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1 Introduction 
 
This handbook describes practical techniques for frequency stability analysis.  It covers the 
definitions of frequency stability, measuring systems and data formats, preprocessing steps, 
analysis tools and methods, post processing steps, and reporting suggestions.  Examples are 
included for many of these techniques.  Some of the examples use the Stable32 program [1], 
which is a commercially available tool for studying and performing frequency stability 
analyses.  Two general references [2], [3] for this subject are given below. 
 
This handbook can be used both as a tutorial and as a reference.  If this is your first exposure 
to this field, you may find it helpful to scan the sections to gain some perspective regarding 
frequency stability analysis.  I strongly recommend consulting the references as part of your 
study of this subject matter.  The emphasis is on time domain stability analysis, where 
specialized statistical variances have been developed to characterize clock noise as a function 
of averaging time.  Methods are presented to perform those calculations, identify noise types 
and determine confidence limits.  It is often important to separate deterministic factors such as 
aging and environmental sensitivity from the stochastic noise processes.  One must always be 
aware of the possibility of outliers and other measurement problems that can contaminate the 
data. 
 
Suggested analysis procedures are recommended to gather data, preprocess it, analyze stability 
and report results.  Throughout these analyses, it is worthwhile to remember R.W. Hamming’s 
axiom that “the purpose of computing is insight, not numbers”.  The analyst should feel free to 
use his intuition and experiment with different methods that can provide a deeper 
understanding. 
 
References for Introduction 
 
1. The Stable32 Program for Frequency Stability Analysis, Hamilton Technical Services, 

Beaufort, SC 29907, http://www.wriley.com. 
2. D.B Sullivan, D.W Allan, D.A. Howe and F.L.Walls (Editors), "Characterization of 

Clocks and Oscillators", NIST Technical Note 1337, U.S. Department of Commerce, 
National Institute of Standards and Technology, March 1990, 
http://tf.nist.gov/timefreq/general/pdf/868.pdf. 

3. D.A. Howe, D.W. Allan and J.A. Barnes, "Properties of Signal Sources and Measurement 
Methods'', Proc. 35th Annu. Symp. on Freq. Contrl., pp. 1-47, May 1981. Also on the 
NIST web site at http://tf.nist.gov/timefreq/general/pdf/554.pdf. 
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2 Frequency Stability Analysis 
 
The time domain stability analysis of a frequency source 
is concerned with characterizing the variables x(t) and 
y(t), the phase (expressed in units of time error) and the 
fractional frequency, respectively.  It is accomplished 
with an array of phase and frequency data arrays, xi and 
yi respectively, where the index i refers to data points 
equally spaced in time.  The xi values have units of time 
in seconds, and the yi values are (dimensionless) fractional frequency, ∆f/f.  The x(t) time 
fluctuations are related to the phase fluctuations by φ(t) = x(t)·2πν0, where ν0 is the nominal 
carrier frequency in Hz.  Both are commonly called "phase" to distinguish them from the 
independent time variable, t.  The data sampling or measurement interval, τ0, has units of 
seconds.  The analysis interval or period, loosely called “averaging time”, τ, may be a multiple 
of τ0 (τ = mτ0, where m is the averaging factor). 

The objective of a frequency 
stability analysis is to 
characterize the phase and 
frequency fluctuations of a 
frequency source in the time and 
frequency domains. 

 
The goal of a time domain stability analysis is a concise, yet complete, quantitative and 
standardized description of the phase and frequency of the source, including their nominal 
values, the fluctuations of those values, and their dependence on time and environmental 
conditions. 
 
A frequency stability analysis is normally performed on a single device, not a population of 
such devices.  The output of the device is generally assumed to exist indefinitely before and 
after the particular data set was measured, which is the (finite) population under analysis.  A 
stability analysis may be concerned with both the stochastic (noise) and deterministic 
(systematic) properties of the device under test.  It is also generally assumed that the stochastic 
characteristics of the device are constant (both stationary over time and ergodic over their 
population).  The analysis may show that this is not true, in which case the data record may 
have to be partitioned to obtain meaningful results.  It is often best to characterize and remove 
deterministic factors (e.g., frequency drift and temperature sensitivity) before analyzing the 
noise.  Environmental effects are often best handled by eliminating them from the test 
conditions.  It is also assumed that the frequency reference instability and instrumental effects 
are either negligible or removed from the data.  A common problem for time domain 
frequency stability analysis is to produce results at the longest possible analysis interval in 
order to minimize test time and cost.  Computation time is generally not as much of a factor. 
 
2.1. Background 
 
The field of modern frequency stability analysis began in the mid 1960’s with the emergence 
of improved analytical and measurement techniques.  In particular, new statistics became 
available that were better suited for common clock noises than the classic N-sample variance, 
and better methods were developed for high resolution measurements (e.g., heterodyne period 
measurements with electronic counters, and low noise phase noise measurements with double-
balanced diode mixers).  A seminal conference on short-term stability in 1964 [1], and the 
introduction of the 2-sample (Allan) variance in 1966 [2] marked the beginning of this new 
era, which was summarized in a special issue of the Proceedings of the IEEE in 1966 [3].  
This period also marked the introduction of commercial atomic frequency standards, increased 
emphasis on low phase noise, and the use of the LORAN radio navigation system for global 
precise time and frequency transfer.  The subsequent advances in the performance of 
frequency sources depended largely on the improved ability to measure and analyze their 
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stability.  These advances also mean that the field of frequency stability analysis has become 
more complex.  It is the goal of this handbook to help the analyst deal with this complexity.  
 
An example of the progress that has been made in frequency stability analysis from the 
original Allan variance in 1966 through Thêo1 in 2003 is shown in the plots below.  The error 
bars show the improvement in statistical confidence for the same data set, while the extension 
to longer averaging time provides better long-term clock characterization without the time and 
expense of a longer data record. 

 

  
Original Allan Overlapping Allan 

  
Total Thêo1 

 
Overlapping & Thêo1 
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This handbook includes detailed information about these (and other) stability measures. 
 
References for Frequency Stability Analysis 

1. Proceedings of the IEEE-NASA Symposium on the Definition and Measurement of 
Short-Term Frequency Stability, NASA SP-80, Nov. 1964.  

2. D.W. Allan, "The Statistics of Atomic Frequency Standards'', Proc. IEEE, Vol. 54, 
No. 2, pp. 221-230, Feb. 1966. 

3. Special Issue on Frequency Stability, Proc. IEEE, Vol. 54, No.  2, Feb. 1966.  
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SECTION 3 DEFINITIONS AND TERMINOLOGY 

3 Definitions and Terminology 
 
The field of frequency stability analysis, like most 
others, has its own specialized definitions and 
terminology.  The basis of a time domain stability 
analysis is an array of equally spaced phase (really time 
error) or fractional frequency deviation data arrays, xi and yi, respectively, where the index i 
refers to data points in time.  These data are equivalent, and conversions between them are 
possible.  The x values have units of time in seconds, and the y values are (dimensionless) 
fractional frequency, ∆f/f.  The x(t) time fluctuations are related to the phase fluctuations by 
φ(t) = x(t) ⋅ 2πν0 , where ν0 is the carrier frequency in hertz.  Both are commonly called 
"phase" to distinguish them from the independent time variable, t.  The data sampling or 
measurement interval, τ0, has units of seconds.  The analysis or averaging time, τ, may be a 
multiple of τ0 (τ = mτ0, where m is the averaging factor).  Phase noise is fundamental to a 
frequency stability analysis, and the type and magnitude of the noise, along with other factors 
such as aging and environmental sensitivity, determine the stability of the frequency source. 

Specialized definitions and 
terminology are used for 
frequency stability analysis. 

 
3.1. Noise Model 
 
A frequency source has a sine wave output signal given by [1] 
 

V t V t t t( ) ( ) sin ( )= + +0 02ε πν φ
, 

 
where V0 = nominal peak output voltage 
 ε(t) = amplitude deviation 
 ν0 = nominal frequency 
 φ(t) = phase deviation. 
 
For the analysis of frequency stability, we are concerned primarily with the φ(t) term.  The 
instantaneous frequency is the derivative of the total phase: 
 

ν ν
π

φ( )t d
dt

= +0
1

2 . 
 
For precision oscillators, we define the fractional frequency as 
 

y t f
f

t d
dt

dx
dt

( ) ( )
= =

−
= =

∆ ν ν
ν πν

φ0

0 0

1
2 , 

where 
 
x t t( ) ( ) /= φ πν2 0 . 
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3.2. Power Law Noise   
 
It has been found that the instability of most frequency sources can be modeled by a 
combination of power-law noises having a spectral density of their fractional frequency 
fluctuations of the form Sy(f) ∝ f α, where f is the Fourier or sideband frequency in hertz, and 
α is the power law exponent. 
 
Noise Type  α         
White PM   2 
Flicker PM   1 
White FM   0 
Flicker FM  -1 
Random Walk FM  -2 
Flicker Walk FM  -3 
Random Run FM  -4 
 
Examples of the four most common of these noises are shown in the table below: 
 

 
 
3.3. Stability Measures 
 
The standard measures for frequency stability in the time and frequency domains are the 
overlapped Allan deviation, σy(τ), and the SSB phase noise, £(f), as described in more detail 
later in this handbook. 
 
3.4. Differenced and Integrated Noise 
 

 8 

Taking the differences between adjacent data points plays an important role in frequency 
stability analysis for performing phase to frequency data conversion, calculating Allan (and 
related) variances, and doing noise identification using the lag 1 autocorrelation method [2].  
Phase data x(t) may be converted to fractional frequency data y(t) by taking the first 
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differences xi+1 - xi of the phase data and dividing by the sampling interval τ.  The Allan 
variance is based on the first differences yi+1 - yi of the fractional frequency data or, 
equivalently, the second differences yi+2 - 2yi+1 + yi of the phase data.  Similarly, the 
Hadamard variance is based on third differences xi+3  - 3xi+2 + 3xi+1 - xi of the phase data. 
 
Taking the first differences of a data set has the effect of making it less divergent.  In terms of 
its spectral density, the α value is increased by 2.  For example, flicker FM data (α = -1) is 
changed into flicker PM data (α = +1).  That is the reason that the Hadamard variance is able 
to handle more divergent noise types (α ≥ -4) than the Allan variance (α ≥ -2) can.  It is also 
the basis of the lag 1 autocorrelation noise identification method whereby first differences are 
taken until α becomes ≥ 0.5.  The plots below show random run noise differenced first to 
random walk noise and again to white noise. 
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Original Random Run (RR) Noise Differenced RR Noise = 

Random Walk (RW) Noise 
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Differenced RW Noise = 

 White (W) Noise 
 
The more divergent noise types are sometimes referred to by their color.  White noise has a 
flat spectral density (by analogy to white light).  Flicker noise has an f-1 spectral density, and is 
called pink or red (more energy toward lower frequencies).  Continuing the analogy, f-2 
(random walk) noise is called brown, and f-3 (flicker walk) noise is called black, although that 
terminology is seldom used in the field of frequency stability analysis. 
 
Integration is the inverse operation of differencing.  Numerically integrating frequency data 
converts it into phase data (with an arbitrary initial value).  Such integration subtracts 2 from 
the original α value.  For example, the random run data in the top left plot above was 
generated by simulating random walk FM data and converting it to phase data by numerical 
integration. 
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3.5. Glossary 
 
See the Glossary chapter at the end of this handbook for brief definitions of many of the 
important terms used in the field of frequency stability analysis. 
 
References for Definitions and Terminology 
 
1. "IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time 

Metrology - Random Instabilities", IEEE Std 1139-1999, July 1999. 
2. W.J. Riley and C.A. Greenhall, “Power Law Noise Identification Using the Lag 1 

Autocorrelation”, Proceedings of the 18th European Frequency and Time Forum, 
University of Surrey, Guildford, UK, 5 - 7 April 2004. 

 



SECTION 4 STANDARDS 

4 Standards 
  
Standards have been adopted for the measurement and 
characterization of frequency stability, as shown in the 
references below [1]-[5].  These standards define terminology, 
measurement methods, means for characterization and 
specification, etc.  In particular, IEEE-Std-1139 contains definitions, recommendations, and 
examples for the characterization of frequency stability. 

Several standards apply to 
the field of frequency 
stability analysis. 

 
References for Standards 

1. "Characterization of Frequency and Phase Noise", Report 580, International Consultative 
Committee (C.C.I.R.), pp. 142-150, 1986.   

2. MIL-PRF-55310, Oscillators, Crystal, General Specification For.  
3.  R.L. Sydnor (Editor), “The Selection and Use of Precise Frequency Systems”, ITU-R 

Handbook, 1995.  
4. Guide to the Expression of Uncertainty in Measurement, International Standards 

Organization, 1995, ISBN 92-67-10188-9.  
5. "IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time 

Metrology - Random Instabilities", IEEE Std 1139-1999, July 1999. 
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5 Time Domain Stability 
 
The stability of a frequency source in the time domain is based on the statistics of its phase 
or frequency fluctuations as a function of time, a form of 
time series analysis [1].  This analysis generally uses 
some type of variance, a 2nd moment measure of the 
fluctuations.  For many divergent noise types commonly 
associated with frequency sources, the standard variance, 
which is based on the variations around the average 
value, is not convergent, and other variances have been developed that provide a better 
characterization of such devices.  A key aspect of such a characterization is the dependence 
of the variance on the averaging time used to make the measurement, which dependence 
shows the properties of the noise. 

Time domain stability 
measures are based on the 
statistics of the phase or 
frequency fluctuations as a 
function of time.  

 
5.1.  Sigma-Tau Plots 
The most common way to express the time domain stability of a frequency source is by 
means of a sigma-tau plot that shows some measure of frequency stability versus the time 
over which the frequency is averaged. Log sigma versus log tau plots show the dependence 
of stability on averaging time, and show both the stability value and the type of noise.  The 
power law noises have particular slopes, µ, as shown on the following log s vs. log τ plots, 
and α and µ are related as shown in the table below: 
 
Noise      α µ 
W    PM  2 -2 
F     PM  1  ~  -2 
W    FM  0 -1 
F     FM -1  0 
RW FM -2  1 

The log σ versus log τ slopes are the same for the two PM noise types, but are different on a 
Mod sigma plot, which is often used to distinguish between them. 
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5.2.  Variances  
Variances are used to characterize the fluctuations of a frequency source [2, 3].  These are 
second-moment measures of scatter, much as the standard variance is used to quantify the 
variations in, say, the length of rods around a nominal value.  The variations from the mean 
are squared, summed, and divided by one less than the number of measurements; this 
number is called the “degrees of freedom”. 

Several statistical variances are available to the frequency stability analyst, and this section 
provides an overview of them, with more details to follow.  The Allan variance is the most 
common time domain measure of frequency stability, and there are several versions of it that 
provide better statistical confidence, can distinguish between white and flicker phase noise, 
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and can describe time stability.  The Hadamard variance can better handle frequency drift 
and more divergence noise types, and several versions of it are also available.  The newer 
Total and Thêo1 variances can provide better confidence at longer averaging factors. 

There are two categories of stability variances: unmodified variances, which use dth 
differences of phase samples, and modified variances, which use dth differences of averaged 
phase samples.  The Allan variances correspond to d = 2, and the Hadamard variances to d = 
3. The corresponding variances are defined as a scaling factor times the expected value of 
the differences squared.  One obtains unbiased estimates of this variance from available 
phase data by computing time averages of the differences squared.  The usual choices for the 
increment between estimates (the time step) are the sample period τ0 and the analysis period 
τ, a multiple of τ0.  These give respectively the overlapped estimator and non-overlapped 
estimators of the stability. 
 
Variance Type  Characteristics 
Standard   Non-convergent for some clock noises – don’t use 
Allan   Classic – use only if required – relatively poor confidence 
Overlapping Allan  General Purpose - most widely used – first choice 
Modified Allan  Used to distinguish W and F PM 
Time   Based on modified Allan variance 
Hadamard  Rejects frequency drift, and handles divergent noise 
Overlapping Hadamard Better confidence than normal Hadamard 
Total   Better confidence at long averages for Allan 
Modified Total  Better confidence at long averages for modified Allan 
Time Total  Better confidence at long averages for time 
Hadamard Total  Better confidence at long averages for Hadamard 
Thêo1   Provides information over nearly full record length 
ThêoH   Hybrid of Allan and Thêo1 variances 
 
• All are second moment measures of dispersion – scatter or instability of frequency 

from central value. 
• All are usually expressed as deviations. 
• All are normalized to standard variance for white FM noise. 
• All except standard variance converge for common clock noises. 
• Modified types have additional phase averaging that can distinguish W and F PM 

noises. 
• Time variances based on modified types. 
• Hadamard types also converge for FW and RR FM noise. 
• Overlapping types provide better confidence than classic Allan variance. 
• Total types provide better confidence than corresponding overlapping types. 
• Thêo1 (Theoretical Variance #1) provides stability data out to 75 % of record 

length. 
• Some are quite computationally intensive, especially if results are wanted at all (or 

many) analysis intervals (averaging times), τ. 
 
The modified Allan deviation can be used to distinguish between white and flicker PM 
noise.  For example, the W and F PM noise slopes are both ≈ -1.0 on the ADEV plots below, 
but they can be distinguished as –1.5 and –1.0, respectively, on the MDEV plots. 
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The Hadamard deviation may be used to reject linear frequency drift when a stability 
analysis is performed.  For example, the simulated frequency data for a rubidium frequency 
standard in the left plot below shows significant drift.  Allan deviation plots for these data 
are shown in the right hand plots for the original and drift-removed data.  Notice that, 
without drift removal, the Allan deviation plot has a +τ dependence at long τ, a sign of linear 
frequency drift.  However, the Hadamard deviation for the original data is nearly the same as 
the Allan deviation after drift removal, but it has lower confidence for a given τ.  
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References for Variances 
 
1. G.E.P. Box and G.M. Jenkins, Time Series Analysis: Forecasting and Control, San 

Francisco: Holden-Day, 1970. 
2. J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision 

Frequency Sources: Fifteen Years of Progress,” Proceedings of the IEEE, vol. 66(9), 
pp. 1048-1075, 1978. 

3. S.R. Stein, “Frequency and Time – Their Measurement and Characterization,” 
Precision Frequency Control, E.A. Gerber and A. Ballato (eds.), Vol. 2, New York: 
Academic Press, 1985. 

 
 

5.2.1. Standard Variance 

The classic N-sample or standard variance is 
defined as 

s
N

y yi
i

N
2 2

1

1
1

=
−

−
=
∑b g , 

The standard variance should not be 
used for the analysis of frequency 
stability.  

where the yi are the N fractional frequency values, and y
N

yi
i

N

=
=
∑1

1

is the average 

frequency. The standard variance is usually expressed as its square root, the standard 
deviation, s.  It is not recommended as a measure of frequency stability because it is non- 
convergent for some types of noise commonly found in frequency sources, as shown in the 
figure below. 
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The standard deviation (upper curve) increases with the number of samples of flicker FM 
noise used to determine it, while the Allan deviation (lower curve and discussed below) is 
essentially constant. 
 
The problem with the standard variance stems from its use of the deviations from the 
average, which is not stationary for the more divergence noise types.  That problem can be 
solved by instead using the first differences of the fractional frequency values (the second 
differences of the phase), as described for the Allan variance below. 
 
In the context of frequency stability analysis, the standard variance is used primarily in the 
calculation of the B1 ratio for noise recognition. 
 
Reference for Standard Variance 
 
1. D.W. Allan, “Should the Classical Variance be used as a Basic Measure in Standards 

Metrology?”, IEEE Trans. Instrum. Meas., IM-36, pp. 646-654, 1987. 
 

5.2.2. Allan Variance 

The Allan variance is the most common time domain measure of frequency stability.  
Similar to the standard variance, it is a measure of the fractional frequency fluctuations, but 
has the advantage of being convergent for most types of clock noise.  There are several 
versions of the Allan variance that provide better statistical confidence, can distinguish 
between white and flicker phase noise, and can describe time stability. 

The original non-overlapped Allan, or 2-sample 
variance, AVAR, is the standard time domain 
measure of frequency stability [1, 2].  It is defined 
as 

The original Allan variance has been 
largely superseded by its 
overlapping version. 
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where yi is the ith of M fractional frequency values averaged over the measurement 
(sampling)  interval, τ.  Note that these y symbols are sometimes shown with a bar over them 
to denote the averaging. 
 
In terms of phase data, the Allan variance may be calculated as 
 

 
where xi is the ith of the N = M+1 phase values spaced by the measurement interval τ. 
 
The result is usually expressed as the square root, σy(τ), the Allan deviation, ADEV.  The 
Allan variance is the same as the ordinary variance for white FM noise, but has the 
advantage, for more divergent noise types such as flicker noise, of converging to a value that 
is independent on the number of samples.  The confidence interval of an Allan deviation 
estimate is also dependent on the noise type, but is often estimated as ±σy(τ)/√N. 

5.2.3. Overlapping Samples 

Some stability calculations can utilize (fully) 
overlapping samples, whereby the calculation is 
performed by utilizing all possible combinations of 
the data set, as shown in the diagram and formulae 
below.  The use of overlapping samples improves the confidence of the resulting stability 
estimate, but at the expense of greater computational time.  The overlapping samples are not 
completely independent, but do increase the effective number of degrees of freedom.  The 
choice of overlapping samples applies to the Allan and Hadamard variances.  Other 
variances (e.g., total) always use them. 
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Overlapping samples are used to 
improve the confidence of a stability 
estimate. 

Overlapping samples don’t apply at the basic measurement interval, which should be as short 
as practical to support a large number of overlaps at longer averaging times. 
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The following plots show the significant reduction in variability, hence increased statistical 
confidence, obtained by using overlapping samples in the calculation of the Hadamard 
deviation: 
 

Non-Overlapping Samples 
 

Overlapping Samples 
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5.2.4. Overlapping Allan Variance 

The fully overlapping Allan variance, or AVAR, is 
a form of the normal Allan variance, σ²y(τ), that 
makes maximum use of a data set by forming all 
possible overlapping samples at each averaging 
time τ.  It can be estimated from a set of M 
frequency measurements for averaging time τ = 
mτ0, where m is the averaging factor and τ0 is the 
basic measurement interval, by the expression 

The overlapped Allan deviation is 
the most common measure of time-
domain frequency stability.  The 
term AVAR has come to be used 
mainly for this form of the Allan 
variance, and ADEV for its square 
root. 
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This formula is seldom used for large data sets because of the computationally intensive 
inner summation.  In terms of phase data, the overlapping Allan variance can be estimated 
from a set of N = M+1 time measurements as 
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Fractional frequency data, yi, can be first integrated to use this faster formula.  The result is 
usually expressed as the square root, σy(τ), the Allan deviation, ADEV. The confidence 
interval of an overlapping Allan deviation estimate is better than that of a normal Allan 
variance estimation because, even though the additional overlapping differences are not all 
statistically independent, they nevertheless increase the number of degrees of freedom and 
thus improve the confidence in the estimation.  Analytical methods are available for 
calculating the number of degrees of freedom for an estimation of overlapping Allan 
variance, and using that to establish single- or double-sided confidence intervals for the 
estimate with a certain confidence factor, based on Chi-squared statistics. 
 
