
Tool Development Kit
User’s Guide
Publication number B4605-97006
October 2002

For warranty information, see the pages behind the index.

© Copyright Agilent Technologies 1994-2002
All Rights Reserved

Tool Development Kit at a Glance

The Tool Development Kit is a programming environment that allows
access to data acquired by Agilent Technologies 16600 or 16700 series
logic analyzers. This data can be retrieved and manipulated through
the use of a Tool Development Kit program. A library of functions and
type definitions that are specifically for use with the Tool Development
Kit is provided.

Tool Development Kit programs are written in the C programming
language, with some C++ extensions, and must be compiled within the
Tool Development Kit tool. The Tool Development Kit text editor
provides basic text editor capabilities using the mouse and keyboard.
Program files can be written within the Tool Development Kit or they
can be imported.

This manual is divided into eight chapters.

• Chapter 1, “Getting Started,” provides instructions for installing and
enabling the Tool Development Kit.

• Chapter 2, “Welcome to Tool Development Kit,” provides instruction in a
tutorial format for the basic start-up tasks required to use the Tool
Development Kit.

• Chapter 3, “Tool Development Kit Interface,” provides information on
using the Tool Development Kit interface.

• Chapter 4, “Tool Development Kit Concepts,” covers concepts
fundamental to using the Tool Development Kit tool to write programs that
manipulate data of interest.

• Chapter 5, “Tool Development Kit Programming Model,” covers the best
practices for using Tool Development Kit and writing programs.

• Chapter 6, “Tool Development Kit System Utilities,” covers the Tool
Development Kit system utility functions.

• Chapter 7, “Extended Examples,” covers more complex examples to
demonstrate real-world functionality.

• Chapter 8, “Tool Development Kit Reference,” covers Tool Development
Kit functions in alphabetical order.
2

Contents
Tool Development Kit at a Glance

1 Getting Started

Verifying Tool Development Kit Installation 14

Installing the Tool Development Kit 16

Licensing the Tool Development Kit 18

Response Center Support 20

2 Welcome to Tool Development Kit

Tool Development Kit Overview 22

Setting Up the Workspace 23

Opening a Configuration, the Tool Development Kit Tool and a Program
File 25

Creating Your Tool Development Kit Program - The Basics 27

3 Tool Development Kit Interface

Menu Bar 33
File 33
Window 35
Edit 35
View 35
Options 37
Search 39
3

Contents
Tool Bar 41
Run/Stop Buttons 41
Window Shortcut Buttons 41
Status Line 41

Compile and Execute Buttons 42
Compile Button 42
Execute Button 42

Source Code Tab 43
Title area 43
Editing area 43
Status 46

Messages Tab 47
Buildtime 47
Runtime 47
Output 48

Tool Info Tab 49

4 Tool Development Kit Concepts

Types of Data 53
Integral Data 53
Analog Data 54
Text Data 54

Data Organization 56
Data groups 56
Data sets 57
Label entries 57
Accessing the Data 58
Using Iterators to Access the Data 59
Understanding Correlation 61
4

Contents
Working with TDKDataGroups 62
TDKDataGroup Functions 63

Working with TDKDataSets 65
TDKDataSet Creation Functions 66
TDKDataSet Utility Functions 76
TDKDataSet Filtering Functions 78
TDKDataSet Time and State Functions 79
TDKDataSet Iteration Functions 84
TDKDataSet Tutorials 90
Creating a new data set with a constant sampling frequency 91
Creating a new data set with modifiable time stamps 94
Filtering data within the Tool Development Kit 97

Working with TDKLabelEntries 101
TDKLabelEntry Creation Functions 101
TDKLabelEntries Utility Functions 103
TDKLabelEntry Time and State Functions 104
TDKLabelEntry Iteration Functions 107
TDKLabelEntry Format Functions 115
TDKLabelEntry Highlighting Functions 116
TDKLabelEntry Searching Functions 117
TDKLabelEntry Tutorials 121
Creating a New Numeric Data Label 121
Creating a New Text Label 124
Finding and Highlighting a Data Value 127
Finding and Coloring a Data Value 130
Performing a Pattern-match Search 132

Working with TDKCorrelators and TDKCorrelatorValues 136
TDKCorrelator Functions 137
TDKCorrelatorValue Functions 141
TDKCorrelator and TDKCorrelatorValue Tutorials 142
Time Correlated Data Access 144
5

Contents
TDK Miscellaneous Tasks 149
File I/O: Reading Data from a File on the Disk 149
File I/O: Writing to a File on the Disk 151

Creating Installable Tools 154
Removing Tools 157
Tool Versions and Config Files 158
Creating an Installable Tool Tutorial 159

5 Tool Development Kit Programming Model

Demand Driven Tool 166

Compiling Code 167

Compatibility 168

Include Files 169

Debugging 170

A Note About the Functions 172

Tool Development Kit Good Programming Practices and Helpful
Hints 173

Troubleshooting 177
6

Contents
6 Tool Development Kit System Utilities

I/O System 180
Formatted output 180
Printing from within functions other than "execute" 181
Interactive Input 181
Using Interactive Input 183
Error Messages 187
Parameters 187
Using Parameters 189
Interrupting the Run 193

Time Convenience Functions 194
Time Units 194

Utility Data Types 196
String Type 196
List Type 197

7 Extended Examples

Overview 200

The Mux Program 201

The Automotive Program 210
7

Contents
8 Tool Development Kit Reference

I/O System Functions 220
getDefaultArgs 220
getLabelNames 220
io.checkForUserAbort 220
io.checkForUserAbort 221
io.displayDialog 221
io.getArg 221
io.getErrorMessage 221
io.getUserInput 221
io.getUserInput 222
io.print 222
io.printError 222
io.printf 222
io.stop 223

List Functions 224
myList.length 224
myList[n] 224
myList.put 224

String Functions 225
int_to_str 225
s.chunk 225
s.is_empty 225
s.length 225
s.shrink 225
s1 + s2 226
8

Contents
TDKCorrelator Functions 227
c.firstPosition 227
c.getPosition 227
c.initialize 227
c.lastPosition 228
c.next 228
c.peekNext 228
c.peekPrev 228
c.prev 228
c.reset 229
c.resetAtEnd 229
c.setPosition 229
c.setStateBias 229
c.setTimeBias 230

TDKCorrelatorValue Functions 231
cv.getData 231
cv.getState 231
cv.isChanged 231
cv.isHeld 231
cv.isValid 232

TDKDataGroup Functions 233
dg.getDataSetNames 233
dg.getNumberOfDataSets 233
dg.isStateCorrelatable 233
dg.isTimeCorrelatable 233
dg.removeDataSet 233
dg.setStateCrossCorrelation 234
dg.setTimeCrossCorrelation 234
9

Contents
TDKDataSet Functions 235
ds.attach 235
ds.createState 235
ds.createTimePeriodic 235
ds.createTimeTags 236
ds.createTimeTags 236
ds.displayStateNumberLabel 237
ds.filter 237
ds.filterAllStates 237
ds.firstPosition 237
ds.getBeginTime 238
ds.getCorrelationState 238
ds.getCorrelationTime 238
ds.getEndTime 239
ds.getLabelEntryNames 239
ds.getName 239
ds.getNumberOfLabelEntries 239
ds.getNumberOfSamples 240
ds.getPosition 240
ds.getRunID 240
ds.getTriggerRow 240
ds.isAttached 241
ds.lastPosition 241
ds.next 241
ds.peekNext 241
ds.peekPrev 242
ds.prev 242
ds.removeLabelEntry 242
ds.replaceNext 243
ds.replacePrev 243
ds.reset 243
ds.resetAtEnd 243
ds.setPosition 244
ds.setStateBias 244
ds.setTimeBias 244
ds.unfilter 244
10

Contents
TDKLabelEntry Functions 245
le.attach 245
le.create 245
le.createAnalogData 245
le.createIntegralData 245
le.createTextData 246
le.firstPosition 246
le.formatBin 246
le.formatDec 247
le.formatHex 247
le.formatLine 247
le.formatOct 247
le.formatSymbol 247
le.formatTwos 248
le.getName 248
le.getPosition 248
le.getWidth 248
le.isAnalogData 248
le.isAttached 249
le.isIntegralData 249
le.isTextData 249
le.lastPosition 249
le.next 249
le.peekNext 250
le.peekPrev 250
le.prev 251
le.replaceNext 251
le.replacePrev 251
le.reset 252
le.resetAtEnd 252
le.search 252
le.searchAndColorAllPattern 252
le.searchAndColorAllRange 253
le.searchAndColorAllNotPattern 253
le.searchAndColorAllNotRange 253
le.searchAndHighLightAllPattern 253
11

Contents
le.searchAndHighLightAllRange 254
le.searchAndHighLightAllNotPattern 254
le.searchAndHighLightAllNotRange 254
le.searchNotPattern 254
le.searchNotRange 255
le.searchPattern 255
le.searchRange 255
le.setColor 255
le.setHighlight 256
le.setName 256
le.setPosition 256
le.setStateBias 256
le.setTimeBias 256

Time Functions 258
microSec 258
milliSec 258
nanoSec 258
picoSec 258
sec 258
timeToString 259

Index
12

1

Getting Started
13

Chapter 1: Getting Started
Verifying Tool Development Kit Installation
Verifying Tool Development Kit Installation

Before you get started using the Tool Development Kit, make sure that
it is installed and ready for use. Analyzers ordered with the Tool
Development Kit should have it ready to use.

1 Select the Workspace button from the toolbar.

2 In the Workspace window, look for the Tool Development Kit icon
in the Toolsets group of icons.

3 If the Tool Development Kit icon is there, go to chapter 2 to begin
the tutorial. If the icon is not there, go to the next step.

4 Select the System Admin button from the toolbar.

5 Select the Admin tab.

Tool Development Kit
14

Chapter 1: Getting Started
Verifying Tool Development Kit Installation
6 Select the Licensing... button.

7 Look for the Tool Development Kit listed under “Product.”

• If it is listed, go to “Licensing the Tool Development Kit” on page 18.

• If it is not there, go to “Installing the Tool Development Kit” on page 16.
15

Chapter 1: Getting Started
Installing the Tool Development Kit
Installing the Tool Development Kit

If the CD-ROM drive is not connected, see the instructions printed on
the CD-ROM package.

1 Turn on the CD-ROM drive first and then turn on the logic
analysis system.

2 Insert the CD-ROM in the drive.

3 Select the System Admin button from the toolbar.

4 Select the Software Install tab.

5 Select the Install... button.

Change the media type to “CD-ROM” if necessary.

6 Select the Apply button.

7 Open the “AUXILIARY-SW” selection.

8 Select the Tool Development Software, then select Install....

The dialog box will display “Progress: completed successfully” when
the installation is complete.

9 Select Close to close the Software Install window.

10 Select Close to close the System Administration Tool window.

11 Go to page 18 and complete the steps for licensing the Tool
16

Chapter 1: Getting Started
Installing the Tool Development Kit
Development Kit.

See Also The instructions printed on the CD-ROM package for a summary of the
installation instructions.
17

Chapter 1: Getting Started
Licensing the Tool Development Kit
Licensing the Tool Development Kit

1 To obtain a password, contact the Agilent Technologies password
center listed on the Entitlement Certificate that you received
after you purchased the Tool Development Kit.

2 Select the System Admin button from the toolbar.

3 Select the Admin tab.

4 Select the Licensing... button.

5 Enter the Password into the field labeled “Tool Development
Kit”.

6 Select OK.

7 Select Close to close the System Administration Tools window.

Now the Tool Development Icon is visible on the workspace
18

Chapter 1: Getting Started
Licensing the Tool Development Kit
8 You may now proceed to Chapter 2 and begin using the Tool
Development Kit tool.
19

Chapter 1: Getting Started
Response Center Support
Response Center Support

One year of response center support for two people is included with
this product. You will receive a letter in a few weeks with your contract
and contact information.

For further information about this support:

1 Go to:

http://www.agilent.com/find/swtools

2 Select the link for the Tool Development Kit page, Agilent
Technologies B4605B.

3 Select Agilent Technologies B4605B Technical Support, which is
located on the right hand side of the page.

4 Under “Professional Services”, select Services.

5 Under “Technical and Professional Services”, select Software
Support and Services.

6 Under “Technical and Professional Services”, select Response
Center Support.
20

2

Welcome to Tool Development Kit
21

Chapter 2: Welcome to Tool Development Kit
Tool Development Kit Overview
Tool Development Kit Overview

The Tool Development Kit is a programming environment that allows
access to data acquired by Agilent Technologies 16600 or 16700 series
logic analyzers. This data can be retrieved and manipulated through
the use of a Tool Development Kit program. A library of functions and
type definitions that are specifically for use with the Tool Development
Kit is provided.

Tool Development Kit programs are written in the C programming
language, with some C++ extensions, and must be compiled within the
Tool Development Kit tool. The Tool Development Kit text editor
provides basic text editor capabilities using the mouse and keyboard.
Program files can be written within the Tool Development Kit or they
can be imported.

Central to using the Tool Development Kit to retrieve and manipulate
data is an understanding of the different types of data that can be
captured by the logic analyzer. This will be discussed in Chapter 4. It is
recommended that you read this material before creating your own
Tool Development Kit programs. In order to use the Tool Development
Kit, you must either set up a workspace or open an existing
configuration. The rest of this chapter walks you through the logistics
of setting up a workspace, opening a configuration, the Tool
Development Kit tool and a program file, and then finally creating your
first program with the Tool Development Kit editor.

The sample files, which are all in the directory
/logic/demo/ToolDevKit/, are provided in “read-only” mode. If you wish
to modify them, they can be copied and changed as you wish.
22

Chapter 2: Welcome to Tool Development Kit
Setting Up the Workspace
Setting Up the Workspace

Before writing a Tool Development Kit program it is necessary to set up
the workspace. A data source, the Tool Development Kit tool, and one
or two listers comprise a typical configuration. The data source can be
either a Logic Analyzer instrument or a File In tool.

For the following examples, a File In tool that loads a previously
acquired trace into the data flow is used as the data source. This
example shows two ways of establishing a data flow: dropping one tool
on top of another, and dragging from one tool’s output to another tool’s
input.

1 Drag a File In tool to the workspace.

2 Drag a Tool Development Kit tool onto the workspace.

Tool Development Kit tool showing data input and output points

3 Connect data inputs and outputs to establish data flow.

a Drag from the output point of the File In tool to the input
point of the Tool Development Kit tool.

4 Drag a Lister to the workspace and drop it on top of the Tool
Development Kit tool.

5 If desired, drag and drop another Lister on top of the File In tool.
This is useful if you wish to view the data without it being
processed by the Tool Development Kit tool.

6 Open a data file in the File In tool.

a Select the File In tool and choose Display.

b Enter /logic/demo/ToolDevKit/sample1.dat for file name.
23

Chapter 2: Welcome to Tool Development Kit
Setting Up the Workspace
c Select the Read File button, then Close

7 Save this configuration.

a Choose File ➔ Save Configuration from the main window menu
bar.

b Give the file a name of your choosing.

Workspace window showing placement of tools and data flow

These steps create a workspace consisting of a data source, the Tool
Development Kit tool, and displays so that data from the source flows
“down the wire” to the Tool Development Kit tool and displays.
24

Chapter 2: Welcome to Tool Development Kit
Opening a Configuration, the Tool Development Kit Tool and a Program File
Opening a Configuration, the Tool Development
Kit Tool and a Program File

For each Tool Development Kit session, you may set up a workspace as
described in the previous section, or open a previously saved
configuration. It is also necessary to open the Tool Development Kit
tool in preparation for program code entry or opening an existing
program file.

This example demonstrates opening a previously saved configuration,
opening the Tool Development Kit tool, and loading an existing
program file.

1 Open the configuration

a Choose File ➔ Load Configuration from the Workspace
window menu bar.

b Choose /logic/demo/ToolDevKit/sample1.___ as the config
name.

2 Open the Tool Development Kit tool.

a Select the Tool Development Kit tool and choose Display

3 Open a Tool Development Kit program file

a Choose File ➔ Open Source file from the Tool Development
Kit menu bar

b Choose /logic/demo/ToolDevKit/sample1.c
25

Chapter 2: Welcome to Tool Development Kit
Opening a Configuration, the Tool Development Kit Tool and a Program File
The open Tool Development Kit tool, editor and sample1.c program

These primary steps will be used in all of the following examples. When
the Tool Development Kit tool has been opened, the Tool Development
Kit editor is available to enter program code.
26

Chapter 2: Welcome to Tool Development Kit
Creating Your Tool Development Kit Program - The Basics
Creating Your Tool Development Kit Program -
The Basics

Creating a Tool Development Kit program involves setting up or
opening a configuration and using the Tool Development Kit editor to
enter the C source code.

For this example, you will use the editor to enter the program. All the
remaining sample programs will be automatically opened in the Tool
Development Kit when you open the appropriate configuration.

NOTE: You do not necessarily have to perform the actual entry of code in this or any
of the examples. All the code is provided on line in the /logic/demo/
ToolDevKit directory.

1 Open the Tool Development Kit tool.

2 Enter the program sample1.c shown on the following pages using
the Tool Development Kit editor.

3 Save the program file.

a Choose File ➔ Save Source File As... from the Tool
Development Kit menu bar.

b Name the file /logic/demo/ToolDevKit/my_sample.c.

4 Select the Compile button.

5 Drag a File In tool onto the workspace.

a Open the data file /logic/demo/ToolDevKit/sample1.dat in the
File In tool.

b Select the Read File button, then Close.

c Connect data inputs and outputs to establish data flow from
the File In tool to the Tool Development Kit tool.
27

Chapter 2: Welcome to Tool Development Kit
Creating Your Tool Development Kit Program - The Basics
6 Notice that as soon as the data output of the File In tool is
connected to the data input of the Tool Development Kit tool, a
"Run" is performed.

The end of this section contains a listing of the source code sample1.c.
It will be useful to reference it for this next discussion.

This sample program demonstrates several important concepts of the
Tool Development Kit tool. The programming language used for the
Tool Development Kit is standard ANSI C, with some C++ extensions.
Use of C++ programming features beyond what is described here is not
recommended. The Tool Development Kit library contains function
calls and type definitions specifically for use with the Tool
Development Kit.

The "main" function of C is replaced with the "execute" function call
and should be used with the parameters shown in the sample program.
The first parameter dg passed into the "execute" function is a
reference to a variable of type TDKDataGroup. All programs will use
this variable to access the data captured and passed in the tool. A data
group contains one or more data sets. A data set contains one or more
label entries. See Chapter 4, Tool Development Kit Concepts, for more
information on data groups, data sets, and label entries.

In order to access and iterate through data, it is necessary to "attach" a
variable name to the data set (TDKDataSet) and to the appropriate
label entry (TDKLabelEntry). This can be accomplished by declaring
two local variables. In this example, those variables are ds and le of
type TDKDataSet and TDKLabelEntry. In a typical program, at least
one data set will be attached to a data set contained within the
incoming data group dg. In this sample, each attach function is error
checked.

Notice that when a label entry is attached to a data set, a name is given
to which that label entry is to be attached. In this example, le is
attached to the label entry called "ADDR". In this example, neither a
new data set nor label entry have been created. Rather local variables
are used to access the incoming data set with label entry "ADDR".
28

Chapter 2: Welcome to Tool Development Kit
Creating Your Tool Development Kit Program - The Basics
Tip: an easy way to view the names of the data set and label entries
contained within the data group passed into the Tool Development Kit
program is to use the View->datagroup... option found on the Tool
Development Kit menu bar. This dialog presents some very useful
information that will be needed in order to perform certain tasks in a
Tool Development Kit program. For this specific example, there is one
data set contained in the data group. That data set is named
"dataSet001" and contains 512 samples. Expand the data set folder to
view the label entries contained in the data set. This data set contains
three label entries, "ADDR", "DATA", and "STAT". For each label entry,
a width in bits in shown together with the type of data.

The second parameter, io, passed into the "execute" function provides
for displaying output messages to the Output window of the Tool
Development Kit tool. Display of output messages is accomplished by
using the io.printf() function with the same formatting as the C printf()
statement. In addition to printing messages for user information, this is
a method for debugging or monitoring values of variables. It should be
noted that Tool Development Kit programs containing functions in
addition to the required "execute" function will require the io
parameter to be passed in if output messages are to be displayed from
within that function. See the section on I/O System for more
information on using io print functions. Similarly, if additional
functions require access to the data group parameter dg, it must also
be passed into that function in the same manner as the io parameter.

To summarize, a basic Tool Development Kit program will contain the
following:

• the function "execute" with parameters dg (TDKDataGroup&) and io
(TDKBaseIO&)

• a data set variable which will be attached to the incoming data group

• an integer variable err for storing the results of Tool Development Kit
library function calls

Most likely, a Tool Development Kit program will also contain:

• one or more label entry variables which will be attached to one or more
labels in the data set
29

Chapter 2: Welcome to Tool Development Kit
Creating Your Tool Development Kit Program - The Basics
Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample1.c (Tool Development Kit program file)

sample1.c /* File: sample1.c
 Purpose: A simple TDK program to print ADDR values
 to the screen
*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{
 // define LabelEntries and DataSets
 TDKLabelEntry le;
 TDKDataSet ds;

 // define other program variables
 unsigned int value;

 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset
 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the “ADDR” label which is found in the dataset
 err = le.attach(ds, “ADDR”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Retrieve each piece of data and send it to the output
 // window for display
 while (le.next(value))
 {
 io.printf(“%0X”, value);
 }

}

30

3

Tool Development Kit Interface

The Tool Development Kit tool allows access to the internal data of the
logic analyzer. The data can be retrieved and manipulated by means of
a programming language.
31

Chapter 3: Tool Development Kit Interface
Tool Development Kit Tool Display

The tool consists of four areas: menu bar, tool bar, compile/execute
buttons, and a folder with three tabs.
32

Chapter 3: Tool Development Kit Interface
Menu Bar
Menu Bar

The menu bar consists of seven options: file, window, edit, view,
options, search, and help.

File

Load Configuration. The state of the Tool Development Kit tool (i.e.
editor options, file being edited, etc.) can be saved into Tool
Development Kit configuration files. These files can be loaded into the
tool so that a previous editing session can be restored. When this
option is selected, an OpenFile dialog is displayed so that a Tool
Development Kit configuration file can be selected and loaded. By
default, it has a file extension of ___ (for example, myconfig.___).

Save Configuration. The current state of the Tool Development Kit
tool (i.e. editor options, file being edited, etc.) is saved to a
configuration file. When this option is selected, a SaveFile dialog is
displayed. Enter in the desired name of the Tool Development Kit
configuration and select the Save button.

New Source File. This option causes the contents of the editor to be
discarded and a new temporary file to be created. If the editor contents
have been modified and not saved and this option is selected, a warning
dialog will be displayed to confirm the action.

Open Source File. A previously saved source file can be loaded into
the editor. The editor contents will be replaced with the new source
file. A file selection dialog will appear that allows the desired source to
be selected and loaded. This option does not change any editor
configuration options--it only loads in a source file.

Insert Source File. Another file can be inserted into the editor
buffer at the current cursor location. A file selection dialog will appear
that allows the desired file to be selected and inserted. Inserting a file
does not change the name of the file being edited.
33

Chapter 3: Tool Development Kit Interface
Menu Bar
Reload Source File. The contents of the editor buffer are refreshed
by re-reading the disk file.

Save Source File. The contents of the editor buffer are saved to the
file name displayed in the editor window. If a temporary source file
name is being used, the SaveAs file dialog will appear so that the file
can be renamed to something more meaningful.

Save Source File as. The contents of the editor buffer are saved to
the named file. The SaveAs file dialog is displayed and allows a file
name to be entered. The contents of the buffer will be saved to that
name and the editor window will be updated to reflect the new file
name.

Create Installable Tool... This option allows a stand-alone tool to
be created from the code you have written in the Tool Development
Kit. An icon for the tool can be selected and information can be
provided in the “Tool Info” tab. It will create a file on the hard disk, or
use the floppy disk as the location of the tool. If more than one floppy is
required, you will be prompted to enter them in succession. All of the
floppy disks will be re-formatted. Once this tool has been created, it
may be installed on any Agilent Technologies 16600/700 analyzer using
the System Admin Software install menu.

NOTE: Installable tools created on a floppy disk MUST be installed from a floppy disk.
Installable tools created on the file system (hard disk or mounted file system)
MUST be installed from the file system.

Print options. The Tool Development Kit display can be sent to a
printer or to a file. This option does not allow the source file currently
being edited to be sent to a printer or to a file. This is only a graphics
dump of the window.

Print this window. Using the options set up in the Print Options
dialog, the graphic display content of the window is dumped to a file or
printer.

Close. Pops down the Tool Development Kit display.
34

Chapter 3: Tool Development Kit Interface
Menu Bar
Window

One way to navigate around the workspace is to use the Window menu.
Any icon that is on the workspace will have an entry in the Window
menu. Selecting an icon name from the menu, displays the icon’s
window.

Edit

Undo. Reverse the previous editing action.

Redo. Reverse the previous undo action. The contents of the editor
buffer will appear as it did before the undo.

Cut. The selected text is removed and placed on the editor’s
clipboard.

Copy. The selected text is copied on to the editor’s clipboard.

Paste. The contents of the editor’s clipboard is copied into the editor’s
buffer at the current cursor location.

View

View Parameters. The dialog that is displayed allows information to
be passed into the tool at runtime. By default there are 50(0-49) lines;
however, the actual number parameters can be specified by the
program. See “Using Parameters” on page 189. Each line is a free
format text area and the information that is entered can be accessed in
the tool using the io.getArg() function.
35

Chapter 3: Tool Development Kit Interface
Menu Bar
Tool Development Kit Parameters Dialog
36

Chapter 3: Tool Development Kit Interface
Menu Bar
View datagroup. The contents of the input datagroup, are displayed
in a hierarchical format. This dialog is used for reference information
only when developing tools. Below is the view datagroup dialog.

Tool Development Kit View DataGroup Hierarchy Dialog

Options

Auto indent [ON/off]. The editor keeps a running indent. When the
return key is pressed, spaces and/or tabs are inserted to line up the
insert point under the start of the previous line.

Show matching [on/OFF]. Automatic parenthesis matching is
activated when you type or move the insertion cursor after a
parenthesis, bracket, or brace. It momentarily highlights the matching
character if that character is visible in the window.

Tabs. The tab character is inserted into the editor buffer when the tab
key is pressed. The tab distance determines how the tab character is to
be interpreted when it is displayed. If a space, instead of a tab, is
desired, the “Emulate tabs” option (Default: Enabled) is available. The
tab key will insert the correct number of spaces to bring the cursor to
the next emulated tab stop. Backspacing immediately after entering an
emulated tab will delete it as a unit, but as soon as you move the cursor
away from the spot, the editor will forget that the collection of spaces
represent a tab and it will be treated as separate characters.
37

Chapter 3: Tool Development Kit Interface
Menu Bar
To enter a real tab character with “Emulate tabs” on, use CTRL+Tab.

Tool Development Kit Tab Dialog

Overstrike [on/OFF]. Toggle the insertion mode from character
insertion to character overwrite.

Use external editor [on/OFF]. The file that is currently being edited
can automatically be reloaded when the “Run” button is pressed. When
the “Run” button is pressed, and this feature is enabled, the time and
date of the file being edited are compared to the time and date of the
corresponding disk file. If the disk file is newer, it will be loaded into
the editor, compiled and executed. This feature allows the disk file to
be updated via an NFS mount, because the code is being developed
outside of the Tool Development Kit editor, and the “Run” button is the
signal that allows the new file to be read in and executed.

This feature can be used in conjunction with the analyzer’s Windows
95/98/NT filesystem connectivity options. In this case, the best
approach is to share a drive on the analyzer to the PC. Once the file is
visible on the Windows PC, it can be opened and modified with any
editor. Remember that the file must be saved on the PC before going
back to the analyzer and executing the Tool Development Kit program.

It is inadvisable to map a 95/98/NT network drive on the analyzer for a
couple of reasons. One is that the compiler generates a number of
intermediate files in the same directory as the source file, and if these
are located across a network connection, it can slow compilation time
considerably. The other consideration is that DOS files add in a
carriage return character that is displayed in the Tool Development Kit
editor window. This does not cause any problem in terms of
compilation, but is does make for a strange looking display.
38

Chapter 3: Tool Development Kit Interface
Menu Bar
Search

Find. A dialog is displayed for entering text for searching. It also
allows the choices for search direction, case sensitivity, standard Unix
pattern matching characters (regular expressions), and wrapping the
search. Searches begin at the current text insertion position.

Tool Development Kit Search Dialog

Find next. Repeat the last search command without prompting for a
search string.

Replace. A dialog is displayed for entering text for searching and
replacing. It also allows the choices for search direction, case
sensitivity, standard Unix pattern matching characters (regular
expressions), wrapping the search/replace, and only replacing in a
selected area. Searches begin at the current text insertion position. A
combination of “Find” and “Replace” allow selective replacing.
“Replace All” will change all occurrences without prompting.
39

Chapter 3: Tool Development Kit Interface
Menu Bar
To restrict replacing to a specified area, highlight the area.

Replace Dialog

Replace next. Repeat the last replace command without prompting
for a new search/replace string.

Goto line. A dialog is displayed which allows a line number to be
entered. The desired line will be moved into the current editor window
and highlighted.

Goto Line Dialog
40

Chapter 3: Tool Development Kit Interface
Tool Bar
Tool Bar

This area consists of run/stop buttons, window shortcut buttons, and a
status line.

Run/Stop Buttons

The Run button causes new data to be acquired and the Tool
Development Kit tool to be executed. When a tool is being executed,
the Stop button becomes active. Pressing the Stop button aborts the
currently executing code if it has been instrumented with calls to
io.checkForUserAbort(). All changes that have been made to data are
lost.

Window Shortcut Buttons

These buttons let you open the System, Workspace, Intermodule, Run
Status, and System Administration windows.

Status Line

System messages are displayed in this area. While a tool is executing, a
message will be displayed indicating its progress.
41

Chapter 3: Tool Development Kit Interface
Compile and Execute Buttons
Compile and Execute Buttons

The button bar currently consists of two buttons: compile and execute.

Compile Button

The code that is being edited is compiled. If the code is modified and
has not been saved before it is compiled, a dialog will pop up asking
whether the source code should be saved. It must be saved before the
compile can continue. Any errors that occur during compilation will be
displayed in the “Buildtime” window. By selecting the error message,
the editor will be positioned to that line.

Execute Button

The code that is being edited is compiled, if necessary, and executed if
there are no compilation errors. All incoming data is made available to
the tool. The parameters are also made available. The execute button
does not cause any new data to be acquired. It only processes the
incoming data that is currently available to the tool. If the code is
modified and has not been saved prior to executing, it will need to be
saved. Any errors that occur during compilation, or execution, will be
displayed in the “Buildtime” or “Runtime” windows. By selecting the
error message, the editor will be positioned to that line.
42

Chapter 3: Tool Development Kit Interface
Source Code Tab
Source Code Tab

The Source Code tab is divided into two parts: the title area and the
editing area.

Title area

The title area consists of the file name and a status message. When the
Tool Development Kit tool is first displayed, a temporary file is created.
The tool requires that a valid file be available, hence, a valid temporary
file is created. By default, the temporary file is created in /tmp
directory. The filename is tmp.c. When a “Save as” is performed, the
temporary will be deleted. If the temporary file is empty and an “Open”
is performed, the temporary file will be deleted. The status area next to
the filename indicates if the file has been modified or is in read-only
mode.

