# CALIBRATION and SERVICING HANDBOOK for # THE DATRON 1281 # SELFCAL DIGITAL MULTIMETER Volume 1 # Calibration and Servicing Information Technical Descriptions For any assistance contact your nearest Datron Sales and Service center. Addresses can be found at the back of this handbook. 850091 Issue 1 (JULY 1989) ## **Volume 1 Contents** Servicing Diagrams and Component Lists. General Description, Installation, Controls, Operation, Applications; Specification, Specification Verification and Routine Calibration. Refer to Volume 2 Refer to User's Handbook | ecti | on | ITTIE | Pag | |------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------| | ı | CAL | IBRATION | | | | 1.1 | Routine Calibration References | 1-1 | | | 1.2 | Internal Access | 1-1 | | | 1.3 | Remote Calibration via the IEEE 488 Interface | 1-1 | | | 1.4 | Special Calibration | 1-2<br>1-3<br>1-4<br>1-5 | | 2 | GUII | DE TO 1281 FAULT DIAGNOSIS | | | | 2.1 | Introduction | 2-1<br>2-1<br>2-2 | | | 2.2 | 9000 Series Codes - Fatal System Errors 2.1.1 Introduction 2.2.2 Immediate Action 2.2.3 Fatal System Error Codes | 2-2<br>2-2 | | | 2.3 | Command Errors | 2-3 | | | 2.4 | 1000 Series Codes - Execution Errors | 2-3 | | | 2.5 | 2000 Series Codes - Device-Dependent Errors | 2-4 | | | 2.6 | 2000 Series Codes - Device-Dependent Errors - Localization 2.6.1 Introduction 2.6.2 Access to Error Codes via the 1281 Menu Keys 2.6.3 Composition of the Error Code 2.6.4 External Calibration Operations 2.6.5 Memory Tests 2.6.6 Reference Ratio Tests 2.6.7 DC Voltage Tests 2.6.8 AC Voltage Tests 2.6.9 DC Current Tests 2.6.10 AC Current Tests 2.6.11 Resistor Ratio Tests 2.6.12 Ohms Tests 2.6.13 High Ohms Tests | 2-12<br>2-13<br>2-14<br>2-15<br>2-15<br>2-16<br>2-18<br>2-26<br>2-36<br>2-42<br>2-44<br>2-50 | | * | 2.7 | | 2-59<br>2-59<br>2-60<br>2-62 | | Sect | ion | Title | Pag | |------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------| | 3 | DISM | MANTLING AND REASSEMBLY | | | | 3.1 | General Precautions 3.1.1 WARNING 3.1.2 CAUTIONS | | | | 3.2 | General Mechanical Layout | 3-1 | | | 3.3 | Location and Access | 3-2 | | | 3.4 | General Access 3.4.1 Rear Corner Blocks, Top Cover 3.4.2 Rear Corner Blocks, Bottom Cover 3.4.3 Front Bezel 3.4.4 Rear Panel Assembly | 3-3<br>3-3<br>3-4 | | | 3.5 | Sub-Assembly Removal and Fitting 3.5.1 Digital PCB 3.5.2 Display PCB 3.5.3 Front Panel Switch PCB 3.5.4 Front Terminal Assembly 3.5.5 DC PCB 3.5.6 AC PCB 3.5.7 Ohms PCB 3.5.8 Current PCB | 3-5<br>3-6<br>3-6<br>3-7<br>3-7<br>3-8<br>3-8 | | | 3.6 | Front Terminal Retraction Mechanism | 3-9 | | | 3.7 | Transformer Assemblies | 3-10 | | 4 | SER | RVICING | | | | 4.1 | Routine Servicing | 4-1 | | | 4.2 | Adjustment Following Replacement of PCBs | 4-1 | | | 4.3 | Lithium Battery - Replacement | 4-2 | | 5 | TEC | HNICAL DESCRIPTIONS | | | | 5.1 | Principles of Operation | 5-3 | | | 5.2 | 5.2.1 DC PCB 5.2.2 AC PCB - Option 10 5.2.3 Resistance - Option 20 5.2.4 DC and AC Current - Option 30 5.2.5 Analog-to-Digital Conversion | 5-7<br>5-12<br>5-18<br>5-23<br>5-26<br>5-36<br>5-37<br>5-43 | ## SECTION 1 CALIBRATION #### 1.1 Routine Calibration The main features of the routine calibration facilities are described in the User's Handbook, covering: External Calibration Section 8 Internal Source Calibration Section 8. Self Calibration Section 4. #### 1.2 Internal Access The high accuracy of the instrument demands that its internal environment remains undisturbed. The manufacturer's calibration certificate is invalidated if either of the covers is removed; this implies that at least a full External Calibration with Internal Source Characterization must follow any internal access, such as battery-changing, fault-finding or replacement of PCBs. Refer to Section 4. N.B. Any displayed CORRECTIONS ON message refers to Selfcal corrections, generated by the most-recent self-calibration. If this was performed before the events mentioned in the above paragraph, then these corrections are not traceable to the new External Calibration and Internal Source Calibration. The message should be regarded as invalid until a new Selfcal is performed. # 1.3 Remote Calibration via the IEEE 488 Interface The 1281 is designed as a standards multimeter, its levels of accuracy demanding that it be calibrated against primary laboratory standards. The traceabilities of such standards are derived through physical devices which are as yet not remotely programmable, although the calibration facilities of the 1281 are included in its conformity to IEEE 488.2, against a time when such standards are available on the bus. It is possible to characterize an individual calibration standard such as the Datron model 4708 at the levels required to calibrate a 1281 to its specification. The Datron 'Portocal' system can be programmed to perform these tasks automatically providing a 4708 in the system is adequately characterized. If the 1281 is not required to operate at its full specification, a regular 4708 in a remote system (e.g. Portocal) can easily be programmed to perform this task. ## 1.4 Special Calibration The main purpose of this section is to describe four Special Calibrations which may be required under certain conditions. These are listed on the SPCL menu, which is accessed via the EXT CAL menu when in CAL mode. They are: Adc Calibration of the instrument's main multi-slope analog-to digital converter. *Refer to paras 1.4.2.* Dac Calibration of the digital-to-analog converter used for the optional 'Analog Output' of the instrument. *Refer to paras 1.4.3.* Freq Calibrating the frequency detector responsible for the frequency readout in the SIGNAL FREQUENCY menu, which is accessed via the Monitor hard key then the Freq key in the MONITOR menu. The detector also provides the frequency readout used during SPOT CAL calibration. Refer to paras 1.4.4. ClrNv Clearing a section of the non-volatile RAM. Refer to paras 1.4.5. #### Special Calibration following Memory Corruption (e.g. When the battery which supplies the non-volatile calibration memory has been changed with the power off - see Section 4) Section 2 (Fault Diagnosis) describes the device-dependent error codes resulting from internal tests. Error codes which are generated for calibration memory faults are listed on page 2-15. Some of these refer to individual calibration correction errors, and others to combined errors. When faced with any of these error codes, please seek advice or assistance from your nearest Datron Service Center. When it is deemed necessary to carry out special calibration as a result of non-volatile memory corruption, the starting point should be to clear the calibration memory before proceeding with other individual calibrations. Selecting CIrNv in the SPCL menu transfers to the CLEAR NV RAM menu which offers a choice of clearing one or all of three sections of RAM. The selection should be chosen as a result of consultation with technical staff at the service center. ## **Special Calibration Procedures** #### 1.4.1 Entry into the SPCL Menu To carry out anyof the four special calibrations it is first necessary to enter the SPCL menu via the EXT CAL menu. The EXT CAL menu is protected, and once active, the Caltrig key is enabled. For these reasons, users are referred to the 'Preparation' procedure detailed on page 8-7 of the User's handbook. Further details of the calibration facilities are described in Section 4 of the User's Handbook, beginning on page 4-40; the EXT CAL menu description starts on page 4-49. #### The EXT CAL Menu Once the EXT CAL menu is active, pressing the SpcI soft key transfers to the SPCL menu. #### The SPCL Menu The selection for setting the instrument to the local (50Hz or 60Hz) line frequency, and access for setting the instrument's serial number are also on this menu. We are not concerned with these here; details can be found in the User's Handbook Section 4 page 4-51. The four special calibrations highlighted in the above menu diagram are described in the following sub-sections 1.4.2 to 1.4.5. #### 1.4.2 Adc Key To calibrate the main multi-slope analog-to digital converter. The soft Adc key calibrates the different resolutions available from the main A-D converter, so that there are no significant differences in readings seen when changing resolutions with a constant input value. This calibration is provided for use at manufacture and should need no further adjustment during the life of the instrument. However, if the calibration stores have been cleared or corrupted for any reason (for instance if the battery has been changed with the power off); or if a significant difference is found to exist between measurements of a constant input taken at different resolutions; then Adc calibration may be necessary. #### 1.4.2.1 To Calibrate: No equipment is required, and the instrument does not need to be in any particular function or range. Once in the SPCL menu, merely press the Adc soft key. #### 1.4.2.2 A-D Modes and Resolution | | Fast-on | Fast-off | |-----------------------------------------------------|-----------------------|------------------| | resin4+<br>resin5+<br>resin6+<br>resin7+<br>resin8+ | C<br>C<br>D<br>G<br>G | D<br>D<br>F<br>G | #### 1.4.2.3 A-D Modes and Power Line Cycles | A-D Mode | Power Line<br>Cycles | |----------|----------------------| | С | 3.33ms | | D | 1 | | E | 4 | | F | 16 | | G | 64 | #### 1.4.2.3 List of Error Code Numbers If the A-D calibration is not successful, one of the codes in the following table may be presented on the Menu display. If so, it is possible to rerun the individual test associated with the Error Code. Refer to Section 2, page 2-13 for access to the test pathways. As this is a complex A-D, it is stongly recommended that any problems should be referred to your nearest service center. | Error<br>Code<br>No. | Test<br>Pathway<br>No. | Power<br>Line<br>Freq<br>(Hz) | <b>A-D Mode</b><br>(Power Line<br>Cycles) | Rdgs<br>(Discd)<br>Avgd | Test<br>Type | Measured<br>Function | Test Limits | |----------------------|------------------------|-------------------------------|-------------------------------------------|-------------------------|-------------------------------|--------------------------|---------------------------------------------------------| | 2030 | PXXZ | 50 | G (64) | (0) 8 | Zero Noise | Std. Devn. | 4.0.22nm | | 2031 | PXXY | 50 | F (16) | (0) 8 | Zero Noise<br>Zero Noise | Std. Devn. | < 0.2ppm<br>< 0.4ppm | | 2032 | PXXY | 50 | F (16) | (0) 8 | Ext. Zero Noise | Std. Devn. | -200ppmR < 50Hz 16plc Zero < +200ppmR | | 2033 | PXXV | 50 | E (4) | (0) 8 | Zero Noise | Std. Devn. | < 1ppm | | 2034 | PXXV | 50 | E (4) | (0) 8 | Ext. Zero Noise | Std. Devn. | -200ppmR < 50Hz 4plc Zero < +200ppmR | | 2035 | PXXX | 50 | D (1) | (0) 8 | Zero Noise | Std. Devn. | < 2ppm | | 2036 | PXXX | 50 | D (1) | (0) 8 | Ext. Zero Noise | Std. Devn. | -200ppmR < 50Hz 1plc Zero < +200ppmR | | 2037 | PXXW | 50 | C (3.33ms) | (0) 8 | Zero Noise | Std. Devn. | < 10ppm | | 2038 | PXXW | 50 | C (3.33ms) | 8 (0) | Ext. Zero Noise | Std. Devn. | -200ppmR < 50Hz 3.33ms Zero < +200ppmR | | 2040 | PXXZ | 60 | G (64) | (0) 8 | Zero Noise | Std. Devn. | < 0.2ppm | | 2041 | PXXZ | 60 | G (64) | (0) 8 | Ext. Zero Noise | Std. Devn. | -200ppmR < 60Hz 64plc Zero < +200ppmR | | 2042 | PXXY | 60 | F (16) | (0) 8 | Zero Noise | Std. Devn. | < 0.4ppm | | 2043 | PXXY | 60 | F (16) | (0) 8 | Ext. Zero Noise | Std. Devn. | -200ppmR < 60Hz 16plc Zero < +200ppmR | | 2044 | PXXV | 60<br>60 | E <sub>.</sub> (4) | (0) 8 | Zero Noise | Std. Devn. | < 1ppm | | 2045 | PXXV<br>PXXX | 60<br>60 | E (4)<br>D (1) | 8 (0)<br>8 (0) | Ext. Zero Noise<br>Zero Noise | Std. Devn.<br>Std. Devn. | -200ppmR < 60Hz 4plc Zero < +200ppmR | | 2047 | PXXX | 60 | D (1) | (0) 8 | Ext. Zero Noise | Std. Devn. | < 2ppm<br>-200ppmR < 60Hz 1plc Zero < +200ppmR | | 2048 | PXXW | 60 | C (3.33ms) | (0) 8 | Zero Noise | Std. Devn. | < 10ppm | | 2049 | PXXW | 60 | C (3.33ms) | (0) 8 | Ext. Zero Noise | Std. Devn. | -200ppmR < 60Hz 3.33ms Zero < +200ppmR | | 0050 | DV//7 | 50 | 0.404) | (0) 0 | | | | | 2050<br>2051 | PXYZ<br>PXYY | 50<br>50 | G (64) | (8) 8 | +FR Noise | Std. Devn. | < 0.2ppm | | 2051 | PXYY | 50 | F (16)<br>F (16) | (8) 8<br>(8) 8 | +FR Noise<br>+FR + Ext. Zero | Std. Devn.<br>+FR gain | < 0.4ppm | | 2053 | PXYV | 50 | E (4) | (8) 8 | +FR Noise | Std. Devn. | +FR - 100ppm < 50Hz 16plc +gain< +FR + 100ppm<br>< 1ppm | | 2054 | PXYV | 50 | E (4) | (8) 8 | +FR + Ext. Zero | +FR gain | +FR - 100ppm < 50Hz 4plc +gain< +FR + 100ppm | | 2055 | PXYX | 50 | D (1) | (8) 8 | +FR Noise | Std. Devn. | < 2ppm | | 2056 | PXYX | 50 | D (1) | (8) 8 | +FR + Ext. Zero | +FR gain | +FR - 100ppm < 50Hz 1plc +gain< +FR + 100ppm | | 2057 | PXYW | 50 | C (3.33ms) | (8) 8 | +FR Noise | Std. Devn. | < 10ppm | | 2058 | PXYW | 50 | C (3.33ms) | (8) 8 | +FR + Ext. Zero | +FR gain | +FR - 100ppm < 50Hz 3.33ms +gain< +FR + 100ppm | | 2060 | PXYZ | 60 | G (64) | (8) 8 | +FR Noise | Std. Devn. | < 0.2ppm | | 2061 | PXYZ | 60 | F (16) | (8) 8 | +FR + Ext. Zero | +FR gain | +FR - 100ppm < 60Hz 64plc +gain< +FR + 100ppm | | 2062 | PXYY | 60 | F (16) | 8 (8) | +FR Noise | Std. Devn. | < 0.4ppm | | 2063 | PXYY | 60 | F (16) | (8) 8 | +FR + Ext. Zero | +FR gain | +FR - 100ppm < 60Hz 16plc +gain< +FR + 100ppm | | 2064 | PXYV<br>PXYV | 60<br>60 | E (4) | (8) 8 | +FR Noise | Std. Devn. | < 1ppm | | 2065 | PXYX . | 60<br>60 | E (4) | (8) 8 | +FR + Ext. Zero | +FR gain | +FR - 100ppm < 60Hz 4plc +gain< +FR + 100ppm | | 2067 | PXYX | 60 | D (1)<br>D (1) | (8) 8<br>(8) 8 | +FR Noise<br>+FR + Ext. Zero | Std. Devn.<br>+FR gain | < 2ppm<br>+FR - 100ppm < 60Hz 1plc +gain< +FR + 100ppm | | 2068 | PXYW | 60 | C (3.33ms) | (8) 8 | +FR Noise | Std. Devn. | < 10ppm | | 2069 | PXYW | 60 | C (3.33ms) | (8) 8 | +FR + Ext. Zero | +FR gain | +FR - 100ppm < 60Hz 3.33ms +gain< +FR + 100ppm | | 2070 | PXZZ | 50 | G (64) | /0\ 0 | ED Noise | Ctd Down | 0.0000 | | 2071 | PXZY | 50 | F (16) | (8) 8<br>(8) 8 | -FR Noise<br>-FR Noise | Std. Devn.<br>Std. Devn. | < 0.2ppm<br>< 0.4ppm | | 2072 | PXZY | 50 | F (16) | (8) 8 | -FR + Ext. Zero | -FR gain | -FR - 100ppm < 50Hz 16plc -gain< -FR + 100ppm | | 2073 | PXZV | 50 | E (4) | (8) 8 | -FR Noise | Std. Devn. | < 1ppm | | 2074 | PXZV | 50 | E (4) | (8) 8 | -FR + Ext. Zero | -FR gain | -FR - 100ppm < 50Hz 4plc -gain< -FR + 100ppm | | 2075 | PXZX | 50 | D (1) | (8) 8 | -FR Noise | Std. Devn. | < 2ppm | | 2076 | PXZX | 50 | D (1) | (8) 8 | -FR + Ext. Zero | -FR gain | -FR - 100ppm < 50Hz 1plc -gain< -FR + 100ppm | | 2077<br>2078 | PXZW<br>PXZW | 50<br>50 | C (3.33ms) | (8) 8 | -FR Noise | Std. Devn. | < 10ppm | | 2070 | INZV | 50 | C (3.33ms) | (8) 8 | -FR + Ext. Zero | -FR gain | -FR - 100ppm < 50Hz 3.33ms -gain< -FR + 100ppm | | 2080 | PXZZ | 60 | G (64) | (8) 8 | -FR Noise | Std. Devn. | < 0.2ppm | | 2081 | PXZZ | 60 | F (16) | (8) 8 | -FR + Ext. Zero | -FR gain | -FR - 100ppm < 60Hz 64plc -gain< -FR + 100ppm | | 2082<br>2083 | PXZY<br>PXZY | 60 | F (16) | (8) 8 | -FR Noise | Std. Devn. | < 0.4ppm | | 2083 | PXZY | 60<br>60 | F (16)<br>E (4) | (8) 8 | -FR + Ext. Zero<br>FR Noise | -FR gain | -FR - 100ppm < 60Hz 16plc -gain< -FR + 100ppm | | 2085 | PXZV | 60 | E (4) | (8) 8<br>(8) 8 | -FR + Ext. Zero | Std. Devn.<br>-FR gain | < 1ppm<br>-FR - 100ppm < 60Hz 4plc -gain< -FR + 100ppm | | 2086 | PXZX | 60 | D (1) | (8) 8 | -FR Noise | Std. Devn. | < 2ppm | | 2087 | PXZX | 60 | D (1) | (8) 8 | -FR + Ext. Zero | -FR gain | -FR - 100ppm < 60Hz 1plc -gain< -FR + 100ppm | | 2088 | PXZW | 60 | C (3.33ms) | (8) 8 | -FR Noise | Std. Devn. | < 10ppm | | | | | | | | | | ## **Special Calibration Procedures (Contd.)** #### 1.4.3 Dac Key To calibrate the digital-to-analog converter used for the optional 'Analog Output' of the instrument. #### **Analog Output Calibration** The Analog Output (Option 70) can be provided to give an output scaled from any Function/Range combination to 1V Full Range at low impedance, whose purpose is to drive a logging chart or other recording device. The Analog Output is calibrated at manufacture, and its accuracy is limited to 0.5% by the resolution of the Digital-to-Analog converter which produces the signal. The stability is such that further calibration of the D-A should be unnecessary during the life of the instrument. However, if the calibration stores have been cleared or corrupted for any reason (for instance if the battery has been changed with the power off); or if an analog output error is suspected to be greater than the specification; then Dac calibration may be required. #### **Calibration Method** Calibration consists of stimulating the D-A from an internal digital source (representing nominal outputs), feeding the analog outputs from the I/O port back to the front panel Hi and Lo terminals (so that an output is known to exist at the I/O port pins) and using the (previously calibrated) 1V DC range to take accurate measurements. The values of these measurements determine digital corrections which are held in non-volatile memory. No equipment is required other than the external connections shown in the diagram. Once the external signal path has been connected; the analog output has been enabled; and the 1V DC range has been selected; the calibration can be performed automatically by pressing the **Dac** soft key. #### To Calibrate: Ensure that the 1V DC range has already been calibrated. Connect the Analog Output to the Front Panel Hi and Lo terminals as shown in the diagram. The connection between pins 10 and 15 of SK8 enables the Analog Output. Select the 1V DC range and enter the SPCL menu via the EXT CAL menu. Once in the SPCL menu, merely press the Dac soft key. ## Special Calibration Procedures (Contd.) #### 1.4.4 Freq To calibrate the frequency detector responsible for the frequency readout in both SIGNAL FREQUENCY and SPOT CAL menus. #### **Frequency Readout Calibration** The frequency of an incoming AC signal can be read out by pressing the Freq soft key when in the MONITOR menu. The SIGNAL FREQUENCY menu appears, with a live frequency reading which changes as the input frequency changes. An indication of the spot number of any calibrated spot frequency is also given. Refer to the User's Handbook starting at page 4-23. In the STATUS CONFIG menu, access is given to review the spot frequencies at which the instrument has been calibrated; by selecting SpotF. Accurate calibration of the RMS gain, at each of the six spot frequencies which can be allocated to each ACV range, can be carried out when the instrument is in ACV Spot Frequency mode. Entry to the SPOT CAL menu is by selection of Set in the EXT CAL menu. The frequency detector responsible for the frequency readout in all the above cases is calibrated at manufacture. The frequency stability of the detector is such that further calibration should be unnecessary during the life of the instrument. However, if the calibration stores have been cleared or corrupted for any reason (for instance if the battery has been changed with the power off); or if a frequency error is suspected; then **Freq** calibration may be required. #### Calibration Method Calibration consists of taking a measurement of an accurate 1MHz signal on the 1V AC range, and informing the computing system that the frequency is an accurate 1MHz. The measured frequency value contains the measurement error, which is used to determine a digital correction. This is held in non-volatile memory and applied for subsequent frequency readouts. An accurate 1MHz source is required to provide an external stimulus at between 0.6V and 5.0V peak-to-peak Example Datron Model 4708 Once the external signal is injected; the 1V AC range has been selected; the calibration can be performed automatically by entering the SPCL menu via the EXT CAL menu and pressing the Freq soft key. #### To Calibrate: Select the 1V AC range and enter the SPCL menu via the EXT CAL menu. Connect an accurate source of 1MHz at between 0.6V and 5.0V peak-to-peak to the Front Panel Hi and Lo terminals. Press the Freq soft key. ## Special Calibration Procedures (Contd.) #### 1.4.5 CIrNv To clear a section of the non-volatile RAM used for calibration memory. #### Caution Do not clear any section of RAM unless you are sure that it is absolutely necessary. You could destroy an expensive calibration! #### The CLEAR NV RAM Menu Selecting CIrNv in the SPCL menu transfers to the CLEAR NV RAM menu which offers a choice of clearing one or all of three sections of RAM. The selection should be chosen only as a result of consultation with technical staff at your nearest service center. #### **Menu Choices** | Ali | Returns all the non-volatile RAM calibration memories to nominal | |-----|------------------------------------------------------------------| | | values determined by firmware. | **Ext** Returns the external calibration and internal source characterization memories to nominal values determined by firmware. Self Returns the self calibration memories to nominal values determined by firmware. Hf Returns the calibration memories which hold the AC HF corrections to nominal values determined by firmware. Quit Transfers back to the SPCL menu. ## SECTION 2 GUIDE TO 1281 FAULT DIAGNOSIS #### 2.1 Introduction #### 2.1.1 Use of Error Codes The 1281 incorporates an extensive set of error messages, each of which includes a code number. These messages can summarize incorrect application programming via the IEEE 488 bus, or a fault within the instrument. They are intended to give the user a first indication that all is not well with the measurement which has been set up, and point the way to possible corrective action. #### 2.1.2 Code Groupings The instrument is programmed in firmware to monitor its own operation, including interface protocols used via the IEEE 488 bus. As a result it will generate certain error codes to indicate that routine operations (including remote operation and some aspects of external calibration) are unsuccessful. Other error codes can be generated only from internal tests which are part of particular facilities initiated by the user, such as Selftest or Selfcal. Because the remote operation of the instrument is designed to conform to the IEEE 488.2 standard, the large-scale categories of errors decreed by the standard have been used as the general basis for all error-reporting. This means that error codes and messages reported on the front panel display are consistent, as far as possible, with those reported via the IEEE 488 bus. The type-names given to groupings of errors are thus primarily determined by those described in the IEEE 488.2 Standard specifications. Some categories apply only to bus operation, and are covered in Section 5 of the User's Handbook. Those which can be useful for diagnosing faults within the instrument are described in this section. #### Non-Recoverable Errors For all Fatal System Errors, the error condition is reported only via the front panel (this may fail if the fault is severe enough and unfortunately located). The processor stops after displaying the message. A user must respond by first recording any Error Code and accompanying message displayed on the front panel. It is then permissible to power off and restart operation from power on. If this does not clear the error condition, repair should be initiated by communicating with the nearest Datron Service Center. #### Recoverable Errors These consist of Command Errors, Execution Errors and Device-Dependent Errors. The reported Execution and Device-Dependent Errors are each identified by a code number, placed in two separate Last-in/First-out queues. The codes are displayed on the instrument front panel when in local control, or can be accessed at the controller when operating in remote control via the IEEE 488 bus. Many of the messages can be reported by both methods. The code number displayed on the instrument front panel is also accompanied by an error message. 'Command' and 'Execution' errors occur mainly because of incompatible remote programming via the IEEE 488 bus. 'Execution' and 'Device-Dependent' codes can result from specific errors during External Calibration, Self Calibration, Internal Reference parameter characterization or Input Zero operations. Some messages originate whenever a particular type of fault occurs. In addition to these automatic generations, self-testing can obtain a report about deviations from specified performance. Thus whenever it is suspected that a measurement (or a series of measurements) has not been completed successfully, a self test should be run which will either confirm the instrument's performance or localize any problem via the code number system. #### 2.1 Introduction (Contd.) #### 2.1.3 'Full' and 'Fast' Selftest The front-panel test facilities are summarized in Section 4 of the User's Handbook (page 4-30). Two forms of self-test are available in the TEST menu, obtained by pressing the Test hard key: #### Full Selftest This measures the accuracy of all main instrument functions (DCV, ACV, DCI, ACI and Ohms) and ranges of those functions, after checking the internal references and A-D operation. 'PASS' or 'FAIL' results depend on the measurements falling within tolerance limits which reflect the instrument's specification. The accuracy of these tests depends on an initial comparison between the output voltages from the two internal reference modules, and then comparing the ratio of the two against the same ratio which existed at the 'Internal Source Characterization' carried out after the most-recent external calibration to obtain a 'Drift' figure. #### **Fast Selftest** This is a subset of the set of tests allocated to a Full Selftest. It is intended as a quick 'Confidence' check to show that no serious defect is present to affect the instrument's operation. To increase the speed, only the most significant measurements from the full test are included, and most checks are run at reduced resolution (but the comparison between the reference ratio drift measurement is performed at full resolution). The error code descriptions for Full Selftest are given in sub-section 2.6, and those codes used for Fast Selftest are repeated in sub-section 2.7 for easier access. #### 2.1.4 References in this Section The messages are interpreted in this section to assist in fault localization: | Fatal System Errors: | 2.2 | |-------------------------------------------|-----| | Command Errors: | 2.3 | | Execution Errors: | 2.4 | | Device-Dependent Errors - Index: | 2.5 | | Device-Dependent Errors - Full Test List: | 2.6 | | Device-Dependent Errors - Fast Test List: | 2.7 | A grouped index of Device-Dependent error codes is given in sub-section 2.5. Each code carries a further reference to specific paragraphs and pages of sub-sections 2.6 and 2.7, in which the relevant element of the self-test responsible for generating the code number is described. Further references to the layout and circuit diagrams of Section 11 in Volume 2 also appear in sub-sections 2.6 and 2.7. ## 2.2 9000 Series Codes - Fatal System Errors #### 2.2.1 Introduction System errors which cannot be recovered cause the system to halt with a message displayed (the processor stops after displaying the message). The error condition is reported only via the front panel, but this may fail if the fault is severe enough and unfortunately located. #### 2.2.2 Immediate Action - Record any Error Code and accompanying message displayed on the front panel. Also record the hardware environment and any operations in progress at the time of failure. Fatal System errors are generally caused by hardware or software faults. - 2. Power OFF and ON again to try to restart operation. - 3. If (2) is unsuccessful, power OFF again and allow the instrument to cool for 15 minutes; then try powering ON. - 4. If the error condition does not recur, repeat the original operations. Check that no temperature or configuration factors cause the error condition to return. If successful, carefully proceed with further measurements as required. - 5. If (2) or (3) do not clear the error condition, or if it recurs in (4); communicate with your nearest Datron Service Center, quoting the recorded data from (1), and any other details. A form of failure report is given on the sheet inside the rear cover of this handbook. ## 2.2.3 Fatal System Error Codes | | • • | |--------------|-------------------------------------------| | 9000<br>9001 | System Kernel Fault Run Time System Error | | 9002 | Unexpected Exception | | 9003 | PROM Sumcheck Failure | | 9004 | RAM Check Failure | | 9005 | Serial Interface Fault | | 9006 | Option Test Failure | | 9007 | Unknown Engine Instruction | | 9099 | Undefined Fatal Error | Type of Fault Code #### 2.3 Command Errors Command Errors are reported in remote operation over the IEEE 488 bus. They are generated when the command has been 'parsed', but does not conform, either to the device command syntax, or to the IEEE 488.2 generic syntax. The CME bit (5) is set true in the Standard-defined Event Status Byte, but there is no associated queue so no index can be given. The error is reported by the mechanisms described in the sub-section dealing with status reporting, in Section 5 of the User's Handbook. #### 2.4 1000 Series Codes - Execution Errors #### 2.4.1 Introduction An Execution Error is generated if a command is recognised as valid (ie can be parsed and does not generate a Command Error), but cannot be executed because it is incompatible with the current device state, or because it attempts to command parameters which are out-of-limits. #### **Local Operation** Most normal operations, from the front panel, lock out the conditions which would give rise to Excecution errors, by the choices not being offered in the appropriate menus. However, some selections can be made using hard keys (such as pressing ACV when the option is not present in the instrument) which cannot be locked out. In these cases the Execution error is used as an aide-memoire for the user's convenience. The error code number appears on the front-panel Menu display, accompanied by an error message. #### **Remote Operation** The EXE bit (4) is set true in the Standard-defined Event Status Byte, and the error code number is appended to the Execution Error queue. The error is reported by the mechanisms described in the sub-section dealing with status reporting in Section 5 of the User's Handbook, and the queue entries can be read destructively as LIFO by the Common query command \*EXQ?. #### 2.4.2 Execution Error Codes Type of Error Code 1022 | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |--------------|----------------------------------------------------| | 1000<br>1001 | EXE queue empty when recalled Option not installed | | 1002 | Calibration disabled | | | | | 1003 | Ratio/Function combination not allowed | | 1004 | Filter incompatible with Function | | 1005 | Input Zero not allowed | | 1006 | Calibration not allowed in Ratio | | 1007 | Data entry error | | 1008 | Must be in AC Function | | 1009 | Pass Number entry error | | | | | 1010 | Divide-by-zero not allowed | | 1011 | Must be in SpotF Function | | 1012 | No more errors in the queue | | 1013 | Data out of limit | | 1014 | Illegal Range/Function combination | | 1015 | Command allowed only in Remote | | 1016 | Not in Special Calibration | | 1017 | Calibration not allowed with Math | | | | | 1018 | Key not in the Cal Enabled position | | 1019 | Spec not compatible with Function | | | | | 1020 | Internal Source Cal required | | 1021 | Test not allowed when Cal enabled | | | | No parameter for this Function ## 2.5 2000 Series Codes - Device-Dependent Errors - Index #### 2.5.1 Introduction A Device-Dependent Error is generated if the device detects an internal operating fault (eg. during Selfcal or Selftest). The DDE bit (3) is set *true* in the Standard-defined Event Status Byte, and the error code number is appended to the Device-Dependent Error queue. #### Remote Operation In Remote, the error is reported by the mechanisms described in the subsection dealing with status reporting in Section 5 of the User's Handbook, and the queue entries can be read destructively as LIFO by the query DDO?. #### Local Operation In Local, the Device-Dependent Error queue is checked at the end of the operation (eg. Cal, Zero, Test). If *true*, an error has occurred, and the contents of the most-recent entry in the queue is displayed on the front panel. The act of displaying the message deletes its code from the queue, so the next most-recent code comes to the front of the queue and is available to be displayed. The queue must be empty for normal operation to continue. If both bus and front panel users attempt to read the queue concurrently, the data is read out destructively on a first-come, first-served basis. Thus one of the users cannot read the data on one interface as it has already been destroyed by reading on the other. This difficulty should be solved by suitable application programming to avoid the possibility of a double readout. Ideally the IEEE 488 interface should set the instrument into REMS or RWLS to prevent confusion. The bus can ignore the queue, but the front panel user will have to read it to continue. ## 2.5.2 Index of Device-Dependent Error Codes | Code | Immediate Action | Full Test Refe<br>Sect. | erence<br>Page | Fast Test Rei<br>Sect | erence<br>Page | |------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|------------------------------| | Memo | ry Tests | | | | | | 2000<br>2001<br>2002<br>2003<br>2004<br>2008 | | 2.6.4.1<br>2.6.4.1<br>2.6.4.1<br>2.6.4.1<br>2.6.4.1<br>2.6.4.1 | 2-15<br>2-15<br>2-15<br>2-15<br>2-15<br>2-15 | | | | 2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019 | | 2.6.4.1<br>2.6.4.1<br>2.6.4.2<br>2.6.4.2<br>2.6.4.2<br>2.6.4.2<br>2.6.4.2<br>2.6.4.2<br>2.6.4.2<br>2.6.4.2 | 2-15<br>2-15<br>2-15<br>2-15<br>2-15<br>2-15<br>2-15<br>2-15 | | | | 2100*<br>2101*<br>2102*<br>2103* | | 2.6.5.1<br>2.6.5.1<br>2.6.5.1<br>2.6.5.1 | 2-15<br>2-15<br>2-15<br>2-15 | 2.7.1.1<br>2.7.1.1<br>2.7.1.1<br>2.7.1.1 | 2-58<br>2-58<br>2-58<br>2-58 | | Fuse 7 | Tests . | | | | | | 2111* | | 2.6.5.2 | 2-1 | | | | Others | S | | | | | | 2114<br>2115 | | 2.6.5.3<br>2.6.5.3 | 2-15<br>2-15 | | | | Refere | ence Ratio Tests | | | | | | 2121*<br>2122* | | 2.6.6.1<br>2.6.6.1 | 2-16<br>2-16 | 2.7.2<br>2.7.2 | 2-58<br>2-58 | | 2131*<br>2132* | | 2.6.6.2<br>2.6.6.2 | 2-16<br>2-16 | 2.7.2<br>2.7.2 | 2-58<br>2-58 | | 2141*<br>2142*<br>2143 | | 2.6.6.3<br>2.6.6.3<br>2.6.6.3 | 2-16<br>2-16<br>2-16 | 2.7.2<br>2.7.2 | 2-58<br>2-58 | | 2151*<br>2152*<br>2153*<br>2154*<br>2155<br>2156 | | 2.6.6.4<br>2.6.6.4<br>2.6.6.4<br>2.6.6.4<br>2.6.6.4<br>2.6.6.4 | 2-16<br>2-16<br>2-16<br>2-16<br>2-16<br>2-16 | 2.7.2<br>2.7.2<br>2.7.2<br>2.7.2 | 2-58<br>2-58<br>2-58<br>2-58 | | Section 2 - Fault Diagnosis | | | | | |-----------------------------|--------------------|--------------|--------------------|--------------| | Code Immediate Action | Full Test Ref | | Fast Test Re | | | | Sect. | Page | Sect | Page | | DC Voltage Tests | | | | | | 2161 | 2.6.7.1 | 2-18 | | | | 2162<br>2163 | 2.6.7.1<br>2.6.7.1 | 2-18<br>2-18 | | | | 2171 | 2.6.7.1 | 2-18 | | | | 2172 | 2.6.7.1<br>2.6.7.1 | 2-18<br>2-18 | | | | 2173 | 2.6.7.1 | 2-18 | 2.7.3.1 | 2-60 | | 2181*<br>2182* | 2.6.7.1 | 2-18 | 2.7.3.1 | 2-60 | | 2183 | 2.6.7.1 | 2-18 | | | | 2191 | 2.6.7.1 | 2-18 | | | | 2192<br>2193 | 2.6.7.1<br>2.6.7.1 | 2-18<br>2-18 | | | | 2201 | 2.6.7.1 | 2-18 | | | | 2202 | 2.6.7.1 | 2-18 | | | | 2203 | 2.6.7.1 | 2-18 | | • | | 2211* | 2.6.7.2 | 2-20 | 2.7.3.2 | 2-60 | | 2212*<br>2213* | 2.6.7.2<br>2.6.7.2 | 2-20<br>2-20 | 2.7.3.2<br>2.7.3.2 | 2-60<br>2-60 | | 2214* | 2.6.7.2 | 2-20 | 2.7.3.2 | 2-60 | | 2215* | 2.6.7.2 | 2-20 | 2.7.3.2 | 2-60 | | 2216* | 2.6.7.2 | 2-20 | 2.7.3.2 | 2-60 | | 2221<br>2222 | 2.6.7.3<br>2.6.7.2 | 2-22<br>2-22 | | | | 2223 | 2.6.7.2 | 2-22 | | | | 2224 | 2.6.7.2 | 2-22 | | | | 2231 | 2.6.7.2 | 2-22 | | | | 2232<br>2233 | 2.6.7.2<br>2.6.7.2 | 2-22<br>2-22 | | | | 2234 | 2.6.7.2 | 2-22 | | | | 2241 | 2.6.7.2 | 2-22 | | | | 2242 | 2.6.7.2<br>2.6.7.2 | 2-22<br>2-22 | | | | 2243 | 2.6.7.2 | 2-22 | | | | 2251<br>2252 | 2.6.7.2 | 2-22 | | | | 2253 | 2.6.7.2 | 2-22 | | | | 2261 | 2.6.7.2 | 2-22 | | | | 2262<br>2263 | 2.6.7.2<br>2.6.7.2 | 2-22<br>2-22 | | | | 2271 | 2.6.7.2 | 2-24 | | | | 2272 | 2.6.7.2 | 2-24 | | | | 2273 | 2.6.7.2 | 2-24 | | | | 2281* | 2.6.7.2 | 2-24 | 2.7.3.3 | 2-60 | | 2282*<br>2283 | 2.6.7.2<br>2.6.7.2 | 2-24<br>2-24 | 2.7.3.3 | 2-60 | | 2291 | 2.6.7.2 | 2-24 | | | | 2291 | 2.6.7.2 | 2-24 | | | | 2293 | 2.6.7.2 | 2-24 | | | **6** 50 6 9 | | F T . D | | | | auit Diagnosis | |-------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|-------------------|----------------| | Code Immediate Action | Full Test Re<br>Sect. | eterence<br>Page | Fast Test F<br>Sect | Reference<br>Page | | | AC Voltage Tests | | | | | | | 2301<br>2302 | 2.6.8.1<br>2.6.8.1 | 2-26<br>2-26 | | | | | 2311*<br>2312* | 2.6.8.1<br>2.6.8.1 | 2-26<br>2-26 | 2.7.4.1<br>2.7.4.1 | 2-62<br>2-62 | | | 2321*<br>2322* | 2.6.8.1<br>2.6.8.1 | 2-26<br>2-26 | 2.7.4.1<br>2.7.4.1 | 2-62<br>2-62 | | | 2331<br>2332 | 2.6.8.1<br>2.6.8.1 | 2-26<br>2-26 | | | | | 2341*<br>2342* | 2.6.8.1<br>2.6.8.1 | 2-26<br>2-26 | 2.7.4.1<br>2.7.4.1 | 2-62<br>2-62 | | | 2351<br>2352 | 2.6.8.1<br>2.6.8.1 | 2-28<br>2-28 | | | | | 2361<br>2362 | 2.6.8.1<br>2.6.8.1 | 2-28<br>2-28 | | | | | 2371<br>2372 | 2.6.8.1<br>2.6.8.1 | 2-28<br>2-28 | | | | | 2381<br>2382 | 2.6.8.1<br>2.6.8.1 | 2-28<br>2-28 | | | • | | 2391<br>2392 | 2.6.8.1<br>2.6.8.1 | 2-28<br>2-28 | | | | | 2401<br>2402 | 2.6.8.1<br>2.6.8.1 | 2-28<br>2-28 | | | | | 2411<br>2412 | 2.6.8.2<br>2.6.8.2 | 2-30<br>2-30 | | | | | 2421*<br>2422* | 2.6.8.2<br>2.6.8.2 | 2-30<br>2-30 | 2.7.4.2<br>2.7.4.2 | 2-64<br>2-64 | | | 2431* 2432* 2433 2434 2435 2436 2437 2438 | 2.6.8.2<br>2.6.8.2<br>2.6.8.2<br>2.6.8.2<br>2.6.8.2<br>2.6.8.2<br>2.6.8.2<br>2.6.8.2 | 2-30<br>2-30<br>2-30<br>2-30<br>2-30<br>2-30<br>2-30<br>2-30 | 2.7.4.2<br>2.7.4.2 | 2-64<br>2-64 | | | 2441<br>2442 | 2.6.8.2<br>2.6.8.2 | 2-32<br>2-32 | | | | | 2451<br>2452<br>2453 | 2.6.8.2<br>2.6.8.2<br>2.6.8.2 | 2-32<br>2-32<br>2-32 | | | | | 2461<br>2462 | 2.6.8.2<br>2.6.8.2 | 2-32<br>2-32 | | | | | 2471*<br>2472*<br>2473 | 2.6.8.2<br>2.6.8.2<br>2.6.8.2 | 2-32<br>2-32<br>2-32 | 2.7.4.2<br>2.7.4.2 | 2-64<br>2-64 | | | 2481<br>2482 | 2.6.8.2<br>2.6.8.2 | 2-34<br>2-34 | | | | | 2491*<br>2492*<br>2493 | 2.6.8.2<br>2.6.8.2<br>2.6.8.2 | 2-34<br>2-34<br>2-34 | 2.7.4.2<br>2.7.4.2 | 2-64<br>2-64 | | | 2501<br>2502 | 2.6.8.2<br>2.6.8.2 | 2-34<br>2-34 | | | | | 2511*<br>2512*<br>2513 | 2.6.8.2<br>2.6.8.2<br>2.6.8.2 | 2-34<br>2-34<br>2-34 | 2.7.4.2<br>2.7.4.2 | 2-64<br>2-64 | | | ode Immediate Action | | Reference | | Reference | | |----------------------|-------|-----------|-------|-----------|--| | | Sect. | Page | Sect | Page | | | C Current Tests | | | | | | | 521 | 2.6.9 | 2-36 | 2 | | | | 522 | 2.6.9 | 2-36 | | | | | 523 | 2.6.9 | 2-36 | | | | | 524 | 2.6.9 | 2-36 | | | | | 525 | 2.6.9 | 2-36 | | | | | 531* | 2.6.9 | 2-36 | 2.7.5 | 2-66 | | | 532* | 2.6.9 | 2-36 | 2.7.5 | 2-66 | | | 533 | 2.6.9 | 2-36 | | | | | 541 | 2.6.9 | 2-38 | | | | | 542 | 2.6.9 | 2-38 | | | | | 543 | 2.6.9 | 2-38 | | | | | 551* | 2.6.9 | 2-38 | 2.7.5 | 2-66 | | | 552* | 2.6.9 | 2-38 | 2.7.5 | 2-66 | | | 553 | 2.6.9 | 2-38 | | | | | 561 | 2.6.9 | 2-38 | | | | | 562 | 2.6.9 | 2-38 | | | | | 563 | 2.6.9 | 2-38 | | | | | 571 <b>*</b> | 2.6.9 | 2-38 | 2.7.5 | 2-66 | | | 572* | 2.6.9 | 2-38 | 2.7.5 | 2-66 | | | 572<br>5 <b>73</b> | 2.6.9 | 2-38 | 2.7.0 | | | | | 2.6.9 | 2-40 | | | | | 581<br>500 | 2.6.9 | 2-40 | | | | | 582<br>583 | 2.6.9 | 2-40 | | | | | | | | 0.75 | 0.60 | | | 591* | 2.6.9 | 2-40 | 2.7.5 | 2-66 | | | 592* | 2.6.9 | 2-40 | 2.7.5 | 2-66 | | | 593 | 2.6.9 | 2-40 | | | | | 601 | 2.6.9 | 2-40 | | | | | 602 | 2.6.9 | 2-40 | | | | | 603 | 2.6.9 | 2-40 | | | | | 611* | 2.6.9 | 2-40 | 2.7.5 | 2-66 | | | 612* | 2.6.9 | 2-40 | 2.7.5 | 2-66 | | | 613 | 2.6.9 | 2-40 | | | | **建**着 6 \$ | Code Immediate Action | F T 4.1 | 7 - 6 | F4 T4 | | Taun Diagnosis | |--------------------------|----------------------|-------|-------|-----------|----------------| | Code Infiliediate Action | Full Test <br>Sect. | Page | Sect | Reference | | | | Sect. | raye | Sect | Page | | | AC Current Tests | | | | | | | 2621 | 2.6.10 | 2-42 | | | | | 2622 | 2.6.10 | 2-42 | | | | | 2623 | 2.6.10 | 2-42 | | | | | 2631 | 2.6.10 | 2-42 | | | | | 2632 | 2.6.10 | 2-42 | | | | | 2633 | 2.6.10 | 2-42 | | | | | Resistor Ratio Tests | | | | | | | 2721 | 2.6.11 | 2-44 | | | | | 2722 | 2.6.11 | 2-44 | | | | | 2723 | 2.6.11 | 2-44 | | | | | 2724 | 2.6.11 | 2-44 | | | | | 2725 | 2.6.11 | 2-44 | | | | | 2726 | 2.6.11 | 2-44 | | | | | 2731 | 2.6.11 | 2-44 | | | | | 2732 | 2.6.11 | 2-44 | | | | | 2733 | 2.6.11 | 2-44 | | | | | 2734* | 2.6.11 | 2-44 | 2.7.6 | 2-68 | | | 2735* | 2.6.11 | 2-44 | 2.7.6 | 2-68 | | | 2736 | 2.6.11 | 2-44 | | | | | 2737 | 2.6.11 | 2-44 | | | | | Section 2 - Fault Diagnosis | Section | 2 - | Fault | Diac | nosis | |-----------------------------|---------|-----|-------|------|-------| |-----------------------------|---------|-----|-------|------|-------| | Code Immediate Action | Full Test Reference | | |------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------| | | Sect. Page | Sect Page | | Ohms Tests | 2.6.12 2-46 | | | 2741<br>2742<br>2743 | 2.6.12 2-46<br>2.6.12 2-46<br>2.6.12 2-46 | | | 2751*<br>2752*<br>2753*<br>2754*<br>2755 | 2.6.12 2-46 2.6.12 2-46 2.6.12 2-46 2.6.12 2-46 2.6.12 2-46 2.6.12 2-46 | 2.7.7 2-70 2.7.7 2-70 2.7.7 2-70 2.7.7 2-70 2.7.7 2-70 | | 2761<br>2762<br>2763 | 2.6.12 2-46 2.6.12 2-46 2.6.12 2-46 | | | 2771<br>2772<br>2773 | 2.6.122-482.6.122-482.6.122-48 | | | 2781*<br>2782*<br>2783 | 2.6.12 2-48 2.6.12 2-48 2.6.12 2-48 | 2.7.7 2-70<br>2.7.7 2-70 | | 2791<br>2792<br>2793 | 2.6.122-482.6.122-482.6.122-48 | | | 2801<br>2802<br>2803 | 2.6.12 2-48<br>2.6.12 2-48<br>2.6.12 2-48 | | | 2811<br>2812<br>2813 | 2.6.12 2-50 2.6.12 2-50 2.6.12 2-50 | | | 2821*<br>2822*<br>2823 | 2.6.12 2-50<br>2.6.12 2-50<br>2.6.12 2-50 | | | 2831<br>2832<br>2833 | 2.6.12 2-52 2.6.12 2-52 2.6.12 2-52 | | | 2841<br>2842<br>2843*<br>2844*<br>2845 | 2.6.12 2-52 2.6.12 2-52 2.6.12 2-52 2.6.12 2-52 2.6.12 2-52 | 2.7.7 2-70 | | 2851<br>2852<br>2853 | 2.6.12 2-52 2.6.12 2-52 2.6.12 2-52 | | | 2861<br>2862<br>2863 | 2.6.12 2-52 2.6.12 2-52 2.6.12 2-52 | | | 2871<br>2872<br>2873 | 2.6.12 2-54 2.6.12 2-54 2.6.12 2-54 | | | 2881<br>2882<br>2883 | 2.6.12 2-54 2.6.12 2-54 2.6.12 2-54 | | | 2891<br>2892<br>2893 | 2.6.12 2-54 2.6.12 2-54 2.6.12 2-54 | | | High Ohms Tests | | | | 2901<br>2902<br>2903 | 2.6.13 2-56 2.6.13 2-56 2.6.13 2-56 | | | 2911<br>2912<br>2913 | 2.6.13 2-56 2.6.13 2-56 2.6.13 2-56 | | | 2-10 | | | ## 2.6 2000 Series Codes - Device-Dependent Errors - Localization Codes used for Internal Source Cal, Selfcal and Full Test Start Overleaf Codes used for Fast Test are in Sect 2.7, Starting on Page 2-58 ## 2.6 2000 Series Codes - Device-Dependent Errors - Localization (Codes used for Fast Test are in Sect 2.7) #### 2.6.1 Introduction The 1281 firmware incorporates a program to run a comprehensive Self Test of the instrument's operating parameters, utilizing an internal reference as a source to stimulate measurements for the test. There are two versions of the test: a full check of all parameters against the published specification, whose run time is about 10 minutes (for an instrument fully-loaded with all options); and a faster check of selected parameters, usually with reduced accuracy at a 'Confidence' level, which takes only 1 minute to run. Failure to meet the accuracy tolerance for any one of the parameters will generate an error code. Error codes for parameter failures are stored in a queue to which the user has access. Sub-section 2.5 is merely an an easy-access index which provides immediate-action information and refers to sub-sections 2.6 and 2.7 which deal with 'Device-Dependent Errors', related directly to the internal operations of the 1281 itself. The purpose of this sub-section is to identify the nature of each test and the part of the instrument which is being checked; to show test paths, with stimulation and measurement points; and to define the tolerance limits for each check. For each test that can generate an error code, references identify and locate the stimulation and measurement points on the layout and circuit diagrams in Volume 2 of this handbook. The meanings of 'Fatal System Error', 'Command Error' and 'Execution Error' codes are described Section 5 of the User's Handbook, as they are concerned mainly with IEEE 488 operations. #### 2.6.2 Access to Error Codes via the 1281 Menu Keys (Refer to the User's Handbook, Page 4-31) #### 2.6.2.1 Reading the Error Codes Each of the two forms of self test runs at high speed, and does not stop unless it is aborted by the user. The error code for the first failure is noted on the Menu display, and this does not change on completion of the self test when the failure menu is displayed. At this point the user can list the codes for all the failures, reading them onto the Menu display in the order last-in, first-out (LIFO). Once an error appears on the display, it is deleted from the queue and cannot be recalled again, so the code numbers should be noted as they appear. When the self test has stopped, and the error code numbers have been noted, it is possible to access information about each test. Each error code is associated with a unique test pathway, which is numbered, the path number being shown on the tables (indexed by error code). #### 2.6.2.2 Access to Pathway Information Certain menu keys allow a user to select path numbers. For each selection the live measurement readings for the path are presented on the Main Display, and can be compared against the limits shown in the table which carries the path number. The path measurement reading on the Main Display is normalized to the range which was already selected. So before using the pathway keys it is advisable to select the 1V DC range, to obtain a *normalized* reading which only requires the range multiplier to be implemented to obtain the reading in the same form as in the table. The method of accessing the path numbers and associated pathway information is illustrated in the following diagrams. #### Select the 1V DC Range Press the DCV key and then the '1V' soft key: ### Select the Pathway Facility Press the Status key, then the Config key; and finally the soft key labelled '+/-' PUSR indicates that the present pathway is as defined by the user's previous selection of front panel keys; <<= (Exp) decrements the path number by 1; (+/-) decrements the path number by 20; =>> (Enter) increments the path number by 1. (Quit) increments the path number by 20. Press the ==>> soft key once. This reveals the number of power-line cycles in use by the A-D. For the basic 1V DC range it will show PL 64. Press the ==>> soft key a second time. This selects pathway P001; the next press selects pathway P002, and so on. #### 2.6.3 Composition of the Error Code #### 2.6.3.1 4-Digit Significance The codes for these operations are the individual test numbers in the sequence of checks or calibrations implemented by the processor. They will appear as Error Codes only if the process has not been successful, providing data for fault diagnosis. If the fault cannot be diagnosed locally, the data should be recorded and reported for interpretation to your nearest Datron Service Center. The four-figure code numbers for these operations are constructed as follows: There are four decimal digits; say w, x, y and z such that in the number wxyz: - w identifies the code as belonging to the device-dependent group - always 2; - xy is a two-digit step number, as listed in the tables; - z is both the measurement number and error number, of which several can be allocated within each step. Each error number is defined only for its own measurement. #### 2.6.3.2 Test Descriptions A 'Path' number (a 3-figure number prefixed by a capital 'P') describes a single test arrangement, in which several readings are taken. A first group of readings (number of readings depends on the setup) is discarded to allow settling to take place. A second group is then taken to establish a statistical field of results. Significant measurements are made by processing the results through different digital calculations to derive up to three main characteristics: #### Standard Deviation: gives a noise figure; #### Mean Value: provides mean magnitude; #### Mean minus the Previously-Calibrated Mean: is a measure of the mean magnitude drift since the most-recent Internal Source Calibration. Each characteristic results from a single measurement which, if selected for checking, is compared against specific limits of tolerance allocated in that particular setup for the characteristic. Each selected check constitutes a single measurement in the testing sequence to which a measurement number is attached: this number becomes the Error Code if the step result exceeds its tolerance limits. #### 2.6.3.3 Tables In the following pages the list of measurements carried out during a test sequence are grouped as a table on the right page of each opening. Each table is associated with a test setup diagram on the facing left page. The tables are arranged in groups, each group being associated with a single main signal route through the main software model, from which the individual test setup diagrams are derived. Small variations of the route (due to switching within the blocks) are listed as numbered test 'paths'. These are not detailed further, as the switching information is contained within the setup description. The tables give the test path number; test type; points of stimulus and measurement; number of readings discarded and processed; and the tolerance limits allocated to each measurement. References to Layout and Circuit diagrams allow rapid access to the stimulus and measurement nodes. The measurements are listed in the tables in error-code sequence. Those appearing in sub-section 2.6 are all included in 'Full Selftest', 'Selfcal' and 'Internal Source Cal'. But not all are included in 'Fast Selftest'. Subsection 2.7 lists those measurements which form the Fast Selftest. For these steps, the Fast Selftest limits are wider than for Full Selftest, Selfcal or Internal Source Cal. Also, because of the lower resolution in Fast Selftest, more readings can be taken in the same number of line cycles. Generally, different path numbers are allocated to Fast Selftest measurements. Note Abbreviations: FR = Full Range (Nominal). FS = Full Scale. #### **External Calibration Operations** 2.6.4 #### 2.6.4.1 **Correction Errors** | 2000<br>2001 | Zero<br>Gain+ | |--------------|---------------| | | | | 2002 | Gain- | | 2003 | HF trim | | 2004 | Input zero | | 2008 | A-to-D | | 2010 | Frequency | | 2011 | D-to-A | | 2012 | Standardize | #### 2.6.4.2 Corruptions | 2013 | Key/Pass# flags | |------|---------------------------------| | | , , | | 2014 | Serial Number | | 2015 | Cal Due Date | | 2016 | Self-corrections flag | | 2017 | Bus Address | | 2018 | Line Frequency | | 2019 | Bad data from analog sub-system | | | | #### 2.6.5 **Memory Tests** #### Non-volatile RAM Checksum Errors 2.6.5.1 2100 Primary. 2101 Secondary. 2102 Input Zero. 2103 ## 2.6.5.2 Fuse Tests Fuse is open circuit. (P084) +ve value OK Frequency. #### 2.6.5.3 Others DIL switches not optimum Requires internal source calibration 2115 #### 2.6.6 Reference Ratio Tests #### Test Setup Model #### Volume 2 References #### List of Reference Ratio Tests P001 Ref Zero Checks Input: Hard Zero to A-D Multiplexer. Measure: via A-D. No. of Readings: 1 Discarded; 6 Processed. Noise Standard Deviation ≤ 5ppm of FR Magnitude | Mean Ref zero | ≤ 50ppm of FR P003 Ref 2 Checks Input: Ref 2 to A-D Multiplexer. Measure: via A-D. No. of Readings: 1 Discarded; 6 Processed. 2131 Noise Standard Deviation ≤ 5ppm of FR 2132 Magnitude 0.703 v.FS < Magn Ref 2 < 0.743 v.FS 2132 Magnitude $0.703 \times FS \le Mean Ref 2 \le 0.743 \times FS$ P002 Ref 1 Checks Input: Ref 1 to A-D Multiplexer. Measure: via A-D. No. of Readings: 1 Discarded; 6 Processed. 2141 Noise Standard Deviation ≤ 5ppm of FR 2142 Magnitude 0.703 x FS ≤ Mean Ref 1 ≤ 0.743 x FS Dig. Ref 1: Ref 2 Magnitude Ratio Drift Digital comparison of the present ratio against the ratio recorded at the most-recent Internal Source Cal. 2143 Ratio Drift 20 x 10<sup>-6</sup> < Ratio Drift < +20 x 10<sup>-6</sup> P004 Positive Ref Checks Input: +Ref to A-D Multiplexer. Measure: via A-D. No. of Readings: 4 Discarded; 8 Processed. 2151 Noise Standard Deviation ≤ 5ppm of FR 2152 Magnitude 0.9995 x (+FS) < Mean +Ref < 1.0005 x (+FS)</th> P005 Negative Ref Checks Input: -Ref to A-D Multiplexer. Measure: via A-D. No. of Readings: 4 Discarded; 8 Processed. 2153 Noise Standard Deviation ≤ 5ppm of FR 2154 Magnitude 1.0005 x (-FS) < Mean -Ref < 0.9995 x (-FS)</td> Dig. +Ref 1 : -Ref 2 Magnitude Ratio Digital calculation of +Ref : -Ref. 2155 Magnitude Ratio -1.00005 < +Ref / -Ref < -0.99995 Dig. +Ref 1:-Ref 2 Magnitude Ratio Drift Digital comparison of the present ratio against the ratio recorded at the most-recent Internal Source Cal. 2156 Ratio Drift -10 x 10-6 < Ratio drift < +10 x 10-6 ## 2.6.7 DC Voltage Tests #### 2.6.7.1 True Zero Checks #### Test Setup Model #### Volume 2 References #### List of True Zero Measurements P006 10V Range True Zero Checks Input: Zero to 10VDC Range. Measure: via A-D. No of Readings: 4 Discarded; 16 Processed. 2161 Noise Standard Deviation ≤ 10uV 2162 Magnitude -100μV < Mean 10V Zero < +100μV Dig. 10V Range True Zero Magnitude Ratio Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. Zero Drift 2163 $-40\mu V$ < 10V Zero Drift < $+40\mu V$ P011 1V Range True Zero Checks Input: Zero to 1VDC Range. Measure: via A-D. No of Readings: 1 Discarded; 8 Processed. 2171 Standard Deviation ≤ 2µV 2172 Magnitude -25μV < Mean 1V Zero < +25μV 1V Range True Zero Magnitude Ratio Drift Dig. Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. Zero Drift 2173 $-6\mu V$ < 1V Zero Drift < $+6\mu V$ P016 100mV Range True Zero Checks Input: Zero to 100mVDC Range. Measure: via A-D. No of Readings: 1 Discarded; 8 Processed. 2181 Noise Standard Deviation ≤ 0.5µV 2182 Magnitude $-25\mu V$ < Mean 100mV Zero < $+25\mu V$ 100mV Range True Zero Magnitude Ratio Drift Dig. Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2183 Zero Drift $-3.5\mu V$ < 100mV Zero Drift < $+3.5\mu V$ P021 100V Range True Zero Checks Input: Zero to 100VDC Range. Measure: via A-D. No of Readings: 1 Discarded; 8 Processed. 2191 Noise Standard Deviation ≤ 1mV 2192 Magnitude -1mV < Mean 100V Zero < +1mV Dig. 100V Range True Zero Magnitude Ratio Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2193 Zero Drift $-600\mu V$ < 100V Zero Drift < $+600\mu V$ P028 1kV Range True Zero Checks Input: Zero to 1kVDC Range. Measure: via A-D. No of Readings: 1 Discarded; 8 Processed. 2201 Noise Standard Deviation ≤ 10mV 2202 Magnitude -10mV < Mean 1kV Zero < +10mV 10kV Range True Zero Magnitude Ratio Drift Dig. Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2203 Zero Drift -4mV < 1000V Zero Drift < +4mV #### 2.6.7 DC Voltage Tests (Contd) ## 2.6.7.2 Negative Gain Measurements [Offset (Zero) and References] #### **Test Setup Model** #### Volume 2 References #### List of Negative Gain Measurements P142 1V Range -Offset Zero Checks Input: -Offset to 1VDC Range. Measure: via A-D. No of Readings: 32 Discarded; 8 Processed. **2211** Noise Standard Deviation ≤ 10mV 2212 Magnitude -2.5mV < Mean -1V Offset < +2.5mV P143 1V Range - Reference Checks Input: -1V Reference to 1VDC Range. Measure: via A-D. No of Readings: 16 Discarded; 8 Processed. 2213 Noise Standard Deviation ≤ 10mV 2214 Magnitude -1.040V < Mean -1V Ref < -0.960V P138 10V Range -Reference Checks Input: -10V Reference to 10VDC Range. Measure: via A-D. No of Readings: 16 Discarded; 8 Processed. **2215** Noise Standard Deviation ≤ 100mV 2216 Magnitude -10.2V < -10V Ref < -9.4V #### 2.6.7 DC Voltage Tests (Contd) ## 2.6.7.3 Positive Gain Measurements [Offset (Zero) and References] #### Test Setup Model #### Volume 2 References #### List of Positive Gain Measurements P007 10V Range +10V Offset Zero Checks Input: +10V Offset to 10V DC Range. Measure: via A-D. No of Readings: 24 Discarded; 8 Processed. 2221 Noise Standard Deviation ≤ 20µV 2222 Magnitude $-250\mu V$ < Mean + 10V Offset < $+250\mu V$ P022 10V Range - Loaded +10V Offset Zero Input: +10V Offset to $10M\Omega$ Load and 10V DC Range. Measure: via A-D. No of Readings: 4 Discarded; 8 Processed. 2223 Noise Standard Deviation ≤ 100µV 2224 Offset Magnitude -250μV < Mean +10V Offset < +250μV P020 1V Range - Attenuated +10V Offset Zero Input: +10V Offset via attenuator to 1V DC Range. Measure: via A-D. No of Readings: 4 Discarded; 32 Processed. 2231 Noise Standard Deviation ≤ 20µV 2232 Magnitude 25μV < Mean +1V Offset < +25μV P024 100mV Range - Attenuated +10V Offset Zero Input: +10V Offset via attenuator to 100mV DC Range. Measure: via A-D. No of Readings: 4 Discarded; 16 Processed. 2233 Noise Standard Deviation ≤ 2µV 2234 Magnitude $-25\mu V < +100mV Offset < +25\mu V$ P012 1V Range - +1V Offset Zero Input: +1V Offset to 1V DC Range. Measure: via A-D. No of Readings: 8 Discarded; 12 Processed. 2241 Noise Standard Deviation ≤ 3µV 2242 Magnitude $-250\mu V$ < +Offset < $+250\mu V$ P008 10V Range - +Reference Checks Input: +10V Reference to 10V DC Range. Measure: via A-D. No of Readings: 8 Discarded; 8 Processed. 2251 Noise Standard Deviation ≤ 20µV 2252 Magnitude +9.5V < +10V Ref < +10.1V Dig. +10V Ref Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2253 Magnitude Drift $1 - (20 \times 10^{-6}) < drift < 1 + (20 \times 10^{-6})$ P023 10V Range - Loaded +10V Reference Checks Input: $\pm 10V$ to $10M\Omega$ Load and 10V DC Range. Measure: via A-D. No of Readings: 4 Discarded; 8 Processed. 2261 Noise Standard Deviation ≤ 30µV 2262 Magnitude +9.5V < 10V Gain < +10.1V Dig. 10V Range - Loaded +10V Ref Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2263 Magnitude Drift $-(20 \times 10^{-6}) < drift < 1 + (20 \times 10^{-6})$ # 2.6.7.3 Positive Gain Measurements (Contd) [Offset (Zéro) and References] #### **Test Setup Model** #### Volume 2 References ## List of Positive Gain Measurements (Contd.) P018 1V Range - Attenuated +10V Reference Checks Input: +10V DC via 100:1 attenuator to 1V DC Range. Measure: via A-D. No of Readings: 4 Discarded; 32 Processed. 2271 +100mV Signal Noise Standard Deviation of +100mV Signal ≤ 10μV +0.095V < +100mV Signal Magnitude < +0.101V 2272 Magnitude Dig. 1V Range - Attenuated +10V Ref Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2273 +100mV Signal Mag. Drift 1 - (10 x 10.6) < drift < 1 + (10 x 10.6) P025 100mV Range - Attenuated +10V Reference Checks Input: +10V DC via 100:1 attenuator to 100mV DC Range. Measure: via A-D. No of Readings: 4 Discarded; 16 Processed. +100mV Signal Noise 2281 Standard Deviation of +100mV signal ≤ 1µV 2282 Magnitude 94mV < +100mV Signal Magnitude < 102mV Dig. 100mV Range - Attenuated +10V Ref Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2283 +100mV Signal Mag. Drift $1 - (20 \times 10^{-6}) < drift < 1 + (20 \times 10^{-6})$ P013 1V Range - +1V Reference Checks Input: +1V Reference to 1V DC Range. Measure: via A-D. No of Readings: 8 Discarded; 12 Processed. 2291 Noise Standard Deviation ≤ 3µV 2292 Magnitude +0.965V < +1V Ref < +1.025V Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2293 Drift $1 - (10 \times 10^{-6}) < \text{Ref drift} < 1 + (10 \times 10^{-6})$ #### 2.6.8 AC Voltage Tests #### 2.6.8.1 Positive Tests #### Test Setup Model #### Volume 2 References #### List of Positive Measurements #### 1V AC Range #### P012 1V AC Range - Settling Time Input: +1VDC to AC Preamp set to 1VAC Range. Measure: Input using 1V DC Range at INT\_SIG\_BUS. No. of Readings: 0 Discarded; 8 Processed then Discarded to generate settling time. Measure and Discard - (settling) #### P059 1V AC Range - +1V DC Input Checks Input: +1VDC to AC Preamp set to 1VAC Range. Measure: Input using 1V DC Range at INT\_SIG\_BUS. No. of Readings: 8 Discarded; 8 Processed. 2301 Input Noise Standard Deviation ≤ 20ppm of FS 2302 Input Magnitude +0.96V < Mean Signal < +1.04V #### P060 1V AC Range - +1V DC Input - Checks at AC Preamp Output Input: +1VDC to AC Preamp set to 1VAC Range. Measure: Preamp Output using 1V DC Range at AC\_CAL\_SENSE. No. of Readings: 2 Discarded; 16 Processed. 2311 Preamp Output Noise Standard Deviation ≤ 50ppm of FS 2312 Preamp Output Magnitude -1.04V < Mean Signal < -0.96V #### P063 1V AC Range - +1V DC Input - Checks at RMS Converter Output Input: +1VDC to AC Preamp set to 1VAC Range. Measure: RMS Output via A-D. No. of Readings: 2 Discarded; 16 Processed. 2321 +RMS Output Noise Standard Deviation ≤ 50ppm of FS 2322 +RMS Output Magnitude +0.96V < Mean Signal < +1.04V #### 100mV AC Range #### P077 100mV AC Range - +100mV DC Input Checks Input: +100mVDC to AC Preamp set to 100mVAC Range. Measure: Input using 100mV DC Range at INT\_SIG\_BUS. No. of Readings: 8 Discarded; 8 Processed. 2331 Input Noise Standard Deviation ≤ 20ppm of FS 2332 Input Magnitude +170mV < Mean Signal < +200mV #### P078 100mV AC Range - +100mV DC Input - Checks at AC Preamp Output Input: +100mVDC to AC Preamp set to 100mVAC Range. Measure: Preamp Output using 1V DC Range at AC\_CAL\_SENSE. No. of Readings: 2 Discarded; 32 Processed. 2341 F Preamp Output Noise Standard Deviation ≤ 50ppm of FS 2342 Preamp Output Magnitude -200mV < Mean Signal < -170mV ## 2.6.8.1 Positive Tests (Contd.) #### Test Setup Model ### List of Positive Measurements (Contd.) #### 10V AC Range P017 10V AC Range - Settling Time > Input: +10VDC to AC Preamp set to 10VAC Range. Measure: Input using 10V DC Range at INT\_SIG\_BUS. No. of Readings: 0 Discarded; 8 Processed then Discarded to generate settling time. Measure and Discard - (settling) P065 10V AC Range - +10V DC Input Checks Input: +10VDC to AC Preamp set to 10VAC Range. Measure: Input using 10V DC Range at INT SIG BUS. No. of Readings: 8 Discarded; 8 Processed. Input Noise 2351 Standard Deviation ≤ 20ppm of FS Input Magnitude 2352 +9.4V < Mean Signal < +10.2V P066 10V AC Range - +10V DC Input - Checks at AC Preamp Output Input: +10VDC to AC Preamp set to 10VAC Range. Measure: Preamp Output using 1V DC Range at AC CAL SENSE. No. of Readings: 2 Discarded: 8 Processed. Preamp Output Noise 2361 Standard Deviation ≤ 50ppm of FS 2362 Preamp Output Magnitude -1.02V < Mean Signal < -0.94V #### 100V AC Range 100V AC Range - +10V DC Input Checks P069 Input: +10VDC to AC Preamp set to 100VAC Range. Measure: Input using 10V DC Range at INT SIG BUS. No. of Readings: 8 Discarded; 8 Processed. 2371 Input Noise Standard Deviation ≤ 20ppm of FS Input Magnitude 2372 +9.4V < Mean Signal < +10.2V P070 100V AC Range - +10V DC Input - Checks at AC Preamp Output Input: +10VDC to AC Preamp set to 100VAC Range. Measure: Preamp Output using 100mV DC Range at AC CAL SENSE. No. of Readings: 2 Discarded; 16 Processed. Preamp Output Noise 2381 Standard Deviation ≤ 50ppm of FS 2382 Preamp Output Magnitude -102mV < Mean Signal < -94mV #### 1kV AC Range P073 1kV AC Range - +10V DC Input Checks Input: +10VDC to AC Preamp set to 1kVAC Range. Measure: Input using 10V DC Range at INT\_SIG\_BUS. No. of Readings: 8 Discarded; 8 Processed. Input Noise 2391 Standard Deviation ≤ 20ppm of FS Input Magnitude 2392 +9.4V < Mean Signal < +10.2V P074 1kV AC Range - +10V DC Input - Checks at AC Preamp Output Input: +10VDC to AC Preamp set to 1kVAC Range. Measure: Preamp Output using 100mV DC Range at AC\_CAL\_SENSE. No. of Readings: 2 Discarded; 16 Processed. Preamp Output Noise 2401 Standard Deviation ≤ 50ppm of FS 2402 Preamp Output Magnitude -20.176mV < Mean Signal < -18.624mV ## 2.6.8 AC Voltage Tests (Contd.) ## 2.6.8.2 Negative Tests #### Test Setup Model 8 8 ## List of Negative Measurements #### 1V AC Range 1V AC Range - Settling Time P061 Input: -1VDC to AC Preamp set to 1VAC Range. Measure: Input using 1V DC Range at INT\_SIG\_BUS. No. of Readings: 24 Discarded; 8 Processed then Discarded to generate settling time. Measure and Discard - (settling) 1V AC Range - -1V DC Input Checks P061 Input: -1VDC to AC Preamp set to 1VAC Range. Measure: Input using 1V DC Range at INT\_SIG BUS. No. of Readings: 8 Discarded; 8 Processed. 2411 Input Noise Standard Deviation ≤ 20ppm of FS Input Magnitude 2412 -1.04V < Mean Signal < -0.96V 1V AC Range - - 1V DC Input - Checks at AC Preamp Output P062 Input: -1VDC to AC Preamp set to 1VAC Range. Measure: Preamp Output using 1V DC Range at AC\_CAL\_SENSE. No. of Readings: 2 Discarded; 16 Processed. Preamp Output Noise 2421 Standard Deviation ≤ 50ppm of FS 2422 Preamp Output Magnitude +0.96V < Mean Signal < +1.04V P064 1V AC Range - - 1V DC Input - Checks at RMS Converter Output Input: -1VDC to AC Preamp set to 1VAC Range. Measure: RMS Output via A-D. No. of Readings: 2 Discarded; 16 Processed. **RMS Output Noise** 2431 Standard Deviation ≤ 50ppm of FS -RMS Output Magnitude 2432 0.95V < Mean Signal < 1.05V RMS Converter Mean 1V Offset Dig. Digital Calculation: Mean of RMS +1V offset and -1V offset. 