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Preface

The optical response of a thin film is determined by several parameters: its thick-
ness, its optical properties, and the surrounding (other layers, substrates). Among
them, its thickness d is the most important. Compared to the vacuum wavelength of
light l, it must have a certain value to establish characteristic features in reflectance,
transmittance, or ellipsometric parameters by interference. The size can be reduced
by a factor n, with n being the refractive index of the film. The reason is that the
optical thickness t ¼ n�d is the intrinsic parameter that must be compared with l.

The measurement of reflectance, transmittance, or ellipsometric parameters has
become a major tool for in-line inspection, process control, and quality control of
thin films since it is fast, contactless, nondestructive, and even cheap compared to
other methods.

During my successful stint with industry from 2001 till date, I have become
acquainted with several aspects of optical thin-filmmetrology. It is a very fascinating
subject since it connects electrodynamics with solid-state physics. The input para-
meters of any evaluation algorithm are never constant but may vary from one
measurement task to the next because the optical material functions strongly depend
on film manufacturing, composition, and stochiometry. Film thickness determina-
tion then becomes also a question of refractive index determination.

The purpose of this book is to introduce in optical metrology for thin film
thickness determination. It provides information on the electrodynamic basics
and methods of measurement and evaluation. Hence, it is directed at all people
who are involved in measuring film thickness by optical means, whether as man-
ufacturer, in process and quality control, or in research and development. Hopefully,
university lecturers and students of natural sciences and engineering will also find
this book beneficial.

To write this book required reading and evaluating many monographs and a still
larger number of publications on this subject. To my surprise, a lot of work has been
done in ellipsometry, but spectral reflectance measurement for film thickness
determination is sparsely described in literature although it is a well-established
method. The total amount of published work is, however, too immense to consider
them all in such a book. Therefore, I hope to have included the most relevant up to
date, and apologize for all the contributions not considered here.
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1
Introduction

Thin films of transparent or semitransparent materials play an important role in our
life. Avariety of colors in nature are caused by the interference of light reflected at thin
transparent layers. Examples are the iridescent colors of a peacock feather, the
impressive colors of lustrous butterfly wings, or simply the play of colors of thin oil
films on water.

Muchmoredemonstrative is,however, theuseof thinfilms in technicalapplications.
Films with maximum thickness of a few hundred nanometers are used as protective
layers, hard coatings, antireflection coatings, adhesion and antiadhesion coatings,
decorativecoatings, transparent conductive layers, absorbing layers, inbiosensors, and
for tinted and annealed architectural glass. The combination of many thin films in
multilayer stackseven lead toopticalfilterswith sharpedges inreflectionand transmis-
sion and almost 100% reflectivity in certain desired spectral ranges. The highest
commercial impact these films have in microelectronics. Most microelectronic parts
(processors, RAMs, flat screens, CDs/DVDs, hard disks, and some more) are manu-
factured with the help of thin-film technology. Thicker films of mainly transparent
plastics arealmosteverywherepresentas foodpackaging,wrapping, foils,membranes,
lamination, and in display technology and solar cells, to give some examples.

Hence, it is our attempt to get as much information as possible on the properties
and composition of surfaces and surface coatings. The two main classes of thin-film
measurements are optical and stylus-based techniques. When measuring with a
(mechanical) stylus, the thickness and roughness are obtained by monitoring the
deflections of the fine-tipped stylus as it is dragged along the surface of the film.
Stylus instruments, however, require a step in the film to measure thickness, even
when using comparable optical sensors such as chromatic white light sensors. They
are often the preferred method when measuring opaque films, such as metals.

Optical techniques determine the thin-film properties bymeasuring how the films
interact with light. They canmeasure the thickness, roughness, and optical constants
of a film. Optical techniques are usually the preferred method for measuring thin
films because they are accurate, nondestructive, and require little or no sample
preparation. The two most common optical measurement types are the spectral
reflectance measurement and the ellipsometry. They form themain subject of this book.
Besides, there exist other nondestructive methods for film thickness determination

A Practical Guide to Optical Metrology for Thin Films, First Edition. Michael Quinten.
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with more or lower capabilities. Among them we find magnetoinductive and
capacitive methods and the eddy current method, as well as the indirect measure-
ment by a vibrating quartz or the measurement with ultrasound. Optical methods
comprise light section, X-ray total reflection, photothermal deflection, and confocal
chromatic measurement.

Spectral reflectancemeasurement or reflectometry uses the intensity of the light and
measures the amount of light reflected from a thin film or a multilayer stack over a
range of wavelengths, with the incident light normal (perpendicular) to the sample
surface. Spectral reflectance can also measure the thickness, roughness, and optical
constants of a broad range of thinfilms.However, if thefilm is very thin so that there is
less than one reflectance oscillation, there is insufficient information available to
determine the film parameters. Therefore, the number of film properties that may be
determineddecreases for very thinfilms. If on the other hand one attempts to solve for
toomany parameters, a unique solution cannot be found, but more than one possible
combination of parameter values may result in a calculated reflectance that matches
the measured reflectance. Depending upon the film material and the wavelength
range of themeasurement, theminimum single-film thickness that can bemeasured
using spectral reflectance is in the 20–100nm range. Additional determination of
optical constants increases this minimum thickness. Nevertheless, as spectral reflec-
tance is much simpler and less expensive than the second most common optical
measurement – the ellipsometry – it is oftenused for quick and easy offline and in-line
thickness determination in laboratories, production, and process control. To our
knowledge, no comprehensive book on reflectometry as it is being practiced exists
except for the one by Tompkins and McGahan [1], published in 1999. Therefore, one
intention of this book is to bring the reflectometry closer to the practitioner.

In the late 1800s, Paul Drude [2] used the phase shift induced between the
perpendicular components of polarized light to measure film thickness down to a
few nanometers. This was the first study on film thickness measurement with a
method that was later called ellipsometry. When the perpendicular components of
polarized light are out of phase, the light is said to be elliptically polarized, for which
this technique came to be called ellipsometry. Ellipsometry measures reflectance at
nonnormal incidence (typically around 75� from normal) and is rather sensitive to
very thin layers. The two different polarizationmeasurements provide twice asmuch
information for analysis. Variable-angle ellipsometry can be used to take reflectance
measurements atmany different incidence angles, thereby increasing the amount of
information available for analysis. In 1977, Azzam andBashara [3] authored the book
Ellipsometry and Polarized Light, which has been the key source to be cited in most
technical writing on the subject. Later on, several handbooks were published [4–6]
that cover the theory of ellipsometry, instrumentation, applications, and emerging
areas, in which experts in the field contributed to various aspects of ellipsometry.
Fundamental principles and applications of spectroscopic ellipsometry are to be
found in the recently published work of Fujiwara [7].

This book starts with Chapter 2 with an introduction to the basics of the
propagation of light and other electromagnetic radiation in space andmatter. Beyond
the general properties of electromagnetic waves, we consider mainly the deviations
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from the straightforward propagation by reflection, refraction, and diffraction since
they are important for understanding the optical layer thickness determination and
the functioning of the optical measuring devices. Interference of electromagnetic
waves is a key effect not only for the diffraction of light but also for the optical layer
thickness determination as it causes characteristic deviations in the reflectance
spectrum of a thin film. From this characteristic interference pattern, all the film
parameters are finally deduced.

Optical thickness determination is not only a question of electrodynamics but also
a question of solid-state physics. The reason is that propagation inmatter alsomeans
interaction of the electromagnetic wave with the matter. This interaction can be
described with the complex dielectric function, while when discussing wave prop-
agation in and through media the complex refractive index is appropriate. Both are
connected via Maxwell�s relation. In Chapter 2, we discuss physical models for the
dielectric function and present empiric formulas for the refractive index.

Themain topics of this book, the determination of the thickness of a layer in a layer
stack from measurement of the spectral reflectance or transmittance, is treated in
Chapters 3–5. The first step is taken in Chapter 3 with the modeling of the spectral
reflectanceR and transmittanceTof a layer stack.Giving the thicknesses and complex
refractive indices of all layers and substrates of the layer stack as input parameters,
two commonmodels – the propagatingwavemodel and the r-t-wmodel – can be used
to calculate R and T of the stack (see Figure 1.1). The models are introduced in

Layer Stack

Layers 

Substrates 

Thicknesses dj

Refractive Indices 
n  + ij κj

Propagation Wave Model

r-t-φ-Model 

Reflectance R(λ, d , n +ij j κj)) 

Transmittance T(λ, d , n +ij j κj)) 

Ellipsometric Parameters 

Figure 1.1 Modeling the reflectance R and transmittance T or ellipsometric data of a layer stack.
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Chapter 3 and extensions on surface roughness and incoherent substrates are
discussed. Absorption of light in the layer restricts themeasurability of the thickness
to a material-dependent maximum thickness.

In Chapter 4, we introduce the reflectometric and ellipsometricmeasurement and
further optical methods, and discuss the optical components needed for the mea-
surements. In all setups for optical thickness determination, the sample gets
illuminated. Hence, light sources and their spectral distribution play a key role in
the layer thickness determination, as well as the second key component, spectro-
meters. With the spectrometer, the reflected light modulated by the thickness
interference gets spectrally resolved and analyzed.

Reflectometric and ellipsometric measurements do not measure the physical
properties themselves but the optical response of the system caused by the physical
properties. Hence, one needs to solve an inverse problem in order to find the value of
actual physical properties of interest, such as thicknesses of the layers and optical
properties of thematerials. This inverse problem is solved numerically byfinding the
best fit between measured and calculated data, and physical properties are inferred
from the model that gives the best fit (see Figure 1.2). To get reliable results, it is
important to check the validity of the usedmodel and to understand the sensitivity of
the measured data to parameters of interest. In Chapter 5, we present and discuss
numericalmethods for determination of layer thickness and determination of optical
constants of the layer material.

Chapter 6 is devoted to the apparent color of thin films. As the photographs on the
cover of this book demonstrate, the interference in thin films leads to various colors
depending on the thickness and refractive index of the film. However, not all colors

Measured R, T

Measured Ellipsometric Parameters 

Model R, T

Model Ellipsometric Parameters 

Regression 
Analysis 

Adjust  
dj, nj + iκj

Final Result 
dj, nj + iκj

Figure 1.2 Fit procedure when analyzing measured R, T, or ellipsometric data for film thickness.
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are available from one single layer. Instead, multilayer systems are needed to cover a
certain color gamut.

Finally, inChapter 7we present several technical applicationswherefilm thickness
measurement is important. They are accompanied by corresponding measuring
results. The applications can be classified into the following:

. Applications with a single unsupported layer, for example, glass, sapphire, or
semiconductor wafers, and transparent polymer films.

. Applications with one layer on a substrate, for example, protective layers (hard
coats), broadband antireflection coatings, photoresists, and transparent conduc-
tive layers (TCF and TCO).

. Applications with two layers on a substrate. Examples of two layers on a substrate
are photoresists on silica on a wafer, bonded wafers, and SOI wafers (SOI, silicon
on insulator).

. Multilayer applications, for example, high reflective (HR) and antireflective (AR)
coatings, beam splitter coatings, dielectric mirrors, optical filters, thin-film solar
cells, and OLEDs (organic light emitting diodes).

We want to point out that all calculations of reflectance and transmittance spectra,
the evaluation of thickness parameters and color, and the determination of optical
constants were carried out with self-made software packages, MQLayer, MQNandK,
and MQColor [8].

1 Introduction j5



2
Propagation of Light and Other Electromagnetic Waves

This chapter introduces the basics of the propagation of light and other electromag-
netic radiation in space andmatter. Beyond the general properties of electromagnetic
waves, we consider mainly the deviations from the straightforward propagation by
reflection, refraction, and diffraction since they are important for understanding the
optical layer thickness determination and the functioning of the optical measuring
devices. Last but not least, propagation in matter also means interaction of the
electromagnetic wave with thematter for what we also discuss the dielectric function
and the refractive index in this chapter.

2.1
Properties of Electromagnetic Waves

When discussing the properties of electromagnetic waves, it seems appropriate to
give first a definition of a wave. A wave generally is a process that is periodic in time
and space. Thatmeans there exists a periodicity T in time after that thewave looks the
same as at a certain time point t, and a periodicityR in space where the wave looks the
same as at a certain point r:

AðrþR; tþTÞ ¼ Aðr; tÞ: ð2:1Þ

Mathematically, A(r,t) fulfills the wave equation (in Cartesian coordinates):

q2

qx2
þ q2

qy2
þ q2

qz2
� 1
c2

q2

qt2

� �
Aðr; tÞ ¼ 0; ð2:2Þ

with c being the propagation velocity. That means, in general, we search for a vector
with its second derivative in time being proportional to its second derivative in space.
The actual solution, however, is additionally determined by the boundary conditions
of this differential equation.
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When talking about electromagnetic waves, we often find, though it is not
mandatory, that solutions of the wave equation are harmonic functions in time and
space like

Aðr; tÞ ¼ A0 � expðiðkr�v tþwÞÞ; ð2:3Þ
with k¼ |k|¼ 2p/|R|, v¼ 2p/T, and w an arbitrary constant. The length |R| is called
wavelength l and describes the distance between two successive identical phases of
thewave in space, for example, the distance between twomaxima or twominima. The
propagation velocity corresponds to the vacuum velocity of light c¼ 299 792 458m/s.
k and v fulfill the dispersion relation

k2 ¼ v2

c2
: ð2:4Þ

Note that in (2.3)we used the notationwith complex numbers, with i ¼ ffiffiffiffiffiffiffi�1
p

being
the complex unit. This notationwill be used throughout the book. For an introduction
to the numerics with complex numbers, we refer to Appendix A.

For electromagnetic waves, we have to consider an electric field E(r,t) and a
magnetic field H(r,t) that must fulfill on the one hand the above conditions for A
(r,t) and on the other hand Maxwell�s equations:

divðDÞ ¼ r; ð2:5Þ

divðBÞ ¼ 0; ð2:6Þ

curl E ¼ � qB
qt

; ð2:7Þ

curlH ¼ Jþ qD
qt

: ð2:8Þ

These equations, however, contain three more vectors, the current density J, the
electrical flux density or displacement D, and the magnetic induction B. To resolve
Maxwell�s equations for E and H, it is therefore necessary to supplement them by
relations that connect J, D, and B with E and H.

When applying an electric field E on anymaterial, the electric field forces unbound
charge carriers to move, resulting in a current with density J. The current is
proportional to the applied field, with the conductivity s being the proportionality
constant:

J ¼ sE: ð2:9Þ
For bound charge carriers, the situation is different. They cannot move but are
displaced. Inside the body of condensed matter the electric field usually displaces
only the electrons while the ions are too inert as to follow the electric field. Thereby,
each atom becomes an electric dipole with dipole moment p. These dipole moments
add up to amacroscopic net polarizationP of thematerial that is related to the electric
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field E by the general equation

P ¼ e0xE: ð2:10Þ
The factor x is the macroscopic susceptibility of the matter. The polarization P

contributes to the electrical flux density or displacement D:

D ¼ e0EþP ¼ e0ð1þ xÞE ð2:11Þ
defining the dielectric constant or permittivity e as

e ¼ 1þ x: ð2:12Þ
Susceptibility x and dielectric constant e are the optical material functions. In the
framework of Maxwell�s theory, they enter the field relations as constants that are
valid for the bulk material under consideration.

Applying a time harmonic electric field, the dipoles oscillate with the same
frequency as the applied field. That means the center of gravity of the displaced
electrons changes fromone side to the other side, resulting in a displacement current
qD/qt.

Similar to the electric field E, the magnetic fieldH also causes two reactions of the
material on the applied field, a magnetizationM, and a current displacement qD/qt.
The latter is the result of the Lorentz force on bound and free electrons. The
magnetization M contributes to the magnetic induction B in the material

B ¼ m0Hþ m0M ¼ mm0H ð2:13Þ
due to reorientation of permanent magnetic dipoles in the applied field. Looking at
frequencies of electromagnetic waves, permanentmagnetic dipoles are too inert as to
follow a rapidly oscillating magnetic field. This holds true for frequencies ranging
from the far infrared to infinity. Therefore, the relative permeability m can be assumed
to be 1 throughout the above frequency range, even for magnetic materials.

Finally, we point to the fact that when dealing with electromagnetic waves, static
charges are absent, that is, r¼ 0. If we further restrict only to timeharmonicfields for
the sake of simplification, the time dependence of thefields can be separatedwith the
ansatz

E ¼ EðrÞ � exp �ivtð Þ and H ¼ HðrÞ � exp �ivtð Þ ð2:14Þ
and the corresponding Maxwell equations for the unknown parts E(r) andH(r) now
read

divðEÞ ¼ 0; ð2:15Þ

divðHÞ ¼ 0; ð2:16Þ

curlðEÞ ¼ ivm0H; ð2:17Þ

curlðHÞ ¼ ð�iee0vþ sÞE: ð2:18Þ

2.1 Properties of Electromagnetic Waves j9



Since we always assume homogeneity in time, it is usual, and done here and in the
following, to omit the time dependence exp(�ivt) in the formulas, being assumed to
be unaffected by matter (this is not always the case, we remind about, for example,
inelastic scattering).

For solving theaboveMaxwell equationssimultaneously forE andH, Equations2.17
and 2.18 must be decoupled. This can be achieved by taking the curl of one equation
and inserting the result into the other equation, resulting in the vector wave equation or
Helmholtz equation

curlðcurlðZÞÞ�k2Z ¼ 0; ð2:19Þ
where Z represents either E or H. The wavenumber k satisfies the dispersion relation

k2 ¼ v2

c2
eðvÞþ i

sðvÞ
ve0

� �
¼ v2

c2
~n2ðvÞ: ð2:20Þ

The quantity ~n(v) is the complex refractive index with ~nðvÞ ¼ nðvÞþ ikðvÞ. The
term in parentheses combines the permittivity e (polarization) with the conductivity s
(absorption) to the complex dielectric function eðvÞ ¼ e1ðvÞþ ie2ðvÞ. For vacuumwith
~n(v)¼ 1, (2.20) corresponds to (2.4). The term dielectric function is used here instead of
dielectric constant to take into account the dependence upon the frequency v.

Equations 2.17 and 2.18 also define two separate solutions, a transverse magnetic
solution (TM) and a transverse electric solution (TE).

This becomes obvious if we use the so-called Hertz vectors Pe and Ph. It was
shown byHertz [9] andmore generally by Righi [10] that it is possible under ordinary
conditions to define an electromagnetic field in terms of a properly chosen single
vector function P.

Assuming that the magnetic field can be derived from a Hertz vector Pe¼ (0, 0,
Pe)

T�exp(�ivt) by

H ¼ ð�ive0eþ sÞ � curlðPeÞ: ð2:21Þ

Then, the corresponding electric field E follows from (2.18)

E ¼ curlðcurlðPeÞÞ: ð2:22Þ
It is simple to show that the z-componentHz is zero in Cartesian coordinates, that

is, its axial or longitudinal component is absent. Thus, we have derived from a scalar
functionPe an electromagnetic field characterized by the absence of the longitudinal
component of the magnetic vector. This field is called electric or more properly
transverse magnetic (TM) mode.

Assuming now that the electric field can be derived, Hertz vector Ph¼ (0, 0,
Ph)

T�exp(�ivt) by

E ¼ ivm0 � curlðPhÞ: ð2:23Þ
Then, the magnetic field follows from (2.17) as

H ¼ curlðcurlðPhÞÞ: ð2:24Þ
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It is simple to show that in this case the longitudinal component Ez of the electric
vector is zero in Cartesian coordinates, defining the magnetic or more properly
transverse electric (TE) mode.

In curvilinear coordinate systems, complete solutions of the vector wave equation
in a form directly applicable to the solution of boundary value problems are known
only for the separable systems of cylindrical, spheroidal, and spherical coordinates.

In curvilinear coordinate systems, it is also common practice to introduce
vector harmonics M and N instead of using Hertz vectors. The vector harmonics are
defined by

M ¼ curl Wað Þ; ð2:25Þ

N ¼ k�1 � curlðMÞ; ð2:26Þ
where the quantity W is a scalar potential satisfying the scalar wave equation

r2 þ k2
� � �W ¼ 0 ð2:27Þ

and a is an arbitrary constant vector. The scalar potential W and the vector a are
connected with the Hertz vectors via

k �Pe ¼ W � a; ð2:28Þ

ivm0Ph ¼ W � a: ð2:29Þ
If both the electric and the magnetic field vector do not have a longitudinal

component, the solution ofMaxwell�s equations and theHelmholtz equation is called
TEM wave. Generally, E and H are given as a linear superposition of TM and TE
modes. Notice that in several electrodynamic problems like wave propagation in
waveguides it is not possible to obtain pure TE or TM solutions, except for the ground
mode.

It is worth tomention that a third, irrotational solution ofMaxwell�s equations and
the vector wave equation exists as

L ¼ �gradðwLÞ ð2:30Þ
that satifies the Laplace equation

divðLÞ ¼ �r2wL ¼ 0: ð2:31Þ
L describes longitudinal waves with wavenumber kL. These waves cannot be
described with the dielectric function defined in (2.20), but are described with the
dielectric function eL(v,kL) that satisfies

eL v; kLð Þ ¼ 0: ð2:32Þ
If longitudinal waves can propagate in the material in a certain frequency range,

the function Ldescribes longitudinal electron densityfluctuations in thematerial, the
longitudinal bulk plasmon modes. At these frequencies, the interior TM fields are
coupled to the bulk plasmons, while the TE fields are not affected.
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In the following, we consider a planemonochromatic TEMwave. It is described by
the equation

Zðr; tÞ ¼ Z0 � expðiðkr�vtþwÞÞ; ð2:33Þ

with Z representing either E or H.
Applying Maxwell�s equations (2.15) and (2.16) to this wave leads to

k � E ¼ 0 and k �B ¼ 0; ð2:34Þ

meaning that the electric field and the magnetic field are perpendicular to the
propagation wave vector k. This is also illustrated in Figure 2.1. Equation 2.34
describes transverse waves, a characteristic property of electromagnetic waves.

Considering the phase of this plane electromagnetic harmonic wave, we can
recognize that the surfaces of constant phase and constant amplitude coincide and
are planes normal to the direction of propagation. The surfaces of constant phase
satisfy the equation

k � r-vt ¼ constant; ð2:35Þ
which is the representation of planes perpendicular to k. According to the dispersion
equation (2.20), the plane wave propagates with the velocity of light c when
propagating in vacuum, andwith reduced velocity c=n̂ðvÞ in amediumwith complex
refractive index n̂ðvÞ ¼ nðvÞþ i � kðvÞ. If the refractive index is complex, then also k
is a complex-valued vector k¼ k1 þ ik2 and the wave becomes inhomogeneous
because its amplitude decreases with exp(�k2r). If k1 and k2 are collinear, the wave
evanesces along the propagation direction. The surfaces of constant phase and
constant amplitude still coincide in this special case. If in general k1 and k2 include
an angleV, the surfaces of constant phase and constant amplitude never coincide but
are oblique.

Electric Field 

Magnetic Field 

Propagation
  Direction

Figure 2.1 Sketch of a time harmonic transverse electromagnetic wave.
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The magnitude of the electric and magnetic field of an electromagnetic wave that
propagates through an absorbing medium along, for example, the x-direction
decreases by the factor exp(�b(v)�x) with

bðvÞ ¼ v

c
kðvÞ: ð2:36Þ

As a consequence, the intensity that is proportional to the square of themagnitude
decreases by the factor exp(�2b(v)�x). The difference 1� exp(�2b(v)�x) is lost in the
medium by exciting vibrations of molecules or lattice vibrations (phonons), which is
called absorption with the absorption constant b(v).

Electromagnetic waves exhibit another property that is characteristic of transverse
waves: polarization. As we know from (2.34), the electromagnetic fields E andH of a
TEM wave are perpendicular to the wave vector k. They oscillate in a fixed plane
spanned either by (E, k) or (H, k).Wedenote the electromagneticwave as p-polarized if
the electric field oscillates in the plane of incidence, and as s-polarized if the electric
field oscillates perpendicular to the plane of incidence. In general, we can write the
electric field as the sum of a p- and an s-polarized component Ep and Es that are
orthogonal and lie in the plane k�r�vt¼ constant on which k is perpendicular.
Moreover, Ep and Es may have different magnitudes Ep0 and Es0 and different
constant phase shifts wp and ws, that is,

Ep ¼ Ep0 exp iðk � r�vtþwpÞ
� �

; ð2:37Þ

Es ¼ Es0 exp iðk � r�vtþwsÞð Þ: ð2:38Þ
If we investigate now the locus of Ej j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þE2

s

q
in the plane k�r�vt¼ constant,

we find after some mathematics that Ep and Es must satisfy the relation

Ep

Ep0

� �2

�2
Ep

Ep0

Es

Es0
cos dþ Es

Es0

� �2

¼ sin2 d; ð2:39Þ

with d being the difference in the constant phase shifts wp and ws, d¼wp�ws. In
general, (2.39) describes an ellipse in this plane and E rotates along this ellipse.
Depending on d we can distinguish the following three cases:

. Linear polarization with d¼ 0.

. Circular polarization with d¼p/2.

. Elliptical polarization with d being arbitrary, but not 0 and not p/2.

For linear polarization, the field vector does not rotate. It is customary to describe
the rotation in the case of circular polarization as right handed if the vector rotates
clockwise when viewed in direction opposite to the propagation direction. Accord-
ingly, it is called left handed if the vector rotates counterclockwise. The three cases of
polarization are illustrated in Figure 2.2.
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2.2
Huygens–Fresnel Principle

It wasChristianHuygens (1629–1695)whofirst formulated howawave propagates in
a medium (till this time, it was not proven that electromagnetic waves are transverse
waves).With his proposal he arrived at an explanation of the reflection and refraction
at an interface between two media and at an explanation of dichroism.

The main statements of Huygens are as follows:

. Each point of an existing wavefront of a plane wave at the site r and at time point t0
is origin of a new secondary circular wave with the same wavelength l, the same
time period T, and the same polarization as the original plane wave.

. The envelope of these secondary waves determines the new wavefront and the
stimulus in a point P.

In Figure 2.3, we illustrate the principle for a plane wave. The black lines indicate
the planes of constant phase where the magnitude of the wave is maximum. The
dashed lines are the secondary circular waves. As it becomes obvious from the figure,
the envelope of the secondary waves forms a new plane of constant phase not only at

Ep

Es

δ = π/2

δ = arbitrary 

(a)

(c)

(b)

Figure 2.2 Illustration of (a) linear polarization, (b) circular polarization, and (c) elliptical
polarization of the electromagnetic wave.
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r þ le but also at r� le, with e being the unit vector in propagation direction. The
latter shows a gap in Huygens� explanation because it cannot be excluded that the
incident wavefront gets weakened by the secondary waves.

Auguste-Jean Fresnel (1788–1827) closed this gap when combining the ideas of
Huygens with Young�s principle of interference by linear superposition (Thomas
Young, 1773–1829). From this, it follows that the envelope of the secondary waves
results in a newwavefront only in propagation direction. One important result of this
combination is the following statement:

The propagation direction of the reconstructed wave is perpendicular to the
wavefront.

With the Huygens–Fresnel principle can be described not only the straight propa-
gation of waves but also all deviations from it that are known as diffraction. We will
apply it in the following to give a description of reflection and refraction (Section 2.4)
and a description of diffraction (Section 2.5). As interference plays an important role
in the discussion of diffraction, we will introduce it first in Section 2.3.

2.3
Interference of Electromagnetic Waves

Thomas Young established in 1801 the principle of interference of waves as linear
superposition of waves with different phases. We introduce this principle for the
interference of two waves.

new wavefront 

propagation

  direction

Figure 2.3 Huygens� principle applied on a plane wave.
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LetA(r, t)¼A0exp(i(k�r�vt)) be one wave and B(r, t)¼B0 exp(i(k�r�vt þ w)) the
second wave with different magnitude having a phase difference w. The linear
superposition of A(r, t) and B(r, t) means that a new wave with C(r, t) results from the
sum of A(r, t) and B(r, t):

Cðr; tÞ ¼ Aðr; tÞþBðr; tÞ
¼ A0�B0ð Þexp iðk � r�vtÞð ÞþB0 � exp iðk � r�vtÞð Þ � 1þ expðiwÞð Þ
¼ exp iðk � r�vtÞð Þ � A0�B0 þ 2B0 exp iw=2ð Þ � cos w=2ð Þð Þ:

ð2:40Þ
The magnitude C¼ |C(r,t)| of the resulting wave strongly depends on the value of

the phase difference w: if w¼ (2m þ 1)p, with m being an integer number, the
magnitude is minimum and even completely vanishes for A0¼B0. On the other
hand, it becomes maximum for w¼ 2mp. For identical magnitudes of the two
superposed waves, we therefore can expect complete extinction, called destructive
interference, and a doubling of the magnitude, called constructive interference. For all
other phase differences, w, an intermediate state occurs.

For illustration, we assume two one-dimensional waves with samemagnitude at a
fixed time point t0. Then, the phase difference is defined by a difference d in the path
along the x-axis and is w ¼ ð2p=lÞd. C(x, t0) follows as

Cðx; t0Þ ¼ A sin
2p
l
xþvt0

� �
þA sin

2p
l

xþ dð Þþvt0

� �

¼ 2A cos
pd

l

� �
� sin 2p

l
xþ d

2

� �
þvt0

� �
:

ð2:41Þ

As can be recognized fromFigure 2.4a, the superposition of the twowaves result in
a new wave with magnitude A<C< 2A that is phase shifted compared to the two
primary waves by pd/l if the shift d is arbitrary. For the two special cases d¼ (2m
þ 1)l/2 and d¼ 2ml, the destructive interference, Figure 2.4b, with C¼ 0, and the
constructive interference, Figure 2.4c, with C¼ 2A, are obtained.

2.4
Reflection and Refraction

In this section, we introduce a plane interface as boundary between two different
materials and consider the resulting wave propagation in each of the two materials.
The interface strongly disturbs the free propagation of thewave andwe get newwaves
by reflection and refraction.

Consider a plane interface between two media 1 and 2 with refractive indices n1
and n2. For the moment, we assume that n2 is real valued, that is, medium 2 is
nonabsorbing. Medium 1 is always assumed to be nonabsorbing in the following.
The discussion of absorbing medium 2 follows after the derivation of reflection and
refraction. A plane wave in medium 1 with wave vector kinc¼ kinc (sina,�cosa, 0)T
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hits this interface so that its propagation direction encloses an angle a with the
normal to the interface. Applying now Huygens� principle, we can construct the
wavefronts in medium 1 and medium 2. This is illustrated in Figure 2.5.

When constructing the wavefronts inmedium 1, we find as a result a second wave
with wave vector kref¼ kinc (sina, cosa, 0)

T. It is reflected at the interface between the
two media. It also includes the angle a to the normal on the interface. From this we
can deduce the reflection law :

Angle of reflection aR ¼ angle of incidence a; ð2:42Þ
which is well known since the ancient times (Euclid, 300 B.C.).

When constructing the wavefronts in medium 2, we have to take into account that
the wavelength changes from l/n1 to l/n2. If n2> n1, the resulting wave with krefr in
medium 2 encloses an angle b with the normal that is smaller than a because the
distance of planes of constant phase – the wavelength – becomes smaller than in
medium1. Vice versa, for n2< n1, the angle b becomes larger thana because now the
wavelength becomes larger than inmedium 1. The relation between b and a is not at

(a)

(b)

(c)

Figure 2.4 Interference of two one-dimensional waves with the same magnitude and phase
difference w: (a) w arbitrary, (b) w¼ (2m þ 1)p or d¼ (2m þ 1)l/2, and (c) w¼ 2mp or d¼ 2ml.
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all as obvious as the reflection law.Already, Ptolemy (approx. 90–168A.D.) studied the
relation between a and b, but did not arrive at a formula. It was the DutchWillebrord
vanRoijen Snell whowasfirst to describemathematically this relation in 1618, which
is well known as Snell�s law of refraction,

n1ðlÞ � sinðaÞ ¼ n2ðlÞ � sinðbÞ: ð2:43Þ
Unfortunately, Snell died before he could publish his results, but he reported them

to his scientific colleagues, and also to the French Ren�e Descartes who published it
later in 1637 in his Discours de la M�ethode Pour Bien Conduire sa Raison et Chercher la
Verit�e dans les Sciences (Discourse on theMethod of Rightly ConductingOne�s Reason
and of Seeking Truth in the Sciences).

Both the reflection law and Snell�s law can also be derived from the boundary
conditions for the electromagnetic fields at a surface S

Einc þ Eref lð Þ � njsurface ¼ Eref r � njsurface S; ð2:44Þ

Hinc þHref lð Þ � njsurface ¼ Href r � njsurface S: ð2:45Þ
They relate the electromagnetic fields in medium 1 (Einc, Hinc, Erefl, Hrefl) to the

electromagnetic fields (Erefr,Hrefr) inmedium 2. n is the vector normal to the surface
S. The reflection law then corresponds to the statement that the components of kinc
and kref parallel to the plane surface are identical, and Snell�s law corresponds to the
statement that the components of kinc and krefr parallel to the plane surface are
identical.

reflectedincident

refracted 

n1

n2

Figure 2.5 Reflection and refraction on the interface between medium 1 with refractive index n1
and medium 2 with refractive index n2, with n1 < n2.
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For a fixed refractive index n1 of medium 1, the larger is the refraction, the larger
the refractive index n2 of medium 2 becomes. In Table 2.1, we give exemplaric values
for the refractive index of various transparent materials at wavelength 589 nm.

Up to this point, we only considered the propagation direction of the waves. Now,
we want to consider the relation of magnitudes of the reflected and refracted
electromagnetic fields with the magnitude of the incident wave. These relations –
called Fresnel equations – also follow from applying the boundary conditions. We pass
on the derivation but give here only the results as Fresnel coefficients in the following
four equations. Note that the results depend upon the polarization of the incident
wave and are different for s-polarization and p-polarization:

rs ¼ Es;ref

Es;inc
¼ n1 cosðaÞ�n2 cosðbÞ

n1 cosðaÞþ n2 cosðbÞ ; ð2:46Þ

ts ¼ Es;refr

Es;inc
¼ 2n1 cosðaÞ

n1 cosðaÞþ n2 cosðbÞ ; ð2:47Þ

rp ¼
Ep;ref

Ep;inc
¼ � n1 cosðbÞ�n2 cosðaÞ

n1 cosðbÞþ n2 cosðaÞ ; ð2:48Þ

tp ¼
Ep;refr

Ep;inc
¼ 2 n1 cosðaÞ

n1 cosðbÞþ n2 cosðaÞ : ð2:49Þ

Table 2.1 Index of refraction n of various transparent materials.

Material Refractive index n

Vacuum 1.0
Air 1.00029
Water 1.334
Benzene C6H6 1.501
Carbon tetrachloride CCl4 1.46
Carbon disulfide CS2 1.628
Various crown glasses 1.5� nM� 1.55
Various flint glasses 1.6� nM� 1.9
Fused silica 1.46
Polycarbonate 1.59
CaF2 1.43
MgF2 1.38
Si3N4 2.03
Diamond 2.417
MgO 1.74
Al2O3 1.77
TiO2 2.03
CeO2 2.47
ZnO 2.0

All data are at wavelength l = 589 nm.
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The corresponding ratios for the intensity Rs, Ts, Rp, and Tp are obtained by
considering the incident, reflected, and refracted energy flux density. It follows that

Rs;p ¼ rs;p � r�s;p; ð2:50Þ

Ts;p ¼ n2 cosðbÞ
n1 cosðaÞ � ts;p � t

�
s;p; ð2:51Þ

where the asterisk denotes the complex conjugate. As long as the refractive index n2 is
real valued, the multiplication of rs,p or ts,p with its conjugate complex simply means
to build the square of rs,p or ts,p, respectively.

It is not necessary but often helpful to replace cos(b) in the above Fresnel
equations by

cosðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22�n21 sin

2ðaÞ
n22

s
ð2:52Þ

to reduce the formula on the always real angle of incidence a.
What happens with the reflection at the surface S and the transmission through the
surface including Snell�s law if the medium 2 becomes absorbing, that is, if the
refractive index of medium 2 becomes complex valued ~n2ðlÞ ¼ n2ðlÞþ ik2ðlÞ?
The first obvious consequence is that sin(b) in (2.43) and hence the angle of refrac-
tion b must also be complex. It follows that

Re sinðbÞð Þ ¼ n2
n22 þ k22

n1 sinðaÞ; ð2:53Þ

Im sinðbÞð Þ ¼ � k2

n22 þ k22
n1 sinðaÞ: ð2:54Þ

In that case also, the planes of constant phase do not further coincide with the
planes of constant amplitude. We will see this when we discuss the reflection and
transmission of a single layer in Section 3.1.

The next consequence is that the Fresnel coefficients rs, ts, rp, and tp become
complex numbers. Then, the intensity coefficients Rs, Ts, Rp, and Tp must be
calculated from the product of a Fresnel coefficient with its conjugated complex
value, as in (2.50) and (2.51).

At the end of this section, we consider the reverse situation: the wave is coming
from the medium with higher refractive index n2 (optically thick) and is going to the
medium with lower refractive index n1 (optically thin). From Snell�s law (2.43), it
follows that for an angle of incidenceaC ¼ sin�1ðn1=n2Þ – this is called critical angle of
total reflection – the maximum angle of refraction of b¼ 90� is reached. The
corresponding refracted beam travels alongwith the interface in the optically thinner
medium. Fora>aC the incident light gets totally reflected at the interface. However,
in the optically thinner medium, there still exists a wave propagating along the
interface, but with the amplitude of the electromagnetic fields decreasing exponen-
tially with exp(�cz) in the direction perpendicular to the interface as illustrated in
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Figure 2.6. That means the planes of constant phase and the planes of constant
amplitude are perpendicular to each other.

This kind of waves is called evanescent wave. The attenuation constant c depends
upon the angle of incidence a and the refractive indices n1 and n2:

c ¼ 2p
l

n22 sin
2 a�n21

� �1=2
: ð2:55Þ

For a¼aC, it is c¼ 0, and for 0�a<aC, it becomes purely imaginary, so that the
wave is not attenuated in z-direction but corresponds to a radiating wave, as expected
from Snell�s law.

These evanescent waves from total internal reflection exhibit a peculiarity with
respect to the polarization. Due to the complex phase shift when total reflection
occurs, the electric field of the p-polarized evanescent wave rotates in time. This
means that the p-polarized evanescent wave has almost always a component in
propagation direction of the evanescent wave. This part corresponds to a longitudinal
electromagnetic wave.

2.5
Diffraction

Unlike reflection and refraction, diffraction not only results in a change in the
propagation direction of thewave but is also accompanied by the linear superposition
of partial waves from different sites that have the same propagation direction but a
different phase. That means we must consider two effects: the redirection of light,
described by theHuygens–Fresnel principle, and the interference of waves according
to Young.

For derivation of the diffraction by a grating, we first consider a single slit in an
opaque plate. Thewavefront in the plane of the slit is origin of new circularwaveswith
the same wavelength because the matter in front of the slit and behind the slit is the
same. However, as the slit has a finite size, a finite number of circular waves are also
generated. This is shown in Figure 2.7. The finiteness of the slit causes the
superposition of the circular waves to result in plane wavefront only in the middle

α ≥ αc

kevan

Figure 2.6 Evanescent wave from total internal reflection at the interface between an optically
thicker medium and an optically thinner medium.
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but is curved at the edges. Accordingly, the propagation vector of the new recon-
structed wave has not only components in the propagation direction of the incident
wave but also spreads into the complete half space behind the slit.

The next step is to consider a light beam propagating in a certain direction
enclosing the angle b with respect to the normal on the slit. We can divide this beam
into either an even (2p) or an odd (2p þ 1) number of partial waves going in the same
direction but from different points along the slit as shown in Figure 2.8.

Two neighboring partial waves then have a phase difference w ¼ ð2pb=2plÞsin b

for an even number of partial waves and w ¼ ð2pb=ð2pþ 1ÞlÞsin b for an odd
number of partial waves.

For 2p partial waves, we always find pair-wise two beams that interfere destruc-
tively. That means in the directions where

sin bm ¼ m
l

b
; m ¼ �1;�2;�3; . . . ð2:56Þ

we will find destructive interference and hence no intensity. The number m is, in
principle, the order of the appearing minimum.

Vice versa, for an odd number of partial waves, we find pair-wise beams that
interfere destructively, but there remains finally a bundle of light beams that cannot
interfere destructively because there are no other beams available for this interfer-
ence. Hence, maximum intensity should be obtained in the directions with

sin bm ¼ ð2mþ 1Þ
2

l

b
; m ¼ 0;�1;�2;�3; . . . ð2:57Þ

Figure 2.7 Diffraction by a slit – Huygens–Fresnel principle.

b

β

b

β

odd number 2p+1 even number 2p 

Figure 2.8 Diffraction by a slit – interference of an even (2p) or an odd (2p þ 1) number of partial
waves.
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In a more elaborated derivation, we calculate the radiant flux through the slit into
the half space behind the slit. It is proportional to the square of the electric field
distribution in the slit

JslitðbÞ /
ðb=2

�b=2

E0 � exp ikxð Þdx

�������
�������
2

ð2:58Þ

with k ¼ ð2p=lÞsin b. The result is

JslitðbÞ / b2
sin2 ðpb=lÞsin bð Þ

ðpb=lÞsin bð Þ2 : ð2:59Þ

The energy of the wave in the slit is distributed in the half space behind the slit and
can be described by a squared sinc function sinc2(sin(b)).

Only the minima of this always positive definite function are obvious. They are
obtained in the directions where sin(b) fulfills (2.56). For the maxima, we find the
condition

tan
pb
l
sin b

� �
¼ pb

l
sin b: ð2:60Þ

This condition is approximately fulfilled if sin(b) satisfies (2.57). The higher the
order n is, the smaller the deviation is. For example, for m¼ 1 the maximum is
obtained at 1.43p (instead of 1.5p), form¼ 2 it is obtained at 2.46p (instead of 2.5p),
and form¼ 3 it is obtained at 3.47p (instead of 3.5p). A special case is the maximum
for sin(b)¼ 0. It follows directly from (2.60), but for calculation of the intensity of this
maximum, we must apply L�Hospital�s rule on the sinc function in (2.61).

Up to now, we considered the slit only in one dimension, having a width b. In fact,
the slit has also a height h and we can find also diffraction in the vertical direction if
the height h is sufficiently small. Figure 2.9a shows an example for the diffraction by a
rectangular slit of width b and height h and Figure 2.9b shows the diffraction by a
quadratic slit. The pictures are taken from Ref. [11].

We turn now to the grating that consists of a thin plane plate with periodically
arranged slits (see Figure 2.10) illuminated by a plane wave. The periodicity of the
slits is the grating period, g. The reciprocal of the grating period is called groove density,
L¼ 1/g.

Figure 2.9 (a) Diffraction by a rectangular slit of width b and height h. (b) Diffraction by a quadratic
slit. Reproduced from Ref. [11], with kind permission of Springer Science þ Business Media.
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From each slit a wave propagates in the direction given by the diffraction angle b.
From slit to slit they have the phase difference w ¼ ð2p=lÞg � sin b and a phase factor
exp(iw). These waves superpose in the far field (far from the grating surface). Then,
the radiantflux through the slits of the grating into the half space behind the grating is

JgratingðbÞ / JslitðbÞ �
XN�1

n¼0

exp iwð Þð Þn
�����

�����
2

/ sin2 ðpb=lÞsin bð Þ
ðpb=lÞsin bð Þ2 � sin

2 ðpNg=lÞsin bð Þ
sin2 ðpg=lÞsin bð Þ :

ð2:61Þ
The intensity diffracted by the grating into direction of the angle b consists of two

factors: the first Jslit(b) describes the diffraction by a single slit and the second results
from themultiple interference of thewaves coming fromallN slits of the grating. This
second factor determines the diffracted light in a distinct manner, as it introduces
additional minima and maxima. If the single slit diffraction leads to zero intensity in
directionof the angleb, thisminimumis kept in the intensity diffractedby thegrating.
However, between two minima of Jslit(b) the second factor – the grating function,
GF – can be zero with maxima of GF in between. Another effect of the multiple
interference is that the intensity of these newmaxima from the GF strongly increases
with the number of illuminated slits N proportional to N2 so that these maxima
dominate the intensity distribution in the half space behind the grating.

