monitoring, foodstuff con-
trol, medical laboratory diagnostics etc., conclusions have to be drawn about
the presence of given species and their amount as well as the exceeding of
limit values or falling signiˇcantly below them.

In many cases, when no extreme results (near a given limit) have been
obtained, the analytical results may be reported as represented in Sect. 8.1.
Attention has to be paid when results are situated nearby of critical values
as it is the case with limit values of all type, especially detection limits and
reference values.

8.2.1
Presentation of Results Near the Limit of Detection

The situation with detection limit has been discussed in Sect. 7.5. According
to Kaiser and Specker [1956]), Kaiser [1965, 1966], Long and Wineford-
ner [1983], Currie [1992, 1995, 1997], and Ehrlich and Danzer [2006]
etc., the following decisions and reports are recommended:
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(1) In the case that the measured value yi is larger than the critical mea-
suring value yc :

yi 	 yc : \(the analyte) A has been detected (in sample X)":

As shown in Sect. 7.5, the analyte under examination is deˇnitely
present in the sample (apart from a remaining risk of error ˛) when
yi 	 yc .
Formally, an analytical result xi can be calculated from yi by means of
the corresponding calibration function. When this result (from repeated
measurements) should be reported, it must be taken into account that
the relative uncertainty amounts minimally 100% (see Sect. 7.5, item (1)
p. 201) and, therefore, it holds that (x ˙ x). That means, that the un-
certainty interval of analytical results calculated from measured values
nearby the critical value covers a range of about 0 : : : 2x. As additional
information, the limit of quantiˇcation, xLQ , should be given.

(2) No signal being signiˇcantly larger than blank signals could be found:

yi < yc : \(the analyte) A could not be detected (in sample X). The
limit of detection (on the basis of the 6� criterion) is xLD".

(3) The measured value yi exceeds the measured value at the limit of de-
tection, yLD (MLD, see Table 7.5):

yi 	 yc : \(the analyte) A has been detected (in sample X). The limit
limit of quantiˇcation is xLQ".

As in case (1), the analyte is deˇnitely detected, apart from the re-
maining risk of error ˛. Also in this case, an analytical result xi can
be calculated formally from yi by means of the corresponding cali-
bration function. But it must be noted that the relative uncertainty of
results nearby of the detection limit amounts about 50% (see Sect. 7.5,
item (2), p 201).

(4) The uncertainty of the results between the detection limit and the limit
of quantiˇcation decreases continuously up to the precision set in ad-
vance by the precision factor k. In reaching and exceeding the quan-
tiˇcation limit, analytical results can be reported as usual; see Sect. 8.1.

The problematic nature of the presentation of analytical results will be illustrated by
examples of results of the Mo determination in several wine samples (ˇctional, but
on the basis of own studies; see Thiel et al. [2004]; Geisler [1999]) by means of
ICP-MS (nuclide Mo 95):

Sample 1: Mo: not detected (detection limit DL = 47 ng/L) or Mo: < 47 ng/L

Sample 2: Mo: detected (25˙ 25) ng/L (i.e. the concentration is slightly above of
that at the critical value; CV = 23:5 ng/L)

Sample 3: Mo: detected (48˙ 24) ng/L (i.e., slightly above the detection limit)

Sample 41: Mo: (3580˙ 370) ng/L

1 Real sample #162, see Geisler [1999]
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8.2.2
Missing Data

There are situations in analytical chemistry where it is not advisable or not
allowed to present data sets that contain zero values, \less than" values,
\LTV"s, and \non detectables", \ND"s). The ˇrst one (zero data) normally
come from missing data because of the breakdown of instruments or lacking
samples { for whatever reason. In many cases, authorities and institutions
do not accept data protocols with missing data. On the other hand, chemo-
metrical data analyses cannot be carried out in such cases. Therefore, a
lot of ideas has been suggested, how missing data can be substituted (see,
e.g., Little and Rubin [1987]; Helsel [1990]; Neitzel [1996]; Allison
[2002]; Howell [2002]). The mostly applied procedures are substitutions
of \LTV"s and \ND"s, respectively, by concrete numerical values estimated
in a meaningful way and completions of missing data by such substitutes
which are the most probable data in the given situation (e.g., data lists, time
series, or surface measurement nets).

Substitutions of \LTV"s and \ND" results. A meaningful value to substitute
an LTV or ND is

xsubstit =
xLD
4

=
xCV
2

(8.5)

where xLD corresponds to the 6� -limit and xCV to the 3� -limit; see Sect. 7.5.
The reason for this substitution can be derived from Fig. 8.1 that shows an
unsymmetrical distribution of analytical values, e.g., a lognormal distribu-
tion. This is the most probable distribution because the lower limit of x is
zero and cannot be crossed (as it would be done in case of a normal dis-
tribution). Also the assumption of a uniform distribution, as sometimes be
done, is scarcely justiˇed because the probability p (x) approximates to zero
as x it does. The substitute xsubstit is characterized by a relative uncertainty
of 200% (in comparison: xCV by 100%, and xLD by 50%; see Sects. 7.5 and
8.2.1, (1) and (3)).

Fig. 8.1. Most probable
distribution of analytical
values, x, being situated
below the detection limit
xLD (6� -limit); xCV is
the analytical value at
the critical measurement
value (3� -limit)
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Fig. 8.2. Substitution of val-
ues in temporal or spatial
successions of analytical
values:
(I) random series
(II) maximum expected;
estimation of the substi-
tute of x14 in enlargement:
1: extrapolated x12 and
x13; 2: extrapolated x15

and x16; 3: averaged 1 and
2; x14: averaged 3 and 4
(point at the connection
line between x13 and x15)
(deadening)

Completion of missing data. The proceeding of completion depends on the
character of the incomplete data set. In conventional data lists of random
character such as a n�m data list (data matrix) which contain results of
several analytes (m) in diverse samples (n), missing data are frequently
substituted by the mean of the respective analyte over all the samples.

Another proceeding is recommended in the case of time series or lateral
line scans. When the values randomly scatter and { possibly { at the same
time continuously slope up or down, then the mean between the two (or
three) preceding and following should be taken; see Fig. 8.2a (I). On the
other hand, if an extreme value, e.g., a maximum has to be expected, then it
should be interpolated after extrapolation, e.g., as illustrated in Figs. 8.2a (II)
and 8.2b. Such a situation is indicated by successively increasing and then
decreasing values (or vice versa), to be precise at least three each of them.

In case (I), the missing values x5 may be calculated as an average of the
preceded and subsequent values x4 and x6, a weighted average of four or
six neighbours, or may be generated by a random number out of a given
random interval.

In cases of extremes (II), the missing value (here x14) may be approx-
imated by means of a spline function. If x14 is generated by extrapola-
tion, a deadening of the extrapolated value (as can be seen from Fig. 8.2b)
should be applied. The extrapolation is then, e.g., carried out according to
xm(14) = 3xm�1+3xm+1�xm�2�xm+2

8 . Using more than the four neighbouring values,
corresponding estimations by averaging or linear or nonlinear regression
have to be carried out.
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Completion of missing data in two-dimensional data ˇelds. The goal of in-
vestigations carrying out in form of measurement points of a network {
whether it be in micro- (surface analysis) or macro dimensions (deposits) {
is to detect inhomogeneities, structures, gradients, \hot spots", etc. There-
fore, missing data should not be substituted by averages as in the case
of random data. Total averages could simulate non-evident sub-extremes
when they are situated in the surrounding of real minima or maxima. Fig-
ure 3.12(b) in Sect. 3.4 may illustrate the situation. A value missed in a posi-
tion where a gradient exists pointing to the maximum in the foreground at
the left side should be substituted by the mean of the closely neighbouring
measured points, e.g., in the data matrix

...
...

...
: : : xi�1;j�1 xi;j�1 xi+1;j�1 : : :
: : : xi�1;j � xi+1;j : : :
: : : xi�1;j+1 xi;j+1 xi+1;j+1 : : :

...
...

...

this can be calculated as the average of the four nearest neighbours

x(ij)4 =
1

4

∑(
xi;j�1 + xi�1;j + xi+1;j + xi;j+1

)
or of the eight neighbours

x(ij)8 =
1

8

∑(
xi;j�1 + xi�1;j + xi+1;j + xi;j+1 + xi�1;j�1 + xi�1;j+1 + xi+1;j�1 + xi+1;j+1

)
or weighted, e.g., in the case of equidistant measuring points as follows:

x(ij)8;w =
∑ xi;j�1 + xi�1;j + xi+1;j + xi;j+1 +

1p
2

(
xi�1;j�1 + xi�1;j+1 + xi+1;j�1 + xi+1;j+1

)
4 + 4=

p
2

The decision on weighting and its type should be made according to the
experimental facts. Supposed the data matrix given above is as follows then
the following substitutes can be calculated:

...
...

...
: : : 1:25 1:22 1:53 : : :
: : : 1:17 � 1:44 : : :
: : : 1:09 1:23 1:41 : : :

...
...

...

x(ij)4 = 1:265
x(ij)8 = 1:293
x(ij)8;w = 1:288:

In more complicated situations as they can be found in case of geochemi-
cal studies, sophisticated methods of spatial interpolation have been devel-
oped. In principle, global and local methods can be distinguised (Burrough
[1986]). In global models (e.g., trend surface analysis, FOURIER series), each
point is related to all the other points in the ˇeld of study. On the other
hand, local models (e.g., spline interpolation, moving averages) estimate
missing values only from neighbouring points and can, therefore, manifest
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local anomalies. Frequently used are methods like Inverse Distance Weight-
ing (IDW, see Burrough and McDonnell [1998] and Kriging (Akin and
Siemes [1988], Einax et al [1997]).

8.2.3
Analytical Results in Relation to Fixed Values

The relation of measured results to given values, e.g., critical levels, legally
ˇxed values, regulatory limits, maximum acceptable values, is of continual
relevance in analytical chemistry. In the analytical reality, the problematic
nature of detection leads to the test statistics, strictly speaking to the t-test
(Currie [1995, 1997]; Ehrlich and Danzer [2006]). By means of that, it
is tested, if the determined analytical result is signiˇcantly different from
the average blank of the critical value, respectively.

In the same way, the relation of measured results to limits of various
kind (critical levels, xCL) can be treated in general. The situation is shown
in Fig. 8.3.

Frequently, limit values are given as a numerical value without any ex-
ceeding level. Then, according to the t-statistics, a signiˇcant exceeding has
to be stated if x � �x > xCL, as illustrated in Fig. 8.3a. On the other hand,

Fig. 8.3. Relationships between critical limits xCL and analytical results x: a the critical
limit is signiˇcantly exceeded; b the result falls signiˇcantly below the limit value; c given
critical exceeding limit xEL = k � xCL
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if x has to be (signiˇcantly) smaller than xCL, the condition x + �x < xCL
must be fulˇlled; see Fig. 8.3b. When an exceeding level xEL is given, as
shown in Fig. 8.3c, the simple relation x > xCL indicates the exceeding of
the critical level.

Comparison of test values with a conventional true value (\reference value")
of a (certiˇed) reference material (RM, CRM). In method development and
validation of analytical procedures, the comparison of experimental results
with standards of diverse kind (laboratory standards, certiˇed reference
materials, primary standards) plays an essential role. The decision as to
whether an experimental result hits the reference value depends not only
from the result itself but also from its uncertainty interval.

When working with standards, there are two cases regarding their pre-
cision:

(i) The reference value is given without any uncertainty or with a very
small uncertainty interval in comparison with typical experimental re-
sults of laboratories (U (xRM)
U (x)exp, high quality standards like pri-
mary standards, pure elements or compounds).

(ii) As a rule, the reference value is given with an uncertainty which is
signiˇcant and can, therefore, not be disregarded in comparison with
that of experimental results.

In case (i), the comparison of an experimental result, xexp, with the reference
value, xRM, of a high quality standard is simply carried out by a speciˇed
t-test according to Eq. (4.45):

t̂ =

∣∣xexp � xRM

∣∣
sxexp

p
nexp =

∣∣xexp � xRM

∣∣
sxexp

(8.6)

where nexp is the number of replicates which results in xexp. If the uncertainty
of the reference value cannot be disregarded, the generalized t-test (Welch's
TW -test; see Sect. 4.3.4, Eq. (4.43))

T̂W =

∣∣xexp � xRM

∣∣√
s2
xexp

nexp
+ s2

xRM

=

∣∣xexp � xRM

∣∣√
s2
xexp

+ U 2(xRM)
k2

(8.7)

has to be applied. The variance of the reference value can be estimated from
its uncertainty interval divided by the squared coverage factor k (frequently
k = 2).

In case (ii), the comparison of the result experimentally found and the
reference value is carried out by the common t-test; see Sect. 4.3.4, Eq. (4.41):

t̂ =

∣∣xexp � xRM

∣∣
sa�

√
nexp nRM

nexp + nRM
(8.8)

Normally, the averaged standard deviation sa� is estimated according to
Eq. (4.42). If no information is given on nRM, it can be taken from the
assumption that mostly nRM 	 20.
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Both in cases (i) and (ii) the experimental uncertainty has to be esti-
mated realistically as is done for the reference value, too. All the sources of
variations and deviations have to be included in the calculation of the un-
certainty. Efforts of analysts to shine with excellent analytical performance
characteristic can have a detrimental effect as the examples in Table 8.1
demonstrate.

Table 8.1. Comparison of experimentally obtained results of copper content (µg/g) and
the reference value of the material BCR277 (Institute for Reference Materials and Mea-
surement, Belgium); number of repetitions nexp=10

Uncertainty xCuexp=(µg=g) xCuRM=(µg=g) Assessment on the basis
Case includes experimental certiˇed value of t-test (8.6)

result

A Measurement 95:1˙ 3:2 The result is false because the

B + Calibration 95:1˙ 5:1
uncertainty interval does not
include the certiˇed value

⎫⎬
⎭
The uncertainty interval includes

C + Preparation 95:1˙ 6:9 the certiˇed value; therefore, it
cannot be considered to be false

Fig. 8.4. Found result xexp in relation to the reference value RV : a illustrates the location
of RV without the uncertainty intervals A and B on the one hand and within the interval
C on the other; b represents in addition the uncertainty interval of the reference value
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In Table 8.1 three different analytical results are listed, the uncertainties
of which are estimated in several ways: (A) measurement uncertainty only,
as sometimes can be done in analytical practice, (B) additionally uncer-
tainty of calibration considered, and (C) uncertainty of sample preparation
included (partially nonstatistically estimated). Whereas in cases (A) and (B)
the results are judged to be signiˇcantly false, in case (C) the difference is
statistically not signiˇcant. The situation is illustrated in Fig. 8.4a when a
comparison is carried out on the basis of the t-test (Eq. 8.6).

Another assessment will be found if the uncertainty of the reference value
is considered likewise and, therefore, the t-test according to Eqs. (8.7) or
(8.8) is applied. The corresponding t̂-values (t̂A = 5:96, t̂B = 4:00, t̂C = 3:02)
are larger in each case than the critical t-value 2.05 (on the basis ˛ = 0:05,
nexp = 10, and nRM = 20). That means that the comparison will become
sharper if the relatively small uncertainty interval of RV is included into the
test and, therefore, the result C is assessed to be false, too.

8.2.4
Interlaboratory Studies

Analytical laboratories need to check their performance with regard to the
production of accurate results with satisfactory precision. The most desir-
able way to ensure the reliability of analytical results is the participation
of laboratories into regular interlaboratory tests. An interlaboratory study
has to be understood as \a study in which several laboratories measure a
quantity in one or more '��dentical' portions of homogeneous, stable materials
under documented conditions, the result of which are compiled into a single
document" (IUPAC [1994]; Prichard et al. [2001]).

There are several types of interlaboratory studies (Horwitz [1994]):

(1) Method performance study: All laboratories follow the same written
protocol and use the same test method to measure a quantity (usually
concentration of an analyte) in sets of identical test samples. The results
are used to estimate the performance characteristics of the method,
which are usually within-laboratory- and between-laboratory precision
and { if relevant { additional parameters such as sensitivity, limit of
detection, recovery, and internal quality control parameters (IUPAC
Orange Book [1997, 2000]).

