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REFERENCE MANUAL
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1 INTRODUCTION

This Reference Manual provides complete information for application developers on how to
use the STR71x Microcontroller memory and peripherals. 

The STR71xF is a family of microcontrollers with different memory sizes, packages and
peripherals.

For Ordering Information, Mechanical and Electrical Device Characteristics please refer to the
STR71x datasheet.  

For information on programming, erasing and protection of the internal Flash memory please
refer to the STR7 Flash Programming Reference Manual

For information on the ARM7TDMI® core please refer to the ARM7TDMI® Technical
Reference Manual.

Related documents:
Available from www.arm.com:

ARM7TDMI® Technical Reference Manual

Available from http://www.st.com:

STR71x Product Preview

STR7 Flash Programming Reference Manual

AN1774 - STR71x Software Development Getting Started

AN1775 - STR71x Hardware Development Getting Started

AN1777 - STR71x Memory Mapping and Development Toolset

AN1780 - STR71x RTC Application Example 

The above is a selected list only, a full list STR71x application notes can be viewed at 
http://www.st.com.
March 2005 1/345
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STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
2 MEMORY

2.1 Memory Organization

The ARM7 native bus is used as the main system bus, connecting CPU, memories and
system service blocks while the low-power APB rev. E is used as a peripheral bus.

The native bus system includes CPU, RAM, Flash, EMI and PRCCU.

The APB bridges interface two groups of peripherals. Wait states are inserted automatically
on the CPU clock when accessing APB peripherals if PCLKx is slower than MCLK (See
Section 3: POWER, RESET AND CLOCKS on page 31). 

Program memory, data memory, registers and I/O ports are organized within the same linear
address space of 4 GBytes.

The bytes are treated in memory as being in Little Endian format. The lowest numbered byte
in a word is considered the word’s least significant byte and the highest numbered byte the
most significant.

Figure 1 on page 16 shows the STR71x Memory Map. For the detailed mapping of peripheral
registers, please refer to the related chapters.

The addressable memory space is divided into 8 main blocks, selected by the three most
significant bits of the memory address bus A[31:0]:

■ 000 = Boot memory 

■ 001 = RAM Memory

■ 010 = Flash Memory 

■ 011 = External Memory 

■ 100 = Reserved Memory

■ 101 = PRCCU registers

■ 110 = APB Bridge 1 - Serial Peripherals

■ 111 = APB Bridge 2 - System Peripherals and Interrupt Controller
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STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
2.1.1 Memory Map

Figure 1. Memory Map
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STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
2.1.2 Register Base Addresses

2.1.3 APB1 Memory Map

APB1 base address = 0xC000 0000h. 

Table 1. Main Block Register base addresses

STR71x Main Blocks Base Address Block Register Map

Flash 0x4000 0000
Refer to STR7 Flash 

Programming Reference 
Manual

External Memory (EMI) 0x6000 0000 Section 2.3.7

PRCCU (RCCU+PCU) 0xA000 0000 Section 3.7.6

Table 2. APB1 memory map
Pos STR71x APB1 Peripheral Address Offset Periperal Register Map

0 APB1 Bridge Configuration registers 0x0000 Section 17.3

1 I2C0 0x1000 Section 10.6

2 I2C1 0x2000 Section 10.6

3 Reserved

4 UART0 0x4000 Section 12.5

5 UART1 + SMARTCARD Interface 0x5000
Section 12.5 and 

Section 13.6

6 UART2 0x6000 Section 12.5

7 UART3 0x7000 Section 12.5

8 USB RAM 0x8000

USB Registers 0x8800 Section 14.6

9 CAN 0x9000 Section 9.7

10 BSPI0 0xA000 Section 11.11

11 BSPI1 0xB000 Section 11.11

12 Reserved

13 Reserved

14 HDLC Registers 0xE000 Section 15.4

HDLC RAM 0xE800

15 Reserved
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STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
2.1.4 APB2 Memory Map

APB2 base address = 0xE000 0000h. 

Note: EIC is aliased in the memory map; it can be addressed with an offset of 0xFFFF F800
This is used to branch from the ARM7 Interrupt vector (0x0000 0018) to the EIC_IVR register,
that points to the active Interrupt Routine (see section 5 on page 75).

2.1.5 Boot Memory

Four boot modes are selected by Configuration pins on exit from Reset (see See “Boot
Configuration” on page 22..)

■ User Flash boot mode: In this mode, the Flash is mapped in both Block 010 and Block 000.
The system boots from block 0, segment 0 of User Flash (normal operation)

■ SystemMemory boot mode: This mode has the same mapping as User Flash mode, Flash
is mapped in both Block 010 and Block 000. However, the system boots from
SystemMemory (this mode is reserved).

■ RAM boot mode: In this mode, RAM is mapped in both Block 001 and Block 000, and the
system boots from RAM Memory. This is useful for debug purposes, the RAM can be
pre-loaded by an external JTAG controller or development system (emulator).

■ External Memory boot mode: In this mode, External Memory is mapped in both Block 011
and Block 000, and the system boots from External Memory sub-block 0.

Table 3. APB2 memory map
Pos STR71x APB2 Peripheral Address Offset Periperal Register Map

0 APB2 Bridge Configuration registers 0x0000 Section 17.3

1 External Interrupts (XTI) 0x1000 Section 5.4.5

2 Reserved 0x2000 Section 4.2.1

3 IOPORT0 0x3000 Section 4.2.1

4 IOPORT1 0x4000 Section 4.2.1

5 IOPORT2 0x5000 Section 4.2.1

6 Reserved 0x6000

7 ADC 0x7000 Section 16.5

8 CKOUT n.a.

9 TIMER0 0x9000 Section 8.7

10 TIMER1 0xA000 Section 8.7

11 TIMER2 0xB000 Section 8.7

12 TIMER3 0xC000 Section 8.7

13 RTC 0xD000 Section 6.5

14 WDG 0xE000 Section 7.5

15 EIC 0xF800 Section 8.7
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STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
2.1.6 RAM

STR71x features 64 KBytes of fully static, synchronous RAM. It can be accessed as bytes,
half-words (16 bits) or full words (32 bits). The RAM start address is 0x2000 0000.

In RAM boot mode (see Section 2.1.5) the RAM start address is mapped both at 0x0000
0000h and at 0x2000 0000h.

You can remap the RAM on-the-fly to RAM boot mode configuration, using the BOOT[1:0] bits
in the PCU_BOOTCR register. This is particularly useful for managing interrupt vectors and
routines, you can copy them to RAM, modify and access them even when Flash is not
available (i.e. during Flash programming or erasing). 

2.1.7 Flash

The Flash Module is organized in banks and sectors as shown in Table 4. 

Bank 0 is intended for program memory. Sectors B0F0-B0F3 can be used as Boot sectors;
they can be write protected against unwanted write operations. The protection is bypassed
when the device boots in SystemMemory Boot mode. Refer to Section 2.1.5.

SystemMemory is a STMicroelectronics reserved area of Bank 0, not part of user flash. It
contains factory-programmed code, protected against spurious write/erase operations. It is
not read/write accessible.

Bank 1 contains 16 Kbytes of Data Memory: it is divided into 2 sectors (8 Kbytes each). You
can program application data in this area. 

Table 4. Flash Module Organisation

Bank Sector Addresses Size (bytes)

Bank 0

256 Kbytes

Program Memory

Bank 0 Flash Sector 0 (B0F0) 0x00 0000 - 0x00 1FFF 8K 

Bank 0 Flash Sector 1 (B0F1) 0x00 2000 - 0x00 3FFF 8K

Bank 0 Flash Sector 2 (B0F2) 0x00 4000 - 0x00 5FFF 8K 

Bank 0 Flash Sector 3 (B0F3) 0x00 6000 - 0x00 7FFF 8K

Bank 0 Flash Sector 4 (B0F4) 0x00 8000 - 0x00 FFFF 32K

Bank 0 Flash Sector 5 (B0F5) 0x01 0000 - 0x01 FFFF 64K

Bank 0 Flash Sector 6 (B0F6) 0x02 0000 - 0x02 FFFF 64K1)

Bank 0 Flash Sector7 (B0F7) 0x03 0000 - 0x03 FFFF 64K1)

Bank 1

16 Kbytes

Data Memory

Bank 1 Flash Sector 0 (B1F0) 0x0C 0000 - 0x0C 1FFF 8K

Bank 1 Flash Sector 1 (B1F1) 0x0C 2000 - 0x0C 3FFF 8K

Flash Control 
Registers

Flash Control/Data Registers 0x10 0000 - 0x0010 0017 24

Flash Protection Registers 0x10 DFB0 - 0x0010 DFBC 12

1)Not available in 128K versions.
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You can Program Bank 0 and Bank 1 independently, i.e. you can read from one bank while
writing to the other.

Flash memory can be protected against different types of unwanted access (read/write/
erase). 

You can program Flash memory using In-Circuit Programming and In-Application
programming. Refer to the STR7 Flash Programming Reference Manual.

2.1.7.1 Flash Burst and Low Power modes

You can enable or disable Burst mode using the FLASHLP bit in the PCU_PWRCR register.

In Burst mode, sequential accesses are performed with zero wait states at speeds of up to the
maximum device frequency. Non sequential accesses are performed with 1 wait state.

When Burst Mode is disabled, the Flash operates in low power (LP) mode and all accesses
are performed at speeds of up to 33 MHz with zero wait states. 

2.1.7.2 Flash Power Down mode

Depending on your application requirements, you can optionally power down the Flash in Stop
mode (See Section 3.6.4). Otherwise, in Stop mode, the Flash automatically reduces its
power consumption and can be read immediately after wake-up. 

If you need even lower power consumption, you can put the Flash in Power-Down Mode. You
do this by configuring the PWD bit in the FLASH_CR0 register. The consumption is drastically
reduced, but after wake-up from Stop mode, a delay (tPD=20µs) is inserted automatically to
ensure the Flash is operational before the CPU restarts.

2.1.8 External Memory 

The External Memory Interface can be used to interface external memory components such
as ROM, FLASH, SRAM or external peripherals.

The External Memory space is divided into 4 banks, EMI[3:0], based on decoding A[28:27].
Each Bank can address up to 16 MBytes of external memory. Addressing one of these banks
will activate the related Chip Select output CSN[3:0]. A[23:0] are available externally, as well
as the control signals WEN[1:0] (Byte Write Enable) and RDN (Read Enable).

The length of time required to properly transfer data from/to external memory banks is
controlled by programming the control registers for each bank which determines the number
of wait states used to access it. The access time also depends on the selected external bus
width. Each register also contains a flag bit to indicate if a particular memory bank is
accessible or not.
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Figure 2. External Memory Map

Drawing not in scale
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2.2 Boot Configuration

In the STR71x, four Boot modes are available and can be enabled by means of three input
pins.

BOOTEN is a dedicated pin. It must normally be tied to ground through a 10K resistor. When
BOOTEN = 0, the device is in USER boot mode, the BOOT[1:0] pins are not used, and they
may have any value.

When BOOTEN = 1, the BOOT[1:0] pins are latched at the second CK rising edge after the
release of the external RSTINn pin. Their value is used to configure the device BOOT mode,
as shown in Table 5. 

In SystemMemory Boot mode the clock is stretched (the CPU will not start executing code) as
long as the same values BOOT.1= 0 and BOOT.0= 1 are maintained on the pins. This allows
the application to preload the internal RAM with some BOOT code. The clock to the CPU will
be activated when at least one of the BOOT pins changes value. 
Note: If the same pin configuration is subsequently forced on the pins, the clock will be
stretched again. To avoid this happening, it is recommended to force the BOOTEN pin to
logical zero when the clock is restarted.

In the following section, the abbreviation B[1:0] refers to the BOOT[1:0] pins, and BOOTEN is
considered equal to 1 unless specified.

Table 5. Boot modes

BOOT 
EN

BOOT1 
(B1)

BOOT0 
(B0)

Mode Boot Memory Mapping Note

0 any any
USER FLASH mapped at 0h

• System executes code from
Flash1 0 0

1 0 1
System-
Memory

SystemMemory 
mapped at 0h 

• System executes a factory 
installed boot loader from 
SystemMemory (Reserved 
mode). 

• Clock FROZEN

1 1 0 RAM RAM mapped at 0h

• System executes code from
internal RAM

• For Lab development.

1 1 1 EXTMEM EXTMEM mapped at 0h
• System executes code from

external memory
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2.2.1 User Boot Mode

This is the standard operating mode; to enter this mode it is not necessary to control
BOOT[1:0], if BOOTEN = 0.

This mode is also entered by forcing the external pins B1=0 and B0=0. This status is latched
when the external Reset is released. 

It is up to the user to determine the best usage of the different sectors bearing in mind the the
application requirements and the requirements of in-situ Flash programming. For example,
B0F0 and B0F1 can be used as the user boot-loader. When this mode is used, at least block
B0F0 must have been previously programmed, as the system boot is performed from Flash
sector B0F0.

Note: To guarantee maximum security, it is recommended that the flash Erase and
Programming routines are not stored in the Flash itself, but loaded into RAM from an external
Programming tool.

2.2.2 SystemMemory Boot Mode

This mode is reserved. 

2.2.3 RAM and EXTMEM Boot Modes

RAM and EXTMEM modes are provided to ease application development. RAM mode is
entered by forcing the external pins B1=1 and B0=0, while EXTMEM mode is entered by
forcing the external pins B1=1 and B0=1. This status is latched on the second CK clock pulse
after external Reset is released.

In EXTMEM mode the system boot is performed from the external memory, block 0 (CSN0 is
activated). The external memory is also mapped at address 0h (see PCU_BOOTCR register).

In RAM mode the system boot is performed from the internal RAM, which is also visible at
address 0h (see PCU_BOOTCR register). You must pre-load your boot code in RAM, for
example using a Development System (MultiICE™ or equivalent).

It is up to the user application to provide the proper signals on B0, B1, since there is no
specific microcontroller I/O to control B0 and B1 during the reset phase.
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2.3 External Memory Interface (EMI)

2.3.1 EMI Bus Interface Signal Description

EMI external bus signals are detailed in Table 6.

2.3.2 EMI Memory map

The EMI memory map is shown in Table 7. Each bank makes use of all 24 bits of A[23:0],
providing 16 MByte of addressable space. The base address of the External Memory space is
EMI_BASE = 0x6000 0000.

Note 1: If External memory is used for boot operation, it must be 16-bit as the CSN0 memory
bank has been hard-wired for 16-bit memory interface only.

Table 6. EMI Bus Interface Signals

Name I/O Description

A[23:0] O External interface address bus

D[15:0] I/O External intere data bus 

RDn O Active low read signal for external memory. It maps to the OE_N input of the
external components

WEn.0 O External write enable signal. When ‘0’, enables write operation to 8 LSBs (bits
7:0) of external memory

WEn.1 O External write enable signal. When ‘0’, enables write operation to bits 15:8 of
external memory

CSn.0 O Active low chip select for bank 0.

CSn.1 O Active low chip select for bank 1.

CSn.2 O Active low chip select for bank 2.

CSn.3 O Active low chip select for bank 3.

Table 7. EMI Memory Map 

Address Range Description 
Addressable 
Size (Bytes)

Bus Width (bit)

0x6000 0000 - 0x60FF FFFF Bank 0 - BOOT 
(CSn.0)

16M 16 bit access only1) 

0x6200 0000 - 0x62FF FFFF Bank 1 (CSn.1) 16M 8/16 SW Selectable

0x6400 0000 - 0x64FF FFFF Bank 2 (CSn.2) 16M 8/16 SW Selectable 

0x6600 0000 - 0x66FF FFFF Bank 3 (CSn.3) 16M 8/16 SW Selectable

0x6C00 0000 - 0x6C00 0010 Internal Registers n/a 16 bit access only
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2.3.3 EMI Programmable Timings

Each memory bank of the EMI can have a programmable number of wait states (up to 15)
added to any read or write cycle: this is software configurable via the C_LENGTH bitfield of
the BCONx register (x=0,..,3). 

Single cycle access:

For write cycles which translate in a single external bus operation (e.g. a 16-bit write to a bank
configured 16-bit wide), the total length (measured in EMI internal clock units) that a single
access will require (equal to the length over which the Chip Select will be active) will depend
on the memory bank the cycle is executed on. It can be calculated using the formula:

 CSn[3:0] length (Write) = (C_LENGTH+1)

This value is also the number of WAIT states generated. Hence for performance calculations
each external access will last (Int_Access_length + CSn[3:0] length) MCLK cycles where
Int_Access_length may be derived from ARM7 programmer’s manual, depending on the type
of access.

For read cycles which translate in a single external bus operation (e.g. a 16-bit read from a
bank configured 16-bit wide), the total length (measured in EMI internal clock units) that a
single access will require (equal to the length over which the Chip Select will be active) can be
calculated using the formula:

CSn[3:0] length (Read) = (C_LENGTH+2)

Each external access will last (Int_Access_length + CSn[3:0] length) MCLK cycles as above.

Multiple cycle access:

For read or write cycles that translate in multiple (N) external bus cycles (e.g. a 32-bit write to
a region configured 8-bit wide, for which N=4), the total external bus cycle duration can be
obtained using the following formula

Total CS length (Read/Write Bank x) = (Length of the single cycle)*(N)

In this case the total duration of the access will be (Int_Access_length + Total CS length)
MCLK cycles.
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2.3.4 Write Access Examples

In the Figure 3 shown below, a 16-bit write is being performed on a 16-bit external memory. As
can be seen from the diagram, both external write strobes are asserted for the duration of the
write cycle. This is a one-cycle write, hence the LSB of the external address is not modified,
and takes 5 MCLK cycles to complete (C_LENGTH = 3).

Figure 3. 16-bit write cycle on a 16-bit memory, 3 wait states.

In Figure 4, another 32-bit write is being performed. However in this case, the external bus
width is only 8-bits (B_SIZE = 0). This has the effect that 4 write cycles are required to perform
the full 32-bit write. The 2 LSBs of the external address are modified by the read-write
controller for each write beginning at “00” for the 1st write and incrementing for each write
cycle until it reaches “11”.

As only the 8 LSBs of the external data bus are used, only WEn.0 is asserted for any write.
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WEn.0
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A[23:2]

D[15:0]
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0
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0x3

0x1
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Access Length (3 Wait States)

wait cycle wait cycle wait cycle
26/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
Figure 4. 32-bit write cycle on 8-bit memory, no wait states

In this case CS3n is used; it should be noted that CS3n is maintained asserted until all write
cycles have been completed whereas WEn.0 is de-asserted for 1 MCLK cycle between
separate write operations.
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2.3.5 Read Access Examples

The following diagram shows a basic READ operation. In the case of a READ only 1 external
read strobe is required (RDn). In this example, a 32-bit read is being performed. The external
bus size is 16 bits however (B_SIZE = 1) so the EMI peripheral has to perform 2 successive
read operations. The results from the 1st read operation are latched internally in the EMI block
(In this case - “2DDA” - i.e 16 LSBs of data) so that the correct 32-bit data (i.e “A16F2DDA”) is
returned after the 2nd 16-bit read.

Figure 5. 32-bit read cycle on 16-bit memory, 1 wait state

For the 1st read operation, A[1:0] is assigned “00”, for the second this is incremented by 2 (i.e
“10”).
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2.3.6 Register Description

2.3.6.1 Bank n Configuration Register (EMI_BCONn)

Address offset: 

Reset values: 

The Bank n Configuration Register (BCONn) is a 16-bit read/write control register used to
configure the operation of Bank n. The BCONn control bits are described below.

Bit 15 BE: Bank n Enable. 
0: Bank disabled
1: Bank enabled

Bit 5:2 C_LENGTH[3:0]: Cycle Length.
The C_LENGTH field selects the number of wait states to be inserted in any read/
write cycle performed in Bank n. The total CS length of any read or write cycle will
be equal to C_LENGTH+1 periods of the EMI internal clock.
0x0h = 0 wait states
0x1h = 1 wait state
0x2h = 2 wait states
0x3h = 3 wait states
....
0xFh =15 wait states

Bit 1:0 B_SIZE[1:0]: Bus Size.
The B_SIZE field defines the effective external bus size for an access to Bank n.
0x00b = 8-bit
0x01b = 16-bit
0x10b = Reserved (do not use)
0x11b = Reserved (do not use)

– BCON0: 0x00h – BCON1: 0x04h

– BCON2: 0x08h – BCON3: 0x0Ch

– BCON0: 0x803Dh – BCON1: 0x003Dh

– BCON2: 0x003Eh – BCON3: 0x003Ch

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BE reserved C_LENGTH[3:0] B_SIZE[1:0]

rw - rw rw
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2.3.7 EMI Register Map

See Table 1 for base address

Table 8. EMI Register Map

Addr.
Offset

Register 
Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BCON0 BE reserved C_LENGTH[3:0] B_SIZE[1:0]

4 BCON1 BE reserved C_LENGTH[3:0] B_SIZE[1:0]

8 BCON2 BE reserved C_LENGTH[3:0] B_SIZE[1:0]

C BCON3 BE reserved C_LENGTH[3:0] B_SIZE[1:0]
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3 POWER, RESET AND CLOCKS 

3.1 Power Supply

The chip is powered by an external 3V supply: V33. All I/Os are 3V-capable. An internal
Voltage Regulator generates the supply voltage for core logic (V18 =1.8 V). The two V18 pins
must be connected to external stabilization capacitors. 

The VDDA and VSSA pins supply the reference voltages for the A/D Converter.

Figure 6. Power Supply Overview

Note 1: In normal operating mode V18 is shorted with V18BKP. In Standby Mode the V18
domain is disconnected from the V18BKP domain.

Note 2: Connecting an external 1.8V supply to the V18 pins is not supported. 
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3.1.1 Optional use of External V18BKP Supply

In Standby mode, (see section 3.6.5 on page 42) the Main Voltage Regulator is switched off,
and the Low Power Voltage Regulator supplies power to the backup block. It is possible to
bypass the Low Power Voltage Regulator under software control when an external 1.8V
supply (V18BKP) is available in addition to V33, increasing the power efficiency of the system.

In this case V18BKP must not be connected directly but through a diode to avoid any
contention when the device is not in Standby mode. Also an external 33nF decoupling
capacitor should be connected to V18BKP in this case.

Because it powers the I/Os, V33 cannot be switched off in Standby mode since the nSTDBY,
nRSTIN and WAKEUP pins must remain functional.

3.2 Reset 

At power on, the nRSTIN pin must be held low by an external reset circuit until V33 (and V18 if
used) reach the minimum specified in the datasheet.

The Reset Manager resets the MCU when one of the following events occurs:

– A Hardware reset, initiated by a low level on the Reset pin
– A Software reset, forced by setting the HALT bit (when enabled with SRESEN bit and the

ENHALT bit in the RCCU_CCR register)
– A supply voltage drop under the threshold imposed by  the Low Voltage Detector present on

the device. (refer to the Electrical Specifications for the threshold voltage values)
– A Watchdog end of count condition.

– Activation of WAKEUP pin when the device is in STANDBY mode (see section 3.6.5 on page
42)

– Activation of the Real Time Clock Alarm when the device is in STANDBY mode (see section
3.6.5 on page 42)

The event causing the last Reset is flagged in the RCCU_CFR register: the corresponding bit
is set. A hardware initiated reset or an LVD reset will leave all these bits reset.

The hardware reset overrides all other conditions and forces the system to reset state. During
the Reset phase, the internal registers are set to their reset values, where these are defined,
and the I/O pins go into their reset configuration.

A Reset from the pin is asynchronous: as soon as it is driven low, a Reset cycle is initiated.

The on-chip Timer/Watchdog generates a reset condition if Watchdog mode is enabled and if
the programmed period elapses without the specific code being written to the appropriate
register (refer to Watchdog specifications).
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When the Reset pin goes high again, 2048 clock (CLK) plus 8 CLK2 cycles are counted
before exiting Reset state (plus possibly one more CLK period, depending on the delay
between the rising edge of the Reset pin and the first rising edge of CLK).

At the end of the Reset phase, the Program Counter is set to the location specified in the
Reset Vector located in memory location 00000000h.

Figure 7. Clock Start-up Sequence and Reset TimingIN

    

V33 MAX

CLK

MCLK

RSTIN
PIN
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Figure 8. Reset General Timing

3.2.1 Reset Pin Timing

To improve the noise immunity of the device, the RESET input pin (nRSTIN) has a Schmitt
trigger input circuit with hysteresis. Spurious RESET events are masked by an analog filter
which guarantees that all the glitches (single pulse and burst) on the nRSTIN pin shorter than
100ns are not recognized by the system as valid RESET pulses. On the other hand, it is
recommended to provide a valid pulse on nRSTIN with a duration of at least 1 µs to be sure
that the asynchronous pulse is properly latched. This means that all pulses longer than 100ns
and shorter than 1 µs can have an unpredictable effect on the device: they can either be
recognized as valid or filtered.

Figure 9. Recommended Signal to be applied on nRSTIN pin
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3.3 Voltage Regulator

The Voltage Regulator (VR) peripheral is used to power the device, starting from the external
power supply. The VR includes a Main Voltage Regulator, a Low Power Voltage Regulator,
and a bandgap reference for thermal compensation. 

The Main VR is able to generate sufficient current for the device to operate in any mode
through ballast P-channel transistors located inside the I/O ring. It has a static power
consumption (100 µA typical). It is switched off in Standby mode and can be configured (using
the LPVRWFI bit in the PCU_PWRCR register) to automatically switch off when the device
enters Wait For Interrupt mode, leaving the Low Power VR as the only power supply.

The separate Low Power Regulator should be used only when the device is in Standby or
LPWFI. It has a different design from the main VR and generates a non-stabilized and
non-thermally-compensated voltage of approximately 1.6V. The output current is not generally
sufficient for the device to run in normal operation. Because of this limitation, the PLL is
automatically disabled when the Main VR is switched off and the maximum allowed operating
frequency is 1 MHz. The Low Power VR can be switched off as well when an external
regulator provides a 1.8V supply to the chip through the V18BKP pin for use by Real Time
Clock and Wake-Up logic (See section 3.1.1 on page 32.) 

For both the Main VR and the Low Power, VR stabilization is achieved by external capacitors,
connected respectively to the V18 pins (Main Regulator) and V18BKP pin (Low Power
Regulator). The minimum recommended value is 10µF (Tantalum, low series resistance) plus
33nF ceramic for the Main Voltage Regulator, and 1µF for the Low-Power Voltage Regulator.
Precaution should be taken to minimize the distance between the chip and the capacitors.
Care should also be taken to limit the serial inductance to less than 60 nH.

When the VROK bit in the PCU_PWRCR register is set by hardware it is guaranteed that the
main regulator output voltage is stabilized at the specification value.
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3.4 Low Voltage Detectors (LVD)

Both the Main Voltage Regulator and the Low Power Voltage Regulator contain an LVD. They
keep the device under reset when the corresponding controlled voltage value (V18 or V18BKP)
falls below 1.35V (±+/- 10%). 

The LVDs do not monitor V33 which supplies the I/Os and analog parts of the device.

Note: During power-on, a reset must be provided externally (see Section 3.2).

During normal operation, the two domains V18 and V18BKP are shorted. The switch in Figure
10 is closed and the two LVD’s are actually monitoring the same voltage. In Standby mode
(see Section 3.6.5), the two voltage domains are separated (the switch is open) and the Main
Voltage Regulator is switched off.

The LVD in the Main Voltage Regulator can never be disabled. This is to avoid problems
during the device power-on and also to increase application robustness with respect to
conditions out of the specification range.

The LVD in the Low Power Voltage Regulator can be disabled if and only if the Low Power
Voltage Regulator has been disabled as well. This corresponds to the situation in which
V18bkp is externally supplied.

Figure 10. Power Supply Scheme
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3.5 Clocks 

The source clock CLK is derived from an external oscillator, through the CK pin. This clock
may be turned off in STOP and STANDBY modes.

The system PLL (PLL1) is used to multiply the input internally, to generate the appropriate
operating frequency. RCLK is the output of the system PLL, if enabled, or the CK_AF
alternate source. 

Several clock domains exist in the device:

■ Main Clock MCLK, including CPU, internal memories, External Memory Interface, PRCCU
Registers

■ APB1 peripherals (high-speed peripherals), as listed in Memory Map table

■ APB2 Peripherals (system peripherals), as listed in Memory Map table

Each domain may use different frequencies independently by programming the various clock
dividers. Having a divider dedicated to the CPU subsystem allows software to dynamically
change CPU operating frequency, tailoring computing speed and power consumption to
application needs, while maintaining a stable operation of all the peripherals.

Figure 11. Clock distribution scheme
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The main CPU clock MCLK is generated multiplying internally CLK through a PLL, followed by
a divider which can be bypassed, or programmed to divide by 2, 4 or 8.

Caution: If the MCLK clock divider is set to a prescaling value other than 1 (i.e. if RCLK
frequency differs from MCLK), it is not possible to access the following PRCCU registers since
they are always clocked by RCLK:

• RCCU_CCR Clock Control Register

• RCCU_CFR Clock Flag Register

• RCCU_PLL1CR PLL Configuration Register

• RCCU_PER Peripheral Enable Register

• RCCU_SMR System Mode Register

For non-intensive operations, the PLL1 may be disabled; in addition CLK2 may be divided by
a factor of 16, to allow low-power operation while maintaining fast interrupt response.

On-chip peripherals, mapped in the APB memory space, make use of the PLL output divided,
independently from MCLK, by 2, 4 or 8. Wait states are automatically added by the bus bridge
when accessing their registers.
This allows to dynamically tune the CPU frequency, optimizing power consumption versus
computing power needs, maintaining a stable clock frequency to the peripherals. It is
forbidden to access peripheral registers if the CPU clock MCLK is slower than the related
peripheral clocks PCLK1 and PCLK2.

The clock may be enabled/disabled independently to each peripheral. Each peripheral may
also be reset under software control.

Caution: To reduce power consumption, bits 0, 1 and 3 in the RCCU_PER register must be
reset by the application software in the initialization phase. These bits are enabled by
hardware at reset for factory test purposes only. 

Note: If the USB interface is not used, set bits 0, 1 and 2 in the PCU_PLL2CR register to
switch off PLL2 (and reduce power consumption). 

System blocks (ARM7TDMI®, PRCCU, on-chip memories and bridges) are driven by MCLK
(Bus clock) and cannot be disabled by software in order to guarantee basic functionalities.

A 32-KHz oscillator is present to maintain a real-time-clock (RTC), with programmable
WAKEUP alarm. It may be deactivated if not required; when active it is not influenced by any
low-power-mode switch.

The HDLC peripheral can optionally receive its reference clock from an external pin, and may
dynamically change its frequency independently from CPU operation. An internal PLL (PLL2)
allows the use of a low-frequency external signal, thus reducing power consumption and
generated noise.
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The USB Interface needs a precise 48 MHz clock reference. This may be generated either
externally through the USBCLK pin, or by the internal PLL2, multiplying an external reference
at lower speed, if PLL2 is not used by the HDLC interface. 

3.6 Low Power Modes

3.6.1 Slow Mode

In Slow mode, you reduce power consumption by slowing down the main clock. In Slow mode
you can continue to use all the device functions of the chip, but at reduced speed.

To enter Slow mode, RCLK frequency can be forced to CLK2 divided by 16, or to CK_AF,
provided CKAF_ST is set, indicating that the Real Time Clock is selected and actually
present. This setting turns off the PLL automatically.

3.6.2 WFI Mode

In WFI mode, you reduce power consumption by stopping the core. The program stops
executing, but peripherals are kept running and the register contents are preserved. The
device resumes, and execution restarts when an interrupt request is sent to the EIC.

To enter WFI mode, software must write a 0 in the WFI bit of the RCCU_SMR register.

To wakeup from WFI mode an interrupt request must be acknowledged by the EIC.

3.6.3 LPWFI Mode

LPWFI (Low power wait for interrupt) is a combination of WFI and Slow modes. Refer to
Figure 12 and Figure 13 for examples. It is possible to switch off the Main Voltage Regulator in
LPWFI mode, This is configured using the LPVRWFI bit in the PCU_PWRCR register. In this
case, the power consumption must respect the limits of the Low Power Voltage regulator.
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Figure 12. Example of LPWFI mode using CK_AF 
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Figure 13. Example of LPWFI mode using CLK2/16
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3.6.4 Stop Mode

In Stop mode you stop the RCLK without resetting the device, hence preserving the MCU
status (except the CSU_CKSEL and the STOP_I bits in the RCCU_CFR register). 

To enter Stop Mode you have to execute the Stop bit setting sequence described in the XTI
chapter. The device will remain in Stop mode until a wake-up line is asserted to restart the
program execution.

The MCU resumes program execution after a delay of  2048 clock periods after the Stop
mode wakeup event.

On wake-up from Stop mode, the STOP_I bit in the RCCU_CFR register is set and an
interrupt is generated if enabled.

Two options are provided to further reduce power consumption: when Stop mode is entered,
the internal Flash may be put in Power-Down mode, minimizing its dissipation; in addition the
internal 1.8V supply may be provided by the low power voltage regulator, reducing the internal
dissipation of the main voltage regulator. When the device exits from STOP mode, the clock is
stretched until the flash can be accessed safely. 

If a reset occurs while the device is in Stop mode, the  clock restarts.

Note: Assuming MCLK=PCLK, a STOP mode Wake-up event cannot occur less than (N+
6)*MCLK periods after the start of the STOP bit setting sequence, where N is the number of
cycles needed to perform the stop bit setting sequence (refer to “STOP Mode Entry
Conditions” on page 102 for further details). Otherwise the wakeup event will be ignored.

3.6.5 Standby Mode

The Main Voltage Regulator control logic manages the power-down/wake-up sequence to
ensure a smooth transition to and from the ultra low-power Standby state.

In Standby mode, the power supply is given through V33 pins as normal. The Main Voltage
Regulator is switched off and the V18 domain (the kernel of the device) is powered off (the
voltage on external V18 pins falls to zero). The Backup block, including Real Time Clock and
Wake-Up logic, is independently powered by the Low-Power Voltage Regulator.

See also Section 3.1.1: Optional use of External V18BKP Supply on page 32

The power-down sequence is initiated either by a software command, by setting the
PWRDWN bit in the PCU_PWRCR register (Software Standby Entry), or by externally forcing
the nSTDBY pin to ‘0’ (Hardware Standby Entry).

Note Since nSTDBY is a bidirectional open-drain pin, an external pull-up is required.

Note Since in Standby mode, the V18 supply of the device kernel is switched off, the
content of the system RAM is lost and the Watchdog is disabled.
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Note When entering Standby mode the V18 domain (the kernel of the device) is powered
off while the logic belonging to the Backup block is kept powered-on. When leaving
Standby mode, all the logic belonging to the V18 domain starts from the reset state.
This means that the registers (PCU_PWRCR, RTC_ALR and RTC_PRL) that
contain bits, which affect the behaviour of Backup logic will in general not reflect its
status. These bits are in fact latched in the Backup domain to retain their value during
Standby but on leaving Standby mode, their value is not transferred back to the logic
in the V18 domain which in turn shows the reset value.

Note Since any write operation to the Real Time Clock registers requires at least two 32
kHz clock cycles to complete, if software configures the Real Time Clock registers,
Standby mode can only be entered after the write operation to the Real Time Clock
register is over. This can be monitored by polling the RTOFF bit in the RTC_CRL
register.

Note Ensure that the Wake-up pin is pulled down when entering Standby mode.

3.6.5.1 Software Standby Entry

Figure 14 and Figure 15, show the sequence of events that occur at external signal level and
at software level when Standby mode is entered via software.

• All the signals connecting the main kernel (V18 domain) and the Backup block are forced
to ground to avoid electrical damage.

• The V18BKP domain is disconnected from the V18 domain and therefore the Backup block
is supplied only by the Low Power Regulator.

• The Main Voltage Regulator is switched off.

• All the I/Os belonging to the kernel are forced into High Impedance.

• The nSTDBY pin is forced low by the device.

Figure 14. Software Standby Mode Entry with WAKEUP Exit
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A wake-up event may be generated by the RTC alarm or can be generated externally by a
wake-up pin. In this case, a pulse of at least 100µS is necessary. Other sources of wake-up
are the external nRSTIN pin or the internal LVD.

A wake-up event switches the power to the kernel back on. The kernel is kept under reset up
to when the internal voltage is correctly regulated. At this point, the interface between the
kernel and the Backup block is reconnected, and the CPU restarts from its reset sequence.

Figure 15. Software Standby Mode Entry with nRSTIN Exit

Figure 16. Software Power Down - Wakeup Sequence Diagram
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The flags in the RCCU_CFR register will indicate the wake-up source (RTC, WAKEUP pin,
nRSTIN pin, Watchdog, Software). 

Notes:

1. If the WAKEUP pin is at high logic level, it is not allowed to enter Standby mode.

2. In Standby mode, the RTC alarm will always cause a wake-up event regardless of the
mask bit configuration.

3.6.5.2 Hardware Standby Entry

In case of Standby mode entered via hardware, the sequence is the same but it is started by
the external activation of nSTDBY pin, which is hence operating as an input. In this case,
rising edges on both WAKEUP and nSTDBY pin are requested to exit from Standby mode
(see Figure 17 and Figure 18). The WAKEUP rising edge switches the Main Voltage
Regulator back on, while the nSTDBY pin rising edge releases the internal Reset to the V18
domain of the device (powered by the Main VR).

Notes:

1. In Hardware Standby mode entry, the minimum time between the WAKEUP and nSTDBY
rising edges is 100µs. 

2. In Standby mode, the RTC alarm will always cause a wake-up event regardless of the
mask bit configuration.

3. If WAKEUP pin is at high logic level, it is not allowed to enter Standby mode. It is forbidden
to keep WAKEUP pin high while forcing nSTDBY low. It is also forbidden to force nSTDBY
high before or after the pulse on both WAKEUP and nRSTIN.

4. A Reset event (nRSTIN activation) has priority over nSTDBY. Therefore, reset activation
will force exit from Standby mode. If nRSTIN is activated while nSTDBY is active, the
device exits from Standby mode. If a Reset pulse is given while nSTDBY is kept at con-
stant low level, the device will enter Standby mode again after nRSTIN rising edge.

5. In order to wake-up the system using the WAKEUP pin, the WAKEUP signal pulse width
must be held active high for at least 100us. A pulse width of less than 100us may affect
the system.

Figure 17. HW Standby Mode Entry with WAKEUP Exit
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3.6.5.3 Wakeup / RTC Alarm Reset

When a Wakeup event restarts the device from the Standby Mode and power supply is
reapplied to the V18 domain, the reset is activated. The reset source is indicated by a bit set in
RCCU_CFR register. 

3.7 Power, Reset and Clock Control Unit (PRCCU) 

The PRCCU generates the internal clocks for the CPU and for the on-chip peripherals. The
PRCCU may be driven by an external pulse generator, connected to the CK pin (see Figure 8
on page 34 and Figure 19 on page 47). The Real time Clock 32kHz oscillator is connected to
the internal CK_AF signal (if present on the application), and this clock source may be
selected when low power operation is required.

As shown in Figure 19 on page 47, a programmable divider can divide the CK input clock
signal by two. The resulting signal, CLK2, is the reference input clock to the programmable
Phase Locked Loop frequency multiplier, which is capable of multiplying the clock frequency
by a factor of 12, 16, 20 or 24; the multiplied clock is then divided by a programmable divider,
by a factor of 1 to 7. The range of available multiplication and division factors allows a great
number of operating clock frequencies to be derived from a single input frequency. 

The Clock Multiplier unit may be turned off, in this case the output clock signal may be
programmed as CLK2 divided by 16. 

Each time a clock change occurs, it takes some cycles to complete.

3.7.1 Clock Configuration Reset State

In reset state, the RCCU_CFR value is 8008h and The PCU_MDIVR and PCU_PDIVR
register values (FACT bits) are 0000h. Consequently, in reset state the clock configuration is
DIV2 = 1, CK2_16=1 and therefore MCLK and PCLK operate at the external clock frequency
(CK) divided by 2.

Figure 18. HW Standby Mode Entry with nRSTIN Exit
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3.7.2 Typical Clock Configuration Example

For example, to obtain a 48 MHz MCLK with an external CK of 16 MHz, 

• Set MX[1:0] = 01 to multiply CLK2 by 12

• Set DX[2:0] = 001 to divide by 2 

• Set FREF_RANGE = 1

To do this, write the following value in the RCCU_PLL1CR register:

0000 0051h

Figure 19. PRCCU Programming
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3.7.3 PLL Clock Multiplier Programming

The CLK signal drives a programmable divide-by-two circuit. If the DIV2 control bit in
RCCU_CFR register is set (reset condition), CLK2, is equal to CLK divided by two; if DIV2 is
reset, CLK2 is identical to CLK. In practice, the divide-by-two is used in order to ensure a 50%
duty cycle signal.

When the PLL is active, it multiplies CLK2 by 12, 16, 20 or 24, depending on the status of the
MX[1:0] bits in the RCCU_PLL1CR register. The multiplied clock is then divided by a factor in
the range 1 to 7, determined by the status of the DX[2:0] bits. 

When the MX[1:0] bits are programmed to 111, and the FREEN bit in the RCCU_PLL1CR is
set to ‘1’, the division factor is 8, the PLL loop is open and the PLL provides a slow frequency
back-up clock which depends on the MX[1:0] and FREF_RANGE bits (see Table 9). If instead
DX[2:0]=’111’ and FREEN is ‘0’, the PLL is switched off.

The frequency multiplier contains a frequency comparator between CLK2 and the PLL clock
output that verifies if the PLL clock has stabilized (locked status). The LOCK bit in the
RCCU_CFR register becomes set when this condition occurs and maintains this value as
long as the PLL is locked, going back to 0 if for some reason (change of MX[1:0] bits value,
stop and restart of PLL or CLK2 and so on) loses the programmed frequency in which it was
locked. It is possible to select the PLL clock as system clock only when the LOCK bit is ‘1’. If
the LOCK bit return to ‘0’ the system clock switches back to CLK2 even if the CSU_CKSEL bit
is ‘1’. If a Voltage Regulator is present on the device, the PLL selection is further conditioned
by the status of this one: only when VROK bit in VRCTR register is ‘1’, that is the Voltage
Regulator is providing a stabilized supply voltage, the PLL can be selected (refer to Voltage
Regulator specifications). Setting the CSU_CKSEL bit in the RCCU_CFR register allows to
select the multiplier clock as system clock, but two condition must be matched.

Care is required, when programming the PLL multiplier and divider factors, not to exceed the
maximum allowed operating frequency for each clock. Refer to the datasheet specifications. 

There is no lower limit for MCLK. However, some peripherals can show incorrect operation
when the system clock has a too low frequency.

3.7.3.1 Free Running Mode

The PLL is able to provide a low-precision clock PLLCLK, usable for slow program execution.
The frequency range is from 125 kHz to 500 kHz, depending on the MX[1:0] bits and the
FREF_RANGE. This mode enabled by the FREEN and DX[2:0] bits in the RCCU_PLL1CR
register: when PLL is off and FREEN bit is ‘1’, that is, all these four bits are set, the PLL
provides this clock. The selection of this clock is still managed by the CSU_CKSEL bit, but is
not conditioned by bits LOCK in RCCU_CFR and VROK in the PCU_PWRCR register. To
avoid unpredictable behavior of the PLL clock, the user must set and reset the Free Running
mode only when the PLL clock is not the system clock, i.e when the CSU_CKSEL bit is ‘0’.
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3.7.4 Interrupt Generation

The PRCCU generates an interrupt request on the following events:

When any of these events occur, the corresponding pending bit in the RCCU_CFR register
becomes ‘1’ and the interrupt request is forwarded to the interrupt controller. It is up to the
user to reset the pending bit as the first instruction of the interrupt routine. The pending bits
are clear-only (cleared only by writing ‘1’). Each interrupt can be masked by resetting the
corresponding mask bit in the RCCU_CCR register.

Table 9. PLL Free Running Mode Frequency

Free Running Mode frequency

MX[1:0] FREF_RANGE=0 FREF_RANGE=1

‘01, ‘11’ 125 kHz 250 kHz

‘00, ‘10’ 250 kHz 500 kHz

Table 10. PRCCU Interrupts

Event Description Event trigger Interrupt Mask Event Flag 

CK_AF 
Switching

CK_AF selected or deselect-
ed as RCLK source

CK_AF bit in 
RCCU_CCR regis-
ter toggles

EN_LOCK bit in 
RCCU_CCR regis-
ter

CKAF_I bit in 
RCCU_CFR 
register 

CLK2/16 
Switching

CLK2/16 selected or dese-
lected as RCLK source

CK2_16 bit in 
RCCU_CFR regis-
ter toggles

EN_CK2_16 bit in 
RCCU_CCR regis-
ter

CK2_16_I bit in 
RCCU_CFR 
register

Lock
PLL1 becomes locked or un-
locked

LOCK bit in 
RCCU_CFR regis-
ter toggles

EN_LOCK bit in 
RCCU_CCR regis-
ter

LOCK_I bit in 
RCCU_CFR 
register

Stop
CLK restarts after waking up 
from Stop mode

EN_STOP bit in 
RCCU_CCR regis-
ter

STOP_I bit in 
RCCU_CFR 
register

Table 11. PRCCU Operating Modes

MODE RCLK DIV2
CSU_

CKSEL
MX[1:0] DX[2-0]

 
CK2_16

CKAF_
SEL

WFI_C
KSEL

PLL x 24
CLK2

x 24/(2N)
1 1 1 0 N={DX}-1 1 0 X

PLL x 20
CLK2

x 20/(2N)
1 1 0 0 N={DX}-1 1 0 x

PLL x 16
CLK2

x 16/(2N)
1 1 1 1 N={DX}-1 1 0 x
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3.7.5 Register Description

In this section, the following abbreviations are used:

3.7.5.1 Clock Control Register (RCCU_ CCR)

Base address: 0xA000 0000h
Address offset: 0x00h
Reset value:0x0000 0000h

Bit 32-12 = Reserved, always read as 0.

PLL x 12
CLK2

x 12/(2N)
1 1 0 1 N={DX}-1 1 0 x

SLOW 1 CLK2 1 0 X X 1 0 x

SLOW 2 CLK2 /16 1 X X X 0 0 x

SLOW3 CK_AF X X X X X 1 x

WFI If LPOWFI=0, no changes occur on RCLK

LOW-
POWER 
WFI 1

CLK2 /16
1 X X X X X 0

LOW-
POWER 
WFI 2

CK_AF
1 X X X X X 1

RESET CLK2 1 0 00 111 1 0 0

read/write (rw) Software can read and write this bit

read only (r) Software can only read this bit, writing to it has no effect.

read/clear (rc_w0)
Software can read as well as clear this bit by writing ‘0’. Writing ‘1’ has no 
effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - -
EN_ 

HALT
EN_ 

STOP
EN_ 

CK2_16
EN_ 

CKAF
EN_ 

LOCK
- - -

SRES 
EN

CKAF_
SEL

WFI_ 
CKSEL

LOP_ 
WFI

rw rw rw rw rw rw rw rw

Table 11. PRCCU Operating Modes

MODE RCLK DIV2
CSU_

CKSEL
MX[1:0] DX[2-0]

 
CK2_16

CKAF_
SEL

WFI_C
KSEL
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Bit 11 = EN_HALT: Enable Halt bit.
0: No Software Reset.
1: Software Reset when software sets the HALT bit in the RCCU_SMR register and if
SRESEN=1

Bit 10 = EN_STOP: Stop Interrupt Masking bit.
0: Stop interrupt request disabled
1: Stop interrupt request enabled.

Bit 9 = EN_CK2_16: CK2_16 Interrupt Masking bit.
0: CK2_16 switching interrupt disabled
1: CK2_16 switching interrupt enabled

Bit 8 =EN_CKAF: CKAF Interrupt Masking bit.
0: CKAF switching interrupt request disabled
1: CKAF switching interrupt request enabled (

Bit 7 = EN_LOCK: Lock Interrupt Masking bit.
0: LOCK switching interrupt request disabled
1: LOCK switching interrupt request enabled

Bit 6:4 = Reserved, always read as 0.

Bit 3 = SRESEN: Software Reset Enable.
0: No Software Reset.
1: Software Reset when software sets the HALT bit in the RCCU_SMR register and if
EN_HALT=1.

Bit 2 = CKAF_SEL: Alternate Function Clock Select. 

0: Deselect CK_AF clock
1: Select CK_AF clock.

Note: To check if the selection has actually occurred, check that CKAF_ST is set. If no Real
Time Clock is present, the selection will not occur.

Bit 1= WFI_CKSEL: WFI Clock Select.
This bit selects the clock used in Low power WFI mode if LPOWFI = 1. 
0: MCLK during Low Power WFI is CLK2/16
1: MCLK during Low Power WFI is CK_AF, providing it is present. In effect this bit sets
CKAF_SEL in WFI mode

Bit 0 = LPOWFI: Low Power mode during Wait For Interrupt.

0: Low Power mode during WFI disabled. When WFI is executed, MCLK is unchanged
1: The device enters Low Power mode when the WFI instruction is executed. The clock during
this state depends on WFI_CKSEL
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3.7.5.2 Clock Flag Register (RCCU_CFR)

Base address: 0xA000 0000h
Address offset: 0x08h
Reset Value: 0000 8408h after an external WakeUp Reset

0000 8208h after a Main Voltage regulator LVD Reset
0000 8088h after a RTC Alarm WakeUp Reset
0000 8048h after a Watchdog Reset
0000 8028h after a Software Reset
0000 8008h after an External (Power-On) Reset

Bit 31:16 = Reserved, always read as 0.

Bit 15 = DIV2: OSCIN Divided by 2.
This bit controls the divide-by-2 circuit which operates on the CLK signal.
0: No division of CLK frequency.
1: CLK is divided by 2.

Bit 14 = STOP_I: Stop Interrupt pending bit.
This bit is clear only.
0: No Stop interrupt request pending.
1: Stop Interrupt request is pending.

Bit 13 = CK2_16_I: CK2_16 switching Interrupt pending bit.
This bit is clear only.

0: No CK2_16 Interrupt request pending.
1: CK2_16 Interrupt request pending.

Bit 12 = CKAF_I: CK_AF switching Interrupt pending bit.
This bit is clear only.
0: No CK_AF switching Interrupt request pending.
1: CK_AF switching Interrupt request pending.

Bit 11 = LOCK_I: Lock Interrupt pending bit.
This bit is clear only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIV2 STOP_I
CK2_ 
16_I

CKAF_I LOCK_I
WKP_ 
RES

LVD_
RES

-
RTC_ 

ALARM
WDG 
RES

SOFT 
RES

-
CK2_ 

16
CKAF_

ST
LOCK

CSU_ 
CKSEL

rw rc_w0 rc_w0 rc_w0 rc_w0 r r r r r rw r r rw
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0: No Lock Interrupt request pending.
1: Lock Interrupt request pending.

Bit 10 = WKP_RES:  External WakeUP flag.
This bit is read only.
0: No  WakeUp reset occurred.
1:  Reset was generated by an External WakeUp event in Standby mode.

Bit 9 = LVD_RES:  Main Voltage Regulator LVD reset flag.
This bit is read only.
0: No  Main voltage regulator LVD reset occurred.
1: Main voltage regulator LVD reset occurred.

Bit 8 = Reserved, always read as 0.

Bit 7 = RTC_ALARM:  Real-Time-Clock alarm reset flag.
This bit is read only.
0: No  RTC alarm event occurred.
1: Reset was generated by RTC alarm during Standby mode.

Bit 6= WDG_RES: Watchdog reset flag.
This bit is read only.
0: No Watchdog reset occurred.
1: Watchdog reset occurred.

Bit 5 = SOFTRES: Software Reset Flag.
This bit is read only.
0: No software reset occurred.
1: Software reset occurred.

Bit 4 = Reserved, must always be kept at 0.

Bit 3 = CK2_16: CLK2/16 Selection
0: CLK2/16 is selected as RCLK source and the PLL is off.
1: The RCLK source is CLK2 (or the PLL output depending on the value of CSU_CKSEL)

Bit 2 = CKAF_ST: CK _AF Status.
This bit is read only.
0: The PLL clock, CLK2 or CLK2/16 is the RCLK source (depending on CSU_CKSEL and
CK2_16 bits).
1: CK_AF is the RCLK source 

Bit 1= LOCK: PLL locked-in
This bit is read only.
0: The PLL is turned off or not locked and cannot be selected as RCLK source.
1: The PLL is locked 

Bit 0 = CSU_CKSEL: CSU Clock Select
This bit is set and cleared by software. It is kept reset by hardware when:
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- bits DX[2:0] (RCCU_PLL1CR) are set to 111;
- the quartz is stopped (by hardware or software);
- the CK2_16 bit (RCCU_CFR) is forced to ’0’.

0: CLK2 provides the system clock
1: The PLL Multiplier provides the system clock if LOCK and VROK bits are ‘1’

If the FREEN bit is set, this bit selects this clock independently of the LOCK and VROK bits.

Note: Setting the CKAF_SEL bit overrides any other clock selection. The clearing the CK2_16
bit overrides the CSU_CKSEL selection (see Figure 19 on page 47)

3.7.5.3 PLL Configuration Register (RCCU_PLL1CR)

Base address: 0xA000 0000h
Address offset: 0x18h
Reset value: 0000 0007h

Bit 31:8 = Reserved, always read as ‘0’.

Bit 7 = FREEN: PLL Free Running Mode Enable
0: Free Running mode disabled. In this case, the PLL operation depends only on the MX[1:0]
and DX[2:0] bits.
1: Free Running mode enabled. In this mode, when all three DX[2:0] bits are set, the PLL is
not stopped but provides a slow frequency back-up clock, selected by the CSU_CKSEL bit;
Operation in this mode not require the LOCK and VROK bits to be set, and is independent of
the MX[1:0] bit settings.

Bit 6 = FREF_RANGE: Reference Frequency Range selector bit
0: Configure PLL for input frequency (CLK2) of 1.5-3MHz
1: Configure PLL for input frequency (CLK2) of greater than  3MHz

Bit 5:4 = MX[1:0]: PLL Multiplication Factor. 
Refer to Table 12 for the MX bit settings.

Note: It is recommended to deselect and switch-off the PLL before changing MX values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - FREEN
FREF_
RANGE

MX1 MX0 - DX2 DX1 DX0

rw rw rw rw rw rw rw
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Bit 3 = Reserved, always read as ‘0’.

Bit 2:0 = DX[2:0]: PLL output clock division factor. Refer to Table 13 for the DX bit settings.

3.7.5.4 Peripheral Enable Register (RCCU_PER)

Base address: A000 0000h
Address offset: 1Ch
Reset value: 0001 FFFFh

Bit 32-0 = PH_CK[32:0]: Peripheral Clock enable.
0: the peripheral clock is stretched, stopping the peripheral.
1: the peripheral clock is enabled, allowing peripheral operation.

The relation between register bits and peripherals is shown in Table 14.

Table 12. PLL Multiplication Factors
MX1 MX0 CLK2 x

1 0 24

0 0 20

1 1 16

0 1 12

Table 13. PLL Division Factors
DX2 DX1 DX0 RCLK

0 0 0 PLLCK / 1

0 0 1 PLLCK / 2

0 1 0 PLLCK / 3

0 1 1 PLLCK / 4

1 0 0 PLLCK / 5

1 0 1 PLLCK / 6

1 1 0 PLLCK / 7

1 1 1
FREEN= 0: CLK2 (PLL OFF, Reset State)

FREEN=1: PLL in Free Running mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PH_CK[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PH_CK[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
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1) To reduce power consumption, these bits should be cleared by software after reset. 

3.7.5.5 System Mode Register (RCCU_SMR)

Base address: A000 0000h
Address offset: 20h
Reset value: 0000 0001h

Bit 31:2 = Reserved, always read as 0.

Bit 1 = HALT: Halt .
0: No effect
1: Generate a Software reset if the SRESEN bit and the ENHALT bit in the RCCU_CCR
register is set.

Bit 0 = WFI: Wait For Interrupt mode.
0: Enter WFI (Wait For Interrupt) mode. In this mode the CPU remains in idle state until an
interrupt request is acknowledged by the EIC. When this occurs, the bit is set to ‘1’ again. This
means that this bit, once reset, can only be set to ‘1’ by hardware.
1: No effect

Caution: If all EIC interrupt channels are masked, clearing this bit will stop program execution
indefinitely unless the device is reset. Hence you must ensure that at least one interrupt
channel is enabled before clearing the WFI bit.

Table 14. Peripheral Clock Management
PH_CKEN Reg. Status Peripheral Stopped

PH_CK[1:0] = 0 not used1)

PH_CK[2] = 0 EMI

PH_CK[3] = 0 not used1)

PH_CK[4] = 0 USB KERNEL

PH_CK[16:5] = 0 not used1)

PH_CK[31:17] = 0 not used

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - - - - HALT WFI

rw rw
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3.7.5.6 MCLK Divider Control (PCU_MDIVR)

Address offset: 40h
Reset value: 0000h

This register sets the prescaling factor for the Main System Clock MCLK, according to Table
15. It may be written by software at any time, to dynamically adjust the operation frequency.

Bit 15:2 = Reserved, always read as 0.

