Programmer’s Guide

Publication number 16500-97009
Second edition, April 1994

For Safety information, Warranties, and Regulatory
information, see the pages behind the index

©@ Copyright Hewiett-Packard Company 1987, 1990, 1893, 1994
All Rights Reserved

HP 16500B/16501A
Logic Analysis System

In This Book

This programmer’s guide contains general
information, mainframe level commands,
and programming examples for
programming the HP 16500B/16501 A
Logic Analysis System. This guide
focuses on how to program the system
over the HP-IB and the RS-232C
interfaces. However, if you have the
optional HP 16500L LAN Interface
Module, vou will need to use the

HP 165001 LAN Interface Module
User’s Guide along with this guide to
program the system over the LAN.
Along with the programmer’s guides for
the individual modules, this guide
provides a complete set of prograrmming
information for your systerm.

Organization

When you received your HP 165008 you
received two binders, Volume 1 and
Volume 2, The Volume 2 binder gives
you a place to insert the module
programmer’s guides when the Volume 1
binder is full.

As you purchase additional measurement
modules, inserf their programmer’s

. guides in the back of this binder or in the
second binder.

What is in the HP 16500B/16500A
Programmer’s Guide?

The HP 16500B/16501A Programmer’s
Guide 1s organized in three parts.

1 Introduction to Programming

2 Programming Over HP-1B

3 Programming Over RS-232C

4 Programming and
Documentation Conventions

5 Message Communication
and System Functions

6 Status Reporting

7 Error Messages

8 Common Commands

9 Mainframe Commands

10 | SYSTem Subsystem

1" MMEMory Subsystem

12 | INTermoduie Subsystem

13 | Programming Exampies

E

index

--.--. | | | |

Part 1 Part 1 consists of chapters 1 through 7 and contains general
information about programming basics, HP-IB and RS-232C interface
requirements, documentation conventions, status reporting, and error
messages. If you are already familiar with IEEE 488.2 programming and
HP-IB or RS-232C, you may want to just scan these chapters. If you are
new to programming logic analyzers you should read part 1.

Chapter 1 is divided into two sections. The first section, "Talking to the
Instrument,” concentrates on program syntax, and the second section,
"Receiving Information from the Instrument,” discusses how to send queries
and how to retrieve query results from the ingtrument.

Read either chapter 2, "Programming Over HP-IB," or chapter 3,
"Programming Over R5-232C" for information concerning the physical
connection between the HP 16500B/16501 A Logic Analysis System and your
controller.

Chapter 4, "Programming and Documentation Conventions," gives an
overview of ali instructions and also explains the notation conventions used
in the syntax definitions and examples.

Chapter b, "Message Communication and System Functions," provides an
overview of the operation of mstruments that operate in comphance with the
[EEE 488.2 standard.

Chapter 6 explains status reporting and how it can be used to monitor the
flow of your programs and measurement process.

Chapter 7 contains error message descriptions.

Part 2 Part 2, chapters 8 through 12, explain each command in the
cormnmand set for the mamframe. These chapters are organized in
subsystems with each subsystem representing a front-panel menu,

The commands explained in this part give you access to common commands,
mairframe commands, system level commands, disk commands, and
intermodule measurement commands. This part is designed to provide a
concise description of each command.

Part 3 Part 3, chapter 13, contains program examples of actual tagks
that show you how to get started in programming the HP 165008/
165601 A Logic Analysis System at the mainframe level, The complexity of
your programs and the tasks they accomplish are limited only by your
imagination. These examples are written in HP BASIC 6.2; however, the
program concepts can be used in any other popular programming
language that allows communications over HP-IB, R5-232C, or the
optional HP 16500L LAN Interface Module.

v

Part 1

Contents

General Information
Introduction to Programming
Introduction 1-~2

Talking to the Logic Analysis System 1-3

Talking to Individual System Modules 1-4
Initialization 1-4

Instruction Syntax 1-6

Output Command 1-6

Device Address 1-7

Instructions 1-7

Instruction Terminator 1-8

Header Types 1-8

Duplicate Keywords 1-10

Query Usage 1-11

Program Header Options 1-12
Parameter Data Types 1-13
Selecting Multiple Subsystems 1-15

Receiving Information from the Logic Analysis Systermn 1-16

Response Header Options 1-17

Response Data Formats 1-18

String Variables 1-19

Numeric Base 1-20

Numeric Variables 1-20

Definite-Length Block Regponse Data 1-21
Multiple Queries 1-22

System Status 1-23

Contents-1

Contents

2 Programming Over HP-IB

Interface Capabilities 2-3

Command and Data Concepts 2-3
Talk/Listen Addressing 2-3

HP-IB Bus Addressing 2-4

Local, Remote, and Local Lockout 2-5
Bus Commands 2-6

Programming Over RS-232C

Interface Operation 3-3

RS-232C Cables 3-3

Mintmum Three-Wire Interface with Software Protocel 3-4
Extended Interface with Hardware Handshake 3-6

Cable Examples 3-6

Configuring the Logic Analysis System Interface 3-9
Interface Capabilities 3-10

RS-232C Bus Addressing 3-11

Lockout Cormmand 3-12

Programming and Documentation Conventions

Truncation Rule 4-3

Infinity Representation 4-4

Sequential and Overlapped Commands 4-4
Response Generation 4-4

Syntax Diagrams 4-b

Notation Conventions and Definitions 4-5
The Command Tree 4-6

Tree Traversal Rules 4-8

Command Set Organization 4-9
Subsystems 4-10

Program Examples 4-12

Contents-2

5

Part 2

Message Communication and System Functions

Prosocols 53
Syntax Diagrams 5-5
Syntax Overview b-7

Status Reporting

Event Status Register 6-4

Service Request Enable Register 6-4
Bit Definitions 6-4

Key Features 6-6

Serial Poll 6-8

Parallei Poli: 6-9

Poliing HP-1B Devices 6-11
Configuring Paraliel Poll Responses 6-11
Conducting a Parallel Poll 6-12
Disabling Paraliel Poll Responses 6-13
HP-IB Comumands 6-13

Error Messages

Device Dependent Errorg 7-3
Command Errors 7-3
Execution Errors 7-4
internal Errors 7-4

Query Errors 7-b

Commands

Common Commands

*CLS {Clear Status) 8-5

*ESE (Event Status Enable) 8-6
*ESR (Event Status Register) 8-7
*IDN (Identification Number) 8-9
*IST (Individual Status) 8-9
*OPC (Operation Complete) 8-11
*OPT (Option Identification) 8-12

Contents

Contents-3

10

Contents

*PRI (Parallel Poll Enable Register Enable) 8-13
*RST {Reset) 8-14

*SRE (Service Request Enable) 8-156

*STB (Status Byte) 8-16

*TRG (Trigger) 8-17

*PST (Test) 8-18

¥WAL (Wait) 8-19

Mainframe Commands

"BEEPer 9-6

CAPability 9-7

CARDcage 9-8

CESE (Combined Event Status Enable) 9-10
CESR (Combined Event Status Register) 9-11
EOI (End Or Identify) 9-13

LER (LCL Event Register) 9-13

LOCKout 9-14

MENU 9-15

MESE<N> (Module Event Status Enable) 9-186
MESR<N> (Module Event Status Register) 9-18
RMODe 9-19

RTC (Real-time Clock) 9-20

SELect 9-21

SETColor 9-23

STARt 9-24

STOP 9-25

XWINdow 9-26

SYSTem Subsystem

DATA 10-5

DSP (Displayy 10-6
ERRor 10-7
HEADer 10-8
LONGform 10-9
PRINt 10-10
SETup 106-12

Contents—4

Contents

11 MMEMory Subsystem

AUToload 11-8

CATalog 11-9

CD (Change Directory) 11-10
cory 11-11

DOWNIload 1i-12

INITialize 11-14

LOAD [:CONFig] 11-15

LOAD :IASSembler 1116
MKDir (Make Directory) 11-17
MSI (Mass Storage Is) 11-18
PACK 11-19

PURGe 11-20

PWD (Present Working Directory} 11-21
REName 11-22

STORe {:CONFig] 11-23
UPLoad 11-24

VOLume 11-26

12 INTermodule Subsystem

INTermodule 12-4
DELete 12-5
HTIMe 12-6
INPort 12-7
INSert 128
PORTEDGE 12-9
PORTLEV 12-10
SKEW<N> 12-11
TREE 12-12
TTIMe 12-13

Contents-5

Part 3

13

Index

Contents

Programming Examples

Programming Examples

Transferring the Mainframe Configuration 13-3

Checking for Intermodule Measurement Completion 13-6
Sending (Jueries to the Logic Analysis System 13-7
Getting ASCII Data with PRINt? ALL Query 13-9
Reading the disk with the CATalog? ALL gquery 13-10
Reading the Disk with the CATalog? Query 13-11
Printing to the disk 13-12

Contents-6

-J W O b 9 RO

Part 1

Introduction to Programming -1

Programming Over HP-IB 2-1

Programming Over R5232C 3-1

Programming and Documentation Conventions 4-1
Message Communication and Systermn Functions 5-1
Status Reporting 6-1

Error Messages 7-1

General Information

Introduction to Programming

1-1

See Also

Introduction

This chapter introduces you to the basics of remote programming and
is organized in two sections. The first section, "Talking to the Logic
Analysis System," concentrates on initializing the bus, program
syntax and the elements of a syntax instuction. The second section,
"Receiving Information from the Logic Analysis System,” discusses
how gueries are sent and how to retrieve query results from the
systern.

The programming instructions explained in this book conform to
IEEE Std 488.2-1887, "IEEE Standard Codes, Formats, Protocols, and
Commoen Commands." These programming instructions provide a
means of remotely controlling the HP 165008 Logic Analysis System.
There are three general categories of use. You can:

e Set up the system and start measurements

¢ Retrieve setup information and measurement results from the
measurement modules

s Send measurement data to the measurement modules

The instructions listed in this manual give you access to the functions
of the mainframe. This programming reference is designed to provide
a concise description of each instruction for the mainframe.
Individual module instruction descriptions are in the Programmer’s
Guzide for each respective module.

Refer to the HP 165001, LAN Interface Module User’s Guide if you have the
optional HP 165001 LAN Interface Module.

Example

introduction to Programming

Talking to the Logic Analysis System

In general, computers acting as controllers communicate with the instrument
by sending and receiving messages over a remote interface, such as HP-IB,
RS-232C, or the opticnal Ethernet LAN interface module.

This guide focuses on the HP-IB and RS-232C interfaces, however, if you plan
to communicate over the LAN with the optional HP 16500L LAN Interface
Module, you will need to refer to the AP 16500L LAN Interface Module
User’s Guide to understand how to send the commands in this guide.

When programming the HP 16500B with the HP 16501 A Expansion Frame
connected, most of the remote operation of the expansion frame is
transparent. The only time a progamming command is affected by the
presence of the expansion frame is when the number of slots is specified or
returned from a query.

Instructions for programming the system will normally appear as ASCI
character strings embedded inside the output statements of & "host” language
available on your controller. The host language’s input statements are used
to read in responses from the system. For example, HP 9000 Series 300
BASIC uses the OUTPUT statement for sending cornmands and queries to
the system. After a query is sent, the response can be read in using the
ENTER statement. All programming examples in this manual are presented
in HI? BASIC.

This BASIC statement sends a command that causes the logic analyzer’s

machine 1 to be a state analyzer:

QUTPUT XXX; ":MACHINEL:TYPE STATE" <terminator:>

Bach part of the above statement is explained in this section.

Introduction to Programming
Talking to Individual System Maodules

Example

See Also

Talking to Individual System Modules

Talking to individual system medules within the HP 165008 Logic Analysis
System is done by preceding the module commands with the SELECT

cornmand and the mumnber of the slot in which the desired module is installed.

The mainframe is selected in the same way as an installed module by using
the SELECT 0 command

To select the module in slot 3 use the following:

QUTPUT XXX;":SELECT 3"

Chapter 6, "Mainframe Commands® for more information on the SELECT
command.

Initialization

To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command that clears the interface buffer. If you are using HP-IB,

‘CLEAR will alsc reset the parser in the logic analysis syster. The parser is

the program resident in the logic analysis system that reads the instructions
yvou send to it from the controller.

After clearing the interface, you could, for example, preset the logic analyzer
module to a known state by leading a predefined configuration file from the
disk.

Refer to your controller manual and programming language reference manual
for information on initializing the interface.

introduction to Pregramming
Initialization

Exampie This BASIC staterment would load the configuration file "DEFAULT " (if it

exists) into the system.

QUTPUT XXX; " MMEMORY:LOAD:CONFIG 'DEFAULT *

Example Program This program demonstrates a simple HP BASIC command structure used to
program the logic analysis syster.

10 CLEAR XXX !Initialize imnstrument interface

20 OQUTPUT XXX;*:SYSTEM:HEADER ON" [Turn headers on

30 OUTPUT ¥XX;F:SYSTEM:LONGFORM ON* {Turn longform on

40 DIM Cards[100] {Regerve memory for string variable

50 QUTPUT XXX; ¥ :CARDCAGE?" (Verify which modules are loaded

60 ENTER XXX¥;Card$ I[Enter result in a string variable

70 PRINT Caxrd$ [Print result of query

8C QUTPUT XXX; " :MMEM:LOAD:CONFIG 'TEST E/,5" iLoad configuration file

tinto module in slot E

90 QUTPUT XXX;":SELECT 5% i(8elect module in slot =

100 QUTPIT XXX; ":MENU 5,3: {Select menu for module in glot E

€0 QUTPUT XXX;":RMCODE SINGLE" ISelect run mode

70 QUTPUT EXX;":START" IRun the measurement

See Also Chapter 11, "MMEMory Subsystem” for more information on the LOAD
command.

Introduction to Pragramming
Instruction Syntax

Figure 1-1

Instruction Syntax

To program the system remotely, you must have an understanding of the
command format and structure. The [EEE 488.2 standard governs syntax
rules pertaining to how individual elements, such as headers, separators,
parameters and terminators, may be grouped together to form complete
instructions, Syntax definitions are also given to show how query responses
wiil be formatted. Figure 1-1 shows the three main syntactical parts of a
typical program statement: Qutput Command, Device Address, and
Instruction. The instruction is further broken down into three parts:
Instruction header, White space, and Instruction parameters.

INSTRUCTION
1

DUTPUT XXX;":SYSTEMIMENU DISPLAY,2”

QUTPUT COMMAND
DEVICE ADDRESS
INSTRUCTION HEADER
WHITE SPAGE
INSTRUCTION PARAMETERS

is5RaIR

Program Message Syntax

Output Command

The output command depends on the language yvou choose to use,
Throughout this guide, HP 9000 Series 300 BASIC 6.2 is used in the
programming examples. If you use another language, you will need to find
the equivalents of BASIC Commands, iike OUTPUT, ENTER and CLEAR in
order to convert the examples. The instructions are always shown between
the double quotes.

Introduction to Programming
Device Address

Device Address

The location where the device address must be specified also depends on the
host language that you are using. In some languages, this couid be specified
outside the output command. In BASIC, this is always specified after the
keyword OUTPUT. The examples in this manual use a generic address of
XXX, When writing programs, the number you use will depend on the cable
you use, in addition to the actual address. K you are using an HP-IB, see
chapter 2, "Programming over HP-IB." If you are using RS-232C, see

chapter 3, "Programming Over RS-232C." ¥ you are using the HP 16500L
L:AN option, see chapter 3 in the HP 16500L User’s Eeference.

Instructions

Instructions {both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or C.
The only time a parameter is not meant to be expressed as a string is when
the instruction’s syntax definition specifies <block_data>. There are just a
few instructions which use block data.

Instructions are composed of two main parts: the header, which specifies the
command or query to be sent; and the parameters, which provide additional
data needed to clarify the meaning of the instruction. Many queries do not
use any parameters.

Instruction Header

The instruction header is one or more keywords separated by colons (1), The
cornmand tree for the mainframe in figure 4-1 ilustrates how all the
keywords can be joined together to form a complete header (see chapter 4,
"Programming and Documentation Conventiong™).

The example in figure 1-1 shows a command. Queries are indicated by
adding & question mark (7} to the end of the header. Many instructions can
be used as either commands or queries, depending on whether or not you
have included the question mark. The command and query forms of an
instruction usually have different parameters.

Introduction to Programming
Instruction Terminator

When you look up a query in this programmer’s reference, you'll find a
paragraph labeled "Returned Format" under the one labeled "Query.” The
syntax definition by "Returned format" will always show the instruction
header in square brackets, like [: §YSTem: MENU], which means the text
between the brackets is optional. It is also a quick way to see what the
header looks like.

White Space

White space is used to separate the instruction header from the instruction
parameters. If the instruction does not use any parameters, white space
does not need to be included. White space is defined as one or more spaces.
ASBCH defines a space to be a character, represented by a byte, that has a
decimal value of 32, Tabs can be used onily if your controller first converts

- them to space characters before sending the string to the system.

Instroction Parameters

Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as: whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be looked
for. Each instruction’s syntax definition shows the parameters, as well as the
range of acceptable values they accept. This chapter’s "Parameter Data
Types" section has all of the general rules about acceptable values.

When there is more than one parameter, they are separated by cormrmas ().
White space surrounding the commas is optional.

Instruction Terminator

An instruction is executed after the instruction terminagor is received. The
terminator is the NL (New Line) character. The NL character is an ASCIL
linefeed character {decimal 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator,

Introduction to Programming
Header Types

Example

Example

Example

Header Types

There are three types of headers: Simple Command, Compound Command,
and Common Command.

Simple Command Header

Simple command headers contain a single keyword. START and STOP are
examples of simple command headers typically used in this logic analyzer.
The syntax is: <functicn><terminators

When parameters (indicated by <data>) must be included with the simple
command header, the syntax is: < functions=<white spaces<datas
<terminators>

:RMODE SINGLE<terminators

Compound Command Header

Compound command headers are a combination of two or more program
keywords. The first keyword selects the subsystem, and the last keyword
selects the function within that subsysterm. Sometimes you may need to list
more than one subsystem before being allowed to specify the function. The
keywords within the compound header are separated by colons. For
example, to execute a single function within a subsystem, use the following:
:<gubgystems:<functions<white_space><datas<terminators>

: SYSTEM : LONGFORM ON
To traverse down one level of a2 subsystem to execute a subsystem within
that subsystem, use the following:

<gsubsystem>: <subsystem>:<function><white_space>
<datar<terminator>

tMMEMORY : LOAD :CONFIG "FILE

Example

introduction to Programming
Dupiicate Keywords

Common Command Header
Common command headers control IEEE 488.2 functions within the logic
analyzer, such as, clear status, The syntax is:

*<oommand headers<terminators>
No white space or separator is allowed between the asterisk and the
command header. *CLS is an example of a common command header.

Combined Commands in the Same Subsystem

To execute more than one function within the same subsystem, a semicolon
{;) is used to separate the functions:

:<gubsystems: <function><white space><data>;<functions>
<white spaces<datas<terminator>

SYSTEM: LONGFORM ON; HEADER ON

Duplicate -Keywords

Identical function keywords can be used for more than one subsysterm. For

exampie, the function keyword MMODE may be used to specify the marker

mode in the subsystem for state listing or the timing waveforms:

e :SLIST:MMCDE PATTERN - sets the marker mode to pattern in
the state listing.

® :TWAVEFORM:MMCODE TIME - sets the marker mode to time in the
timing waveforms.

SLIST and TWAVEFORM are subsystern selectors, and they determine which
marker mode is being modified.

1-10

fntroduction to Programming
Query Usage

Exampie

Query Usage

Logic analysis system instructions that are irmmediately followed by &
question mark (7} are queries. After receiving a query, the logic analysis
system parser places the response in the output buffer. The output message
remaing in the buffer until it is read or unta! another instruction is issued.
When read, the message is transmitted across the bus to the designated
listener (typically a controiler).

Query commands are used to find out how the system is currently
configured. They are also used to get results of measurements made by the
modiles in the system.

This instruction places the current full-screen time for machine 1 of the logic
analyzer module, which is in slot 2, in the output buffer.

: SELECT 2:MACHINEL:TWAVEFORM:RANGE?

In order to prevent the loss of data in the output buffer, the output buffer
must be read before the next program rmessage is sent. Sending another
command before reading the result of the query will cause the output buffer
to be cleared and the current response to be logt. This will also generate a
"QUERY UNTERMINATED" error in the error queue. For example, when vou
send the query : SELECT 2 :TWAVEFORM : RANGE? you must follow that
with an input statement. In BASIC, this is usually done with an ENTER
statermnent.

In BASIC, the input statement, ENTER XXX; Range, passes the value
across the bus to the controller and places it in the variable Range.

Additional details on how to use queries is in the next{ section ¢f this chapter,
"Receiving Information from the Logic Analysis System."

Introduction to Programming
Program Header Optiens

Example

Program Header Options

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. System responses, however, are always
refurned in uppercase.

Both program command and guery headers may be sent in either long form
{complete spelling), short form (abbreviated spelling), or any combination of
long form and short form.

Programs written in long form are easily read and are almost self-
documenting. The short form syntax conserves the amount of controller
memory heeded for program storage and reduces the amount of VO activity.

The rules for short form syntax are discussed in chapter 4, "Programming and
Documentation Conventions.”

Either of the following examples turns on the headers and long form.
Long form:

OUTPUT XXX; " : SYSTEM:HEADER ON;LONGFORM ON®
Short form:

oUTPUT XXX; ":S8YST:HEAD ON;LONG ON®

1-12

Introduction to Programming
Parameter Data Types

See Also

Example

Example

Parameter Data Types

There are three main types of data which are used in parameters. They are
numeric, string, and keyword. A fourth type, block data, is used only for a few
instructions: the DATA and SETup instructions in the SYSTemn subsystem
{see chapter 10); the CATalceg, UPLoad, and DOWN1oad instructions in the
MMEMory subsystem (see chapterll). These syntax rules also show how data
may be formatted when sent back from the system as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more white spaces
arourd the commas, but it is not mandatory.

Numeric data

For numeric data, you have the option of using exponential notation or using
suffixes to indicate which unit is being used. However, exponential notation
is only applicable to the decimal number base. Do not combine an exponent
with a unit.

Tables 5-1 and 5-2 in chapter b, "Message Commumnications and System
Functions," list all available suffixes,

The following numbers are all equal:

28 = 0.28EZ = 280E-1 = 28000m = 0.028K.

The system will recognize binary, octal, and hexadecimal base numbers, The
base of a number is specified with a prefix. The recognized prefixes are #B

for binary, #Q for octal, and #H for hexadecimal. The absence of a prefix
indicates the number is decimal which is the default base.

The following numbers are all equal:

1-13

Introduction to Programming
Parameter Data Types

You may not specify a base in corjunetion with either exponents or unit
suffixes. Additionally, negative numbers must he expressed in decimal.

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,

truncating the number. Numeric parameters that accept fractional values are
called real numbers.

All numbers are expected to be strings of ASCIl characters. Thus, when
sending the number 9, you send a byte representing the ASCII code for the
character "9" (which is 57, or 0011 1001 in binary). A three-digit number,
like 102, wiil take up three bytes (ASCI codes 49, 48 and 50). This is taken
care of automatically when you include the entire instruction In a string,

String data

String data may be delimited with either single () or double ("} quotes.
String parameters representing labels are case-sensitive. For ingtance, the
iabels "Bus A" and "bus a® are unique and can not be used interchangeably.
Also pay attention to the presence of spaces, because they act as legal
characters just like any other. So, the labels "In" and " In" are also two
different labels.

Keyword data

In many cases a parameter must be a keyword. The available keywords are
always included with the instruction’s syntax definition. When sending
commands, either the long form or short form (if one exists) may be used.
Uppercase and lowercase letters may be mixed freely. When receiving
responses, uppercase letters will be used exclusively. The use of long form
or short form in a response depends on the setting you last specified via the
SYSTem:LONG{orm command.

introduction to Programming
Sefecting Multiple Subsystems

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems within the same selected module on the same iine by separating
each command with a semicolon. The colon following the semicolon enables
you to enter a2 new subsystem. <instruction headers><data>;
r<instruction headers<data><terminators>

Multiple commands may be any combination of simiple, compound and
comImon cormmands.

Exampie (SELECT 2:MACHINE]:ASSIGNZ; : SYSTEM: HEADERS ON

Example

introduction to Programming
Selecting Multiple Subsystems

Receiving Information from the Logic Analysis
System

After receiving a query (logic analysis system instruction followed by
a question mark), the system interrogates the requested function and
places the answer in its output queue, The answer remains in the
cutput queue until it is read, or, until ancther command is issued.
When read, the message is transmitted across the bus to the
designated listener (typically a controller). The input statement for
receiving a response message from system’s output queue usuzally has
two parameters: the device address and a format specification for
handling the response message.