Sample variances are distributed according to the expression 
 

χ
σ

2
2

2=
⋅df s ,

 
 
where χ² is the Chi-square, s² is the sample variance, σ² is the true variance, and df is the 
number of degrees of  freedom (not necessarily an integer).  For a particular statistic, df is 
determined by the number of data points and the noise type. 
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References for Allan Variance 

1. D.W. Allan, "The Statistics of Atomic Frequency Standards'', Proc. IEEE, Vol. 54, No. 
2, pp. 221-230, Feb. 1966.  

2. D.W. Allan, "Allan Variance", Allan's TIME. 
3. "Characterization of Frequency Stability", NBS Technical Note 394, U.S Department of 

Commerce, National Bureau of Standards, Oct. 1970.  
4. J.A. Barnes, et al, "Characterization of Frequency Stability", IEEE Trans. Instrum. 

Meas., Vol. IM-20, No. 2, pp. 105-120, May 1971.  
5. J.A. Barnes, “Variances Based on Data with Dead Time Between the Measurements”, 

NIST Technical Note 1318, U.S. Department of Commerce, National Institute of 
Standards and Technology, 1990.  

6. C.A. Greenhall, "Does Allan Variance Determine the Spectrum?", Proc. 1997 Intl. 
Freq. Cont. Symp., pp. 358-365, June 1997.  

7. C.A. Greenhall, “Spectral Ambiguity of Allan Variance”, IEEE Trans. Instrum. Meas., 
Vol. IM-47, No. 3, pp. 623-627, June 1998.  

 

5.2.5. Modified Allan Variance 

The modified Allan variance, Mod σ²y(τ), MVAR, 
is another common time domain measure of 
frequency stability [1].  It is estimated from a set of 
M frequency measurements for averaging time τ = 
mτ0, where m is the averaging factor and τ0 is the basic measurement interval, by the 
expression 

Use the modified Allan deviation to 
distinguish between white and 
flicker PM noise. 
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In terms of phase data, the modified Allan variance is estimated from a set of N = M+1 time 
measurements as 
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The result is usually expressed as the square root, Mod σy(τ), the modified Allan deviation.  
The modified Allan variance is the same as the normal Allan variance for m = 1.  It includes 
an additional phase averaging operation, and has the advantage of being able to distinguish 
between white and flicker PM noise.  The confidence interval of a modified Allan deviation 
determination is also dependent on the noise type, but is often estimated as ±σy(τ)/√N. 
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References for Modified Allan Variance 
 
1. D.W. Allan and J.A. Barnes, "A Modified Allan Variance with Increased Oscillator 

Characterization Ability'', Proc. 35th Annu. Symp. on Freq. Contrl., pp. 470-474, May 
1981. 

2. P. Lesage and T. Ayi, “Characterization of Frequency Stability: Analysis of the 
Modified Allan Variance and Properties of Its Estimate”, IEEE Trans. Instrum. Meas., 
Vol. IM-33, No. 4, pp. 332-336, Dec. 1984. 

3. C.A. Greenhall, "Estimating the Modified Allan Variance", Proc. IEEE 1995 Freq. 
Contrl. Symp., pp. 346-353, May 1995. 

4. C.A. Greenhall, "The Third-Difference Approach to Modified Allan Variance", IEEE 
Trans. Instrum. Meas., Vol. IM-46, No. 3, pp. 696-703, June 1997.  

 
 

5.2.6. Time Variance 

The time Allan variance, TVAR, with square root 
TDEV, is a measure of time stability based on the 
modified Allan variance [1].  It is defined as 
 
σ²x(τ) = (τ²/3)·Mod σ²y(τ). 
 
In simple terms, TDEV is MDEV whose slope on a log-log plot is transposed by +1 and 
normalized by √3.  The time Allan variance is equal to the standard variance of the time 
deviations for white PM noise.  It is particularly useful for measuring the stability of a time 
distribution network. 
 
It can be convenient to include TDEV information on a MDEV plot by adding lines of 
constant TDEV, as shown in the following figure: 
 

 

Use the time deviation to 
characterize the time error of a time 
source (clock) or distribution 
system. 



HANDBOOK OF FREQUENCY STABILITY ANALYSIS 

 
References for Time Variance 
 
1. D.W. Allan, D.D. Davis, J. Levine, M.A. Weiss, N. Hironaka, and D. Okayama, "New 

Inexpensive Frequency Calibration Service From NIST'', Proc. 44th Annu. Symp. on 
Freq. Contrl., pp. 107-116, June 1990.  

2. D.W. Allan, M.A. Weiss and J.L. Jespersen, "A Frequency-Domain View of Time-
Domain Characterization of Clocks and Time and Frequency Distribution Systems'', 
Proc. 45th Annu. Symp. on Freq. Contrl., pp. 667-678, May 1991. 

 
 

5.2.7. Time Error Prediction 

The time error of a clock driven by a frequency 
source is a relatively simple function of the initial 
time offset, the frequency offset, and the 
subsequent frequency drift, plus the effect of noise, 
as shown in the following expression: 

The time error of a clock can be 
predicted from its time and 
frequency offsets, frequency drift, 
and noise.   

 
∆T = To + (∆f/f) ⋅ t + ½ D ⋅ t2 + σx(t), 
 
where ∆T is the total time error, To is the initial synchronization error, ∆f/f is the sum of the 
initial and average environmentally induced frequency offsets, D is the frequency drift 
(aging rate), and σx(t) is the (rms) noise-induced time deviation.  For consistency, units of 
dimensionless fractional frequency and seconds should be used throughout. 
 
Because of the many factors, conditions, and assumptions involved, and their variability, 
clock error prediction is seldom easy or exact, and it is usually necessary to generate a 
timing error budget. 
 
• Initial Synchronization 
The effect of an initial time (synchronization) error, To, is a constant time offset due to the 
time reference, the finite measurement resolution, and measurement noise.  The 
measurement resolution and noise depends on the averaging time. 
 
• Initial Syntonization 
The effect of an initial frequency (syntonization) error, ∆f/f , is a linear time error.  Without 
occasional resyntonization (frequency recalibration), frequency aging can cause this to be the 
biggest contributor toward clock error for many frequency sources (e.g., quartz crystal 
oscillators and rubidium gas cell standards).  Therefore, it can be important to have a means 
for periodic clock syntonization (e.g., GPS or cesium beam standard).  In that case, the 
syntonization error is subject to uncertainty due to the frequency reference, the measurement 
and tuning resolution, and noise considerations.  The measurement noise can be estimated by 
the square root of the sum of the Allan variances of the clock and reference over the 
measurement interval.  The initial syntonization should be performed, to the greatest extent 
possible, under the same environmental conditions (e.g., temperature) as expected during 
subsequent operation. 
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• Environmental Sensitivity 
After initial syntonization, environmental sensitivity is likely to be the largest contributor to 
time error.  Environmental frequency sensitivity obviously depends on the properties of the 
device and its operating conditions.  When performing a frequency stability analysis, it is 
important to separate the deterministic environmental sensitivities from the stochastic noise.  
This requires a good understanding of the both the device and its environment. 
 
Reference for Time Error Prediction 
 
D.W. Allan and H. Hellwig, “Time Deviation and Time Prediction Error for Clock 
Specification, Characterization, and Application”, March 1981.  
 
 

5.2.8. Hadamard Variance 

The Hadamard variance is a three-sample variance 
similar to the two-sample Allan variance that is 
commonly applied for the analysis of frequency 
stability data that has highly divergent noise (α < 
−2) or linear frequency drift.  There are normal, 
overlapping, modified, and total versions of the Hadamard variance, with the overlapping 
version providing better estimates for this statistic, and the Hadamard total variance offering 
improved confidence at large averaging factors. 

Use the Hadamard variance to 
characterize frequency sources with 
divergent noise and/or frequency 
drift.  

 
The Hadamard [1] variance is based on the Hadamard transform [2], which was adapted by 
Baugh as the basis of a time-domain measure of frequency stability [3].  As a spectral 
estimator, the Hadamard transform has higher resolution than the Allan variance, since the 
equivalent noise bandwidth of the Hadamard and Allan spectral windows are 1.2337N-1τ-1 
and 0.476τ-1 respectively [4].  For the purposes of time-domain frequency stability 
characterization, the most important advantage of the Hadamard variance is its insensitivity 
to linear frequency drift, making it particularly useful for the analysis of rubidium atomic 
clocks [6, 7].  It has also been used as one of the components of a time-domain multivariance 
analysis [5], and is related to the third structure function of phase noise [8]. 

Because the Hadamard variance examines the second difference of the fractional frequencies 
(the third difference of the phase variations), it converges for the Flicker Walk FM (α = -3) 
and Random Run FM (α = -4) power-law noise types. It is also unaffected by linear 
frequency drift. 

For frequency data, the Hadamard variance is defined as:  
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where yi is the ith of M fractional frequency values at averaging time τ.  
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For phase data, the Hadamard variance is defined as:  
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where xi is the ith of N = M+1 phase values at averaging time τ.  

Like the Allan variance, the Hadamard variance is usually expressed as its square-root, the 
Hadamard deviation, HDEV or Hσy(τ).  

5.2.9. Overlapping Hadamard Variance 

In the same way that the overlapping Allan variance 
makes maximum use of a data set by forming all 
possible fully overlapping 2-sample pairs at each 
averaging time τ  the overlapping Hadamard 
variance uses all 3-sample combinations [9]. It can be estimated from a set of M frequency 
measurements for averaging time τ = mτ0 where m is the averaging factor and τ0 is the basic 
measurement interval, by the expression: 

The overlapping Hadamard variance 
provides better confidence than the 
non-overlapping version.  
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where yi is the ith of M fractional frequency values at each measurement time.  

In terms of phase data, the overlapping Hadamard variance can be estimated from a set of N 
= M+1 time measurements as:  
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where xi is the ith of N = M+1 phase values at each measurement time.  

Computation of the overlapping Hadamard variance is more efficient for phase data, where 
the averaging is accomplished by simply choosing the appropriate interval. For frequency 
data, an inner averaging loop over m frequency values is necessary.  The result is usually 
expressed as the square root, Hσy(τ), the Hadamard deviation, HDEV. The expected value of 
the overlapping statistic is the same as the normal one described above, but the confidence 
interval of the estimation is better. Even though not all the additional overlapping differences 
are statistically independent, they nevertheless increase the number of degrees of freedom 
and thus improve the confidence in the estimation.  Analytical methods are available for  
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calculating the number of degrees of freedom for an overlapping Allan variance estimation, 
and that same theory can be used to establish reasonable single- or double-sided confidence 
intervals for an overlapping Hadamard variance estimate with a certain confidence factor, 
based on Chi-squared statistics.  

Sample variances are distributed according to the expression:  

χ²(p, df) =(df · s²) / σ², 

where χ² is the Chi-square value for probability p and degrees of freedom df, s² is the sample 
variance, σ² is the true variance, and df is the number of degrees of freedom (not necessarily 
an integer). The df is determined by the number of data points and the noise type. Given the 
df, the confidence limits around the measured sample variance are given by 

σ²min = (s2 · df) /χ²(p, df), and  σ²max = (s2·  df) /χ²(1-p, df).  

5.2.10. Modified Hadamard Variance 

By similarity to the modified Allan variance, a modified version of the Hadamard variance 
can be defined [15] that employs averaging of the phase data over the m adjacent samples 
that define the analysis τ = m⋅τ0.  In terms of phase data, the three-sample modified 
Hadamard variance is defined as 
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where N is the number of phase data points xi at the sampling interval τ0, and m is the 
averaging factor, which can extend from 1 to ⎣N/4⎦.  This is an unbiased estimator of the 
modified Hadamard variance, MHVAR.  Expressions for the equivalent number of χ2 
degrees of freedom (edf) required to set MHVAR confidence limits are available in [2]. 
 
Clock noise (and other noise processes) can be described in terms of power spectral density, 
which can be modeled as a power law function S ∝ f 

α, where f  is Fourier frequency and α is 
the power law exponent.  When a variance such as MHVAR is plotted on log-log axes 
versus averaging time, the various power law noises correspond to particular slopes µ.  
MHVAR was developed in Reference [15] for determining the power law noise type of 
Internet traffic statistics, where it was found to be slightly better for that purpose than the 
modified Allan variance, MAVAR, when there were a sufficient number of data points.  
MHVAR could also be useful for frequency stability analysis, perhaps in cases where it was 
necessary to distinguish between short-term white and flicker PM noise in the presence of 
more divergent (α = -3 and –4) flicker walk and random run FM noises.  The Mod σ 

2
H(τ) 

log-log slope µ is related to the power law noise exponent by µ = –3 –α. 
 
The modified Hadamard variance concept can be generalized to subsume AVAR, HVAR, 
MAVAR, MHVAR, and MHVARs using higher-order differences: 
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where d = phase differencing order; d = 2 corresponds to MAVAR, d = 3 to MHVAR; 
higher-order differencing is not commonly used in the field of frequency stability analysis.  
The unmodified, nonoverlapped AVAR and HVAR variances are given by setting m = 1.  
The allowable power law exponent for convergence of the variance is equal to α > 1 – 2d, so 
the second difference Allan variances can be used for α > -3 and the third difference 
Hadamard variances for α  > -5. 
 
Confidence intervals for the modified Hadamard variance can be determined by use of the 
edf values of Reference [16]. 
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5.2.11. Total Variance 

The total variance, TOTVAR, is a relatively new 
statistic for the analysis of frequency stability.  It is 
similar to the two-sample or Allan variance, and 
has the same expected value, but offers improved 
confidence at long averaging times [1-5].  The work 
on total variance began with the realization that the Allan variance can "collapse" at long 
averaging factors because of symmetry in the data.  An early idea was to shift the data by 1/4 
of the record length and average the two resulting Allan variances.  The next step was to 
wrap the data in a circular fashion and calculate the average of all the Allan variances at 

The total variance offers improved 
confidence at large averaging factor 
by extending the data set by 
reflection at both ends. 
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every basic measurement interval, το.  This technique is very effective in improving the 
confidence at long averaging factors but requires end matching of the data.  A further 
improvement of the total variance concept was to extend the data by reflection, first at one 
end of the record and then at both ends.  This latest technique, called TOTVAR, gives a very 
significant confidence advantage at long averaging times, exactly decomposes the classical 
standard variance [6], and is an important new general statistical tool.  TOTVAR is defined 
for phase data as 
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where τ = mτο, and the N phase values x measured at τ = το are extended by reflection about 
both endpoints to form a virtual sequence x* from i = 3-N to i = 2N-2 of length 3N-4.  The 
original data are in the center of x* with i =1 to N and x*=x.  The reflected portions added at 
each end extend from j = 1 to N-2 where x*1-j = 2x1-x1+j and x*N+j = 2xN-xN-j.   
 
Totvar can also be defined for frequency data as 
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where the M = N-1 fractional frequency values, y, measured at τ = το (N phase values) are 
extended by reflection at both ends to form a virtual array y*.  The original data are in the 
center, where y*I = yi for i = 1 to M, and the extended data for j = 1 to M-1 are equal to y*1-j 
= yj and y*M+1 = yM+1-j. 
  
The result is usually expressed as the square root, σtotal(τ), the total deviation, TOTDEV.  
When calculated by use of the doubly reflected method described above, the expected value 
of TOTVAR is the same as AVAR for white and flicker PM or white FM noise.  Bias 
corrections of the form 1/[1-a(τ/T)], where T is the record length, need to be applied for 
flicker and random walk FM noise, where a=0.481 and 0.750, respectively. 
 
The number of equivalent χ² degrees of freedom for TOTVAR can be estimated for white 
FM, flicker FM and random walk FM noise by the expression b(T/τ)-c, where b=1.500, 
1.168 and 0.927, and c=0, 0.222 and 0.358, respectively.  For white and flicker PM noise, 
the edf for a total deviation estimate is the same as that for the overlapping ADEV with the 
number of χ² degrees of freedom increased by 2. 
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5.2.12. Modified Total Variance 

The modified total variance, MTOT, is another new 
statistic for the analysis of frequency stability.  It is 
similar to the modified Allan variance, MVAR, and 
has the same expected value, but offers improved 
confidence at long averaging times.  It uses the same phase averaging technique as MVAR to 
distinguish between white and flicker PM noise processes. 

The modified total variance 
combines the features of the 
modified Allan and total variances. 

 
A calculation of MTOT begins with an array of N phase data points (time deviates, xi) with 
sampling period το that are to be analyzed at averaging time τ=mτ0.  MTOT is computed 
from a set of N-3m+1 subsequences of 3m points.  First, a linear trend (frequency offset) is 
removed from the subsequence by averaging the first and last halves of the subsequence and 
dividing by half the interval.  Then the offset-removed subsequence is extended at both ends 
by uninverted, even reflection.  Next the modified Allan variance is computed for these 9m 
points.  Finally, these steps are repeated for each of the N-3m+1 subsequences, calculating 
MTOT as their overall average.  These steps, similar to those for MTOT, but acting on 
fractional frequency data, are shown in the diagram below: 
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Computationally, the MTOT process requires three nested loops: 
 
• An outer summation over the N-3m+1 subsequences.  The 3m-point subsequence is 

formed, its linear trend is removed, and it is extended at both ends by uninverted, even 
reflection to 9m points. 

• An inner summation over the 6m unique groups of m-point averages from which all 
possible fully overlapping second differences are used to calculate MVAR. 

• A loop within the inner summation to sum the phase averages for three sets of m points. 
 
The final step is to scale the result according to the sampling period, τ0, averaging factor, m, 
and number of points, N.  Overall, this can be expressed as: 
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where the 0zi

#(m) terms are the phase averages from the triply-extended subsequence, and 
the prefix 0 denotes that the linear trend has been removed.  At the largest possible averaging 
factor, m = N/3, the outer summation consists of only one term, but the inner summation has 
6m terms, thus providing a sizable number of estimates for the variance. 
 
Reference for Modified Total Variance 
 
D.A. Howe and F. Vernotte, "Generalization of the Total Variance Approach to the Modified 
Allan Variance", Proc. 31st PTTI Meeting, pp. 267-276, Dec. 1999. 
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5.2.13. Time Total Variance 

The time total variance, TTOT, is a similar measure 
of time stability, based on the modified total 
variance.  It is defined as 
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σ²x(τ) = (τ²/3)·Mod σ²total(τ). 
 

5.2.14. Hadamard Total Variance 

The Hadamard total variance, HTOT, is a total 
version of the Hadamard variance.  As such, it 
rejects linear frequency drift while offering 
improved confidence at large averaging factors. 
 
An HTOT calculation begins with an array of N 
fractional frequency data points, yi with sampling 
period το that are to be analyzed at averaging time 
τ=mτ0.  HTOT is computed from a set of N-3m+1 
subsequences of 3m points.  First, a linear trend (frequency drift) is removed from the 
subsequence by averaging the first and last halves of the subsequence and dividing by half 
the interval.  Then the drift-removed subsequence is extended at both ends by uninverted, 
even reflection.  Next the Hadamard variance is computed for these 9m points.  Finally, 
these steps are repeated for each of the N-3m+1 subsequences, calculating HTOT as their 
overall average.  These steps are shown in the diagram below: 

The time total variance is a measure 
of time stability based on the 
modified total variance. 

The Hadamard total variance 
combines the features of the 
Hadamard and total variances by 
rejecting linear frequency drift, 
handling more divergent noise 
types, and providing better 
confidence at large averaging 
factors. 
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Computationally, the HTOT process requires three nested loops: 
 
• An outer summation over the N-3m+1 subsequences.  The 3m-point subsequence is 

formed, its linear trend is removed, and it is extended at both ends by uninverted, even 
reflection to 9m points. 

• An inner summation over the 6m unique groups of m-point averages from which all 
possible fully overlapping second differences are used to calculate HVAR. 

• A loop within the inner summation to sum the frequency averages for three sets of m 
points. 

 
The final step is to scale the result according to the sampling period, τ0, averaging factor, m, 
and number of points, N.  Overall, this can be expressed as: 
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where the Hi(m) terms are the zn(m) Hadamard second differences from the triply extended, 
drift-removed subsequences.  At the largest possible averaging factor, m = N/3, the outer 
summation consists of only one term, but the inner summation has 6m terms, thus providing 
a sizable number of estimates for the variance.  The Hadamard total variance is a biased 
estimator of the Hadamard variance, so a bias correction is required that is dependent on the 
power law noise type and number of samples. 
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The following plots shown the improvement in the consistency of the overlapping Hadamard 
deviation results compared with the normal Hadamard deviation, and the extended averaging 
factor range provided by the Hadamard total deviation [10]. 

 
Hadamard Deviation 

 

 
Overlapping Hadamard Deviation 

 

 35 



HANDBOOK OF FREQUENCY STABILITY ANALYSIS 

 
Hadamard Total Deviation 

 

 
Overlapping & Total Hadamard Deviations 

A comparison of the overlapping and total Hadamard deviations shows the tighter error bars 
of the latter, allowing an additional point to be shown at the longest averaging factor. 

The Hadamard variance may also be used to perform a frequency domain (spectral) analysis 
because it has a transfer function that is a close approximation to a narrow rectangle of 
spectral width 1/(2⋅N⋅τ0), where N is the number of samples, and τ0 is the measurement time 
[3].  This leads to a simple expression for the spectral density of the fractional frequency 
fluctuations Sy(f) ≈ 0.73 ⋅τ0 ⋅Hσ2

y(τ) / N, where f = 1/ (2⋅τ0), which can be particularly useful 
at low Fourier frequencies. 
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The Picinbono variance is a similar three-sample statistic. It is identical to the Hadamard 
variance except for a factor of 2/3 [4].  Sigma-z is another statistic that is similar to the 
Hadamard variance that has been applied to the study of pulsars [5]. 

 It is necessary to identify the dominant power law noise type as the first step in determining 
the estimated number of chi-squared degrees of freedom for the Hadamard statistics so their 
confidence limits can be properly set [6].  Because the Hadamard variances can handle the 
divergent flicker walk FM and random run FM power law noises, techniques for those noise 
types must be included.  Noise identification is particularly important for applying the bias 
correction to the Hadamard total variance. 

References for Hadamard Total Variance 
 
1. D.A. Howe, et al., "A Total Estimator of the Hadamard Function Used For GPS 

Operations", Proc. 32nd PTTI Meeting, pp. 255-267, Nov. 2000. 
2. D.A. Howe, R. Beard, C.A. Greenhall, F. Vernotte, and B. Riley, “Total Hadamard 

Variance: Application to Clock Steering by Kalman Filtering”, Proc. 2001 EFTF, pp. 
423-427, Mar. 2001. 

3. Chronos Group, Frequency Measurement and Control, Section 3.3.3, Chapman & Hall, 
London, ISBN 0-412-48270-3, 1994. 

4. B. Picinbono, "Processus a Accroissements Stationnaires", Ann. des telecom, Tome 30, 
No. 7-8, pp. 211-212, July-Aug, 1975. 

5. D.N. Matsakis and F.J. Josties, "Pulsar-Appropriate Clock Statistics", Proc. 28th PTTI 
Meeting, pp. 225-236, December 1996. 

