@

Fre /,74,,/‘/7"")’ Larr y Lo e

(er

LID
Nano Processor

cokr< C‘7{ Ba 5)

User's Guide
Drawing Number
A-5955-0331-1 - | B
X ; i | g
\\/
HEWLETT jip) PACKARD
&
i — —- —_— e~

LI D
NANOPROCESSOR

HEWLETT w PACKARD

PREFACE

The Loveland Instrument Division Nano Processor is a control oriented device designed
for instrument applications. The Nano Processor is not arithmetic oriented. The motiva-
tion for such a design was three fold. First. it was felt that ASM designs were too limiting;
second, “‘off-the-shelf” microprocessors had too many “real time” limitations; and
finally, there was a need for a common building block among LID designs. Thus the two
major objectives for the Nano Processor were the design of a general purpose LSI device
optimized for instrument control and to provide a software method of implementing
complex control algorithms.

Some of the key features of the Nano Processor are an internal data base of sixteen
8-bit registers, seven direct control I/O lines, fixed time high speed instructions, high
speed vectored interrupt, and bit oriented control instructions. The Nano Processor can
operate at speeds up to 500 nanoseconds per any of its 42 instructions, while dissipating
less than one watt from a ceramic 40 pin package. The factory cost of this device is less
than $20 or less than $27 with an ALU.

Vot g B

i 3|
s 2
. 5 SREETE S, oo o _‘.’:‘:"“1

TABLE OF CONTENTS

Page
I. INTRODUCTION . & o vttt et eeeeeeeeeeeens |
II. HARDWARESTRUCTUREcccou.n. |
1. PROCESSORTIMING . . . oo ovr e veeveaeens 5
IV. PROGRAM ADDRESSING.0vvvvinennnnn 8
V. NANO PROCESSOR INSTRUCTION SET. 9
V1. INTERFACING THE NANO PROCESSOR 14
APPENDICES
A. SPEC. SHEET
B. ROM—RAM SIMULATOR
C. NANO PROCESSOR DESIGN EXAMPLES
D. SOFTWARE
E. GENERAL INFORMATION

B
|
|

I — —_— e

I. INTRODUCTION.

The -hp- Nano Processor (NP) is a single chip, N-channel MOS, 8 bit parallel, control
oriented central processing unit designed by the Lovelund Instrument Division for
internal control and interfuacing of instruments.

The NP coupled with a program ROM forms the minimum nano processor control
computer. The NP can directly address up to 2048 8-bit bytes of program memory, and
with simple block switching techniques, up to 512 K of 8-bit bytes.

All instructions and data are transferred in and out of the NP with the bidirectional 8-bit
parallel data bus (D@ through D7).

The NP allows data transfers with up to 15 input and 15 output ports addressed by a
4-bit device select code and an 1/O read/write control line.

The normal program may be interrupted by use of the interrupt request control line. This
interrupt is a fully vectored interrupt with 256 possible vectors.

The NP can control external circuits and check their status through the use of the 7 direct
control lines (DC@ through DC7).

All inputs and outputs are TTL con{patible. Each output will sink one standard power
TTL load. Each input has an internal pull-up device.

The NP instruction set numbers 42 including data transfers, bit manipulation, magnitude
comparisons, jump, and jump to subroutine.

1. HARDWARE STRUCTURE.
The NP contains:

A. One 8-Bit Accumulator (ACC)

B. One Control Logic Unit (CLU)

C. One 1-Bit Extend liegister (E)

D. Sixteen 8-Bit Storage Registers (R} — R17)

E. One 8-Bit Magnitude Comparator (CMP)

F. Seven Bidirection Direct Control I/O Lines (DC@ — 6)

G. One 11-Bit Program Counter (PC)

H: One 11-Bit Subroutine Return Register (SRR) . :
1. One 11-Bit Interrupt Return Register (IRR)

®»
D ® ® = RYYDVIA JD0Td HOSSTIOUd ONVN

IM|YN3
- kwﬁmmowmgo S0 005 o0 o8 3050 LdnUNALNI :
: o 3uum/gyy
(v) NOILONYLISNI O/
. 3903 TMONNDY
0/1 =" JANENILN
31v9 TO5NGR
. Emmmmwﬂz_
. |
. ¢|v090 NIYW
s SNE 0MINOD 118 ¢ . A
G * : ™ WY4004d
HV_ ONIWIL
aNy
T0HLNOD
MOVLS
ans
<R T . Na
s118 8 40
g ¥3LNNOD SQHOM 9| HOLY TOHLNOD
s WYH90Yd SH315193Y -HYdINOD]
39VH0LS
8 ¥315193Y
xwﬁm 3 | NOILONNLSNI
S118 8)
‘] BESRR wh@uo
¥334ng SN v

VNOILLO3YIQIE

__

g,

DIRECT CONTROL
I/0 STRUCTURE

NALS i
r CMD 0> — 5 of—— %\“\;_ P, sl
> o !
[
CLR CMD O >———R PS|—— j
FLAG O = |
SET CMD | > s @ D—o A
CLR CMD | > R Psl—e +#Vop
FLAG | ~=
SET CMD 2>— s @ {>__‘,_. 0c2
CLR CMD 2> R PS » +Vop
FLAG 2 ==
SET CMD 3 >— s @ >—<>—* D
CLR CMD 3) R PS T +Vop
FLAG 3 == {C
SET CMD 4> S Q = D>_‘._ —o—) DCa
. CLR CMD 4 R PS fo
FLAG 4 =+] §&
SET CMD 5> S Q 1]> s O ocs
CLR CMD 5>——R PS}—4¢ Voo
FLAG 5 == L
SET CMD 6> a D_,_ oS
CLR CMD 6 PS
FLAG 6 -=

Accumulator.
The 8-bit accumulator may be loaded from or output to the 8-bit data bus.
Control Logic Unit.
The CLU is the heart of the NP. It provides the following functions:
1. Test, set or clear any bit of the accumulator or the extend register.
2. Set or clear any of the command flip-flops.
3. Test any of the flag inputs.
4. Clear the accumulator.
5. Increment or decrement the accumulator in binary.

6. Increment or decrement the accumulator in decimal.

(Note: Two Binary Coded Decimal (BCD) digits are assumed and the output
is two BCD digits and overflow/carry.)

7. Complement accumulator (1’s complement)
Extend Register.

The 1-bit extend register is used to indicate overflow (carry) from or underflow (borrow)
to the accumulator, or it may be used as an internal flag. = * = -

Storage Registers.

The sixteen 8-bit storage registers are for general data use. They may be recalled to the
accumulator. They may be loaded from the accumulator or directly from the program
ROM. R may be used for comparisons and indexing.

Magnitude Comparator.

The magnitude comparator compares the 8 bits of the accumulator to the 8 bits of the
R for greater than, less than or equal to.

Direct Control I/0 Lines.

The direct control 1/O lines are 7 lines (DC — DC6) that may be used for output with set
and clear functions on their controlling flip-flops. The status of the output may be
directly tested as inputs for feedback flags. ;

Progral;l Counter.

The 11-bit program counter provides direct addressing of the control program up to 2048
bytes.

Subroutine Stack Register.

The 11-bit subroutine stack register provides for a single level of subroutining within the
control program.

Interrupt Stack Register.

The 11-bit interrupt stack register provides for a single level of interruption.

IIl. PROCESSOR TIMING.

~ The NP is designed with a quasi static structure. The clock may be stopped in the low
v srate with no loss of data.

The maximum clock rate is 4 MHz for the fast (A series) chips. A/l instructions are exe-
cuted in two clock periods or 500 ns with this clock rate.

To obtain a 500 ns cycle time the program ROM must have < 85 ns access from address
5 to output and < 65 ns access from output enable to output. (A list of possible ROM’s to
be used with the NP is liated in Appendix A.)

CLOCK

CLOCK

PROGRAM ACCESS
FROM PROGRAM

GATE tgp —) o

}a— OFF —s»pa PULSE bl,, _CLOCK PERIOD_,.I
MAIN CLOCK
INPUT | R
i |
<@—— FETCH PHASE——#»g— EXECUTE PHASE——
|
|
|
PROGRAM VALD | il PAl vaLiD |
ADDRESS VALID i o e
| Traz &
ooy o, S0 9ATE
Ten™ e | S e = "/ NsTRuCTIONS
PROGRAM ' :
‘GATE | l —> TeoL
— —__E,_\—_
_ } PROGRAM GATE
PROGRAM ACCESS | FOR OTA # INA
FROM ADDRESS —H I‘—tIP INSTRUCTK)NS
Taa {
< [F~_ FOR MAX. SPEED

90ns MAX.

INSTRUCTION POINT

| PROGRAM DATA MUST
<5 BE ON DATA BUS

BY THIS POINT IN
TIME.

DC /10 LINES

MAIN CLOCK
INPUT

DEVICE SELECT
AND R/W OUTPUTS

DATA INPUT
(R/W LOW)

DATA OUTPUT
(R/W HIGH)

e —>1

I
|
|
|
\

tosi
L

I
|
|
|

<t— FETCH PHASE ———»=a- EXECUTE PHASE —

I___'gu*sz

DURING FETCH

AND ALL NON -= 1/0
INSTRUCTIONS, DS AND
R/W LINES REMAIN HIGH.

BY THIS POINT IN TIME.

OUTPUT DATA WILL BE ON
BUS BY THIS POINT IN

TIME. ! \

|

|

|

|

|

|

|

|

_ |
DATA MUST BE ON BUS 4’,
|

|

|

|

DURING EXECUTE OF
/0 INSTRUCTION LINES
ASSUME PROGRAMMED
VALUE. .

I OUTPUT DATA SHOULD BE
| STORED ON LEADING EDGE
| OF CLOCK.

et
/1/ DV

OUTPUT DATA NO
LONGER VALID

IV. PROGRAM ADDRESSING.

For ease of discussion the program address (11 bits) will be looked at as a 3-bit page
number (PA 19 - PA 8) and an 8-bit page offset (PA 7 — PA).

In all instruction except jump and skip instructions, the program address is incremented.
It is incremented once in one byte instructions and twice in two byte instructions.

In a JUMP (JMP) or JUMP TO SUBROUTINE (JSB) instruction, the page number from
the first byte and the page offsct from the second byte of the instruction are loaded into
the program counter during the execute phase.

In the JUMP INDIRECT INDEXED (JAI) and the JUMP INDIRECT INDEXED TO
SUBROUTINE (JAS) instructions, the page number is formed the same as an indexed
register address (but only the bottom 3 bits are used) and the page offset is taken from
the accumulator.

CAUTIONS:

These two instructions allow great addressing power but they also have great
dangers.

1. Due to the indexing structure, a JAI instruction executed with
R(3 set will be executed as a JAS instruction.

2. Due to the subroutine return address storage system, the byte
after a JAS instruction will not be executed upon return from the
subroutine.

3. Remember that this is an OR FUNCTION not an ARITHMETIC
ADD.

All branching in the NP is done with the skip instructions. The skip instruction causes
two bytes of program to be skipped if the condition being tested is true.

Example:
Program Instruction
Address
After the skip instruction N SBS 3 Skip if accumulator bit
3 is set.
This instruction is executed > N+1 JMP EXIT (Jump instructions
require two bytes.)
if Bit 3 is zero N+2 _
This instruction is executed > N+3 CBN 3 Clear accumulator bit 3
if Bit 3 is Set
’ 4
6 - e o e T

V. THE NANO PROCESSOR INSTRUCTION SET.

The NP instruction set is divided into groups:
1. Accumulator group
2. Register transfer group
3. Input/output group
4. Comparator group

5. Program control group

Instruction Listing Format.

SBS N

Instruction Operand(s) Operation \Operaml
Mnemonic Code Code

Register Addressing.

The sixteen internal 8-bit registers may be directly addressed with LOAD (LDA), STORE
(STA) and STORE ROM DATA (STR) instructions or indexed address may be used with
LOAD INDEXED (LDI) and STORE INDEXED (STI).

The effective indexed address is the “or” function of the bottom (I — I3) 4 bits of the
instruction with the bottom 4 bits of RA(RGG — R@3).

Example:
I —1I3 1001
ROQ — R@3 0101
Effective Register 1101
_ Address

Note: This is an “‘or” function instead of an add, therefore, no carry takes place.

***Note: Since R) is used as the index, caution should be used so that R is
not the effective destination of a Store instruction. A

(l'.)i

=

° hl L__ 2 P L SN
| : .

L P

V —A. ACCUMULATOR GROUP.

SBS N

SBZ N

SBN N

CBN N

INB

IND

DEB

DED

CLA

CMA

RSA

SEZ

Skip on accumulator bit #N Set (1)
Skip on accumulator bit #N zero (@)
Set accumulator bit #N

Clear accumulator bit #N

Increment accumulator as an 8-bit binary number.
The extend register is set if overflow occurs.

Increment accumulator as two BCD code decimal
numbers() ().

Carry between digits is automatically handled.

The extend register is set if overflow occurs.

Decrement accumulator as an 8-bit binary number,
The extend register is set if underflow occurs. :

Decrement accumulator as two BCD coded decimal
digits,

Borrow between digits is automatically handled.

The extend register is set if underflow occurs.

Clear accumulator,
Does not affect the extend register.

Complement accumulator
The accumulator is treated as an 8-bit binary number
and one’s complement is performed. :

Left shift accumulator
1-bit shift with zero (@) fill.
Does not affect extend register,

Right shift accumulator
1-bit shift with zero (0) fill,
Does not affect extend register.

Skip on extend register set (1).
Skip on extend register Zero (@).

ROM Data.
Load accumulator with ROM data,
(ROM data is the second byte of this instruction)

00010 N

00110 N

00100 N

10100 N

200000

000000

000000

000000

000001

000001

000001

000001

000111

001111

110011

oo

10

01

11

01

11

10

11

11

11

V — B. REGISTER TRANSFER GROUP.

LDA R 0110 R
Load accumulator with data from register #R.

STAR 0111 R
Store accumulator at register #R.

LDl Z 1110 2

Load accumulator with data from register addressed
by (Z)v(RO). (See description of indexing.)

STIZ 1111 2
Store accumulator at register addressed by (z) v (RO).
STRR, 1101 R
ROM Data
ROM Data.

Store ROM data at register #R.
ROM data is the second byte of this instruction.

V —C. EXTEND REGISTER GROUP.

STE ; . 10110100

Set extend register.
CLE 10110101

Clear extend register.

V —D. INTERRUPT GROUP.

DS! E 10101111

Disable the interrupt.
ENI 0oo0101111

Enable the interrupt.

OGS ¥ ey g 1-.-:(_L

‘) ~ //-’ 7

V — E. COMPARATOR GROUP.

All comparisons are made based on R@ and the accumulator containing 8-bit unsigned
binary numbers.
SLT 00001001
Skip on accumulator less than R@.
SEQ 00001010
Skip on accumulator equal to R@.
SAZ 00001011
Skip on accumulator equal to zero (@),
SLE ’ 00001100
Skip on accumulator less than or equal to R@.
SGE ' 00001101
Skip on accumulator greater than or equal to RO.
SNE 00001110
Skip on accumulator not equal to RO.
SAN . ' 00001111
Skip on accumulator not equal to zero (@).
SGT . 00001000

Skip on accumulator greater than R@.

V —F. INPUT/QUTPUT GROUP.

INA DS 0100 DS

Input data from device #DS to accumulator.

OTA DS 0101 DS
Output accumulator data to device #DS.
OTR DS, ROM DATA ' 1100 DS
ROM DATA
ROM Data.

Output ROM data to device #DS
ROM data is the second byte of this instruction.

STCK 00101 K
Set direct control.
Bit #K
I

CiCK : 10101 K
Clear direct control.
| Bit #K

SFSJ | 00011 J
Skip on direct control. '

. Flag 7 Set (1).

SFZJ 00111 J

Skip on direct control flag 7\ zero (@),
' L |
1 el I TSNS W — RO - R S— e

—

RTI

RTE

NOP

JAI

JAS

10010000
Return from interrupt.
An unconditional jump to the location stored in the
interrupt stack register is performed.
The interrupt control bit is not affected.

