INSTALLATION MANUAL # MODEL 3325B SYNTHESIZER/FUNCTION GENERATOR Serial Number: ALL #### IMPORTANT NOTICE This manual applies to all instruments. Documentation changes required after the printing of this manual are shown on a manual change supplement which accompanies this manual. #### WARNING To prevent potential fire or shock hazard, do not expose instrument to rain or moisture. Manual Part No. 03325-90006 Microfiche Part No. 03325-90206 ©Copyright Hewlett-Packard Company 1978, 1981, 1984, 1988 8600 Soper Hill Road Everett, Washington 98205-1298 U.S.A. Printed: January 1988 #### CERTIFICATION Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and the calibration facilities of other International Standards Organization Members. #### WARRANTY This Hewlett-Packard product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective. For warranty service or repair, this product must be returned to a service facility designated by -hp-. Buyer shall prepay shipping charges to -hp- and -hp- shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to -hp- from another country. HP software and firmware products which are designated by HP for use with a hardware product, when properly installed on the hardware product, are warranted not to fail to execute their programing instructions due to defects in materials and workmanship. If HP receives notice of such defects during their warranty period, HP shall repair or replace software media and firmware which do not execute their programming instructions due to such defects. HP does not warrant that the operation of the software, firmware or hardware shall be uninterrupted or error free. #### LIMITATION OF WARRANTY The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance. NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE. #### **EXCLUSIVE REMEDIES** THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY. #### ASSISTANCE Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products. For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual. ## SAFETY SUMMARY The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements. This is a Safety Class 1 instrument. #### **GROUND THE INSTRUMENT** To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards. #### DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard. #### KEEP AWAY FROM LIVE CIRCUITS Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them. #### DO NOT SERVICE OR ADJUST ALONE Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. #### DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure the safety features are maintained. #### DANGEROUS PROCEDURE WARNINGS Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed. WARNING Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting. #### SAFETY SYMBOLS ## General Definitions of Safety Symbols Used On Equipment or In Manuals. | Δ | Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument. | |---|---| | J | Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked.) | Alternating current (power line.) Direct (power line.) Alternating or direct current (power line.) # WARNING The WARNING sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which if not correctly performed or adhered to, could result in injury or death to personnel. # **CAUTION** The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. ## **Table of Contents** | HP 3325B Installation4-1 | Close-In Spurious Signal 4-19 | |---|---| | General Installation Information 4-2 | Performance Tests 4-20 | | Initial Inspection4-2 | Required Test Equipment 4-20 | | Power Requirements 4-2 | Harmonic Distortion 4-23 | | Line Voltage Selection4-3 | Spurious Signal 4-25 | | Over-Voltage Protect Circuit Breaker 4-3 | Integrated Phase Noise 4-27 | | Power Cable and Grounding4-4 Requirements | Amplitude Modulation Envelope 4-28 Distortion | | Operating Environment | Square Wave Rise Time 4-29 and Aberrations | | Temperature | Ramp Retrace Time 4-30 | | Altitude 4-6 | Sync Output | | Instrument Cooling 4-6 | Square Wave Symmetry 4-31 | | Installation | Frequency Accuracy 4-32 | | HP-IB System Interface Connections 4-8 | Phase Increment Accuracy 4-33 | | Storage And Shipment 4-10 | Phase Modulation Linearity 4-34 | | Operational Verification4-11 | Amplitude Accuracy 4-38 | | Required Test Equipment 4-11 | DC Offset Accuracy (DC Only) 4-45 | | Self Test4-12 | DC Offset Accuracy with AC Functions 4-46 | | Sine Wave Verification4-12 | Triangle Linearity 4-47 | | Square Wave Verification 4-13 | X Drive Linearity 4-50 | | Triangle and Ramp Verification4-14 | Ramp Period Variation 4-54 | | Amplitude Flatness Check4-15 | Operational Verification Record | | Sync Output Check4-15 | Performance Test Record | | Frequency Accuracy 4-16 | Specifications (Appendix A) | | Output Level and Attenuator Check 4-16 | Index | | Harmonic Distortion 4-17 | IIIUTA | | | | ý. | | |--|--|----|---------------| The second of | ## Chapter4 ## **HP 3325B Installation** This section contains instructions for installing and interfacing the HP 3325B Synthesizer/Function Generator as well as tests to verify performance. Included are initial inspection procedures, power and grounding requirements, operating environment, available accessories and options, installation instructions, interfacing procedures, and instructions for repacking and shipping. There are two sets of tests: the first, operational verification, is a subset of the second, performance tests, an exhaustive test of the HP 3325B specifications. The operational verification is typically used as an incoming inspection tool upon initial receipt. The performance tests are used just before shipping from the factory, after any service work, and when a full calibration is performed. ## **General Installation Information** ## Initial Inspection The HP 3325B was carefully inspected both mechanically and electrically before shipment. It should be free of mars or scratches and in perfect electrical order upon receipt. To assure that this is the case, perform the following steps: • Inspect the HP 3325B for physical damage incurred in transit. If the HP 3325B was damaged in transit, file a claim with the carrier. #### Warning The integrity of the protective earth ground may be interrupted if the HP 3325B is mechanically
damaged. Under <u>no</u> circumstances should the HP 3325B be connected to power if it is damaged. • Check for supplied accessories (listed in Chapter 3 of the Operating Manual). Inspection will be completed after testing the electrical performance using the Operational Verification tests which appear later in this document. Also included in this document is the Performance Test. This is a very detailed test procedure designed to verify that the HP 3325B meets all the performance specifications. ## **Power Requirements** #### Caution Before applying ac line power to the HP 3325B, ensure the voltage selector on the HP 3325B rear panel is set for the proper line voltage and the correct line fuse is installed in the fuse holder. Procedures for changing the line voltage selector and fuse are contained in the following section for "Line Voltage Selection." The HP 3325B can operate from any single phase ac power source supplying 100V, 120V, 220V or 240V in the frequency range from 47 to 66 Hz (see table 4-1). With all options installed, power consumption is less than 100 VA. Table 4-1. Line Voltage Ranges | Selector
Voltage | AC Voltage
Range | |---------------------|---------------------| | 100 | 90-108V | | 120 | 108-126V | | 220 | 198-231V | | 240 | 216-252V | ## **Line Voltage Selection** The line voltage selector is set at the factory to correspond to the most commonly used line voltage of the country of destination. The line voltage selected for the HP 3325B is indicated on the line voltage selector (refer to figure 4-1). Refer to table 4-1 for the line voltage ranges and table 4-2 to set the line voltage and select the appropriate fuse. To change the line voltage and fuse: - 1. Remove the power cord. - 2. Pry open the power selector cover on the rear panel with a small screwdriver (see figure 4-1). - 3. To check or replace the fuse, pull the white fuse holder out of the power selector and remove the fuse from the fuse holder. - 4. To reinstall the fuse, insert a fuse with the proper rating into the fuse holder. The white arrow on the fuse holder handle should point toward the top of the instrument. Push the fuse holder into the power selector. - 5. To change the line voltage, remove the cylindrical line voltage selector. **Caution** Remove line voltage selector to change voltage. Rotating the selector without removing the cylinder could damage the module. - 6. Reinstall the cylindrical line voltage selector and ensure the required voltage label is facing out of the power selector. The cylinder is keyed so that it can not be installed backwards. - 7. Close the power selector by pushing the side catches in (toward the center of the cover) and then pressing down firmly on the cover. - 8. Check that the correct line voltage appears through the window in the power selector cover. | Line Setting | Fuse Type | HP Part Number | |--------------|------------------------------|----------------| | 100V/120V | 1A 250V Quick-Acting (F) | 2110-0732 | | 220V/240V | 500 mA 250V Quick-Acting (F) | 2110-0733 | Table 4-2. Line Voltage and Fuse Selection ## **Over-Voltage Protect Circuit Breaker** In addition to the current protection provided by the line fuse, the HP 3325B is protected by an over-voltage circuit breaker. This device disconnects the power supply from the main power connector when the line voltage exceeds the upper limit. The reset switch, located on the rear panel (figure 4-1), pops out when this occurs. If this occurs: - 1. Turn the power switch to STANDBY (b) and disconnect the power cord. - 2. Check the setting of the line-voltage selector, as described earlier in this chapter, to be sure that it matches the power connected to the HP 3325B. Figure 4-1. Line Voltage Selection, Fuse Replacement, and Circuit Breaker - 3. Reset the circuit breaker by pushing the reset switch on the rear panel. - 4. Reconnect the power cord and turn the power switch on. If the circuit breaker pops out when power is restored and the line voltage level is within the limits described in table 4-1, send the HP 3325B to a qualified service facility for repair. Warning Line voltages should be measured by a qualified service person who is aware of the hazards involved. If the circuit breaker does not open and the HP 3325B does not operate, remove power and check line fuse. ## **Power Cable and Grounding Requirements** The HP 3325B is equipped with a three-conductor power cord which, when plugged into an appropriate receptacle, grounds the HP 3325B cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. Refer to figure 4-2 for the part number of the power cable and plug configurations available. Figure 4-2. Power Cables WARNING The power cable plug must be inserted into a socket outlet provided with a protective earth terminal. Defeating the protection of the grounded instrument cabinet can subject the operator to lethal voltages. ## **Operating Environment** The following summarizes the HP 3325B operating environment ranges. In order for the HP 3325B to meet specifications, the operating environment must be within these limits. Warning The HP 3325B is not designed for outdoor use. To prevent potential fire or shock hazard, do not expose the HP 3325B to rain or other excessive moisture. #### Temperature The HP 3325B may be operated in temperatures from 0°C to 55°C. #### Humidity The HP 3325B may be operated in environments with humidity up to 95% (0°C to +40°C). However, the HP 3325B should be protected from temperatures or temperature changes which cause condensation within the instrument. #### **Altitude** The HP 3325B may be operated at altitudes up to 4572 meters (15,000 feet). ## **Instrument Cooling** The HP 3325B is equipped with a cooling fan mounted on the rear panel. The HP 3325B should be mounted so that air can freely circulate through it. When operating the HP 3325B, choose a location that provides at least 75 mm (3 inches) of clearance at the rear, and at least 25 mm (1 inch) of clearance at each side. Failure to provide adequate air clearance will result in excessive internal temperature, reducing instrument reliability. The filter for the cooling fan can be cleaned without removing it. The filter (HP part number 3150-0387) should be cleaned with a vacuum cleaner every thirty days. #### Installation The HP 3325B is shipped with plastic feet in place, ready for use as a portable bench instrument. The plastic feet are shaped to make full width modular instruments self-align when they are stacked. The clearances provided by the plastic feet in bench stacking and the filler strip in rack mounting allow air passage across the top and bottom cabinet surfaces. A front handle kit can be installed for ease of handling the HP 3325B on the bench. The part number for the front handle kit is listed in table 3-3 of the HP 3325B Operating Manual. Figure 4-3. Rack Mount and Handle Kits Option 908 (rack mount flange kit) and 909 (rack mount flange kit with handles) enable the HP 3325B to be mounted in an equipment cabinet. The rack mount for the HP 3325B is EIA standard width of 482.6 mm (19 inches). To install the HP 3325B in an equipment cabinet: - If installed, remove the plastic trim (see figure 4-3) and front handles from the HP 3325B. - Remove the plastic feet from the bottom of the HP 3325B. - Install the rack flange kit with or without handles according to instructions included with the kit. (Kit part numbers are listed in figure 3-3 of the HP 3325B Operation Manual.) #### Note The rack mount flange kit of Option 908 will not provide the space requirement for rack mounting when used with the front handle kit of Option 907. If front handles are not available, use the combination kit of Option 909 to rack mount with handles. If Option 907 front handles are available, use Rack Mount Flange Kit, HP part number 5061-2072 to add rack mounting. - Install an instrument support rail on each side of the instrument cabinet. (The instrument support rails, used to support the weight of the instrument, are included with HP instrument cabinets.) - Lift the HP 3325B to its position in the cabinet on top of the instrument support rails. - Using the appropriate screws, fasten the HP 3325B rack mount flanges to the front of the instrument cabinet. Figure 4-4. Typical HP-IB System Interconnection ## **HP-IB System Interface Connections** The HP 3325B instrument is compatible with the Hewlett-Packard Interface Bus (HP-IB). The HP-IB is Hewlett-Packard's implementation of IEEE Standard 4881978 and ANSI Standard MC 1.1. The HP 3325B is connected to the HP-IB by connecting an HP-IB interface cable to the connector located on the rear panel. Figure 4-4 illustrates a typical HP-IB system interconnection. With the HP-IB system, up to 15 HP-IB compatible instruments can be interconnected. The HP 10833 HP-IB cables have identical piggy-back connectors on each end so that several cables can be connected to a single source without special adapters or switch boxes. System components and devices can be connected in virtually any configuration. There must, of course, be a path from the controller to every device operating on the bus. As a practical matter, avoid stacking more than three or four cables on any one connector. If the stack gets too long, any force on the stack can damage the connector mounting. Be sure that each connector is firmly screwed in place to keep it from working loose during use. The HP 3325B uses all the available HP-IB lines, therefore, any damaged connector pins may adversely affect HP-IB operation. Refer to figure 4-5 for a description of the HP-IB connector. Figure 4-5. HP-IB Connector Information To achieve design performance with the HP-IB, proper voltage levels and timing relationships must be maintained. If the system cable is too long, the lines cannot be driven properly and the system will fail to perform (see figure 4-5 for HP-IB cable lengths). Therefore, when
interconnecting an HP-IB system, it is important to observe the following rule: Total cable length for the system must be less than or equal to 20 meters (65 feet) or 2 meters (6 feet) times the total number of devices connected to the bus, whichever is less. ## Storage And Shipment The HP 3325B should be stored in a clean, dry environment. The following are environmental limitations that apply to both storage and shipment: Temperature Humidity Altitude - 40°C to +75°C Up to 95% Up to 15,300 meters (50,000 feet) The HP 3325B should also be protected from temperatures or temperature changes which cause condensation within the instrument. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for service, attach a tag indicating the type of service required, return address, model number, and full serial number. Also, mark the container FRAGILE to ensure careful handling. In any correspondence, refer to the instrument by model number and full serial number. The following general instructions should be used for repacking with commercially available materials: - Wrap the instrument in heavy paper or anti-static plastic. If shipping to a Hewlett-Packard office or service center, attach a tag to the instrument indicating type of service required, return address, model number, and full serial number. - Use a strong shipping container. A double-wall carton made of 350-pound test material is adequate. - Use a layer of shock absorbing material 70 to 100 mm (3 to 4 inch) thick around all sides of the HP 3325B to provide firm cushioning and prevent movement inside of the container. Protect the control panel with cardboard. #### Caution Styrene pellets in any shape should not be used as packing material. The pellets do not adequately cushion the instrument and do not prevent the instrument from shifting in the carton. The pellets also create static electricity which can damage electronic components. - Seal shipping container securely. - Mark shipping container FRAGILE to ensure careful handling. - In any correspondence, refer to the instrument by model number and full serial number. ## **Operational Verification** The following procedures are recommended for incoming inspection and for testing the instrument after repair. Additional tests to be performed following repair of certain circuits are indicated in Section VIII of the *HP 3325B Service Manual*. An Operational Verification Record is located at the end of this section. For ease of recording the test data at various times, copies of the blank Operational Verification Record may be made without written permission from Hewlett-Packard. Operational Verification includes the following procedures: Self Test Sine Wave Verification Square Wave Verification Triangle and Ramp Verification Amplitude Flatness Check Sync Output Check Frequency Accuracy Output Level and Attenuator Check Harmonic Distortion Close-in Spurious Signal ## **Required Test Equipment** The test equipment required for Operational Verification is listed in table 4-3. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model. Table 4-3. Test Equipment Required for Operational Verification | Instrument | Critical Specifications | Recommended Model | |------------------------|---|---| | Analog