Editing area

The editor provides basic mouse and keyboard functions.
43

Chapter 3: Tool Development Kit Interface
Source Code Tab
Mouse

Mouse Buttons

Moving the Primary Selection by Dragging with the Middle Button

Click Left Button Cursor position and primary selection

Double Click Left Button Select a whole word

Triple Click Left Button Select a whole line

Shift Click Left Button Adjust (extend or shrink) the selection, or if there is
no existing selection, begins a new selection
between the cursor and the mouse

Ctrl+Shift+Click Left Button Adjust (extend or shrink) the selection rectangularly

Drag Left Button Select text between where the mouse was pressed
and where it was released

Ctrl+Drag Left Button Select rectangle between where the mouse was
pressed and where it was released

Click Middle Button Copy the primary selection to the clicked position

Shift+Click Middle Button Move the primary selection to the clicked position,
deleting it from its original position

Drag Middle Button Outside of the primary selection: Begin a secondary
selection. Inside of the primary selection: Moves the
selection by dragging

Ctrl+Drag Middle Button Outside of the primary selection: Begin a rectangular
secondary selection. Inside of the primary selection:
Drags the selection in overlay mode.

Shift Leaves a copy of the original selection in place rather than removing it or blanking the
area

Ctrl Changes from insert mode to overlay mode (normally, dragging moves text by removing it
from the selected position at the start of the drag, and inserting it at a new position
relative to the mouse. When you drag a block of text over existing characters, the existing
characters are displaced to the end of the selection. In overlay mode, characters which are
occluded by blocks of text being dragged are simply removed. When dragging non-
rectangular selections, overlay mode also converts the selection to rectangular form,
allowing it to be dragged outside of the bounds of the existing text.).

Escape Cancels drag in progress
44

Chapter 3: Tool Development Kit Interface
Source Code Tab
When the mouse button is released after creating a secondary selection

Keyboard

Keyboard Actions

No Modifiers If there is a primary selection, replaces it with the secondary selection.
Otherwise, inserts the secondary selection at the cursor position.

Shift Move the secondary selection, deleting it from its original position. If there is a
primary selection, the move will replace the primary selection with the secondary
selection. Otherwise, moves the secondary selection to the cursor position.

Backspace Delete the character before the cursor

Left Arrow Move the cursor to the left one character

Ctrl+Left Arrow Move the cursor backward one word

Right Arrow Move the cursor to the right one character

Ctrl+Right Arrow Move the cursor forward one word

Up Arrow Move the cursor up one line

Ctrl+Up Arrow Move the cursor up one paragraph (Paragraphs are delimited by blank lines)

Down Arrow Move the cursor down one line

Ctrl+Down Arrow Move the cursor down one paragraph

Ctrl+/ Select everything

Ctrl+\ Unselect everything

Delete Delete the character before the cursor

Ctrl+Delete Delete to end of line

Shift+Delete Cut, remove the currently selected text and place it in the clipboard

Home Move the cursor to the beginning of the line

Ctrl+Home Move the cursor to the beginning of the file.

End Move the cursor to the end of the line.

Ctrl+End Move the cursor to the end of the file

PageUp Scroll and move the cursor up by one page

PageDown Scroll and move the cursor down by one page.
45

Chapter 3: Tool Development Kit Interface
Source Code Tab
Status

At the bottom of the Source Code tab there is a small status line. The
current cursor position, and the line and column are displayed. There
is also a small message area where the editor puts informative
messages.
46

Chapter 3: Tool Development Kit Interface
Messages Tab
Messages Tab

There are three windows: Buildtime, Runtime, and Output.

Buildtime

Compilation messages are sent to this window. When the compile or
execute button is pressed, the contents of this window are deleted.
When an error message is displayed, the line in the code causing the
error can quickly be brought into the edit window by selecting the
error message.

Runtime

All runtime errors, such as failures to attach to label entries and data
sets, will be displayed in this window. When the compile or execute
button is pressed, the contents of this window are deleted.
47

Chapter 3: Tool Development Kit Interface
Messages Tab
Output

The Tool Development Kit tool has built-in output capabilities (print).
The output generated by the tool will be placed in this window. When
the compile or execute button is pressed, the contents of this window
are deleted. Please note excessive writing to this window can cause the
Tool Development Kit tool to perform poorly. The data from this area
can be cut and pasted into other windows. Triple clicking in this
window selects all of the data, not just the displayed, which can then be
pasted into another window.
48

Chapter 3: Tool Development Kit Interface
Tool Info Tab
Tool Info Tab

The tool info tab allows a tool developer to give a name and icon to the
tool.

Tool Development Kit Tool Info window
49

Chapter 3: Tool Development Kit Interface
Tool Info Tab
This window should be filled out before creating an installable tool. The
icon browse area allows an icon to be associated with the tool. This will
appear on the workspace once the tool is installed on the analyzer. Tool
Name is what the tool will be called. Additional information can be
general information about the tool or the developer of the tool. It will
be visible to the end user while the tool is being installed.
50

4

Tool Development Kit Concepts
51

Chapter 4: Tool Development Kit Concepts
This chapter covers concepts fundamental to using the Tool
Development Kit tool to write programs that manipulate data of
interest.

To successfully create programs using the Tool Development Kit an
understanding of the different types of data and how they are accessed
is first required.

Examples will be presented to help show how to access data in the
sections Working with TDKDataGroups, Working with TDKDataSets,
Working with TDKLabelEntries and Working with TDKCorrelators.
52

Chapter 4: Tool Development Kit Concepts
Types of Data
Types of Data

There are three types of data supported by the Agilent Technologies
16600 and Agilent Technologies 16700: Integral, Analog, and Text data.
It is important to know the type of data that has been captured by the
logic analyzer and passed into the Tool Development Kit tool because it
determines which specific Tool Development Kit library function
should be used to access the data. For example, if Analog data has
been captured, then the Analog version of library functions should be
used to access the Analog data. Using an Integral or Text version of the
library functions to access Analog data will not result in correct
retrieval of the data.

Integral Data

Integral data is numeric data. It is an unsigned quantity ranging from 1
to 32 bits in width. When data is acquired with one of the acquisition
modules (Agilent Technologies 16555/16550, etc.), the data is
transformed into Integral data. One exception to Integral data occurs
with accessing a time value or state value as opposed to the actual data
value captured for a state or time period. In the time or state case, the
Integral data is a signed 64-bit quantity. Integral data is the most
common type of data captured. Unless you are using an oscilloscope
module, you can assume the data passed into the Tool Development Kit
tool is Integral data. In general, Tool Development Kit library functions
used to access data that contain a parameter of type "unsigned int" are
to be used to access Integral data.

The following table shows an example of a listing where Integral data
has been captured. State information and time information are stored
in a signed 64-bit quantity. Actual data values that are found under the
ADDR label are stored in an unsigned quantity of 16 bits for this
example. In general, the size for any given label entry, such as ADDR,
can be retrieved by referencing the Machine Format dialog and looking
up the label name.
53

Chapter 4: Tool Development Kit Concepts
Types of Data
Sample Trace Listing

Analog Data

Analog data is stored as a 15-bit integer, but is accessed like a double. It
is meant to represent data coming from an oscilloscope, so to represent
Analog data, an offset and full scale volts per screen must be given. In
general, Tool Development Kit library functions used to access data
that contain a parameter of type "double" are to be used only for
oscilloscope captured data.

Text Data

Text data is ascii data. Text data is useful when you want to display
information that more fully explains a condition. For example, assume
that setup and hold time measurements are being made and that a
particular piece of data violates the hold time. A piece of text data can
be created which says, "Hold time violation". This text data will be
displayed in the Listing window making it easy to locate the violations.

In general, text data will not be passed in to the Tool Development Kit
tool. Rather a Tool Development Kit program can be used to create text
data that becomes an output of the Tool Development Kit. This output
usually serves as input to the lister tool or some other tool.

The exception to this is if a Tool Development Kit program creates Text
data and passes that data into some other Tool Development Kit tool or
program. Tool Development Kit library functions used to access data
containing a parameter of type "String" are used for Text data.

State Information
(signed 64 bit value)

Timing Information
(signed 64 bit value)

ADDR Label
(unsigned 16 bit value)

0 1.0 ns 0x1234

1 3.0 ns 0x5678

2 5.0 ns 0x1212

3 7.0ns 0x3434
54

Chapter 4: Tool Development Kit Concepts
Types of Data
For information on accessing data using Tool Development Kit library
functions, see the section "Using Iterators to Access Data" on page 59.
The table below shows a summary of the different data types together
with the modules used to capture the data. Note, the Tool
Development Kit, while not a measurement module, can be used to
output new data of any given data type (Integral, Analog, or Text). The
measurement modules in the table below can only output Integral or
Analog data. See the section on creating a new TDKLabelEntry on page
101 for more information as to how this is done.

Data Types Output by Various Measurement Modules

Measurement Module Category
Integral
Data

Analog
Data

State and Timing Acquisition Cards (for example 16550A, 16557A/D, 16710A,
16715A, etc.)

X

Oscilloscopes (16533A/16534A or later) X

High-Speed Timing (16517A/16518A or later) X

Pattern Generator (16522A) * X

* The pattern generator generates Integral data that does not contain any timing information. It contains
state information only.
55

Chapter 4: Tool Development Kit Concepts
Data Organization
Data Organization

Simple Workspace Layout with Data Group Points Highlighted

Data groups

When an instrument acquires data, it formats the acquired data into a
data group. This data group is passed to the input of the Tool
Development Kit program. The program retrieves the necessary
information from the data group in order to process it. Once it has
processed the designated data, it passes the data group to the input of
the listing tool. The listing tool retrieves the information that it needs
from the data group in order to update the display.

The data group is similar to a database-- it is the general container
where all data resides. At every input/output point, there is exactly one
data group that is passed into the tools. If there are multiple "inputs"
attached to a single tool (fan-in), all of the data groups are

Data group
56

Chapter 4: Tool Development Kit Concepts
Data Organization
consolidated into a single entity so that the tool receives one, and only
one data group. The data group represents the global entity that
contains all acquired data. It is further broken down into data sets.

Data sets

A data set contains a group of labels that were defined in the
instrument's Format dialog. If you have multiple instruments
(measurement modules) fanned-in to a single tool, there will be a data
set in the data group for each instrument. The data set represents how
the instrument acquired the data (number of samples, acquisition time,
acquisition rate) and it also holds the name of the acquisition
instrument. All labels defined within a data set have the same sampling
information (i.e. number of samples acquired, sample rate, acquisition
time).

Label entries

Each label within a data set corresponds to the label that was designed
in the instrument's Format dialog. A label, within a data set, consists of
its name, width (number of bits assigned to the label), and its type
(whether it is integral, analog, or text). A label also holds all of the data
that was acquired. Therefore, in order to access acquired data, it is
important to know the name of the label, the name of the instrument
where that label is defined, and the type of data captured (integral,
analog, or text). These pieces of information are critical for data
retrieval.

Tool Development Kit library functions refer to each of these three
data structures by the following data type names:

• data group == TDKDataGroup

• data set == TDKDataSet

• label or label entry == TDKLabelEntry

These names will be used throughout this manual.
57

Chapter 4: Tool Development Kit Concepts
Data Organization
Accessing the Data

Data Hierarchy in the Tool Development Kit

The main focus of the Tool Development Kit is to allow users to freely
manipulate their data. This includes basic iterators for stepping
through the data. It also includes higher-level correlated iterators that
handle the most common types of state and timing correlation. These
basic means of support provide Tool Development Kit programmers
with tremendous flexibility.

TDKDataGroup

TDKDataSet

LabelLabelState #

1
2
3
.
.
.

0x...
0x...
0x...

.

.

.

DATAADDR
0x...
0x...
0x...

.

.

.

. . .

TDKDataSet

LabelState #
.
.
.

.

.

.

. . .

. . .
58

Chapter 4: Tool Development Kit Concepts
Data Organization
Using Iterators to Access the Data

Accessing of the underlying data is handled with iterators. They create
a level of abstraction that shields the developer from the data storage
mechanism. They also provide a consistent method that is applied to
retrieving and storing of data. The general concept is that iterators
don’t point at data, they point in between data.

Iterator Diagram Showing “Next” and “Prev” Functionality

Data is retrieved by using "next" or "prev". As the data is stepped over,
it is retrieved and returned. As an example, assume that the red line is
the iterator of interest. If "next" is used, the cell containing the value
"A" is stepped over. The process of stepping over the cell causes the
contents of the cell, in this case the value "A", to be retrieved and
returned. The iterator is now placed before the next cell--the blue line.
If "next" is used again, the value "B" is returned and the iterator is now
the green line. If "next" is used again, the value "C" is returned and the
iterator is now the magenta line. If "next" is used again, there is not a
value returned and the iterator indicates that it is at the end of data.
The same analogy is true with "prev." If the starting position is the
magenta line and "prev" is used, the value "C" is returned and the
iterator is now the green line. If "prev" is used, the value "B" is returned
and the iterator is now the blue line. If "prev" is used, the value "A" is
returned and the iterator is now the red line. If "prev" is used again,
there is not a value return and the iterator indicates that it is at the
beginning of data. An iterator can be set to begin iterating at any

A

B

C

Iterator points Red

Blue

Green

Magenta
59

Chapter 4: Tool Development Kit Concepts
Data Organization
position within the data.

Data is stored by using the "replaceNext" or "replacePrev" functions.
Instead of retrieving the data as it is being stepped over, the data is
replaced with the new data as it is being stepped over. As an example,
assume that the red line is the iterator of interest. If "replaceNext" is
used, and the value "Z" is the new data, the cell containing the value "A"
is stepped over. The process of stepping over the cell causes the
contents of the cell to be replaced with the new data and the iterator is
placed at the beginning of the next cell--the blue line.

Iterator Diagram Showing “A” Being Replaced with a “Z”

This process is repeated to replace all of the data. The function
"replacePrev" operates the same as "prev" except that it replaces the
data as it is stepped over. These four functions constitute the interface
into the underlying data. Once they are understood, all data can be
accessed, manipulated and stored.

Z

B

C

Iterator points Red

Blue

Green

Magenta
60

Chapter 4: Tool Development Kit Concepts
Data Organization
Understanding Correlation

Correlation refers to how data acquired from multiple probe sources
(measurement modules) should match up when iterating through the
data. Possibilities include State, Timing, both State and Timing, or no
correlation. Correlation is guaranteed if the incoming data group
contains only one data set.

Time Correlation is required when there are multiple analyzers
acquiring data on independent time-bases. In this case the samples
from one analyzer will need to be "correlated" to those of another to
ensure that data from the same instant in time is being compared. This
may be achieved by writing the code to manage the timing information,
or the built-in Tool Development Kit Correlators can be used. It
depends upon the particular application.

An upstream tool called a Pattern Filter may have filtered the data that
comes into the Tool Development Kit tool. Data filtration occurs at the
data set level. That is, if a particular sample is filtered out because it
matches the criteria specified in the pattern filter, it is eliminated from
every label entry within that particular data set. This detail is only
important when the tool is trying to analyze more than one data set. If
there is more than one data set in the Tool Development Kit, frequently
it is desired to have the samples of one data set "match up" with the
samples of another. This situation is called correlated iteration.

The key to making this match-up work for any particular time instant is
to retrieve data only from those labels that were not filtered at that
time. To find out whether a particular sample exists and was not
filtered, functions of the data set (see the section Working with
TDKDataSets on page 65) must be called that return the exact position
of the next (unfiltered) sample. This position can then be used by each
label entry to set its position. For each one that does exist, the data
within the label entry at that sample should be retrieved.
61

Chapter 4: Tool Development Kit Concepts
Working with TDKDataGroups
Working with TDKDataGroups

The collection of all data that is passed into any tool, including the Tool
Development Kit, is called a data group. A TDKDataGroup is passed
into the "execute" routine by reference. This variable, dg, should be
used with all of the TDKDataGroup functions. Tool Development Kit
programs will never have a need to declare variables of type
TDKDataGroup.

A Tool Development Kit data group is a collection of all the data sets
present in the run, along with correlation information about those data
sets. A data group will always contain at least one data set. The
correlation information tells how the data sets in a data group are
related. Recall that data sets can be correlated in State, Time, both
State and Time, or no correlation. A data group with a single data set
that has State and Time information will be State and Time correlated.

Data group information can be obtained non-programmatically by
viewing the Tool Development Kit menu option View datagroup.... This
dialog shows information pertaining to the incoming data group dg that
is passed into the Tool Development Kit tool "execute" function.
During development of a Tool Development Kit program, this
information can be most helpful as it provides a list of all the data sets
contained within the captured data group. For each data set listed, the
name of the data set is shown together with all the label entries
contained in each data set. For each label entry listed, the name of the
label entry, size of the label entry and type of data is shown. While all of
this information can be obtained programmatically through Tool
Development Kit library functions, this dialog can be useful to show
how the captured data is organized.
62

Chapter 4: Tool Development Kit Concepts
Working with TDKDataGroups
TDKDataGroup Functions

dg.getNumberOfDataSets

int dg.getNumberOfDataSets()

This function returns the number of data sets present in the data
group.

dg.getDataSetNames

int dg.getDataSetNames(StringList& names)

This function returns the number of data sets present in the data group
and also puts the names into the StringList names that is passed as a
parameter. names is reSize()'d to the number of data sets.

int i;
StringList names;
dg.getDataSetNames(names);
for(i = 0; i < dg.getNumberOfDataSets(); i++)
{

io.print(names[i]);
}

dg.isTimeCorrelatable

int dg.isTimeCorrelatable()

This function returns true if the data group is time correlatable.

dg.isStateCorrelatable

int dg.isStateCorrelatable()

This function returns true if the data group is state correlatable.

dg.setTimeCrossCorrelation

int dg.setTimeCrossCorrelation()

This function should be called in a multiple data set situation to tell the
system that they should be correlated by time. Returns an error code.
63

Chapter 4: Tool Development Kit Concepts
Working with TDKDataGroups
dg.setStateCrossCorrelation

int dg.setStateCrossCorrelation()

This function should be called in a multiple data set situation to tell the
system that they should be correlated by state. Returns an error code.

NOTE: It is important that either dg.setTimeCrossCorrelation or
dg.setStateCrossCorrelation be called any time new data sets have been
created through the Tool Development Kit tool environment. This informs
downstream tools that either time or state correlated data is available.

dg.removeDataSet

int dg.removeDataSet(TDKDataSet ds)

This function removes the data set that ds is attached to. Returns 1 for
success, 0 for failure. This function is useful in situations where a new
data set is to be displayed without showing the original data set. The
original data set can be removed by using this function and passing in
the data set reference ds.
64

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
Working with TDKDataSets

It is possible to create a new data set. This is often useful if the
information that is to be created will not have the same number of
samples as the input. For example, if you are creating a tool that takes
in serial words and outputs parallel words, then the output data set will
have only 1/8th the number of samples as the input data set, assuming
that the bits are being assembled into bytes.

On the other hand, a tool that is designed to demux an incoming data
set, will need to create a data set that has more samples than the input
based on the mux factor. If the mux factor is 4, then the output data set
will need 4x number of samples.

If it is not easy to determine the number of samples that the output
data set will need, (i.e. there is no easy calculation which can give this
result) then you will need to create one that is guaranteed to be big
enough, even if it is too big. This is because you cannot change the size
of the data set once you have created it. At the end, it is easy to filter
any extra states with the ds.filter() function to hide them from the
user.

Once you have decided how big to make the output data set, then you
must create labels within that data set. See the section on Working with
TDKLabelEntries on page 101 for details. Also, you will probably want
the input samples to "correlate" to the output samples. This can be
done by modifying the time stamps on the output data set. Using the
ds.replaceNext() function, you can read time stamps from the input
and write them to the output. When the Listing tool displays the
information, it aligns all the samples according to their time stamps.
65

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
NOTE: It is not possible to change the number of samples that a data set holds once
created; this is fixed.

Data sets are declared simply as:

TDKDataSet ds;

Where ds is the data set variable being declared. This does not initialize
the variable. Exactly one of the attach() or create() functions must be
called to instantiate the variable before it can be used in any other
operations.

TDKDataSet Creation Functions

When creating new TDKDataSets, you must be aware of the kind of
correlation that is available, if you need them to be correlated. Recall
that correlation can be State, Timing, both State and Timing, or no
correlation. Additionally, you may be forced to remove() one of the
other data sets to achieve the correct correlation.

NOTE: Use the data group functions “isStateCorrelatable” and “isTimeCorrelatable”
to determine if the input data set(s) can be correlated to newly created data
sets in time, state, both time and state, or no correlation. Agilent Technologies
1660X analyzers only produce time correlatable data sets. It does not make
sense to attempt to correlate data sets based on state information or use the
createState function for creating new data sets on those analyzers.

Most of the information needed to create a new data set can be
retrieved from one of the original data sets contained in the data group
passed into the execute function. Depending upon your application,
you may want this information to be the same or not. The original data
group dg passed into the execute routine is passed into all data set
creation functions in order to know the data group this data set is being
created for.

ds.createTimeTags

There are times when it would be convenient to add a new data set,
and new label entries within that data set. The new data set might
66

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
have a different number of samples and sample frequency than the
original data set and it is desired that the new data set allow the time of
each sample to be modified. By modifying the time stamps of the
newly created data set, user-specified correlation with the incoming
data is possible. The function createTimeTags should be used to create
a data set with these desired properties. The majority of applications
that create a new data set will use this function. If you are not sure
which data set creation function to use, use this one.

int ds.createTimeTags(TDKDataGroup& dg,
String name,
unsigned int len,
unsigned int triggerRow,
long long correlationTimeOffset,
long long samplePeriod)

This function creates a new data set ds called name with time tags and
len number of samples. The position of the trigger row is placed
triggerRow number of samples from the first sample. The
correlationTimeOffset tells how the data set trigger position matches
up in time in case there is more than one data set. The samplePeriod
tells the time instants of each of the samples. Returns an error code.

TDKDataSet originalDS;
TDKDataSet newDS;
originalDS.attach(dg);
newDS.createTimeTags(dg, “newDataSet”, 100, 50,
originalDS.getCorrelationTime(), nanoSec(4.0));

NOTE: When creating a new data set(s) with time tag information, pass in the
correlation time offset retrieved from one of the data sets inputted to the Tool
Development Kit tool. In general, all time correlated data sets output from the
Tool Development Kit tool need to have the same correlation time offset value
so that they are properly aligned in downstream tools such as the Listing tool.

Also, note that anytime you create new data sets that are correlated in time,
you must call “dg.setTimeCrossCorrelation” before you exit the “execute”
function. See the tutorial “Creating a new data set with modifiable time
stamps” on page 94 for an example.
67

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
In addition, the following rule must be followed when creating a data
set for which time stamps will be modified.

RULE:

Each subsequent sample in a data set must contain a monotonically
increasing time stamp.

For example, it is incorrect to create a data set with modifiable time
stamps (using the createTimeTags function) and give sample 10 a time
stamp of 400 nanoseconds while sample 11 has a time stamp of 100
nanoseconds.

A common programming error is to create a new data set using the
createTimeTags function and not adhere to this rule. This can easily
happen in the following scenario.

Suppose an incoming data set contains 100 samples. Your program also
creates a new data set with 100 samples. Next your program iterates
through the incoming 100 samples and finds the starting states of some
transaction of interest. Whenever a new transaction state is found, the
time stamp from the state at which it is found in the incoming data set
is used to replace the time stamp for a sample in the new data set,
using the data set "replaceNext" function call. Your algorithm
determines that there are 10 such starting transaction states in the
incoming data set. Thus, your algorithm only replaces the time stamps
on the first ten samples in the new data set while leaving the remaining
90 time stamps unmodified. This has the potential to create
undefinable behavior in the correlation of the data sets in the Listing
tool. Here's why:

One side effect of using the createTimeTags function is to assign an
initial sample period to each sample in the new data set. These initial
sample time stamps will always adhere to the rule of data sets
containing monotonically increasing time stamps.
68

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
For example, if you used the function

newDS.createTimeTags(dg, "newDataSet", 100, 0,
originalDS.getCorrelationTime(), nanosec(4.0));

the first sample in the data set will have a time stamp of 0.0
nanoseconds, the second will have a time stamp of 4.0 nanoseconds,
the third will have a time stamp of 8.0, and so forth up to the last
sample having a time stamp of 400 nanoseconds.

You then replace the first ten time stamps in your new data set with
increasing values (i.e. 0.0, 1.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0,
80.0 nanoseconds). You don't replace the time stamps on samples 11
through 100, so they are still set to the value assigned to them during
the creation of the data set (namely 44.0, 48.0, 52,0, and so on up to
400.0 nanoseconds). The rule of having monotonically increasing time
stamps in any given data set has just been violated because sample 10
has a time stamp of 80.0 nanoseconds while sample 11 has a time
stamp of 44.0 nanoseconds. The analyzer cannot correlate or display
data accurately in this manner.

There are two ways to achieve the desired results in this scenario. One
way is to keep track that you have only modified 10 of the new data
sets time stamps and then fill the remaining 90 samples with dummy
values (that ensures monotonically increasing time stamps). Then you
can filter out these 90 states using the data set filter function described
in the section "Filtering data within the Tool Development Kit".
Another way is to iterate through the incoming data set first and
determine that you only need to create a data set with ten samples.
Then create a data set with exactly the number of samples that you will
need to modify. This will negate having to create dummy values and
then filtering those dummy samples.

By adhering to these practices, you will save yourself a lot of time
trying to figure out why your program is not working as intended.
69

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
There are times when it may be useful to create a copy of the same
data set. This is achieved by using the overloaded createTimeTags
function passing in the data set to be copied as the third parameter.

int ds.createTimeTags(TDKDataGroup& dg,
String name,
TDKDataSet origDS,
unsigned int triggerRow,
long long correlationTimeOffset,
long long samplePeriod)

This function creates a new data set ds called name which is a copy of
origDS with timeTags added. ds will contain all the label entries of
origDS. The position of the trigger row is placed triggerRow number
of samples from the first sample. The correlationTimeOffset tells how
the data set trigger position matches up in time in case there is more
than one data set. The samplePeriod tells the time instants of each of
the samples. Returns an error code.

TDKDataSet ds;
TDKDataSet orig;

orig.attach(dg);

ds.createTimeTags(dg, "newDataSet", orig,
orig.getTriggerRow(), orig.getCorrelationTime(),
nanoSec(4.0));

ds.createState

Sometimes it may be useful to create a new data set that contains only
state information and no timing information. Most likely this will useful
if doing a one to one correlation with another data set. This can be
achieved by using the createState function.

int ds.createState(TDKDataGroup& dg, String name,
unsigned int len,
unsigned int triggerRow,
long long correlationStateOffset)

This function creates a new data set ds with state information called
name and with len number of samples. The position of the trigger row
is placed triggerRow number of samples from the first sample. The
correlationStateOffset tells how the data sets trigger position matches
up in time in case there is more than one data set. Returns an error
code.
70

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
TDKDataSet originalDS;
TDKDataSet newDS;

original.attach(dg);
newDS.createState(dg, “neDataSet”, 100, 50,
originalDS.getCorrelationState());

NOTE: When creating a new data set(s) with state only information, pass in the
correlation state offset retrieved from one of the data sets input to the Tool
Development Kit tool. In general, all state correlated data sets output from the
Tool Development Kit tool need to have the same correlation state offset value
so that they are properly aligned in downstream tools such as the Listing tool.

Also, note that anytime you create new data sets that are correlated in state,
you must call “dg.setStateCrossCorrelation” before you exit the “execute”
function.

ds.createTimePeriodic

There are times when it would be convenient to add a new data set,
and new label entries within that data set where the new data set can
have a different number of samples and a different constant sampling
period than the incoming data set. This is achieved by using the
createTimePeriodic function.

int ds.createTimePeriodic(TDKDataGroup& dg,
String name,
unsigned int len, unsigned int triggerRow,
long long correlationTimeOffset,
long long samplePeriod)

This function creates a new data set called name with time period
information and len number of samples. The position of the trigger row
is placed triggerRow number of samples from the first sample. The
correlationTimeOffset tells how the data set trigger position matches
up in time in case there is more than one data set. The samplePeriod
tells the time instants of each of the samples. Returns an error code.

TDKDataSet originalDS;
TDKDataSet newDS;

originalDS.attach(dg);
newDS.createTimePeriodic(dg, “newDataSet”, 100, 50,
originalDS.getCorrelationTime(), nanoSec(4.0))
71

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
NOTE: When creating a new data set(s) with time tag information, pass in the
correlation time offset retrieved from one of the data sets inputted to the Tool
Development Kit tool. In general, all time correlated data sets output from the
Tool Development Kit tool need to have the same correlation time offset value
so that they are properly aligned in downstream tools such as the Listing tool.

Also, note that anytime you create new data sets that are correlated in time,
you must call “dg.setTimeCrossCorrelation” before you exit the “execute”
function. See the tutorial “Creating a new data set with modifiable time
stamps” on page 94 for an example.

NOTE: It is important that either dg.setTimeCrossCorrelation or
dg.setStateCrossCorrelation be called any time new data sets have been
created through the Tool Development Kit tool environment. This informs
downstream tools that either time or state correlated data is available.

The attach functions shown next are used when it is desired to just
associate a variable name with an existing data set. Data sets contained
in the original data group passed into the execute function are read-
only by default. You cannot change the value of any of the data
contained in the label entries associated with the data set. You can
however, change the color or highlight the data contained in label
entries of read-only data sets.
72

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
ds.attach

int ds.attach(TDKDataGroup& dg, String name)
int ds.attach(TDKDataGroup& dg)

This function associates the variable ds to an existing data set called
name that is present in the current run. It is permissible to re-attach()
the same data set variable to another in-coming data set. The effect of
this is as if it had never been attach()ed in the first place. Returns an
error code.

An example 16700 Workspace

Data set names are constructed by concatenating the names of all
instruments and tools through which the data is passed into a string
separated by colons. The entire data set name is referred to as the
“origin name” while the right-most separated colon is referred to as the
“base name”. Recall from page 63 that the data group function
“dg.getDataSetNames” returns a string list of the data set names in the
data group. This list of names contains the entire name or origin name
for each data set. The attach function that takes a String parameter,
can be passed either the origin name or the base name of the data set.
It will attach to the first data set instance it finds that exactly matches
the origin or base name.

The second version of attach(dg) will attach to the very first input data
set found in the data group. This allows the programmer to not worry
about what the name of the data set is if it does not matter. The
“View->datagroup...” dialog will show the order of the incoming data
sets along with a substring of the data set name.
73

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
For example, suppose we have the following data sets in the incoming
data group. The data set names were retrieved programmatically by
using the dg.setDataSetNames function.

Data Set #1 => Frame 10: Slot B: Analyzer
Data Set #2 => Frame 10: SlotB: Analyzer _TZ
Data Set #3 => File In<1>: Data Generator<1>: dataSet001
Data Set #4 => File In<2>: Data Generator<2>: dataSet001

To attach to the first data set:

1. ds.attach(dg); or

2. ds.attach(dg, “Analyzer”); or

3. ds.attach(dg, “Frame 10: Slot B: Analyzer”);

To attach the second data set:

1. ds.attach(dg, “Analyzer_TZ”); or

2. ds.attach(dg, “Frame 10: Slot B: Analyzer_TZ”);

To attach the third data set:

1. ds.attach(dg, “File In<1>:Data Generator<1>: dataSet001”);

To attach the fourth data set:

1. ds.attach(dg, “File In<2>: Data Generator<2>: dataSet001”);

NOTE: It is possible to pass in just the base name “dataSet001” to attach to the third
data set because the algorithm will attach to the first data set it finds with the
passed in origin or base name. However, it will not be possible to attach to the
fourth data set if you just pass in the base name “dataSet001”. In this case, the
safest bet is to always pass in the entire name of the desired data set.