All resuits for queries sent in a program message st be read before
another program message is sent. For example, when you send the
query : SYSTEM : LONGFORM?, you must follow that query with an
input statement. In BASIC, this is usually done with an ENTER
statement.

The format for handling the response messages is dependent on both
the controller and the programming language.

To read the result of the query command : SYSTEM: LONGFORM? you
can execute this BASIC statement to enter the current setting for the
long form command in the numeric variable Setting.

ENTER XXX; Setting

1-16

Introduction to Programming
Response Header Options

Examples

See Also

Response Header Options

The format of the returned ASCII string depends on the current settings of
the SYSTEM HEADER and LONGFORM cormmands. The general format is
<instruction_headers<spaces<datas<terminator:>

The header identifies the data that follows (the parameters} and is controlled
by issuing a : SYSTEM: HEADER ON/OFF command. If the state of the
header comimand is OFF, ondy the data is returned by the guery.

The format of the header is controlled by the : SYSTEM: LONGFORM
command. If long form is OFF , the header will be in its short form and the
header will vary in length, depending on the particular query. The separator
between the header and the data always consists of one space.

A command or query may be sent in either long form or short form, or in any
combination of long form and short form. The HEADER and LONGFORM
cormmands only control the format of the returned data, and, they have no
affect on the way commands are sent.

The following exampies show some possible responses for a
:SELECT 2 :MACHINEL : SFORMAT : THRESHOLD2 ? query:
with HEADER OFF:

<datar<terminators

with HEADER ON and LONGFORM OFT:

:8EL 2:MACHIL:SFOR:THR2 <white_space><datas<terminators
with HEADER ON and LONGEFCRM ON:

: SELECT 2 :MACHINEL: SFORMAT: THRESHOLDZ <white_space>
<datar><terminator>

Chapter 10, "SYSTem Subsysterm for information on turning the HEADER
and LONGFORM commands on and off,

1-17

introduction to Programming
Response Data Fermats

Examples

See Also

Response Data Formats

Both murbers and strings are returned as a series of ASCII characters, as
described in the following sections. Keywords in the data are returned in the
same format as the header, as specified by the LONGform command. Like
the headers, the keywords will always be in uppercase.

The following are possible responses to the :SELECT 2 :MACHINEL:
TFORMAT: LAB? ’“ADDR' query,

Heacer on; Longform on

(SELECT 2:MACHINEL: TFORMAT: LABEL "ADDR ",19,
POSITIVE<terminators

Header on;Longform off
:8EL 2:MACHL:TFOR:LAB "ADDR ",19,POSc<terminators
Header off; Longform on

"ADDR ", 19, POSITIVE<terminators

Header off; Longform off

*ADDR ", 19,P0OS<terminators>

The individual cornmands in Part 2 of this guide contain information on the
format {alpha or numeric) of the data returned from each query.

1-18

Introduction to Programming
String Variables

String Variables

Because there are so many ways to code numbers, the HP 16500B Logic
Analysis System handles almost all data as ASCII strings. Depending on your
host language, you may be able to use other types when reading in responses.

Sometimes it is helpful to use string variables in place of constants to send
instructions to the gystem, such as, including the headers with a query
TESPONSE.

Example This exampile combines variables and constants in order to make it easier to
switeh from MACHINEL to MACHINEZ in slot 3. In BASIC, the & operator is
used for string concatenation.

10 LET Machine$ = ":SELECT 3:MACHINE2* I!8end all instructions to machine 2 in
tslot 3

20 QUIPUT REX; Machinef & ":TYRE STATE" !Make machine a state analyzer

30 ! Assign all labels to be positive

40 OUTPUT XXX; Machine$ & " :SFORMAT:LABEL 'CHAN 1', P0OS*
50 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ‘CHAN 2/, POS"
60 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL 'OUT*, POS®

99 END
If you want to observe the headers for queries, you must bring the returned
data into a string variable. Reading queries into string variables requires little
attention to formatiing.

Example This command line places the output of the query in the string variable

Result$.

ENTER XXX ;Results

In the language used for this guide (HP BASIC 6.2), string variables are case-
sensitive and must be expressed exactly the same each time they are used.
The output of the system may be numeric or character data depending on

what is queried. Refer to the specific commands, in Part 2 of this guide, for
the formats and types of data returned from queries.

1-19

Example

Introduction to Programming
Numeric Base

The following example shows logic analyzer module data being returned to a
string variable with headers off:

10 QUTPUT XXX;":SYSTEM:HEADER OFF”

20 DIM Rang$[30]

30 OUTPUT X¥X;®:SELECT 2:MACHINEL:TWAVEFORM:RANGE?"

40 ENTER XXX;Rangd

50 PRINT Rangs

60 END

After running this program, the controller displays: +1.00000E~05

Numeric Base

Most numeric data will be returned in the same base as shown on screen,
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #() is the octal base and #H is the hexadecimal base. Hno
prefix precedes the returned numeric data, then the value is in the decimal
base.

Numeric Variables

H your host language can convert from ASCII to a numeric format, then you
can use numeric variables. Turmning off the response headers will help you
avoid accidently trying to convert the header into a number,

1-20

Example

Introduction to Programming
Definite-Length Biock Response Data

The foliowing example shows logic anatyzer module data being retumed to a
numeric variable.

10 QUTPUT XXX;":$YSTEM:HEADER OFF"

20 OUTPUT XXX;":SELECT 2:MACHINEL : TWAVEFORM:RANGE?"

30 ENTER X¥X;Rang

40 PRINT Rang

50 END

This time the format of the number (whether or not exponential notation is
used} is dependant upon your hoest language. In BASIC, the output will look
like: 1.7-5

Definite-Length Block Response Data

Definite-length block response data, also refered to as block data, allows any
type of device-dependent data to be transmitted over the system interface as
a series of dafa bytes. Definite-length block data is particularly useful for
sending large quantities of data, or, for sending 8-bit extended ASCII codes.
The syntax is a pound sign (#) followed by a non-zero digit representing the
number of digits in the decimal integer. Following the non zero digit is the
decimal integer that states the number of 8-bit data bytes to follow. This
nurmber is followed by the actual data.

Indefinite-length biock data is not supported on the HP16600B Logic Analysis
Systern.

1-21

Introduction to Programming
Multiple Queries

For example, for transmitting 80 bytes of data, the syntax would be:

Figure 1-2
NUMBER OF DIGITS
THAT FOLLOW
ACTUAL DATA
/’“‘n-’\h--"‘\
#802020082<eighty bytes of doto><itsrminctor>
iy it e
NUMBER OF BYTES
TO BE TRANSMITTED t5500/E 22
Definite-length Block Response Data
The "8" states the number of digits that follow, and "00000080" states the
number of bytes to be transritted, which is 80.
Multiple Queries
You can send multiple queries to the system within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a siring variable
or into multiple numeric variables.
Example You can read the result of the query :SYSTEM:HEADER?; LONGFORM? into

the string variable Results$ with the cormmand:

ENTER XXX; Resultss

When you read the result of multiple queries into string variables, each
response is separated by a semicolon.

1-22

Example

Example

Introduction to Programming
System Status

The response of the query :SYSTEM:HEADER?.LONGFORM? with HEADER
and LONGFORM turned on is:

: SYSTEM:HEADER 1; :SYSTEM: LONGFORM 1

If you do not need to see the headers when the numeric values are returned,
then you could use numeric variables. When you are receiving numeric data
into numeric variables, the headers should be turned off. Otherwise the
headers may cause misinterpretation of returned data.

The foliowing program message is used to read the query
SYSTEM:HEADERS?7,LONGFORM? into muitipie numetic variables:

ENTER XX¥; Resultl, Result2

See Also

System Status

Status registers track the current status of the mainfrarme and the installed
modules. By checking the system status, you can find out whether an
operation has been completed, whether a module is receiving triggers, and
more.

Chapter 6, "Status Reporting,” explains how to check the status of the system
and the installed modules.

1-23

1-24

Programming Over HP-1B

2-1

Introduction

This section describes the interface functions and some general
concepts of the HP-IB. In general, these functions are defined by
IEEE 488.1 (HP-IB bus standard}. They deal with general bus
management issues, as well as messages which can be sent over the
bus as bus commands.

Programming Over HP-IB
Interface Capabilities

Interface Capabilities

The interface capabilities of the HP 165008, as defined by [EEE 488.] are
SH1, AHI, TH, TEQ, L3, LEQ, SR1, RL1, PPg, DC1, DT1, CO, and E2.

Command and Data Concepts

Thre HP-IB has two modes of operation: command mode and data mode. The
bus is in command mode when the ATN line is true. The command mode is
used to send talk and listen addresses and various bus commands, such as a
group execute trigger (GET?. The bus is in the data mode when the ATN line
is false. The data mode is used to convey device-dependent messages across
the bus. These device-dependent messages include all of the commands and
responses found in chapters 9 through 12 of this guide for the mainframe and
the respective Programmer’s Guides for each module installed in the
mainframe.

See Also

Talk/Listen Addressing

By using the touchscreen fields in the System Configuration menu, the HP-IB
interface can be placed in either talk only mode, "Printer connected to
HP-IB," or in addressed talk/listen mode, "Controller connected to HP-IB."

Chapter 4, "The HP-IB and RS-232C Interfaces” in the HP 165008 User’s
Reference)

Programming Over HP-IB
HP-1B Bus Addressing

Talk only mode must be used when you want the system to talk directly to a
printer without the aid of a controller. Addressed talk/listen mode is used
when the system will operate in coniunction with a controller. When the
system is in the addressed talk/listen mode, the following is true:

* Each device on the HP-IB resides at a particular address ranging from 0 to
30.

e The aciive controller specifies which devices will talk and which will listen.

e An instrument, therefore, may be tatk-addressed, listen-addressed, or
unaddressed by the controller.

If the controller addresses the instrument to talk, it will remain configured to
talk until it receives:

¢ an interface clear message (IFC)
¢ another instrument’s talk address {OTA)
& its own listen address (MLA)

¢ a universal untalk (UNT) command.

if the controlier addresses the instrument to Hsten, it will remain configured
to listen until it receives:

® an interface clear message (IFC)
& its own talk address (MTA)

& zuniversal unlisten (UNL) command.

HP-IB Bus Addressing

Because HP-IB can address multiple devices through the same interface card,
the device address passed with the program message must include not only
the correct instrument address, but also the correct interface code.,

Interface Select Code {Selects the Interface)

Each interface card has its own interface select code. This code is used by
the controller to direct commands and communications to the proper
interface. The default is always "7" for HP-IB controllers.

2-4

Example

Programming Gver HP-IB
Local, Remote, and Local Lockout

Instrument Address (Selects the Instroment)

Each instrument on the HP-IB port must have a unique instrument address
between decimals 0 and 30. The device address passed with the program
message must include not only the correct instrament address, but also the
correct interface select code.

For example, if the instrument address is 4 and the interface select code is 7,
the instruction will cause an action in the instrument at device address 704,
DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument
Address)

Hint

Local, Remote, and Local Lockout

The local, remote, and remote with lecal lockout modes may be used for
various degrees of front-panel control while a program is running. The logic
analysis system will accept and execute bus commands while in local mode,
and the front panel will also be entirely active. If the HP 165008 is in remote
mode, the systemn will go from remote to local with any touchscreen, mouse,
or keyboard activity. In remote with local lockout mode, all controls (except
the power switch) are entirely locked out. Local control can onty be restored
by the controlier,

Cycling the power will also restore local control, but this wili also reset
certain HP-IB states. It also resets the system to the power-on defaults and
purges any acquired data in the acquisition memory of all the installed
modules.

The instrument is placed in remote mode by setting the REN (Remote
Enable} bus control ine true, and then addressing the instrument to listen.
The instrument can be placed in local lockout mode by sending the local
lockout (LLO) command. The instrument can be returned to local mode by

2-5

See Also

Programming Over HP-IB
Bus Commands

either setting the REN line false, or sending the instrument the go to local
(GTL) command.

SYSTem:LOCKout in chapter 9, "Mainframe Commands®

Bus Commands

The following commands are IEEE 488.1 hus commands (ATN true). IEEE
488.2 defines many of the actions which are taken when these commands are
received by the system.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the
inpuat and output buffers, reset the parser, clear any pending cormmands, and
clear the Request-OPC flag,

Group Execute Trigger (GET)

The group execute trigger command will cause the same action as the
START command for Group Run: the instrument will acquire data for the
active waveform and listing displays.

Interface Clear (IFC)

This command halts all bus activity, This includes unaddressing all listeners
and the talker, disabling serial poll on all devices, and returning control to the
system controller.

Programming Over RS-232C

3-1

Introduction

This chapter describes the interface functions and some general
concepts of the RS-232C. The RS-232C interface on this instrument
is Hewlett-Packard’s implementation of EIA Recommended Standard
RS-232C, "Imterfoce Between Data Terminal Equipment and Data
Commumnications Equipment Employing Serial Binary Data
Interchange." With this interface, data is sent one bit at a time, and
characters are not synchronized with preceding or subsequent data
characters. Each character is sent as a complete entity without
relationship to other events.

Programming Over RS-232C
Interface Operation

Interface Operation

The HP 165008 Logic Analysis System ean be programmed with a controller
over RS-2320 using either a minimum three-wire or extended hardwire
interface. The operation and exact connections for these interfaces are
deseribed in more detail in the following sections. When you are
programming an HP 165008 Logic Analysis System over RS-232C with a
controller, you are normally operating direcily between two DTE (Data
Terminal Equipment) devices as compared to operating between a DTE
device and a DCE (Data Communications Equipment) device.

When operating directly between two DTE devices, certain considerations
must be taken into account. For a three-wire operation, XON/XOFF must be
used to handle protocol between the devices. For extended hardwire
operation, protocol may be handled either with XON/XOFF or by
manipulating the CTS and RTS lines of the R5-232C link, For both three- wire
and extended hardwire operation, the DCD and DSR inputs to the logic
analysis system must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the logic
analysis gystem to send data, and a low disables the logic analysis system
data transmission. Likewise, a high on the RTS line allows the controller to
send data, and a low signals a request for the controller to disable data
transmission. Because three-wire operation has no confrol over the CTS
input, internal pull-up resistors in the logic analysis system assure that this
lire rermaing high for proper three-wire operation.

RS-232C Cables

Selecting a cable for the RS-232C interface depends on your specific
application, and, whether you wish to use software or hardware handshake
protocol. The following paragraphs describe which lines of the HP 165008
Logic Analysis system are used to control the handshake operation of the
R8-232C relative to the system. To locate the proper cable for your
application, refer to the reference manual for your computer or controller.
Your computer or controller manual should describe the exact handshake

Programming Over RS-2320
Minimum Three-Wire Interface with Software Protocol

protocol your controller can use to operate over the RS-232C bus. Alsoin
this chapter you will find HP cable recommendations for hardware handshake.

Minimum Three-Wire Interface with Software Protocol

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the logic analysis system and the
controller. The three-wire interface provides no hardware means to control
data flow between the controller and the logic analysis system, Therefore,
XON/OFF protocol is the only means to control this data flow. The
three-wire interface provides a much: simpler connection between devices
since you can ignore hardware handshake requirements.

The communications software you are using in your computer/controller must
be capable of using XON/XOFF exclusively in order to use three-wire interface
cables. For example, some communications software packages can use

XON/XOFF but are also dependent on the LTS, and D3R lines being true to
communicate,

The logic analysis system uses the following connections on its RS-232C
interface for three-wire commmunication:

s Pin 7 SGND (Signal Ground)
o Pin2 TD (Transmit Data from logic analysis system)

o Pin3 RD (Receive Data into logic analysis system)

The TD (Transmit Data) line from the logic analysis system must connect to
the RD (Receive Data) line on the controller. Likewise, the RD line from the
logic analysis systern must connect to the TD line on the controller. Internal
pull-up resistors in the logic analysis system assure the DCD, DSR, and CTS

lines remain high when you are using a three-wire interface.

Programming Over RS-232C
Extended Interface with Hardware Handshake

Extended Interface with Hardware Handshake

With the extended interface, both the software and the hardware can control
the data flow between the logic analysis systern and the controller. This
allows you to have more control of data flow between devices. The logic
analysis system uses the following connections on its R5-232C interface for
extended interface communication:

& Pin7 SGND (Signal Ground)
o Pin2 TD (Transmit Data from logic analysis system)
s Pin3 RD (Receive Datd into logic analysis system)

The additional lines you use depends on your controller's implementation of
the extended hardwire interface.

e Pin4d RTS (Request To Send) is an output from the logic analysis system
which can be used to control incoming data flow.

e Pinb CTS (Clear To Send) is an input to the logic analysis system which
controls data flow from the logic analysis system.

e Pn6 DSR {Data Set Ready) is an input o the logic analysis system
which conirols data flow from the logic analysis system within two bytes.

¢ Pin8 DCD {(Data Carrier Detect) is an input to the logic analysis system
which controls data fow from the logic analysis system within two bytes.

s Pin 20 DTR (Data Terminal Ready) is an output from the logic analysis
system which is enabled as long as the logic analysis system is turned on.

The TD (Transmit Data) line from the logic analysis system must connect to
the RD (Receive Data) line on the controller. Likewise, the RD line from the
logic analysis system must connect to the TD line on the controlier.

The RTS (Request To Send}, is an output from the logic analysis system
which can be used to control incoming data flow, A true on the RTS line
allows the controlier o send data and a false signals a request for the
controlier to disable data transmission.

The CTS {Clear To Send), DSR (Data Set Ready), and DCD (Data Carrier
Detect) lines are inputs to the logic analysis system, which control data flow
from the logic analysis system. Internal pull-up resistors in the logic analysis
systern assure the DCD and DSR lines remain high when they are not
connected. If DCD or DSR are connected to the controller, the controlier
must keep these lines along with the CTS line high to enable the logic
analysis system to send data to the coniroller. A low on any one of these

Programming Over RS-232C
Cable Examples

lines will disable the logic analysis system data transmission. Pulling the CTS
line low during data transmission will stop logic analysis system data
transmission immediately, Pulling either the DSR or DCD line low during
data transmission will stop logic analysis system data transmission, but as
many as two additional bytes may be transmitted from the logic analysis
system,

Figure 3-1

Cable Examples

HP 2000 Series 300

Figure 3-1 is an example of how to connect the HP 165008 Logic Analysis
System to the HP 98628A Interface card of an HP 9000 series 300 controller.
For more information on cabling, refer to the reference manual for your
specific controiler.

Because this example does not have the correct connections for hardware
handshake, you must use the XON/XOFF protocol when connecting the logic
analysis system.

P 165008
REAR PANZL

,,,,,,,,,,, - ——__
; =7 SRAZR

1 J E MNTERFACE TARD
[[5061-£216

242N
MALE-TO-MALEY DCE CPT00Z
FEMALE -TO-FEMALES

16302854

Cable Example

Figure 3-2

Programming Over RS-232C
Cable Examples

HP Vectra Personal Computers and Compatibles

Figures 3-2 through 3-4 give examples of three cables that will work for the
extended interface with hardware handshake. Keep in ming that these
cables should work if your commputer’s serial interface supports the four
cormron R3-232C handshake signals as defined by the RS-232C standard.
The four cormmon handshake signals are Data Carrier Detect (DCD), Data
Terminal Ready (DTR), Clear to Send (CTS), and Ready to Send (RTS).
Figure 3-2 shows the schematic of a 25-pin female to 25-pin male cable. The
following HP cables support this configuration:

s HP 172650, DB-25(F) to DB-25(M}, 1.2 meter
e P 172565F, DB-25(F) to DB-25(M), 1.2 meter, shielded.

In addition to the female-to-male cables with this configuration, a
male-to-male cable 1.2 meters in length is also available:

e HP 17255M, DB-25(M) to DB-25(M), 1.2 meter

Ly M

-] & (N

VRY vy

S4600MZE

25-pin {F} to 25-pin (M} Cable

3-7

Figure 3-3

Programming Over R3-232C
Cablie Examples

Figure 3-3 shows the schematic of a 25-pin male to 25-pin male cable b
meters in length. The following HP cable supports this configuration:

s HP 13242G, DB-25(M) to DB-25(M), 5 meter

25-pin M 2H-pin M
T -l -
2 P 3
3 Z
4 » 5
5 -l 28
5 *-—“J
7 - i
SR 4
12 - I 19
1 11
19 Ll e
20 T - 5

e
54500M24

25-pin {M} to 25-pin (M} Cable

Figure 3-4 shows the schematic of a 9-pin fermale to 25-pin male cable. The
following HP cables support this configuration:

e HP 24542G, DB-9(F) to DB-25(M), 3 meter
o HP 24542H, DB-9(F) to DB-25(M), 3 meter, shielded
s HP 45911-60009, DB-9(F) to DB-25(M), 1.5 meter

Figure 3-4

Programming Over RS-232C
Configuring the Logic Analysis System Interface

9-pin F 25-pin M
| 4
2 -t 2
3 P 3
4 P 5

N

5 - 7

6 -t] 29
8 -

7 ol

S4A500MES

9-pin (F}to 25-pin {M} Cable

Configuring the Logic Analysis System Interface

The R5-232C mena field in the Systern Configuration Menu allows you access
to the R5-232C Configuration menu: where the RS-232C interface is
configured. If you are not familiar with how to configure the RS-232C
interface, refer to chapter 4, "The HP-IB and R8232-C Interfaces” in the

HP 165008 Logic Analysts System User’s Reference.

3-9

Programming Over RS-232C
Interface Capabilities

Interface Capabilities

The baud rate, stop bits, parity, protocol, and data bits must be configured
exactly the same for both the contreller and the logic analysis system to
properly communicate over the RS-232C bus. The RS-232C interface
capabilities of the HP 165008 Logic Analysis System are listed below:

e Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2k
Stop Bits: 1,1.5,0r2

Parity: None, Odd, or Even

Protocol: None or XON/XOFF

Data Bits: 8

Protocol

NONE With a three-wire interface, selecting NONE for the protocol
does not allow the sending or receiving device to control data flow, No
control over the data flow increases the possibility of missing data or
transferring incormnplete data.

With an extended hardwire interface, selecting NONE aliows a hardware
handshake to occur. With hardware handshake, the hardware signals control
data flow.

XON/XOFF XON/XOFF stands for Transmit On/Transmit Off. With this
mode, the receiver (controller or logic analysis system) controls

data flow, and, can request that the sender (logic analysis system or
controller) stop data flow, By sending XOFF (ASCI 19) over its transmit
data line, the receiver requests that the sender disables data
transmission. A subseguent XON (ASCII 17) allows the sending device
to resume data transmission.

Data Bits

Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7 or
8 bits, depending on the application. The HP 165008 Logic Analysis

Systern supports 8 bit only.

8 Bit Mode Information is usually stored in bytes (8 bits at a time).
With &-bit mode, you can send and receive data just as it is stored,
without the need to convert the data.

3-10

See Also

Programming Over RS-232C
88-232C Bus Addressing

The controller and the HP 165008 Logic Analysis Systermn must be in the
same bit mode to properly communicate over the RS-232C. This means that
the contreller must have the capability to send and receive 8 bit data.

For more information on the RS-232C interface, refer to the HP 165008
Logic Analysis System User’s Reference. For information on RS-232C
voltage levels and connector pinouts, refer to the HP 165008 Logic Analysis
System Service Guide.

RS-232C Bus Addressing

The RS-232C address vou must use is dependent on the computer or
controiler you are using to communicate with the logic analysis system,

HP Vectra Personal Computers or compatibles

If you are using an HP Vecira Personal Computer or compatible, it must have
an unused serial port to which you connect the logic analysis system’s
RS-232C port. The proper address for the serial port is dependent on the
hardware configuration of your computer. Additionally, your
communications software must be configured to address the proper serial
port. Refer to your computer and communications software manuals for
maore information on setting up your serial port address.

HP 9000 Series 300 Controllers

Each RS-232C interface card for the HP 9000 Series 300 Controller has its
own interface select code. This code is used by the controiler for directing

_ commmands and communications to the proper interface by specifying the

correct interface code for the device address.

Generally, the interface select code can be any decimal value between 0 and
31, except for those interface codes which are reserved by the controller for
internal peripherals and other internal interfaces. This value can be selected
through switches on the interface card. For example, if your RS-232C
interface select code is 9, the device address required to communicate over
the RS-232C bus is 9. For more information, refer to the reference manual
for your interface card or controller.

