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Abstract—This paper examines several important aspects of estimating mismatch 
uncertainty, which is often a major component of the total uncertainty for RF and 
microwave measurements. Expressions for mismatch correction and the correspond-
ing uncertainty are presented for reflection coefficients with known magnitude and 
phase. For reflection coefficients with unknown phase, two scenarios are considered; 
that is, when estimates exist for the reflection coefficient magnitude resulting in the 
well-known U-shaped uncertainty distribution and when dealing with assumed reflec-
tion coefficient magnitude values. For the latter scenario, this paper demonstrates 
that the reflection coefficient magnitude is best modeled with a Rayleigh distribution. 
Measurement data is presented revealing a very good fit to the Rayleigh distribution. 
Finally, this paper presents methods for estimating the Rayleigh distribution parameter 
from information found in manufacturer’s data sheets. The objective of this paper is to 
provide comprehensive techniques for estimating realistic mismatch uncertainty, which 
usually gives a three to six times lower estimate of mismatch uncertainty compared 
with estimates from commonly used techniques.
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Mismatch affects the accuracy of measurements made using RF and microwave equipment such as 
power meters, signal analyzers, noise figure meters, network analyzers, high frequency oscilloscopes, 
signal generators, attenuators, couplers, cables and adapters. The measurement uncertainty due to 
mismatch is often a major component of the total uncertainty for RF and microwave measurements.

For RF and microwave systems, knowledge of the complex-valued quantities of source and load 
reflection coefficients allows for correcting for mismatch with a corresponding uncertainty. However, 
for many measurements, only reflection coefficient magnitude is known. The lack of phase informa-
tion precludes the ability to correct for mismatch and is a source of measurement error when making 
power measurements. The distribution of errors due to mismatch when dealing with unknown phase 
is often associated with the well-known U-shaped probability distribution. However, this component 
of uncertainty is only part of the picture. The total mismatch uncertainty must also consider the errors 
associated with reflection coefficient magnitude. The total uncertainty may be determined by using 
an estimate and an associated uncertainty, or by assigning a probability density function (PDF) to the 
reflection coefficient magnitude. This paper demonstrates both.

Assigning a probability density function to the reflection coefficient magnitude finds its use when 
reflection coefficient magnitude data is available from a manufacturer’s data sheet or a pooled data 
set. The natural tendency is for reflection coefficient magnitude to take on a Rayleigh probability 
distribution. This paper gives several methods for estimating the Rayleigh distribution parameter from 
available data enabling the estimation of mismatch uncertainty.
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2. Mismatch

Mismatch is the term used to describe the consequence of traveling waves 
that reflect off the various structures within RF and microwave transmission 
systems.

Figure 1. A generator connected to a load 
through a transmission line.

Figure 2. Flow diagram for Figure 1.

Consider a signal generator with output impedance sZ , connected to a load, 
lZ , through a lossless transmission line with characteristic impedance  
0Z , as shown in Figure 1. Of interest with this circuit are the forward and 

reverse traveling voltage waves on the transmission line. From the generator, a 
traveling voltage wave moves along the transmission line towards the load. If 
the load impedance does not exactly match the characteristic impedance of the 
transmission line, a second traveling voltage wave reflected off the load heads 
back towards the generator. The magnitude of this reflected, reverse traveling 
wave depends on the load impedance. For many microwave power measure-
ments, the magnitude of the reflected wave is small, ideally, relative to the 
forward wave. The reverse traveling voltage wave, upon reaching the generator, 
re-reflects back in the forward direction adding to the traveling voltage wave 
from the generator. The magnitude of the re-reflected voltage wave depends 
on the generator impedance. The voltage wave from the generator and the 
re-reflected voltage wave add either constructively or destructively, depending 
upon the relative phase of the two traveling waves. The net magnitude of the 
forward and reverse traveling voltage waves are the result of multiple reflections 
and rereflections. In a system such as this, the voltage at the load depends on 
the load impedance, the impedance of the generator and propagation delay of 
the transmission line.

Γ

1 

Γ
Γ Γ

Transmission Line
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The flow diagram in Figure 2 models the circuit from Figure 1 where,

•	 sb  = traveling voltage wave produced by the generator,

•	 la  = traveling voltage wave incident on the load,

•	 lb  = traveling voltage wave reflected off the load,

•	
gΓ  = generator reflection coefficient where 0

0

s
s

s

Z Z
Z Z

−
Γ =

+
,

•	 lΓ  = load reflection coefficient where 0

0

l
l

l

Z Z
Z Z
−

Γ =
+

,

•	 τ  = transmission coefficient of the transmission line,

•	 0Γ  = input and output reflection coefficient of the transmission line.

The transmission line, in this circuit, is assumed lossless and otherwise ideal, 
such that  0 0

0
0 0

0Z Z
Z Z

−
Γ = =

+
  and 1τ = . In addition, the effect of the 

 
 
transmission line propagation delay simply offsets the phase of lΓ  as seen at 
the generator. As such, assuming constant phase for τ  has no impact on the 
remaining analysis, but along with assuming 0 0Γ = , allows for a simplifica-
tion of the circuit model as shown in Figure 3.

Figure 3. Simplified circuit model.