Two different data set variables can be attached to the same incoming
data set. Using this feature, one variable can be used for State based
iteration (i.e. iterating through the data set using State information),
while the other can be used for Timing-based iteration.
74

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
NOTE: There may be more than one data set in the incoming data group. Use the data
group function getNumberOfDataSets() to find out how many there are if you
are not sure. If this returns more than one, then use the function
getDataSetNames to retrieve a list of names of available data sets. Then use
the overloaded data set attach function requiring a data set origin name or
base name to ensure you attach the local data set to the incoming data set of
interest. See the example below for how to do this.

The following example shows how to retrieve the number of data sets
in a data group and attach a data set variable to each. For this
example, data sets are stored using an array. It is assumed there is no
more than 5 data sets in this example.

int k;
int err;
int numDataSets;
StringList names;

dg.getDataSetNames(names);
numDataSets = dg.getNumberOfDataSets();
TDKDataSet ds[5];

for (k = 0; k < numDataSets; k++)
{

io.print(names[k]);
if (k <= 4) // assume no more than 5 data sets
{

err = ds[k].attach(dg, names[k]);
if (err)
{

io.printError(err);
return;

}
}

}

ds.isAttached

int ds.isAttached()

This function returns true if the data set has been attached or created
successfully on this run.
75

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
TDKDataSet Utility Functions

ds.removeLabelEntry

int ds.removeLabelEntry(TDKLabelEntry le)

The label entry variable le passed in is removed from the data set.
Returns the number of label entries found in ds with the same name as
le. This value should be 1, unless for some reason there is more than
one label entry with the same name in the data set.

ds.getNumberOfLabelEntries

int ds.getNumberOfLabelEntries()

This function returns the number of label entries contained in the data
set.

ds.getName

String ds.getName()

This function returns the string name of the data set. This name is a
colon-separated list of all the tools that feed into the Tool Development
Kit Tool.

ds.getTriggerRow

unsigned int ds.getTriggerRow()

This function returns the relative sample number of the trigger row.
Note this is not given in terms of a state number, as found under the
State label in listing tool. Rather this number is in terms of the number
of samples in the trace starting with the first sample (which is zeroth
based) counting down to the trigger row sample. This is equal to the
distance in samples from the first sample of the trace to the sample in
the trace containing the trigger row.

For example, if a trace listing contains 1000 samples with the first
sample in the trace listing indexed as state -500 and the trigger row is
centered in the trace listing indexed at state 0 with 499 samples
following the trigger row, then this function will return 500. Taking into
76

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
account that the samples are zeroth based, the sample in the listing
with a state index of -500 is really sample 0, state index -499 is sample
1 and so on. State 499 is sample 1000.

This function is useful when a new data set is created or copied from an
existing data set and it is desired for the new data set to have the same
trigger row as some original data set.

ds.getBeginTime

int ds.getBeginTime(int A[])

This function changes the given array A of integers to a time
representing the approximate start time of the run. Returns an error
code. The meanings are as follows:

A[0] /* years since 1900 */
A[1] /* month of year - [0,11] */
A[2] /* day of month - [1,31] */
A[3] /* hours - [0,23] */
A[4] /* minutes after the hour - [0,59] */
A[5] /* seconds after the minute - [0,59] */

ds.getEndTime

int ds.getEndTime(int A[])

This function changes the given array A of integers to a time
representing the approximate end time of the run. Returns an error
code. The meanings are as follows:

A[0] /* years since 1900 */
A[1] /* month of year - [0,11] */
A[2] /* day of month - [1,31] */
A[3] /* hours - [0,23] */
A[4] /* minutes after the hour - [0,59] */
A[5] /* seconds after the minute - [0,59] */

ds.getLabelEntryNames

int ds.getLabelEntryNames(StringList names)

This function returns the number of label entry names present in the
data set and fills the given string array with their names.

int i;
StringList names;
77

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
ds.getLabelEntryNames(names);
for(i = 0; i < ds.getNumberOfLabelEntries(); i++)
{

io.print(names[i]);
}

ds.getNumberOfSamples

int ds.getNumberOfSamples()

Returns the number of samples present in the data set. All label entries
contained in this data set have this number of samples as well, by
definition.

TDKDataSet Filtering Functions

The filtering functions below all work with state, rather than timing
information, regardless of the current bias setting.

ds.displayStateNumberLabel

ds.displayStateNumberLabel(bool)

Disables (or enables) the display of the state number labels for any
dataset. If the parameter is set to "false", the state number label for the
associated dataset will not appear and will not be available in the listing
display. The default value for a dataset is "true" meaning the state
number label will appear in the listing display, even though it is not a
label that is explicitly created in the TDK code.

ds.filterAllStates

int ds.filterAllStates()

This function will remove all states as if the Pattern Filter had removed
them. Returns an error code.

ds.filter

int ds.filter(long long s)

This function will remove the given state s as if it had been removed by
78

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
the Pattern Filter. Returns an error code.

ds.filter(56);

This call will filter the state 56 from the data set ds. It will not be
available in any of the label entries contained in ds.

ds.unfilter

int ds.unfilter(long long s)

If a state has been filtered using the int ds.filter() function, a call to int
ds.unfilter(long long s) makes the state s visible again. This function is
not valid for states that have been filtered by the Pattern Filter Tool
itself, as the Tool Development Kit tool does not access these states.
Returns an error code.

ds.unfilter(56);

This call will make the state 56 available again assuming it was
previously filtered in the Tool Development Kit tool.

TDKDataSet Time and State Functions

The data set contains information about time and state. In the listing
tool this information shows up in the columns labeled "Time" and "State
Number". Even though these columns appear to be label entries,

they are not. They represent information that is included in the data
set.

To access time stamps and state numbers, you must use the iterators
(next(), prev(), replaceNext(), etc.) on the data set or label entry.

NOTE: You can only modify time stamps for data sets that were created using the
ds.createTimeTags function. Using the ds.createTimePeriodic function for
creating a new data set creates a data set with a constant sampling period and
thus the time stamps for such a data set are not modifiable.

Bias Setting

The following TDKDataSet functions are sensitive to the bias setting
79

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
for a given data set. Recall that the default bias setting is State. Bias
settings for a data set can be changed to either State or Time by using
either ds.setStateBias or ds.setTimeBias.

• ds.getPosition
• ds.setPosition
• ds.firstPosition
• ds.lastPosition
• ds.next
• ds.prev
• ds.peekNext
• ds.peekPrev
• ds.replaceNext
• ds.replacePrev

For example, if the bias setting for a given data set is time
(ds.setTimeBias explicitly called), then the function ds.getPosition will
return the value found under the Time column in the listing window. If
the bias setting is State (default), then ds.getPosition will return the
value found under the State column in the listing window.

The following TDKDataSet functions are used to get various Timing
and State information. These functions all return State or Timing
information not the actual sample data values.

Each data set variable maintains a pointer to the current sample within
the data set. The following functions refer to, or change this pointer.

ds.setTimeBias

int ds.setTimeBias()

This function sets Timing bias for the data set. Bias (state or timing)
indicates the type of information many of the data set functions will
operate on. The default bias is State, since timing information may not
exist. Returns an error code.

ds.setStateBias

int ds.setStateBias()

This function sets State bias for the data set. Bias (state or timing)
indicates the type of information many of the data set functions will
operate on. The default bias is State, since timing information may not
80

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
exist. Returns an error code.

Note that it is permissible to set the bias to be State and then later
change it to Time (and vice versa) for data sets. If preferred, two
variables can be attached to the same data set. The bias for one of the
variables can be set to State while the bias for the other can be set to
Time to achieve the same results.

ds.reset

void ds.reset()

This function resets the pointer before the first item in the data set.
The ds pointer will by default point to this state upon creating a new
data set or attaching a data set variable to an existing data set.

ds.resetAtEnd

void ds.resetAtEnd()

This function resets the pointer past the last item in the data set.

ds.getCorrelationTime

long long ds.getCorrelationTime()

This function will return the Time value (in picoseconds) of the trigger
position for this data set for use in correlating between multiple data
sets.

ds.getCorrelationState

long long ds.getCorrelationState()

This function will return the State value of the trigger position for this
data set for use in correlating between multiple data sets.

ds.getPosition

long long ds.getPosition()

This function will return the Time or State value of the current position
for this data set depending on the current bias.

If the bias setting for ds is State, then the value found under the State
81

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
column at the position of the pointer ds will be returned. If the bias
setting for ds is Time, then the value found under the Time column at
the position of the pointer ds will be returned. Time values are in
picoseconds.

ds1.setTimeBias();
ds2.setTimeBias();
ds1.setPosition(ds2.getPosition());

ds.firstPosition

long long ds.firstPosition()

This function will return the Time or State value of the first position for
this data set depending on the current bias.

If the bias setting for ds is State, then the value found under the State
column at the position of the pointer ds will be returned. If the bias
setting for ds is Time, then the value found under the Time column at
the position of the pointer ds will be returned. Time values are in
picoseconds.

ds1.setTimeBias();
ds2.setTimeBias();
ds1.setPosition(ds2.firstPosition());

ds.lastPosition

long long ds.lastPosition()

This function will return the Time or State value (in picoseconds) of
the last position for this data set depending on the current bias.

If the bias setting for ds is State, then the value found under the State
column at the position of the pointer ds will be returned. If the bias
setting for ds is Time, then the value found under the Time column at
the position of the pointer ds will be returned. Time values are in
picoseconds.

ds.setPosition

int ds.setPosition(long long t)

The current position can be set with this function. The parameter t is
interpreted according to the current bias as being Time or State
82

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
information. This function has no effect on the label entries it contains.
Returns an error code.

ds.getRunID

int ds.getRunID()

This function returns the run id of the data set. Data set ids are
guaranteed to be the same if the data sets originated from the same
run. This can be useful for group run situations to check whether two
data sets originated from the same run.
83

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
TDKDataSet Iteration Functions

The following functions are useful for stepping through the sampling
information contained within data sets. Each data set variable
maintains a pointer to a current position, which is shown in the figures
below. Many of the functions either modify or refer to this pointer in
some way.

ds.next

int ds.next(long long &t)
int ds.next()

This function sets the pointer to the next existing x-axis value within
the data set and puts this value into the parameter t. If the bias setting
for ds is State then t will contain the State number value. If the bias
setting for ds is Time then t will contain the Time value in picoseconds.
If it cannot return a valid x-axis position, then 0 is given as the return
value. Otherwise the function returns 1.

Before and after a call to next()

b b
84

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
ds.prev

int ds.prev(long long &t)
int ds.prev()

This function sets the pointer to the previous existing x-axis value
within the data set and puts this value into the parameter t. If the bias
setting for ds is State then t will contain the State number value. If the
bias setting for ds is Time then t will contain the Time value in
picoseconds. If it cannot return a valid x-axis position, then 0 is given
as the return value. Otherwise the function returns 1.

Before and after a call to prev()

b b
85

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
ds.peekNext

int ds.peekNext(long long &t)

Without changing the value of the pointer, this function puts the value
of the next time or state position into the parameter t. If the bias
setting for ds is State then t will contain the State number value. If the
bias setting for ds is Time then t will contain the Time value in
picoseconds. If there is no valid next position the value 0 is returned,
otherwise,1 is returned.

Before and after a call to peekNext()

b b
86

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
ds.peekPrev

int ds.peekPrev(long long &t)

Without changing the value of the pointer, this function puts the value
of the previous time or state position into the parameter t. If the bias
setting for ds is State then t will contain the State number value. If the
bias setting for ds is Time then t will contain the Time value in
picoseconds. If there is no valid previous position the value 0 is
returned, otherwise, 1 is returned.

Before and after a call to peekPrev()

b b
87

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
ds.replaceNext

int ds.replaceNext(long long &data)

Store the value of data in the position pointed to by the pointer, and
then increment the pointer by one sample. This function is only valid
for Time bias. If the bias setting for ds is Time, data is written to the
Time sample entry. If the bias setting is State, this function will return 0
without any changes to the pointer. If the function cannot return a
valid x-axis position, then 0 is given as the return value. Otherwise the
function returns 1.

NOTE: Data sets created using the createTimePeriodic function cannot have their
Time values modified since there are created with a constant time sampling
period. This function will have no effect on data sets created as such.

Before and after a call to replaceNext()

b data
88

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
ds.replacePrev

int ds.replacePrev(long long &data)

Decrement the pointer by one sample, and then store the value of data
in the position pointed to by the pointer. This function is only valid for
Time bias. If the bias setting for ds is Time, data is written to the Time
sample entry. If the bias setting is State, this function will return 0
without any changes to the pointer. If the function cannot return a
valid x-axis position, then 0 is given as the return value. Otherwise the
function returns 1.

NOTE: Data sets created using the createTimePeriodic function cannot have their
Time values modified since there are created with a constant time sampling
period. This function will have no effect on data sets created as such.

Before and after a call to replacePrev()

b data
89

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
TDKDataSet Tutorials

An example will be presented to further demonstrate the concepts
associated with accessing data in a data set. Following this example are
several sample tutorials showing various data set tasks.

The table below shows a sample trace listing for a data set. This data
set contains two label entries named "ADDR" and "DATA".

myData sample data set

Suppose, a data set variable ds1 has been declared along with two label
entry variables, addr and data. Also, assume that everything has been
properly attached (data set to incoming data group, label entries to
data set) and ds1 points to the beginning of the trace. Next shown are
various lines of code together with the results after execution of that
code.

long long stateOrTimeValue;
ds1.reset();
ds1.setTimeBias();
ds1.next(stateOrTimeValue); // stateOrTimeValue = 1.0ns
ds1.next(stateOrTimeValue); // stateOrTimeValue = 1.4ns
ds1.setStateBias();
ds1.next(stateOrTimeValue); // stateOrTimeValue = 2
ds1.next(stateOrTimeValue); // stateOrTimeValue = 3

Now, let's iterate through the data using the label entries variables. In a
similar manner, the bias can be set on a label entry such that label entry
iteration functions return either Time or State information depending
on the bias setting. The choice is yours as to whether you wish to
retrieve Time or State information through a data set iteration pointer
or through a label entry iteration pointer. TDKLabelEntry iteration
functions are discussed in the following section.

State Number ADDR DATA Time

0 0x1111 0x1212 1.0 ns

1 0x2222 0x2323 1.4 ns

2 0x3333 0x3434 1.8 ns

3 0x4444 0x4545 2.2 ns
90

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
unsigned int dataValue;
TDKLabelEntry addr, data;
long long stateOrTimeValue;
addr.reset();
addr.setTimeBias();
addr.next(dataValue, stateOrTimeValue);
// dataValue = 0x1111, stateOrTimeValue = 1.0ns

addr.next(dataValue, stateOrTimeValue);
// dataValue = 0x2222, stateOrTimeValue = 1.4ns

data.reset();
data.setStateBias();
data.next(dataValue, stateOrTimeValue);
// dataValue = 0x1212, stateOrTimeValue = 0

data.next(dataValue, stateOrTimeValue);
// dataValue = 0x2323, stateOrTimeValue = 1

NOTE: It is not possible to retrieve ADDR or DATA data values through ds1 the data
set iteration pointer. It is only possible to retrieve Time or State information
through the data set iteration pointer. However, it is possible to retrieve both
ADDR and DATA data values together with Time and State information
through a label entry iteration pointer such as addr or data.

Creating a new data set with a constant sampling

frequency

There are times when it would be convenient to add a new data set,
and new label entries within that data set, where the new data set can
have a different number of samples and a different constant sampling
period than the incoming data set.

This example uses one input data set and creates a second data set
with two times the acquisition period and half the number of samples
using the createTimePeriodic() function.

1 Open the /logic/demo/ToolDevKit/sample9.___ configuration and
the Tool Development Kit tool.

2 Select the Compile button, then Run.

3 View the modified data in the Lister.
91

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
a Use the horizontal scroll bar in the Lister window to view the
new data set as shown in the following picture.

b You may view the original data by dropping a Lister at the
output of the File In tool.

Results of creating a new Data Set with a constant sampling frequency

In this example, note that the setTimeCrossCorrelation() function is
used so that downstream tools know that time correlated data is
available.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample9.___ (Config file)

• sample.dat (Data file used by File In tool)
92

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
• sample9.c (Tool Development Kit program file)

sample9.c // File: sample9.c
// Purpose: Create a new DataSet with a constant sampling
// frequency

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{
 TDKLabelEntry le;
 TDKLabelEntry newLE;
 TDKDataSet ds;
 TDKDataSet newDS;
 char buf[20];
 String message;
 int i;
 long long time;

 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset
 // Assumed 4ns acquisition rate and 512 samples
 err = ds.attach(dg, “dataSet001”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the DATA label
 err = le.attach(ds, “DATA”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Create a new periodic time dataset with one label
 // New dataset has 8ns acquisition rate and 256 samples
 newDS.createTimePeriodic(dg, “TheNewDataSet”, 256u, 128u,
 0, nanoSec(8.0));

 // Create a new text labelentry in the new dataset
 newLE.createTextData(newDS, “TheNewLabel”, 10);

 // Fill in some values
 i = 0;

 while(newDS.next(time))
 {
93

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
 sprintf(buf, “#%d”, i++);
 message = buf;
 newLE.replaceNext(message);
 }

 // Essential Step: sets up necessary info so that downstream
 // tools know that time correlated data is available.
 dg.setTimeCrossCorrelation();
}

Creating a new data set with modifiable time

stamps

There are times when it would be convenient to add a new data set,
and new label entries within that data set, where the new data set has a
different number of samples and sample frequency than the original
data set and allows the time of each sample to be modified. By
modifying the time stamps of the newly created data set, user-specified
correlation with the incoming data is possible.

In this example the createTimeTags() function is used to create a new
data set, and time tags are modified using the replaceNext() function.

1 Open the /logic/demo/ToolDevKit/sample10.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run.

3 View the modified data in the Lister.

a You may view the original data by dropping a Lister at the
output of the File In tool.
94

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
Creation of a new Data Set with changeable time stamp

In this example, note that the setTimeCrossCorrelation() function is
used so that downstream tools know that time correlated data is
available.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample10.___ (Config file)

• sample.dat (Data file used by File In tool)

• sample10.c (Tool Development Kit program file)
95

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
sample10.c /* File: sample10.c
 Purpose: Create a new DataSet with a different (and
 modifiable) sample period and a different
 number of samples than the original DataSet.

 When the createTimeTags() function is used to create
 the new DataSet, the time stamp (or time tag) on a
 state may be changed.
*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{
 TDKLabelEntry le;
 TDKLabelEntry newLE;
 TDKDataSet ds;
 TDKDataSet newDS;
 char buf[20];
 String message;
 int i;
 long long time;

 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset
 // Assumed 4ns acquisition rate and 512 samples
 err = ds.attach(dg, “dataSet001”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the DATA label
 err = le.attach(ds, “DATA”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Create a new periodic time dataset with one label
 // New dataset has 4ns acquisition rate and 512 samples
 newDS.createTimeTags(dg, “TheNewDataSet”, 512u, 256u,
 0, nanoSec(4.0));

 // Create a new text labelentry in the new dataset
 newLE.createTextData(newDS, “TheNewLabel”, 10);

 // Fill in values for the new DataSet
 i = 0;
96

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
 while(newDS.peekNext(time))
 {
 sprintf(buf, “#%d”, i);
 message = buf;
 newLE.replaceNext(message);

 // Every fourth state, add 1.1nS to the time
 if((i % 4) == 0)
 {
 time += nanoSec(1.1);
 }

 // Write out the potentially modified time
 newDS.replaceNext(time);

 i++;
 }

 // Essential Step: sets up necessary info so that downstream
 // tools know that time correlated data is available.
 dg.setTimeCrossCorrelation();
}

Filtering data within the Tool Development Kit

It is possible to remove data from the incoming data stream through
use of the filter() function. The pattern filter tool provides the ability to
remove data from the incoming data stream based on simple pattern
matching. When the pattern filter tool does not provide the needed
functionality, a Tool Development Kit program can be written to
provide the desired filtering.

This example will filter out every other state whose ADDR value
matches the specified search value which is F794.

1 Open the /logic/demo/ToolDevKit/sample7.___ config and the
Tool Development Kit tool.

2 Select the Compile, then Run.

3 View the modified data in the Lister.

a Scroll to see that every other state whose ADDR value
matches the search value 0xF794 has been filtered out.

b You may view the original data by dropping a Lister at the
97

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
output of the File In tool.

Results of filtering data: Note that state number 89 is no longer visible in the Listing
display.

Note in this example that filtering requires a state number, and that the
entire state is filtered, not just the label entry.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample7.___ (Config file)

• sample.dat (Data file used by File In tool)

• sample7.c (Tool Development Kit program file)
98

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
sample7.c /* File: sample7.c
 Purpose: A program to demonstrate filtering
 data within the TDK.

 This program looks for an ADDR value
 of f794 hex, then filters out every
 other state with that ADDR value.
*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{

 TDKLabelEntry le;
 TDKDataSet ds;
 unsigned value;
 unsigned findValue = 0xf794; // value to filter
 long long position;
 int toggle;

 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset and LabelEntry
 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 err = le.attach(ds, “ADDR”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // set the toggle
 toggle = 0;

 // The position variable will hold the state number.
 // Use the toggle to filter out every other occurrence
 // of the findValue

 while(ds.next(position) && le.next(value))
 {
 if (value == findValue)
 {
 if(toggle)
 {
 ds.filter(position);
99

Chapter 4: Tool Development Kit Concepts
Working with TDKDataSets
 }
 toggle = !toggle;
 }
 }

}

100

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
Working with TDKLabelEntries

TDKLabelEntries contain the data that we have acquired from the
probe sources and upstream tools. The type of this data is the type of
the label entry. This may be Integral (Unsigned int), Text (String) or
Analog (Double). The width of both Integral and Text data may vary,
depending on the application.

Each TDKLabelEntry maintains a table of sample values and symbol
pairs. This table serves as a mapping from values to symbols (which are
user-defined string quantities). These symbols serve as mnemonics for
certain values that the user may see during a run of the Analyzer. The
Tool Development Kit tool provides a means to lookup, but not to
modify the symbols in the table.

Label entries are declared as follows:

TDKLabelEntry le; //declare a LabelEntry variable le

TDKLabelEntry Creation Functions

As with TDKDataSets, TDKLabelEntry variables must be instantiated
with a call to a create() or attach() function.

le.create

int le.create(TDKDataSet ds, String name, TDKLabelEntry
orig)

This function makes le a copy of the TDKLabelEntry orig, which is
passed as a parameter. This allows the tool to modify the incoming
data, if necessary. Note that Bias and Position information are not
copied over from orig to le.

TDKDataSet ds;
TDKLabelEntry le;
TDKLabelEntry orig;

ds.attach(dg);
orig.attach(ds, "MyOwnLabel");
101

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
le.create(ds, "MyNewLabel", orig);

le.createTextData/IntegralData/AnalogData

int le.createTextData(TDKDataSet ds, String name, int
width)

int le.createIntegralData(TDKDataSet ds, String name,
int width)

int le.createAnalogData(TDKDataSet ds, String name,
double Offset, double FullScaleVolts)

These functions are used to create a brand new label entry for use by
downstream tools, which the Tool Development Kit tool can enter
information into using the replace functions.

Three types of label entries may be created, Integral, Analog, and Text,
using the createIntegralData(), createAnalogData(), and
createTextData() functions. See page 53 for more information on
Integral, Analog, and Text data. In each of the different cases, a data
set must be given. This data set is the one in which the label entry is to
be created. A name is also required in each case. This will be the name
of the label, as it will appear in the downstream tools. Finally, either a
width parameter is required or a label entry parameter is required. The
width tells how wide in bits, or characters the new label entry should
be. Note that Text label entries can be arbitrarily wide, no matter what
the parameter is. This only serves to tell the lister how wide to make
the display column.

TDKDataSet ds;
TDKLabelEntry stringLab;
TDKLabelEntry intLab;

ds.attach(dg);
stringLab.createTextData(ds, "comments", 15);
intLab.createIntegralData(ds, "Data", 32);

le.attach

int le.attach(TDKDataSet ds, String name)

Similar to the attach function for TDKDataSets, this function makes le
a variable for the given label entry called name which exists in the
particular run of the Tool Development Kit Tool. A data set variable
102

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
parameter is given to identify which data set the label entry belongs to.
That data set is searched for the label entry called name, which must
match exactly. The data set variable ds must be attached before calling
this function. Returns an error code.

NOTE: Label entries that are attached may not be modified. In order to modify an
incoming label entry, a copy must be made with the create() function.

TDKDataSet ds;
TDKLabelEntry le;
ds.attach(dg);
le.attach(ds, "MyOwnLabel");

TDKLabelEntries Utility Functions

le.getName

String le.getName()

This function returns the name of the label entry.

io.print(le.getName());

le.setName

void le.setName(String newName)

This function changes the name of the label entry to newName.

le.setName("Something Different");

le.isAttached

int le.isAttached()

This function returns true if the label entry has been successfully
attach()ed or create()ed on this run.

le.getWidth

int le.getWidth()

This function returns the width in bits of the label entry.
103

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
io.print(le.getWidth());

le.isTextData

int le.isTextData()

This function returns true if the label entry contains textual data.

if(le.isTextData())
{

io.print("text label");
}
else if(le.isIntegralData())
{

io.print("integral data");

}

le.isIntegralData

int le.isIntegralData()

This function returns true if the label entry contains integral data.

le.isAnalogData

int le.isAnalogData()

This function returns true if the label entry contains analog data.

TDKLabelEntry Time and State Functions

In a manner similar to TDKDataSets, TDKLabelEntries can access
Time and State information. To access time stamps and state numbers,
you must use the iterators (next(), prev(), replaceNext(), etc) on
the data set or label entry. Furthermore, TDKLabelEntries set the time
or state bias with functions similar to TDKDataSets. See TDKDataSet
Tutorials on page 90 for an example on how to do this using
TDKDataSets and TDKLabelEntries.

Bias Setting

The following TDKLabelEntry functions are sensitive to the bias
104

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
setting for a given label entry. Recall that the default bias setting is
State. Bias settings for a label entry can be changed to either State or
Time by using either le.setStateBias or le.setTimeBias.

• le.getPosition
• le.setPosition
• le.firstPosition
• le.lastPosition
• le.next
• le.prev
• le.peekNext
• le.peekPrev
• le.replaceNext
• le.replacePrev

For example, if the bias setting for a given label entry is time
(le.setTimeBias explicitly called), then the function le.getPosition will
return the value found under the Time column in the listing window. If
the bias setting is State (default), then le.getPosition will return the
value found under the State column in the listing window.

le.setTimeBias

int le.setTimeBias()

This function sets Timing bias for the label entry. Bias (state or timing)
indicates the type of information the iteration functions will operate
on. The default bias is State, since Timing information may not exist.
Returns an error code.

le.setStateBias

int le.setStateBias()

This function sets State bias for the label entry. Bias (state or timing)
indicates the type of information the iteration functions will operate
on. The default bias is State, since Timing information may not exist.
Returns an error code.

le.setPosition

int le.setPosition(long long s)

This function sets the pointer le to State number s or time s, depending
105

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
on the current bias. If the bias setting is State, then s is interpretted as
the State number value. If the bias setting is Time, then s is
interpretted as the Time value in picoseconds. Because some states
may have been filtered out, the given state s may not exist. In this case,
the position will be set to the previous existing state. If no previous
state exists, then the position will be set before the first state. Returns
an error code.

le.setStateBias();
le2.setStateBias();
le.setPosition(le2.firstPosition());

le.getPosition

long long le.getPosition()

This function returns the State number or Time, depending on the bias,
at the location of the pointer. If the bias setting for le is State, then the
value found under the State column at the position of the pointer le will
be returned. If the bias setting for le is Time, then the value found
under the Time column at the position of the pointer le will be
returned. Time values are in picoseconds.

le.firstPosition

long long le.firstPosition()

This function returns the State number or Time, depending on the bias,
at the location of the first position. If the bias setting for le is State,
then the value found under the State column at the position of the
pointer le will be returned. If the bias setting for le is Time, then the
value found under the Time column at the position of the pointer le will
be returned. Time values are in picoseconds.

le.lastPosition

long long le.lastPosition()

This function returns the State number or Time, depending on the bias,
at the location of the last position. If the bias setting for le is State, then
the value found under the State column at the position of the pointer le
will be returned. If the bias setting for le is Time, then the value found
under the Time column at the position of the pointer le will be
106

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
returned. Time values are in picoseconds.

TDKLabelEntry Iteration Functions

The following operations are used for iterating over the data contained
within TDKLabelEntries. In order to keep track of the current position
of iteration in the label entry, a pointer is maintained. Most of the
functions below affect this pointer in some way. It is important to keep
track of this pointer when writing Tool Development Kit code.

The diagrams show the state of the pointer both before (on the left)
and after (on the right) the call to the function. The pointer is shown as
pointing between samples. Unless the pointer is at the first or last
position, there is always a next and a previous sample position. The
descriptions of the following functions refer to the pointer position.

The functions that retrieve and replace data are overloaded to reflect
the fact that label entries may contain several types of data (Integral -
unsigned int, Text - String, Analog - double). In the future, other kinds
of data may be added to the Agilent Technologies 16700 system. When
this happens, the Tool Development Kit Tool, and all other tools, will be
updated to support this new functionality. For example, additional
overloaded functions will be added to address the new data types. The
intention is to keep the old interface the same so that old tools will run,
while at the same time, provide the newest level of functionality of the
system to the programmer.

NOTE: All TDKLabelEntry iteration functions are overloaded to account for the
underlying Integral, Analog, or Text data. It is important to use the correct
overloaded function for the data type contained by the label entry. Use the
functions le.isTextData(), le.isIntegralData(), or le.isAnalogData() to
determine the data type for the label entry if you are not sure. Additionally,
the View datagroup... option off the Tool Development Kit menu bar will show
the data types for each label entry.
107

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
Here is a typical use of iteration:

/* ... declarations and attachments ... */
le.reset();
newLab.reset(); // make sure we are at the beginning
while(le.next(x))

newLab.replaceNext(x);

The above code copies all the values from the label entry le to the label
entry newLab. Note that x would be declared as String or unsigned
depending on the kind of label entry we have.

le.reset

void le.reset()

This function resets the pointer before the first item in the label entry.

le.resetAtEnd

void le.resetAtEnd()

This function resets the pointer past the last item in the label entry.
108

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
le.next

int le.next(unsigned int &data) // Integral data
int le.next(String &data) // Text data
int le.next(double &data) // Analog data
int le.next(unsigned int &data, long long &pos) //
Integral data
int le.next(String &data, long long &pos) // Text data
int le.next(double &data, long long &pos) // Analog data
int le.next()

Fetch the data at the position of the pointer (b) into the variable data
from the label entry and then increment the pointer by one sample. pos
is a variable which returns the position of the sample, depending on the
current bias setting. If the bias is Time, this number will be in
picoseconds. This function may be called with no arguments to change
the current position without fetching the data. Returns 1 if it is a valid
sample, otherwise returns 0.

Before and after a call to next()

NOTE: Note, after the call to next, pos contains the same value as le before the call to
next.

b b
109

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
le.prev

int le.prev(unsigned int &data) // Integral data
int le.prev(String &data) // Text data
int le.prev(double &data) // Analog data
int le.prev(unsigned int &data, long long &pos) //
Integral data
int le.prev(String &data, long long &pos) // Text data
int le.prev(double &data, long long &pos) // Analog data
int le.prev()

Decrement the pointer by one sample and then fetch the data at the
position of the pointer (b) into the variable data from the label entry.
pos is a variable which returns the position of the sample, depending
on the current bias setting. If the bias is Time, this number will be in
picoseconds. This function may be called with no arguments to change
the current position without fetching the data. Returns 1 if it is a valid
sample, otherwise returns 0.