Bit 1:0 = FACT[1:0]: Division factor

3.7.5.7 Peripheral Clock Divider Control Register (PCU_PDIVR)

Address offset: 44h
Reset value: 0000h

This register sets the prescaling factor for the two APB Clocks PCLK1, for peripherals
belonging to the APB1 group, and PCLK2, for peripherals belonging to the APB2 group;
prescaling values are listed in Table 15 on page 57. It may be written by software at any time.
FACT1 and FACT2 may be chosen independently.

Note: Peripheral clock speed must be equal or lower than CPU clock speed, but lower or
equal to the values specified in the datasheet. It is up to the user to ensure this condition is
always met. Unexpected behaviour may occur otherwise. 

Bit 15:10 = Reserved, always read as 0.

Bit 9:8 = FACT2[1:0]: Division factor for APB2 peripherals

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved FACT

rw

Table 15. Clock Prescaler values

FACT Prescaling ratio

00 1 - Default, no prescaling, MCLK = RCLK

01 2 - MCLK = RCLK / 2

10 4 - MCLK = RCLK / 4

11 8 - MCLK = RCLK / 8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved FACT2 reserved FACT1

rw
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Bit 7:2 = Reserved, always read as 0.

Bit 1:0 = FACT1[1:0]: Division factor for APB1 peripherals

3.7.5.8 Peripheral Reset Control Register (PCU_PRSTR)

Address offset: 48h
Read/Write
Reset value: 0000h

This register allows to force a Reset activation individually to most system blocks. Not all
system blocks may be reset by software, to guarantee consistent behaviour of the device.

Bit 15:4: Reserved, always read as 0.

Bit 3 = Reserved for factory test. To reduce power consumption, this bit must be set by
software. 

Bit 2 = EMIRST
If this bit is set to logical one, the External Memory interface peripheral will be forced to Reset
state. Reset activation/ deactivation is synchronous with system clock MCLK.
If this bit is set to logical zero, the EMI operate normally.

Bit 1:0 = Reserved for factory test. To reduce power consumption, this bit must be set by
software. 

3.7.5.9 PLL2 Control Register (PCU_PLL2CR)

Address offset: 4Ch
Reset value: 0033h

This register controls operation of the PLL2, dedicated to HDLC or USB blocks. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EMI 
RST

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOCK reserved
IRQ 

PEND
IRQ 

MASK
USB EN PLL EN

FRQ 
RNG

MX (1:0) - DX(2:0)

r r clr rw rw rw rw rw rw
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Bit 15 = LOCK: PLL2 Locked
Read Only. This bit is set by HW when the PLL2 is locked on the input reference clock and
provides a stable frequency. Any change of this bit may generate an interrupt request, if
enabled by setting bit 9, IRQ MASK. 

Bit 14:11 = Reserved.

Bit 10 = IRQ PEND: Interrupt Request to CPU on LOCK transition Pending
Set by hardware, Clear Only by software. When this bit is set a Lock Status Change Interrupt
request is pending. This interrupt request is mapped on the PRCCU Interrupt vector. The
pending request is removed by WRITING this bit TO ONE. 

Bit 9 = IRQ MASK: Enable Interrupt Request to CPU on LOCK transition
When this bit is reset (default) no interrupt is generated by PLL2; when it is set any change in
LOCK status will generate an Interrupt request. The pending request is cleared by reading
this register. 

Bit 8 = USBEN: Enable PLL clock to USB
When this bit is reset (default) the 48 MHz reference clock for USB is connected to USBCLK
pin; when it is set the reference clock for USB is provided by HCLK pin, through PLL2. Input
frequency, Multiplication and Division factors must be appropriately chosen to guarantee the
precision required by USB standard.

Bit 7 = PLLEN: Select PLL 
When this bit is reset (default) the PLL is bypassed, but not switched off, and HCLK drives the
internal logic directly (HDLC, or USB if selected setting bit 8, USBEN. When PLLEN is set the
PLL output is selected as source clock for the logic. It is forbidden to set this bit if the bit 15,
LOCK, is reset. If the PLL unlocks for any reason, this bit is reset by Hardware. 

Note: To switch off PLL2, and reduce power consumption, set the DX[2:0] bits. 

Bit 6 = FRQRNG: PLL2 frequency range selection
This bit has to be set by software when the PLL input frequency (HCLK pin) is in the range
3-5 MHz;
This bit has to be cleared by software when the PLL input frequency (HCLK pin) is in the
range 1.5-3 MHz

Bit 5:4 = MX[1:0]: PLL Multiplication Factor. 
Refer to Table 16 for multiplier settings.

Table 16. PLL Multiplication Factors
MX1 MX0 CLOCK2 x

1 0 28

0 0 20

1 1 16

0 1 12
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Bit 3 = Not used; gives ‘0’ when read.

Bit 2:0 = DX[2:0]: PLL output clock divider factor. Refer to Table 17 for PLL divider settings,
where PLL CLOCK represents the output of the Multiplier section.

3.7.5.10 Boot Configuration Register (PCU_BOOTCR)

Address offset: 50h

Reset value: 0000 00p1 1100 00bb
where p: depending on package - b: depending on BOOT pin values (see below)

This register includes Boot options and other global configuration controls.
Boot options are values latched on external BOOT pins at reset time, and visible to sofware
through these bits; they can be modified afterward to restore a different configuration
(memory map). See section 2.2 on page 22 for full description.
Configuration bits are fixed (hardware) device options, not available to user modification.
These bits allow reading the configuration value by the software.

Bit 15:10: Reserved.

Bit 9 = PKG64: Die is hosted in 64-pin package
HW Configuration. Read only.
When this bit is cleared, the chip is mounted on a 144-pin package.
When this bit is set, the chip is mounted on a 64-pin package, and all non-bonded pins are
forced to idle mode (input and output disabled), irrespective of the values in IOPort control
registers.

Bit 8 = Reserved.

Table 17. PLL Divider Factors
DX2 DX1 DX0 CK

0 0 0 PLL CLOCK / 1

0 0 1 PLL CLOCK / 2

0 1 0 PLL CLOCK / 3

0 1 1 PLL CLOCK / 4

1 0 0 PLL CLOCK / 5

1 0 1 PLL CLOCK / 6

1 1 0 PLL CLOCK / 7

1 1 1 BYPASS (PLL OFF)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res. PKG64 res. HDLC CAN
ADC 
EN

LPOW 
DBG 
EN

USB 
FILT EN

SPI0 
EN

BOOT

r r r r rw rw rw rw rw
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Bit 7 = HDLC: HDLC Active
HW Configuration. Read only.
When this bit is cleared, the HDLC interface controller is disabled.
When this bit is set, the HDLC interface controller is enabled.

Bit 6 = CAN: CAN Active
HW Configuration. Read only.
When this bit is cleared, the CAN interface controller is disabled.
When this bit is set, the CAN interface controller is enabled.

Bit 5= ADC EN: Enable ADC
Read/Write.
When this bit is cleared (Reset value), the Analog part of the Analog-to-digital converter is
disabled (Power Down), minimizing static power consumption.
When this bit is set, the Analog part of the ADC is enabled, and can be used by the
application. After setting this bit, a start-up time of 1 ms (TBC) is required before the first valid
conversion. This bit should be reset by software to switch off the ADC in any low-power mode
(WFI, STOP)

Bit 4= LPOWDBGEN: Enable Reserved Debug features for STOP mode
Read/Write.
When the device is in STOP mode, all internal clocks are frozen, including MCLK to ARM7,
which cannot answer to a Debug Request from the Emulator (DBGRQS pin, or command
through JTAG interface). 
When this bit is setasserting the Debug Request input forces immediate exit from STOP
mode, enabling internal clocks, so allowing the emulator to take control of the system.
When this bit is cleared (Reset value), this feature is disabled, and a Debug Request while in
STOP mode is ignored.

Bit 3= USBFILT EN: Enable USB Standby Filter
Read/Write.
The USB Transceiver features a low-pass filter to improve noise immunity while the bus is in
STANDBY mode. 
When this bit is cleared (Reset value), the filter is disabled.
When this bit is set, the filter is enabled (subject to STANDBY condition of USB bus).

Bit 2 = SPI0 EN: Enable SPI0
Read/Write.
When this bit is cleared (Reset value), the SPI0 interface controller is disabled, and pins P0.0
to P0.3 can be used by UART3 and I2C1.
When this bit is set, the SPI0 interface controller is enabled, and will access pins P0.0 to P0.3
(if they are programmed as Alternate Function). In this state UART3 and I2C1 are not
available to the application.

Bit 1:0 = BOOT[1:0]: Boot Mode
These bits report the Boot configuration as selected by the user on Boot[1:0] pins or through
JTAG programming, encoded as shown in Table 18.
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The memory bank corresponding to BOOT value is mapped at address 0000.0000 in addition
to its normal position in the memory map, and the CPU starts fetching code from this block
after end of Reset sequence.
These bits may subsequently be modified by software, to map whatever memory at address
0000.0000.

3.7.5.11 Power Control Register (PCU_PWRCR)

Address offset: 54h
Reset value: 0000h

Bit 15= WREN: Register Write Enable
This bit acts as a security mechanism to avoid spurious writes into this register. 
When WREN = ‘0’ (default), all bits in the register are write protected, and cannot be changed.
This bit can only be set by software, not cleared.
When WREN = ‘1’, bits listed as RW become writable. A timeout is activated, allowing write
operations to the register for 64 MCLK cycles. After this interval, the bit is reset by HW. This
bits does not affect read operations.

Bit 14= BUSY: Backup logic Busy - programming ongoing
Read only
The Backup Logic is asynchronous, and this bits flags the handshake status between the
register and the related logic. 
When BUSY = ‘0’ (default), it is possible to program the Backup Logic by writing into the
register.
When BUSY = ‘1’, a previous write operation is not yet completed, and it is forbidden to write
to the register.

Bit 13= WKUP-ALRM: WakeUp or Alarm active
Read only
This bit is set to logical one by the HW when external WAKEUP pin, or when an internal

Table 18. Boot Mode

BOOT[1:0] BOOT MEMORY NOTES

00 FLASH Default

01 BOOT

10 RAM

11 EXTERNAL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WR
EN

BUSY
WKUP
ALRM

VR OK - -
FLASH 

LP
LVD DIS

OSC 
BYP

PWR 
DWN

LPVR 
BYP

LPVR 
WFI

VR BYP - - -

rw r r r rw rws rw rw rw rw rw
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wake-up source is active. In this case a powerdown command has no effect. 
When WKUP-ALRM = ‘0’ (default), it is possible to start the power down sequence.

Bit 12= VROK: Main Regulator OK
Read Only. 
When VROK = ‘0’, the Main Voltage Regulator is not stable, and the supply to the device is not
guaranteed to be in specification range.
When VROK = ‘1’, the Main Voltage Regulator is stable, in the specification range
Note: The software should check this bit before and after any change of configuration which
impacts clock and power status of the device.

Bit 11:10 = Reserved, always read as 0.

Bit 9= FLASH LP: Flash low-power (low-speed) mode select
This bit may be written only when bit 15, WREN, is set with the same write instruction. 
When this bit is cleared (Default Value), the Flash works in FAST mode, using BURST mode
for sequential accesses, to allow zero wait state operation up to the maximum device
frequency, and generating a WAIT cycle on non-sequential memory accesses.
When this bit is set, the Flash enters Low-Power mode, and BURST is disabled. WAIT states
are never generated. LP mode may be used for operation frequency (MCLK) up to 33 MHz. 
Note: Correct operation of the device if this bit is set while MCLK runs faster than the
maximum rated speed is not guaranteed.

Bit 8= LVD DIS: Low-Voltage Detector Disable
This bit may be written only when bit 15, WREN, is set. Sticky bit: once set, it cannot be reset
by software anymore - only a Reset will clear it.
When this bit is cleared (Default Value), the Low-Voltage Detector is enabled, monitoring the
V18 supply, and generating a Reset to the device whenever   V18 is less than the threshold
value (see electrical specs).
When this bit is set, the Low-Voltage Detector is disabled, and does never generate a Reset.
NOTE: For security reasons the LVD would never be disabled when the LPVreg is enabled
(see bit 5 LPVRBYP): a consumption greater than the current available from the LPVreg may
generate unexpected operation. Hence when the LPVreg is enabled, this bit should never be
written to logical one.

Bit 7= OSC BYP: 32-KHz Oscillator Bypass Enable
This bit may be written only when bit 15, WREN, is set.
When this bit is cleared (Default Value), the 32-KHz oscillator is enabled, providing a clock
source for the Real Time Clock, and a Backup clock source to the whole system.
When this bit is set, the 32-KHz oscillator is stopped and bypassed, featuring zero power
consumption and allowing an external reference clock to feed the Real Time Clock, or a
Backup clock source to the whole system.

Bit 6= PWRDWN: Activate Powerdown Mode
This bit may be written only when bit 15, WREN, is set. 
When PWRDWN = ‘0’ (default), the chip is working in normal mode.
When PWRDWN = ‘1’, the chip enters powerdown mode. The Main Voltage Regulator is
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switched off, and the power supply to the kernel of the device is disconnected.
The Backup (Low-Power) Voltage Regulator is still active, supplying the Backup section: Real
Time Clock and wake-up logic.

Bit 5= LPVRBYP: Low Power Regulator Bypass
This bit may be written only when bit 15, WREN, is set. 
When LPVRBYP = ‘0’ (default), the Backup (Low-Power) Voltage Regulator is active, ready to
take over in low-power modes.
When LPVRBYP = ‘1’, the Backup (Low-Power) Voltage Regulator is switched off (bypassed),
and the Backup logic is supplied by an external source at 1.8V through the V18bkp pin. 
NOTE: if this bit is set without a proper external supply connection, unexpected operation may
result, including permanent damage to the device.

Bit 4= LPVRWFI: Low Power Regulator in Wait-For-Interrupt mode. 
This bit may be written only when bit 15, WREN, is set. 
When LPVRWFI = ‘0’ (default), the main Voltage Regulator is always active, except in
Powerdown mode.
When LPVRWFI = ‘1’, the main Voltage Regulator is switched off (bypassed) in Low-Power
modes STOP, LP_WFI (see section 3.6 on page 39), in which the Backup (Low-Power)
Voltage Regulator supplies the device.

Bit 3= VRBYP: Main Regulator Bypass
This bit may be written only when bit 15, WREN, is set. 
When VRBYP = ‘0’ (default), the Main Voltage Regulator is active, supplying the device.
When VRBYP = ‘1’, the Main Voltage Regulator is switched off (bypassed), and the kernel of
the device is supplied by an external source at 1.8V through the V18 pin. 
NOTE: if this bit is set without a proper external supply connection, unexpected operation may
result, including permanent damage to the device.

Bit 2:0 = Reserved, always read as 0.
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3.7.6 PRCCU Register Map

See Table 1 for base address

Table 19. PRCCU register map

Addr.
Offset

Register 
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
RCCU_

CCR
- - - - -

EN_ 
STOP

EN_CK
2_16

EN_ 
CKAF

EN_ 
LOCK

- - -
SRESE

N
CKAF_

SEL
WFI_ 

CKSEL
LOP_
WFI

8
RCCU_

CFR
DIV2

STOP_
I

CK2_1
6_I

CKAF_
I

LOCK_
I

WKP_
RES

LVD_
RES

-
RTC_A
LARM

WDG 
RES

SOFT 
RES

-
CK2 
_16

CKAF_
ST

LOCK
CSU_ 

CKSEL

18
RCCU_
PLL1CR

- - - - - - - - FREEN
FREF_
RANG

E
MX1 MX0 - DX2 DX1 DX0

1C
RCCU_

PER
- - - - - - - - - - -

PH_CK
4

PH_CK
3

PH_CK
2

PH_CK
1

PH_CK
0

20
RCCU_

SMR
WFI

40
PCU_

MDIVR reserved FACT

44
PCU_
PDIVR reserved FACT2 reserved FACT1

48
PCU_
RSTR RST[15:0]

4C
PCU_

PLL2CR LOCK reserved
IRQ 

PEND
IRQ 

MASK
USB 
EN

PLL 
EN

FRQ 
RNG

MX (1:0) - DX(2:0)

50
PCU_

BOOTCR reserved
PKG 
64

- HDLC CAN
ADC 
EN

LPOW 
DBG 
EN

USB 
FILT 
EN

SPI0 
EN

BOOT

54
PCU_

PWRCR
WR
EN

BUSY
WKUP
ALRM

VR OK -
FLAS
H LP

LVD 
DIS

OSC 
BYP

PWR 
DWN

LPVR 
BYP

LPVR 
WFI

VR 
BYP

- - -
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4 I/O PORTS

4.1 Functional Description

Each of the General Purpose I/O Ports has three 16-bit configuration registers (PC0, PC1,
PC2) and one 16-bit Data register (PD).

Subject to the specific hardware characteristics of each I/O port listed in the datasheet device
pin description table, you can configure each port bit individually as input, output, alternate
function etc. 

Each I/O port bit is freely programmable, however the I/O port registers have to be accessed
as 16-bit words. Byte or bit-wise access is not allowed.

Figure 20 shows the basic structure of an I/O Port bit.l

Figure 20. Basic Structure of an I/O Port Bit
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Table 20. Port Bit Configuration Table

General Purpose I/O (GPIO)

At reset the I/O ports are configured as general purpose (memory mapped I/O).

When you write to the I/O Data register the data is always loaded in the Output Latch. The
Output Latch holds the data to be output while the Input Latch captures the data present on
the I/O pin. 

A read access to the I/O Data register reads the Input Latch or the Output Latch depending on
whether the Port bit is configured as input or output. 

Alternate Function I/O (AF)

The alternate functions for each pin are listed in the datasheet. If you configure a port bit as
Alternate Function, this disconnects the output latch and connects the pin to the output signal
of an on-chip peripheral. 

To use the alternate function, you also have to enable it in the peripheral control registers.
Only one alternate function can be used on each pin

• For AF input, the port bit can be either in Input or AF configuration 

• For AF output or input-output, the port bit must be in AF configuration

Port Configuration 
Registers (bit)

Values

PC0(n) 0 1 0 1 0 1 0 1

PC1(n) 0 0 1 1 0 0 1 1

PC2(n) 0 0 0 0 1 1 1 1

Configuration HiZ/AIN IN IN IPUPD OUT OUT AF AF

Output TRI TRI TRI WP OD PP OD PP

Input AIN TTL CMOS CMOS N.A. N.A. CMOS CMOS

Notes:
AF: Alternate Function OD: Open Drain
AIN: Analog Input OUT: Output
CMOS: CMOS Input levels PP: Push-Pull
HiZ: High impedance TRI: Tristate
IN: Input TTL: TTL Input levels
IPUPD: Input Pull Up /Pull Down WP: Weak Push-Pull
N.A. not applicable. In Output mode, a read access the 
port will get the output latch value). See Figure 23.
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External Interrupts/Wakeup lines

Some ports have external interrupt capability (see datasheet). To use external interrupts, the
port must be configured in input mode. For more information on interrupts and wakeup lines,
refer to Section 5.

4.1.1 Input Configuration

When the I/O Port is programmed as Input:

■ The Output Buffer is forced tristate

■ The data present on the I/O pin is sampled into the Input Latch every clock cycle

■ A read access to the Data register gets the value in the Input Latch.

The Figure 21 on page 68 shows the Input Configuration of the I/O Port bit.

Figure 21. Input Configuration
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4.1.2 Input Pull Up/Pull Down Configuration

When the I/O Port is programmed as Input Pull Up/Pull Down:

■ The Output Buffer is turned on in Weak Push-Pull configuration and software can write the
appropriate level in the output latch to activate the weak pull-up or pull-down as required.

■ The data in the Output Latch drives the I/O pin (a logic zero activates a weak pull-down, a
logic one activates a weak pull-up)

■ A read access to the I/O Data register gets the Input Latch value.

The Figure 22 shows the Input PUPD Configuration of the I/O Port.

Figure 22. Input Pull Up/Pull Down Configuration
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4.1.3 Output Configuration

When the I/O Port is programmed as Output:

■ The Output Buffer is turned on in Open Drain or Push-Pull configuration

■ The data in the Output Latch drives the I/O pin

■ A read access to the I/O Data register gets the Output Latch value.

The Figure 23 on page 70 shows the Output Configuration of the I/O Port bit.

Figure 23. Output Configuration
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4.1.4 Alternate Function Configuration

When the I/O Port is programmed as Alternate Function:

■ The Output Buffer is turned on in Open Drain or Push-Pull configuration

■ The Output Buffer is driven by the signal coming from the peripheral (alternate function out)

■ The data present on the I/O pin is sampled into the Input Latch every clock cycle

■ A read access to the Data register gets the value in the Input Latch.

The Figure 24 on page 71 shows the Alternate Function Configuration of the I/O Port bit.

Figure 24. Alternate Function Configuration
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4.1.5 High impedance-Analog Input Configuration

When the I/O Port is programmed as High impedance-Analog Input Configuration:

■ The Output Buffer is forced tristate

■ The Input Buffer is disabled (the Alternate Function Input is forced to a constant value)

■ The Analog Input can be input to an Analog peripheral

■ A read access to the I/O Data register gets the Output Latch value

The Figure 25 on page 72 shows the High impedance-Analog Input Configuration of the I/O
Port bit.

Figure 25. High impedance-Analog Input Configuration
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4.2 Register Description

The I/O port registers cannot be accessed by byte.

Port Configuration Register 0 (PC0)

Address Offset: 00h

Reset value: (*)

Bit 15:0 = C0[15:0]: Port Configuration bits
See Table 20 on page 67 to configure the I/O Port.

Port Configuration Register 1 (PC1)

Address Offset: 04h

Reset value: (*)

Bit 15:0 = C1[15:0]: Port Configuration bits
See Table 20 on page 67 to configure the I/O Port.

Port Configuration Register 2 (PC2)

Address Offset: 08h

Reset value: (*)

Bit 15:0 = C2[15:0]: Port Configuration bits
See Table 20 on page 67 to configure the I/O Port.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C015 C014 C013 C012 C011 C010 C09 C08 C07 C06 C05 C04 C03 C02 C01 C00

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C115 C114 C113 C112 C111 C110 C19 C18 C17 C16 C15 C14 C13 C12 C11 C10

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C215 C214 C213 C212 C211 C210 C29 C28 C27 C26 C25 C24 C23 C22 C21 C20

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
73/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
I/O Data Register (PD)

Address Offset: 0Ch

Reset value: (*)

Bit 15:0 = D[15:0]: I/O Data bits
A writing access to this register always writes the data in the Output Latch.
A reading access reads the data from the Input Latch in Input and Alternate function
configurations or from the Output Latch in Output and High impedance configurations.

(*) Refer to the device I/O pin list

4.2.1 I/O Port Register Map

The following table summarizes the registers implemented in each I/O port.

See Table 3, “APB2 memory map,” on page 18 for base address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Table 21. I/O-port Register Map

Addr.
Offset

Register 
Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PC0 C0[15:0]

4 PC1 C1[15:0]

8 PC2 C2[15:0]

C PD D[15:0]
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5 INTERRUPTS

The ARM7 CPU provides two levels of interrupt, FIQ (Fast Interrupt Request) for fast, low
latency interrupt handling and IRQ (Interrupt Request) for more general interrupts.

The STR71x interrupt management system provides two interrupt management blocks: the
EIC and XTI. Refer to Figure 26. 

5.1 Interrupt latency

As soon as an interrupt request is generated (either from external interrupt source or from an
on-chip peripheral), the request itself must go through three different stages before the
interrupt handler routine can start. The interrupt latency can be seen as the sum of three
different contributions:

• Latency due to the synchronisation of the input stage. This logic can be present (e.g.
synchronization stage on external interrupts input lines) or not (e.g. on-chip interrupt
request), depending on the interrupt source. Either zero or two clock cycles delay are
related to this stage.

• Latency due to the EIC itself. Two clock cycles are related to this stage.

• Latency due to the ARM7TDMI interrupt handling logic (refer to the documentation
available on www.arm.com).

Figure 26. Interrupt Management Overview

Table 22. EIC Interrupt latency (in clock cycles)
SYNCH. STAGE

EIC STAGE
min max

FIQ
0 2 2

IRQ

ARM7TDMI®

CORE

16 External

Lines 32 IRQ
Channels

2 FIQ
Channels

Software Interrupt

14 I/O Port 
 Interrupts

USB

On-Chip 
Interrupt
Sources

IRQ5

FIQ

IRQ

IRQn 

Watchdog
Timer 0

EICXTI

Interrupt
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5.2 Enhanced Interrupt Controller (EIC)

The Enhanced Interrupt Controller (EIC) performs hardware handling of multiple interrupt
channels, interrupt priority arbitration and vectorization. It provides:

■ 32 maskable interrupt channels, mapped on the IRQ interrupt request line of the ARM CPU

■ 16 programmable priority levels for each interrupt channel mapped on IRQ

■ Hardware support for interrupt nesting (up to 16 interrupt requests can be nested), with
internal hardware nesting stack

■ 2 maskable interrupt channels, mapped on FIQ interrupt request line of the ARM CPU, with
neither priority nor vectorization

■ at register offset 0x18h, the jump instruction to the start address (defined by the user) of the
ISR of the highest priority interrupt.

■ 16 external interrupts from the XTI block are mapped on IRQ5.

The EIC performs the following operations without software intervention:

■ Rejects/accepts an interrupt request according to the related channel mask bit,

■ Compares all pending IRQ requests with the current priority level. The IRQ is asserted to the
ARM7 if the priority of the current interrupt request is higher than the stored current priority,

■ Loads the address vector of the highest priority IRQ to the Interrupt Vector Register (offset
0x18h)

■ Saves the previous interrupt priority in the HW priority stack whenever a new IRQ is
accepted

■ Updates the Current Interrupt Priority Register with the new priority whenever a new
interrupt is accepted

If multiple interrupt sources are mapped on the same interrupt vector, software has read the
peripheral interrupt flag register to determine the exact source of interrupt (see Interrupt Flags
column in Table 23 on page 77)
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The IRQ Interrupt vector table is shown in Table 23.

Two maskable interrupt sources are mapped on FIQ vectors, as shown in Table 24:

Table 23. IRQ Interrupt vector table

Vector Acronym Peripheral Interrupt Peripheral Inter-
rupt Flags

IRQ0 T0.EFTI Timer 0 global interrupt 5

IRQ1 FLASH FLASH global interrupt

IRQ2 PRCCU PRCCU global interrupt

IRQ3 RTC Real Time Clock global interrupt 2

IRQ4 WDG.IRQ Watchdog timer interrupt 1

IRQ5 XTI.IRQ XTI external interrupt 16

IRQ6 USB.HPIRQ USB high priority event interrupt 0-7

IRQ7 I2C0.ITERR I2C 0 error interrupt

IRQ8 I2C1.ITERR I2C 1 error interrupt

IRQ9 UART0.IRQ UART 0 global interrupt 9

IRQ10 UART1.IRQ UART 1 global interrupt 9

IRQ11 UART2.IRQ UART 2 global interrupt 9

IRQ12 UART3.IRQ UART 3 global interrupt 9

IRQ13 SPI0.IRQ BSPI 0 global interrupt 5

IRQ14 SPI1.IRQ BSPI 1 global interrupt 5

IRQ15 I2C0.IRQ I2C 0 tx/rx interrupt

IRQ16 I2C1.IRQ I2C 1 tx/rx interrupt

IRQ17 CAN.IRQ CAN module global interrupt 32

IRQ18 ADC.IRQ ADC sample ready interrupt 1

IRQ19 T1.GI Timer 1 global interrupt 5

IRQ20 T2.GI Timer 2 global interrupt 5

IRQ21 T3.GI Timer 3 global interrupt 5

IRQ22 Reserved

IRQ23 Reserved

IRQ24 Reserved

IRQ25 HDLC.IRQ HDLC global interrupt

IRQ26 USB.LPIRQ USB low priority event interrupt 7-15

IRQ27 Reserved

IRQ28 Reserved

IRQ29 T0.TOI Timer 0 Overflow interrupt 1

IRQ30 T0.OC1 Timer 0 Output Compare 1 interrupt 1

IRQ31 T0.OC2 Timer 0 Output Compare 2 interrupt 1

Table 24. FiQ Vector table
Vector Interrupt Source

FIQ0 T0.GI - Timer 0 Global Interrupt

FIQ1 WDG.IRQ - Watchdog timer interrupt
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These sources are also available as normal IRQs. In most cases, you should only enable one
FIQ source in your application. If you enable both FIQ sources, then you can determine the
source of the interrupt by reading the FIQ pending bits in the the EIC register. Bear in mind
that FIQ has no priority mechanism, so if simultaneous FIQ events occur, software has to
manage the priority.

The ARM7TDMI CPU provides two levels of interrupt, FIQ (Fast Interrupt Request) for fast,
low latency interrupt handling and IRQ (Interrupt Request) for more general interrupts.

Hardware handling of multiple interrupt channels, interrupt priority and automatic vectorization
require therefore a separate Enhanced Interrupt Controller (EIC).

■ 32 maskable interrupt channels, mapped on ARM’s interrupt request pin IRQ

■ 16 programmable priority levels for each interrupt channels mapped on IRQ

■ hardware support for interrupt nesting (15 levels)

■ 2 maskable interrupt channels, mapped on ARM’s interrupt request pin FIQ, with neither
priority nor vectorization

Figure 27. EIC block diagram
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5.2.1 IRQ mechanism

The EIC is composed of a priority decoder, a finite state machine and a stack. 

5.2.1.1 Priority Decoder

The priority decoder is a combinational block continuously calculating the highest priority
pending IRQ. If there is a winner, it updates the EIC_IVR (Interrupt Vector Register) with the
address of the IRQ interrupt routine that has won the arbitration, and asserts the nIRQ
internal signal low. The nIRQ internal signal ORed with the inverted EIC IRQ enable bit
(IRQ_EN) corresponds to the ARM7TDMI® nIRQ signal.

Each channel has a 4-bit field, the SIPL (Source Interrupt Priority Level) in the EIC_SIRn
(Source Interrupt Register 0-31) defining the channel priority level in the range of 0 (lowest
priority) to 15 (highest).

If several channels are assigned with the same priority level, an internal hardware daisy chain
fixes the priority between them. The higher the channel address, the higher the priority. If
channel 2 and channel 6 are assigned to the same software priority level, and if they are both
pending at the same time, channel 6 will be served first.

In order to declare a channel as a winner, the channel must:

• Be pending (EIC_IPR0-1 - Interrupt Pending Register, 32 pending bits, one per channel).
In order to be pending, a channel has to be enabled (EIC_IER0-1 - Interrupt Enable
Register, 32 enable bits, one per channel).

• Have the highest priority level, higher than the current one (EIC_CIPR - Current Interrupt
Priority Register) and higher than any other pending interrupt channel.

• Have the highest position in the interrupt channel chain if there are multiple pending
interrupt channels with the same priority level.

The EIC_CIPR register provides the priority  of the interrupt routine currently being served. At
reset, the EIC_CIPR is cleared. During an interrupt routine, it can be modified by software
from the initialized priority value stored in the EIC_SIRn (Source Interrupt Register 0-31) up to
15. Attempting to write a lower value that the one in EIC_SIRn will have no effect.

For safe operation, it is recommended to disable the global IRQ before modifying EIC_CIPR
EIC_SIR, or EIC_IPR pending IRQ clearing, to avoid dangerous race conditions. Moreover, if
IRQ_EN is cleared in an interrupt service routine, the pending bit related to the IRQ currently
being served must not be cleared, otherwise it will no longer be possible to recover EIC status
before popping the stack.
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5.2.1.2 Finite State Machine

The Finite State Machine (FSM) has two states, READY and WAIT. The two states
correspond to the ARM7TDMI® nIRQ line being asserted (WAIT) or not (READY). The state
of nIRQ will be unconditionally masked (deasserted high) by the EIC global enable bit
IRQ_EN being cleared. After a reset the FSM is in READY state (EIC nIRQ line is high). When
the priority decoder elects a new winner, the FSM moves from READY to WAIT state and the
EIC nIRQ line is asserted low.

To move the FSM back to the ready state, it is mandatory to read the EIC_IVR register or to
reset the EIC cell. The EIC can be reset by a global reset resetting the entire device or by
clearing bit 14 in the APB2_SWRES register.

Reading the EIC_IVR always moves the FSM from WAIT to READY state, assuming that the
FSM was in WAIT state, and automatically releases the EIC nIRQ line. 

There is no flag indicating the FSM state.

5.2.1.3 Stack

The stack is up to 15 events deep corresponding to the maximum number of nested
interrupts. It is used to push and pop the previous EIC state. The data pushed onto the stack
are the EIC_CICR (Current Interrupt Channel Register) and EIC_CIPR (Current Interrupt
Priority Register).

When the FSM is in WAIT state, reading the EIC_IVR raises an internal flag. This pushes the
previous EIC_CICR and EIC_CIPR onto the EIC stack. This happens on the next internal
clock cycle after reading the EIC_IVR. In the meantime, the internal flag is cleared. The
EIC_CICR and EIC_CIPR are updated with the value corresponding to the interrupt channel
read in EIC_IVR.

If EIC_IVR is read while the FSM is in READY state, the internal flag is not raised and no
operation is performed on the EIC internal stack.

A routine can only be interrupted by a event having a higher priority. Consequently, the
maximum number of nested interrupts is 15, corresponding to the 15 priority levels, from 1 to
15. An interrupt with priority level 0 can never be executed. In order for the stack to be full, up
to 15 interrupts must be nested and each interrupt event must appear sequentially from
priority level 1 up to 15. The main program must have priority level 0.

Having all interrupt sources with a priority level 0 could be useful in applications that only use
polling.

To pop the stack, the EIC pending bit corresponding to interrupt in the EIC_CICR register has
to be cleared. Clearing any other pending bits will not pop the stack. Take care not to clear a
pending bit corresponding to an event still in the stack, otherwise it will not be possible to pop
the stack when reaching this stack stage. When the stack is popped, the EIC_CICR and
EIC_CIPR are restored with the values corresponding to the previous interrupt event.
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5.2.1.4 EIC Interrupt Vectoring

When the ARM7TDMI® decodes an IRQ interrupt request, the instruction at address 0x18 is
executed. By this time, the EIC_IVR register is updated with the address of the highest
pending interrupt routine. In order to get the maximum advantage from the EIC mechanism,
the instruction at address 0x18 can load the program counter with the address located in the
EIC_IVR. In this way, the CPU vector points directly to the right interrupt routine without any
software overhead.

As the priority decoder is always active, the arbitration is never stopped. It may happen that an
interrupt event asserts low the ARM7TDMI® nIRQ line, and if between the nIRQ line asserted
low and the EIC_IVR read operation a new highest priority event appears the EIC_IVR will
have the value corresponding to the highest priority pending interrupt when the EIC_IVR is
read.

It is not mandatory to read the EIC_IVR and to branch directly to the right interrupt routine with
the instruction at address 0x18. An alternative solution could be to branch to a single interrupt
entry point and to read the EIC_IVR register later on. The only mandatory operations are to
first read the EIC_IVR once only, then to clear the corresponding pending bit. From an EIC
standpoint, the interrupt is acknowledged when the EIC_IVR is read and is completed when
the corresponding pending bit is cleared. From an ARM7TDMI® core standpoint, the interrupt
is acknowledged when the ARM7TDMI® nIRQ line is asserted low and is completed when the
exception return sequence is executed.

The EIC nIRQ line is equivalent to the ARM7TMDI nIRQ line but in addition it is masked by the
EIC global enable bit (IRQ_EN). The EIC nIRQ line can be asserted low but if the global EIC
enable bit is not set, the ARM7TDMI® nIRQ line will not be asserted low.

The EIC_IPR is a read/clear register, so writing a ‘0’ has no effect, while writing a ‘1’ resets the
related bit. Therefore, refrain from using read-modify instructions to avoid corruption of the
EIC_IPR status. Most of the EIC pending bits are related to a peripheral pending bit. The
peripheral pending bit must be cleared prior to clearing the EIC pending bit. Otherwise the
EIC pending bit will be set again and the interrupt routine will be executed twice.
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Figure 28. Nested Interrupt Request Sequence Example
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5.2.1.5 EIC IRQ Notes

Reading the EIC_IVR, while the FSM is in READY state, will have no effect. The value read
will be unpredictable. Actually, the EIC assigns the default IRQ routine addresses to the
EIC_IVR.

As a consequence of a bad programming procedure, the EIC_IVR could also have an
unpredictable value while the FSM is in WAIT state. This case has obviously to be avoided as
the CPU, when subsequently executing an interrupt subroutine, would execute it while the
value in the EIC_IVR register is not relevant. This would result in a stack EIC corruption as the
corresponding pending bit could be reset.

There are several cases where this can happen:

• When lowering a pending channel priority level in the EIC_SIRn register to a value equal
or lower than the current program priority.

• When the software clears some pending bits without taking care to execute the standard
interrupt routine sequence (see below).

In such cases, the priority decoder loses the winner while the EIC nIRQ line is still being
asserted. Only reading EIC_IVR will release the EIC nIRQ line.

The CPU will execute the interrupt routine without having a relevant value in the EIC_IVR
register, possibly corrupting the stack. If the corresponding pending bit is reset, it will not be
possible to execute the EIC stack pop operation.

The normal way to process an interrupt event is to read the EIC_IVR register only once in the
interrupt routine. Before exiting the interrupt routine, the corresponding peripheral and the EIC
pending bits must be cleared. As soon as the EIC_IVR is read, the application software can
read the EIC_CICR register to know which interrupt routine is currently executing, as long as
the EIC_IVR register is not used as a routine pointer.

If the EIC_IVR is not read in the interrupt routine the nIRQ line will not be released and the
interrupt will be executed twice. If the pending bit is already cleared, the EIC stack will be
corrupted as it will not be able to perform the pop operation.

Inside an interrupt routine, it is not an issue to clear pending bits having a lower priority level
than the current one, as the nIRQ line is not asserted low in this case. It can be an issue to
clear a pending bit that has a higher priority level because the EIC nIRQ line is already
asserted low, and when interrupts are re-enabled, the EIC stack will be corrupted.

Clearing a pending bit of an interrupt already in the stack will corrupt the stack.

In the main program, if the global interrupts are disabled, all interrupt sources are disabled
and all pending bits are cleared. If the nIRQ was already asserted low, as soon as the global
interrupts are enabled the CPU executes an interrupt routine. In this situation, the EIC_IVR
read will have an unpredictable value, corrupting the EIC stack.
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There is only one safe way to clear pending bits without executing the corresponding interrupt
routine. This is to clear them from an IRQ routine that has a higher priority level. In this way,
the EIC nIRQ line is guaranteed to be released. 

All EIC pending bits can be cleared including the ones that the user application wants to
address later on. The user code needs to make sure that, for those interrupts, the peripheral
pending bit is not cleared. By this way, the corresponding EIC pending bits will be set again.
As all EIC pending bits are cleared, the EIC stack is guaranteed to pop properly. An
alternative solution is to make sure that the EIC pending bit corresponding to the EIC_IVR
read is cleared.

5.2.2 FIQ Mechanism

Compared to the EIC IRQ mechanism, the EIC FIQ mechanism does not provide any
automatic vectoring and software priority level to each FIQ interrupt source. It provides a
global FIQ enable bit, an enable and a pending bit per FIQ channel.

There are several differences between the global F bit in the CPSR ARM core register and the
global FIQ enable bit in the EIC. The F bit can not be modified in user mode while the EIC
global FIQ enable bit is always accessible in all modes. In addition, the F bit does not modify
the nFIQ internal signal level. It just masks the signal to the core while the EIC global FIQ
enable bit acts on the nFIQ signal level. The nFIQ signal is always inactive as soon as the
global EIC FIQ enable bit is reset, and is active as soon as the global EIC FIQ enable bit is set
along with at least one FIQ pending bit.

In order for an FIQ channel source to be pending, the corresponding FIQ enable bit must be
set. Clearing the FIQ channel enable bit while the corresponding pending bit is set will not
clear the pending bit and the channel will stay active until the pending bit is cleared.

In order for the CPU to vector at the address 0x1C (FIQ exception vector address), the F bit
and the global EIC FIQ enable bit must be enabled and at least one FIQ pending bit must be
active. Otherwise, the CPU will not enter the FIQ exception routine.

5.3 Register Description
In this section, the following abbreviations are used:

read/write (rw) Software can read and write to these bits.

read-only (r) Software can only read these bits. 

read/clear (rc_w1) Software can read as well as reset this bit by writing ‘1’. Writing
‘0’ has no effect on the bit value.
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5.3.1 Interrupt Control Register (EIC_ICR)

Address Offset: 00h

Reset value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FIQ_EN IRQ_EN

rw rw

Bit 31:2 Reserved, always read as 0.

Bit 1 FIQ_EN: FIQ output Enable bit
0: Enhanced Interrupt Controller FIQ output request to CPU is disabled,
even if the EIC has detected valid and enabled fast interrupt requests at its
inputs.
1: Enhanced Interrupt Controller FIQ output request to CPU is enabled.

Software can read and write to this bit.

Bit 0 IRQ_EN: IRQ output Enable bit
0: Enhanced Interrupt Controller IRQ output request to CPU is disabled,
even if the EIC has detected valid and enabled interrupt requests at its
inputs.
1: Enhanced Interrupt Controller IRQ output request to CPU is enabled.

Software can read and write to this bit.
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5.3.2 Current Interrupt Channel Register (EIC_CICR)

Address Offset: 04h

Reset value: 0000 0000h

The EIC_CICR reports the number of the interrupt channel currently being serviced. There
are 32 possible channel IDs (0 to 31), so the significant register bits are only five (4 down to 0). 

After reset, the EIC_CICR value is set to ‘0’ and is updated by the EIC only after the processor
has started servicing a valid IRQ interrupt request, i.e. one clock cycle after having read IVR.

To make this happen, EIC registers must be configured as below:

• EIC_ICR IRQ_EN bit =1 (to have the nIRQ signal to ARM7TDMI active)’

•  EIC_IER0 not all ‘0’ (at least one interrupt channel must be enabled)

• Among the interrupt channels enabled by the IERx registers, at least one must have the
SIPL field of the related SIR register not set to 0 because the EIC generates a processor
interrupt request (asserting the nIRQ line) ONLY IF it detects an enabled interrupt request
whose priority value is greater than the EIC_CIPR (Current Interrupt Priority
Register) value.

When the nIRQ signal to ARM7TDMI® is activated, the software will read the EIC_IVR
(Interrupt Vector Register). This read operation will advise the EIC logic that the ISR (Interrupt
Service Routine) has been initiated and that the CICR can be updated

The EIC_CICR value can not be modified by the software (read only register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CIC[4:0]

- r

Bit 31:5 Reserved, always read as 0.

Bit 4:0 CIC[4:0]: Current Interrupt Channel
Number of the interrupts whose service routine is currently in execution
phase. These are read-only bits.
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5.3.3 Current Interrupt Priority Register (EIC_CIPR)

Address Offset: 08h

Reset value: 0000 0000h

The EIC_CIPR register reports the priority value of the interrupt currently being serviced.
There are 16 possible priority values (0 to 15), so the significant register bits are only four (3
down to 0).

After reset, the Current Interrupt Priority (CIP) value is set to ‘0’ and is updated by the EIC only
after the processor has started servicing a valid IRQ interrupt request.

To make this happen, EIC registers must be configured as below:

• IRQ_EN bit in the EIC_ICR register is set

• Not all the bits in  EIC_IER0 registers should be ‘0’ (at least one interrupt channel must be
enabled)

• At least one of the interrupt channels, enabled by the EIC_IER register, must have the
SIPL field of the related EIC_SIR register not set to 0, because the EIC generates a
processor interrupt request (asserting the nIRQ line) only if it detects an enabled interrupt
request whose priority value is bigger than the EIC_CIPR (Current Interrupt Priority
Register) value.

When the nIRQ signal to ARM7TDMI® is activated, the processor will read the EIC_IVR. This
read operation will inform the EIC that the ISR has been initiated and the EIC_CIPR register
can be properly updated.

The EIC_CIPR value can be modified by software only to promote a running ISR to a higher
level and only during an ISR. The EIC logic will allow a write to the CIP field of any value equal
or greater than the priority value associated with the interrupt channel currently being
serviced. 

e.g.: suppose the IRQ signal is set because of an enabled interrupt request on channel #4,
whose priority value is 7 (i.e. SIPL of SIR7 is 7); after software reads the EIC_IVR register, the
EIC will load the CIP field with 7. Until the interrupt service procedure is completed, writes of

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CIP[3:0]

- rw
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values 7 up to 15 will be allowed, while attempts to modify the CIP content with priority lower
than 7 will have no effect.

The user software has to avoid a situation where the FSM is in WAIT state and the EIC_IVR
has an unpredictable value.

5.3.4 Interrupt Vector Register (EIC_IVR)

Address Offset: 18h

Reset value: 0000 0000h

The EIC_IVR is the EIC register that the sofware has to read after detecting the nIRQ signal
assertion.

The EIC_IVR read operation informs the EIC that the interrupt service routine (ISR)
corresponding to the pending request has been initiated.

This means that:

• the IRQ signal can be de-asserted

• the EIC_CIPR and EIC_CICR can be updated

Bit 31:4 Reserved, always read as 0.

Bit 3:0 CIP[3:0]: Current Interrupt Priority
Priority value of the interrupt which is currently in execution phase. The
software can read and write to these bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVR[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVR[15:0]

r
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• no interrupt requests, whose priority is lower or equal than the current one can be

processed.

Note The EIC does not care about the IVR content: from the controller point of view it is a
simple concatenation of two 16-bit fields.

IVR = IVR(31:16) & SIRn(31:16)

What has to be written in the IVR(31:16) is the higher part of the address pointing to
the memory location where the interrupt service routine begins. The field
SIRn(31:16) will contain the lower 16 bits (offset) of the memory address related to
the channel specific ISR.

Reading the IVR is acknowledged only when the CPU is not in debug mode and the user code
is executing in ARM IRQ mode.

Bit 31:16 IVR(31:16): Interrupt Vector (High portion)
This register value does not depend on the interrupts to be serviced. It has
to be programmed by the user (see Note) at the time of initialization. It is
common to all the interrupt channels. Software can read and write to these
bits.

Bit 15:0  IVR(15:0): Interrupt Vector (Low portion)
This register value depends on the interrupts to be serviced (i.e. one of the
enabled interrupts with the highest priority), and it is a copy of the Source
Interrupt Vector (SIV) value of the EIC_SIR corresponding to the channel to
be serviced. These are read only bits.
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5.3.5 Fast Interrupt Register (EIC_FIR)

Address Offset: 1Ch

Reset value: 0000 0000h

In order for the controller to react to the 2 fast-interrupt (FIQ) channels, the enable bits 1 and
0 must be set to 1. Bits 3 and 2 indicate which channel is the source of the interrupt.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FIP[1:0] FIE[1:0]

rw rw

Bit 31:4 Reserved, always read as 0.

Bit 3:2 FIP[1:0]: Channel 1 and 0 Fast Interrupt Pending Bit
These bits are set by hardware by a Fast interrupt request on the
corresponding channel. These bits are cleared only by software, i.e. writing
a ‘0’ has no effect, whereas writing a ‘1’ clears the bit (forces it to ‘0’).
0: No Fast interrupt pending on channel n.
1: Fast Interrupt pending on channel n.

Bit 1:0 FIE[1:0]: FIQ Channel 1 and 0 Interrupt Enable bit
In order to have the controller responding to a FIQ on a specific channel, the
corresponding FIE bit must be set.
0: Fast Interrupt request on FIQ channel n disabled.
1: Fast Interrupt request on FIQ channel n enabled.
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5.3.6 Interrupt Enable Register 0 (EIC_IER0)

Address Offset: 20h

Reset value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IER[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IER[15:0]

rw

Bit 31:0 IER[31:0]: Channel 31 to 0 Interrupt Enable bits
The EIC_IER0 is a 32 bit register: it provides an enable bit for each of the 32
EIC interrupt input channels.

In order to enable the interrupt response to a specific interrupt input channel
the corresponding bit in the EIC_IER0 register must be set to ‘1’. 

A ‘0’ value prevents the corresponding pending bit geing set.
0: Input channel disabled.
1: Input channel enabled.
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5.3.7 Interrupt Pending Register 0 (EIC_IPR0)

Address Offset: 40h

Reset value: 0000 0000h

Note Before exiting an ISR, the software must have cleared the EIC_IPR0 bit related to the
executed routine. This bit clear operation will be interpreted by the EIC as End of
Interrupt (EOI) sequence and will allow the interrupt stack pop and processing of
new interrupts.

Note The Interrupt Pending bits must be carefully handled because the EIC state machine
and its internal priority hardware stack could be forced to a non recoverable condition
if unexpected pending bit clear operations are performed.

Example 1:

• Suppose that one or more interrupt channels are enabled, with a priority higher than zero.
As soon as an interrupt request arises, the EIC FSM processes the new input and asserts
the nIRQ signal. If before reading the EIC_IVR, for any reason, software clears the
pending bits, the nIRQ signal will remain asserted the same, even if no more interrupts
are pending.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IPR[31:16]

rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IPR[15:0]

rc_w1

Bit 31:0 IPR[31:0]: Channel 31 to 0 Interrupt Pending bit
The EIC_IPR0 is a 32 bit register, which provides a pending bit for each of
the 32 EIC interrupt input channels.

This is where the information about the channel interrupt status is kept. If
the corresponding bit in the enable register EIC_IER0 has been set, the
EIC_IPR0 bit set high implies that the related channel has asserted an
interrupt request that has not been serviced yet.

The bits are Read/Clear, i.e. writing a ‘0’ has no effect, whereas writing a ‘1’
clears the bit. 
0: No interrupt pending.
1: Interrupt pending.
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The only way to reset the nIRQ line logic is to read the EIC_IVR (0x18) register or to send
a software reset to the EIC.

Example 2:

• Suppose that one or more interrupt channels are enabled, with a priority higher than zero.
As soon as an interrupt request arises, the EIC FSM processes the new input and asserts
the nIRQ signal. If after reading the EIC_IVR, for any reason, software clears the pending
bit related to the serviced channel before completing the ISR, the EIC will detect an End
Of Interrupt command, will send a pop request to the priority stack and a new interrupt,
even of lower priority, will be processed.
To close an interrupt handling section (EOI), the interrupt pending clear operation must be
performed at the end of the related ISR, on the pending bit related to the serviced
channel. On the other hand, as soon as the pending bit of the serviced channel is cleared
(even by mistake) by the software, the EOI sequence is entered by the EIC.

Note In order to safely clear a pending bit of an IRQ not currently serviced, bit IRQ_EN of
EIC_ICR register should be cleared first. If this is not done, the EIC FSM can enter
an unrecoverable state.
In general, while in the main program, clearing a pending bit has no drawbacks.
When this operation is instead performed inside an IRQ routine it is very important
not to clear by mistake the IPR bit related to the IRQ currently being serviced. Since
IRQ_EN bit freezes the Stack, the pop operation for the current IRQ will not be
performed and will not be even possible in future when IRQs will be re-enabled.
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5.3.8 Source Interrupt Registers - Channel n (EIC_SIRn)

Address Offset: 60h to DCh

Reset value: 0000 0000h

There are 32 different EIC_SIRn registers for each input interrupt channel.

Note To be processed by the EIC logic an interrupt channel must have a priority level
higher than the current interrupt priority (CIP). The lowest value CIP can have is 0 so
all the interrupt sources that have a priority level equal to 0 will never generate an
IRQ request, even if properly enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SIV[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SIPL[3:0]

rw

Bits 31:16 SIV[31:16]: Source Interrupt Vector for interrupt channel n (n=0... 31)
This field contains the interrupt channel dependent part of the interrupt
vector that will be provided to the processor when the EIC_IVR (address
0x18) is read.
Depending on what the processor expects (32 bit address or opcode, see
IVR description), the SIV will have to be loaded with the interrupt channel
ISR address offset or with the lower part (including the jump offset) of the
first ISR instruction opcode.

Bit 15:4 Reserved, always read as 0.

Bit 3:0 SIPL[3:0]: Source Interrupt Priority Level for interrupt channel n (n=0... 31)
These 4 bits allow to associate the interrupt channel to a priority value
between 0 and 15. The reset value is 0.
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5.3.9 EIC Register map

Table 25. EIC register map
Addr.
Offset

Register 
Name

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EIC_ICR reserved
FI
Q_
EN

IR
Q_
EN

4 EIC_CICR reserved CIC[4:0]

8 EIC_CIPR reserved CIP[3:0]

18 EIC_IVR
Jump Instruction Opcode or

Jump Base Address
Jump Offset

1C EIC_FIR reserved
FIP
[2:0]

FIE
[1:0]

20 EIC_IER IER[31:0]

40 EIC_IPR IPR[31:0]

60 EIC_SIR0 SIV0[31:16] reserved SIPL0[3:0]

64 EIC_SIR1 SIV1[31:16] reserved SIPL1[3:0]

68 EIC_SIR2 SIV2[31:16] reserved SIPL2[3:0]

6C EIC_SIR3 SIV3[31:16] reserved SIPL3[3:0]

70 EIC_SIR4 SIV4[31:16] reserved SIPL4[3:0]

74 EIC_SIR5 SIV5[31:16] reserved SIPL5[3:0]

78 EIC_SIR6 SIV6[31:16] reserved SIPL6[3:0]

7C EIC_SIR7 SIV7[31:16] reserved SIPL7[3:0]

80 EIC_SIR8 SIV8[31:16] reserved SIPL8[3:0]

84 EIC_SIR9 SIV9[31:16] reserved SIPL9[3:0]

88 EIC_SIR10 SIV10[31:16] reserved SIPL10[3:0]

8C EIC_SIR11 SIV11[31:16] reserved SIPL11[3:0]

90 EIC_SIR12 SIV12[31:16] reserved SIPL12[3:0]

94 EIC_SIR13 SIV13[31:16] reserved SIPL13[3:0]

98 EIC_SIR14 SIV14[31:16] reserved SIPL14[3:0]

9C EIC_SIR15 SIV15[31:16] reserved SIPL15[3:0]

A0 EIC_SIR16 SIV16[31:16] reserved SIPL16[3:0]

A4 EIC_SIR17 SIV17[31:16] reserved SIPL17[3:0]

A8 EIC_SIR18 SIV18[31:16] reserved SIPL18[3:0]

AC EIC_SIR19 SIV19[31:16] reserved SIPL19[3:0]

B0 EIC_SIR20 SIV20[31:16] reserved SIPL20[3:0]

B4 EIC_SIR21 SIV21[31:16] reserved SIPL21[3:0]

B8 EIC_SIR22 SIV22[31:16] reserved SIPL22[3:0]

BC EIC_SIR23 SIV23[31:16] reserved SIPL23[3:0]

C0 EIC_SIR24 SIV24[31:16] reserved SIPL24[3:0]

C4 EIC_SIR25 SIV25[31:16] reserved SIPL25[3:0]

C8 EIC_SIR26 SIV26[31:16] reserved SIPL26[3:0]

CC EIC_SIR27 SIV27[31:16] reserved SIPL27[3:0]

D0 EIC_SIR28 SIV28[31:16] reserved SIPL28[3:0]

D4 EIC_SIR29 SIV29[31:16] reserved SIPL29[3:0]

D8 EIC_SIR30 SIV30[31:16] reserved SIPL30[3:0]

DC EIC_SIR31 SIV31[31:16] reserved SIPL31[3:0]
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5.3.10 Programming considerations

Here are a few guidelines on how to program the EIC registers in order to get up and running
quickly. In the following, it is assumed we are dealing with standard interrupts and that we
want, for example, to detect an interrupt on channel #22, which has a priority of 5.

First of all, you have to assign the priority and the jump address for the interrupt channel #22.
Therefore:

■ Write the binary value “0101” in the SIPL field of the SIR22 register, i.e. priority 5 (it must be
non-zero to allow IRQ to be generated).

Two registers are used to supply the channel interrupt vector to the EIC controller (IVR[31:16]
and SIR22[31:16]):

■ write in SIR22[31:16], i.e. in the upper part of the SIR register related to channel #22, the
memory address offset (or the jump offset) where the Interrupt Service Routine, related to
interrupt channel #7, starts.

■ insert the base jump address (or the jump opcode) in the most significant half of the IVR
register, i.e. IVR[31:16].

Finally, you have to enable interrupts both at the global level and at the interrupt channel level.
To do this, perform these steps:

■ set the IRQ_EN bit of ICR to 1

■ set bit # 22 of IER to 1

As far as the FIQ interrupts are concerned, since they have no vectorization or priority, only
the first two steps above are involved. Supposing you want to enable FIQ channel #1:

■ set the FIQ_EN bit of ICR to 1.

■ set bit #1 of FIE in FIR register to 1.
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5.3.11 Application note

Every Interrupt Service Routine (ISR) should have the following blocks of code.

■ A Header routine to enter ISR. It must be:

1) STMFD sp!,{r5,lr} The workspace r5 plus the current return address lr_irq 
is pushed into the system stack.

2) MRS r5,spsr Save the spsr into r5
3) STMFD sp!,{r5} Save r5
4) MSR cpsr_c,#0x1F Reenable IRQ, go into system mode
5) STMFD sp!,{lr} Save lr_sys for the system mode

Note r5 is a generic register chosen in this example from the available registers r0 to r12.
Since there is no way to save SPSR directly into the ARM stack, the operation is
executed in two steps using r5 as a temporary register.