Γ
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11 

Γ

Relying on Mason’s non-touching loop rule for signal flow graphs

The power absorbed by the load, aP , is the difference between the power 
incident upon the load and the power reflected off the load.
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The term 
21 l− Γ , in equation (5) represents mismatch loss. Mismatch loss 

is solely a function of the load impedance. That is, load impedance not equal to 
the characteristic impedance reduces the absorbed power relative to the power 
absorbed by a perfectly matched load. For powermeasuring devices such as a 
power meter or a signal analyzer, calibration corrects for the mismatch loss of 
these devices. For example, the power sensor correction factor applied to power 
measurements, using a power meter, corrects for all known systematic errors of 
the power sensor, including mismatch loss.

Whereas the calibration of a power measuring device generally accounts for 
mismatch loss, accounting for the term 2

1 l g−Γ Γ , which represents the 
  
effect of multiple reflections, requires knowledge of both lΓ  and gΓ . lΓ  and 

gΓ  are complex quantities; evaluating 2
1 l g−Γ Γ and correcting for multiple 

 
reflections in power measurements is straightforward. The uncertainty
associated with 2

1 l g−Γ Γ  is determined from the uncertainty of the  
 
estimates of lΓ  and gΓ . Defining the quantity M ,

where . .l l re l imiΓ = Γ + Γ  and . .g g re g imiΓ = Γ + Γ  representing the real and 
imaginary components of 

lΓ  and 
gΓ . Then

Letting ( ). . . .1 l re g re l im g imR = −Γ Γ +Γ Γ  and ( ). . . .l re g im l im g reI = − Γ Γ +Γ Γ  , 
the sensitivity coefficients, as per the GUM [1], are

2
1 l gM = −Γ Γ Equation 6

Equation 7

Equation 8

Equation 9

( ) ( ) 2

. . . . . . . .1 l re g re l im g im l re g im l im g reM i= − Γ Γ −Γ Γ − Γ Γ +Γ Γ

( ). . .
.

2l re g re g im
l re

Mc R I∂
= = − Γ +Γ
∂Γ

( ). . .
.

2l im g im g re
l im

Mc R I∂
= = Γ −Γ
∂Γ

When the load impedance equals the characteristic impedance, then  
0lΓ = , and

0gZP  represents the power the generator delivers to a perfectly matched load. 
The power absorbed by a load of arbitrary impedance is related to the power a 
generator delivers to a perfectly matched load, and the impedances of the actual 
load and the generator.

2
00l

a s gZP b P
Γ =

= = Equation 4

2

0 2

1

1
l

a gZ

l g

P P
− Γ

=
−Γ Γ

Equation 5
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Equation 10

Equation 11

( ). . .
.

2g re l re l im
g re

Mc R I∂
= = − Γ +Γ
∂Γ

( ). . .
.

2g im l im l re
g im

Mc R I∂
= = Γ −Γ
∂Γ

Often, lΓ  and gΓ  are uncorrelated. However, in general, the real and imagi-
nary parts of lΓ  and the real and imaginary parts of gΓ  are correlated. This 
leads to an uncertainty equation for M  as,

Equation (12) requires estimates of the real and imaginary components of 
reflection coefficient and associated uncertainty and covariance. Often, however, 
reflection coefficient is reported as magnitude and phase. Appendix A gives an 
expression for transforming reflection coefficient uncertainties as magnitude and 
phase to real and imaginary representation.

3. Unknown Phase

Obtaining phase information for both lΓ  and gΓ  is often non-trivial, especially 
for signal generators. Traditional reflection coefficient measurements using a 
vector network analyzer may not be feasible due to the signal generator’s own 
signal output. Therefore, reflection coefficient magnitude may be known, but 
not reflection coefficient phase for either lΓ  or gΓ , or both. It is reasonable 
to assume that phase can take on any value in the range − < ≤ϕ� � . 
Furthermore, any value of phase is equally likely. This leads to possible values 
of reflection coefficient with circular symmetry about the origin of the real-imag-
inary plane. Note however, that when determining measurement uncertainty 
involving complex reflection coefficient quantities, it is desirable to express 
uncertainty as real and imaginary components. Doing so allows for
determining uncertainty involving complex values that is consistent with the 
GUM (see Ridler and Salter [2]) and it avoids nonlinearity issues with the trans-
formation between rectangular and polar coordinates when reflection coefficient 
values are near the origin.

Given circular symmetry about the origin, the real and imaginary reflection 
coefficient uncertainties are equal. Additionally, the best estimate for the real 
and imaginary parts of reflection coefficient is zero. This presents a problem 
when determining uncertainty. Examination of equations (8) through (11) reveals 
that the sensitivity coefficients are all zero when this is the case. Hall [3][4] has 
addressed this. That is, let l gG = Γ Γ  so that

and

( )
( ) ( ) ( ) ( )

( ) ( )

2 22 2
. . . . . . . .

. . . . . . . .2 , 2 ,

l re l re l im l im g re g re g im g im

l re l im l re l im g re g im g re g im

c u c u c u c u
u M

c c u c c u

   Γ + Γ + Γ + Γ          =
+ Γ Γ + Γ Γ

Equation 12

Equation 1321M G= −

( ) ( )2 21 re imM G G= − + − Equation 14
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Assuming the best estimate of  reG  and imG  is zero, then 2rec = , 0imc =  
and

Even though the real and imaginary uncertainties are equal, given the circular 
symmetry assumption, equation (17) shows that the uncertainty due mismatch 
only depends on ( )reu G  is the product of lΓ  and gΓ , and in the case of 
unknown phase, the uncertainty of  reG  is (see [3]),

Combining equations (17) and (18),

Equation (19) shows that the uncertainty due to mismatch when phase is not 
known can be determined from the real components of the corresponding reflec-
tion coefficient uncertainties. Note that the uncertainty due to mismatch can 
also be determined from the imaginary components since the real and imaginary 
components are equal in this case.