2433 1V Offset Magnitude -100ppm of FS < Mean Offset < +100ppm of FS 1V AC Range - Preamp Gain Drift Dig. Digital Comparison of the present Gain against its value recorded at the most-recent Internal Source Cal. Preamp Gain Drift 2434 0.999,650 < Drift Ratio < 1.000,350 +RMS Gain Dig. Digital Calculation of the present RMS Converter +Gain. 2435 0.94 < +RMS Gain < 1.05 +RMS Gain Drift Dig. Digital Comparison of the present +RMS Gain against its value recorded at the most-recent Internal Source Cal. 2436 +RMS Gain Drift Ratio 0.999,300 < Drift Ratio < 1.000,700 Dig. -RMS Gain Digital Calculation of the present RMS Converter -Gain. 2437 -RMS Gain -1.06 < -RMS Gain < -0.95 -RMS Gain Drift Dig. Digital Comparison of the present -RMS Gain against its value recorded at the most-recent Internal Source Cal. -RMS Gain Drift Ratio 2438 0.999.300 < Drift Ratio < 1.000,700 #### Test Setup Model #### List of Negative Measurements (Contd.) #### 100mV AC Range P079 100mV AC Range - -100mV DC Input Checks Input: -100mVDC to AC Preamp set to 100mVAC Range. Measure: Input using 100mV DC Range at INT\_SIG\_BUS. No. of Readings: 8 Discarded; 8 Processed. 2441 Input Noise Standard Deviation ≤ 20ppm of FS 2442 Input Magnitude -200mV < Mean Signal < -170mV P080 100mV AC Range - -100mV DC Input - Checks at AC Preamp Output Input: -100mVDC to AC Preamp set to 100mVAC Range. Measure: Preamp Output using 1V DC Range at AC\_CAL\_SENSE. No. of Readings: 2 Discarded; 32 Processed. 2451 Preamp Output Noise Standard Deviation ≤ 50ppm of FS 2452 Preamp Output Magnitude +170mV < Mean Signal < +200mV Dig. 100mV AC Range - Preamp Gain Drift Digital Comparison of the present Gain against its value recorded at the most-recent Internal Source Cal. 2453 Preamp Gain Drift 0.999,650 < Drift Ratio < 1.000,350 #### 10V AC Range #### P019 10V AC Range - Settling Time Input: -10VDC to AC Preamp set to 10VAC Range. Measure: Input using 10V DC Range at INT\_SIG\_BUS. No. of Readings: 0 Discarded; 8 Processed. Measure and Discard - (Settling) ## P067 10V AC Range - -10V DC Input Checks Input: -10VDC to AC Preamp set to 10VAC Range. Measure: Input using 10V DC Range at INT\_SIG\_BUS. No. of Readings: 8 Discarded; 8 Processed. 2461 Input Noise Standard Deviation ≤ 20ppm of FS 2462 Input Magnitude -10.2V < Mean Signal < -9.4V ## P017 10V AC Range - Settling Time Input: -10VDC to AC Preamp set to 10VAC Range. Measure: Preamp Output using 1V DC Range at AC CAL SENSE. No. of Readings: 0 Discarded; 8 Processed then Discarded to generate settling time. Measure and Discard P017 0; 8 (Settling) ## P068 10V AC Range - -10V DC Input - Checks at AC Preamp Output Input: -10VDC to AC Preamp set to 10VAC Range. Measure: Preamp Output using 1V DC Range at AC CAL SENSE. No. of Readings: 2 Discarded; 8 Processed. 2471 Preamp Output Noise Standard Deviation ≤ 50ppm of FS 2472 Preamp Output Magnitude +0.94V < Mean Signal < +1.02V #### Dig. 10V AC Range - Preamp Gain Drift Digital Comparison of the present Gain against its value recorded at the most-recent Internal Source Cal. 2473 Preamp Gain Drift 0.999,650 < Drift Ratio < 1.000,350 ## 2.6.8.2 Negative Tests (Contd.) #### **Test Setup Model** ### List of Negative Measurements (Contd.) #### 100V AC Range P071 100V AC Range - -10V DC Input Checks Input: -10VDC to AC Preamp set to 100VAC Range. Measure: Input using 10V DC Range at INT\_SIG\_BUS. No. of Readings: 8 Discarded; 8 Processed. 2481 Input Noise Standard Deviation ≤ 20ppm of FS 2482 Input Magnitude -10.2V < Mean Signal < -9.4V P072 100V AC Range - -10V DC Input - Checks at AC Preamp Output Input: -10VDC to AC Preamp set to 100VAC Range. Measure: Preamp Output using 100mV DC Range at AC\_CAL\_SENSE. No. of Readings: 2 Discarded; 16 Processed. 2491 Preamp Output Noise Standard Deviation ≤ 50ppm of FS 2492 Preamp Output Magnitude +94mV < Mean Signal < +102mV Dig. 100V AC Range - Preamp Gain Drift Digital Comparison of the present Gain against its value recorded at the most-recent Internal Source Cal. 2493 Preamp Gain Drift 0.999,650 < Drift Ratio < 1.000,350 ### 1000V AC Range P075 1kV AC Range - -10V DC Input Checks Input: -10VDC to AC Preamp set to 1kVAC Range. Measure: Input using 10V DC Range at INT\_SIG\_BUS. No. of Readings: 8 Discarded; 8 Processed. 2501 Input Noise Standard Deviation ≤ 20ppm of FS 2502 Input Magnitude -10.2V < Mean Signal < -9.4V P076 1kV AC Range - -10V DC Input - Checks at AC Preamp Output Input: -10VDC to AC Preamp set to 1kVAC Range. Measure: Preamp Output using 100mV DC Range at AC\_CAL\_SENSE. No. of Readings: 2 Discarded; 16 Processed. 2511 Preamp Output Noise Standard Deviation ≤ 50ppm of FS 2512 Preamp Output Magnitude +18.624mV < Mean Signal < +20.176mV Dig. 1kV AC Range - Preamp Gain Drift Digital Comparison of the present Gain against its value recorded at the most-recent Internal Source Cal. 2513 Preamp Gain Drift 0.999,650 < Drift Ratio < 1.000,350 #### 2.6.9 DC Current Tests #### **Test Setup Models** ## List of DC Current Measurements ### 10mA DC Range P083 10mA Range True Zero Checks Ohms Current: Deselected. Input Bus: Inputs deselected. Measure: 10mA DC Range via INT\_SIG\_BUS, 100mV DC Range and A-D. No. of Readings: 4 Discarded; 8 Processed. 2521 Noise Standard Deviation ≤ 10ppm of FS 2522 Magnitude -100ppm of FS < Mean Magnitude < +100ppm of FS Dig. 10mA Range True Zero Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2523 Zero Drift -20ppm of FS < Drift < +20ppm of FS P103 10mA Range - Ohms Low-Follower Zero Offset Checks All inputs deselected. Selfcal Current open circuit. Measure: 10mA DC Range Shunt using 100Ω Normal Ohms Range (Zero Offset only). No. of Readings: 4 Discarded; 16 Processed. 2524 Zero Offset Noise Standard Deviation ≤ 10ppm of FS 2525 Zero Offset Magnitude -100ppm of FS < Mean Magnitude < +100ppm of FS P084 10mA Range - Gain Checks Inputs: 10mA Ohms Current via LOW\_SENSE; 10mA Selfcal Current Selected. Measure: 10mA DC Range Shunt value using 100Ω Normal Ohms Range. No. of Readings: 8 Discarded; 8 Processed. 2531 Range Gain Noise Standard Deviation ≤ 10ppm of FS 2532 Range Gain Magnitude +FR - 2% < Mean Magnitude < +FR + 2% Dig. 10mA DC Range Gain Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2533 Magnitude Drift +0.999,750 < Drift Ratio < +1.000,250 # 2.6.9 DC Current Tests (Contd.) ### **Test Setup Models** ## List of DC Current Measurements (Contd.) #### 100mA DC Range P085 100mA Range True Zero Checks Ohms Current: Deselected. Input Bus: Inputs deselected. Measure: 100mA DC Range via INT\_SIG\_BUS, 100mV DC Range and A-D. No. of Readings: 4 Discarded; 16 Processed. 2541 Noise Standard Deviation ≤ 10ppm of FS 2542 Magnitude -100ppm of FS < Mean Magnitude < +100ppm of FS Dig. 100mA Range True Zero Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2543 Zero Drift -20ppm of FS < Drift < +20ppm of FS P086 100mA Range - Gain Checks Inputs: 10mA Ohms Current via LOW\_SENSE; 100mA Selfcal Current Selected. Measure: 100mA DC Range Shunt value using 100Ω Normal Ohms Range. No. of Readings: 4 Discarded; 16 Processed. 2551 Range Gain Noise Standard Deviation ≤ 10ppm of FS 2552 Range Gain Magnitude +0.1FR - 2% < Mean Magnitude < +0.1FR + 2% Dig. 100mA DC Range Gain Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2553 Magnitude Drift +0.999,000 < Drift Ratio < +1.001,000 ## 1A DC Range P087 1A Range True Zero Checks Ohms Current: Deselected. Input Bus: Inputs deselected. Measure: 1A DC Range via INT\_SIG\_BUS, 100mV DC Range and A-D. No. of Readings: 4 Discarded; 8 Processed. 2561 Noise Standard Deviation ≤ 10ppm of FS 2562 · Magnitude -100ppm of FS < Mean Magnitude < +100ppm of FS Dig. 1A Range True Zero Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2563 Zero Drift -20ppm of FS < Drift < +20ppm of FS P088 1A Range - Gain Checks Inputs: 10mA Ohms Current via LOW\_SENSE; 1A Selfcal Current Selected. Measure: 1A DC Range Shunt value using $100\Omega$ Normal Ohms Range. No. of Readings: 8 Discarded; 8 Processed. 2571 Range Gain Noise Standard Deviation ≤ 10ppm of FS 2572 Range Gain Magnitude +0.01FR - 4% < Mean Magnitude < +0.01FR + 4% Dig. 1A DC Range Gain Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2573 Range Gain Drift Ratio +0.997,500 < Drift Ratio < +1.002,500 ## 2.6.9 DC Current Tests (Contd.) ## **Test Setup Models** #### List of DC Current Measurements (Contd.) #### 1mA DC Range P089 1mA Range True Zero Checks Ohms Current: Deselected. Input Bus: Inputs deselected. Measure: 1mA DC Range via INT\_SIG\_BUS, 100mV DC Range and A-D. No. of Readings: 4 Discarded; 8 Processed. 2581 Noise Standard Deviation ≤ 10ppm of FS 2582 Magnitude -100ppm of FS < Mean Magnitude < +100ppm of FS Dig. 1mA Range True Zero Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2583 Zero Drift P089 4; 8 -20ppm of FS < Drift < +20ppm of FS P090 1mA Range - Gain Checks Inputs: 1mA Ohms Current via LOW SENSE; 1mA Selfcal Current Selected. Measure: 1mA DC Range Shunt value using $100\Omega$ LoI Ohms Range. No. of Readings: 4 Discarded; 8 Processed. 2591 Range Gain Noise Standard Deviation ≤ 10ppm of FS 2592 Range Gain Magnitude +FR - 2% < Mean Magnitude < +FR + 2% Dig. 1mA DC Range Gain Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2593 Magnitude Drift +0.999,750 < Drift Ratio < +1.000,250 #### 100μA DC Range P091 100µA Range True Zero Checks Ohms Current: Deselected. Input Bus: Inputs deselected. Measure: 100µA DC Range via INT SIG BUS, 100mV DC Range and A-D. No. of Readings: 4 Discarded; 8 Processed. 2601 Noise Standard Deviation ≤ 10ppm of FS 2602 Magnitude -100ppm of FS < Mean Magnitude < +100ppm of FS Dig. 100μA Range True Zero Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2603 Zero Drift -20ppm of FS < Drift < +20ppm of FS P092 100μA Range - Gain Checks Inputs: 100μA Ohms Current via LOW\_SENSE; 100μA Selfcal Current Selected. Measure: $100\mu A$ DC Range Shunt value using $1k\Omega$ Lol Ohms Range. No. of Readings: 4 Discarded; 8 Processed. 2611 Range Gain Noise Standard Deviation ≤ 10ppm of FS 2612 Range Gain Magnitude +FR - 2% < Mean Magnitude < +FR + 2% Dig. 100μA DC Range Gain Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2613 Magnitude Drift Ratio +0.999,750 < Drift Ratio < +1.000,250 ## 2.6.10 AC Current Tests #### Test Setup Model #### Volume 2 References 2 #### List of AC Current Measurements #### 10mA AC Range P093 10mA AC Range - Gain Checks Inputs: 10mA Ohms Current via LOW\_SENSE; 10mA Selfcal Current Selected. Measure: 10mA Range Shunt value using 100 $\Omega$ Normal Ohms Range (using 100mAAC Range and A-D). No. of Readings: 4 Discarded; 8 Processed. 2621 Range Gain Noise Standard Deviation ≤ 10ppm of FS 2622 Range Gain Magnitude +FR - 4% < Mean Magnitude < +FR + 4% Dig. 10mA AC Range Gain Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2623 Magnitude Drift +0.999,750 < Drift Ratio < +1.000,250 P093 10mA AC Range - Gain Checks Inputs: 100μA Ohms Current via LOW\_SENSE; 100μA Selfcal Current Selected. Measure: 10mA Range Shunt value using $1k\Omega$ Lol Ohms Range (using 100mA AC Range and A-D). No. of Readings: 4 Discarded; 8 Processed. 2631 Range Gain Noise Standard Deviation ≤ 10ppm of FS 2632 Range Gain Magnitude +FR - 4% < Mean Magnitude < +FR + 4% Dig. 10mA AC Range Gain Magnitude Drift Digital comparison of the present magnitude against that recorded at the most-recent Internal Source Cal. 2633 Magnitude Drift +0.999,750 < Drift Ratio < +1.000,250 ## 2.6.11 Resistor Ratio Tests #### Test Setup Model #### List of Standard Resistor Measurements #### 1kΩ Standard Resistor 1kΩ Standard Resistor True Zero P035 Ohms Current: True Zero. DCV Range: 100mV. No. of Readings: 32 Discarded; 8 Processed. 2721 Standard Deviation ≤ 10ppm of FS 2722 Magnitude -200ppm of FS < Mean < +200ppm of FS Zero Drift Dia. Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2723 Magnitude Drift -100ppm of FS < Drift < +100ppm of FS 1kΩ Standard Resistor Value P036 Ohms Current: 100µA. DCV Range: 100mV. No. of Readings: 8 Discarded; 8 Processed. 2724 Noise Standard Deviation ≤ 10ppm of FS Magnitude 2725 $980\Omega$ < Mean < $1020\Omega$ Value Drift Dig. Digital comparison of the present Value against that recorded at the most-recent Internal Source Cal. 2726 Magnitude Drift 0.999,800 < Drift Ratio < 1.000.200 #### 100kΩ Standard Resistor 100kΩ Standard Resistor True Zero P037 Ohms Current: True Zero. DCV Range: 10V. No. of Readings: 8 Discarded; 8 Processed. 2731 Noise Standard Deviation ≤ 2ppm of FS 2732 Magnitude -40ppm of FS < Mean Magnitude < +40ppm of FS Zero Drift Dig. Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. Magnitude Drift 2733 -5ppm of FS < Drift < +5ppm of FS 100kΩ Standard Resistor Value P038 Ohms Current: 100μA. DCV Range: 10V. No. of Readings: 8 Discarded; 8 Processed. 2734 Noise Standard Deviation ≤ 2ppm of FS 2735 Magnitude $98k\Omega$ < Magnitude < $102k\Omega$ Value Drift Dig. Digital comparison of the present Value against that recorded at the most-recent Internal Source Cal. Magnitude Drift 2736 0.999,750 < Drift Ratio < 1.000,250 ## Standard Resistor Ratio Dig. Value Drift Digital comparison of the ratio between the present $100k\Omega$ and $1k\Omega$ Values against the corresponding ratio recorded at the most-recent calibration. Value-Ratio Drift 2737 $-100 \times 10^{-6} < Drift < +100 \times 10^{-6}$ ## 2.6.12 Ohms Tests ## **Test Setup Model** #### List of Ohms Measurements #### 100Ω Range P039 100Ω Range True Zero (Measured using the 1V DC Range) Ohms Current: True Zero (10mA selected). Standard Resistor: 1kΩ. DCV Range: 1V. No. of Readings: 4 Discarded; 8 Processed. 2741 Noise Standard Deviation ≤ 5ppm of FS 2742 Magnitude -40ppm of FS < Mean Magnitude < +40ppm of FS Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2743 Magnitude Drift -15ppm of FS < Drift < +15ppm of FS P040 100Ω Range Zero (Measured using the 10V DC Range) Ohms Current: True Zero (10mA selected). Standard Resistor: 1kΩ. DCV Range: 10V. No. of Readings: 4 Discarded; 8 Processed. 2751 Noise Standard Deviation ≤ 3ppm of FS 2752 Magnitude -50ppm of FS < Mean Magnitude < +50ppm of FS P041 $100\Omega$ Range Gain (Measured using the 10V DC Range) Ohms Current: 10mA. Standard Resistor: 1kΩ. DCV Range: 10V. No. of Readings: 4 Discarded; 8 Processed. 2753 Noise Standard Deviation ≤ 3ppm of FS 2754 Magnitude $96\Omega$ < Mean Magnitude < $104\Omega$ Dig. Gain Drift Digital comparison of the present Gain Magnitude against that recorded at the most-recent Internal Source Cal. 2755 Magnitude Drift 0.999,750 < Drift Ratio < 1.000,250 P042 100Ω Range True Zero (Measured using the 100mV DC Range) Ohms Current: True Zero (1mA selected). Standard Resistor: 1kΩ. DCV Range: 100mV. No. of Readings: 4 Discarded; 8 Processed. 2761 Noise Standard Deviation ≤ 15ppm of FS 2762 Magnitude -200ppm of FS < Mean Magnitude < +200ppm of FS Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2763 Magnitude Drift -100ppm of FS < Drift < +100ppm of FS ## 2.6.12 Ohms Tests (Contd.) #### Test Setup Model #### Volume 2 References M202 - 1/2/3 11.2-2 Layout Measurement of $1k\Omega$ & $10k\Omega$ Ranges via DC Voltage Ranges ### List of Ohms Measurements (Contd.) #### 1kΩ Range P043 $1k\Omega$ Range True Zero (Measured using the 1V DC Range) Ohms Current: True Zero (1mA selected). Standard Resistor: 1kΩ. DCV Range: 1V. No. of Readings: 4 Discarded; 8 Processed. 2771 Noise Standard Deviation ≤ 5ppm of FS 2772 Magnitude -40ppm of FS < Mean Magnitude < +40ppm of FS Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2773 Magnitude Drift -15ppm of FS < Drift < +15ppm of FS P044 1kΩ Range Gain (Measured using the 1V DC Range) Ohms Current: 1mA. Standard Resistor: 1kΩ. DCV Range: 1V. No. of Readings: 4 Discarded; 8 Processed. 2781 Noise Standard Deviation ≤ 5ppm of FS 2782 Magnitude $960\Omega$ < Mean Magnitude < $1040\Omega$ Dig. Gain Drift Digital comparison of the present Gain Magnitude against that recorded at the most-recent Internal Source Cal. 2783 Magnitude Drift 0.999,750 < Drift Ratio < 1.000,250 #### 10kΩ Range P045 $10k\Omega$ Range True Zero (Measured using the 1V DC Range) Ohms Current: True Zero (100 $\mu$ A selected). Standard Resistor: 1k $\Omega$ . DCV Range: 1V. No. of Readings: 4 Discarded; 8 Processed. 2791 Noise Standard Deviation ≤ 5ppm of FS 2792 Magnitude -40ppm of FS < Mean Magnitude < +40ppm of FS Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2793 Magnitude Drift -15ppm of FS < Drift < +15ppm of FS P046 10kΩ Range True Zero (Measured using the 100mV DC Range) Ohms Current: True Zero (10 $\mu$ A selected). Standard Resistor: 1k $\Omega$ . DCV Range: 100mV. No. of Readings: 4 Discarded; 8 Processed. 2801 Noise Standard Deviation ≤ 15ppm of FS 2802 Magnitude -200ppm of FS < Mean Magnitude < +200ppm of FS Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2803 Magnitude Drift -100ppm of FS < Drift < +100ppm of FS # 2.6.12 Ohms Tests (Contd.) ## **Test Setup Model** ## List of Ohms Measurements (Contd.) ## 100kΩ Range P047 100kΩ Range True Zero (Measured using the 100mV DC Range) Ohms Current: True Zero (1 $\mu$ A selected). Standard Resistor: 100k $\Omega$ . DCV Range: 100mV. No. of Readings: 4 Discarded; 8 Processed. 2811 Noise Standard Deviation ≤ 15ppm of FS 2812 Magnitude $-250\Omega$ < Mean Magnitude < $+250\Omega$ Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2813 Magnitude Drift -100ppm of FS < Drift < +100ppm of FS P048 100kΩ Range Gain (Measured using the 100mV DC Range) Ohms Current: 1μA. Standard Resistor: 100kΩ. DCV Range: 100mV. No. of Readings: 4 Discarded; 8 Processed. 2821 Noise Standard Deviation ≤ 15ppm of FS 2822 Magnitude 96kΩ < Mean Magnitude < 104kΩ Dig. Gain Drift Digital comparison of the present Gain Magnitude against that recorded at the most-recent Internal Source Cal. 2823 Magnitude Drift 0.999,650 < Drift Ratio < 1.000,350 ## 2.6.12 Ohms Tests (Contd.) ## Test Setup Model ## Volume 2 References Measurement of $1M\Omega$ Range via DC Voltage Ranges 11.2-2 #### List of Ohms Measurements (Contd.) #### 1MΩ Range P049 **1M**Ω **Range True Zero** (Measured using the 10V DC Range) Ohms Current: True Zero (10μA selected). Standard Resistor: 100kΩ. DCV Range: 10V. No. of Readings: 4 Discarded; 8 Processed. 2831 Noise Standard Deviation ≤ 3ppm of FS 2832 Magnitude -40ppm of FS < Mean Magnitude < +40ppm of FS Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2833 Magnitude Drift -5ppm of FS < Drift < +5ppm of FS P050 1MΩ Range Zero (Measured using the 1V DC Range) Ohms Current: True Zero (10 $\mu$ A selected). Standard Resistor: 100k $\Omega$ . DCV Range: 1V. No. of Readings: 4 Discarded; 8 Processed. 2841 Noise Standard Deviation ≤ 5ppm of FS 2842 Magnitude -50ppm of FS < Mean Magnitude < +50ppm of FS P051 1MΩ Range Gain (Measured using the 1V DC Range) Ohms Current: 10μA. Standard Resistor: 100kΩ. DCV Range: 1V. No. of Readings: 4 Discarded; 8 Processed. 2843 Noise Standard Deviation ≤ 5ppm of FS 2844 Magnitude 960kΩ < Mean Magnitude < 1040kΩ Dig. Gain Drift Digital comparison of the present Gain Magnitude against that recorded at the most-recent Internal Source Cal. 2845 Magnitude Drift 0.999,750 < Drift Ratio < 1.000,250 P052 1MΩ Range True Zero (Measured using the 100mV DC Range) Ohms Current: True Zero (100nA selected). Standard Resistor: 100kΩ. DCV Range: 100mV. No. of Readings: 4 Discarded; 8 Processed. 2851 Noise Standard Deviation ≤ 15ppm of FS 2852 Magnitude -250 $\Omega$ < Mean Magnitude < +250 $\Omega$ Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2853 Magnitude Drift -100ppm of FS < Drift < +100ppm of FS P053 1MΩ Range Gain (Measured using the 100mV DC Range) Ohms Current: 100nA selected. Standard Resistor: 100kΩ. DCV Range: 100mV. No. of Readings: 4 Discarded; 8 Processed. 2861 Noise Standard Deviation ≤ 15ppm of FS 2862 Magnitude 96kΩ < Mean Magnitude < 104kΩ Dig. Gain Drift Digital comparison of the present Gain Magnitude against that recorded at the most-recent Internal Source Cal. 2863 Magnitude Drift 0.999,000 < Drift Ratio < 1.001,000 ## 2.6.12 Ohms Tests (Contd.) #### Test Setup Model ## List of Ohms Measurements (Contd.) ## 10M $\Omega$ Range P054 10MΩ Range True Zero (Measured using 1μA Ohms Current) Ohms Current: True Zero (1μA selected). Standard Resistor: 100kΩ. DCV Range: 10V. No. of Readings: 4 Discarded; 8 Processed. 2871 Noise Standard Deviation ≤ 3ppm of FS 2872 Magnitude -40ppm of FS < Mean Magnitude < +40ppm of FS Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2873 Magnitude Drift 100ppm of FS < Drift < +100ppm of FS P055 10MΩ Range True Zero (Measured using 10nA Ohms Current) Ohms Current: True Zero (10nA selected). Standard Resistor: 100kΩ. DCV Range: 10V. No. of Readings: 4 Discarded; 8 Processed. 2881 Noise Standard Deviation ≤ 15ppm of FS 2882 Magnitude $-250\Omega$ < Mean Magnitude < $+250\Omega$ Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2883 Magnitude Drift -100ppm of FS < Drift < +100ppm of FS P056 10MΩ Range Gain (Measured using 10nA Ohms Current) Ohms Current: 10nA selected. Standard Resistor: 100kΩ. DCV Range: 100mV. No. of Readings: 4 Discarded; 8 Processed. 2891 Noise Standard Deviation ≤ 15ppm of FS 2892 Magnitude $94k\Omega$ < Mean Magnitude < $106k\Omega$ Dig. Gain Drift Digital comparison of the present Gain Magnitude against that recorded at the most-recent Internal Source Cal. 2893 Magnitude Drift 0.997,500 < Drift Ratio < 1.002,500 ## 2.6.13 High Ohms Tests ## **Test Setup Model** ## List of Hi Ohms Measurements ## 100M $\Omega$ Range P057 100MΩ Range True Zero Ohms Current: True Zero (100nA selected). Standard Resistor: 100kΩ. DCV Range: 10V. No. of Readings: 4 Discarded; 8 Processed. 2901 Noise Standard Deviation ≤ 2ppm of FS 2902 Magnitude -20ppm of FS < Magnitude < +20ppm of FS Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2903 Magnitude Drift -100ppm of FS < Drift < +100ppm of FS ## $1G\Omega$ Range P058 1GΩ Range True Zero Ohms Current: True Zero (10nA selected). Standard Resistor: 100kΩ. DCV Range: 10V. No. of Readings: 4 Discarded; 8 Processed. 2911 Noise Standard Deviation ≤ 2ppm of FS 2912 Magnitude -20ppm of FS < Magnitude < +20ppm of FS Dig. Zero Drift Digital comparison of the present Zero Magnitude against that recorded at the most-recent Internal Source Cal. 2913 Magnitude Drift -100ppm of FS < Drift < +100ppm of FS # 2.7 Fast Selftest ## Reference Ratio Test Setup Model ## List of Memory Tests and Reference Ratio Measurements # 2.7.1 Memory Tests ## 2.7.1.1 Non-volatile RAM Checksum Errors 2100 Primary. 2101 Secondary. 2102 Input Zero. 2103 Frequency. 2154 Magnitude ## 2.7.2 Reference Ratio Tests | P129 | Ref Zero Checks<br>Input: Hard Zero to A-D M | Multiplexer. Measure: via A-D. No. of Readings: 8 Discarded; 16 Processed. | |------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------| | 2121 | Noise | Standard Deviation ≤ 60ppm of FR | | 2122 | Magnitude | Mean Ref zero ≤ 50ppm of FR | | P131 | Ref 2 Checks Input: Ref 2 to A-D Multiplexer. Measure: via A-D. No. of Readings: 8 Discarded; 16 Processed. | | | 2131 | Noise | Standard Deviation ≤ 60ppm of FR | | 2132 | Magnitude | 0.703 x FS ≤ Mean Ref 2 ≤ 0.743 x FS | | | | | | P130 | Ref 1 Checks Input: Ref 1 to A-D Multiplexer. Measure: via A-D. No. of Readings: 8 Discarded; 16 Processed. | | | 2141 | Noise | Standard Deviation ≤ 60ppm of FR . | | 2142 | Magnitude | 0.703 x FS ≤ Mean Ref 1 ≤ 0.743 x FS | | | | | | P132 | Positive Ref Checks Input: +Ref to A-D Multiplexer. Measure: via A-D. No. of Readings: 8 Discarded; 16 Processed. | | | 2151 | Noise | Standard Deviation ≤ 60ppm of FR | | 2152 | Magnitude | 0.9995 x (+FS) < Mean +Ref < 1.0005 x (+FS) | | | | | | P133 | Negative Ref Checks<br>Input: -Ref to A-D Multiple | exer. Measure: via A-D. No. of Readings: 8 Discarded; 16 Processed. | | 2153 | Noise | Standard Deviation ≤ 60ppm of FR | 1.0005 x (-FS) < Mean -Ref < 0.9995 x (-FS) ## 2.7.3 DC Voltage Tests ## Test Setup Model ## List of DC Voltage Measurements ### 2.7.3.1 True Zero Checks P144 100mV Range True Zero Checks Input: Zero to 100mVDC Range. Measure: via A-D. No of Readings: 8 Discarded; 16 Processed. 2181 Noise Standard Deviation ≤ 5µV 2182 Magnitude $-250\mu V$ < Mean 100mV Zero < $+250\mu V$ #### 2.7.3.2 Negative Gain Measurements [Offset (Zero) and References] P142 1V Range -Offset Zero Checks Input: -Offset to 1VDC Range. Measure: via A-D. No of Readings: 32 Discarded; 8 Processed. **2211** Noise Standard Deviation ≤ 10mV 2212 Magnitude -2.5mV < Mean -1V Offset < +2.5mV P143 1V Range -Reference Checks Input: -1V Reference to 1VDC Range. Measure: via A-D. No of Readings: 16 Discarded; 8 Processed. 2213 Noise Standard Deviation ≤ 10mV 2214 Magnitude -1.040V < Mean -1V Ref < -0.960V P138 10V Range - Reference Checks Input: -10V Reference to 10VDC Range. Measure: via A-D. No of Readings: 16 Discarded; 8 Processed. 2215 Noise Standard Deviation ≤ 100mV 2216 Magnitude -10.2V < -10V Ref < -9.4V #### 2.7.3.3 Positive Gain Measurements P153 100mV Range - Attenuated +10V Reference Checks Input: +10V DC via 100:1 attenuator to 100mV DC Range. Measure: via A-D. No of Readings: 8 Discarded; 16 Processed. 2281 +100mV Signal Noise Standard Deviation of +100mV signal ≤ 10µV 2282 Magnitude 94mV < +100mV Signal Magnitude < 102mV ## 2.7.4 AC Voltage Tests ## **Test Setup Model** ## List of AC Voltage Measurements #### 2.7.4.1 Positive Tests #### 1V AC Range P188 +1V DC Input - Checks at AC Preamp Output Input: +1VDC to AC Preamp set to 1VAC Range. Measure: Preamp Output using 1V DC Range at AC\_CAL\_SENSE. No. of Readings: 24 Discarded; 8 Processed. 2311 Preamp Output Noise Standard Deviation ≤ 5000ppm of FS 2312 Preamp Output Magnitude -1.04V < Mean Signal < -0.96V P191 +1V DC Input - Checks at RMS Converter Output Input: +1VDC to AC Preamp set to 1VAC Range. Measure: RMS Output via A-D. No. of Readings: 24 Discarded; 8 Processed. 2321 +RMS Output Noise Standard Deviation ≤ 5000ppm of FS 2322 +RMS Output Magnitude +0.96V < Mean Signal < +1.04V ### 100mV AC Range P206 +100mV DC Input - Checks at AC Preamp Output Input: +100mVDC to AC Preamp set to 100mVAC Range. Measure: Preamp Output using 1V DC Range at AC\_CAL\_SENSE. No. of Readings: 24 Discarded; 8 Processed. 2341 Preamp Output Noise Standard Deviation ≤ 5000ppm of FS 2342 Preamp Output Magnitude -200mV < Mean Signal < -170mV # 2.7.4 AC Voltage Tests (Contd.) ### **Test Setup Model** ### Volume 2 References ### List of AC Voltage Measurements (Contd.) ### 2.7.4.2 Negative Tests ### 1V AC Range P0190 -1V DC Input - Checks at AC Preamp Output Input: -1VDC to AC Preamp set to 1VAC Range. Measure: Preamp Output using 1V DC Range at AC\_CAL\_SENSE. No. of Readings: 24 Discarded; 8 Processed. 2421 Preamp Output Noise Standard Deviation ≤ 5000ppm of FS 2422 Preamp Output Magnitude +0.96V < Mean Signal < +1.04V P192 -1V DC Input - Checks at RMS Converter Output Input: -1VDC to AC Preamp set to 1VAC Range. Measure: RMS Output via A-D. No. of Readings: 24 Discarded; 8 Processed. 2431 RMS Output Noise Standard Deviation ≤ 5000ppm of FS 2432 -RMS Output Magnitude 0.95V < Mean Signal < 1.05V ### 10V AC Range ### P017 Settling Time Input: -10VDC to AC Preamp set to 10VAC Range. Measure: Preamp Output using 1V DC Range at AC\_CAL\_SENSE. No. of Readings: 0 Discarded; 8 Processed then Discarded to generate settling time. Measure and Discard P017 0; 8 (Settling) ### P196 -10V DC Input - Checks at AC Preamp Output Input: -10VDC to AC Preamp set to 10VAC Range. Measure: Preamp Output using 1V DC Range at AC\_CAL\_SENSE. No. of Readings: 24 Discarded; 8 Processed. 2471 Preamp Output Noise Standard Deviation ≤ 5000ppm of FS 2472 Preamp Output Magnitude +0.94V < Mean Signal < +1.02V ### 100V AC Range ### P200 -10V DC Input - Checks at AC Preamp Output Input: -10VDC to AC Preamp set to 100VAC Range. Measure: Preamp Output using 100mV DC Range at AC\_CAL\_SENSE. No. of Readings: 24 Discarded; 8 Processed. 2491 Preamp Output Noise Standard Deviation ≤ 5000ppm of FS 2492 P. Preamp Output Magnitude +94mV < Mean Signal < +102mV ### 1kV AC Range ### P204 -10V DC Input - Checks at AC Preamp Output Input: -10VDC to AC Preamp set to 1kVAC Range. Measure: Preamp Output using 100mV DC Range at AC CAL SENSE. No. of Readings: 24 Discarded; 8 Processed. 2511 Preamp Output Noise Standard Deviation ≤ 5000ppm of FS 2512 Preamp Output Magnitude +18.624mV < Mean Signal < +20.176mV ## 2.7.5 DC Current Tests ### Test Setup Model ### Volume 2 References ### List of DC Current Measurements ### 10mA DC Range P212 Gain Checks Inputs: 10mA Ohms Current via LOW\_SENSE; 10mA Selfcal Current Selected. Measure: 10mA DC Range Shunt value using $100\Omega$ Normal Ohms Range. No. of Readings: 4 Discarded; 8 Processed. 2531 Range Gain Noise Standard Deviation ≤ 0.5% of FS 2532 Range Gain Magnitude +FR - 2% < Mean Magnitude < +FR + 2% ### 100mA DC Range P214 Gain Checks Inputs: 10mA Ohms Current via LOW\_SENSE; 100mA Selfcal Current Selected. Measure: 100mA DC Range Shunt value using 100 $\Omega$ Normal Ohms Range. No. of Readings: 4 Discarded; 8 Processed. 2551 Range Gain Noise Standard Deviation ≤ 0.5% of FS 2552 Range Gain Magnitude +0.1FR - 2% < Mean Magnitude < +0.1FR + 2% ### 1A DC Range P216 Gain Checks Inputs: 10mA Ohms Current via LOW\_SENSE; 1A Selfcal Current Selected. Measure: 1A DC Range Shunt value using $100\Omega$ Normal Ohms Range. No. of Readings: 4 Discarded; 8 Processed. 2571 Range Gain Noise Standard Deviation ≤ 0.5% of FS 2572 Range Gain Magnitude +0.01FR - 4% < Mean Magnitude < +0.01FR + 4% ### 1mA DC Range P218 Gain Checks Inputs: 1mA Ohms Current via LOW\_SENSE; 1mA Selfcal Current Selected. Measure: 1mA DC Range Shunt value using 100 $\Omega$ Lol Ohms Range. No. of Readings: 4 Discarded; 8 Processed. 2591 Range Gain Noise Standard Deviation ≤ 0.5% of FS 2592 Range Gain Magnitude +FR - 2% < Mean Magnitude < +FR + 2% ### 100μA DC Range P220 Gain Checks Inputs: 100μA Ohms Current via LOW\_SENSE; 100μA Selfcal Current Selected. Measure: 100μA DC Range Shunt value using 1kΩ Lol Ohms Range. No. of Readings: 4 Discarded; 8 Processed. 2611 Range Gain Noise Standard Deviation ≤ 0.5% of FS 2612 Rang Range Gain Magnitude +FR - 2% < Mean Magnitude < +FR + 2% ### 2.7.6 Resistor Ratio Tests ### Test Setup Model ### Volume 2 References ### List of Resistor Ratio Measurements ### 100k $\Omega$ Standard Resistor P166 100kΩ Standard Resistor Value Ohms Current: $100\mu A$ . DCV Range: 10V. No. of Readings: 8 Discarded; 6 Processed. 2734 Noise Standard Deviation ≤ 500ppm of FS 2735 Magnitude 98kΩ < Magnitude < 102kΩ ## 2.7.7 Ohms Tests ### Test Setup Model ### Volume 2 References ### List of Ohms Measurements ### 100 $\Omega$ Range P168 100Ω Range Zero (Measured using the 10V DC Range) Ohms Current: True Zero (10mA selected). Standard Resistor: 1kΩ. DCV Range: 10V. No. of Readings: 8 Discarded; 6 Processed. 2751 Noise Standard Deviation ≤ 250ppm of FS Magnitude 2752 -50ppm of FS < Mean Magnitude < +50ppm of FS P169 100Ω Range Gain (Measured using the 10V DC Range) Ohms Current: 10mA. Standard Resistor: 1kΩ. DCV Range: 10V. No. of Readings: 8 Discarded; 6 Processed. 2753 Standard Deviation ≤ 250ppm of FS 2754 Magnitude $96\Omega$ < Mean Magnitude < $104\Omega$ ### 1kΩ Range P172 1kΩ Range Gain (Measured using the 1V DC Range) Ohms Current: 1mA. Standard Resistor: 1kΩ. DCV Range: 1V. No. of Readings: 8 Discarded; 6 Processed. 2781 Noise Standard Deviation ≤ 250ppm of FS 2782 Magnitude $960\Omega$ < Mean Magnitude < $1040\Omega$ ### 100kΩ Range P176 100kΩ Range Gain (Measured using the 100mV DC Range) Ohms Current: 1μA. Standard Resistor: 100kΩ. DCV Range: 100mV. No. of Readings: 8 Discarded; 6 Processed. Noise 2821 Standard Deviation ≤ 250ppm of FS Magnitude 2822 96kΩ < Mean Magnitude < 104kΩ ### $1M\Omega$ Range P179 1MΩ Range Gain (Measured using the 1V DC Range) Ohms Current: 10μA. Standard Resistor: 100kΩ. DCV Range: 1V. No. of Readings: 8 Discarded; 6 Processed. Noise 2843 Standard Deviation ≤ 250ppm of FS Magnitude 2844 960k $\Omega$ < Mean Magnitude < 1040k $\Omega$ # SECTION 3 DISMANTLING AND REASSEMBLY This section contains information and instructions for dismantling the Datron 1281 to PCB level. Reassembly is generally the reverse of dismantling, but where necessary, additional notes are given. # 3.1 General Precautions ### 3.1.1 WARNING ISOLATE THE INSTRUMENT FROM THE LINE SUPPLY BEFORE ATTEMPTING ANY DISMANTLING OR REASSEMBLY. ### 3.1.2 CAUTIONS - 1. REMOVAL OF EITHER THE TOP OR BOTTOM COVER INVALIDATES THE MANUFACTURER'S CALIBRATION CERTIFICATION. - 2. HANDLE THE INSTRUMENT CAREFULLY WHEN PARTIALLY DISMANTLED, TO AVOID SHAKING UNSECURED ITEMS LOOSE. - 3. DO NOT TOUCH THE CONTACTS OF ANY PCB CONNECTORS. - 4. ENSURE THAT NO WIRES ARE TRAPPED WHEN FITTING COMPONENTS, ASSEMBLIES OR COVERS. - 5. DO NOT ALLOW WASHERS, NUTS, ETC. TO FALL INTO THE INSTRUMENT. # 3.2 General Mechanical Layout Assembly Drawings in Volume 2, Section 11, pages 11.1-1 to 11.1-9; show how the 1281 is broken down into sub-assemblies. ### 3.2.1 Front Panel The Front Panel layout is illustrated in the User's Handbook, Section 3, Page 3-1. Six labelled terminals are provided in a block at the left side of the panel, for connection to the source being measured. Two plasma displays are mounted side-by-side. The left-hand display shows the measurement reading, and the activity symbols for the keys beneath the screen. The right-hand display presents menus as selected by the menu keys below it, showing instrument current-status information. Two banks of pushbutton switches are provided to control the instrument's operation. For each switch, some indication of the action of pressing the switch is given on one of the two displays. The line power is turned on and off by a toggle pushbutton on the extreme right side of the Front Panel. ## 3.2.2 Rear Panel (All directions viewing from the rear of the instrument) The Rear Panel Layout is illustrated and described in the User's Handbook, Section 2, Page 2-3. Selection of Line Voltage and Frequency are described in the User's Handbook, Section 2, Page 2-4: 'Preparation for Operation'. Bench and Rack Mounting methods appear in the User's Handbook, Section 2, Page 2-6: 'Mounting'. Electrical Connectors, are described in the User's Handbook, Section 2, Page 2-8: 'Connectors and Pin Designations'. # 3.3 Location and Access ## 3.3.1 External Construction Both the front and rear panels are joined by two side extrusions running from front to rear. These extrusions provide slots for the handles or rack mounting 'ears'. The bottom cover is fitted with the tilt-stand and four rubber feet. Ground screening of the covers is provided by aluminium plates fitted to the inside of the covers; the main ground connection being made to the rear panel. Each cover also has a guard screen which shields the sensitive input circuits from common-mode disturbances; these connect to the guard enclosure in the front partition to form an effective guard box. The top cover guard screen is partly cut away to enhance internal air circulation. ## 3.3.2 Internal Construction Inside the covers, mechanical strength is provided by the two side extrusions, separated and secured by two cross supports - the rear panel plate, and a similar plate at the front - which together form a rigid box-section. An internal cross support divides the interior of the instrument into front and rear partitions: ### Interior Partitions - The Rear Partition is occupied by a sub-chassis screwed to both the rear panel metalwork and the internal cross support. Mains (Line) and Low-Voltage transformers are secured to the underside, and external electrical connections pass through the rear of the sub-chassis. - On the upper sub-chassis, nylon slides locate the Digital PCB Assembly, which fits at the front into polycarbonate mounts on the main cross support and with screws securing the assembly to the rear panel metalwork. A Mylar sheet glued to the top of the sub-chassis provides insulation for the joints on the underside of the digital assembly. External electrical connections to the digital assembly pass through the rear panel metalwork, which is also used as an additional heatsink for four transistors. - The Front Partition contains the Guard Shield Assembly, attached by five polycarbonate insulators to the front panel metalwork and internal cross support. The assembly is divided into upper and lower spaces by a horizontal plate. - The DC PCB Assembly is mounted on top of the plate; the optional AC, Ohms and Current Assemblies are mounted on the underside. The AC Assembly is screwed to the plate, but the DC, Ohms and Current Assemblies are fixed by Nylatch press fasteners. - Connecting Cables between the various assemblies pass through cut-outs in the metalwork, and are loomed and secured where necessary. ### Front Extension The instrument extends forward from the main box section to accommodate the front panel components. Externally it is enclosed by a structural-foam bezel, complete with display filters, terminal labels and apertures for the banks of press-button switches. The bezel is secured to the front cross support by two screws at each end, which are accessible from the sides of the instrument once the top and bottom covers have been removed. **2** 2 When the bezel is removed: - The Switch Assembly is mechanically secured to the rear of the bezel, but electrically connected by two cables to two sockets on the component side of the Display PCB. This assembly does not include the Power On/Off switch. - The Power On/Off Switch Assembly is secured by two screws to the rear of the right side extrusion, beneath the subchassis. The switch itself being operated by a cranked moulding fitted inside the extrusion slide. The switch action is 'Push On - Push Off'. - A rod in the moulding extends to the front of the extrusion, where a second cranked moulding connects it to the front panel On/Off pushbutton. The button is a tight push-fit, and not cemented to the moulding, so that it does not prevent the bezel from being removed. The location of the switch is adjusted so that the pushbutton is flush with the bezel when in the 'Off' position, and depressed into the bezel when power is switched 'On'. - The Display PCB Assembly is screwed to the front cross support. It carries the two plasma displays which are viewed through the filters in the bezel. A metal screen on the left end of the assembly shields the signals on the front panel terminals from the high voltage pulses which drive the displays. - The Front Panel Terminal Assembly is secured by two screws to a structural-foam sliding mount which forms part of a latching mechanism inside the left side extrusion, with the terminals protruding forward of the bezel when required for use. A rod from the rear of the mechanism connects to a 'Terminal Release' button on the Rear Panel. To avoid damage during transportation, the terminals are retracted by pressing and holding the button in, while pushing the terminal assembly in against spring pressure until they are flush with the front of the bezel. Releasing the button latches the terminal assembly into the retracted position. To release the terminals for use, they should be held against the spring pressure while pressing the release button, and allowed to move forward gently until fully extended. The button is then released to secure a latch in the extended position. ## 3.4 General Access - ENSURE THAT POWER IS OFF. - Heed the General Precautions 3.1.1 and 3.1.2. If, during a procedure, sufficient access has been obtained, then no further dismantling is required. ## 3.4.1 Rear Corner Blocks, Top Cover ### Removal Caution! This operation invalidates the manufacturer's calibration certification! - a. Remove each of the two rear corner blocks by undoing its single crosspoint screw. - b. Release the two spring-loaded screws holding the cover to the rear panel. - c. Slide the cover to the rear until: - i. The small locating tongue on the rear of the top ground shield disengages from the rear panel. - ii. The cover front flange clears the bezel. - d. Lift off the cover. ### Fitting - a. Locate the cover on the top rails of the side extrusions, its front flange just behind the bezel. - b. Press down on the cover and slide it forward until: - i. The cover front flange slides under the bezel. - ii. The small locating tongue on the rear of the top ground shield engages into the rear panel. - c. Tighten the two spring-loaded screws to secure the cover to the rear panel. - d. Refit each of the two rear corner blocks by securing its single crosspoint screw. # 3.4.2 Rear Corner Blocks, Bottom Cover ### Removal Caution! This operation invalidates the manufacturer's calibration certification! - a. Remove each of the two rear corner blocks by undoing its single crosspoint screw. - b. With the instrument inverted, release the two spring-loaded screws holding the bottom cover to the rear panel slot. - c. Slide the cover to the rear until: - i. The small locating tongue on the rear of the bottom ground shield disengages from the rear panel. - ii. The cover front flange clears the bezel. - d. Lift off the cover. ### Fitting - a. With the instrument inverted, locate the bottom cover on the bottom rails of the side extrusions, its front flange just behind the bezel. - b. Press down on the cover and slide it forward until: - i. The cover front flange slides under the bezel. - ii. The small locating tongue on the rear of the bottom ground shield engages into the rear panel slot. - c. Tighten the two spring-loaded screws which secure the cover to the rear panel. - **d.** Refit each of the two rear corner blocks by securing its single crosspoint screw. # 3.4 General Access (Contd.) # 3.4.3 Front Bezel - Remove rear corner blocks, top and bottom covers: 3.4.1 and 3.4.2. - Removal (Facing page 11.1-1, 480734 Sh. 1) - a. Retract the front panel Input terminals by pressing and holding the rear panel Terminal Release button in, while pushing the terminal assembly in against spring pressure until they are flush with the front of the bezel. Release the button - this latches the terminal assembly into the retracted position.. - b. Remove the four M2.5 x 6mm Pozi-pan screws holding the bezel to the side extrusions, each with its two spring washers (nylon spacers in early versions). - c. Gently withdraw the bezel from the body of the instrument, taking care to retain the power switch key cap, which is a push fit onto its cranked moulding, and comes away with the bezel. Do not attempt to prize the Power key cap out of its recess before removing the bezel it detaches easily with the bezel. Do not strain the two ribbon cables connecting the Switch PCB to the Display PCB. ### Fitting Reverse the removal procedure, taking heed of the references at each stage. Be careful not to trap any wiring. Before finally tightening the four Pozi-pan screws, adjust the position of the bezel so that the Power Switch key cap is flush with the front panel when in the Off position, and operate the retraction mechanism to ensure that the terminals move freely. Tighten down the screws and make a final inspection to ensure that the ribbon cable and mechanical elements are correctly fitted and secured. # 3.4.4 Rear Panel Assembly N.B. For most purposes it should not be necessary to remove the Rear Panel Assembly. However, it is necessary when the Digital PCB Assembly is to be taken out. It can be easier to remove the Rear panel and Digital board together, and separate the two later, than to remove the panel first. Two procedures are given, the first to remove the panel on its own (in this sub-section), and the second to remove the Digital assembly (in sub-section 3.5.1). - Remove rear corner blocks, top and bottom covers: 3.4.1 and 3.4.2. - Removal of Rear Panel Only (Facing page 11.1-3, 480736 Sh. 1) - a. Remove the eight M3 x 8mm Pozi-pan screws which attach the Rear Panel to the sub-chassis and digital assembly. - **b.** Remove the four M3 x 8mm Pozi-countersunk screws which secure the Rear Panel to the side extrusions. - c. Gently ease the rear panel away from the body of the instrument and remove. ### Fitting Offer up the rear panel to the body of the instrument and locate the Terminal Release button in its slot. Reverse the removal procedure, taking heed of the references at each stage. Be careful not to trap any wiring. Make a final inspection to ensure that the wiring is correctly fitted and secured. # 3.5 Sub-Assembly Removal and Fitting # 3.5.1 Digital PCB Assembly - Remove rear corner blocks, top and bottom covers: 3.4.1 and 3.4.2. - Stand the instrument in its normal upright position. Ensure that the Calibration Enable key is removed from its lock. # 3.5.1.1 Removal of combined Rear Panel and Digital PCB Assembly Carefully remove the three 3M multiconnector sockets from PL1, PL2 and PL3 on the right front corner of the Digital Assembly. Note: The 3M ribbon socket has a rectangular key, which locates into a recess in the fixed plug shroud, leaving a small slot into which a small screwdriver blade can be inserted and twisted to lever off the socket easily. - Carefully remove the three Molex multiconnector sockets from PL4, PL5 and PL6 on the right end of the Digital Assembly. - c. Remove the three M3 x 8mm Pozi-pan screws which attach the Rear Panel to the sub-chassis. - d. Remove the four M3 x 8mm Pozi-countersunk screws which secure the Rear Panel to the side extrusions. - e. Gently ease the rear panel and digital assembly away from the body of the instrument until it is just clear of the Terminal Release button. While holding the button to one side to clear the components on the digital assembly, carefully slide the combined rear panel and digital assembly to the rear, and remove. ### Fitting - a. Locate the Digital Assembly PCB into the nylon slides fitted to the sub-chassis. - b. Reverse the removal procedure, ensuring that the terminal release button does not foul the digital assembly components. Slide the combination forward, until the digital assembly is fully home between the tongues of the three polycarbonate mounts on the cross support. Ensure that the right upper rear countersunk screw is fitted into the eye of the bonding strap for the digital assembly heatsink, to trap it between the rear panel and side extrusion. Be careful not to trap any other wiring. - c. Make a final inspection to ensure that the wiring, ribbon cables and sockets are correctly fitted and secured. # 3.5.1.2 Separating the Removed Rear Panel and Digital PCB Assembly ### Separation Remove the five M3 x 8mm Pozi-pan screws which attach the Rear Panel to the Digital Assembly, and carefully separate the two. ### Recombination Reverse the separation procedure. # 3.5 Sub-Assembly Removal and Fitting (Contd.) # 3.5.2 Display PCB - Remove rear corner blocks, top and bottom covers: 3.4.1 and 3.4.2. - Remove the Front Bezel: 3.4.3. ### Removal (Facing page 11.1-3, 480734 Sh. 1) - a. Disconnect the two eight-way ribbon connectors from PL22 and PL23 (From the Switch Assembly in the Bezel) on the front of the Display PCB. Note the correct positions for later return (See also the facing page 11.8-1, 480744 Sh. 1) - b. Remove the Bezel and Switch Assembly. - c. At the right end of the display assembly, pull the cranked moulding off the Power Switch operating rod. - d. Disconnect the two 3M ribbon connectors from PL20 and PL21 on the front of the Display PCB. - Note: The 3M ribbon socket has a rectangular key, which locates into a recess in the fixed plug shroud, leaving a small slot into which a small screwdriver blade can be inserted and twisted to lever off the socket easily. - e. Remove the Three M3 x 8mm Pozi-pan screws which attach the Display Assembly to standoffs on the Front Panel metalwork. - f. Disengage the Display Assembly from the four black retainers on the top of the front panel metalwork, and carefully remove. ### Fitting Reverse the removal procedure. Be careful not to trap any wiring. Make a final inspection to ensure that the wiring and ribbon cables are correctly fitted and secured. # 3.5.3 Front Panel Switch PCB Assembly - Remove rear corner blocks, top and bottom covers: 3.4.1 and 3.4.2. - Remove the Front Bezel: 3.4.3. ### Removal (Facing page 11.1-6, 480745 Sh. 1) - a. Lay the Bezel face down, so that the rear of the Switch Assembly is accessible. - b. Remove the two M3 x 6mm screws, each with its shakeproof and plain washer, which attach the assembly to the bezel at the right end of the switch assembly. - c. Remove the two M3 x 12mm screws, each with its shakeproof and plain washer, which attach the assembly to the bezel through the support bar running across the rear of the assembly. - d. Carefully lift the switch assembly, complete with key caps, from the bezel. The key caps should slide easily through their two apertures. ### Fitting Ensure that the key caps are correctly fitted. Reverse the removal procedure. Make a final inspection to check that the key caps are correctly oriented. # 6 # 3.5.4 Front Terminal Assembly - Remove rear corner blocks, top and bottom covers: 3.4.1 and 3.4.2. - Remove the Front Bezel: 3.4.3. ### Removal (Facing page 11.1-1, Drawing 480734 Sh. 1) (Facing page 11.1-9, Drawing 480770 Sh. 1) (Facing page 11.2-1, Drawing 480738 Sh. 1) - a. Stand the instrument in its normal upright position. - b. Remove the M3 Pozi-pan screw which attaches the Terminal Assembly flexible PCB to the front left of the DC PCB. - Disconnect the flexible pcb from PL100/101/102 on the DC PCB. - d. Remove the two M2.5 x 6mm Pozi-csk screws which attach the terminal assembly to the retraction mechanism without kinking. - e. Remove the terminal assembly, carefully feeding the flexible PCB through the hole in the front panel metalwork. ### Fitting - a. Reverse the removal procedure, being careful to avoid kinking the flexible PCB when threading it through the hole. - b. When refitting the bezel, it may be necessary to adjust the position of the assembly to ensure free movement of the retraction mechanism. # 3.5.5 DC PCB Assembly • Remove rear corner blocks and top cover: 3.4.1. ### • Removal (Page 11.1-1, 480734 Sh. 2) (Facing page 11.2-1, 480738 Sh. 1) - a. Stand the instrument in its normal upright position. - b. Remove the M3 Pozi-pan screw which attaches the Terminal Assembly flexible PCB to the front left of the DC PCB. - c. Disconnect the flexible pcb from PL100/101/102 on the DC PCB. - d. Disconnect the 3M ribbon cable socket from PL3 on the Digital PCB (This cable is soldered at the DC PCB end as PL110). - e. Disconnect the three 3M ribbon cable sockets from PL105, PL107 and PL109 on the DC PCB. - f. Disconnect the Molex cable socket from PL103 on the DC PCB. - g. Disconnect the 'Channel A Input' Molex cable sockets from PL150/151/152 at the left rear of the DC PCB. Note the positions of these cables for correct refitting later. - h. Disconnect the 'Channel B Input' Molex cable sockets from PL160/161/162 in front of the Channel A plugs at the left rear of the DC PCB. Note the positions of these cables for correct refitting later. - j. Disconnect the Molex cable sockets from PL120/121/122 at the center front of the DC PCB (AC PCB Assembly connections). - k. Disconnect the Molex cable sockets from PL130/131/132 at the center-right front of the DC PCB (Ohms PCB Assembly connections). - Disconnect the Molex cable sockets from PL140/141/142 at the right front of the DC PCB (Current PCB Assembly connections). Note: In early instruments, two fly-leads from the Current Assembly are laid around the DC PCB and connected to two plugs: PL 111 and PL 143 on the DC PCB. Disconnect the sockets at these plugs also. - m. Release the DC PCB Assembly by lifting the eleven black Nylatch press fasteners. - Gently lift the DC PCB Assembly out of the Guard Box, taking care not to damage any cables or components, and remove. ### Fitting Reverse the removal procedure, being careful not to trap any wiring. Make a final inspection to ensure that the cable sockets are connected to the correct plugs, paying particular attention to the 'Channel A Input' and 'Channel B Input' sockets. # 3.5 Sub-Assembly Removal and Fitting (Contd.) # 3.5.6 AC PCB Assembly Note: The cutaway guard shield (which partially covers the AC PCB Assembly) is secured to four nylon pillars which themselves attach the AC PCB to the guard box. The shield must therefore be removed to access these pillars, before removing the PCB. - Remove rear corner blocks and bottom cover: 3.4.2. - Removal (Page 11.1-1, 480734 Sh. 2) (Facing page 11.5-1, 480741 Sh. 1) - a. Ensure that the instrument is inverted. - b. Disconnect the 3M ribbon cable socket from PL33 at the rear of the AC PCB. - c. Disconnect the Molex cable sockets from PL30/31/32 at the front of the AC PCB. - Remove the eight M3 Pozi-countersunk screws which attach the Guard shield. - e. Using a wide-bladed screwdriver, remove the four nylon standoff pillars which support the Guard shield, and which also attach the AC PCB to the guard box (the four bright metal posts are swaged to the PCB and do not need to be removed). - f. Remove the four M3 x 8mm Pozi-pan screws and wavy washers which attach the AC PCB Assembly to the Guard Box, and remove the PCB. - Fitting Reverse the removal procedure, being careful not to trap any wiring. # 3.5.7 Ohms PCB Assembly - Remove rear corner blocks and bottom cover: 3.4.2. - Removal (Page 11.1-1, 480734 Sh. 2) (Facing page 11.6-1, 480742 Sh. 1) - a. Ensure that the instrument is inverted. - **b.** Disconnect the 3M ribbon cable socket from PL43 at the rear of the Ohms PCB. - c. Disconnect the Molex cable sockets from PL40/41/42 at the front of the Ohms PCB. - m. Release the Ohms PCB Assembly by lifting the five black Nylatch press fasteners. - n. Gently lift the Ohms PCB Assembly out of the Guard Box, taking care not to damage any cables or components, and remove. ### Fitting Reverse the removal procedure, being careful not to trap any wiring. # 3.5.8 Current PCB Assembly - Remove rear corner blocks and bottom cover: 3.4.2. - Removal (Page 11.1-1, 480734 Sh. 2) (Facing page 11.7-1, 480743 Sh. 1) - a. Ensure that the instrument is inverted. - b. Disconnect the 3M ribbon cable socket from PL53 at the rear of the Current PCB. - c. Disconnect the Molex cable sockets from PL50/51/52 at the front of the Current PCB. Note: In early instruments, two fly-leads from the Current Assembly are laid around the DC PCB and connected to PL 111 and PL 143 on the DC PCB. Disconnect the sockets at these plugs and feed the two cables through the cable cutout before carrying out the next operation. - m. Release the Current PCB Assembly by lifting the five black Nylatch press fasteners. - n. Gently lift the Current PCB Assembly (and the two fly-leads and sockets if fitted) out of the Guard Box, taking care not to damage any cables or components, and remove. ### Fitting Reverse the removal procedure, being careful not to trap any wiring. # 3.6 Front Terminal Retraction Mechanism It is not recommended that this mechanism be adjusted, removed or replaced except by Datron's service representatives, as it entails extensive dismantling. In the unlikely event of mechanical failure, contact your nearest Datron Service Center (a list of representatives is given at the back of this handbook). # 3.7 Transformer Assemblies ## 3.7.1 Mains Transformer Assembly (This Assembly includes the Power Switch and Voltage Selector Switch) - N.B. To fit a mains transformer after removal, an M3 torque spanner capable of setting to 4Nm is required. For early versions: to refit requires a length of double-sided adhesive tape. - Remove rear corner blocks, top and bottom covers: 3.4.1 and 3.4.2. - Remove the Rear Panel: 3.4.4. ### Removal (Page 11.1-1, Drawing 480734 Sh. 2) (Facing page 11.1-4, Drawing 480737 Sh. 1) (Page 11.1-5, Drawing 480737 Sh. 4) (Facing page 11.1-8, Drawing 480749 Sh. 1) (Facing page 11.4-1, Drawing DA400901 Sh. 1) - a. Ensure that the instrument is inverted. - b. Identify the Mains Transformer, Power Switch and Voltage Selector Switch, in the right end of the sub-chassis at the rear of the instrument. - c. Identify the green/yellow ground bonding lead from the mains transformer to the bonding point between the power input plug and the power fuse, on the sub-chassis. - d. Remove the nut from the bonding point and remove the green/yellow lead identified in (c) above. Replace the nut to retain the other bonding leads. - Turn the instrument to its upright position and disconnect the Molex socket of the mains transformer cable from PL5 (A & B) on the Digital PCB Assembly. Carefully feed the cable and socket back through the gap at the end of the sub-chassis, to the same side as the mains transformer. - f. Return the instrument to its inverted position. - g. Remove the two M3 nuts and shakeproof washers which attach the mains transformer to the sub-chassis studs. Note: In early versions the transformer is secured using long M3 countersunk screws, which are inserted from the upper side of the subchassis, and screwed into nuts encapsulated in epoxy resin in the transformer body. Access to the screwheads is more difficult in this case, as the digital assembly and the insulating card on the upper surface of the sub-chassis must be removed to expose the screwheads. Double-sided adhesive tape is required to secure the card after refitting a mains transformer. - h. Tip the instrument to stand on its right side and remove the mains transformer, laying it down on the bench so that the remaining wiring is not strained. - j. Identify the Power Switch assembly located in the slider of the right side extrusion. Remove two M3 x 8mm Pozicountersunk screws which secure the backplate to a retaining plate inside the extrusion slide. - k. Lever the white operating bar of the power switch out of its cranked slider, and remove the switch. - Slide back the sleeves on the blue and brown leads which are connected to the two end tags of the power switch. Note the positions and unsolder the leads from the tags. - m. Identify the Voltage Selector Switch located at the rear of the sub-chassis. Remove two M3 x 8mm Pozi-countersunk screws, nuts and washers which secure the switch to the subchassis. - n. Remove the two switches and the mains transformer. ### Fitting - a. Reverse the dismantling procedure. Pay particular attention to the following points: - i. Solder the blue and brown leads to the correct power switch tags as noted in (1), and push the sleeves down to cover the joints completely. 4.5 £ 8 8.3 $\hat{\xi}_{0}|\hat{\xi}_{1}$ - ii. To assist the positioning of the power switch retaining plate correctly in the right extrusion slide, stand the instrument on its right side. After securing the switch assembly to the retaining plate, ease off the screws and set the switch to Off. Adjust the fore-and-aft position by sliding the whole mechanical assembly until the key cap is flush with the surface of the front panel bezel. Retighten the screws and recheck the key cap alignment. - iii. Take care not to trap any wiring when fitting the transformer. - Tighten the transformer securing nuts to a torsion of 4Nm using a torque spanner. - v. For some early versions, double-sided adhesive tape is required to secure the insulating card on the upper surface of the sub-chassis after refitting a mains transformer. - vi. Carry out a final inspection to ensure that the components are correctly fitted. Check that the wiring is set in the correct routing, is not trapped, and the connections are mechanically secure. # 3.7.2 Low Voltage Transformer Assembly - N.B. To fit a low voltage transformer after removal, an M3 torque spanner capable of setting to 3Nm is required. For early versions: to refit requires a length of double-sided adhesive tape. - Remove rear corner blocks, top and bottom covers: 3.4.1 and 3.4.2. ### Removal (Page 11.1-1, Drawing 480734 Sh. 2) (Facing page 11.1-4, Drawing 480737 Sh. 1) (Page 11.1-5, Drawing 480737 Sh. 4) (Facing page 11.1-8, Drawing 480749 Sh. 1) (Facing page 11.4-1, Drawing DA400901 Sh. 1) - a. Ensure that the instrument is inverted. - b. Identify the Low Voltage Transformer in the center of the sub-chassis at the rear of the instrument. - c. Identify the green/yellow ground bonding lead from the low voltage transformer to the bonding point between the power input plug and the power fuse, on the sub-chassis. - d. Remove the nut from the bonding point and remove the green/yellow lead identified in (c) above. Replace the nut to retain the other bonding leads. - e. Turn the instrument to its upright position and disconnect the Molex sockets of the two low voltage transformer cables from PL5 and PL6 on the Digital PCB Assembly. Carefully feed the cables and sockets back through the gap at the end of the sub-chassis, to the same side as the transformer. - f. Identify the two white 'guard' bonding leads from PL103 at the rear of the DC PCB to the two rivetted bonding points on the rear of the guard box and the tongue of its horizontal screen. - g. Disconnect the Molex socket of the low voltage transformer cable from PL103 on the DC PCB Assembly. - h. On the free socket, use a miniature screwdriver to extract the two pins of the leads identified in (f) above from the Molex socket: Press the screwdriver into the pin's slot in the socket body to release the pin latch, while gently pulling the lead and pin out. When refitting, providing it has not been strained, the latch tongue will snap into place when the pin is pushed home. j. Stand the instrument on its right side. Carefully feed the cable and socket back through the cutout in the guard box screen to the same side as the transformer. - k. Return the instrument to its inverted position. - Release one end of the perspex cable retainer, by pressing the peg in the center of the plastic split pin and withdrawing the pin. Lift the cable and socket out of the cutout, and re-secure the retainer in position using the split pin. - m. Remove the two M3 nuts and shakeproof washers which attach the low voltage transformer to the sub-chassis studs. Note: In early versions the transformer is secured using long M3 countersunk screws, which are inserted from the upper side of the subchassis, and screwed into nuts encapsulated in epoxy resin in the transformer body. Access to the screwheads is more difficult in this case, as the rear panel, the digital assembly, and the insulating card on the upper surface of the sub-chassis must be removed to expose the screwheads. Double-sided adhesive tape is required to secure the card after refitting a low voltage transformer. n. Carefully lift out and remove the low voltage transformer, cables and leads. ### Fitting - a. Reverse the dismantling procedure. Pay particular attention to the following points: - i. Take care not to trap any wiring when fitting the transformer. - ii. Tighten the transformer securing nuts to a torsion of 3Nm using a torque spanner. - iii. For some early versions, double-sided adhesive tape is required to secure the insulating card on the upper surface of the sub-chassis after refitting a low voltage transformer. - iv. Carry out a final inspection to ensure that the components are correctly fitted. Check that the wiring is set in the correct routing, is not trapped, and the connections are mechanically secure. # **SECTION 4 SERVICING** # 4.1 Routine Servicing The only routine servicing required under normal conditions is the replacement of the Lithium battery which powers the non-volatile calibration memory. The calibration requirements after changing the battery are different depending on whether the change was done with power off or with power on. These requirements are summarized in the table below. ### Summary | Servicing<br>and Time Interval | Procedure<br>Section 4 | Calibration<br>Required | Calibration<br>Procedure | |--------------------------------|------------------------|------------------------------------------------------------|---------------------------------------------------------------| | Change the Internal Bat | tery with Pow | er On | | | Not greater than 5 years | 4.3 | Routine External Cal<br>Internal Source Cal | User's Handbook Sect 8<br>User's Handbook Sect 8 | | Change the Internal Bat | tery with Pow | er Off | | | Not greater than 5 years | 4.3 | Special Cal<br>Routine External Cal<br>Internal Source Cal | Sect. 1.4<br>User's Handbook Sect 8<br>User's Handbook Sect 8 | # 4.2 Adjustment Following Replacement of PCBs The high accuracy of this instrument demands that its internal environment remains undisturbed after calibration. Thus the manufacturer's calibration certificate is invalidated by removal of the top or bottom cover. Section 2 gives help in locating the general area of a fault from the error code displayed after a self test. It follows that any investigation which involves access to PCBs will require that recalibration be carried out after the covers are replaced. This principle naturally extends to any PCB replacement. It is therefore strongly recommended that before proceeding with any investigation, a user should contact the nearest Datron Servicing Center for advice or assistance. # 4.3 LITHIUM BATTERY - REPLACEMENT (Datron Part No. 920049) ### FIRST READ THESE NOTES! - The lithium battery which powers the non-volatile RAM should be changed at or before 5 years from new, and at no greater than 5-year intervals thereafter. - The following procedures assume that the instrument will remain powered-up during the operations of disconnecting the old battery and connecting the new battery. To ensure memory integrity the soldering iron used must be isolated from line ground (mains earth) by at least 50kΩ. External calibration with internal source characterization will be required (*User's Handbook Section 8*) because of the high accuracy of the instrument, whose internal environment will have been disturbed by removing and replacing the top cover. Removal of either of the covers automatically invalidates the manufacturer's calibration certificate. If instrument power does not remain ON during the whole of the procedure 4.3.1 (or 4.3.2 for earlier versions), disconnecting the battery will reset the calibration memory to its nominal state. This will require a Special Calibration to be carried out (Section 1.4) as well as the full External Calibration, before the instrument specification can be realized, as calibration data will be corrupted. It is therefore strongly recommended that the battery be changed with Power ON, immediately prior to a scheduled external calibration. # 4.3.1 Digital Assembly 400901 - Procedure - a. Ensure that power ON is selected. - b. Remove the top cover (Section 3 para. 3.4.1). - c. Remove the battery (refer to Fig. 4.1): - i. Attach a heatsink to resistor R104 soldered to the battery positive terminal. Unsolder R104 from the battery terminal. - ii. Attach a heatsink to the wire between the negative battery terminal and E101. Unsolder the wire from the battery terminal. - iii. Remove the battery from its clip. - d. Observing correct polarity, reverse the procedure of step (c) to fit a new battery and solder it in. Fig. 4.1 View of Battery from Rear of Instrument # 4.3.2 Digital Assembly 400740 (earlier version) - Procedure - a. Ensure that power ON is selected. - b. Remove the top cover (Section 3 para. 3.4.1). - **c.