Before and after a call to prev()

b b
110

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
le.peekNext

int le.peekNext(unsigned int &data) // Integral data
int le.peekNext(String &data) // Text data
int le.peekNext(double &data) // Analog data
int le.peekNext(unsigned int &data, long long &pos)//
Integral data
int le.peekNext(String &data, long long &pos) // Text
data
int le.peekNext(double &data, long long &pos) // Analog
data

Fetch the data from the label entry at the position of the pointer (c)
into data but do not change the position of the pointer. pos is a variable
which returns the position of the sample, depending on the current
bias setting. If the bias is Time, this number will be in picoseconds.
Returns 1 if it is a valid sample, otherwise returns 0.

Before and after a call to peekNext()

b b
111

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
le.peekPrev

int le.peekPrev(unsigned int &data) // Integral data
int le.peekPrev(String &data) // Text data
int le.peekPrev(double &data) // Analog data
int le.peekPrev(unsigned int &data, long long& pos) //
Integral data
int le.peekPrev(String &data, long long& pos) // Text
data
int le.peekPrev(double &data, long long& pos) // Analog
data

Fetch the data from the label entry at the position previous to the
pointer (b) into data but do not change the position of the pointer. pos
is a variable which returns the position of the sample, depending on the
current bias setting. If the bias is Time, this number will be in
picoseconds Returns 1 if it is a valid sample, otherwise returns 0.

Before and after a call to peekPrev()

b b
112

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
le.replaceNext

int le.replaceNext(unsigned int &data) // Integral data
int le.replaceNext(String &data) // Text data
int le.replaceNext(double &data) // Analog data

Store the value of data in the position pointed to by the pointer, and
then increment the pointer by one sample. Returns 1 if it is a valid
sample, otherwise returns 0.

Before and after a call to replaceNext()

b data
113

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
le.replacePrev

int le.replacePrev(unsigned int &data) // Integral data
int le.replacePrev(String &data) // Text data
int le.replacePrev(double &data) // Analog data

Decrement the pointer by one sample, and then store the value of data
in the position pointed to by the pointer. Returns 1 if it is a valid
sample, otherwise returns 0.

Before and after a call to replacePrev()

b data
114

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
TDKLabelEntry Format Functions

le.formatSymbol

String le.formatSymbol(unsigned int val)

Look up val in the symbol table of the label entry and return its string
symbol value. If it has none, the empty string is returned. See also the
system routines formatXXX()s for converting sample values into
different bases.

At this point conversion of a symbol to a value is not supported.

le.formatLine

String le.formatLine(unsigned int val)

This function returns the filename and line number information for a
value val for use in source correlation. See also the system routines
formatXXX()s for converting sample values into different bases.

le.formatHex/Oct/Dec/Bin/Twos

String le.formatHex(unsigned int val)
String le.formatOct(unsigned int val)
String le.formatDec(unsigned int val)
String le.formatBin(unsigned int val)
String le.formatTwos(unsigned int val)

This suite of functions is provided to convert the value val into
different bases. These functions return string values that can be
appended or included into other strings for output to down-stream
tools. The returned string will have the same look as one that is
formatted by the lister and other tools, for example. See also the label
entry routine formatSymbol() for converting sample values to user-
defined symbols.
115

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
TDKLabelEntry Highlighting Functions

Coloring and highlighting are mutually exclusive operations; you may
do one of the two on any particular label entry.

le.setHighlight

int le.setHighlight(long long state)

This function displays the state state in a highlighted mode in a
downstream Listing Tool. Returns an error code.

le.setColor

int le.setColor(long long state, int color)

This functions displays the state state in color color in a downstream
Listing Tool. Returns an error code.

/* ... while iterating through the label entry le ...
*/
if(thisSampleIsFunny(le.getPosition())
{

le.setColor(le.getPosition(), 4);
}

This example shows a potential use for coloring a label. The user's
function thisSampleIsFunny() checks a position and returns true or
false, then coloring is done.
116

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
TDKLabelEntry Searching Functions

The Searching routines below are inclusive, which means the search
begins with the current sample.

Pattern Searching

The Pattern() search functions below use a value-mask scheme. A
piece of data is compared to value. The bit pattern of mask is used to
provide "don't care" bits to the comparison. A one bit is used to mean
don't care in this case. Thus, if no masking is desired, a mask of 0 can
be specified.

All the search routines return 1 for a successful search, and 0
otherwise.

le.searchRange.

int le.searchRange(long long& state, unsigned int lo,
unsigned int hi, int n)

This function finds the nth state from the current position whose data
is between lo and hi, inclusive, and sets state to the position of the
match. If n is negative, the search is in reverse. A return value of 0
means not found, a return value of 1 means found.

le.searchNotRange.

int le.searchNotRange(long long& state, unsigned int lo,
unsigned int hi, int n)

This function finds the nth state from the current position whose data
is not between lo and hi, inclusive, and sets state to the position of the
match. If n is negative, the search is in reverse. A return value of 0
means not found, a return value of 1 means found.

le.searchPattern.

int le.searchPattern(long long& state, unsigned int
value, unsigned int mask, int n)

This function finds the nth state from the current position whose data
matches value and mask, and sets state to the position of the match. If
117

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
n is negative, the search is in reverse. A return value of 0 means not
found, a return value of 1 means found.

le.searchNotPattern.

int le.searchNotPattern(long long& state, unsigned int
value, unsigned int mask, int n)

This function finds the nth state from the current position whose data
does not match value and mask, and sets state to the position of the
match. If n is negative, the search is in reverse. A return value of 0
means not found, a return value of 1 means found.

String Searching

le.search.

int le.search(long long& state, String& value, int n,
eSearchMode mode)

This function finds the nth state from the current position whose data
is the same as value if mode equals Search_pattern, and sets state to
the position of the match. If mode equals Search_notpattern, the
search finds the nth state from the current position whose data is not
the same as value and sets state to the position of the non-match. If n
is negative, the search is in reverse. A return value of 0 means not
found, a return value of 1 means found. eSearchMode is an enumerated
type with the following values:

enum eSearchMode
{

Search_pattern,
Search_notpattern

}

long long state;
String value = "Bad data";
int n = 5000;
TDKLabelEntry::eSearchMode mode = TDKLabelEntry::Search_
pattern;

le.search(state, value, n, mode);
118

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
NOTE: The enumerated type eSearchMode is defined only for TDKLabelEntries and
as such all variables and assignments to variables of that type must include the
TDKLabelEntry scope operator "TDKLabelEntry::" as shown above.

This function will search from the current state up to 5000 states past
the current state for data matching the text "Bad data" and will return
the state position where "Bad data" is found in the variable state.

Highlighting

Coloring and highlighting are mutually exclusive operations; you may
do one of the two on any particular label entry.

le.searchAndHighLightAllRange.

int le.searchAndHighLightAllRange(unsigned int lo,
unsigned int hi)

This function will display all states in a highlighted mode in the Listing
Tool that are between lo and hi, inclusive. This function returns the
number of states highlighted.

le.searchAndHighLightAllPattern.

int le.searchAndHighLightAllPattern(unsigned int value,
unsigned int mask)

This function will display all states in a highlighted mode in the Listing
Tool that match value and mask. This function returns the number of
states highlighted.

le.searchAndHighLightAllNotRange.

int le.searchAndHighLightAllNotRange(unsigned int lo,
unsigned int hi)

This function will display all states in a highlighted mode in the Listing
Tool that are not between lo and hi, inclusive. This function returns the
number of states highlighted.

le.searchAndHighLightAllNotPattern.

int le.searchAndHighLightAllNotPattern(unsigned int
value, unsigned int mask)

This function will display all states in a highlighted mode in the Listing
119

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
Tool that do not match value and mask. This function returns the
number of states highlighted.

le.searchAndHighLightAllRange(1000, 1999);

The above call will highlight all states that have values in the
[1000,2000) range.

Coloring

This suite of functions can be used to color all values that match a
given criteria. The color parameter is a number between 0 and 7. Color
is dependent upon the local settings of the colormap, which is user
definable; therefore, it is impossible to determine how color will look on
the end user's analyzer.

Coloring and Highlighting are mutually exclusive operations; you may
do one of the two on any particular label entry.

le.searchAndColorAllRange.

int le.searchAndColorAllRange(int color, unsigned int
lo, unsigned int hi)

This function will display all states in color color in the Listing Tool that
are between lo and hi, inclusive. This function returns the number of
states colored.

le.searchAndColorAllPattern.

int le.searchAndColorAllPattern(int color, unsigned int
value, unsigned int mask)

This function will display all states in color color in the Listing Tool that
match value and mask. This function returns the number of states
colored.

le.searchAndColorAllNotRange.

int le.searchAndColorAllNotRange(int color, unsigned int
lo, unsigned int hi)

This function will display all states in color color in the Listing Tool that
are not between lo and hi, inclusive. This function returns the number
of states colored.
120

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
le.searchAndColorAllNotPattern.

int le.searchAndColorAllNotPattern(int color,
unsigned int value, unsigned int mask)

This function will display all states in color color in the Listing Tool that
do not match value and mask. This function returns the number of
states colored.

le.searchAndColorAllRange(4, 1000, 1999);

The above call will color all states that have values in the [1000,2000)
range.

TDKLabelEntry Tutorials

The following pages provide several sample tutorials showing various
label entry tasks.

Creating a New Numeric Data Label

In order to modify the incoming data, it is necessary to create a new
label. The original data is read-only, but data in any newly created label
entry may be changed.

This example demonstrates creation of a numeric data label DATA2,
and modification of data in the new label.

1 Open the /logic/demo/ToolDevKit/sample5.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run.

3 View the modified data in the Lister.

a A new data label called Data2 is added to the listing. All the
original Data values have been copied over to the new Data2
label with the exception of wherever ADDR equals 0xF794 the
new Data2 value equals the original Data value multiplied by
a constant of 16. This occurs at states 88 through 91.
121

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
Creation of a new numeric data label

A label entry may contain data in one format, either numeric or text.
This tutorial creates a label with a numeric format by using the
createIntegralData() function.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample5.___ (Config file)

• sample.dat (Data file used by File In tool)

• sample5.c (Tool Development Kit program file)
122

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
sample5.c /* File: sample5.c
 Purpose: A TDK program to create a new numeric data
 label, DATA2, then to copy the original value
 in the DATA label to the new label.

 If one particular ADDR value, f794 hex, is
 found, multiply the corresponding value
 in DATA2 by a constant, 16.
*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{

 TDKLabelEntry addrLE;
 TDKLabelEntry dataLE;
 TDKLabelEntry data2LE;
 TDKDataSet ds;

 unsigned addrValue;
 unsigned dataValue;
 unsigned data2Value;
 const int multConst = 16; // multiplication constant
 unsigned searchValue = 0xf794; // ADDR value to find

 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset
 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the “ADDR” label
 err = addrLE.attach(ds, “ADDR”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the DATA label
 err = dataLE.attach(ds, “DATA”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
123

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
 return;
 }

 // Create a new numeric data label, DATA2 which is
 // 16 bits wide in the same DataSet
 err = data2LE.createIntegralData(ds, “DATA2”, 16);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Loop through the ADDR and DATA values and multiply
 // the DATA value by a constant when the ADDR search
 // value is found. Otherwise, just copy the original
 // DATA value.

 while(addrLE.next(addrValue) && dataLE.next(dataValue))
 {
 // Copy the dataValue
 data2Value = dataValue;

 // See if this is the desired ADDR value
 if (addrValue == searchValue)
 {
 data2Value *= multConst;
 }

 data2LE.replaceNext(data2Value);
 }
}

Creating a New Text Label

There are times when it is helpful to be able to write text comments or
interpretations into a label entry. The Tool Development Kit allows you
to create a text format label entry for this purpose.

In this example a text label entry is created, and when a specific search
value is found in the STAT label, the word "Found" is written into the
newly created text label.

1 Open the /logic/demo/ToolDevKit/sample6.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run.
124

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
3 View the modified data in the Lister.

a Scroll to view "Found" in the "FOUND" label in states where
the value in the STAT label is equal to 0E hex. States 76
through 79 are some of the states where this is true.

b You may view the original data by dropping a Lister at the
output of the File In tool.

Creation of a new text label

In this example the createTextData() function was used to create a
new text formatted label entry. The text was written out using the
setPosition() and replaceNext() functions.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample6.___ (Config file)
125

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
• sample.dat (Data file used by File In tool)

• sample6.c (Tool Development Kit program file)

sample6.c /* File: sample6.c
 Purpose: A TDK program demonstrating how to create
 and enter text into a new text label

 Note that in this example we’re looking for a value
 in the STAT label
*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{

 TDKLabelEntry statLE;
 TDKLabelEntry foundLE;
 TDKDataSet ds;

 unsigned statValue;
 String foundValue;
 long long position;
 // we will search for the value 0E hex in the STAT label
 unsigned searchValue = 0xE;

 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset
 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the STAT label
 err = statLE.attach(ds, “STAT”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Create a new text LabelEntry for FOUND text 8 characters
 // wide
 err = foundLE.createTextData(ds, “FOUND”, 8);

 if(err)
 {
126

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // search for a STAT value equal to the searchValue
 // if found, write “Found” out to the new LabelEntry,
 // otherwise, just write a space

 while(statLE.next(statValue, position))
 {
 if(statValue == searchValue)
 {
 foundValue = “Found”;
 }
 else
 {
 foundValue = ““;
 }

 // must set the foundLE iterator to the same position
 // as the statLE iterator, then write out the text
 foundLE.setPosition(position);
 foundLE.replaceNext(foundValue);
 }
}

Finding and Highlighting a Data Value

There are times when it is convenient to highlight a particular data
value. Out of range values, error conditions, all occurrences of a
particular value, etc., may be highlighted to be more easily visible.

This example program searches for one particular data value, then
highlights that value in the Listing window when found.

1 Open the /logic/demo/ToolDevKit/sample2.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run.

3 View the highlighted data in the Lister.

a Open the Lister at the output of the Tool Development Kit by
selecting the Lister icon and choosing Display. You may view
the unmodified data by dropping a Lister at the output of the
File In tool.
127

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
b Scroll to view the highlighted values which are found at states
88 through 91 in the Listing window.

Results of the Highlighting sample

Note that the setHighlight() function requires a state number. In this
example, the state number is held in the “position” variable, and is
returned by the ds.next(position) function call. Also note that the
highlighting only affects data displayed in the Lister that has a Tool
Development Kit tool in its data flow.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample2.___ (Config file)

• sample.dat (Data file used by File In tool)

• sample2.c (Tool Development Kit program file)
128

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
sample2.c /* File: sample2.c
 Purpose: A TDK program to search for a particular
 value, then highlight that ADDR label

 The search value used is f794 hex, and
 we are looking for that value in the ADDR
 label.
*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{

 TDKLabelEntry le;
 TDKDataSet ds;
 unsigned value;
 unsigned findValue = 0xf794; // value to search for
 long long position;

 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset
 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the “ADDR” label which is found in the dataset
 err = le.attach(ds, “ADDR”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // the position variable will hold the state number
 while(ds.next(position) && le.next(value))
 {
 if(value == findValue)
 {
 io.printf(“Pattern found at %d”, position);
 le.setHighlight(position);
 }
 }

}

129

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
Finding and Coloring a Data Value

Coloring data is another way in addition to highlighting to make certain
data values more easily visible.

This example demonstrates searching for a particular data value and
coloring the value when found using the setColor() function.

1 Open the /logic/demo/ToolDevKit/sample3.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run.

3 View the modified data in the Listing.

a You may view the unmodified data by dropping a second
Listing at the output of the File In tool.

b Scroll to view the colorized values.

Output of this program is similar to the listing shown for the
Highlighting a Data Value example.

Eight colors are available which depend on the current color palette of
the analyzer as set up by the user:

0 White

1 White

2 Scarlet

3 Pumpkin

4 Yellow

5 Lime

6 Turquoise

7 Lavender
130

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
The setColor() function also requires the state number. This example
shows how to retrieve the state number through use of the next(value,
position) function call. Note that the coloring only affects data
displayed in the Lister that has the Tool Development Kit tool in its
data path.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample3.___ (Config file)

• sample.dat (Data file used by File In tool)

• sample3.c (Tool Development Kit program file)

sample3.c /* File: sample3.c
 Purpose: A TDK program to search for a particular
 value, then set the color for that LabelEntry
 at that position.

 Our search value is f794 hex, and we are
 looking for that value in the ADDR label.
*/

// enumerated type to make the use of colors more clear:
// The numbers 1 - 8 are assigned to colors. The “invalid”
// assignment is a place-holder, since enum{} will assign
// 0 to the first variable name. Using 0 in the setColor()
// function results in the default color white.

enum { white, white2, scarlet, pumpkin, yellow, lime,
turquoise, lavender };

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{

 TDKLabelEntry le;
 TDKDataSet ds;
 unsigned value;
 unsigned findValue = 0xf794; // value to search for
 long long position;

 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset
 err = ds.attach(dg);

 if(err)
 {
131

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the “ADDR” label which is found in the dataset
 err = le.attach(ds, “ADDR”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // the position variable will hold the state number
 // this sample shows another way of retrieving the posiiton

 while(le.next(value, position))
 {
 if(value == findValue)
 {
 io.printf(“Pattern found at %lld”, position);
 le.setColor(position, scarlet);
 }
 }
}

Performing a Pattern-match Search

One important task that you may accomplish with the Tool
Development Kit is searching for data which meets certain
specifications. Searches may be performed by matching patterns or by
finding data within a range of values.

This example demonstrates searching for a pattern using a value and a
mask, then printing the location when found.

1 Open the /logic/demo/ToolDevKit/sample4.___ configuration and
the Tool Development Kit tool.

2 Select the Compile button.

3 Select the Run button.

4 You may view the data in the Lister. The program outputs the
states where the pattern for the ADDR label is equal to value
0x0023 with don't care mask 0xFFD0. Those states are outputted
132

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
in the Tool Development Kit Output window through the use of
the io.printf function. The ADDR pattern is first found at state
number -108 and last found at state 215.

Results of the Pattern-Match sample

This example demonstrates the use of the Tool Development Kit’s built
in searching capabilities. Data searching can be performed on pattern
values (using the searchPattern() function) or range values (using the
searchRange() function). Note that when using the mask, a bit value of
0 indicates that the mask bit must equal the corresponding value bit,
and a mask bit value of 1 indicates a don’t care for the corresponding
value bit.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample4.___ (Config file)

• sample.dat (Data file used by File In tool)

• sample4.c (Tool Development Kit program file)

sample4.c /* File: sample4.c
 Purpose: A TDK program to perform a pattern-match search
 using a value and a mask, and display the state
 numbers at which the pattern is found.

We are using value = 0023 hex
 mask = ffd0 hex
133

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
 bit 15 bit 0
 \ /
In binary, the mask = 1111 1111 1101 0000
 and the value = 0000 0000 0010 0011

The 1’s in the mask represent don’t care positions. The only
positions we will match in the value are the positions
in the mask which are equal to 0, in this case we will match
bits 0, 1, 2, 3, and 5.

So, if we use an “x” to represent “don’t care”, when we do
our pattern match we will be looking for:
 xxxx xxxx xx1x 0011

*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{

 TDKLabelEntry le;
 TDKDataSet ds;
 unsigned value;
 unsigned mask;
 long long position;

 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset
 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the “ADDR” label which is found in the dataset
 err = le.attach(ds, “ADDR”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // This search asumes that the ADDR label is 16 bits.
 // In this search we are looking for the pattern
 // xxxx xxxx xx1x 0011 binary
 // (here, x means don’t care)

 value = 0x0023; // 0x here indicates a hex value
134

Chapter 4: Tool Development Kit Concepts
Working with TDKLabelEntries
 mask = 0xffd0;

 // The position variable will hold the state number.
 // The state number will be printed if the search
 // pattern is found.
 while(le.searchPattern(position, value, mask, 1))
 {
 io.printf(“Pattern found at %lld”, position);
 }
}

135

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
Working with TDKCorrelators and
TDKCorrelatorValues

A TDKCorrelator is a data type that allows iteration over a set of
TDKLabelEntries that belong to different data sets and are correlated
in Time or State. This allows for multiple incoming TDKDataSets to be
"matched-up" to one another. The correlation can be done in terms of
State or Time (the default) information, through the setBias functions.

The set of TDKLabelEntries involved in the correlation is encapsulated
into another data type called a TDKCorrelatorValue (CV). CVs are used
during iteration as a way of returning all the information about all the
label entries at that point in the correlation.

Correlators are declared as follows:

//declare a TDKCorrelator variable c
TDKCorrelator c;

TDKCorrelatorValues are used in the correlation of data in conjunction
with a correlator. CVs contain all the information about all the label
entries involved in the Correlation. A correlator value has three states,
Valid, Held, and Changed. These states can be checked with the
functions isValid(), isHeld() and isChanged().

TDKCorrelatorValues are declared as follows:

//declare a TDKCorrelatorValue variable cv
TDKCorrelatorValue cv;
136

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
TDKCorrelator Functions

As with data sets and label entry variables, TDKCorrelators must be
instantiated with a function call. TDKCorrelators are instantiated with
the initialize() function.

Correlators require a "reference TDKDataSet" be given (through the
initialize() function) in order to set up a global state/timing reference
for all the other data sets involved in the correlator.

c.initialize

int c.initialize(TDKDataSet referenceDataSet)
int c.initialize(TDKDataSet referenceDataSet,
TDKLabelEntryList leList)

The initialize functions prepare the data sets to be correlated. In its
second form, an array of label entries is given. These are the label
entries that are to be correlated, otherwise all label entries are involved
in the correlation. referenceDataSet is the data set which is used for
position information in the correlation process. Note that leList may
contain label entries from various data sets including the referenced
data set. Returns an error code.

TDKCorrelator c;
TDKCorrelatorValue cv;
TDKDataSet refDS;
TKDLabelEntryList labels;

int i;
unsigned data;
/* do attach() on refDS, and labels[0]..labels[n] */
c.initialize(refDS, labels);
c.setTimeBias();
while(c.next(cv))
{

io.printf("time = %lld", c.getPosition());
for(i = 0; i < labels.length(); i++)
{
if(cv.isChanged(labels[i]))
{

cv.getData(labels[i], data);
io.printf("%s = %u", labels[i].getName(),data);

}
}
137

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
}

The above example shows a correlated iteration that prints the time at
each iteration and then shows the values of all the labels that changed
at this point in the iteration.

Bias Setting

The following TDKCorrelator functions are sensitive to the bias setting
for a given label entry. Recall that the default bias setting is State. Bias
settings for a correlator can be changed to either State or Time by
using either c.setStateBias or c.setTimeBias.

• c.getPosition
• c.setPosition
• c.firstPosition
• c.lastPosition
• c.next
• c.prev
• c.peekNext
• c.peekPrev

For example, if the bias setting for a given correlator is time
(c.setTimeBias explicitly called), then the function c.getPosition will
return the value found under the Time column in the listing window. If
the bias setting is State (default), then c.getPosition will return the
value found under the State column in the listing window.

c.setTimeBias

int c.setTimeBias()

This function sets Timing bias (the default) for the correlator. Bias
(State or Timing) indicates the type of information the rest of these
functions will operate on. This function must be called before the call
to initialize(). Returns an error code.

c.setStateBias

int c.setStateBias()

This function sets State bias for the correlator. Bias (State or Timing)
indicates the type of information the rest of these functions will
138

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
operate on. This function must be called before the call to initialize().
Returns an error code.

c.getPosition

long long c.getPosition()

This function will return the Time or State value of the current position
for the correlator depending on the current bias. If the bias setting for c
is State, then the value found under the State column at the position of
the pointer c will be returned. If the bias setting for c is Time, then the
value found under the Time column at the position of the pointer c will
be returned. Time values are in picoseconds.

c.setPosition

int c.setPosition(long long position)
int c.setPosition(TDKDataSet ds, long long position)

The setPosition() functions reset the position of the pointer to
position. In the first form, the position is taken from the reference data
set, while in the second form, the position is taken for the TDKDataSet
ds, which may be any data set involved in the correlation. Returns an
error code.

c.reset

int c.reset()

This function resets the position of the pointer to the first position.
Returns an error code.

c.resetAtEnd

int c.resetAtEnd()

This function resets the position of the pointer to the last position.
Returns an error code.

c.firstPosition

long long c.firstPosition()

This function will return the Time or State value of the first position for
139

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
this correlator depending on the current bias. If the bias setting for c is
State, then the value found under the State column at the position of
the pointer c will be returned. If the bias setting for c is Time, then the
value found under the Time column at the position of the pointer c will
be returned. Time values are in picoseconds.

c.lastPosition

long long c.lastPosition()

This function will return the Time or State value of the last position for
this correlator depending on the current bias. If the bias setting for c is
State, then the value found under the State column at the position of
the pointer c will be returned. If the bias setting for c is Time, then the
value found under the Time column at the position of the pointer c will
be returned. Time values are in picoseconds.

c.next

int c.next(TDKCorrelatorValue& cv)

This function gets the next TDKCorrelatorValue cv in the correlation.
Returns 1 for valid data, 0 for invalid data. It advances the pointer to
the next sample.

c.peekNext

int c.peekNext(TDKCorrelatorValue& cv)

This function gets the next TDKCorrelatorValue cv in the correlation.
Returns 1 for valid data, 0 for invalid data. It does not move the pointer.

c.prev

int c.prev(TDKCorrelatorValue& cv)

This function gets the previous TDKCorrelatorValue cv in the
correlation. Returns 1 for valid data, 0 for invalid data. It moves the
pointer back to the previous sample.

c.peekPrev

int c.peekPrev(TDKCorrelatorValue& cv)
140

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
This function gets the previous TDKCorrelatorValue cv in the
correlation. Returns 1 for valid data, 0 for invalid data. It does not
change the position of the pointer.

TDKCorrelatorValue Functions

TDKCorrelatorValues are only instantiated through a call to one of the
iterator functions of a TDKCorrelator. Once that has been done, the
following functions can be used to get the information about the
TDKCorrelatorValue that was returned. For the following functions cv
is of type TDKCorrelatorValue.

cv.isValid

int cv.isValid(TDKLabelEntry le)

This function returns true (1) if the TDKCorrelatorValue cv contains
valid information for the given label entry otherwise returns false (0).

cv.isHeld

int cv.isHeld(TDKLabelEntry le)

This function returns true (1) if the TDKCorrelatorValue cv contains
held information for the given label entry otherwise returns false (0).
Often times held data values are discarded.

cv.isChanged

int cv.isChanged(TDKLabelEntry le)

This function returns true if the TDKCorrelatorValue cv contains
changed information for the given label entry. The actual data found at
the label entry position pointed to by cv is compared to the previous cv
label entry data value. If these two values are the same, then this
function returns false (0) otherwise it returns true (1).

cv.getData

int cv.getData(TDKLabelEntry le, unsigned int &d) //
Integral data
141

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
int cv.getData(TDKLabelEntry le, String &d) // Text data
int cv.getData(TDKLabelEntry le, double &d) // Analog
data

This function returns true (1) if the TDKCorrelatorValue cv contains
valid information for label entry le otherwise it returns false (0). The
value is stored in d.

cv.getState

long long cv.getState(TDKLabelEntry le)

This function returns the State number of the label entry le at the
current position of the TDKCorrelatorValue cv.

TDKCorrelator and TDKCorrelatorValue
Tutorials

The following example is used to show various TDKCorrelator and
TDKCorrelatorValue concepts.

Suppose we wish to correlate in time two data sets, Data Set 1 and
Data Set 2. Data Set 1 contains labelentry1 and Data Set 2 contains
labelentry2. A sample trace listing and TDKCorrelatorValue
operations will be shown to illustrate the concepts. Assume there is a
TDKCorrelator variable c declared that has been set to Time bias and is
reset to point to the first sample in the Trace listing below.
Furthermore, assume there is a TDKCorrelatorValue variable cv. It
may be helpful to think of c as a pointer to a row of information in the
listing and cv as the actual row of data pointed to by c. Thus, executing

c.next(cv)

increments the pointer c one more row down into the listing, while cv
contains the data found across that row prior to incrementing the
pointer. The operations shown in the following table show the results
from executing the following statements:

cv.isValid (labelentry1);
cv.isHeld (labelentry1);
cv.isChanged (labelentry1);
cv.getData(labelentry1, data); // data is of type
142

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
unsigned int - Integral data assumed

Similarly, the same operation are performed for labelentry2. Assume
c.next(cv) is executed for each sample in the trace listing such that cv
contains the row of data of interest.

Some observations to make from this sample listing:

• Whenever isValid returns False, do not call getData since it will contain a

Data Set 1
labelentry1

Data Set 2
labelentry2

Time
cv operations on
labelentry1

cv operations on
labelentry2

0x1234 No data 1.1 ns isValid = True
isHeld = False
isChanged = True
getData = 0x1234

isValid = False
isHeld = False
isChanged = False
getData = -----

0x5678 No data 1.2 ns isValid = True
isHeld = False
isChanged = True
getData = 0x5678

isValid = False
isHeld = False
isChanged = False
getData = -----

Not Valid 0x1111 1.3 ns isValid = True
isHeld = True
isChanged = True
getData = 0x5678

isValid = True
isHeld = False
isChanged = True
getData = 0x1111

Not Valid 0x1111 1.4 ns isValid = True
isHeld = True
isChanged = False
getData = 0x5678

isValid = True
isHeld = False
isChanged = False
getData = 0x1111

0x9ABC Not Valid 1.5 ns isValid = True
isHeld = False
isChanged = True
getData = 0x9ABC

isValid = True
isHeld = True
isChanged = True
getData = 0x1111

0x1234 0x2222 1.6 ns isValid = True
isHeld = False
isChanged = True
getData = 0x1234

isValid = True
isHeld = False
isChanged = True
getData = 0x2222

0x1234 No data 1.7 ns isValid = True
isHeld = False
isChanged = False
getData = 0x1234

isValid = False
isHeld = False
isChanged = False
getData = -----
143

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
random value (a.k.a. garbage).

• Whenever isValid returns True, you probably still want to check if the
result of isHeld is True. Often these values are discarded since they are not
real samples for that data set.

Time Correlated Data Access

In a situation where you have two or more sets of incoming data, you
may want to access the data in a time correlated fashion -- that is,
access the data based on the order that it was sampled in time,
regardless of which data source it came from. The Tool Development
Kit provides a method for accessing data in a time correlated fashion--
the TDKCorrelator.

This example demonstrates the use of the TDKCorrelator using two
sources of input data provided through the File In tool. The program
iterates through values in the two data sets and writes data values to
the output window in order of their occurrence in time.

1 Open the /logic/demo/ToolDevKit/sample8.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run.

3 View the modified data in the Lister.

a You may view the original data by dropping a Lister at the
output of the File In tool.
144

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
Output of the time correlator example

This example introduces two new variable types: TDKCorrelator and
TDKCorrelatorValue. In addition, another method of declaring label
entries is demonstrated in this example: label entries are declared in an
array.
145

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
The TDKCorrelator is a variable type that allows iteration over a set of
label entries that are correlated in time or state. This allows for
multiple incoming data sets to be "matched-up" to one another. The
correlation can be done in terms of time (the default) or state
information through use of the setTimeBias() or setStateBias()
functions. In this example, time correlation is used.

