Agilent Technologies

Agilent X-Series
Wireless
Communications Test
Set

This manual provides documentation for
thefollowing X-Series Analyzers:

PXA Signal Analyzer N9030A
MXA Signal Analyzer N9020A
EXA Signal Analyzer N9010A
CXA Signal Analyzer N9000OA
EXT Test Set E6607A/B/C

X-Series Programmer’s
Guide

Notices

© Agilent Technologies, Inc.
2011-2013

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a
foreign language) without prior
agreement and written consent from
Agilent Technologies, Inc. as
governed by United States and
international copyright laws.

Trademark
Acknowledgements

Microsoft® is a U.S. registered
trademark of Microsoft Corporation.

Windows® and MS Windows® are
U.S. registered trademarks of
Microsoft Corporation.

Adobe Acrobat® and Reader® are
U.S. registered trademarks of Adobe
Systems Incorporated.

Java™ is a U.S. trademark of Sun
Microsystems, Inc.

MATLAB® is a U.S. registered
trademark of Math Works, Inc.

Norton Ghost™ is a U.S. trademark
of Symantec Corporation.

Wikipedia® is a registered
trademark of the Wikimedia
Foundation.

Manual Part Number
E6607-90040

Supersedes: E6607-90006
Print Date

February 2013
Supersedes: N/A

Printed in USA

Agilent Technologies Inc.
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

The material contained in this
document is provided “as is,” and is
subject to being changed, without
notice, in future editions. Further, to
the maximum extent permitted by
applicable law, Agilent disclaims all
warranties, either express or
implied, with regard to this manual
and any information contained
herein, including but not limited to
the implied warranties of
merchantability and fitness for a
particular purpose. Agilent shall not
be liable for errors or for incidental
or consequential damages in
connection with the furnishing, use,
or performance of this document or
of any information contained herein.
Should Agilent and the user have a
separate written agreement with
warranty terms covering the material
in this document that conflict with
these terms, the warranty terms in
the separate agreement shall
control.

Technology Licenses

The hardware and/or software
described in this document are
furnished under a license and may
be used or copied only in accordance
with the terms of such license.

Restricted Rights Legend

If software is for use in the
performance of a U.S. Government
prime contract or subcontract,

Software is delivered and licensed
as “Commercial computer software”
as defined in DFAR 252.227-7014
(June 1995), or as a “commercial
item” as defined in FAR 2.101(a) or
as “Restricted computer software”
as defined in FAR 52.227-19 (June
1987) or any equivalent agency
regulation or contract clause. Use,
duplication or disclosure of Software
is subject to Agilent Technologies’
standard commercial license terms,
and non-DOD Departments and
Agencies of the U.S. Government
will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S.
Government users will receive no
greater than Limited Rights as
defined in FAR 52.227-14 (June
1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in
any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard.
It calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or adhered
to, could result in damage to the
product or loss of important data. Do
not proceed beyond a CAUTION
notice until the indicated conditions
are fully understood and met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or the
like that, if not correctly performed
or adhered to, could result in
personal injury or death. Do not
proceed beyond a WARNING notice
until the indicated conditions are
fully understood and met.

Warranty

This Agilent technologies instrument product is warranted against defects in material and workmanship for a period of
one year from the date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or
replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies.
Buyer shall prepay shipping charges to Agilent Technologies, and Agilent Technologies shall pay shipping charges to
return the product to Buyer. For products returned to Agilent Technologies from another country, Buyer shall pay all
shipping charges, duties, and taxes.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about these products, including instrument software
upgrades, application information, and product information, browse to one of the following URLS, according to the name
of your product:

http.//www.agilent.com/find/ext

To receive the latest updates by email, subscribe to Agilent Email Updates at the following URL:
http://www.agilent.com/find/emailupdates

Information on preventing test set damage can be found at:

http://www.agilent.com/find/tips

Is your product software up-to-date?

Periodically, Agilent releases software updates to fix known defects and incorporate product enhancements. To search
for software updates for your product, go to the Agilent Technical Support website at:

http.//www.agilent.com/find/techsupport

http://www.agilent.com/find/tips
http://www.agilent.com/find/emailupdates
http://www.agilent.com/find/ext

Contents

1. Introduction to Programming X-Series Applications

What Programming InformationisAvailable?. i 8
Using Embedded Help for Programmingt e e e 9
Usingthe Help System on Your PCo e e e e e 9
Help System Features Especially Useful for Programmers 9
Communicating SCPI Using Telneto e e e e e e 12
Overview of the GPIB 15
GPIB Command StatementSottt e 15
SCPI Measurement COmMMAaNGS oo oottt et e e e e e e e e 16
Measurement Group Oof COMMaNdSottt e e e 16
Common Measurement COMMANGS ottt et e e e et 20
STATus Subsystem (No equivalent front-panel keys) i 32
Detalled DeSCriptioNnt e 34
STATus Subsystem Command DeSCriptionS.ttt e e et e 44

2. Programming Fundamentals

SCPI LangUage BaSiCS oottt e e e 74
Command Keywords and SYNtaX oo vttt e 74
Creating Valid ComMmMandsot e e 75
Special Charactersin Commands oottt e e e 76
Parametersin CommandsSot 76
Putting Multiple Commandsonthe SameLine i 79

Improving Measurement SPEEdot 81
Turn off thedisplay UPAaeSo 81
Use binary dataformat instead of ASCII o 81
Minimize the number of GPIB transaCtionst 82
Consider using USB or LAN instead of GPIB 82
Minimize DUT/instrument setup Changes.ot 83
AVOId UNNECESSANY USE Of X RST . oot e e 83
Avoid automatic attenuator SELtING oot 83
Avoid using RFBurst trigger for singleburstsignals 83
N9071A: Optimize your GSM output RF spectrum switching measurement 85
Making power measurements on multiple bursts or slots? Use CAL Culate:DATA<n>:COMPress? . . . 85
FOr More Informationo e e e e e 86

Programmingin CUSINGthe VL e 87
Typical Example Program COontentSottt e e e 87
Linkingto VTL Librarieso e e e e e 88
Compilingand Linking @V TL Program.t e i 88
EXaMPle Programo 90
Including the VISA DeclarationsFile. 90
OPENING B SESSION ottt ettt et e et e e e e e e 91
DEVICE SESSIONS. . . o ettt et e 91
AdAresSiNg @SESSION. . . . oottt e e 93
ClOSING B SESSION & .\ ittt ettt et et e e e e 94

For More Information oo e e 95

3. Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples. o i 98

Contents

89601X VXA Signal Analyzer Programming Examples

1 Introduction to Programming X-Series
Applications

This chapter provides overall information regarding programming the Agilent X-Series Signal Analyzers
with SCPI, and how to use the programming documentation provided with your product.

Introduction to Programming X-Series Applications
What Programming Information is Available?

What Programming Information is Available?

The X-Series Documentation can be accessed through the Additional Documentation page in the
instrument Help system and is included on the Documentation CD shipped with the instrument. It can
also befound intheinstrument at: C:\ProgramsFiles\Agilent\SignalAnalysis\
Infrastructure\Help\otherdocs, or online at: http://www.agilent.com/find/mxa_manuals.

The following resources are available to help you create programs for automating your X-Series

measurements:
Resource Description
X-Series Provides general SCPI programming information on the following topics:

Programmer’s Guide

User’sand
Programmer’s
Reference manuals

Embedded Help in
your instrument

X-Series Getting
Sarted Guide

Agilent Application
Notes

Agilent VISA User’s
Guide

» Programming the X-Series Applications
e Programming fundamentals
* Programming examples

Note that SCPI command descriptions for measurement applications are NOT in this book,
but arein the User’s and Programmer’s Reference.

Describes al front-panel keys and softkeys, including SCPI commands for a measurement
application. Note that:

» Each measurement application hasits own User’s and Programmer’s Reference.
» The content in this manual is duplicated in the analyzer’s Help (the Help that you see
for akey isidentical to what you see in this manual).

Describes all front-panel keys and softkeys, including SCPI commands, for a measurement
application.

Note that the content that you seein Help when you press akey isidentical to what you see
in the User’'s and Programmer’s Reference.

Provides valuable sections related to programming including:

» Licensing New Measurement Application Software - After Initial Purchase

» Configuring instrument LAN Hostname, IP Address, and Gateway Address

» Using the Windows X P Remote Desktop to connect to the instrument remotely
» Using the Embedded Web Server Telnet connection to communicate SCPI

This printed document is shipped with the instrument.

Printable PDF versions of pertinent application notes.

Describes the Agilent Virtual Instrument Software Architecture (VISA) library and shows
how to useit to develop /O applications and instrument drivers on Windows PCs.

http://www.agilent.com/find/mxa_manuals
http://www.agilent.com/find/mxa_manuals

Introduction to Programming X-Series Applications
Using Embedded Help for Programming

Using Embedded Help for Programming

The embedded Help system in your analyzer contains context-sensitive reference information for each
installed measurement application. To see the Help topic for an active function or key, press the green
Help key once the measurement application is open.

Using the Help System on Your PC

The Compiled Help Metafile (CHM) is aso provided on the Documentation CD. This enables you to
access thefile locally on your PC. In Microsoft Windows, use Windows Explorer to navigate to the
<mode_name>.chm file on the CD, and double-click thefile to launch the Help file.

Help System Features Especially Useful for Programmers

Help System Contents Pane

The programming-specific features described below are shown in the Help system Contents Pane (see
Figure 1-1).

e “Help Topics’ on page 10

e “List of Commands’ on page 11
e A Section called “Remote Only Commands’ may be shown.

Figure 1-1 Example Help System “ Contents’ Pane

E? Spectrum Analyzer Mode Help
= &

Hide Back Print Options

Cortents ||ﬂd8:-: | Search| Favorites |

e

L2
@ Additional Documentation
@ About the Spectium Analyzer Meas:
@ Sypstem Functions
= m Frogramming the Analyzer
@ Wwhat Programring Information
@ List of Commnands
@ STATus Subspstem [Mo equiva
@ IEEE Common GPIB Commarid:
@ Swept SA
@ Channel Power Measurement
@ Occupied Bandwidth Measurement
@ ACF Measurement
@ Power Stat CCDF Measurement
@ Burst Power [Transmit Power]
@ Spurious Emissions Measurement
@ Spectum Emission M ask Measuren_|
@ List Sweep

@ Common Measurement Functions_lll
| »

1

Introduction to Programming X-Series Applications
Using Embedded Help for Programming

Help Topics

Included in each Help topic are:

Figure1-2

Definitions for the current active function or Key
SCPI Command parameters, including limits, presets, variables, and queries

Associated Remote-Only commands (if used)

Example Help Topic - Scale/Div Window

Scale / Div

Sets the units per vertical graticule division on the display. This function is only
available when Scale Type (Log) is selected and the vertical scale is power.
When Scale Type (Lin) is selected, Scale/Div is grayed out.

:DISPlay:WINDow[1l]: TRACe:Y

[:SCALe] : PDIVision <rel ampl>
Remote Command: -
:DISPlay:WINDow[1l]:TRACe: Y

[:SCALe] : PDIVision?
|Example: DISP:-WIND:TRAC:Y:PDIV 5 DB

Scale/Divis graved out in linear Y scale. Sending
Dependencies/Couplings: the equivalent SCPI command does change the
Scale/Div, though it has no affect while in Lin.

|Preset: 10.00 dB / Div
|State Saved. 'Saved in State
hin: 0.10dB

Ma 20dBE

Key Path: AMPTD Y Scale
Initial 5/W Revision Priorto A.02.00

10

Introduction to Programming X-Series Applications
Using Embedded Help for Programming

List of Commands

The List of Commandsis an alphabetically sorted list of all commandsin the current measurement
application. Each listing shown is alink to the specific Help Topic that contains the command or query.
See Figure 1-3 on page 11 for an example of a partial List of Commands.

Figure 1-3 Example List of Commands

TCLS

il s

TOPC?

ToOPC

TOFET?

TRCL =redister #=

RET

TSAV <reqister #=

S1BY

TRG

A

ABORL

CAL Culate ACPower LIMIt STATe OFF[DMN|0]1
CALCUlate ACPower LIMIESTATe?
(CALCulate ACPower MARKer AOFFE

(CAL Culate ACPower MARKer COUPe[STATe] ONOEF]1]0
CAL Culate ACPower MARKer COURIe[STATE]?

NOTE You can query the analyzer for all supported SCPI commands in the current mode
by sending the “ SYST : HELP : HEAD?” query. For details on how to query the
instrument see * Communicating SCPI Using Telnet” on page 12.

11

Introduction to Programming X-Series Applications
Communicating SCPI Using Telnet

Communicating SCPI Using Telnet

You can communicate SCPI using a Telnet connection from your PC to the analyzer. The following
procedure describes connecting a PC with a Windows operating system to the analyzer. You will need to
know the I P address of the analyzer.

NOTE In addition to the procedure described below, you can open a Telnet connection
with the analyzer using an internet connection to the Embedded Web Server. This
procedure is described in the Getting Started guide.

Toinitiate a Telnet session and communicate SCPI using the LAN connection to the analyzer:

Sep 1. Obtain the P address of theanalyzer: If you don’t know it, agood way to find it
isasfollows:

*In your analyzer, using amouse or the keyboard, on the Taskbar select Start, Run,
and enter “cmd” to open aDOS session.

run 2/ x|

- Type the name of a program, Folder, document, or
5 Internet resource, and Windows will open it For wou.

Qpen: | s j

Ik I Cancel | Browse, ., |

12

Introduction to Programming X-Series Applications
Communicating SCPI Using Telnet

*Enter the DOS command “ipconfig”, and press Enter, and the results should
resemble the window shown below. The IP Addressis given under Ethernet
adapter Local Area Connection.

C:\Documents and Settings>ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection:
Media State : Media disconnecte{
Ethernet adapter {(2DTF7S8T1ADCE-4A38-8D96-2DTFT7S8T1ADA}:
Connection-specific DN$ Suffix
IP Address. .
Subnet Mask .
Default Gateway .

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : acilent.com
IP Address. : 255.255.252.0

Subnet Mask : 255.255.252.0
Default Gateway : 255.255.252.0

. Make surethe analyzer Telnet socket is On

*Press System, 1/0 Config, SCPI LAN, and make sure SCPI Telnet (Port 5023) is
toggled to On.

. Test your connection over the LAN

*On your PC using Microsoft Windows, in the Taskbar select Start, Run, and enter
“cmd” to open a DOS session.

«Enter the DOS command “ping”, asingle space and the IP address of the
analyzer, and press Enter, and the results should resembl e the window shown
below. If the LAN connection isworking, you will get statistics for Packets Sent
and Packets Received.

13

Introduction to Programming X-Series Applications
Communicating SCPI Using Telnet

CUWINDOWS system32homd.exe

C:\Documents and Settings>ping 255.255.252.07
Pinging 255.255.252.07 with 32 bytes of data:

Reply from 255.255.252.07: bytes=32 time=16ms TTL=128
Reply from 255.255.252.07: bytes=32 time<{ims TTL=128

Reply from 255.255.252.07: bytes=32 time=1ms TTL=128
Reply from 255.255.252.07: bytes=32 time=1ms TTL=128

Ping statistics for 255.255.252.07:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = @ms, Maximum = 16ms, Average = Yms

C:\Documents and Settings>

Sep 4. Inthe DOSwindow, type“telnet <your analyzer IP address> 5023".
A Telnet window will open with a Welcome answerback from the analyzer Host
Name, and the command prompt will be shown as“SCPI>". You can enter any
valid SCPI command at the prompt and receive responses to queries sent.

NOTE

You can query the analyzer for all supported SCPI commands in the current mode
by sending the “SYST : HELP : HEAD?” query.

14

Introduction to Programming X-Series Applications
Overview of the GPIB

Overview of the GPIB

Aninstrument that is part of a GPIB network is categorized as alistener, talker, or controller, depending
on its current function in the network.

Listener A listener is adevice capable of receiving data or commands from other instruments.
Any number of instrumentsin the GPIB network can be listeners simultaneously.

Taker A talker isadevice capable of transmitting data or commands to other instruments. To
avoid confusion, a GPIB system allows only one device at atime to be an active
talker.

Controller A controller is an instrument, typically a computer, capable of managing the various

GPIB activities. Only one device at atime can be an active controller.

GPIB Command Satements

Command statements form the nucleus of GPIB programming. They are understood by all instrumentsin
the network. When combined with the programming language codes, they provide all management and

data communication instructions for the system. Refer to your programming language manual and your

computer’s 1/O programming manual for more information.

The seven fundamental command functions are as follows:

An abort function that stops al listener/talker activity on the interface bus, and prepares all
instruments to receive a new command from the controller. Typically, thisis an initialization
command used to place the busin aknown starting condition (sometimes called: abort, abortio, reset,
halt).

A remote function that causes an instrument to change from local control to remote control. In remote
control, the front panel keys are disabled except for the Local key and the line power switch
(sometimes called: remote, resume).

A local lockout function, that can be used with the remote function, to disable the front panel Local
key. With the Local key disabled, only the controller (or a hard reset by the line power switch) can
restore local control (sometimes called: local lockout).

A local function that isthe complement to the remote command, causing an instrument to return to
local control with afully enabled front panel (sometimes called: local, resume).

A clear function that causes all GPIB instruments, or addressed instruments, to assume a cleared
condition. The definition of clear is unique for each instrument (sometimes called: clear, reset,
control, send).

An output function that is used to send function commands and data commands from the controller to
the addressed instrument (sometimes called: output, control, convert, image, iobuffer, transfer).

An enter function that is the complement of the output function and is used to transfer data from the
addressed instrument to the controller (sometimes called: enter, convert, image, iobuffer, on timeout,
set timeout, transfer).

15

Introduction to Programming X-Series Applications
SCPI Measurement Commands

SCPI M easurement Commands

Specific analyzer commands for set up and initiation of measurements are provided in the User’s and
Programmer’s Reference and in the instrument Help system under the :MEA Sure command and under
the specific measurement Meas soft key.

Once measurement parameters have been correctly configured, in general, there are 2 methods of
obtai ning measurement results remotely: by using the Measure family of commands, and by using
common :CAL Culate queries of data parameters.

