HP 3588A HP-IB Programming
Reference

(ﬁﬂ HEWLETT

PACKARD

HP Part Number 03588-90025
Microfiche Part Number 03588-9022%
Printed in 1.S.A.

Print Date: April 1880

©Hewlett-Packard Company, 1990. All rights reserved,
8600 Soper Hill Road, Everett, WA 98205-1298

ﬁ/] HEWLETT

PACKARD

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service,
and repair of this instrument. Failure to comply with these precautions or with specific warnings
elsewhere in this manual violates safety standards of design, manufacture, and intended use of the
instrument. Hewlett-Packard Company assumes no liability for the customer’s failure to comply
with these requirements. This is a Safety Class 1 instrument.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an
electrical ground. The instrument is equipped with a three-conductor ac power cable. The
power cable must either be plugged into an approved three-contact electrical outlet or used
with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to
an electrical ground (safety ground) at the power outlet. The power jack and mating plug of
the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any
electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers, Component replacement and
internal adjustments must be made by qualified maintenance personnel. Do not replace
components with power cable connected. Under certain condilions, dangerous voltages may
exist even with the power cable removed. To avoid injuries, always disconnect power and
discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first
aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or
perform any unauthorized modification to the instrument. Return the instrument to a
Hewlett-Packard Sales and Service Office for service and repair to ensure the safety features
are maintained.

DANGEROUS PROCEDURE WARNINGS

Warnings, such as the example below, precede potentially dangerous procedures throughout
this manual. Instructions contained in the warnings must be followed.

Warning Dangerous voltages, capable of causing death, are present in this
g instrument. Use extreme caution when handling, testing, and adjusting.

SAFETY SYMBOLS

A picicarc

General Definitions of Safety Symbols Used On Equipment or In Manuals.

A

Instruction manual symbol: the product will be marked with this
symbol when it is necessary for the user to refer to the instruction
manual in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage
exceeding 1000 volits must be so marked.)

Protective conductor terminal. For protection against electrical shock
in case of a fault. Used with field wiring terminals to indicate the
terminal which must be connected to ground before operating
equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a
signal common, as well as providing protection against electrical
shock in case of a fault. A terminal marked with this symbot must be
connected to ground in the manner described in the installation
(operating) manual, and before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the
equipment which normally includes all exposed metal structures.

Alternating current {power line.)
Direct current (power line.)

Alternating or direct current (power line.)

Warning The WARNING sign denotes a hazard. It calls attention to a procedure,
8 practice, condition or the like, which if not correctly performed or adhered
“ to, could result in injury or death to personnel.

Caution The CAUTION sign denotes a hazard. it calls attention to an operating

adhered to, could result in damage to or destruction of part or all of the product.

procedure, practice, condition or the like, which, if not correctly performed or

Note The NOTE sign denotes important information. It calls attention to procedure,
| practice, condition or the like, which is essential to highlight.

Table of Contents

Chapter 1: Infroduction te HP-IB

Notice to Experienced HP-IB Programmers 0 vt it i i a et i e e e s 1-1
Manual Overview i e e e e e e e e e e e e e e e 1-2
Programming Fundamentals e 12
Programming Examples L e e 1-2
Command Reference e 12
ADDPENICeS . . . o . e e e e e e e e e e e e e e 1-2
Index e e e 1-2
HP-IBOVEIVIEW . o o o v vt v et e et t et et e e et et ettt e e ettt e e e e e e 1-3
What is HP-IB? . . . e e e e 1-3
Sending Commands Overthe HP-IB 13
TMSL OVerview o e e e e e e e e e e e 1-5
What s TMSL Y . . . L e e e e 1-5
Related Standards e 1-5
HP- DB SetiD . ..t v et e e e e e e e e e e e e e e e . 1.7
Configuringthe HP-IB System ittt e e e e 1-7
Quick Verfficalion e e e e e 1-10
Verification Program oo e e e e e e 1-12

Chapter 2: Behavior in an HP-IB System

HP-IB Interface Capabilifies o ittt e e e e e 2-1
Controller Capabilities0 i it it et e e e e e e e e e 2-2
Bus Management Commands vs. Device Commands 2-2
Response to Bus Management Commandst e 2-3
Device Clear (DCL) . . . o o o i it ettt e e e e e e e e 2-3
GoToLocal (GTL) i e e e e e e e e e e e e 2-3
Group Execute Trigger (GET) 0ttt e e e e 2-3
Interface Clear (IFC) L i i ittt e e e e e e e e e 2-3
Local Lockout (LLO) o e e et e e e e 2-4
Parallel Poll e 2-4
Remote Enable (REN) i e e s e 2-4
Selected Device Clear (SDC) o it it e e 2-4
Serial Poll e 2-5
Take Control Talker (TCT) i ittt et e e e e e e e e e e e e 2-5
Message EXChanget e e e e e 2-6
HP-IB Queues e e e e e e e e 2-7
Command Parser e e e e 2-8
Query Response Generation ittt ittt e e e 2-8