Programming Over R§-232C
Lockout Command

Hint

See Also

Lockout Command

To lockout the front-panel controls, use the SYSTem command LOCKeut.
When this function is on, all controls {except the power swiich) are entirely
locked out. Local control can only be restored by sending the : LOCKout
CFF command.

Cycling the power will also restore local control, but this will also reset
certain RS-232C states. It also resets the logic analysis system to the
power-on defauits and purges any acquired data in the acquisition memory of
all the installed raodules.

For more information on this command see chapter 10, "System Commands."

3-12

Programming and
Documentation Conventions

4-1

Introduction

This chapter covers the programming conventions used in
programming the instrument, as well as the documentation
conventions used in this manual. This chapter also contains a detailed
description of the command tree and command tree traversal.

4-2

Programming and Bocumentation Conventions
Truncation Rule

Tahle 4-1

Truncation Rule

The truncation rule for the keywords used in headers and parameters is:

s If the long form has four or fewer characters, there is no change in the
short form. When the long form has more than four characters the short
form is just the first four characters, unless the fourth character is a
vowel. In that case only the first three characters are used.

There are some commands that do not conform to the truncation rule by design.

These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Truncation Examples

Long Form Short Form
OFF OFF

DATA DATA
START STAR
LONGFORM LONG
DELAY DEL
ACCUMULATE ACC

4-3

Programming and Documentation Conventions
Infinity Representation

Infinity Representation

The representation of infinity is 9.9E+37 for real numbers and 32767 for
integers. This is also the value retirmed when a measurement cannot be
made.

Sequential and Overlapped Commands

TEEE 488.2 makes the distinction between sequential and overlapped
commands. Sequential commands finish their task before the execution of
the next command starts. Overlapped commands ran concurrently; therefore,
the command following an overlapped command may be started before the
overlapped command is completed. The overlapped commands for the HP
165008 Logic Analysis System are STARt and STCP.

Response Generation

IEEE 488.2 defines two times at which query responses may be buffered,
The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it mnay read the
response. The HP 165008 Logic Analysis System will buffer responses o a
query when it is parsed.

4-4

Programming and Documentation Conventions
Syntax Diagrams

Syntax Diagrams

At the beginning of each chapter in Part 2, "Commands,” is a syntax diagram
showing the proper syntax for each command. Al characters contained in a
circle or oblong are literals, and must be entered exactly as shown. Words
and phrases contained in rectangles are names of items used with the
command and are described in the accompanying text of each command,
Each line can only be entered from one direction as indicated by the arrow
on the entry line. Any combination of commands and arguments that can be
generated by following the lines in the proper direction is syntactically
correct. An argument is optional if there is & path around it. When there isa
rectangle which contains the word "space,” a white space character must be
entered. White space is optional in many other places.

{13

XXX

Notation Conventions and Definitions

The following conventions are used in this manual when describing
programming rules and example.

Anguiar brackets enclose words or characters that are used to symbolize a
program: code parameter or a bus command

"is defined as." For example, A ::= B indicates that A can be replaced by B in
any statement containing A.

"or." Indicates a choice of one element from a list. For example, A!'B
indicates A or B, but not both.

An eliipsis (frailing dots) is used to indicate that the preceding element may
be repeated one or more times,

Square brackets indicate that the enclosed items are optional.
When several items are enclosed by braces and separated by vertical bars (1),
one, and only one of these elements must be selected.

Three Xs after an ENTER or OUTPUT statement represent the device
address required by your controller.

<NL.>

Programming and Documentation Conventions
The Command Tree

Linefeed (ASCII decimal 10).

The Command Tree

The command tree (figure 4-1) shows all commands in the HP 165008 Logic
Analysis System and the relationship of the commands to each other. You
should notice that the common commands are not actually connected to the
other commands in the command tree. After a <NL> (linefeed - ASCII
decirnal 10) has been sent to the instrument, the parser will be set to the root
of the command tree. Parameters are not shown in this figure. The command
tree allows you to see what the system's parser expects to receive. All legal
headers can be created by traversing down the tree, adding keywords until
the end of a branch has been reached.

Command Types

As shown in chapter 1, "Header Types,” there are three types of headers.
Each header has a corresponding cormmand type. This section shows how
they relate to the command tree,

System Commands The system commands reside at the top level of
the command tree. These commands are always parsable if they occur at
the beginning of a program message, or are preceded by a colon. START
ang STOP are examples of system commands.

Subsystem Commands Subsystem commands are grouped together
under a commeon node of the tree, such as the MMEMORY commands.

Common Commands Commaon commands are independent of the tree,
and do not affect the position of the parser within the tree. *CLS and
*RIT are exarmples of common commmands,

Programming and Documentation Conventions
The Command Tree

Figure 4-1
5Y3Ten MMEMory
#{ 1.5
vESE BESPer AUToiond
*ESH CAPabiity CATalog
#EN CARDCagE o
«iST CESE ‘ CoPY
*OPC LONGForm JOWNipDad
=0PT PRING NiTiaize
*PRE SETup LOAD CONFig]
#RST LOADIASSamDier
HORE MK D
=210 MS|
< TR PACK
*TST PURgZE
wWA BWD
REMG®ne
ST 0R=LCONEg)
JPLong
V0 Gme
HP 165008 Command Tree

PORTEDGE
PORTLEY

WID0ESE

47

Programming and Documentation Conventions
Tree Traversal Rules

Example 1

Tree Traversal Rules

Cormmand headers are created by traversing down the command tree. A

legal command header from the command tree in figure 4-1 would be
MMEMORY : INITIALIZE. This isrefered to as a compound header. As
shown on the tree, branches are always preceded by colons. Do not add
spaces around the colons, The following two rules apply to traversing the tree:

¢ A leading colon (the first character of a header) or a terminator places the
parser at the root of the command tree. For example, the colon preceding
MMEMORY (: MMEMORY) in the above example places the parser at the root
of the command tree,

s lixecuting a subsystem command places you in that subsystem until a
leading colon or a terminator is found. The parser will stay at the colon
above the keyword where the last header terminated. Any command
below that point can be sent within the current program message without
sending the keywords(s) which appear above them. For example, the
colon separating MMEMORY and INITIALIZE isthe location of the
parser when this compund header is parsed.

The following examples are written using HP BASIC 6.2 on a HP 9000 Series
300 Controiler. The quoted string is placed on the bus, followed by a carriage
return and linefeed (CRLF). The three Xs (XXX) shown in this manual after
an ENTER cr OUTPUT statement represents the device address required by
your controller,

In this example, the colon between SYSTEM and HEADER is necessary since
SYSTEM:HEADER is a compound command. The semicolon between the
HEADER command and the LONGFORM command is the required <program
message unit separators> | The LONGFORM cormmmand does not need
SYSTEM preceding it, since the S§YSTEM : HEADER cormraand sets the parser
to the SYSTEM node in the tree.

QUTPUT XXX; *:SYSTEM:HEADER ON; LONGFORM ON"

Example 2

Example 3

Programming and Documentation Conventions
Command Set Organization

In the first line of this example, the subsystem selector is implied for the
STORE command in the compound command. The STORE command musg
be in the same program message as the INITIALIZE command, since the
<program message terminators> will place the parser back at the root
of the command tree.

A second way to send these commands is by placing MMEMORY : before the
STORE command as shown in the fourth line of this example 2.

QUITPUT XXX; " :MMEMORY:INITIALIZE;STORE 'FILE ', 'FILE
DESCRIPTION'"
oY

OUTPUT XXX; " :MMEMORY: INITIALIZE"
CUTPUT XXX;":MMEMORY:STORE ‘IFILE ', 'FILE DESCRIPTION'®

In this example, the leading colon before SYSTEM tells the parser to go back
to the root of the command tree. The parser can then see the
SYSTEM: PRINT command.

QUTPLT X, "+ MMEM: CATALOG? ; : SYSTEM: PRINT ALLS

Command Set Organization

The command set for the HP 16500B Logic Analysis System mainframe is
divided into 5 separate groups as shown in figure 4-1. The command groups
are: cornmon commands, mainframe commands, and 3 sets of subsystem
commands. In addition to the command tree in figure 4-1, a command to
subsysterm cross-reference is shown in table 4-2.

Each of the 5 groups of commands is described in a seperate chapter in Part
2 "Commands." Each of the chapters contain a brief description of the
subsysterm, a set of syntax diagrams for those commands, and finally, the
commands for that subsystem in alphabetical order.

Programming and Documentation Conventions
Subsystems

The commands are shown in the long form and short form using upper and
lowercase letters. As an example, AUToXoad indicates that the long form of
the command is AUTOQLOAD and the short form of the command is AUT.
Each of the commands contain a description of the command, its arguments,
and the command syntax.

Subsystems

There are three subsystemns in the mainframe. In the cormmmand tree (figure
4-1) they are shown as branches, with the node above showing the name of
the subsystermn. Only one subsysterm may be selected at a time. At power on,
the command parser is set to the root of the command tree; therefore, no
subsystem is selected. The three subsystems in the HP 165008 Logic
Analysis System are:

¢ SYSTem - controls some BASIC funetions of the instrument.
* MMEMory - provides access to the internal disk drive.
& [NTermodule - provides access to the Intermodule bus (IMB).

Programming and Documentation Conventions
Subsystems

Table 4-2

Alphabetic Command Cross-Reference

Command Subsystemn Command Subsystem
*CLS Common INSert iNTermodule
*ESE Common LER Mainframe
*ESR Common LOAD MMEMory
*IDN Commen LOCKout Mainframe
*IST Common LONGform SYSTem
*0PC Common MENU Mainframe
*OPT Common MESE Mainframe
*PRE Common MESR Mainframe
*RST Common MKDir MMEMaory
*SRE Common MSH MMEMory
*STB Commoen PACK MMEMory
*TRG Common PORTEDGE INTermodule
*TST Common PORTLEV INTermoduie
*WAI Common PRINt SYSTem
AlTolpad MMEMory PURGe MMEMory
BEEPer Mainframe PWI MMEMory
CAPability Mainframe REName MMEMory
CARDcage Mainframe RMODe Mainframe
CATalog MMEMory RTC Mainframe
co MMEMory SElect Mainframe
CESE Mainframe SETColor Mainframe
CESR Mainframe SKEW INTermodule
COoPY MMERMaory STAR: Mainframe
DATA SYSTem STOP Mainframe
DELete INTermodule ST0Re MMEMory
DOWNIload MMEMory STup SYSTem
nse SYSTem TREE INTermodule
EOI Mainframe TTIMe INTermodule
ERRor SYSTem UPload MMEMory
HEADer SYSTem VOLume MMEMory
HTiMe INTermodule

INiTialize MMEMory

iNPort INTermodule

Programming and Documentation Conventions
Program Examples

Example

Program Examples

The program exarmples in chapter 13, "Programming Examples.” were written
on an HP 9000 Series 300 controlier using the HP? BASIC 6.2 language. The
programs always assume a generic address for the HP 165008 Logic Analysis
Systermn of XXX

In the examples, you should pay special attention to the ways in which the
cornmand and/or query can be sent. Keywords can be sent using either the
long form or short form (if one exists for that word). With the exception of
some string parameters, the parser is not case-sensitive. tppercase and
lowercase letters may be mixed freely. System commands like HEADer and
LONGEferm allow you to dictate what forms the responses take, but they have
no affect on how you must structure your commands and gueries.

The following cormmmands all set the logic analyzer’s Timing Waveform Delay
to 100 ms.

Keywords in long form, numbers using the decimal format.

OUIPUT XXX; " :SELECT 2:MACHINEL:TWAVEPCORM:DELAY 1"
Keywords in short form, numbers using an exponential format.

QUTPUT XXX;*:SEL 2:MACHEL:TWAV:DEL 1E-1"

Keywords in short form using lowercase letters, numbers using a suffix.

QUTPUT XX¥; ":sel Z:machli:twavidel 100ms*®

In these examples, the colon shown as the first character of the command is
optional on the HP 165008 Logic Analysis System. The space between DELay

and the argument is required.

4-12

Message Communication and
System Functions

b-1

Introduction

This chapter describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to
give you enough basic information about the IEEE 488.2 Standard to
successfully program the logic analysis system. You can find
additional detailed information about the IEEE 488.2 Standard in
ANSVIEEE Std 488.2-1987, "IEEE Standard Codes, Formats,
Protocols, and Common Commands.”

The HP 16500B Logic Analysis System is designed to be compatible
with other Hewlett-Packard IEEL 488.2 compatible instruments.
Instruments that are compatible with IEEE 488.2 must also be
compatible with IEEE 488.1 (HP-IB bus standard); however, [EEE
488.1 compatible instruments may or may not conform to the IEEE
488.2 standard. The IEEE 488.2 standard defines the message
exchange protocols by which the instrument and the controller will
cormmunicate, It also defines some common capabilities, which are
found in all IEEE 488.2 instruments. This chapter also contains a few
iterms which are not specifically defined by IEEE 488.2, but deal with
message communication or system functions.

The syntax and protocol for RS-232C program messages and response
messages for the HP 16500B Logic Analysis System are structured
very similar to those described by IEEE 488.2. In most cases, the
same structure shown in this chapter for IEEE 488.2 will also work for
RS5-232C. Because of this, no additional information has been
included for RS-232C.

Message Communication and System Functions
Protocols

Protocols

The protocols of IEEE 488.2 define the overall scheme used by the controller
and the instrument fo communicate. This includes defining when it is
appropriate for devices to talk or listen, and what happens when the protocol
is not followed.

Functional Elements

Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue The outpul quene of the instrument is the memory area
where all output data are stored until read by the controller.

Parser The instrument's parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing" refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
ingtrument recognizes a program message terminator (defined fater in
this chapter) or the input buffer becomes full. If you wish to send a long
sequence of commands to be executed and then talk to another
instrument while they are executing, yvou should send all the commands
before sending the program message terminator,

Message Communication and System Functions
Profocols

Protocol Overview

The instrument and controller communicate using program messages and
response messages. These messages serve as the containers into which sets
of program commands or instrument responses are placed. Program
messages are sent by the controller to the instrument, and response
messages are sent from the instrument to the controller in response to a
query message. A guery message is defined as being a program message
which containg one or more queries. The instrument wili only taik when it
has received a valid guery message, and therefore has something to say. The
controller should only attempt to read a response after sending a complete
query message, but before sending another program message. An important
rule to remember is that the instrument will only talk when prompted to, and
it then expects to talk before being told to do something else.

Protocol Operation

When the instrument is turned on, the input buffer and outpuf gueue are
cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete
program messages and response messages. This means that the controller
should always terminate a program message before attempting to read a
response. The instrument will terminate response messages except during a
hardcopy cutput.

If a query message is sent, the next message passing over the bus should be
the response message. The controller should always read the complete
response message associated with a query message before sending another
program message to the same instrument.

The instrument allows the controller to send rmultipie queries in one query
message. This is referred fo as sending a "compound query.” Asnoted in
chapter 1, "Multipie Queries,” multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a
compound query will also be separated by semicolons.

Cormmands are executed in the order they are received.

5-4

Message Communication and System Functions
Syntax Diagrams

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner. Some of the protocol exceptions are shown
below,

Command Error A command error will be reported if the instrument
detects a syntax error or an unrecognized command header,

Execution Error An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or guery.

Device-specific Error A device-specific error will be reported if the
nstrument is unable to execute a command for a strictly device
dependent reason.

Query Error A query error will be reported if the proper protocol for
reading a guery is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Syntax Diagrams

The example syntax diagram in this chapter is similar to the syntax diagrams
in the IEEE 488.2 specification. Cormmands and queries are sent to the
instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that foliows the direction of the arrows. If there is a path arcund an element,
that element is optional. If there is a path from right to left around one or
more elements, that element or those elements may be repeated as many
times as desired.

Message Communication and System Functions
Syntax Diagrams

Figure 5-1

I

5Y5Tan MOMJW {CATA -l spore el bigck.dula
e DATAT } -

\L_'}ATA.
o - iring o~
—D@?:D—h{ epace }7*&3 gifing &
(e — 3 -
E—— spoce —*#—P@ilﬁeri;j—hﬁ
— ! AT e -] spaceﬂg - G””HU j
oMt

er? -
rbC_EJNGfErm }m “““ ~—>{ space I -

55wl L paitnens G W

poibnore

ALL

:
L_ELDEK‘?ND -

WECOSN

Example syntax diagram

5-6

Message Communication and System Functions
Syntax Overview

See Also

Syntax Overview

This overview is intended o give a quick glance at the syntax defined by
IEEE 488.2. It will help you understand many of the things about the syntax
you need fo know.

IEEL 488.2 defines the blocks used to build messages which are sent to the
ingtrument. A whole string of commands can therefore be broken up into
individuai components.

Figure 5-1 is an example syntax diagram and figure 5-2 shows a breakdown of
an exampie program message. There are a few key items to notice:

* A semicolon separates commands from one another. Each program
message unit serves as a container for one cornmand. The program
message units are separated by a sernicolon.

e A program message is terminated by a <NL> (new line}. The recognition
of the program message terminator, or <PMT>, by the parser serves as a

signal for the parser to begin execution of commands. The <PMT> also
affects command tree traversal.

e Multiple data parameters are separated by a cormma.

o The first data parameter is separated from the header with one or more
spaces.,

® The header SYSTEM:LONGFORM OFF is an exampie of a compound
header. It places the parser in the machine subsystem until the «<NL> is
encountered.

A colon preceding the command header returns you to the top of the
command tree.

Chapter 4, "Programming and Documentation Conventions”

b-7

Message Communication and System Functions
Syntax Overview

Figure 5-2

SERT 3, 1, SKEW3 2.8 ns <NL>
é T

i |

<Erogron message unii>
INTERMOBUL E INSERT 3 1
H-\“““_H
—
e
e
<commscng program header> <program header seporolor> <progrom doic>
INTERMODULE : IKBERY 5 350
e i ES
Y /TN
H | SR, 8P
1 T
1 i
1 !
1
i
| |
1 <white spoce> <while spoce> |<while spoces

<pragrem mremonic> <progrom dole> <progrom doto seporoter> <program dotax
INGERT 3 y 1
H
H

<decimal numeric praograom dcoio> <dec:ime! numeric program daio>
3 1

<program messcge un:l separoier»
SR s8R

H <progrom messoge terminoaior>
i 57 <NL>

<program o message uni i

<white spacexr y <white spose> SKEW3 3.8

<white spuce> NG

<progrom hepder> <progrom necder separalor> <program caigk

SKEW3 aoF 3.8 ns
<whiie spoce> <gecime! pregram datae> <suffix progrom dota>
3.8 57 ns

<whiie spoce> <suffix muitipiier> <guffix wnii>

n S
16528/01 18

<program message> Parse Tree

Message Communication and System Functions
Syntax Overview

Upper/Lower Case Equivalence

Upper and lower case letters are equivalent. The mnemonic SINGLE has
the same semantic meaning as the mnemoenic single.

<white space>

<white space> isdefined to be one or more characters from the ASCIT set
of - 32 decimal, excluding 10 decimal (NL). <white space:> isused by

several instrurment listening components of the syntax. It is usually optional,
and can be used to increase the readability of a program. .

Suffix Multiplier The suffix multipliers that the instrument will accept
are shown in table 5-1.

Tabie 5-1 <suffix mule>
Value Mnemonic
1E18 EX
1E15 PE
1E12 T
1E9 G
1E6 MA
1E3 K
1E-3 M
1E-8 §]
1E-4 N
1E-12 P
1E-15 F
1E-18 A

Message Communication and System Functions
Syntax Overview

Suffix Unit The suffix units that the instrument will accept are shown

in table 5-2.
Tahle 5-2
<suffix unit>
Suffix Referenced Unit
v Voit
S Second

5-10

Status Reporting

6-1

Introduction

Status reporting allows you to use information about the instrument in
your programs, so that you have better control of the measurement
process. For example, you can use status reporting to determine
when a measurement is complete, thus controlling your program, so
that it does not get ahead of the instrument. This chapter describes
the status registers, status bytes and status bits defined by IEEE
488.2 and discusses how they are implemented in the HP 165008
Logic Analysis System. Also in this chapter is a sample set of steps
you use to perform a serial poll over HP-IB.,

The status reporting features available over the bus are the serial and
parallel polls. IEEE 488.2 defines data structures, commands, and
cormmon bit definitions. There are also instrument-defined structures
and bits.

The bits in the status byte act as surnmary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if
the queue is not empty. For registers, the surnmary bit is set if any
enabled bit in the event register is set. The events are enabled via the
corresponding event enable register. Events captured by an event
register remain set until the register is read or cleared. Registers are
read with their associated commands. The *CLS command clears all
event registers and all queues except the output queue, If *CLS is
sent iImmediately following a program message terminator, the output
gueue will also be cleared,

Figure 6-1

HE165008

HF 16 501A
CONNECTED

Status Reporting

NOTE. THE INDIVIDUAL BIT ASSIGNMENTS FOR THE MOQULE ZVENT REGISTERS ARE MODULE SPECFIC

[T | INTERMODULE EVENT
N
R
. LogaL 0’]
ENABLE
REGISTER
(MEZSEN
! LOSCAL OR | @
o o
o
[+] [a]

MESRD)

ENAGELD
STER
MESES)

MODULZ
{MESRE)

ENABLE
RECHS

i
1

or_ | °
el
o

MODULE & T REGSTER

R

~0R MGDUL
MESED

Status Byte Structures and Concepts

IR
YYYYYYY

MM M MMM i
[SRINRIDR R RIVRIRRI SRl N
WY (Bi7i4 |54 |3 T

FOR ALL MODU
LESR

LG AL OR

Z0O%
el

[GEELE)
< O

LOGICAL ©

QUEUES
O-BUTPUT

L0 READ 8Y LER?

FC

olc

L
V4$7' f
RTETHIL b
olsialc S
5B vl 8

STATUS
BYTS
(+ST8)

WS0085E

Status Reporting
Event Status Register

Event Status Register

The Event Status Register is an IREE 488.2 defined register. The bits in this
register are "latched.” That is, once an event happens which sets a bit, that
bit will only be cleared if the register is read.

Service Request Enable Register

The Service Request Enable Register is an 8-bit register. Fach bit enables
the corresponding bit in the statug byte to cause a service request, The sixth
bit does not logically exist and is always returned as a zero. To read and
write to this register, use the *SRE? and *SRE commands.

Bit Definitions

The following mnemonics are used in figure 6-1 and in chapter 8, "Common
Cornmands:"

MAY - message available
Indicates whether there is a response in the output queue.

ESB - event status bit

Indicates if any of the conditions in the Standard Event Status Register are
set and enabled.

MSS - masfer summary status

Indicates whether the device has a reason for requesting service. This bit is
returned for the *STR? query.

Status Reporting
Bit Definitions

RQS - request service

Indicates if the device is requesting service. This bit is returned during a
serial poll. RQS will be set to 0 after being read via a serial poll (MSS is not
reset by *STBE?).

MSG - message

Indicates whether there is a message in the message queue (Not
implemented in the HP 166008 Logic Analysis System).

PON - power on
Indicates power has been turned on.

URQ - user request
Always returns a 0 from the HP 165008 Logic Analysis System.

CME - command error
Indicates whether the parser detected an error.

The error numbers and trings for CME, EXE, DBE, and OYE can be read fru a
device-defined queue {which is not part of IEEE 488.2) with the query
:SYSTEMLERROR?.

EXE - execution error

Indicates whether a parameter was cut of range, or inconsistent with current
settings.)

DDE - device specific error

Indicates whether the device was unable to complete an operation for device
dependent reasons,

QYE - query error
Indicates whether the protocel for queries has been violated,

RQC - request control
Always returns a O from the HP 16500B Logic Analysis System,

Status Reporting
Key Features

OPC - operation complete

Indicates whether the device has completed all pending operations. OPC is
controlled by the *OPC common command. Because this command can
appear after any other command, it serves as a general-purpose operation
complete message generator.

LCL - remote to local
Indicates whether a remote to local transition has occurred.

MSB - module summary bit

Indicates that an enable event in one of the meodules Status registers has
occurred.

Example

Key Features

A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete

The IEEE 488.2 structure provides one technique that can be used to find
out if any operation is finished. The *0PC command, when sent to the
instrument after the operation of interest, will set the OPC bit in the
Standard Event Status Register. If the OPC bit and the RQS bit have been
enabled, a service request will be generated. The commands that affect the
OPC bit are the overlapped commands.