For the moment, assuming known constant values for lΓ  or gΓ , with 
unknown, but equally likely phase values over the range of range 
 − < ≤ϕ� � , the range of possible reflection coefficient values lie on a circle 
centered on the origin of the real and imaginary plane. The standard deviation of 
the real component of reflection coefficient, in this case is

where a  is the circle radius. This is the result given by Harris and Warner [5]. 
The distribution of possible values is what Harris and Warner referred to as 
U-shaped. Letting la = Γ , and also 

ga = Γ , the standard uncertainty of the 
  
real component of for lΓ  and gΓ  are

( ) ( ) ( )2 22 2re reu M u G u G= = Equation 17

( ) ( ) ( ). .2re l re g reu G u u= Γ Γ Equation 18

( ) ( ) ( ). .2 2 l re g reu M u u= Γ Γ Equation 19

Equation 20

Equation 21

Equation 22

2
aσ =

( ). 2
l

l reu
Γ

Γ =

( ). 2
g

g reu
Γ

Γ =

where  reG  and imG  are the real and imaginary components of G , respec-
tively. The sensitivity coefficients are

( )2 1re re
re

Mc G
G
∂

= = − −
∂

2im im
im

Mc G
G
∂

= =
∂

Equation 15

Equation 16
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Given equation (19), the uncertainty of M , when assuming known magnitude 
values of reflection coefficient and unknown phase, is,

Equation (23) assumes complete knowledge of lΓ  and gΓ . However, if  

lΓ  and 
gΓ  are the results of measurements, then error exists with the  

 

estimate of  lΓ  and gΓ . If this error is small, then the errors due to 
unknown phase information dominate the uncertainty of M . If this is the
case, then equation (23) provides a reasonable estimate for the uncertainty of 
M .

4. Measured Values for lΓ  and gΓ

If lΓ  and gΓ  are measured quantities, with a corresponding uncertainty yet 
with unknown phase, the distribution of possible reflection coefficient values 
lie within an annulus-like shaped region centered on the origin of the real and 
imaginary plane. The uncertainty of lΓ  and gΓ  with this distribution shape is 
(see [4]),

This is the same result assuming the distribution of values within the annulus is 
uniform, where the inner radius is ( )2a u a−  and outer radius is 
 

 ( )2a u a+  and a  represents the reflection coefficient magnitude. The  
 

uncertainty of M , when relying on measured values of reflection coefficient 
magnitude is, given equation (19),

As the uncertainty of the reflection coefficient magnitude increases relative to 
the measured value, the distribution of M becomes less and less U-shaped 
(see Figure 4).

Figure 4. Probability density functions of 
M .

( ) 2 2 2
2 2

gl
l gu M

ΓΓ
= = Γ Γ Equation 23

( ) ( )2 2
.

1 2
2l re l lu uΓ = Γ + Γ

( ) ( )2 2
.

1 2
2g re g gu uΓ = Γ + Γ

Equation 24

Equation 25

( ) ( ) ( )22 2 22 2 2l l g gu M u u= Γ + Γ Γ + Γ Equation 26
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5. Assumed Rayleigh Distribution for both lΓ  and gΓ

Up to this point, the analysis of the uncertainty of M  deals with measured val-
ues for 

lΓ  and 
gΓ . Often, however, measured values for 

lΓ  and 
gΓ  are  

 

not available. For example, the calibration of a device may not include reflection 
coefficient measurements due to the potential difficulty of making the measure-
ments coupled with the general stability of reflection coefficient. In situations 
such as these, the distribution for  

lΓ  and 
gΓ must be assumed. The best 

  

information available for reflection coefficient may be the manufacturer’s speci-
fication, and for many devices, the specification covers a range of frequencies. 
Unlike a specification that covers the accuracy of a parameter, reflection coef-
ficient specifications are one-sided. That is, reflection coefficient specifications 
set an upper limit.

For most devices, the mechanical layout and the terminating circuit elements 
determine reflection coefficient. For example, construction of a typical high 
frequency, thermocouple power sensor includes a coaxial connector, with a 
mating surface and mechanical support structure, and a transition to the circuit 
assembly, which includes a microstrip transmission line and the thermal sens-
ing circuitry. The sensing circuitry typically utilizes a precision thin-film resistor 
for converting the high frequency energy to heat. Due to the mechanics of the 
assembly, the transmission path between the terminating thin-film resistor and 
the mating surface of the input connector includes many small electrical discon-
tinuities, all of which affect the reflection coefficient as measured at the power 
sensor input. A power sensor has a minimal number of mechanical structures, 
yet the number of electrical discontinuities on the transmission path adds
up quickly.

Figure 5. Single discontinuity as a two-
port element.