(2) Laboratory performance study: Laboratories use the method of their
choice to measure one or more quantities on one or more homoge-
neous and stable test samples in order to assess the performance of the
laboratory or analyst. The reported results are compared among them-
selves, with those of other laboratories, or with the known or assigned
reference value, usually with the objective of evaluating or improving
laboratory performances (IUPAC Orange Book [1997, 2000]).

(3) Material certiˇcation study: Study that assigns a reference value (\true
value") to a quantity (concentration or property) in the test mate-
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rial. As a rule, the participating laboratories are selected according to
their competence regarding the candidate reference material (IUPAC
Orange Book [1997, 2000]).

Proˇciency testing is a special type of laboratory performance studies
deˇned as \study of laboratory performance by means of ongoing interlabo-
ratory test comparisons" (ISO Guide 33 [1989]; ISO/REMCO N 280 [1993];
IUPAC [1993]; Prichard et al. [2001]). Proˇciency testing is an essential
part of external quality assessment schemes and performance checks.

The principle of proˇciency testing schemes consists in analyzing one or
more samples sent to the laboratories by an external body. The analytical
results returned to the organizer are evaluated in comparison to the assigned
value(s) of the sample(s).

Proˇciency testing can be assessed in different ways. One of the most
used evaluation system is that of so-called z-scores which are deˇned as
follows (Lawn et al. [1993]; Thompson and Wood [1993]):

z =
jx lab � xctvj

sxctv

(8.9)

where x labis the mean of the laboratory, xctv the assigned value of the quan-
tity (mostly the conventional true value) and sxctv the target standard devia-
tion. The following convention is used:

� z � 2 is considered to be satisfactory.

� 2 < z < 3 is a cause for concern.

� z 	 3 is unsatisfactory. As a rule, proˇciency testing has to be repeated
in such a case.

In general, the evaluation of interlaboratory studies can be carried out in
various ways (Danzer et al. [1991]). Apart from z-scores, multivariate data
analysis (nonlinear mapping, principal component analysis) and informa-
tion theory (see Sect. 9.2) have been applied.

8.3
Chemometrical Interpretation of Analytical Data

The ultimate purpose of analytical studies is rarely a set of analytical re-
sults (data set) but frequently chemical information about the subject under
investigation. Chemical information may concern properties like:

{ Purity, genuineness, and activity of products

{ Typical pattern of particular constituents in samples characterizing their
authenticity and provenance

{ Typical substance groups being indicators for pollution in environmental
media
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{ Characteristic spacial and temporal structures in objects under study,
etc.

Data interpretation always becomes difˇcult if several properties of various
objects (samples) have to be considered simultaneously.

8.3.1
Principles of Data Analysis

Usually multivariate analytical information is represented in form of a data
matrix:

X = (xij) =

⎛
⎜⎜⎝
x11 x12 � � � x1m

x21 x22 � � � x2m
...

...
...

xn1 xn2 � � � xnm

⎞
⎟⎟⎠ (8.10)

where the n rows represent the n objects under investigation which are
characterized each by m features (properties, e.g. contents of various chem-
ical constituents). Different from the principles of analytical dimensionality
(see Sect. 3.4), the structure of a data set X according to Eq. (8.10) is rep-
resented in an m-dimensional space. The goals of the various methods of
data analysis are:

(i) Recognition of structures in multivariate data

(ii) Identiˇcation, reproduction and quantitative separation of such data
structures

(iii) Exploration of the causes for this structures

(iv) Graphical visualization of the structures in two- or three-dimensional
diagrams

From the viewpoint of data analysis, these objectives are achieved by
means of the following fundamental methods:

(i) Cluster analysis
(ii) Classiˇcation methods, viz multivariate variance and discriminant

analysis (MVDA)

(iii) Factor analysis (Principal component analysis, PCA)

(iv) Display methods

In addition, methods of artiˇcial intelligence (artiˇcial neural networks and
genetic algorithms) are applied.

The proceeding of common methods of data analysis can be traced back
to a few fundamental principles the most essential of which are dimension-
ality reduction, transformation of coordinates, and eigenanalysis.

The principle of reduction of dimensionality will be illustrated schemat-
ically. In case that the property (+=�) of an object depends mainly on one
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Fig. 8.5. Discrimination of object quality (+=�) by means of one variable x1 (a), of two
variables x1 and x2 (b) which are represented as biplot in (c) from which the discriminant
variable dv (discriminant function df ) (d) can be derived

parameter, x1, a classiˇcation of the quality can simply be done by means
of common test statistics (e.g., univariate t-test). The proceeding is shown
in Fig. 8.5a. On the other hand, if two parameters, x1 and x2, in�uence sig-
niˇcantly the object property, then a situation as shown in Fig. 8.5b may
arise. Whereas the classiˇcation of the object quality can clearly be seen in
Fig. 8.5a, the classiˇcation by means of both variables, x1 and x2, seems
to be chaotic. However, by using a biplot diagram (Fig. 8.5c), the situation
concerning the object properties becomes clear. In addition, it can be seen
that a new discriminant variable, dv = f (x1; x2), can be formed by means
of which simple discriminations between the object quality (+=�) can be
made; see Fig. 8.5d.

In this way, the discrimination problem by means of two variables which
are represented in two dimensions is reduced to one dimension by means
of a new variable dv = f (x1; x2). All the reductions of dimensionality, from
m to graphically presentable three- or two dimensions, happen according
to this principle where uncorrelated variables are generated.

The basis of all data-analytical procedures is the data matrix (Eq. 8.10).
In many cases the original data xij have to be transformed, either into
standardized data:

zij =
xij � xj

sj
(8.11)

or suitable measures of multivariate distances, e.g., Euclidean distances:
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dij =

√√√√ m∑
k=1

(xik � xjk)2 (8.12)

The use of standardized data (variable standardization or column au-
toscaling, see Frank and Todeschini [1994]) results in data which are in-
dependent of the unit of measurement. Other types of standardization like
object standardization, row autoscaling, or global standardization (global
autoscaling, (xij � x)=s) do not play a large role in data analysis.

Important methods of data analysis base on evaluation of the covariance
matrix (variance-covariance matrix)

S = (sij) =

⎛
⎜⎜⎝

s11 s12 � � � s1m
s21 s22 � � � s2m
...

...
...

sm1 sm2 � � � smm

⎞
⎟⎟⎠ (8.13)

which represents a symmetric matrix of pairwise covariances and variances
at the diagonal; see Sect. 6.1.3. If standardized data are used the covariance
matrix equals the correlation matrix

R = (rij) =

⎛
⎜⎜⎝

1 r12 � � � r1m
r21 1 � � � r2m
...

...
...

rm1 rm2 � � � 1

⎞
⎟⎟⎠ (8.14)

The essential information on the structure of data can be extracted by
means of the fundamental equation of data analysis

(R� �I)v = 0 (8.15)

where � is the eigenvalue, v the eigenvector (latent vector) and I the iden-
tity matrix. Eigenvalues and eigenvectors are essential quantities for factor
analysis (FA), principle component analysis (PCA) and multivariate variance
and discriminant analysis (MVDA). They can be estimated by eigenanalysis
(Dillon and Goldstein [1984]; Frank and Todeschini [1994]).

8.3.2
Cluster Analysis: Recognition of Inherent Data Structures

Inhomogeneities in data can be studied by cluster analysis. By means of
cluster analysis both structures of objects and variables can be found with-
out any pre-information on type and number of groupings (unsupervised
learning, unsupervised pattern recognition).

Geometrically illustrated, clusters are continuous regions of a high-
dimensional space, each of them containing a relatively high density of
points (e.g., objects), separated from each other by regions that are rela-
tively empty (low density of points). The belonging of points (objects) to
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Fig. 8.6. Representation of 14 multivariately characterized objects in a two-dimensional
space of variables where the clusters are connected into four groups (a) and classiˇed
into two differently chosen groups (b, c), respectively; d shows a nested clustering of B
within A

certain clusters is not unchangingly ˇxed but may alter in dependence of
the method of clustering used, the measure of similarity chosen, the number
of clusters supposed and factual reasons as well. An example about that is
shown in Fig. 8.6.

Methods of cluster analysis may be distinguished into two groups:

(i) Hierarchical clustering
(ii) Non-hierarchical clusteringclustering!non-hierarchical

Hierarchical clustering can be carried out in an agglomerativeclus-
tering!agglomerative and a divisiveclustering!divisive way. The results are
mostly represented in form of tree-like diagrams, so-called dendrograms.
The relation of the objects shown in Fig. 8.6a{c is represented in Fig. 8.7 in
the form of a dendrogram. It can be seen that the objects are united at ˇrst
pairwise and then step by step groupwise according to their multivariate
similarity (agglomerative clustering). On the other hand, the entire popula-
tion is divided stepwise into two, three, four clusters, node by node up to
the single objects.
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Fig. 8.7. Schematic representation of hierarchical clustering of the 14 objects shown in
Fig. 8.6; the separation lines a and b corresponds to the clusters in 8.6a,b

Fig. 8.8. Result of cluster analysis of 88 German wines according to Ward's method
(Thiel et al. [2004])

There exist several methods of hierarchical clustering which use diverse
measures of distance or similarity, respectively, e.g., single linkage, complete
linkage, average linkage, centroid linkage, and Ward's method (Sharaf et
al. [1986], Massart et al. [1988], Otto [1998]; Danzer et al. [2001]).

It is possible to treat dendrograms according to graph-theoretical prin-
ciples (Frank and Todeschini [1994]). However, in general, the results
of clustering are evaluated qualitatively and taken as a basis of extensive
studies on data structure.
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In Fig. 8.8 an example is given showing the result of cluster analysis of
88 wines on the basis of the concentrations of 13 elements (As, B, Be, Cs,
Li, Mg, Pb, Si, Sn, Sr, Ti, W, and Y).

The provenance of the wines was from four areas, Dienheim and In-
gelheim in Rhine-Hesse and Bad D�urkheim and Landau in Rhinelande-
Palatinate. At ˇrst glance, two clusters can be seen; looking at them a second
time, four groups of may be supposed and taken as the basis of discriminant
analysis the result of which is shown in Fig. 8.11.

Non-hierarchical cluster methods have in common with classiˇcation
methods that pre-information on the number of classes is needed or desired
to start an iteration process. In the course of the clustering a rearrangement
of objects between several clusters is possible.

One of the most used techniques of non-hierarchical cluster analysis is
the density method (potential method). The high density of objects in the
m-dimension that characterizes clusters is estimated by means of a density
function (potential function) P . For this, the objects are modelled by Gaus-

Fig. 8.9. Gaussian functions with different smoothing parameters �1 and �2 (a,c) and the
corresponding potential functions (b,d)
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sian functions F (� ) with a parameter � (\standard deviation", \smoothing
parameter") set in advance as shown in Fig. 8.9a,c. The potential func-
tion P (� ) results as superimposing curve of the Gaussian functions; see
Fig. 8.9b,d.

Whereas the superposition of the Gaussian functions Fi(�1) (i = A; B;
: : : ; G) do not produce a satisfactory separation, the Fi(�2) do superimpose
to three meaningful clusters.

Cluster analysis is important in all situations where homogeneity of data
on the one hand and latent structures on the other hand play a signiˇcant
role in evaluation and interpretation of analytical results. This applies in
particular for single objects with extreme properties like outliers, hot spots
etc that can easily be recognized being singletons among clusters.

8.3.3
Classiˇcation: Modelling of Data Structures

Classiˇcation methods consist generally of two steps, the learning phase
(training step) and the working phase (classiˇcation phase). The assignment
of objects to several classes is carried out on the basis of classiˇcation rules
that have to be learned by means of a set of objects { their belonging
to various classes is well-known. Such classes may concern quality, sorts,
origins in the widest sense (provenance, producers, counterfeits etc) where
sometimes it is a matter of alternative categories like good/poor, healthy/ill,
genuine/imitated etc.

The basis of classiˇcation is supervised learning where a set of known
objects that belong unambiguously to certain classes are analyzed. From
their features (analytical data) classiˇcation rules are obtained by means of
relevant properties of the data like dispersion and correlation.

One of the powerful classiˇcation methods is multivariate variance and
discriminant analysis (MVDA) (Dillon and Goldstein [1984]; Ahrens
and L�auter [1974]; Danzer et al. [1984]).

dfj = vjx
T
i (8.16)

By means of eigenanalysis multivariate discriminant functions, dfi, can
be derived with eigenvectors vj (j = 1; 2; : : : ; p ) where p �m is the rank
of the matrix R; see Eq. (8.14), m is the number of original variables
(i = 1; 2; : : : ; m). With Eq. (8.16) the discriminant functions are linear com-
binations of the original variables

dfj = �1jx1 + �2jx2 + : : : + �mjxm (8.17)

in which they play an especially important role { their variance within the
classes is small and between the classes large. Besides, such variables are
weighted slightly and are correlated with others. In this way, discriminant
functions are obtained; their information content decreases in the order
df1 > df2 > df3 > : : : > dfp . At best, the measures df1 and df2 can embody
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Fig. 8.10. Schematic repre-
sentation of three classes
in a two-dimensional dis-
criminant space df1 vs
df2; R1, R2, R3 are the
conˇdence radii of the
respective classes

80{95% of the total information and, therefore, a two-dimensional plot of
them may represent a realistic illustration of the respective classiˇcation as
is schematically shown in Fig. 8.10. The boundaries between the classes may
be estimated according to

R2
i =

2(n � k)(nk + 1) F1�˛;f1=2;f2=n�k�1

nk(n � k � 1)
(8.18)

In a corresponding way, measures of other class ˇgures, e.g., ellipses, can
also be calculated.

Pattern recognition has been successfully applied early in the ˇelds
of criminalistics (Duewer and Kowalski [1975]; Saxberg et al. [1978]),
archaeology (Danzer et al. [1984, 1987]) as well as characterization of
food (Forina and Armanino [1982]; Borszeki et al. [1986a]), and wine
(Borszeki et al. [1986b]).

Wine data of German growing areas, the clustering of which has been
shown in Fig. 8.8, have been classiˇed afterwards by MVDA (Thiel et al.
[2004]). The result can be seen in Fig. 8.11.

Whereas the separation of wines from Bad D�urkheim, Landau and In-
gelheim/Dienheim succeeds satisfactorily, an overlap has to be recognised
between Ingelheim and Dienheim. The total prediction rate, estimated by
cross validation, is 88%.

Classiˇcation of wines according to the grape variety succeeds better, in
general, because there are many more typical bouquet components (several
hundreds) than mineral and trace elements being typical for the origin
of wine. The organic compounds can be analyzed easily and reliably by
Headspace Solid-Phase Microextraction Capillary Gas Chromatography and
afterwards used for classiˇcation (De la Calle et al. [1998]). An example
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Fig. 8.11. Representation
of classiˇcation of 88
German wines by discrim-
inant analysis (1st vs 2nd
discriminant function)
ı Bad D�urkheim
(Rhinelande-Palatinate)
� Landau (Rhinelande-
Palatinate)
♦ Ingelheim (Rhine-
Hesse)
� Dienheim (Rhine-
Hesse)

Fig. 8.12. Representation
of the both ˇrst discrim-
inant functions df1 vs df2

obtained by discriminant
analysis (MVDA) of 65
German wines from ˇve
wine-growing regions
according to six different
grape varieties by means
of 58 features (bouquet
components)

� M�uller-Thurgau
ı Riesling
♦ Silvaner
� Scheurebe
+ Weissburgunder
� Gew�urztraminer
� Portugieser

Fig. 8.13. Discriminant
analysis of 36 wines from
the wine-growing region
of Alzey according to four
grape varieties (see above)
by means of 58 features

showing the classiˇcation of 65 German wines from ˇve wine-growing re-
gions according to six grape varieties is given in Fig. 8.12 (Danzer et al.
[1999]), whereas in Fig. 8.13 the discrimination of four grape varieties from
only one single region (Alzey) can be seen.
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As expected, the separation improves if the sources of variation are
reduced as in the situation represented in Fig. 8.13 in comparison with
Fig. 8.12 where various wine-growing areas are considered.