The maxima of GF are found after some mathematics. The first derivation of GF
yields the conditions for extrema, and the second derivativefinally showswhich of the
extrema are the maxima. The maxima are given by

sin b ¼ m
l

g
; m ¼ 0;�1;�2;�3; . . . ; ð2:62Þ

where m is the order of diffraction, and by the solution of the equation

N � cot pNg
l

sin b

� �
�cot

pg
l
sin b

� �
¼ 0 ð2:63Þ

gb

λ∝ 5 ⋅ g ⋅ sinβ2πexp i

β

Figure 2.10 Diffraction by a grating – interference of waves from periodically arranged slits of
width b and periodicity g.
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with cot(x)¼ cos(x)/sin(x). Equation 2.62 is the equation for the prominent maxima
and is called grating equation. Equation 2.63 gives all less prominent maxima in
between the prominentmaxima.An example is given in Figure 2.11 for a gratingwith
N¼ 8 slits and g¼ 3b. The prominent maxima are at m�p/3, as expected for g¼ 3b.

Up to now we considered the grating illuminated by a plane wave with its
propagation direction perpendicular to the grating, that is, with an angle of incidence
e¼ 0.When turning to the case that the incident light encloses an angle of incidence e
to the normal on the grating (see Figure 2.12), the above diffraction theory must be
adjusted to take into account the angle of incidence.

For e 6¼ 0 the partial waves have an additional phase shift given by g�sin(�e). Then,
the maxima of the GF obey the grating equation

sin b�sin e ¼ m
l

g
; m ¼ 0;�1;�2;�3; . . . ð2:64Þ
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Figure 2.11 Diffraction pattern of a grating with N¼ 8 slits.
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Figure 2.12 Diffraction by a grating with angle of incidence e 6¼ 0.
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The negative sign of the angle of incidence results from the sign convention for
angles: right-handed angles have a negative sign and left-handed angles have a
positive sign.

All components of light corresponding tom¼ 0 followa straight line givenbyb¼ e.
It is not possible to separate the wavelengths for this order.

Please note that for a reflection grating, the sign of the angle of incidence e and the
sign of the angle of diffraction b are identical by convention. Therefore, for a
reflection grating the grating equation reads

sin bþ sin e ¼ m
l

g
; m ¼ 0;�1;�2;�3; . . . ð2:65Þ

For a given set of angles of incidence and diffraction, the grating equation is valid
formore than onewavelength, giving rise to several orders of diffracted radiation. For
example, if the wavelength l¼ 600 nm gets diffracted in the first orderm¼�1, then
the wavelength l¼ 300 nm also gets diffracted in the second order m¼�2 at the
same angle of diffraction. The number of orders is limited by the grating period g and
the angle of incidence. The maximum spectral bandwidth that can be obtained in a
specified order without spectral overlap from adjacent orders is called free spectral
range Fl¼ l/m. An illustration of the free spectral range for the orders m¼�1, �2,
and�3 and a gratingwith g¼ 2500 nmandwavelength range 400–700 nm is given in
Figure 2.13. The free spectral range becomes smaller for higher orders m. If the
grating period decreases, the free spectral range increases.

Depending on the grating period and the angle of incidence e, it may not be
possible to obtain diffracted light. For example, for g¼ 500 nm (groove density L¼ 1/
g¼ 2000 grooves/mm), e¼ 0�, and l¼ 500 nm, one obtains sin(b)¼ 1 for the first
order m¼�1. Then, all wavelengths l> 500 nm cannot be diffracted.

Spectral Range: 400–700 nm 
9.2°–18.3°m = 1: 
18.7° – 34.1° m = 2: 
28.7° – 57.1° m = 3: 

g  = 2500 nm 

m = -2 

m = -1 -3=m+1=m

m = +2 

m = +3 

Grating

Figure 2.13 Free spectral ranges of the ordersm¼�1,�2, and�3 for a grating with g¼ 2500 nm.
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One of the most important properties of a grating is the grating efficiency. The
absolute efficiency of a grating is the percentage of incidentmonochromatic radiation
on a grating that is diffracted into a desired order. Diffraction with a grating as
described above (slits in a nontransparent thin plate) is symmetric with respect to the
energy diffracted into the order þm and �m. However, this homogeneous distri-
bution over all diffraction orders can bemodified. For that, other kinds of gratings are
used with grooves instead of slits. The energy distribution can then be modified by
the groove profile, the groove dimensions, the groovematerials, and other groove and
grating properties such as the reflectivity as in the case of reflection gratings. The
result is that the diffracted energy is redirected into a certain desired order or certain
orders do not further contribute to the energy distribution of the diffracted light.

These grooved gratings can roughly be divided into reflection gratings and
transmission gratings. The difference becomes clear from the name: for reflection
gratings the incident light gets reflected by amirror but gets diffracted by the periodic
structure of or on the surface of the mirror, while for transmission gratings the light
passes a transparent plate with a periodic transparent structure either on one surface
or inside the plate where the light gets diffracted. In the following, we discuss five
technically relevant cases, starting with transmission gratings.

2.5.1
Transmission Gratings

The two most important transmission gratings are lamellar transmission gratings
with a surface relief profile and holographic transmission gratings. They are dis-
cussed now.

2.5.1.1 Lamellar Transmission Gratings
Figure 2.14 shows a schematic drawing of a transmission grating with surface relief
profile. The grating consists of grooves of width b and depth d in a bulk transparent

b

a

n2

n1

Figure 2.14 Scheme of a lamellar transmission grating with surface relief profile.
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material with refractive index n2. The grooves are separated with a distance a. The
grating period is then g¼ a þ b. The grooves may be filled with a transparent
medium with refractive index n1. Usually, it is ambient air with n1¼ 1.

Light passing through this grating will be diffracted by the periodic structure but
the partial waves will have additional phase shifts exp(ikn1d) and exp(ikn2d) due to the
fact that they pass either the grooves or the bulk material.
Therefore, we have for the magnitude of electric field of the wave diffracted into the
diffraction angle b:

EðbÞ ¼ E0 �GF � exp ikn1dð Þ
ðb
0

exp ikx sinðbÞð Þdxþ exp ikn2dð Þ
ðaþ b

b

exp ikx sinðbÞð Þdx
8<
:

9=
;;

ð2:66Þ

where the abbreviation GF stands again for the grating function. As the grating
function describes the interference by the periodic arrangements of the grooves with
the periodicity g, it is the same as in (2.61). Therefore, we only have to calculate anew
the diffraction by a groove. The two integrals in the brackets of (2.66) describe the
diffraction at the single groove with width b and the diffraction at the single block
between the grooves with width a.

After some mathematics, the intensity J(b) diffracted into the diffraction angle b
follows as

JðbÞ /GF2 �
a2

sin2 ðpa=lÞsinðbÞð Þ
ð pa=lÞsinðbÞð Þ2 þb2

sin2 ðpb=lÞsinðbÞð Þ
ðpb=lÞsinðbÞð Þ2 þ

þ2ab
sinð pa=lÞsinðbÞð Þ
ð pa=lÞsinðbÞð Þ

sin ðpb=lÞsinðbÞð Þ
ðpb=lÞsinðbÞð Þ cos

2pd
l

n2�n1ð Þþ pg
l
sinðbÞ

� �
8>>><
>>>:

9>>>=
>>>;:

ð2:67Þ

In the following, we consider diffraction maxima of order m. Furthermore, the
grating is illuminated by a parallel beam perpendicular to the grating, that is, the
angle of incidence is e¼ 0. Then, we can rewrite (2.67) into a dependence upon
the diffraction order m for the diffraction maxima

JðmÞ /GF2 �
a2

sin2 mpða=gÞð Þ
mpða=gÞð Þ2 þb2

sin2 mpðb=gÞð Þ
mpðb=gÞð Þ2 þ

þ2ab
sin mpða=gÞð Þ

mpða=gÞð Þ
sin mpðb=gÞð Þ

mpðb=gÞð Þ cos
2pd
l

n2�n1ð Þþmp

� �
8>>><
>>>:

9>>>=
>>>;: ð2:68Þ

For each diffraction order m¼�1, �2, . . ., it becomes maximum if the cosine term
becomes þ1. This results in a condition for the depth of the grooves d as

d¼ ð2p�mÞ
n2�n1ð Þ

l

2
; ð2:69Þ
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with p being an integer number p¼ 1, 2, 3, . . .. The minimum thickness is obtained
for (2p�m)¼ 1. A further improvement is obtained if a¼ b¼ g/2, that is, for a
symmetric profile. Then, the intensity in a diffraction order m becomes

JðmÞ ¼ 2 � E0 �GF � g
m �p

� �2

� 1þcos
2pd
l

n2�n1ð Þþmp

� �	 

: ð2:70Þ

An interesting case is the zeroth orderm¼ 0. Please note that in this case wemust
use (2.67) and L�Hospital�s rule to derive the intensity J(0) to

Jð0Þ ¼ 2 � E0 �GF � g
p

� �2

� 1þ cos
2pd
l

n2�n1ð Þ
� �	 


: ð2:71Þ

For the simple grating with slits in a nontransparent plate, it contains the
maximum energy. But in the present case, the situation is different due to the
introduction of the phase shifts, resulting in the cosine term. For a groove depth

d ¼ l

2 n2�n1ð Þ ; ð2:72Þ

the intensity J(0) vanishes as the cosine term then becomes �1. Then, also all even
orders m¼ 2q vanish completely for this groove depth, as can be easily derived
from (2.70). The odd orders have a maximum with their intensity I(m) being
proportional to 1/m2.

2.5.1.2 Holographic Transmission Gratings
Holographic transmission gratings are formed by illuminating a photosensitive
material with the interference pattern of two crossed laser beams of samewavelength
l0 that include an angle c. The periodicity of the interference pattern is given by

G ¼ l0
2 sin c=2ð Þ : ð2:73Þ

Inserting a photosensitive material with refractive index nPR into this interference
pattern, the photosensitive material changes its constitution and refractive index in
the illuminated regions with a resulting periodicity

GPR ¼ l0
2 � nPR � sin cPR=2ð Þ : ð2:74Þ

The angle changes due to refraction into the medium. By this way the sinusoidal
profile of the interference pattern is copied into the photoresist. Compared to the
surface relief grating, the holographic grating is rather similar, except that the profile
is sinusoidal. Figure 2.15 depicts a schematic drawing of a holographic grating.

The calculation of the diffracted intensity is, however, more complicated than for
the surface relief grating due to the sinusoidal profile. One has to further distinguish
between amplitude gratings and phase gratings.

For a pure phase grating, the absorption is zero over the whole hologram. The
illumination with the interference pattern results in a variation of the optical path,
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either by a change in the refractive index or by a change in the thickness of the
material (when the photoresist gets developed). The latter is similar to the lamellar
gratings. Hence, the magnitude of the electric field of the wave diffracted into the
diffraction angle b is given by

EðbÞ ¼ E0 �GF �
ðg
0

exp iknPR cos
2p
g
x

� �
� x

� �
exp ikx sinðbÞð Þ dx: ð2:75Þ

Despite this more complicated calculation, the principal results are comparable to
those of the surface relief transmission grating.

In contrast, the amplitude grating exhibits a change in the absorption of the
photoresist in dependence on the illumination. The interference pattern generates a
harmonic variation in the transmission through the photoresist. If the thickness of
the photoresist film is larger than the grating period g, the grating is called volume
grating or Bragg grating. The interference pattern then causes interference planes
(lamellar grating) and onemust treat the grating three dimensionally. One possibility
to describe the diffraction by such a volume grating is the coupled wave theory of
Kogelnik [12]. The great advantage of using this coupled two-wave theory is its
computational simplicity and the wide range of variation in the parameters it allows.
The disadvantage of this theory is that it considers only the ordersm¼ 0 andm¼�1,
and the grating must fulfill the Bragg condition. Gerritsen et al. [13] showed that
Kogelnik�s two-wave coupled theory is quite applicable in detail to deep, narrowly
spaced photoresist gratings.

A more complex but exact theory has been developed [14–16] for various grating
profiles, but so far only themaximumefficiency of these gratings has been calculated,
not the angular or wavelength dependence of the efficiency. Volume gratings have
been analyzed byChang andGeorge [17] using aRaman–Nath formalismmodified to
incorporate losses. For computation of zero-, first-, and second-order diffracted

Figure 2.15 Scheme of a holographic transmission grating with sinusoidal profile.
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beams for a multitude of practical cases, four second-order coupled wave equations
are used. Significant differences are found in comparison with computations where
only two coupled waves are used. A general expression for the average intensity in
each diffracted order is given in Equation 2.12.

Alferness [18, 19] developed in 1975 amodel that considers an arbitrary number of
diffraction orders. However, it could not be applied for a long time because it needs
high computation capacities for numerical calculation. The main idea is simple: the
volume grating is divided intomany thin gratings. Each grating is considered exactly.
The result for intensity diffracted by the volume grating is obtained by the successive
calculation of the intensity diffracted by the nth thin grating under consideration of
the result for the intensity after n� 1 preceding gratings.

2.5.2
Reflection Gratings

The simplest reflection grating consists of a periodic arrangement of grooves in a
nontransparent highly reflectivematerial, a surface relief grating or lamellar grating.
Of more practical and technical interest, however, are gratings with a sawtooth
profile, also called blazed gratings. Usually, they are ruled into the support by special
ruling machines. Nonruled reflection gratings are made as holographic gratings.
These three types are discussed in the following sections.

2.5.2.1 Lamellar Reflection Gratings
Figure 2.16 shows a schematic drawing of a reflection grating with surface relief
profile. The grating consists of grooves of width b and depth d in a bulk nontran-
sparent highly reflective material. The grooves are separated with distance a. The
grating period is then g¼ a þ b. The refractive index of the medium in front of the
grating may have the refractive index n. Usually, it is ambient air with n¼ 1.

Light incident perpendicular on this grating will be reflected and diffracted by the
periodic structure, but the partial waves reflected in the grooves will have an

b

a

opaque, highly reflective 

Figure 2.16 Scheme of a reflection grating with surface relief profile (lamellar grating).
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additional phase shift exp(i2knd) due to the fact that they pass the grooves twice
compared to the waves reflected at the top surface of the grating.

Therefore, we have for themagnitude of electricfield of thewave diffracted into the
diffraction angle b

EðbÞ ¼ E0 �GF � exp i2kndð Þ
ðb
0

exp ikx sinðbÞð Þdxþ
ðaþ b

b

exp ikx sinðbÞð Þdx
8<
:

9=
;;

ð2:76Þ
where the abbreviation GF is again the grating function. The two integrals in the
brackets of (2.76) describe the diffraction at the single groove and the diffraction at the
single block, respectively, between the grooves.

After some mathematics, the intensity J(b) diffracted into the diffraction angle b
follows as

JðbÞ / GF2 �
a2

sin2 ðpa=lÞsinðbÞð Þ
ðpa=lÞsinðbÞð Þ2 þ b2

sin2 ðpb=lÞsinðbÞð Þ
ðpb=lÞsinðbÞð Þ2 þ

þ 2ab
sin ðpa=lÞsinðbÞð Þ

ðpa=lÞsinðbÞð Þ
sin ðpb=lÞsinðbÞð Þ

ðpb=lÞsinðbÞð Þ cos
4pnd
l

þ pg
l
sinðbÞ

� �
8>>><
>>>:

9>>>=
>>>;

ð2:77Þ

This result is very similar to that of the transmission grating with surface relief
profile. The difference is in the cosine term where the difference between the
refractive indices of the bulkmaterial and thematerial in the grooves (n2� n1) is now
replaced by the term 2n.

In the following, we consider again diffraction maxima of orderm for the grating
being illuminated by a parallel beam perpendicular to the grating, that is, the angle of
incidence e is e¼ 0, and in the symmetric case a¼ b¼ g/2. Then, we obtain

JðmÞ ¼ 2 � E0 �GF � g
m �p

� �2

� 1þ cos
4pnd
l

þmp

� �	 

: ð2:78Þ

For each diffraction order m, it becomes maximum if the cosine term becomes
þ 1. This results in a condition for the depth of the grooves d as

d ¼ ð2p�mÞl
4n

ð2:79Þ

with p being an integer number p¼ 1, 2, 3, . . .
An interesting case is again the zeroth orderm¼ 0. The intensity J(0) is obtained as

Jð0Þ ¼ 2 � E0 �GF � g
p

� �2

� 1þ cos
4pnd
l

� �	 

: ð2:80Þ
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Due to the phase shift exp(i2knd), it is possible to suppress the zeroth order
completely if the groove depth d satisfies the condition

d ¼ l

4n
: ð2:81Þ

Also, all even orders m¼ 2q vanish completely for this groove depth, as can be
easily derived from (2.78). The odd orders have a maximumwith their intensity J(m)
being proportional to 1/m2.

2.5.2.2 Blazed Gratings
Gratingswith grooves that have a sawtooth profile with one side longer than the other
are called blazed gratings. The angle between the long side and the plane of the grating
is called blaze angle �B. The scheme of a blazed grating is shown in Figure 2.17.

A blazed grating combines diffraction with reflection in order to put most of the
light into one diffracted order.

Considering the case that the diffraction direction for an orderm is the same as the
direction of specular reflection at the facet normal, we have e� �B¼ �B�b or e þ b

¼ 2�B. Then, the intensity in this order is maximum, and the regular reflection
(the zeroth order) is also in this direction. The grating equation reads in this case
as follows:

sin 2�B�eð Þþ sin e ¼ m
l

g
: ð2:82Þ

Blazed grating groove profiles are calculated for the Littrow configuration for the
diffraction orderm¼ 1. In the Littrow configuration, incident and reflected angle are
equal. This is fulfilled if e¼b¼ �B. Inserting this into (2.82) leads to the blaze
condition

2 sin �B ¼ lB
g
: ð2:83Þ

opaque, highly reflective 

grating normal facet normal 
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θB
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Figure 2.17 Scheme of a blazed grating.
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By comparing the blazed grating with a lamellar grating, we find that if g is the
grating constant of the blazed grating, the corresponding grating constant glamellar is
glamellar¼ g/tan(�B).

2.5.2.3 Holographic Gratings
For holographic reflection gratings, a polished highly reflecting support gets covered
with a photoresist. The grating is formed by illuminating the photosensitivematerial
with the interference pattern of two crossed laser beams of same wavelength. Then,
the photoresist changes its constitution and refractive index in the illuminated
regions. By this way, the sinusoidal profile of the interference pattern is copied into
the photoresist. This process leads to strictly parallel and equally spaced lines with
sinusoidal profile. The sinusoidal profile causes that the brightness achieved by the
conventional holographic reflection grating is not as high as that of ruled gratings. To
improve brightness, this sinusoidal profile is machined by ion bombardment to
achieve an echelle profile. Such blazed holographic gratings are much brighter than
conventional holographic gratings.

2.6
Scattering

Reflection, refraction, and diffraction of light and other electromagnetic radiation
represent a redirection of the light from its original path into distinct directions given
by the reflection law, the Snell�s law, or the grating equation.

Unlike these processes, scattering of radiation distributes the light in all
directions. Thereby, the ratio (size of the scatterer)/wavelength plays an important
role for the spatial distribution of light. A scatterer very small compared to the
wavelength (Rayleigh limit) scatters the light symmetrically in forward and back-
ward direction. With increasing size, however, forward scattering dominates the
spatial distribution.Not only the size of the scatterer but also its shape, constitution,
and refractive index affect light scattering. The size has the main effect. Finally, the
concentration of scatterers in a volume influences the spatial distribution of
scattered light. Densely packed scatterers lead to an almost homogeneous distri-
bution of scattered light like, for example in clouds, fog, dispersion colors, or paper.
In each case, the scattering diminishes the radiationflux in propagation direction of
the reflected, refracted, or diffracted light by the redistribution of the incident light
into all solid angles.

For this book, the scattering caused by surface imperfections is of interest as
opposed to scatter from individualmolecules and particles as scatterer. The latter can
be read in more detail in several monographs [20–25]. Light scattering from optical
coatings has its origin in the structural irregularities at interfaces and in the bulk of
materials. As wewill see in Section 3.1.4, the scattering by these imperfections can be
taken into account by modified Fresnel equations that consider the structural
irregularities by an rms roughness parameter.
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2.7
Dielectric Function and Refractive Index

For describing interaction of lightwithmatter, the photon energy hv and the complex
dielectric function e(v)¼ e1(v) þ ie2(v) are the physically relevant quantities, while
when discussing wave propagation in and through media the wavelength l and the
complex refractive index n þ ik are much proper.
Dielectric function and refractive index are connected by Maxwell�s relation

nþ ik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ ie2

p
: ð2:84Þ

This relation can be rewritten either for the dielectric function as

e1 ¼ 2 � n � k; ð2:85Þ

e2 ¼ n2�k2; ð2:86Þ
or for the refractive index as

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1
2

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

qr
; ð2:87Þ

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� e1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

qr
: ð2:88Þ

We will introduce physical models for the dielectric function in Section 2.7.1. In
Section 2.7.2, we discuss Kramers–Kronig relations for the real and imaginary part of
the dielectric function. Finally, in Section 2.7.3we introduce empiric formulas for the
refractive index. All models for the dielectric function and the refractive index are
based on a parameterization of the corresponding quantity.

2.7.1
Models for the Dielectric Function

Interaction of electromagnetic fields with matter is dominated by the forces exerted
by the incident electric (andmagnetic) field on the electric charges in thematter. The
electric field E inside the body of condensed matter usually displaces only the
electrons while the ions are too inert as to follow the electric field with the same
frequency. Thereby, each atom becomes an electric dipole with dipole moment p. At
low frequencies in the far infrared, the incident light can also couple to the ions via TO
phonons and induces dipole moments by displacing the negative and positive
charged ions in different directions.

The dipolemoments add up to amacroscopic net polarization P of the sample that
is related to the electric field E by the general equation

P ¼ e0xE: ð2:89Þ
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The factor x is themacroscopic susceptibility of thematter. In general, x depends on
E, that is, x(E). This field dependence can be described by a series expansion of P in
powers of E, where susceptibilities xijk. . . are introduced, which are now a constant in
relation to E

Pi ¼ e0
X
j

xijEj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
linear term xð1Þ

ðanisotropic mediumÞ

þ e0
X
j

X
k

xijkEjEk|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
quadratic term xð2Þ

þ e0
X
j

X
k

X
l

xijklEjEkEl þ . . .

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cubic term xð3Þ

ð2:90Þ

for each component i¼ x, y, z of P. As we are interested in optical thickness
determination, we can restrict our discussion in the following to the linear term.
Nonlinear effects are negligible or even do not occur. Then, it might be necessary to
consider anisotropy in the linear term. For simplicity, we assume optical isotropy for
which the susceptibility simply is a scalar quantity.

The linearity means that charges displaced by the applied field from their position
of equilibrium are retreated by forces that are proportional to the distance from the
position of equilibrium. In consequence, a charge qj with mass mj executes forced
oscillations in a time periodic electric field E ¼ E0ðrÞexpð�ivtÞ. This is the harmonic
oscillator model because the retreating force is linear in the displacement rj. It was
developed by H. A. Lorentz in the beginning of the twentieth century [26].

From the force balance, we obtain the following relation for the displacement rj

X
j

mj
q2rj
qt2

þmjcj
qrj
qt

þDjrj ¼
X
j

qjEðtÞ: ð2:91Þ

The second term on the left side of (2.91) accounts for the perturbation of the
movement of charge qj by interactions with other charges and lattice defects. Their
contributions are assumed to lead to a damping of the oscillation with damping
constant cj. For a time harmonic field E ¼ E0ðrÞexpð�ivtÞ, the solution of (2.91) is
given as

rj ¼
qj
mj

E0

ðv2
j �v2�ivcjÞ

; ð2:92Þ

with the resonance frequency vj ¼ Dj=mj. The macroscopic net polarizability P
follows from all dipole moments pj¼ qjrj in the sample volume V via

P ¼ 1
V

X
j

Njpj ¼
1
V

X
j

Njqjrj; ð2:93Þ

from which we obtain the susceptibility xj for all Nj charges qj as

xjðvÞ ¼
1
V

X
j

Njq2j
e0mj

1
ðv2

j �v2�ivcjÞ
: ð2:94Þ

Here, Nj/V is the total number density of charges qj with mass mj and eigen-
frequency vj. In this respect, x in (2.94) is also valid for ionic crystals (e.g., NaCl and
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MgO), with the corresponding ionic charges andmasses. The assumption of linearity
of (2.90) allows to add all various contributions xj to a total susceptibility x. Then, the
dielectric function eðvÞ ¼ e1ðvÞþ ie2ðvÞ is

eðvÞ ¼ 1þ x ¼ 1þ
X
j

v2
Pj

ðv2
j �v2�ivcjÞ

ð2:95Þ

with the abbreviation

v2
Pj ¼

Njq2j
Ve0mj

ð2:96Þ

being called plasma frequency of the jth oscillator.
Note that the ansatz exp(�ivt) for the time dependence of the electric field leads to

the definition of e(v) as eðvÞ ¼ e1ðvÞþ ie2ðvÞ and to ~nðvÞ ¼ nðvÞþ ikðvÞ. Alter-
natively, the ansatz exp(ivt) leads to the definition of e(v) as eðvÞ ¼ e1ðvÞ�ie2ðvÞ
and to ~nðvÞ ¼ nðvÞ�ikðvÞ, which can also be found in common literature.

At low frequencies, that is, for v ! 0, the real part e1(0) of the dielectric function
becomes constant

e1ð0Þ ¼ 1þ
X
j

v2
Pj

v2
j

; ð2:97Þ

while the imaginary part e2(0) vanishes. e1(0) represents the static dielectric constant
of thematerial. The constant ratiov2

Pj=v
2
j defines a newquantity, the oscillator strength

Sj of the jth harmonic oscillator, so that v2
Pj in (2.95) can be replaced by Sjv2

j .
Figure 2.18 exemplarily shows the dielectric function and the corresponding

refractive index of a harmonic oscillator with resonance frequency 3.5� 1015 s�1,
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Figure 2.18 Dielectric function and refractive index of a harmonic oscillator with resonance
frequency 3.5� 1015 s�1, damping constant 3.5� 1014 s�1, and oscillator strength S¼ 1.
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damping constant 3.5� 1014 s�1, and oscillator strength S¼ 1. At the resonance
frequency, the imaginary part exhibits a maximum and rapidly decreases to the right
and the left of the resonance frequency. Far from the resonance frequency, e2
vanishes. The real part decreases at high frequencies when approaching the
resonance frequency and even becomes negative. In the vicinity of the resonance
frequency, the real part changes very rapidly to high positive values from which it
continuously decreases again when going to low frequencies. The decrease with
decreasing frequency is called normal dispersion, while in the region of rapid increase
with decreasing frequency it is called anomal dispersion.

For statistically perturbed or amorphous materials, it seems appropriate to use an
extension of the harmonic oscillator model on the so-called Brendel oscillators. A
Brendel oscillator is a harmonic oscillatorwith eigenfrequencyvk andwidthck that is
inhomogeneously broadened by an infinite sumover sharp harmonic oscillatorswith
eigenfrequency x and width ck [27]. These oscillators are Gaussian distributed
around the harmonic oscillator with eigenfrequencyvkwith a standard deviation sk:

xBrendelðvÞ ¼
v2

Pk

sk

ffiffiffiffiffiffi
2p

p
ð1
0

d x
exp �0:5 ðx�vk=skÞð Þ2
� �

x2�v2�ivck
: ð2:98Þ

The advantage of a Brendel oscillator compared to a harmonic oscillator simply
broadened by an increased c is that the contours in the real and imaginary part of the
dielectric function become smoother due to the Gaussian distribution. An example
for a Brendel oscillator with resonance frequency 3.5� 1015 s�1, damping constant
3.5� 1014 s�1, oscillator strength S¼ 1, and width parameter 0.05¼ 5% is given in
Figure 2.19.
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Figure 2.19 Dielectric function and refractive index of a Brendel oscillator with resonance
frequency 3.5� 1015 s�1, damping constant 3.5� 1014 s�1, oscillator strength S¼ 1, and width
parameter 0.05.
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In the simpler model of Kim [28], the damping ck of a harmonic oscillator vk is
assumed to be frequency dependent:

xKimðvÞ ¼
v2

P;k

v2
k�v2�ivckðvÞ

ð2:99Þ

with

ckðvÞ ¼ ck exp � 1
1þ s2

k

v�vk

ck

� �2
 !

: ð2:100Þ

The parameter sk� 0 is used to switch between a Gaussian or a Lorentzian shape
of ck(v). For sk¼ 0, a pure Gaussian shape is obtained, and for sk> 5 a Lorentzian
shape is obtained.

In metals, semimetals, and semiconductors, an important contribution to the
dielectric function stems from unbound charge carriers, the so-called free electrons.
Within the harmonic oscillatormodel, their contribution is obtainedwhen assuming
the eigenfrequency vfe¼ 0, corresponding to moving in a potential V(r)¼ 0. Then,
the susceptibility of the free electrons – the Drude susceptibility [29, 30] – reads

xfeðvÞ ¼ � v2
P

v2 þ ivcfe
ð2:101Þ

with the abbreviation

v2
P ¼ Ne20

Vmeff e0
ð2:102Þ

being the plasma frequency of the free electrons assuming them as a plasma. In a
parabolic band structure, the effective mass meff of the electrons is identical to the
electron mass me, but in nonparabolic band structures meff may differ from me.

Figure 2.20 displays the dielectric function eDrude¼ 1 þ xfe and the corresponding
refractive index of a pure Drude metal with plasma frequency vP¼ 5� 1015 s�1 and
damping constant cfe¼ 5� 1014 s�1. The real part of eDrude becomes zero at v¼vP

that corresponds to a photon energy of 3.275 eV. At this frequency, it is possible to
excite longitudinal oscillations of the electron plasma. They can be describedwith the
curl-free solution L of the Maxwell equations and the Helmholtz equation (see
Section 2.1). For realistic metals, the contribution of the interband transitions shifts
this position to lower photon energies (longer wavelengths). Atv>vP the real part is
positive and the imaginary part tends to zero. In this spectral region, theDrudemetal
behaves like a nonabsorbing dielectrics. Indeed, for a few simple metals, this
transparency was proven at very high frequencies [31].

For v<vP, the real part e1 becomes negative and rapidly decreases with decreas-
ing frequency. The imaginary part e2 is positive and increases with decreasing
frequency, but with a smaller slope than that of the real part. For the corresponding
refractive index in Figure 2.20, the real part n tends to zero while k strongly increases
with decreasing frequency. The consequences of this behavior are as follows:
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1) Strong absorption of electromagnetic waves in ametal. The electromagnetic wave
cannot penetrate too far into the metal. Typical penetration depths of realistic
metals lie on the order of 20–30 nm, depending on the metal.

2) The reflectivity of a metal approaches 100%. For negligible n and large k values,
the reflectivity at normal incidence becomes

R ¼ n�1ð Þ2 þ k2

nþ 1ð Þ2 þ k2
! 1þ k2

1þ k2
¼ 1: ð2:103Þ

For small frequenciesv, the imaginary part increases like 1/vwith decreasing
v and even diverges at v¼ 0. However, the DC conductivity remains finite,
approaching the value

sDC ¼ e0
v2

p

cfe
: ð2:104Þ

The classical Drudemodelworkswith a damping constant that does not depend
upon frequency. This is a good approximation in most cases. However, there are
situations where the damping of the free carriers exhibits a characteristic
dependence on frequency, for example, in the case of scattering at charged
impurities. The extended Drude model [32] uses a rather simple but successful
choice of the frequency dependence of the damping term:

cfeðvÞ ¼ CL�CL�CH

p
tan�1 v�VC

CCv

� �
þ p

2

� 

: ð2:105Þ
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Figure 2.20 Dielectric function and refractive index of a pure Drude metal with plasma frequency
5� 1015 s�1 and damping constant 5� 1014 s�1.
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The function for the damping constant is chosen to change smoothly from a constant
CL at low frequencies to another constant level CH at high frequency. The transition
region is defined by the crossover frequencyVC – the center of the transition region –
and the crossover width parameter CCv.

Amorphous semiconductor and oxide materials often have optical functions that
dependupondeposition conditions anddonot have so sharp features like a harmonic
oscillator. Thefirst expression for the imaginary part of their dielectric function above
the band edge was suggested by Tauc et al. [33]. Jellison and Modine [34] derived a
model based on a combination of the Tauc band egde and the Lorentz oscillator
formulation. With this Tauc–Lorentz model, the imaginary part of the complex
dielectric function of amorphous materials with band gap (mainly semiconductor
materials) can be modeled as

e2TLðvÞ ¼ v2
P

v

vres � c � v�vgap
� �2

v2�v2
res

� �2 þv2c2
: ð2:106Þ

Here, the oscillator has a resonance frequencyvres and a damping constant c.vgap is
the frequency corresponding to the band gap energy Egap ¼ hvgap. The plasma
frequency is proportional to the momentum transition matrix element. Note that in
the original paper, the formula is expressed in terms of photon energies.

The real part e1,TL is obtained from the imaginary part by Kramers–Kronig relation
(see Section 2.7.2). The dielectric function of a Tauc–Lorentz oscillator with reso-
nance frequency 3.5� 1015 s�1, damping constant 3.5� 1014 s�1, oscillator strength
S¼ 1, and band gap 1.5 eV is depicted in Figure 2.21.
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Figure 2.21 Dielectric function of a Tauc–Lorentz oscillator with resonance frequency
3.5� 1015 s�1, damping constant 3.5� 1014 s�1, oscillator strength S¼ 1, and band gap 1.5 eV.
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Another model for the dielectric function of amorphous semiconductor materials
stems from O� Leary, Johnson, and Lim [35] and is well known as OJL model. In a
defect-free crystalline semiconductor, the absorption spectrum terminates abruptly
at the energy gap. In contrast, in an amorphous semiconductor the absorption
spectrum reaches into the gap region. The reason is that the electronic states in the
valence band and conduction band can be divided into localized states and states that
are randomly distributed through these amorphous semiconductors.

While the distribution of localized states follow a square root functional depen-
dence in the band region, the distribution of randomly distributed states shows an
exponential functional dependence in the tail region. Introducing breadths cC and cV
(both energies) for the conduction and valence band tails, O� Leary, Johnson, and Lim
modeled the density of states for the conduction and valence band of an amorphous
semiconductor. Figure 2.22 shows the density of states N(E) in this model.

O� Leary, Johnson, and Lim derived the optical absorption coefficient aOJL(E) with
E ¼ hv as

aOJLðEÞ ¼ D2ðEÞ
ffiffiffi
2

p

p2h3
m3=2

C

ffiffiffi
2

p

p2h3
m3=2

V JðEÞ: ð2:107Þ

Here,mC andmVare the effective mass of electrons in the conduction and valence
band. The optical transition matrix elementD2(E) is proportional to 1/E but its exact
functional dependence remains unknown and must be adjusted accordingly.

The normalized joint density of states (JDOS) J(E) in the OJL model differs for the
two cases E�Egap þ (cC þcV)/2 and E�Egap þ (cC þ cV)/2:

1) E�Egap þ (cC þ cV)/2

JðEÞ ¼ c2Cffiffiffiffiffi
2e

p � exp E�Egap

cC

� �
�Y cV

2cC

� �
þ c2Vffiffiffiffiffi

2e
p � exp E�Egap

cV

� �
�Y cC

2cV

� �

þ 1
2
ffiffi
e

p cCcVð Þ3=2
cV�cC

� exp
E�Egap�cC=2

cV

� �
�exp

E�Egap�cV=2

cC

� �� 

ð2:108Þ

with YðzÞ ¼ ffiffiffi
z

p � expð�zÞþ 0:5
ffiffiffi
p

p � erfc ffiffiffi
z

pð Þ and erfc¼ error function.

EV EC Energy E 

Conduction Band Valence Band

∝ exp(-(E-EV)/γV) ∝ exp((E-Ec)/γc)

Figure 2.22 Density of states N(E) in the model of O� Leary, Johnson, and Lim [35] for an
amorphous semiconductor.
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2) E�Egap þ (cC þcV)/2

JðEÞ ¼ c2Cffiffiffiffiffi
2e

p � exp E�Egap

cC

� �
�Y E�Egap

cC
� 1
2

� �

þ c2Vffiffiffiffiffi
2e

p � exp E�Egap

cV

� �
�Y E�Egap

cC
� 1
2

� �
þ

þ 1
2
ffiffi
e

p E�Egap
� �2 � L cC

2 E�Egap
� � ; cV

2 E�Egap
� � !

ð2:109Þ

with Lðx; yÞ ¼ Ð 1�y
x

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffi
1�z

p
dz.

The imaginary part of the complex dielectric function of amorphous semicon-
ductor materials with band gap Egap finally follows from the optical absorption
coefficient aOJL(E) as

e2;OJLðEÞ ¼ hc �aOJLðEÞ
E

: ð2:110Þ

The real part e1,OJL is obtained from the imaginary part by Kramers–Kronig
relations (see Section 2.7.2). An example for the dielectric function according to
theOJLmodel with band gap 2.0 eV, valence band damping 0.03 eV, conduction band
damping 0.03 eV, and decay parameter 0.2 eV is given in Figure 2.23.

A controversial model is the model of Forouhi and Bloomer [36] for amorphous
materials. It gives a relation for the absorption index k in dependence on the photon
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Figure 2.23 Dielectric function according to the OJL model: band gap 2.0 eV, valence band
damping 0.03 eV, conduction band damping 0.03 eV, and decay parameter 0.2 eV.
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energy E rather than on the imaginary part e2 of the dielectric function

kFBðEÞ ¼
XN
j¼1

Aj E�Egap
� �2

E2�BjEþCj
; ð2:111Þ

with Aj, Bj, and Cj being positive, nonzero constants characteristic of the medium,
so that 4Cj�B2

j > 0. Egap is the band gap energy. The corresponding refractive index
nFB is obtained by a Hilbert transform

nFBðEÞ ¼ nFBð1Þþ 1
p
ˆ
ð1

�1

kFBðVÞ�kFBðEÞ
V�E

dV; ð2:112Þ

where ˆ is the principal value of the integral, to

nFBðEÞ ¼ nFBð1Þþ
XN
j¼1

B0jEþC0j

E2�BjEþCj
: ð2:113Þ

B0j and C0j are constants that depend on Aj, Bj, Cj, and nFB(1) is a constant greater
than unity.

There are some problems with these formulas:

. For certain parameters A, B, and C, the absorption index may be less than zero,
kFB(E)< 0, for E<Egap. This is unphysical.

. kFB(E) becomes constant for E ! 1. In experiments, k(E) ! 0 for E ! 1
proportional to 1/E3.

. The time reversal symmetry requires that k(�E)¼�k(E), which is not satisfied.

. As kFB(1) 6¼ 0, Kramers–Kronig relations are not fulfilled.

At the end of this section, we give five selected examples for the dielectric function
of real materials and the corresponding complex refractive index following from
Maxwell�s equation (2.84), and discuss also the reflectance and transmittance of a
thick layer with d¼ 1000mm according to these dielectric functions.

We start with the semiconducting material silicon Si in Figure 2.24. The optical
constants are taken fromRef. [37]. The dielectric function is plotted in thewavelength
range 0.2–1.6mminFigure 2.24a. It is conditioned by two strongharmonic oscillators
in the wavelength range 0.2–0.4mm. The oscillator strengths are as high as the real
part e1 becomes negative and alters from �20 to þ 40 within a wavelength band of
only 100 nm width. At wavelengths longer than 400 nm, e1 exhibits normal disper-
sion and e2 rapidly decreases. As a consequence of the high value of e1, the refractive
index n of silicon is also high and amounts to values between 5 and 3.4 in the spectral
region above 400 nmwavelength as can be recognized from Figure 2.24b. Looking at
the reflectance and transmittance of a layer of d¼ 1000mm in Figure 2.24c, we can
recognize that the two harmonic oscillators lead to twomaxima in the reflectance. In
this spectral region, the reflectance spectrum is rather sensitive to changes caused by
thin transparent films, either formed as natural oxide or deposited by chemical or
physicalmethods. The absorption in silicon is as high as a layer of d¼ 1000 mm is not
transparent below 1000 nm wavelength, but decreases from short wavelengths to
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long wavelengths. At wavelengths longer than 1000 nm, this thick wafer slowly
becomes transparent. For discussion of the transmittance, it seems therefore
appropriate to study thinner wafers. The graph in Figure 2.24d shows the reflectance
and transmittance of a layer with only d¼ 10 mm. The differences compared to the
thick layer are obvious. The layer increasingly becomes transparent for wavelengths
longer than 600 nm. This also influences the reflectance as now light reflected at the
rear side of the layer contributes to the reflectance,making it higher than for the thick
layer. Note that for calculation ofR and Tof this thin layer, we assumed the layer to be
incoherent, that is, no thickness interference occurs.

The next example is (stochiometric) silicon nitride Si3N4 in the wavelength range
0.3–1.2 mm in Figure 2.25. The optical constants are taken from Ref. [38]. As the
imaginary part e2 of the dielectric function is zero and hence also k¼ 0 for all
wavelengths in this wavelength range, this material is transparent. The high
refractive index of n> 2 results from strong interband transitions in the UV spectral
range that can be described by harmonic oscillators (Brendel oscillators). Si3N4 is
often used as antireflective coating for silicon wafer in photovoltaics or as hard coat
for protection of surfaces. The high refractive index also causes a high reflectance of a
wafer of 1mm thickness of R> 20% (including rear side reflection).
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Figure 2.24 (a) Dielectric function of Si. (b)
Complex refractive index of Si. (c) Reflectance
and transmittance of a plane silicon wafer with
d¼ 1000mm. (d) Reflectance and transmittance

of a silicondiaphragmwith d¼ 10mm.This layer
was treated incoherently, for which no thickness
interference is observable. Optical constants
from Ref. [37].
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Tin-doped indium oxide (ITO, In2O3:SnO2) is of distinct interest because in this
material free electrons contribute to a certain electrical conductivity of the material,
but thin layers of ITO keep transparent at wavelengths in the visible spectral range.
Hence, ITOfilms are often used in applicationswhere an electrical current is used for
switching a process and where in addition the filmmust be transparent, for example,
inflat panel displays orOLEDs (organic light emitting diodes) or as TCO (transparent
conductive oxide) in thin-filmphotovoltaics.Owing to the increased prices of indium,
today alternatives to ITO have been developed with aluminum-doped zinc oxide
(AZO), fluorine-doped tin oxide (FTO), and antimony-doped tin oxide (ATO). The
highest optical transparency and the highest electrical conductivity, however, are still
obtained for ITO. The dielectric function of ITO in Figure 2.26a can be approximated
in the wavelength range from 0.2 to 1.6 mm by a sum of a harmonic oscillator in the
UV and a Drude susceptibility with plasma frequency vP lying in the near infrared
[39]. In between, in the visible spectral range, the contributions of both to the
imaginary part e2 of the dielectric constant are small, so that absorption in the visible
becomes negligible for thin films below 1mm thickness. On the other hand, the close
lying harmonic oscillator in the UV leads to a high refractive index in the visible
spectral range of approximately n	 1.8–1.9, as can be recognized from Figure 2.26b.
For a wafer of d¼ 1000mm the absorption in the layer is too large to show transmit-
tance. But for very thin films, as in the graph of Figure 2.26d, the transmittance is in
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Figure 2.25 (a) Dielectric function of Si3N4. (b) Complex refractive index of Si3N4. (c) Reflectance
and transmittance of a plane silicon nitride wafer with d¼ 1000mm.Optical constants from Ref. [38].
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the order of 70–80%. Note that for calculation ofR andTof this thin film, we assumed
the layer to be incoherent, that is, no thickness interference occurs.