Oscilloscope | Vertical: Bandwidth: dc to 100 MHz Deflection: 0.01 to 5 V/div Horizontal: Sweep: 0.05 µs to 0.5 s/div × 10 Magnification Delayed Sweep | HP 1740A/TEK 2245 | | Electronic Counter | Frequency measurement to 20 MHz
Accuracy: ± 2 counts
Resolution: 8 digits | HP 5328A
with Opt. 010,040, and
041/5328B with Opt. 010 | | DC Digital Voltmeter | Ranges: 0.1 to 100V
Resolution: 5 1/2 digits
Accuracy: ± 0.1% | HP 3455A/3478A | Table 4-3. Test Equipment Required for Operational Verification (Cont'd) | Instrument | Critical Specifications | Recommended model | |-------------------------------------|---|-------------------------------------| | 50Ω Feedthru
Termination | Accuracy: ± 0.2%
Power Rating: 1W | HP 11048C | | High Frequency
Spectrum Analyzer | Frequency Range: 1 to 80 MHz
Amplitude Accuracy: ± 0.5 dB
Noise: >70 dB below reference | HP 141T/8552B/8553B/
8566A/8568A | | Low Frequency
Spectrum Analyzer | Frequency Range: 100 Hz to 50 kHz
Amplitude Range: 2 mV to 20V
Noise: >80 dB below input
reference or -140 dBv | HP 3580A/3585A | | Resistor | 470Ω 2W 5% | HP 0698-3634 | | Resistor | 56.2Ω 1/8W 1.0% | HP 0757-0395 | | Adapter | BNC female-to-dual banana plug | HP 1251-2277 | ## **Self Test** This test uses the control, ROM, and control clock circuits to verify operation of these and other circuits. The following front panel indications result from this test. LED check: Turns on all LEDs for about two seconds. The following messages are displayed for about one second: PASS 0 or FAIL 02n - tests Amptd Cal of dc offset. PASS 1 or FAIL 02n - tests Amptd Cal of sine wave. PASS 2 or FAIL 02n – tests Amptd Cal of square wave. PASS 3 or FAIL 02n – tests Amptd Cal of triangle wave. (n is a number from 0 to 9) Press the blue [Shift] key, then press the [Amptd Cal] key. All LEDs should light, and the display should not indicate any failures. #### Sine Wave Verification This procedure visually checks the sine wave output for the correct frequency and any visible irregularities. Equipment Required: Analog Oscilloscope a. Connect the HP 3325B signal output to the oscilloscope vertical input. Set the input switch to the 50Ω position. If your oscilloscope does not have a 50Ω input, use a 50Ω feedthru termination at the input. b. Set the HP 3325B as follows: High Voltage Output (option 002) Function Frequency Amplitude Off Sine 20 MHz 10 V_{pp} - c. Set the oscilloscope vertical control to 2 V/div, horizontal to $0.05 \,\mu s/div$. - d. The oscilloscope should display one cycle per division, approximately five divisions peak-to-peak. - e. Change the HP 3325B frequency to 1 MHz. - f. Change oscilloscope horizontal control to $0.1 \,\mu\text{s/div}$. - g. The oscilloscope should display one sine wave having no visible irregularities. #### High Voltage Output (option 002) - h. Set the oscilloscope vertical control to 5 V/div. - i. Set the oscilloscope input switch to 1 M Ω dc coupled position (or disconnect external 50 Ω feedthru termination). - j. Select the high voltage output on the HP 3325B. A LED near the key indicates that the high voltage output is on. - k. Change the amplitude to $40~V_{pp}$. The oscilloscope should display one sine wave approximately eight divisions peak-to-peak having no visible irregularities. - l. Turn off the high voltage output. ## **Square Wave Verification** This procedure checks the square wave output for frequency, rise time, and aberrations. Equipment Required: Analog Oscilloscope - a. Connect the HP 3325B signal output to the oscilloscope vertical input. Set the input switch to the 50Ω position. If your oscilloscope does not have a 50Ω input, use a 50Ω feedthru termination at the input. - b. Set the HP 3325B as follows: $\begin{array}{ll} \mbox{High Voltage Output (option 002)} & \mbox{Off} \\ \mbox{Function} & \mbox{Square} \\ \mbox{Frequency} & 1 \mbox{ MHz} \\ \mbox{Amplitude} & 10 \mbox{ V}_{pp} \end{array}$ c. Set the oscilloscope vertical control to 2 V/div, horizontal to $0.2 \,\mu\text{s/div}$. The oscilloscope should display two square waves, approximately five divisions peak-to-peak. - d. Switch the oscilloscope vertical control to 1 V/div, so that the aberrations (overshoot and ringing) can be measured. Aberration excursion should be less than 500 mV (1/2 div). - e. Repeat step d at 2 kHz and 0.1 ms/div. - f. Adjust the oscilloscope vertical and horizontal controls so that the square wave rise time between the 10% and 90% points can be measured. Rise time should be less than 20 ns. ## Triangle and Ramp Verification This procedure checks the triangle and ramp output signals for frequency, shape, and ramp retrace time. Equipment Required: Analog Oscilloscope - a. Connect the HP 3325B signal output to the oscilloscope vertical input. Set the input switch to the 50Ω position. If your oscilloscope does not have a 50Ω input, use a 50Ω feedthru termination at the input. - b. Set the HP 3325B as follows: | High Voltage Output (option 002) | Off | |----------------------------------|--------------------| | Function | Triangle | | Frequency | 10 kHz | | Amplitude | 10 V _{pp} | - c. Set the oscilloscope vertical control to 2 V/div, horizontal to 0.1 ms/div. The oscilloscope should display one triangle wave per division, approximately five divisions peak-to-peak. - d. Change the HP 3325B function to positive slope ramp. The display should be one ramp per division, approximately five divisions peak-to-peak. - e. Change the function to negative slope ramp. The display should be one ramp per division, approximately five divisions peak-to-peak. - f. Change the oscilloscope horizontal and vertical controls so that the ramp retrace time from the 90% to 10% points can be measured. Retrace time should be less than $3 \mu s$. - g. Change the HP 3325B function to positive slope ramp and repeat step f. - h. Change the function to triangle. - i. Set oscilloscope vertical control to 2 V/div, horizontal to $10~\mu s$ /div. The oscilloscope should display one triangle wave with no visible irregularities in either slope. ## **Amplitude Flatness Check** This procedure provides a visual check of
the sine wave amplitude flatness. Equipment Required: Analog Oscilloscope - a. Connect the HP 3325B signal output to the oscilloscope vertical input. Set the input switch to the 50Ω position. If your oscilloscope does not have a 50Ω input, use a 50Ω feedthru termination at the input. - b. Set the HP 3325B as follows: | High Voltage Output (option 002) | Off | |----------------------------------|--------------------| | Function | Sine | | Frequency | 2 kHz | | Amplitude | 10 V _{pp} | | Sweep Start Freq | 0 Hz | | Sweep Stop Freq | 20 MHz | | Sweep Marker Freq | 5 MHz | | Sweep Time | 0.01 sec | - c. Connect the HP 3325B X-Drive output to the oscilloscope channel B input. Connect the signal output to the oscilloscope channel A input. - *d. Set the oscilloscope as follows: | Display | A vs B | |---|-----------| | Channel A Sensitivity | 1 V/dív | | (uncal - adjust for full vertical deflection) | • | | Channel B Sensitivity | 0.5 V/div | | (uncal - adjust for full horizontal sweep) | • | ^{*}Settings may vary from one oscilloscope to another. Note that whichever oscilloscope is used, it should be operated in a X-Y mode with the HP 3325B X-Drive output driving the horizontal (X) channel and the signal output driving the vertical (Y) channel. - e. Press the HP 3325B [Start Cont] key. - f. The oscilloscope display should show a sweep that is essentially flat, dropping no more than 3.5%. Any dc variations should be ignored, taking the peak-to-peak reading for flatness comparison. ## Sync Output Check This test verifies the sync output signal levels. Equipment Required: Analog Oscilloscope - a. Connect the HP 3325B sync output to the oscilloscope vertical input. Set the input switch to the 50Ω position. If your oscilloscope does not have a 50Ω input, use a 50Ω feedthru termination at the input. - b. Set the HP 3325B function to sine, frequency to 20 MHz. - c. Adjust the oscilloscope controls to measure the high and low voltage levels of the sync square wave. The high level should be greater than +1.2V and the low level should be less than +0.2V. ## **Frequency Accuracy** This test compares the accuracy of the HP 3325B output signal to the following specification: $\pm 5 \times 10^{-6}$ of selected frequency (20°C to 30°C). Equipment Required: Electronic Counter (calibrated within three months or with an accurate 10 MHz external reference input) - a. Connect the HP 3325B signal output to the electronic counter channel A input with a 50Ω feedthru termination. Allow HP 3325B to warm up for 20 minutes and the counter to warm up for its specified period. - b. Set the HP 3325B output as follows: Function Sine Frequency 20 MHz Amplitude 0.99 V_{pp} DC Offset 0V - c. Set the counter to count the frequency of the A input with 0.1 Hz resolution, and adjust for stable triggering. Electronic counter should indicate $20\ 000\ 000.0\ Hz\ \pm 100\ Hz.$ - d. Change the HP 3325B function to square wave. Frequency automatically changes to 10 MHz. Electronic counter should indicate 10 000 000.0 Hz ±50 Hz. - e. Change the function to triangle. Frequency automatically changes to 10 kHz. Move the counter input to the sync output of the HP 3325B. Set the counter to average 1000 periods. Electronic counter should indicate 100 000.00 ns ± 0.5 ns. - f. Change the function to positive slope ramp. Electronic counter should indicate $100\ 000.00\ ns\ \pm 0.5\ ns.$ ## **Output Level and Attenuator Check** This procedure checks the output level and the attenuator by using the "dc only" function. Equipment Required: DC Digital Voltmeter 50Ω Feedthru Termination - a. Connect the HP 3325B signal output directly to a 50Ω feedthru termination and then with a cable to the voltmeter input. - b. If the instrument has high voltage output (option 002), make sure the high voltage output is off (high voltage indicator light in the lower right corner of the front panel is off). - c. Press whichever function key is presently active, indicated by a lighted indicator beside the key. This removes the ac output. The indicator beside the [DC Offset] key should light. - d. Set the HP 3325B dc offset to -5V, then press the [Amptd Cal] key. - e. The voltmeter reading should be -4.980 to -5.020 V. - f. Change the HP 3325B dc offset to +5V. Voltmeter reading should be +4.980 to +5.020 V. - g. Change the HP 3325B dc offset to the following voltages. The voltmeter reading should be within the tolerances shown. | DC Offset | Tolerances | |-----------|-------------------------| | ±1.499V | ±1.49300 to 1.50499 V | | ±499.9 mV | ±0.49790 to 0.50190 V | | ±149.9 mV | ±0.14930 t o 0.15050 V | | ±49.99 mV | ±0.04979 to 0.05019 V | | ±14.99 mV | ±0.01493 to 0.01505 V | | ±4.999 mV | ±0.004979 to 0.005019 V | | ±1.499 mV | ±0.001479 to 0.001519 V | #### High Voltage Output (option 002) DC Offset - h. Remove the 50Ω feedthru termination and connect the HP 3325B output directly to the voltmeter input. - i. Select high voltage output on the HP 3325B. A LED near the key indicates that high voltage output is on. - j. Set the HP 3325B dc offset to 20V. Voltmeter reading should be +19.775 to +20.225 V. - k. Set the HP 3325B dc offset to -20V. Voltmeter reading should be -19.775 to -20.225 V. #### Harmonic Distortion This procedure tests the harmonic distortion of the HP 3325B sine wave output to the following specifications: #### Harmonic Distortion (relative to fundamental) | Fundamental
Frequency | No Harmonic
Greater Than | |--------------------------|-----------------------------| | 0.1 Hz to 50 kHz | -65 dB | | 50 to 200 kHz | -60 dB | | 200 kHz to 2 MHz | -40 dB | | 2 to 15 MHz | -30 dB | | 15 to 20 MHz | -25 dB | Equipment Required: High Frequency Spectrum Analyzer Low Frequency Spectrum Analyzer 50Ω Feedthru Termination Resistor 470Ω 2W 5% Resistor 56.2Ω 1/8W 1% a. Set the HP 3325B output as follows: High Voltage Output (option 002) Function Frequency Amplitude Off Sine 20 MHz 999 mV_{pp} - b. Connect the HP 3325B signal output to the high frequency spectrum analyzer 50Ω input. - c. Set the spectrum analyzer controls to display the fundamental and at least four harmonics. Verify that all harmonics are 25 dB below the fundamental. - d. Set the HP 3325B to 15 MHz and verify that all harmonics are at least 30 dB below the fundamental. - e. Disconnect the HP 3325B from the high frequency spectrum analyzer and connect it to the low frequency spectrum analyzer 50Ω input. Set the HP 3325B to the following frequencies and verify the specified levels, relative to the fundamental. 2 MHz -40 dB 200 kHz -60 dB - f. Set the HP 3325B frequency to 50 kHz and the amplitude to 9.99 mV_{pp} . - g. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. (It may be necessary to decrease the video bandwidth to separate the harmonics from the noise floor.) Verify that all harmonics are at least 65 dB below the fundamental. - h. Set the HP 3325B to the following frequencies and verify that all harmonics are 65 dB below the fundamental. 10 kHz 1 kHz 100 Hz ## High Voltage Output (option 002) - i. Connect the HP 3325B signal output to the low frequency spectrum analyzer high impedance input (see figure 4-6). - j. Select the high voltage output on the HP 3325B. Set the amplitude to $40~V_{pp}$ and the frequency to 100~Hz. - k. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. Verify that all harmonics are 65 dB below the fundamental. - l. Set the HP 3325B to the following frequencies and verify that their harmonics are below the specified levels, relative to the fundamental. 10 kHz -65 dB 200 kHz -60 dB 1 MHz -40 dB m. Turn off the high voltage output. Figure 4-6. Harmonic Distortion Verification (High Voltage Output). ## Close-In Spurious Signal This procedure tests the sine wave output for spurious signals which may be generated by the HP 3325B frequency synthesis circuits. The spurious signals must be more than 70 dB lower than the fundamental signal. Equipment Required: Spectrum Analyzer a. Set the HP 3325B as follows: | High Voltage Output (option 002) | Off | |----------------------------------|------------| | Function | Sine | | Frequency | 20.001 MHz | | Amplitude | -2.99 dBm | | DC Offset | 0V | - b. Connect the HP 3325B signal output to the spectrum analyzer 50Ω input. - c. Set the spectrum analyzer controls for a center frequency of 20.001 MHz, a resolution bandwidth of 30 Hz, a frequency span of 100 Hz/div, and the fundamental referenced to the top of the display graticule. - d. Set the spectrum analyzer center frequency to 20.002, 20.003, and 20.004 MHz, verifying in each case that all spurious signals are more than 70 dB below the fundamental. ## **Performance Tests** The following procedures compare the instrument operation to its specifications listed in Appendix A. Performance Test Records are located at the end of this section. These test records lists all of the tested specifications and acceptable limits. For ease of recording data at various times, copies of the blank Performance Test Records may be made without written permission from Hewlett-Packard. The Performance Tests include the following: Harmonic Distortion Spurious Signal Integrated Phase Noise Amplitude Modulation Envelope Distortion Square Wave Rise Time and Aberrations Ramp Retrace Time Sync Output Square Wave Symmetry Frequency Accuracy Phase Increment Accuracy **Phase Modulation Linearity** **Amplitude Accuracy** DC Offset Accuracy (DC Only) DC Offset Accuracy with AC Functions Triangle Linearity X Drive Linearity Ramp Period Variation ## **Required Test Equipment** The test equipment required for the Performance Tests is listed in table 4-4. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model. Table 4-4. Test
Equipment Required for Performance Tests. | Instrument | Critical Specifications | Recommended Model | |-------------------------------------|--|--| | Analog
Oscilloscope | Vertical Bandwidth: dc to 100 MHz Deflection: 0.01 to 5 V/div Horizontal Sweep: 0.05 µs to 0.5 s/div ×10 Magnification Delayed Sweep | HP 1740A/TEK 2245 | | Sampling
Oscilloscope | Vertical Deflection: 2 mV/div Horizontal Sweep: 10 ps to 50 μs/div Transient response Aberrations: < +0.5%, -3% Vpp first 5 ns following step transition < ±1% Vpp after 5 ms | TEK 7603* with 7T11/
7S11 and S-1 | | Electronic Counter | Frequency measurement Frequency Range: to 20 MHz Resolution: 8 digits Accuracy: ± 2 counts Time Interval Average A to B Resolution: 0.01 ns | HP 5328A with
Opt. 010, 040, and
041/5328B with Opt. 010 | | AC/DC Digital
Voltmeter | AC Function (True RMS) Ranges: 1 to 100 V Accuracy: ± 0.2% Resolution: 5 1/2 digits Crest Factor: 4:1 DC Functions Ranges: 0.1 to 100 V Accuracy: ± 0.05% Resolution: 5 1/2 digits | HP 3455A\3478A | | 50Ω Feedthru
Termination | Accuracy: ± 0.2%
Power Rating: 1W | HP 11048C | | High Frequency
Spectrum Analyzer | Frequency Range: 1 kHz to 80 MHz
Amplitude Accuracy: ± 0.5 dB
Noise: > 70 dB below reference | HP 141T/8552B/8553B/
8566A/8568A | | Low Frequency
Spectrum Analyzer | Frequency Range: 20 Hz to 50 kHz
Amplitude Accuracy: ± 0.5 dB
Spurious Responses: 80 dB
below reference | HP 3580A/3585A | ^(*) This equipment is only necessary to perform the Square Wave Rise Time and Aberrations test. Table 4-4. Test Equipment Required for Performance Tests. (Cont'd) | Instrument | Critical Specifications | Recommended Model | |----------------------------|--|--| | Frequency Synthesizer | Frequency Range: 100 kHz to 21 MHz Amplitude Range: to +13.01 dBm Output Impedance: 50Ω Phase Noise (Integrated): 9.9 MHz: < - 63 dB 20 MHz: < - 70 dB Spurious: > 75 dB below fundamental | HP 3335A | | Double Balanced Mixer | Impedance: 50Ω
Frequency Range: 1 – 20 MHz | HP 10534A | | 1 MHz Low Pass Filter | Cut-off Frequency: 1 MHz
Stopband Atten: 50 dB by 4 MHz
Stopband Freq: 4 – 80 MHz | Model J903
TTE Inc.