M easurement Group of Commands

The Measure family of commandsis comprised of the MEA Sure command that executes the entire
measurement, and other separate commands, CONFigure, FETCh, INITiate and READ, which each
accomplish only a part of the overall measurement. FETch and READ are queries. You can optimize
your measurements by creating programs which use MEA Sure and CONFigure a minimum number of
times, and concentrating on repeating READ, INITiate, and FETCh commands. For more information on
optimizing your measurements see “Improving Measurement Speed” on page 81.

The following graphic illustrates the interactions between the Measurement family of commands:
MEASure, CONFigure, FETCh, INITiate and READ:

NOTE Not all measurements support all MEA Sure, CONFigure, FETCh, INITiate and
READ commands. See the User’s and Programmer’s Reference for specific
MEASure family command information.

MEASure (use CONFigure DEFault)

CONFigure NDEF READ

|— CONFigure

INITiate — FETCh

o Current
Start from Measurement Measurement Initialize acquired data
any instrument on, sets the on, waiting in taking of is calculated

current state. data.

/

state. default state. and returned.

/

SENSe & CALCulate INITiate:RESTart
commands change the vsd26

ABORt
returns to

this point)
P settings from the

defaults

16

Introduction to Programming X-Series Applications
SCPI Measurement Commands

M easure Commands:

:MEASure:<measurement>[n]?

Thisisafast single-command way to make a measurement using the factory default
instrument settings. These are the settings and units that conform to the Mode Setup settings
(e.g. radio standard) that you have currently selected.

* Stopsthe current measurement (if any) and sets up the instrument for the specified
measurement using the factory defaults

¢ Initiates the data acquisition for the measurement

« Blocks other SCPI communication, waiting until the measurement is complete before
returning results.

« If the function does averaging, it is turned on and the number of averagesis set to 10, 25,
or 50, depending upon the current measurement.

« After thedataisvalid it returns the scalar results, or the trace data, for the specified
measurement. The type of data returned may be defined by an [n] value that is sent with
the command.

The scalar measurement results will be returned if the optional [n] valueis not included,
orissetto 1. If the[n] value is set to a value other than 1, the selected trace data results
will be returned. See each command for details of what types of scalar results or trace
dataresults are available.

ASCII isthe default format for the data output. The binary data formats should be used
for handling large blocks of data since they are smaller and faster than the ASCII format.
Refer to the FORMat:DATA command for more information.

If you need to change some of the measurement parameters from the factory default settings
you can set up the measurement with the CONFigure command. Use the commandsin the
SENSe:<measurement> and CA L Cul ate:<measurement> subsystems to change the settings.
Then you can use the READ? command to initiate the measurement and query the results.

If you need to repeatedly make a given measurement with settings other than the factory
defaults, you can use the commands in the SEN Se:<measurement> and

CAL Culate:<measurement> subsystems to set up the measurement. Then use the READ?
command to initiate the measurement and query results.

M easurement settings persist if you initiate a different measurement and then return to a
previous one. Use READ:<measurement>? if you want to use those persistent settings. If you
want to go back to the default settings, use M EA Sure:<measurement>"?.

17

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Configure Commands:

:CONFigure:<measurement>

This command stops the current measurement (if any) and sets up the instrument for the
specified measurement using the factory default instrument settings. It does not initiate the
taking of measurement data unless INIT: CONTinuousis ON. If you change any measurement
settings after using the CONFigure command, the READ command can be used to initiate a
measurement without changing the settings back to their defaults.

: CONFigure:NDEFault<measurement> stops the current measurement and changes to the
specified measurement. It does not change the settings to the defaults. It does not initiate the
taking of measurement data unless INIT:CONTinuous is ON.

The CONFigure? query returns the current measurement name.

Fetch Commands:

:FETCh:<measurement>[n]?

This command puts selected data from the most recent measurement into the output buffer.
Use FETCh if you have already made a good measurement and you want to return several
types of data (different [n] values, for example, both scalars and trace data) from asingle
measurement. FETCh saves you the time of re-making the measurement. You can only
FETCh results from the measurement that is currently active, it will not change to a different
measurement. An error is reported if a measurement other than the current one, is specified.

If you need to get new measurement data, use the READ command, which is equivaent to an
INITiate followed by a FETCh.

The scalar measurement results will be returned if the optional [n] value is not included, or is
set to 1. See each command for details of what types of scalar results or trace data results are
available. The binary data formats should be used for handling large blocks of data since they
are smaller and transfer faster then the ASCII format. (FORMat:DATA)

FETCh may be used to return results other than those specified with the original READ or
MEA Sure command that you sent.

18

Introduction to Programming X-Series Applications
SCPI Measurement Commands

INITiate Commands:

:INITiate:<measurement>

This command is not available for measurementsin all the instrument modes:

Initiates atrigger cycle for the specified measurement, but does not output any data. You
must then use the FETCh<meas> command to return data. If a measurement other than
the current one is specified, the instrument will switch to that measurement and then
initiate it.

For example, suppose you have previoudly initiated the ACP measurement, but now you
are running the channel power measurement. If you send INIT:ACP? it will change from
channel power to ACP and will initiate an ACP measurement.

Does not change any of the measurement settings. For example, if you have previously
started the ACP measurement and you send INIT:ACP? it will initiate anew ACP
measurement using the same instrument settings as the last time ACP was run.

If your selected measurement is currently active (in the idle state) it triggers the
measurement, assuming the trigger conditions are met. Then it completes one trigger
cycle. Depending upon the measurement and the number of averages, there may be
multiple data acquisitions, with multiple trigger events, for one full trigger cycle. It also
holds off additional commands on GPIB until the acquisition is complete.

READ Commands:

:READ:<measurement>[n]?

Does not preset the measurement to the factory default settings. For example, if you have
previoudly initiated the ACP measurement and you send READ:ACP?it will initiate a
new measurement using the same instrument settings.

Initiates the measurement and puts valid data into the output buffer. If a measurement
other than the current one is specified, the instrument will switch to that measurement
before it initiates the measurement and returns results.

For example, suppose you have previoudly initiated the ACP measurement, but now you
are running the channel power measurement. Then you send READ:ACP? It will change
from channel power back to ACP and, using the previous ACP settings, will initiate the
measurement and return results.

Blocks other SCPI communication, waiting until the measurement is complete before
returning the results

If the optional [n] value is not included, or is set to 1, the scalar measurement results will
be returned. If the [n] valueis set to a value other than 1, the selected trace data results
will be returned. See each command for details of what types of scalar results or trace
dataresults are available. The binary data formats should be used when handling large
blocks of data since they are smaller and faster then the ASCII format. (FORMat:DATA)

19

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Common M easurement Commands

Current Measurement Query (Remote Command Only)

This command returns the name of the measurement that is currently running.

Remote Command :CONFigure?

Example CONF?

Test current resultsagainst all limits (Remote Command Only)

Queries the status of the current measurement limit testing. It returns a0 if the measured results pass
when compared with the current limits. It returnsa 1 if the measured results fail any limit tests.

Remote Command :CALCulate:CLIMits:FAIL?

Example CALC:CLIM:FAIL? queries the current
measurement to see if it fails the defined limits.

ReturnsaOor 1: O it passes, 1 it fails.

Data Query (Remote Command Only)
Returns the designated measurement data for the currently selected measurement and subopcode.

n = any valid subopcode for the current measurement. See the measurement command results table for
your current measurement, for information about what datais returned for the subopcodes.

This command uses the data setting specified by the FORMat:BORDer and FORMat:DATA commands
and can return real or ASCII data. (See the format command descriptions under Input/Output in the
Analyzer Setup section.)

Remote Command :CALCulate:DATA [n] ?

Remote Command Notes The return trace depends on the measurement.

In CALCulate:<meas>:DATA[N], nisany valid
subopcode for the current measurement. It returns
the same data as the FET Ch:<measurement>?
guery where <measurement> is the current
measurement.

20

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Calculate/Compress Trace Data Query
Returns compressed data for the currently selected measurement and sub-opcode [n].

n = any valid sub-opcode for that measurement. See the M EA Sure:<measurement>? command
description of your specific measurement for information on the data that can be returned.

Thedatais returned in the current Y Axis Unit of the analyzer. The command is used with a sub-opcode
<n> (default=1) to specify the trace. With trace queries, it isbest if the analyzer is not sweeping during
the query. Therefore, it is generally advisable to be in Single Sweep, or Update=0ff.

Thiscommand is used to compress or decimate along trace to extract and return only the desired data. A
typical example would be to acquire N frames of GSM data and return the mean power of the first burst
in each frame. The command can also be used to identify the best curve fit for the data.

Remote Command :CALCulate:DATA<n>:COMPress?

BLOCk | CFIT | MAXimum |MINimum |MEAN | DMEan |

RMS |RMSCubed | SAMPle | SDEViation | PPHase
[,<soffset>[,<length>[,<roffset>[,<rli

mit>]]11]]

Example To query the mean power of a set of GSM bursts:
Supply asignal that isaset of GSM bursts.

Select the |Q Waveform measurement (in 1Q
Analyzer Mode).

Set the sweep time to acquire at least one burst.

Set the triggers such that acquisition happens at a
known position relative to a burst.

Then query the mean burst levels using,
CALC:DATA2:COMP? MEAN,24e-6,526e—6
(These parameter values correspond to GSM signals,
where 526e-6 is the length of the burst in the slot and
you just want 1 burst.)

Remote Command Notes The command supports 5 parameters. Note that the
last 4 (<soffset>,<length>,<roffset>,<rlimit>) are
optional. But these optional parameters must be
entered in the specified order. For example, if you
want to specify <length>, then you must also specify
<soffset>. See details below for adefinition of each
of these parameters.

This command uses the data in the format specified
by FORMat:DATA, returning either binary or ASCII
data.

21

Introduction to Programming X-Series Applications
SCPI Measurement Commands

» BLOCK or block data - returns all the data points from the region of the trace data that you specify.
For example, it could be used to return the data points of an input signal over several timeslots,
excluding the portions of the trace data that you do not want. (Thisis x,y pairsfor trace dataand |,Q
pairsfor complex data.)

» CFIT or curvefit - applies curve fitting routines to the data. <soffset> and <length> are required to
define the data that you want. <roffset> is an optional parameter for the desired order of the curve
equation. The query will return the following values: the x-offset (in seconds) and the curve
coefficients ((order + 1) values).

MIN, MAX, MEAN, DME, RMS, RMSC, SAMP, SDEV and PPH return one data value for each
specified region (or <length>) of trace data, for as many regions as possible until you run out of trace
data (using <roffset> to specify regions). Or they return the number of regions you specify (using
<rlimit>) ignoring any data beyond that.

e MINimum - returns the minimum data point (x,y pair) for the specified region(s) of trace data. For
1/Q trace data, the minimum magnitude of the I/Q pairsis returned.

* MAXimum - returns the maximum data point (x,y pair) for the specified region(s) of trace data. For
1/Q trace data, the maximum magnitude of the I/Q pairsis returned.

MEAN - returns asingle value that is the arithmetic mean of the data point values (in dB/ dBm) for the
specified region(s) of trace data. For 1/Q trace data, the mean of the magnitudes of the I/Q pairsis
returned. See the following equations.

NOTE If the original trace dataisin dB, this function returns the arithmetic mean of those
log values, not log of the mean power which is a more useful value. The mean of
the log is the better measurement technique when measuring CW signalsin the
presence of noise. The mean of the power, expressed in dB, isuseful in power
measurements such as Channel Power. To achieve the mean of the power, use the
RMS option.

22

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Equation 1
Mean Value of Data Pointsfor Specified Region(s)

1 ,
MEAN == > Xi
Xi € region(s) vsd27-1
where Xi is a data point value, and n is the number of data pointsin the specified region(s).

Equation 2
Mean Value of 1/Q Data Pairsfor Specified Region(s)

1 .
MEAN =3 > Xi|
Xi € region(s) vsd27-2

where [Xi| is the magnitude of an 1/Q pair, and n is the number of 1/Q pairsin the specified region(s).

« DMEan - returns asingle value that is the mean power (in dB/ dBm) of the data point values for the
specified region(s) of trace data. See the following equation:

Equation 3
DM Ean Value of Data Pointsfor Specified Region(s)

1 Xi
DME =10 x logyp| = 2,10
Xi e region(s) vsd27-3

« RMS- returns asingle value that is the average power on a root-mean-sgquared voltage scale
(arithmetic rms) of the data point values for the specified region(s) of trace data. See the following
equation.

For I/Q trace data, the rms of the magnitudes of the I/Q pairsis returned. See the following equation.

NOTE Thisfunctionisvery useful for 1/Q trace data. However, if the origina trace datais
in dB, this function returns the rms of the log values which is not usually needed.

23

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Equation 4
RM S Value of Data Pointsfor Specified Region(s)

RMS = %ZXi2

X| c region(s) vsd27-4

where Xi isadata point value, and n is the number of data pointsin the specified region(s).

Equation 5
RM S Value of |/Q Data Pairsfor Specified Region(s)

1 v
RMS= | = Z Xi Xi
Xi € region(s) vsd27-5
where Xi isthe complex value representation of an 1/Q pair, Xi* its conjugate complex humber, and n

is the number of 1/Q pairs in the specified region(s).

Once you have the rms value for aregion of trace data (linear or 1/Q), you may want to calculate the
mean power. You must convert this rms value (peak volts) to power in dBm:

10 x log[10 x (rms value)2]

 SAMPle- returnsthefirst datavalue (x,y pair) for the specified region(s) of trace data. For I/Q trace
data, thefirst I/Q pair is returned.

» SDEViation - returns asingle value that is the arithmetic standard deviation for the data point values
for the specified region(s) of trace data. See the following equation.

For 1/Q trace data, the standard deviation of the magnitudes of the I/Q pairsis returned. See the
following equation.

Equation 6
Sandard Deviation of Data Point Values for Specified Region(s)

SDEV = % 3 (Xi - Xy

Xi € region(s) vsd27-7

where Xi isadata point value, X is the arithmetic mean of the data point values for the specified
region(s), and n isthe number of data points in the specified region(s).

_ /1 2
SDEV = [= D (i -
Xi € region(s) vsd27-8

where |Xi|isthe magnitude of an 1/Q pair, X isthe mean of the magnitudes for the specified region(s),
and n isthe number of data pointsin the specified region(s).

24

Introduction to Programming X-Series Applications
SCPI Measurement Commands

e PPHase - returnsthe x,y pairs of both rms power (dBm) and arithmetic mean phase (radian) for every
specified region and frequency offset (Hz). The number of pairsis defined by the specified number of
regions. This parameter can be used for 1/Q vector (n=0) in Waveform (time domain) measurement
and all parameters are specified by data point in PPHase.

The rms power of the specified region may be expressed as:
Power =10 x log [10 x (RMS1/Q value)] + 10.
The RMS1/Q vaue (peak volts) is:

%ZXi Xi*

Xi € region vsd279

where Xi isthe complex value representation of an I/Q pair, Xi* its conjugate complex humber, and n
is the number of 1/Q pairsin the specified region.

The arithmetic mean phase of the specified region may be expressed as.

%ZYi

Yie region vsd27-10

where Yi is the unwrapped phase of 1/Q pair with applying frequency correction and n is the number
of 1/Q pairsin the specified region.

The frequency correction is made by the frequency offset calculated by the arithmetic mean of every
specified region’s frequency offset. Each frequency offset is calculated by the least square method
against the unwrapped phase of 1/Q pair.

25

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Sample Trace Data - Constant Envelope
(See below for explanation of variables.)

length
L —P
A ‘\
soffset < >l > > s
roffset - = —
to If rlimit is set to 3, this

last chunk of data will
be ignored.

Sample Trace Data - Not Constant Envelope
(See below for explanation of variables.)

If rlimit is set to 3, this

length chunk of data and any
additional data will be
ignored.
- — — —»
soffset > < > < >
roffset
tO vsd30

<soffset> - start offset is an optional real number. (It isin seconds for time-domain traces, and isa
dimensionlessindex 0 to Npoints— 1, for frequency-domain traces). It specifies the amount of data at
the beginning of the trace that will be ignored before the decimation process starts. It is the time or
frequency change from the start of the trace to the point where you want to start using the data. The
default valueis zero.

<length> - isan optional real number. (It isin seconds for time-domain traces, and is a dimensionless
index 0 to Npoints— 1, for frequency-domain traces). It defines how much data will be compressed
into one value. This parameter has a default value equal to the current trace length.

26

Introduction to Programming X-Series Applications
SCPI Measurement Commands

<roffset> - repeat offset is an optional real number. (It isin seconds for time-domain traces, and is a
dimensionlessindex O to Npoints — 1, for frequency-domain traces). It defines the beginning of the
next field of trace elementsto be compressed. Thisisrelative to the beginning of the previous field.
This parameter has a default value equal to the <length> variable. Note that this parameter is used for
acompletely different purpose when curve fitting (see CFIT above).

<rlimit> - repesat limit is an optional integer. It specifies the number of dataitems that you want

returned. It will ignore any additional items beyond that number. You can use the Start offset and the

Repeat limit to pick out exactly what part of the data you want to use. The default valueisal the data.
Calculate peaks of trace data (Remote Command Only)

Returnsalist of all the peaksfor the currently selected measurement and sub-opcode [n]. The peaks must
meet the requirements of the peak threshold and excursion values.

n = any valid sub-opcode for the current measurement. See the M EA Sure:<measurement> command
description of your specific measurement for information on the data that can be returned.

The command can only be used with specific sub-opcodes with measurement results that are trace data.
Both real and complex traces can be searched, but complex traces are converted to magnitudein dBm. In
many measurements the sub-opcode n=0, is the raw trace data which cannot be searched for peaks. And
Sub-opcode n=1, is often cal culated results values which also cannot be searched for peaks.

This command uses the data setting specified by the FORMat:BORDer and FORMat:DATA commands
and can return real or ASCII data. If the format is set to INT,32, it returns REAL,32 data.