There are many classiˇcation methods apart from linear discriminant
analysis (Derde et al. [1987]; Frank and Friedman [1989]; Huberty
[1994]). Particularly worth mentioning are the SIMCA method (Soft in-
dependent modelling of class analogies) (Wold [1976]; Frank [1989]), AL-
LOC (Coomans et al. [1981]), UNEQ (Derde and Massart [1986]), PRIMA
(Juricskay and Veress [1985]; Derde and Massart [1988]), DASCO
(Frank [1988]), etc.

In general, the quality of classiˇcations depends on several factors such as:

{ All the essential features should be contained in the data set.

{ The total number of objects (n) should be large enough (as a rule n
should be about 3m).

{ The number of objects in every class (nk) should be of comparable size.

{ The variables (features) should be normally distributed.

If normal distribution cannot be assumed, nonparametric techniques of
classiˇcation should be applied. Widely used is the k-nearest neighbours
method (kNN) (see Cover and Hart [1967]; Sharaf et al. [1986]; Frank
and Todeschini [1994]; Danzer et al. [2001]). The kNN technique is both a
very simple and powerful method of data classiˇcation. An unknown object
is assigned according to the majority votes of its k nearest neighbours in the
learning set in the m-dimensional space. The respective votes are given on
the basis of multivariate distances, e.g., according to Eq. (8.12). In Fig. 8.14
the principle of object assignment is illustrated. To avoid ambiguities, an
odd number of nearest neighbours should be chosen.

Fig. 8.14. Result of 3NN
for two unknown objects
A and B: A is assigned
to class ı, B cannot be
classiˇed signiˇcantly to
any of the given classes
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Table 8.2. Euclidian distances dE and distance's ranks of an unknown wine sample to 16
samples with known growing region (GR), according to Danzer et al. [2001]

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GR S-U S-U S-U R R R B B B B B R-H R-H R-H R-H R-H

dE 8.73 7.85 7.74 6.11 7.13 7.27 5.18 7.37 8.18 6.01 4.86 6.55 7.63 5.95 7.26 7.39

Rank 16 14 13 5 7 9 2 10 15 4 1 6 12 3 8 11

In the context of wine classiˇcation, an unknown wine sample had to be
identiˇed as being from Saale-Unstrut (S-U), Rhineland (R), Baden (B), or
Rhine-Hesse (R-H). By means of the distances and ranks given in Table 8.2,
the unknown was assigned to B (by 1NN, 2NN [2B], 3NN [2B/R-H], 4NN
[3B/R-H], and 5NN [3B/R-H,R].

With the development of methods of artiˇcial intelligence, neural net-
works are used increasingly for classiˇcation; see Sect. 8.3.6.

8.3.4
Factor Analysis: Causes of Data Structures

As a rule, the properties of objects are determined neither by only one fea-
ture nor by all the features equally. Instead the measured parameters in�u-
ence variously the properties in a complex way because the variables are usu-
ally not independent from each other but are correlated to a certain degree.

The goal of factor analysis (FA) and their essential variant principal com-
ponent analysis (PCA) is to describe the structure of a data set by means
of new uncorrelated variables, so-called common factors or principal com-
ponents. These factors characterize frequently underlying real effects which
can be interpreted in a meaningful way.

The principle of FA and PCA consists in an orthogonal decomposition
of the original n�m data matrix X into a product of two matrixes, F (n�k
matrix of factor scores, common factors) and L (k�m matrix of factor load-
ings)

X = L F (8.19a)

that means⎛
⎝ x11 � � � x1m

...
. . .

...
xn1 � � � xnm

⎞
⎠ =

⎛
⎝ l11 � � � l1m

...
. . .

...
lk1 � � � lkm

⎞
⎠ �

⎛
⎝ f11 � � � f1k

...
. . .

...
fn1 � � � fnk

⎞
⎠ (8.19b)

and the linear model of any xij becomes

xij = l1j fi1 + l2j fi2 + : : : + lkj fik (8.19c)

This is the complete factor solution which admittedly contains uncorrelated
variables but all the k factors are extracted completely and no reduction
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in dimensionality occurs. However, it is usually the aim of data analysis to
reduce the variables up to the essential one on one hand and the unimpor-
tant on the other. Therefore, the reduced factor solution is more important
which decomposes X into L, F and an additional n�m matrix, the residual
matrix (error matrix) E:

X = L F + E (8.20a)⎛
⎝ x11 � � � x1m

...
. . .

...
xn1 � � � xnm

⎞
⎠ =

⎛
⎝ l11 � � � l1m

...
. . .

...
lq1 � � � lqm

⎞
⎠ �

⎛
⎝ f11 � � � f1q

...
. . .

...
fn1 � � � fnq

⎞
⎠

+

⎛
⎝ e11 � � � e1m

...
. . .

...
en1 � � � enm

⎞
⎠

(8.20b)

xij = l1j fi1 + l2j fi2 + : : : + lqj fiq + eij (8.20c)

where q = k � p is the number of essential factors and p the number of
insigniˇcant factors which can be transferred to the error term.

By means of this reduction of dimensions the information in the form
of variance is subdivided into essential contributions (common and speciˇc
variance) on one hand and residual variance on the other:

var(xij)total = var(xij)comm + var(xij)spec + var(xij)res (8.21)

The main difference between factor analysis and principal component
analysis is the way in which the variances of Eq. (8.20) are handled. Whereas
the interest of FA is directed on the common variance var(xij)comm and both
the other terms are summarized as unique variance

var(xij)unique = var(xij)spec + var(xij)res

and therefore

var(xij)total = var(xij)comm + var(xij)unique

PCA separates a so-called true variance,

var(xij)true = var(xij)comm + var(xij)spec

from the residual variance

var(xij)total = var(xij)true + var(xij)res

Apart from this varied handling of variances, the proceedings of FA and
PCA are similar corresponding to Eq. (8.20).

Generally, factor analysis consists of two steps:

(1) The factor extraction according to Eq. (8.20) in the course of which
the number of common factors are estimated by rank analysis and
coefˇcients of the factors (factor loadings) are calculated.
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Fig. 8.15. Plot of original data (a) and two-dimensional PC plot (b); p1 (91.4%) and p2

(5.6%) declare 97% of the total variance and, therefore, information of the data

(2) The factor rotation by which the factors are transformed into more
interpretable variables and can be tested concerning hypothetical data
structures, respectively. There are various techniques of factor rotation
with speciˇc advantages in several ˇelds of application (Frank and
Todeschini [1994]).

The PCA can be interpreted geometrically by rotation of the m-
dimensional coordinate system of the original variables into a new co-
ordinate system of principal components. The new axes are stretched in
such a way that the ˇrst principal component p1 is extended in direction
of the maximum variance of the data, p2 orthogonal to p1 in direction of
the remaining maximum variance etc. In Fig. 8.15 a schematic example is
presented that shows the reduction of the three dimensions of the original
data into two principal components.

Figure 8.16 shows a principal component plot of that data the classiˇca-
tion of which by MVDA was given in Fig. 8.11. It can be seen that a certain
structure can be imagined which becomes clearer by the discrimination al-
gorithm.

An important application ˇeld of factor and principal component anal-
ysis is environmental analysis. Einax and Danzer [1989] used FA to char-
acterize the emission sources of airborne particulates which have been sam-
pled in urban screening networks in two cities and one single place. The
result of factor analysis basing on the contents of 16 elements (Al, B, Ba,
Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Si, Sn, Ti, V, Zn) determined by Optical
Atomic Emission Spectrography can be seen in Fig. 8.17. In Table 8.3 the
common factors, their essential loadings, and the sources derived from them
are given.
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Fig. 8.16. Representation
of a principal component
plot (p1 vs p2) of 88 Ger-
man wines, see Fig. 8.11
and Thiel et al. [2004]
ı Bad D�urkheim
(Rhinelande-Palatinate)
� Landau (Rhinelande-
Palatinate)
♦ Ingelheim (Rhine-
Hesse)
� Dienheim (Rhine-
Hesse)

*
f3

f1

Fig. 8.17. Representation of the factors f1 vs
f3 of two cities and one single measuring
point (�); according to Einax and Danzer
[1989]

Table 8.3. Common factors of immissions of airborne particulates during the heating
period (bold: key elements); according to Einax and Danzer [1989]

Factor Variance in % Essential factor loadings by Genesis
1 34.3 Si, Mg, Pb, Ti, Mn, Fe Raised geogene material

(secondary dust)
2 17.2 Al, V, Ti, Ni Industrial and urban heat-

ing systems and steam-
raising plants

3 16.5 Cu, Mn, Cr, Sn, Mo, Mg Industrial immission of
metallurgy and metal-
processing industries

4 15.9 Zn, Ni, Ti Ubiquitous elements, sedi-
mented by precipitates



8.3 Chemometrical Interpretation of Analytical Data 243

8.3.5
Exploratory Data Analysis and Display Methods: Visualization of Data Structures

Sometimes the interpretation of analytical data does not need the deepest
mathematical analysis but it is sufˇcient to get an impression on the struc-
ture of the data. Although the basic idea of graphical data interpretation
is ancient (e.g., Brinton [1914]), the fundamentals of modern explorative
data analysis (EDA) has been developed in the 1960s (Tukey [1962, 1977]).

The goal of EDA is to reveal structures, peculiarities and relationships
in data. So, EDA can be seen as a kind of detective work of the data analyst.
As a result, methods of data preprocessing, outlier selection and statistical
data analysis can be chosen. EDA is especially suitable for interactive pro-
ceeding with computers (Buja et al. [1996]). Although graphical methods
cannot substitute statistical methods, they can play an essential role in the
recognition of relationships. An informative example has been shown by
Anscombe [1973] (see also Danzer et al. [2001], p 99) regarding bivariate
relationships.

The most important methods of explorative data analysis concern the
study of the distribution of the data and the recognition of outliers by
boxplots (Fig. 8.18), histograms (Fig. 8.19), scatterplot matrices (Fig. 8.20),
and various schematic plots.

� Boxplots (Box-Whisker plots)

Fig. 8.18. Representation of some trace elements in wines in form of boxplots, constructed
as follows: box: lower quartile, median �, and upper quartile; whiskers: minima and
maxima within box ˙1:5 of the quartiles' difference; outliers �: outside of box ˙1:5 of
quartiles' difference (according to Danzer et al. [2001])
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� Histograms

Fig. 8.19. Histograms of trace elements in wine for manganese (a) and copper (b) (ac-
cording to Danzer et al. [2001])

� Scatterplot matrixes

Fig. 8.20. Scatterplot matrix of ˇve trace elements in 19 wine samples; one of the samples
is marked (+) in all the special plots to have the opportunity for comparison (according
to Danzer et al. [2001])

� Icon plots (schematic plots). Under this term various schematic graphs
are put together (Kleiner and Hartigan [1981]; du Toit et al. [1986];
Nagel et al. [1996]) such as plots of suns, stars, glyphes, diamants, faces,
�owers, trees, castles, etc. From these, such graphs are privileged which easily
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can be differentiated visually. This applies particularly to faces and trees.
In Fig. 8.21 some icon plots are presented to illustrate the high information
and discrimination power of graphs.

Fig. 8.21. Starplots of ˇve trace elements (directed as shown below) in 19 wine samples
(a) Chernoff-type faces symbolizing ˇve elements coded in the forms of the face, eyes,
mouth, nose, and ears in four wine samples (b) (see Chernoff [1973]), and schematic
representation of a tree plot of one sample characterized by 15 variables (c)

� Andrews plots. In Andrews plots (Andrews [1972]) the features (vari-
ables set) are used as coefˇcients of a linear combination of trigonometric
functions

Fi(t) =
xi1p

2
+ xi2 sin(t) + xi3 cos(t) + xi4 sin(2t) + xi5 cos(2t) + � � � (8.22)

where �� � t � � . Plots with similar coefˇcients results in similar curves;
see Fig. 8.22.

Fig. 8.22. Andrews plot of
ˇve wines, according to
Danzer et al. [2001]
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� Minimal spanning trees and dendrograms. Both methods represent the
transition to cluster analysis which belongs { in a wider sense { also to EDA.
Dendrograms are well-known graphical representations of clustering which
have been shown in Figs. 8.7 and 8.8. Minimal spanning tree (Kruskal
[1956]; Prim [1957]; Cherition and Tarjan [1976]) is a method of graph-
theoretical clustering by which a tree is build stepwise in such a way that,
step by step, the link with the respective smallest distance is added.

8.3.6
Methods of Artiˇcial Intelligence

From the large repertoire of methods of artiˇcial intelligence (AI), viz vi-
sual perception learning, inference, problem solving, speech recognition,
language understanding and translating, chess-playing, hypothesis testing
and theorem proving, only a limited number of ˇelds are signiˇcant in
analytical chemistry. The most important ˇelds for data interpretation are
expert systems, neural networks and, partly, genetic algorithms.

Expert systems (ES) are computer programs which contain heuristic
knowledge basing on the experience of experts in the respective ˇeld of
application. An ES consists of data bases being a collection of facts and
ˇgures, on the one hand, and a system of rules of mathematical logic (e.g.
in the form of Boolean algebra) on the other hand. Using principles such
as combining, linking, inferring, and deciding, ES are schematically con-
structed as represented in Fig. 8.23.

The proceeding of an ES by decision sequences may be illustrated by
a (non-computerized) example from undergraduate training in analytical

Fig. 8.23. Structure of an expert system
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chemistry: the so-called \systematic separation scheme of cations" going
back to Fresenius [1841]. Having a sample in aqueous solution, the follow-
ing subproceeding is applied to test if Pb2+, (Hg2+

2 ), and Ag+, respectively,
are present in the sample.

IF HCl is added to the solution
AND white precipitation appears
THEN (AgCl and/or Hg2Cl2 and/or PbCl2)

IF precipitation is extracted by hot H2O, afterwards solution/ˇltrate
is cooled + HCl

AND white precipitation (PbCl2)
THEN Pb is detected
ELSE no Pb2+ is contained in the sample solution

IF NH4OH is added to the precipitation
AND blackening appears (Hg + HgNH2Cl)
THEN Hg is detected
ELSE no Hg2+

2 is contained in the sample solution
IF NH4OH is added to the precipitation, then HNO3

is added to the ˇltrate
AND white precipitation appears (AgCl)
THEN Ag is detected
ELSE no Ag+ is contained in the sample solution

ELSE neither Pb2+ nor Hg2+
2 nor Ag+ are contained in the sample solution

ES is based on comparable decision trees in computerized form. The
development and arrangement is carried out by means of

{ Procedural computer languages (e.g., FORTRAN, PASCAL, BASIC, C/C++)
by algorithmic links

{ Logical computer languages (e.g., PROLOG, LISP) by logical links
{ Shell systems in which speciˇc factual knowledge can be implemented

Today, shell systems are most widely used in analytical applications be-
cause of their simplicity, �exibility, and universality. The main advantage
of ESs is the fact that implemented and learned knowledge easily and fault-
lessly can be reproduced and copied, so that the knowledge may be available
for a wide community of users or customers.

An early ˇeld of application in analytical chemistry is structure elucida-
tion. DENDRAL was one of the ˇrst ES in general, designed to the identiˇca-
tion of organic compounds from mass spectrometric data (Buchanan and
Feigenbaum [1978]). In the 1980s and 1990s a �ood of expert systems has
been developed in analytical chemistry for different types of application, viz:

� Structure elucidation by various molecule spectroscopic methods (X-
PERT, Elyashberg et al. [1997]; MOLGEN, Benecke et al. [1997],
SPECINFO, Bremser and Grzonka [1991]; Canzler and Hellen-
brandt [1992]; Barth [1993]; Neudert and Penk [1996]; Schuur
[1997]).
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� Interpretation of measurements of methods: X-ray �uorescence spectrom-
etry (Janssen and van Espen [1986]; Arnold et al. [1994]), X-ray
diffraction spectra (Adler et al. [1993]), NMR spectra (HIPS, Wehrens
et al. [1993a]), HPLC retention indices (RIPS, Wehrens [1994]), Karl
Fischer titration (HELGA, W�unsch and Gansen [1989]).

� Evaluation of data and validation: multivariate data analysis (MULTI-
VAR, Wienke et al. [1991]), evaluation of interlaboratory studies (IN-
TERLAB, Wienke et al. [1991]), ruggedness expert system (RES, van
Leeuwen et al. [1991]).