10110001
Return from interrupt and enable interrupt.
Same as RTI! instruction except that the interrupt
control bit is sef allowing future interrupt.

o1011111

NO Operation.
10010 2

Jump indirect (through accumulator) indexed.

The page number is the indexed value (Z) v (R@).

The page offset is the accumulator.

An uncondition jump to the address formed from the
page number and page offset.

10011 Z

Jump indirect (through accumulator) indexed to
subroutine.

Same as JA| with the addition that the location of the
JAS instruction Plus 2 is stored in the subroutine stack
register,

CAUTIONS:

These two instructions allow great addressing power but they also have great

dangers.

Due to the indexing structure, a. JAI instruction executed with
R(3 set will be executed as a JAS instruction.

Due to the subroutine return address storage system, the byte
after a JAS instruction will not be executed upon return from the
subroutine.

— 13 %

P gy == hne.

V — G. PROGRAM CONTROL GROUP.

JMP

JSB

RTS

RSE

ADDRESS

The address is broken into two section page number
and page offset.

The first byte contains operation code and page
number,

The second byte contains the page offset.

An unconditional jump to the address is performed.

ADDRESS

(See jump for address format)

An unconditional jump to the address is performed
and the address of the next ROM location after the
page offset is stored in the subroutine stack register,
Note: Since the subroutine stack register is a single
level deep, subroutines cannot be nested.

Return from subroutine,

An unconditional jump to the location stored in the
subroutine stack register is performed.

The location of the RTS instruction Plus 2 is stored in
the subroutine stack register, thus co-routine linkages
may be performed.

Return from subroutine and enable interrupt.
Same as RTS instruction except that the interrupt
control bit is set allowing future interrupt.

VI . INTERFACING THE NANOPROCESSOR.

The interface of the NP is divided into five sections:

1. Program Access

2. I/OPort

3. Direct Control Lines

4. Interrupt System

5. Power Supplies and Clock
Program Au:ufr

Page Number
10000
Page Offset v
Page Number <
10001
Page Offset

10111000

10111001

|
The NP accesses its program through the use of the 11 program address lines (PAQ — 10)

and the program and gate line.

When the program gate is high the program source should supply the program data
referenced by the program address onto the data bus.

PROGRAM
ADDRESS
LINES

DEVICE
SELECT

1/0 READ/WRITE
_ GROUND

DATA BUS

|

| C]PAO
2 ClPal
3 [JrA2
4 [C]1PA3
5 []PA4
6 [C]PAS
7 CPas
8 (| Pa7
9 [Pa8
10 []PA9 *
Il CJPAIO INT
12 (| ps3 INT
13] DS2 INT
14 [] ps!
15 (] DSO
16 CJR/W
17 [] GND
18 | DO
© C]DI
20] o2

V66
Voo
VBG
DCO
DCl

DC2
DC3
DC4
DC5
DC6
ENA

139
138
;]37
) 36
135
134
]33
)32
[]31
)30

REQ []29

ACK
CLK
PSG
D7
D6
D5
D4
D3

28
[J27
)26
25
(24
)23
)22
2l

PIN OUT

140 +9 oa +|2VOLTS*

+5 VOLTS®
-2 TO -5 VOLTS

DIRECT CONTROL
I/0 LINES

INTERRUPT LINES

MAIN CLOCK INPUT
PROGRAM GATE

DATA BUS

* 5% , <IW TOTAL

e

1/0 Ports.

The NP can address up to 16 input and 15 output data ports through the use ol its device
select and 1/O Read/Write lines.

The external devices may be numbered @ through 17 in octal. OTA 17 is used as the NOP
instruction.

Direct Control Lines.

The seven bidirectional direct control lines may be used in one of four modes for each
line.

1. Asadc static output line with set/clear program control.

2. As an input flag (internal flip-flop must be set — this is the turn-on condition)
with direct testing by the program.

3. Asa bidirectional control line.

Example:
The NP puts DC Line 2 low to signal an external device to start and the
external device holds the line low until finished. Thus, the NP (after
setting dc lines again) can determine the end of the external devices
cycle.

4. As an internal program flag with set/clear and direct testing by the program.

Interrupt System.

The NP’s interrupt system is controlled by three lines: Interrupt Request, Interrupt
Acknowledge, and Interrupt Enable.

During the execute phase of every instruction (except an interrupt disable — clear control
#7) the status of the interrupt request line is checked. If that line is low, an interrupt
phase will follow regardless of the state of the interrupt enable. The interrupt phase is
indicated by the interrupt acknowledge line going high. Daisy chaining of the interrupt
acknowledge line can be used for interrupt priority.

During the interrupt phase the interrupt enable is automatically turned off; the vector
address is input and the return address is stored in the interrupt stack register.

The interrupt request line input is always active. The interrupt enable output may be used
externally to gate this input if interrupt enable/disable capability is required. See Inter-
rupt System Timing.

Power Supply And Clock.

Three power supplies are required by the NP: + 12 or + 9 volts and + 5 volts for the main
logic and - 2 to - 5 volts for backgate bias.

The clock input is (as all inputs are) TTL compatible. That is, no external pullup resistors
are normally requircd. (But see “Data Bus Application Hints” for special cases.) It should
be noted that to provide a fast clock edge, the internal clock is pulled up with a current
of approximately 3 mA.

Power supplies must turn on as shown in the Nano Processor Turn-On Valid Start-Up
Sequence Diagram.

(WAWININ H3A0 3WIL
NOILONYLSNI 11N4 3NO XvA)

: <— | :3IWIL ISNOLS3IM LdN=¥ILIND
378vsid 3l . 1NdLno
\.,\« PR 3 ;TII‘ | 3187N3
034 LNl 440 3LVO . LdNYE3 LN
OL a3sn 38 Avw 3NIT SIHL 38 VN3

3WIL NI LNIOd
SIHL A8 sng viva

NO 38 LSNW HOLO3A suo0l- 3WIL SS300V
//w/r 4L~ HOLO3A WNWINIA
Alese- YL
_
_
_
|
_4._3.71 | szTv_ 1nd1no
_ . 39 I TMONNOY
“ Idnyy3LN|
|
|
3SYHd LNI QNOQ3S _
1N3IA3Nd OL LNIOd INIOd SIHL 1V
SIHL A8 Q3AOW3Y Q34015 034 INI
38 1SNW 038 LINI N a __ ‘ ¢ 1NdNI
||'_mm= |||||| meDomm
') fa— .v_ : 1dNYY3INI
. NI e
30IAY3S LdNYY3LNI 40
NOILONYLSNI L1SHld 40
3SVHd HOL34—bes—3SVHd LdNYY3LNI—>@——3SVHd 31N03X3—>
LNdNI
. i ‘ s MO010 NIVA

ONIWIL WILSAS LdNYY3LINI

Nano Processor Turn On T

Valid Startup Sequence

i
S
A
Sample Circuit (Schematic) <
VDD and VBG val?d
before V.. applied +9 or +12 L Ve
(pin 40)
v rise time less ¢
GG
than 1 microsecond All supplies are valid
and clock is running
After VGG is valid ¢
alt least onn cloo.:
prl + must occur
witlin 4 microseconds —»
¢
MCLK
@

ARRPERNDIZ
A

NANOPROCLCSSOR 5PECIFTCATIONS

-
Revision Date 11/10/75 4)
) PR V)
T\ OO T
1820-1692 NP-A 7\d 1820-1691 _NP-B
~__ (500ns) ! = (750ms). .
@ MIN TYP MAX MIN TYP MAX
Voo 11 +12 12.5 8.5 +9 13
IGG(mA)‘2 30 40 20 26
v 4.75 +5 5155 a.5 || 8 5.5
v GG 5
IDD(mA) 110 90
[I.C. will — VBG -2 -3 -5 -2 -3 -5
be marked Pd (mW) god 1000 550 650
° Ipg(HA) 500 350
<) CLK ON 100ns 100ns lusec. 135ns lusec.
CLOCK AT—— CLK OFF 100ns w 175ns w
TYP. VOLTAGESI cLk T 250ns w 375ns w
3 TPAl 25ns 25ns
Tpaz 60ns 95ns 125ns 1Sns {A0Nns | 180ns
L
bl 15ns 20ns }ths”f' \Sms 2Fns |45ns
PROG PG s
TIp 8 35ns 50ns
TAA 90ns 145ns
TEA 35ns 60ns
@ DCIO |TDC 40ns 90ns 150ns 40ns 110ns 225ns
T
DS & R/M Dol — 85ns 120ns
. TDSZ 30ns 85ns 30ns 120ns
@ DATA IN 'TDI 40ns 60ns
TDO 150ns 215ns
DATA OUT——-TDV 40ns 50ns .
TIV \4 30ns 40ns
J
INTERRUPT— TR " 30ns 40ns
ackAnowledge TIAH 115ns 160ns
TIAL 100ns 140ns
(<] TVAQ 95ns 155ns
1 40ns 60ns :
| Tig 250ns 37SE
i AMBIENT Moving air g80°C 80°C
Still air 7Q°C 70°C

l TEMPERATURE

B IL W o o T BT e T g e S A e ek D e S S T T ST AT e R W AT e TR R — A = Ve i ki

10.

11;
12.
13.
14.

A11 outputs can sink 1.6ma at 0.6 volts or less.

Inputs have own pull-ups and may require up to 1.6ma to be
sinked when input low is 0.4 volts. See MCLK for an exception.

MCLK may require up to 3.0ma to be sinked when low (0.4 volts)
and external ckt may have to provide a pull-up capability to
5.0 volts for high speed operation.

Data bus speed vs. capacitance must be treated in accordance
with data bus application hints.

It is preferred that other outputs drive less than 20pF for
max. speed; however, 30pF is usually acceptable.

A]]'input levels must equal or exceed 4.0 volts bilevel and
< 0.4 volts Tow levels.

Turn-on must be in accordance with "Turn-on Methods".

TEA CLK off - TIP - TPGH; TAA = CLKT - TIP - TPA2.

TVA CLKT - TIAH - TVI.

.Max. pulse r.t. 50nsec. up to 4.0V; Max. pulse f.t. 100nsec.

down to 0.8V.
Pulse ht. = 5V; approx. rise & fall times 1lOnsec. (test).

12.0 volts.

At VGG

At VDD 5.0 volts.

Min. & max. delay times from Interrupt Request Input till
fetch phase of first instruction (vector has already been
serviced) is: min. = TIV + CLK PW + CLKT and max. =TIV +
CLK PW + 3 CLKT.

APPENDIX
B

ROM-RAM SIMULATOR

NOTE

DUE TO THE COMPLETION OF THE NANO PROCESSOR
PROJECT, LID WILL NO LONGER SUPPORT OR PROVIDE
ADDITIONAL INFORMATION ON THE ROM-RAM SIMULATOR
AFTER JAN. I, I976.

ROM - RAM SIMULATOR

ROM - RAM Simulator is a block of memory that simulates
'a ROM. A block diagram of the ROM - RAM is provided.
As the block diagram indicates ROM -RAM can

be addressed in three ways:

1. Through address switches

2. By an HPIB connector and

3. By a processor

The contents of each memory location can be
entered in two ways:

1. By the contents switches
2. Through the HPIB Connector

The following is a brief description of the
above options.

SWITCHES

Set the I/0 Selector on "SW'". Set the address
~ swithces to desired address location. The '
.designated location and the contents of that
location will be shown on the displays. If
change of contents is desired, set the contents
switches to the new contents and press the "WRITE"
button. The new contents will be displayed on

the contents display.

PROCESSOR

BUF FER
CONTENTS
DISPLAY
CONTENTS OUT
= ccS)ﬁKxECTOR
1024 X 8 2 TWO TO ONE
RANDOM ACCESS =k SELECTOR
MEMORY u Do CONTENTS
: z . SWITCHES
¥ [&]
ADDRESS IN
ADDRESS
DISPLAY

THREE TO ONE
SELECTOR

ADDRESS
SWITCHES

OuUTPUT

To output the contents of the memory to other devices
such as a processor, set the I/0 Selector on "OUT"
Provide a 10 bit high true signal on the edge
connectors PAO0 through PA9 address lines,.

A high enable signal will cause the ROM-RAM to output
the contents of the addressed location on the output
bus.

HPIB CONNECTOR

ROM - RAM Simulator is HPIB compatable, that is:
the address and contents can be given to the
ROM -RAM Simulator through the HPIB. Normally
the listen address is set to '"3'", however; this
can be changed to "2" by changing the jumper
wire on the board. The following is an example
program for writing in the ROM - RAM Simulator
from a 9830 calculator.

10 CMD"?U3"
20 WRITE (13;30) A,B;C;
30 Format 3B
A is the two most significant bits of the address.
B - is the eight least significant bits of the address.

C 1s the contents.

A, B, and C are the decimal equivalant of the binary code.

Example:

Utilizing a 9830 calculator, the following program
could be used to write individual codes on the
ROM - RAM Simulator.

10 DISP "ENTER ADDRESS";
20 INPUT I
30 DISP "ENTER CONTENTS";
40 INPUT C
50 A = BIAND (ROT (I,8),3)
60 B = BIAND (I, 255)
70 CMD "2U3"
80 WRITE (13,90)A,B,C;
90 FORMAT 3B
100 GO TO 10

D 2 L 4
+5Vo — —
o————3 4 oINS
N
G'0O0 ODOIM =0l I
+5Vo :
= o 6 - DIN2
G'.Do)
i o>_._ﬂ ul4
o e g
GNTo |
“s/0 A2 ER YIS
Ot
GliDo oA gL 120 INg
|
CRLKT ——+
+5V0 3 :
o— 4
G006 a2 DINs,
V0 g 7 DINg
e fo———un uIs
| Gloo DAg
.l\l~ 0|||| h.\l
T DAG -
+5V0 6] - D IN7
12
G0 o 2D INg |
CON.TENTS

MULTIPLEXERS

(i

RAMS
NPUT

FROM
S =
2 B9 QUTRUT

/

®» D L 4
D>Ob. M-OOJ
DAY i el
DA2E 28,
13 15
I 13 TO
DA3 8 L aoore
MULTIPLEXERS
9 Z0
Z _
9 3 I
DA4 W:ma =D 5 Bg
pass| w7 g uis .
DAg!2 2 Bg
13 15 12
8 LBS OF ADDRESS 2 MSB OF ADDRESS
\
=
ADDRESS LATCHES

13 12
D OUT
D OSQGWV 6
D OUT: 3 C)

|
8
8 use D)
T
2 u3e D2
4,
5 u3e D3
13|
|
12 u=s D4
10
8
g u3s Ds
4 3
2 u3s Ds
4
5| U35 0,
10

‘'t ENABLE

ova Ne—C e2n

asum—f s2n|’

AN

7

bl

vo

[+FL]

mnlvi o

1N —=C)

iy

ncwa

&
MY

"l

HNiY

~

EOREGE

2N

£2

oy

£2n (I

3HIM
CEEL D

-

i

® D o D @ D D D
HOLIMS HOLOTT3S
S+ Gt
A0
01231 NILNOD OL]
¥012373S Si D 2¢n
Iz
AS+ ¥
N— ! 2 -4 2 -2 r4 i L 1]
08 —; 28— v8— 99— oa—]
Ovd — 2vd , v oVd — ovd —
AG+O ’ AG+O 4 AS+0 L AG+0 AS+0 >
oNoCFoey & aNodensy S ONO "oy © NOCamsy © aNOTomcy ©
18— €N £8— ain 68— nn 48— omn 68— 6n
1V —— £vd —3 SVd—; 29d—33 6Vd —
AS+o & AS+0 ; AS+0 _ AS+0 ! AS+0 g
aNo sy 'L = anocEhsy T < anootmsy ' - aNoo'imsy ! < anoo"ewsy ! T
0OV ¢—1IVv -2V ¢SV -bY SV -9y Ly v $—6v
] | 2 [:] | 2 ! 8
L]
bsa Ssa 2<Q .-

\sAQ

- cameng

—+

LL...t.