Γ

1

11
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Figure 5 models a single discontinuity as a two-port element, located in front of 
the terminating circuit element (e.g., the thin-film resistor in the power sensor 
example). The equivalent impedance of the terminating impedance and the 
discontinuity is

Relying on Mason’s non-touching loop rule

Combining equations (27), (28) and (29),

If the discontinuities are small changes in the transmission line characteristic 
impedance, then it is safe to assume that 21 12 1s s= = . This simplifies equa-
tion (30) so that

Generalizing for multiple discontinuities,

where 11is  represents the thi  discontinuity. The real and imaginary parts of 
eqΓ  sum as follows:

l
eq

l

b
a

Γ =

221
s

l
l

ba
s

=
−Γ

11
21 12

221
s

l s l
l

b sb b s s
s

= + Γ
−Γ

Equation 27

Equation 28

Equation 29

Equation 30

Equation 31

Equation 32

21 12
11

221
l

eq
l

s ss
s

Γ
Γ = +

−Γ

11
221

l
eq

l

s
s

Γ
Γ = +

−Γ

11eq lsΓ ≅ +Γ

Equation 33

Equation 34

11
1

n

eq l i
i

s
=

Γ ≅ Γ +∑

11 . 11. . 11.
1 1 1

n n n

eq l i l re rei l im imi
i i i

s s i s
= = =

 
Γ ≅ Γ + = Γ + + Γ + 

 
∑ ∑ ∑

Additionally, for small values of lΓ  and 22s , 22 1l sΓ � , and equation (31) is 
further simplified as

«
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Mullen and Pritchard [6] have demonstrated that, given a sufficient number 
of unrelated small discontinuities, the Central Limit Theorem applies to the 
characteristics of eqΓ . Specifically, the real and imaginary components of eqΓ  
will each tend towards a Gaussian distribution regardless of the distributions 
describing the discontinuities. The resulting distributions representing the real
and imaginary components of eqΓ  both have a mean of zero and equal vari-
ance. Under these conditions, the distribution of magnitude, eqΓ , is a Rayleigh 
distribution and has the probability density function

where σ , is the Rayleigh distribution parameter. Note that σ , in this case, 
is the standard deviation of the Gaussian distributions describing the real and 
imaginary components of reflection coefficient. Therefore, if lΓ  and gΓ  are 
described by a Rayleigh distribution, then

The uncertainty of M , when relying on reflection coefficient magnitude 
described by a Rayleigh distribution is,

A plot of the Rayleigh distribution is shown in Figure 6.

Equation (34) led to the applicability of the Central Limit Theorem in this analy-
sis. It also hints at the relative stability, or lack of significant drift, possible with 
reflection coefficient. Reflection coefficient is the sum effect of several physical 
discontinuities along a transmission path, the majority of which are likely not 
subject to significant physical stress. Components that are subject to physical 
stress, such as the mating surfaces of connectors, contribute only partly to the 
reflection coefficient. Therefore, through proper connector care (e.g., inspection, 
cleaning and replacement of worn or damaged surfaces), stable reflection coef-
ficient is achievable.

Figure 6. Rayleigh distribution.

( )
2

22
2r ; e

xxx σσ
σ

−
= Equation 35

Equation 36

Equation 37

( ).l re lu σΓ =

( ).g re gu σΓ =

( ) 2 2 l gu M σ σ= Equation 38
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6. Computing σ  for the Rayleigh Distribution

To compute the σ parameter of the Rayleigh distribution, the authors would like 
to suggest using the 95th percentile of the distribution. 

The Rayleigh cumulative distribution function (CDF) is the integral of the PDF, of 
course

The relationship between the 95th percentile value of the cumulative distribution 
function and the parameter σ  can be found by solving

Solving for σ  gives

Combining equations (38) and (41), the standard uncertainty of M , as related 
to the 95th percentile of the distribution of reflection coefficient magnitude, is

Equation 39

Equation 40

Equation 41

( )
2

2 
2R 1 e
x

x σ
−

= −

( )
2

2
95 

2R 0.95 1 e
x

x σ
−

= = −

95
2ln(20)

xσ =

( ) 2 95 95
ln(20) l gu M = Γ Γ Equation 42

In addition to estimating the σ  parameter from the 95th percentile, other pos-
sibilities include the 99.73rd percentile, the 80th percentile, the mean, and the 
median of the distribution.
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Table 1 shows the relationships between these population observations and 
 σ , and the corresponding conversion to the 95th percentile for use with equa-
tion (42).

Γ  Parameter σ  Computation 95th Percentile

Max (99.73rd percentile)

3.439
maxσ Γ

=
 95 0.712  maxΓ = Γ

95th percentile 95
2ln(20)

σ Γ
=

 95  95Γ = Γ

80th percentile 80
2ln(5)

σ Γ
=

 95 1.269  80Γ = Γ

Mean
2
�meanσ = Γ  95 1.953  meanΓ = Γ

Median (50th percentile)

2ln(2)
medianσ Γ

=
 95 2.079  medianΓ = Γ

Table 1. τ , σ  and 95th percentile relationships for the Rayleigh distribution.

The first entry in Table 1 is labeled as “maximum”, which is meant to address 
the scenario when reflection coefficient magnitude is expected to not exceed 
a given value. The “maximum” reflection coefficient magnitude cannot be 
mapped to a value of σ  because the cumulative Rayleigh distribution never 
reaches 100%. A practice recommended by the authors is to assume that the 
“maximum” of this Rayleigh-distributed value is the equivalent of “ 3σ ” for 
Gaussian-distributed random variables. The 3σ  range is equivalent to a yield 
loss of 0.27%, or ( )CDF   0.9973x = . Solving this equation shows that 

/ 3.439xmaxσ = .