6. D. Howe, R. Beard, C. Greenhall, F. Vernotte, and W. Riley, "A Total Estimator of the 
Hadamard Function Used For GPS Operations", Proc. 32nd PTTI Meeting, Nov. 2000, 
pp. 255-268. 

 
 

5.2.15. Thêo1 

The Thêo1 statistic is a two-sample variance similar 
to the Allan variance that provides improved 
confidence, and the ability to obtain a result for a 
maximum averaging time equal to 75 % of the 
record length. 

Thêo1 is a 2-sample variance with 
improved confidence and extended 
averaging factor range. 

 
Thêo1 [1] is defined as follows: 
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where m = averaging factor, τ0 = measurement interval, and N = number of phase data 
points, for m even, and 10 ≤ m ≤ N - 1.  It consists of N - m outer sums over the number of 
phase data points –1, and m/2 inner sums.  Thêo1 is the rms of frequency differences 
averaged over an averaging time τ = 0.75 (m-1) τ0. 
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A schematic for a Thêo1 calculation is shown in the figure below.  This example is for 
eleven phase samples (N = 11) at the largest possible averaging factor (m = 10). 
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Theo1 Schematic for n=11, m=10
i =1 to n-m = 1 , δ = 0 to m/2 -1 = 4

δ
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The single outer summation (i = 1 to 1) at the largest possible averaging factor consists of 
m/2 = 5 terms, each with two phase differences.  These terms are scaled by their spans m/2 - 
δ  = 5 thru 1 so that they all have equal weighting.  A total of 10 terms contribute to the 
Theo1 statistic at this largest-possible averaging factor.  The averaging time, τ, associated 
with a Thêo1 value is τ = 0.75·m·τ0, where τ0 is the measurement interval.  Thêo1 has the 
same expected value as the Allan variance for white FM noise, but provides many more 
samples that provide improved confidence and the ability to obtain a result for a maximum τ 
equal to ¾ of the record length, T.  Thêo1 is a biased estimator of the Allan variance, Avar, 
for all noise types except white FM noise, and it therefore requires the application of a bias 
correction.  Reference [2] contains the preferred expression for determining the Thêo1 bias 
as a function of noise type and averaging factor: 
 
Thêo1 Bias = Avar/Thêo1 = a + b/mc , 
 
where m is the averaging factor and the constants a, b and c are given in the table below.  
Note that the effective tau for a Thêo1 estimation is τ = 0.75·m·τ0, where τ0 is the 
measurement interval. 
 

Thêo1 Bias Parameters 
Noise Alpha a b c 

RW FM -2 2.70 -1.53 0.85 
F FM -1 1.87 -1.05 0.79 
W FM 0 1.00 0.00 0.00 
F PM 1 0.14 0.82 0.30 
W PM 2 0.09 0.74 0.40 

   
Empirical formulae have been developed [1] for the number of equivalent χ2 degrees of 
freedom for the Thêo1 statistic, as shown in the following table: 
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Thêo1 EDF Formulae 
Noise EDF 
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where r = 0.75m, and with the condition τ0 ≤ T/10. 

 

5.2.16. NewThêo1, ThêoBR and ThêoH 

Because Thêo1 has the same bias-corrected 
expected value as the Allan variance, and because it 
covers a different (larger) range of averaging 
factors, 10 to N-2 versus 1 to (N-1)/2, it is useful to 
combine Thêo1 and AVAR results into a composite 
stability analysis.   Several forms of this composite statistic have evolved, from simply 
plotting the two, to matching the Thêo1 points on-average to the AVAR points at those 
averaging times where both are available, to the New Thêo1 and ThêoH statistics described 
below. 

NewThêo1, ThêoBR and ThêoH are 
versions of Thêo1 that provide bias 
removal and combination with the 
Allan variance. 

 
The NewThêo1 algorithm of Reference [2] provides a method of automatic bias correction 
for a Thêo1 estimation based on the average ratio of the Allan and Thêo1 variances over a 
range of averaging factors: 
 

NewThêo1( Avar
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where  and  denotes the floor function.

m N
n

m i N
m i N

m N

n N
i

n

, , ) ( , , )
( , , )

( , , ),τ τ
τ

τ0
0

00
0

1
1

9 3
12 4

30
3

=
+

= +
= +

L
NM

O
QP

= −MNM
P
QP

=
∑

 

 
NewThêo1 was used in Reference [2] to form a composite AVAR/ NewThêo1 result called 
LONG, which has been superseded by ThêoH (see below). 
 
ThêoBR [3] is an improved bias-removed version of Thêo1 given by 
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ThêoBR( Avar
Thêo1
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where  and  denotes the floor function.
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ThêoBR is computationally intensive for large data sets, but it can determine an unbiased 
estimate of the Allan variance over the widest possible range of averaging times without 
explicit knowledge of the noise type. 
 
ThêoH is a hybrid statistic that combines ThêoBR and AVAR: 
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It is the best statistic available for estimating the stability of a frequency source at large 
averaging factors.  An example of a ThêoH plot is shown in the figure below: 
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ThêoH is a composite of AVAR and bias-corrected ThêoBR analysis points at a number of 
averaging times sufficiently large to form a quasi-continuous curve.  The data are a set of 
1001 simulated phase values measured at 15-minute intervals taken over a period of about 10 
days.  The AVAR results are able to characterize the stability to an averaging time of about 
two days, while Thêo1 is able to extend the analysis out to nearly a week, thus providing 
significantly more information from the same data set.  The analysis requires less than five 
seconds on a 1 GHz Pentium processor. 
 
References for Thêo1, NewThêo1, ThêoBR and ThêoH 
 
1. D.A. Howe and T.K. Peppler, " Very Long-Term Frequency Stability: Estimation Using 

a Special-Purpose Statistic", Proceedings of the 2003 IEEE International Frequency 
Control Symposium , pp. 233-238, May 2003. 

2. D.A. Howe and T.N. Tasset, “Thêo1: Characterization of Very Long-Term Frequency 
Stability, Proc. 2004 EFTF.. 

3. T.N. Tasset and D.A. Howe, "A Practical Thêo1 Algorithm", unpublished private 
communication, October 2003. 

4. T.N. Tasset, "ThêoH", unpublished private communication, July 2004. 
5. D.A. Howe, “ThêoH: A Hybrid, High-Confidence Statistic that Improves on the Allan 

Deviation”, Metrologia 43 (2006), S322-S331. 
 
 

5.2.17. MTIE 

The maximum time interval error, MTIE, is a 
measure of the maximum time error of a clock over a 
particular time interval.  This statistic is very 
commonly used in the telecommunications industry.  
It is calculated by moving an n-point (n = τ/τo) window through the phase (time error) data 
and finding the difference between the maximum and minimum values (range) at each 
window position.  MTIE is the overall maximum of this time interval error over the entire 
data set: 

MTIE is a measure of clock error 
commonly used in the tele-
communications industry. 

 
MTIE Max Max x Min xk N n k i k n i k i k n i( ) { ( ) ( )}τ = −≤ ≤ − ≤ ≤ + ≤ ≤ +1

 
where n = 1,2,..., N-1 and N = number of phase data points. 
 
MTIE is a measure of the peak time deviation of a clock and is therefore very sensitive to a 
single extreme value, transient or outlier.  The time required for an MTIE calculation 
increases geometrically with the averaging factor, n, and can become very long for large data 
sets (although faster algorithms are available – see Reference 4 below). 
 
The relationship between MTIE and Allan variance statistics is not completely defined, but 
has been the subject of recent theoretical work [1, 2].  Because of the peak nature of the 
MTIE statistic, it is necessary to express it in terms of a probability level, β, that a certain 
value is not exceeded. 
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For the case of white FM noise (important for passive atomic clocks such as the most 
common rubidium and cesium frequency standards), MTIE can be approximated by the 
relationship 
 
MTIE(τ, β) = kβ⋅√(h0⋅τ) = kβ⋅√2⋅σy(τ)⋅τ , 
 
where kβ is a constant determined by the probability level, β, as given in the table below, and 
ho is the white FM power-law noise coefficient. 
 

β, % kβ

95 1.77 
90 1.59 
80 1.39 

 
The maximum time interval error (MTIE) and rms time interval error (TIE rms) are clock 
stability measures commonly used in the telecom industry [3, 5].  MTIE is determined by the 
extreme time deviations within a sliding window of span τ, and is not as easily related to 
such clock noise processes as TDEV [1].  MTIE is computationally intensive for large data 
sets [7]. 
 
References for MTIE 
  
1. P. Travella and D. Meo, “The Range Covered by a Clock Error in the Case of White 

FM”, Proc. 30th Annu. PTTI Meeting, pp. 49-60, Dec. 1998.  
2. P. Travella, A. Dodone and S. Leschiutta, “The Range Covered by a Random Process 

and the New Definition of MTIE”, Proc. 28th Annu. PTTI Meeting, pp. 119-123, Dec. 
1996.  

3. Bregni, " Clock Stability Characterization and Measurement in Telecommunications”, 
IEEE Trans. Instrum. Meas., Vol. IM-46, No. 6, pp. 1284-1294, Dec. 1997.  

4. Bregni, " Measurement of Maximum Time Interval Error for Telecommunications 
Clock Stability Characterization”, IEEE Trans. Instrum. Meas., Vol. IM-45, No. 5, pp. 
900-906, Oct. 1996.  

5. G. Zampetti, “Synopsis of Timing Measurement Techniques Used in 
Telecommunucations”, Proc. 24th PTTI Meeting, pp. 313-326, Dec. 1992.  

6. M.J. Ivens, "Simulating the Wander Accumulation in a SDH Synchronisation 
Network", Master's Thesis, University College, London, UK, November 1997.  

7. S. Bregni and S. Maccabruni, "Fast Computation of Maximum Time Interval Error by 
Binary Decomposition", IEEE Trans. I&M, Vol. 49, No. 6, Dec. 2000, pp. 1240-1244. 

 
 

5.2.18. TIE rms 

The rms time interval error, TIE rms, is another clock statistic commonly used by the 
telecommunications industry.  TIE rms is defined by the expression 
          

TIE
N n

x xrms i n i
i

N n

=
−

−+
=

−

∑1 2

1
b g  , 
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where n = 1,2,..., N-1 and N = # phase data points. 
 
For no frequency offset, TIE rms is approximately equal to the standard deviation of the 
fractional frequency fluctuations multiplied by the averaging time.  It is therefore similar in 
behavior to TDEV, although the latter properly identifies divergent noise types. 
 
Reference for TIE rms 
  
S. Bregni, "Clock Stability Characterization and Measurement in Telecommunications", 
IEEE Trans. Instrum. Meas., Vol. 46, No. 6, pp. 1284-1294, Dec. 1997. 
 
 

5.2.19. Integrated Phase Jitter and Residual FM 

Integrated phase jitter and residual FM are other ways of expressing the net phase or 
frequency jitter by integrating it over a certain bandwidth.  These can be calculated from the 
amplitudes of the various power law terms. 
 
The power law model for phase noise spectral density (see section 6.1) can be written as 
 

S f K f x
φ ( ) = ⋅ , 

 
where Sφ is the spectral density of the phase fluctuations in rad2/Hz, f is the modulation 
frequency, K is amplitude in rad2, and x is the power law exponent.  It can be represented as 
a straight line segment on a plot of Sφ(f) in dB relative to 1 rad2/Hz versus log f in hertz.  
Given two points on the plot (f1, dB1) and f2, dB2), the values of x and K may be determined 
by 
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The integrated phase jitter can then be found over this frequency interval by 
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It is usually expressed as ∆φ in rms radians. 
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Similarly, the spectral density of the frequency fluctuations in Hz2/Hz is given by 
 

S f S f f S f K fy
x

ν φνb g b g= ⋅ = ⋅ = ⋅ +
0

2 2 2( ) ∆  , 
 
where ν0 is the carrier frequency in hertz, and Sy(f) is the spectral density of the fractional 
frequency fluctuations (see section 6.1). 
 
The integrated frequency jitter or residual FM is therefore 
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It is usually expressed as ∆f in rms hertz. 
 
The value of Sφ(f) in dB can be found from the more commonly used £(f) measure of SSB 
phase noise to carrier power ratio in dBc/Hz by adding 3 dB.  The total integrated phase 
noise is obtained by summing the ∆φ2 contributions from the straight-line approximations for 
each power law noise type.  The ratio of total phase noise to signal power in the given 
integration bandwidth is equal to 10 log ∆φ2. 
 
References for Integrated Phase Noise and Residual FM 
  
1. W. J. Riley, "Integrate Phase Noise and Obtain Residual FM", Microwaves, August 

1979, pp. 78-80. 
2. U.L. Rohde, Digital PLL Frequency Synthesizers, pp. 411-418, Prentice-Hall, 

Englewood Cliffs, 1983. 

 

5.2.20. Dynamic Stability 

A dynamic stability analysis uses a sequence of sliding time windows to perform a dynamic 
Allan (DAVAR) or Hadamard (DHVAR) analysis, thereby showing changes 
(nonstationarity) in clock behavior versus time.  It is able to detect variations in clock 
stability (noise bursts, changes in noise level or type, etc.) that would be difficult to see in an 
ordinary overall stability analysis.  The results of a dynamic stability analysis are presented 
as a 3D surface plot of log sigma versus log tau or averaging factor as a function of time or 
window number.   
 
An example of a DAVAR plot is shown below.  This example is similar to the one of Figure 
2 in Reference [2], showing a source with white PM noise that changes by a factor of 2 at the 
middle of the record.  
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References for Dynamic Stability 
  
1. L. Galleani and P. Tavella, "The Characterization of Clock Behavior with the Dynamic 

AllanVariance", Proc. 2003 Joint FCS/EFTF Meeting, pp. 239-244. 
2. L. Galleani and P. Tavella, "Tracking Nonstationarities in Clock Noises Using the 

Dynamic Allan Variance", Proc. 2005 Joint FCS/PTTI Meeting. 
 
 
 
5.3. Confidence Intervals  
 
It is wise to include error bars (confidence intervals) on a stability plot to indicate the degree 
of statistical confidence in the numerical results.  The confidence limits of a variance 
estimate depend on the variance type, the number of data points and averaging factor, the 
statistical confidence factor desired, and the type of noise.  This section describes the use of 
χ² statistics for setting the confidence intervals and error bars of a stability analysis. 
 
It is generally insufficient to simply calculate a stability statistic such as the Allan deviation, 
thereby finding an estimate of its expected value.  That determination should be 
accompanied by an indication of the confidence in its value as expressed by the upper and 
(possibly) lower limits of the statistic with a certain confidence factor.  For example, if the 
estimated value of the Allan deviation is 1.0x10-11, depending on the noise type and size of 
the data set, one could state with 95 % confidence that the actual value does not exceed (say) 
1.2x10-11.  It is always a good idea to include such a confidence limit in reporting a statistical 
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result, which can be shown as an upper numeric limit, upper and lower numeric bounds, or 
(equivalently) error bars on a plot.  Even though those confidence limits or error bars are 
themselves inexact, they should be included to indicate the validity of the reported result. 
If you are unfamiliar with the basics of confidence limits, it is recommended that an 
introductory statistics book be consulted for an introduction to this subject.  For frequency 
stability analysis, the emphasis is on various variances, whose confidence limits (variances 
of variances) are treated with chi-squared (χ²) statistics.  Strictly speaking, χ² statistics apply 
to the classical standard variance, but they have been found applicable to all of the other 
variances (Allan, Hadamard, total, Thêo1, etc.) used for frequency stability analysis.  A good 
introduction to confidence limits and error bars for the Allan variance may be found in 
Reference [1].  The basic idea is to (1) choose an single or double-sided confidence limits 
(upper or upper and lower bounds), (2) choose an appropriate confidence factor (e.g. 95 %), 
(3) determine the number of equivalent χ² degrees of freedom (edf), (4) use the inverse χ² 
distribution to find the normalized confidence limit(s), and (5) multiply those by the nominal 
deviation value to find the error bar(s). 

5.3.1. Simple Confidence Intervals 

The simplest confidence interval approximation, with no consideration of the noise type, sets 
the ±1σ (68 %) error bars at ±σy(τ)/√N, where N is the number of frequency data points used 
to calculate the Allan deviation. 
 
A more accurate determination of this confidence interval can be made by considering the 
noise type, which can be estimated by the B1 bias function (the ratio of the standard variance 
to the Allan variance).  That noise type is then be used to determine a multiplicative factor, 
Kn, to apply to the confidence interval: 
 
Noise Type  Kn
Random Walk FM  0.75 
Flicker FM  0.77 
White FM  0.87 
Flicker PM  0.99 
White PM  0.99 
 

5.3.2. Chi-Squared Confidence Intervals 

Chi-squared statistics can be applied to calculate single and double-sided confidence 
intervals at any desired confidence factor.  These calculations are based on a determination 
of the number of degrees of freedom for the estimated noise type.  Most stability plots show 
±1σ error bars for its overlapping Allan deviation plot. 
 
The error bars for the modified Allan and time variances are also determined by Chi-squared 
statistics, using the number of MVAR degrees of freedom for the particular noise type, 
averaging factor, and number of data points.  During the Run function, noise type estimates 
are made at each averaging factor (except the last, where the noise type of the previous 
averaging factor is used). 
 
Sample variances are distributed according to the expression 
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χ
σ
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2=
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where χ² is the Chi-square, s² is the sample variance, σ² is the true variance, and edf is the 
equivalent number of degrees of  freedom (not necessarily an integer).  The edf is 
determined by the number of analysis points and the noise type.  Procedures exist for 
establishing single- or double-sided confidence intervals with a selectable confidence factor, 
based on χ² statistics, for many of its variance functions.  The general procedure is to choose 
a single- or double-limited confidence factor, p, calculate the corresponding χ² value, 
determine the edf from the variance type, noise type and number of analysis points, and 
thereby set the statistical limit(s) on the variance.  For double-sided limits, 
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5.4. Degrees of Freedom 
 
The equivalent number of χ² degrees of freedom (edf) associated with a statistical variance 
(or deviation) estimate depends on the variance type, the number of data points, and the type 
of noise involved.  In general, the progression from the original two-sample (Allan) variance 
to the overlapping, total, and Thêo1 variances has provided larger edfs and better confidence.  
The noise type matters because it determines the extent that the points are correlated.  Highly 
correlated data have a smaller edf than does the same number of points of uncorrelated 
(white) noise.   An edf determination therefore involves (1) choosing the appropriate 
algorithm for the particular variance type, (2) determining the dominant power law noise 
type of the data, and (3) using the number of data points to calculate the corresponding edf. 

5.4.1. AVAR, MVAR, TVAR and HVAR EDF 

The equivalent number of  χ² degrees of freedom (edf) for the Allan variance (AVAR), the 
modified Allan variance (MVAR) and the related time variance (TVAR), and the Hadamard 
variance (HVAR) is found by a combined algorithm developed by C.A. Greenhall, based on 
its generalized autocovariance function [2].  
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This method for estimating the edf for the Allan, modified Allan and Hadamard variances 
supersedes the following somewhat simpler empirical approximations (which may still be 
used). 
 
The equivalent # of  χ2 degrees of freedom (edf) for the fully overlapping Allan variance 
(AVAR) can be estimated by the following approximation formulae for each power law 
noise type: 
 

Power Law 
Noise Type 

AVAR edf,  where 
 N = # phase data points, m = averaging factor = τ/τ0
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The edf for the modified Allan variance (MVAR) can be estimated by the same expression 
as the overlapping Hadamard variance (see below) with the arguments changed as follows 
(valid for -2 ≤ α ≤ 2): MVAR and TVAR edf for N, m and α = MVAR edf for N+1, m and 
α-2. 
 
The edf for the fully overlapping Hadamard variance (HVAR) can be found by an earlier 
algorithm also developed by C.A. Greenhall based on its generalized autocovariance 
function.  The HVAR edf is found either as a summation (for small m cases with a small 
number of terms) or from a limiting form for large m, where 1/edf = (1/p)(a0-a1/p), with the 
coefficients as follows:  
  

HVAR edf coefficients Power Law 
Noise Type a0 a1 

W FM 7/9 1/2 
F FM 1.00 0.62 

RW FM 31/30 17/28 
FW FM 1.06 0.53 
RR FM 1.30 0.54 

 

5.4.2. TOTVAR and TTOT EDF 

The edf for the total variance (TOTVAR) and the related total time variance (TTOT) is given 
by the formula b(T/τ) - c, where T is the length of the data record, τ is the averaging time, 
and b & c are coefficients that depend on the noise type, as shown in the following table: 
 

TOTVAR edf 
Coefficients 

Power Law 
Noise Type 

b c 
White FM 1.50 0 
Flicker FM 1.17 0.22 

Random Walk FM 0.93 0.36 
 

5.4.3. MTOT EDF 

The edf for the modified total variance (MTOT) is given by the same formula b(T/τ) - c, 
where T is the length of the data record, τ is the averaging time, and b and c are coefficients 
that depend on the noise type as shown in the following table: 
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MTOT edf 
Coefficients 

Power Law 
Noise Type 

b c 
White PM 1.90 2.10 
Flicker PM 1.20 1.40 
White FM 1.10 1.20 
Flicker FM 0.85 0.50 

Random Walk FM 0.75 0.31 
 

5.4.4. Thêo1 EDF 

The equivalent number of  χ² degrees of freedom (edf) for the Thêo1 variance is determined 
by the following approximation formulae for each power low noise type. 
 

Power 
Law 

NoiseType 
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 N = # phase data points, τ=0.75m, m = averaging factor = τ/τ0

White PM ( )( )4
30.86 1

1.14
x x

x

N N
edf

N
τ τ

τ τ
⎛ ⎞+ − ⋅ ⎛ ⎞= ⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠

 

Flicker 
PM 

2

1/ 2

4.798 6.374 12.387
( 36.6) ( ) 0.3

x x

x

N Nedf
N
τ τ τ

τ τ τ
⎛ ⎞− + ⎛ ⎞= ⎜ ⎟⎜ ⎟+ − +⎝ ⎠⎝ ⎠

 

White FM 3/ 2

3/ 2

4.1 0.8 3.1 6.5
5.2

x x

x

N Nedf
N

τ
τ τ

⎡ ⎤ ⎛ ⎞+ +
= − ⎜ ⎟⎢ ⎥ +⎝ ⎠⎣ ⎦

 

Flicker 
FM 

2 3

3

2 1.3 3.5
2.3

x x

x

N Nedf
N

τ τ τ
τ τ

⎛ ⎞⎛ ⎞− −
= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

Random 
Walk FM 

2 2

2

4.4 2 (4.4 1) 8.6 (4.4 1) 11.4
2.9 (4.4 3)

x x x

x

N N Nedf
N
τ τ

τ
⎛ ⎞− − − − +⎛ ⎞= ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

 

 
 

 51 



HANDBOOK OF FREQUENCY STABILITY ANALYSIS 

 52 

References for Confidence Intervals 

1. D.A. Howe, D.W. Allan and J.A. Barnes, "Properties of Signal Sources and 
Measurement Methods'', Proc. 35th Annu. Symp. on Freq. Contrl., pp. 1-47, May 1981. 
Available on line at NIST web site. 

