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Abstract—When using network synchronization protocols like

IEEE 1588 or NTP, a common approach to increase the perfor-

mance is to add hardware support for timestamping the essential

synchronization messages. Further, timestamping accuracy and

the stability of the local oscillator of a network synchronized

node are the two main influence factors for high accuracy clock

synchronization. While the latter is subject to manufacturing

technologies, the first is mainly given by the design of the

packet timestamper of the node. While common solutions use

sampling in minimized intervals to achieve high accuracy, this

paper lists other approaches and proposes a method based on

phase/frequency estimation. While the additional hardware effort

is rather low, the presented method allows for high accuracy. The

performance of the developed design is equivalent to a 5.5 GHz

sampling clock, but still can be implemented even in low cost

digital logic devices.

I. INTRODUCTION

The presence of a common notion of time established
by clock synchronization is an important service in any
distributed network as it enables the system to generate a
consistent view and perform coordinated actions. Depending
on the required accuracy special measures have to be taken
to achieve sufficient synchronization. These include dedicated
clock synchronization protocols like IEEE 1588 or NTP and
hardware assistance to accurately use and keep the timescale.
These protocols have in common that the synchronization is
performed by a regular exchange of messages and a local os-
cillator is used to maintain a continuous timescale between the
messages. Apart from the stability of the oscillator, the quality
of the timestamp taken at the transmission and reception of
the synchronization messages is a limiting parameter for the
attainable accuracy. Using accurate timestamping hardware
in every network element allows to calculate the individual
residence times and enables the system to derive the total end-
to-end delay.

In general, timestamping methods can be categorized by
their source:

• Software: This approach takes the timestamp at the in-
stant when the sync message is visible to the operating
system or application.

• Hardware: Dedicated hardware records the arrival of a
sync message, typically at the interface of the MAC to
the physical layer.
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Fig. 1. Clock domains in an asynchronous communication system

While the first method is versatile and does not require any
special hardware, the processing within the lower network
layers before the actual timestamping point introduces jitter.
For many applications the accuracy in the range of milli- down
to microseconds is sufficient [1]. Hardware timestamping
on the other hand requires special hardware, but is able to
achieve timestamping accuracies several orders of magnitude
better than pure software solutions. In this paper we want to
focus on hardware timestamping with an example application
for an IEEE 1588 synchronization system over 100 Base-TX
Ethernet.

The paper is structured as follows: Section II gives an
overview of timestamping in a general asynchronous network
like Ethernet and different approaches to timestamping. Sec-
tion III describes phase and frequency estimation techniques
and their application for timestamping. In section IV we
present preliminary results and the final section concludes this
paper.

II. TIMESTAMPING IN PACKET-ORIENTED NETWORKS

A common timestamping approach in a packet-oriented,
asynchronous network (like Ethernet) uses a frame scanner
on the interface between the physical and the MAC layer
monitoring the content of received and transmitted frames as
depicted in figure 1. When it detects a frame, which should be
timestamped, the frame scanner asserts the timestamp signal
STS in order to trigger the storage of a timestamp. The
assertion of this signal is observed by the synchronization
logic which copies the current time together with some frame
identification information into a memory block.
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Fig. 2. Timestamping a frame from a different clock domain

In an asynchronous system (like Ethernet) the receive clock
Cr with the period Tr, the transmit clock Ct (period Tt) and the
local clock Cl (period Tl) are in general not equal. The receive
clock is typically recovered from the received data, whereas
the transmit clock and local calculation clock are sourced from
local oscillators. Given that the receive and the transmit frame
scanner operate at Cr and Ct respectively, both clocks can
be treated equally (asynchronous) to Cl. Therefore, they are
subsequently called communication clocks Cc to avoid always
mentioning both. When one of the frame scanners assert the
timestamp signal STS, the signal has to be passed to the local
clock domain.

A transition synchronous to one of the communication
clocks sampled with the local clock causes a equally dis-
tributed jitter ∆TS with a width of one clock period (0 ≤
∆TS < Tl), which results in a variance σ2

TS =
T 2

l
12 . The

value of ∆TS is unknown since the timestamp signal can be
asserted at any time and can just be recognized at a rising
edge of Cl as depicted in figure 2. One clock transition can
be avoided by setting Tl to a multiple of Tt, since the latter
has to be sourced by the node anyway. Still one jitter source
remains, namely the transition between Cr and Cl. Obviously
the jitter can be decreased by increasing the frequency 1/Tl.
Nevertheless, complex hardware designs limit this approach
to relative low frequencies (e. g. the Syn1588® IEEE 1588 IP-
core is limited to around 100 MHz even on modern FPGAs).