■ The ISR Body routines.

■ A Footer routine to exit ISR. It must be:

1) LDMFD sp!,{lr} Restore lr_sys for system mode
2) MSR cpsr_c,#0xD2 Disable IRQ, move to IRQ mode
3) Clear pending bit in EIC (using the proper IPRx)
4) LDMFD sp!,{r5} Restore r5
5) MSR spsr,r5 Restore Status register spsr
6) LDMFD sp!,{r5,lr} Restore status lr_irq and workspace
7) SUBS pc,lr,#4 Return from IRQ and interrupt reenabled

The following two sections give some comments on the above code and hints on calling
subroutines from an ISR.

5.3.11.1 Avoiding LR_sys and r5 register content loss

This first example refers to a LR_sys content loss problem: it is assumed that an ISR without
instruction 5) in the header routine (and consequently without instruction 1) in the footer
routine) has just started; the following happens:

• Instruction 4) is executed (so system mode is entered)

• A subroutine is called with a BL instruction and LR_sys now contains the return address
A: the first subroutine instruction should store register LR_sys in the stack (the address of
this instruction is called B)

• A higher priority interrupt starts before the previous operation could be executed

• A new ISR stores address B in LR_irq and enters system mode

• A new subroutine is called with a BL instruction: LR_sys is loaded with the new return
address C (this overwrites the previous value A!) which is now stored in the stack.
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• The highest priority ISR ends and address B is restored: now the LR_sys value can be put
in the stack but its value has changed to address C (instead of A).

The work-around to avoid such a dangerous situation is to insert line 5) at the end of the
header routine and consequently line 1) at the beginning of the footer routine.

Similar reasons could lead register r5 to be corrupted. To fix this problem, lines 3) in header
and 4) in footer should be added.

5.3.11.2 Hints on calling subroutines from within ISRs

This section discusses a case where a subroutine is called by an ISR.

Supposing this type of procedure starts with an instruction like:

STMFD SP!, { ... , LR }

probably it will end with:

LDMFD SP!, { ... , LR }
MOV PC, LR

If a higher priority IRQ occurs between the last two instructions, and the new ISR then calls
another subroutine, the LR content will be lost: so, when the last IRQ ends, the previously
interrupted subroutine will not return to the correct address.

To avoid this, the previous two instructions must be replaced with the single instruction:

LDMFD SP!, { ... , PC }

which automatically moves the stored link register directly into the program counter, making
the subroutine return correctly.
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5.4 External Interrupts (XTI)

The main function of the External Interrupts Unit (XTI) is to manage the external interrupt
lines. The XTI is connected to the IRQ5 channel of the EIC module.

Using the XTI registers, 14 I/O ports can be programmed as external interrupt lines or as
wake-up lines, able to wake-up the MCU from WFI or STOP mode.

Note: Only the WAKEUP pin (P0.15) can be used to wake-up from STANDBY mode 

Two additional XTI lines are used by specific interrupt sources:

• Software interrupt 

• USB End Suspend event.

Refer to Table 26.

Some external interrupt lines are mapped to I/O ports that can be enabled as inputs to the
CAN, I2C, BSPI or UART peripherals. This means you can program it so that any activity on
these serial buses will wake-up the MCU from WFI or STOP mode. .

Table 26. External Interrupt Line mapping
Wake-up 

line #
 Wake-up line source

0 SW interrupt - no HW connection.

1 USB wake-up event: generated while exiting from suspend mode

2 Port 2.8 - External Interrupt

3 Port 2.9 - External Interrupt

4 Port2.10 - External Interrupt

5 Port 2.11 - External Interrupt

6 Port 1.11 - CAN module receive pin (CANRX).

7 Port 1.13 - HDLC clock (HCLK) or I2C.0 Clock (I0.SCL)

8 Port 1.14 - HDLC receive pin (HRXD) or I2C.0 Data (SDA)

9 Port 0.1 - BSPI0 Slave Input data (S0.MOSI) or UART3 Receive Data Input (U3.Rx)

10 Port 0.2 - BSPI0 Slave Input serial clock (S0.SCLK) or I2C.1 Clock (I1.SCL)

11 Port 0.6 - BSPI1 Slave Input serial clock (S1.SCLK)

12 Port 0.8 - UART0 Receive Data Input (U0.Rx)

13 Port 0.10 - UART1 Receive Data Input (U1.Rx)

14 Port 0.13 - UART2 Receive Data Input (U2.Rx)

15 Port 0.15 - WAKEUP pin or RTC ALARM
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5.4.1 Features

■ External interrupt lines can be used to wake-up the system from STOP mode 

■ Programmable selection of Wake-up or Interrupt

■ Programmable Wake-up trigger edge polarity

■ All Wake-up Lines individually maskable

■ Wake-up interrupt generated by software
Figure 29. XTI Block Diagram
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5.4.2 Functional Description

5.4.2.1 Interrupt Mode

To configure the 16 lines as interrupt sources, use the following procedure:

1. Configure the mask bits of the 16 wake-up lines (XTI_MRL, XTI_MRH).

2. Configure the triggering edge registers of the wake-up lines (XTI_PRL, XTI_TRH).

3. In the EIC registers, enable the IRQ5 interrupt channel so an interrupt coming from one of
the 16 wake-up lines can be correctly acknowledged.

4. Clear the WKUP-INT bit in the XTI_CTRL register to disable Wake-up Mode.

5. Set the ID1S bit in the XTI_CTRL register to enable the 16 wake-up lines as external inter-
rupt source lines.

5.4.2.2 Wake-up Mode Selection

To configure the 16 lines as wake-up sources, use the following procedure:

1. Configure the mask bits of the 16 wake-up lines (XTI_MRL, XTI_MRH).

2. Configure the triggering edge registers of the wake-up lines (XTI_TRL, XTI_TRH).

3. If an interrupt routine is to be executed after a wake-up event, then enable the IRQ5 inter-
rupt channel using the EIC registers. Otherwise, if the wake-up event only restarts execut-
ing of the code from where it was stopped, the IRQ5 interrupt channel must be masked.

4. Since the PRCCU can generate an interrupt request when exiting from STOP mode, take
care to mask it if the wake-up event is only to restart code execution.

5. Set the WKUP-INT bit in the XTI_CTRL register to select Wake-up Mode.

6. Set the ID1S bit in the XTI_CTRL register toenable the 16 wake-up lines as external inter-
rupt source lines. 

7. Write the sequence 1,0,1 to the STOP bit of the XTI_CTRL register. This is the STOP bit
setting sequence. Pay attention that the three write operations are effective even though
not executed in a strict sequence (intermediate instructions are allowed): to reset the
sequence it is sufficient to write twice a logic ‘0’ to the STOP bit of XTI_CTRL register
(corresponding anyway to a bad sequence).

To detect if STOP Mode was entered or not, immediately after the end of the STOP bit setting
sequence, poll the PRCCU STOP_I flag bit and the STOP bit itself (XTI_CTRL register). 
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5.4.2.3 STOP Mode Entry Conditions 

Assuming the device is in Run mode: during the STOP bit setting sequence the following
cases may occur:

Case 1: Wrong STOP bit setting sequence

This can happen if an Interrupt request is acknowledged during the STOP bit setting
sequence. In this case polling the STOP and STOP_I bits will give:

STOP = 0, STOP_I = 0

This means that the device did not enter STOP mode due to a bad STOP bit setting
sequence: the user must retry the sequence.

Case 2: Correct STOP bit setting sequence

In this case the device enters STOP mode. 

To exit STOP mode, a wake-up interrupt must be acknowledged. This implies:

STOP = 0, STOP_I = 1

This means that the device entered and exited STOP mode due to an external wake-up line
event.

Case 3: A wake-up event on the external wake-up lines occurs during the STOP bit
setting sequence 

There are two possible cases:

1. Interrupt requests to the CPU are disabled: in this case the device will not enter STOP
mode, no interrupt service routine will be executed and the program execution continues
from the instruction following the STOP bit setting sequence. The status of STOP and
STOP_I bits will be again:

STOP = 0, STOP_I = 0

The application can determine why the device did not enter STOP mode by polling the
pending bits of the external lines (at least one must be at 1).

2. Interrupt requests to CPU are enabled: in this case the device will not enter STOP mode
and the interrupt service routine will be executed. The status of STOP and STOP_I bits
will be again:

STOP = 0, STOP_I = 0

The interrupt service routine can determine why the device did not enter STOP mode by
polling the pending bits of the external lines (at least one must be at 1).

If the device really exits from STOP Mode, the PRCCU STOP_I bit is still set and must be
reset by software. Otherwise, if an Interrupt request was acknowledged during the STOP bit
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setting sequence, the PRCCU STOP_I bit is reset. This means that the system has filtered the
STOP Mode entry request.

The WKUP-INT bit can be used by an interrupt routine to detect and to distinguish events
coming from Interrupt Mode or from Wake-up Mode, allowing the code to execute different
procedures.

To exit STOP mode, it is sufficient that one of the 16 wake-up lines (not masked) generates an
event: the clock restarts after the delay needed for the oscillator to restart.

Note After waking-up from STOP Mode, software can successfully reset the pending bits
(edge sensitive), even though the corresponding wake-up line is still active (high or
low, depending on the Trigger Event register programming); the user must poll the
external pin status to detect and distinguish a short event from a long one (for
example keyboard input with keystrokes of varying length).

5.4.3 Programming Considerations

The following paragraphs give some guidelines for designing an application program.

5.4.3.1 Procedure for Entering/Exiting STOP mode

1. Program the polarity of the trigger event of external wake-up lines by writing registers
XTI_TRH and XTI_TRL.

2. Check that at least one mask bit (registers XTI_MRH, XTI_MRL) is equal to 1 (so at least
one external wake-up line is not masked).

3. Reset at least the unmasked pending bits: if unmasked pending bits are not cleared
STOP Mode cannot be entered.

4. Set the ID1S t and the WKUP-INT bits in the XTI_CTRL register.

5. To generate an interrupt on the associated channel (IRQ5), set the related enable, mask
and priority bits in the EIC registers.

6. Reset the STOP bit in register XTI_CTRL and STOP_I bit in CLK_FLAG register
(PRCCU).

7. To enter STOP mode, write the sequence 1, 0, 1 to the STOP bit in the XTI_CTRL regis-
ter. As already said, the three write operations are effective even though not executed in a
strict sequence (intermediate instructions are allowed): to reset the sequence it is suffi-
cient to write twice a logic ‘0’ to the STOP bit of XTI_CTRL register (corresponding any-
way to a bad sequence).

8. The code to be executed just after the STOP sequence must check the status of the
STOP and PRCCU STOP_I bits to determine if the device entered STOP mode or not. If
the device did not enter in STOP mode it is necessary to re-loop the procedure from the
beginning, otherwise the procedure continues from next point.

9. Poll the wake-up pending bits to determine which wake-up line caused the exit from STOP
mode.

10. Clear the wake-up pending bit that was set.
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5.4.3.2 Simultaneous Setting of Pending Bits

It is possible that several simultaneous wake-up events set different pending bits. In order to
accept subsequent events on external wake-up/interrupt lines, once the first interrupt routine
has been executed, the corresponding pending bit in XTI_PRx register it is necessary to clear
at least one pending bit: this operation allows a rising edge to be generated on the internal line
(if there is at least one more pending bit set and not masked) and so to set the interrupt
controller pending bit again. A further interrupt on the same channel of the interrupt controller
will be serviced depending on the status of the mask bit. Two possible situations may arise:

1. The user chooses to reset all pending bits: no further interrupt requests will be generated
on the channel. In this case the user has to:

– Reset the interrupt controller mask bit (to avoid generating a spurious interrupt request
during the next reset operations)

– Reset the XTI_PRH register 

– Reset the XTI_PRL register

2. The user chooses to keep at least one pending bit active: at least one additional interrupt
request will be generated on the interrupt controller channel. In this case the user has to
reset the desired pending bits. This operation will generate a rising edge on the interrupt
controller channel and the corresponding pending bit will be set again. An interrupt on the
this channel will be serviced depending on the status of corresponding mask bit.
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5.4.4 Register Description

5.4.4.1 XTI Software Interrupt Register (XTI_SR)

Address Offset: 1Ch
Reset value: 00h

Bit 7:0 = XTIS[7:0]: Software Interrupt Pending Bits.
These bits can be set by software to implement a software interrupt.

The interrupt routine must clear any pending bits that are set. These interrupts are masked by
the global interrupt enable (bit ID1S in XTI_CTRL register) .
0: No software interrupt pending.
1: Software interrupt pending.

5.4.4.2 Wake-up Control Register (XTI_CTRL)

Address Offset: 24h
Reset value: 00h

Bit 7:3 = Reserved.

Bit 2 = STOP: Stop bit.
To enter STOP Mode, write the sequence 1,0,1 to this bit with three (not necessarily
consecutive) write operations. When a correct sequence is recognized, the STOP bit is set
and the PRCCU puts the MCU in STOP Mode. The software sequence succeeds only if the
following conditions are true:

– The WKUP-INT bit is 1, 

– All unmasked pending bits are reset,
– At least one mask bit is equal to 1 (at least one external wake-up line is not masked). 

Otherwise the device cannot enter STOP mode, the program code continues executing and
the STOP bit remains cleared. 
The bit is reset by hardware if, while the device is in STOP mode, a wake-up interrupt comes
from any of the unmasked wake-up lines. The STOP bit is at 1 in the two following cases:

7 6 5 4 3 2 1 0

XTIS7 XTIS6 XTIS5 XTIS4 XTIS3 XTIS2 XTIS1 XTIS0

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

reserved STOP ID1S WKUP-INT

- rw rw rw
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– After the first write instruction of the sequence (a 1 is written to the STOP bit)

– At the end of a successful sequence (i.e. after the third write instruction of the sequence)

CAUTION: If interrupt requests are acknowledged during the sequence, the system will not
enter STOP mode (since the sequence is not completed). At the end of the interrupt service
routine, it is recommended to reset the sequence state machine by twice writing a logic ‘0’ to
the STOP bit of XTI_CTRL register (corresponding anyway to a bad sequence). Otherwise,
the incomplete sequence will wait to be completed, (STOP bit is set only after the third correct
writing instruction of the sequence).

CAUTION: Whenever a STOP request is issued to the device,several clock cycles are needed
to enter STOP mode (see PRCCU chapter for further details). Hence the execution of the
instruction following the STOP bit setting sequence might start before entering STOP mode
(consider the ARM7 three-stage pipeline as well). In order to avoid executing any valid
instructions after a correct STOP bit setting sequence and before entering STOP mode, it is
mandatory to execute a few (at least 6) dummy instructions after the STOP bit setting
sequence (after the third valid STOP bit write operation. Additionally, if an interrupt routine is
executred when exiting from STOP mode , another set of dummy instructions (at least 3) must
be added, to take into account of the latency period. This takes into account that when STOP
mode is entered, the pipeline content is frozen as well, and when the system restarts the first
executed instruction was already fetched and decoded before entering STOP mode. Below is
some example code for managing STOP mode entering/exiting.

LDR R0, = APB0 + APB_XTIP ; Base address of Wake-up Module setting

MOV R1, #3 ; Setting of Control Register
STR R1, [R0, #XTI_CTRL]

MOV R3, #0x08 ; Unmask wake-up line 3
STR R3, [R0, #XTI_MRL]

MOV R2, #0x07 ; R2 used to write ‘1’ into STOP bit

STR R2, [R0, #XTI_CTRL] ; 1st sequence instruction (writing ‘1’)
STR R1, [R0, #XTI_CTRL] ; 2nd sequence instruction (writing ‘0’)
STR R2, [R0, #XTI_CTRL] ; 3rd sequence instruction (writing ‘1’)

MOV R1, R1 ; Set of 9 dummy instructions
MOV R1, R1
MOV R1, R1
MOV R1, R1
MOV R1, R1
MOV R1, R1
MOV R1, R1
MOV R1, R1
MOV R1, R1

If you want the system to restart from STOP mode without entering an interrupt service
routine, but simply by executing the first valid instruction just after the STOP sequence, only
the first six dummy instructions are needed.

Bit 1 = ID1S: XTI Global Interrupt Mask.
This bit is set and cleared by software.
0: XTI interrupts disabled.
1: XTI interrupts enabled.
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WARNING: To avoid spurious interrupt requests on the IRQ5 channel of the EIC, it is
recommended to clear the corresponding enable bit in the EIC IER register before modifying
the ID1S bit.

Bit 0 = WKUP-INT: Wake-up Interrupt.
This bit is set and cleared by software.
0: The 16 wake-up lines can be used to generate interrupt requests on the IRQ5 channel of

the EIC interrupt controller
1: The 16 wake-up lines work as wake-up sources for exiting from STOP mode.

5.4.4.3 XTI Mask Register High (XTI_MRH)

Address Offset: 28h
Reset value: 00h

Bit 7:0 = XTIM[15:8]: Wake-Up Mask bits.
If XTIMx is set, an interrupt and/or a wake-up event (depending on ID1S and WKUP-INT bits)
are generated if the corresponding XTIPx pending bit is set. More precisely, if XTIMx=1 and
XTIPx=1 then:

– If ID1S=1 and WKUP-INT=1 then an interrupt and a wake-up events are generated.

– If ID1S=1 and WKUP-INT=0 only an interrupt is generated.

– If ID1S=0 and WKUP-INT=1 only a wake-up event is generated.
– If ID1S=0 and WKUP-INT=0 neither interrupts nor wake-up events are generated.

If XTIMx is reset, no wake-up events can be generated.

5.4.4.4 XTI Mask Register Low (XTI_MRL)

Address Offset: 2Ch
Reset value: 00h

Bit 7:0 = XTIM[7:0]: Wake-Up Mask bits.
If XTIMx is set, an interrupt and/or a wake-up event (depending on ID1S and WKUP-INT bits)
are generated if the corresponding XTIPx pending bit is set. More precisely, if XTIMx=1 and
XTIPx=1 then:

7 6 5 4 3 2 1 0

XTIM15 XTIM14 XTIM13 XTIM12 XTIM11 XTIM10 XTIM9 XTIM8

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

XTIM7 XTIM6 XTIM5 XTIM4 XTIM3 XTIM2 XTIM1 XTIM0

rw rw rw rw rw rw rw rw
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– If ID1S=1 and WKUP-INT=1 then an interrupt and a wake-up events are generated.

– If ID1S=1 and WKUP-INT=0 only an interrupt is generated.

– If ID1S=0 and WKUP-INT=1 only a wake-up event is generated.

– If ID1S=0 and WKUP-INT=0 neither interrupts nor wake-up events are generated.

If XTIMx is reset, no wake-up events can be generated.

5.4.4.5 XTI Trigger Polarity Register High (XTI_TRH)

Address Offset: 30h
Reset value: 00h

Bit 7:0 = XTIT[15:8]: XTI Trigger Polarity Bits
These bits are set and cleared by software.
0: The corresponding XTIPx pending bit will be set on the falling edge of the input wake-up

line.
1: The corresponding XTIPx pending bit will be set on the rising edge of the input wake-up

line.

5.4.4.6 XTI Trigger Polarity Register Low (XTI_TRL)

Address Offset: 34h
Reset value: 00h

Bit 7:0 = XTIT[7:0]: XTI Trigger Polarity Bits
These bits are set and cleared by software.
0: The corresponding XTIPx pending bit will be set on the falling edge of the input wake-up

line.
1: The corresponding XTIPx pending bit will be set on the rising edge of the input wake-up

line.

7 6 5 4 3 2 1 0

XTIT15 XTIT14 XTIT13 XTIT12 XTIT11 XTIT10 XTIT9 XTIT8

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

XTIT7 XTIT6 XTIT5 XTIT4 XTIT3 XTIT2 XTIT1 XTIT0

rw rw rw rw rw rw rw rw
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Caution:

1. As the external wake-up lines are edge triggered, no glitches must be generated on these
lines.

2. If either a rising or a falling edge on the external wake-up lines occurs while writing the
XTI_TRH or XTI_TRL registers, the pending bit will not be set.

5.4.4.7 XTI Pending Register High (XTI_PRH)

Address Offset: 38h
Reset value: 00h

Bit 7:0 = XTIP[15:8]: XTI Pending Bits.
These bits are set by hardware on occurrence of the trigger event on the corresponding
wake-up line. These bits can be written by software only to ‘0’.

0: No Wake-up Trigger event occurred.
1: Wake-up Trigger event occurred.

5.4.4.8 XTI Pending Register Low (XTI_PRL)

Address Offset: 3Ch
Reset value: 00h

Bit 7:0 = XTIP[7:0]: XTI Pending Bits.
These bits are set by hardware on occurrence of the trigger event on the corresponding
wake-up line. These bits can be written by software only to ‘0’.
0: No Wake-up Trigger event occurred.
1: Wake-up Trigger event occurred

7 6 5 4 3 2 1 0

XTIP15 XTIP14 XTIP13 XTIP12 XTIP11 XTIP10 XTIP9 XTIP8

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

7 6 5 4 3 2 1 0

XTIP7 XTIP6 XTIP5 XTIP4 XTIP3 XTIP2 XTIP1 XTIP0

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0
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5.4.5 XTI Register Map

See Table 3, “APB2 memory map,” on page 18 for base address

Table 27. XTI register map
Address

Offset
Register Name 7 6 5 4 3 2 1 0

1C XTI_SR XTIS(7:0)

24 XTI_CTRL reserved STOP ID1S WKUP-INT

28 XTI_MRH XTIM(15:8)

2C XTI_MRL XTIM(7:0)

30 XTI_TRH XTIT(15:8)

34 XTI_TRL XTIT(7:0)

38 XTI_PRH XTIP(15:8)

3C XTI_PRL XTIP(7:0)
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6 REAL TIME CLOCK (RTC)

6.1 Introduction

The RTC provides a set of continuously running counters which can be used, with suitable
software, to provide a clock-calendar function. The counter values can be written to set the
current time/date of the system. 

The RTC includes an APB slave interface, to provide access by word to internal 32-bit
registers; this interface is disconnected from the APB bus when the main power supply is
removed.

6.2 Main Features
■ Programmable prescaler: external clock divided up to 220

■ 32-bit programmable counter for long term measurement

■ External clock input (must be at least 4 times slower than PCLK2 clock)

■ Separate power supply

■ 4 dedicated maskable interrupt lines:

– Alarm interrupt, for generating a software programmable alarm interrupt

– Seconds interrupt, for generating a periodic interrupt signal with a programmable period
length (up to 1 sec.)

– Overflow interrupt, to detect when the of the internal programmable counter rolls over to
zero

– Global interrupt: a logical OR function of all the above, to allow a single interrupt channel
to manage all the interrupt sources 

6.3 Functional Description

6.3.1 Overview

The RTC consists of two main units (see Figure 30 on page 112), the first one (APB Interface)
is used to interface the APB bus. This unit also contains a set of 16-bit registers, synchronous
to PCLK2 Clock and accessible from the APB bus in read or write mode (for more details refer
to Register description section). The APB interface is clocked by the PCLK2 Clock.

The other unit (RTC Core) consists of a chain of programmable counters made of 2 main
blocks. The first block is the RTC precaler block which generates the RTC time base TR_CLK
which can be programmed to have a period of up 1 second. It includes a 20-bit programmable
divider (RTC Prescaler). Every TR_CLK period, the RTC generates an interrupt (SecInt) if it is
enabled in the RTC_CR register. The second block is a 32-bit programmable counter that can
be initialised to the current system time. The system time is incremented at the TR_CLK rate
and compared with a programmable date (stored in the RTC_ALR register) in order to
generate an alarm interrupt, if enabled in RTC_CR control register.
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Important note: Due to the fact the RTC has 2 different clock domains, after wake-up from
STOP mode, the APB interface (controlled by PCLK2) does not match the registers/counter
values of the RTC domain (clocked by the 32kHz osc) that keeps running while the system is
in STOP mode. Therefore to avoid reading wrong values in the APB interface, the application
should wait for at least 1 RTC clock period or 31.25us after exiting STOP mode before reading
the RTC registers. The same precaution applies to WFI mode, as the APB interface is
switched off and switched on at a later stage.

Figure 30. RTC simplified block diagram
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6.3.2 Reset procedure

All system registers are asynchronously reset by the System Reset or the Software Reset,
except RTC_ALR, RTC_CNT, RTC_DIV. These registers and the Real-time clock counter are
reset only by the Low Voltage Detector (Power-on reset). They are not affected by any other
reset source, nor by Standby mode.

6.3.3 Free-running mode

After Power-on reset, the peripheral enters free-running mode. In this operating mode, the
RTC Prescaler and the Programmable counter start counting. Interrupt flags are activated too
but, since interrupt signals are masked, there is no interrupt generation. Interrupt signals must
be enabled by setting the appropriate bits in the RTC_CR register. In order to avoid spurious
interrupt generation it is recommended to clear old interrupt requests before enabling them.

6.3.4 Configuration mode 

To write in RTC_PRL, RTC_CNT, RTC_ALR registers, the peripheral must enter Configuration
mode. This is done setting the CNF bit in the RTC_CRL register. 

In addition, writing to any RTC register is only enabled if the previous write operation is
finished. To enable the software to detect this situation, the RTOFF status bit is provided in the
RTC_CR register to indicate that an update of the registers is in progress. A new value can be
written to the RTC counters only when the status bit value is ’1’.

Configuration Procedure:

1. Poll RTOFF, wait until its value goes to ‘1’

2. Set CNF bit to enter configuration mode

2. Write to one or more RTC registers

3 Clear CNF bit to exit configuration mode

The write operation only executes when the CNF bit is cleared and it takes at least two
Clock32 cycles to complete.
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6.4 Register description

The RTC registers cannot be accessed by byte. The reserved bits can not be written and they
are always read as ‘0’.

6.4.1 RTC Control Register High (RTC_CRH)

Address Offset: 00h
Reset value: 0000h

These bits are used to mask interrupt requests. Note that at reset all interrupts are disabled,
so it is possible to write to the RTC registers to ensure that no interrupt requests are pending
after initialization. It is not possible to write RTC_CRH register when the peripheral is
completing a previous write operation (flagged by RTOFF=0, see “Configuration mode” on
page 113).

The functions of the RTC are controlled by this control register. Some bits must be written
using a specific configuration procedure (see “Configuration mode” on page 113).

Bit 15:4 = Reserved, always read as 0.

Bit 3 = GEN: Global interrupt Enable
0: Global interrupt is masked.
1: Global interrupt is enabled.

Bit 2 = OWEN: Overflow interrupt Enable
0: Overflow interrupt is masked.
1: Overflow interrupt is enabled.

Bit 1 = AEN: Alarm interrupt Enable
0: Alarm interrupt is masked.
1: Alarm interrupt is enabled.

Bit 0 = SEN: Second interrupt Enable
0: Second interrupt is masked.
1: Second interrupt is enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved GEN OWEN AEN SEN

- rw rw rw rw
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6.4.2 RTC Control Register Low (RTC_CRL)

Address Offset: 04h
Reset value: 0020h

The functions of the RTC are controlled by this control register. It is not possible to write
RTC_CR register when the peripheral is completing a previous write operation (flagged by
RTOFF=0, see “Configuration mode” on page 113).

Bit 15:6 = Reserved, always read as 0.

Bit 5 = RTOFF: RTC operation OFF
With this bit the RTC reports the status of the last write operation performed on its registers,
indicating if it has been completed or not. If its value is ‘0’ then it is not possible to write to any
of the RTC registers. This bit is read only.
0: Last write operation on RTC registers is still ongoing.
1: Last write operation on RTC registers terminated.

Bit 4 = CNF: Configuration Flag
This bit must be set by software to enter configuration mode so as to allow new values to be
written in the RTC_CNT, RTC_ALR or RTC_PRL registers. The write operation is only
executed when , the CNF bit is reset by software after has been set.
0: Exit configuration mode (start update of RTC registers).
1: Enter configuration mode.

Bit 3 = GIR: Global Interrupt Request
This bit contains the status of global interrupt request signal, which is goes high when at least
one of the other interrupt lines is active. When this bit is set, the corresponding interrupt will be
generated only if GEN bit is set. The GIR bit can be set only by hardware and can be cleared
only by software, while writing ‘1’ will left it unchanged.
0: GloInt interrupt condition not met.
1: GloInt interrupt request pending.

Bit 2 = OWIR: Overflow Interrupt Request
This bit stores the status of periodic interrupt request signal (RTC_OwIT) generated by the
overflow of the 32-bit programmable counter. This interrupt may be used to wake-up the
system from a long lasting Standby condition, if the system time has to be kept up-to-date.
When this bit is at ‘1’, the corresponding interrupt will be generated only if OWEN bit is set to
‘1’. OWEN bit can be set at ‘1’ only by hardware and can be cleared only by software, while
writing ‘1’ will left it unchanged.
0: Overflow interrupt condition not met.
1: Overflow interrupt request pending.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RTOFF CNF GIR OWIR AIR SIR

- r rw rc_w0 rc_w0 rc_w0 rc_w0
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Bit 1 = AIR: Alarm Interrupt Request
This bit contains the status of periodic interrupt request signal (RTC_AlarmIt) generated by
the 32 bit programmable counter when the threshold set in RTC_ALR register is reached.
When this bit is at ‘1’, the corresponding interrupt will be generated only if AEN bit is set to ‘1’.
AIR bit can be set at ‘1’ only by hardware and can be cleared only by software, while writing ‘1’
will left it unchanged.
0: Alarm interrupt condition not met.
1: Alarm interrupt request pending.

Bit 0 = SIR: Second Interrupt Request
This bit contains the status of second interrupt request signal (RTC_SecIt) generated by the
overflow of the 20-bit programmable prescaler which increments the RTC counter. Hence this
Interrupt provides a periodic signal with a period corresponding to the resolution programmed
for the RTC counter (usually one second). When this bit is at ‘1’, the corresponding interrupt
will be generated only if SEN bit is set to ‘1’. SIR bit can be set at ‘1’ only by hardware and can
be cleared only by software, while writing ‘1’ will left it unchanged.
0: ‘Second’ interrupt condition not met.
1: ‘Second’ interrupt request pending.

Any interrupt request remains pending until the appropriate RTC_CR request bit is reset by
software, notifying that the interrupt request has been granted.

Note that at reset the interrupts are disabled, it is possible to write the RTC registers and no
interrupt requests are pending.

6.4.3 RTC Prescaler Load Register High (RTC_PRLH) 

Address Offset: 08h
Write only (see “Configuration mode” on page 113)
Reset value: 0000h

The Prescaler Load registers keep the period counting value of the RTC prescaler. They are
write protected by the RTOFF bit in the RTC_CR register, write operation is allowed if RTOFF
value is ‘1’.

Bit 15:4 = Reserved, always read as 0.

Bit 3:0 = PRSL[19:16]: RTC Prescaler reLoad value high

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PRSL(19:16)

- w
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6.4.4 RTC Prescaler Load Register Low (RTC_PRLL) 

Address Offset: 0Ch
Write only (see “Configuration mode” on page 113)
Reset value: 8000h

Bit 15:0 = PRSL[15:0]: RTC Prescaler Reload value low

Note: The reset value sets the TR_CLK signal period to 1 sec for a 32-kHz oscillator.

6.4.5 RTC Prescaler Divider Register High (RTC_DIVH)

Address Offset: 10h
Reset value: 0000h

Bit 15:4 = Reserved, always read as 0.

Every period of TR_CLK the counter inside RTC prescaler is reloaded with the value stored in
the RTC_PRL register. To get an accurate time measurement it is possible to read the current
value of the prescaler counter, stored into the RTC_DIV register, without stopping it. This reg-
ister is read only and it is reloaded by hardware after any change in RTC_PRL or RTC_CNT
registers.

Bit 3:0 = RTCDIV[19:16]: RTC Clock Divider High

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRSL(15:0)

w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RTCDIV(19:16)

- r
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6.4.6 RTC Prescaler Divider Register Low (RTC_DIVL)

Address Offset: 14h
Reset value: 8000h

Bit 3:0 = RTCDIV[15:0]: RTC Clock Divider Low

6.4.7 RTC Counter Register High (RTC_CNTH)

Address Offset: 18h
Reset value: 0000h

The RTC core has one 32-bit programmable counter, accessed through 2 16-bit registers; the
count rate is based on the TR_Clock time reference, generated by the prescaler. RTC_CNT
registers keep the counting value of this counter. They are write protected by bit RTOFF in the
RTC_CR register, write operation is allowed if RTOFF value is ‘1’. A write operation on the
upper (RTC_CNTH) or lower (RTC_CNTL) registers directly loads the corresponding
programmable counter and reloads the RTC Prescaler. When reading, the current value in the
counter (system date) is returned. The counters keep on running while the external clock
oscillator is working even if the main system is powered down (Standby mode).

Bit 15:0 = RTC_CNT[31:16]: RTC Counter High
Reading RTC_CNTH register, the current value of the high part of RTC Counter register is
returned. To write this register it is required to enter configuration mode using the RTOFF bit in
the RTC_CR register.

6.4.8 RTC Counter Register Low (RTC_CNTL)

Address Offset: 1Ch
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCDIV(15:0)

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_CNT[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_CNT[15:0]

rw
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Bit 15:0 = RTC_CNT[15:0]: RTC Counter Low 
Reading RTC_CNTL register, the current value of the lower part of RTC Counter register is
returned. To write this register it is required to enter configuration mode using the RTOFF bit in
the RTC_CR register.

6.4.9 RTC Alarm Register High (RTC_ALRH)

Address Offset: 20h
Write only (see “Configuration mode” on page 113)
Reset value: FFFFh

When the programmable counter reaches the 32-bit value stored in the RTC_ALR register, an
alarm is triggered and the RTC_alarmIT interrupt request is generated. This register is write
protected by the RTOFF bit in the RTC_CR register, write operation is allowed if the RTOFF
value is ‘1’.

Bit 15:0 = RTC_ALR[31:16]: RTC Alarm High 
The high part of alarm time is written by software in this register. To write this register it is
required to enter configuration mode using the RTOFF bit in the RTC_CR register.

6.4.10 RTC Alarm Register Low (RTC_ALRL)

Address Offset: 24h
Write only (see “Configuration mode” on page 113)
Reset value: FFFFh

Bit 15:0 = RTC_ALR[15:0]: RTC Alarm Low 
The low part of alarm time is written by software in this register. To write this register it is
required to enter configuration mode using the RTOFF bit in the RTC_CR register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_ALR[31:16]

w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_ALR[15:0]

w
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6.5 RTC Register map

RTC registers are mapped as 16-bit addressable registers as described in the table below:

Table 28. RTC Register Map

See Table 3, “APB2 memory map,” on page 18 for base address

Address

Offset
Register 

Name
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RTC_CRH --- GEN
OW 
EN AEN SEN

4 RTC_CRL ---
RT 
OF
F

CN
F GIR

OWI
R AIR SIR

8 RTC_PRL
H --- PRSL

Ch RTC_PRL
L PRSL

10h
RTC_DIV

H --- DIV

14h
RTC_DIV

L DIV

18h RTC_CNT
H

CNTH

1Ch RTC_CNT
L

CNTL

20h RTC_ALR
H ALARMH

24h RTC_ALR
L ALARML
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7 WATCHDOG TIMER (WDG)

7.1 Introduction

The Watchdog Timer peripheral can be used as free-running timer or as Watchdog to resolve
processor malfunctions due to hardware or software failures.

7.2 Main Features
■ 16-bit down Counter 

■ 8-bit clock Prescaler

■ Safe Reload Sequence

■ Free-running Timer mode

■ End of Counting interrupt generation

7.3 Functional Description

Figure 31 shows the functional blocks of the Watchdog Timer module. The module can work
as Watchdog or as Free-running Timer. In both working modes the 16-bit Counter value can
be accessed through a reading of the WDG_CNT register.

7.3.1 Free-running Timer mode

If the  WE bit of WDG_CR register is not written to ‘1’ by software, the peripheral enters
Free-running Timer mode. 
When in this operating mode as the SC bit of WDG_CR register is written to ‘1’ the WDG_VR
value is loaded in the Counter and the Counter starts counting down. 

When it reaches the end of count value (0000h) an End of Count interrupt is generated
(EC_int) and the WDG_VR value is re-loaded. The Counter runs until the SC bit is cleared.

Figure 31. Watchdog Timer Functional Block

PCLK2

WE SC

EC_int

sys_RES

Prescaler
16-bit Counter

WDG_PR
Register

WDG_VR
Register

WDG_CR Register bits

8-bit
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7.3.2 Watchdog mode

If the WE bit of WDG_CR register is written to ‘1’ by software, the peripheral enters Watchdog
mode. This operating mode can not be changed by software (the SC bit has no effect and WE
bit cannot be cleared).
As the peripheral enters in this operating mode, the WDG_VR value is loaded in the Counter
and the Counter starts counting down. When it reaches the end of count value (0000h) a
system reset signal is generated (sys_RES).

If a sequence of two consecutive values (0xA55A and 0x5AA5) is written in the WDG_KR
register see Section 7.4, the WDG_VR value is re-loaded in the Counter, so the End of count
can be avoided.

7.4 Register description

The Watchdog Timer registers can not be accessed by byte.
The reserved bits can not be written and they are always read at ‘0’.

7.4.1 WDG Control Register (WDG_CR)

Address Offset: 00h

Reset value: 0000h

Bit 15:2 = Reserved, must be kept cleared.

Bit 1 = SC: Start Counting bit
1: The counter loads the Timer pre-load value and starts counting
0: The counter is stopped.
These functions are permitted only in Timer Mode (WE bit = 0).

Bit 0 = WE: Watchdog Enable bit
1: Watchdog Mode is enabled 
0: Timer Mode is enabled
This bit can’t be reset by software.

When WE bit is high, SC bit has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SC WE

- rw rw
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7.4.2 WDG Prescaler Register (WDG_PR)

Address Offset: 04h

Reset value: 00FFh

Bit 15:8 = Reserved.

Bit 7:0 = PR[7:0]: Prescaler value
The clock to Timer Counter is divided by PR[7:0]+1.
This value takes effect when Watchdog mode is enabled (WE bit is put to ‘1’) or the re-load
sequence occurs or the Counter starts (SC) bit is put to ‘1’ in Timer mode.

7.4.3 WDG Preload Value Register (WDG_VR)

Address Offset: 08h

Reset value: FFFFh

Bit 15:0 = TV[15:0]: Timer Pre-load Value
This value is loaded in the Timer Counter when it starts counting or a re-load sequence
occurs or an End of Count is reached. The time (µs) need to reach the end of count is given
by:

(PR[7:0]+1)*(TV[15:0]+1)*tPCLK2/1000 (µs) 

where tPCLK2 is the Clock period measured in ns.
I.e. if PCLK2 = 20MHz the default timeout set after the system reset is 256*65535*50/1000 =
838800µs.

7.4.4 WDG Counter Register (WDG_CNT)

Address Offset: 0Ch

Reset value: FFFFh

Bit 15:0 = CNT[15:0]: Timer Counter Value
The current counting value of the 16-bit Counter is available reading this register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

- rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TV15 TV14 TV13 TV12 TV11 TV10 TV9 TV8 TV7 TV6 TV5 TV4 TV3 TV2 TV1 TV0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
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7.4.5 WDG Status Register (WDG_SR)

Address Offset: 10h

Reset value: 0000h

Bit 15:1 = Reserved.

Bit 0 = EC: End of Count pending bit
1: the End of Count has occurred
0: no End of Count has occurred
In Watchdog Mode (WE = 1) this bit has no effect.
This bit can be set only by hardware and must be reset by software.

7.4.6 WDG Mask Register (WDG_MR)

Address Offset: 14h

Reset value: 0000h

Bit15:1 = Reserved.

Bit 0 = ECM: End of Count Mask bit
1: End of Count interrupt request is enabled
0: End of Count interrupt request is disabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8 CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNT0

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved EC

- r-c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ECM

- rw
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7.4.7 WDG Key Register (WDG_KR)

Address Offset: 18h

Reset value: 0000h

Bit 15:0 = K[15:0]: Key Value
When Watchdog Mode is enabled, writing in this register two consecutive values (refer to
device specification) the Counter is initialized to TV[15:0] value and the Prescaler value in
WTDPR register take effect. Any number of instructions can be executed between the two
writes.
If Watchdog Mode is disabled (WE = 0) a writing in this register has no effect.
The reading value of this register is 0000h.

7.5 WDG Register Map

See Table 3, “APB2 memory map,” on page 18 for base address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Table 29. Watchdog-Timer Register Map

Addr.
Offset

Register 
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WDG_CR reserved SC WE

4 WDG_PR reserved PR(7:0)

8 WDG_VR TV(15:0)

C WDG_CNT TV(15:0)

10 WDG_SR reserved EC

14 WDG_MR reserved MEC

18 WDG_KR K[15:0]
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8 TIMER (TIM)

8.1 Introduction

A timer consists of a 16-bit counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two
input signals (input capture) or generation of up to two output waveforms (output compare and
PWM).

Pulse lengths and waveform periods can be modulated from a very wide range using the timer
prescaler.

8.2 Main Features
■ Programmable prescaler: fPCLK2 divided from 1 to 256, Prescaler register (0 to 255) value

+1.

■ Overflow status flag and maskable interrupts

■ External clock input (must be at least 4 times slower than the PCLK2 clock speed) with the
choice of active edge

■ Output compare functions with

– 2 dedicated 16-bit registers

– 2 dedicated programmable signals

– 2 dedicated status flags
– 2 dedicated interrupt flags.

■ Input capture functions with

– 2 dedicated 16-bit registers

– 2 dedicated active edge selection signals

– 2 dedicated status flags
– 2 dedicated interrupt flags.

■ Pulse width modulation mode (PWM)

■ One pulse mode (OPM)

■ PWM input mode

■ Timer global interrupt (5 internally OR’ed or separated sources, depending on device)

– ICIA: Timer Input capture A interrupt

– ICIB: Timer Input capture B interrupt

– OCIA: Timer Output compare A interrupt

– OCIB: Timer Output compare B interrupt
– TOI: Timer Overflow interrupt.

The Block Diagram is shown in Figure 32.
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8.3 Special Features

Timer0:

• T0.EXTCLK input is directly connected to CK pin through a prescaler, which divides the
input frequency by eight.

• T0.ICAP_B is connected to RTC ALARM; this allows to synchronize Timer0 and the Real
Time Clock. 

Timer2:

• T2.ICAP_B (Input Capture B) is connected to RECCOMPL (Reception Complete) from
HDLC, which is the Interrupt Request generated on completion of a correct data frame.

• T2.OCMP_B (Output Compare B) is connected to HDLC_HTEN (Transmit Enable). A
rising edge of T2.OCMP_B allows to trigger by Hardware the start of Transmission,
enabling a precise timing for this event, or (in combination with the ICAP_B above) a
precise delay between the reception of an incoming frame and the start of the answer. 

8.4 Functional Description

8.4.1 Counter

The principal block of the Programmable Timer is a 16-bit counter and its associated 16-bit
registers.

Writing in the Counter Register (CNTR) resets the counter to the FFFCh value. 

The timer clock source can be either internal or external selecting ECKEN bit of CR1 register.
When ECKEN = 0, the frequency depends on the prescaler division bits (CC7-CC0) of the
CR2 register.

An overflow occurs when the counter rolls over from FFFFh to 0000h then the TOF bit of the
SR register is set. An interrupt is generated if TOIE bit of the CR2 register is set; if this
condition is false, the interrupt remains pending to be issued as soon as it becomes true. 

Clearing the overflow interrupt request is done by a write access to the SR register while the
TOF bit is set with the data bus 13-bit at ‘0’, while all the other bits shall be written to ‘1’ (the
SR register is clear only, so writing a ‘1’ in a bit has no effect: this makes possible to clear a
pending bit without risking to clear a new coming interrupt request from another source).
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Figure 32. Timer Block Diagram
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8.4.2 External Clock

The external clock (where available) is selected if ECKEN = 1 in CR1 register.

The status of the EXEDG bit determines the type of level transition on the external clock pin
EXTCLK that will trigger the counter.

The counter is synchronized with the rising edge of the internal clock coming from the PCLK2
block.

At least four rising edges of the PCLK2 clock must occur between two consecutive active
edges of the external clock; thus the external clock frequency must be less than a quarter of
the PCLK2 clock frequency.

Figure 33. Counter Timing Diagram, internal clock divided by 2

Figure 34. Counter Timing Diagram, internal clock divided by 4
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According to particular device implementation, the external clock can be available on a
general purpose I/O pin as alternate function, or internally connected to a reference clock
independent from the PLL: this allows the Timer to count events independently by the system
clock (which could be prescaled or multiplied according to the different run and low-power
modes), generating regular time basis.

8.4.3 Input Capture

In this section, the index “i”, may be A or B.

The two input capture 16-bit registers (ICAR and ICBR) are used to latch the value of the
counter after a transition detected by the ICAPi pin (see Figure 36).

ICiR register are read-only registers.

The active transition is software programmable through the IEDGi bit of the Control Register
(CR1). 

Timing resolution is one/two count of the counter: (fPCLK2/(CC7÷CC0+1)).

8.4.3.1 Procedure

To use the input capture function select the following in the CR1 and CR2 registers:

– Select the timer clock source (ECKEN).

– Select the timer clock division factor (CC7÷CC0) if internal clock is used.

– Select the edge of the active transition on the ICAPA pin with the IEDGA bit, if ICAPA is ac-
tive.

– Select the edge of the active transition on the ICAPB pin with the IEDGB bit, if ICAPB is ac-
tive.

– Set ICAIE (or ICBIE) when ICAPA (or ICAPB) is active, to generate an interrupt after an input
capture.

Figure 35. Counter Timing Diagram, internal clock divided by n
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When an input capture occurs:

– ICFi bit is set.

– The ICiR register contains the value of the counter on the active transition on the ICAPi pin
(see Figure 37).

– A timer interrupt is generated if ICAIE is set (if only ICAPA is active) or ICBIE is set (if only
ICAPB is active); otherwise, the interrupt remains pending until concerned enable bits are
set.

Clearing the Input Capture interrupt request is done by:

1. A write access to the SR register while the ICFi bit is cleared, 15-bit at ‘0’ for ICAPA and
12-bit at ‘0’ for ICAPB.

Figure 36. Input Capture Block Diagram
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8.4.4 Output Compare 

In this section, the index “i”, may be A or B.

This function can be used to control an output waveform or indicating when a period of time
has elapsed.

When a match is found between the Output Compare register and the counter, the output
compare function:

– Assigns pins with a programmable value if the OCiE bit is set

– Sets a flag in the status register

– Generates an interrupt if enabled

Two 16-bit registers Output Compare Register A (OCAR) and Output Compare Register B
(OCBR) contain the value to be compared to the counter each timer clock cycle.

These registers are readable and writable and are not affected by the timer hardware. A reset
event changes the OCiR value to 8000h.

Timing resolution is one count of the counter: (fPCLK2/(CC7÷CC0+1)).

8.4.4.1 Procedure

To use the output compare function, select the following in the CR1/CR2 registers:

– Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output com-

Figure 37. Input Capture Timing Diagram
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pare i function.

– Select the timer clock (ECKGEN) and the prescaler division factor (CC7÷CC0).

Select the following in the CR1/CR2 registers:

– Select the OLVLi bit to applied to the OCMPi pins after the match occurs.

– Set OCAIE (OCBIE) if only compare A (compare B) needs to generate an interrupt.

When match is found:

– OCFi bit is set.

– The OCMPi pin takes OLVLi bit value (OCMPi pin latch is forced low during reset and stays
low until valid compares change it to OLVLi level).

– A timer interrupt is generated if the OCAIE (or OCBIE) bit in CR2 register is set, the OCAR
(or OCBR) matches the timer counter (i.e. OCFA or OCFB is set).

Clearing the output compare interrupt request is done by a write access to the SR register
while the OCFi bit is cleared, 14-bit at ‘0’ for OCAR and 12-bit at ‘0’ for OCBR. 

If the OCiE bit is not set, the OCMPi pin is at ‘0’ and the OLVLi bit will not appear when match
is found.

The value in the 16-bit OCiR register and the OLVLi bit should be changed after each
successful comparison in order to control an output waveform or establish a new elapsed
timeout.

The OCiR register value required for a specific timing application can be calculated using the
following formula:

Where:

∆t = Desired output compare period (in seconds)
fPCLK2 = Internal clock frequency 
CC7÷CC0 = Timer clock prescaler 

∆ OCiR =
∆t * fPCLK2
(CC7÷CC0+1)
133/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
Figure 38. Output Compare Block Diagram

Figure 39. Output Compare Timing Diagram, Internal Clock Divided by 2
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8.4.5 Forced Compare Mode

In this section the index “i” may represent A or B.

Bits 11:8 of CR1 register and bits 7:0 of CR2 are used (Refer to Section 8.6 for detailed
Register Description).

When the FOLVA bit is set, the OLVLA bit is copied to the OCMPA pin if PWM and OPM are
both cleared. When FOLVB bit is set, the OLVLB bit is copied to the OCMPB pin.

The OLVLi bit has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE
bit=1). 

Note

– When FOLVi is set, no interrupt request is generated. 
– Nevertheless the OCFi bit can be set if OCiR = Counter, an interrupt can be generated if

enabled. 
– Input capture function works in Forced Compare mode.

8.4.6 One Pulse Mode

One Pulse mode enables the generation of a pulse when an external event occurs. This mode
is selected via the OPM bit in the CR1 register.

The one pulse mode uses the Input Capture A function (trigger event) and the Output
Compare A function.

8.4.6.1 Procedure

To use one pulse mode, select the following in the CR1 register:

– Using the OLVLA bit, select the level to be applied to the OCMPA pin after the pulse.
– Using the OLVLB bit, select the level to be applied to the OCMPA pin during the pulse.

– Select the edge of the active transition on the ICAPA pin with the IEDGA bit.

– Set the OCAE bit, the OCMPA pin is then dedicated to the Output Compare A function.

– Set the OPM bit.

– Select the timer clock (ECKGEN) and the prescaler division factor (CC7-CC0).

Load the OCAR register with the value corresponding to the length of the pulse (see the
formula in next Section 8.4.7.1).
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Then, on a valid event on the ICAPA pin, the counter is initialized to FFFCh and OLVLB bit is
loaded on the OCMPA pin after four clock period. When the value of the counter is equal to the
value of the contents of the OCAR register, the OLVLA bit is output on the OCMPA pin (See
Figure 41).

Note

– The OCFA bit cannot be set by hardware in one pulse mode but the OCFB bit can generate
an Output Compare interrupt.

– The ICFA bit is set when an active edge occurs and can generate an interrupt if the ICAIE
bit is set. The ICAR register will have the value FFFCh.

– When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set with
FOLVA= 1, the OPM mode is the only active one, otherwise the PWM mode is the only active
one.

– Forced Compare B mode works in OPM
– Input Capture B function works in OPM

– When OCAR = FFFBh in OPM, then a pulse of width FFFFh is generated

– If event occurs on ICAPA again before the Counter reaches the value of OCAR, then the
Counter will be reset again and the pulse generated might be longer than expected as in Fig-
ure 41.

– If a write operation is performed on the counter register before the Counter reaches the value
of OCAR, then the Counter will be reset again and the pulse generated might be longer than
expected. 

– If a write operation is performed on the counter register after the Counter reaches the value
of OCAR, then there will have no effect on the waveform.

Figure 40. One Pulse Mode Cycle
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8.4.7 Pulse Width Modulation Mode

Pulse Width Modulation mode enables the generation of a signal with a frequency and pulse
length determined by the value of the OCAR and OCBR registers.

The pulse width modulation mode uses the complete Output Compare A function plus the
OCBR register.

8.4.7.1 Procedure

To use pulse width modulation mode select the following in the CR1 register:

– Using the OLVLA bit, select the level to be applied to the OCMPA pin after a successful com-
parison with OCAR register.

– Using the OLVLB bit, select the level to be applied to the OCMPA pin after a successful com-
parison with OCBR register.

– Set OCAE bit: the OCMPA pin is then dedicated to the output compare A function.

– Set the PWM bit.

– Select the timer clock (ECKGEN) and the prescaler division factor (CC7-CC0).

Figure 41. One Pulse Mode Timing

COUNTER .... FFFC FFFD FFFE 2ED0 2ED1 2ED2

2ED3

FFFC FFFD

OLVLB OLVLBOLVLA

ICAPA

OCMPA

compare A

Note: IEDGA=1, OCAR=2ED0h, OLVLA=0, OLVLB=1

COUNTER .... FFFC FFFD FFFE 2ED0 2ED1 2ED2

2ED3

FFFC FFFD

OLVLB OLVLB OLVLA

ICAPA

OCMPA

compare A

Note: IEDGA=1, OCAR=2ED0h, OLVLA=0, OLVLB=1

0010 FFFC

4 clock period
137/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
Load the OCBR register with the value corresponding to the period of the signal.

Load the OCAR register with the value corresponding to the length of the pulse if (OLVLA=0
and OLVLB=1). 

If OLVLA=1 and OLVLB=0 the length of the pulse is the difference between the OCBR and
OCAR registers.

The OCiR register value required for a specific timing application can be calculated using the
following formula:

Where:

t = Desired output compare period (seconds)
fPCLK2 = Internal clock frequency (Hertz)
tPRESC = Timer clock prescaler (1, 2 ... , 256)

The Output Compare B event causes the counter to be initialized to FFFCh (See Figure 43).

Note

– The OCFA bit cannot be set by hardware in PWM mode, but OCFB is set every time counter
matches OCBR. 

– The Input Capture function is available in PWM mode. 
– When Counter = OCBR, then OCFB bit will be set. This can generate an interrupt if OCBIE

is set. This interrupt will help any application where pulse-width or period needs to be
changed interactively.

– When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set with
FOLVA = 0, the PWM mode is the only active one, otherwise the OPM mode is the only ac-
tive one.

Figure 42. Pulse Width Modulation Mode Cycle
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– The value loaded in OCBR must always be greater than that in OCAR to produce mean-
ingful waveforms. Note that 0000h is considered to be greater than FFFCh or FFFDh or
FFFEh or FFFFh.

– When OCAR > OCBR, no waveform will be generated.

– When OCBR = OCAR, a square waveform with 50% duty cycle will be generated as in Fig-
ure 43.

– When OCBR and OCAR are loaded with FFFCh (the counter reset value) then a square
waveform will be generated & the counter will remain stuck at FFFCh. The period will be cal-
culated using the following formula:

– When OCAR is loaded with FFFCh (the counter reset value) then the waveform will be gen-
erated as in Figure 43.

– When FOLVA bit is set and PWM bit is set, then PWM mode is the active one. But if FOLVB
bit is set then the OLVLB bit will appear on OCMPB (when OCBE bit = 1).

– When a write is performed on CNTR register in PWM mode, then the Counter will be reset
and the pulse-width/period of the waveform generated may not be as desired.

Period tAPB2 PRESC 1+( ) OCBR 1+( )⋅ ⋅=
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Figure 43. Pulse Width Modulation Mode Timing
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8.4.8 Pulse Width Modulation Input

The PWM Input functionality enables the measurement of the period and the pulse width of an
external waveform. The initial edge is programmable.

It uses the two Input Capture registers and the Input signal of the Input Capture A module.

8.4.8.1 Procedure

The CR2 register must be programmed as needed for Interrupt generation. To use pulse width
modulation mode select the following in the CR1 register:

– set the PWMI bit

– Select the first edge in IEDGA
– Select the second edge IEDGB as the negated of IEDGA

– Program the clock source and prescaler as needed

– Enable the counter setting the EN bit.

To have a coherent measure the interrupt should be linked to the Input Capture A Interrupt,
reading in ICAR the period value and in ICBR the pulse width.

To obtain the time values:

Where:

fPCLK2 = Internal clock frequency 
tPRESC = Timer clock prescaler 

The Input Capture A event causes the counter to be initialized to 0000h, allowing a new
measure to start. The first Input Capture on ICAPA do not generate the corresponding
interrupt request.

Period =
tPRESC

ICAR * fPCLK2

Pulse =
tPRESC

ICBR * fPCLK2
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8.5 Interrupt Management

The three interrupt sources are available both mapped on five different interrupt channels and
also being mapped on the same channel.

8.5.0.1 Use of interrupt channels

To use the interrupt features, for each interrupt channel used, perform the following sequence:

– Set the OCiIE and/or ICiIE and/or TOIE bits of CR2 register to enable the peripheral to per-
form interrupt requests on the desired events

The selection of the five or single interrupt channels is performed by connecting the desired
interrupt wire(s) to the interrupt controller when the timer peripheral is instantiated inside a
system.

Figure 44. Pulse Width Modulation Input Mode Timing
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8.6 Register Description

Each Timer is associated with two control and one status registers, and with six pairs of data
registers (16-bit values) relating to the two input captures, the two output compares, the
counter. Every register can have only an access by 16 bits, that means is not possible to read
or write only a byte.

8.6.1 Input Capture A Register (TIMn_ICAR)

Address Offset: 00h
Reset value: xxxxh

This is a 16-bit read only register that contains the counter value transferred by the Input
Capture A event.

8.6.2 Input Capture B Register (TIMn_ICBR)

Address Offset: 04h
Reset value: xxxxh

This is a 16-bit read only register that contains the counter value transferred by the Input
Capture B event.