2214 S. Benny Ave.
Los Angeles, CA 90064 | | 15 kHz Filter | Consisting of:
Resistor: 10 kΩ 1%
Capacitor: 1600 pF 5% | HP 0757-0340
HP 0160-2223 | | AC Voltmeter | Ranges: 0.1 to 1 V Frequency Range: 20 Hz − 1 MHz Input Impedance: ≥1 MΩ Meter: Log scale Acc (100 Hz to 10 kHz): ±1% | HP 400FL/3400A | | Sine Wave Signal
Source | Frequency: 10 kHz
Amplitude: 1 Vrms into 20 kΩ
Distortion: —60 dB | HP 204C/3325/3336 | | DC Power Supply | Volts: 0 to ±5 V
Amps: 10 mA
Floating Output | HP 6214A/6214B | | Thermal Converter | Input Impedance: 50Ω Input Voltage: 1 Vrms Frequency: 2 kHz to 20 MHz Frequency Response: ±0.05 dB 2 kHz to 20 MHz | HP 11050A/Ballantine
Model 1395A-1 with
cable 12577A Opt. 10
Ballantine Labs, Inc.
P. O. Box 97
Boonton, NJ 07005 | | Resistive Divider | Consisting of:
2 Resistors: 61.11Ω 0.1% 1/4W
2 Resistors: 36.55Ω 0.1% 1/8W | HP 0699-0090
HP 0698-7169 | | Resistive Divider | Consisting of:
Capacitor: 300 pF 5%
3 Resistors: 1330Ω 0.1% 1/4W
Resistor: 43Ω 0.1% 1/8W | HP 0160-2207
HP 0698-7453
HP 0698-8264 | Table 4-4. Test Equipment Required for Performance Tests. (Cont'd) | Instrument | Critical Specifications | Recommended Model | |------------------------------------|--|------------------------------| | High-Speed DC
Digital Voltmeter | DC Voltage: 0 to ±10 V
External Trigger: Low True
TTL Edge Trigger
Trigger Delay: Selectable 10 to 140 μs | HP 3437A | | BNC-to-Triax Adapter | Female BNC to Male Triax | HP 1250-0595 | | Resistive Divider
+ 2.5 | Consisting of:
Resistor: 30Ω 1% 1/4W
Resistor: 20Ω 1% 1/4W | HP 0698-7533
HP 0698-6296 | | Resistive Divider
÷ 2.6 | Consisting of: Resistor: 100 k Ω 1% 1/8W Resistor: 162 k Ω 1% 1/8W | HP 0757-0465
HP 0757-0470 | | Resistor | 470Ω 2W 5% | HP 0698-3634 | | Resistor | 56.2Ω 1/8W 1.0% | HP 0757-0395 | | Adapter | BNC female to dual banana plug
BNC Tee | HP 1251-2277
HP 1250-0781 | | Step Attenuator | 0 – 12 dB; 1 dB steps
0 – 40 dB | HP 355C
HP 355D* | ^(*) This equipment is only necessary to perform the Square Wave Rise Time and Aberrations test. ## **Harmonic Distortion** This procedure tests the harmonic distortion of the HP 3325B sine wave output to the following specifications: #### Harmonic Distortion (relative to fundamental) | Fundamental
Frequency | No Harmonic
Greater Than | |--------------------------|-----------------------------| | 0.1 Hz to 50 kHz | -65 dB | | 50 to 200 kHz | −60 dB | | 200 kHz to 2 MHz | -40 dB | | 2 to 15 MHz | -30 dB | | 15 to 20 MHz | -25 dB | Equipment Required: High Frequency Spectrum Analyzer Low Frequency Spectrum Analyzer 50Ω Feedthru Termination Resistor 470Ω 2W 5% Resistor 56.2Ω 1/8W 1% a. Set the HP 3325B output as follows: High Voltage Output (option 002) Function Frequency Amplitude Off Sine 20 MHz 999 mV_{pp} - b. Connect the signal output to the high frequency spectrum analyzer 50Ω input. - c. Set the spectrum analyzer controls to display the fundamental and at least four harmonics. Verify that all harmonics are 25 dB below the fundamental. - d. Set the HP 3325B to 15 MHz and verify that all harmonics are at least 30 dB below the fundamental. - e. Disconnect the HP 3325B from the high frequency spectrum analyzer and connect it to the low frequency spectrum analyzer 50Ω input. Set the HP 3325B to the following frequencies and verify the specified levels, relative to the fundamental. 2 MHz --40 dB 200 kHz --60 dB - f. Set the HP 3325B frequency to 50 kHz and the amplitude to 9.99 mV_{pp} . - g. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. (It may be necessary to decrease the video bandwidth to separate the harmonics from the noise floor.) Verify that all harmonics are at least 65 dB below the fundamental. - h. Set the HP 3325B to the following frequencies and verify that all harmonics are 65 dB below the fundamental. 10 kHz 1 kHz 100 Hz #### High Voltage Output (option 002) - i. Connect the HP 3325B signal output to the low frequency spectrum analyzer high impedance input (see figure 4-6). - j. Select the high voltage output on the HP 3325B. Set the amplitude to $40~V_{\rm pp}$ and the frequency to 100~Hz. - k. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. Verify that all harmonics are 65 dB below the fundamental. - 1. Set the HP 3325B to the following frequencies and verify that their harmonics are below the specified level, relative to the fundamental. 10 kHz -65 dB 200 kHz -60 dB 1 MHz -40 dB m. Turn off the high voltage output. ## **Spurious Signal** This procedure tests the HP 3325B sine wave output for spurious signals. Circuits within the HP 3325B may generate repetitive frequencies that are not harmonically related to the fundamental output frequency. All spurious signals must be more than 70 dB below the fundamental signal or less than -90 dBm, whichever is greater. Equipment Required: Spectrum Analyzer #### **Mixer Spurious** - a. Connect the HP 3325B signal output to the spectrum analyzer 50Ω (RF) input and the HP 3325B EXT REF input to the analyzer 10 MHz reference output (see figure 4-7). - b. Set the HP 3325B as follows: | Function | Sine | |-----------|-----------| | Amplitude | −20 dBm | | Frequency | 2.001 MHz | c. Set the analyzer controls as follows: | Center Frequency | 2.001 MHz | |------------------|-----------| | Frequency Span | 1 kHz | | Video BW | 100 Hz | | Resolution BW | 30 Hz | - d. Adjust the spectrum analyzer to reference the fundamental to the top display graticule. - e. Without changing the reference level, change the spectrum analyzer center frequency to 27.999 MHz to display the 2:1 mixer spur. Verify that this spur is at least 70 dB below the fundamental. - f. Change the spectrum analyzer center frequency to 25.998 MHz to display the 3:2 mixer spur. Verify that this spur is at least 70 dB below the fundamental. - g. In a similar manner, change the HP 3325B frequency and the spectrum analyzer center frequency to the following frequencies. For each setting, verify that all spurious signals are 70 dB below the fundamental. | HP 3325B | HP 3325B Spectrum Center Fr | | Analyzer
equency | | |------------|-----------------------------|----------|---------------------|--| | | 2:1 Spur | 3:2 Spur | | | | 4.100 MHz | 25.9 MHz | 21.8 MHz | | | | 6.100 MHz | 23.9 MHz | 17.8 MHz | | | | 8.100 MHz | 21.9 MHz | 13.8 MHz | | | | 10.100 MHz | 19.9 MHz | 9.8 MHz | | | | 12.100 MHz | 17.9 MHz | 5.8 MHz | | | | 14.100 MHz | 15.9 MHz | 1.8 MHz | | | | 16.100 MHz | 13.9 MHz | 2.2 MHz | | | | 18.100 MHz | 11.9 MHz | 6.2 MHz | | | | 20.100 MHz | 9.9 MHz | 10.2 MHz | | | Figure 4-7. Mixer Spurious. ## Close-in Spurious (Fractional N Spurs) - h. Set the HP 3325B frequency to 5.001 MHz and the amplitude to -2.99 dBm. - i. Set the spectrum analyzer controls as follows: | 5.001 MHz | |-----------| | 1 kHz | | 100 Hz | | 30 Hz | | | - j. Adjust the spectrum analyzer to reference the fundamental to the top display graticule. - k. Without changing the
reference level, change the spectrum analyzer center frequency to 5.002 MHz to display the API 1 spur. It may be necessary to decrease the video bandwidth to optimize the display resolution. - l. All spurious (non-harmonic) signals should be at least 70 dB below the fundamental. - m. Without changing the reference level, set the HP 3325B frequency and the spectrum analyzer center frequency to the frequencies listed below. For each setting, verify that all spurious signals are at least 70 dB below the fundamental. | HP 3325B | Spectrum Analyzer
Center Frequency | |--------------|---------------------------------------| | 5.0001 MHz | 5.0011 MHz | | 5,00001 MHz | 5.00101 MHz | | 5.000001 MHz | 5.001001 MHz | | 20.001 MHz | 20.002 MHz | | 20.001 MHz | 20.003 MHz | | 20.001 MHz | 20.004 MHz | | 20.001 MHz | 20.005 MHz | ## **Integrated Phase Noise** This test compares the HP 3325B integrated phase noise to the following specification: -60 dB for a 30 kHz band centered on a 20 MHz carrier (excluding ± 1 Hz about the carrier). Equipment Required: Frequency Synthesizer Double Balanced Mixer 50Ω Feedthru Termination AC/DC Digital Voltmeter **AC Voltmeter** 15 kHz noise equivalent filter consisting of: Resistor: $10 \text{ k}\Omega \pm 1\%$ Capacitor: 1600 pF ± 5% (see figure 4-8) 1 MHz Low Pass Filter - a. Connect the equipment as shown in figure 4-8, connecting the 15 kHz noise equivalent filter output to the ac voltmeter. Phase lock the HP 3325B and the signal generator together. - b. Set the HP 3325B as follows: Function Frequency Amplitude Sine 19.901 MHz 0 dBm c. Set the synthesizer (reference) as follows: Frequency Amplitude 19.9 MHz +7.00 dBm - d. Record the ac voltmeter reading (dB scale). - e. Change the HP 3325B frequency to 19.9 MHz. - f. Connect the 15 kHz filter output to the digital voltmeter. - g. Press the HP 3325B [Phase] key. Using the modify keys, adjust the output phase for a minimum reading on the digital voltmeter. - h. Disconnect the 15 kHz filter output from the digital voltmeter and connect it to the ac voltmeter. - i. Record the ac voltmeter reading (dB scale) and subtract it from the reading recorded in step d. The difference should be -54 dB or greater. Add -6 dB to this number and enter on the Performance Test Record. The 6 dB is a correction factor compensating for the folding action of the mixer. NOTE Frequencies used minimize the phase noise contribution of the frequency synthesizer. Figure 4-8. Integrated Phase Noise. ## **Amplitude Modulation Envelope Distortion** This procedure tests the HP 3325B amplitude modulation envelope distortion to the following specification: -30 dB to 80% modulation at 1 kHz, 0V dc offset Equipment Required: Sine Wave Signal Source Spectrum Analyzer - a. Connect the equipment as shown in figure 4-9. - b. Set the HP 3325B output as follows: | Function | Sine | |----------------------------------|-------------------| | Frequency | 1 MHz | | Amplitude | 3 V _{pp} | | DC Offset | ٥٧ · · | | High Voltage Output (option 002) | Off | | AM | On | Figure 4-9. AM Envelope Distortion. - c. Set the modulating signal source frequency to 1 kHz and adjust the level to produce 80% modulation of the HP 3325B output. This is indicated by modulation sidebands being 8.0 dB down from the carrier, as viewed on the 2 dB/div display of the spectrum analyzer. - d. Adjust the spectrum analyzer to display the fundamental frequency, the 1 kHz sideband frequency, and at least 4 harmonics of the sidebands. All harmonics should be at least 30 dB lower than the modulation sidebands. ## **Square Wave Rise Time and Aberrations** This procedure compares the HP 3325B square wave output to its rise/fall time and overshoot specifications. Rise and Fall Time: ≤20 ns, 10% to 90% at full output Overshoot: ≤5% of peak-to-peak amplitude at full output Equipment Required: Sampling Oscilloscope 40 dB Attenuator - a. Connect the HP 3325B signal output to the attenuator input and the attenuator output to the oscilloscope input. Set the attenuator for 40 dB attenuation. - b. Set the HP 3325B as follows: | High Voltage Output (option 002) | Off | |----------------------------------|--------------------| | Function | Square | | Frequency | 1 MHz | | Amplitude | 10 V _{pp} | - c. Adjust the oscilloscope vertical and horizontal controls so that the square wave rise time between the 10% and 90% points can be measured. Rise time should be less than 20 ns. - d. Adjust the oscilloscope vertical and horizontal controls so that the square wave fall time between the 10% and 90% points can be measured. Fall time should be less than 20 ns. - e. Adjust the oscilloscope vertical and horizontal controls so that the square wave overshoot can be measured. Overshoot should be less than 500 mV at positive and negative peaks. ## **Ramp Retrace Time** This test compares the HP 3325B retrace time of the positive and negative slope ramps to the following specification: ≤3 µs 90% to 10% Equipment Required: Analog Oscilloscope - a. Connect the HP 3325B signal output to the oscilloscope vertical input. Set the input switch to the 50Ω position. If your oscilloscope does not have a 50Ω input, use a 50Ω feedthru termination at the input. - b. Set the HP 3325B as follows: High Voltage Output (option 002) Function Frequency Amplitude Off Positive Slope Ramp 10 kHz 10 Vpp - c. Adjust the oscilloscope vertical and horizontal controls so that the ramp retrace time from the 90% to 10% points can be measured. Retrace time should be less than $3\,\mu s$. - d. Change function to negative slope ramp and repeat step c. ## Sync Output This procedure checks the voltage levels of the square wave on the HP 3325B front and rear panel sync outputs to the following