Table of Contents (Continued)

Synchromization L e 2-9
Overlapped Commands e e 29
Passing Control 212

Chapter 3: Programming with TMSL Commands

Introduction e e e, 3-1
The Command Tree i i e e, 32
Sending Multiple Commands e e e 33
Command Abbreviation e 3-4
Implied MRemonmics L o e e e e e e 3-5
Message SYBtax L e e e e e 36
Conventions e e e e e 36
Common Definitions L 3-6
Special Syntactic Elements e e 3-6
Program Message Syntaxt e e e 3-7
Response Message SYntaxttt it e e 3-11

Chapter 4: Transferring Data

Introduction e e 4-1
DataTypes 4-2
Conventions L e e 4-2
Common Definitions 4.2
Decimal NumericData L 4-2
Character Data i e 4-4
StringData 4-4
ExpressionData e 4.5
BlockData e 4-5
DataEncodingforBlockData 4-7
ASCITEncoding i 4-7
BinaryEncoding e 4-8

Chapter 5: Using Status Registers

Infroduction e e 5-1
General Status Register Model 52
OVErvIEW . . L e 52
Condition Register oo 52
Transition Registerst 52
Event RegiSIErot i 53
Enable Register it it i 53
The Service Request PrOCESSo v it ittt e e e e e e 5-4
TwoWaysto Use Registers ittt e e 5-4
Generatinga Service Request 5-4
The HP 35388A’s Register Setsottt e e e e 5-6
Register SUMMATY . . . o . .0ttt e et e e e e 5-6
Status Byte Register Set 5-8
Device State Register Seto e 5-10
Limit Fail Register Set 5-11
Questionable DataRegister Set i 5-12
Questionable Frequency Register Set o v i 5-13
Questionable Power Register Set 5-14

Table of Contents {Continued)

Standard Event Register Set e e e e e 5-15
Standard Operation Register Set o . o it e e e e 5-17

Chapter 6: Programming Examples

PASSCNTL . o\ vttt e et e e 6-2
WAL SYNC © ot e et e e e e e e 6-3
OPC_SYNC . ottt ittt e e e e e 6-4
OPCQ SYNC . .\ ottt et e e e e 6-5
RANGE SRO . . oottt it e e 6-6
AVER SRQ . ottt e e e e e 6-7
USER SRQ .« . vt ettt e et e e e e 6-9
MOVE STATE &« © v vttt et e e e e e e e e e e e 6-11
TRC LOAD . vt i ettt e e e e 6-13
LOG_XAXIS . o\ttt ittt et e e e e e 6-15

Chapter 7: Introduction to the Command Reference
Findingthe Right Command i ii e 7-2
Conventions L v i e e e e e e e e e e 73

Chapter 8: Common Commands

Common Commands it et e et e e e e 81

Chapter 9: ABORt Subsystem
ABORESUDSYSIEIM . . . it o e e 9-1

Chapter 18: ARM Subsystem
ARM Subsystem e e e e 10-1

Chapter 11: AVERage Subsystem
AVERage Subsystem L e 11-1

Chapter 12: CALCulate Subsystem
CALCulate Subsystem e 12-1

Chapter 13: CALibration Subsystem
CALIbration SUbSYSIEI o ot e e 13-1

Chapter 14: DIAGnostics Subsystem
DIAGnostics Subsystem

iii

Tabie of Contents (Continued)

Chapter 15: DISPlay Subsystem
DISPlay Subsystem e 151

Chapter 16: FORMat Subsystem
FORMat Subsystem 16-1

Chapter 17: INITiate Subsystem
INITiate Subsystem e i 17-1

Chapter 18: INPut Subsystem
INPut Subsystem e 18-1

Chapter 19: MARKer Subsystem
MARKer Subsystem L 19-1

Chapter 20: MMEMory Subsystem
MMEMory Subsystem L e 20-1

Chapter 21: PLOT Subsystem
PLOT Subsystem e 21-1

Chapter 22: PRINt Subsystem
PRINESUDSYSIEM . . . oottt e et e et e e 22-1

Chapter 23: PROGram Subsystem
PROGram Subsystem 23-1

Chapter 24: SCReen Subsystem
SCReenSubsystemo 24-1

Chapter 25: [SENSe] Subsystem _
[SENSefSubsystem 25-1

Chapter 26: SOURce Subsystem
SOURce Subsystem 26-1

Chapter 27: STATus Subsystem
STATusSubsystem 27-1

Chapter 28: SYSTem Subsystem
SYSTemSubsystemot 28-1

Chapter 29: TEST Subsystem
TEST Subsystem e e e e e e e e e 29-1

Chapter 30: TRACe Subsystem
TRACe Subsystem 30-1

Table of Contents (Continued)