8.6.3 Output Compare A Register (TIMn_OCAR)

Address Offset: 08h
Reset value: 8000h

This is a 16-bit register that contains the value to be compared to the CNTR register and
signalled on OCMPA output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
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8.6.4 Output Compare B Register (TIMn_OCBR)

Address Offset: 0Ch
Reset value: 8000h

This is a 16-bit register that contains the value to be compared to the CNTR register and
signalled on OCMPB output.

8.6.5 Counter Register (TIMn_CNTR)

Address Offset: 10h
Reset value: FFFCh

This is a 16-bit register that contains the counter value. By writing in this register the counter
is reset to the FFFCh value. 

8.6.6 Control Register 1 (TIMn_CR1)

Address Offset: 14h
Reset value: 0000h

Bit 15 = EN: Timer Count Enable
0: Timer counter is stopped.
1: Timer counter is enabled.

Bit 14 = PWMI: Pulse Width Modulation Input
0: PWM Input is not active.
1: PWM Input is active. 

Bit 13:12 = Reserved. These bits must be always written to 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN PWMI Reserved FOLVB FOLVA OLVLB OLVLA OCBE OCAE OPM PWM IEDGB IEDGA EXEDG ECKEN

rw rw - rw rw rw rw rw rw rw rw rw rw rw rw
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Bit 11 = FOLVB: Forced Output Compare B
0: No effect.
1: Forces OLVLB to be copied to the OCMPB pin. 

Bit 10 = FOLVA: Forced Output Compare A
0: No effect.
1: Forces OLVLA to be copied to the OCMPA pin. 

Bit 9 = OLVLB: Output Level B
This bit is copied to the OCMPB pin whenever a successful comparison occurs with the
OCBR register and OCBE is set in the CR2 register. This value is copied to the OCMPA pin in
One Pulse Mode and Pulse Width Modulation mode.

Bit 8= OLVLA: Output Level A
The OLVLA bit is copied to the OCMPA pin whenever a successful comparison occurs with
the OCAR register and the OCAE bit is set in the CR2 register.

Bit 7= OCBE: Output Compare B Enable
0: Output Compare B function is enabled, but the OCMPB pin is a general I/O.
1: Output Compare B function is enabled, the OCMPB pin is dedicated to the Output Compare
B capability of the timer.

Bit 6= OCAE: Output Compare A Enable
0: Output Compare A function is enabled, but the OCMPA pin is a general I/O.
1: Output Compare A function is enabled, the OCMPA pin is dedicated to the Output Compare
A capability of the timer.

Bit 5 = OPM: One Pulse Mode
0: One Pulse Mode is not active.
1: One Pulse Mode is active, the ICAPA pin can be used to trigger one pulse on the OCMPA
pin; the active transition is given by the IEDGA bit. The length of the generated pulse depends
on the contents of the OCAR register.

Bit 4 = PWM: Pulse Width Modulation
0: PWM mode is not active.
1: PWM mode is active, the OCMPA pin outputs a programmable cyclic signal; the length of
the pulse depends on the value of OCAR register; the period depends on the value of OCBR
register.

Bit 3 = IEDGB: Input Edge B
This bit determines which type of level transition on the ICAPB pin will trigger the capture.
0: A falling edge triggers the capture.
1: A rising edge triggers the capture.

Bit 2 = IEDGA: Input Edge A
This bit determines which type of level transition on the ICAPA pin will trigger the capture.
0: A falling edge triggers the capture.
1: A rising edge triggers the capture.
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Bit 1 = EXEDG: External Clock Edge
This bit determines which type of level transition on the external clock pin (or internal signal)
EXTCLK will trigger the counter. 
0: A falling edge triggers the counter.
1: A rising edge triggers the counter.

Bit 0 = ECKEN: External Clock Enable
0: Internal clock, divided by prescaler division factor, is used to feed timer clock.
1: External source is used for timer clock.

8.6.7 Control Register 2 (TIMn_CR2)

Address Offset: 18h
Reset value: 0000h

Bit 15 = ICAIE: Input Capture A Interrupt Enable
0: No interrupt on input capture A.
1: Generate interrupt if ICFA flag is set.

Bit 14 = OCAIE: Output Compare A Interrupt Enable
0: No interrupt on OCFA set.
1: Generate interrupt if OCFA flag is set.

Bit 13 = TOIE: Timer Overflow Interrupt Enable
0: Interrupt is inhibited.
1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.

Bit 12= ICBIE: Input Capture B Interrupt Enable
0: No interrupt on input capture B.
1: Generate interrupt if ICFB flag is set.

Bit 11 = OCBIE: Output Compare B Interrupt Enable
0: No interrupt on OCFB set.
1: Generate interrupt if OCFB flag is set.

Bit 10:8 = Reserved. These bits must be always written to 0.

Bit 7:0 = CC7-CC0: Prescaler division factor
This 8-bit string is the factor used by the prescaler to divide the internal clock. Timer clock will
be equal to fPCLK2 / (CC7÷CC0 +1).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ICAIE OCAIE TOE ICBIE OCBIE reserved CC7 CC6 CC5 CC4 CC3 CC2 CC1 CC0

rw rw rw rw rw - rw rw rw rw rw rw rw rw
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8.6.8 Status Register (TIMn_SR)

Address Offset: 1Ch
Reset value: 0000h

Bit 15= ICFA: Input Capture Flag A
0: No input capture (reset value).
1: An input capture has occurred. To clear this bit, write the SR register, with a ‘0’ in bit 15 (and
‘1’ in all the other bits, just to avoid an unwanted clearing of another pending bit).

Bit 14= OCFA: Output Compare Flag A
0: No match (reset value).
1: The content of the counter has matched the content of the OCAR register. This bit is not set
in the PWM mode even if counter matches OCAR. To clear this bit, write the SR register, with
a ‘0’ in bit 14 (and ‘1’ in all the other bits, just to avoid an unwanted clearing of another pending
bit).

Bit 13= TOF: Timer Overflow
0: No timer overflow (reset value).
1:The counter rolled over from FFFFh to 0000h. To clear this bit, write the SR register, with a
‘0’ in bit 13 (and ‘1’ in all the other bits, just to avoid an unwanted clearing of another pending
bit).

Bit 12= ICFB: Input Capture Flag B
0: No input capture (reset value).
1: An input capture has occurred. To clear this bit, write the SR register, with a ‘0’ in bit 12 (and
‘1’ in all the other bits, just to avoid an unwanted clearing of another pending bit).

Bit 11= OCFB: Output Compare Flag B
0: No match (reset value).
1: The content of the counter has matched the content of the OCBR register. It is set in PWM
mode too. To clear this bit, write the SR register, with a ‘0’ in bit 11 (and ‘1’ in all the other bits,
just to avoid an unwanted clearing of another pending bit).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ICFA OCFA TOF ICFB OCFB reserved

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 -
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8.7 Timer Register Map

See Table 3, “APB2 memory map,” on page 18 for base address

Table 30. Timer Register Map
Addr.

Off 
set

Register 
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TIMn_ICAR Input Capture A

4 TIMn_ICBR Input Capture B

8 TIMn_OCAR Output Compare A

C TIMn_OCBR Output Compare B

10 TIMn_CNTR Counter Value

14 TIMn_CR1 EN PWMI reserved FOLVB FOLVA OLVLB OLVLA OCBE OCAE OPM PWM IEDGB IEDGA EXEDG ECKE
N

18 TIMn_CR2 ICAIE OCAIE TOE ICBIE OCBIE reserved CC7 CC6 CC5 CC4 CC3 CC2 CC1 CC0

1C TIMn_SR ICFA OCFA TOF ICFB OCFB reserved
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9 CONTROLLER AREA NETWORK (CAN)

9.1 Introduction
The C_CAN consists of the CAN Core, Message RAM, Message Handler, Control Registers 
and Module Interface (Refer to Figure 45).

The CAN Core performs communication according to the CAN protocol version 2.0 part A and 
B. The bit rate can be programmed to values up to 1MBit/s. For the connection to the physical 
layer, additional transceiver hardware is required.

For communication on a CAN network, individual Message Objects are configured. The 
Message Objects and Identifier Masks for acceptance filtering of received messages are 
stored in the Message RAM.

All functions concerning the handling of messages are implemented in the Message Handler. 
These functions include acceptance filtering, the transfer of messages between the CAN Core 
and the Message RAM, and the handling of transmission requests as well as the generation 
of the module interrupt.

The register set of the C_CAN can be accessed directly by the CPU through the module 
interface. These registers are used to control/configure the CAN Core and the Message 
Handler and to access the Message RAM.

9.2 Main Features

• Supports CAN protocol version 2.0 part A and B.

• Bit rates up to 1 MBit/s.

• 32 Message Objects.

• Each Message Object has its own identifier mask.

• Programmable FIFO mode (concatenation of Message Objects).

• Maskable interrupt.

• Disabled Automatic Re-transmission mode for Time Triggered CAN applications.

• Programmable loop-back mode for self-test operation.

• 8-bit non-multiplex Motorola HC08 compatible module interface.

• Two 16-bit module interfaces to the AMBA APB bus.
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9.3 Block Diagram
The C_CAN interfaces with the AMBA APB bus. Figure 45 shows the block diagram of the 
C_CAN.

CAN Core

CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of messages.

Message RAM

Stores Message Objects and Identifier Masks.

Registers

All registers used to control and to configure the C_CAN.

Message Handler

State Machine that controls the data transfer between the Rx/Tx Shift Register of the CAN 
Core and the Message RAM as well as the generation of interrupts as programmed in the 
Control and Configuration Registers.

Module Interface

 C_CAN interfaces to the AMBA APB 16-bit bus from ARM. 

Figure 45. Block Diagram of the CAN Peripheral
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9.4 Functional Description

9.4.1 Software Initialization

The software initialization is started by setting the Init bit in the CAN Control Register, either 
by a software or a hardware reset, or by going to Bus_Off state.

While the Init bit is set, all message transfers to and from the CAN bus are stopped and the 
status of the CAN_TX output pin is recessive (HIGH). The Error Management Logic (EML) 
counters are unchanged. Setting the Init bit does not change any configuration register.

To initialize the CAN Controller, software has to set up the Bit Timing Register and each 
Message Object. If a Message Object is not required, the corresponding MsgVal bit should be 
cleared. Otherwise, the entire Message Object has to be initialized.

Access to the Bit Timing Register and to the BAud Rate Prescaler (BRP) Extension Register 
for configuring bit timing is enabled when the Init and Configuration Change Enable (CCE) bits 
in the CAN Control Register are both set.

Resetting the Init bit (by CPU only) finishes the software initialization. Later, the Bit Stream 
Processor (BSP) (see Section 9.8.10: Configuring the Bit Timing on page 191) synchronizes 
itself to the data transfer on the CAN bus by waiting for the occurrence of a sequence of 11 
consecutive recessive bits (≡ Bus Idle) before it can take part in bus activities and start the 
message transfer.

The initialization of the Message Objects is independent of Init and can be done on the fly, but 
the Message Objects should all be configured to particular identifiers or set to not valid before 
the BSP starts the message transfer.

To change the configuration of a Message Object during normal operation, software has to 
start by resetting the corresponding MsgVal bit. When the configuration is completed, MsgVal 
is set again.

9.4.2 CAN Message Transfer

Once the C_CAN is initialized and Init bit is cleared, the C_CAN Core synchronizes itself to 
the CAN bus and starts the message transfer.

Received messages are stored in their appropriate Message Objects if they pass the 
Message Handler’s acceptance filtering. The whole message including all arbitration bits, 
DLC and eight data bytes are stored in the Message Object. If the Identifier Mask is used, the 
arbitration bits which are masked to “don’t care” may be overwritten in the Message Object.

Software can read or write each message any time through the Interface Registers and the 
Message Handler guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the application software. If a permanent Message 
Object (arbitration and control bits are set during configuration) exists for the message, only 
the data bytes are updated and the TxRqst bit with NewDat bit are set to start the 
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transmission. If several transmit messages are assigned to the same Message Object (when 
the number of Message Objects is not sufficient), the whole Message Object has to be 
configured before the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time. 
Message objects are transmitted subsequently according to their internal priority. Messages 
may be updated or set to not valid any time, even when their requested transmission is still 
pending. The old data will be discarded when a message is updated before its pending 
transmission has started.

Depending on the configuration of the Message Object, the transmission of a message may 
be requested autonomously by the reception of a remote frame with a matching identifier.

9.4.3 Disabled Automatic Re-Transmission Mode

In accordance with the CAN Specification (see ISO11898, 6.3.3 Recovery Management), the 
C_CAN provides means for automatic re-transmission of frames that have lost arbitration or 
have been disturbed by errors during transmission. The frame transmission service will not be 
confirmed to the user before the transmission is successfully completed. This means that, by 
default, automatic retransmission is enabled. It can be disabled to enable the C_CAN to work 
within a Time Triggered CAN (TTCAN, see ISO11898-1) environment.

Disabled Automatic Retransmission mode is enabled by setting the Disable Automatic 
Retransmission (DAR) bit in the CAN Control Register. In this operation mode, the 
programmer has to consider the different behaviour of bits TxRqst and NewDat in the Control 
Registers of the Message Buffers:

• When a transmission starts, bit TxRqst of the respective Message Buffer is cleared, while
bit NewDat remains set.

• When the transmission completed successfully, bit NewDat is cleared.

• When a transmission fails (lost arbitration or error), bit NewDat remains set. 

To restart the transmission, the CPU should set the bit TxRqst again.
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9.5 Test Mode
Test Mode is entered by setting the Test bit in the CAN Control Register. In Test Mode, bits 
Tx1, Tx0, LBack, Silent and Basic in the Test Register are writeable. Bit Rx monitors the state 
of the CAN_RX pin and therefore is only readable. All Test Register functions are disabled 
when the Test bit is cleared.

9.5.1 Silent Mode

The CAN Core can be set in Silent Mode by programming the Silent bit in the Test Register to 
one.

In Silent Mode, the C_CAN is able to receive valid data frames and valid remote frames, but it 
sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN Core 
is required to send a dominant bit (ACK bit, Error Frames), the bit is rerouted internally so that 
the CAN Core monitors this dominant bit, although the CAN bus may remain in recessive 
state. The Silent Mode can be used to analyse the traffic on a CAN bus without affecting it by 
the transmission of dominant bits. Figure 46 shows the connection of signals CAN_TX and 
CAN_RX to the CAN Core in Silent Mode.

In ISO 11898-1, Silent Mode is called Bus Monitoring Mode.

9.5.2 Loop Back Mode

The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBack to 
one. In Loop Back Mode, the CAN Core treats its own transmitted messages as received 
messages and stores them in a Receive Buffer (if they pass acceptance filtering). Figure 47 
shows the connection of signals, CAN_TX and CAN_RX, to the CAN Core in Loop Back 
Mode.

Figure 46. CAN Core in Silent Mode
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This mode is provided for self-test functions. To be independent from external stimulation, the 
CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/
remote frame) in Loop Back Mode. In this mode, the CAN Core performs an internal feedback 
from its Tx output to its Rx input. The actual value of the CAN_RX input pin is disregarded by 
the CAN Core. The transmitted messages can be monitored on the CAN_TX pin.

9.5.3 Loop Back Combined with Silent Mode

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBack 
and Silent to one at the same time. This mode can be used for a “Hot Selftest”, which means 
that C_CAN can be tested without affecting a running CAN system connected to the CAN_TX 
and CAN_RX pins. In this mode, the CAN_RX pin is disconnected from the CAN Core and the 
CAN_TX pin is held recessive. Figure 48 shows the connection of signals CAN_TX and 
CAN_RX to the CAN Core in case of the combination of Loop Back Mode with Silent Mode.

Figure 47. CAN Core in Loop Back Mode

Figure 48. CAN Core in Loop Back Mode Combined with Silent Mode
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9.5.4 Basic Mode

The CAN Core can be set in Basic Mode by programming the Test Register bit Basic to one. 
In this mode, the C_CAN runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1 
Registers are requested by writing the Busy bit of the IF1 Command Request Register to one. 
The IF1 Registers are locked while the Busy bit is set. The Busy bit indicates that the 
transmission is pending.

As soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN 
Core and the transmission is started. When the transmission has been completed, the Busy 
bit is reset and the locked IF1 Registers are released.

A pending transmission can be aborted at any time by resetting the Busy bit in the IF1 
Command Request Register while the IF1 Registers are locked. If the CPU has reset the 
Busy bit, a possible retransmission in case of lost arbitration or in case of an error is disabled.

The IF2 Registers are used as a Receive Buffer. After the reception of a message the 
contents of the shift register is stored into the IF2 Registers, without any acceptance filtering.

Additionally, the actual contents of the shift register can be monitored during the message 
transfer. Each time a read Message Object is initiated by writing the Busy bit of the IF2 
Command Request Register to one, the contents of the shift register are stored in the IF2 
Registers.

In Basic Mode, the evaluation of all Message Object related control and status bits and the 
control bits of the IFn Command Mask Registers are turned off. The message number of the 
Command request registers is not evaluated. The NewDat and MsgLst bits in the IF2 
Message Control Register retain their function, DLC3-0 indicate the received DLC, and the 
other control bits are read as ‘0’.

9.5.5 Software Control of CAN_TX Pin

Four output functions are available for the CAN transmit pin, CAN_TX. In addition to its default 
function (serial data output), the CAN transmit pin can drive the CAN Sample Point signal to 
monitor CAN_Core’s bit timing and it can drive constant dominant or recessive values. The 
latter two functions, combined with the readable CAN receive pin CAN_RX, can be used to 
check the physical layer of the CAN bus.

The output mode for the CAN_TX pin is selected by programming the Tx1 and Tx0 bits of the 
CAN Test Register.

The three test functions of the CAN_TX pin interfere with all CAN protocol functions. CAN_TX 
must be left in its default function when CAN message transfer or any of the test modes (Loop 
Back Mode, Silent Mode, or Basic Mode) are selected.
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9.6 Register Description
The C_CAN allocates an address space of 256 bytes. The registers are organized as 16-bit 
registers.

The two sets of interface registers (IF1 and IF2) control the CPU access to the Message RAM. 
They buffer the data to be transferred to and from the RAM, avoiding conflicts between CPU 
accesses and message reception/transmission.

In this section, the following abbreviations are used:

The CAN registers are listed in Table 31.

read/write (rw) The software can read and write to these bits.

read-only (r) The software can only read these bits. 

write-only (w) The software should only write to these bits. 

Table 31. CAN Registers

Register Name Address Offset Reset Value

CAN Control Register (CAN_CR) 00h 0001h

Status Register (CAN_SR) 04h 0000h

Error Counter (CAN_ERR) 08h 0000h

Bit Timing Register (CAN_BTR) 0Ch 2301h

Test Register (CAN_TESTR) 14h 0000 0000 
R000 0000 b

BRP Extension Register (CAN_BRPR) 18h 0000h

IFn Command Request Registers (CAN_IFn_CRR) 20h (CAN_IF1_CRR), 80h 
(CAN_IF2_CRR)

IFn Command Mask Registers (CAN_IFn_CMR) 24h (CAN_IF1_CMR), 84h 
(CAN_IF2_CMR)

0000h

IFn Mask 1 Register (CAN_IFn_M1R) 28h (CAN_IF1_M1R), 88h 
(CAN_IF2_M1R)

FFFFh

IFn Mask 2 Register (CAN_IFn_M2R) 2Ch (CAN_IF1_M2R), 8Ch 
(CAN_IF2_M2R)

FFFFh

IFn Message Arbitration 1 Register 
(CAN_IFn_A1R)

30h (CAN_IF1_A1R), 90h 
(CAN_IF2_A1R)

0000h

IFn Message Arbitration 2 Register 
(CAN_IFn_A2R)

34h (CAN_IF1_A2R), 94h 
(CAN_IF2_A2R)

0000h

IFn Message Control Registers (CAN_IFn_MCR) 38h (CAN_IF1_MCR), 98h 
(CAN_IF2_MCR)

0000h

IFn Data A/B Registers (CAN_IFn_DAnR and 
CAN_IFn_DBnR)
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9.6.1 CAN Interface Reset State 

After the hardware reset, the C_CAN registers hold the reset values given in the register 
descriptions below.

Additionally the busoff state is reset and the output CAN_TX is set to recessive (HIGH). The 
value 0x0001 (Init = ‘1’) in the CAN Control Register enables the software initialization. The 
C_CAN does not influence the CAN bus until the CPU resets the Init bit to ‘0’.

The data stored in the Message RAM is not affected by a hardware reset. After powering on, 
the contents of the Message RAM are undefined.

9.6.2 CAN Protocol Related Registers

These registers are related to the CAN protocol controller in the CAN Core. They control the 
operating modes and the configuration of the CAN bit timing and provide status information.

9.6.2.1 CAN Control Register (CAN_CR)

Address Offset: 00h
Reset value: 0001h

Interrupt Identifier Register (CAN_IDR) 10h 0000h

Transmission Request Registers 1 & 2 
(CAN_TxRnR)

100h (CAN_TxR1R), 104h 
(CAN_TxR2R)

0000 0000h

New Data Registers 1 & 2 (CAN_NDnR) 120h (CAN_ND1R), 124h 
(CAN_ND2R)

0000 0000h

Interrupt Pending Registers 1 & 2 (CAN_IPnR) 140h (CAN_IP1R), 144h 
(CAN_IP2R)

0000 0000h

Message Valid Registers 1 & 2 (CAN_MVnR) 160h (CAN_MV1R), 164h 
(CAN_MV2R)

0000 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

T
es

t

C
C

E

D
A

R

res E
IE

S
IE IE Init

rw rw rw rw rw rw rw

Bits 15:8 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always 
be written with ‘0’.

Table 31. CAN Registers

Register Name Address Offset Reset Value
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Note The busoff recovery sequence (see CAN Specification Rev. 2.0) cannot be
shortened by setting or resetting the Init bit. If the device goes in the busoff state, it
will set Init of its own accord, stopping all bus activities. Once Init has been cleared
by the CPU, the device will then wait for 129 occurrences of Bus Idle (129 * 11
consecutive recessive bits) before resuming normal operations. At the end of the
busoff recovery sequence, the Error Management Counters will be reset.

During the waiting time after resetting Init, each time a sequence of 11 recessive bits has 
been monitored, a Bit0Error code is written to the Status Register, enabling the CPU to readily 
check up whether the CAN bus is stuck at dominant or continuously disturbed and to monitor 
the proceeding of the busoff recovery sequence.

Bit 7 Test: Test Mode Enable
0: Normal Operation.
1: Test Mode.

Bit 6 CCE: Configuration Change Enable
0: No write access to the Bit Timing Register.
1: Write access to the Bit Timing Register allowed (while bit Init=1).

Bit 5 DAR: Disable Automatic Re-transmission
0: Automatic Retransmission of disturbed messages enabled.
1: Automatic Retransmission disabled.

Bit 4 Reserved
This is a reserved bit. This bit is always read as ‘0’ and must always be 
written with ‘0’.

Bit 3 EIE: Error Interrupt Enable
0: Disabled - No Error Status Interrupt will be generated.
1: Enabled - A change in the bits BOff or EWarn in the Status Register will 
generate an interrupt.

Bit 2 SIE: Status Change Interrupt Enable
0: Disabled - No Status Change Interrupt will be generated.
1: Enabled - An interrupt will be generated when a message transfer is 
successfully completed or a CAN bus error is detected.

Bit 1 IE: Module Interrupt Enable
0: Disabled.
1: Enabled.

Bit 0 Init Initialization
0: Normal Operation.
1: Initialization is started.
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9.6.2.2 Status Register (CAN_SR)

Address Offset: 04h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

B
O

ff

E
W

ar
n

E
P

as
s

R
xO

k

T
xO

k

LEC

r r r rw rw rw

Bit 15:8 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always 
be written with ‘0’.

Bit 7 BOff: Busoff Status
0: The CAN module is not in busoff state.
1: The CAN module is in busoff state.

Bit 6 EWarn: Warning Status
0: Both error counters are below the error warning limit of 96.
1: At least one of the error counters in the EML has reached the error 
warning limit of 96.

Bit 5 EPass: Error Passive
0: The CAN Core is error active.
1: The CAN Core is in the error passive state as defined in the CAN 
Specification.

Bit 4 RxOk: Received a Message Successfully
0: No message has been successfully received since this bit was last reset 
by the CPU. This bit is never reset by the CAN Core.
1: A message has been successfully received since this bit was last reset 
by the CPU (independent of the result of acceptance filtering).

Bit 3 TxOk: Transmitted a Message Successfully
0: Since this bit was reset by the CPU, no message has been successfully 
transmitted. This bit is never reset by the CAN Core.
1: Since this bit was last reset by the CPU, a message has been 
successfully (error free and acknowledged by at least one other node) 
transmitted.
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Status Interrupts
A Status Interrupt is generated by bits BOff and EWarn (Error Interrupt) or by RxOk, TxOk, 
and LEC (Status Change Interrupt) assuming that the corresponding enable bits in the CAN 
Control Register are set. A change of bit EPass or a write to RxOk, TxOk, or LEC will never 
generate a Status Interrupt. 

Reading the Status Register will clear the Status Interrupt value (8000h) in the Interrupt 
Register, if it is pending.

Bits 2:0 LEC[2:0]: Last Error Code (Type of the last error to occur on the CAN bus)
The LEC field holds a code, which indicates the type of the last error to 
occur on the CAN bus. This field will be cleared to ‘0’ when a message has 
been transferred (reception or transmission) without error. The unused code 
‘7’ may be written by the CPU to check for updates. Table 32 describes the 
error codes. 

Table 32. Error Codes

Error Code Meaning

0 No Error

1 Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a 
received message where this is not allowed.

2 Form Error: A fixed format part of a received frame has the wrong format.

3 AckError: The message this CAN Core transmitted was not acknowledged by 
another node.

4 Bit1Error: During the transmission of a message (with the exception of the arbitra-
tion field), the device wanted to send a recessive level (bit of logical value ‘1’), but 
the monitored bus value was dominant.

5 Bit0Error: During the transmission of a message (or acknowledge bit, or active 
error flag, or overload flag), though the device wanted to send a dominant level 
(data or identifier bit logical value ‘0’), but the monitored Bus value was recessive. 
During busoff recovery, this status is set each time a sequence of 11 recessive bits 
has been monitored. This enables the CPU to monitor the proceedings of the 
busoff recovery sequence (indicating the bus is not stuck at dominant or continu-
ously disturbed).

6 CRCError: The CRC check sum was incorrect in the message received, the CRC 
received for an incoming message does not match with the calculated CRC for the 
received data.

7 Unused: When the LEC shows the value ‘7’, no CAN bus event was detected since 
the CPU wrote this value to the LEC.
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9.6.2.3 Error Counter (CAN_ERR)

Address Offset: 08h
Reset value: 0000h

9.6.2.4 Bit Timing Register (CAN_BTR)

Address Offset: 0Ch

Reset value: 2301h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RP REC[6:0] TEC[7:0]

r r r

Bit 15 RP: Receive Error Passive
0: The Receive Error Counter is below the error passive level.
1: The Receive Error Counter has reached the error passive level as 
defined in the CAN Specification.

Bits 14:8 REC[6:0]: Receive Error Counter
Actual state of the Receive Error Counter. Values between 0 and 127.

Bits 7:0 TEC[7:0]: Transmit Error Counter
Actual state of the Transmit Error Counter. Values between 0 and 255.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res TSeg2 TSeg1 SJW BRP

rw rw rw rw

Bit 15 Reserved
This is a reserved bit. This bit is always read as ‘0’ and must always be 
written with ‘0’.
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Note With a module clock APB_CLK of 8 MHz, the reset value of 0x2301 configures the
C_CAN for a bit rate of 500 kBit/s. The registers are only writable if bits CCE and Init
in the CAN Control Register are set.

9.6.2.5 Test Register (CAN_TESTR)

Address Offset: 14h
Reset value: 0000 0000 R000 0000 b (R:current value of RX pin)

Bits 14:12 TSeg2: Time segment after sample point
0x0-0x7: Valid values for TSeg2 are [ 0 … 7 ]. The actual interpretation by 
the hardware of this value is such that one more than the value 
programmed here is used.

Bits 11:8 TSeg1: Time segment before the sample point minus Sync_Seg
0x01-0x0F: valid values for TSeg1 are [ 1 … 15 ]. The actual interpretation 
by the hardware of this value is such that one more than the value 
programmed is used.

Bits 7:6 SJW: (Re)Synchronization Jump Width
0x0-0x3: Valid programmed values are [ 0 … 3 ]. The actual interpretation 
by the hardware of this value is such that one more than the value 
programmed here is used.

Bits 5:0 BRP: Baud Rate Prescaler
0x01-0x3F: The value by which the oscillator frequency is divided for 
generating the bit time quanta. The bit time is built up from a multiple of this 
quanta. Valid values for the Baud Rate Prescaler are [ 0 … 63 ]. The actual 
interpretation by the hardware of this value is such that one more than the 
value programmed here is used.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved R
x

T
x[

1:
0]

LB
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k

S
ile

nt

B
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ic

Res

r rw rw rw rw

Bits 15:8 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always 
be written with ‘0’.
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Write access to the Test Register is enabled by setting the Test bit in the CAN Control 
Register. The different test functions may be combined, but Tx1-0 ≠ “00” disturbs message 
transfer.

Bit 7 Rx: Current value of CAN_RX Pin
0: The CAN bus is dominant (CAN_RX = ‘0’).
1: The CAN bus is recessive (CAN_RX = ‘1’).

Bit 6:5 Tx[1:0]: CAN_TX pin control
00: Reset value, CAN_TX is controlled by the CAN Core
01: Sample Point can be monitored at CAN_TX pin
10: CAN_TX pin drives a dominant (‘0’) value.
11: CAN_TX pin drives a recessive (‘1’) value.

Bit 4 LBack: Loop Back Mode
0: Loop Back Mode is disabled.
1: Loop Back Mode is enabled.

Bit 3 Silent: Silent Mode
0: Normal operation.
1: The module is in Silent Mode.

Bit 2 Basic: Basic Mode
0: Basic Mode disabled.
1: IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer.

Bits 1:0 Reserved.
These are reserved bits. These bits are always read as ‘0’ and must always 
be written with ‘0’.
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9.6.2.6 BRP Extension Register (CAN_BRPR)

Address Offset: 18h
Reset value: 0000h

9.6.3 Message Interface Register Sets

There are two sets of Interface Registers, which are used to control the CPU access to the 
Message RAM. The Interface Registers avoid conflict between the CPU access to the 
Message RAM and CAN message reception and transmission by buffering the data to be 
transferred. A complete Message Object (see Section 9.6.3.10) or parts of the Message 
Object may be transferred between the Message RAM and the IFn Message Buffer registers 
(see Section 9.6.3.3) in one single transfer.

The function of the two interface register sets is identical except for the Basic test mode. They 
can be used the way one set of registers is used for data transfer to the Message RAM while 
the other set of registers is used for the data transfer from the Message RAM, allowing both 
processes to be interrupted by each other. Table 33 IF1 and IF2 Message Interface Register 
Set on page 165 provides an overview of the two Interface Register sets.

Each set of Interface Registers consists of Message Buffer Registers controlled by their own 
Command Registers. The Command Mask Register specifies the direction of the data transfer 
and which parts of a Message Object will be transferred. The Command Request Register is 
used to select a Message Object in the Message RAM as target or source for the transfer and 
to start the action specified in the Command Mask Register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BRPE

rw

Bits 15:4 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always 
be written with ‘0’.

Bits 3:0 BRPE: Baud Rate Prescaler Extension
0x00-0x0F: By programming BRPE, the Baud Rate Prescaler can be 
extended to values up to 1023. The actual interpretation by the hardware is 
that one more than the value programmed by BRPE (MSBs) and BRP 
(LSBs) is used.
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9.6.3.1 IFn Command Request Registers (CAN_IFn_CRR)

Address offset: 20h (CAN_IF1_CRR), 80h (CAN_IF2_CRR)
Reset Value: 0001h

A message transfer is started as soon as the application software has written the message 
number to the Command Request Register. With this write operation, the Busy bit is 
automatically set to notify the CPU that a transfer is in progress. After a waiting time of 3 to 6 
APB_CLK periods, the transfer between the Interface Register and the Message RAM is 
completed. The Busy bit is cleared.

Table 33. IF1 and IF2 Message Interface Register Set

Address IF1 Register Set Address IF2 Register Set

CAN Base + 0x20 IF1 Command Request CAN Base + 0x80 IF2 Command Request

CAN Base + 0x24 IF1 Command Mask CAN Base + 0x84 IF2 Command Mask

CAN Base + 0x28 IF1 Mask 1 CAN Base + 0x88 IF2 Mask 1

CAN Base + 0x2C IF1 Mask 2 CAN Base + 0x8C IF2 Mask 2

CAN Base + 0x30 IF1 Arbitration 1 CAN Base + 0x90 IF2 Arbitration 1

CAN Base + 0x34 IF1 Arbitration 2 CAN Base + 0x94 IF2 Arbitration 2

CAN Base + 0x38 IF1 Message Control CAN Base + 0x98 IF2 Message Control

CAN Base + 0x3C IF1 Data A 1 CAN Base + 0x9C IF2 Data A 1

CAN Base + 0x40 IF1 Data A 2 CAN Base + 0xA0 IF2 Data A 2

CAN Base + 0x44 IF1 Data B 1 CAN Base + 0xA4 IF2 Data B 1

CAN Base + 0x48 IF1 Data B 2 CAN Base + 0xA8 IF2 Data B 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Busy Reserved Message Number

r rw

Bit 15 Busy: Busy Flag
0: Read/write action has finished.
1: Writing to the IFn Command Request Register is in progress.

This bit can only be read by the software.

Bits 14:6 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always 
be written with ‘0’.
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Note When a Message Number that is not valid is written into the Command Request
Register, the Message Number will be transformed into a valid value and that
Message Object will be transferred.

9.6.3.2 IFn Command Mask Registers (CAN_IFn_CMR)

Address offset: 24h (CAN_IF1_CMR), 84h (CAN_IF2_CMR)
Reset Value: 0000h

The control bits of the IFn Command Mask Register specify the transfer direction and select 
which of the IFn Message Buffer Registers are source or target of the data transfer.

Bits 5:0 Message Number
0x01-0x20: Valid Message Number, the Message Object in the Message 
RAM is selected for data transfer.
0x00: Not a valid Message Number, interpreted as 0x20.
0x21-0x3F: Not a valid Message Number, interpreted as 0x01-0x1F.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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rw rw rw rw rw rw rw rw

Bits 15:8 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always 
be written with ‘0’.

Bit 7 WR/RD: Write / Read
0: Read: Transfer data from the Message Object addressed by the 
Command Request Register into the selected Message Buffer Registers.
1: Write: Transfer data from the selected Message Buffer Registers to the 
Message Object addressed by the Command Request Register.
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Bits 6:0 These bits of IFn Command Mask Register have different functions 
depending on the transfer direction:

Direction = Write

Bit 6 = Mask Access Mask Bits
0: Mask bits unchanged.
1: transfer Identifier Mask + MDir + MXtd to Message Object.

Bit 5 = Arb Access Arbitration Bits
0: Arbitration bits unchanged.
1: Transfer Identifier + Dir + Xtd + MsgVal to Message Object.

Bit 4 = Control Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to Message Object.

Bit 3 = ClrIntPnd Clear Interrupt Pending Bit
When writing to a Message Object, this bit is ignored.

Bit 2 = TxRqst/NewDat Access Transmission Request Bit
0: TxRqst bit unchanged.
1: Set TxRqst bit.

If a transmission is requested by programming bit TxRqst/NewDat in the IFn 
Command Mask Register, bit TxRqst in the IFn Message Control Register 
will be ignored.

Bit 1 = Data A Access Data Bytes 3:0
0: Data Bytes 3:0 unchanged.
1: Transfer Data Bytes 3:0 to Message Object.

Bit 0 = Data B Access Data Bytes 7:4
0: Data Bytes 7:4 unchanged.
1: Transfer Data Bytes 7:4 to Message Object.
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9.6.3.3 IFn Message Buffer Registers

The bits of the Message Buffer registers mirror the Message Objects in the Message RAM. 
The function of the Message Objects bits is described in Section 9.6.3.10: Message Object in 
the Message Memory on page 171.

Bits 6:0 Direction = Read

Bit 6 = Mask: Access Mask Bits
0: Mask bits unchanged.
1: Transfer Identifier Mask + MDir + MXtd to IFn Message Buffer Register.

Bit 5 = Arb: Access Arbitration Bits
0: Arbitration bits unchanged.
1: Transfer Identifier + Dir + Xtd + MsgVal to IFn Message Buffer Register.

Bit 4 = Control: Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to IFn Message Buffer Register.

Bit 3 = ClrIntPnd: Clear Interrupt Pending Bit
0: IntPnd bit remains unchanged.
1: Clear IntPnd bit in the Message Object.

Bit 2 = TxRqst/NewDat: Access Transmission Request Bit
0: NewDat bit remains unchanged.
1: Clear NewDat bit in the Message Object.

Note A read access to a Message Object can be combined with the
reset of the control bits IntPnd and NewDat. The values of these
bits transferred to the IFn Message Control Register always reflect
the status before resetting these bits.

Bit 1 = Data A Access Data Bytes 3:0
0: Data Bytes 3:0 unchanged.
1: Transfer Data Bytes 3:0 to IFn Message Buffer Register.

Bit 0 = Data B Access Data Bytes 7:4
0: Data Bytes 7:4 unchanged.
1: Transfer Data Bytes 7:4 to IFn Message Buffer Register.
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9.6.3.4 IFn Mask 1 Register (CAN_IFn_M1R)

Address offset: 28h (CAN_IF1_M1R), 88h (CAN_IF2_M1R)
Reset Value: FFFFh

The function of the Msk bits is described in Section 9.6.3.10: Message Object in the Message 
Memory on page 171.

9.6.3.5 IFn Mask 2 Register (CAN_IFn_M2R)

Address offset: 2Ch (CAN_IF1_M2R), 8Ch (CAN_IF2_M2R)
Reset Value: FFFFh

The function of the Message Objects bits is described in the Section 9.6.3.10: Message 
Object in the Message Memory on page 171.

9.6.3.6 IFn Message Arbitration 1 Register (CAN_IFn_A1R)

Address offset: 30h (CAN_IF1_A1R), 90h (CAN_IF2_A1R)
Reset Value: 0000h

The function of the Message Objects bits is described in the Section 9.6.3.10: Message 
Object in the Message Memory on page 171.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk[15:0]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXtd MDir Res Msk[28:16]

rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[15:0]

rw
169/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
9.6.3.7 IFn Message Arbitration 2 Register (CAN_IFn_A2R)

Address offset: 34h (CAN_IF1_A2R), 94h (CAN_IF2_A2R)
Reset Value: 0000h

The function of the Message Objects bits is described in the Section 9.6.3.10: Message 
Object in the Message Memory on page 171.

9.6.3.8 IFn Message Control Registers (CAN_IFn_MCR) 

Address offset: 38h (CAN_IF1_MCR), 98h (CAN_IF2_MCR)
Reset Value: 0000h

The function of the Message Objects bits is described in the Section 9.6.3.10: Message 
Object in the Message Memory on page 171.

9.6.3.9 IFn Data A/B Registers (CAN_IFn_DAnR and CAN_IFn_DBnR)

The data bytes of CAN messages are stored in the IFn Message Buffer Registers in the 
following order:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal Xtd Dir ID[28:16]

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IF1 Message Data A1 
(address 0x3C)

Data(1) Data(0)

IF1 Message Data A2 
(address 0x40)

Data(3) Data(2)
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In a CAN Data Frame, Data(0) is the first, Data(7) is the last byte to be transmitted or received. 
In CAN’s serial bit stream, the MSB of each byte will be transmitted first.

9.6.3.10 Message Object in the Message Memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between CPU access 
to the Message RAM and CAN message reception and transmission, the CPU cannot directly 
access the Message Objects, these accesses are handled through the IFn Interface 
Registers.

Table 34 provides an overview of the structures of a Message Object.

The Arbitration Registers ID28-0, Xtd, and Dir are used to define the identifier and type of 
outgoing messages and are used (together with the mask registers Msk28-0, MXtd, and MDir) 
for acceptance filtering of incoming messages. A received message is stored in the valid 

IF1 Message Data B1 
(address 0x44)

Data(5) Data(4)

IF1 Message Data B2 
(address 0x48)

Data(7) Data(6)

IF2 Message Data A1 
(address 0x9C)

Data(1) Data(0)

IF2 Message Data A2 
(address 0xA0)

Data(3) Data(2)

IF2 Message Data B1 
(address 0xA4)

Data(5) Data(4)

IF2 Message Data B2 
(address 0xA8)

Data(7) Data(6)

rw rw

Table 34. Structure of a Message Object in the Message Memory

Message Object

UMask
Msk 
28-0

MXt
d

MDi
r

EoB NewDat
MsgL

st
RxIE TxIE

Int 
Pnd

RmtEn TxRqst

MsgVal ID28-0 Xtd Dir
DLC 
3-0

Data 
0

Data 
1

Data 
2

Data 
3

Data 
4

Data 
5

Data 6 Data 7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Message Object with matching identifier and direction set to receive (Data Frame) or transmit 
(Remote Frame). Extended frames can be stored only in Message Objects with Xtd set, 
standard frames in Message Objects with Xtd clear. If a received message (Data Frame or 
Remote Frame) matches more than one valid Message Object, it is stored into that with the 
lowest message number. For details see Section 9.8.2.3, “Acceptance Filtering of Received 
Messages,” on page 185.

MsgVal Message Valid

1: The Message Object is configured and should be considered by the 
Message Handler.
0: The Message Object is ignored by the Message Handler.

Note The application software must reset the MsgVal bit of all unused
Messages Objects during the initialization before it resets bit Init
in the CAN Control Register. This bit must also be reset before the
identifier Id28-0, the control bits Xtd, Dir, or the Data Length Code
DLC3-0 are modified, or if the Messages Object is no longer
required.

UMask Use Acceptance Mask

1: Use Mask (Msk28-0, MXtd, and MDir) for acceptance filtering.
0: Mask ignored.

Note If the UMask bit is set to one, the Message Object’s mask bits
have to be programmed during initialization of the Message
Object before MsgVal is set to one.

ID28-0 Message Identifier

ID28 - ID0, 29-bit Identifier (“Extended Frame”)

ID28 - ID18, 11-bit Identifier (“Standard Frame”)

Msk28-0 Identifier Mask

1: The corresponding identifier bit is used for acceptance filtering.
0: The corresponding bit in the identifier of the message object cannot 
inhibit the match in the acceptance filtering.

Xtd Extended Identifier

1: The 29-bit (“extended”) Identifier will be used for this Message 
Object.
0: The 11-bit (“standard”) Identifier will be used for this Message Object.
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MXtd Mask Extended Identifier

1: The extended identifier bit (IDE) is used for acceptance filtering.
0: The extended identifier bit (IDE) has no effect on the acceptance 
filtering.

Note When 11-bit (“standard”) Identifiers are used for a Message
Object, the identifiers of received Data Frames are written into bits
ID28 to ID18. For acceptance filtering, only these bits together
with mask bits Msk28 to Msk18 are considered.

Dir Message Direction

1: Direction = transmit: On TxRqst, the respective Message Object is 
transmitted as a Data Frame. On reception of a Remote Frame with 
matching identifier, the TxRqst bit of this Message Object is set (if RmtEn = 
one).
0: Direction = receive: On TxRqst, a Remote Frame with the identifier of 
this Message Object is transmitted. On reception of a Data Frame with 
matching identifier, that message is stored in this Message Object.

MDir Mask Message Direction

1: The message direction bit (Dir) is used for acceptance filtering.
0: The message direction bit (Dir) has no effect on the acceptance filtering.

EoB End of Buffer

1: Single Message Object or last Message Object of a FIFO Buffer.
0: Message Object belongs to a FIFO Buffer and is not the last
Message Object of that FIFO Buffer.

Note This bit is used to concatenate two or more Message Objects (up
to 32) to build a FIFO Buffer. For single Message Objects (not
belonging to a FIFO Buffer), this bit must always be set to one. For
details on the concatenation of Message Objects see
Section 9.8.7, “Configuring a FIFO Buffer,” on page 188.

NewDat New Data

1: The Message Handler or the application software has written new data 
into the data portion of this Message Object.
0: No new data has been written into the data portion of this Message 
Object by the Message Handler since last time this flag was cleared by the 
application software.
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MsgLst Message Lost (only valid for Message Objects with direction = receive)

1: The Message Handler stored a new message into this object when 
NewDat was still set, the CPU has lost a message.
0: No message lost since last time this bit was reset by the CPU.

RxIE Receive Interrupt Enable

1: IntPnd will be set after a successful reception of a frame.
0: IntPnd will be left unchanged after a successful reception of a 
frame.

TxIE Transmit Interrupt Enable

1: IntPnd will be set after a successful transmission of a frame.
0: IntPnd will be left unchanged after the successful transmission of a 
frame.

IntPnd Interrupt Pending

1: This message object is the source of an interrupt. The Interrupt Identifier 
in the Interrupt Register will point to this message object if there is no other 
interrupt source with higher priority.
0:This message object is not the source of an interrupt.

RmtEn Remote Enable

1: At the reception of a Remote Frame, TxRqst is set.
0: At the reception of a Remote Frame, TxRqst is left unchanged.

TxRqst Transmit Request

1: The transmission of this Message Object is requested and is not yet 
done.
0: This Message Object is not waiting for transmission.
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DLC3-0 Data Length Code

0-8: Data Frame has 0-8 data bytes.

9-15: Data Frame has 8 data bytes

Note The Data Length Code of a Message Object must be defined the
same as in all the corresponding objects with the same identifier
at other nodes. When the Message Handler stores a data frame, it
will write the DLC to the value given by the received message.

Data 0: 1st data byte of a CAN Data Frame

Data 1: 2nd data byte of a CAN Data Frame

Data 2: 3rd data byte of a CAN Data Frame

Data 3: 4th data byte of a CAN Data Frame

Data 4: 5th data byte of a CAN Data Frame

Data 5: 6th data byte of a CAN Data Frame

Data 6: 7th data byte of a CAN Data Frame

Data 7 : 8th data byte of a CAN Data Frame

Note The Data 0 Byte is the first data byte shifted into the shift register
of the CAN Core during a reception while the Data 7 byte is the
last. When the Message Handler stores a Data Frame, it will write
all the eight data bytes into a Message Object. If the Data Length
Code is less than 8, the remaining bytes of the Message Object
will be overwritten by unspecified values.
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9.6.4 Message Handler Registers

All Message Handler registers are read-only. Their contents, TxRqst, NewDat, IntPnd, and 
MsgVal bits of each Message Object and the Interrupt Identifier is status information provided 
by the Message Handler FSM.

9.6.4.1 Interrupt Identifier Register (CAN_IDR)

Address Offset: 10h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntId[15:0]

r

Bits 15:0 IntId15:0 Interrupt Identifier (Table 35 indicates the source of the interrupt)

If several interrupts are pending, the CAN Interrupt Register will point to the 
pending interrupt with the highest priority, disregarding their chronological 
order. An interrupt remains pending until the application software has 
cleared it. If IntId is different from 0x0000 and IE is set, the IRQ interrupt 
signal to the EIC is active. The interrupt remains active until IntId is back to 
value 0x0000 (the cause of the interrupt is reset) or until IE is reset.

The Status Interrupt has the highest priority. Among the message interrupts, 
the Message Object’ s interrupt priority decreases with increasing message 
number.

A message interrupt is cleared by clearing the Message Object’s IntPnd bit. 
The Status Interrupt is cleared by reading the Status Register.

Table 35. Source of Interrupts

0x0000 No Interrupt is Pending

0x0001-0x0020 Number of Message Object which caused the interrupt.

0x0001-0x0020 Number of Message Object which caused the interrupt.

0x0021-0x7FFF unused

0x8000 Status Interrupt

0x8001-0xFFFF unused
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9.6.4.2 Transmission Request Registers 1 & 2 (CAN_TxRnR)

Address Offset: 100h (CAN_TxR1R), 104h (CAN_TxR2R)
Reset Value: 0000 0000h

These registers hold the TxRqst bits of the 32 Message Objects. By reading the TxRqst bits, 
the CPU can check which Message Object in a Transmission Request is pending. The TxRqst 
bit of a specific Message Object can be set/reset by the application software through the IFn 
Message Interface Registers or by the Message Handler after reception of a Remote Frame 
or after a successful transmission.

9.6.4.3 New Data Registers 1 & 2 (CAN_NDnR)

Address Offset: 120h (CAN_ND1R), 124h (CAN_ND2R)
Reset Value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TxRqst[32:17]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxRqst[16:1]

r

Bits 31:16 TxRqst32-17 Transmission Request Bits (of all Message Objects)
0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

These bits are read only.

Bits 15:0 TxRqst16-1 Transmission Request Bits (of all Message Objects)
0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

These bits are read only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NewDat[32:17]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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These registers hold the NewDat bits of the 32 Message Objects. By reading out the NewDat 
bits, the CPU can check for which Message Object the data portion was updated. The 
NewDat bit of a specific Message Object can be set/reset by the CPU through the IFn 
Message Interface Registers or by the Message Handler after reception of a Data Frame or 
after a successful transmission.

9.6.4.4 Interrupt Pending Registers 1 & 2 (CAN_IPnR)

Address Offset: 140h (CAN_IP1R), 144h (CAN_IP2R)
Reset Value: 0000 0000h

These registers contain the IntPnd bits of the 32 Message Objects. By reading the IntPnd 
bits, the CPU can check for which Message Object an interrupt is pending. The IntPnd bit of a 

NewDat[16:1]

r

Bits 31:16 NewDat32-17 New Data Bits (of all Message Objects)
0: No new data has been written into the data portion of this Message 
Object by the Message Handler since the last time this flag was cleared 
by the application software.
1: The Message Handler or the application software has written new 
data into the data portion of this Message Object.

Bits 15:0 NewDat16-1 New Data Bits (of all Message Objects)
0: No new data has been written into the data portion of this Message 
Object by the Message Handler since the last time this flag was cleared 
by the application software.
1: The Message Handler or the application software has written new 
data into the data portion of this Message Object.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IntPnd[32:17]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntPnd[16:1]

r

178/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
specific Message Object can be set/reset by the application software through the IFn 
Message Interface Registers or by the Message Handler after reception or after a successful 
transmission of a frame. This will also affect the value of IntId in the Interrupt Register.

9.6.4.5 Message Valid Registers 1 & 2 (CAN_MVnR)

Address Offset: 160h (CAN_MV1R), 164h (CAN_MV2R)
Reset Value: 0000 0000h

These registers hold the MsgVal bits of the 32 Message Objects. By reading the MsgVal bits, 
the application software can check which Message Object is valid. The MsgVal bit of a specific 
Message Object can be set/reset by the application software via the IFn Message Interface 
Registers.

Bits 31:16 IntPnd32-17 Interrupt Pending Bits (of all Message Objects)
0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

Bits 15:0 IntPnd16-1 Interrupt Pending Bits (of all Message Objects)
0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MsgVal[32:17]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal[16:1]

r

Bits 31:16 MsgVal32-17 Message Valid Bits (of all Message Objects)
0: This Message Object is ignored by the Message Handler.
1: This Message Object is configured and should be considered by the 
Message Handler.

Bits 15:0 MsgVal16-1 Message Valid Bits (of all Message Objects)
0: This Message Object is ignored by the Message Handler.
1: This Message Object is configured and should be considered by the 
Message Handler.
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9.7 Register Map

Table 36. CAN Register Map

Addr 
offset

Register Name
1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

00h CAN_CR Reserved

T
es

t

C
C

E

D
A

R re
s E

IE

S
IE IE Init

04h CAN_SR Reserved

B
O

ff

E
W

ar
n

E
P

as
s

R
xO

k

T
xO

k

LEC

 08h CAN_ERR
R
P

REC6-0 TEC7-0

0Ch CAN_BTR
re
s

TSeg2 TSeg1 SJW BRP

10h CAN_IDR IntId15-8 IntId7-0

14h CAN_TESTR Reserved R
x

T
x1

T
x0

LB
ac

k

S
ile

nt

B
as

ic

Reserved

18h CAN_BRPR Reserved BRPE

 20h CAN_IF1_CRR
B
u
sy

Reserved Message Number

 24h CAN_IF1_CMR Reserved

W
R

/R
D

M
as

k

A
rb

C
on

tr
ol

C
lrI

nt
P

nd

T
xR

qs
t/

D
at

a 
A

D
at

a 
B

 28h CAN_IF1_M1R Msk15-0

2Ch CAN_IF1_M2R
M
Xt
d

M
Di
r

re
s

Msk28-16

30h CAN_IF1_A1R ID15-0

 34h CAN_IF1_A2R

M
s
g
V
al

Xt
d

Di
r

ID28-16
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 38h CAN_IF1_MCR
N

ew
D

at

M
sg

Ls
t

In
tP

nd

U
M

as
k

T
xI

E

R
xI

E

R
m

tE
n

T
xR

qs
t

E
oB Reserved DLC3-0

3Ch
CAN_IF1_DA1

R
Data(1) Data(0)

40h
CAN_IF1_DA2

R
Data(3) Data(2)

44h
CAN_IF1_DB1

R
Data(5) Data(4)

 48h
CAN_IF1_DB2

R
Data(7) Data(6)

 80h CAN_IF2_CRR
B
u
sy

Reserved Message Number

 84h CAN_IF2_CMR Reserved

W
R

/R
D

M
as

k

A
rb

C
on

tr
ol

C
lrI

nt
P

nd

T
xR

qs
t/

D
at

a 
A

D
at

a 
B

 88h CAN_IF2_M1R Msk15-0

8Ch CAN_IF2_M2R
M
Xt
d

M
Di
r

re
s

Msk28-16

90h CAN_IF2_A1R ID15-0

 94h CAN_IF2_A2R

M
s
g
V
al

Xt
d

Di
r

ID28-16

 98h CAN_IF2_MCR

N
ew

D
at

M
sg

Ls
t

In
tP

nd

U
M

as
k

T
xI

E

R
xI

E

R
m

tE
n

T
xR

qs
t

E
oB Reserved DLC3-0

9Ch
CAN_IF2_DA1

R
Data(1) Data(0)

Table 36. CAN Register Map

Addr 
offset

Register Name
1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0
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Note Reserved bits are read as 0’ except for IFn Mask 2 Register where they are read as
’1’.

See Table 2, “APB1 memory map,” on page 17 for base address

A0h
CAN_IF2_DA2

R
Data(3) Data(2)

A4h
CAN_IF2_DB1

R
Data(5) Data(4)

 A8h
CAN_IF2_DB2

R
Data(7) Data(6)

100h CAN_TxR1R TxRqst16-1

104h CAN_TxR2R TxRqst32-17

120h CAN_ND1R NewDat16-1

124h CAN_ND2R NewDat32-17

140h CAN_IP1R IntPnd16-1

 144h CAN_IP2R IntPnd32-17

160h CAN_MV1R MsgVal16-1

164h CAN_MV2R MsgVal32-17

Table 36. CAN Register Map

Addr 
offset

Register Name
1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0
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9.8 CAN Communications

9.8.1 Managing Message Objects

The configuration of the Message Objects in the Message RAM (with the exception of the bits 
MsgVal, NewDat, IntPnd, and TxRqst) will not be affected by resetting the chip. All the 
Message Objects must be initialized by the application software or they must be “not valid” 
(MsgVal = ‘0’) and the bit timing must be configured before the application software clears the 
Init bit in the CAN Control Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control 
and Data fields of one of the two interface registers to the desired values. By writing to the 
corresponding IFn Command Request Register, the IFn Message Buffer Registers are loaded 
into the addressed Message Object in the Message RAM.

When the Init bit in the CAN Control Register is cleared, the CAN Protocol Controller state 
machine of the CAN_Core and state machine of the Message Handler control the internal 
data flow of the C_CAN. Received messages that pass the acceptance filtering are stored in 
the Message RAM, messages with pending transmission request are loaded into the 
CAN_Core’s Shift Register and are transmitted through the CAN bus.

The application software reads received messages and updates messages to be transmitted 
through the IFn Interface Registers. Depending on the configuration, the CPU is interrupted 
on certain CAN message and CAN error events.

9.8.2 Message Handler State Machine

The Message Handler controls the data transfer between the Rx/Tx Shift Register of the CAN 
Core, the Message RAM and the IFn Registers.

The Message Handler FSM controls the following functions:

• Data Transfer from IFn Registers to the Message RAM

• Data Transfer from Message RAM to the IFn Registers

• Data Transfer from Shift Register to the Message RAM

• Data Transfer from Message RAM to Shift Register

• Data Transfer from Shift Register to the Acceptance Filtering unit

• Scanning of Message RAM for a matching Message Object

• Handling of TxRqst flags

• Handling of interrupts.
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9.8.2.1 Data Transfer from/to Message RAM

When the CPU initiates a data transfer between the IFn Registers and Message RAM, the 
Message Handler sets the Busy bit in the respective Command Request Register 
(CAN_IFn_CRR). After the transfer has completed, the Busy bit is again cleared (see Figure 
49).