specifications: $$V_{high} > +1.2V$$; $V_{low} < +0.2V$ into 50Ω Equipment Required: Analog Oscilloscope - a. Connect the HP 3325B front sync output to the oscilloscope vertical input. Set the input switch to the 50Ω position. If your oscilloscope does not have a 50Ω input, use a 50Ω feedthru termination at the input. - b. Set the HP 3325B function to sine, frequency to 20 MHz. Figure 4-10. Square Wave Symmetry. - c. Adjust the oscilloscope controls to measure the high and low levels of the sync square wave. The high level should be greater than +1.2V and the low level should be less than +0.2V. - d. Repeat the measurement for the rear panel FAST [™]sync output. The high level should be greater than +1.5V and the low level less than +0.5V. # **Square Wave Symmetry** This procedure checks the symmetry of the HP 3325B square wave signal output to the following specification: ≤0.02% of period +3 nanoseconds Equipment Required: Electronic Counter - a. Connect the HP 3325B signal output to both inputs of the electronic counter, using a BNC tee (see figure 4-10). - b. Set the HP 3325B output as follows: | Function | Square | |-----------|--------| | Frequency | 1 MHz | | Amplitude | 1 Vrms | | DC Offset | OV | - c. Adjust the electronic counter to measure time interval average A to B, with Slope A +, Slope B -. Note the reading. - d. Change Slope A to -, Slope B to +. Reading should be equal to the reading in step c $\pm < 3.2$ ns. FAST ™ is a trademark of Fairchild Semiconductor Corporation. Figure 4-11. Frequency Accuracy. # **Frequency Accuracy** This test compares the accuracy of the HP 3325B output signal to the following specifications: $\pm 5 \times 10^{-6}$ of selected frequency (20°C to 30°C). Equipment Required: Electronic Counter (calibrated within three months or with an accurate 10 MHz external reference input) - a. Connect the HP 3325B signal output to the electronic counter channel A input with a 50Ω feedthru termination. Allow the HP 3325B to warm up for 20 minutes and the counter's frequency reference to warm up for its specified period. - b. Set the HP 3325B output as follows: | Function | Sine | |-----------|----------------------| | Frequency | 20 MHz | | Amplitude | 0.99 V _{pp} | | DC Offset | 0V '' | - c. Set the counter to count the frequency of the A input with 0.1 Hz resolution, and adjust for stable triggering. Electronic counter should indicate 20 000 000.00 Hz ±100 Hz. - d. Change the HP 3325B function to square wave. Frequency automatically changes to 10 MHz. Electronic counter should indicate 10 000 000.0 Hz ±50 Hz. - e. Change the HP 3325B function to triangle. Frequency automatically changes to 10 kHz. Move the counter input to the sync output of the HP 3325B. Set the counter to average 1000 periods. Electronic counter should indicate $100 \ 000.00 \text{ ns} \pm 0.5 \text{ ns}$. - f. Change the HP 3325B function to positive slope ramp. Electronic counter should indicate 100 000.00 ns ± 0.5 ns. Figure 4-12. Phase Increment Accuracy. # **Phase Increment Accuracy** This test compares the HP 3325B phase increment accuracy to the following specification: ±0.2° Equipment Required: Frequency Synthesizer Electronic Counter - a. Connect the equipment as shown in figure 4-12. - b. Set the HP 3325B as follows: High Voltage Output (option 002) Function Frequency Amplitude Off Sine 100 kHz 13 dBm c. Set the synthesizer as follows: Frequency 0.1 MHz Amplitude 13 dBm d. Set the counter as follows: Function Time Interval Avg A to B Frequency Resolution, N 10^5 Inputs 50Ω , Separate Slope A and B Positive Sample Rate Maximum e. Press the HP 3325B [Phase] key to display phase. Using the modify keys, adjust the phase until the counter reads approximately 200 ns. Press the blue [Shift] key, then the [Asgn Zero Φ] key. - f. Set the counter sample rate to hold, then reset the counter. Record the counter reading (to 2 decimal places) on the Performance Test Record in the space for *Zero Phase Time Interval*. This is the phase difference (in nanoseconds) between the HP 3325B output and the reference signal. - g. Set the HP 3325B phase to -1° . - h. Reset the counter. Record the counter
reading (to 2 decimal places) in the space for 1° Increment Time Interval. - i. Determine the time difference between the counter readings in steps h and f, and record in the *Time Difference* column. The difference should be from 22.22 to 33.34 ns. - j. Set the HP 3325B phase to -10° . - k. Reset the counter. Record the counter reading in the space for 10° Increment Time Interval. - 1. Enter the time difference between the *Zero Phase Time Interval* and the reading in step k in the *Time Difference* column. This should be from 272.22 to 283.34 ns. - m. Set the HP 3325B phase to -100° . - n. Reset the counter. Record the counter reading in the space for 100° Incremental Time Interval. - o. Enter the time difference between the Zero Phase Time Interval and the reading in step n in the Time Difference column. It should be from 2722.22 to 2783.34 ns. # **Phase Modulation Linearity** This procedure compares the HP 3325B phase modulation linearity to the following specification: ±0.5%, best fit straight line Equipment Required: Frequency Synthesizer Electronic Counter DC Power Supply Digital Voltmeter a. Connect the equipment as shown in figure 4-13. Figure 4-13. Phase Modulation Linearity. b. Set the HP 3325B as follows: | High Voltage Output (option 002) | Off | |----------------------------------|---------| | Function | Sine | | Frequency | 100 kHz | | Amplitude | 13 dBm | | Phase Modulation | On | c. Set the synthesizer as follows: | Frequency | 100 kHz | |-----------|---------| | Amplitude | 13 dBm | d. Set the electronic counter as follows: | 10 ⁵ | |-----------------| | 50Ω, Separate | | Positive | | Maximum | | | - e. Using the voltmeter to monitor the dc power supply output, set the dc voltage as near -5.0000V as possible. - f. Press the HP 3325B [Phase] key to display phase. Using the modify keys, adjust the phase until the counter reads approximately 200 ns. Record the counter reading as a reference for the following steps. - g. As soon as possible after recording the counter reading, note the voltmeter reading and record on the Performance Test Record in the *DVM Reading*, x_1 space. - h. Press the HP 3325B blue [Shift] key, then the [Asgn Zero Φ] key. - i. Change the dc power supply output to -4.0000V. - j. Using the modify keys, adjust the HP 3325B phase to return the counter reading to the value recorded in step f. - k. Record the voltmeter reading in the DVM Reading, x2 space. - 1. The HP 3325B display indicates the phase change resulting from the 1V change in modulating voltage. Record the phase display in the *Phase Difference*, 2 space (positive value). - m. Press the HP 3325B blue [Shift] key, then the [Asgn Zero Φ] key. - n. Change the power supply output to the following voltages and repeat steps j through m for each. Record the DVM reading and phase differences in the appropriate spaces on the Performance Test Record. | DC
Voltage | DVM
Reading | Phase
Difference | |---------------|-----------------|---------------------| | -3.0000V | X3 | 3 | | -2.0000V | X4 | 4 | | -1.0000V | X5 | 5 | | V0000,0 | X6 | 6 | | +1.0000V | X7 | 7 | | +2.0000V | X8 | 8 | | +3.0000V | X9 | 9 | | +4.0000V | X ₁₀ | 10 | | +5.0000V | X ₁₁ | 11 | - o. Enter the cumulative phase change in the *Cumulative Phase* column. That is, enter the 2 *Phase Difference* in the y_2 space, then add the y_2 and 3 values and enter in the y_3 space. Add the y_3 and 4 values and enter in y_4 , and so on. - p. On the Performance Test Record, multiply each x value by the corresponding y value and enter in the x times y column. - q. Total the *DVM Reading* column and enter in the Σx space. Total the *Cumulative Phase* values and enter in the Σy space. Total the x times y values and enter in the Σxy space. - r. Square each x value and enter in the x^2 column. Total this column and enter in the Σx^2 space. - s. Square the $\sum x$ value and enter in the $(\sum x)^2$ space. - t. Multiply the $\sum x$ value by the $\sum y$ value and enter in the $\sum x \sum y$ space. - u. The equation for determining the best fit line specification for each y value is: $y = a_1x + a_0$ Where: a1x and a0 are constants to be calculated from data taken previously Where: x is the value of the modulating voltage, recorded as x_1 through x_{11} v. First determine the value of a₁ using the following equation: $$a_1 = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$ Where: Σx , Σy , Σxy , $\Sigma x\Sigma y$, Σx Σ^2 , and (Σx) are the previously calculated values entered on the Performance Test Record Where: n = 11 (the number of points to be calculated) w. Determine the value of ao using the equation: $$a_0 = \frac{\sum y - a_1}{n} \frac{\sum x}{n}$$ - x. Calculate each value for y using the equation: $y = a_1x + a_0$. Enter each result on the Performance Test Record in the Best Fit Straight Line Values column, (y_1) through (y_{11}) . - y. Determine the test limits for each y value by increasing and decreasing the calculated (y) values by 0.5% of the (y₁₁) value. Enter in the Maximum and Minimum columns. - z. Transfer the y₁ through y₁₁ Cumulative Phase entries to the Measured Cumulative Phase column. Each value should be within the calculated limits. # Amplitude Accuracy This procedure tests the amplitude accuracy of the HP 3325B ac function output signals to the specifications listed in Appendix A: Equipment Required: AC/DC Digital Voltmeter AC: Accuracy sufficient to verify a 1% specification to 100 kHz DC: Resolution, 1 μ V High Speed Digital DC Voltmeter At least 3 1/2 digit resolution, 1 1/2 μ s or faster settling time. 50Ω, 0-12 dB (1 dB/step) Attenuator 50Ω Feedthru Termination Thermal Converter Analog Oscilloscope Must have delayed sweep of 0.05 µs/div and delayed sweep gate output. Components: 2 Resistors 36.55Ω 0.1% 0.125W 2 Resistors 61.11Ω 0.1% 0.25W Resistor 43Ω * 0.1% 0.125W 3 Resistors 1330Ω * 0.1% 0.25W Capacitor 300 pF * 5% ## Amplitude Accuracy at Frequencies up to 100 kHz - Sine Wave Test. Connect the HP 3325B signal output through a 50Ω a. feedthru termination to the ac digital voltmeter input. - b. Set the HP 3325B as follows: High Voltage Output (option 002) Off Function Frequency Sine 100 Hz Amplitude DC Offset 3.536 Vrms (10 Vpp) 0V - Press the [Amptd Cal] key. c. - d. Read ac voltmeter. Change the HP 3325B frequency to 1 kHz and 100 kHz and repeat. Verify that all three voltmeter reading are between 3.495 and $3.577 \, \text{Vrms} (\pm 0.1 \, \text{dB}).$ - Change the HP 3325B amplitude to 1.061 Vrms (3 V_{pp}) and take ac voltage e. readings for 100 Hz, 1 kHz and 100 kHz as above. Verify that all three voltmeter readings are between 1.048 and 1.073 Vrms (± 0.1 dB). - f. Change the HP 3325B amplitude to 0.3536 Vrms and set dc offset to 1 mV. Set the HP 3325B frequency to 100 Hz, 1 kHz and 100 kHz and read ac voltage. Verify that all three readings are between 0.3411 and 0.3660 Vrms $(\pm 0.3 \text{ dB}).$ ^{*}Used only to test High Voltage (option 002) - g. Function Test. Connect the HP 3325B sync output to external trigger input of oscilloscope. Connect the HP 3325B signal output to the voltage divider of figure 4-14A. Connect the voltage divider output to oscilloscope vertical input and to high speed voltmeter input. Connect delayed sweep gate from oscilloscope to external trigger input of high speed voltmeter (see figure 4-14A). - h. Set the HP 3325B as follows: | High Voltage Output (option 002) | Off | |----------------------------------|--------------------| | DC Offset | ٥٧ | | Amplitude | 10 V _{pp} | | Frequency | 99.9 Hz | | Function | Square | | | | i. Set the oscilloscope as follows: | Display | A or B | |----------------------|-----------| | Vertical Sensitivity | 0.5 V/div | | Trigger | Ext | | Main Sweep | 1 ms/div | | Delayed Sweep | 5 μs/div | | Delay | 250 | j. Set the voltmeter as follows: | Range | 1.0V | |----------|----------| | Trigger | Ext | | Delay | 0s | | Coupling | DC, 1 MΩ | - k. One cycle of the square wave should fill the screen of the oscilloscope, and the sample time for the voltmeter should be seen as the intensified spot of the delayed sweep. - l. Press [Amptd Cal] on the HP 3325B. - m. Read positive peak voltage of attenuated waveform on voltmeter. If the reading is not stable, alternately press hold, then ext to repeat readings. Change oscilloscope delay to 750 and read negative peak. Add the two readings to obtain volts peak-to-peak. Verify that sum is between 3.661 and 3.735 V. - n. Change the HP 3325B function to triangle. Change oscilloscope to: | Vertical Sensitivity | 0.2 V/div | |----------------------|------------| | Vertical Position | 9 o'clock | | Main Sweep | 0.5 ms/div | | Delay | 500 | | Magnify | X10 | | Delayed Sweep | 1 μs/div | o. Adjust oscilloscope delay to place the intensified spot on peak of triangle and read positive peak voltage on the high speed digital voltmeter. Press negative trigger, move vertical position knob of oscilloscope to 3 o'clock and adjust intensified spot to read negative peak on the voltmeter. Verify that sum of positive and negative peak voltage is between 3.643 and 3.754 V. p. Change the HP 3325B function to positive ramp. Change oscilloscope to: Trigger Main Sweep positive 2 ms/div Place intensified spot on positive peak. Alternately press hold, then ext to repeat readings. Record the most positive reading. - q. Move vertical position knob to 3 o'clock, adjust delay and read negative peak. Ramp jitter should be visible on all ramp readings (the high speed digital voltmeter will hold the readings). Verify that sum of positive and negative peaks is between 3.643 and 3.754 V. - r. Change the HP 3325B function to negative ramp. Change oscilloscope trigger to positive and take negative ramp reading as above. - s. Change the HP 3325B function to square and frequency to 1 kHz. Set