� Sampling strategies (BIAS, Wehrens et al. [1993b]).

Laboratory Information Management Systems (LIMS) have been developed
exclusively for practical application, viz, the organization and control of
working course and information �ow in the laboratory (Nilsen [1996]).

LIMS comprises:

{ Acceptance, registration, and appointment of samples, generation of
working sheets

{ Detailing the course of sample treatment and analytical procedures
{ Analyzing test samples (if necessary by several methods)
{ Evaluation and validation of analytical results and their uncertainty
{ Reporting or exporting of the results and data archiving

By means of LIMS the reliability of the tests, the traceability of the results,
and the security of the data can be guaranteed. In addition, the effectivity
of the costs may be estimated and supply, service and maintenance of in-
struments managed. LIMS always has to be designed in an individual way
according to its speciˇc proˇle. Information on LIMS can be found mainly
on the internet (see Limsource, Lapitajs and Klinkner, etc.).

Another form of artiˇcial intelligence is realized in artiˇcial neural net-
works (ANN). The principle of ANNs has been presented in Sect. 6.5. Apart
from calibration, data analysis and interpretation is one of the most im-
portant ˇelds of application of ANNs in analytical chemistry (Tusar et al.
[1991]; Zupan and Gasteiger [1993]) where two branches claim particular
interest:

(i) Classiˇcation of objects on the basis of multicomponent analytical data
(ii) Spectra interpretation and spectrum-structure correlation

Both cases can be dealt with both by supervised and unsupervised vari-
ants of networks. The architecture and the training of supervised networks
for spectra interpretation is similar to that used for calibration. The in-
put vector consists in a set of spectral features yi(zi) (e.g., intensities yi
at selected wavelengths zi). The output vector contains information on the
presence and absence of certain structure elements and groups ˇxed by
learning rules (Fig. 8.24). Various types of ANN models may be used for
spectra interpretation, viz mainly such as Adaptive Bidirectional Associa-
tive Memory (BAM) and Backpropagation Networks (BPN). The correlation
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Fig. 8.24. Derivation of
element composition or
structural features from
a measured spectrum by
means of a trained ANN

between spectra and structure improves by the extent of training sets. How-
ever, it has to be considered that trained nets have excellent abilities in
interpolation but worse in extrapolation.

Applications of classical ANNs for spectra interpretation can be found
in Stonham et al. [1975], Wythoff et al. [1990], Robb and Munk (1990),
Allanic et al. [1992], Anker and Jurs (1992), Ball and Jurs [1993], and
Boger and Karpas [1994].

In contrast to common ANNs, Kohonen networks produce self-organized
topological feature maps (Kohonen [1982, 1984]). The basic idea of Koho-
nen mapping is that information in data usually contains not only an alge-
braic but also a topological aspect. These double aspect is shown schemat-
ically in Fig. 8.25 where the data and the structure of them are composed.

Fig. 8.25. Various topological arrangement of data which are arithmetically identical
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Kohonen nets are constructed in such a way that neighbourhoods in the
objects generate neighbouring points in the data projection.

Kohonen nets are one-layered networks which treat the inputs in such a
way that similar signals excite closely neighbouring neurons which on their
part generate neighbouring points in the data projection map. A spectacular
example for the efˇciency of Kohonen nets is the classiˇcation of 572 Italian
oils from nine various regions according to their contents of eight different
fatty acids (Forina and Armanino [1982]; Zupan and Gasteiger [1993]).

Neural networks are helpful tools for chemists, with a high classiˇcation
and interpretation capacity. ANNs can improve and supplement data ar-
rangements obtained by common multivariate methods of data analysis as
shown by an example of classiˇcation of wine (Li-Xian Sun et al. [1997]).

Genetic algorithms (see Sect. 5.3), representing the third group of meth-
ods of artiˇcial intelligence, have their advantages in optimization, simu-
lation and modelling (Lucasius and Kateman [1993]; Hibbert [1993]).
Applications to data analysis are mostly focused on feature selection (vari-
ables reduction); see Li et al. [1992]; Fischbacher et al. [1995].

8.4
Analytical Images

Modern methods of surface microanalysis and analytical microscopy pro-
duce analytical information mainly in the form of images. Furthermore,
analytical results of distribution analysis, obtained in various ways, by di-
rect sample scanning, discontinuous sampling or even by remote sensing,
may be presented by images.

Analytical images represent such geometrical information that can be
transferred to real sample positions given by the ˇeld of vision of the respec-
tive analytical instrument. On the other hand, with representations showing
intensities or related variables in dependence of signal positions (analytical
z�variables) such as wavelengths, retention values etc. (e.g., hyphenated
techniques), no analytical images exist but higher-dimensional analytical
information; see Sect. 3.4.

The analytical information obtained as a function of sample coordinates,
lx , ly and/or lz , can characterize

(a) Chemical species, viz

{ In the form of two-dimensional images (which realize in fact three-
dimensional information; see Sect. 3.4), z = f (lx ; ly ), representing
so-called species images; see, e.g., Figs. 3.12c and 8.26 (O, Al, Fe, and
Cu by EPMA)

{ Quasi-three-dimensional images, yz = f (lx ; ly ), representing con-
centration proˇles; see, e.g., Figs. 3.12a,b and 8.26 (Al, Fe and Cu by
SIMS)
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Fig. 8.26. Segregation of copper in an iron copper soak alloy: MI metallographic image, AE
absorbed electrons measured by EPMA, and four element-speciˇc X-ray scanning images
by EPMA, below: three elemental-speciˇc relief plots by SIMS; according to Ehrlich et
al. [1979]

{ Three-dimensional images, z = f (lx ; ly ; lz), representing the pres-
ence of species in a given volume element, e.g., by SIMS, or
yz = f (lx ; ly ; lz), representing the spatial concentration distribu-
tion of a certain component in a given volume element; see, e.g.,
Fig. 8.27

(b) Chemical structure, mostly presented in form of two-dimensional im-
ages, S = f (lx ; ly ), as can be seen exemplary in Fig. 8.28

(c) Topological structure in form of metallographic images (see Fig. 8.26,
on the left of the ˇrst row), images by electron microscopy (TEM,
SEM, FEM), ion microscopy (FIM, FIM), scanning tunnelling microscopy
(STM), and atomic force microscopy (AFM, AFP). By some of these
methods, apart from topological structures, chemical species can also
be recognized by use of special techniques, additional equipment,
and advanced evaluation. For example, from metallographic (light-
microscopic) images phases and, therefore, chemical compounds can
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Fig. 8.27. Quantitative 3D
analysis of Al on an in-
tegrated circuit (\pie sec-
tion"); different concen-
trations are represented
by various coded colours
(with kind permission
from R�udenauer and
Steiger [1986])

Fig. 8.28. Tungsten crystal
tip of 32 nm radius, ob-
tained with FIM by EW
M�uller (Pennsylvania
State University), accord-
ing to Weissmantel et
al. [1968]

be identiˇed by polarized radiation, etching procedures etc. On the
other hand, by coupling a ˇeld ion microscope with a time-of-�ight
mass spectrometer with single ion sensitivity, the ˇeld ion atom probe
(FIM-AP) is produced that can recognize atomic structures at solid
state tips (as can be seen in Fig. 8.28) and also identify ions at certain
lattice points by selective high voltage desorption.

The dimensions of analytical images can cover a range of many orders
of magnitude. The one extreme is given by country areas, mountain ranges,
and ore deposits imaged by satellites as well as ranges in the atmosphere
studied by remote sensing. The other one is characterized by the micro-,
nano- and atomic structure of materials, microelectronic devices (integrated
circuits) and crystals (see Figs. 8.27 and 8.28). Between these extremes, com-
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mon analytical images are situated, e.g., concerning species distribution on
environmental compartments as well as materials having ordinary dimen-
sions and being controlled by sampling and common analytical methods.
Images play an important role not only in chemistry but also in medicine
and biology, geology and agriculture.

Image techniques can be classiˇed into three categories (Geladi et al.
[1992a]: Geladi and Grahn [1996]):

(i) Direct imaging using area detectors like diode arrays, CCD cameras,
and video tubes

(ii) Scanning by moving a pointlike detector in lx and ly direction over an
object (instead of the detector alternatively the radiation source or the
object may be moved)

(iii) Reconstructing of latent images from data as in tomography and SIMS

The most important properties of analytical images can be summarized
as follows:

{ Images are two- or three-dimensional and, therefore, each image point
(pixel or voxel) is characterized by two or three indices.

{ Images are limited in space, not inˇnite.
{ There must be some spatial autocorrelation in the image, that means that

the local frequency have to be low or medium according to Fig. 2.6b,c
(in contrast, in cases of zero- and high local frequencies, see Fig. 2.6a,d,
there is no autocorrelation).

{ Spatial distances between object points, each of them characterized by
given indices, can be measured and calculated.

{ Images have a certain resolution both in spatial distances and intensity.

Image processing needs digitization where two critical aspects have to
be considered. On the one hand the sampling theorem (Stanley [1975];
Rabiner and Gold [1975]), according to which at least twice of the limiting
frequency (flim, highest frequency in the given image), should be used for
digitization, and on the other hand the signal-to-noise ratio (see Sect. 7.1.1),
to be precise the noise digitization, should be lower than the intrinsic noise
(Geladi et al. [1992a]).

The relationship between data, image and related techniques is shown
in Fig. 8.29.

Fig. 8.29. The relationship between image and data, expressed by image processing, image
analysis, data processing, and scientiˇc visualization (computer graphics), according to
Geladi et al. [1992a]
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Image of species A Species B Species C

Sample surface

layer 1
layer 2
layer 3

...

Fig. 8.30. Schematic dismantling of the m + 3 dimensions of multidimensional SIMS
images; each original data layer contains ˇve dimensions A; B; C = f (lx , ly ) in the case
represented here

Image acquisition as well as image analysis and image processing concern
data of all ˇelds of analytical chemistry regardless of the spatial dimensions,
in principle. Nevertheless, the most essential applications can be found in
multidimensional micro- and nanoanalysis. This is because some of the so-
called 3D techniques like SIMS (R�udenauer [1989]) and Auger microprobe
(Ferguson [1989]) are characterized in fact by more than three dimensions
(see Sect. 3.4). In the 3D mode SIMS, the secondary ions of various species
are recorded, each of them in three spatial dimensions, as schematically
represented in Fig. 8.30.

As a result of 3D SIMS analysis, a stack of multivariate images is stored
which can be described in case of qualitative species information by

Q = f (lx ; ly ; lz) (8.23a)

and in case of quantitative information by

yQ = f (lx ; ly ; lz): (8.23b)

Consequently, a multivariate image can be considered being a set of
congruent images of the same object for various variables and, therefore,
being an image the pixels (or voxels) of which are vectors instead of scalars
(Geladi et al. [1992a,b]).

The concrete situation as illustrated in Fig. 8.30 is characterized by
A; B; C = f (lx ; ly ; lz) and yA; yB; yC = f (lx ; ly ; lz). From the multivari-
ate stack of data there can be generated various one-, two- and three-
dimensional (two-, three- and four-dimensional information) as, for ex-
ample, shown in Fig. 8.31.

Multidimensional image information can be processed in the same way
as signal functions in general. In many cases, the basis of image processing
is the two-dimensional Fourier analysis

F (u; � ) =

∫∫
f (lx ; ly ) exp

(�j2�(u � lx + � � ly )
)

dlxdly (8.24)

an example of which is shown in Fig. 8.32.
Fourier- and other transformations (e.g., Laplace-, Hadamard-, and

Wavelet transformation) are the bases to transfer information complete and
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Fig. 8.31. Image processing in 3D SIMS: generation of a local depth proˇle and a transaxial
layer image (a) and of a coaxial layer image, a spatial diagonal image, and a point
analytical information (b); the representation is inspired from R�udenauer [1989]

Fig. 8.32. Two-dimensional Fourier transformation applied to a rectangle function shown
in original 3D representation (a) and 2D contour plot (b) and as Fourier transforms
(c,d), (according to Danzer et al. [2001])

reversible from an original data space into an abstract projection for the
reason of data processing such as ˇltering, cross- and autocorrelation, con-
volution and deconvolution etc.

These and other procedures of signal processing (smoothing, ampliˇca-
tion) can be used analogously for common signal functions. They are used
widely in digital photography to improve the quality of pictures, mainly by
signal-to-noise enhancement, resolution improvement, and brightness- and
contrast variation.
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Fig. 8.33. Common PC decomposition of a data matrix Xm;n (a) and PC decomposition
of a data block Xm;n;q of a multivariate image (b)

Multivariate analytical images may be processed additionally by chemo-
metrical procedures, e.g., by exploratory data analysis, regression, classiˇca-
tion, and principal component analysis (Geladi et al. [1992b]).

The interpretation of a multivariate image is sometimes problematic
because the cause for pictorial structures may be complex and cannot be
interpreted on the basis of images of single species even if they are pro-
cessed by ˇltering etc. In such cases, principal component analysis (PCA)
may advantageously be applied. The principle of the PCA is like that of
factor analysis which has been mathematically described in Sect. 8.3.4. It is
represented schematically in Fig. 8.33.

The data array Xm;n;q , which may be preprocessed by standardisation
and transformation, is decomposed in a set of three-way products of score
images, Tk , loading vectors, pk , and the residual, Em;n;q :

X = T P + E (8.25a)

x =
k∑
i=1

Tipi + E ; (8.25b)

cf. Eq. (8.20). The real dimensionality of the data is given by the rank k
that separates typical structures from noise. The score matrices Ti have the
same geometrical pixel arrangement as the raw images and are, therefore,
called score images.

Image processing has been applied in wide ˇelds of 2D- and 3D dis-
tribution analysis, e.g., in EPMA (Wolkenstein et al. [1997b]), SIMS
(R�udenauer [1989]; Wolkenstein et al. [1997a]; Wickes et al. [2003];
Hutter et al. [1996]), AFM and STM (Fuchs et al. [1995]), and XPS
(Artyushkova and Fulghum [2002]).
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9 Assessment of Analytical Information

From the end of the 1960s up to the present, analytical chemistry has fre-
quently been deˇned as the discipline that gains information on chemical
composition and structure (Danzer et al. [1976, 1977, 1987]; Fresenius
et al. [1992]); see Sect. 1.1. Consequently, analytical information has been
characterized by information theory (Doerffel and Hildebrandt [1969];
Kaiser [1970]; Eckschlager [1971{1989]; Danzer [1973a,b,c, 1974, 1975a,
1975b, 1978]; Malissa et al. [1974]; Danzer and Eckschlager [1978];
Eckschlager and Danzer [1994]; Danzer and Marx [1979a,b]; Danzer
et al. [1987, 1989, 1991]). Before, information theory was been applied
to physical measurements (Brillouin [1963]) and in physical chemistry
(Rackow [1963{1969]).

The principle of chemical measurements, as realized in the analytical
process (Fig. 2.1), corresponds in its signiˇcant steps to the general principle
of information processing (Fig. 3.1).

According to classical information theory, founded by Shannon [1948]
(see also Shannon and Weaver [1949]), information is eliminated un-
certainty about an occurrence or an object, obtained by a message or an
experiment. Information is always bound up with signals. They are the car-
riers of information in the form of deˇnite states or processes of material
systems (Eckschlager and Danzer [1994]; Danzer [2004]); see Sect. 3.1.

9.1
Quantiˇcation of Information

Information, I , is the difference between information entropies, viz the a
priori information entropy, H , that characterizes the uncertainty before a
message is obtained or an experiment is carried out, and the a posteriori
information entropy, H 0, that remains afterwards:

I = H � H 0 (9.1)

In the case of m discrete phenomena xi (e.g., outputs of an experiment), the
information entropy is calculated by means of the respective probabilities
P (xi)

H
(
P (x)

)
= �

m∑
i=1

P (xi) lb P (xi) =
m∑
i=1

P (xi) lb
1

P (xi)
(9.2)



266 9 Assessment of Analytical Information

where
∑

P (xi) = 1. The binary logarithm as a measure of information has
been introduced by Hartley [1928]. It holds lb a = log2 a = 3:322 log10 a,
the unit is then [H] = [I] = bit.