Chapter 31: TRIGger Subsystem
TRIGger SubsYStEm e e e 31-1

Chapter A: HP 3588A Command Summary

It oduction . . . s e e e e e e e e e e e e e e e e e e e A-l
Command List o it e e e e e e e e e e e e e e e e e A2

Chapter B: Error Messages

LT €11 & o O B-1
Command BIrors i o e e e e e e e e e e e e e e B-1
EXeCUION EITOIS . o 0 v v i it e vt v e e e e e et e e e e e e e e e e B-4
Device-Specific Errors v o it it e e e e e e B-7
QUEIYEITOTS & 0 o vt i s e o e e e it e e e e e e e e e e e e e e e B-7

Introduction to HP-IB

Notice to Experienced HP-IB Programmers

The HP 3588A’s HP-IB command set is derived from the TMSL standard (described later in this
chapter). TMSL command sets differ from more traditional HP-IB command sets in the following
ways:

» A traditional HP-IB command typically consists of a single mnemonic. A TMSL command
typically consists of a series of mnemonics separated by colons. The mnemonics are selected
from a command hierarchy, which organizes commands into related groups. These
multi-mnemonic commands are less cryptic than single-mnemonic commands and help to make
your programs more self-documenting. Chapter 3 tells you how to use the TMSL command
hierarchy.

» A traditional HP-IB command set contains mnemonics that correspond directly to an
instrument’s front-panel keys. The HP 3588A’s TMSL command set does give you HP-IB access
to all front-panel functions, but there is not a one-to-one correspondence between commands
and keys. (This results from the fact that the TMSL command hierarchy is organized differently .
than the front-panel key hierarchy.) A special feature allows the HP 3588A to echo equivalent
TMSL command mnemonics when you press a series of front-panel keys. You can enable this
feature under the [Local/HP-IB] hardkey.

1-1

Introduction to HP-1B
Manual Overview

Manual Overview

This manual is organized into five major parts:

Programming Fundamentals.
Programming Examples.
Command Reference.
Appendices.

Index.

Programming Fundamentals

This part of the manual contains five chapters, each of which discusses some aspect of programming
the HP 3588A via the HP-IB:

a Chapter 1 introduces you to HP-IB and TMSL concepts. It also tells you how to configure the
HP 3588A in an BHP-IB system.

» Chapter 2 tells you how the analyzer interacts with the controller and other devices on the
HP-IB.

» Chapter 3 describes the TMSL command hierarchy.

Chapter 4 tells you how data is transferred between the analyzer and a controller.

» Chapter 5 describes the analyzer’s register structure and tells you how the analyzer uses registers
to generate service requests.

Programming Examples

This part of the manual contains commented programming examples. It may be a good place to start _
if you are an experienced HP-IB programmer and are already familiar with TMSL concepts.

Command Reference

This part of the manual contains a detailed description of each HP-IB command. The command
descriptions are organized alphabetically.

Appendices

This part of the manual contains two appendices:

= Appendix A provides a quick reference to the HP 3588A’s HP-1B command set.
» Appendix B provides a complete listing of the HP 3588A’s error messages.

Index

This part of the manual references the page numbers where different subjects are discussed. It can
be especially useful for determining which command you should use to access a particular analyzer
function.

1-2

Introduction to HP-IB
HP-1B Overview

HP-IB Overview

What is HP-IB?

HP-IB—the Hewlett-Packard Interface Bus—is a high-performance bus that allows you to build
integrated test systems from individual instruments and computers. The bus and its associated
interface operations are defined by the IEEE 488.1 standard (described later in this chapter).

HP-IB cables provide the physical link between devices on the bus. There are eight data lines on
each cable that are used to send data from one device to another. Devices that can be addressed to
send data over these lines are called “talkers,” and those that can be addressed to receive data are’
called “listeners.” There are also five control lines on each cable that are used to manage traffic on
the data lines and to control other interface operations. Devices that can use these control lines to
specify the talker and listener in a data exchange are called “controllers.”

When an HP-IB system contains more than one device with controller capabilities, only one of the
devices is allowed to control data exchanges at any given time. The device currently controlling data
exchanges is called the “active controller.” Also, only one of the controller-capable devices can be
designated as the “system controller.” The system controller is the one device that can take control
of the bus even if it is not the active controller. The HP 3588A can act as a talker, listener, active
controller, or system controller at different times.

HP-IB addresses provide a way to identify devices on the bus. For example, the active controller
uses HP-IB addresses to specify which device talks and which device listens during a data exchange.
This means that each device’s address must be unique. You set a device’s address on the device
itself, usually using a rear-panel switch or a front-panel key sequence.