** Remove the battery (refer to Fig. 4.1): - i. Unsolder the wire from the positive battery terminal. - ii. Attach a heatsink to R73. Unsolder R73 from the negative battery terminal. - iii. Remove the battery from its clip. - d. Observing correct polarity, reverse the procedure of step (c) to fit a new battery and solder it in. Fig. 4.2 View of Battery from Rear of Instrument # 4.3.3 Return to Use - a. Refit the top cover (Section 3 para. 3.4.1). - b. If the instrument power was turned off during the battery-change procedure, carry out the Special Calibration detailed in Section 1.4. - c. Carry out Full Routine Recalibration with Internal Source Characterization (User's Handbook Section 8). # SECTION 5 TECHNICAL DESCRIPTIONS # SECTION 5 TECHNICAL DESCRIPTIONS # 5.1 Principles of Operation # 5.1.1 Simplified Block Diagram Figure 5.1.1.1 illustrates the general functions and signal flow within the 1281. ### 5.1.2 General Description The 1281 Selfcal Digital Multimeter is designed for calibration and standards laboratory applications. Its low drift and low temperature coefficients are derived from the inherent qualities of critical accuracy-defining components, which are selected and conditioned before assembly. Conditioning continues after assembly, and further checks are performed to ensure that the instrument as a whole performs well within its specification. The 1281 employs a method of internal calibration which is designed to enhance performances across the entire range of its functions. After characterizing a low-drift/low-TC internal reference immediately following external calibration, the instrument can be regularly self-calibrated to extend its performance (maintaining approximately 90-day accuracies) up to a year from external calibration. The instrument is electrically split into two sections divided by ground and guard planes. Measurement circuits are 'in guard'; whereas control circuits and display functions are 'out guard'. Front and rear inputs are routed directly to the measurement circuitry, which includes the multi-slope A-D converter. Digital computation circuits are out of guard; but digital control of some forty separate in-guard analog parameters, together with transfer of raw digital readings from the A-D converter and any messages from the analog circuits, are effected via a serial interface whose data and control lines are passed in and out of guard through opto-isolators. ### 5.1.2.1 DC Voltage The input signal is switched to a DC preamp which amplifies or attenuates the analog signal to a level compatible with the requirements of the Analog to Digital converter. The amplifier is also used to measure resistance and current (Options 20 and 30). ### 5.1.2.2 Option 10 - AC Voltage AC voltages are conditioned by the AC preamp, which can be switched to measure AC-only or AC+DC signals. The preamp output is rectified by a precision full-wave rectifier, then passed to an electronic RMS converter which produces a DC level representative of the RMS of the applied signal. This DC level is then digitized by the A-D. The RMS converter can be switched to provide an AC to DC transfer measurement. This involves sampling and holding the RMS output, and recirculating it twice to obtain a correction for the RMS Converter gain. ### 5.1.2.3 Option 20 - Resistance A constant current is passed through the resistor under test. The voltage developed across it due to the current is measured using the DC voltage circuits of the instrument. A wide range of constant currents and DC voltage ranges is employed to optimize performance for differing external conditions. A 'True Ohms' facility can be programmed which takes two readings: the first is of the resistance plus the DC offset across the resistor with the current flowing; the second is of the DC offset alone with the current off. Subsequent digital calculations subtract the second reading from the first, to eliminate the effects of the DC offset, and the result is presented as the 'True Ohms' measurement. ### 5.1.2.4 Option 30 - DC and AC Current (Option 10 is required for AC Current) The unknown current is passed through precision internal shunts and the DC or AC voltages developed across them is measured using the DCV or ACV sections of the instrument. Heavy physical and electronic protection is applied. ### 5.1.2.5 Analog to Digital Converter The instrument's multi-slope, multi-ramp A-D converter is a third-generation development of the basic dual-slope integrator and null detector. It has inherent sub-0.1ppm linearity combined with high speed due to signal and reference being applied simultaneously. Flexibility in ramp control permits resolution (and hence speed) to be programmed from 4.5 digits at 200 readings per second to 8.5 digits in 'Fast' mode at 1 reading per 6 seconds. Once converted to digital form, readings are transferred out of guard via the serial interface to be managed by the instrument's microprocessor for calibration and display. ### 5.1.2.6 Internal References The A-D converter references are derived from specially conditioned and selected DC Reference Modules. These modules are also used as the internal sources of reference for the self-calibration process. ### 5.1.2.7 Serial Interface ### Transmission This is a data transfer system in which a control word is loaded into an ASIC on the digital PCB, and its bits are passed serially through a single opto-isolator into guard. The control word represents an instrument state demanded by the user, in conjunction with firmware programming. ### **Control Functions** In guard, the word is clocked serially through a set of control registers on the DCV, ACV, Ohms and Current PCBs until each bit is located in the specific register appropriate to its control function. At this time, the bits are clocked to the outputs of the registers (or clocked into ULAs to control their functions) and the analog control circuits are switched by the overall bit pattern which, in turn, also represents the demanded instrument analog state. ### **Analog Data Returns** Some in-guard registers are programmed to act as serial transmitters. In these cases the data bits presented at their inputs are clocked into the serial stream, and returned through a single opto-isolator out of guard. The serial data returning to the ASIC are assembled into messages and presented to the processor for decoding and subsequent action. ### Serial Path Circulation Errors The control word is transmitted in both true and complement forms; and when it ultimately returns out of guard via another single opto-isolator, circulation errors are checked by comparing it with the original construct. ### Benefits of Serial Interfacing Use of the serial interface allows the passage of many data bits across the guard plane, while reducing the number of opto-isolators to eight (some of these are required to control the operation of the interface). If each data bit passed through its own dedicated isolator, then not only would the volume occupied by the isolators set a severe design problem, but also the capacitive and leakage effects in such a large number of isolators would impose prohibitive coupling between in-guard and out-guard areas of the instrument. ### 5.1.2.8 Digital Circuitry All major communication, control, keyboard and display processing is performed out of guard, managed by a MC68000 microprocessor. The 68000 is programmed in firmware, using 128k x 16 of EPROM to contain the operating program, look-up tables etc. Workspace consists of $32k \times 16$ of RAM, with an extra $8k \times 8$ of RAM permanently powered as a non-volatile memory to store calibration corrections. # 5.2 PCB Descriptions N.B. The A-D section of the DC PCB is described in Sect 5.2.5. ### 5.2.1 DC PCB ### 5.2.1.1 Input Switching (Circuit Diagram 430738 sht1 p11.2-1) The front channel input terminals are connected to the DC PCB at PL100/101/102 on the left front of the board. Rear input Channels A and B connect to the left rear at PL150/151/152 and PL160/161/162 respectively. The leads of each input channel pass through the channel's common mode choke before being subjected to input switching. To enable the instrument to the connected into a system analog bus, each channel is separately isolated by relays when not selected. Separate relays are used throughout for Hi and Lo switching to reduce interaction by leakage and capacitive coupling, latching relays being employed to maintain low thermal EMFs. These aspects are shown on page 11.2-1. Separate Lo switching (Relay RL108) is necessary to accommodate the different connection required for operation in Ohms function, when the Lo terminals connect to the OHMS LOW SENSE input of the Low Follower on the Ohms PCB. The $\Omega$ Guard terminals are loosely coupled (R101) to the main signal common 'MECCA', except in Ohms function, when they are directly connected but protected by thermistor R103. The Guard terminals are always loosely coupled (R102) to MECCA; whereas the internal guard shields and tracks are directly connected to MECCA in Local Guard as shown, or to the Guard terminals in Remote Guard. The BS line from the output of the DCV Bootstrap Buffer M203 (p11.2-2) is connected to the screens of the Hi and I+ leads in the input cable loom to provide a low-impedance guard. AC\_CAL\_SENSE is used during the AC voltage Selfcal process, and INT\_SIG\_BUS has several uses, mainly to carry internal signals when in Selfcal (Refer to Section 2: Fault Diagnosis). ## 5.2.1.2 Internal Signal Bus (Circuit Diagram 430738 sht2 p11.2-2) Quad CMOS gate M202 provides switching mainly for operation in Current measurement and in Selfcal. The INT\_SIG\_BUS line is used to connect various inputs to the DC voltage measurement circuits when they are being employed to measure internal voltages, and not for voltages input from the front terminals. RL201 makes this selection. The internal signal bus comes into operation when the INTERNAL\_H signal at M202-1 is at logic-1. The AC\_CAL\_SENSE line is connected to the bus by the AC\_SENSE\_H signal. When it is necessary to load the signal being transmitted via the internal signal bus, the $10M\Omega$ resistor R204 is connected by the 10M\_LOAD\_L signal on M202-9. Similarly, a hard zero can be connected on the bus by the ZERO\_L signal at M202-8. Refer to Section 2: Fault Diagnosis for the occasions when these facilities are required. ## 5.2.1.3 DC Voltage Block Diagram ### 5.2.1.4 DC Voltage Preamp (Circuit Diagram 430738 shts 2 & 3 pp11.2-2 and 11.2-3) The DC Voltage Preamp is based on a chopper circuit (p11.2-3). The required input characteristics are achieved by using a differential FET input to give low input current characteristics, coupled with a multistage design to ensure good bandwidth and overall gain characteristics. This basic design is enhanced by employing the amplifier in a synchronized chopper configuration. Noise is also reduced by this method. A second amplifier stage provides most of the forward gain with the frequency gain-compensation necessary to give an effective amplifier bandwidth of 600kHz. The signal is chopped by Q303/4/5/6 to modulate the input to differential amplifier Q309/Q312, synchronous with A-D switching (CLOCK\_L). The signal is demodulated at the same frequency by M302, and after further amplification by M303 is fed to the output driver stage. ### 5.2.1.5 Bootstrap Buffer (Circuit Diagram 430738 sht 2 p11.2-2) To effect high input impedance, the DC amplifier also drives a Bootstrap buffer M203 (p11.2-2), which ensures that all in-guard power supplies used for the DC amplifier are made to track the input signal level by reference to Bootstrap. The DC amplifier thus sees no change in input signal relative to its supplies, so achieves very high common mode rejection, eliminating any potential common mode non-linearities. In addition, the buffer output sets the potential of PCB tracking which guards the input Hi track, to absorb PCB leakage currents that could otherwise be picked up by input Hi. ### 5.2.1.6 Range Switching (Circuit Diagram 430738 sht2 p11.2-2) Extremely stable resistance units configure the DC amplifier gain to define the DC Voltage ranges. Two attenuators, one at the input and one at the output of the DC Preamp, are switched for range selection. To ensure that no spurious leakage currents cause linearity, temperature-coefficient or drift problems in the attenuator chains; the pcb tracks connecting the resistor units to the circuit are carefully guarded. Two control lines are required to switch the output attenuator FETs: DC(A) and DC(B). These are driven directly from the serial interface register M802 (page 11.2-8) and decoded close to the switching FETs (page 11.2-2). The input attenuator latching relay RL203 is controlled from the serial interface register M201 (page 11.2-8) via MOSFET Q801 and powered by bipolar driver M807-3 (0V or +15V) and a regulated +7V supply. This arrangement ensures that no energy is dissipated in the relay solenoid (and in the solenoids of the other latching relays) except in the act of switching over. The local thermal stability in the guard box therefore remains undisturbed by relay activity. ## 100mV - 10V Ranges For these low voltage ranges RL203 disconnects R212, so the input attenuator is not effective. Refer to Fig. 5.2.1.1. In the 10V Range the DC Preamp is connected as a voltage follower, and the output voltage is halved in the output attenuator giving a stage gain of 0.5. Thus input voltages in the range of $0V\pm20V$ are reduced to the range $0V\pm10V$ for presentation to the A-D. The feedback fraction for the 1V Range is set at 0.2 by the output attenuator, and the Preamp output is passed without attenuation to the A-D. The stage gain is 5.0, so that input voltages in the range of $0V\pm2V$ are amplified to the range $0V\pm10V$ at the A-D input. The output attenuator sets the feedback fraction for the **100mV Range** to 0.02, and the Preamp output is passed directly to the A-D. The stage gain is 50.0, so that input voltages in the range of $0V\pm200mV$ are amplified to the range $0V\pm10V$ for input to the A-D. ### 100V & 1kV Ranges For the high voltage ranges RL203 connects R212, so the input attenuator reduces the input voltage by a factor of 100 ahead of the Preamp. The feedback fraction for the 100V Range is set at 0.2 by the output attenuator as for the 1V range, and the Preamp output is passed without attenuation to the A-D. The stage gain is 0.05, so that input voltages in the range of $0V\pm200V$ are reduced to the range $0V\pm10V$ at the A-D input. In the 1kV Range the DC Preamp is connected as a voltage follower, and the output voltage is halved in the output attenuator giving a stage gain of 0.005. Thus input voltages in the range of $0V\pm1000V$ are reduced to the range $0V\pm5V$ for presentation to the A-D. ### 5.2.1.7 Protection (Circuit Diagram 430738 sht2 p11.2-2) The instrument can measure up to 1000V. It must therefore be able to withstand continuous application of 1000V on all DCV ranges, to ensure that such a voltage applied inadvertently does not damage internal components. When the input attenuator is switched in on the 100V or 1kV ranges, 1000V at the input terminals will be reduced to 10V at the input to the DC Preamp. But on low voltage ranges the attenuator is switched out, so static and dynamic methods are used for added protection. ### **Preamp Input Protection** The obvious way to protect the Preamp non-inverting input is by a series resistor chain and two back-to-back zener diodes. The $10M\Omega$ series element of the input attenuator could be used as the resistor chain, but it would create far too much Johnson noise to be permanently connected on low voltage ranges. However, as its dissipation is only some 100mW for an applied voltage of 1kV, it could form an efficient limiter if it were switched in only when these ranges are in overload. This is the method chosen for the 1281, using a second parallel resistor chain of $15k\Omega$ for normal operation. The purpose of the $15k\Omega$ chain is to activate the back-to-back zeners for an overload greater than 24V at the Preamp input while preventing problems due to Johnson noise. This is practicable only in the short-term as it will develop $\sim 60W$ of heat for an applied voltage of 1kV. To effect the changeover from the $15k\Omega$ operating chain to the $10M\Omega$ limiting chain, the non-inverting input to the Preamp needs to be sensed for overload. As the Bootstrap Buffer is already connected to the inverting input, it provides a suitable low impedance output (B) which follows the input. This is applied to a window comparator M201 which de-energizes RL202 only when the overload threshold of 21V is exceeded. Under non-overload conditions RL202 is energized, holding the two chains in parallel; but for overload conditions the RL202 contacts disconnect the $15k\Omega$ chain. ### Protection against High-Voltage HFAC and Transients As the Bootstrap is designed not to follow high frequencies and transients, it is necessary to couple these into the comparator from the input. R201 and C201 perform this function, with zeners D201/2/3/4 clamping the comparator inputs to 0V $\pm$ 22V. The time constant of R216/R217/C204 ensures that when the comparator de-energizes RL203 due to a transient, it cannot be re-energized before its contacts have changed over. ### **Preamp Output Protection** As Bootstrap is driven from the feedback point it is vital that the two inputs of the Preamp remain at the same potential. Once the input and Bootstrap are clamped to 24V by the two back-to-back zeners, the Preamp output could lock up due to loss of Bootstrap and hence collapse of the Preamp's bootstrapped supplies. The Preamp therefore has two clamps: a relative clamp between the output and inverting input to hold these points within 12V of one another, and an absolute limiter as the output approaches the 35V rails. ### Guarding The input zeners and output clamps are guarded out by Bootstrap to prevent clamp leakage causing inaccuracies during normal operation. # 5.2.2 AC PCB - Option 10 # 5.2.2 AC PCB - Option 10 ### 5.2.2.1 AC Voltage - General Principles The preamplifier buffers and ranges the signal in order to present its output to the RMS to DC converter at the required voltage levels. Once converted to an equivalent DC signal, it is applied to the main A-D converter on the DC PCB. ### 5.2.2.2 AC Preamp (Circuit Diagram 430741 sht1 p11.5-1) The requirement for the inverting preamp is to provide good flatness from DC to 1MHz, while the offset voltage at its output must be minimized to ensure good DC-coupled performance. This complex design uses several gain elements in conjunction with one another. ### Inputs For normal ACV operation, the input Hi is fed from the DC PCB at PL32-4. Relay RL101 connects Hi to an AC/AC+DC changeover network, and ensures that the INT\_SIG\_BUS is disconnected from the input to the Preamp. RL102 performs the changeover by shunting the AC coupling capacitor C101 when AC+DC is selected. During AC Current operation or Selfcal, RL101 disconnects Hi, and connects the INT\_SIG\_BUS to the Preamp input instead. A second AC/AC+DC changeover network is switched by RL102 for use in these modes. ### Low Frequencies As the Preamp is an inverting amplifier, the closed loop gain at low frequencies is set by input and feedback resistance. The input resistance of $1M\Omega$ is formed by four $250k\Omega$ resistors in a series chain, spreading the input voltage and power on the 1kV range, and permitting simple compensation at high frequencies. This input chain is present on all AC Voltage ranges. Feedback resistance is switched to select voltage ranges. The basic range is the 1V range with an overall gain of 1, using two $500k\Omega$ resistors in series as feedback. FET Q116 is switched on for all ranges except the 100mV range. For the 100mV range, the feedback is divided in the ratio 1:10 by R186/R187 by switched Q116 off and Q117 on, still using the 1V range resistors to feed back to the input. For the three higher voltage ranges, relay RL107 connects the preamp output to the three feedback resistors. For the 10V range, feedback resistor R168 is effectively connected in parallel with the 1V range feedback resistance R148/R169 by relay RL106. For the 100V range, feedback resistor R167 is added in parallel with the combined 10V range feedback resistance by relay RL105; and for the 1kV range, RL104 adds R191 in parallel with the combined 100V feedback resistance. As the 1kV range has both a full range and full scale of 1kV, it is not necessary to reduce the gain to .0001. Using the larger value of $2.4k\Omega$ for R191 gives an overall gain of approx .0019, reducing the value of the required compensation capacitor. The 1kV range thus behaves internally as though it were a 500V range with 100% overrange. ### High Frequencies The feedback resistors are shunted by compensating capacitors which determine the closed loop gain at high frequencies, swamping the stray capacitance around the preamp. Trim resistors allow the compensation to be pre-set once the AC PCB is fitted into its guarded environment in the instrument. Voltage followers M103 buffer the HF feedback drive on the 100V and 1kV ranges, which have lower-value feedback resistors and hence larger compensation capacitors. FET Q115 and transistor Q120 form an HF feedback buffer for the 1V and 100mV ranges. After DC isolation by electrolytic C140, the buffered output is trimmed by pot R178 and fed back via C148. The buffered output also energizes the HF autocalibration voltage divider formed by R174 and VCR FET Q119. #### LF Autocalibration The low frequency gain is calibrated by correcting the digital output from the A-D while inputting a known signal. The corrections are stored digitally in non-volatile RAM, and are subsequently reapplied by digital computation during normal operation. ### **HF Autocalibration** To calibrate the HF gain, separate digital correction factors are derived from measurements of known HF inputs, and reapplied as a DC voltages to M104 via a ladder network D-A converter R189. The HF correction factor for the currently-selected range is passed from the microprocessor to the AC PCB via the serial interface, latched into M402 (page 11.5-4), and delivered direct to the D-A R189 (page 11.5-1). The output of M104 controls FET Q119, which acts as a voltage-controlled resistor. The buffered and isolated preamp output voltage is developed across R174 and Q119, and the voltage across Q119 is applied via Q118 and C147 to the preamp input. Thus the correction factor embodied in the bit pattern on the input to the D-A R189 controls the amplitude of the HF feedback and hence the HF gain of the preamp. FET Q114 is included to compensate for any non-linearity in FET Q119, the two FETs forming a matched pair, with common-value bias resistors. Thus the source-drain currents in both FETs are identical, the amplitude of the AC voltage across Q119 is linearly proportional to the resistive current from the D-A to M104 input, and hence is also proportional to the quantative value of the bit pattern delivered to R189. ### Selfcal For self-calibration and self-testing purposes, the internal DC Source can be characterized during external calibration. During Selfcal, the appropriate value of DC reference is applied via the INT\_SIG\_BUS line, and the AC+DC gain of the preamp is measured by the DC voltage system via the AC\_CAL\_SENSE line. Further measurements are taken from the output of the RMS section directly via the A-D. ### 5.2.2.3 Electronic RMS The principles behind the RMS conversion technique are shown in Fig. 5.2.2.2. ### **Rectifying the Preamp Output** With the instrument set to its 'Normal' mode, and for the first of three readings when using the 'Transfer' facility; the output signal from the Preamp is applied to the Precision Rectifier. This is required to provide full-wave rectification with identical AC and DC gain for both positive and negative excursions, and to ensure that the crest factor of sinusoidal and non-sinusoidal signals is not altered in the process. To achieve this, positive excursions are removed by half-wave rectification, the negative excursions being inverted by the rectifier. The amplitude of the rectifier output can be adjusted using the DC-to-DC Turnover control, which incrementally changes the rectifier gain around a factor of 2. The rectifier output is then summed with the Preamp output. The result, shown in Fig. 5.2.2.3 for a sine waveform, is a full-wave signal which can be set to give identical gain on both positive and negative excursions. This is input to the squaring log amp (as Vin). 6.0 母哥 ### Squaring the Rectified Input The Log Amp squares instantaneous values of Vin, by converting them into logarithmic values and then multiplying by two. Its instantaneous log output voltage is therefore proportional to $2\log Vin$ , which can be expressed as $\log [Vin]2$ . ### Dividing by the Converter Output The Log Amp output voltage is applied to a summing circuit, together with a feedback DC voltage whose value is proportional to -logVf (Vf is a DC voltage - the mean output voltage from the converter, returned via the feedback Log Amp). The current from the summing junction is proportional to log[Vin]²-logVf, which can be rewritten as log[Vin²/Vf]. It drives an exponential stage whose output voltage is proportional to the antilog of its input current, in this case proportional to Vin²/Vf. ### Taking the Mean The output from the exponential stage is smoothed by a 3-pole Bessel filter, resulting in a DC voltage for a settled periodic signal. This is therefore proportional to the mean of [ $Vin^2/Vf$ ]. As Vf is DC and therefore equal to its mean, this is the same as: [mean Vin²]/Vf. ### Closing the Square-Root Loop The feedback loop is closed by feeding Vf back into the computation, as mentioned earlier, to ensure that the DC output signal Vf = [mean Vin²]/Vf. From this it can be seen that Vf² = [mean Vin²], and Vf = $\sqrt{\text{[mean Vin²]}}$ , which is the normalized root-mean-square value of Vin. ### Normal Mode Settling The Bessel filter is chosen for its optimum settling time, and offers selectable configurations to permit operation down to 1Hz. A sample and hold circuit with isolating buffer (for use in 'Transfer' mode - see below) provides further filtering at higher frequencies, after which the smoothed signal is taken to an amplifying buffer which drives the instrument's analog to digital converter. ### Simplified Circuitry A simplified version of the RMS analog computing circuitry is given at Fig. 5.2.2.4. Note that the input and feedback components responsible for the logging, squaring and antilogging are contained within the 'RMS Chip'. ### 5.2.2.4 AC-DC Transfer Mode So far, the described circuit is a straightforward electronic RMS measuring system. As an alternative, the AC circuit also employs a refinement on the basic technique, using an AC-DC transfer mechanism to improve linearity by measuring and correcting the gain of the RMS Converter. This requires three readings, shown in Fig. 5.2.2.5 as 'Normal', 'Sample' and 'Transfer', equivalent to the switching positions shown on Fig. 5.2.2.2. Refer to Fig. 5.2.2.5. ### First Reading - Normal With the circuit connected as in Normal Mode, a reading Y1 is taken and delivered via the A-D to the digital circuitry. This is memorized by the microprocessor. Meanwhile the Sample and Hold capacitor has charged up to Y1. ### Second Reading - Sample The input to the Sample and Hold circuit is removed to store the capacitor voltage. A second 'Sample' reading Y2 is taken via the A-D. This reading is the instantaneous value at the time when the input signal was removed. It is approximately equal to Y1. ### Third Reading - Transfer The Sampled voltage Y2 is passed through the RMS Converter, and the output from the Antilog Amp is measured as Y3. There are now three digitally stored readings: - Y1: is the fully-converted uncorrected reading of the input to the instrument; - Y2: is the voltage stored on the sample-and-hold capacitor; - Y3: is the result of recirculating the sample-and-hold voltage through the RMS Converter (the signal does not require filtering as it is already DC). The second reading Y2 is necessary only because the input could have been broken at the peak or trough of the small amount of ripple which could be present. Both Y2 and Y3 are now taken with respect to the same DC voltage, so the ratio Y3/Y2 is a measure of the DC gain of the RMS Converter. To correct for the RMS Converter gain, the inverse ratio Y2/Y3 can now be applied to the raw signal Y1. The microprocessor therefore computes the corrected reading of the input to the instrument by: # Corrected Reading = Y1 x (Y2 / Y3) Because the second and third readings use only the DC sampleand-hold voltage as input, the correction is equivalent to an AC to DC conversion. Because the signal level of the DC readings is at the same level as the signal to be corrected, any gain or linearity errors in the RMS conversion are virtually eliminated. ## 5.2.2.5 Frequency Sensing and Display (Fig. 5.2.2.4 and Circuit Diagrams 430741 sheets 2 & 4, Pages 11.5-2 & 11.5-4) #### Frequency Sensing The Preamp output is AC-coupled to differential buffer Q201 (page 11.5-2). This provides split-phase versions of the signal to drive M409 comparator (page 11.5-4), which squares the fundamental while suppressing harmonics. The resulting output from the comparator is passed to the FLL ULA M412. # Counting and Encoding The frequency is counted by the ULA within a long or short gate initiated by the CI2\_R signal. The output from the 4MHz crystal clock X401 is also counted, within the selected gate, as frequency reference. The ULA computes the frequency by comparison between the two counts, and constructs a data word representing the signal frequency. This word is placed into the ULA serial interface register and the microprocessor is alerted by the RTX\_R signal that a message is ready. ## Frequency Display The processor then performs the necessary serial transfer to obtain the message for decoding and display. The frequency can be presented on the menu display at the same time as its RMS value is being shown on the main display, by using Freq in the MONITOR menu when ACV is selected. If the instrument is in ACV SPOT FREQUENCY mode there is also an indication when a Spot frequency is active. #### 5.2.2.6 Spot Frequency Calibration Each ACV range can be spot calibrated at up to six independent user-defined frequencies, reducing flatness errors within ±10% of the spot frequency. The process is performed entirely in software, no alteration to the hardware configuration being involved. #### 5.2.2.7 AC Current Measurement The input AC current to be measured is passed through one of the shunts on the Current PCB, and the resulting shunt voltage is transferred to the AC PCB to be measured on the 100mV range. The voltage is developed between INT\_SIG\_BUS and 0V(10) on the Current PCB, and appears between INT\_SIG\_BUS and 0V(7) on the AC PCB. Both commons are joined at MECCA on the DC PCB. # 5.2.3 Resistance - Option 20 This function is achieved using a set of constant current sources in conjunction with the DCV measurement capability. # 5.2.3.1 Normal Ohms - Functional Block Diagram ## 5.2.3.2 Switched Constant Current Sink (Circuit Diagram 430742 Sheet 2 Page 11.6-2) # Reference The accuracy of all the values of current available for resistance measurement is derived from the Internal Reference on the DC PCB. The reference voltage is one of the outputs of the Reference Buffer M403 (page 11.2-4), which is developed between $\Omega$ REF and OV(12). On the Ohms PCB, this is isolated by a 'Flying Capacitor' pump circuit switched by astable multivibrator M204. M204 is enabled only when resistance measurements are to be taken, or when an Ohms constant current is to be used as input to the current-to-voltage converter on the Current PCB in Selfcal and Self Test. At times when the pump circuit is disabled, the zener D202 is used as reference for the voltage mirror. The astable M204 is enabled by the 'OSC' signal, which passes from the processor to the Ohms PCB via the serial interface, latched into M301 (page 11.6-3). It is then decoded, and delivered to M204-4/9 (page 11.6-2). #### Sink Circuit Voltage mirror M203/Q208 maintains a constant voltage across a series resistor chain R204, R214, R219 and R217/R218 (parallel to spread the load for 10mA selection). #### Constant Current Switching By shunting and picking off currents, any one of the range of constant currents can be drawn through the resistor under test. Each Resistance Mode and Range combination is assigned its own value of current, the FET/Relay activation pattern being controlled in firmware. Switching arrangements for the currents are shown in simplified form on Fig. 5.2.3.2. Table 5.2.3.1 relates the constant current value to the Mode and Ohms range selected by the user. ## 5.2.3.3 Low Current Ohms Where low compliance or low open circuit voltages across the DMM's terminals are needed, a special low current mode (LoI) can be selected. Applications where this can be useful include incircuit measurement of components in parallel with diode junctions, or the measurement of temperature using Platinum Resistance Thermometers, where the self-heating effects of the current passing through the resistive element are important. The 100mV DC Voltage range is used for all low current Ohms measurements #### 5.2.3.4 True Ohms In addition, for those applications where external thermal emfs present measurement problems, a mode is provided where a zero reference reading is automatically taken with the measurement current turned off (Tru $\Omega$ ). This zero measurement is subsequently subtracted from that made with the current flowing, to give a resultant value where the effect of any thermal emfs have been eliminated. # 5.2.3.5 Low Follower and Voltage Detection External errors produced by specific connections can be reduced using four-wire sensing and Ohms guarding techniques. Four-wire sensed measurement can be made with up to $100\Omega$ in any lead with no degradation in accuracy. Furthermore, errors caused in external leakage paths can be eliminated using an Ohms Guard terminal which may also be used for in-circuit measurement of components in parallel with other resistive elements. The aim of the Low Follower is to separate the current path from the voltage detection circuit, so that in 4-wire connection the current flows through the resistor under test, and the voltage across it is detected at the resistor itself with no other common wiring. ## Current Path (Fig 5.2.3.1) (Circuit Diagram 430742 Sheet 1 Page 11.6-1) The resistor under test **Rx** is connected between I+ and I-. The energizing current is drawn from I- by the constant current sink, and sourced through the power output stage of the Low Follower into I+. The value of the constant current is switched at the sink as described above. Lo is connected to the Low Follower inverting input, and because this places Rx as the feedback resistor, Lo is forced to the same potential as Common-8 at the Low-Follower non-inverting input. Virtually no current flows in the low line, as the bias current required by the Low Follower is very low. When measuring in 4-wire, I- and Lo are connected together only at Rx, so current in the I- line does not pass through any part of the Lo line, and the resistor Lo terminal is held at the potential of Common-8. With 2-wire selected, the constant current does pass through part of the Lo line, and an IR drop is generated across the ends of the path. At the Hi end of the resistor, the source current is drawn through the I+ line, and in 4-wire it does not pass through any part of the Hi line. #### Voltage Measurement across Rx The voltage due to the constant current in Rx alone is presented between Hi and Lo with no other IR drop. The Lo end is at held at Common-8, which is the same as the 'MECCA' on the DC PCB. The DC Preamp presents an extremely high impedance to Hi, so the voltage measured by the DC Voltage circuitry is that across the resistor Rx alone. When a particular Resistance range is selected, its energizing current value is determined by firmware, the results of the measurements being modified by calibration constants. The setup must have optimum constant current and DC Voltage measurement range for low noise and stability. This choice is predetermined and set in the program; the range of setup conditions are shown in Table 5.2.3.1. ## Low Follower Amplifiers The Low Follower is a compound amplifier, with M103 and Q108 DC-stabilizing Q104 and M102. The two paths are recombined by M104 summing amplifier. #### **Alternate Current Sourcing** For thermal reasons, Q110 is supplied from +35V for low current values, and +5V for high currents. The changeover occurs via diode D106. #### Clamping Clamping is used to limit the voltage drive to Q110, at values dependent on the DCV range used to measure the voltage across Rx. For the 10V range, the **CLAMP** signal is at +5V, and the voltage at the junction of R137/138 limits at +25V. With the 100mV or 1V range in use, CLAMP changes to 0V and the limit is reduced to +5V. The CLAMP signal is set by the processor via the serial data link, the programmed level appearing at DIO7, pin 12 of M301 (page 11.6-3). ## Ohms Low Sense The input channel **Lo** terminal cannot not taken directly to 'MECCA' common when resistance is being measured; instead it is switched to the $\Omega$ **LOW SENSE** line into the Ohms PCB. It is maintained at high impedance while being referred to 0V(8) by the action of the Low Follower. Low switching is performed by relay RL108 on the DC PCB (Circuit Diagram 430738 page 11.2.1). #### 2-Wire/4-Wire Switching The input channel Hi is fed directly to the DC PCB for the voltage measurement across the resistor Rx, and for this purpose does not need to appear on the Ohms PCB. However, the 2-wire/4-wire switching is performed by Ohms relay RL101 between Hi and I+, so Hi is brought on to the Ohms PCB to be switched. On the Lo side, RL101 connects $\Omega$ LOW SENSE to I- in 2-wire. The 2-wire links are protected by thermistors. #### True Ohms Switching The first of the pair of True Ohms readings is a the same as normal, with relay RL104 energized at contact 1. The second is taken with no current drawn through Rx via I-, as RL104 is unenergized at contact 14. Thus the constant current sink is sourced directly from Common-2. #### Selfcal and Selftest During self-calibration the Ohms ranges are calibrated with reference to two standard resistors fitted on the Ohms PCB - R105 and R106. These are switched out by RL102 being energized during normal operation, but for Selfcal and Selftest the I+ input is disconnected, and the Ohms circuit measures the values of the two resistors as they are switched in by the contacts of the deenergized RL102. For a low standard resistance R106 (1.0k $\Omega$ ) is selected on its own, and for high resistance R105 and R106 are connected in series (101k $\Omega$ ); the switching being performed by RL105. The software models for Selfcal and Selftest are given in Section 2. #### Filter C108 and R126 provide HF compensation for the whole Low Follower. When Filter is selected, the F signal at +5V introduces C107 in parallel with C108 to reduce the frequency response of the follower. In this state, Q107 is turned off to turn Q106 on. The F signal originates on the DC PCB as FILTER (page 11.2-8), its level having been set at pin 1 of the register M802, by the processor via the serial data interface. So both the DC Voltage and Ohms filters are switched in and out simultaneously. ## 5.2.3.7 3-Bit Word Transfer and Decoding A 3-bit word which represents the current switching pattern is passed from the microprocessor to the Ohms PCB via the serial interface, latched into M301 (page 11.6-3), and DIO 2/3/4 is delivered to M304-1/2/3 for decoding. Signal DIO 4 is also added to the decode, and the resulting decoded lines are used to generate the FET/Relay switching pattern. When a particular Mode/Range combination is selected in Resistance Function, the Processor translates the selection into the corresponding 3-bit pattern to activate the current. It also sets the appropriate DC Voltage range. Table 5.2.3.1 relates the constant current value and DC Voltage range used, to the Mode and Ohms range selected by the user. Table 5.2.3.1 Ohms Range, Mode and Current; with DC Voltage Range Employed | Ohms<br>Range | Ohms Current | | | | | | | |---------------|--------------|-----------|------------|----------------------|------------------------|----------------------|----------------------| | | 10nA | 100nA | 1μΑ | <b>10</b> μ <b>A</b> | 100μΑ | 1mA | 10mA | | 10Ω | | | | | | | TruΩ 100mV | | 100Ω | | | | | | Lol 100mV | Normal 1V<br>TruΩ 1V | | 1kΩ | | | | | Lol 100mV | Normal 1V<br>TruΩ 1V | - | | <b>10k</b> Ω | | | | Lol 100mV | Normal 1V<br>TruΩ 1V | - | | | <b>100k</b> Ω | | | Lol 100mV | - | Normal 10V<br>TruΩ 10V | | | | 1ΜΩ | | Lol 100mV | - | Normal 10V | | | | | 10ΜΩ | Lol 100mV | - | Normal 10V | | | | | | 100ΜΩ | - | HiΩ 10V | | | | | | | <b>1G</b> Ω | HiΩ 10V | | | · | | | | # 5.2.4 DC and AC Current - Option 30 The DC Current function is achieved using a set of precision shunts in conjunction with the DCV measurement capability. The AC Current function uses the same set of shunts in conjunction with the ACV measurement capability. Option 30 requires Option 20 also to be fitted, as it is self-tested and self-calibrated using currents provided by the Ohms circuitry. ## 5.2.4.1 Functional Block Diagram ## 5.2.4.2 Switched Current Shunts #### General For Current measurement, five precision shunts are switched internally to correspond with selection of the five ranges. The unknown current passes through one or more of these shunts, and the resulting voltage is measured using the 100mV DC or AC range circuitry. The shunts and the source of the current are protected both electronically and by a 1.6A fuse, accessible on the rear panel. ### Input Current Routing The current from the selected input channel enters the Current PCB at PL52-1 (Hi), passes through the fuse and selected shunt(s), and exits by PL50-6 (Lo). On the Current PCB the current path is interrupted by three open contacts of RL100 when the Current Function is not selected. The contacts are closed in Current Function. # Shunt/Range Correspondence Table 5.2.4.1 relates the range switching to the selected range and range shunts utilized. Table 5.2.4.1 Current Range Switching ## 5.2.4.3 Shunt Voltage Measurement #### Sensing For each range, the voltage to be measured across the range shunt(s) appears between common **GND\_10** at PL51-1 and **INT\_SIG\_BUS** at PL51-2. GND\_10 is connected directly to MECCA on the DC PCB (page 11.2-1). For ranges up to 100mA, the unenergized relay RL104 contacts 2/3 (closed) and 4/5 (open) connect GND\_10 to R114, switching out the volts drop across the 1A shunt R115 (although the input current for each range passes through R115 on its way to I-). On the 1A range, RL104 is energized to connect GND\_10 to R115 instead of R114. #### Measurement (DC Current) The DC voltage circuitry is referred to MECCA (page 11.2-1). For the DC Current function, the input to the DC Voltage preamp is connected to INT\_SIG\_BUS instead of the external inputs. The INT\_SIG\_BUS line is selected on the DC PCB by M202-1 and the unenergized relay RL201 (page 11.2-2). The DC preamp passes the conditioned DC signal to the A-D. ## Measurement (AC Current) The AC voltage circuitry is referred to MECCA via common **0V\_7** (page 11.2-1). For the AC Current function, the input to the AC Voltage preamp is connected to INT\_SIG\_BUS instead of the external inputs. The INT\_SIG\_BUS line is selected on the AC PCB by RL103-5/4 and the unenergized relay RL101-2/3 (page 11.5-1). The AC circuitry converts the AC voltage to a DC (RMS) voltage, which is passed to the A-D. #### 5.2.4.4 Protection #### Fuse The 1.6A Current fuse is located for access on the rear panel, and connected in series with the I+ line via PL54-1/2. The fuse is tested during Selftest (see below), and although not specifically tested in Selfcal, will cause Selfcal to fail if it is not intact. #### Diodes Four diodes D103-D106 protect the shunts when an attempt is made to measure a current which is too large for the range in use, limiting the voltage across the shunt(s) and blowing the fuse if the excess current is large enough. For normal operation, any leakage current in the diodes is guarded out by the bootstrap M102. #### **Bootstrap** M102 buffers the voltage at the high end of the shunt chain as $0V_B$ , which in Current function drives the center connection of the four protection diodes. Thus there is no voltage across the top two diodes, so all the input current passes through the shunt(s). The bootstrap forces the shunt voltage across the bottom two diodes, so leakage current is diverted to GND\_10 and back into the power supply for buffer M102. In Selftest and Selfcal, the input test current is sourced, via the I+line, from the Low Follower output on the Ohms PCB. It returns to (and is controlled by) the constant current sink on the Ohms PCB, via the I-line. In this case RL101 is energized, forcing 0V\_2 at the diode junction. This maintains zero voltage across the bottom pair of diodes, and diverts leakage current from the top two diodes into 0V\_2, instead of into the constant current sink. The bootstrap buffer is not used. In both the above cases, leakage current in the protection diodes is diverted from the voltage measurement circuit, and so does not affect the shunt voltage passed out via INT\_SIG\_BUS. # 5.2.4.5 Selfcal and Selftest ## Circuit Changes As mentioned above, the internal circuitry is changed to perform these functions. The Input switching disconnects the I+ and I-lines from the input channel terminals. Current to test the Current PCB is sourced from the output stage of the Low Follower on the Ohms PCB, via the I+ line; and controlled by the Ohms constant current sink, via the I- line. The shunt voltage is no longer referred to GND\_10. Instead, the low end of the shunt is switched to a special LO\_SENSE line, which provides the low input to the low follower. Relay RL101 on the Current PCB is energized during Selfcal and Selftest to perform this changeover. The voltage at the high end of the shunt chain is passed to the DC PCB via the INT\_SIG\_BUS line as in normal Current function. In effect, the resistance of the shunt chain is measured by the Ohms function. All five ranges are calibrated and tested by this method. The arrangement is shown on the Test Setup Diagram in Section 2 (page 2-38). #### **Fuse Test** This is performed as part of Selftest. The instrument is programmed into the DC 10mA range, with the test current being drawn from the Ohms PCB. If the fuse is intact, the voltage measured on the INT\_SIG\_BUS will be positive, and a pass condition is registered. If it has blown, the voltage will be negative due to the Ohms constant current being forced to zero, indicating a failure condition. # 5.2.5 Analog-to-Digital Conversion # 5.2.5.1 Functional Diagram ## 5.2.5.2 Introduction The instrument converts conditioned analog signals to a digital form using a multi-ramp, multi-slope, integrating A-D. This provides: - 1. High linearity < 0.2ppm without adjustment; - 2. Low noise of < 0.05ppm of full scale; - 3. High speed signal and reference are applied together simultaneously, greatly reducing the conversion time; - 4. 100% overrange, giving a maximum discrimination of 1 part in 200 million; - 5. Flexible operation resolution (and hence speed) are programmable, from 4.5 digits at 200 readings per second to 8.5 digits per second at one reading per 6.5 seconds. A digital autozero system avoids the need for the more common sample-and-hold type of autozero circuit. Multislope operation permits the integration capacitor value to be smaller than normally required for a more conventional circuit, greatly reducing problems due to dielectric absorption. The control logic determines the parameters of the conversion, by counts and timings which are selected by the processor and transferred via the serial interface in four bytes of data. Timing, counting and control are executed by a custom 'ASIC' (Application-Specific Integrated Circuit), resulting in a design which offers both variable integration times and user-selectable resolutions. The digital result of a measurement is transferred back to the processor via the serial data interface. Reference switching errors are reduced to a constant value, which are subtracted from the reading by the instrument's microprocessor. #### 5.2.5.3 Reset 'Reset' mode replaces the more conventional analog 'Autozero'. It is imposed by the ASIC except when a conversion is in progress. The four phases of reset activate the converter to ramp through small excursions about zero, eliminating zero drift and holding the converter in a quiescent state. The ramps and timings are shown in Fig. 5.2.5.2. # The Reset Cycle There are four phases in the reset cycle, numbered on Fig. 5.2.5.2: - Ø1. Zero is applied to both Signal and Reference inputs. This time is set by the ASIC, and the slope is determined by the integrator drift (exaggerated on the diagram). - Ø2. Zero is applied to the Signal input, and -Ref/256 to the Reference input. The integrator ramps up and crosses zero. The Null Detector has a standard delay, and for a fixed period after this, the ASIC continues to apply -Ref/256. These three times constitute the time of phase 2. - Ø3. Zero is applied to both Sig and Ref inputs as in phase 1 for a very short period, to guard against any overlap in switching. The integrator drifts during this time. - ø4. Zero is applied to the Signal input, and +Ref/256 to the Reference input. The integrator ramps down and crosses zero. The Null Detector has the same delay, and again the ASIC continues to apply the +Ref/256 for a further fixed period. These three times constitute the time of phase 4. The cycle is repeated, maintaining the integrator output near zero (within approx. $25\mu V$ ). The overshoot in phases 2 and 4 is deliberately introduced to ensure a clean transition through zero. As can be seen from the diagram, the integrator output always reaches the same value at the end of Phase 4, due to the two fixed ramps, even though drift may occur in phase 1. Because of its low amplitude and short timings, this reset waveform is difficult to view accurately. # **End of Reset** The A-D continues in Reset mode until instructed to start a reading conversion. A separate control line (CI1-R), with its own optocoupler (M703-3/6), initiates the conversion. # 5.2.5.4 Conversion Initiation ## Triggering Depending on the type of measurement trigger received, the instrument can be called upon to execute single or multiple readings, the latter being processed in some way to arrive at a 'measurement'. This could be as a result of an external trigger, a manual trigger (sample) or a trigger received over the IEEE 488 interface. The number of readings to be taken depends on the instrument state and the type of trigger received. ## 'Conversion Initiate' Signal For each reading required, the **Conversion Initiate** signal (CI1-R) is set high to start a conversion on its rising edge. As a result, the A-D executes a Reset cycle, ensuring that the conversion starts from a known integrator output value. The cycle is terminated by the ASIC SIG lines being activated to apply the conditioned signal to the integrator input. The result of CI1-R is shown in Fig. 5.2.5.3 for a negative signal input. # Single and Multiple Ramp Conversions # **Notes** Pages 5-30 to 5-35 illustrate examples of the forms of conversions used in the 1281. Because of the wide range of amplitudes and timings which are involved in the sequences, the waveforms given in the figures are not to scale - some exaggeration is required to show the changes. The control signal waveforms are intended to illustrate sequencing only - in some cases there are several versions of a signal. Polarities and amplitudes in the figures are therefore not to be regarded as accurate. # 5.2.5.5 Single Ramp Conversions The integrator output and control signals for a single conversion with positive and negative inputs are illustrated in Fig. 5.2.5.4 and 5.2.5.5 respectively. Time starts at Phase 5 after the Reset initiated by the CI signal. There are several versions of the control signals, those shown in the diagrams indicate timing only, and not polarity. Note that the time 'T' is fixed, as are the durations of phases 11, 12, 13 and 14. There is also the fixed Null Detector delay, and a fixed overshoot delay after null is detected in phase 10. Bias is applied during phase 8. #### Positive Signal Input The phases in the conversion cycle for positive signal input are numbered on Fig. 5.2.5.4: - Ø5. Zero is applied to both Signal and Reference inputs, this is the final stage of CI. - ø6. The positive signal is applied to the Signal input, with zero on the Reference input. The integrator ramps down for a fixed period. - Ø7. The signal is applied to the Signal input, with +Ref on the Reference input. This 'bias' is applied for a fixed period with Ref polarity determined by the state of the Null Detector. It is arranged for the integrator to ramp further away from null. ø8; ø9: - Zero is applied to both Sig and Ref inputs to ensure that two references are not applied together. - Ø10. Zero is applied to Sig input and -Ref to the Ref input. The integrator ramps up and eventually crosses null. The Null Detector has the standard delay, and the ASIC continues to apply -Ref for a further fixed period. The integrator therefore overshoots. - Ø11. Zero is applied to Sig and Ref inputs for a fixed period. This 'wait' allows the dielectric absorption in the integrator capacitor to be recovered. Note that the conditions of phase 11 are applied three times. - Ø12. Zero is applied to Sig input and +Ref/16 to the Ref input. The integrator ramps down and crosses null. The Null Detector has the standard delay, the ASIC continues to apply the +Ref/16 for a further fixed period, and the integrator overshoots. - ø13. Zero is applied to Sig input and -Ref/16 to the Ref input. The integrator ramps up and overshoots null, controlled by the Null Detector and ASIC delays. - Ø14. Zero is applied to Sig input and +Ref/256 to the Ref input. The integrator ramps down very slowly and crosses null. The integrator overshoots null, controlled by the Null Detector and ASIC delays. # End of Conversion - RTX Signal The conversion is now complete and the A-D reverts to Reset mode. To signify the end of the conversion the ASIC sets RTX high. Data may now be shifted out of the A-D via the serial interface. RTX remains high until the next CI is received. Observe that at the end of phase 14 the integrator output is negative due to the same delays and +Ref/256 as at the end of Reset phase 4, so it is back where it started before the conversion. Hence the accumulated amount of the references applied is a measure of the signal applied. # 5.2.5.5 Single Ramp Conversions (Contd.) # Negative Signal Input The phases in the conversion cycle for negative signal input are numbered on Fig. 5.2.5.5. The conversion is subtly different, because of the integrator output starting and finishing at a negative value. This shifts some of the null crossings, and the general waveform is not merely an inversion of that for the positive input. Nevertheless, the principle of operation and sequence of phases remain the same. # 5.2.5.6 Multiple-Ramp Conversion #### Sequence of Phases The integrator output and control signals for a multi-ramp conversion with positive input is illustrated in Fig. 5.2.5.6. - ø1 to ø5 These are as described earlier for Reset. - ø6 and ø7 These are the same as in the single-ramp conversion. - Ø8 to Ø14 These are the same as in the positive single-ramp conversion. - on This is similar to one for the single ramp; but the positive input signal is reapplied to the Signal Input instead of zero. The slope of the ramp is the same as in of. - ø16 Signal and Reference are applied. The polarity of the chosen reference is such as to ramp back towards null. The ramp overshoots null due to null detector and ASIC delays. - Ø17 Signal only is applied. No 'wait' time is required between Ø16 and Ø17, as the reference is not applied in Ø17, and so there is no possibility of shorting two references together. The slope of the ramp is the same as in Ø6. The cycle of phases 17,7, 15 and 16 continues for as many ramps as are required for the programmed configuration. The final cycle is the same as the single-ramp version. Once again, the accumulated amount of the references applied is a measure of the signal applied. #### Integrator Output Waveshape As the magnitude of the input changes, so does the shape of the integrator waveform. At full scale the ramps are symmetrical and of equal height. As the signal is reduced the ramps begin to lean over with the null point moving to the left. The first ramp is reduced to about half the size of subsequent ones, and they are not all the same size. This is normal behavior, and is not indicative of a fault. #### Counting The rules for counting the amount of reference applied are quite simple: - 1. Counting occurs whenever a reference is applied. - 2. The count is **up** for negative references; **down** for positive references. - 3. If Ref is applied the count increments in units of 256. - 4. If Ref/16 is applied the count increments in units of 16. - 5. If Ref/256 is applied the count increments in units of 1. This ensures that even with overshoot the correct result is obtained. A normal 32-bit up/down counter within the ASIC is used, that is reset to zero by the signal CI. ## 5.2.6 Internal References #### 5.2.6.1 Reference Modules #### **Module Description** The reference used in the analog to digital conversion is derived from two specially conditioned zener reference modules. Each contains the reference device and its associated buffer circuits, which are all hermetically encapsulated together in order to ensure constant temperature across the module. The modules are stable to within ±3ppm per year, produce noise of less than 0.1ppm, and have temperature coefficients of better than 0.1ppm/°C. This temperature coefficient is held over a very wide temperature span of 0°C to 70°C, and the references exhibit negligible temperature shock hysteresis. ## Module Usage The two modules are buffered, by M406 and M407, to provide positive and negative master reference voltages for the A-D. These are applied via switched attenuators to generate the positive and negative 'REF', 'REF/16' and 'REF/256' signals which are used in the complex A-D sequences. During Selfcal, A-D Cal and Selftest; the module outputs and the totem-pole buffer outputs are passed to the Signal Multiplexer (M401) to be applied to the A-D for specific calibrations and checks. When Option 20 is fitted, the reference for the Ohms circuitry is buffered directly from the module outputs (M403) as ' $\Omega$ REF'. #### 5.2.6.2 Reference Generation #### Master Reference (Circuit Diagram 430738 Sheet 4; page 11.2-4) The outputs from both reference modules are averaged at the inputs to the Reference Buffer-Amplifier M402. As the modul outputs are negative, the negative output from Q401 is inverted by a 'Flying Capacitor' pump circuit M405, which is clocked by CLOCK-H from the A-D digital ASIC. Any clock transients are filtered out before being applied to M406. The compensated negative output of M402 is fed directly as input to M407. M406/M407 are referred to Common-11, which is the A-I reference common. The totem-pole currents of Q408 and Q409 are sourced from the 15V Common-13 supply, to avoid interference with the reference signals. Gates M503-9 and M504-9 compensate for the effects of the attenuator switching gates at the A-D input. (Circuit Diagram 430738 Sheet 5; page 11.2-5) The outputs from Q408 and Q409 are the two compensated reference signals '+VREF COMP' and '-VREF COMP. These are fed to the REF SWITCH and SUBREF SWITCH, which select the A-D reference levels under the control of ASIC M509. #### **Ohms Reference** REF BUFFER M403 buffers the averaged output from the reference modules to generate $\Omega$ REF, which is passed out via PL107-11 to the Ohms PCB at PL43-11. This level is also passed, as the 'CALREF' signal, to the Selfcal Multiplier circuit. During Selfcal and Selftest CALREF is switched as the input to the Error Amplifier of the Selfcal Multiplier to provide its DC reference voltage. FIG. 5.2.7.1 DIGITAL PCB - MAIN FUNCTIONS # 5.2.7 Digital Control ### 5.2.7.1 Functional Block Diagram Fig. 5.2.7.1 opposite shows the main groups of functional circuits on the Digital PCB. # 5.2.7.2 Processing, Memory and Organization #### Clocks (Circuit Diagram DC400901 Sheet 1; Page 11.4-2) All synchronizing clocks used on the Digital PCB are derived from 16MHz crystal oscillator Y101. Four are required; produced by division in U101: CLK8: 8MHz for the Processor and Digital ASIC (p 11.4-3); CLK4: 4MHz for the IEEE 488 I/F Controller (p 11.4-5); CLK1: 1MHz for the Digital ASIC (p 11.4-3); CLK0.5: 500kHz for the Display Controller (p 11.4-4). #### Processor (Circuit Diagram DC400901 Sheet 1; Page 11.4-2) The instrument is internally controlled by a 68000-series microprocessor. It ultimately translates all information, from the front panel keys and IEEE 488 interface, into control signals which determine the instrument's operation. #### **Data Transfers** Normal data transfers are processed via all address lines A1:23 (Address Bus) and all data lines DØ:15 (Data Bus), using the inherent 68000 word and byte divisions and strobes. Other control signals in and out of the processor are grouped in the circuit diagrams as a 'Control Bus', but this is merely for clarity - the lines are distributed on the PCB. Different devices need different access times, and the processor requires read/write cycles to be terminated by the handshaking device to achieve maximum operating speed. The instrument accounts for three different access times: 250ns: Normal RAM, EPROM, ASIC and Interrupt Acknowledge; 500ns: IEEE 488 Controller, NV RAM, Display and I/O Port; 1μs: Switches 2μs: Analog-Output D-A. ## **Memory Assignment** (Circuit Diagram DC400901 Sheet 1; Page 11.4-2) EPROMs U103 and U104 hold the 128k x 16 of operating program and fixed data; RAMs U112 and U105 contain 32k x 16 of workspace. U106 is a low-power static 8k x 8 RAM which is permanently powered: either by the +5V supply, or by 1/2 AA battery BT1 when the instrument is switched off. Its 'non-volatile' memory is occupied by constants which are stored during calibration, and subsequently used to correct readings when in normal use. ## **Memory Access** All memory is held in 8-data-bit devices. The EPROM chips are device-enabled by the Decoder PAL U110 from addresses A20:23. U103 and U104 are chip-enabled together by A19, and addressed via lines A1:17. Data bytes are read in parallel by simultaneous addressing; U103 provides the 'upper' byte onto data bus lines D8:15, and the 'lower' byte is read from U104 onto DØ:7. The workspace RAM chips are selected by the Decoder PAL U110, and addressed via lines A1:15. Data bytes are read in parallel by simultaneous addressing. For RAM data, U112 is served by the 'upper' byte D8:15 and U105 by the 'lower' byte DØ:7. Device-enable and read-write are selected via the control bus. The non-volatile RAM is also selected by the Decoder PAL U110, and addressed via lines A1:14. For RAM data, U106 is served by the 'lower' byte DØ:7. Device-enable and read-write are selected via the control bus, and write is inhibited unless calibration is enabled. NV RAM (U106; page 11.4-2) is divided into three areas: - 1. Primary Calibration Constants (External Calibration); - 2. Secondary Calibration Constants (Self Calibration); - 3. User NV (Input Zero, Password, Bus Address etc.). The Primary Calibration Constant area is protected against unauthorised Write access by the rear panel Cal/Run keyswitch. Secondary Calibration Constants and User NV, by necessity, are not keyswitch protected. # **Control Decoding** (Circuit Diagram DC400901 Sheet 1; Page 11.4-2) Three PALs: U107, U110 and U111, manipulate the various signals which are used to control instrument operation. Generally, U110 deals mainly with memory selection and calibration processes; the inputs to U111 are decoded to select devices other than memory. U107 operates mainly on handshake signals to and from devices which require longer access times. #### **Buffered Data Bus** (Circuit Diagram DC400901 Sheet 2; Page 11.4-3) The lower data bus DØ-7 is connected to the two-way buffer U201 to provide the Buffered Data Bus BDØ:7. This is used to access several devices: Keyboard, Cal Mode Buffer, Digital ASIC, IEEE 488 Interface Controller, Analog Output D-A Converter and the I/O Port. U201 is enabled by EN\_BUF\_L, and its direction is controlled by signal BR\_HW\_L. # 5.2.7.3 Digital ASIC The Digital ASIC (*U203 on page 11.4-3*) is a 68000 support chip for digital multimeters. It interfaces via 16 read-write registers and an interrupt handler. #### **Functions** (Circuit Diagram DC400901 Sheet 2; Page 11.4-3) - 1. 