In order to enhance timestamping accuracy, different ap-
proaches to reduce the jitter ∆TS can be used. These can be
grouped in the following two subcategories:

• Single-Shot methods measure the time between the as-
sertion of the timestamp signal STS with respect to the
rising edge of Cl.

• Phase estimating methods use the fact that the timestamp
signal is asserted synchronous to Cc and therefore it can
be used to estimate the current phase of STS with respect
to the rising edge of the local clock, Cl.

Both methods have in common that they measure or esti-
mate the phase ∆TS with respect to Cl and therefore it can
be better expressed by a relative phase offset δTS =

∆TS
Tl

.
The relative phase offset δTS is useful in applications running
an Adder Based Clock (ABC) like common IEEE 1588 cores.
Assume that the ABC is increased every Tl by the increment
I , the value of the timestamp is calculated by the last value
of the ABC plus δTS times I .

An overview of available methods for measuring time
intervals can be found in [2]. This paper focuses on methods
which can be implemented fully into modern digital logic
devices without the necessity of external components. Thus, all
approaches using external ADCs or mixers are not considered,
although they can deliver comparable or even better perfor-
mance. In the following only the most relevant techniques for
use in an FPGA are tackled.

A. Single-Shot Methods

Single-shot methods measure δTS directly, that is how long
after the rising edge of the local clock the timestamp signal
STS has been asserted. For that purpose a clock cycle Tl is
divided into n ∈ N+ equally spaced fractions, which reduce
the timestamping variance to σ2

TS =
T 2

l
12n2 .

1) High-Speed Counter: An approach presented by [3]
divides Tl by a short high frequency counter with a period
Th = Tl/n. The counter is reset at every rising edge of the
local clock and its value is frozen when STS is high. Therefore,
the counter value divided by n describes the relative phase
offset δTS. Since the period of the local clock is exactly a
multiple of Th the clock transition between these two clocks
can be designed without any additional jitter and consequently
the timestamping variance reduces by n2. Hence, the result is
similar to a design completely clocked with 1/Th with the
advantage that only a few logic elements have to run at a
high frequency. Further, using double data rate (DDR) registers
improves the resolution by an additional factor of 2.

2) Phase Shifted Clocks: This is another option to partition
Tl. Assume that n− 1 additional clocks are generated which
are phase-shifted by 2π/k with k = 0 . . . n−1 with respect to
Cl. The timestamp signal is registered into n registers which
generate a thermometer code if STS is asserted which is
converted to a binary code and used in the same manner as the
high speed counter. Since STS drives n registers, special care
has to be taken that the clock at the registers has the designed
phase-shift (i. e. the registers are timely equally spaced), since
otherwise the thermometer code renders non-linear. This effect
and the number of output clocks per PLL limit n to value of
about 10 in state-of-the-art FPGA devices (e. g. Altera Stratix
III family).

3) Tapped Delay Lines: Tapped Delay Lines (TDLs) are a
common approach for digitizing times with sub-nanosecond
accuracy. The basic configuration of a TDL consists of a
serial chain of n latches having a delay τ1, a non-inverting
buffer with delay τ2 < τ1, and an output logic as described
in [4]. The signal to be timestamped is then fed through
all latches which freeze its current state at a rising edge.
The resulting thermometer code is evaluated after the next
clock edge. Nevertheless, it has to be considered, that such a
design is asynchronous logic and therefore the delays τ1 and
τ2 are not only placement, but also temperature dependent.
The linearity of a TDL may be compromised by these effects
and special calibration logic may be required. The possible
accuracy is dependent on the intrinsic switching speed of the
latches, which is typically in the range of 100 ps [5].
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III. PHASE ESTIMATING METHODS

Phase estimating methods do not measure δTS directly,
but rather estimate δTS using the fact that STS is asserted
synchronous to the communication clock. This relatively new
approach for high accurate time interval measurements has
been investigated by [6]. Their measurement method is based
on sampling a 10 MHz atomic clock with an ADC driven
by the communication clock and perform a phase estimation
based on an 1024 point FFT. While the results show a very low
timestamping standard deviation of about 10 ps, this approach
requires an ADC per timestamper and an atomic clock to
achieve this performance. Since this is rather impractical for
timestamping, this paper focuses on pure digital methods
implementable without additional hardware.