2. C. Greenhall and W. Riley, “Uncertainty of Stability Variances Based on Finite 
Differences”, Proc. 2003 PTTI Meeting, December 2003. 

3. D.A. Howe and T.K. Peppler, “Estimation of Very Long-Term Frequency Stability 
Using a Special-Purpose Statistic”, ", Proc. 2003 Joint Meeting of the European Freq. 
and Time Forum and the IEEE International Freq. Contrl. Symp., May 2003. 

4. K. Yoshimura, “Degrees of Freedom of the Estimate of the Two-Sample Variance in 
the Continuous Sampling Method,” IEEE Transactions IM-38, pp. 1044-1049, 1989. 

5. "IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and 
Time Metrology - Random Instabilities", IEEE Std 1139-1999, July 1999. 

6. C.A. Greenhall, "Estimating the Modified Allan Variance", Proc. IEEE 1995 Freq. 
Contrl. Symp., pp. 346-353, May 1995. 

7. D.A. Howe & C.A. Greenhall,  "Total Variance: A Progress Report on a New 
Frequency Stability Characterization", Proc. 1997 PTTI Meeting, pp. 39-48, December 
1997. 

8. C.A. Greenhall, private communication, May 1999. 
9. D.A. Howe, private communication, March 2000. 
10. D.A. Howe, "Total Variance Explained", Proc. 1999 Joint Meeting of the European 

Freq. and Time Forum and the IEEE Freq. Contrl. Symp., pp. 1093-1099, April 1999. 
11. D.A. Howe, private communication, March 2000. 
12. C.A. Greenhall, "Recipes for Degrees of Freedom of Frequency Stability Estimators", 

IEEE Trans. Instrum. Meas., Vol. 40, No. 6, pp. 994-999, December 1991. 
13. D.A. Howe, "Methods of Improving the Estimation of Long-Term Frequency 

Variance", Proc. 11th European Freq. and Time Forum, pp. 91-99, March 1997. 
14. J.A. Barnes and D.W. Allan, Variances Based on Data with Dead Time Between the 

Measurements", NIST Technical Note 1318, 1990. 
15. D.A. Howe, et. Al., “A Total Estimator of the Hadamard Function Used for GPS 

Operations”, Proc. 32nd PTTI Meeting, pp. 255-268, November 2000. 
 

 
5.5. Noise Identification  
 
Identification of the dominant power law noise type is often necessary for setting confidence 
intervals and making bias corrections during a frequency stability analysis.  The most 
effective means for power noise identification are based on the B1 and R(n) functions and the 
lag 1 autocorrelation. 

5.5.1. Power Law Noise Identification 

It is often necessary to identify the dominant power law noise process (WPM, FPM, WFM, 
FFM, RWFM, FWFM or RRFM) of the spectral density of the fractional frequency 
fluctuations, Sy(f) = hαf α (α = 2 to –4), to perform a frequency stability analysis.  For 
example, knowledge of the noise type is necessary to determine the equivalent number of 
chi-squared degrees of freedom (edf) for setting confidence intervals and error bars, and it is 
essential to know the dominant noise type to correct for bias in the newer Total and Thêo1 
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variances.  While the noise type may be known a priori or estimated manually, it is desirable 
to have an analytic method for power law noise identification that can be used automatically 
as part of a stability analysis algorithm. 
 
There is little literature on the subject of power-law noise identification.  The most common 
method for power law noise identification is simply to observe the slope of a log-log plot of 
the Allan or modified Allan deviation versus averaging time, either manually or by fitting a 
line to it.  This obviously requires at least two stability points.  During a stability calculation, 
it is desirable (or necessary) to automatically identify the power law noise type at each point, 
particularly if bias corrections and/or error bars must be applied. 

5.5.2. Noise Identification Using B1 and R(n) 

A noise identification algorithm that has been found effective in actual practice, and that 
works for a single τ point over the full range of –4 ≤ α ≤ 2 is based on the Barnes B1 
function, which is the ratio of the N-sample (standard) variance to the two-sample (Allan) 
variance, and the R(n) function [3], which is the ratio of the modified Allan to the normal 
Allan variances.  The B1 function has as arguments the number of frequency data points, N, 
the dead time ratio, r (which is set to 1), and the power law t-domain exponent, µ.  The B1 
dependence on µ is used to determine the power law noise type for –2 ≤ µ ≤ 2 (W and F PM 
to FW FM).  For a B1 corresponding to µ = -2, the α = 1 or 2 (F PM or W PM noise) 
ambiguity can be resolved with the R(n) ratio using the modified Allan variance.  For the 
Hadamard variance, for which RR FM noise can apply, (m =3, a = -4), the B1 ratio can be 
applied to frequency (rather than phase) data, and adding 2 to the resulting µ. 
 
The overall noise B1/R(n) noise identification process is therefore: 
 

1. Calculate the standard and Allan variances for the applicable τ averaging 
factor. 

2. Calculate B1(N, r=1, µ) = 
N N

N

( )

( )(

1

2 1 1 2

−

− −

µ

µ )
. 

3. Determine the expected B1 ratios for a = -3 through 1 or 2. 
4. Set boundaries between them and find the best power law noise match. 
5. Resolve an α = 1 or 2 ambiguity with the modified Allan variance and R(n). 
6. Resolve an α = -3 or –4 ambiguity by applying B1 to frequency data. 

 
The boundaries between the noise types are generally set as the geometric means of their 
expected values.  This method cannot distinguish between W and F PM at unity averaging 
factor. 

5.5.3. The Autocorrelation Function 

The autocorrelation function (ACF) is a fundamental way to describe a time series by 
multiplying it by a delayed version of itself, thereby showing the degree by which its value 
at one time is similar to its value at a certain later time.  More specifically, the 
autocorrelation at lag k is defined as 
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where zt is the time series, µ is its mean value, σz

2 is its variance, and E denotes the expected 
value.  The autocorrelation is usually estimated by the expression 
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where z  is the mean value of the time series and N is the number of data points [4]. 
 

5.5.4. The Lag 1 Autocorrelation 

The lag 1 autocorrelation is simply the value of r1 as given by the expression above.  For 
frequency data, the lag 1 autocorrelation is able to easily identify white and flicker PM noise, 
and white (uncorrelated) FM noise, for which the expected values are –1/2,     –1/3 and zero, 
respectively.  The more divergent noises have positive r1 values that depend on the number 
of samples, and tend to be larger (approaching 1).  For those more divergent noises, the data 
are differenced until they become stationary, and the same criteria as for WPM, FPM and 
WFM are then used, corrected for the differencing.  The results can be rounded to determine 
the dominant noise type or used directly to estimate the noise mixture. 
 

5.5.5. Noise Identification Using r1  

An effective method for identifying power law noises using the lag 1 autocorrelation [5] is 
based on the properties of discrete-time fractionally integrated noises having spectral 
densities of the form (2 sin π f )-2δ.  For δ < ½, the process is stationary and has a lag 1 
autocorrelation equal to ρ1 = δ / (1-δ)  [6], and the noise type can therefore be estimated 
from δ = r1 / (1+r1).  For frequency data, white PM noise has ρ1 = -1/2, flicker PM noise has 
ρ1 = -1/3, and white FM noise has ρ1 = 0.  For the more divergent noises, first differences of 
the data are taken until a stationary process is obtained as determined by the criterion δ < 
0.25.  The noise identification method therefore uses p = -round (2δ) –2d, where round (2δ) 
is 2δ rounded to the nearest integer and d is the number of times that the data is differenced 
to bring δ down to < 0.25.  If z is a τ-average of frequency data y(t), then α = p; if z is a τ-
sample of phase data x(t), then α = p + 2, where α is the usual power law exponent f α, 
thereby determining the noise type at that averaging time.  The properties of this power law 
noise identification method are summarized in the table below.  It has excellent 
discrimination for all common power law noises for both phase and frequency data, 
including difficult cases with mixed noises.  
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Lag 1 Autocorrelation 
 for Various Power Law Noises 

 
Noise 
Type 

 
α 

 
Phase Data* 

x(t) 

 
d=0 ACF of 
Phase Data 

 
W PM 

 
2 

  
 

F PM 
 

1 
  

 
W FM 

 
0 

  
 

F FM 
 

-1 
  

 
RW FM 

 
-2 

  
* The differencing operation changes the appearance 

of the phase data to that shown 2 rows higher. 
 
 

Lag 1 Autocorrelation 
 for Various Power Law Noises and Differences 

Lag 1 Autocorrelation, r1
†

d=0 d=1 d=2 
Noise 
Type 

α x(t) y(t) x(t) y(t) x(t) y(t) 
 

2 
 

0 
 

-1/2 
 

-1/2 
 

-2/3 
 

-2/3 
 

-3/4 
 

1 
 

≈0.7 
 

-1/3 
 

-1/3 
 

-3/5 
 

-3/5 
 

-5/7 
 

0 
 

≈1 
 

0 
 

0 
 

-1/2 
 

-1/2 
 

-2/3 
 

-1 
 

≈1 
 

≈0.7 
 

≈0.7 
 

-1/3 
 

-1/3 
 

-3/5 
 

-2 
 

≈1 
 

≈1 
 

≈1 
 

0 
 

0 
 

-1/2 
† Shaded values are those used for noise ID for the particular 

noise and data type. 
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5.5.6. Noise ID Algorithm 

The basic lag 1 autocorrelation power law noise identification algorithm is quite simple.  The 
inputs are a vector z1,…, zN  of phase or frequency data, the minimum order of differencing 
dmin (default = 0), and the maximum order of differencing dmax.  The output is p, an 
estimate of the α of the dominant power law noise type, and (optionally) the value of d. 
 
Done = False, d = 0 
While Not Done 

z
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r
z z z z

z z

r
r

i
i

N

i i
i

N

i
i

N

=

=
− −

−

=
+

=

+
=

−

=

∑

∑

∑

1

1

1

1

1
1

1

2

1

1

1

( )(

( )

δ

)
 

If d >= dmin And (δ < 0.25 Or d >= dmax) 
 p d= − +2( )δ  
 Done = True 
Else 

  

z z z z z z
N N
d d

N N N1 2 1 1

1
1

1= − = −
= −
= +

− −,...,
 

End If 
End While 
Note: May round p to nearest integer 
 
The input data should be for the particular averaging time, τ, of interest, and it may therefore 
be necessary to decimate the phase data or average the frequency by the appropriate 
averaging factor before applying the noise identification algorithm.  The dmax parameter 
should be set to 2 or 3 for an Allan or Hadamard (2 or 3-sample) variance analysis, 
respectively.  The alpha result is equal to p+2 or p for phase or frequency data, respectively, 
and may be rounded to an integer (although the fractional part is useful for estimated mixed 
noises).  The algorithm is fast, requiring only the calculation of one autocorrelation value 
and first differences for several times.  It is independent of any particular variance.  The lag 
1 autocorrelation method yields good results, consistently identifying pure power noise for 
α = 2 to –4 for sample sizes of about 30 or more, and generally identifying the dominant 
type of mixed noises when it is at least 10 % larger than the others.  For a mixture of 
adjacent noises, the fractional result provides an indication of their ratio.  It can handle all 
averaging factors. 
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Before analysis, the data should be preprocessed to remove outliers, discontinuities, and 
deterministic components.  Acceptable results can be obtained from the lag 1 autocorrelation 
noise identification method for N ≥ 32, where N is the number of data points. The algorithm 
tends to produce jumps in the estimated alpha for mixed noises when the differencing factor, 
d, changes (although the alpha value when rounded to an integer is still consistent).  This can 
be avoided by using the same d for the entire range of averaging times, at the expense of 
higher variability when a lower d would have been sufficient.  The lag 1 autocorrelation 
method for power law noise identification is a fast and effective way to support the setting of 
confidence intervals and to apply bias corrections during a frequency stability analysis, as 
shown in the example below: 
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10-11
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-3
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α Noise Type

FWFM

RWFM

FFM

WFM
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WPM
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SAO VLG11B H-Maser S/N SAO26 vs SAO18

 
 

Frequency Stability and Noise Analysis of Two Hydrogen Masers 
 

References for Noise Identification 

1. D.A. Howe, R.L. Beard, C.A. Greenhall, F. Vernotte, W.J. Riley and T.K. Peppler, 
"Enhancements to GPS Operations and Clock Evaluations Using a "Total" Hadamard 
Deviation", IEEE Trans. Ultrasonics, Ferrelectrics and Freq. Contrl., Vol. 52, No. 8, 
pp. 1253-1261, Aug. 2005. 

2. J.A. Barnes, “Tables of Bias Functions, B1 and B2, for Variances Based on Finite 
Samples of Processes with Power Law Spectral Densities”, NBS Technical Note 375, 
Jan. 1969. 

3. D.B Sullivan, D.W. Allan, D.A. Howe and F.L. Walls (editors), Characterization of 
Clocks and Oscillators, NIST Technical Note 1337, Sec. A-6, 1990. 

4. G. Box and G. Jenkins, Time Series Analysis, Forecasting and Control, Chapter 2, 
Holden-Day, Oakland, California, 1976, ISBN 0-8162-1104-3. 

5. W.J. Riley and C.A. Greenhall, “Power Law Noise Identification Using the Lag 1 
Autocorrelation”, Proc. 18th European Frequency and Time Forum, April 2004. 

6. P. Brockwell and R. Davis, Time Series: Theory and Methods, 2nd Edition, Eq. (13.2.9), 
Springer-Verlag, New York, 1991. 

7. N.J. Kasdin and T. Walter, “Discrete Simulation of Power Law Noise”, Proc. 1992 
IEEE Frequency Control Symposium, pp. 274-283, May 1992. 

8. J. McGee and D.A. Howe, “ThêoH and Allan Deviation as Power-Law Noise 
Estimators”, IEEE Trans. Ultrasonics, Ferroelectrics and Freq. Contrl., Feb. 2007  
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5.6. Bias Functions 
 
Several bias functions are defined and used in the analysis of frequency stability, as defined 
below.  In particular, B1, the ratio of the standard variance to the Allan variance, and R(n), 
the ratio of the modified Allan variance to the normal Allan variance, are used for the 
identification of power law noise types (see section 5.2.2), and the B2 and B3 bias functions 
are used to correct for dead time in a frequency stability measurement. 
 
5.7. B1 Bias Function 
 
The B1 bias function is the ratio of the N-sample (standard) variance to the 2-sample (Allan) 
variance with dead time ratio r = T/τ, where T = time between measurements, τ = averaging 
time, and µ = exponent of τ in Allan variance for a certain power law noise process: 
 

B1(N, r , µ) = σ²(N, T, τ) / σ²(2, T, τ) . 
 
The B1 bias function is useful for performing power law noise identification by comparing 
its actual value to those expected for the various noise types (see section 5.2.2). 
 
5.8. B2 Bias Function 
 
The B2 bias function is the ratio of the 2-sample (Allan) variance with dead time ratio r = T/τ 
to the 2-sample (Allan) variance without dead time (r = 1): 
 

B2(r , µ) = σ²(2, T, τ) / σ²(2, τ, τ) . 
 
5.9. B3 Bias Function 
 
The B3 bias function is the ratio of the N-sample (standard) variance with dead time ratio r = 
T/τ at multiples M = τ/τ0 of the basic averaging time τ0 to the N-sample variance with the 
same dead time ratio at averaging time τ: 
 

B3(N, M, r , µ) = σ²(N, M, T, τ) / σ²(N, T, τ) . 
 
The product of the B2 and B3 bias functions is used for dead time correction, as discussed in 
section 5.7. 
 
5.10. R(n) Bias Function 
 
The R(n) function is the ratio of the modified Allan variance to the normal Allan variance for 
n = number of phase data points.  Note: R(n) is also a function of α, the exponent of the 
power law noise type: 
 

R(n) = Mod σ²y(τ) /   σ²y(τ) 
 
The R(n) bias function is useful for performing power law noise identification by comparing 
its actual value to those expected for the various noise types (see section 5.2.2). 
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5.11. TVAR Bias Function 
 
The TOTVAR statistic is an unbiased estimator of the Allan variance for white and flicker 
PM noise, and for white FM noise.  For flicker and random walk FM noise, TOTVAR is 
biased low as τ becomes significant compared with the record length.  The ratio of the 
expected value of TOTVAR to AVAR is given by the expression 
 

B(TOTAL) = 1 - a⋅(τ/Τ),  0 < τ ≤ Τ/2 , 
 
where a = 1/3⋅ln2 = 0.481 for flicker FM noise, a = 3/4 = 0.750 for random walk FM noise, 
and T is the record length.  At the maximum allowable value of τ = Τ/2, TOTVAR is biased 
low by about 24 % for RW FM noise.  This bias function should be used to correct all 
reported TOTVAR results. 
 
5.12. MTOT Bias Function 
 
The MTOT statistic is a biased estimator of the modified Allan variance. The MTOT bias 
factor (the ratio of the expected value of Mod Totvar to MVAR) depends on the noise type 
but is essentially independent of the averaging factor and number of of data points, as shown 
in the following table: 
 

Noise  Bias Factor    
W PM    1.06     
F PM    1.17     
W FM   1.27 
F FM    1.30 
RW FM   1.31 
 
This bias factor should be used to correct all reported MTOT results. 
 
5.13. Thêo1 Bias 
 
The Thêo1 statistic is a biased estimator of the Allan variance. The Thêo1 bias factor (the 
ratio of the expected value of Thêo1 to AVAR) depends on both noise type and averaging 
factor: 
 
Thêo1 Bias = AVAR/Thêo1 = a + b/mc , 
 
where m is the averaging factor and the constants a, b and c are given in the table below.  
Note that the effective tau for a Thêo1 estimation is t = 0.75·m·t0, where t0 is the 
measurement interval. 
 
Noise Alpha   a     b   c 
 

RW FM -2 2.70 -1.53 0.85 
F FM -1 1.87 -1.05 0.79 

W FM     0 1.00     0.00 0.00 
F PM     1 0.14     0.82 0.30 
W PM     2 0.09     0.74 0.40 
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5.14. Dead Time 
 
Dead time can occur in frequency measurements 
because of instrumentation delay between 
successive measurements, or because of a 
deliberate wait between measurements.  It can have 
a significant effect on the results of a stability 
analysis, especially for the case of large dead time 
(e.g., frequency data taken for 100 seconds, once 
per hour). 

Dead time can occur in frequency 
measurements and can significantly 
affect a subsequent stability 
analysis.  Methods are available to 
correct for dead time and thus obtain 
unbiased results. 
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Dead time corrections can be applied by dividing the calculated Allan deviation by the 
square root of the product of the Barnes B2 and B3 bias ratios.  These corrections are 
particularly important for non-white FM noise with a large dead time ratio.  Restricting the 
dead time corrections to Allan deviations is a conservative approach based on the B2 and B3 
definitions.  Those bias functions depend critically on the power law noise type.  Requiring 
manual noise selection avoids the problem of noise identification for biased data having the 
wrong sigma-tau slope.  Dead time correction is problematic for data having multiple noise 
types.  In addition to introducing bias, measurement dead time reduces the confidence in the 
results, lowers the maximum allowable averaging factor, and prevents proper conversion of 
frequency to phase.  Moreover, no information is available about the behavior of the device 
under test during the dead time.  It is recommended that these issues be avoided by making 
measurements with zero dead time. 
 
Dead time that occurs at the end of a measurement can be adjusted for in an Allan deviation 
determination by using the Barnes B2 bias function [1], the ratio of the two-sample variance 
with dead time ratio r = T/τ to the two-sample variance without dead time.  Otherwise, 
without this correction, one can determine only the average frequency and its drift.  When 
such data are used to form frequency averages at longer tau, it is necessary to also use the B3 
bias function [2], the ratio of the variance with distributed dead time to the variance with all 
the dead time at the end.  Those bias corrections are made by use of the product of B2 and 
B3.  The power law noise type must be known in order to calculate these bias functions.  
Simulated periodically sampled frequency data with distributed dead time for various power 
law noise processes shows good agreement with the B2 and B3 bias function corrections, as 
shown in the figures below. 
 

Frequency Stability Plots for Common Power Law Noises with Large 
Measurement Dead Time (r = T/τ = 36) 

Simulated Data Sampled for τ = 100 Seconds Once Per Hour for 10 Days 
Nominal 1x10-11 Stability at τ = 100 Seconds Shown by Lines 

Plots Show Stability of Simulated Data Sets for Continuous, Sampled and Dead 
Time-Corrected Data 

 
White PM (µ = -2) √B2 = 0.82 at AF = 1 
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Flicker PM (µ = -2) √B2 = 0.82 at AF = 1 

 

 
White FM (µ = -1) √B2 = 1.00 at AF = 1 
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Flicker FM (µ = 0) √B2 = 1.92 at AF = 1 

 

 
RW FM (µ = 1) √B2 = 7.31 at AF = 1 

 
These simulations show that the B2 and B3 bias corrections are able to support reasonably 
accurate results for sampled frequency stability data having a large dead time, when the 
power law noise type is known.  The slope of the raw sampled stability plot does not readily 
identify the noise type, however, and mixed noise types would make correction difficult.  
The relatively small number of data points reduces the confidence of the results, and limits 
the allowable averaging factor.  Moreover, the infrequent measurements provide no 
information about the behavior of the clock during the dead time, and prevent a proper 
conversion of frequency to phase.  Sparsely sampled data are therefore not recommended for 
the purpose of stability analysis.   
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References for Dead Time 
 
1. J.A. Barnes, "Tables of Bias Functions, B1 and B2, for Variances Based on Finite 

Samples of Processes with Power Law Spectral Densities", NBS Technical Note 375, 
January 1969. 

2. J.A. Barnes and D.W. Allan, "Variances Based on Data with Dead Time Between the 
Measurements", NIST Technical Note 1318, 1990. 

 
 
5.15. Unevenly Spaced Data 
 
Unevenly spaced phase data can be handled if they have associated timetags by using the 
individual timetag spacing when converting them to frequency data.  Then, if the tau 
differences are reasonably small, the data may be analyzed by use of the average timetag 
spacing as the analysis tau, in effect placing the frequency data on an average uniform grid.  
While completely random data spacing is not amenable to this process, tau variations of ± 
10% will yield reasonable results as long as the exact interval is used for phase to frequency 
conversion. 
 
An example of unevenly spaced data is two-way satellite time & frequency transfer 
(TWSTFT) measurements made on Monday, Wednesday, and Friday of each week, where 
the data spacing is either one or two days. 
 

 
 

 
The TWSTFT data are simulated as 256 points of white PM noise with an Allan deviation 
(ADEV) level of σy(τ) = 1x10-11 at 1-day.  A composite plot of the TWSTFT TDEV results 
is shown above.  The corresponding TDEV is 5.77x10-12 sec at τ=1 day (TDEV = MDEV 
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divided by √3), as shown in curve A.  Note that these time stability plots include points at all 
possible tau values.  The green line shows that the –0.5 slope of the TDEV plot for W PM 
noise.  The TWSTFT data are sampled once on Monday, Wednesday and Friday of each 
week.  These sampled data therefore have an average tau of 7/3 = 2.33 days, and their TDEV 
is shown in curve B.  If the missing points are replaced by linearly interpolated phase values, 
the TDEV becomes highly distorted, as shown in curve C.  If the sampled phase data are 
converted to frequency data using their timetag differences to determine the individual 
measurement intervals, the average tau, τavg, is close to 2.33 days (depending on the final 
fractional week that is included), and the resulting TDEV is shown in curve D.  It is 
essentially identical to that for the sampled phase data shown in curve B.  It is interesting 
that, although the converted frequency results are different depending on whether the 
average or individual (more correct) taus are used, the (integrated) TDEV results are not (at 
least for a white PM noise process). 
 