7. Another Distribution Combination

In some cases, the statistical distribution of one of the mismatches might be 
Rayleigh while the other relies on a measured magnitude value. Let 1 Γ  repre-
sent the match of the Rayleigh-distributed element and 2 Γ  for the measured 
mismatch element with a corresponding uncertainty. The standard uncertainty 
of M  for that case is

( ) ( )2 21
2 2

952 2
ln(20)

 u M uΓ
= Γ + Γ
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8. Summary of Distribution Equations for the Unknown Phase 
Case

Mismatch uncertainty has been computed for three realistic cases. Table 2 
summarizes these equations for mismatch uncertainty. The first entry in Table 2 
is most useful with the availability of measured values for reflection coefficient 
magnitude and corresponding standard uncertainties. The second entry is most 
useful for assumed values of reflection coefficient magnitude, for instance, 
when relying on data provided by the manufacturer across a wide range of fre-
quencies. In this case, the Rayleigh distribution is an excellent model of reflec-
tion coefficient magnitude as the remaining sections of this paper demonstrate. 
The third entry in Table 2 addresses using both measured reflection coefficient 
values and assumed reflection coefficient values.

Common industry practice is to calculate mismatch uncertainty by the method 
described by Harris and Warner, which relies on the uncertainty having the 
U-shaped distribution, and is often used assuming reflection coefficient magni-
tudes are always at the maximum documented on a manufacturer’s data sheet. 
To address the obvious overstatement of mismatch uncertainty in the latter 
case, an alternate practice is to assume uniformly distributed reflection coef-
ficient values within a circle in the complex plane. Keysight Technologies, Inc. 
Application Note 1449-3 [7] documents these practices; a companion calculator 
is available[8]. This application note refers to calculating mismatch uncertainty 
assuming uniformly distributed reflection coefficient as Case (a) and the Harris 
and Warner model as Case (b). Table 3 lists the equations used for these 
calculations for reference. The authors recommend using the Table 2 equations 
for determining mismatch uncertainty when reflection coefficient phase is not 
known.

Condition Standard uncertainty

Measured 
magnitude ( ) ( ) ( )22 2 22 2 2l l g gu M u u= Γ + Γ Γ + Γ

Assumed Rayleigh

( ) 2 95 95
ln(20

 
) l gu M = Γ Γ

Rayleigh/Measured 
combination ( ) ( )2 21

2 2
952 2

ln(20)
 u M uΓ

= Γ + Γ

Table 2. Summary of Recommended Standard Uncertainty Equations.

Distribution Standard uncertainty

Harris and Warner (1449-3 case (b)) ( ) 2 l gu M = Γ Γ

Uniform (1449-3 case (a))
( ) 2

2
 l gu M = Γ Γ

Table 3. Standard Uncertainty Equations Used in Common Models.

The first entry in Table 2 is a generalized solution for the Harris and Warner 
model (the first entry in Table 3). It accounts for the error associated with 
measured values of reflection coefficient magnitude as well as the error due 
to unknown phase. When it is necessary to assume reflection coefficient 
magnitude values, the Rayleigh distribution gives the most accurate estimate of 
uncertainty, particularly when compared to the uniform distribution.
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9. Estimating the Rayleigh Distribution Parameter from 
Manufacturer Data

Manufacturers give us information on the distribution of reflection coefficient 
magnitude in many different ways. Keysight provides examples in the fields of 
power sensors, signal sources and signal analyzers.

For power sensors, Keysight gives a warranted specification on VSWR. In some 
more modern power sensors, Keysight also gives a graph of the typical VSWR 
versus frequency.

The authors have analyzed statistical data on the 8481A (not the more modern 
N8481A). Some specifications for VSWR for this device are given in Table 4.

Frequency Maximum VSWR

50 MHz to 2 GHz 1.10
2 to 12.4 GHz 1.18
12.4 to 18 GHz 1.28

Table 4. Specifications for 8481A power sensor.

Figure 7 shows the maximum specification, in terms of reflection coefficient 
magnitude and the mean values as a function of frequency determined from the 
statistical data.

Figure 7. Specified and mean observed 
reflection coefficient magnitude, | |Γ , for 
8481A power sensor.

Consider this example of an estimate of  95Γ   from Γ  max for the 8481A 
power sensor in the range 0 to 8 GHz:

.1 1 8VSWRmax =

1max 0.08 26
1

VSWRmax
VSWRmax

−
Γ = =

+

95 0.712 588 0.0maxΓ = Γ =

Equation 43

Equation 44

Equation 45
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. 1 0 0 4meanΓ =

95 1.953 0 273 .0meanΓ = Γ =

Consider this example of the estimation of  95Γ  from mean for the 8481A 
power sensor in the range 0 to 8 GHz:

Equation 46

Equation 47

These two ways of estimating yield results that differ by more than a factor of 
two. The latter, coming as it does from real observations instead of data sheets, 
is the more accurate. The observed  95Γ  is 0.0219.

Therefore, the assumption that the data sheet “maximum” is the equivalent of 
the 3σ  range overstates the uncertainty by a factor of two in this case. It is 
still a good way to minimize the risk of understating the uncertainty when no 
other information is available.

Next, consider a signal analyzer. The Keysight PXA gives the plot in Figure 8 
of VSWR for three sample instruments in high band (3.5 to 26.5 GHz) with the 
preamp on, with 0 dB attenuation:

Figure 8. An example signal analyzer 
VSWR plot.

One can estimate by eye the level that is exceeded by 5% of the frequency 
points. That might be VSWR = 1.6, thus  95Γ = 0.23. (A numeric observation 
from this data set gave VSWR = 1.52.)