QUTPUT EXX; "*8RE 32 ; *ESE 1* lenables an QPC service
reguest

Status Byte

The Status Byte contains the basic status information which is sent over the
bus in a serial poll. 1f the device is requesting service (R@S set), and the
controller serial-polis the device, the RQS bit is cleared. The MSS (Master

6-6

Status Reporting
Key Features

Summary Status) bit (read with *$TB?) and other bits of the Status Byte are
not be cleared by reading them. Only the RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

Figure 6-2,

o BTATUS SUMMARY MESSAGES ——

UL e

golwa] 8 [2] 1 [o | | sratus eee ResisTER

SERVICE
REQUEST
GENERATION
'Y

~g— READ BY »2S5TB?

g} \&
i fv)
. \b
g ' r"
g @
g i

4
ol =t
=

——— (XTI Te) S3ds

*SRE <NRI>
«SRE?

pLL L2

Service Request Enabling

6-7

Status Reporting
Serial Poll

Serial Poll

The HP 165008 Logic Analysis System supports the IEEE 488.1 serial poll
feature. When a serial poll of the instrument is requested, the RQS bit is
returned on hit 6 of the status byte.

Using Serial Poll (HP-1B)

This example will show how to use the service request by conducting a serial
poll of ail instruments on the HP-IB bus. In this example, assume thas there
are two instruments on the bus: the logic analyzsis system at address 7 and &
printer at address 1.

The program command for serial poll using HP BASIC 6.21s Stat =
SPOLLL{707T). The address 707 is the address of the logic analysis system in
the this example. The command for checking the printer is Stat =
SPOLIL701) because the address of that instrument is 01 on bus address 7.
This command reads the contents of the HP-1B Status Register into the
variable called Stat. At that time bit 6 of the variable Stat can be tested to
seeifitis set (bit6 = 1),

The serial poll operation can be conducted in the following manner:

1 Enable interrupts on the bus, This allows the confroller to see the
SRQ line.

2 Disable interrupts on the bus.

3 If the SRQ line is high (some instrument is requesting service) then
check the instrument at address 1 to see if bit 6 of its status register is
high.

4 'To check whether bit 6 of an instruments status register is high, use
the following BASIC statemente: IF BIT (8tat, 5} THEN

5 Ifbit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6 Assoon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than
simpily reading the register. This cormmmand clears the bus automaticaily,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable} bus commands, and reads the data. For more
information about serial poll, refer to your controller manual, and
programming language reference manuals.

6-8

Status Reporting
Parallel Poll

After the serial poll is completed, the RQS bit in the HP 16500B Logic
Analysis System Status Byte Register will be reset if it was sef. Oncea bitin
the Status Byte Register is set, it will remain set until the status is cleared
with a *CIL.& command, or the instrument is reset.

Parallel Poll

Parallet poll is a controller initiated operation which is used to obtain
information from several devices simultaneocusty. When a controller initiates
a Parallel Poll, each device returns a Status Bit via one of the DIO data lines.
Device DIO assignments are made by the controller using the PPC (Paraliel
Poll Configure) sequence. Devices respond either individually, each ona
separate DIC line; collectively on a single DIO line; or any combination of
these two ways. When responding collectively, the result is a logical AND
{"T'rue High) or logical OR (True Low) of the groups of status bits.

Figure 6-3 shows the Parallel Poll Data Structure. The summary hit is sent in
response to a Parallel Poll. This summary bit is the "ist" (individual statas)
local message.

The Parallel Poll Enable Register determines which events are summarized in
the ist. The *PRE command is used to write to the enable register and the
*PRE? query is used to read the register. The *IST? guery can be used to
read the "ist” without doing a parallel poil.

Status Reporting

Paratlel Poll
Figure 6-3
DEVICE DEFINED CONDITIONS SUMMARY MESSAGE
NEREEEENEREERREN
DEVICE DEEINED [sTqa 1312 11]1e] o [8| [7 [wss[ess[wav[ic] 2 | 1 [wsa] Staraiin®
*57B?

-} \? ,
A
- C

I
ool &
1 ,")
&
. Ty
) TN
e I 9.
g - ® ¥
g e A
il &
b);
- \‘){y
- Dy
- ® 1

A
el 2
Op

Y

) | %‘D

PARALLEL POLL

TNDTVEDUAL ; 15 ‘ 14 [14 E 12 [n [2] 8] 8 ! | 7 1 8 E 5 E 4 I 3] 2 i 1 l @ | £NAELE“;§:EGISTER
SJIAS?TU';S *PRE?
16590./90.79

Paralie! Poll Data Structure

610

Status Reporting
Pglling HP-IB Devices

Polling HP-IB Devices

Parallel Poll is the fastest means of gathering device status when several
devices are connected to the bus. Each device (with this capahility)} can be
programmed to respond with one bit of status when parallel polled. This
makes it possible to obtain the status of several devices in one operation. Ifa
device responds affirmatively to & parallel poll, more information about its
specific status can be obtained by conducting a serizl poll of the device.

Example

Configuring Parallel Poll Responses

Certain devices, including the HP 16500B Logic Analysis System, can be
remotely programmed by a controller to respond to a parallel poll. A device
which is currently configured for a parallel poll responds to the poll by
placing its current status on one of the bus data lines. The response and the
data-bit number can then be programmed by the PPC (paraliel poll
configure} statement. No multiple listeners can be specified in thig
statement. If more than one device is to respond on a single bit, each device
must be configured with a separate PPC statement.

ASSIGN @Device TO 707
PPOLL CONFICURE @Device;Mask

6-11

Example

Status Reporting
Conducting a Parallel Poll

The value of Mask {(any numeric expression can be specified) is first rounded
and then used to configure the device’s parallel response. The least
significant 3 bits (bits 0 through 2) of the expression are used to determine
which data line the device is to respond on {place its status on). Bit 3
specifies the "rue” state of the paraliel poll response bit of the device, A
value of 0 implies that the device's response is 0 when its status bit message
is true,

The following statement configures the device at address 07 on the interface
select code 7 to respond by placing a 0 on bit 4 when its status response is
"true.”

PPOLL CONFIGURE 707;4

Example

Conducting a Parallel Poll

The PPOLL (Parallel Poll} function returns a single byte containing up to 8
status bit messages for all devices on the bus capable of responding to the
poll. Each bit returned by the function corresponds to the status bit of the
device(s) configured to respond to the parallel poll {one or more devices can
respond on a single line). The PPOLL function can ondy be executed by the
controller. H is initiated by the simultaneous assertion of ATN and EOL

Response = PPOLLI{7)

6-12

Status Reporting
Disabling Parallel Poll Responses

Examples

Disabling Parallel Poll Responses

The PPU (Paraliel Poll Unconfigure) statement gives the controller the
capabitity of disabling the parallel poll responses of one or more devices on
the bus.

The following statement disables device b only:

PPOLL UNCONFIGURE 705

This statement disables all devices on interface select code 8 from
responding to a parallel poli:

PPOLL, UNCONFIGURE 8

If no primary address is specified, all bus devices are disabled from:
responding to a parallel poll, If a primary address is specified, only the
specified devices (which have the parallel poll configure capability) are
disabled,

HP-IB Commands

The foliowing paragraphs describe actual HP-IB commands which can be
used to perform the functions of the Basic cornmands shown in the previous
exampies.

Parallel Poll Unconfigure Command

The paraliel poll unconfigure command (PPU) resets all parailel poll devices
to the idle state (unable to respond to a paraliel poll),

Parallel Polt Configure Command

The paraliel poli configure command (PPC) causes the addressed listener to
be configured according to the parallel poll enable secondary command PPE.

6-13

Tabie 6-1

Status Reporting
HP-1B Commantds

Parallel Poll Enable Command

The parallel poll enable secondary cormmand (PPE) configures the devices
which have received the PPC comruand 1o respond to a parallel poli on a
particular HP-IB DIO line with & particular level.

Parallel Poll Disable Command

The parallel poll disable secondary command (PPD} disables the devices
which have received the PPC command from responding to the parallet poll.

Parallel Poll Commands

Command

Parailet Polt Unconfigure
{Multiline Command}

Paralel Poll Configure
{Addressed Command)

Parallel Poll Enable
(Secondary Command)

Parallel Poll Disable
{Secondary Command)

Mnemonic

PPU

pre

PPE

PPD

Decimal
Code

21

85

96-111

112

ASCHASD
Character

NAK

ENQ

6-14

Error Messages

Introduction

This chapter lists the error messages that relate to the HP 16500B
Logic Analysis System.

Error Messages

Device Dependent Errors

Device Dependent Errors

200
201
202
203
300

Label not found
Pattern string invalid
Qualifier invalid
Data not available
R5-232C error

Command Errors

~100
-101
-110
-111
-120
-121
-123
~129
~130
-131
-132
-133
-134

Command error {unknown command){generic error)
Invalid character received

Command header error

Header delimiter error

Numeric argument error

Wrong data type (numeric expected)

Numeric overflow

Missing numeric argument

Non numeric argument error {character,string, or biock)
Wrong data type (character expected)

Wrong data type (string expected)

Wrong data type (block type #D required)

Data overflow {string or block too long)

~139 Missing non nrumeric argament

-142 Too many arguments
-143 Argument debimiter error
-144 Tnvalid message unit delimiter

Error Messages
Execution Errors

Execution Errors

-200
-201
-202
-203
-211
-212
~221
-222
. —232
-240
~241
-242
~-243
-244
~245
~246
-247
-248

Can Not Do {generic execution error)
Not executable in Local Mode
Settings lost due to retirn-to-local or power on
Trigger ignored

Legal command, but settings conflict
Argument out of range

Busy doing something else
Insufficient capability or configuration
Cutput buffer full or overflow

Mass Memory error (generic)

Mass storage device not present

No media

Bad media

Media full

Directory full

File name not found

Duplicate file name

Media protected

Internal Errors

-300
~301
-302
-303
-310
~311

Device Faiture (generic hardware error}
Interrupt fault

System Error

Time out

RAM error

RAM failure (hardware error)

Error Messages
Query Errors

-312 RAM data loss (software error)

~-313 Calibration data ioss

-320 ROM error

-321 ROM checksum

-322 Hardware and Firmware incornpatible
=330 Power on test failed

~-340 Self Test faited

~-3560 Too Many Errors (Error queue overflow)

Query Errors

~-400 Query Error (generic)

-410 Query INTERRUPTED

-420 Query UNTERMINATED

-421 Query received. Indefinite block response in progress
~-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

7-6

Part 2

8 Common Commands 8-1

9 Mainframe Commands 9-1
10 SYSTem Subsystem 10-1

11 MMEMory Subsystern 11-1
12 INTermodule Subsystem 12-1

Commands

Common Commands

Example

Introduction

The common commands are defined by the IEEE 488.2 standard.
These cormands must be supported by all instruments that comply
with this standard. Refer to figure 8-1 and table 8-1 for the common
cormands syntax diagram.

The common commands control some of the basic instrument
functions; such as, instrument identification and reset, how status is
read and cleared, and how commands and queries are received and
processed by the instrument. The common commands are:

o *CLS e *PRE
e *ESE ¢ *RST
s *LSR » *SRE
o *IDN * *STB
* *IST ¢ *TRG
» *OPC o *TST
e *OPT : e FWAI

Commeon commands can be received and processed by the HP 165008
Logic Analysis System, whether they are sent over the bus as separate
program messages or within other program messages. If an
instrument subsystem has been selected and a common command is
received by the instrument, the system will remain in the selected
subsystern.

If the program message in this example is received by the system, it
will initialize the disk and store the file and clear the status
information. This is not the case if some other type of command is
received within the program message.

" :I\MEMORY:INITIALIZE; *CLS; STORE 'FILE *, 'DESCRIPTION’"

8-2

Example

See Also

Common Commands

This program message initializes the disk, selects the module in slot A,
then stores the file, In this example, MMEMORY must be sent again
in order to reenter the memory subsystem and store the file.

"MMEMORY : INITIALIZE; : SELECT 1; :MMEMORY:STORE 'FILE 7,
"DESCRIPTION'"

Status Registers

Each status register has an associated status enable (mask) register.
By setiing the bits in the status enable register you can select the
status information you wish to use. Any status bits that have not been
masked (enabled in the enable register) will not be used to report
status summary information to bits in other status registers.

Chapter 6, "Status Reporting," for a complete discussion of how to
read the status registers and how to use the status information
available from this instrument, '

Common Commands

Figure 8-1

+CLS

*ESE)—D{ space

|..ﬁ
B
!

T

*QPC -

Y

!

= « * ® +* %

o fw] [[l 2l m

< L w 3 41 v

— [9] e Z A ™

nd ¥ -y e - ¥
f

?

[epsee b—sl oo

s

N | i y L 4 * Y Y

*RET

SRE)F——% spoce mask

*3RE?

1

+STB?

+«*TRG

«TST?

+WAT

0086

tesoessxat

Common Commands Syntax Diagram

8

i
=N

Tahle 8-1

Common Commands
*CLS (Clear Status)

Common Command Parameter Values

Parameter Vaiues
mask An integer, 0 through 255,
pre_mask An integer, 0 through 65535,

Command

Example

See Also

*CLS (Clear Status)

*CLS

The *CLS common command clears all event status registers, queues, and
data structures, including the device defined error gueue and status byte. I
the *CLS command immediately follows a program message terminator, the
output queue and the MAV (Message Availabie) bit will be cleared.

QUTPUT XAX; " *CLS™

Refer to chapter 6, "Status Reporting,” for a complete discussion of status.

8-b

Commen Commands
*ESE (Event Status Enable)

Command

<mask>

Exampie

Query

Returned Format

Example

See Also

*ESE (Event Status Enable)

*ESE <masks>

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a bit to enable the
status indicators detailed in tabie 8-2. A 1 in any bit position of the Standard
Event Status Enable Register enables the corresponding status in the
Standard Event Status Enable Register.

Aninteger from 0 to 255

In this exampile, the *ESE 32 command will enable CME (Command Error),
bit 5 of the Standard Event Status Enable Register. Therefore, when a
command error occurs, the event summary bit (ESB} in the Status Byte
Register will also be set,

QUTPUT XXX; "*ESE 327

*BESE?

The *ESE query returns the current contents of the enable register.

<mask><NL>

OQUTPUT XXX; "*ESE?"

Refer to Chapter 6, "Status Reporting" for a complete discussion of status.

Common Commands
*ESR (Event Status Register)

Table 8-2 Standard Event Status Enabie Register
Bit Position Bit Weight Enables
1 128 PON - Power On
6 B4 URQ - User Request
5 32 CME - Command Error
4 16 EXE - Execution Error
3 8 DBE - Davice Dependent Error
2 4 QYE - Query Error
1 2 RAC - Reguest Control
0 1 OPC - Operation Complete
*ESR (Event Status Register)
Query *ESR? .

Returned Format

<status>

Example

The *ESR query returns the contents of the Standard Event Status Register.
Reading the register clears the Standard Event Status Register.

<gtatus><NL>

An integer from 0 to 2556

If a command error has occurred, and bit 5 of the ESE register is set, the
string variable Esr_evert$ will have bit 5 (the CME bif) set.

10 oUTPUD XXX;"*ESE 32 {Enables bit 5 of the status register
20 QUTPUT XXX:"*ESR?" Queries the status regilster
30 ENTER XXX; Esr_event$S {Reads the query buffer

Common Commands
*ESR {Event Status Register}

Table 8-3 shows the Standard Event Status Register. The table details the
meaning of each bit position in the Standard Event Status Register and the
bit weight. When you read Standard Event Status Register, the value
returned is the total bit weight of all the bits that are high at the time you
read the byte.

Table 8-3 The Standard Event Status Register

Bit Position Bit Weight Bit Name Condition

7 128 PON 0 = register read - notin power up mode
1= power up
6 64 URQ 8 = user request - not used - always zerp
5 32 CME 0= no command errors
1= a command eror has been detected
4 18 EXE 0 = no execution errors
1= an execution error has heen detected
3 8 DDE 0 = no device dependent error has heen detected
1= a device dependent error has been detected
2 4 QYE 0 = no query errors
1=a query error has been detacted
1 z RaC 0 = reguest conirol - not used - always zero
i OoPC 0 = operation is not complete

1 = operation is complete

8-8

Common Commands
*IDN (Identification Number)

Ouery

Returned Format

<revision
code>

*IDN (Identification Number)

*IDN?

The *IDN? query allows the instrument to identify itself. It returns the siring:

YHEWLETT-PACKARD, 165008, 0,REV <revision_code>"

An *TDN? query must be the last query in a message. Any queries after the
*IDN? in the program message are ignored,
HEWLETT-PACKARD, 16500RB, 0, REV <revision codes

Four digit-code in the format XX . XX representing the current ROM revision.

Example OUTPUT XX¥;"*IDN? "
*IST (Individual Status)
Query *T8T?

Returned Format
<id>

1

0

The *IST query allows the instrument to identify itself during parallel poll by
allowing the controller to read the current state of the IEEE 488.1 defined
"ist’ local message in the instrument. The response to this query is
dependent upon the current status of the instrument.

Figure 8-2 shows the *IST data structure.

<id><NL>

Oor!
Indicates the "ist" local message is false.

Indicates the "ist? local message is true.

8-9

Common Commands
*IST {individual Status}

Example QUTEUT XHX; "*IET?
Figure 8-2
DEVICE DEFINED CONDITIONS SUMMARY MESSAGE
O N Tione > [s] sz]e] s8] [7 |wsslzselwviel] 2 [1 [use| SWcioin
~ETB?
f

- C
A A
i NS
- P
D1
D
5 \ﬁ) X
) ¢
8 - &
¢

[
A
e

o 2 ot

f"
- ® |
- ¢

¥
{?

PARALLEL POLL

INDIVIDUAL [1sjrafrafrelnfefofs] |7]e]s{4[a]z]:]2]ENABLE*pR@GIsTER
S‘TI%'[%S »PRE?
18539/8.20
*IST Bata Structure

8-10

Common Commands
*0PC (Operation Complete)

Command

Example

Query

Returned Format

Example

*OPC (Operation Complete)

*OPC

The *OPC command will cause the instrument to set the operation complete
bit in the Standard Event Status Register when all pending device operations
have finished. The commands which affect this bit are the overlapped
commands. An overlapped command is a command that allows execution of
subseguent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for the
HP 165008 are 8TARE and STOP.

QUTPUT XXX; "*opC*

*QpC?

The *OPC query places an ASCII "1" in the output queue when all pending
device operations have been completed.
1<NL>

OUTPUT XXX;"*0OpC?*

8-11

Common Commands
*OPT {Option Identification)

Query

Returned Format

<option>

<module>

Example

*OPT (Option Identification)

*OPpT?

The *OPT gquery identifies the software installed in the HP 16500B. This
query returng nine parameters. The first parameter indicates whether you
are in the System. The next two parameters indicate any soffware options
installed, and the next parameter indicates whether intermodule is available
for the System. The last five parameters list the installed software for the
modules in slot A through E for an HP 165008 mainframe. When an

HP 16501 A Expansion frame is connected, there will be ten parameters after
the INTERMODULE for moduies in slots A through J. A zero in any of the
last eight parameters indicates that the corresponding software is not
currently installed.

{SYSTEM}, {<option>|0}, {«option>10}, {INTERMODULEI O}, {<modules| 0}
, f<module> |0}, {(<module>{0}, {<module>i 0}, {<module>{0}

[, {<module>| 0}, {<module>i 0}, {<module>{0}, {<module> |0},
{<module>| 0}] <NL>

Narme of software option

Narme of module software

QUTPUT XXX; "*0OpT?"

8-12

Common Commands
*PRE {Parallel Pell Enabhle Register Enable)

Command

<pre_masks>

Example

Query

Returned format

<mask>

Example

See Also

*PRE (Parallel Poll Enable Register Enable)

*PRE <mask>

The *PRE command sets the parallel poll register enable bits. The Paralle]
Poli Enable Register contains a mask value that is ANDed with the bits in the
Status Bit Register to enable an "ist" during a parallel poll. Refer to table 84
for the bits in the Parallel Poll Enable Register and for what they mask.

Arn integer from 0 to 65535.

This example will allow the HP 165008 to generate an "ist" when a message is
available in the output queue. When a message is available, the MAV
{Message Available) bit in the Status Byte Register wili be high.

QUTPUT XXX;"*DPRE 16"

*PRE?

The *PRE? query returns the current vaiue of the register.

<mask><NL>

An integer from O through 65635 representing the sum of ail bits that are set. |

OQUIPUT XXX; "*PRE?"

Chapter 6, "Paraliel Poll,” for more informaion on how to conduct a parallel
polk,

8-13

Common Commands
*RST {Reset}

Table 8-4 HP 165608 Paralie! Poil Enable Register

Bit Position Bit Weight Enables

15-8 Not used

7 128 Notused

6 64 MSS - Master Summary Status
5 32 ESB - Event Status

4 16 MAV - Message Available

3 8 LEL - Local

Z 4 Notused

1 2 Notused

o } MSB - Module Summary

*RST (Reset)

The *RST command is not implemented on the HP 165008, The HP 165008
will accept this command, but the comrmand has no affect on the system.

The *RST command is generally used to place the system in a predefined
state. Because the HP 1656008 allows you to store predefined configuration
files for individual modules, or for the entire system, resetting the gystem can
be accomplished by simply loading the appropriate configuration file,

See Also For more information, refer to chapter 11, "MMEMory Subsystem."

8-14

Common Commands
*SRE {Service Request Enahie)

Command

<mask>

Example

Query

Beturned Format

<masks>

Examgple

See Also

*SRE (Service Request Enable)

*SRE <mask>

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits £o be
enabied in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A zero
will disable the bit. Refer to table 8-5 for the bits in the Service Regquest
Enable Register and what they mask.

An integer from {} to 255

This example enables a service request 10 be generated when a message is
available in the output queue. When a message ig available, the MAV
{Message Available)} bit will be high.

CUTPUT XXX; "*SRE 16"

*SRE?

The *SRE query returns the current value.

<mask><NL>

An integer from 0 to 255 representing the surn of all bits that are set,

QUTPUT XXX;"*SRE?"

Refer to Chapter 6, "Status Reporting," for a complete discussion of status.

8-15

Table 8-5

Common Commands
*STB (Status Byte)

HP 165008 Service Request Enahle Register

Bit Position Bit Weight Enables

15-8 notused

7 128 not used

B 64 MSS - Master Summary Status {always 0}
5 32 ESB - Event Status

4 16 MAV - Message Available

3 8 LCL- Locat

2 4 notused

1 2 not used

0 1 MSB - Module Summary

Query

Returned Format

<value>

Example

See Also

*STB (Status Byte)

*STE?

The *STB query returns the current value of the instrament’s status byte.
The MSS (Master Summary Status) bit, and, not the RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has at
least one reason for requesting service. Refer to table 8-6 for the meaning of
the bits in the status byte.

<value><NL>

An integer from (through 255

QUTPUT XXX;"*3STB?"

Refer to Chapter 6, "Status Reporting” for a complete discussion of status.

8-16

Common Commands

*TRG {Trigger)
Tabie 8-6 The Status Byte Register
Bit Position Bit Weight Bit Name Condition
7 128 { = not Used
8 64 MSS 0 = instrument has no reasen for service
= instrument is requesting service
5 32 ESB 8 = no event status conditions have occurred
t = an enabled event status condition has occurred
4 16 MAV 8 = no output messages are ready
1 = an output message is ready
3 8 LEL 0 = a remote-to-focal transition has not occurred
1 = a remote-to-tocal transition has occurred
2 4 not used
1 2 notused
G 1 MSB G = a module or the system has activity to report

1 = no actvity to report

0= False = Low
1= True = High

*TRG (Trigger)

Command *TRG

The *TRG command has the same effect as a Group Execute Trigger (GET).
That effect is as if the START command had been sent for intermodule group
run. If no modules are configured in the Intermodule menu, this coramand
has no effect.

Example CQUTPUT XXX; "*TRG"

Common Commands
*TST ({Test)

Cuery

Returned Format

<resuli>

Example

Table 8-7

*¥TST (Test)

*TST?

The *TST query returns the results of the power-up self-test. The result of
that fest is a 9-bit mapped value which is placed In the output queue. A one
in the corresponding bit means that the test failed and a zero in the
corresponding kit means that the test passed. Refer to table 8-7 for the
meaning of the bits returned by a TST? query.