The respective Command Mask Register specifies whether a complete Message Object or 
only parts of it will be transferred. Due to the structure of the Message RAM, it is not possible 
to write single bits/bytes of one Message Object. It is always necessary to write a complete 
Message Object into the Message RAM. Therefore, the data transfer from the IFn Registers to 
the Message RAM requires a read-modify-write cycle. First, those parts of the Message 
Object that are not to be changed are read from the Message RAM and then the complete 
contents of the Message Buffer Registers are written into the Message Object.

Figure 49. Data transfer between IFn Registers and Message RAM

START

WR/RD = 1

Busy = 0

Busy = 1

Read Message Object to IFn

Write IFn to Message RAM

Read Message Object to IFn

No Yes

CAN_WAIT_B = 0

CAN_WAIT_B = 1

Write Command Request Register
No

Yes
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After a partial write of a Message Object, the Message Buffer Registers that are not selected 
in the Command Mask Register will set the actual contents of the selected Message Object.

After a partial read of a Message Object, the Message Buffer Registers that are not selected 
in the Command Mask Register will be left unchanged.

9.8.2.2 Message Transmission 

If the shift register of the CAN Core cell is ready for loading and if there is no data transfer 
between the IFn Registers and Message RAM, the MsgVal bits in the Message Valid Register 
and TxRqst bits in the Transmission Request Register are evaluated. The valid Message 
Object with the highest priority pending transmission request is loaded into the shift register 
by the Message Handler and the transmission is started. The NewDat bit of the Message 
Object is reset.

After a successful transmission and also if no new data was written to the Message Object 
(NewDat = ‘0’) since the start of the transmission, the TxRqst bit of the Message Control 
register (CAN_IFn_MCR) will be reset. If TxIE bit of the Message Control register 
(CAN_IFn_MCR) is set, IntPnd bit of the Interrupt Identifier register (CAN_IDR) will be set 
after a successful transmission. If the C_CAN has lost the arbitration or if an error occurred 
during the transmission, the message will be retransmitted as soon as the CAN bus is free 
again. Meanwhile, if the transmission of a message with higher priority has been requested, 
the messages will be transmitted in the order of their priority.

9.8.2.3 Acceptance Filtering of Received Messages

When the arbitration and control field (Identifier + IDE + RTR + DLC) of an incoming message 
is completely shifted into the Rx/Tx Shift Register of the CAN Core, the Message Handler 
FSM starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is 
loaded with the arbitration bits from the CAN Core shift register. The arbitration and mask 
fields (including MsgVal, UMask, NewDat, and EoB) of Message Object 1 are then loaded into 
the Acceptance Filtering unit and compared with the arbitration field from the shift register. 
This is repeated with each following Message Object until a matching Message Object is 
found or until the end of the Message RAM is reached.

If a match occurs, the scan is stopped and the Message Handler FSM proceeds depending on 
the type of frame (Data Frame or Remote Frame) received.

Reception of Data Frame

The Message Handler FSM stores the message from the CAN Core shift register into the 
respective Message Object in the Message RAM. Not only the data bytes, but all arbitration 
bits and the Data Length Code are stored in the corresponding Message Object. This is done 
to keep the data bytes connected with the identifier even if arbitration mask registers are used.
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The NewDat bit is set to indicate that new data (not yet seen by the CPU) has been received. 
The application software should reset NewDat bit when the Message Object has been read. If 
at the time of reception, the NewDat bit was already set, MsgLst is set to indicate that the 
previous data (supposedly not seen by the CPU) is lost. If the RxIE bit is set, the IntPnd bit is 
set, causing the Interrupt Register to point to this Message Object.

The TxRqst bit of this Message Object is reset to prevent the transmission of a Remote 
Frame, while the requested Data Frame has just been received.

Reception of Remote Frame

When a Remote Frame is received, three different configurations of the matching Message 
Object have to be considered:

1) Dir = ‘1’ (direction = transmit), RmtEn = ‘1’, UMask = ‘1’ or’0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is set. 
The rest of the Message Object remains unchanged.

2) Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask =’0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object remains 
unchanged; the Remote Frame is ignored.

3) Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask =’1’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is reset. 
The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register is stored 
in the Message Object of the Message RAM and the NewDat bit of this Message Object is set. 
The data field of the Message Object remains unchanged; the Remote Frame is treated 
similar to a received Data Frame.

9.8.2.4 Receive/Transmit Priority

The receive/transmit priority for the Message Objects is attached to the message number. 
Message Object 1 has the highest priority, while Message Object 32 has the lowest priority. If 
more than one transmission request is pending, they are serviced due to the priority of the 
corresponding Message Object.

9.8.3 Configuring a Transmit Object

Table 37 shows how a Transmit Object should be initialized.

Table 37. Initialization of a Transmit Object

M
sg

V
al

A
rb

D
at

a

M
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E
oB D
ir

N
ew

D
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M
sg
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t

R
xI

E

T
xI

E
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tP

nd

R
m

tE
n

T
xR
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t

1 appl. appl. appl. 1 1 0 0 0 appl. 0 appl. 0
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The Arbitration Register values (ID28-0 and Xtd bit) are provided by the application. They 
define the identifier and type of the outgoing message. If an 11-bit Identifier (“Standard 
Frame”) is used, it is programmed to ID28 - ID18. The ID17 - ID0 can then be disregarded.

If the TxIE bit is set, the IntPnd bit will be set after a successful transmission of the Message 
Object.

If the RmtEn bit is set, a matching received Remote Frame will cause the TxRqst bit to be set; 
the Remote Frame will autonomously be answered by a Data Frame.

The Data Register values (DLC3-0, Data0-7) are provided by the application, TxRqst and 
RmtEn may not be set before the data is valid.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask=’1’) to 
allow groups of Remote Frames with similar identifiers to set the TxRqst bit. The Dir bit should 
not be masked.

9.8.4 Updating a Transmit Object

The CPU may update the data bytes of a Transmit Object any time through the IFn Interface 
registers, neither MsgVal nor TxRqst have to be reset before the update. Even if only a part of 
the data bytes are to be updated, all four bytes of the corresponding IFn Data A Register or 
IFn Data B Register have to be valid before the contents of that register are transferred to the 
Message Object. Either the CPU has to write all four bytes into the IFn Data Register or the 
Message Object is transferred to the IFn Data Register before the CPU writes the new data 
bytes.

When only the (eight) data bytes are updated, first 0x0087 is written to the Command Mask 
Register and then the number of the Message Object is written to the Command Request 
Register, concurrently updating the data bytes and setting TxRqst.

To prevent the reset of TxRqst at the end of a transmission that may already be in progress 
while the data is updated, NewDat has to be set together with TxRqst. For details see Section 
9.8.2.2: Message Transmission on page 185.

When NewDat is set together with TxRqst, NewDat will be reset as soon as the new 
transmission has started.

9.8.5 Configuring a Receive Object

Table 38 shows how a Receive Object should be initialized.

Table 38. Initialization of a Receive Object
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The Arbitration Registers values (ID28-0 and Xtd bit) are provided by the application. They 
define the identifier and type of accepted received messages. If an 11-bit Identifier (“Standard 
Frame”) is used, it is programmed to ID28 - ID18. Then ID17 - ID0 can be disregarded. When 
a Data Frame with an 11-bit Identifier is received, ID17 - ID0 will be set to ‘0’.

If the RxIE bit is set, the IntPnd bit will be set when a received Data Frame is accepted and 
stored in the Message Object.

The Data Length Code (DLC3-0) is provided by the application. When the Message Handler 
stores a Data Frame in the Message Object, it will store the received Data Length Code and 
eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message 
Object will be overwritten by unspecified values.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask=’1’) to 
allow groups of Data Frames with similar identifiers to be accepted. The Dir bit should not be 
masked in typical applications.

9.8.6 Handling Received Messages

The CPU may read a received message any time via the IFn Interface registers. The data 
consistency is guaranteed by the Message Handler state machine.

Typically, the CPU will write first 0x007F to the Command Mask Register and then the number 
of the Message Object to the Command Request Register. This combination will transfer the 
whole received message from the Message RAM into the Message Buffer Register. 
Additionally, the bits NewDat and IntPnd are cleared in the Message RAM (not in the Message 
Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits shows which of 
the matching messages have been received.

The actual value of NewDat shows whether a new message has been received since the last 
time this Message Object was read. The actual value of MsgLst shows whether more than 
one message has been received since the last time this Message Object was read. MsgLst 
will not be automatically reset.

By means of a Remote Frame, the CPU may request another CAN node to provide new data 
for a receive object. Setting the TxRqst bit of a receive object will cause the transmission of a 
Remote Frame with the receive object’s identifier. This Remote Frame triggers the other CAN 
node to start the transmission of the matching Data Frame. If the matching Data Frame is 
received before the Remote Frame could be transmitted, the TxRqst bit is automatically reset.

9.8.7 Configuring a FIFO Buffer

With the exception of the EoB bit, the configuration of Receive Objects belonging to a FIFO 
Buffer is the same as the configuration of a (single) Receive Object, see Section 9.8.5: 
Configuring a Receive Object on page 187.
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To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks (if 
used) of these Message Objects have to be programmed to matching values. Due to the 
implicit priority of the Message Objects, the Message Object with the lowest number will be 
the first Message Object of the FIFO Buffer. The EoB bit of all Message Objects of a FIFO 
Buffer except the last have to be programmed to zero. The EoB bits of the last Message 
Object of a FIFO Buffer is set to one, configuring it as the End of the Block.

9.8.8 Receiving Messages with FIFO Buffers

Received messages with identifiers matching to a FIFO Buffer are stored in a Message Object 
of this FIFO Buffer starting with the Message Object with the lowest message number.

When a message is stored in a Message Object of a FIFO Buffer, the NewDat bit of this 
Message Object is set. By setting NewDat while EoB is zero, the Message Object is locked for 
further write access by the Message Handler until the application software has written the 
NewDat bit back to zero.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is 
reached. If none of the preceding Message Objects is released by writing NewDat to zero, all 
further messages for this FIFO Buffer will be written into the last Message Object of the FIFO 
Buffer and therefore overwrite previous messages.

9.8.8.1 Reading from a FIFO Buffer

When the CPU transfers the contents of a Message Object to the IFn Message Buffer register 
by writing its number to the IFn Command Request Register, the corresponding Command 
Mask Register should be programmed in such a way that bits NewDat and IntPnd are reset to 
zero (TxRqst/NewDat = ‘1’ and ClrIntPnd = ‘1’). The values of these bits in the Message 
Control Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read the Message Objects 
starting at the FIFO Object with the lowest message number.

Figure 50 shows how a set of Message Objects which are concatenated to a FIFO Buffer can 
be handled by the CPU.
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Figure 50. CPU Handling of a FIFO Buffer
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9.8.9 Handling Interrupts

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt 
with the highest priority, disregarding their chronological order. An interrupt remains pending 
until the application software has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, interrupt priority 
of the Message Object decreases with increasing message number.

A message interrupt is cleared by clearing the IntPnd bit of the Message Object. The Status 
Interrupt is cleared by reading the Status Register.

The interrupt identifier, IntId, in the Interrupt Register, indicates the cause of the interrupt. 
When no interrupt is pending, the register will hold the value zero. If the value of the Interrupt 
Register is different from zero, then there is an interrupt pending and, if IE is set, the IRQ 
interrupt signal to the EIC is active. The interrupt remains active until the Interrupt Register is 
back to value zero (the cause of the interrupt is reset) or until IE is reset.

The value 0x8000 indicates that an interrupt is pending because the CAN Core has updated 
(not necessarily changed) the Status Register (Error Interrupt or Status Interrupt). This 
interrupt has the highest priority. The CPU can update (reset) the status bits RxOk, TxOk and 
LEC, but a write access of the CPU to the Status Register can never generate or reset an 
interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects. IntId 
points to the pending message interrupt with the highest interrupt priority.

The CPU controls whether a change of the Status Register may cause an interrupt (bits EIE 
and SIE in the CAN Control Register) and whether the interrupt line becomes active when the 
Interrupt Register is different from zero (bit IE in the CAN Control Register). The Interrupt 
Register will be updated even when IE is reset.

The CPU has two possibilities to follow the source of a message interrupt. First, it can follow 
the IntId in the Interrupt Register and second it can poll the Interrupt Pending Register (see 
See “Interrupt Pending Registers 1 & 2 (CAN_IPnR)” on page 178..).

An interrupt service routine that is reading the message that is the source of the interrupt may 
read the message and reset the Message Object’s IntPnd at the same time (bit ClrIntPnd in 
the Command Mask Register). When IntPnd is cleared, the Interrupt Register will point to the 
next Message Object with a pending interrupt.

9.8.10 Configuring the Bit Timing

Even if minor errors in the configuration of the CAN bit timing do not result in immediate 
failure, the performance of a CAN network can be reduced significantly.

In many cases, the CAN bit synchronization will amend a faulty configuration of the CAN bit 
timing to such a degree that only occasionally an error frame is generated. However, in the 
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case of arbitration, when two or more CAN nodes simultaneously try to transmit a frame, a 
misplaced sample point may cause one of the transmitters to become error passive.

The analysis of such sporadic errors requires a detailed knowledge of the CAN bit 
synchronization inside a CAN node and interaction of the CAN nodes on the CAN bus.

9.8.10.1 Bit Time and Bit Rate

CAN supports bit rates in the range of lower than 1 kBit/s up to 1000 kBit/s. Each member of 
the CAN network has its own clock generator, usually a quartz oscillator. The timing 
parameter of the bit time (i.e. the reciprocal of the bit rate) can be configured individually for 
each CAN node, creating a common bit rate even though the oscillator periods of the CAN 
nodes (fosc) may be different.

The frequencies of these oscillators are not absolutely stable, small variations are caused by 
changes in temperature or voltage and by deteriorating components. As long as the variations 
remain inside a specific oscillator tolerance range (df), the CAN nodes are able to 
compensate for the different bit rates by re-synchronizing to the bit stream.

According to the CAN specification, the bit time is divided into four segments (see Figure 51). 
The Synchronization Segment, the Propagation Time Segment, the Phase Buffer Segment 1 
and the Phase Buffer Segment 2. Each segment consists of a specific, programmable number 
of time quanta (see Table 39). The length of the time quantum (tq), which is the basic time unit 
of the bit time, is defined by the CAN controller’s system clock fAPB and the BRP bit of the Bit 
Timing Register (CAN_BTR): tq = BRP / fAPB. 

The Synchronization Segment, Sync_Seg, is that part of the bit time where edges of the CAN 
bus level are expected to occur. The distance between an edge, that occurs outside of 
Sync_Seg, and the Sync_Seg is called the phase error of that edge. The Propagation Time 
Segment, Prop_Seg, is intended to compensate for the physical delay times within the CAN 
network. The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample 
Point. The (Re-)Synchronization Jump Width (SJW) defines how far a re-synchronization may 
move the Sample Point inside the limits defined by the Phase Buffer Segments to compensate 
for edge phase errors.

Figure 51. Bit Timing
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A given bit rate may be met by different bit time configurations, but for the proper function of 
the CAN network the physical delay times and the oscillator’s tolerance range have to be 
considered.

9.8.10.2 Propagation Time Segment

This part of the bit time is used to compensate physical delay times within the network. These 
delay times consist of the signal propagation time on the bus and the internal delay time of the 
CAN nodes.

Any CAN node synchronized to the bit stream on the CAN bus will be out of phase with the 
transmitter of that bit stream, caused by the signal propagation time between the two nodes. 
The CAN protocol’s non-destructive bitwise arbitration and the dominant acknowledge bit 
provided by receivers of CAN messages requires that a CAN node transmitting a bit stream 
must also be able to receive dominant bits transmitted by other CAN nodes that are 
synchronized to that bit stream. The example in Figure 52 shows the phase shift and 
propagation times between two CAN nodes.

Table 39.  CAN Bit Time Parameters

Parameter Range Remark

BRP [1 .. 32] defines the length of the time quantum tq

Sync_Seg 1 tq fixed length, synchronization of bus input to system clock

Prop_Seg [1.. 8] tq compensates for the physical delay times

Phase_Seg1 [1..8] tq may be lengthened temporarily by synchronization

Phase_Seg2 [1.. 8] tq may be shortened temporarily by synchronization

SJW [1 .. 4] tq may not be longer than either Phase Buffer Segment

This table describes the minimum programmable ranges required by the CAN protocol
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In this example, both nodes A and B are transmitters, performing an arbitration for the CAN 
bus. Node A has sent its Start of Frame bit less than one bit time earlier than node B, therefore 
node B has synchronized itself to the received edge from recessive to dominant. Since node 
B has received this edge delay (A_to_B) after it has been transmitted, B’s bit timing segments 
are shifted with respect to A. Node B sends an identifier with higher priority and so it will win 
the arbitration at a specific identifier bit when it transmits a dominant bit while node A 
transmits a recessive bit. The dominant bit transmitted by node B will arrive at node A after the 
delay (B_to_A).

Due to oscillator tolerances, the actual position of node A’s Sample Point can be anywhere 
inside the nominal range of node A’s Phase Buffer Segments, so the bit transmitted by node B 
must arrive at node A before the start of Phase_Seg1. This condition defines the length of 
Prop_Seg.

If the edge from recessive to dominant transmitted by node B arrives at node A after the start 
of Phase_Seg1, it can happen that node A samples a recessive bit instead of a dominant bit, 
resulting in a bit error and the destruction of the current frame by an error flag.

The error occurs only when two nodes arbitrate for the CAN bus that have oscillators of 
opposite ends of the tolerance range and that are separated by a long bus line. This is an 
example of a minor error in the bit timing configuration (Prop_Seg to short) that causes 
sporadic bus errors.

Some CAN implementations provide an optional 3 Sample Mode but the C_CAN does not. In 
this mode, the CAN bus input signal passes a digital low-pass filter, using three samples and 
a majority logic to determine the valid bit value. This results in an additional input delay of 1 tq, 
requiring a longer Prop_Seg.

Figure 52. Propagation Time Segment
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9.8.10.3 Phase Buffer Segments and Synchronization

The Phase Buffer Segments (Phase_Seg1 and Phase_Seg2) and the Synchronization Jump 
Width (SJW) are used to compensate for the oscillator tolerance. The Phase Buffer Segments 
may be lengthened or shortened by synchronization.

Synchronizations occur on edges from recessive to dominant, their purpose is to control the 
distance between edges and Sample Points.

Edges are detected by sampling the actual bus level in each time quantum and comparing it 
with the bus level at the previous Sample Point. A synchronization may be done only if a 
recessive bit was sampled at the previous Sample Point and if the bus level at the actual time 
quantum is dominant.

An edge is synchronous if it occurs inside of Sync_Seg, otherwise the distance between edge 
and the end of Sync_Seg is the edge phase error, measured in time quanta. If the edge 
occurs before Sync_Seg, the phase error is negative, else it is positive.

Two types of synchronization exist, Hard Synchronization and Re-synchronization. 

A Hard Synchronization is done once at the start of a frame and inside a frame only when 
Re-synchronizations occur.

• Hard Synchronization
After a hard synchronization, the bit time is restarted with the end of Sync_Seg,
regardless of the edge phase error. Thus hard synchronization forces the edge, which has
caused the hard synchronization to lie within the synchronization segment of the restarted
bit time.

• Bit Re-synchronization
Re-synchronization leads to a shortening or lengthening of the bit time such that the
position of the sample point is shifted with regard to the edge.
When the phase error of the edge which causes Re-synchronization is positive,
Phase_Seg1 is lengthened. If the magnitude of the phase error is less than SJW,
Phase_Seg1 is lengthened by the magnitude of the phase error, else it is lengthened by
SJW.
When the phase error of the edge, which causes Re-synchronization is negative,
Phase_Seg2 is shortened. If the magnitude of the phase error is less than SJW,
Phase_Seg2 is shortened by the magnitude of the phase error, else it is shortened by
SJW.

When the magnitude of the phase error of the edge is less than or equal to the programmed 
value of SJW, the results of Hard Synchronization and Re-synchronization are the same. If the 
magnitude of the phase error is larger than SJW, the Re-synchronization cannot compensate 
the phase error completely, an error (phase error - SJW) remains.
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Only one synchronization may be done between two Sample Points. The Synchronizations 
maintain a minimum distance between edges and Sample Points, giving the bus level time to 
stabilize and filtering out spikes that are shorter than (Prop_Seg + Phase_Seg1).

Apart from noise spikes, most synchronizations are caused by arbitration. All nodes 
synchronize “hard” on the edge transmitted by the “leading” transceiver that started 
transmitting first, but due to propagation delay times, they cannot become ideally 
synchronized. The “leading” transmitter does not necessarily win the arbitration, therefore the 
receivers have to synchronize themselves to different transmitters that subsequently “take the 
lead” and that are differently synchronized to the previously “leading” transmitter. The same 
happens at the acknowledge field, where the transmitter and some of the receivers will have 
to synchronize to that receiver that “takes the lead” in the transmission of the dominant 
acknowledge bit.

Synchronizations after the end of the arbitration will be caused by oscillator tolerance, when 
the differences in the oscillator’s clock periods of transmitter and receivers sum up during the 
time between synchronizations (at most ten bits). These summarized differences may not be 
longer than the SJW, limiting the oscillator’s tolerance range.

The examples in Figure 53 show how the Phase Buffer Segments are used to compensate for 
phase errors. There are three drawings of each two consecutive bit timings. The upper 
drawing shows the synchronization on a “late” edge, the lower drawing shows the 
synchronization on an “early” edge, and the middle drawing is the reference without 
synchronization.

Figure 53. Synchronization on “late” and “early” Edges

recessive
dominant

recessive
dominant

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

“late” Edge

“early” Edge

Rx-Input

Rx-Input

Sample-Point Sample-Point

Sample-PointSample-Point

Sample-Point Sample-Point
196/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
In the first example, an edge from recessive to dominant occurs at the end of Prop_Seg. The 
edge is “late” since it occurs after the Sync_Seg. Reacting to the “late” edge, Phase_Seg1 is 
lengthened so that the distance from the edge to the Sample Point is the same as it would 
have been from the Sync_Seg to the Sample Point if no edge had occurred. The phase error 
of this “late” edge is less than SJW, so it is fully compensated and the edge from dominant to 
recessive at the end of the bit, which is one nominal bit time long, occurs in the Sync_Seg.

In the second example, an edge from recessive to dominant occurs during Phase_Seg2. The 
edge is “early” since it occurs before a Sync_Seg. Reacting to the “early” edge, Phase_Seg2 
is shortened and Sync_Seg is omitted, so that the distance from the edge to the Sample Point 
is the same as it would have been from an Sync_Seg to the Sample Point if no edge had 
occurred. As in the previous example, the magnitude of phase error of this “early” edge’s is 
less than SJW, so it is fully compensated.

The Phase Buffer Segments are lengthened or shortened temporarily only; at the next bit 
time, the segments return to their nominal programmed values.

In these examples, the bit timing is seen from the point of view of the CAN state machine, 
where the bit time starts and ends at the Sample Points. The state machine omits Sync_Seg 
when synchronizing on an “early” edge, because it cannot subsequently redefine that time 
quantum of Phase_Seg2 where the edge occurs to be the Sync_Seg.

The examples in Figure 54 show how short dominant noise spikes are filtered by 
synchronizations. In both examples the spike starts at the end of Prop_Seg and has the 
length of “Prop_Seg + Phase_Seg1”.

Figure 54. Filtering of Short Dominant Spikes
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In the first example, the Synchronization Jump Width is greater than or equal to the phase 
error of the spike’s edge from recessive to dominant. Therefore the Sample Point is shifted 
after the end of the spike; a recessive bus level is sampled.

In the second example, SJW is shorter than the phase error, so the Sample Point cannot be 
shifted far enough; the dominant spike is sampled as actual bus level.

9.8.10.4 Oscillator Tolerance Range

The oscillator tolerance range was increased when the CAN protocol was developed from 
version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to 
synchronize on edges from dominant to recessive became obsolete, only edges from 
recessive to dominant are considered for synchronization. The only CAN controllers to 
implement protocol version 1.1 have been Intel 82526 and Philips 82C200, both are 
superseded by successor products. The protocol update to version 2.0 (A and B) had no 
influence on the oscillator tolerance.

The tolerance range df for an oscillator frequency fosc around the nominal frequency fnom is: 

It depends on the proportions of Phase_Seg1, Phase_Seg2, SJW, and the bit time. The 
maximum tolerance df is the defined by two conditions (both shall be met):

It has to be considered that SJW may not be larger than the smaller of the Phase Buffer 
Segments and that the Propagation Time Segment limits that part of the bit time that may be 
used for the Phase Buffer Segments.

The combination Prop_Seg = 1 and Phase_Seg1 = Phase_Seg2 = SJW = 4 allows the 
largest possible oscillator tolerance of 1.58%. This combination with a Propagation Time 
Segment of only 10% of the bit time is not suitable for short bit times; it can be used for bit 
rates of up to 125 kBit/s (bit time = 8 µs) with a bus length of 40 m.

9.8.10.5 Configuring the CAN Protocol Controller

In most CAN implementations and also in the C_CAN, the bit timing configuration is 
programmed in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSEG1) is 
combined with Phase_Seg2 (as TSEG2) in one byte, SJW and BRP are combined in the 
other byte (see Figure 55 on page 199).

1 df–( ) fnom• fosc 1 df+( ) fnom•≤ ≤

 I:   df min Phase_Seg1  Phase_Seg2,( )
2 13 bit_time Phase_Seg2–⋅( )⋅
---------------------------------------------------------------------------------------≤

II:   df SJW
20 bit_time⋅
--------------------------------≤
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In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to be 
programmed to a numerical value that is one less than its functional value. Therefore, instead 
of values in the range of [1..n], values in the range of [0..n-1] are programmed. That way, e.g. 
SJW (functional range of [1..4]) is represented by only two bits.

Therefore the length of the bit time is (programmed values) [TSEG1 + TSEG2 + 3] tq or 
(functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq.

The data in the bit timing registers is the configuration input of the CAN protocol controller. 
The Baud Rate Prescaler (configured by BRP) defines the length of the time quantum, the 
basic time unit of the bit time; the Bit Timing Logic (configured by TSEG1, TSEG2, and SJW) 
defines the number of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and 
occasional synchronizations are controlled by the BTL state machine, which is evaluated once 
each time quantum. The rest of the CAN protocol controller, the BSP state machine is 
evaluated once each bit time, at the Sample Point.

The Shift Register sends the messages serially and receives the messages parallely. Its 
loading and shifting is controlled by the BSP.

The BSP translates messages into frames and vice versa. It generates and discards the 
enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC 
code, performs the error management, and decides which type of synchronization is to be 
used. It is evaluated at the Sample Point and processes the sampled bus input bit. The time 

Figure 55. Structure of the CAN Core’s CAN Protocol Controller
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that is needed to calculate the next bit to be sent after the Sample point(e.g. data bit, CRC bit, 
stuff bit, error flag, or idle) is called the Information Processing Time (IPT).

The IPT is application specific but may not be longer than 2 tq; the IPT for the C_CAN is 0 tq. 
Its length is the lower limit of the programmed length of Phase_Seg2. In case of a 
synchronization, Phase_Seg2 may be shortened to a value less than IPT, which does not 
affect bus timing.

9.8.10.6 Calculating Bit Timing Parameters

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time. 
The resulting bit time (1/bit rate) must be an integer multiple of the system clock period.

The bit time may consist of 4 to 25 time quanta, the length of the time quantum tq is defined by 
the Baud Rate Prescaler with tq = (Baud Rate Prescaler)/fsys. Several combinations may lead 
to the desired bit time, allowing iterations of the following steps.

First part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times 
measured in the system. A maximum bus length as well as a maximum node delay has to be 
defined for expandible CAN bus systems. The resulting time for Prop_Seg is converted into 
time quanta (rounded up to the nearest integer multiple of tq). 

The Sync_Seg is 1 tq long (fixed), leaving (bit time – Prop_Seg – 1) tq for the two Phase Buffer 
Segments. If the number of remaining tq is even, the Phase Buffer Segments have the same 
length, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.

The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may 
not be shorter than the IPT of the CAN controller, which, depending on the actual 
implementation, is in the range of [0..2] tq.

The length of the Synchronization Jump Width is set to its maximum value, which is the 
minimum of 4 and Phase_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the 
formulas given in Section 9.8.10.4: Oscillator Tolerance Range on page 198

If more than one configuration is possible, that configuration allowing the highest oscillator 
tolerance range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same 
bit rate. The calculation of the propagation time in the CAN network, based on the nodes with 
the longest delay times, is done once for the whole network.

The oscillator tolerance range of the CAN systems is limited by that node with the lowest 
tolerance range.

The calculation may show that bus length or bit rate have to be decreased or that the stability 
of the oscillator frequency has to be increased in order to find a protocol compliant 
configuration of the CAN bit timing.
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The resulting configuration is written into the Bit Timing Register:

(Phase_Seg2-1)&(Phase_Seg1+Prop_Seg-1)&

(SynchronisationJumpWidth-1)&(Prescaler-1)

Example for Bit Timing at High Baudrate

In this example, the frequency of APB_CLK is 10 MHz, BRP is 0, the bit rate is 1 MBit/s.

In this example, the concatenated bit time parameters are (2-1)3&(7-1)4&(1-1)2&(1-1)6, the Bit 
Timing Register is programmed to= 0x1600.

tq 100 ns = tAPB_CLK

delay of bus driver 50 ns

delay of receiver circuit 30 ns

delay of bus line (40m) 220 ns

tProp 600 ns = 6 • tq

tSJW 100 ns = 1 • tq

tTSeg1 700 ns = tProp + tSJW

tTSeg2 200 ns = Information Processing Time + 1 • tq

tSync-Seg 100 ns = 1 • tq

bit time 1000 ns = tSync-Seg + tTSeg1 + tTSeg2

tolerance for APB_CLK 0.39 %

= 

= 

min PB1 PB2,( )
2x 13x bit time PB2–( )( )
---------------------------------------------------------------

0.1µs
2x 13x 1µs 0.2µs–( )( )
-----------------------------------------------------------
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Example for Bit Timing at Low Baudrate

In this example, the frequency of APB_CLK is 2 MHz, BRP is 1, the bit rate is 100 KBit/s.

In this example, the concatenated bit time parameters are (4-1)3&(5-1)4&(4-1)2&(2-1)6, the Bit 
Timing Register is programmed to= 0x34C1.

tq 1 µs = 2 •tAPB_CLK

delay of bus driver 200 ns

delay of receiver circuit 80 ns

delay of bus line (40m) 220 ns

tProp 1 µs = 1 • tq

tSJW 4 µs = 4 • tq

tTSeg1 5 µs = tProp + tSJW

tTSeg2 4 µs = Information Processing Time + 3 • tq

tSync-Seg 1 µs = 1 • tq

bit time 10 µs = tSync-Seg + tTSeg1 + tTSeg2

tolerance for APB_CLK 1.58 %

= 

= 

min PB1 PB2,( )
2x 13x bit time PB2–( )( )
---------------------------------------------------------------

4µs
2x 13x 10µs 4µs–( )( )
----------------------------------------------------------
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10 I2C INTERFACE MODULE (I2C)

A I2C Bus Interface serves as an interface between the microcontroller and the serial I2C bus.
It provides both multimaster and slave functions, and controls all I2C bus-specific sequencing,
protocol, arbitration and timing. It supports fast I2C mode (400kHz).

10.1 Main Features

• Parallel-bus/I2C protocol converter

• Multi-master capability

• 7-bit/10-bit Addressing

• Transmitter/Receiver flag

• End-of-byte transmission flag

• Transfer problem detection 

• Standard/Fast I2C mode

I2C Master Features:

• Clock generation

• I2C bus busy flag

• Arbitration Lost Flag

• End of byte transmission flag

• Transmitter/Receiver Flag

• Start bit detection flag

• Start and Stop generation

I2C Slave Features:

• Start bit detection flag

• Stop bit detection

• I2C bus busy flag

• Detection of misplaced start or stop condition

• Programmable I2C Address detection 

• Transfer problem detection 

• End-of-byte transmission flag

• Transmitter/Receiver flag
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10.2 General Description

In addition to receiving and transmitting data, this interface converts them from serial to
parallel format and vice versa, using either an interrupt or polled handshake. The interrupts
are enabled or disabled by software. The interface is connected to the I2C bus by a data pin
(SDA) and by a clock pin (SCL). It can be connected both with a standard I2C bus and a Fast
I2C bus. This selection is made by software.

10.2.1 Mode Selection

The interface can operate in the four following modes:

• Slave transmitter/receiver

• Master transmitter/receiver

By default, it operates in slave mode.

The interface automatically switches from slave to master after it generates a START
condition and from master to slave in case of arbitration loss or a STOP generation, allowing
then Multi-Master capability.

10.2.2 Communication Flow

In Master mode, it initiates a data transfer and generates the clock signal. A serial data
transfer always begins with a start condition and ends with a stop condition. Both start and
stop conditions are generated in master mode by hardware as soon as the Master mode is
selected.

In Slave mode, the interface is capable of recognizing its own address (7 or 10-bit), and the
General Call address. The General Call address detection may be enabled or disabled by
software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to Figure 56.
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Acknowledge may be enabled and disabled by software.

The I2C interface address and/or general call address can be selected by software.

The speed of the I2C interface may be selected between Standard (0-100KHz) and Fast I2C
(100-400KHz).

10.2.3 SDA/SCL Line Control

Transmitter mode: the interface holds the clock line low before transmission to wait for the
microcontroller to write the byte in the Data Register.

Receiver mode: the interface holds the clock line low after reception to wait for the
microcontroller to read the byte in the Data Register.

The SCL frequency (fSCL) is controlled by a programmable clock divider which depends on
the I2C bus mode.

Figure 56. I2C BUS Protocol

SCL

SDA

1 2 8 9

MSB ACK

STOP START
CONDITIONCONDITION
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Figure 57. I2C Interface Block Diagram

DATA REGISTER (DR)

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTER 1 (OAR1)

CLOCK CONTROL REGISTER (CCR)

STATUS REGISTER 1 (SR1)

CONTROL REGISTER (CR)

CONTROL LOGIC

STATUS REGISTER 2 (SR2)

INTERRUPT

CLOCK CONTROL

DATA CONTROL

SCL

SDA

OWN ADDRESS REGISTER 2 (OAR2)

E. CLOCK CONTROL REGISTER (ECCR)
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10.3 Functional Description

Refer to the I2Cn_CR, I2Cn_SR1 and I2Cn_SR2 registers in Section 10.5 for the bit
definitions.

By default the I2C interface operates in Slave mode (M/SL bit is cleared) except when it
initiates a transmit or receive sequence. 

First the interface frequency must be configured using the FRi bits in the I2Cn_OAR2 register.

10.3.1 Slave Mode

As soon as a start condition is detected, the address is received from the SDA line and sent to
the shift register; then it is compared with the address of the interface or the General Call
address (if selected by software). 

Note In 10-bit addressing mode, the comparison includes the header sequence
(11110xx0) and the two most significant bits of the address.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set.

Address not matched: the interface ignores it and waits for another Start condition.

Address matched: the interface generates in sequence:

• Acknowledge pulse if the ACK bit is set.

• EVF and ADSL bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the I2Cn_SR1 register, holding the SCL line low (see
Figure 58 Transfer sequencing EV1).
Next, in 7-bit mode read the I2Cn_DR register to determine from the least significant bit (Data
Direction Bit) if the slave must enter Receiver or Transmitter mode. 

In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It
will enter transmit mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

10.3.1.1 Slave Receiver

Following the address reception and after I2Cn_SR1 register has been read, the slave
receives bytes from the SDA line into the I2Cn_DR register via the internal shift register. After
each byte the interface generates in sequence:

• Acknowledge pulse if the ACK bit is set

• EVF and BTF bits are set with an interrupt if the ITE bit is set.
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Then the interface waits for a read of the I2Cn_SR1 register followed by a read of the
I2Cn_DR register, holding the SCL line low (see Figure 58 Transfer sequencing EV2).

10.3.1.2 Slave Transmitter

Following the address reception and after I2Cn_SR1 register has been read, the slave sends
bytes from the I2Cn_DR register to the SDA line via the internal shift register.

The slave waits for a read of the I2Cn_SR1 register followed by a write in the I2Cn_DR
register, holding the SCL line low (see Figure 58 Transfer sequencing EV3).

When the acknowledge pulse is received: 

• The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

10.3.1.3 Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition and sets:

• EVF and STOPF bits with an interrupt if the ITE bit is set.

Then the interface waits for a read of the I2Cn_SR2 register (see Figure 58 Transfer
sequencing EV4).

10.3.1.4 Error Cases 

• BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the
EVF and the BERR bits are set with an interrupt if the ITE bit is set. 
If it is a Stop then the interface discards the data, released the lines and waits for another
Start condition.
If it is a Start then the interface discards the data and waits for the next slave address on
the bus.

• AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set with an
interrupt if the ITE bit is set.

Note In both cases, SCL line is not held low; however, SDA line can remain low due to
possible «0» bits transmitted last. It is then necessary to release both lines by
software.

10.3.1.5 How to release the SDA / SCL lines

Set and subsequently clear the STOP bit while BTF is set. The SDA/SCL lines are released
after the transfer of the current byte.
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10.3.2 Master Mode

To switch from default Slave mode to Master mode a Start condition generation is needed.

10.3.2.1 Start condition 

Setting the START bit while the BUSY bit is cleared causes the interface to switch to Master
mode (M/SL bit set) and generates a Start condition.

Once the Start condition is sent:

• The EVF and SB bits are set by hardware with an interrupt if the ITE bit is set.

Then the master waits for a read of the I2Cn_SR1 register followed by a write in the I2Cn_DR
register with the Slave address, holding the SCL line low (see Figure 58 Transfer
sequencing EV5).

10.3.2.2 Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

In 7-bit addressing mode, one address byte is sent.

In 10-bit addressing mode, sending the first byte including the header sequence causes the
following event:

• The EVF bit is set by hardware with interrupt generation if the ITE bit is set. 

Then the master waits for a read of the I2Cn_SR1 register followed by a write in the I2Cn_DR
register, holding the SCL line low (see Figure 58 Transfer sequencing EV9). 

Then the second address byte is sent by the interface.

After completion of this transfer (and acknowledge from the slave if the ACK bit is set): 

• The EVF bit is set by hardware with interrupt generation if the ITE bit is set.

Then the master waits for a read of the I2Cn_SR1 register followed by a write in the I2Cn_CR
register (for example set PE bit), holding the SCL line low (see Figure 58 Transfer
sequencing EV6). 

Next the master must enter Receiver or Transmitter mode.

Note In 10-bit addressing mode, to switch the master to Receiver mode, software must
generate a repeated Start condition and re-send the header sequence with the least
significant bit set (11110xx1).
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10.3.2.3 Master Receiver 

Following the address transmission and after I2Cn_SR1 and I2Cn_CR registers have been
accessed, the master receives bytes from the SDA line into the I2Cn_DR register via the
internal shift register. After each byte the interface generates in sequence:

• Acknowledge pulse if the ACK bit is set

• EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the I2Cn_DR
register, holding the SCL line low (see Figure 58 Transfer sequencing EV7).

To close the communication: before reading the last byte from the I2Cn_DR register, set the
STOP bit to generate the Stop condition. The interface goes automatically back to slave mode
(M/SL bit cleared).

Note In order to generate the non-acknowledge pulse after the last received data byte, the
ACK bit must be cleared just before reading the second last data byte.

10.3.2.4 Master Transmitter

Following the address transmission and after I2Cn_SR1 register has been read, the master
sends bytes from the I2Cn_DR register to the SDA line via the internal shift register.

The master waits for a read of the I2Cn_SR1 register followed by a write in the I2Cn_DR
register, holding the SCL line low (see Figure 58 Transfer sequencing EV8).

When the acknowledge bit is received, the interface sets:

• EVF and BTF bits with an interrupt if the ITE bit is set.

To close the communication: after writing the last byte to the I2Cn_DR register, set the STOP
bit to generate the Stop condition. The interface goes automatically back to slave mode (M/SL
bit cleared).

10.3.2.5 Error Cases

• BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the
EVF and BERR bits are set by hardware with an interrupt if ITE is set.

• AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set by
hardware with an interrupt if the ITE bit is set. To resume, set the START or STOP bit.

• ARLO: Detection of an arbitration lost condition.
In this case the ARLO bit is set by hardware (with an interrupt if the ITE bit is set and the
interface goes automatically back to slave mode (the M/SL bit is cleared).
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Note In all these cases, the SCL line is not held low; however, the SDA line can remain low
due to possible «0» bits transmitted last. It is then necessary to release both lines by
software.

Figure 58. Transfer Sequencing

Legend: 

7-bit Slave receiver:

7-bit Slave transmitter:

7-bit Master receiver:

7-bit Master transmitter:

10-bit Slave receiver:

10-bit Slave transmitter:

10-bit Master transmitter:

 

10-bit Master receiver:

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3 EV3 EV3 EV3-1 EV4

S Address A Data1 A Data2 A
.....
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EV5 EV6 EV7 EV7 EV7

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8 EV8 EV8 EV8

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

Sr Header A Data1 A
.....

DataN A P
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S Header A Address A Data1 A
.....
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Sr Header A Data1 A
.....
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S=Start, Sr = Repeated Start, P=Stop, A=Acknowledge, NA=Non-acknowledge,
EVx=Event (with interrupt if ITE=1)

EV1: EVF=1, ADSL=1, cleared by reading I2Cn_SR1 register.

EV2: EVF=1, BTF=1, cleared by reading I2Cn_DR register.

EV3: EVF=1, BTF=1, cleared by reading I2Cn_SR1 register followed by writing to the DR
register.

EV3-1: EVF=1, AF=1, BTF=1; AF is cleared by reading SR2 register. BTF is cleared by
releasing the lines (STOP=1, STOP=0) or by writing I2Cn_DR register (DR=FFh). 

Note: If lines are released bySTOP=1, STOP=0, the subsequent EV4 is not seen.

EV4: EVF=1, STOPF=1, cleared by reading SR2 register.

EV5: EVF=1, SB=1, cleared by reading I2Cn_SR1 register followed by writing I2Cn_DR
register.

EV6: EVF=1, ENDAD=1 cleared by reading I2Cn_SR2 register followed by writing I2Cn_CR
register (for example PE=1).

EV7: EVF=1, BTF=1, cleared by reading the I2Cn_DR register.

EV8: EVF=1, BTF=1, cleared by writing to the I2Cn_DR register.

EV9: EVF=1, ADD10=1, cleared by reading the I2Cn_SR1 register followed by writing to the
I2Cn_DR register.

10.4 Interrupts

Several interrupt events can be flagged by the module:

• requests related to bus events, like start or stop events, arbitration lost, etc.;

• requests related to data transmission and/or reception;

These requests are issued to the interrupt controller by two different lines as described in
Figure 59. The different flags identify the events and can be polled by the software (interrupt
service routine).
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Figure 59. Event Flags and Interrupt Generation
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10.5 Register Description

10.5.1 I2C Control Register (I2Cn_CR)

Address Offset: 00h
Reset value: 00h

Bit 7:6 = Reserved, always read as 0.

Bit 5 = PE: Peripheral Enable. 
This bit is set and cleared by software.
0: Peripheral disabled 
1: Master/Slave capability
Notes:

• 0: all the bits of the I2Cn_CR register and the I2Cn_SR register except the STOP bit are
reset. All outputs are released while PE=0.

• 1: the corresponding I/O pins are selected by hardware as alternate functions.

To enable the I2C interface, write the I2Cn_CR register TWICE with PE=1 as the first write
only activates the interface (only PE is set).

Bit 4 = ENGC: Enable General Call. 
This bit is set and cleared by software. It is also cleared by hardware when the interface is
disabled (PE=0). The 00h General Call address is acknowledged (01h ignored).
0: General Call disabled. 
1: General Call enabled.

Bit 3 = START: Generation of a Start condition. 
This bit is set and cleared by software. It is also cleared by hardware when the interface is
disabled (PE=0) or when the Start condition is sent (with interrupt generation if ITE=1).

• In master mode:
0: No start generation.
1: Repeated start generation.

• In slave mode:
0: No start generation.
1: Start generation when the bus is free.

7 6 5 4 3 2 1 0

reserved PE ENGC START ACK STOP ITE

- rw rw rw rw rw rw
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Bit 2 = ACK: Acknowledge enable. 
This bit is set and cleared by software. It is also cleared by hardware when the interface is
disabled (PE=0).
0: No acknowledge returned 
1: Acknowledge returned after an address byte or a data byte is received

Bit 1 = STOP: Generation of a Stop condition. 
This bit is set and cleared by software. It is also cleared by hardware in master mode. Note:
This bit is not cleared when the interface is disabled (PE=0).

• In master mode:
0: No stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is
sent. The STOP bit is cleared by hardware when the Stop condition is sent.

• In slave mode:
0: No stop generation. 
1: Release the SCL and SDA lines after the current byte transfer (BTF=1). In this mode
the STOP bit has to be cleared by software.

Bit 0 = ITE: Interrupt enable. 
This bit is set and cleared by software and cleared by hardware when the interface is disabled
(PE=0).
0: Interrupts disabled.
1: Interrupts enabled.
Refer to Figure 59 for the relationship between the events and the interrupts.
SCL is held low when the ADD10, SB, BTF or ADSL flags or an EV6 event (See Figure 58) is
detected. 
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10.5.2 I2C Status Register 1 (I2Cn_SR1)

Address Offset: 04h
Reset value: 00h

Bit 7 = EVF: Event flag. 
This bit is set by hardware as soon as an event occurs. It is cleared by software reading
I2Cn_SR2 register in case of error event or as described in Figure 58. It is also cleared by
hardware when the interface is disabled (PE=0).
0: No event
1: One of the following events has occurred:

• BTF=1 (Byte received or transmitted)

• ADSL=1 (Address matched in Slave mode while ACK=1)

• SB=1 (Start condition generated in Master mode)

• AF=1 (No acknowledge received after byte transmission)

• STOPF=1 (Stop condition detected in Slave mode)

• ARLO=1 (Arbitration lost in Master mode)

• BERR=1 (Bus error, misplaced Start or Stop condition detected)

• ADD10=1 (Master has sent header byte)

• ENDAD=1 (Address byte successfully transmitted in Master mode).

Bit 6 = ADD10: 10-bit addressing in Master mode.
This bit is set by hardware when the master has sent the first byte in 10-bit address mode. It
is cleared by software reading I2Cn_SR2 register followed by a write in the I2Cn_DR register
of the second address byte. It is also cleared by hardware when the peripheral is disabled
(PE=0).
0: No ADD10 event occurred.
1: Master has sent first address byte (header).

Bit 5 = TRA: Transmitter/Receiver.
When BTF is set, TRA=1 if a data byte has been transmitted. It is cleared automatically when
BTF is cleared. It is also cleared by hardware after detection of Stop condition (STOPF=1),
loss of bus arbitration (ARLO=1) or when the interface is disabled (PE=0).
0: Data byte received (if BTF=1).
1: Data byte transmitted.

7 6 5 4 3 2 1 0

EVF ADD10 TRA BUSY BTF ADSL M/SL SB

r r r r r r r r
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Bit 4 = BUSY: Bus busy. 
This bit is set by hardware on detection of a Start condition and cleared by hardware on
detection of a Stop condition. It indicates a communication in progress on the bus. This
information is still updated when the interface is disabled (PE=0).
0: No communication on the bus
1: Communication ongoing on the bus

Bit 3 = BTF: Byte transfer finished. 
This bit is set by hardware as soon as a byte is correctly received or transmitted with interrupt
generation if ITE=1. It is cleared by software reading I2Cn_SR1 register followed by a read or
write of I2Cn_DR register. It is also cleared by hardware when the interface is disabled
(PE=0).

• Following a byte transmission, this bit is set after reception of the acknowledge clock
pulse. In case an address byte is sent, this bit is set only after the EV6 event (See Figure
58). BTF is cleared by writing the next byte in I2Cn_DR register.

• Following a byte reception, this bit is set after transmission of the acknowledge clock
pulse if ACK=1. BTF is cleared by reading I2Cn_SR1 register followed by reading the byte
from I2Cn_DR register.

The SCL line is held low while BTF=1.
0: Byte transfer not done
1: Byte transfer succeeded

Bit 2 = ADSL: Address matched (Slave mode). This bit is set by hardware as soon as the
received slave address matched with the I2Cn_OAR register content or a general call is
recognized. An interrupt is generated if ITE=1. It is cleared by software reading I2Cn_SR1
register or by hardware when the interface is disabled (PE=0).
The SCL line is held low while ADSL=1.
0: Address mismatched or not received.
1: Received address matched.

Bit 1 = M/SL: Master/Slave.
This bit is set by hardware as soon as the interface is in Master mode (writing START=1). It is
cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration
(ARLO=1). It is also cleared when the interface is disabled (PE=0).
0: Slave mode.
1: Master mode.

Bit 0 = SB: Start bit (Master mode).
This bit is set by hardware as soon as the Start condition is generated (following a write
START=1). An interrupt is generated if ITE=1. It is cleared by software reading I2Cn_SR1
register followed by writing the address byte in I2Cn_DR register. It is also cleared by
hardware when the interface is disabled (PE=0).
0: No Start condition.
1: Start condition generated.
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10.5.3 I2C Status Register 2 (I2Cn_SR2)

Address Offset: 08h
Reset value: 00h

Bit 7:6 = Reserved, always read as 0.

Bit 5 = ENDAD: End of address transmission. 

This bit is set by hardware when:

•  7-bit addressing mode: the address byte has been transmitted;

• 10-bit addressing mode: the MSB and the LSB have been transmitted during the
addressing phase.   

When the master needs to receive data from the slave, it has to send just the MSB of the slave
address once again; hence the ENDAD flag is set, without waiting for the LSB of the address.
It is cleared by software by reading SR2 and a following write to the CR or by hardware when
the interface is disabled (PE=0).

0: No end of address transmission

1: End of address transmission

Bit 4 = AF: Acknowledge failure. 
This bit is set by hardware when no acknowledge is returned. An interrupt is generated if
ITE=1. It is cleared by software by reading I2Cn_SR2 register or by hardware when the
interface is disabled (PE=0).
The SCL line is not held low while AF=1.
0: No acknowledge failure
1: Acknowledge failure

Bit 3 = STOPF: Stop detection (Slave mode). 
This bit is set by hardware when a Stop condition is detected on the bus after an acknowledge
(if ACK=1). An interrupt is generated if ITE=1. It is cleared by software reading I2Cn_SR2
register or by hardware when the interface is disabled (PE=0).
The SCL line is not held low while STOPF=1.
0: No Stop condition detected
1: Stop condition detected

Bit 2 = ARLO: Arbitration lost.
This bit is set by hardware when the interface loses the arbitration of the bus to another

7 6 5 4 3 2 1 0

reserved ENDAD AF STOPF ARLO BERR GCAL

- r r r r r r
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master. An interrupt is generated if ITE=1. It is cleared by software reading I2Cn_SR2 register
or by hardware when the interface is disabled (PE=0).
After an ARLO event the interface switches back automatically to Slave mode (M/SL=0).
The SCL line is not held low while ARLO=1.
0: No arbitration lost detected
1: Arbitration lost detected

Bit 1 = BERR: Bus error.
This bit is set by hardware when the interface detects a misplaced Start or Stop condition. An
interrupt is generated if ITE=1. It is cleared by software reading I2Cn_SR2 register or by
hardware when the interface is disabled (PE=0).
The SCL line is not held low while BERR=1.
0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

Bit 0 = GCAL General Call (Slave mode). 
This bit is set by hardware when a general call address is detected on the bus while ENGC=1.
It is cleared by hardware detecting a Stop condition (STOPF=1) or when the interface is
disabled (PE=0).
0: No general call address detected on bus
1: general call address detected on bus
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10.5.4 I2C Clock Control Register (I2Cn_CCR)

Address Offset: 0Ch
Reset value: 00h

Bit 7 = FM/SM: Fast/Standard I2C mode. 
This bit is set and cleared by software. It is not cleared when the interface is disabled (PE=0).
0: Standard I2C mode
1: Fast I2C mode

Bit 6:0 = CC6-CC0: 12-bit clock divider. 
These bits along with CC11-CC7 of the Extended Clock Control Register select the speed of
the bus (fSCL) depending on the I2C mode. They are not cleared when the interface is disabled
(PE=0).

• Standard mode (FM/SM=0): fSCL ≤ 100kHz

fSCL = fPCLK1/ (2 x [CC11...CC0]+7)

Given a certain fPCLK1, it is easy to obtain the right divider factor:

[CC11...CC0] = ((fPCLK1 / fSCL) - 7) / 2 = ((tSCL / tPCLK1) - 7) / 2

• Fast mode (FM/SM=1): 100kHz < fSCL< 400kHz

fSCL = fPCLK1/ (3 x [CC11...CC0]+9)

Given a certain fPCLK1, it is easy to obtain the right divider factor:

[CC11...CC0] = ((fPCLK1 / fSCL) - 9) /3 = ((tSCL / tPCLK1) - 9) / 3

Note The programmed fSCL assumes no load on SCL and SDA lines.

Note For a correct usage of the divider, [CC11...CC0] must be equal or greater than 0x002
(000000000010b). [CC11...CC0] equal to 0x001 (000000000001b) is not admitted.

Note The acheived speed can have ~2% tolerance.

7 6 5 4 3 2 1 0

FM/SM CC6 CC5 CC4 CC3 CC2 CC1 CC0

rw rw rw rw rw rw rw rw
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10.5.5 I2C Extended Clock Control Register (I2Cn_ECCR)

Address Offset: 1Ch
Reset value: 00h

Bit 7-5 = Reserved, always read as 0.

Bit 6:0 = CC11-CC7: 12-bit clock divider. 
These bits along with those of the Clock Control Register select the speed of the bus (fSCL)
depending on the I2C mode. They are not cleared when the interface is disabled (PE=0)

10.5.6 I2C Own Address Register 1 (I2Cn_OAR1)

Address Offset: 10h
Reset value: 00h

7-bit Addressing Mode

Bits 7:1 = ADD7-ADD1: Interface address. 
These bits define the I2C bus address of the interface. They are not cleared when the
interface is disabled (PE=0).

Bit 0 = ADD0: Address direction bit. 
This bit is don’t care, the interface acknowledges either 0 or 1. It is not cleared when the
interface is disabled (PE=0).
Note: Address 01h is always ignored.

10-bit Addressing Mode

Bits 7:0 = ADD7-ADD0: Interface address. 
These are the least significant bits of the I2C bus address of the interface. They are not
cleared when the interface is disabled (PE=0).

7 6 5 4 3 2 1 0

reserved CC11 CC10 CC9 CC8 CC7

rw rw rw rw rw

7 6 5 4 3 2 1 0

ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

rw rw rw rw rw rw rw rw
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10.5.7 I2C Own Address Register 2 (I2Cn_OAR2)

Address Offset: 14h
Reset value: 20h

Bit 7:5 = FR2-FR0: Frequency bits.
These bits are set by software only when the interface is disabled (PE=0). To configure the
interface to I2C specified delays select the value corresponding to the system frequency
fPCLK1. 

Bit 4:3 = Reserved, always read as 0.

Bit 2:1 = ADD[9:8]: Interface address. 
These are the most significant bits of the I2C bus address of the interface (10-bit mode only).
They are not cleared when the interface is disabled (PE=0).

Bit 0 = Reserved, always read as 0..

7 6 5 4 3 2 1 0

FR2 FR1 FR0 reserved ADD9 ADD8 res.

rw rw rw - rw rw -

fPCLK1 Range (MHz) FR2 FR1 FR0

5 - 10 0 0 0

10 - 16.67 0 0 1

16.67 - 26.67 0 1 0

26.67 - 40 0 1 1

40 - 53.33 1 0 0

53.33 -66 1 0 1

66 - 80 1 1 0

80 - 100 1 1 1
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10.5.8 I2C Data Register (I2Cn_DR)

Address Offset: 18h
Reset value: 00h

Bit 7:0 = D7-D0: 8-bit Data Register. 
These bits contain the byte to be received or transmitted on the bus.

• Transmitter mode: Byte transmission start automatically when the software writes in the
I2Cn_DR register.

• Receiver mode: the first data byte is received automatically in the I2Cn_DR register using
the least significant bit of the address. Then, the following data bytes are received one by
one after reading the I2Cn_DR register.

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

rw rw rw rw rw rw rw rw
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10.6 I2C Register Map

See Table 2, “APB1 memory map,” on page 17 for base addresses.

Table 40. I2C Interface register map

Address

Offset

Register 
Name

7 6 5 4 3 2 1 0

00 I2Cn_CR reserved PE ENG
C

STA
RT

ACK STOP ITE

04 I2Cn_SR1 EVF ADD
10

TRA BUS
Y

BTF ADS
L

M/SL SB

08 I2Cn_SR2 reserved END
AD

AF STO
PF

ARL
O

BER
R

GCAL

0C I2Cn_CCR FM/
SM

CC6 CC5 CC4 CC3 CC2 CC1 CC0

10 I2Cn_OAR1 ADD
7

ADD
6

ADD
5

ADD
4

ADD
3

ADD
2

ADD1 ADD0

14 I2Cn_OAR2 FR2 FR1 FR0 reserved ADD
9

ADD8 res.

18 I2Cn_DR D7 D6 D5 D4 D3 D2 D1 D0

1C I2Cn_ECCR reserved CC1
1

CC1
0

CC9 CC8 CC7
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11 BUFFERED SPI (BSPI)

11.1 Introduction

A BSPI block is a standard 4-pin Serial Peripheral Interface for inter-IC control
communication. It interfaces on one side to the SPI bus and on the other has a standard
register data and interrupt interface.