The set of label entries involved in the correlation is encapsulated into
another variable data type called a TDKCorrelatorValue. The
TDKCorrelatorValues are used during iteration to return all the
information about all the label entries at that point in the correlation. In
this example, all label entries are correlated, and the cv variable
contains time information for each of the label entries. The
isChanged() function is used to determine which of the label entries
has changed first.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample8.___ (Config file)

• sample8.dat (Second data file used by File In tool)

• sample8.c (Tool Development Kit program file)

sample8.c // File: sample8.c
// Purpose: A TDK program to demonstrate the use of time
// correlation with 2 sources of input data

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{
 // In this example, the LabelEntries are declared
 // in an array
 TDKLabelEntry le[2];
 TDKDataSet m1;
 TDKDataSet m2;
 unsigned value;
 long long position;

 // The Correlator variable type allows iteration
 // over a set of LabelEntries which are correlated
 // in time (or state if state bias is declared)
 TDKCorrelator c;

 // Declare the correlator variable which will
 // contain information about all of the LabelEntries
 // at a particular point in the correlation
 TDKCorrelatorValue cv;
146

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues
 // variable for keeping track of error codes
 int err;

 // Attach to the incoming dataset
 err = m1.attach(dg, “dataSet001”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 err = m2.attach(dg, “dataSet002”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the DATA label
 err = le[0].attach(m1, “DATA”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the ADDR2 label
 err = le[1].attach(m2, “ADDR2”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Initialize the Correlator
 err = c.initialize(m1);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Correlation will be based on
 // time rather than state
 c.setTimeBias();
147

Chapter 4: Tool Development Kit Concepts
Working with TDKCorrelators and TDKCorrelatorValues

 // Iterate over the selected labels and
 // see which label has a changed data value
 while(c.next(cv))
 {
 // print the time
 io.printf(“\nTime = “);
 io.printf(timeToString(c.getPosition()));

 // Check to see if the DATA label has new data
 if (cv.isChanged(le[0]))
 {
 cv.getData(le[0], value);
 io.printf(“DATA label has new value = %0X”, value);
 }
 // Check to see if the ADDR2 label has new data
 if (cv.isChanged(le[1]))
 {
 cv.getData(le[1], value);
 io.printf(“ADDR2 label has new value = %0X”, value);
 }
 }
}

148

Chapter 4: Tool Development Kit Concepts
TDK Miscellaneous Tasks
TDK Miscellaneous Tasks

The following three tutorials show how to perform reading and writing
of data to and from a file on the disk along with creating an installable
tool.

File I/O: Reading Data from a File on the Disk

At times you may want to read data from a file on the disk. File I/O is
accomplished using standard C functions.

This example demonstrates reading from a file on the disk using the
fscanf() function.

1 Open the /logic/demo/ToolDevKit/sample13.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run.

3 View the modified data in the Lister. You may need to scroll the
Listing window to view the new data set. If desired, you can view
the file "/logic/demo/ToolDevKit/data.txt" through the Tool
Development Kit editor by opening the file as a source file.

In this example note that the standard C language fscanf() formatting
procedures are used.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• Sample13.___ (Config file)

• sample.dat (Data file used by File In tool)

• sample13.c (Tool Development Kit program file)

• data.txt (Data file read during file I/O operation)
149

Chapter 4: Tool Development Kit Concepts
TDK Miscellaneous Tasks
sample13.c /* File: sample13.c
 Purpose: Demonstrate file I/O by reading from a file on
 the disk.

 Create a new DataSet from data in a text file,
 data.txt, which contains 512 samples of 16 bit data
*/

void execute(TDKDataGroup &dg, TDKBaseIO &io)
{
 // Define variable name for the text data input file
 const char *dat = “/logic/demo/ToolDevKit/data.txt”;

 // Declare other program variables

 TDKDataSet ds;
 TDKLabelEntry le;
 TDKDataSet newds;
 TDKLabelEntry dataLE;
 int count = 0;
 unsigned readValue;
 long long time = 0;

 // variable for keeping track of error codes
 int err;

 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 ds.setTimeBias();

 // Creating the new DataSet with the createTimeTags()
 // function will allow us to change the time stamp if
 // we wish
 newds.createTimeTags(dg, “NewData”, 512, 256,
 0, nanoSec(4));

 // Create the new numeric data field 16 bits wide
 err = dataLE.createIntegralData(newds, “NEW_DATA”, 16);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Open the text data file for input
 FILE *datFile = fopen(dat, “r”);
150

Chapter 4: Tool Development Kit Concepts
TDK Miscellaneous Tasks
 if(! datFile)
 {
 io.printf(“Can’t open data file.”);
 return;
 }

 // step through original data, set time, read
 // in data from the text file in hex format,
 // then write the data using the replaceNext()
 // function

 while(ds.next(time))
 {
 newds.setPosition(time);
 fscanf(datFile, “%x”, &readValue);
 dataLE.replaceNext(readValue);
 }

 fclose(datFile);
 dg.setTimeCrossCorrelation();

}

File I/O: Writing to a File on the Disk

At times you may want to write to a file on the disk from within the
Tool Development Kit program. You may accomplish this using
standard C functions.

This example demonstrates writing to a file on the disk using the
fprintf() function.

1 Open the /logic/demo/ToolDevKit/sample14.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run.

3 View the newly created file through the Tool Development Kit
editor by opening the file "/logic/demo/ToolDevKit/data_out.txt"
as a source file. The values written to this file correspond to the
DATA values found whenever the STAT label value is 0xE.

In this example note that standard C formatting for the fprintf()
function is used.
151

Chapter 4: Tool Development Kit Concepts
TDK Miscellaneous Tasks
Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample14.___ (config file)

• sample.dat (Data file used by File In tool)

• sample14.c (Tool Development Kit program file)

• data_out.txt (Data file written to during file I/O operation)

sample14.c /* File: sample14.c
 Purpose: Demonstrate file I/O by writing data to a
 file on the disk
*/

void execute(TDKDataGroup &dg, TDKBaseIO &io)
{
 // Define variable name for the text data file
 const char *dat =
 “/logic/demo/ToolDevKit/data_out.txt”;

 // Open the text data file for output
 FILE *dataFile = fopen(dat, “w”);

 if(! dataFile)
 {
 io.printf(“Can’t open data file.”);
 return;
 }

 // Declare other program variables
 TDKDataSet ds;
 TDKLabelEntry statLE;
 TDKLabelEntry dataLE;
 unsigned findValue = 0xE; //hex value to search for
 unsigned searchValue;
 unsigned dataValue;

 // variable for keeping track of error codes
 int err;

 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 statLE.attach(ds, “STAT”);
 dataLE.attach(ds, “DATA”);
152

Chapter 4: Tool Development Kit Concepts
TDK Miscellaneous Tasks
 // step through original DataSet, when the search
 // value is found in the STAT label, write out the Data
 // to the dataFile

 while(statLE.next(searchValue) && dataLE.next(dataValue))
 {
 if(searchValue == findValue)
 {
 io.printf(“Found: %X”, dataValue);
 fprintf(dataFile, “ %X \n”, dataValue);
 }
 }

 fclose(dataFile);
}

153

Chapter 4: Tool Development Kit Concepts
Creating Installable Tools
Creating Installable Tools

Once your program has been tested and debugged using the Tool
Development Kit, you can make an installable tool out of the program.
This tool, which may be put on a floppy disk, or a local or networked
directory, can be installed on any Agilent Technologies 16600 or 16700
series logic analyzer, allowing others to use the tool. The analyzer must
be running version A.01.40.00 of the operating system or later.

NOTE: Installable tools created on a floppy disk MUST be installed from a floppy disk.
Installable tools created on the file system (hard disk or mounted file system)
MUST be installed from the file system.
154

Chapter 4: Tool Development Kit Concepts
Creating Installable Tools
Tool Development Kit Tool Info window

There are several steps that must be followed to create an installable
tool. Assuming you have already done the hard part of coding the tool,
the next step is to fill out the Tool Info window, found under the tool
info tab of the Tool Development Kit. There are a few fields that must
be filled out in this window.

Tool Name is the name the resulting tool will have. This will be the
name of the tool as it will appear in the workspace.

Tool version is an identifier which tells you which version of the tool it
is. This is a free-format version number.
155

Chapter 4: Tool Development Kit Concepts
Creating Installable Tools
The icon may be chosen from the selection list in the Tool Info window.
This is the icon that will appear on the workspace once the tool has
been installed. If you wish you may create your own icon. The format
must be 40x40 (pixel) pixmap. Pixmap is an Xwindows format. These
can be created on x windows machines with xpaint, or converted from
gifs on a PC. One freeware program which is available for the PC is
called DISPLAY. This program can convert between many common
graphics formats including pixmap (xpm). Simple modifications to
pixmaps can be made by means of a text editor (including the Tool
Development Kit text editor). The format uses an ascii representation
of colors and pixels to make up the image. Once this has been created,
the Browse button can be used to select the xpm file from the hard
drive.

NOTE: The code must define the functions getDefaultArgs() and getLabelNames()
because the resulting tool will rely upon these to create its interface. The tool
will not work unless these are defined. See “Parameters” on page 187 for more
information on using these functions.

Once all of this has been filled out, then the tool may be created. Use
the File->Create Installable Tool... menu option to generate the tool.
You may put the tool on the hard drive or floppy drive using the File
Browser. A blank floppy should be used because the floppy disk will be
re-formatted as part of the tool creation process. If more than one
floppy is necessary, you will be prompted to insert additional floppies
as necessary.

If the tool is to be installed directly from floppy, then it must be
generated on the floppy at this step. If the tool is put into a file on the
hard drive, then copied to a floppy, it will not be installable directly
from the floppy disk. It is possible to copy the file back to a hard disk
file and install from there, however.
156

Chapter 4: Tool Development Kit Concepts
Creating Installable Tools
The tool may be installed on a logic analyzer selecting “System Admin”,
then “Software Install” tab, and then “Install...”. If the tool has been
installed before, it is best to turn on the Option “reinstall even if same
version exists”, to make sure that the tool will actually be re-installed.
This is located under “Options...”. The tool may be installed from the
floppy or the file system. Installing the tool will exit the current
analyzer session.

Software install window

Removing Tools

Tools may be removed from the analyzer after they have been installed.
Using the Software install menu under the System Administration area,
press the Remove button. A list of installed packages will appear. Select
one of the packages and then push the remove button.

For best results in removing software, the session should be brought up
clean. The tool to be removed should not in use, then after removal the
session should be restarted.
157

Chapter 4: Tool Development Kit Concepts
Creating Installable Tools
Tool Versions and Config Files

Tools may be saved in config files. The name you give the tool is the
identifier used by the config system to load the tool onto the workspace
when the config is being loaded. Problems can happen if you make
changes to the tool interface(i.e. its parameters) such that if a new
version of the tool is installed and an old config is used to load the tool,
there may be inconsistencies. For example, in the last version, the tool
was programmed to look for a string in parameter 0, and in the new
version it is looking for an int. Writing robust code can help to prevent
fatal errors, but even the most robust code is incapable of predicting
what future versions will bring.

If you create a tool that would break this compatibility, it is necessary
to give it a new name. This will cause the config not to load the new
tool. The user will be forced to create a new config saved with the new
tool and will not run into any problems.
158

Chapter 4: Tool Development Kit Concepts
Creating Installable Tools
Creating an Installable Tool Tutorial

Any Tool Development Kit program can be converted into a tool once it
has been tested. These tools can then be installed on any Agilent
Technologies 16600 or 16700 series analyzer running version
A.01.40.00 or later of the operating system. It is not necessary for the
Tool Development Kit to be installed on any analyzer for an installable
tool to operate properly.

Once created, a stand alone tool consists of the Parameters and the
output window. The user will not necessarily know that the tool was
created by Tool Development Kit.

This example demonstrates the procedure for creating a tool from the
Mux.c program, and then how to use the tool.

NOTE: The Mux program is not discussed in detail here, but is included in the
Extended Examples section of this document.

1 Open the /logic/demo/ToolDevKit/mux.___ config and the Tool
Development Kit tool.

2 Make sure that the Tool Info window of the Tool Development Kit
is complete for the mux tool. Select the “Tool Info” tab to enter
the information. Be sure to give the tool a name and select an
icon. See the section “Tool Info” on page 49.

3 Select File -> Create installable tool... from the Tool Development
Kit window.

4 Select either the floppy disk or a file on the hard disk.

If it is desired to install the tool on multiple logic analyzers, it may be
more convenient to create the installable tool on a floppy(s). The
floppy(s) can then be used to install the newly created tool on to
multiple logic analyzers.

If the tool will only be used by the logic analyzer that created the tool,
it may be more convenient to create the installable tool from a file on
the hard disk.
159

Chapter 4: Tool Development Kit Concepts
Creating Installable Tools
NOTE: Installable tools created on a floppy disk MUST be installed from a floppy disk.
Installable tools created on the file system (hard disk or mounted file system)
MUST be installed from the file system. Also note that all floppies used when
creating an installable tool will be reformatted prior to copying the tool files on
the floppy. You will loose all files and directories contained on the floppy
during this process.

a If creating the installable tool on the hard disk drive, enter a
filename.

If the installable tool was successfully created you will be given a
message.

5 To install the newly created tool, open the System Admin dialog
from the Logic Analysis System menu bar. Choose Software
install, then press the Install button.

6 Using the file or floppy from step 3 and 4, select this as the install
source in the Media window and then select Apply. The name of
the tool should be shown in the Media window. The package
name for the tool corresponds to the name of the original source
code filename. In this case, mux will be the name of the package.
The name entered into the Tool Info - Tool Name field will be the
name of the tool (from step 2). Highlight the tool name and
select Install. The tool will now be installed.

7 The session must be restarted before the tool will show up in the
icon bar.

8 Drag the Mux tool onto the workspace replacing the Tool
Development Kit tool.
160

Chapter 4: Tool Development Kit Concepts
Creating Installable Tools
9 Establish data flow through the Mux tool.

a Drag from the output point of the File In tool to the input
point of the Mux tool. Be sure to load the file "/logic/demo/
ToolDevKit/muxdata_8.dat" in the File In tool.

b Drag from the output point of the Mux tool to the input point
of the Lister.

Main window showing the Mux tool

The workspace is now ready. To use the Mux tool:

10 Select the Mux tool icon and choose Display to open it.

11 Select the Run button.

12 Open the Lister at the output of the Mux tool to view the new
DataSet.
161

Chapter 4: Tool Development Kit Concepts
Creating Installable Tools
The opened Mux tool following a Run

You can see in this example that a tool can replace a Tool Development
Kit program. The Mux tool uses a graphical user interface to get user
input and to display messages. It also creates a new data set with
modified data that can be viewed in the Lister.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• mux.___ (Configuration file)

• muxdata_8.dat (Data file used by File In tool)

• mux.c (Mux program file)
162

5

Tool Development Kit Programming
Model
163

Chapter 5: Tool Development Kit Programming Model
When you write code in the Tool Development Kit, be aware that in the
model of Agilent Technologies 16600 and 16700 series analyzers,
multiple copies of a tool may exist on the workspace. That is, you can
drag out many listing tools, many filter tools, and many Tool
Development Kit tools. This means that care must be taken that only
local data is accessed by the program. Stay away from global variables
and static local variables. The reason being that if more than one copy
of a tool is put on the workspace, they all share the same global data.
This is not the desired behavior in most cases.

Functions should also be given unique names. A potential problem is
that two tools will define a function with the same name. This can
cause unpredictable results. One way around this is to declare
functions with the static specifier. This will ensure that the function
has scope local to the file, and therefore only that tool will see the
definition.

Sometimes it is useful for a Tool Development Kit program to
accumulate data across multiple runs. This can best be achieved by
appending data to a file.

The Tool Development Kit allows the user to write a program that is
dynamically linked in to the same process as the system code. So, if
your code has a bug that causes a crash, then the whole process will
come down. Currently we are not able to support a stand-alone
debugger with Tool Development Kit, so the best bet at this point is
printf, and to prevent crashes from occurring in the first place. See
“Debugging” on page 170.

Most of the examples for Tool Development Kit are written without
using pointers. In most cases it is possible to use references, which are
much safer and easier to program with. A reference parameter is used
when the function is intended to change the value of the parameter

void incrementRef(int &x)
{

x = x + 1;
}

The above function will add one to the value passed in. A reference
parameter is essentially a pointer, but no special syntax is required to
access the value that is pointed to. Here is the increment function
164

Chapter 5: Tool Development Kit Programming Model
implemented with standard pointers

void incrementPtr(int *x)
{

*x = *x + 1;
}

Another difference is in how the two functions are called.

int x = 5;
incrementRef(x); // now x is 6
incrementPtr(&x); // now x is 7

Reference parameters can be used for efficiency as well. If it is not
required that the value of the parameter be modified by the function, a
const reference is used.

String concatStrings(const String &s1, const String
&s2)
{

return s1 + s2;
}

165

Chapter 5: Tool Development Kit Programming Model
Demand Driven Tool
Demand Driven Tool

The Tool Development Kit tool is not a demand driven tool. Demand
driven tools request a certain amount of data for any given analyzer
run. The Tool Development Kit tool currently processes all of the data
captured during any given run of the analyzer. There may be a
significant amount of data that the Tool Development Kit tool must
process. This will be dependent upon the size of data that can be
captured by the acquisition module or card used by the logic analyzer.
Be aware that processing this data may take a long time (minutes)
through the Tool Development Kit tool. You may want to design your
program so that you detect if the user has pressed the Cancel button.
See “Interrupting the Run” on page 193 for information on how to do
this.
166

Chapter 5: Tool Development Kit Programming Model
Compiling Code
Compiling Code

When you compile a program using the Tool Development Kit tool, it
generates a number of “intermediate” files as part of the process.
These files have the same name as the .c file that is being compiled, but
have different extensions. The extensions are .i, .o, .sl, .ptrep. The .sl
(shared library) is the executable file that is actually loaded into
memory to run. All of the other files may be deleted at any time, but
during development it is usually most convenient to leave these files in
place to make the compilation process as efficient as possible.

Once development on a tool is complete, all the temporary files can be
removed to save space on the disk.

NOTE: Compiling code on a mounted file system will slow the compile process. This is
because all intermediate files will be created on that file system as well.
167

Chapter 5: Tool Development Kit Programming Model
Compatibility
Compatibility

Since the Tool Development Kit produces tools that consist of compiled
code, care must be taken to ensure that these tools will be compatible
with future releases of the system code, compilers, OS, etc. The best
way to do this is to follow the style of the examples presented in this
manual and to not use any of the other C++ language features. These
have a way of changing when compilers are revised.
168

Chapter 5: Tool Development Kit Programming Model
Include Files
Include Files

The Tool Development Kit only allows for single-file compilation, and
does not allow for linking in additional libraries. You can however,
include additional source files with the

#include “myfile.h”

construct. You do not need to worry about including the standard
include files like stdlib.h, stdio.h, etc. They are automatically included.
169

Chapter 5: Tool Development Kit Programming Model
Debugging
Debugging

The Tool Development Kit does not support a debugger, but if you
follow the recommended practices you will minimize the amount of
crashes that you will encounter. Because the Tool Development Kit is
based off the C language, it is possible to introduce serious bugs.

The primary method of debugging in the Tool Development Kit is to
use io.printf and a "divide-and-conquer" technique to quickly find and
deduce the region of the program that is causing the problems. Listed
here are some common uses of io.printf that might be useful for
debugging various variables used in a program. See the section on the I/
O system for information on printing other items of interest.

• To print a position variable where position is of type long long (useful for
functions that are iterating over data sets or label entries in order to know
what state number or time sample is being referenced), use:

long long position;
io.printf("The position is %lld", position);

• To print information contained in some variable myString of type String
use:

String myString;
io.printf("The string is %s", (const char*)myString);

• To print a variable myDouble of type double use:

double myDouble;
io.printf("The value is %f", myDouble);

• To print a variable myData of type unsigned int use:

int myData;
io.printf("My data value is %i", myData);

In general, integer values are formatted using the following conversion
characters:

%d = signed integer
%i = signed integer
%o = unsigned integer using octal notation
%x = unsigned integer using lowercase hexadecimal notation
%X = unsigned integer using uppercase hexadecimal notation
170

Chapter 5: Tool Development Kit Programming Model
Debugging
• To print an array of characters use:

char buffer[100];
io.printf("The buffer contains %s", buffer);

• To print a character use:

char myCharacter;
io.printf("My character is %c", myCharacter);

If necessary, you can check the /logic/log/ directory to see a trace of
what function was executing when the program crashed. The topmost
function in this trace is the last one to be called. This is where the
program crashed. However, that doesn't mean this is where the bug is.
The bug may actually be in one of the calling functions.
171

Chapter 5: Tool Development Kit Programming Model
A Note About the Functions
A Note About the Functions

The functions below do not have any side effects. That is, the only
variables that are modified by the call, are those that are directly
involved in the function call itself, reference parameters, and the
variable that is used to call the function (ds below). For example the
call

ds.setPostion(pos);

does not effect the position of any of the labels in ds, or any other data
set. Since pos is not passed by reference in this case, ds is the only
variable which is affected. In general, variables are independent of one
another; an operation on one has no effect on any other.

NOTE: Many of these functions return error codes. The value returned will be 0 for no
error, and non zero for error. The code can be displayed as a string to the
Runtime window using the functions in “Error Messages” on page -187.
172

Chapter 5: Tool Development Kit Programming Model
Tool Development Kit Good Programming Practices and Helpful Hints
Tool Development Kit Good Programming
Practices and Helpful Hints

This section contains a list of good Tool Development Kit programming
practices and in general helpful hints to use.

• Perform error checking on each function that provides it.

Many of the functions in the Tool Development Kit library return an
error code, which is an integer representing the success of the call. See
"Error Messages" on page -187 for more information.

• Only save configurations that are known to contain valid working Tool
Development Kit programs.

Before saving a workspace that contains both a Tool Development Kit
program and a data stream into the Tool Development Kit tool, check
that the program compiles and runs without crashing or hanging.
Whenever a configuration is loaded that contains data coming into a
Tool Development Kit program, the "execute" function is immediately
called. If the program contains an error that causes a crash or hang, the
result will be another crash or hang without the opportunity to
investigate or fix the problem.

• Use the View->datagroup... option found on the Tool Development Kit
menu bar to access information about the incoming data group.

This dialog shows the number and name of each data set contained
within the data group dg passed into the Tool Development Kit tool. In
addition, it shows the number of samples contained in each data set.
For each data set, the number and name of each label entry is shown.
Expand the data set to see this information. For each label entry, the
width in bits and the type of data is shown. All of this information can
be retrieved by using the appropriate TDKDataGroup, TDKDataSet, or
TDKLabelEntry function but you can also get it from this dialog.

NOTE: The name of the data set shown in the View->datagroup... dialog is not the
entire name (origin name) of the data set. If you need the full name of the data
set in order to attach the data set to a variable, use the function
dg.getDataSetNames().
173

Chapter 5: Tool Development Kit Programming Model
Tool Development Kit Good Programming Practices and Helpful Hints
• When iterating over a data set or label entry, check that you don't step
beyond the end of valid data.

The following data set and label entry iteration functions return 1 if
data is valid else they return 0 for invalid data. Always check the value
returned to ensure you are dealing with valid data.

int ds.next(long long &t)
int ds.next()
int ds.prev(long long &t)
int ds.prev()
int ds.peekNext(long long &t)
int ds.peekNext()
int ds.peekPrev(long long &t)
int ds.peekPrev()
int ds.replaceNext(long long &t)
int ds.replacePrev(long long &t)

int le.next(unsigned int &data)
int le.next(String &data)
int le.next(double &data)
int le.next(unsigned int &data, long long &pos)
int le.next(String &data, long long &pos)
int le.next(double &data, long long &pos)
int le.next()

int le.prev(unsigned int &data)
int le.prev(String &data)
int le.prev(double &data)
int le.prev(unsigned int &data, long long &pos)
int le.prev(String &data, long long &pos)
int le.prev(double &data, long long &pos)
int le.prev()

int le.peekNext(unsigned int &data)
int le.peekNext(String &data)
int le.peekNext(double &data)
int le.peekNext(unsigned int &data, long long &pos)
int le.peekNext(String &data, long long &pos)
int le.peekNext(double &data, long long &pos)

int le.peekPrev(unsigned int &data)
int le.peekPrev(String &data)
int le.peekPrev(double &data)
int le.peekPrev(unsigned int &data, long long &pos)
int le.peekPrev(String &data, long long &pos)
int le.peekPrev(double &data, long long &pos)
174

Chapter 5: Tool Development Kit Programming Model
Tool Development Kit Good Programming Practices and Helpful Hints
int le.replaceNext(unsigned int &data)
int le.replaceNext(String &data)
int le.replaceNext(double &data)

int le.replacePrev(unsigned int &data)
int le.replacePrev(String &data)
int le.replacePrev(double &data)

• Anytime new data sets have been created through the Tool Development
Kit tool using any of the following functions:

ds.createState
ds.createTimeTags
ds.createTimePeriodic

it is important that either dg.setTimeCrossCorrelation or
dg.setStateCrossCorrelation be called from within the Tool
Development Kit program. This informs downstream tools that either
time or state correlated data is available.
175

Chapter 5: Tool Development Kit Programming Model
Tool Development Kit Good Programming Practices and Helpful Hints
• Use the following code to programmatically retrieve the list of data set
names from a data group. This is helpful if you wish to attach a data set to
a data group and there is more than one data set in the data group. This
example also shows how to attach each data set in a group to a new data
set variable. This example assumes there will not be more than 5 data sets.

int k;
int err;
int numDataSets;
StringList names;

dg.getDataSetNames(names);
numDataSets = dg.getNumberOfDataSets();
TDKDataSet ds[5];

for (k = 0; k < numDataSets; k++)
{

io.print(names[k]);
if (k <= 4) // assume no more than 5 data sets
{

err = ds[k].attach(dg, names[k]);
if (err)
{

io.printError(err);
return;

}
}

}

If desired, you could retrieve the list of data set names similar in
manner as the example above. Next use the interactive input to display
the list of names with a number beside each and ask the user to input
the number associated with the data set name they wish to use in the
program. Then only attach to that data set. See the section “Interactive
Input” on page 181.
176

Chapter 5: Tool Development Kit Programming Model
Troubleshooting
Troubleshooting

This section contains a list of troubleshooting hints to use when
encountering problems.

• Your newly created data set doesn’t seem to line up correctly with the
original data set when viewing them both in the Listing tool.

Check that when the data set was created, the correlation time offset or
correlation state offset retrieved from one of the input data sets to the
program was passed into the create data set function. See the section on
“TDKDataSet Creation Functions” on page 66 for more information.

• I created a new data set using the function createTimeTags and modified
the time stamps, but not all of the values I wrote into label entries for the
new data set show up correctly.

Check that you have adhered to the rule that data sets must contain
monotonically increasing time stamps. Ensure that you modified each
samples time stamp in the new data set. See the TDKDataSet Creation
Functions on page 66 for more information. Also ensure that the correct
correlation time offset or correlation state offset was passed in.

• I am putting the correct value into the data set for a time value but when I
use the “io.printf” to print it out for debug purposes, the value doesn’t look
right.

Check that you have specified the correct formatting character when using
the io.printf function. Time is stored in a “long long” type and requires the
“%lld” formatting character. See the section on “Formatted output” on
page 180.

• I created an installable tool and after I installed it, it core dumps.

Did you remember that you must define the two functions
“getDefaultArgs” and “getLabelNames”? The tool will not work unless
these are defined.

• I get funny or changing results in the Listing display.

If “createTimeTags()” was used, make sure the trigger offset value falls
within the sample value.
177

Chapter 5: Tool Development Kit Programming Model
Troubleshooting
178

6

Tool Development Kit System Utilities

This chapter discusses various Tool Development Kit system utility
functions.
179

Chapter 6: Tool Development Kit System Utilities
I/O System
I/O System

The following functions defined for TDKBaseIO variables, which is
passed into the tool through the execute routine, are used for
interacting with the user and for creating user interfaces for the stand-
alone tools. Note that it is not necessary to append a newline character
in each print statement. The Tool Development Kit automatically does
this.

Formatted output

io.printf

io.printf(const char *fmt, ...)

This is just like the standard printf function, except its output goes to
the "Output" window. To print a long long use the following example.

long long number;
number = 0x0FFFFFFFFFFFFFFF;
io.printf("Really big number = %lld", number);

CAUTION: Care must be used when using printf to print Strings. Strings must be cast to
(const char *) in order for printf to function correctly. Here is an example.

String s;
s = "Hello World";
io.printf("%s", (const char *) s);

It may be easier to call the following function for Strings.

io.print

void io.print(String msg)

This function simply sends the String msg to the Output window.
180

Chapter 6: Tool Development Kit System Utilities
I/O System
Printing from within functions other than
"execute"

In order to print messages to the Output window from functions other
than "execute", the io parameter passed into the "execute" function
must also be passed into the specific function. The example below
shows how to do this.

void myFunction(TDKBaseIO& io);

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{

myFunction(io);
}

void myFunction(TDKBaseIO& io)
{

io.printf("Inside of myFunction");
}

io.displayDialog

io.displayDialog(String msg)

This function simply displays the given string in a dialog. The dialog will only
have the string and an 'OK' button. There is not a return value from the
dialog.

Interactive Input

io.getUserInput

void io.getUserInput(const String& msg, String&
userReply, int& response)
void io.getUserInput(const String& msg, int& response)

These functions can be used to get input from the user of a tool
interactively as the Tool Development Kit runs. In its first form,
getUserInput() displays the prompt string msg in a dialog box and
allows the user to enter a response, which is placed in userReply, a
string reference parameter. Depending on whether the user pushes the
181

Chapter 6: Tool Development Kit System Utilities
I/O System
OK or Cancel button, the value of response, which is an int reference
parameter will be 1 or 0 respectively. The value of userReply is used as
the default for the input field of the dialog. If you wish for the input
field to contain a predetermined value, then set userReply to the
desired value.
182

Chapter 6: Tool Development Kit System Utilities
I/O System
In its second, simpler form, getUserInput() does not provide an input
field, only Yes and No buttons. The prompt string is displayed as in the
first form. The only way to get the user's response, depends on
whether the Yes or No button is selected, which will cause response to
get the value 1 or 0, respectively.

Next the tutorial will be presented showing how to use interactive
input in a Tool Development Kit program.

Using Interactive Input

There are times when you may need to get input from the user of your
Tool Development Kit program. One way you can accomplish this is by
displaying a dialog box to allow the user to enter a response.

This example demonstrates the use of the getUserInput() function:
Displaying a dialog box with a prompt message and reading in user
input.

1 Open the /logic/demo/ToolDevKit/sample12.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run.
You will be prompted to enter an integer.

3 View the modified data in the Lister. Whenever the search value
0xF794 is found for the ADDR label, multiply the original DATA
value by the value entered in the input dialog, then copy this into
DATA2 label. This is seen at states 88 through 91.
183

Chapter 6: Tool Development Kit System Utilities
I/O System
4 You may view the original data by selecting the Lister icon at the
output of the File In tool and choosing Display.

The user input dialog box

In this example the user is prompted for a response that is read in as a
string, then converted to an integer. The second form of the
getUserInput() function, not shown here, provides Yes and No
selection buttons.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample12.___ (config file)

• sample.dat (Data file used by File In tool)

• sample12.c (Tool Development Kit program file)

sample12.c /* File: sample12.c
 Purpose: A TDK program to demonstrate interactive
 input -- the getUserInput() function.

 Create a new LabelEntry called DATA2.
 When searchValue it is found, multiply the original
 DATA value by searchValue, then copy this value
 into DATA2.