Another selected example is the metal Al. An outstanding property of this metal is
that its dielectric function can be approximated rather well by a Drude dielectric
constant for free electrons, and it also exhibits an interband transition around 800 nm
wavelength. This can clearly be recognized from Figure 2.27a. The corresponding
complex refractive index in Figure 2.27b exhibits a maximum in the real part n and a
dip in the imaginary part k. Nevertheless, the low n and high k leads to an almost
constant high reflectance with R> 90% except a dip around 825 nm caused by the
interband transition. Optical constants were taken from Ref. [38].

Similar to aluminum, the dielectric function of gold (Au) in Figure 2.28 is
determined by a Drude term of the free electrons in gold, but in fact only at
wavelengths longer than approximately 650 nm. Optical constants were taken from
Ref. [38]. At lower wavelengths, the contribution of interband transitions from the 5d
electrons to the hybridized 6sp band has an enormous influence on the dielectric
function. They cause the reflectance of a gold mirror to be only about 40% at
wavelengths below 460 nm. Then, a steep increase follows in the range from 460 to
580 nm to values of R> 90%. In the following spectral range, the reflectance still
increases to values R> 97% in the considered wavelength range. Gold is often used
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Figure 2.26 (a) Dielectric function of ITO. (b)
Complex refractive index of ITO. (c) Reflectance
and transmittance of a plane ITO wafer with
d¼ 1000mm. (d) Reflectance and transmittance

of a plane ITO wafer with d¼ 0.1mm. This layer
was treated incoherently, for which no thickness
interference is observable. Optical constants
from Ref. [39].
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Figure 2.27 (a) Dielectric function of Al. (b) Complex refractive index of Al. (c) Reflectance of an
aluminum mirror. Optical constants from Ref. [38].
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Figure 2.28 (a) Dielectric function of Au. (b) Complex refractive index of Au. (c) Reflectance of a
gold mirror. Optical constants from Ref. [38].
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as a mirror material in the infrared region because its reflectance amounts always to
R> 97% in the infrared, approaching almost 100%. The steep increase at 520 nm is
caused by the interband transitions that reach far into the visible spectral region. The
strong difference in the reflectance at right and at left of this band edge leads to the
yellow color of a goldmirror. A similar behavior can also be found for titaniumnitride
TiN. TiN belongs to a larger group of compounds with extreme stability (hardness,
chemical inertness, high melting point, and high Young�s modulus) caused by the
intricate mixture of covalent bonds and ionic contributions. They result in a ceramic
behavior with respect to hardness and inertness, and a metallic behavior with high
electrical and thermal conductivity, and free-electron-like optical behavior. In these
transition metal nitrides, the d-electrons just below the Fermi surface contribute to
the free electron gas. Another colored metal is copper where also the dielectric
function (not shownhere) is determined by aDrude termof the free electrons and the
contribution of interband transitions from the 3d electrons to the hybridized 4sp
band. The band edge is shifted still further into the visible spectral range (580 nm) for
the color of a copper mirror is red.

2.7.2
Kramers–Kronig Analysis of Dielectric Functions

The real and imaginary part of the dielectric function are related to each other by the
Kramers–Kronig relations [40, 41], sometimes called dispersion integrals. These very
general relations hold for any frequency-dependent function that connects an output
to an input in a linear causal way.

Consider a complex valued function F(v) in the plane of complex frequencies
V¼v þ id. Let v0 be some real and positive value. Then, the function

GðvÞ ¼ FðvÞ�Fð1Þ
v�v0

ð2:114Þ

has to be integrated round a closed contour C in the upper complex half plane (see
Figure 2.29). The principal value of the integral along the real axis becomes

ˆ
ð1

�1
GðvÞdv ¼ ipðFðv0Þ�Fð1ÞÞ; ð2:115Þ

Contour C

ω0− ∞ ∞

Figure 2.29 Integration path along a closed contour C in the upper complex half plane.
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presuming that F(v) is regular in the upper half plane. The symbolˆ indicates the
principal value of the integral. Decomposition of (2.114) into real and imaginary part
yields a connection between the real part and the imaginary part of F(v).

Assuming limv!1 xðvÞ ¼ 0, one finds from this for the complex dielectric
function

e1ðvÞ ¼ 1þ 2
p
ˆ
ð1
0

Ve2ðVÞ
V2�v2

dV; ð2:116Þ

e2ðvÞ ¼ � 2
p
ˆ
ð1
0

e1ðVÞ�1

V2�v2
dV: ð2:117Þ

In principle, the measurement of e1(v) and e2(v) requires two independent
experiments. The Kramers–Kronig relations can replace one of them, making the
determination of e1(v) and e2(v) easier.Many published optical functions result from
such a Kramers–Kronig analysis of the reflectance or the absorption coefficient or
from combination of electron energy loss experiments with Kramers–Kronig rela-
tions. Problems usually arise from the fact that the integrals in (2.116) and (2.117) are
extended from 0 to1. Experimental values of e1(v) and e2(v) are, however, available
only for restricted regions. Therefore, the above integrals must be divided into parts,
for example, the real part

e1ðvÞ ¼ 1þ 2
p

ðV1

0

Ve2ðVÞ
V2�v2

dVþ 2
p
ˆ
ðV2

V1

Ve2ðVÞ
V2�v2

dVþ 2
p

ð1
V2

Ve2ðVÞ
V2�v2

dV:

ð2:118Þ
While the mid integral can be calculated exactly, the two other integrals must be

estimated using reasonable assumptions.

2.7.3
Empiric Formulas for the Refractive Index

Optical constants n þ ik or e1 þ ie2 can be modeled using the models presented in
Section 2.7.1. Beyond that several empiric formulas for the refractive index n(l) have
been developed. Especially glass manufacturers use them still today to parametrize
the precise measurements at distinct well-defined wavelengths. In the following, we
give an overview of the most common empiric formulas for the refractive index.

One of the most widely used formula is the Sellmeier formula [42]:

n2�1 ¼
XN
j¼1

Ajl
2

l2�Bj
: ð2:119Þ

This formula corresponds to the sum over j¼ 1, . . ., N undamped harmonic
oscillators with eigenfrequencies vj ¼ 2pc=

ffiffiffiffiffi
Bj

p
and oscillator strengths

vPj ¼ vj
ffiffiffiffiffi
Aj

p
.
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This formula is nowadays used by glass manufacturers like SCHOTT AG (since
1992) or OHARA Inc. as three-term Sellmeier formula to approximate the refractive
index of their glass. For example, the well-known crown glass N-BK7 from SCHOTT
AG has the following parameters: A1¼ 1.30961212, B1¼ 0.0060069867, A2

¼ 0.231792344, B2¼ 0.0200179141, A3¼ 1.01046945, and B3¼ 103.560653 for the
wavelength measured in microns. The most important modification of this formula
is to replace n2� 1 in (2.119) by n2� n0

2.
Another widely used formula is the Schott formula. It was originally developed by

Erich Schott in 1966 at SCHOTTAG. He was the son of the famous Otto Schott who
founded the �Schott & Associates Glass Technology Laboratory,� together with Ernst
Abbe andCarl Zeiss, the owner of an optical workshop, and his sonRoderichZeiss in
1884. This formulawas used by SCHOTTAGup to 1992 and then replaced by a three-
term Sellmeier formula. The general form is

n2 ¼
XN
j¼0

Ajl
2j þ

XM
k¼1

Bkl
�2k: ð2:120Þ

The original Schott formula is obtained for N¼ 1 andM¼ 4. This formula is also
known as Laurent formula as it is a Laurent series in the wavelength l. Big glass
manufacturers like CORNING Inc., HOYA Inc., HIKARI Inc., or SUMITA Inc. use
this formula for their glass. For example, the glass A63-65 (CORNING Inc.) has the
parameters A0¼ 2.12165, A1¼�0.00950349, B1¼ 0.008318686, B2¼ 0.0003339573,
B3¼�2.364166� 10�5, and B4¼ 9.972179� 10�7 for the wavelength measured in
microns.

The third important empiric formula often used for transparent plastics is the
Cauchy formula developed by the famous mathematician A. L. Cauchy [43, 44]:

n ¼ An þ Bn

l2
þ Cn

l4
k ¼ Ak þ Bk

l2
þ Ck

l4
: ð2:121Þ

The advantage of the Cauchy formula compared to the Sellmeier and Schott
formula is that it also considers the imaginary partkof the complex refractive index. It
is therefore suited to also fit the optical constants of absorbing materials. It is often
used for photoresists that are absorbing in the UV and at wavelengths in the violet/
blue visible spectral region.

In close relation to the Cauchy formula stands an extension of Cauchy�s formula,
the exponential Cauchy formula:

n ¼ An þ Bn

l2
þ Cn

l4
k ¼ Ak exp Bk

1239:856115
l

� �
�Ck

� �
: ð2:122Þ

The difference to the Cauchy formula is the use of the Urbach equation [45] to
model the absorption indexkby an exponential function. The values of parametersBk

and Ck are always such that k exponentially decreases.
In fact, many optical constants can be approximated by these four empiric

formulas. Besides them, many other more or less known empiric formulas and
variations of the above formulas exist that are applied to transparent materials. We
have all of them summarized in Table 2.2 together with Sellmeier, Schott, Cauchy,
and exponential Cauchy.
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Table 2.2 Empiric formulas for the complex refractive index.

Name Equation Comments

Sellmeier [42] n2�1 ¼PN
j¼1

Ajl
2

l2�Bj
The original Sellmeier formula is obtained for N¼ 3

n2�n20 ¼
PN
j¼1

Ajl
2

l2�Bj
Modification: replace the 1 by a constant refractive index n0. The most often used with N¼ 2

Schott n2 ¼PN
j¼0

Ajl
2j þ PM

k¼1
Bkl

�2k The original Schott formula is obtained for N¼ 1 and M¼ 4. Formulas with N up to 4 and M
up to 5 can be found

Cauchy [43, 43] n ¼ An þ Bn

l2
þ Cn

l4
; k ¼ Ak þ Bk

l2
þ Ck

l4
Suitable for absorbing materials, as it considers also the imaginary part k of the complex
refractive index

Exponential Cauchy n ¼ An þ Bn

l2
þ Cn

l4
Suitable for absorbing materials, as it considers also the imaginary part k of the complex
refractive index

k ¼ Ak exp Bk
1:239841875

l

� ��Ck

� �
Bk and Ck must be chosen such that k always decreases exponentially

Conrady [46, 47] n ¼ Aþ B
l þ C

l3:5

n ¼ Aþ B
l2
þ C

l3:5
The first of these two Conrady formulas is the most commonly used

Kingslake [48] n2 ¼ Aþ PN
j¼1

Bj

l2�Cj
This formula is known for N¼ 2 as Kettler–Drude or Helmholtz–Drude formula

Herzberger [49, 50] n ¼ Aþ PN
j¼1

Bjl
2j þ PM

k¼1

Ck

l2�0:028ð Þk The Herzberger formula is intended for use in the infrared. The most commonly used formula
are for N¼ 2 or 3 and M¼ 2. Another modification is obtained by replacing 0.028 with 0.035 or
a variable value

Hartmann [51] n ¼ Aþ B
l�Cð ÞN There are three modifications: N¼ 1, N¼ 2, and N¼ 1.2

Modified Sellmeier [52]

n2 ¼ Aþ
XN
j¼1

Bjl
2j þ

XM
k¼1

Ckl
�2k þ

þ
XP
p¼1

Dpl
2

l2�Ep
þ
XQ
q¼1

Fp
l2�Gp

Various combinations of Sellmeier, Schott, and Herzberger type formulas are available,
depending on N, M, P, and Q

n2�n20 ¼ A1l
2

l2�B1
þ A2

l2�B2
Special case: A¼ n0

2, N¼M¼ 0, P¼Q¼ 1

Handbook of Optics [52] n2 ¼ Aþ B
l2�C

�Dl2 These two formulas were introduced in the Handbook of Optics. They are obtained from
the modified Sellmeier, for N¼ 1, M¼P¼ 0, Q¼ 1 and for N¼ 1, M¼Q¼ 0, P¼ 1.

n2 ¼ Aþ Bl2

l2�C
�Dl2

Wavelength l in microns.
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2.7.4
EMA Models

Consider a composite of at least two nonmixable components: well-separated
inclusions with dielectric function e statistically distributed in a nonabsorbing
homogeneous matrix with dielectric function eM as illustrated on the left side of
Figure 2.30. Its optical response is determined by both the inclusions and the matrix
material and is difficult to predict in general. However, if it is possible to replace the
inhomogeneous composite by a homogeneous material of one common dielectric
function eeff as illustrated at the right side of Figure 2.30, the reflectance, transmit-
tance, and absorbance of this medium can be calculated as linear response. For that
purpose, a model for the dielectric function eeff of this effective medium must be
established in dependence on the inclusion properties and the surrounding matrix
and the concentration of inclusions in the composite.

The existing effective medium models essentially differ in the way an average is
calculated from the dielectric functions e and eM of the embedded inclusions and the
matrix, respectively.

The first effective medium concept goes back to Newton (see [53]). It has been
modified by Beer [54], Gladstone and Dale [55], Landau and Lifschitz [56], and
Looyenga [57]. It is based on simply averaging certain powers of the dielectric
functions of the two mixed components, weighted with the filling factor f:

eeff ¼ f eþð1�f ÞeM Newton ð2:123Þ

e
1=2
eff ¼ f e1=2 þð1�f Þe1=2M Beer; Gladstone ð2:124Þ

e
1=3
eff ¼ f e1=3 þð1�f Þe1=3M Landau-Lifschitz; Looyenga ð2:125Þ

The topology of the system is here described only by the average volume fraction of
the inclusions, often also called filling factor f:

f ¼
P

k Nk �Vinclusion; k

V
: ð2:126Þ

εεM

ε

εeff

effective medium composite

Figure 2.30 Scheme of the effective medium: the realistic composite is replaced by a
homogeneous effective medium.
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This relation, however, is true only for low concentrations where the inclusions are
well separated.
By applying upper and lower bounds, Lichtenecker [53] obtained the logarithmic
mixture rule.

logðeeff Þ ¼ f � logðeÞþ ð1�f Þ � logðeMÞ: ð2:127Þ
The simplest approach to an effective medium that explicitely considers also the
shape of the inclusions stemmed from J.C.Maxwell Garnett [58] in 1904 for spherical
inclusions

eeff�eM
eeff þ 2eM

¼ f
e�eM
eþ 2eM

: ð2:128Þ

His approach is well known as Maxwell-Garnett theory, although Maxwell is the
third Christian name of James Clerk Maxwell Garnett.

This formula was reformulated to obtain two-dimensional effective medium
approaches [59]. Replace the 2 in the denominators by (D� 1). D¼ 3 is the above
result for three-dimensional inclusions of spherical shape. D¼ 2 yields the two-
dimensional Maxwell-Garnett formula.

In the Bruggeman ansatz [60], the effective dielectric constant is given from

f � e�eeff
eþ 2eeff

þ 1�fð Þ � eM�eeff
eM þ 2eeff

¼ 0 ð2:129Þ

and in its general form (for more than two media) fromX
n

fn � en�eeff
en þ 2eeff

¼ 0: ð2:130Þ

Again, for the two-dimensional solution replace the 2 in the denominator of each
term by (D� 1) with D¼ 2 or 3.

Particularly for thin films, Aspnes et al. [61, 62] discussed the connection between
the microstructure of a heterogeneous thin film and its macroscopic dielectric
response e and developed effective medium theories for two- and three-dimensional
isotropic films. The solution is generalized to obtain the Maxwell-Garnett and
Bruggeman expressions.

EMAmodels are used in various applications. Here, we point to three applications
where EMA models are successfully used.

1) Calculation of the refractive index of dielectric particle–dielectric matrix
composites. The similarity of effective medium models to the molar fraction
used to calculate the refractive index of mixed glasses makes them attractive for
calculation of the refractive index of dielectric nanoparticle–dielectric matrix
composites. In Table 2.3, we give results obtained for Al2O3, TiO2, ZrO2, and
SiO2 nanoparticles embedded in the polymer PMMA using three-dimensional
Maxwell-Garnett formula. The idea is to increase or to lower the refractive index of
PMMA by oxide nanoparticle inclusions.
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Actually, the inclusion of the highly refracting Al2O3, TiO2, and ZrO2 nano-
particles results in an increased refractive index. Vice versa, the inclusion of SiO2

nanoparticles with a refractive index lower than that of PMMA also lowers the
refractive index of the composite. The effects of the inclusions depend on the
volume fraction f.
Maxwell-Garnett seems to be helpful here to predict the refractive index of

dielectric–dielectric composites. Nevertheless, we want to point to the fact that the
nanoparticle inclusions still scatter the light. A well-suited measure for the
influence of the scattering is the haze. If Al2O3, TiO2, or ZrO2 nanoparticles
with sizes of 10 nm or larger are suspended in a PMMAplate of 1mm thickness,
the mean haze becomes intolerable for filling factors f� 0.01, according to the
ASTM standard D 1003-97 Test Method for Haze and Luminous Transmittance of
Transparent Plastics.

2) Rough surfaces. Roughness of a surface cannot be considered in detail, but only in
average. The reason is the stochastic lateral and vertical distribution of the parts of
the surface being higher or lower than a constant average level. In surface
topography metrology, several roughness parameters have been established that
allow characterization of the roughness of a surface. In optical thickness mea-
surements, however, most of these parameters are less useful. Instead, the rough
surface is often treated as a homogeneous thin layer with effective refractive index
(see Figure 2.31). For the calculation of the effective refractive index EMAmodels

Table 2.3 Refractive indices of PMMA with several oxide nanoparticle inclusions.

n @ 486nm n @ 587nm n @ 656nm

PMMA 1.4977 1.4918 1.4895
Al2O3 in PMMA f = 0.01 1.5005 1.4945 1.4919

f = 0.10 1.5246 1.5185 1.5159
TiO2 in PMMA f = 0.01 1.5094 1.5026 1.4998

f = 0.10 1.6152 1.6015 1.5958
ZrO2 in PMMA f = 0.01 1.5042 1.4982 1.4956

f = 0.10 1.5629 1.5564 1.5531
SiO2 in PMMA f = 0.01 1.4974 1.4915 1.4889

f = 0.10 1.4943 1.4884 1.4859

EMA

Figure 2.31 Replacement of a filmwith rough surface by a filmplus thin layerwith optical constants
according to an EMA.
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are used with the dielectric functions of the surface material and the material in
front of the surface. This method is often used in ellipsometry.

3) Regular pattern of vias and trenches. A special case where EMA models are
successfully used is the measurement of critical dimensions (depth, width on top
and on bottom, and taper angle) of vias and trenches in silicon wafers. For
determination of the critical dimensions, infrared reflectometry or ellipsometry
(model-based infrared reflectometry¼MBIR) is used where the region of the
vias or trenches are modeled by one or more homogeneous thin layers with
effective refractive index. For calculation of the effective refractive index, two-
dimensional EMAmodels are used.Wewill discuss this application inmore detail
in Chapter 7.

At the end of this section, wewant to point to general problems arising with EMAs.
The most limiting factor of all effective medium approximations is the assumption
that scattering by the inclusions can be neglected, for what the inclusions must be
very small compared to the wavelength of light. Hence, their application to compo-
sites with transparent purely scattering inclusions is questionable. But for strongly
absorbing inclusions also, the question may arise whether they can be applied
because absorbing inclusions usually scatter the lightmore strongly than transparent
inclusions of the same size. For illustration, we compare exemplarily in Table 2.4 the
scattering cross section of small spherical particles with fixed size 2Rmuch smaller
than thewavelength l¼ 514 nmof the incident light. Compared to a silica sphere, the
silver sphere of the same size scatters the light about 25 times stronger. This is the
result for a silver sphere off surface plasmon resonance. In resonance, the scattering
cross section of the silver sphere is additionally increased by a factor 3–4. As a
consequence of this stronger scattering, the failure of effectivemediummodelsmust
become obvious earlier for small metal inclusions than for dielectric inclusions
including voids.

Another problem arise with the spectral behavior of the resulting effective
dielectric function for high filling factors f. Again, we consider the case of small
spherical inclusions.

As long as the filling factor f is less than 0.001, the results for eeff of the
most prominent effective medium approximations from Maxwell-Garnett and
Bruggeman and the mixing rule from Looyenga do not differ. This drastically

Table 2.4 Values for the dielectric constant e and the scattering cross section of very small spherical
inclusions at the wavelength l¼ 514 nm.

Material Dielectric constant e ssca / e�eM
eþ 2eM

��� ���2
Ag �10.3 þ i�0.205 1.853
GaAs 17.66 þ i�3.207 0.725
Si 17.89 þ i�0.525 0.72
Si3N4 4.15 þ i�0 0.263
SiO2 2.13 þ i�0 0.075
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changes for higher volume fractions. Figure 2.32 shows a comparison of these three
models for spherical silver inclusions (f¼ 0.1) in a transparentmatrix with a constant
refractive index nM¼ 1.5 (approximately valid for various crown glasses).

For the Maxwell-Garnett model, the refractive index neff of this composite exhibits
features that indicate the presence of a harmonic oscillator with a resonance
wavelength of l¼ 435 nm that is close to the wavelength position of the surface
plasmon resonance (SPR) of small Ag-spheres with 2R¼ 2 nm in a medium with
nM¼ 1.5 (lSPR¼ 421 nm). The Bruggeman neff appears to be composed of a series of
close lying harmonic oscillators with different oscillator strengths. However, the
curvatures of neff and keff are unexpectedly strange and cannot really be explained by a
sum over harmonic oscillators. Completely unexpected is the behavior of the
Looyenga neff. While the real part is almost constant, the imaginary part increases
continuously with increasing wavelength. For amore detailed discussion, we refer to
Ref. [25].
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Figure 2.32 Comparison of the refractive index neff þ ikeff of Maxwell-Garnett, Bruggeman, and
Looyenga for spherical silver inclusions (f¼ 0.1) in a transparent matrix with a constant refractive
index nM¼ 1.5.
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3
Spectral Reflectance and Transmittance of a Layer Stack

After introducing the basics of electromagnetic wave propagation in Chapter 2, we
turnnow to themain topics of this book, the determination of the thickness of a single
layer or a layer in a layer stack from measurement of the spectral reflectance or
transmittance. This is done in three steps. The first step in this chapter consists in the
modeling of the spectral reflectance and transmittance of a layer stack. For intro-
duction, we consider in the first section the reflectance and transmittance of a single
layer and discuss the influence of a substrate, the absorption of light in the layer, and
the partial incoherence caused by thick substrates and roughness of interfaces. Then,
we present in Sections 3.2 and 3.3 two models for the wave propagation in a
multilayer stack, the propagating wave model and the r-t-w model. For a review on
the theory of the propagation of optical waves in layered media and for learning how
to design and to analyze optical devices based onmultilayer systems, we refer to Refs
[63–65].

The next two steps then follow with the discussion of the commonly used
measurement equipment in Chapter 4 and the evaluation methods in Chapter 5.

3.1
Reflectance and Transmittance of a Single Layer

3.1.1
Coherent Superposition of Reflected Light

Consider a single layer of thickness d and complex refractive index n1 þ ik1 on a
substrate with complex refractive index n2 þ ik2. A parallel beam of incident light
hits the top surface S1 between the layer and the front medium with real refractive
index n0 under an angleawith respect to the normal to the surface. This is illustrated
in Figure 3.1. The actual magnitude and phase of the incident wave at the boundary
between the frontmedium0 and the layermedium1 are not of interest and can be set
to the value A0. In the following, we first consider the reflectance of the layer on the
substrate in detail. Later in Section 3.1.5, we will also consider the transmittance and

A Practical Guide to Optical Metrology for Thin Films, First Edition. Michael Quinten.
� 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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show that it is also possible to get the information on the layer thickness bymeasuring
the transmittance.

A part of the incident wave gets reflected according to reflection law, B1¼ r01A0,
with r01 being the Fresnel reflection coefficient at surface S1 when going from
medium 0 (front medium) to medium 1 (layer). The remainder t01A0 gets refracted
into the layer according to Snell�s law. It propagates through the layer and hits the
surface S2 between the layer and the substrate under an angle b with respect to the
normal to the surface. Neglecting for the moment the absorption along the path
through the layer (i.e., k1¼ 0), the phase factor of the wave has changed
to exp ið2p=lÞðn1ðlÞ � d=cosðbÞÞð Þ, so that we have at S2:

t01A0 exp ið2p=lÞðn1ðlÞ � d=cosðbÞÞð Þ:
Again, a part gets reflected, but with the Fresnel reflection coefficient r12 of the

interface between layer and substrate (medium 2). This part reaches the surface S1
after traveling through the layer. On the way from S2 to S1, again the phase factor
changes by the factor exp ið2p=lÞðn1ðlÞ � d=cosðbÞÞð Þ. At S1 a part gets reflected with
r10 and transmitted with t10 into the front medium. Note that r10 is simply r10¼�r01,
but t10 differs from t01 because of the traveling direction (either front medium–layer
or layer–front medium). The magnitude and phase of the second refracted term is

B2 ¼ t10r12t01A0exp i
4p
l

n1ðlÞ � d
cosðbÞ

� �
:

If we continue our consideration of the reflected beam, we find that themagnitude
and phase of the beams refracted into the front medium can be described by
Bmþ 1 ¼ t10r12t01 r10r12ð Þðm�1ÞA0exp ið4p=lÞðn1ðlÞ �m � d=cosðbÞÞð Þ with m being a
positive integer number m� 1, describing the order of the reflected beam.

In fact, all beams that enter the substrate and get reflected at the rear side of the
substrate also contribute to the total amount of reflected light, but they can be
neglected here.

B1    B2     B3       B4

n0

n1+iκ1

n2+iκ2

α

d

Figure 3.1 Reflection of a single layer on a substrate.
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We can now deduce the following statements:

1) The way through the layer depends on the angle of incidence because the path
through the layer is d/cos(b). Only fora¼ 0� (normal incidence), the path length is
the layer thickness d. For the experimental determination of dwith reflectometry, it
is therefore recommended to use normal incidence or small apertures with up to
maximum a¼ 5�. Then, the polarization dependence of the reflection and trans-
mission can also be neglected. Using ellipsometry this angular dependence must
explicitely be considered since ellipsometry works at larger angles of incidence.

2) The magnitudes of the interfering beams B1 and Bmþ 1, m� 1 are always
different. Even in the case of a free-standing layer (unsupported, r12¼ r01), the
magnitude of Bmþ 1 differs from the magnitude of B1 by at least the factor t10t01.

3) It is possible to have interferences from B1 with Bmþ 1 with m� 2. To have a
significant signal from these higher orders, the factor (r10�r12)(m�1) must be large
enough.

In the following, we first consider the two beam interference of B1 with B2 for the
case of incident angle a¼ 0�. The magnitude of the electric field is the result of the
linear superposition of B1 and B2. To obtain a measure for the reflectance, we must
calculate |B|2¼B�B�, where the asterisk denotes the conjugated complex number,
and must normalize it to the incident intensity, which is |A0|

2. The result is

R l; dð Þ ¼ R01ðlÞþR12ðlÞ � 1�R2
01ðlÞ

� �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R01ðlÞ �R12ðlÞ � 1�R2

01ðlÞ
� �q

� cos 4p
l
n1ðlÞ � dþWðlÞ

� �
;

ð3:1Þ
where we used that r10¼�r01 and that t10t01¼ 1� r201. The phase shift W(l) is here
defined as

WðlÞ ¼ tan�1 Im r�01r12 1�r201
� �� �

Re r�01r12 1�r201
� �� �

 !
; ð3:2Þ

with Re meaning the real part and Im meaning the imaginary part.
This result holds true for all wavelengths l. Thatmeans if we vary the wavelength l

we obtain an oscillating behavior in dependence on l due to the oscillating cosine
term. However, it depends on the ratio (film thickness)/wavelength whether the
reflectance exhibits oscillations or not. In the limiting case of very thin layers, only a
part of one oscillation or even less can be recognized in the reflectance spectrum. The
minimum layer thickness depends on the spectral resolution of the used spectrom-
eter and the exact knowledge on the refractive index of the layer. We will discuss this
later in Chapter 5. In the limiting case of a large thickness d, the oscillations become
very rapid. Then, again the spectral resolution of the used spectrometer determines
themaximumdetectable layer thickness. Thicker layerswill result in a nonoscillating
reflectance spectrum.

As we assumed for the moment a nonabsorbing layer, the phase shiftW is zero as
long as the substrate is also nonabsorbing. For an absorbing substrate, only the value
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of the complex reflectivity r12 becomes relevant. In Section 3.1.3, we will discuss the
magnitude of W for partially absorbing and strongly absorbing substrates.

Next, we consider the two beam interference of beam B1 with a beam Bmþ 1, with
m� 2.Whenwe calculate the superposition ofB1 withBmþ 1 we find that the phase of
the oscillating term ismð4p=lÞn1ðlÞ � dþWmðlÞ and themagnitude of the oscillating
termdecreaseswith

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R10R12

p� �m�1
. For example, we consider an unsupported silicon

wafer of several 10 mm thickness at wavelengths in the near-infrared region around
1300nmwavelength. The siliconwafer is almost transparent in this wavelength range
and the reflectivity R12¼R01 amounts to R01¼ 0.31. If we set the magnitude of the
first-order interference ofB1 withB2 to 1, the second-order interferenceB1 þ B3 is on
the order of 0.31, the third-order interference is on the order of (0.31)2¼ 0.0961, and
the fourth-order interference is still on the order of (0.31)3¼ 0.0298. This means for
suchawafer, up to the fourth-order interference shouldbe recognizable. Indeed,when
calculating the reflectance of such a wafer and applying a fast Fourier transform for
thickness evaluation, these interferences appear in the power spectrum as equidistant
peaks with decreasingmagnitude as can be seen in Figure 3.2 (for explanation of this
method and the power spectrumwe referhere toChapter 5.1). Also, in experiments on
highly polished thin silicon diaphragms, they can actually be observed. Inmost cases,
however, the remaining low absorption in the silicon material and the surface
roughness strongly reduce the magnitudes of the higher order interferences. We
will discuss these two effects in the following two sections.

Now, we extend our consideration on themultiple beam interference of all reflected
beams for normal incidence (a¼ 0). That means that we have to build the sum

B ¼ A0 r01 þ t10r12t01 exp i
4p
l
n1ðlÞ � d

� �
�
X¥
m¼0

r10r12 exp i
4p
l
n1ðlÞ � d

� �� �m
 !

: ð3:3Þ
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Figure 3.2 Calculated power spectrum of a silicon wafer with d¼ 50 mm, showing interferences up
to the fourth order.
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As each term z in the infinite sum in (3.3) fulfills |z|< 1, the infinite sum tends to
1/(1� z). If we additionally use again that r10¼�r01 and that t10t01¼ 1� r201, we
obtain for the magnitude B:

B ¼ A0
r01 þ r12 exp ið4p=lÞn1ðlÞ � dð Þ
1þ r01r12 exp ið4p=lÞn1ðlÞ � dð Þ : ð3:4Þ

The reflectance R(l, d) is finally obtained from |B|2/|A0|
2 to

R l; dð Þ ¼ R01ðlÞþR12ðlÞþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R01ðlÞR12ðlÞ

p � cos ð4p=lÞn1ðlÞ � dþWðlÞð Þ
1þR01ðlÞR12ðlÞþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R01ðlÞR12ðlÞ

p � cos ð4p=lÞn1ðlÞ � dþWðlÞð Þ :

ð3:5Þ

The phase shift W(l) is now

WðlÞ ¼ tan�1 Im r�01r12
� �

Re r�01r12
� �

 !
: ð3:6Þ

Obviously, the multiple beam interference does not affect the periodicity of the
oscillating term. However, it renders the interpretation of the reflectance more
difficult than for the two beam interferences in (3.1) since the oscillating term now
also enters the denominator. The single film reflectance is determined by the
reflectivities at the interface film – front medium R01 and at the interface film –

substrate R12. A simplification is obtained for a free-standing layer that is not
supported by a substrate. Then, R12¼R01.

To illustrate how the reflectance develops in dependence on thewavelength and the
thickness, we consider the following two examples:

1) Unsupported layer, refractive index of fused silica (SiO2) [38], thickness variable
d¼ 50, 100, 200, 400, and 800 nm, surroundingmedium (front and rearmedium)
with n0¼ 1, spectral range from 200 to 1500 nm,

2) Unsupported layer, refractive index of silicon nitride (Si3N4) [38], thickness
variable d¼ 50, 100, 200, 400, and 800 nm, surrounding medium with n0¼ 1,
spectral range from 200 to 1500 nm.

These examples are of more academic interest since such thin films cannot be
prepared without a supporting substrate. However, to exclude the influence of the
reflection at the interface film–substrate, we consider here the case of unsupported
thinfilms. The phase shiftW isW¼ 0 because thematerials are nonabsorbing andwe
consider unsupported layers.

The calculated spectra of thin films of fused silica are summarized in Figure 3.3.
All spectra exhibit oscillations according to the oscillating term either in (3.5) or
in (3.1). The number of maxima and minima in the spectrum depends on the
thickness of the film and increase with increasing thickness d. For the smallest
thickness d¼ 50 nm, there cannot be recognized a full oscillation. Absorption does
not play a role because SiO2 is transparent in the considered wavelength range.
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The spectra of the second example, thinfilms of silicon nitride, Si3N4, are shown in
Figure 3.4. The spectra are rather similar to that of fused silica. However, due to the
higher refractive index of Si3N4 compared to SiO2, the oscillations start earlier at

Figure 3.3 Calculated spectra of thin unsupported films of fused silica. The thickness of the film
amounts to d¼ 50, 100, 200, 400, and 800 nm. The spectra are shifted along the ordinate for better
presentation by adding a multiple of 0.2. Optical constants of SiO2 from Ref. [38].
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Figure 3.4 Calculated spectra of thin unsupported films of silicon nitride. The thickness of the film
amounts to d¼ 50, 100, 200, 400, and 800 nm. The spectra are shifted along the ordinate for better
presentation by adding a multiple of 0.45. Optical constants of Si3N4 from Ref. [38].
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smallerfilm thickness andmoremaxima andminima can be observed for the thicker
films. The reason is that for the phase change in the oscillating cosine term in (3.5),
the ratio (optical path)/wavelength¼ (n1d)/l is important. Thehigher refractive index
of Si3N4 then causes the same oscillation as for SiO2 butwith smallerfilm thickness d.
Exemplaric refractive indices for fused silica and silicon nitride are given in Table 3.1.
Absorption plays a role only at wavelengths below 300 nm; for longer wavelengths,
Si3N4 is nonabsorbing in the considered wavelength range. The influence of the
absorption can be best recognized for the film thicknesses d¼ 400 and d¼ 800 nm at
wavelengths below 250 nm.

3.1.2
Influence of Absorption in the Layer

If the refractive index of the layer is a complex number n1 þ ik1, the magnitudes of
the electric and magnetic field of the electromagnetic wave that propagates through
the layer decrease. For calculation of the decrease, we consider the phase term
exp(i k1�r) in the layer medium with

k1 ¼ 2p
l

n1 þ ik1ð Þ � sinðbÞ
cosðbÞ

� �
ð3:7Þ

and r¼ (x, z)T. As we already know from Snell�s law, it is

n1 þ ik1ð ÞsinðbÞ ¼ n0 sinðaÞ ð3:8Þ
and hence, is real valued. On the other hand, the cosine term is a complex number.
From this it follows

exp i k1rð Þ ¼ exp i
2p
l

n0 sinðaÞ � xþ n1 ReðcosðbÞÞ�k1 ImðcosðbÞÞð Þ � zð Þ
� �

�exp � 2p
l

k1 ReðcosðbÞÞþ n1 ImðcosðbÞÞð Þ � z
� �

:

ð3:9Þ
We recognize that in general (fora 6¼ 0�) the wave in the layer oscillates in x- and z-

direction and decreases exponentially only in z-direction. Then, the planes of
constant phase are different from the planes of constant amplitude. A simpler

Table 3.1 Exemplaric refractive indices of SiO2 and Si3N4 at different wavelengths (from Ref. [38]).

Wavelength (nm) Refractive index SiO2 Refractive index Si3N4

300 1.4878 2.1552
500 1.4624 2.0404
700 1.4553 2.0166
900 1.4518 2.0062
1100 1.4492 2.0014
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relation is obtained for a¼ 0�, for which also b¼ 0�, and hence the exponential
decrease is exp � 2p

l k1z
� �

.
Remember that the intensity of the wave at position (x, z) is proportional to the

square of the magnitude at position (x, z). The difference to the intensity at position
(x, z) for k1¼ 0 is lost in the medium by exciting vibrations of molecules or lattice
vibrations (phonons). This process is called absorption.

The decrease in the magnitude by absorption hence influences the thickness
determination by introducing a phase factor exp �ð4p=lÞk1 � dð Þ (for normal inci-
dence). Then, the reflectance of the single film on a substrate in (3.5) changes to

R l; dð Þ

¼ R01ðlÞþR12ðlÞ � exp �ð8p=lÞk1 � dð Þþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R01ðlÞR12ðlÞ

p � exp �ð4p=lÞk1 � dð Þ � cos ð4p=lÞn1ðlÞ � dþWðlÞð Þ
1þR01ðlÞR12ðlÞ � exp �ð8p=lÞk1 � dð Þþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R01ðlÞR12ðlÞ

p � exp �ð4p=lÞk1 � dð Þ � cos ð4p=lÞn1ðlÞ � dþWðlÞð Þ :

ð3:10Þ
The important result is that the oscillating term is strongly decreased by the

absorption. This may cause problems for the detection of the oscillating term if its
amplitude becomes smaller than the signal-to-noise ratio (SNR) of the used detector.
Moreover, the phase shift W(l) is nonzero and different for different wavelengths.

In Table 3.2, we give the maximum thickness dmax for a signal-to-noise ratio of
SNR¼ 1000 : 1 for differentmaterials at variouswavelengths. It is calculated from the
condition that the magnitude of the oscillating term is on the size of 1/SNR:

dmax ¼ l

4pk1ðlÞ � log 4 � SNR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R01ðlÞ �R12ðlÞ

p� �
: ð3:11Þ

Here, the cosine term is approximated by the factor 2 (the difference between
minimumandmaximumvalue of the cosine) andweused the approximation that the

Table 3.2 Maximum thickness dmax of an unsupported absorbing layer of different materials for a
signal-to-noise ratio SNR¼ 1000.

l (nm) Silicon (Si) Germanium (Ge) ITO Aluminum

k dmax (mm) k dmax (mm) k dmax (mm) k dmax (mm)

350 2.9911 0.072 2.704 0.078 0.04496 3.90 4.239 0.054
400 0.3649 0.66 2.215 0.108 0.03774 5.21 4.861 0.054
500 0.06978 4.19 2.399 0.126 0.03287 7.26 6.08 0.054
600 0.02586 13.4 1.3667 0.267 0.03479 8.02 7.26 0.054
700 0.009429 42.6 0.467 0.894 0.04181 7.56 8.31 0.055
800 0.003843 118.3 0.3209 1.47 0.05417 6.43 8.45 0.062
900 0.001847 277.7 0.1851 2.86 0.07309 5.10 8.3 0.070
1100 0.00060759 1028 0.1088 5.93 0.14202 2.64 10.875 0.066
1300 0.00041611 1770 0.07812 9.73 0.30788 1.58 13.147 0.065
1500 0.00035245 2408 0.02568 34.1 0.73963 1.11 15.4 0.064
1700 0.00030487 3153 0.002013 492.3 1.238 0.827 17.567 0.064

Optical constants of the materials from Refs [37–39].
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denominator of (3.10) is almost 1 because the other terms in the denominator are
drastically reduced by the absorption.

For calculation of the values in the table, we assumed an unsupported layer for
what R12¼R01. The optical constants of the materials were taken from Refs [37–39].

Approximately, the maximum thickness is given by

dmax � ð0:4�0:75Þ l

k1ðlÞ ð3:12Þ

for almost all materials and for SNR between 1000 and 5000.
The example of aluminum demonstrates that for a metal the maximum thickness

is less than 100 nm. This is true for all metals. Silicon and germanium become the
more transparent the longer the wavelength becomes, but the onset of the trans-
parency is shifted to longer wavelengths for germanium because of the higher
intrinsic absorption. For optical thickness determination of silicon wafers with
typical dimensions between 100 and 800mm, it seems appropriate to use the
near-infrared spectral region above 1100 nm wavelength. The tin-doped indium
oxide, ITO, exhibits a window of small absorption in the visible spectral range
between 400 and 900 nm, but the absorption is still high as only films of maximum
thickness dmax� 5–8mm can be measured optically.

In another series of calculations on dmax, we assumed the layers supported by a
glass of N-BK7 with optical constants from Ref. [66]. This glass is transparent (k¼ 0)
for all considered wavelengths between 350 and 1700 nm. The effect of the glass
substrate on dmax is a reduction of dmax by 5–8%of the values given inTable 3.2, except
for aluminum, where the reduction even amounts to 25–30% of the given values.

Nonabsorbing materials with k¼ 0 are not listed in Table 3.2, but it follows
from (3.11) that for these materials the maximum thickness is unlimited. In fact,
there does not exist any real material with k¼ 0, but with very low values for k. For
example, the glasses used in the telecommunication for long-distance transmission
(mostly SiO2–GeO2 mixtures) exhibit a very low signal attenuation by absorption in
the frequency bands of telecommunication, so that only after approximately
400–500 km distance the signal must be amplified again. Another example is water
in the visible spectral region that is clear and transparent, ranging from 10 to 100m.
On the other hand, the absorption is strong enough to make the deep sea dark
(beyond the light scattering by small dissolved particles).

As an example of the influence of the absorption on the reflectance spectrum of a
thinfilm,we consider thin unsupported ITOfilms of thickness d¼ 0.5, 1, 2, and 3 mm
in thewavelength range from0.2 to 1.2 mm.From the discussion of dmax and its values
listed in Table 3.2, we can expect the biggest influence in the visible spectral region
where these films should exhibit oscillations. The calculated spectra of the films are
summarized in Figure 3.5.

As expected we can recognize from the spectra that with increasing film
thickness d, the oscillations decrease in their magnitude due to the absorption.
For d¼ 7 mm (not shown here), the oscillations have decreased beneath the signal-
to-noise ratio.
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Figure 3.5 Calculated reflectance spectra of unsupported ITO with thickness d¼ 0.5, 1, 2, and 3mm. Optical constants are taken from Ref. [39].
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3.1.3
Partial Incoherence due to Thick Substrates

In general, a substrate of a layer stack can be treated like a layer. As, however, in most
cases the substrate is rather thick compared to the other layers, it will result in very
rapid oscillations in the reflectance or transmittance spectrum. Nevertheless, short-
range disturbances of the surfaces of the substrate (roughness, waviness) strongly
reduce these oscillations. Moreover, if the thickness of the substrate is larger than the
maximum resolvable layer thickness in the used spectral range, no oscillations can
be observed at all. That means the substrate can be treated incoherently, that is, the
intensities reflected at each interface of the substrate can be summed up, instead of
taking into account superposition of the electromagnetic field components that
exhibit a phase shift due to the path through the substrate layer. This must be
considered when calculating the reflectance and transmittance of the single layer or
even a layer stack according to the models presented in Sections 3.2 and 3.3. If the
substrate is absorbing, the absorption in the substrate must also be taken into
account. For strong absorption, the intensity of the light reflected at the rear side of
the substrate may have vanished. A detailed description of how the incoherent
substrate is taken into account when calculating the reflectance and transmittance of
a layer is given in Section 3.2. Here, we only illustrate how the reflectance of a single
layer on a substrate develops in dependence on the wavelength with the following
four examples:

1) Supported layer, refractive index of fused silica (SiO2) [38], thickness d¼ 400 nm,
front medium with n0¼ 1, refractive index of the substrate of aluminum oxide
(Al2O3) [67], spectral range from 200 to 1500 nm.

2) Supported layer, refractive index of fused silica (SiO2), thickness d¼ 400 nm, front
medium with n0¼ 1, refractive index of the substrate of the glass N-BK7 [66],
spectral range from 200 to 1500 nm.

3) Supported layer, refractive index of fused silica (SiO2), thickness d¼ 400 nm, front
medium with n0¼ 1, refractive index of the substrate of silicon (Si) [37], spectral
range from 200 to 1500 nm.