K3atal vl

/

ROM-RAM STMULATOR COMPONENTS

4]

(o DESCTRIPTION i PART NO
=5 2102 INTEL RAM 1820-1078
9-13 74153 4-1 MULTIPLEXER 1820-0620
14,15 74157 2-1 MULTIPLEXER 1820-0839
16,17 24175 HEX D, FF 1820-0839
18 7474 D-FF 1826-0077
19 74107 J-K FF 1820-0281
20,21 7474 D-FF 1826-0077
22 74155 2-4 DECODER 1820-0738
23=25 7404 HEX INVERTOR 1820-0174
26,27 7430 8INPUT NAND 1820-0070
28 7438 0.C. 2L NAND 1820-0621
29 7400 21 NAND 1820-0054
30 7413 1820-0537
31 7410 3 INPUT NAND 1820-0068
32 7400 21 NAND 1820-0054
33,34 7408 21 AND 1820-0511
35,36 7438 0.C. 21 NAND 1820-0621
37,38 7404 HEX INV 1820-0174
1/0 SW DPDT -SWITCH 3101-0939
7203
ADD - SPDT SWITCH 3101-1258
CONT. SW 7101
WKITE SW SPST PUSH BUTTON 3101-0063
Gy 0 47 UF CAPACITOR 0180-0097
€;-Co .47 UF CAPACITOR 0160-0174
RESITOR-PACK 1810-0136
R, 330 RESISTOR 0683-3315
R2-Ry 1K RESISTORS 0683-1025
7300 LED DISPLAY 5082- 7300
24 PIN ASCII CONNECTOR 1251-3283
) .01 UF CAPACITOR 0150-0093

Rom - RAmM SimucnroR BogrD

HP I8 Conwwee7oR

‘\\‘ UUMpER V”‘?E

AAAAAAAAAAAAAAA

(s
[]

A

A HHER Sl B
10 Il e Lec)iz e 12413 l e :ﬁ;mﬂ it B b
l = C «Co
e : 1 : y 15
3 N ———
> a—o—o—o—m—e—o—o—o—e\c_\
8 GO0 ORAEOOG T =0 © Q06 0
00—V 0LV CO00 ‘¢ Cq O—0—0 |0 -))
AO0RESY C7 C6 €5 C4 C3 C2 €1 cCO
o ¥ CONTENTS

& Rsr !..I‘.I' ’. ‘ﬁt ‘-'.I.]'. 1.1..-
// “oe cIa:o o“:o--‘:oa“i
/ i =0]

L pIgatEARAARSEapannrang — — pesafisagninqenseenngy —
/0 Eebe ghlsEciyatiategy dusE. Jiditedetitent
il A3L (R FEAN
"’E(- i / I\ \ \ .‘“i \.‘
~ELECTHp l / \ X 'Il ' X
UK wle “/ \ / : / i \ -\D‘) ! ;.N
i (2L vey ¢ 5 l)(pt plircar:t
(PSG)

R RSN T N U [r— i ——— - o — e

APPENDIX

* AN ARITHMETIC CAPABILITY FOR THE NANO PROCESSOR.

By using 4 or 5§ 1/O parts and minimum external hardware, the capacity of the Nuno
Processor for data manipulation and storage is greatly increased. Choose a RAM size
. (minimum one word) and an ALU capability to suit your needs.

&

4 OTA
OTA
OTR

. INA
OTA

@

1

[

“

Let

and

ADDR
DATA
FN’ ,,+l,

ALU

RAM

ADDR be the select code of the Address Storage Latch.

ALU

FN

RAM

DATA be the select code of the Data Storage.

be the select code of the Arithmetic Unit.
be the select code of the Function Storage.

be the WRITE ENABLE line of the RAM.

*ADDRESSES RAM LOCATION A
*Lets A be one argument of the Arith/Logic Unit
*Selects function ”+” for the ALU

*Puts the result in A
*Maybe it also puts the result in DATA

*Puts DATA in RAM Location (ADDR)

NP
PROGRA
AD([))RES'\S‘1 DCO
DATA
BUS
STORAGE
ADDRESS A
STORAGE ¥
RAM
ADDRESS
DATA DATA
| ouT |

OTHER
/0 PORTS

FUNCTION
STORAGE

~__DATA
STORAGE

S

ONIHOLIMS %0018 ONIHNG
0378vSIa 38 ISNN SLdNHY3LNI

310N 1INI|Od
L3 HOLIMS
A0018
apy .
3S7Nd
180d O/|
__ JNOILONYLSNI, 31Y 4o 118'3s 1H0d HOLIMS
m_w%mmm,ouqz < ‘sLy'syrIvrtasr dwr Sl %5018 Ol V1O v.-
L , MOO1D
NIV
! o !—_.
R r—
A0 (]
- : 35Nd 180d
(I) ONIHOLIMS Y0014 % D90/ 'MO"
HOSSAD0Ud ONVN
bl mfe] a
m400||||ﬂ
mo)
sna
viva
3903 TMONYOV. . :
1dNHY3LNI i o
CREI RS FREEEE
3009
Mo018 ™
3OVHOLS 39VHO0LS
AHYANOD3S . AHVNINd
@ ® 2 2 3 2 2 g — 5

g & W N =
e 40 v o b e

(=)}

STORAGE Vec

~, BLOCK
~ CODE

AlO

I/0 PART
PULSE (L)

Use one quad tristate latch for 16K memory.
The new block may be set at any time.

No need to disable interrupts.

A19 is used as the "current block" indicator. Alf = ¢.
Subroutines may be in block H or current block.

Return is to current block.

Interrrups are to block H. Return is to current block.
Blocks are 1024 words each.

NANO PROCESSOR
BLOCK SWITCHING (II)

or B

ARPRPERNDIX

THIS APPENDIX CONTAINS INFORMATION
ON THE USE OF THE NANO PROCESSOR
EDITOR, ASSEMBLER, AND LOADER FOR
A 9830A CALCULATOR. ALSO THE
ASSEMBLER AND LOADER FOR A 2100 DOS
III SYSTEM FOR THE NANO PROCESSOR
IS COVERED. TO OBTAIN THESE
PROGRAMS SEE GENERAL INFORMATION

IN APPENDIX E.

THE FOLLOWING IS A DOCUMENTATION OF THE
NANO PROCESSOR SOFTWARE

FOR FURTHER INFORMATION, RECOMMENDATIONS, OR

IN CASE OF DIFFICULTY PLEASE CONTACT KAMRAN
FIRO0Z AT

303-667-5000 Ext. 2873

OcToBER/1974

NANO PROCESSOR EDITOR

A NCEW EDITOR FOR THL 9830 CALCULATORS

PURPOSE:

To generate or edit a source program on the
9830 calculators.

ROM REQUIREMENTS: ADVANCE PROG. #11279B,

STRING VARIABLE #11274B

MEMORY REQUIREMENTS: 8K

OBJECTIVE: At the present time the programs stored on

the cassette tapes of the 9830 calculators
cannot be accessed by any program as a data
file. In many applications it is quite
desirable to be able to edit a program in
whatever programming language desired, and
store the generated source program as a
data file on the cassette tapes. These
programs can then be ' called in " by an
assembler or a similar processor to be
assembled.

The primary objective of this editor is to
generate source programs for the Nano Pro-
cessor Assembler; however, the program is
versatile enough so that it can produce source

program for other Micro Processor Assemblers
as well.

Kamran Firooz
August 1974

SYNTAX: The editor operates in two separate modes
"FILE EDIT" and "LINE EDIT". The FILE EDIT"
is used to edit the entire file;
the "LINE EDIT" is used to edit individual lines.

The commands shown on the lower portion of

the "SPECIAL FUNCTION CARD" are executed during
the "FILE EDIT" mode, and the commands shown

on the upper portion are executed durin: the
"LINE EDIT" mode. All of the commands shown

on the card are immediately executable. The
shift key is not needed to execute any of the
commands in either mode.

A maximum of 140 lines can be edited on each
file. The program will notify the user if
this limit is exceeded. The maximum length

of each line is 32 characters. Any character
past this limit will be ignored. a '"/" is used
to designate the physical end of a line. If
"/" is not found in each line, the editor will
insert a "/" in the 32nd character. For a
more efficient use of line length, a ":" is
used as the "PSEUDO-END of LINE" character.
This character will be recognized by the

Nano Processor Assembler.

CLA /
TAG STA 12 /
JMP FAST /
is equivalent to:
CLA :TAG STA 12 : JMP FAST /

The physical file length is determined by
the "EOF" statement. If such a statement
is not found, the file length is taken as
140 lines.

The LOAD and STORE commands require a cassette
file length of at least 2240 words.

After each command is entered, any negative
number that is typed will cause the program to
go back to the "FILE EDIT"mode without executing
the requested command.

<
LTST OF COMMANDS OF "FILE EDIT'" MODE

INPUT: To generate a new file or replace certain
lines of a previously generated program.
"EXIT" command will terminate the INPUT

command.

STORE: To store the generated source program in
a desired file on cassette tapes.

LOAD: To load a previously stored program into
the editor.

DELETE: To delete line no. N; to N, of the generated
program.
INSERT: To insert N lines after line N, of the gener-

ated program.

XREF: To list a cross reference table of a character
string.
LIST: To list the entiré program.

LIST N, : To list line no. N, to the end of the program.
LIST Ny,N;:To list line no. N; to N, of the program.
LINE EDIT: To edit an individual line.

HELP: To help the user with the different commands
and their syntax.

&

-5-

LISTP; LISTP N,; LISTP N;,, N,: To perform the same
' function as LIST; LIST N;; and LIST N,, N,,
except that all the statements separated
by the "PSEUDO-END OF LINE" character (:)
will be listed on seperate lines.

LABEL: To 1list all of the labels used throughout the

source program.

CHANGE: To change a character string throughout the
source program.

NOTE 1: The line numbers are ohly generated
during the print period; they are not
stored with the program.

NOTE 2: To delete or list a single line set
N; = N,. '

NOTE 3: The total length of the file will be printed
after each LIST or LISTP command.

NOTE 4: 1If as a result of an unacceptable command
such as wrong file length an error occurs
which stops the calculator, the program
can be restarted without losing the
current file by "CONT 100".

LIST OF COMMANDS OF "LINE EDIT" MODE

FORWARD : To move the visible pointer one character

space to the right each time it is pressed.

BACK: To move the visible pointer one character
to the left each time it is pressed.

INSERT: To open up a character space immediately aXx
the visible pointer.

DELETE: To delete the character space where the visible
pointer is located.

¥ i To store the edited ‘1line and edit the next line.

4 s To store the edited line and edit the line immed-

iately before the present line.

EXIT: To store the edited line and return
to the "FILE EDIT" mode.

NO EDIT: To return to the "FILE EDIT" mode. All of the
changes on the edited line will be ignored.

o =
NOTE 5:To replace the strings followed by the visible

pointer, just enter the new string.

NOTE 6:1If line one is being edited and command '4"
is executed the program will return to the
"FILE EDIT" mode.

NOTE 7:The visible pointer cannot pass the end of
line character (/).

The following example is provided in an attemt to famil-
iarize the user with some of the features of the Nano
Processor Editor. All of the commands given by the user
are underlined

EXAMPLE :

Load the editor program in the 9830 calculator and press
RUN. EXECUTE. At the beginning of the execution the pro-
gram loads the special function keys from the file
following the editor program. Then the calculator will

display
"FILE EDIT?"

Press INPUT

"STARTING LINE?"
1

"ENTER LINE 1 7%

e =

Then the following program is typed in:

“ ERAMFLE PROGRAM-

*THIS PROGREAM READS A HUME=F TH.-
¢ BCD- AND COMVYERTS IT T BIM. -
"

START ITHA TS0 £IMFUT THE BCD #-
STH RS #STORE THE # IN RS-
STR @8 sCLERR Re:LooRr LpR 5.
SRH #SKIP IF ACCHEE: JMP QuT.-
OED *DECREMEMT IM BCD: STR S5
LD 132 1ME *IHCREMENT IM BIN..
STH B JMP LOOF:OUT LDA 0

UTH DEL #0UTFUT THE BIH. #.
JAFCSTART *READ AMOTHER MUMEER .~

Dol UCT @BiRS OCT S: END: EQF.

After the last line is entered press

EXIT
L

"EILE EDIT?™

LIST

i & EARNFLE PRAGRAM
THIS PEUGRAM FERLS A HUMBER TH.
YBCT AML COMYERTS 1T 70 BIN, -

£ START THA DS@ *IHFUT THE BCD g

7 STRORS SHTORE THE # IM RS-

a STe i sCLERR RE:LOOP LI e

i SEH «ZEIP LF ACC#AE JMP OUT.

ki JED =DECREMEMT IN BCD: STR 5.

1 COR Ay IHE #THCREMENT IH BIH..

2 STRCS JMP LOOFOUT LDA @

2 STRODSL EOUTEUT THE GIH, #-

4 WE START <REAL AHOTHER HUMEEE -
15 Ia 00T BrRS QUT S EHD: COF -

v TOTAL LIHE HUMBER= 1%

e i s gy

| R

] T e

(

LIME

-10-

To list the lines separated by ":" individually type:

LISTP

e o R SR SEUE E R S O R S S O SO

ENMANFLE FROGRAM.

3
I AHMD COMYERTS IT TO BIM. -

STORE THE # IH RS-
CLEAR R

B

al

S1v
LindkE L
EEIE #
ARE I_II_IT
RED #*DECEREMEMT IH EBCD
=TR 5¢
[LOA &
IME *IHMCEEMENT IM FIH,
STE B
JREL0ap
U7 LTA @
OTA DS1 =0UTPUT THE BIH. #-

kT
||'|}:1~—- 10T by
—

-

~ 0N T

- T

“IF IF RCCHR

AMF ETART #READ ANOTHER HUMBER.

Nog 0T A

D UCT S

ENT

EOF~
HUMEBER= |5

FROGEAM READS A HUMEER IH-

HH =g = THFUT THE BCI #f

FARGE

1

TP el o e G

® W

11

Suppose it is desired to output the binary equivalent
number to some other devices besides device (DSI1).
Then press
INSERT
""INSERT AFTER LINE?"
13
""HOW MANY LINES BE INSERTED?"
1
"ENTER LINE 14 ?"

OTA 2/
"FILE EDIT?"
Note that operand DS1 used in line 13 is not defined.
This definition could be achieved by inserting a new
line or addition to one of the existing lines.
LINE EDIT
"WHICH LINE?"
14

"OTA 2 /n

EEEEF Edr o

11
11

12

|
1-

ofain

1 wt
TOTAL

S

I e

1
il

Press the "BACK" on Special Function Keys, the pointer will
be pointing at;

"OTA 2 / "

Then type:

DS1:°'0CT 1 /

"OTA 2 :DS1 oCT 1/ "
Since no further changes are required press
EXIT

“EFILE BDITZY
To observe the changes type;

LISTP 10, 15

FRGE 1

R R R R e R Rk R R R v S I I B R S R A A S SEQPeEN

DED «DECREMEMNT IH BCD

2TA 52

| IR &

cHE #TMCFREMEHT 1H BIH. -

STH M

AMELLanE

T LOA &

TR D51 =0UTFUT THE BIM, $#-
atp 2

=1 DET 7
WECETHET <READ HHUTHER HUMEBER -
HUMESR= 18

-13-

If no further chkanges are necessary and you wish to
store the program on a cassette file press;

STORE
""STORE THE PROGRAM ON FILE?"
1

After the program is stored on the tape, calculator
will print;

FEOGEF AS &Tare I oM FIL E 3

“"FILE EDIT?"

Note that if a negative numher was entered as the file number
the editor would ignore the STCRE command and return to the
"FILE EDIT?" mode.

3

To terminate program press;

END

-14-

a8
2o \M SR leago 1N .. . NANOPROCESSOR EDITOR jles

USER DEFINABLE KEY OVER LAYER

NANO PROCESSOR ASSEMBLER

SECTION I

USER GUIDE TO THE NANO PROCESSOR ASSEMBLER

PURPOSE: To assemble a source program for the
NANO PROCESSOR using a 9830 calculator.

MEMORY REQUIREMENTS: 8K

ROM REQUIREMENTS: Advanced programming #11279B.
String Variables #11274B, and Extended
1/0 #11272B

SOFTWARE REQUIREMENTS:
The Nanoprocessor EDITOR must be used to
generate the source files.