On the other hand, the information entropy characterizing the uncer-
tainty of a continuous random quantity with a probability density p (x) is
given by

H(p ) = H
(
p (x)

)
= �

+1∫
�1

p (x) lbp (x) dx (9.3)

with
∫ +1
�1 p (x)dx = 1.

In the case that the information of chemical results xi is imparted by
signals zj , then it holds for the entropy (Eckschlager and Danzer [1994])

H
(
P (xij zj)

)
= �

m∑
i=1

P (xij zj) lb P (xij zj) (9.4)

When an unambiguous relationship exists between signal appearance
and analytical result then Eq. (9.4) turns into Eq. (9.2).

It is meaningful to differentiate (Meyer-Eppler [1969]; Danzer et al.
[1987]; Eckschlager and Danzer [1994]) between:

(i) The speciˇc (partial) information content, Ii, of one deˇnite phe-
nomenon or experimental result, e.g., the appearance of a given signal
and, therefore, the presence of a deˇnite constituent in a sample

Ii = Hi + H 0i (9.5)

with the speciˇc information entropies Hi = �lbP (xi)

(ii) The average information content Ia� of an experimental result out of a
set of m possible

Ia� = Ha� + H 0a� (9.6)

where Ha� is calculated according to Eq. (9.2) and corresponds to the
weighed average of all the speciˇc information entropies Hi character-
izing their mathematical expectation

(iii) The maximum (average) information content Imax

Imax = Hmax = lbm (9.7)

which is relevant if all the m results expected a priori have the same
probability P (xi) = 1=m (in this case, the a posteriori entropy H 0max =
lb1 = 0).
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Table 9.1. Speciˇc (I+ and I�) and average (Ia� ) information contents (in bit) and speciˇc
plausibilities (˘+ and ˘�) in cases of various a priori probabilities of qualitative tests

Case Example P (x+) I+ I� Ia� ˘+ ˘�

1 General unknown case 0.5 1.00 1.00 1.00 1.00 1.00

2 Mn in steel 0.9 0.15 3.32 0.47 6.67 0.30

3 Silicon in secondary dust 0.99 0.014 6.64 0.078 71.43 0.15

The matter may be illustrated by the example of qualitative analysis. As a result of a
speciˇc test, it is stated that a constituent searched for is present in the test sample
(x+) or not (x�) depending on whether a speciˇc signal is detected (z+) or not (z�)
as represented in Fig. 9.1. In Table 9.1 the different types of information contents
are compiled, each for various a priori probabilities.
If the probabilities are equal (case 1), I+, I� and Ia� are the same and Ia� corresponds
to the maximum information content, Ia� = Imax. In cases 2 and 3, where the a priori
probabilities are different, the expected (more probable) result yields the respective
lower information contents whereas the unexpected (less probable) result manifests
in high values of the speciˇc information.

In this context, the term plausibility which is sometimes used in clinical
analytical chemistry, should be considered. Whereas information is formed
by the unexpected, plausibility is generated even by the expected. From this
point of view, plausibility has been described inversely to information, viz
˘i = I�1

i (Danzer [1983]), but because of the unit, plausibility should be
deˇned by

˘i =
lb2

Ii
(9.8)

Qualitative analysis may be carried out by means of visual signals (e.g.,
spot test reactions) or stationary signals in a given position zj of a signal
function y = f (z), see Sects. 3.2, 3.3 and Fig. 9.1.

Fig. 9.1. Signal states in the case of qualitative tests (\+" means signal
detected (z+) and \�\ means not detected (z�)
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Fig. 9.2. Expectation range
(a priori distribution)
p0(x) and distribution
of the measured values
p (x) in case of normal
distributions N (�0; � 2

0 ),
N (�; � 2)

In the case where a species has to be identiˇed from an instrumental-
analytical record like Fig. 3.8 with the help of a deˇnite signal position, then
the information content is determined according to Kullback's divergence
measure of information (Kullback [1959]; Eckschlager and Stepanek
[1985]; Eckschlager and Danzer [1994])

I(p ; p0) = H(p ; p0)� H 0(p ) =

+1∫
�1

p (x) lb
p (x)

p0(x)
dx (9.9)

In this way, deviations can be characterized between an experimentally
found distribution of measured values, p (x), and an a priori distribution
p0(x), e.g., corresponding to an expected normal range of values. There
are situations, especially with some spectroscopic methods, in which rela-
tions of the signal position, experimentally recorded on the one hand and
theoretically expected on the other hand, may contain essential chemical
information on the species (chemical shifts).

In case of normally distributed a priori- and a posteriori distributions,
p (x) = N (�; � 2) and p0(x) = N (�0; �

2
0 ), Eq. (9.9) becomes

I(p ; p0) = lb
�0

�
+ k

(� � �0)2 + � 2 � � 2
0

� 2
0

(9.10)

where k = 1=(2 ln 2) = 0:72135. The situation is illustrated by Fig. 9.2.
An example concerning the C=O stretching vibration in IR spectroscopy

is given in Danzer et al. [2001], p 51.
In contrast to quantitative analyses, the results of qualitative tests and

of identiˇcations cannot be evaluated by means of mathematical statistics.
Instead, information theory is a helpful tool to characterize qualitative anal-
yses, in particular in case of multicomponent systems.

9.2
Information Content of Quantitative Analysis

In contrast to qualitative tests, in quantitative analysis more than the two
signal states shown in Fig. 9.1 (+=�) are evaluated. Depending on the un-
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Fig. 9.3. Signal levels in case of quantitative analysis

certainty of the signal intensity, a certain number m of signal levels can be
distinguished; see Fig. 9.3.

The information content of quantitative analytical measurements is de-
termined by three items:

(1) The expectation range of the results (a priori distribution) p0(x)

(2) The uncertainty U (x) of the measured values, characterized by the a
posteriori distribution p (x), where U (x) = U (y )=S; see Sect. 4.2 and
Eq. (4.31)

(3) The trueness of the analytical results or their inaccuracy, respectively,
characterized by the bias ı = jx � xtruej; see Sect. 7.1.3.

Classical information theory according to Shannon [1948] and Bril-
louin [1963] consider only items (1) and (2); the trueness of information
has not been taken into account.

In the case where no bias is relevant (x = xtrue), Eq. (9.9) becomes

I(p ; p0) = lb
p (x)

p0(x)
(9.11)

The a priori distribution, which re�ects our assumptions or preliminary
information about the analyte in the sample, is frequently considered to be
uniform, U (xmin; xmax); their probability density is given by

p0(x) =

⎧⎪⎨
⎪⎩

1

xmax � xmin
for xmin � x � xmax

0 otherwise

(9.12)

On the other hand, the a posteriori distribution, p (x), mostly can be
considered to be a normal distribution, N (�; � 2), or, in analytical reality, a
t-distribution, Nt (x; s2), with
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Fig. 9.4. Uniform expecta-
tion range between xmin

and xmax and normal-
distributed (t-distributed)
measured values

p (x) =
1

�
p

2�e
(9.13a)

or

p (x) =
1

2�x
=

p
n

2s t1�˛;�
(9.13b)

respectively. The right-hand side of Eq. (9.13b) represents the reciprocal
double-sided conˇdence interval that stands frequently for the uncertainty
of measurement; see Sects. 4.1.2 and 4.2.

With a uniform expectation range hxmin; xmaxi and the a posteriori uncer-
tainty according to Eq. (9.13b) as shown in Fig. 9.4, the information content
at Eq. (9.11) turns into

I(p ; p0) = lb
p (x)

p0(x)
= lb

xmax � xmin

2�x

= lb
(xmax � xmin)

p
n

2s t1�˛;�
= lbm

(9.14)

In Eq. (9.14), m = (xmax � xmin)=(2�x) represents the number of signal
levels that can be distinguished signiˇcantly within the expectation range
(see Fig. 9.3). The same holds for the number of the levels of the chemical
quantity, e.g., concentration levels. This is valid on the pre-condition that
all the m signal levels are equally probable, viz m is constant over the entire
measuring range and, therefore, the standard deviation s=const, too.

In some cases, s and with it �x are changing in dependence on the
measurand x. Then the number of signiˇcantly distinguishable signal levels
(and with it concentration levels) m is given by

m =

xmax∫
xmin

f (x)dx (9.15)

where f (x) = �x�1 according to Danzer [1975a]. If s = const, it follows
Eq. (9.14). On the other hand, for the frequent case of an approximately
constant relative standard deviation srel = s=x = const, m becomes
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and the information content in case of constant relative standard deviation

I(p ; p0) = lb

( p
n

2srel t1�˛;�
ln
xmax

xmin

)
: (9.17)

If m = f (x) is not explicitly known, Eqs. (9.14) and (9.17) can be used
as approximations depending on the size of the expectation range and pre-
information on the relative constancy of s or srel.

In an example it will be shown that the difference between both variants may be
small. The determination of an analyte A will be considered with the following data:
xmin = 1 wt%, xmax = 10%, xA = 6:00%, s = 0:05%, srel = 0:0083, n = 10. It is
obtained by:

Eq. (9.14) according to s = const:

I(p ; p0) = 3:322 lg[(10� 1)
p

10=(2 � 0:05 � 2:26)] = 6:98 bit

Eq. (9.17) according to srel = const:

I(p ; p0) = 3:322 lg[
p

10=(2 � 0:0083 � 2:26) � ln 10] = 7:60 bit

It is customary in analytical chemistry to examine unknown samples by
a screening procedure using a multicomponent method like OES or MS in
case of inorganic constituents on the one hand and GC or HPLC in case of
organic constituents on the other. In this way, an overview can be obtained
on the type of constituents and their approximate contents. In many cases
it is necessary to get a deeper insight into the sample composition. For this
reason, the one or a few constituents have to determine more precisely.

In such cases, the expectation range corresponds to the uncertainty range
of the screening method (to the respective distribution of the values mea-
sured by screening) which may be, e.g., a normal distribution, N (�scr; �

2
scr),

or Nt (xscr; s
2
scr), respectively. The a posteriory distribution is given by the un-

certainty of the more precise determination, N (�prec; �
2
prec), or Nt (xprec; s

2
prec),

respectively. In this case, Kullback's measure (Eq. 9.10) have to be applied
that reads concretely:

I(p ; p0) = lb
�scr

�prec
+ k

(�prec � �scr)2 + � 2
prec � � 2

scr

� 2
scr

(9.100)

Examples for this proceeding are given in Danzer et al. [2001], p 55.
The situation becomes more complex when aspects of the trueness of

analytical results are included in the assessment. Trueness of information
cannot be considered neither by the classical Shannon model nor by Kull-
back's divergence measure if information. Instead, a model that takes ac-
count of three distributions, viz the uniform expectation range, p0(x), the
distribution of the measured values, p (x), and that of the true value, r (x),
as shown in Fig. 9.5, must be applied.
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Fig. 9.5. Relationship of a uniform a priori expectation range (between xmin and
xmax), normal-distributed (t-distributed) measured values, and the (conventional) true
value xtrue

The occurrence of a bias ı in the measured results can be dealt with
by the Kerridge{Bongard measure of inaccuracy (Kerridge [1961];
Bongard [1970]; Eckschlager and Stepanek [1985]; Eckschlager and
Danzer [1994]). With the condition that � is situated within the range
xmin + 3� < � < xmax � 3� , the Kerridge{Bongard information is
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If the true value can be considered to be error-free (�true ! 0), r (x)
degenerates into a Dirac impulse N (�true; 0). Considering real samples and
the bias ı = �true � x, the estimate of Eq. (9.18) is given by

Î(r ; p ; p0) = lb
(xmax � xmin)

p
n

2s t1�˛;�
� k

ı2 � � 2

� 2
(9.19)

In the case of a large bias, the second term of Eq. (9.19) can exceed
the ˇrst one and so the information content formally would become nega-
tive. Although this could be interpreted as misinformation, negative infor-
mation contents are unusual in information theory itself. For this reason,
Eckschlager and Stepanek [1985] introduced

I =

{
= Î(r ; p ; p0) if Î(r ; p ; p0) 	 0

= 0 if Î(r ; p ; p0) < 0
(9.20)

The three-dimensional relationship between I , ı, and � is represented in
Fig. 9.6.

Examples of the evaluation of biased analytical results have been given
in Danzer et al. [2001], p 56.

The consideration of both precision and trueness by means of the
Kerridge-Bongard model can be generalized as follows:
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Fig. 9.6. Dependence of
the information content
on the bias, ı, and the
standard deviation of the
measured values, � , as de-
scribed by the Kerridge-
Bogard model (Eq. 9.19)
according to Danzer et
al. [2001]

(1) Positive values of information content always means a decrease of the
a priori uncertainty about the measurand

(2) The information content rises with the increasing width of the expec-
tation range and with the precision of the measured values

(3) A measurement procedure is able to yield information only if the pro-
duced results are sufˇciently accurate and precise, viz ı ! 0 and
�x < (xmax � xmin)

(4) Negative information content occurs if a signiˇcantly inaccurate mea-
suring result appears. This has more serious consequences the more
precise the measured result is (see Fig. 9.6)

(5) The Kerridge-Bongard measure of inaccuracy expresses clearly the con-
sequences of wrong analytical results: inaccurate results do not elimi-
nate uncertainty but misinform the chemist and manifest the initial a
priori uncertainty.

The Kerridge-Bongard model of information is of great importance in
quality assurance, in particular for the assessment of interlaboratory stud-
ies. Examples of the information-theoretical evaluation of analytical re-
sults within the context of interlaboratory comparisons have been given
by Danzer et al. [1987, 2001], Wienke et al. [1991] and Danzer [1993].

9.3
Multicomponent Analysis

Multispecies analyses require two-dimensional analytical information y =
f(x), see Sect. 3.4, mostly in the form of spectra and chromatograms. By
evaluation of various signals or the entire signal function, simultaneous in-
formation on several sample components can be obtained (in the extreme
case on all the constituents contained in the sample). The relevant quan-
tity that characterizes multicomponent analyses is the information amount,
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M(n) being the sum of the information contents of all the n components
under consideration:

M(n) =
n∑
j=1

Ij (9.21)

For the case that all the n constituents have similar expectation ranges,
equally probable signal levels and are estimated with comparable precision,
the maximum information amount becomes (Danzer et al. [1987])

M(n)max = n � Imax = n � lbm (9.22)

In the concrete case of qualitative tests on n components, the maximum
information amount is M(n)qual = n bit.

As a rule, multicomponent analysis is carried out by instrumental-
analytical methods that produce two-dimensional analytical information in
form of signal functions. The information amount according to Eqs. (9.21)
and (9.22) is based on the condition that the assignment between signals
zj and events xi is unambiguous and, therefore, P (xijzj) turns into P (xi);
see Eqs. (9.4) and (9.2). Moreover, the signals selected for evaluation must
be independent from each other; concerning correlated signals see Dupuis
and Dijkstra [1975] and Danzer et al. [1989].

Another matter is the identiˇcation of a substance, viz the selection of
one unknown component out of p which are possible. In case of equal prob-
abilities for all the possibilities, the maximum information content results

M(1; p )max = lbp (9.23)

The identiˇcation of n constituents out of p possibles in the case of
p � n is characterized by

M(n; p )max = n � lbp (9.24)

In the case where there are different probabilities for the presence of the
p possibles, it holds in general that

M(n; p ) =
n∑
i=1

p∑
j=1

(
P (xj) lb

1

P (xj)

)
i

(9.25)

If the n unknown components have to be found out from a manageable
number of p possibles, instead of Eq. (9.24) the following relationship must
be applied:

M(n; p ) =
n∑

k=1

lb(p�k+1) (9.26)

The information amount increases further, if the n identiˇed components
additionally have to be determined quantitatively. In the simplest case, the
maximum information amount according to Eq. (9.24) increases by the
amount n � lbm, given in Eq. (9.22) into
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M(n; p )max = n(lbp + lbm) = n � lb(pm) (9.27)

In most unfavourable cases of the chemical practice, not even the num-
ber n of the species is known, e.g., in so-called \general unknown" cases in
toxicological analytics. Then, at ˇrst, it has to be tested by a powerful sepa-
ration method, e.g. chromatography, how many components are present in
the sample before they are identiˇed. For this an information part

In = lb
p

n
(9.28)

is needed and the total information amount M(n; p )total for the identiˇcation
and determination of n unknown constituents (out of a set of p possibles)
results:

M(n; p )total = In + M(n; p ) + M(n) = lb
p

n
+ n � lb(p �m) (9.29)

This information amount is independent of the way in which it is ob-
tained, viz if different techniques are used to recognize the number of con-
stituents (In), identify them and quantitatively determine them, or all of this
is done by one and the same procedure like GC-MS. Examples are given in
Eckschlager and Danzer [1994], p 56, and Danzer et al. [2001], p 65.
From the analytical problem, it has be to distinguish between indentiˇca-
tion of n unknown constituents and the analysis of n known components
as characterized by Eq. (9.22).