None of the results is in good agreement with the nominal simulation.  The result with the 
linearly interpolated phase points is particularly bad for τ<τavg, and is similar to that of 
Tavella and Leonardi, as shown in Figure 1 of Reference [1].  As they point out in that 
paper, because the true sampling interval is τavg, it is not possible to estimate the noise at 
shorter times, especially for an uncorrelated white noise process.  They further suggest that 
the higher level of the estimated noise is related to the ratio of the true and interpolated 
sampling times (≈2.33) and the √τ dependence of TDEV.  By applying a correction factor of 
√2.33 ≈ 1.5, the longer-tau TDEV estimates are lowered to the correct level.  These factors 
are smaller for other non-white PM and FM noise processes.  The adjusted method of using 
frequency data converted from phase data by using individual tau values adjusted for the 
timetag spacing is recommended because it does not use interpolation, does not present 
results at unrealistically low tau, and uses the best frequency estimates. 
 
Another situation is data that are taken in bursts.  In that case, the best approach is probably 
to analyze the segments separately, perhaps averaging those results to obtain better statistical 
confidence.  One could obtain reasonable results for the shorter averaging times, but cannot 
apply standard techniques to analyze the complete data set. 
 
References for Unevenly Spaced Data  
 
1. P. Tavella and M. Leonardi, “Noise Characterization of Irregularly Spaced Data”, 

Proceedings of the 12th European Frequency and Time Forum, pp. 209-214, March 
1998. 

2. C. Hackman and T.E. Parker, “Noise Analysis of Unevenly Spaced Time Series Data”, 
Metrologia, Vol. 33, pp. 457-466, 1996. 

 
 
5.16. Histograms 
 
A histogram shows the amplitude distribution of the phase or frequency fluctuations, and can 
provide insight regarding them.  One can expect a normal (Gaussian) distribution for a 
reasonably sized data set, and a different (e.g., bimodal) distribution can be a sign of a 
problem. 
 
For a normal distribution, the standard deviation is approximately equal to the half-width at 
half-height  (HWHA = 1.177s) . 
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An example of a histogram for a set of white FM noise is shown below: 
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5.17. Frequency Offset 
 
It is often necessary to estimate the frequency offset from either phase or frequency data. 
 
Frequency offset is usually calculated from phase data by either of three methods: 
 
1. A least squares linear fit to the phase data (optimum for white PM noise): 
 
 x(t) = a + bt, where slope = y(t) = b. 
 
2. The average of the first differences of the phase data (optimum for white FM 

noise): 
 
 y(t) = slope = [x(t+τ)−x(t)]/τ. 
 
3. The difference between the first and last points of the phase data: 
 
 y(t) = slope = [ x(end) − x(start) ] / (M-1), where M = # phase data points.   
 
 This method is used mainly to match the two endpoints. 
 
5.18. Frequency Drift 
 
Most frequency sources have frequency drift, and it is often necessary (and usually 
advisable) to characterize and remove this systematic drift before analyzing the stochastic 
noise of the source.  The term drift refers to the systematic change in frequency due to all 
effects, while aging includes only those effects internal to the device.  Frequency drift is 
generally analyzed by fitting the trend of the frequency record to an appropriate 
mathematical model (e.g., linear, log, etc.), often by the method of least squares.  The model 
may be based on some physical basis or simply a convenient equation, using either phase or 
frequency data, and its suitability may be judged by the degree to which it produces white 
(i.e., uncorrelated) residuals. 
 
Frequency drift is the systematic change in frequency due to all effects, while frequency 
aging is the change in frequency due to effects within the device.  Thus, for a quartz crystal 
oscillator, aging refers to a change in the resonant frequency of its quartz crystal resonator, 
while drift would also include the effects of its external environment.  Therefore, drift is the 
quantity that is usually measured, but it is generally done under constant environmental 
conditions to the greatest extent possible so as to approximate the aging of the device. 
 
5.19. Drift Analysis Methods 
 
Several drift methods are useful for phase or frequency data as described below.  The best 
method depends on the quality of the fit, which can be judged by the randomness of the 
residuals. 
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Data Method Noise Model 
Phase Quadratic Fit W PM 
Phase Avg of 2nd Diffs RW FM 
Phase 3-Point Fit W & RW FM 
Phase Linear Frequency Offset 
Phase Avg of 1st Diffs Frequency Offset 
Phase Endpoints Frequency Offset 
Freq  Linear Fit W FM 
Freq  Bisection Fit W & RW FM 
Freq  Log Fit Stabilization 
Freq Diffusion Fit Diffusion 
 
5.20. Phase Drift Analysis 
 
Three methods are commonly used to analyze frequency drift in phase data: 
 
1. A least squares quadratic fit to the phase data: 
 
 x(t) = a + bt + ct², where y(t) = x'(t) = b + 2ct, slope = y'(t) = 2c. 
 
 This continuous model can be expressed as xn = a + τ0bn + τ0²cn² for n =1, 2, 3…, 

N, and τ0 is the sampling interval for discrete data, where the a, b and c 
coefficients have units of sec, sec/sec and sec/sec2, respectively, and the frequency 
drift slope and intercept are 2c and b, respectively .  The fit coefficients can be 
estimated by the following expressions [1]: 
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 where the A-F terms are as follows 
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A N N= + +3 3 1 2b g
B N= − +18 2 1b g
C = 30

 
D N N N N= + + + +12 2 1 8 11 1 2

180 2

b gb g b gb g/

/

 PM noise. 

 the phase data: 

y(t) = [x(t+τ)−x(t)]/τ, slope = [y(t+τ)−y(t) ]/τ = [x(t+2τ)−2x(t+τ)+x(t)]/τ². 

ata: 

M = # data points. 

 
5.21. 
 

our meth ency drift in frequency data: 

1. e frequency data: 
 
 lope = y'(t). 
 
 ated by a linear least squares fit to the 

tinuous model can be expressed as yn = a + 
 is the number of frequency data points, τ0 is the 

.  The frequency drift intercept and slope are 
ec/sec, respectively.  The fit coefficients can be 
ons: 

 

E N= − +b g
F N N= + +180 1 2b gb g/

G N N N= − −1 2b gb g
 A quadratic fit to the phase data is the optimum model for white
 
2.    The average of the second differences of
 
 
 

This method is optimum for random walk FM noise.  
 

. A three-point fit at the start, middle and end of the phase d3
 

slope = 4[x(end)−2x(mid)+x(start)]/(Mτ)², where  
 
 It is the equivalent of the bisection method for frequency data. 

Frequency Drift Analysis 

ods are commonly used to analyze frequF
 

A least squares linear regression to th

y(t) = a+bt, where a = intercept, b = s

Linear frequency drift can be estim
frequency data, y(t) = a + bt.  That con
τ0bn for n =1, 2, 3…, M where M
sampling interval for the discrete data
a and b, and have units of sec and s
estimated by the following expressi
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 A linear fit to the frequency data is the optimum model for white FM noise. 
 

The frequency averages over the first and last halves of the d
 
 slope = 2 [ y(2n
 
 
 
3.  A log model of the form (see MIL-O-55310B) that applies to frequency 

stabilization: 
 
 y(t) = a·ln(bt+1), where slope = y'(t) = ab/(bt+1). 
  
 4.  A diffusion (√t) model of the form 
 

y(t) = a+b(t+c)1/2, where slope = y'(t) = ½·b(t+c)-1/2.  
 
References for Drift  
 
1. J.A. Barnes, " rs'', Proc. 15th The Measurement of Linear Frequency Drift in Oscillato

Annu. PTTI Meeting, pp. 551-582, Dec. 1983. 
2. J.A. Barn 91. es, "The Analysis of Frequency and Time Data", Austron, Inc., Dec. 19
3. M.A. We Estimator of Frequency iss and C. Hackman, "Confidence on the Three-Point 

Drift", Proc. 24th Annu. PTTI Meeting, pp. 451-460, Dec. 1992. 
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computation slow.  For most purposes, however, it is not 
necessary to calculate values at eve o so at enough points to provide a 
nearly continuous curve on the disp aper).  Such a “many tau” analysis 
can be orders of magnitude faster and yet provide the same information. 

Tau 
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tions in the results, and are a simple form of spectral analysis.  In par
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All Tau Stability Plot 

lot 

5.24. Environmental Sensitivity 
 
Environmental sensitivity should be treated separately from noise when performing a 
stability analysis.  However, it can be very difficult to distinguish between those different 
mechanisms for phase or frequency variations.  It is often possible to control the 
environmental conditions sufficiently well during a stability run so that environmental 
effects such as temperature and supply voltage are negligible.  Determining how well those 
factors have to be controlled requires knowledge of the device’s environmental sensitivities.  
Those factors should be measured individually, if possible, over the largest reasonable 

 

 
Many Tau Stability P
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 can best be determined 
 unit under test.  U ful 

nfor
refer e
can cause
Dyna c
frequency dent on 
devi n ore 
infor i
 

excursions to minimize the effect of noise.  Environmental sensitivity
y considering the physical mechanisms that apply within the seb

i mation about the environmental sensitivity of frequency sources can be found in the 
enc s below.  Some environmental factors affect phase and frequency differently, which 

 confusion.  For example, temperature affects the phase delay through a cable.  
mi ally, however, a temperature ramp produces a rate of change of phase that mimics a 

 change in the source.  Because environmental sensitivity is highly depen
ce a d application, it does not receive detailed consideration in this handbook.  M
mat on will be found in the following references. 

References for Environmental Sensitivity  
 

1. IEEE Std 1193, IEEE Guide for Measurement of Environmental Sensitivities of 
Standard Frequency Generators. 

2. n, Oscillators, MIL-0-55310, General Specification for Military Specificatio
Crystal, Military Specifications and Standards. 

3. ods and Engineering Guidelines. MIL-STD-810, Environmental Test Meth
4. MIL-STD-202, Test Methods for Electronic and Electrical Component Parts. 
5. C. Audion, et al., “Physical Origin of the Frequency Shifts in Cesium Beam 

Frequency Standards: Related Environmental Sensitivity nd,” Proceedings of the 22  
Annual Precise Time and Time Interval (PTTI) Applications and Planning 
Meeting, pp. 419-440, 1990. 

6. the L.A. Breakiron, et al., “General Considerations in the Metrology of 
Environmental Sensitivities of Standard Frequency Generators,” Proceedings of 
the 1992 IEEE Frequency Control Symposium, pp. 816-830, 1992. 

7. H. Hellwig, “Environmental Sensitivities of Precision Frequency Sources,” IEEE 
Transactions IM-39, pp. 301-306, 1990. 

8. E.M. Mattison, “Physics of Systematic Frequency Variations in Hydrogen 
Masers,” Proceedings of the 22nd Annual Precise Time and Time Interval (PTTI) 
Applications and Planning Meeting, pp. 453-464, 1990. 

9. W.J. Riley, “The Physics of Environmental Sensitivity of Rubidium Gas Cell 
Atomic Frequency Standards,” Proceedings of the 22nd Annual Precise Time and 
Time Interval (PTTI) Applications and Planning Meeting, pp. 441-452, 1990. 

10. F.L. Walls and J.J. Gagnepain, “Environmental Sensitivities of Quartz Crystal 
Oscillators,” IEEE Transactions UFFC-39, no. 2, pp. 241-249, 1992. 

11. P.S. Jorgensen, “Special Relativity and Intersatellite Tracking”, Navigation, Vol. 
35, No. 4, pp. 429-442, Winter 1988-89. 

12. T.E. Parker, “Environmental Factors and Hydrogen Maser Frequency Sensitivity”, 
IEEE Trans. UFFC-46, No. 3, pp.745-751, 1999. 

 
 
 
 

5.25. Parsimony 
 
In any measurement or analysis, it is desirable to minimize the number of extraneous 

arameters.  This is not just a matter of elegance; the additional parameters may be implicit 
r arbitrary and thereby cause confusion or error if they are ignored or misunderstood.  For 
xample, the Allan deviation has the important advantage that, because of its convergence 
haracteristics for all common clock noises, its expected value is independent of the number 
f data points.  Many of the techniques used in the analysis of frequency stability, however, 
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do requ ample, 
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of these nonparsimonious parameters is given in the table below: 
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Remove or not Is drift 
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appropriate. 
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– can hide deeply in 
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conversion 
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easurement 
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Tau See above 
Initial phase 
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stability 
analysis. 

Pre-
processing 
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conversion 
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Normalize 
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average 
frequency 
above” 

Analysis tion ical, 
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 can 

hide deeply in 
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For iterative fit Generally 
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Frequency 
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Noise model r Generally Lowest residuals fo
known noise type uncritical 
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tion, noise type 
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Process choi
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data points 

 e for 

 outliers. 
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See above Hadamard 
Deviation 

r 
ift 

 drift or 
divergent noise 

n GPS 
control 

 

To use rather 
than Allan 
deviation o
separate dr
removal 

Easier handling of 
clock with

Commonly 
used i

operations.

All Allan 
deviation 

See above 

parameters 
To use rather 

deviation 

ence at ommonly 
than Allan 

Better confid
long tau. 

Less c
used 

Total Deviation 
Thêo1 

bias 

 these 
biased estimators 

 
s 

Noise ID 
method to 
support 
removal 

Critical for Generally
unambiguou

Wind
step size 

ow and Resolution, number 
of windows 

Affects calc 
time 

Variance type Data properties: 
noise, drift HVAR 

AVAR or 

Dynamic 
Stability 

or 
y Personal Viewpoint, 

mesh, col
Visibilit

preference 
Type – 
Parametric or 
non-
parametric,  

Convention Analysis tools 

Knowledge of 
available 

analyst  

Spectral 
Analysis 

ng – 
ion 

 Windowi
Bias reduct

Clarity Uncritical



SECTION 5 TIME DOMAIN STABILITY 

 75 

variance 
 Smoothing – 
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resolution 

Presentation – Insight Use 
plot or fit 

both 

Form Table vs. Plot Clarity Use both 
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t 
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Presenta-
tion 
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choices 
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lationship is 

 
5.26. Transfer Functions 
 
Variances can be related to the spectral density of the fractional frequency fluctuations by 

eir transfer functions.  For example, for the Hadamard variance, this reth
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For πτf , indicating that it 
is converg andom Walk FM), 
while the tr ng that it is 
convergen
 
The square
 

 << 1, the transfer function of the Allan variance behaves as (πτf)2

ent for power law processes Sy
α down to as low as α = -2 (R

ansfer function of the Hadamard variance behaves as (πτf)4, indicati
t for power law processes as low as α = -4 (Random Run FM). 

d magnitudes of these transfer functions are shown in the plots below: 
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hese responses have their peaks where the frequency is one-half the sampling rate, and 
nulls where it is a multiple of the sampling rate (i.e., at f = n/τ, where n is an integer).  As a 
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ly higher resolution than the Allan 
the Hadamard and Allan spectral 

i

spectral estimator, the Hadamard variance has slight
ariance, since the equivalent noise bandwidths of  v

windows are 0.411 τ-1 and 0.476 τ-1, respectively [5]. 
 
Sim lar transfer functions exist for the modified, total and Thêo1 variances. 
 
References for Transfer Functions  
 
1. J. Rutman, "Oscillator Specifications: A Review of Classical and New Ideas", 1977 

IEEE International Freq. Contrl. Symp., pp.291-301, June 1977. 
2. uency Instabilities in Precision J. Rutman, "Characterization of Phase and Freq

Frequency Sources", Proc. IEEE, Vol. 66, No. 9, September1978. 
3.  of Frequency Stability: The Modified R.G. Wiley, “A Direct Time-Domain Measure

Allan Variance”, IEEE Trans. Instrum. Meas., IM-26, pp. 38-41. 
4. D.A. Howe and C.A. Greenhall, “Total Variance: A Progress Report on a New 

Frequency Stability Characterization”, Proc. 29th Annual Precise Time and Time 
Interval (PTTI) Meeting, December 1977, pp. 39-48. 

5. D.A. Howe, “ThêoH: A Hybrid, High-Confidence Statistic that Improves on the Allan 
Deviation”, Metrologia 43 (2006), S322-S331. 

6. K. Wan, E. Visr and J. Roberts, "Extended Variances and Autoregressive Moving 
Average Algorithm for the Measurement and Synthesis of Oscillator Phase Noise", 
Proc. 43rd Annu. Freq. Contrl. Symp., June 1989, pp. 331-335. 
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6 Frequency Domain Stability 
 
Frequency stability can also be characterized in the 
frequency domain in terms of a power spectral density 
(PSD) that describes the intensity of the phase or 
frequency fluctuations as a function of Fourier frequency.  
Spectral stability measures are directly related to the 
underlying noise processes, and are particularly 
appropriate when the phase noise of the source is of 
interest. 

Frequency domain stability 
measures are based on power 
spectral densities that 
characterize the intensity of the 
phase or frequency fluctuations 
as a function of Fourier 
frequency.  

 
6.1. Noise Spectra 
 
The random phase and frequency fluctuations of a frequency source can be modeled by power 
law spectral densities of the form 
 
 Sy(f) = h(α)f α , 
 
where:  Sy(f) = one-sided power spectral density of y, the 

fractional frequency fluctuations, 1/Hz 
  f = Fourier or sideband frequency, Hz 
  h(α) = intensity coefficient 

  α = exponent of the power law noise process. 
 
The most commonly encountered noise spectra are 
 
White (f 0) 
Flicker (f −1) 
Random Walk (f −2) 
Flicker Walk (f −3) . 
  
Examples of these noise types are shown in the figure below. 
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Power law spectral models can be applied to both phase and frequency power spectral 
densities.  Phase is the time integral of frequency, so the relationship between them varies as 
1/f²: 
 
Sx(f) = Sy(f)/(2πf)² , 
 
where Sx(f) = PSD of the time fluctuations, sec²/Hz. 
 
Two other quantities are also commonly used to measure phase noise: 
 
Sφ(f) = PSD of the phase fluctuations, rad²/Hz and its 

logarithmic equivalent £(f), dBc/Hz. 
 
The relationship between these is 
 
Sφ(f) = (2πν0)² · Sx(f) = (ν0/f) ²· Sy(f) 
 
and 
 
£(f)  = 10 · log[½ · Sφ(f)] , 
 
where ν0 is the carrier frequency, hertz. 
 
The power law exponent of the phase noise power spectral densities is β = α−2. These 
frequency-domain power law exponents are also related to the slopes of the following time 
domain stability measures: 
 
Allan variance  σ²y(τ)  µ  =  − (α+1), α<2 
Modified Allan variance Mod σ²y(τ) µ' =  − (α+1, α<3 
Time variance  σ²x(τ)  η  =  − (α−1), α<3 . 
 
The spectral characteristics of the power law noise processes commonly used to describe the 
performance of frequency sources are shown in the following table: 
 
Spectral Characteristics of Power Law Noise Processes 
Noise Type   α   β   µ   µ'   η 
White PM   2   0 −2 −3 −1 
Flicker PM   1 −1 −2 −2   0 
White FM   0 −2 −1 −1   1 
Flicker FM −1 −3   0   0   2 
Random Walk FM −2 −4   1   1   3 
 
6.2. Power Spectral Densities 
 
Four types of power spectral density are commonly used to describe the stability of a 
frequency source: 
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PSD of Frequency Fluctuations Sy(f) 
The power spectral density of the fractional frequency fluctuations y(t) in units of 1/Hz is 
given by Sy(f) = h(α) · f α, where f = sideband frequency, Hz. 
PSD of Phase Fluctuations Sφ(f) 
The power spectral density of the phase fluctuations in units of rad²/Hz is given by Sφ(f) = 
(2πν0)² · Sx(f), where ν0 = carrier frequency, Hz. 
 
PSD of Time Fluctuations Sx(f) 
The power spectral density of the time fluctuations x(t) in units of sec²/Hz is given by Sx(f) = 
h(β) · f β = Sy(f)/(2πf)²,  where: β = α−2.  The time fluctuations are related to the phase 
fluctuations by x(t) = φ(t)/2πν0.  Both are commonly called "phase" to distinguish them from 
the independent time variable, t. 
  
SSB Phase Noise £(f) 
The SSB phase noise in units of dBc/Hz is given by £(f) = 10 · log [½ · Sφ(f)].  This is the most 
common function used to specify phase noise. 
 
6.3. Phase Noise Plot 
 
The following diagram shows the slope of the SSB phase noise, £(f), dBc/Hz versus log f, 
Fourier frequency, Hz for various power law noise processes. 
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Figure 6.3 SSB Phase Noise Plot 
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6.4. Spectral Analysis 
 
Spectral analysis is the process of characterizing the properties of a signal in the frequency 
domain, either as a power spectral density for noise, or as the amplitude and phase at discrete 
frequencies.  Spectral analysis can thus be applied to both noise and discrete components for 
frequency stability analysis.  For the former, spectral analysis complements statistical analysis 
in the time domain.  For the latter, spectral analysis can aid in the identification of periodic 
components such as interference and environmental sensitivity.  Time domain data can be 
used to perform spectral analysis via the Fast Fourier Transform (FFT), and there is much 
technical literature on that subject [2, 3]. While, in principle, time and frequency domain 
analyses provide equivalent information, in practice, one or the other is usually preferred, 
either because of measurement and/or analysis convenience, or because the results are more 
applicable to a particular application.  Spectral analysis is most often used to characterize the 
short-term (< 1 second) fluctuations of a frequency source as a plot of phase noise power 
spectral density versus sideband frequency, while a time domain analysis is most often used to 
provide information about the statistics of its instability over longer intervals (> 1 second).  
Modern instrumentation is tending to merge these approaches by digitizing the signal 
waveform at high sampling rates, thereby allowing FFT analysis at relatively high Fourier 
frequencies.  Nevertheless, there are many pitfalls and subtleties associated with spectral 
analysis that must be considered if meaningful results are to be obtained. 
 
6.5. PSD Windowing 
 
Data windowing is the process of applying a weighting function that falls off smoothly at the 
beginning and end to avoid spectral leakage in an FFT analysis.  Without windowing, bias will 
be introduced that can severely restrict the dynamic range of the PSD result.  The most 
common windowing types are Hanning, Hamming and Multitaper.  The classic Hanning and 
Hamming windows can be applied more than one time. 
 
6.6. PSD Averaging 
 
Without filtering or averaging, the variances of the PSD results are always equal to their 
values regardless of the size of the time domain data set.  More data provides finer frequency 
resolution, not lower noise (while the data sampling time determines the highest Fourier 
frequency).  Without averaging, for white noise, each spectral result has only two degrees of 
freedom.  Some sort of filtering or averaging is usually necessary to provide less noise in the 
PSD results.  This can be accomplished by dividing the data into sections, performing an FFT 
analysis on each section separately, and then averaging those values to obtain the final PSD 
result.  The averaging factor improves the PSD standard deviation by the square root of the 
averaging factor.  The tradeoff in this averaging process is that each section of the data is 
shorter, yielding a result with coarser frequency resolution that does not extend to as low a 
Fourier frequency. 
 