Kamran Firooz
August, 1974

DESCRIPTION: The Nano Processor Assembler is an
absolute assembler designed to assemhle source
programs (generated by the Nano Processor lLditor
stored on cassette tapes and to penerate cquivalent
object code files. A loader program can then
be used to load these binary files into a
ROM-RAM Simulator, or a PROM. The assembling
is performed in two passes. Pass one searches
for user defined symbols, and pass two translates
the mneumonic source program statements to their
equivalent binary codes.

These binary codes are stored in an array called
object file. At the end of pass 2 the object

file is stored on the cassette tape. The file
number where this array will be stored is request-
ed at the beginning of the program.

The assembler program is written as a "conver-
sational" program: that is, the different options
of the assembler are asked at the beginning

of the program. If the answer "Y" is not
encountered the option will be voided. The

following is a brief description of these
options.

OPTION I '"SYMBOL TABLE"

For this option the calculator will ask:

“"PRINT THE SYMBOL TABLE?"
If the reply is "Y" the symbol table will be
printed

OPTION 2 "PROGRAM PRINTOUT"

The second option provides a listing of the

source program and its equivalent code. In

regard to this option the calculator will ask;)
"PRINT THE PROGRAM?"

If the answer is "Y' each line of the assembled

program will be printed duiing pass two.

(3

e d . . Y. TR — iy, U - e — e g

PERMANENT SYMBOL TABLE:

The permanent symbol table is an array consisting

of all the op-codes and their binary equivalents.
Permanent symbol table is stored on a file follow-
ing the assembler file. At the beginning of exccut-

ion this file is loaded into the calculator.

USER DEFINED TABLE: v

User difined table is an array that holds the
numerical value or the address of the labels.
During the pass 1 all the labels are stored in
this array. At the end of pass 1 this array
is sorted in alphabetical order. The alpha-
betical arrangement of the labels make it pos-
sible to perform algorithmic search instead of
a linear search. During pass 2 everytime an
alphabetical operand is found, the assembler
performs a logarithmic search into the user
defined table to find the value or the address
of the operand.

Maximum length of user defined table is 140
labels. Exceeding this limit would cause an

&

error which stops the progranm.

(g

e

OBJECT FILE:

Object file is an array that holds the hinary
codes of the assembled source program. At the end
o of pass II this file is stored on a cassette Tape.
A loader program can then be used to load the
object file to a ROM-RAM Simulator, or a ROM.

- Object file is a 1024X1 array. Each location of
this file will hold the object code for that
location. For example; location 16 will hold
the code that must be stored on location ljng

o the ROM. (Due to the fact that array starts from
1 and not . All locations are decremented

by one by the "LOADER")

Since object file has only 1024 location, caution)

C
p—

must be taken not to exceed location 1777 octal.

For example; the code that must be stored on

location 2150 octal will be stored on location 150
< octal. (11'th bit is truncated).

At the beginning of the assembling all of the
locations of the object file are initialized
9 to -\, . During the assembling
-| is over written by other codes, however the
locations not used will remain as -| This feat-
ure is used by the loader for '"PATCH ASSEMBLING".
& For further in:ormation refer to ''NANO PROCESSOR
LOADER".

PROGAM SOURCE FILES:

Progam source files are cassette files that contain
the source program. These files are generated
through the Nano Processor Editor. Up to 10 files
can be assembled at one time. If more than onc [ile
is used, an EOF statement must designate the
termination of each file.

The maximum length of each file is 140 lines, and
Each line is 32 character spaces wide.

A "/" is used to designate the end of line,

For example:

LOOP LDA REGS * LOAD ACC from RS /

For more efficient use of the source files, another
character called the PSEUDO END OF LINE CHARACTER
(":") is used to tell the assembler that the state-
ment has terminated and that more statements follow
on the same physical line

For example:

CLA: LDA REGS5 :BACK STA R16 /

This line will occupy only one physical line of

the program source file: However, it will be
accepted as three individual lines by the assembler.
i.e. This one physical line as far as the assembler
is concerned is equivalent to the followint lines:

CLA /
LDA REGS /
BACK STA R16 /

¢

o

GENERAL FORMAT:

Each line of the program consists of one or more
separate fields. These fields are: Label, Opcode,
Operand, and Comments. For the convenience of

the user these fields are separated by one or

more blank spaces. The following is a brief
description of each one of these fields.

LABEL:

Label is a symbolic name that provides the ability
to refer to the instruction or the value generated
by the instruction, for example; in the instruction:

START LDA REG17 /)

START is the label, and it holds the address of
the location where this instruction is stored on
the ROM.

But in the instruction:

REG17 ocT 17 /

REG17 is a label that holds the numerical value
assigned to it by the OCT instruction.

The first letter of a label must be alphabetical,

and the total length of the label cannot :xceed

6 characters. If the first character of an in-

struction is blank the assembler assumes that there

is no label present. Repeated labels cause the ass-

embler to print an error message.)

e T B A W N SR EER e g ——— — e r £ ammm ey W e~ —% .

eih TOLREN
‘ﬁf’

OPCODE:

Opcodes are mnemonic operation codes stored in
the permanent symbol table that are recognized
by the assembler and translated as machine in-
structions or Pseudo-instructions.

MACHINE INSTRUCTIONS:

Machine instructions are those instructions that
the Nano Processor can execute to perform a
specific task. The assembler translates these
instructions to their binary codes.

There are three types of machine instructions:

Type 1:
Single byte instructions that are self-
defined and do not require an operand.
J-gd‘;- ;‘ .‘ 5 il)
> ‘f.'_

&p

(?‘.

For example:

CLA * CLEAR ACC

STE . * Set extend register

RTS * Return from Subroutine

ENI * Enable the Intrupt

INB * Increment the ACC in Binary
SLE * Skip if ACC < to register 0

Type 2:

Single byte instructions that require
an Operand.

For example:

SBS 5 * GSkip if Bit 5 of the ACC is set
CBN BIT4 * (Clear BIT4 of the ACC
INA DSS5 * Input to ACC from Device 5

Type 3:

Double byte instructions that must
be accompanied by an Operand -

For example:

OTR 2,DATA * OQutput ROM Data to Device 2
STR REt,FOUR * Store FOUR Into Register 5
JMP GOOD * Jump to Location GOOD

JSB ADD * Jump to Subroutine ADD

=10

PSEUDO INSTRUCTION:

Pseudo instructions performs two types of tasks,

Type 1:
They provide information to the assembler
about the program being assembled, such
as ORG, EOF, END

Type 2:

They allow the definition of constants,

such as OCT, DEC, BCD. Obviously type 2

of the Pseudo Instruction must be accom-

panied by a label and an Operand, since

it is assigning the numerical value of
‘) the Operand to the label.

OPERAND:

Some instructions require the designation of

an Operand. This Operand could be a destination
alddress in a JUMP instruction or the numerical
value of a label in an assign instruction. There
are three types of Operands, they are:

Type 1 - NUMERICAL VALUE:

This type of Operand is used in a type
two instruction code, or in a Constant

Define Pseudo-instruction.

(Type 2 Pseudo instruction).

) NoTE & AL NUMERIC URLOES ARZ. TAKEN

AD OUTAL EXCEPT 1y BCD on DEC.
PSEUDOC WRTR,

a -~ B —me = ———— ~ =S
e = o% AN W TP sl § o T

-1]=

For example:

LDA 5 * LOAD ACC FROM REGISTER 5§
SFZ 4 * SKIP IF FLAG 4 1S ZERO
REG14 OCT 14 * ASSIGN VALUE OF 14 TO THE
LABEL REGI14
JMP 377 * JUMP TO LOCATION 377
LDR 20 * LOAD ACC FROM ROM DATA 20

This type cf Operand has to be numerical. If they are
being used in a type two instruction they cannot
exceed 7 or 17 (OCTAL), if they are being used in

a constant instruction their octal value

should not exceed 377.

The following Operands are acceptable:

CBN 5 * CLEAR BIT 5 OF ACC

STA 16 * STORE ACC IN REGISTER 16
AA OCT 167 *
BB DEC 250
CcC BCD 89

However the following Operands will cause error messages.

SBN 20 SET BIT 20 OF ACC
(Accumulator has only 8 bits.)
SFS 14 SKIP IF FLAG 14 IS SET
(There are only 8 flags.)
DD OCT 19 (Unacceptable octal numbers.)

EE DEC 340 (Exceed 377 octal.)
EE BCD 140 (Exceed 377 octal.)

Type 2 - SYMBOLIC ADDRESS OR SYMBOLIC VALUE:
This type of Operand is used in jump and

jump to subroutine instructions or in a
type two opcode instruction.

e e LR e B o M et T e e —— e ——— e — TN S - —_— e e S T P e o B et S B3 I o g, T S —

-12-

Example:

JMP LOOP
JSB ADDING
JBN BIT4
LDA RIZ
STA R6

JAI INDI

This type of Operand follows the same Syntax rules
as the label, that is; it must begin with an alpha-
betical character and must be less than or equal to
6 characters long. These Operands must be defined

somewhere in the program as an address or a constant.

Type 3 - SYMBOLIC OR NUMERICAL VALUE

This type of Operand is a mixture of type
1 and type 2 Operands, and it is used in
type 3 instructions.

For example:

STR R4 ,FORTY
STR 4 ,FORTY
STR R4,40
STR 4,40

————— . . a—

@

e . - — - - - — ir v m-maaa
T e e M o Sy sy A g e — 5 A . %

-13-

As the above example indicate, this type of Operand
consists of two separate fields. Either one of thesc
fields are separated from each other by a ",", and
there should be no hlank space anywhere in the Operand
Field. The symbolic portion of Operand follows the

same rules as typc one of the Operands.

COMMENTS

The comment field allose the user to transcribe
comments on the list output produced by the assembler.
The comments field must begin with an asterisk.

This field could start at the beginning of a line

such as:

* THIS IS ONLY A COMMENT /

or after a type one Opcode

AGAIN CLE * CLEAR EXTEND REGISTER /

Cemments are ignored during pass one.

If an * occurs at the beginning of a line, the
entire line is assumed to be a-comment.

=14

PSEUDO OPCODES:

ORG: ORG is a Pseudo Opcode that provides
absolute program origin or starting
address of a segment of a program.

The operand of the ORG must be an

octal number. If no ORG is encount-
ered the assembler assumes the starting
address to be zero.

EOF: An EOF statement notifies the assembler
that the physical end of file has reach-
ed which causes the assembler to load
the next source file.

END: Terminates the source language program.

Note that ORG, EOF, and END are not
executable statements; therefore

any jump or jump subroutine to these
instructions would cause an error.

OCT: OCT is a defining opcode that equates
the numerical value of the operand to
the label. Obviously the operand needs
to be an octal number.

DEC: DEC Pseudo Opcode is another defining
statement that converts the numerical value
of the operand to octal and equates the
converted number to the label.

BCD:

-15-

BCD is a pseudo opcode that converts
the numerical value of the operand from
BCD to octal equivalent. Each digit of
the operand is taken as a 4 bit BCD
number.

For exuample in the following statement:
TAG BCD 38

The assembler separates the number

38 to 3 and 8 as 0011 1000.

This number is then converted to octal
00 111 000 (p7#). Note that the operand
cannot exceed two digits.

=16=

SECTION 11

A BRIEF DESCRIPTION OF THE ASSEMBLER PROGRAM
AND A FLOW CHART FOR BOTH PASSES

THE PROGRAM: NANO PROCESSOR ASSEMBLER program is written
in the 9830 BASIC language. The source files
are stored in an integer array and converted
to string variable by the use of "TRANSFER"
statement for assembling. The program consists
of two passes, in pass one the assembler searches
for labels and checks the syntax of opcodes.
Labels or the addresses associated with
them are stored in an array called "USER DEFINED
TABLE". At the end of the pass one, this file
is sorted in alphabetical order. This arrange-
ment makes it possible to perform a logarithmic
search for the labels rathsr than a linear search.

In pass 2 the assembler converts all of the
statements to their equivalent binary codes,
and stores the converted codes in an array
called "OBJECT FILE". At the end of the
assembling, the "OBJECT FILE" will be stored
on a cassette tape.

The following pages include a simplified
flowchart of both passes.

-17-

(SrarT)

Loap Pepmaweor
Lsy,nyn. /A HKLe

I

Ques Tle~s #8ouy
THF

ASSemeiy R opTiceS

|

A

yeg /
PRsys <« M7 gy
I

¥o J

Loso #
SovRes Firg
’Q —

CowsiDep Y]

Sovees LiwE

Lo\ Yes -

Conmenrs Can
Linvg

Lhger \ Mo

PRS ¢rar

Y

STors AOpRSS¢ R 7
VeLAE of 7HF L#gsL A
I* Tre Gicr Dssimcp TR

Y

FLow CwhRr o paes I

NAmo PRoOCE ssoR AsSeme L eg

L/AM Réw rll ooz

Srer 1974

-18-

) v BsR

CF Sourey
Cieey

NeRs ryse | gy Y5 SToRE Twe
@/ [ow 2

A |Loso 4]

CoOuRCE .4

TSRS |

‘V

Pl
~

NO
CowsioeR Y€3 /[Lasr
Soukce Liwg \ Ene
Y
YES
/Conm-.vrx\ > g
\ L% ?/
Firp THe A
opPlovoE
") y

- TH 0Prp pe o zfokt THE ®iwppy
REQu/Res Aw | “F¢ 1w T E
OfcR hmp OB JEc7 FILE

3
Fi¥p rHe
OPERAnD

P
>

FLew CHWART of phss IL

NANO FPROCeEgco kR A9CEm @ LER

— I(/MRA« rmooz

) Seer 1974

!cj

=19~

EXAMPLES

The following examples are given in an attempt to

familiarize the user with the Nono Processor ASSEMBLER.
EXAMPLE 1

The following program will add the contents of Register 5

and Register 6 and store the result on Register 6.

Source program was generated by the '"NANO PROCESSOR EDITOR",

and stored on file 2 of a cassette tape.

e -
) FRGE 1

I I b e L i e i i

ARG FROCESSOR ASSEMELER -

1 %
2 * E=sPHMFLE OHE
@ = Frar xS
4 < Al THE COWTENTS 0OF EEG. 5
S = T THE COMTEHTES OF FEG. & -
£ ~ HHD STOFE THE EE=ULT IMN REG. &~

wa L ELIES

—

AP LDA RS *#L0OAD ACC FREOM RS-
{UED *DECREMEHMT IH DECIMAL.S
SHH =SEIP IF ACC #87

IMP QUT: STRH RS-

I DA REe #L0OAD ACC FROM E&-

IHDT * INCEEMEHT IH DECIMALS
“TH RE& #STORE ACC AT RE& -~
JMF LOOP:DUT LDA REs

[HDI: STA RE& *FEx HAS THE FESULT-
5 OOCT S #FS IS OCTAL S¢

Fe OCT &: EMD-

EQOF -

IS O R B R I 2SO0 I SR OUR R

Pk b e e b b e e —

TUTAL LIHE HUMEEER= [+

== S — — — — — - e — -~
e e e S e e e — e — e e ———— e —— e - =

-20-
G
Load the assembler into the 9830 and press RUN, FXECUTE.
After the Permanent Symbol Table is loaded into the Calculator,
Calculator will display;
@
FREIMT SWMEOL TRELE ©
s
Y
FEIMT THE FROGEAM
Y 9
STORE THE GulECT FILE OWFILE WO,
- S
rtdMMAMY SOURCE FILES
1
FILE HB. ¢ @
2
At this point sorce program stored on file 2 is loaded and the =
following pages are printed on the printer.
@
@
J

e

-21- PAGE 1

e e n s e St m e Emem e e e e s e e el e e — i v b i 0 s o

@) *37MBOL THELE+)
’ =Y MEOL HUNEE =S CYALUE?