Sending Commands Over the HP-IB

Commands are sent over the HP-IB via a controller’s language system, such as BASIC or Pascal. As
a result, you will need to determine which keywords your controller’s language system uses to send
HP-IB commands. When looking for keywords, keep in mind that there are actually two different
kinds of HP-IB commands:

w Bus management commands, which control the HP-IB interface.
» Device commands, which control analyzer functions.

Language systems usually deal differently with these two kinds of HP-IB commands. For example,
HP BASIC uses a unique keyword to send each bus management command, but always uses the
keyword OUTPUT to send device commands. For more information on the differences between
bus management commands and device commands, see chapter 2, “Behavior in an HP-IB System.”

Introduction to HP-IB
HP-1B Overview

The following example shows how to send a typical device command:
QUTPUT 719;"AVERAGE:COUNT 5"

This sends the command within the quotes (AVERAGE:COUNT 5) to the HP-IB device at address
719. If the device is an HP 3588A, the command instructs the analyzer to set the number of averages
to 5.

Note All examples in this manual are written for HP BASIC running on an
HP Series 200 computer.

1-4

Introduction to HP-IB
TMSL Overview

TMSL Overview

What is TMSL?

TMSL—the Test and Measurement Systems Language—is a programming language designed
specifically for electronic test and measurement instruments. It defines how you communicate with
these instruments from an external controller (computer).

Related Standards

Computer-controfled test instruments that were introduced in the 1960s used a wide variety of
non-standard interfaces and communication protocols. During this time, Hewlett-Packard began
developing the HP-IB as an internal standard. HP-IB defined a standard electrical and mechanical
interface for connectors and cables. It also defined handshaking , addressing, and general protocol
for transmitting individual bytes of data between instruments and computers.

IEEE 488.1

In 1975, the Institute of Electrical and Electronic Engineers (IEEE) approved IEEE 488-1975,
which was based on Hewlett-Packard’s internal HP-1B standard. This standard has been updated
and is now IEEE 488.1-1987. Today, Hewlett-Packard uses the HP-IB name to indicate that a
particular instrument or controller has capabilities that conform to the IEEE 488.1 standard.

Although it solved the problem of how to send bytes of data between instruments and computers,
TEEE 488 did not specify the data bytes’ meanings. Instrument manufacturers freely invented new
commands as they developed new instruments. The format of data returned from instruments varied
as well. By the early 1980s, work began on additional standards that specified how to interpret data
sent via the 488 bus.

IEEE 488.2

In 1987, the IEEE approved IEEE 488.2-1987. This standard defined the roles of instruments and
controllers in a measurement system connected by the 488 bus (HP-IB). In particular, IEEE 488.2
described how to send commands to instruments and how to send responses to controllers.
Although it explicitly defined some frequently used commands, it still left the naming of most

. commands to instrument manufacturers. This made it possible for two similar instruments to
conform to 488.2, yet have entirely different command sets.

TMSL

TMSL goes beyond 488.2 by defining a standard set of programming commands. For a given
measurement function (such as frequency), TMSL defines the specific commands used to access that
function via the 488 bus. If two analyzers both conform to the TMSL standard, for example, you
would use the same command to set each analyzer’s center frequency.

t-5

Introduction to HP-I1B
TMSL Overview

Standard commands provide two advantages:

If you know how to control functions on one TMSL instrument, you know how to control the
same functions on any TMSL instrument.

Programs written for a particular TMSL instrument are easily adapted to work with a similar
TMSL instrument.

Figure 1-1 shows you how TMSL builds on the 488 standards.

.J_J_i;
) E=E
——
—_—
- - _l—fj
— G DT
£y o
—t el W
- PRy 1
il el el e I s —" e T ¢ o
e R T

-
1 ¢ b i P 1 : i
Q TMSL Message 0

P P 1 P f i T
< {ommon (ommands ond Jueries &/\
¥ T T 1 [

3

3 H i] I
: ¢ t } b
'
¥

! & Syntax and Date Struc!ures/ é

; ¥ Y : -

Q Remote I Messoges é
A

LD E 1B LA J LA B 1 C D
TMSL {EEE-488.2 | EEE-488.1 EEE-L881 EEE.4882 TMSL
Standard Stondard Standard Stondard

Figure 1-1. TMSL and Related Standards

The standards are layered to define different aspects of communication between devices:

1-6

Layer A (IEEE 488.1) defines the physical and electrical connection between devices. It also
defines how a byte of data is transmitted and how devices are instructed to talk and listen.

Layer B (IEEE 488.2) defines the syntax and data formats used to send data between devices.
It also defines the structure of status registers.

Layer C (IEEE 488.2) defines the commands used for common tasks (such as resetting the
device and reading the Status Byte).

Layer D (TMSL) defines the commands used to control device-specific functions (such as setting

frequency and amplitude). It also defines the parameters accepted by these functions and the
values they return.