oscilloscope as follows: Main Sweep Delayed Sweep 50 μs/div 0.05 μs/div Read positive peak; push negative trigger and read negative peak. Verify that sum is between 3.661 and 3.735 V. - t. Change the HP 3325B function to triangle and frequency to 2 kHz. Set oscilloscope main sweep to 20 μ s/div and delay to 610. Adjust delay and position. Set positive and negative trigger to read peaks. Verify voltage to be between 3.643 and 3.754 V_{pp} . - u. Change the HP 3325B function to positive ramp and frequency to 500 Hz. Set main sweep of oscilloscope to 0.2 ms/div and adjust sweep vernier to return peaks to center screen (trigger must be negative to see jitter at this point). Verify voltage to be between 3.643 and 3.754 $V_{\rm pp}$. - v. Change the HP 3325B function to negative ramp and oscilloscope trigger to positive. Verify voltage of 3.643 to 3.754 V_{pp} . - w. Change HP 3325B frequency to 100 kHz and function to square. Return oscilloscope sweep vernier to calibrate and set main sweep to $0.5~\mu s$ /div and magnify to off. Read positive and negative peak voltages in the center of the screen. By pressing positive/negative trigger, verify voltage of 3.661 to $3.735~\mathrm{V_{pp}}$. - x. Change the HP 3325B function to triangle (frequency will go to 10 kHz). Set oscilloscope main sweep to 5 μ s/div and press magnify. Verify voltage of 3.513 to 3.883 V_{pp}. - y. Change the HP 3325B function to positive ramp. Set oscilloscope main sweep to $20~\mu s/div$. Adjust delay to set end of intensified spot on highest peak. Verify voltage of 3.328 to 3.996 V_{pp} . - z. Change the HP 3325B function to negative ramp. Verify voltage of 3.328 to 3.996 V_{pp} . - aa. Change the HP 3325B amplitude to 3 V_{pp} , and remove the voltage divider from the circuit. Reconnect the HP 3325B signal output to the oscilloscope and voltmeter through the 50Ω feedthru termination. Set the HP 3325B frequency to 99.9 Hz and the function to square. - bb. Repeat tests i through z. Test limits are as follows: | Test | Frequency | Function | Minimum | Maximum | |------|-----------|----------|---------|---------| | m | 99.9 Hz | Square | 2.970V | 3.030V | | 0 | 99.9 Hz | Triangle | 2.955V | 3.045V | | q | 99.9 Hz | + Ramp | 2.955V | 3.045V | | r | 99.9 Hz | – Ramp | 2.955V | 3.045V | | s | 1 kHz | Square | 2.970V | 3.030V | | t | 2 kHz | Triangle | 2.955V | 3.045V | | u | 500 Hz | + Ramp | 2.955V | 3.045V | | V | 500 Hz | - Ramp | 2.955V | 3.045V | | w | 100 kHz | Square | 2.970V | 3.030V | | x | 10 kHz | Triangle | 2.850V | 3.150V | | У | 10 kHz | + Ramp | 2.700V | 3.300V | | Z | 10 kHz | – Ramp | 2.700V | 3.300V | - cc. Change the HP 3325B amplitude to 1 V_{pp}, and set dc offset to 1 mV. Set frequency to 99.9 Hz and function to square. Set oscilloscope vertical sensitivity to 0.05 V/div for all 1 V_{pp} tests. - dd. Repeat tests i through z. Test limits are as follows: | Tes | t Frequency | Function | Minimum | Maximum | |-----|-------------|----------|---------|---------| | m | 99.9 Hz | Square | 0.970V | 1.030V | | 0 | 99.9 Hz | Triangle | 0.960V | 1.040V | | q | 99.9 Hz | + Ramp | 0.960V | 1.040V | | r | 99.9 Hz | - Ramp | 0.960V | 1.040V | | s | 1 kHz | Square | 0.970V | 1.030V | | t | 2 kHz | Triangle | 0.960V | 1.040V | | u | 500 Hz | + Ramp | 0.960V | 1.040V | | V | 500 Hz | – Ramp | 0.960V | 1.040V | | w | 100 kHz | Square | 0.970V | 1.030V | | x | 10 kHz | Triangle | 0.940V | 1.060V | | у | 10 kHz | + Ramp | 0.890V | 1.110V | | ž | 10 kHz | – Ramp | 0.890V | 1.110V | # High Voltage Output Amplitude Accuracy for Frequencies to 100 kHz (for instruments with high voltage option 002) - ee. Sine Wave Test. Connect the HP 3325B signal output to the ac voltmeter with a 6 foot cable. Connect a 500Ω , 300 pF load (at either end) in parallel with the line. - ff. Select the high voltage output on the HP 3325B. A LED near the key indicates that the high voltage output is on. - gg. Set the HP 3325B function to sine, frequency to 2 kHz, and amplitude to 14.14 Vrms (40 V_{pp}). Press [Amptd Cal]. The ac voltmeter reading should be 13.86 to 14.42 Vrms. - hh. High Voltage Function Test. Connect the HP 3325B signal output to oscilloscope and voltage divider with a 6 foot cable. Trigger oscilloscope on HP 3325B sync output. Trigger high speed voltmeter on delayed sweep gate from oscilloscope (see figure 4-14B). - ii. The voltage divider shown in figure 4-14B is built into a small metal box with 2 BNC connectors. Parts used are: R3, 443 Ω consists of 3 parallel 1330 Ω resistors, each 0.1%, 0.25W R4, 43 Ω , 0.1%, 0.125W C1, 300 pF, 5% Connect the tap to the input of high speed voltmeter as shown in figure 4-14B. jj. Set the HP 3325B frequency to 2 kHz and amplitude to 40 V_{pp}. Set voltmeter to 1V range and external trigger. Set oscilloscope as follows: $\begin{array}{lll} \text{Vertical Sensitivity} & 2 \, \text{V/div} \\ \text{Vertical Position} & 8 \, \text{o'clock} \\ \text{Trigger} & \text{External} \\ \text{Main Sweep} & 20 \, \mu \text{s/div} \\ \text{Delayed Sweep} & 0.05 \, \mu \text{s/div} \\ \text{Delay} & 615 \\ \text{Magnify} & \times 10 \\ \end{array}$ - kk. Set the HP 3325B to square wave and read positive peak on voltmeter. Switch oscilloscope to negative trigger, vertical position to 4 o'clock, and read negative peak. Verify that voltage is between 3.466 and 3.607 Vpp. - ll. Change the HP 3325B function to triangle, and read peak voltages. Voltage should be 3.466 to 3.607 V_{pp} . - mm. Change the HP 3325B to positive ramp. Change oscilloscope main sweep to 0.1 ms/div and delay to 500. Verify voltage of 3.466 to 3.607 V_{pp} . Repeat for negative ramp by changing oscilloscope trigger to positive. ### Amplitude Flatness: (Frequencies above 100 kHz) nn. Set the HP 3325B as follows: High Voltage Output (option 002) Function Frequency Amplitude Off Sine 1 kHz 3 V_{pp} - oo. Set the 50Ω attenuator to 3 dB and connect to signal output. Connect 1 V_{rms} thermal converter to attenuator output. Connect voltmeter with microvolt resolution to thermal converter output (see figure 4-14C). - pp. Press the HP 3325B [Amptd Cal] key. Record the voltmeter reading in the 3V sine wave 1 kHz reference space on the Performance Test Record. Figure 4-14. Amplitude Accuracy and Flatness. - qq. Use the modify keys to increase the frequency in 2 MHz steps from 1 kHz to 20.001 MHz, recording the voltmeter reading at each frequency. In each case, allow the thermal converter several seconds to stabilize. - rr. Verify that all flatness readings are within $\pm 6.6\%$ of the 1 kHz reference reading. - ss. Change attenuator to 12 dB. Change the HP 3325B amplitude to $10~V_{pp}$. Repeat steps pp and qq for $10~V_{pp}$. Verify that all readings are within 6.3% of the 1~kHz reference. - tt. Disconnect the thermal converter from the HP 3325B output. - uu. Square wave flatness. Set the HP 3325B as follows: High Voltage Output (option 002) Function Frequency Amplitude Off Square 1 kHz 10 V_{pp} vv. Connect the HP 3325B signal output to an oscilloscope with a 50Ω feedthru termination. Set the oscilloscope as follows: Vertical Sensitivity 2 V/div Time/Div 0.1 ms ww. Use the modify keys to increase the HP 3325B frequency from 1 kHz to 10.001 MHz in 2 MHz steps. Two lines will appear on the oscilloscope. Verify that they remain within 1/2 major division of 5 divisions apart for all 11 frequencies. # High Voltage Output (option 002) Amplitude Flatness above 100 kHz - xx. Connect the HP 3325B output to an oscilloscope with a 500Ω , 500 pF load (load attached at either end). Cable capacitance (30 pF/foot) must be included in the 500 pF. The HV divider (figure 4-14B) may be used with 6 feet of cable. - yy. Set the oscilloscope as follows: Vertical Sensitivity 10 V/div Time/Div 1 ms - zz. Set the HP 3325B to 40 Vpp sine wave and 1 kHz. Adjust oscilloscope intensity and focus for a sharp trace. - aaa. Use the modify keys to increase the HP 3325B frequency from 1 kHz to 1.001 MHz in 200 kHz steps. Verify that the width of the bright region of the screen is 4 ± 0.4 divisions for all 11 frequencies. # DC Offset Accuracy (DC Only) This procedure tests the HP 3325B dc offset accuracy when no ac function output is present to the following specifications: ±0.4% of full range* > 20V for high voltage output (option 002) Equipment Required: DC Digital Voltmeter with 5 digit resolution, capable of measuring 50Ω Feedthru Termination - a. Connect the HP 3325B signal output directly to the 50Ω feedthru termination and then with a cable to the dc digital voltmeter input (see figure 4-15A). - b. Press whichever function key is presently active, indicated by a lighted indicator beside the key. This removes the ac output. The indicator beside the [DC Offset] key should light. - c. Set the HP 3325B dc offset to 5V, then press [Amptd Cal]. - d. The voltmeter reading should be +4.980 to +5.020 V. - e. Change the HP 3325B dc offset to -5V. Voltmeter reading should be -4.980 to -5.020 V. ### **Attenuator Test** f. Set the dc offset to the positive and negative voltages shown below. The digital voltmeter reading should be within the tolerances shown for each voltage. | DC Offset | Tolerances | | |-----------|-------------------------|--| | ±1.499V | ±1.49300 to 1.50499 V | | | ±499.9 mV | ±0.49790 to 0.50190 V | | | ±149.9 mV | ±0.14930 to 0.15050 V | | | ±49.99 mV | ±0.04979 to 0.05019 V | | | ±14.99 mV | ±0.01493 to 0.01505 V | | | ±4,999 mV | ±0.004979 to 0.005019 V | | | ±1,499 mV | ±0.001479 to 0.001519 V | | # High Voltage Output (option 002) DC Offset - g. Remove the 50Ω feedthru termination and connect the HP 3325B output directly to the voltmeter input. - h. Select the high voltage output on the HP 3325B. A LED near the key indicates that the high voltage output is on. - i. Set the HP 3325B dc offset to 20V. Voltmeter reading should be +19.775 to 20.225 V. ^{*} Except lowest attenuator range