For the simultaneous analysis of n components, at least N 	n useful
signals must be available. Instrumental-analytical methods produce as a
rule two-dimensional information y = f (z), e.g., in form of spectra, chro-
matograms etc., as schematically shown in Fig. 7.11.

The potential amount of signals, viz the number of signals that can max-
imally be observed with no disturbance, is characterized by the analytical
resolving power (see Sect. 7.6) Rz = N that is given by the boundaries of
the registration range zmin and zmax as well as the signal half width �z;
see Eqs. (7.53) to (7.55) and Doerffel and Hildebrandt [1969], Kaiser
[1970] and Danzer [1975a]. According to them, two neighbouring signals
can be separately detected if their distance is at least �z.

The potential information amount Mpot of an analytical method is di-
rectly characterized by their signal resolution power (analytical resolution
power) Rz = N

Mpot = N � Imax = N � lbm (9.30)

Table 7.6 gives an overview about the analytical resolving power of various
analytical techniques.

Whereas some instrumental methods produce just one signal per com-
ponent, N = n, e.g., chromatographic methods, some other methods such
as atomic spectroscopy generate much more signals as required, N � n.

The surplus of signals, N � n, leads to redundancy, RM ,

RM = Mpot �M(n) = (N � n) � lbm (9.31a)
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frequently expressed in the form of relative redundancy, rM ,

rM =
RM
Mpot

= 1� n

N
: (9.31b)

In more detail, the problem of redundancy is described in Danzer et al.
[1989] and Eckschlager and Danzer [1994], where, in the example of
qualitative evaluation in optical emission spectrography, the contrast be-
tween \helpful\ and \blank\ redundancy is illustrated. In OES, for about
80 elements there exist hundreds of thousands of spectral lines, but the
spectrochemists focus their interest only on relatively few of them: the so-
called main detection lines (prominent lines) according to Gerlach and
Schweizer [1930], Gerlach and Gerlach [1936] and Gerlach and Riedl
[1939]. These prominent lines are a set of lines associated with promoting
redundancy, whereas the other lines fall into the category of blank redun-
dancy.

On the other hand, not only the enormous number of signals in mul-
ticomponent methods but also the large number of species that can be
detected in highly resolved spectra and chromatograms, respectively, in-
�uence the information amount. Therefore, Matherny and Eckschlager
[1996] proposed the introduction of so-called relevancy coefˇcients, k, into
the system of information-theoretical assessment. In analytical practice, the
coefˇcients k can be considered as being weight factors of the information
contents of the respective species with which Eq. (9.21) becomes

M(n)w =
n∑
j=1

kj � Ij (9.32)

The values of these relevancy coefˇcients can be ˇxed depending on the
practical chemical problem using static or dynamic models (Matherny and
Eckschlager [1996]; Eckschlager and Stepanek [1985]; Eckschlager
and Danzer [1994]).

9.4
Process and Image Analysis

In specialized studies, chemical measurements achieve particular impor-
tance by their temporal and spatial resolution. In process control, the mo-
mentary value is interesting only in such exceptional situations in which a
warning or control limit is passed. Much more information is contained in
the time function of an analytical system, y = f (t), or y = f (z; t), in case
of multicomponent systems as shown in Fig. 3.11.

The information amount of process analyses (under which term all time-
dependent studies from chemical process control up to dynamic and kinetic
studies are summarized) increases by the factor of time resolving power
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Rt =
t

�t
(9.33)

compared with that of static chemical measurements. The information
amount of temporally resolved measurements is given by

Mt = Rt � Imax = Rt � lbm (9.34)

in case of single component analysis (Danzer [1978]) and

M(n)t = Rt �M(n) = Rt � n � lbm (9.35)

for multicomponent analysis.
Similar is the situation in the case of geometrically resolved information

(image information in the most general sense). The information amount
increases in the following cases (see also Table 3.1):

� Lateral proˇles, y = f (lx), viz line scans along a line lx across the sample
with y being a intensity measure or content; see, e.g., Fig. 3.11b

� Concentration proˇles, y = f (lx ; ly ), on a sample surface lx�ly (surface
scan; see Fig. 3.12a,b)

� Elemental images, z = f (lx ; ly ), with z being a component-speciˇc signal;
see Fig. 3.12c

� Black and white image information, b = f (lx ; ly ), where b is the number
of grey levels (e.g. of photos)

� Coloured image information, B = f ('; lx ; ly ), where B is the number of
intensity levels of ' colours

Compared with that of common analyses which determine an average
composition of the sample, the information amount of spatially resolved
analyses increases by the factor of geometrical resolving power RA that may
be in the concrete case

� Lateral resolving power:

Rlateral =
li
�li

(9.36a)

where li is the entire lateral distance scanned on the sample, �l the small-
est resolvable lateral distance, given by the diameter of the measuring
point (i is the index of the spatial direction, x, y , or z = depth).

� Surface resolving power:

Rsurface =
a

�a
(9.36b)

with a being the plane (area) of the entire sample under study, �a the
smallest resolvable element of plane (plane resolving limit, \pixel"; see
R�udenauer [1989]). Areal resolving power plays an important role for
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all planar microprobe techniques like Electron Probe Micro Analysis
(EPMA), Scanning Auger Microprobe (SAM) and 2D Secondary Ion Mass
Spectrometry (SIMS); see Grasserbauer [1985], Grasserbauer et al.
[1986a,b]; R�udenauer [1989] and Hutter et al. [1996].

� Volume resolving power:

Rvolume =
�

��
(9.36c)

where � is the sample volume under investigation, �� = �lx �ly �lz
� (�li)3 smallest resolvable volume element (volume resolving limit,
\voxel"; see R�udenauer [1989]). A well-known method that yields three-
dimensional analytical information is the ion microprobe (SIMS).

In the special case of Eq. (9.36a) where �li = lz is ˇxed perpendicularly
to the surface of the sample, the depth resolving power Rdepth = lz=�lz
results which becomes important for depth proˇles and thin ˇlm analysis.

For distribution analysis and analytical images the potential information
amount increases by the factor A in case that all the distinguishable points
(all the pixels or voxels, respectively) are analyzed. In the ideal case, it
results in

MA = RA � Imax = RA � lbm (9.37)

in case of single component analysis and

M(N )RA = RA �M(N ) = RA � N � lbm (9.38)

for multicomponent analysis (Danzer [1974]; Danzer et al. [1991];
Eckschlager and Danzer [1994]) with a distribution-analytical method
with the potential analytical resolving power N .

The relationships at Eqs. (9.37) and (9.38) do not take into account a
possible loss of precision with increasing geometrical resolving power as well
as errors in adjusting the measuring points. Furthermore, the independence
of all the RA measuring points must be presupposed for the estimation of
the ideal information amount.

Another limiting case is given by the real information amount of a given
distribution-analytical result or problem, respectively,

M(n)a = a �M(n) = a � n � lbm (9.39)

that will be determined by the practically used geometrical resolving power,
Rreal = a. Therefore, the information amount is a times greater than that
of average analysis, M(n). The number a measuring points, e.g., spark spots
or laser craters in Optical Emission Spectroscopy or Mass Spectrometry, are
determined by a given problem, e.g., testing of homogeneity (see Danzer
et al. [1991]; Eckschlager and Danzer [1994]). However, the real infor-
mation amount, M(n)a, is always lower than the ideal one, M(N )RA , because
a < RA and n < N . Practical limitations of distribution analysis as well
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as examples that represent real distribution-analytical problems like multi-
phase and homogeneity studies are given in more detail by Danzer et al.
[1991]. There may also be found a comparison of detailed expressions of
potential and practical information amounts.

Distribution analysis in atomic dimensions becomes structure analysis.
But because of its speciˇc methodology, it makes sense to consider structure
analysis as a separate ˇeld of analytical chemistry; see Sect. 1.2. Therefore,
the information-theoretical fundamentals of structure analysis are different
from that of element analysis and have been represented by Danzer and
Marx [1979a,b].

Both time- and position-dependent concentration functions can be dealt
with by the theory of stochastic processes (Bohacek [1977]). Time functions
playing a role in process analysis can be assessed not only by means of
information amount M(n)t but also { sometimes in a more effective way {
by means of the information �ow, J , which is generally given by

J =
dM

dt
(9.40)

Based on the information �ow, a number of information-theoretical per-
formance quantities can be derived, and some important ones are compiled
in Table 9.2. The information performance of analytical methods can be re-
lated to the information requirement of an given analytical problem. The
resulting measures, information efˇciency and information proˇtability, may
be used to assess economical aspects of analytical chemistry.

The partial efˇciency coefˇcients are deˇned in detail as follow:

{ em = lbm�=lbm
Precision efˇciency coefˇcient (m is the number of signal or concentration levels
distinguishable by the method and m� the number of levels needed to solve the
given problem)

{ en = n=N
Signal efˇciency coefˇcient (N = RZ analytical resolving power according to
Eqs. (7.53) to (7.55) and Eq. (9.30), n number of components to be analysed)

{ ea = a=RA

Spatial efˇciency coefˇcient (RA spatial resolving power; see Eqs. (9.36a{c), a
number of spots needed to be investigated)

{ e# = #=Rt

Time resolution efˇciency coefˇcient (Rt time resolving power, see Eq. (9.33), #
time resolution needed)

{ et = tana=treq

Time efˇciency coefˇcient (treq time required for analysis, tana real analysis time)

A peripheral condition of the efˇciency coefˇcients is that they must be less than
1, otherwise the analytical problem cannot be solved. Therefore, ei is relevant for
ei � 1 and ei = 0 is assigned for ei > 0. Consequently, the efˇciency E according
to Table 9.2 becomes 0 if at least one of the coefˇcients ei does not fulˇl the con-
dition and, therefore the problem is insoluble (Danzer and Eckschlager [1978];
Eckschlager and Danzer [1994]).
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Table 9.2. Information-theoretical performance parameters, according to Danzer and
Eckschlager [1978] and Eckschlager and Danzer [1994]

Designation Quantity Unit Application in an-
alytical process

Note

Information densi-
ty (storage density)

Da = Ma=a
D� = M� =�

bit/cm2

bit/cm3
Static detectors,
e.g., photographic
plate

a, � spatial stor-
age unit

Information capac-
ity (channel capac-
ity)

C = Mpot=t bit/s Dynamic detec-
tors, e.g., photo-
multiplier

t time

Information �ow
(momentary
information
performance)

J = dMpot=dt bit/s Load of spectrom-
eter channels,
Chromatography

Information
performance

P = Mpot=tana bit/s
bit/h

Information po
wer of analytical
procedures

tana time of anal-
ysis

Information
efˇciency

E =
k∏
i=1

ei 1 Efˇciency test ei partial efˇ-
ciency coefˇ-
cients

Information
proˇtability

˚ = E �Mpot=� bit/s/cu
bit/h/cu

Performance/cost
relation

� cost of an anal-
ysis
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Glossary of Analytical Terms

Globalization in science, technology and economy causes, amongst other
things, problems in derivation, adaptation and acceptance of technical terms
in general, and in Analytical Chemistry, too. Both vague and contradictory
deˇnitions have been developed and established over the years. Therefore,
in the last decade the efforts have been increased to harmonize the use of
analytical terms. In particular international organisations like ISO, IUPAC
render outstanding services to the ˇxing and harmonization of essential
analytical terms. But also additional activities have been done in this ˇeld,
e.g., by the Royal Society of Chemistry, the EURACHEM Education and
Training Working Group and the Federation of European Chemical Societies
(FECS), Division on Analytical Chemistry (DAC) as well as by publications
in form of books (e.g., Prichard et al. [2001]) and other publications, e.g.
the series \Glossary of Analytical Terms" (GAT) in the journal Accreditation
and Quality Assurance, see GAT I to X [1996-1998], where multilingual terms
are given, and Holcombe [1999/2000].

In the following, deˇnitions of essential analytical terms are compiled, if
possible on the basis of international agreements. Attached are sparse refer-
ences and cross-references. The symbols, being used here, means:! \see
also"(cross-references to terms, additional references as well as paragraphs,
chapters, equations and ˇgures of this book), and � is a warning notice.

Accuracy

\Closeness of agreement between the re-
sult of a measurement and a true value
of the measurand".

ISO 3534-1 [1993]! Sect. 7.1! Trueness� Do not confuse with
Precision

Analysis (of a sample)

Investigation of a sample to identify
and/or determine (an) analyte(s) or as-
say a material.

! Quotation from Anal
Chem [1975] at the end of the
Glossary
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Analyte

\The chemical entity being investigated
(qualitatively or quantitatively)".

According to Pritchard et al.
[2001]

Analytical function (evaluation function)

Inverse of the calibration function,
x = f �1(y ), describing the dependence
of the analytical values from the mea-
sured values.

Analytical method

\Logical sequence of operations, de-
scribed generally, used in the perfor-
mance of measurements", e.g., the links
of a given analytical technique with par-
ticular excitation and detection.

ISO 3524-1 [1993]! Fig. 7.1

Analytical procedure

\Set of operations, described speciˇcally,
used in the performance of particular
analytical measurements according to a
given method".

ISO 3524-1 [1993]
Pritchard et al. [2001]! Fig. 7.1

Analytical process

Logic sequence of objects linked by gen-
eral analytical standard operations.

! Fig. 2.1

Analytical result

Analytical value attributed to a measur-
and, obtained by measurement and com-
pleted by information on the uncertainty
of measurement.

According to ISO 3524-1 [1993]! 8.1

Analytical quantity

\Particular quantity subject to analytical
measurement".

According to ISO 3524-1 [1993]! Measurand

Analytical technique

\Generic analytical application of a sci-
entiˇc principle".

According to Pritchard et al.
[2001]! Fig. 7.1
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Assay

Determination of how much of a sample
is the material indicated by the name.

! Quotation from Anal
Chem [1975] at the end of the
Glossary! e.g. analysis of ores

Analytical value

Magnitude of an analytical quantity, x,
measured at test samples on the one hand
and given for reference samples used for
calibration on the other hand.

Background (instrumental background, background signal)

Instrumental background is the null sig-
nal, obtained in the absence of any
analyte- or interference-derived signal.

! IUPAC [1995]; Currie
[1999]! Background may be set to
zero, on the average, for certain
instruments

Baseline

\Summation of the instrumental back-
ground plus signals in the analyte (peak)
region of interest due to interfering
species".

IUPAC [1995]; Currie [1999]

Bias

\The difference between the expectation
of the test results and an accepted refer-
ence value".

According to GAT VIII [1997]

Blank

A value, yB , obtained my measuring a
blank sample (in calibration, the inter-
cept of the calibration curve is consid-
ered to be equal to the blank).
Blanks may be differentiated into instru-
mental blank (background and baseline,
respectively) and chemical blank (analyte
blank).

! IUPAC [1995]; Currie
[1999]! Background! Baseline! Chemical blank
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Blank measurement

Procedure by which a measured value is
obtained with a sample in that the analyte
of interest is intentionally absent.

According to Pritchard et al.
[2001]; Taylor [1987]; Sharaf
et al. [1986]! Blank sample

Blank sample

A sample whose analyte concentration is
below the limit of decision of the analyt-
ical procedure being used.

According to Pritchard et al.
[2001]! Blank measurement

Calibration

Set of operations that establish, under
speciˇed conditions, the relationship be-
tween values of quantities indicated by a
measuring system and the corresponding
values of quantities represented by a ma-
terial both in form of reference materials
and samples. In a wider sense, calibra-
tion represents a set of operations that
establish relationships between quanti-
ties in the sample domain with quantities
in the signal domain, viz y = f (x) and
z = f (Q).