The command has four types of parameters:

e Threshold (in dBm)

* Excursion (in dB)

» Sorting order (amplitude, frequency, time)

e Optional in some measurements: Display line use (al, > display line, < display line)

27

Introduction to Programming X-Series Applications

SCPI Measurement Commands

Remote Command

:CALCulate:DATA[1] |[2]3|4|5|6:PEAKS?
<reals>,<reals[,AMPLitude | FREQuency | TIME [, ALL|GTDLine|L
TDLine]]

Remote Command

For Swept SA measurement:

:CALCulate:DATA[1] |2|3|4|5|6:PEAKS?
<thresholds>, <excursions> [, AMPLitude | FREQuency | TIME [, ALL
| GTDLine | LTDLine]]

For most other measurements:

:CALCulate:DATA([1] |2|3]4|5|6:PEAKS?
<thresholds>, <excursions [, AMPLitude | FREQuency | TIME]

Example

Example for Swept SA measurement in Spectrum Analyzer Mode:

CALC:DATA4:PEAK?-40,10,FREQ,GTDL Thiswill identify the peaks of
trace 4 that are above—40 dBm, with excursions of at least 10 dB. The peaks
arereturned in order of increasing frequency, starting with the lowest
frequency. Only the peaks that are above the display line are returned.

Query Results 1:

With FORMat:DATA REAL,32 selected, it returns alist of floating-point
numbers. The first valuein thelist is the number of peak pointsthat arein
the following list. A peak point consists of two values: a pesk amplitude
followed by its corresponding frequency (or time).

If no peaks are found the peak list will consist of only the number of peaks,
(0).

28

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Remote Command Notes

<n> - isthe trace that will be used

<threshold> - isthe level below which trace data peaks are ignored. Note
that the threshold valueisrequired and is always used as a peak criterion. To
effectively disable the threshold criterion for this command, provide a
substantially low threshold value such as—200 dBm. Also note that the
threshold value used in this command isindependent of and has no effect on
the threshold value stored under the Peak Criteria menu.

<excursion> - is the minimum amplitude variation (rise and fall) required
for asignal to beidentified as peak. Note that the excursion valueisrequired
and is always used as a peak criterion. To effectively disable the excursion
criterion for this command, provide the minimum value of 0.0 dB. Also note
that the excursion value used in this command is independent of and has no
effect on the excursion value stored under the Peak Criteria menu.

Sorting order:

AMPLitude - lists the peaksin order of descending amplitude, with the
highest peak first (default if optional parameter not sent)

FREQuency - liststhe peaksin order of occurrence, left to right across the
X-axis.

TIME - lists the peaksin order of occurrence, |eft to right across the x-axis.
Peaksvs. Display Line:
ALL - listsal of the peaks found (default if optional parameter not sent).

GTDLine (greater than display line) - lists all of the peaks found above the
display line.

LTDLine (lessthan display line) - lists al of the peaks found below the
display line.

Dependencies/Couplings

Values must be provided for threshold and excursion. The sorting and
display line parameters are optional (defaults are AMPLitude and ALL).

Note that thereis always a Y-axis value for the display line, regardless of
whether the display line state is on or off. It isthe current Y-axisvalue of the
display line which is used by this command to determine whether a peak
should be reported.

29

Introduction to Programming X-Series Applications
SCPI Measurement Commands

Format Data: Numeric Data (Remote Command Only)

This command specifies the format of the trace datainput and output. It specifies the formats used for
trace data during data transfer across any remote port. It affects only the data format for setting and
querying trace data for the : TRACe[:DATA], TRACe[:DATA]?, :CALCulate:DATA[Nn]? and
FETCh:SANalyzer[n]? commands and queries.

Remote Command | :FORMat [:TRACe] [:DATA] ASCii|INTeger,32|REAL,32 |REAL,64
:FORMat [: TRACe] [:DATA] ?

Dependencies/ Sending a data format spec with an invalid number (for example, INT,48) generates no

Couplings error. The analyzer simply uses the default (8 for ASCii, 32 for INTeger, 32 for REAL).
Sending data to the analyzer which does not conform to the current FORMat specified,
resultsin an error.

Remote Command The query responseis:

Notes ASCii: ASC,8
REAL,32: REAL,32
REAL,64: REAL,64
INTeger,32: INT,32
When the numeric data format is REAL or ASCii, datais output in the current Y Axis
unit. When the data format is INTeger, datais output in units of m dBm (0.001 N dBm).
Note that the INT,32 format is only applicable to the command, TRACe:DATA. This
preserves backwards compatibility for the Swept SA measurement. For all other
commands/queries which honor FORMat:DATA, if INT,32 is sent the analyzer will
behave as though it were set to REAL,32.
The INT,32 format returns binary 32-bit integer valuesin internal units (m dBm), in a
definite length block.

Preset ASCii

30

Introduction to Programming X-Series Applications
SCPI Measurement Commands

The specs for each output type follow:

ASCii - Amplitudevaluesarein ASCII, inthe current Y Axis Unit, one ASCII character per digit, values
separated by commas, each value in the form:

SX.YYYYYEsZZ

Where:

S=sign(+or-)

X =onedigit to |eft of decimal point

Y =5digitsto right of decimal point

E = E, exponent header

S=sign of exponent (+ or -)

ZZ =two digit exponent

REAL,32 - Binary 32-bit rea valuesin the current Y Axis Unit, in a definite length block.
REAL,64 - Binary 64-bit real valuesin the current Y Axis Unit, in a definite length block.

Format Data: Byte Order (Remote Command Only)

This command selects the binary data byte order for data transfer and other queries. It controls whether
binary dataistransferred in normal or swapped mode. This command affects only the byte order for
setting and querying trace data for the : TRACe[:DATA], TRACe[:DATA]?, :CALCulate:DATA[Nn]? and
FETCh:SANalyzer[n]? commands and queries.

By definition any command that says it uses FORMat:DATA uses any format supported by
FORMat:DATA.

The NORMal order is a byte sequence that begins with the most significant byte (MSB) first, and ends
with the least significant byte (LSB) last in the sequence: 1|2|3|4. SWAPped order is when the byte
sequence begins with the LSB first, and ends with the MSB last in the sequence: 4|3|2|1.

Remote Command | :FORMat :BORDer NORMal | SWAPped

:FORMat : BORDer?

Preset NORMa

31

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

STATus Subsystem (No equivalent front-panel keys)

The following graphics show the current X-Series Status Register Subsystem implementation.

X-Series Status Byte Register System

STATus:QUEStionable:POWer .
Resaread {7 Status Byte Register
Resorved o 1]
Resaried o 2 Unised) 0
o] urusea [T
B0 MHz Input Paer oo High for Cal o 5 ﬁ Ey N EmonEvant Quaue Summary | 2
Resarvad = 6 MEAE) I
Re?am:: ; = é :‘g 5 % -+ Cluasticnanke Staus Summea 3
Preselecior Ovedoad - 8 H g ElgE Mevrags dvaltabie {MAV) 4
Unusad 10 |z]E St. Event Status Sum | &
nused 411 i [ks] f—
nusan 12 STATus:QUEStionabla Feq. Serv. Sum I"';I G'SIL G
e 13 — . =5
Unuzan - 11 Reservad = g Operation Swahs Sum [7 =
Abaiays Zer (1) 15 | fesanad—] 1 —
Reserved— 2
STATus:QUEStionable: TEMParature ;
[oy POWer Summany— 3
Unusad 1 (TEMPerature Sumj— 4
Umnhﬂ] : FREGuency Sum— 5 H] o
Unsiged - 4 o Reserved= 8 1 . H z
Uriiged o 5 - 22 E
Unused o & “-E" Reserved— 7 EEE%'&"‘
Uriiged < 7 2|2 i + rCaLibration Summary— 8 § B A
Urused 1 & 2 n |22 — INTegrily Sum—{ 3 |- ZE) ez
Hn":g 12 = : o Resarvad={ 10 E = 3
riu: =11@ 1= =3
bhus:él =1 [N E H Reserved—] 11
[LIE] 12
Onusad - 175 Reserved— 12
Linused 14 Resarved=— 13
Abseays Zero (00 =15 Reserend—{ 14
STATus:QUEStionable:FREQuency Always Zero (11 15
Fesarvad .
Freq Ref Urlocked | Standard Event Status Register
2™ LD Unlockad Opsr. Complete
Raseried — Req, Bug Control
Reseryed = Query Eror k3 1
Resered g Dev, Dep, Emor A B 5ls o |
IF Synth Unlocked - & M AEN Exscusian Erar FlE|E 2L @.
el Qo Uniocked cE RIS @— Command Ermrar AR AR EE
Evan Sec Clock Synth Unlocked — 4 HHAE
Fesarad E Bl User Requast HE =
- n TE‘EE Power On ahﬁgé
Ext Ref missing or out of range — ':.'.,‘:.}, e I £ (v}
Unused = el
ULhn"=v=\:l- : STATus:OPERation
e
o Z'-grlﬁ]ﬂ - CaLibrsngd g
¥ 4 Resered - 4 P
STATus:QUEStionable: CALibration Reasrved{ 2 P P
Resardad {5 | SWEaping{ 3 P kl.
Reserdsad «f 1 Regered | 4 P \)
Reserved - 2
RE Algn Faluna - 3 Walling for TRIGger- 5 El T :)k
IF Align Failure = 4 5 o Reservod = § %};tms
LO Align Falure - 5 i i o] Y
ADC Algn Faiure o & gEE%E‘ Resermd o 7 EEJAE@—
Resarvad =| 7 E:EE:}— PAUSed - n -EE‘"lﬁn:
@—Emmm Algn Neadad Sum o & slalzl2)E Fesorved 9 =lE|2[: 2)
ExTerded Align Failure Sum = & =55 E BE Couplest Haaae
o wﬂe&egﬁd—m E.:.;!g, 1m0 (] il TI6|5(4]3|2(1(0
I: J———————~lign Skipp m = 1 i 4
Aligrn RF Mow Mesdad - 12 L :“9"‘9: 1 Sordl :
Reserved o 13 egerdad o 17 arvice LHES
Align &l Mow Mezded of 14 Resered - 13 Enable Register
Alaeays Zero () 15 | Reserved=] 14
Abaays Zere {0 48

32

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Additienal Registers:

STATus:QUEStionable: INT egrity: SIGHal STATus:QUESionsble: INTegrity
[for Base Analyzer] for Base Andyzer]
urwzd 7} =N Sammary |
Reserued | o Ho Resulb fualae -
Bursl Nol Found {2 Mezuemenl Tmesul - 2
Timirg BTy - a2 - — UNCabraked Smmary— g
Carerz) nooreclor misAng 4 o o IFADC Quer Rarge { o H
Freq @uloT Range - 5 LA Aesered - & =1
Dwrﬁgrx-u oEE Aezerued — B A HE
emod Bror o e reuticen | DAl — T 3 [=[=
sigral ke Hosy {2 g Bl Aquisiken Fallae - a - o Bl S STATUS 3 U EStonstie
Urexsed - 3 |- EFE Memony Eror —{ 3 _E
urexed — 1o g [5 W Error - g =
Urezsed —{ 11 e Trigger Error | LRI EA
Uriezed 12 ruald babl -z
Uriazed — 13 Lo mayowerload IF <13
Ureeed {1 Zeling Modided o 1w
A= Zero (M - 1 | Alwewys Tero (0] iy

STATus QUEStionable: INTegrity: UN Galibrated
[For Base Analyzer]

Mezs Ureal
Res=rued —

Ho Long Code Phiaee —
AC coupled @ Amy urepecd <10MHT —
UserCal

Calbraken —

Urnered —

Ureeed —

Uraeed -

Uraered —

Uresed < 1ig

Ureered < nn

Uneed iz

Uriesed - 1g

Ureeed —

Aoy Zero M — 13

[&ty Urvcsilbraled Sum

uu-nulll-uu—nl

I:ondl bon Regl=ker
k-)Trares Filler
K+ Trare Fller
Euenl Regl=sler

STATus: QUEStionable:C ALibrdion: SKIPped

Hign R.F Skipped
Urnesed
Ureezed
Uriezed
Urieed
Ureed
Urired
Ureed
Ureed —
Urarred —
Urired —
Ureeed —
Ureeed —
Uraered —
Urirsed —

Always Teeo [—{15 |

-

Tobll 11 STATUs G U ESkerohie 3 AUbralon

(= ond| Bon REglz er
- 1Trare Fller
[+ Ttare Fllier
ETETT REQTETET

STATus: QU EStionable: C ALibration: EXTended: FAILure

Rezerned
Rezerued
charackedie Preseleckr Falue
Ursed
Urated
Uraeed
Uretsed
Urated
Uraeed
Uraeed

Uretsed

Urieed
Urated
Uriesed {11
Uresed —u

Az Zero @) i |

s : To bl 1S STATE 4 U E=lonable 2 Albmlon

R

ST ATus: QUEStionable: T ALibration: EXTended: NEED=d

Urieed
Rezerned
Rezered
Aeseued

mpul alernakzn rel abraked

Uretsed

Uraeed

Urassed

Urieed

Urieed

Uretsed

Ureed

Uratred

Ureed 44

Uritsed -

Alwerys Tero (0 s |

[+ Trare Fller
Enl REQI=Er
En

Tobl B STATYS 3 UESonable 1% AL mlon

wmaww o]

EY

Cordlllon Reglsker
13

Rev 7 December 11, 2007

H

v

33

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Detailed Description

The STATus subsystem remote commands set and query the status hardware registers. This system of
registers monitors various events and conditions in the instrument. Software written to control the
instrument may need to monitor some of these events and conditions.

NOTE All status register commands are sequential. Most commands can be started
immediately and will overlap with any existing commands that are already
running. Thisis not true of status commands. All the commands in the spectrum
analyzer are assumed to be overlapped unless a command description specifically
saysthat it is sequential.

What Are Status Registers

The status system contains multiple registers that are arranged in a hierarchical order. The lower-level
status registers propagate their data to the higher-level registers in the data structures by means of
summary bits. The status byte register is at the top of the hierarchy and contains general status
information for the instrument’s events and conditions. All other individual registers are used to
determine the specific events or conditions. For a diagram of the registers and their interconnections, see
above.

The operation and gquestionabl e status registers are sets of registers that monitor the overall instrument
condition. They are accessed with the STATus:OPERation and STATus: QUEStionable commandsin the
STATus command subsystem. Each register set is made up of five registers:

» Condition Register — It reports the real-time state of the signals monitored by thisregister set. There
isno latching or buffering for a condition register.

» Positive Transition Register — Thisfilter register controls which signals will set a bit in the event
register when the signal makes a low to high transition (when the condition bit changes from 0 to 1).

* Negative Transition Register — Thisfilter register controls which signals will set a bit in the event
register when the signal makes a high to low transition (when the condition bit changes from 1 to 0).

* Event Register — It latches any signal state changes, in the way specified by thefilter registers. Bitsin
the event register are never cleared by signal state changes. Event registers are cleared when read.
They are also cleared by * CLS and by presetting the instrument.

» Event Enable Register — It controls which of the bits, being set in the event register, will be
summarized as a single output for the register set. Summary bits are then used by the next higher
register.

The STATus.QUEStionabl e registers report abnormal operating conditions. The status register hierarchy
is.

1. The summary outputs from the six STATus:QUEStionable:<keyword> detail registers are inputs to
the STATus:QUEStionable register.

2. The summary output from the STATus: QUEStionable register is an input to the Status Byte Register.
See the overall system in Figure at the beginning of this section.

The STATus:OPERation register set has no summarized inputs. The inputs to the
STATus.OPERation:CONDition register indicate the real time state of the instrument. The

34

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

STATus:OPERation:EVENt register summary output is an input to the Status Byte Register.

What Are Status Register SCPI Commands

Most monitoring of the instrument conditions is done at the highest level using the [EEE common
commands indicated below. Complete command descriptions are available in the IEEE commands
section at the beginning of the language reference. Individual status registers can be set and queried
using the commands in the STATus subsystem of the language reference.

e *CLS(clear status) clears the status byte by emptying the error queue and clearing al the event
registers.

o *ESE, *ESE? (event status enable) sets and queries the bits in the enable register part of the standard
event status register.

« *ESR? (event status register) queries and clears the event register part of the standard event status
register.

* *OPC, *OPC? (operation complete) sets the standard event status register to monitor the completion
of all commands. The query stops any new commands from being processed until the current
processing is complete, then returnsa‘1’.

« *PSC, *PSC? (power-on state clear) setsthe power-on state so that it clears the service request enable
register and the event status enable register at power on.

* *SRE, *SRE? (service regquest enable) sets and queries the value of the service request enable
register.

« *STB? (status byte) queries the value of the status byte register without erasing its contents.

How to Use the Status Registers

A program often needs to be able to detect and manage error conditions or changes in instrument status.
There are two methods you can use to programmatically access the information in status registers:

* The polling method
* The service request (SRQ) method

In the polling method, the instrument has a passive role. It only tells the controller that conditions have
changed when the controller asks the right question. In the SRQ method, the instrument takes a more
activerole. It tells the controller when there has been a condition change without the controller asking.
Either method allows you to monitor one or more conditions.

The polling method works well if you do not need to know about changes the moment they occur. The
SRQ method should be used if you must know immediately when a condition changes. To detect a
change using the polling method, the program must repeatedly read the registers.

Use the SRQ method when:

» you need time-critical notification of changes

* you are monitoring more than one device which supports SRQs
» you need to have the controller do something else while waiting

« you can't afford the performance penalty inherent to polling

35

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Use polling when:
e your programming language/devel opment environment does not support SRQ interrupts

* you want to write asimple, single-purpose program and don’t want the added complexity of setting
up an SRQ handler

» To monitor a condition:

1. Determine which register contains the bit that reports the condition.
2. Send the unique SCPI query that reads that register.

3. Examinethe bit to see if the condition has changed.

You can monitor conditionsin different ways.

» Check the current instrument hardware and firmware status.

Do this by guerying the condition registers which continuously monitor status. These registers represent
the current state of the instrument. Bits in a condition register are updated in real time. When the
condition monitored by a particular bit becomes true, the bit is set to 1. When the condition becomes
fase, thebitisreset to 0.

» Monitor a particular condition (hit).

You can enable a particular bit(s), using the event enable register. The instrument will then monitor that
particular condition(s). If the bit becomestrue (0 to 1 transition) in the event register, it will stay set until
the event register is cleared. Querying the event register allows you to detect that this condition occurred
even if the condition no longer exists. The event register can only be cleared by querying it or sending
the * CLS command.

» Monitor a particular type of change in a condition (bit).

— Thetransition registers are preset to register if the condition goesfrom 0 to 1 (falseto true, or a
positive transition).