LIDOF 11
auT 13
o 5
® .o FE &

HUMEBEE OF cHREOES FOF PRS: 1 5

I

i | < 3¢

=P
FAGE 2

|
I

HQHH FRUCESSOR Az EMELER
EXAMPLE OHE

Nt~

K K A I I N R R S SR T

; Alib TAE COHTEHTS OF REL., &

5 TO 'HE CONTENTS OF REG. ®

5 AND STOFE THC RESULT IH REG. 6

a A ! IMUF LDA RS S UAD ALE FROM RS

a { e TIED CDECFEMEN] 1H OFG { MAL

-

-

1
oy
-

SN *5EIF 1F ACE#6
AMFOuT

STH RS
LIIA E& LOHD ACC FREOM R

Sl
U OB o oG R TRl OO PRFY), 5 SN I 0N

~d T e T
Po T I Fa T 0 L =) o Lh

e

3 IHD *ITHCREMEHT TH DEC 1AL
= &l L TR E& #3TUFE ACC AT RE

[! o AMF O LO0p

= i 13

15 13 1 aur LOA k&

1e id 545 IHD

I& S 1§ STH RE *Fe HHS THE RECULT

17 RS BET S *R3 1T OLTAL S

= Fe acT &

EHID

o’

HUMEE: OF LFREOES FOR PASS 2= @

EXAMPLE II

The following program examines 2 Direct Control
lines (DCP -DCI) and based on their conditions displays
a different message on an external display.

The editor listing and the assembler listings
are provided in the following pages.

4

[T S S S
DR (I <SEOOUN RUR

=5

T

ot G 0 P o P fo 1

R N s Z I Al DX, SR I e TR S

ot el L

S N

i i i
Folt b o

£
T e

1,

N
Yy

<

a o
[y

=Ph=

FARGE

1

R b B e e R SRR U o b Bk R e e e e B e e e o S S e SR R T 2

LIGPFLAY FOUTLHE 22«2+ -

OF mlsB LLEHE FEGISIER 1
Frol OTF Fa«<a <0 LERF B

SFS FLAGH ==F 1R [F DLy 1= - ET

IMF DTSFA +«DISFLAY MESSHGE A

e FLAGY +3EIR OIF Difl IS SETS

e nI=sPE +DI=FLAY MESZAGE B~
"H1 =EHMRAELE THE IHTEREUFPT.

AAF FEHD <EOTH FLHGE REE CLEHRE.-

HruFROSTR R 48 *REGH=44-

SUA F1 #LOARD ACC FROM FOIMTEER.-
LT *3EIF IF RCC < 4@

ATR 1«8 =CLEAR THE FOMTEERS

tHI : JMP EERD -
I =aPE STR E@.48 + REGH=48

LA #1 #LOAD ACC FREOM FOIMTER-

SGE *SKIFP IF ACC>=4@.

VR Rly4@ FOINTER=4i-

Evl: JMP READ

PG 377 #IHTERRUFT ROUTIHE-
SR RE #STORE THE ACC DURING.
+ THE INTERRUFT PERIOD:*~

| LA B1 #LOAD ACC FROM POINTER-

. TR DEa =0UTFUT RCC TO ARDDRESS-
+ LATCH (DEVICE SELECT @):*:%-

Al 2 = JUMF IHDIRECT TO LOC,

* 3189s ANMD 2 BITS OF RACCH

EL OTR DS2.48 =0UTFUT BLAHE -~
AMF DISP-

H OTE DS2«181 *=0UTFUT *A* CODE .
JMP DISP-

o 0Tk DS2.184 + OUTFUT *D* CODE-

IMP DISP-

E OTR DS2s 185 #0UTPUT *EY COLE-
JAMF DISP~

I OTE DS2s111 #=0UTPUT *I* CODE-
JMF DISP-

E OTRE DS2+113 =0UTFPUT K
AMF DISP-

i OTE 2s114 =0UTFUT

—
'

1 0TR 2s11e =0UTPUT
0NTE 29117 #0QUTFUT C

OTE 23122 *0UTFUT R
OTRE 2+123 #=0UTPUT 5:

—tnm T

DIisSP OTR DS1«48 «0UTPUT CODE -
* FOR ELAHE TO DEYICE 1:#~
?LE D53 #START THE DISFLAY-
iHE *DOUFLE THCEEMEMT THE
+ FOIHTER: #: %~
“TA 1: LIHA 2 *FELOAD THE HLL.
+ BY ITS YALUE EEFOFE THE -
* INTERRUFT QCCURED: «:%.-
MIDD EMI *EHARBLE THE IHTERFRUFT.

L: JMF DISF~
H: JIMF DISF-
a: JMF DISF-
OTR 2s128 *0UTFUT P: JIMF DISP-
R: JMF DISF-
50 JIMF DISP-
¢ OTR 2+131 #0UTPUT %: JMP DISF-

@

3

I
1g-

T | B et o T 13 alTi o il B A— P g 0

=28s

FAGE 2

R R R S ettt F R R LS L RS R 8 kg i FriLEETFrr v r e ¥y

”) 57 EEFORE RETURH: %1%
S5 FIT +RETURH FROM IMTERRUFT~
= FLSETH STR R1+8 #FESET POIHTEFR-

-
x

AMF MIDDS

FESETE STR F1:48 *FEESET FOIHTER-
AMF MIDD-

(RG 1880 *DISPLAY:*:+ &
OISFLAY 15 OK:=xiss
iMF BEL *DISPLAY ELHHE-
P Tt #DISFLAY D~

JAHF I *DISFLAY I~
iMF = #*DISPLAY S«

AMP P: JMP L: JOMP R: IMP Y
JHMP BL: JMP I: JMP S: JMP BL-~
AMP 0 JMP K: JMP RESETR~
ORG 1848 *DISPLAY:#:*~

+ ERROR IH DISPLAY:=*:ixs
JMF E: JMP R: JUMF R~
JUP 0 JMP R: MF BL: JMP I
JAMP H: JMP BL: JMF D: JMF I~
JHF 5: JMFP P: JMP L: JMP RA-
JAMP %t JMF RESETE~

Fa OCT A:R1 OCT 1:R2 OCT 27

nEé@ QCT 8:DS1 0CT 1~

DZ2 OCT 2:D83 OCT 3~

FLAGA OCT @:FLAGL OCT 1: EHD<
ELOF .~

L N U

=3 O L e L T e (S A0 0 =) T

R N N R I TN IRt W T 0 e R RO ROUR R R

DO O RS Wl o)

DO |

fOTHL LTHE HUMEER= 33

«26=
FHGE |

) A MEBDL Trkr E#

o EDL HOUREE- ~ «MHLE »
el
WISPH
il=rFE
EL

H

n

C

I

|»:

L.

H

I

F

F:

TN

[O L SO KN
— ST

+ IS S R SRR 2N
Al s Tt [=
L = Dl =] Dl =) d g

B
£
=4 L =

<A
I

- 457
.'1. 453
[1aF 467
M10D - 47e
FESETH 15 1]

=
S

P R O DX R |

MEER OF CRREORZ FOR FRZS 1= @

R
a1

B — -
ol

DIGFLAY FOUTIHE

Jdes

+ @i

i
FEd
R
A5
s
it
il
41_
q:

114

':'d

415

) CUEVICE SELECT

420 FEAD

21
1t
57
s F:”.J
Fik

UIsFE

Yoy
s

e

Pt N

(A

)

-
o

5
T P e e
fo S s &

i

led

VHTERELFT FERIOD

141
12d

-
s

HMD S BITS OF RGO
EL

Don]
=

Dol SR (R K]
T (TS
—— Py =)

(N RS
-
AL M8

|
.

ARR]

P
G\E;'M
£ [

(=

21

D L1 S
5

STR
STR

IHP

SF3
JHF

EHI
AMF

TR
LIIH
SLT
=TE

ENI
AMP

TR
LIA
'- L: E
STR

EHI
AMP

HFE‘

STR

LIA
OTH

=
—
-

o

s
=
-

=

=M
—
[y u

L
X

FLAG1
DISFE

M

s

I"-.‘l

48
DISF
DSz 161
DISF
D52y 184
DISF

+CLEHF REGISTER |
«CLEHEF R

<SE1F LF Dce 15 ZET
*DIS Ay MESSAGE |

SKIF LF DLl 1 ZEd
*DISFLAY MESSASE E

«EHHELE THE [WTEFFLFT
#BOTH FLAGY ARE CLERE

*REGA=40A
*LLOAD RCC

*ZEIP IF ACC < 4@
+CLEAR THE FOMTER

* FEGCA=4A

#LOAF ACC FROM FOIHTER

#*SE1F IF ACC =441
=FUIHTER=44

#*IMTEERFUFT REOUTIHE
=STURE THE ACC DHEIHG

#LOARD ACC

= IUMF IMLIIEECT T LOC.
*0OUTFUT BLANEK
UTF AT *H*

CODE

QUIPUT *D* CODE

FROM FOINTEE

FRCM FOIHTER
*QUTPUT RCC TGO ADUFESS

2

+

D TN

-

DR R e s 2 2

.'-l

LanlR SRS KR s 5 6 R R I n (0 4 x

LR

5
3 P P T

LR S X S
i

FHGE
41 T e e
410 15 A | UTRE DS 18s *OUTHUT “E* ©LlE
420 1%

fomin

JMP DISP

-
| C9¢E 4
-

i Ju

-~
SN
G2 L f OTRE DEssa111 EFOLTEFLD T L uE
424 111 .
425 201 IMF DI=F
426 e
427 4?; b UTRE DS2. 113 FOUTPUT F

JMP - DIEP

C T
(3 ik
Ty T

RV, F S P R e A R R S e e

L TR 2+114 *OUTHUT L

R B] KRS Rl

IMF - DIsF

(RN

H OTR 2. 118 *0UTPUT H

po T T

AR SR N N OO N S
=

-
k2
r

)

JMP - DISP

SN TG o o B A RO | Y
SO EDOURD SR S B o B R SRS

4a
)
23 PO
b (T T

T
R YN

i OTR 24117 #AUTFUT 0
JAMF DISP

B 2 .
= fa
- s
[1=t

da
-
PRI
l:r !,

fi. n@ F OTR 2s128 | *OUTFUT F
T 1&

}S{ SrS) JHMP DIEF

a5 tif

45: TS i OTR 2s12Z *OUTFUT R
482

455 ~al AP DISF

A5k ey

3 @2 S OTRE 2s123 *OUTFUT =
4L 23

3

RASn O v
[N e
[e T
Ty =

—

JMP DISP

)

-4

(|

2y % T 15y T T G
nL
-’

La

d

Rl o8 o BT ORI B
—

L

4 OTR 25131 *QUTPUT ¥

o

JMP - DISP

- A
[n g
DO R IR

nIsr OTE IS51.48 *0UTPUT ©CODE

R SO Ll o B
Dot e

Tir DEVICE 1

mx

« FOR Bl
- TR 0SS *START THE DISFLAY
THE

[HE #*DOUFLE THCREMENT T'E

P
i
U SRy

o
-
Lo
ey

-

[28
v

2 Jafa

~

AT T -
!

FOlriiER

+

44 1el =TH

i 14 LR 2 *RELORD THE RCLC

[

* BY 11, YHLUE BEFOFE THE
¢ IHTERFUFT OCLCURED

-+
-
!

T
T e = T

3 B R AT VR e S N 2 EAALCE 0 Y2 o

PR I GRS SR S R

g @0 Ty O O

5 0 2 R T8 11 A MO

A8 L i 1T

N

T

.,
A ER R

-
2

-
v
s

VR WP, " -r.
i 3 ™2 s veg KT LY

S R

my == = |

bt I

SEUT U R R e e ot i ot B o B o R gl

o (e Gt Bl S

N

BEFLIE R

+

-— - = .
3oUH R IO S
| S

(S L KR

sEh o ok i,
A o
—-b'

-t

ESELAY

‘- E m e

TRl
it

b

F
o
g

Rery

(R

(L
-

¥ D

-
IR ot
i bt 270
R

i

o
A ‘-‘-'

W 1

I—h

-
!

bk pml ety pueh b Pt

- 3 !

—
RO AR
[

= -0

Tt = i

-
(]
RN

WA
2

%
-

1

Dy B S

S8 R o 3 KX

{ AT T
i r
PRI SR OO i et

A A
ot
e

S Ll

Y,
LALLM MO
a0

P gk Pk ek i ek fem s jeeb bbb b ks hed jouh b i bl e bk e e b A R1TY L
-~
-

% ae I

—
i L

[

Bt 1

B N |

+

16k

1ad1

a7

ETLERH

r
I

,._A _.
o S P et bt
EVIROCE S B SO I 0ot B o B % B £

Lo

..
Rt
D S ot I v B e]

TS O

BN
TS
2
a1
‘0
i o

°“y T —
D00 O a Y
(N R o R o RN IR Mg K
—

o
(R B T RIS B S

[U XD

R

e =
i T

@
—

I
[V

X N
ot inor i S B oU I S o o R |
= b e O e =)

1
b

e
0 Poa 20 PO

0

_—

M DISFLRY

‘Wl
GRS

IMIDD

RE=EH

FE=ETE

ENI

FTI
TR

AMF
STR
JHP

OFG

AMF
AMF
AMF
NP
JHF
AMF
AMF
JMF
AMP
JMP
AP
JMP
AP
JMF
AFF
ORG

JMP

Flst
MIDD
F1. 46
M1DD

1aan

EL

ol <

T

RESETH

18448

*EMAELE THE IHIERRELUFT

SRETURH FRON THTERELFT

*FESZET FOIMTER

*RESET POIMTEFR

+DISFLHY

*DISFLAY BLANK
*DISFLAY D
*DISFLAY

#DISPLAY

[y

#DISFLHY

¢¥

) =)

N I vt
=
-
>
o
i

iass 281 JMP BL

AP H

LU ZH1 JMP BL

RS » 0 o 'R S 60 SR RN s I IS O

— e b

VS 3n

o

=

T

Dot

[y

Shliagai o] wafim =) mo e el o] e jlie §d S

= -
r
1=
I—
=
m

RESETE

&2
TEES H313
154 Zat AP T
1865 q23
18ExR 2H1 AMP S
K 1867 497
’7 1ava 281 MF P
B 1871 a4y
i 1872 e MP L
s 1ava na3
2% il 2a1 JMP A
Ly 1a75 vy
): 1675 201 AMP Y
o 1877 He3
114 A%
1 -

L M)
=
p—
—
=
S

w g my .-

FLAGA 0OCT
FLAG1 OCT

(e o
R R~ R I R TR R
=
Y
b—
i
D |
——
LR CR N DRIE oul PR i)

PUCRO RN R

HUNBER OF ERRORS FCR PASS 2= A

[

¢

&

=% =

EXAMPLE III
The following example will demonstrate the
"PATCH ASSEMBLING'" feature of the NANO PROCESSOR
ASSEMBLER and LOADER.

Suppose it is desirable to change the message B
of the example 2

""ERROR IN DISPLAY"

TO:

"ERROR IN DEVICE"

A short program such as the one following could
accomplish the desired change.

Y

29
FARGE 1

R R e s Ak S R L I S ey FER R LT F AR F LTI I L LR R4 A F o F o R XS

~) i S PATOR PROGERRM FOR DISELAY.
B S R Y

CNTR e Lt SOUTPUT 103 To 2.
JHMFE S o HME T DTSR,
" OTR 2si2e x0UTPUT 127 TO 27
JMF gelt o x JURP TO DISFS

akG 1as8.-

JMF 483 = WIMP T0 EBL-

IMF 413 =dlMP TO D~

JHF 417 = JUplP TO ES

.'MP e

AMP 322 * JiMF TO I~

AMP

AP 417 = JUMP To E-

P Shd = JUMP TO RESETES
EHD: EUF.