68000 bus time-out for one or more wait state pairs (DTACK). Bus error generation on invalid address time-out (BERR). - 2. 68000 reset power delay PFAIL to RESET. - 3. Switching counter 1 to 256ms delay gives interrupt. - 4. Tick interrupt 10ms or 100ms period. - 5. Internal counter free-running for internal triggers 0s to 10s: 10-bit with four prescales (10µs; 100µs; 1ms and 10ms). Software triggers are used for delays greater than 10 seconds. - 6. Delay counter one-shot to delay conversion after trigger 0s to 10s: 10-bit with four prescales (10μs; 100μs; 1ms and 10ms). Software delays are used for intervals greater than 10 seconds. - 7. Serial Interface two-way communication between the 68000 and the Analog Sub-System. - 8. Measurement time-out interrupt if the A-D Converter locks up. - 9. Write enable for non-volatile memory; and lockout circuit to detect illegal access. - 10. Trigger conditioning: GET from IEEE 488 interface or front panel SAMPLE key. TRIG from rear panel BNC socket. HOLD from I/O Port. Internal interval counter. 68000 interrupt handler - interrupts from serial interface, triggers and external pins (NMI; GPIA; ERR; FPINT; RTCINT). # 5.2.7.4 Conversion Initiate (CI\_R) #### **Triggers** Firmware determines the way triggers are treated in the digital ASIC trigger conditioning circuit. Triggers may be disabled, cause an interrupt, or produce CI\_R depending on conditions. The maximum rate at which the analog sub-system can respond to CI\_R's is determined by the mode of the A-D convertor and the need to collect measurement information via the serial interface between triggers. Three sources of triggers are: Internal: Interval Counter - Hardware or Software External: TRIG\_F - rear Trigger BNC connector. GET\_R - from the IEEE bus. SAMPLE - from the Front Panel key A timer in the digital ASIC produces CI\_R (20-40 CLK1 periods) from the various triggers. Internal triggers are generated by the Interval Counter in the digital ASIC at a rate controlled over the data bus by the processor. Where the trigger period is less than 10 seconds a programmable free running counter produces 'direct' triggers at a rate set by the processor. For trigger intervals greater than 10 seconds, 'indirect' triggers are produced by software in response to RTX\_R. External triggers are conditioned; the conditioned triggers causing either an 'immediate' or 'delayed' trigger, or an interrupt, depending on the configuration set by the processor. In the case of an interrupt, the trigger is eventually produced from the interval counter via software. e B If the interval between two external triggers is too short, the second is stored and acted upon at the earliest opportunity. If repetitive external triggers occur above the maximum rate allowed by the set configuration, triggering continues at the maximum possible rate and 'Trigger Too Fast' is flagged. The processor signals this to the I/O port via the data bus and U208-6 (page 11.4-3). To summarise trigger forms: - 1. Internal triggers Interval counter: - Hardware: < 10 Seconds Software: > 10 Seconds - 2. External triggers Software - 3. Direct triggers come from hardware. - 4. Indirect triggers come from software. - 5. Delayed triggers pass through the Delay Counter (max 10 Second delay). - 6. Immediate triggers by-pass the Delay Counter. In order to offer external control facilities (other than the IEEE bus), an I/O Port has been fitted in the instrument rear panel. This could be used; for example: in conjunction with the Rear Trigger input in a process control system. The rear Trigger input is a BNC connector on the rear panel. # 5.2.7.5 Display Management (page 11.4-4) Data to be displayed on the front panel is stored in RAM. The processor employs 'Bus Arbitration' so that the Display Management System can gain access to this information. #### Display Data Access When Display Management requires data, it asserts BR\_L (Bus Request). In reply, the processor asserts BG\_L (Bus Grant) to indicate that control of the bus will be released at the end of the current processor cycle. The end of the cycle is signalled to each of the control PALs by AS\_L being cleared, which is decoded with BG\_L by U107 (System Control PAL) as ST\_BG\_L. This signal causes the Display Management system to take control, which it acknowledges by asserting BGACK\_L (Bus Grant Acknowledge). Display Management now has control of the bus. Signal DMA\_L (Direct Memory Access) enables the RAM, and data is extracted using the Address and Data buses. Control of the bus is returned to the processor when BGACK\_L is cleared. #### **Anode Data** DSHFT\_R clocks anode data into the display's 100-bit serial register (page 11.3-1) as seven 16-bit words via DDATA\_H. DLTCH\_H latches this pattern when the next pattern is shifted in. The display is scanned by walking a Logic-1 along the 20-bit grid register, one step for each 7-word set of anode data. The Logic-1 is clocked by DLTCH H. #### DDATA\_H U309 and U310 form a 16-bit serial-in/parallel-out register to provide the serial data stream DDATA\_H. #### **RAM Addressing** U304 is a ÷16 counter whose output DMA\_REQ\_H signals completion of each word to U305 and the Bus Arbitration System. U305 divides by seven and provides a word count for RAM addressing on WRDØ, WRDØ and WRDØ. The output from the ÷20 counter U306/U307 is a character (grid) count used for RAM addressing via octal buffer U303. Tthe divide-by-16 counter U304 is clocked by CLK0.5 through U302-8, U311-4 and U308-4. At the count of 15 the carry out bit U304-15 goes high setting DMA\_REQ\_H at U312-12. on the next edge of CLK0.5, BR\_L is set at U312-8 to request bus control. While BR\_L is set, the CLK0.5 input is disabled by U313/U302 and all counting and shifting is stopped. The processor asserts BG\_L but ST\_BG\_H stays low until AS\_L is cleared. When AS\_L goes high at the end of the processor cycle, ST\_BG\_H goes high and U313-6 is clocked low by CLK8 to assert BGACK L. As well as being the response to BG\_L, BGACK\_L provides an enable for the parallel-in/serial-out Display Data Shift Registers U309/U310. CLK0.5 remains inhibited, now via U313-5, U311-1 to U302-12. U313-5 also sets U313-12 high, and on the next CLK8, DMA\_L is set at U313-8. This clears BR L. DMA\_L enables RAM U112 and U105 via SEL\_RAM\_L from U110-19 (page 11.4-2). DMA\_L also enables the address buffer U303, so the address set by WRDØ:2 and CHRØ:4 is applied to the address bus. The first of the seven anode data words is thus loaded into U309/U310 via the data bus. In reponse to BGACK\_L the processor clears BG\_L, and hence ST\_BG\_H. U313-9 going low removes the inhibit on CLK0.5 at U302-12, causes DMA\_L to be cleared at U313-8, and thus removes the enable on address buffer U303. DSHFT\_R is produced from CLK0.5 via U302-8, U308-4 and U311-10. Sixteen edges of DSHFT\_R load the U309/U310 data word into the display anodes serial register. The series of sixteen CLK0.5 clocks also produces another DMA\_REQ\_Hat U304-15, so the DMA cycle is repeated. U305 counts DMA\_REQ\_H to generate the seven-word count, U305-15 incrementing the character counter U306/U307 after each seven words, latching the pattern on the Front Panel. This causes the Logic-1 in the display grid register to be shifted to the next grid by DLTCH\_H via U308-12. WRD1, WRD2 and CLK0.5 are gated by U207-11 and U312-5 to produce DBLK\_H which blanks the display while the last two of each group of seven words are being loaded. DG20\_H is produced at U308-8 from U307-15 after each set of 20 characters (140 words) to load a Logic-1 into the display grid register. After a system reset, the display is blanked for approx. 500ms by R306/C302 to allow the RAM to be re-initialized by the processor; and to allow the display registers to synchronize with the Display Management address counters. Display scan is inhibited by the action of DBLK\_H in the display circuit. The facility for display blanking by DOFF\_H is not used in the 1281. DOFF\_H is cleared by the processor via the data bus and U208-19 (page 11.4-3) at power up reset. # 5.2.7.6 Keyboard Interrupt (pages 11.4-2 to 11.4-4) KB5 from the keyboard encoder sets the Key Press Latch by clocking U302-3. This signals FP\_INT\_L to the digital ASIC interrupt Handler at U203-39 (page 11.4-3). The digital ASIC sets the interrupt level '2' on IPL1 and IPL0/2 (U203-40/41) to indicate an interrupt to the processor. The processor compares the interrupt level with its internal mask. Assuming that the interrupt is of higher priority, the processor completes the current instruction then sets its mask at level 2. The processor then sets the interrupt level 2 on A1-A3, asserts AS\_L and sets R\_H/W\_L high. At the same time FC0\_H, FC1\_H and FC2\_H are set, asserting IACK\_L at U107-19 (page 11,4-2). R\_H/W\_L and AS\_L with IACK\_L at U203-4/57/58 cause the digital ASIC to output the relevant exception number on BDØ:7. Access time-out is by U107 setting UIDTACK\_L, which drives the processor via U110-16. The processor is now in an exception cycle. From ROM it fetches the exception vector indicated by the digital ASIC. The two vector words hold the first of a series of addresses which contain the instructions to read the front panel keys. (Note: should an interrupt of higher level occur (such as ERR\_L from in-guard), the processor will terminate the read from the front panel.) The processor places the 'Read Front Panel' address on the address bus. This is decoded to assert RDFP\_L by the address decoder U111 at pin 19. RDFP\_L carries out the following actions: - 1. resets the Key Press Latch by U302-1; - 2. enables the Keyboard Buffer U301; - 3. causes DTACK\_L to be asserted after 500ns via the digital ASIC access timeout circuit. The Keyboard Buffer places the encoded key number at KBØ:5 onto the buffered data bus BDØ:7. The two-way buffer U201 (page 11.4-3) has been enabled by AS\_L (IACK.AS\_L) and its direction has been set by R\_H/W\_L. The keyboard code is thus passed via DØ:7 to the processor which takes appropriate action determined by the particular key which was pressed. #### 5.2.7.7 I/O Port Sk8 The I/O Port is a 'D' connector allowing the following TTL compatible inputs and outputs. ## Inputs: #### HOLD\_L Input to the digital ASIC which may be used to disable triggering. #### TRACK\_H; SAVE\_F Not used - Track and Hold options are not fitted in the 1281. #### REAR TRIG Trigger input via SK9 to the digital ASIC trigger conditioning circuit. # **Outputs:** ## DATA VALID\_L Indicates that outputs are valid. ## TRIG TOO FAST Indicates missed triggers. # HIGH LIMIT\_L Asserted when the applied input signal is more positive than a limit preset via the instrument keyboard. ## LOW LIMIT\_L Asserted when the applied input signal is more negative than a limit pre-set via the instrument keyboard. **Note:** The above outputs are driven by the processor via latch U208 on the buffered data bus. U208 is enabled by WR\_LTCH\_L from address decoding (U111-16, *page 11.4-2*). When limits are set they are stored in the user area of NV RAM. ## NOT SAMPL\_L Asserted between measurements to indicate that the input signal may be changed. This output is an inversion of the Digital ASIC output SMPL\_L derived in the trigger conditioning circuit. #### ANALOG 0V Separate ground to minimise processor noise on the Analog output. #### ANALOG O/P DC level via the D-A converter. The output is bipolar with 2V representing full scale input on any range. # 5.2.7.8 Analog Output Analog output voltage is derived from measurement data stored in RAM (corrected by calibration constants). The processor writes data to the D-A convertor U205 on BDØ:7 and D8:11. Data is latched into the DAC by SEL\_WORD\_L (UDS\_L and LDS\_L combined at U111-15 page 11.4-2). U205 is selected by WR\_DAC\_L from address decoding U111-13. When all the data is Logic-1, the Analog Output is -2.45V. All data at Logic-Ø produces +2.45V. An output of 0V is theoretically produced for inputs between hex 7FF and hex 8ØØ. In practice the output, although linear, is initially offset and requires calibration. D201 provides a +2.45V reference to the 'R/2R' DAC. The DAC's Analog ground is connected to current mirror U206-1. U206-7 is a conventional inverting amplifier which sums the DAC output with the mirrored analog ground current from the DAC. This provides bipolar operation and output drive. R205 protects U206-7 output, C203 and C205 prevent oscillation and D202-D205 are clamps. The Analog output is filtered by R205 and C204. #### 5.2.7.9 IEEE Interface The IEEE controller (GPIA) U401 is connected to the IEEE bus via the buffers U402 and U403. Data is passed to and from the GPIA on the buffered data bus. Note that BDØ connects to D7, BD1 to D6 etc. The GPIA is addressed via A1-A3, and runs on CLK4 to maintain bus handshake speed. It is enabled by SEL GPIA\_L, derived from U111-18 (page 11.4-2) and read/write is selected by BR\_HW\_L from U107-17. LWR\_L from U109-3 must also be asserted for the processor to be able to write to the GPIA. When a valid Group Execute Trigger is received over the IEEE bus, it is transferred via the buffered data bus to U208 for decoding, then passes as GET\_R from U208-16 to the digital ASIC. If triggers are allowed, CI\_R is produced to initiate a measurement. Interrupts generated at U401-9 (GPIA\_INT\_L) are fed to the interrupt handler in the digital ASIC. The buffers U402 and U403 are selected to Send or Receive by the GPIA U401-21. Additionally, U403 may be switched to controller mode by U401-30 (If for example there was a requirement for the 1281 to control its own 'CAL'). Special firmware would be required to employ this facility. The GPIA has some internal de-bounce capability but extra provision has been made by fitting filter R401/C401 and R402/C402 to avoid problems which could arise due to external noise on IFC and REN. # 5.2.8 Serial Data interface ## 5.2.8.1 Functional Block Diagram Fig. 5.2.8.1 (opposite) shows the elements and routing of the Serial Data Interface. #### 5.2.8.2 Need for a Serial Interface If the analog control signals and the necessary analog status signals were to be passed through the guard plane, each through its own dedicated isolator, then more than 50 isolators would be required. This would impose space penalties and introduce intolerable capacitive coupling and leakage between in-guard and out-guard circuits. By passing a stream of data around an out-guard/in-guard serial loop, which needs only two isolators, the total number of active devices is reduced to seven (the TRK\_H signal is not used in the 1281). This includes provision for two asynchronous signals (not directly connected with interface transfers) and three interface control signals. #### 5.2.8.3 Interface Control #### Processor Control of the Interface The Interface Controller is incorporated into the Digital ASIC. The 68000 processor controls the interface using A1:4 and DBØ:7, together with address decodes SEL\_ULA\_L, LDS\_L, R\_HW\_L and AS\_L. Signal UDTACK\_L handshakes acknowledgement of sufficient access time (250ns). There are three main states of the interface: **WAIT:** The interface is quiescent, awaiting instructions from the processor. WRITE: The processor commands a change of instrument analog state via the interface. **READ:** Status data is passed back to the processor from the analog circuits. The processor instructs the Interface Controller to change the state of the interface by writing to the ASIC's command register over the buffered data bus BDØ:7. The controller can find out the interface state and any status information by reading the ASIC's status register via BDØ:7. The Interface Controller can instruct the ASIC to request a processor interrupt via the IPLØ:2 lines. When requested the processor responds by returning the same priority level via the FCØ:2 lines. When the processor reaches the interface interrupt in the interrupt queue, it services it by setting IACK\_L low at the ASIC. This acts as a chip-select, and the interrupt data is read back to the processor via the buffered data bus. As a result the processor carries out the next step in the write or read cycle. #### Power-up and Reset The ASIC is placed into Reset condition at power-up. When it is released from reset, at this or any other time, the Interface Controller places the interface into the WAIT state. This causes all the in-guard Tx/Rx devices to take their serial registers off-line, and they become 'transparent' to any signals on the serial path, which effectively bypasses them. From this point the processor controls the state of the interface, and via the interface, the instrument analog state. # **Changing the Instrument Analog State** To do this the processor commands the interface state to WRITE and a write cycle begins. Control data to be transmitted via the interface is passed over the buffered data bus in 'Long Words' (32 bits). This data is transferred over the interface in a series of 64-bit groups, each comprising four bytes of true data interlaced with four bytes of complement data. The ASIC implements the wordgroup conversion. The in-guard Tx/Rx devices are set to receive. #### **Obtaining Measurement and Status Data** To do this the processor commands the interface state to READ and a read cycle begins. The in-guard Tx/Rx devices are set to transmit. The 8-bit registers become transparent on the signal path. Measurement or status data to be returned from the A-D ULA and Frequency ULA are loaded into their serial registers, and are transmitted through guard to the digital ASIC. ## 5.2.8.4 Data and Control Lines ### DOUT H and DRET H The Digital ASIC is buffered from the opto isolators on the DC PCB by U403 (page 11.4-5). From Fig.5.2.8.1 it can be seen that the data line loops around all the Tx/Rx devices in the analog subsystem, entering via the opto-isolator M703 on the DC PCB as DOUT\_H, and returning via M704 as DRET\_H. #### SCLK F (Transfer Clock) Clock pulses on the SCLK\_F line are fed to all Tx/Rx devices through M207 on the DC PCB. Their purpose is to clock the data round the serial loop. # EN\_H (Transfer Enable) This signal goes high to enable data transfers around the loop. The condition of the serial data line during the first four SCLK\_F pulses when EN\_H is high determines the 'Receive/Send' state of the in-guard Tx/Rx devices. When EN\_H is low, the Tx/Rx devices are placed into 'WAIT' state. #### TRK H This signal is not used. #### ERR L (Transfer Error Warning) During a write cycle the Tx/Rx devices compare the transmitted bytes of true data against their transmitted complements. If there is any disparity, ERR\_L is asserted. The ERR\_L line remains high when there are no errors. The ERR\_L line can also be pulled low if a Tx/Rx device does not recognize the bit-pattern of its received true data as a valid command, or if its internal processing is defective. ### CI R (Conversion Initiate) This signal is used to initiate an A-D conversion. Once the correct trigger is present, and the analog sub-system has been configured by data transfers, and any digital delays have expired, the CI\_R line is set high. The rising edge of CI\_R into M509 on the DC PCB initiates a reading conversion. At the same time, for AC measurements, the frequency counter M412 on the AC PCB is activated. #### RTX R (Conversion and Count Complete) The A-D ULA (M509 on the DC PCB) has an open-collector output RTX1, which is pulled low during a conversion as a result of CI\_R. Once the conversion is completed the A-D ULA turns its open-collector device off. Similarly the frequency counter (M412 on the AC PCB) has an open-collector output RTX2, which CI\_R causes to be pulled to low. Once the count is complete RTX2 is released from low. When both RTX1 and RTX2 have been released, pull-up resistors on the DC PCB set the RTX line to high. This is passed through isolator M704 to the Digital ASIC, where the rising edge signifies that the two operations are finished. # 5.2.8.5 WRITE Cycle There are four phases in the cycle, controlled by EN\_H, SCLK\_F and the data line DOUT\_H itself. They are: #### Wait: EN\_H is low, no clock pulses are present. All in-guard Tx/Rx devices ignore any data on the data line, which bypasses their serial registers. # Instruct All Tx/Rx Devices to Receive: EN\_H goes high to enable the data transfer, and DOUT\_H is set low. Four SCLK\_F pulses are transmitted, while DOUT\_H is held low, to announce that the processor is about to command a change of instrument analog state. The in-guard Tx/Rx devices activate to receive data from DOUT\_H, placing their serial registers into the data path. During the time taken to place the registers on line at the start of EN\_H true, the inputs and outputs of the Tx/Rx devices are still shorted, so the whole of the signal path has time to fall to low. ## Transfer Data: EN\_H remains high. The 64 serial data bits of the first group are injected into the data path via DOUT\_H, a bit at a time, while 64 SCLK\_F pulses clock the bits through the serial registers of the Tx/Rx devices. This transmission of 64-bit groups continues until the data is located in the correct Tx/Rx serial registers for the instrument's option fit. Each 8-bit device in fact introduces a 16-bit serial register into the data path, half for a true data byte, the other half for its following complement data byte. This allows error checking in the Process Data phase. #### **Process Data:** EN\_H goes low to disable the data transfer. The data in the Tx/Rx serial data registers is held, as the registers are taken out of the data path. Sixteen SCLK\_F pulses are transmitted which cause the Tx/Rx devices to check the true data against its complement. If there is no corruption, the true control data is latched into the device's DIO lines (a similar checking facility is incorporated into the A-D and frequency counter ULAs, but correct true data is latched internally). The data is used to reconfigure the analog circuits controlled by the device. If a device discovers an error, it pulls its ERR\_L line low, and latches its DIO lines at high impedance. In this condition, a set of pull up/down resistors dominates the device's DIO output lines, setting a safe analog state. ERR\_L is an open-collector output *and* input. When it is pulled low for an error by one device, the change is detected by all the other devices in the loop, which also set their DIO lines to high impedance (but without latching). This causes the whole analog sub-system to revert to a safe condition. There is a further benefit in latching only the device which detected the error. When fault-finding, if the Tx/Rx chips are removed one at a time, then the ERR\_L line will remain low until the one which reported the error is removed. This locates the part of the data stream which is corrupted, as a lead-in to subsequent diagnosis. ## 5.2.8.6 READ Cycle There are four phases in the read cycle, also controlled by EN\_H, SCLK\_F and the data line DOUT\_H. They are: #### Wait: EN\_H is low, no clock pulses are present. All in-guard Tx/Rx devices ignore any data on the data line, which bypasses their serial registers. # Instruct All Tx/Rx Devices into their Preset Send Modes: EN\_H goes high to enable the data transfer. Four SCLK\_F pulses are transmitted, while DOUT\_H is held high, to announce that the processor is about to command the 'Send' devices to transmit data. The 8-bit in-guard Tx/Rx devices are preset in hardware as 'receiver only' and so assume the 'Wait' condition, in which they are transparent to signals on the serial data path. The A-D and Frequency ULAs activate to transmit data via DRET\_H, placing their serial registers into the data path. During the time taken to place the registers on line at the start of EN\_H true, the inputs and outputs of the Tx/Rx devices are still shorted, so the whole of the signal path has time to rise to high. ## Transfer Data: EN\_H remains high. 64 preset serial data bits of the first group are injected into the data path via DOUT\_H, a bit at a time, while 64 SCLK\_F pulses clock the bits through the A-D and Frequency ULA serial registers. This transmission of 64-bit groups continues until the preset data is returned to the digital ASIC serial registers. The two ULAs introduce both true and complement data bytes, to permit error checking by the digital ASIC during the Process Data phase. #### Process Data: EN\_H goes low to disable the data transfer. The data in the Tx/Rx serial data registers is held, as the registers are taken out of the data path. Sixteen SCLK\_F pulses are transmitted which cause the two ULAs to check the preset data against its complement. During this time the ASIC checks the returned true and complement data from the ULAs. If there is no corruption, the returned true data is transferred to the processor. #### 5.2.8.7 Option Test N.B. It is assumed that all instruments will contain an A-D converter, so the A-D ULA is excluded from the Option Test procedure. #### Introduction This is one of the first transfer commands from the processor to the Interface Controller following a Reset (including the power-up reset). Its is included so that the processor can discover which options are fitted in the instrument, to enable the correct firmware options to be selected: e.g. how many 64-bit groups are required for a complete transfer during the write cycle (the read cycle is fixed at one group only). The facility caters for recognition of other future options which may be fitted in place of the standard options. Option Test also serves to set the analog sub-system to a known safe state before it is configured into the default mode. The 8-bit Tx/Rx devices are preset in hardware to act only as receivers, but they are designed so that this preset can be overridden when commanded via the serial interface. Once overridden, they can revert to 'receiver only' only when the override is cancelled by a write cycle, or after a reset. The Option Test command generates three transfers, overriding the hardware preset. The first two are abbreviated Read cycles, which command all Tx/Rx devices (except the A-D ULA) to convert into 'Senders' and set their DIO lines at high impedance. The analog sub-system is thus configured safe by the dominant pull-up/down resistors on the DIO lines. This imposes a unique bit-pattern for each Tx/Rx, which is detected by the device as an input from the DIO lines, and is loaded (with its complement data) into the device's serial register in the serial data path. The third transfer is a standard Read cycle, which passes the data from the Tx/Rx devices to the digital ASIC. After checking for errors, the ASIC releases the data for the processor to read. The processor interprets the unique bit-patterns as 'options fitted' information. #### Wait: EN\_H is low, no clock pulses are present. All in-guard Tx/Rx devices ignore any data on the data line, which bypasses their serial registers. ## Instruct Tx/Rx Devices to Select Option Test Mode: EN\_H goes high. Four SCLK\_F pulses are transmitted, while DOUT\_His held high. EN\_H immediately returns to low, and 16 SCLK\_F pulses are transmitted to clock the 'Process Data' sequence in the Tx/Rx devices. Each in-guard Tx/Rx device (except the A-D ULA) interprets this sequence as the overriding 'All Send Option Data' command. It reconfigures itself as a sender, setting its DIO lines at high impedance and loading the DIO bit-pattern into its serial register. During the time taken to place the registers on line at the start of EN\_H true, the inputs and outputs of the Tx/Rx devices are still shorted, so the whole of the signal path has time to rise to high. To ensure that the Tx/Rx devices have enough time to reconfigure themselves, the instruction is repeated a second time. #### Instruct Tx/Rx Devices to Send Data: The processor commands a Read cycle to obtain the option state. Because the option fit is not known at this point, it is necessary for this cycle to return $4 \times 64$ -bit groups (required for the possibility that the instrument is fully-loaded). #### 5.2.8.8 Power On and Reset #### Interface Flushing At power on, the digital master reset MR\_L is asserted, to be turned off after 200ms-300ms. The Tx/Rx device serial data registers could power up any random condition, so they must be initialized. The first action by the processor on the interface is to flush the in-guard data path by 16 SCLK\_F pulses, while DOUT\_H and EN\_H are held low. The Tx/Rx devices' are thus in the safe 'Wait' state, their DIO lines being at high impedance due to EN\_H being low, serial data registers off-line, and serial data inputs and outputs shorted together. The 16 SCLK\_F pulses are therefore sufficient to set the whole of the serial data path to low. #### Interface Reset Two Write cycles are processed with DOUT\_H remaining low. This time the Tx/Rx registers are put into the serial data path by EN\_H high, and are all reset to zero by the low on the data path. This is a safe state, and after the reset the Tx/Rx devices return to 'Wait' state. #### **Option Test** Two option test commands are transmitted to ensure that all Tx/Rx devices are forced to become senders, then a Read cycle is processed, using four 64-bit groups so that a complete test of all options will be completed if the instrument is fully loaded. If an interface error occurs at this time the processor will abort the option test, deal with the error, and then re-start the test. The Tx/Rx devices remain in their 'Wait' condition, imposing the Power On Reset (default) condition on the analog sub-system, until a Write cycle is processed to change their serial register contents. The processor now knows the instrument's option fit, and so tailors subsequent interface operations to accommodate the correct number and positions of the serial registers in the serial data path. #### A-D Action After the digital master reset has been removed, CI\_R remains inactive until the option test has been successfully completed, to allow the A-D ULA to stabilize the A-D analog circuit. With 0V at its signal input, the A-D powers up with its integrator output positive, and the A-D ULA imposes +REF/256 to return this very slowly towards zero. Meanwhile, during the master reset period, the A-D and Frequency ULAs had released their open-circuit RTX\_R outputs, which remain pulled to high. After the Option Test has been completed successfully, a conversion is initiated by CI\_R being set high for some 30ms. The rising edge of CI\_R has the effect of imposing +REF at the A-D input, which rapidly drives the A-D output to zero, and the A-D starts a conversion with zero input. At the same time the RTX\_R line is forced low. The processor waits for the RTX\_R line to rise to high again to show that this first conversion has been completed. If this does not happen within 2.25 seconds, the processor assumes that an A-D fault is present. A successful first conversion sets RTX\_R back to high, and the interface power-on sequence is complete. Unless the instrument is commanded otherwise, the power-on default state persists, and the A-D is internally triggered continuously to produce 6.5-digit normal conversions (16 power line cycles). #### DATRON INSTRUMENTS FAILURE REPORT. Please complete all sections and return with your instrument. # CALIBRATION and SERVICING HANDBOOK for ## THE DATRON 1281 ## SELFCAL DIGITAL MULTIMETER ## Volume 2 Reference For any assistance contact your nearest Datron Sales and Service center. Addresses can be found at the back of this handbook. 850092 Issue 2 (JANUARY 1989) Due to our policy of continuously updating our products, this handbook may contain minor differences in specification, components and circuit design to the instrument actually supplied. Amendment sheets precisely matched to your serial number are available on request. ### **SECTION 11 1281 Servicing Diagrams and Parts Lists** #### Contents N.B. The parts list for an assembly appears immediately after its assembly's diagrams. | Mechanical Details | |----------------------------------------------------| | Finished Assembly | | Finished Assembly and Interconnection Diagram | | Instrument Assembly | | Chassis Assembly | | Bezel and Terminal Mechanical Assemblies | | Top and Bottom Covers | | Mains Transformer and Low Voltage Transformer | | Terminal Assembly | | | | D.C. Assembly | | Input Signal Switching11.2-1 | | DC Switching, Protection and Ranging | | DC Preamplifier | | References and Signal Switching | | Analog to Digital Converter | | Selfcal Multiplier | | Opto Isolators and Relay Update11.2-7 | | Control and Relay Drive | | In - Guard Power Supplies | | Read Rate and Clock boards | | | | Display Assembly | | Display Driver | | | | Digital Assembly | | Expanded Layout Drawing | | Processor, Address Decoding and Memory | | ASIC and I/O11.4-3 | | Keyboard/Display Interface and Power Fail Detector | | IEEE Interface and Serial Interface | | Power Supplies | | | | A.C. Assembly | | Preamplifier | | Precision Rectifier and Logarithmic Amplifier | | R.M.S Converter | | Control Logic | | | | Ohms Assembly | | Low Follower | | Constant Current Sink | | Control Logic | | | | Current Assembly | | Current to Voltage Converter | | Control Logic | | COMMON LOGIC | | Vouhoard Switch Accombly | | Keyboard Switch Assembly | | Front Panel Switch Matrix | # CALIBRATION and SERVICING HANDBOOK for ## THE DATRON 1281 ## SELFCAL DIGITAL MULTIMETER ## Volume 2 Reference For any assistance contact your nearest Datron Sales and Service center. Addresses can be found at the back of this handbook. 850092 Issue 2 (JANUARY 1989) Due to our policy of continuously updating our products, this handbook may contain minor differences in specification, components and circuit design to the instrument actually supplied. Amendment sheets precisely matched to your serial number are available on request. ### Datron 1281 (1989) – Service Manual / Drawings 480738 Sheet 1 von 1 Placeplan | Drawing-N | umber | | DOC-Page | File-Page | | | |--------------------------|-----------------|----------------------------------------|----------|-----------|--|--| | Mechanical Assemblies | | | | | | | | <b>48</b> 0734 | Sheet 1 of 3 | Finished Assembly | | 4 | | | | <b>48</b> 0734 | Sheet 2 of 3 | n . | 11.1-1 | 5 | | | | <b>48</b> 0734 | Sheet 3 of 3 | п | | 6 | | | | <b>48</b> 0736 | Sheet 1 of 2 | Instrument Assembly | | 7 | | | | <b>48</b> 0736 | Sheet 2 of 2 | n . | 11.1-3 | 8 | | | | <b>48</b> 0737 | Sheet 1 of 4 | Chassis Assembly | | 9 | | | | <b>48</b> 0737 | Sheet 2 of 4 | n . | 11.1-4 | 10 | | | | <b>48</b> 0737 | Sheet 3 of 4 | n . | | 11 | | | | <b>48</b> 0737 | Sheet 4 of 4 | n . | 11.1-5 | 12 | | | | <b>48</b> 0745 | Sheet 1 | Bezel Assembly | | 13 | | | | <b>48</b> 0746 | Sheet 1 | Terminal Mechanical Assembly | 11.1-6 | 14 | | | | <b>48</b> 0747 | Sheet 1 | Top Cover Assembly | | 15 | | | | <b>48</b> 0748 | Sheet 1 | Bottom Cover Assembly | 11.1-7 | 16 | | | | <b>48</b> 0749 | Sheet 1 | Mains Transformer Assembly | | 17 | | | | <b>48</b> 0750 | Sheet 1 | Low Voltage Transformer Assembly | 11.1-8 | 18 | | | | | | - | | | | | | Intercon | nection Diagram | 1 | | | | | | <b>43</b> 0734 | Sheet 1 | Interconnection Diagram | 11.1-2 | 19 | | | | | | | | | | | | | Assembly | | | | | | | <b>48</b> 0770 | Sheet 1 | Terminal Assembly | | 20 | | | | <b>43</b> 0770 | Sheet 1 | Terminal Assembly Schematics | 11.1-9 | 21 | | | | D C 7 | | | | | | | | D.C. Ass | | | | 20 | | | | <b>48</b> 0738 | Sheet 1 | D.C. Assembly Placeplan | | 22 | | | | D.C. Assembly Schematics | | | | | | | | <b>43</b> 0738 | Sheet 1 of 9 | Input Signal Switching | 11.2-1 | 23 | | | | 430738 | Sheet 2 of 9 | D.C. Switching, Protection and Ranging | | 24 | | | | 430738 | Sheet 3 of 9 | D.C. Preamplifier | 11.2-3 | 25 | | | | 430738 | Sheet 4 of 9 | References and Signal Switching | 11.2-4 | 26 | | | | 430738 | Sheet 5 of 9 | Analog to Digital Converter | 11.2-5 | 27 | | | | 430738 | Sheet 6 of 9 | Selfcal Multiplier | 11.2-6 | 28 | | | | <b>43</b> 0738 | Sheet 7 of 9 | Opto Isolators and Relay Update | 11.2-7 | 29 | | | | <b>43</b> 0738 | Sheet 8 of 9 | Control and Relay Drive | 11.2-8 | 30 | | | | <b>43</b> 0738 | Sheet 9 of 9 | In-Guard Power Supplies | 11.2-9 | 31 | | | | <b>48</b> 0797 | Sheet 1 | D.C. Assembly: Read Rate Board | | 32 | | | | <b>48</b> 0815 | Sheet 1 | D.C. Assembly: Clock Board | 11.2-10 | 33 | | | | D-1 1 | 7 | | | | | | | | Assembly | Disclare Assembles Dl 3 | | 2.4 | | | | <b>48</b> 0739 | Sheet 1 | Display Assembly Placeplan | | 34 | | | | | Assembly Schema | | 11 2 1 | 25 | | | | <b>43</b> 0739 | Sheet 1 | Display Driver | 11.3-1 | 35 | | | | Digital Assembly | | | | | | | |--------------------------------|----------------------------------------|--------|-----|--|--|--| | DA <b>48</b> 0901 Sheet 1 of 3 | Digital Assembly Placeplan(complete) | | 36 | | | | | | Digital Assembly Placeplan(left zoom) | | 37 | | | | | DA <b>48</b> 0901 Sheet 3 of 3 | Digital Assembly Placeplan(right zoom) | 11.4-1 | 38 | | | | | Digital Assembly Schematics | | | | | | | | DC400901 Sheet 1 of 5 | Processor, Memory, Address Decoding | 11.4-2 | 39 | | | | | DC400901 Sheet 2 of 5 | ASIC and I/O | 11.4-3 | 40 | | | | | DC400901 Sheet 3 of 5 | Keyboard/Display, Power Fail Detector | 11.4-4 | 41 | | | | | DC400901 Sheet 4 of 5 | IEEE Interface and Serial Interface | 11.4-5 | 42 | | | | | DC400901 Sheet 5 of 5 | Power Supplies | 11.4-6 | 43 | | | | | A C Accomble | | | | | | | | A.C. Assembly 480741 Sheet 1 | 7 C. Accombles Discouries | | 44 | | | | | | A.C. Assembly Placeplan | | 44 | | | | | A.C. Assembly Schematics | = | 11 | 4 = | | | | | | Preamplifier | 11.5-1 | 45 | | | | | | Precision Rectifier & Log. Amplifier | 11.5-2 | 46 | | | | | | RMS Converter | 11.5-3 | 47 | | | | | <b>43</b> 0741 Sheet 4 of 4 | Control Logic | 11.5-4 | 48 | | | | | OHMS Assembly | | | | | | | | | OHMS Assembly Placeplan | | 49 | | | | | OHMS Assembly Schematics | | | | | | | | 430742 Sheet 1 of 3 | Low Follower | 11.6-1 | 50 | | | | | <b>43</b> 0742 Sheet 2 of 3 | Constant Current Sink | 11.6-2 | 51 | | | | | <b>43</b> 0742 Sheet 3 of 3 | Control Logic | 11.6-3 | 52 | | | | | | | | | | | | | CURRENT Assembly | | | | | | | | <b>48</b> 0743 Sheet 1 | Current Assembly Placeplan | | 53 | | | | | CURRENT Assembly Schematics | | | | | | | | <b>43</b> 0743 Sheet 1 of 2 | Current to Voltage Converter | 11.7-1 | 54 | | | | | <b>43</b> 0743 Sheet 2 of 2 | Control Logic | 11.7-2 | 55 | | | | | CHITTOIL Agrambles | | | | | | | | SWITCH Assembly | | | | | | | | | Switch Assembly Placeplan | | 56 | | | | | SWITCH Assembly Schematics | | | | | | | | <b>43</b> 0744 Sheet 1 | Front Panel Switch Matrix | 11.8-1 | 57 | | | | © Datron Instruments 1989 FINISHED ASSEMBLY Drawing No. 480734 Sheet 1 AC OPTION FITTING: REMOVE GU. SCREEN. FIT BOARD TO CHASSIS WITH 613029 + 61106. FIT 4 OFF 612046 THEN REFIT GU SCREEN WITH 611007 - 8 OFF. FINISHED ASSEMBLY Drawing No. 480734 Sheet 2 **INSTRUMENT ASSEMBLY** Drawing No. 480736 Sueer CHASSIS ASSEMBLY Drawing No. 480737 CHASSIS ASSEMBLY Drawing No. 480737 Sheet 2 © Datron Instruments 1989 1281 1281 Catron Wayarak © Datron Instruments 1989 CHASSIS ASSEMBLY Drawing No. 480737 Sheet 3 CHASSIS ASSEMBLY Drawing No. 480737 Sheet 4 W. 23 ia 25 E B ¥ 5 8. 3 **BOTTOM COVER ASSEMBLY** Drawing No. 480748 Sheet 1 CRIMP TOOL FOR 605077 MOLEX HTR 2445A 6. B ) A le al LOW VOLTAGE TRANSFORMER ASSEMBLY Drawing No. 480750 Sheet 1 INTERCONNECTION DIAGRAM Sheet 1 Drawing No. 430734 1281 CELCON WAVE DES Input Signal Switching Drawing No. 430738 Sheet 1 of 9 1281 D.C. ASSEMBLY D.C. Preamplifier Drawing No. 430738 Sheet 3 of 9 Analog to Digital Converter Drawing No. 430738 Sheet 5 of 9 Selfcal Multiplier Drawing No. 430738 Sheet 6 of 9 Opto Isolators and Relay Update Drawing No. 430738 Sheet 7 of 9 In - Guard Power Supplies Drawing No. 430738 Sheet 9 of 9 1281 CAVETEK © Datron Instruments 1989 © Datron Instruments 1989 1281 Sheet 1 © Datron Instruments 1989 Drawing No. DA400901 Sheet 1of 3 N.B. expanded versions are on Sheets 2 and 3 (page 11.4-1) 1281 COLUMN WAVETEK © Datron Instruments 1989 DIGITAL ASSEMBLY (left-hand - expanded) Drawing No. DA400901 Sheet 2 of 3 DIGITAL ASSEMBLY (right-hand - expanded) Sheet 3 of 3 Drawing No. DA400901 © Datron Instruments 1989 1281 COLUMN AVETEK © Datron Instruments 1989 OHMS ASSEMBLY Drawing No. 480742 heet 1 OHMS ASSEMBLY Constant Current Sink Drawing No. 430742 Sheet 2 of 3 OHMS ASSEMBLY Control Logic Drawing No. 430742 Sheet 3 of 3 1281 C Datron Instruments 1989 11 6-3 1281 COLUMN 1281 © Datron Instruments 1989 **CURRENT ASSEMBLY** Drawing No. 480743 heet 1 1281 MAVETEK FRONT PANEL SWITCH LAYOUT. PL22-1 O SPARE PL 22-8 O SPARE PL 23-1 O SPARE PL 23-8 O SPARE | | | | ., | |--------|--------------------------------------|-------------|---------| | KEY Nº | <b>₹</b><br><b>₹</b> 84- <b>₹</b> 8¢ | KEY Nº | KB4-KBØ | | 1 | IC | 17 | ø2 | | 2 | ØØ | | | | 3 | 14 | 19 | Ø١ | | 4 | ø4 | 20 | ID | | 5 | Øс | 21 | Øэ | | 6 | ΙØ | 22 | 15 | | 7 | 18 | 23 | ø5 | | 8 | ØЗ | 24 | ØD | | 9 | IF | 25 | 11 | | 10 | øв | 26 | 19 | | 11 | 17 | 27 | ØΑ | | 12 | ø7 | <del></del> | | | 13 | ØF | | | | 14 | 13 | , | | | 15 | 18 | | | | 16 | 12 | | | | | | | | \* FOR KBØ-KB5 REFER TO 400739 KB5 IS A LOGIC 'I' WHILE A VALID KEY IS HELD. THE KEY ENCODER OUTPUT ALWAYS INDICATES THE LAST VALID KEY ON KB4-KBØ. SWITCH ASSEMBLY Front Panel Switch Matrix Drawing No. 430744 Sheet 1 of 1 datror Wavetek © Datron Instruments 1989 11.8-1 | | | | | | | | | | | | | | | | | | | | , | | | | | | | | | | | | | | | | | | | | | | <b>.</b> . | |------------------|------------|------------------|----------|-----|---------------------------|--------------------|------|----------|--------|------------|-------------|-----|--------|--------|-------------------|------|------|---------|-----|----------|----------|----------|-----|--------|------|----------|-----|----|-----------|-----|-------|-----------|---------|----|--------------------|---------|---------|-------------|----------------|--------------|------------| | UPA VING No. | | CHF. D | R | Q | 1 | 3 2793 2. MAR.88 # | N. | 1 | × ( | A/S | 8 | ¥ | 4 | | | | | | _ _ | T | T | | | | | Ī | | | | | | | | | | | | | | | - | | 400 | 134 | | 15.1.88. | 888 | 75 FEB.88./ | 8 8 | 8 | 4188 | 88 | <b>8</b> 8 | 88 | 188 | 88, | - | | | T | - - | - | - | - - | | | - | 1 | i | | | - | 1- | | | | | | 7 | - | - | - | П | - | | 10 m s 2 / A | | DATE | 5.1 | 프 | 35 | 29 € | 9M/ | 24 M | 3 | 2 2 | \$ | 320 | ΙΨΩ | | | | 1 | | - | | | | | | | | | | | | | | | | | | | | | ! | | | DI WA | V 1 | | | 11 | 53 | 20 6 | S rv | 8 | 4 | 30 | 22 | 86 | : 73 | | _ | -1 | _ | -1- | - - | - | | | | | - | - | | | | | | 7 | | - | | | | - | | | - | | | | ECO | 2674 | 27 | .2 2783 | 22.5 | 82 | 28 | 62 | 2 8 | 365 | 296 | 295 | | | ĺ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | REVISION | Q | = | 2 | را<br>در | 4 | 4 | 4 | rù r | 1 | ∞ | શ | | | | | - | | - | | | | | | | | | | | | | | | | | - | | | | | | | DRAWING | SHEEF | 1 | | | -1- | L | 1-1 | | _ - | 1= | | _ | Ш | | | | | | | | <u></u> | | | | <u> </u> | Ш | | L | | | L | لـــــا | | Ш | | | | <u></u> | | $\dashv$ | | DESCRIPTION | NUMBER | NUMBER | | | | | | | - | | 1 | | | 155 | UE . | . RE | VISI | <br>0 H | | _ | т- | | 1-1 | | | 1 | г т | | | _ | _ | ÷ | | | | | | _ | Τ- | | $\dashv$ | | COMP.<br>LAYOUT. | 48073 | 4 1 | 0.1 | | | _ - | _ | | - | | E | | | _ | | | _ | _ | _ - | _ | _ | _ | | _ | _ _ | _ | _ | | _ | _ _ | _ | _ | | | | _ | _ _ | - - | _ | | _ | | COMP.<br>LAYOUT. | 48073 | 4 2 | | | | | | | | - | <u>:</u> | _ | 3 | | | _ | | _ _ | _ | _ | _ | | | | | L | | _ | | _ | _ | _ | | _ | | | _ | | _ | | | | COMP.<br>LAYOUT. | 48073 | 4 3 | 0 | | | | | | | | | | _ | | | | | | | | | L | | | | | | | | | | | | | | | | | | | | | COMP<br>LAYOUT | 480734 | 4 4 | | | | | 0: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SCHEMATIC | 430734 | f 1 | | | | | | | | | | = | ٦. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | L.P. | 400734 | 1 ALL | - | _ | | | 4 | | - | 5 | ) <u> -</u> | - | 8. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | - | - | | 1 | T | П | 1 | | T | | | | | | 7 | - - | 1 | | | | | | _ | | | | | 1 | 1 | | | | П | | | 7 | T | | | | CAL | 41.0724/ | EC ALL | - | | | - | | - | 0 | 1 | +- | | - | - | | - | 7 | $\top$ | - - | - - | 1 | - | П | | 十 | 1 | | - | $\top$ | 1 | 十 | 1- | + | - | $ \cdot $ | 7 | 1 | 1 | T | | П | | PROCEDURE<br>CAL | 2 60 134/1 | ALL | - | | - | - - | - | 1-1 | 0.10.1 | | - | - | | - | | - | + | - | - - | - | - - | ╁ | - | | | - | - | - | - | + | - - | + | - | | $\vdash$ | | + | + | ╁ | ŀ | $\vdash$ | | TICK LIST | 470734/1 | FC ALL | | | | | L | | 3 | _ _ | _ | | | | | | _ | | _ _ | | _ | L | Ш | ╛ | | L | | | | _ _ | _ | _ | _ | | | _ | _ | $\perp$ | L | | $\sqcup$ | | PROCEDURE | 460/34/ | LTI | | | | | | 0 | | | | | | | | | | | | ľ | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | - | - | - - | 1 | 0. | - | - - | | - | - | - | | - | + | | - - | $\vdash$ | | ╁ | П | $\neg$ | | Ť | 1 | | | 7 | 十 | $\dagger$ | T | T | H | 7 | + | $\dagger$ | T | 1- | П | | | SECT F | 3 ALL | - | - | | | - | .l l | | | - | | - | - | - | | + | -} | | - - | - - | $\vdash$ | H | - | - - | - | - | - | - | - | | - - | + | - | $\left - \right $ | - | - - | + | - | ╀ | - | | u | SECT | 1 | | | | | | 0 | | | _ | L | | | | | | | _ _ | | | L | | | | L | _ | L. | | | | $\perp$ | L | L | | $\perp$ | $\perp$ | _ | | L | | | TICK<br>LIST | 470734 | ALL | | | | 1 | | 0. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | h. | SECT | B ALL | | | | | | 0.1.0 | | | | | | | | | | | | | | | | | | | | L | | | | | | | | | | | | | | | la la | SECT | CALL | | | | | | 0 | - | | - | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NOTES | | | | | | | | | 7 | | | 1-1 | | ו"ז | П | 1 | 3.S. | . 7 | | CI | <i>y</i> | | 2 | L | L | 11 | TLE | 12 | ы | | | | | | | | IG N | | | | | | AT IS | SUE LEVEL | CHANGE | LX. | LS | | | | | 1 | HOR | , , , | | *. + E | 11 | i I<br>T G<br>AND | 1 | 2. | 7 8 | 7 | 50 | Arc l | 01 | | | n 88 | F | | | | AS | SE | EM | BL | ۲. | | 7C | | 72 | 4 | | | | | | | | | | | | | | non | 771011 | | | | | 14 | | 7 | | 1(4) | MY C | 97 | Ŀ | - 304 | | 1 | | | | | | | | | 1311 | | | | | <del>-</del> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 40073 | 4 | | | | | | | | | | | | | | | T | | | | | | | | | | | Τ | | | | | | | | | Т | | ., | | | } | | DESIGNATOR | | ATRON<br>ART No. | | | | DE | scr | IP I I I | NC | | | | | | | | RIN | | | | ER | | | | | | | | UF/<br>No | CTU | JRE | R'S | | | | | | USE<br>Λ₅sγ | | | . | | | | 40077 | <u> </u> | - 1 | | TE | R N | AIN. | 41 | AS | <br>5SF | = | 18 | <br>L) | <u> </u> | + | | | | | | | | | | | † | | | | | | | ` | | ή | | | 1 | | -1 | | | | 38011a | | | <del>-</del> <del>-</del> | 1 | | | | n P | | | | | | d | STE | EL | _ | Z | N. | P | LA' | TE | - | | 7 | | | | | | | | | 1 | | | <del>.</del> 2 | | | | | | 61204 | | | | _ | | | | PILL | | | | | | | | | | | | | | | | 7 | 7 | γρ | EΒ | M | 3 X I | 16 1 | nm | +5 | S ro. | т | | | 4 | | - | | | | <u> </u> | <i>-</i> | | | 1 | | | • | | | | | | | -1- | | | | | | | | | | | 1- | | | | | | | | | | | | | | - ! | | 400734 | | | | • | | | |-----------------------------|--------------------|----------------------------|---------------------------|-----------------------|---------------|-----------------------| | PESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTU<br>PART No. | IRER'S | No. USED<br>Per Assy. | | | 400770 - 1 | TERMINAL ASSEMBLY. | | | ` | 1 | | | 611088 | M2.5xGmm POZI-CSK. HD | STEEL ZN. PLATE | ' | | 2 | | | 612046 | M3 NYLON PILLAR × 16mm +SL | GIB PROJECTS CO | TYPE B M | 3X16 mm +SLOT | 4 | | | 613029 | M3 WAVY WASHER SS. | , | | | 7 | | | 611016 | M3x8mm POZI-PAN HD SCRI | W. | | | 5 | | | 611011 | M2.5xGmm POZI-PAN HDS | CREW. ZN. PLATE. | | | 4 | | | 400745 - 1 | BEZEL ASSEMBLY. | | | | 1 | | | 611091 | M3x8mm SKT. GRUB SCREW | 7N PLATE | | | 4 | | | 450495-1 | HANDLE LOCKING ROD | | | · | 2 | | | 450614 - 1 | DVM HANDLE EXTRUSI | | | | 5 | | | 420074-1 | MOD RECORD LABEL | • | | | 1 | | | 420101-1 | MODEL LABEL | | | | 11 | | | 440153-1 | 1281 RACK MTG. KIT | | | | AIR | | | 440152-1 | 1281 50 WAY 'D' CONNECTOR | KIT. | | | 2 | | | 450557-1 | REAR CORNER BLOCK. | | | | 2 | | | 611005 | M3x12mm POZI-PAN HD. SC | REW. | | | 2 | | | 450620-1 | 1281 INSTRUMENT NUMB | ER BADGE | | | 1 | | | 400747 - 1 | TOP COVER ASSEMBLY | | | | 1 | | MALE SEPTEMBER March 2011 | 400748-1 | BOTTOM COVER ASSEM | BLY. | | | 11 | | | 450535-1 | PACKING BOX. | | | | 1 | | | 630224 | ANTI-STATIC BAG PINK-4008 | OK. INDUSTRIES | 445x 5 | 71 × 610. | 1 | | 101ES. | | | | DATE | | | | | | | | 22. JULY. 87. | datron | ELECTRONICS LID | | in sheet \$ con L/ | VIEST ISSUE | | | B.S. JACKSON | 1281 FINISHED | ACCEMBIN | | 100 | | | | 778270 | no switte | | | DA'T<br>CODD | | | | MYO JANY8 | 40073 | 4 2.012 | | 400734 | | | | | | |---------------|---------------------|--------------------------------|-----------------------------------------|----------------------------|----------------------| | USIGNATOR | DATROTI<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MARUFACTURER'S<br>PART No. | No USED<br>Per Assy. | | | 850090-1 | 1281 USER HANDBOOK. | | | ! | | | 850091-1 | 1281 CAL & SERV. HAN | | | <u> </u> | | | 850092-1 | 1281 CAL & SERV. HAN | BOOK. VOLUME 2. | | | | | 850909-1 | 1281 QUICK REFERENCE | MANUAL. | | 1 | | | 920012 | MAINS LEAD CONN | BELLING LEE | L1949 | 11 | | | 920203 | FUSE 630mA 250V(T) 20ma | BESWICK | S506 | 1 | | | 450533 - 1 | HANDLE MAGNET | | | 4 | | | 450532-1 | CATCH PLATE | | | 4 | | | 450590-1 | CATCH PLATE SPACER | RUBBER- ASTIC | | 4 | | | 630255 | TAPE SELF ADHESIVE DOUB | SLE SIDED . 3M | Y9469 x 1/2" WIDE. | A/R. | | | 90003B | CYANOACRYLATE ADHESIV | E. PERMABOND | C4 | Á/R. | | | 920204 | FUSE 1.25A 250V(T) 20mm | BESWICK | 5506 | 1 | | | 920071 | FUSE 1.6A 250V 20mm QUI-B | BESWICK | S501 | 1 | | | 900016 | CLEANING FLUID | RS. | 556-654 | A/R. | | | 630284 | HEX KEY 1.5mm A/F | | | 1111 | | | 611007 | M3xGmm POZI-CSK HD SCR | EW. ZN.PL. | | 4 | | | 400741 - 2 | 1281 AC OPTION PCB A | 5SY. | | A/R | | • | 400742-1 | 1281 OHMS OPTION PCE | ASSY. | | A/R | | | 400743-2 | 1281 CURRENT OPTION PC | 3 ASSY. | | A/R | | | 400736-2 | 1281 INSTRUMENT ASSY | | | 1 | | | 613051 | M2.5 SPRING WASHER SQ.SEC | T STL. ZN PL. | | 8 | | | 90009 | LOCKING COMPOUND | LOCTITE | 222 | A/R | | | 630269 | MINIATURE CABLE CLIP (SELF ADH | RICHCO. | MWSB | 2 | | OTES | | | ! | | | | | | | , – | 2. JULY. 67. datron | ELECTIONICS LTD | | SHEET FOR LAT | EST 1830E | | | 5.5. JACKSON 1281 | | | 50 | | | | FINISHED | ASSEMBL | | A'F | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TOSAN SE HUMBER 40073 | 4 3 0 4 | | | | | | | | | | | | | | | | | | | | | | 100 mg 100 100 m200 Ď. M | 400734 | | | | | | |-----------|--------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------| | ESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTURED'S<br>PART No. | No. USED<br>Per Nosy. | | | 604062 | 15WAY D' PLUG. | CANNON. | DAISP | 1 | | | 606031 | 15 WAY D'SCREENED BACKSHEL | L. CAMBRIDGE CONNECTORS | DAC 41-PZ | 1 | | | 630223 | ANTI-STATIC BAG PINK | OK INDUSTRIES. | PINK-6 (356x 254mm) | 3 | | ¥ . | 630290. | GRIPPER BAG 5x7/2 | ABBOTTS PACKING | CODE 128 | 1 | | | | | | | ļ | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | COLUMN TO COMPANY OF THE PARTY | | | | | | | | | | | IOTES. | | | DAI | | | | DATE | TEST ISSUE | | 80 Bit of the second se | S'JACKSON 1111 1281<br>FINISHED AS | SEMBLY. | | (100) | | | 0.11 | (Internal III 40073 | 4 4 4 | | GRAWING-No. | CIIK'D | 10 | A | | | | | | | | | | | | | | | | | | | _ | _ _ | | | | | | | اــَــا | | |--------------------------------|------------------------|------------------|---------|-----|-------|------------------------|---------|-------------------------|---------|-------------|------------|---------|----------------|--------------------|-------------------|-----|-----|--------------------|--------------|----------|---------------|----------|-----------|-----------|-----------------|---------|---------|-------------------|-------|------------------------|---| | 400736 | DATE | 17.12.87. | AAY88 | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | DI WM | | 5 5 E | : E | - - | | - | | - - - | | - - - | - - | | - - | - - | - - | - | - | - | + | - - | - | | - | - | - | - | | | | - - | | | | ECO | 2722 | 38 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | REVISION | o - | | | | | | | | | | | | | | | | П | | | | | | | | | | | - | | T | | DESCRIPTION DRAWING NUMBER | SHEET,<br>NUMBER | | 1 | | | 1 | | -11- | L_ | ISSU | E . R | VISIO | -LI | | لبل | | _i | 1 | | | | | | | 1 1 | | | 1_1 | | 1 | | | COMP. 480736 | | 0. | 2.0 | | | | | | | П | | | | | | | T | 1 | П | | | | | T | | | | | T | | | | COMP | 2 | 0 | 0 | | | $\vdash$ | | 1-1- | - | 1-1- | - | | 1-1 | | $\forall \exists$ | 1 | 1 | 11- | $\vdash$ | - | | | - | 1 | | - | | 1-1 | | | | | LAYOUT. 480736 | | - | <u></u> | - - | - | | | + | - - | - | - | - - | | | + | - | + | - - | 1-1 | - - | - - | | - | - - | 1-1 | | | 1-1 | - | | - | | | | | | | - - | - | - | | - | - - | - | - - | | - - | + | - - | + | - | + | | | - | | - - | | | - - | - | | - | | | | - | - - | . | - - | _ - | - | - - | $\square$ | - | | - | | - | - - | - - | - | - - | - | $\mathbb{H}$ | - - | - | - | - - | - | - | + | - | | | - | | | | | _ | 1 | | | - - | _ _ | . _ | 4- | 1 | _ | 4 | | _ _ | $\perp$ | _ _ | _ | | $\sqcup$ | 4- | - | _ | _ _ | 4_ | - | _ | | 1_ | - - | - - | | | | | | _ | | _ _ | _ _ | | . _ . | _ _ | Ш. | | | | _ _ | | | _ | | 11 | | | | | _ | Ш | _ | | | _ _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | - | | | П | | | $\top$ | 1-1- | | - | | | $\prod$ | | | | | | | _ | | | | 1 | 1 | 7-1 | | П | 十 | | | | - - | †- | | - - | | - | 1-1 | - - | - - | | | $\top$ | | $\parallel$ | - - | - | - | 11 | $\top$ | 1 | - | + | - | | -1 | - - | | - | - | 1 | | | <del> </del> | - | - | | - - | H | + | $\dagger \dagger$ | - - | | - - | - | $\parallel$ | + | + | + | + | - - | $\dashv$ | + | 1 | - | - - | - | - | - | + | $\dagger \dagger$ | - - | 1-1 | | | | | - - | - | | - - | $\left - \right $ | - - | | - | - - | + | - | - - | - | + | - | - - | - | + | + | +- | $\dashv$ | + | - | - | + | - | + | | - - | ` | | | | + | - | - - | - - | $\left \cdot \right $ | - - | - | - - | | - | + | - - | - - | + | - - | 4- | $\left - \right $ | + | + | - | $\dashv$ | - | + | - | - | - - | - | +- | $\left \cdot \right $ | | | | - | $\perp$ | - | | | | - - | $\downarrow \downarrow$ | 4 | 4-1- | $\perp$ | - | | | $\dashv$ | _ | _ | $\vdash$ | $\dashv$ | 4 | $\perp$ | _ | _ | - | $\perp$ | | - | $\perp$ | + | | | | - | | _ | _ | | _ | 1_ | _ _ | 11 | _ | . _ _ | _ | _ - | - - | 4 | $\sqcup$ | _ | _ | Ш. | - | - - | _ | | _ _ | | | _ . | - - | - | - - | - | _ | | NOTES | | | _ | | | Щ | $\perp$ | | $\perp$ | | | $\perp$ | | Ш | Ш | 4 | 1 | Щ | | _L | | | | L | | Ц | $\perp$ | ING | | | | | DENOTES NO CHA | NGE TO E | xxs | , | | | | LE LE | | J., | I GLAN | | 1.5.J | ACK50<br>44.87 | CHK<br>H CK<br>DAI | 4<br>E<br>Ta x 2 | 8 | n u | rk<br>Obcs | ZIN | ۱<br>STI | 28 I | 1EN | 1T | AS | SY. | . | | Ο<br>τ 1 | | ري<br>2 | | | | | | | | | | | | | | | | | 1 | | - 1 | | | | | | | ********* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 400736. | | | | | | | | | | | | | | | | | | | | Ī | | | | | | | | | | | | | DESIGNATOR U | ALRON . | | | DE | SCRIE | OLLA | 11 | | | | | | ICIP/ | NL<br>.CTUF | ren | | | | | | HUMZ<br>1 TR. | | URE | ER'S | | | | | USE | | | | 1 | 1016 | | | M | 13x8 | <br>3-mn | n Po | ZFP | 'aN | STEE | <br>EL. | | .PL | | | | | | | | | | | | | | | | | Ī | | | | 1300 م | | | 1 | 13 1 | | | | | | | | . PL | | | | | | | - | | | | | | | | - | | 3 | | | | <u>511015</u><br>45049 | | | | | | | | | KSTE<br>EL. | EL | ZN | . PL | | | | | | | + | | | | | | | | +- | | 1 | | | | 10074 | | | | | | | | | AS | SY. | | | | | | | | | - | | • | | | | | | - | | | | | | 15052 | <mark>8 -</mark> | - 1 | | | | | | | TON | | | | | | | | | | | | | | | | | | | 1 | | | | | 10073 | | | | | | | | | 155 | | | | | | | | | | - | | | | | | | | + | | | | | | 10073'<br>61302' | | | | | | | | | B. A: | | | | | | | | | | + | | | | | | | | + | | 3 | | | | 45055 | | 1 | | | | | | | LING | | | | | | | | | | | | | | | | | | | | | | | 4 | 100738 | 3 <b>-</b> | | 12 | 81 | D. | C. | PCE | β. Δ | 1551 | ſ | | | | | | | | | _ | | | | | | | | 1 | | 1 | | | | 450549<br>617013 | | 1_ | | | | | | | ) E | | | | 00.5 | т, | | | EV | | + | T A 1 | 7/5 | | | /0 | | | +- | | <u>!</u><br>2 | | | | د الله الم | | | | ۷۰4 | | л: K | IVE | | OME | <u>, н</u> | ٠. ر | 0 | ~GE | | ,UK | -^ | _ 16 | | 1 | 141 | 16 | <u> </u> | <u> </u> | / <u> </u> | , ri . | | $\pm$ | | | | | | | | | T | | | | | | | | | | | | | | | | Ļ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | + | | | | | | | | + | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ' | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | - | | | | | | | | | | | | | | | NOTES. | | | | | | | | | | | | | | | | - | | | DATE | | 140/ | 0.7 | | | †a | + | | 1 | | | - | | NOTES. SEE SHEET 1 FOR LATEST | | | | | | | | | | | | | | | | | | | 28 | | MAY. | | | | Ja <sup>*</sup> | tr | | } ==== | CTRON | ics Lite | D | | NOTES. | | | | | | | | • | | | | | | | | | | | 28 | .JAC | MAY. | ρN. | 111 | ۱'<br>۱۵۲ | 28<br>TRU | l<br>Mi | | т. | | , | | | PRAWING No. | | снк'р | 2 | Q | 7 | ¥ 2 | P | 9 | 2 | 3 | 6 | - | 1 | Q | 8 | | T | T | T | T | | | T | T | T | T | Τ | | | T | T | 1 | T | T | _ | - | T | | Τ | Τ | Γ | - | |-----------------|------------|-----------------|-------------------|--------|-------|--------------------|-------|---------|------------------|--------|------------------|-----------|--------|------------------|-------|---------|------|-----------|-----|-------------------|---|----|-----|----|------|----|---|------------|--|---|----|-----|---|-----|-----|-----|-----|------------|----|---|---|----------| | 4007 | | DATE | 7.12.87 | 3.5.88 | FE888 | 5 FEBB | 5.87 | 7.5.88 | 3.6.88 | 87.88 | 3 8 88 | \$6.88 | 5.9.58 | 105088 | 2JAN8 | | | - | ŀ | | | | | | | | | | | | | | | | | | | | | | | - | | DI W | <b>~</b> \ | ECO | 0 2722 17.12.87 7 | 091 | 177 | 1.3 2783 25 FEBB / | 857.4 | 913 2 | 2.1 2912 13.6.88 | 2948 | 2 4 3014 23 8 88 | 3026 | 3034 | 3160 110ECSS ACT | 175 | - | | - - | - | | | | | | - - | - | | | | | | | | - - | - - | - - | | | - | | - | - | | | | REVISION | 0.1 | - | 1.2 | 4.5 | 4 | 2.0.5 | 2.1. | 2.2 | 4.5 | 2.5 | 2.6 | 2.7 | 2.8 | | | - - | - | - - | - | | | - | - | 1- | - | - | | | | - | - | - - | - - | - | - - | | 1- | | | - | | DESCRIPTION | DRAWING | SHEET<br>NUMBER | Г | | | | | <b></b> | | | | | | | 1JE | . ne | VISI | ON | | | | | | | | | | | | | | | | | | | | | | | 1 | 1 | | COMP<br>LAYOUT. | 480737 | 1 | 0.1 | | = | | -2 | 0.0 | 2.1 | 6 | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | COMP<br>LAYOUT. | 480737 | 2 | 2 | | | _ | - | 2.0 | | | _ | _ | ļ | _ | 4.2.1 | | _ | . | _ . | _ - | | | _ | _ | | _ | | _ | | | _ | _ | _ | _ - | _ | _ | _ | _ _ | | L | _ | - | | COMP<br>LAYOUT. | 480737 | 3_ | 0. | | | | _ | 0.0 | | ~ | 2 2 | <u>il</u> | 23 | | 2.4 | | _ | _ | | _ | | | | | - - | | _ | | | | | _ | _ | _ _ | | | | | | L | _ | | | COMP<br>LAYOUT. | 480737 | 4 | o. | = | | | 2 | | | 2 | 200 | 3.0 | _ | 45. | | | _ | _ | | | | | _ | | | | _ | | | | | _ | | | _ _ | _ | | | | _ | | _ | | L.P. | 400737 | ALL | | | | | _ | L | | 2.2 | 7 | 4.5 | 2.5 | 5.6 | 2,7 | | | | _ | _ _ | | | | | _ | _ | _ | | | _ | | _]_ | _ | | _ _ | | | | _ | | _ | L | | | | | | | | | | L | | | _ | _ | | | | | | | _ | _ | _ | | _ | | _ | _ | _ | | | | | _ | | _ | _ | _ _ | | | | L | | Ĺ | | | | | | | | | | _ | | | _ | _ | _ | | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ _ | _ | _ | _ | | | | | _ | ļ., | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | L | | | | _ | | | | | | | | | | | | | _ | | | | | | _ | | | L | | _ | | | | | | | | | _ | | | | | | | L | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ĺ | | | | | | _ | | | | | | _ | | | | | _ | | | _ | | <u>.</u> | | | | | | _ | _ | | | | _ | | | | | | | | | | | - | | | | | | | | | L | | | | | | | | | _ | | _ | | | | | | | _ | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | _ | | | | _ | | _ | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DENOT AT 155 | ES NO CHAI | NGE TO | [XX] | <br>:S | | | | | 1 | C ionv | , T | | 1.1 E | | | 0 0 0 0 | 1.5. | J.