4) Supported layer, refractive index of fused silica (SiO2), thickness d¼ 400 nm, front
medium with n0¼ 1, refractive index of the substrate of aluminum (Al) [38],
spectral range from 200 to 1500 nm.

The calculated spectra are summarized in Figure 3.6. Exemplaric complex
refractive indices of the silica film and the substrates are given in Table 3.3.

The influence of the substrate is clearly to recognize. All reflectance spectra of the
same film are different inmagnitude and curvature. Only the number of oscillations
and the positions of the maxima and minima are identical.

The first two substrates – Al2O3 and N-BK7 – are transparent in the considered
spectral range, but they clearly differ in their refractive index. Aluminum oxide is a
high-refractive material for which also the optical contrast to the silica film is high
(high reflection at the interface silica–aluminum oxide). Then, the oscillations can
clearly be recognized. In contrast, for the crown glass N-BK7, the refractive index is
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close to the refractive index of silica. Then, the reflection at the interface silica–N-BK7
is poor and the oscillations become hard to recognize.

For silicon as substrate, we have a substrate that is absorbing at wavelengths lower
than 1000 nm and that becomes transparent for longer wavelengths. Nevertheless,
the strong intrinsic absorption processes in silicon in the near UV causes a high
refractive index between n¼ 5 at short wavelengths and even n¼ 3.4 at long
wavelengths. Therefore, the reflection at the interface silica, Si, is high and the
oscillations of the silica film are clearly to recognize, even at short wavelengths where
the silicon substrate is already strongly absorbing. Absorption of the substrate affects
the reflection at the interface silica –Si and the phase shiftW(l). This is similar for the
film on a metallic substrate where the oscillations are also clearly to recognize. The
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Figure 3.6 Spectra of a supported layer of fused silica (SiO2) with d¼ 400 nm on different
substrates: aluminumoxide (Al2O3), glassN-BK7, silicon (Si), and aluminum(Al).Optical constants
from Refs [37–39, 66, 67].

Table 3.3 Exemplaric complex refractive indices n þ ik of SiO2 and the substrates Al2O3, N-BK7,
silicon, and aluminum at different wavelengths [37–39, 66, 67].

l (nm) n þ ik

SiO2 Al2O3 N-BK7 Si Al

300 1.4878 1.8143 1.5528 5.0004 þ i�4.1694 0.276 þ i�3.610
500 1.4624 1.7746 1.5214 4.2985 þ i�0.06978 0.769 þ i�6.08
700 1.4553 1.7635 1.5131 3.7835 þ i�0.0094285 1.83 þ i�8.31
900 1.4518 1.7578 1.509 3.6246 þ i�0.001847 2.06 þ i�8.3
1100 1.4492 1.7536 1.5062 3.5554 þ i�0.0006076 1.202 þ i�10.875
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deeper minimum around 825 nm wavelength is caused by the coincidence of an
interferenceminimum of the film and theminimum in the reflectivity of aluminum
caused by an interband transition in aluminum.

For further discussion, we reconsider (3.5) for the two cases that the cosine term
becomes either maximum, that is, þ 1, or minimum, that is, �1. Drawing a line
through all points with the cosine term beingmaximum defines the upper envelope of
the reflectance spectrumof a singlefilmon a substrate. Vice versa, the line through all
minima defines the lower envelope of the reflectance spectrum of a single film on a
substrate.

The reflectance values given by the upper envelope follows from (3.5) as

RupenvðlÞ ¼
n2ðlÞ�n0ðlÞ
n2ðlÞþ n0ðlÞ
����

����
2

: ð3:13Þ

It corresponds to the reflectance of the interface substrate–front medium.
Analogously, the reflectance given by the lower envelope follows from (3.5) as

RlowenvðlÞ ¼
n2ðlÞ�n21ðlÞ
n2ðlÞþ n21ðlÞ
����

����
2

: ð3:14Þ

It is determined only by the complex refractive indices of the film (n1) and the
substrate (n2).

It is worth to discuss here the phase shift W(l) in the two cases of absorbing
substrates. We have calculated it separately and have normalized it to ð4p=lÞn1ðlÞd,
the main argument in the cosine term in (3.5). The resulting curves are depicted in
Figure 3.7.

For silicon as substrate, the phase shift W(l) amounts to maximum 2.2% of the
main argument in the cosine term. For increasing wavelength, the absorption in
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Figure 3.7 Phase shiftW(l) for a silica filmwith thickness d¼ 400 nmon a silicon substrate and an
aluminum substrate, normalized to ð4p=lÞn1ðlÞ � d.
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silicon tends to zero and hence also the phase shift tends to zero. Unlike silicon, the
absorption in aluminum does not vanish for what the phase shift is always nonzero
for an aluminum substrate. It amounts between 3 and 4.5% of themain argument of
the cosine term and may therefore affect the thickness determination with a fast
Fourier algorithm.

3.1.4
Partial Incoherence due to Roughness

The first question that arises when dealing with roughness of a surface is how large
must be the imperfection to contribute significantly to scattering of the incident light,
or when does a surface appears to be rough? Looking at light scattering by particulate
matter (e.g., [25]), one distinguishes between Rayleigh scattering andMie scattering.
Herewith, the scattering particles are classified according to the ratio of particle size
to the wavelength of the incident light. At ratios below a certain but not very distinct
limit, they satisfy the conditions for Rayleigh scattering and the scattering can be
described in a simpler manner than for Mie scattering. A similar condition or size
limit is desirable to have also for the scattering at rough surfaces. Below this limit,
the effect of the roughness is negligible and the reflection and transmission at the
surface or interface can be treated by the regular Fresnel coefficients. In fact, there
exists such a condition. If h is the height of the irregularity and c is the grazing angle,
then a measure of the effective surface roughness is ð4ph=lÞsin c [68]. A reasonable
limit to distinguish smooth surfaces from rough surfaces is the Rayleigh criterion for
rough surfaces derived from this effective surface roughness

h <
l

p � sin c
p ¼ 8; 16; or 32: ð3:15Þ

Macroscopic roughness of an interface causes incident electromagnetic radiation
to be scattered at this interface, resulting in the loss of intensity of light collected by
the detector (see Figure 3.8). It is thus important to be able to take into account this
scattering in calculating the layer reflectance and transmittance.

Periodical roughness can be considered in detail [68, 69]. Random rough surfaces,
however, can be considered only in average because parts of the surface are
stochastically higher or lower than a constant average level. In surface topography
metrology, several roughness parameters have been established that allow charac-
terization of the roughness of a surface. In optical thickness measurements, most of
these parameters are, however, less useful.

Therefore, to correct for roughness in thin film reflection modeling, scalar
correction factors are used. Assuming that the total reflectivity of an interface can
be broken up into a Gaussian distribution centered on the ideal interface, a
Debye–Waller factor is derived with its width being parameterized by the rms height
Rq of the irregularities of height h. Debye [70] and Waller [71] first understood how
statistical irregularities affect the interference when they studied the influence of
thermal vibrations on the intensity of X-ray scattering. It was also recognized later
that static displacements like the irregularities of a rough surfacehave a similar effect.
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In fact, dealing with thin-film reflection, the Fresnel coefficients are modified by
such a Debye–Waller factor. The modified coefficients at the interface between
medium m� 1 and medium m are [72–75]

rm�1;m ¼ rð0Þm�1;m � exp �2 Knm�1ð Þ2
� �

; ð3:16Þ

rm;m�1 ¼ rð0Þm;m�1 � exp �2 Knmð Þ2
� �

; ð3:17Þ

tm�1;m ¼ tð0Þm�1;m � exp � 1

2 K nm�nm�1ð Þð Þ2
 !

; ð3:18Þ

tm;m�1 ¼ tð0Þm;m�1 � exp � 1

2 K nm�1�nmð Þð Þ2
 !

ð3:19Þ

for both s- and p-polarization with the abbrevation K ¼ 2pRq=l. With this in mind it
becomes easy to include roughness effects in the calculation of reflectance and
transmittance by using these modified complex Fresnel expressions. N�evot and
Croce [76] modified the Debye–Waller factor by defining an rms roughness param-
eter on each side of the interface by Rq1 and Rq2.

We demonstrate in Figure 3.9 the influence of the roughness with calculated
spectra of a silica film with d¼ 400 nm on an alumina substrate. The silica–air
interface is assumed to be rough with a variable rms height Rq varying from 0 to
50 nm in 10 nm steps. The spectra show that with increasing roughness the
magnitude of the oscillation decreases. A value of Rq¼ 50 nm has already
strongly reduced the oscillations mainly in the short wavelength range below
500 nm.

Figure 3.8 Scattering of light at a rough surface with irregularities of height h.
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3.1.5
Coherent Superposition of Transmitted Light

The favorable method for thickness determination of thin films on a substrate is the
measurement of the reflectance. However, if the absorption in the film and the
substrate is very small or evennegligible,film thicknessmay also bedetermined from
transmittance. Thismethod is less attractive since the transmittance signal is usually
high and is only weakly modulated by the thickness interference.

Without loss of generality, we can assume that the substrate is incoherent, that is, it
does not introduce an additional phase factor when the light trespasses the substrate.
Moreover, we neglect multiple reflections at andmultiple transmissions through the
different interfaces. Then, we can directly derive the magnitudes of the transmitted
beams C1, C2, C3, and so on in Figure 3.10:

C1 ¼ t20t12t01A0 exp i
2p
l

n1ðlÞ � d
cosðbÞ

� �
ð3:20Þ

and

Cmþ 1 ¼ t20t12 r10r12ð Þmt01A0 exp i
2p
l
ð2mþ 1Þ n1ðlÞ � d

cosðbÞ
� �

m � 1: ð3:21Þ

Then, the two beam interference of C1 with C2 results in

C1 þC2 ¼ t20t12t01A0 exp i
2p
l

n1ðlÞ � d
cosðbÞ

� �
� 1þ r10r12 exp i

4p
l

n1ðlÞ � d
cosðbÞ

� �� �
:

ð3:22Þ
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Figure 3.9 Calculated spectra of rough silica films (d¼ 400 nm) on alumina substrate. The rms
height Rq of the silica–air interface amounts to Rq¼ 0, 10, 20, 30, 40, and 50 nm. Optical constants
are taken from Ref. [38, 67].
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That means the interference of C1 and C2 results in a similar oscillatory pattern in
the transmittance as the interference ofB1 andB2 before in the reflectance.However,
the magnitude of the transmittance signal is high as it is determined by the product
of the transmittivities T20T12T01, while the magnitude of the oscillating term is low
because it is determined by the product of the reflectivities R10R12. Therefore, the
oscillations are less resolved in the transmittance than in the reflectance. These
results hold true also for the multiple beam interference.

3.2
Propagating Wave Model for a Layer Stack

In this model, the electromagnetic fields E and H are calculated in each layer,
assuming two propagating waves in each layer, one in positive z-direction and one in
negative z-direction. For example, in s-polarization the component Ey is

Eyðx; z; tÞ ¼ E þ ðx; z; tÞþE�ðx; z; tÞ ¼ E þ
0 expðikzzÞþE�

0 expð�ikzzÞ
� �

expðikxx�ivtÞ:
ð3:23Þ

Starting at the rear sidemedium, the fields are transformed into the frontmedium
through all layers 1, . . ., NL. The reflectance R and the transmittance T of the layer
stack then follow from the fields in the front and rear medium.

The layer stack is sketched in Figure 3.11. It consists of NL layers with thickness d
(j), j¼ 1, 2, . . ., NL, and complex refractive index ~nðjÞ ¼ nðjÞþ ikðjÞ. The medium in
front of the layer stack has the index 0 and must be nonabsorbing, meaning that
k(0)¼ 0 for all wavelengths in the considered wavelength range. In contrast, the rear
medium with index NL þ 1 can be absorbing.

The incident light may have an angle of incidence a between a¼ 0� (normal
incidence) anda¼ 90� (grazing incidence). Then, both the light reflected by the stack

n0

n1

n2

α

d

C1     C2      C3

Figure 3.10 Transmission of a single layer on a substrate.
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and the light transmitted through the stack are different in p-polarization (in-plane)
and in s-polarization (perpendicular to the plane of incidence), except for the two
cases a¼ 0� and a¼ 90�, where Rp¼Rs and Tp¼Ts.

The layer stack may consist of one or more layers on a substrate, for example, the
layers of an antireflective coating on a glass substrate. As we already have seen from
the discussion of a single layer on a substrate, the substrate influences the reflectance
and the transmittance of the complete stack. The propagating wave model allows to
consider the partial incoherence due to thick substrates. For this, the substrate is
considered as a layer for which, however, the waves reflected at or transmitted
through the interfaces of the substrate do not interfere. In the schematic drawing of a
layer stack in Figure 3.11, the substrate has the layer index nsub and is situated within
the layer stack.

In the following, we will first derive in Section 3.2.1 the coherent solution
without incoherent substrates and then add the incoherent substrates in
Section 3.2.2.

3.2.1
Coherent Reflectance and Transmittance of a Layer Stack

Without any restriction of the generality, we assume in the following the x-axis of the
coordinate system going from left to right and the positive z-axis going from top to

T

α
0

1

2

nsub –1 

nsub

nsub+1

nsub+2

NL-1
NL

NL+1

...

...

R

Figure 3.11 Sketch of a layerstack with NL layers including substrates.
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bottom. In s-polarization, the electric field has only one nonzero component Ey, while
in p-polarization the magnetic field has only one nonzero component Hy.

For the calculation of R and T, we look first at the transformation of the fields
through layer j

Eyðzj þ dð jÞÞ
Z0Hxðzj þ dð jÞÞ

� �
¼

cosðkzðjÞdðjÞÞ �i
m0
NðjÞ sinðkzðjÞdðjÞÞ

�i
NðjÞ
m0

sinðkzðjÞdðjÞÞ cosðkzðjÞdðjÞÞ

0
BB@

1
CCA � EyðzjÞ

Z0HxðzjÞ
� �

ð3:24Þ
in s-polarization and

Exðzj þ dðjÞÞ
Z0Hyðzj þ dðjÞÞ

� �
¼

cosðkzðjÞdðjÞÞ i
NðjÞ
eðjÞ sinðkzðjÞdðjÞÞ

i
eðjÞ
NðjÞ sinðkzðjÞdðjÞÞ cosðkzðjÞdðjÞÞ

0
BB@

1
CCA � ExðzjÞ

Z0HyðzjÞ
� �

ð3:25Þ
in p-polarization.Here,Z0 is the vacuum impedanceZ0¼ 376.7V. The z-component
kz of the wavevector in each medium is

kzð jÞ ¼ 2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðjÞ�~nð0Þ2sin2ðaÞ

q
¼ 2p

l
NðjÞ: ð3:26Þ

Here,N( j) is the generalized complex refractive index of layer j and eð jÞ ¼ ~nð jÞ2 is
the complex dielectric function of layer j. This 2� 2 matrix method with two
counterpropagating waves is also well known as Abel�es method, as it was originally
developed byAbel�es [77, 78]. ThematrixM

j
is the so-called characteristic matrix of the

jth layer.
The complete transfer matrix T of the layer stack is obtained from the multipli-

cation of all transfer matrices M
j

T ¼
YNL
j¼0

M
j
: ð3:27Þ

The reflectanceR and the transmittanceTof the layer stack follow from the ratios of
the fields in the front medium and in the rear medium to the incident field. They can
be expressed in terms of the matrix elements Tij of the transfer matrix as

Rs ¼
T s
11 þðNðNLþ 1Þ=m0ÞT s

12

� �� m0
Nð0Þ T s

21 þðNðNLþ 1Þ=m0ÞT s
22

� �
T s
11 þðNðNLþ 1Þ=m0ÞT s

12

� �þ m0
Nð0Þ T s

21 þðNðNLþ 1Þ=m0ÞT s
22

� � ; ð3:28Þ

Ts ¼ 2

T s
11 þðNðNLþ 1Þ=m0ÞT s

12

� �þðm0=Nð0Þ T s
21 þðNðNLþ 1Þ=m0ÞT s

22

� � ;
ð3:29Þ
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Rp ¼ � Tp
11�ðeðNLþ 1Þ=NðNLþ 1ÞÞT s

12

� ��ðNð0Þ=eð0ÞÞ ðeðNLþ 1Þ=NðNLþ 1ÞÞTp
22�Tp

21

� �
Tp
11�ðeðNLþ 1Þ=NðNLþ 1ÞÞT s

12

� �þðNð0Þ=eð0ÞÞ ðeðNLþ 1Þ=NðNLþ 1ÞÞTp
22�Tp

21

� � ;
ð3:30Þ

Tp ¼ � 2ðNð0Þ=eð0ÞÞðeðNLþ 1Þ=NðNLþ 1Þ
Tp
11�ðeðNLþ 1Þ=NðNLþ 1ÞT s

12

� �þðNð0Þ=eð0ÞÞ ðeðNLþ 1Þ=NðNLþ 1ÞTp
22�Tp

21

� � :
ð3:31Þ

3.2.2
Consideration of Incoherent Substrates

For simplicity, we consider the case that the layerstack has only one substrate. Then,
we distinguish a pile 1 of layers with indices 1, 2, . . ., s� 1 followed by the substrate
with index s, followed by a second pile 2 of layers with indices s þ 1, . . ., NL. The
calculation of the reflectance of the layerstack is carried out in five steps [79–82]:

Step 1: Calculation of all transfer matrices M
j
.

Step 2: Calculation of the reflectance and transmittance of pile 2 from substrate
(s) to the end of pile 2 (b) (s ! b). The results are the reflection and transmission
coefficients rsb and tsb for both s- and p-polarization according to (3.28)–(3.31).
Step 3: Calculation of the reflectance and transmittance of pile 1 from the
beginning of pile 1 (a) to the substrate (s) (a ! s). The results are the reflectionand
transmission coefficients ras and tas for both s- and p-polarization according
to (3.28)–(3.31).
Step 4: Calculation of the reflectance and transmittance of pile 1 in reverse
direction (s ! a). The results are the reflection and transmission coefficients rsa
and tsa for both s- and p-polarization according to (3.28)–(3.31).
Step 5: Calculation of the reflectance and transmittance of the complete stack
with the substrate.

The results are

R ¼ Ras þ tastsarsbj j2 � exp �ð8p=lÞksubðlÞ � dsubð Þ
1� rsarsbj j2 � exp �ð8p=lÞksubðlÞ � dsubð Þ ; ð3:32Þ

T ¼ tastsbj j2 � exp �ð4p=lÞksubðlÞ � dsubð Þ
1� rsarsbj j2 � exp �ð8p=lÞksubðlÞ � dsubð Þ ð3:33Þ

for both s- and p-polarization.

3.2.3
Consideration of Surface Roughness

Consideration of surface and interface roughness is in the propagating wave model
not as simple to take into account as in the following r-t-w model because it always
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considers traveling waves in a layer. However, a rough surface or interface can be
modeled as a thin homogeneous layer with a refractive index intermediate to the
indices of the two adjacent optical media. To predict the refractive index that should
be used for the thin layer, several effective media approximations (EMA, see again
Section 2.7.4) can be used, as already discussed. Mainly, the Bruggeman approach
has been successful in interpreting spectral ellipsometric data of rough surfaces.

Carniglia and Jensen [83] showed that the interface between layer j and layer j þ 1
with rms surface roughness Rq can also be modeled as an additional absorbing thin
layer with thickness d¼ 2Rq and optical constants (nr, kr) given by

n2r ¼
n2j þ n2jþ 1

� �
2

ð3:34Þ

and

kr ¼ 4pRq

l
� nj�njþ 1
� �2 � nj þ njþ 1

� �
4nr

: ð3:35Þ

3.2.4
r-t-w Model for a Layer Stack

Analogous to the propagating wavemodel in Section 3.2, in the r-t-wmodel a transfer
matrix for the layer stack is calculated. This method was introduced in the book of
Azzam and Bashara [3]. In contrast to the Abel�es method, however, only the electric
field is considered in detail. The important parameters for the calculation of the
transfer matrix M

j
are the Fresnel coefficients rm,m�1 and tm,m�1 at the interface

between layer m and layer m� 1 and the phase term exp(iwm)) with

wm ¼ 2pdm
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2m�~n20 � sin2ðaÞ

q
¼ 2pNmðlÞ � dm

l
: ð3:36Þ

Then, the characteristic matrix M
j
of the jth layer is

M
j
¼

1
exp iwmð Þ 0

0 exp iwmð Þ

0
@

1
A �

1
tm;m�1

rm;m�1

tm;m�1

rm;m�1

tm;m�1

1
tm;m�1

0
BB@

1
CCA: ð3:37Þ

The transfermatrixT follows again from (3.27). The reflectance and transmittance
of the layer stack finally follows from (3.28)–(3.31).

So far, the r-t-wmodel is very similar to the propagating wave model and yields the
same results for the reflectance and transmittance of the layer stack. The advantage of
this model is that it allows consideration of other layer parameters in a simpler way
than the propagation wave model. For example, roughness of a layer interface can
simply be included using (3.16)–(3.19) (see also Refs [84, 85]). Beyond this, it is
possible to consider anisotropic dielectric functions [86–89] and magnetooptical
materials [90–94] in a compact 4� 4matrix formalism. Another approach based on a
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2� 2 matrix formalism has been derived by Mansuripur [95], Yeh [96, 97], and
Cojocaru [98, 99]. Postava et al. [100] derived formulas for light reflection and
transmission by general anisotropic thick layers based on coherent and incoherent
summations of partial reflected and transmitted waves. Visnovsky and Krishnan
[101] developed a procedure that allows computation of optical transmission, Faraday
rotation, and magnetic circular dichroism in planar layered structures.
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4
The Optical Measurement

For determination of the thickness of thin films, optical techniques are usually the
preferred methods for measuring thin films because they are accurate, nondestruc-
tive, and require little or no sample preparation. The two most common optical
measurement types are spectral reflectometry and ellipsometry. The strong advan-
tages of both techniques are the nondestructive contactless character of the mea-
surement and the possibility to control processes in real time. In Sections 4.1 and 4.2,
we give an introduction to reflectometric and ellipsometric measurements. Besides
these two mainly used measurement techniques, other techniques exist that will be
presented in Section 4.3. In Section 4.4, the most important optical components for
the optical measurement are discussed.

4.1
Spectral Reflectance and Transmittance Measurement

Quality control during a production process requires ameasuring setup that is robust
and is adjusted to the ambient conditions at the production site. Moreover, the
measured results must be stable and reproducible for a long time. Operation under
vacuum conditions additionally requires a simple and safe operation. All these
requirements can be easily fulfilled with a setup for spectral reflectance measure-
ment. For that purpose mainly high-valued miniaturized spectrometer modules are
used that are extremely robust and have an excellent long-term stability of the
wavelength calibration. In addition, one can carry out multiplexed measurements at
several sites with only one spectrometer system, for example, when using fiber
multiplexers.

For a reflectometric measurement, a light source, a fiber, and optionally a measuring
head are used to illuminate the samplewith unpolarized light. The reflected light gets
collected by the measuring head (optionally) and a second fiber that is connected to
the detector. The direction of incidence may include an angle a with respect to the
normal on the sample, but usually this angle is a¼ 0� (normal incidence). The
principal setup for a reflectometric measurement is sketched in Figure 4.1.

A Practical Guide to Optical Metrology for Thin Films, First Edition. Michael Quinten.
� 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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For reflection measurement typically a so-called Y-fiber is used, where two
separate fibers are assembled so that the branch for the illumination and the branch
for the detection of the reflected light are merged in a common branch. Hence,
illumination and detection are close together in front of the sample.

Spectral reflectancemeasurement uses the intensity of the light andmeasures the
amount of light reflected from a thin film or a layer stack over a range of wavelengths,
with the incident light normal (perpendicular) to the sample surface. This makes
spectral reflectancemuch simpler and less expensive than ellipsometry. On the other
hand, it is restricted to less complex layer stack structures. One big advantage over the
ellipsometry measurement is the much simpler setup that allows to be extended to
measurement at several measuring positions and to be integrated with automated
process control and monitoring.

Spectral reflectance can measure the thickness, roughness, and optical constants
of a broad range of thin films. However, if there is less than one reflectance
oscillation, there is less information available to determine the thickness or other
parameters. Vice versa, if one attempts to solve for too many parameters, a unique
solution cannot be found because theremay bemore than one possible combination
of parameter values for which the calculated reflectance matches the measured
reflectance. Depending upon the layer material and the wavelength range of the
measurement, the minimum single layer thickness that can be determined using

LIGHT SOURCE SPECTROMETER

Y-FIBER

MEASURING
    HEAD 

SUBSTRATE

LAYERd

TO
COMPUTER

Figure 4.1 Sketch of a reflectometric thin-film measurement.
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spectral reflectance is typically in the order of 20–50 nm. The reason is that a typical
reflectometer system cannot accurately measure intensity values to better than 0.1%,
and therefore a reflectivity measurement is less sensitive to small changes in
ultrathin-film thicknesses.

The measurement is carried out in the following ways:

1) Measurement of the light reflected at a reference sample

Iref ðlÞ ¼ Rref ðlÞ � SðlÞ � SensðlÞ; ð4:1Þ
whereS(l) is the spectral distribution of the light source andSens(l) is the spectral
sensitivity of the detector.

2) Measurement of the light reflected at the sample

IðlÞ ¼ RsampleðlÞ � SðlÞ � SensðlÞ: ð4:2Þ

Calculation of the ratio I(l)/Iref(l) and resolving for the sample reflectivity Rsample

RsampleðlÞ ¼ IðlÞ
Iref ðlÞ �Rref ðlÞ: ð4:3Þ

This method presumes that the reflectivity Rref of the reference sample is known,
either as look-up table or by calculation from the optical constants and the thickness
of the reference sample. The thickness of the reference sample is necessary for
slightly absorbing reference materials because then the reflection on the rear side of
the reference sample is correctly taken into account.

Spectral reflectance measurement can be carried out without a mounted mea-
suring head. Then, the common branch of the Y-fiber illuminates the sample and the
light gets spread on the sample according to the numerical aperture NA of the fiber
(typically NA¼ 0.22). Vice versa, the detection fiber collects only the reflected light
that enters its aperture. Therefore, the size of the detection spot is determined by the
core of the detection fiber, as from the widespread illumination spot almost only the
light reflected almost perpendicularly can enter the aperture of the detection fiber.
Then, the measurement averages over the inhomogenities in the film thickness in
the area given by the core diameter of the detection fiber. On the other hand, this
allows single measurements in short times (some tens of milliseconds).

Using a measuring head, the incident light usually gets focused on illumination
spots of 10–20mm. As long as the aperture of the focused beam remains less than
approximately NA¼ 0.087 (corresponding to an angle of 5�), there is practically no
influence of the refraction at the interface air–layer and no influence of the
polarization of the incident wave.

Using amicroscope asmeasuring head, the aperture can be quite large, depending
on the used microscope objective. Then, one should take into account the refraction
and the polarizationwhen analyzing themeasured reflectance. An angle of refraction
of b¼ 15� causes an error of 3.5% in the film thickness if not considered. A
microscope is usually optimized for the visible spectral range and hence additionally
may reduce the useful wavelength range. This automatically also reduces the
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maximum thickness that can be determined with the used spectrometer. Although
antireflection coatings on the lenses of a microscope objective reduce the reflection,
the intensity loss is high as longer measuring times are needed.

Spectral reflectance measurement is not free of errors. Sources of systematic
errors are as follows:

. The angle of incidence. This has already been discussed. As long as the angle of
incidence is restricted to�5� deviation from the normal incidence, the errors are
negligible.

. An error source is that the detectors and amplifier circuits are not perfectly linear.

. Optical constants data sets. The analysis of a spectral reflectance measurement
with a linear regression requires the knowledge of data sets for the optical
constants of a material. The errors made in determination of these data enter
the fitting procedure. They have a small but noticeable effect on the results of the
fitting procedure.

The spectral transmittance measurement requires another setup as shown in
Figure 4.2. For transmission measurement, two separate fibers are needed, one for
the illumination of the sample and one for the detection of the light that has passed
the sample. For transmission measurement, it is necessary that the light beam
passing through the sample is a parallel beam. This is achieved using collimators at
the end of both fibers.

The transmission measurement determines the amount of light that has passed
the sample from the illuminated front side to the rear side. It includes all reflections at
both surfaces as well as the absorption in the sample and the scattering in the sample
and at the surfaces. At least, a reference measurement at the air gap between the two

LIGHT SOURCE SPECTROMETER

FIBER
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       TO 
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FIBER

COLLIMATORCOLLIMATOR

Figure 4.2 Sketch of a thin-film measurement in transmission.

84j 4 The Optical Measurement



collimators is necessary to take into account the spectral distribution S(l) of the light
source and the detector sensitivity Sens(l)

Iref ðlÞ ¼ SðlÞ � SensðlÞ: ð4:4Þ

The intensity It of the transmitted light is

ItðlÞ ¼ 1�RfrontðlÞð Þ � 1�RrearðlÞð Þ � SðlÞ � SensðlÞ �AðlÞ; ð4:5Þ

with A being a factor that describes the intrinsic absorption of the sample and Rfront

and Rrear are the reflecitivities of the front and rear surfaces, respectively. The
transmittance T(l) then is

TðlÞ ¼ ItðlÞ
Iref ðlÞ ¼ 1�RfrontðlÞð Þ � 1�RrearðlÞð Þ �AðlÞ: ð4:6Þ

It is common practice to use a reference sample instead of the air gap to eliminate
the reflectivities in above equation. For example, for a coated glass it is appropriate to
use an uncoated glass of the same type as reference sample.

4.2
Ellipsometric Measurement

Ellipsometry is a technique originally developed to study polarized light reflected
from solids coated with thin films and from liquid surfaces [2]. However, with the
development of electronics and computers, this over 100-year-old technique
became relevant because it made it possible to fit the experimental data to the
physics-based first-principles equations in a short time. We must distinguish
between single wavelength ellipsometry (SWE) and spectral ellipsometry (SE).
SWE can measure only two parameters and can be used for simple nonabsorbing
single-layer systems. SE, however, can analyze complex structures such as multi-
layers, interface roughness, inhomogeneous layers, anisotropic layers, and much
more.

Azzam and Bashara [3] published in 1977 the book Ellipsometry and Polarized Light
that has become the key source in ellipsometry. More books covering the theory of
ellipsometry, fundamental principles, instrumentation, and applications were pub-
lished later [1, 4–7, 102]. For a brief introduction to ellipsometry, we advise the reader
to refer to the tutorial of J. A. Woollam & Co., Inc. [103].

For an ellipsometric measurement, a light source that provides unpolarized light
and a polarizer are used to illuminate the sample with a light beam in an accurately
known polarization state. Optionally, an optical retarder is placed between the
polarizer and the sample. The direction of incidence includes an angle a with
respect to the normal on the sample. Specular reflection of the beam from the sample
surface leads to an emergent beam in an elliptical polarization state. It trespasses an
analyzer and gets detected by an optical detector. Optionally, an optical retarder is
placed between the sample and the analyzer. Usually, the analyzer is rotated (rotating
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analyzer ellipsometry, RAE) to enable at least eight different measurements, but it
may also be that the polarizer is rotated (rotating polarizer ellipsometry, RPE) [104].
The principal setup for an ellipsometric measurement is sketched in Figure 4.3.

Ellipsometry measures the complex ratio r of the reflection coefficient of the p-
polarized component and of the reflection coefficient of the s-polarized component of
the reflected light:

r ¼ rpðaÞ
rsðaÞ ¼ tanðyÞ � expðiDÞ; ð4:7Þ

where tan(y) is the amplitude ratio and D is the phase shift of the p- and s-reflection
coefficients according to the Fresnel equations (2.46) and (2.48). They are the
ellipsometric parameters often given as tan(y) and cos(D).

Different measurement techniques of the polarization after reflection exist. For
them, other components like modulators or compensators can be added. Modern
ellipsometer adjust all components automatically and calculate the ellipsometry
parameters very fast. The optical and structural information on the sample such as
complex dielectric functions and/or thicknesses is calculated from the ellipsometry
parameters by fitting y and D. This is the most critical point of ellipsometry.
Ellipsometry is typically used for films with thickness ranging from subnanometers
to a few micrometers.

Single-wavelength ellipsometry is very sensitive for films of only a few angstroms
thick (1 A

� ¼ 0.1 nm) if the optical constants are well known at this wavelength. On the
other hand, for determination of optical constants with SWE, it is recommended to
have films larger than 50 nm. Spectroscopic ellipsometry measures the change in
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Figure 4.3 Sketch of an ellipsometric thin-film measurement.
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polarization of light simultaneously at different wavelengths. The commercially
available spectral range covers 150 nm to 33mm. Measurement of thinner films is
achieved by working at shorter wavelengths (e.g., in the UV spectral region). It also
allows the determination of the properties (thicknesses and complex refractive
indices) of a layer stack. For that purpose, however, physical models for the layer
stack (Chapter 3) and the optical constants (Chapter 2) are necessary. Similar to the
spectral reflectance measurement, a regression analysis is used to get the best fit of
calculated data to measured data. The most commonly used in ellipsometry is the
Levenberg–Marquardt algorithm. We will come back to this algorithm in Chapter 5.
For a review on modeling of spectroscopic ellipsometric data, we refer to Refs [105,
106]. Spectroscopic ellipsometry applied for the determination of the refractive index
of only one single film hopefully results in 100 values of the refractive index and one
thickness value, as one measures typically 100 values of D and Y. Using a
parametrization of the refractive index strongly simplifies the task as the number
of values to be determined is drastically reduced. Nevertheless, it is recommended
not to determine optical constants for films with less than 10 nm thickness.

If the sample is an ideal bulk, the real and imaginary parts of the pseudo-complex
dielectric function may be calculated from

e1 þ ie2 ¼ sin2ðyÞ 1þ tan2ðyÞ 1�r

1þ r

� �� �
; ð4:8Þ

with the knowledge of the incidence angle.
Ellipsometry has been extended to various measurement techniques. The major

techniques are phase or polarization modulation ellipsometry (PME) [107–111],
two-channel phase modulation ellipsometry [112–114], and variable angle spec-
troscopic ellipsometry (VASE) [115–117]. PME ellipsometers incorporate one or
more oscillating retarders. For the two-channel PME, the analyzing polarizer is
replacedwith aWollaston prism. Two independent photodetectors are used, one for
each light beam from the Wollaston prism. VASE uses various incident angles and
can be applied to characterize composition, crystallinity, roughness, doping con-
centration, and other material properties associated with a change in optical
response in addition to the primary parameters, film thickness and optical con-
stants. All ellipsometer types are also available in a multichannel configuration
where an array of detector elements are used to span a broadwavelength range from
the UV to the NIR.

Ellipsometric studies are generally carried out in the reflectionmode rather than in
the transmission mode, requiring either opaque substrates or substrates in which
the backreflection is minimized or suppressed by different methods. Bader et al.
[118, 119] used a transmission and reflection photoellipsometry method to study
electrochromicmaterials and their multilayer systems deposited on thick substrates.

Essentially, any of the automatic spectroscopic ellipsometer designs can provide
100–300 point spectra in D and Y over the near-infrared to near-ultraviolet wave-
length range within half an hour (typical measuring times 1–5 s per measuring
point).
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Ellipsometry is not free of errors. Sources of systematic errors are as follows:

. Azimuthal alignment of optical elements: Each optical elementmust be aligned to
ensure a high-quality ellipsometric measurement. The azimuthal alignment
errors are typically on the order of 0.02� for each element. All alignment errors
of the several optical elements add up and may result in a significant systematic
error in the experiment.

. The angle of incidence: The angle of incidence is a particularly difficult parameter
to measure, and its error is hard to quantify. Generally, it is very hard to measure
this quantity to better than �0.02�. In addition, the used light source is not
perfectly collimated, so the sample is actually illuminated with a light beamwith a
distribution of angles of incidence.

. Calibration: Spectroscopic ellipsometers that use retarders and compensators
must calibrate the amount of phase shift as a function of wavelength. Another
error source is that the detectors and amplifier circuits are not perfectly linear.

. Optical constants data sets: The analysis of a spectral ellipsometry measurement
requires the knowledge of data sets for the optical constants of a material. The
errors made in determination of these data enter the fitting procedure. They have
a small but noticeable effect on the results of the fitting procedure.

4.3
Other Optical Methods

4.3.1
Prism Coupling

Prism coupling is a method that utilizes the total internal reflection (TIR) of a light
beam (mostly a laser beam) at the base of a prism to generate an evanescent wave that
couples under certain conditions into the medium put in front of the prism. If the
evanescent wave couples into this medium, the internal total reflection gets atten-
uated, which can be detected with a photodetector that measures the intensity of the
totally reflected light. Three setups have been established that use this method.

. Surface plasmon resonance method (SPR)

. Attenuated total reflection method (ATR)

. The prism coupler

The surface plasmon resonancemethod measures the absorption by the medium at a
fixedwavelength in dependence on the angle of incidence on the base of the prism. Two
methods have been developed, the Otto configuration [120] and the Kretschmann
configuration [121]. The Otto configuration is used to examine metal surfaces by
coupling the evanescent wave into the metal and exciting a surface plasmon. The
surface plasmon is a collective excitation of the free electrons in the metal that travels
along the surface of themetal. For a comprehensive discussion of surface plasmons and
their excitation,we refer toRaether [122, 123]. TheKretschmannconfigurationdiffers in
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that way that the base of the prism is coatedwith a thinmetalfilm (often gold). A surface
plasmon gets excited in this film for a certain angle of incidence and travels along the
interfacemetal film–air. If amedium is placed on thismetalfilm, the propagation of the
surface plasmongets disturbed and the excitation of a surface plasmon in themetalfilm
is now most efficient at another angle of incidence.

The attenuated total reflection method operates by measuring the changes in the
total internal reflection of an infrared beam by coupling of the evanescent wave
generated in an optically dense crystal in direct contact with the sample. In regions
where the samplematerial absorbs, the total reflection gets altered by the attenuation
of the evanescent wave. Thismethod is well suited for chemical analysis of liquid and
solid materials in direct contact with the ATR crystal.

An accurate method for obtaining refractive index and thickness for unknown
dielectric materials is the use of a prism coupler [124–127]. The basic experimental
setup is shown schematically in Figure 4.4. By means of a spring-loaded clamp, the
film under test is pressed against the base of a coupling prism. It sits on a xy-
translation stage that is mounted on a precision rotary table. The laser beam is
linearly polarized (TE or TM) andmust be of TEM00 cross section. The point where
the beam strikes the prism base is the coupling spot. At this point, the refractive
index n and the thickness d of the film aremeasured. The optical system is adjusted
so that the coupling spot remains practically stationary on the prism base when the
rotary table is rotated through the angular range where coupling is possible. TIR of
the input laser beamat the prismbase leads to a large intensity at the detector and an
evanescent wave in front of the prism in the air gap between prism and sample. If
the angle gets swept, the reading on the detector fluctuates. For particular angles –
the mode angles – the evanescent wave couples into the thin film, resulting in
drastically reduced intensity at the detector. By monitoring the angles for which
these attenuations of the TIR occur, thickness and index of refraction of the film can
be calculated.

For understanding of this method, one must consider the thin film as planar
waveguide in which nonradiating eigenmodes can propagate along with the film.
This presumes that the film has a higher refractive index than the bordering media.
These propagating nonradiating eigenmodes can be described by waves that prop-
agate in the filmwith effective refractive index neff but decrease exponentially in their
amplitude in the bordering. Taking into account the planar geometry, the wave-
number g ¼ ð2p=lÞneff is given by the solution of the equation [128, 129]

tan kdð Þ ¼ k c1 þ c2ð Þ
k2�c1c2

; ð4:9Þ

with

k ¼ 2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2waveguide�n2eff

q
; ð4:10Þ

c1 ¼
2p
l

nwaveguide
nsubstrate

� �2p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2eff�n2substrate

q
; ð4:11Þ
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and

c2 ¼
2p
l

nwaveguide
nair

� �2p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2eff�n2air

q
: ð4:12Þ

The solutions differ for TE polarization (p¼ 0) and TM polarization (p¼ 1).
Equation 4.9 can have multiple solutions gm withm¼ 0, 1, 2, . . .. If the propagation
constant of the evanescent wave

b ¼ 2p
l
np � sin h ð4:13Þ

coincides with the propagation constant gm of any of the waveguide modes, the
evanescent waves couple into the waveguide, leading to a drastic reduction of
the totally reflected intensity at the prism base. At least, there must be two angles
h where the total reflection gets attenuated to solve for the film refractive index and
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Figure 4.4 Basic prism coupler setup.
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the thickness simultaneously. One angle allows only for the determination of the
refractive index. If three or more mode lines are observable, a mean and standard
deviation calculation is also possible.

According to Figure 4.4b, the angle h is a function of the angle of incidence a, the
prism angle d, and the refractive index of the prism nP

h ¼ dþ sin�1 sin a

nP

� �
ð4:14Þ

so that it is sufficient to record the intensity of the totally reflected light versus the
incident angle a.

Figure 4.5 shows the result of such ameasurement on a planar waveguide in glass
prepared by ion exchange. The thickness of this waveguide was obtained to be
d¼ 9.574 mm� 0.9 mm and the refractive index was obtained to be n¼ 1.525
� 0.0042. The used prism of the glass SF10 had a prism angle d¼ 60� and a
refractive index nP¼ 1.72314 at wavelength l¼ 632.8 nm (He–Ne laser). The mea-
surement was conducted in TE polarization.

Obviously, the total reflection at the prism base gets attenuated at four incident
angles, from which the corresponding effective refractive indices, the film thickness
and the film refractive can be calculated. In amodel calculation of TE and TMmodes
of a planar waveguide with these parameters, up to eight TM and TE modes were
obtained. Corresponding values for neff are listed in Table 4.1. It follows that only the
low-numbered modes can be clearly resolved experimentally with a prism coupler.

Precise accuracy and resolution values depend on film type, thickness range, and
rotary table resolution. Typical values for commercial prism couplers are �(0.5%
þ 5 nm) for the thickness accuracy and �0.3% for the thickness resolution. For the
additional refractive index determination, the accuracy is�0.001 with a resolution of
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Figure 4.5 Totally reflected light versus incident angle in a prism coupler measurement of a
waveguide in glass prepared by ion exchange.
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�0.0005. With standard prisms, films and bulk materials with refractive index 3.35
and below are measurable. The thickness range is from 0.2 to 150 mm.

4.3.2
Chromatic Thickness Determination

A simple but effective measuring technique has been established in optical profi-
lometry for surface topography and roughnessmeasurement: themeasurementwith
a chromatic white light sensor. This sensor utilizes the chromatic aberration of the front
lens of a measuring head to measure the distance sensor – surface of the object
without moving the measuring head in z-direction. In principle, it is a reflectometer
with aberration optics, and is sketched in Figure 4.6. Measuring the light reflected at
the specimen in the focal point of the front lens, one obtains a signal only from that
wavelength that is focused on the sample. The other wavelengths get spatially
distributed since they are not in focus. The determination of the wavelength where
the measured reflectance is peaked and a corresponding calibration to the distance
allows to determine distances and step heights with nanometer resolution, depend-
ing on themeasuring range of the used chromatic white light sensor. Themeasuring
range is defined by the difference in the focal lengths for the shortest and the longest
wavelength in the useful spectral range. Typical values for the measuring range of
chromatic white light sensors used in surface topography measurement range
between 100 and 3000mm.

This technique can also be used for thickness measurement of transparent films
since one gets a distance signal from the top surface and the bottom surface of the
film. Then, however, one has to consider the refraction.Due to the refraction the focal
length gets increased for all longer wavelengths that would have their focus in the
layer. This is illustrated in Figure 4.7. Then, the measured distance between the top
and the bottom surface must be multiplied by a correction factor CF(n, a) that
depends upon the refractive index of the film and the aperture angle a of the

Table 4.1 Effective refractive indices of the TM and TEmodes of a planar waveguide with refractive
index n¼ 1.525 and thickness d¼ 9.574mm on a glass substrate with nsub¼ 1.5 at wavelength
l¼ 632.8 nm (He–Ne laser).