! ISO 3524-1 [1993]! GAT IV [1996]! Pritchard et al. [2001]! IUPAC [1998]! Sect. 6.1! Sample domain! Signal domain

Calibration function

Equation for the estimation of the values
of a measuring quantity from given val-
ues of a analytical quantity. The calibra-
tion function may be known a priori by
natural laws or estimated experimentally
by means of calibration samples.
The calibration function represents that
segment of the response function that is
chosen for estimating the analytical value
of an unknown sample.

! Pritchard et al. [2001]! IUPAC [1998]! Sharaf et al. [1986]! Sensitivity! Response function
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Calibration samples

Set of samples characterized by accurate
and precise values of the measurand. In
a concrete case, calibration samples may
be portions of (certiˇed) reference mate-
rials, in-house reference materials (labo-
ratory standard samples), or spiked sam-
ples, and, in addition, blank samples.

! Pritchard et al. [2001]! Reference material! Certiˇed reference material

Certiˇed reference material (CRM)

\A reference material, accompanied by a
certiˇcate, one or more of whose prop-
erty values are certiˇed by a procedure
which establishes traceability to an accu-
rate realization of the unit in which the
property values are expressed, and for
which each certiˇed value is accompa-
nied by an uncertainty at a stated level
of conˇdence".

ISO 3524-1 [1993]! GAT IV [1996]! Pritchard et al. [2001]

Chemical blank (analyte blank)

\Blank which arises from contamination
from the reagents, sampling procedure,
or sample preparation steps which corre-
spond to the very analyte being sought".

IUPAC [1995], Currie [1999]

Coefˇcient of variation: The term is not recommended by IUPAC;! Relative standard deviation

Concentration domain! Sample domain

One of the dimensions of the sample do-
main.

Conˇdence interval (CI)

Statistical interval, e.g., of a mean, y ,
cnf(y ) = y ˙ �y cnf, which express the
uncertainty of measured values. CIs are
applied for signiˇcance tests and to es-
tablish quantities for limit values (CV).

! Sect. 7.5! Critical value! Prediction interval
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Conventional true value

\Value attributed to a particular quantity
and accepted, sometimes by convention,
as having an uncertainty appropriate for
a given purpose".

ISO 3534-1 [1993]! True value

Correlation

Stochastic relationship between random
variables in such a way that one depends
on the other. The degree of relationship
may be estimated by the correlation co-
efˇcient.

Correlation coefˇcient

The correlation coefˇcient, rxy, is given
by the covariance of two random vari-
ables x and y , cov(x; y ) = sxy, divided by
the standard deviations sx and sy , see Eq.
(6.3). The correlation coefˇcient becomes
rxy = 0 if there is no relationship between
x and y , and rxy = ˙1 if there exist a
stringent deterministic dependence.

! Sect. 6.1.3� The correlation coefˇcient
is not of any relevance in cal-
ibration, as a rule. This is be-
cause only the measured value
is a random variable and, in
contrast, the analytical value is
a ˇxed value and not selected
randomly

Correlation matrix

Matrix formed by a set of correlation co-
efˇcients related to m variables in multi-
variate data sets, R = (rxi ;xj ). It is relevant
in multicomponent analysis.

! Eqs. (6.4) and (8.14)

Critical value (CV)

Limit in the signal domain, esti-
mated from the average blank plus
its uncertainty, generally according
to yc = y BL + U (y BL), in analytical
chemistry frequently according to
yc = y BL + 3sBL. If the critical value
is exceeded, the respective analyte is
reliably detected (except for a remaining
risk of error ˛). Therefore, the CV
stands for the guarantee of presence of
an analyte.

Ehrlich and Danzer [2006];
Currie [1999]! Sect. 7.5! Fig. 7.8! Decision limit
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Cross sensitivity (partial sensitivity)

Dependence of the measured value (sig-
nal intensity), yA, from other constituents
than the analyte A, present in the mea-
suring sample, quantitatively expressed
by the respective partial differential quo-
tient.

! Kaiser [1972]; Danzer
[2001]! Sect. 7.2! Eq. (3.11)! Sensitivity! Sensitivity matrix! Total sensitivity

Determination

Analysis of a sample to estimate quanti-
tatively the amount (content, concentra-
tion) of (an) analyte(s).

! Quotation from Anal
Chem [1975] at the end of the
Glossary

Evaluation function (analytical function)

Inverse of the calibration function,
x = f �1(y ), describing the dependence
of the analytical values from the mea-
sured values, being so the basis of an-
alytical evaluation.

Homogeneity

A qualitative term used to describe
that the analyte is uniformly distributed
through the sample. The degree of homo-
geneity may also be characterized quan-
titatively as a result of a statistical test.

! Pritchard et al. [2001]! Inhomogeneity! Sect. 2.1! Eq. (2.9)

Hyphenated techniques

Coupling of two (or more) separate an-
alytical techniques via appropriate inter-
faces and computer with the goal to ob-
tain faster a higher amount of informa-
tion on the subject under investigation.

! Hirschfeld [1980]! Kellner et al. [1998]! By hyphenating analytical
methods, the dimension of ana-
lytical information will be in-
creased (usually by one)! Sect. 3.4

Identiˇcation

Recognizing of (an) unknown con-
stituent(s) in an analytical test sample.
In contrast, by qualitative analysis it is
tested whether (a) known constituent(s)
are present or absent.

! Sect. 9.3
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Imprecision

A quantitative term to describe the (lack
of) \precision" of an analytical procedure
(e.g. by standard deviation).

! IUPAC [1995]; Currie
[1999]! Precision! Imprecision of analytical
results, see Sect. 7.1! Standard deviation

Inaccuracy

A quantitative term to describe the (lack
of) accuracy of an analytical procedure
which comprises the imprecision and the
bias.

! IUPAC [1995]; Currie
[1999]! Accuracy� Inaccuracy should not be
confused with uncertainty, see
IUPAC [1994a]

Inhomogeneity

\Term used to describe situations where
the analyte is unevenly distributed
through the sample matrix".
The degree of inhomogeneity may be
characterized quantitatively by Eq. (2.9)
the value of which becomes negative with
the transition from homogeneity to inho-
mogeneity.

! Pritchard et al. [2001]! Sect. 2.1� The term inhomogeneity
should not be confused with
heterogeneity

Interlaboratory study

\A study in which several laboratories
measure a quantity in one or more iden-
tical portions of homogeneous, stable
materials under documented conditions,
the results of which are compiled into a
single report".
According to the evaluation types, it is
differentiated between:
(1) Method-performance studies.
(2) Laboratory-performance studies.
(3) Material-certiˇcation studies.

IUPAC [1994b]! A minimum of ˇve labora-
tories should be used to provide
meaningful statistical conclu-
sions from interlaboratory stud-
ies! Sect. 8.2.4
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Limit of decision (\3� -limit of detection")

The analytical value (e.g. the concen-
tration) that corresponds to the critical
value. The limit of decision is of minor
importance in analytical chemistry be-
cause the detection at this level of con-
centration succeeds only in 50% of all
cases.

Ehrlich and Danzer [2006];
IUPAC [1995]; Currie [1999]! Sect. 7.5! Fig. 7.7! Critical value! Detection limit� The decision limit should
not be used as a perfor-
mance characteristic of analyt-
ical methods and also not as a
limit of guarantee of an analyte

Limit of detection (LD)

The analytical value, xLD , that always
produce a signal which can be distin-
guished from the blank (except for a re-
maining risk of error ˇ).
LD is the limit in the sample domain (an-
alyte domain). It characterizes analytical
procedures, in particular with regard to
the limit concentration that can be de-
tected. Therefore, the LD stands for the
guarantee of absence of an analyte.

Ehrlich and Danzer [2006];
IUPAC [1995]; Currie [1999]! Sect. 7.5! Fig. 7.7! Critical value

Limit of determination! Limit of quantitation

Limit of quantitation (LQ)

An analytical value, xLQ , above which
quantitative determinations are possi-
ble with a given minimum precision.
The condition on precision must be de-
clared in each case. For a given preci-
sion k = xLQ=�xLQ , the limit of quantiˇ-
cation can be estimated by Eqs. (7.48)
and (7.49).

Ehrlich and Danzer [2006];
IUPAC [1995]; Currie [1999]! Precision! For factual reasons, the
limit of quantiˇcation cannot be
lower than the limit of detection! The declaration of preci-
sion must always be given be-
cause it is an inherent compo-
nent of LQ

Linear dynamic range

The range of concentration in which the
response varies linearly with the analyte
concentration.

! Sharaf et al. [1986]
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Linearity

Ability of an analytical method to give a
response which depends linearly on the
analyte concentration.

! Pritchard et al. [2001]! Sharaf et al. [1986]

Matrix

All of the constituents of a sample except
the analyte. The matrix is the carrier of
the analyte.

! IUPAC Orange Book! [1997, 2000]! Analyte

Matrix effect

In�uence of one or more matrix con-
stituent(s) on the analyte under study.
Matrix in�uences may affect the analyte
signal directly by interferences or indi-
rectly by signal depression or ampliˇca-
tion.

! Sect. 3.5! Eqs. (3.12){(3.14); (3.16);
(3.17)

Measurand

\Particular quantity subject to measure-
ment".

ISO 3524-1 [1993]

Measured result

Measured value, obtained by measure-
ment and completed by information on
the uncertainty of measurement.

! Sect. 8.1! Measured value! Uncertainty

Measured value

\Outcome of an analytical measurement"
or \value attributed to a measurand".
A measured value is a \Magnitude of a
measuring quantity generally expressed
as a unit of measurement multiplied by
a number".

ISO 3524-1 [1993]
IUPAC [1995]; Currie [1999]! Measuring quantity

Measuring quantity

\Attribute of a phenomenon . . . that may
be distinguished qualitatively and deter-
mined quantitatively".

ISO 3524-1 [1993]
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Measuring sample

Sample that is directly introduced into
analytical measurement. A measured
sample is created from a test sample by
conversion into a measurable form by
means of a procedure of sample prepa-
ration.

! Sect. 2.2

Metrology

\Science of measurement". ISO 3524-1 [1993]

Monitoring

Continuous or repeated observation,
measurement, and evaluation of a pro-
cess in a certain ˇeld of application
(e.g., environmental surveillance, health
checking, foodstuff inspection, quality
assurance in manufacturing), according
to given schedules in space and time.

Multicomponent analysis (multispecies analysis)

Simultaneous determination of several
analytes (species) by means of a multi-
component sensing technique or hyphen-
ated techniques.

! IUPAC [1995]; Currie
[1999]! IUPAC [2004]

Noise

Fluctuations of the baseline- or back-
ground record of an (analytical) instru-
ment. Noise do not provide meaningful
information, on the contrary, it degrades
the quality of signals and, therefore their
detectability.

! Background! Baseline! Signal-to-noise ratio, R/N,
is a measure of the quality of
signals! Sect. 7.5! Figs. 7.9B and 7.10

Population

\Finite or inˇnite set of individuals (ob-
jects, items). A population implicitly con-
tains all the useful information for cal-
culating the true values of the popula-
tion parameters", e.g., the mean � and
the standard deviation � .

Frank and Todeschini [1994]! Sample (in the statistical
sense)
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Precision

\The closeness of agreement between in-
dependent test results obtained under
stipulated conditions".
\The precision of a set of results of mea-
surements may be quantiˇed as a stan-
dard deviation".

ISO 3524-1 [1993]; GAT II [1996]! Kaiser and Specker
[1956]� In fact, standard deviation
characterizes imprecision! Sect. 7.1.1; Eqs. (7.8) and
(7.9)

Prediction interval (PI)

Statistical interval, e.g., of a mean, x,
prd(x) = x ˙ �xprd, that express the un-
certainty of analytical values which are
predicted on the basis of experimental
calibration. PIs are applied for signiˇ-
cance tests and to establish quantities for
limit values (LD, LQ).

! Sect. 7.5! Limit of detection! Limit of quantiˇcation! Conˇdence interval

Proˇciency test

\Study of laboratory performance by
means of ongoing interlaboratory test
comparisons\.

ISO Guide 33 [1989]
Pritchard et al. [2001]! Interlaboratory study

Qualitative analysis

Testing whether (a) known constituent(s)
are present or absent in test samples.
In contrast, identiˇcation means recog-
nizing of (an) unknown constituent(s) in
a test sample.

! Sect. 9.3

Quantitative analysis

Determination of the amount(s) of (an)
analyte(s) in a test sample.

! Assay

Random variable

A quantity that appears in a random ex-
periment. Random variables relate events
into a set of values.

! Sachs [1992]! Frank and Todeschini
[1994]
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Range (in the analytical sense)

\The interval between the upper and the
lower concentration of the analyte in the
sample for which it has been determined
that the method is applicable".

Pritchard et al. [2001]

Range (in the statistical sense)

Difference between the greatest and the
smallest values of a series of measure-
ments.

! Pritchard et al. [2001]! Sect. 4.3.2

Recalibration

Updating of a calibration model in the
case that details of the analytical proce-
dure are changed.

! Standard operating proce-
dure

Reference material

\A material or substance one or more
of whose property values are sufˇciently
homogeneous and well established to be
used for the calibration of an apparatus,
the assessment of a measurement method
or for assigning values to materials".

ISO 3524-1 [1993]! GAT IV [1996]! Pritchard et al. [2001]

Regression

Statistical method to model a mathemat-
ical equation that describes the relation-
ship between random variables (usually
x and y ). The goal of regression analysis
is both modelling and predicting.

! Sachs [1992]! Frank and Todeschini
[1994]! Regression model! Sect. 6.1.3

Regression coefˇcients (regression parameter)

Coefˇcients of the predictors in a regres-
sion model, e.g., ax and bx or ay and by ,
respectively, in linear regression models.

! Eqs. (6.8) to (6.10)
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Regression model

Mathematical model that describes the
relationship between random variables
(usually x and y ) by means of regres-
sion coefˇcients and their uncertainties
as well as uncertainties of model and the
prediction.
In linear regression there are two differ-
ent models:
that of the prediction of y from x

ŷ = ax + bxx (6.6)
and that of the prediction of x from y

x̂ = ay + by y (6.7)

! Sachs [1992]! Frank and Todeschini
[1994]! Sect. 6.1.3� Eq. (6.7) is not the inverse
of Eq. (6.6), viz

x̂ = ay + by y /=
ŷ � ax
bx

though Eq. (6.7) approximates
to Eq. (6.6) in the same degree
as the correlation coefˇcient rxy
approximates to 1

Relative standard deviation (RSD)

Standard deviation expressed as a frac-
tion of the mean srel = s=x. RSD is a
dimensionless quantity; sometimes it is
multiplied by 100 and expressed as a per-
centage.

� The use of the term \co-
efˇcient of variation" (\varia-
tion coefˇcient") is not recom-
mended by IUPAC! IUPAC Orange Book [1997,
2000]

Reliability

A qualitative term that covers preci-
sion and accuracy as well as robustness
(ruggedness).

Repeatability (of results of measurements)

\Closeness of the agreement between the
results of successive measurements of the
same measurand carried out under the
same conditions of measurement" (Pre-
cision under repeatability conditions).
Repeatability may be expressed quanti-
tatively in terms of suitable dispersion
characteristics.

ISO 3524-1 [1993]! GAT I [1996]! Sect. 7.1.3! Repeatability conditions
include the same measurement
procedure, the same observer,
the same measuring instrument,
used under the same conditions,
the same location, and repeti-
tion over a short period of time! Repeatability standard de-
viation! Repeatability interval
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Repeatability standard deviation (srepeat)

Experimental standard deviation ob-
tained from a series of n measurements
under repeatability conditions.

! Pritchard et al. [2001]! The number of measure-
ments should be about n = 10

Repeatability interval (repeatability limit)

A conˇdence interval representing the
maximum permitted difference between
two single test results under repeatabil-
ity conditions:

r = t1�˛;�
p

2 � srepeat

! Pritchard et al. [2001]
In the given formula, t1�˛;� is
the quantile of the respective
t-distribution (the degrees of
freedom � relates to the num-
ber of replicates by which srepeat

has been estimated)

Reproducibility (of results of measurements)

\Closeness of the agreement between the
results of measurements of the same
measurand carried out under changed
conditions of measurement" (Precision
under reproducibility conditions).
Reproducibility may be expressed quan-
titatively in terms of suitable dispersion
characteristics.