A BSPI contains two 10-word x 16-bit FIFOs, one for receive and the other for transmit. It can
directly operate with words 8 and 16 bit long and generates vectored interrupts separately for
receive and transmit events. 

11.2 Main Features

• Programmable Receive FIFO depth 

• Maximum 10 word Receive FIFO

• Programmable depth Transmit FIFO

• Maximum 10 word Transmit FIFO

• Master and Slave modes supported

• Internal clock prescaler

11.3 Architecture

The processor views the BSPI as a memory mapped peripheral, which may be used by
standard polling or interrupt programming techniques. Memory-mapping means processor
communication can be achieved using standard instructions and addressing modes.

When an SPI transfer occurs data is transmitted and received simultaneously A serial clock
line synchronizes shifting and sampling of the information on the two serial data lines. A slave
select line allows individual selection of a slave device. The central elements in the BSPI
system are the 16-bit shift register and the read data buffer which is 10 words x 16-bit. A block
diagram of the BSPI is shown in Figure 60 on page 226.
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The BSPI is a four wire, bi-directional bus. The data path is determined by the mode of
operation selected. A master and a slave mode are provided together with the associated pad
control signals to control pad direction. These pins are described in Table 41 BSPI pins on
page 226.

Figure 60. BSPI Block Diagram

Table 41. BSPI pins

Pin 
Name

Description

SCLK The bit clock for all data transfers. When the BSPI is a master the SCLK is output from 
the chip. When configured as a slave the SCLK is input from the external source.

MISO Master Input/Slave Output serial data line.

MOSI Master Output/Slave Input serial data line.

SS Slave Select. The SS input pin is used to select a slave device. Must be pulled low after 
the SCLK is stable and held low for the duration of the data transfer. The SS on the 
master must be deasserted high.

10 WORD RECEIVE

(16 bits)

MOSI

SCLK

MISO

SS

SHIFT REGISTER

FIFO

S
M

M
S

PIN CONTROL 
LOGIC

S
MBSPI CONTROL LOGIC

BSPI_CLK

BSPI_CSR1

CLK

DATA BUS

16

16

16

16

16

16

BSPI_CSR2
16

10 WORD TRANSMIT

(16 bits)

FIFO
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11.4 BSPI Operation

During a BSPI transfer (Figure 61 on page 227), data is shifted out and shifted in (transmitted
and received) simultaneously. The SCLK line synchronizes the shifting and sampling of the
information. It is an output when the BSPI is configured as a master and an input when the
BSPI is configured as a slave. Selection of an individual slave BSPI device is performed on
the slave select line and slave devices that are not selected do not interfere with the BSPI
buses.

The CPOL (clock polarity) and CPHA (clock phase) bits of the BSPCSR1 register are used to
select any of the four combinations of serial clock (see Figure 62 on page 228, Figure 63 on
page 228, Figure 64 on page 229, Figure 65 on page 229). These bits must be the same for
both the master and slave BSPI devices. The clock polarity bit selects either an active high or
active low clock but does not affect transfer format. The clock phase bit selects the transfer
format.

There is a 16-bit shift register which interfaces directly to the BSPI bus lines. As transmit data
goes out from the register, received data fills the register. 

Note When the BSPI cell is configured in Slave mode, the SCLK_IN clock must be divided
by a factor of 8 or more compared with the system clock (APB1 clock).

Figure 61. BSPI Bus Transfer

MOSI/MISO

SCLK

DATA1

8 bits 8 bits

SS

DATA0
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Figure 62. BSPI Clocking Scheme (CPOL=0, CPHA=0)

Figure 63. BSPI Clocking Scheme (CPOL=0, CPHA=1)

CPOL=0, CPHA=0

SS

Internal Strobe for Data Capture on positive edge of SCLK

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Internal Strobe for Data Capture on positive edge of SCLK

Data captured on MOSI (in)

MISO (out)

Data captured on MISO (in)

MOSI (out)

SCLK (out)

SCLK (in)

MASTER SIGNALS

SLAVE SIGNALS

CPOL=0, CPHA=1

SS

Internal Strobe for Data Capture on negative edge of SCLK

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Internal Strobe for Data Capture on negative edge of SCLK

MISO (out)

MOSI (out)

SCLK (out)

SCLK (in)

Data captured on MISO (in)

Data captured on MOSI (in)

MASTER SIGNALS

SLAVE SIGNALS
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Figure 64. BSPI Clocking Scheme (CPOL=1, CPHA=0)

Figure 65. BSPI Clocking Scheme (CPOL=1, CPHA=1)

SS

Internal Strobe for Data Capture on negative edge of SCLK

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Internal Strobe for Data Capture on negative edge of SCLK

Data captured on MOSI (in)

MISO (out)

Data captured on MISO (in)

MOSI (out)

SCLK (out)

SCLK (in)

MASTER SIGNALS

SLAVE SIGNALS

CPOL=1, CPHA=0

SS

Internal Strobe for Data Capture on positive edge of SCLK

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Internal Strobe for Data Capture on positive edge of SCLK

Data captured on MOSI (in)

MISO (out)

Data captured on MISO (in)

MOSI (out)

SCLK (out)

SCLK (in)

MASTER SIGNALS

SLAVE SIGNALS

CPOL=1, CPHA=1
229/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
11.5 Transmit FIFO

The transmit FIFO consists of a 10 by 16 bit register bank which can operate in 8/16 bit modes
as configured by the word length (WL[1:0]) control bits of BSPCSR1. Data is left justified
indicating that only the most significant portion of the word is transmitted if using 8 bit mode.
After a transmission is completed the next data word is loaded from the transmit FIFO. 

The user can set the depth of the FIFO from the default one location up to a maximum of ten
locations. This can be set dynamically but will only take effect after the completion of the
current transmission. Status flags report if the FIFO is full (TFF), the FIFO is not empty
(TFNE), the FIFO is empty (TFE) and the transmit buffer has under flown (TUFL). The
transmit interrupt enable (TIE[1:0]) control bits of BSPCSR2 determine the source of the
transmit interrupt. If the interrupt source is enabled then an active high interrupt will be
asserted to the processor.

If the TUFL flag is asserted then a subsequent write to the transmit FIFO will clear the flag. If
interrupts are enabled then the interrupt will be de-asserted. The TFF and TFNE flags are
updated at the end of the processor write cycle and at the end of each transmission. 

Note data should be written in the FIFO only if the macro is enabled (see BSPI System
Enable bit of BSPI Control Register). If one data word is written in the trasmit fifo
before enabling the BSPI no data is trasmitted. 

11.6 Receive FIFO

The BSPI Receive FIFO is a 10 word by 16-bit FIFO used to buffer the data words received
from the BSPI bus.

The FIFO can operate in 8-bit and 16-bit modes as configured by the WL[1:0] bits of the
Control/Status Register 1. Irrelevant of the word depth in the FIFO, if operating in 8-bit mode
the  data will occupy the Most Significant Byte of each location of the FIFO (data is left
justified). The receive FIFO enable bits RFE[3:0] declare how many words deep the FIFO is
for all transfers. The FIFO defaults to one word deep. Whenever there is at least one block of
data in the FIFO the RFNE bit is set in the Control/Status register 2, i.e there is data in at least
one location. The RFF flag does not get set until all locations of the FIFO contain data, i.e.
RFF is set when the depth of FIFO is filled and nothing has been read out.

If the FIFO is one word deep then the RFNE and RFF flags are set once data is written to it.
When the data is read then both flags are cleared. A write to and a read from the FIFO can
happen independent of each once RFF is not set, if RFF is set a read must occur before the
next write or an overflow(ROFL) will occur.
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11.7 Start-up Status

If the BSPI is to operate in Master mode, it must first be enabled, then the MSTR bit must be
set high. The TFE flag will be set, signalling that the Transmit FIFO is empty, if the TIE is set,
a TFE interrupt will be generated. The data to be transferred must be written to the Transmit
Data Register, the TFE interrupt will be cleared and then the BSPI clock will be generated
according to the value of the BSPCLK register. The Transfer of data then begins. A second
TFE interrupt occurs so that the peripheral has a full data transfer time to request the data
before the next transfer is to begin.

If the BSPI is to operate in slave mode, once again the device must be enabled. The SS line
must only be asserted low after the SCLK from the master is stable. The TFE flag will be set
signalling that the Transmit Data register is empty and will be cleared by a write to the
Transmit Data register. The second TFE interrupt occurs to request data for the following
transfer.

11.8 Clocking problems and clearing of the shift-register.

Should a problem arise on the clock which results in a misalignment of data in the shift
register of the BSPI, it may be cleared by disabling the BSPI enable. This has the effect of
setting the TFE  which requests data to be written to the Transmit Register for the next
transfer. Clearing the BSPI enable will also reset the counter of bits received. The next block
of data received will be written to the next location in the FIFO continuing on from the last
good transfer, if the FIFO was just one word deep it will be written to the only location
available. 

11.9 Interrupt control

The BSPI generates one interrupt based upon the status bits monitoring the transmit and
receive logic. The interrupt is acknowledged or cleared by subsequent read or write
operations which remove the error or status update condition. It is the responsibility of the
programmer to ascertain the source of the interrupt and then remove the error condition or
alter the state of the BSPI. In the case of multiple errors the interrupt will remain active until all
interrupt sources have been cleared.

For example, in the case of TFE, whenever the last word has been transferred to the transmit
buffer, the TFE flag is asserted. If interrupts are enabled then an interrupt will be asserted to
the processor. To clear the interrupt the user must write at least one data word into the FIFO,
or disable the interrupts if this condition is valid.
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11.10 Register description 

11.10.1 BSPI Control/Status Register 1 (BSPIn_CSR1)

Address Offset: 08h
Reset value: 0000h

Bits 15:12 = RFE[3:0]: Receive FIFO Enable.

The receive FIFO can be programmed to operate with a word depth up to 10. The receive
FIFO enable bits declare how many words deep the FIFO is for all transfers. The FIFO
defaults to one word deep, i.e. similar to a single data register. Table below shows how the
FIFO is controlled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFE[3:0] WL[1:0]

C
P

H
A

C
P

O
L

B
E

IE

re
s.

re
s.

R
E

IE RIE[1:0]

M
S

T
R

B
S

P
E

rw rw rw rw rw - - rw rw rw rw

RFE[3:0] Depth of FIFO

   0000 1st word enabled

   0001 1st & 2nd words enabled

   0010 1-3 words enabled

   0011 1-4 words enabled

   0100 1-5 words enabled

   0101 1-6 words enabled

   0110 1-7 words enabled

   0111 1-8 words enabled

   1000 1-9 words enabled

   1001 1-10 words enabled

   1010 Default: 1st word enabled

   1011 Default: 1st word enabled

   1100 Default: 1st word enabled

   1101 Default: 1st word enabled

   1110 Default: 1st word enabled

   1111 Default: 1st word enabled
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Bit 11:10 = WL[1:0]: Word Length.

These two bits configure the word length operation of the Receive FIFO and transmit data
registers as shown below:

Bit 9 = CPHA: Clock Phase Select.

Used with the CPOL bit to define the master-slave clock relationship. When CPHA=0, as soon
as the SS goes low the first data sample is captured on the first edge of SCLK. When
CPHA=1, the data is captured on the second edge.

Bit 8 = CPOL: Clock Polarity Select.

When this bit is cleared and data is not being transferred, a stable low value is present on the
SCLK pin. If the bit is set the SCLK pin will idle high. This bit is used with the CPHA bit to
define the master-slave clock relationship.
0: Active high clocks selected; SCLK idles low.
1: Active low clocks selected; SCLK idles high.

Bit 7 = BEIE: Bus Error Interrupt Enable.

When this bit is set to a 1, an interrupt will be asserted to the processor whenever a Bus Error
condition occurs.

Bit 6:5 = Reserved, must be kept at reset value (0).

Bit 4 = REIE: Receive Error Interrupt Enable.

When this bit is set to a 1 and the Receiver Overflow error condition occurs, a Receive Error
Interrupt will be asserted to the processor.

Bits 3:2 = RIE[1:0]: BSPI Receive Interrupt Enable bits.

The RIE1:0 bits are interrupt enable bits which configure when the processor will be
interrupted on received data. The following configurations are possible.

WL[1:0] Word Length

00 8-bit

01 16-bit

10 Reserved

11 Reserved

RIE1 RIE0 Interrupted on

0 0 Disabled

0 1 Receive FIFO Not Empty

1 0 Reserved

1 1 Receive FIFO Full
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Bit 1 = MSTR: Master/Slave Select.
0: BSPI is configured as a slave
1: BSPI is configured as a master

Bit 0 = BSPE: BSPI System Enable.
0: BSPI system is disabled
1: BSPI system is enabled

Note The peripheral should be enabled before selecting the interrupts. In this way the user
can avoid unexpected behaviours of interrupt request signal.  

11.10.2 BSPI Control/Status Register 2 (BSPIn_CSR2)

Address Offset: 0Ch
Reset value: 0040h

Bits 15:14 = TIE[1:0]: BSPI Transmit Interrupt Enable.

These bits control the source of the transmit interrupt.

Bits 13:10 = TFE[3:0]: Transmit FIFO Enable.
These bits control the depth of the transmit FIFO. The table below indicates all valid settings.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIE[1:0] TFE[3:0]

T
F

N
E

T
F

F

T
U

F
L

T
F

E

R
O

F
L

R
F

F

R
F

N
E

B
E

R
R

re
s.

D
F

IF
O

rw rw r r r r r r r r - w

TIE1 TIE0 Interrupted on

0 0 Disabled

0 1 Transmit FIFO Empty

1 0 Transmit underflow.

1 1 Transmit FIFO Full

TFE[3:0] Depth of FIFO

   0000 1st word enabled

   0001 1st & 2nd words enabled

   0010 1-3 words enabled

   0011 1-4 words enabled
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Bit 9 = TFNE: Transmit FIFO Not Empty.

This bit is set whenever the FIFO contains at least one data word.

Bit 8 = TFF: Transmit FIFO Full.

TFF is set whenever the number of words written to the transmit FIFO is equal to the number
of FIFO locations enabled by TFE[3:0]. The flag is set immediately after the data write is
complete.

Bit 7 = TUFL: Transmit Underflow.

This status bit gets set if the TFE bit is set and, by the time the Transmit Data Register
contents are to be transferred to the shift register for the next transmission, the processor has
not yet put the data for transmission into the Transmit Data Register.

TUFL is set on the first edge of the clock when CPHA = 1 and when CPHA = 0 on the
assertion of SS. If TIE[1:0] bits are set to “10” then, when TUFL gets set an interrupt will be
asserted to the processor.

Note From an application point of view, it is important to be aware that the first word
available after an underflow event has occurred should be ignored, as this data was
loaded into the shift register before the underflow condition was flagged.

Bit 6 = TFE: Transmit FIFO Empty.

   0100 1-5 words enabled

   0101 1-6 words enabled

   0110 1-7 words enabled

   0111 1-8 words enabled

   1000 1-9 words enabled

   1001 1-10 words enabled

   1010 Default: 1st word enabled

   1011 Default: 1st word enabled

   1100 Default: 1st word enabled

   1101 Default: 1st word enabled

   1110 Default: 1st word enabled

   1111 Default: 1st word enabled

TFE[3:0] Depth of FIFO
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This bit gets set whenever the Transmit FIFO has transferred its last data word to the transmit
buffer. If interrupts are enabled then an interrupt will be asserted whenever the last word has
been transferred to the transmit buffer.

Bit 5 = ROFL: Receiver Overflow.

This bit gets set if the Receive FIFO is full and has not been read by the processor by the time
another received word arrives. If the REIE bit is set then, when this bit gets set an interrupt will
be asserted to the processor. This bit is cleared when a read takes place of the CSR register
and the FIFO.

Bit 4 = RFF: Receive FIFO Full.

This status bit indicates that the number of FIFO locations, as defined by the RFE[3:0] bits,
are all full, i.e. if the FIFO is 4 deep then all data has been received to all four locations. If the
RIE[1:0] bits are configured as ‘11’ then, when this status bit gets set, an interrupt will be
asserted to the processor. This bit is cleared when at least one data word has been read.

Bit 3 = RFNE: Receive FIFO Not Empty.

This status bit indicates that there is data in the Receive FIFO. It is set whenever there is at
least one block of data in the FIFO i.e. for 8-bit mode 8 bits and for 16-bit mode 16 bits. If the
RIE[1:0] bits are configured to ‘01’ then whenever this bit gets set an interrupt will be asserted
to the processor. This bit is cleared when all valid data has been read out of the FIFO.

Bit 2 = BERR: Bus Error.

This status bit indicates that a Bus Error condition has occurred, i.e. that more than one
device has acted as a Master simultaneously on the BSPI bus. A Bus Error condition is
defined as a condition where the Slave Select line goes active low when the module is
configured as a Master. This indicates contention in that more than one node on the BSPI bus
is attempting to function as a Master.

Bit 1 = Reserved, must be kept at reset value (0).

Bit 0 = DFIFO: Disable for the FIFO.

When this bit is enabled, the FIFO pointers are all reset to zero, the RFE bits are set to zero
and therefore the BSPI is set to one location. The data within the FIFO is lost. This bit is reset
to zero after a clock cycle.
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11.10.3 BSPI Master Clock Divider Register (BSPIn_CLK)

Address Offset: 10h
Reset value: 0006h

Bits 15:8 = Reserved, must be kept at reset value (0).

Bits 7:0 = DIV[7:0]: Divide factor bits.

These bits are used to control the frequency of the BSPI serial clock with relation to the APB1
clock. In master mode this number must be an even number greater than five, i.e. six is the
lowest divide factor. In slave mode this number must be an even number greater than seven,
i.e. eight is the lowest divide factor. 

These bits must be set before the BSPE or MSTR bits, i.e. before the BSPI is configured into
master mode.

11.10.4 BSPI Transmit Register (BSPIn_TXR)

Address Offset: 04h

Reset value: n/a

Bits 15:0 = TX[15:0]: Transmit data.

This register is used to write data for transmission into the BSPI. If the FIFO is enabled then
data written to this register will be transferred to the FIFO before transmission. If the FIFO is
disabled then the register contents are transferred directly to the shift register for
transmission. In sixteen bit mode all of the register bits are used. In eight bit mode only the
upper eight bits of the register are used. In both case the data is left justified,.i.e Bit[15] =
MSB, Bit[0] / Bit[8] = LSB depending on the operating mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved DIV[7:0]

- rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-bit 
Transmis-
sion

TX[15:0]

8-bit 
Transmis-
sion

TX[7:0] N/U

w
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11.10.5 BSPI Receive Register (BSPIn_RXR)

Address Offset: 00h

Reset value: 0000h

Bits 15:0 = RX[15:0]: Received data.

This register contains the data received from the BSPI bus. If the FIFO is disabled then the
data from the shift register is placed into the receive register directly. If the FIFO is enabled
then the received data is transferred into the FIFO. In sixteen bit mode all the register bitsare
utilised. In eight bit transmission mode only the upper eight bits of the register are used. The
data is left justified in the register in both transmission modes,.i.e Bit[15] = MSB, Bit[0] / Bit[8]
= LSB depending on the operating mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-bit 
Transmis-
sion

RX[15:0]

8-bit 
Transmis-
sion

RX[7:0] N/U

r
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11.11 BSPI Register Map

A summary overview of the BSPI registers is given in the following table.

Note * Data is left justified depending on transmission mode, BIT[15] = MSB

See Table 2, “APB1 memory map,” on page 17 for base addresses.

Table 42. BSPI Register Map

Addr. 
Offset

Reg. 
Name

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

00h BSPIn_
RXR

RX[15:0] (*)

04h BSPIn_
TXR

TX[15:0](*)

08h BSPIn_
CSR1

RFE[3:0] WL[1:0]

C
P

H
A

C
P

O
L

B
E

IE

re
s.

re
s.

R
E

IE

RIE[1:0
]

M
S
T
R

B
S
P
E

0Ch BSPIn_
CSR2

TIE[1:0] TFE[3:0]

T
F

N
E

T
F

F

T
U

F
L

T
F

E

R
O

F
L

R
F

F

R
F

N
E

B
E

R
R

re
s.

D
F

IF
O

10h BSPIn_
CLK

Unused DIV[7:0]
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12 UART

12.1 Introduction

A UART interface, provides serial communication between the STR71x and other
microcontrollers, microprocessors or external peripherals.

A UART supports full-duplex asynchronous communication. Eight or nine bit data transfer,
parity generation, and the number of stop bits are programmable. Parity, framing, and overrun
error detection are provided to increase the reliability of data transfers. Transmission and
reception of data can simply be double-buffered, or 16-deep fifos may be used. For
multiprocessor communications, a mechanism to distinguish the address from the data bytes
is included. Testing is supported by a loop-back option. A 16-bit baud rate generator provides
the UART with a separate serial clock signal.

12.2 Main Features

• Full-duplex asynchronous communication

• Two internal FIFOs (16 words deep) for transmit and receive data

• 16-bit baud rate generator

• Data frames both 8 and 9 bit long

• Parity bit (even or odd) and stop bit

12.3 Functional Description

The UART supports full-duplex asynchronous communication, where both the transmitter and
the receiver use the same data frame format and the same baud rate. Data is transmitted on
the TXD pin and received on the RXD pin. Data frames

Eight bit data frames (see Figure 66) either consist of:

• eight data bits D0-7 (by setting the Mode bit field to 001);

• seven data bits D0-6 plus an automatically generated parity bit (by setting the Mode bit
field to 011).

Parity may be odd or even, depending on the ParityOdd bit in the UARTn_CR register. An
even parity bit will be set, if the modulo-2-sum of the seven data bits is 1. An odd parity bit will
be cleared in this case.}
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Nine bit data frames (see Figure 67) either consist of:

• nine data bits D0-8 (by setting the Mode bit field to 100);

• eight data bits D0-7 plus an automatically generated parity bit (by setting the Mode bit
field to 111);

• eight data bits D0-7 plus a wake-up bit (by setting the Mode bit field to 101).

Parity may be odd or even, depending on the ParityOdd bit in the UARTn_CR register. An
even parity bit will be set, if the modulo-2-sum of the eight data bits is 1. An odd parity bit will
be cleared in this case.

In wake-up mode, received frames are only transferred to the receive buffer register if the
ninth bit (the wake-up bit) is 1. If this bit is 0, no receive interrupt request will be activated and
no data will be transferred.

This feature may be used to control communication in multi-processor systems. When the
master processor wants to transmit a block of data to one of several slaves, it first sends out
an address byte which identifies the target slave. An address byte differs from a data byte in
that the additional ninth bit is a 1 for an address byte and a 0 for a data byte, so no slave will
be interrupted by a data byte. An address byte will interrupt all slaves (operating in 8-bit data
+ wake-up bit mode), so each slave can examine the 8 least significant bits (LSBs) of the
received character (the address). The addressed slave will switch to 9-bit data mode, which
enables it to receive the data bytes that will be coming (with the wake-up bit cleared). The
slaves that are not being addressed remain in 8-bit data + wake-up bit mode, ignoring the
following data bytes.

Figure 66. 8-bit data frames

Figure 67. 9-bit data frames
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LSB

D1 D2 D3 D4 D5 D6start
bit
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bit

1st
stop
bit

2nd
stop
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bit

9th
bit

1st
stop
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2nd
stop
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- Wake-up bit
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12.3.1 Transmission

Values to be transmitted are written to the transmit fifo, TxFIFO, by writing to
UARTn_TxBUFR. The TxFIFO is implemented as a 16 deep array of 9 bit vectors.

If the fifos are enabled (the UARTn_CR(FifoEnable) is set), the TxFIFO is considered full
(UARTn_SR(TxFull) is set) when it contains 16 characters. Further writes to
UARTn_TxBUFR in this situation will fail to overwrite the most recent entry in the TxFIFO. If
the fifos are disabled, the TxFIFO is considered full (UARTn_SR(TxFull) is set) when it
contains 1 character, and a write to UARTn_TxBUFR in this situation will overwrite the
contents.

If the fifos are enabled, UARTn_SR(TxHalfEmpty) is set when the TxFIFO contains 8 or
fewer characters. If the fifos are disabled, it’s set when the TxFIFO is empty.

Writing anything to UARTn_TxRSTR empties the TxFIFO.

Values are shifted out of the bottom of the TxFIFO into a 9-bit txshift register in order to be
transmitted. If the transmitter is idle (the txshift register is empty) and something is written to
the UARTn_TxBUFR so that the TxFIFO becomes non-empty, the txshift register is
immediately loaded from the TxFIFO and transmission of the data in the txshift register begins
at the next baud rate tick.

At the time the transmitter is just about to transmit the stop bits, then if the TxFIFO is
non-empty, the txshift register will be immediately loaded from the TxFIFO, and transmission
of this new data will begin as soon as the current stop bit period is over (i.e. the next start bit
will be transmitted immediately following the current stop bit period). Thus back-to-back
transmission of data can take place. If instead the TxFIFO is empty at this point, then the
txshift register will become empty. UARTn_SR(TxEmpty) indicates whether the txshift
register is empty.

After changing the FifoEnable bit, it is important to reset the FIFO to empty (by writing to the
UARTn_TxRSTR register), since the state of the fifo pointer may be garbage.

The loop-back option (selected by the UARTn_CR(LoopBack) bit) internally connects the
output of the transmitter shift register to the input of the receiver shift register. This may be
used to test serial communication routines at an early stage without having to provide an
external network.

12.3.2 Reception

Reception is initiated by a falling edge on the data input pin (RXD), provided that the
UARTn_CR(Run) and UARTn_CR(RxEnable) bits are set. The RXD pin is sampled at 16
times the rate of the selected baud rate. A majority decision of the first, second and third
samples of the start bit determines the effective bit value. This avoids erroneous results that
may be caused by noise.
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If the detected value is not a 0 when the start bit is sampled, the receive circuit is reset and
waits for the next falling edge transition at the RXD pin. If the start bit is valid, the receive
circuit continues sampling and shifts the incoming data frame into the receive shift register.
For subsequent data and parity bits, the majority decision of the seventh, eighth and ninth
samples in each bit time is used to determine the effective bit value.

Note: If reception is initiated when the data input pin (RXD) is being stretched at ‘0’, a frame
error is reported since the reception stage samples the initial value as a falling edge.

For 0.5 stop bits, the majority decision of the third, fourth, and fifth samples during the stop bit
is used to determine the effective stop bit value.

For 1 and 2 stop bits, the majority decision of the seventh, eighth, and ninth samples during
the stop bits is used to determine the effective stop bit values.

For 1.5 stop bits, the majority decision of the fifteenth, sixteenth, and seventeenth samples
during the stop bits is used to determine the effective stop bit value.

The effective values received on the RXD pin are shifted into a 10-bit rxshift register.

The receive fifo, RxFIFO, is implemented as a 16 deep array of 10-bit vectors (each 9 down to
0). If the RxFIFO is empty, UARTn_SR(RxBufNotEmpty) is set to ‘0’. If the RxFIFO is not
empty, a read from UARTn_RxBUFR will get the oldest entry in the RxFIFO. If fifos are
disabled, the RxFIFO is considered full when it contains one character.
UARTn_SR(RxHalfFull) is set when the RxFIFO contains more than 8 characters. Writing
anything to UARTn_RxRSTR empties the RxFIFO.

As soon as the effective value of the last stop bit has been determined, the content of the
rxshift register is transferred to the RxFIFO (except in wake-up mode, in which case this
happens only if the wake-up bit, bit8, is a ‘1’). The receive circuit then waits for the next start
bit (falling edge transition) at the RXD pin.

UARTn_SR(OverrunError) is set when the RxFIFO is full and a character is loaded from the
rxshift register into the RxFIFO. It is cleared when the UARTn_RxBUFR register is read.

The most significant bit of each RxFIFO entry (RxFIFO[x][9]) records whether or not there was
a frame error when that entry was received (i.e. one of the effective stop bit values was ’0’).
UARTn_SR(FrameError) is set when at least one of the valid entries in the RxFIFO has its
MSB set.

If the mode is one where a parity bit is expected, then the bit RxFIFO[x][8] (if 8 bit data + parity
mode is selected) or the bit RxFIFO[x][7] (if 7 bit data + parity mode is selected) records
whether there was a parity error when that entry was received. 

Note: It does not contain the parity bit that was received. UARTn_SR(ParityError) is set when
at least one of the valid entries in the RxFIFO has bit 8 set (if 8 bit data + parity mode is
selected) or bit 7 set (if 7 bit data + parity mode is selected).
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After changing the fifoenable bit, it is important to reset the fifo to empty (by writing to the
UARTn_RxRSTR register), since the state of the fifo pointers may be garbage.

Reception is stopped by clearing the UARTn_CR(RxEnable) bit. A currently received frame is
completed including the generation of the receive status flags. Start bits that follow this frame
will not be recognized.

12.3.3 Timeout Mechanism

The UART contains an 8-bit timeout counter. This reloads from UARTn_TOR whenever one
or more of the following is true

• UARTn_RxBBUFR is read

• The UART starts to receive a character

• UARTn_TOR is written to

If none of these conditions hold, the counter decrements towards 0 at every baud rate tick.

UARTn_SR(TimeoutNotEmpty) is ’1’ exactly whenever the RxFIFO is not empty and the
timeout counter is zero.

UARTn_SR(TimeoutIdle) is ‘1’ exactly whenever the RxFIFO is empty and the timeout
counter is zero.

The effect of this is that whenever the RxFIFO has got something in it, the timeout counter will
decrement until something happens to the RxFIFO. If nothing happens, and the timeout
counter reaches zero, the UARTn_SR(TimeoutNotEmpty) flag will be set.

When the software has emptied the RxFIFO, the timeout counter will reset and start
decrementing. If no more characters arrive, when the counter reaches zero the
UARTn_SR(TimeoutIdle) flag will be set.

12.3.4 Baud Rate Generation

The baud rate generator provides a clock at 16 times the baud rate, called the oversampling
clock. This clock only ticks if UARTn_CR(Run) is set to’1’. Setting this bit to 0 will immediately
freeze the state of the UART’s transmitter and receiver. This should only be done when the
UART is idle.

The baud rate and the required reload value for a given baud rate can be determined by the
following formulae:

Baudrate = PCLK1 / (16 * <UART_BaudRate>)

<UART_BaudRate> = PCLK1 / (16 x Baudrate)

where: <UART_BaudRate> represents the content of the UARTn_BR register, taken as
unsigned 16-bit integer, and PCLK1 is the clock frequency of the APB1 system peripherals.
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Table 43 and Table 44 list various commonly used baud rates together with the required
reload values and the deviation errors for two different PCLK1 clock frequencies (16 and
20MHz respectively).

Table 43. Baud rates with PCLK1 = 16 MHz

Baud rate
Reload value

(exact)

Reload value

(integer)

Reload value

(hex)
Deviation error

625K 1.6 2 0002 20%

38.4K 26.042 26 001A 0.160%

19.2K 52.083 52 0034 0.160%

9600 104.167 104 0068 0.160%

4800 208.333 208 00D0 0.160%

2400 416.667 417 01A1 0.080%

1200 833.333 833 0341 0.040%

600 1666.667 1667 0683 0.020%

300 3333.333 3333 0D05 0.010%

75 13333.333 13333 3415 0.003%

Table 44. Baud rates with PCLK1 = 20 MHz

Baud rate
Reload value

(exact)

Reload value

(integer)

Reload value

(hex)
Deviation error

625K 2 2 0002 0%

38.4K 32.552 33 0021 1.358%

19.2K 65.104 65 0041 0.160%

9600 130.208 130 0082 0.160%

4800 260.417 260 0104 0.160%

2400 520.833 521 0209 0.032%

1200 1041.667 1042 0412 0.032%

600 2083.333 2083 0823 0.016%

300 4166.667 4167 1047 0.008%
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12.3.5 Interrupt Control

The UART has a single interrupt request line, called UARTn_interrupt. The status bits in the
UARTn_SR register determine the cause of the interrupt. UARTn_interrupt will go high when
a status bit is 1 (high) and the corresponding bit in the UARTn_IER register is 1 (see
Figure 68).

Note: The UARTn_Status register is read only. The UART_Status bits can only be cleared by
operating on the FIFOs. The RxFIFO and TxFIFO can be reset by writing to the
UARTn_RxReset and UARTn_TxReset registers.

75 16666.667 16667 411B 0.002%

Figure 68. UART interrupt request

Table 44. Baud rates with PCLK1 = 20 MHz

Baud rate
Reload value

(exact)

Reload value

(integer)

Reload value

(hex)
Deviation error

TimeoutIdle

TimeoutIdle IE

TimeoutNotEmpty

TimeoutNotEmpty IE

OverrunError

OverrunError IE

FrameError

FrameError IE

ParityError

ParityError IE

TxHalfEmpty

TxHalfEmpty IE

TxEmpty

TxEmpty IE

RxBufNotEmpty

RxBufNotEmpty IE

UART_interrupt

RxHalfFull

RxHalfFull IE
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12.3.6 Using the UART Interrupts when FIFOs are Disabled

When fifos are disabled, the UART provides three interrupt requests to control data exchange
via the serial channel:

• TxHalfEmpty is activated when data is moved from UARTn_TxBUFR to the txshift register.

• TxEmpty is activated before the stop bit is transmitted.

• RxBufNotEmpty is activated when the received frame is moved to UARTn_RxBUFR.

For single transfers it is sufficient to use the transmitter interrupt (TxEmpty), which indicates
that the previously loaded data has been transmitted, except for the stop bit.

For multiple back-to-back transfers using TxEmpty would leave just one stop bit time for the
handler to respond to the interrupt and initiate another transmission. Using the transmit buffer
interrupt (TxHalfEmpty) to reload transmit data allows the time to transmit a complete frame
for the service routine, as UARTn_TxBUFR may be reloaded while the previous data is still
being transmitted.

TxHalfEmpty is an early trigger for the reload routine, while TxEmpty indicates the
completed transmission of the data field of the frame. Therefore, software using handshake
should rely on TxEmpty at the end of a data block to make sure that all data has really been
transmitted.

12.3.7 Using the UART Interrupts when FIFOs are Enabled

To transmit a large number of characters back to back, the driver routine would write 16
characters to UARTn_TxBUFR, then every time a TxHalfEmpty interrupt fired, it would write
8 more. When it had nothing more to send, a TxEmpty interrupt would tell it when everything
has been transmitted.

When receiving, the driver could use RxBufNotEmpty to interrupt every time a character
came in. Alternatively, if data is coming in back-to-back, it could use RxHalfFull to interrupt it
when there were more than 8 characters in the RxFIFO to read. It would have as long as it
takes to receive 8 characters to respond to this interrupt before data would overrun. If less
than eight character streamed in, and no more were received for at least a timeout period, the
driver could be woken up by one of the two timeout interrupts, TimeoutNotEmpty or
TimeoutIdle.

12.3.8 SmartCard mode specific Operation

To conform to the ISO SmartCard specification the following modes are supported in the
UART SmartCard mode. 

When the SmartCard mode bit is set to 0, normal UART operation occurs.
When the SmartCard mode bit is set to 1, the following operation occurs: 
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• Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register will start
shifting on the next baud clock edge. In SmartCard mode this transmission is further
delayed by a guaranteed 1/2 baud clock. 

• If a parity error is detected during reception of a frame programmed with a 1/2 stop bit
period, the transmit line is pulled low for a baud clock period after the completion of the
receive frame, i.e. at the end of the 1/2 stop bit period. This is to indicate to the SmartCard
that the data transmitted to UART1 has not been correctly received. 

• The assertion of the TxEmpty flag can be delayed by programming the UART1_GTR
register. In normal operation, TxEmpty is asserted when the transmit shift register is
empty and no further transmit requests are outstanding. 
In SmartCard mode an empty transmit shift register triggers the guardtime counter to
count up to the programmed value in the UART1_GTR register. TxEmpty is forced low
during this time. When the guardtime counter reaches the programmed value TxEmpty is
asserted high. 
The de-assertion of TxEmpty is unaffected by SmartCard mode. 

The receiver enable bit is reset after a character has been received. This avoids the receiver
detecting another start bit in the case of the smartcard driving the RXD line low until the UART
driver software has dealt with the previous character. 
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12.4 Register Description

12.4.1 UART BaudRate Register (UARTn_BR)

Address Offset: 00h
Reset value: 0001h

The UARTn_BR register is the dual-function baud rate generator/reload register.

A read from this register returns the content of the timer, writing to it updates the reload
register.

An auto-reload of the timer with the content of the reload register is performed each time the
UARTn_BR register is written to. However, if the Run bit of the UARTn_CR register is 0 at the
time the write operation to the UARTn_BR register is performed, the timer will not be reloaded
until the first PCLK1 clock cycle after the Run bit is 1.

Bit 15:0 = BaudRate[15:0] UART Baudrate 
Write function: 16-bit reload value
Read function: 16-bit count value

12.4.2 UART TxBuffer Register (UARTn_TxBUFR)

Address Offset: 04h
Reset value: 0000h

Writing to the transmit buffer register starts data transmission.

Bit 15:9 = Reserved, must be kept at reset value (0).

Bit 8 = TX[8]: Transmit buffer data D8.
Transmit buffer data D8, or parity bit, or wake-up bit or undefined - dependent on the operating
mode (the setting of the Mode field in UARTn_CR register).

Note: If the Mode field selects an 8 bit frame then this bit should be written as 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BaudRate[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TX
[8]

TX
[7]

TX
[6]

TX
[5]

TX
[4]

TX
[3]

TX
[2]

TX
[1]

TX
[0]

w w w w w w w w w w w w w w w w
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Note:If the Mode field selects a frame with parity bit, then the TX[8] bit will contain the parity
bit (automatically generated by the UART). Writing ‘0’ or ‘1’ in this bit will have no effect on the
transmitted frame.

Bit 7 = TX[7]: Transmit buffer data D7.
Transmit buffer data D7 or parity bit - dependent on the operating mode (the setting of the
Mode field in UARTn_CR register).

Note: If the Mode field selects a frame with parity bit, then the TX[7] bit will contain the parity
bit (automatically generated by the UART). Writing ‘0’ or ‘1’ in this bit will have no effect on the
transmitted frame.

Bit 6:0 = TX[6:0]: Transmit buffer data D(6:0)

12.4.3 UART RxBuffer Register (UARTn_RxBUFR)

Address Offset: 08h
Reset value: 0000h

The received data and, if provided by the selected operating mode, the received parity bit can
be read from the receive buffer register.

Bit 15:10 = Reserved, always read as 0.

Bit 9 = RX[9]: Frame error.
If set, it indicates a frame error occurred on data stored in RX[8:0] (i.e. one of the effective
stop bit values was ‘0’ when the data was received).

Bit 8 = RX[8]: Receive buffer data D8.
Receive buffer data D8, or parity error, or wake-up bit - dependent on the operating mode (the
setting of the Mode field in the UARTn_CR register).

Note If the Mode field selects a 7- or 8-bit frame then this bit is undefined. Software should
ignore this bit when reading 7- or 8-bit frames.

Bit 7 = RX[7]: Receive buffer data D7.
Receive buffer data D7, or parity error - dependent on the operating mode (the setting of the
Mode field in the UARTn_CR register).

Bit 6:0 = RX[6:0]: Receive buffer data D(6:0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RX
[9]

RX
[8]

RX
[7]

RX
[6]

RX
[5]

RX
[4]

RX
[3]

RX
[2]

RX
[1]

RX
[0]

r r r r r r r r r r r r r r r r
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12.4.4 UART Control Register (UARTn_CR)

Address Offset: 0Ch
Reset value: 0000h

This register controls the operating mode of the UART and contains control bits for mode and
error check selection, and status flags for error identification.

Note: Programming the mode control field (Mode) to one of the reserved combinations may
result in unpredictable behavior.

Note: Serial data transmission or reception is only possible when the baud rate generator run
bit (Run) is set to 1. When the Run bit is set to 0, TXD will be 1. Setting the Run bit to 0 will
immediately freeze the state of the transmitter and receiver. This should only be done when
the UART is idle.

Bit 15:11= Reserved, always read as 0.

Bit 10 = FifoEnable: FIFO Enable
0: FIFO mode disabled
1: FIFO mode enabled

Bit 9 = SCEnable - Reserved to SmartCard: Mode Enable
0: SmartCard mode disabled
1: SmartCard mode enabled
If SmartCard mode is not used: Must be kept at 0.

Bit 8 = RxEnable: Receiver Enable
0: Receiver disabled
1: Receiver enabled

Bit 7 = Run: Baudrate generator Run bit
0: Baud rate generator disabled (UART inactive)
1: Baud rate generator enabled

Bit 6 = LoopBack: LoopBack mode enable
0: Standard transmit/receive mode
1: Loopback mode enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Note: This bit may be modified only when the UART is inactive.

Bit 5 = ParityOdd: Parity selection
0: Even parity (parity bit set on odd number of ‘1’s in data)
1: Odd parity (parity bit set on even number of ‘1’s in data)

Bit 4:3 = Stop Bits: Number of stop bits selection
These bits select the number of stop bits
00: 0.5 stop bits 
01: 1 stop bit
10: 1.5 stop bits
11: 2 stop bits

Bit 2:0 = Mode: UART Mode control
000: reserved
001: 8 bit data
010: reserved
011: 7 bit data + parity
100: 9 bit data
101: 8 bit data + wake up bit
110: reserved
111: 8 bit data + parity

12.4.5 UART IntEnable Register (UARTn_IER)

Address Offset: 10h
Reset value 0000h

The UARTn_IE register enables the interrupt sources.

Interrupts will occur when a status bit in the UARTn_SR register is 1, and the corresponding
bit in the UARTn_IER register is 1.

Bit 15:9 = Reserved, always read as 0..
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Bit 8 = RxHalfFullIE: Receiver buffer Half Full Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

Bit 7 = TimeoutIdleIE: Timeout Idle Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 6 = TimeoutNotEmptyIE: Timeout Not Empty Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 5 = OverrunErrorIE: Overrun Error Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 4 = FrameErrorIE: Framing Error Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 3 = ParityErrorIE: Parity Error Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 2 = TxHalfEmptyIE: Transmitter buffer Half Empty Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 1 = TxEmptyIE: Transmitter Empty Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 0 = RxBufNotEmptyIE: Receiver Buffer Not Empty Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.
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12.4.6 UART Status Register (UARTn_SR)

Address Offset: 14h
Reset value: 0006h

The UARTn_SR register determines the cause of an interrupt.

Bit 15:10 = Reserved, always read as 0.

Bit 9 = TxFull: TxFIFO Full.
Set when the TxFIFO contains 16 characters.

Bit 8 = RxHalfFull: RxFIFO Half Full.
Set when the RxFIFO contains more than 8 characters.

Bit 7 = TimeoutIdle: Timeout Idle
Set when there is a timeout and the RxFIFO is empty

Bit 6 = TimeoutNotEmpty: TimeoutNotEmpty
Set when there is a timeout and the RxFIFO is not empty

Bit 5 = OverrunError: Overrun Error
Set when data is received and the RxFIFO is full.

Bit 4 = FrameError: Frame Error
Set when the RxFIFO contains something received with a frame error

Bit 3 = ParityError: Parity Error.
Set when the RxFIFO contains something received with a parity error

Bit 2 = TxHalfEmpty: TxFIFO Half Empty. 
Set when TxFIFO at least half empty

Bit 1 = TxEmpty: TxFIFO Empty.
Set when transmit shift register is empty
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Bit 0 = RxBufNotEmpty: Rx Buffer not Empty
Set when RxFIFO not empty (RxFIFO contains at least one entry)

12.4.7 UART GuardTime Register (UARTn_GTR)

Address Offset: 18h
Reset value: 0000h

The UARTn_GTR register enables the user to define a programmable number of baud clocks
to delay the assertion of TxEmpty.

Bit 15:8 = Reserved, always read as 0.

Bit 7:0 = UART_GuardTime.
Number of baud clocks to delay assertion of TxEmpty.

12.4.8 UART Timeout Register (UARTn_TOR)

Address Offset: 1Ch
Reset value: 0000h

This register is to have a timeout system to be sure that not too much time pass between two
successive received characters.

Bit 15:8 = Reserved, always read as 0.

Bit 7:0 = UART_Timeout: Timeout.
Timeout period in baud rate ticks.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved UART_GuardTime

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved UART_Timeout

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
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12.4.9 UART TxReset Register (UARTn_TxRSTR)

Address Offset: 20h
Reset value: Reserved

A write to this register empties the TxFIFO.

12.4.10 UART RxReset Register (UARTn_RxRSTR)

Address Offset: 24h
Reset Value: Reserved

A write to this register empties the RxFIFO.
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12.5 UART Register Map

The following table summarizes the registers implemented in the UART.

See Table 2, “APB1 memory map,” on page 17 for base addresses.

Figure 69. UART Peripheral Register Map
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10 UARTn_

IER

Reserved UART_IntEnable

14 UARTn_ 

SR

Reserved UART_Status

18 UARTn_

GTR

Reserved UART_GuardTime

1C UARTn_

TOR

Reserved UART_Timeout

20 UARTn_

TxRSTR

UART_TxReset

24 UARTn_

RxRSTR

UART_RxReset
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13 SMARTCARD INTERFACE (SC)

13.1 Introduction

The SmartCard Interface an extension of UART1, for the description of the UART registers,
pls refer to section 12 on page 240. The SmartCard interface is designed to support
asynchronous protocol SmartCards as defined in the ISO7816-3 standard. UART1 configured
as eight data bits plus parity, 0.5 or 1.5 stop bits, with SmartCard mode enabled provides the
UART function of the SmartCard interface. A 16 bit counter, the SmartCard clock generator,
divides down the PCLK1 clock to provide the clock to the SmartCard. GPIO bits in conjunction
with software are used to provide the rest of the functions required to interface to the
SmartCard. The inverse signalling convention as defined in ISO7816-3, inverted data and
MSB first, is handled in software.

13.2 External interface 

The signals required by the SmartCard are given in Table 45:

The signals provided by the STR71x are given in Table 46:

The ScRST, ScCmdVpp, ScCmdVcc, and ScDetect signals are provided by GPIO bits of the
IO ports under software control. Programming the GPIO bits of the port for alternate function
modes connects the UART TXD data signal to the ScDataOut pin with the correct driver type

Table 45. SmartCard pins

Pin Function

SCClk Clock for SmartCard

I/O Input or output serial data. Open drain drive at both ends.

RST Reset to card 

Vcc Supply voltage

Vpp Programming voltage

Table 46. SmartCard interface pins

Pin Function In/Out Function 

Port 0.12 
(true open 
drain 5V- 
tolerant)

ScClk
out, open drain for 5 V 
cards

Clock for SmartCard. 

Port0.10
ScDataOut out, open drain driver Serial data output. Open drain drive. 

ScDataIn in Serial data input. 

Any GPIO 
port

ScRST out, open drain Reset to card. 

ScCmdVcc out Supply voltage enable/disable. 

ScCmdVpp out Programming voltage enable/disable. 

ScDetect in SmartCard detect.
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and the clock generator to the ScClk pin. Details of the GPIO bit assignments for the Alternate
Function pins can be found in the STR71x pinout table.

Note: The STR71x I/Os are compatible with 3V smartcards. In the case of 5V cards, the
STR71x I/Os can correctly drive a 5V input to the smartcard. The only problem could come
from the SCDATA line, because it is bi-directional and the 5V logic levels (VIH/VIL) will not
match. This is why only in this case an open drain buffer has to be used. The pull-up resistor
(external), must be connected to VCC (5V or 3.3V depending on the type of smartcard).

13.3 Protocol

The ISO standard defines the bit times for the asynchronous protocol in terms of a time unit
called an ETU which is related to the clock frequency input to the card. One bit time is of
length one ETU. The UART transmitter output and receiver input need to be connected
together externally. For the transmission of data from the STR71x to the SmartCard, the
UART will need to be set up in SmartCard mode.

13.4 SmartCard clock generator

The SmartCard clock generator provides a clock signal to the connected SmartCard. The
SmartCard uses this clock to derive the baud rate clock for the serial I/O between the
SmartCard and another UART. The clock is also used for the CPU in the card, if present.
Operation of the Smart-Card interface requires that the clock rate to the card is adjusted while
the CPU in the card is running code so that the baud rate can be changed or the performance
of the card can be increased. The protocols that govern the negotiation of these clock rates
and the altering of the clock rate are detailed in ISO7816-3 standard. The clock is used as the
CPU clock for the SmartCard therefore updates to the clock rate must be synchronized to the
clock (Clk) to the SmartCard, i.e. the clock high or low pulse widths must not be shorter than
either the old or new programmed value. The clock generator clock source is the PCLK1
clock. Two registers control the period of the clock and the running of the clock. 

Note: The clock generator is independent of the UART Baud rate.

Figure 70. ISO 7816-3 asynchronous protocol
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13.5 Register description

The SmartCard can be programmed via registers which are mapped into the STR71x address
space. The base addresses for the SmartCard registers are given in the Memory Map
chapter. Note: During reset all of the registers are reset to  0 . 

13.5.1 SmartCard Clock Prescaler Value (SC_CLKVAL)

Address Offset: 40h

Reset value: 00h

The SC_CLKVAL register determines the SmartCard clock frequency. The value given in the
register is multiplied by 2 to give the division factor of the input clock frequency.

Bit 15:5 = Reserved, must be kept at reset value (0). 

Bit 4:0 = SCCLKVAL [4:0]
These bits determine the source clock divider value. This value multiplied by 2 gives the clock
division factor: 

ScClkVal4:0 Division 

00000 Reserved - DO NOT PROGRAM THIS VALUE 
00001 divides the source clock frequency by 2 
00010 divides the source clock frequency by 4

13.5.2 SmartCard Clock Control Register (SC_CLKCON)

Address Offset: 44h

Reset value: 00h

The SC_CLKCON register controls the source of the clock and determines whether the
SmartCard clock output is enabled. The programmable divider and the output are reset when
the enable bit is set to 0.

Bit 15:1 = Reserved, must be kept at reset value (0). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ScClkVal 

- rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EN

- rw
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Bit 0 = EN
SmartCard clock generator enable bit.

0 stop clock, set output low and reset divider 
1 enable clock generator 

13.6 Register map

See Table 2 for base address

Table 47. SmartCard Interface Register Map

Addr.
Offset

Register 
Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

40 SC_ClkVal Reserved ScClkVal 

44 SC_ClkCon Reserved EN
261/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
14 USB SLAVE INTERFACE (USB)

14.1 Introduction

The USB Peripheral implements an interface between a full-speed USB 2.0 bus and the APB
bus.

USB suspend/resume are supported which allows to stop the device clocks for low power
consumption.

14.2 Main Features

• Configurable number of endpoints from 1 to 16.

• Cyclic Redundancy Check (CRC) generation/checking, Non-Return-to-Zero Inverted
(NRZI) encoding/decoding and bit-stuffing.

• Isochronous transfers support.

• Double-buffered bulk endpoint support.

• USB Suspend/Resume operations.

• Frame locked clock pulse generation.
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14.3 Block Diagram

Figure 71 shows the block diagram of the USB Peripheral.

Figure 71. USB Peripheral Block Diagram
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14.4 Functional Description

The USB Peripheral provides an USB compliant connection between the host PC and the
function implemented by the microcontroller. Data transfer between the host PC and the
system memory occurs through a dedicated packet buffer memory accessed directly by the
USB Peripheral. The size of this dedicated buffer memory must be according to the number of
endpoints used and the maximum packet size. In this implementation, the dedicated memory
of 512 Byte and up to 8 endpoints can be used. The USB Peripheral interfaces with the USB
host, detecting token packets, handling data transmission/reception, and processing
handshake packets as required by the USB standard. Transaction formatting is performed by
the hardware, including CRC generation and checking.

Each endpoint is associated with a buffer description block indicating where the endpoint
related memory area is located, how large it is or how many bytes must be transmitted. When
a token for a valid function/endpoint pair is recognized by the USB Peripheral, the related data
transfer (if required and if the endpoint is configured) takes place. The data buffered by the
USB Peripheral is loaded in an internal 16 bit register and memory access to the dedicated
buffer is performed. When all the data has been transferred, if needed, the proper handshake
packet over the USB is generated or expected according to the direction of the transfer. 

At the end of the transaction, an endpoint-specific interrupt is generated, reading status
registers and/or using different interrupt response routines. The microcontroller can
determine:

• which endpoint has to be served

• which type of transaction took place, if errors occurred (bit stuffing, format, CRC, protocol,
missing ACK, over/underrun, etc). 

Two interrupt lines are generated by the USB Peripheral : one IRQ collecting high priority
endpoint interrupts (isochronous and double-buffered bulk) and another IRQ collecting all
other interrupt sources (check the IRQ interrupt vector table for detailed interrupt source
mapping).

Special support is offered to Isochronous transfers and high throughput bulk transfers,
implementing a double buffer usage, which allows to always have an available buffer for the
USB Peripheral while the microcontroller uses the other one.

The unit can be placed in low-power mode (SUSPEND mode), by writing in the control
register, whenever required. At this time, all static power dissipation is avoided, and the USB
clock can be slowed down or stopped. The detection of activity at the USB inputs, while in
low-power mode, wakes the device up asynchronously. A special interrupt source can be
connected directly to a wake-up line to allow the system to immediately restart the normal
clock generation and/or support direct clock start/stop.
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14.4.1 Description of USB Blocks

The USB Peripheral implements all the features related to USB interfacing, which include the
following blocks:

• Serial Interface Engine (SIE): The functions of this block include: synchronization pattern
recognition, bit-stuffing, CRC generation and checking, PID verification/generation, and
handshake evaluation. It must interface with the USB transceivers and uses the virtual
buffers provided by the packet buffer interface for local data storage,. This unit also
generates signals according to USB Peripheral events, such as Start of Frame (SOF),
USB_Reset, Data errors etc. and to Endpoint related events like end of transmission or
correct reception of a packet; these signals are then used to generate interrupts.

• Suspend Timer: This block generates the frame locked clock pulse for any external device
requiring Start-of-Frame synchronization and it detects a global suspend (from the host)
when no traffic has been received for 3 mS. 

• Packet Buffer Interface: This block manages the local memory implementing a set of
buffers in a flexible way, both for transmission and reception. It can choose the proper
buffer according to requests coming from the SIE and locate them in the memory
addresses pointed by the Endpoint registers. It increments the address after each
exchanged word until the end of packet, keeping track of the number of exchanged bytes
and preventing the buffer to overrun the maximum capacity.

• Endpoint-Related Registers: Each endpoint has an associated register containing the
endpoint type and its current status. For mono-directional/single-buffer endpoints, a single
register can be used to implement two distinct endpoints. In this implementation, the
number of registers is 8, allowing up to 8 double-buffer endpoints or up to 16
mono-directional/single-buffer ones in any combination.

• Control Registers: These are the registers containing information about the status of the
whole USB Peripheral and used to force some USB events, such as resume and
power-down.

• Interrupt Registers: These contain the Interrupt masks and a record of the events. They
can be used to inquire an interrupt reason, the interrupt status or to clear the status of a
pending interrupt.

The USB Peripheral is connected to the APB bus through an APB interface, containing the
following blocks:

• Packet Memory: This is the local memory that physically contains the Packet Buffers. It
can be used by the Packet Buffer interface, which creates the data structure and can be
accessed directly by the application software. The size of the Packet Memory is  512
Bytes, structured as 256 words by 16 bits.

• Arbiter: This block accepts memory requests coming from the APB bus and from the USB
interface. It resolves the conflicts by giving priority to APB accesses, while always
reserving half of the memory bandwidth to complete all USB transfers. This time-duplex
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scheme implements a virtual dual-port RAM that allows memory access, while an USB
transaction is happening. Multi-word APB transfers of any length are also allowed by this
scheme.

• Register Mapper: This block collects the various byte-wide and bit-wide registers of the
USB Peripheral in a structured 16-bit wide word set addressed by the APB.

• Interrupt Mapper: This block is used to select how the possible USB events can generate
interrupts and map them to IRQ lines of the EIC.

• APB Wrapper: This provides an interface to the APB for the memory and register. It also
maps the whole USB Peripheral in the APB address space.

14.4.2 Programming Considerations

In the following sections, the expected interactions between the USB Peripheral and the
application program are described, in order to ease application software development.

14.4.3 Generic USB Device Programming

This part describes the main tasks required of the application software in order to obtain USB
compliant behaviour. The actions related to the most general USB events are taken into
account and paragraphs are dedicated to the special cases of double-buffered endpoints and
Isochronous transfers. Apart from system reset, action is always initiated by the USB
Peripheral, driven by one of the USB events described below.

14.4.4 System and Power-On Reset

Upon system and power-on reset, the first operation the application software should perform
is to provide all required clock signals to the USB Peripheral and subsequently de-assert its
reset signal so to be able to access its registers. The whole initialization sequence is hereafter
described.

As a first step application software needs to activate register macrocell clock and de-assert
macrocell specific reset signal using related control bits provided by device clock
management logic.