*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{

 TDKLabelEntry addrLE;
 TDKLabelEntry dataLE;
 TDKLabelEntry data2LE;
 TDKDataSet ds;

 unsigned addrValue;
184

Chapter 6: Tool Development Kit System Utilities
I/O System
 unsigned dataValue;
 unsigned data2Value;
 unsigned searchValue = 0xf794; //value to search for
 int multConst; // integer used as a multiplier
 int resp; //resp will hold the return value
 // from the getUserInput() function
 String userResponse;
 String Prompt;

 // variable for keeping track of error codes
 int err;

 // Prompt user to input a decimal integer
 Prompt = “Enter an integer: “;
 io.getUserInput(Prompt, userResponse, resp);

 // verify valid to user input
 if (!resp)
 {
 io.printf(“ Invalid user response. “);
 return;
 }

 // Assumes the user has entered an integer value in arg 0

 int num = 0;

 num = sscanf(userResponse, “%i”, &multConst);

 if(num != 1)
 {
 io.printf(“Non-integer response.”);
 return;
 }

 // Attach to the incoming dataset
 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the “ADDR” label
 err = addrLE.attach(ds, “ADDR”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the DATA label
185

Chapter 6: Tool Development Kit System Utilities
I/O System
 err = dataLE.attach(ds, “DATA”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Create a new numeric data label, DATA2 which is
 // 16 bits wide, in the same DataSet
 err = data2LE.createIntegralData(ds, “DATA2”, 16);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Loop through the ADDR and DATA values and multiply
 // the DATA value by a constant when the ADDR search
 // value is found

 while(addrLE.next(addrValue) && dataLE.next(dataValue))
 {
 // Copy the dataValue
 data2Value = dataValue;

 // See if this is the desired ADDR value
 if(addrValue == searchValue)
 {
 data2Value *= multConst;
 }

 data2LE.replaceNext(data2Value);
 }

}

186

Chapter 6: Tool Development Kit System Utilities
I/O System
Error Messages

io.getErrorMessage

String io.getErrorMessage(int code)

Returns the string representation of an error code return value.

io.printError

void io.printError(int code)

Given an error code returned from one of the Tool Development Kit
functions, this function will display the message corresponding to that
error code in the Runtime window. You should not depend on a
particular error code having the same meaning in future releases of the
tool. Instead, use the above function to let the software tell you what
the error is.

Parameters

Parameters are accessed through the following function.

io.getArg

String io.getArg(int n)

This function is used to retrieve the nth argument of the View
Parameters... window. The argument list is zero (0) based; for example,
io.getArg(0) gets the first argument defined. There is a limit of 50
parameters. It is up to the programmer to make sure the correct
argument is being accessed. Additionally, the programmer can define
how the parameters will be displayed on screen with the function
getLabelNames() that can be defined in the program. This function is
called by the system and tells it how to label the arguments. Here is an
example.

StringList getLabelNames()
{

StringList labels;
187

Chapter 6: Tool Development Kit System Utilities
I/O System
labels.put("Clock label name");
labels.put("Data label name");
labels.put("Clock edge +/- = 1/0");
labels.put("Setup range (ps) 0 to");
labels.put("Hold range (ps) 0 to");
labels.put("Setup violation (ps) >");
labels.put("Hold violation (ps) >");
labels.put("Stop on violation (off/on)");
labels.put("Clock qualifier (off/on)");
labels.put("Qualifier label name");
labels.put("Qualifier value");
return labels;

}

getDefaultArgs

Similarly, the function getDefaultArgs can be defined to setup defaults
for each of the arguments. This way the user will be presented with a
reasonable value that she may optionally change, if necessary.

StringList getDefaultArgs()
{

// set default input parameters
StringList defs;
defs.put("CLOCK");
defs.put("DATA");
defs.put("1");
defs.put("30000");
defs.put("30000");
defs.put("4000");
defs.put("20000");
defs.put("off");
defs.put("off");
defs.put("QUALIFIER");
defs.put("1");
return defs;

}

Parameters are always interpreted as Strings, so they must be
converted to numeric types if that is how they are to be used. The
standard library function sscanf() is useful for this purpose. Here is an
example of inputting a long long value.

long long state_min;
int num =
sscanf(io.getArg(1), "%lli", &state_min);
if(num != 1)
{

io.print("Error converting state min");
188

Chapter 6: Tool Development Kit System Utilities
I/O System
return;
}

The above code will translate an integer in hex, octal, or decimal. It will
return an error for non-matching input.

Next a tutorial will be presented showing how to use the parameters
feature in a Tool Development Kit program.

Using Parameters

There are times when you may want to get input from the user of your
Tool Development Kit program. User input (which is interpreted as
string values) may be passed to the Tool Development Kit through the
use of the View Parameters menu option.

This example demonstrates the use of parameters: creating label
names for run-time arguments, assigning default run-time argument
values, and reading input from the user.

1 Open the /logic/demo/ToolDevKit/sample11.___ config and the
Tool Development Kit tool.

2 Select the Compile button, then Run in the Tool Development Kit
tool.

3 View the modified data in the Lister.

a Scroll to view the modified data. Whenever the search value
0xF794 is found for the ADDR label, multiply the original
DATA value by the search value, then copy this into DATA2
label. This is seen at states 88 through 91.

4 Use the run-time arguments.

a Select View ➔View Parameters...

b Enter a new integer value to be used as a multiplication
constant.

c Selec the Apply button.
189

Chapter 6: Tool Development Kit System Utilities
I/O System
d Select Run in the Tool Development Kit window.

5 Select the Lister window to see the newly modified data.

a The same states 88 through 91 will reflect new DATA2 values
based on the multiplication constant entered through the
View Parameters... window.

The View Parameters window

In this example, note that parameters are string values. Strings must be
converted to integers using the sscanf() function if you need integer
values or other numeric values.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• sample11.___ (Config file)

• sample.dat (Data file used by File In tool)

• sample11.c (Tool Development Kit program file)

sample11.c /* File: sample11.c
 Purpose: A TDK program to demonstrate the use of
 runtime arguments

 Create a new LabelEntry called DATA2.
 When searchValue it is found, multiply the original
 DATA value by searchValue, then copy this value
 into DATA2.

*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{

 TDKLabelEntry addrLE;
190

Chapter 6: Tool Development Kit System Utilities
I/O System
 TDKLabelEntry dataLE;
 TDKLabelEntry data2LE;
 TDKDataSet ds;

 unsigned addrValue;
 unsigned dataValue;
 unsigned data2Value;
 unsigned searchValue = 0xf794;
 int multConst; // integer used as a multiplier

 // variable for keeping track of error codes
 int err;

 // Convert the parameter string to an integer.
 int num_read = sscanf(io.getArg(0), “%d”, &multConst);

 if(num_read == 0)
 {
 io.print(“Error converting Parameter 1 to an integer:
Please re-enter”);
 return;
 }

 // Attach to the incoming dataset
 err = ds.attach(dg);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the “ADDR” label
 err = addrLE.attach(ds, “ADDR”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Attach to the DATA label
 err = dataLE.attach(ds, “DATA”);

 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Create a new numeric data label, DATA2 which is 16 bits
 // wide, in the same DataSet
 err = data2LE.createIntegralData(ds, “DATA2”, 16);
191

Chapter 6: Tool Development Kit System Utilities
I/O System
 if(err)
 {
 // if we received an error, then print the message and exit
 io.printError(err);
 return;
 }

 // Loop through the ADDR and DATA values and multiply
 // the DATA value by a constant when the ADDR search
 // value is found

 while(addrLE.next(addrValue) && dataLE.next(dataValue))
 {
 // Copy the dataValue
 data2Value = dataValue;

 // See if this is the desired ADDR value
 if (addrValue == searchValue)
 {
 data2Value *= multConst;
 }

 data2LE.replaceNext(data2Value);
 }
}

// Create label name for runtime argument
StringList getLabelNames()
{
 StringList labels;
 labels.put(“Multiplication constant: “);
 return labels;
}

// Assign default runtime argument
StringList getDefaultArgs()
{
 StringList defs;
 defs.put(“2”);
 return defs;
}

192

Chapter 6: Tool Development Kit System Utilities
I/O System
Interrupting the Run

If the program is complicated or it processes a lot of data, it may be
useful for the user to be able to stop the execution through pressing
the Cancel key. The function checkForUserAbort() is provided for this
reason.

io.checkForUserAbort

int io.checkForUserAbort()
int io.checkForUserAbort(String msg)

Whenever it is called from the program, the Cancel key is checked. It is
time consuming to do this, so care must be taken that the function is
called only when necessary. It returns true if the user pressed Cancel.
When given a String parameter, that string is displayed in the message
area of the tool.

while(le.next(x))
{

if(i % 100 == 0)
{

if(io.checkForUserAbort()
{

return;
}

}
}

The above example checks the Cancel button once every 100 times
through the loop. Checking every time is prohibitively expensive.

io.stop

void io.stop()

The Tool Development Kit can stop a repetitive run. This is achieved
through the stop() function. This function will cause the analyzer to
stop running repetitively. The tool will continue to execute code as
normal, but will not execute again. This function can be useful for
stopping when a certain condition has been detected. It has no effect if
the analyzer in single run mode.
193

Chapter 6: Tool Development Kit System Utilities
Time Convenience Functions
Time Convenience Functions

There are several built-in Tool Development utility functions to deal
with converting time to various units. The logic analyzer is capable of
showing time in picoseconds, nanoseconds, microseconds,
milliseconds, and seconds. The following table shows the relationship
between the various time units.

Time Units

Time unit functions all take a double parameter that represents a time
value and converts the value to a long long type in picoseconds.
Picoseconds are used by most library functions that deal with time.
These functions are useful for conveniently dealing with other units of
time.

picoSec

long long picoSec(double t)

This function takes the argument that represents a time in picoseconds
and converts it to a long long type in picoseconds.

nanoSec

long long nanoSec(double t)

This function takes the argument that represents a time in
nanoseconds and converts it to a long long type in picoseconds.

Time Units Scientific Notation Decimal Notation

1 second 1.0 1.0

1 millisecond 1.0 X 10-3 seconds .001 seconds

1 microsecond 1.0 X 10-6 seconds .000001 seconds

1 nanosecond 1.0 X 10-9 seconds .000000001 seconds

1 picosecond 1.0 X 10-12 seconds .000000000001 seconds
194

Chapter 6: Tool Development Kit System Utilities
Time Convenience Functions
ds.setTimeBias();
/* ... other processing ... */
ds.setPosition(nanoSec(34.678));

microSec

long long microSec(double t)

This function takes the argument that represents a time in
microseconds and converts it to a long long type in picoseconds.

milliSec

long long milliSec(double t)

This function takes the argument that represents a time in milliseconds
and converts it to a long long type in picoseconds.

sec

long long sec(double t)

This function takes the argument that represents a time in seconds and
converts it to a long long type in picoseconds.

timeToString

String timeToString(long long t)

This function takes the argument that represents a time in picoseconds
and converts it to a string that is formatted in terms of scientific units
similar to the way time is displayed in the lister tool.

ds.setTimeBias();
/* ... other processing ... */
print timeToString(ds.getPosition());
195

Chapter 6: Tool Development Kit System Utilities
Utility Data Types
Utility Data Types

Two utility data types are included in the Tool Development Kit. The
two types are Strings and Lists.

String Type

The String type is a more convenient type than const char *. It is
unlimited in length, and for the most part, is compatible with const
char *. It is necessary to cast to (const char *) in certain cases (e.g. the
printf family of functions). Individual characters of a string may be
accessed through the [] notation.

NOTE: A string variable is defined with the following syntax: String s;

Here are some of the useful functions defined for Strings.

s.chunk

String s.chunk(int offset, int length)

This function returns the substring of s starting offset chars from the
beginning and length character long.

If s = "abcdef", then s.chunk(2,3) is "cde".

s.length

int s.length()

Returns the length of s.

s.is_empty

int s.is_empty()

Returns true if and only if s is an empty string.
196

Chapter 6: Tool Development Kit System Utilities
Utility Data Types
s.shrink

void s.shrink(int size)

Shrink the size of s to size. The rest of the string is gone.

int_to_str

String int_to_str(int x)

Converts x to a string. sscanf() can be used for more elaborate string
formatting.

s1 + s2

s1 + s2

Concatenates the two strings.

List Type

The List type is used with StringList, and TDKLabelEntryList. In each
of these cases the root type (String or TDKLabelEntry) is represented
in a linked list structure. The root type can be manipulated with the
following set of functions defined for Lists.

A List may be defined as follows:

StringList sList;
TDKLabelEntryList leList;

List.put

void sList.put(x)
void leList.put(y)

Adds the String x to the end of the list sList. Adds the TDKLabelEntry
y to the end of the list leList.

List[n]

sList[n]
leList[n]
197

Chapter 6: Tool Development Kit System Utilities
Utility Data Types
Returns the nth (0 based) element of the list. It works like an array.

List.length

int sList.length()
int leList.length()

Returns the length of the list.

Given the following variables and the previously defined lists sList and
leList:

String myString;
TDKLabelEntry myLabel;
int length;

sList.put(myString);
leList.put(myLabel);

Adds the element myString to the end of the list sList and adds the
element myLabel to the end of the list leList.

sList[3]
leList[3];

Returns the third String element in the list sList and returns the third
TDKLabelEntry element in the list leList.

length = sList.length();
length = leList.length();

Returns the length of the list sList and leList.

NOTE: Make sure that l[n] is a valid element in the list. This implies you know the
length of the list you are dealing with. If you do not, use the l.length function
to find out the size of the list prior to retrieving an item on the list.
198

7

Extended Examples
199

Chapter 7: Extended Examples
Overview
Overview

The examples in this chapter are intended to demonstrate real-world
functionality. These examples are more complex than those in the
previous tutorials.

It is typical for a user to want to post-process data acquisitions to make
the data more easily understood. For example, you may need to
combine small pieces of data into one larger block or break a large
block of data into smaller pieces. Or, you may need to interpret a
particular protocol.

The Mux example demonstrates combining small pieces of data into a
larger block of data, in this case 8-bit ADDR values into a 32-bit ADDR
value. The Automotive demo breaks 16-bit data values into smaller
meaningful pieces and interprets those values. The Automotive
example also demonstrates viewing the time correlated data with
listers and charts.
200

Chapter 7: Extended Examples
The Mux Program
The Mux Program

There are situations where you may need to combine, or multiplex,
several data values into one wider value.

This example uses an input data file containing an ADDR LabelEntry of
a given length. The user may input a value, muxFactor, which is used to
calculate a new multiplexed (mux'ed) ADDR length. The new ADDR
length equals muxFactor times the original ADDR length, and the new
ADDR value consists of muxFactor number of the original ADDR
values combined. The code is heavily commented and contains
explanations of the program's functionality and implementation.

In the default configuration, the input data set has an 8-bit wide ADDR
label and the Mux program creates a 32-bit mux'ed ADDR label. The
user may enter different muxFactor values through the View
Parameters menu option (so long as the maximum length of the new
label does not exceed 32 bits). The user has the option of entering an
alignment offset value which selects the position of the value to start
with. The user may also choose the order in which ADDR values are
combined: the first ADDR value encountered may be placed in the
most or least significant position of the mux'ed ADDR value.

1 Open the /logic/demo/ToolDevKit/mux.__ config and the Tool
Development Kit tool.

2 Select the Compile button, then Run.

3 Open the Lister to view the original data set and the newly
created Mux data set.

a Use the horizontal scroll bar in the Lister window to view the
new data set as shown in the following picture.
201

Chapter 7: Extended Examples
The Mux Program
Lister resulting from running the Mux program

If you have created a tool from the Mux program (see the Creating a
Tool tutorial example) and run the Mux program from the tool, you will
see that the graphical user interface is used for user input and message
display.

If you run the Mux program from the Tool Development Kit tool, you
must use the menu option for user input. Output messages are
displayed in the output window. Try entering different runtime
arguments:

4 Select View➔View Parameters...
202

Chapter 7: Extended Examples
The Mux Program
5 Use the horizontal scroll bar in the View Parameters... dialog and
scroll to enter one or more new arguments (MUX factor must not
be greater than 4 so that the mux'ed ADDR length does not
exceed 32 bits).

6 Select the Apply button.

7 Select Run in the Tool Development Kit window.

8 Select the Lister to view the modified DATA.

Files Used: From the /logic/demo/ToolDevKit/ directory.

• mux.___ (Workspace file)

• muxdata_8.dat (8-bit input data file for the File In tool)

• mux.c (Tool Development Kit program file)

mux.c /* File: mux.c

 Purpose: This sample program uses an input data file containing
 ADDR, DATA, and STAT LabelEntries. The program
 multiplexes the ADDR LabelEntry by combining muxFactor
 number of ADDR values into one long long ADDR field.

 A new mux’ed DataSet is created containing LabelEntries
 of the same names as the original set. (Note: in order
 to use HP’s inverse assemblers, ADDR, DATA, and STAT
 LabelEntries must exist in the same DataSet.)

 State 0 of the new multiplexed DataSet will occur at
 or before state 0 (time = 0) of the original DataSet.

 Using runtime arguments, the user enters choices for
 alignment offset, mux factor, and whether the most
 significant ADDR value encountered will be first in
 the new mux’ed field (most significant position) or
 last (least significant position).

 For example, a set of data contains an ADDR LabelEntry
 8 bits wide, and entries in this field need to be
 combined to form one 32 bit ADDR value. Here, the
 muxFactor is 4. The alignment offset determines which
 ADDR value with respect to the first sample of the
 input data is the first value used in the new
 multiplexed ADDR value. Samples are counted starting
 with 0. If the alignment offset is 0, the first ADDR
 value (in the 0 position) is the starting value. If
 alignment offset is 2, the third value is the starting
 value (position number 0, 1, 2).

 With an offset of 0 and the first ADDR value in the most
 significant position, we have for example:

203

Chapter 7: Extended Examples
The Mux Program
 Original ADDR (8-bits) Mux’ed ADDR (32-bits)

 FA
 FB
 FC
 FD FAFBFCFD

 FE
 FF
 00
 01 FEFF0001

 The program then writes the original ADDR length, the
 muxFactor, and the mux’ed ADDR length to the output
 message window.

*/

void execute(TDKDataGroup& dg, TDKBaseIO& io)
{
 // Create variables for the original and mux DataSets
 TDKDataSet ds;
 TDKDataSet muxDS;

 // Create variables for each LabelEntry in both the input
 // and mux DataSets
 TDKLabelEntry addrLE;
 TDKLabelEntry dataLE;
 TDKLabelEntry statLE;

 TDKLabelEntry muxAddrLE;
 TDKLabelEntry muxDataLE;
 TDKLabelEntry muxStatLE;

 // Other program variables
 unsigned int addrValue; // original ADDR field
 unsigned int muxAddrValue; // mux’ed ADDR field
 unsigned int dataValue; // original DATA field
 unsigned int statValue; // original STAT field
 int i;
 int startRow; // alignment offset from beginning of samples
 int muxFactor; // how many original fields to combine
 int firstHi; // first ADDR value takes the high position?
 int addrLen; // original ADDR length, in bits
 int muxAddrLen; // new mux’ed ADDR length, in bits
 int dataLen; // length of DATA and field, in bits
 int statLen; // length of STAT field, in bits
 int temp;
 int count;
 int modFactor; // original number of samples modulus
 // muxFactor
 int triggerRow; // trigger row of mux DataSet
 unsigned int numSamples; // number of samples in mux DataSet
 unsigned int origNumSamples; // number of samples in original
 // DataSet
 long long time; // time stamp for mux DataSet
 long long correlationTime; // correlation time for DataSets

 // Assign runtime argument values, if the user has not
 // input runtime values, default values will be used.
204

Chapter 7: Extended Examples
The Mux Program
 // Runtime arguments are strings, and must be converted if
 // numeric values are required

 int num = 0;

 num = sscanf(io.getArg(0), “%i”, &startRow);

 if(num != 1)
 {
 io.print(“Unable to convert start row parameter”);
 return;
 }

 num = sscanf(io.getArg(1), “%i”, &muxFactor);

 if(num != 1)
 {
 io.print(“Unable to convert mux factor parameter”);
 return;
 }

 // The user may enter “Most” or “Least” as runtime arguments
 // to indicate the order to combine ADDR values.
 // “Most” indicates that the first original ADDR value encountered
 // will be in the most significant position of the new mux’ed ADDR.
 // “Least” indicates that the first original ADDR value encountered
 // will be in the least significant position of the new mux’ed ADDR.
 firstHi = (io.getArg(2) == “Most”); // 1 = Most, 0 = Least

 int err = 0;

 // Attach to the incoming dataset
 err = ds.attach(dg);
 if(err)
 {
 io.printError(err);
 return;
 }

 correlationTime = ds.getCorrelationTime();

 // Time rather than state will be used to correlate DataSets
 ds.setTimeBias();

 // Attach to the ADDR label
 err = addrLE.attach(ds, “ADDR”);
 if(err)
 {
 io.printError(err);
 return;
 }

 // Attach to DATA label
 err = dataLE.attach(ds, “DATA”);
 if(err)
 {
 io.printError(err);
 return;
 }

 // Attach to STAT label
 err = statLE.attach(ds, “STAT”);
 if(err)
205

Chapter 7: Extended Examples
The Mux Program
 {
 io.printError(err);
 return;
 }

 // Get information about the input DataSet
 addrLen = addrLE.getWidth();
 dataLen = dataLE.getWidth();
 statLen = statLE.getWidth();
 origNumSamples = ds.getNumberOfSamples();

 if(muxFactor <= 0 || muxFactor > 32)
 {
 io.printf(
 “The given mux factor %i is out of range. Using mux factor = 4”,
 muxFactor);

 muxFactor = 4;
 }

 // Calculate values to be used with the mux DataSet
 muxAddrLen = addrLen * muxFactor;

 if(muxAddrLen > 32)
 {
 io.printf(
 “The ADDR label width times the mux factor is greater than”);
 io.printf(“32. Exiting. “);

 return;
 }

 modFactor = origNumSamples % muxFactor;

 numSamples = (origNumSamples - modFactor) / muxFactor;
 // Do not create too many samples in the new DataSet
 // since all states must be assigned values
 while (((numSamples * muxFactor) + startRow) > origNumSamples)
 {
 numSamples -= 1;
 }

/*
 Calculate trigger row for the mux DataSet:
 In order to provide for use of data filters, the input
 DataSet trigger point is found by stepping through
 the states keeping count, and when state 0 (time = 0)
 is found, that count is the trigger row.
*/

 // read the beginning time without incrementing the DataSet iterator
 ds.peekNext(time);

 // initialize triggerRow count
 triggerRow = -1;

 // Account for alignment offset
 for (i=0; i < startRow; i++)
 {
 ds.next(time);
 }
206

Chapter 7: Extended Examples
The Mux Program

 // Step through the original DataSet in groups of size muxFactor
 // until time = 0 is found
 while (time <= nanoSec(0))
 {
 for (int j = 0; j < muxFactor ; j++)
 {
 ds.next(time);
 }

 // If state 0 is passed in this group, don’t increment trigger row
 if(time <= nanoSec(0))
 {
 triggerRow++;
 }
 }

 // Reset the DataSet iterator to the beginning
 ds.reset();

/*
 Create the new mux’ed dataset. The time value used for the
 samplePeriod parameter is a dummy value. The correct time tag
 is written in the while loop that assigns values to the new
 DataSet’s fields.
*/
 err = muxDS.createTimeTags(dg, “MuxDataSet”, numSamples, triggerRow,
 correlationTime, nanoSec(4.0));

 if(err)
 {
 io.printError(err);
 return;
 }

 // Create a new field label, ADDR, in the mux’ed DataSet with a width
 // equal to muxFactor times the original ADDR field width
 err = muxAddrLE.createIntegralData(muxDS, “ADDR”, muxAddrLen);
 if(err)
 {
 io.printError(err);
 return;
 }

 // Create a new field label, DATA, in the mux DataSet which is
 // dataLen bits wide DATA values from the original DataSet will
 // not be modified
 err = muxDataLE.createIntegralData(muxDS, “DATA”, dataLen);
 if(err)
 {
 io.printError(err);
 return;
 }

 // Create a new field label, STAT, in the mux DataSet which is
 // statLen bits wide STAT values from the original DataSet will
 // not be modified
 err = muxStatLE.createIntegralData(muxDS, “STAT”, statLen);
 if(err)
 {
 io.printError(err);
 return;
207

Chapter 7: Extended Examples
The Mux Program
 }

 // skip past startRow number of states in the original
 // DataSet to get to the first state used in the
 // multiplexing operation
 for(i = 0; i < startRow; i++)
 {
 ds.next(time);
 addrLE.next();
 dataLE.next();
 statLE.next();
 }

 count = 0;
 temp = 0;
 muxAddrValue = 0;

/*
 Loop through the the original DataSet calculating values for the
 mux’ed set Assign ADDR, DATA and STAT values to the mux DataSet
*/

 while (ds.next(time) && addrLE.next(addrValue) &&
 dataLE.next(dataValue) && statLE.next(statValue))
 {
 // Build the new muxAddrValue over muxFactor number of iterations
 if (firstHi) // first value of original ADDR values is high
 {
 temp = addrValue<<((muxFactor-1-count) * addrLen);
 muxAddrValue = temp | muxAddrValue;
 }
 else // last value of original ADDR values is high
 {
 temp = addrValue<<(count * addrLen);
 muxAddrValue = temp | muxAddrValue;
 }

 // every muxFactor number of loops, write the new values for the
 // mux DataSet
 if(count == (muxFactor -1))
 {
 // Write out the correct time stamp first
 muxDS.replaceNext(time);
 muxAddrLE.replaceNext(muxAddrValue);
 // clear muxAddrValue in preparation for next build
 muxAddrValue = 0;
 muxDataLE.replaceNext(dataValue);
 muxStatLE.replaceNext(statValue);
 }
 count = (count + 1) % muxFactor;
 }
// end of the while loop

 // Print out the new mux’ed ADDR length information
 // to the output window
 io.printf(“Original ADDR length: %d”, addrLen);
 io.printf(“MuxFactor used: %d”, muxFactor);
 io.printf(“New mux’ed ADDR length: %d”, muxAddrLen);

 // tag the dataGroup so that downstream tools
208

Chapter 7: Extended Examples
The Mux Program
 // know that the data is time correlated
 dg.setTimeCrossCorrelation();

}

//////////////// DO NOT REMOVE THE FOLLOWING ////////////////
// The following functions may be modified but not removed, //
// even if you are not getting parameters from the user. //
// If these functions are removed, you will NOT be able to //
// create installable tools. //
///

// Assign label names for runtime arguments in the
// order that they will appear
StringList getLabelNames()
{
 StringList labels;

 labels.put(“Alignment Offset: “);
 labels.put(“MUX Factor: “);
 labels.put(
 “Select Order: First ADDR value is Most/Least Significant”);

 return labels;
}

// Assign default values to runtime arguments
StringList getDefaultArgs()
{
 StringList defs;

 defs.put(“0”); // alignment offset = 0
 defs.put(“4”); // muxFactor = 4
 defs.put(“Most”); // first ADDR value is most significant

 return defs;
}

209

Chapter 7: Extended Examples
The Automotive Program
The Automotive Program

There are situations where you may wish to break apart a data value
into smaller pieces and interpret those values.

The Automotive sample demonstrates breaking 16-bit data values into
multiple data components, then interpreting and displaying those
values. The input data set contains a 16-bit DATA label, which
depending on a flag, may represent engine or transmission information.
The program interprets the data, creates new data sets for that data,
displays a text interpretation of the data, and highlights certain
conditions in the data with color. The code is commented and contains
detailed explanations of the program's functionality and
implementation.

1 Open the /logic/demo/ToolDevKit/auto.___ config and the Tool
Development Kit tool.

2 Select the Compile button, then Run.
210

Chapter 7: Extended Examples
The Automotive Program
Displays from the Automotive demo

Files Used: From the /logic/demo/ToolDevKit/ directory.

• auto.___ (Workspace file)

• auto.dat (Data file for File In tool)

• auto.c (Tool Development Kit program file)

auto.c /* File: auto.c

 Purpose: The Auto sample demonstrates breaking 16 bit data values
 into multiple data components, interpreting and displaying
 those values, and coloring text associated with error
 conditions in order to make those states more easily
 visible. Resulting data is then displayed using charts
 which are time correlated with each other and with the
 listings.

 The input file, auto.dat, contains a single bit ADDR and
 16 bit DATA label with samples every 10mS. This data is
211

Chapter 7: Extended Examples
The Automotive Program
 not actual automotive bus data but has been created just
 for demonstration purposes.

 When ADDR = 0, DATA represents engine related information:
 the first 6 bits represent rpm’s (rpm);
 the next 4 bits represent fuel level (fuelLevel);
 the next 3 bits represent fuel to air ratio (fuelAir);
 the last 3 bits represent manifold pressure (manifold).

 When ADDR = 1, DATA represents transmission information:
 the first 3 bits represent gear position (gear);
 the next 8 bits represent temperature (temp);
 the remaining bits are unused.

 For example, the second sample contains an ADDR value = 0
 Which indicates engine data and DATA = 4691 which viewed
 in binary format is 0100 0110 1001 0001 . Broken into its
 data components:

 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1
 \ / \ / \ / \ /
 manifold fuelAir fuelLevel rpm
 2 1 10 17 (decimal)

 These raw data values are then used to calculate final
 values (data = the raw data value):

 manifold = ((data * 28.5) + 6.5) / 2.4 = 26
 where the raw data value = DATA right shifted 13
 places;

 fuelAir = data * 14.286 = 14
 where the raw data value = DATA right shifted 10
 places and masked (bitwise AND’ed) with 03 hex;

 fuelLevel = data = 10
 data = DATA right shifted 6 places and masked with
 0f hex;

 rpm = data * 60 = 1020
 where the raw data value = DATA masked with 03f hex.