Introduction to HP-IB
HP-IB Setup

HP-IB Setup

This section contains a procedure for configuring the HP 3588A and an external controller in a
simple HP-IB system. Although an HP 9836 computer is the controller used in the system, other
computers that support an HP-IB interface can also be used. If you are using one of those other
computers, the configuration procedure can only be used as a general guide. You should consult
your computer’s documentation for more complete information.

This section also contains a procedure for verifying that commands can be sent over the HP-1B.
HP BASIC s used for the verification procedure’s test program. If your computer uses some other
language, the keywords and syntax for the test program may be different. You will need to write a
similar program using your language’s keywords and syntax.

Configuring the HP-IB System

Equipment and Software '

s HP 3588A Spectrum Analyzer

s HP 9836 computer

s HP 10833A, B, C, or D HP-IB Cable
s HP BASIC

Procedure

1. Turn off the HP 3588A and the HP 9836, then connect them with the HP-IB cable as shown in
figure 1-2.

oiojo|e
GlojoNn

Figure 1-2. HP-IB Connections

1-7

introduction to HP-IB
HP-IB Setup

2. Turn on the HP 9836. If necessary, load HP BASIC following the instructions in the

computer’s operating manual. Note that the following language extensions must be installed
for the verification program to work:

-~ CRTA

~ HPIB.

- IO

- EDIT.

Programs that are more complex than the verification program will probably require more
language extensions.

3. Turn on the HP 3588A. When the softkey labels appear, press the [Local/HP-18 | hardkey. (see

figure 1-3)

&

N R —

LI R
e
]
ook e d]

UJ e 10O

.

Power Switch

LLLjitt

LLLLLLLLLL
L Lulic L

Li
ULt

Li

O

Local/HP -8
Hardkey

Figure 1-3. HP 3588A Front Panel

4. Verify that the analyzer’s address is set to 19. The current address setting is displayed when

you press the [ANALYZER ADDRESS] softkey (see figure 1-4). You can change the address by
pressing [ANALYZER ADDRESS], then using the numeric keypad and the [ENTER] softkey to enter
anew value. However, the instructions in the verification procedure assume that the analyzer
address is set to 19.

Range: -28 dBm
Res Bu: 17 8eB Hz VBK: Off Swp Time: 268,85 miec ﬁg?§§
Yk i HKk.F 75 852 08B Hz -86.56 6Bm

T aysTEM
: {CONTROCLR
i
: JADDRESSEL
LagMag 4 ONLY
18 dB i B i o

Jatv i Bl AnDPESS

i PERIPHERL
¢ ADDRESSES

ECH
ON I

fenter: '?f:': 258 398 HZ A Snnn 149 938 638 Hz USER 5RQ

Figure 1-4. HP 3588A Screen After Pressing
Locai/HP-iB

introduction to HP-1B
HP-iB Setup

5. Verify that the analyzer is set to the addressable-only mode. The softkey labels that appear
when you press the [Local/HP-IB] hardkey include [SYSTEM CONTROLLR] and [ADDRESSBL ONLY]-

Only one of these two softkeys can be selected at a time, and the one that is
box around it. If [ADDRESSBL ONLY] is not selected, then press that softkey.

selected will have a

Note In any HP-IB system there can be more than one device with controller capabilities.
But at any given time, only one device on the bus can be designated as the system
controller.

1-9

introduction to HP-IB
HP-1B Setup

Quick Verification

Having just completed all the steps in the preceding section, you are ready to verify that commands
can be sent over the HP-IB. In this quick verification, you are going to enter an HP BASIC keyword
that should place the HP 3588A under remote control.

Procedure

1. Type the following on the computer:

REMOTE 719

then press the computer’s ENTER key. The RMT indicator should appear at the bottom of-
the HP 3588A’s screen (see figure 1-5). This tells you that the analyzer is under remote control
of the computer.

Range: -28 dbm
Res BW: 17 @88 Hz VBMWI OFF Jwp Tima: 269,38 mbec
H =i Mkt 75 BHO 899 Hz «87.48 ¢Bm

1280
Center: 75 658 8gg

RHT

Figure 1-5. RMT indicator

2. Now type the following on the computer:

LOCAL 719

then press the computer’s ENTER key. The RMT indicator should disappear from the bottom
of the screen. This tells you that the analyzer has been returned to front-panel control.

1-10

introduction to HP-IB
HP-IB Setup

Troubleshooting

If the RMT indicator doesn’t perform as expected, check the following things:

» Be sure that your HP-IB cable connections are secure and that the cable is free of defects.
» Verify that the analyzer is in addressable-only mode and that its address is set to 19.

= Be sure you are using the required equipment and software.

» Be sure you have loaded all the required language extensions into the computer. (For a list of
loaded extensions, enter the following into the computer: LIST BIN)

If everything seems to be in order, but the RMT indicator still doesn’t perform as expected, contact
your local HP Sales/Service office.