<reguli><NL>

An integer 0 through 511

10 QUTPUT XXX:"*TgQT?H
20 ENTER XXX;Tst_vealue

Bits Returned by ¥TST? Guery (Power-Up Test Results)

Bit Position Bit Weight Test

] 256 Disk Test

7 128 not used

§ 64 not used

5 32 Front-panel Test
4 16 HIL Test

3 8 Display Test

2 4 Interupt Test

i 2 RAM Tast

8 f ROM Test

8-18

Common Commands
“WAI {Wait}

*WAI (Wait)

Command *WAT

The *WAI command causes the device to wait until compieting all of the
overlapped commands before executing any further coramands or queries.
An overlapped command is a commmand that aliows execution of subsequent
cormmands while the device operations initiated by the overlapped cormmand
are still in progress. Some examples of overiapped commands for the

HP 165008 are STARE and STOP.

Example: QUTPUT XXX; "*WAL"

8-19

8-20

Mainframe Commands

9-1

Introduction

Mainframe commands control the basic operation of the instrument
for both the HP 165008 mainframe alone or with the HP 16501A
expansion frame connected. Mainframe commands can be called at
anytime, and from any module. The only difference in mainframe
commands with an HP 16501 A connected is the number of slots and
modules. These differences will be noted in the affected command
descriptions.

The main difference between an HP 165008 alone and an HP 165008
- with the HP 16501A connected is how you specify the SELECT
command. Remember, the HP 16500B alone has only five slots;
therefore, if you specify 6 through 10 for the SELECT command in
your program, the command parser will take no action.

This chapter contains the mainframe commands with a syntax
example for each command. Each syntax example contains the
parameters for the HP 16500B/16601A, Refer to figure 9-1 and table -
9-1 for the Mainframe commands syntax diagram,

The mainframe commands are:

¢« BEEPer ¢ MESE

o CAPability e MESR

® (CARDcage RMODe
s CESE RTC

¢ CESR SELect

e EOI SETColor
e LER STARS

¢ LOCKout STOP

» MENU XWINdow

Figure 9-1

Mainframe Commands

Mainframe Commands Syntax Diagram

i/—wa--!
STy
— : -
—we{ MENU — spGre ! ‘v- matlule } i -
Lgy nens |
i
HE00517

9-3

Figure 9-1{continued)

Mainframe Commands

¥
—»@EE‘J)—DJ]—h—:fgu\a L i -
@—NL mass, 'E""J

MENL?) -
anabie_value 57%
—e{ RMODe? -

e ATC b SD&CWF b-\/,- = o MP-O »M E
(-—-/\ - pinLTe o

—

dispiay nome

Mainframe Commands Syntax Biagram (continued)

WHISLS

9-4

Table 9-1

Mainframe Commands

Mainframe Parameter Values

Parameter

value
module

menu
enable_value
index

day

month

year

hour

minute
second
color

hue

sat

lum

display name

Values

Aninteger from 0 to 65535,

An integer from —2 through 5 for an HP 165008 alone or from
-2 through 10 with an HP 18501A connected.

An integer,

Aninteger from 0 to 255,

Aninteger from 0to 5.

Aninteger from 1 through 31

An integer from 1 through 12

An integer from 1990 through 2089

An integer from 0 through 23

An integer from 0 through 59

&n integer from 0 through 59

Aninteger fom 110 7.

An integer from 0 to 100.

An integer from 6 to 100.

An integer from 010 100,

A string containing an Internet Address and a display name,
for example, 12.3.19.1:0.0".

Mainframe Commands
BEEPer

Command

Example

Query

Returned Format

. Exampie

BEEPer

:BEEPer [{ONI|1}I{OFF|0}]

The BEEPer command sets the beeper mode, which turns the beeper sound
of the instrument on and off. When BEEPer is sent with no argument, the
beeper will be sounded without affecting the current mode.

OUTPUT XXX; " :BEEPER"
QUTPUT XXX; " :BEEP ON"

: BEEPer?

The BEEPer? query returns the mode currently selected.
[:BEEPer] {1|0%<NL>

OUTPUT XXX; ¥ :BEEPER?"

Mainframe Commands
CAPability

Query

Returned Format

Example

Tahle 9-2

CAPability

:CAPability?

The CAPability query returns the IEEE 488.1 "Interface Requirements for

Devices" capability sets implemented in the device.

Table 9-2 lists the capability sets implemented in the HP 16500B.
[:CApability! IEEE488,1987,8HM1,AN1,T5,L4,8R1,RL1, 51,001,

DT1,C0, E2<NL>

OUTPUT XXX " :CAPARILITY?"

HP 16500B Capability Sets

Mnemonic Capability Name

SH Source Handshake

AH Acceptor Handshake

T Talker {or TE - Extended Talker)
L Listener tor LE - Extended Listener}
SR Service Reguest

RL Remote Locat

PP Paraliel Polt

De Device Clear

pT Device Trigger

C Any Controller

E Electricat Characteristic

Implementation
SH1
AH1
T5
L4
SRt
RL1
PPt
BE1
DTt
co
E2

Mainframe Commands
CARDcage

Query

Returned Format

<ID>

<assign>

Example

CARDcage

:CARDcage?

The CARDeage query returns a series of integers which identifies the
modules that are installed in the mainframe. For an HP 16500B alone, the
first five numbers returned are the card identification nurnbers (a -1 means
no card is in the slot). The remaining five numbers returned indicate the
module assignment for each card. The possible values for the module
assignment are 0, 1, 2, 3, 4, and 5 where 0 indicates an empty slot or the
module software is not recognized or not loaded. 1.5 indicates the number
of the slot in which the rmaster card for this card is located.

When an HP 16501A is connected, the first ten numbers returned are the
card identification mumbers (a -1 means no card is in the siot). The
remaining ten numbers returned indicate the module assignment for each
card. The possible values for the module assignment are & through 10 where
() indicates an empty slot or the module software is not recognized or not
loaded. 1...10 indicates the number of the slot in which the master card for
this card is located,

Table 9-2 lists the card identification numbers for the first five parameters
and their associated cards.

[:CARDcage]

<ID>, <ID>, <ID>, <ID>, <ID>, [<ID>, <ID>, <ID>, <ID>, <ID>,]
<agaignr, <assigne,<assigns>, <assigns>,<assigns>
[,<assign>, <assign>,<assigns>, <assign>, <assign>] <NL>

An integer indicating the card identification mumber.

An integer indicating the module assignment.

OUTPUT XXX; ":CARDCAGE?®

Table 9-2

Mainframe Commands
CARDcage

Card ldentification Numbers

Id Number

Card

HP 16515A 1 GHz Timing Master Card

HP 18516A 1 GHz Timing Expansion Card
HP 16530A Oscilioscope Timebase Card
HP 16531A Oscilloscope Acquisition Card
HP 16532A Oscilloscsope Card

HP 16528A Pattern Generator Master Card
HP 16521A Pattern Generator Expansion Card
HP 165118 Logic Analyzer Cards

HP 16510A or B Logic Analyzer Card

HP 16550A Logic Analyzer Master Card
HP 18550A Logic Analyzer Expansion Card
HP 16540A Logic Analyzer Card

HP 16541A Logic Analyzer Card

HF 16542A Logic Analyzer Master Card
HP 18542A Logic Analyzer Expansion Card

9-9

Mainframe Commands
CESE {Combined Event Status Enable)

Command

<values

Example

Query

. Returned Format
Example

CESE (Combined Event Status Enable)

:CESE <value>

The CESE command sets the Combined Event Status Enable register. This
register is the enable register for the CESR register and contains the
cormbined status of all of the MESE (Module Event Status Enable) registers
of the HP 165008, Table 9-3 lists the bit values for the CESE register.

An integer from O to 6565635

QUTPUT XXX;":CESE 32"

:CESE?

The CESE? query returns the current setting.
[:CESE] <«<value><NL>

QUTPUT XXX; " :CESE?Y

Mainframe Commands
CESR (Combined Event Status Register)

Table 9-3 HP 165008 Combined Event Status Enable Register
Bit Weight Enables
11-15 notused
10 1024 Module in siot J
g 512 Module in siot |
8 256 Module in slot 4
7 128 Module in slot &
6 64 Moduie in slot F
5 32 Moduie in slotE
4 16 Modute in slotD
3 8 Module in slotC
2 4 Module in slot B
1 2 Module in slot A
] 1 tntermodule

CESR (Combined Event Status Register)

Query s CESR? .

The CESR query returns the contents of the Combined Event Status register.
This register contains the combined status of alt of the MESRs (Module Event
Status Registers) of the HP 165008 System. Table -4 lists the bit values for
the CESR register.

Returned Format [:CESR] <value><NL>

<value> An integer from 0 to 656535

Example OUTPUT XXX;":CESR?"

9-11

Mainframe Commands
CESR {(Combined Event Status Register)

Table 9-4 HP 16500B Combined Event Status Register
Bit Bit Weight Bit Name Condition
11-15 0 = not used
10 1024 Muodule ¢ = No new status
1 = Status to report
g 512 Module | 0 = No new status
1 = Status to report
8 256 Madule H 0 = No new status
1= Status to report
) 128 Moduie G 0 = No new status
1 = Status to report
] B4 Module F 0 = No new status
1 = Status to report
5 32 Module E 0 = No new status
= Status to report
4 16 Module D 8 = No new status
1 = Status to report
3 8 Module C 8 = No new status
1 = Status to report
z 4 Module B 0= No new status
1= Status to report
] 2 Module A (= No new status
1 = Status to report
] 1 intermodule 0 = No new status

1 = Status to report

9-12

Mainframe Commands
EOI {End Or identify)

Command

Example

Query

Returned Format

EOI (End Or Identify)

:EOT {{ON]1}!{OFF|0}}

The EOI command specifies whether or not the last byte of a reply from the
instrument is to be sent with the EOI bus control line set true or not. If EOI
is turned off, the logie analyzer will no longer be sending JEEE 488.2
compliant responses.

OUTPUT XXX;":EOL ON®

cEOIY

The EOI? query returns the current status of EOL
[:BEOT] {110}<NL>

Example QUTPUT XXX; ":FOI?"
LER (LCL Event Register)
Query : LER?

Returned Format

The LER query allows the LCL Event Register to be read. After the LCL
Event Register is read, it is cleared. A one indicates a remote-to-local
transition has taken place. A zero indicates a remote-to-local transition has
not taken place.

[:LER] {0]1}<NL>

Mainframe Commands
LOCKout

Example OUTPUT XXX;":LER?"
LOCKout
Command :LOCKout {{ON|1}]|{OFFI0}}
 The LOCKout command locks out or restores front panel operation. When
this function is on, all controls (except the power switch) are entirely locked
out.
Exampie OUTPUT XXX; ":LOCKOUT ON"

. Query

Returned Format

Example

: LOCKoutL?

The LOCKout query returns the current status of the LOCKout command.
[LOCKout {0i1ly<NL>

CUTPUT XXX; " :LOCKQOUT?*®

9-14

Mainframe Commands
MENU

Command

<modules>

<mernus>

Example

Table 9-5

MENU

:MENU <modules |, <menu>]

The MENU command puis a menu on the display. The first parameter
specifies the desired module. The optional second parameter specifies the
desired menu in the module {defaults to 0). Table 9-5 lists the module
parameters. The mainframe menus and their parameters are listed in table
9-6.

Selects module or systern. An integerfrom -2 through 5 for HP 165008 only
or an integer from -2 through 10 with an HP 16501A connected.

Selects menu (integer}

QUTPUT KXX; " :MENU G, 1"

First Parameter Values

Parameter Men
0 System/Iintermodule
1 Module in slotA
2 Module in slotB
3 Maodule in slotC
4 Meodule in slotD
5 Module in slotE

-1 Software option 1
-2 Software option 2
Available when an HP 16501A is connected:
6 Medule in slotF

7 Module in slot G

8 Module in slotH

g Module in sloti

10 Module in slotJ

9-15

Tabie 9-6

Query

Returned Format

Example

Mainframe Commands
MESE<N> {Module Event Status Enable)

System Menu Values

Menu Command Parameters Menu

MENU 0.0 System Configuration menu
MENU 8,1 Hard disk menu

MENL 0,2 Fiexible disk menu

MENU 0,3 Lkilities menu

MENU G4 Test menu

MENU 0,5 tntermodule meny
+MENU?

The MENU query returns the current mer selection.
[:MENU] <modules, <menus><NL>

QUITRPUT XXX, " :MENU?"

Command

<N>

<enable_value>

MESE<N> (Module Event Status Enable)

:MESE«<N> <enable _values>

The MESE command sets the Module Event Status Enable register. This
register is the enable register for the MESR register. The <N> index
specifles the module, and the parameter specifies the enable value. For the
HP 165008 alone, the <N> index 0 through b refers to system and modules 1
through b respectively, With an HP 16501 A connected, the <N> index 6
through 10 refers to modules 6 through 10 respectively. Table 9-7 lists the
Module Event Status Enable register bits, bit weights, and what each bit
masks for the mainframe.

An integer 0 through 10

An integer from 0 through 255

5-16

Example

Query

Returned Format

Example

Tahle 9-7

Mainframe Commands
MESE<N> (Moduie Event Status Enakle)

QUTPUT XXX;":MESEL 3°

tMESE<N=>7?

The query returns the current setting. Table 8-7 lists the Module Event
Status Enable register bits, bit weights, and what each bit masks for the
mainframe.

[MESE<N>] <enable value><NL>

QUTPUT XXX; ":MESEL?"

HP 1650CE Mainframe (Intermodule} Module Event Status Enable Register

Bit Position Bit Weight Enables

b 128 not used

B 84 not used

5 32 not used

4 18 not used

3 8 not used

2 4 not used

1 2 RNT - intermodule Run Until Satisfied

0 1 MC - Intermodule Measurement Complete

Mainframe Commands
MESR<N> (Madule Event Status Register)

Query

Returned Format

<N>

<enable_value>

Example

Table 9-8

MESR<N> (Module Event Status Register)

tMESR<N>7?

The MESR guery returms the contents of the Module Event Status register.
The <N> index specifies the module. For the HP 165008 alone, the <N
index 0 through b refers to system and modales } through 5 respectively.
With an HP 16501 A connected, the <N> index 6 through 10 refers to modules
6 through 10 respectively.

Refer to table 9-8 for information about the Module Event Status Register
bits and their bit weights.

{:MESR<N>] <enable_value><NL>

Aninteger 0 through 1.

An integer from 0 through 255

QUTPUT XXX;":MESR17?"

HP 16500B Mainframe Module Event Status Register

Bit Bit Weight Bit Name Condition
7 128 0 = not used
6 64 0 = not used
5 32 0 = not used
4 16 {0 = not used
3) 0 = not used
2 4 0 = not used
1 2 RNT 0 = Intermodule Run until not satisfied
1 = Intermodule Run untl satisfied
0 1 MC 0 = Intermodule Measurement not satisfied

1= Intermodule Measurement satisfied

Mainframe Commands
RMODe

Command

Example

Query

Returned Format

Example

RMODe

:RMCDe {SINGle|REPetitive}

The RMODe command specifies the run mode for the selected module (or
Intermocdiule}. If the selected module is in the infermodule configuration,
then the intermodule run mode will be set by this cormmand.

After specifying the run mode, use the STARt command to start the acquisition.

QUTPUT XXX;":RMODE SINCGLE"

1RMODe?

The query returns the current setting.
[:RMODe] {(SINGle!|REPetitivei<NL>

QUTPUT XXX; " :RMODE?"

9-19

Mainframe Commands
RTC {Real-time Clock)

Command

<day>
<month>
<year:s>
<hours>
<minutes

<second>

. Example

Query

Returned Format

Example

RTC (Real-time Clock)

:RTC <days>,<months, <yvears>,<hours>, <minutes»,<second>

The real-time clock command allows vou to set the real-time clock to the
current date and time,

integer from 1 to 31
mteger from 1 to 12
integer from 1990 to 2089
integer from 0 to 23
integer from {) to B9

mteger from 0 to b9

This example sets the real-time clock for 1 January 1992, 20:00:00 (8 PM).

OQUTPUT XXX;":RTC 1,1,18582,20,0,0"

tRTC?

The RTC query returns the real-time clock setting.
IRTCT <day>, <monih>, <year>, <hour>, <minute>, <second>

QUTPUT XXX; " :RTC?"

9-20

Mainframe Commands
SELect

Command

<mcdule>

Example

Query

Returned Format

Exampie

SELect

:8ELect <module>

The SELect command selects which module (or system) will have parser
control. The appropriate module {or system) must be selected before any
medule (or system) specific commands can be sent. SELECT (selects
System, SELECT 1 through b selects modules A through E in an HP 165008
only. SELECT 1 through 10 selects modules A through J when an HP 16501A
is connected, -1 and -2 selects software options 1 and 2 respectively. The
query returns the current module selection.

When a module is selected, the parser recognizes the module’s comunands
and the Systemv/Intermodule commands. When SELECT 0 is used, only the
System/Intermodule commands are recognized by the parser, Figure 9-2
shows the command tree for the SELect command.

Selects module or systerm. An integer from -2 through b for HP 165008 only
or an integer from -2 through 10 with an HP 16501A connected.

QUTPUT XXX; ":SELECT 0"

:SELect?

The SELect? query returns the current module selection.
[:8ELect] <module><NL>

QUTPUT XXX, ":SELECT?®

9-21

Mainframe Commands
SELect

Figure 9-2
SSELECT
2 (SELEGTS SYSTEM/INTERMOGULE)
1 {SELEGTS MODULE IN SLOT A)
— 2 (SELECTS MODULE IN SLOT B)
3 {SELECTS MODULE IN SLOT C)
o & e (SELECTS MODULE IN SLGT DY
5 (SELECTS MODULE IN SLOT £)
— (SELECTS MODULE IN SLOT F)
Only available when 7 ——— {SELECTS MODULE IN SLOT G)
an HP 165081A is
connected 8 (SELECTS MODULE IN SLOT H)
L g ——— (SELEGTS MODULE IN SLOT I)
— 1a—— (SELECTS MODULE IN SLOT J)
=1 e { SELECTS OPTION 1)
e 2 ———— (SELEGTS OPTION 2)

TES0034 7

Select Command Tree

9-22

Mainframe Commands
SETColor

Command
<colors>
<huas>
<gat>
<lum>
Example

SETColor

:SETColor {<colors, <hues,<sat>, <lum>|DEFault}

The SETColor command is used to change one of the color selections on the
CRT, or to return to the default screen colors. Four parameters are sent with
the command to change a color:

e Color Number {first parameter)
s Hue (second parameter)

Saturation (third parameter)

Luminesity (last parameter)

An integer from 1307
An integer from 0 to 100
An integer from 0 to 100

An integer from 0 to 100

Color Number 0 cannot be changed.

CUTPUT XXX;':8ETCCLOR 3,60,100,60"
OUTPUT XXX;":SETC DEFAULTH

9-23

Mainframe Commands
STARt

Query 1 SETColor? <color>

The SETColor query returns the hue, saturation, and luminosity vaives for a
specified color.

Returned Format [:SETColor] <colors,<hues, <sats>, <lums><NL>
Example QUTPUT XXX;®:SETCOLOR? 3°
STARt
Command : STARL
The STARt command starts the selected module (or Intermodule) running in
. the specified run mode (see RMODe}. If the specified module is in the
Intermodule configuration, then the Intermodule run will be started.

The STARt command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device

operations initiated by the overlapped command are still in progress,

Example OUTPUT XXX; ®:START"

9-24

Mainframe Commands
STOP

STOP

Command : STOP

The STOP command stops the selected module (or Intermoduie). If the
specified modute is in the Intermodule configuration, then the Intermodule
run will be stopped.

The STOP command is an overlapped command. An overfapped commandis a
command that aliows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

Example QUIPUT XXX; ": STOP"

9-25

Mainframe Commands
XWiNdow

Command

<display name>

. Examples

XWINdow

XWINdow {CQFFi0}
:XWINdow {ON| 13 [, <display name>]

The XWINdow command opens or closes a window on an X Window display
server, that is, a networked workstation or personal computer. The
XWiNdow ON command opens a window. If no display name is specified, the
display name already stored inn the HP 16500B X Window configuration menu
is used. If & display name is specified, that name is used. The specified
display name aiso is stored in non-volatile memory in the HP 165008,

A string containing an Internet (IP) Address optionally followed by a display
and screen specifier. For example,
"l2.3.47.11"

or
"12.3.47.1L:0.0°

To open a window, specifying and storing the display name:

OUTPUT XXX; " :XWINDOW ON,’12.3.47,11'"

To open a window, using the stored display name;
QUTPUT X¥¥; " : XWINDOW ON*

To close the X Window:

QUTPUT XXX; " : XWINDOW OFF ™

9-26

10

SYSTem Subsystem

10-1

Introduction

SYSTem subsystem commands control functions that are cornmon to
the entire logic analysis system, including formatting query responses
and enabling reading and writing to the advisory line of the
instrument.

Refer to figure 10-1 and table 10-1 for the SYStem Subsystem
commands syntax diagram. The SYSTem Subsystem commands are:
e DATA

e DSP

¢ ERRor

e HEADer

e LONGform

¢ PRINt

¢ SETup

10-2

SYSTem Subsystem

Figure 10-1
]
@?E 1
- + o
e
e (inmg)

lllll WS0052Z

System Subsystern Commands Syntax Diagram

10-3

SYSTem Subsystem

Table 10-1 8YSTem Parameter Values
Parameter Values
block_data Data in {EEE 488.2 format.
string A string of up to 68 aiphanumeric characters.
pathname A string of up to 10 alphanumeric characters for LIF in the
following form:
or

A string of up to 64 alphanumeric characters for DOS in one of
the foliowing forms:

NHNNNNNKN . KN when the file resides in the present working
directory

or

\NAME_DIRWILENAME when the files does not reside in the
presentworking directory

10-4

SYSTem Subsystem
DATA

Command

Example

<block_data>

<block_length__
specifier>

<length>

<gection>

<gection.,

headers>

<gection_data>

DATA

:8¥YSTem: DATA <block _data>

The DATA command allows yvou to send and receive acguired data to and
from a controlier in block form. This helps saving biock data for:

s Reloading the logic analysis system

8 Processing data later in the logic analysis system

e Processing data in the controller.
The format and length of block data depends on the instruction being used
and the configuration of the instrument. This chapter describes briefly the
syntax of the Data command and query; however, the mainframe by itself
does net have acquired data. Therefore, the DATA command and query are
described in detail in the respective module Programmer’s Guides.
Because the capabilities of the DATA cormmmand and query vary for individual
modules, a complete chapter is dedicated to the DATA command and guery
in each of the module Programmer’s Guides. The dedicated chapter is
called "DATA and SETup Cormmands.”

OUTPUT XXX, ":3YSTEM:DATA" <block datax

<block_ length _specifiers<section>

#8<lengths>

The total length of all sections in byte format {must be represented with 8
digits)

<gection_headers<section_datas>

16 bytes, described in the "Section Header Description” section of the
individual module Programmer’s Guides.

The format depends on the type of data

10-5

SYSTem Subsystem
DSP (Display)

Query : 8Y8Tem: DATA?

The SYSTem:DATA query returns the block data. The data sent by the
SYSTem:DATA query reflects the configuration of the a selected module
when the last acquisition was performed. Any changes made since then
through either front-panel operations or programming commands do not
affect the stored data. Since the mainframe does not acquire data, refer to
the appropriate module Programymer’s Guide for more details.

Returned Format [:8YSTem: DATA] <block_data»<NL>

Example See the Programmer’s Guide for the selected module for an example.
DSP (Display)

Command :8YSTem:DSP <strings
The DSP command writes the specified guoted string to a device-dependent
portion of the instrument display.

<string> A string of up to 68 alphanumeric characters

Example QUTPUT XXX;":SYSTEM:DSP 'The message goes here’"

10-6

SYSTem Subsystem
ERRor

Query

Returned Formats

<@error_numbers

<error_string>

Examples

ERRor

:8YSTem: ERRor? [NUMeric|{STRing!

The ERRor query returns the oldest error from the error gueue. The optional
parameter determines whether the error string should be returned along with
the error number. If no parameter is received, or if the parameter is
NUMeric, then only the error number is returned. If the value of the
parameter is STRing, then the error should be returned in the following form

<error_rnumbers, <error_nessage (string)s

A complete list of error messages for the HP 16500B logic analysis system is
shown in chapter 7, "Error Messages." If no errors are present in the error
quete, a zero {No Error) is returned.