— This can be changed so the selected condition is detected if the bit goesfrom 1 to O (true to false,
or anegative transition).

— It can aso be set for both types of transitions occurring.
— Or it can be set for neither transition. If both transition registers are set to O for a particular bit
position, that bit will not be set in the event register for either type of change.
Using a Status Register

Each bit in aregister is represented by a numerical value based on its location. See figure below. This
number is sent with the command to enable a particular bit. If you want to enable more than one bit, you
would send the sum of al the bits that you want to monitor.

Figure: Status Register Bit Values

36

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Bit Number [1514(13|12|11(10({9 (8|7 |6 |5]|4 |3 (2|1 |0

STATus:OPERation:ENABIle <num>
STATus:OPERation:ENABIe?

Standard Operation Event Enable Register ok780a

Bit 15 isnot used to report status.

Example 1

1

To enable bit 0 and bit 6 of standard event status register, send the command * ESE 65 because 1 + 64
=65.

The results of aquery are evaluated in asimilar way. If the * STB? command returns a decimal value
of 140, (140 = 128 + 8 + 4), then bit 7 istrue, bit 3 istrue and bit 2 istrue.

Example 2:

1

Suppose you want to know if an Auto-trigger Timeout occurs, but you only care about that specific
condition. For example, you want to know what was happening with bit 10 in the Status Questionable
Integrity register, and do not care about any other hits.

It'susually agood ideato start by clearing all the status registers with *CLS.

Sending the STAT:QUES:INT:ENAB 1024 command enables you to monitor only bit 10 events,
instead of the default monitoring all the bits in the register. The register default is for positive
transition events (0 to 1 transition) that show when an auto-trigger timeout occurs. If you want to
know when the Auto-trigger timeout condition is cleared, set the STAT:QUES:INT:PTR 0 and the
STAT:QUES:INT:NTR 32767.

So now the only output from the Status Questionable Integrity register will come from a bit 10
positive transition. That output goesto the Integrity Sum bit 9 of the Status Questionabl e register.

You can do asimilar thing with this register to look at only bit 9 using, STAT:QUES:ENAB 512.

The Status Questionable register output goes to the “ Status Questionable Summary” bit 3 of the
Status Byte Register. The output from this register can be enabled using the * SRE 8 command.

Finally, you can use the seria polling functionality available for the particular bus/software that you
are using to monitor the Status Byte Register. (You can also use * STB? to poll the Status Byte
Register.)

Using the Service Request (SRQ) Method

Your language, bus, and programming environment must be able to support SRQ interrupts. (For
example, BASIC used with VX1-11.3 (GPIB over LAN). When you monitor a condition with the SRQ

37

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

method, you must:
1. Determine which bit monitors the condition.
2. Determine how that bit reports to the request service (RQS) bit of the status byte.

3. Send SCPI commands to enable the bit that monitors the condition and to enable the summary bits
that report the condition to the RQS bit.

4. Enable the controller to respond to service requests.

When the condition changes, the instrument setsits RQS bit. The controller isinformed of the change as
soon asit occurs. Asaresult, the time the controller would otherwise have used to monitor the condition
can be used to perform other tasks. Your program determines how the controller responds to the SRQ.

Generating a Service Request

To use the SRQ method, you must understand how service requests are generated. Bit 6 of the status byte
register is the request service (RQS) bit. The * SRE command is used to configure the RQS bit to report
changesin instrument status. When such a change occurs, the RQS bit is set. It is cleared when the status
byte register is queried using * SRE? (with a serial poll.) It can be queried without erasing the contents
with *STB?.

When aregister set causes a summary bit in the status byte to change from 0 to 1, the instrument can
initiate the service request (SRQ) process. However, the processis only initiated if both of the following
conditions are true:

» The corresponding bit of the service request enable register isalso set to 1.

» Theinstrument does not have a service request pending. (A service request is considered to be
pending between the time the instrument’s SRQ process isinitiated and the time the controller reads
the status byte register.)

The SRQ process sets the SRQ true. It also sets the status byte's request service (RQS) bit to 1. Both
actions are necessary to inform the controller that the instrument requires service. Setting the SRQ line
only informs the controller that some device on the bus requires service. Setting the RQS hit allows the
controller to determine which instrument requires service.

If your program enabl es the controller to detect and respond to service requests, it should instruct the
controller to perform a seria poll when the SRQ is set true. Each device on the bus returns the contents
of its status byte register in response to this poll. The device who's RQS bit is set to 1 is the device that
reguested service.

When you read the instrument’s status byte register with a seria poll, the RQS bit isreset to 0. Other bits
in the register are not affected.

If the status register is configured to SRQ on end-of-measurement and the measurement isin continuous
mode, then restarting a measurement (INIT command) can cause the measuring bit to pulse low. This
causes an SRQ when you have not actually reached the “ end-of-measurement” condition. To avoid this:

1. Set INITiate: CONTinuous off.
2. Set/enable the status registers.

3. Restart the measurement (send INIT).

38

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Satus Register System

The hardware status registers are combined to form the instrument status system. Specific status bits are
assigned to monitor various aspects of the instrument operation and status. See the diagram of the status
system above for information about the bit assignments and status register interconnections.

The Status Byte Register

Status Byte Register

0 | Unused

Unused

Error/Event Queue Summary Bit

Data Questionable Summary Bit

Message Available (MAV)

Standard Event Summary Bit

Request Service (RQS)/MSS

~Njojlo|~lw|p|—

Operation Status Summary Bit

0(1|2|3|4|5]|6| 7| Service Request Enable Register

ck776a

The RQS bit isread and reset by a serial poll. The same bit position (M SS) is read, non-destructively by
the * STB? command. If you serial poll bit 6 it isread as RQS, but if you send *STB it reads bit 6 as
MSS. For more information refer to IEEE 488.2 standards, section 11.

39

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

§ /)§/8/5/8/8/¢
PO ;’;{‘)D s’u é’v gg’a $ /o)
F/L/)F /) /S /)S/)S) S
Bit Number | 7 6 5 4 3 2 1 0
*STB?
Status Byte Register ok725
Bit Description
0,1 These bits are always set to 0.
2 A linthisbit position indicates that the SCPI error queueis not empty which meansthat it contains at

least one error message.

3 A 1inthishit position indicates that the data questionable summary bit has been set. The data
questionable event register can then be read to determine the specific condition that caused this bit to
be set.

4 A linthisbit position indicates that the instrument has data ready in the output queue. There are no
lower status groups that provide input to this bit.

5 A linthisbit position indicates that the standard event summary bit has been set. The standard event
status register can then be read to determine the specific event that caused this bit to be set.

6 A 1inthisbit position indicates that the instrument has at least one reason to report a status change.
Thisbit isalso called the master summary status bit (MSS).

7 A linthisbit position indicates that the standard operation summary bit has been set. The standard

operation event register can then be read to determine the specific condition that caused this bit to be
Set.

To query the status byte register, send the command * STB? The response will be the decimal sum of the
bitswhich are set to 1. For example, if bit number 7 and bit number 3 are set to 1, the decimal sum of the
2 bitsis 128 plus 8. So the decimal value 136 isreturned. The * STB command does not clear the status

register.

In addition to the status byte register, the status byte group also contains the service request enable
register. This register lets you choose which bits in the status byte register will trigger a service request.

Send the * SRE <integer> command where <integer> is the sum of the decimal values of the bits you
want to enable plus the decimal value of bit 6. For example, assume that you want to enable bit 7 so that
whenever the standard operation status register summary bit is set to 1 it will trigger a service request.
Send the command * SRE 192 (because 192 = 128 + 64). You must always add 64 (the numeric value of

40

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

RQS bit 6) to your numeric sum when you enable any bits for a service request. The command * SRE?
returns the decimal value of the sum of the bits previously enabled with the * SRE <integer> command.

The service request enable register presets to zeros (0).

Bit Number | 7 6 5 4 3 2 1 0

*SRE <num>
*SRE?

Service Request Enable Register ok726a

Sandard Event Status Register

Operation Complete
Request Bus Control

Query Error

Device Dependent Error

Execution Error

Command Error
User Request

Power On
l Y Y Y <VyY Yy
g2

Standard
Event Status LD e
Register

o =

Standard Event
Enable Register i snnills sl

vy To Status Byte Register Bit #5 ck777a

The standard event status register contains the following bits:

41

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

N
IS & S
-9 Q N
S Y & @
& EN & - X
s X/e/8/ 8 L/ &
(/]) Q7 & < IS (o)
Q @ Y 9 IS) @)
IS N o N & Q O N
) & g/ &8 Q G & 9
¢ /) X/ &)/ 8 /) s/ 8/ &
§/$/8/) &/ /S8/8/ S
N O & /& g/ @ o
Bit Number | 7 6 5 4 3 2 1 0
*ESR?

Standard Event Status Register o727
Bit Description
0 A linthishbit position indicates that al pending operations were completed following execution of the

*OPC command.

1 Thishit isfor GPIB handshaking to request control. Currently it is set to O because there are no

implementations where the spectrum analyzer controls another instrument.

2 A linthishit position indicates that aquery error has occurred. Query errors have SCPI error numbers
from -499 to -400.

3 A linthisbit position indicates that a device dependent error has occurred. Device dependent errors
have SCPI error numbers from -399 to -300 and 1 to 32767.

4 A linthishit position indicates that an execution error has occurred. Execution errors have SCPI error
numbers from -299 to -200.

5 A 1inthishit position indicates that a command error has occurred. Command errors have SCPI error
numbers from -199 to -100.

6 A 1linthisbit position indicates that the LOCAL key has been pressed. Thisistrue even if the
instrument isin local lockout mode.

7 A linthisbit position indicates that the instrument has been turned off and then on.

The standard event status register is used to determine the specific event that set bit 5 in the status byte
register. To query the standard event status register, send the command * ESR?. The response will be the
decimal sum of the bits which are enabled (set to 1). For example, if bit number 7 and bit number 3 are
enabled, the decimal sum of the 2 bitsis 128 plus 8. So the decimal value 136 is returned.

42

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

In addition to the standard event status register, the standard event status group also contains a standard
event status enable register. This register lets you choose which bitsin the standard event status register
will set the summary bit (bit 5 of the status byte register) to 1. Send the * ESE <integer> command where
<integer> is the sum of the decimal values of the bits you want to enable. For example, to enable bit 7
and bit 6 so that whenever either of those bitsis set to 1, the standard event status summary bit of the
status byte register will be set to 1, send the command *ESE 192 (128 + 64). The command * ESE?
returns the decimal value of the sum of the bits previously enabled with the *ESE <integer> command.

The standard event status enable register presets to zeros (0).

(/]
A‘? %)
é} /S S SR) ® o ~
&
QQ
Bit Number | 7 6 5 4 3 2 1 0

*ESE <num>
*ESE?

Standard Event Status Enable Register ok728a

Operation and Questionable Satus Registers

The operation and questionabl e status registers are registers that monitor the overall instrument
condition. They are accessed with the STATus:OPERation and STATus.QUEStionable commands in the
STATus command subsystem. See the figure at the beginning of this chapter.

Operation Satus Register

The operation status register monitors the current instrument measurement state. It checksto seeiif the
instrument is calibrating, sweeping, or waiting for atrigger. For more information see the * OPC?
command located in the [EEE Common Commands section.

Bit | Condition Operation

0 Calibrating Theinstrument is busy executing its Align Now process

3 Sweeping Theinstrument is busy taking a sweep.

4 Measuring The instrument is busy making a measurement. M easurements often require
multiple sweeps. They areinitiated by keys under the MEASURE key or
with the MEA Sure group of commands.

Thebit isvalid for most X-Series Modes.

5 Waiting for trigger The instrument is waiting for the trigger conditions to be met, then it will

trigger a sweep or measurement.

43

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Bit | Condition Operation

8 Paused Theinstrument is paused (waiting) because you have pressed the Pause Meas
Control key or send the INITiate:PAUSe command.

Bit is currently only valid for Modes: ESA/PSA: Spectrum Analysis, Phase
Noise, and ESA: Bluetooth, cdmaOne, GSM

Questionable Satus Register

The questionable status register monitors the instrument’s condition to see if anything questionable has
happened to it. It islooking for anything that might cause an error or a bad measurement like a hardware
problem, an out of calibration situation, or a unusual signal. All the bits are summary bits from
lower-level event registers.

Bit | Condition Operation

3 Power summary The instrument hardware has detected a power unleveled condition.

4 Temperature summary The instrument is still warming up.

5 Frequency summary The instrument hardware has detected an unlocked condition or a problem

with the external frequency reference.

8 Calibration summary The instrument has detected a hardware problem while doing the
automatic internal alignment process.

9 Integrity summary The instrument has detected a questionable measurement condition such
as: bad timing, bad signal/data, timeout problem, signal overload, or
“meas uncal”.

STATus Subsystem Command Descriptions

The STATus subsystem controls the SCPI-defined instrument status reporting structures. Each status
register has a set of five commands used for querying or masking that particular register.

Numeric values for bit patterns can be entered using decimal or hexadecimal representations. (i.e. 0 to
32767 isequivalent to #HO to #H7FFF. It isalso equal to all ones, 111111111111111) See the SCPI
Basics information about using bit patterns for variable parameters.

Operation Register

Operation Condition Query

This query returns the decimal value of the sum of the bitsin the Status Operation Condition register.

NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus :OPERation:CONDition?

44

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Example STAT:OPER:COND?
Preset 0
SCPI Status BitOPC Sequential command

Dependencies

Initial /W Revision Prior to A.02.00

Operation Enable

This command determines which bits in the Operation Event register, will set the Operation Status
Summary bit (bit 7) in the Status Byte Register. The variable <integer> is the sum of the decimal values
of the bits you want to enable.

NOTE The preset condition isto have al bitsin this enable register set to 0. To have any
Operation Events reported to the Status Byte Register, one or more bits need to be
setto 1.
Mode All
Remote Command :STATus :OPERation:ENABle <integer>

:STATus :OPERation:ENABle?

Example STAT:OPER:ENAB 1 Setsthe register so that Align Now operation will be
reported to the Status Byte Register.

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision Prior to A.02.00

Operation Event Query

This query returns the decimal value of the sum of the bits in the Operation Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All
Remote Command :STATus : OPERation [: EVENt] ?
Example STAT:OPER?

45

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Preset 0

SCPI Status BitsOPC Sequential command
Dependencies

Initial S'W Revision Prior to A.02.00

Operation Negative Transition

This command determines which bitsin the Operation Condition register will set the corresponding bit
in the Operation Event register when the condition register bit has a negative transition (1 to 0). The
variable <integer> is the sum of the decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus :OPERation:NTRansition <integers
:STATus :OPERation:NTRansition?

Example STAT:OPER:NTR 1 Align Now operation complete will be reported to the
Status Byte Register.

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S’'W Revision Prior to A.02.00

Operation Positive Transition

This command determines which bitsin the Operation Condition register will set the corresponding bit
in the Operation Event register when the condition register bit has a positive transition (0 to 1). The
variable <integer> is the sum of the decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus :OPERation:PTRansition <integer>

:STATus :OPERation:PTRansition?

Example STAT:OPER:PTR 1 Align Now operation beginning will be reported to the
Status Byte Register.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

46

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Max

32767

Initial S'W Revision

Prior to A.02.00

Preset the Satus Byte

Sets bitsin most of the enable and transition registersto their default state. It presets all the Transition
Filters, Enable Registers, and the Error/Event Queue Enable. It has no effect on Event Registers,
Error/Event QUEuUe, |EEE 488.2 ESE, and SRE Registers as described in |EEE Standard 488.2—1992,
|EEE Standard Codes, Formats, Protocols, and Common Commands for Use with ANSI/IEEE Std
488.1-1987. New York, NY, 1992.

Remote Command:

:STATus : PRESet

Example:

STAT:PRES

Initial S'W Revision:

Prior to A.02.00

Questionable Register

Questionable Condition

This query returns the decimal value of the sum of the bitsin the Questionable Condition register.

NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATuUs : QUEStionable: CONDition?
Example STAT:QUES.COND?
Preset 0

SCPI Status BitsOPC
Dependencies

Sequential command

Initial /W Revision

Prior to A.02.00

Questionable Enable

This command determines which bits in the Questionable Event register will set the Questionable Status
Summary bit (bit3) in the Status Byte Register. The variable <integer> is the sum of the decimal values
of the bits you want to enable.

NOTE The preset condition is al bitsin this enable register set to 0. To have any
Questionable Events reported to the Status Byte Register, one or more bits need to
be set to 1. The Status Byte Event Register should be queried after each

47

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

measurement to check the Questionable Status Summary (bit 3). If itisequal to 1,
acondition during the test may have made the test resultsinvalid. If itisequal to O,
thisindicates that no hardware problem or measurement problem was detected by

the analyzer.
Mode All
Remote Command :STATuUS : QUEStionable:ENABle 16
Sets the register so that temperature summary will be reported to the Status

Byte Register

:STATus : QUEStionable : ENABle?
Example STAT:OPER:PTR 1

Align Now operation beginning will be reported to the Status Byte Register.
Preset 0
SCPI Status BitsOPC Sequential command
Dependencies
Min 0
Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Event Query

This query returns the decimal value of the sum of the bitsin the Questionable Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus : QUEStionable [: EVENt] ?
Example STAT:QUES?

Preset 0

SCPI Status Bits’OPC
Dependencies

Sequential command

Initial S'W Revision

Prior to A.02.00

Questionable Negative Transition

This command determines which bits in the Questionable Condition register will set the corresponding
bit in the Questionable Event register when the condition register bit has a negative transition (1 to 0).

48

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

The variable <integer> is the sum of the decimal values of the bits that you want to enable.

Mode All

Remote Command : STATuUsS : QUESt ionable:NTRansition 16
Temperature summary ‘ questionable cleared’ will be reported to the Status
Byte Register.
:STATus : QUEStionable :NTRansition?

Example STAT:QUES.NTR 16 Temperature summary ‘ questionable cleared’ will be
reported to the Status Byte Register.

Preset 0

SCPI Status Bits/OPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Positive Transition

This command determines which bits in the Questionable Condition register will set the corresponding
bit in the Questionable Event register when the condition register bit has a positive transition (0 to 1).
The variable <integer> is the sum of the decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus :QUEStionable:PTRansition <integers
:STATus : QUEStionable: PTRansition?