Intreduction to HP-IB
HP-IB Setup

Verification Program
The quick verification procedure confirmed that the computer could talk to the analyzer. However,

you must write a short program to confirm that the analyzer can talk to the computer. If you enter
the program correctly, the computer displays the following statement when you run the program:

FREQUENCY SPAN IS: +1.5E+8HZ

Note The following procedure assumes that you have completed all the steps in
“Configuring the HP-IB System” using all the required equipment and software.
Procedure

1. Enter the following program:

i0 PRINTER IS 1

20 ASSIGN (@Hp3588a TC 719

30 ABORT 7

40 CLEAR @Hp3588a

50 OUTPUT @Hp3588a;"+RST"

60 QUTPUT @Hp3588a;"SENS:FREQ:SPAN:FULL"
70 OUTPUT @Hp3588a;"SENS:FREQ:SPAN?Y

80 ENTER @Hp3588a;A

20 PRINT “"FREQUENCY SPAN IS:";A;"HZ"

100 END

2. See your computer and software documentation if you need help entering the program.

3. Press the computer’s RUN key. The program tells the analyzer to preset. It then tells the
analyzer to select its widest frequency span. Finally, the program asks the analyzer to return
the value of the widest span and has the computer display the returned value as follows:

FREQUENCY SPANIS: +1.5E+8 HZ

Troubleshooting

If the program doesn’t run correctly, be sure you have entered the program exactly as listed. Then
go back to “Quick Verification” for additional troubleshooting hints.

Behavior in an HP-IB System

HP-IB Interface Capabilities

The HP 3588A has the following interface capabilities, as defined by the IEEE 488.1 standard:

SH1
AH1
T6
TEO
14
LEO
SR1
RL1
PPO
DC1
DT1
C1
C2
C3
C12
E2

complete Source handshake capability

complete Acceptor handshake capability

basic Talker, Serial Poll, no Talk Only, unaddress if MLA
no Extended Talker capability

basic Listener, no Listen Only, unaddress if MTA
no Extended Listener capability

complete Service Request capability

complete Remote/Local capability

no Parallel Poll capability

complete Device Clear capability

complete Device Trigger capability

System Controller capability

send IFC and take charge Controller capability
send REN Controller capability

send IF messages, receive control, pass control
three-state drivers

2-1

Behavior in an HP-IB System
Controlier Capabilities

Controller Capabilities

The HP 3588A can either be configured as an HP-IB system controller or as an addressable-only
HP-IB device. This is done by selecting either the [SYSTEM CONTROLLR] or [ADDRESSBL ONLY]
softkey on the analyzer’s front panel. (These keys are displayed when you press the [Local/HP-1B |
hardkey.)

Normally, the HP 3588A is not configured as the system controller unless it is the only controlier on
the bus. Such a setup would be likely if you just wanted to control printers or plotters with the
analyzer. It might also be the case if you were using HP Instrument BASIC to control other test
equipment.

When the analyzer is being used with another controller on the bus, it is normally configured as an
addressable-only HP-IB device. In this configuration, the analyzer can function as the active
controller (when it is passed control), or as a talker or listener.

Bus Management Commands vs. Device Commands

The HP-IB contains an attention (ATN) line that determines whether the interface is in command
mode or data mode. When the interface is in command mode (ATN TRUE), a controller can send
bus management commands over the bus. Bus management commands do the following things:

s Specify which devices on the interface can talk (send data) and which can listen (receive data).
» Instruct devices on the bus, either individually or collectively, to perform a particular interface
operation.

The analyzer’s responses to bus management commands are described in the next section.

When the interface is in data mode, device commands and data can be sent over the bus. Device
commands are sent by the controller, but data can be sent either by the controller or a talker. The
HP 3588A responds to two different kinds of device commands:

w Common commands access device functions required by the IEEE 488.2 standard.
n Subsystem commands access the bulk of the analyzer’s functions.

The analyzer’s responses to device commands are described in the Command Reference chapters.

2.2

Behavior in an HP-IB System
Response to Bus Management Commands

Resporise to Bus Management Commands

This section tells you how the HP 3588A responds to the HP-IB bus management commands. The
commands themselves are defined by the IEEE 488.1 standard. Refer to the documentation for
your controller’s language system to determine how to send these commands.

Device Clear (DCL)

The analyzer does the following things when it receives this command:

w Clears its input and output queues.
w Resets its command parser (so it is ready to receive a new program message).
= Cancels any pending *OPC command or query.

The command does not affect the following things:

= Front-panel operation.

= Any analyzer operations in progress (other than those already mentioned).

» Any analyzer settings or registers (although clearing the output queue may indirectly affect the
Status Byte’s MAYV bit).