Numeric:
[:18Y8Tem: ERRoxr] <error_number><NL>

String:

[:8¥STem: ERRor] <erroyr_numbers»,<error_shtring><NL:>

An integer

A string of alphanumeric characters

Numeric:

10 QUTPUT XXX;":8YSTEM:ERROR?"

20 ENTER XXX;Numeric

String:

50 CQUTPUT XXX;":3YST:ERR? STRING®
60 ENTER XXX;String$

16-7

8YSTem Subsystem
HEADer

Command

Example

Query

Returned Format

Example

HEADer

:5YSTem :HEADer {{ON|1}{{OFF|(C}}

The HEADer command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query responses will
include the command header.

QUTDPUT X¥XX;":SYSTEM:HEADER ON"

:SYSTem:HEADeY?

The HEADer query returns the current state of the HEADer command.
{:8YSTem: HEADer] {1{0}<NL>

QUTPUT XXX; ":SYSTEM:HEADER?"

Headers should be turned off when returning values to numeric variables,

10-8

SYSTem Subsystem
LONGform

Command

Exampie

{luery

Returned Format

Example

LONGform

:8YSTem: LONGform {{ON{1}] {OFF|0}}

The LONGform command sets the long form variable, which tells the
mstrurment how to format query responses. If the LONGiform command is set
to OFF, command headers and alpha arguments are sent from the instrument
in the abbreviated form. If the LONGform command is set to ON, the whole
word will be output. This command has no affect on the input data messages
to the instrument. Headers and arguments may be input in either the long
form or short form regardless of how the LONGform command is set.

UTPUT XXX " SYSTEM: LONGFCRM ON'

: SYSTem: LONGE orm?

The query returns the status of the LONGform command.
[:8YSTem: LONGEorm] {10} <NL>

CUTPUT XXX;*:S8YSTEM: LONGFORM? "

10-9

SYSTem Subsystem
PRINt

Commands

. <pathname>

<MSUsS >

<start>
<end:>

PRINt

:SYSTem: PRINE ALLL,DISK, <pathnames>![,<msus:>]]
:8YSTem: PRINt PARTial, <start>,<end>

[,DISK, <pathnames>[,<msus>]]

:8YS8Tem: PRINt SCReen{,DISK, <pathname:> [,<msus>],
{BTIF|CTIF|PCX|EPS}]

The PRINt command initiates a print of the screen or listing buffer over the
current PRINTER communication interface to the printer or to a file on the
disk., The PRINT SCREEN option allows you to specily a graphics type. The
BTIF option formats the screen data in black-and-white TIF. The CTIF and
PCX options format the data in color TIF and color PCX respectively. EPS
specifies Encapsulated PostScript format.

If a file name extension is not specified in the command, the correct
extension will be appended o the file name automatically. The file name
extension is TIF for both BTIF and CTIF options and PCX is the extension for
the PCX option,

The PRINT PARTIal command is valid in certain listing menus. It allows you
to specify a starting and ending state number so you can print a portion of
the listing to the printer or to & disk file.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 64 alphanumeric characters for DOS in one of the following
forms:

NNNNNNNN . NNN when the file resides in the present working directory

or

\NAME_DIR\FILENAME when the files does not reside in the present
working directory

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible digk drive,

An integer specifying a state number.

10-10

Examples

Query

Example

SYSTem Subsysiem
PRINt

This instruetion prints the screen to the printer:

OUTPUT XXX; *:SYSTEM:PRINT SCREENT

This instruction prints all, for example the state listing, to a file with a file
name STATE:

QUTPUT 707;":8YSTEM: PRINT ALL, DISK, STATE’'"

This instruction prints part of a listing file to disk:

QUTPUT XEX;":SYSTEM: PRINT PARTIAL,-9,30,DICK, ’'LISTING',INTO®
This instruction prints a black-and-white TIF file to the hard drive:

OUTPUT XXX;":SYSTEM:PRINT SCREEN, DISK, ’PICTURE, INTG, BTIF®

:SYSTem: PRINC? {SCReen|ALL}

The PRINt query sends the screen or listing buffer data over the current
CONTROLLER cormmunication interface to the controlter.

The print query should NOT be sent in conjunction with any other command
or query on the same command line. The print query never refurns a header,
Also, since response data from a print query may be sent directily to a printer
without modification, the data is not returned in block mode.

PRINT? ALL is only available in menus that have the "Print All" option avaiiabie

on the front panel, For more information, refer 1o the HP 165008 Logic Analysis
System User’s Reference.

QUTEBUT 707; " :SYSTEM: PRINT? SCREEN®

10-11

SYSTem Subsystem
SETup

Command

<block_data>

<bhlock_length_

specifiers

<length>

<section>

<section_
headers>

<gection_data>

Example

Query

Returned Format

SETup

:8YStem: SETup <block data>

The :5¥Stem:SETup command configures the logic analysis system as
defined by the block data sent by the controller. This chapter describes
briefly the syntax of the Setup command and query for the mainframe.
Because of the capsabilities and imporiance of the Setup comumand and query
for individual modules, a compiste chapter is dedicated to it in each of the
module Programmer’s Guides. The dedicated chapter is calied "DATA and
SETup Commands."

<block_length_specifiers<section>

#8<length>

The total length of all sections in byte format (must be represented with 8
digits)

<gectlon _headers<section_data>

16 bytes, described in the *Section Header Description” section in chapter 26.

Format depends on the type of data

The fotal length of a section is 16 (for the section header) plus the length of
the section data. So when calculating the value for <length>, don't forget
to include the length of the section headers.

QUTPUT XXX USING "#,K";":18YSTEM:SETUP " <block_data>

:BYStem: SETup?

The SYStem:SETup query returns a block of data that contains the current
conrfiguration to the controiler.
[:8Y8tem: SETup] <block datas<NL>

10-12

SYSTem Subsystem
SETup

Example See the Programmer’s Guide for the selected module for an example.

10-13

10-14

11

MMEMory Subsystem

11-1

Introduction

The MMEMory {mass memory) subsystem cormmands provide access
to both the hard and flexible disk drives. The HP? 165008 Logic
Analysis System supports the DOS (Disk Operating System) format on
the hard drive and both DOS and LIF (Logical Information Format) on
the flexible drive.

Refer to figure 11-1 and table 11-1 for the MMEMory Subsystem
commands syntax diagram. The MMEMory subsystem commands are:

®

AUToload

CATalog

CD (change directory)
COPY

DOWNIload

INITialize

LOAD

MKDir {(make directory)
MSI

PACK

PURGe

PWD (present working directly)
REName

STORe

UPLoad

VOLume

11-2

MMEMory Subsystem

T L
<msus> refers to the mass storage unit specifier. INTernall specifies the hard
disk drive and INTernall specifies the flexible disk drive,

If you are not going to store information to the flexible configuration disk, or if
the flexible disk you are using contains infermation you need, itis advisable to
write protect your disk. This will protectthe contents of the disk from
accidental damage due to incorrect commands being mistakenly sent,

11-3

Figure 11-1

P

mMMEMary

MMEMory Subsystem

Ny
R

e AUToload? 3 -
— {AToiog? E ™

A
tid COPY Joo T

i______j |
N 2 W e .
(. | ponnase |

\—iﬂl sSpooe '

I 3"3 SRGCE
S

i o .
——I'; direCiony-nomg 1

msus

MMEMory Subsystem Commands Syntax Diagram

1550035

il-4

Figure 11-1 (Continued}

MMEMory Subsystem

| 'y
; spocs

*G_ODWV*ﬁ>©—— IASSenbter)-»i space |——ml in_naze }—-\

A

()—— msus -

—{ 3] "
2 e
SDEQ;]AAQ% TS

WFACK) ‘ -
v space po U 16502515

MMEMory Subsystem Commands Syntax Diagram (Continued)

11-b

Figure 11-1{Continued)

MMEMory Subsystem

¥ A
~>{purse J———wf spoce j—wf nane | _ "
Q"'—“ MG }‘*’
— = P b 3 4
NP P B
{M}ww ---------- Sm“’r_,j“:]jn;“j ‘
‘\M—DCD— ““““ muh f'ra»w,ﬁﬁlsﬂ(ﬁ-_1 o
mb\S?CJ??E i
I .
e
“w{(VoLune?)
1850051

MMEMory Subsystem Commands Syntax Diagram {Gontinued)

Table 11-1

MMEMory Subsystem

MMEMory Parameter Values

Parameter
auto_file

msus

name

path_name

directory_name

description

type
block_data
module

ia_name

new_name

Values

A string of up to 10 alphanumeric characters for LIF in the
foliowing form: "NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNANRN.NNN'

Mass Storage Unit specifier. INTernal0 for the hard disk
drive and INTernall for the flexible disk drive.

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
foliowing form: "NNNNNNMNN.NNN"

A string of up to 64 characters for DOS disks ending in a file
name. Separators can be the slash {/} or the backslashk {\}
character.

A string of up to 84 characters for DOS disks ending ina
directory name. Separators can be the slash (/) or the
backstash {\} character. The string of two periods {..}
represents the parent of the present working directory.

A string of up to 32 alphanumeric characters.

An integer, refer to table 11-2.

Data in |EEE 488.2 format.

An integer, -2 through 5 for the HP 165008 alone. ~2 through
10 with the HP 18501A connected.

A string of up to 10 aliphanumeric characters for LIF in the
following form: "NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNNNNN

A string of up to 10 aiphanumeric characters for LIF in the
following form: "NAINNNNNMNN"

or

A string of up to 12 alphanumeric characters for DOS inthe
foliowing form: "NNNNNNNNNNN

11-7

MMEMory Subsystem
AUToload

Command

<auto_file>

<MSULS>

Examples

. Guery

Returned Format

Example

AUToload

:MMEMory : AUToload {{OFF |0}l {<auto_Ffile>}}[, <msus>]

The AUToload command controls the autoload feature which designates a set
of configuration files to be loaded automatically the next time the instrument
is turned on. The OFF parameter (or 0) disables the autoload feature, A
string parameter may be specified instead to represent the desired autoload
file, Ifthe file is on the current drive, the autoload feature is enabled to the
specified file. The configuration files specified must reside in the root
directory of the current drive.

A string of up to 10 alphanumeric characters for LIF in the following form:

NMNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNINNNN . NNN

Mass Storage Unit specifier, INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

CUTPUT XXX; " :MMEMORY:AUTOLOAD OFF®
OUTPUT XXX; " :MMEMORY:AUTOLOAD 'FILEL_A’®
OUTPUT XXX, " :MMEMORY:AUTOLOAD 'FILEZ 7, INTERNALG®

:MMEMory: AUToload?

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file.

[:MMEMory :AUToload) {(i<auto_file>),<msus><NL>

QUTPUT XXX;* :MMEMORY : AUTOLOAD?®

11-8

MMEMory Subsystem
CATalog

Query

<mMgusS>

Returned Format

<block _data>

Example 1

Example 2

CATalog

:MMEMory : CATalog? [[All,] [<msus>1]

The CATalog query returns the directory of the disk in one of two block data
formats. The directory consists of a 51 character string for each file on the
disk when the ALL option is not used. Rach file entry is formatted as foliows:

"NNNNNNNNNN TTTTTTT FRRRFFFFFFFFFFFFFFFFFFFFFFFFFFFRY
where N is the filename, T is the file type (see fable 11-2), and F is the file
description.

The optional parameter ALL returns the directory of the disk in a
70-character string as follows:

THANNNNNENNNN TTTTITT FerPerrrEerPrerrrrPFRFEREFRETFRFFF
DOMMMYY HH:MM:SS"®

where N is the filename, T is the file type {see table 11-2)}, F is the file
description, and, D, M, Y, and HH:MM:SS are the date, month, year, and time
respectively in 24-hour format.

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

{iMMEMory :CATalog] <block datas

ASCII block containing <filename> <file_type>
<file_description>

This example is for sending the CATALOG? ALL query:

oUTPUT 707; " :MMEMORY: CATALOG? ALL"

This example is for sending the CATALOG? query without the ALL option.
Keep in mind if you do not use the ALL option with a DOS disk, each
filertarne entry will be fruncated at 51 characters:

QUEPUT 707; " : MMEMORY : CATALOG?

MMEMaory Subsystem
CD (Change Birectory)

Command
<directory_
name:>

Exampies

CD (Change Directory)

MMEMory :CD <directory_names> [, <nsus>]

The CD command allows you to change the current working directory on the
hard disk or a DOS flexible disk. The command allows you to send path
names of up to 64 characters for DOS format. Separators can be either the
slash (/) or backslash (\) character. Both the slash and backslash characters
are equivalent and are used as directory separators. The string containing
double pericds (..) represents the parent of the directory.

String of up to 64 characters for DOS disks ending in the new directory name

QUTPUT 707;" :MMEMory:CD *CHILD_DIR’"
QUTPUT 707;" :MMEMoxry:CD *,.'"
OUTRPUT 707;" :MMEMory:CD "\SYSTEM\SCURCE _DIRNDIR’, INTernal(l"

The siash {/} character in DOS path names will be automatically translated to
the backslash character (\) on the disk; therefare, any flexibie DOS disk used in
the HP 165008 will be compatible in DOS computers,

11-10

MMEMory Subsystem
copy

Command

<name>

<new_name>

<MsSUus>

COPY

tMMEMory : COPY <names>[,<msuss>] ,<new_name>[,<msus>]

The COPY cormmand copies one file to a new fiie or an entire disk’s contents
to another disk. The two <name:> parameters are the filenames. The first
pair of parameters specifies the source file which must reside in the present
working directory. The second pair specifies the destination file. An erroris
generated if the source file doesn exist, or if the destination file already
exists.

A string of up to 10 aiphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNMNMNNN . NNN when the file resides in the present working directory
or

\NAME_DIR\FILENAME when the files does not reside in the present
working directory

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 64 alphanumeric characters for DOS in one of the folowing
forms:

NNNNNNNN . NNN when the file resides in the present working directory

or)
\NAME_DIR\FILENAME when the files does not reside in the present
working directory

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

11-11

MMEMory Subsystem
DOWNIload

Examples To copy the contents of "FILEL" to "FILEZ:
QUTPUT XXX;* :MMEMORY:COPY ‘FILEL’, 'FILE2’"
To copy the contents of "FILE 1" on the hard disk to "FILE2" on the flexible
disk:
QUTPUT XXX; " :MMEMORY :COPY ‘FILEL’INTERNALD, ‘FILEZ2’, INTERNALIL®
DOWNIload

Command :MMEMory :DOWNload <names [, <msus>],<description>,

<name>

<MSUS>

<description>

<type>,<block_datas>

The DOWNioad cormmand downloads a file to the mass storage device. The
<name:> parameter specifies the filename, the <description> parameter
specifies the file description, and the <block_datas contains the contents
of the file to be downloaded.

Table 11-2 lists the file types for the <type> parameter.
A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN . NNN when the file resides in the present working directory

or

\NAME DIR\FILENAME when the files does not reside in the present
working directory

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernalil for the flexible disk drive.

A string of up to 32 alphanumeric characters

11-12

MMEMory Subsystem
DOWNIload

<type> Aninteger (see table 11-2)

<block _datas> Contents of file in block data format

Exampie

QUITPOT XXX; ¥ :MMEMORY : DOWNLOAD ' SETUP 7, INTERNALO, 'FILE CREATED FROM SETUP
QUERY',~16127,4#800000643..."

Table 11-2 File Types

File File Type
HP 16500B System Software -15603
HP 165008 Option Software ~15602
HP 16500A or HP 165008 System Configuration -16127
Autoload File 15615
Inverse Assembler -15614
BOS file { from Print to Disk) -5813
HP 16510A/B Configuration 16097
HP 185118 Configuration ~16098
HP 168515A Configuration ~16127
HP 18516A Configuration ‘ -16126
HP 16520A Configuration 16167
HP 16521A Configuration -16106
HP 16530A Configuration ~16117
HP 16531A Configuration ~16116
HP 16532A Configuration -18115
HP 18540A Configuration ~16088
HP 1654 1A Configuration -16087
HP 16542A Master Card Configuration ~16086
HP 16542A Expansion Card Configuration ~-16085
HP 16550A Master Card Configuration 16096
HP 16550A Expansion Card Configuration —16095

11-13

MMEMory Subsystem

~ INITialize

Command

<m8ug>

Examples

INITialize

:MMEMory: INTTialize [{LIF|DOS}{,<msus>]]

The INITialize cornmand formats the disk in DOS (Disk Operating System) on
the hard drive or either DOS or LIF (Logical Information Format) on the
flexible drive. If no format is specified, then the initialize command will
format the disk in the DOS format. LIF formas is not allowed on the hard
drive.

Mass Storage Unit specifier. INTernal(for the hard disk drive and
INTernall for the flexible disk drive.

OUTPUT XXX; ' MMEMORY : INITIALIZE DOS®
QUTPUT XXX; " :MMEMORY : INITIALIZE LIF, INTERNALL®
QUITPUT XXX; ":MMEMORY:INITIALIZE DOS, INTERNALO"

Once executed, the initialize command formats the specified disk, permanently
erasing all existing information from the disk. After that, there is no way to

refrieve the original information.

11-14

MMEMory Subsystem
LOAD [:CONFig]

Command

<raine>

<mSUS>

<module>

Examples

LOAD [:CONFig]

: MMEMory : LOAD [: CONfig] <name>[, <msus>][,<mocdule>]

The LOAD command loads & configuration file from the disk into the
modules, software options, or the system. The <name> parameter specifies
the filename from the disk. The opfional <modulex> parameter specifies
which module(s) to load the file into. The accepted values are -2 through

10. Not specifying the <module» parameter is equivalent to performing a
'LOAD ALL' fromm the front panel which loads the appropriate file for both the
system and the modules, and any software option.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNENN. NN when the file resides in the present working directary

or

\NAME_DIR\FILENAME when the files does not reside in the present
working directory

Mass Storage Unit specifier. INTernal(for the hard disk drive and
INTernall for the flexible disk drive.

An integer, -2 through 5 for the 1P 165008 alone. -2 through 10 with the HP
165601 A connected.

QUTPUT XXX; " :MMEMORY:LOAD:CONFIG 'FILE "
OQUTPUT XXX;*:MMEMORY:LOAD ‘FILE *,0°
QUTPUT XZEX; " :¥MMEM:LOAD:CONFICG 'FILE A, INTERNALG, 1"

11-15

MMEMary Subsystem
LOAD :IASSembler

Command

<IA_name:x>

<MSUS>

<module>

Examples

LOAD :IASSembler

:MMEMoTy : LOAD : TASSembler <IA_name>[,<msus>], {112}
[, <modules]

This variation of the LOAD command allows inverse assembler files to be
loaded into a module that performs state analysis. The <TA_name>
parameter specifies the inverse assembier filename from the desired
<msus>. The parameter afier the optional <msus> specifies which machine
to load the inverse assembler into. For example, a 1 following <msus>
specifies that the inverse assembier files will be loaded into MACHINE 1 of
the specified module.

The optional <module> parameter is used to specify which slot the state

analyzer is in. i this parameter is not specified, the state analyzer in the
currently selected module will be loaded with the inverse assembler file.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNY , NNN when the file resides in the present working directory

or

\NAME_DIR\FILENAME when the files does not reside in the present
waorking directory

Mass Storage Unit specifier. INTernall for the hard disk drive and
INTernall for the flexible disk drive.

An integer, 1 through 5 for the HP 1656008 alone. 1 through 10 with an HP
16501 A connected.

QUTPUT XX¥;":MMEMORY:LOAD:ITASSEMBLER 'I68020 IP’,1°
QUTPUT XXX;":MMEM:LOAD:IASS "I68020 IP',INTERNALG,L,Z2"

11-186

MMEMory Subsystem
MiBir {Malke Directory)

Command

<directory

_name:s

<MsUS>

Exampies

MKDir (Make Directory)

:MMEMory :MEDLr <directory_name> [,<msus:]

The MKDir command allows vou to make a directory on the hard drive and a
DOS disk in the flexible drive. Directories cannot be made on LIF disks.
Make directory will make a directory under the present working directory on
the current drive if the optional path is not specified. Separators can be
either the slash {/) or backslash {\) character, Both the slash and backslash
characters are equivalent and are used as directory separators. The string
containing two periods (..) represents the parent of the present working
directory.

String of up to 64 characters for DOS disks ending in the new directory name.

Mass Storage Unit specifier. TNTernal(for the hard disk drive and
INTernall for the flexible disk drive.

OUTPUT XXX; " :MMEMORY :MZDIR 'NEW.DIR'"
QUTPUT X{X; " :MMEM:MKD '\SYSTEM\NEW.DIR’,INTO *

The stash {/} character in DOS path names wilt be automaticalty translated to
the backstash character {\) on the disk; therefore, any flexible DOS disk used in

the HP 165008 will be compatible in DOS computers.

11-17

MMEMory Subsystem
MS! (Mass Storage Is)

Command

<MSUS>

Examples

Query

Beturned Format

Example

MSI (Mass Storage Is)

sMMEMory :MST [<msus>]

The MSI command selects & defaull mass storage device. INTernal0 selects
the hard disk drive and INTernall selects the flexible disk drive. Once the
M5l is selected it remains the default drive until another MSI command is
sent to the system,

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

OUTPUT XXX; ":MMEMORY : MST"
OUTPUT XXX; ":MMEM:MST TNTERNATLQ®

:MMEMory : MST?

The MSI? query returns the current MSI setting.
[tMMEMoxrv:iM3I] <msus><NL>

CURPUT XXX; " :MMEMORY :MSI?"

11~18

MMEMory Subsystem
PACK

Command

<MSUS>

Examples

PACK

tMMEMory : PACK [<msug>]

The PACK cornmand packs the files on the LIF disk the disk in the drive. fa
3OS disk is in the drive when the PACK command is sent, no action is taken.

Mass Storage Unit specifier. INTernal(for the hard disk drive and
INTernalil for the flexible disk drive.

QUTPUT XXX; " :MMEMORY:DACK®"
CUTPUT AXX; " :MMEM: PACK INTERNALC®

11-19

MMEMory Subsystem
PURGe

Command

<name>

<3S >

Examples

PURGe

:MMEMory : PURGe <name> [, <msus>]

The PURGe command deletes files and directories from the disk in the
specified drive. The PURge command only purges directories when the
directory is empty. If the PURge command is sent with a directory name and
the directory contains files, the message "Directory contains files” is
displayed and the command is ignored. The <name> parameter specifies the
file name to be deleted.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN . NNN when the file resides in the present working directory

or

A\NAME_DIR\PTLENAME when the fles does not reside in the present
working directory

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

This instuction purges the file named "FILE1" from the currently specified
drive:

CQUTPUT XXX;":MMEMORY:PURGE (FILE1’"

This instruction purges the file named "FILE1" from the hard drive:
OUTEBUT KXX; " : MMEMORY: PURGE ‘FILEL’, INTERNALO"

This instuction purges the directory named "NEWDIR" from the hard drive:
QUTPUT XHX; " :MMEMORY:PURCE ‘NEWDIR', INTERNALD®

Once executed, the purge command permanently erases alf the existing
information about the specified file. After that, there is no way to retrieve the

original information.

11-20

MMEMory Subsystem
PWD (Present Working Directory)

Query

Returned Format

<directory>

<IMSUS>

Examples

PWD (Present Working Directory)

:MMEMory : PWD? [<mgus>]

The PWD query returns the present working directory for the specified drive.
If the <msus> option Is not sent, the present working directory will be
returned for the current drive.

[MMEMory : PWD] <directorys>, ansus><NL>

String of ap to 64 characters with the backslash (\) as separator for DOS and
LIF disks.

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTerriall for the flexible digk drive.

QUTPUT XXX; " :MMEMORY : PWD?"
CUTPUT XXX; " :MMEMORY:PWD? INTERNALL®

11-21

MMEMory Subsystem
REName

REName

Command :MMEMory : REName <names>{,<mgusg>], <new_name:

The REName command renames a file on the disk in the drive. The <name>
parameter specifies the filename to be changed and the <new_name>
parameter specifies the new filename.

You cannot rename & fite to an already existing filename.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN . NNN when the file resides in the present working directory

or

\NAME_DIR\FILENAME when the files does not reside in the present
working directory

<msus> Mass Storage Unit specifier. TNTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

. <new name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN. NNN when the file resides in the present working directory

or
\NAME DIR\FILENAME when the files does not reside in the present
working directory

Examples QUTPUT XXX; " :MMEMORY : RENAME 'OLDFILE’, 'NEWFILE’™"

CUTPUT XXX;":MMEM:REN 'OLDFILE’ [, INTERNALL], 'NEWFILE-®

1122

MMEMory Subsystem
STCRe [:CONFig]

Command

<name>

<HMSUs>

<description>

<modules>

Examples

STORe [:CONFig]

:MMEMory : STORe [:CONfigl<name>|,<msus>],
<descriptions>[, <module>]

The STORe command stores module or system configurations onto a disk.
The [:CONFig| specifier is optional and has no effect on the command, The
<name> parameter specifies the file on the disk, The <description>
parameter describes the contents of the file. The optional <module>
parameter aliows you to store the configuration for either the system or the
modules. { refers to the systemn. 1 through & refers to the modules in the
mainframe alone and 1 through 10 refers to the mainframe with an expansion
frame conmected.

i the optional <modules parameter is not specified, the configurations for
both the system and logic analyzer are stored.