<br>4.8 | 7 | CHR<br>GR<br>DAIL | G | 07 | 100 | 54 | .82 | 1 | | 128<br>IAS | | | 45 | sY. | | | | 4 | | , 110<br>O | | | | | 100 mg 20 A £ 35 ند عاد 2.3 400737. | DESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTURER'S<br>PART No. | No. USED<br>Per Assy. | |------------|--------------------|-------------------------------|---------------------------|----------------------------|-----------------------| | · | 450527 - 1 | SLIDE PUSHROD | | | 1 | | | 450525-1 | SLIDE LATCH | · · | | 11 | | | 450552-1 | NUT PLATE | | | 2 | | | 450553-1 | PIVOT PLATE | | , | 1 | | | 611007 | M3×6mm POZI-CSK SCF | REW. ZN.PL. | | 10 | | | 630253 | SLIDE SPRING. | | | 2 | | | 450613-1 | SIDE EXTRUSION | | | 2 | | | 450523-1 | TERMINAL SLIDER. | | | 1 | | | 450500-4 | REAR CHASSIS. | , | | 1 | | | 630170 | PCB GUIDE | RICHCO. | RCG 2 | 2 | | | 450501-2 | CENTRE PANEL. | • | | 1 | | | 450561-1 | CENTRE PANEL NUT PLAT | E. | | 2 | | | 617013 | \$2.4 PAPRIVET DOMED. HD. | GEORGE TUCKER EYELET. | TAP/D/33/BH. | 2 | | | 400756-1 | RIBBON CABLE ASSY. | | | 2 | | | 450554-1 | MAINS SW/ROD MOULDING. | | | 1 | | | 450556-2 | MAINS SWITCH OPERATING | ROD. | | 11 | | | 450512-1 | ISOLATION BLOCK. | | | 5 | | | 630255 | TAPE. SELF ADH. DOUBLE SIDED. | 3M | Y9469 x 1/2" WIDE. | A/R | | | 630256 | TAPE FOAM ADH. ONE SIDE. | TESA TAPES | TESAMOLL 730 x9 MWIDE | 0.075 M. | | | 450559 - I | DISPLAY BOARD MOUNTING, BLO | ck. | | 4 | | | 450502- 2 | FRONT PANEL. | | | 1 | | | 450587- | CABLE SCREEN. | | | 1 | | | 400709-3 | GUARD BOX ASSEMBLY. | | | 1 | | NOTES. | | | | | | | | | DATE | | | |---------|----------|--------|------|------|---|------|-------|-------|----------------|---------------|------------| | | | | | | | | | | 30th APR. 87. | datron | RONICS LTD | | SEE SHE | ET FOR | LATEST | SSUE | <br> | | | <br> | | B'.S'.JACKSON. | 1281 | | | 155 | | | | | | | | | CHECKED | CHASSIS ASSE | ABLY | | ECO | | | | <br> | | <br> | <br> | <br> | APHOOVED ALLES | | | | DATE | | | | <br> | | <br> | <br> | <br> | | NUMBER 400737 | 2 or A | | CHED | | | | <br> | İ | <br> | <br>l | <br>l | LIVERST | | | | 4 | $\sim$ | - | 2 | - | , | |---|--------|-----|---------------|-----|---| | 4 | $\sim$ | • , | $\overline{}$ | . / | | | | | | | | | J.W. 1164 | ESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTURER'S<br>PART No. | No. USED<br>Per Assy. | |-----------|--------------------|---------------------------|---------------------------|----------------------------|-----------------------| | | 611015 | M3x8mm POZI-CSK SCREW | ZN. PL. | | 10 | | | 400749 - 3 | 1281 MAINS TX ASSY. | | | 1 | | | 613005 | M3 SHAKEPROOF WASHE | k | | 7 | | | 611098 | M3x8mm SKT. CAP HD. SCREE | ZN PL. | | 2 | | | 615002 | M3 FULL NUT. | | | 7 | | | 400184-2 | EARTH BRAID ASSY. | | | 1 | | | 605015 | MAINS I/P SKT / FILTER | BULGIN | P5620/3A | 1 | | | 590012 | MAINS FILTER SHROUD. | BELLING LEE . | L1867 | 1 | | | 510111 | 7/0.2 PVC INS. BROWN W | IRE. | | AR | | | 920082 | FUSE HOLDER 20mm PANEL | BELLING LEE | L2002 | 1 | | | 920203 | FUSE 630 mA 250V(T) 20mm | BESWICK | S506 | 1 | | | 590030 | HEATSHRINK SLEEVE POLYO | EFIN Ø 18 . HELLERMANN | SFM18-68K. | 45mm. | | | 400750 - 3 | LOW VOLTAGE TX ASSY. | | | 1 | | | 606028. | D' SCREW LOCK. | CANNON | D20418-2 | 4 | | | 590013 | TY-RAP CABLE TIE. | RS | 543-412 | 2 | | | 630266 | CABLE TIE ANCHOR PAD. | RICHCO. | FTH2 | 2 | | | 400752-1 | REAR I/P CABLE ASSY. | | | 2 | | | 613050 | GBA SOLDER TAG TINN | ED. | | 2 | | | 450580-1 | PLASTIC STANDOFF. | | | 21 | | | 630267 | RIBBON CABLE CLAMP | RICHCO. | FCC-16-3 | 1 | | | .611008 | M3XIOMM POZI-CSK STEEL | ZN PL | | 2 | | | 630020 | CABLE CLIP Ø4mm | 3M | 708 | 5 | | OTES. | ATEST ISSUE | | GHECK APPRO | JACKSON 111LE 1281. | | | 400737 | | | | WARRIED BOOK OF THE PARTY TH | | |--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------| | DESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURE T | MANUFACTURER'S PART No. | No. USED<br>Për Assy. | | | 630001 | HOLE PLUG 1/2" BLACK | HEYCO | DP5∞ | i | | | 450601-1 | DIGITAL BOARD INSULATOR | | | 11 | | | 590001 | SLEEVE 1.5mm I/D | HELLERMANN. | HI5 × 20. | 4 | | | 510666. | 7/0.2 PVC INSUL. BLUE W | IRE. | | A/R | | | 450654-1 | CABLE STRAP | | | 2 | | | 630286 | SNAP RIVET | RICHCO | SR 3065N | 4 | | | 450660 <u>-1</u> | MAINS SWITCH INSULATE | R | | | | | 200039 | PTFE LUBRICANT SPRAY. | | RS. 551-457 | A/R | | | 613029 | M3 WAVY WASHER SS. | | | 2 | | | 613014 | M2.5 INT. SHAKEPROOF | | | 2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MANUFACTURE 1 17 97 1 1707 2 11 10 11 10 11 10 10 10 10 10 10 10 10 | | | | | | | | | | | NOTES | | The property of the second sec | | DATE | | | | | | | 15th JULY 87 datro | TT ELECTRONICS LTD | | STE SHILL FLOW FV. | TEST ISSUE | | | - BUS JACKSON 11116 1281. CHASSIS | ASSEMBLY. | | times ' | | | | TATE 21 18 87 INVESTOR | 737 4 4 | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | | |------------------|------------------------|-----------------|----------|---------|------|-----------------------------------------|--------------------|---------|---------|--------|----------|-----|----------|---------|---------------|------------------|--------------|-------|------|-----------|--------------|-----|-----|---------|---------|--------------------|--------------------|-------|----------|-----|----------|--------------------|----|-----|-------------|---------------|----|---|------------| | CHANING No | | CHE D | 1 | 1 | | T | | - | -1 | - - | | | | - | - | - | T | | | - | 1 | | | -[ | | 1 | | -1 | | 7 | -1- | | | | - | · · | İ | - | | | 400 | 145 | DATE | 87 | 8 DEC88 | - | - | - | - | 1 | - - | 1 | | - | | | - | | | | | - | | - | | - | -j | | -1 | - | 1 | 1 | - | [- | - | | | - | | - | | 112 7/7 | ·V) | DATE | 8.12 | 8 DE | | | | | | | | _ | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | ! | , | ΕCO | 122 | 3155 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | : | | REVISION | | | - | | | - | | | - | - | - | - - | - - | - - | | | - - | - | - | | - | - - | - - | - - | - | - - | - | | - | | - | | | | - | | | | ! | | ISSUE | 1- | = | | | | | $\perp$ | L | $\perp$ | | | $\perp$ | $\perp$ | L | | | | 1 | L | | | $\perp$ | $\perp$ | | | | $\perp$ | | | | L | Ш | | $\perp$ | | | | | resemented | DRAWING | SHEFT<br>NUMBER | | ,, | | | , | | | | | , | | ISSU | Ε. | :E VI | SION | | | | | | | | | | | | | | | | | | | | | | | | COMP.<br>LAYOUT. | 48074 | 5 1 | 0 | = | | | | | | | | | | | | | | | ĺ | | | | | | | | | | | | | | | | | | | 1 | | | 1 | 1001 | <u> </u> | - | - | - - | - - | - | - | - | - - | - | - | - | - - | - - | - - | | | - - | - - | 1- | - | - | - | - - | +- | - | - - | | - | - - | | | | + | | | | | | | | | - - | | | - | - | - - | - - | - - | + | - | | - - | - - | | | - | | | 4_ | - | _ | | - | . _ | - | _ . | | - | - | | | | - - | | | | | | i<br> | | | | | | | | - | | | İ | | | | | | | | Ì | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | - - | | 1 | $\Gamma$ | | | | | | | - - | - | - | | - | - - | - - | 1- | - | | - 1 | İ | - | | | | | | | | | | | - | $\vdash$ | - - | - | - - | ╁ | - | | - - | | + | - | - | - | - - | + | Н | - | + | | +- | | | - - | - - | | - | | | | - | | - | - | | | | | _ | L- | - - | - | | - - | _ _ | - - | 1_ | H | - | _ - | - - | _ | | _ | _ | _ _ | . _ | | _ | - - | _ | _ | | _ | _ _ | 1_ | ļ., | _ | _ | | _ | | | | _ _ | | | | | | | | | | | | | | | | ı | | | | | | | | | | | | | | | | | | | | | 1 | | | | i | | | | | - | П | - - | | | _ - | | 1 | Г | П | - | | | | | 7 | | _ | T | П | 7 | - - | 1- | 1 | | 7 | | - | - | - | - | - - | j - | - | | | - <u> </u> | | | | | - | - | - - | - | $\left - \right $ | | - - | - - | - | - | - - | - - | - - | - | - | - - | - - | - - | +- | - | | - | - - | + | $\left - \right $ | | - - | + | - | | | | - - | - - | - | | | | | | | _ | | _ _ | _ | Ш | _ _ | _ _ | _ | _ | | _ . | _ _ | $\perp$ | | | _ | _ _ | | L | | | | | | | | _ _ | | | | | | _ _ | _ _ | | | | | | | | | | | | | | | - | | | | | | | | | İ | İ | | | | | | | | | | | | Н | | | | | | | | | | | | - | | - - | + | H | - - | - - | ╁ | $\vdash$ | Н | - - | 1- | - | | + | 7 | - - | 1 | T | | - | - - | - - | 1- | - | - - | + | + | - | | - | | - - | | - | | - - | | | | | - | | - - | - | $\square$ | - - | - - | - | - | - | - - | + | - | | - | - - | | | - | _ . | _ . | - | - - | - | _ . | - - | - - | - - | _ | _ | - | | - - | _ | | | - : | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - - | | | | | - - | - - | 1 | - | - | | | - - | - - | - | - | - | | | | - | - | | - - | + | H | - - | - - | - - | H | | | - - | - | | H | - - | - - | - | $\vdash$ | - | - - | - | - - | $\left - \right $ | + | | - | - | - | $\left - \right $ | - | | | - - | - | | . | | | | | | 4 | | $\perp$ | 4 | $\perp$ | 4 | $\bot$ | _ | Ц | 4 | _ | _ | Ц | | 4 | 4 | 4 | | | 4 | 1 | 1 | | | 1 | $\perp$ | _ | <u> </u> | Ш | | _ | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - - | - | T | | | | 1 | - | | | | | | | | - - | - | 1 | | | - - | - - | - | - | - | | - | - - | | | | - - | | ·ICIES | | | | | | لــــــــــــــــــــــــــــــــــــــ | | | 1 | -1 | ا ا | | <u> </u> | 7 | $\frac{1}{2}$ | DRII | ىلىـا<br>ك.د | - | CIII | 10 | نـــــا | ۸۲ | in | ż | TI | 12 | | | | | l | 11 | - | DRA | WING | G 110 | | | | | DENOT<br>AT 155 | IFS NO CH<br>SUE LEVEL | CHANGE | $\infty$ | 2.5 | | | | | L | | וַיִּ | بان | Ţ., | 4 | . | DATE | ٠.٠ | (07 | DAI | E | | D41 | End | | | | (01<br>ZE | 1 | A: | SS1 | EΝ | 1Bl | ۲. | | 4 | 00 | 7 | 4 | 5 | | | | | | | | | | | 1 11 | ORW | ICH | | ENG | LAH | 0 1 | <del>3l</del> hl | MAY | .87 | 3 | E<br>Ju u | <b>→</b> 87. | 14 | PE | | 1 | | | | | | | | | SHE | FT | <u> </u> | OF | 2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 40074 | 5 | | | | | | | | | | | | | | Т | | | | | | | | | | | 7 | | | | | | | | | <del></del> | | | | 1 | | DESIGNATOR | | MORTAC | | | | DES | C.EH | P3 16 | 111 | | | | | | | 111718 | VCIE | 1 ^ 1 | | | | | | | | | | | | | | | | | | | | | ļ | | | | ON THA | | | | 02. | | | | | | | | | | | IUF. | | un | I- I3 | | | | | | | TRI<br>VIIU | | 101 | ihn | 5 | | | | | n US<br>r Zar | | | | | | | 450567 | | | | W | IND | OW | / A | DHE | SI | VE | R | 2. H | . . | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | 450540 | | | | | | ER | | | | | | | _ . | | | | | | | | | | | _ | | | | | | | | | | | 1 | | | | | | 450510 | | | | Wi | ND | ON | J A | DH | ES | IVI | <u> </u> | | <u>l. </u> | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | 45054 | | | | FI | | | | | Η. | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 1 | | | | } | | <u> 45048</u> | | | | | | EL | | | | | | | _ - | | | | | | | | | | | _ | | | <u> </u> | | | | | | L | | 1 | | | | | | 45060 | | | - 1 | Gυ | | | | | | | | | | DIA | АМІ | ETF | RIC | S | | | | | | _ | | | | | | | | | <u> </u> | | _ | | | | | | 45060 | | | | Hi/ | | | | | | | | | | | | н | | | | | | | | _ | | | > | | | | | | _ | | 1_ | | | | · | | 45060 | | | | CUF | | | | | | | | | E. | | | 11 | | | | | | | | _ | | | | | | | | | _ | | 1 | | | | | | 15060 | | | | DA. | | | | | | | | E | - - | | | rl | | | | | | | | _ | | | | | | | | | - | | 1_ | | _ | | | | 15060 | | | | SE | | | | | | | | | - - | | | н | | | | - | | | | <u>_</u> | | | | | | | | | _ | | 1 | | | | | | 10074 | 4 - | - | | 128 | | | | | | | | | | | TR | | | | | | | | | _ | | | | | | | | | _ | | | | | | | | 11011 | | | , | M2- | | | | | | | | | | | J. P | | | | | | | | | | | | | | | | | | _ | | 2 | | _ | | | 0 | 313014 | | | | м2. | 5 1 | INT. | S | HA | KE: | PRO | ωF | ν | √A: | SHE | ER. | | | | | | | | | | | | | | | | | | | | 4 | | - 1 | **第**2000年3月 04.03 4.5 Š. 13 | | PART No. | DESCRIPTION . | MANUFACTURER | PART No. | No. USED<br>Per Assy | |-----------------------------------------|------------|--------------------------|--------------|--------------------------|----------------------| | | 450562 - 1 | WINDOW ADHESIVE R.H. | | | | | | 450546 - 2 | FILTER. R.H. | | | | | | 450516 - 1 | WINDOW ADHESIVE L.H. | | | | | | 450545 - 2 | FILTER. L.H. | | | 1 | | | 450489-1 | BEZEL. | | | 1 | | | 450604-1 | GUARD TERMINAL BADGE. | DIAMETRICS | | i | | | 450606-1 | HI/LO TERMINAL BADGE. | н | > | 1 | | | 450605-1 | CURRENT TERMINAL BADGE | . " | | 1 | | | 450602-1 | DATRON LOGO BADGE. | rl | | 1 | | | 450603-1 | SELFCAL BADGE. | 11 | | | | | 400744-1 | 1281 SWITCH PCB ASSY. | DATRON. | | | | | 611011 | M2-5x6mm POZI-PAN STEEL | ZN.PL. | | 2 | | | 613014 | M2.5 INT. SHAKEPROOF W | ASHER. | | 4 | | | | | | | | | | 611096 | M2-5x12mm POZI-PAN STEEL | ZN. PL. | | 2. | | | 450531- 1 | KEYCAP SET | | | 1. | | | 900016 | CLEANING FLUID | RS. | 556-654 | A/R. | | | 613012 | M2.5 PLAIN WASHER. | ZN. PL. | | 4 | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | <u> </u> | · | | | | | OTES. | | | C | NIE ! | | | EE SHEET 2 FOR LAT | EST ISSUE | | | | trilinonas (15 | | ביי | L31 1350E | | | B.S. JACKSON 111LE 1281 | | | (CD | | | | BEZEL A | SSEMBLY. | | DATE | | | 1 1 1 1 | THE 2106C87 NUMBER 40074 | 5 2 5 2 | | | | | | 4,500, | | | | | | | - | | | | - | | | | | | | | | | | | | | | | | | | | | | |------------------|-------------------|--------------------------|----------|---|-------|-----|---|---|---|-----|-------------|------|--------|-------|-----|---|---|-----|---|-----|---|---|-------|---|---|---|----|-------|---| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | _ | <br>- | - | - | _ | - | | and married | | - | - | - | | - | - - | | - | | - | - | | - | | - | + | | | | | | | | | _ | - | | _ | - | - | _ | | | | | | | | | | | + | _ | | | 1- | _ | | | | <u> </u> | | | _ | | - | | - | | - | - | | _ | - | | - | | | - | - | | | <br>- | - | - | _ | + | <br>- | | | | | | | - | <br> | - - | | | - | | | | + | | | | | | - | | - | | + | - | | | - | - | - | | COMP.<br>LAYOUT. | 480746 | 1 | 0.1 | _ | <br>- | - | | | | | - | - | | - | | | | _ | | - | | _ | - | | | _ | - | <br>- | | | DESCRIPTION | DRAWING<br>NUMBER | ISSUE<br>SHEET<br>NUMBER | 0.1 | | | | | | | | | ISSU | IE . I | REVIS | 011 | | | | Ш | | | | | | | | | | | | DI W | <i>N</i> ( | ECO | 2718 | _ | | | | | | _ - | | | | | | | Ŀ | | | _ - | | | | | | | | | | | 400 | 746. | DAIE | 30.11.87 | | | | | | | | | | | | - | | | | | - | | | | | | | | | | | 400746. | | | , | | | | |--------------------|--------------------|------------------------|---------------------------|-----------------------|------------------------------|---| | DESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTU<br>PART No. | JRER'S No. USED<br>Per Assy. | | | | 450524 -1 | TERMINAL BODY. | | | 6 | | | | 450522-1 | TERMINAL NUT. | | | 6 | | | | 450521-1 | TERMINAL SPINDLE | | | G | | | | 450519-1 | TERMINAL BASE. | | | | | | | 617017 | SELF LOCKING RING. | MECRO | AM 1465 | 5-18 6 | | | | 450610-1 | TERMINAL COLOUR RING. | YELLOW. | | | | | | 450520-1 | TERMINAL COLOUR RING. | WHITE. | | | | | | 450611-1 | TERMINAL COLOUR RING | BROWN. | | | | | | 450608-1 | TERMINAL COLOUR RING | . RED | | | | | | 450612-1 | TERMINAL COLOUR RING | BLACK. | | | | | | 450609-1 | TERMINAL COLOUR RING | BLUE. | | 1 | | | | 900038 | CYANDACRYLATE ADHESIVE | PERMA BOND | C4 | A/R. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NOTES. | | | | 6MAY. 87. | datron ELECTRONICS LTD | | | SEE SHEET # FOR LA | TEST ISSUE | | | B.S. JACKSON. | 1281 | | | E C O | | | | | TERMINAL ASSEMBLY | | | CHKD | | | | DATE | DILAWING NUMBER 400746 2 OF | 2 | | 100717 | CIIK | D 1 | . 9 | 3 | 8 _ | _ | | _ | _ _ | _ _ | _ | | | | _ | | | | | | | | | | | | | | | | | | |----------------|----------------------------|----------|----------|----------|-----------------------------------------------------------------------------|-----------------|-----|--------------|----------|--------|-----------------------------------------|----------|-------------|-------|--------------------|----------|---------------|----------|-----|----------|--------------|-----------|----------|-----|------|--------------------|---------|-----------------|-----|---------|---------------|----| | 400747. | DATE | = 2 | 3 8 8 | 7.8 | DEC | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DI WM | | - 5 | 3 2 | 8 | 3176 23DEC88 / | - | | | - - | - - | - | | - | - | - - | | - | - | | - | - - | - - | - | - - | - | - | | | - | - | - | - | | | ECO | 27.1 | 281 | Ž | 317 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | REVISI | ON C | | N | m | | - | - | - | - - | | | T | - | 1 | $\vdash$ | 1 | Н | - | 1 | 1.1 | 1- | | - - | + | T | + | +- | | - - | - | - | | SCRIFTION DR | AWING SHEE | ī | 1_ | _ | | Ш | Ш | | | | لــــــــــــــــــــــــــــــــــــــ | | Ш | | | | | Ш | | | بلبل | | | | | Ш | $\perp$ | | | | | L | | N( | MITER HUMBE | | _ | Ţ | N | $\neg \Gamma$ | П | Т | Т | $\neg$ | 155 | UE . I | TEVIS | ION | т- | П | $\overline{}$ | П | Т. | Т | | | | | Т- | Т | | | | | П | _ | | | 0747 1 | _ - | 3 | | 1.2 | | . | - - | 1 | _ - | _ | _ _ | - | | . _ | | $\perp$ | | _ _ | | Ш | | Ш | _ | | | | | | _ _ | | İ | | L.P. 40 | 0747 2 | | | 2 | .3 | | | | | | | | | | | | | | | | | | | | | | | | | İ | | | | | | | | | | | | | | | | | | | - | | | | | | | 7 | | | | П | 1 | | | | | | | | | - - | - | | | | - - | - | + | - - | 1-1 | - | Н | | 1- | | + | Н | | + | + | + | | + | - | + | - | | - | | + | | | | | - | - | | | | - - | - - | + | - - | - | - | - | + | - | - | - | H | | - - | $\vdash$ | | - | | - | $\left - \right $ | | - - | 4 | | _ | | | | | _ _ | | | | $\perp$ | _ . | - - | $\perp$ | _ | - | _ _ | Ш | _ | | | 1 | Ш | _ _ | 1 | Ш | - | | _ . | . _ | _ | | | | _ _ | | _ | | | | | | | | | | l | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | П | | Τ | | | | | 1 | П | | 17 | 7 | 1- | П | | | | | - - | - | | | - | | | - | - - | $\vdash$ | $\vdash$ | $ \cdot $ | - | - | - | + | Н | - | + | $\vdash$ | +- | $\vdash$ | + | ╁ | $\vdash$ | - | + | - - | - - | H | | | | | - - | - | - | | + | - - | - | ╢ | - | + | | $\vdash$ | - - | + | + | - | Н | + | $\vdash$ | $\vdash$ | + | | + | - | $\vdash$ | - | | - | - | - | | | | | _ _ | _ | | $\perp \perp \perp$ | _ _ | - | _ _ | 1_1. | - | $\perp$ | _ | | _ _ | Ш | $\perp$ | _ | Ц | | _ | Ш | | | | | Ц | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | Τ | | | 1 | | | П | | $\Box$ | _ | 7 | | _ | | | | - - | | | $\dashv \dashv$ | | | - - | H | - - | $\dagger \dagger$ | - - | | - | $\vdash$ | $\dashv$ | | Н | - | + | $\vdash$ | + | + | +- | - | H | - - | $\dashv \dashv$ | - - | -[- | $\vdash$ | _ | | | | - - | $\vdash$ | $\dashv$ | + | $\dashv \dashv$ | - - | - - | - | - - | H | - - | + | - - | $\left - \right $ | - | - | $\vdash$ | - - | + | $\vdash$ | + | + | - | - | $\vdash$ | | + | | | - | _ | | | | _ | Ш | $\sqcup$ | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | - - | - | $\bot$ | $\sqcup$ | 4 | Ш | _ _ | Ш | _ | Ш | _ _ | | | | _ | | | 4 | _ | | | | $\perp \perp$ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - - | | | | | | 1 | 1 | | | | T NENDTES N | O CHANCE T | ~ ~ | ~ | | | | Τ, | -1= | 3 t | امار | <u> </u> | -, | B.S | T | 6) | THE P | | 1 | 201 | | TITL | 17 | AI | | | LL | | 1 | | 3 No | | | | AT ISSUE LI | O CHANGE TO<br>EVEL CHANGI | E | ~ | | | | | 10 U M | HOH. | | H CLA | H D | | MAY8 | 7 7 2 | 11E | | 8 | her | 5/3 | JOP | Cov | ER | AS | SE | ME | LY. | 4 | | 74<br>1 | | 7 | | SIGNATOR | DATRON<br>PART No. | | | | DESC | RIPTI | ON | | | | | | หเก | CIPAI | L | | | | - | | | 1ANL | | TUR | IER' | s | | | | . USI | | | | | 617010 | <u> </u> | | | Ø s | 5.0 | AN | CHC | <br>)B | PI | V. | | PS | M | 21101 | (F1( | | | | | | AP2 | | -5 | • | | 7. | 101 | _ | / Ass | <u>.</u><br>3 | | | | 45050 | | - 1 | | | P GI | | | | | | | | | | | | | | | - - | 11 2 | | | | Ψ. | | u. r <u>L</u> | - | | <u>_</u> | | | | 63025 | | | | | NO. | | | | | ASH | ER | MIC | CRO | PI | LAS | TIC | S. | | | | 125 | W | 5 2 | 254 | 42. | | | | | 3 | _ | | | 617018 | | | | | H OF | | | | | | E | BAKI | ER ¢ | L F | INNI | EM | OR | Ē | | : | ZPO | 649 | 86 | | | | | | | 2 | | | | 45050 | 3- | 2 | | EA | RTH | S | CR | EEN | ۷ | | | | | | | | | | | + | | | | | | | | _ | | 1 | | | | 4504 | 90· | -1 | | ТО | PC | cov | /ER | \ | | | | | | | | | | | | | | | | | | | | t | | ı | | | | 90003 | 38. | | | CYA | NOA | CR. | YL | ATE | AD | HES | ive | | PER | RM. | AΒ | ON | D | | | | <u>-4</u> | | | | | | | | | \/F | ۲. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | + | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | $\downarrow$ | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | <del>.</del> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ****** | | | | | | | | | | | | ES. | 1 | | | | ł . | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 23. | | | | | l | | | | | | | | | | | | | | | DATI | | | רק | T | | tat | | 70 | l | | | _ | | SHEET 2 FOR LA | TEST ISSUE | | | | I | | | | | | | | | | | | | | | 51 | M N<br>M. E. | | | 717 | ١ ، | 28 | | ، د<br>الت | | | | | 軍員 @ Ja DRAWING 400747. DATE 2 0 2 | rassing to | 7.4.0 | CHED | 11 | P | 8 | | _ _ | . [ - | - - | | L | - | | | | | | | | | | | _ | | | | | | | _ | | | | | | Ĺ | | | L | | _ | | | _ | |------------------|------------|----------|----------|-----------|---------|-----|----------|----------|-----|----------|----|------------------------------------------------------------------|--------------------------|------|------|------|------|-----------|---------|----------|---------|-----------|----------|----------|----|----|----|----|----------|----------|---------|-----------|----------|----------|----------|----------|--------------|----------------------------------------|----------|----|------------|-----------|-----|-----| | 4007 | 148 | UATE | 30.11.8 | 17.3.88 D | 28.7.8 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | V - 77 | 5.2 i | ECO | 118 | 12812 | 948 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | Ì | | | | | REVISION | 0.1 | 1.1 | 2. | 1 | - - | - - | - - | - | | - | - | - | - | | - | - | - - | - - | - - | | - - | T | | - | - | | | | | 1- | - | - | - | - | 1- | - | $\vdash$ | - | | | · İ | - | | OFSCRIPTION | DEAWING | SHEET | <u> </u> | LL | | | | | | | | | | | ISS | UE | . ns | VIS | ЮН | | | | | 1 | | | 1 | | | | | | | | | | | ــــــــــــــــــــــــــــــــــــــ | | | | | | | | COMP.<br>LAYOUT. | 480748 | 1 | 0. | -: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $\prod$ | | | | | | | | | | L.P. | 400748 | 2 | _ | | -1.5 | _ | | _ | _ | _ | | L | | _ | | _ | _ | | _ | _ - | | _ | | | L | _ | | | | _ . | _ _ | 1 | | L | L | | | | | | | | | | | | | | _ | | _ - | | - - | - | _ | - | _ | | _ | | _ | _ | _ | _ | _ | _ . | _ - | _ | | _ | _ | | | | | 4 | _ _ | - - | _ | - | _ | _ | _ | _ | | | | | _ | | | | | | | - | - | | - | + | - | - | _ | <u> </u> | | | | - | _ | _ | - - | - - | - - | - - | - | - | - | L | | | _ | - | | - | - - | | | - | | - | _ | | _ | - | _ | _ | | | | | - | | | - | - | - | - | - | - | _ | - | | - | | - | + | - | - - | - - | - | + | - | - | _ | | | + | - | - | - - | + | $\vdash$ | $\vdash$ | - | - | - | - | - | - | - | - | - | | | | | - | + | - | - | - | + | - | $\vdash$ | - | - | $\left\ \cdot \right\ $ | - | | | - | - | + | - - | + | - | + | $\vdash$ | - | - | | - | - | - | + | - | - | - | - | + | - | | - | | | - | - | - | | | | | | | - - | | - - | - | | - | - | - | | - | | | - | - | - | + | - - | - - | ╁ | - | - | - | | - | 1 | - | - | + | - | - | - | - | - | - | - | - | - | - | | - | | | | | 1 | - | - | - - | - - | - | + | - | - | - | | | - | | - | 1 | - | 1 | - - | $\dagger$ | - | $\vdash$ | - | - | | | $\dashv$ | + | - | $\dagger$ | - | - | $\vdash$ | - | <del> </del> | H | - | - | | + | - | - | | | | | | - - | - - | + | $\vdash$ | $\vdash$ | 1- | - | - | - | - | | | - | | 1 | - | - - | + | - | | | H | | | | $\dashv$ | + | + | + | t | - | $\vdash$ | $\vdash$ | - | | | | + | $\dashv$ | + | | | | | | | - - | - - | T | 1 | | 1- | - | | - | | - | | | | - - | | - - | 1 | 1 | | - | T | - | | | 7 | 1 | 1 | T | $\vdash$ | r | - | - | T | | | - | | $\exists$ | + | - | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Γ | | | T | | | | - | 1 | | - : | | | | | | | 1 | | | | | | | | | | | | | | | | | | | L | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | - - | - | - | - | - | _ | | | _ | | _ | _ | _ | - - | _ - | - | - | - | _ | - | _ | _ | | _ | _ | - - | | - | - | - | | _ | _ | - | | _ | | | - : | | | | | | | $\perp$ | L | L | L | L, | | L | | | | | | | | $\perp$ | Д, | $\perp$ | $\perp$ | 1 | Ļ | | | | | | $\perp$ | $\perp$ | $\perp$ | | L | L | | | | | | | | | ! | | DELIOI<br>AL ISS | ES NO CHAI | 1GE TO | СХХ | s | | | | | | Ľ. | Je | ֓֞֞֞֝֞֜֞֞֝֞֝֟֝֓֞֝֟֝֓֓֞֝֟֝֓֓֓֓֓֓֝֟֝֓֓֟֝֟֝֓֓֝֟֝֓֓֝֟֝֟֝֓֓֝֟֝֡֝֡֝֡֝֡ | Ëί | E 11 | GL A | T 44 | | NN<br>.S. | | | CHE | E | R1 | | Co | W. | | Bo | 12 | 81<br>Mo | C | οVΕ | R | A: | 3S` | Y | 1. | 40 | ЭС | 57 | 4.<br>cf 2 | | | | | | | | - | | | | | | | | | | | | | | _1 | | | <u> </u> | ,, | -7 | <u> </u> | 15 | ( | | _7 | | | | | | | | - | | 13, | | | | | , . | | ' | Productive of | 400748 | İ | | | | | |-----------------------------------|---------------------|-------------------------|---------------------------|------------------------------------------------------------------|-----------------------| | ESIGNATOR. | DATRON<br>PART tie. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTURER'S<br>PART No. | No. USED<br>Per Assy. | | | 617016 | ANCHOR PIN | PSM. | AP2-B-5.0-G. ZN. PLATED | 4 | | | 450506-1 | BOTTOM GUARD SCREEN | | SEE DRG. | I | | | 617018 | PUSH-ON FASTENER | BAKER & FINNEMORE | ZP6498 | 22 | | | 450503-2 | EARTH SCREEN. | | | 1 | | | 630254 | NYLON SHOULDER WASHE | R. MICRO PLASTICS | 125WS 2542 | 4 | | | 450563-1 | FOOT FIXING PLATE. | | | 4 | | | 450491-1 | BOTTOM COVER | | | 1 | | | 450496-1 | TILT STAND | | | 1 | | | 611005 | M3X 12mm POZI-PAN STEEL | ZN. PL. | | 8 | | | 450224-2 | FOOT PAD. | | | 4 | | | 613029 | M3 WAYY WASHER SS. | | | 8 | | | 4502∞-1 | FCOT. | | · | 4 | | | 450201-2 | TILT STAND PLATE. | | | 4 | | | 900038 | CYANOACRYLATE ADHESIVE. | PERMA BOND | C4. | A/R. | | | | | | · | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | IOTES.<br>FE SHEFT <b>1</b> FOR L | ATEST ISSUE | | | m MAY.87. datron | ELECTROPICS LTD | | FC0 | | | CHE | 5.5.JACKSON 111.E 1281 BOTTOM COV MINUTED 12014-1055 1 1014-1055 | | | DRAWING No. | CHKD | _ 2 | . 5 | Ž | ø. | _ | _ _ | _ | | _ | _ _ | | | | | | | _ | _ | | | | | | _ | L | _ | _ | L | _ | _ | L | | _ | _ | _ | | _ _ | | | _ | | | |--------------------|------------------|--------|-------|------|-----------|------------|----------|------------------------|-----|---------|----------|-----------------------------------------|----------|----------|----------|---------------|----------|---------|----------|----------|--------------------|----------|----------|-----|--------------|----------|-----------|------------|-----------|-----|----------|-----|-------|---------------|------------|-----|---------|---------|-------|-----------|-----|-----------|-----| | 400749 | ) DATE | 8 | MAPP | EP8 | 190EC88 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DI WW | | ر<br>خ | 3 6 | نن ا | 610 | - | - | | | - - | - - | - | | - | - - | - - | - | | - | ┝ | $\left - \right $ | - | - | | - | ┝ | - | - | - | | - | - | | - | | | - | | | | | | | | | ECO | 8116 | 79 | 302 | 3.0 31601 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TE VISIO | N C | 2 | 0 | 0 | | - | | | - - | 1 | Т | | | - - | - - | 1 | Γ | Γ | Γ | П | | - | r | - | - | 1- | | | - | - | - | - | - | - | - | - | 1- | | 1 | | - | | | DESCRIPTION DE | AWING SHEET | | | - 10 | 117 | | Ш_ | | | | | نــــــــــــــــــــــــــــــــــــــ | 155 | LIE - | nev | 11510 | | <u></u> | <u></u> | <u></u> | Ш | | <u> </u> | L_ | <u> </u> | L | L. | <u></u> | L | L_ | <u> </u> | L | L | | <u>L</u> . | | <u></u> | | | | | | | | COMP. | IMBER NUMBER | - | 5 – | 0 | [0] | Т | Т | П | Т | T | T | П | | | | 13.0 | T | Γ | Т | Т | П | | | | Т | T | T | Г | | Γ | Γ | Г | Т | T | ī | Т | Т | T | T | Т | 7 | $\neg$ | | | LAYOUT 48 | 0749 | - = | | 7 | 3 | - - | + | | + | - - | | - | - | _ | | - | - - | | - | H | H | - | _ | _ | - | - | - | - | _ | | - | - | - | | | | - | | - | | - | - | | | | | _ _ | . _ | L | _ _ | _ | _ | _ | | | _ | | | | _ | $\perp$ | _ | _ | L. | | Ш | | | _ | L | L | _ | | _ | L | _ | | L | _ | | _ | | | | | | | | | | | | | | | | | | . | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | T | | | | - | | | | Γ | | | | | | | Г | | | | | | | | Γ | - | | _ | | | | Ī | | | | 1- | 1- | - | - | | 1 | | | | | - - | + | | | - - | $\vdash$ | | - - | - - | - | - | | + | | + | $\vdash$ | - | | Н | H | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | + | - | - - | - | - | | - | _ | | | | - - | - | - | $\vdash$ | - - | + | $\left \cdot \right $ | + | + | | - | $\dashv$ | - | - - | + | + | - | - | $\vdash$ | - | - | | _ | - | - | _ | - | _ | _ | _ | - | H | - | | ┼- | - | | - - | - - | - | - - | _ ! | | | | - - | - | - | - | $\perp$ | - | | - - | - - | - | - | 4 | _ | - - | 4- | $\perp$ | _ | _ | Ш | 4 | | _ | _ | _ | _ | L | | _ | | _ | L | _ | L | _ | - | _ | - | _ - | | _ | | _ | | | | | | | | | | | | | L | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | - - | T | П | | $\top$ | П | | - | $\top$ | T | П | 7 | $\top$ | - - | 1 | T | | | | 1 | | | | | | | | 7 | | | | | | - | - | | 1 | 1 | + | 1 | - | - | | | | - - | H | | + | - | | Н | - - | + | $\vdash$ | H | - | $\dashv$ | 十 | + | $\vdash$ | | $\vdash$ | H | + | $\dashv$ | _ | - | - | - | | - | | - | - | - | - | - | - | - | H | 1- | - - | - - | - | | - | | | | - - | - | H | - | + | + | - | | - | - | - | - | | + | + | 1- | - | | - | + | 4 | _ | | | _ | - | - | - | - | - | _ | - | - | _ | - | - | - | - - | - - | - - | - - | - | | | | - - | _ | - | - - | - | - | - | - - | _ | _ | | _ | _ - | _ _ | _ | _ | | | | 4 | _ | | | _ | | _ | _ | _ | _ | _ | | - | | _ | _ | | - | | | _ | | _ | | | | _ _ | L | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Τ | Г | | T | | П | | | | | | 7 | 7 | | T | | | | | $\top$ | 7 | | | _ | | | | | | | | | | | П | Г | T | 1 | Ť | Ť | $\dagger$ | 7 | | | | - - | | H | - - | ╁ | - | - | - - | | $\vdash$ | | $\dashv$ | - | + | ┢ | | - | $\dashv$ | $\dashv$ | + | + | $\dashv$ | - | | | - | - | + | - | - | - | | - | - | - | - | - | - | - | - - | - | - | | worrs | | | لـــا | Ш | | | 1 | 71 | 4 | 国.<br>丁 | <u> </u> | Ш | | | ORI | <u>.</u><br>5 | Ш | Tc | HK D | | ᅫ | 4 | FD | | | TIT | LE | 12<br>NS | | | | | | Ш | | DR | LAW | ING | tio | Ļ | 1. | ⊥. | | | DESIGNATOR | DATRON | | | - | DE | sçni | IPTI | 011 | | | | | | | | | IPAL | | | | | | | | | | | เทบ | | | JRE | R'S | <br>S | | | - | | | US | | ) | | | | | 300029 | | | | - | | | <b>-</b> | | | | | | | MA | NUI | FAC | TUI | 3E 11 | | | | | | | - | | RT | | | | | | | | | 1 | Per | Λ,ς σ | ¢γ. | | | | | | 450560 | | | | - | AIA<br>MIA | | | | | | | | | .ATE | Ξ. | | | | | | | | | | | <u>اد</u> | E | | )K | a. | | | | | | + | | | <u> </u> | | | | | | 510000 | | | | 7/0 | 2.0 | PV | <b>5.</b> 1 | NSL | )LA | TED | ٤ د | 34 | AC. | < ν | VIR | | | | | | | | | | | | | | | | | | | | | Ī | | | A/ | R | _ | | | | 510111 | | | | | 3.5 | | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | 1 | | | Α/ | | | | | | 510333<br>590002 | | | | | 3.2 | | | | | | | | | | | RE. | | | | | | | | | - | | | | | | | | | | | + | | / | <u>A/</u> | | | | | | 59000 | | | | | 18E<br>5m | | | | | | | | | 3 PAC 10 | м. | | | | | | - | | | - | $\dashv$ | | | | | | | | | | | + | | | 6 | | | | | | 59002 | | | | | 9.0 | , | , | | | | | | БНЕ | RINI | K S | LE | EVI | Ε. | | HE | ᇿ | EF | 31 | 14 | ٧. | S | F٨ | 19 | - : | 3 1 | Br | < | | | | J | _ | _/ | A/I | | | | | | 59003 | | | | | 3.7 | | | | | | | | | | | | | | | | | | | | - | | | _ | | | | | | | | Ţ | | , | ΑÆ | ۲ | | | | | 605077 | | | | | IMI | | | | | | | PL. | | M | | | | | | | | | | | $\dashv$ | | 8- | | | | | | | | | + | | | 8 | | | | | | 611054 | | | | 1 | √AY<br>2 x | | | | | | | TEF | | | | | | | | | | | | | $\dashv$ | <u>ں:</u> | <u> 3-</u> | <u>ار</u> | - ( | عر | SO | ن | | | | + | | | 12 | | | | | | 613009 | | | | | 5A S | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 士 | | | 1 | | _ | _ | | | 613027 | | | | 1 | 2 1 | | | | | | | | - 1 | | | | | | | | | | | | -[ | | | | | | | | | | | 1 | _ | _ | 2 | | _ | | | | 615016 | | | | | 2 I | | | | | | | | | | 17 | | | | - | | | | | | | | | | 0. | | | | | | | + | | | 2 | | | | | | 700111 | | | | | /ITC | | | | | | | | | | | | | | | | | | | | | | 202 | - | | | | | | | اکک | > | | | 1 | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | _ | | | | | | | <u> </u> | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | _ | | | | | | | | I | _ | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | + | | | | | | | | | | | + | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | - | | | | | | | | | | | + | | - | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | + | | | | | | | | | | | + | _ | | | | | | | NOTES. | | ~ | | | | | | | | -, | | - | | | | | | | | | | | | [ | DATE | | | | | T | | | | 1. | | | | | | | | | 7 | | SEE SHEET ! FOR LA | TEST ISSUE | | | | | | | | | | | | | | | | | | | | | | | | | | | 3.8 | | 4 | 711. | С | ٥ | U | <u> </u> | ענ | t r | l f C 1 | ADN | 1125 | LTD | _ | 1 | | ıss | | | | | | _ | | T. | | | | | T | | | T | | ]. | | | | | | 1 | CHEC | 3.S | .JA | CK | 50 | | | | | | | SF | OF | MS | ER | 7 / | 45 | ,5Y | | | E C O<br>DATE | | | | | | 1 | | | | | _ | | - - | | | | | 1 | | | | | | - 1 | APPF<br>UA16 | ovec | | | | _ | | | | | | 49 | | | | | | "2 | _ | | CHKD | | | | | | | | | | | | | | | | 1 | | _L | | | | | | 1 | | | | | | L. | | | 40 | $\mathcal{L}$ | 1- | +5 | , | | L | ۷_ | O. | 2 | ال. | 14.19 F E.B L A PANNING HUMBER 400749 | DRAWING No | | CIIK D | 1 <u>2</u> 4 | 2 2 | Je | T-1 | T | - | 1 | | - | -1- | - - | - - | 7 | 7 | П | | -7 | | 7 | -[- | 7- | 7- | T | | i I | -1 | - - | T | -<br> | [ | 1- | | | - | | | [ - | 7- | | |------------------|-------------------------|-----------------|-----------------|------|----------|----------|------|------------|------|--------------------|----------|-----|------------|--------------|---------|---------|----------|-------------|----------------------------------------------|-----------|-----------|--------|-----|--------|--------|-----------|----------|-----------|-------|-----|--------|-----|-----|----|----|--------------|------------|----|-------------|------|---------| | 400 | 750. | | 2722 812.87. PV | 8 8 | 8 | | | - - | - | - | - | - - | - - | - - | - | | - | | | - | - | - - | | | - | - | - | | - - | - | - - | - | | | - | $\vdash$ | | | - - | - - | +-1 | | DIW | | DATE | 2 2 | 2 Se | 1906 | | | | | | | | | _ | | | | | | _ | | | | _ | | | | | | | | _ | | | | | | | | | | | <b>υμ ۷۷</b> / | / <b>v</b> ( | r, c o | 22 | 33 | 9 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | REVISION | 2 2 | 0 0 | 0 3 | - - | - | - | - | - | | | | - - | - | - | - | | | - | | - | | - - | - | | - | | - - | - - | - - | ╀ | - | - | | | | | - | - - | | | | | ISSUE | | - 8 | 8 | | | | | | | ╛ | | | | $\perp$ | | | | | | | | | | | | | | | 1 | L | | L | | | | | | | Ш | | bi ecomo 1100 | DRAWING<br>HUMBER | SHEET<br>NUMBER | | | | | | | | , | | | , | SSUE | . 1 | REVI | SION | | | | | | | | | | | | | | | | | | | , | | | | | | | COMP.<br>LAYOUT. | 480750 | | 0- | - 0 | 3.0 | | - | | | | | - | İ | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | | | | LAIDUI. | 100150 | : | = - | - | - | | 1 | - | - | - | | 1 | - - | | - | - | | | - | 7 | 7 | $\top$ | | - | | T | | | | - - | | - | - | - | - | - | - | | - | - | | | | | | - - | - - | - | - | - - | | - | $\left - \right $ | | - - | - - | - - | ╁ | - - | - | - | - | - | + | + | + | + | - | - | $\vdash$ | - | + | - - | - - | - | - | | | - | - | - | - - | - | + 1 | | | | | _ . | _ _ | _ | LI. | | _ | . _ | | _ | _ | _ | - - | ļ | - - | | _ | | _ | 4 | 4 | _ _ | 4 | - | 4_ | 1_ | _ | _ _ | _ | _ | 4_ | 1 | ļ | - | | | - | 4 | _ | $\perp$ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - - | | | | - | - | - | | | | | | - | Γ | | | | | | | | | | | | | | | | | | | | | | | | | 7-1 | | | | | | - - | - | H | - - | - - | - | | - | | - - | - - | ╁ | - | | | | - | $\forall$ | + | - - | + | + | $\dagger$ | +- | | - | | + | + | ╁ | - | H | _ | | | - | + | | | | | | - - | - - | . | - | - - | - - | - | | - - | - | - - | - - | + | - - | H | | - | - | - | - - | - - | + | - | + | ╁ | _ | - - | | + | + | + | - | - | - | | - | | + | | | ٠ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | - | | | | | | | 1 | | | | | | | | | - | | | | | | | - - | - - | - | H | - - | - - | - | - | 1 | - | - - | - | T | - | T | | - | $\exists$ | 1 | 1 | 1 | $\top$ | $\top$ | $\top$ | T | $\exists$ | + | 1 | $\top$ | T | T | Γ | 1- | $\vdash$ | | | | - - | - | | | | | - - | | - | - | - - | - - | - | $\vdash$ | - | | - - | - - | - - | - - | $\vdash$ | H | | + | + | - | + | - - | + | - | - | - | | + | + | + | ╁ | - | - | <del> </del> | - | - | | + | - | | | | | _ _ | _ _ | Ŀ | | _ . | _ _ | | | _ | _ . | _ - | _ _ | Ŀ | . _ | | _ | _ | | _ | _ | _ | _ _ | _ | 1_ | L | | _ - | - - | _ | _ | - - | _ | ļ_ | <u> </u> _ | | | _ | 4 | _ _ | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 17 | - - | Γ | 1-1 | - | - | - | | | | | - - | - | | | | | | | | | - - | | - | | | | | | | | | | - | | | - | _ | | | | | - | | - - | | $\vdash$ | - - | - - | - | - | $\dashv$ | - | - - | - - | + | + | $\vdash$ | - | - | - | + | - - | + | - | + | ╁ | $\vdash$ | | - | - - | + | +- | + | - | + | - | | | - | | | | | | ļ | - | + | - | | 4 | _ | + | Н | 4 | + | 4 | - | + | + | - | Н | _ | - | $\dashv$ | | | + | + | + | ╀ | - | + | + | + | + | + | - | - | - | | | $\dashv$ | + | + | | | | | | | | | | | l | | | | | _ _ | . _ | _ | | | | | | | | _ _ | | | _ | | | _ | | _ _ | _ | _ | _ | _ | | | | _ | _ | | , | | | | | | | | | | | - | | | | | | | | | | - | | | | | | | | | | | | | | Ì | | | | - | | | | NOTES | | | | | | LL | | _ | - | 15 | 7· {· | | ما اد.<br> | 7 | 3 | DAN | 5. | ιT | Te | P C | , | | A | e i | K | T | 12 | 81. | <br>L | | , Vc | | AG | ıE | DI | WAR | | | | | | | DELIO | IES NO CHA<br>SUE LEVEL | CHANGE | ixx | .5 | | | | | 1.7- | JI CO<br>PRWI | r Fi | 111 | , 6; | بر<br>در ۱۸۷ | 43 | DAI | F | 7.87 | 10 | ATE | | 7 | DAI | o B | 18 | | | | -OR | | | | | | | HFE | 4C | | 1 =<br>or 2 | | | | | | | | | | | | | | | | | | | - | 1 | - | 12. | عدات | , , , | P | | | 40 | | | | | | | | | | | 12 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 40075 | sU | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DESIGNATO | | DATRON | | | | DES | CRI | PTIC | 111 | | | | | | | | | IPA<br>JFA( | | 111) = | n | | | | | | 1. | | A TU | | URE | R'S | | | | | No.<br>Per | US | | | | | | | 30003 | | 3 | $\dashv$ | 10 | 4/ 1 | VOLT | ΔG | - T | | NS | F ( ) | 2 8.4 5 | | 1 17 | 1,40 | 11.14( | - 1 ( | 1110 | | | | | | | | | D | | | | | | | | 1111 | | γ.<br>1 | | | | | | 51099 | | | - | | | PV | | | | | | | | n | /HI | TE | | | | | | | | | 1 | | | | • | | - | | | | | - | Vr | | | | | | 5900C | | | | | | SER | | | | | | | | | | | | - | | | | | | | T | | | | | | | | | | Γ | | 12 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 59003 | 1 | | | ø ? | ٠2 | H | EAT | SH | RII | NK | - | SLE | E١ | Æ. | | | | | | | | | | | _ | | | | | | | | | | _ | - | 1/5 | ۲. | | | | | 60505 | 3 | | | | | 10 | | | | | | | | M | 10L | ΕX | <u>. </u> | | | | | | | | | | 01- | | | | | | | | <u> </u> | | 1 | | | | | | G0505 | | | | CR | | | | | - | | | | | | | _Ex | | | | | | | | | | | 09 | | | | | | | | _ | | 12 | | | | | | 60507 | | | | CR | | | | | | | | | | | | LE) | | | | | | | | | | | -5 | | | | | | | | - | | 10 | | | | | | 60514 | | | | | | 0 | | | | | | | | | | LE) | | | | | | | | | - | | 9-0 | | | | | | | | - | | 1 | | | | | | 605155 | 5 | | - | 6 N | /AY | ′ 0 | 1.15 | 6 | НО | US | IN | G | | N | 101 | LE | X | | | | | | | | + | ა º | , - c | 21. | | 6C | 0 | | | | - | | 1 | | | | | | - 12.000 | | | | 10 | | | ~ | 7 - | | | | | <b></b> | 1 | | - | | | | | | | | | - - | | | | | | | | | | - | | | | | | | | 000516 | <u> </u> | | | 72 | ж4_ | <u>Sol</u> | ut) | 1/ | 10 | B | κ, 4°. | 20 | ι(N | PL | • | | | | | | | | | | + | | | | | | | | | | $\vdash$ | | | | | | | | | | | | - | | | | | | | | | | 1- | | | | | | | | | | | $\top$ | | | | | | | | | | T | | | | | | | PART No. | | MANUFACTURER | PART No. | Per Assy. | |-------------------|------------|--------------------------|--------------|--------------------------|-----------------| | | 300030 - 3 | LOW VOLTAGE TRANSFORMER | | SEE DRG. | | | | 510299 | 7/0.2 PVC INSULATED WIRE | WHITE | | ĄR. | | | 590002 | RUBBER SLEEVE H3OX | 25 mm | | 12 | | | | 4 | | | | | | 590031 | \$3.2 HEATSHRINK SLEEN | E. | | A/R. | | | 605053 | 12 WAY O.1 HOUSING. | MOLEX | 22-01-2125 | 1 | | | 605057 | CRIMP TERMINAL GD. PL. | MOLEX | 4809-GL | 12 | | | 605077 | CRIMP TERMINAL GD. PL. | MOLEX | 08-56-0106 | 10 | | | 605141 | 5WAY D.156" HOUSING | MOLEX | 09-91-0500 | 1 | | | 605155 | GWAY 0.156 HOUSING | MOLEX | 09-91-0600 | | | | 613009 | 4BA SOLDER TAG BRASS TIN | PL. | | | | | | | | | | | | | | - | | | | | _ | | | | | | | | | | | | | | | | | | I | | | - | | | | | | | | | | | | | | | | | | | | • | | * | | | | | )TES. | | | | | ELECTRONICS LTD | | E SHEET 2 FOR LAT | EST ISSUE | | | ASSEMBL | Y | | KIE | | | | DATE 21 ACS T NEMBER 400 | 2.50 | \* \* | URAWPIG III. | 7.5.0 | CHKD | 20 | * | 4 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |----------------|-------------------|-----------------|---------------------|--------|---------|------|---------|--------|----|---------|------|------|----------|------|----|------|-------|-----|----|---|-------------------|----|-----------|------|----|---------|---|------|----|---------|----|---------| | 400<br>DI | | DAIE | 1.0 2817 30 1187 40 | 22.8.8 | 8.6.9 | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | 2.2. | , | ECO | 2917 | 3010 | 3016 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | REVISION | 0 - | .2 | .3 | | | | | | | | | | | | | | | | | | | | | | | | | | Ī | | | CESCRIPTION | DRAWING<br>REBMUN | SHEET<br>NUMBER | | | | <br> | | | | | 155 | UE . | REVI | SION | | | | | | | <br> | | | | | | | | | | | <u></u> | | COMP<br>LAYOUT | 480752 | 1 | 0 - | | 1.2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | L . P. | 400752 | 2 | - | 1 . 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ш. | | Ш | | | | | _ | | | | | | | | | | | | | | _ | | | _ _ | | | | | | | | | $\perp$ | | $\perp$ | | | $\perp$ | | | $\perp$ | | | | | _ | Ш | | | | | | | $\perp$ | _ | | | $\perp$ | | | | DENOT | IES NO CHAI | NGE TO | DX.S | | | | | بإر | | | | | 43.873 | 5.J | | CHE | | - | W | | 185<br>281<br>881 | RE | AR<br>SSS | INP | מו | RATI | | | 20 | 75 | 52 | > | | | | | | | | <br> | H | N W II | CH | E *- | IGIA | | <u> </u> | PR. | 8/ | 3 54 | c y 8 | 715 | VA | 5 | AU L | | | - NI | | | s | HEET | 1 | or | 2_ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTURER'S<br>PART No. | No. USED<br>Per Assy. | |------------|--------------------|------------------------|---------------------------|----------------------------|-----------------------| | | 512999 | 7/0.2 PTFE INSUL WHITE | WIRE. | | 0.21M | | | 560006 - 3 | 2 CORE PTFE SCREENED | CABLE. | SEE DRG. | O.295M | | | 560008-3 | 4 CORE PTFE SCREENE | D CABLE. | SEE DRG. | O.295M | | | 590003 | Ø6.4 HEATSHRINK SLEE | VE. | | A/R. | | | 604081 | 50 WAY 'D' PLUG. SHELL | CANNON | DDU 50P - FO | 1 | | | 604082 | D' PLUG CONTACT. | CANNON | 330-7633-010. | 6 | | | 605051 | 4 WAY 0.1" HOUSING | MOLEX | 22-01-2045 | ı | | | 605052 | BWAY 0.1" HOUSING | MOLEX | 22-01-2085 | 1 | | | 605057 | CRIMP TERMINAL GDPL. | MOLEX | 4809 - GL. | 7 | | | 590075 | SOLDER SLEEVE \$4.8 | RAYFAST | CWT-5 | 1 | | | 590076 | SOLDER SLEEVE \$ 7.3 | RAYFAST | CWT-7 | 2 | | | 920212 | FERRITE BEAD | PHILIPS | FX4022 | 1 . | | | | | | | | | | | | | | | | | | | | 3 | | | | | | | | - | | | | | | | | | | | | · | | | 14.33 16 P | CHANNG No | | CHAD | T | 8 | | _ | | | - | | | | | | | | | | | T | ] | | | | | | | | | | | İ | | | <u> </u> | | | | ات | | | | |------------------|------------|----------|----------|----------|------|-----|----|----------|---|----|-----|------|------------|-------------------------------------|------|---------|---------|---------|--------|---|------------|----------|----------|-----------|---------|--------|--------------|------------|----------|----------|-----|---|-----------|----------|----------|------------|-----|---|----|------|-----|-----| | 4007 | 53 | DATE | 9 OCT 87 | 15JUN 88 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ECO | 2682 | 2929 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | REVISION | 0: | - | | - | | - | - | | | | | | - | - - | - - | | | | - | | | | | - | | | | | | - | | | | | | | | | | -j- | | OFSCRIPTION | DRAWING | SHEET | | | | | | | | | | | | | ıssı | JE . | REV | ISIO | ) N | | | | | | | | | | | | | | | | | | | | | | | | | COMP.<br>LAYOUT. | 480753 | 1 | 0: | -<br>- | | | | _ | | | | | | _ | _ | _ | | | | | _ | | | | | | | | | _ | | ] | | | _ | | | | | | _ | | | | | | _ | | _ . | _ | L | _ | | _ | | _ | | _ | _ _ | | _ _ | | _ | | | Ш | | | _ | _ | | L | | _ | _ | | L | _ | _ | _ | ļ | | | | | _ | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | _ | | - - | - | | - | | | | | | | | - - | | | | | | | | | | | T | | | | | | | | 1 | | | | | | | - | | | | | | | - - | 1 | 1 | | | - | | | | - - | - | | 1 | 1 | $\top$ | - | | | | | | $\top$ | T | | | - - | - - | T | T | | - | | | | 1 | 7 | 7 | - - | | | | | | - - | - - | - | - | r | - | - | | | | 1 | 1 | - | - - | + | 1 | T | | Н | | $\dagger$ | 1 | T | 1 | T | | $\top$ | T | + | $\dagger$ | 1 | | - | | - | - | + | 7 | | | | | | - | | - - | - - | | - | - | | - | - | - | | + | - - | + | + | ╁ | - | | | 1 | + | + | + | t | | | $\dashv$ | ╁ | + | + | $\vdash$ | $\vdash$ | - | - | | - | - | + | - - | | | | | | - | - - | - - | 1- | - | | - | - | - | + | - | - | - - | + | + | + | H | | $\vdash$ | + | + | + | + | + | | $\vdash$ | - - | - - | + | - | + | H | - | | | -+ | - | - | + | | | | | | | - | - - | - | - | - | - | - | - | - | + | - - | + | - - | + | + | H | | H | - | - | + | + | - | - | + | + | | + | - | + | - | H | | - | | + | - | | | | <u> </u> | | | | | - | + | $\vdash$ | - | | | | - | - - | | + | - - | + | + | - | - | H | $\dashv$ | + | - - | + | - | - | | - | - | - | - | + | - | - | | - | - | - | - | - | | | ļ | | | | | - - | - | | - | - | | | - - | - - | - - | - - | | - | - | - | - | $\vdash$ | - | - - | + | | - | - | | - | - - | - | $\vdash$ | | - | - | _ | - | | - - | - - | - - | | | ļ | | | | | | - | - | | | | | - | _ | | - - | | - - | - - | - | | Н | - | - | - | - | - | - | | - | - - | - | - | - | L | - | | | _ | _ | + | | | - | | | | | _ _ | | Ļ | _ | | | | _ | | 1 | 4 | 1 | _ | 1 | _ | _ | | | _ | $\perp$ | + | 4 | $\downarrow$ | _ | | 4 | _ | - | 1 | 1 | L | _ | | | _ | _ | 4 | _ | | | | | _ | _ . | _ . | _ | _ | | _ | | | _ | | _ | - | _ - | _ | _ | _ | Ļ | | | _ | _ | _ _ | _ _ | - | <u> </u> _ | | _ | _ | 1 | _ | L | L | <u> </u> _ | _ | _ | _ | _ | | _ | | | 1 | | | | | | | | | | | | | | | | $\perp$ | | | | | | | $\perp$ | $\perp$ | L | | | | | | 1 | | | | | | | | | | | | DENO. | IES NO CHA | NGE TO | $\infty$ | cs | | | | | | | jE | jį | <u>-</u> L | ֓֞֞֞֞֞֞֞֞֞֞֞֞֞֩֞֩֞֞֞֩֞֞֞֞֞֞֩֞֞֝֞֜֞֝ | ΞĹ | าู<br>ไ | B. | N<br>5. | J. | 6 | PS<br>NATE | , | | 27 | Į. | - | " | TLE A | 128 | 31 | ۸۵ | | = 1. | 18 | -<br>1 Y | DF | 4( | | 7! | 53 | 3 | | | | | | | | | | | | | но | RWI | C. H | | EHC | I A | N D | 9. | 6. | 87. | G | 214 | Jan | -8/ | Z | U | T. | 2 | | טר | ت. | | | // | | -1. | 51 | EET | | | or 2 | 2. | | | 400753 | | | | | | | |------------------|--------------------|----------------------------|---------------------------|----------------------|-----------------------|-----------------------| | ESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACT<br>PART No. | JRER'S | No. USED<br>Per Assy. | | | 605163 | GWAY O'I PITCH HOUSING. | MOLEX | 22-01-2 | 2065. | 2 | | 2. | 605162 | 3 WAY O.1" PITCH HOUSING. | MOLEX | 22-01-7 | 2035 | 2 | | 3. | 605051 | 4 WAY ON PITCH HOUSING. | MOLEX | 22-01-1 | 2045 | 2 | | ł. | 605057 | CRIMP TERMINAL GD.PL. | MOLEX | 4809-0 | aL. | 18 | | ò, | 512999 | 7/0.2 PTFE INSULATED WHITE | | | | 0.855M | | Ò. | 630272 | FANNING STRIP. | PANDUIT | FS 150- | C | A/R | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | OTES. | | | J.: | DATE | thtana | <u> </u> | | E SHEET ! FOR LA | TEST ISSUE | | | 10 JUNE 87. | datron | ELECTR: NOS LTO | | c o | | · | | | CABIF AS | SEMBLY | | IATE | | | | DATE | DRAWING NUMBER 400753 | 5 or | | CHANNG No | | CHED | 35 | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | |---------------------|-----------------------------------------|-----------------|----------|-----------------------------------------|----------|-----------------------------------------|---------|-----------------------------------------|------|----------------|----------|----------|----------|---------------------|-----------------------------------------|----------|-------------------|------|-----------|--------------|----------|------------------------|--------------------|--------------|---------|----------------------------------------|----------|----------|----------------|---------|-----------------------------------------|-----------|-----| | 400 | 156 | DATE | 30.11.87 | - | - | | | 1 | | П | | | - - | - - - | | - | - - | - - | - | 1-1 | 1 | - - | | - | - | - - | - | -1 | | - - | | - | | | | | - Unite | 8 | _ | | . . | | | | . | | | | _ _ . | | _ . | | | | | _ _ | | | | | | | | | İ | | | - | | | | ECO | 718 | | | | | | | | | | - - | | - | | | | ] | | - | | | | | - | | - | | - ! | 1 | | - | | | | | 2 | | | _ _ . | _ _ | | | | _ | | | | _ _ | | | | | | | | _ _ | | _ | | | | | i. | | | | | | | REVISION | 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 1 | | | | DESCRIPTION | DRAWING | SHEET | | لــــــــــــــــــــــــــــــــــــــ | | | | لــــــــــــــــــــــــــــــــــــــ | Ш. | | | | . ILE V | | لــــــــــــــــــــــــــــــــــــــ | | | ш | | | | | | LL | | | <u>_</u> | !! | | | | 1 | | | СОМР | NUMBER | NUMBER | | Т | | ТТ | Т | 77 | | | 18 | 1 | . 11.5 | TTT | TT | | 77 | | 7 | П | | П | 1 | | _ | _ | T | | _ | | T- | | | | LAYOUT. | 480756 | <u> </u> | 0. | _ _ | | 1 | | _ | | Ш | _ _ | 1_1 | | | - | | | | _ | | _ _ | | _ _ | | | | _ | | | | | | | | | | | | | | | 1 | | | | - | | | | | | | | | | | | | | | | | | İ | | | | | | | | | | - | - - | TT | 1 | 17 | | | | П | - - | 1-1- | | | | - | 1- | $\Box$ | $\vdash$ | 1 | - | | - - | 1 | $\vdash$ | H | - | - | - | | ij | | | | | | - | - | - - - | - | $\cdot - $ | + | | | - - | - - | | - | | + | | - | - | + | - - | - | - | - - | - - | - | - | | _ | | | - | | | | | | | | | _ _ | | | | _ | | | | | | | | | | | | | | | | | | | ĺ | | | | | | | | | | | | İ | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | $\Box$ | 1- | 11 | 7 | + | + | H | | $\vdash$ | 1 | + + | 1-1 | + | $\exists \exists$ | - | $\top$ | $\vdash$ | + | 1-1- | +- | | - - | - - | - | $\vdash$ | - - | - - | - | | | | | <u> </u> | | - - | - | + | ++ | - | + | - | $\vdash$ | + | $\vdash$ | - - | | - | - | + | + | +- | $\vdash$ | - - | - | - | - | - | - | - | | - - | _ - | - | - - | _ . | | | | | | $\square$ | | | _ _ | | | | | | | | | | $\perp$ | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | T | | | | | | 17 | $\top$ | $\Box$ | - - | 1.1 | 1 | $ \uparrow $ | + | | - - | $\dagger \dagger$ | $ \uparrow $ | + | $\forall$ | + | $\dagger$ | $\vdash$ | + | - | H | + | + | + | $\vdash$ | $\vdash$ | - - | - - | $\forall$ | - | - - | | | | - | | $\left - \right $ | + | + | - - | + | + | $\vdash$ | - | $\vdash$ | - - | - | + | + | + | - - | $\vdash$ | | - - | - - | $\vdash$ | - | + | + | - | - | | - - | - | - - | - | | | | | | $\perp$ | $\perp$ | $\perp \perp$ | | 1_1 | | Ш | _ _ | | | | Ш | | Ш | | | | | | | | | | $\sqcup$ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | T | | | | | | 7 | | T | T | | | İ | | | 17 | $\vdash$ | + | 1- | 1-1- | + | $ \cdot $ | + | H | - - | $\vdash$ | $\vdash$ | $\dashv$ | + | + | 1- | - | - | - - | + | + | + | | H | + | - - | - | $\forall$ | - - | | | | | | _ | | - - | | - - | - - - | + | - | - - | $\vdash$ | - - | | - - | - - | + | | - - | - | - | | + | - - | + | - - | - | | - - | | | | - | | | | | | Ш | | Ш | $\perp$ | Ш | | | | | | | | | | | | | | | $\perp$ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | T | | | | | + | $\Box$ | - - | 忕 | 1- | | + | | - - | - - | - - | | $\vdash$ | + | +i | - - | $\vdash$ | - | - | - - | 1-1 | | - - | 1- | - | | - - | - | 1 | - - | | | NOTES | | JI | | LL | Ш | Ш | $\perp$ | Щ. | Щ | Ш_ | | | I DRN | Ш | 1 | IK.O | Щ | APPE | Ļ | | IILE | | Ш | $\perp$ | | _ | Ц | DDA | WIN | G 110 | | | | | DENOT | ES NO CHA | NGE TO | cocs | | | | | | | | <u>'</u> | П | B.5 | 5.J.<br>5.87 | - 6 | 24 | | A | r | | | 281 | | | | | | | | | 56 | , | | | | | | | | | | - 1 | NOB | ., | | | | | | | | C4 | 7 / | 20- | | _ ^ _ | | | ~~ | ~ | | - ( | | | | or 2 | | | | | | | | | | | | | WICH | 1) 1.1 | ENGL | AND | 27. | 5.87 | . 28 | HAS | 0/ | 150 | 20 | Th. | | BLE | | | ٠. | | | SHE | E I | <u></u> | | | | | | | | | | | | 1 | | WICH | 13 1.1 | ENGL | AND | 27. | 5.87 | . 28 | HA9 | 0/ | 150 | 20 | (F.) | | | | | | | | SHE | ET | | | | | | | | | | | | | 1 | | WICH | () *.* | ENGL | AHD | 27. | 5.87 | . 28 | HAG | 0/ | 1.50 | 201 | G. | | | | | 1. | | ! | SHE | ET | | | | | | 40075 | o6. | | | | | *************************************** | | | WICH | 1,10 | ENGL | AND | 27. | 5.87 | . 28 | HAY | 0/ | | 20 | F | | | | | 1. | | | SHE | ET | | | | | | 40075 | a D | ATRON | | | DE | scnii | ,110 | | WICH | 1 | ENGL | AND | PR | INCIPA | | | (0,7) | 1.50 | ge 1 | 7 | | | | | | | | SHE | | | SED | | | | 1 | R D. | ART No. | 1 | | | | | )IN | | | | | PR<br>MA | INCIPA<br>NUFA | | | . 0.7 | 1.50 | ec I | 7 | M | TRZ | AC1 | URE | | | | SHE | l N | э. U | sy. | - | | | 1 | R D. | | 1 | | | scrii | | )IN | | | | | PR | INCIPA<br>NUFA | | | . 0,2 | | 201 | 7 | M | ANUF | AC1 | URE | | | | SHE | l N | э. U | SED<br>NY.<br>A/F | - | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>NRT 1 | :ACT<br>to.<br>5/1 | URE | ER'S | EY | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | ART No. | | | 16 | | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | . 0,7 | | | | M<br>P. | TRZ | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | sy. | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | . 67 | | | | M<br>P. | ANUF<br>NRT 1 | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>NRT 1 | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>NRT 1 | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | SHE | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | | M<br>P. | ANUF<br>187 (<br>1836: | :ACT<br>to.<br>5/1 | URE | ER'S | EY. | | | l N | э. U | лу.<br>А/Р | <br>ع | | | 1 | 8 D. P. | NRT Mo.<br>7000 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | DAIE | 3) | ANUF<br>1336. | 5/1<br>5/1<br>2-6 | 1086<br>1086 | G | | | | P <sub>1</sub> | a. U | A/F | 3 | | | NOTES. | 6 D P P P P P P P P P P P P P P P P P P | 05148 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | DATE 27 | MA | ANUF<br>1336.<br>451 | 5/1<br>5/1<br>2-6 | 6<br>561 | © 1 | | | | P <sub>1</sub> | a. U | лу.<br>А/Р | 3 | | | NOTES. | 8 D. P. | 05148 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | DATE 27 | | ANUF<br>1336. | 5/1<br>5/1<br>2-6 | 561 | G 128 | ====================================== | | | IN Pr | o. U | A /F | ₹ | | | NOTES. SEE SHEET / | 6 D P P P P P P P P P P P P P P P P P P | 05148 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | DAIE 27 B.S. | MA (JAC) | ANUF<br>1336.<br>451 | FACT 10. 5/1 2-6 | ORE 6 | G IZECA | 31 BL | | · · | IN Pr | o. U | 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ٦<br>- ۲. | | | NOTES. SEE SHEET / | 6 D P P P P P P P P P P P P P P P P P P | 05148 | | | 16 | WAY | R | IBB | ON ( | C.AI | BLE | | PR<br>MA | INCIPA<br>NUFA<br>M | | | | | | 27<br>B'S | MA (JAC) | ANUF<br>1336.<br>451 | FACT 10. 5/1 2-6 | ORE 6 | G IZECA | 31 BL | | | IN Pr | o. U | 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ₹ | | | DRAWING No. | 7 = 7 | CHKD | 36 | 8 | | Ţ | | | | | | | T | | | | | | T | | | T | | Ī | | | | | | _ | | | | | | | - - | ]- | | | | _ | |-----------------|-------------|----------|----------|-----------|------|-----------|----|----|-----|-----|-----|-----------|-------|-----------|----------|----------|------------|----------|----------|-----|------------|----------------|-----|-----------|----|----|----|----|-----|-----|-----------|-----------|--------------|----|-----------|------|-----------|------------------|--------------|------------|-----------|---------| | 400 | 131 | DATE | 190CT 87 | 2. MARB | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | ECO | 2682 | 192 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | REVISION | 1.0 | - | - - | | | - | | - | - | Ī | - | - | | - | | | | - - | 1 | | | | | _ | | | - - | - | - | | | | - | | - - | - | - | | | - 1<br> | | DESCRIPTION | DRAWING | SHEFT | Т | | | | | | | | | | | ıs | SUE | . 11 | EVIS | юи | | | | | | | | | | | | | | | | | | | | | | | L | | | COMP<br>LAYOUT. | 480757. | 1 | 0. | $\exists$ | | | | | | | | | | T- | | _ | _ | | | | | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | _ _ | | _ | | _ | | _ | _ _ | ļ | . | _ | ļ., | | | _ | _ - | _ | - | _ | _ | | | _ | | _ - | - | _ | _ | _ | | _ | _ | _ _ | | - | | | - | | | | | _ | _ | _ - | _ | _ | | _ | _ - | _ _ | - | - - | - | . _ | _ | _ | | _ | _ - | _ | - | | _ | _ | | | | _ | | - | _ | L | _ | | _ | _ | _ | _ | _ | . <u></u> | - | | | | | | | _ - | _ | | | _ | - | - - | - - | - - | | - | - | _ | | _ | 4. | _ | - | 1 | - | - | _ | | | - | - | - | - | | | - | 4 | - | - - | - | | | Ы | | | | | _ | | _ - | - - | - | | - | _ - | - - | - - | - - | - - | - | L | - | | | - - | - - | + | - | + | - | - | | | | - | - - | - | | | _ | - - | | | | - | - | - | | | | | - | - | - | - | - | | 4 | - - | - | - | - | - - | - | - | - | | - | - | - | + | - | - | + | - | _ | | + | | - | - | - | | | - | | - | - | - | | | | | | | | - | - - | - | | - | - | + | + | | - - | - - | + | - | - | | - | - - | - - | + | - | $\vdash$ | - | - | | | - | - | - | - | - | | | | | - | <del> </del> | - | | - | | | | | | - | - | - | - | | + | + | - - | + | - | - | $\vdash$ | $\vdash$ | | | $\dashv$ | + | + | + | ╀ | - | + | - | | - | - | | - | - | _ | | - | + | - | - - | $\vdash$ | - | | | | | | ļ | - | | - - | - | - | - | - | + | + | | - - | $\vdash$ | - | - | | | $\dashv$ | | + | ł | + | - | - | - | - | | - | + | | - | - | | - | - - | - - | - - | - | - | - | | | | | ļ | | - | | - | - | - | - | - - | - - | - - | - - | - | - | ŀ | - | | - | - | + | $\vdash$ | + | + | - | - | _ | - | - | - - | +- | - | | | $\dashv$ | + | - | | - | - | - | - | | | | ļ | - | | - - | - | - | - | + | - - | - - | - - | - - | - | ┢ | - | - | | - | - - | + | + | + | +- | + | - | | | - | + | + | - | ļ | | $\dashv$ | - | - - | | - | $\vdash$ | - | - | | | | ļ | - | | - - | | - | | - | - | - - | + | - | - | - | H | - | | - | - - | - | ╁ | + | 1 | - | - | - | | + | + | - | - | <del> </del> | | | + | + | - - | - | - | - | F | | | | - | $\vdash$ | | + | $\dagger$ | | | 1 | + | + | $\dagger$ | + | $\dagger$ | + | $\vdash$ | | | 1 | + | + | <del> </del> - | Ť | $\dagger$ | 1 | - | - | | 7 | ┪ | $\dagger$ | $\dagger$ | T | | $\exists$ | + | $\dagger$ | 1 | t | $\dagger$ | H | r | | | | | - | | - | 1 | - | | + | - - | Ť | - - | - | - | - | - | - | | - | | + | 1 | - | - | T | - | - | | | 1 | 1 | - | T | | | 1 | 1 | 1 | 1 | - | - | - | | HOIES DENO | TES NO CHA | NGE TO | <u>_</u> | LL<br>CS | | | -L | اا | T | | | t | ſ | ,C | J. | | B.5 | ب<br>ک.ت | I. | 6 | ко<br>R.C. | | 1 | li | 1 | - | TI | LE | 128 | 31 | | | - | | | DITA | 40 | ς ',,<br>ΣΟ<br>' | 7 | <u>-</u> - | 7 | - | | ∐ AT IS | SUE LEVEL ( | CHANGE | | | | | | | - 1 | | WIC | n : | 1 1.1 | S 1. | LAN | 0 | 8.5<br>27. | 5.8 | 37. | 28 | IE<br>I HA | 18 | 7 2 | 7 | CT | 87 | C | AE | 3LE | | 45 | SE | M | BL | Υ. | SHE | ET | <u>_</u> | OF. | 2 | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 400757 | | | | | | |------------------|--------------------|-----------------------------|---------------------------|----------------------------|-----------------------| | ESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTURER'S PART No. | No. USED<br>Per Assy. | | | 570001 | IG WAY RIBBON CABLE | 3M | 3365/16 | A/R | | | | | | | | | | | | | | | | | | · | | | | | | 605148 | IGWAY O'I"XO'I" GRID I.D.C. | 3M | 3452-6616 EY. | 2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 10 T E S. | | | | DATE | | | | | | | 27. MAY. 87 00 00 0 | SELECTRONICS LTD | | EE SHEET / FOR L | ATEST ISSUE | | | B.S. JACKSON. 111LE 1281 | | | f C O | | | | - CARIE A | SSEMBLY. | | DATE CHKD | | | | DATE DIDAMING NUMBER 40075 | 57 2 5 | | 1164 | | | | | | | URAWING No. | r 0 | CHKD | P | 5 | 8 - | | | | | | | | | T | | | | | | | | | | | | | | | | | | | | | | İ | | | | |-------------------------------------------------|-------------------|-----------------------------------------|--------------------|-------|---------|-----------------------------------------|----------|-----|-----|-----|----|------------|-----|----------|-------------|--------------------|------------|-----|-------------------------|-----------|------|-----|-----------|-----------|----------|----------|-----------|---------|------------|------------------------|----|----------|-----------|----------|------------|-----------|-----------|-------------|---| | 4007 | | DATE | 90CT87 | 3-9-8 | 3 DEC 8 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | F.C.O | 1.0 2673 90CTBT MO | 650 | 162 | - | | | | - | | | | - | | | | | | - | | | | | | | | - | - | | | - - | | | | | 1 | | _ | | | | REVISION | 0. | 1.1 | 0 | - | - | 1 | - - | - - | - | | | - - | | - | | - | | ╁ | - | | | - - | +- | | | | - | | | - - | | 1- | - | | 1 | + | | | DESCRIPTION | DRAWING<br>NUMBER | SHEET | | | | | | | | | 1 | | | 1550 | E . 1 | 1 E V I ! | SION | | | | | LL. | | | | انا | | | | 11 | | | | | اا | | L_ | | | | COMP<br>LAYOUT. | 480758 | 1 | 0 | - | 2.0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | I | Τ | | | | | - | | , | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | | , | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | | | | | 11 | _ | | | | | | | | | | | | | | | | T | - | | | | | | | | | | | П | | | - | | 1 | 1 | | | | 1 | 1 | $\Box$ | _ | | | | | | | | | | | | | | П | | | T | Τ | | 1 | | | | | 1 | 1 | T | | | | | | | 1 | | | | | † | 11 | _ | | | | | | | | | | | | - | - | | 7 | | | - | | - - | | 1- | | | 1 | 1 | - | П | | | | | | 1 | T | 1 | $\Box$ | | $\dagger$ | $\prod$ | _ | | | | | | - - | | | | - | - - | 1 | - | | 7 | | + | - | | - - | | $\vdash$ | - | | 7 | $\dagger$ | T | H | 1 | - - | 1- | П | 1 | | 1- | 1 | $\vdash$ | $\dagger$ | _ | $\Box$ | - | | | | | | - | - - | | | - - | - - | 1 | 1- | | | - - | $\dagger$ | | | 1 | - - | - - | | | | $\dagger$ | $\vdash$ | $\vdash$ | 7 | 1 | 1 | П | 1 | + | - | $\vdash$ | П | - | 1 | $ \cdot $ | - | | | | | - | - - | + | T | | 1 | - - | 1 | - | | - - | - - | $\parallel$ | - | H | - | - - | - | | | - | ╁ | ╁ | H | $\dagger$ | - | $\vdash$ | $ \cdot $ | 1 | + | $\dagger$ | + | Н | - | + | + | - | | 200 1 F 100 200 200 100 100 100 100 100 100 100 | | *************************************** | | - - | | | | - - | - - | + | ┢ | | - | $\dashv$ | ╁ | $\vdash$ | H | - | - - | + | | | - - | + | - | $\vdash$ | - | + | - | Н | - | + | - | - | $\vdash$ | + | + | | - | | | | | - | - | - - | - | | + | - - | - | H | | - | - - | - - | - | | - | - - | $\vdash$ | - | | - | + | + | - | + | - - | ┢ | H | 1 | - - | + | ╁ | | $\dashv$ | + | + | - | | | | | | - | - - | - | | - - | - - | - | - | | | - | - | - | | - | - - | - | - | - | - - | - - | 1- | | - | + | | $\vdash$ | - | - - | - | + | | - | + | + | _ | | | | | $\vdash$ | + | + | + | $\vdash$ | + | + | + | - | H | + | + | + | +- | H | + | ╁ | + | - | + | $\dagger$ | + | - | $\vdash$ | + | + | + | H | + | $\dashv$ | + | + | | + | - | ++ | _ | | | | | | - | | - - | | - - | | - | - | | - - | | - | - | | | | - | - | - - | | - - | - | - | - - | - | - | $\left \cdot \right $ | + | - | - | - | $\vdash$ | + | + | | _ | | HOTES | | | | | | لــــــــــــــــــــــــــــــــــــــ | | | | -6- | | <u> </u> | | | _ | ппи | | | CHK | D | لــا | AP | AA | | 711 | L.E | | | <u>L</u> . | Ш | | | | | ING | | | | _ | | DENOT<br>AT 155 | ES NO CHAI | NGE TO | DOC | ::S | | | | | 2 | l£ | | <b>.</b> , | ENC | | HĐ<br>D | B.5<br>DATE<br>271 | 0,U<br>MAY | 87 | CHK<br>C.R<br>DAI<br>28 | E<br>HATI | 87 | 100 | Q d | 8 | | CA | 28<br>Bl | ı<br>E. | AS | SE | M. | BLY | / s | 40 | )<br> <br> | 75 | 58<br>5 2 | | | | - | | | | | | | | | | | | | | | * | | | | | | | | | | | | | | | | | | | | | | | - | _ | 图图 . 1 F 30 100 F 7 # N 6.5 1 £ 18 6.11 80 65 | 400758 | | | | | | |----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|-------------------------|-----------------------| | ESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTURER'S PART No. | No. USED<br>Por Assy. | | | 570001 | IGWAY RIBBON CABLE | Зм | 3365/16 | A/R | | • | 604080 | IGWAY O'I "XO'I "GRID. TRANSITIO | J. 3M | 3916 - 0000T | | | · | 605148 | IGWAY D'I "XO'I "GRID. IDC. | 3M | 3452-6616 EY. | 1 | | | | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | THE STATE OF S | | | | | | | | | | | | | | | | | | | | | NAME OF STREET | | | | | | DIES. | | - | | | | | | | | | 27+h MAY. 87. data | ELECTRONICS LTD | | SHEET FOR LA | TEST ISSUE | | | UNAN JACKSON. 1281 | ASSEMBLY. | | NIE<br>IKD | | | | DATE DRIVING 400 | 758 2 SHEET 2 | | CRAWING NO. | | CHI: D | Q. | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | |-----------------|---------------------------|-----------------|----------|-----|---------|--------------------|-----|-----|----------------|------------------------|----------|----------|---------|---------------------------------------|----------|----------|---------|-----|----------|-------------|----------------------------------------|-------------|-----|-----------|-------------|-----------|-----|--------------|----|----------|-----|--------------|-----------------------------------------|----------|-------|-----------|---------|----------| | 4007 | 59 | DATE | 21.9.87 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | €CO | 5669 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | REVISION | 0 | | - | - | | | | | | -1 | -1. | 1 | - | | 7 | - | | П | 1 | | | - | | T | 1 | T | - | T | | 1- | | _ | | | | - - | | | DRAWING | ISSUE<br>SHEET | | | $\perp$ | | | | $\perp$ | | | | $\perp$ | | L_ | Ш | $\perp$ | | _ | | | | | 1 | | | Ţ | | | | | | لــــــــــــــــــــــــــــــــــــــ | | | | | | | NESCRIPTION | NUMBER | NUMBER | L., | | -, | | | | | | | | 13 | SSUE | • R1 | VISI | 011 | _,_ | | , | | | | | , | | | | | | | | | | | | | | | COMP<br>LAYOUT. | 480759 | <u> </u> | 0.7 | | - | - | | | - | _ | | _ | _ | - | _ | | _ | _ _ | _ | | 4 | _ | _ - | - | | _ - | _ _ | | | _ | _ _ | - - | - | | | | | _ _ | | | | | | | | | | _ - | - | - | | - - | _ - | - | - | | _ | - - | - | | - | 4 | - | - | | | - - | | - | _ | _ | | | _ | | - | | | | | | | | - - | - | | | | - - | - | - | - | - - | - - | - | $\vdash$ | - - | - - | - | H | - | + | + | $\vdash$ | - | - - | - - | - | - | - | - - | - | | - | - | | - | | | | | | - | | - | - | | - - | - - | | | - - | - - | - | - | | | - | $\vdash$ | Н | $\dashv$ | + | - | + | $\parallel$ | + | - | $\vdash$ | | + | - - | - | - | - | - | | | - - | | | | ` | | - - | | | - | + | - | Н | | + | - | + | $\vdash$ | | + | + | ╁ | $\ \cdot\ $ | + | + | - | + | | - | - | ┢ | | 1 | - | - | | - | | - | | - - | | | | | - - | - | | | | 1 | 1 | | + | - | - - | + | H | | + | - | | | Ť | | + | $\dagger$ | | $\dagger$ | + | - | Н | + | - - | 1- | | $\dashv$ | † | $\vdash$ | - | $\Box$ | | | | | | - - | | | | - | - | | 1 | 1 | 1 | - | | | - | T | T | П | 1 | $\dagger$ | T | $\dagger$ | | T | 1 | | П | 1 | | 1- | | 1 | - - | $\dagger$ | - | rt | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | _ - | _ _ | _ | | 1 | _ | | _ | | | | | | | 1 | | _ | L | | | | L | | | _ | L | | | | L | | | | | | | | | - | | - - | - - | - - | - | _ | _ | - - | - | | | + | - | - | | 1 | + | - | - | | _ | + | $\downarrow$ | | + | - | $\downarrow$ | | | - - | - | _ | - | | | | | - | - | - | | - - | - - | - | $\left \cdot \right $ | + | - - | + | - | | - | - - | - | - | | + | + | - | $\vdash$ | - | + | + | - | | + | - | | $\left \cdot \right $ | - | - - | + | - | - - | | | | | | + | | $\ \cdot\ $ | - | + | + | H | $\dashv$ | $\dashv$ | + | + | | | + | + | $\vdash$ | H | + | + | + | $\vdash$ | H | + | + | + | H | $\dashv$ | + | + | $\parallel$ | + | + | + | - | $\vdash$ | | | | | - - | - | - | $\left - \right $ | - - | | ╁ | $\ \cdot\ $ | + | - | + | - | | - | - | - | - | $\vdash$ | + | + | + | $\vdash$ | H | + | + | - | - | + | - | + | | $\dashv$ | | - | - | - | | 110165 | <u></u> | L | Ш | | | Ш | | Ц. | <sub>1</sub> _ | Ļ | _ | | | | ۲, | אחו | | ٠, | CHKE | | Ц | 3 | | - | 111 | LE | | | | L | | | DR | 1WA | IG No | , | <u></u> | | | DENOT<br>AT 155 | IES HO CHA<br>SUE LEVEL C | NGE TO<br>HANGE | $\infty$ | s | | | | | 1 1 1 | JE | 7 | | n, | ֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | | 3.5 | .J. | 7 | F.R. | Ç | 7 | 70<br>20 | 4 | 87 | - 0 | CAE | SLE | Α | SS | ΕN | 184 | Y | | 40 | 00 | | 9 | | | | | | | | | | | | 1 111 | 2.R.W. | | | NG | I, A 11 C | , 16 | . 