There are several requirements for this kind of phase
estimation: First of all, the rising edge of the local clock
should occur equally distributed within the clock cycles of
Tc averaged over a given time span (i. e. the rising edge of
the local clock should cover all phases of the communication
clock with equal probability). This includes that Tc must not
match Tl or a multiple thereof because in this case the rising
edge would always coincide with a certain phase of Tc and
the necessary averaging time span would be infinite.

We set the nominal period Tl by n(1 + β)Tl = Tc with the
design parameter 0 < β � 1 as a relative frequency offset
factor and n as the nominal oversampling factor. For the sake
of simplicity, we define � =

β
1+β , since given that the nominal

periods match the real periods, cycle slips (when the rising
edges of two clock pass each other) will happen after every
n/� local clock periods. This implies that Cc has been sampled
at 1/� different phase points over one cycle slip period and the
maximal attainable accuracy is nominal � Tl. Selecting a very
small � results in a small frequency offset and great resolution,
but this may result in Tc ≤ nTl which means that there are no
cycle slips at all or even reverse cycle slips (combined with
possible data loss).

Furthermore, small frequency differences are unusable since
the rising edge instance is only equally distributed within
Tc over a long averaging window and for short averaging
windows the leakage effect becomes dominant.

A. Multiple Timestamps per Frame

Timestamping a frame m times is one option to estimate the
phase at the timestamping event based on the assumption that
δTS averages to 0.5. Given that the timestamps are centred
before and after the assertion of STS (i. e. m−1

2 timestamps
before and after the event) and that the ABC’s increment is
not altered during the timestamping period, the final timestamp
TS is calculated by a weighted average over the timestamps
TSi following

TS =

(m−1)/2�

i=−(m−1)/2

αiTSi,
�

i

αi = 1. (1)

This FIR filter can be simplified to a window integrator with
αi = 1/m with some limitations, namely leakage effects. The
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Fig. 3. Direct phase estimation by mixing

timestamping window should cover one cycle slip period or a
multiple thereof to get the timestamps equally distributed over
one Tc period. Since the cycle slip period is dependent on
the current frequency offset, it varies with the oscillator drift
between the communication, and local clock. One solution to
this problem is to adjust m to cover always a multiple of the
cycle slip periods or by capturing a big number of such periods
and using a windowing function to minimize leakage effects.
The leakage can also be reduced by selecting a rather large �
with the drawback of reduced resolution.

In the optimal case the resulting timestamping variance
reduces to σ2

TS =
T 2

l
12m . For a typical IEEE 1588 frame

with about 80 bytes frame length and a nibble-wide interface,
m = 160 timestamps can be stored. Given that Tl = 10ns the
standard deviation resolves to 228 ps.

B. Digital Phase Estimation

The phase of the communication clock can be directly esti-
mated by phase detectors. Such a detector is based on mixers
which shift the spectrum of the clock to a low frequency as
shown in figure 3. The output of the mixer is low-pass filtered
to remove aliases at multiples of the input frequency and is
conducted into a phase estimator. Given that the duty cycle
of the clock input signal is constant, the low frequency part
of the down mixed signal then is a measure for the phase
difference at the inputs. Nevertheless, real filters with a low
bandwidth have significant group delay, which has to be taken
into account for the read-out. In order to allow for a digital
implementation the mixer can be replaced by the output of an
XOR gate filtered in the same way. A further solution would be
to use an external analogue anti-aliasing filter in combination
with an ADC and only perform the second filtering digitally.

A pure digital solution without requiring external parts is
possible, but under-sampling occurs. As the XORed signal is
not band-limited, sampling it results in alias frequencies, that
can dominate the signal (e. g. if the ‘1 bit’ sampler is sourced
from a clock correlated with Cl). One feasible solution is to
sample the mixed signal by a clock odd to both inputs and
apply the sampled signal to a low-pass filter with very low
relative bandwidth. Such filters are typically IIR type since
comparable FIR filters would need a big number of filter taps.
IIR filters on the other hand have a frequency dependent group
delay, which means that the frequency offset between Cl and
Cc must be estimated in order to compensate for the filter’s
group delay.
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C. Combined Phase/Frequency Estimation

Rather than estimating δTS directly, it is also possible to
estimate the phase by its derivative, the frequency offset,
together with a reference point. The principle of phase estima-
tion by frequency estimation can be implemented as follows:
Whenever the communication clock is phase aligned to the
local clock (that is when a cycle slip occurs), the phase
estimation δ̂TS is set to zero. In every subsequent clock cycle
δ̂TS is incremented by the estimated inverse cycle slip period
�̂/n (i. e. δ̂TS is the integral of �̂/n over one cycle slip period).
Given that the frequency is stable in the averaging interval, δ̂TS

ideally would reach 1.0 at the next cycle slip as depicted in
figure 4 for n = 1. For the reason of better visibility β was
chosen to be 0.2.