20 0%

o4

0T Ll P o= T 0 -y T

— e fed e b ok

Ficlh L LEHE HUMBER= 1g

47

e e e s - —- ——— . —-———— ———————————— 1 ——— . ————— —— -~ — — — —————— —— e o o —

‘) , ~ #5YMBOL TABLE=*
SYMBOL ADDRESS < YALUE:
~ e, m i 518
iy 514

HUMEER o0 Ciek0RS FORE PRZS 1= @

e

-34-
FAGE =2

i ©PHTIH FREOLGRAM FORE DISFLAY
= OREG St
1) Sik SRR 19 UTE 24183 0ONTHEUT Ih3 T =
511 PR
5 {5 1R SR T = WME T L sF

' 13 ey
Sid BT b 0 OTRE 2y 106 FOUTELL 127 T2
L 1;6
“1c 281 NP 457 *IUHE TR 1S
bt s

FG 1l
AMFP dus = NIMF T EL

—_

-

[
A

'—‘

AMP 41 = AHMF TO O

—
'

)T T @ T T
AR A
oy

ot

-
=y

e?{ P 417 =JUMP TO E
ot IRy

-
o T
MERACR

IMP 423 £ JUMP TO0 1

DO R o vy B

-
-
“3 -] e | - |
o
o
Ta

AMF C

|
)
Lo el ek oiab feeds fet sedh gk fem s

-
RO R A

S = Sy

o MR |

éi JMP #JUMF TO E

RS

i I B SRNY
it
in 4
[y
=J

=
£

AMP * AUMF TO RESETE

—

[¢ R
-
=
et

EHITI

VUMEER OF ERFORS FOF PRSS 2= @

-35-

ASSEMBLY LANGUAGE INSTRUCTIONS

ACCUMULATOR INSTRUCTIONS:

Skip on Bit N=1

Skip on Bit N=§

Set Bit N

Clear Bit N

Increment ACC (Binary)
Increment ACC (Decimal)
Decrement ACC (Binary)
Decrement ACC (Decimal)

Clear ACC
Complement ACC

Left Shift ACC
Right Shift ACC
Load ACC with ROM DATA *

Skip on E=1
Skip on E=§
Set E

Clear E

REGISTER AND 1/0 INSTRUCTIONS:

Load ACC From Register R

Load ACC Indexed

Store ACC At Register R

Store ACC Indexed

Input To ACC From DS

Output ACC To DS

Store ROM DATA At Register R*

Output ROM DATA To DS*

SBS
SBZ
SBN
CBN
INB
IND
DEB
DED

CLA
CMA

LSA
RSA
LDR

SES
SEZ
STE
CLE

LDA
LDI
STA
STI
INA
OTA
STR

OTR

=z Z Z2 Z

DATA

R,DATA

DS,DATA

pp
pp
pp
19
pa
pp
pp
pp

po
pe

g9

po
11

oo N

119 N,
199 N,
199 N
ppp pop
ppp p1p
ppg Pl
ppp A1l
pop 199
ppp 191
ppp 119
ppp 111
pp1 111

 DATA__ _,

pp
pp
1p
19

p1
11

g1

ke 8 !

p1
g1
11

11

L

p11 111
i 11
119 198
119 191

1, R,
19, 7
11, R
11: R 4
pp. DS,
p1, DS,
01 R
DATA s
pp DS
DATA.

O

R R RO

-36-

Set Control K STC K pp 197 | K,
Clear Control K CLE « 18 141 . X,
Skip On Flag J=1 SFS J pg p11 J .
Skip On Flag J=p SFz J pp 111 , J .,

COMPARATOR INSTRUCTIONS:

Skip On ACC >RO SGT pp pp1 ppp
Skip On ACC <RO SLT pp pp1 ppl
Skip on ACC = RO SEQ pp pP1 P1p
Skip On ACC 3RO ~ SGE pp pp1 191
Skip On ACC RO SLE pp pA1 199
Skip On ACC #RO SNE pp pp1 119
Skip On ACC = 0 SAZ pp pp1 P11
Skip On ACC # 0 SAN g9 pp1 111

PROGRAM CONTROL INSTRUCTIONS:

Jump To Address JMP ADDRESS 19 pgp PN"
__OFFSET
Jump Indirect To Address JAT U 19 g1p, U |
Jump Sub T Address * JSB ADDRESS 1p pp1PN*
_QFFSET__
Jump Indirect Sub To Address JAS U 19 p11, U
Return From Subroutine RTS 18 111 pop
Return From Interrupt and RTE 19 119 pp1
Enable Interrrupt
Return From Interrupt RTI 1p 419 ppp
No Operation NOP A1 p11 111
D%’%able The Interrupt DSI 19 191 111
Enable The Interrupt ENI pp 141 111

* Double Byte Instructions

* PN = Page no. g
Kamran Firooz
October 21., 1974

NANO PROCESSOR LOADER

Nano Processor loader is a program that loads the object files
produced by the Nano Processor Assembler and stored on cassette
tapes into the ROM-RAM Simulator. At the beginning of the execu-
tion the calculator questions the file number where the object

file is stored. Then it askes;

"PATCH LOADING?"

If the reply is negative all of the unused locations of the ob-
ject file will be loaded by the code for instruction NOP (137).
If patch loading was requested; only the assembled codes will be

loaded.

Kamran Firooz
Sept. 1974

Example:

Consider the program given on the following page. In
order to load the object file of this program into ROM-RAM
Simulator, load the Loader program into the calculator and
RUN EXECUTE.

"FILE NO.?"
6
"PATCH LOADING"
N

Since the answer to the latter question was negative locations
§ to 507, and 52f to 1@57 and 11ff to 1777 will be filled by
the code for NOP. (137 ocT.)

However, if the reply was "Y" the only locations effected in
the ROM-RAM would be 51§ to 517 and 196§ to 1§77. Rest of the
memory would remain unchanged.

This feature of the loader can be used to combine (PATCH) object
files of different source programs.

e 10
!

gooie jmd

S RPCEP SIS U Cr S Cnsy S G uy SOPR Y O B B el 1o
EFTPRES S U S A E O Z

§ & n
iR G

)

CIMEER

302
103
2Q1
o6l
Ri KA
126
20!
06T

70|
bikd
1
2 5
Sl
B
201
V14
211

20|
Pl
213
il l.
201
| 0g

b1

!

FHS

[

cl e ke FaRE DTSR RY

1l

OFG - 5l
U0 A

ik fis

OTF &4 126

1P

URG 1
JUP 44

423

417

aud

FRCL

ST s TO o
e e L F
+0UTHEOT 120 1o o

= AUMFE 1o DSk

= JUMF T EL

> AIMFE o I

. AUMF T E

#AUMP T I

< \UMF T E

< JAUMF TU RESETE

3
(\Qxii\
{- 3 5 o

THE FOLLOWING IS A DOCUMENTATION OF THE
NANO PROCESSOR ASSEMBLER anp LOADER WRITTEN
For H.P., 2100 CoMPUTERS. [WO PROGRAMS FOR
TRANSFERRING SOURCE PROGRAMS FroM 9830 TO
2100, AND TRANSFERRING OBJECT FILES FROM
2100 1o 9830 ArRe ALSO INCLUDED.

PLEASE BEAR IN MIND THAT NANO PROCESSOR
MATERIALS ARE H.P. PRIVATE.

FOR FURTHER INFORMATION, RECOMMENDATIONS
OR IN CASE OF DIFFICULTY PLEASE CONTACT
KAMRAN FIROOZ AT

303-667-5000 Ext. 2873

DecemBer/1974

10 9o CUPET-. GV P SIS WERSITO P =~ el & P W LR

PEE—

s e ey

NANO PROCESSOR ASSEMBLER

PURPOSE: To assemble a source program for the

Nano Processor using an HP 2100 Computer

MEMORY REQUIREMENTS: 16K

SYSTEM REQUIREMENT: DOS III

Kamran Firooz

December, 1974

(

DESCRIPTION: The Nano Processor Assembler is an abso-

lute assembler designed to assemble source
programs stored on a disk and to generate equiv-
alent object code files. A loader program can
then be used to load these binary files into a
ROM-RAM Simulator, or a PROM. The assembling

is performed in two passes. Pass one searches
for user defined symbols, and pass two trans-
lates the mnemonic source program statements to

their equivalent binary codes.

These binary codes are stored in an array called

the object file. At the end of pass 2 the object
file is stored on the disk. The file name where

this array will be stored is requested at the

beginning of the program.

e &

[?\ ASSEMBLER OPTIONS: The following questions arc asked at the
heginning of exccution:
"LISTING?"
If the response to this option is "YES" the Logical
Unit where the listing must be done is requested; other-
wise, listing of both passes will be suppressed.
this casc all of the assembly and error messages
will be listed on Logical Unit 1 (CRT).
Next question is:

"OBJECT

FILE NAME?"
Object file must be a binary file of at least 8
sectors. These files can be created prior to the
execution of the assembler ty using the following
command:

:ST,B,name, 8
If the number of sectors in the file is less than
8, the computer will display:

"FILE name IS TOO SMALLM

"OBJECT FILE'S NAME?"

Note that the type of file is not searched by the

assembler, any type of file other than Binary File

will result in an error at the time of storing the

object codes into the object file (at the end of
Pags 14

The following questions are asked next:

R ———

e S & SR SO BRI WRER . S

"HOW MANY SOURCE FILES?"

"ENTER SOURCE FILE'S NAME?Y
Up to five source files can be given. The assembler
will assemble the source files in the order that
file names are entered. Only one file name should
be given at a time. If more files are needed the
computer will display:

"ENTER SOURCE FILF'S NAME?"
If any of the Source Files are not found on the
disk, the computer will display:

"FILE name NOT FOUND"

"ENTER SOURCE FILE'S NAME?"
After all of the Source Files are entered, the assem-

bler starts to assemble the given Source Files.

OBJECT FILE: Object file is an array that holds the binary
codes of the assembled source program. At the end
of pass 2 this file is stored in a binary file of the
disk. A loader program can then be used to load the

object file to a ROM-RAM Simulator, or a ROM.

Object file is a 1024 X 1 array. Each location of

e ———gre (1 §

this file will hold the object code for that loca-
tion. For example; location 16 will hold the code
that must be stored on location 15 of the ROM. ;

(Due to the fact that the array starts from 1 and

ey

not §, all loc~»tions are decremented by one by the

"LOADER") <

Since object file has only 1024 locations, caution
must be taken not to cxceed location 1777 octal.
For example; the code that must be storcd un loca-

tion 2150 octal will be stored on location 150

S ————————— A AP

octal. (11'th bit is truncated); however the address

would appear as 2150 in the asscmbler listing.

At the beginning of the assembling all of the loca-

tions of the object file are initialized to }&?"’\ i

gty

(cohe—for_MIR) . During the assembling T%% is over

written by other codes; however, the locations not

—_—

used will remain as ¥§J. This feature is used by

U ———

the loader for "PATCH ASSEMBLING". For further

information refer to '"NANO PROCESSOR LOADER".

. —— R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRREEm=

(,

PROGRAM SOURCE FILES: As the name implies, program source
files are files stored on the disk that ceontain the
source programs. These files can be generated or
edited using standard HP 2100 editor or any other

available editors (CRTED for example).

Up to five files can be asscmbled at one time. If

more than one file is used, an EOF statement must

designate the termination of each filec.

USER bEFINED TABLE: User defined table is an array that
holds the numerical value or the address of the
labels. During pass 1 all the labels arec stored in
this array. In pass 2, everytime an alphabetical
operand is found, the assembler performs a linear
search into the user defined table to find the value

or the address of the operand.

Maximum length of the user defined table i1s 256 labels.
Exceeding this 1imit would cause the assembler to

print error messages, and any label encountered will

be ignored.

During the second pass, if any of the ignored labels
are referenced, the assembler will print "Undefined

Label" error message.

= R e

f

GENERAL FORMAT: Each line of the program consists of one

LABEL:

or more separate fields. These fields arec: Label,

Opcode, Operand, and Comments. For the convenience

of the user these ficlds are separated by one or

more blank spaces. The following is a brief descrip-

tion of each one of these fields.

Label is a symbolic name that provides the ability

to refer to the instruction or the value generated

by the instruction. For example, 1in the instruction:

START LDA REG17

START is the label, and it holds the address of the
location where this instruction is stored on the
ROM.

But in the instruction:
REG17 OCT 17

REG17 is a label that holds the numerical value

assigned to it by the OCT instruction.

The first letter of a label must be alphabetical,
and the total length of the label cannot exceed

5 characters. I the first character of an in-
struction is blank the assembler assumes that
there is no label present. Repeated labzls cause

the assembler to print an error message.

o S A Pl

OPCODE:

MACHINE

Opcodes are mnemonic opcration codes stored
in the pcrmanent symbol table that are recognized
by the assembler and translated as machine in-

structions or Pseudo-instructiors.

INSTRUCTIONS: Machine instructions are those
instructions that the Nano Processor can execute
to perform a specific +ask. The assembler trans-
lates these instructions to their binary codes.

There are three types of machine instructions:

Type 1:

Single byte instructions that are self-

defined and do not require an operand.

-G-

For example:

CLA * CLEAR ACC

STE ¥ Set extend register

RTS *# Return from Subroutine

ENI * Enable the intrupt

INB ¥ Increment the ACC in Binary

SLE %# Skip if ACC € to register 0
Type 2:

Single byte instructions that require an

Operand.

For example:

SBS 5 # Skip if Bit 5 of the ACC is set
CBN BIT4 * Clear Bit4 of the ACC
INA DS5 # Tnput to ACC from Device 5

Type 3:
Double byte instructions that must be

accompanied by an Operand -

For example:

OTR 2,DATA *# Qutput ROM Data to Device 2
STR R5,FOUR * Store FOUR Into Register 5
JMP GOOD *# Jump to Location GOOD

JSB ADD * Jump to Subroutine ADD

..10_

~
~ PSEUDO INSTRUCTION: Pseudo instructions perform tuwo
types of tasks:
Type 1: ¢
They provide information to the assembler
about the program being assembled, such as
‘ ORG, EOF, END
Type 2:
They allow the definition of constants,
such as OCT, DEC, BCD. Obviously, type 2
of the Pseudo Instruction must be accom-
— panied by a label and an Operand, since
it is assigning the numerical value of the
Operand to the label.
OPERAND: Some instructions require the designation of an
Operand. This Operand could be a destination
address in a JMP instruction or the numerical value
of a Label in an assign instruction. There are
three types of Operands:
Type 1 - NUMERICAL VALUL:
This tvpe of Operand is used in a type 2
instruztion code, or in a Constant Define
Pseudo instruction.
"\ (Type 2 Pseudo instruction)

\lx\dl NTEPRRT! PR o
\ o CTAL LAk)fﬁ—V” PO DEC PAEAPI LMJT’

-11_

For example:

LDA 5 * LOAD ACC FROM REGISTER 5
SPL 4 * SKIP ITFF FLAG 4 1S ZERO
REG14 OCT 14 * ASSIGN VALUE OF 14 70

* THE LABEL REG14

JMP 377 ' * JUMP TO LOCATION 377
LDR 20 * LOAD ACC FROM ROM DATA 20
This type of Operand has to be numerical. 1f they

are being used in a type 2 instruction they cannot
exceed 7 or 17 (OCTAL); if they are being used 1in
a define constant instruction their octal value
should not exceed 377.

The following Operands are acceptable:

CBN 5 * CLEAR BIT 5 OF ACC
STA 16 * STORE ACC IN REGISTER 16
AN OCT 167 * OCTAL 167

BB DEC 250 * OCTAL 372

CC BCD 89 * OCTAL 231

However the following Operands will cause error

messages:

SBN 20 SET BIT 20 OF ACC

(Accumulator has only 8 bitss)

=12=
-
- SFS 14 SKIP IF FLAG 14 s SET @
(There are only § flags.)
DD OCT 19 (Unacceptable octal numbers.)
EE DEC 340 (Exceed 377 octal.) &
' BCD 140 (Exceed 377 octal.)
' Type 2. SYMBOLIC ADDRESS OR SYMBOLIC VALUE: @
This type of Opcerand is used in jump to
subroutine instructions or in a type 2
opcode instruction. ®
For example:
™ JMP LOOP &
JSB ADDNG
JBN BIT4
LDA RIZ &
STA R6
JATI INDI
L
This type of Oporand follows the same Syntax
rules as the Label; that is, it must begin with
an alphabetical character and must be less than "
or equal to 5 characters long. These Operands
must be defined somewhere in the program as
o addresses or constants. O

— AR T T -—— —

o,-)

Type 3 - SYMBOLIC OR NUMERICAL VALUE:

This type of Operand is a mixture of type
1 and type 2 Operands, and it is used in

type 3 instructions.

For example:

STR R4, FORTY
STR 4 ,FORTY
STR R4,40

STR 4,44

As the above examples indicate, this type of
Operand consists of two scparate fields. These
fields are separated from each other by a ",",

and there should be no blank space anywhere in the

Operand Field. The symbolic portion of Operand

follows the same rules as type 1 of the Operands.