Finally, consider a signal generator, such as the Keysight N5183A. This device 
has a stated VSWR of 1.6 (typ) for frequencies up to 20 GHz. The stated defini-
tion of (typ) for this product line is that level which is surpassed by 80% of the 
instruments at the worst frequency in the range. Treating this as an 80th percen-
tile for all frequencies, an assumption which obviously leads to overstatement 
of the uncertainty, compute 80Γ = 0.231 and thus  95Γ = 0.293. Actual data 
shows this estimate to give a highly overstated uncertainty; the observed  
 95Γ = 0.140.

To summarize this section: The 95th percentile for reflection coefficient mag-
nitude can be computed from data sheet specifications such as the maximum 
VSWR or the 80th percentile VSWR, or from typical graphs. Results from data 
sheets are often overstated by a factor of two; results from typical graphs are 
closer to reality.
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10. Comparing Observed Distributions to the Rayleigh  
Distribution

How close is the Rayleigh model to reality? Again, the authors have investigated 
examples of the most commonly used metrology elements of their experience: 
power sensors, signal generators and signal analyzers. The answer is “very 
close” in all cases.

Power sensors are the simplest of these elements. Because the Rayleigh model 
seemingly depends on a large number of reflective elements and the central 
limit theorem, we might expect the power sensors to not be a particularly good 
fit to a Rayleigh distribution. But they are. Figure 9 compares the measured 
reflection coefficient magnitude, | |Γ , with a best-fit model in the 0 to 8 GHz 
and 12.4 to 18 GHz regions.

Figure 9. Cumulative distribution functions 
for 8481A power sensors in two frequency 
ranges.
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The fit in the 0 to 8 GHz region is remarkably good. Even in the higher frequency 
plot, where some amount of chaos is implied by the variation in the mean VSWR 
(see Figure 7), the fit shows the general characteristic of the Rayleigh model. 

Next, consider a signal generator. For the N5183A, 0 to 20 GHz, see Figure 10.

Figure 10. Cumulative distribution 
functions for N5183 signal source,  
0 to 20 GHz.

The 80th percentile performance specified for this model is a VSWR of 1.6:1, 
which is a | |Γ of 0.23. The figure shows that the 80th percentile at all frequen-
cies is a | |Γ of 0.09. The use of an 80th percentile performance statistic for the 
worst frequency results in mismatch uncertainty estimates that are a factor of 
more than two higher than they would be if the 80th percentile statement were 
based on all frequencies.

Finally, consider the PXA signal/spectrum analyzer. Figure 11 shows the behav-
ior of the high-band preamplifier with 0 dB input attenuation.

Figure 11. Cumulative distribution 
functions for PXA signal analyzer,  
3.5 to 26.5 GHz, preamp, 0 dB attenuation.

Again, an excellent fit to a Rayleigh model. Analysis of low band (0 to 3.6 GHz) 
with 10 dB attenuation shows similarly excellent fit, with | |95Γ = 0.064.

In summary, power sensors, signal sources and signal analyzers all have reflec-
tion coefficients that are very well modeled as having a Rayleigh probability 
density function.
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11. Bivariate Gaussian Distribution

The Rayleigh distribution is theoretically possible even without the other part of 
the hypothesis: that the real and imaginary components of the reflections are 
independently of Gaussian distribution. The distribution is of interest to some 
researchers in the field. Some frequency ranges of spectrum analyzers and 
power sensors were inspected for Gaussian behavior of the real and imaginary 
parts. There has been no substantial deviation from that behavior. Figure 12 
shows a test of the Gaussian hypothesis for a spectrum analyzer over the 
frequency range of 0 to 3.6 GHz, with 10 dB input attenuation. The reflections 
were derotated to minimize the spinning of the phase across this frequency 
range. The distributions of both quadrature components, and 45° rotated ver-
sions of them, were all inspected. These were judged for conformance with a 
Gaussian distribution by computing R2, the coefficient of determination, of the 
mapping of the cumulative distribution function to that of an ideal Gaussian. R2 
values ranged from 99.3 to 99.8%, which represents a good match to a Gaussian 
model. In Figure 12, the straight line represents an ideal Gaussian model. The 
actual curve agrees very well, especially in the region of 1 to 99% cumulative 
probability. 

Figure 12. Normal probability plot of 
spectrum analyzer input reflection,  
0 to 3.6 GHz, 10 dB attenuation.
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Figure 13. Cumulative distribution 
functions for | |Γ .

12. Comparing Estimation Quality for Rayleigh and Other 
Distributions

Let us discuss the extent of the errors from using different models for the 
distribution.

To judge how large the fit errors are, consider that the very frequently used 
model for mismatch uncertainty is the U-shaped distribution (see the left side 
of Figure 4), which is equivalent to a known, maximum | |Γ with uniformly 
distributed phase. For the 8481A, 12.4 to 18 GHz example (Table 4), that would 
be a VSWR of 1.28:1, thus a | |Γ of 0.123. By comparison, the observed statisti-
cal distribution of | |Γ (Figure 9, lower) shows no probability of  | |Γ higher 
than 0.090, and only minor variations from a perfectly Rayleigh model with | |Γ
between 0.01 and 0.08. The Rayleigh model is dramatically more accurate, even 
at its worst, than using the textual data sheet specification.

Figure 13 shows a plot of the CDF versus | |Γ for the models documented for 
use in estimating amplitude uncertainty. The CDFs are discussed here to help 
with understanding the effect of model choice on the accuracy of estimating the 
uncertainty.