where accuracy is $\pm 20~\mu V$ j. Set the HP 3325B dc offset to -20V. Voltmeter reading should be -19.775 to -20.225 V # DC Offset Accuracy with AC Functions This procedure compares the HP 3325B dc offset with ac functions accuracy to the following specifications: DC + AC, \leq 1 MHz: \pm 1.2%, Ramps \pm 2.4% DC + AC, > 1 MHz: ±3% Equipment Required: DC Digital Voltmeter 50Ω Feedthru Termination - a. Connect the equipment as shown in figure 4-15A. Set the voltmeter to measure dc voltage. - b. Set the HP 3325B output as follows: High Voltage Output (option 002) Off Function Sine Frequency 20.999 999 999 MHz Amplitude 1 V_{pp} DC Offset +4.5V - c. Press [Amptd Cal]. After amplitude calibration (approximately 2 seconds) the voltmeter reading should be +4.350 to +4.650 Vdc. - d. Change the dc offset to -4.5V. Voltmeter reading should be -4.350 to -4.650 Vdc. - e. Change the HP 3325B frequency to 999.9 kHz. The voltmeter reading should be -4.440 to -4.560 Vdc. - f. Change the HP 3325B dc offset to +4.5V. The voltmeter reading should be +4.440 to +4.560 Vdc. - g. Set the HP 3325B function to square. The voltmeter reading should be +4.440 to +4.560 Vdc. - h. Change the HP 3325B dc offset to -4.5V. The voltmeter reading should be -4.440 to -4.560 Vdc. - i. Change the HP 3325B frequency to 9.9999 MHz. The voltmeter reading should be -4.350 to -4.650 V. - j. Set the HP 3325B function to triangle, frequency to 9.9 kHz. The voltmeter reading should be -4.440 to -4.560 V. - k. Set the function to positive ramp. The voltmeter reading should be -4.380 to -4.620 V. # **Triangle Linearity** This procedure tests the linearity of the HP 3325B triangle wave output to the following specifications: ±0.05% of full output, 10% to 90%, best fit straight line Because the triangle and ramp outputs are generated by the same circuits, this procedure effectively tests the ramp linearity also. Equipment Required: High-Speed DC Digital Voltmeter (This procedure is written to use the high speed and delay capabilities of the HP 3437A) Resistive Divider, ÷ 2.5, consisting of: $30\Omega \pm 1\% 1/4W$ $20\Omega \pm 1\% 1/4W$ BNC-to-Triax Adapter - a. Connect the HP 3325B and the high-speed voltmeter through the divider as shown in figure 4-15B. - b. Set the HP 3325B as follows: | High Voltage Output (option 002) | Off | |----------------------------------|--------------------| | Function | Triangle | | Frequency | 10 kHz | | Amplitude | 10 V _{pp} | c. Set the voltmeter as follows: | Range | 1V | |--------------------|----------| | Number of Readings | 1 | | Trigger | External | NOTE The HP 3437A triggers on the negative going edge of the HP 3325B sync square wave. - d. Set the voltmeter delay to 0.00003 (seconds). Record the voltmeter reading on the Performance Test Record under *Positive Slope Measurement*, $(10\%) y_1$. This is the 10% point on the positive slope of the triangle (see figure 4-15C). - e. Measure the voltage at each 10% segment point by setting the voltmeter delay to the following. Enter on the Performance Test Record in the appropriate spaces under *Positive Slope Measurement*. | Delay | Percent of Slope | |----------|------------------| | 0.000035 | 20 | | 0.00004 | 30 | | 0.00045 | 40 | | 0.00005 | 50 | | 0.000055 | 60 | | 0.0006 | 70 | | 0.000065 | 80 | | 0.00007 | 90 | f. Measure the voltage at each 10% segment point on the negative slope by setting the voltmeter delay to the following. Enter the reading on the Performance Test Record in the appropriate spaces under Negative Slope Measurement. | Delay | Percent of Slope | | | |----------|------------------|--|--| | 0.00008 | 90 | | | | 0.00085 | 80 | | | | 0.0009 | 70 | | | | 0.00095 | 60 | | | | 0.0001 | 50 | | | | 0.000105 | 40 | | | | 0.00011 | 30 | | | | 0.000115 | 20 | | | | 0.00012 | 10 | | | - g. Algebraically add the voltages recorded in the *Positive Slope Measurement* column and enter the total in the Σy space. - h. Multiply Σy by 45 (which is Σx) and enter the result in the $\Sigma x \Sigma y$ space. - i. Multiply each y value by the corresponding x value and enter in the x times y column. Total these values and enter in the Σxy space. - j. The equation for determining the best fit straight line specification for each y value is: $$y = a_1x + a_0$$ Where: a1 and a0 are constants to be calculated from data taken previously. # NOTE Calculate the values of a₁ and a₀ to at least five decimal places. k. First determine the value of a₁ using the following equation: $$a_1 = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - (\sum x)^2}$$ Where: Σx , Σy , Σxy , $\Sigma x\Sigma y$, Σx Σx , and (Σx) are the previously calculated values entered on the Performance Test Record. Where: n = 9 (the number of points to be calculated) Figure 4-15. Triangle Linearity. I. Determine the value of a₀ using the equation: $$a_0 = \frac{\sum y - a_1}{n} \frac{\sum x}{n}$$ m. Calculate the best fit straight line value for each point (y₁ through y₉) using the equation: $$y = a_1x = a_0$$ Enter each result on the Performance Test Record in the Best Fit Straight Line column. n. For each delay (x), subtract the calculated voltage (y') from the measured voltage (y). Find the largest positive voltage difference ($+V_{max}$) and the largest negative difference ($-V_{max}$). Using the following formula, compute the % linearity. $$\% \text{ LINEARITY} = \frac{|+\text{Vmax}| + |-\text{Vmax}|}{8 \text{ Volts}} \times 100\%$$ - o. Algebraically add the voltages recorded in the Negative Slope Measurement column and enter the total in the Σy space. - p. Repeat steps h through n to determine the best fit straight line values and tolerances for the negative slope. The voltages measured and recorded in the *Negative Slope Measurement* column should be within the calculated tolerances. # **X Drive Linearity** This procedure tests the linearity of the HP 3325B rear panel X Drive output to the following specifications: for all linear sweep widths which are integral multiples of the minimum sweep width for each function and sweep time: ±0.1% of final value, 10% to 90%, best fit straight line. Equipment Required: High-Speed DC Digital Voltmeter (This procedure is written to use the high speed and delay capabilities of the HP 3437A) Resistive Divider, ÷ ~2.6, consisting of: 100 k Ω 1% 1/8W 162 k Ω 1% 1/8W DC Power Supply BNC-to-Triax Adapter a. Connect the equipment as shown in figure 4-16A. b. Set the HP 3325B as follows: | High Voltage Output (option 002) | Off | |----------------------------------|--------------------| | Function | Sine | | Amplitude | 10 V _{pp} | | Sweep Start Frequency | 1 MHz | | Sweep Stop Frequency | 10 MHz | | Sweep Marker Frequency | 4 MHz | | Sweep Time | 0.01s | - c. Press the HP 3325B [Start Cont] key. - d. Set the voltmeter as follows: | Range | 1V | |--------------------|----------| | Number of Readings | 1 | | Trigger | External | NOTE The HP 3437A triggers on the negative going edge of the Z Blank signal, which occurs at the start of a sweep up. - e. Set the voltmeter delay to 0.001 (seconds). Adjust the dc power supply for a voltmeter reading of -1.600V. Record the voltmeter reading on the Performance Test Record under *X Drive Ramp Measurement*, (10%), y_1 . This is the 10% point on the X Drive ramp (see figure 4-16B). - f. Measure the voltage at each 10% segment point by setting the voltmeter delay to the following. Enter on the Performance Test Record in the appropriate spaces under X Drive Ramp Measurement. | Delay | Percent of Ramp | | |-------|-----------------|--| | 0.002 | 20 | | | 0.003 | 30 | | | 0.004 | 40 | | | 0.005 | 50 | | | 0.006 | 60 | | | 0.007 | 70 | | | 0.008 | 80 | | | 0.009 | 90 | | - g. Algebraically add the voltages recorded in the X Drive Ramp Measurement column and enter the total in the Σy space. - h. Multiply Σy by 45 (which is Σx) and enter the result in the $\Sigma x \Sigma y$ space. - i. Multiply each y value by the corresponding x value and enter in the x times y column. Total these values and enter in the $\sum xy$ space. - j. The equation for determining the best fit straight line specification for each y value is: $$y = a_1x + a_0$$ Where: a1 and a0 are constants to be calculated from data taken previously. Figure 4-16. X Drive Linearity NOTE Calculate the values of a₁ and a₀ to at least five decimal places. k. First determine the value of a₁ using the following equation: $$a_{1} = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^{2} - \frac{(\sum x)^{2}}{n}}$$ Where: Σx , Σy , Σxy , $\Sigma x\Sigma y$, Σx Σ^2 , and $(\Sigma x)^2$ are the previously calculated values entered on the Performance Test Record. Where: n = 9 (the number of points to be calculated) I. Determine the value of ao using the equation: $$a_0 = \frac{\sum y - a_1}{n} \frac{\sum x}{n}$$ m. Calculate the best fit straight line value for each point (y₁ through y₉) using the equation: $$y = a_1x + a_0$$ Enter each result on the Performance Test Record in the Best Fit Straight Line column. n. Determine the minimum and maximum allowable voltages at each point by subtracting and adding 0.004V to the voltage calculated in step m (10.5V ÷ 2.6 × 0.1%). Enter these voltage limits on the Performance Test Record under *Minimum* and *Maximum*. The voltage measured and recorded in the *X Drive Ramp Measurement* column should be within these calculated tolerances. NOTE The HP 3325B X Drive maximum voltage (100%) is set at the factory to +10.5V. Figure 4-17. Ramp Period Variation. # Ramp Period Variation This procedure tests the variation between alternate cycles of the HP 3325B positive and negative slope ramps to the following specification: < ±1% of period, maximum Equipment Required: Analog Oscilloscope, with delayed sweep - a. Connect the HP 3325B signal output to the oscilloscope vertical input. (Do NOT
use a 10:1 probe.) Set the input switch to the 50Ω position. If your oscilloscope does not have a 50Ω input, use a 50Ω feedthru termination at the input. - b. Set the HP 3325B as follows: Function Negative Slope Ramp Frequency 100 Hz Amplitude 10 Vpp c. Set the oscilloscope as follows: Vertical2 V/divMain sweep2.0 ms/divDelayed sweep20 µs/divTriggerPositive - d. With the oscilloscope horizontal controls set to main sweep, adjust the intensified portion of the trace to the reset (positive going) portion of the ramp. - e. Set the horizontal controls to delayed sweep and position the ramp reset portion near the center of the display. - f. The reset portion should show more than one line, as in figure 4-17. The lines should not be separated by more than ten divisions on the display. - g. Change the HP 3325B function to positive slope ramp and set oscilloscope trigger to negative to verify the positive ramp. - h. Increase the HP 3325B frequency to 99.999999 Hz to check the low frequency ramps. Verify that ramp period variations do not exceed ten divisions. # **OPERATIONAL VERIFICATION RECORD** | Hewlett-Packard
Model 3325B
Synthesizer/Function Generator
Serial No | | Tested by | | | |---|-------------|---|-------------|---| | | | Date | | | | | | | | | | a. | | | | | | | | Self Test | Passed | | | * | | | 1 10000 | | | | | Sine Wave Verification | | | | | Step d | 20 MHz: Frequency and Amplitude | Passed | | | | Step g | Signal Purity | Passed | | | | | High Voltage Output (1 MHz) | Passed | | | | | | | | | | | Square Wave Verification | | | | | Step c | Frequency and Amplitude | Passed | | | - | Steps d & e | Aberrations | Passed | | | | Step f | Rise Time | Passed | | | | | | | | | | | Triangle and Ramp Verification | | | | | Step c | Triangle Freq. and Amptd. | Passed | | | | Step d | + Ramp Freq. and Amptd. | Passed | | | | Step e | Ramp Freq. and Amptd. | Passed | _ | | | Step f | - Ramp Retrace Time | Passed | | | | Step g | + Ramp Retrace Time | Passed | | | | Step i | Triangle Linearity | Passed | | | | | | • | | | | | Amplitude Flatness | Passed ———— | | | | | | • | | | | | • | Spec | | | | | Sync Output Check High | > + 1.2 V | | | | | Low | <0.2 V | | | | | Frequency Accuracy | Spec | | | | Step c | Sine, 20 MHz | ± 100 Hz | Z | | | Step d | Square, 10 MHz | ±50 Hz | z | | | Step e | Triangle, 10 kHz (100,000 ns) | ± .5 ns | s | Step f Ramp, 10 kHz (100,000 ns) ± .5 ns | | Fall Time | | *************************************** | *************************************** | <20 n: | |-----------------|--------------------------|---|---|---|---| | | Overshoot, Positive | Peak | | | < 500 m\ | | | Overshoot, Negative | Peak | | | < 500 m\ | | | Ramp Retrace Time | | | | | | | + Ramp | | | | < 3 μs | | | - Ramp | | | | | | | Sync Output | | | | | | | V_{high} | | - | | > + 1.2 \ | | | V _{low} | | | | <+0.2 \ | | | Square Wave Symmetr | у | | | <3.2 ns | | | Frequency Accuracy | | | | | | | Sine, 20 MHz | | шци | | ±100 Hz | | | Square, 10 MHz | | | | ± 50 Hz | | | Triangle, 10 kHz (100 |),000 ns) | | | ± .5 ns | | | Ramp, 10 kHz (100,0 | 000 ns) | _ | | ± .5 ns | | | Phase Increment Accur | асу | | | | | | | Minimum | Time
Difference | Maximum | | | Zero Phase Tim | ne Interval | *************************************** | | | | | 1° Increment T | ime Interval | 22.22 ns | | 33.34 ns | | | 10° Increment | Time Interval | 272.22 ns | | 283.34 ns | | | 100° Incremen | t Time Interval | 2772.22 ns | | 2783.34 ns | | | Ph | ase Modulation Linearity | 1 | | | | | DVM
Reading | Phase
Difference | Cumulative
Phase | x times y | x ² | | | × ₁ | 10 | y ₁ 0 | o | | | | × ₂ | | - Y ₂ | | | | | × ₃ | 3 | - Уз | | | *************************************** | | × ₄ | | - Y ₄ | | | | | x ₅ | 5 | У5 | | · | | | × ₆ | 6 | y ₆ | | | | | ×7 | 7 | - Y7 | | | | | × ₈ | 8 | У8 | | | | | ×9 | 9 | У9 | | | ··········· | | × ₁₀ | 10 | y ₁₀ | <u> </u> | | | | × ₁₁ | 11 | y ₁₁ | | | *************************************** | ΣχΣγ _____ Σγ___ Σx__ $(\Sigma x)^2$ Σx² ___ Σχγ _____ # PERFORMANCE TEST RECORD | Hewlett-Packard | | | Tested | Ву | A AVVII AVVI | |--|------------------------|--------------|---|------------------|--| | Model 3325B