The accurate detection of the cycle slip instant is critical for
the start of the integration. To make the method independent of
the communication clock duty cycle, a derived clock Cd with
the period 2Tc is generated digitally. Cd is fed into a shift
register with 5 + n taps clocked with the local clock. Further,
this clock is used for cycle slip checking and performing edge
detection. While the first two shift taps are used for buffering,
the middle taps (2 + n down to 2) are used for cycle slip
detection. If all n + 1 middle taps contain the same binary
value, a cycle slip must have happened. The last two taps
(1 down to 0) are used to detect rising and falling edges of
Cd at which the buffered timestamp signal STS is checked
for a high level. Since the timestamp signal is clocked into a
single register the placement is not critical. Nevertheless, as
for all other methods, the small (possible asymmetric) delay
between receive and transmit estimator inside the IC should
be measured once.

The relative frequency offset �̂ can be calculated by mon-
itoring the number of rising edges of the Cc with respect
to the Cl. In average every n/�̂ local clock cycles a cycle
slip will occur, which results in a missing rising edge with
respect to the local clock. In order to have a continuous value
of �̂, a low-pass filter has to be applied. The bandwidth of
the filter must be narrow enough to track frequency changes
of the oscillator while removing the cycle slip frequency. In
general, IIR filters which have poles close to 1 are ideally
suited for this application. Alternatively, the frequency offset
�̂ can be calculated by the cycle slip rate n/�̂, but this requires
a division block which consumes a significant amount of logic
resources. In any case, the calculation of the final timestamp
involves summing up the ABC’s last value plus δ̂TS times the
increment I .

IV. RESULTS / MEASUREMENT

The effectiveness of phase estimation methods is shown by
an FPGA implementation of the phase/frequency estimation
method using a Altera Stratix II GX evaluation board. In order
to simulate timestamping for a typical 100 Base-TX connec-
tion with the media independent interface (MII) connecting
the PHY and the MAC, a communication clock of 1/Tc =

25 MHz was chosen. The local clock 1/Tl was selected to be
50.2272727 MHz, i. e. with an oversampling factor of n = 2
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Fig. 5. Measured histogram of the timestamping error for the combined
phase/frequency estimation method

and β = 0.00454545 and � = 0.00452489. Both clocks are
generated via two PLLs from a single 100 MHz oscillator.
Obviously, in real applications the communication clock and
the local clock do not have a fixed frequency relationship (at
least for the receive side). Nevertheless, this has to be done
in the test setup to study the performance without disturbing
effects caused by oscillator drift.

Every 250
th clock cycle (equals 10 µs, arbitrarily chosen)

the timestamp signal STS is asserted for a single clock cycle
which triggers the timestamper. The time source for the
timestamper is an ABC with fixed increment and an 8 bit sub-
nanosecond resolution. The 64 bit timestamps calculated by the
estimation logic are transferred to a PC where the ideal time
is subtracted from the measured timestamps. Furthermore,
for long-term measurements the very slight drift of the ABC
caused by the limited granularity of the ABC’s increment is
compensated in the PC as well.

In case of a simple clock transition (without taking δTS into
account), we expect the timestamps to be equally distributed
from −Tl/2 to +Tl/2. In fact the implementation matches
exactly the expected equal distribution. If δTS is taken into
account, the standard deviation of the timestamps improves
significantly from 5.76 ns to 26 ps. The timestamp error is
almost equally distributed with slight imperfections around the
centre as shown in figure 5.

The theoretical resolution for the given parameters is � Tl =
90.09 ps and therefore σTS = 26 ps. Given the (cheap) layout
of PLLs in FPGA devices, it is surprising that these PLLs
can produce such low-jitter clocks which enable such accurate
measurements. In fact this result was only possible with one
of four FPGAs, whereas the others generated timestamps with
σTS = 52 ps instead of 26 ps. The higher standard deviation
was caused by some timestamps about 130 ps away from the
main equal distribution. The reason for this can be found in
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physical effects mainly the phase noise of the clock source.
Random clock jitter causes cycle slips to be detected too early
or too late which in consequence shifts the timestamps as well.
In such cases clocks with better stability are just one possible
solution, but also combining phase/frequency estimation with
multiple timestamps per frame can be considered.