Example STAT:QUES:PTR 16 Temperature summary ‘ questionable asserted’ will be
reported to the Status Byte Register.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial /W Revision

Prior to A.02.00

Questionable Calibration Register

Questionable Calibration Condition

This query returns the decimal value of the sum of the bitsin the Questionable Calibration Condition

register.

49

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus : QUEStionable:CALibration:CONDition?
Example STAT:QUES.CAL:COND?
Preset 0

SCPI Status Bits’OPC
Dependencies

Sequential command

Initial S'W Revision

Prior to A.02.00

Questionable Calibration Enable

This command determines which bitsin the Questionable Calibration Condition Register will set bitsin
the Questionable Calibration Event register, which also sets the Calibration Summary bit (bit 8) in the
Questionable Register. The variable <integer> is the sum of the decimal values of the bits you want to

enable.
Mode All
Remote Command :STATus : QUEStionable:CALibration:ENABle <integers>
:STATus : QUEStionable:CALibration:ENABle?
Example STAT:QUES.CAL:ENAB 16384 Can be used to query if an alignment is

needed, if you have turned off the automatic alignment process.

SCPI Status Bits'OPC

Sequential command

Dependencies
Min 0
Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Calibration Event Query

This query returns the decimal value of the sum of the bitsin the Questionable Calibration Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All
Remote Command :STATuUS : QUEStionable:CALibration[:EVENt] ?
Example STAT:QUES:CAL?

50

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Preset

0

SCPI Status BitsOPC
Dependencies

Sequential command

Initial W Revision

Prior to A.02.00

Questionable Calibration Negative Transition

This command determines which bits in the Questionable Calibration Condition register will set the
corresponding hit in the Questionable Calibration Event register when the condition register bit has a
negative transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits that you

want to enable.

Mode All

Remote Command :STATus :QUEStionable:CALibration:NTRansition <integers>
:STATus :QUEStionable:CALibration:NTRansition?

Example STAT:QUES.CAL:NTR 16384 Alignment is not required.

Preset 0

SCPI Status BitsOPC
Dependencies

Sequential command

Min

0

Max

32767

Initial /W Revision

Prior to A.02.00

Questionable Calibration Positive Transition

This command determines which bits in the Questionable Calibration Condition register will set the
corresponding hit in the Questionable Calibration Event register when the condition register bit has a
positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you

want to enable.

Mode All

Remote Command :STATus : QUEStionable:CALibration:PTRansition <integers>
:STATus : QUEStionable:CALibration:PTRansition?

Example STAT:QUES.CAL:PTR 16384 Alignment is required.

Preset 32767

SCPI Status Bits/OPC Sequential command

Dependencies

Min 0

Max 32767

Initial /W Revision

Prior to A.02.00

51

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Questionable Calibration Skipped Register

Questionable Calibration Skipped Condition
This query returns the decimal value of the sum of the bitsin the Questionable Calibration Skipped

Condition register.

NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus : QUEStionable:CALibration:SKIPped:CONDition?
Example STAT.QUES.CAL:SKIP.COND?
Preset 0

SCPI Status Bits’OPC
Dependencies

Sequential command

Initial YW Revision

Prior to A.02.00

Questionable Calibration Skipped Enable

This command determines which bits in the Questionable Calibration Skipped Condition Register will
set bitsin the Questionable Calibration Skipped Event register, which also setsbit 11 of the Questionable
Cdlibration Register. The variable <integer> is the sum of the decimal values of the bits you want to

enable.

Mode All

Remote Command :STATus : QUEStionable:CALibration: SKIPped:ENABle
<integers>
:STATus : QUEStionable:CALibration: SKIPped:ENABle?

Example STAT:QUES:CAL:SKIP:ENAB 1 Can be used to query if an EMI alignment
skipped condition is detected

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Calibration Skipped Event Query

This query returns the decimal value of the sum of the bitsin the Questionable Calibration Event register.

52

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

NOTE Theregister requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus :QUEStionable:CALibration: SKIPped[:EVENt] ?
Example STAT:QUES.CAL:SKIP?

Preset 0

SCPI Status BitsOPC
Dependencies

Sequential command

Initial W Revision

Prior to A.02.00

Questionable Calibration Skipped Negative Transition

This command determines which bitsin the Questionable Calibration Skipped Condition register will set
the corresponding bit in the Questionable Calibration Skipped Event register when the condition register
bit has a negative transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits

that you want to enable.

Mode All

Remote Command :STATus : QUEStionable:CALibration:SKIPped:NTRansition
<integers>
:STATus : QUEStionable:CALibration: SKIPped:NTRansition?

Example STAT:QUES.CAL:SKIP:NTR 1 Align RF skipped is not required.

Preset 0

SCPI Status Bits/OPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Calibration Skipped Positive Transition

This command determines which bitsin the Questionable Calibration Skipped Condition register will set
the corresponding bit in the Questionable Calibration Skipped Event register when the condition register
bit has a positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits

that you want to enable.

Mode

All

53

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Remote Command :STATus : QUEStionable:CALibration:SKIPped: PTRansition
<integers>
:STATus :QUEStionable:CALibration: SKIPped: PTRansition?

Example STAT:QUES.CAL:SKIP:PTR 1 Align RF skipped is required.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial YW Revision

Prior to A.02.00

Questionable Calibration Extended Failure Register

Questionable Calibration Extended Failure Condition
This query returns the decimal value of the sum of the bitsin the Questionable Calibration Extended

Failure Condition register.

NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus :QUEStionable:CALibration:EXTended: FAILure : CONDi
tion?
Example STAT:QUES.CAL:EXT:FAIL:COND?
Preset 0

SCPI Status Bits’OPC
Dependencies

Sequential command

Initial /W Revision

Prior to A.02.00

Questionable Calibration Extended Failure Enable

This command determines which bits in the Questionable Calibration Extended Failure Condition
Register will set bitsin the Questionable Calibration Extended Failure Event register, which also sets bit
9 of the Questionable Calibration Register. The variable <integer> isthe sum of the decimal values of the

bits you want to enable.

Mode

All

Remote Command

:STATus :QUEStionable:CALibration:EXTended: FAILure : ENABL
e <integer>

:STATus : QUEStionable:CALibration: EXTended: FAILure : ENABL
e?

54

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Example STAT:QUES:CAL:EXT:FAIL:ENAB 1 Can be used to query if an EMI
conducted alignment is needed.
Preset 32767

SCPI Status BitsOPC
Dependencies

Sequential command

Min

0

Max

32767

Initial /W Revision

Prior to A.02.00

Questionable Calibration Extended Failure Event Query

This query returns the decimal value of the sum of the bitsin the Questionable Calibration Extended
Failure Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus : QUEStionable: CALibration:EXTended:FAILure [: EVEN
t]?

Example STAT:QUES.CAL:EXT:FAIL?

Preset 0

SCPI Status BitsOPC
Dependencies

Sequential command

Initial /W Revision

Prior to A.02.00

Questionable Calibration Extended Failure Negative Transition

This command determines which bits in the Questionable Calibration Extended Failure Condition
register will set the corresponding bit in the Questionable Calibration Extended Failure Event register
when the condition register bit has anegative transition (1 to 0). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Mode All

Remote Command :STATuS : QUEStionable: CALibration:EXTended: FAILure :NTRan
sition <integers
:STATus :QUEStionable:CALibration:EXTended:FAILure :NTRan
sition?

Example STAT:QUES.CAL:EXT:FAIL:NTR 1 EMI conducted align failureis not
required.

55

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Preset 0

SCPI Status BitsOPC Sequential command
Dependencies

Min 0

Max 32767

Initial /W Revision

Prior to A.02.00

Questionable Calibration Extended Failure Positive Transition

This command determines which bits in the Questionable Calibration Extended Failure Condition
register will set the corresponding bit in the Questionable Calibration Extended Failure Event register
when the condition register bit has a positive transition (0 to 1). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus :QUEStionable:CALibration:EXTended: FAILure: PTRan
sition <integers
:STATus : QUEStionable:CALibration:EXTended: FAILure : PTRan
sition?

Example STAT:QUES.CAL:EXT:FAIL:PTR 1 EMI conducted align failure is required.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Calibration Extended Needed Register

Questionable Calibration Extended Needed Condition
This query returns the decimal value of the sum of the bitsin the Questionable Calibration Extended

Needed Condition register.
NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus : QUEStionable:CALibration: EXTended :NEEDed: CONDit
ion?
Example STAT:QUES.CAL:EXT:NEED:COND?

56

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Preset

0

SCPI Status BitsOPC
Dependencies

Sequential command

Initial W Revision

Prior to A.02.00

Questionable Calibration Extended Needed Enable

This command determines which bits in the Questionable Calibration Extended Needed Condition
Register will set bitsin the Questionable Calibration Extended Needed Event register, which also sets bit
14 of the Questionable Calibration Register. The variable <integer> is the sum of the decimal values of

the bits you want to enable.

Mode All

Remote Command :STATus :QUEStionable:CALibration:EXTended:NEEDed : ENABle
<integers>
:STATus : QUESt ionable:CALibration: EXTended :NEEDed : ENABle
?

Example STAT:QUES.CAL:EXT:NEED:ENAB 2 Can be used to query if an EMI
conducted alignment is needed.

Preset 32767

SCPI Status BitsOPC
Dependencies

Sequential command

Min

0

Max

32767

Initial W Revision

Prior to A.02.00

Questionable Calibration Extended Needed Event Query

This query returns the decimal value of the sum of the bits in the Questionable Calibration Extended
Needed Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command : STATus : QUESt ionable: CALibration: EXTended : NEEDed [: EVENt
17?

Example STAT:QUES.CAL:EXT:NEED?

Preset 0

57

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

SCPI Status Bits’OPC
Dependencies

Sequential command

Initial /W Revision

Prior to A.02.00

Questionable Calibration Extended Needed Negative Transition

This command determines which bits in the Questionable Calibration Extended Needed Condition
register will set the corresponding bit in the Questionable Calibration Extended Needed Event register
when the condition register bit has anegative transition (1 to 0). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus : QUEStionable:CALibration: EXTended : NEEDed :NTRans
ition <integers
:STATus : QUEStionable: CALibration: EXTended : NEEDed : NTRans
ition?

Example STAT:QUES:CAL:EXT:NEED:NTR 2 Align EMI conducted is not required.

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Calibration Extended Needed Positive Transition

This command determines which bits in the Questionable Calibration Extended Needed Condition
register will set the corresponding bit in the Questionable Calibration Extended Needed Event register
when the condition register bit has a positive transition (0 to 1). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus : QUEStionable:CALibration:EXTended:NEEDed : PTRans
ition <integer>
:STATus : QUEStionable:CALibration:EXTended:NEEDed : PTRans
ition?

Example STAT:QUES.CAL:EXT:NEED:PTR 2 Align EMI conducted is required.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

58

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Max 32767

Initial S'W Revision Prior to A.02.00

Questionable Frequency Register

Questionable Frequency Condition

This query returns the decimal value of the sum of the bits in the Questionable Frequency Condition
register.

NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus : QUEStionable: FREQuency: CONDition?
Example STAT:QUES.FREQ:COND?
Preset 0
SCPI Status Bits/OPC Sequential command
Dependencies
Initial S'W Revision Prior to A.02.00

Questionable Frequency Enable

This command determines which bits in the Questionable Frequency Condition Register will set bitsin
the Questionable Frequency Event register, which also sets the Frequency Summary bit (bit 5) in the
Questionable Register. The variable <integer> is the sum of the decimal values of the bits you want to
enable.

Mode All

Remote Command :STATuS : QUESt ionable : FREQuency:ENABle <integer>

:STATus : QUEStionable: FREQuency: ENABle?

Example STAT:QUES.FREQ:ENAB 2 Frequency Reference Unlocked will be reported
to the Frequency Summary of the Status Questionabl e register.

Preset 32767

SCPI Status Bits/OPC Sequential command

Dependencies

Min 0

Max 32767

Initial S/'W Revision Prior to A.02.00

59

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Questionable Frequency Event Query
This query returns the decimal value of the sum of the bitsin the Questionable Frequency Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus : QUEStionable: FREQuency [: EVENt] ?
Example STAT:QUES:FREQ?

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Initial S'W Revision Prior to A.02.00

Questionable Frequency Negative Transition

This command determines which bitsin the Questionable Frequency Condition register will set the
corresponding bit in the Questionable Frequency Event register when the condition register bit has a
negative transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All

Remote Command :STATus : QUESt ionable : FREQuency:NTRansition <integers>

:STATus : QUESt ionable: FREQuency:NTRansition?

Example STAT:QUES:FREQ:NTR 2 Frequency Reference ‘regained lock’ will be
reported to the Frequency Summary of the Status Questionable register.

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S/'W Revision Prior to A.02.00

Questionable Frequency Positive Transition

This command determines which bitsin the Questionable Frequency Condition register will set the
corresponding bit in the Questionable Frequency Event register when the condition register bit hasa
positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you

60

want to enable.

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Mode All

Remote Command :STATus : QUEStionable: FREQuency:PTRansition <integers
:STATus : QUEStionable: FREQuency: PTRansition?

Example STAT:QUES.FREQ:PTR 2 Frequency Reference ‘became unlocked’ will be
reported to the Frequency Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Integrity Register

Questionable I ntegrity Condition

This query returns the decimal value of the sum of the bitsin the Questionable Integrity Condition

register.
NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus : QUEStionable: INTegrity:CONDition?
Example STAT:QUESINT:COND?
Preset 0

SCPI Status BitsOPC
Dependencies

Sequential command

Initial W Revision

Prior to A.02.00

Questionable Integrity Enable

This command determines which bitsin the Questionable Integrity Condition Register will set bitsin the
Questionable Integrity Event register, which also sets the Integrity Summary bit (bit 9) in the
Questionable Register. The variable <integer> is the sum of the decimal values of the bits you want to

enable.

Mode

All

61

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Remote Command :STATuUS : QUEStionable: INTegrity:ENABle <integers>
:STATus :QUEStionable: INTegrity:ENABle?

Example STAT:QUES.INT:ENAB 8 Measurement Uncalibrated Summary will be
reported to the Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial YW Revision

Prior to A.02.00

Questionable Integrity Event Query

This query returns the decimal value of the sum of the bitsin the Questionable Integrity Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus :QUEStionable: INTegrity [:EVENt] ?
Example STAT:QUESIINT?

Preset 0

SCPI Status Bits’OPC
Dependencies

Sequential command

Initial S'W Revision Prior to A.02.00

Questionable I ntegrity Negative Transition

This command determines which bitsin the Questionable Integrity Condition register will set the
corresponding bit in the Questionable Integrity Event register when the condition register bit hasa
negative transition (1 to 0)

The variable <integer> is the sum of the decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus :QUEStionable: INTegrity:NTRansition <integers

:STATus : QUEStionable: INTegrity:NTRansition?

Example STAT:QUES.INT:NTR 8 Measurement ‘regained calibration’ Summary will
be reported to the Integrity Summary of the Status Questionabl e register.

62

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Preset 0

SCPI Status Bits/OPC Sequential command
Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Integrity Positive Transition

This command determines which bits in the Questionable Integrity Condition register will set the
corresponding hit in the Questionable Integrity Event register when the condition register bit has a
positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you

want to enable.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:PTRansition <integers
:STATuUs :QUEStionable: INTegrity: PTRansition?

Example STAT:QUES:INT:PTR 8 Measurement ‘ became uncalibrated’ Summary will
be reported to the Integrity Summary of the Status Questionabl e register.

Preset 32767

SCPI Status Bits/OPC Sequential command

Dependencies

Min 0

Max 32767

Initial W Revision

Prior to A.02.00

Questionable Integrity Signal Register

Questionable Integrity Signal Condition

This query returns the decimal value of the sum of the bitsin the Questionable Integrity Signal Condition

register.
NOTE The datain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus : QUEStionable: INTegrity: SIGNal:CONDition?
Example STAT:QUES.INT:SIGN:COND?
Preset 0

63

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

SCPI Status BitsOPC Sequential command
Dependencies
Initial S’'W Revision Prior to A.02.00

Questionable Integrity Signal Enable

This command determines which bits in the Questionable Integrity Signal Condition Register will set
bitsin the Questionable Integrity Signal Event register, which also sets the Integrity Summary bit (bit 9)
in the Questionable Register. The variable <integer> is the sum of the decimal values of the bits you
want to enable.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:SIGNal:ENARle <integer>

:STATus : QUEStionable: INTegrity:SIGNal : ENABle?

Example STAT:QUES:INT:SIGN:ENAB 4 Burst Not Found will be reported to the
Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits’OPC Sequential command

Dependencies

Min 0

Max 32767

Initial W Revision Prior to A.02.00

Questionable Integrity Signal Event Query

This query returns the decimal value of the sum of the bitsin the Questionable Integrity Signal Event
register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:SIGNal [: EVENt] ?
Example STAT:QUES.INT:SIGN?

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Initial W Revision Prior to A.02.00

64

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Questionable Integrity Signal Negative Transition

This command determines which bits in the Questionable Integrity Signal Condition register will set the
corresponding hit in the Questionable Integrity Signal Event register when the condition register bit has
anegative transition (1 to 0). The variable <integer> isthe sum of the decimal values of the bits that you

want to enable.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:SIGNal:NTRansition
<integers>
:STATus : QUEStionable: INTegrity:SIGNal:NTRansition?

Example STAT:QUES.INT:SIGN:NTR 4 Burst found will be reported to the Integrity
Summary of the Status Questionable register.

Preset 0

SCPI Status BitsOPC
Dependencies

Sequential command

Min

0

Max

32767

Initial /W Revision

Prior to A.02.00

Questionable Integrity Signal Positive Transition

This command determines which bitsin the Questionable Integrity Signal Condition register will set the
corresponding hit in the Questionable Integrity Signal Event register when the condition register bit has
apositive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you

want to enable.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:SIGNal : PTRansition
<integer>
:STATuUs :QUEStionable: INTegrity:SIGNal: PTRansition?