6.7. Multitaper PSD Analysis 
 
The multitaper PSD analysis method offers a better compromise between bias, variance and 
spectral resolution.  Averaging is accomplished by applying a set of orthogonal windowing 
(tapering) functions called discrete prolate spheroidal sequences (DPSS) or Slepian functions 
to the entire data array.  An example of seven of these functions for order J=4 is shown below. 



SECTION 6 FREQUENCY DOMAIN STABILITY 

 
 

 
 

Figure 6.4.3 Slepian SPSS Taper Functions 
 
The 1st function resembles a classic window function, while the others sample other portions 
of the data.  The higher windows have larger amplitude at the ends that compensates for the 
denser sampling at the center.  These multiple tapering functions are defined by two 
parameters, the order of the function, J, which affects the resolution bandwidth, and the 
number of windows, which affects the variance.  A higher J permits the use of more windows 
without introducing bias, which provides more averaging (lower variance) at the expense of 
lower spectral resolution, as shown in the following table: 
 
Order J  #  Windows
 2.0 1-3 
 2.5 1-4 
 3.0 1-5 
 3.5 1-6 
 4.0 1-7 
 4.5 1-8 
 5.0 1-9 
 
The resolution BW is given by 2J/Nt, where N is the number of data points sampled at time 
interval t.  An adaptive algorithm can be used to weight the contributions of the individual 
tapers for lowest bias.  The multitaper PSD has a flat-topped response for discrete spectral 
components that is nevertheless narrower than an averaged periodogram with the same 
variance.  It is therefore particularly useful for examining discrete components along with 
noise. 
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6.8. PSD Notes 
 
A carrier frequency parameter applies to the Sφ(f) and £(f) PSD types.  The number of Fourier 
frequency points is always the power of 2 greater than or equal to one-half of the number of 
time domain data points, n.  The spacing between Fourier frequency points is 1/nt, and the 
highest Fourier frequency is 1/2t.  If averaging is done, the value of n is reduced by the 
averaging factor.  The PSD fit is a least-squares power law line through octave-band PSD 
averages [6]. 
 
For characterizing frequency stability, a spectral analysis is used primarily for the analysis of 
noise (not discrete components), and should include the quantitative display of power law 
noise in common PSD units, perhaps with fits to integer power law noise processes.  
Amplitude corrections need to be made for the noise response of the windowing functions.  
The amplitude of discrete components should be increased by the log of the BW (Fourier 
frequency spacing in hertz), which is a negative number for typical sub-hertz bandwidths. 
 

References for Spectral Analysis 
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3. D.B. Percival and A.T. Walden, Spectral Analysis for Physical Applications, 

Cambridge University Press, 1993, ISBN 0-521-43541-2. 
4. J. M. Lees and J. Park, "A C-Subroutine for Computing Multi-Taper Spectral 

Analysis", Computers in Geosciences , Vol. 21, 1995, pp. 195-236. 
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1999. 
6. J. McGee and D.A. Howe, “ThêoH and Allan Deviation as Power-Law Noise 

Estimators”, IEEE Trans. Ultrasonics, Ferroelectrics and Freq. Contrl., Feb. 2007.  
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7 Domain Conversions 
 
The stability of a frequency source can be specified 
and measured in either the time or the frequency 
domain.  Examples of these stability measures are the 
Allan variance, σ²y(τ), in the time domain, and the 
spectral density of the fractional frequency 
fluctuations, Sy(f), in the frequency domain.  
Conversions between these domains may be made by 
numerical integration of their fundamental 
relationship, or by an approximation method based 
on a power law spectral model for the noise 
processes involved.  The latter method can be applied 
only when the dominant noise process decreases 
toward higher sideband frequencies.  Otherwise, the 
more fundamental method based on numerical integration must be used.  The general 
conversion from time to frequency domain  is not unique because white and flicker phase 
noise have the same Allan variance dependence on τ.  When performing any of these 
conversions, it is necessary to choose a reasonable range for σ and τ in the domain being 
converted to.  The main lobe of the σy(τ) and Mod σy(τ) responses occur at the Fourier 
frequency f = 1/2τ. 

The stability of a frequency source 
can be specified and measured in 
either the time or the frequency 
domain.  One domain is often 
preferred to specify the stability 
because it is most closely related to 
the particular application.  Similarly, 
stability measurements may be 
easier to perform in one domain than 
the other.  Conversions are possible 
between these generally equivalent 
measures of frequency stability. 

 
Time domain frequency stability is related to the spectral density of the fractional frequency 
fluctuations by the relationship 
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where |H(f)|2 is the transfer function of the time domain sampling function. 
 
The transfer function of the Allan (two-sample) time domain stability is given by 
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and therefore the Allan variance can be found from the frequency domain by the expression 
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The equivalent expression for the modified Allan variance is 
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7.1. Power Law Domain Conversions 
 
Domain conversions may be made for power law noise models by using the following 
equation and conversion formulae: 
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, 

 
where the hα terms define the level of the various power law noises. 
 
Noise Type σ²y(τ)  Sy(f)
RW FM A · f 2  · Sy(f) · τ 1  A−1 · τ −1 · σ²y(τ) · f −2

F FM B · f 1  · Sy(f) · τ 0  B−1 · τ 0 ·  σ²y(τ) · f −1

W FM C · f 0  · Sy(f) · τ −1  C−1 · τ 1 ·  σ²y(τ) · f 0

F PM D · f −1 · Sy(f) · τ −2  D−1 · τ 2 ·  σ²y(τ) · f 1

W PM E · f −2 · Sy(f) · τ −2  E−1 · τ  2 ·  σ²y(τ) · f 2 

 
where 
 A = 4π²/6 
 B = 2·ln2 
 C = 1/2 
 D = 1.038 + 3·ln(2πfhτ0)/4π² 
 E = 3fh /4π² . 
 
and fh is the upper cutoff frequency of the measuring system in hertz, and τ0 is the basic 
measurement time.  This factor applies only to white and flicker PM noise.  The above 
conversion formulae apply to the ThêoH hybrid statistic as well as to the Allan variance. 
 
7.2. Example of Domain Conversions 

This section shows an example of time and frequency domain conversions.  First, a set of 
simulated power law noise data is generated, and the time domain properties of this noise are 
analyzed by use of the overlapping Allan deviation.  Next, the same data are analyzed in the 
frequency domain with an £(f) PSD.  Then, a power law domain conversion is done, and those 
results are compared with those of the spectral analysis.  Finally, the other power spectral 
density types are examined.  

For this example, we generate 4097 phase data points of simulated white FM noise with a 1-
second Allan deviation value σy(1) = 1x10-11 and a sampling interval τ = 1 msec.  The number 
of points is chosen as an even power of 2 for the frequency data. The generated set of 
simulated white FM noise is shown as frequency data in Figure 7.2a, and their overlapping 
Allan deviation is shown in Figure 7.2b.  The σy(1)white FM noise fit parameter is 1.08e-11, 
close to the desired value.  
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Figure 7.2a  Simulated W FM Noise Data 

 

 
Figure 7.2b  Overlapping Allan Deviation 

The power spectrum for the phase data is calculated by use of a 10 MHz carrier frequency and 
a £(f) power spectral density type, the SSB phase noise to signal ratio in a 1 Hz BW as a 
function of sideband frequency, f, as shown in Figure 7.2c.  The fit parameters show an £(1) 
value of -79.2 dBc/Hz and a slope of –19.6 dB/decade, in close agreement with the expected 
values of -80 dBc/Hz and -20 dB/decade.  

The expected PSD values that correspond to the time domain noise parameters used to 
generate the simulated power-law noise can be determined by the power law domain 
conversion formulae of section 7.1, as shown in the table below. 
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Domain Calculation Results 
Frequency Domain:  PSD Type: L(f), dBc/Hz 

SB Freq (Hz): 1.00000e+00 
Carrier(MHz): 1.00000e+01 

Time Domain: Sigma Type: Normal  
Tau (Sec): 1.00000e-03  
Avg Factor: 1000 

Power Law Noise: 
Type  dB/dec PSD    Type  Mu   Sigma  
RWFM  -40    None   RWFM  +1   0.00000e+00  
FFM   -30    None   FFM    0   0.00000e+00  
WFM   -20    -80.0  WFM   -1   1.00000e-11  
FPM   -10    None   FPM   -2   0.00000e+00  
WPM     0    None   WPM   -2   0.00000e+00  
All          -80.0  All        1.00000e-11  

 
The other types of PSD that are commonly used for the analysis of frequency domain stability 
analysis are Sφ(f), the spectral density of the phase fluctuations in rad2/Hz; Sx(f), the spectral 
density of the time fluctuations in sec2/Hz; and Sy(f), the spectral density of the fractional 
frequency fluctuations in units of 1/Hz.  The expected value of all these quantities for the 
simulated white FM noise parameters with σy(1) = 1.00e-11, τ = 1.00e-3, and fo = 10 MHz are 
shown in the following table. 
 
 
References for Domain Conversion 

1. A.R. Chi, “The Mechanics of Translation of Frequency Stability Measures Between 
Frequency and Time Domain Measurements”, Proc. 9th PTTI Meeting, pp. 523-548, 
Dec.1977.  

2. J. Rutman, "Relations Between Spectral Purity and Frequency Stability”, Proc. 28th Freq. 
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PSD Type Parameter   £(f), dBc/Hz Sφ(f), rad2/Hz Sx(f), sec2/Hz Sy(f), 1/Hz
Data Type Phase Phase Phase Frequency
Simulated Value -80 2e-8 5.066e-24 2e-22 
Log Value same -7.70 -23.3 -21.7 
Slope, dB/decade -20 -20 -20 0 
Fit Value -79.2 1.19e-8 3.03e-24 1.40e-22 
Fit Exponent -1.96 -1.96 -1.96 -0.04 

 
These spectral densities are shown in the plots below:  
 

 
Figure 7.2c  £(f) Power Spectral Density 

 

 
Figure 7.2d  Sφ(f) Power Spectral Density 
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Figure 7.2e  Sx(f) Power Spectral Density 

 

 
Figure 7.2f  Sy(f) Power Spectral Density 

 90 



SECTION 8 NOISE SIMULATION 

8 Noise Simulation 
 
It is valuable to have a means of generating simulated power law clock noise having the 
desired noise type (white phase, flicker phase, white frequency, flicker frequency and random 
walk frequency noise), Allan deviation, frequency offset, frequency drift, and perhaps a 
sinusoidal component.  This can serve as both a simulation tool and as a way to validate 
stability analysis software, particularly for checking numerical precision, noise recognition, 
and modeling.  A good method for power-law noise generation is described in Reference 8.  
The noise type and time series of a set of simulated phase data are shown below: 
 

Noise Type Phase Data Plot 
 

Random Walk FM 
α=-2 

Random Run Noise 
 

 
 

Flicker FM 
 α=-1 

Flicker Walk Noise 
 

 
 

White FM 
α=0 

Random Walk Noise 

 
 

Flicker PM 
α=1 

Flicker Noise 
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White PM 

α=2 
White Noise 

 

 
 
 
 
8.1. White Noise Generation 

White noise generation is straightforward.  One popular technique is to first generate two 
independent uniformly distributed random sequences [1], and combine them using the Box-
Muller transform [2], [3] to produce a white spectrum with Gaussian deviates.  Another 
method is to generate 12 independent random sequences uniformly distributed between 0 and 
1, add them, and subtract 6 [4]. This will via the central limit theorem produce a Gaussian 
distribution having zero mean and unit variance.  White noise can be numerically integrated 
and differenced to transform it by 1/f2 and f2, respectively, to produce simulated noise having 
any even power law exponent. 

8.2. Flicker Noise Generation 
 
Flicker noise is more difficult to generate because it cannot be described exactly by a rational 
transfer function, and much effort has been devoted to generating it [5]-[9].  The most 
common methods involve linear filtering by RC ladder networks [5], or by FFT transformation 
[7]-[9].  The FFT method can produce noise having any integer power law exponent from α = 
-2 (RW FM) to α = +2 (W PM) [7], [8]. 
 
8.3. Flicker Walk and Random Run Noise Generation 
 
The more divergent flicker walk FM (a = -3) and random run FM (a = -4) power law noise 
types may be generated by using the 1/f² spectral property of a frequency to phase conversion.  
For example, to generate RR FM noise, first generate a set of RW FM phase data.  Then treat 
this RW FM phase data as frequency data, and convert it to a new set of RR FM phase data.  
 
8.4. Frequency Offset, Drift, and Sinusoidal Components 
 
Beside the generation of the desired power law noise, it is desirable to include selectable 
amounts of frequency offset, frequency drift, and a sinusoidal component in the simulated 
clock data. 
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9 Measuring Systems 
 
Frequency measuring systems are instruments that 
accept two or more inputs, one of which may be 
considered to be the reference, and compare their 
relative phase or frequencies.  These systems can 
take many forms, from the direct use of a frequency 
counter to elaborate low-noise, high-resolution multichannel clock measuring systems with 
associated archival databases.  They can be custom built or bought from several organizations 
specializing in such systems.  The most important attribute of a frequency measuring system is 
its resolution, which, for high performance devices, requires 1 picosecond/second (pp1012) or 
better resolution, and more elaborate hardware than a counter.  The resolution of a digital 
frequency, period or time interval counter is determined mainly by its speed (clock rate) and 
the performance of its analog interpolator (if any).  That resolution generally improves linearly 
with the averaging time of the measurement, and it can be enhanced by preceding it with a 
mixer that improves the resolution by the heterodyne factor, the ratio of the RF input to the IF 
beat frequencies.  Noise is another important consideration for a high-performance measuring 
system whose useful resolution may be limited by its noise floor, the scatter in the data when 
the two inputs are driven coherently by the same source.  The performance of the measuring 
system also depends on the stability of its reference source.  A low noise ovenized quartz 
crystal oscillator may be the best choice for a reference in the short term (1-100 seconds), 
while a active hydrogen maser generally provides excellent stability at averaging times out to 
several days, and cesium beam tube devices at longer averaging times. 

A frequency measuring system with 
adequate resolution and a low noise 
floor is necessary to make precision 
clock measurements. 

Three methods are commonly used for making precise time and frequency measurements, as 
described below: 

9.1. Time Interval Counter Method 

The time interval counter method divides the two sources being compared down to a much 
lower frequency (typically 1 pulse/second) and measures their time difference with a high 
resolution time interval counter: 

 
Figure 9.1 Block Diagram of a Time Interval Counter Measuring System 

This measurement method is made practical by modern high-resolution interpolating time 
interval counters that offer 10 digit/second resolution. The resolution is not affected by the 
division ratio, which sets the minimum measurement time, and determines how long data can 
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be taken before a phase spillover occurs (which can be hard to remove from a data set). A 
source having a frequency offset of 1x10-6 can, for example, be measured for only about 5.8 
days before a 1 pps phase spillover occurs after being initially set at the center.  Drift in the 
trigger point of the counter can be a limitation to this measurement method. 

9.2. Heterodyne Method 

The heterodyne method mixes (subtracts) the two sources being compared, and measures the 
period of the resulting audio-frequency beat note. The measurement resolution is increased by 
the heterodyne factor (the ratio of the carrier to the beat frequency). 

 
Figure 9.2 Block Diagram of a Heterodyne Measuring System 

This heterodyne technique is a classic way to obtain high resolution with an ordinary period 
counter. It is based on the principle that phase information is preserved in a mixing process. 
For example, mixing a 10 MHz source against a 9.9999 MHz Hz offset reference will produce 
a 100 Hz beat signal whose period variations are enhanced by a factor of 10 MHz/100 Hz = 
105. Thus a period counter with 100 nanosecond resolution (10 MHz clock) can resolve clock 
phase changes of 1 picosecond. A disadvantage of this approach is that a stable offset 
reference is required at exactly the right frequency. Even worse, it can measure only 
frequency, requires a priori knowledge of the sense of the frequency difference, and often has 
dead time between measurements. 

9.3. Dual Mixer Time Difference Method 

The third method, in effect, combines the best features of the first two, using a time interval 
counter to measure the relative phase of the beat signals from a pair of mixers driven from a 
common offset reference: 
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Figure 9.3 Block Diagram of a Dual Mixer Time Difference Measuring System 

This dual mixer time difference (DMTD) setup is arguably the most precise way of measuring 
an ensemble of clocks all having the same nominal frequency. When expanded to multiple 
channels by adding additional buffer amplifiers and mixers, and time tagging the zero-
crossings of the beat notes for each channel, this arrangement allows any two of the clocks to 
be intercompared. The offset reference need not be coherent, nor must it have particularly low 
noise or high accuracy, because its effect cancels out in the overall measurement process. For 
best cancellation, the zero-crossings should be coincident or interpolated to a common epoch. 
Additional counters can be used to count the whole beat note cycles to eliminate their 
ambiguity, or the zero-crossings can simply be time tagged. The measuring system resolution 
is determined by the time interval counter or time-tagging hardware, and the mixer heterodyne 
factor. For example, if two 5 MHz sources are mixed against a common 5 MHz - 10 Hz offset 
oscillator (providing a 5x106/10 = 5x105 heterodyne factor), and the beat note is time tagged 
with a resolution of 100 nsec (10 MHz clock), the measuring overall system resolution is 10-7 

/5x105 = 0.2 psec.   

Multichannel DMTD clock measuring systems have been utilized by leading national and 
commercial metrology laboratories for a number of years [1-5]. An early commercial version 
is described in Reference [3], and a newer technique is described in Reference [8].  A direct 
digital synthesizer (DDS) can be used as the offset reference to allow measurements to be 
made at any nominal frequency within its range.  Cross-correlation methods can be used to 
reduce the DDS noise.  Instruments using those techniques are available that automatically 
make both time and frequency domain measurements.  

9.4. Measurement Problems and Pitfalls 
 

 97 

It can be difficult to distinguish between a bad unit under test and a bad measurement. When 
problems occur in time-domain frequency stability measurements, they usually cause results 
that are worse than expected.  It is nearly impossible for a measurement problem to give better 
than correct results, and there is considerable justification in saying that the best results are the 
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correct ones. Two possible exceptions to this are (1) misinterpretation of the scale factor, and 
(2) inadvertent coherency (e.g., injection locking of one source to another due to inadequate 
isolation.  Lack of stationarity (changes in the source itself), while not a measurement problem 
per se, must also be considered.  In general, the more devices available and the more 
measurements being made, the easier it is to sort things out. 
 
One common problem is hum that contaminates the measurements due to ground loops. 
Because the measurement interval is usually much longer than the period of the power line 
frequency, and not necessarily coherent with it, aliased "beats" occur in the frequency record.  
Inspection of the raw data can show this, and the best cure is often isolation transformers in 
the signal leads.  In fact, this is a wise precaution to take in all cases. 
 
All sorts of other mechanisms (electrical, electromagnetic, magnetic, thermal, barometric, 
vibrational, acoustic, etc.) exist that can interfere with time domain frequency measurements.  
Think about all the environmental sensitivities of the unit under test, and control as many of 
them as possible.  Be alert to day-night and weekly cycles that indicate human interference. 
Stories abound about correlations between elevators moving and cars coming and going 
("auto-correlations") that have affected clock measurements.  Think about what can have 
changed in the overall test setup.  Slow periodic fluctuations will show up more distinctly in 
an all tau (rather than an octave tau) stability plot. 
 
In high-precision measurements, where picoseconds matter (e.g. 1x10-15 = 1 psec/1000 
seconds), it is important to consider the mechanical rigidity of the test setup (e.g. 1 psec = 0.3 
mm). This includes the electrical length (phase stability) of the connecting cables.  Teflon 
dielectric is an especially bad choice for temperature stability, while foamed polyethylene is 
much better. Even a few degrees of temperature variation will cause the phase of a high-
stability source to "breathe" as it passes through 100 feet of coaxial cable. 
 
Phase jumps are a problem that should never be ignored. Examination of the raw phase record 
is critical because a phase jump (frequency impulse) appears strangely in a frequency record 
as a white FM noise characteristic [10].  Some large phase jumps are related to the carrier 
period (e.g., a malfunctioning digital frequency divider). 
 
It is difficult to maintain the integrity of a measuring system over a long period, but, as long as 
the operating conditions of the unit under test and the reference are undisturbed, gaps in the 
data record may be acceptable.  An uninterruptible power system is indispensable to maintain 
the continuity of a long run. 
 
9.5. Measuring System Summary 

A comparison of the relative advantages and disadvantages of these methods is shown in the 
following table: 

Table 9.5 Comparison of Time and Frequency Measurement Methods 
Method Advantages Disadvantages 

 
Provides phase data 
Covers wide range of carrier 
frequencies 

Modest resolution Divider & Time Interval 
Counter 

Easily expandable at low cost Not suitable for short tau 
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Resolution enhanced by heterodyne 
factor No phase data 

Provides direct frequency data No frequency sense 
Usable for short tau Requires offset reference 

Mixer and Period Counter 

Expandable at reasonable cost Single carrier frequency 
High resolution, low noise 
Provides phase data 

Single carrier frequency 

Offset reference noise & inaccuracy 
cancels 

Dual Mixer Time Difference

No fixed reference channel 
Relatively complex 

 
It is preferable to make continuous zero dead time phase measurements at regular intervals, 
and a system using a dual-mixer time interval measurement is recommended.  An automated 
high-resolution multi-channel clock (phase) measuring system with a high-performance (e.g., 
hydrogen maser) reference is a major investment, but one that can pay off in better 
productivity.  It is desirable that the measurement control, data storage, and analysis functions 
be separated to provide robustness and networked access to the data.  A low-noise reference 
not only supports better measurement precision but also allows measurements to be made 
faster (with less averaging). 
 
9.6. Data Format 

A one-column vector is all that is required for a phase or frequency data array.  Because the 
data points are equally spaced, no time tags are necessary.  Nevertheless, the use of timetags is 
recommended (see section 9.4 below), particularly to identify anomalies or to compare several 
sources.  Time tagging is generally required for archival storage of clock measurements, but a 
single vector of extracted gap-filled data is sufficient for analysis.  The recommended unit for 
phase data is seconds, while frequency data should be in the form of dimensionless fractional 
frequency.  Double-precision exponential ASCII numeric format is recommended for ease of 
reading into most analysis software, with comma or space-delimited fields and one data point 
per line.  The inclusion of comments and headers can pose problems, but most software will 
reject lines that start with a # or some other non-numeric character. 

9.7. Data Quantization 

The phase or frequency data must be gathered with sufficient resolution to show the variations 
of interest, and it must be represented with sufficient precision to convey those variations after 
removal of fixed offsets (see section 10.1 below).  Nevertheless, highly quantized data can still 
contain useful information, especially after they are combined into longer averaging times.  
An example of highly quantized frequency data is the random telegraph signal shown below.  
Although these data have a non-Gaussian amplitude distribution (their histogram consists of 
two spikes), the random occurrences of the two levels produce a white FM noise 
characteristic. 
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9.8. Timetags 
 
Timetags are often associated with phase or frequency data, and can be usefully applied to the 
analysis of these data. 
 