Go To Local (GTL)

This command returns the analyzer to local (front-panel) control. All keys on the analyzer’s
front-panel are enabled.

Group Execute Trigger (GET)

This command triggers the analyzer (causes it to start collecting measurement data) if the following
two things are true:

= The trigger source is the HP-IB (TRIG:SOUR BUS).
» The analyzer is ready to trigger. (Bit 5 of the Standard Operation condition register is set.)

GET has the same effect as the *TRG and TRIG:IMM program messages with one important
exception: *TRG and TRIG:IMM are sent to the input queue and processed in the order received,
but GET is processed immediately, even if the input queue contains other commands.

interface Clear (IFC)

This command causes the analyzer to halt all bus activity. It discontinues any input or output,
although the input and output queues are not cleared. If the analyzer is designated as the active
controller when this command is received, it relinquishes control of the bus to the system controller.
If the analyzer is enabled to respond to a Serial Poll it becomes Serial Poll disabled.

2-3

Behavior In an HP-B System
Response to Bus Management Commands

Local Lockout (LLO)

This command causes the analyzer to enter the local lockout mode, regardless of whether it is in the
local or remote mode. The analyzer only leaves the local lockout mode when the HP-IB’s Remote
Enable (REN) line is set FALSE.

Local lockout ensures that the analyzer’s [Local/HP-IB | hardkey is disabled when the analyzer is in
the remote mode. When the key is enabled, it allows a front-panel operator to return the analyzer
to local mode, thus enabling all other front-panel keys. However, when the key is disabled, it does
not allow the front-panel operator to return the analyzer to local mode.

Parallel Poli

The HP 3588A ignores all of the following parallel poll commands:
s Parallel Poll Configure (PPC).
Parallel Poll Unconfigure (PPU).

w
» Parallel Poll Enable (PPE).
» Parallel Poll Disable (PPD).

Remote Enable (REN)

REN is a single line on the HP-IB. When it is set TRUE, the analyzer will enter the remote mode
when addressed to listen. It will remain in remote mode until it receives the Go to Local (GTL)
command or until the REN line is set FALSE.

When the analyzer is in remote mode and local lockout mode, all front-panel keys are disabled.

When the analyzer is in remote mode but not in local lockout mode, all front-panel keys are disabled
except for the [Local/HP-18 | hardkey. See Local Lockout for more information.

Selected Device Clear (SDC)

The analyzer responds to this command in the same way that it responds to the Device Clear
command. See the latter for details. .

2-4

Behavior in an HP-IB System
Response to Bus Management Commands

Serial Poll
The analyzer responds to both of the serial poll commands. The Serial Poll Enable (SPE) command
causes the analyzer to enter the serial poll mode. While the analyzer is in this mode, it sends the

contents of its Status Byte register to the controller when addressed to talk.

When the Status Byte is returned in response to a serial poll, bit 6 acts as the Request Service
(RQS) bit. If the bit is set, it will be cleared after the Status Byte is returned.

The Serial Poll Disable (SPD) command causes the analyzer to leave the serial poll mode.

Take Control Talker (TCT)

If the analyzer is addressed to talk, this command causes it to take control of the HP-IB. It becomes
the active controller on the bus. The analyzer automatically passes control back when it completes
the operation that required it to take control. Control is passed back to the address specified by the
*PCB command (which should be sent prior to passing control).

If the analyzer does not require control when this command is received, it immediately passes
control back.

2-5

Behavior in an HP-I1B System
Message Exchange

Message Exchange

The analyzer communicates with the controller and other devices on the HP-IB via program
messages and response messages. Program messages are used to send commands, queries, and data

to the analyzer. Response messages are used to return data from the analyzer. The syntax for both
kinds of messages is discussed in chapter 3.

There are two important things to remember about the message exchanges between the analyzer
and other devices on the bus:

~ w The analyzer only talks after it receives a terminated query. (Query termination is discussed in
“Query Response Generation,” later in this chapter.)

Once it receives a terminated query, the analyzer expects to talk before it is told to do

something else.
Program Messages
AVER (COUN?

% Q) |2zt
B Bt B
— JJJ3t oTo

f T | ooddadd
5= my S] e d
| i T | — ANl
[=10 o]

EREEE

Response Messages
+10

Figure 2-1. TMSL Message Exchange

2-6

Behavior in an HP-IB System
Message Exchange

HP-IB Queues

Queues enhance the exchange of messages between the HP 3588A and other devices on the bus.
The analyzer contains:

s Aninput queue.

» An error queue.

= An output queue.

Input Queue

The input queue temporarily stores the following until they are read by the analyzer’s command
parser:

» Device commands and queries.
= The HP-IB END message (EOI asserted while the last data byte is on the bus).