Markers are shown on each curve at the point of 50th percentile cumulative 
probability. In other words, the square markers show the medians of the 
distributions. The graph shows median values for | |Γ from actual measurement 
data, estimates assuming Rayleigh distributions and estimates using common 
industry practices for determining mismatch uncertainty.

The curve at the bottom right is the most conservative, leading to the most 
extreme overstatement of uncertainty. This is the CDF assuming that the 
magnitude of the reflection coefficient is always at its data sheet maximum, 
that is, Case (b) from Keysight Application Note 1449-3, the model that gives the 
U-shaped distribution of mismatch uncertainty. This curve shows that the | |Γ
is always 0.123. The next curve is the Case (a) model CDF from that application 
note; it assumes equally probable | |Γ anywhere within a circle in the complex 
plane. The median value of the | |Γ is smaller than in the first case by 30%. 
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A rough approximation is that the mismatch uncertainty is proportional to the 
median of the distributions. By this rough approximation, case (a) gives a lower 
estimate of mismatch uncertainty than case b by 30%.

Looking at the CDF curve in more detail, it can be seen that  in half of all cases, 
the uncertainty is at least 30% smaller than with the Case (b) model. In 10% of 
observations, the | |Γ is only 0.04 or less, substantially less than in the Case 
(b) example. There is no accumulated probability ( y axis) for which the case (a) 
model shows higher | |Γ . Overall, this model gives a lower computed standard 
uncertainty by a factor of two.

The next curve, labeled “Case (c)” and “from max,” is based on the Rayleigh 
distribution, assuming that the data sheet maximum | |Γ corresponds to  
“ 3σ ” yield loss. A rough approximation that the uncertainty is proportional 
to the median | |Γ  predicts that “case (c) from max” shows less than half the 
error of case (a). It shows even lower median | |Γ , or  | |Γ  at any cumulative 
probability short of very near to 100%. 

The next curve (“from mean”) is also based on the Rayleigh distribution, using 
the observed mean reflection coefficient to compute the model parameter. 
Finally, the curve with the leftmost median is actual | |Γ . It results in similar 
uncertainty to the least conservative of the modeling techniques.

To review, consider again the concept that the estimated uncertainty is roughly 
proportional to the median of the distribution function. By this analysis, it is 
obvious that Rayleigh model for distribution, using the mean | |Γ to estimate 
the Rayleigh parameter, gives the best approximation to reality, as well as the 
lowest uncertainty of any of the models.

13. Considering the Rayleigh Distribution in Narrow  
Frequency Ranges

The analysis presented thus far has been for wide frequency range data. The 
VSWR plot presented earlier for the three PXA units (Figure 8) shows us that 
there is repeatable character to the reflections. If usage is over a narrower range 
of frequencies, the estimation of uncertainty can be accomplished with different 
techniques. For example, in that plot, VSWR around 13.5 GHz is particularly 
low, while that near 24 GHz is particularly high. When estimating amplitude 
uncertainty in a narrow and atypical frequency region, the Rayleigh model may 
not work well.

Figure 14 shows observations of the mean and standard deviation of | |Γ  for 
the MXG signal source across 20 GHz, from the observation of 13 prototype 
instruments. If a metrologist knows this characteristic and is working in a nar-
rowband range, the Rayleigh model is not critical to reducing the overstatement 
of the mismatch uncertainty.
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Figure 14. Mean (upper line) and σ  
(lower line) of | |Γ versus frequency for 
a group of signal generators of the same 
instrument model.

Notice, here, how the standard deviation scales with the average | |Γ . The 
ratio of these two parameters is that the standard deviation is, on average, 41% 
of the mean for this data set. Figure 15 shows a scattergram of the mean on the 
horizontal axis and the standard deviation on the vertical axis. The 41% ratio can 
be seen in the trend line.

Figure 15. Scattergram of mean vs. σ  of 
| |Γ for a signal generator.

If the statistical distribution of | |Γ  versus the population of instruments had 
been Rayleigh, we would expect the ratio of standard deviation to mean to be 
52%. Thus, the statistical distribution is not quite Rayleigh versus instruments 
at any particular frequency; it is only Rayleigh-distributed across a wide range of 
frequencies.

Figure 16 shows a Monte Carlo simulation of this scattergram for an ideal 
Rayleigh distribution at each frequency point with the same number of sample 
points (13), and the same distribution of the mean of | |Γ . Overall, It looks very 
similar to the previous figure after modest vertical rescaling. (There is an excep-
tion at high levels of  | |Γ . This implies that, at those frequencies where the 
reflections are particularly strong, they are more repeatable across the instru-
ment population.) The similarity supports the conclusion that the distribution 
of  | |Γ  versus the population of instruments is close to Rayleigh even in the 
narrowband case.
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Figure 16. Scattergram of mean vs. σ  of 
| |Γ  from Monte Carlo simulation with 
ideal Rayleigh distribution.

Of course, if the | |Γ  were perfectly consistent at any frequency across the 
population of instruments, its standard deviation would be 0% of its mean. At a 
41% observed ratio versus the ideal 52% of Rayleigh statistics, the distribution is 
much closer to Rayleigh than to a constant. The degree to which the statistical 
distribution includes, or is dominated by, repeatable elements in a measuring 
device cannot be generalized. Analysis of this case has shown that treating the 
statistical distribution as Rayleigh will overestimate the measurement uncer-
tainty by about 5% at most narrowband frequencies. That would still be a big 
improvement over using other models of the statistical distribution.