*/

// enumerated types to make engine vs transmission data
// and LabelEntry array access more clear
enum{engine, transmission};
enum{Address, Dat, SystemInfo} ;
// the following type names are abbreviated since
// the words rpm, manifold, fuelLevel and fuelAir
// are used as variable names
enum{RPMs, FLevel, FAir, Mani};
enum{GearPosition, Temperature};

enum { white, white2, scarlet, pumpkin, yellow, lime, turquoise,
lavender };
212

Chapter 7: Extended Examples
The Automotive Program
void execute(TDKDataGroup &dg, TDKBaseIO &io)
{
 // define LabelEntries and DataSets

 TDKLabelEntry le[3];
 // 0 = ADDR, 1 = DATA, 2 = System Information

 TDKLabelEntry engineLE[4];
 // 0 = RPM, 1 = Fuel Level, 2 = Fuel/Air, 3 = Manifold

 TDKLabelEntry transLE[2];
 // 0 = Gear, 1 = Temp

 TDKDataSet ds;
 TDKDataSet engineDS;
 TDKDataSet transDS;

 // incoming ADDR value
 unsigned addr;

 // incoming DATA value
 unsigned data;

 // data components
 unsigned rpm;
 unsigned manifold;
 unsigned fuelLevel;
 unsigned fuelAir;
 unsigned gear;
 double temp;

 // define other program variables
 unsigned numSamples; // number of samples in each new DataSet
 char message[100];
 String gearMessage;
 long long time;
 long long correlationTime; // correlation time for DataSets
 int celsius;

 int err;

 String invalidStr;
 invalidStr = “**Invalid Gear Position**”;

 // read runtime argument
 celsius = io.getArg(0) == “c” || io.getArg(0) == “C”;

 // Attach to the incoming dataset
 err = ds.attach(dg);

 if(err)
 {
 io.printError(err);
 return;
 }

 correlationTime = ds.getCorrelationTime();

 // DataSets will be time correlated
 err = ds.setTimeBias();

 if(err)
213

Chapter 7: Extended Examples
The Automotive Program
 {
 io.printError(err);
 return;
 }

 // Attach to the address label
 err = le[Address].attach(ds, “ADDR”);

 if(err)
 {
 io.printError(err);
 return;
 }

 // Attach to the data label
 err = le[Dat].attach(ds, “DATA”);

 if(err)
 {
 io.printError(err);
 return;
 }

 // Create a new System Information label
 err = le[SystemInfo].createTextData(ds, “System Information”, 15);

 if(err)
 {
 io.printError(err);
 return;
 }

/* Create two new DataSets, one for ADDR = 0 : Engine Statistics
 * the other for ADDR = 1 : Transmission Information
 *
 * Each will have half the number of states as the input DataSet
 * and will be time stamped for accurate time correlation.
 * Creating the new DataSets in this way will allow us to use
 * charts to display data for each category with proper time
.* correlation.
 *
 * The samplePeriod value used in both createTimeTags functions is
 * a dummy value which will be replaced in the while loop
*/

 numSamples = ds.getNumberOfSamples() / 2;

 engineDS.createTimeTags(dg, “Engine”, numSamples, 0,
 correlationTime, nanoSec(200.0));
 transDS.createTimeTags(dg, “Trans”, numSamples, 0,
 correlationTime, nanoSec(200.0));

 // Create new LabelEntries
 engineLE[RPMs].createIntegralData(engineDS, “RPM”, 14);
 engineLE[FLevel].createIntegralData(engineDS, “Fuel Level”, 6);
 engineLE[FAir].createIntegralData(engineDS, “Fuel/Air”, 10);
 engineLE[Mani].createIntegralData(engineDS, “Manifold”, 10);

 transLE[GearPosition].createIntegralData(transDS, “Gear”, 3);
 transLE[Temperature].createIntegralData(transDS, “Temp”, 8);

214

Chapter 7: Extended Examples
The Automotive Program
/* The main while loop:
 *
 * This loop reads the next sample’s time, ADDR, and DATA.
 * If ADDR = 0, then the DATA represents engine information.
 * If ADDR = 1, then the DATA represents transmission information.
 * Data is interpreted, written to the new DataSets, and the
 * text interpretation message is formed.
*/

 while (ds.next(time) && le[Address].next(addr) &&
 le[Dat].next(data))
 {
 if (addr == engine) // Engine information
 {
 engineDS.replaceNext(time);

 // The first 6 bits indicate engine rpm’s
 rpm = (data & 0x3f) * 60;
 engineLE[RPMs].replaceNext(rpm);

 // The next 4 bits indicate fuel level
 fuelLevel = (data >> 6) & 0xf;
 engineLE[FLevel].replaceNext(fuelLevel);

 // The next 3 bits indicate air ratio
 fuelAir = ((data >> 10) & 0x3) * 14.286;
 engineLE[FAir].replaceNext(fuelAir);

 // The next 3 bit indicate fuel to manifold pressure
 manifold = ((data >> 13) * 28.5 + 6.5) / 2.4;
 engineLE[Mani].replaceNext(manifold);

 // Format the results
 sprintf (message, “%d RPM\n%d gallons of fuel\n%d%% “
 “Fuel to air\n%d PSI (manifold)”,
 rpm, fuelLevel, fuelAir, manifold);

 }

 if (addr == transmission) // Transmission information
 {
 transDS.replaceNext(time);

 // The first 3 bits indicate transmission position
 gear = (data & 0x7);
 transLE[GearPosition].replaceNext(gear);

 switch (gear)
 {
 case 0:
 gearMessage = “Park”;
 break;
 case 1:
 gearMessage = “Reverse”;
 break;
 case 2:
 gearMessage = “Neutral”;
 break;
 case 3:
 gearMessage = “Overdrive”; // or 3rd gear
 break;
215

Chapter 7: Extended Examples
The Automotive Program
 case 4:
 gearMessage = “2nd Gear”;
 break;
 case 5:
 gearMessage = “1st Gear”;
 break;
 default: // invalid gear position
 // set message color to yellow
 gearMessage = invalidStr;
 le[SystemInfo].setColor(le[SystemInfo].getPosition(),
 yellow);
 break;
 };

 // The next 8 bits indicate transmission temperature
 if(celsius)
 {
 temp = ((data >> 3) & 0xff);
 sprintf (message, “%s\n%3.1f degrees Celsius”,
 (const char *) gearMessage, temp);
 }
 else // temperature is in Fahrenheit
 {
 temp = ((data >> 3) & 0xff) * (9.0 / 5.0) + 32.0;
 sprintf (message, “%s\n%3.1f degrees Farenheit”,
 (const char *) gearMessage, temp);
 }

 transLE[Temperature].replaceNext(temp);

 }

 // prepare message
 String s;
 s = message;
 le[SystemInfo].replaceNext(s);
 }

 // this command must be used so that downstream
 // tools know that the data is time correlated
 dg.setTimeCrossCorrelation();

}

//////////////// DO NOT REMOVE THE FOLLOWING ////////////////
// The following functions may be modified but not removed, //
// even if you are not getting parameters from the user. //
// If these functions are removed, you will NOT be able to //
// create installable tools. //
///

// define label names for runtime arguments
StringList getLabelNames()
{
 StringList l;

 l.put(“ Temperature Units: F or C”);

 return l;

}

216

Chapter 7: Extended Examples
The Automotive Program
// set default values for runtime arguments
StringList getDefaultArgs()
{
 StringList l;

 l.put(“F”);

 return l;

}

217

Chapter 7: Extended Examples
The Automotive Program
218

8

Tool Development Kit Reference

This chapter discusses Tool Development Kit functions in alphabetical
order.
219

Chapter 8: Tool Development Kit Reference
I/O System Functions
I/O System Functions

getDefaultArgs

StringList getDefaultArgs()

This function is called by the system to get information from the
program. The information is used to display default values in the View
Parameters... window. Programs using the View Parameters... window
to retrieve information at runtime must define and implement this
function within the program. Use io.getArg(int n) to retrieve the nth
parameter entered into the View Parameters... window. See
“Parameters” on page -187 for more information on using this function.

getLabelNames

StringList getLabelNames()

This function is called by the system to get the names of the labels to
be placed next to each input field in the View Parameters... window. A
maximum of 50 label names may be defined. Programs using the View
Parameters... window to retrieve information at runtime must define
and implement this function within the program in order to put a label
next to each input field. See “Parameters” on page -187 for more
information on using this function.

io.checkForUserAbort

int io.checkForUserAbort()

This functions checks if the user has press the Cancel key. Returns true
if they have, otherwise returns false.
220

Chapter 8: Tool Development Kit Reference
I/O System Functions
io.checkForUserAbort

int io.checkForUserAbort(String msg)

This functions checks if the user has press the Cancel key. The String
msg is displayed in the message area of the tool. Returns true if they
have, otherwise returns false.

io.displayDialog

io.displayDialog(String msg)

This function simply displays the given string in a dialog. The dialog will only
have the string and an 'OK' button. There is not a return value from the
dialog.

io.getArg

String io.getArg(int n)

This function is used to retrieve the nth argument of the View
Parameters... window. It is up to the programmer to make sure the
correct argument is being accessed. Programs using getArg(int n)
must have defined and implemented the functions getDefaultArgs and
getLabelNames.

io.getErrorMessage

String io.getErrorMessage(int code)

Returns the string representation of an error code return value.

io.getUserInput

void io.getUserInput(const String& msg, int& response)

Used to get input from the user of a tool interactively as the Tool
Development Kit runs. Displays the prompt string msg in a dialog box.
Only allows the user to select the Yes or No buttons. The user's
response depends on whether the Yes or No button is selected, which
221

Chapter 8: Tool Development Kit Reference
I/O System Functions
will cause response to get the value 1 or 0, respectively.

io.getUserInput

void io.getUserInput(const String& msg, String& input,
int& response)

Used to get input from the user of a tool interactively as the Tool
Development Kit runs. Displays the prompt string msg in a dialog box
and allows the user to enter a response, which is placed in input, a
string reference parameter. Depending on whether the user pushes the
OK or Cancel button, the value of response, which is an int reference
parameter, will be 1 or 0 respectively. The value of input is used as the
default for the input field of the dialog.

io.print

void io.print(String msg)

This function simply sends the String msg to the Output window.

io.printError

void io.printError(int code)

Given an error code returned from one of the Tool Development Kit
functions, this function will display the message corresponding to that
error code in the Runtime window.

io.printf

io.printf(const char *fmt, ...)

This is just like the standard printf function, except its output goes to
the "Output" window.
222

Chapter 8: Tool Development Kit Reference
I/O System Functions
io.stop

void io.stop()

This function stops the analyzer during a repetitive run.
223

Chapter 8: Tool Development Kit Reference
List Functions
List Functions

myList.length

int myList.length()

Returns the length of the list. myList is of type StringList or
TDKLabelEntryList.

myList[n]

myList[n]

Returns the nth (0 based) element of the list. It works like an array.
myList is of type StringList or TDKLabelEntryList. n is of type String or
TDKLabelEntry (is the same type as the list.)

myList.put

void myList.put(x)

Adds the element x to the end of the list myList. myList is of type
StringList or TDKLabelEntryList. x is of type String or TDKLabelEntry
(must be same root type as the list.)
224

Chapter 8: Tool Development Kit Reference
String Functions
String Functions

int_to_str

String int_to_str(int x)

Converts x to a string. sscanf() can be used for more elaborate string
formatting.

s.chunk

String s.chunk(int offset, int length)

This function returns the substring of s starting offset chars from the
beginning and length character long.

s.is_empty

int s.is_empty()

Returns true if and only if s is an empty string.

s.length

int s.length()

Returns the length of s.

s.shrink

void s.shrink(int size)

Shrink the size of s to size. The rest of the string is gone.
225

Chapter 8: Tool Development Kit Reference
String Functions
s1 + s2

s1 + s2

Concatenates the two strings.
226

Chapter 8: Tool Development Kit Reference
TDKCorrelator Functions
TDKCorrelator Functions

c.firstPosition

long long c.firstPosition()

This function will return the Time or State value of the first position for
this correlator depending on the current bias. If the bias setting for c is
State, then the value found under the State column at the position of
the pointer c will be returned. If the bias setting for c is Time, then the
value found under the Time column at the position of the pointer c will
be returned. Time values are in picoseconds.

c.getPosition

long long c.getPosition()

This function will return the Time or State value of the current position
for the correlator depending on the current bias. If the bias setting for c
is State, then the value found under the State column at the position of
the pointer c will be returned. If the bias setting for c is Time, then the
value found under the Time column at the position of the pointer c will
be returned. Time values are in picoseconds.

c.initialize

int c.initialize(TDKDataSet referenceDataSet)
int c.initialize(TDKDataSet referenceDataSet,
TDKLabelEntryList leList)

The initialize functions prepare the data sets to be correlated. In its
second form, an array of label entries is given. referencedataSet is the
data set which is used for position information in the correlation
process. leList is a list of label entries to be correlated (label entries
can be from different data sets). Returns an error code.
227

Chapter 8: Tool Development Kit Reference
TDKCorrelator Functions
c.lastPosition

long long c.lastPosition()

This function will return the Time or State value of the last position for
this correlator depending on the current bias. If the bias setting for c is
State, then the value found under the State column at the position of
the pointer c will be returned. If the bias setting for c is Time, then the
value found under the Time column at the position of the pointer c will
be returned. Time values are in picoseconds.

c.next

int c.next(TDKCorrelatorValue& cv)

This function gets the next TDKCorrelatorValue cv in the correlation.
Returns 1 for valid data, 0 for invalid data. It advances the pointer to
the next sample.

c.peekNext

int c.peekNext(TDKCorrelatorValue& cv)

This function gets the next TDKCorrelatorValue cv in the correlation.
Returns 1 for valid data, 0 for invalid data. It does not move the pointer.

c.peekPrev

int c.peekPrev(TDKCorrelatorValue& cv)

This function gets the previous TDKCorrelatorValue cv in the
correlation. Returns 1 for valid data, 0 for invalid data. It does not
change the position of the pointer.

c.prev

int c.prev(TDKCorrelatorValue& cv)

This function gets the previous TDKCorrelatorValue cv in the
correlation. Returns 1 for valid data, 0 for invalid data. It moves the
228

Chapter 8: Tool Development Kit Reference
TDKCorrelator Functions
pointer back to the previous sample.

c.reset

int c.reset()

This function resets the position of the pointer to the first position.
Returns an error code.

c.resetAtEnd

int c.resetAtEnd()

This function resets the position of the pointer to the last position.
Returns an error code.

c.setPosition

int c.setPosition(long long position)
int c.setPosition(TDKDataSet ds, long long position)

The setPosition() functions reset the position of the pointer to
position. In the first form, the position is taken from the reference data
set, while in the second form, the position is taken for the TDKDataSet
ds, which may be any data set involved in the correlation.

c.setStateBias

int c.setStateBias()

This function sets State bias for the data set. Bias (State or Timing)
indicates the type of information the rest of these functions will
operate on. This function must be called before the call to initialize().
Returns an error code.
229

Chapter 8: Tool Development Kit Reference
TDKCorrelator Functions
c.setTimeBias

int c.setTimeBias()

This function sets Timing bias (the default) for the correlator. Bias
(State or Timing) indicates the type of information the rest of these
functions will operate on. This function must be called before the call
to initialize(). Returns an error code.
230

Chapter 8: Tool Development Kit Reference
TDKCorrelatorValue Functions
TDKCorrelatorValue Functions

cv.getData

int cv.getData(TDKLabelEntry le, unsigned int &d) //
Integral data
int cv.getData(TDKLabelEntry le, String &d) // Text data
int cv.getData(TDKLabelEntry le, double &d) // Analog
data

This function attempts to retrieve the data value for a label entry le. If
the TDKCorrelatorValue cv contains valid information for the label
entry le, true (1) is returned, otherwise it returns false (0). The data
value retrieved is stored in d. The function is overloaded for each data
type possible (Integral, Text, or Analog).

cv.getState

long long cv.getState(TDKLabelEntry le)

This function returns the State number of the label entry le at the
current position of the TDKCorrelatorValue cv.

cv.isChanged

int cv.isChanged(TDKLabelEntry le)

This function returns true if the TDKCorrelatorValue cv contains
changed information for the given label entry le. The actual data found
at the label entry position pointed to by cv is compared to the previous
cv label entry data value. If these two values are the same, then this
function returns false (0) otherwise it returns true (1).

cv.isHeld

int cv.isHeld(TDKLabelEntry le)

This function returns true (1) if the TDKCorrelatorValue cv contains
231

Chapter 8: Tool Development Kit Reference
TDKCorrelatorValue Functions
held information for the given label entry le otherwise returns false (0).
Often times held data values are discarded.

cv.isValid

int cv.isValid(TDKLabelEntry le)

This function returns true (1) if the TDKCorrelatorValue cv contains
valid information for the given label entry le otherwise returns false
(0).
232

Chapter 8: Tool Development Kit Reference
TDKDataGroup Functions
TDKDataGroup Functions

dg.getDataSetNames

int dg.getDataSetNames(StringList& names)

This function returns the number of data sets present in the data group
and also puts the names into the StringList names that is passed as a
parameter. names is reSize()'d to the number of data sets. Use
dg.getNumberOfDataSets or StringList function names.length to
determine the length of the list. Use StringList function s[n] to retrieve
items from the list.

dg.getNumberOfDataSets

int dg.getNumberOfDataSets()

This function returns the number of data sets present in the data
group.

dg.isStateCorrelatable

int dg.isStateCorrelatable()

This function returns true if the data group is state correlatable.

dg.isTimeCorrelatable

int dg.isTimeCorrelatable()

This function returns true if the data group is time correlatable.

dg.removeDataSet

int dg.removeDataSet(TDKDataSet ds)

This function removes the data set to which ds is attached. Returns 1
233

Chapter 8: Tool Development Kit Reference
TDKDataGroup Functions
for success, 0 for failure. This function is useful in situations where a
new data set is to be displayed without showing the original data set.
The original data set can be removed by using this function and passing
in the data set reference to the original data set.

dg.setStateCrossCorrelation

int dg.setStateCrossCorrelation()

This function should be called in a multiple data set situation to tell the
system that they should be correlated by state. Returns an error code.

dg.setTimeCrossCorrelation

int dg.setTimeCrossCorrelation()

This function should be called in a multiple data set situation to tell the
system that they should be correlated by time. Returns an error code.
234

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
TDKDataSet Functions

ds.attach

int ds.attach(TDKDataGroup& dg, String name)
int ds.attach(TDKDataGroup& dg)

The first attach function associates the variable ds to the first data set
in the data group dg whose origin or base name is name. The second
attach function associates the variable ds with the first incoming data
set. It is permissible to re-attach() the same data set variable to
another incoming data set. The effect of this is as if it had never been
attach()ed in the first place. Returns an error code.

ds.createState

int ds.createState(TDKDataGroup& dg,
String name,
unsigned int len,
unsigned int triggerRow,
long long correlationStateOffset)

This function creates a new data set with state information called
name and with len number of samples. The position of the trigger row
is placed triggerRow number of samples from the first sample. The
correlationStateOffset tells how the data sets trigger position matches
up in time in case there is more than one data set. Returns an error
code.

ds.createTimePeriodic

int ds.createTimePeriodic(TDKDataGroup& dg,
String name,
unsigned int len,
unsigned int triggerRow,
long long correlationTimeOffset,
long long samplePeriod)

This function creates a new data set called name with time period
information and len number of samples. The position of the trigger row
235

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
is placed triggerRow number of samples from the first sample. The
correlationTimeOffset tells how the data set trigger position matches
up in time in case there is more than one data set. The samplePeriod
tells the time instants of each of the samples. Returns are error code.

ds.createTimeTags

int ds.createTimeTags(TDKDataGroup& dg,
String name,
unsigned int len,
unsigned int triggerRow,
long long correlationTimeOffset,
long long samplePeriod)

This function creates a new data set ds called name with time tags and
len number of samples. The position of the trigger row is placed
triggerRow number of samples from the first sample. The
correlationTimeOffset tells how the data set trigger position matches
up in time in case there is more than one data set. The samplePeriod
tells the time instants of each of the samples. Returns an error code.

ds.createTimeTags

int ds.createTimeTags(TDKDataGroup& dg,
String name,
TDKDataSet origDS,
unsigned int triggerRow,
long long correlationTimeOffset,
long long samplePeriod)

This function creates a new data set ds called name which is a copy of
origDS with timeTags added. ds will contain all the label entries of
origDS. The position of the trigger row is placed triggerRow number
of samples from the first sample. The correlationTimeOffset tells how
the data set trigger position matches up in time in case there is more
than one data set. The samplePeriod tells the time instants of each of
the samples. Returns an error code.
236

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
ds.displayStateNumberLabel

ds.displayStateNumberLabel(bool)

Disables (or enables) the display of the state number labels for any
dataset. If the parameter is set to "false", the state number label for the
associated dataset will not appear and will not be available in the listing
display. The default value for a dataset is "true" meaning the state
number label will appear in the listing display, even though it is not a
label that is explicitly created in the TDK code.

ds.filter

int ds.filter(long long s)

This function will remove the given state s as if it had been removed by
the Pattern Filter. Returns an error code.

ds.filterAllStates

int ds.filterAllStates()

This function will remove all states as if the Pattern Filter had removed
them. Returns an error code.

ds.firstPosition

long long ds.firstPosition()

This function will return the Time or State value of the first position for
this data set depending on the current bias.

If the bias setting for ds is State, then the value found under the State
column at the position of the pointer ds will be returned. If the bias
setting for ds is Time, then the value found under the Time column at
the position of the pointer ds will be returned. Time values are in
picoseconds.
237

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
ds.getBeginTime

int ds.getBeginTime(int A[])

This function changes the given array A of integers to a time
representing the approximate start time of the run. Returns an error
code. The meanings are as follows:

A[0] /* years since 1900 */
A[1] /* month of year - [0,11] */
A[2] /* day of month - [1,31] */
A[3] /* hours - [0,23] */
A[4] /* minutes after the hour - [0,59] */
A[5] /* seconds after the minute - [0,59] */

ds.getCorrelationState

long long ds.getCorrelationState()

This function will return the State value of the trigger position for this
data set for use in correlating between multiple data sets.

ds.getCorrelationTime

long long ds.getCorrelationTime()

This function will return the Time value (in picosceconds) of the
trigger position for this data set for use in correlating between multiple
data sets.
238

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
ds.getEndTime

int ds.getEndTime(int A[])

This function changes the given array A of integers to a time
representing the approximate end time of the run. Returns an error
code. The meanings are as follows:

A[0] /* years since 1900 */
A[1] /* month of year - [0,11] */
A[2] /* day of month - [1,31] */
A[3] /* hours - [0,23] */
A[4] /* minutes after the hour - [0,59] */
A[5] /* seconds after the minute - [0,59] */

ds.getLabelEntryNames

int ds.getLabelEntryNames(StringList names)

This function returns the number of label entry names present in the
data set and fills the given string array with their names.

ds.getName

String ds.getName()

This function returns the string name of the data set. This name is a
colon-separated list of all the tools that feed into the Tool Development
Kit Tool.

ds.getNumberOfLabelEntries

int ds.getNumberOfLabelEntries()

This function returns the number of label entries contained in the data
set.
239

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
ds.getNumberOfSamples

int ds.getNumberOfSamples()

Returns the number of samples present in the data set. All label entries
contained in this data set have this number of samples as well, by
definition.

ds.getPosition

long long ds.getPosition()

This function will return the Time or State value of the current position
for this data set depending on the current bias.

If the bias setting for ds is State, then the value found under the State
column at the position of the pointer ds will be returned. If the bias
setting for ds is Time, then the value found under the Time column at
the position of the pointer ds will be returned. Time values are in
picoseconds.

ds.getRunID

int ds.getRunID()

This function returns the run id of the data set. data set ids are
guaranteed to be the same if the data sets originated from the same
run. This can be useful for group run situations to check whether two
data sets originated from the same run.

ds.getTriggerRow

unsigned int ds.getTriggerRow()

This function returns the relative sample number of the Trigger Row.
Note this is not given in terms of a state number, as found under the
State label in listing tool. Rather this number is in terms of the number
of samples in the trace starting with the first sample (which is zeroth
based) counting down to the trigger row sample. This is equal to the
number of samples (length of trace) minus the distance in samples
240

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
from the first sample of the trace to the sample in the trace containing
the trigger row.

ds.isAttached

int ds.isAttached()

This function returns true if the data set has been attached or created
successfully on this run.

ds.lastPosition

long long ds.lastPosition()

This function will return the Time (in picoseconds) or State value of
the last position for this data set depending on the current bias.

If the bias setting for ds is State, then the value found under the State
column at the position of the pointer ds will be returned. If the bias
setting for ds is Time, then the value found under the Time column at
the position of the pointer ds will be returned. Time values are in
picoseconds.

ds.next

int ds.next(long long &t)
int ds.next()

This function sets the pointer to the next existing x-axis value within
the data set and puts this value into the parameter t. If the bias setting
for ds is State then t will contain the State number value. If the bias
setting for ds is Time then t will contain the Time value in picoseconds.
If it cannot return a valid x-axis position, then 0 is given as the return
value. Otherwise, the function returns 1.

ds.peekNext

int ds.peekNext(long long &t)

Without changing the value of the pointer, this function puts the value
241

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
of the next time or state position into the parameter t. If the bias
setting for ds is State then t will contain the State number value. If the
bias setting for ds is Time then t will contain the Time value in
picoseconds. If there is no valid next position the value 0 is returned.
Otherwise,1 is returned.

ds.peekPrev

int ds.peekPrev(long long &t)

Without changing the value of the pointer, this function puts the value
of the previous time or state position into the parameter t. If the bias
setting for ds is State then t will contain the State number value. If the
bias setting for ds is Time then t will contain the Time value in
picoseconds. If there is no valid previous position the value 0 is
returned. Otherwise, 1 is returned.

ds.prev

int ds.prev(long long &t)
int ds.prev()

This function sets the pointer to the previous existing x-axis value
within the data set and puts this value into the parameter t. If the bias
setting for ds is State then t will contain the State number value. If the
bias setting for ds is Time then t will contain the Time value in
picoseconds. If it cannot return a valid x-axis position, then 0 is given
as the return value. Otherwise the function returns 1.

ds.removeLabelEntry

int ds.removeLabelEntry(TDKLabelEntry le)

The label entry variable le passed in is removed from the data set.
Returns the number of label entries found in ds with the same name as
le. This value should be 1, unless for some reason there is more than
one label entry with the same name in the data set.
242

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
ds.replaceNext

int ds.replaceNext(long long &data)

Store the value of data in the position pointed to by the pointer, and
then increment the pointer by one sample. If the bias setting for ds is
State, this function does nothing and returns 0. If the bias setting for ds
is Time, data is written to the Time sample entry. If the function cannot
return a valid x-axis position, 0 is given as the return value. Otherwise
the function returns 1.

ds.replacePrev

int ds.replacePrev(long long &data)

Decrement the pointer by one sample, and then store the value of data
in the position pointed to by the pointer. If the bias setting for ds is
State, this function does nothing and returns 0. If the bias setting for ds
is Time, data is written to the Time sample entry. If the function cannot
return a valid x-axis position, 0 is given as the return value. Otherwise
the function returns 1.

ds.reset

void ds.reset()

This function resets the pointer before the first item in the data set.
The ds pointer will by default point to this state upon creating a new
data set or attaching a data set variable to an existing data set.

ds.resetAtEnd

void ds.resetAtEnd()

This function resets the pointer past the last item in the data set.
243

Chapter 8: Tool Development Kit Reference
TDKDataSet Functions
ds.setPosition

int ds.setPosition(long long t)

The current position can be set with this function. Then parameter t is
interpreted according to the current bias as being Time or State
information. This function has no effect on the label entries it contains.
Returns an error code.

ds.setStateBias

int ds.setStateBias()

This function sets State bias for the data set. Bias (state or timing)
indicates the type of information many of the data set functions will
operate on. The default bias is State, since timing information may not
exist. Returns an error code.

ds.setTimeBias

int ds.setTimeBias()

This function sets Timing bias for the data set. Bias (state or timing)
indicates the type of information many of the data set functions will
operate on. The default bias is State, since timing information may not
exist. Returns an error code.

ds.unfilter

int ds.unfilter(long long s)

If a state has been filtered using the int ds.filter() function, a call to int
ds.unfilter(long long s) makes the state s visible again. This function is
not valid for states that have been filtered by the Pattern Filter Tool
itself, as the Tool Development Kit tool does not access these states.
Returns an error code.
244

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
TDKLabelEntry Functions

le.attach

int le.attach(TDKDataSet ds, String name)

Assigns le to the label entry with name contained in data set ds. The
name must match exactly. The data set variable ds must be attached
before calling this function. Returns an error code.

le.create

int le.create(TDKDataSet ds, String name, TDKLabelEntry
orig)

This function makes le a copy of the TDKLabelEntry orig, which is
passed as a parameter. This allows the tool to modify the incoming
data, if necessary. Note that Bias and Position information are not
copied over from orig to le.

le.createAnalogData

int le.createAnalogData(TDKDataSet ds,
String name,
double Offset,
double FullScaleVolts)

Used to create a brand new Analog label entry. name is the name of
the label entry as it appears to downstream tools. ds is the data set for
which the new label entry is created for. Information is entered into the
label entry le by using the TDKLabelEntry replace functions.

le.createIntegralData

int le.createIntegralData(TDKDataSet ds, String name,
int width)

Used to create a brand new Integral label entry. name is the name of
245

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
the label entry as it appears to downstream tools. ds is the data set for
which the new label entry is created for. width is how wide in bits the
label entry should be. Information is entered into the label entry le by
using the TDKLabelEntry replace functions.

le.createTextData

int le.createTextData(TDKDataSet ds, String name,
int width)

Used to create a brand new Text label entry. name is the name of the
label entry as it appears to downstream tools. ds is the data set for
which the new label entry is created for. width is how wide in bits the
label entry should be. Text label entries can be arbitrarily wide.
Information is entered into the label entry le by using the
TDKLabelEntry replace functions.

le.firstPosition

long long le.firstPosition()

This function returns the State number or Time, depending on the bias,
at the location of the first position. If the bias setting for le is State,
then the value found under the State column at the position of the
pointer le will be returned. If the bias setting for le is Time, then the
value found under the Time column at the position of the pointer le will
be returned. Time values are in picoseconds.

le.formatBin

String le.formatBin(unsigned int val)

Converts the value val into binary base. Returns a string value that can
be appended or included into other strings for output to down-stream
tools.
246

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
le.formatDec

String le.formatDec(unsigned int val)

Converts the value val into decimal base. Returns a string value that
can be appended or included into other strings for output to down-
stream tools.

le.formatHex

String le.formatHex(unsigned int val)

Converts the value val into hex base. Returns a string value that can be
appended or included into other strings for output to down-stream
tools.

le.formatLine

String le.formatLine(unsigned int val)

This function returns the file name and line number information for a
value for use in source correlation.

le.formatOct

String le.formatOct(unsigned int val)

Converts the value val into octal base. Returns a string value that can
be appended or included into other strings for output to down-stream
tools.

le.formatSymbol

String le.formatSymbol(unsigned int val)

Lookup val in the symbol table of the label entry and return its string
symbol value. If it has none, the empty string is returned. See also the
system routines formatXXX()s for converting sample values into
different bases.
247

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
le.formatTwos

String le.formatTwos(unsigned int val)

Converts the value val into Twos base. Returns a string value that can
be appended or included into other strings for output to down-stream
tools.

le.getName

String le.getName()

This function returns the name of the label entry.

le.getPosition

long long le.getPosition()

This function returns the State number or Time, depending on the bias,
at the location of the pointer. If the bias setting for le is State, then the
value found under the State column at the position of the pointer le will
be returned. If the bias setting for le is Time, then the value found
under the Time column at the position of the pointer le will be
returned. Time values are in picoseconds.

le.getWidth

int le.getWidth()

This function returns the width in bits of the label entry.

le.isAnalogData

int le.isAnalogData()

This function returns true if the label entry contains analog data.
248

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
le.isAttached

int le.isAttached()

This function returns true if the label entry has been successfully
attach()ed or create()ed on this run.

le.isIntegralData

int le.isIntegralData()

This function returns true if the label entry contains integral data.

le.isTextData

int le.isTextData()

This function returns true if the label entry contains textual data.

le.lastPosition

long long le.lastPosition()

This function returns the State number or Time, depending on the bias,
at the location of the last position. If the bias setting for le is State, then
the value found under the State column at the position of the pointer le
will be returned. If the bias setting for le is Time, then the value found
under the Time column at the position of the pointer le will be
returned. Time values are in picoseconds.

le.next

int le.next(unsigned int &data) // Integral data
int le.next(String &data) // Text data
int le.next(double &data) // Analog data
int le.next(unsigned int &data, long long &pos) //
Integral data
int le.next(String &data, long long &pos) // Text data
int le.next(double &data, long long &pos) // Analog data
int le.next()
249

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
Fetch the data at the position of the pointer le into the variable data
from the label entry and then increment the pointer by one sample. pos
is a variable which returns the position of the sample, depending on the
current bias setting. If the bias is Time, this number will be in
picoseconds. This function may be called with no arguments to change
the current position without fetching the data. Returns 1 if it is a valid
sample, otherwise returns 0.

le.peekNext

int le.peekNext(unsigned int &data) // Integral data
int le.peekNext(String &data) // Text data
int le.peekNext(double &data) // Analog data
int le.peekNext(unsigned int &data, long long &pos)//
Integral data
int le.peekNext(String &data, long long &pos) // Text
data
int le.peekNext(double &data, long long &pos) // Analog
data

Fetch the data from the label entry at the position of the pointer le into
data but do not change the position of the pointer. pos is a variable
which returns the position of the sample, depending on the current
bias setting. If the bias is Time, this number will be in picoseconds.
Returns 1 if it is a valid sample, otherwise returns 0.