1. 🗅 | 0.0 | / | 28 H | AYE | نـــــــــــــــــــــــــــــــــــــ | <u>~</u> \$ | 7. | 01 | L` | | | | | | | | SH | EET | 1 | ŋr | 2 | | The second secon Addition from the following section of the control | 400759 | | | · | | | |--------------|--------------------|---------------------|---------------------------|----------------------------|-----------------------| | DESIGNATOR | DATRON<br>PART No. | DESCRIPTION | PRINCIPAL<br>MANUFACTURER | MANUFACTURER'S<br>PART No. | No. USED<br>Per Arry. | | 1. | 570001 | IG WAY RIBBON CABLE | 3M | 3365/16 | A/R | | 2. | 604073 | 8WAY DIL IDC. | T¢ B | G09/M085H | 2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | NOTES. | EST ISSUE | | | 27. MAY. 87. | ELECTRONICS LIE | | FCO PAIR GWD | | | | 1 CABL | 0759 2°" | | ······································ | | CHK D | 12 | | $\neg$ | 17 | | 1-1 | -1- | - - | T-1 | 7 | T | П | | T- | 7 | П | $\top$ | | Т | | $\neg$ | $\top$ | | | | - | -1- | | - | | -1- | j - j | | - <sub>i</sub> . | |----------------------------------------|------------|----------|----------|----------|---------|-----------------|-----|----------|-----|-----------|----------|-------|----------|----------|---------------|--------|----------|-------------|-----------|--------------|-------------|-----------|--------|-----------|----------|----------|------|-----------|-------------|----------|--------------------|------|--------------|----------------|------|------------------| | 400 | 770 | | 87. | | | | | | + | - | | - - | | | $\dashv$ | + | - | - | - - | - - | - | $\vdash$ | - | - | - | | | - - | - | | - - | - - | - | | ı - | - | | | | DATE | 30,11.87 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | DI WA | V) | | 80 | | - | 1 | - - | | - - | - | | - - | - | - | | - - | - | | | - | 1- | | - - | - - | " | | -: - | - | | - | | | | - | ı İ | | | | | ECO | 2718 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | ı | | | | REVISION | | | - - | | | | | | | - - | 1 | | | - - | Γ | П | - - | - | - | | - | - - | | | - - | - | - | | | | - | - | 1 | | | | DRAWING | SHEFT | | | | | | Ш | | | Ш | | _ | Ш | | | <u></u> | Ш | | 1_ | | | | | <u>L</u> | Ш | | L | L | Ш | Щ | | | Ш | Ц | | | CT SCRIPTION | NUMBER | NUMBER | | | | т-т | | 1 - 1 | | | - | ISSUE | - n | EVIS | 1011 | | _ | | _ | 7 | _ | -т | | | т | | | | _ | | | | | | | | | COMP.<br>LAYOUT. | 480770 | ) 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | İ | | | ĺ | | | | | $\prod$ | | | | | | | | | | | | | | | П | | | | | | | | | - | | ] | | Π | | - - | | | 1 | | | | - | 1-1 | - - | + | - - | - - | 1-1 | - | - | | + | - | Н | - | ╁ | $\vdash$ | $\vdash$ | + | - | $\vdash$ | + | | | | | - - | - | 1-1 | - | 1-1 | | - - | | . | | | | | _ | | - - - | - - | - | | | + | - | | - | - | | | - - | - | - - | _ | 4_ | - | - | - | | - | _ | | | - | | i - - | _ . | - - | - | _ | - | | SCHEMATIC | 430770 | ) | 0. | | | | | | | | | | | | | | ١, | | | | | | ı | | | | | | | | | | | | | | | | | | | | | | | | | | | | | П | | | | | Ī | | | | 1 | | | | | | | | | | | 1 | | - - | | | | - | $\vdash$ | - - - | + | - | + | $\Box$ | + | + | + | + | + | H | + | - | | H | + | + | | $\dashv$ | + | ╁ | - | - | + | - - | H | - | 1 | | - - | - | | - - | | | | | | $\dashv$ | _ | $\vdash \vdash$ | - - | H | - | + | $\dashv$ | - - | $\vdash$ | H | - | - | | H | + | + | Н | _ - | - | + | | 4 | + | + | $\vdash$ | - | Н. | 4- | - | . | | - - | | | | | | | $\perp$ | | | | | | | | | | $\perp$ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | -1 | | | | | 1-1 | 11 | 1- | | 1- | $\Box$ | - | | - | + | $\vdash$ | $\Box$ | + | $\top$ | | $ \cdot $ | $\dagger$ | + | $ \cdot $ | + | - | + | | $\dashv$ | + | $\dagger$ | $\forall$ | | _ | + | +- | Н | | | | - | | | $\vdash$ | | - | - - | - | $\vdash$ | - | - - | - | - - | ╀ | $\vdash$ | - - | - | H | $\vdash$ | - - | + | - | 4 | + | - | | 4 | - | + | | Н | | 4 | $\downarrow$ | 1-1 | | | | 1 | | | | | | | | | | | | | L | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 7 | | | - | | | | | H | - - - | + | H | 十 | - - | - - | $\forall$ | | - - | $\vdash$ | Н | $\dashv$ | 1 | | | + | + | Н | $\forall$ | $^{+}$ | + | | $\dashv$ | - | + | - | $\vdash$ | | + | - - | - | | - | | | | | $\vdash$ | - - - | - - | | - - | | - | - - | - | - - | H | $\vdash$ | + | + | - | $\vdash$ | +- | + | H | $\dashv$ | + | + | $\vdash$ | - | - | - | - | Н | | + | - | - | - | - - | | | | | | | | Ш | | | | | | | | | | | | | | | | | | | | | | | | | $oldsymbol{\perp}$ | | | | | | | РСВ. | 410394 | | В | | | | | | | | | | | | - | | | | | | | İ | - | | | - | | | | | | | | | | | | | | | | | $\top$ | | 7 | | 1 | $\Box$ | T | | | | $\neg \neg$ | $\top$ | | | $\top$ | - | П | - - | 1 | $\dagger$ | | - - | 1 | + | $ \cdot $ | $\vdash$ | - | 1 | | | - - | 1- | | 421E5 | <u> </u> | | | | | Ш | ᅪ | LJ. | | ᆜ | | | | DRN. | | 1 | פאויי | Ш | 4 | AP P | IJ | - | TITLE | | | | | <u> </u> | Ш | Ч | DRA | WINC | 110 | Ш | | | | DENOT<br>AT 155 | IES NO CHA | ANGE TO | DOC | s | | | | | | וָיוֹ | 7 | Ţ | | SALE | ACKS | W C | ALE | <u>.</u> | ٠, | Ka | | 4 | ~- | 12 | 31 | A 1 | ٨. | c = | 12 | ال. | 4 | | | 770 | ٥ | | | | | | | | | | 1 | ноп | wic | н | ENS | HAI | 0 3 | 0.7 | .87. | 9 | A | 448 | 7 | ζ <i>D</i> e | C | 1 | -1 E | KIV | IIN | 4 L | AD | ) E | VID | | SHE | ET | | or | 2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 40077 | 0 | | | | 1 | | | | | | | | | - | | | | | | | | | | | | | | | | | | T | | | | | | DESIGNATO | ır ı | DATROM | | | DE | SCIH | PHC | 111 | | | | | | PRI | INCI | PAL | | | | | | | | MΑ | MO1 | AC | UR | EU.a | ; | | | - | Vo. | USEL | ) | | | | 1 | ART No. | | | | | | | | | | | | | NUF | | UNE | ΕR | | | | | | PAI | | | | | | | | | | uaei.<br>Nssy. | | | F 9) B. J. 1 0, 5 L w | 400770 | DATROM | DESCRIPTION | PRINCIPAL | MANUFACTURER'S | No. USED | |---------------------|------------|---------------------------------------|--------------------|-------------------------------|-------------------| | *** ** *** | PART No. | | MANUFACTURER | PART No. | Per Assy. | | | 400746-1 | 1288 TERMINAL MECH ASSY. | | | ı | | | 410394-B | FRONT INPUT FLEXIBLE PC | B. | | 1 | | | 611097 | M2X Gmm POZI - PAN . STEEL . | BRIGHT ZINC PLATE. | | 6 | | | 613043 | M2 WAVEY WASHER | | | 6 | | | 300016 | CLEANING FLUID | RS. | 556-654 | A/R | | 5K_100_ | 605157 | GWAY O.1" PCB SOCKET. | MoleX | 22-18-2063 | | | SK 101 | 605156 | 3 WAY O-1 PCB SOCKET. | MoLEX | 22-18-2033 | <u> </u> | | 5K 102 | 605158 | 4WAYO' PCB SOCKET. | MOLEX | 22-18-2043 | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | 1979 | | | | | | | | | | | | | | | | | | | | | W | | | | | HOTES | | | | DATE | | | CIT SHIFT & FOR LAT | TEST ISMUE | | | 30 July. 87 | SELECTIONALES LID | | ms | | | | BS. JACKSON. 1281<br>TERMINAL | _ ASSEMBLY | | DA11 | | | 1 1 1 1 | DATE CHAPTERS NUMBER 4007 | 70 2''''2 | | DATRON INSTRUMENTS LTD | PARTS LIST | 23-Dec-88 | DESC: ASSY PCB DC 1281 | DRG NO: LP400738-1 | REV: 36 | ~ 3 J | 7 | |------------------------|------------|-----------|------------------------|--------------------|---------|-------|---| | | | | | | | | | | R101 | | ~ | DESCRIPTION | | MANUF PART NUMBER | CLASS | UM | QUANTITY | CHANGES | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|------------------|----------------------------|-------------------------|---------| | R209 090103-1 RES FL 5K00 1% VISHAY MARN SEE DRG A | R101<br>R102<br>R103<br>R201<br>R202 | 008014<br>008014<br>090001<br>011001<br>041004 | RES MG 10M 5% 2.5KV<br>RES MG 10M 5% 2.5KV<br>THERMISTOR PTC 80R<br>RES MF 1K00 1% .12W 50PPM<br>RES MF 1M00 1% .12W 50PPM | PHILIPS PHILIPS PHILIPS HOLSWORTHY HOLSWORTHY | YR37-10M<br>YR37-10M<br>YR3650<br>HBC<br>HBC | A<br>A | EA<br>EA<br>EA<br>EA | 2<br>-<br>1<br>24<br>10 | | | R209 090103-1 RES FL 5K00 1% VISHAY MARN SEE DRG A | R203<br>R204<br>R205<br>R206<br>R207 | 041004<br>041005<br>090106-1<br>090106-1<br>080048-2 | RES MF 1M00 1% .12W 50PPM RES MF 10M0 1% .12W 100PPM RES WW SET 3M3 X 3 +100K RES WW SET 3M3 X 3 +100K RES FL 10K1 .1% 3PPM | HOLSWORTHY STEATITE VISHAY MANN VISHAY MANN VISHAY MANN | H8C<br>MK2<br>SEE DRG<br>SEE DRG<br>SEE DRG | A<br>A | EA<br>EA<br>S4<br>S4<br>EA | -<br>2<br>1<br>-<br>1 | | | R213 01000F RES MF FSV R214 01000F RES MF FSV R215 011001 RES MF 1K00 18 .12W 50PPH HOLSWORTHY HBC A EA - R215 042214 RES MF 2M21 18 .12W 100PPH HOLSWORTHY HBC A EA - R217 042214 RES MF 2M21 18 .12W 100PPH HOLSWORTHY HBC A EA - R218 011001 RES MF 1K00 18 .12W 50PPH HOLSWORTHY HBC A EA - R219 041004 RES MF 1M00 18 .12W 50PPH HOLSWORTHY HBC A EA - R220 080043-2 RES FL 1K00 .1% 3PPM VISHAY MARN SEE DRG EA 1 R221 006586 RES HM 68M 5% .25W ALLEN BRADLEY CB A EA 1 R222 065008 RES CT 100K VERT M/T BOURNS 3296W-100K A EA 1 R223 011002 RES MF 10K0 1% .12W 50PPH HOLSWORTHY HBC A EA 1 R224 011002 RES MF 10K0 1% .12W 50PPH HOLSWORTHY HBC A EA 1 R225 011501 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 3 R226 012212 RES MF 10K0 1% .12W 50PPH HOLSWORTHY HBC A EA 3 R227 012212 RES MF 10K0 1% .12W 50PPH HOLSWORTHY HBC A EA 3 R228 011003 RES MF 1X50 1% .12W 50PPH HOLSWORTHY HBC A EA 3 R227 012212 RES MF 2XK1 1% .12W 50PPH HOLSWORTHY HBC A EA 3 R228 011501 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 3 R227 012212 RES MF 2XK1 1% .12W 50PPH HOLSWORTHY HBC A EA 3 R228 011501 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R229 011003 RES MF 10KK 1% .12W 50PPH HOLSWORTHY HBC A EA 7 R228 011501 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 7 R228 011501 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 7 R228 011501 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R229 011003 RES MF 10KK 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 014750 RES MF 475R 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 014750 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 014750 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 01404 RES MF 1M00 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 014750 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 014750 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 014750 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 014750 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 014750 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 014750 RES MF 1K50 1% .12W 50PPH HOLSWORTHY HBC A EA 6 R231 044104 RES MF 1M00 1% | R208<br>R209<br>R210<br>R211<br>R212 | 080103-1<br>080103-1<br>080103-1<br>090106-1 | RES WW SET 3M3 X 3 +100K<br>RES FL 5K00 1%<br>RES FL 5K00 1%<br>RES WW SET 3M3 X 3 +100K | VISHAY MANN<br>VISHAY MANN<br>VISHAY MANN<br>VISHAY MANN | SEE DRG<br>SEE DRG<br>SEE DRG<br>SEE DRG<br>SEE DRG | A<br>A<br>A | EA<br>EA<br>EA<br>S4 | 3 | | | R223 011002 RES MF 10K0 1% 1.12W 50PPM HOLSWORTHY HBC A EA - R225 011501 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA - R226 0121212 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA 3 R227 012212 RES MF 2ZK1 1% 1.12W 50PPM HOLSWORTHY HBC A EA 3 R227 012212 RES MF 2ZK1 1% 1.12W 50PPM HOLSWORTHY HBC A EA - R228 011501 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA - R229 011003 RES MF 10K 1% 1.2W 50PPM HOLSWORTHY HBC A EA 9 R230 011003 RES MF 10K 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R231 014750 RES MF 475R 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R232 011501 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R233 013321 RES MF 3K32 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R234 041004 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R235 011002 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R236 090149-1 RES FE SET 25K/15K/9K/1K VISHAY MANN SEE DRG S4 - | R213<br>R214<br>R215<br>R216<br>R217 | 01000F<br>01000F<br>011001<br>042214<br>042214 | RES MF FSV<br>RES MF FSV<br>RES MF 1K00 1% .12W 50PPM<br>RES MF 2M21 1% .12W 100PPM<br>RES MF 2M21 1% .12W 100PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | Н8С<br>Н8С<br>Н8С | A<br>A<br>A | EA<br>EA<br>EA<br>EA | 6<br>-<br>-<br>2<br>- | | | R223 011002 RES MF 10K0 1% 1.12W 50PPM HOLSWORTHY HBC A EA - R225 011501 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA - R226 0121212 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA 3 R227 012212 RES MF 2ZK1 1% 1.12W 50PPM HOLSWORTHY HBC A EA 3 R227 012212 RES MF 2ZK1 1% 1.12W 50PPM HOLSWORTHY HBC A EA - R228 011501 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA - R229 011003 RES MF 10K 1% 1.2W 50PPM HOLSWORTHY HBC A EA 9 R230 011003 RES MF 10K 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R231 014750 RES MF 475R 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R232 011501 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R233 013321 RES MF 3K32 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R234 041004 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R235 011002 RES MF 1K50 1% 1.2W 50PPM HOLSWORTHY HBC A EA 6 R236 090149-1 RES FE SET 25K/15K/9K/1K VISHAY MANN SEE DRG S4 - | R218<br>R219<br>R220<br>R221<br>R222 | 011001<br>041004<br>080043-2<br>000686<br>065008 | RES MF 1K00 1% .12W 50PPM<br>RES MF 1M00 1% .12W 50PPM<br>RES FL 1K00 .1% 3PPM<br>RES HM 68M 5% .25W<br>RES CT 100K YERT M/T | HOLSWORTHY<br>HOLSWORTHY<br>YISHAY MANN<br>ALLEN BRADLEY<br>BOURNS | HBC<br>HBC<br>SEE DRG<br>CB<br>3296W-100K | A<br>A<br>A | EA<br>EA<br>EA<br>EA | -<br>1<br>1<br>1 | | | R228 011501 RES MF 1850 1% 12W 50PPM HOLSWORTHY HBC A EA P | R223<br>R224<br>R225<br>R226<br>R227 | 011002<br>011002<br>011501<br>012212<br>012212 | RES MF 10K0 1% .12W 50PPM<br>RES MF 10K0 1% .12W 50PPM<br>RES MF 1K50 1% .12W 50PPM<br>RES MF 22K1 1% .12W 50PPM<br>RES MF 22K1 1% .12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A<br>A | EA<br>EA<br>EA<br>EA | 15<br>-<br>3<br>3 | | | R233 013321 RES MF 3K32 1% .12W 50PPM HOLSWORTHY H8C A EA 1 R234 041004 RES MF 1M00 1% .12W 50PPM HOLSWORTHY H8C A EA - R235 011002 RES MF 1K00 1% .12W 50PPM HOLSWORTHY H8C A EA - R236 090149-1 RES FL SET 25K/15K/9K/1K VISHAY MANN SEE DRG S4 1 R237 090149-1 RES FL SET 25K/15K/9K/1K VISHAY MANN SEE DRG S4 - R238 090149-1 RES FL SET 25K/15K/9K/1K VISHAY MANN SEE DRG S4 - | R228<br>R229<br>R230<br>R231<br>R232 | 011501<br>011003<br>011003<br>014750<br>011501 | RES MF 1K50 1% .12W 50PPM<br>RES MF 100K 1% .12W 50PPM<br>RES MF 100K 1% .12W 50PPM<br>RES MF 475R 1% .12W 50PPM<br>RES MF 1K50 1% .12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВС | A<br>A<br>A<br>A | EA<br>EA<br>EA<br>EA | 9<br>-<br>6 | | | R238 090149-1 RES FL SET 25K/15K/9K/1K VISHAY MANN SEE DRG S4 - | R233<br>R234<br>R235<br>R236<br>R237 | 013321<br>041004<br>011002<br>090149-1<br>090149-1 | RES MF 3K32 1% .12W 50PPM<br>RES MF 1M00 1% .12W 50PPM<br>RES MF 10K0 1% .12W 50PPM<br>RES FL SET 25K/15K/9K/1K<br>RES FL SET 25K/15K/9K/1K | HOLSWORTHY HOLSWORTHY HOLSWORTHY VISHAY MANN VISHAY MANN | HBC<br>HBC<br>HBC<br>SEE DRG<br>SEE DRG | A<br>A<br>A | EA<br>EA<br>EA<br>S4 | 1 - 1 - 1 1 | | | R238 090149-1 RES FL SET 25K/15K/9K/1K VISHAY MANN SEE DRG S4 - R239 090149-1 RES FL SET 25K/15K/9K/1K VISHAY MANN SEE DRG S4 - R240 044753 RES MF 475K 12W 50PPM HOLSWORTHY HBC A EA 1 R241 012493 RES MF 249K 1% 12W 50PPM HOLSWORTHY HBC A EA 1 R242 011503 RES MF 150K 1% 12W 50PPM HOLSWORTHY HBC A EA 2 | R238<br>R239<br>R240<br>R241<br>R242 | 090149-1<br>090149-1<br>044753<br>012493<br>011503 | RES FL SET 25K/15K/9K/1K<br>RES FL SET 25K/15K/9K/1K<br>RES MF 475K 1% 12W 50PPM<br>RES MF 249K 1% 12W 50PPM<br>RES MF 150K 1% 12W 50PPM | VISHAY MANN<br>VISHAY MANN<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | SEE DRG<br>SEE DRG<br>HBC<br>HBC<br>HBC | A<br>A<br>A | S4<br>S4<br>EA<br>EA | -<br>1<br>1<br>2 | | | | N INSTRUMEN | | PARTS LIST | 23-Dec-88 | DESC: ASSY PCB D | C 1281 | | P400738-1 | REV: 36 | PAGE NO: 2 | |--------------------------------------|------------------------------------------------|----------------------------|-------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------|---------------------------------|--------------------|---------------------------------------|---------|------------| | DESIG | PART NO | DESCRI | PTION | | PRINC MANUF | MANUF PART NUMBER | | UM QUANTITY | CHANGES | | | R243<br>R244<br>R245<br>R246<br>R247 | 019092<br>011002<br>041005<br>011212<br>017502 | RES MF<br>RES MF<br>RES MF | 90K9 1% .12<br>10K0 1% .12<br>10M0 1% .12<br>12K1 1% .12<br>75K0 1% .12 | 0W 50PPM<br>0W 100PPM<br>0W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>STEATITE<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>MK2<br>HBC<br>HBC | A<br>A<br>A<br>A | EA 3<br>EA -<br>EA -<br>EA 3<br>EA 3 | | | | R248<br>R249<br>R250<br>R251<br>R252 | 017502<br>014751<br>011001<br>045113<br>013323 | RES MF<br>RES MF<br>RES MF | 75K0 1% .12<br>4K75 1% .12<br>1K00 1% .12<br>511K 1% .12<br>332K 1% .12 | W 50PPM<br>W 50PPM<br>W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВС | A<br>A<br>A<br>A | EA -<br>EA B<br>EA -<br>EA 1<br>EA 3 | | | | R253<br>R254<br>R255<br>R256<br>R257 | 013323<br>00000N<br>041004<br>011821<br>041004 | NOT FI<br>RES MF<br>RES MF | 332K 1% .12<br>TTED<br>1M00 1% .12<br>1K82 1% .12<br>1M00 1% .12 | W 50PPM<br>W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС | Α<br>Α<br>Α | EA -<br>EA 23<br>EA -<br>EA 2<br>EA - | | | | R25E<br>R259<br>R260<br>R301<br>R302 | 041004<br>013323<br>041004<br>011373<br>011002 | RES MF<br>RES MF<br>RES MF | 1M00 1% .12<br>332K 1% .12<br>1M00 1% .12<br>137K 1% .12<br>10K0 1% .12 | W 50PPM<br>W 50PPM<br>W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA 4<br>EA - | | | | R303<br>R304<br>R305<br>R306<br>R307 | 014751<br>014422<br>011001<br>011001<br>014321 | RES MF<br>RES MF<br>RES MF | 4K75 1% .12<br>44K2 1% .12<br>1K00 1% .12<br>1K00 1% .12<br>4K32 1% .12 | W 50PPM<br>W 50PPM<br>W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВС | A A<br>A<br>A<br>A | EA -<br>EA 1<br>EA -<br>EA -<br>EA 2 | | | | R308<br>R309<br>R310<br>R311<br>R312 | 017501<br>014321<br>017501<br>011001<br>011001 | RES MF<br>RES MF<br>RES MF | 7K50 1% .12<br>4K32 1% .12<br>7K50 1% .12<br>1K00 1% .12<br>1K00 1% .12 | W 50PPM<br>W 50PPM<br>W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВС | .A<br>A<br>A<br>A | EA 2<br>EA -<br>EA -<br>EA - | | | | R313<br>R314<br>R315<br>R316<br>R317 | 011002<br>011002<br>011001<br>018251<br>065007 | RES MF<br>RES MF<br>RES MF | 10K0 1% .12<br>10K0 1% .12<br>1K00 1% .12<br>8K25 1% .12<br>500R VERT M | W 50PPM<br>W 50PPM<br>W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY BOURNS | HBC<br>HBC<br>HBC<br>3296W-500R | A<br>A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA 3<br>EA 1 | | | | R318<br>R319<br>R320<br>R321<br>R322 | 011001<br>018251<br>014750<br>014750<br>015901 | RES MF<br>RES MF | 1K00 1% .12<br>8K25 1% .12<br>475R 1% .12<br>475R 1% .12<br>5K90 1% .12 | ₩ 50PPM<br>₩ 50PPM<br>₩ 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC<br>HBC | ٨ | EA<br>EA<br>EA<br>EA | | | | R323<br>R324<br>R325<br>R326<br>R327 | 015901<br>011822<br>011822<br>011008<br>011008 | RES MF<br>RES MF | 5K90 1% .12<br>18K2 1% .12<br>18K2 1% .12<br>10R0 1% .12<br>10R0 1% .12 | W 50PPM<br>W 50PPM<br>W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A | EA -<br>EA 2<br>EA -<br>EA 10<br>EA - | | | | | INSTRUMENT | | ======================================= | 281 DR | G NO: L | P400738-1 | REV: 36 | PAGE NO: 3 | |----------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|-------------------------|----------------------------------------------|---------|------------| | DES1G | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTITY | CHANGES | | | R328<br>R329<br>R330<br>R331<br>R332 | 011002<br>011008<br>011008<br>011000<br>011000 | RES MF 10K0 1% .12W 50PPM<br>RES MF 10R0 1% .12W 50PPM<br>RES MF 10R0 1% .12W 50PPM<br>RES MF 10R0 1% .12W 50PPM<br>RES MF 100R 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | нвс<br>нвс<br>нвс<br>нвс<br>нвс | A<br>A<br>A<br>A | EA = | | | | R333<br>R402<br>R403<br>R404 | 011000<br>041004<br>01000F<br>01000F | RES MF 100R 1% .12W 50PPM<br>RES MF 1M00 1% .12W 50PPM<br>RES MF FSV<br>RES MF FSV | HOLSWORTHY<br>HOLSWORTHY | нас<br>нас | A | EA =<br>EA =<br>EA = | | | | R405<br>R406<br>R407<br>R408<br>R409<br>R410 | 011103<br>089072<br>080072<br>011001<br>090172-1<br>011001 | RES MF 110K 1% .12W 50PPM RES FL 312R8 .1% 3PPM RES FL 312R8 .1% 3PPM RES MF 1K00 1% .12W 50PPM RES FL SET 27K/68K RES MF 1K00 1% .12W 50PPM | HOLSWORTHY VISHAY MANH VISHAY MANH HOLSWORTHY VISHAY MANN HOLSWORTHY | HBC<br>S102C<br>S102C<br>HBC<br>SEE DRG<br>HBC | A<br>A | EA 2<br>EA -<br>EA -<br>EA -<br>S2 1<br>EA - | | | | R411<br>R412<br>R414<br>R415<br>R416 | 011103<br>019530<br>090172-1<br>011000<br>011000 | RES MF 110K 1% .12W 50PPM<br>RES MF 953R 1% .12W 50PPM<br>RES FL SET 27K/68K<br>RES MF 100R 1% .12W 50PFM<br>RES MF 100R 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>VISHAY MARN<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>SEE DRG<br>HBC<br>HBC | А<br>А<br>А<br>А | EA -<br>EA 1<br>S2 -<br>EA -<br>EA - | | | | R417<br>R418<br>R419<br>R420<br>R421 | 000338<br>011212<br>011212<br>011212<br>011000<br>011210 | RES CF 3R3 5% .25W<br>RES MF 12K1 1% .12W 50PPM<br>RES MF 12K1 1% .12W 50PPM<br>RES MF 100R 1% .12W 50PPM<br>RES MF 121R 1% .12W 50PPM | NEOHM<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | CFR25<br>HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A<br>A | EA I<br>EA -<br>EA -<br>EA - | | | | R422<br>R423<br>R424<br>R425<br>R426 | 011000<br>018250<br>016198<br>016198<br>011001 | RES MF 100R 1% .12W 50PPM<br>RES MF 825R 1% .12W 50PPM<br>RES MF 61R9 1% .12W 50PPM<br>RES MF 61R9 1% .12W 50PPM<br>RES MF 1K00 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | нас<br>нас<br>нас<br>нас<br>нас | A<br>A<br>A<br>A .<br>A | EA = 5<br>EA 1<br>EA 3<br>EA = EA = | | | | R427<br>R428<br>R429<br>R430<br>R431 | 011001<br>011000<br>011373<br>011002<br>011002 | RES MF 1800 1% .12W 50PPM<br>RES MF 100R 1% .12W 50PPM<br>RES MF 137K 1% .12W 50PPM<br>RES MF 10K0 1% .12W 50PPM<br>RES MF 10K0 1% .12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A<br>A | EA =<br>EA =<br>EA =<br>EA = | | | | R432<br>R433<br>R434<br>R435<br>R501 | 011373<br>011008<br>011008<br>011373<br>00000N | RES MF 137K 1% .12W 50PPM<br>RES MF 10R0 1% .12W 50PPM<br>RES MF 10R0 1% .12W 50PPM<br>RES MF 137K 1% .12W 50PPM<br>NOT FITTED | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC | Α<br>Α<br>Α | EA =<br>EA =<br>EA =<br>EA = | | | | R502<br>R503<br>R504<br>P505<br>R506 | 019092<br>011002<br>011002<br>011690<br>015902 | RES MF 90K9 1% .12W 50PPM<br>RES MF 10K0 1% .12W 50PPM<br>RES MF 10K0 1% .12W 50PPM<br>RES MF 169R 1% .12W 50PPM<br>RES MF 59K0 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A<br>A | FA =<br>EA =<br>EA 1<br>EA 1 | | | | | | | | | | | | | | | INSTRUMENT | | DESC: ASSY PCB DC 1 | 281 DR | S NO: L | P400738-1 | REV: 36 | PAGE NO: 4 | | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUARTITY | CHANGES | | | P.507<br>R.508<br>R.509<br>R.510<br>R.511 | 016811<br>016811<br>017502<br>015111<br>050082 | RES MF 6K81 1% .12W 50PPM<br>REF MF 6K81 1% .12W 50PPM<br>RES MF 75K0 1% .12W 50PPM<br>RES MF 75K0 1% .12W 50PPM<br>RES MF 75K0 .25% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВ | A<br>A<br>A | EA 2<br>EA -<br>EA -<br>EA 1<br>EA 1 | | | | R512<br>R513<br>R514<br>R515<br>R516 | 050081<br>090171-1<br>090171-1<br>070198-1<br>011001 | RES MF 4K99 .25% .12W 50PPM<br>RES FL SET 136K/68K<br>RES FL SET 136K/68K<br>RES W# 1M088 .02%<br>RES MF 1K00 1% .12W 50PPM | HOLSWORTHY VISHAY MARN VISHAY MARN VISHAY MARN HOLSWORTHY | HB<br>SEE DRG<br>SEE DRG<br>SEE DRG<br>HBC | ٨ | EA 1<br>S2 1<br>S2 -<br>EA 1<br>EA - | | | | R517<br>R518<br>R519<br>R520<br>R521 | 011008<br>012002<br>011008<br>012002<br>012002 | RES MF 10R0 1% .12W 50PPM<br>RES MF 20K0 1% .12W 50PFM<br>RES MF 10R0 1% .12W 50PPM<br>RES MF 20K0 1% .12W 50PPM<br>RES MF 20K0 1% .12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA - | | | | R522<br>R523<br>R524<br>R525<br>R526 | 018252<br>018252<br>011003<br>012211<br>012211 | RES MF 82K5 1% .12W 50PPM<br>RES MF 82K5 1% .12W 50PPM<br>RES MF 100K 1% .12W 50PPM<br>RES MF 2K21 1% .12W 50PPM<br>RES MF 2K21 1% .12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A<br>A | EA 2<br>EA -<br>EA 2<br>EA - | | | | R527<br>R528<br>R529<br>R530<br>R531 | 011000<br>011821<br>00000!<br>00000!<br>00000! | RES MF 100R 1% .12W 50PPM<br>RES MF 1882 1% .12W 50PPM<br>HOT FITTED<br>HOT FITTED | HOLSWORTHY<br>HOLSWORTHY | нвс<br>нвс | A<br>A | EA =<br>EA =<br>EA =<br>EA = | | | RES MF 475R 1% .12W 50PPM RES MF 100R 1% .12W 50PFM RES MF 10R0 1% .12W 50PFM RES MF 10R0 1% .12W 50PPM RES MF 4K75 1% .12W 50PPM RES MF 100K 1% .12W 50PPM RES MF 4K75 1% .12W 50PPM RES MF 100K 1% .12W 50PPM RES MF 10K0 1% .12W 50PPM RES MF 8K25 1% .12W 50PPM NOT FITTED NOT FITTED NOT FITTED NOT FITTED NOT FITTED RES MF 1802 1% .12W 100PPM RES MF 18M2 1% .12W 150PPM RES MF 1M00 1% .12w 50PPM RES MF 10K0 1% .12w 50PPM RES MF 10K0 1% .12w 50PPM RES MF 24K9 1% .12w 50PPM RES MF 22K1 1% .12w 50PPM HOLSWORTHY MEPCO HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY H8C H8C H8C H8C H8C H8C H8C H8C 5053YL H8C H8C H8C H8C EA -EA -EA -EA 1 EA 2 AAAAA AAAAA A 00000H 00000H 00000H 041204 041825 R532 R533 R534 R535 R536 R537 R538 R539 R540 R541 R542 R543 R544 R545 R546 R547 R548 R601 R602 R603 | | RON INSTRUMENT | | DESC: ASSY PCB DC 12 | | | 2400738-1 | REV: 36 | PAGE NO: 5 | |-----------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|-------------|--------------------------------------|---------|------------| | DES | G PART NO | DESCRIPTION | | MANUF PART NUMBER | | UM QUANTITY | | | | R604<br>R608<br>R608<br>R608 | 7 011001<br>3 012212<br>9 011001 | RES MF 1K00 1% .12W 50PPM<br>RES MF 22K1 1% .12W 50PPM<br>RES MF 1K00 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВС | A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA -<br>EA 2 | | | | R611<br>R612<br>R614<br>R614 | 012001<br>012001<br>011001 | RES MF 2K00 1% .12W 50PPM<br>RES MF 2K00 1% .12W 50PPM<br>RES MF 1K00 1% .12W 50PPM | HOLSWORTHY | Н8С<br>Н8С<br>Н8С<br>Н8С<br>Н8С | A<br>A | EA -<br>EA 2<br>EA -<br>EA - | | , | | R616<br>R701<br>R701<br>R701 | 014750<br>014750<br>011001 | RES MF 475R 1% .12W 50PPM<br>RES MF 475R 1% .12W 50PPM<br>RES MF 1K00 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | H8C<br>H8C<br>H8C<br>H8C<br>H8C | A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA - | | | | R705<br>R706<br>R706<br>R708 | 014751<br>012740<br>014751 | RES MF 4K75 1% .12W 50PPM<br>RES MF 274R 1% .12W 50PPM<br>RES MF 4K75 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВС | A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA - | | | | R710<br>R711<br>R712<br>R713<br>R714 | 011000<br>012000<br>012000 | RES MF 100R 1% .12W 50PPM<br>RES MF 200R 1% .12W 50PPM<br>RES MF 200R 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A | EA -<br>EA 2<br>EA -<br>EA - | | | | R715<br>R716<br>R717<br>R718<br>R719 | 011000<br>011000<br>011002 | RES MF 100R 1% .12W 50PFM<br>RES MF 100R 1% .12W 50PPM<br>RES MF 10K0 1% .12W 50PFM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВС | A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA 1 | | | | R720<br>R721<br>R722<br>R723<br>R724 | 011000<br>014751<br>014751 | RES MF 100R 1% .12W 50PPM<br>RES MF 4K75 1% .12W 50PPM<br>RES MF 4K75 1% .12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A | EA 1<br>EA -<br>EA -<br>EA - | | | | R802<br>R803<br>R804<br>R805 | 011000<br>011000<br>011003 | RES MF 100R 1% .12W 5UPPM<br>RES MF 100R 1% .12W 5UPPM<br>RES MF 100K 1% .12W 5UPPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | H8C<br>H8C<br>H8C<br>H8C<br>H8C | A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA - | | | | R 6 0 7<br>R 8 0 8<br>R 8 0 9<br>R 8 1 0<br>R 8 1 1 | 011502<br>016198<br>011001 | RES MF 15K0 1% .12W 50PPM<br>RES MF 61R9 1% .12W 50PPM<br>RES MF 1K00 1% .12W 50PPM | HOLSWORTHY | HBC | A<br>A<br>A | EA -<br>EA 1<br>EA -<br>EA -<br>EA - | | • | | DATRON INSTRUME | NTS LTD PARTS LIST 23-Dec-88 | DESC: ASSY PCB DC 13 | 281 | DRG NO: L | P400738-1 | REV: 36 | PAGE NO: 6 | |------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-------------|---------------------------------------|---------|------------| | DESIG PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | R CLASS | UM QUANTITY | CHANGES | | | R812 019092<br>R813 011001<br>R814 011503<br>R815 011000<br>R901 011542 | RES MF 90K9 1% .12W SOPPM<br>RES MF 1K00 1% .12W SOPPM<br>RES MF 150K 1% .12W SOPPM<br>RES MF 100R 1% .12W SOPPM<br>RES MF 15K4 1% .12W SOPPM | | | | | | • | | R902 011542<br>R903 016190<br>R904 01000F<br>R905 016190<br>R906 01000F | RES MF 15K4 1% .12W 50PPM RES MF 619R 1% .12W 50PPM RES MF FSV RES MF 619R 1% .12W 50PPM RES MF 6FSV | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC | A<br>A<br>A | EA -<br>EA 2<br>EA -<br>EA - | | | | AN201 090095<br>AN202 090105<br>AN203 090131<br>AN204 090167<br>AN205 090167 | RES PACK 47K X 4 2% RES PACK 100R X 4 2% RES PACK 10K X 4 2% RES PACK 100K X 4 2% RES PACK 100K X 4 2% | BECKMAN<br>BECKMAN<br>BECKMAN<br>BECKMAN<br>BECKMAN | LO8-3-R47K<br>LO8-3-R100<br>LO8-3-R10K<br>LO8-3-R100K<br>LO8-3-R100K | | EA 1<br>EA 1<br>EA 1<br>EA 2<br>EA - | | | | AN301 090139<br>AN302 090168<br>AN401 090151<br>AN701 090164<br>AN702 090132 | RES PACK 47K X 4 2% RES PACK 100R X 4 2% RES PACK 100R X 4 2% RES PACK 100K X 4 2% RES PACK 100K X 4 2% RES PACK 100K X 4 2% RES PACK 2K2 X 4 2% RES PACK 1K X 4 2% RES PACK 1K X 4 2% RES PACK 1K X 4 2% RES PACK 4K7 X 4 2% | BECKMAN<br>AB<br>BECKMAN<br>BECKMAN<br>BECKMAN | LO8-3-R2K2<br>770-83-1K<br>LO8-3-R3K3<br>LO9-1-R2K2<br>LO8-3-R4K7 | | EA 2<br>EA 9<br>EA 1<br>EA 1<br>EA 1 | | | | AN703 090168<br>AN704 090168<br>AN705 090041<br>AN706 090139<br>AN801 090168 | RES PACK 1K X 4 2% RES PACK 1K X 4 2% RES HTWK 4K7 X 7 2% RES PACK 2K2 X 4 2% | AB<br>BECKMAN<br>BECKMAN | 770-83-1K<br>770-83-1K<br>LO8-1-R4K7<br>LO8-3-R2K2 | | EA -<br>EA 1<br>EA - | | | | AN802 090168<br>AN803 090121<br>AN804 090121<br>AN805 090168<br>AN806 090168 | RES PACK 1K X 4 2% RES NTWK 100K X 8 2% RES NTWK 100K X 8 2% RES PACK 1K X 4 2% RES PACK 1K X 4 2% | AB<br>BECKMAN<br>BECKMAN<br>AB<br>AB | 770-83-1K<br>LO9-1-R100K<br>LO9-1-R100K<br>770-83-1K<br>770-83-1K | | EA -<br>EA 5<br>EA -<br>EA -<br>EA - | | | | AN807 090121<br>AN808 090121<br>AN809 090168<br>AN810 090168<br>AN811 090121 | RES PACK 1K X 4 2% RES PACK 1K X 4 2% RES NTWK 100K X 8 2% RES NTWK 100K X 8 2% RES PACK 1K X 4 2% RES PACK 1K X 4 2% RES PACK 1K X 4 2% RES NTWK 100K X 8 2% RES PACK 1K X 4 2% RES PACK 1K X 4 2% RES PACK 1K X 4 2% RES PACK 1K X 4 2% RES NTWK 100K X 8 2% RES PACK 1K X 4 2% RES NTWK 100K X 8 2% | BECKMAN<br>BECKMAN<br>AB<br>AB<br>BECKMAN | LO9-1-R100K<br>LO9-1-R100K<br>770-83-1K<br>770-83-1K<br>LO9-1-R100K | | EA -<br>EA -<br>EA -<br>EA - | | | | C201 104030<br>C202 140078<br>C203 140078<br>C204 150016<br>C205 100331 | CAP CD 100PF 10% 4KV CAP PP 1NF 5% 100V CAP PP 1NF 5% 100V CAP DT 1UF 20% 35V CAP CP 330PF 2% 100V | ITT<br>WIMA<br>WIMA<br>AVX<br>PHILIPS | HD16<br>FKP2<br>FKP2<br>TAP1ROM35F<br>2222 683 58331 | Α | EA 1<br>EA 3<br>EA -<br>EA 9<br>EA 1 | | | | C206 100102<br>C207 100472<br>C208 104025<br>C209 150016<br>C211 100330 | CAP CP 1NF 10% 100V<br>CAP CP 4N7F 10% 100V<br>CAP CD 100NF +80%-20% 50V<br>CAP CD TUF 20% 35V<br>CAP CP 33PF 2% 100V | PHILIPS PHILIPS SIEMENS AVX PHILIPS | 2222 630 19102<br>2222 630 19472<br>B37449<br>TAP1ROM35F<br>2222 683 34339 | А | EA 1<br>EA 2<br>EA 13<br>EA -<br>EA 3 | | | | OATRON | INSTRUMENT | S LTD PARTS LIST 23-Dec-88 | DESC: ASSY PCB D | C 1281 [ | DRG NO: LI | 2400738-1 | REV: 36 | |--------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------|---------------------------------------|------------|---------------------------------------|---------| | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTITY | CHANGES | | 2212<br>2213<br>2214 | 110027<br>100472<br>00000H | CAP PE 3H3F 20% 100V<br>CAP CP 4H7F 10% 100V<br>HOT FITTED | WIMA<br>PHILIPS | FKS2<br>2222 630 19472 | | EA 1<br>EA =<br>EA = | | | C222<br>C301 | 150016<br>00000H | CAP DT 1UF 20% 35V<br>NOT FITTED | ۸٧X | TAP1R0M35F | Α | EA -<br>EA - | | | C302<br>C303<br>C304<br>C305<br>C306 | 00000N<br>150020<br>110004<br>110004<br>00000N | NOT FITTED CAP DT 10UF 20% 25V CAP PE 47UF 20% 250V CAP PE 47UF 20% 250V NOT FITTED | AVX<br>PHILIPS<br>PHILIPS | TAP10M25F<br>C280AEP47K<br>C280AEP47K | Α | EA -<br>EA 11<br>EA 2<br>EA -<br>EA - | | | | | DESCRIPTION | PRING MANUF | MARUF PART NUMBER | CLASS | UM | QUANTITY | CHANGES | |--------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|--------|----------------------|-----------------------|---------| | C212<br>C213<br>C214 | 110027<br>100472<br>000000 | CAP PE 3H3F 20% 100V<br>CAP CP 4H7F 10% 100V<br>NOT ELTTED | WIPA<br>PHILIPS | FKS2<br>2222 630 19472 | , | EA<br>EA | 1 _ | | | C302<br>C303<br>C304<br>C305<br>C306 | 00000H<br>150020<br>110004<br>110004<br>00000H | HOT FITTED CAP DT 10UF 20% 25V CAP PE 47NF 20% 250V CAP PE 47NF 20% 250V ROT FITTED | AVX<br>PHILIPS<br>PHILIPS | TAP10M25F<br>C280AEP47K<br>C280AEP47K | Α | EA<br>EA<br>EA<br>EA | 11<br>2<br>- | | | C307<br>C308<br>C309<br>C310<br>C311 | 180063<br>180063<br>104017<br>100390<br>100390 | CAP AE 100UF +80/-20% 25V<br>CAP AE 100UF +80/-20% 25V<br>CAP CD 0P56F +/-0P1F 500V<br>CAP CP 39PF 2% 100V<br>CAP CP 39PF 2% 100V | ECC<br>ECC<br>ITT<br>PHILIPS<br>PHILIPS | KMVB<br>KMVB<br>GDOBAGOP56BS<br>2222 683 34399<br>2222 683 34399 | | EA<br>EA<br>EA<br>EA | 4<br>-<br>1<br>2<br>- | | | C312<br>C313<br>C401<br>C402<br>C403 | 180063<br>180063<br>120004<br>120021<br>110042 | CAP DT 1UF 20% 35V HOT FITTED CAP DT 10UF 20% 25V CAP PE 47HF 20% 250V CAP PE 47HF 20% 250V CAP PE 47HF 20% 250V ROT FITTED CAP AE 100UF +80/-20% 25V CAP AE 100UF +80/-20% 25V CAP AE 100UF +80/-20% 25V CAP CAP 39HF 2% 100V CAP CAP 39HF 2% 100V CAP AE 100UF +80/-20% 25V CAP AE 100UF +80/-20% 25V CAP AE 100UF +80/-20% 25V CAP AE 100UF +80/-20% 25V CAP AE 100UF 20% 63V CAP PE 100HF 20% 63V CAP PE 100HF 20% 63V CAP | ECC<br>ECC<br>ASHCROFT<br>ASHCROFT<br>WIMA | KMVB<br>KMVB<br>A2B6811B<br>A2B4711B<br>MKS2 | • | EA<br>EA<br>EA<br>EA | -<br>1<br>1<br>12 | | | C404<br>C405<br>C406<br>C407<br>C408 | 110042<br>101103<br>110042<br>110042<br>101103 | CAP PE 100NF 20% 63Y CAP CD 10NF -20+80% 250V CAP PE 100NF 20% 63Y CAP PE 100NF 20% 63Y CAP CD 10NF -20+80% 250V | WIMA<br>BECK<br>WIMA<br>WIMA<br>BECK | MKS2<br>CD10K310H0ZSCR/SK250<br>MKS2<br>MKS2<br>CD10K310H0ZSCR/SK250 | | EA<br>EA<br>EA<br>EA | 7 - | | | C410<br>C411<br>C412<br>C413<br>C414 | 140078<br>104025<br>110042<br>110042<br>104025 | CAP PP 1HF 5% 100V<br>CAP CD 100HF +80%-20% 50V<br>CAP PE 100HF 20% 63V<br>CAP PE 100HF 20% 63V<br>CAP CD 100HF +80%-20% 50V | WIMA<br>SIFMENS<br>WIMA<br>WIMA<br>SIFMENS | FKP2<br>B37449<br>MKS2<br>MKS2<br>B37449 | | EA<br>EA<br>EA<br>EA | -<br>-<br>-<br>- | | | C415<br>C416<br>C417<br>C418<br>C419 | 150020<br>150020<br>110064<br>110064<br>110062 | CAP DT 10UF 20% 25V CAP DT 10UF 20% 25V CAP PE 10UF 40V CAP PE 10UF 40V CAP PE 10UF 10% 40V | AYX<br>AYX<br>ASHCROFT<br>ASHCROFT<br>ASHCROFT | TAP10M25F<br>TAP10M25F<br>M1B103 14B<br>M1B103 14B<br>M1B102 14B | A<br>A | EA<br>EA<br>EA<br>EA | -<br>-<br>2<br>-<br>2 | | | C420<br>C421<br>C422<br>C423<br>C424 | 104025<br>110042<br>110042<br>110042<br>110042 | CAP CD 100NF +80%-20% 50V<br>CAP PE 100NF 20% 63V<br>CAP PE 100NF 20% 63V<br>CAP PE 100NF 20% 63V<br>CAP PE 100NF 20% 63V | SIEMENS<br>WIMA<br>WIMA<br>WIMA<br>WIMA | B37449<br>MKS2<br>MKS2<br>MKS2<br>MKS2 | | EA<br>EA<br>EA<br>EA | -<br>-<br>- | | | C425<br>C426<br>C427<br>C501<br>C502 | 104025<br>140081<br>140077<br>100100<br>150021 | CAP ED 100F 108 40V CAP CD 100NF +808-20% 50V CAP PE 100NF 20% 63V CAP PE 100NF 20% 63V CAP PE 100NF 20% 63V CAP PE 100NF 20% 63V CAP PE 100NF 20% 63V CAP PE 100NF 20% 63V CAP PP 470NF 10% 160V CAP PP 470NF 10% 160V CAP CAP CAP 100PF 2% 100V CAP CAP CAP CAP 20% 25V | SIEMENS<br>RIFA<br>WIMA<br>PHILIPS<br>AVX | B37449<br>PHE404FB6470K<br>FKP2<br>2222 683 10109<br>TAP22M25F | A | EA<br>EA<br>EA | -<br>6<br>1<br>2 | | | | | | | | | | | | | DATRON INSTRUMEN | TS LTD PARTS LIST 23-Dec-88 | DESC: ASSY PCB DC | 1281 DRG | NO: L | P400738-1 | REV: 36 | |-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------|-------------|---------------------------------------|---------| | DESIG PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTITY | CHANGES | | C503 150021<br>C504 100101<br>C505 140064<br>C506 100101<br>C507 140065 | CAP DT 22UF 20% 25V CAP CD 100FF 2% 100V CAP CD 100FF 2% 100V CAP CD 100FF 2% 100V CAP CD 100FF 2% 100V CAP CD 100FF 2% 100V CAP CD 100FF 2% 100V CAP CD 100FF 20% 63V CAP CD 100FF 20% 63V CAP CD 100FF 20% 63V CAP CD 100FF 20% 63V CAP CD 100FF 20% 63V CAP CD 22FF 10% 100V CAP CD 22FF 10% 100V CAP CD 100FF 80% 25V CAP CD 100FF 80% 25V CAP CD 100FF 80% 25V CAP CD 100FF 20% 50V NOT FITTED | AVX<br>PHILIPS<br>TRW<br>PHILIPS<br>WIMA | TAP22M25F<br>2222 683 34101<br>X363UW<br>2222 683 34101<br>MKP10 | A | EA -<br>EA 2<br>EA 1<br>EA -<br>EA 1 | | | C508 110042<br>C509 110042<br>C510 104025<br>C511 00000N<br>C512 00000N | CAP PE 100NF 20% 63V CAP PE 100NF 20% 63V CAP CD 100NF +80%-20% 50V NOT FITTED NOT FITTED | WIMA<br>WIMA<br>SIEMENS | MKS2<br>MKS2<br>B37449 | | EA -<br>EA -<br>EA -<br>EA - | | | C513 00000N<br>C514 00000N<br>C515 100220<br>C516 100222<br>C517 104025 | NOT FITTED<br>NOT FITTED<br>CAP CP 22PF 28 100V<br>CAP CP 2N2F 10% 100V<br>CAP CD 100NF +80%-20% 50V | PHILIPS<br>PHILIPS<br>SIEMENS | 2222 683 34229<br>2222 630 19222<br>B37449 | | EA -<br>EA -<br>EA 1<br>EA 1<br>EA - | | | C518 104025<br>C519 150020<br>C520 104025<br>C521 101103<br>C522 100330 | CAP CD 100HF +80%-20% 50V<br>CAP DT 10UF 20% 25V<br>CAP CD 100HF +80%-20% 50V<br>CAP CD 10HF -20% 50V<br>CAP CD 33PF 2% 100V | SIEMENS<br>AVX<br>SIEMENS<br>BECK<br>PHILIPS | B37449<br>TAP10M25F<br>B37449<br>CD10K310N0ZSCR/SK250<br>2222 683 34339 | A | EA -<br>EA -<br>EA -<br>EA - | | | C523 100151<br>C524 150020<br>C525 150020<br>C526 150020<br>C527 104026 | CAP CP 150PF 2% 100V<br>CAP DT 10UF 20% 25V<br>CAP DT 10UF 20% 25V<br>CAP DT 10UF 20% 25V<br>CAP DT 10UF 20% 25V<br>CAP CD 47NF +50%-20% 50V | PHILIPS<br>AVX<br>AVX<br>AVX<br>SIEMENS | 2222 683 34151<br>TAP10M25F<br>TAP10M25F<br>TAP10M25F<br>B37449 | A<br>A<br>A | EA 3<br>EA -<br>EA -<br>EA -<br>EA 12 | | | C528 00000N<br>C529 00000N<br>C530 120022<br>C531 120029<br>C601 150020 | NOT FITTED NOT FITTED CAP PC 115F 20% 100V CAP PC 618F 20% 100V CAP DT 10UF 20% 25V CAP DT 10UF 20% 25V CAP CD 10HF -20*80% 250V CAP CD 33PF 2% 100V CAP PE 10UF 10% 40V CAP PE 10UF 10% 160V | AMIW<br>AMIW<br>XYA | FKC2<br>FKC2<br>TAP10M25F | A | EA -<br>EA -<br>EA 1<br>EA 1<br>EA - | | | C602 150020<br>C604 101103<br>C605 100330<br>C606 110062<br>C607 140081 | CAP DT 10UF 20% 25V CAP CD 10NF -20+80% 250V CAP CP 33PF 2% 100V CAP PE 10UF 10% 40V CAP PP 470NF 10% 160V | AVX<br>BECK<br>PHILIPS<br>ASHCROFT<br>RIFA | TAP10M25F<br>CD10K310N0ZSCR/SK250<br>2222 683 34339<br>M1B102 14B<br>PHE404FB6470K | A | EA -<br>EA -<br>EA -<br>EA - | | | C608 100470<br>C609 100122<br>C610 100122<br>C611 100470<br>C612 140081 | CAP CP 4/PF 2% 100V<br>CAP CP 112F 10% 100V<br>CAP CP 112F 10% 100V<br>CAP CP 47PF 2% 100V<br>CAP CP 470PF 10% 160V | PHILIPS PHILIPS PHILIPS PHILIPS PHILIPS | 2222 683 34479<br>2222 630 19122<br>2222 630 19122<br>2222 683 34479 | | EA 2<br>EA -<br>EA - | | | C613 104026<br>C615 140081<br>C616 140081<br>C617 140081<br>C701 104026 | CAP CD 47NF +50%-20% 50V<br>CAP PP 470HF 10% 160V<br>CAP PP 470HF 10% 160V<br>CAP PP 470HF 10% 160V<br>CAP CD 47NF +50%-20% 50V | SIEMENS-<br>RIFA<br>RIFA<br>RIFA<br>SIEMENS | B37449<br>PHE404FB6470K<br>PHE404FB6470K<br>PHE404FB6470K<br>B37449 | | EA -<br>EA -<br>EA -<br>EA - | | | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTITY | CHANGES | |---------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|--------|--------------------------------------|---------| | C702<br>C703<br>C704<br>C705<br>C706 | 104026<br>104026<br>104026<br>104025<br>104025 | CAP CD 47NF +508-20% 50V<br>CAP CD 47NF +508-20% 50V<br>CAP CD 47NF +508-20% 50V<br>CAP CD 100NF +808-20% 50V<br>CAP CD 100NF +80%-20% 50V | SIEMENS<br>SIEMENS<br>SIEMENS<br>SIEMENS<br>SIEMENS | B37449<br>B37449<br>B37449<br>B37449<br>B37449 | , | EA -<br>EA -<br>EA -<br>EA - | | | C707<br>C801<br>C802<br>C803<br>C804 | 110041<br>104026<br>104026<br>104026<br>104025 | CAP CD 100NF +80%-20% 50V CAP PE 10NF 20% 100V CAP CD 47NF +50%-20% 50V CAP CD 47NF +50%-20% 50V CAP CD 47NF +50%-20% 50V CAP CD 100NF +80%-20% 50V CAP CD 100NF +80%-20% 50V CAP CD 100NF 20% 25V CAP DT 10UF 20% 25V CAP DT 150F 20% 100V CAP CD 15PF 2% 100V CAP CD 15PF 2% 100V CAP CD 15PF 2% 100V CAP CD 15PF 2% 100V CAP CD 47NF +50%-20% 50V CAP CD 47NF +50%-20% 50V | WIMA<br>SIEMENS<br>SIEMENS<br>SIEMENS<br>SIEMENS | FKS2<br>B37449<br>B37449<br>B37449<br>B37449 | | EA 1<br>EA -<br>EA -<br>EA - | | | C805<br>C806<br>C807<br>C808<br>C809 | 104025<br>150020<br>180059<br>150020<br>100150 | CAP CD 100NF +80%-20% 50V<br>CAP DT 10UF 20% 25V<br>CAP AE 470UF 25V<br>CAP DT 10UF 20% 25V<br>CAP CP 15PF 2% 100V | SIEMENS<br>AVX<br>ECC<br>AVX<br>PHILIPS | B37449<br>TAP10M25F<br>KMYB<br>TAP10M25F<br>2222 683 10159 | A<br>A | EA -<br>EA 1<br>EA -<br>EA 2 | • . | | C810<br>C811<br>C812<br>C813<br>C814 | 101103<br>100151<br>100150<br>100151<br>104026 | CAP CD 10NF -20+80% 250V<br>CAP CP 150PF 2% 100V<br>CAP CP 15PF 2% 100V<br>CAP CP 150PF 2% 100V<br>CAP CD 47NF +50%-20% 50V | BECK PHILIPS PHILIPS PHILIPS SIEMENS | CD10K310N0ZSCR/SK250<br>2222 683 34151<br>2222 683 10159<br>2222 683 34151<br>B37449 | | EA -<br>EA -<br>EA -<br>EA - | | | C815<br>C816<br>C901<br>C902<br>C903 | 104026<br>104026<br>180047<br>150016<br>150016 | CAP CD 47HF +508-208 50V<br>CAP CD 47HF +508-208 50V<br>CAP AE 1000UF 40V<br>CAP DT 1UF 208 35V<br>CAP DT 1UF 208 35V<br>CAP AE 1000UF 40V<br>CAP AE 1000UF 40V<br>CAP DT 1UF 208 35V<br>CAP DT 1UF 208 35V<br>CAP AE 33UF 63V<br>CAP CD 10HF -20+808 250V | SIEMENS<br>SIEMENS<br>ECC<br>AVX<br>AVX | B37449<br>B37449<br>SMVB<br>TAP1ROM35F<br>TAP1ROM35F | A<br>A | EA -<br>EA 3<br>EA -<br>EA - | | | C904<br>C905<br>C906<br>C907<br>C908 | 180047<br>150016<br>150016<br>180055<br>101103 | CAP AE 1000UF 40V<br>CAP DT 1UF 20% 35V<br>CAP DT 1UF 20% 35V<br>CAP AE 33UF 63V<br>CAP CD 10NF -20+80% 250V | ECC<br>AVX<br>ECC<br>BECK | SMYB<br>TAP1ROM35F<br>TAP1ROM35F<br>KMYB<br>CD10K310NOZSCR/SK250 | A<br>A | EA -<br>EA -<br>EA -<br>EA 2<br>EA - | | | C909<br>C910<br>C911<br>C912<br>C913 | 180054<br>180055<br>101103<br>180054<br>180054 | CAP AE 1UF 63V<br>CAP AE 33UF 63V<br>CAP CD 10UF -20+80% 250V<br>CAP AE 1UF 63V | PHILIPS<br>ECC<br>BECK<br>PHILIPS<br>PHILIPS | 035 58108<br>KMYB<br>CD10K310N0ZSCR/SK250<br>035 58108<br>035 58108 | | EA 4<br>EA -<br>EA -<br>EA - | | | C914<br>C915<br>C916<br>C917<br>CN701 | 180054<br>150016<br>180047<br>150016<br>104052 | CAP AE 1UF 63V CAP AE 33UF 63V CAP CD 10HF -20+80% 250V CAP AE 1UF 63V CAP AE 1UF 63V CAP AE 1UF 63V CAP AE 1UF 63V CAP AE 1UF 20% 35V CAP AE 10F 20% 35V CAP AE 10F 20% 35V CAP NTWK 220PF 10% | PHILIPS<br>AVX<br>ECC<br>AVX<br>MURATA/ERIE | 035 58108<br>TAP1R0M35F<br>SMVB<br>TAP1R0M35F<br>B8XC0117-33N | A<br>A | EA -<br>EA -<br>EA -<br>EA 1 | | | D201<br>D202<br>D203<br>D204<br>D205 | 211200<br>211200<br>210150<br>210150<br>220043 | DIODE ZN 20V 1.3W<br>DIODE ZN 20V 1.3W<br>DIODE ZN 15V 400mW<br>DIODE ZN 15V 400mW<br>DIODE ZN 15V 400mW | PHILIPS PHILIPS PHILIPS SILICONIX | BZV85C20<br>BZV85C20<br>BZX79C15<br>BZX79C15<br>JPAD100 | A<br>A | EA 2<br>EA -<br>EA 2<br>EA -<br>EA 8 | | | D202<br>D203<br>D204 | 211200<br>210150<br>210150 | DIODE ZN 20V 1.3W<br>DIODE ZN 15V 400mW<br>DIODE ZN 15V 400mW<br>DIODE JFET 10mA | PHILIPS<br>PHILIPS<br>PHILIPS<br>SILICONIX | BZV85C20<br>BZX79C15<br>BZX79C15<br>JPAD100 | A<br>A | EA -<br>EA 2<br>EA -<br>EA 8 | | | DATRON | INSTRUMENT | S LTD PARTS LIST 23-Dec-88 | DESC; ASSY PCB DO | C 1281 DF | RG NO: L | P400738-1 | REV: 36 | PAGE NO: 10 | |--------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|------------------|---------------------------------------|---------|-------------| | DESIG. | | DESCRIPTION | | MANUF PART NUMBER | | UM QUANTITY | CHANGES | | | 0206<br>0207<br>0208<br>0209<br>0210 | 220043<br>210068<br>200001<br>220043<br>211220 | DIODE JFET 10mA DIODE ZH 6V8 400mW DIODE GF 75mA 75V DIODE JFET 10mA DIODE ZH 22V 1.3W DIODE ZH 22V 1.3W DIODE ZH 22V 1.3W DIODE ZH 6V2 400mW DIODE ZH 6V2 400mW DIODE ZH 6V2 400mW DIODE GP 75mA 75V DIODE GP 75mA 75V | SILICONIX PHILIPS FAIRCHILD SILICONIX PHILIPS | JPAD100<br>BZX79C6V8<br>1N414B<br>JPAD100<br>BZY85C22 | А | EA -<br>EA 1<br>EA 14<br>EA -<br>EA 2 | | | | 0211<br>0212<br>0213<br>0214<br>0215 | 211220<br>210062<br>210062<br>200001<br>200001 | DIODE ZN 22V 1.3W<br>DIODE ZN 6V2 400mW<br>DIODE ZN 6V2 400mW<br>DIODE GP 75mA 75V<br>DIODE GP 75mA 75V | PHILIPS PHILIPS PHILIPS FAIRCHILD FAIRCHILD | BZY85C22<br>BZX79C6V2<br>BZX79C6V2<br>11/4148<br>11/4148 | A<br>A | EA -<br>EA 2<br>EA -<br>EA - | | | | 0216<br>0217<br>0218<br>0219<br>0220 | 210120<br>210120<br>200008<br>200008<br>200008 | DIODE ZN 12V 400mW<br>DIODE ZN 12V 400mW<br>DIODE GP 200mA 125V<br>DIODE GP 200mA 125V<br>DIODE GP 200mA 125V | PHILIPS PHILIPS FAIRCHILD FAIRCHILD FAIRCHILD | BZX79C12<br>1N458A<br>1N458A<br>1N458A | A<br>A<br>A<br>A | EA 5<br>EA -<br>EA 6<br>EA -<br>EA - | | | | 0221<br>0222<br>0223<br>0224<br>0225 | 200001<br>200001<br>200008<br>210270<br>200001 | DIODE GP 75mA 75V<br>DIODE GP 75mA 75V<br>DIODE GP 200mA 125V<br>DIODE ZN 27V 400mW<br>DIODE GP 75mA 75V | FAIRCHILD<br>FAIRCHILD<br>FAIRCHILD<br>PHILIPS<br>FAIRCHILD | 1N4148<br>1N4148<br>1N458A<br>BZX79C27<br>1N4148 | A<br>A | EA -<br>EA -<br>EA 1<br>EA - | | | | 0226<br>0227<br>0228<br>0301<br>0302 | 200001<br>200001<br>220043<br>220043<br>210047 | DIODE GP 75mA 75V<br>DIODE GP 75mA 75V<br>DIODE JFET 10mA<br>DIODE JFET 10mA<br>DIODE JFET 10mA | FAIRCHILD<br>FAIRCHILD<br>SILICONIX<br>SILICONIX<br>PHILIPS | 1N4148<br>1N4148<br>JPAD100<br>JPAD100<br>BZX79C4V7 | A | EA -<br>EA -<br>EA -<br>EA - | | | | 0303<br>0304<br>0305<br>0401<br>0402 | 200001<br>200001<br>220043<br>210039<br>210039 | DIODE GP 75mA 75V<br>DIODE GP 75mA 75V<br>DIODE JFET 10mA<br>DIODE ZN 3V9 400mW<br>DIODE ZN 3V9 400mW | FAIRCHILD<br>FAIRCHILD<br>SILICONIX<br>PHILIPS<br>PHILIPS | 1N4148<br>1N4148<br>JPAD100<br>BZX79C3V9<br>BZX79C3V9 | A<br>A | EA -<br>EA -<br>EA -<br>EA 2<br>EA - | | | | 403<br>502<br>503<br>504<br>505 | 210120<br>200008<br>200008<br>210120<br>210120 | DIODE 2N 12V 400mW DIODE GP 200mA 125V DIODE GP 200mA 125V DIODE ZN 12V 400mW DIODE ZN 12V 400mW DIODE ZN 5V1 400mW DIODE ZN 5V1 400mW DIODE ZN 5V1 400mW NOT FITTED NOT FITTED | PHILIPS FAIRCHILD FAIRCHILD PHILIPS PHILIPS | B2X79C12<br>1N45BA<br>1N45BA<br>B2X79C12<br>B2X79C12 | A<br>A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA - | | | | 0506<br>0507<br>0508<br>0509<br>0510 | 210051<br>210051<br>00000N<br>00000N<br>213006 | DIODE ZN 591 400mW<br>DIODE ZN 591 400mW<br>NOT FITTED<br>DIODE ZN 59 5W | PHILIPS PHILIPS UNITRODE | B2X79C5V1<br>B2X79C5V1<br>TVS505 | | EA 3<br>EA -<br>EA -<br>EA -<br>EA 3 | | | | 0511<br>0601<br>0603<br>0604<br>0605 | 210051<br>210100<br>200001<br>200001<br>200001 | DIODE ZN 5V1 400mW DIODE ZN 10V 400mW DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE GP 75mA 75V | | B2X79C5V1<br>BZX79C10<br>1N4148<br>1N4148<br>1N4148 | A<br>A | EA -<br>EA 1<br>EA -<br>EA - | | • | | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM Q | YTITHAU | CHANGES | |--------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|---------------|--------------------------------------|---------|---------| | | 200001<br>220043<br>220043<br>200002 | DIODE GP 75mA 75Y DIODE JFET 10mA DIODE JFET 10mA DIODE GP 1A 50V | FAIRCHILD<br>SILICONIX<br>SILICONIX<br>FAIRCHILD<br>BUILIDS | 1N4148<br>JPAD100<br>JPAD100<br>1N4001 | | EA -<br>EA -<br>EA 1<br>EA 2 | | | | D803<br>D804<br>D901<br>D902<br>D903 | 213011<br>213006<br>200006<br>200006<br>200006 | DIODE VR 1V5 250mH<br>DIODE VR 1V5 250mH<br>DIODE R 1X 5V 5H<br>DIODE GP 1X 600V<br>DIODE GP 1X 600V<br>DIODE GP 1X 600V | PHILIPS<br>UNITRODE<br>FAIRCHILD<br>FAIRCHILD<br>FAIRCHILD | BZY46-1Y5<br>TVS505<br>1N4005<br>1N4005<br>1N4005 | | EA -<br>EA 7<br>EA -<br>EA - | | | | D904<br>D905<br>D906<br>D907<br>D908 | 200006<br>200006<br>200006<br>200006 | DIODE GP 1A 600V<br>DIODE GP 1A 600V<br>DIODE GP 1A 600V | FAIRCHILD<br>FAIRCHILD<br>FAIRCHILD<br>FAIRCHILD | 1N4005<br>1N4005<br>1N4005<br>1N4005 | | EA -<br>EA - | | | | D909<br>D910<br>D911<br>D912<br>Q201 | 200028<br>213009<br>213009<br>213006<br>230082 | DIODE SB 1A 30V DIODE SB 1A 30V DIODE SH 15V 5W DIODE ZH 15V 5W DIODE ZH 15V 5W TRAN MOSFET N-CHAN 60V TRAN JET I LIM 240UA TRAN JET I LIM 240UA TRAN HPH TO18 TRAN HPH TO92 TRAN PHP TO92 TRAN HPH | INT RECTIFIERS UNITRODE UNITRODE UNITRODE SILICONIX | 11DQO4<br>TVS515<br>TVS515<br>TVS505<br>VN10LM | | EA -<br>EA -<br>EA -<br>EA - | | | | Q202<br>Q203<br>Q204<br>Q205<br>Q206 | 230089<br>230089<br>240009<br>250009<br>250009 | TRAN JFET I LIM 240UA TRAN IFET I LIM 240UA TRAN NPN TO18 TRAN PNP TO92 TRAN PNP TO92 | SILICONIX<br>SILICONIX<br>NATIONAL<br>NATIONAL<br>NATIONAL | J500<br>J500<br>MPSL01/2N5550<br>2N5401<br>2N5401 | | EA 2<br>EA -<br>EA 8<br>EA 7<br>EA - | | | | Q207<br>Q208<br>Q209<br>Q210<br>Q211 | 240009<br>240006<br>250004<br>250004<br>230081 | TRAN NPN TO18 TRAN PNP TO92 TRAN PNP TO92 TRAN PNP TO92 TRAN MOSFET N-CHAN | NATIONAL<br>MATORICTON<br>NATIONAL<br>NATIONAL<br>FERNANTI | MPSL01/2N5550<br>2N3904<br>2N3906<br>2N3906<br>ZVN0106A | Α | EA -<br>EA 5<br>EA 7<br>EA -<br>EA 4 | | | | Q212<br>Q213<br>Q214<br>Q215<br>Q216 | 230027-1<br>230027-1<br>230027-1<br>250004<br>230081 | TRAN JFET N-CHAN 60V TRAN JFET N-CHAN 60V TRAN JFET N-CHAN 60V TRAN PNP TO92 TRAN MOSFET N-CHAN | DATRON DATRON DATRON HATIONAL FERRANTI | SEE DRG<br>SEE DRG<br>SEE DRG<br>2N3906<br>ZVN0106A | A<br>A .<br>A | EA 7<br>EA -<br>EA -<br>EA - | | | | Q217<br>Q218<br>Q219<br>Q220<br>Q221 | 230027-1<br>230027-1<br>230082<br>230082<br>230027-1 | TRAN JFET N-CHAN 60V TRAN JFET N-CHAN 60V TRAN MOSFET N-CHAN 60V TRAN MOSFET N-CHAN 60V TRAN JFET N-CHAN 60V | DATRON<br>DATRON<br>SILICONIX<br>SILICONIX<br>DATRON | SEE DRG<br>SEE DRG<br>VN10LM<br>VN10LM<br>SEE DRG | A<br>A | EA -<br>EA -<br>EA -<br>EA - | | | | Q222<br>Q223<br>Q224<br>Q301<br>Q302 | 250004<br>230027-1<br>240006<br>250009<br>240009 | TRAN JEET N-CHAN 60V | NATIONAL<br>DATRON<br>MOTOROLA<br>NATIONAL<br>NATIONAL | 2N3906<br>SEE DRG<br>2N3904<br>2N5401<br>MPSL01/2N5550 | A | EA -<br>EA -<br>EA -<br>EA - | | | | DATRON | INSTRUMENT | S LTD PARTS LIST 23-Dec-88 | DESC: ASSY PCB DC 12 | 281 | DRG NO: LE | P400738-1 | . REV: 36 | PAGE NO: 12 | |--------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|------------|--------------------------------------|-----------|-------------| | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTIT | Y CHANGES | | | Q303<br>Q304<br>Q305<br>Q306<br>Q307 | 239093-1<br>239093-1<br>239093-1<br>239093-1<br>230082 | TRA: JFET SET PN4117A X 4 TRAN JFET SET PN4117A X 4 TRAN JFET SET PN4117A X 4 TRAN JFET SET PN4117A X 4 TRAN JFET SET PN4117A X 4 TRAN MOSFET N-CHAN 60V | DATRON DATRON DATRON DATRON SILICONIX | SEE DRG<br>SEE DRG<br>SEE DRG<br>SEE DRG<br>VN10LM | | S4 1<br>S4 -<br>S4 -<br>S4 -<br>EA - | | | | Q308<br>Q309<br>Q310<br>Q311<br>Q312 | 230082<br>230023<br>230055<br>230055<br>250027 | TRAN MOSFET N-CHAN 60V<br>TRAN JFET N CHAN DUAL<br>TRAN JFET I LIM 430UA<br>TRAN JFET I LIM 430UA<br>TRAN JFET I LIM 430UA | SILICONIX<br>SILICONIX<br>SILICONIX<br>SILICONIX<br>MICRO POWER SYSTEMS | VN10LM<br>U401<br>J502<br>J502<br>MP351 | Α | EA -<br>EA 1<br>EA 2<br>EA -<br>EA 1 | | | | Q313<br>Q314<br>Q315<br>Q316<br>Q317 | 240009<br>250009<br>250009<br>240009<br>240009 | TRAN 11PN TO18 TRAN PNP TO92 TRAN PNP TO92 TRAN 11PN TO18 TRAN NPN TO18 | NATIONAL<br>NATIONAL<br>NATIONAL<br>NATIONAL<br>NATIONAL | MPSL01/2N5550<br>2N5401<br>2N5401<br>MPSL01/2N5550<br>MPSL01/2N5550 | | EA -<br>EA -<br>EA -<br>EA - | | | | Q318<br>Q401<br>Q402<br>Q403<br>Q404 | 250009<br>250004<br>240009<br>240006<br>250009 | TRAN PNP TO92 TRAN PNP TO92 TRAN NPN TO18 TRAN NPN TO92 TRAN PNP TO92 | NATIONAL<br>NATIONAL<br>NATIONAL<br>MOTOROLA<br>NATIONAL | 2N5401<br>2N3906<br>MPSL01/2N5550<br>2N3904<br>2N5401 | | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | | | Q405<br>Q406<br>Q407<br>Q408<br>Q409 | 250004<br>230088<br>230088<br>240006<br>250004 | TRAN PNP TO92 TRAN JPET I LIM 1mA TRAN JPET I LIM 1mA TRAN NPN TO92 TRAN PNP TO92 | NATIONAL<br>SILICONIX<br>SILICONIX<br>MOTOROLA<br>NATIONAL | 2N3906<br>J505<br>J505<br>2N3904<br>2N3906 | | EA EA - EA - EA - EA - EA - EA - | | | | Q501<br>Q502<br>Q503<br>Q504<br>Q505 | 250018<br>250018<br>239084-1<br>240029<br>239084-1 | TRAN PNP TRAN PNP TRAN JFET SET J108 X 2 TRAN NPN TRAN JFET SET J108 X 2 | MOTOROLA<br>MOTOROLA<br>DATRON<br>MOTOROLA<br>DATRON | BC556<br>BC556<br>SEE DRG<br>BC546<br>SEE DRG | | EA 2<br>EA -<br>S2 1<br>EA 2<br>S2 - | | | | Q506<br>Q507<br>Q508<br>Q701<br>Q702 | 00000N<br>230079<br>240029<br>240006<br>240009 | NOT FITTED TRAN JFET N CHAN DUAL TRAN NPN TRAN NPN TO92 TRAN NPN TO18 | MICRO-POWER SYSTEMS<br>MOTOROLA<br>MOTOROLA<br>NATIONAL | MP845<br>BC546<br>2N3904<br>MPSL01/2N5550 | | EA -<br>EA 1<br>EA -<br>EA -<br>EA - | | | | Q801<br>Q802<br>Q803<br>Q804<br>Q806 | 230081<br>230081<br>240021<br>250013<br>250011 | TRAN MOSPET H-CHAN TRAN MOSPET H-CHAN TRAN HPH TRAN PHP TRAN PNP TO92 | FERRANTI<br>FERRANTI<br>NATIONAL<br>NATIONAL<br>NATIONAL | ZVN0106A<br>ZVN0106A<br>BD135<br>BD136<br>BC327 | A<br>A | EA -<br>EA -<br>EA 1<br>EA 1<br>EA 1 | | | | Q807<br>M201<br>M202<br>M203<br>M204 | 240014<br>260075<br>280167<br>260090<br>260090 | TRAN NPN TO92 IC LIN V COMP DUAL IC DIG SWITCH QUAD CMOS IC LIN OP ANP IC LIN OP AMP | NATIONAL<br>NATIONAL<br>SILICONIX<br>LINEAR TECHNOLOGY<br>LINEAR TECHNOLOGY | BC337<br>LM2903N<br>DG211CJ<br>LT1008CN8<br>LT1008CN8 | | EA 1<br>EA 1<br>EA 7<br>EA 3<br>EA - | | | | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | TITHAUQ MU | CHANGES | |--------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------|--------------------------------------|---------| | M301<br>M302<br>M303<br>M401<br>M402 | 280011<br>280025<br>260065<br>280150<br>260082 | IC DIG FLIP/FLOP D.DUAL IC DIG SWITCH QUAD CMOS IC LIN OP AMP IC DIG MULTIPLEXER 8-CHAN IC LIN OP AMP CHOPPER | MOTOROLA<br>MOTOROLA<br>PMI<br>SILICONIX<br>LINEAR TECHNOLOGY | MC14013BCP<br>MC14066BCP<br>OP27FZ<br>DG508ACJ<br>LTC1052CN8 | | EA 1<br>EA 1<br>EA 2<br>EA 2<br>EA 4 | | | M403<br>M404<br>M405<br>M406<br>M407 | 260082<br>260083<br>280167<br>260082<br>260082 | IC LIN OP AMP CHOPPER IC LIN OP AMP CHOPPER IC DIG SHITCH QUAD CHOS IC LIN OP AMP CHOPPER IC LIN OP AMP CHOPPER ASSY REFERENCE MODULE ASSY REFERENCE MODULE HOT FITTED IC DIG SHITCH QUAD CHOS IC DIG SHITCH CHOS | LINEAR TECHNOLOGY<br>LINEAR TECHNOLOGY<br>SILICONIX<br>LINEAR TECHNOLOGY<br>LINEAR TECHNOLOGY | LTC1052CN8<br>LTC1052CN<br>DG211CJ<br>LTC1052CN8<br>LTC1052CN8 | | EA -<br>EA 2<br>EA -<br>EA - | | | M408<br>M409<br>M501<br>M502<br>M503 | 400763-1<br>400763-1<br>00000N<br>280167<br>280151 | ASSY REFERENCE MODULE ASSY REFERENCE MODULE NOT FITTED IC DIG SWITCH QUAD CMOS IC DIG SWITCH CMOS | DATRON<br>DATRON<br>SILICONIX<br>SILICONIX | SEE DRG<br>SEE DRG<br>DG211CJ<br>DG308ABK | | EA 2<br>EA -<br>EA -<br>EA 2 | | | M504<br>M505<br>M506<br>M507<br>M508 | 280151<br>280167<br>260065<br>260083<br>00000N | IC DIG SWITCH CMOS IC DIG SWITCH QUAD CMOS IC LIN OP AMP IC LIN OP AMP CHOPPER NOT FITTED | SILICONIX<br>SILICONIX<br>PMI<br>LINEAR TECHNOLOGY | DG308ABK<br>DG211CJ<br>OP27FZ<br>LTC1052CN | | EA -<br>EA -<br>EA -<br>EA - | | | M509<br>M510<br>M511<br>M601<br>M603 | 280129<br>280106<br>260080<br>280167<br>260090 | IC DIG ULA A-D IC DIG HEX LEVEL SHIFTER IC LIN V COMP IC DIG SWITCH QUAD CMOS IC LIN OP AMP | PLESSEY<br>MOTOROLA<br>NATIONAL<br>SILICONIX<br>LINEAR TECHNOLOGY | CLA3722<br>MC14504BCP<br>LM311N<br>DG211CJ<br>LT1008CN8 | | EA 1<br>EA 2<br>EA 1<br>EA -<br>EA - | | | M604<br>M606<br>M607<br>M608<br>M609 | 260099<br>280093<br>280023<br>280167<br>280167 | IC LIN OP AMP IC DIG OR EXCL QUAD IC DIG MOR2 QUAD IC DIG SWITCH QUAD CMOS IC DIG SWITCH QUAD CMOS | MOTOROLA<br>MOTOROLA<br>MOTOROLA<br>SILICONIX<br>SILICONIX | MC34181<br>MC14070BCP<br>MC14001UBCP<br>DG211CJ<br>DG211CJ | | EA 1<br>EA 1<br>EA 1<br>EA -<br>EA - | | | M610<br>M611<br>M701<br>M702<br>M703 | 280008<br>280150<br>220041<br>220027<br>220041 | IC DIG QUAD 2 I/P HAND IC DIG MULTIPLEXER 8-CHAN OPTO 3KY DUAL OPTO HIGH CPT OPTO 3KY DUAL | MOTOROLA<br>SILICONIX<br>H.P.<br>H.P.<br>H.P. | MC14011BCP<br>DG508ACJ<br>HCPL-2631<br>HCPL-2601<br>HCPL-2631 | A<br>A | EA 1<br>EA -<br>EA 3<br>EA 1<br>EA - | | | M704<br>M705<br>M70€<br>M707<br>M708 | 220041<br>220030<br>280152<br>280068<br>280137 | OPTO 3KV DUAL OPTO HI SPEED IC DIG SCIMIDT NAND2 QUAD IC DIG MONOSTABLE DUAL IC DIG DRIVER OCT 3S HCT | H.P.