Mode number neff TM modes neff TE modes

0 1.524 669 550 1.524 673 604
1 1.523 678 509 1.523 694 649
2 1.522 027 930 1.522 063 964
3 1.519 720 079 1.519 783 388
4 1.516 759 495 1.516 856 737
5 1.513 155 469 1.513 292 049
6 1.508 928 883 1.509 107 747
7 1.504 139 872 1.504 357 091
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Figure 4.7 Measurement of film thickness with a chromatic white light sensor.
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measuring head. The correction factor can be derived to

CFðn;aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�sin2 a

1�sin2 a

s
: ð4:15Þ

Themostly used chromaticwhite light sensors have an aperture angle ofa¼ 30� or
a¼ 45�. In Table 4.2, we summarized the correction factor for these two angles and
different refractive indices. As it becomes obvious from this table, the correction
factor clearly increases for the larger aperture. The minimal thickness that can be
measured with a chromatic white light sensor also depends on this correction factor
and is dmin¼ 1/15�measuring range�CF.

4.4
Components for the Optical Measurement

4.4.1
Light Sources

4.4.1.1 Halogen Lamps
Oneof themost commonly used light sources in spectral reflectance or transmittance
measurement and in ellipsometry are halogen lamps. They emit the broadband
spectrum of a tungsten filament, which corresponds to the black body radiation at
2870K. Figure 4.8 depicts the spectral power densities of black bodies with tem-
peratures up to 6000K in a semilogarithmic plot versus the wavelength. The spectral
density is given by

IðlÞ ¼ 2phc2

l5
1

exp hc=ðlkBTÞð Þ�1
: ð4:16Þ

Here, h is the Planck constant, kB is the Boltzmann constant, c is the vacuum speed of
light, and T denotes absolute temperature. With increasing temperature T, the
wavelength where the spectral density is maximum lmax shifts according to Wien�s
law as

lmax �T ¼ 2898 mm �K: ð4:17Þ

Table 4.2 Correction factor for the thickness determination with a chromatic white light sensor.

n CF(n, a¼ 30�) CF(n, a¼ 45�)

1.3 1.0660�n 1.1867�n
1.4 1.0785�n 1.2206�n
1.5 1.0887�n 1.2472�n
1.8 1.1093�n 1.3005�n
2.0 1.1180�n 1.3229�n
2.5 1.1314�n 1.3565�n
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The filling of the bulb with the halogenes iodine I2 or bromine Br2 allows to
increase the temperature up to 3200K because they react with the gaseous tungsten
to form WI6 or WBr6 near the quartz bulb wall. Then, W is redeposited on the
filament that either increases the lifetime of the filament or allows to increase the
temperature. Despite this high temperature, the amount of light in the visible
spectral region is rather low and only a little amount of blue/violet light or even
UV radiation is obtained (see Figure 4.8). The most radiation is emitted in the near-
infrared region. The useful spectral range is 360–2500 nm.

Halogen lamps have the advantage of a relatively long lifetime of typically 2000 h.
Thatmeans approximately 3months of permanent use.Moreover, they showvery low
noise and a low drift in the intensity with time. The main disadvantage is that they
generate a lot of heat.

The natural black body radiation spectrum of a halogen lamp can be modified
using filters or coated reflectors. The special coating on the reflector reduces the
amount of long-wavelength radiation so that the fraction of violet and blue light gets
stronger. Then, the apparent color temperature is increased compared to the black
body radiation but at the cost of the spectral density. An example is given in Figure 4.9
for two halogen lampswith reflector and one lampwithout reflector. They all have the
same wattage. The decrease in the intensity at long wavelengths is caused by the
detector sensitivity that decreases for longer wavelengths. The dip in the spectra at
around 940nm wavelength is caused by absorption in the UV-grade optical fiber.

4.4.1.2 White Light LED
White light LEDs are based on short-wavelength LEDs that exhibit strong emission in
the blue visible spectral region, covered with a layer of photoluminescent material
(phosphor) that extends the emission to longer wavelengths. Figure 4.10 shows the
typical spectrum of such an LED covered with the phosphor YAG:Ce. Outside these
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luminescence regions, no further radiation is emitted. Therefore, the use of white light
LEDs in the spectrometric determination of layer thickness is restricted. The main
advantagesarehigh luminance, easy to couple into afiber, andanextremely long lifetime
of typically 20 000h or more, or approximately 2.5 years of permanent use.

4.4.1.3 Superluminescence Diodes
Superluminescent diodes (SLD) are LEDs that exhibit a high luminance in a
narrow wavelength region. As they emit only in a narrow band, they are often used
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Figure 4.9 Comparison of two halogen lamps with reflector and color temperatures T¼ 4100 K
andT¼ 4700 Kwith a halogen lampwithout reflector and color temperatureT¼ 3050K. Thewattage
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in high-resolution spectrometers. The main advantages are the same as for white
light LEDs: high luminance, easy to couple into afiber, and an extremely long lifetime
of typically 20 000 h or higher, or approximately 2.5 years of permanent use.
Figure 4.11 exemplarily shows the emission spectrum of an SLD with its center
of emission around 1300 nm wavelength.

4.4.1.4 Xenon High-Pressure Arc Lamps
Xenon high-pressure arc lamps are based on arc discharge in a quartz bulb. The
fillingwith noble gasXenon yields discrete emission lines ofXenon that, however, are
extremely broadened as a result of the high pressure of the Xenon gas filling: typically
8 bar (116 psi) when cold and 40 bar (580 psi) when hot. This high pressure requires
specific safety precautions when exchanging the bulb and during operation. More-
over, the high voltage needed to ignite the arc discharge also requires specific safety
precautions. The biggest advantage is the high luminance over a broad wavelength
region from200 to 2000 nmwith a color temperature of 6000K (see Figure 4.12). The
spectral output ofXenon lamp is not altered as the device ages (even toward the end of
the lifetime) and occurs instantaneously upon ignition. The lifetime is comparable to
that of halogen bulbs, approximately 2000 h or 3 months of permanent use.

Remaining discrete emission lines especially in the range between 900 and
1000 nm restrict the applicability of these lamps. Moreover, the intensity of the
emitted light is not constant in time. A stabilization of the arc discharge and the
required specific safety precautionsmake such lamps expensive.When using Xenon
high-pressure arc lamps, it is strongly recommended to protect eyes and skin from
direct UV irradiation. This kind of lamp is also available as a flash lamp.

4.4.1.5 Deuterium Lamps
Deuterium lamps became the workhorse in UV spectrometry due to their stable
almost continuous emission of radiation in the wavelength range from 115 to
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Figure 4.11 Spectrum of an SLD with the center of emission around 1300 nm wavelength.
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900 nm. Also deuterium lamps are based on an arc discharge in a bulb filled with
deuterium at low pressure of about 10mbar. DeuteriumD2 is a heavy hydrogen, with
an additional neutron in the atomic core of hydrogen. This additional neutron
doubles themass of the hydrogen atom.Deuterium lamps emit in the range from115
to 900 nm, but have a useful spectral range between 185 and 400 nm with a
continuous emission of UV radiation. In the visible spectral region, its emission
is low. A typical emission spectrum from 200 to 400 nm is shown in Figure 4.13.
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Figure 4.12 Typical spectrum of a Xenon high-pressure arc lamp.
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The lifetime is comparable with the lifetime of halogen bulbs (approximately
2000 h or 3 months of permanent use). The longest lifetime of any deuterium lamps
has so far been reported for the L2-4000 series lamps of Hamamatsu Photonics K.K.
with 4000 h. When using deuterium lamps, it is strongly recommended to protect
eyes and skin from direct irradiation.

A new technique for commercially used Deuterium lamps is the RF-induced
discharge. It allows a compact setup formobile applications and for applications with
power consumption of less than 5W.

4.4.2
Optical Components

4.4.2.1 Lenses and Mirrors
Lenses are important components for measuring heads in reflection and transmis-
sion spectrometers. The materials of lenses are usually various glasses, fused silica,
and calcium fluoride CaF2, depending on the spectral range where they are used.
While fused silica and CaF2 are used for the ultraviolet region, in the visible and near
infraredmainly various glasses are used. The glasses can roughly be divided intoflint
glasses and crown glasses. The difference is the refractive index. The higher
refractive index of the flint glasses is caused by heavy metals that are introduced
as oxides of heavy metals (Ba2O3, As2O3, PbO2, etc.). On the other hand, they also
cause absorption and, therefore, reduce the transmittance at wavelengths in the blue
violet spectral region.

The German Ernst Abbe introduced a number n, called Abbe number, for further
characterization of the glasses. The Abbe number contains information on the
refractive index nd at the yellow helium line (587.1562 nm) and on the dispersion as
difference between the refractive indices nF at the red hydrogen line (486.1327 nm)
and nC at the cyan hydrogen line (656.2725 nm):

nd ¼ nd�1
nF�nC

: ð4:18Þ

With this Abbe number, one can distinguish low refractive crownglasses (nd< 1.6)
with nd� 50 and high refractiveflint glasses (nd> 1.6) with nd< 50. Table 4.3 gives an
example of a typical crown glass and a flint glass.

Table 4.3 Properties of a typical crown glass and flint glass.

Crown glass Flint glass

Low refractive index nd< 1.6 High refractive index nd> 1.6
High Abbe number nd� 50 Low Abbe number nd< 50
Example: N-BK7 (SCHOTT AG) Example: SF6 (SCHOTT AG)
nd¼ 1.5168 nd¼ 1.80 518
nd¼ 64.17 nd¼ 25.43
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Although transparent in the visible and near-infrared region, and for fused silica
and also CaF2 in the ultraviolet region down to 175 nm, all these materials exhibit
dispersion, that is, a wavelength dependence of the refractive index. For example, the
refractive index of N-BK7 at different wavelengths is given in Table 4.4. The refractive
index decreases with increasing wavelength.

Illuminating a focusing lens with a parallel white light beam, the focal length is
different for different colors. The reason is that due to thehigher refractive index for blue
light it gets refractedmore than red light. Therefore, the focal point lies closer to the lens
for blue light than for the red light. This chromatic aberration must be avoided when
using lenses in spectrometers or in measuring heads. It can be strongly reduced by
combining a focusing lens of crown glass with a dispersing lens of flint glass. The focal
lengthof this achromatic lens is almost constantover awidespectral rangeas canbe seen
from Figure 4.14 for a standard lens and an achromatic lens with focal lens f¼ 50mm.

Table 4.4 Refractive index of the crown glass N-BK7 (SCHOTT AG) at several wavelengths [66].

Wavelength (nm) Refractive index Wavelength (nm) Refractive index

312.7 1.54 862 632.8 1.51 509
334.1 1.54 272 643.9 1.51 472
365.0 1.53 627 656.3 1.51 432
404.7 1.53 024 706.5 1.51 289
435.8 1.52 668 852.1 1.50 980
480.0 1.52 283 1014 1.50 731
486.1 1.52 238 1060 1.50 669
546.1 1.51 872 1529.6 1.50 091
587.6 1.51 680 1970.1 1.49 495
589.3 1.51 673 2325.4 1.48 921
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Figure 4.14 Chromatic aberration of a standard lens and an achromatic lens with focal length
f¼ 50mm.
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When using mirrors as imaging elements, the chromatic aberration is absent.
However, spherical aberrations and other errors must be corrected (correction
plates), and they must be corrected for lenses (aspheric shapes and gradients).

4.4.2.2 Polarizers and Analyzers
A polarizer is a device that converts an electromagnetic wave of undefined or mixed
polarization into a beam with well-defined polarization. The common types of
polarizers are linear polarizers and circular polarizers.

Linear polarizers exploit the properties of birefringent crystals such as quartz or
calcite crystals. In these crystals, a beamof unpolarized light incident on their surface
is split into two rays, the ordinary ray that obeys Snell�s law of refraction and the
extraordinary ray. Both rays experience different refractive indices in the crystal and
are in general in different polarization states, though not in linear polarization states
except for certain propagation directions relative to the crystal axis. Various types of
birefringent polarizers have been developed mostly based on prisms (Nicol prism,
Glan–Thomson prism, Glan–Foucault prism, Glan–Taylor prism, Wollaston prism,
Rochon prism, and S�enarmont prism).We briefly describe here only theGlan–Taylor
prism and the Wollaston prism.

For theGlan–Taylor prism in Figure 4.15 both prisms of calcite are polished so that
the cutting edges of the crystal are parallel to the optical axis. Then, the ordinary and
the extraordinary beam have the same angle of refraction. For perpendicular
incidence, both beams propagate along the same way but with different speed. The
cutting angle a is chosen so that the ordinary beam gets totally reflected while the
extraordinary beam gets transmitted. This is achieved because the refractive index of
the ordinary beam is higher than that of the extraordinary beam. The second prism is
used to compensate the refraction of the extraordinary beam. At the end of the prism,
only the p-polarized extraordinary beam exits the prism in the same direction as the
incident beam.

The Glan–Foucault prism is built similar to the Glan–Taylor prism, except that the
crystal is cut perpendicular to the optical axis. The result is that the transmitted beam
is now s-polarized.

Very similar to theGlan–Foucault prism is theGlan–Thompson prism, except that
the air gap between the prisms is replaced by a transparent glue.

extraordinary beam 

ordinary beam

incident beam 

air gap 

Figure 4.15 Light propagation through a Glan–Taylor prism.
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TheWollaston prism consists of two calcite prisms bonded with a transparent glue
(see Figure 4.16). Incident polarized or unpolarized light gets divided into two
perpendicular linearly polarized beams.

If one places a perfect polarizer in a polarized beam, the intensity of the light that
passes through the polarizer is given by Malus� law.

I ¼ I0 cos
2ðhÞ; ð4:19Þ

where I0 is the initial intensity and h is the angle between the initial polarization
direction of the light and the axis of the polarizer.

In practice, the actual transmission is somewhat lower than this because some
light is lost in the polarizer. Real polarizers do also not perfectly block the polarization
orthogonal to their polarization axis. The ratio of the transmission of the unwanted
component to thewanted component is called extinction ratio and varies from around
1 : 500 to about 1 : 106 depending on the polarizer.

4.4.2.3 Optical Retarders
Retarders or wave plates are used to split a light wave into two orthogonal linear
polarization components and to produce a phase shift between them. That means
they change the polarization form of the wave without polarizing or inducing an
intensity change in the light beam. A special retarder is the compensator that
generates a phase shift of p/2.

Retarders that cause a change of linearly polarized light into circularly polarized
light are known as quarter wave retarders. Their unique property is to turn elliptically
polarized light into linearly polarized light or to transform linearly polarized light into
circularly polarized light. For that purpose, birefringent uniaxial materials are used.
The resulting retardance is given by

d ¼ ne�noð Þ d
l
; ð4:20Þ

where d is the thickness of the retarder, l is the wavelength of light, and ne and no are
the refractive indices of the extraordinary beam and of the ordinary beam.

extraordinary beam

ordinary beam

incident beam 

glue

Figure 4.16 Light propagation through a Wollaston prism.
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A retarder that produces a l/2 phase shift is known as a half wave retarder. Typical
retarder materials are crystals such as calcite, magnesium fluoride, and most
commonly quartz, and oriented polymers.

In automated ellipsometers in which oscillating retarders are used, the oscillating
phase retardation is obtained by applying a mechanical stress, an electric field, or a
magnetic field to the transparent optical material.

4.4.3
Optical Fibers

For the reflectometric measurement, optical fibers are used to bring the light from
the light source to the object where it gets reflected and a second fiber collects the
reflected light and brings it to the entrance slit of the spectrometer. Usually, the two
separate fibers are combined in a bifurcated fiber, the so-called Y-fiber, with two
branches for connection to the light source and the spectrometer and one common
branch leading the two fibers to the measuring object.

Optical fibers are circular dielectric waveguides. They consist of a central core
surrounded by a concentric cladding and a protectivemantle of one or two layers (see
Figure 4.17).

Light propagation through the fiber is established by the fact that the core has a
higher refractive index (n1) than the cladding (n2). Then, light entering thefiber at one
end will be totally reflected at the interface core–cladding if the critical angle of total
reflection is exceeded (see Figure 4.18). Contrary, only light that enters the fiber with

PROTECTIVE MANTLE       CLADDING       CORE 

Figure 4.17 Constitution of an optical fiber: core, cladding, and protective mantle.

Cladding, n2

Cladding, n2

Core, n1

Acceptance Cone 

Figure 4.18 Geometrical optics model of total internal reflection for the transmission of light
through an optical fiber.
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an angle a<amax will be transmitted through the fiber. The sine of amax is known as
numerical aperture NA of the fiber, that is, NA¼ sin(amax). Typical values for NA of
fibers for reflectometry are NA¼ 0.22 and sometimes NA¼ 0.11.

In the more elaborated description of propagating nonradiating eigenmodes, the
transmitted light is composed of modes with each of them described by a wave that
propagates in a medium with effective refractive index neff. Taking into account the
cylindrical symmetry of the fiber, the wavenumber g ¼ ð2p=lÞneff is given by the
solution of the equation

p
Jn�1ðpÞ
JnðpÞ þ q

Kn�1ðqÞ
KnðqÞ ¼ 0; ð4:21Þ

with p ¼ ðD=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p=lÞn1ð Þ2�g2

q
and q ¼ ðD=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2� ð2p=lÞn2ð Þ2

q
. Jn and Kn are

the Bessel function offirst kind and themodified Bessel function of second kindwith
order n. D is the core diameter of the fiber.

Equation 4.21 can havemultiple solutions gmwithm¼ 1, 2,. . ., for each order n. It
is therefore commonpractice to number the corresponding eigenmodeswith indices
n and m. The eigenmodes of a fiber are abbreviated with LPnm, LP meaning linearly
polarized. Figure 4.19 shows the intensity distribution of the LP modes LP01, LP02,
LP11, and LP21.

As the above solutions are strongly dependent upon the fiber and cladding
materials, not all LP modes that are solution of (4.21) can actually travel through
the fiber. Introducing the parameter V defined as

V ¼ 2p
l

D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n21�n22

q
ð4:22Þ

Figure 4.19 Transmission of light through an optical fiber with distinct fiber modes: the intensity
distribution of the four LP modes LP01, LP02, LP11, and LP21.
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there exists a cutoff value Vc,nm for each mode LPnm, except for LP01, for which
Vc,01¼ 0. If V becomes less than a certain Vc,nm, this mode LPnm and higher modes
cannot travel through the fiber. The mode LP01 can always propagate through the
fiber and is therefore called ground mode. Vice versa, the mode LPnm exists only for
light with wavelengths l< lc,nm with

lc;nm ¼ pD
Vc;nm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n21�n22

q
: ð4:23Þ

A list of cutoff values Vc,nm for some lower modes is given in Table 4.5.
The most commonly used material for optical fibers is fused silica (SiO2) with

index-modifying dopants such as GeO2. Then, the refractive index gets increased as
can be seen from Figure 4.20, where the refractive index of pure SiO2 is compared
with the refractive index of GeO2-doped SiO2 with a concentration of 13.5% GeO2.
The curves are calculated with a three-term Sellmeier formula with the coefficients
from Ref. [130] (wavelength in microns) given in Table 4.6.

It is important to prepare the silica to a certain extent free of SiOH because the
OH� can be excited by light and absorbs at the same wavelengths as water (H�OH)
exhibits absorption. Optical fibers can be distinguished in UV fibers and IR fibers.

Table 4.5 Cutoff values Vc,nm of some lower modes LPnm.

Vc,nm m¼ 1 m¼ 2 m¼ 3 m¼ 4

n¼ 0 0 3.832 7.016 10.173
n¼ 1 2.405 5.520 8.654 11.792
n¼ 2 3.832 7.016 10.173 13.324
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Figure 4.20 Refractive index of pure SiO2 and GeO2-doped SiO2 with 13.5% GeO2.
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This distinction considers the amount of SiOH in the fiber. The IR fiber has only a
small amount of remaining SiOH and therefore does not exhibit strong absorption
bands in the spectral range between 900 and 1650 nm. Figure 4.21 shows the
comparison of the light transmitted through a UV fiber (solid line) and an IR fiber
(dash–dot-dot line) of the same core diameter and same length in the wavelength
range 900–1650 nm. The absorption by SiOH strongly reduces the intensity of the
transmitted light between 1200 and 1500 nm. The absorption around 1415 nm is as
strong such that it can also be recognized in the spectrum of the IR fiber as a small
bump.

Illumination with deep UV radiation below 220 nm wavelength can lead to
solarization of fibers. This means that the UV radiation damages the structure of
the fused silica fiber. When the silica recrystallizes, it forms crystalline inclusions of
crystobalite, a certainmode of crystalline quartz. They act as scattering centers for the
UV radiation and therefore reduce the transmission of the fibers in the range
between 220 and 250 nm. Solarization can partly be reversed by heating of the fiber,
but mainly can be taken into account by referencing.

Table 4.6 Sellmeier coefficients of fused quartz (SiO2) and GeO2-doped SiO2 with 13.5% content
of GeO2.

100% SiO2 86.5% SiO2, 13.5% GeO2

j Aj Bj Aj Bj

1 0.696 750 0.0 069 066 0.711 040 0.0 042 700
2 0.408 218 0.0 115 662 0.451 885 0.0 129 408
3 0.890 815 99.00 559 0.704 048 99.93 707
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Figure 4.21 Comparison of the transmitted light of aUV fiber (solid line) and an IR fiber (dash–dot-
dot line) of the same core diameter and length in the wavelength range 900–1700 nm.
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4.4.4
Miniaturized Spectrometers

Classical spectrometers consist of an input slit, a rotating dispersive element, an
output slit, and a single photodetector. The main advantages of this setup are a high
sensitivity and very low stray light. The rotating dispersive element, either a prism or
a grating, allows separation ofmultichromatic radiation into its spectral components.
Usingmultiple dispersive elements and several slits, a broad wavelength range from
theUV (190 nm) up to the near infrared (3000 nm) is available with only two different
photodetectors. This setup is realized in several commercially available spectro-
meters mainly used for chemical analysis.

The main disadvantages of this setup – serial measurement and moveable parts –
are overcome with the development of detector arrays. They allow parallel measure-
ment at many wavelengths and only need fixed components. Therefore, additionally,
they allow a compact and robust setup as miniaturized spectrometer.

The principles of such a miniaturized spectrometer are as follows:

. Imaging of the entrance slit on the image sensor.

. Diffraction of the incoming broadband light (�white light�) into spectral compo-
nents (�colors�) with a diffraction grating.

. Consideration of only the first-order diffraction.

. The light releases electrons (photo effect) that are stored in each pixel of the diode
line (condensator).

. The electrons get drained (electrical current, analogue) and are transformed into
discrete voltage steps (digital) (A/D conversion).

There are three types of spectrometers available: (a) with reflection grating and
mirrors (collimating and focusing), (b) with transmission grating and mirrors
(collimating and focusing), and (c) with transmission grating and lenses (collimating
and focusing). They are illustrated in Figure 4.22.

4.4.4.1 Gratings
Gratings are optical elements that divide broadband light or other electromagnetic
radiation in its components by diffraction (see also Section 2.5). They have the
advantages of higher dispersion and lower production costs compared to prisms as
dispersive elements in spectrometers. A grating consists of a series of equally spaced
parallel grooves formed in a coating deposited on a suitable substrate. The way in
which the grooves are formed separates gratings into two basic types, holographic
and ruled. For an overview on diffraction gratings, we refer to theDiffraction Grating
Handbook [131] from Newport Corp. or the Diffraction Gratings: Ruled and Holo-
graphic Handbook from HORIBA Jobin-Yvon S.A. [132].

The first step in the production of a holographic reflection grating is the coating of
an appropriate polished substrate with a photosensitive material (photoresist).
The photoresist is exposed by intersecting beams of a laser. They generate a series
of parallel equally spaced interference fringes whose intensities vary in a sinu-
soidal pattern. This pattern impinges on the resist and is transferred into the
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resist by developing the resist. The substrate is then coated with a reflective
material. The whole grating can be replicated by the same process used for ruled
gratings.

In the production of a holographic transmission grating, a transparent glass or silica
substrate is coated with a thick film of a photosensitive material. The photoresist
gets exposed similar to the holographic reflection gratings, resulting in a sinusoidal
interference pattern in the photoresist. Depending on the properties of the
photoresist, the transmission grating is finally covered by a protection glass or a
silica plate.

The production of ruled gratings ismore complex.Grooves are scribed in a reflective
layer with a diamond mounted on an engine. For an original or master grating,
usually glass or copper is used as substrate that is polished to a 10th of thewavelength
and is coated with a thin layer of aluminum by vacuum deposition. The ruling of
parallel, equally spaced grooves is a slow process and is accompanied bymany tests of
the ruling before the actual ruling. A series of test rulings must bemade to check the
grating for efficiency, groove profile, and stray light. After extensive testing, an
original grating is ruled on a large substrate. High-quality ruled gratings are then
formed by replication from this master grating.

Figure 4.22 Schematics ofminiaturized spectrometers. (a)With reflection grating andmirrors, (b)
with transmission grating and mirrors, (c) with transmission grating and lenses. Copyright
Hamamatsu Photonics K.K.
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The theory of diffraction by a grating has been already discussed in Section 2.5 for
several gratings. Here, we only briefly repeat the basics and discuss the properties of
holographic gratings and of ruled gratings.

If e is the angle between the incident light and the normal to the grating andb is the
angle between the diffracted light and the normal to the grating, then these angles
satisfy the following grating equation:

g � sinðeÞ � sinðbÞð Þ ¼ ml; ð4:24Þ
wherem is the order of diffraction (m¼ 0,�1,�2, . . .), l is the diffractedwavelength,
and g is the grating period (the distance between successive grooves). The reciprocal of
the grating period is called groove density, L¼ 1/g. All components of light corre-
sponding tom¼ 0 follow a straight line given byb¼ e. It is not possible to separate the
wavelengths for this order.

For a given set of angles of incident and diffraction, the grating equation is valid at
more than one wavelength, giving rise to several orders of diffracted radiation. For
example, if the wavelength l¼ 600 nm gets diffracted in the first orderm¼�1, then
also the wavelength l¼ 300 nm gets diffracted in the second order m¼�2 at the
same angle of diffraction. The number of orders produced is limited by the groove
spacing and the angle of incidence, which obviously cannot exceed 90�. The
maximum spectral bandwidth that can be obtained in a specified order without
spectral overlap from adjacent orders is called free spectral range. If the grating spacing
decreases, the free spectral range increases. Order overlap can be compensated either
by the intelligent use of sources, detectors, and filters or by using a permanently
installed long-pass optical filter in the fiber entrance connector or an order sorting
coating on a window in front of the detector.

Depending on the grating period g (or the groove density L) and the angle of
incidence e, it may not be possible to obtain diffracted light. For example, for
L¼ 2000 grooves/mm, e¼ 0�, and l¼ 500 nmwe obtain sin(b)¼ 1 for the first-order
m¼�1.All wavelengths l> 500 nmcannot be diffracted by this grating. The spectral
range covered by a grating is the same for ruled and holographic gratings with the
same grating period.

Angular dispersion of a grating describes how grating separates light into its
components. It corresponds approximately to the projection of the angle of refraction
on the detector plane. The equation for dispersion is given by

dbm
dl

¼ m
g � cosðbmÞ

: ð4:25Þ

Multiplying both sideswith the focal length of the system, inverting both sides, and
using the abbrevation dx¼ f� db gives the reciprocal linear dispersion

D ¼ dl
dx

¼ g � cosðbmÞ
m � f : ð4:26Þ

Angular dispersion can be increased by increasing the angle of incidence or
decreasing the distance between successive grooves.
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Looking at the resolving power of a grating, there is no difference for holographic
and ruled gratings with identical groove spacing. Holographic gratings are, however,
available with higher groove densities. The resolving power of a grating is the product
of the diffracted order in which it is used and the number of grooves illuminated by
the incident radiation

l

Dl
¼ m �w

g
ð4:27Þ

with w being the width of the entrance slit in millimeters. The resolving power is a
property of only the grating and does not depend on the optical and mechanical
properties of the spectrometer system.

However, due to the widening caused by the angular dispersion the actual spectral
resolution of the grating becomes

l

Dl
¼ m �w

g � cosðbmÞ
¼ w

db
dl

: ð4:28Þ

The entrance slit of the spectrometer also limits the spatial spread of the light that
enters the spectrometer. Therefore, the slit width is an essential factor in determining
the spectral resolution. The narrower the slit width, the more the resolution is gets
improved.

One of the most important properties of a grating is the grating efficiency.
Diffraction is usually symmetric with respect to the energy diffracted into the order
þm and �m (see Section 2.5). However, this homogeneous distribution over all
diffraction orders can be modified by the groove profile, the groove dimensions, the
groovematerials, and other groove and grating properties such as the reflectivity, as in
the case of ruled gratings. The result is that the diffracted energy is redirected into a
certain desired order. The grooves of a ruled grating have a sawtooth profile with one
side longer than the other. This geometry concentrates diffracted radiation in a
specific region of the spectrum, increasing the efficiency of the grating in that region.
The wavelength at which maximum efficiency occurs is the blaze wavelength.
Holographic gratings are generally less efficient than ruled gratings because of their
sinusoidal profile. Their sinusoidal shape can, however, be altered to approach a
triangle or sawtooth profile. Then, the efficiency increases.

The efficiency of a ruled grating not only depends on the shape but is also different
for p-and s-polarized light as the reflection is polarization dependent. Figure 4.23
shows an example of the absolute efficiency of a ruled grating with 1800 grooves/mm
with a blaze wavelength lblaze¼ 500 nm. The useful spectral range is from 250 to
1050 nm. The different curves belong to s-polarized light (dashed–dot-dot line), p-
polarized light (dashed line), and unpolarized light (solid line).

4.4.4.2 Detectors
The detectors of miniaturized spectrometers are diode line arrays based on the
following two technologies:

. CMOS (complementary metal oxide semiconductor)

. CCD (charged coupled device)
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Both use the principle of the inner photoeffect where electrons get released by light
but remain in the material. They change from the valence band to the conduction
band and get stored in the potential well, a region in the semiconductor component,
from which they are read out. The properties of the released electrons depend on
various parameters: the absorption coefficient, the recombination time of the
generated electron–hole pairs, the diffusion path, and the chemical and physical
structure of the material above the photosensitive layer.

CMOS Detectors CMOS sensors are based on a combination of photodiode with
condensator for the charge collection and an amplifier with data connections for the
readout and reset. This is realized by a pair-wise combined p-channel and n-channel
field effect transistors (MOSFETs).

For a MOSFET, the conductivity in a certain volume – the channel – can be
influenced by applying a voltage on an isolated control electrode, the gate. The current
between two electrodes (source and drain) through the channel depends on the
voltageUDS between drain and source and on the voltageUGS at the control electrode.
Source and drain are separated from the bulk by p–n junctions that are in reverse
biasing. Figure 4.24 shows a picture of a p-channel MOSFET. For an n-channel
MOSFET, only the n-type and p-type silicon regionsmust be exchanged to p-type and
n-type silicon regions. A conductive p-channel (n-channel) is formed in the n-region
(p-region) only if the voltageUGS is sufficiently high. The advantage of a MOSFET is
that the current between source and drain through the channel can be controlled
without power consumption.

To use a MOSFET as photodiode, one has to replace the metal electrode by a
transparent electrode. In modern semiconductor technology, the gate is formed by a
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Figure 4.23 Absolute efficiency of a ruled
grating with 1800 grooves per mm, blazed at
500 nm. The different curves belong to
s-polarized light (dashed–dot-dot line),

p-polarized light (dashed line), and unpolarized
light (solid line). This grating can be used for the
spectral range from 250 to 1050nm. (Available
from Optometrics LLC, USA.)
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thin, heavily doped polycrystalline silicon. Unlike crystalline silicon, polycrystalline
Si has a high conductivity that is further enhanced by doping. Using a p-typeMOS as
photodiode, the gate gets biasednegatively. Then, a potential well is established below
the isolator in then-Si region. If ultraviolet, visible, or infrared light hits a silicon atom
in the n-Si region in Figure 4.24, it generates an electron–hole pair. The free electron
gets collected in the charge pool (potential well), while the hole migrates away from
the pool. Figure 4.25 depicts a CMOS unit with photodiode and amplifying n-type
MOSFET. Such a unit is also called active pixel sensor (APS). The photodiode
generates electrons proportional to the amount of the incident light. They are stored
in the condensator (potential well) and are converted into voltage by the downstream
MOSFET that additionally amplifies this voltage. From thisMOSFET, it is read out by
further downstream electronics.

Compared to CCD sensors, one big advantage is that the charge-to-voltage
conversion already happens in the pixel and the charges need not to be shifted. In
consequence, the blooming is much lower. A disadvantage is that there is much
photoinsensitive electronics between the photosensitive diodes.

As the conversion charge-to-voltage already happens in the pixel, the sensitivity
of CMOS sensors is very high. Linear arrays of CMOSphotodiodes feature excellent
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Figure 4.24 Picture of a p-channel MOSFET.
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Figure 4.25 Picture of an illuminated CMOS unit.
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linearity with respect to incident light, low internal noise, and a wide spectral
response. They have a long lifetime, and they are mechanically rugged, compact,
and lightweight. In Figure 4.26, the quantum efficiency of a CMOS image sensor is
shown (e.g., S10114-1024Q from Hamamatsu Photonics K.K.). The array has a
broad spectral response from 200 nm to approximately 1000 nmwavelength, with a
high level of ultraviolet sensitivity. The quantum efficiency tends to be zero for
wavelengths longer than 1000 nm because for the intrinsic photoeffect in Si at least
an energy of 1.1 eV (band gap of Si) is necessary to transport an electron from the
valence band to the conduction band. This energy corresponds to a wavelength of
1127 nm.

InGaAs Detectors For measurements at longer wavelengths, another semiconduc-
tor has been proven to be well suited: indium gallium arsenide, InGaAs. The
photosensitivity of a linear InGaAs detector array (G9204-512D and G9206-02,
TE-cooled, from Hamamatsu Photonics K.K.) is plotted in Figure 4.27 versus the
wavelength. Depending on the cooling of this sensor, the spectral range can be
extended from1700 to 2200 nm, but thenwith less sensitivity at wavelengths between
800 and 1200 nm.

CCDDetectors CCDmeans �charge coupled device� and is an electronic device that
can transport electronic charges. CCDs consist of an array of isolated photodiodes. In
contrast to the CMOS photodiodes, the charge is not directly converted into a voltage,
but must be transported from the photodiode to an amplifier. The technique was
invented by William Boyle and George E. Smith in 1969 at the Bell Laboratories as a
device for data storage. However, it was never realized as data storage element.
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Figure 4.26 Quantum efficiency of a silicon CMOS image detector (e.g., S10114-1024Q from
Hamamatsu Photonics K.K.) in dependence on the wavelength of incident radiation. The
oscillations are caused by a thin transparent protective quartz window in front of the detector.
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Instead, this technique is used to shift photoinduced charges in many small steps
(vertical and horizontal shift registers) to a central analog-to-digital converter. The
principle of this shifting is comparable to a chain of buckets: one filled bucket is
drained into the next empty bucket in the chain, so on and so forth. The shift is forced
electronically by applying external voltages. Boyle and Smith obtained for their
invention the Nobel Prize in physics in 2009.

As the photodiodes are isolated from each other, it may happen that the capacity of
the charge pool is exceeded and excess charges flow into the pools of neighboring
photodiodes. This effect is called blooming. Blooming occurs for long-duration
intensive illumination of the pixel. It can be reduced by additional vertical and
lateral overflow drains that direct the excess charges away from the pixel. The
disadvantage is that these additional electric lines restrict the size of the pixels and,
hence, the photosensitivity of the pixels.

Compared to CMOS sensors, the dynamics of a CCD pixel is approximately
double the dynamics of a CMOS pixel. Dynamics is here defined as the ratio of the
saturation limit and the photosensitivity. Moreover, the noise is less than that in
CMOS.

The quantum efficiency is plotted in Figure 4.28 for a front-illuminated CCD
image sensor, a back-thinned CCD image sensor, and a back-thinned linear CCD
detector (e.g., S10127, S10200-02, and S10420-1106 from Hamamatsu Photonics
K.K.). As can be recognized, the quantum efficiency increases by almost a factor 2 if
the photodiode gets thinned at its rear side so that it becomes transparent and then
coated by an antireflective coating. This design is, however, more expensive.
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Figure 4.27 Photosensitivity of a linear InGaAs detector array (G9204-512D and G9206-02, TE-
cooled, from Hamamatsu Photonics K.K.) in dependence of the wavelength of the incident
radiation.
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4.4.4.3 System Properties

Spectral Resolution The resolution of the complete optical system depends not only
on the grating resolving power but on focal length f, slit size, the optical quality of all
components, and the system alignment. Therefore, the resolution of the optical
system is usually much less than the resolving power of the grating.

One important quantity for the determination of the spectral resolution is the
spectral range. For a spectrometer with a diode line array with N pixels of width Dp
(mm), a grating with grating period g (mm), and a focal length f (mm) of the system,
the wavelength l( j) at pixel j is

lð jÞ ¼ 1000 � g � sin arctan
Dp
f

j�N
2
þ s

� �� �
þ bN=2

� �
�sin e

� �
: ð4:29Þ

Here, bN/2 is the diffraction angle of the wavelength in the middle of the detector
for which the grating is calculated, e is the incident angle, and s is the pixel shift. The
pixel shift is usually s¼ 0, but can also amount to a nonzero value. The pixel width
may be different for CCD detectors and CMOS detectors. Theminimumwavelength
lmin¼ l(1) and the maximum wavelength lmax¼ l(N) are the wavelengths that are
imaged to the first and the last pixel of the detector without pixel shift s (see
Figure 4.29).

Spectral resolution is not unique but there exist the following three terms for
spectral resolution:

. The Rayleigh criterion (accordingly to DIN), DlRayleigh.

. The line width as full width at half maximum (FWHM), DlFWHM.

. The pixel dispersion as (spectral range)/(number of pixels), DlPixel.
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Figure 4.28 Quantum efficiency of a front-illuminated CCD image sensor, a back-thinned CCD
image sensor, and a back-thinned CCD linear detector (e.g., S10127, S10200-02, and S10420-1106
from Hamamatsu Photonics K.K.) in dependence on the wavelength of incident light.
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The spectral resolution is usually determined by examination of closely spaced
absorption or emission lines. To separate two closely spaced lines, its distance must
be DlRayleigh. It is given by the condition that the maximum in the interference
pattern of l2 falls in the first minimum in the interference pattern of l1. This is
illustrated in Figure 4.30. The solid black line indicates the resulting sum in the
intensity. The two lines with Imax,1¼ Imax,2 are therefore separated if the intensity of
the saddle point is equal to or less than 81% (corresponding to 8/p2), that is,
Isaddle� 0.81�Imax. This condition is called Rayleigh criterion.

A more well-known and practical alternative is the spectral half-width or FWHM
DlFWHM¼ l2(Imax/2)� l1(Imax/2). It describes the broadening of an emission or
absorption line by the optical systemand corresponds to the spectralwidth of a peak at
50% of the peak power value. It must be smaller than the spectral width of the line
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Figure 4.30 Illustration of the Rayleigh criterion.
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Figure 4.29 Spectral range of a spectrometer according to (4.29).
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itself. DlFWHM is about 80% of the resolution defined by Rayleigh criterion:
DlFWHM� 0.8�DlRayleigh.

DlPixel is the linear dispersion of the spectrometer. To find a connection between
DlPixel and DlRayleigh, one has to consider the width of the entrance slit and the
imaging properties of the spectrometer. Approximately, it is DlRayleigh� 3�DlPixel.

In Table 4.7, we give wavelengths of often-used spectral lines from various
elements used for determination of the spectral resolution.

Table 4.7 Wavelengths of often used spectral lines.

Wavelength (nm) Description Spectral line Element

2325.4 Infrared mercury line Hg
1970.09 Infrared mercury line Hg
1529.882 Infrared mercury line Hg
1060.0 Neodymium-glass laser Nd
1013.98 t Infrared mercury line Hg
852.11 s Infrared cesium line Cs
769.8979 A0 Red potassium line K
766.4907 A0 Red potassium line K
760.82 A Red oxygen line O
706.5188 r red helium line He
686.72 B Red oxygen line O
656.2725 C Red hydrogen line H
643.8469 C0 Red cadmium line Cd
632.8 He–Ne gas laser He-Ne
589.5923 D1 Yellow sodium line Na
589.2938 D Yellow sodium line (mid of D1 and D2) Na
588.9953 D2 Yellow sodium line Na
587.5618 d Yellow helium line He
579.0654 Yellow mercury line Hg
576.9596 Yellow mercury line Hg
546.074 e Green mercury line Hg
527.03 602 E Green iron line Fe
486.1327 F Cyan hydrogen line H
479.9914 F0 Blue cadmium line Cd
435.8343 g Blue mercury line Hg
430.79 048 G Blue iron line Fe
404.6561 h Violet mercury line Hg
396.8468 H Violet calcium line Ca
393.3666 K Violet calcium line Ca
365.0146 i Ultraviolet mercury line Hg
334.1478 Ultraviolet mercury line Hg
312.5663 Ultraviolet mercury line Hg
296.7278 Ultraviolet mercury line Hg
280.4 Ultraviolet mercury line Hg
253.6519 Ultraviolet mercury line Hg
248.3 Ultraviolet mercury line Hg
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Wavelength Calibration Initially, the AD converter delivers the spectral signal in
counts for each pixel. To assign it to a wavelength, the pixel number k must be
transformed into a corresponding wavelength l(k). This is usually done with a
multiorder polynomial:

lðkÞ ¼
XN
n¼0

pn � kn: ð4:30Þ

The coefficient p0 is the wavelength of the first pixel. The choice for the maximum
order N of the polynom depends upon the nonlinear behavior of the spectrometer.

The calibration can be done using one or more suited spectral lamps (e.g., a
mercury arc lamp) exhibiting single narrow emission lines. Look again at Table 4.7
where we give wavelengths of often-used spectral lines from various elements for
determination of the spectral resolution and for spectral calibration. The parameters
pn are calculated by regression.

Dynamic Resolution Measurement of tiny intensity changes and stability of the
signal depends upon each other and is mainly determined by the electronic noise
because the stability of the light path is maintained. To obtain a measure for the
accuracy of an intensity value, it is common practice to measure repeatedly N times
the intensity with a fixed integration time. The standard deviation s of this N
measurements defines the accuracy of the intensity measurement or the signal noise.

The dynamic range of the spectrometer is given by the ratio of the intensity in
saturation Isat and the signal noise s and corresponds to the signal-to-noise ratio
SNR¼ Isat/s. The useful dynamic range dynR¼ (Isat� Idark)/s gets diminished by the
dark current Idark. Idark is a small electrical output of the detector array without
incident light. It is caused by thermal generation of carriers in each pixels,mainly due
to SiO2–Si interface states (for Si as base detector material). It is, therefore, strongly
correlated with the operation temperature. Another contribution to Idark comes from
the downward electronics in the AD converter.

The SNR keeps stable with increasing temperature; however, as the dark current
increases with temperature, the useful dynamic range decreases with temperature. A
limiting factor for the useful dynamic range is the fluctuation of the light source.
Typical values for miniaturized spectrometers are Idark¼ 500–2500 counts for the
dark current, a dark noise of 1–10 counts rms, a signal noise of s¼ 10–100 counts,
and an intensity in the saturation of Isat¼ 212¼ 4096 counts (12 bit) or Isat¼ 216

¼ 65 536 counts (16 bit). Hence, the SNR is typically in the range of SNR¼ 250 : 1 to
SNR¼ 10 000 : 1.

Ghosts and Stray Light Stray light influences the dynamic resolution because it
limits the dynamic range. However, the measurement of tiny intensity changes are
affected little, as the noise is stronger than the stray light in most cases. Moreover, if
the source of the stray light is known it can be taken into account in the calculation of
the signal. Typical stray light performance is <0.05% at long wavelengths and
<0.10% at short wavelengths.
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Spurious spectral lines, the so-called ghosts, arise from periodic errors in groove
spacing or irregularities of the reflecting surfaces. Ruled diffraction gratings exhibit
stray light and ghosting since they cannot be manufactured without defects.
Interferometrically controlled ruling engines minimize ghosts but cannot eliminate
them. Holographic gratings are produced optically, for which groove form and
spacing are almost perfect. Hence, holographic gratings are free from ghosts.