Example STAT:QUES:INT:SIGN:PTR 4 Burst not found will be reported to the
Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status BitOPC Sequential command

Dependencies

Min 0

Max 32767

Initial /W Revision

Prior to A.02.00

65

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Questionable Integrity Uncalibrated Register

Questionable Integrity Uncalibrated Condition
This query returns the decimal value of the sum of the bits in the Questionable Integrity Uncalibrated

Condition register.

NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus : QUEStionable: INTegrity:UNCalibrated: CONDition?
Example STAT:QUES.INT:UNC:COND?
Preset 0

SCPI Status Bits’OPC
Dependencies

Sequential command

Initial YW Revision

Prior to A.02.00

Questionable Integrity Uncalibrated Enable

This command determines which bits in the Questionable Integrity Uncalibrated Condition Register will
set bits in the Questionable Integrity Uncalibrated Event register, which also sets the Data Uncalibrated
Summary bit (bit 3) in the Questionable Integrity Register. The variable <integer> is the sum of the
decimal values of the bits you want to enable.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:UNCalibrated: ENABle
:STATus :QUEStionable: INTegrity:UNCalibrated: ENABle?

Example STAT:QUES:INT:UNC:ENAB 1 Oversweep (Meas Uncal) will be reported to
the Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable I ntegrity Uncalibrated Event Query
This query returns the decimal value of the sum of the bitsin the Questionable Integrity Uncalibrated

Event register.

66

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

NOTE Theregister requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus :QUEStionable: INTegrity:UNCalibrated[:EVENt] ?
Example STAT:QUES.INT:UNC?

Preset 0

SCPI Status BitsOPC
Dependencies

Sequential command

Initial W Revision

Prior to A.02.00

Questionable Integrity Uncalibrated Negative Transition

This command determines which bitsin the Questionable Integrity Uncalibrated Condition register will
set the corresponding bit in the Questionable Integrity Uncalibrated Event register when the condition
register bit has a negative transition (1 to 0). The variable <integer> is the sum of the decimal values of

the bits that you want to enable.

Mode All

Remote Command :STATus : QUEStionable: INTegrity:UNCalibrated:NTRansition
<integers>
:STATus : QUEStionable: INTegrity:UNCalibrated:NTRansition
?

Example STAT:QUES.INT:UNC:NTR 1 Oversweep cleared will be reported to the
Integrity Summary of the Status Questionable register.

Preset 0

SCPI Status Bits/OPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Integrity Uncalibrated Positive Transition

This command determines which bits in the Questionable Integrity Uncalibrated Condition register will
set the corresponding bit in the Questionable Integrity Uncalibrated Event register when the condition
register bit has a positive transition (0 to 1). The variable <integer> is the sum of the decimal values of

the bits that you want to enable.

Mode

All

67

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Remote Command :STATus : QUEStionable: INTegrity:UNCalibrated: PTRansition
<integers>
:STATus :QUEStionable: INTegrity:UNCalibrated: PTRansition
?

Example STAT:QUES.INT:UNC:PTR 1 Oversweep (Meas Uncal) occurred will be
reported to the Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial YW Revision

Prior to A.02.00

Questionable Power Register

Questionable Power Condition

This query returns the decimal value of the sum of the bitsin the Questionable Power Condition register.

NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus : QUESt ionable : POWer : CONDition?
Example STAT:QUES:POW:COND?
Preset 0

SCPI Status BitsOPC
Dependencies

Sequential command

Initial YW Revision

Prior to A.02.00

Questionable Power Enable

This command determines which bitsin the Questionable Power Condition Register will set bitsin the
Questionable Power Event register, which also sets the Power Summary bit (bit 3) in the Questionable
Register. The variable <integer> is the sum of the decimal values of the bits you want to enable.

Mode All
Remote Command :STATus : QUEStionable:POWer:ENABle <integers
:STATus : QUEStionable : POWer : ENABle?
Example STAT:QUES:POW:ENAB 32 50 MHz Input Pwr too High for Cal will be

reported to the Power Summary of the Status Questionable register.

68

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Preset 32767

SCPI Status Bits/OPC Sequential command
Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Power Event Query

This query returns the decimal value of the sum of the bits in the Questionable Power Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus : QUESt ionable: POWer [: EVENt] ?
Example STAT:QUES:POW?

Preset 0

SCPI Status Bits’OPC
Dependencies

Sequential command

Initial S'W Revision

Prior to A.02.00

Questionable Power Negative Transition

This command determines which bits in the Questionable Power Condition register will set the
corresponding bit in the Questionable Power Event register when the condition register bit has anegative
transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits that you want to

enable.

Mode All

Remote Command :STATus : QUEStionable: POWer :NTRansition <integer>
:STATus : QUEStionable: POWer :NTRansition?

Example STAT:QUES:POW:NTR 32 50 MHz Input Power became OK for Cal will be
reported to the Power Summary of the Status Questionabl e register.

Preset 0

SCPI Status Bits/OPC Sequential command

Dependencies

Min 0

69

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Max

32767

Initial /W Revision

Prior to A.02.00

Questionable Power Positive Transition

This command determines which bits in the Questionable Power Condition register will set the
corresponding bit in the Questionable Power Event register when the condition register bit has a positive
transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you want to

enable.

Mode All

Remote Command :STATus : QUEStionable: POWer: PTRansition <integers>
:STATus : QUEStionable : POWer : PTRansition?>

Example STAT:QUES:POW:PTR 32 50 MHz I nput Power became too high for Cal will
be reported to the Power Summary of the Status Questionable register.

Preset 32767

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Temperature Register

Questionable Temperature Condition

This query returns the decimal value of the sum of the bitsin the Questionable Temperature Condition

register.
NOTE Thedatain thisregister is continuously updated and reflects the current conditions.
Mode All
Remote Command :STATus :QUEStionable: TEMPerature: CONDition?
Example STAT:QUES:.TEMP:COND?
Preset 0

SCPI Status BitsOPC
Dependencies

Sequential command

Initial YW Revision

Prior to A.02.00

70

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

Questionable Temperature Enable

This command determines which bitsin the Questionable Temperature Condition Register will set bitsin
the Questionable Temperature Event register, which also sets the Temperature Summary bit (bit 4) in the
Questionable Register. The variable <integer> is the sum of the decimal values of the bits you want to
enable.

Mode All

Remote Command :STATus : QUEStionable: TEMPerature:ENABle <integers>

:STATus : QUEStionable : TEMPerature : ENABle?

Example STAT:QUES. TEMP:ENAB 1 Reference Oscillator Oven Cold will be
reported to the Temperature Summary of the Status Questionable register.

Preset 32767

SCPI Status BitOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S’'W Revision Prior to A.02.00

Questionable Temperature Event Query

This query returns the decimal value of the sum of the bits in the Questionable Temperature Event
register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set abit in the event register. The datain thisregister is
latched until it is queried. Once queried, the register is cleared

Mode All

Remote Command : STATus : QUESt ionable: TEMPerature [: EVENt] ?
Example STAT:QUES: TEMP?

Preset 0

SCPI Status BitOPC Sequential command

Dependencies

Initial S'W Revision Prior to A.02.00

Questionable Temper ature Negative Transition

This command determines which bits in the Questionable Temperature Condition register will set the
corresponding bit in the Questionable Temperature Event register when the condition register bit has a
negative transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits that you

71

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)

want to enable.

Mode All

Remote Command :STATus : QUEStionable:TEMPerature:NTRansition <integers
:STATus : QUEStionable: TEMPerature:NTRansition?

Example STAT:QUES.TEMP:NTR 1 Reference Oscillator Oven not cold will be
reported to the Temperature Summary of the Status Questionable register.

Preset 0

SCPI Status BitsOPC Sequential command

Dependencies

Min 0

Max 32767

Initial S'W Revision

Prior to A.02.00

Questionable Temper ature Positive Transition

This command determines which bitsin the Questionable Temperature Condition register will set the
corresponding bit in the Questionable Temperature Event register when the condition register bit has a
positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you

want to enable.

Mode All

Remote Command :STATus : QUESt ionable: TEMPerature: PTRansition <integers
:STATus : QUEStionable: TEMPerature: PTRansition?

Example STAT:QUES: TEMP:PTR 1 Reference Oscillator Oven became cold will be
reported to the Temperature Summary of the Status Questionable register.

Preset 32767

SCPI Status BitsOPC
Dependencies

Sequential command

Min

0

Max

32767

Initial S'W Revision

Prior to A.02.00

72

2 Programming Fundamentals

This chapter provides overall information on programming X-Series analyzers using SCPI and C
languages. Sectionsinclude:

e “SCPI Language Basics’ on page 74
¢ “Improving Measurement Speed” on page 81
* “Programming in C Using the VTL” on page 87

e “For More Information” on page 95

73

Programming Fundamentals
SCPI Language Basics

SCPI Language Basics

This section is not intended to teach you everything about the SCPI (Standard Commands for
Programmabl e Instruments) programming language. The SCPI Consortium or | EEE can provide that
level of detailed information. For more information refer to the websites for the IEEE Standard 488.1
(IEEE Standard Digital Interface for Programmable Instrumentation).

Topics covered in this section include:

» “Creating Valid Commands’ on page 75

e “Command Keywords and Syntax” on page 74

* “Specia Charactersin Commands’ on page 76

* “Parametersin Commands’ on page 76

« “Putting Multiple Commands on the Same Line” on page 79

Command Keywords and Syntax

A typical command is made up of keywords set off by colons. The keywords are followed by parameters
that can be followed by optional units.

Example: SENSe:FREQuency:STARt 1.5 MHZ

The instrument does not distinguish between upper and lower case |etters. In the documentation, upper
case letters indicate the short form of the keyword. The lower case letters, indicate the long form of the
keyword. Either form may be used in the command.

Example: Sens:Freq:Star 1.5 mhz

is the same as SENSE : FREQ: start 1.5 MHz

NOTE The command SENS : FREQU : STAR would not be valid because FREQU is neither
the short, nor the long form of the command. Only the short and long forms of the
keywords are allowed in valid commands.

74

Creating Valid Commands

Programming Fundamentals

SCPI Language Basi

Commands are not case sensitive and there are often many different ways of writing a particular
command. These are examples of valid commands for a given command syntax:

CS

Command Syntax

Sample Valid Commands

[SENSe:]BANDwidth [:RESolution] <fregs

Thefollowing sample commandsareal identical. They
will al cause the same result.

* Sense:Band:Res 1700

¢ BANDWIDTH:RESOLUTION 1.7e3
* sens:band 1.7KHZ

e SENS:band 1.7E3Hz

* Dband 1.7kHz

e bandwidth:RES 1.7e3Hz

MEASure :SPECtrum[n] ?

e MEAS:SPEC?
* Meas:spec?
* meas:spec3?

The number 3in the last meas example causes it to
return different results then the commands aboveit. See
the command description for more information.

[: SENSe] :DETector [: FUNCtion]
NEGative|POSitive|SAMPle

e DET:FUNC neg

* Detector:Func Pos

INITiate:CONTinuous ON|OFF|1]|0

The sample commands below are identical.

e INIT:CONT ON

e iJinit:continuous 1

75

Programming Fundamentals
SCPI Language Basics

Special Charactersin Commands

Special M eaning Example
Character
| A vertical stroke between parameters Command: TRIGger:SOURce
indicates alternative choices. Theeffect | EXTernal | INTernal |LINE
of the c ommand is d!fferent depending The choices are external, internal, and line.
on which parameter is selected. .
Ex: TRIG:SOURCE INT
is one possible command choice.
A vertical stroke between keywords Command:
indicates identical effects exist for both SENSe : BANDwidth |BWIDth:OFFSet
keywords_The command functions the Two identical commands are: Ex1:
same for either keyword. Only one of i
these kevwordsis used at a time SENSE : BWIDTH: OFFSET Ex2:
eyw ' SENSE : BAND : OFFSET
[keywordsin square brackets are optional | Command:
when composing the command. These [SENSe:]1BANDwidth [:RESolution] : AUTO
:mﬁlledalr(:zl)\;vn(i)trtc;stIII be executed even The following commands are all valid and have
= ' identical effects:
Ex1: bandwidth:auto
Ex2: band:resolution:auto
Ex3. sense:bandwidth:auto
<> Angle brackets around aword, or words, | Command: SENS:FREQ <freqg>
!nd|car[&s they are not to be used literally In this command exampl e the word <freg> should
in the command. They represent the be renlaced by an actual frequenc
needed item. P y « Y-
Ex: SENS:FREQ 9.7MHz.
{} Parameters in braces can optionally be Command: MEASure:BW <freg>{,level}

used in the command either not at all,
once, or severa times.

A valid command is:
meas:BW 6 MHz, 3dB, 60dB

Parametersin Commands

There are four basic types of parameters. booleans, keywords, variables and arbitrary block program

data.

OFF|ON|0J1
(Boolean)

keyword

Thisisatwo state boolean-type parameter. The numeric value 0 is equivalent to OFF.
Any numeric value other than 0 is equivalent to ON. The numeric valuesof O or 1 are
commonly used in the command instead of OFF or ON. Queries of the parameter
aways return a numeric value of O or 1.

The keywords that are allowed for a particular command are defined in the command

syntax description.

76

Units

Variable

Programming Fundamentals
SCPI Language Basics

Numeric variables may include units. The valid units for acommand depend on the
variable type being used. See the following variable descriptions. The indicated
default units will be used if no units are sent. Units can follow the numerical value
with, or without, a space.

A variable can be entered in exponential format as well as standard numeric format.
The appropriate range of the variable and its optional units are defined in the
command description.

The following keywords may also be used in commands, but not all commands allow
keyword variables.

» DEFault - resets the parameter to its default value.

» UP - increments the parameter.

 DOWN - decrements the parameter.

e MINimum - sets the parameter to the smallest possible value.
* MAXimum - sets the parameter to the largest possible value.

The numeric value for the function's MINimum, MAXimum, or DEFault can be
queried by adding the keyword to the command in its query form. The keyword must
be entered following the question mark.

Example query: SENSE : FREQ: CENTER? MAX

Variable Parameters

<integer>
<real>
<freg>
<bandwidth>

<time>
<seconds>

<voltage>

<current>

<power>

<ampl>

<rel_power>
<rel_ampl>

is an integer value with no units.

Is afloating point number with no units.

Isapositive rational number followed by optional units. The default unit is Hertz.
Acceptable unitsinclude: Hz, kHz, MHz, GHz.

Isarational number followed by optiona units. The default units are seconds.
Acceptable unitsinclude: ks, s, ms, us, ns.

Isarational number followed by optiona units. The default units are Volts.
Acceptable unitsinclude: V, mV, uV, nvV

Isarational number followed by optional units. The default units are Amperes.
Acceptable unitsinclude: A, mA, uA, nA.

Isarational number followed by optional units. The default units are W. Acceptable
unitsinclude: kW, W, mW, uW, nw, pWw.

Isarational number followed by optional units. The default units are dBm.
Acceptable unitsinclude: dBm, dBmV, dBuV.

Is apositive rational number followed by optional units. The default units are dB.
Acceptable unitsinclude: dB.

77

Programming Fundamentals
SCPI Language Basics

<percent>

<angle>
<degrees>

<string>

<hit_pattern>

Isarational number between 0 and 100. You can either use no units or use PCT.

Isarational number followed by optional units. The default units are degrees.
Acceptable unitsinclude: DEG, RAD.

Isaseries of alphanumeric characters.

Specifies a series of bits rather than a numeric value. The bit seriesisthe binary
representation of a numeric value. There are no units.

Bit patterns are most often specified as hexadecimal numbers, though octal, binary or
decimal numbers may also be used. In the SCPI language these numbers are specified
as.

« Hexadecimal, #Hdddd or #hdddd where ‘d’ represents a hexadecimal digit 0to 9
and ‘@ to ‘f’. So #h14 can be used instead of the decimal number 20.

» Octal, #Odddddd or #odddddd where ‘d’ represents an octal digit O to 7. So #024
can be used instead of the decimal number 20.

« Binary, #Bdddddddddddddddd or #bdddddddddddddddd where ‘d’ representsa 1
or 0. So #H10100 can be used instead of the decimal number 20.

Block Program Data

Some parameters consist of ablock of data. There are afew standard types of block data. Arbitrary
blocks of program data can also be used.

<trace>

<arbitrary block
data>

Isan array of rational numbers corresponding to displayed trace data. See
FORMat:DATA for information about avail able data formats.

A SCPI command often refers to a block of current trace data with avariable name
such as: Tracel, Trace2, or trace3, depending on which trace is being accessed.

Consists of ablock of data bytes. The first information sent in the block is an ASCII
header beginning with #. The block is terminated with a semi-colon. The header can
be used to determine how many bytes are in the data block. There are no units. (You
will not get block dataif your datatypeis ASCII, using FORMat : DATA ASCII
command. Your data will be comma separated ASCI| values.

Block data example: suppose the header is #512320.

« Thefirst digit in the header (5) tellsyou how many additional digits/bytesthere are
in the header.

¢ The 12320 means 12 thousand, 3 hundred, 20 data bytes follow the header.

» Dividethis number of bytes by your current dataformat (bytes/data point), either 8
(for real,64), or 4 (for real,32). For this example, if you're using real64 then there
are 1540 pointsin the block.

78

Programming Fundamentals
SCPI Language Basics

Putting Multiple Commands on the Same Line

Multiple commands can be written on the same line, reducing your code space requirement. To do this:

» Commands must be separated with a semicolon (;).

e |f the commands are in different subsystems, the key word for the new subsystem must be preceded

by acolon (3).

« If the commands arein the same subsystem, the full hierarchy of the command key words need not be
included. The second command can start at the same key word level as the command that was just

executed.

SCPI Termination and Separator Syntax

All binary trace and response data is terminated with <NL><END>, as defined in Section 8.5 of IEEE

Standard 488.2-1992, |EEE Sandard Codes, Formats, Protocols and Common Commands for Use with
ANSI/IEEE Sd 488.1-1987. New York, NY, 1992. (Although one intent of SCPI isto be interface
independent, <END> is only defined for IEEE 488 operation.)

The following are some examples of good and bad commands. The examples are created from a
theoretical instrument with the simple set of commands indicated below:

[:SENSe]
:POWer
[:RF]
:ATTenuation 40dB

: TRIGger
[: SEQuence]
:EXTernal [1]
:SLOPe
POSitive

[:SENSe]
:FREQuency
:STARL
:POWer
[:RF]
:MIXer
: RANGe
[:UPPer]

Bad Command

Good Command

PWR:ATT 40dB

POW:ATT 40dB

The short form of POWER iS POW, not PWR.