Timetags are highly desirable for frequency stability measurements, particularly for 
identifying the exact time of some anomaly.  The preferred timetag is the Modified Julian Date 
(MJD) expressed as a decimal fraction and referenced to UTC.  Based on the astronomical 
Julian Date, the number of days since noon on January 1, 4713 BC, the MJD is the Julian Date 
- 2,4000,000.5. It is widely used, purely numeric, can have any required resolution, is easily 
converted to other formats, is non-ambiguous over a two-century (1900-2099) range, and is 
free from seasonal (daylight saving time) discontinuities 
 
Analysis software can easily convert the MJD into other formats such as year, month, day, 
hour, minute and second.  The MJD (including the fractional day) can be obtained from the C 
language time() function by dividing its return value by 86400 and  adding 40587. 
 
9.9. Archiving and Access 
 
There is no standard way to archive and access clock data.  For some purposes, it is sufficient 
to simply save the raw phase or frequency data to a file, identifying it only by the file name.  
At the other extreme, multichannel clock measuring systems may require an elaborate 
database to store a large collection of data, keep track of the clock identities and transactions, 
provide security and robust data integrity, and serve the archived data via a network.  It may 
also be necessary to integrate the clock data with other information (e.g., temperature) from a 
data acquisition system. 
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10 Analysis Procedure 
 
A frequency stability analysis can proceed along several paths, as the circumstances dictate.  
Nevertheless, the following example shows a typical analysis flow.  Using simulated data for a 
high-stability rubidium frequency standard, the purpose of the analysis is to characterize the 
noise in the presence of an outlier, large frequency offset and significant drift. 
 

Step Description Plot 
1 Open and examine a phase 

data file.  The phase data is 
just a ramp with slope 
corresponding to frequency 
offset. 
 
0.000000000000000e+00 
8.999873025741449e-07 
1.799890526185009e-06 
2.699869215098003e-06 
3.599873851209537e-06 
4.499887627663997e-06 
5.399836191440859e-06 
6.299833612216789e-06 
7.199836723454638e-06 
8.099785679257264e-06 
8.999774896024524e-06 
9.899732698242008e-06 

Etc. 

 

2 Convert the phase data to 
frequency data and examine 
it.  An obvious outlier exists 
that must be removed to 
continue the analysis. 
 
Visual inspection of data is 
an important preprocessing 
step! 
 
Analyst judgment may be 
needed for less obvious 
outliers. 
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3 In an actual analysis, one 
should try to determine the 
cause of the outlier.  The 
frequency spike of 1x10-9 
corresponds to a phase step 
of 900 nsec over a single 
900-second measurement 
interval, nine 10 MHz carrier 
cycles.  Data taken at a 
higher rate would help to 
determine whether the 
anomaly happened instant-
taneously or over some finite 
period.  Timetags can help to 
relate the outlier to other 
external events. 

 

3 Remove the outlier.  The 
noise and drift are now 
visible. A line shows a linear 
fit to the frequency data, 
which appears to be quite 
appropriate. 

 
4 Remove the frequency offset 

from the phase data.  The 
resulting quadratic shape is 
due to the frequency drift.  
One can just begin to see 
phase fluctuations around 
the quadratic fit to the phase 
data. 
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5 Remove the frequency drift, 
leaving the phase residuals 
for noise analysis, which is 
now clearly visible. 
 
Some experience is needed 
to interpret phase data like 
these.  Remember that 
frequency corresponds to the 
slope of the phase, so the 
frequency is lowest near the 
end of the record, where the 
phase slope is the most 
negative.  

6 Convert the phase residuals 
to frequency residuals.  
Alternatively, remove the 
frequency drift from the 
frequency data of Step #3.  
There are subtle differences 
in removing the linear 
frequency drift as a 
quadratic fit to the phase 
data compared with 
removing it as a linear fit to 
the frequency data (different 
noise models apply).  Other 
drift models may be more 
appropriate.  Analyst 
judgment is needed to make 
the best choices. 

 

7 Perform a stability analysis 
using the overlapping Allan 
deviation.  The results show 
white FM noise at short 
averaging times (τ-0.5 slope) , 
and flicker FM noise at 
longer tau (t0 slope), both at 
the simulated levels shown 
in the annotations of the first 
plot. 

 

 
10.1. Data Precision  
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There are relatively few numerical precision issues relating to the analysis of frequency 
stability data. One exception, however, is phase data for a highly stable frequency source 
having a relatively large frequency offset.  The raw phase data will be essentially a straight 
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line (representing the frequency offset), and the instability information is contained in the 
small deviations from the line.  A large number of digits must be used unless the frequency 
offset is removed by subtracting a linear term from the raw phase data.  Similar considerations 
apply to the quadratic phase term (linear frequency drift).  Many frequency stability measures 
involve averages of first or second differences.  Thus, while their numerical precision 
obviously depends upon the variable digits of the data set, there is little error propagation in 
forming the summary statistics. 
 
1
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eprocessing of the measurement data is often necessary before the actual analysis is 

hase data may be converted to frequency data, and vice versa.  Phase and frequency data can 

 is common to have gaps and outliers in a set of raw 

ta will often show 

requency outliers are found by comparing each data point with the median value of the data 

requency jumps can also be a problem for stability analysis.  Their occurrence indicates that 

0.2. Preprocessing  
 
Pr
performed, which may require data averaging, or removal of outliers, frequency offset and 
drift. 
 
P
be combined for a longer averaging time.  Frequency offset may be removed from phase data 
by subtracting a line determined by the average of the first differences, or by a least squares 
linear fit. An offset may be removed from frequency data by normalizing it to have an average 
value of zero.  Frequency drift may be removed from phase data by a least squares or 3-point 
quadratic fit, or by subtracting the average of the second differences.  Frequency drift may be 
removed from frequency data by subtracting a least-squares linear fit, by subtracting a line 
determined by the first differences or by calculating the drift from the difference between the 
two halves of the data.  The latter, called the bisection drift, is equivalent to the three-point fit 
for phase data.  Other more specialized log and diffusion models may also be used.  The latter 
are particularly useful to describe the stabilization of a frequency source. In general, the 
objective is to remove as much of the deterministic behavior as possible, obtaining random 
residuals for subsequent noise analysis. 
  
10.3. Gaps, Jumps and Outliers 
 
It
frequency stability data.  Missing or erroneous data 
may occur due to power outages, equipment 
malfunctions and interference.  For long-term tests, it 
may not be possible or practical to repeat the run, or 
otherwise avoid such bad data points.  Usually the 
reason for the gap or outlier is known, and it is 
particularly important to explain all phase discontinuities.  Plotting the da
the bad points, which may have to be removed before doing an analysis to obtain meaningful 
results. 
 

 Gaps, jumps and outliers can occur 
in frequency measurements and they 
must be handled before performing 
a stability analysis.  Methods are 
available to fill gaps and to correct 
for outliers in a consistent manner.  

F
set plus or minus some multiple of the absolute median deviation.  These median statistics are 
more robust because they are insensitive to the size of the outliers.  Outliers can be replaced by 
gaps or filled with interpolated values. 
 
F
the statistics are not stationary, and it may be necessary to divide the data into portions and 
analyze them separately. 
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aps and outliers can occur in clock data due to problems with the measuring system or the 

aps should be included to maintain the proper implied time interval between measurements, 

aps may be filled in phase or frequency data by replacing them with interpolated values, by 

 zero value in fractional frequency data can also occur as the result of the conversion of two 

nevenly spaced phase data can be handled if they have associated timetags by using the 

re must be taken when analyzing the stability of data with missing points and/or gaps.  

G
frequency source itself.  Like death and taxes, gaps and outliers can be avoided but not 
eliminated. 
 
10.4. Gap Handling  
 
G
and a value of zero (0) is often used to denote a gap.  For phase data, zero should be treated as 
valid data if it is the first or last point.  For fractional frequency data, valid data having a value 
of zero can be replaced by some very small value (e.g. 1e-99).  Many analysis functions can 
produce meaningful results for data having gaps by simply skip those points that involve a 
gap.  For example, in the calculation of the Allan variance for frequency data, if either of the 
two points involved in the first difference is a gap, that Allan variance pair is skipped in the 
summation. 
 
G
first removing any leading and trailing gaps, and then using the two values immediately before 
and after any interior gaps to determine linearly interpolated values within the gap. 
 
A
equal adjacent phase data points (perhaps because of limited measurement resolution), and the 
value should be adjusted to, say, 1e-99 to distinguish it from a gap. 
 
10.5. Uneven Spacing 
 
U
individual timetag spacing when converting it to frequency data.  Then, if the tau differences 
are reasonably small, the data may be analyzed by using the average timetag spacing as the 
analysis tau, in effect placing the frequency data on an average uniform grid.  While 
completely random data spacing is not amenable to this process, tau variations of ±10 % will 
yield reasonable results as long as the exact intervals are used for the phase to frequency 
conversion. 
 
10.6. Analysis of Data with Gaps 
  
Ca
Missing points can be found by examining the timetags associated with the data, and gaps can 
then be inserted as placeholders to maintain equally spaced data.  Similarly, outliers can be 
replaced with gaps for the same reason.  These gaps can span multiple points.  Some analysis 
processes can be performed with data having gaps by skipping over them, perhaps at some 
speed penalty, but other calculations cannot be.  It is therefore often necessary to replace the 
gaps with interpolated values.  Those points are not real data, however, and, if there are many 
of them, the results will be suspect.  In these cases, judgment is needed to assure a credible 
result.  It may be more prudent to simply analyze a gap-free portion of the data. 
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hase to frequency conversion is straightforward for data having gaps.  Because two phase 

onversion from frequency to phase is more problematic because of the need to integrate the 

rift analysis functions generally perform well for data having gaps, provided that missing 

ariance analysis functions can include provisions for handling gaps.  Some of these functions 

ap filling in spectral analysis functions can affect the low frequency portion of the spectrum. 

he median absolute deviation (MAD) is recommended as its means of outlier recognition.  

       

hile the definition of an outlier is somewhat a matter of judgment, it is important to find and 

10.7. Phase-Frequency Conversions 
 
P
points are needed to determine each frequency point (as the difference between the phase 
values divided by their tau), a single phase gap will cause two frequency gaps, and a gap of N 
phase points causes N+1 frequency gaps. 
 
C
frequency data.  The average frequency value is used to calculate the phase during the gap, 
which can cause a discontinuity in the phase record.  Analysis of phase data resulting from the 
conversion of frequency data having a large gap is not recommended. 
 
10.8. Drift Analysis 
 
D
data are represented by gaps to maintain a regular time sequence. 
 
10.9. Variance Analysis 
 
V
yield satisfactory results in all cases, while others have speed limitations, or provide 
unsatisfactory results for data having large gaps.  The latter is most apparent at longer 
averaging times where the averaging factor is comparable to the size of the gap.  The speed 
limitations are caused by more complex gap checking and frequency averaging algorithms, 
while the poor results are associated with the total variances for which conversion to phase 
data is required.  In all cases, the results will depend on coding details included in addition to 
the basic variance algorithm.  Filling gaps can often help for the total variances.  Two general 
rules apply for the variance analysis of data having large gaps: (1) use unconverted phase data, 
and (2) check the results against the normal Allan deviation (which has the simplest, fastest 
gap handling ability. 
 
10.10. Spectral Analysis 
 
G
 
10.11. Outlier Recognition 
 
T
The MAD is a robust statistic based on the median of the data.  It is the median of the scaled 
absolute deviations of the data points from their median value, defined as MAD =  
Median { | y(i) - m | / 0.6745 }, where m = Median { y(i) }, and the factor 0.6745 makes the 
MAD equal to the standard deviation for normally distributed data.  Each frequency data 
point, y(i), is compared with the median value of the data set, m, plus or minus the desired 
multiple of the MAD.  
 
W
remove such points in order to use the rest of the data, based on their deviation from the 
median of the data, using a deviation limit in terms of the median absolute deviation (a 5-
sigma limit is common).  This is a robust way to determine an outlier, which is then replaced 
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 is important to explain all outliers, thereby determining whether they are due to the 

by a gap.  An automatic outlier removal algorithm can iteratively apply this method to remove 
all outliers, which should be an adjunct to, and not a substitute for, visual inspection of the 
data. 
 
It
measurement process or the device under test.  An important first step is to correlate the bad 
point with any external events (e.g., power outages, equipment failures, etc.) that could 
account for the problem.  Failures of the measurement system, frequency reference, or 
environmental control are often easier to identify if multiple devices are under test.  
Obviously, a common gap in all measurement channels points to a failure of the measurement 
system, while a common change in all measurement readings points to a reference problem.  
Auxiliary information such as monitor data can be a big help in determining the cause of 
outliers.  A log of all measurement system events should be kept to facilitate outlier 
identification.  Discrete phase jumps are a particular concern, and, if they are related to the RF 
carrier frequency, may indicate a missing cycle or a problem with a digital divider.  A phase 
jump will correspond to a frequency spike with a magnitude equal to the phase change divided 
by the measurement interval.  Such a frequency spike will produce a stability record that 
appears to have a (large magnitude) white FM noise characteristic, which can be a source of 
confusion.  
 
References for Gaps, Jumps, and Outliers 

1. D.B. Percival, "Use of Robust Statistical Techniques in Time Scale Formation", 
Preliminary Report, U.S. Naval Observatory Contract No. N70092-82-M-0579, 1982.  

2. at Gernot M.R. Winkler, "Introduction to Robust Statistics and Data Filtering", Tutorial 
1993 IEEE Freq. Contrl. Symp., Sessions 3D and 4D, June 1, 1993.  

3. ohn Wiley & Sons, V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd Edition, J
Chichester, 1994, ISBN 0-471-93094-6.  

 
10.12. Data Plotting 
  
Data plotting is often the most important step in the analysis of frequency stability. Visual 

hase data are plotted as line segments connecting the data points. This presentation properly 

 is the user's responsibility to select an appropriate variance for the stability analysis.  The 

inspection can provide vital insight into the results, and is an important preprocessor before 
numerical analysis. A plot also shows much about the validity of a curve fit.  
 
P
conveys the integral nature of the phase data. Frequency data are plotted as horizontal lines 
between the frequency data points. This shows the averaging time associated with the 
frequency measurement, and mimics the analog record from a frequency counter. As the 
density of the data points increases, there is essentially no difference between the two plotting 
methods.  Missing data points are shown as gaps without lines connecting the adjacent points. 
 
10.13. Variance Selection 
 
It
overlapping Allan variance is recommended in most cases, especially where the frequency 
drift is small or has been removed.  The Allan variance is the most widely used time-domain 
stability measure, and the overlapping form provides better confidence than the original 
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he choice of tau interval depends mainly on whether interference mechanisms are suspected 

ny frequency stability measurement includes noise 

ploy the so-called "three-cornered hat" 

σ²ab= σ²a + σ²b

σ²ac= σ²a + σ²c

σ²bc= σ²b + σ²c .

The individual variances may be determined by the expressions 

σ²a= ½ [ σ²ab + σ²ac - σ²bc ] 

σ²b= ½ [ σ²ab + σ²bc - σ²ac ] 

σ²c= ½ [ σ²ac + σ²bc - σ²ab ] . 

"normal" version.  The total and Thêo1 variance can be used for even better confidence at 
large averaging factors (but at the expense of longer computation time).  The modified Allan 
variance is recommended to distinguish between white and flicker PM noise, and, again, a 
total form of it is available for better confidence at long tau.  The time variance provides a 
good measure of the time dispersion of a clock due to noise, while MTIE measures the peak 
time deviations.  TIE rms can also be used to assess clock performance, but TVAR is 
generally preferred.    Finally, the overlapping Hadamard variance is recommended over its 
normal form for analyzing stability in the presence of divergent noise or frequency drift.  In all 
cases, the results are reported in terms of the deviations. 
 
T
that cause the stability to vary periodically.  Normally, octave or decade spacing is used (the 
former has even spacing on a log-log plot, while the latter provides tau multiples of ten).  The 
all tau option can be useful as a form of spectral analysis to detect cyclic disturbances (such as 
temperature cycling).  
 
10.14. Three-Cornered Hat 
 
A
contributions from both the device under test and the 
reference. Ideally, the reference noise would be low 
enough that its contribution to the measurement is 
negligible.  Or, if the noise of the reference is known, 
it can be removed by subtracting its variance. A 
special case is that of two identical units where half 
of the measured variance comes from each, and the 
measured deviation can be corrected for one unit by 
dividing it by √2.  Otherwise, it may be useful to em
method for determining the variance of an individual source.  Given a set of three pairs of 
measurements for three independent frequency sources a, b and c whose variances add 

It is sometimes necessary to 
determine the individual noise 
contributions of the two sources that 
contribute to a variance 
measurement.  Methods exist for 
doing so by using the results of 
multiple measurements to estimate 
the variance of each source. 
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Although useful for determining the individual stabilities of units having similar performance, 
the method may fail by producing negative variances for units that have widely differing 
stabilities, if the units are correlated, or for which there are insufficient data. The three sets of 
stability data should be measured simultaneously. The three-cornered hat method should be 
used with discretion, and it is not a substitute for a low noise reference. It is best used for units 
having similar stability (e.g., to determine which unit is best). Negative variances are a sign 
that the method is failing (because it was based on insufficient measurement data, or because 
the units under test have disparate or correlated stability). This problem is most likely to arise 
at long tau. 
 
The three-cornered hat function may be used to correct a stability measurement for the noise 
contribution of the reference, as shown in the following diagram: 

 

The Unit Under Test (UUT), denoted as source A, is measured against the reference, denoted 
by B and C, by identical stability data files A-B and A-C. The reference is measured against 
itself by stability data file B-C, which contains the a priori reference stability values multiplied 
by √2. 
 
An example of the use of the three-cornered hat function to correct stability data for reference 
noise is shown below. Simulated overlapping Allan deviation stability data for the unit under 
test versus the reference were created by generating and analyzing 512 points of frequency 
data with tau = 1 second and σy(1 sec) = 1e-11. The resulting stability data are shown in the 
following table. 
 

Stability Data for Unit Under Test versus Reference 
Tau #  Sigma Min Sigma Max Sigma

 1.000e+00  511  9.448e-12  9.108e-12  9.830e-12 
 2.000e+00  509  7.203e-12  6.923e-12  7.520e-12 
 4.000e+00  505  5.075e-12  4.826e-12  5.367e-12 
 8.000e+00  497  3.275e-12  3.058e-12  3.546e-12 
 1.600e+01  481  2.370e-12  2.157e-12  2.663e-12 
 3.200e+01  449  1.854e-12  1.720e-12  2.025e-12 
 6.400e+01  385  1.269e-12  1.147e-12  1.441e-12 
 1.280e+02  257  5.625e-13  4.820e-13  7.039e-13 
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A similar stability file is used for the reference. Since it represents a measurement of the 
reference against itself, the Allan deviations of the reference source are multiplied by √2. 
Simulated overlapping Allan deviation stability data for the reference versus the reference was 
created by generating 512 points of frequency data with tau = 1 second and σy(1) = 1.414e-12. 

Stability Data for Unit Under Test versus Reference 
Tau #  Sigma Min Sigma Max Sigma

 1.000e+00  511 1.490e-12 1.436e-12 1.550e-12 
 2.000e+00  509 1.025e-12 9.854e-13 1.070e-12 
 4.000e+00  505 7.631e-13 7.257e-13 8.070e-13 
 8.000e+00  497 5.846e-13 5.458e-13 6.329e-13 
 1.600e+01  481 3.681e-13 3.349e-13 4.135e-13 
 3.200e+01  449 2.451e-13 2.152e-13 2.924e-13 
 6.400e+01  385 1.637e-13 1.368e-13 2.173e-13 
 1.280e+02  257 1.360e-13 1.058e-13 2.285e-13 

The corrected UUT and reference stabilities are plotted below: 

 

 

 112 



SECTION 10 ANALYSIS PROCEDURE 

Here the reference stability is about 1x10-12τ-1/2, and the corrected UUT instability is slightly 
less than the uncorrected values. Note that the B and C columns of corrected stability values 
both represent the reference source. Appropriate use of the three-cornered hat method to 
correct stability measurements for reference noise applies where the reference stability is 
between three to ten times better than that of the unit under test. The correction is negligible 
for more the latter (see above), and has questionable confidence for less than the former (and a 
better reference should be used).  

The error bars of the individual variances may be set using χ² statistics by first determining 
the reduced number of degrees of freedom associated with the three-cornered hat process [11, 
12]. The fraction of remaining degrees of freedom for unit i as a result of performing a three-
cornered hat instead of measuring against a perfect reference is given by: 

Γ = (2·σ4i) / (2·σ4i + σ²a·σ²b + σ²a·σ²c+ σ²b·σ²c) . 

The ratio of the number of degrees of freedom is 0.4 for three units having the same stability, 
independent of the averaging time and noise type. 

The three-cornered hat technique can be extended to M clocks (subject to the same restriction 
against negative variances) by using the expression 
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and the σ²ij are the measured Allan variances for clock i versus j at averaging time τ. Using 

σ2
ii = 0 and σ2

ij = σ2
ji, one can easily write closed-form expressions for the separated variances 

from measurements of M clocks. 
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10.15. Reporting 
 
The results of a stability analysis are usually presented as a combination of textual, tabular and 
graphic forms.  The text describes the device under test, the test setup, and the methodology of 
the data preprocessing and analysis, and summarizes the results.  The assumptions and 
analysis choices should be documented so that the results could be reproduced.  The report 
often includes a table of the stability statistics.  Graphical presentation of the data at each stage 
of the analysis is generally the most important aspect of presenting the results.  For example, 
these are often a series of plots showing the phase and frequency data with an aging fit, phase 
and frequency residuals with the aging removed, and stability plots with noise fits and error 
bars.  Plot titles, subtitles, annotations and inserts can be used to clarify and emphasize the 
data presentation.  The results of several stability runs can be combined, possibly along with 
specification limits, into a single composite plot.  The various elements can be combined into 
a single electronic document for easy printing and transmittal. 
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11 Case Studies 
 
This section contains several case studies to further illustrate methodologies of frequency 
stability analysis. 
 
11.1. Flicker Floor of a Cesium Frequency Standard 
 
The purpose of this analysis is to examine the flicker floor of a commercial cesium beam tube 
frequency standard.  An instrument of this kind can be expected to display a white FM noise 
characteristic out to long averaging times.  At some point, however, the unit will typically 
“flicker out”, with its stability plot flattening out to a flicker FM noise characteristic, beyond 
which its stability will no longer improve.  Determining this point requires a lengthy and 
expensive run, and it is worthwhile to use an analytical method that provides the best 
information at long averaging factors.  The effort of a more elaborate analysis is far easier than 
extending the measurement time by weeks or months. 
 

 
This is the five-month 
frequency record for the unit 
under test.  It has already been 
“cleaned up” for any missing 
points, putting in gaps as 
required to provide a time-
continuous data set.  The data 
look very “white” (see Section 
6.1), the frequency offset is 
very small (+7.2x10-14), and 
there is no apparent drift 
(+1.4x10-16/day).  Overall, this 
appears to be a very good 
record.  
 