A method to determine the stray light is the long-pass filter method. It uses white
light obtained by passing through afilterwith particular cutoff wavelength. Stray light
is defined by the ratio of the transmittance in thewavelength transmitting region It to
the tansmittance in the wavelength blocking region Ib. The stray light level, SLL,
then is

SLL ¼ 10 � log10
Ib
It

� �
: ð4:31Þ

Usually, It and Ib aremeasured close to the cutoff wavelength. Typical values of SLL
range from �35 dB to �27 dB, or Ib¼ 0.0003� 0.002� It.
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5
Thin-Film Thickness Determination

Evaluation of the thickness of one or more layers in a layer stack can be made by two
methods: a fast Fourier transformation (FFT) analysis and a regression analysis with
x2 test. The FFTanalysis is restricted to thicknesses ofmore than approximately 1 mm.
The reason is that it needs at least one full oscillation in the spectrum. If the spectral
range of the spectrometer is given by lmin and lmax, the first complete oscillation in
the spectrum of a film with refractive index n(l) can be recognized if one maximum
appears at lmin and the second maximum appears at lmax. Then, the minimum
thickness available from FFT is

dmin ¼ 1
2 ðnðlminÞ=lminÞ�ðnðlmaxÞ=lmaxÞð Þ : ð5:1Þ

This is in the order of 0.2 mmfor a spectral range from360 to 1000 nmand a typical
refractive index of n¼ 1.5. It increases with decreasing wavelength range.

As the spectrometer hasN pixel, themaximumnumber ofminima andmaxima is
N/2, from which dmax theoretically follows as

dmax ¼ N=2
2 ðnðlminÞ=lminÞ�ðnðlmaxÞ=lmaxÞð Þ ¼

N
2
� dmin: ð5:2Þ

This, however, presumes that the focusing of each diffracted wavelength on a
single pixel is perfect. In fact, the focus of long wavelengths is bigger than that of
short wavelengths, and is often smeared over more than one pixel. Therefore, in
practice one can reach about two-thirds of the above dmax as maximum resolvable
thickness.

The regression analysis with x2-test ismore complicated than the FFTas it uses the
calculation of a layer stack as described in Chapter 3. On the other hand, it is well
suited for small layer thicknesses down to a few 10 nanometers depending upon the
layer material. In principle, it can be applied also to larger thicknesses, but the effort
drastically increases with increasing thickness and the accuracy decreases. A
reasonable (but not fixed) upper application limit is d � 10 mm.

Both methods are discussed in more detail in the following two sections.

A Practical Guide to Optical Metrology for Thin Films, First Edition. Michael Quinten.
� 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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5.1
Fast Fourier Transform

5.1.1
Single Layer

Without any restriction of the generality, we assume in the following a single layer on
a substrate. Then, the reflectance spectrum is given by

R l; dð Þ ¼ R01ðlÞþR12ðlÞþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R01ðlÞR12ðlÞ

p � cos ð4p=lÞn1ðlÞ � dþWðlÞð Þ
1þR01ðlÞR12ðlÞþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R01ðlÞR12ðlÞ

p � cos ð4p=lÞn1ðlÞ � dþWðlÞð Þ ;

ð5:3Þ
where R01 is the reflectivity of the interface air–layer and R12 is the reflectivity of
the interface layer–substrate. It is obtained from the multiple beam interference of
all reflected beams (see again Section 3.1 and (3.5)). The thickness of the film is d
and its refractive index is n1. We omit in the following the phase shift W(l) as we
will consider only nonabsorbing materials for the films and substrates or its value
is negligible.

It is composed by a wavelength-dependent underground given by the lower
envelope Rlow_env in (3.14) and an oscillating part. This can be recognized from
Figure 5.1 where the calculated reflectance spectrum of a SiO2 layer with d¼ 800 nm
on an alumina (Al2O3) substrate is plotted versus the wavelength. The task is to
determine the thickness d from evaluation of the oscillating term. A quick and easy
method for this is to apply the FFT to the measured reflectance spectrum. For a
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Figure 5.1 Calculated reflectance spectrum of a single SiO2 layer with d¼ 800 nm on Al2O3

substrate.
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successful application of the FFT, the layer thickness should be larger than approx-
imately 1 mm. This thickness is a reasonable but not very distinct limit for the
applicability of the FFT. As it depends upon the refractive index of the layer, for large
refractive indices this limit may be even lower.

The spectrum in Figure 5.1 is aperiodic in the sense that the distance between two
neighboring maxima is short at short wavelengths and becomes larger for longer
wavelengths. The reason is that the cosine term in (5.3) depends upon 1/l but it is
plotted versus l. Therefore, thefirst step in the FFTanalysis is to rescale the spectrum
by introducing a wavenumber n¼ 1/l and to plot the reflectance spectrum versus n.
The rescaled spectrum in Figure 5.2 exhibits now a periodic oscillation.

The next step is to interpolate the rescaled spectrum on N equidistant sampling
pointsDn¼ (nmax� nmin)/N¼ (1/lmin� 1/lmax)/N because all FFTmethods require
the input data to be sampled at evenly spaced intervals. Moreover,Nmust be a power
of 2 (radix-2method), 4 (radix-4method), 8 (radix-8method), or highermultiples of 2.
The reason is that the FFTalgorithm divides the number of data points into two parts
of length N/2. The higher the M of the radix-M method is, the faster the applied
method is. On the other hand, the higher the M is the less possible powers of 2 are
available for N. For example, for the radix-2 method Nmay be 256, 512, 1024, 2048,
and 4096. For the radix-4method,N can be 256, 1024, and 4096, but cannot be 512 or
2048 because these numbers are not a power of 4. It is recommended to use a number
N larger than or equal to the number of sampling points in the original spectrum.
Usually, the number of pixels of the spectrometer is a power of 2, so that N can be
chosen identical to the number of pixels of the spectrometer or larger.

Step 3 is the FFT in effect. Introducing the parameter t¼ n1d as optical thickness,
the periodic oscillating spectrum looks like a cos(n�t), which is a linear combination of
exp(int) and exp(�int). The variable parameter is here n, and we are interested in t.
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Figure 5.2 Rescaled calculated reflectance spectrum of a single SiO2 layer on Al2O3 substrate.
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Therefore, the Fourier transformation is

RðtÞ ¼
ð¥

�¥

RðnÞ � expðintÞdn ð5:4Þ

but applied to only N discrete values R(nj). The corresponding discrete Fourier
transform (DFT) compares the reflectance spectrum with a sum over exponential
terms exp(injt)¼ exp(injn1d) with nj¼ j�Dn:

RðtÞ ¼ C0 þ
XN�1

j¼1

Cj � exp i j �Dn � tð Þð Þ: ð5:5Þ

The coefficients Cj are complex numbers in general.
The advantage of the fast Fourier transform over this DFT is its speed that is

achieved by an especially developed algorithm by Cooley and Tukey [133]. It
reexpresses the discrete Fourier transform of size N in smaller discrete Fourier
transforms. The special case with one DFTwith the even-numbered points and the
second with the odd-numbered points is often calledDanielson–Lanczos lemma since
this method was noted by those two authors in 1942 [134]. For more information on
Fourier transform methods and the FFT, we refer to Appendix B.

The result of the FFT algorithm are wavenumbers nm¼m�Dn and �nm for which
the absolute value |Cm|

2 of the complex Fourier coefficient Cm is maximum. From
these wavenumbers, the layer thickness d is obtained as

dFFT ¼ t
n1

¼ m
2 � n1 � nmax�nminð Þ ¼

m
2 � n1 � ð1=lminÞ�ð1=lmaxÞð Þ : ð5:6Þ

Note that the FFT delivers the discrete integer number m. The boundaries
nmax¼ 1/lmin and nmin¼ 1/lmax are given by the used spectrometer. The refractive
index n1 must be given by the user. In the above equation, it corresponds to a mean
value in the spectral range, for example, the refractive index at the central wavelength
of an SLD.

Usually, one plots the absolute value |Cj|
2 of the complex Fourier coefficient Cj

versus the index j. The resulting spectrum is called power spectrum. The correspond-
ing power spectral distribution (PSD) is obtained by dividing the power spectrumby the
frequency step, which is here 1=ð2 � nmax�nminð ÞÞ: The power spectrum of the
reflectance spectrum of the silica film with d¼ 800 nm in Figure 5.1 is shown in
Figure 5.3. For better presentation, the plot is restricted from j¼� 50 to j¼ 50 instead
of from�1024 to 1024 (the numberN of sampling points in the FFTwasN¼ 2048).
In this PSD, there is a peak at the indicesm¼ j¼ 10 andm¼ j¼� 10 and at j¼ 0. The
peak at j¼ 0 (value |C0|

2¼ 241) results from the background of the reflectance signal.
From m¼ 10 and a mean refractive index n1¼ 1.48 for SiO2 follows a thickness of
811.3 nm. This result deviates from the correct value of d¼ 800 nm used in the
calculation of the reflectance spectrum by 1.4%. Although the FFTanalysis is a quick
and easy method for film thickness evaluation, it is incorrect to a certain extent. We
will discuss this item in detail in the following.
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By comparing (5.4) with usual formulations of the Fourier transform and discrete
Fourier transform, we cannot recognize any special feature. However, as we have the
refractive indexn1(n) dependent upon n, the optical thickness t is also dependent on n,
t¼ t(n). This is different from the usual Fourier transforms, where t and n are
independent variables. To replace n1(n) by a mean value n1 may be critical mainly in
the case of high dispersion of the refractive index in the visible and near-ultraviolet
spectral region. But if the dispersion also is almost negligible, as in the near-infrared
region, the assumption of a constant refractive index is fallacious since it leads to
inaccurate thickness values. This is demonstrated in Table 5.1. In this table, we
summarized the results of the FFT analysis of calculated reflectance spectra of free-
standing layers with thickness d¼ 20, 50, 100, 200, 500, and 800 mm in the spectral
range 1260–1360 nm using 1024 sampling points for the materials silicon (Si),
sapphire (Al2O3), and fused silica (SiO2). The optical constants were taken from
[37, 38, 67] and were interpolated to the 1024 sampling points. The thickness range
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Figure 5.3 Power spectrum of the reflectance spectrum of the silica film in Figure 5.1.

Table 5.1 Thickness values, deviations, and effective refractive index from the applicationof the FFT
analysis on calculated reflectance spectra of films of silicon, sapphire, and fused silica in the near
infrared.

Si n1(1310 nm)¼ 3.503 Al2O3 n1(1310 nm)¼ 1.75 SiO2 n1(1310 nm)¼ 1.4468

d (mm) dFFT (mm) Dd/d (%) neff dFFT (mm) Dd/d (%) neff dFFT (mm) Dd/d (%) neff

20 21.52 7.6 3.769 19.14 4.3 1.675 23.16 15.8 1.675
50 52.6 5.2 3.685 52.65 5.3 1.843 52.1 4.2 1.508
100 105.2 5.2 3.685 100.51 0.51 1.759 98.41 1.59 1.424
200 210.4 5.2 3.685 201.01 0.51 1.759 202.61 1.31 1.466
500 516.44 3.29 3.618 507.31 1.46 1.776 503.63 0.73 1.457
800 832.04 4.01 3.644 808.83 1.1 1.769 810.45 1.3 1.466
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following from the spectral range is 8.57–4387mm for n1¼ 1. The refractive index at
1310 nm (in the middle of the spectral range) amounts to n(Si)¼ 3.503, n(Al2O3)
¼ 1.75, and n(SiO2)¼ 1.4468. As the obtained thickness values always differ from the
correct value used in the calculations, we also give the deviation from the correct value
in percentage and calculated an effective refractive index neff that should have been
used in (5.6) to obtain the correct thickness value.

It becomes obvious from the values in Table 5.1 that the deviations are not unique
neitherwith respect to the thickness norwith respect to thematerial. In the following,
we discuss the reason for the deviations and howwe can improve the FFTanalysis for
layer thickness determination.

First of all, the FFT computation assumes that a signal is periodic in the
measurement data block. This means that the length of the data block is an integer
multiple of the signal period. Only in this case does the FFT calculate exactly the
frequency. Remember that in layer thickness determination the optical thickness t is
the �frequency� and n¼ 1/l corresponds to the �time� variable. However, the
measured reflectance signal is often not periodic with discontinuities at the borders
of the interval (nmin, nmax). Then, the FFTcalculates the portion of given frequencies
tm on the complete signal. Hence, it is almost impossible to determine the exact
frequency. Moreover, the discontinuities in the signal cause pseudo-frequencies that
distort the frequency spectrum (the power spectrum) and result in lowermagnitudes
of |C(tm)|

2. This well-known effect is called leakage. A simple method to correct
leakage is to use window functions. Awindow is shaped so that it is exactly zero at the
beginning and end of the data block and has some special shape in between. FFT
windows reduce the effects of leakage but cannot eliminate leakage entirely. In effect,
they do not affect the frequencies tm, but weight the magnitudes |C(tm)|

2 of each
frequency tm in the power spectrum anew, so that the frequency with the maximum
magnitude can be better found in the power spectrum. Commonly used window
functions are Hamming, von Hann (or Hanning or raised cosine), Blackman,
Blackman–Harris, Welch, or Kaiser window. For an overview on window functions,
we refer, for example, to Ref. [135]. Formore detailed reading on FFTand concepts of
the FFT, we refer to Ref. [136].

As the reflectance data are available only in the interval (nmin, nmax), they are
automatically convoluted by a window function, the rectangular window rect(nmin,
nmax). The Fourier transform of R(n)�rect(nmin, nmax) is R(t)�sinc(t�(nmax� nmin)),
meaning that the Fourier transformed data (the frequencies tm) are convoluted by the
sinc function sin(x)/x, resulting in a broadening of the frequency domain. This
broadening complicates the search for the number m where |Cm|

2 is maximum
because neighboring points m þ j and m� j may also exhibit a maximum in the
power spectrum.

The search for the maximummagnitude in the power spectrummay be improved
by determination of the center of gravity (COG):

�m ¼
PmþM

k¼m�M k � Ckj j2PmþM
k¼m�M Ckj j2 : ð5:7Þ
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This is of interest particularly for asymmetric peaks or peaks where two neigh-
boring coefficients have almost the same magnitude |C|2. This method depends on
the number M of neighboring points at left and right of the point m.

The biggest improvement of the FFTalgorithm for layer thickness determination
is given when cos ð4p=lÞnðlÞdð Þ ¼ cos 4pn � tðnÞð Þ matches almost exactly the mea-
sured spectrum periodically. But how to achieve this situation with a refractive index
exhibiting dispersion? Remember that the minimum thickness dmin (Equation 5.1)
and the maximum thickness dmax (Equation 5.2) of a film with refractive index n(l)
are also determined by the refractive indices n(lmin) and n(lmax). These values are not
included in (5.6). The idea of an improvement is to modify the FFT analysis in that
way, that after determining the indexm in the above classical way, the values n1(lmin)
and n1(lmax) are used in (5.6) instead of a mean constant value:

dFFT ¼ m
2 � n1 lminð Þ=lmin�n1 lmaxð Þ=lmaxð Þ : ð5:8Þ

This modification of the FFT can be combined with the COG.
A quite similar idea is to consider the dispersion of the refractive index n1(l)

already when rescaling the measured spectrum using the variable n ¼ n1ðlÞ=l
instead of n ¼ 1=l. After rescaling, the spectrum must be interpolated on evenly
spaced points in the interval nmin ¼ n1ðlmaxÞ=lmax to nmax ¼ n1ðlminÞ=lmin before
the FFT is used to find the indexm. The thickness is then also obtained by (5.8). The
difference to the proposal above is that due to the different rescaling, the input data of
the FFTmay slightly be different thatmay affect the indexm. Thismethod can also be
combined with the COG.

To prove which of these methods yields an improvement in the thickness
determination with FFT, we calculated again the thickness of silicon, sapphire, and
fused silica films, using the following models:

. Model M0¼unmodified FFT analysis.

. Model M1¼FFT analysis using (5.8) for thickness determination.

. Model M2¼ FFT analysis considering the full dispersion and using (5.8) for
thickness determination.

The results are summarized inTable 5.2. The refractive indices of silicon, sapphire,
and fused silica at thewavelengths lmin¼ 1260 nmand lmax¼ 1360 nmare tabulated
as follows:

Si: n1(1260 nm)¼ 3.510 n1(1360 nm)¼ 3.496
Al2O3: n1(1260 nm)¼ 1.7507 n1(1360 nm)¼ 1.7493
SiO2: n1(1260 nm)¼ 1.4474 n1(1360 nm)¼ 1.4462

We find a significant improvement in the thickness results when using (5.8),
especially for the highly refractive silicon. For sapphire and fused silica, the smallest
thickness of d¼ 20 mmstill exhibits larger errors, but this thickness is very close to the
lower boundary of the range of resolvable thicknesses (8.57mm/n1). Therefore, for
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these materials and this small thickness, another spectral range is recommended. A
problem arosewithM2. For sapphire and fused silica the explicit consideration of the
dispersion of the refractive index yields the same results as M1. Also for silicon, it
yields the same or even better results, except for the 800 mmsilicon wafer. The reason
is unknown yet, but the power spectrum is completely widespread and has a
maximum at the wrong position. In general, M2 resulted in very noisy power
spectra, also for sapphire and fused silica. Therefore, in our opinion, M1 is the
favorablemethod to determine the thickness d of thefilm. For illustration,we show in
Figure 5.4 the power spectra for the wafers with d¼ 100, 500, 750, and 800mm,
resulting from models M0 and M2.

The center of gravity was checked with the result that only for some few examples
the thickness was obtained closer to the exact value, but without clear indication how
large the number M of neighboring points must be chosen.

The use of a window function was also checked. They only partially yielded
better results. Particularly for silicon with thickness d¼ 500 mm, the result of M1
of approximately 491 mm could be improved to approximately 502 mm, and for
silicon with d¼ 800 mm the result of M1 of approximately 791 mm could be
improved to approximately 793 mm. All other results of M0, M1, and M2 kept
unchanged.

Table 5.2 Thickness values from the application of the FFT and its improvements applied to calculated
reflectance spectra of wafers of silicon, sapphire, and fused silica in the near infrared.

d (mm) M0 M1 M2
dFFT (mm) dFFT (mm) dFFT (mm)

Silicon
20 21.52 20.45 20.45
50 52.6 49.999 49.999
100 105.2 99.999 99.999
200 210.4 199.98 199.98
500 516.44 490.90 499.98
800 832.04 790.90 724.993

Sapphire
20 19.14 18.94 18.94
50 52.65 52.08 52.08
100 100.51 99.42 99.42
200 201.01 198.84 198.84
500 507.31 501.84 501.84
800 808.83 800.11 800.11

Fused silica
20 23.16 22.92 22.92
50 52.1 51.57 51.57
100 98.41 97.40 97.40
200 202.61 200.54 200.54
500 503.63 498.47 498.47
800 810.45 802.14 802.14
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5.1.2
Layer Stack

If we have more than one thick layer, we can also expect more peaks in the power
spectrum. For two layers, one gets three peaks, one for each optical layer thickness
and one for the sum of optical thicknesses of the two layers. For three layers, one gets
already seven peaks, as also all sums of two optical layer thicknesses result in a peak.
The task is then to assign the peaks to a certain layer. This can be done manually or
automatically if the actual thickness of each layer is approximately known. For
completely unknown thicknesses, this assignment is difficult and is doubtless only
for maximum two layers in the stack.

For two layers, the FFT finds two valuesm1 andm2. They can be inserted into (5.6),
together with twomean refractive indices n1 and n2 for the two layers. Then, however,
as shown above, errors of up to about 5% can be expected, depending on the layer
material. A significant improvement is again obtained if for each layer the modified
FFT algorithm M1 is applied correspondingly.

In Figure 5.5, we give an example for the reflectance spectrum and the corre-
sponding power spectrum from FFT for a thick and a thin layer on a substrate. The
reflectance spectrum is characteristically modified by the film thickness interference
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Figure 5.4 Power spectra of a silicon wafer with d¼ 100, 500, 750, and 800mm, resulting from the
models M0 and M2.
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patterns. The optical thicknesses of the two layers are n1d1¼ 1.26 mm and n2d2
¼ 10.47 mm.The thicker layer results in fast oscillations that are superimposed by the
slower oscillations due to the thin film. The power spectrum exhibits two maxima at
different pixel numbers. They can be assigned to the single optical thicknesses. The
sum of the two optical thicknesses is not resolved.

5.1.3
Accuracy, Resolution, Repeatability, and Reproducibility

All optical measurements of the thickness of a thin film or layer are inaccurate to a
certain amount. To determine the accuracy, it is necessary to have official standards
for film thickness determination. While for layers with thickness d up to d¼ 1mm,
official standards exist (e.g., from the Physikalische Technische Bundesanstalt PTB
(National Bureau of Standards of Germany)) or standards are available that are
traceable back to an official standard, the situation is much more complicated for
thicknesses larger than 1 mm. Recently, standards have been manufactured by
Precitec Optronics GmbH, Germany, that utilize an air gap between an optical flat
and a gauge block. The thickness of the air gap is certified by the PTB. These
standards are available with different air gaps from d¼ 20mm to d¼ 500mm. These
thicknesses require an evaluation of themeasured reflectance spectra by fast Fourier
transform analysis. Unfortunately, to our knowledge, a corresponding standard is
still missing for the range from d¼ 1mm to d¼ 20mm.

As already shown in Section 5.1, the accuracy of the FFT analysis does not only
depend on errors in the measurement but also depend on how good the measured
signal fits in themeasuring window tominimize the leakage problem. Nevertheless,
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Figure 5.5 Example for a thin and a thick layer. The optical thicknesses of the two layers are
n1d1¼ 1.26mm and n2d2¼ 10.47mm. (a) shows the reflectance and (b) shows the corresponding
power spectrum from the FFT.
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as leakage is almost always present, the accuracy is limited. Typically, if the leakage
correction proposed in Section 5.1.1 as model M1 is used, the accuracy is better than
2% of the thickness value for high refractivematerials (e.g., semiconductormaterials
Si, GaAs, GaN, etc.). For materials with lower refractive index, the accuracy is in the
range of 1% or even better.

The resolution in thickness determination of thin films with an FFT algorithm is
given by the smallest step Dd:

DdResolution ¼ 1
4
Dd ¼ 1

8 � n lminð Þ=lmin�n lmaxð Þ=lmaxð Þ : ð5:9Þ

From various examinations on the repeatability and reproducibility of the thin-film
determination with FFT, it follows that the surface roughness has influence on the
result to a certain extent. In dependence on the surface roughness, the repeat-
ability and reproducibility are in the range of sRepeatability¼ 60–120 nm and
sreproducibility¼ 150–400 nm.

5.2
Regression Analysis with x2-Test

5.2.1
Method of Thickness Determination

The regression analysis used for layer thickness determination fits a given set of
measured data (spectrally resolved ellipsometric parameters, spectral reflectance) to a
model that depends upon the thickness of the layers, the optical constants of the
layers, and roughness parameters as adjustable parameters. The basic approach is to
choose a figure-of-merit function that measures the agreement between the data and
the model. Small values of the merit function represent close agreement. The
parameters of the model are automatically adjusted so that the merit function
achieves a minimum, yielding best-fit parameters. However, the merit function
often has several local minima. Then, the task is not only to find aminimumbut also
tofind the globalminimum.Otherwise, the determined parameters of the layersmay
be senseless.

Any fitting procedure should provide

. parameters,

. error estimates on the parameters, and

. a statistical measure of goodness of fit.

If each data point (xi, yi) of a set of Nmeasured data has its own, known standard
deviation si, then the maximum likelihood estimate of the model parameters a1, . . .,
aM is obtained by minimizing the quantity chi-square x2

x2 ¼
XN
i¼1

yi�f ðxi; a1; . . . ; aMÞ
si

� �2

ð5:10Þ
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or the mean squared error (MSE)

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2

2N�M

r
ð5:11Þ

by iterative nonlinear regression, with f(x,a1, . . ., aM) being the function that
calculates either the ellipsometric parameters or the reflectance and/or transmittance
of the layer system with theM parameters a1, . . ., aM. A smaller x2 or MSE implies a
better model fit to the data.

Various methods are available to find aminimum of x2. Unfortunately, there is no
perfect algorithm. Two methods are often used in the regression analysis for layer
stacks, the downhill simplex algorithm due to Nelder and Mead [137] and the
Levenberg–Marquardt algorithm [138, 139].

The downhill simplex method requires only function evaluations. A simplex is a
geometrical figure consisting ofM þ 1 points and all interconnecting line segments.
For example, if M¼ 2, the simplex is a triangle, for M¼ 3 it is a tetrahedron (not
necessarily the regular tetrahedron). Theminimization starts with an initial guess for
the parameters and calculatesM þ 1 values of x2 as the points of the initial simplex.
Then, the routine tries to find automatically the minimum volume inscribed by the
simplex by replacing the worst of the M þ 1 points by a new one that is better. The
best point of any iteration is kept. If x2 falls of or equals a certain value, the calculation
stops and the set of parameters with the best fit to the measured data is found. The
downhill simplex algorithm can be used only for fitting of the thickness of the layers
in themultilayer stack. Aparameterization of optical constants of a layer according to
any of themodels presented in Chapter 2.7 is not planned, but theymust be provided
in tables. For a more detailed reading on the downhill simplex algorithm, we refer to
Press et al. [140] and to Appendix C.

The Levenberg–Marquardt algorithm combines minimization of x2 with a Hes-
senbergmatrix algorithmwith the search for the steepest descent. For that purpose, it
uses the first derivative of x2 versus each parameter ai, qx

2/qai. This may be a long
lastingmethod if the derivatives cannot be given as formula butmust be calculated by
variation of the parameter and calculating the differential quotient numerically, as in
multilayer stack analysis. On the other hand, it allows fitting of many different
parameters, not only layer thicknesses but also the parameters that describe optical
constants in a corresponding model (Section 2.7). Therefore, this algorithm is
preferably used in ellipsometry for determination of layer thicknesses, optical
constants, and other parameters. It works well as long as the number of data points
N in themeasurement is sufficiently larger than the number of parametersM, that is,
N>>M.Again, if x2 falls off or equals a certain value, the calculation stops and the set
of parameters with the best fit to the measured data is found. For more information,
we refer to Press et al. [140] and to Appendix D.

Such a regression analysis requires the correct model to achieve good fits to the
experimental data. Otherwise, the model needs to be reformulated. If, for example,
the initial guess for a thickness value d is too far from the actual value, the regression
algorithm may yield an erroneous value for the parameter. The reason is that x2

exhibitsmore than oneminimumwhen varying the thickness d. In Figure 5.6a–c, we
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Figure 5.6 Measured reflectance spectra and x2(d) curves of a photoresist spin-coated on a glass
with three different thicknesses: (a) d¼ 0.2063mm, (b) d¼ 0.6442mm, and (c) d¼ 2.3996mm. The
thickness was obtained by a regression analysis with upstream FFT.
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show on the left side of each graph the measured reflectance spectrum of a
photoresist that was spin-coated on glass. Due to the different rotational speed, the
thickness of the layer was different. They were determined to d¼ 0.2063 mm,
d¼ 0.6442 mm, and d¼ 2399.6 mm. On the right side of Figure 5.6a–c, we plotted
x2 in dependence on the thickness d. Starting with d¼ 0.001mm, x2 exhibits several
local minima, but only oneminimum is the deepest. The regression algorithmmust
find this globalminimum to determine correctly the thickness of the layer. To ensure
that the true global minimum x2 is found, the regression algorithm can be started
with a wide range of initial parameter values. This procedure is, however, time
consuming and cannot be used for automated measurements. Therefore, both for
the downhill simplex method and for the Levenberg–Marquardt algorithm, it is
necessary to have a good estimation of the thickness of the layers that are to be
determined. For example, the used downhill simplex algorithm implemented in
MQLayer [8]finds the value d¼ 0.6442 mmfor the photoresist in Figure 5.6bwhen the
starting value is in the interval (0.52, 0.715 mm). Lower starting values between 0.4
and 0.52mm lead to d� 0.384 mm. Higher values between 0.715 and 0.85mm lead to
d� 0.884 mm.These values belong to the next neigboring localminima in x2 as can be
recognized from Figure 5.6b.

We used a third, self-developed algorithm for thickness evaluation (also imple-
mented in MQLayer). It first applies an FFT to find a thickness already close to the
thickness forwhich x2 has its globalminimum.Then, a regression analysis iteratively
finds the correct thickness value. If the upstream FFTcannot be applied because less
than one oscillation can be recognized in the reflectance spectrum, this algorithm
searches iteratively for the globalminimum in the interval fromzero to four times the
minimal thickness available from FFT.

One important question concerns the lowest detectable layer thickness. This
question cannot be answered by giving one single number. Instead, one has to
consider both the layer properties and the substrate properties in detail. This will
be representatively demonstrated for the reflectance measurement for the exam-
ples of a silica layer (SiO2), an alumina layer (Al2O3), and a ZnO:Al layer
(aluminum-doped zinc oxide). From SiO2 to ZnO:Al, the refractive index
increases. Moreover, ZnO:Al is absorbing in the spectral range below 530 nm
wavelength. We have summarized some values of the (complex) refractive index in
Table 5.3. The layers are supported by a silicon wafer (optical constants from Ref.
[37]), a glass plate of N-BK7 (optical constants from Ref. [66]), or an aluminum
mirror (optical constants from Ref. [38]). So, we have a variety of materials with
different optical contrast. Optical constants of ZnO:Al were submitted from FHR
Anlagenbau GmbH, Germany.

We start our discussion in Figure 5.7 with silicon as substrate. The smallest
detectable thickness is here determined by the reduction in the reflectivity of pure
silicon. The reflectivity gets reduced since the refractive index of the used oxides is
less than that of silicon. This reduction can be best recognized in the UV spectral
region where the two interband transitions in silicon result in the twomaxima in the
reflectivity at 272 and 364nm. Only in this spectral range is the change significantly
high in the reflectivity of silicon, caused by an oxide layer with 10 nm thickness, to
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detect such a thin film. The higher the refractive index is, the more distinct is the
difference in the reflectivity. We can conclude that for the materials with even higher
refractive index than the refractive index of ZnO:Al also even thinner layers may be
detectable, but 10 nm is a reasonable lower limit. The reason for these changes is the
beginning evolution of film thickness oscillations due to interference.

When turning to glass substrates as in Figure 5.8, the situation is different. SiO2

has a lower refractive index than the glass substrate. Therefore, a silica film again
reduces the reflectivity of the substrate, similar to silicon as substrate. However, as
the reflectivity of the glass does not exhibit any characteristic features, the thickness
of the silica layer must now be increased to d¼ 20 nm to get a detectable change of
the reflectivity. In contrast, the films of Al2O3 and ZnO:Al with refractive index
higher than that of the glass N-BK7 increase the reflectivity. For ZnO:Al even a
maximum at 323 nm appears, which is caused by the absorption of light in ZnO:Al.
For these materials with higher refractive index than the refractive index of the
substrate, a thickness of d¼ 10 nm is sufficient to detect the change in the
reflectivity in the UV.

Table 5.3 Refractive indices of SiO2 [38], Al2O3 [67], and ZnO:Al at various wavelengths.

l (nm) n(SiO2) n(Al2O3) n(ZnO:Al)

200 1.5519 1.8350 1.98 þ i0.28
300 1.4878 1.8143 2.0045 þ i0.552
500 1.4624 1.7746 1.972 þ i0.003
700 1.4553 1.7635 1.861
900 1.4518 1.7578 1.775
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Figure 5.7 Thin oxide layers on silicon substrate. The thick line on top belongs to pure silicon.

5.2 Regression Analysis with x2-Test j135



Using a highly reflective aluminum mirror as substrate, the reflectivity decreases
for all layers. This can be seen from Figure 5.9. The most striking change in the
reflectivity occurs for the absorbing ZnO:Al layer. A film of 10 nm ZnO:Al reduces
the reflectivity down to 40%at 200 nmwavelength. For other oxide layers, the effect is
less striking, but a thickness of 10 nm is sufficient for a detectable change in the
reflectivity.
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Figure 5.9 Thin oxide layers on aluminum substrate. The thick line on top belongs to the pure
aluminum mirror.
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Figure 5.8 Thin oxide layers on N-BK7 glass substrate. The thick line belongs to the pure glass.
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From the above examples, we conclude that the minimum detectable thickness of
transparent layers is between 10 and 20 nm. However, this result is valid only in the
UVpart of the spectral range. At longer wavelengths in the visible or even in the near
infrared, such thin films do obviously not cause significant changes in the reflectivity
of the pure substrate. As the ratio thickness/wavelength¼ d/l is relevant for the
evolution of thickness oscillations, we can deduce that changes in the reflectivity will
occur in the visible spectral range for layers with thicknesses between 20 and 50 nm,
andmust be further increased to 70–100 nmwhen going to the near-infrared spectral
region. If absorption in the layer occurs, as in the case of aluminum-doped zinc oxide,
the change in the reflectivity is often more striking, allowing for determination of
thinner films.

The example SiO2 on N-BK7 additionally demonstrates that the optical contrast is
also of importance for the recognition of a thin layer on a substrate.While the contrast
of the layer to the ambient air or vacuum as front medium (n1� n0) is almost always
high enough, the contrast between layer and substrate (n2� n1)may be very small. As
this contrast enters the reflection coefficient of the interface layer–substrate, the
reflection at this interface may be very poor so that, in fact, the interference of this
reflected beam with the beam reflected on top of the layer may decrease in its
magnitude below the signal-to-noise ratio. Then, this interference may be undetect-
able. A well-established thumb rule is that the optical contrast (nkþ 1� nk) at the
interface between two media k and k þ 1 must be (nkþ 1� nk)� 0.1.

In contrast to the reflectance measurement, the spectral ellipsometric measure-
ment is sensitive down to 0.1 nm film thickness. The reason is that ellipsometry uses
a nonzero incident angle for which the reflectivity becomes polarization dependent.
Changes in the polarization can be measured with a high accuracy and resolution. A
change of 0.1 nm in the thickness causes a phase shift of 0.25�.

5.2.2
Accuracy, Resolution, Repeatability, and Reproducibility

The accuracy, resolution, repeatability, and reproducibility of the thickness deter-
mination with a regression analysis are different from that of the FFT.

To determine the accuracy, it is necessary to have official standards for film
thickness determination. For layerswith thickness dup to d¼ 1 mm,official standards
exist (e.g., SiO2 layers on Si from the PTB) or standards are available that are traceable
back to an official standard. They are often certified by an ellipsometricmeasurement
within a certainwavelength range.Hence, whenmeasuring a reflectance spectrumof
these coatings, one has to consider the following points:

. The best fit to the measured spectrummust fit simultaneously at many sampling
points. If the number of sampling points differs from that in the certification
process, this can result in another thickness than the certified one.

. The errors in the used optical constants will affect the thickness determination, as
other sets of optical constants than those used for specification can lead to
different results.
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. When using a spectral range that not includes the wavelengths used for the
certification of the standard, problems may arise because the (n, k) data are
perhaps only partly available. Moreover, for longer wavelengths the minimal
detectable thickness will shift to larger sizes.

These discrepancies mainly affect the accuracy of the thickness determination in
both spectral ellipsometry and spectral reflectance measurement. It may, therefore,
happen that themean value of a series of repeatedmeasurements and evaluations has
an excellent standard deviation for repeatability and reproducibility but lies outside
the tolerance interval of the official standard. This is demonstrated with the values in
Table 5.4 for silica layers on silicon.

The spectral reflectancemeasurements in the range 360–1000 nmwere carried out
with a spectrometer with 2048 pixel. In this case, the number of sampling points was
strongly extended compared to the ellipsometricmeasurement from the PTB and the
spectral ranges do not match completely. The spectral reflectance measurements
in the range from 900 to 1700 nm were carried out with an NIR spectrometer with
512 pixel. Here, the spectral range does not at all match the spectral range of the
PTB measurements, and optical constants were available only from continuation of
data from literature to the NIR.

The obtained thickness values clearly demonstrate that the deviation in the
thickness may be larger than the tolerance of the thickness value of the standard.
Nevertheless, the obtained results for the accuracy are typical and lie in the range of
values less than 1% over the full thickness range, but at least 1 nm.

For the long wavelengths in the range 900–1700 nm (near-infrared region), the
thinnest SiO2 layer becomes critical. Preferably, the thinnest layer should be about
80 nm in thickness to have an accuracy of less than 1% in this spectral range.

The repeatability and the reproducibility of a reflectometric thickness measure-
ment of nanometer-thick films are pretty high. One can achieve values of srepeatability
� 0.1 nm and sreproducibility� 0.3 nm over a wide spectral and thickness range. The
actual values in the measurements for Table 5.4 were srepeatability¼ 0.06 nm and
sreproducibility¼ 0.23 nm for 25 repeated measurements.

For derivation of the thickness resolution, one has to resolve (5.3) for the thickness
d. The result is

Table 5.4 Results of the thickness determination from regression analysis of measured reflectance
spectra in comparison to the values of standards from PTB, Germany.

PTB standard
300–850 nm

Spectral reflectance
360–1000 nm

Spectral reflectance
900–1700 nm

66.5� 0.6 nm 66.8 nm 70.3 nm
160.8� 0.7 nm 163.6 nm 160.9 nm
381.5� 0.9 nm 382.6 nm 383.3 nm
1000.4� 2.1 nm 997.5 nm 998.3 nm
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d ¼ l

4pnðlÞ cos
�1 �RðlÞ �CðlÞ�AðlÞ

RðlÞ �DðlÞ�BðlÞ
� �

ð5:12Þ

withA(l), B(l),C(l), andD(l) being abbrevations for the terms with the reflectivities
of the interfaces. The arc cosine function cannot exceed 2p so that we can replace it by
2p. Then, the resolution becomes

Dd � Dl

2 � nðlÞ ¼
3 � ðlmax�lminÞ
2 � nðlmaxÞ �N : ð5:13Þ

Here, we used the relation between the wavelength resolution according to the
Rayleigh criterion and the pixel dispersion. It can take values of Dd� 1 nm for
spectrometers working in theUV/VIS region andDd� 2 nm for spectrometers in the
NIR. These values are valid for n¼ 1 and must be divided by the corresponding
refractive index n of the film.

The determination of the complex refractive index n þ ik from reflectance or
transmittance measurements is not independent of the thickness determination. All
usedmethods simultaneously solve for thickness d andn þ ik, in spectral reflectance
and ellipsometry measurements.

Often, photometric measurements of transmittance Tand reflectance R at normal
incidence are used for determination of the complex refractive index of a thin
transparentfilmon a transparent substrate (e.g., [142–148]). The optical constants are
determined as solutions of the implicit system

Tcalc n; k; d; lð Þ�TmeasðlÞ ¼ 0; ð5:14Þ

Rcalc n; k; d; lð Þ�RmeasðlÞ ¼ 0: ð5:15Þ
To solve this system, it is necessary to know the refractive index of the

substrate and the film thickness d. Unfortunately, this system is ambiguous, and
sometimes a physical criterion must be applied to identify the physical solution.
The general problems with R–T methods have been minimized or solved by
using improved algorithms [149–152], measurements of R and T at oblique
incidence [153, 154], or other additional measurements with improved evalua-
tion algorithms [155–160].

The R–Tmethod cannot be applied to samples with an opaque substrate. Then,
only reflectance can be measured. In that case, the determination of the refractive
index needs a parameterization of the refractive index with a suitable model, like the
models described in Chapter 2. With this parametrization the number of unknown
parameters gets drastically reduced, which allows simultaneous determination of the
wavelength dependence of the refractive index and the thickness of a thin layer on a
substrate using a regression analysis. In the following, we present the results of
simultaneous determination of film thickness and optical constants of SiO2 layers on
Si on the PTB standards and discuss the accuracy of this method. The optical
constants of the substrate silicon are taken from Ref. [37] and have been kept fixed,
while the optical constants of SiO2 have been modeled with a three-term Sellmeier
and a Cauchy formula. The thickness results for the two layers with d¼ 160.8 nm and
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d¼ 381.5 nm were compared with each other and with the PTB standard values in
Table 5.5. The optical constants were compared in Figure 5.10 with that of SiO2 from
Ref. [38]. The obtained curves for the optical constants n þ ik deviate from the SiO2

data fromRef. [38] bymaximumDn¼ 0.015. Both fits result in a stronger increase in
the refractive index than the values from literature.
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Figure 5.10 Comparison of the optical constants of SiO2 from a regression analysis with
Levenberg–Marquardt algorithm of measured reflectance data using a Sellmeier and a Cauchy
parameterization.

Table 5.5 Results of the simultaneous thickness and optical constants determination from
regression analysis of measured reflectance spectra in comparison to the values of standards from
PTB, Germany.

PTB standard Sellmeier model Cauchy model Fit with (n,k) from Ref. [38]

160.8� 0.7 nm 162.5 nm 162.6 nm 163.6 nm
381.5� 0.9 nm 380.0 nm 380.0 nm 382.6 nm
1000. 4� 2.1 nm 999.6 nm 998.8 nm 997.5 nm
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6
The Color of Thin Films

Thin films of transparent or semitransparent materials do not only affect the
properties of technical surfaces but also can excite human perception by the color
resulting from the thickness interference. Examples are the iridescent colors of a
peacock feather, the impressive colors of lustrous butterfly wings, or the colors of
thin oil films on water. This chapter is, therefore, devoted to the apparent color of
thin films.

In general, unlike mass, volume, or temperature, color is not merely a physical
property of an object. It is rather a sensation triggered by radiation of sufficient
intensity. The sensation of color depends not only on physical laws but also on the
physiological processing of the radiation in the human eye. Colorimetry is the study
of the dimensional relations between colors. It assumes that colors can be described
by dimensional figures and that these figures can be measured.

Assuming w(l) is the spectral color stimulus function, that is, the measured
spectral response of an examined sample, it can be used to calculate the apparent
chromaticity coordinates x and y and the tristimulus values X, Y, and Z that results
from that spectral response. w(l) may be the reflectance, the remittance, or the
transmittance of the sample.

In accordance to the proposals of the Commission Internationale de l��Eclairage
(CIE, International Commission on Illumination) the tristimulus values X,Y, andZare
defined by [161, 162]

X ¼ F
ðl2
l1

wðlÞ � SðlÞ � �xðlÞ � dl; ð6:1Þ

Y ¼ F
ðl2
l1

wðlÞ � SðlÞ ��yðlÞ � dl; ð6:2Þ

Z ¼ F
ðl2
l1

wðlÞ � SðlÞ � �zðlÞ � dl; ð6:3Þ
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with the normalization factor F defined as

F ¼ 100Ð l2
l1

SðlÞ ��yðlÞ � dl
; ð6:4Þ

so that for w(l)¼ 1, the value of Y amounts to Y¼ 100. The boundaries l1 and l2
in the integrals correspond to the onset wavelength l1¼ 380 nm and the offset
wavelength l2¼ 780 nm of the visible spectral region. The quantities �xðlÞ;�yðlÞ; �zðlÞ
are the spectral tristimulus values (color matching functions), which depend upon the
standard colorimetric observer (2� (CIE 1931) and 10� (CIE 1964)). Finally, S(l) is the
spectral power distribution of a light source. Common light sources for colorimetry
are the standard illuminants A, C, D50, D55, D65, and D75. The standard illuminant A
corresponds to the black body radiation at absolute temperature T¼ 2856K, the
standard illuminant C corresponds to a daylight phase that is comparable to the black
body radiation at absolute temperature T¼ 6774K, and the standard illuminants Dnn

correspond to a daylight phase that are comparable with the black body radiation at
absolute temperature T¼nn�100K.

From the tristimulus values X, Y, and Z, the chromaticity coordinates x and y are
obtained as

x ¼ X
X þY þZ

; ð6:5Þ

y ¼ Y
X þY þZ

: ð6:6Þ

Since x þ y þ z¼ 1, it is sufficient to determine x and y. The quantity Ygives the
lightness of the color. Y¼ 100 means white, and Y¼ 0 means black.