FREQ:STAR 30MHz;MIX:RANG -20dBm

FREQ:STAR 30MHz; POW:MIX:RANG

-20dBm

you back at the SENSE level. You must specify POW to

get to the MIX : RANG command.

TheMIX:RANG command isinthe same : SENSE subsystem as FREQ, but executing the FREQ command puts

FREQ:STAR 30MHz; POW:MIX RANG -20dBm

FREQ:STAR 30MHz; POW:MIX:RANG

-20dBm

79

Programming Fundamentals
SCPI Language Basics

Bad Command

Good Command

MIX and RANG require acolon to separate them.

:POW:ATT 40dB; TRIG:FREQ:STAR 2.3GHz

:POW:ATT 40dB; :FREQ:STAR 2.3GHz

:FREQ: STAR isin the : SENSE subsystem, not the : TRIGGER subsystem.

:POW:ATT? : FREQ: STAR?

:POW:ATT?; : FREQ:STAR?

be separated with a semicolon, not a colon.

: POW and FREQ are within the same : SENSE subsystem, but they are two separate commands, so they should

:POW:ATT -5dB; :FREQ:STAR 10MHz

:POW:ATT 5dB; :FREQ:STAR 10MHz

Attenuation cannot be a negative value.

80

Programming Fundamentals
Improving Measurement Speed

I mproving M easurement Speed
There are a number of things you can do in your programs to make them run faster:
“Turn off the display updates’ on page 81
“Use binary data format instead of ASCII” on page 81
“Minimize the number of GPIB transactions’ on page 82
“Consider using USB or LAN instead of GPIB” on page 82
“Minimize DUT/instrument setup changes’ on page 83
“Avoid automatic attenuator setting” on page 83
“Avoid using RFBurst trigger for single burst signals’ on page 83
“N9071A: Optimize your GSM output RF spectrum switching measurement” on page 85

“Making power measurements on multiple bursts or slots? Use CAL Culate: DATA<n>:COMPress?”’
on page 85

Turn off the display updates

:DISPlay:ENABle OFF turnsoff thedisplay. That is, the datamay still be visible, but it will no longer
be updated. Updating the display slows down the measurement. For remote testing, since the computer is
processing the data rather than a person, there is no need to display the data on the analyzer screen.

Use binary data format instead of ASCI |

The ASCII dataformat isthe instrument default sinceit is easier for people to understand and is required
by SCPI for *RST. However, data input/output is faster using the binary formats.

:FORMat : DATA REAL, 64 selectsthe 64-bit binary dataformat for all your numerical data queries. You
may need to swap the byte order if you are using a PC rather than UNIX. NORMal is the default byte
order. Use : FORMat : BORDer SWAP to change the byte order so that the least significant byte is sent
first. (Real,32 which is smaller and somewhat faster, should only be used if you don’t need full
resolution for your data. Some frequency data may require full 64 bit resolution.)

When using the binary format, datais sent in ablock of bytes with an Ascil header. A data query would
return the block of datain the following format: #DNNN<nnn binary data bytes>

81

Programming Fundamentals
Improving Measurement Speed

To parse the data:

» Read two characters (#D), where D tells you how many N characters follow the D character.
» Read D characters, the resulting integer specifies the number of data bytes sent.
* Read the bytesinto areal array.

For example, suppose the header is #512320.

» Thefirst character/digit in the header (5) tells you how many additional digitsthere are in the header.

* The 12320 means 12 thousand, 3 hundred, 20 data bytes follow the header.

» Divide this number of bytes by your current data format (bytes/data point), 8 for real,64. For this
example, there are 1540 data points in the block of data.

Minimizethe number of GPIB transactions

When you are using the GPIB for control of your instrument, each transaction requires driver overhead
and bus handshaking, so minimizing these transactions reduces the time used.

* You can reduce bus transactions by sending multiple commands per transaction. See the information
on “Putting Multiple Commands on the Same Line” in the SCPI Language Basics section.

» If you are making the same measurement multiple times with small changes in the measurement
setup, use the READ command. It isfaster then using INITiate and FETCh.

» |f you are changing the frequency and making a measurement repeatedly, you can reduce transactions
by sending the optional frequency parameter with your READ command.
(for example, READ:<meas>? { <freq>}) These optional parameters are not available in some
personality modes such as Spectrum Analysis or Phase Noise.

The CONFigure/MEASure/READ commands for measurements in the option Modes allow you to
send center frequency setup information along with the command. (for example, MEAS : PVT?
935.2MHz) This sets the power vs. time measurement to it's defaults, then changes the center
frequency to 935.2 MHz, initiates a measurement, waits until it is complete and returns the
measurement data.

 If you are doing bottom/middle/top measurements on base stations, you can reduce transactions by
making atime slot active at each of the B,M, T frequencies. Then issue three measurements at oncein
the programming code and retrieve three data sets with just one GPIB transaction pair (write, read).

For example, send READ:PFER? <Freq_bottom>;PFER? <Freq_middle>;PFER? <Freq_top> This
single transaction initiates three different phase and frequency error measurements at each of the
three different frequencies provided and returns the data. Then you read the three sets of data.

Consider using USB or LAN instead of GPIB

USB and LAN alow faster datainput and output. Thisis especially important if you are moving large
blocks of data. You will not get thisimproved throughput using LAN if there is excessive LAN traffic
(that is, your test instrument is connected to avery busy enterprise LAN). You may want to use a private
LAN that isonly for your test system.

82

Programming Fundamentals
Improving Measurement Speed

Minimize DUT/instrument setup changes

» Some instrument setup parameters are common to multiple measurements. You should ook at your
measurement process with an eye toward minimizing setup changes. If your test process involves
nested loops, make sure that the inner-most loop is the fastest. Also, check if the loops could be
nested in a different order to reduce the number of parameter changes as you step through the test.

« Areyou are using the measurements under the Meas key? Remember that if you have aready set
your Mesas Setup parameters for a measurement, and you want to make another one of these
measurements later, use READ:<meas>?. The MEA Sure:<meas>?. command resets all the settings
to the defaults, while READ changes back to that measurement without changing the setup
parameters from the previous use.

« Areyou are using the Measurements under the Meas key? Remember that M ode Setup parameters
remain constant across al the measurementsin that mode (e.g. center/channel frequency, amplitude,
radio standard, input selection, trigger setup). You don’'t have to re-initialize them each time you
change to a different measurement.

Avoid unnecessary use of *RST

Remember that while * RST does not change the current Mode, it presets all the measurements and
settingsto their factory defaults. This forces you to reset your analyzer’s measurement settings even if
they use similar mode setup or measurement settings. See Minimize DUT/instrument setup changes
below. (Also note that * RST may put the instrument in single measurement/sweep for some modes.)

Avoid automatic attenuator setting

Many of the one-button measurements use an internal process for automatically setting the value of the
attenuator. It requires measuring an initial burst to identify the proper attenuator setting before the next
burst can be measured properly. If you know the amount of attenuation or the signal level needed for
your measurement, just set it.

Note that spurious types of measurements must be done with the attenuator set to automatic (for
measurements like: output RF spectrum, transmit spurs, adjacent channel power, spectrum emission
mask). These types of measurements start by tuning to the signal, then they tune away from it and must
be able to reset the attenuation value as needed.

Avoid using RFBurst trigger for single burst signals

RFBurst triggering works best when measuring signals with repetitive bursts. For a non-repetitive or
single burst signals, use the IF (video) trigger or external trigger, depending on what you have available.

RFBurst triggering depends on its establishment of avalid triggering reference level, based on previous
bursts. If you only have asingle burst, the peak detection nature of thistriggering function, may result in
the trigger being done at the wrong level/point generating incorrect data, or it may not trigger at all.

Areyou making a single bur st measurement?

To get consistent triggering and good data for this type of measurement application, you need to
synchronize the triggering of the DUT with the analyzer. You should use the analyzer’s internal status
system for this.

83

Programming Fundamentals
Improving Measurement Speed

Thefirst step in this processisto initialize the status register mask to look for the “waiting for trigger”
condition (bit 5). Use :STATus:OPERation:ENABle 32

Then, in the measurement loop:

1. :STATus:OPERation:EVENt? Thisquery of the operation event register isto clear the current
register contents.

2. :READ:PVT? initiates a measurement (in this example, for GSM power versus time) using the
previous setup. The measurement will then be waiting for the trigger.

Make sure the attenuation is set manually. Do NOT use automatic attenuation as this requires an
additional burst to determine the proper attenuation level before the measurement can be made.

3. Create asmall loop that will serial poll the instrument for a status byte value of binary 128. Then wait
1 msec (100 msif the display is left on/enabled) before checking again, to keep the bus traffic down.
These two commands are repeated until the condition is set, so we know that the trigger is armed and
ready.

4. Trigger your DUT to send the burst.

5. Return the measurement data to your computer.

NOTE This process cannot be done by using with the current VX1 plug-n-play driver
implementation. You will need to use the above SCPI commands.

84

Programming Fundamentals
Improving Measurement Speed

N9071A: Optimize your GSM output RF spectrum switching measurement

For ORFS (switching), setting the break frequency to zero (0) puts the analyzer in a measurement setup
where it can use a direct time measurement algorithm, instead of an FFT-based algorithm. This non-FFT
approach isfaster. (However, remember that your break frequency for ORFS (modulation)
measurements must be >400 kHz for valid measurements, so you will need to change the break
frequency if you are making both types of measurements.)

Making power measurements on multiple burstsor slots? Use
CAL Culate:DATA<n>:COM Press?

The CALC:DATA:COMP? query is the fastest way to measure power data for multiple bursts/slots.
There aretwo reasonsfor this: 1. it can be used to measure data across multiple, consecutive slots/frames
with just one measurement, instead of a separate measurement on each slot, and 2. it can pre-process
and/or decimate the data so that you only return the information that you need which minimizes data
transfer to the computer.

For example: you want to do a power measurement for a GSM base station where you generate a
repeating frame with 8 different power levels. You can gather all the data with asingle
CALC:DATA: COMP? acquisition, using the waveform measurement.

With CALC:DATA2 : COMP? MEAN, 9,197, 1730 you can measure the mean power in those bursts. This
single command will measure the dataacross all 8 frames, locate the first slot/burst in each of the frames,
calculate the mean power of those bursts, then return the resulting 8 values.

Example:
To set up a GSM Waveform measurement:

e :CONF:WAV? turns on the waveform measurement

e :WAV:BAND 300khz setsaresolution bandwidth of 300 kHz

* :WAV:SWE:TIME 5ms sefsasweep time of 5 milliseconds

e :WAV:BAND:TYPE FLAT selectstheflat filter type

e :WAV:DEC 4;DEC:STAT ON selectsadecimation of 4 and turns on decimation. This reduces the
amount of data that needs to be sent since the instrument hardware decimates (throws some away).

* :INIT toinitiate a measurement and acquire the data

* CALC:DATA2:COMP? MEAN, 25us,526us,579.6us, 8 to return the desired data

There are two versions of this command depending on your firmware revision. Earlier revisions require
the optional variables be entered in terms of their position in the trace data array. Current instruments
allow the variables to be entered in terms of time.

85

Programming Fundamentals
Improving Measurement Speed

For early firmware revisions you need to know the sample interval. In the waveform measurement it is
equal to the aperture value. Query :WAVeform: APERture? to find the sample interval. (Note: the
WAV:APER? command always takes decimation into account.) The sampleinterval (aperture value) is

dependent on the settings for resolution bandwidth, filter type, and decimation. See the following table to

see how these value relate.

The parameters for this GSM example are:
MEAN, 9,197,1730 (or with later firmware: MEAN, 25us, 526us, 579.6us, 8)

MEAN calcul ates the mean of the measurement points indicated
9 is how many points you want to discard before you look at the data. This alows you to skip over
any “unsettled” values at the beginning of the burst. You can calculate this start offset by
(25us/sampl el nterval)l

197 isthe length of the data you want to use. This would be the portion of the burst that you want to
find the mean power over. You can calculate this length by (526us/samplelnterval)

1730 is how much data you have before you repeat the process. For this example it's the time

between the start offset point on the burst in the first slot (first frame) to the same spot on the burst in

thefirst dot (second frame). You can calculate this by (576.9us* N/samplel nterval) where N isthe
number of data items that you want. In this case it is the number of slotsin the frame, N=8.)

Table 2-1 GSM Parametersfor 1 Slot/Frame M easurement Requirements
Resolution Filter Type | Decimation Aperture Sart Length Repeat
Bandwidth
500 or 300 kHz | Flat or 4orl dependenton | 24 usec 526 psec 576.9 usec

Gaussian settings
500 kHz Gaussian 1 0.2 usec 124 2630 2884.6
500 kHz Gaussian 4 0.8 usec 31 657 721.15
500 kHz Flat 1 0.4 usec 61 1315 1442.3
500 kHz Flat 4 1.6 usec 15 329 360.575
300 kHz Gaussian 1 0.2667 psec 90 1972 2163.1
300 kHz Gaussian 4 1.07 usec 22 492 539.16
300 kHz Flat 1 0.6667 psec 36 789 865.31
300 kHz Flat 4 2.667 usec 9 197 216.33

For More Information

For more information on optimizing measurement speed using X-Series analyzers see Agilent
Application Note 1583:

http://cp.literature.agilent.com/litweb/pdf/5989-4947EN. pdf

86

http://cp.literature.agilent.com/litweb/pdf/5989-4947EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5989-4947EN.pdf

Programming Fundamentals
Programming in C Using the VTL

Programmingin C UsingtheVTL

The programming examples that are provided are written using the C programming language and the
Agilent VTL (VISA transition library). This section includes some basic information about
programming in the C language. Note that some of this information may not be relevant to your
particular application. (For example, if you are not using V XI instruments, the VXI references will not

be relevant).

Refer to your C programming language documentation for more details. (Thisinformation is taken from
the manua “VISA Transition Library”, part number E2090-90026.) The following topics are included:

“Typical Example Program Contents’ on page 87

“Linkingto VTL Libraries’ on page 88

“Compiling and Linking aVTL Program” on page 838

“Example Program” on page 90

“Including the VISA Declarations File” on page 90

“Opening a Session” on page 91

“Device Sessions’ on page 91

“Addressing a Session” on page 93

“Closing a Session” on page 94

Typical Example Program Contents

The following is a summary of the VTL function calls used in the example programs.

visa.h

ViSession

Thisfileisincluded at the beginning of the file to provide the function prototypes and
constants defined by VTL.

ThevisessionisaVTL datatype. Each object that will establish acommunication
channel must be defined asvisSession.

viOpenDefaultRM You must first open a session with the default resource manager with the

viOpen

viPrintf
viScanf

viOpenDefaultRM function. Thisfunction will initialize the default resource
manager and return a pointer to that resource manager session.

This function establishes a communication channel with the device specified. A
session identifier that can be used with other VTL functionsisreturned. This call must
be made for each device you will be using.

These arethe VTL formatted 1/0 functions that are patterned after those used in the C
programming language. The viPrint £ call sendsthe |EEE 488.2 *RST command
to the instrument and putsit in aknown state. The viPrintf call isused again to
query for the device identification (* IDN?). The viScanf call isthen used to read
the results.

87

Programming Fundamentals
Programming in C Using the VTL

viClose This function must be used to close each session. When you close adevice session, all
data structures that had been allocated for the session will be de-allocated. When you
close the default manager session, all sessions opened using the default manager
session will be closed.

LinkingtoVTL Libraries
Your application must link to one of the VTL import libraries:
32-bit Version:
C:\VXIPNP\WIN95\LIB\MSC\VISA32.LIB for Microsoft compilers
C:\VXIPNP\WIN95\LIB\BC\VISA32.LIB for Borland compilers
16-bit Version:
C:\VXIPNP\WIN\LIB\MSC\VISA.LIB for Microsoft compilers
C:\VXIPNP\WIN\LIB\BC\VISA.LIB for Borland compilers

See the following section, “Compiling and Linking aVTL Program” for information on how to use the
VTL run-time libraries.

Compiling and Linkinga VTL Program

32-bit Applications

Thefollowing isasummary of important compiler-specific considerations for several C/C++ compiler
products when devel oping WIN32 applications.

For Microsoft Visual C++ version 2.0 compilers:
* Sdect Project | Update All Dependencies fromthe menu.

* Sdect Project | Settings fromthe menu. Click onthe C/C++ button. Select Code
GenerationfromtheUse Run-Time Libraries listbox. VTL requiresthese definitionsfor
WIN32. Click OK to close the dialog boxes.

* Sdect Project | Settings fromthe menu. Click onthe Link button and add visa32.1ib
totheObject / Library Modules list box. Optionally, you may add thelibrary directly to
your project file. Click OK to close the dialog boxes.

* You may wish to add theinclude file and library file search paths. They are set by doing the
following:

1. Select Tools | Options from the menu.
Click Directories to set theinclude file path.
Select Include Files fromthe Show Directories For list box.

Click add and typeinthefollowing: C: \VXIPNP\WIN95\ INCLUDE

o > 0 DN

Select Library Files fromthe Show Directories For list box.

88

Programming Fundamentals
Programming in C Using the VTL

6. Click Add and typeinthefollowing: C: \VXIPNP\WIN95\LIB\MSC
For Borland C++ version 4.0 compilers:

* You may wish to add theincludefileand library file search paths. They are set under the Options |
Project menu selection. Double-click on Directories from the Topics list box and add the
following:

C:\VXIPNP\WIN95\INCLUDE
C:\VXIPNP\WIN9S\LIB\BC

16-bit Applications

The following is a summary of important compiler-specific considerations for the Windows compiler.
For Microsoft Visual C++ version 1.5:
* To set the memory model, do the following:

1. Selectoptions | Project.

2. Click compiler, then select Memory Model fromthe Category list.

3. Click theModel list arrow to display the model options, and select Large.

4. Click OK to closethe Compiler dialog box.

* You may wish to add theincludefileand library file search paths. They are set under the Options |
Directories menu selection:

C:\VXIPNP\WIN\INCLUDE
C:\VXIPNP\WIN\LIB\MSC

Otherwise, the library and include files should be explicitly specified in the project file.