<br>HP<br>MOTOROLA<br>MOTOROLA<br>SIGNETICS | HCPL-2631<br>6N136<br>MC14093BCP<br>MC14538BCP<br>PC74HCT244P | Α | EA -<br>EA 1<br>EA 1<br>EA 1<br>EA 1 | | | M801<br>M802<br>M803<br>M804<br>M805 | 280132<br>280132<br>280132<br>280106<br>280149 | IC DIG SWITCH QUAD CMOS IC DIG SWITCH CMOS IC DIG SWITCH CMOS IC DIG SWITCH CMOS IC DIG SWITCH QUAD CMOS IC LIN OP AMP IC LIN OP AMP IC LIN OP AMP CHOPPER NOT FITTED IC DIG ULA A-D IC DIG HEX LEVEL SHIFTER IC LIN V COMP IC DIG SWITCH QUAD CMOS IC LIN OP AMP IC DIG OF AMP IC DIG OF EXCL QUAD IC DIG SWITCH QUAD CMOS SUMIDI TANID IC DIG MULTIPLEER 8-CHAN OPTO JKY DUAL OPTO HI SPEED IC DIG SCIMIDI TANID2 QUAD IC DIG MOIOSTABLE DUAL IC DIG ULA SERIAL TX/RX ULEX LEVEL SHIFTER IC DIG DECODER 2-4 DUAL | PLESSEY<br>PLESSEY<br>PLESSEY<br>MOTOROLA<br>MOTOROLA | CLA3106<br>CLA3106<br>CLA3106<br>MC14504BCP<br>MC14555 | | EA 3<br>EA -<br>EA -<br>EA -<br>EA 1 | | | DATRON | INSTRUMENT | S LTD PARTS LIST 23-Dec-88 | DESC: ASSY PCB DC 12 | 81 | DRG NO: LP400738-1 | REV: 36 | PAGE NO: 14 | |-------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|---------|-------------| | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS UM QUANTITY | CHANGES | | | M806<br>M807<br>M808<br>M901<br>M902 | 280143-1<br>280143-1<br>260098<br>260094<br>260095 | IC DIG BUFFER OCT 3S IC DIG BUFFER OCT 3S IC LIN OP AMP IC LIN REG +15V 1A IC LIN REG -15V 1A | SIGNETICS<br>SIGNETICS<br>NATIONAL<br>SGS<br>SGS | SEE DRG<br>SEE DRG<br>LF441CN<br>L7815ACV<br>L7915ACV | A EA 2<br>A EA -<br>A EA 1<br>A EA 1<br>A EA 1 | | | | M903<br>M904<br>M905<br>T601<br>RL101 | 260037<br>260038<br>260097<br>350001-3<br>330039 | IC LIN REG 1.2-37V 1A POS<br>IC LIN REG 1.2-37V 1A NEG<br>IC LIN REG +5V 1A<br>TRANSF SELF CAL 1281<br>RELAY 4PNO | NATIONAL<br>NATIONAL<br>SGS<br>SIGA<br>SDS | LM317T<br>LM337T<br>L7805ACV<br>SEE DRG<br>S4-L-6V | EA 1<br>EA 1<br>EA 1<br>EA 1<br>EA 6 | | | | RL103<br>RL104<br>RL105<br>RL106 | 330039<br>330039<br>330039<br>330039 | RELAY 4PNO<br>RELAY 4PNO<br>RELAY 4PNO<br>RELAY 4PNO<br>RELAY 4PNO | SDS<br>SDS<br>SDS<br>SDS<br>SDS<br>SDS | S4-L-6V<br>S4-L-6V<br>S4-L-6V<br>S4-L-6V<br>S4-L-6V | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | | | RL107<br>RL108<br>RL201<br>RL202<br>RL203 | 330041<br>330038<br>330038<br>330030<br>330042-2 | RELAY 2P 2W<br>RELAY 2PNO 2PNC<br>RELAY 2PNO 2PNC<br>RELAY 4PNO<br>RELAY 3PNO 1PNC | SDS<br>SDS<br>SDS<br>SDS<br>SDS | DS2E-SL-6V<br>S2-L-6V<br>S2-L-6V<br>S4-24V<br>S3-L-6V | EA 2<br>EA 2<br>EA -<br>EA.1<br>EA 1 | | | | RL401<br>L101<br>L102<br>L103<br>PL100 | 330041<br>370032-1<br>370031-1<br>370031-1 | RELAY 2P 2W<br>CHOKE COM MODE RM7<br>CHOKE COM MODE RM10<br>CHOKE COM MODE RM10 | SDS<br>SIGA<br>SIGA<br>SIGA | DS2E-SL-6Y<br>SEE DRG<br>SEE DRG<br>SEE DRG | EA -<br>EA 1<br>EA 2<br>EA -<br>EA 1 | | | | PL102<br>PL103<br>PL105 | 604046<br>604056<br>604086<br>604076<br>604076 | PLUG PCB 3-WAY .1"<br>PLUG PCB 4-WAY .1"<br>PLUG PCB 12-WAY .1"<br>PLUG PCB 16-WAY .1"X.1" GRID<br>PLUG PCB 16-WAY .1"X.1" GRID | MOLEX<br>MOLEX<br>MOLEX<br>3M<br>3M | 22-10-2031<br>22-10-2041<br>22-29-2121<br>3599-6002 UN<br>3599-6002 UN | EA 4<br>EA 1<br>EA 1<br>EA 3<br>EA - | | | | PL111<br>PL120<br>PL121 | 604076<br>604085<br>604075<br>604074<br>604033 | PLUG PCB 6-WAY .1" PLUG PCB 3-WAY .1" PLUG PCB 4-WAY .1" PLUG PCB 12-WAY .1" PLUG PCB 16-WAY .1"X.1" GRID PLUG PCB 16-WAY .1"X.1" GRID PLUG PCB 16-WAY .1"X.1" GRID PLUG PCB 2-WAY .1" PLUG PCB 6-WAY .1" PLUG PCB 6-WAY .1" PLUG PCB 6-WAY .1" PLUG PCB 4-WAY .1" PLUG PCB 4-WAY .1" | 3M<br>MOLEX<br>MOLEX<br>MOLEX | 3599-6002 UN<br>22-29-2021<br>22-29-2061<br>22-29-3031<br>22-29-2041 | EA -<br>EA 3<br>EA 3<br>EA 3<br>EA 9 | | | | PL131<br>PL132<br>FL140 | 604074<br>604033<br>604075<br>604074 | PLUG PCB 3-WAY .1" PLUG PCB 4-WAY .1" PLUG PCB 6-WAY .1" PLUG PCB 3-WAY .1" | MOPEX WOPEX WOPEX WOPEX | 22-29-2061<br>22-29-3031<br>22-29-2061<br>22-29-3031 | EA -<br>EA -<br>EA -<br>EA - | | | | PL143<br>PL150<br>PL151 | 604033<br>604085<br>604033<br>604033<br>604033 | PLUG PCB 4-WAY .1"<br>PLUG PCB 2-WAY .1"<br>PLUG PCB 4-WAY .1"<br>PLUG PCB 4-WAY .1"<br>PLUG PCB 4-WAY .1" | MOLEX<br>MOLEX<br>MOLEX<br>MOLEX | 22-29-2041<br>22-29-2021<br>22-29-2041<br>22-29-2041<br>22-29-2041 | EA -<br>EA -<br>EA -<br>EA - | | | The state of s | DATRON | INSTRUMENT | PARTS LIST 23-Dec-88 | DESC: ASSY PCB DC 1 | 281 | DRG NO: LP400738-1 | REV: 36 | PAGE NO: 15 | |-------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|---------|-------------| | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS UM QUANTITY | CHANGES | | | PL160<br>PL161<br>PL162<br>W901<br>W902 | 604033<br>604033<br>604033<br>209014<br>209014 | PLUG PCB 4-WAY .1" PLUG PCB 4-WAY .1" PLUG PCB 4-WAY .1" PLUG PCB 4-WAY .1" DIODE BR 1A5 400V DIODE BR 1A5 400V | MOLEX MOLEX MOLEX MICRO-ELECTRONICS MICRO-ELECTRONICS | 22-29-2041<br>22-29-2041<br>22-29-2041<br>W004 | EA -<br>EA -<br>EA -<br>EA 2<br>EA - | , | | | E1<br>TP101<br>TP102<br>TP103<br>TP201 | 920205<br>540002<br>540002<br>620007<br>620007 | BEAD FERRITE WIRE 1/.7 TIMMED COPPER WIRE 1/.7 TIMMED COPPER TEST POINT TERMINAL TEST POINT TERMINAL | PHILIPS<br>BS4109<br>BS4109<br>MICROVAR<br>MICROVAR | FX4017<br>225WG<br>225WG<br>TYPE C30<br>TYPE C30 | EA 1<br>AR 4<br>AR -<br>EA 24<br>EA - | | | | TP202<br>TP203<br>TP401<br>TP402<br>TP403 | 620007<br>620007<br>620007<br>620007<br>620007 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30 | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | | | TP404<br>TP405<br>TP406<br>TP501<br>TP502 | 620007<br>620007<br>620007<br>620007 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30 TYPE C30 TYPE C30 TYPE C30 TYPE C30 TYPE C30 | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | | | TP504<br>TP601<br>TP602<br>TP603<br>TF701 | 620007<br>620007<br>620007<br>620007<br>620007 | TEST POINT TERMINAL | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30 TYPE C30 TYPE C30 TYPE C30 TYPE C30 | EA<br>EA<br>EA<br>EA<br>EA | | | | TP702<br>TP801<br>TP901<br>TP902<br>TP9C3 | 620007<br>620007<br>620007<br>620007<br>620007 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30 | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | | | TP904<br>TP905<br>DN801<br>DN802 | 620007<br>620007<br>400695-1<br>400696-1<br>400695-1 | TEST POINT TERMINAL TEST POINT TERMINAL ASSY COM CATHODE DIODE | MICROVAR<br>MICROVAR<br>DATRON<br>DATRON<br>DATRON | TYPE C30 TYPE C30 SEE DRG SEE DRG SEE DRG | EA -<br>EA -<br>EA 2<br>EA 2<br>EA - | | | | DN804<br>X501<br>LK501<br>LK502<br>LK701 | 400696-1<br>800032<br>540002<br>540002<br>604085 | ASSY COM ANODE DIODE<br>CRYSTAL OSC 4.91520 MHz<br>WIRE 1/.7 TINNED COPPER<br>WIRE 1/.7 TINNED COPPER<br>BLUC DER 2-WAY 1" | DATRON<br>EURO-QUARTZ<br>B54109<br>B54109<br>MOLEY | SEE DRG<br>EQX0 1100HC<br>225WG<br>225WG<br>22-29-2021 | EA -<br>EA 1<br>AR -<br>AR -<br>EA - | | | | LK702<br>LK703<br>LK704 | 604046<br>604046<br>604046<br>400758-2<br>410393-1 | PLUG PCB 3-WAY .1" PLUG PCB 3-WAY .1" PLUG PCB 3-WAY .1" PLUG PCB 3-WAY .1" ASSY CABLE SIG IP PCB DC 1281 | MOLEX<br>MOLEX<br>MOLEX<br>DATRON | 22-10-2031<br>22-10-2031<br>22-10-2031<br>SEE DRG<br>SEE DRG | EA -<br>EA -<br>EA -<br>EA 1<br>EA 1 | | | | | | | | | | | | | DATRON | INSTRUMENT | rs LTD F | PARTS LIST | 23-Dec-88 | DESC: ASSY PCB DC 12 | 31 | DRG NO: L | 2400738-1 | REV: 36 | PAGE NO: 16 | |--------|----------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|-----------------------------------------|---------|-------------| | DESIG | PART NO | DESCRIPT | rion | | PRINC MANUF | MANUF PART NUMBER | CLASS, | UM QUANTITY | CHANGES | | | | 602001<br>605050<br>605059<br>605060<br>605061 | TERMINAL<br>SOCKET F<br>SOCKET F<br>SOCKET F | FSY<br>PCB 40-WAY<br>PCB 8-WAY D<br>PCB 14-WAY<br>PCB 16-WAY | DIL<br>DIL<br>DIL | MOLEX<br>JERMYN<br>JERMYN<br>JERMYN<br>JERMYN | 02-04-5114<br>J23-18040<br>J23-18008<br>J23-18014<br>J23-18016 | A<br>A<br>A | EA 8<br>EA 1<br>EA 10<br>EA 6<br>EA 14 | | | | | 605062<br>605070<br>605127<br>611016<br>611028 | SOCKET F<br>SOCKET F<br>SOCKET I<br>SCREW MS | PCB 18-WAY<br>PCB 20-WAY<br>LINK 2-WAY<br>3 X 8 POZIP<br>4 X 8 POZIP | DIL<br>DIL<br>.1" BLK<br>AN SZP | JERMYN<br>JERMYN<br>ASSMANN | J23-18018<br>J23-18020<br>AKSPL-G | A<br>A | EA 3<br>EA 3<br>EA 2<br>EA 1 | | | | | 612029-1<br>613005<br>613052<br>615002<br>617014 | WASHER N | F M3 X 12<br>M3 INT SHAK<br>M4 WAVY SS<br>FULL SZP<br>PLUNGER 1/ | | DATRON HARTWELL (C.J.FOX) | | | EA 1<br>EA 2<br>EA 1<br>EA 2<br>EA 11 | | | | | 617015<br>620005<br>630024<br>630036<br>630243 | NYLATCH<br>CLOVER LI<br>BEAD CEF<br>BEAD CEF<br>BEAD GL | GROMMET 1/<br>EAF LARGE P<br>RAMIC 16 SW<br>RAMIC 18 SW<br>ASS 2.4 X 0 | 4"<br>TFE<br>G<br>G<br>.81 X 1.8 | HARTWELL (C.J.FOX)<br>SEALECTRO<br>PARK ROYAL PORCELAIN<br>PARK ROYAL PORCELAIN<br>MANSOL (PREFORMS) LT | HN4G-43<br>011-6809-040599<br>No2<br>No1<br>M5363B/3 | <b>A</b> | EA 11<br>EA 5<br>EA 16<br>EA 6<br>EA 84 | | | | | 920105-1<br>540002<br>590004<br>540006<br>540016 | HEATSINI<br>WIRE 1/<br>SLEEVE I<br>WIRE 1/<br>WIRE 1/ | K TO-202<br>.7 TINNED C<br>PTFE 1mm BL<br>.4 BLACK PT<br>.25 SILVER | OPPER<br>K<br>FE 250V<br>PL. COPPER | AAVID<br>BS4109<br>HELLERMAN<br>BSG210 | SEE DRG<br>22SWG<br>FE10<br>TYPE A | | EA 2<br>AR -<br>AR -<br>AR -<br>AR - | | | | | 540017<br>620003<br>400797-1<br>400815-1<br>590006 | SOLDER I<br>ASSY PCI<br>ASSY PCI | B DC PIGGYB<br>B DC CLOCK | ACK 1281<br>1281 | HARWIN<br>DATRON<br>DATRON<br>R.S.COMPONENTS | H2105A01<br>SEE DRG<br>SEE DRG<br>399-495 | | AR -<br>EA 1<br>EA 1<br>EA 1<br>AR 15 | | | | | 590031<br>560002<br>512111<br>590029<br>630331 | SLEEVE I<br>CABLE A:<br>WIRE 7/<br>SLEEVE I<br>PAD 9/10 | HS 3.2mm YL<br>X 2.54mm 7/<br>.2 PTFE 1KV<br>HS 9.0mm BL<br>6 SOLDER MA | W<br>34AWG<br>BRN<br>K<br>SK | | 399-502<br>RG174U<br>TYPE C<br>SFM9-3BK<br>CMC5625 | | AR 30<br>MM 75<br>AR 1<br>AR 11<br>EA 3 | | | | r.d | | | | | | | | | | | | LD 40 | 0901 | CHKU | | | _ - | | _ | | | | | | | _ | | Ŀ | | | | | | | | | | | | | | I | | | | | | | | | I | | I | | |-----------------------------|------------|----------|-------------|-----|-----|------|------|----|---|----------|-----|------|-------|-----|-------|-----|-------|----------|----------|-------|-----|-----|-----|------|----------------------------------------|---|-----|-----|-----|--------------|---|--------------|---------|-------|---|---|----------|----------|-----|--------------|--------------|---| | | NT LIST | DATE | 122 DEC88 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | T | | | | orsini<br> | витюн | ECO | 001 | 1 | - - | - - | - | | - | | | | | | - | - | | | | | | - | | | | | | | | | | | T | | | | | 1 | - - | 1 | 1 | | | | | REVISION | A.213 | - | - | - - | - | - | - | - | 1 | 1 | - - | - | - | - | - | - | - | - | - | - | - | | | | | 1 | + | + | | T | T | T | | | | 1 | - - | + | + | - | | r i samenan | DRAWING | SHEET | Т | | | | | | ل | II | | | | IS | 5,1/6 | . A | EVIS | ION | | | | | | | اـــــــــــــــــــــــــــــــــــــ | | | | | | | ٠ | | | ٠ | | | | | _1_ | | | | PARTS<br>LIST | LP400901 | | Ā.2 | | | | | T- | - | | | | | | | | | | | | | - - | Ţ. | I | | | | | - | | | | | | | | | 1 | T- | <del>-</del> | Ţ | | | SSEMBLY | | | 63 | | | | | | | | - | - - | | | . | - | - | - | - | _ | - - | - - | - | - | _ | | - | - | - | - | - | - | - | - | | | _ | - | - | - - | - - | _ | | | DA400901 | | 12. A | | | - | | | | | | | - | . | . - | - | - | _ | | _ | _ | _ | - | - | _ | | _ | _ - | | - | - | - | L | ļ | L | | 4 | 4 | | - | 1 | _ | | | DA400901 | 2 | Ā | _ | | | | | | _ | _ . | _ | - - | | . _ | _ | _ | _ | _ | _ | _ | 4 | | - | _ | | | | - | - | - | - | - | L | _ | | _ | 4 | - | _ | - | | | | DA400901 | 3 | Ā. | - | - - | | - - | | | - | - | - | | | - | - | | | - | | - | - - | - | - | - | | | - | + | - | + | - | - | - | - | | $\dashv$ | $\dashv$ | | + | $\downarrow$ | | | URCUIT DIAGRAM | DC40090I | | ¥. | | ١ | | - - | - | - | | | - - | - - | - - | - | - | | - | - | | | - | | - | - | | | - | + | + | | + | - | - | - | | | | | + | + | | | CIRCUIT DIAGRAM | DC400901 | 2 | A-2 | | - | - | - - | | | _ | | | _ - | - - | | | | | | | | | | | | | | | | | L | | | | | | | | | | I | | | | 000000 | 3 | 1A.2 | | | _ . | _ _ | _ | | _ | _ | _ | - - | _ | - - | _ | _ | | _ | | _ . | _ | | ļ | _ | | | 1 | _ | 1 | _ | _ | L | L | _ | | | _ | _ _ | $\downarrow$ | 1- | | | IRCUIT<br>DIAGRAM<br>IRCUIT | DC400901 | 4 | 2.A.2 | _ . | | _ | _ | | | | _ | _ . | | _ _ | _ | _ | _ | | | | _ | | _ | _ | _ | | | 4 | _ | _ | - | 1 | L | _ | | | _ | 4 | _ - | 1 | 1 | | | | DC400901 | 5 | 1A-2 | | | | | - | | | _ | | | | - - | - | | | _ | | _ | - | - - | _ | - | | | _ | - | 1 | - | _ | - | - | _ | | 4 | 4 | - - | + | 1 | _ | | | PT400901 | | | - | _ - | _ . | | | · | _ | 4 | _ . | - | - | - | 1 | _ | | - | _ | - | _ - | - | - | _ | _ | | 4 | - | + | - | $\downarrow$ | $\perp$ | igert | - | | | 4 | - - | $\downarrow$ | + | | | | ST400901 | | $ \cdot $ | 4 | 4 | 4 | - | - | - | $\sqcup$ | 4 | 4 | - | + | + | + | - | $\sqcup$ | | .aran | 4 | 4 | - | - | - | _ | | - | + | $\downarrow$ | - | + | + | + | + | | | - | 4- | $\downarrow$ | + | _ | | | 414001 | | 2.03 | - | - | - | | - | - | - | - | - | - | | - | - | - | _ | | | - | | | - | | | | - | + | | + | - | - | + | - | | | 1 | - | - | - | | | DENDI<br>AJ 185 | IES NO CHA | IIGE TO | DOX | :s | | | | | | + + 1 | E | F) ( | J 1.1 | E 1 | ľ | ] | DA1 E | 11_ | <u> </u> | 1 0 | ATC | | | DATE | | | TIT | 12 | 110 | リノラ | T | ٩L | _ | | | ᆫ | - | 1C | | 9 | | 1 | To the same | | INSTRUMENT | | | | 23-Dec-88 | | ASSY PC | L 1281 | | NO: L | | | REV: 2 | PAGE NO: | 1 | |--------------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------------------------------|--------------------------------------|-----------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------------------|-----|------------------|----------------------|-------------|--------|----------|---| | DESIG | PART NO | DESCRI | | | | | MANUF | MANUF PART NU | | | | | | | | | R101<br>R102<br>R104<br>R105<br>R201 | 011008<br>090164<br>014751<br>090177<br>090164 | RES MF<br>RES MF<br>RES MF<br>RES MT | 10R0 1%<br>WK 2K2 X<br>4K75 1%<br>WK 3K3 X<br>WK 2K2 X | .12W<br>8 2%<br>.12W<br>8 2%<br>8 2% | 50РРМ<br>50РРМ | HOLSWO<br>BECKM/<br>HOLSWO<br>BECKM/<br>BECKM/ | ORTHY<br>AN<br>ORTHY<br>AN | HBC<br>LO9-1-R2K2<br>·HBC<br>LO9-1-R3K3<br>LO9-1-R2K2 | • | A<br>A | EA<br>EA<br>EA<br>EA | 3<br>3<br>1 | | | | | R202<br>R203<br>R204<br>R205<br>R206 | 090046<br>015900<br>015620<br>011001<br>011001 | RES MF<br>RES MF<br>RES MF | WK 10K X<br>590R 1%<br>562R 1%<br>1K00 1%<br>1K00 1% | .12W<br>.12W<br>.12W | 50PPM<br>50PPM<br>50PPM<br>50PPM | BECKMA<br>HOLSWO<br>HOLSWO<br>HOLSWO | NA<br>PETHY<br>ORTHY<br>ORTHY<br>ORTHY | HBC<br>HBC<br>HBC<br>HBC | | A<br>A<br>A | EA<br>EA<br>EA<br>EA | 1<br>1<br>6 | | | | | R207<br>R208<br>R209<br>R210<br>R211 | 013092<br>013092<br>090163<br>090167<br>011002 | | 30K9 1%<br>30K9 1%<br>WK 10K x<br>CK 100K X<br>10K0 1% | | 50PPM<br>% | HOLSWO<br>BECKMA<br>BECKMA<br>HOLSWO | YHTRO<br>ORTHY<br>AN<br>AN<br>AN<br>YHTRO | H8C<br>H8C<br>LO9-1-R10K<br>LO8-3-R100K<br>H8C | • • | A<br>A | EA<br>EA<br>EA<br>EA | -<br>1<br>1 | | | | | R212<br>R213<br>R301<br>R302<br>R303 | 011022<br>013328<br>090164<br>015110<br>014751 | RES MF<br>RES MF | 10K2 1%<br>33R2 1%<br>WK 2K2 X<br>511R 1%<br>4K75 1% | .12W<br>8 2%<br>.12W | 50PPM<br>50PPM | HOLSWO<br>BECKMA<br>HOLSWO<br>HOLSWO | ORTHY<br>AN<br>ORTHY | HBC<br>HBC<br>LO9-1-R2K2<br>HBC<br>HBC | | A<br>A<br>A | EA<br>EA<br>EA<br>EA | 1<br>-<br>2 | | | | | R304<br>R305<br>R306<br>R307<br>R308 | 090165<br>015110<br>014752<br>012002<br>011002 | RES MF<br>RES MF<br>RES MF | CK 68R X<br>511R 1%<br>47K5 1%<br>20K0 1%<br>10K0 1% | .12W<br>.12W<br>.12W | 50РРМ<br>50РРМ<br>50РРМ | BECKMA<br>HOLSWO<br>HOLSWO<br>HOLSWO | ORTHY<br>ORTHY<br>ORTHY | LO8-3-R68<br>HBC<br>HBC<br>HBC<br>HBC<br>HBC | | Λ<br>Α<br>Α | EA<br>EA<br>EA<br>EA | -<br>3<br>1 | | | | | R309<br>R310<br>R311<br>R312<br>R313 | 016812<br>014991<br>017501<br>014751<br>011002 | RES MF<br>RES MF<br>RES MF | 68K1 1%<br>4K99 1%<br>7K50 1%<br>4K75 1%<br>10K0 1% | .12W<br>.12W<br>.12W | 50PPM<br>50PPM<br>50PPM | HOLSWO<br>HOLSWO<br>HOLSWO<br>HOLSWO | ORTHY<br>ORTHY<br>ORTHY | H8C<br>H8C<br>H8C<br>H8C<br>H8C | | A<br>A<br>A<br>A | EA<br>EA<br>EA<br>EA | 8<br>1<br>- | | | | | R314<br>R315<br>R316<br>R317<br>R401 | 011002<br>016818<br>012212<br>012212<br>016818 | RES MF<br>RES MF | 10K0 1%<br>68R1 1%<br>22K1 1%<br>22K1 1%<br>68R1 1% | .12W<br>.12W<br>.12W | 50PPM<br>50PPM<br>50PPM | HOLSWO<br>HOLSWO<br>HOLSWO<br>HOLSWO | ORTHY<br>ORTHY<br>ORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВС | | A<br>A<br>A<br>A | EA<br>EA<br>EA<br>EA | 3<br>2<br>- | | | | | R402<br>R403<br>R404<br>R405<br>R406 | 016818<br>090041<br>090165<br>090165<br>016190 | RES PAR<br>RES PAR<br>RES MF | | 7 2%<br>4 2%<br>4 2%<br>.12W | 50РРМ | | AN<br>AN<br>AN<br>DRTHY | H8C<br>LO8-1-R4K7<br>LO8-3-R68<br>LO8-3-R68<br>H8C | | A<br>A | EA<br>EA<br>EA<br>EA | 1<br>-<br>- | | | | | R407<br>R408<br>R501<br>R502<br>R503 | 090162<br>012740<br>011001<br>008039<br>011001 | RES PARES MF<br>RES MF<br>RES WW<br>RES MF | CK 270R x<br>274R 1%<br>1K00 1%<br>0R20 10%<br>1K00 1% | . 4 2<br>.12W<br>.12W<br>.2.5 | %<br>50РРМ<br>50РРМ<br>W<br>50РРМ | AB<br>HOLSWO<br>WELWYN<br>HOLSWO | ORTHY<br>ORTHY<br>N<br>ORTHY | 770-83-270R<br>HBC<br>HBC<br>W21-0R20<br>HBC | | | EA<br>EA<br>EA<br>EA | 1 | | | | | | INSTRUMENT | S LTD | PARTS | LIST | 23-Dec-88 | DESC: ASSY PCB DIGI | PAL 1281 | DRG N | 10: LF | 400 | 901-A | REY: 2 | PAGE NO: 2 | |--------------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|--------|----------------------|------------------|---------|------------| | DESIG | PART NO | DESCRI | PTION | | | PRINC MANUF | MANUF PART NUMBER | R C | LASS | UM | QUANTITY | CHANGES | | | R504<br>R505<br>R506<br>R507<br>R508 | | | | | | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | | | | | | | | | R509<br>R510<br>R511<br>R512<br>R513 | 012742<br>014991<br>00000F | RES MF<br>RES MF<br>RES FS | 27K4 1<br>4K99 1 | % .12W<br>% .12W | 1 50PPM<br>1 50PPM | HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC | A<br>A | | EA<br>EA<br>EA<br>EA | 1<br>1<br>3 | | | | R514<br>R515<br>R516<br>R517<br>R518 | 013920<br>013321<br>013920 | RES MF | 392R 1<br>3K32 1<br>392R 1 | ቄ .12W<br>ቄ .12W<br>ቄ .12W | 50PPM<br>50PPM<br>50PPM<br>50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>WELWYN | HBC<br>HBC<br>HBC<br>HBC<br>W21-0R1 | A<br>A<br>A | | EA<br>EA<br>EA<br>EA | 1 | | | | R519<br>R520<br>R521<br>R522<br>R523 | 011621<br>015622<br>014752 | RES MF<br>RES MF<br>RES MF<br>RES MF<br>RES MF | 1K62 1<br>56K2 1<br>47K5 1 | ፄ .12W<br>ፄ .12W<br>ፄ .12W | 50PPM<br>50PPM<br>50PPM<br>50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A<br>A | | EA<br>EA<br>EA<br>EA | 1 | | | | R524<br>R525<br>R526<br>R527<br>R528 | 014991<br>014991<br>011001 | RES MF<br>RES MF<br>RES MF<br>RES MF<br>RES MF | 4K99 1<br>4K99 1<br>1K00 1 | % .12W<br>% .12W<br>% .12W | 50PPM<br>50PPM<br>50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | 118C<br>118C<br>118C<br>118C<br>118C | A<br>A<br>A<br>A | | EA<br>EA<br>EA<br>EA | -<br>-<br>- | | | | R529<br>R530<br>R531<br>R532<br>R533 | 012211<br>013400<br>00000N | RES MF<br>RES MF<br>RES MF<br>NOT FIT<br>RES MF | 2K21 1'<br>340R 1'<br>TED | % .12W<br>% .12W | 50PPM<br>50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC | | | EA<br>EA<br>EA<br>EA | 1<br>1<br>10 | | | | R535<br>C101<br>C102<br>C103<br>C106 | 011008<br>104026<br>104025<br>104025<br>110042 | RES MF<br>CAP CD<br>CAP CD<br>CAP CD<br>CAP PE | 10R0 19<br>47NF +9<br>100NF -<br>100NF - | % .12W<br>50%-20<br>+80%-2<br>+80%-2<br>20% 63 | 50PPM<br>% 50V<br>0% 50V<br>0% 50V<br>V | HOLSWORTHY<br>SIEMENS<br>SIEMENS<br>SIEMENS<br>WIMA | HBC<br>B37449<br>B37449<br>B37449<br>MKS2 | A | | EA<br>EA<br>EA<br>EA | 2<br>21<br> | | | | C201<br>C202<br>C203<br>C204<br>C205 | 110042<br>150002<br>100471<br>110035<br>100121 | CAP PE<br>CAP DT<br>CAP CP<br>CAP PE<br>CAP CP | 100NF 2<br>10UF 20<br>470PF 3<br>220NF 2<br>120PF 2 | 20% 63<br>0% 16V<br>10% 10<br>20% 63<br>2% 100 | Y<br>0Y<br>V | WIMA<br>AVX<br>PHILIPS<br>WIMA<br>PHILIPS | MKS2<br>TAP10M16F<br>2222 630 19471<br>MKS2<br>2222 683 34121 | A | | EA<br>EA<br>EA<br>EA | 2<br>1<br>3<br>1 | | | | C206<br>C207<br>C208<br>C209<br>C210 | 100330<br>104025<br>100330<br>100330<br>100330 | CAP CP<br>CAP CP<br>CAP CP<br>CAP CP<br>CAP CP | 33PF 29<br>100NF +<br>33PF 29<br>33PF 29<br>33PF 29 | 8 100V<br>80%-2<br>8 100V<br>8 100V<br>8 100V | 0% 50V | PHILIPS<br>SIEMENS<br>PHILIPS<br>PHILIPS<br>PHILIPS | 2222 683 34339<br>B37449<br>2222 683 34339<br>2222 683 34339<br>2222 683 34339 | | | EA<br>EA<br>EA<br>EA | 4<br>-<br>-<br>- | | | | DESIG | DATRON | I INSTRUMEN | TS LTD PARTS LIST 23-Dec-88 | DESC: ASSY PCB DIG | ITAL 1281 | DRG NO: L | P400901-A | REV: 2 | PAGE NO: 3 | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|-----------|--------------------------------------|---------|------------| | C212 | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTITY | CHANGES | | | C305 100470 | C211<br>C212<br>C301<br>C302 | | CAP DT 1UF 20% 35V<br>CAP PE 22NF 10% 63V<br>CAP CP 220PF 2% 100V<br>CAP DT 10UF 20% 16V | AVX<br>WIMA<br>PHILIPS<br>AVX | TAP1R0M35F<br>MKS4<br>2222 683 58221<br>TAP10M16F | A | EA 2<br>EA 1<br>EA 1<br>EA - | | | | C404 | C305<br>C401<br>C402 | 150015<br>100470<br>00000N<br>00000N | CAP DT 10UF 20% 35V<br>CAP CP 47PF 2% 100V<br>NOT FITTED | AVX<br>PHILIPS | TAP10M35F<br>. 2222 683 34479 | Α | EA 1<br>EA 1<br>EA -<br>EA - | | | | C503 | C405<br>C406<br>C407 | 104025<br>104025<br>104025 | CAP NTWK 220PF 10%<br>CAP CD 100NF +80%-20% 50V<br>CAP CD 100NF +80%-20% 50V<br>CAP CD 100NF +80%-20% 50V | MURATA/ERIE<br>SIEMENS<br>SIEMENS<br>SIEMENS | B8XCO117-33N<br>B37449<br>B37449<br>B37449 | | EA 1<br>EA -<br>EA - | | | | C518 110042 CAP PE 100NF 208 63V WINA MKS2 EA - | C503<br>C504<br>C505 | 180048<br>110041<br>110041<br>110042<br>120028 | CAP AE 470UF 63V<br>CAP PE 10NF 20% 100V<br>CAP PE 10NF 20% 100V<br>CAP PE 100NF 20% 63V<br>CAP PC 4N7F 20% 100V | NIPPON CHEMI-CON<br>WIMA<br>WIMA<br>WIMA<br>WIMA | SMYB 470/63<br>FKS2<br>FKS2<br>MKS2<br>FKC2 | A | EA 1<br>EA 3<br>EA -<br>EA -<br>EA 1 | | | | C518 110042 CAP PE 100NF 208 63V WINA MKS2 EA - C529 110040 CAP PE 3310F 208 63V WINA MKS2 EA - C520 180049 CAP PE 3310F 100V PILLIPS 035-59331 EA 1 C521 110042 CAP PE 100NF 208 63V WIMA MKS2 EA - C522 150001 CAP DT 220F 208 16V AVX TAP22M16F A EA - C523 110042 CAP PE 100NF 208 63V WIMA MKS2 EA - C524 150016 CAP DT 1UF 208 35V AVX TAP16M35F A EA - C524 150016 CAP DT 1UF 208 35V AVX TAP16M35F A EA - C527 104025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - C528 104025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - | C508<br>C509<br>C510 | 100332<br>110035<br>104026<br>180044<br>110035 | CAP CP 3N3F 10% 100V<br>CAP PE 220NF 20% 63Y<br>CAP CD 47NF +50%-20% 50V<br>CAP AE 220UF 40V<br>CAP PE 220NF 20% 63Y | PHILIPS WIMA SIEMENS STEATITE WIMA | 2222 630 19332<br>MKS2<br>B37449<br>EKMOODE:322G<br>MKS2 | | EA 2<br>EA -<br>EA -<br>EA 1<br>EA - | | | | C518 110042 CAP PE 100NF 204 63V WIMA MKS2 EA - C520 180049 CAP PE 330UF 100V PINILIPS 035-59331 EA 1 C521 110042 CAP PE 100NF 208 63V WIMA MKS2 EA - C521 110042 CAP PE 100NF 208 63V WIMA MKS2 EA - C522 150001 CAP DT 22UF 208 16V AVX TAP22M16F A EA - C523 110042 CAP PE 100NF 208 63V WIMA MKS2 EA - C524 150016 CAP DT 1UF 208 35V AVX TAP10M35F A EA - C524 150016 CAP DT 1UF 208 35V AVX TAP10M35F A EA - C525 10025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - C526 104025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - | C513<br>C514<br>C515 | 100332<br>180062<br>180062<br>180043<br>110041 | CAP CP 3N3F 10% 100Y<br>CAP AE 2200UF 16V<br>CAP AE 2200UF 16V<br>CAP AE 470UF 25V<br>CAP PE 10NF 20% 100Y | PHILIPS<br>ROEDERSTEIN<br>ROEDERSTEIN<br>STEATITE<br>WIMA | 2222 630 19332<br>EKMOO JG 422D<br>EKMOO JG 422D<br>EKMOOF3 347E<br>FKS2 | A | EA -<br>EA 2<br>EA -<br>EA 1<br>EA - | | | | C522 150001 CAP DT 22UF 20% 16V AVX TAP22M16F A EA 1 C523 110042 CAP DT 12UF 20% 63V WIMA MKS2 EA - C524 150016 CAP DT 1UF 20% 35V AVX TAP21M0M35F A EA - C527 104025 CAP CD 100NF +808-20% 50V SIEMENS B37449 EA - C528 104025 CAP CD 100NF +808-20% 50V SIEMENS B37449 EA - C529 104025 CAP CD 100NF +808-20% 50V SIEMENS B37449 EA - C529 104025 CAP CD 100NF +808-20% 50V SIEMENS B37449 EA - C520 104025 CAP CD 100NF +808-20% 50V SIEMENS B37449 EA - | C518<br>C519<br>C520 | 110040<br>110042<br>110040<br>180049<br>110042 | CAP PE 33NF 20% 63V<br>CAP PE 100NF 20% 63V<br>CAP PE 33NF 20% 63V<br>CAP AE 330UF 100V<br>CAP PE 100NF 20% 63V | WIMA<br>WIMA<br>WIMA<br>PHILIPS<br>WIMA | MKS2<br>MKS2<br>MKS2<br>035-59331<br>MKS2 | | EA 2<br>EA -<br>EA -<br>EA 1<br>EA - | | | | C529 104025 CAP CD 100NF +80%-20% 50V SIEMENS B37449 EA - C530 104025 CAP CD 100NF +80%-20% 50V SIEMENS B37449 EA - | C523<br>C524<br>C527 | 150001<br>110042<br>150016<br>104025<br>104025 | CAP DT 22UF 20% 16V<br>CAP PE 100NF 20% 63V<br>CAP DT 1UF 20% 35V<br>CAP CD 100NF +80%-20% 50V<br>CAP CD 100NF +80%-20% 50V | AVX<br>WIMA<br>AVX<br>SIEMENS<br>SIEMENS | TAP22M16F<br>MKS2<br>TAP1R0M35F<br>B37449<br>B37449 | Λ Α | EA 1<br>EA -<br>EA -<br>EA -<br>EA - | | | | C529 104025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - C530 104025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - C531 104025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - C532 104025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - C533 104025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - C533 104025 CAP CD 100NF +808-208 50V SIEMENS B37449 EA - | C530<br>C531<br>C532 | 104025<br>104025<br>104025<br>104025 | CAP CD 100NF +80%-20% 50V<br>CAP CD 100NF +80%-20% 50V<br>CAP CD 100NF +80%-20% 50V<br>CAP CD 100NF +80%-20% 50V<br>CAP CD 100NF +80%-20% 50V | SIEMENS<br>SIEMENS<br>SIEMENS<br>SIEMENS<br>SIEMENS | B37449<br>B37449<br>B37449<br>B37449<br>B37449 | | EA -<br>EA -<br>EA -<br>EA - | | | | DATRON | INSTRUMENT | S LTD PARTS LIST 23-Dec-88 | DESC: ASSY PCB DIGI | TAL 1281 | DRG NO: L | P400901-A | REV: 2 | PAGE NO: 4 | |--------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-----------|---------------------------------------|---------|------------| | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | R CLASS | UM QUANTITY | CHANGES | | | C534<br>C535<br>C536<br>C537<br>C538 | 104025<br>104025<br>104025<br>104025<br>104025 | CAP CD 100HF +80%-20% 50V<br>CAP CD 100HF +80%-20% 50V<br>CAP CD 100HF +80%-20% 50V<br>CAP CD 100HF +80%-20% 50V<br>CAP CD 100HF +80%-20% 50V | SIEMENS<br>SIEMENS<br>SIEMENS<br>SIEMENS<br>SIEMENS | B37449<br>B37449<br>B37449<br>B37449<br>B37449 | | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | | | C541<br>D101<br>D102<br>D201<br>D202 | 104025<br>220010<br>200001<br>214012<br>200001 | CAP CD 100NF +80%-20% 50V<br>DIODE GP SB<br>DIODE GP 75mA 75V<br>DIODE ZN 2V45 20PPM<br>DIODE GP 75mA 75V | SIEMENS<br>H.P.<br>FAIRCHILD<br>FERRANTI<br>FAIRCHILD | B37449<br>1N5711<br>1N4148<br>ZN458<br>1N4148 | А | EA -<br>EA 1<br>EA 10<br>EA 1<br>EA - | | | | D203<br>D204<br>D205<br>D301<br>D401 | 200001<br>200001<br>200001<br>200001<br>400695-1 | DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE GP 75mA 75V ASSY COM CATHODE DIODE ASSY COM ANODE DIODE DIODE SB 3A 40V DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE GP 75mA 75V | FAIRCHILD<br>FAIRCHILD<br>FAIRCHILD<br>FAIRCHILD<br>DATRON | 1N4148<br>1N4148<br>1N4148<br>1N4148<br>SEE DRG | | EA -<br>EA -<br>EA -<br>EA - | | | | D402<br>D501<br>D502<br>D503<br>D504 | 400696-1<br>200027<br>200001<br>200001<br>200001 | ASSY COM ANODE DIODE<br>DIODE SB 3A 40V<br>DIODE GP 75mA 75V<br>DIODE GP 75mA 75V<br>DIODE GP 75mA 75V | DATRON<br>INT RECTIFIER<br>FAIRCHILD<br>FAIRCHILD<br>FAIRCHILD | SEE DRG<br>31DQ04<br>1N4148<br>1N4148<br>1N4148 | | EA 1<br>EA 4<br>EA -<br>EA - | | | | D505<br>D506<br>D507<br>D508<br>D509 | 200001<br>200002<br>200026<br>200027<br>200027 | DIODE GP 75mA 75V<br>DIODE GP 1A 50V<br>DIODE GP 3A 100V<br>DIODE SB 3A 40V | FAIRCHILD FAIRCHILD MOTOROLA INT RECTIFIER INT RECTIFIER | 1N4148<br>1N4001<br>1N5401<br>31DQ04 | | EA -<br>EA 1<br>EA 2<br>EA -<br>EA - | | | | D510<br>D511<br>D512<br>D513<br>D514 | 200026<br>200027<br>209013<br>213006<br>210075 | DIODE GP 3A 100V<br>DIODE SB 3A 40V<br>DIODE BR 1A5 600V<br>DIODE ZN 5V 5W | MOTOROLA INT RECTIFIER MICRO-ELECTRONICS UNITRODE | 1N5401<br>31DQ04<br>WO06<br>TYS505 | A | EA -<br>EA -<br>EA 1<br>EA 1<br>EA 1 | | | | Q201<br>Q301<br>Q302<br>Q501<br>Q502 | 240013<br>230081<br>250008<br>230085<br>240009 | TRAN MOSFET N-CHAN TRAN PNP TO18 TRAN MOSFET P-CHAN 60V TRAN NPN TO18 | NATIONAL<br>FERRANTI<br>NATIONAL<br>SILICONIX<br>NATIONAL | BC184C/T018<br>ZVN0106A<br>BC214C/T018<br>IRF9531<br>MPSL01/2N5550 | A<br>A | EA 1<br>EA 1<br>EA 1<br>EA 2<br>EA 3 | | | | Q503<br>Q504<br>Q505<br>Q506<br>Q507 | 240034<br>240034<br>240009<br>230085<br>240009 | TRAN NPN TRAN NPN TRAN NPN TO18 TRAN MOSFET P-CHAN 60V TRAN NPN TO18 | MOTOROLA<br>MOTOROLA<br>NATIONAL<br>SILICONIX<br>NATIONAL | TIP31C<br>TIP31C<br>MPSL01/2N5550<br>IRF9531<br>MPSL01/2N5550 | A | EA 2<br>EA -<br>EA -<br>EA -<br>EA - | | | | M501<br>U101<br>U102<br>U103<br>U104 | 00000N<br>270103<br>280153<br>00000N<br>00000N | NOT FITTED IC DIG COUNTER 4BIN DUAL LS IC DIG MICROPROC 16 BIT NOT FITTED NOT FITTED | SIGNETICS<br>HITACHI | 74LS393<br>HP68000P8 | | EA -<br>EA 1<br>EA 1<br>EA -<br>EA - | | | PAGE NO: 5 | | | TS LTD PARTS LIST 23-Dec-88 | | | | | |--------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|-------| | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS UM QUANTITY CH | ANGES | | U105<br>U106<br>U107<br>U108 | 280174<br>280162<br>400902-A<br>270105 | IC DIG CMOS RAM 37K X 8 IC DIG CMOS STATIC RAM ASSY PAL 1281 20L8 CONTROL IC DIG NOR5 DUAL LS | FUJITSU<br>TOSHIBA<br>SIGNETICS | MB84256-12LLP<br>TC5564PL-1<br>SEE DRG<br>74LS260N | EA 2<br>A EA 1<br>EA 1<br>EA 1 | | | U110<br>U111<br>U112<br>U201<br>U202 | 400903-A<br>400904-A<br>280174<br>280134<br>270051 | IC DIG OR2 QUAD LS ASSY PAL 1281 20L8 ADDR DECODE ASSY PAL 1281 10L8 IO DECODE IC DIG CMOS RAM 37K X 8 IC DIG TRANS OCT 3S LS IC DIG AND4 DUAL LS IC DIG ASIC IC DIG BUFFER TRI-STATE HEX IC DIG D-A CONVERTOR IC LIN OP AMP PREC. IC DIG QUAD 2 I/P AND IC DIG FLIP FLOP TRI-STATE OCT | FUJITSU<br>SIGNETICS<br>NATIONAL | SEE DRG<br>SEE DRG<br>MB84256-12LLP<br>PC74HCT245P<br>DM74LS21N | EA 1<br>EA 1<br>EA -<br>EA 1<br>EA 1 | | | U203<br>U204<br>U205<br>U206<br>U207 | 280130<br>280024<br>280157<br>260088<br>280159 | IC DIG ASIC IC DIG BUFFER TRI-STATE HEX IC DIG D-A CONVERTOR IC LIN OP AMP PREC. IC DIG QUAD 2 I/P AND | PLESSEY<br>MOTOROLA<br>ANALOGUE DEVICES<br>LINEAR TECHNOLOGY<br>TEXAS | CLA3721<br>MC14503BCP<br>AD7545<br>LT1013CH<br>74 HCT 08 | EA 1<br>EA 1<br>EA 1<br>EA 1<br>EA 1 | | | U301<br>U302 | 280137<br>280160<br>280137 | IC DIG DRIVER OCT 3S HCT IC DIG FLIP/FLOP JK DUAL HCT | SIGNETICS<br>TEXAS | PC74HCT244P<br>74HCT74 | EA 3<br>EA 3 | | | U305<br>U306<br>U307<br>U308<br>U309 | 280161<br>280161<br>280161<br>270050<br>270088 | IC DIG 4 BIT BIN COUNTER IC DIG 4 BIT BIN COUNTER IC DIG 4 BIT BIN COUNTER IC DIG INV HEX LS IC DIG CONVB SER/PAR LS | TEXAS<br>TEXAS<br>TEXAS<br>NATIONAL<br>NATIONAL | 74HCT161<br>74HCT161<br>74HCT161<br>DM74LS04N<br>DM74LS165N | EA -<br>EA -<br>EA -<br>EA 1<br>EA 2 | | | U310<br>U311<br>U312<br>U313<br>U314 | 270088<br>280170<br>280160<br>280160<br>260075 | IC DIG CONVB SER/PAR LS IC DIG QUAD 2 I/P NOR IC DIG FLIP/FLOP JK DUAL HCT IC DIG FLIP/FLOP JK DUAL HCT IC LIN Y COMP DUAL | NATIONAL<br>TEXAS<br>TEXAS<br>TEXAS<br>NATIONAL | DM74LS165N<br>74HCT02<br>74HCT74<br>74HCT74<br>LM2903N | EA -<br>EA 1<br>EA -<br>EA -<br>EA 1 | | | U401<br>U402<br>U403<br>U404<br>U501 | 280158<br>270100<br>270101<br>280137<br>260101 | IC DIG IEEE CONTROLLER IC DIG IEEE BUS IX/RX IC DIG TRANSCEIVER IEEE BUS IC DIG DRIVER OCT 35 HCT IC LIN SW MODE PSU | TEXAS NATIONAL NATIONAL SIGNETICS SGS | TMS9914ANL<br>DS75160AN<br>DS75161AN<br>PC74HCT244P<br>UC3524A | EA 1<br>A EA 1<br>A EA 1<br>EA -<br>A EA 2 | | | U502<br>U503<br>PL1<br>PL2<br>PL3 | 260101<br>260102<br>604076<br>604076<br>604076 | IC DIG 4 BIT BIN COUNTER IC DIG 4 BIT BIN COUNTER IC DIG 4 BIT BIN COUNTER IC DIG 4 BIT BIN COUNTER IC DIG 4 BIT BIN COUNTER IC DIG 6 CONVB SER/PAR LS IC DIG CONVB SER/PAR LS IC DIG CONVB SER/PAR LS IC DIG GUAD 2 I/P NOR IC DIG FLIP/FLOP JK DUAL HCT IC DIG FLIP/FLOP JK DUAL HCT IC DIG SELP/FLOP JK DUAL HCT IC DIG IEEE BUS IX/RX IC DIG IEEE BUS IX/RX IC DIG TRANSCEIVER IEEE BUS IC DIG TRANSCEIVER IEEE BUS IC DIG DRIVER OCT 35 HCT IC LIN SW MODE PSU IC LIN SW MODE PSU IC LIN REG VAR PLUG PCB 16-WAY .1"X.1" GRID PLUG PCB 16-WAY .1"X.1" GRID PLUG PCB 6 WAY .156 HEADER PLUG PCB 6 WAY .156 HEADER CHOKE 625UH RNIO CHOKE 625UH RNIO | SGS<br>NATIONAL<br>3M<br>3M<br>3M | UC3524A<br>LM317HYH<br>3599-6002 UN<br>3599-6002 UN<br>3599-6002 UN | A EA -<br>EA 1<br>EA 3<br>EA -<br>EA - | | | PL4<br>PL6<br>L501<br>L502<br>L503 | 604079<br>604078<br>370029-1<br>370028-1<br>370029-1 | PLUG PCB 6 WAY .156" HEADER<br>PLUG PCB 5 WAY .156 HEADER<br>CHOKE 625UH RM10<br>CHOKE INDUCTOR 2 X 50 MH<br>CHOKE 625UH RM10 | MOLEX<br>MOLEX<br>DATRON | 09-72-2061<br>09-72-2051<br>SEE DRG<br>SEE DRG<br>SEE DRG | EA 1<br>EA 1<br>EA 2<br>EA 1<br>EA - | | | DATRON | INSTRUMENT | S LTD PARTS LIST 23-Dec-88 | DESC: ASSY PCB DIGIT | AL 1281 | DRG NO: LP400901-A | REV: 2 | PAGE NO: 6 | |--------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|---------|------------| | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBE | R CLASS UM QUANTITY | CHANGES | | | PL5A<br>PL5B<br>SK7<br>SK8<br>E101 | 604042<br>604042<br>605180<br>605169<br>620006 | PLUG PCB 4 WAY .156" GD PL<br>PLUG PCB 4 WAY .156" GD PL<br>SOCKET 24-WAY IEEE SCREENED<br>SOCKET PCB 15 WAY D<br>SOLDER TURRET | MOLEX<br>MOLEX<br>AMP<br>AMP<br>HARWIN | 09-72-2041<br>09-72-2041<br>553811-2<br>164801-2<br>H9001-01 | EA 2<br>EA -<br>EA 1<br>EA 1<br>EA 6 | | | | E201<br>E202<br>E203<br>E204<br>E501 | 620006<br>620006<br>620006<br>620006<br>620006 | SOLDER TURRET SOLDER TURRET SOLDER TURRET SOLDER TURRET SOLDER TURRET PLUG PCB 3-WAY .1" PLUG PCB 3-WAY .1" PLUG PCB 3-WAY .1" PLUG PCB 3-WAY .1" PLUG PCB 3-WAY .1" | HARWIN<br>HARWIN<br>HARWIN<br>HARWIN<br>HARWIN | H9001-01<br>H9001-01<br>H9001-01<br>H9001-01<br>H9001-01 | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | | | TL201<br>TL202<br>TL203 | 604046<br>604046<br>604046<br>604046<br>604046 | PLUG PCB 3-WAY .1"<br>PLUG PCB 3-WAY .1"<br>PLUG PCB 3-WAY .1"<br>PLUG PCB 3-WAY .1"<br>PLUG PCB 3-WAY .1" | MOLEX<br>MOLEX<br>MOLEX<br>MOLEX | 22-10-2031<br>22-10-2031<br>22-10-2031<br>22-10-2031<br>22-10-2031 | EA 8<br>EA -<br>EA -<br>EA -<br>EA - | • . | | | TL501<br>TL502<br>TP101 | 604046<br>604046<br>604047<br>620007 | PLUG PCB 3-WAY .1" PLUG PCB 3-WAY .1" PLUG PCB 3-WAY .1" TEST POINT TERMINAL TEST POINT TERMINAL | MOLEX<br>MOLEX<br>MOLEX<br>MICROVAR<br>MICROVAR | 22-10-2031<br>22-10-2031<br>22-10-2031<br>TYPE C30<br>TYPE C30 | EA -<br>EA -<br>EA 20<br>EA - | | | | TP104<br>TP107 | 620007<br>620007<br>620007<br>620007<br>620007 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30 TYPE C30 TYPE C30 TYPE C30 | EA -<br>EA -<br>EA -<br>EA - | | | | TP111<br>TP113<br>TP201 | 620007<br>620007<br>620007<br>620007<br>620007 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30 TYPE C30 TYPE C30 TYPE C30 TYPE C30 | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | | | TP303<br>TP304<br>TP305 | 620007<br>620007 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30 | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | , | | TP503 | 620007<br>620007<br>620007<br>800035<br>920125 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL CRYSTAL OSC 16HMz FUSE 2.5 125V 7mm | MICROVAR<br>MICROVAR<br>MICROVAR<br>IDQ<br>LITTLEFUSE | TYPE C30<br>TYPE C30<br>TYPE C30<br>IQXO-100-16MHz<br>275 02.5 | EA -<br>EA -<br>EA -<br>EA 1<br>EA 4 | | | | F502<br>F503<br>F504<br>F505 | 920125<br>920125<br>920125<br>920125 | FUSE 2.5 125V 7mm<br>FUSE 375MA 125V 7MM<br>FUSE 2.5 125V 7mm<br>FUSE 2.5 125V 7mm<br>PCB DIGITAL 1281 | LITTLEFUSE<br>LITTLEFUSE<br>LITTLEFUSE<br>LITTLEFUSE | 275 02.5<br>275.375<br>275 02.5<br>275 02.5<br>SEE DRG | EA -<br>EA 1<br>EA -<br>EA -<br>EA 1 | | | | DA <sup>4</sup> | TRON I | NSTRUMENTS | LTD | PARTS LIS | T 23-Dec-88 | DESC: ASSY PCB DIGITA | AL 1281 | DRG NO: LE | P400901-A | REV: 2 | PAGE NO: | |------------------|---------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------|----------------------------------------|---------|----------| | DE | SIG P | PART NO | DESCRI | PTION | | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTITY | CHANGES | | | | 4<br>5<br>. 5 | 150513-1<br>150514-1<br>512333<br>512444<br>512555 | HEATSIN<br>CONN MO<br>WIRE 7,<br>WIRE 7, | NK DIG 128<br>DUNTING BR<br>/.2 PTFE I<br>/.2 PTFE 1<br>/.2 PTFE 1 | 1<br>ACKET DIG 1281<br>KV ORANGE<br>KV YEL<br>KV GRN | BSG210<br>BSG210<br>BSG210 | SEE DRG<br>SEE DRG<br>TYPE C<br>TYPE C<br>TYPE C | | EA 1<br>EA 1<br>AR 1<br>AR 1<br>AR 1 | | | | | 5 | 540006<br>540015<br>590001<br>501001<br>502001 | WIRE 1:<br>WIRE 1:<br>SLEEVE | /.4 BLACK<br>9/0.2 PTFE<br>NP 1.5 X<br>BULKHEAD | PTFE 250V<br>500V GRN/YEL | BSG210 | TYPE A<br>H15<br>GE350275<br>02-04-5114 | | AR 1<br>AR 1<br>EA 5<br>EA 1<br>EA 2 | | | | | 6 | 505050<br>505059<br>505060<br>505061<br>505064 | SOCKET<br>SOCKET<br>SOCKET<br>SOCKET | PCB 40-WA<br>PCB 8-WAY<br>PCB 14-WA<br>PCB 16-WA<br>PCB 24 WA | A DIT<br>A DIT<br>A DIT<br>DIT<br>A DIT | JERMYN<br>JERMYN<br>JERMYN<br>JERMYN | J23-18040<br>J23-18008<br>J23-18014<br>J23-18016<br>J23-18024 | A<br>A<br>A<br>A | EA 1<br>EA 10<br>EA 9<br>EA 1 | | | | | 6 | 505065<br>505070<br>505117<br>505127<br>505151 | SOCKET<br>SOCKET<br>SOCKET<br>SOCKET | PCB 28 WA<br>PCB 20-WA<br>PCB 64 WA<br>LINK 2-WA<br>PCB 68 WA | Y DIL<br>Y DIL<br>Y DIL<br>Y .1" BLK<br>Y LCC | JERMYN<br>JERMYN<br>JERMYN<br>ASSMANN<br>METHIODE (SELWYN)<br>-<br>HARWIN<br>CANNON<br>AMP | J23-18028<br>J23-18020<br>J23-18064<br>AKSPL-G<br>212-068-001 | A<br>A<br>A | EA 3<br>EA 10<br>EA 1<br>EA 4<br>EA 1 | | | | | i<br>i | 605199<br>606028<br>606032<br>611001<br>611006 | 'D' SCI<br>MTG KI'<br>SCREW | REW LOCK<br>T IEEE SCR | Y DIL 0.6P<br>SOCKET<br>POZIPAN SZP<br>ZIPAN SZP | HARWIN<br>CANNON<br>AMP | D2832-01<br>D20418-2<br>554808-1 | | EA 2<br>EA 2<br>EA 1<br>EA 2<br>EA 2 | | | | | 6 | 611008<br>611016<br>613005<br>613009<br>615002 | SCREW<br>WASHER<br>SOLDER<br>NUT M3 | M3 X 10 PO<br>M3 X 8 POZ<br>M3 INT SH<br>TAG 4 BA<br>FULL SZP | IPAN SZP<br>AKEPROOF<br>BTP | | | | EA 4<br>EA 3<br>EA 8<br>EA 1<br>EA 7 | | • | | | 6 | 618001<br>618002<br>618004<br>618010<br>630024 | BUSH I<br>PAD MN<br>PAD MN<br>PAD IN<br>BEAD C | NSUL. TO22<br>TG. TO18,T<br>TG. TO18<br>SUL. SIL T<br>ERAMIC 16 | 0<br>05<br>0220<br>SWG | PHILIPS JERMYN JERMYN WARTH PARK ROYAL PORCELAIN PARK ROYAL PORCELAIN RICHOO MANSOL (PREFORMS) LT ROLSECURE | 56359C<br>TO518-004D<br>TO18-008D<br>4177-NA-54<br>No2 | | EA 4<br>EA 1<br>EA 1<br>EA 4<br>EA 18 | | | | | | 630036<br>630098<br>630243<br>700115<br>920198 | BEAD C<br>CLIP C<br>BEAD G<br>SWITCH<br>HEATSI | ERAMIC 18<br>OMPONENT 1<br>LASS 2.4 X<br>2P 2POSN<br>NK TO5 | SWG<br>2.7 DIA<br>0.81 X 1.8<br>KEY | PARK ROYAL PORCELAIN<br>RICHCO<br>MANSOL (PREFORMS) LT<br>ROLSECURE<br>FARNELL | No1<br>KKU-8<br>M5363B/3<br>5017-04-2 KEY No<br>170-066 | 850 | EA 10<br>EA 1<br>EA 47<br>EA 1<br>EA 1 | | | | A<br>B<br>C<br>D | ( | 000001<br>100000<br>100000<br>100000 | NOT FI<br>NOT FI<br>NOT FI<br>NOT FI | TTED | • | | | | EA -<br>EA -<br>EA - | | | | DI WIN | | | | _ | - | - | ,<br> | | _ | Ţ | - | _ | - | | | | | - - | | 1 | Á | 8 | 0 X8 | 8 | A X | 13 | 9 | 0 | 188 | 8 | 8 | 0 8 | Q<br>88 | 38 | 88 A | 388<br>888<br>888 | 8 | 9 | 8 | Ä | 8 K | ₩. | 3 | 8 | ) | CHK D | F | | | | | | | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|----------|--------------|----|---------|-------|----------|-----|---------|-----|----|----------|---|---|--------------|---|-----|-----|-----------|----------|----------|------------|----------|----------|--------|----------|--------|----------------|------|----------|--------------|----------|--------------|-------|-------------------|-------|------|----------|--------|----------|----------|-------------|----------|---|-------|----|----------|---------|------|----|----------|----------|--------------|----------|-----|--| | DESCRIPTION DIAMING SHEET NUMBER NUMBE | | _ . | | _ | | _ | | _ | | | | L | _ | _ | | | | _ | 20 | 2100 | 5 0.78 | I SEP8 | JUC X | 25/01.5 | 36.JUL8 | Za lul | BJUNB | 2 Just | 31 MAY | HMAY | 4MAY | <b>29APR</b> | P9APR | <b>5</b> APR | SIMAR | SIMA | Z MAR | | DMAD | 10 FeB | DEE 8 | 2 | 17.10 | 8 1 6 | | DATE | - | | | | | | | | _ | - | | | COMPONENT 480741 | | | | | | | | | L | | | | | _ | | | | | 200 | 3080 | 3045 | 3027 | 2968 | 2964 | 2962 | 2955 | 2913 | 2925 | 1062 | 2893 | 287 | 888 | 2862 | 2842 | 2823 | 9187 | 7617 | 0000 | 2795 | 1775 | 275 | 2751 | 1/92 | 2574 | | ECO | | | | | | | | | | - | | | SCHEMATIC 430741 1 | | | | L | l | | | | | | | | | | | | | | ٥ | ז<br>ו | 2 0 | 7 | 4 | S.3 | 2.2 | 2 | 0.0 | . 13 | | 1.12 | = | 0.1 | 9. | <u>-</u> | - | 9 | יוף | - | 4 | .3 | <u>-</u> | = | - | - | | | | | | | | | | | | - | | | A8074 2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | i | | | SCHEMATIC 430741 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | _ | | | | | | _ | _ | _ | | | | | | | | | | 2 | | | _ | 2.2 | 1 | | _ | 9: | _ | 6. | 8: | | 1.7 | 9 | 9 | ţ. | : - | 1= | | . 5 | - | | - | | ı | | | 741 | 807 | 4 | NT | NEN<br>C | APON<br>YOUT | CO! | į | | | SCHEMATIC 430741 2 9 : | | Ц. | | Ŀ | | | | | | . _ | L | _ | _ | L | | | | | 1 | | _ | L | _ | | L | _ | 2.0 | _ | <br> <u>-</u> | _ | _ | | | -: | -1 | = | | 1 | Ŀ | | <u>-</u> | 0 | _ . | _ | | 2 | | | | | | | | | | ! | | | SCHEMATIC 430741 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | L | | | | L | | | _ | | _ | | | | | | | | | | 2.2 | L | 2.1 | | 2.0 | _ | | | .5 | | | 4. | .3 | _ | | | 2 | _ | | = | 2 | - | | 1 | _ | <u>'</u> | 741 | 1307 | 4 | 10 | ATI | IEMA | Scł | Ċ | | | SCHEMATIC 430741 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | | | _ | | | | _ | | | | _ | | | | | | _ | | L | _ | | _ | | | 2.0 | | | _ | | | | | | _ . | | | | | | | - - | - | | 2 | _ | | | | | _ | | | | ÷ | | | LP 400741 ALL FUNC TEST PROCEDURE FONC TEST PROCEDURE FONC TEST TICK LIST FOR 410365 C D I C C D I C C C C C C C C C C C C C C C C C C | | | | L | | | | L | | . _ | _ | L | L | | | | | | | L | | | L | | | 1 | CJ. | _ | _ | | | | | _ | .3 | | _ | ! | 2 | | _ | I- | - - | - | _ | 3 | | 1 | 741 | 1307 | 4 | TIC | IAT | HEM | 5c | - 1 | | | PCB 410365 C D I CHANGE TO DOCS | | | | _ | _ | | | | _ | | _ | | L | | | | 1 | _ | | ا | 1~ | <u>_</u> | | | | 1 | N | _ | l | ن ا | _ | | _: | - 1 | _ | | _ | - | | | 2,1 | | ?<br>-<br>- | C | | 4 | _ | 1 | 741 | 130 | 4 | ıc | AT | IEM | 5C | | | | PCB 410365 C D I CHANGE TO EXCENSED. PCB 410365 C D CHANGE TO EXCENSED. DENOTES NO | | | | L | | | | | | | | | | | | | | | | | 2 | 4.5 | 23 | 2.2 | 2. | | 2.0 | | - 2 | - | 5 | | <u>.</u> | -8 | - | او | 0 . | 2 | | | | | | | | ALL | | 1 | 741 | 00 | 4 | | | | | | | | PCB 410365 C D II CHED CHED STATE 1281 AC PCB ASSY. PCB 410365 C D II CHED CHED CHED CHED CHED CHED CHED CHED | $\perp \downarrow \downarrow$ | $\parallel$ | Ш | $\perp$ | _ | 4 | | - | - | - - | - - | L | ļ | | | | 1 | _ | - | - | L | _ | | | _ | _ | _ | 0 | _ | | | _ | _ | | _ | _ . | _ - | - | _ | | _ | _ | * | 7/2 | | | _ | FT | 4 /F1 | 6074 | 46 | E | URI | CED | FU! | | | | PCB 410365 C D I CHORD TO THE LEASED. DENOTES N/R = NOT RELEASED. DENOTES NO CHANGE TO DOCS. DENOTES NO CHANGE TO DOCS. DENOTES NO CHANGE TO DOCS. DENOTES NO CHANGE TO DOCS. AC PCB ASSY. 4007 | 44 | $\dashv$ | Ш | 1 | 4- | - - | | ļ | - | _ | - | - | - | _ | _ | $\downarrow$ | _ | | - - | - | L | - | _ | | _ | _ | L | _ | _ | L | - | | _ | | - | _ . | - - | - - | _ | | _ | | | _ | _ | | - | | | | | - | EST | ic Te | =111 | | | | DENOTES NO CHANGE TO ECCS. DE | - - | | Ц | _ | | $\perp$ | | _ | - | $\perp$ | - | - | - | _ | _ | _ | _ | - | 1 | _ | - | - | L | | L | _ | _ | = | | _ | _ | | | _ | _ | _ | - | - | <u> </u> | | _ | _ - | | N/N | _ | | _ | FT | 41/F1 | 7074 | 47 | | ST | K LIS | TIC | 1 | | | DENCIS NO CHANGE TO DOCS DENCIS NO CHANGE TO DOCS DENCIS NO CHANGE TO DOCS APPO TITLE 1281 DENCIS NO CHANGE TO DOCS AC PCB ASSY. 4007 | + | $\vdash$ | | $\downarrow$ | - | - | | | - | - - | - | + | - | _ | | $\dashv$ | - | ∔ | + | + | - | - | - | | _ | | _ | - | | _ | _ | _ | _ | | | _ | _ - | - | | | | - - | - | - | | | - | | | | | 4 | | | | | | | DENOTES NO CHANGE TO ECCS. DE | - - | $\vdash$ | $\vdash$ | + | + | + | - | - | - - | + | + | + | - | _ | - | - | + | - | - | + | - | - | <u> </u> _ | <u> </u> | <u> </u> | - | | L | _ | _ | - | | _ | - | _ | - - | - - | - | - | | - | 4 | + | - | - | | - | | | | | - | | | | : | | | DENCIS NO CHANGE TO DOCS DENCIS NO CHANGE TO DOCS DENCIS NO CHANGE TO DOCS AT 15518 TO POLY POL | - | + | H | + | ╁ | + | | + | + | + | + | + | - | _ | - | + | + | + | + | + | ╁ | ├ | - | _ | $\vdash$ | ┝ | - | - | - | _ | <u> </u> | _ | _ | - | + | + | + | + | _ | | - | + | + | - | - | | + | 5 | 365 | 4103 | | $\dashv$ | | ) C B | | ļ | | | DENOTES NO CHANGE TO DOCS. DENOTES NO CHANGE TO DOCS. DENOTES NO CHANGE TO DOCS. AC PCB ASSY. 4007 | $\dashv \dashv$ | - | H | + | + | + | | $\vdash$ | + | - | - - | + | $\vdash$ | - | - | - | 1 | - - | - | $\dagger$ | $\vdash$ | $\vdash$ | - | - | - | - | <u>-</u> | - | - | - | - | _ | | - | - | - | - | - | ען | | - | - - | 1 | - | - | | + | ٦ | | | | 1 | | <u> </u> | _ | | | | AT ISSUE LEVEL CHANGE | <br>7 / I | | | | 0 | | لــا | | | | | | | 1 | - | 2 | | 77 | 7 | | 3 | c | 1 | | <u></u> | 11. | T | | ـــــا<br>(۳) | | <br> | <br>7 | 17 | _ | T | | !_ | Т. | 1 | | | سلہ<br>م | <u>т</u> | <u>ب</u> | | | | | | | | | | | 401<br>P | | | | | of I | | | | s | | | SY. | 15 | _ A | СВ | PC | .C | Α | | | F | DAI | -1 | ~8 | J4 | 20 | 8 | 18 | E<br>JAI | DAT | : 1 | т 1 | | | ··· | 7 17 | | | | | | | | | | <u> </u> | | | Ĕ | IANG | CH | _ c | VEL | E LE | UE | 33 | r is | Āī | L | : | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | a lar in 2 yours landering | | INSTRUMENT | | PARTS LIST 21-Oct-89 | DESC: ASSY PCB AC 12 | | | P400741-2 | REV: 6 | PAGE NO: | 1 | | | |--------------------------------------|-----------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|------------------|----------------------------------------|--------|----------|--------------|---------|--| | DESIG | PART NO | DESCRI | PTION | PRINC MANUF | MANUF PART NUMBER | | UM QUANTITY | | | <b>2 6</b> 0 | CT 1988 | | | R100<br>R101<br>R102<br>R103<br>R104 | (190178-1<br>008078<br>008075<br>008076<br>090178-1 | RES MG<br>RES MG<br>RES MG | SET X 9<br>1M2 5% .25W<br>10OR 1% .5W<br>18OR 1% .5W<br>SET X 9 | TRW<br>MULLARD<br>HEGHM<br>NEGHM<br>TRW | SEE DRG<br>VR25<br>RGP0207<br>RGP0207/180R/1<br>SEE DRG | | S9 1<br>EA 1<br>EA 1<br>EA 1<br>S9 - | | | | | | | R105<br>R106<br>R107<br>R108<br>R109 | 090178-1<br>011211<br>011001<br>011002<br>012748 | RES MF<br>RES MF | SET X 9<br>1R21 1% .12W 50PPM<br>1R00 1% .12W 50PPM<br>10R0 1% .12W 50PPM<br>27R4 1% .12W 50PPM | TRW HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | SEE DRG<br>HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A | S9 ~<br>EA 1<br>EA 10<br>EA 10<br>EA 1 | | | | | | | R110<br>R111<br>R112<br>R113<br>R114 | 008077<br>063104<br>041004<br>011101<br>008072 | RES CT<br>RES MF<br>RES MF | 47R 1% .5W<br>100K HORZ S/T<br>1M00 1% .12W 50PPM<br>1K10 1% .12W 50PPM<br>69M 5% 2.5KV | NEOHM<br>BECKWAH<br>HOLSWORTHY<br>HOLSWORTHY<br>MULLARD | RGP0207<br>72P<br>HBC<br>HBC<br>VR37 | ٨ | EA 1<br>EA 3<br>EA 13<br>EA 1<br>EA 2 | | | | | | | R115<br>R116<br>R117<br>R118<br>R119 | 011003<br>041004<br>014752<br>011001<br>013320 | RES MF<br>RES MF | 100K 1% .12W 50PPM<br>1M00 1% .12W 50PPM<br>47K5 1% .12W 50PPM<br>1K00 1% .12W 50PPM<br>332R 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A<br>A | EA 5<br>EA -<br>EA 2<br>EA -<br>EA 4 | | | | | | | R120<br>R121<br>R125<br>R126<br>R127 | 013320<br>018258<br>018252<br>014991<br>011001 | RES MF<br>RES MF | 332R 1% .12W 50PPM<br>82R5 1% .12W 50PPM<br>82R5 1% .12W 50PPM<br>4K99 1% .12W 50PPM<br>1K00 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC | А<br>А<br>А<br>А | EA -<br>EA 1<br>EA 1<br>EA 2<br>EA - | | | | | | | R128<br>R129<br>R130<br>R131<br>R132 | 012002<br>015622<br>063104<br>041004<br>090178-1 | RES MF<br>RES CT<br>RES MF | 20K0 1% .12W 50PPM<br>56K2 1% .12W 50PPM<br>100K HORZ 5/T<br>1M00 1% .12W 50PPM<br>SET X 9 | HOLSWORTHY<br>HOLSWORTHY<br>BECKMAN<br>HOLSWORTHY<br>TRW | HBC<br>HBC<br>72P<br>HBC<br>SEE DRG | A<br>A<br>A | EA 2<br>EA 3<br>EA -<br>EA -<br>S9 - | | | | | | | R133<br>R134<br>R135<br>R136<br>R137 | 041004<br>012210<br>015620<br>015118<br>011500 | RES MF<br>RES MF<br>RES MF | 1M00 1% .12W 50PPM<br>221R 1% .12W 50PPM<br>562R 1% .12W 50PPM<br>51R1 1% .12W 50PPM<br>150R 1% .12W 50PPM | YHTROWZJOH<br>YHTROWZJOH<br>YHTROWZJOH<br>YHTROWZJOH<br>YHTROWZJOH | H8C<br>H8C<br>H8C<br>H8C | ۸<br>۸<br>۸<br>۸ | EA -<br>EA 2<br>EA 1<br>EA 2 | | | | | | | R138<br>R139<br>R140<br>R141<br>R142 | 00000N<br>014751<br>011301<br>041004<br>011302 | RES MF | TTED 4875 1% .12W 50PPM 1830 1% .12W 50PPM 1800 1% .12W 50PPM 1800 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC | A<br>A<br>A | EA 10<br>EA 2<br>EA 1<br>EA -<br>EA 1 | | | | | | | R143<br>R144<br>R145<br>R146<br>R147 | 001561<br>000120<br>000120<br>013012<br>001561 | RES CF<br>RES CF<br>RES MF | 560R 5% .50W<br>12R 5% .25W<br>12R 5% .25W<br>12R 5% .25W<br>30K1 1% .12W 50PFM<br>560R 5% .50W | NEGHM<br>DEGHM<br>BEGHM<br>HOLSWORTHY<br>DEGHM | CFR50<br>CFR25<br>CFR25<br>H5C<br>CFR50 | ۸<br>۸<br>۸ | EA 2<br>EA 7<br>EA 3<br>EA 7 | | | | | | | | • | | | | | | | | | | | | | | | 21 0-1-112 | DEED LOUIS | | | | |------------------------|------------|------------|------------------------|--------------------|-----------------|-----------| | DATRON INSTRUMENTS LTD | PARTS LIST | 21-066-89 | DESC: ASSY FOB AC 1281 | DRG NO: LP400741-2 | REC: C | CB 34 6 3 | | **************** | **** | ********* | | ************** | 4 5 5 7 7 5 4 4 | | MANUF PART NUMBER SEE DRG H8C H8C H8C H8C HBC H8C H8C H8C H8C H8C H8C H8C HBC HBC HBC SEE DRG SEE DRG SEE DRG HBC HBC HBC HBC HBC HBC HBC 72P 72P 72P 72P H8C H8C S102L SEE DRG H8C SEE DRG S102L SMA-0204-TK50 HBC HBC CLASS UM QUANTITY CHANGES S9 -EA -EA 5 EA -EA - EA -EA -EA 5 EA 3 EA 2 EA -EA -EA -EA 1 EA - EA -EA -EA -EA -S9 - S9 -S9 -EA 1 EA -EA 6 EA -EA -EA -EA -EA 5 EA -EA -EA -EA -EA - EA 1 EA 4 EA 1 EA 3 EA - EA 1 EA 1 S9 -EA 1 EA 4 A A A Α A A A Α Α Α Α A A A A A Α A PRINC MANUF TRW HOLSWORTHY TRW TRW TRW HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY BECKMAN BECKMAN BECKMAN BECKMAN HOLSWORTHY HOLSWORTHY VISHAY MANN VISHAY MANN CORNING HOLSWORTHY HOLSWORTHY ITT HOLSWORTHY TRW HOLSWORTHY HOLSWORTHY DESIG PART NO R148 R149 R150 R151 R152 R153 R154 R155 R156 R157 R158 R159 R160 R161 R162 R163 R164 R165 R166 R167 R168 R169 R170 R171 R173 R174 R175 R176 R177 R178 R179 R180 R181 R182 R183 R184 R189 R190 R191 R192 R193 090178-1 090178-1 012433 041004 011000 090042-1 012372 090178-1 DESCRIPTION RES FL SET X 9 RES MF 1K00 1% .12W 50PPM RES MF 121K 1% .12W 50PPM RES MF 56K2 1% .12W 50PPM RES MF 1M00 1% .12W 50PPM RES MF 1K00 1% .12W 50PPM NOT FITTED RES MF 15K0 1% .12W 50PPM RES MF 301R 1% .12W 50PPM RES MF 2K21 1% .12W 50PPM RES MF 2K21 1% .12W 50PPM RES MF 100K 1% .12W 50PPM RES MF 10K0 1% .12W 50PPM RES MF 464K 1% .12W 50PPM RES MF 10K0 1% .12W 50PPM RES MF 1M00 1% .12W 50PPM RES MF 1M00 1% .12W 50PPM RES MF 56K2 1% .12W 50PPM RES MF 121K 1% .12W 50PPM RES MF 121K 1% .12W 50PPM RES FL SET X 9 RES FL SET X 9 RES FL SET X 9 RES MF 243K 1% .12W 50PPM RES MF 1M00 1% .12W 50PPM RES MF 100R 1% .12W 50PPM RES MF 10K0 1% .12W 50PPM RES MF 4K75 1% .12W 50PPM RES MF 10K0 1% .12W 50PPM RES MF 10K0 1% .12W 50PPM RES MF 10K0 1% .12W 50PPM RES CT 10K HORZ S/T RES CT 10K HORZ S/T RES CT 10K HORZ S/T RES CT 10K HORZ S/T RES CT 10K HORZ S/T RES MF 1M00 1% .12W 50PPM RES MF 1M00 1% .12W 50PPM RES FL 1K11 .1% 1PPM RES FL 10K00 .01% 1PPM RES MF 18K0 1% .12W 50PPM RES MF 2K00 1% .12W 50PPM RES MF 1K00 1% .12W 50PPM RES HTWK 100K+200K BBIT RES MP 23K7 1% .12W 50PPM RES FL SET X 9 RES MF 511R 1% .12W 50PPM RES MF 3K32 1% .12W 50PPM .: | | INSTRUMENT | | 21-Oct-88 | DESC: ASSY PCB AC 1 | | DRG NO: L | P400741-2 | REV: 6 | PAGE NO: 3 | |--------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|-------------------------------------|------------------|--------------------------------------|---------|------------| | DESIG | PART NO | DESCHIPTION | | PRINC MANUF | MANUF PART NUMBER | | UM QUARTITY | CHANGES | | | R194<br>R195<br>R196<br>R197 | 041825<br>011821<br>008072<br>00000F | RES Mr 18M2 1% .12<br>RES MF 1K82 1% .12<br>RES MG 68M 5% 2.5K<br>RES FSV | W 50PPM<br>V | MEPCO<br>HOLSWORTHY<br>MULLARD | 5053YL<br>H8C<br>YR37 | A<br>A | EA 1<br>EA 1<br>EA -<br>EA 2 | : | | | R198<br>R199 | 000478<br>000478 | RES CF 4R7 5% .25% | | NEOHM | CFR25 | A | EA 2 | | | | R201<br>R202<br>R203<br>R204 | 044753<br>044753<br>013922<br>013321 | RES CF 4R7 5% .25%<br>RES MF 475K 1% .12<br>RES MF 475K 1% .12<br>RES MF 39K2 1% .12<br>RES MF 3K32 1% .12 | W 50PPM<br>W 50PPM<br>W 50PPM | HOPEMORTHA<br>HOPEMORTHA<br>HOPEMORTHA<br>HOPEMORTHA<br>HEGHM | CFR 25<br>H3C<br>H8C<br>H8C<br>H8C | A<br>A<br>A<br>A | EA -<br>EA 4<br>EA -<br>EA 3<br>EA - | | | | R205<br>R206<br>R207<br>R208<br>R209 | 013321<br>013922<br>011003<br>013922<br>063202 | RES MF 3K32 1% .12<br>RES MF 39K2 1% .12<br>RES MF 100K 1% .12<br>RES MF 39K2 1% .12<br>RES CT 2K HORZ S/T | W 50PPM<br>W 50PPM<br>W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>BECKMAN | H8C<br>H8C<br>H8C<br>72P | A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA - | | | | R210<br>R211<br>R212<br>R213<br>R214 | 011003<br>080106<br>011213<br>000208<br>013012 | RES MF 100K 1% .12<br>RES FL 5K00 .01% 1<br>RES MF 121K 1% .12<br>RES CF 2R0 5% .25W<br>RES MF 30K1 1% .12 | PPM<br>W 50PPM | HOLSWORTHY VISHAY MARK HOLSWORTHY NEOHM HOLSWORTHY | H9C<br>S102L<br>H9C<br>CFR25<br>H8C | A<br>A<br>A | EA -<br>EA 2<br>EA -<br>EA 1<br>EA - | | | | R215<br>R216<br>R217<br>R218<br>R219 | 063204<br>041004<br>011502<br>011008<br>016491 | RES CT 200K HORZ S<br>RES MF 1M00 1% .12<br>RES MF 15K0 1% .12<br>RES MF 10R0 1% .12<br>RES MF 6K49 1% .12 | W 50PPM<br>W 50PFM<br>W 50PPM | BECKMAN<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | 72P<br>H9C<br>H9C<br>H9C<br>H8C | Λ<br>Λ<br>Α | EA 1<br>EA -<br>EA -<br>EA 2<br>EA 2 | | | | R220<br>R221<br>R222<br>R223<br>R224 | 017508<br>012212<br>013652<br>013018<br>011212 | RES MF 75R0 1% .12<br>RES MF 22K1 1% .12<br>RES MF 36K5 1% .12<br>RES MF 30R1 1% .12<br>RES MF 12K1 1% .12 | W 50FFM<br>W 50PPM<br>W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HSC<br>HSC<br>HSC<br>HSC | A<br>A<br>A | EA 1<br>EA 4<br>EA 2<br>EA 1<br>EA 1 | | | | R225<br>R226<br>R227<br>R228<br>R229 | 011502<br>013320<br>011218<br>018250<br>011218 | RES MF 15K0 1% .12<br>RES MF 332R 1% .12<br>RES MF 12R1 1% .12<br>RES MF 825R 1% .12<br>RES MF 12R1 1% .12 | W 50PPM<br>W 50PPM<br>W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC | | EA -<br>EA -<br>EA 2<br>EA 2<br>EA - | | | | R230<br>R231<br>R232<br>R233<br>R234 | 012000 | RES MF 100R 1% .12<br>RES MF 8K25 1% .12<br>RES MF 301R 1% .12<br>RES MF 200R 1% .12<br>RES FL 5K00 .01% 1 | W 50PFM<br>W 50PFM<br>W 50PFM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>VISHAY MARK | HBC<br>HBC<br>HBC<br>HBC<br>S1021, | | EA -<br>EA 2<br>EA -<br>EA 4<br>EA - | | | | R235<br>R236<br>R237<br>R238<br>R239 | 011001<br>011501<br>050077 | RES MF 4K99 1% .12' RES MF 1K00 1% .12' RES MF 1K50 1% .12' RES MF 20K00 .1% . RES MF 10K00 .1% . | 4 50PPM<br>4 50PPM<br>12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>118C<br>118C<br>118<br>118 | A | EA -<br>EA -<br>EA 1<br>EA 1<br>EA 1 | | | | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | | UM QUANTITY | CHAN JES | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------| | R240<br>R241<br>R242<br>R243<br>R244 | 000248<br>011378<br>080105<br>080105<br>013012 | RES CF 2R4 5% .25W<br>RES MF 13R7 1% .12W 50PPM<br>RES FL 10K00 .01% 1PPM<br>RES FL 10K00 .01% 1PPM<br>RES MF 30K1 1% .12W 50PPM | NEOHM<br>HOLSWORTHY<br>VISHAY MACH<br>VISHAY MACH<br>HOLSWORTHY | CFR25<br>HBC<br>S102L<br>S102L<br>HBC | A<br>A | EA 1<br>EA 1<br>EA -<br>EA -<br>EA - | | | | R245<br>R246<br>R247<br>R248<br>R249 | 012002<br>011502<br>011502<br>011828<br>016491 | RES MF 20K0 1% .12W 50PFM<br>RES MF 15K0 1% .12W 50PFM<br>RES MF 15K0 1% .12W 50PFM<br>RES MF 18R2 1% .12W 50PFM<br>RES MF 6K49 1% .12W 50PFM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | H8C<br>H8C<br>H8C<br>H8C | A<br>A<br>A<br>A | EA<br>EA<br>EA 1<br>EA - | | | | R250<br>R251<br>R252<br>R253<br>R254 | 011500<br>012212<br>013652<br>013320<br>011001 | RES MF 150R 1% .12W 50PPM<br>RES MF 22K1 1% .12W 50PPM<br>RES MF 36K5 1% .12W 50PPM<br>RES MF 332R 1% .12W 50PPM<br>RES MF 1K00 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | ИВС<br>ИВС<br>ИВС<br>ИВС<br>НВС | Λ<br>Λ<br>Λ | EA =<br>EA =<br>EA =<br>EA = | | | | R255<br>R256<br>R257<br>R258<br>R259 | 013328<br>013328<br>011000<br>018251<br>012210 | RES MF 33R2 1% .12W 50PPM<br>RES MF 33R2 1% .12W 50PPM<br>RES MF 100R 1% .12W 50PPM<br>RES MF 8825 1% .12W 50PPM<br>RES MF 221R 1% .12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | 118C<br>118C<br>118C<br>118C<br>118C | A<br>A<br>A<br>A | EA 2<br>EA -<br>EA -<br>EA - | | | | R260<br>R261<br>R262<br>R263<br>R264 | 013010<br>012000<br>011210<br>000108<br>00000N | RES MF 301R 1% .12W 50PPM<br>RES MF 200R 1% .12W 50PPM<br>RES MF 121R 1% .12W 50PPM<br>RES CF 1RO 5% .25W<br>NOT FITTED | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>NEOHM | HBC<br>HBC<br>HBC<br>CFR25 | A<br>A<br>A | EA -<br>EA -<br>EA 1<br>EA 1<br>EA - | | | | R265<br>R266<br>R267<br>R268<br>R269 | 042215<br>000685<br>063105<br>011102<br>011102 | RES MF 22M1 1% .12W 150PPM<br>RES CF 6M8 5% .25W<br>RES CT 1M HORZ S/T<br>RES MF 11K0 1% .12W 50PPM<br>RES MF 11K0 1% .12W 50PPM | MEPCO<br>NEOHM<br>BECKMAN<br>HOLSWORTHY<br>HOLSWORTHY | 5053YL<br>CFR25<br>72P \<br>H8C<br>H8C | A<br>A<br>A | EA 1<br>EA 1<br>EA 1<br>EA 2<br>EA - | | | | R270<br>R271<br>R272<br>R301<br>R302 | 080105<br>012000<br>012000<br>011008<br>080120 | RES FL 10K00 .01% 1PPM RES MF 200R 1% .12W 50PPM RES MF 200R 1% .12W 50PPM RES MF 10R0 1% .12W 50PPM RES FL 19K78 .1% 1PPM | VISHAY MANN<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>VISHAY MANN | S102L<br>HBC<br>HBC<br>S102L | A<br>A<br>A | EA -<br>EA -<br>EA -<br>EA 1 | | | | R303<br>R304<br>R305<br>R306<br>R307 | 012670<br>090063<br>011001<br>012213<br>015112 | RES MF 267R 1% .12W 50PPM<br>PTC THERMISTOR<br>RES MF 1K00 1% .12W 50PPM<br>RES MF 221K 1% .12W 50PPM<br>RES MF 51K1 1% .12W 50PPM | HOLSWORTHY<br>MULLARD<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | НВС<br>КТҮВ1-120<br>НВС<br>НВС<br>НВС | A<br>A<br>A | EA 1<br>EA 1<br>EA -<br>EA 3<br>EA 1 | | | | R308<br>R309<br>R310 | 014321<br>041824<br>048253 | RES MF 4K32 1% .12W 50PPM<br>RES MF 1M82 1% .12W 100PPM<br>RES MF 825K 1% .12W 50PPM<br>RES MF 95K3 1% .12W 50PPM<br>RES MF 22K1 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | H8C<br>H8C<br>H8C<br>H8C | A<br>A | EA 1<br>EA 1<br>EA 1 | | | | R311<br>R312 | 019532<br>012212 | RES MF 22K1 1% .12W 50PPH | HOLSWORTHY<br>HOLSWORTHY | нвс | A<br>A | EA 1<br>EA - | | | | R311<br>R312 | 012212 | S LTD PARTS LIST 21-Oct-88 | DESC: ASSY PCB AC | 1281 DRC | A S NO: LI | P400741-2 | REV: 6 | PAGE NO: 5 | | DATRON DESIG | INSTRUMENT | S LTD PARTS LIST 21-Oct-88 DESCRIPTION | DESC: ASSY PCB AC | 1281 DRC MANUF PART NUMBER | A NO: LI | P400741-2<br> | **** | PAGE NO: 5 | | DATRON R313 R314 R315 R317 | INSTRUMENT PART NO | DESCRIPTION RES NF 2K00 1% .12W 50PPM RES NF 2M37 1% .12W 100PPM RES NF 47M 5% .25W RES NF 10N0 1% .12W 100PPM RES NF 27K4 1% .12W 50PPM | DESC: ASSY PCB AC PRINC MANUF HOLSWORTHY HOLSWORTHY ALLEN BRADLEY STEATITE HOLSWORTHY | MANUF PART NUMBER HBC HBC CB MK2 HBC | CLASS | P400741-2 UM QUANTITY EA - 1 EA 2 EA 2 EA 2 | **** | PAGE NO: 5 | | DESIG<br> | INSTRUMENT PART NO | DESCRIPTION RES NF 2K00 1% .12W 50PPM RES MF 2M37 1% .12W 100PPM RES MM 47M 5% .25W RES MF 10N0 1% .12W 100PPM RES MF 27K4 1% .12W 50PPM RES MF 16 M 1% .12W 50PPM RES MF 61K9 1% .12W 50PPM RES MF 61K9 1% .12W 50PPM RES MF 62K1 1% .12W 50PPM RES MF 62K1 1% .12W 50PPM RES MF 6K81 1% .12W 50PPM RES MF 6K81 1% .12W 50PPM RES MF 2K1 1% .12W 50PPM RES MF 2K1 1% .12W 50PPM RES MF 6K81 | DESC: ASSY PCB AC PRINC MANUF HOLSWORTHY HOLSWORTHY ALLEN BRADLEY STEATITE HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY BECKMAN | HBC MANUF PART NUMBER HBC HBC HBC HBC HBC HBC HBC HBC HBC HB | CLASS | P400741-2<br> | **** | PAGE NO: 5 | | DATRON DESIG R313 R314 R315 R316 R317 R318 R319 R320 R321 | INSTRUMENT | DESCRIPTION RES NF 2K00 1% .12W 50PPM RES NF 2K00 1% .12W 100PPM RES NF 2M37 1% .12W 100PPM RES NF 10N0 1% .12W 100PPM RES NF 27K4 1% .12W 50PPM RES NF 10N1 1% .12W 50PPM RES NF 61K9 1% .12W 50PPM RES NF 61K9 1% .12W 50PPM RES NF 61K9 1% .12W 50PPM RES NF 61K9 1% .12W 50PPM RES NF 61K9 1% .12W 50PPM RES NF 62K1 1% .12W 50PPM | DESC: ASSY PCB AC PRINC MANUF HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | HBC 1281 DRC MANUF PART NUMBER HBC HBC HBC HBC HBC HBC HBC HBC HBC HB | CLASS | P400741-2 UM QUANTITY EA - EA 1 EA 2 EA 2 EA 2 EA 2 EA 2 EA 2 EA 1 EA 2 EA 2 EA 1 | **** | PAGE NO: 5 | | DATRON | INSTRUMENT PART NO | DESCRIPTION RES NF 2K00 1% 1.2W 50PPM RES MF 2M37 1% 1.2W 100PPM RES MF 2M37 1% 1.2W 100PPM RES MF 10K0 1% 1.2W 100PPM RES MF 10K0 1% 1.2W 50PPM RES MF 10K0 1% 1.2W 50PPM RES MF 6K61 1% 1.2W 50PPM RES MF 6K61 1% 1.2W 50PPM RES MF 10K0 10K 1.2W 50PPM RES MF 10K0 10K 1.2W 50PPM RES MF 10K0 10K 1.2W 50PPM RES MF 10K 1% 1.2W 50PPM RES MF 10K 1% 1.2W 50PPM | DESC: ASSY PCB AC PRINC MANUF HOLSWORTHY HOLSWORTHY ALLEN BRADLEY STEATITE HOLSWORTHY | HBC 1281 DRC MANUF PART NUMBER HBC HBC CB MK 2 HBC | CLASS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | P400741-2 | **** | PAGE NO: 5 | | DATRON DESIG R313 R314 R315 R316 R317 R318 R319 R320 R321 R322 R322 R323 R324 R325 R327 R328 R329 R330 | INSTRUMENT | DESCRIPTION RES NF 2K00 1% .12% 50PPM RES NF 2M37 1% .12% 100PPM RES NF 10N0 1% .12% 100PPM RES NF 10N0 1% .12% 50PPM RES NF 2784 1% .12% 50PPM RES NF 2784 1% .12% 50PPM RES NF 2784 1% .12% 50PPM RES NF 2811 1% .12% 50PPM RES NF 2811 1% .12% 50PPM RES NF 2811 1% .12% 50PPM RES NF 2811 1% .12% 50PPM RES NF 475R 2826 2836 1% .12% 50PPM RES NF 2836 1% .12% 50PPM RES NF 475K 1% .12% 50PPM | DESC: ASSY PCB AC PRINC MANUF HOLSWORTHY | HBC 1281 DRC MANUF PART NUMBER HBC HBC CB MK2 HBC | CLASS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | EA - UM QUANTITY EA - EA 1 EA 2 EA 2 EA 2 EA 1 EA - EA 1 EA - | **** | PAGE NO: 5 | | DATRON DESIG R313 R314 R315 R316 R317 R318 R322 R322 R322 R322 R322 R322 R323 R324 R325 R326 R327 R338 R328 R329 R330 R331 R331 R3332 R3331 R3332 R3331 R3335 R334 R335 | INSTRUMENT PART NO 012001 042374 000476 041005 012742 011303 016192 016891 012212 063104 011002 014755 013923 016192 013923 016192 013923 016192 013923 016192 013923 016192 013923 016192 | DESCRIPTION RES NF 2K00 1% .12W 50PPM RES NF 2M37 1% .12W 100PPM RES NF 2M37 1% .12W 100PPM RES NF 2784 1% .12W 50PPM RES NF 2784 1% .12W 50PPM RES NF 2784 1% .12W 50PPM RES NF 6861 1% .12W 50PPM RES NF 6861 1% .12W 50PPM RES NF 22K1 1% .12W 50PPM RES NF 22K1 1% .12W 50PPM RES NF 25K1 1% .12W 50PPM RES NF 25K1 1% .12W 50PPM RES NF 475R 1% .12W 50PPM RES NF 475R 1% .12W 50PPM RES NF 475R 1% .12W 50PPM RES NF 25K2 475K 50PM RES NF 475K 1% .12W 50PM RES NF 475K 1% .12W 50PM RES NF 475K 1% .12W 50PM RES NF | DESC: ASSY PCB AC PRINC MANUF HOLSWORTHY H | HBC 1281 DRC MANUF PART NUMBER HBC HBC CB MK2 HBC | CLASS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | EA - UM QUANTITY | **** | PAGE NO: 5 | | DATRON DESIG R313 R314 R315 R316 R317 R318 R319 R322 R323 R3224 R325 R326 R327 R338 R324 R335 R326 R327 R338 R337 R338 R337 R338 R337 R338 R337 R338 R337 | INSTRUMENT | DESCRIPTION RES NF 2K00 1% .12% 50PPM RES NF 2M07 1% .12% 100PPM RES NF 2M17 1% .12% 100PPM RES NF 10M 1% .12% 100PPM RES NF 10M 1% .12% 50PPM RES NF 2784 1% .12% 50PPM RES NF 6K81 1% .12% 50PPM RES NF 6K81 1% .12% 50PPM RES NF 2K1 1% .12% 50PPM RES NF 2K1 1% .12% 50PPM RES NF 2K1 1% .12% 50PPM RES NF 2K1 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 2K26 3K3 1% .12% 15PPM RES NF 3K3 1% .12% 15PPM RES NF 1K65 1% .12% 50PPM 1K6 | DESC: ASSY PCB AC PRINC MANUF HOLSWORTHY | HBC 1281 DRC MANUF PART NUMBER HBC HBC CB MK2 HBC | CLASS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | EA - UM QUANTITY | **** | PAGE NO: 5 | | DATRON DESIG R313 R314 R315 R316 R317 R318 R319 R322 R323 R324 R325 R326 R327 R328 R328 R329 R330 R331 R334 R335 R334 R335 R334 R334 R335 R334 R334 | INSTRUMENT | DESCRIPTION RES NF 2K00 1% .12% 50PPM RES NF 2M07 1% .12% 100PPM RES NF 2M17 1% .12% 100PPM RES NF 10M 1% .12% 100PPM RES NF 10M 1% .12% 50PPM RES NF 2784 1% .12% 50PPM RES NF 2784 1% .12% 50PPM RES NF 6K81 1% .12% 50PPM RES NF 6K81 1% .12% 50PPM RES NF 2ZN1 1% .12% 50PPM RES NF 2ZN1 1% .12% 50PPM RES NF 2ZN1 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 475R 1% .12% 50PPM RES NF 2K26 1% .12% 50PPM RES NF 2K26 1% .12% 50PPM RES NF 2K26 1% .12% 50PPM RES NF 2K26 1% .12% 50PPM RES NF 475K 1% .12% 50PPM RES NF 2K26 1% .12% 50PPM RES NF 475K 1% .12% 50PPM RES NF 475K 1% .12% 50PPM RES NF 2K26 1% .12% 50PPM RES NF 2K26 1% .12% 50PPM RES NF 475K 1% .12% 50PPM RES NF 10K NGZ 5/T RES NF 10K NGZ 5/T RES NF 125K 1% .12% 50PPM RES NF 125K 1% .12% 50PPM RES NF 402R 1% .12% 50PPM RES NF 402R 1% .12% 50PPM RES NF 402R 1% .12% 50PPM RES NF 562K 1% .25% 15PPM RES NF 562K 1% .25% 15PPM RES NF 562K 1% .25% 15PPM RES NF 22R1 1% .12% 50PPM .12 | DESC: ASSY PCB AC PRINC MANUF HOLSWORTHY | HBC 1281 DRC MANUF PART NUMBER HBC HBC CB MK2 HBC | CLASS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | EA - UM QUANTITY | **** | PAGE NO: 5 | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY PART OF KIT RES MF 121K 1% .12W 50PPM RES MF 221K 1% .12W 50PPM RES MF 1K00 1% .12W 50PPM RES MF 221K 1% .12W 50PPM R354 R355 R356 R357 R358 EA 1 EA -EA -EA - DRG NO: LP400741-2 REV: 6 PAGE NO: 4 DATRON INSTRUMENTS LTD | DATRON INSTRUMENTS LTD | PARTS LIST | 21-Oct-88 | DESC: ASSY PCB AC 1281 | DRG NO: LP400741-2 | REV: 6 | PAGE NO: 6 | |------------------------|------------|-----------|------------------------|--------------------|--------|------------| | | | | | | | | | DESI | G PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTITY | CHANGES | |--------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|------------------|---------------------------------------|---------| | R359<br>R360<br>R362<br>R363<br>R401 | 000476<br>011002<br>013323<br>008041<br>090017 | RES INN 47M 58 . 25M RES MF 10K0 18 . 12W 50PPM RES MF 312K 18 . 12W 50PPM RES MF 312K 18 . 12W 50PPM RES MF 379 58 . 3M RES MF 10K0 X 7 28 RES MF 10K1 18 . 12W 50PPM RES PACK 10K X 4 28 RES PACK 10K X 4 28 RES PACK 10K X 4 28 RES PACK 10K X 4 28 RES PACK 10K X 4 28 RES PACK 11K X 4 28 RES PACK 11K X 4 28 RES MF 10K1 18 . 12W 50PPM RES MF 10K1 18 . 12W 50PPM RES MF 2K1 11 12W 50PPM RES MF 2K1 11 12W 50PPM RES MF 2K1 11 12W 50PPM RES MF 1K1 10K X 8 28 RES MF 1K1 11 12W 50PPM RES MF 1K1 10K X 8 28 RES MF 1K1 11 12W 50PPM RES MF 1K1 11 12W 50PPM RES MF 7K5 18 . 12W 50PPM RES MF 7K5 18 . 12W 50PPM RES MF 7K5 18 . 12W 50PPM RES MF 7K5 18 . 