In the following, we study the apparent color of thin films by numerical calcula-
tions of the reflectance of single layers and multiple layers on a substrate. The
obtained spectra are used to determine the tristimulus valuesX,Y, andZand the color
coordinates x, y always for the standard illuminant D65 and the 2� norm observer.

For the first three figures, we assumed a single layer of SiO2 (Figure 6.1), Si3N4

(Figure 6.2), or TiO2 (Figure 6.3) on silicon substrate. These are, for example, the
most commonly used antireflection coatings for solar cells. We varied the thickness
of the layer from d¼ 0 nm to d¼ 1000 nm in steps of 1 nm and calculated the
reflectance spectrum from 0.35 to 0.95mm wavelength and the apparent color.

In Figure 6.1a, we summarized exemplaric spectra of SiO2 films on silicon
substrate for d¼ 100–1000 nm in steps of 100 nm. The dash–dot–dot line corre-
sponds to the pure silicon substrate. Due to the changes in the reflectance when
increasing the film thickness, different parts of the illumination get differently
reflected. For example, for a film with d¼ 200 nm, the reflectance exhibits a
maximum around 600 nm wavelength. For the film with d¼ 300 nm, there is a
minimum in the reflectance at 600 nm, but a maximum at approximately 450 nm.
From this different behavior in dependence on the film thickness, also different
colors result for the films. The color chart in Figure 6.1b shows the evolution of the
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apparent color with film thickness from d¼ 0 nm on the left to d¼ 1000 nm on the
right. Obviously, the main color changes appear for layers with d less than approx-
imately d¼ 600 nm. For thicker layers, the changes are less because of the increasing
number of oscillations in the interference pattern. The black line in the color
chromaticity diagram in Figure 6.1c indicates the color coordinates of all calculated
films. It confirms that the mostly apparent colors are cyan, magenta, and yellow.
Green and blue are seldom, red and orange are never obtained. Moreover, this line
approachesmore andmore thewhite point with only small extensions to other colors.
Themain impression of these films is then a gray color. This is obtained for the films
with d> 600 nm.
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Figure 6.1 (a) Reflectance spectra, (b) color
chart, and (c) color chromaticity diagram of thin
SiO2 films on silicon. For the color chart, the
film thickness was varied from d¼ 0 nm to
d¼ 1000 nm in steps of 1 nm. The black line in

the color chromaticity diagram indicates the
corresponding color coordinates. Note that the
reflectance spectra are shifted by a multiple of
0.5 along the ordinate for better presentation.
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Comparing the spectra and the color charts for thin silicon nitride films in
Figure 6.2 with those of Figure 6.1, we can conclude that silicon nitride films behave
similar to silicon dioxide films. However, as the refractive index of Si3N4 is higher
than that of SiO2, we obtain comparable effects already for thinner layers. Therefore,
we plotted only the spectra for d¼ 50–500 nm. The corresponding curve for the color
coordinates indicates stronger changes in the apparent color than in case of SiO2.
This is also obvious from the color chart.

Titanium dioxide (TiO2) finally has the highest refractive index of these three
materials. It approaches almost the refractive index of the silicon substrate, for which
reason the dependence on thefilm thickness is not as strong as one could expect but is
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Figure 6.2 (a) Reflectance spectra, (b) color
chart, and (c) color chromaticity diagram of thin
Si3N4 films on silicon. For the color chart, the
film thickness was varied from d¼ 0 nm to
d¼ 1000 nm in steps of 1 nm. The black line in

the color chromaticity diagram indicates the
corresponding color coordinates. Note that the
reflectance spectra are shifted by a multiple of
0.7 along the ordinate for better presentation.

144j 6 The Color of Thin Films



comparable to that of Si3N4. This is demonstrated with selected reflectance spectra
from d¼ 50 nm to d¼ 500 nm, a color chart and a color chromaticity diagram in
Figure 6.3.

Looking at the color charts and color chromaticity diagrams in the above figures,
one can recognize that the colors red and orange aremissing. Apparently, these colors
cannot be generated by a single transparent layer on a substrate. Therefore, we also
investigated multilayer systems. One example for which red and orange colors are
also obtained is the system Ta2O5–SiO2 with alternating layers of tantalum pentoxide
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Figure 6.3 (a) Reflectance spectra, (b) color
chart, and (c) color chromaticity diagram of thin
TiO2 films on silicon. For the color chart, the
film thickness was varied from d¼ 0 to
d¼ 1000 nm in steps of 1 nm. The black line in

the color chromaticity diagram indicates the
corresponding color coordinates. Note that the
reflectance spectra are shifted by a multiple of
0.7 along the ordinate for better presentation.
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and silica. The exemplaric spectra for a 20-layer stack shown in Figure 6.4 are for
30 nm Ta2O5 (blue), 70 nm Ta2O5 (green), and 100 nm Ta2O5 (red) alternating with
100 nm SiO2. The spectra exhibit a distinct reflectance maximumwhose wavelength
position shifts to longer wavelengths with increasing thickness of the Ta2O5 layers.
The chromaticity diagram at the right side of Figure 6.4 shows the colors obtained
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Figure 6.4 (a) Calculated reflectance spectra
for a 20-layer stack of alternating Ta2O5–SiO2

layers with the thickness of SiO2 fixed to
d¼ 100 nm. The thickness of Ta2O5 is
d¼ 30 nm (blue), d¼ 70 nm, and d¼ 100 nm.

(b) Color chromaticity diagram for this stack
with the layer thickness of Ta2O5 varying
continuously from d¼ 30 nm to d¼ 100 nm in
steps of 1 nm.

146j 6 The Color of Thin Films



when varying continuously the thickness of the Ta2O5 layers from 30 to 100 nm.
Although red and orange colors are obtained, the main colors are cyan, green, and
yellow. Formore red colors, other variations ofmultilayer stacks with othermaterials
but with alternating low refractive index material (LRI) and high refractive index
material (HRI) must be used.
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7
Applications

Thin films of transparentmaterials play an important role inmany fields of technical
applications. The applications can be classified into the following:

. Applications with a single unsupported layer.
Single unsupported layers appear mainly as

- thin glass and sapphire sheets (glass or sapphire wafers),

- transparent polymer films (foils), and

- semiconductor wafers.

They are almost everywhere present as food packaging, wrapping, foils,
membranes, lamination, and in display technology and solar cells, to give some
examples. These layers are usually thicker than 10mm for which a fast Fourier
transform can be used for evaluation of the thickness. The main task is checking
homogeneity of the thickness either along a line (e.g., in quality control of
transparent foils during their production) or over the full area (e.g., for semi-
conductor wafers).

. Applications with one layer on a substrate.
Films with thickness of maximum a few hundred nanometers are used as

- protective layers (hardcoats),

- anticorrosion layers,

- broadband antireflection (AR) coatings,

- adhesion and antiadhesion coatings,

- decorative coatings,

- absorbing layers,

- photoresists, and

- transparent conductive layers (TCF and TCO).

Thicker single layers appear as, for example,
- protective varnishes (hardcoats),
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- finishes,

- anodized aluminum, and

- photoresists.

. Applications with two layers on a substrate.
Frequent applications of two layers on a substrate are the following:

- A hardcoat on a protective or decorative lacquer (primer) on a substrate.

- A photoresist on silica on a wafer.

- Bonded wafer: a semiconductor wafer (mostly silicon, several ten microns)
bonded with a glue layer (several microns) on a thick semiconductor wafer.

- SOI wafer: thin silicon layer on a thin oxide layer on a thick semiconductor wafer
(SOI, silicon on insulator).

. Multilayer applications.
Multilayer systems of several nanometers thick layers are often used for

- high reflective (HR) and antireflective (AR) coatings with two–eight layers,

- beam splitter coatings with 4–15 layers,

- dielectric mirrors with layers 10 to up to more than 40,

- optical filters with 40 to up to more than 100 layers, and

- low-E coatings with 2-6 layers including thin Ag layers.

Typically, in these stacks layers of low refractive indexmaterials (e.g., MgF2 and
SiO2) alternate with layers of high refractive index materials (e.g., Al2O3, Ta2O5,
and TiO2). The thickness of each layer can thoroughly be calculated, and the
complete layer stack can be optimized.
Other examples for multilayer systems are

- thin-film solar cells and

- OLEDs (organic light emitting diodes).

. Other applications

There are several applications where the assumption of thin layers or films is
advantagous for themodeling of the optical properties of the systems.One example is
the measurement of critical dimensions of vias and trenches.

In the following sections, we present some examples ofmodern applications in the
field of thin films.

7.1
High-Reflection and Antireflection Coatings

High-reflection (HR) coatings are used to increase the reflectance of the substrate in a
certain wavelength range. Vice versa, antireflection coatings are used to reduce the
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reflectance of a substrate in a certain wavelength range. Therefore, the main
application of HR coatings is the increase of the reflectance of metal mirrors. This
will be demonstrated in Section 7.1.1. The main application of AR coatings is the
reduction of the reflectance of optical components like lenses to increase the amount
of transmitted light. This will be demonstrated with two examples in Section 7.1.2. In
other applications also, a reduction of the reflectance is favorable. Particularly in
photovoltaics the high reflectance of the semiconducting absorber material strongly
reduces the amount of absorbed light and hence the efficiency of the solar cell. Aswill
be seen in Section 7.1.3, single-layer AR coatings can dramatically reduce the
reflectance of the shiny solar wafer in the most interesting visible spectral region.

7.1.1
HR Coatings on Metallic Mirrors

HRcoatings aremostly used to increase the reflectance ofmetalmirrors. Particularly,
aluminum is often used as mirror in the visible spectral region. With a layer stack of
SiO2–TiO2 as depicted in Figure 7.1a and proposed byGl€oß et al. [162], the reflectivity
of an aluminummirror canbe increased in the visible spectral region from92 to 99%.
This is shown in Figure 7.1b with the calculated reflectance spectra of a pure
aluminum mirror and a HR-coated aluminum mirror with the HR stack from
Figure 7.1a. For wavelengths less than 450 nm, the absorption in the TiO2 layers
limits the effect. Also forwavelengths larger than 750 nm, theHR coating yields a less
reflectance of the coatedmirror than the reflectance of the uncoatedmirror. This can
clearly be recognized in the interband transition region of aluminum.
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Figure 7.1 (a) Layer stack for HR coating of an aluminummirror. (b) Reflectance of an aluminum
mirror with HR coating.
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7.1.2
AR Coatings on Glass

AR coatings act contrary to HR coatings: they reduce the reflectance of the substrate.
This is important particularly for high-precision optics where a maximum of light
transmission is desired. For the improvement of the quality of life, they can also
contribute; for example, when wearing AR-coated glasses bothersome reflections at
the glasses can be suppressed.

In the following, we present two examples of AR coatings that are useful to reduce
the reflection of a glass. The first example is a combination of SiO2–TiO2 layers with
different thickness, according to Gl€oß et al. [162], shown in Figure 7.2a.

If this layer stack gets deposited on aN-BK7 glass on one side or onboth sides of the
glass, the reflectance of a pure N-BK7 glass gets reduced in the visible spectral region
from approximately 8.5% (including rear-side reflection) to approximately 4.5% for
single-side coating and to approximately 1% for double-side coating. This can be
followed from the reflectance curves shown in Figure 7.2b. The double-side coating
exhibits a maximum in the remaining reflectance of 3% at approximately 580 nm
wavelength, with a resulting yellow color. The reflectance is decreased in the
wavelength range between 450 and 800 nm.

The second example is a commonly used three-layer AR coatingwithmaterials and
thicknesses as given in Figure 7.3a. Again, we calculated the reflectance after single-
sided and double-sided coating of a N-BK7 glass.

The reflectance of the N-BK7 glass gets reduced in the wavelength region between
400 and 800 nm from approximately 8.5% (including rear-side reflection) to approx-
imately 5% for single-side coating and to less than 1% for double-side coating. This
can be followed from the reflectance curves shown in Figure 7.3b. Both coatings
exhibit a maximum at approximately 480 nm wavelength with a resulting cyan color.
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Figure 7.2 (a) Example 1 of an AR coating onN-BK7 glass. (b) Reflectance of an N-BK7 glass slide
with this AR coating.
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Although the reflectance measurement is here the simplest and fastest technique
for an even automated quality control, there are some problems to solve for a 100%
automated control. They arise by the transparency of the specimen and the fact that
mostly coated lenses with curved surfaces are inspected. The transparencymay cause
disturbing reflections when measuring only the reflectance of the top surface. For
curved surfaces as for lenses the reflectometric measurement is perpendicular only
in the apex of the lens causing errors in the determination of the layer thicknesses or
the reflectance spectrum. For both problems, a reflectometer has been developed by
AudioDevGmbH [163] that automatically adjusts themeasuring head perpendicular
to the surface and suppresses the backside reflection.

7.1.3
AR Coatings on Solar Wafers

Photovoltaic solar cells are used to convert sunlight into electricity, based on the
photoelectric effect. The silicon is doped with phosphorus and boron to make the
semiconductor capable of conducting electricity and to establish a p–n junction.

As such a silicon wafer is shiny and reflects between 30 and 45% of the sunlight, it
is necessary to coat the wafer with an antireflective coating to reduce the amount of
sunlight lost. The most commonly used coatings are titanium dioxide (TiO2) and
silicon dioxide (SiO2). Commercial solar cells are coated with silicon nitride (Si3N4).

In Chapter 6, we already showed representative calculated spectra of thin films of
these three materials on a silicon substrate and discussed the apparent color of thin
films. For an effective reduction of the reflectance of the solar wafer, it is important
that it is significantly reduced over a large wavelength range in the visible spectral
region. Therefore, only thin films of Si3N4 of less than about 100 nm are of interest as
AR coating as can be recognized from Figure 7.4.
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Figure 7.3 (a) Example 2 of an AR coating onN-BK7 glass. (b) Reflectance of an N-BK7 glass slide
with this AR coating.
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The largest reduction in the reflectance of the silicon wafer is obtained in the
visible spectral region for Si3N4 films with thickness d between 60 and 80 nm.
However, these spectra are calculated for normal incidence. The effect of the AR
coating becomes less with increasing angle of incidence. This is demonstrated by
calculated reflectance spectra for a Si3N4 film with d¼ 70 nm on a Si wafer in
Figure 7.5. As the reflectance is polarization dependent, in principle we must
distinguish between the reflectance for p-polarized light and that for s-polarized
light. The spectra shown in Figure 7.5 are for unpolarized incident light, that is, the
sum of p- and s-polarized light.
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Figure 7.4 Calculated reflectance of AR coatings of Si3N4 on a silicon solar wafer.
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Figure 7.5 Calculated reflectance spectra of a silicon solar wafer with a Si3N4 AR coating with
d¼ 70 nm in dependence upon the angle of incidence.
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From these spectra, it becomes obvious that the Si3N4 coating is effective up to
angles of incidence of 45�. For larger angles, the reduction in the reflectance due to
the AR coating rapidly decreases with increasing angle.

The following Figure 7.6 displays exemplaric measurements of silicon nitride
coatings as antireflective coatings on two solar wafers. At left a representative
reflectance spectrum is shown and at right a full thickness map of a surface area
of 156� 156mm2 is shown. For the full-size thickness mapping, a multisensor
metrology tool FRTMicroProf� equipped with a thin-film thickness sensor FTRwas
used. Note that the z-direction in the 3D views in Figure 7.6 corresponds to the film
thickness and not to a height. The mean thickness amounts to dmean¼ 79.5 nm for
wafer no. 1 and dmean¼ 80.4 nm for wafer no. 2. The layer thickness is not
homogeneous over the wafer area but exhibits a maximum in the middle of the
wafers with thicknesses up to 82.4 nm. The smallest thickness is 76.3 nm.

The fabrication of silicon nitride layers by PECVD, sputtering, and thermal
evaporation often leads to nonstochiometric materials SixNy instead of Si3N4. Then,
however, the optical constants are also different from tabulated (n, k) values of
stoichiometric Si3N4. The use of optical constants of stochiometric silicon nitride in a
regression analysis of the film thicknessmay then lead to other thickness values. The
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Figure 7.6 Measured spectra and thickness maps of silicon nitride AR coatings on solar wafers.
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difference in the refractive index may be significant. Values ranging from n¼ 1.8 to
n¼ 2.2 at wavelength 589 nm can be obtained. We studied the thickness and optical
constants of a series of silicon nitride layers and determined the thickness and optical
constants with a regression analysis with Levenberg–Marquardt algorithm using the
self-made software MQNandK [8]. Figure 7.7 displays two measured reflectance
spectra with the corresponding thickness fit and the result for the refractive index n
and absorption index k of this SixNy layer material. The thickness of the film was
obtained to d¼ 83.1 nm (left side) and d¼ 81.1 nm (right side). For determination of
the optical constants, an exponential Cauchy ansatz (see Section 2.7.3) was used.
Compared to optical constants from literature [38], the obtained refractive index is
0.15–0.25 higher than the values from literature. Moreover, the absorption index is
significantly larger and contributes to the spectrum still at wavelengths l� 600 nm.
With these data, the thickness fit was significantly improved in all measurements in
this sample series.

7.2
Thin Single- and Double-Layer Coatings

In the following, we give some application examples for thin single- and double-
layer coatings and show representative reflectance spectra as well as full-size
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Figure 7.7 Reflectance of a Si3N4 antireflective coating on silicon solar wafers and optical
constants of SixNy determined from these reflectance measurements.
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thickness mappings. The full-size thickness mappings were enabled using a
multisensor metrology tool FRT MicroProf� equipped with a thin-film thickness
sensor FTR.

7.2.1
SiO2 on Silicon Wafers

Silicon dioxide, SiO2, is often used in microelectronics as insulator in metal–oxide
semiconductor (MOS) applications or in SOI structures (see Section 7.5), or as
passivation layer. It can easily be generated by thermal oxidation of a silicon wafer on
its surface. Wafer with such a coating can be bonded together with their oxide layers
in contact. To guarantee the correct operation of the electronic devices later on, it is of
great interest to check the homogeneity of the coating by measuring the film
thickness variation on the wafer. Figure 7.8a shows two exemplaric reflectance
spectra of a SiO2 layer (thermal oxide) on a silicon wafer. They were measured at
two positions: in the middle of the wafer and at the border. Figure 7.8b displays the
full thickness map over the whole wafer surface. The thickness varies between 135
and 185 nm with a mean thickness dmean¼ 162 nm for this layer.

7.2.2
Si3N4 Hardcoat

Another transparent material for passivation is silicon nitride, Si3N4, that also acts as
hardcoat. The thickness of such a layer is bigger than that for Si3N4 films used as
antireflective coating on silicon.Here, we show the result of a thicknessmapping of a
Si3N4 hardcoat film on a structured surface. The representative reflectance spectrum
in Figure 7.9a exhibits the characteristic thickness interferences of a thicker film. In
the wavelength range between 300 and 350nm, these oscillations have vanished due
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Figure 7.8 (a) Reflectance spectra of a SiO2 film on a silicon wafer measured at two different
positions: at the border and in the middle of the wafer. (b) Full thickness map of the SiO2 film over
the wafer surface.
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to the absorption in Si3N4 at these wavelengths. From the mapping of an area of
600� 600 mm2, it follows that the mean thickness is dmean¼ 1.17mm and the
thickness varies between 1.16 and 1.18mm. The film thickness is clearly thicker
(a few nanometers) on the structures and thinner in between the structures.

7.2.3
Double-Layer System

The next example is for a double-layer system. Such double layer systems often
consist of a lacquer on a substrate as protective or decorative layer and ahardcoat layer
on top. The regression analysis of the double-layer system then yields two thicknesses
and, hence, also two thickness maps, one map for each layer. Figure 7.10 depicts a
typical reflectance spectrum and the thickness maps for the first layer and the
hardcoat layer. The two thicknesses differ by approximately a factor of 3, leading to a
reflectance spectrum with fast oscillations from the thicker layer overlayed by
the oscillations from the thinner layer. In this example, the first layer has a
mean thickness d1,mean¼ 2.18mm and the hardcoat has a mean thickness of
d2,mean¼ 7.42 mm.

7.2.4
Porous Silicon on Silicon

The last example deals with porous silicon on silicon. As the production of pure
silicon is expensive, much efforts are made to reduce the amount of silicon in
photovoltaic applications. One way is to use porous silicon prepared, for example, by
electrochemical processing or chemical etching. Nanoporous silicon is also a
promising candidate to replace NaOH texturization of silicon solar cells followed
by the deposition of a SiO2:TiO2 double layer as a passivation and antireflection
coating [164].
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Figure 7.9 (a) Reflectance spectrum of a Si3N4 hardcoat film on a structured surface. (b) Full
thickness map of the film over an area of 600� 600mm2.
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The porosity leads to a significant change in the optical properties compared to
bulk silicon. This can be followed from Table 7.1 in which we have summarized
values for the complex refractive index of porous silicon [165] and bulk silicon [37].
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Figure 7.10 (a) Reflectance spectrum of the double layer stack protective film – hardcoat. (b) Full
thickness map of the protective film over an area of 2� 2mm2. (c) Full thickness map of the
hardcoat over an area of 2� 2mm2.

Table 7.1 Complex refractive index of porous silicon and bulk silicon at different wavelengths.

l (nm) n þ i�k

Porous silicon Silicon

300 2.32324 þ i�1.190440 5.00041 þ i�4.169420
400 2.46192 þ i�0.112458 5.58068 þ i�0.365449
500 2.08917 þ i�0.020921 4.29848 þ i�0.069782
600 1.98428 þ i�0.008176 3.94753 þ i�0.025863
700 1.93476 þ i�0.003666 3.78351 þ i�0.009429
800 1.90751 þ i�0.001924 3.69269 þ i�0.003868
900 1.88638 þ i�0.001132 3.62462 þ i�0.001847
1000 1.87496 þ i�0.000705 3.58608 þ i�0.000963
1100 1.86556 þ i�0.000600 3.55543 þ i�0.000608
1200 1.85783 þ i�0.000452 3.52992 þ i�0.000461

The values are from SOPRALAB [165] for porous silicon and from Humlicek et al. [37] for silicon.
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The refractive index n is almost halved at all wavelengths compared to bulk silicon
and even the absorption is strongly reduced in porous silicon. Forwavelengths longer
than 900 nm, the absorption index is comparable to bulk silicon. In this near-infrared
wavelength range, it is nowpossible to clearly distinguish a thinfilmof porous silicon
from a substrate of bulk silicon. Therefore, we used a spectrometer working in the
near-infrared region from 900 to 1700 nm to measure the reflectance of porous
silicon layers on silicon. The resulting spectra of themeasurement (solid lines) and of
the regression analysis (dashed lines) are summarized in Figure 7.11 for four
differently thick layers. The fits are in excellent agreement with the measurement.
The obtained film thicknesses are d¼ 390, 770, 896, and 2530 nm.

7.3
Photoresists and Photolithographic Structuring

The thickness and uniformity measurement of thin photoresist films or polymer
films is of great interest in photolithographic structuring. The film gets exposed
with radiation through a mask to copy certain structures into the film. After
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Figure 7.11 Measured (solid lines) and calculated (dashed lines) reflectance spectra of four layers
of porous silicon on silicon substrate. The obtained thicknesses are d¼ 390, 770, 896, and 2530 nm.
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development or dissolution of the film at the exposed sites (positive resist) or at the
nonexposed sites (negative resist), the desired structure can be further etched into
the underlying substrate. Thickness variations of the coating lead to nonuniform
exposure and hence may result in a nonuniform mask for the further etching
process. Therefore, it is of great interest to measure the film thickness variation
either before or after exposure.

One example is that of the inorganic–organic hybrid polymers ORMOCER�

(ORganical MOdified CERamics, a trademark of the Fraunhofer Gesellschaft zur
F€orderung der angewandten Forschung e.V., Munich, Germany). They can be used
formany applications, for example, as antisoiling, antistatic, or antireflective coating,
in microelectronics or as dental materials.

A film of thickness d¼ 13 mm was prepared on a substrate and was photolitho-
graphically structured. After development of the ORMOCER� film, the thickness
variation was measured. The interferometric full-size thickness mapping was
enabled using a multisensor metrology tool FRT MicroProf� equipped with an
interferometric thickness sensor CWL FT. Note that the z-direction in the 3D view in
Figure 7.12a corresponds to thefilm thickness and not to a height. The film thickness
variation along a line (profile) is shown in Figure 7.12c. It is taken out of the 3D
measurement as indicated in Figure 7.12b with the black bar. The thickness of the
film is rather homogeneous except in the vicinity of the rectangular holes. Obviously,
here the film accumulates around the holes, leading to approximately 0.2 mm thicker
films there. The small dips in between the holes are clearly to recognize both in the
film thickness map and in the profile with a film thickness in the dips of
d¼ 12.75 mm.

The second example is the photoresist SU-8 fromMicrochemCorp. with high UV
photosensitivity. It is mainly used inmicrosystem technology in the LIGAprocess. It
belongs to the group of negative tone resists, meaning that when exposing with UV
radiation, SU-8 becomes cross-linked/polymerized and more difficult to dissolve in
developer. Therefore, the negative resist remains on the surface of the substrate
where it is exposed, and the developer solution removes only the unexposed areas.
SU-8 is available with different viscosities for generation of films with different
thickness. The thickness obtained at 3000 rpm is given in thenameof the photoresist,
for example, SU-8 2, SU-8 10, and SU-8 100 for 2, 10, and 100mm thickness.

The refractive index of SU-8 varies between n¼ 1.615 at l¼ 400 nm and n¼ 1.566
at l¼ 800 nm. Figure 7.13 depicts the measured reflectance spectrum of a SU-8 film
of approximately 10 mm thickness and the corresponding power spectrum from
applying an FFT analysis. The optical thickness n�d is 19.24 mm, from which a
thickness d¼ 12.16 mm follows for a refractive index n¼ 1.582 (at l¼ 550 nm).

The third example is a film of the positive tone photoresist AZ 7200 from
Microchem. Corp. on a silica (SiO2) layer on a silicon wafer. Figure 7.14 depicts a
reflectance spectrum measured at the center of the wafer and the corresponding
power spectrum of the layer stack photoresist plus silica. With the mean
refractive indices nPR¼ 1.628 for the photoresist and nSiO2¼ 1.456 for the silica
layer at wavelength l¼ 675 nm, we obtain the thicknesses dPR¼ 2.44 mm and
dSiO2

¼ 8.19 mm.
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Figure 7.12 Film thicknessmapof anORMOCER� filmwith thickness d¼ 13mmonawafer. (a) 3D
view, (b) top view, and (c) thickness profile. Reproduced with permission from Ref. [166]. Copyright
Wiley-VCH Verlag GmbH & Co. KGaA.
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7.4
Thickness of Wafers and Transparent Plastic Films

7.4.1
Thickness of Semiconductor, Glass, and Sapphire Wafers

Semiconducting wafers with thicknesses between 250 and 800mm are usually
opaque in the visible spectral range (see, for example, Table 3.2). Therefore, to
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Figure 7.14 Reflectance spectrum and power spectrum of an AZ 7200 photoresist film with
d¼ 2.44mm on a silica layer with d¼ 8.19mm on a silicon wafer.
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Figure 7.13 Reflectance spectrumand power spectrumof a SU-8 photoresist filmona siliconwafer.

7.4 Thickness of Wafers and Transparent Plastic Films j163



determine their thickness by optical means, we need to use another spectral range
where the wafer becomes transparent. For silicon, this is the near-infrared region
between 1200 and 1700 nm. The commonly high refractive index of the semicon-
ducting materials leads to also high values for the optical thicknesses n�d for these
wafers. In consequence, for interferometric measurement of the thickness, the used
spectrometer must have a high wavelength resolution that is achieved by a high
number of pixels of the detector and a grating with a narrow spectral range. Typically,
the spectrometers have a spectral bandwidth of 60–150 nm and 512 pixel of an
InGaAs line detector.

Similar to the opaque semiconductor wafers, thick glass and sapphire wafers of
approximately 400–1500 mm can be measured with the same interferometric
devices. Thesematerials are transparent both in the visible and in the near-infrared
spectral region.

Interferometric full-size thickness mappings of semiconductor, glass, or sapphire
can be carried out using the multisensor metrology tool FRT MicroProf� equipped
with an interferometric thickness sensor CWL IR. This sensor is available with
different overlapping thickness ranges so that a thickness range from 4 to 5000 mm
can be covered in such a multisensor tool. These values are valid for refractive index
n¼ 1 and must be divided by the refractive index of the corresponding material.
Figure 7.15 shows a typical result for an interferometric thickness mapping of a
silicon wafer.

Another example is the so-called step wafer. It is produced by step-wise grinding of
the full wafer using the TAIKO process developed by DISCO Corp., Japan. The
TAIKO process is characterized by a remaining border of a couple of millimeters,
while themain part of thewafer gets grinded. By thismethod the resulting thin wafer
keeps mechanically more stable than a wafer the surface of which gets grinded
completely. Beginning in themiddle of the wafer, first a circular area was grinded to a
minimum thickness of approximately d¼ 100mm. Then, two more segments of a
circle were grinded from the inner to the border of the wafer with approximate
thicknesses d¼ 200 and d¼ 300 mm.Measurement of reflectance spectra was carried
out with a high-resolution spectrometer of AudioDev GmbH using a spectral range
from 1490 to 1615 nm. The obtained spectra are summarized in Figure 7.16 together

Figure 7.15 Interferometric thickness mapping of a silicon wafer with mean thickness
d¼ 774.6mm.
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with the power spectra of all three regions. With a mean refractive index for silicon
nSi¼ 3.4764 at wavelength l¼ 1550 nm, the thicknesses of the three grinded regions
are d¼ 96.07, d¼ 181.16, and d¼ 271.74 mm.

Strongly connected to the measurement of the thickness of bare semiconductor
wafers is the thickness measurement of compound wafers where a semiconductor
wafer of certain thickness is bonded to a substrate of glass or sapphire. The
measuring task is to determine the thickness of the semiconductor, the glue, and
the substrate as well as the total thickness. As long as the components are transparent
in the consideredwavelength range, the interferometricmeasurement canbe applied
for determination of all three components. For that purpose, however, the refractive
indices of the components must be known in the used spectral range, and the
thickness range of the used spectrometer includes all desired thicknesses. In
Figure 7.17, we show the result of the interferometric measurement on a compound
wafer consisting of silicon with thickness dSi¼ 215.5 mm (nSi¼ 3.503) bonded on a
glass wafer with thickness dglass¼ 701.1 mm (nglass¼ 1.505) with an epoxy of thick-
ness depoxy¼ 60.2mm (nepoxy¼ 1.41). The analysis of the measured reflectance with
FFTexhibits up to six prominent peaks that can be assigned to the optical thicknesses
of silicon, glue, and glass, and to the sums of the optical thicknesses.

Beyond the interferometric measurement, another method has successfully been
established for optical thickness measurement of thick opaque and transparent
substrates: the thickness measurement with two opposite chromatic white light
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Figure 7.16 Reflectance spectra and power spectra of a step wafer with three grinded regions with
d¼ 96.07, 181.16, and 271.74mm. The wafer has been manufactured with the TAIKO process.
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sensors (see Section 4.3.2 for theworking principle of the chromatic sensor). A sketch
of such a system is drawn in Figure 7.18. Both sensors measure the distance from
sensor to the specimen. Calibration of the sensors on a gauge standard of certified
thickness allows a rather precise determination of the total thickness and the total
thickness variation (TTV) of the wafer.

As the used chromatic white light sensors can also be used both for contactless
topography and roughness measurement and for measurement of bow and warp of
the wafers, this combination has been established as a workhorse in semiconductor
and solar industry. It is realized in, for example, the multisensor metrology tool FRT
MicroProf� TTV and can be supplemented by more interferometric thickness

Figure 7.18 Sketch of a TTV measurement with two opposite chromatic white light sensors.
Courtesy of FRT GmbH, Germany.
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Figure 7.17 Power spectrum of a silicon wafer (dSi¼ 215.5mm) bonded on a glass substrate
(dglass¼ 701.1mm). The thickness of the epoxy is depoxy¼ 60.2mm.
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sensors for thin-film thickness determination. Figure 7.19 displays two typical results
for the thickness mapping of transparent wafers with a TTV system.

The thickness of the sapphire wafer is very homogeneous. It varies only between
1.297 and 1.300mm around the mean thickness of 1.299mm except for the border
where it partly falls down to 1.293mm. The thickness of the glass plate is also
homogeneous with a mean thickness of 786.2mm and variations between 785 and
787 mm.The surfaces of the glass plate reveal grooves. They result from the polishing
of the surfaces.

The advantage of the TTV measurement over the interferometric thickness
measurement is that it can also be applied to compound wafers with at least one
component being opaque, for example, if germanium is bonded to a glass or
sapphire wafer.

7.4.2
Thickness of Transparent Plastic Films

Transparent foils often come across to us as food packaging, wrapping, foils,
membranes, and lamination. The thickness typically ranges from approximately
10 to approximately 500mm. Thickness determination is important mainly to save
money because many foils are prepared by extrusion using several different more or
less expensive precursors.Hence,mainly in-line thicknessmeasurement is a fast and
effective process control technique. In the following, we present two examples of
optical thickness measurement on thin transparent foils.

The following example is a thin polypropylene (PP) sheet. Its thickness was
measured with a spectrometer working in the near-infrared spectral region because
the foil is cloudy in the visible spectral region. Natural PP is translucent because it
contains crystals of PP that scatter light. The scattering strongly disturbs the
interferences in the visible spectral region. The optical thickness of the foil
was determined to n�d¼ 29.82 mm, corresponding to a thickness d¼ 20.15 mm for
n¼ 1.48 (PP in the NIR). Themeasured reflectance spectrum and the corresponding
power spectrum from FFT analysis are summarized in Figure 7.20.

Figure 7.19 Thicknessmapping of (a) a sapphire wafer with dmean¼ 1299mmand (b) a glass plate
of 30� 30mmsizewith dmean¼ 786.2mmusing a TTV systemwith twoopposite chromatic sensors.
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In the next step, this plastic film was coated with a thin varnish. The measured
reflectance spectrum in Figure 7.21 now exhibits fast oscillations from the foil
overlayed by a slow oscillation that corresponds to the thin coating. The analysis with
FFT yielded two peaks that could be assigned to the foil (n2�d2¼ 29.52 or d2¼ 19.95
mm) and the varnish with n1�d1¼ 1.807 mm. This corresponds to a thickness of
d1¼ 1.203 mm with a refractive index of n1¼ 1.502 (in the NIR). The sum of both
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Figure 7.21 Near-infrared reflectance spectrum and power spectrum of a polypropylene foil of
thickness d¼ 19.95mm coated with a varnish of thickness d¼ 1.203mm.

1000 1200 1400 1600

0.02

0.04

0.06

0.08

0.10

0 10 20 30 40 50 60 70

20

40

60

80

100

120

140optical thickness
nd = 29.82 µm

R
ef

le
ct

an
ce

Wavelength [nm]

 P
ow

er S
pectrum

Pixel Number j

Figure 7.20 Near-infrared reflectance spectrum and power spectrum of a polypropylene foil of
thickness d¼ 20.15mm.
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optical thicknesses n1�d1 þ n2�d2 can be recognized in the power spectrum as
shoulder at higher pixel numbers. The difference in the thickness of the PP foil
measured before and after the coating is mainly due to different measurement
positions. Then, the thickness variation in the PP foil leads to slightly different
thickness values in the measurements.

7.4.3
Thickness of Doped Silicon

Almost all silicon and solar wafers are doped. The reason is that the intrinsic
concentration of free charge carriers in silicon is only on the order ofNi� 1010 cm�3.
This is not sufficient to use silicon for electronic devices or solarwafers sincewith this
low carrier concentration the conductivity is too low. It can be increased by a factor up
to 106 by doping either with elements from the third group in the periodic table
(boron, indium, aluminum, and gallium) as electron acceptors (p-doped Si) or with
elements from theVgroup in the periodic table (phosphorus, arsen, and antimony) as
electron donors (n-doped Si) to several 1020 cm�3 free charge carriers. The doping
elements are embedded in the lattice of the semiconductor crystal.

The common doping processes are

. adding dopants to the melt during the Czochralski process (CZ) or the float zone
process (FZ) when forming the ingot,

. thermal diffusion into the wafer from one wafer surface,

. ion implantation of dopants,

. epitaxial growth, and

. alloying.

Epitaxial growth of a film of the dopant material is almost never used. Alloying is
also sparsely used and often even undesired. Hence, mainly the first three doping
methods above are commonly used.

Doping during the CZ or FZ when forming the ingot is the simplest doping
process and results in a homogeneous distribution of the dopants in the complete
wafer (basic doping) with charge carrier concentrations ofN� 1015–1016. This basic
p- or n-doping increases mainly the conductivity of the semiconductor. For a higher
concentration of dopants in a smaller regionof thewafer, doping by thermal diffusion
or ion implantation is used.

Doping by thermal diffusion is a low-cost method, but has some disadvantages.
Typically, the wafer surface gets overlayed with the dopant (infinite source) and the
wafer gets heated. The diffusion of dopant material from the infinite source into the
wafer leads to a characteristic profile shown in Figure 7.22a as solid line that depends
on the diffusion constant of the dopant elements and the time, and can be
approximated by an error function erf(x). In the second step – the drive-in – the
wafer gets heated again to distribute better the diffused dopants. This diffusion from
finite source results in a Gaussian profile as illustrated in Figure 7.22a with the
dash–dot-dot line. The final profile is a convolution of error function and Gaussian
function with maximum concentration of dopants at the wafer surface. The total
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depth of the profiles from diffusion is typically on the order of 2–4mm, and can
approach about 20 mm. The disadvantages of the diffusion process are that prepa-
ration of homogeneously doped layers is not possible and that preparation of low-
doped layers is problematic.

For ion implantation, the dopants get ionized and accelerated in an electric field.
They hit the wafer with energies of typically 10–400 keVand penetrate the wafer. The
penetration depthdepends on themass and energy of the dopant ions, themass of the
crystal atoms, the electronic interaction cross sections, and the crystalline orienta-
tion. The resulting concentration profiles are typically Gaussian profiles with the
maximum inside a small layer in the wafer, as illustrated in Figure 7.22b. However,
the total depth of the profiles is only on the order of 0.5–1.5mm. As the ions have a
high kinetic energy, they damage the crystalline structure of the wafer, which can be
partly repaired again by annealing at 700–1000 �C.

From the point of view of optical thickness determination, we must consider that
doping also affects the refractive index and the absorption index of the semicon-
ducting material due to the shafting of free charge carriers. This change may not be
uniform since the distribution of the dopants may not always be uniform but follows
a profile as shown in Figure 7.22. We first discuss the changes in the complex
refractive index caused by doping. Then, we consider in detail the thickness
determination for wafers with uniform distribution of dopants (only n- or p-doped)
and for wafers with nonuniform distribution (basic n- or p-doping during CZ or FZ
plus heavy p- or n-doping by diffusion or ion implantation).

Dielectric function or complex refractive index of heavily doped silicon has already
been subject of several experimental ellipsometric studies, for example, [167–170].

For calculation of the complex refractive index of doped silicon, we assume the
dielectric function of doped silicon e� as sum of the dielectric function of undoped
silicon e fromHumlicek et al. [37] plus a Drude susceptibility for the contribution of
the dopants:

e*SiðvÞ ¼ eSiðvÞ� v2
P

v2 þ ivc
: ð7:1Þ
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Figure 7.22 Dopant concentration profiles for (a) thermal diffusion and (b) ion implantation.
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The Drude susceptibility changes in dependence on the concentration N of free
charge carriers (electrons (n-doped) or holes (p-doped)) as the plasma frequency vP

depends on the concentration:

v2
P ¼ Ne20

meff e0
: ð7:2Þ

In a parabolic band structure, the effective mass meff of electrons is identical to
the electronmassme, but in nonparabolic band structuresmeff may differ fromme.
For silicon the effective mass is 1.08�me for the electron and 0.56�me for the hole
(derived from the density of states). For meff¼me, we have approximately
v2

P ¼ 3:18261� 109 � N½cm�3�:
The damping constant c in the Drude susceptibility is also an important factor.

This can be recognized best if we resolve (7.1) into real and imaginary part:

e*1;SiðvÞþ i � e*2;SiðvÞ ¼ e1;SiðvÞ� v2
P

v2 þ c2
þ i � e2;SiðvÞþ c

v

v2
P

v2 þ c2

� �
: ð7:3Þ

While the real part of the dielectric function gets decreased by (v2
P=v

2 þc2), the
imaginary part increases by this amount, but multiplied by c/v. Hence, for a strong
damping of the free charge carriers introduced by doping, mainly the absorption in
the wafer gets affected.

The damping constant c can be retrieved from the conductivity s or the resistivity
r¼ 1/s of the wafer using the relation

s ¼ e0
v2

P

c
; ð7:4Þ

presuming the conductivity or the resistivity has beenmeasured for the whole wafer.
Using Maxwell�s relation

nþ ik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ ie2

p
ð7:5Þ

the complex refractive index is obtained from the changed dielectric function.
To study the effect of doping on the refractive index, we carried out calculations on

the optical constants of doped silicon assuming three damping constants c¼ 1014

s�1, 1015 s�1, and 1016 s�1, and varied the carrier concentration N from N¼ 1015

cm�3 to N¼ 1020 cm�3 by multiplying with the factor 10. The dielectric function of
doped siliconwas calculated formeff¼me. In Figure 7.23, we summarized the results
for n(l) and k(l) for a damping constant c¼ 1015 s�1 in comparison to the data from
Humlicek et al. [37] and the ellipsometric data for heavily arsenic-doped silicon from
Aspnes et al. [168]. The carrier concentration N was here N¼ 3.3� 1020 cm�3. We
found a good agreement with the data from Aspnes for N¼ 3.3� 1020 cm�3 and a
damping constant c¼ 2� 1015 s�1 for the imaginary part k of the complex refractive
index. The agreement is not as good for the real part n. The refractive index decreases
less than in the data fromAspnes compared to the intrinsic Si values. First influences
of the doping on the refractive index can be recognized for N� 1017 cm�3 at
wavelengths l> 1.0mm.
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In the following, we assume a uniform distribution of dopants in the wafer as
obtained when doping during the CZ or FZ process. Then, the thickness determi-
nation is in principle similar to that of an undoped silicon wafer, except that the
dielectric function and the corresponding refractive index are changed by the doping.
Therefore, we can expect a dependence of the maximummeasurable thickness dmax

upon the concentration of free charge carriers N.
We calculated from (3.11) the maximum thickness dmax for a bare silicon wafer

assuming a signal-to-noise ratio SNR¼ 1000 and considered that also the reflectivity
changes with the doping because the refractive index n þ i�k is affected by the
doping. The results for dmax in dependence on N are summarized in Table 7.2.

Comparing the maximum thickness dmax for N¼ 1015 and 1016 cm�3 with the
results for dmax in Table 3.2, there are only slight differences. The differences increase
with N and remarkable differences are obtained for N¼ 1018 cm�3. Up to this
concentration, it is, however, still possible to measure the thickness of uniformly
doped silicon wafers of 1000 mm thickness or less, at wavelengths l> 1100 nm,
presuming the signal-to-noise ratio is SNR¼ 1000 or even higher. With a concen-
tration ofN¼ 1019 cm�3, themaximum thickness gets almost halved or even cut into
thirds compared to N¼ 1015 cm�3 for wavelengths l< 1400 nm. For longer wave-
lengths, the absorption caused by the free carriers reduces even more drastically the
maximum measurable thickness. For N¼ 1020 cm�3, the maximum thickness is
finally less than 100mm at all wavelengths. For the heavily doped silicon of Aspnes
et al. [168], the maximum thickness approaches only approximately 20–25mm.

Having a uniformly doped wafer, for example, a n-type Si-wafer, it will be p-doped
in a thin surface region by thermal diffusion or ion implantation to establish a p–n
junction. As we have seen above, both the diffusion process and the ion implantation
process allow high concentration N of the dopants but with a nonuniform distribu-
tion described by either an error function or a Gaussian distribution.