COMMENTS: The comment field allows the user to tran-

scribe comments on the 1ist output produced by the
assembler. The comments field must begin with an
asterisk. This field could start at the beginning

of a line, such as:

-14-

* THIS IS ONLY A COMMENT
or after the Opcode or Operand
AGAIN CLE * CLEAR EXTEND REGISTER

Comments are ignored during pass one.

If an "*" occurs at the beginning of a line, the

entire line 1is assumed to be a comment.

If a comment starts at the beginning of a line, up
to 64 characters can be used in each line. If a
comment begins after an Opcode or Operand, up to 28
characters will be printed and remainder will be

truncated.

ERROR MESSAGES: For the convenience of the user, the
assembler will print error messages if any error are
encountered. Along with the message the line

number where the error occured is printed.

PSEUDO OPCODES:

ORG:

END:

OCT:

DEC:

ORG is a Pscudo Opcode that provides
absolute program origin or starting
address of a scgment of a program.

The operand of the ORG must be an octal

number. If no ORG is encountered the
assembler assumes the starting address

to be zecro.

An EOF statement notifies the assembler
that the physical end of file has been
reached. This causes the assembler to

load the next source file.

End terminates the source language program.

Note that ORG, EOF, and END are not

executable statements; therefore, any

reference to these instructions would

cause an cerror.

OCT is a defining opcode that equates

the numerical value of the operand to

the label. Obviously, the operand needs

to be an octal number.

DEC Pseudo Opcode is another defining

—— .

T =

e e i e p—g

g = s

BCD:

-16-

statement that converts the numerical
value of the operand to octal and
equates the converted number to the

label.

BCD is a pseudo opcode that converts
the numerical value of the operand from
BCD to its octal equivalent. Each digit of
the operand is taken as a 4 bit BCD

number.
For example, in the following statement:
TAG BCD 38

The assembler separates the number 38 to

3 and 8 as #@11 1¢¢4.

This number is then converted to octal
pp 111 @gpP (#7¢). Note that the operand

cannot exceed two digits.

.r‘\
v dERet
QI
R LTS

,.
et
U R
=
PRSP
BUES!

A

i,

-~
SOURL

SENETUR

()

.
2

s’
20U
AOLRES

=1

DU RO ML ot
k) s ' Veads

!

OTh il

O R

(N]
-
MRRCL

Dl
Pl e T

o g
=
(R SOk BER R e

[0§ S

15
oI AR . T
— ek i A ek b et b R e
i

ot I N B MU

-

a
~
l—-

Wit 3D T

——
S
ey
|

oy M

i

r-
Ty] Taond I3 = 0

-, :
Do R U
T it

o)
SN U ER

o
BN
L

=

i 1
LROEI AR A0

e T I

oot ot ol T
=] 1T

S 7=
EXAMPLES

given in an attempt to
the NANO PROCESSOR ASSEMBLER.

The following cxamples drc

familiarize thc user with

EXAMPLE I

The following program will add the contents of Register 5

and Register 6 and store the result on Register O.

The source program was generated by the "CRTED EDITOR"

and stored on File NPEX1 of a disk.

FRGE fasl S
Pis0: PROCE SRR e 30T HEL
ERORIE !
' PHIG PROGRAN HO0T PHE COUTENTS OF CEGLSTER 5 TD THE
. COMTEMTE OF REGI- LE & RHD STORE THE REZULT IN REGISTER .

LOOF LUA RS @LORl Aol FROM REG. S
DED #DECEEMENT IH DECTARL
SAM #SKLF O1F AL e
E DT #CERTE LR BT EHE 3
STH RS #STORE THE HCL TH 5
LOF K& +L0OAD ACe FROM REG. &
IHD +THCREMENT [H DEC AL
STH Re STORE ACC AT REGISTOR o
AT LOE
_ PEPLAT VHE DECREMENT AW 1HCEEMENT ROUTIHE
CEET 0 R
LH
STRoRE ke HAS THE A1
rﬁ or)% «DEFIHE RS A o THL S

N R
L
(Sl

o
Load the assembler into the 2100 as follow;
: PR, NPA o
After the program is loaded the computer will display;
|
.!
YES
|
FOR ulTRUT 2 o
g |
e o
0BJ1 2
|
e FILES 9
1 :
i
R FTLEY S HAME '
[J
NPEX1
At this point the source program storcd on File NPEX1 is loaded
and the following pages are printed on the printer (Logical o
Unit 6). | !
|
o

EETE i

WIEH T RO F 2OCESOR ASSFMBLER — HOY 1974

R TR I B 1 I

ST COLRS e DB WRLUE

)
R i
0 OF EaRy FER FARLE 1 o= i

ek e P = O AL e i Sty 0y

D <O SR PG (NSO &

et b il i e o

—

S) oy LT SR el

-

oD I T e— T g

b b s Sl e bk Ee e et

2 =

LY &

-
=

D B CRE R B UL

S l—‘ DR GRS o

Ty

-20 -
FRGE @ EIE ER LAY DOESOR AREENMBLER -~ HOY 1974

HHT Pl SE0R M il =10
Flpin LF

O O T 18 P IO B RN R | b by it W PEGISTER 3 TO THE
GOETEINTS OF RECISTER o gkt 1oy, THE RESULT M EEULSTER &.

RIS SRR Pl LB L TS T] «LOFAD ACC FEOM FEG. 5
EINIE RPN b I «LDECHREMEMT 1H GECTHMAL
[RICTETAN § i SFE eSEIROIF OBCD #R
T, i AFE Ly o EHD OF REOUTIHE
Bk SER

ety YRS i I st < (ORE THE HCC IH RS
Fafe. 198R VOR R AL0RD [EC FROM FEG. o
L S EHT * [HCREMENT W RECIMBL
LB Tad STH O e #STORE HCL AT REGISTER £
5 i i D T T
> airna
FEFEHD OTHE DECEEMEHT AHD THOwRMEHT ROUT IHE

=i

A1

A] T LIir] i
SRR S S IREL

£

gt e STH BR SEEOHES THE S
i

A% OCTARL S

e —— - t— e A T T e e W el e el el e

EXAMPLE II

The following program examines 2 Direct Control
lines (DC§ - DCl) and based on their conditions

displays a different message on an external display.

The editor listing and the assembler listings are

provided on the following pages.

'R 2

— Y P

RISIEN
T
I TE TR

IR
Ay
RISl
R
1% P |
S
KA

D IR acY

1T

l—.'-h -
- -
v o
1L
i3 T

| O N RS

...
2N

i
il L

Dol
P
SO v]

——
e

o g

v
SO%S
-—

1T
-
=i

ERU

g,
!

Ll

PTG S S e S

PR A I A0

o

Y
-
Do B o oy I AR R WU

DO
(R

Dot
x4
s

[B
=] T1on L) P e 0 o) 1T

(e

=
K=

-

(Rt M B

TRE

13

oL
-~
-

T

=
ot)
-

D)
nonn

o oo

T o

WO

DY
710 PR

WX
.
)

)...)
hcx

U OO X
=1 L

(R TORSROR | I) IR SRty AT
1

(Do

DDA RN I

S

-22-

FAMD PR Sor gREEMELEFR
EEAHPLE ¢

) s LA ROUT THE

JE Rt #=0 EAR REGISTER
FUal TR kR G =CLERR R
ST FLfgh sORIP TF DCH 1% %E]
W A e APLHY MESSHGE R
0w CL ALt #*SKLF O LF Dl 15 Gild
W DL nrE DT uRl Ay FEsSHGE B
FHT tEHRELE THE THTEREREUET
M RERY M TTHER FLAG 15 =T
b STE RRs48 «2TORE 49 IH F&
B R «LORD ACT PR RL
ST RSE LT OIF RGO (48
et sl ERE THE FIOIMTER
i
APl R
=P STE Emos 3w
RS
nob ESRIF OTF O RCD » FOINTER
TR ¢isd8 =SET THE POTHTEE FORE B
FH1
HIF o b
bl T MG ERRFGT O ROLUTIHE
g 2
i s BT THE CRHTENTS OF RO DUETHLG IHTERRELFT
DR 0 LORD Ace FREGH PPOINTER
NTH L=
SOTENT GEC Th AUBRESS LATCH (LeEVICE SELECT &%
3l =
EL oGk Dadsdi 0Tt A BLARHE
AP BIsF
FEOOTR DS2e18l «DUTPUT "R" CnhE
AME DTSR
L oOTE DS&yted «=0uTPUT "D COTE
A DTSR
OTR DTS2 tas «=0urHnr "B Cobk
IME Dlak
U OfF szt =0UuTPUT "I CODE
i DIER
fOTR D2yl =OurTEur otk COIE
LIRS
L OTR Dsas 115 =2J0TPUT "L CODE
i pIsF
HOoOTke DS Le #0UTEUT "HT SODE
TR TR R B
T 2oL «0UTRLID 0t ChDE
TR S =
Fooll o calze 0UTELUT P E0DE
IR | I Y
BoOTE Jotes «0UTROT "R" COLDE
N TR
SOk T P2 wTRUT st CODE
A b
YOOTE el QUTRUT YT CODE
DISF OTR DOYed8 =0UTFUT A BLAME

m

R i i HE

|
L)

®

[P —— -.-

s NP Iem - - -.—. N

tﬂ'\

o
s

Pl

LIS

o e
tead ST

l5

e

e
OUIE U)

,..._
[ALRR STURL MY)

o i

p—
SR

=
MUV

-, G
s T

l—L

L2, R

Doy B 00X)

-

it

3

=T T
P BT R R AC

-23:
SIS GTH WSS oS TRET T LB ESFLIT i
AR L4

Ji K L THE % ot b VHCEEMEHT THE RRINTED

S —

HEed v
aRes = :
15 L2 - i R T R A O s !
R | arFl '

REGS #] OAN WL MITH TS WhENE BERCRE THE THTERFIFE mCCHRET:
AEra Hauh BT sFHABLE THE CHTERELe

EIEL 1 Byl = RETUR FlROs DHLREET

AT SLTR STk Rled sRESET POLHTER FOW A

A E e w

HBRTE OSETE STk Elsdf #R[CZET FOIHTYER FOR B

AR A o r
B Mh:G 1888 sMFESESA5E H

ISR MFE Bl «DISPLAY & BL ANk !
B TUTRE SRR A r
S L RIS F ATEPLAY 1 ;
AR S (D ISPLAY & "
v I ¥ Nl sFELHY F

AR ¥ « LS ,
B b B = DTEPLAY Ot '
; by SO R S M

AL S

RIRIS.

i ARE

2 Sf L

A M i

ke HF

B oE T #RESET THE RFOIHTER
WG Lagn S MESHAGE B

A E

AP e

iE

JitE

MIF R

MaE B

JEE o

LS [

i[5 AME L

G AMED

B JAF

(58 I |

4 IMF F

K5 JHF L i
(5 IR TREE|)
K HEY i
i1 !
1

-

Lo

ERD I vt
i

i e
LR B IOU LM%
B e

il

AOUIE KA
=i %

! 1l

A

e v e AT T

!

R it SETE

q | G B R

(SN U S BT

B el 2
S T I
Yz DT |
DL T 2
s T
FLAGD el ke
FLAGL i [
5 EMD

s B R RURDA RN
D O

i

el A e - At o

LR

ek e ek pe e e e s (T
"'."

g g— ——

B

=)

wE R

it
U R
L

IR

it

3§ il

3 [o O

[0k

[0 4

'
L 1
[O T

Livkit !
R
L
Flep 17
Elep 2t
[
Bl 22
et 27
bl =
(a7
DS I i
Rasd
B
(T
Hed 7
S)
1 i :'
e
MEE
HIATRES
et
Sk |
CIEL
bdiaid
A
FIEEL

P F B RRR

.i" l‘:l‘|| Ill“

i

~

HANRD FoOsesoe

4-

RSSEMBLER -- NOY 1974

N, B T N N

- -‘m ‘vn-. 11 weapine

5 Th P
i e Ras

B a)

FRIER
SOCE £ S

RIE SN)
wnen L

Lt 1l

oo = ey T T

P O]

Lo eI e

fo Lol

-2

¢

‘ARE & R RESR HEHC ¢ i 0S0R POSEMDLER —- HOY 1374

- it R I I S T L B S | A [
o o kot RELL

DT =elmy (o T HE

S S LT K R S <CLERAR REGTSTER 1

RN Gl ST B CTRIE

T TR 0 B o i & B R O N cULERE [

STy I S A S|

IR TR1S O S e o B o I A #5EIP IF Do IS5 SET

B e TR TR R R =N1SFLAY We=SAcE A

LS TE IO A B e

[T I S SFwS 0 FLAGE #SEIP OLF DLL IE SET

AR LR i Bl sRE *DISPLAY NESSAGE B

BELL BEe

RALD ofh7 Fd vEMABLE THE ITHTERRELFT
R dHFE FERD +HELITHER FLnaa 15 =ET

R DISPA STR WE. 48

ARte A48

R e 000 *LOARD ACC FROM R1
LS N SLT sSE IR IR ACT <48

el STH 1.8 #*CLEAR THE FPOLHTEER

Pl

1

Mot WS
SRS

T AT

BELE Erl
5 AHF RERD

,_
2

o |y
o T

U

v
.

DISFE STR RO.48

BoUI

BOURE Wt
—
D

{41 LIOF F
s =LE *SKEIF IF ACC > FOIMTER
a1 TR Rl A

,.
i
pres
(T

,_
2%
v
s

...
A

T T A

BRI

24 @sT E T
5 1E B R 5 JEF BEAD

HERE BAag

npG o 39T +IHTERREUF T ROUTIHE

RAEY7T 1o 0 I I
#R2 HOLDS THE COMTEMTE OF ACC DR THG THTERRUFT FOUT THE

R TSI 1 N *L0OAD ACT FROM POIHTER
5 5 N R A Y arAa Dz

OUTEUT HOD T ADDRESS LATCH CDEYICE SELECT @3

B 22% AR 2

Qi w2l OTE Dsze a4

Mgty 40

SE LTIl | AN DTSR

(SIS 25 TR AT

[ER TN I = NTRE Do&s 1l OUTRUT "R COUE
g

S5 N B JME s

TS B TR

(5 A IR I W DR | QTR DEEs 1ad #OUTPUT D" CODE
g Ly

415 20 T e

Adle b

A,

———

B et bttt celi

et Y,

s e

e e e mvey—

2 e . T &

]

1
450
i

Ay
o
(]
S

b

~ P :
B!

KE S|
‘ﬂ.l 4 l" 1

"_1“ v ;..
S
ro LT
Fel o
51 s

IS

RETan|

Bt
HEA3

15

HEF

e 1=
XY
i
.4'.‘
¥
| i
!
bt
REE
% P te
I RS !
|
!
[
' I;.Y
(I
=y
L
I ‘_
R Il
‘
L e
|
t '
Pt i
o
M ‘
g ¢
vh
v
¥ |
. F
ki
|
S 58 |
’1_:‘1!
nz o F

5k

15

A 0

11

S DbEr
ISR NG

123

LI

TR

Pl

l . l ;:'

s piiH
o MInp
R Y
w2l BETH
L
Al
(RIS |
2 BETE
Ladi
Adkl|

..2(]-

MEMG P ESOR AnsErIRLER - HOW 1974

WL
' | R
' ¥
AL 2B |

“4 "+
i v 111

s
2y 131
IR L

&

BEFRE THE

Fle
fLnn
Brpow i

MTow

+UTEIT

SOLUTFLT

= LTFLT

=0T RET

SUHITROT

SOUTRFUOT

SIHITRUT

FOUTRUT

FOTRFUT

#OLTRUT

"

"

e

M

o

(RBI1 S

1T it

COE

itk

LOnE

ODE

COTE

COnE

CODE

O OE

#5THRET THE DISHLAY

+=[0LIELE

FIIATE

THTERRELFT

*EHAELE
*FETLRH

THCRERENT

THE POINMIER

DUCUEED
THE THTERRLFT
FROM THTEFRUFT
*RESET FOLIMTER FOF R

THE FIHTE

N Y

—‘4 SRR -———"-—'—"'1-'—--'—-1".9-,; TS s SR @- """""!'-"_f'&——*" —'—w———‘. Yn ey, '-‘—-'Q- -

-

Yy

- f

)

| o= o |
« d e

BOCH

10T

—_— L

i

l‘.}“ll 1':‘

1R barR A

8 5 L
ket
INEIRE
LR
P
prin,
| b
el
Terghl
IRER|
Pedi
b 3

IR
| R

St

(A

R
Pibe
b ERE
| RO

e

e
281
vl
B
L
"L
i|:':
=t
Ly,
T
’VIMA
R
1Y
"

1 S

ke
iels
AHE
ANE
WF
MWF
JHF

FFHG b v ER0E ASSLINELER

ENIRIA

Ll

1

ST

L
&

Fil.