89

Programming Fundamentals
Programming in C Using the VTL

Example Program

This example program queries a GPIB device for an identification string and prints the results. Note that
you must change the address.

/*idn.c - program filename */

#include "visa.h"
#include <stdio.h>

void main ()

{

/*Open session to GPIB device at address 18 */

ViOpenDefaultRM (&defaultRM) ;

ViOpen (defaultRM, GPIBO::18::INSTR", VI NULL,
VI NULL, &vi);

/*Initialize device */

viPrintf (wvi, "*RST\n");

/*Send an *IDN? string to the device */
printf (vi, "*IDN?\n");

/*Read results */
viScanf (vi, "%t", &buf);

/*Print results */
printf ("Instrument identification string: %s\n", buf);

/* Close sessions */
viClose (vi);
viClose (defaultRM);

Including the VI SA Declarations File

For C and C++ programs, you must include the visa.h header file at the beginning of every file that
contains VTL function calls:

#include “visa.h”

This header file contains the VISA function prototypes and the definitions for all VISA constants and
error codes. The visa.h header file includes the visatype . h header file.

Thevisatype . h header file defines most of the VISA types. The VISA types are used throughout VTL
to specify data types used in the functions. For example, the viopenDefaultRM function requires a
pointer to a parameter of type ViSession. If youfind ViSessioninthevisatype . h header file, you
will find that ViSession iseventually typed as an unsigned long.

90

Programming Fundamentals
Programming in C Using the VTL

Opening a Session

A session isachannel of communication. Sessions must first be opened on the default resource manager,
and then for each device you will be using. The following isa summary of sessions that can be opened:

e A resource manager session isused to initialize the VISA system. It is a parent session that knows
about all the opened sessions. A resource manager session must be opened before any other session
can be opened.

* A device session is used to communicate with a device on an interface. A device session must be
opened for each device you will be using. When you use a device session you can communicate
without worrying about the type of interface to which it is connected. Thisinsulation makes
applications more robust and portabl e acrossinterfaces. Typically adeviceisan instrument, but could
be a computer, a plotter, or aprinter.

NOTE All devices that you will be using need to be connected and in working condition
prior to thefirst VTL function call (viOpenDefaultRM). The systemis
configured only on the first viOpenDefaultRM per process. Therefore, if
viOpenDefaultRM is called without devices connected and then called again
when devices are connected, the devices will not be recognized. You must close
ALL resource manager sessions and re-open with all devices connected and in
working condition.

Device Sessions

There are two parts to opening a communications session with a specific device. First you must open a
session to the default resource manager with the viopenDefaul tRM function. The first call to this
function initializes the default resource manager and returns a session to that resource manager session.
You only need to open the default manager session once. However, subsequent calls to
viOpenDefaul tRM returns a session to a unique session to the same default resource manager
resource.

Next, you open a session with a specific device with the viopen function. This function uses the session
returned from viOpenDefaul tRM and returns its own session to identify the device session. The
following shows the function syntax:

viOpenDefaultRM (sesn);
viOpen (sesn, rsrcName, accessM ode, timeout, vi);

The session returned from viOpenDefaul tRM must be used in the sesn parameter of the vioOpen
function. The viopen function then uses that session and the device address specified in the rsrcName
parameter to open a device session. The vi parameter in viOpen returns a session identifier that can be
used with other VTL functions.

Your program may have several sessions open at the same time by creating multiple session identifiers
by calling the viopen function multiple times.

91

Programming Fundamentals
Programming in C Using the VTL

The following summarizes the parametersin the previous function calls:

sesn Thisisasession returned from the viOpenDefaul t RM function that identifies the
resource manager session.

rsrcName Thisis aunique symbolic name of the device (device address).

accessM ode This parameter isnot used for VTL. UseVI_NULL.

timeout This parameter is not used for VTL. Use VI_NULL.

Vi Thisisapointer to the session identifier for this particular device session. This pointer

will be used to identify this device session when using other VTL functions.
The following is an example of opening sessions with a GPIB multimeter and a GPIB-V X| scanner:

ViSession defaultRM, dmm, scanner;

viOpenDefaultRM(&defaultRM) ;

viOpen (defaultRM, "GPIBO::22::INSTR", VI NULL,
VI_NULL, &dmm);

viOpen (defaultRM, "GPIB-VXIO::24::INSTR", VI NULL,
VI _NULL, &scanner);

viClose (scanner);
viClose (dmm);
viClose (defaultRM) ;

The above function first opens a session with the default resource manager. The session returned from
the resource manager and adevice addressis then used to open a session with the GPIB device at address
22. That session will now be identified as dmm when using other VTL functions. The session returned
from the resource manager is then used again with another device address to open a session with the
GPIB-VXI device at primary address 9 and VXI logical address 24. That session will now be identified
as scanner when using other VTL functions. See the following section for information on addressing
particular devices.

92

Programming Fundamentals
Programming in C Using the VTL

Addressing a Session

As seen in the previous section, the r srcName parameter in the viOpen function is used to identify a
specific device. This parameter is made up of the VTL interface name and the device address. The
interface name is determined when you run the VTL Configuration Utility. This nameis usualy the
interface type followed by a number. The following tableillustrates the format of the r srcName for the
different interface types

Interface Syntax

VXI VXI [board]::VXI logical addresy::INSTR]

GPIB-VXI GPIB-VXI [board]::VXI logical addresy::INSTR]

GPIB GPIB [board]::primary addresy[::secondary address|[::INSTR]

The following describes the parameters used above:

board This optional parameter is used if you have more than one interface of the same type.
The default value for board is 0.

VSl logical

address Thisisthelogical address of the VX1 instrument.

primary

address Thisisthe primary address of the GPIB device.

secondary

address This optional parameter is the secondary address of the GPIB device. If no secondary
address is specified, none is assumed.

INSTR Thisis an optional parameter that indicates that you are communicating with a
resource that is of type INSTR, meaning instrument.

NOTE If you want to be compatible with future releases of VTL and VISA, you must

include the INSTR parameter in the syntax.

The following are examples of valid symbolic names:
X10::24::INSTR Deviceat VXI logica address 24 that is of VISA type INSTR.
VX12::128 Deviceat VXI logica address 128, in the third VXI system (VX12).

GPIB-VX10::24 A VXI deviceat logical address 24. This VX deviceis connected viaa GPIB-VXI
command module.

GPIBO::7::0 A GPIB device at primary address 7 and secondary address 0 on the GPIB interface.

93

Programming Fundamentals
Programming in C Using the VTL

Thefollowing is an example of opening a device session with the GPIB device at primary address23.

ViSession defaultRM, vi;

viOpenDefaultRM (&defaultRM) ;

viOpen (defaultRM, "GPIBO::23::INSTR", VI NULL,VI NULL, &vi);

viClose(vi) ;

viClose (defaultRM);

Closing a Session

The vicClose function must be used to close each session. You can close the specific device session,
which will free all data structuresthat had been allocated for the session. If you close the default resource
manager session, all sessions opened using that resource manager will be closed.

Since system resources are also used when searching for resources (viFindRsrc) or waiting for events
(viwaitOnEvent), the viClose function needs to be called to free up find lists and event contexts.

94

Programming Fundamentals
For More Information

For More lnformation

The Agilent Developer Network (ADN) websiteis arepository of information and services for those
who develop test systems. ADN is useful for T& M engineers connecting instruments to computers who
use Microsoft® Windows®-based applications and application development environments.

http://www.agilent.com/find/adn

The Agilent X-Series websites have many topics under the Technical Support tab, including Application
Notes:

http://www.agilent.com/find/pxa
http://www.agilent.com/find/mxa
http://www.agilent.com/find/exa

http://www.agilent.com/find/cxa

95

http://www.agilent.com/find/adn
http://www.agilent.com/find/pxa
http://www.agilent.com/find/pxa
http://www.agilent.com/find/mxa
http://www.agilent.com/find/cxa
http://www.agilent.com/find/mxa
http://www.agilent.com/find/exa

Programming Fundamentals
For More Information

96

Programming Examples

The programming examples were written for use on an IBM compatible PC.

The programming examples use C, Visual Basic, or VEE programming languages.
The programming examples use VISA interfaces (GPIB, LAN, or USB).

Some of the examples use the IVI-COM drivers.

I nterchangeable Virtual Instruments COM (1VI-COM) drivers: Develop system automation
software easily and quickly. IVI-COM drivers take full advantage of application devel opment
environments such as Visual Studio using Visual Basic, C# or Visual C++ aswell as Agilent's Test
and Measurement Toolkit. You can now devel op application programs that are portable across
computer platforms and /O interfaces. With 1VI-COM drivers you do not need to have in depth test
instrument knowledge to devel op sophisticated measurement software. 1V1-COM drivers provide a
compatibleinterface to all. COM environments. The IVI-COM software drivers can be found at the
URL:

http://www.agilent.com/find/ivi-com

Most of the examples are written in C, Visual Basic, VEE, or LabVlew using the Agilent VISA
transition library.

The Agilent 1/0O Libraries Suite must be installed and the GPIB card, USB to GPIB interface, or Lan
interface USB interface configured. The latest Agilent I/O Libraries Suiteis available:
www.agilent.com/find/iolib

The STATus subsystem of commands is used to monitor and query hardware status. These hardware
registers monitor various events and conditions in the instrument. Details about the use of these
commands and registers can be found in the manual/help in the Utility Functions section on the
STATus subsystem.

Visual Basic is aregistered trademark of Microsoft Corporation.

97

http://www.agilent.com/find/ivi-com
http://www.agilent.com/find/ivi-com
www.agilent.com/find/iolib

Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples

X-Series Spectrum Analyzer Mode Programing
Examples

The following examples work with Spectrum Analyzer mode. These examples use one of the following

programming |languages: Visual Basic® 6, Visua Basic.NET®, MSExcel®, C++, ANSI C, C#NET, and
Agilent VEE Pro.

These examples are available in either the “ progexamples” directory on the Agilent Technologies
Spectrum Analyzer documentation CD-ROM or the “progexamples” directory in the analyzer. The
file names for each exampleislisted at the end of the example description. The examples can also be
found on the Agilent Technologies, Inc. web site at URL:

http://www.agilent.com/find/sa_programming

NOTE These examples have all been tested and validated as functional in the Spectrum
Anayzer mode. They have not been tested in all other modes. However, they
should work in all other modes except where exceptions are noted.

Programming using Visual Basic® 6, Visual Basic.NET® and M S Excel®:
» Transfer Screen Images from your Spectrum Analyzer using Visual Basic 6

This example program stores the current screen image on the instrument flash memory as
“D:\PICTURE.PNG". It then transfers the image over GPIB or LAN and stores the image on your
PC in the current directory as“ PICTURE. PNG”. Thefile“D: \PICTURE. PNG” iSsthen deleted on the
instrument flash memory.

File name: _screen.bas
* Binary Block Trace data transfer from your Spectrum Analyzer using Visual Basic 6

This example program queries the IDN string from the instrument and then reads the trace data in
Spectrum Analysis mode in binary format (Real,32 or Real,64 or Int,32). The dataisthen stored to a
file “bintrace. txt”. Thisdatatransfer method isfaster than the default ASCII transfer mode,
because less datais sent over the bus.

File name: bintrace.bas

98

http://www.agilent.com/find/sa_programming

Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples

Programming using C++, ANSI C and C#NET:

Serial Poll for Sweep Complete using C++
This example demonstrates how to:

1. Perform an instrument sweep.
2. Poll theinstrument to determine when the operation is complete.
3. Perform an instrument sweep.

File name: _Sweep.c

Service Request Method (SRQ) determines when a measurement is done by waiting for SRQ and
reading Status Register using C++.

This example demonstrates how:

1. Set the service reguest mask to assert SRQ when either a measurement is uncalibrated or an error
message has occurred,

2. Initiate a sweep and wait for the SRQ interrupt,

3. Pall al instruments and report the nature of the * interrupt on the spectrum analyzer.

The STATus subsystem of commands is used to monitor and query hardware status. These hardware
registers monitor various events and conditions in the instrument. Details about the use of these
commands and registers can be found in the manual/help in the Utility Functions section on the
STATus subsystem.

Filename: SRQ.C
Relative Band Power Markersusing C++

This example demonstrates how to set markers as Band Power Markers and obtain their band power
relative to another specified marker.

Filename: BPM.c
Trace Detector/Couple Markersusing C++
This example demonstrates how to:

1. Set different types of traces (max hold, clear and write, min hold)
2. Set markersto specified traces
3. Couple markers

Note: The Spectrum Analyzer is capable of multiple simultaneous detectors (i.e. peak detector for
max hold, sample for clear and write, and negative peak for min hold).

File name: _tracecouple.c

99

Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples

Phase Noise using C++
This example demonstrates how to:

1. Remove instrument noise from the phase noise
2. Calculate the power difference between 2 traces

File name: _phasenoise.c

Programming using Agilent VEE Pro:

Transfer Screen Images from my Spectrum Analyzer using Agilent VEE Pro

This example program stores the current screen image on the instrument flash memory as
“D:\scr.png”. It then transfers the image over GPIB and stores the image on your PC in the
desired directory as“capture.gif”. Thefile“D:\scr.png” isthen deleted on the instrument
flash memory.

File name: _ScreenCapture.vee
Transfer Trace Data datatransfer using Agilent VEE Pro

This example program transfers the trace data from your Spectrum Analyzer. The program queries
the IDN string from the instrument and supports Integer 32, real 32, real 64 and ASCII data. The
program returns 1001 trace points for the signal analyzer.

File name; transfertrace.vee

100

Programming Examples
89601X VXA Signal Analyzer Programming Examples

89601X VXA Signal Analyzer Programming Examples

Thefollowing examples work with 89601X VXA Signal Analyzer Mode. These examples use one of the
following programming languages: Visual Basic® 6, Visual Studio 2003 .NET®, and Agilent VEE Pro.
These examples are available in either the “progexamples” directory on the Agilent Technologies
89601X VXA documentation CD-ROM or the “ progexamples” directory in the analyzer. Thefile

names for each exampleislisted at the end of the example description. The examples can aso be found
on the Agilent Technologies, Inc. web site at URL.:

http://www.agilent.com/find/sa_programming

NOTE These examples have all been tested and validated as functional in 89601X VXA
Signal Analyzer Mode.

Programming using Visual Basic® 6 and Visual Basic.NET®:
* Setting up a Vector Measurement on your 89601X VXA using Visual Basic 6.
This example program:
— Sets up the VSA Mode.
— Sets the Vector Measurement.
— Configures the Vector M easurement.
— Starts the Vector Measurement.
— Readsthe trace datain Real 64 data format
File name: VXA-MeasDemo.vbs
» Setting up a Digital Demod Measurement on your 89601x VXA using Visua Basic 6.
This example program:
— Sets up the VSA Mode.
— Setsthe Digital Demod M easurement.
— Configuresthe Digital Demod M easurement.
— Startsthe Digital Measurement.
— Reads the trace data, EVM, and demodul ated bits.
File name: VXA-DigDemodDemo.vbs

101

http://www.agilent.com/find/sa_programming

Programming Examples
89601X VXA Signal Analyzer Programming Examples

Programming using Agilent VEE Pro:

Setting up aV SA Measurement on your 89601X VXA using VEE.
This example program:

— Setsup the VSA Mode.

— Sets the Vector Measurement.

— Configures the Vector Measurement.

— Starts the Vector Measurement.

— Reads the trace datain Real 32, Rea 64 and ASCII dataformat
File name: VXA-MeasDemo.vee

Setting up aDigital Demod Measurement on your 89601X VXA VEE.
This example program:

— Setsup the VSA Mode.

— Setsthe Digital Demod M easurement.

— Configuresthe Digital Demod M easurement.

— Startsthe Digital Measurement.

— Reads the trace data, EVM, and demodulated bits.

File name: VXA-DigDemodDemo.vee

Programming using Visual Sudio® 2003 .NET:

Setting up aVSA Measurement on your 89601X VXA using Visual Basic 6.
This example program:

— Sets up the VSA Mode.

— Setsthe Vector Measurement.

— Configures the Vector M easurement.

— Starts the Vector Measurement.

— Reads the trace datain Real 64 data format

File name: VXA-MeasDemo.sin

102

Programming Examples
89601X VXA Signal Analyzer Programming Examples

e Setting up aDigital Demod Measurement on your 89601X VXA using Visual Basic 6.
This example program:
— Sets up the VSA Mode.
— Setsthe Digital Demod M easurement.
— Configures the Digital Demod M easurement.
— Startsthe Digital Measurement.
— Reads the trace data, EVM, and demodul ated bits.
File name: VXA-DigDemodDemo.sin

103

	Title Page
	Contents
	1 Introduction to Programming X-Series Applications
	What Programming Information is Available?
	Using Embedded Help for Programming
	Using the Help System on Your PC
	Help System Features Especially Useful for Programmers

	Communicating SCPI Using Telnet
	Overview of the GPIB
	GPIB Command Statements

	SCPI Measurement Commands
	Measurement Group of Commands
	Common Measurement Commands

	STATus Subsystem (No equivalent front-panel keys)
	Detailed Description
	STATus Subsystem Command Descriptions

	2 Programming Fundamentals
	SCPI Language Basics
	Command Keywords and Syntax
	Creating Valid Commands
	Special Characters in Commands
	Parameters in Commands
	Putting Multiple Commands on the Same Line

	Improving Measurement Speed
	Turn off the display updates
	Use binary data format instead of ASCII
	Minimize the number of GPIB transactions
	Consider using USB or LAN instead of GPIB
	Minimize DUT/instrument setup changes
	Avoid unnecessary use of *RST
	Avoid automatic attenuator setting
	Avoid using RFBurst trigger for single burst signals
	N9071A: Optimize your GSM output RF spectrum switching measurement
	Making power measurements on multiple bursts or slots? Use CALCulate:DATA<n>:COMPress?
	For More Information

	Programming in C Using the VTL
	Typical Example Program Contents
	Linking to VTL Libraries
	Compiling and Linking a VTL Program
	Example Program
	Including the VISA Declarations File
	Opening a Session
	Device Sessions
	Addressing a Session
	Closing a Session

	For More Information

	3 Programming Examples
	X-Series Spectrum Analyzer Mode Programing Examples
	89601X VXA Signal Analyzer Programming Examples