Analysis of the 8481A power sensor showed a standard deviation of  | |Γ  of 
38% of its mean, on average, across frequencies, and a similarly minor overesti-
mation of uncertainty with the Rayleigh model.

Finally, theoretical analysis shows that treating a | |Γ  as being Rayleigh-
distributed with a known mean, when it is actually constant, will cause a mod-
est overestimation of the measurement uncertainty by a factor of ( )4 /π√ , 
thus about 13% higher. Thus, using the Rayleigh model with an observed mean 
leads to quite modest overestimation of measurement uncertainty, while other 
models can lead to much greater overestimations. The Rayleigh model should 
therefore be the default model, even for narrow band situations.
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14. Summary of Recommended Practices

This paper has shown how errors arise due to multiple reflections in RF and 
microwave systems. When the reflection coefficient is known, both magnitude 
and phase, it is possible to correct for mismatch with known uncertainty. 
However, as is common, when phase is not known, determining mismatch 
uncertainty requires a different model. Three such models are available. One 
well suited for determining mismatch uncertainty using measured values of 
reflection coefficient magnitude, another relying on Rayleigh distributed values 
when reflection coefficient magnitude must be assumed, and the third combin-
ing measured and assumed values. Equations for these cases are summarized in 
Table 2.

For the common case where reflection coefficient magnitude must be assumed 
from data provided by the manufacturer across a wide range of frequencies, this 
paper has shown that the Rayleigh model is, in all of many cases investigated, 
an excellent model of the distribution. The metrologist is then faced with finding 
the parameter of the Rayleigh distribution, such as its 95th percentile. In some 
cases, this can be computed from the mean; in others, from visual inspection 
of a graph. If the only information known is a “maximum,” that can be treated 
as the 99.73rd percentile and used to compute the 95th percentile. In the case of 
knowing the 80th percentile at the worst frequency, the 95th percentile parameter 
can be computed from that, but the result is usually very conservative, by more 
than a factor of two in the example studied, though this is still much more 
accurate than treating the 80th percentile as a constant reflection coefficient 
magnitude.

Overall, treating reflection coefficient magnitude as Rayleigh-distributed leads 
to substantially more accurate, yet still conservative, estimates of standard 
uncertainty due to mismatch, compared to the methods commonly used. 
The Rayleigh-based process will usually give a six times lower estimate of 
uncertainty than the most popular method using the U-shaped distribution that 
assumes a constant reflection coefficient magnitude with random phase.
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Appendix A

Often, reflection coefficient uncertainties are given in polar form. To convert 
reflection coefficient uncertainties from polar form to rectangular form is to 
transform from one coordinate system to another. It is convenient to do this in 
matrix form. Given a quantity in polar form as ( ),X= M Θ  the rectangular 
  

form is ( ) ,Y R I= , where ( ) cosR      M= Θ , ( )sinI      M= Θ , and Θ   
  

is in radians. Unfortunately, reflection coefficient uncertainties in polar form are 
not Gaussian and the transformation to rectangular coordinates is nonlinear for 
magnitude values near the origin. Therefore, the propagation of uncertainties 
is only valid when ( )u M M� . The propagation of uncertainty is given by 
Ridler and Salter [2] and Hall [4].

Equation 48( ) ( ) Tv Y Jv X J=

( ) ( ) ( )
( ) ( )

2

2

,
,

u R u R I
v Y

u I R u I
 

=  
 

Equation 49

Equation 50

Equation 51

Equation 52

where the diagonal elements of the covariance matrices represent the square 
of the standard uncertainty of the corresponding terms and the off-diagonal ele-
ments represent the covariance between the corresponding terms. The Jacobian 
matrix gives the sensitivity coefficients of the transform.  In this case, letting 

( ) ( )1 , cosf   M            M=Θ Θ  and ( ) ( )2 ,f    M            M=Θ sinΘ , then

To transform reflection coefficient uncertainties to rectangular form, the covari-
ance matrix therefore, is
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( ) ( )

2

2

,
,

v X
u u

uu
=

Θ Θ
Θ

M
M M

cos
cos
sin

sin
M
M

J

1∂f
−M∂ = =∂ Θ Θ

Θ Θ
Θ

1∂f

∂f
2

∂f
2

M∂ ∂ Θ

=  

cos
cos
sin

sin
M
M
−Θ

Θ Θ
Θ( ) ( )

( ) ( )
2

2

,
,

I
I I

R R
R

u
u

u
u

cosΘ sin Θ
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where ( )v X  and ( )v Y  are the covariance matrices of  X  and Y , and J  
is the Jacobian matrix of the transform from X  to Y . The covariance matrices 
are,
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where the off-diagonal covariance terms are zero. After the transformation, 
using equation (49) and equation (52), the covariance matrix, in rectangular form 
in this case, is

( )
( )

2

2

0
0

u R
u I

 
 
 

Equation 55

Equation 54

where matrix multiplication has the form

a b e f ae bg af bh
c d g h ce dg cf dh

+ +     
=     + +     

� Equation 53

A common practice when reporting reflection coefficient uncertainties in polar 
form, is that the phase uncertainty derives from the magnitude uncertainty using 
an assumption of a circular uncertainty region and stating the phase uncertainty 
as 

( ) ( )Θ     arcsin
u M

u
M

 
=  

 

. The covariance matrix, in polar form in this 
  
 
case, is

where ( ) ( ) ( )2 2 2 u M u R u I≅ ≅

( )
( )

2

2

0
0 Θ

u M
u
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