le.peekPrev

int le.peekPrev(unsigned int &data) // Integral data
int le.peekPrev(String &data) // Text data
int le.peekPrev(double &data) // Analog data
int le.peekPrev(unsigned int &data, long long& pos)//
Integral data
int le.peekPrev(String &data, long long& pos) // Text
data
int le.peekPrev(double &data, long long& pos) // Analog
data

Fetch the data from the label entry at the position previous to the
pointer le into data but do not change the position of the pointer. pos
is a variable which returns the position of the sample, depending on the
current bias setting. If the bias is Time, this number will be in
picoseconds Returns 1 if it is a valid sample, otherwise returns 0.
250

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
le.prev

int le.prev(unsigned int &data) // Integral data
int le.prev(String &data) // Text data
int le.prev(double &data) // Analog data
int le.prev(unsigned int &data, long long &pos) //
Integral data
int le.prev(String &data, long long &pos) // Text data
int le.prev(double &data, long long &pos) // Analog data
int le.prev()

Decrement the pointer by one sample and then fetch the data at the
position of the pointer into the variable data from the label entry. pos is
a variable which returns the position of the sample, depending on the
current bias setting. If the bias is Time, this number will be in
picoseconds. This function may be called with no arguments to change
the current position without fetching the data. Returns 1 if it is a valid
sample, otherwise returns 0.

le.replaceNext

int le.replaceNext(unsigned int &data) // Integral data
int le.replaceNext(String &data) // Text data
int le.replaceNext(double &data) // Analog data

Store the value of data in the position pointed to by the pointer, and
then increment the pointer by one sample. Returns 1if it is a valid
sample, otherwise returns 0.

le.replacePrev

int le.replacePrev(unsigned int &data) // Integral data
int le.replacePrev(String &data) // Text data
int le.replacePrev(double &data) // Analog data

Decrement the pointer by one sample, and then store the value of data
in the position pointed to by the pointer. Returns 1 if it is a valid
sample, otherwise returns 0.
251

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
le.reset

void le.reset()

This function resets the pointer before the first item in the label entry.

le.resetAtEnd

void le.resetAtEnd()

This function resets the pointer past the last item in the label entry.

le.search

int le.search(long long& state, String& value, int n,
eSearchMode mode)

This function finds the nth state from the current position whose data
is the same as value if mode equals Search_pattern, and sets state to
the position of the match. If mode equals Search_notpattern, the
search finds the nth state from the current position whose data is not
the same as value and sets state to the position of the non-match. If n
is negative, the search is in reverse. A return value of 0 means not
found, a return value of 1 means found. eSearchMode is an enumerated
type with the following values:

enum eSearchMode
{

Search_pattern,
Search_notpattern

}

le.searchAndColorAllPattern

int le.searchAndColorAllPattern(int color,
unsigned int value, unsigned int mask)

This function will display all states in color color in the Listing Tool that
match value and mask. This function returns the number of states
colored.
252

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
le.searchAndColorAllRange

int le.searchAndColorAllRange(int color,
unsigned int lo, unsigned int hi)

This function will display all states in color color in the Listing Tool that
are between lo and hi, inclusive. This function returns the number of
states colored.

le.searchAndColorAllNotPattern

int le.searchAndColorAllNotPattern(int color,
unsigned int value, unsigned int mask)

This function will display all states in color color in the Listing Tool that
do not match value and mask. This function returns the number of
states colored.

le.searchAndColorAllNotRange

int le.searchAndColorAllNotRange(int color,
unsigned int lo, unsigned int hi)

This function will display all states in color color in the Listing Tool that
are not between lo and hi, inclusive. This function returns the number
of states colored.

le.searchAndHighLightAllPattern

int le.searchAndHighLightAllPattern(unsigned int value,
unsigned int mask)

This function will display all states in a highlighted mode in the Listing
Tool that match value and mask. This function returns the number of
states highlighted.
253

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
le.searchAndHighLightAllRange

int le.searchAndHighLightAllRange(unsigned int lo,
unsigned int hi)

This function will display all states in a highlighted mode in the Listing
Tool that are between lo and hi, inclusive. This function returns the
number of states highlighted.

le.searchAndHighLightAllNotPattern

int le.searchAndHighLightAllNotPattern(unsigned int
value, unsigned int mask)

This function will display all states in a highlighted mode in the Listing
Tool that do not match value and mask. This function returns the
number of states highlighted.

le.searchAndHighLightAllNotRange

int le.searchAndHighLightAllNotRange(unsigned int lo,
unsigned int hi)

This function will display all states in a highlighted mode in the Listing
Tool that are not between lo and hi, inclusive. This function returns the
number of states highlighted.

le.searchNotPattern

int le.searchNotPattern(long long& state, unsigned int
value, unsigned int mask, int n)

This function finds the nth state from the current position whose data
does not match value and mask, and sets state to the position of the
match. If n is negative, the search is in reverse. A return value of 0
means not found, a return value of 1 means found.
254

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
le.searchNotRange

int le.searchNotRange(long long& state, unsigned int lo,
unsigned int hi, int n)

This function finds the nth state from the current position whose data
is not between lo and hi, inclusive, and sets state to the position of the
match. If n is negative, the search is in reverse. A return value of 0
means not found, a return value of 1 means found.

le.searchPattern

int le.searchPattern(long long& state, unsigned int
value, unsigned int mask, int n)

This function finds the nth state from the current position whose data
matches value and mask, and sets state to the position of the match. If
n is negative, the search is in reverse. A return value of 0 means not
found, a return value of 1 means found.

le.searchRange

int le.searchRange(long long& state, unsigned int lo,
unsigned int hi, int n)

This function finds the nth state from the current position whose data
is between lo and hi, inclusive, and sets state to the position of the
match. If n is negative, the search is in reverse. A return value of 0
means not found, a return value of 1 means found.

le.setColor

int le.setColor(long long state, int color)

This functions displays the state state in color color in a downstream
Listing Tool. Returns an error code.
255

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
le.setHighlight

int le.setHighlight(long long state)

This function displays the state state in a highlighted mode in a
downstream Listing Tool. Returns an error code.

le.setName

void le.setName(String newName)

This function changes the name of the label entry to newName.

le.setPosition

int le.setPosition(long long s)

This function sets the pointer le to State number s or time s, depending
on the current bias. If the bias setting is State, then s is interpretted as
the State number value. If the bias setting is Time, then s is
interpretted as the Time value in picoseconds. Because some states
may have been filtered out, the given state s may not exist. In this case,
the position will be set to the previous existing state. If no previous
state exists, then the position will be set before the first state. Returns
an error code.

le.setStateBias

int le.setStateBias()

This function sets State bias for the label entry. Bias (state or timing)
indicates the type of information the iteration functions will operate
on. The default bias is State, since Timing in-formation may not exist.
Returns an error code.

le.setTimeBias

int le.setTimeBias()

This function sets Timing bias for the label entry. Bias (state or timing)
256

Chapter 8: Tool Development Kit Reference
TDKLabelEntry Functions
indicates the type of information the iteration functions will operate
on. The default bias is State, since Timing information may not exist.
Returns an error code.
257

Chapter 8: Tool Development Kit Reference
Time Functions
Time Functions

microSec

long long microSec(double t)

This function takes argument t that represents a time in microseconds
and converts it to a long long type in picoseconds.

milliSec

long long milliSec(double t)

This function takes argument t that represents a time in milliseconds
and converts it to a long long type in picoseconds.

nanoSec

long long nanoSec(double t)

This function takes argument t that represents a time in nanoseconds
and converts it to a long long type in picoseconds.

picoSec

long long picoSec(double t)

This function takes argument t that represents a time in picoseconds
and converts it to a long long type in picoseconds.

sec

long long sec(double t)

This function takes argument t that represents a time in seconds and
converts it to a long long type in picoseconds.
258

Chapter 8: Tool Development Kit Reference
Time Functions
timeToString

String timeToString(long long t)

This function takes argument t that represents a time in picoseconds
and converts it to a string that is formatted in terms of scientific units
similar to the way time is displayed in the lister tool.
259

Chapter 8: Tool Development Kit Reference
Time Functions
260

Index
Symbols

.i, 167

.o, 167

.ptrep, 167

.sl, 167

A

access data
iterators, 59

accessing parameters, 187
analog data, 54
ascii data, 54
attach()

data set, 73
label entry, 102

auto indent, 37
automotive program tutorial, 210

B

bias setting
correlator, 138
data set, 79
label entry, 104

Buildtime window, 47

C

CD-ROM package, 16
checkForUserAbort(), 193
chunk(), 196
coloring functions, 116, 120
coloring tutorial, 130
comments, 124
compatibility, 168
Compile button, 42
compiling, 167
configuration

load, 33
save, 33

configuration file
opening, 25

constant, 91
constant sampling frequency, 91
converting time, 194
correlation, 61
correlator functions, 137
correlator tutorials, 142
correlator value functions, 141
correlator value tutorials, 142
create()

label entry, 101
createAnalogData(), 102
createIntegralData(), 102
createState(), 70
createTextData(), 102
createTimePeriodic(), 71, 91
createTimeTags(), 67, 94
creating a program, 27
creating installable tools

tutorial, 159

D

data group, 56, 62
functions, 63

data organization, 56
data set, 57, 65

creation functions, 66
declared as, 66
filtering functions, 78
iteration functions, 84
time and state functions, 79
tutorials, 90

data source, 23
data structures, 57
data type names, 57
debugger, 170
debugging

io.printf, 170
demand driven tool, 166
demux

number of samples, 65
displayDialog(), 181, 221
displayStateNumberLabel(), 78,

237
E

Edit menu, 35
editor

creating a program, 27
title area, 43

error codes, 172
error messages

printing, 187
Execute button, 42
execution, stop, 193
external editor, 38

F

File I/O
reading data from, 149
writing data to, 151

File In tool, 23
File menu, 33
filter(), 78
filterAllStates(), 78
filtering data, 97
firstPosition()

correlator, 139
data set, 82
label entry, 106

floppy disk, 154
formatBin(), 115
formatDec(), 115
formatHex(), 115
formatLine(), 115
formatOct(), 115
formatSymbol(), 115
formatTwos(), 115
freeware program

DISPLAY, 156

G

getArg(), 187
getBeginTime(), 77
getCorrelationTime()

data set, 81
getData(), 141
261

Index
getDataSetNames(), 63
getDefaultArgs(), 156, 188
getEndTime(), 77
getErrorMessage(), 187
getLabelEntryNames(), 77
getLabelNames(), 156, 187
getName()

data set, 76
label entry, 103

getNumberOfDataSets(), 63
getNumberOfLabelEntries(), 76
getNumberOfSamples(), 78
getPosition()

correlator, 139
data set, 81
label entry, 106

getRunID(), 83
getState(), 142
getTriggerRow(), 76
getUserInput(), 181
getWidth(), 103
global variables, 164

H

highlighting functions, 116, 119
highlighting tutorial, 127

I

I/O system functions, 180
icon

tool, 49
include files, 169
initialize(), 137
installable tool tutorial, 159
installable tools, 154
installing Tool Development Kit

checking, 14
installing, 16
licensing, 18

int_to_str(), 197
integral data, 53
interactive input, 181
262
interactive input tutorial, 183
interrupting run, 193
is_empty(), 196
isAnalogData(), 104
isAttached()

label entry, 103
isChanged(), 141
isHeld(), 141
isIntegralData(), 104
isStateCorrelatable(), 63
isTextData(), 104
isTimeCorrelatable(), 63
isValid(), 141
iteration functions, 84
iterators, 59

L

label entry, 101
creation functions, 101
format functions, 115
highlighting functions, 116
iteration functions, 107
searching functions, 117
time and state functions, 104
tutorials, 121
utility functions, 103

lastPosition()
correlator, 140
data set, 82
label entry, 106

length(), 196, 198
library function, 53
Licensing, 18
list variable, 197
load a configuration, 33

M

matching patterns, 132
microSec(), 195
milliSec(), 195
modifiable time stamps, 94
multiple analyzers, 61
Mux, 201
mux program tutorial, 201
Mux tool, 161

N

nanoSec(), 194
next()

correlator, 140
data set, 84
label entry, 109

NFS, 38

O

Options menu, 37
Output window, 48

printing, 180
Overstrike, 38

P

parameters, 187
parameters tutorial, 189
parenthesis

show matching, 37
password, 18
pattern filter tool, 97
pattern-Match, 132
peekNext()

correlator, 140
data set, 86
label entry, 111

peekPrev()
correlator, 140
data set, 87
label entry, 112

picoSec(), 194
pixmap, 156
pointers, 84, 107
prev()

correlator, 140
data set, 85
label entry, 110

print(), 180

Index
printError(), 187
printf(), 180
printing, 34

debugging, 170
formatted output, 180
from within functions, 181

program
creating, 27

program file
opening, 25

programming
good practices, 173

programming languages, 28
programming model, 163
put(), 197

R

reference parameter, 164
references, 164
removeDataSet(), 64
removeLabelEntry(), 76
removing tools, 157
replaceNext()

data set, 88
label entry, 113

replacePrev()
data set, 89
label entry, 114

reset()
correlator, 139
data set, 81
label entry, 108

resetAtEnd()
correlator, 139
data set, 81
label entry, 108

Run/Stop buttons, 41
Runtime window, 47

S

sampling period, 91
save a configuration, 33
search dialogs, 39
search(), 118
searchAndColorAllNotPattern(),

121
searchAndColorAllNotRange(),

120
searchAndColorAllPattern(), 120
searchAndColorAllRange(), 120
searchAndHighLightAllNotPattern

(), 119
searchAndHighLightAllNotRange(

), 119
searchAndHighLightAllPattern(),

119
searchAndHighLightAllRange(),

119
searching for data

patterns and ranges, 132
searching routines, 117
searchNotPattern(), 118
searchNotRange(), 117
searchPattern(), 117
searchRange(), 117
sec(), 195
setColor(), 116
setHighlight(), 116, 128
setName()

label entry, 103
setPosition()

correlator, 139
data set, 82
label entry, 105

setStateBias()
correlator, 138
data set, 80
label entry, 105

setStateCrossCorrelation(), 64
setTimeBias()

correlator, 138
data set, 80
label entry, 105

setTimeCrossCorrelation(), 63, 95
show matching parenthesis, 37
shrink(), 197
side effects, 172
single-file compilation, 169
Source Code tab

editing area, 43
source file

inserting, 33
new, 33
opening, 33
saving, 34

state information
data set, 79
label entry, 104

state numbers, 79
status line, 41, 46
stop execution, 193
stop(), 193
string searching, 118
string variable, 196
support web page, 20

T

technical support, 20
temporary files, 167
text comments, 124
text data, 54
time correlation, 144
time information

data set, 79
label entry, 104

time stamps, 79
modifying, 94

time units
converting, 194
functions, 194

timeToString(), 195
tool

name, 49
Tool Info tab, 49
Tool Name, 155
tools

config files, 158
263

Index
removing, 157
versions, 158

tutorial
automotive program, 210
coloring, 130
filtering data, 97
highlighting, 127
installable tool, 159
interactive input, 183
mux program, 201
new data set, 91, 94
new text label, 124
numeric data label, 121
pattern-match search, 132
using parameters, 189

types of data
analog, 54
integral, 53
text, 54

U

unfilter(), 79
user input, 181
utility data types, 196
utility functions

data set, 76
label entry, 103

V

variable name
attaching to a data set, 28

version, 154, 155
View datagroup, 37
View menu, 35

W

Window menu, 35
window shortcut button, 41
workspace

setting up, 23
writing code, 164
264
X

Xwindows, 156

© Copyright Agilent Technologies
1994-2002
All Rights Reserved.

Reproduction, adaptation, or
translation without prior written
permission is prohibited, except
as allowed under the copyright
laws.

Restricted Rights Legend

Use, duplication, or disclosure by
the U.S. Government is subject to
restrictions set forth in
subparagraph (C) (1) (ii) of the
Rights in Technical Data and
Computer Software Clause in
DFARS 252.227-7013. Agilent
Technologies, 3000 Hanover
Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S.
Government Departments and
Agencies are set forth in FAR
52.227-19 (c) (1,2).

Document Warranty

The information contained in this
document is subject to change
without notice.

Agilent Technologies makes

no warranty of any kind with

regard to this material,

including, but not limited to,

the implied warranties of

merchantability or fitness for

a particular purpose.

Agilent Technologies shall not be
liable for errors contained herein
or for damages in connection with
the furnishing, performance, or
use of this material.
Agilent Technologies
P.O. Box 2197
1900 Garden of the Gods Ro
Colorado Springs, CO 80901
Safety

This apparatus has been designed
and tested in accordance with
IEC Publication 1010, Safety
Requirements for Measuring
Apparatus, and has been supplied
in a safe condition. This is a
Safety Class I instrument
(provided with terminal for
protective earthing). Before
applying power, verify that the
correct safety precautions are
taken (see the following
warnings). In addition, note the
external markings on the
instrument that are described
under "Safety Symbols."

Warning

• Before turning on the
instrument, you must connect the
protective earth terminal of the
instrument to the protective
conductor of the (mains) power
cord. The mains plug shall only be
inserted in a socket outlet
provided with a protective earth
contact. You must not negate the
protective action by using an
extension cord (power cable)
without a protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient protection.

• Only fuses with the required
rated current, voltage, and
specified type (normal blow, time
delay, etc.) should be used. Do
not use repaired fuses or short-
circuited fuseholders. To do so
could cause a shock of fire hazard.
ad
-2197, U.S.A.
• Service instructions are for
trained service personnel. To
avoid dangerous electric shock,
do not perform any service unless
qualified to do so. Do not attempt
internal service or adjustment
unless another person, capable of
rendering first aid and
resuscitation, is present.

• If you energize this instrument
by an auto transformer (for
voltage reduction), make sure the
common terminal is connected to
the earth terminal of the power
source.

• Whenever it is likely that the
ground protection is impaired,
you must make the instrument
inoperative and secure it against
any unintended operation.

• Do not operate the instrument
in the presence of flammable
gasses or fumes. Operation of any
electrical instrument in such an
environment constitutes a definite
safety hazard.

• Do not install substitute parts or
perform any unauthorized
modification to the instrument.

• Capacitors inside the
instrument may retain a charge
even if the instrument is
disconnected from its source of
supply.
Safety Symbols

Instruction manual symbol: the
product is marked with this
symbol when it is necessary for
you to refer to the instruction
manual in order to protect against
damage to the product.

Hazardous voltage symbol.

Earth terminal symbol: Used to
indicate a circuit common
connected to grounded chassis.

WARNING

The Warning sign denotes a
hazard. It calls attention to a
procedure, practice, or the like,
which, if not correctly performed
or adhered to, could result in
personal injury. Do not proceed
beyond a Warning sign until the
indicated conditions are fully
understood and met.

CAUTION

The Caution sign denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like, which, if not correctly
performed or adhered to, could
result in damage to or destruction
of part or all of the product. Do
not proceed beyond a Caution
symbol until the indicated
conditions are fully understood or
met.

!

Product Warranty

This Agilent Technologies
product has a warranty against
defects in material and
workmanship for a period of one
year from date of shipment.
During the warranty period,
Agilent Technologies will, at its
option, either repair or replace
products that prove to be
defective.

For warranty service or repair,
this product must be returned to
a service facility designated by
Agilent Technologies.

For products returned to Agilent
Technologies for warranty
service, the Buyer shall prepay
shipping charges to Agilent
Technologies and Agilent
Technologies shall pay shipping
charges to return the product to
the Buyer. However, the Buyer
shall pay all shipping charges,
duties, and taxes for products
returned to Agilent Technologies
from another country.

Agilent Technologies warrants
that its software and firmware
designated by Agilent
Technologies for use with an
instrument will execute its
programming instructions when
properly installed on that
instrument. Agilent Technologies
does not warrant that the
operation of the instrument
software, or firmware will be
uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not
apply to defects resulting from
improper or inadequate
maintenance by the Buyer,
Buyer- supplied software or
interfacing, unauthorized
modification or misuse, operation
outside of the environmental
specifications for the product, or
improper site preparation or
maintenance.
No other warranty is

expressed or implied. Agilent

Technologies specifically

disclaims the implied

warranties of merchantability

or fitness for a particular

purpose.

Exclusive Remedies

The remedies provided herein are
the buyer's sole and exclusive
remedies. Agilent Technologies
shall not be liable for any direct,
indirect, special, incidental, or
consequential damages, whether
based on contract, tort, or any
other legal theory.

Assistance

Product maintenance agreements
and other customer assistance
agreements are available for
Agilent Technologies products.
For any assistance, contact your
nearest Agilent Technologies
Sales Office.

Certification

Agilent Technologies certifies that
this product met its published
specifications at the time of
shipment from the factory.
Agilent Technologies further
certifies that its calibration
measurements are traceable to
the United States National
Institute of Standards and
Technology, to the extent allowed
by the Institute's calibration
facility, and to the calibration
facilities of other International
Standards Organization members.
About this edition

This is the Tool Development

Kit User’s Guide.

Publication number
B4605-97006, October 2002
Printed in USA.

Many product updates do not
require manual changes, and
manual corrections may be done
without accompanying product
changes. Therefore, do not expect
a one-to-one correspondence
between product updates and
manual updates.
Reflection 1 is a U.S. trademark of
Walker, Richer & Quinn, Inc.

UNIX is a registered trademark of
The Open Group.

Windows, MS Windows, Windows
NT, and MS-DOS are U.S.
registered trademarks of
Microsoft Corporation.

X/Open is a registered trademark,
and the X device is a trademark of
X/Open Company Ltd. in the UK
and other countries.

	Tool Development Kit at a Glance
	Contents
	Getting Started
	Verifying Tool Development Kit Installation
	Installing the Tool Development Kit
	Licensing the Tool Development Kit
	Response Center Support

	Welcome to Tool Development Kit
	Tool Development Kit Overview
	Setting Up the Workspace
	Opening a Configuration, the Tool Development Kit Tool and a Program File
	Creating Your Tool Development Kit Program - The Basics

	Tool Development Kit Interface
	Menu Bar
	File
	Load Configuration.
	Save Configuration.
	New Source File.
	Open Source File.
	Insert Source File.
	Reload Source File.
	Save Source File.
	Save Source File as.
	Create Installable Tool...
	Print options.
	Print this window.
	Close.

	Window
	Edit
	Undo.
	Redo.
	Cut.
	Copy.
	Paste.

	View
	View Parameters.
	View datagroup.

	Options
	Auto indent [ON/off].
	Show matching [on/OFF].
	Tabs.
	Overstrike [on/OFF].
	Use external editor [on/OFF].

	Search
	Find.
	Find next.
	Replace.
	Replace next.
	Goto line.

	Tool Bar
	Run/Stop Buttons
	Window Shortcut Buttons
	Status Line

	Compile and Execute Buttons
	Compile Button
	Execute Button

	Source Code Tab
	Title area
	Editing area
	Mouse
	Keyboard

	Status

	Messages Tab
	Buildtime
	Runtime
	Output

	Tool Info Tab

	Tool Development Kit Concepts
	Types of Data
	Integral Data
	Analog Data
	Text Data

	Data Organization
	Data groups
	Data sets
	Label entries
	Accessing the Data
	Using Iterators to Access the Data
	Understanding Correlation

	Working with TDKDataGroups
	TDKDataGroup Functions
	dg.getNumberOfDataSets
	dg.getDataSetNames
	dg.isTimeCorrelatable
	dg.isStateCorrelatable
	dg.setTimeCrossCorrelation
	dg.setStateCrossCorrelation
	dg.removeDataSet

	Working with TDKDataSets
	TDKDataSet Creation Functions
	ds.createTimeTags
	ds.createState
	ds.createTimePeriodic
	ds.attach
	ds.isAttached

	TDKDataSet Utility Functions
	ds.removeLabelEntry
	ds.getNumberOfLabelEntries
	ds.getName
	ds.getTriggerRow
	ds.getBeginTime
	ds.getEndTime
	ds.getLabelEntryNames
	ds.getNumberOfSamples

	TDKDataSet Filtering Functions
	ds.displayStateNumberLabel
	ds.filterAllStates
	ds.filter
	ds.unfilter

	TDKDataSet Time and State Functions
	Bias Setting
	ds.setTimeBias
	ds.setStateBias
	ds.reset
	ds.resetAtEnd
	ds.getCorrelationTime
	ds.getCorrelationState
	ds.getPosition
	ds.firstPosition
	ds.lastPosition
	ds.setPosition
	ds.getRunID

	TDKDataSet Iteration Functions
	ds.next
	ds.prev
	ds.peekNext
	ds.peekPrev
	ds.replaceNext
	ds.replacePrev

	TDKDataSet Tutorials
	Creating a new data set with a constant sampling frequency
	Creating a new data set with modifiable time stamps
	Filtering data within the Tool Development Kit

	Working with TDKLabelEntries
	TDKLabelEntry Creation Functions
	le.create
	le.createTextData/IntegralData/AnalogData
	le.attach

	TDKLabelEntries Utility Functions
	le.getName
	le.setName
	le.isAttached
	le.getWidth
	le.isTextData
	le.isIntegralData
	le.isAnalogData

	TDKLabelEntry Time and State Functions
	Bias Setting
	le.setTimeBias
	le.setStateBias
	le.setPosition
	le.getPosition
	le.firstPosition
	le.lastPosition

	TDKLabelEntry Iteration Functions
	le.reset
	le.resetAtEnd
	le.next
	le.prev
	le.peekNext
	le.peekPrev
	le.replaceNext
	le.replacePrev

	TDKLabelEntry Format Functions
	le.formatSymbol
	le.formatLine
	le.formatHex/Oct/Dec/Bin/Twos

	TDKLabelEntry Highlighting Functions
	le.setHighlight
	le.setColor

	TDKLabelEntry Searching Functions
	Pattern Searching
	le.searchRange
	le.searchNotRange
	le.searchPattern
	le.searchNotPattern

	String Searching
	le.search

	Highlighting
	le.searchAndHighLightAllRange
	le.searchAndHighLightAllPattern
	le.searchAndHighLightAllNotRange
	le.searchAndHighLightAllNotPattern

	Coloring
	le.searchAndColorAllRange
	le.searchAndColorAllPattern
	le.searchAndColorAllNotRange
	le.searchAndColorAllNotPattern

	TDKLabelEntry Tutorials
	Creating a New Numeric Data Label
	Creating a New Text Label
	Finding and Highlighting a Data Value
	Finding and Coloring a Data Value
	Performing a Pattern-match Search

	Working with TDKCorrelators and TDKCorrelatorValues
	TDKCorrelator Functions
	c.initialize
	Bias Setting
	c.setTimeBias
	c.setStateBias
	c.getPosition
	c.setPosition
	c.reset
	c.resetAtEnd
	c.firstPosition
	c.lastPosition
	c.next
	c.peekNext
	c.prev
	c.peekPrev

	TDKCorrelatorValue Functions
	cv.isValid
	cv.isHeld
	cv.isChanged
	cv.getData
	cv.getState

	TDKCorrelator and TDKCorrelatorValue Tutorials
	Time Correlated Data Access

	TDK Miscellaneous Tasks
	File I/O: Reading Data from a File on the Disk
	File I/O: Writing to a File on the Disk

	Creating Installable Tools
	Removing Tools
	Tool Versions and Config Files
	Creating an Installable Tool Tutorial

	Tool Development Kit Programming Model
	Demand Driven Tool
	Compiling Code
	Compatibility
	Include Files
	Debugging
	A Note About the Functions
	Tool Development Kit Good Programming Practices and Helpful Hints
	Troubleshooting

	Tool Development Kit System Utilities
	I/O System
	Formatted output
	io.printf
	io.print

	Printing from within functions other than "execute"
	io.displayDialog

	Interactive Input
	io.getUserInput

	Using Interactive Input
	Error Messages
	io.getErrorMessage
	io.printError

	Parameters
	io.getArg
	getDefaultArgs

	Using Parameters
	Interrupting the Run
	io.checkForUserAbort
	io.stop

	Time Convenience Functions
	Time Units
	picoSec
	nanoSec
	microSec
	milliSec
	sec
	timeToString

	Utility Data Types
	String Type
	s.chunk
	s.length
	s.is_empty
	s.shrink
	int_to_str
	s1 + s2

	List Type
	List.put
	List[n]
	List.length

	Extended Examples
	Overview
	The Mux Program
	The Automotive Program

	Tool Development Kit Reference
	I/O System Functions
	getDefaultArgs
	getLabelNames
	io.checkForUserAbort
	io.checkForUserAbort
	io.displayDialog
	io.getArg
	io.getErrorMessage
	io.getUserInput
	io.getUserInput
	io.print
	io.printError
	io.printf
	io.stop

	List Functions
	myList.length
	myList[n]
	myList.put

	String Functions
	int_to_str
	s.chunk
	s.is_empty
	s.length
	s.shrink
	s1 + s2

	TDKCorrelator Functions
	c.firstPosition
	c.getPosition
	c.initialize
	c.lastPosition
	c.next
	c.peekNext
	c.peekPrev
	c.prev
	c.reset
	c.resetAtEnd
	c.setPosition
	c.setStateBias
	c.setTimeBias

	TDKCorrelatorValue Functions
	cv.getData
	cv.getState
	cv.isChanged
	cv.isHeld
	cv.isValid

	TDKDataGroup Functions
	dg.getDataSetNames
	dg.getNumberOfDataSets
	dg.isStateCorrelatable
	dg.isTimeCorrelatable
	dg.removeDataSet
	dg.setStateCrossCorrelation
	dg.setTimeCrossCorrelation

	TDKDataSet Functions
	ds.attach
	ds.createState
	ds.createTimePeriodic
	ds.createTimeTags
	ds.createTimeTags
	ds.displayStateNumberLabel
	ds.filter
	ds.filterAllStates
	ds.firstPosition
	ds.getBeginTime
	ds.getCorrelationState
	ds.getCorrelationTime
	ds.getEndTime
	ds.getLabelEntryNames
	ds.getName
	ds.getNumberOfLabelEntries
	ds.getNumberOfSamples
	ds.getPosition
	ds.getRunID
	ds.getTriggerRow
	ds.isAttached
	ds.lastPosition
	ds.next
	ds.peekNext
	ds.peekPrev
	ds.prev
	ds.removeLabelEntry
	ds.replaceNext
	ds.replacePrev
	ds.reset
	ds.resetAtEnd
	ds.setPosition
	ds.setStateBias
	ds.setTimeBias
	ds.unfilter

	TDKLabelEntry Functions
	le.attach
	le.create
	le.createAnalogData
	le.createIntegralData
	le.createTextData
	le.firstPosition
	le.formatBin
	le.formatDec
	le.formatHex
	le.formatLine
	le.formatOct
	le.formatSymbol
	le.formatTwos
	le.getName
	le.getPosition
	le.getWidth
	le.isAnalogData
	le.isAttached
	le.isIntegralData
	le.isTextData
	le.lastPosition
	le.next
	le.peekNext
	le.peekPrev
	le.prev
	le.replaceNext
	le.replacePrev
	le.reset
	le.resetAtEnd
	le.search
	le.searchAndColorAllPattern
	le.searchAndColorAllRange
	le.searchAndColorAllNotPattern
	le.searchAndColorAllNotRange
	le.searchAndHighLightAllPattern
	le.searchAndHighLightAllRange
	le.searchAndHighLightAllNotPattern
	le.searchAndHighLightAllNotRange
	le.searchNotPattern
	le.searchNotRange
	le.searchPattern
	le.searchRange
	le.setColor
	le.setHighlight
	le.setName
	le.setPosition
	le.setStateBias
	le.setTimeBias

	Time Functions
	microSec
	milliSec
	nanoSec
	picoSec
	sec
	timeToString

	Index