After that the analog part of the device related to the USB transceiver must be switched on
using the PDWN bit in CNTR register which requires a special handling. This bit is intended to
switch on the internal voltage references supplying the port transceiver . Since this circuits
have a defined start-up time, during which the behaviour of USB transceiver is not defined, it
is necessary to wait this time, after having set the PDWN bit in CNTR register, then the reset
condition on the USB part can be removed (clearing of FRES bit in CNTR register) and the
ISTR register can be cleared, removing any spurious pending interrupt, before enabling any
other macrocell operation.

As a last step the USB specific 48 MHz clock needs to be activated, using the related control
bits provided by device clock management logic, where applicable.
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At system reset, the microcontroller must initialize all required registers and the packet buffer
description table, to make the USB Peripheral able to properly generate interrupts and data
transfers. All registers not specific to any endpoint must be initialized according to the needs
of application software (choice of enabled interrupts, chosen address of packet buffers, etc.).
Then the process continues as for the USB reset case (see further paragraph).

14.4.4.1 USB Reset (RESET Interrupt)

When this event occurs, the USB Peripheral is put in the same conditions it is left by the
system reset after the initialization described in the previous paragraph: the USB_DADDR
register is reset, and communication is disabled in all endpoint registers (the USB Peripheral
will not respond to any packet). As a response to the USB reset event, the USB function must
be enabled, having as USB address 0, implementing only the default control endpoint
(endpoint address is 0 too). This is accomplished by setting the Enable Function (EF) bit of
the USB_DADDR register and initializing the EP0R register and its related packet buffers
accordingly. During USB enumeration process, the host assigns a unique address to this
device, which must be written in the ADD[6:0] bits of the USB_DADDR register, and
configures any other necessary endpoint.
When a RESET interrupt is received, the application software is responsible to enable again
the default endpoint of USB function 0 within 10mS from the end of reset sequence which
triggered the interrupt.

14.4.4.2 Structure and Usage of Packet Buffers

Each bidirectional endpoint may receive or transmit data from/to the host. The received data
is stored in a dedicated memory buffer reserved for that endpoint, while another memory
buffer contains the data to be transmitted by the endpoint. Access to this memory is
performed by the packet buffer interface block, which delivers a memory access request and
waits for its acknowledgement. Since the packet buffer memory has to be accessed by the
microcontroller also, an arbitration logic takes care of the access conflicts, using half APB
cycle for microcontroller access and the remaining half for the USB Peripheral access. In this
way, both the agents can operate as if the packet memory is a dual-port RAM, without being
aware of any conflict even when the microcontroller is performing back-to-back accesses. The
USB Peripheral logic uses a dedicated clock. The frequency of this dedicated clock is fixed by
the requirements of the USB standard at 48 MHz, and this can be different from the clock
used for the interface to the APB bus. Different clock configurations are possible where the
APB clock frequency can be higher or lower than the USB Peripheral one. However, due to
USB data rate and packet memory interface requirements, the APB clock frequency must be
greater than 8 MHz to avoid data overrun/underrun problems.

Each endpoint is associated with two packet buffers (usually one for transmission and the
other one for reception). The size of the buffer can be upto 512 words each. Buffers can be
placed anywhere inside the packet memory because their location and size is specified in a
buffer description table, which is also located in the packet memory at the address indicated
by the USB_BTABLE register. Each table entry is associated to an endpoint register and it is
composed of four 16-bit words so that table start address must always be aligned to an 8-byte
267/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
boundary (the lowest three bits of USB_BTABLE register are always “000”). Buffer descriptor
table entries are described in the Section “Buffer Descriptor Table”. If an endpoint is
unidirectional and it is neither an Isochronous nor a double-buffered bulk, only one packet
buffer is required (the one related to the supported transfer direction). Other table locations
related to unsupported transfer directions or unused endpoints, are available to the user.
isochronous and double-buffered bulk endpoints have special handling of packet buffers
(Refer to “Isochronous Transfers” and “Double-Buffered Endpoints”” respectively). The
relationship between buffer description table entries and packet buffer areas is depicted in
Figure 72.

Each packet buffer is used either during reception or transmission starting from the bottom.
The USB Peripheral will never change the contents of memory locations adjacent to the
allocated memory buffers; if a packet bigger than the allocated buffer length is received (buffer
overrun condition) the data will be copied to the memory only up to the last available location.

Figure 72. Packet Buffer Areas and Buffer Description Table Locations
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14.4.4.3 Endpoint Initialization

The first step to initialize an endpoint is to write appropriate values to the ADDRn_TX/
ADDRn_RX registers so that the USB Peripheral finds the data to be transmitted already
available and the data to be received can be buffered. The EP_TYPE bits in the USB_EPnR
register must be set according to the endpoint type, eventually using the EP_KIND bit to
enable any special required feature. On the transmit side, the endpoint must be enabled using
the STAT_TX bits in the USB_EPnR register and COUNTn_TX must be initialized. For
reception, STAT_RX bits must be set to enable reception and COUNTn_RX must be written
with the allocated buffer size using the BL_SIZE and NUM_BLOCK fields. Unidirectional
endpoints, except Isochronous and double-buffered bulk endpoints, need to initialize only bits
and registers related to the supported direction. Once the transmission and/or reception are
enabled, register USB_EPnR and locations ADDRn_TX/ADDRn_RX, COUNTn_TX/
COUNTn_RX (respectively), should not be modified by the application software, as the
hardware can change their value on the fly. When the data transfer operation is completed,
notified by a CTR interrupt event, they can be accessed again to re-enable a new operation.

14.4.4.4 IN Packets (Data Transmission)

When receiving an IN token packet, if the received address matches a configured and valid
endpoint one, the USB Peripheral accesses the contents of ADDRn_TX and COUNTn_TX
locations inside buffer descriptor table entry related to the addressed endpoint. The content of
these locations is stored in its internal 16 bit registers ADDR and COUNT (not accessible by
software). The packet memory is accessed again to read the first word to be transmitted
(Refer to Section “Structure and Usage of Packet Buffers”) and starts sending a DATA0 or
DATA1 PID according to USB_EPnR bit DTOG_TX. When the PID is completed, the first byte
from the word, read from buffer memory, is loaded into the output shift register to be
transmitted on the USB bus. After the last data byte is transmitted, the computed CRC is sent.
If the addressed endpoint is not valid, a NAK or STALL handshake packet is sent instead of
the data packet, according to STAT_TX bits in the USB_EPnR register.

The ADDR internal register is used as a pointer to the current buffer memory location while
COUNT is used to count the number of remaining bytes to be transmitted. Each word read
from the packet buffer memory is transmitted over the USB bus starting from the least
significant byte. Transmission buffer memory is read starting from the address pointed by
ADDRn_TX for COUNTn_TX/2 words. If a transmitted packet is composed of an odd number
of bytes, only the lower half of the last word accessed will be used.

On receiving the ACK receipt by the host, the USB_EPnR register is updated in the following
way: DTOG_TX bit is toggled, the endpoint is made invalid by setting STAT_TX=10 (NAK) and
bit CTR_TX is set. The application software must first identify the endpoint, which is
requesting microcontroller attention by examining the EP_ID and DIR bits in the USB_ISTR
register. Servicing of the CTR_TX event starts clearing the interrupt bit; the application
software then prepares another buffer full of data to be sent, updates the COUNTn_TX table
location with the number of byte to be transmitted during the next transfer, and finally sets
STAT_TX to ‘11’ (VALID) to re-enable transmissions. While the STAT_TX bits are equal to ‘10’
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(NAK), any IN request addressed to that endpoint is NAKed, indicating a flow control
condition: the USB host will retry the transaction until it succeeds. It is mandatory to execute
the sequence of operations in the above mentioned order to avoid losing the notification of a
second IN transaction addressed to the same endpoint immediately following the one which
triggered the CTR interrupt.

14.4.4.5 OUT and SETUP Packets (Data Reception)

These two tokens are handled by the USB Peripheral more or less in the same way; the
differences in the handling of SETUP packets are detailed in the following paragraph about
control transfers. When receiving an OUT/SETUP PID, if the address matches a valid
endpoint, the USB Peripheral accesses the contents of the ADDRn_RX and COUNTn_RX
locations inside the buffer descriptor table entry related to the addressed endpoint. The
content of the ADDRn_RX is stored directly in its internal register ADDR. While COUNT is
now reset and the values of BL_SIZE and NUM_BLOCK bit fields, which are read within
COUNTn_RX content are used to initialize BUF_COUNT, an internal 16 bit counter, which is
used to check the buffer overrun condition (all these internal registers are not accessible by
software). Data bytes subsequently received by the USB Peripheral are packed in words (the
first byte received is stored as least significant byte) and then transferred to the packet buffer
starting from the address contained in the internal ADDR register while BUF_COUNT is
decremented and COUNT is incremented at each byte transfer. When the end of DATA packet
is detected, the correctness of the received CRC is tested and only if no errors occurred
during the reception, an ACK handshake packet is sent back to the transmitting host. In case
of wrong CRC or other kinds of errors (bit-stuff violations, frame errors, etc.), data bytes are
anyways copied in the packet memory buffer, at least until the error detection point, but ACK
packet is not sent and the ERR bit in USB_ISTR register is set. However, there is usually no
software action required in this case: the USB Peripheral recovers from reception errors and
remains ready for the next transaction to come. If the addressed endpoint is not valid, a NAK
or STALL handshake packet is sent instead of the ACK, according to bits STAT_RX in the
USB_EPnR register and no data is written in the reception memory buffers.

Reception memory buffer locations are written starting from the address contained in the
ADDRn_RX for a number of bytes corresponding to the received data packet length, CRC
included (i.e. data payload length + 2), or up to the last allocated memory location, as defined
by BL_SIZE and NUM_BLOCK, whichever comes first. In this way, the USB Peripheral never
writes beyond the end of the allocated reception memory buffer area. If the length of the data
packet payload (actual number of bytes used by the application) is greater than the allocated
buffer, the USB Peripheral detects a buffer overrun condition. in this case, a STALL
handshake is sent instead of the usual ACK to notify the problem to the host, no interrupt is
generated and the transaction is considered failed.

When the transaction is completed correctly, by sending the ACK handshake packet, the
internal COUNT register is copied back in the COUNTn_RX location inside the buffer
description table entry, leaving unaffected BL_SIZE and NUM_BLOCK fields, which normally
do not require to be re-written, and the USB_EPnR register is updated in the following way:
DTOG_RX bit is toggled, the endpoint is made invalid by setting STAT_RX = ‘10’ (NAK) and bit
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CTR_RX is set. If the transaction has failed due to errors or buffer overrun condition, none of
the previously listed actions take place. The application software must first identify the
endpoint, which is requesting microcontroller attention by examining the EP_ID and DIR bits
in the USB_ISTR register. The CTR_RX event is serviced by first determining the transaction
type (SETUP bit in the USB_EPnR register); the application software must clear the interrupt
flag bit and get the number of received bytes reading the COUNTn_RX location inside the
buffer description table entry related to the endpoint being processed. After the received data
is processed, the application software should set the STAT_RX bits to ‘11’ (Valid) in the
USB_EPnR, enabling further transactions. While the STAT_RX bits are equal to ‘10’ (NAK),
any OUT request addressed to that endpoint is NAKed, indicating a flow control condition: the
USB host will retry the transaction until it succeeds. It is mandatory to execute the sequence
of operations in the above mentioned order to avoid losing the notification of a second OUT
transaction addressed to the same endpoint following immediately the one which triggered
the CTR interrupt.

14.4.4.6 Control Transfers

Control transfers are made of a SETUP transaction, followed by zero or more data stages, all
of the same direction, followed by a status stage (a zero-byte transfer in the opposite
direction). SETUP transactions are handled by control endpoints only and are very similar to
OUT ones (data reception) except that the values of DTOG_TX and DTOG_RX bits of the
addressed endpoint registers are set to 1 and 0 respectively, to initialize the control transfer,
and both STAT_TX and STAT_RX are set to ‘10’ (NAK) to let software decide if subsequent
transactions must be IN or OUT depending on the SETUP contents. A control endpoint must
check SETUP bit in the USB_EPnR register at each CTR_RX event to distinguish normal
OUT transactions from SETUP ones. A USB device can determine the number and direction
of data stages by interpreting the data transferred in the SETUP stage, and is required to
STALL the transaction in the case of errors. To do so, at all data stages before the last, the
unused direction should be set to STALL, so that, if the host reverses the transfer direction too
soon, it gets a STALL as a status stage. While enabling the last data stage, the opposite
direction should be set to NAK, so that, if the host reverses the transfer direction (to perform
the status stage) immediately, it is kept waiting for the completion of the control operation. If
the control operation completes successfully, the software will change NAK to VALID,
otherwise to STALL. At the same time, if the status stage will be an OUT, the STATUS_OUT
(EP_KIND in the USB_EPnR register) bit should be set, so that an error is generated if a
status transaction is performed with not-zero data. When the status transaction is serviced,
the application clears the STATUS_OUT bit and sets STAT_RX to VALID (to accept a new
command) and STAT_TX to NAK (to delay a possible status stage immediately following the
next setup).

Since the USB specification states that a SETUP packet cannot be answered with a
handshake different from ACK, eventually aborting a previously issued command to start the
new one, the USB logic doesn’t allow a control endpoint to answer with a NAK or STALL
packet to a SETUP token received from the host. 
271/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
When the STAT_RX bits are set to ‘01’ (STALL) or ‘10’ (NAK) and a SETUP token is received,
the USB accepts the data, performing the required data transfers and sends back an ACK
handshake. If that endpoint has a previously issued CTR_RX request not yet acknowledged
by the application (i.e. CTR_RX bit is still set from a previously completed reception), the USB
discards the SETUP transaction and does not answer with any handshake packet regardless
of its state, simulating a reception error and forcing the host to send the SETUP token again.
This is done to avoid losing the notification of a SETUP transaction addressed to the same
endpoint immediately following the transaction, which triggered the CTR_RX interrupt.

14.4.5 Double-Buffered Endpoints

All different endpoint types defined by the USB standard represent different traffic models,
and describe the typical requirements of different kind of data transfer operations. When large
portions of data are to be transferred between the host PC and the USB function, the bulk
endpoint type is the most suited model. This is because the host schedules bulk transactions
so as to fill all the available bandwidth in the frame, maximizing the actual transfer rate as long
as the USB function is ready to handle a bulk transaction addressed to it. If the USB function
is still busy with the previous transaction when the next one arrives, it will answer with a NAK
handshake and the host PC will issue the same transaction again until the USB function is
ready to handle it, reducing the actual transfer rate due to the bandwidth occupied by
re-transmissions. For this reason, a dedicated feature called ‘double-buffering’ can be used
with bulk endpoints.

When ‘double-buffering’ is activated, data toggle sequencing is used to select, which buffer is
to be used by the USB Peripheral to perform the required data transfers, using both
‘transmission’ and ‘reception’ packet memory areas to manage buffer swapping on each
successful transaction in order to always have a complete buffer to be used by the application,
while the USB Peripheral fills the other one. For example, during an OUT transaction directed
to a ‘reception’ double-buffered bulk endpoint, while one buffer is being filled with new data
coming from the USB host, the other one is available for the microcontroller software usage
(the same would happen with a ‘transmission’ double-buffered bulk endpoint and an IN
transaction).

Since the swapped buffer management requires the usage of all 4 buffer description table
locations hosting the address pointer and the length of the allocated memory buffers, the
USB_EPnR registers used to implement double-buffered bulk endpoints are forced to be used
as uni-directional ones. Therefore, only one STAT bit pair must be set at a value different from
‘00’ (Disabled): STAT_RX if the double-buffered bulk endpoint is enabled for reception,
STAT_TX if the double-buffered bulk endpoint is enabled for transmission. In case it is
required to have double-buffered bulk endpoints enabled both for reception and transmission,
two USB_EPnR registers must be used.

To exploit the double-buffering feature and reach the highest possible transfer rate, the
endpoint flow control structure, described in previous chapters, has to be modified, in order to
switch the endpoint status to NAK only when a buffer conflict occurs between the USB
Peripheral and application software, instead of doing it at the end of each successful
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transaction. The memory buffer which is currently being used by the USB Peripheral is
defined by the DTOG bit related to the endpoint direction: DTOG_RX (bit 14 of USB_EPnR
register) for ‘reception’ double-buffered bulk endpoints or DTOG_TX (bit 6 of USB_EPnR
register) for ‘transmission’ double-buffered bulk endpoints. To implement the new flow control
scheme, the USB Peripheral should know which packet buffer is currently in use by the
application software, so to be aware of any conflict. Since in the USB_EPnR register, there
are two DTOG bits but only one is used by USB Peripheral for data and buffer sequencing
(due to the uni-directional constraint required by double-buffering feature) the other one can
be used by the application software to show which buffer it is currently using. This new buffer
flag is called SW_BUF. In the following table the correspondence between USB_EPnR
register bits and DTOG/SW_BUF definition is explained, for the cases of ‘transmission’ and
‘reception’ double-buffered bulk endpoints.

The memory buffer which is currently being used by the USB Peripheral is defined by DTOG
buffer flag, while the buffer currently in use by application software is identified by SW_BUF
buffer flag. The relationship between the buffer flag value and the used packet buffer is the
same in both cases, and it is listed in the following table.

Double-buffering feature for a bulk endpoint is activated by: 

• writing EP_TYPE bit field at ‘00’ in its USB_EPnR register, to define the endpoint as a
bulk, and 

• setting EP_KIND bit at ‘1’ (DBL_BUF), in the same register.

The application software is responsible for DTOG and SW_BUF bits initialization according to
the first buffer to be used; this has to be done considering the special toggle-only property that
these two bits have. The end of the first transaction occurring after having set DBL_BUF,

Table 48. Double-Buffering Buffer Flag Definition

Buffer
flag

‘Transmission’
endpoint

‘Reception’
endpoint

DTOG DTOG_TX (USB_EPnR bit 6) DTOG_RX (USB_EPnR bit 14)

SW_BUF USB_EPnR bit 14 USB_EPnR bit 6

Table 49. Double-Buffering Memory Buffers Usage

DTOG or SW_BUF
bit value

Packet buffer used by 
USB Peripheral (DTOG) or

application software (SW_BUF) 

0 ADDRn_TX / COUNTn_TX
buffer description table locations.

1 ADDRn_RX / COUNTn_RX
buffer description table locations.
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triggers the special flow control of double-buffered bulk endpoints, which is used for all other
transactions addressed to this endpoint until DBL_BUF remain set. At the end of each
transaction the CTR_RX or CTR_TX bit of the addressed endpoint USB_EPnR register is set,
depending on the enabled direction. At the same time, the affected DTOG bit in the
USB_EPnR register is hardware toggled making the USB Peripheral buffer swapping
completely software independent. Unlike common transactions, and the first one after
DBL_BUF setting, STAT bit pair is not affected by the transaction termination and its value
remains ‘11’ (Valid). However, as the token packet of a new transaction is received, the actual
endpoint status will be masked as ‘10’ (NAK) when a buffer conflict between the USB
Peripheral and the application software is detected (this condition is identified by DTOG and
SW_BUF having the same value). The application software responds to the CTR event
notification by clearing the interrupt flag and starting any required handling of the completed
transaction. When the application packet buffer usage is over, the software toggles the
SW_BUF bit, writing ‘1’ to it, to notify the USB Peripheral about the availability of that buffer. In
this way, the number of NAKed transactions is limited only by the application elaboration time
of a transaction data: if the elaboration time is shorter than the time required to complete a
transaction on the USB bus, no re-transmissions due to flow control will take place and the
actual transfer rate will be limited only by the host PC.

The application software can always override the special flow control implemented for
double-buffered bulk endpoints, writing an explicit status different from ‘11’ (Valid) into the
STAT bit pair of the related USB_EPnR register. In this case, the USB Peripheral will always
use the programmed endpoint status, regardless of the buffer usage condition.

14.4.6 Isochronous Transfers

The USB standard supports full speed peripherals requiring a fixed and accurate data
production/consume frequency, defining this kind of traffic as ‘Isochronous’. Typical examples
of this data are: audio samples, compressed video streams, and in general any sort of
sampled data having strict requirements for the accuracy of delivered frequency. When an
endpoint is defined to be ‘isochronous’ during the enumeration phase, the host allocates in
the frame the required bandwidth and delivers exactly one IN or OUT packet each frame,
depending on endpoint direction. To limit the bandwidth requirements, no re-transmission of
failed transactions is possible for Isochronous traffic; this leads to the fact that an isochronous
transaction does not have a handshake phase and no ACK packet is expected or sent after
the data packet. For the same reason, Isochronous transfers do not support data toggle
sequencing and always use DATA0 PID to start any data packet.

The Isochronous behaviour for an endpoint is selected by setting the EP_TYPE bits at ‘10’ in
its USB_EPnR register; since there is no handshake phase the only legal values for the
STAT_RX/STAT_TX bit pairs are ‘00’ (Disabled) and ‘11’ (Valid), any other value will produce
results not compliant to USB standard. Isochronous endpoints implement double-buffering to
ease application software development, using both ‘transmission’ and ‘reception’ packet
memory areas to manage buffer swapping on each successful transaction in order to have
always a complete buffer to be used by the application, while the USB Peripheral fills the
other.
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The memory buffer which is currently used by the USB Peripheral is defined by the DTOG bit
related to the endpoint direction (DTOG_RX for ‘reception’ isochronous endpoints, DTOG_TX
for ‘transmission’ isochronous endpoints, both in the related USB_EPnR register) according
to Table 50.

As it happens with double-buffered bulk endpoints, the USB_EPnR registers used to
implement Isochronous endpoints are forced to be used as uni-directional ones. In case it is
required to have Isochronous endpoints enabled both for reception and transmission, two
USB_EPnR registers must be used.

The application software is responsible for the DTOG bit initialization according to the first
buffer to be used; this has to be done considering the special toggle-only property that these
two bits have. At the end of each transaction, the CTR_RX or CTR_TX bit of the addressed
endpoint USB_EPnR register is set, depending on the enabled direction. At the same time,
the affected DTOG bit in the USB_EPnR register is hardware toggled making buffer swapping
completely software independent. STAT bit pair is not affected by transaction completion;
since no flow control is possible for Isochronous transfers due to the lack of handshake phase,
the endpoint remains always ‘11’ (Valid). CRC errors or buffer-overrun conditions occurring
during Isochronous OUT transfers are anyway considered as correct transactions and they
always trigger an CTR_RX event. However, CRC errors will anyway set the ERR bit in the
USB_ISTR register to notify the software of the possible data corruption.

14.4.7 Suspend/Resume Events

The USB standard defines a special peripheral state, called SUSPEND, in which the average
current drawn from the USB bus must not be greater than 500 µA. This requirement is of
fundamental importance for bus-powered devices, while self-powered devices are not
required to comply to this strict power consumption constraint. In suspend mode, the host PC
sends the notification to not send any traffic on the USB bus for more than 3mS: since a SOF
packet must be sent every mS during normal operations, the USB Peripheral detects the lack
of 3 consecutive SOF packets as a suspend request from the host PC and set the SUSP bit to
‘1’ in USB_ISTR register, causing an interrupt if enabled. Once the device is suspended, its
normal operation can be restored by a so called RESUME sequence, which can be started

Table 50. Isochronous Memory Buffers Usage

DTOG bit value
DMA buffer used by 

USB Peripheral 
DMA buffer used by 
application software

0 ADDRn_TX / COUNTn_TX
buffer description table
locations.

ADDRn_RX / COUNTn_RX
buffer description table
locations.

1 ADDRn_RX / COUNTn_RX
buffer description table
locations.

ADDRn_TX / COUNTn_TX
buffer description table
locations.
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from the host PC or directly from the peripheral itself, but it is always terminated by the host
PC. The suspended USB Peripheral must be anyway able to detect a RESET sequence,
reacting to this event as a normal USB reset event.

The actual procedure used to suspend the USB peripheral is device dependent since
according to the device composition, different actions may be required to reduce the total
consumption. 

A brief description of a typical suspend procedure is provided below, focused on the USB-
related aspects of the application software routine responding to the SUSP notification of the
USB Peripheral:

1. Set the FSUSP bit in the USB_CNTR register to 1. This action activates the suspend
mode within the USB Peripheral. As soon as the suspend mode is activated, the check on
SOF reception is disabled to avoid any further SUSP interrupts being issued while the
USB is suspended.

2. Remove or reduce any static power consumption in blocks different from the USB Periph-
eral.

3. Set LP_MODE bit in USB_CNTR register to 1 to remove static power consumption in the
analog USB transceivers but keeping them able to detect resume activity.

4. Optionally turn off external oscillator and device PLL to stop any activity inside the device. 

When an USB event occurs while the device is in SUSPEND mode, the RESUME procedure
must be invoked to restore nominal clocks and regain normal USB behaviour. Particular care
must be taken to insure that this process does not take more than 10mS when the wakening
event is an USB reset sequence (See “Universal Serial Bus Specification” for more details).
The start of a resume or reset sequence, while the USB Peripheral is suspended, clears the
LP_MODE bit in USB_CNTR register  asynchronously. Even if this event can trigger an
WKUP interrupt if enabled, the use of an interrupt response routine must be carefully
evaluated because of the long latency due to system clock restart; to have the shorter latency
before re-activating the nominal clock it is suggested to put the resume procedure just after
the end of the suspend one, so its code is immediately executed as soon as the system clock
restarts. To prevent ESD discharges or any other kind of noise from waking-up the system
(the exit from suspend mode is an asynchronous event), a suitable analog filter on data line
status is activated during suspend; the filter width is about 70nS. 

The following is a list of actions a resume procedure should address:

1. Optionally turn on external oscillator and device PLL.

2. Clear FSUSP bit of USB_CNTR register.

3. If the resume triggering event has to be identified, bits RXDP and RXDM in the USB_FNR
register can be used according to Table 51, which also lists the intended software action
in all the cases. If required, the end of resume or reset sequence can be detected moni-
toring the status of the above mentioned bits by checking when they reach the “10” config-
uration, which represent the Idle bus state; moreover at the end of a reset sequence the
276/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
RESET bit in USB_ISTR register is set to 1, issuing an interrupt if enabled, which should
be handled as usual.

A device may require to exit from suspend mode as an answer to particular events not directly
related to the USB protocol (e.g. a mouse movement wakes up the whole system). In this
case, the resume sequence can be started by setting the RESUME bit in the USB_CNTR
register to ‘1’ and resetting it to 0 after an interval between 1mS and 15mS (this interval can
be timed using ESOF interrupts, occurring with a 1mS period when the system clock is
running at nominal frequency). Once the RESUME bit is clear, the resume sequence will be
completed by the host PC and its end can be monitored again using the RXDP and RXDM
bits in the USB_FNR register. 

Note The RESUME bit must be anyway used only after the USB Peripheral has been put
in suspend mode, setting the FSUSP bit in USB_CNTR register to 1.

Table 51. Resume Event Detection

[RXDP,RXDM]
Status

Wake-up event Required resume software action

“00” Root reset None

“10” None
(noise on bus)

Go back in Suspend mode

“01” Root resume None

“11” Not Allowed
(noise on bus)

Go back in Suspend mode
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14.5 Register Description

The USB Peripheral registers can be divided into the following groups: 

• Common Registers: Interrupt and Control registers

• Endpoint Registers: Endpoint configuration and status

• Buffer Descriptor Table: Location of packet memory used to locate data buffers

All register addresses are expressed as offsets with respect to the USB Peripheral registers
base address 0xC000 8000, except the buffer descriptor table locations, which starts at the
address specified by the USB_BTABLE register. Due to the common limitation of APB bridges
on word addressability, all register addresses are aligned to 32-bit word boundaries although
they are 16-bit wide. The same address alignment is used to access packet buffer memory
locations, which are located starting from 0xC000 8800. In this section, the following
abbreviations are used:

14.5.1 Common Registers

These registers affect the general behaviour of the USB Peripheral defining operating mode,
interrupt handling, device address and giving access to the current frame number updated by
the host PC.

14.5.1.1 USB Control Register (USB_CNTR) 

Address Offset: 40h

Reset Value: 0000 0000 0000 0011 (0003h)

read/write (rw) The software can read and write to these bits.

read-only (r) The software can only read these bits. 

write-only (w) The software can only write to these bits.

Read-clear (rc_w0) The software can only read or clear this bit by writing ‘0’.
Writing ‘1’ has no effect.

Toggle (t) The software can only toggle this bit by writing ‘1’. Writing ‘0’
has no effect.
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Bit 15 CTRM: Correct Transfer Interrupt Mask
0: Correct Transfer (CTR) Interrupt disabled.
1: CTR Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

Bit 14 DOVRM: DMA over / underrun Interrupt Mask
0: DOVR Interrupt disabled.
1: DOVR Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

Bit 13 ERRM: Error Interrupt Mask
0: ERR Interrupt disabled.
1: ERR Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

Bit 12 WKUPM: Wake-up Interrupt Mask
0: WKUP Interrupt disabled.
1: WKUP Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

Bit 11 SUSPM: Suspend mode Interrupt Mask
0: Suspend Mode Request (SUSP) Interrupt disabled.
1: SUSP Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

Bit 10 RESETM: USB Reset Interrupt Mask
0: RESET Interrupt disabled.
1: RESET Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

Bit 9 SOFM: Start Of Frame Interrupt Mask
0: SOF Interrupt disabled.
1: SOF Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

Bit 8 ESOFM: Expected Start Of Frame Interrupt Mask
0: Expected Start of Frame (ESOF) Interrupt disabled.
1: ESOF Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

Bits 7:5 Reserved

These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’.
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Bit 4 RESUME: Resume request

The microcontroller can set this bit to send a Resume signal to the host. It
must be activated, according to USB specifications, for no less than 1mS
and no more than 15mS after which the Host PC is ready to drive the
resume sequence up to its end.

Bit 3 FSUSP: Force suspend
Software must set this bit when the SUSP interrupt is received, which is
issued when no traffic is received by the USB Peripheral for 3 mS.
0: No effect.
1: Enter suspend mode. Clocks and static power dissipation in the analog
transceiver are left unaffected. If suspend power consumption is a
requirement (bus-powered device), the application software should set the
LP_MODE bit after FSUSP as explained below.

Bit 2 LP_MODE: Low-power mode 
This mode is used when the suspend-mode power constraints require that
all static power dissipation is avoided, except the one required to supply the
external pull-up resistor. This condition should be entered when the
application is ready to stop all system clocks, or reduce their frequency in
order to meet the power consumption requirements of the USB suspend
condition. The USB activity during the suspend mode (WKUP event)
asynchronously resets this bit (it can also be reset by software).  
0: No Low Power Mode.
1: Enter Low Power mode.

Bit 1 PDWN: Power down

This bit is used to completely switch off all USB-related analog parts if it is
required to completely disable the USB Peripheral for any reason. When
this bit is set, the USB Peripheral is disconnected from the transceivers and
it cannot be used.
0: Exit Power Down.
1: Enter Power down mode.

Bit 0 FRES: Force USB Reset
0: Clear USB reset.
1: Force a reset of the USB Peripheral, exactly like a RESET signalling on
the USB. The USB Peripheral is held in RESET state until software clears
this bit. A “USB-RESET” interrupt is generated, if enabled.
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14.5.1.2 USB Interrupt Status Register (USB_ISTR) 

Address Offset: 44h

Reset Value: 0000 0000 0000 0000 (0000h)

This register contains the status of all the interrupt sources allowing application software to
determine, which events caused an interrupt request.

The upper part of this register contains single bits, each of them representing a specific event.
These bits are set by the hardware when the related event occurs; if the corresponding bit in
the USB_CNTR register is set, a generic interrupt request is generated. The interrupt routine,
examining each bit, will perform all necessary actions, and finally it will clear the serviced bits.
If any of them is not cleared, the interrupt is considered to be still pending, and the interrupt
line will be kept high again. If several bits are set simultaneously, only a single interrupt will be
generated.

Endpoint transaction completion can be handled in a different way to reduce interrupt
response latency. The CTR bit is set by the hardware as soon as an endpoint successfully
completes a transaction, generating a generic interrupt request if the corresponding bit in
USB_CNTR is set. An endpoint dedicated interrupt condition is activated independently from
the CTRM bit in the USB_CNTR register. Both interrupt conditions remain active until
software clears the pending bit in the corresponding  USB_EPnR register (the CTR bit is
actually a read only bit). The USB Peripheral has two interrupt request lines:

• Higher priority USB IRQ: The pending requests for endpoints, which have transactions
with a higher priority (isochronous and double-buffered bulk) and they cannot be masked.

• Lower priority USB IRQ: All other interrupt conditions, which can either be non-maskable
pending requests related to the lower priority transactions and all other maskable events
flagged by the USB_ISTR high bytes.

For endpoint-related interrupts, the software can use the Direction of Transaction (DIR) and
EP_ID read-only bits to identify, which endpoint made the last interrupt request and called the
corresponding interrupt service routine.

The user can choose the relative priority of simultaneously pending USB_ISTR events by
specifying the order in which software checks USB_ISTR bits in an interrupt service routine.
Only the bits related to events, which are serviced, are cleared. At the end of the service
routine, another interrupt will be requested, to service the remaining conditions.
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To avoid spurious clearing of some bits, it is recommended to clear them with a load
instruction where all bits which must not be altered are written with 1, and all bits to be cleared
are written with ‘0’ (these bits can only be cleared by software). Read-modify-write cycles
should be avoided because between the read and the write operations another bit could be
set by the hardware and the next write will clear it before the microprocessor has the time to
serve the event.

The following describes each bit in detail:

Bit 15 CTR: Correct Transfer
This bit is set by the hardware to indicate that an endpoint has successfully
completed a transaction; using DIR and EP_ID bits software can determine which
endpoint requested the interrupt. This bit is read-only.

Bit 14 DOVR: DMA over / underrun
This bit is set if the microcontroller has not been able to respond in time to an USB
memory request. The USB Peripheral handles this event in the following way:
During reception an ACK handshake packet is not sent, during transmission a
bit-stuff error is forced on the transmitted stream; in both cases the host will retry
the transaction. The DOVR interrupt should never occur during normal
operations. Since the failed transaction is retried by the host, the application
software has the chance to speed-up device operations during this interrupt
handling, to be ready for the next transaction retry; however this does not happen
during Isochronous transfers (no isochronous transaction is anyway retried)
leading to a loss of data in this case. This bit is read/write but only ‘0’ can be
written and writing ‘1’ has no effect.

Bit 13 ERR: Error
This flag is set whenever one of the errors listed below has occurred: 

NANS: No ANSwer. The timeout for a host response has expired.

CRC: Cyclic Redundancy Check error. One of the received CRCs, either in the
token or in the data, was wrong.

BST: Bit Stuffing error. A bit stuffing error was detected anywhere in the PID, data,
and/or CRC.

FVIO: Framing format Violation. A non-standard frame was received (EOP not in
the right place, wrong token sequence, etc.).

The USB software can usually ignore errors, since the USB Peripheral and the PC
host manage retransmission in case of errors in a fully transparent way. This
interrupt can be useful during the software development phase, or to monitor the
quality of transmission over the USB bus, to flag possible problems to the user
(e.g. loose connector, too noisy environment, broken conductor in the USB cable
and so on). This bit is read/write but only ‘0’ can be written and writing ‘1’ has no
effect.
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Bit 12 WKUP: Wake up
This bit is set to 1 by the hardware when, during suspend mode, activity is
detected that wakes up the USB Peripheral. This event asynchronously clears the
LP_MODE bit in the CTLR register and activates the USB_WAKEUP line, which
can be used to notify the rest of the device (e.g. wake-up unit) about the start of
the resume process. This bit is read/write but only ‘0’ can be written and writing ‘1’
has no effect.

Bit 11 SUSP Suspend mode request
This bit is set by the hardware when no traffic has been received for 3mS,
indicating a suspend mode request from the USB bus. The suspend condition
check is enabled immediately after any USB reset and it is disabled by the
hardware when the suspend mode is active (FSUSP=1) until the end of resume
sequence. This bit is read/write but only ‘0’ can be written and writing ‘1’ has no
effect.

Bit 10 RESET: USB RESET request

Set when the USB Peripheral detects an active USB RESET signal at its inputs.
The USB Peripheral, in response to a RESET, just resets its internal protocol state
machine, generating an interrupt if RESETM enable bit in the USB_CNTR register
is set. Reception and transmission are disabled until the RESET bit is cleared. All
configuration registers do not reset: the microcontroller must explicitly clear these
registers (this is to ensure that the RESET interrupt can be safely delivered, and
any transaction immediately followed by a RESET can be completed). The
function address and endpoint registers are reset by an USB reset event. 

This bit is read/write but only ‘0’ can be written and writing ‘1’ has no effect.

Bit 9 SOF: Start Of Frame

This bit signals the beginning of a new USB frame and it is set when a SOF packet
arrives through the USB bus. The interrupt service routine may monitor the SOF
events to have a 1mS synchronization event to the USB host and to safely read
the USB_FNR register which is updated at the SOF packet reception (this could
be useful for isochronous applications). This bit is read/write but only ‘0’ can be
written and writing ‘1’ has no effect.

Bit 8 ESOF: Expected Start Of Frame
This bit is set by the hardware when an SOF packet is expected but not received.
The host sends an SOF packet each mS, but if the hub does not receive it
properly, the Suspend Timer issues this interrupt. If three consecutive ESOF
interrupts are generated (i.e. three SOF packets are lost) without any traffic
occurring in between, a SUSP interrupt is generated. This bit is set even when the
missing SOF packets occur while the Suspend Timer is not yet locked. This bit is
read/write but only ‘0’ can be written and writing ‘1’ has no effect.
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14.5.1.3 USB Frame Number Register (USB_FNR) 

Address Offset: 48h

Reset Value: 0000 0xxx xxxx xxxx (0xxxh)

Bits 7:5 Reserved. 

These are reserved bits. These bits are always read as ‘0’ and must always be
written with ‘0’.

Bit 4 DIR: Direction of transaction. 
This bit is written by the hardware according to the direction of the successful
transaction, which generated the interrupt request.

If DIR bit=0, CTR_TX bit is set in the USB_EPnR register related to the
interrupting endpoint. The interrupting transaction is of IN type (data transmitted
by the USB Peripheral to the host PC).

If DIR bit=1, CTR_RX bit or both CTR_TX/CTR_RX are set in the USB_EPnR
register related to the interrupting endpoint. The interrupting transaction is of OUT
type (data received by the USB Peripheral from the host PC) or two pending
transactions are waiting to be processed.

This information can be used by the application software to access the
USB_EPnR bits related to the triggering transaction since it represents the
direction having the interrupt pending. This bit is read-only.

Bits 3:0 EP_ID[3:0]: Endpoint Identifier.
These bits are written by the hardware according to the endpoint number, which
generated the interrupt request. If several endpoint transactions are pending, the
hardware writes the endpoint identifier related to the endpoint having the highest
priority defined in the following way: Two endpoint sets are defined, in order of
priority: Isochronous and double-buffered bulk endpoints are considered first and
then the other endpoints are examined. If more than one endpoint from the same
set is requesting an interrupt, the EP_ID bits in USB_ISTR register are assigned
according to the lowest requesting endpoint register, EP0R having the highest
priority followed by EP1R and so on. The application software can assign a
register to each endpoint according to this priority scheme, so as to order the
concurring endpoint requests in a suitable way. These bits are read only.
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14.5.1.4 USB Device Address (USB_DADDR) 

Address Offset: 4Ch

Reset Value: 0000 0000 0000 0000 (0000h)

This register is also reset when a USB reset is received from the USB bus or forced through
bit FRES in the USB_CNTR register.

Bit 15 RXDP Receive Data + Line Status 
This bit can be used to observe the status of received data plus upstream
port data line. It can be used during end-of-suspend routines to help
determining the wake-up event.

Bit 14 RXDM. Receive Data - Line Status
This bit can be used to observe the status of received data minus upstream
port data line. It can be used during end-of-suspend routines to help
determining the wake-up event.

Bit 13 LCK: Locked
This bit is set by the hardware when at least two consecutive SOF packets
have been received after the end of an USB reset condition or after the end
of an USB resume sequence. Once locked, the frame timer remains in this
state until an USB reset or USB suspend event occurs.

Bits12:11 LSOF[1:0]: Lost SOF
These bits are written by the hardware when an ESOF interrupt is
generated, counting the number of consecutive SOF packets lost. At the
reception of an SOF packet, these bits are cleared.

Bits 10:0 FN[10:0]: Frame Number

This bit field contains the 11-bits frame number contained in the last
received SOF packet. The frame number is incremented for every frame
sent by the host and it is useful for Isochronous transfers. This bit field is
updated on the generation of an SOF interrupt.
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14.5.1.5 Buffer Table Address (USB_BTABLE)

Address Offset: 50h

Reset Value: 0000 0000 0000 0000 (0000h)

Bits 15:8 Reserved

These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’.

Bit 7 EF: Enable Function

This bit is set by the software to enable the USB device. The address of this
device is contained in the following ADD[6:0] bits. If this bit is at ‘0’ no
transactions are handled, irrespective of the settings of USB_EPnR
registers.

Bits 6:0 ADD[6:0]: Device Address
These bits contain the USB function address assigned by the host PC
during the enumeration process. Both this field and the Endpoint Address
(EA) field in the associated USB_EPnR register must match with the
information contained in a USB token in order to handle a transaction to the
required endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTABLE[15:3] Reserved

rw

Bits 15:3 BTABLE[15:3]: Buffer Table. 
These bits contain the start address of the buffer allocation table inside the
dedicated packet memory. This table describes each endpoint buffer
location and size and it must be aligned to an 8 byte boundary (the 3 least
significant bits are always ‘0’). At the beginning of every transaction
addressed to this device, the USP peripheral reads the element of this table
related to the addressed endpoint, to get its buffer start location and the
buffer size (Refer to Section “Structure and Usage of Packet Buffers”).

Bits 2:0 Reserved. 

These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’.
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14.5.2 Endpoint-Specific Registers

The number of these registers varies according to the number of endpoints that the USB
Peripheral is designed to handle. The USB Peripheral supports up to 8 endpoints. Each USB
device must support a control endpoint whose address (EA bits) must be set to 0. The USB
Peripheral behaves in an undefined way if multiple endpoints are enabled having the same
endpoint number value. For each endpoint, an USB_EPnR register is available to store the
endpoint specific information.

14.5.2.1 USB Endpoint n Register (USB_EPnR) 

Address Offset: 00h to 2Ch

Reset value: 0000 0000 0000 0000b (0000h)

They are also reset when an USB reset is received from the USB bus or forced through bit
FRES in the CTLR register, except the CTR_RX and CTR_TX bits, which are kept unchanged
to avoid missing a correct packet notification immediately followed by an USB reset event.
Each endpoint has its USB_EPnR register where n is the endpoint identifier.

Read-modify-write cycles on these registers should be avoided because between the read
and the write operations some bits could be set by the hardware and the next write would
modify them before the microprocessor has the time to detect the change. For this purpose,
all bits affected by this problem have an ‘invariant’ value that must be used whenever their
modification is not required. It is recommended to modify these registers with a load
instruction where all the bits, which can be modified only by the hardware, are written with
their ‘invariant’ value.
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Bit 15 CTR_RX: Correct Transfer for reception
This bit is set by the hardware when an OUT/SETUP transaction is
successfully completed on this endpoint; the software can only clear this
bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic
interrupt condition is generated together with the endpoint related interrupt
condition, which is always activated. The type of occurred transaction, OUT
or SETUP, can be determined from the SETUP bit described below. 

A transaction ended with a NAK or STALL handshake does not set this bit,
since no data is actually transferred, as in the case of protocol errors or
data toggle mismatches. 

This bit is read/write but only ‘0’ can be written, writing 1 has no effect.

Bit 14 DTOG_RX: Data Toggle, for reception transfers
If the endpoint is not Isochronous, this bit contains the expected value of
the data toggle bit (0=DATA0, 1=DATA1) for the next data packet to be
received. Hardware toggles this bit, when the ACK handshake is sent to the
USB host, following a data packet reception having a matching data PID
value; if the endpoint is defined as a control one, hardware clears this bit at
the reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double-buffering feature this bit is used to
support packet buffer swapping too (Refer to Section “Double-Buffered
Endpoints”).
If the endpoint is Isochronous, this bit is used only to support packet buffer
swapping since no data toggling is used for this sort of endpoints and only
DATA0 packet are transmitted (Refer to Section “Isochronous Transfers”).
Hardware toggles this bit just after the end of data packet reception, since
no handshake is used for isochronous transfers.
This bit can also be toggled by the software to initialize its value
(mandatory when the endpoint is not a control one) or to force specific data
toggle/packet buffer usage. When the application software writes ‘0’, the
value of DTOG_RX remains unchanged, while writing ‘1’ makes the bit
value toggle. This bit is read/write but it can be only toggled by writing 1.
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Bits 13:12 STAT_RX [1:0] Status bits, for reception transfers
These bits contain information about the endpoint status, which are listed
in Table 52, “Reception Status Encoding,” on page 292.These bits can be
toggled by software to initialize their value. When the application software
writes ‘0’, the value remains unchanged, while writing ‘1’ makes the bit
value toggle. Hardware sets the STAT_RX bits to NAK when a correct
transfer has occurred (CTR_RX=1) corresponding to a OUT or SETUP
(control only) transaction addressed to this endpoint, so the software has
the time to elaborate the received data before it acknowledge a new
transaction
Double-buffered bulk endpoints implement a special transaction flow
control, which control the status based upon buffer availability condition
(Refer to Section “Double-Buffered Endpoints”).
If the endpoint is defined as Isochronous, its status can be only “VALID” or
“DISABLED”, so that the hardware cannot change the status of the
endpoint after a successful transaction. If the software sets the STAT_RX
bits to ‘STALL’ or ‘NAK’ for an Isochronous endpoint, the USB Peripheral
behaviour is not defined. These bits are read/write but they can be only
toggled by writing ‘1’.

Bit 11 SETUP: Setup transaction completed
This bit is read-only and it is set by the hardware when the last completed
transaction is a SETUP. This bit changes its value only for control
endpoints. It must be examined, in the case of a successful receive
transaction (CTR_RX event), to determine the type of transaction occurred.
To protect the interrupt service routine from the changes in SETUP bits due
to next incoming tokens, this bit is kept frozen while CTR_RX bit is at 1; its
state changes when CTR_RX is at 0. This bit is read-only.
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Bits 10:9 EP_TYPE[1:0]: Endpoint type
These bits configure the behaviour of this endpoint as described in
Table 53, “Endpoint Type Encoding,” on page 292. Endpoint 0 must always
be a control endpoint and each USB function must have at least one
control endpoint which has address 0, but there may be other control
endpoints if required. Only control endpoints handle SETUP transactions,
which are ignored by endpoints of other kinds. SETUP transactions cannot
be answered with NAK or STALL. If a control endpoint is defined as NAK,
the USB Peripheral will not answer, simulating a receive error, in the
receive direction when a SETUP transaction is received. If the control
endpoint is defined as STALL in the receive direction, then the SETUP
packet will be accepted anyway, transferring data and issuing the CTR
interrupt. The reception of OUT transactions is handled in the normal way,
even if the endpoint is a control one.
Bulk and interrupt endpoints have very similar behaviour and they differ
only in the special feature available using the EP_KIND configuration bit.
The usage of Isochronous endpoints is explained in “Isochronous
Transfers”

Bit 8  EP_KIND: Endpoint Kind
The meaning of this bit depends on the endpoint type configured by the
EP_TYPE bits. Table 54 summarizes the different meanings.

DBL_BUF: This bit is set by the software to enable the double-buffering
feature for this bulk endpoint. The usage of double-buffered bulk endpoints
is explained in “Double-Buffered Endpoints”.
STATUS_OUT: This bit is set by the software to indicate that a status out
transaction is expected: in this case all OUT transactions containing more
than zero data bytes are answered ‘STALL’ instead of ‘ACK’. This bit may
be used to improve the robustness of the application to protocol errors
during control transfers and its usage is intended for control endpoints only.
When STATUS_OUT is reset, OUT transactions can have any number of
bytes, as required.
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Bit 7 CTR_TX: Correct Transfer for transmission
This bit is set by the hardware when an IN transaction is successfully
completed on this endpoint; the software can only clear this bit. If the
CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt
condition is generated together with the endpoint related interrupt
condition, which is always activated. 

Note A transaction ended with a NAK or STALL handshake does not set
this bit, since no data is actually transferred, as in the case of
protocol errors or data toggle mismatches. 

This bit is read/write but only ‘0’ can be written.

Bit 6 DTOG_TX: Data Toggle, for transmission transfers
If the endpoint is non-isochronous, this bit contains the required value of
the data toggle bit (0=DATA0, 1=DATA1) for the next data packet to be
transmitted. Hardware toggles this bit when the ACK handshake is
received from the USB host, following a data packet transmission. If the
endpoint is defined as a control one, hardware sets this bit to 1 at the
reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double buffer feature, this bit is used to support
packet buffer swapping too (Refer to Section “Double-Buffered Endpoints”)
If the endpoint is Isochronous, this bit is used to support packet buffer
swapping since no data toggling is used for this sort of endpoints and only
DATA0 packet are transmitted (Refer to section “Isochronous Transfers”).
Hardware toggles this bit just after the end of data packet transmission,
since no handshake is used for Isochronous transfers.
This bit can also be toggled by the software to initialize its value
(mandatory when the endpoint is not a control one) or to force a specific
data toggle/packet buffer usage. When the application software writes ‘0’,
the value of DTOG_TX remains unchanged, while writing ‘1’ makes the bit
value toggle. This bit is read/write but it can only be toggled by writing 1.
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Bit 5:4 STAT_TX [1:0] Status bits, for transmission transfers
These bits contain the information about the endpoint status, listed in Table
55. These bits can be toggled by the software to initialize their value. When
the application software writes ‘0’, the value remains unchanged, while
writing ‘1’ makes the bit value toggle. Hardware sets the STAT_TX bits to
NAK, when a correct transfer has occurred (CTR_TX=1) corresponding to
a IN or SETUP (control only) transaction addressed to this endpoint. It then
waits for the software to prepare the next set of data to be transmitted.
Double-buffered bulk endpoints implement a special transaction flow
control, which controls the status based on buffer availability condition
(Refer to Section “Double-Buffered Endpoints”).
If the endpoint is defined as Isochronous, its status can only be “VALID” or
“DISABLED”. Therefore, the hardware cannot change the status of the
endpoint after a successful transaction. If the software sets the STAT_TX
bits to ‘STALL’ or ‘NAK’ for an Isochronous endpoint, the USB Peripheral
behaviour is not defined. These bits are read/write but they can be only
toggled by writing ‘1’.

Bit 3:0 EA[3:0] Endpoint Address. 
Software must write in this field the 4-bit address used to identify the
transactions directed to this endpoint. A value must be written before
enabling the corresponding endpoint.

Table 52. Reception Status Encoding

STAT_RX[1:0] Meaning

00 DISABLED: all reception requests addressed to this endpoint are ignored.

01 STALL: the endpoint is stalled and all reception requests result in a STALL 
handshake.

10 NAK: the endpoint is naked and all reception requests result in a NAK hand-
shake.

11 VALID: this endpoint is enabled for reception.

Table 53. Endpoint Type Encoding

EP_TYPE[1:0] Meaning

00 BULK

01 CONTROL

10 ISO
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14.5.3 Buffer Descriptor Table

Although this table is located inside packet buffer memory, its entries can be considered as
additional registers used to configure the location and size of packet buffers used to exchange
data between USB and the STR71x. Due to the common APB bridge limitation on word
addressability, all packet memory locations are accessed by the APB using 32-bit aligned
addresses, instead of the actual memory location addresses utilized by the USB Peripheral for
the USB_BTABLE register and buffer description table locations. In the following pages two
location addresses are reported: the one to be used by application software while accessing
the packet memory, and the local one relative to USB Peripheral access. To obtain the correct
STR71x memory address value to be used in the application software while accessing the
packet memory, the actual memory location address must be multiplied by two. The first
packet memory location is located at 0xC000 8800.

The buffer description table entry associated with the USB_EPnR registers is described
below. A thorough explanation of packet buffers and buffer descriptor table usage can be
found in the Section “Structure and Usage of Packet Buffers”.

11 INTERRUPT

Table 54. Endpoint Kind Meaning

EP_TYPE[1:0] EP_KIND Meaning

00 BULK DBL_BUF

01 CONTROL STATUS_OUT

10 ISO Not used

11 INTERRUPT Not used

Table 55. Transmission Status Encoding

STAT_TX[1:0] Meaning

00 DISABLED: all transmission requests addressed to this endpoint are ignored.

01 STALL: the endpoint is stalled and all transmission requests result in a STALL 
handshake.

10 NAK: the endpoint is naked and all transmission requests result in a NAK hand-
shake.

11 VALID: this endpoint is enabled for transmission.

Table 53. Endpoint Type Encoding

EP_TYPE[1:0] Meaning
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14.5.3.1 Transmission Buffer Address n (USB_ADDRn_TX)

14.5.3.2 Transmission Byte Count n (USB_COUNTn_TX)

Address Offset: [USB_BTABLE] + n*16 USB local Address: [USB_BTABLE] + n*8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_TX[15:1] -

rw

Bits 15:1 ADDRn_TX[15:1]. Transmission Buffer Address
These bits point to the starting address of the packet buffer containing data
to be transmitted by the endpoint associated with the USB_EPnR register at
the next IN token addressed to it.

Bit 0 Must always be written as ‘0’ since packet memory is word-wide and all
packet buffers must be word-aligned.

Address Offset: [USB_BTABLE] + n*16 + 4 USB local Address: [USB_BTABLE] + n*8 + 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- COUNTn_TX[9:0]

rw

Bits 15:10 These bits are not used since packet size is limited by USB specifications
to 1023 bytes. Their value is not considered by the USB Peripheral.

Bits 9:0 COUNTn_TX[9:0]. Transmission Byte Count
These bits contain the number of bytes to be transmitted by the endpoint
associated with the USB_EPnR register at the next IN token addressed to
it.
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14.5.3.3 Reception Buffer Address n (USB_ADDRn_RX)

14.5.3.4 Reception Byte Count n (USB_COUNTn_RX)

This table location is used to store two different values, both required during packet reception.
The most significant bits contains the definition of allocated buffer size, to allow buffer overflow
detection, while the least significant part of this location is written back by the USB Peripheral
at the end of reception to give the actual number of received bytes. Due to the restrictions on
the number of available bits, buffer size is represented using the number of allocated memory
blocks, where block size can be selected to choose the trade-off between fine-granularity/
small-buffer and coarse-granularity/large-buffer. The size of allocated buffer is a part of the
endpoint descriptor and it is normally defined during the enumeration process according to its
maxPacketSize parameter value (See “Universal Serial Bus Specification”).

Address Offset: [USB_BTABLE] + n*16 + 8 USB local Address: [USB_BTABLE] + n*8 + 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_RX[15:1] -

rw

Bits 15:1 ADDRn_RX[15:1]. Reception Buffer Address
These bits point to the starting address of the packet buffer, which will
contain the data received by the endpoint associated with the USB_EPnR
register at the next OUT/SETUP token addressed to it.

Bit 0 This bit must always be written as ‘0’ since packet memory is word-wide
and all packet buffers must be word-aligned.

Address Offset: [USB_BTABLE] + n*16 + 12 USB local Address: [USB_BTABLE] + n*8 + 6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B
LS
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E

NUM_BLOCK[4:0] COUNTn_RX[9:0]

rw rw r
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Bit 15 BL_SIZE: BLock SIZE. 
This bit selects the size of memory block used to define the allocated buffer
area.

• If BL_SIZE=0, the memory block is 2 byte large, which is the minimum
block allowed in a word-wide memory. With this block size the allocated
buffer size ranges from 2 to 62 bytes.

• If BL_SIZE=1, the memory block is 32 byte large, which allows to
reach the maximum packet length defined by USB specifications. With
this block size the allocated buffer size ranges from 32 to 1024 bytes,
which is the longest packet size allowed by USB standard
specifications.

Bits 14:10 NUM_BLOCK[4:0]: Number of blocks.
These bits define the number of memory blocks allocated to this packet
buffer. The actual amount of allocated memory depends on the BL_SIZE
value as illustrated in Table 56.

Bits 9:0 COUNTn_RX[9:0]. These bits contain the number of bytes received by the
endpoint associated with the USB_EPnR register during the last OUT/
SETUP transaction addressed to it.

Table 56. Definition of Allocated Buffer Memory

Value of
NUM_BLOCK[4:0]

Memory allocated
when BL_SIZE=0

Memory allocated
when BL_SIZE=1

0 (‘00000’) Not allowed 32 bytes

1 (‘00001’) 2 bytes 64 bytes

2 (‘00010’) 4 bytes 96 bytes

3 (‘00011’) 6 bytes 128 bytes

... ... ...

15 (‘01111’) 30 bytes 512 bytes

16 (‘10000’) 32 bytes 544 bytes

17 (‘10001’) 34 bytes 576 bytes

18 (‘10010’) 36 bytes 608 bytes

... ... ...

30 (‘11110’) 60 bytes 992 bytes

31 (‘11111’) 62 bytes 1024 bytes
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14.6 Register Map

To be able to find the correct offset for each register, Table 57 shows the mapping of all USB
Peripheral registers.