1

*#ME SAHGE
S (R S Y

I [ERLRY

«[LSFLAY

i

s

—y

»PISPLAY &

*DTEFLAY
#TILEPLAY
#DTEPLAY

#DTSFLAY

#RESET THE FPUIMTER

X

F

5t

', ‘ l"l l_'.ﬂ

{7

PR

.) eSS e

gy eyt

gmet vy gt i o L R O TER Y e

it < g — Y - T Y | AR U

ettt - g -

ety T . *—— © et S WSS IV LGP @

2,

-

FARGE - %

MEE&e

1

(BT = e
S (el
{AP IRAE—
[T Eb O -
FE S 20 A A
RS N,
1875 201 iy
187 el

.__
s
..

3RS
Lt Yo

f,

1
CRIRCATIUS | Bl BN ORI

T
1

(a0

P SETE

e !
-

A ;nf
| R |4l

U]

-

2

[u i
)

ok e
i T
2 2 2T
L X
R | K s
il
|

Fob — 1
v e
A

Tl =a 07 I — T

; :
o Pl

{5 il
AGE
LAGL T
(RN

l
|
!
|

4 e

— et b e b bk ok pk ok bk b e e et b e e e

—t ik i b o gk poe |

s T

BOS

HO OF eREORES FOR FRSE & = 0

—. ik . — - S At By A DI AT e g L

EXAMPLE III
The Following example will demonstrate the "PATCH
ASSEMBLING feature of the NANO PROCESSOR ASSEMBLER
and LOADER.

Suppose it is desirable to change the message B of
the example 2

"ERROR IN DISPLAY"

TO!:

"ERROR IN DEVICE"

A short program such as the one following could
accomplish the desired change.

C g vEiEr r—

O TR W - TS MG - -t-

_'." o

S U

b 8 SO

WD

RN I S s B o R
¢

!
i

T

Pk ek b gt et ety e ek

[

DR

P ot Fos P Pt b e me 2

—
Tl = T T

)

-3(»_

Hip TUNCESOR ASSEMELER - HOY 1974

CHGE O # ARt

TR I i T M3 U R 3 A S

i R
- PRtes b Dot o s SE0AY PROGGREARM GIVEH O EWARFLE 2
o
LR, YKt
EETEAN 5 P ik 2w 13 SUUTRUT COpE e “CN To D

(% oy I ¥ AP iy S LN S I T Y o
BH5ig AEE W TR e LEE FOUTPUT COdn oE "y
"1.t_- - -fla i 'I“"" Li !En.—‘

GOF L Pl
hant .01 IMp s # 0P TOOBL

R E R IR B OMF TO0N
] T s AME 70 E

g al JHF 417 s JMF TOOE

aed #IMP TO SETE

HOOF EReGt FoR FRSS 2 = B

ACCUMULATOR INSTRUCTIONS:

s

ASSEMBLY LANCUAGE INSTRUCTIONS

Skip on Bit N=1

Skip on Bit N=§

Set Bit N
Clear Bit N
Increment ACC
Increment ACC
becrement ACC
Decrement ACC

Clear ACC

Complement ACC
Left Shift ACC

(Binary)
{Decimal)
(Binary)

(Decimal)

Right Shift ACC

Load ACC with ROM DATA *

Skip on E=1
Skip on E=§
Set k

Clear E

REGISTER AND I/0 INSTRUCTIONS:

Load ACC From Register R

Load ACC Indexed

Store ACC 1t Register R

Store ACC "ndexed -
Input Tc¢ ..(CC From DS
Qutput ACC To DS

Store ROM DATA At Register R* S

Output ROM DATA To DS*

SBS
SBZ
SBN
CBN
INB
IND
DEZB
DED
CLA
CMA
LSA
RSA

* LDR

N pp g1y N,
N ap 118 N,
N Apo1pp N,
N 14 188 N
pp ppp £pp
pp oanp #1p
pp ppg B¢
P4 F#e p1
Af ppg LiD
A ppg 1Pl
gp P98 11
off gpf 111
DATA 11 #p1 111
DATA ‘
Ap P11 111
49 111 111
19 119 1p@
I 119 191
R A1 1, R,
7 11 18, % ,
R 31 1i, R
7 111 R 4
DS A Ap DS
ns #1 p1, DS;
R,DATA 11 01 R
. DATA
DS,DATA 11 4 DS
DATA

— e —p——————

e TY= -

.-

Lan_ 2 44

o e A R 4 Gl SN SRS

B> T

Set Control K

Clear Control K
Skip On Flag J=1
Skip On Flag J=§

COMPARATOR INSTRUCTIONS:

Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip

On
On
on
On
On
On
On
On

PROGRAM

Jump To

ACC >RP
ACC <Rp
ACC = RP
ACC 3R
ACC <RP
ACC #RY
ACC = §
ACC # B

CONTROL INSTRUCTIONS:

Address

Jump Indirect To Address
Jump Sub To Address*

Jump Indirect Sub To Address

Return From Subroutine

Return From Interrupt and

Return

Enable Interrrupt

From Interrupt

No Operation

Dissable The Interrupt

Enahkle The Interrupt

* Double Byte Instructions

* PN

R,

Page no.

e

-32-

STC
CLC
SES
SFZ

SGT
SLT
SEQ
SGE
SLE
SNE
SAZ
SAN

JMP ADDRESS

JAI U

JSB ADDRESS

JAS U
RTS
RTE

RTI
NOP
DSI
ENI

S

e p——— T P VYT AN

Kamran Firo:o:
October 21.

——TIT RS YT

NANO PROQCESSOR LOADER (NPL)
{Using H.P. 2100 Computer)

Nano Processor Loader is a program that loads the object
codes produced by the Nano Processor Assembler and stored
on a Rinary File of a disk into a ROM-RAM Simulatoer.

At the beginning of the execution the computer questions
the I/0 slot where the ASCII Card is placed, and then the

File mame where the object file is stored is asked:
Next question isj
"PATCIL LOADING?"

If the reply is negative, all of the unused locations

of the object file will be loaded by the code for instruct-
ion NOP (137 octal). If patch 1lcading was requested; only
the assembled codes will be loade: and all usused ‘nocations

will remain unchanged.

Kamran Iirocoz
December/ 1974

S r—"{" R e N A, A T e T T T

m———— e Y

BRI T

-~

m - o e WO AV LR P -

oy - e v

.'e iy & G e

~
1
(4]

———

Example:

Consider the program given on the following page. In order
to load the object file of this program into ROM-RAM Simulator,
load the Loader prog}am into the computer and RUN EXECUTE.

"OBJECT FILES'S NAME"
0BJ1

"PATCH LOADING?"
NO

Since the answer to the latter question was negative, locations
p to 57, and 52p to 1p57 and 11pp to 1777 will be filled by
the code for NOP.

- —— 'V"ﬂ'.ﬁir"——"""—‘"'"aﬂml ‘l'"'._'e‘—"r'_'-ﬁ. ""T"f\f

Q.

llowever, if the reply were "Y' the only locations affected in
the ROM-RAM would be 51p to 517 and 1§68 to 1977. The rest of

the memory would remain unchanged.

This feature of the loader can be used to combine (PATCH)

object files of different source programs.

Kamran Firooz
December/1974

ool e ol e U

s - - S ——— ~aa
— - ——

o
N

TS HAHG FROCESR A ERBLER = HOY 1974

PRk AR R BSPLAY PEOGEAN GIVEH O DRAMFLE O

Lo T T O de Sl T

fs

| tem pmt pem fees et e i peh ek et ke e dee e mea s

[x]

L1 b

o

| 53
i 1% 3,

r
s

-,
(]

ot [Tals

il 1R

l.-.‘ l i'l - ,;v‘ " 1 LJ ,’EX ""_i :‘Ivri-:;' !i = l !.J UE ir'—.: F. Il ': on l} -
M ey #JUMP TO LISF
VEFE v 120 #QUTFLUT CoDE FOR "%
1.1‘5 [
L { moa

el R S MF T2 B

i

e 4Ly e 1T

IO I e

o ™
m

Jire LG = AdE T

e OF CREORS FUR FR%:S 2 = 8

e AN T YT e gy ST T T

e e U e W

Y BT AT YN

-

TR T Y PYTRY g YT W ey e e

P DOV ——

e

from 2100 to a 9830 caiculater. The o

by 2108 Nano Processor \ssembler are Il

tape as follows:

The punched binary tape can then be

produced by the 9830 Assembler, there
loaded into a ROM-RAM Simulator using

loader program.

program cnaices the user to Transit

e
usin: 2 paper tape reader and stored oI

ser nis binary Ziles
hject files procuced

ad by this progrem

ssette tapes.

a
The files stored by this program a.¢ compatable to the £iles
-

ore, they can be
the 0830 Nano Processor

e

Yamran Firo0o0:z
December/197.

e

oy
Lo

g T— e g— R T34 L VN

N p———

T = 1 - B [e ———
PR MU g b TRGIE DECEMEER 1974

2 T

PR _)
400 oM o ERIGERF @EADE AN OBJECT FILE FRODUCED B THE 2180 HAHD FROCES WR

SO0 bt T i STORES THE FILE O A CASSETTF TAFE.

Wbt s T L RS kR COMPATABLE TO THE FILES FRODUCED BY THE 2220 ASSEMELER
CBOWLET o kTl THEY AW BE LOADED IMTO A ROM-RAM SIMULATOR UZIHG THE LORDER

23 kb e PN,

=10 T § IR T ol | (2

ST e HUMEER™S

| 2243 | 'nl !' !.. :* ll‘;l.. ";

TROTE Rae DHEN SRR

v FL
MO FLE ey AR
LS I S AR
Fin] U AR] S
0 By i

THENL AT

"!.

R SR R R m———

)

This program punches a source fil
Mrocessor iditor™on paper tape
iper tape can then be stored o &
as icllows:

WS, S, >, nume

R stored progvam can ho assemtled us
. - P, = A £AITS A N

Processor Assembler (NFA).

(n additien to this prouram, cne na’

of a Y830 calculater to create or eotit

hy using:

¥select code numher for punc
the source pregram onte pa

Transfer of
done Ly use cof 98350

a 210! or the teletype plug.

u

(47
]
]
o]
4]

Py
rane
i

L

- ve

ermina: NISC
COTIMS y <36

na

- J= < -
then into

by

~ e

o ——

P e s e " o S

EF.

o2 i
NN
- ~

-
o b

Sl ¢

...‘
lat L
Pt R IB AR

(¢ DaLyr
[N S
A

4=, ™~
0T D

= =

Lot =) T

OUR 2 JES08 B R0 I SONI A
L
(oo Ml W s

Ao

L1 IR NP % B e

R N RN NS SO SU O S 8

J

= S

- nda
A
AT

=S10

b

S3a

Hen

SR

o]

r',"“'

£re -
= 1
] e B |
v
ad o

. 9238
G FIE0oZ

i FHIUCER TRPE

;
; H BT FTRT
£k fei, FAccR Talte
P - I SPOFY o
SEE M ER O,

RO COnE

. s

GO=UE S48

EHD
H=P- 117
R R R
BIiFsf
P=P+i

M LT
IE P
UVE R
X I'. .
oo TURH
LTS,
(B0 W

H [B
R R T

"2 s)

PR RPN S |
Pt & i
T'—,:—_i '-?-;::ﬂ

i

C e HFL a1]
tHy. TEGEF YA

THEY

vkl S0

- il

b !
v MEY TEOS

[LIS RE TS

NECEMEER 1974,

= o o —

P2IHG A PRFER

Pie Teriodn e 22T HE E0]

4o

ol

AEb CUHCHES R OSOURCE FLILE GEHERRTED BY

TRFE FHNCH.

LAH THEN BE STORED G A DISE OF
i FEOGERM CHHE RE ASSEMELED USIHG THE 2164

THE HAHD FROCEZSUR

=
e

168 COMPUTER.
HAHQ FROCESSOR

I

APBERNDIX
=

GENERAL INFORMATION

Nano Processor support materials may be ordered

from LID at no charge. The Nano Processor User's

Guide may be obtained by asking for drawing number
A~-5955-0331~1. Also a limited quanity of software
material, ie 9830A EDITOR, ASSEMBLER, LOADER CASSETTE.

and 2100 DOS 1ii paper tape are available at no charge.

Whe osrdering, csprecify one of the following:
93830A NANC PROCESSOR SOFTWARE CASSETTE
2/N 5061-0768

2100 NANO PROCESSOR SOFTWARE PAPER TAPE
P/Y¥ 5061-0769

Thrse materials are limited, and when the supply is
exhausted no more will be available, You may be
abie to check around your division for others who

have these software materials,

e RPN TR B AT AT

NANO PROCESSOR

George Latham
7/29/75

"DATA BUS APPLICATION HINTS'
I. Data bus rise time equations where "Cp'" is the total data bus capacitance
external to the Nano Processor package.

A. "A" Chips
Rise time

7.7(Cy + 7)ns (Cp in pF)

B. "B" Chips
Rise Time

9.6(CD + 7)ns (CD in pF)

C. "C* Chips (N© VLR AVALADLE)
Rise Time = 11.5(Cp +7)ns (Cp in pF)

D. We will define data bus rise time as:; r.t. (data)* (to a 4.0 Volt level)
E. A max. loading of one T?L input (1.6mA) is allowed.

F. The data bus rise time is measured from the last data output low (''0")
or from the last moment the ROM applies a zero on the data bus. It
is therefore important to watch the time between TPA2 valid and TpGH
(program gate) to be sure that the ROM does not glitch the data bus
low just before a valid high ("'1') is output by the ROM. It is reason-
able to use maximum values of both TPA2 and TPGH at the same time.

G. The equations for interrelating these pa:ameters are:
1. ClKt> r.t. (data) + Typ +Tpy max.

2. CIKT> min. spec.

3. CIKT> Tppz + Taa + Trp
Note: TaaA include r.t.(data) to 4.0 Volts

4. CIKT> Tpgy max.+ Tgp + TIp

Reasonable values to use for Tpy max. (not speced) are:
"A" Chip, 110ns; "B'" Chips, 140ns; "C'" Chips, 170ns.

II. Other suggested Data Bus Pull-Up Methods.

A. The most simple pull-up method for grcetcr data bus speeds is to connect a
10K resistor from each data bus to 12¥ or 9V for "A" or "B" § "C" chips
respectively. This is pemmissible providing that the circuits on the
data bus have a maximm voltage rating of at least 7;0 volts. One LS
input is assumed (0.36mA). The principle of operation is that then N.P.
output pull-up FETS will self-clamp the data bus to approximately 6.5
Volts using 10X ofm resistors. Uesign cor);rnnts for this method are:

L T | - e | o

. -t

S ——— ey @ s se oy

uA" Chips: r.t.(data) = 2.4 (Cp + 7)ns

wp" Chips: r.t.(data) = 3.6 (Cp + 7)ns

nC" Chips: r.t.(data) = 3.9 (Cp + 7)ns (Cp IN pF)

A faster yet method which yields a lower clamp voltage (=5.5 Volts max.)
uses 7.5K ohm resistors connected as in part A, but also connects clamp-

ing Schottky diodes between the data bus and the 5 volts supply.
Design cor;tants for this method are:

“A" Chips: r.t.(data) = 2.2 (Cp+ 7)ns

"B" Chips: r.t.(data) = 3.1 (Cp + 7)ns

3.4 (Cp + 7)ns . (Cp in pF).

"C'' Chips: r.t.(data)