An overlapping Allan 
deviation plot shows a white 
FM noise level of about 
8.2x10-12τ-1/2 out to about 5 
days, where the stability levels 
off at about 1.2x10-14.  While 
this is very respectable 
behavior, one wonders what 
the stability actually is at the 
longer averaging times.  But to 
gain meaningful confidence 
using ADEV there, the run 
would have to be extended by 
several months.  
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The total deviation can provide 
better confidence at the longer 
averaging times.  It seems to 
indicate that the stability 
continues to improve past 10 
days, where is drops below 
1x10-14.  But the results are not 
conclusive. 

 
 
 
Thêo1 can provide even better 
long-term information, at the 
expense of a longer calculation 
time.  This Thêo1 plot seems 
to show even more clearly that 
the stability continues to 
improve at longer averaging 
times, well into the pp1015 
range.  It assumes white FM 
noise (no Thêo1 bias removal). 

 
 
A ThêoH analysis with 
automatic bias removal, which 
combines the AVAR and 
ThêoBR statistics, requires an 
unacceptably long time for the 
original data set.  By averaging 
the data by a factor of 5 (τ = 
500 sec), the analysis can be 
performed in several hours.  
The results are essentially the 
same as for Thêo1 above.  The 
Thêo1 bias is 1.676, 
intermediate between white 
and flicker FM noises for 
medium to large averaging 
factors. 

 

One can conclude that this cesium beam frequency standard reaches a stability slightly 
better than 1x10-14 at an averaging time on the order of 1 month. 
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11.2. Hadamard Variance of a Source with Drift 
 

 
 
 
These frequency data simulate a 
typical rubidium frequency 
standard (RFS) with a combination 
of white and flicker FM noise, plus 
significant frequency drift. 
 

 
 
 
If an Allan variance analysis is 
performed directly on these data 
without drift removal, the stability 
at the longer averaging times is 
degraded.  In particular, the 
stability plot has a τ+1 slope 
beyond 105 seconds that 
corresponds to the drift (i.e., about 
1x10-12 at 5 days). 

 
 
 
If the linear frequency drift is 
removed before performing the 
AVAR stability analysis, the 
stability plot shows a white FM 
noise (τ-1/2) characteristic changing 
to flicker FM noise (t0) at longer 
averaging times.  It is usually best 
to use a stability plot only to show 
the noise, and analyzing and 
removing the drift separately. 
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The Hadamard variance is 
insensitive to linear frequency 
drift.  It can therefore be used to 
perform a stability analysis on the 
original data without first having 
to remove the drift.  The HDEV 
results are essentially identical to 
those of the drift-removed ADEV.  
This can be more convenient, 
especially when analyzing a 
combination of sources having 
differing amounts of drift (e.g., 
cesium and rubidium units). 

 
 
11.3. Phase Noise Identification 
 
Consider the problem of identifying the dominant type of phase noise in a frequency 
distribution amplifier.  Assume that time domain stability measurements have been made 
comparing the amplifier’s input and output signals.  How should these data be analyzed to best 
determine the noise type?  Simulated white and flicker PM noise at equal levels are analyzed 
below in several ways to demonstrate their ability to perform this noise identification. 
 

White PM Flicker PM 
Examination of the phase data is a good first step.  An experienced analyst will 
immediately notice the difference between the white and flicker noise plots, but will find it 
harder to quantify them. 

  
In contrast, the frequency data shows little noise type discrimination, because the 
differencing process whitens both.  Examination of the frequency data would be 
appropriate to distinguish between white and flicker FM noise, however. 
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The Allan deviation is not able to distinguish between white and flicker PM noise.  Both 
have slopes of about 1, as shown by the superimposed noise fit lines. 

  
The modified Allan deviation, by virtue of its additional phase averaging, is able to 
distinguish between white and flicker PM noise, for which the slopes are –1.5 and –1.0, 
respectively. 

  
Even better discrimination is possible with the autocorrelation function.  The lag 1 ACF is 
0.006 and 0.780 for these white and flicker PM noise data, and is able to quantitatively 
estimate the power law noise exponents as +1.99 and +0.93, respectively.  That ID method 
is quite effective even for mixed noise types. 

 119 



HANDBOOK OF FREQUENCY STABILITY ANALYSIS 

 

 

 

 
 
 
11.4. Detection of Periodic Components 
 
Frequency stability data can contain periodic fluctuations due to external interference, 
environmental effects, or the source itself, and it can therefore be necessary to detect discrete 
spectral components when performing a stability analysis.  This example uses a set of 50,000 
points of τ= 1 second simulated white FM noise at a level of 1x10-11τ-1/2 that contains 
sinusoidal interference with a period of 500 seconds at a peak level of 1x10-12.  The latter 
simulates interference that might occur as the result of air conditioner cycling.  Several 
analytical methods are used to detect this periodic component. 
 

 
 
 
 
The interference 
level is too low to 
be visible in the full 
frequency data plot. 
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By zooming in, 
there is just a hint of 
the interference (10 
cycles over 5000 
data points). 

 
 
 
 
The interference is 
quite visible in an 
“all tau” stability 
plot as a null that 
occurs first at an 
averaging time of 
500 seconds (the 
period of the 
interference).  Here 
the stability is equal 
to the underlying 
white FM noise 
level.  
 
 
 
The interference is 
clearly visible in the 
power spectral 
density (PSD), 
which has a bright 
component at 2 
mHz, correspond-
ing to the 500 sec 
period of the 
interference. 
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The interference is 
less visible in an 
autocorrelation plot, 
where cyclic 
behavior is barely 
noticeable with a 
500-lag period.  The 
PSD has equivalent 
information, but its 
log scale makes 
low-level 
components more 
apparent. 

 
 
It is a good analysis policy to examine the power spectral density when periodic fluctuations 
are visible on a stability plot and periodic interference is suspected. 
 
11.5. Stability Under Vibrational Modulation 
 

This plot shows the 
stability of an 
oscillator with a 
combination of 
white PM noise and 
a sinusoidal com-
ponent simulating 
vibrational modula-
tion.  Nulls in the 
Allan deviation 
occur at averaging 
times equal to the 
multiples of the 20 
Hz sinusoidal mod-
ulation period, 
where the stability 
is determined by 
the white PM noise.  
Peaks in the Allan 
deviation occur at 
the modulation half 
cycles, and have a 
τ-1 envelope set by 
the vibrational 
phase modulation. 
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11.6. White FM Noise of a Frequency Spike 
 

 
The Allan deviation of 
a frequency record 
having a large spike (a 
phase step) has a τ-1/2 
characteristic [1].  
Thus adding a single 
large (say 106) central 
outlier to the 1000-
point test suite of 
section 12.4 will give 
a data set with σy(τ) = 
[(106)⋅2/(1000-1)]1/2 = 
3.16386e4, as shown 
in this stability plot. 

 

 
 
Reference: C.A. Greenhall, "Frequency Stability Review", Telecommunications and Data 
Acquisition Progress Report 42-88, Jet Propulsion Laboratory, Pasadena, CA, Feb. 1987. 

 

 
11.7. Composite Aging Plots 
 
A composite plot showing the aging of a population of frequency sources can be an effective 
way to present this information visually, providing a quick comparison of their behaviors.  The 
following figure shows the stabilization period of a production lot of  rubidium clocks. 
 
Plots for 40 units are shown with their serial numbers, all plotted with the same scales.  In 
particular, these plots all have a full x-scale time range of nine weeks (1 week/div) and a full 
y-scale frequency range of 1.5x10-11 (1x10-12/div).  A diagonal slope downward across the plot 
corresponds to an aging of about –2.4x10-13/day.   All the data have τ = 900 seconds (15 
minutes).  A figure like this immediately shows that (a) all the units have negative frequency 
aging of about the same magnitude that stabilizes in about the same way, (b) there are 
occasional gaps in some of the records, (c) all of the units have about the same short-term 
noise, but some of the records are quieter than others in the longer term, (d) some of the units 
take longer than others to reach a certain aging slope. 
 
The plots, although small, still contain enough detail to allow subtle comparisons very quickly, 
far better than a set of numbers or bar graphs would do.  The eye can easily see the similarities 
and differences, and can immediately select units based on some criterion, which would be 
harder to do using a set of larger plots on separate pages.  Closer inspection of even these 
small plots can reveal a lot of quantitative information if one knows the scale factors.  Color 
coding, although not used here, could be used to provide additional information. 
 
These plots are inspired by Edward Tufte’s book The Visual Display of Quantitative 
Information. 
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001 002 003 004 005

006 007 008 009 010

011 012 013 014 015

016 017 018 019 020

 
 

021 022 023 024 025

026 027 028 029 030

031 032 033 034 035

036 037 038 039 040

 
 
Reference:  E.R. Tufte, The Visual Display of Quantitative Information, ISBN 978-
0961392109, Graphic Press, 1983. 
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12   Software 
 
Software is necessary to perform a frequency 
stability analysis, because those calculations 
generally involve complex specialized algorithms 
and large data sets needed to interactively perform 
and document a complete stability analysis.  It is convenient to use an integrated software 
package that combines all of the required analytical tools, operates on current computer 
hardware and operating systems, includes the latest analytical techniques, and has been 
validated to produce the correct results. 

Specialized software is needed to 
perform a frequency stability 
analysis. 

 
12.1. Software Validation 
 
Considerable effort is needed to ensure that the results obtained from frequency stability 
analysis software are correct.  Several suggested validation methods are shown.  Mature 
commercially available software should be used whenever possible instead of developing 
custom software.  User feedback and peer review is important.  There is a continuing need to 
validate the custom software used to analyze time domain frequency stability, and the methods 
listed below can help ensure that correct results are obtained. 
 
Several methods are available to validate frequency stability analysis software: 
 
1. Manual Analysis: The results obtained by manual analysis of small data sets (such as in 

NBS Monograph 140Annex 8.E) can be compared with the new program output.  This is 
always good to do to get a “feel” for the process. 

2. Published Results: The results of a published analysis can be compared with the new 
program output.  One important validation method is comparison of the program results 
against a test suite such as the one in References [1, 2].  Copies of those test data are 
available on-line [3]. 

3. Other Programs: The results obtained from other specialized stability analysis programs 
(such as that from a previous generation computer or operating system) can be compared 
with the new program output. 

4. General Purpose Programs: The results obtained from industry standard, general purpose 
mathematical and spreadsheet programs such as MathCAD®, Matlab® and Excel® can be 
compared with the new program output. 

5. Consistency Checks: The new program should be verified for internal consistency, such 
as producing the same stability results from phase and frequency data.  The standard and 
normal Allan variances should be approximately equal for white FM noise.  The normal 
and modified Allan variances should be identical for an averaging factor of 1. For other 
averaging factors, the modified Allan variance should be approximately one-half the 
normal Allan variance for white FM noise, and the normal and overlapping Allan 
variances should be approximately equal.  The overlapping method provides better 
confidence of the stability estimates. The various methods of drift removal should yield 
similar results. 

6. Simulated Data: Simulated clock data can also serve as a useful cross check.  Known 
values of frequency offset and drift can be inserted, analyzed, and removed.  Known 
values of power-law noise can be generated, analyzed, plotted, and modeled. 
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12.2. Test Suites  
 
The following tables summarize the values for several common frequency stability measures 
for both the classic NBS data set and a 1000-point portable test suite. 
 
12.3. NBS Data Set  
 
A "classic'' suite of frequency stability test data is the set of nine 3-digit numbers from Annex 
8.E of NBS Monograph 140 shown in Table I. Those numbers were used as an early example 
of an Allan variance calculation. This frequency data is also normalized to zero mean by 
subtracting the average value, and then integrated to obtain phase values. A listing of the 
properties of this data set is shown in Table II. While nine data points are not sufficient to 
calculate large frequency averages, they are, nevertheless, a very useful starting point to verify 
frequency stability calculations, since a small data set can easily be entered and analyzed 
manually. A small data set is also an advantage for finding "off-by-one'' errors where an array 
index or some other integer variable is slightly wrong and hard to detect in a larger data set.  
  
Table I.  NBS Monograph 140, Annex 8.E Test Data 
 
# Frequency Normalized Frequency Phase (τ=1)
 1 892     103.11111    0.00000 
 2 809     20.11111     103.11111 
 3 823     34.11111     123.22222 
 4 798     9.11111      157.33333 
 5 671    -117.88889        166.44444 
 6 644    -144.88889        48.55555 
 7 883     94.11111    -96.33333 
 8 903     114.11111   -2.22222 
 9 677    -111.88889        111.88889 
10                         0.0000 
 
Table II.  NBS Monograph 140, Annex 8.E Test Data Statistics 
 

Averaging Factor 1  2 
# Data Points 9  4 
Maximum 903  893.0 
Minimum 644  657.5 
Average 788.8889  802.875 
Median 809  830.5 
Linear Slope -10.20000  -2.55 
Intercept 839.8889  809.25 
Standard Deviation [1] 100.9770  102.6039 
Normal Allan Deviation 91.22945  115.8082 
Overlapping Allan Dev 91.22945  85.95287 
Modified Allan Dev 91.22945  74.78849 
Time Deviation 52.67135  86.35831 
Hadamard Deviation 70.80607  116.7980 
Overlap Hadamard Dev 70.80607  85.61487 
Hadamard Total Dev 70.80607  91.16396 
Total Deviation 91.22945  93.90379 
Modified Total Dev 75.50203  75.83606 
Time Total Deviation 43.59112  87.56794 
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Table II Note: [1] Sample (not population) standard deviation. 
 
12.4. 1000-Point Test Suite  
 
The larger frequency data test suite used here consists of 1000 pseudo-random frequency data 
points. It is produced by the following prime modulus linear congruential random number 
generator:  
 
ni+1 = 16807 ni Mod 2147483647  
 
This expression produces a series of pseudo-random integers ranging in value from 0 to 
2147483646 (the prime modulus, 231-1, avoids a collapse to zero). When started with the seed 
n0 = 1234567890, it produces the sequence n1 = 395529916, n2 = 1209410747, n3 = 
633705974, etc. These numbers may be divided by 2147483647 to obtain a set of normalized 
floating-point test data ranging from 0 to 1. Thus the normalized value of n0 is 0.5748904732. 
A spreadsheet program is a convenient and reasonably universal way to generate these data. 
The frequency data may be converted to phase data by assuming an averaging time of 1, 
yielding a set of 1001 phase data points. Similarly, frequency offset and/or drift terms may be 
added to the data. These conversions can also be done by a spreadsheet program.  
 
The values of this data set will be uniformly distributed between 0 and 1. While a data set with 
a normal (Gaussian) distribution would be more realistic, and could be produced by summing 
a number of independent uniformly distributed data sets, or by the Box-Muller method [5], 
this simpler data set is adequate for software validation. 
 
Table III.  1000-Point Frequency Data Set 
 

Averaging Factor 1 10 100 
# Data Points  1000 100 10 
Maximum 9.957453e-01 7.003371e-01  5.489368e-01 
Minimum 1.371760e-03 2.545924e-01 4.533354e-01 
Average [1] 4.897745e-01 4.897745e-01 4.897745e-01 
Median 4.798849e-01 5.047888e-01 4.807261e-01 
Linear Slope [2,3] 6.490910e-06 5.979804e-05 1.056376e-03 
Intercept [3] 4.865258e-01 4.867547e-01 4.839644e-01 
Bisection Slope [2]  -6.104214e-06 -6.104214e-05 -6.104214e-04 
1st Diff Slope [2] 1.517561e-04 9.648320e-04 1.011791e-03 
Log Fit [2,4], a= 5.577220e-03 5.248477e-03 7.138988e-03 
y(t)=a·ln (bt+1)+c, b=  9.737500e-01 4.594973e+00 1.420429e+02 
y'(t)=ab/(bt+1), c= 4.570469e-01 4.631172e-01 4.442759e-01 
Slope at end 5.571498e-06 5.237080e-05 7.133666e-04 
Standard Dev [5] 2.884664e-01 9.296352e-02 3.206656e-02 
Normal Allan Dev [6]  2.922319e-01 9.965736e-02 3.897804e-02 
Overlap Allan Dev [8] 2.922319e-01 9.159953e-02 3.241343e-02 
Mod Allan Dev [7,8]   2.922319e-01 6.172376e-02 2.170921e-02 
Time Deviation [8] 1.687202e-01 3.563623e-01 1.253382e-00 
Hadamard Deviation 2.943883e-01 1.052754e-01 3.910861e-02 
Overlap Had Dev 2.943883e-01 9.581083e-02 3.237638e-02 
Hadamard Total Dev 2.943883e-01 9.614787e-02 3.058103e-02 
Total Deviation 2.922319e-01 9.134743e-02 3.406530e-02 
Modified Total Dev 2.418528e-01 6.499161e-02 2.287774e-02 
Time Total Deviation 1.396338e-01 3.752293e-01 1.320847e-00 
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Table III Notes: 
[1] Expected value = 0.5. 
[2] All slopes are per interval. 
[3] Least squares linear fit. 
[4] Exact results will depend on iterative algorithm used. Data not suited to log fit. 
[5] Sample (not population) standard deviation. Expected value = 1/√12 = 0.2886751. 
[6] Expected value equal to standard deviation for white FM noise. 
[7] Equal to normal Allan deviation for averaging factor = 1. 
[8] Calculated with listed averaging factors from the basic τ = 1 data set. 
 
Table IV.   Error Bars for n=1000 Point =1 Data Set with Avg Factor=10 
 
Allan Dev Type Sigma Value Conf Interval χ² for 
#Pts Noise Type & Ratio Remarks 95% CF
Normal 9.965736e-02 CI= 8.713870e-03 [2,3] 
99  W FM [1], B1=0.870 ±1σ CI. [6] 
 
Overlapping  9.159953e-02 Max σy(τ)=1.014923e-01 [7] 119.07  
981  W FM   Max σy(τ)= 1.035201e-01[8]    114.45 
  # χ² df=146.177 Min σy(τ)= 8.223942e-02 [8]    181.34 
 
Modified [4]  6.172376e-02 Max σy(τ)=7.044412e-02 [7]      72.64 
972  W FM[5], R(n)=0.384  Max σy(τ)= 7.224944e-02 [8]     69.06 
      # χ² df=94.620 Min σy(τ)= 5.419961e-02 [8]    122.71 
 
Table IV Notes: 
[1] Theoretical B1=1.000 for W FM noise and 0.667 for F and W PM noise. 
[2] Simple, noise-independent CI estimate =σy(τ)/√N=1.001594e-02. 
[3] This CI includes κ(α) factor that depends on noise type: 
 Noise α κ(α) 
 W PM  2 0.99 
 F PM  1 0.99 
 W FM  0 0.87 
 F FM -1 0.77 
 RW FM -2 0.75 
[4] BW factor 2πfhτ0 = 10.  Applies only to F PM noise. 
[5] Theoretical R(n) for W FM noise = 0.500 and 0.262 for F PM noise. 
[6] Double-sided 68 % confidence interval: p = 0.158 and 0.842. 
[7] Single-sided 95 % confidence interval: p = 0.950. 
[8] Double-sided 95 % confidence interval: p = 0.025 and 0.975. 
 
12.5. IEEE Standard 1139-1999  
 
IEEE Standard 1139-1999, IEEE Standard Definitions of Physical Quantities for Fundamental 
Frequency and Time Metrology – Random Instabilities contains several example of stability 
calculations.  Annex C.2 contains an example of an Allan deviation calculation, Annex C.3 
has an example of a modified Allan deviation calculation, Annex C.4 has an example of a total 
deviation calculation, and Annex D contains examples of confidence interval calculations. 
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13 Glossary 
 
The following terms are used in the field of frequency stability analysis 
  
Aging The change in frequency with time due to internal effects 

within the device. 
 
Allan Variance  The two-sample variance σ²y(τ) commonly used to measure 

frequency stability. 
 
Averaging  The process of combining phase or frequency data into 

samples at a longer averaging time. 
 
Averaging Time  See Tau. 
 
BW Bandwidth, hertz. 
 
Confidence Limit The uncertainty associated with a measurement.  Often a 68 

% confidence level or error bar. 
 
Drift The change in frequency with time due to all effects 

(including aging and environmental sensitivity). 
 
Frequency Data A set of fractional frequency values, y[i], where i denotes 

equally-spaced  time samples. 
 
Hadamard Variance A three-sample variance, HVAR, that is similar to the two-

sample Allan variance.  It uses the second differences of the 
fractional frequencies, and is unaffected by linear frequency 
drift. 

 
£(f) £(f) = 10·log[½ · Sφ(f)], the ratio of the SSB phase noise 

power in a 1 Hz BW to the total carrier power, dBc/Hz.  
Valid when noise power is much smaller than the carrier 
power. 

 
MJD The Modified Julian Date is based on the astronomical Julian 

Date, the number of days since noon on January 1, 4713 BC.  
The MJD is the Julian Date - 2,4000,000.5. 

 
Modified Sigma A modified version of the Allan or total variance that uses 

phase averaging to distinguish between white and flicker PM 
noise processes. 

 
MTIE The maximum time interval error of a clock. 
 
Normalize To remove the average value from phase or frequency data . 
 
Phase Data A set of time deviates, x[i] with units of seconds, where i 

denotes equally-spaced time samples.   Called “phase” data 
to distinguish them from the independent time variable. 
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Phase Noise The spectral density of the phase deviations. 
 
Sampling Time See Tau.   
 
Sigma The square root or deviation of a variance, often the two-

sample or Allan deviation, σy(τ).  
 
Slope The change in frequency per tau interval. 
 
SSB  Single sideband. 
 
Sf(f) The one-sided spectral density of the phase deviations, 

rad²/Hz. 
 
Sx(f) The one-sided spectral density of the time deviations, 

sec²/Hz. 
 
Sy(f) The one-sided spectral density of the fractional frequency 

deviations, 1/Hz. 
 
Tau The interval between phase measurements or the averaging 

time used for a frequency measurement. 
 
Total A variance using an extended data set that provides better 

confidence at long averaging times. 
 
Thêo1 Theoretical variance #1, a variance providing stability data 

out to 75 % of the record length. 
 

ThêoBR A biased removed version of Thêo1. 
 
ThêoH A hybrid combination of ThêoBR and the Allan variance. 
 
TIE The time interval error of a clock.  Can be expressed as the 

rms time interval error TIE rms or the maximum time 
interval error MTIE. 

 
Total Variance  A two-sample variance similar to the Allan variance with 

improved confidence at large averaging factors. 
 
x(t) The instantaneous time deviation from a nominal time, x(t) = 

φ(t)/2πν0, seconds, where ν0 is the nominal frequency, hertz.  
This dependent time variable is often called "phase" to 
distinguish it from the independent time variable t. 

 
y(t)  The instantaneous fractional frequency deviation from a 

nominal frequency, y(t) = [ν(t)−ν0]/ν0] = x'(t), where ν0 is the 
nominal frequency 
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References for Glossary 
 
1. "IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time 

Metrology - Random Instabilities", IEEE Std 1139-1999, July 1999. 
2. Glossary of Time and Frequency Terms issued by Comite Consultatif International de 

Radio Communication – International Telecommunications (CCITT) Union, Geneva, 
Switzerland. 
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