Table 57. USB Peripheral Register Page Mapping

Off 
set Register 1

5
1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0x00 USB_EP0R
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T

R
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S
E

T
U

P EP
TYPE[1:
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 T
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D
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X
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EA[3:0]

0x04 USB_EP1R
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0x08 USB_EP2R
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TX[1:0]
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0x0C USB_EP3R
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T

R
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X
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T
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G
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X
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S
E

T
U

P EP
TYPE[1:
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IN

D

C
T
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X

D
T

O
G
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X
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TX[1:0]

EA[3:0]

0x10 USB_EP4R
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R
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T

R
 T

X

D
T
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0x18 USB_EP6R

C
T

R
_R

X
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T
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G

_R
X
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RX[1:0]

S
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T
U

P EP
TYPE[1:

0] E
P

_K
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D

C
T

R
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X

D
T
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G
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X
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TX[1:0]

EA[3:0]

0x1C USB_EP7R

C
T

R
_R

X

D
T
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G

_R
X
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RX[1:0]
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U
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P
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C
T
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X

D
T

O
G
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X
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TX[1:0]
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0x40  USB_CNTR

C
T

R
M

D
O

V
R

M

E
R

R
M

W
K

U
P

M

S
U

S
P

M

R
E

S
E

T
M

S
O

F
M

E
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O
F

M

Reserved

R
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U

M
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F
S

U
S

P
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P
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R
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0x44  USB_ISTR
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R
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R
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S
U
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P
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E

S
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T
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O
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F

Reserved D
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297/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
See Table 2, “APB1 memory map,” on page 17 for base addresses.

0x48  USB_FNR

R
X

D
P

R
X

D
M

LC
K LSOF[1:

0]
FN[10:0]

0x4C  USB_DADDR Reserved
E
F

ADD[6:0]

0x50  USB_BTABLE BTABLE[15:3] Reserved

Table 57. USB Peripheral Register Page Mapping

Off 
set

Register 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0
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15 HIGH LEVEL DATA LINK CONTROLLER (HDLC)

15.1 Main Features

- Automatic flag detection and insertion

- Automatic zero bit deletion  and insertion

- Automatic Frame Check Sequence (FCS) generation and check (CRCCCITT)

- Abort detection and transmission

- Idle detection and transmission

- 32 Maskable Private Address bits field recognition

- 4 single byte Maskable Group Address field recognition

- Check of the integer number of bytes received in a frame

- Up to 16-bit programmable preamble sequence 

- Up to 16-bit programmable postamble sequence 

- Two independent input clock lines (one in reception and one in transmission)

- NRZ,NRZI,FM0 and MANCHESTER modes both RX/TX

- Digital Phase Locked Loop (DPLL) for clock recovery

- Capability to complement input/ouput frame.

- Local loopback mode

- Autoecho mode

- Full Duplex operating mode

- Interrupt operating mode

- 2x128 byte RAM buffers for transmission and reception
299/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
15.2 HDLC Functional Description

15.2.1 HDLC Frame Format

All user information and protocol messages are transmitted in  form of frames.The following
picture shows the format of the HDLC frame.

The HDLC, receives/transmits the serial bits of a byte starting from its least significant bit.

Here below the description of each frame field is reported:

- Preamble

From 0 up to 16-bit can be present before the opening flag.

- Postamble

From 0 up to 16-bit can be present after the closing flag.

- Flag

The Flag is the unique binary number pattern (01111110). It provides the frame boundary 
and a reference for the position of each field of the frame. A single flag can be used as 
closing flag of a frame and as opening flag of next.

 - Address Field

The field following the opening flag is defined as Address field. Its size is up to 32 bits.
A check on the address field with several programmable values can be performed to 
accept or not the receive frame.

 - Information Field

The information field precedes the FCS field. It contains any sequence of bytes.

  - Frame Check Sequence Field (FCS)

The 16 bit preceding the closing flag is the FCS field. The FCS is  an error detecting code 
calculated from the remaining bits of the frame (flags excluded). The code used is the 
CyclicRedundancyCheck CCITT (CRCCCITT, X16+X12+X5+1).

Both transmitter and receiver polynomial registers can be independently initialized to “1”s 
or to “0s” .

up to 16-bit
0111111

0
32-bit n-byte 16-bit

0111111
0

up to 16-bit

Preamble
Opening 

Flag
Address field Data byte

FCS 
Field

Closing 
Flag

Postamble
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15.2.2 Basic Architecture

The basic HDLC is composed of two parts:

one Receiver Part (HDLC Receiver ) and one Transmitter Part (HDLC Transmitter).

Figure 73. HDLC functional block

Furthermore there are a 8-bit prescaler,a DPLL, a 12-bit BaudRateGenerator,a data encoder
for data coding,the multiplexers for the selection of clocks and the Interrupt controller.

15.2.2.1 Pin Description

- Input

HSDIN: HDLC Serial Data Input.

This signal is the serial data input to the HDLC receiver. 

HRXCK: HDLC Receiver Clock.

HTXCK: HDLC Transmitter Clock.

HTEN: Transmission enable trigger

- Output

HSDOUT: HDLC Serial Data Output.

This signal is the serial data output from the HDLC transmitter. 
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301/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
HRTS: This signal is high during transmission of the the frame and the pre- and 
postamble

HRMC: Trigger signal active on the Receive Message Completed event

15.2.2.2 Receiver 

The Receiver Part performs the following basic operations:

- Flag detection.

A zero followed by six consecutive ones and another zero is recognized as a flag.

 - Zero delete.

A zero after five consecutive ones, within a HDLC frame, is deleted.

- CRC checking.

The CRC field is checked according to the generator polynomial CRCCCITT.

The checking result is reported in the CyclicRedundancyCheck bit (bit1=CRC) of the 
Frame Status Byte register(FSBR).

- Abort checking.

Seven or more consecutive ones within a frame are interpreted as Abort condition.

The detection of an abort condition is reported in the Receiver Abort bit (bit0=RAB) of the 
Frame Status Byte register(FSBR).

- Idle checking.

Fifteen or more consecutive ones are interpreted as Idle condition. The detection of an 
idle condition is indicated in the RLS bits of the HDLC Status Register (PSR).

- Address field recognition.

One private address of 32-maskable bits and 4 group addresses of one maskable byte, 
one of which can be used as broadcast address, can be recognised to accept the frame. 
The frame is accepted if the address field fits at least one of the address register values 
according to the corresponding mask value that is, if bit n of Mask registers is “0”, the 
comparison between the n bits of the receiver Address field and the n bits of the Address 
register has no effect. Figure 74 shows the address filtering mechanism.

If the Private Address Mask registers ( PAMH and PAML) are cleared any input frame is 
accepted.

The Group Address recognition and the Private Address must be enabled by setting the 
corresponding bit in the Receive Control Register.
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The compared Group address is the first byte after the opening flag.

Figure 74. Address Field Recognition

15.2.2.3 Transmitter 

The Transmitter Part performs the following basic operations:

- Preamble generation.

From 0 up to 16 bits whose value is programmed in the Preamble Register, can be 
transmitted before the opening flag.The number of preamble bits is defined in the 
Transmission Control register.
The functionality must be enabled by setting the PREE bit of the Transmission Control 
register.

- Postamble generation

From 0 up to 16 bits whose value is programmed in the Postamble Register, can be 
transmitted after the closing flag.The number of postamble bits is defined in the 
Transmission Control register.
The functionality must be enabled by setting the POSE bit of the Transmission Control 
register.

- Flag generation

A Flag is generated at the beginning and at the end of each frame. 

- Zero insertion

A zero bit is inserted after five consecutive ones within a HDLC frame.

- CRC generation

The FCS field of the transmitter frame is generated according to the generator polynomial 
CRCCCITT (X16+X12+X5+1).
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- Abort sequence generation

An abort sequence is generated when the HDLC frame is aborted( programming to “0” 
the TEN bit of the HDLC Command Register) or when a transmission overrun 
occurs(TDU = 1)

- Interframe time fill

Idle condition or Flags can be transmitted during the interframe time according to the 
Interframe Time Fill bit of the TCTL Register .

15.2.2.4 Data Encoding/Decoding and Clocks

Data Encoding/Decoding

In addition to the classical NRZ code, the HDLC Controller is able to handle NRZI,FM0 
and MANCHESTER codes (see Figure 75).

Figure 75. Data Encoding Example

Transmitter and receiver codes are independently selected through the RCOD bits of the
Receive Control Register and TCOD of the Transmission Control Register.

Note: (a) In reception, with NRZ selected and DPLL disabled,input data must change on the
receiver clock rising edges (see Figure 76).

DATA 1 1 0 0 1 0

NRZ

NRZI

FM0

MANCHESTER
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Figure 76. Rx Data Clock Phase relation

Figure 77. Tx Data Clock Phase relation

- Clock Options 

Each channel has its own clock line for data reception and data  transmission. 
Furthermore the system clock can be used both for data reception and data  transmission.

- DPLL 

An internal DPLL allows the recovery of the clock information from  the receiving frame. The
DPLL input clock, taken from the Prescaler output, must be 16 times faster than the receiver
data rate.

If the DPLL is disabled (DPLLE,RCTL),the HDLC can work in NRZ and NRZI modes only,
supplying the reception clock on the HRXCK pin .

When the DPLL is enabled, its internal counter counts from 0 up to 15 (dividing the ideal bit
width in 16 subcells) and generates an output clock.

(a) DPLL in NRZ,NRZI Modes

After a reset condition the DPLL, when enabled, enters in Search Mode.
On the first data edge, the DPLL enters in Synch Mode starting from count 0.

In NRZ and NRZI modes the DPLL divides the bit cell in the following four regions (see Figure
78):

- Ignore region    ( count 0).

- Increment region (from 1 to count 5)

- Decrement region (from count 11 to count 15)

- Search region    (from count 6 to count 10)

HRXCK

HSDIN

HTXCK

HSDOUT
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When the DPLL is in Synch Mode, a data input signal edge involves one of the following
action depending upon which region it occurs:

DPLL ignores the edge(i.e. no action are done) (in the ignore region)

DPLL doubles next count 0 (in the increment region)

DPLL skips next count 0   (in the incremental region)

DPLL restarts at count 0  (in the search region)

(b) DPLL in FM0,MANCHESTER Modes

In FM0 and MANCHESTER modes the DPLL divides the bit cell in the following three regions
(see Figure 78):

Figure 78. DPLL working regions

- Ignore region    (count 0 and from count 4 to count 12)

- Increment region (from count 1 to count 3)

- Decrement region (from count 13 to count 15)

When the DPLL is in Synch Mode, a  data input signal edge, involves one of the following
actions depending upon which region it occurs:

DPLL ignores the edge     (in the ignore region)

DPLL doubles next count 0 (in the incremental region)

DPLL skips next count 0   (in the decrement region )

DPLL stops the internal counter if one of the following condition happens: 

- FM0 Mode: the end boundary edge of a bit cell is missing. 

- MANCHESTER Mode: the middle edge of a bit cell is missing (in this mode, the middle edge
is assumed to be the bit cell boundary).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ig Inc. region Search region Dec. region NRZ,NRZI

Ig Inc. region Ignore region Dec region FM0,Man
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DPLL will restart from count 0 on next data edge.

After a reset condition the DPLL enters in Search Mode.

On the first edge, the DPLL (if enabled) enters in Normal Mode, starting from count 0.

Figure 79. HDLC Phase Jitter

As soon as the DPLL is synchronized on the incoming data, it can keep the synchronism with
input pulse width variations (PhaseJitter) less than:

                  37.5%  in NRZ,NRZI modes 

                  18.75% in FM0,MANCHESTER modes

15.2.2.5 Baud Rate Generator and Prescaler

The HDLC has an 12-bit Baud Rate Generator in transmission and a 8-bit Prescaler in
reception. (see Figure 73). 

The Baudrate and Prescaler Time Constant are programmed in the BRR and PRS Registers
and they give a division factor respectively from 1  up to 4096 and from 1 up to 256.

The maximum baudrate in transmission is 16 MHz 

The maximum baudrate in reception is fPCLK/16

The frequency Fckout of the Prescaler or Baudrate Generator output clock is:

Fckout = Fckin/Time Constant

(Time Constant=1,2,...) 

where Time Constant is equal to the BRG+1 or PRS+1 values and Fckin is the frequency of
Prescaler or Baudrate Generator input clock .

t1 t2

D D D D

IDEAL BIT CELL WIDTH

|t1| < D

|t2| < D

2D = 37.5 NRZ,NRZI MODE
2D = 18.75 FM0,MANCHESTER MODE
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15.2.2.6 Cyclic Redundancy Check

The HDLC Frame Check Sequence is calculated with the Cyclic Redundancy Check
procedure using the CCITT polynomial X16+X12+X5+1.

The internal CRC Generator and Checker can be indepentently preset to all “1s” or “0s”
according to the CRC Initialization selection bits (TCRCI of TCTL and RCRCI of RCTL).
Table1 shows in C language, the steps to calculate the HDLC CRCCCITT pattern.

CRCCCITT Computation Example

/*--------------------------------------------------------*/
/*-------------------Frame Format-------------------------*/
/*__FLAG|DATIN[0],[1],...,[NDATA]|FF[0],...,FF[15]|FLAG___*/
/*--------------------------------------------------------*/
/*--------------CRC Initialization------------------------*/ 
for ( i=0; i<16; i++ ) 
{ FF[i]=0 } /* CRC initialization to“0s” */
/* FF[i]=1 to initialize to “1s” */
/*-------------------CRC Generation-----------------------*/ 
for ( i=0; i<NDATA; i++ )
{ R=XOR ( FF[0], DATIN[i] );
FF[0] = FF[1];      /* FF[0] is 1st bit transmitted  *
FF[1] = FF[2]; 
FF[2] = FF[3];
FF[3] = XOR ( R, NOT( FF[4] ) );
FF[4] = FF[5];
FF[5] = FF[6];
FF[6] = FF[7];
FF[7] = FF[8];
FF[8] = FF[9];
FF[9] = FF[10];
FF[10]= XOR ( R, NOT( FF[11] ));
FF[11]= FF[12]; 
FF[12]= FF[13];
FF[13]= FF[14];
FF[14]= FF[15];
FF[15]= R;
}
For instance, with the data pattern: 
DAT[7][0] = d1 (hex)
DAT[15][8]= d2 (hex)
the CRC output pattern (with initialization to “1s”) is: 
1100000100110010 ( FF[0]=1 ).
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15.2.2.7 Interrupt working mode

- Transmission
As long as the bit TEN in PCR is low only idle or flag interframe are transmitted according to
the value of ITF bit of TCTLR.
To start a Frame transmission, the following must be written:

– data into the Transmission Buffer (all the packet or until the Buffer is full) see Figure 82, 
– the number of bytes to be transmitted in the TFBC register 

– bit TEN must be set to ‘1’ (by software or by hardware if HTEN = 1). 

As soon TEN is set, the HDLC starts postamble transmission, sets to ‘1’ the HRTS signal and
reads data from the buffer until it is half empty or the number of transmitted bytes matches the
value in TFBC register.
In the first case an TBE (Transmission Buffer Empty) interrupt will be generated whereas in
the second case the CRC is evaluated, the closing flag and the postamble are generated.

When the last bit of the postamble (if any) or the flag or the last bit of abort sequence has
been transmitted the bit TEN is reset by hardware, the TMC (Transmission Message
Completed) interrupt is generated and the HRTS signal is reset.
If the TEN bit is reset and the frame transmission is not completed yet, an abort sequence will
be generated.

If a TBE interrupt occurs and the previous one has not completed yet (bit TEN still set to ‘1’)
an error condition, that is the TDU(Transmission Data Underrun) interrupt, is generated and
the frame is aborted.

The Figure 80 shows the transmission flowchart.
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- Reception
As long as the REN (Receive ENable) bit in PCR register is low no frame can be received and
the RPF interrupt is never generated.
When REN is written to ‘1’ the HDLC is able to receive a frame.
After the opening flag the HDLC checks the address and, if at least one among the Public and
Group addresses are valid or all address checks are disabled, it starts loading the data
(address included) into the Receive Buffer. Every time that half buffer is filled an RBF interrupt
is generated.
When the last data has been loaded into the Receive Buffer and the postamble sequence (if
any) is completed an RMC(Receive Message Completed) or RME(Receive Message Error)
interrupt according to whether the frame has been successfully received(all checks are ok) or
not is generated. Furthermore the value of RFBC(Receive Frame Byte Count) register gives

Figure 80. Transmission Routine flowchart

TRANSMIT

SW writes data in BUF
(All PKG or full BUF) 

BUF = Buffer Memory
PKT = Data package to be 
transmitted
TXByte Counter = Transmitted byte 
counter
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TXCounter < TFBC Reg?

HW Transmit byte
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n
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y

HW generates TBE IRQ
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Clears TBE
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the total number of received bytes(FCS bytes are not loaded into the buffer) and the
FSBR(Frame Status Byte) register gives information about the correctness of the received
frame.
An error condition can occur if an RBF interrupt occurs and the previous one has not been
completed (bit RBF still set to ‘1’). In this case the RFO(Receive Frame Overflow) interrupt is
generated.

As the RMC or RME occur the REN bit is reset by hardware and if the RMCE bit is set the
output trigger signal HRMC is activated.

Figure 81 shows the receive flowchart.

Figure 81. Receive Routine flowchart
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15.3 Register description

The HDLC peripheral registers typically are 16-bit read/write registers.
A reading access to reserved bits register gives 0.

15.3.1 Private Address Register High (HDLC_PARH)

Address Offset: 0000h

Reset value: 0000h

Bit 15:8 = PAB3[7:0]: Private Address Byte 3
Fourth address byte after opening flag. 

Bit 7:0 = PAB2[7:0]: Private Address Byte 2
Third address byte after opening flag.

15.3.2 Private Address Register Low (HDLC_PARL)

Address Offset: 0004h

Reset value: 0000h

Bit 15:8 = PAB1[7:0]: Private Address Byte 1
Fourth address byte after opening flag. 

Bit 7:0 = PAB0[7:0]: Private Address Byte 0
Third address byte after opening flag.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAB3 PAB2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAB1 PAB0
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15.3.3 Private Address Mask Register High (HDLC_PAMH)

Address Offset: 0008h

Reset value: 0000h

Bit 15:8 = PAMB3[7:0]: Private Address Mask Byte 3
If PAMB3x bit is 0, comparison between PAB3x and its corresponding bit in the address field
is ignored. Otherwise it won’t be ignored.

Bit 7:0 = PAMB2[7:0]: Private Address Mask Byte 2
If PAMB2x bit is 0, comparison between PAB2x and its corresponding bit in the address field
is ignored. Otherwise it won’t be ignored.

15.3.4 Private Address Mask Register Low (HDLC_PAML)

Address Offset: 000Ch

Reset value: 0000h

Bit 15:8 = PAMB1[7:0]: Private Address Byte 1
If PAMB1x bit is 0, comparison between PAB1x and its corresponding bit in the address field
is ignored. Otherwise it won’t be ignored.

Bit 7:0 = PAMB0[7:0]: Private Address Byte 0
If PAMB0x bit is 0, comparison between PAB0x and its corresponding bit in the address field
is ignored. Otherwise it won’t be ignored.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAMB3 PAMB2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAMB1 PAMB0
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15.3.5 Group Address Register 1 (HDLC_GA1)

Address Offset: 0010h

Reset value: 0000h

Bit 15:8 = BA[7:0]: Broadcast Address 
If the functionality is enabled the first byte after the opening flag can be recognized as
Broadcast Address. 

Bit 7:0 = GA2[7:0]: Group Address 2
If the functionality is enabled the first byte after the opening flag can be recognized as Group
Address.

15.3.6 Group Address Register 0 (HDLC_GA0)

Address Offset: 0014h

Reset value: 0000h

Bit 15:8 = GA1[7:0]: Group Address 1
If the functionality is enabled the first byte after the opening flag can be recognized as Group
Address.

Bit 7:0 = GA0[7:0]: Group Address 0
If the functionality is enabled the first byte after the opening flag can be recognized as Group
Address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BA GA2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GA1 GA0
314/345

1



STR71x MICROCONTROLLER FAMILY - REFERENCE MANUAL
15.3.7 Group Address Mask Register 1 (HDLC_GAM1)

Address Offset: 0018h

Reset value: 0000h

Bit 15:8 = BAM[7:0]: Broadcast Address Mask
If BAMx bit is 0, comparison between BAx and its corresponding bit in the address field is
ignored. Otherwise it won’t be ignored.

Bit 7:0 = GAM2[7:0]: Group Address Mask 2
If GAM2x bit is 0, comparison between GA2x and its corresponding bit in the address field is
ignored. Otherwise it won’t be ignored.

15.3.8 Group Address Mask Register 0 (HDLC_GAM0)

Address Offset: 001Ch

Reset value: 0000h

Bit 15:8 = GAM1[7:0]: Group Address Mask 1
If GAM1x bit is 0, comparison between GA1x and its corresponding bit in the address field is
ignored. Otherwise it won’t be ignored.

Bit 7:0 = GAM0[7:0]: Group Address Mask 0
If GAMx bit is 0, comparison between GA0x and its corresponding bit in the address field is
ignored. Otherwise it won’t be ignored.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BAM GAM2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GAM1 GAM0
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15.3.9 Preamble Sequence Register (HDLC_PRES)

Address Offset: 0020h

Reset value: 0000h

Bit 15:0 = PRESEQ[15:0]: Preamble Sequence
Up to 16 bits can be transmitted before the opening flag starting from the least significant.

15.3.10 Postamble Sequence Register (HDLC_POSS)

Address Offset: 0024h

Reset value: 0000h

Bit 15:0 = POSS[15:0]: Postamble Sequence
Up to 16 bits can be transmitted after the closing flag starting from the least significant.

15.3.11 Transmission Control Register (HDLC_TCTL)

Address Offset: 0028h

Reset value: 0000h

Bit 15 = HTEN: Hardware Transmission Enable
When 1,the TEN bit can be set by hardware and software.
When 0, the TEN bit can be set only by software.

Bit 14 = SOC: Serial Output Complemented.
When SOC = 1 the serial output frame is complemented bit by bit.
When SOC = 0 the serial output frame is transmitted as it is.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRESEQ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

POSS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HTEN SOC ITF TCRC
I

TCOD PREE POSE NPREB NPOSB
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Bit 13 = ITF: Interframe Time Fill 
Idle condition or Flags can be transmitted between two consecutive frames.
When ITF=1  Flags are transmitted.
When ITF = 0 Idle state is transmitted.

Bit 12 = TCRCI: Transmission CRC inizialization
When 0 the CRC is initialized with ‘0’.
When 1 the CRC is initialized with ‘1’.

Bit 11 :10 = TCOD[1:0]: Transmission Data encoding
The tramission data are coded according to the following table:

Table 58. Transmission Data coding

Bit 9 = PREE: Preamble sequence enable
When 0 no preamble sequence is transmitted.
When 1 the preamble sequence is transmitted.

Bit 8 = POSE: Postamble sequence enable
When 0 no postamble sequence is transmitted.
When 1 the postamble sequence is transmitted.

Bit 7:4 = NPREB[3:0]: Number of bit preamble sequence bit
If the functionality is enabled (PREE = 1), (NPREB[3:0]+1) bit are transmitted before the
opening flag.

Bit 3:0 = NPOSB[3:0]: Number of postamble sequence bit
If the functionality is enabled (POSE = 1), (NPOSB[3:0]+1) bit are transmitted after the closing
flag.

15.3.12 Receive Control Register (HDLC_RCTL)

Address Offset: 002Ch

Reset value: 0000h

Bit 15:13 = Reserved, always read as 0.

TCOD1 TCOD0 MODE

0 0 NRZ

0 1 NRZI

1 0 FM0

1 1 MANCH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - RMC
E

DPLL
E

PAE BAE GA2E GA1E GA0E AEN LBEN SIC RCRC
I

RCOD
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Bit 12 = RMCE: Receive Message Completed Enable
When 1,the generation of the trigger output signal HRMC is enabled
When 0. the generation of the trigger output signal HRMC is disabled

Bit 11 = DPLLE: DPLL enable
When 1 DPLLE is enabled
When 0 disabled.

Bit 10 = PAE: Private Address Enable
When 1 the Private Address is recognized.
When 0 it is ignored.

Bit 9 = BAE: Broadcast Address Enable
When 1 the Broadcast Address is recognized.
When 0 it is ignored.

Bit 8 = GA2E: Group Address 2 Enable
When 1 the Group Address 2 is recognized.
When 0 it is ignored.

Bit 7 = GA1E: Group Address 1 Enable
When 1 the Group Address 1 is recognized.
When 0 it is ignored.

Bit 6 = GA0E: Group Address 0 Enable
When 1 the Group Address 0 is recognized.
When 0 it is ignored.

Bit 5 = AEN: Autoecho Enable
When AEN=1, the transmitter is in auto echo mode: transmitter is disconnected from the TX
data out HSDOUT.
HSDOUT is driven directly by the RX data pin HSDIN. The receiver remains connected to
HSDIN.

Bit 4 = LBEN: Loopback Enable
When LBEN=1, the TX output HSDOUT is set to “1”, the RX input HSDIN is disconnected,
and the output transmitter is looped back into the receiver input.

Bit 3 = SIC: Serial Input Complemented
When SIC = 1 the serial input frame is complemented bit by bit.
When SIC = 0 the serial input frame is transnferred as it is.

Bit 2 = RCRCI: Receive CRC Initialization
When 0 the CRC is initialized with ‘0’.
When 1 the CRC is initialized with ‘1’.

Bit 1:0 = RCOD[1:0]: Receive Data decoding
The receive data are decoded according to the following table:
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Table 59. Receive Data decoding

15.3.13 Baud Rate Register (HDLC_BRR)

Address Offset: 0030h

Reset value: 0000h

Bit 15:13 = Reserved, always read as 0.

Bit 12 = TCKS: Transmission clock selection
When 0 the System Clock CK is selected.
When 1 the external HTXCK is selected.
When a new transmission clock source is selected the peripheral will be reset to avoid
spurious pulse generation and so any previous stored data will be lost.

Bit 11:0 = BRG[11:0]: Transmission Baudrate
The Transmission clock TCK is divided by BRG[11:0] + 1 when NRZ or NRZI encoding are
enabled or by 2*(BRG[11:0] + 1) when FM0 or Manchester encoding are enabled.

15.3.14 Prescaler Register (HDLC_PRSR)

Address Offset: 0034h

Reset value: 0000h

Bit 15:10 = Reserved, always read as 0.

Bit 9:8 = RCKS[1:0]: Receive clock selection
The receive clock RCK is selected according to the following table:

RCOD1 RCOD0 MODE

0 0 NRZ

0 1 NRZI

1 0 FM0

1 1 MANCH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - TCKS BRG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - RCKS PRS
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Table 60. Receive Clock selection

When a new receive clock source is selected the peripheral will be reset to avoid spurious
pulse generation and so any previous stored data will be lost.

Bit 7:0 = PRS[7:0]: Receive Prescaler.
The Receive Clock RCK is divided by PRS[7:0] + 1

15.3.15 Peripheral Status Register (HDLC_PSR)

Address Offset: 0038h

Reset value: 0000h

Bit 15:4 = Reserved, always read as 0.

Bit 3 = RBR: Receive half Buffer Ready
When 0 , the low half of the receive buffer is full.
When 1, the high half of the receive buffer is full.
Bit 2 = TBR: Transmission half Buffer Ready
When 0, the low half of the transmission buffer is empty.
When 1, the high half of the transmission buffer is empty.
Bit 1:0 = RLS[1:0]: Receive Line Status
The Receive Line Status is coded according to the following table:

Table 61. Receive Line Status

This register is updated continually.

RCKS1 RCKS0 RCK

0 0 CK

0 1 HTXCK

1 0 HRXCK

1 1 -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - - RBR TBR RLS

r r r r

RLS1 RLS0 STATUS

0 0 Noise or abort is being received

0 1 Idle is being received

1 0 Interframe flags are being received

1 1 Frame is being received
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15.3.16 Frame Status Byte Register (HDLC_FSBR)

Address Offset: 003Ch

Reset value: 0000h

Bit 15:8 = Reserved, always read as 0.

Bit 7 = RBC: Receive Byte Count
When 1, the length of a received frame is not n times 8 bit.

Bit 6 = RDO: Receive Data Overflow
When 1, at least a byte has been lost because an interrupt request has been issued and the
previous one has not been aknowledge yet.

Bit 5 = CRC: FCS Check 
When 1, the received FCS bytes are wrong.

Bit 4 = RAB: Received Abort
When 1, the received frame was aborted.

Bit 3:0 = Reserved, always read as 0.

This register is updated when RMC (receive message completed) or RME (receive message
error) interrupt are generated.

A status byte equal to 00h indicates a correctly received frame.

15.3.17 Transmission Frame Byte Count Register (HDLC_TFBCR)

Address Offset: 0040h

Reset value: 0000h

Bit 15:0 = TFBC[15:0]: Transmission Frame Byte Count
The number of bytes to be transmitted must be loaded by software in this register before
starting the transmission.
The value TFBC is updated every transmitted byte and gives the remaining bytes to be
transmitted.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - RBC RDO CRC RAB - - - -

r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TFBC
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15.3.18 Receive Frame Byte Count Register (HDLC_RFBCR)

Address Offset: 0044h

Reset value: 0000h

Bit 15:0 = RFBC[15:0]: Receive Frame Byte Count
The value RFBC gives the number of data received.

15.3.19 Peripheral Command Register (HDLC_PCR)

Address Offset: 0048h

Reset value: 0000h

Bit 15:2 = Reserved, always read as 0.

Bit 1 = TEN: Transmission Enable
When it is written to ‘1’, the Transmitter is enabled and interrupt requests are generated if
enabled and at the end of the transmission it is reset by hardware.
When it is written to ‘0’, the Transmitter goes in the reset state and no more interrupt requests
are generated.
If this happens before the closing flag of the current frame an abort sequence will be
generated.
This bit can be set by the trigger signal HTEN if the functionality is enabled (HTEN = 1)

Bit 0 = REN: Receive Enable
When it is written to ‘1’, the Receiver is enabled and interrupt requests are generated if
enabled and at the end of the reception it is reset by hardware.
When it is written to ‘0’, the Receiver goes in the reset state and no more interrupt requests
are generated.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFBC

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - - - - - TEN REN
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15.3.20 Interrupt Status Register (HDLC_ISR)

Address Offset: 004Ch

Reset value: 0000h

Bit 15:7 = Reserved, always read as 0.

Bit 6 = TMC: Transmission Message Completed interrupt pending bit
When the last bit of the closing flag or the postamble sequence if any has been transmitted
this pending bit is set and an interrupt request ,if it is enabled (TMCM = 1) is generated the
TEN bit in PCR is reset by hardware and the HRTS signal goes low.

Bit 5 = TBE: Transmission Buffer Empty interrupt pending bit
When the transmission buffer is half empty, this pending bit is set and if it is enabled (TBEM =
1) an interrupt is generated.

Bit 4 = TDU: Transmission Data Underrun interrupt pending bit
When an underrun condition occurs, this pending bit is set and an interrupt request is
generated if it is enabled (TDUM = 1).

Bit 3 = RBF: Receive Buffer Full interrupt pending bit
When the Receive Buffer is half full, this pending bit is set and if it is enabled (RBFM = 1) an
interrupt is generated.

Bit 2 = RFO: Receive Frame Overflow interrupt pending bit
When an overflow condition occurs, this pending bit is set and an interrupt request is
generated if it is enabled (RFOM = 1).

Bit 1 = RMC: Receive Message Completed interrupt pending bit
When the end of the frame is detected and the CRC check is right this pending bit is set, an
interrupt request ,if it is enabled (RMCM = 1) is generated and the output trigger signal HRMC
is actived if enabled (RMCE = 1)

Bit 0 = RME: Receive Message Error interrupt pending bit
When the end of the frame is detected and CRC check is fail or an abort is detected this
pending bit is set, an interrupt request ,if it is enabled (RMEM = 1) is generated and the output
trigger signal HRMC is actived if enabled (RMCE = 1).

These bits are set by hardware and can be written only to ‘0’ by software. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - TMC TBE TDU RBF RFO RMC RME
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15.3.21 Interrupt Mask Register (HDLC_IMR)

Address Offset: 0050h

Reset value: 0000h

Bit 15:7 = Reserved, always read as 0.

Bit 6 = TMCM: Transmission Message Completed interrupt mask bit
When 0 the TMC interrupt generation is disabled.
When 1 the TMC interrupt generation is enabled.

Bit 5 = TBEM: Transmission buffer empty interrupt mask bit
When 0 the TBE interrupt generation is disabled.
When 1 the TBE interrupt generation is enabled.

Bit 4 = TDUM: Transmission Data Underrun interrupt mask bit
When 0 the TDU interrupt generation is disabled.
When 1 the TDU interrupt generation is enabled.

Bit 3 = RBFM : Receive Buffer Full interrupt mask bit
When 0 the RBF interrupt generation is disabled.
When 1 the RBF interrupt generation is enabled.

Bit 2 = RFOM: Receive Frame Overflow interrupt mask bit
When 0 the RFO interrupt generation is disabled.
When 1 the RFO interrupt generation is enabled.

Bit 1 = RMCM: Receive Message Completed interrupt mask bit
When 0 the RMC interrupt generation is disabled.
When 1 the RMC interrupt generation is enabled.

Bit 0 = RMEM: Receive Message Error interrupt mask bit
When 0 the RME interrupt generation is disabled.
When 1 the RME interrupt generation is enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - TMC
M TBEM TDUM RBFM RFO

M
RMC

M RMEM
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15.4 HDLC Register Map

Table 62 summarizes the HDLC register mapping.

See Table 1, “Main Block Register base addresses,” on page 17 for base addresses.

Table 62. HDLC Register Map

Addr.
Offset

Register 
Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 HDLC_PARH PAB3 PAB2

04 HDLC_PARL PAB1 PAB0

08 HDLC_PAMH PAMB3 PAMB2

0C HDLC_PAML PAMB1 PAMB0

10 HDLC_GA1 BA GA2

14 HDLC_GA0 GA1 GA0

18 HDLC_GAM1 BAM GAM2

1C HDLC_GAM0 GAM1 GAM0

20 HDLC_PRES PRESEQ

24 HDLC_POSS POSS

28 HDLC_TCTL
HTE

N SOC ITF TCR-
CI TCOD PRE

E
POS

E NPREB NPOSB

2C HDLC_RCTL Reserved RCM
E

DPLL
E PAE BAE GA2

E
GA1

E
GA0

E
AEN LBE

N
SIC RCR-

CI RCOD

30 HDLC_BRR Reserved TCK
S BRG

34 HDLC_PRSR Reserved RCKS PSR

38 HDLC_PSR Reserved RBR TBR RLS

3C HDLC_FSBR Reserved RBC RDO CRC RAB

40 HDLC_TFBC
R TFBC

44
HDLC_RFBC

R RFBC

48 HDLC_PCR TEN REN

4C HDLC_ISR Reserved TMC TBE TDU RBF RFO RMC RME

50 HDLC_IMR Reserved TMC
M

TBE
M

TDU
M

RBF
M

RFO
M

RMC
M

RME
M
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15.4.1 Memory RAM buffer mapping

Two memory buffers,one for data reception and one for data transmission are mapped from
address offset 800h to 81Fh and from address offset 820h to 83Fh respectively.
Both the buffer sizes are 128 bytes in size and organized as 32 words of 32 bits.

Figure 82. HDLC Trasmitter and Receive memory buffer mapping

The receive data must be read starting from the address offset 800h up to 80Fh or from 810h
up to 81Fh according to which half is full (RBR bit in PSR can be checked) and the data to be
transmitted must be loaded into transmitter buffer starting from the address offset 820h up to
82Fh or from 830h up to 83Fh according to which half is empty (TBR bit in PSR can be
checked).

The first received byte is the least significant byte of the buffer location at address offset 800h.

The first byte to be transmitted is the least significant byte of the buffer location at address off-
set 820h.

32-bit800h

81Fh
820h

83Fh

Receive
buffer

Transmitter
buffer

32
 w

or
ds

32
 w

or
ds

82Fh
830h

LOW HALF

HIGH HALF

LOW HALF

HIGH HALF

80Fh
810h

offset:
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16 A/D CONVERTER (ADC)

16.1 Introduction

The ADC is used to measure signal strength and other slowly-changing signals. Four input
channels are supported, with conversion rates of up to 0.5kHz per channel.

16.2 Main Features
■ 12-bit resolution

■ 0 to 2.5V range

■ 4 input channels

■ Input bandwidth 0.5 kHz.

■ Round-Robin or single channel mode

■ Maskable interrupt

■ Programmable prescaler

16.3 Functional Description

The ADC consists of a four-channel single-bit Sigma-Delta modulator with a 511-tap Sinc3

digital filter and a bandgap voltage reference. A block diagram of the converter is shown below
in Figure 83. The analog part of the converter is enabled by the ADC_EN bit in the
PCU_BOOTCR register.

Figure 83. ADC Block Diagram
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16.3.1 Normal (Round-Robin) Operation of ADC

In its normal mode of operation, the converter samples each input channel for 512 cycles of
the oversampling clock. In the first clock cycle, the Sigma-Delta modulator is reset and the
digital filter cleared. The remaining 1-bit samples from the modulator are filtered by the Sinc3

filter and a 16 bit output sample supplied to the relevant data register after 511 clock cycles,
the period over which the Sinc3 filter has filled up and settled down. The channel select will
then switch to the next input channel, the reset will again be asserted on the first clock cycle,
and the filter will again fill up over 511 cycles to produce a sample. This process will be
repeated for each of the channels continually in a round-robin fashion. 

16.3.2 Single-Channel Operation

When sampling a single channel, that channel alone will be selected as input to the analog
signal to the sigma-delta modulator. The functionality of the converter will remain the same as
above in that the converter will be reset every 512 cycles, once a valid sample is produced.
However, to maintain the same output frequency of the converter, only one of these samples
will be taken out of every four, i.e. a valid sample for the channel will be produced every 2048
clock cycles, as before.

16.3.3 Clock Timing

The Σ−∆ modulator must run at a clock frequency (fMod, oversampling rate) not greater than
2.1MHz for the ADC. Converter logic is clocked by PCLK2. Double clocked synchronization for
data crossing clock boundaries avoids any metastability issue. Based on the following
equations, it is up to the user to correctly program the prescaler in order to generate the
correct oversampling frequency based on the PCLK2 frequency:

fS = Sampling Frequency of the input signal

fMod = Σ−∆ Modulator Sampling Rate

fS = fMod /{512 * 4} in Single Channel mode

fS = fMod /{512} in Normal (Round Robin) mode

fMod = fPCLK2 / {Prescaling Factor}

Example: If fPCLK2 is 16 MHz, and the desired input signal sampling frequency fs is 500 Hz,
the Σ−∆ modulator must run at 1.024MHz and the prescaler factor must be set to 0x8 (in the
ADC_CPR register) to get a prescaling of 16.

Note If the prescaler is set to generate a sampling frequency higher than specified,
conversion performance and accuracy is not guaranteed!
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16.3.4 Σ−∆ Modulator

The Σ−∆ modulator used is a single-bit design, second-order feedback architecture including
two integrators, two summing junctions and a comparator. The gains m1–m4 are set by
capacitor ratios in the integrators.

16.3.5 The Sinc3 Decimation Filter

The single-bit bitstream in output from the Σ−∆ modulator is fed to a Sinc3 digital filter, which
filters the modulator bitstream output and decimates the sample rate to fs. The Sinc3

Z-domain transfer function is: 

with  in the case of  . can be also conveniently represented as the product of
three functions of the kind: 

where  {n=0,1, 2} is given by:

is therefore the product of three low-pass filters of 171 taps each and with
 zeros evenly spread from 0 to FMod (modulator sampling frequency) in the

frequency domain. Since, in the discrete time domain, the impulse response  inverse
z-transform of is given by the convolution:

Figure 84. Σ−∆ Modulator architecture
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the total number of taps of  is . 

The normal implementation of this filter is shown in Figure 85. The transfer function is
decomposed into IIR and FIR sections — the IIR section (consisting of 3 integrators) runs at
the full oversampling clock rate while the FIR section (with 3 differentiators) runs at the
decimated rate.

The frequency response of the Sinc3 filter is shown in Figure 86 and Figure 87 below.

Figure 85. Sinc3 Digital Filter

Figure 86. Sinc3 Frequency Response
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The word lengths needed in each integrator and differentiator are given by the formula
b=3log2(N) + 1. This gives a maximum word length of 21 bits for the internal registers. As the
output is only 16 bits, the LSBs are discarded.

Note Only the 11 most significant bits out of these 16 bits are guaranteed to be accurate
according to the device specification, even if all the 16 bits can be read.

Since the first zero of the decimation filter is located at  while the first replica of the 

spectrum of the modulator after decimation is located at , care must be taken to 

ensure that the Nyquist criterion is respected to avoid alias, i.e.:

Figure 87. Sinc3 Frequency Response - Detail
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16.3.6 Gain and Offset Errors

An on-chip bandgap reference generates a 1.22V reference. This is used to generate two
voltages used by the modulator — VCM & VRef. VCM is designed to be 1.25V, the midpoint of
the converter’s voltage range and VRef is the feedback reference, 1.85V. As the bandgap
reference is not trimmed, absolute values of VCM & VRef could be inaccurate by up to ± 5%.
This will lead to gain and offset errors in the converter which can be calibrated out if
necessary by software.

To calibrate the converter, it is necessary to input the minimum and maximum inputs
supported — 0V and 2.5V. The digital output for a 0V input is the offset and the gain of the
converter is given by: . The offset and gain correction
factors can be stored digitally and applied to all outputs from the converter, for all four input
channels.

16.3.7 ADC Input Equivalent Circuit

The input equivalent circuit, due to the switching at fMod rate of the input capacitance where
the charge taken from the input signal to be measured is stored, can be represented as shown
in Figure 88.

where VS is the voltage under measurement, RS is the output resistance of the source, VPIN
the voltage that will actually be converted and RIN the input equivalent resistance of the ADC.
RIN is inversely proportional to the modulator oversampling clock. The constant K depends on
the operating mode of the converter and it is equal to:

• 750 [kΩ][MHz] +/- 20% - single channel conversion mode

• 3000 [kΩ][MHz] +/- 20% - round robin conversion mode.

Figure 88. ADC Input Equivalent Circuit
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16.3.8 ADC Output Coding

The Σ−∆ converter produces a digital sample of each analog input channel every 512
oversampling clocks. The digital samples in output from the Sinc3 digital filter are stored in the
four ADC_DATA[n] registers as 16-bit samples of which only the first 11 MS bits are
significant. The converted value stored in ADC_DATA[n] is a signed two’s complent value and
proportional to the difference (VIN-VCM), being ideally 0 if the input voltage were VIN = VCM.
Since the gain and offset errors previously described, before actually using the result of the
conversion calibration must be performed.

Note The analog input voltage should not exceed twice the Center Voltage of the Σ-∆
Modulator (2 * VCM) otherwise converter performances cannot be guaranteed Also
the VCM Voltage has an accuracy of +/- 5% which imposes a calibration of the
converter.

16.3.9 Power Saving Features

The analog circuitry of the ADC block is switched on when bit “ADC_EN” in the
PCU_BOOTCR register is set. By default, this bit is cleared during reset and the power
consumption via AVDD / AVSS -pins is minimized. It is recommended to disable the ADC by
software before entering low power modes, if it was previously used.

Note Disabling the ADC with “ADC_EN” only switches, the analog section of the
Sigma-Delta Converter off. If ADC is not used, the digital section may be stopped as
well by means of “Bit 7” of the APB2_CKDIS register. This disables the clock for the
ADC.
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16.4 Register Description

16.4.1 ADC Control/Status Register (ADC_CSR)

Address Offset: 20h
Reset Value: 0000h

This register controls the operating mode of the ADC, sets the interrupt enables, contains
status flags for the availability of data and error flags in the event of data being overwritten
before being read.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved OR Res IE[3:0] Res AXT A[1:0] DA[3:0]

rw rw rw rw rw

Bits [15:14] Reserved, must be kept at reset value (0).

Bit 13 OR: OverRun
This read-write bit is used to notify application software that data on one of
the channels has been overwritten before being read.
0: Normal operation. No overrun has occurred.
1: Overrun event occurred. This bit is set by hardware as soon as an
overrun condition is detected and must be cleared by software by explicitly
writing it to “0”. 

Bit 12 Reserved, must be kept at reset value (0).

Bits [11:8] IE[3:0]: Interrupt Enable
This set of bits allows to enable interrupt requests independently for each of
the ADC channels, where bit IE[n] corresponds to ADC channel n.
0: Channel [n] interrupt disabled.
1: Channel [n] interrupt enabled.

Bit 7 Reserved, must be kept at reset value (0).

Bit 6 AXT: Addressing eXTernal enable
This bit allows to enable the single-channel operation, configuring the ADC
to convert repeatedly the channel identified by A[1:0] bits of this register.
0: Round-robin addressing enabled.
1: Single-channel addressing enabled.
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Bits [5:4] A[1:0]: Channel Address
These bits select the external channel to be sampled when external
addressing is enabled.

Bits [3:0] DA[3:0]: Data Available
This read-write set of bits allows to determine on which channel data
register a new sample is ready to be read, with bit DA[n] corresponds to
ADC channel n. 
0: No sample available on the corresponding channel.
1: New sample on the corresponding channel is available. 

This bit is set by hardware as soon as a new sample is available and must
be cleared by software by explicitly writing it to “0”. Writing it to “1” has no
effect. These bits also act as interrupt flags for the corresponding channels.
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16.4.2 ADC Clock Prescaler Register (ADC_CPR)

Address Offset: 30h
Reset Value: 05h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Presc[11:0]

w

Bits [15:12] Reserved, must be kept at reset value (0).

Bits [11:0] PRESC[11:0]: Prescaler value
The 12-bit binary value specified on the clock prescaler register determines
the factor by which the ADC input clock will be divided down in order to
produce the oversampling clock of the sigma-delta modulator, the actual
factor being twice the PRESC register value as illustrated in Table 63. The
value placed in this register must subsequently generate an oversampling
clock frequency not greater than 2.5 MHz from the PCLK2 clock applied to
the ADC. These bits can only be written by software, any read operation on
them returns 0h.

Table 63. ADC Prescaler setting

Setting Prescaling Factor

0x0, 0x1 Not available

0x2 4

0x3 6

0x4 8

0x5 10

... ...

0xFFE 8188

0xFFF 8190
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ADC Data Register n, n = 0...3 (ADC_DATA[n])

Address Offset: 0x00h (channel 0)
Address Offset: 0x08h (channel 1)
Address Offset: 0x10h (channel 2)
Address Offset: 0x18h (channel 3)
Reset Values: 0000h

Four data registers, one for each of the analog input channels, are available. The 11 most
significant bits will contain the result of the conversion, while the 5 least significant bits of each
register should be ignored. The data registers will be filled in numerical sequence in the
round-robin channel mode. In single channel mode, only the selected channel will be
updated. 

16.5 ADC Register Map

See Table 3, “APB2 memory map,” on page 18 for base address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data[10:0] not relevant

r

Bit [15:5] DATA[10:0]: DATA sample
This read-only register contains the last sampled value on the
corresponding channel.

Table 64. ADC Register Map

00 ADC_DATA0 DATA0[11:0] N/U

08 ADC_DATA1 DATA1[11:0] N/U

10 ADC_DATA2 DATA1[11:0] N/U

18 ADC_DATA3 DATA3[11:0] N/U

20 ADC_CSR - - OR - IE[3:0] - AXT A[1:0] DA3 DA2 DA1 DA0

30 ADC_CPR - PRE[6:0]
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17 APB BRIDGE REGISTERS

The on-chip peripherals are addressable via two APB bridges, APB1 and APB2.

Each bridge has two 32-bit registers. Under software control, each peripheral can be
individually reset using the SWRES register. The PCLK signal to each peripheral (except the
Watchdog) also can be enabled/disabled individually using the CKDIS register. The CKDIS
register is also used to enable/disable the signal on the CKOUT pin. The clock output from this
pin is the PCLK2. The frequency, as programmed through the PRCCU (APBDIV register, see
Section 17)

Note: The APB Bridge registers MUST be accessed with 32-bit aligned operations (i.e. no
byte/half word cycles are allowed).

17.1 APB Clock Disable Register (APBn_CKDIS)

Address Offset: 0x10h

Reset value: 0x0000 0000h

Bit 31:16 = Reserved, must be kept at reset value (0).

Bit 14:0 = Peripheral Clock Disable (14:0)
Each of these bits control the clock gating to the peripherals in the same order as in the bridge
memory map (see Table 2 and Table 3). Bit 0 controls the peripheral in position 1 (I2C0 for
APB1 or XTI for APB2) and so on.
0: Peripheral clock enabled
1: Peripheral clock disabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res. Peripheral Clock Disable (14:0)

rw
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17.2 APB Software Reset Register (APBn_SWRES)

Address Offset: 0x14h

Reset value: 0x0000 0000h

Bit 31:15 = Reserved, must be kept at reset value (0).

Bit 14:0 = Peripheral Reset (14:0)
Each of these bits controls the activation of the Reset to the peripherals in the same order as
in the bridge memory map (see Table 2 and Table 3). Bit 0 controls the peripheral in position
1 (I2C0 for APB1 or XTI for APB2) and so on. 
0: The peripheral is reset by the system-wide Reset 
1: The peripheral is kept under reset independently from the System-wide Reset.

17.3 APB Register map

See Table 2 and Table 3 for base addresses

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res. Peripheral Reset (14:0)

rw

Table 65. APBn Register Map

Addr.
Offset

Register Name

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 Reserved reserved

04 Reserved reserved

08 Reserved reserved

0C Reserved reserved

10 APBn_CKDIS reserved Peripheral clock disable[14:0]

14 APBn_SWRES reserved Peripheral reset [14:0]
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18 JTAG INTERFACE

18.1 Overview

STR71x is built around an ARM7TDMI core whose debug interface is Joint Test Action Group
(JTAG) based. ARM7TDMI contains hardware extensions for advanced debugging features.
The debug extensions allow the core to be stopped either on a given instruction fetch
(breakpoint) or data access (watchpoint) or asynchronously by a debug-request. When this
happens, ARM7TDMI® is said to be in debug state. At this point, the core’s internal state and
the system’s external state may be examined. Once examination is complete, the core and the
system may be restored and program execution resumed.

ARM7TDMI is forced into debug state either by a request on one of the external interface
signals or by an internal functional unit known as In-circuit Emulation Unit (ICE). Once in
debug state, the core isolates itself from the memory system. The core can then be examined
while all other system activity continues as normal.

ARM7TDMI’s internal state is examined via a JTAG-style serial interface, which allows
instructions to be serially inserted into the core’s pipeline without using the data bus. Thus,
when in debug state, a store-multiple (STM) could be inserted into the instruction pipeline and
this would dump the contents of the ARM7TDMI® registers. This data can be serially shifted
out without affecting the rest of the system.

18.2 Debug System

The ARM7TDMI® is only one component of a more complex debug system. This is typically
composed of three parts: the debug host, the protocol converted and the ARM7TDMI® core.

18.2.1 The Debug Host

The debug host is typically a computer running a software debugger. The debug host allows
the user to issue high level commands such as “set breakpoint at location XX” or “examine the
contents of memory from address 0x0 to 0x100”.

18.2.2 The Protocol Converter

The debug host will be connected to the ARM7TDMI development system via an interface
(RS232, for example). The messages broadcast over this link must be converted to the
interface signals of the core. This function is performed by the protocol converter.

18.2.3 ARM7TDMI

The ARM7TDMI is the lowest level of the system. Its debug extensions allow the user to stall
the core from program execution, examine its internal state and the state of the memory
system and then resume the program execution.
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18.3 ARM7TDMI Debug Interface

The details of the ARM7TDMI® hardware extensions for advanced debugging are shown in
Figure 89. The main blocks are:

• The CPU core, with hardware support for debug.

• The In-Circuit Emulation unit (ICE), which,through a set of registers and comparators,
generates debug exceptions (breakpoints or watchpoints).

• The Test Access Port (TAP) controller.

• The Scan Chains 0, 1 and 2 which surround ARM CPU and ICE.

• The device Test Logic.

18.3.1 Physical Interface Signals

According to IEEE 1149.1 standard (JTAG), the physical interface to the TAP controller is
based on five signals. Beyond their usage, the standard also gives a set of indications about
their reset status and the usage of pull-up resistors. These signals are:

Figure 89. ARM7TDMI Scan Chain Arrangement
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• nJTRST: Test Reset. Active low reset signal for the TAP controller finite state machine.
This pin has to be held low at power-on in such a way so as to produce an initialization
(reset) of the controller. When out of reset, the pin must be pulled up. When the JTAG
interface is not in use, it may be held in its reset status, by grounding the nJTRST pin.

• JTDI: Test Data Input. To be pulled up by an external resistor. 

• JTMS: Test Mode Select. To be pulled up by an external resistor. It must be high during ‘0’
to ‘1’ transition of nJTRST.

• JTCK: Test Clock. This clock is used to advance the TAP controller finite state machine.
The TAP state machine maintains its state indefinitely when JTCK is held low. Optionally,
similar behaviour is also obtained by holding the pin TCK high. The standard does not
impose any pull-up or pull-down resistor. A floating input is not recommended, to avoid
any static power consumption.

• JTDO: Test Data Output. This is the output from the boundary scan logic. This output is in
high impedance when not in use.

According to the standard, all interface signals should have an external pull-up or pull-down
resistor as follows:

• nJTRST Pull-up

• JTDI  Pull-up

• JTMS Pull-up

• JTCK Pull-down or Pull up

• JTDO Floating or Pull-up/down (no static consumption anyway)

In STR71x, none of the previous resistors are implemented internally. Therefore, they need to
be implemented on the application board. In case, the JTAG interface is not used all the
interface pins can be grounded indefinitely. This will not introduce any additional power
consumption since there are no internal pull-up resistors. The following additional signals, not
part of the IEEE 1149.1 standard interface, are also made externally available to allow
external user logic to request debug events:

• DBGRQ. When high, the system requests the ARM7TDMI to unconditionally enter the
debug state. This pin must be kept LOW when emulation features are not enabled.
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19 REVISION HISTORY

Table 66. Revision History

Date Revision Description of Changes

17-Mar-2004 1 First Release

02-Apr-2004 2

Updated Figure 8.

Changed name of BOOTCONF register to BOOTCR throughout document.

Modified Section 18.1: Pins and Reset status on page 391
08-Apr-2004 2.1 Corrected STR712F Pinout. Pins 43/42 swapped.

15-Apr-2004 2.2
Corrected PDF links in Table of contents. Removed USB alternate function from 
P1.11 and P1.12 in 

19-Jul-2004 3

Corrected description of STDBY, V18, VSS18, V18BKP VSSBKP pins. 

Updated BSPI max. baudrate.

Changed SystemMemory Boot mode to reserved

Changed APB registers to reserved

Removed duplicate I/O Schematics 

Updated Flash Programming/Protection Section

Updated PRCCU section 3.7 on page 48

Updated Standby mode section 3.6.5 on page 44

Added Voltage Regulator section 3.3 on page 37

Added LVD section 3.4 on page 38

Updated Power section 3.1 on page 33

Updated I2C frequency formula in Section 10.5

Updated ADC section 16 on page 347

Added Timer Special Features section 8.3 on page 133

Renamed FLASH POR bit to LVD RES in Section 3.7.5

Updated JTAG section 18 on page 359

Removed Emulation Section

29-Oct-2004 4

Corrected Flash sector B1F0/F1 address in Figure 1 on page 16

Updated reset values in BCON1 and 2 registers in Figure 2.3.6 on page 31

Corrected Table 1, “Device Pin Description,” on page 22 TQFP64 TEST pin is 
16 instead of 17.

Added TQPFP64 pin 7 BOOTEN and pin 17 V33IO-PLL

Add table of definitions to section 3.7.5 on page 52

Added note in UART section 12.3.2 on page 255

Modified Note in UART section 12.3.5 on page 258

Added FrameError bit in UART section 12.4.3 on page 263

Changed UART RxBufFull Flag to RxBufNotEmpty in Section 12
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21-Dec-2004 5

Removed Flash Programming Section and added reference to STR7 Flash Pro-
gramming Manual

Renamed ‘PU/PD’ column to ‘Reset state’ in Table 1, “Device Pin Description,” 
on page 22 

Added note 5 on WAKEUP pin to section 3.6.5.2 on page 47

Added EN_HALT bit in RCCU_CCR register in section 3.7.5 on page 52

Updated interrupt latency section 5.1 on page 81

Added note on RTC operation with STOP/WFI mode in section 6.3.1 on page 
117

Updated USB section 14 on page 275 and CAN section 9 on page 155

Changed PLL1 max Multiplier from 28 to 24 in section 3.7 on page 48

Updated description of PLL Free running mode section 3.7.3.1 on page 50

Added note in section 3.7.5.4 on page 59 and section 3.5 on page 39 on disa-
bling test features and USB, if unused, to reduce power consumption 

Changed register name prefix to RCCU and PCU in section 3.7 on page 48.

Replaced “rc” acronym by “rw_w0” and “rc_w1” for “read/clear write 0” and “read/ 
clear write 1”.

9-Mar-2005 6

Removed Feature Description and Pinout (updated information available in 
Datasheet)

Added max. baudrate in "HDLC Functional Description" on page 300

Corrected formula in "Pulse Width Modulation Input" on page 141

Added fS for round robin mode in section 16.3.3 on page 328 
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