Using the same clock source for Cl and Cc verifies the
operability and accuracy of the timestamping scheme, but for
practical applications the two clocks are sourced from different
oscillators. As the cycle slip detection relies on a single clock
edge, a clock source with low phase noise is required. Since
the clock output of Ethernet PHYs is just designed to drive
digital logic, the quality of the clock outputs is limited (as
measured for the SMSC LAN8700 PHY) and it might be
required to feed the communication clocks of the PHY through
a PLL to stabilize them. Another option is to estimate the
cycle slip instant over several periods if the clock stability
over multiple cycle slip periods is guaranteed.

An application for the accurate timestamping method is
stability measurement. Given that one of the clocks is sourced
by a stable reference oscillator, the stability of the other
oscillator can be measured and characteristic parameters like
the Allan variance can be calculated. This was tested with a
10 MHz Rubidium clock versus the local 100 MHz oscillator
with 50 ppm advertised stability. The resulting graph is shown
in figure 6.

In IEEE 1588 networks this measurement can be used for
oscillator classification in the nodes. Assume that multiple
nodes are directly connected to a single switch. Typically a
switch drives all its PHYs by the same transmit clock and
therefore the receiving PHYs in the nodes recover the switch’s
clock from the received data. In this topology all nodes can
be supplied with the clock of the switch. If this clock is used
for the reference clock, all nodes can measure their frequency
departure with respect to the switch’s clock. In consequence
it is possible to calculate the frequency departure between
every node. This information can be useful for the master
election process, for a dynamic adjustment of the control servo
parameters or just for the detection of faulty oscillators.

Fig. 6. Measured Allan variance of a 100 MHz oscillator

Given the possible timestamp granularity in the ps-range,
the question may arise about the possible gain over traditional
timestamping approaches with granularities in the range of
about 10 ns. As shown in [7] it mainly depends on the oscilla-
tor and the synchronization interval. In summary the higher the
stability of the oscillator and the longer the synchronization
interval the more beneficial a very accurate timestamping
method can render. For cheap oscillators which cause the clock
in the slave node to drift away between the synchronization
intervals in the order of several ns, a highly accurate times-
tamping method will result only in a marginal gain. Significant
enhancements can be seen for highly stable oscillators or even
for synchronous systems for delay measurements. Combing
Synchronous Ethernet with IEEE 1588 allows all nodes to
use the same frequency which simplifies the synchronisation.
Despite that, such a system has to measure the line delay
between master and slave. With the proposed timestamping
method this delay can be measured very precisely enabling
synchronous systems to synchronize virtually offset-free given
that the physical connection is symmetric.

V. CONCLUSION

Timestamping a frame in an asynchronous communication
system leads to the problem of passing the timestamp signal

130



from the communication clock domain to the local one. Such
a transition introduces one of the main jitter sources of
such a network link. Despite different single-shot methods
which have certain advantages but several physical constraints
difficult to fulfil, this paper presents three phase estimating
methods which offer a comparable or even better accuracy
than single-shot methods. The presented solutions use the fact
that the timestamping signal is always synchronous to the
communication clock. Given that there is a certain frequency
offset between the communication clock and the local clock,
the simplest approach is to timestamp a frame multiple times.

The two other solutions continuously track the phase rela-
tion so that for every possible timestamping event the current
phase information is available. While a direct phase estimation
is possible, it seems to be simpler to estimate the phase by
a combined phase/frequency estimation. The latter detects the
instants of cycle slips and tries to forecast the phase based
on the filtered frequency offset. Both methods rely on the
permanent availability of all clocks. This prerequisite does not
hold for the outdated 10 Base-T standard of Ethernet, which
is nowadays only rarely used.

A sample implementation emulating a typical 100 Base-
TX Ethernet connection on an Altera FPGA board was used
for the evaluation of the design. The results show that the
timestamping jitter can be significantly reduced by almost
three orders of magnitude to a standard deviation of 52 ps,
which is comparable to a local clock frequency of 5.5 GHz.
The remaining jitter is primarily caused by the phase noise of
the PLLs and the oscillator.
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