Table 7.2 Maximum thickness dmax in micrometers for doped silicon with N¼ 1015 cm�3 to
N¼ 1020 cm�3 and c¼ 1015 s�1.

l (nm) N (cm�3)

1015 1016 1017 1018 1019 1020 Aspnes

1000 590 590 587 560 384 92.3 26.2
1100 1028 1027 1017 927 491 85.8 24.3
1200 1475 1473 1450 1251 527 77.4 22.6
1300 1770 1766 1728 1425 516 69.7 21.3
1400 2075 2069 2012 1578 499 63.4 20.2
1500 2408 2399 2316 1719 480 58.3 19.3
1600 2759 2746 2629 1843 461 54.0 18.6
1700 3151 3134 2971 1957 443 50.4 18.0

The last column is for the data that correspond to the data of Aspnes et al. [168] with
N¼ 3.3� 1020 cm�3 and c¼ 2� 1015 s�1. All values are obtained for a signal-to-noise ratio
SNR¼ 1000.
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How canwe now determine the thickness of the wafer and what is the influence of
the doping profile? A possible way to determine the thickness and even the profile of
the dopant concentrationmay be to divide the heavily doped region intoM thin layers
of identical thickness d0. For each of these thin layers, the corresponding concen-
trationN of free charge carriers is obtained from the concentration profile. Then, the
refractive index of each thin layer can be modeled using (7.3) and Maxwell�s
relation (7.5). By this way, the wafer is composed by a layer stack of M layers
with thickness d0 and optical constants (n þ ik)m (m¼ 1, 2, . . ., M) according to
the concentration Nm, on a silicon substrate with thickness d�M�d0. The result
for the total thickness d then depends on how many layers M are used and how
thick they are assumed to simulate the concentration profile. The determination of d
is, therefore, very complex and will need a comprehensive regression analysis rather
than a single interferometric measurement.

In a theoretical approach, we assumed a doping profile as resulting from ion
implantation that extends to 300 or 1500 nm. We divided this region into M¼ 15
layers of thickness d0¼ 20 nm or 100 nm and assigned them the corresponding
carrier concentration. We assumed a heavy doping up to N¼ 3.3� 1020 cm�3. The
basic doping was assumed N¼ 1016 cm�3. With these assumptions, we calculated
the wavelength-dependent refractive index for each layer and finally the reflectance
spectra of doped wafers of total thickness d¼ 50, 60, 70, 80, 90, and 100mm. The
resulting spectra were analyzed with a fast Fourier transform, and the wafers with
the basic dopingwere analyzedwith FFT for comparison. The result is that the profile
did not really affect the thickness determination. One reason may be that the total
thickness of 1500 nm for the layer stack is too low to introduce significant changes in
the reflectance spectra.

7.5
Silicon on Insulator

SOI wafers are silicon wafers having an oxide layer buried below the surface of a
crystalline silicon top layer. The wafer is a stack of material with silicon on top (SOI),
resting on an oxide film (buried oxide¼BOx) on top of silicon substrate. SOI wafers
are typically created by bonding two siliconwaferswith SiO2 layer (thermally oxidized
silicon) and then thinning the top silicon layer to the desired thickness. Another
manufacturing process is to implant oxygen ions into a thin layer in the silicon wafer
followed by annealing to generate a homogeneous SiO2 layer. This process is called
SIMOX. According to the VSI specifications for SOI wafers, the thickness of the
thermal SiO2 layer is between 0.5 and 4mm, the handle wafer thickness is
250–1000mm, and the device wafer thickness is 10–525 mm. For a compendium on
SOI technology, we refer to Ref. [171].

In Figure 7.24, we give an example of the reflectance spectrum and the corre-
sponding power spectrum from FFT for a SOI wafer with a device wafer thickness of
approximately 25 mm on SiO2 with approximately 4mm thickness. The silicon
substrate thickness amounts to 725mm. The reflectance spectrum is characteristically
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modified by the film thickness interference patterns. The optical thicknesses of
the two layers are n1d1¼ 5.43 mm for the buried oxide layer and n2d2¼ 87.73 mm
for the silicon layer. The silicon layer results in fast oscillations that are super-
imposed by the slower oscillations due to the thin SiO2 film. The power spectrum
exhibits several maxima at different pixel numbers. The most prominent can be
assigned both to the single optical thicknesses and to the sum of the two optical
thicknesses and higher harmonics. With themean refractive indices n1¼ 1.447 for
silica and n2¼ 3.503 for silicon at wavelength l¼ 1300 nm, we obtain thicknesses
d1¼ 3.75 mm and d2¼ 25.04 mm.

SOI wafers with ultrathin silicon top layer are of growing importance for efficient
transistor miniaturization as fully depleted transistors. In this case, the starting
substrate for planar ultrathin body transistors and three-dimensional transistors
(FinFETand triGate) are SOI wafers with an extremely thin silicon layer of only a few
nanometers (typically 10–30 nm) on silica (typically 50–150 nm). The trend is to
approach 12 nm SOI/25 nm BOx. Silicon-on-insulator technology gives many advan-
tages over bulk silicon CMOS processing: higher speed, lower power dissipation,
high radiation tolerance, lower parasitic capacitance, low short-channel effects, and
high subthreshold voltage swing.

In a series of calculated spectra, we demonstrate in Figure 7.25 how the
optical response of such a thin and transparent Si layer on an also transparent
and thin SiO2 layer (d¼ 100 nm) evolves. Optical constants were taken from
Refs [37, 38].

The spectra for d	 25 nm are determined by the buried oxide layer that exhibit a
first interferenceminimumat 950 nmwavelength.However, with increasing Si layer
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Figure 7.24 Example of a thick silicon top layer with d2¼ 25.04mm on a buried silica layer with
d1¼ 3.75mm. The optical thicknesses of the two layers are n1d1¼ 5.43 and n2d2¼ 87.73mm. (a)
shows the reflectance and (b) the corresponding power spectrum from the FFT.
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thickness this minimum gets shifted to longer wavelengths and a first interference
minimum from the high refractive silicon top layer appears. Thisminimum shifts to
longer wavelengths with increasing thickness and for d� 45 nm even a second
minimum appears that also shifts to longer wavelengths with increasing thickness.
The thickness of the very thin Si top layer and the thickness of the buried SiO2 layer
can be evaluated from the spectra by applying a downhill simplex algorithm. Another
possibility is to estimate the thickness of the Si top layer from thewavelength position
of the first minimum. However, this is possible only if the thickness of the buried
oxide layer is well known. For example, in our calculations the thickness of the SiO2

layer was fixed to d¼ 100 nm and we obtained a dependence of the wavelength
position of thefirstminimumupon the thickness of the layer that can be expressed by
the formula

PosðdÞ ¼392:81219 nm�3:53854 nm�1 � d
þ 0:13888 nm�2 � d2�7:59907 � 10�4 nm�3 � d3 ð7:6Þ

with the thickness d in nanometers.
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Figure 7.25 Evolution of the reflectance of the system silicon–insulator–silicon for a thin silicon
layer with d¼ 10–70 nm on a silica layer with d¼ 100 nm on a thick silicon substrate.
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7.6
Thin-Film Photovoltaics

7.6.1
Inorganic Thin-Film Solar Cells

All inorganic thin-film technologies applied in photovoltaics have the advantage of
reducing the amount ofmaterial required in creating the activematerial of a solar cell.
However, the majority of film panels has significantly lower conversion efficiencies
and need therefore larger areas per watt production. This is themain reasonwhy they
have not yet become mainstream solar products due to their lower efficiency and
corresponding larger area consumption per watt production. Mainly the following
three thin-film technologies are often used for outdoor photovoltaic power
production

. Amorphous silicon technology.

. Cadmium telluride (CdTe) technology.

. Copper indium gallium diselenide (CIGS) technology.

Among them, CIGS has the highest efficiency (approx. 20%). The principal setup
of the used modules is sketched in Figure 7.26.

Thematerial properties of amorphous silicon (a-Si) are significantly different from
those of crystalline silicon (c-Si). Caused by the missing long-range order in a-Si, a
large number of dangling bonds are present that must be passivated with hydrogen
before thematerial can be used as solar cellmaterial. The standard a-Si cell ismade of
multiple hydrogenated a-Si:H layers: the usual p- and n-type layers, plus an intrinsic
(i-type) layer. The intrinsic or undoped layer is the active layer of the device. It consists
either of a-Si:H or of microcrystalline mc-Si:H. This p–i–n stack of a few 10 micron
thickness is sandwiched between a transparent conductive oxide (TCO) and a back
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Figure 7.26 Thin-film solar modules: (a) amorphous silicon (a-Si), (b) CdTe, and (c) CIGS.
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metallization (Al or Ag). All layers are deposited on a glass or other substrate
(compare Figure 7.26)). To improve the performance, often tandem or triple junction
p–i–n stacks are used.

Copper indium gallium diselenide is a polycrystalline material consisting of small
crystallites of approximately 0.5–1.0mm in size. The material is a solid solution of
copper indium selenide and copper gallium selenide with the chemical formula of
CuInxGa(1�x)Se2. CIGS has an absorption coefficient that is among the highest for
semiconductor materials. Ninety-nine percent of the light incident on CIGS is
absorbed in the first micrometer of the device for which the thickness of the CIGS
is usually about 2 mm. Optical constants of CIGS can be found, for example, in Ref.
[172]. Another favorable characteristic is that copper indium gallium diselenide has
one of the highest current densities of any semiconductormaterial, with the potential
to produce high current outputs. These films retain their performance properties
better than most semiconductors. And finally, CIGS is amenable to large-area,
automated production.

The CIGS is usually formed on a base electrode of molybdenum (Mo) of
approximately 0.5–1mm thickness (back contact) on glass. Thin-filmCIGS is a p-type
semiconductor. A junction is formed at the surface by deposition of a very thin layer of
n-type CdS (approx. 50 nm). This creates an n–p homojunction just inside the CIGS,
rather than a simple heterojunction. The device is completed by deposition of a
transparent conductive oxide on top of the junction. It usually consists of a thin
intrinsic ZnO layer that is capped by a thicker, Al doped ZnO (ZnO:Al) layer.

For a detailed review on thin-film photovoltaic devices, we refer the reader to
Refs [173, 174]. From the viewpoint of optical film thickness determination, it is of
interest to measure

. TCO and a-Si layer thickness for the a-Si cells,

. TCO and CdS layer thickness for the CdTe cells, and

. TCO and CdS layer thickness for the CIGS cellls.

In the following, we present results for TCO and CdS for CIGS cells.
TCOs typically are made of a layer of indium tin oxide (ITO). Tin-doped indium

oxide (ITO, In2O3:SnO2) is a solid solution of indium(III) oxide and tin(IV) oxide.
Owing to the increased price of indium, today alternatives to ITO have been
developed with aluminum-doped zinc oxide (AZO, ZnO:Al), fluorine-doped tin
oxide (FTO, SnO2:F), and antimony-doped tin oxide (ATO, SnO2:Sb). The highest
optical transparency and the highest electrical conductivity (specific resistance
110 mV cm), however, is still obtained for ITO. For solar cells, ZnO:Al layers are
widely established.

In Figure 7.27, we present representative measured spectra of transparent
conductive oxides ITO (In2O3:SnO2), AZO (ZnO:Al), and FTO (SnO2:F), and a
spectrum of a CdS buffer layer on CIGS like they are used in thin-film solar cells. The
indicated thicknesses are obtained from regression analysis. The AZO films exhibit a
reflectionmaximumaround 300 nm that is not caused by thickness interferences but
results from the absorption in ZnO:Al in this wavelength range. The FTO layer
exhibits thickness oscillations corresponding to its thickness of 500 nm and a mean
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refractive index of n¼ 1.82. The thin CdS layer with d¼ 44.6 nm on the CIGS
absorber acts similar to an antireflective layer. The reflectance exhibits a minimum
around 525 nm wavelength with a reflectance of less than 1%. Considering only the
visible spectral range (380–780 nm), the reflectance is higher at longer wavelengths
than at shorter wavelengths. This behavior results in a yellow or an orange color of
CdS films of comparable thickness.

Optical characterization of ITO films is challenging as the optical properties are
highly dependent on the film deposition (DC/RFmagnetron sputtering, reactive MF
magnetron sputtering, CVD) and the annealing process. Mostly, the fabrication
process leads to polycrystalline or amorphous microstructures. Hence, besides the
thickness determination, the determination of the optical constants of the ITOfilm is
of interest. In Figure 7.28, we present optical constants for ITO derived from various
measurements of ITO films on glass in comparison to ellipsometric data from
SOPRALAB [165] and Gerfin and Gr€atzel [39]. Gerfin and Gr€atzel used a harmonic
oscillator model for the interband transition in the UV in ITO plus a Drude
susceptibility for the free charge carriers in ITO. This approach was also used in
our calculations with MQNandK [8].
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Figure 7.27 Measured spectra of ITO (In2O3:SnO2), AZO(ZnO:Al), and FTO(SnO2:F) transparent
conductive oxides and cadmium sulfide on CIGS.
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7.6.2
Organic Thin-Film Solar Cells

Organic solar cells are a relatively novel technology. As these cells can be processed
from solution, a simple roll-to-roll printing process leads to inexpensive, large-scale
production. However, energy conversion efficiencies achieved to date are low
compared to inorganic materials.

Organic solar cells and polymer solar cells are built from thin films (typically
100 nm) of organic semiconductors including polymers. The principal setup of an
organic solar cell is sketched in Figure 7.29. ITO (or another TCO) is put on glass or
PET substrate (thickness of ITO about 20–100 nm). Then, a layer of the organic
conductive and transparent film PEDOT:PSS (poly(3,4-ethylenedioxy-thiophene):
poly(styrene sulfonate)) follows that is used both for smoothing the ITO surface and
for improving the hole conduction (typically 40–100 nm thickness of PEDOT). The
active layer is formed by P3HT:PCBM (poly(3-hexylthiophene):[6,6]-phenyl-C61-
butyric acid methyl ester) (typically 100–350 nm). The back contact is formed by
aluminum (around 80–100 nm thickness). The use of PET as substrate (around
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Figure 7.28 Optical constants of ITO films derived from thin-film measurements on glass in
comparison to optical constants from SOPRALAB [165] and Gerfin and Graetzel [39].
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150–250 mm) allows to build a flexible solar cell. When a photon is converted into an
electron hole pair in the P3HT:PCBM layer, the charges remain bound in the form of
an exciton and are separated when the exciton diffuses to the interface to the PEDOT:
PSS layer.

InFigure 7.30,we show representative reflectancemeasurements of a PEDOTfilm
on ITO on glass and a P3HT film on ITO on glass. The thicknesses of the films were
obtained by regression analysis.

The PEDOT film is too thin to exhibit oscillations in the reflectance. Only the first
minimum appears around 310 nm wavelength. The thicker P3HT film already
exhibits thickness oscillations with a maximum around 600 nm that is caused not
only by the thickness interferences but also by the absorption in the film. The P3HT
film appears greenish in the reflectance as it exhibits a maximum between 500 and
650 nm in the visible spectral range. In this range also the absorption is high in the
P3HT:PCBM layer.
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Figure 7.29 Organic thin-film solar module.
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Figure 7.30 Reflectance spectra of a thin PEDOT film and a thin P3HT film on ITO on glass.
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7.7
Measurement of Critical Dimensions

Advanced semiconductor devices like deep-trench capacitor DRAM devices are
scaled to more and more smaller dimensions. For example, the TSV roadmap
specifies 0.8mm diameter TSVs with an aspect ratio of 10 : 1–20 : 1, that is, deep
narrow structures. There are four main structures requiring advanced in-line
automated metrology techniques.

(A) Through silicon vias: The critical dimensions of a through silicon vias (TSV) are
the depth, the top diameter, the bottom diameter, and, if top and bottom diameter
differ, the taper angle. Usually, the silicon wafer has a coating of SiO2 on the order
of 1–2mmon top surface. For process control, TSVarrayswithfixedpitch are used.

(B) Deep straight trenches: The critical dimensions of deep straight trenches are very
similar to the TSV critical dimensions.

(C) Bottle-shaped trenches: At the 90 nm technology node, the trench capacitor
design of DRAM devices has changed from a vertical pit to the �bottle� trench
design, with a �neck� that is narrower than the �body� below.

(D) Recessed trenches: Following the fabrication of the deep-trench storage capacitor,
the transistor and isolation structures are formed near the top of the deep trench.
This process involves several cycles of trench filling, with polycrystalline silicon
(polysilicon) or resist, and etchback to form recess structures. The recess depth,
that is, the remaining depth of the trench after refill, is of interest for the
fabrication processes illustrated in Figure 7.31.

Traditionally used methods in process control run into more and more problems
whenmeasuring critical dimensions of trenches, vias, TSVs, and recess parameters.
Hence, a method has been established that uses infrared reflectometry or ellipso-
metry for optical measurement and modeling the measured reflectance using EMA
(effective medium approximation) models (see Section 2.7.3). This method is called
model-based infrared reflectometry (MBIR).

MBIR provides noncontact, rapid measurements from which details of the
complex trench profiles can be extracted. It uses an infrared beam with wavelengths
l> 1.4mm to probe the trench structure. Silicon microstructures are transparent at
these wavelengths and one obtains an interference pattern in the reflectance
spectrum that encodes details of the trench shape and depth. Light scattering is
minimized since the measurement wavelengths are significantly longer than the
DRAM array pitch. Then, the DRAM trench structures can be modeled as multi-
layered film stacks with optical properties (n and k) of the various layers computed
according to EMAs.

In Figure 7.32, we show schematically how the above different physical structures
(A–D) are optically modeled. The general procedure is as follows:

. Replacing the hardcoat layer (Si3N4 or SiO2) with TSVs or trenches by a layer of
Si3N4 or SiO2 with a certain amount of voids. The dielectric function of this layer
gets calculated with a two-dimensional EMA model. It is necessary to have a
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periodic arrangement of trenches or vias because only then the filling factor f in
the EMAmodel can be connected with the volume of the single via or trench and
the periodicity of the vias or trenches in the periodic array.

. Replacing the silicon region with vias or trenches by a layer of Si with voids. The
effective dielectric function is again calculatedwith 2D-EMAmodels. If necessary,
this region can be divided into multiple layers to consider the shape of the via
or trench inmore detail. For the bottle-shaped trenches and the recessed trenches,
the silicon region gets divided into two regions: a neck region with empty narrow
trenches and a region either with wider trenches for the bottle-shaped trenches or
with narrow trenches filled with polycrystalline silicon or resist.

. Replacing the bottom silicon region with vias or trenches by a multilayer stack of
thin layers (graded layer) to consider different depths of the trenches. The optical
constants of each layer are calculated from an EMA model.

. Calculation of the reflectance of this multilayer stack with a silicon substrate.

. Fit with Levenberg–Marquardt algorithm to determine the critical dimensions
and the depth.

For further reading on MBIR and its application, we refer to Refs [175–181]. An
overview of the state-of-the-art metrology of periodic trench structures based on
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Figure 7.31 Illustration of themain structureswith critical dimensions: (a) through silicon vias and
deep straight trenches, (b) bottle-shaped trenches, and (c) recessed trenches.
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infrared reflectance spectroscopy is provided in the paper by Maznev et al. [182].
Exemplary experimental spectra are taken fromGostein et al. [179] and are shown in
Figure 7.33. The newest MBIR technique – the small spot extended MBIR – is
realized, for example, in the IR 2500 S from Semilab AMS, using a probe size of
50 mm and a wavelength range from 0.9 to 20 mm.

Recent results obtained applying the MBIR technique as an in-line monitoring
technique for high aspect ratio structures (deep-trench isolation structures, TSVs) are
presented in Ref. [183]. The technique is demonstrated to be a robust method for the
in-line geometry control of etched structures.

The success of this technique relies heavily on accurate modeling of trench
structures and fast extraction of trench parameters. In 2009, Zhang et al. [184]
proposed a modeling method named corrected effective medium approximation
(CEMA) for an accurate and fast reflectivity calculation of deep-trench structures.
They also developed a method combining an artificial neural network with a
Levenberg–Marquardt algorithm for robust and fast extraction of geometric para-
meters from the measured reflectance spectrum.

"

(a)

(b)

(c)

Figure 7.33 Experimental MBIR spectra of (a) deep trenches, (b) bottle-shaped trenches, and (c)
recessed trenches.
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Appendix A: Numerics with Complex Numbers

Complex numbers are useful abstract quantities that can be used in calculations
and result in physically meaningful solutions. Complex numbers have been
introduced to allow for solutions of certain equations that have no real solution.
For example, the quadratic equation x2 þ 1¼ 0 has no solution in the field of real
numbers. Complex numbers are a solution to this problem. The complex numbers
are the field C of numbers of the form z¼ x þ i�y, where x, y2R, the field of real
numbers, and i is the imaginary unit i ¼ ffiffiffiffiffiffiffi�1

p
. They extend the idea of the one-

dimensional number line to the two-dimensional complex plane by using the
number line for the real part (x-values) and adding a vertical axis for the imaginary
part (y-values). The graphical representation of the complex number z in the
complex plane is sketched in Figure A.1.

If z¼ x þ i�y is a complex number, then x is called real part of z, that is, Re(z)¼ x.
Analogously, Im(z)¼ y is called the imaginary part of z.

If z¼ x þ i�y is a complex number, then z� ¼ x� i�y is the complex number that
lies in the conjugated plane and is therefore called complex conjugate number.

In the field C of complex numbers, there are two operations defined: �þ �,
meaning addition, and �.�, meaning multiplication.

A.1
Addition

The addition of the complex numbers z1 and z2 is defined as

z1 þ z2 ¼ x1 þ i � y1ð Þþ x2 þ i � y2ð Þ ¼ x1 þ x2ð Þþ i � y1 þ y2ð Þ: ðA:1Þ

The addition is commutative, that is, z1 þ z2¼ z2 þ z1.
The neutral element of the addition is n(þ )¼ 0 þ i�0¼ 0.
For the inverse element of the addition invþ, it is z þ invþ (z)¼ n(þ ), resulting in
invþ (z)¼�z.
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A.2
Multiplication

The multiplication of two complex numbers z1 and z2 is defined as

z1 � z2 ¼ x1 þ i � y1ð Þ � x2 þ i � y2ð Þ ¼ x1 � x2�y1 � y2ð Þþ i � x1 � y2 þ x2 � y1ð Þ:
ðA:2Þ

The multiplication is commutative, that is, z1�z2¼ z1�z2.
The neutral element of the multiplication is n(.)¼ 1 þ i�0¼ 1.
For the inverse element of the multiplication inv., it is z�inv.(z)¼ n(.), resulting in
inv.(z)¼ 1/z for all complex numbers 6¼ 0. With the help of the complex conjugate
number z�, it can be expressed as

inv.ðzÞ ¼ 1=z ¼ z�=ðz � z�Þ: ðA:3Þ

A.3
Modulus

The modulus of a complex number z¼ x þ i�y corresponds to the length of the
pointer in Figure A.1. It is the hypotenuse of the triangle formed by the real part x and
the imaginary part y as legs of a right-angled triangle. Therefore, the modulus |z|
follows as

zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: ðA:4Þ

For all complex numbers with the samemodulus, the corresponding pointer ends
on the dash–dot circle in Figure A.1. From this graphical representation, we can
deduce that

z ¼ xþ i � y ¼ zj j � cosðqÞþ i � sinðqÞð Þ ¼ zj j � exp iqð Þ; ðA:5Þ

y

x

θ

z=x+iy 

z*=x-iy 

Figure A.1 Graphical representation of complex numbers.
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with q ¼ arg zð Þ ¼ tan�1 y=xð Þ being the argument of z. This is the polar represen-
tation of a complex number. The analytical identity cos(q) þ i�sin(q)¼ exp(i�q) allows
for the application of power laws when calculating with complex numbers. The
multiplication of z with its complex conjugate number z� yields |z|2¼ z�z�.

A.4
Division

The division of two complex numbers z1/z2 can be reformulated into amultiplication
of two complex numbers z1 and (1/z2)¼ inv.(z2). Hence, the division is defined as

z1
z2

¼ z1 � inv.ðz2Þ ¼ z1 � z�
2

z2z
�
2
: ðA:6Þ

A.5
Power n

To calculate znwithn being a real numbern2R, the polar representation of a complex
number (A.5) is useful. Then,

zn ¼ zj jn � cosðnqÞþ i � sinðnqÞð Þ ¼ zj jn � exp inqð Þ: ðA:7Þ
For n2N, that is, a positive integer number, we can derive that zn is given by

zn ¼ xn� n
2

� �
xn�2y2þ n

4

� �
xn�4y4� . . .

� �
þ i � n

1

� �
xn�1y� n

3

� �
xn�3y3þ . . .

� �
:

ðA:8Þ

A.6
Logarithm

The natural logarithm log(z) of a complex number z can easily be calculated using
again the polar representation (A.5):

logðzÞ ¼ log zj jð Þ þ iq: ðA:9Þ

A.7
Exponentiation

For the complex exponentiation z1z2 , we can use the exponential function:

z1
z2 ¼ exp logðz1ð Þð Þz2 ¼ exp z2 � log z1j jð Þþ iq1ð Þð Þ: ðA:10Þ
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A.8
Trigonometric Functions

The trigonometric functions sin(z) and cos(z) can be calculated using the analytical
identity cos(z) þ i�sin(z)¼ exp(iz). Then,

sinðzÞ ¼ expðizÞ�expð�izÞ
2 � i ¼ sinðxÞ � coshðyÞþ i � cosðxÞ � sinhðyÞ; ðA:11Þ

cosðzÞ ¼ expðizÞþ expð�izÞ
2

¼ cosðxÞ � coshðyÞ�i � sinðxÞ � sinhðyÞ: ðA:12Þ
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Appendix B: Fourier Transform

The Fourier transform is, in principle, a polynomial expansion of a function f(x) that
is known atN discrete, generally complex values xn, with n¼ 0, 1, . . .,N� 1. Using
the periodic functions exp(�i2pk�n/N) and exp(i2pk�n/N), with k¼ 0, 1,. . ., N� 1,
which form an orthogonal basis in the field of complex numbers C, we can
approximate the function f(x) with a polynomial F(k) with these periodic
functions as roots of unity of the polynomial. The expansion coefficients of the
polynomial F(k) result in

Xk ¼
XN�1

n¼0

xn � exp �i
2p
N

k � n
� �

; k ¼ 0; 1; . . . ;N�1: ðB:1Þ

This expansion is called discrete Fourier transform (DFT). Vice versa, the inverse
discrete Fourier transform (IDFT) gives the discrete values xn:

xn ¼ 1
N

XN�1

k¼0

Xk � exp i
2p
N

k � n
� �

; n ¼ 0; 1; . . . ;N�1: ðB:2Þ

It was the mathematician and physicist Jean Baptiste Joseph Fourier who claimed
in 1822 in his Th�eorie Analytique de la Chaleur (The Analytic Theory of Heat) [185] that
any function of a variable, whether continuous or discontinuous, can be expanded in
a series of sines of multiples of the variable. A sine function sin(z) is a linear
combination of exp(iz) and exp(�iz) (see (A.11)). Although his claimwas not correct,
he pioneered the above DFT and the following (integral) Fourier transform.
The DFTand IDFTare well suited for periodic functions that fulfill f(x þ T)¼ f(x). In
the above equations, the period T is T¼ 2pN, so that xnþN¼ xn and XkþN¼Xk.
For T ! 1, the discrete Fourier transforms become continuous:

FðkÞ ¼
ð1

�1
f ðxÞ � exp �i2pk � xð Þ � dx; ðB:3Þ

f ðxÞ ¼
ð1

�1
FðkÞ � exp i2pk � xð Þ � dk: ðB:4Þ
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These Fourier transform and inverse Fourier transform do hold true both for periodic
functions and for nonperiodic functions f(x).

Looking in more detail at the argument of the exponential functions, it becomes
clear that if xhas a physical dimension (meterm, second s, etc.), the parameter kmust
have the reciprocal dimension (1/m, 1/s, etc.). TheFourier transformand the discrete
Fourier transform always transform from the real space (length, time, etc.) into the
reciprocal space (wavenumber, frequency, etc.) and vice versa. They are fundamental
in signal processing (time ! frequency) and solid-state physics (length ! wave-
number), but have many other applications in physics, mathematics, and signal
processing.

In the following, we describe some rules of theDFTand the Fourier transform (FT)
[186]. For simplification,we introduce the abbrevationF for the transformof f(x) toF
(k), that is, F(f(x))¼F(k).

B.1
Linearity

Fða� f ðxÞþb � gðxÞÞ ¼ a� FðkÞþ b �GðkÞ: ðB:5Þ

B.2
Scaling

Fðf ðx=aÞÞ ¼ jaj �Fða � kÞ: ðB:6Þ

B.3
Shifting

Fða � f ðxÞþ bÞ ¼ ð1=aÞ � expðikb=aÞ �Fðk=aÞ; with a 6¼ 0: ðB:7Þ

B.4
Damping

Fðf ða � xÞ � expðib � xÞÞ ¼ ð1=aÞ � Fððk�bÞ=aÞ; with a > 0: ðB:8Þ

B.5
Convolution

Fðf ðxÞ � gðxÞÞ ¼ Fðf ðxÞÞ �FðgðxÞÞ ¼ FðkÞ �GðkÞ: ðB:9Þ

Convolution in one domain is equivalent tomultiplication in the other domain and
vice versa.
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B.6
Plancherel Theorem and Parseval�s Theorem

For two functions f(x) and g(x) in real space, the Fourier transform of f(x)�g(x)� yields
the same result as the inverse Fourier transform of F(k)�G(k)�

ð1

�1
f ðxÞ � gðxÞ�dx ¼

ð1

�1
FðkÞ �GðkÞ�dk ðB:10Þ

or for the discrete Fourier transform

XN�1

n¼0

xn � y�n ¼
1
N

XN�1

k¼0

Xk �Y �
k ; ðB:11Þ

where the asterisk denotes the complex conjugate. Parseval�s theorem is a special
case of the Plancherel theorem for g(x)¼ f(x) or yn¼ xn

ð1

�1
f ðxÞj j2dx ¼

ð1

�1
FðkÞj j2dk ðB:12Þ

or for the discrete Fourier transform

XN�1

n¼0

xnj j2 ¼ 1
N

XN�1

k¼0

Xkj j2: ðB:13Þ

The exponential form of the discrete Fourier transform allows for negative
frequency components. Negative frequencies follow the rule of symmetry: for real
signals, negative frequency components are mirror images of the positive fre-
quency components. Thatmeans if we haveN sampling points in the real space, we
get N/2� 1 negative frequencies, N/2� 1 positive frequencies, and a sample at
frequency k¼ 0 that is degenerated twice. This first sample X0 is the Fourier
coefficient of the DC component in the signal, more commonly known as the
average of the input series.

The highest positive frequency sample XN/2�1 is called Nyquist frequency. If the
input signal of the DFT contains frequency components higher than this Nyquist
frequency, they will encounter a �folding� about the Nyquist frequency, back into
lower frequencies. This is called aliasing because the higher frequency appears to be a
lower frequency. For example, if the Nyquist frequency is 10 kHz, an 11 kHz signal
will fold, or alias, to 9 kHz. In that case, however, the original signal cannot be
reconstructed from the frequencies in the frequency domain. If the original signal,
however, does not contain any frequencies higher than the Nyquist frequency, it can
be perfectly reproduced by sampling the signal at a rate of Dx¼ 1/(2�XN/2�1). This is
the Nyquist–Shannon sampling theorem, after Harry Nyquist and Claude Shannon.

Another problem arising with the discrete Fourier transform is the leakage effect.
An input signal can be transformed exactly with the DFTonly if the input signal can
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be continued periodically. Otherwise, it contains frequencies that donot belong to the
frequencies calculated from theDFT. Then, these frequencies are approximated only
by the frequencies of the DFT in the vicinity of this frequency. The contained energy
gets distributed over these frequencies. This effect is called leakage. The limiting or
clipping of the input data to a certain interval almost always results in leakage since
this clipping acts like a convolution of the input data with the sinc function sin(x)/x.
Moreover, the probability for a nonperiodic signal within the clipped region is high.
Leakage can be minimized by multiplying the input signal by a window function, for
example, Hamming, von Hann (or Hanning or raised cosine), Blackman, Black-
man–Harris, Welch, or Kaiser window, that tapers the amplitudes at each end of the
data interval. For an overview on window functions, we refer, for example, to Ref.
[135].

The fast Fourier transform (FFT) is also a discrete Fourier transform algorithm but
which reduces the number of computations needed for N points from 2N2 to
2N�log2(N), where log2 is the 2-based logarithm. The basic idea to achieve this
reduction is to break up a transform of length N into N1 transforms of length N2

with N1N2¼N. Cooley and Tukey [133] developed an algorithm for N1¼ 2 and
N2¼N/2 that allows to treat even-numbered points and odd-numbered points
separately according to the Danielson–Lanczos lemma [134]. According to the way
the reduction is done, fast Fourier transform algorithms generally fall into two
classes: decimation in frequency (DIF, Sande–Tukey algorithm) and decimation in
time (DIT, Cooley–Tukey algorithm).

Starting with the general expression for the discrete Fourier transformed coeffi-
cientXk (B.1), the Sande–Tukey algorithm (DIF) considers the even-numbered terms
X2k and the odd-numbered terms X2kþ 1 as

X2k ¼
XðN=2Þ�1

n¼0

�
xn � exp

�
�i

2p
N

k � n
�
þ xnþN=2 � exp

�
�i

2p
N

k � ðnþN=2Þ
��

¼
XðN=2Þ�1

n¼0

xn þ xnþN=2

� � � exp
�
�i

4p
N

k � n
�

ðB:14Þ
and

X2kþ 1 ¼
XðN=2Þ�1

n¼0

xn�xnþN=2

� � � exp �i
2p
N

n

� �
exp �i

4p
N

k � n
� �

: ðB:15Þ

For both one obtains a reduction on N/2 terms in the sum. This reduction can be
continued until only one term has left in the sum. As the number of data to be
calculated in the frequency domain gets halved at each step, this method is called
decimation in frequency. The Sande–Tukey algorithm first transforms and then
rearranges the output values.
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The Cooley–Tukey algorithm (DIT) first rearranges the input elements in bit-
reversed order and then builds the output transform, for which it is called decimation
in time. The Cooley–Tukey algorithm considers the term Xk as

Xk ¼
XN�1

n¼0

xn � exp
�
�i

2p
N

k � n
�

¼
XðN=2Þ�1

n¼0

x2n � exp
�
�i

4p
N

k � n
�
þ exp

�
�i

2p
N

k

�
�

XðN=2Þ�1

n¼0

x2nþ 1 � exp
�
�i

4p
N

k � n
�
:

ðB:16Þ

This division into even and odd coefficients can also be continued until only one
term has left in the sums.
For further reading on Fourier series, discrete Fourier transforms, and Fourier
transforms, we refer, for example, to Refs [136, 187–189].
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Appendix C: Levenberg–Marquardt Algorithm

The primary application of the Levenberg–Marquardt algorithm is in the least
squares curve fitting problem. Having data points (xi, yi) of a set of N measured
data, the maximum likelihood estimate of the model parameters a¼ {a1, . . ., aM} is
obtained by minimizing the quantity chi-squared x2:

x2ðaÞ ¼
XN

i¼1

yi�f ðxi; aÞð Þ2: ðC:1Þ

Here,we omitted for simplicity the individual standard deviation of eachmeasured
data point.

Like other numeric minimization algorithms, the Levenberg–Marquardt algo-
rithm is an iterative procedure. To start a minimization, the user has to provide an
initial guess for the parameters vector a¼ {a1, . . ., aM}. At each iteration step, the
parameter vector a is replaced by a new estimate a þ d. To determine d, the function
f(x, a þ d) is approximated linearly:

f ðx; aþ dÞ � f ðx; aÞþ J � d: ðC:2Þ

Thematrix J is the Jacobianmatrix containing the partial derivatives of the function
f according to the parameter aj:

Jij ¼ qf ðxi; aÞ
qaj

: ðC:3Þ

From the first-order approximation of f(x, a þ d) in (C.2), we obtain for x2:

x2ðaþ dÞ ¼
XN

i¼1

yi�f ðxi; aÞ�Ji � dð Þ2 ðC:4Þ

or in vector notation

x2ðaþ dÞ � ky�f ðaÞ�J � dk: ðC:5Þ
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Taking the derivative with respect to d and setting the result to zero to find the
minimum gives

JT � J
� �

� d ¼ JT � y�f ðaÞð Þ: ðC:6Þ

This is the Gauss–Newton algorithm to solve a set of linear equations for d.
Levenberg [138] replaced this equation by

JT � J�l � =
� �

� d ¼ JT � y�f ðaÞð Þ; ðC:7Þ

where= is the identitymatrix. The (nonnegative) damping factor l is adjusted at each
iteration. If the reduction of x2 is rapid, a smaller value of l can be used, and the
algorithm is similar to theGauss–Newton algorithm.Vice versa, if the iteration is low,
l can be increased and the step will be taken approximately in the direction of the
gradient.

Marquardt [139] improved the algorithm by scaling each component of the
gradient according to the curvature so that there is larger movement along the
directions where the gradient is smaller. This avoids slow convergence in the
direction of small gradient. For that purpose, Marquardt replaced the identity matrix
= with the diagonal matrix consisting of the diagonal elements of JT � J

� �
, resulting

in the Levenberg–Marquardt algorithm:

JT � Jþ l � JT � J
� �� �

� d ¼ JT � y�f ðaÞð Þ: ðC:8Þ

The choice of the damping factor l is not obvious at all. Marquardt recommended
starting with a value l¼ l0 and a factor n> 1. Depending on the value of x2, the
damping factor will be replaced after each step by either l/n or l�n.

TheLevenberg–Marquardt algorithm is a very popular curve-fitting algorithmused
in many software applications for solving generic curve-fitting problems. However,
also beware of that this algorithm finds only a local minimum like all other iterative
procedures, not a global minimum.
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Appendix D: Downhill Simplex Algorithm

This algorithm is based on a simplex, the simplest volume in the N-dimensional
parameter area, which is stretched from N þ 1 points. Given a continuous function
y¼ f(x1, . . ., xN) ofN variables x¼ {x1, . . ., xN}. The goal is to find a localminimum ym
of this function with corresponding variables xm. For that purpose, we construct a
simplex of N þ 1 points with vectors x1, . . ., xN, xNþ 1, with xi¼ x0 þ l�ei.

The procedure is now as follows. After having generated the start simplex, the best
point (ymin, xmin), the worst point (ymax, xmax), and the second-worst point (yv, xv) are
determined. Then, the mirror center

xs ¼ 1
N

X

xi 6¼xmax

xi ðD:1Þ

is determined from all points except the worst point. The first step to generate a new
simplex with lower volume is the reflection of the worst point at the mirror center:

xr ¼ xs�a xmax�xsð Þ: ðD:2Þ
There are three other methods to construct a new simplex:

. the expansion to accelerate the reduction of the simplex to a simplex of smaller
volume,

. the contraction to keep the simplex small, and

. the compression around the actual best point.

All four methods are used repeatedly until the best point is obtained. Figure D.1
illustrates all four steps for a three point simplex from N¼ 2 parameters.
After the first reflection, the expansion point

xe ¼ xs�c xr�xsð Þ: ðD:3Þ
is determined and compared with (yr, x

r) to determine the next steps. The following
flow chart in Figure D.2 illustrates the complete algorithm.

The coordinate changes of the parameters during the used steps are made using
theNelder–Mead parametersa,b, andc, usually set to 1, 0.5, and 2. The iteration is as
long resumed until a convergence criterion is fulfilled. The procedure converges
approximately linear and is thus not extremely fast but durable.
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(b)(a) 

mirror 

point 

(d)(c) 

FigureD.1 Illustration of the fourmethods in the downhill simplexmethod to define new points of
the simplex. (a) Reflection, (b) expansion, (c) contraction, and (d) compression.

REFLECTION 

yr < ymin

EXPANSION 

ye < yr

yr < yv yr < ymax

CONTRACTION

yc < ymax

(xr, yr)→(xmax, ymax) 

(xr, yr)→(xmax, ymax) (xc, yc)→(xmax, ymax)

COMPRESSION 

(xe, ye)→(xmax, ymax) 

MINIMUM REACHED 
RETURN TO MAIN 

PROCESS 

no 

no 

no 

no 

no 

no 

yes 

yes 

yes 

yes 
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Figure D.2 Flowchart of the downhill simplex algorithm.
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a
Abbe number 99
Abel�es method 77
absorption 65
active pixel sensor 112
aluminum doped zinc oxide 178
angular dispersion 109
anomal dispersion 38
anti reflection coating 150
antimony doped tin oxide 178
AR coating 150
ATO 178
AZO 178

b
birefringent crystal 101
blackbody radiation 94
blaze wavelength 110
blazed gratings 33
Bragg grating 30
Brendel oscillator 38
Bruggeman 54

c
Cauchy formula 51
CCD 113
characteristic matrix 77
chi-squared 131
chromatic aberration 100
chromaticity coordinates 142
CMOS 111
coherent superposition 59
Commission Internationale de

l�Éclairage 141
critical angle of total reflection 20
critical dimensions 182

d
Danielson-Lanczos lemma 124, 194
deuterium lamp 97
DFT 191
dielectric function 10, 35
diffraction 21
discrete Fourier transform 191
dispersion integrals 49
downhill simplex algorithm 132, 199
Drude susceptibility 39
dynamic resolution 118

e
electromagnetic waves 7
ellipsometric measurement 85
ellipsometric parameters 86
ellipsometry 85
EMA models 53
evanescent wave 21
exponential Cauchy formula 51
extended Drude model 40
extraordinary ray 101

f
Fast Fourier transform 121,

122, 194
FFT 121, 194
filling factor 53
fluorine doped tin oxide 178
Forouhi and Bloomer 43
Fourier transform 191, 192
free spectral range 26, 109
Fresnel coefficients 19
Fresnel equations 19
FTO 178
full width at half maximum 115
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g
ghosts 119
Glan-Taylor prism 101
grating efficiency 27, 110
grating equation 25, 109
grating function 24
grating period 23, 109
grating 107
groove density 23, 109

h
halogen lamps 94
harmonic oscillator model 36
Helmholtz equation 10
high reflection coating 150
holographic reflection gratings 34
holographic transmission

gratings 29
HR coating 150
Huygens-Fresnel principle 14

i
IDFT 191
incoherent substrates 78
indium tin oxide 178
interference 15
inverse discrete Fourier transform 191
inverse Fourier transform 192
ITO 178

k
Kim oscillator 39
Kramers-Kronig relations 49

l
lamellar reflection gratings 31
lamellar transmission gratings 27
layer stack 75
leakage 126, 193
lenses 99
Levenberg-Marquardt algorithm 132, 197
linear superposition 15

m
Malus� law 102
Maxwell-Garnett 54
Maxwell�s equations 8
MBIR 182
miniaturized spectrometer 107
mirrors 99
Model Based Infrared

Reflectometry 182
MOSFET 111

n
normal dispersion 38
numerical aperture 104
Nyquist frequency 193
Nyquist-Shannon sampling theorem 193

o
OJL-model 42
optical fiber 103
optical retarder 102
ordinary ray 101
organic solar cells 180

p
P3HT 180
PEDOT 180
pixel dispersion 115
polarization 13
polarizer 101
power spectral distribution 124
power spectrum 124
propagating wave model 59, 75

r
Rayleigh criterion for rough surfaces 72
Rayleigh criterion 115
reciprocal linear dispersion 109
reflection law 17
reflectometric measurement 81
refractive index 35
regression analysis 121, 131
resolving power 110
roughness 72, 78
r-t-f model 59, 79

s
scattering 34
Schott formula 51
Sellmeier formula 50
signal-to-noise ratio 118
silicon on insulator 174
Snell�s law of refraction 18
SNR 118
SOI 174
spectral reflectance measurement 81
spectral resolution 110, 115
spectral transmittance measurement 81
stray light 118
super-luminescent diode 96

t
Tauc-Lorentz model 41
thick substrates 69
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total reflection 20
transverse electric mode 11
transverse magnetic mode 10
tristimulus values 141

v
vector harmonics 11
vector wave equation 10
volume grating 30

w
wave equation 7
white light LED 95
Wien�s law 94
Wollaston prism 102

x
Xenon high pressure arc

lamp 97
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