A string of up to 10 alphanumeric characters for LiF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN . NNN when the file resides in the present working directory

or

\NAME _DIR\FILENAME when the files does not reside in the present
working directory

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

A string of up to 32 alphanumeric characters

An integer, 1 through 5 for the HP 165008 alone. 1 through 10 with an
HP 16501 A connected.

CUTPUT XXX; " :MMEM:STOR ‘DEFAULTS’, 'SETUPS FOR ALL MODULES'®
CUTPUT XXX;":MMEMORY:STCORE:CONFIG /STATEDATAY, INTERNALO,
PANALYZER 1 CONPIGY, 1"

11-23

MMEMory Subsystem
UPLoad

The appropriate module designator *_X"is added to all files when they are
stored. "X refers to either an __ (double underscore} for the system oran _{A

through E} for an HP 185008 alone or an _{A through J) with an HP 16501A
connected.

Query

<names>

<MBUS>

Returned Format

UPLoad

:MMEMory : UPLoad? <name> [, <msus>]

The UPLoad query uploads a file, The <name> parameter specifies the file to
be uploaded from the disk. The contents of the file are sent out of the
instrument in block data form.

his comn suuld nl be sd for HP 1650 cuiguratn fil.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNHN . NNN when the file resides in the present working directory

or

\NAME_DIR\FILENAME when the files does not reside in the present
working directory

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.
[:MMEMory :UPLoad] <block datas<NL>

11-24

MMEMory Subsystem
UPLoad

Example

10 DIM BlockSI32000] tallocate enough memory for block data
20 DIM Specifiers([2]

30 QUTPUT XXX;":EQI on°

40 QUTPUT XXX ;":8YSTEM HEAD OFF”

50 QUTPUT XXX ; " :MMEMORY :UPLOAD? 'FILEL’Y Isend upload guery
60 ENTER XXX USING "#,2A%:Specifiers lread in #8

70 ENTER XXX USING "#,8D7;Length !read in block length

80 ENTER XXX USING "-K";Rlocks tread in file

20 END

11-25

MMEMory Subsystem
VOLume

Query

<I|SUuS>

Returned Format

Example

VOLume

:MMEMory : VOLume? [<msus>]

The VOLume query returns the volume type of the disk. The volume types
are DOS or LIF. Question marks (¥77) are returned i there is no disk, if the
disk is not formatted, or if a disk has a format other than DOS or LIF,

Mass Storage Unit specifier. INTernal¢ for the hard disk drive and
INTernall for the flexible disk drive.

[:MMEMory :VOLume] {DOS|LIF[?7? }<NL>

QUTPUT XXX;" :MMEMORY : VOLUME? ¥

11-26

12

INTermodule Subsystem

12-1

Introduction

The INTermodule subsystem commands specify intermodiile arming
from the rear-panel input BNC (ARMIN) or to the rear-panel output
BNC (ARMOUT). Refer to figure 12-1 and table 12-1 for the
INTermodule Subsystem commands syntax diagram. The
INTermodule commands are:

» DElLete

¢ HTIMe

e [NPort

¢ [NSert

e PORTEDGE

¢ PORTLEV

¢ SKEW

¢ TREE

e TTIMe

12-2

INTermodule Subsystem

“““““““ ~ G) (-

»QNSer! ; ™ spoce

~><|;um DG-\

o — N
‘”’(PGREL:V j—bt SRACE I——h—/1_Tw
o portieve)
\[’ﬂ;ﬁjg -

‘“‘“’{%@7"‘ nglex —|>4D'\—_/-

ﬁ?

(T

e

Sm{ TTIME?

R

intermodule Subsystem Commands Syntax Diagram

IESOELE

12-3

INTermodufe Subsystem

:INTermodule
Table 12-1 INTermodule Parameter Values
Parameter Value
module An integer, 1 through 5 for HP 165008 alone. 1 through 10
with the HP 16501A connected.
user_lev A real number from -4.6 to +5.0 volts in 0.82 volt incements
index An integer, 1 through 5 for HP 185088 alone. 1 through 10
with the HP 16501A connected.
setting A numeric, — 1.0 to 1.0 in seconds.
:INTermodule
Selector :INTermodule

The INTermoduie seiector specifies INTermodule as the subsystemn the
cormmands or queries following will refer to. Because the INTermodule
command is a reot level command, it will normally appear as the first element
of a compound header,

Example OUTPUT XXX:":INTERMODULE:HTIME?"

12-4

INTermodute Subsystem
DELete

Command

<module>

Example

DELete

:DELete {ALL|OUT|<modules>}

The DELete command is used to delete a module, PORT OUT, or an entire
intermodule tree. The <modules parameter sent with the delete command
refers to the slot location of the module.

An integer, 1 through b for HP 165008 alone. I through 10 with the HP
165601 A connected.

QUTPUT XXX; ": INTERMODULE: DELETE ALL"
OUTPUT XXX; " INTERMODULE : DELETE 17

12-5

INTermodule Subsystem
HTiMe

Query

Returned Format

<value_ 1>
<value_2>
<value_3>
<value_ 4>
<value_5b>
<value_6>
<valiue_T>
<value_8>
<value 9>

<value_10>

HTIMe

:HTIMe?

The HTIMe query returns a value representing the internal hardware skew in
the Intermodule configuration. If there is no internal skew, 8.9E37 is
returned.

The internal hardware skew is only a display adjustment for time-correlated
waveforms. The value returned is the average propagation delay of the trigger
lines through the intermodule bus circuitry. These values are for reference only

because the values returned by TTIMe include the internal hardware skew
represenied by HTiMe.,

[: INTermodule:HTIMe] <value_l>,<value_ 2>, <value_3>, <value_d4>,
<value_5>,<value_6>,<value _7>,<value_B8>,<value_9>,<value_l0><NL
=

Skew for module in siot A (real number}
Skew for modude in siot B (real number)
Skew for module in slot C (real number)
Skew for module in slot D (real number)
Skew for module in slot E (real number)
Skew for module in slot F (real number)
Skew for module in slot G (real number)
Skew for modiule in slot H (real number)
Skew for module in slot | (real number)

Skew for module in slot . (real number)

12-6

INTermodule Subsystem
INPort

Example OUTPUT XXX; * : INTERMODULE : HTIME? "
INPort

Command ¢ INPort {{ONI[1}I{QFFID}}
The INPort command causes intermodule acquisitions 1o be armed from the
Input port.

Example QUTPUT XXX; " : INTERMODULE: INPORT ON®

Query : INPort?

Returned Format

Example

The INPort guery returns the current setting.
[tINTermodule:INPort] {1]0}<NL>

QUTPUT XXX; " : INTERMODULE: INPORT? "

12-7

iNTermodule Subsystem
INSert

INSert

Command :INSert {<modules |OQUT}, {(GROUP |<modulex>}

The INSert command adds PORT OUT to the Intermodute configuration. The
first parameter selects the module or PORT OUT to be added to the
intermodule configuration, and the second parameter {elis the instrument
where the module or PORT OUT will be located. 1 through 5 corresponds to
the siot location of the modules A through E for the HP 165008 alone and 1
through 10 corresponds to slot loction of modules A through J when an HP

16601A is connected.
<module> Aninteger, I through 5 for HP 165808 alone. 1 through 10 with the HP
16601 A connected.
Examples QUTPUT XXX; " : INTERMODULE: INSERT 1,GROUPR"

CUTPUT XXX; " : INTERMODULE: INSERT Z,GROUP"
CUTPUT XXX; " :INTERMODULE: INSERT 3,2;INSERT OUT,2"

The following figure shows the result of the example output commands:

Group Run

12-8

INTermodule Subsystem
PORTEDGE

Command

<edge_spac>

Example

Query

Returned Format

Example

PORTEDGE

: PORTEDGE <edge_specs

The PORTEDGE command sets the port input BNC to respond to either a
rising edge of falling edge for a trigger from an external source. The
threshold level of the input signal is set by the PORTLEV command.

A 1 or ON for rising edge or a 0 or OFF for falling edge.

QUTPUT 707;": INTERMODULE:PORTEDGE 1°

: PORTEDGE?

The PORTEDGE query returns the current edge setting.
[:INTermodule: PORTEDGEY {1]0}<NL:>

QUTPUT XXX; " :INTERMODULE: PORTEDGE?®

12-9

INTermodule Subsystem
PORTLEV

Command

<user_lev>

Exampie

Query

Returned Format

Example

PORTLEV

:PORTLEYV {TTLECL |<user_lev>}

The PORTLEV (port level) command sets the threshold level at which the
input BNC responds and produces an intermodule trigger. The preset levels
are TTL and ECL. The user defined level is 4.0 volts to +5.0 volts,

A real number from -4.0 to + 5.0 volts in 0.02 volt increments.

This statement sets the BNC threshold to ECL

| QUTPUT XXX; " : INTERMODULE: PORTLEV ECL"

This statement sets the BNC threshold to -2.3 voits
QUTPUT XXX ":INTERMODULE: PORTLEV -2.3°

: INTermodule: PORTLEV?

The PORTlev query returns the current BNC threshold setting.
[INTermodule: PORTLEV] {T7TLIECL|<user_lev><NL>

QUTPUT XXX; " : INTERMODULE: PORTLEV?"

12-10

INTermodule Subsystem
SKEW<N>

Command

<>

<getting>

Example

Query

Returned Format

Example

SKEW<N>

:SKEW<N> <setting>

The SKEW command sets the skew value for a module. The <N> index value
is the module number (1 through b corresponds to the slot location of the
modules A through E for the HP 1650018 alone and 1 through 10 corresponds
to slot loction of modules A through J when an HP 16601 A is connected).
The <setting: parameter is the skew setting {~ 1.0 to 1.0} in seconds.

An integer, 1 through 5 for HP 165008 alone. 1 through 10 with the HP
16501 A connected.

A real number from -1.0 to 1.0 seconds

OUTPUT XXX; " : INTERMODULE: SKEW2Z 3.0E-%"

: SKEW<N=>"7

The query returns the user defined skew setting.
[INTermodule: SKEW<N>] <setting><NL>

QUTPUT XXX; " : INTERMODULE: SKEWL?™

12-11

INTermodule Subsystem
TREE

Lommand

<module>

Example

TREE

TREE <modules>, <modules>, <modules>, <modules,
<modules>, <modules

The TREE command allows an intermodule sefup to be specified in one
cornmand. The first parameter is the intermodule arm value for module A
(logic analyzer). The second parameter corresponds to the intermodule arm
value for PORT OUT. A -1 means the moduie is not in the intermodiile tree,
a 0 value means the module is armed from the Intermodule run button
(Group run), and a positive value indicates the module is being armed by
another modide with the slot location 1 to 10. 1 through 10 corresponds o
slots A through J.

An integer, —1 through for an HP 165008 alone, —1 through 10 with the HP
16601 A connected.

QUTPUT XXX; ":INTERMODULE:TREE 0,0,2,-1,-1,2"

The following figure shows the result of the example output commands:

Group Run

12-12

Query

Returned Format

INTermodule Subsystem
TTiMe

: TREE?

The TREE? query returns a string that represents the intermodule tree. A -1
means the module is not in the intermodule tree, a 0 value means the module
is armed from the Intermodule run button (Group run), and a positive value
indicates the module is being armed by another module with the slot location
110 10. 1 through 10 corresponds to the slots A through 4.

[INTermodule: TREE] <mecdules, <modules, <modules, <modulex,
<module><VL>

Example OUTPUT XXX;*: INTERMODULE: TREE? "
TTIMe
Ouery :TTIMe?

The TTIMe query retwrns five values (HP 165008 alone) representing the
absolute intermodule frigger time for all of the modules in the Intermodule
configuration, When an HP 16501 A is connected, the TTIMe query returns
10 values. The first value is the trigger time for the module in slot A, the
second value is for the module In slot B, the third value is for slot C, ete.

The value 9.9E37 is returned when:
& No module is installed in the corresponding slot;
e The module in the carresponding stot is not time correlated; or

e A time correlatable module did not trigger.

The trigger times returned by this command have already been offset by the

INTermodule: SKEW values and internal hardware skews {INTermodule:HTIMel.

12-13

Returned Format

<value
<value
<value
<value
<value
<value
<value
<value

<value

1>

2>

3>

4=

5>

6>

7>

8>

9>

<valuell)

Example

INTermodule Subsystem
THiMe

[:INTermodule:TTIMe] <value 1>, <value 2>, <value 3>,
<value 4>,<value 3»>,<value 6>,<value 7>,<value 8>,
<value 9>,<vaiue 10><NL>

Trigger time for module in slot A (real number)
Trigger time for module in slot B (real number)
Trigger time for module in slot C {real number)
Trigger time for medule in slot D {real number)
Trigger time for module in siot E (real number)
Trigger time for module in slot F (real number)
Trigger time for module in slot G (real number)
Trigger time for module in slot H (real number)
Trigger time for module in slot I (real number)

Trigger time for module in slot J (real number)

QUTPUT XXX; " : INTERMODULE: TTIME?"

12-14

Part 3

13 Programming Examples 13-1

Programming Examples

13

Programming Examples

13-1

Introduction

This chapter containg short, usable, and tested program examples
that cover the most asked for examples. The examples are written in
HP BASIC 6.2.

e Transferring the mainframe configuration between the mainframe
and the controller

® Checking for intermodule measurement completion

¢ Sending queries to the mainframe

o (etting ASCII data with PRINt? All query

¢ Reading a disk catalog

¢ Printing to the disk using PRINT? ALL

13-2

Programming Examples
Transferring the Mainframe Configuration

10
20
30
40
50
55
60
70
80
50
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

Transferring the Mainframe Configuration

This program uses the $YSTem: SETup? query to transfer the configuration
of the mainframe to your controller. This program also uses the

SY8Tem: SETup command to transfer a mainframe configuration from the
controller back to the mainframe. The configuration data will set up the
mainframe according to the data. It is useful for getting configurations for
setting up the mainframe by the controller. This cormand and query differs
fromthe SYSTem:DATA? command and query because it only transfers the
configuration and not the acquired data. Because the mainframe, by itself,
does not acquire data the SYSTem:DATA? command and query is only
usefull for modules.

z HHRKEFhR A hhkhFTEddhddn SETU? COMD ‘AND QUERY EXAMPLE FAAFR A X *r A xRk b hh T hd i
! for the HP 165008/16501A Logic Analysis System

!
I Hkdkdkdkhdkhkhhhhhhrdhd CREATE TRANSFER BUFFER *%*kkdwwdhhkddkdhthhm b hddhbwdn

I Create a buffer large enocugh for the block data.
i

ASSIGN @Buff TO BUFFER (1700001

[}

I KH Kk hkRkIkAhkERARRFERRA R INZTEALIZE HPIB DETJ‘FA‘JLT A_‘DDRESS EE R R R R N I N

i

REAL Address

Address=707

ASSIGN @Comm TO Address

i

CLEAR SCRELN

i

|owwdkkkk ok aw kol TNTTTIALIZE VARIABLE FOR NUMBER OF BYTES *®#ask*sakddddntx
! The variable "Numbyvtes® contains the number of bytes in the buffer.

3

REAL Numbytes

Numbyvies=0

!

I oRNEREEAFA kA *E RE-TNITIALIZE TRANSFER BUFFER POINTERS k%% d wdktion sk x
!

CONTRCL €8uff,3;1

CONTROL @Bufif, 4;0
i

13-3

270
280
290
300
310
320
330
340
350
360
370
380
3590
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
600
610
620
630
640
650
660
670
680
630
700
710
720

Programming Examples
Transferring the Mainframe Configuration

t KAKAAKRXIF I A RE AR KA R Lk FhE SEND THE SETUP QUERY A EFAERELTA A I A AR RR AR I T R LT AR K%
CUTPUT 707;":8YSTEM:HEADER ON"

QUTPUT 707; " : SYSTEM: LONGFORM ON"

QUTPUT @Comm; YSELECT 0OF

OUTPUT €Comm; " : SYSTEM: SETUPR? "

!

! AhkhkAIEE kAR RATXA AT R K h*x ENTER THE BLOCK SETUP HEADER ER RS T EEEE SR EEEEE LR T
! Enter the block setup header in the proper format.

i

ENTAER @Comm USING *#,B";Byte

PRINT CHRS (Bvyte);
WHILE Byte<>35

ENTER @Comm USING "#,B";Byte
PRINT CHRS (Byte);

END WEILE

ENTER €Comm USING "#,B";Bvte

PRINT CHRS (Byte);

Byte=Byte~48

IF Byte=1 THEN ENTER &Comm USING "#,D*;Numbytes

IF Bytex2 THEN ENTER @Comm USING "#,DD";Numbytes
Byte=3 THEN ENTER @Comm USING "#,DDD®;Numbyvtes
Byte=4 THEN ENTER @Comm USING "#,DDDD";Numbyies
Byte=5 THEN ENTER &@Comm USING "#,DDDDD";Numbyvtes
Byte=6 THEN ENTER &@Comm USING "4#,DDDDDD";Numbvtes
Byte~7 THEN ENTER @Comm USING "#,DDDDDDD? : Numbytes
IF Byte=8 THEN ENTER @Comm USING "#,DDDDDDDD";Numbytes
PRINT Numbvtes

f

H H
Frf

H H
b ofr] bep b

H

PokkA kAR A A A A kA xR AR A AR PRANCOTD TET QETUP FhkAkkdk Ik kdrkhhkdhrhddhrdhakrrddd

t Transfer the setup from the mainframe to the buffer.
¥
TRANSFER @Comm TO @Buif;COUNT Numbytes, WAIT
i
ENTER @Comm USING "-K"';Lengths
PRINT *LENCTH of Length string is";LEN{Length$)
f
PRINT »**%* GOT THE SETUP *#**n
PAUSE
I Ak A F A IR I I AFTNIAXRIXARNER N SEND TI“IE SET’U’P PR SR A RS E R R EEEE R R SRS AEEEEEEELE]
i Make sure buffer is not empty.
i
IF Numbytes=0 THEN
PRINT *BUFFER I8 EMPTY"
GOTO 1170
END IF

13-4

730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
800
810
520
930
940
950
9640
370
380
980
1000
1610
1020
1030
1040
1050
1060
1070
1080
1090
1100
1118
1120
1130
1144
1150
1160
1170

Programming Examples
Transferring the Mainframe Configuration

!

! FRERAIAF AL AR F AT RF AT AL SEND THE SETUP COMD LR RS R AR RS R EE XY XS]
! Send the Setup command

i

OUTPUT GComm USING *#,15A"%;":SYSTEM:SETUP #¢

PRINT *"SYSTEM:SETU? command has been sent®

PAUSE

t

f IhkrkI R A AT R A I XA R TRk h kK SE:N‘D E‘HE BLOCK SET‘GP E R R R R R R R R R S
! 8end the block setup header to the mainframe in the proper format.
!

Byte=LEN(VALS (Numbvtes))

QUTPUT @Corun USING "#,B"; (Byte+48)

IF Byte:l.THEN QUTPUT €Comm USING "#,A";VALS (Numbytes)

IF Byte=2 THEN OUTPUT &Comm USING "#,AA";VALS (Numbytes)

IF Byte=3 THEN OUTPUT €Comm USING "#,ARAY:VALS (Numbvtes)

IF Byte=4 THEN OUTPUT @Comm USING "#,ARAAA";VALS (Numbytes)

IF Byte=5 THEN OQUTPUT @Comm USING "#, AAAAA" ;VALS (Numbyvies)

IF Byte=6 THEN QUTPUT @Comm USING "#, AAAAAA"; VALS (Numbytes)

IF Bytes=7 THEN OUTPUT @Comm USING "#, AAAAAAA™ ;VALS (Numbvies)

IF Byte=8 THEN OUTPUT @Comm USING "#, AAAARAAAY;VALS (Numbvtes)

gk ok ok R ok ok ok ok ok ok Rk ok ok bk R K b 3 T 7 ek ek gk R R R R W Kk Kk ok ok kR ok Kk koK
! SAVE BUFFER POINTERS

I Save the transfer buffer pointer so it can be regtored after the

! transfer. :

!

STATUS @Buff,5;S8treg

!

! ER RS TR E SR TR E LS LR R TS TRANSFER SETUP TO THE HP 16560B hREAIRFARAR AR I AR IR * %
! Transfer the setup from the buffer to the BEP 163008 mainframe.

1

TRANSFER &Buff TO @Commu; COUNT Numbytes, WATT

i

! R R R R R R R R RESTORE BUFE‘ER PDINTERS KEIEAEREET AN AR AR HFART AR RN

| Restore the transfer buffer pointer
|

CONTROL @Buff,5;Streg

!

! HFARARRRA AR AN TARRFT A F & SEN"D TEMINATING LZNE FEED FrkFIAI A AR A A A AR R HRAR IR K
! Send the terminating linefeed to properly terminate the setup string.

!

QUTPUY gComm; "

!

PRINT "**%% SENT THE SETUD *#x*%r

END

13-6

Programming Examples
Checking for Intermadule Measerement Completion

420
430
440
450
460
4786
480
490
500
510
520
530
540
550
560
570
580
530
600
610
620
630
640
650

Checking for Intermodule Measurement Completion

This program can be appended to or inserted into another program when you
need to know when an intermodule measurement is complete. If it is at the
end of & program it wili tell you when measurement is complete. If you insert
it into a program, it will halt the program uniil the current measurement is
complete,

i HAKkARKRF AT T A AR hx CHECK FOR MEASUREMENI‘I‘ COMPLETE AR RAARK A E A A dr vk hx
! Enable the MESR register and query the register for a measurement
! complete condition.

!

OUTPUT 707;*:8YSTEM :HEADER OQFF"

QUTPUT 707; " : 8YSTEM: LONCFORM OPE"

i

Status=0

CUTPUT 707; ":MESED 1

QUTPUT 707; " MESRO?Y

ENTER 707;S8tatus

3

! Print the MESR register status.

!

CLEAR SCREEN

PRINT "Meagurement complete status is ";Status

PRINT “0 = not complete, 1 = complete”

! Repeat the MESR query until measurement ig complete.
WATT 1

IF Status=1 THEN GOTO €30

GOTO 510

PRINT TABXY (30,15); "Meagurement ig complete®
}

-

ND

13-6

Programming Examples
Sending Queries to the Logic Analysis System

10

20

30

40

50

&0

70

80

SG

106
110
120
130
1440
150
160
17¢
1890
180
200
210
220
230
240
250
2860
270
280
280
360

Sending Queries to the Logic Analysis System

This program example contains the steps required to send a query to the
logic analysis system. Sending the query alone only puts the requested
information in an output buffer of the logic analysis system. You must foliow
the query with an ENTER statement to transfer the query response to the
controller. When the guery response is sent to the logic analysis system, the
query is properly terrinated in the logic analyer. If you send the query but
fail to send an ENTER statement, the logic analysis system will display the
error message "Query Interrupted” when it receives the next command from
the controller, and, the query response is lost.

TR kdk ok okokok R R Rk Wk Rk ok e R ok kR

f for the HP 16500B/165014 Logic analysis systemn

PREKFFRRF IR AR RAAR KA AFHA A, OUERY EHAMD

PRIk Ak kKT R R KRR G R IR T LA OPTTONAL *®Rrhdkddhkr kb bhdk bk dkdddhhhd

I The following two limes turn the headers and longform on so
I that the gquery name, in ites long form, 1s included in the
! guery response.

! Hikhkkkhdkhkokkdkdk NOTE FhAhkEkAFRRRART KL
! If your guery response includes real
! or lnteger numbers that vou may want
! to do statistics or math on later, vou
i should turn both header and longform

! off so only the number is returned.
i PR R AR S SR SR EE LS R SRR SRR R FEEFEEEEEEE LN

QUTPUT 707;":SYSTEM:HTADER ON*

QUTPUT 707;:":8YSTEM: LONCGFORM ON"

{

! AR R A A R A R A E R AR R E R T R R A E AR AR AR R T AR IA R T RA A AN AT R ARANAARA AR AN AR A F

! Select the mainframe.