Synthesizer/Function Ger
Serial No | erator | | Date | | | | Harı | monic Distortion | | | | | | | Fundamental Freque | ency | | | Specification | | | 20 MHz | | | | | | | 15 MHz | | | | 30 dB | | | 2 MHz | | | | - 40 dB | | | | | | | | | | 200 kHz | | | | | | | 50 kHz | | | | 65 dB | | | 10 kHz | | | | 65 dB | | | 1 kHz | | | | 65 dB | | | 100 Hz | | | | 65 dB | | | High Voltage Outpu | ıt (Option O | 02) | | | | | 100 Hz | | | | 65 dB | | | 10 kHz | | | | 65 dB | | | 200 kHz | | | | | | | | | | | | | | 1 MHz | | | | | | Sp | urious Signal | | | | , e. e. | | N | lixer Spurious (2:1 s | spur/3:2 spt | ur) | | 70 dB | | | | 2:1 spur | 3:2 spur | | | | | 4.100MHz | | | - 70dB | | | | 6.100MHz | | | – 70dB | | | | 8.100MHz | | | - 70dB | | | | 10.100MHz | | *************************************** | – 70dB
– 70dB | | | | 12.100MHz
14.100MHz | | | – 70dB
– 70dB | | | | 16.100MHz | | | – 70dB | | | | 18.100MHz | | | - 70dB | | | | 20.100MHz | | | - 70dB | | | C | lose-in Spurious | | | | | | | 5.0001MHz | | | | 70dB | | | 5.00001MHz | | | | | | | 5.000001MHz | | | | 70dB | | | 20.001MHz | | | | 70dB | | | | | | | 70dB | | | | | | | 70dB | | | | | | | 70dB | | In | tegrated Phase Nois | е | | | | | | 19.901 MHz | | | | 60 dB | | Ar | nplitude Modulation | Envelope Di | istortion | | 30 dB | | e, | uare Wave Rise Tin | ne and Ahar | retione | | | Rise Time ____<20 ns # **Operational Verification** Output Level and Attenuator Check Close-In Spurious Signal Test (DC Offset Only) ### Entry Min. Max. -5 V -4.980 V_ -5.020 V (+)5 V+4.980 V _____ +5.020 V * (±) 1.499V (±) 1.49300V_____(±) 1.50499V 499.9 mV +0.49790 V_____ +0.50190 V +0.14930 V______ +0.15050 V 149.9 mV 49.99 mV +0.04979 V _____ +0.05019 V 14.99 mV +0.01493 V _____ +0.01505 V +0.04979 V +0.005019 V 4.999 mV 1.499 mV +0.001479 V _____ +0.001519 V * All entries and limits are ± High Voltage Output (Option 002) + 19.775 V _____+ 20.225 V 20 V -20 V -19.775 V ______-20.225 V Harmonic Distortion All Harmonics Below: 20 MHz -25 dB 15 MHz ___ - 30 dB 2 MHz ___ - 40 dB 200 kHz ___ - 60 dB 50 kHz _____ -65 dB _____ -65 dB 10 kHz 1 kHz __ -65 dB 100 Hz ___ -65 dB High Voltage Output (Option 002) 100 Hz 10 kHz 200 kHz 1 MHz Passed ___ | Best Fit
Straight Line
Phase | Minimum
Limit | Measured
Cumulative
Phase | Maximum
Limit | |------------------------------------|------------------|---------------------------------|---| | (y ₁) | | Y1 | | | (y ₂) | | У2 | | | (y ₃) | | Уз | | | (y ₄) | | У4 | | | (y ₅) | | УБ | | | (y ₆) | | У ₆ | | | (y ₇) | | У7 | *************************************** | | (y ₈) | | У8 | | | (y ₉) | | У9 | | | (y ₁₀) | | y ₁₀ | • | | (y ₁₁) | | Y ₁₁ ———— | } | Specification: $\pm 0.5\%$ of $(y_{11}) = \pm _{---}^{\circ}$ | Amplitude Accuracy | | | | |------------------------|-----------|---|----------| | Entry | Minimum | Measured | Maximum | | Sine Wave 1 | Test Test | | | | Amplitude: 3.536 Vrms | | | | | Sine, 100 Hz | 3.495 V | | 3.577 V | | Sine, 1 kHz | 3.495 V | | 3.577 V | | Sine, 100 kHz | 3.495 V | | 3.577 V | | Amplitude: 1.061 Vrms | | | | | Sine, 100 Hz | 1.048 V | | 1.073 V | | Sine, 1 kHz | 1048 V | | 1.073 V | | Sine, 100 kHz | 1.048 V | | 1.073 V | | Amplitude: 0.3536 Vrms |
: | | | | DC, 1 mV | | | | | Sine, 100 Hz | 0.3411 V | ····· | 0.3660 V | | Sine, 1 kHz | 0.3411 V | | 0.3660 V | | Sine, 100 Hz | 0.3411 V | ************************************** | 0.3660 V | | Function T | est | | | | Amplitude:10 Vpp | | | | | Square, 99.9 Hz | 3.661V | | 3.735V | | Triangle, 99.9 Hz | 3.643V | VIIIIV | 3.754V | | Pos Ramp, 99.9 Hz | 3.643V | *************************************** | 3.754V | | Neg Ramp, 99.9 Hz | 3.643V | | 3.754V | | Square, 1 kHz | 3.661V | *************************************** | 3.735V | | Triangle, 2 kHz | 3.643V | | 3.754V | |------------------------------|-------------------|--|---------| | Pos Ramp, 500 Hz | 3.643V | | 3.754V | | Neg Ramp, 500 Hz | 3.643V | 7744.04.474.774.674.474.474.474.474.474.474.47 | 3.754V | | Square, 100 kHz | 3.661V | | 3.735V | | Triangle, 10 kHz | 3.513V | | 3.883V | | Pos Ramp, 10 kHz | 3.328V | | 3.996V | | Neg Ramp, 10 kHz | 3.328V | | 3.996V | | Amplitude: 3 Vpp | | | | | Square, 99.9 Hz | 2.970 V | | 3.030 V | | Triangle, 99.9 Hz | 2.955 V | | 3.045 V | | Pos Ramp, 99.9 Hz | 2.955 V | | 3.045 V | | Neg Ramp, 99.9 Hz | 2.955 V | | 3.045 V | | Square, 1 kHz | 2.970 V | - | 3.030 V | | Triangle, 2 kHz | 2.955 V | | 3.045 V | | Pos Ramp, 500 Hz | 2.955 V | | 3.045 V | | Neg Ramp, 500 Hz | 2.955 V | | 3.045 V | | Square, 100 kHz | 2.970 V | | 3.030 V | | Triangle, 10 kHz | 2.850 V | | 3.150 V | | Pos Ramp, 10 kHz | 2.700 V | | 3.300 V | | Neg Ramp, 10 kHz | 2.700 V | | 3.300 V | | Amplitude: 1 Vpp
DC: 1 mV | | | | | Square, 99.9 Hz | 0.970 V | | 1.030 V | | Triangle, 99.9 Hz | 0.960 V | | 1.040 V | | Pos Ramp, 99.9 Hz | 0.960 V | | 1.040 V | | Neg Ramp, 99.9 Hz | 0.960 V | | 1.040 V | | Square, 1 kHz | 0.970 V | | 1.030 V | | Triangle, 2 kHz | 0.960 V | | 1.040 V | | Pos Ramp, 500 Hz | 0.960 V | | 1.040 V | | Neg Ramp, 500 Hz | 0.960 V | | 1.040 V | | Square, 100 kHz | 0.970 V | | 1.030 V | | Triangle, 10 kHz | 0.940 V | | 1.060 V | | Pos Ramp, 10 kHz | 0.890 V | | 1.110 V | | Neg Ramp, 10 kHz | 0.890 V | | 1.110 V | | High Voltage (Option 0 | 02) Sinewave Test | | | z 13.86 V Amplitude: 14.14 Vrms Sine, 2 kHz | High Voltage (Option 00: | 2) Function Test | | | |------------------------------------|------------------|--|------------| | Amplitude: 40 Vpp | | | | | Square, 2 kHz | 3.466V | | 3.607V | | Triangle, 2 kHz | 3.466V | | 3.607V | | Pos Ramp, 2 kHz | 3.466V | *************************************** | 3.607V | | Neg Ramp, 2 kHz | 3.466V | | 3.607V | | Amplitude Fla | tness | | | | Sine, 3 Vpp, 1 kHz
(Reference) | | | = Y | | Allowable tolerance (±6.6%) | (0.934Y) | | (1.066Y) | | 2.001 MHz | | | | | 4.001 MHz | | | | | 6.001 MHz | | | | | 8.001 MHz | | WILLIAM TO THE TOTAL THE TOTAL TO | | | 10.001 MHz | | | | | 12.001 MHz | | | • | | 14.001 MHz | | | | | 16.001 MHz | | | | | 18.001 MHz | | | | | 20.001 MHz | | | | | Sine, 10 Vpp, 1 kHz
(Reference) | | | — Y | | Allowable tolerance $(\pm 6.3\%)$ | (0.937Y) | | (1.063Y) | | 2.001 MHz | | | | | 4.001 MHz | | MARKET MARKET STATE OF THE STAT | | | 6.001 MHz | | *************************************** | | | 8.001 MHz | | | | | 10.001 MHz | | ······································ | | | 12.001 MHz | | | | | 14.001 MHz | | | | | 16.001 MHz | | | | | 18.001 MHz | | | | | 20.001 MHz | | | | | Square, 10 Vpp, | Pass | (check one) | Fail | | High Voltage (Option 00 | 02) Flatness | | | | Sine, 40 Vpp, | Pass | (check one) | Fail | ## DC Offset Accuracy (DC Only) | Entry | Minimum | Maximum | |------------|-------------|-------------| | 5 V | +4.980 V | + 5.020 V | | -5 V | -4.980 V | 5.020 V | | -1.499 V | -1.49300 V | 1.50499 V | | 1.499 V | +1.49300 V | + 1.50499 V | | 499.9 mV | +0.49790 V | 0.50190 V | | -499.9 mV | -0.49790 V | 0.50190 V | | – 149.9 mV | -0.14930 V | 0.15050 V | | 149.9 mV | +0.14930 V | +0.15050 V | | 49.99 mV | +0.04979 V | +0.05019 V | | -49.9 mV | -0.04979 V | 0.05019 V | | – 14.99 mV | -0.01493 V | 0.01505 V | | 14.99 mV | +0.01493 V | +0.01505 V | | 4.999 mV | +0.004979 V | +0.005019 V | | -4.999 mV | -0.004979 V | 0.005019 V | | – 1.499 mV | -0.001479 V | 0.001519 V | | 1.499 mV | +0.001479 V | +0.001519 V | # High Voltage Output Option 002 20 V + 19.775 V _____ +20.225 V -20 V -19.775 V _____ -20.225 V # DC Offset Accuracy with AC Functions | Sine 20.999 999 999 MHz | Minimum | Maximum | |-------------------------|-----------|----------| | 4.5 V | +4.350 V | +4.650 V | | -4.5 V | -4.350 V | 4.650 V | | | | | | Sine 999.9 kHz | | | | -4.5 V | -4.440 V | 4.560 V | | 4.5 V | +4.440 V | +4.560 V | | | | | | Square 999.9 kHz | | | | 4.5 V | + 4.440 V | +4.560 V | | -4.5 V | -4.440 V | 4.560 V | | | | | ## Square 9.9999 MHz -4.5 V -4.350 V_____-4.650 V | Triangle 9.9 kHz | | | |------------------|----------|---------| | mangle 5.5 kmz | | | | – 4.5 V | -4.440 V | 4.560 \ | | | | | | Ramp 9.9 kHz | | | | -4.5 V | 4.380 V | 4.620 \ | # Triangle Linearity | x Values | Positive Slope Measurement | x times y | Calculated Best Fit
Straight Line | | rances
Maximum | |-----------------------|----------------------------|--|--------------------------------------|---|-------------------| | $x_1 = 1$ | (10%) y ₁ | | (y ₁) | | | | x ₂ = 2 | (20%) y ₂ | | , | | | | $x_3 = 3$ | (30%) y ₃ | ************************************** | (y ₃) | | | | $x_4 = 4$ | (40%) y ₄ | | · · | *************************************** | | | $x_5 = 5$ | (50%) y ₅ | | (y ₅) | | | | $x_6 = 6$ | (60%) y ₆ | | (y ₆) | *************************************** | | | $x_7 = 7$ | (70%) y ₇ | | (y ₇) | ****************************** | | | $x_8 = 8$ | (80%) y ₈ | ************** | (y ₈) | | | | $x_9 = 9$ | (90%) y ₉ | | (y ₉) | | | | $\Sigma x = 45$ | Σγ | Σχγ | | | | | $(\Sigma x)^2 = 2025$ | ΣχΣγ | | | | | | $\Sigma x^2 = 285$ | | | | 4 | | | | | | Calculated Best Fit | Tolerances | | |-----------------------|----------------------------|---|---------------------|---|--| | x Values | Negative Slope Measurement | x times y | Straight Line | Minimum | Maximum | | x ₉ = 9 | (90%) y ₉ | *************************************** | (y ₉) | | | | x ₈ = 8 | (80%) y ₈ | *************************************** | (A ⁸) | *************************************** | | | $x_7 = 7$ | (70%) y ₇ | | (y ₇) | | | | x ₆ = 6 | (60%) y ₆ | *************************************** | (y ₆) | | | | x ₅ = 5 | (50%) y ₅ | | (y ₅) | *************************************** | ************************************** | | $x_4 = 4$ | (40%) y ₄ | *************************************** | (y ₄) | | | | x ₃ = 3 | (30%) y ₃ | | (y ₃) | | | | $x_2 = 2$ | (20%) y ₂ | *************************************** | (y ₂) | | | | $x_1 = 1$ | (10%) y ₁ | | (y ₁) | | | | $\Sigma z = 45$ | Σ y | Σχγ | | | | | $(\Sigma x)^2 = 2025$ | ΣχΣγ | | | | | | $\Sigma x^2 = 285$ | | | | | | ## x Drive Linearity | | | | Calculated Best Fit | Tolerances | | |-----------------------|----------------------------|---|---------------------|--|---| | x Values | Positive Slope Measurement | x times y | Straight Line | Minimum | Maximum | | x ₁ = 1 | (10%) y ₁ | | (y ₁) | | 4 | | $x_2 = 2$ | (20%) y ₂ | *************************************** | (y ₂) | MANAGEMENT CONTRACTOR | | | x ₃ = 3 | (30%) y ₃ | | (A ³) | | *************************************** | | × ₄ = 4 | (40%) y ₄ | | (y ₄) | | *************************************** | | x ₅ = 5 | (50%) y ₅ | *************************************** | (y ₅) | | **** | | x ₆ = 6 | (60%) y ₆ | | (y ₆) | | | | x ₇ = 7 | (70%) y ₇ | <u></u> | (y ₇) | | | | x ₈ = 8 | (80%) y ₈ | | (A ⁸) | ************************************** | | | x ₉ =
9 | (90%) y ₉ | | (y ₉) | | | | $\Sigma z = 45$ | Σγ | Σχу | | | | | $(\Sigma x)^2 = 2025$ | ΣχΣγ | | | | • | | $\Sigma x^2 = 285$ | | | | | | | Ramp Period Variation | | |-----------------------------|------------| | Negative Slope Ramp, 100 Hz | < ± 100 μs | | Positive Slope Ramp, 100 Hz | < ± 100 μs | | Donitivo Clana Rama 99 9 Hz | - + 100 vs | ### **FREQUENCY** ## Range: Sine: $1\,\mu\text{Hz}$ to 20.999 999 999 MHz Square: $1\,\mu\text{Hz}$ to 10.999 999 999 MHz Triangle/Ramps: $1\,\mu\text{Hz}$ to 10.999 999 999 kHz Resolution: $1 \mu Hz$, < 100 kHz 1 mHz ≥ 100 kHz (1 μ Hz available, not displayed) ## Accuracy: $\pm 5 \times 10^{-6}$ of selected value, 20°C to 30°C, at time of calibration, (Standard Instrument) #### Stability: $\pm 5 \times 10^{-6}$ /year, 20°C to 30°C, standard (See also option 001, high stability frequency reference) #### Warm-up Time: 20 minutes to within specified accuracy. # MAIN SIGNAL OUTPUT (all waveforms) # Impedance: $50\Omega \pm 1\Omega$, 0-10 kHz #### Return Loss: >20 dB, 10 kHz to 20 MHz, except >10 dB for >3 V, 5 MHz to 20 MHz #### Connector: BNC; switchable to front or rear panel, non-switchable with option 002 except by internal cable change. ### Floating: Output may be floated up to 42V peak (AC + DC) # AMPLITUDE (all waveforms) ### Resolution: 0.03% of full range or 0.01 dB (4 digits). *Range:* 1 mV to 10 Vp-p in 8 amplitude ranges, 1–3–10 sequence. Ranges are 1 mV-2.999 mV, 3 mV-9.999 mV, 10 mV-29.99 mV, 30 mV-99.99 mV, 1 V-.2999 V, .3 V-.9999 V, 1V-2.999 V, 3 V-10V, (without DC offset). | Function | peak to peak | rms | dBm(50Ω) | | |------------------------------------|---------------------|---------------------|--------------------|--| | Sine
mín.
max. | 1.000 mV
10.00 V | 0.354 mV
3.536 V | - 56.02
+ 23.98 | | | Square
min.
max. | 1.000 mV
10.00 V | 0.500 mV
5.000 V | -53.01
+26.99 | | | Triangle/
Ramps
min.