12W 50PPM | ALLEN BRADLEY<br>HOLSWORTHY<br>HOLSWORTHY<br>MULLARD<br>BECKMAN | CB<br>HBC<br>HBC<br>SFR25/3R9/5<br>LO8-1-R100K | A<br>A<br>A | EA -<br>EA -<br>EA 1<br>EA 1 | | | R402<br>R403<br>R404<br>R405<br>R406 | 011000<br>090168<br>090105<br>090105<br>090121 | RES MF 100R 1% .12W 50PPM<br>RES PACK 1K X 4 2%<br>RES PACK 100R X 4 2%<br>RES PACK 100R X 4 2%<br>RES NTWK 100K X 8 2% | HOLSWORTHY<br>AB<br>BECKMAN<br>BECKMAN<br>BECKMAN | H9C<br>AB-770-83-1K<br>LO8-3-R100<br>LO8-3-R100<br>LO9-1-R100K | Α | EA -<br>EA 3<br>EA 2<br>EA -<br>EA 2 | | | R407<br>R408<br>R409<br>R410<br>R411 | 090168<br>090168<br>090121<br>011003<br>011000 | RES PACK 1K X 4 2%<br>RES PACK 1K X 4 2%<br>RES NTWK 100K X 8 2%<br>RES MF 100K 1% .12W 50PPM<br>RES MF 100R 1% .12W 50PPM | AB<br>AB<br>BECKMAN<br>HOLSWORTHY<br>HOLSWORTHY | AB-770-83-1K<br>AB-770-83-1K<br>LO9-1-R100K<br>HBC<br>HBC | A<br>A | EA -<br>EA -<br>EA -<br>EA - | ٠. | | R412<br>R413<br>R414<br>R415<br>R416 | 012742<br>016812<br>090163<br>011001<br>014752 | RES MF 27K4 1% .12W 50PPM<br>RES MF 68K1 1% .12W 50PPM<br>RES NTWK 10K x 8 2%<br>RES MF 1K00 1% .12W 50PPM<br>RES MF 47K5 1% .12W 50PPM | HOLSWORTHY<br>HOLSWORTHY<br>AB<br>HOLSWORTHY<br>HOLSWORTHY | H8C<br>H8C<br>870-91-10K<br>H8C<br>H8C | A<br>A<br>A | EA -<br>EA 1<br>.EA 1<br>EA -<br>EA - | | | R417<br>R418<br>R419<br>R420<br>R421 | 011823<br>000100<br>012218 | RES CF 10R 5% .25W<br>RES MF 182K 1% .12W 50PPM<br>RES CF 10R 5% .25W<br>RES MF 22R1 1% .12W 50PPM | NEOHM<br>HOLSWORTHY<br>NEOHM<br>HOLSWORTHY | HBC<br>CFR25<br>HBC | A<br>A<br>A | EA 2<br>EA 1<br>EA -<br>EA - | | | R422<br>R423<br>R424<br>R425<br>R426 | 012218<br>013921<br>011002<br>090162 | RES MF 22R1 1% .12W 50PPM<br>RES MF 3K92 1% .12W 50PPM<br>RES MF 10K0 1% .12W 50PPM<br>RES PACK 270R x 4 2% | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>AB | H8C<br>H8C<br>H8C<br>770-83-270R | A<br>A<br>A | EA -<br>EA 1<br>EA -<br>EA 1 | | | R427<br>R428<br>R429<br>R430<br>R431 | 013322<br>012740<br>014750<br>046813<br>045623 | RES MF 33K2 1% .12W 50PPM<br>RES MF 274R 1% .12W 50PPM<br>RES MF 475R 1% .12W 50PPM<br>RES MF 681K 1% .12W 50PPM<br>RES MF 562K 1% .12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | H8C<br>H8C<br>H8C<br>H8C | A<br>A<br>A<br>A | EA 1<br>EA 2<br>EA -<br>EA 1<br>EA 1 | | | R432<br>R433<br>R434<br>R435<br>R436 | 090078<br>012740<br>014750<br>011213<br>011000 | RES NTWK 470R x 7 2%<br>RES MF 274R 1% .12W 50PPM<br>RES MF 475R 1% .12W 50PPM<br>RES MF 121K 1% .12W 50PPM<br>RES MF 100R 1% .12W 50PPM | BECKMAN<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | LOB-1-R470<br>H8C<br>H8C<br>H8C<br>H8C | A<br>A<br>A | EA 1<br>EA -<br>EA -<br>EA - | | | C101<br>C102<br>C103<br>C104<br>C105 | 120001<br>140076-1<br>102228<br>140031<br>140062 | RES PACK 470R x 4 2% RES MF 33K2 1% .12W 50PPM RES MF 274R 1% .12W 50PPM RES MF 475R 1% .12W 50PPM RES MF 681K 1% .12W 50PPM RES MF 681K 1% .12W 50PPM RES MF 562K 1% .12W 50PPM RES MF 774R 1% .12W 50PPM RES MF 274R 1% .12W 50PPM RES MF 121K 1% .12W 50PPM RES MF 100R 1% .12W 50PPM RES MF 100R 1% .12W 50PPM CAP PC 220HF 10% 1KV CAP VAR 16PP CAP CD 2P2F +/-IPF 500V CAP GL 13PF 5% 500V CAP GL 13PF 5% 500V | SUFLEX TROUSER BECK CORNING ELECTROSIL CORNING ELECTROSIL | SN1380<br>SEE DRG<br>CD08AG02P2FSCR/SK500<br>CYFM10<br>CYFM10 | A<br>A | EA 1<br>EA 2<br>EA 1<br>EA 1 | | | | | | | | | , | | | | | | PARTS LIST | | DESC: ASSY PCB AC 12 | | | | | | |--------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|--------|----------------------|------------------------|-------------| | | PART NO | | | | PRINC MANUF | MANUF PART NUMBER | | | | | | C106<br>C107 | 100102<br>120034<br>104037<br>104034<br>100102 | CAP CP<br>CAP PC<br>CAP CD<br>CAP CD<br>CAP CP | 1NF 10% 100V<br>220NF 1% 63V<br>22PF 10% 2KV<br>47PF 20% 1KV<br>1NF 10% 100V | ;<br>;<br>;<br>; | PHILIPS<br>ASHCROFT<br>MURATA<br>MURATA<br>PHILIPS | 2222 630 19102<br>A2B22101E<br>DEO7055L220J2KV<br>DEO705SL470J1KV<br>2222 630 19102 | | EA<br>EA<br>EA<br>EA | 6<br>1<br>1<br>1 | | | C112<br>C113<br>C114 | 100101<br>110042<br>110042<br>150002<br>101103 | CAP CD<br>CAP PE<br>CAP PE<br>CAP DT<br>CAP CD | 100PF 2% 100<br>100NF 20% 63<br>100NF 20% 63<br>10UF 20% 16%<br>10NF -20+80% | 0V<br>3V<br>7<br>& 250V | PHILIPS<br>WIMA<br>WIMA<br>AYX<br>BECK | 2222 683 34101<br>MKS2<br>MKS2<br>TAP10M16F<br>CD10K310N0ZSCR/SK25 | A 0 | EA<br>EA<br>EA<br>EA | 8<br>15<br>-<br>1<br>6 | . · · · · · | | C120<br>C121<br>C122<br>C123<br>C124 | 110041<br>104025<br>104025<br>140070<br>100820 | CAP PE<br>CAP CD<br>CAP CD<br>CAP GL<br>CAP CP | 10NF 20% 100<br>100NF +80%-2<br>100NF +80%-2<br>2N2F 1% 500<br>82PF 2% 100 | 0V<br>20% 50V<br>20% 50V<br>/ | WIMA<br>SIEMENS<br>SIEMENS<br>CORNING ELECTROSIL<br>PHILIPS | FKS2<br>B37449<br>B37449<br>CYFM20<br>2222 683 34829 | | EA<br>EA<br>EA<br>EA | 1<br>18<br>-<br>1 | | | C125<br>C126<br>C127<br>C128<br>C129 | 102270<br>100270<br>100100<br>104025<br>104025 | CAP CD<br>CAP CP<br>CAP CD<br>CAP CD<br>CAP CD | 27pF 5% 500V<br>27PF 2% 100V<br>10PF 2% 100V<br>100NF +80%-2 | /<br>/<br>/<br>20% 50V<br>20% 50V | BECK PHILIPS PHILIPS SIEMENS SIEMENS | CD10CG27P0MSCR/SK50<br>2222 683 34279<br>2222 683 10109<br>B37449<br>B37449 | 0 A | EA<br>EA<br>EA<br>EA | 1<br>2<br>2<br>- | | | C130<br>C132<br>C133<br>C134<br>C135 | 150025<br>150025<br>180041<br>00000N<br>140076-1 | CAP DT<br>CAP DT<br>CAP AE<br>NOT FIT | 3U3F 20% 35V<br>3U3F 20% 35V<br>100UF 40V<br>FTED<br>R 16PF | | AVX<br>AVX<br>STEATITE<br>TRONSER | TAP3R3M35F<br>TAP3R3M35F<br>EKM 00FD 310G<br>SEE DRG | A<br>A | EA<br>EA<br>EA<br>EA | 3<br>-<br>1<br>- | | | C136<br>C137<br>C138<br>C139<br>C140 | 100228<br>100228<br>100108<br>100470<br>150025 | CAP CP<br>CAP CP<br>CAP CP<br>CAP CP | 2P2F +/-0P25<br>2P2F +/-0P25<br>1PF +/-0P25F<br>47PF 2% 100V<br>3U3F 20% 35V | 5F 100V<br>5F 100V<br>P 100V<br>/ | PHILIPS<br>PHILIPS<br>PHILIPS<br>PHILIPS<br>AVX | 2222-683-09228<br>2222-683-09228<br>2222-683-03108<br>2222-683-34479<br>TAP3R3M35F | A | EA<br>EA<br>EA<br>EA | 3<br>-<br>1<br>3<br>- | | | C142<br>C143<br>C146<br>C147<br>C148 | 100470<br>100470<br>140067<br>104017<br>104017 | CAP CP<br>CAP CP<br>CAP GL<br>CAP CD<br>CAP CD | 47PF 2% 100V<br>47PF 2% 100V<br>5P6F 5% 500V<br>0P56F +/-0P1<br>0P56F +/-0P1 | /<br>/<br>/<br>LF 500Y<br>LF 500Y | PHILIPS PHILIPS CORNING ELECTROSIL ITT ' ITT | 2222 683 34479<br>2222 683 34479<br>CYFM10<br>GD08AG0P56BS<br>GD08AG0P56BS | | EA<br>EA<br>EA<br>EA | -<br>1<br>3 | | | C149<br>C150<br>C151<br>C152<br>C153 | 102688<br>140072<br>140073<br>140071<br>140074 | CAP CD<br>CAP GL<br>CAP SM<br>CAP GL<br>CAP SM | 6P8F +/-0P5F<br>47PF 1% 500V<br>330PF 1% 400<br>470PF 1% 500<br>68PF +/-1PF | 7 500V<br>7<br>)V<br>)V<br>400V | BECK<br>CORNING ELECTROSIL<br>STC<br>CORNING ELECTROSIL<br>STC | CD08CG06P8DSCR/SK50<br>CYFM10<br>454/51<br>CYFM15<br>454/49 | 0 | EA<br>EA | 1<br>1<br>1<br>1 | | | C154<br>C155<br>C156<br>C157<br>C158 | 110042<br>110042<br>102101<br>110042<br>110042 | CAP PE<br>CAP PE<br>CAP CD<br>CAP PE<br>CAP PE | 100NF 20% 63<br>100NF 20% 63<br>100PF 20% 50<br>100NF 20% 63<br>100NF 20% 63 | 3V<br>3V<br>3V | MINY<br>MINY<br>MINA<br>MINA | MKS2<br>MKS2<br>CD10WK100PMSCR/SK50<br>MKS2<br>MKS2 | A 0 | | 1 | | | | INSTRUMENT | | PARTS LIS | | 21-Oct-88 | | ASSY PCB AC 12 | | DRG | NO: L | P400 | 741-2 | REY: 6 | PAGE NO: 8 | |--------------------------------------|------------------------------------------------|-----------------------------|---------------------------------------------------------------|--------------------|------------------|-------------------------------------------|----------------|--------------------------------------------------------------------|----------------------|--------|----------------------|-------------|--------|------------| | DESIG | PART NO | DESCRI | | | | PRINC | MANUF | MANUF PART | | | | YTITHAUQ | | | | C159<br>C160<br>C161<br>C162<br>C163 | 100100<br>100101<br>150015<br>150015<br>120021 | CAP CD<br>CAP DT<br>CAP DT | 10PF 2% 1<br>100PF 2%<br>10UF 20%<br>10UF 20%<br>470NF 10% | 100°<br>357<br>357 | Y | PHILIP<br>PHILIP<br>AVX<br>AVX<br>ASHCRO | S | 2222 683 1<br>2222 683 3<br>TAP10M35F<br>TAP10M35F<br>A2B4711B | 0109<br>4101 | A<br>A | EA<br>EA<br>EA<br>EA | 10 | | | | C164<br>C165<br>C166<br>C167<br>C168 | 104025<br>00000F<br>104025<br>104017<br>150015 | RES FSV<br>CAP CD<br>CAP CD | 100NF +80<br>/<br>100NF +80<br>0P56F +/-<br>10UF 20% | %-2<br>0P1 | 0% 50V<br>F 500V | SIEMEN<br>SIEMEN<br>ITT<br>AVX | | B37449<br>B37449<br>GD08AG0P56<br>TAP10M35F | BS | A | EA<br>EA<br>EA<br>EA | -<br>-<br>- | | | | C169<br>C170<br>C201<br>C202<br>C203 | 140074<br>10000F<br>150006<br>150006<br>100338 | CAP DT<br>CAP DT | 68PF +/-1<br>FSV<br>4U7F 200%<br>4U7F 200%<br>3P3F 2% 1 | 16' | v<br>v | STC<br>AVX<br>AVX<br>PHILIP: | s | 454/49<br>TAP4R7M16F<br>TAP4R7M16F<br>2222 683 0 | | A<br>A | EA<br>EA<br>EA<br>EA | 1<br>2<br>- | | | | C204<br>C205<br>C206<br>C207<br>C208 | 110042<br>104051<br>150017<br>110042<br>100101 | CAP CD<br>CAP DT<br>CAP PE | 100NF 20%<br>2N2F 5% 1<br>100UF 20%<br>100NF 20%<br>100PF 2% | 00V<br>16'<br>63' | ۸<br>۸ | WIMA<br>AVX<br>AVX<br>WIMA<br>PHILIP: | s | MKS2<br>SR21COG<br>TAP100M16F<br>MKS2<br>2222 683 3 | | Α | EA<br>EA<br>EA<br>EA | 1<br>6<br>- | | | | C209<br>C210<br>C211<br>C212<br>C213 | 101103<br>101103<br>00000N<br>00000N<br>100478 | CAP CD<br>NOT FIT | | 808 | 250V | BECK<br>BECK<br>PHILIP: | s | CD10K310N0<br>CD10K310N0<br>2222 683 0 | ZSCR/SK250 | | EA<br>EA<br>EA<br>EA | <u>-</u> | | | | C214<br>C215<br>C216<br>C217<br>C218 | 150017<br>100338<br>100338<br>100478<br>100478 | CAP CP<br>CAP CP | 100UF 20%<br>3P3F 2% 1<br>3P3F 2% 1<br>4P7F 2% 1<br>4P7F 2% 1 | 00V<br>00V | | AVX PHILIP: PHILIP: PHILIP: | S.<br>S | TAP100M16F<br>2222 683 0<br>2222 683 0<br>2222 683 0<br>2222 683 0 | 9338<br>9338<br>9478 | Ä | EA<br>EA<br>EA<br>EA | -<br>-<br>- | | | | C219<br>C220<br>C221<br>C222<br>C223 | 110042<br>100221<br>150017<br>110042<br>100101 | CAP CP<br>CAP DT<br>CAP PE | 100MF 20%<br>220pF 2%<br>100UF 20%<br>100MF 20%<br>100PF 2% | 100'<br>16'<br>63' | v<br>∵<br>v | WIMA<br>PHILIP:<br>AVX<br>WIMA<br>PHILIP: | i | MKS2<br>2222.683 50<br>TAP100M16F<br>MKS2<br>2222 683 34 | | A | EA<br>EA<br>EA<br>EA | 1 | | | | C224<br>C225<br>C226<br>C227<br>C228 | 101103<br>101103<br>150015<br>150015<br>100270 | CAP CD<br>CAP DT<br>CAP DT | 10HF -20+<br>10HF -20+<br>10UF 20%<br>10UF 20%<br>27PF 2% 1 | 80%<br>35V<br>35V | 250y | BECK<br>BECK<br>AVX<br>AVX<br>PHILIP: | 5 | CD10K310H0:<br>CD10K310H0:<br>TAP10M35F<br>TAP10M35F<br>2222 683 3 | ZSCR/SK250 | | EA<br>EA<br>EA<br>EA | <u>-</u> . | | | | C229<br>C230<br>C231<br>C232<br>C233 | 100478<br>150017<br>00000H<br>00000H<br>100188 | CAP DT<br>NOT FIT | TED | 16 | | PHILIP: | | 2222 683 0<br>TAP100M16F | | Α | EA<br>EA<br>EA<br>EA | | | | | | | | | | | | | | | | | | | | | | INSTRUMENT | | PARTS | | 21-Oct-88 | | ASSY PCB AC 1 | | | NO: LI | | 741-2 | REV: 6 | PAGE NO | : 9 | |--------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------------------------|-------------------------|------------------------------------------|------------------------|------------------------------------------------|----------------------------------------------------------|--------|----------------------|------------------|---------|---------|-----| | DESIG | PART NO | DESCRI | PTION | | | PRINC | MANUF | MANUF | PART NUMBER | CLASS | UM | QUANTITY | CHANGES | | | | C234<br>C235<br>C237<br>C238<br>C301 | 110035<br>110035<br>102398<br>00000N<br>120018 | CAP PC | 1U5F . | 10% 63 | | ASHCR | OFT | A2B152 | | | EA<br>EA<br>EA<br>EA | <u>1</u> . | | | | | C303<br>C304<br>C305<br>C306<br>C308 | 140075<br>104026<br>104026<br>120018<br>120018 | CAP PP<br>CAP CD<br>CAP CD<br>CAP PC<br>CAP PC | 330MF<br>47MF<br>47MF<br>1U5F<br>1U5F | 10% 16<br>+50%-26<br>+50%-26<br>10% 63\ | 50V<br>0% 50V<br>0% 50V | WIMA<br>SIEME<br>SIEME<br>ASHCR<br>ASHCR | NS<br>NS<br>OFT<br>OFT | MKP10<br>B37449<br>B37449<br>A2B152<br>A2B152 | 1B<br>1B · | | EA<br>EA<br>EA<br>EA | 2<br>-<br>- | • | | | | C309<br>C310<br>C311<br>C312<br>C313 | 140075<br>110042<br>110042<br>100101<br>110042 | CAP PP<br>CAP PE<br>CAP CD<br>CAP PE | 100NF<br>100NF<br>100PF<br>100NF | 20% 63<br>20% 63<br>2% 100<br>20% 63 | . v.<br>v.<br>v.<br>v. | | PS , | MKP10<br>MKS2<br>MKS2<br>2222 6<br>MKS2 | 83 34101 | 4 | EA<br>EA<br>EA<br>EA | _<br>_<br>_<br>_ | | | | | C314<br>C315<br>C316<br>C317<br>C318 | 150015<br>150015<br>102332<br>110042<br>150015 | CAP DT<br>CAP DT<br>CAP CD<br>CAP PE<br>CAP DT | 10UF :<br>10UF :<br>3n3F :<br>100NF<br>10UF : | 20% 35\<br>20% 35\<br>+40-20%<br>20% 35\ | 500V | AVX<br>AVX<br>BECK<br>WIMA<br>AVX | | TAP10M | 35F<br>35F<br>03NXSCR/SK500D<br>35F | | EA<br>EA<br>EA<br>EA | _<br>1 | • | | | | C319<br>C320<br>C321<br>C322<br>C323 | 150015<br>150017<br>104025<br>100220<br>120018 | CAP DT<br>CAP DT<br>CAP CD<br>CAP CP<br>CAP PC | 10UF :<br>100UF<br>100NF<br>22PF :<br>1U5F : | 20% 35\<br>20% 16<br>+80%-2<br>2% 100\<br>10% 63\ | ,<br>17<br>10% 50V | AVX<br>AVX<br>SIEME<br>PHILI<br>ASHCR | NS<br>PS<br>OFT | TAP10M<br>TAP100<br>B37449<br>2222 6<br>A2B152 | 83 34229 | | EA<br>EA<br>EA<br>EA | -<br>1 | | | | | C324<br>C401<br>C402<br>C403<br>C404 | 110015<br>104025<br>150015<br>100151<br>100151 | CAP PE<br>CAP CD<br>CAP DT<br>CAP CP<br>CAP CP | 15NF :<br>100NF<br>10UF :<br>150PF<br>150PF | 20% 63%<br>+80%-2<br>20% 35%<br>2% 100<br>2% 100 | 0% 50V | WIMA<br>SIEME<br>AVX<br>PHILI<br>PHILI | NS<br>PS<br>PS | | | Α . | EA<br>EA<br>EA<br>EA | -<br>-<br>3 | | | | | C405<br>C406<br>C407<br>C408<br>C409 | 100102<br>100150<br>100102<br>100151<br>100101 | CAP CP<br>CAP CP<br>CAP CP<br>CAP CP<br>CAP CD | 15PF :<br>1NF 10<br>150PF | 2% 100\<br>0% 100\<br>2% 100 | V<br>V<br>V | Lu1P1 | 25 | 2222 6<br>2222 6<br>2222 6 | 30 19102<br>83 10159<br>30 19102<br>83 34151<br>83 34101 | | EA<br>EA<br>EA<br>EA | <u>2</u> . | 1 | | | | C410<br>C411<br>C412<br>C413<br>C414 | 100101<br>100101<br>120016<br>120016<br>120016 | CAP CD<br>CAP CD<br>CAP PC<br>CAP PC<br>CAP PC | 100PF<br>2N2F 2 | 2% 100<br>20% 100<br>20% 100 | V<br>V1 | PHILI<br>PHILI<br>WIMA<br>WIMA<br>WIMA | PS<br>PS | 2222 6<br>2222 6<br>FKC2<br>FKC2<br>FKC2 | 83 34101<br>83 34101 | | EA<br>EA<br>EA<br>EA | - | | | | | C415<br>C416<br>C417<br>C418<br>C419 | 100102<br>100330<br>100150 | CAP CD<br>CAP CP<br>CAP CP<br>CAP CP<br>CAP CP | 1NF 10<br>33PF 2<br>15PF 2 | 0% 100V<br>2% 100V<br>2% 100V | 0% 50V | | NS<br>PS | B37449<br>2222 6<br>2222 6<br>2222 6 | 30 19102<br>83 34339 | | EA<br>EA<br>EA<br>EA | 3<br>- | | | | | DATRON INSTRUMENTS LTD | PARTS LIST | 21-Oct-88 | DESC: ASSY PCB AC 1281 | DRG NO: LP400741-2 | REF: C | FAGE NO. 1 | |------------------------|------------|---------------------|--------------------------|-------------------------------|--------|------------| | FRETERREUDAT DEZDEFERE | | T T D D D D T T T T | ************************ | <b>网络亚巴拉尔尔拉尔拉拉拉斯斯尼亚亚斯尼亚尔尔</b> | 7 | | 2222 683 34339 2222 683 34339 2222-683-09228 TAP1ROM35F MKS2 2222 630 19472 CD10K310N0Z5CR/5K250 2222 683 09828 Q-14.20 TAP100M16F B37449 B37449 B37449 AG04P7DSCR/SK500DSG A B37449 B37449 B37449 CD10TH47POMSCR/SK500 A B37449 B37449 BZX79C10 BZX79C10 BZV46-1V5 BZX79C12 1N4148 1N4148 1N4148 BZX79C6V8 BZX79C7V5 1N4148 1N4148 1N4148 BZX79C3V3 BZX79C3V3 11DQO4 11DQO4 11DQO4 11DQO4 BZV46-1V5 1N4148 1N4148 1N4148 JPAD100 JPAD100 MARUF PART NUMBER CLASS ON COARTITY CHARGES EA -EA -EA -EA 1 EA - EA 1 EA -EA 1 EA 1 EA - EA -EA -EA -EA 1 EA - EA -EA -EA -EA 1 EA - EA -EA 2 EA -EA 3 EA 1 EA 14 EA -EA -EA 3 EA 1 EA -EA -EA -EA 2 EA - EA 4 EA -EA -EA - EA -EA -EA -EA 3 EA - Ā A A PRINC MANUF PHILIPS PHILIPS PHILIPS AVX WIMA PHILIPS BECK PHILIPS ROGERS CORP AVX SIEMENS SIEMENS SIEMENS BECK SIEMENS SIEMENS SIEMENS SIEMENS BECK SIEMENS SIEMENS PHILIPS PHILIPS PHILIPS PHILIPS FAIRCHILD FAIRCHILD FAIRCHILD PHILIPS PHILIPS FAIRCHILD FAIRCHILD FAIRCHILD PHILIPS PHILIPS FAIRCHILD FAIRCHILD FAIRCHILD SILICONIX SILICONIX INT RECTIFIERS INT RECTIFIERS INT RECTIFIERS INT RECTIFIERS PHILIPS DESCRIPTION CAP CP 33PF 2% 100V CAP CP 33PF 2% 100V CAP CP 2P2F +/-0P25F 100V CAP DT 1UF 20% 35V CAP PE 100NF 20% 63V CAP CP 4H7F 10% 100V CAP CD 10HF -20+80% 250V CAP CP 8P2F +/-0P25F 100V CAP CER IC 20HF 50V CAP DT 100UF 20% 16V CAP CD 100NF +80%-20% 50V CAP CD 100NF +80%-20% 50V CAP CD 100NF +80%-20% 50V CAP CD 477F +7.5FF 500V CAP CD 100NF +80%-20% 50V CAP CD 100NF +80%-20% 50V CAP CD 100NF +80%-20% 50V CAP CD 100NF +80%-20% 50V CAP CD 47PF 5% 500V CAP CD 100NF +80%-20% 50V CAP CD 100NF +80%-20% 50V DIODE ZN 10V 400mW DIODE ZN 10V 400mW DIODE ZN 10V 400mW DIODE ZN 12V 400mW DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE ZN 6V8 400mW DIODE ZN 7V5 400mW DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE ZN 3V3 400mW DIODE ZN 3V3 400mW DIODE SB 1A 30V DIODE SB 1A 30V DIODE SB 1A 30V DIODE SB 1A 30V DIODE VR 1V5 250mW DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE GP 75mA 75V DIODE JFET 10mA DIODE JFET 10mA DESIG PART NO 100330 C420 C421 C422 C423 C424 C425 C426 C427 C428 C429 C430 C431 C432 C433 C434 C435 C436 C437 C438 C439 C440 D101 D102 D103 D104 D105 D106 D107 D108 D109 D110 D111 D112 D113 D114 D115 D116 D117 D118 D119 D120 D121 D122 D123 D124 | · | | | | | | | | |-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------|--------------------------------------|---------|-------------| | DATRON INSTRUMEN | TS LTD PARTS LIST 21-Oct-88 | DESC: ASSY PCB AC 1 | 281 | | P400741-2 | RE7: 6 | PAGE NO: 11 | | DESIG PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBE | R CLASS | UM QUANTITY | CHANGES | | | D125 230089<br>D126 230001<br>D127 230001<br>D128 210056<br>D129 200001 | TRAN JFET I LIM 240UA<br>TRAN J FET I LIM 1.4mA<br>TRAN J FET I LIM 1.4mA<br>DIODE ZI 5V6 400mW<br>DIODE GP 75mA 75V | SILICONIX<br>SILICONIX<br>SILICONIX<br>PHILIPS<br>FAIRCHILD | J500<br>J506<br>J506<br>BZX79C5V6<br>1N4148 | A | EA 1<br>EA 2<br>EA -<br>EA 1<br>EA - | | | | D130 210051<br>D201 200001<br>D202 200001<br>D203 213011<br>D204 230058 | DIODE ZN 5V1 400mW<br>DIODE GP 75mA 75V<br>DIODE GP 75mA 75V<br>DIODE VR 1V5 250mW<br>TRAN JFET I LIM 750UA | PHILIPS FAIRCHILD FAIRCHILD PHILIPS SILICONIX | BZX79C5V1<br>1N4148<br>1N4148<br>BZV46-1V5<br>J504 | А | EA 3<br>EA -<br>EA -<br>EA 1 | | | | D205 200008<br>D206 230049<br>D207 210068<br>D209 220010<br>D210 220010 | DIODE GP 200mA 125V TRAN JFET I LIM 560UA DIODE ZH 6V8 400mW DIODE GP SB DIODE GP SB DIODE GP 200mA 125V | FAIRCHILD<br>SILICCHIX<br>PHILIPS<br>H.P.<br>H.P. | 1N458A<br>J503<br>B2X79C6V8<br>1N5711<br>1N5711 | A<br>A<br>A | EA E<br>EA 1<br>EA -<br>EA 2<br>EA - | | | | D211 200008<br>D212 210068<br>D213 200001<br>D215 220043<br>D216 200008 | DIODE GP 200mA 125V<br>DIODE ZN 6V8 400mW<br>DIODE GP 75mA 75V<br>DIODE JFET 10mA<br>DIODE GP 200mA 125V | FAIRCHILD<br>PHILIPS<br>FAIRCHILD<br>SILICO!!IX<br>FAIRCHILD | 1N458A<br>BZX79C6V8<br>1N4148<br>JPAD100<br>1N458A | A<br>A | EA -<br>EA -<br>EA -<br>EA - | | · | | D303 210051<br>D304 210051<br>D305 200008<br>D306 200008<br>D307 200008 | DIODE ZN 5V1 400mW<br>DIODE ZN 5V1 400mW<br>DIODE GP 200mA 125V<br>DIODE GP 200mA 125V<br>DIODE GP 200mA 125V | PHILIPS<br>PHILIPS<br>FAIRCHILD<br>FAIRCHILD<br>FAIRCHILD | B2X79C5V1<br>B2X79C5V1<br>1N458A<br>1N458A<br>1N458A | А<br>А<br>А<br>А | EA -<br>EA -<br>EA -<br>EA - | | | | D308 200008<br>D309 200008<br>D401 200002<br>D402 213009<br>D403 213009 | DIODE GP 200mA 125V<br>DIODE GP 200mA 125V<br>DIODE GP 1A 50V<br>DIODE ZN 15V 5W<br>DIODE ZN 15V, 5W | FAIRCHILD<br>FAIRCHILD<br>FAIRCHILD<br>UNITRODE<br>UNITRODE | 1N458A<br>1N458A<br>1N4001<br>TVS515<br>TVS515 | A<br>A | EA -<br>EA -<br>EA 1<br>EA 2<br>EA - | | | | D404 200001<br>D405 230071<br>D406 213006<br>Q101 230070<br>Q102 250004 | DIODE GP 75mA 75V TRAN JFET I LIM 2mlA DIODE 2N 5V 5W TRAN JFET N-CHAN DUAL TRAN JFET N-CHAN DUAL | FAIRCHILD TELEDYNE UNITRODE SILICONIX NATIONAL | 1N4148<br>TCR508<br>TVS505<br>2N5911<br>2N3906 | | EA -<br>EA 1<br>EA 1<br>EA 1<br>EA 4 | | | | Q103 240006<br>Q104 230002<br>Q105 230002<br>Q106 240006<br>Q107 240006 | TRAN NPN TO92 TRAN JFET N-CHAN TRAN JFET N-CHAN TRAN NPN TO92 TRAN NPN TO92 | MOTOROLA<br>SILICONIX<br>SILICONIX<br>MOTOROLA<br>MOTOROLA | 2H3904<br>J304<br>J304<br>2H3904<br>2H3904 | | EA 11<br>EA 2<br>EA -<br>EA - | | | | Q108 240013<br>Q109 250008<br>Q110 240006<br>Q111 240006<br>Q112 230003 | TRAN NPN TO18 TRAN PNP TO18 TRAN NPN TO92 TRAN NPN TO92 TRAN JFET N CHAN | NATICHAL<br>NATICHAL<br>MOTOROLA<br>MOTOROLA<br>TELEDYNE | BC184C/TO18<br>BC214C/TO18<br>2N3904<br>2N3904<br>U1899JF | | EA 2<br>EA 3<br>EA -<br>EA -<br>EA 3 | | | | | | | | | | | | | | INSTRUMENT | | DESC: ASSY PCB AC 12 | 81 | DRG NO: LP400741-2 | REV: 6 | PAGE NO: 12 | |--------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------|---------|-------------| | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS UM QUANTITY | CHANGES | | | Q113<br>Q114<br>Q115<br>Q116<br>Q117 | 240006<br>239091-1<br>230056<br>230035<br>230035 | TRAN NPN TO92 TRAN JFET SET N CHAN TRAN JFET N-CHAN TRAN JFET N-CHAN TRAN JFET N-CHAN | MOTOROLA<br>DATRON<br>TELEDYNE<br>TELEDYNE<br>TELEDYNE | 2N3904<br>SEE DRG.<br>J212<br>U1897JF<br>U1897JF | EA -<br>S2 1<br>EA 2<br>EA 2<br>EA - | | | | Q118<br>Q119<br>Q120<br>Q121<br>Q201 | 250004<br>239091-1<br>240006<br>230056<br>240020 | TRAN PNP TO92 TRAN JFET SET N CHAN TRAN HPN TO92 TRAN JFET N-CHAN TRAN JFET N-CHAN TRAN NPN DUAL | NATIONAL<br>DATRON<br>MOTOROLA<br>TELEDYNE<br>PMI | 2N3906<br>SEE DRG.<br>2N3904<br>J212<br>MAT01GH | EA -<br>S2 -<br>EA -<br>EA -<br>EA 1 | | | | Q202<br>Q203<br>Q204<br>Q205<br>Q206 | 239087-1<br>239087-1<br>240006<br>240040<br>250008 | TRAN JFET SET J106 X 2 TRAN JFET SET J106 X 2 TRAN NPN T092 TRAN NPN TRAN PNP T018 | DATRON<br>DATRON<br>MOTOROLA<br>MOTOROLA<br>NATIONAL | SEE DRG<br>SEE DRG<br>2N3904<br>2N5179<br>BC214C/TO18 | S2 1<br>S2 -<br>EA -<br>EA 1<br>EA - | | | | Q207<br>Q208<br>Q209<br>Q210<br>Q211 | 250004<br>240006<br>240029<br>240041<br>250008 | TRAN PNP TO92 TRAN NFN TO92 TRAN NFN TO92 TRAN NPN TRAN NPN TRAN PNP TO18 | HATIONAL<br>MOTOROLA<br>MOTOROLA<br>MOTOROLA<br>NATIONAL | 2N3906<br>2N3904<br>BC546<br>BF374<br>BC214C/TO18 | EA -<br>EA -<br>EA 1<br>EA 1<br>EA - | | | | Q212<br>Q213<br>Q301<br>Q302<br>Q303 | 250004<br>240006<br>230083<br>240013<br>230003 | TRAN PNP TO92 TRAN NPN TO92 TRAN JFET N-CHAN TRAN NPN TO18 TRAN JFET N CHAN | NATIONAL<br>MOTOROLA<br>SILICONIX<br>NATIONAL<br>TELEDYNE | 2N3906.<br>2N3904<br>PN4117A<br>BC184C/TO18<br>U1899JF | EA -<br>EA -<br>EA 1<br>EA -<br>EA - | | | | Q304<br>Q401<br>Q402<br>Q403<br>Q404 | 230003<br>230086<br>230086<br>240006<br>230081 | TRAN MOSFET P-CHAN 60V<br>TRAN NPN TO92<br>TRAN MOSFET N-CHAN | TELEDYNE<br>FERRANTI<br>FERRANTI<br>MOTOROLA<br>FERRANTI | U1899JF<br>ZVP2106A<br>ZVP2106A<br>2N3904<br>ZVN0106A | EA -<br>EA 2<br>EA -<br>EA -<br>A EA 1 | | | | M101<br>M102<br>M103<br>M104<br>M201 | 260082<br>260105<br>260106<br>260073<br>260103 | IC LIN OP AMP CHOPPER IC LIN OP AMP FET IP DUAL IC LIN OP AMP DUAL IC LIN OP AMP IC LIN OP AMP | LINEAR TECHNOLOGY<br>BURR BROWN<br>MOTOROLA<br>NATIONAL<br>PRECISION MONOLITHIC | LTC1052CH8<br>OPA606KM<br>MC34082P<br>LF411CN<br>OP77EP | EA. 2<br>EA 1<br>EA 1<br>EA 1<br>EA 2 | | | | | | | | | | | | PRECISION MONOLITHIC OP77EP LINEAR TECHNOLOGY LT1012CN8 SILICONIX DG509ACJ PRECISION MONOLITHIC OP77EP SILICONIX DG509ACJ DG509ACJ LTC1052CH8 LT1012CH8 SEE DRG LT1012CH8 CLA3106 LINEAR TECHNOLOGY LINEAR TECHNOLOGY DATRON LINEAR TECHNOLOGY PLESSEY EA -EA 2 EA 1 EA -EA -EA 1 EA -EA 3 IC LIN OP AMP IC LIN OP AMP IC DIG MULTIPLEXER 8-CHAN IC LIN OP AMP IC DIG MULTIPLEXER 8-CHAN IC LIN OP AMP CHOPPER IC LIN OP AMP RMS KIT SELECTED IC LIN OP AMP IC DIG ULA SERIAL TX/RX M202 M301 M302 M303 M304 M305 M306 M307 M308 M401 | | INSTRUMENT | | PARTS LIST | | DESC: ASSY PCB AC | 1281 | DRG NO: LP | 00741-2 | REV: 6 | PAGE NO: 13 | |-------------------------------------------|----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------|--------------------------------------|---------|-------------| | DESIG | PART NO | DESCRIPT | rion | | PRINC MANUF | MANUF PART NUMBER | CLASS ( | M QUANTITY | CHANGES | | | M402<br>M403<br>M404<br>M405<br>M406 | 280132<br>280132<br>290089<br>260039<br>260039 | IC DIG U<br>IC DIG U<br>IC DIG 7<br>IC LIN C<br>IC LIN C | JLA SERIAL<br>JLA SERIAL<br>7 X DARLING<br>DP AMP QUAD<br>DP AMP QUAD | TX/RX<br>TX/RX<br>TON DRIVER | PLESSEY<br>PLESSEY<br>SPRAGUE/EXAR<br>NATIONAL<br>NATIONAL | CLA3106<br>CLA3106<br>ULN2003A/XR2203CP<br>LM324N<br>LM324N | ;<br>;<br>; | EA -<br>EA -<br>EA 1<br>EA 2<br>EA - | | | | M407<br>M408<br>M409<br>M410<br>M411 | 280152<br>280160<br>260049<br>290149<br>280102 | IC DIG S IC DIG F IC LIN V IC DIG C IC DIG C | SCHMIDT NAM<br>FLIP/FLOP J<br>COMP DUAL<br>MOS TIMER<br>COUNTER BIM | D2 QUAD<br>K DUAL HCT | MOTOROLA<br>TEXAS<br>NATIONAL<br>INTERSIL<br>SIGNETICS | MC14093BCP<br>74HCT74<br>LM319H<br>ICM7555 1PA<br>HEF4020BP | !<br>!<br>! | A 1<br>A 1<br>A 1<br>A 1<br>A 1 | | | | RL102<br>RL103 | 280131<br>330031<br>330031<br>330031<br>330049-1 | IC DIG F<br>RELAY 2P<br>RELAY 2P<br>RELAY 2P<br>RELAY 1P | TYLL ULA<br>PHO 2PHC<br>PHO 2PHC<br>PHO 2PHC<br>PHO REED GU | ARDED | PLESSEY<br>SDS<br>SDS<br>SDS<br>GENTECH | CLA5532<br>S2-24Y<br>S2-24Y<br>S2-24V<br>SEE DRG | E<br>E<br>E<br>E | A 1<br>A 4<br>A -<br>A - | | | | RL106 | 330049-1<br>330049-1<br>330031<br>370033<br>604075 | RELAY 1P<br>RELAY 1P<br>RELAY 2P<br>CHOKE 1m<br>PLUG PCB | NO REED GU.<br>NO REED GU.<br>NO 2PNC<br>NH<br>16-WAY .1" | ARDED<br>ARDED | GENTECH<br>GENTECH<br>SDS<br>SIGMA<br>MOLEX | SEE DRG<br>SEE DRG<br>S2-24V<br>SC30S<br>22-29-2061 | E<br>E<br>E | A -<br>A -<br>A 1<br>A 1 | | | | | 604074<br>604033<br>604076<br>620013-1<br>620013-1 | PLUG PCB<br>PLUG PCB<br>PLUG PCB<br>TEST LOO<br>TEST LOO | 3-WAY .1"<br>4-WAY .1"<br>16-WAY .1 | "X.1" GRID | MOLEX<br>MOLEX<br>3M<br>DATRON<br>DATRON | 22-29-3031<br>22-29-2041<br>3599-6002 UN<br>SEE DRG<br>SEE DRG | E<br>E<br>E<br>E | A 1<br>A 1<br>A 1<br>A 9<br>A - | | | | TL301<br>TL302<br>TL303<br>TL304 | 620013-1<br>620013-1<br>620013-1<br>620013-1 | TEST LOO<br>TEST LOO<br>TEST LOO<br>TEST LOO | ib<br>ib<br>ib | | DATRON DATRON DATRON DATRON DATRON | SEE DRG<br>SEE DRG<br>SEE DRG<br>SEE DRG<br>SEE DRG | E<br>E<br>F | A -<br>A -<br>A -<br>A - | | | | TL305<br>TL306<br>TP101<br>TP102<br>TP103 | 620013-1<br>620013-1<br>620007<br>620007 | TEST LOO<br>TEST LOO<br>TEST POI<br>TEST POI<br>TEST POI | P<br>P<br>HT TERMINA<br>HT TERMINA<br>HT TERMINA | Ն<br>Ն | DATRON<br>DATRON<br>MICROVAR<br>MICROVAR<br>MICROVAR | SEE DRG<br>SEE DRG<br>TYPE C30<br>TYPE C30<br>TYPE C30 | E<br>E | A -<br>A -<br>A 29<br>A -<br>A - | | | | TP104<br>TP105<br>TP106<br>TP108 | 620007<br>620007<br>620007<br>620007<br>620007 | TEST POI<br>TEST POI<br>TEST POI<br>TEST POI<br>TEST POI | HT TERMINA<br>HT TERMINA<br>HT TERMINA<br>HT TERMINA<br>HT TERMINA | | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30 TYPE C30 TYPE C30 TYPE C30 TYPE C30 | E<br>E | A | | | | TP111<br>TP213<br>TP214 | 620007<br>620007<br>620007<br>620007<br>620007 | TEST POI<br>TEST POI<br>TEST POI<br>TEST POI<br>TEST POI | NT TERMINA<br>NT TERMINA<br>NT TERMINA<br>NT TERMINA<br>NT TERMINA | | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30 | E<br>E | A -<br>A -<br>A -<br>A - | | | | DESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTITY CHANGES | |-------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|--------|----------------------------------------| | | | TEST POINT TERMINAL | | | | | | TP320<br>TP422<br>TP423<br>TP424<br>TP425 | 620007<br>620007<br>620007<br>620007<br>620007 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | MICROYAR<br>MICROYAR<br>MICROYAR<br>MICROYAR<br>MICROYAR<br>MICROYAR | TYPE C30 TYPE C30 TYPE C30 TYPE C30 TYPE C30 | | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | TP426<br>TP427<br>TP428<br>TP429 | 620007<br>620007<br>620007<br>620007 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | MICROYAR<br>MICROYAR<br>MICROYAR<br>MICROYAR | TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30 | | EA -<br>EA -<br>EA - | | TP431<br>X401 | 620007<br>800036<br>400753-1<br>400757-1<br>410365-1 | TEST POINT TERMINAL<br>CRYSTAL OSC 4.000MHz<br>ASSY CABLE SIG IP 1281<br>ASSY CABLE RIBBON 16W<br>PCB AC 1281 | MICROVAR<br>EURO-QUARTZ<br>DATRON<br>DATRON | TYPE C30<br>EQXO-1100HC<br>SEE DRG<br>SEE DRG<br>SEE DRG | | EA -<br>EA 1<br>EA 1<br>EA 1<br>EA 1 | | | 450568-4<br>512999<br>540002<br>560002<br>590004 | TEST POINT TERMINAL TEST POINT TERMINAL CRYSTAL OSC 4.000MHz ASSY CABLE SIG IP 1281 ASSY CABLE SIG IP 1281 ASSY CABLE RIBBON 16W PCB AC 1281 GUARD SHIELD AC 1281 WIRE 7/.2 PTFE 1KV WHI WIRE 1/.7 TINNED COPPER CABLE AX 2.54mm 7/34AW SLEEVE PTFE 1mm BLK SLEEVE SOLDER DIAM.3.0 TERMINAL FSV SOCKET PCB 8-WAY DIL SOCKET PCB 14-WAY DIL SOCKET PCB 16-WAY DIL SOCKET PCB 18-WAY DIL SOCKET PCB 18-WAY DIL SOCKET PCB 18-WAY DIL SOCKET PCB 28 WAY DIL SOCKET PCB 28 WAY DIL SOCKET PCB 28 WAY DIL SOCKET PCB 18-WAY DI | BSG210<br>BS4109<br>MIL-C17D<br>HELLERMAN | SEE DRG<br>TYPE C<br>22SWG<br>RG174U<br>FE10 | | EA 1<br>AR 80<br>AR 1<br>MM 95<br>AR 1 | | | 590074<br>602001<br>605059<br>605060<br>605061 | SLEEVE SOLDER DIAM.3.0<br>TERMINAL FSV<br>SOCKET PCB 8-WAY DIL<br>SOCKET PCB 14-WAY DIL<br>SOCKET PCB 16-WAY DIL | RAYFAST<br>MOLEX<br>JERMYN<br>JERMYN<br>JERMYN | CWT-3<br>02-04-5114<br>J23-18008<br>J23-18014<br>J23-18016 | A<br>A | EA 2<br>EA 4<br>EA 8<br>EA 5<br>EA 4 | | | 605062<br>605065<br>611015<br>612031-1<br>613017 | SOCKET PCB 18-WAY DIL<br>SOCKET PCB 28 WAY DIL<br>SCREW M3 X 8 POZICSK SZP<br>STANDOFF M3 X 16<br>WASHER M3 NYL. | JERMYN<br>JERMYN | J23-18018<br>J23-18028<br>SEE DRG | | EA 3<br>EA 1<br>EA 4<br>EA 4<br>EA 1 | | | 620005<br>630024<br>630107<br>630243 | CLOVERLEAF LARGE PTFE<br>BEAD CERAMIC 16 SWG<br>STRIP BRASS 15.5 X 0.38mm<br>BEAD GLASS 2.4 X 0.81 X 1.8 | SEALECTRO PARK ROYAL PORCELAIN RIGHTON MANSOL (PREFORMS) LT | 011-6809-040599<br>No2<br>CZ108 1/2H<br>M5363B/3 | A | EA 13<br>EA 6<br>MM 222<br>EA 28 | | | 630276<br>900004<br>920202<br>420098<br>540006 | BUSH<br>SILICONE RUBBER COMPOUND<br>HEATSINK<br>LABEL SERIAL/ASSY NO.<br>WIRE 1/.4 BLACK PTFE 250Y | HEYCO<br>RS<br>REDPOINT<br>RS<br>BSG210 | 2817<br>555-588<br>5F<br>554-793<br>TYPE A | | EA 1<br>AR 1<br>EA 2<br>EA 1<br>AR 1 | | n | | | | | | | | DI W | | CHK'D DATE E C C REVISION ISSUE SHEET | 1.0 2682 2000187 me | 1.0 2694 IINOVST | 1.) 2 /06 9 DEC 8/ 4/ | 1.3 2770 IZFEB8% | 1.4 2777 ITEB88 🕊 | 1.5 2804'21MAR88# | 1.7 2862 29APR8 1 | 1.8 (2893 11. MAY 88 | 2.0 2977 15AU688 | | | | | | | | | | | | | | | | | | | | - - | | | | | | | - | |--------------------------|--------------------------|--------------------------------------------|---------------------|------------------|-----------------------|------------------|-------------------|--------------------|-------------------|----------------------|------------------|-------|-----|-------|---------|-----------|------|-----|--------|-----|-----|---------|-----|-----|----|----------------|---------|-----------|---|----|-------|---|-----------------|----|------|-------|--------|---| | COMPONENT<br>LAYOUT | 480742<br>400742 | ALL | 0.1 | - 0 | | 4.1 | 1.5 | 9 | 1.7 1.7 | 8.1.8. | 2.0.2.0 | - | ISS | tie . | . ne | VISIC | OH . | - | | | | <u></u> | | | - | | | _ | - | | | - | | | - | Ī., | | | | SCHEMATIC<br>SCHEMATIC | 430742<br>430742 | 1 | 1.0 1.0 | - - | | 1.1 | 1.3 | .2 | | | 2.0 2.0 | | | | - | - | - | | - | - | | - | | - - | + | | | | | - | - - | | | | - - | | | _ | | SCHEMATIC | 430742 | 3 | 1.0 | - - | | | | - | 1.3 | 4.1 | 2.0 | | | | 1 | + | - | | 1 | - | | | | - - | | | | - | | - | - | - | | 1 | + | - | | - | | FUNCTIONAL<br>TEST PROC. | 460742/ <sub>17</sub> | ALL | 1.0 | | | | - | - - | | | 2.0 | - | | | | | _ | | - | | | - | | | | | | - | | | | | | - | | - | | _ | | FUNC.TEST<br>TICK LIST | 470742/F1 | 1\$2 | 0.1 | | | | | - | | | 0.0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | РСВ | 410366 | _/_ | c | + | | | | - - | - | | . 0. | - | | | | | | | | | | | | | | | | | | 1 | | | | | - | - | | _ | | DEMOT<br>AT ISS | ES NO CHAI<br>UE LEVEL C | NGE TO | DOC | s | | | | | | Je. | | J F.1 | I N | | 211 0.2 | RN<br>ATE | N 87 | 000 | TE CAN | ~ ¥ | 2 2 | 70 | CTE | 7 | OF | <del>I</del> M | 12<br>5 | 181<br>PC | | AS | SY | | 1<br>1AWII<br>4 | -0 | 07 | -<br> | i<br>_ | - | | DATRON | INSTRUMENT | S L' | TD PARTS LIST | 15-Aug-88 | DESC: ASSY PCB OHMS | 1281 | DRG NO | : LP40 | 0742-2<br> | | 19 A | | |--------------------------------------|--------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|--------|------------------|--------------------------------------|--------------|------|--| | DESIG | PART NO | | DESCRIPTION | | | | MBER | CLASS | MAUQ MU | FITY CHANGES | | | | R101<br>R102<br>R103<br>R104<br>R105 | 090001<br>090001<br>090001<br>008012<br>080087-1 | 0<br>0<br>0<br>0 | THERMISTOR PTC THERMISTOR PTC THERMISTOR PTC RES CF 27K 5% 2 RES FL 100K .1% RES FL 1K00 .1% THERMISTOR PTC RES CT 100K LDG | 80R<br>80R<br>80R<br>W<br>. 2PPM | MULLARD<br>MULLARD<br>MULLARD<br>PIHER<br>VISHAY MARR | VA8650<br>VA8650<br>VA8650<br>PR02-5<br>SEE DRG | | | EA 4<br>EA -<br>EA -<br>EA 1<br>EA 1 | | | | | R106<br>R107<br>R110<br>R111<br>R111 | 080086-1<br>090001<br>063104<br>041004<br>011001 | Ö | RES FL 1K00 .1%<br>THERMISTOR PTC<br>RES CT 100K HOR<br>RES MF 1M00 1%<br>RES MF 1K00 1% | .12W 50PPM | VISHAY MANN<br>MULLARD<br>BECKMAN<br>HOLSWORTHY<br>HOLSWORTHY | SEE DRG<br>VA8650<br>72P<br>HBC<br>HBC | | A<br>A | EA 1<br>EA -<br>EA 1<br>EA 2<br>EA 3 | | | | | R113<br>R114<br>R115<br>R116<br>R117 | 000686<br>014752<br>014752<br>014752<br>014752 | 0<br>0<br>0<br>0 | RES HM 68M 5% .<br>RES MF 47K5 1%<br>RES MF 47K5 1%<br>RES MF 47K5 1%<br>RES MF 47K5 1% | .12W 50PPM<br>.12W 50PPM<br>.12W 50PPM | ALLEN BRADLEY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | CB<br>HBC<br>HBC<br>HBC<br>HBC | | A<br>A<br>A<br>A | EA 1<br>EA 6<br>EA -<br>EA -<br>EA - | | | | | R119<br>R121<br>R122<br>R123<br>R124 | 048254<br>048254<br>014991<br>014991<br>014991 | 0<br>0<br>0<br>0 | RES MF 8M25 1%<br>RES MF 8M25 1%<br>RES MF 4K99 1%<br>RES MF 4K99 1%<br>RES MF 4K99 1% | .12W 100PPM<br>.12W 50PPM<br>.12W 50PPM | STEATITE<br>STEATITE<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | MK2<br>MK2<br>HBC<br>HBC<br>HBC | | A<br>A<br>A<br>A | EA 2<br>EA -<br>EA 4<br>EA -<br>EA - | | | | | R125<br>R126<br>R127<br>R128<br>R129 | 014991<br>011002<br>011000<br>014751<br>011002 | 0 0 0 | RES MF 4K99 1%<br>RES MF 10K0 1%<br>RES MF 100R 1%<br>RES MF 4K75 1%<br>RES MF 10K0 1% | .12W 50PPM<br>.12W 50PPM<br>.12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | HBC<br>HBC<br>HBC<br>HBC<br>HBC | | A<br>A<br>A<br>A | EA -<br>EA 2<br>EA 2<br>EA 2<br>EA - | | | | | R130<br>R131<br>R134<br>R135<br>R137 | 012741<br>017501<br>012003<br>011001<br>011000 | 0<br>0<br>0<br>0 | RES MF 2K74 1%<br>RES MF 7K50 1%<br>RES MF 200K 1%<br>RES MF 1K00 1%<br>RES MF 1K00 1% | .12W 50PPM<br>.12W 50PPM<br>.12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | 118C<br>118C<br>H8C<br>H8C<br>H8C | | A<br>A<br>A<br>A | EA 1<br>EA 1<br>EA 1<br>EA - | | | | | R138<br>R139<br>R140<br>R142<br>R143 | 042054<br>041005<br>041694<br>012152<br>045903 | 0<br>0<br>0<br>0 | RES MF 2M05 1%<br>RES MF 10M0 1%<br>RES MF 1M69 1%<br>RES MF 21K5 1%<br>RES MF 590K 1% | .12W 100PPM<br>.12W 100PPM<br>.12W 50PPM | HOLSWORTHY<br>STEATITE<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | HBC<br>MK2<br>HBC<br>HBC<br>HBC | | A<br>A<br>A<br>A | EA 1<br>EA 1<br>EA 1<br>EA 1 | | | | | R144<br>R145<br>R146<br>R147<br>R148 | 041005<br>011003'<br>012211<br>012211<br>041004 | 0<br>0<br>0<br>0 | RES MF 10M0 1%<br>RES MF 100K 1%<br>RES MF 2K21 1%<br>RES MF 2K21 1%<br>RES MF 1M00 1% | .12W 50PPM<br>.12W 50PPM<br>.12W 50PPM | STEATITE HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | MK2<br>H8C<br>H8C<br>H8C<br>H8C | | A<br>A<br>A<br>A | EA -<br>EA 1<br>EA 2<br>EA -<br>EA - | | | | | R149<br>R201<br>R202<br>R203<br>R204 | 012742<br>014751<br>015628<br>041005<br>080091-1 | 0<br>0<br>0<br>0 | RES MF 27K4 1%<br>RES MF 4K75 1%<br>RES MF 56R2 1%<br>RES MF 10M0 1%<br>RES FL 650K7 .1 | .12W 50PPM<br>.12W 50PPH<br>.12W 100PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY STEATITE VISHAY MANN | HBC<br>HBC<br>HBC<br>MK2<br>SEE DRG | | A<br>A<br>A | EA 1<br>EA -<br>EA 1<br>EA -<br>EA 1 | • | | | | DATRON INSTRUMENTS LTD | PARTS LIST | 15-Aug-88 | DESC: ASSY PCB OHMS 1281 | DRG NO: LP400742-2 | REV: 0 | PAGE NO: 2 | | |--------------------------|------------|-----------|--------------------------|--------------------|--------|------------|--| | Divinor Institutents Bib | Time Die | | | | | | | | DESIG | PART NO | RV DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | UM QUANTITY CHANGES | |--------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|--------------------------------------| | R205<br>R206<br>R207<br>R208<br>R209 | 014752<br>014752<br>011502<br>000336<br>090146-1 | O RES MF 47K5 1% .12W 50PPM<br>O RES MF 47K5 1% .12W 50PPM<br>O RES MF 15K0 1% .12W 50PPM<br>O RES MF 15K0 1% .12W 50PPM<br>O RES FL SET 5M/4K5/50OR | HOLSWORTHY HOLSWORTHY HOLSWORTHY ALLEN BRADLEY VISHAY MANN | HBC<br>HBC<br>HBC<br>CB<br>SEE DRG | A<br>A<br>A | EA -<br>EA -<br>EA 1<br>EA 1 | | R210<br>R211<br>R212<br>R213<br>R214 | 090146-1<br>011822<br>011001<br>090146-1 | O RES FL SET 5M/4K5/500R<br>O RES MF 16K2 18 .12W 50PPM<br>O RES MF 1K00 1% .12W 50PPM<br>O RES FL SET 5M/4K5/500R | VISHAY MANN<br>HOLSWORTHY<br>HOLSWORTHY<br>VISHAY MANN | SEE DRG<br>HBC<br>HBC<br>SEE DRG | A<br>A | .S3 -<br>EA 1<br>EA -<br>S3 - | | R215<br>R216<br>R217<br>R218<br>R219 | 013320<br>041005<br>080088-1<br>080088-1<br>080089-1 | O RES FL 65AV .11 .2PPM O RES MF 10MO 1% .12W 100PPM O RES MF 10MO 1% .12W 100PPM O RES FL 1K446 .1% .2PPM O RES FL 1K446 .1% .2PPM O RES FL 64A6 .1% .2PPM O RES MF 332R 1% .12W 50PPM O RES MF 332R 1% .12W 50PPM O RES MF 2K49 1% .12W 50PPM O RES MF 2K49 1% .12W 50PPM O RES MF 1K50 1% .12W 50PPM O RES MF 1K50 1% .12W 50PPM | HOLSWORTHY<br>STEATITE<br>VISHAY MANN<br>VISHAY MANN<br>VISHAY MANN | HBC<br>MK2<br>SEE DRG<br>SEE DRG<br>SEE DRG | A<br>A | EA 3<br>EA -<br>EA 2<br>EA -<br>EA 1 | | R220<br>R221<br>R222<br>R223<br>R224 | 013320<br>013320<br>012491<br>011501<br>012433 | 0 RES MF 332R 1% .12W 50PPM<br>0 RES MF 332R 1% .12W 50PPM<br>0 RES MF 2K49 1% .12W 50PPM<br>0 RES MF 1K50 1% .12W 50PPM<br>0 RES MF 243K 1% .12W 50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | НВС<br>НВС<br>НВС<br>НВС<br>НВС | A<br>A<br>A<br>A | EA -<br>EA -<br>EA 1<br>EA 1 | | R301<br>R302<br>R303<br>R306<br>R307 | 011008-<br>045623<br>046813<br>050067<br>00000N | 0 RES MF 10R0 1% .12W 50PPM<br>0 RES MF 562K 1% .12W 50PPM<br>0 RES MF 681K 1% .12W 50PPM<br>0 RES MF 39K 5% .5W 100PPM<br>NOT FITTED | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>PHILIPS | ИВС<br>ИВС<br>НВС<br>SFR16T-39K-5 | A<br>A<br>A | EA 1<br>EA 1<br>EA 1<br>EA 1<br>EA 2 | | AN301<br>AN302<br>AN303 | 090175<br>090017<br>090131<br>090105<br>090131 | O RES MF 243 I 14 .12W 50PPM O RES MF 562K 1% .12W 50PPM O RES MF 562K 1% .12W 50PPM O RES MF 681K 1% .12W 50PPM ORES MF 39K 5% .5W 100PPM NOT FITTED O RES PACK 1M X 4 2% O RES PACK 100K X 7 2% O RES PACK 100K X 4 2% O RES PACK 10X 2 % O RES PACK 10X X 2 % O RES PACK 10X X 2 % | BECKMAN<br>BECKMAN<br>BECKMAN<br>BECKMAN<br>BECKMAN | LOB-3-1M<br>LOB-1-R100K<br>LOB-3-R10K<br>LOB-3-R10O<br>LOB-3-R10K | | EA 1<br>EA 2<br>EA 2<br>EA 1<br>EA - | | AN306<br>AN307<br>AN308 | 090168<br>090168<br>090168<br>090167<br>090017 | 0 RES PACK 1K X 4 2%<br>0 RES PACK 1K X 4 2%<br>0 RES PACK 1K X 4 2%<br>0 RES PACK 100K X 4 2%<br>0 RES NTWK 100K X 7 2% | AB<br>AB<br>AB<br>AB<br>BECKMAN | AB-770-83-1K<br>AB-770-83-1K<br>AB-770-83-1K<br>AB-770-83-100K<br>LO8-1-R100K | | EA 3<br>EA -<br>EA -<br>EA 1<br>EA - | | C101<br>C102<br>C103<br>C104<br>C105 | 120030-1<br>120030-1<br>120013<br>120013 | O CAP MF 820NF 5% 637<br>O CAP MF 820NF 5% 637<br>O CAP MF 820NF 5% 637<br>O CAP PC 150NF 10% 637<br>O CAP PC 150NF 10% 637 | ASHCROFT<br>ASHCROFT<br>ASHCROFT<br>ASHCROFT | SEE DRG<br>SEE DRG<br>M2B15101B<br>M2B15101B | | EA 2<br>EA -<br>EA 2<br>EA - | | C106<br>C107<br>C108<br>C109<br>C110 | 120016<br>110050<br>140079<br>110012<br>110042 | O CAP PC 2N2F 20% 100V<br>O CAP PE 2NF 10% 63V<br>O CAP PF 3N3F 5% 63V<br>O CAP PE 100HF 20% 63V<br>O CAP PE 100HF 20% 63V | MIMA<br>WIMA<br>WIMA<br>WIMA<br>WIMA | FKC2<br>MKS4<br>FKP2<br>MKS2<br>MKS2 | | EA 2<br>EA 1<br>EA 1<br>EA 4<br>EA - | | DATRON | INSTRUMENT | rs LTD | PARTS LIST | 15-Aug-88 | DESC: ASSY PCB OHMS | 3 1281 | DRG NO: LP40 | 0742-2 | REV: 0 | PAGE NO: 3 | |--------------------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|------------------|--------------------------------------|-------------|------------| | DESIG | PART NO | RV DES | CRIPTION | | PRINC MANUF | MANUF PART NUM | BER CLASS | UM QUAN | TITY CHANGE | S<br>- | | C111<br>C112<br>C113<br>C114<br>C202 | 120016<br>110058<br>150020<br>150020<br>140077 | 0 CAP<br>0 CAP<br>0 CAP<br>0 CAP<br>0 CAP | PC 2N2F 20%<br>PE 68NF 10%<br>DT 10UF 20%<br>DT 10UF 20%<br>PP 100PF 5% | 100V<br>63V<br>25V<br>25V<br>100V | WIMA<br>WIMA<br>AVX<br>AVX<br>WIMA | FKC2<br>MKS2<br>TAP10M25F<br>TAP10M25F<br>FKP2 | A<br>A | EA -<br>EA 1<br>EA -<br>EA -<br>EA 1 | | | | C203<br>C204<br>C205<br>C206<br>C207 | 110042<br>110042<br>120021<br>120021 | 0 CAP<br>0 CAP<br>0 CAP<br>0 CAP | PE 100NF 20<br>PE 100NF 20<br>PC 470NF 10<br>PC 470NF 10 | % 63V<br>% 63V<br>% 63V<br>% 63V | WIMA<br>WIMA<br>ASHCROFT<br>ASHCROFT | MKS2<br>MKS2<br>A2B4711B<br>A2B4711B<br>A2B4711B | | EA -<br>EA -<br>EA -<br>EA - | | | | C208<br>C209<br>C210<br>C211<br>C212 | 104025<br>180060<br>150020<br>150020<br>120027 | 0 CAP<br>0 CAP<br>0 CAP<br>0 CAP<br>0 CAP | CD 100NF +8 AE 10UF 50V DT 10UF 20% DT 10UF 20% PC 1NF 20% | 0%-20% 50V<br>25V<br>25V<br>100Y | SIEMENS<br>PHILIPS<br>AVX<br>AVX<br>WIMA | B37449<br>035-90008<br>TAP10M25F<br>TAP10M25F<br>FKC2<br>TAP47M16F | A<br>A | EA 1<br>EA -<br>EA -<br>EA 1 | | | | C301<br>C303<br>D101<br>D102<br>D103 | 150024<br>00000N<br>200001<br>213028<br>210062 | 0 DIO<br>0 DIO | DE GP 75mA 7<br>DE ZN 6V2 5W<br>DE ZN 6V2 40 | 5 V<br>0 mW | FAIRCHILD<br>MOTOROLA<br>PHILIPS | 1N4148<br>1N5341<br>BZX79C6V2 | А | EA 1<br>EA 2<br>EA 1<br>EA 2 | | | | D104<br>D106<br>D107<br>D108<br>D109 | 210062<br>200028<br>213031<br>213031<br>200008 | 0 DIO<br>0 DIO<br>0 DIO | DE ZN 6V2 40<br>DE SB 1A 30V<br>DE ZN 13V 5W<br>DE ZN 13V 5W | 0mW | PHILIPS INT RECTIFIERS MOTOROLA MOTOROLA | BZX79C6V2<br>11DQ04<br>1N5350<br>1N5350 | A | EA -<br>EA 1<br>EA 2<br>EA - | | | | D110<br>D111<br>D201<br>D202<br>D203 | 210056<br>210110<br>210027<br>210075<br>200008 | 0 DIO<br>0 DIO<br>0 DIO<br>0 DIO | DE 2N 5V6 40<br>DE 2N 11V 40<br>DE 2N 2V7 40<br>DE 2N 7V5 40<br>DE GP 200mA | 0mW<br>0mW<br>0mW<br>0mW<br>125V | PHILIPS PHILIPS PHILIPS PHILIPS ITT | BZX79C5V6<br>BZX79C11<br>BZX79C2V7<br>BZX79C7V5<br>ITT923 | A<br>A<br>A<br>A | EA 1<br>EA 1<br>EA 1<br>EA 1<br>EA - | | | | D204<br>D205<br>D301<br>D302<br>D303 | 210047<br>210082<br>213006<br>211100<br>200002 | 0 DIO<br>0 DIO<br>0 DIO<br>0 DIO | DE ZN 4V7 40<br>DE ZN 8V2 40<br>DE ZN 5V 5W<br>DE ZN 10V 1.<br>DE GP 1A 50V | 0mW<br>3W | PHILIPS PHILIPS UNITRODE PHILIPS FAIRCHILD | BZX79C5V6 BZX79C5V1 BZX79C2V7 BZX79C7V5 ITT923 BZX79C8V2 TVS505 BZX9C5C10 1N4001 | A<br>A | EA 1<br>EA 1<br>EA 1<br>EA 1<br>EA 1 | | | | D304<br>Q101<br>Q102<br>Q103<br>Q104 | 230027-1<br>230002<br>230002<br>230023 | 0 TRA<br>0 TRA<br>0 TRA<br>0 TRA | N JFET N-CHA<br>N JFET N-CHA<br>N JFET N-CHA<br>N JFET N CHA | N 60V<br>N<br>N DUAL | DATRON<br>SILICONIX<br>SILICONIX<br>SILICONIX | SEE DRG<br>J304<br>J304<br>U401 | | EA 8<br>EA 6<br>EA -<br>EA 1 | | | | 0105<br>0106<br>0107<br>0108<br>0110 | 230055<br>230027-1<br>240009<br>240006<br>240009 | 0 TRA<br>0 TRA<br>0 TRA<br>0 TRA<br>0 TRA | N JFET I LIM N JFET N-CHAN N NPN TO18 N NPN TO92 N NPN TO18 | 430uA -<br>N 60V | SILICONIX DATRON NATIONAL MOTOROLA NATIONAL | J502<br>SEE DRG<br>MPSL01/2N5550<br>2N3904<br>MPSL01/2N5550 | | EA 1<br>EA -<br>EA 2<br>EA 3<br>EA - | | | | | TS LTD PARTS LIST 15-Aug-88 | | | | |-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------| | DESIG PART NO | RV DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS UM QUANTITY CHANGES | | Q111 230027-1<br>Q112 230027-1<br>Q113 240006<br>Q114 230027-1<br>Q115 230074 | O TRAN JFET N-CHAN 60V O TRAN JFET N-CHAN 60V O TRAN 1PH TO92 O TRAN JFET N-CHAN 60V 1PH N- | DATRON<br>DATRON<br>MOTOROLA<br>DA'TRON<br>SILICONIX | SEE DRG<br>SEE DRG<br>2N3904<br>SEE DRG<br>J271 | EA -<br>EA -<br>EA -<br>EA 1 | | Q116 230042 | O TRAH JFET I LIM 3mA O TRAH JFET H-CHAH O TRAH JFET H-CHAH O TRAH JFET H-CHAH O TRAH JFET H-CHAH 60V | SILICONIX | J509 | EA 1 | | Q201 230002 | | SILICONIX | J304 | EA - | | Q202 230002 | | SILICONIX | .1304 | EA - | | Q203 230002 | | SILICONIX | J304 | EA - | | Q204 230027-1 | | DATRON | SEE DRG | EA - | | Q205 230027-1 | O TRAN JFET N-CHAN 60V O TRAN JFET N-CHAN O TRAN JFET N-CHAN 60V O TRAN NPN T092 O TRAN MOSFET P-CHAN 60V | DATRON | SEE DRG | EA - | | Q206 230002 | | SILICONIX | J304 | EA - | | Q207 230027-1 | | DATRON | SEE DRG | EA - | | Q208 240006 | | MOTOROLA | 2N3904 | HA - | | Q302 230086 | | FERRANTI | ZYP2106A | EA 1 | | Q303 240029 | O TRAN MPN O IC DIG SWITCH QUAD CMOS O IC LIN OP AMP O IC LIN OP AMP CHOPPER O IC LIN OP AMP BIFET | MOTOROLA | BC546 | EA 1 | | M101 280167 | | SILICONIX | DG211CJ | EA 3 | | M102 260073 | | NATIONAL | LF411CN | EA 1 | | M103 260083 | | LINEAR TECHNOLOGY | LTC1052CN | EA 1 | | M104 260087 | | MOTOROLA | MC34081P | EA 1 | | M203 260082<br>M204 280072 | 0 IC LIN OP AMP CHOPPER<br>0 IC DIG MULTIVIB/ASTABLE | LINEAR TECHNOLOGY | LTC1052CN8 | EA 1 | | M302 290077 | O IC DIG 7 X DARLINGTON DRIVER O IC LIN COMP QUAD O IC DIG DECODER 3 TO 8 LINE O IC DIG NOR2 QUAD O IC DIG QUAD 2 I/P AND | SPRAGUE/EXAR | ULM2004A/XR2204CP | EA 1 | | M303 260091 | | NATIONAL | LM339N | EA 1 | | M304 280148 | | TEXAS | 74HC138 | EA 1 | | M305 280023 | | MOTOROLA | MC14001URCP | EA 1 | | M306 280085 | | MOTOROLA | MC14081BCP | EA 1 | | RL101 330029 | 0 RELAY 2P2W | SDS | DS2E-DC24V | EA 3 | | RL102 330031 | 0 RELAY 2P10 2PNC | SDS | S2-24V | EA 1 | | RL103 330029 | 0 RELAY 2P2W | SDS | DS2E-DC24V | EA - | | RL104 330046 | 0 RELAY SPCO 24V REED | HAMLIN | HE721C 24/10 | EA 1 | | RL105 330029 | 0 RELAY 2P2W | SDS | DS2E-DC24V | EA - | | RL201 330047 | 0 RELAY SPINO 247 REED | HAMLIN | HE721A 24/10 | EA 1 | | PL40 604075 | 0 PLUG PCB 6-WAY .1" | MOLEX | 22-29-2061 | EA 1 | | PL41 604074 | 0 PLUG PCB 3-WAY .1" | MOLEX | 22-29-3031 | EA 1 | | PL42 604033 | 0 PLUG PCB 4-WAY .1" | MOLEX | 22-29-2041 | EA 1 | | PL43 604076 | 0 PLUG PCB 16-WAY .1"X.1" GRID | 3M | 3599-6002 UN | EA 1 | | TP101 620007<br>TP102 620007<br>TP201 620007<br>TP202 620007<br>TP203 620007 | O IC DIG ULA SERIAL TX/RX O IC DIG 7 X DARLINGTON DRIVER O IC LIN COMP QUAD O IC DIG DECODER 3 TO 8 LINE O IC DIG DECODER 3 TO 8 LINE O IC DIG GUAD 2 I/P AND O RELAY 2P2W 3P100 24V REED O PLUG PCB 6-WAY .1" O PLUG PCB 3-WAY .1" O PLUG PCB 4-WAY .1" O PLUG PCB 4-WAY .1" O TEST POINT TERMINAL O TEST POINT TERMINAL O TEST POINT TERMINAL O TEST POINT TERMINAL O TEST POINT TERMINAL | MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR<br>MICROVAR | TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30 | EA 10<br>EA -<br>EA -<br>EA - | | DATRON | I INSTRUMENT | S L | TD PARTS LIST 15- | -Aug-88 DI | ESC: ASSY PCB OHMS 128 | 1 | DRG NO: LP400 | 742- | -2 RE | CV: 0 | PAGE NO | : 5 | |--------|------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|----------------------------------------------------------|---------------|--------------------------------------|---------|---------|---------|-----| | DESIG | PART NO | RV | DESCRIPTION | | PRINC MANUF | MANUF PART NUM | | UM C | YTITMAU | CHANGES | | | | | 620007<br>620007 | 0<br>0<br>0 | TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | | MICROVAR | TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30 | | EA -<br>EA -<br>EA -<br>EA - | | , | | | | | 605059 | 0<br>0<br>0 | PCB OHMS 1281<br>WIRE 7/.2 PTFE 1KY<br>SOCKET PCB 8-WAY DI<br>SOCKET PCB 14-WAY D<br>SOCKET PCB 16-WAY D | WHI<br>L | JERMYN<br>JERMYN | SEE DRG<br>TYPE C<br>J23-18008<br>J23-18014<br>J23-18016 | A | EA 1<br>AR -<br>EA 2<br>EA 4<br>EA 5 | | | | | | | 605062<br>617014<br>617015<br>630243<br>630024 | 0<br>0<br>0 | SOCKET PCB 18-WAY D<br>NYLATCH PLUNGER 1/4<br>NYLATCH GROMMET 1/4<br>BEAD GLASS 2.4 X 0.<br>BEAD CERAMIC 16 SWG | "<br>"<br>81 X 1.8 | HARTWELL (C.J.FOX) | HH4G-43 | | EA 1<br>EA 5<br>EA 5<br>EA 2 | 0 | | | | | | 400757-1<br>540001<br>540006 | 0<br>0<br>0 | ASSY CABLE SIG IP 1<br>ASSY CABLE RIBBON 1<br>WIRE 1/.56 TINNED CO<br>WIRE 1/.4 BLACK PTFI<br>SLEEVE PTFE 1mm BLK | 6W<br>OPPER<br>E 250V | DATRON<br>BSG210 | SEE DRG<br>SEE DRG<br>245WG<br>TYPE A<br>FE10 | | EA 1<br>EA 1<br>AR -<br>AR - | | | | | | | 613017 | 0 | WASHER M3 NYL. | | | | 1 | 2A 6 | | | | | | ФПАЖІНЯ Не.<br>40074<br>ОТ. VV// | | CHE D DATE E CO REVISION ISSUE | 1.0 2692 IINOV87 ME | 1.0 2731 ISNOVST P. | 1.1 2782.24 FE888 | 1.2 2862 E9APR88 # | 1.4 12 942 15 Jul 82 AF | 2.0 2957 12AV688 | 2.1 :3075 !140c788 J | 2.213090 210CT88 子 | 2.3.3173 210EC882 | | | | - | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | |----------------------------------|--------------------------|------------------------------------|---------------------|---------------------|-------------------|--------------------|-------------------------|------------------|----------------------|--------------------|-------------------|---|-----|-----|----------|-----|-----|-------|-----------|-----|-------------|----------------------------------------|----|----------|-----------------|---------------------------------------|----------------------------------------|--------|-----|-----|----------|---|----|---------|---|---|-------|---|----|-----|----|---------------|---| | PESCRIPTION | URAWING | SHELL | ٢ | نــــا | LL | | | 1 | 133 | لتا | | | L | | <br>155U | E. | ne: | V1510 | LL<br>DN | | | ــــــــــــــــــــــــــــــــــــــ | | | <b>ا</b> ــــا | | ــــــــــــــــــــــــــــــــــــــ | لــــا | | | | | | <u></u> | Ш | | لـــا | 1 | L | | | | 1 | | COMPONENT | 480743 | 1 | 0.1 | = | <u>.</u><br>دن | | 4 | 2.0 | 2.1 | 2.2 | 2.3 | 1 | T | 1 | T | T | T | T | T | T | T | Γ | | | | T | | | | Π | | Γ | Γ | | | | | | T | T | T | T | - | | L.P. | 400743 | ALL | | | | ~ ~ | 2 | 2.0 | 2.1. | 2,2 | انہ | - | - | | - - | - - | - - | - - | - - | - | - | | | | | - | $\vdash$ | | - | - - | | - | - | - | _ | | | | - | | - | | | | SCHEMATIC | 430743 | 1 | 0. | | = | | - | 2.0 2 | - | 2.1 | 2 | | | | - - | - - | - - | 1 | - | - | | | _ | | | 1 | - | | - - | 1 | 1 | | | | | | | | - | - - | 1 | 1- | 1 | | SCHEMATIC | 430743 | 2 | 0.1 | | | - | | 12.0 | 12.1 | 2.2 | 1 | | - - | | - - | - | - - | - | | - - | - | - | _ | | | | I | | | - - | _ | | | | | | | | | - - | 1 | 1 | - | | FUNCTIONAL<br>TEST PROC. | 460743/FT | | 0. | | | | - - | 12.0 | | _ | - | - | - - | | - | - | - | 1 | - | - | - | | _ | | | | - | | | | - | | | | | | | | | | | $\frac{1}{2}$ | - | | FUNC. TEST<br>TICK LIST | 470743/FT | - | 0.1 | | | - | - | 2.0 | | | - | - | - - | - | | | | - | | - | | | | | | | | | · | | | - | | | | | | | | | | + | - | | | | | | - | _ | - - | - | ļ- | | | + | - | - | - | - | + | - | + | - | - | - | | _ | | _ | - | - | - | + | - | | | | | | | _ | | | - | | 1 | - | | `` | | | | _ | | - | | | _ | - | | - | - - | - - | - - | + | - | - | + | - | - | | _ | | | | - | | 1 | - | - | | | | | | | | | - | 1 | - | - | | | | | | - | - | + | - | _ | - | - | + | + | - | } | - | + | + | 1 | + | - | - | | - | $\dashv$ | - | - | ╁ | | - | - | - | - | | _ | | - | - | | - | + | 1 | + | - | | PCB | 410400 | ı | A | | | 1 | | 0-1 | _ | | 1 | 1 | † | 1 | | † | + | + | | 1 | | | | | | 1 | - | | 1 | + | - | F | | | | | | | | | 1 | † | - | | HOTES DENOT | ES NO CHAI<br>UE LEVEL C | NGE TO<br>HANGE | DXX | :s | | | 1 | | ì | | ra r | n | | | 7 | | DA | ITE | )<br>ov 8 | - | CHK<br>DATE | ٤ | 87 | DA | PD<br>ME<br>Voc | · · · · · · · · · · · · · · · · · · · | ٦, | UF | RE | | 28<br>PC | | As | SS | Y | | | | 0, | 74 | 13 | | - | - 3 JAN 1989 | | INSTRUMEN | | PARTS L | | 20-Dec-88 | | CURRENT 1281 | | | 0743-2 | REV: 3 | PAGE NO: | |--------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|----------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-----------------------|---------|----------| | | PART NO | | | | | PRINC MANUF | MANUF PART NUMBE | R CLAS | S UM | QUANTITY | CHANGES | | | R101<br>R102<br>R103<br>R104<br>R105 | 011001<br>011003<br>041004<br>041004<br>041004 | RES MF<br>RES MF<br>RES MF<br>RES MF | 1K00 1%<br>100K 1%<br>1M00 1%<br>1M00 1%<br>1M00 1% | .127<br>.127<br>.127 | 50PPM<br>50PPM<br>50PPM<br>50PPM | HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY<br>HOLSWORTHY | H8C<br>H8C<br>H8C<br>H8C<br>H8C | A<br>A<br>A | EA | 2 3 3 - | | | | R106<br>R107<br>R108<br>R109<br>R110 | 012211<br>011002<br>011003<br>011002<br>011003 | RES MF<br>RES MF<br>RES MF | 2K21 1%<br>10K0 1%<br>100K 1%<br>10K0 1%<br>10K0 1% | .12k<br>.12k<br>.12k | 50PPM<br>50PPM<br>50PPM<br>50PPM | HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY HOLSWORTHY | H8C<br>H8C<br>H8C<br>H8C<br>H8C | A<br>A<br>A<br>A | EA | 3 | | | | R111<br>R112<br>R113<br>R114<br>R115 | 070123<br>070124<br>070125<br>070126<br>070127 | RES WW<br>RES WW<br>RES WW<br>RES WW | 900R .1<br>90R .18<br>9R .18<br>1R .18<br>0R1 .18 | % 5PP<br>'5PPM<br>5PPM<br>5PPM<br>5PPP | M | VISHAY MANN<br>VISHAY MANN<br>VISHAY MANN<br>VISHAY MANN | MX125B<br>MX125B<br>AX175BT<br>LR500BU<br>LR500BU<br>HBC<br>LOB-3-R100<br>LOB-3-R100<br>LOB-1-R100K<br>770-83-1K | | EA<br>EA<br>EA<br>EA | 1<br>1<br>1<br>1 | | • | | R116<br>R201<br>R202<br>R203<br>R204 | 011001<br>090105<br>090105<br>090017<br>090168 | RES MF<br>RES PA<br>RES PA<br>RES NT<br>RES PA | 1K00 1%<br>CK 100R<br>CK 100R<br>4K 100K<br>CK 1K X | .12%<br>X 4 2<br>X 4 2<br>X 7 2<br>4 2% | 50PPH<br>%<br>% | HOLSWORTHY<br>BECKMAN<br>BECKMAN<br>BECKMAN<br>AB | HBC<br>L/38-3-R100<br>L/38-3-R100<br>L/38-1-R100K<br>770-83-1K | А | EA<br>EA<br>EA<br>EA | 2<br>-<br>2<br>2<br>2 | | | | R205<br>R206<br>R207<br>R208<br>R209 | 090168<br>045623<br>046813<br>090017<br>011002 | RES MF<br>RES MT<br>RES MF | 681K 1%<br>681K 1%<br>7K 100K<br>10K0 1% | .12%<br>.12%<br>x 7 2<br>.12% | 50PPM<br>50PPM<br>\$<br>50PPM | HOLSWORTHY<br>HOLSWORTHY<br>BECKMAN<br>HOLSWORTHY | HBC<br>HBC<br>LOB-1-R100K<br>HBC | A<br>A | EA<br>EA<br>EA | 1 | | | | R210<br>R211<br>R212<br>R213<br>R214 | 012742<br>012742<br>012742<br>090167<br>090167 | RES MF<br>RES MF<br>RES MF<br>RES PA | 27K4 1%<br>27K4 1%<br>27K4 1%<br>2K 100K<br>CK 100K | .12W<br>.12W<br>.12W<br>X 4 2<br>X 4 2 | 50PPM<br>50PPM<br>50PPM<br>% | HOLSWORTHY HOLSWORTHY HOLSWORTHY BECKMAN BECKMAN | H8C<br>H8C<br>H8C<br>LO8-3-R100K<br>LO8-3-R100K | A<br>A<br>A | EA<br>EA<br>EA<br>EA | -<br>-<br>3 | | | | 215<br>2101<br>2102<br>2201<br>2202 | 090167<br>10000F<br>00000H<br>104025<br>100330 | NOT FI | PSV<br>PTED<br>100NF +<br>33PF 2% | 80%-2<br>100V | 0% 50V | SIEMENS<br>PHILIPS | LO8-3-R100K<br>B37449<br>2222 683 34339 | | EA<br>EA<br>EA<br>EA | . 1 | | | | 2203<br>2204<br>2205<br>2206<br>0101 | 100330<br>100102<br>100102<br>100150<br>220020 | CAP CP<br>CAP CP<br>CAP CP<br>CAP CP<br>DIODE | 33PF 2%<br>10F 10%<br>10F 10%<br>15PF 2%<br>FET 100P | 100V<br>100V<br>100V<br>100V<br>A IR | | PHILIPS PHILIPS PHILIPS PHILIPS TELEDYNE | 2222 683 34339<br>2222 630 19102<br>2222 630 19102<br>2222 683 10159<br>PAD100 | | EA<br>EA<br>EA | -<br>2<br>-<br>1<br>4 | | | | D102<br>D103<br>D104<br>D105<br>D106 | 220020<br>200022<br>200022<br>200022<br>200022 | DIODE<br>DIODE<br>DIODE<br>DIODE | FET 100p.<br>SP 3A 40<br>SP 3A 40<br>SP 3A 40<br>SP 3A 40 | A IR<br>OV<br>OV<br>OV | | TELEDYNE MOTOROLA MOTOROLA MOTOROLA MOTOROLA | PAD100<br>BY252<br>BY252<br>BY252<br>BY252 | A<br>A<br>A | EA<br>EA<br>EA<br>EA | 4 | | | | ESIG | PART NO | DESCRIPTION | PRINC MANUF | MANUF PART NUMBER | CLASS | TITHAUD MU | CHANGES | | |--------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|-------|---------------------------------------|---------|---| | | 200008<br>200008<br>220020<br>220020<br>213009 | DIODE GP 200mA 125V<br>DIODE GP 200mA 125V<br>DIODE FET 100pA IR<br>DIODE FET 100pA IR<br>DIODE ZN 15V 5W | FAIRCHILD<br>FAIRCHILD<br>TELEDYNE<br>TELEDYNE<br>UNITRODE | 11458A<br>11458A<br>PAD100<br>PAD100<br>TYS515 | | | | | | | 213009<br>213006<br>211100<br>200002<br>230003 | DIODE ZN 15V 5W<br>DIODE ZN 5V 5W<br>DIODE ZN 10V 1.3W<br>DIODE GP 1A 50V<br>TRAN JFET N CHAN | UNITRODE<br>UNITRODE<br>PHILIPS<br>FAIRCHILD<br>TELEDYNE | TVS515<br>TVS505<br>BZVB5C10<br>1N4001<br>U1899JF | | EA -<br>EA 1<br>EA 1<br>EA 1<br>EA 1 | | | | 102<br>103<br>201<br>202<br>203 | 230035<br>230035<br>230086<br>240013<br>250008 | TRAN JEET N-CHAN TRAN JEET N-CHAN TRAN MOSFET P-CHAN 60V TRAN MPN TO18 TRAN PNP TO18 | TELEDYNE<br>TELEDYNE<br>FERRANTI<br>NATIONAL<br>NATIONAL | U1897JF<br>U1897JF<br>ZYPZ10GA<br>BC184C/TO18<br>BC214C/TO18 | | EA 2<br>EA -<br>EA 4<br>EA 3<br>EA 3 | | | | 204<br>205<br>206<br>207<br>208 | 230086<br>230096<br>240013<br>250008<br>230086 | TRAN MOSFET P-CHAN 60V TRAN MOSFET H CHAN 60V TRAN HPH TO18 TRAN PHP TO18 TRAN MOSFET P-CHAN 60V | FERRANTI<br>FERRANTI<br>NATIONAL<br>NATIONAL<br>FERRANTI | ZYP2106A<br>ZYN2106A<br>BC184C/TO18<br>BC214C/TO18<br>ZYP2106A | | EA -<br>EA 3<br>EA -<br>EA - | | | | 209<br>210<br>211<br>212<br>213 | 230096<br>240013<br>250008<br>230086<br>230096 | TRAN MOSFET N CHAN 60V TRAN NPN TO18 TRAN PNP TO18 TRAN MOSFET P-CHAN 60V TRAN MOSFET N CHAN 60V | FERRANTI<br>NATIONAL<br>NATIONAL<br>FERRANTI<br>FERRANTI | ZYH2106A<br>BC184C/TO18<br>BC214C/TO18<br>ZYP2106A<br>ZYN2106A | | EA -<br>EA -<br>EA -<br>EA -<br>EA - | | | | 101<br>102<br>201<br>202<br>L100 | 280167<br>260027<br>280132<br>290077<br>330036 | IC DIG SWITCH QUAD CMOS IC LIN OP AMP IC DIG ULA SERIAL TX/RX IC DIG 7 X DARLINGTON DRIVER RELAY 3PNO 1PNC | SILICONIX<br>FAIRCHILD<br>PLESSEY<br>SPRAGUE/EXAR<br>SDS | DG211CJ<br>UA714HC<br>CLA3106<br>ULN2004A/XR2204CP<br>S3-24V | | EA 1<br>EA 1<br>EA 1<br>EA 1<br>EA 2 | | | | L102<br>L103<br>L104 | 330031<br>330029<br>330029<br>330036<br>604075 | RELAY 2PNO 2PNC<br>RELAY 2P2W<br>RELAY 2P2W<br>RELAY 3PNO 1PNC<br>PLUG PCB 6-WAY 1" | SDS<br>SDS<br>SDS<br>SDS<br>MOLEX | S2-24V<br>DS2E-DC24V<br>DS2E-DC24V<br>S3-24V<br>22-29-2061 | | EA 1<br>EA 2<br>EA -<br>EA - | | | | L51<br>L52<br>L53<br>L54<br>L201 | 604074<br>604033<br>604076<br>604085<br>620013-1 | PLUG PCB 3-WAY .1"<br>PLUG PCB 4-WAY .1"<br>PLUG PCB 16-WAY .1"X.1" GRID<br>PLUG PCB 2-WAY .1"<br>TEST LOOP | MOLEX<br>MOLEX<br>3M<br>MOLEX<br>DATRON | 22-29-3031<br>22-29-2041<br>3599-6002 UN<br>22-29-2021<br>SEE DRG | | EA 1<br>EA 1<br>EA 1<br>EA 1<br>EA 3 | | * | | L202<br>L203<br>P101<br>P102<br>P103 | 620013-1<br>620013-1<br>620007<br>620007<br>620007 | TEST LOOP TEST LOOP TEST POINT TERMINAL TEST POINT TERMINAL TEST POINT TERMINAL | DATEON<br>DATEON<br>MICROVAR<br>MICROVAR<br>MICROVAR | SEE DRG<br>SEE DRG<br>TYPE C30<br>TYPE C30<br>TYPE C30 | | EA -<br>EA -<br>EA 11<br>EA -<br>EA - | | | | | INSTRUMENT | S LTD PARTS LIST | 20-Dec-88 | DESC: ASSY PCB CURREN | | | 400743-2 | REV: 3 | PAGE NO: 3 | |-------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|-------|---------------------------------------|---------|------------| | DESIG | PART NO | DESCRIPTION | | PRINC MANUF | MANUF PART NUMBER | CLASS | YTITMAUQ MU | CHANGES | | | TP105<br>TP106 | 620007<br>620007 | TEST POINT TERMINITEST P | AL<br>AL | | TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30<br>TYPE C30 | | EA -<br>EA -<br>EA -<br>EA - | | | | TP203<br>TP204<br>TP205 | 620007<br>620007<br>620007<br>400757-1<br>400753-1 | TEST POINT TERMIN<br>TEST POINT TERMIN<br>TEST POINT TERMIN<br>ASSY CABLE RIBBON<br>ASSY CABLE SIG IP | AL<br>AL<br>16W | MICROVAR<br>MICROVAR<br>MICROVAR<br>DATRON<br>DATRON | TYPE C30<br>TYPE C30<br>TYPE C30<br>SEE DRG<br>SEE DRG | | EA -<br>EA -<br>EA -<br>EA 1<br>EA 1 | | | | | | PCB CURRENT 1281<br>WIRE 7/.2 PTFE 1K'<br>SLEEVE NP 1.5 X 20<br>SLEEVE NP 3 X 25ML<br>CRIMP TERMINAL GD | MM BLK | BSG210<br>HELLERMANN<br>HELLERMANN<br>MOLEX | SEE DRG<br>TYPE C<br>H15<br>H30<br>4809-GL | | EA 1<br>AR 1<br>EA 2<br>EA 2<br>EA 2 | | | | | 605061<br>605062<br>605127<br>605164<br>617014 | SOCKET PCB 16-WAY<br>SOCKET PCB 18-WAY<br>SOCKET LINK 2-WAY<br>SOCKET HOUSING 2 NYLATCH PLUNGER 1, | DIL<br>.1" BLK<br>AAY .1" PITCH | JERMYN<br>ASSMANN<br>MOLEX | J23-18016<br>J23-18018<br>AKSPL-G<br>22-01-2025<br>HN4P-43 | Α | EA 2<br>EA 1<br>EA 1<br>EA 1<br>EA 5 | | | | | | NYLATCH GROMMET 1,<br>BEAD CERAMIC 16 SI<br>BEAD GLASS 2.4 X 0<br>FUSE 1.6A 250V 20I<br>FUSE HOLDER 20MM I | ИG<br>0.81 X 1.8<br>ИМ F | HARTWELL (C.J.FOX) PARK ROYAL PORCELAIN MANSOL (PREFORMS) LT BESWICK BELLING LEE | | | EA 5<br>EA 22<br>EA 2<br>EA 1<br>EA 1 | | | | End | | | | | | | | | | | AIVING No. | | CHKD | 11 | | | - | | | | | | | | _ | | Jl | _ | _ | | - - | - | - - | - - | | - | - | 1 | | | - | + | $\vdash$ | - - | 1 | | |---------------------------------------------|----------------------------------|-------------------------------------------|---------------------|----------|----------------------------------------|--------------------|-------------------|--------------------|------------|-----------|-----|------------------------|--------------------|-----------|-----------------------------------------|--------------|-------------------|--------------|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|------------|--------------|-----------|-----------|----------------------------------------|-----------|---------|--------------------|-------------------|-------------------|----------------------|-----------| | 4007 | 44 | DATE | 2669 21/9/88 | 000 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | IWM | | | 12 | 9 | | - | + | - | - - | - - | - - | - - | - | $\forall$ | +- | - | - - | H | + | - - | T | + | - - | H | + | | | - | 1 | 1 | | | | | | | | | ECO | 266 | Ř<br>R | | _ | | | _ | _ | _ | | | _ _ | _ | $\perp$ | _ | $ \cdot $ | | _ _ | $\sqcup$ | - - | + | - | _ | - | - | - - | - - | + | $\left - \right $ | - | | $\dashv\dashv$ | - | | | | REVISION | ? | = | | | | | 1 | - | | | | | | | | | | | | | $\perp$ | | | | | | | $\perp$ | Ш | Ш | $\perp$ | | | | SCRIPTION | DRAWING | SHEET | | | | | | | | | | | ssu | E . RE | VISIO | N | | | | | <del>, , ,</del> | | <del></del> | 1 1 | | _ | | | | | _ | ТТ | Т | Т | ГТ | | AYOUT | 480744 | - 1 | 0. | = | | | | | | 1 | | | | | | | | | | _ | | | | | | _ | | | _ - | _ _ | - | 14 | | _ | - - | | | | | | | $\prod$ | | | | | | | | | | | | | | | | | | | | | | | | | 1 | L | | | | Ш | | HE MATIC . | 430744 | 1 | <u>-</u> | - - | $\dagger \dagger$ | | | | | | | П | | | | | | | | | | | | | | | | | | | | | | | | | | | - | F | - - | + | $\dashv$ | + | | | + | 1 | $\dagger \dagger$ | 1 | $\top$ | 1 | $\top$ | | T | П | T | | | | | | | | | | | | | | | | | | | _ | - - | - | + | | + | H | H | - | - - | $\left \cdot \right $ | + | + | $\dashv$ | $\dagger$ | | †- | H | $\top$ | T | | $\top$ | T | | 1 | T | | $\exists$ | 1 | 1 | П | П | | | | | | | $\mid + \mid$ | - - | + | - - | - | $\left - \right $ | $\vdash$ | + | - | + | + | + | + | + | $\vdash$ | + | H | $\dagger$ | $\dagger$ | | $\dashv$ | T | | $\dagger$ | $\vdash$ | | 1 | + | + | $\Box$ | I | 1 | $\sqcap$ | | | | | - | - - | + | + | - | $\vdash$ | - | - | - - | $\vdash$ | | - - | + | + | $\vdash$ | ╁ | H | + | + | H | $\dashv$ | + | H | + | - | $\vdash$ | $\dashv$ | + | + | $\forall \exists$ | $\sqcap$ | + | H | | | | | | _ _ | _ _ | | _ | $\sqcup$ | | - - | _ _ | $ \cdot $ | - - | - - | - | + | | | H | + | + | H | + | +- | $\vdash$ | + | ╁ | $\vdash$ | + | + | + | + | $\vdash \vdash$ | + | $\forall$ | | | | | | | | | $\perp$ | | Ш | 1 | _ | | - - | _ | | _ | - | $\downarrow$ | $\perp \mid$ | - | + | - | + | + | $\mathbb{H}$ | + | +- | $\vdash$ | $\dashv$ | + | + | + | $\vdash$ | + | H | | | | | | | | | | | | | | | | $\perp$ | | | | $\perp$ | $\sqcup$ | 4 | $\perp$ | | _ | _ | $\sqcup$ | _ | - | $\square$ | $\vdash$ | + | + | - | $\vdash$ | + | + | | | | | | | | | | | | | | | | | | | | | | | | L | | _ | $\sqcup$ | | | | | $\perp$ | 1 | 1 | $\sqcup$ | 4 | $\sqcup$ | | NCTIONAL | 460744/ | FT ALL | o. | | - | - - | 1 | 1 | | | | $\prod$ | | | | | | | | | | | | | | | | | Ш | $\perp$ | $\perp$ | _ | Ц | $\perp$ | Ш | | NCTIONAL | 470744 | FT 1 | 0.1 | - - | | | - - | - | | | | | | | П | | | | | | | | | | | 1 | | | | | | | | | | | K LIST | 4,101 | | = | - - | | $\vdash$ | $\vdash$ | ╁ | - | | - - | | | | $\Box$ | 1 | $\Box$ | | T | П | | | | | | | | | | | | | | | | | 200 | 41029 | , 1 | С | $\dashv$ | +- | $\vdash$ | + | + | $\vdash$ | H | + | + | | 十 | H | + | $\dagger \dagger$ | + | T | $\sqcap$ | $\dagger$ | 1 | II | 1 | | 1 | $\top$ | T | П | П | T | 1 | П | | | | РСВ | 41025 | <u>_</u> | - - | - | | $\vdash$ | + | - | - | $\vdash$ | ╁ | + | $\left - \right $ | $\dashv$ | - | + | $\vdash$ | + | 1 | | $\dashv$ | ╢ | $\sqcap$ | 1 | T | $\top$ | 1 | T | | П | T | $\top$ | T | | | | 163 | | 1 | | | ــــــــــــــــــــــــــــــــــــــ | | | ┵, | 1 | | | 1 | 1 | - 1 | لــــــــــــــــــــــــــــــــــــــ | | 1 | .Q. | | 120 | FD/ | <del>_</del> | TITE | E | لىل<br>ئا | 28 | | ــــــــــــــــــــــــــــــــــــــ | لسل | 4 | DRA | WING | No. | <del></del> | | | | | | | | | | | | 1 | Ļ | | | L | | DUM | | | | | 1700 | .04 | | 1. | | | | | | | - I | | | | //4 | 1 | | DENOT<br>AT ISS | TES NO C | HANGE TO | , DO | | | | | | L. HO | le | 3 t | , | 161. | TIV | DATE 241 | MAR | 57 Yr | H AM | 87 | DA<br>S | LE -4 | - 4 | | 5W | ITCI | 1 P | CB. | Α: | SS' | Y | SHE | 4 | | or 2 | | | DENOT<br>AT ISS | n | DATRON<br>PART No. | | | | DES | | סודי | | 1e | o t | | TIGI. | T IV | PRII<br>MAI | NCIP<br>NUF/ | 37 7 | u Azz | e 87 | DA<br>? | Y-7 | -14 | | MAI | | A.P | *CB | | SS | Y | SHE | No. | | or 2 | | | DENOT<br>AT ISS | n<br> ITEM | DATRON<br>PART No.<br>410 | 297 | - C | | P.C. | в. | | )11 | | 3 t | E | CI (GL.) | T IV | PRI<br>MAI | NCIP<br>NUF/ | 37 7. | u Azz | e 87 | DA<br>PS | V-7 | - 14 | 4 5 | MAI | NUF | A.P | *CB | | SS: | Y | SHE | No. | <u>ι</u><br>υ. U3 | GED | | | DENOT<br>AT ISS | п | DATRON<br>PART No. | 297<br>5 <i>3</i> 7 | - c | | P.C. | В.<br>РР <i>О</i> | RT I | DN<br>BAI | <br>R | | | AS | SSY | PRI<br>MAI | NCIP<br>NUF/ | 37 7. | u Azz | e 87 | DA | UE - 4 | | | MAI | NUF | A.P | *CB | | 55 | Y | SHE | No. | <u>ι</u><br>υ. U3 | GED<br>Sy. | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 | DATRON<br>PART No.<br>4103<br>450<br>5700 | 297<br>537<br>13 | - C | | P.C.<br>501 | B.<br>PPO<br>WAY | RT I | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI | NCIP. | AL<br>NCTU | u Azz | e 87 | DA | THE Y | | | MAI | NUF | A.P | *CB | | SS | Y | SHE | No. | o. US | SED<br>Sy. | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DA | The state of s | | | MAI<br>PAI | NUF | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | GED | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 | DATRON<br>PART No.<br>4103<br>450<br>5700 | 297<br>537<br>13 | - C | | P.C.<br>501 | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP. | AL<br>NCTU | u Azz | e 87 | DA | WE Y | | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DA | LE Y | | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DA | LE , | ·-\- | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DA | LE | , Y | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DA | LE / | · / X | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DA | LE | · / Y | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DA | TE | · · · · · · · · · · · · · · · · · · · | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DAS | TE | | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DAS | IE -/ | | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DAS S | The second secon | | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | PAS | LE -/ | | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DAS | ILE Y | | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DAS S | LE -/ | | | MAI<br>PAI | NUF) | \CTU | URE | R'S | | Y | SHE | No. | υ. U3 | SED<br>NY.<br>1<br>2 | | | DENOT<br>AT ISS | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 4103 450 5700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | DAS S | LE / | | DATE | MAI<br>PAI | NUF) | \CTU | URE | POO! | | Υ. | | NC Pe | o. U3 | SED (Y) 1 1 2 2 4 26 | | | DENOT AT ISS | 1 ITEM 1 2 3 4 5 6 | DATRON PART No. 410: 450 5700 611 700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | e 87 | | LE - V | | | 3- | NUF) | \CTU | URE II-C | R'S | l | m. | | No Pe | D. USS | SED SY. I I 2 4 26 | LTD | | DENOT AT ISS DESIGNATOR NOTES. SEE SHEET | п ІТЕМ 1 2 3 4 5 | DATRON PART No. 410: 450 5700 611 700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | 87 | | ILE Y | | DATE | MAI ρΛΙ | NUF) | \CTU | URE III C | R'S | to | nt. | 288<br>288 | No Pe | o. USS | SED (Y) 1 1 2 2 4 26 | LTD | | DESIGNATOR DESIGNATOR NOTES. SEE SHEET | 1 ITEM 1 2 3 4 5 6 | DATRON PART No. 410: 450 5700 611 700 | 297<br>537<br>13 | - C | | P.C.<br>501<br>8 V | B.<br>PPO<br>WAY | RT RIE | BAI<br>BBG | R<br>ON G | CAB | LE | AS | ssy | PRI MAI | NCIP<br>NUF/ | AL<br>NCTU | u Azz | 87 | | ILE - / | | DATE | MAI | NUF) | \CTU | URE III C | R'S | to | nt. | | No Pe | o. USS | SED SY. I 2 4 26 | LTD | ## DATRON INSTRUMENTS FAILURE REPORT. Please complete all sections and return with your instrument. Company: User, Name: .....Ext .....Ext ..... Serial number: Brief description of fault: ..... ..... ..... Fault details: Not Applicable Yes No is the fault present on all ranges? if no describe:.... Not Applicable No is the fault present on all functions? Yes Intermittent Permanent is the fault: if intermittent under what conditions does the fault re-appear ..... ..... Does the instrument pass 'self test?' Yes No Any fail/error message displayed: if yes describe ..... No Yes Now: ..... Yes No At the time of fault: if yes describe ..... ..... No Yes Prior to fault: if yes describe ..... ..... Is the instrument used on I.E.E.E 488 bus? No Is the instrument normally enclosed in a rack? Yes No Approximate ambient temperature.....