! Always a 0 for the HP 16500B/16501A mainframe.

QUTPUT 707:":SELECT 0*

!

1 LA R AR SRR SRR AR SR EREREREEEREEEEEEE SRR TR Rl e S e
! Dimension a string in which the query response will be entered.

!

DIM Query$[100]

;

E KR I AR A AT R AT AT A A A A IR AT A AR AT RA AR AAAARR AR AR A A kv kv hdkhkhdk ok hhk

13-7

310
3z0
330
340
350
360
370
380
380
400
410
420
430
440
450

Programming Examples
Sending Queries to the Logic Analysis System

! Send the guery. In this example the MENU? query is sent. ALl

! gqueries except the SYS8Tem:DATA and SYSTem:SETUp can be sent with
! this program.

i

OUTPUT 707; "MENUT®

H

i AR AR A R ER SRS RS R LERE SR EEETEEEREREREREE LR TR E R EE R R
! The two lines that follow transfer the query response from the

! gquery buffer to the contreoller and then print the response,

1

ENTER 707;Querys

PRINT Query$s

[l

!

END

13-8

Programming Examples
Getting ASCII Data with PRINt? ALL Query

Getting ASCI Data with PRINt? ALL Query

This program example shows you how to get ASCII data from a listing
display, like the disk catalog or state lisfing, using the PRINc? ALI query.
There are two things you must keep in mind:

® Youmust select the mainframe, which is always SELECT 0 for the
HF 16500B mainframe.

s You must select the proper menu. The only menus that allow you to use
the PRINt? ALL query are the disk menu and listing menus.

t kkkkkk ACOTT TIATH *xkkkdik

This program gets the hard disk directory from the HP 165008 mainframe
! in ASCIT form by using the PRINT? ALL query.

!

;**********************%***

I

DIM Block$[32000]

QUTPUT 707; "EQI ON*®

QUTPUT 707;°:SYSTEM:HEAD OFF®

QUTPOT 707;":8ELECT O" ! Alwaves a 0 for the HP 16500B mainframe

i

1

QUTPUT 707;7":MENU Q,1" ! Selects the hard disk menu. Print? All

! will only work in disk menu and listings.

QUTRUT 7C7;*:SYSTEM: PRINT? ALL*®
ENTER 707 USING "-X";Blocks

5**
! Now display the ASCII data you receiwved.

;

PRINT USING “K";Blocks

f

END

13-9

Programming Examples

Reading the disk with the CATaiog? ALL query

10
20
30
40
50
60
70
a0
96
100
110
120
130
140
150
160
170
180
i8¢0
200
210

Reading the disk with the CATalog? ALL query

The following example program reads the catalog of the currently selected
disk drive. The CATALOG? ALL query returns the entire 70-character field.
Because DOS directory entries are 70 characters long, you should use the
CATALOG? ALL query with DOS digks.

L DESK CATALOG Fok ok KRk
using the CATALOG? ALL guery

DIM rile$i1001
DIM Specifiersl2}

OUTPUT

ouTeut

ouUTPUT

CUTRUT
t

707; " EOT ONT

707; " SYSTEM: HEADER OFF®

707 ;" :MMEMORY : MSI INTERNALO" I
767 " MMEMORY : CATALOG? ALL" |

ENTER 707 USING ", 2A"; Specifiers !
ENTER 707 USING "#,8D";Length H

select the hard drive
send CATALOG? ALL query

read in #8
read in block length

! Read and print each file in the directory

FOR I=1 TO Lengtk STEP 70
ENTER 707 USING *#,70A";Files
PRINT Files

NEXT I

ENTER 707 USING "A™;Specifiers i

BEND

read in final line feed

13-10

Programming Examples
Reading the Disk with the CATalog? Query

10
20
30
46
50
&0
70
80
g0
106
11¢
120
130
140
150
160
170
180
180
200
210

Reading the Disk with the CATalog? Query

This example program uses the CATALOG? query without the ALL option
to read the catalog of the currently selected disk drive. However, if you do
not use the ALL option, the query only returns a bi-character field. Keep in
mind if you use this program with a DOS disk, each filename entry will be
truncated at 51 characters.

-E doFe ok ok k Rk DISK CATALOG khk kK hk Kk
f using the CATALOG? query
t

DIM File$S[100]

DIM Specifiers|2)

OQUTPUT 707;":EO0T ON"

QUTPUT 707; " :8YSTEM HEADER OFF"

QUTPUT 707; " :MMEMORY :MST INTERNALO" ! select the hard drive
QUTPUT 707; " :MMEMORY : CATALOG?" ! send CATALOG? query

!

ENTER 707 USING "#,2A";Specifier$ I read in #8

ENTER 707 USING "#,8D%;Length I read in block length

I
! Read and print each file in the directory
i
POR I-1 TO Length STEP 51
ENTER 707 USING "#,51A";FileS
PRINT Filel
NEXT I
ENTER 707 USING "A";Specifiers ! read in final line feed
np

13-11

Programming Examples

Printing to the disk

Printing to the disk

This program prints acquired data. to a disk file. The £ile can: be either on a
LIF or DOS disk, If you print the file to a flexible disk in the DOS format, vou
will be able to view the file on a DOS compatible computer using any number
of file utility programs.

! Ak kkxkk PRINTING TO A DISK PILE %%k

! This program prints the acquired data to a disk file on a floppy disk.
' Tt will print to either a LIF or DOS file using the PRINT ALL command.

P HRIRKRFAIEI AT AT AR EAAARIFKRARAAIARARAIE RN F AR AR ALK R AR A KR dok drokdokokk kk

! This program assumes a logic analyzer module

I is Iinmstalled in slot
QUTPUT 707;":8SELECT 1"

!
QUTPUT 76G7;":MENU 1,77

QUTPUT 707;":5YSTEM: PRINT

1.

Selects the module in slot 1. This program
assumes a logic analyzer module is installed
in slot 1.

Selects the Listing 1 menu. Print to disk

twill only work in Listing and Disk menus.

ALL, DISK, ’'DISKFILE’, INTERNALL"

IEE S AR SR LEAEEEEE AR LSRR R SRS R LSSl el R SR SSREREEESEEEEEEEEEESE]

! Now display catalog to see that the file has been saved on the disk.

!

DIM Pile${100]

DIM Specifier$iz]
QUTPUT 707;":EQI ONF

QUTPUT 707;":SYSTEM:HEADER CFF”
CUTFUT 707; " :MMEMORY:1MSI INTERNALL®
oUTPZUT T707; " MMEMORY: CATALOG? ALL™
ENTER 707 USING "#,2A";Specifiers
ENTER 707 USING "#, 8D";Length

FOR I=1 TO Length STEP 70

ENTER 707 USING *#,70A";Files

PRINT Fiie$S
NEXT I

ENTER 707 USING "A”;Specifiers

13-12

Index

!
*OLS command, 8-5
*ESE command, 8-6
*ESR command, 8-7
#*ON command, 8-9
*IST command, 8-9
*OPC command, 8-11
*OPT command, 8-12
*PRE command, 8-13
*RST command, 8-14
*SRE command, 8-15
*STB command, 8-16
*TRG eommand, 8-17
*TST command, 8-18
*WAI command, 8-19
R 51
32767, 4-4
9.9E+37, 4-4

N 5

,4-6

E]s 4-5
{}.4-5
i, 4-b

A

Addressed talk/listen mode, 2-3
Angular brackets, 4-5
Arguments, 1-8

AUToload command, 11-8

B
Bases, 1-13
BASIC, 1-3

Baud rate, 3-10
BEEPer command, 9-6
Bit definitions, 6-4 to 6-5
Block data, 1-7, 1-21
Block length specifier, 16-5, 16-12
Braces, 4-5
bus addressing
HP-IB, 2-4

C
Cable

RS-232C, 3-3
CAPability command, 9-7
Card identification numbers, 9-8
CARDcage command, 9-8
CATalog command, 11-§

CD command, 13-10
CESE comimand, 9-18
CESR command, 9-11
Clear To Serd (CTS), 3-5

clock

real-time, 9-20
CME, 6-5
Combining commands, 1~10
Comma, 1-13
Command, 1-7, 1-17
*CLS, 8-5
*ESE, 8-6
*0PC, 8-11
*PRE, 8-13
*RST, §-14
*SRE, 8-15
*TRG, 8-17
*Wal, 8-19
AlUToload, 11-8
BEEPer, 9-6
CD (change directory, 11-10
CESE, 9-10
COPY, 11-11
DATA, 10-5
DELete, 12-5
DOWNload, 131-12
DSP, 10-8
EQL §-13
HEADer, 1-17, 10-8
INITialize, 1114
INPort, 12-7
INSert, 12-8
LOAD:CONFig, 11-15
LOADIASSembler, 11-16
LOCKout, 312, 9-14
LONGform, 1-17, 10-9
MENLU, 8-15
MESE, 9-16
MKDir, 11-17
MBS, 1118
PACK, 1119
PRINt, 15-10
PURGe, 11-20
REName, 11-22
RMODe, 9-19
RTC, 9-20
SElect, 9-21
SETColor, 9-23
SETup, 10-12

SKEW, 12-11

STARY, 9-24

STOP, 9-25

STORe:CONFig, 11-23

SYSterwDATA, 10-5

SYStem:SETup, 10-12

TREE, 12-12

XWINdow, 3-26
Cotrnand errors, 7-3
Comrand mode, 2-3
Command set organization, 4-3
Cemmand structure, 1-5
Command tree, 4-8

SELect, 3-22
Command types, 4-8
Common commands, 1-10, 4-6, 8-2
Communication, 1-3
Compound commands, 1-9
Caonfiguration file, 1-4
Controller mode, 2-3
Controllers, 1-3
Conventions, 4-6
COPY command, 311-11

b
DATA, 10-5

command, 10-8
Data bits, 3-10

8-Bit mode, 3-10
Data Carrier Detect (DO, 3-5
DATA command/query, 10-5
Data Communications Equipment, 3-3
Data mode, 2-3
Data Set Ready (BX8R), 3-5
Data Terminal Equipment, 3-3
Data Terminal Ready (DTR), 3-5
DCE, 3-3
DCL, 2-6
DDE, 6-5
Definite-length block response data, 1-21
DELete command, 12-5
Device address, 1-7

HP-IR, 2-4

RS-232C, 3-11
Device clear, 2-6
Device dependent errors, 7-3
Documentation conventions, 4-5

Index-1

Index

DOWNicad command, 11-12
DSP command, 10-6

DTE, 3-3

Duplicate keywords, 1-10

E
Ellipsis, 4-5
Embedded strings, 1-3, 1-7
Enter statement, 1-3
EOI command, $-13
ERRor command, 10-7
Error messages, V-2
ESB, 6-4
HEvent Status Register, 6-4
Examples

program, 13-2
EXE, 6-5
Execution errors, 7-4
Exponents, 1-13
Extended interface, 3-5

F
File types, 1113
Fractional values, 1-14

G
GET, 9-6
Group execute trigger, 2-6

H

HEADer command, 1-17, 10-8
Headers, 1-7, 1-9, 1-12

Host language, 1-7

HP 18B00L LAN Interface Module, 1-3,
ifi-iii

HP-IB, 2-2 {0 2-3, 6-8

HP-IB address, 2-4

HP-IB commands, 6-13

HBP-IB device address, 2-4
HP-IB interface, 2-3

HP-IB interface code, 2-4
HP-IB interface functions, 2-2
HTiIMe query, 12-6

1
IEEE 4881, 2-2,5-2
IEEE 488.1 bus commands, 2-8
IEEE 488.2, 5-2
G, 2-5
infinity, 4-4
initiafization, 1-4
iNITialize command, 1}-14
iINPort command, 12-7
input buffer, 5-3
INSert command, 12-8
instruction headers, 1-7
Instruction parameters, 1-8
Instruction syntax, 1-6
Instruction terminator, 1-8
Instructions, 1-6
Instrument address, 24
Interface capabilities, 23
RS-232C, 3-10
Interface clear, 2-6
Interface code
HP-IB, 2-4
Interface select code
R8-232C, 3-11
INTermmodute subsystem, 12-2
Internal errors, 7-4

K
Keyword data, 1-14
Keywords, 4-3

L

LAN programming, 1-3, ifi-iii
LCL, 6-6

LER command, 9-13

Linefeed, 1-8, 4-6
LOAD:CONFig cornmand, 11~156

LOAD:IASSembler command, 11-18

Local, 2-5

Local lockout, 2-6

LOCKout command, 3~12, 9-14
Longform, 1-12

LONGform command, 1-17, 10-2
Lowercase, 1-12

M

Mainframe commands, 9-2

MAV, 6-4

measurement complete program example,
13-6

MENU command, 9-15

MESE command, 9-16

MESR command, 9-18

MKDir command, 11-17
MMEMory subsystem, 11-2
Mnemonics, 1-14, 4-3

MSE, 6-6

MSG, 6-5

MSI command, 11-18

MSS, 6-4

Msus, 11-3

Multpie numeric variables, 1-22
Multiple program commands, 1-15
Muttiple gueries, 1-22

Multiple subsystems, 1-15

N

New Line character, 1-8
Ni, 1~8, 4-6

Notation conventions, 4-5
Numeric base, 1-20
Numeric bases, 1-13
Numerie data, 1-13
Numeric variables, 1-20

O

OPC, 6-6

Cperation Complete, -6

OR notation, 4-5

Cutput buffer, 1-11

Output quene, 5-3

CGUTPUT statement, 1-3

Overlapped command, 8-11, 8-19, 6-24 to
8-25

QOverlapped commands, 4-4

P

PACK command, 11-19
Parallel poll, 6-9

Parallel poll commands, 6-14
Pararneter syntax rules, 1~13
Parameters, 1-8

Parity, 8-10

Index-2

Index

Parse tree, 5-8

Parser, 5-3

PON, 6-5

PPC, 6-13

PPD, 6-14

PPE, 6-14

PPU, 6-13

PRIN{ command, 16-10
Printer mode, 2-3
program example

CARDcage, 9-8
CATalog, 11-8
CESE, 9-10
CESR, 6-11
DATA, 10-6
BOL 9-13
FRRor, 107
FTiMe, 12-6
HEADer, 10-8
INPort, 12-7

checking for measurement complete, 13-6 LER, 9-13
getting ASCI data with PRINt ALL query, LOCKout, 9-14

13-9

sengding queries {o the mainframe, 13-7
SYSTem:SETup cornmand, 13-3

SYSTemu:SETup? query, 13-3

LONGform, 10-9
MENU, 9-16
MESE, 9-17
MESR, 9-18

transferring configuration to analyzer, 13-3 MSI, 11-18

transferring configuration to the

controller, 13-3
Program exarples, 4-12, 13-2
Program message syntax, 1-6

Program message terminator, 1-8

Program syntax, 1-6
Programuming

over the LAN, 1-3, #i-iii
Programming conventions, 4-5
Protocol, 3-10, 5-4

None, 3-10

XON/XOFF, 3-10
Protacol exceptions, 5-5
Protocols, 5-3
PURGe command, 11-20

Q

Query, 1-7,1-11, 1-17
*ESE, §-6
*ESR, 8-7
*IDN, 8-9
*I8T, 8-9
*0PC, 8-11
*QPT, 8-12
*PRE, 8-13
*SRE, 8-15
*3TR, 8-16
ST, 8-18
AUToload, 11-8
BEEPer, -6
CAPability, 9-7

PRINt, 10-11
RMQDe, 9-19
SELect, 9-21
SETCclor, 9-24
SETup, 16-12
SKEW, 12-11
SYSTerm:DATA, 10-6
SYStem:SETup, 10-12
TREE, 1213
TTiMe, 12-13
UPLead, 11~-24
Query exrors, 7-5
query program example, 13-7
Query responses, 1-16, 4-4
Question mark, 1-11
QYE, 6-5

B

real-time clock, 9-20
Receive Data (RD), 3-4 to 3-5
Remote, -5

Remote enable, 2-5

REN, 2-5

REName command, 11-22
Request To Send (RTS), 3-5
Response data, 1-21
Responses, 1-17

RMODe command, 9-18
Root, 4-8

RQC, 6-5

RQS, 6-5

RS-232C, 3-2, 3~11, -2
RTC {real-time clock), $-20

s

SDC, 2-6

SELect command, 8-21
Select command tree, 9-22
Selected device clear, 2-6
Sequential commands, 4-4
Serial poll, 6-8

Service Request Enable Register, 6-4

SETColor commarnyd, 9-23
SETup, 10-12

SETup command/query, 10-12
Shortform, 1-12

Simple commands, 1-8
SKEW command, 1211
Spaces, 1-8

Square brackets, 4-5
STARL command, 9-24
Status, 1-23, 6-2, 8-3
Status byte, 6-6

Status registers, 1-23, 8-3
Status reporting, 6-2

Stop bits, 3-10

S8TOP command, 9-25

0 10-13

STORe:CONFig command, 11-23

String data, 1-14
String variables, 1-19
Subsystem
INTermodule, 12-2
MMEMory, 11-2
SYSTem, 16-2
Subsystem cornrmands, 4-6
Suffix multiplier, 5-9
Suffix units, 5-10
Syntax diagram
Comrnon cornmands, 8-4
INTermodule subsystemn, 12-3

Mainfrarme comrmands, 9-3 1o §-4

MMEMory subsystem, 11-4 to
SYSTem subsystem, 10-3
Syntax diagrams
IEEE 488.2, 5-5
System commands, 4-6
system modules

11-5, 11-7

Index-3

Index

talking o, 1-4
3YSTem subsystem, 14-2
SYSTem:SETup cormunand program
example, 13-3
SYSTem:SETup query program example,
13-3

T

Talk only mode, 2-3
Terminator, 1-8

Three-wire Interface, 3-4
Traiting dots, 4-B

Transmit Data (TI)), 3-4 to 3-5
TREE command, 12-12
Truncation rule, 4-3

TTIMe query, 12-13

U

Units, 1-13

UPLead command, 11-24
Uppercase, 1-12

URQ, 6-5

w
White space, 1-8

X

XWiINdow command, 9-26
XXX, 4-5,4-8

XXX (meaning of}, 1-7

Index-4

© Copyright Hewlett-
Packard Company 1987,
1994, 1993, 1994

All Rights Reserved.

Reproduction, adaptation, or
translation without prior
written permission is
prohibited, except as allowed
under the copyright laws,

Decoment Warraoty

The information contained in
this document is subject to
change without notice.
Hewlett-Packard makes
no warranty of any kind
with regard to this
material, inclading, but
not limited to, the implied
warranties of
merchantability or fitness
for a particular purpose.
Hewlett-Packard shall not be
liable for errors contained
herein or for damages in
connection with the
furnishing, performance, or
use of this material.

Safety

This apparatus has been
designed and tested in
accordance with [EC
Publication 348, Safety
Requirements for Measuring
Apparatus, and has been
supplied in a safe condition.
This is a Safety Class I
instrument (provided with
terminal for protective
earthing). Before applying
power, verify that the correct
safety precautions are taken
(see the following warnings).
In addition, note the external
markings on the instrument
that are described under
"Safety Symbeols."

Warning

& Before turming on the
instrument, you must cannect
the protective earth terminal
of the instrument to the
protective conductor of the
{mains) power cord. The
mains piug shall only be
inserted in a socket outlet
provided with a protective
earth contact. You must not
negate the protective action
by using an extension cord
(power cable) without &
protective conductor
(grounding}. Grounding one
conductor of a two-conductor
outlet is not sufficient
protection.

& Only fuses with the
required rated current,
voliage, and specified fype
{(normal blow, time delay,
efc.) should be used, Do not
use repaired fuses or
short-circuited fTuseholders.
To do g0 could cause a shock
of fire hazard.

e Service instructions are for
frained service personnel. To
aveid dangerous electric
shock, do pot perform any
service uniess quatified to do
so. Do not attempt internal
service or adjustment uniess
another person, capable of
rendering first aid and
resuscitation, is present.

¢ If you energize this
instrument by an auto
transformer (for voltage
reduction), make sure the
cornmon terminal is
connected to the earth
terrmingl of the power source.

Whenever i is likely that
the ground protection is
impaired, you must make the
ingtrurment inoperative and
secure it against any
unintended operation.

® 3o not operate the
ingtrument in the presence of
flarmmable gasses or fumes,
Operation of any electrical
instrument in such an
environment constitutes a
definite safety hazard.

e Do not install substituie
parts or perform any
unauthorized modification to
the instrument.

e Capacitors inside the
instrument may retain a
charge even if the instrurment
is disconnected fromits
source of supply.

 Use caution when exposing
or handling the CRT.
Handling or replacing the
CRT shall be done only by
qualified maintenance
persormel.

Safety Symbols

A

Instruction manual symbol
the product is marked with
this symbol whett it is
necessary for vou Lo refer {o
the instruction manual in
order to protect against
damage to the product.

/

Hazardous voltage symbol.

Earth terminal symbol: Used
{o indicate a circuit common
cormected to grounded
chassis.

WARNING

The Warning sign denotes a
hazard. It calls attention to a
procedure, practice, or the
ke, which, if not correctly
performed or adhered io,
could result in personal
injury., Do not proceed
beyond 2 Warning sign until
the indicated conditions are
fully understood and met.

The Caution sign denotes a
hazard, It calls attention to
an operating procedure,
practice, or the like, which, if
not correctly performed or
adhered to, could resuitin
damage to or destruction of
part or ali of the product. Do
not proceed beyond &
Caution syrmbol antil the
indicated conditions are fully
understood or met.

Hewletlt-Packard
P.0. Box 2197

1900 Garden of the (Gods Road

Colorado Springs, CO 80801

Product Warranty

This Hewlett-Packard
product has a warranty
against defects in material
and workmanship for a period
of one vear from date of
shipment. During the
warranty period,
Hewlett-Packard Company
will, at its option, either
repair or replace products
that prove to be defective,

For warranty service or
repair, this product must be
returned to a service facility
designated by
Hewlett-Packard.

For products returned to
Hewlett-Packard for warranty
service, the Buyer shall
prepay shipping charges to
Hewlett-Packard and
Hewlett-Packard shall pay
shipping charges to return
the product to the Buyer.
However, the Buyer shali pay
all shipping charges, duties,
and taxes for products
returned to Hewlett-Packard
from another country.

Hewlett-Packard warrants
thatits software and firmware
designated by
Hewlett-Packard for use with
an instrument will execufe its
programming instructions
when properly installed on
that instrument.
Hewlett-Packard dees not
warrant that the operation of
the instrument software, or
firmware will be
uninterrupted or error free,

Limitation of Warranty

The foregoing warranty shail
not apply to defects resulting
from improper or inadequate
maintenance by the Buyer,
Buyer-supplied software or
interfacing, unauthorized
modification or misuse,
operation outside of the
environmental specifications
for the product, or improper
site preparation or
maintenance.

No other warranty is
expressed or imphed.
Hewlett-Packard
specifically disclaims the
implied warranties of
merchantability or filness
for a particular purpose.

Exclusive Remedies

The remedies provided

herein are the buyer's sole
and exclusive remedies.
Hewlett-Packard shall not be
Hable for any direct, indirect,
special, ineidental, or
consequential damages,
whether hased on contract,
tort, or any other legal theory.

Assistance

Product maintenance
agreements and other
customer assgistance
agreements are available for
Hewlett-Packard products,
For any assistance, contact
your nearest Hewlett-Packard
Sales Office.

Certification
Hewlett-Packard Company
cerfifies that this product met
its published specifications at
the time of shipment from the
factory, Hewlett-Packard
further certifies that its
calibration measurements are
traceable to the United States
National Institute of
Standards and Technology, to
the extent allowed by the
institute's calibration facility,
and to the calibration
facilities of other
International Standards
Organization merbers.

About this edition

This is the first edition of the
HP 16500B/165014A
Programmer’s Guide.

Publication nuraber
16500-97009

Printed in USA.
Edition dates are as follows:
Second edition, April 1994

New editions are complete
revisions of the manual.
Update packages, which are
issued between editions,
contain additional and
replacement pages to be
merged mnto the manual by
you. The dates on the title
page change only when a new
edition is published.

A software or firmware code
may be printed before the
date. This code indicates the
version Jevel of the software
or firmware of this product at
the time the manual or
update was issued. Many
product updates do not
require manual changes; and,
conversely, manual
corrections may be done
without accompanying
product changes. Therefore,
do not expect & one-to-one
correspondence between
preduct updates and manual
updates.

The following list of pages
gives the date of the current
edition and of any changed
pages to that edition.

All pages origingaf edition