max. | 1.000 mV
10.00 V | 0.289 mV
2.887 V | - 57.78
+ 22.22 | | ### Accuracy: (with 0 Vdc offset) ### Sine: | | .001 Hz | 100 kHz | 10 MHz | 20 MHz | |--------------------------|---------|---------|---------|---------| | +23.98 dBm | ± .1 dB | | ± .4 dB | | | +13.52 dBm
-16.02 dBm | 0.17 | | (In | ± .6 dB | | - 56.02 dBm | ± .2 dB | | .6 dB | ± .9 dB | #### Square Wave: | | .001 Hz | 100 kHz | 10 MHz | |------------------|---------|---------|--------| | 10 Vp-p | ±1 | .0% ± 1 | 1.1% | | 3 Vp-p
1mVp-p | ±2 | .2% ±1 | 3.6% | #### Triangle: | 0 | .001 Hz | 2 kHz | 10 kH | |------------------|---------|-------|-------| | 10 Vp-p | ±1.5 | 5% ±5 | .0% | | 3 Vp-p
1mVp-p | ± 2.2 | 7% ±6 | .2% | # Ramps: | | .001 Hz | 500 | kHz | 10 k | ŀ | |------------------|---------|-----|------|------|---| | 10 Vp-p | ±1. | 5% | ± 10 | % | | | 3 Vp-p
1mVp-p | ±2. | 7% | ± 11 | .2% | | With DC offset, increase all sinewave tolerances by .2'dB and all function tolerances by 2%. ## SINEWAVE SPECTRAL PURITY #### Phase Noise: 60 dBc for a 30 kHz band centered on a 20 MHz carrier (excluding ±1Hz about the carrier) with option 001 installed. Spurious: All non-harmonically related output signals will be more than 70 dB below the carrier (-60 dBc with DC offset), or less than -90 dBm, whichever is greater. #### WAVEFORM CHARACTERISTICS ### Sinewave Harmonic Distortion: Harmonically related signals will be less than the following levels relative to the fundamental: | Frequency Range | Harmonic Level | |-------------------|----------------| | .1 Hz to 50 kHz | – 65 dBc | | 50 kHz to 200 kHz | – 60 dBc | | 200 kHz to 2 MHz | -40dBc | | 2 MHz to 15 MHz | - 30 dBc | | 15 MHz to 20 MHz | – 25 dBc | #### Squarewave Characteristics: Rise/fall time: ≤20 ns 10% to 90%, at full output. Overshoot: ≤5% of peak to peak amplitude, at full output.at 1MHz. Settling time: $<1\mu$ s to settle to within .05% of final value, tested at full output with no load, 10 Hz to 500 kHz. Symmetry: $\leq .02\%$ of period +3 ns. # Triangle/Ramp Characteristics: Triangle/ramp linearity (10% to 90%, 10 kHz): ± .05% of full p-p output for each range. Ramp retrace time: $\leq 3 \mu s$, 90% to 10%. Period variation for alternate ramp cycles: $\leq 1\%$ of period. ### DC OFFSET #### Range: DC only (no AC signal): 0 to $\pm 5.0 \text{ V}/50\Omega$ DC + AC: Maximum DC offset $\pm 4.5 \text{ V}$ on highest range; decreasing to $\pm 4.5 \text{ mV}$ on lowest range. ### Resolution: 4 digits #### Accuracy: DC only: \pm .02 mV to \pm 20 mV, depends on offset chosen. DC + AC, to 1 MHz: \pm .06 mV to \pm 60 mV, depends on AC output level, \pm .2 mV to \pm 120 mV for ramps to 10 kHz. DC + AC, 1 MHz to 20 MHz: ±15 mV to ±150 mV, depends on AC output level. #### PHASE OFFSET ±719.9° with respect to arbitrary starting phase, or assigned zero phase. Resolution: 0.1° Increment Accuracy: ±0.2° Stability: ±1.0 degree of phase/°C ### SINEWAVE AMPLITUDE **MODULATION** Modulation Depth (at full output for each range): 0-100% Modulation Frequency Range: DC to 400 kHz (0-21 MHz carrier frequency) Envelope Distortion: - 30 dB to 80% modulation at 1 kHz, 0 VDC offset Sensitivity: ±5 V peak for 100% modulation Input Impedance: 10 kΩ Connector: Rear panel BNC ## PHASE MODULATION Sine Function Range: \pm 850°, \pm 5V input Sine Function-Linearity: $\pm 0.5\%$, best fit straight line Squarewave Range: ± 425° Triangle Range: ±42.5° Positive and Negative Ramps: $\pm 85^{\circ}$ Modulation Frequency Range: DC - 5 kHz Input Impedance: >40 k Ω Connector: Rear panel BNC #### FREQUENCY SWEEP Sweep Time: Linear: 0.01s to 1000s Logarithmic: 1s to 1000s single, 0.1s to 1000s continuous Maximum Sweep Width: Full frequency range of the main signal output for the waveform in use except minimum log start frequency is 1Hz. Minimum Sweep Width: | | Minimum sweep width | | | |-----------|---------------------|------------|--| | | Sweep time | Sweep time | | | Function | .01 sec. | 99.9 sec. | | | Sine: | .1 mHz | 999.9 mHz | | | Square: | .05 mHz | 499.5 mHz | | | Triangle: | .005 mHz | 49.95 mHz | | | Ramps: | .01 mHz | 99.99 mHz | | Minimum log sweep width is 1 decade. Phase Continuity: Sweep is phase continuous over the full frequency range of the main output. Discrete Sweep: Number of segments: 100 maximum (Start and stop frequencies settable for each Time/segment: 0.01s to 1000s, 0.01s resolution ### **MODULATION SOURCE:** Frequency Range: Sine 0.1 Hz-10 kHz, Square 0.1Hz-2kHz Frequency Resolution: 2 digits Frequency Accuracy: Typically 0.1% (Sinewave) Amplitude Range: 0.1 Vp-p to 12 Vp-p Amplitude Resolution: 0.1V Amplitude Accuracy: Typically ± 200 mV Impedance: Designed to drive ≥ 10 kOhm Sinewave Purity: Typically better than -34 dBc Standard Waveforms: Sine, Square Arbitrary Waveforms: Vertical resolution 256 points, horizontal resolution 4096 points, 300,000 samples/sec, 10 kHz maximum. Output Location: Rear Panel BNC #### **AUXILIARY OUTPUTS** Auxiliary Frequency Output: Frequency Range: 21 MHz to 60.999 999 999 MHz, underrange coverage to 19.000 000 001 MHz, frequency selection from front panel. Amplitude: 0 dBm; output impedance: 50Ω Connector: Rear panel BNC Sync Output: Square wave with $V_{high} \ge 1.2 \text{ V}$, $V_{low} \le 0.2$ V into 50Ω . Frequency range is the same as the main signal output for front panel sync and DC-60 MHz for rear panel sync. Output impedance: 50Ω Connector: BNC front and rear panels. X-Axis Drive: (0–100s sweeps only) 0 to +10 Vdc linear ramp proportional to sweep frequency; linearity, 10-90%, ± .1% of final value (applies for sweep widths which are integer multiples of the minimum sweep width). Connector: Rear panel BNC. Sweep Marker Output: High to low TTL compatible voltage transition at keyboard selected marker frequency. (Linear sweep only.) Connector: Rear panel BNC. Z-Axis Blank Output: TTL compatible voltage levels capable of sinking current from a positive source. Current 200 mA, voltage 45V, power dissipation 1 watt maximum. 1MHz Reference Output: 0 dBm output for phase-locking additional instruments to the HP 3325B. Connector: Rear panel BNC. 10 MHz Oven Output: 0 dBm internal high stability frequency reference output for phase-locking HP 3325B or other instruments (option 001 only). Connector: Rear panel BNC. ### **AUXILIARY INPUTS** Reference Input: For phase-locking HP 3325B to an external frequency reference. Signal from 0 dBm to +20 dBm into 50Ω . Réference signal must be a subharmonic of 10 MHz from 1 MHz to 10 MHz. Connector: Rear panel BNC. With option 001 this input may be jumpered to the 10 MHz reference output. Amplitude Modulation Input: See modulation specifications. Phase Modulation Input: See modulation specifications. ### REMOTE CONTROL Frequency Switching Time (to within 1 Hz exclusive of programming time: \leq 10 ms for 100 kHz step; \leq 25 msec for 1MHz step; \leq 70 msec for 20 MHz step. Phase Switching Time (to within 90° of phase lock exclusive of programming time: ≤15 msec. Amplitude Switching Time (to within amplitude specifications, exclusive of programming time): <30 ms. HP-IB Interface Functions: SH1, AH1, T6, L3, SR1, RL1, PP0, DC1, DT1, C0, E1 RS-232 Interface: Subset of ANSI/EIA-232D-1986, CCITT V.24 Type: DTE, 25 pin female "D" connector Baud Rate: 300-4800 # OPTION 001 HIGH STABILITY FREQUENCY REFERENCE Aging Rate: $\pm 5 \times 10^{-8}$ /week, after 72 hours continuous operation; $\pm 1 \times 10^{-7}$ mo., after 15 days continuous operation. Warm-up time: Reference will be within $\pm 1 \times 10^{-7}$ of final value 15 minutes after turn-on at 25°C for an off time of less than 24 hours. ### **OPTION 002 HIGH VOLTAGE OUTPUT** Frequency Range: 1 µHz to 1 MHz Amplitude: Range: 4.00 mV to 40.00 Vp-p in 8 ranges, 4-12-40 sequence, into $500\Omega < 500 \text{ pF}$ load. Ranges are four times the standard instrument ranges, without DC offset. Accuracy: ±2% of full output for each range at 2 kHz. Flatness: ±10% relative to programmed amplitude. Sinewave Distortion:
Harmonically related signals will be less than the following levels (relative to the fundamental full output into 500Ω , load): 10 Hz - 50 kHz: -65 dB50 kHz - 200 kHz: -60 dB200 kHz-1 MHz: - 40 dB Square Wave Rise/Fall Time: \pm 125 ns, 10% to 90% at full output, with 500Ω , 500 pF load. Square Wave Overshoot: ±10% of peak to peak amplitude with 500Ω , 500 pF load. Output Impedance: $< 2\Omega$ at DC, $< 10\Omega$ at 1MHz DC Offset: Range: 4 times the specified range of the standard instrument. Accuracy: \pm (1% of full output for each range + 25 mV). Maximum Output Current: $\pm 20 \text{ mA peak}$ #### **GENERAL** **Operating Environment:** Temperature: 0°C to 55° C Relative Humidity: 95%, 0°C to 40°C Altitude: ≤15,000 ft. Power: 100/120/220/240 V, +5%, -10%; 48 to 66 Hz; 90 VA, 120 VA with all options Weight: 9 kg (20 lbs) net; 14.5 kg (32 lbs) shipping Dimensions: $133.4 \text{ mm high} \times 425.5 \text{ mm wide} \times 498.5$ mm deep $(5\frac{1}{4}" \text{ H} \times 16\frac{3}{4}" \text{ W} \times 19\frac{5}{8}" \text{ D})$ # Index | A | P | | | |--|---|--|--| | Amplitude | Performance tests | | | | Accuracy test 4-38 | Amplitude accuracy 4-38 | | | | Flatness check 4-15 | Amplitude modulation envelope distortion 4-28 | | | | Modulation envelope distortion test 4-28 | DC offset accuracy 4-45 | | | | Attenuator check 4-16 | DC offset accuracy with ac functions 4-46 | | | | | Frequency accuracy 4-32 | | | | C | Harmonic distortion 4-23 | | | | Circuit breaker 4-3 | Integrated phase noise 4-27 | | | | | Phase increment accuracy 4-33 | | | | D | Phase modulation linearity 4-34 | | | | DC offset accuracy | Ramp period variation 4-54 | | | | AC functions test 4-46 | Ramp retrace time 4-30 | | | | DC only test 4-45 | Required test equipment 4-20 | | | | • | Spurious signal 4-25 | | | | \mathbf{F} | Square wave rise time and aberrations 4-29 | | | | Frequency accuracy test 4-16, 4-32 | Square wave symmetry 4-31 | | | | | Sync output 4-30 | | | | H | Triangle linearity 4-47 | | | | Harmonic distortion test 4-17, 4-23 | X drive linearity 4-50 | | | | High voltage output | Phase | | | | Amplitude accuracy test 4-41, 4-44 | Increment accuracy test 4-33 | | | | DC offset accuracy test 4-45 | Integrated phase noise test 4-27 | | | | Harmonic distortion check 4-18 | Modulation linearity test 4-34 | | | | Harmonic distortion test 4-24 | Power | | | | Sine wave verification 4-13 | Cable grounding requirements 4-4 | | | | HP-IB system interface connections 4-8 | Requirements 4-2 | | | | T | ${f R}$ | | | | I | Ramp | | | | Initial inspection 4-2 | Period variation test 4-54 | | | | Installation 4-6 | Retrace time test 4-30 | | | | Instrument cooling 4-6 | Verification 4-14 | | | | * | Required test equipment | | | | L | Operational verification 4-11 | | | | Line voltage selection 4-3 | Performance tests 4-20 | | | | O | S | | | | Operating environment 4-6 | | | | | Operational verification | Self test 4-12 | | | | Amplitude flatness 4-15 | Sine wave verification 4-12 | | | | Close-in spurious signal 4-19 | Spurious signal test 4-19, 4-25 | | | | Frequency accuracy 4-16 | Square wave | | | | Harmonic distortion 4-17 | Rise time and aberrations test 4-29 | | | | Output level and attenuator 4-16 | Symmetry test 4-31 Verification 4-13 | | | | Required test equipment 4-11 | | | | | Self test 4-12 | Storage and shipment 4-10 | | | | Sine wave 4-12 | Sync output test 4-15, 4-30 | | | | Square wave 4-13 | ${f T}$ | | | | Sync output 4-15 | | | | | Triangle and ramp 4-14 | Triangle | | | | Output level check 4-16 | Linearity test 4-47 | | | | Over-voltage circuit breaker 4-3 | Verification 4-14 | | | | | X | | | | | X drive linearity test 4-50 | | | # **Hewlett-Packard Sales and Service Offices** To obtain Servicing information or to order replacement parts, contact the nearest Hewlett-Packard Sales and Service Office listed in HP Catalog, or contact the nearest regional office listed below: # In the United States California P.O. Box 4230 1421 South Manhattan Avenue Fullerton 92631 Georgia P.O. Box 105005 2000 South Park Place Atlanta 30339 Illinois 5201 Tollview Drive Rolling Meadows New Jersey W. 120 Century Road Paramus 07652 # In Canada Hewlett-Packard (Canada) Ltd. 17500 South Service Road Trans-Canada Highway Kirkland, Quebec H9J 2M5 In France Hewlett-Packard France F-91947 Les Ulis Cedex Orsay In German Federal Republic Hewlett-Packard GmbH Vertriebszentrale Frankfurt Berner Strasse 117 Postfach 560 140 In Great Britain Hewlett-Packard Ltd. King Street Lane Winnersh, Wokingham Berkshire RG11 5AR D-6000 Frankfurt 56 In Other European Countries Switzerland Hewlett-Packard (Schweiz) AG 7, rue du Bois-du-Lan Case Postale 365 CH-1217 Meyrin In All Other Locations Hewlett-Packard Inter-Americas 3155 Porter Drive Palo Alto, California 94304