ISO 3524-1 [1993]! GAT I [1996]! Sect. 7.1.3! Reproducibility conditions
are characterized by changing
conditions such as: observer,
measuring instrument, condi-
tions of use, location, time, but
applying the same method! Reproducibility standard
deviation! Reproducibility interval

Reproducibility standard deviation (srepro)

Experimental standard deviation ob-
tained from a series of measurements un-
der reproducibility conditions.

! Pritchard et al. [2001]! The number of measure-
ments should be sufˇciently
large to estimate a represen-
tative reproducibility standard
deviation

Reproducibility interval (reproducibility limit)

A conˇdence interval representing the
maximum permitted difference between
two single test results under repro-
ducibility conditions:

R = t1�˛;�
p

2 � srepro

! Pritchard et al. [2001]! In the given formula, t1�˛;�
is the quantile of the t-
distribution (the degrees of
freedom � relates to the num-
ber of replicates by which srepro

has been estimated)
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Resolution

Process by which a composite signal is
split up into individual forms. The reso-
lution can be related to:
(i) Signal overlappings and ˇne struc-

ture (z-scale)
(ii) Signals in close succession in time

and space

! Sect. 6.4.1! Sect. 7.6

Resolution limit

The smallest difference �z at which two
adjacent signals can be separately ob-
served, i.e., their overlap does not exceed
a threshold of 50% of the individual pro-
ˇles.

! Sharaf et al. [1986]! In case (ii) of resolution of
the resolution problem, �t and
�l are the crucial parameters! Sect. 7.6

Resolution power

Ability of an analytical procedure to de-
tect signals of small differences as sep-
arate signals. Resolution power is in-
versely proportional to resolution limit,
e.g., R = z=�z

! Sharaf et al. [1986]! Sect. 7.6

Response

Output of an analytical system as a reac-
tion to a certain stimulus.

! Stimulus! The output may be an ob-
servable or measurable effect

Response function

Relationship between the response of the
analytical system and the amount of ana-
lyte. The overall response function is fre-
quently nonlinear.

! Sharaf et al. [1986]! Calibration function

Response variable (dependent variable)! Measuring quantity, measured value
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Robustness

Property of an analytical procedure that
indicates insensitivity against changes of
known operational parameters on the re-
sults of the method and hence its suit-
ability for its deˇned purpose.

! Burns et al. [2005]! ICH [1996]! Robustness may be quan-
tiˇed by means of quantities
characterizing signal effects! Eq. (7.31)

Round robin test! interlaboratory study

Ruggedness

Property of an analytical procedure that
indicates insensitivity against changes of
known operational variables and in ad-
dition any variations (not discovered in
intra-laboratory experiments) which may
be revealed by inter-laboratory studies.

! Burns et al. [2005]! Ruggedness may be quan-
tiˇed by means of quantities
characterizing signal effects! Eq. (7.33)

Sample (in the analytical sense)

Portion of the object under study (the
material submitted for analysis).
A sample consists of the analyte and the
matrix.

! Pritchard et al. [2001]! There are various types of
samples within given sampling
schemes, e.g., bulk samples >
primary samples > gross sam-
ples > subsamples > test sam-
ples > measuring samples! Fig. 2.4

Sample (in the statistical sense)

\Subset of a population that is collected
in order to estimate the properties of the
underlying population", e.g., the sample
parameters mean x and standard devi-
ation s. In the ideal case of representa-
tive sampling, the sample parameter ˇt
the parameter of the population � and
� , respectively.

Frank and Todeschini [1994]
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Sample domain (analyte domain)

Field of analytical operation that is char-
acterized by samples' properties such as
type of analytes, Q, and their amount,
xQ . The transition to signal domain is
done by calibration and analytical mea-
surement.

! Fig. 2.12! Signal domain

Sampling

\Sequence of selective and non-selective
operations ending with the selection of
one or several test portions submitted to
the analytical process in their entirety.
Their physical properties (maximum par-
ticle size, mass, etc) are speciˇed in the
analytical procedure." Sampling covers
sampling (in the narrow sense) and sam-
ple reduction.

! Gy [1992]! Sect. 2.1! Fig. 2.4

Screening

Testing of (a large number of) objects
in order to identify those with particu-
lar characteristics.

! Sect. 1.2! Fig. 1.5

Selectivity

The extent to which n given analytes can
be measured simultaneously by (a least)
n sensors (detecting channels) without
interferences by other components and,
therefore, can be detected and deter-
mined independently and undisturbedly.

! Kaiser [1972]; Danzer
[2001]! Sect. 7.3! Eq. (7.24)� Selectivity should not be
merged with speciˇcity: selectiv-
ity relates to multicomponent
analysis and speciˇcity to single
component analysis

Sensitivity

\Change in the response of a measuring
instrument divided by the correspond-
ing change in the stimulus". In analytical
measurements is this, in fact, the differ-
ential quotient of the measured value to
the analytical value.

ISO 3435-1 [1993]; GAT VII
[1997]! Sect. 7.2! Eq. (7.12)� Sensitivity should not be
confused with limit of detection
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Sensitivity matrix (Matrix of partial sensitivities)

Matrix that contains all the sensitivities
and cross sensitivities of a multicompo-
nent (multidetector) analytical system.

! Kaiser [1972]; Danzer
[2001]! Sect. 7.2! Eq. (7.17)! Cross sensitivity

Signal

\Response of a device (usually an instru-
ment or a module of an instrument) to
certain stimuli". A signal is characterized
by at least three parameters: position, in-
tensity, and width (symmetry, shape).

Sharaf et al. [1986]! Sect. 3.3! Fig. 3.6

Signal domain (response domain)

Field of analytical operation that is char-
acterized by signal properties such as sig-
nal position, z, and signal intensity, yz .
The transition to sample domain is done
by analytical evaluation (signal decod-
ing).

! Fig. 2.12! Sample domain

Signal function

Record of signal intensity in dependence
of the signal position over a certain range
of the z-scale: y = f (z).

Signal-to-noise ratio

Measure of the precision of signal mea-
surement, expressed mostly by the ratio
of the net signal value to a noise param-
eter (standard deviation or peak-to-peak
distance).

! Sect. 7.1, Fig. 7.2! Eqs. (7.1){(7.6)

Speciˇcity

The extent to which one individual ana-
lyte can be measured undisturbedly in a
real sample by a speciˇc reagent, a par-
ticular sensor or a comparable speciˇc
measuring system.

! Kaiser [1972]; Danzer
[2001]! Sect. 7.3! Eq. (7.26)! Selectivity� Speciˇcity should not be
merged with selectivity
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Specimen

Fraction of a lot (batch sample) taken
without respecting the rules for sampling
correctness or under unknown condi-
tions.

Gy [1992]

Standard deviation (SD)

Dispersion parameter for the distribution
of measured values, sy , or analytical re-
sults, sx , for a given sample or the pop-
ulation, �y and �x . The SD is the square
root of the variance.

! IUPAC [1995]; Currie
[1999]! Sachs [1992]! Dixon and Massey [1969]! Sect. 4.1.2! Eqs. (4.12){(4.14)

Standard error

The term \standard error" is not ex-
plicitly introduced. It is used sometimes
(a) synonymously for standard deviation
and (b) for the residual standard devia-
tion in modelling and calibration.

! Sachs [1992]! Frank and Todeschini
[1994]� The term standard error
should be avoided

Stimulus

Property of an analytical system to pro-
duce a response of an observation- or
measuring system. Rousing effect of an
analyte that can be characterized quali-
tatively and quantitatively.

Standard operating procedure (SOP)

\A set of written instructions that docu-
ment a routine or repetitive activity fol-
lowed by an organization".

EPA [2001]! Pritchard et al. [2001]! Fig. 7.1

Test

Process of analyzing the sample to rec-
ognize (an) analyte(s) and/or determine
the amount(s) of (an) analyte(s).

! Pritchard et al. [2001]! Quotation from Anal
Chem [1975] at the end of the
Glossary
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Total sensitivity (total multicomponent sensitivity)

Sensitivity of a multicomponent analysis.
In the simplest case it is given by the
determinant of the sensitivity matrix.

! Sharaf et al. [1986]! Massart et al. [1988]! Sect. 7.2! Eqs. (7.18){(7.20)

Traceability

\The property of a result of measurement
whereby it can be related to appropri-
ate standards, generally international or
national standards, through an unbroken
chain of comparisons".

GAT I [1996]! ISO 3435-1 [1993]! All the standards used
should have stated uncertainties

Trackability

\The property of a result of a measure-
ment whereby the result can be uniquely
related to the sample".

GAT I [1996]

True value

\Value consistent with the deˇnition of
a given particular quantity" and \value
which characterizes a quantity perfectly
deˇned in the conditions which exist
when that quantity is considered".

ISO 3534-1 [1993]
GAT III [1996]! Conventional true value! Sect. 7.1

Trueness

\Closeness of agreement between the av-
erage value obtained from a large series
of test results and an accepted reference
value".
Trueness has been referred to as \accu-
racy of the mean".

IUPAC Orange Book [1997,
2000]! Codex alimentarius
commission [1997]! Sect. 7.1.3
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Uncertainty of measurement

\Parameter, associated with the result of
a measurement, that characterizes the
dispersion of the values that could rea-
sonably be attributed to the measurand".
The uncertainty should combine both
statistical and non-statistical contribu-
tions to the variation of the measured
values which may occur in all steps of
the analytical process.

ISO 3524-1 [1993]
EURACHEM [1995]
GAT I [1996]! The uncertainty of mea-
surement may be expressed by
the combined or extended un-
certainty, u(y ) or U (y ), respec-
tively! Sect. 4.2! Eqs. (4.25), (4.26) and
(4.29) to (4.32)

Uncertainty of an analytical result

Interval, e.g., of a mean, U (x), that ex-
press the uncertainty of analytical values
considering statistical and non-statistical
variations within the measurement pro-
cess plus uncertainties of experimental
calibration.

! Sect. 4.2! Eq. (4.32)

Validation (of an analytical method)

\Process by which it is established, by
laboratory studies, that the performance
characteristics of the method meet the
requirements for the intended analytical
applications".

USP XXII < 1225 > [1990]
Wegscheider [1996]
EURACHEM [1998]! Typical performance char-
acteristics that should be con-
sidered in the validation are:
precision, accuracy, limit of de-
tection, limit of quantitation,
selectivity, range, linearity, ro-
bustness, ruggedness

Variable

\Characteristic of an object that may take
on any value from a speciˇed set".

Frank and Todeschini
[1994]! There are several types
of variables, e.g., categorical,
dependent and independent,
experimental and theoretical,
manifest and latent, random,
standardized variables
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Variance

Dispersion parameter for the distribution
of measured values, s2

y , or analytical re-
sults, s2

x , for a given sample or the popu-
lation, � 2

y and � 2
x . Statistically deˇned as

the second moment about the mean.

! IUPAC [1995]; Currie
[1999]! Sachs [1992]! Dixon and Massey [1969]! Sect. 4.1.2! Eqs. (4.8); (4.10)

Working range! Range (in the analytical sense)

Analysis, Identiˇcation, Determination, and Assay (quoted from Anal
Chem [1975])

\While most chemists probably realize the difference between the terms
analyze, identify, and determine, they are frequently careless when using
them. Most frequently the term analysis is used when determination is
meant.

A study of the nomenclature problem indicates that only samples are
analyzed; elements, ions, and compounds are identiˇed or determined.
The difˇculty occurs when the sample is nominally an element or com-
pound (of unknown purity). `Analysis of . . . ' (an element or compound)
must be understood to mean the identiˇcation or determination of im-
purities. When the intent is to determine how much of such a sample is
the material indicated by the name, assay is the proper word."
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Robustness 63, 112, 195, 196, 198, 299
Root mean standard error of prediction

171
Round robin test 299
Ruggedness 63, 195, 197, 198, 299

Sample 299
Sample domain 28, 29, 32, 33, 201, 300
Sample preparation 23, 24, 67

chemical 24
Sample pretreatment

physical 24
Sampling 15, 67, 300

representativeness 19
Sampling theorem 253
Scanning 253
Scattering factor 74
Scatterplot matrix 243, 244
Schematic plot 243, 244
Score images 256
Screening 9, 85, 271, 300
Screening limit 88
Screening test 85, 86, 89
Selectivity 159, 162, 189{193, 195, 300
Semivariogram analysis 23
Sensitivity 35, 61, 63, 125, 185, 186, 191,

199, 217, 300
Sensitivity coefˇcient 35
Sensitivity factor 124
Sensitivity functions 152
Sensitivity matrix 158, 188, 192, 301
Separation 24
Sequential analysis 93, 94
Signal 43, 301

ˇne structure 52, 60
form 48
hidden 46
latent 45
manifest 45
pattern 48
shape 52

Signal averaging 52
Signal background 51
Signal domain 28, 29, 32, 33, 47, 201, 301
Signal function 30, 33, 44, 45, 47, 48,

50{52, 58, 180, 207, 301
three-dimensional 55

two-dimensional 54
Signal generation 14, 43, 60
Signal half width 47, 51, 209
Signal intensity 28, 50, 51, 60, 61
Signal model 62
Signal parameters 51, 60
Signal position 28, 36, 50, 51, 60
Signal recordings 49
Signal resolving power 47, 209
Signal validation 44
Signal-to-noise ratio 52, 180{182, 184,

207, 208, 301
Signiˇcance level 203
Simplex optimization 115, 117
Simulated annealing 117
Slope 125
Soft modeling methods 160
Spatial interpolation 223
Spatial resolving power 210, 212
Species images 250
Speciˇcity 63, 189{193, 195, 301
Speciˇcity function 195
Specimen 302
Spectra interpretation 248
Spectral resolving power 210
Spline function 151
Spline interpolation 223
Standard 34
Standard addition method 133, 146, 147
Standard additions 68
Standard deviation 69, 72, 74, 75, 98, 302

of noise 181
Standard error 302
Standard error of prediction 162
Standard normal distribution 70
Standard operating procedure 180, 302
Standard samples 141
Standard value 90
Standardized data 230
Standards 125
Stimulus 302
Stochastic process 22, 23
Stochastic sampling 21
Structure analysis 7, 9, 29, 124
Subsample 16
Supervised learning 235
Surface analysis 58
Surface resolving power 211, 277
Systematic deviations 66, 67
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Target value 90, 95, 98
t-distribution 70
Temporal resolution power 211
Test 302

for normal distribution 80
for outliers 81
for trend 80
statistical 78

Test efˇciency 87
Test kits 86
Test portion 16
Test sample 15, 16, 24, 26
Test spectra 49
Theory of fractals 59
Thresholds 201
Time domain 50
Time resolving power 276
Time series analysis 21
Tolerance limits 92
Total sensitivity 303
Trace analysis 6
Traceability 125, 126, 303
Trackability 303
Trans-line analysis 15
Transfer function 166, 167
Trend surface analysis 223
True negative rate 86
True positive rate 86
True signal function 30, 52
True value 66, 183, 303
Trueness 164, 183, 184, 269, 303
t-test

generalized 83

Ultra trace analysis 6

Uncertainty 17, 18, 36, 65, 67, 76, 204,
205, 269

at critical value 204
at limit of detection 205
at limit of quantiˇcation 205
of an analytical result 304

Uncertainty interval 66, 78, 202, 217, 225,
227

unsymmetrical 219
Uncertainty of measurement 75, 180,

304
Uncertainty of sampling 19
Unsupervised pattern recognition 231

Validation 68, 90, 140, 190, 304
Validation function 141
Variable 304
Variable testing 92
Variance 71, 102, 104, 305

common 240
residual 240
true 240
unique 240

Variance function 144
Variance-covariance matrix 231
Volume resolving power 211, 278
Voxel 278

Warning limit 96
Wavelength selection 120
Weighted calibration 144
Working range 305

z-scores 228
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