The input queue makes it possible for a controller to send multiple program messages to the
analyzer without regard to the amount of time required to parse and execute those messages. The
queue holds up to 128 bytes. It is cleared when you do one of the following things:

» Turn on the analyzer.
» Send Device Clear (DCL) or Selected Device Clear (SDC).

Error Queue

The error queue temporarily stores up to 20 error messages. Each time the analyzer detects an
error, it places a message in the queue. When you send the SYST:ERR query, one message is
moved from the error queue to the output queue so it can be read by the controller. Error messages
are delivered to the output queue in the order they were received. The error queue is cleared when
you do one of the following things:

= Turn on the analyzer.
» Send the *CLS command.

Output Queue

The output queue temporarily stores a single response message until it is read by a controller. It is
cleared when you do one of the following things:

= Tumn on the analyzer.
» Send Device Clear (DCL) or Selected Device Clear (SDC).

2-7

Behavior in an HP-IB System
Message Exchange

Command Parser

The command parser reads program messages from the input queue in the order they were received
from the bus. It analyzes the syntactic elements of the messages to determine what actions the
analyzer should take.

One of the parser’s most important functions is to determine the position of a program message in
the analyzer’s command tree. (For more information on the command tree, see chapter 3.) When
the command parser is reset, the next syntactic element it receives is expected to arise from the base
of the analyzer’s command tree. The parser is reset when you do one of the following things:

» Turn on the analyzer.

s Send Device Clear (DCL) or Selected Device Clear (SDC).

s Follow a semicolon with a colon in a program message. (For more information, see “Sending
Multiple Commands” in chapter 3.)

Query Response Generation

When the HP 3588A parses a query, the response to that query is placed in the analyzer’s output
queue. You should read a query response immediately after sending the query. This ensures that
the response will not be cleared before it is read. The response will be cleared before you read it if
either of the following message exchange conditions occur:

» Unterminated condition -— This condition results when you neglect to properly terminate the
query (with an ASCII line feed character or the HP-IB END message) before you read the
response.

» Interrupted condition — This condition results when you send a second program message before
reading the response to the first.

Behavlor in an HP-IB System
Synchronization

Synchronization

This section describes tools you can use to synchronize the analyzer and a controller. Proper use of
these tools ensures that the analyzer will be in a known state when you send a particular command

or query.

Overlapped Commands

Device commands can be divided into two broad classes:

m Sequential commands.
= Overlapped commands.

Most device commands that you send to the analyzer are processed sequentially. A sequential
command holds off the processing of subsequent commands until it has been completely processed.
However, some commands do not hold off the processing of subsequent commands; they are called
overlapped commands.

Typically, overlapped commands take longer to process than sequential commands. For example,
the SENS:REST command is used to restart a measurement. The command is not considered to

have been completely processed until the measurement is complete. This can take a long time at

narrow spans or when video averaging is enabled.

The analyzer uses a No Pending Operation (NPO) flag to keep track of overlapped commands that
are still pending (not completed). The NPO flag is reset to 0 when an overlapped command is
pending. Itis set to 1 when no overlapped commands are pending. You cannot read the NPO flag
directly, but all of the following common commands take some action based on the setting of the flag:

s *WAI — Holds off the processing of subsequent commands until the NPO flag is set to 1. Use
this command to ensure that commands in the analyzer’s input queue are processed in the order
received.

m *OPC? — Places a 1 in the analyzer’s output queue when the NPO flag is set to 1. Use this
query to synchronize your controller to the completion of an overlapped command.

m *OPC - Sets bit 0 of the Standard Event event register to 1 when the NPO flag is set to 1. Use
this command when you need to synchronize your controller to the completion of an overlapped
command, but also want to leave the controller free to perform other tasks while the command is
executing.

Each command requires a different amount of overhead in your program. *WAI requires the least
overhead, *OPC requires the most.

Behavior in an HP-IB System
Synchronization

*WAI

This command holds off the processing of subsequent device commands until all overlapped
commands are completed (the NPO flag is set to 1). The following example demonstrates the effect
of the *WAIJ command.

Suppose you want to determine which frequency component of a signal contains the greatest
amount of energy. You might send the following series of commands:

QUTPUT 719;"SENS:REST" 'Restart the measurement.
QUTPUT 719;"MARK:MAX:GLOB" !Search for max energy.
OQUTPUT 719;"MARK X?" i1Which frequency?

The following timeline shows how the processing times of the three commands relate to each other.
| |

SENS:REST

|
MARK:MAX:GLOB

i
MARK:X?

As you can see, SENS:REST is an overlapped command because it does not hold off the processing
of MARK:MAX:GLOB. You may also recall that SENS:REST is not considered complete until the
measurement is complete. So in this example, the marker searches for maximum energy before the
measurement is complete. This may result in the MARK:X query returning an incorrect value. To
solve the probiem, you can insert a *WAI command.

OQUTPUT 719;"SENS:REST" Restart the measurement.

OQUTPUT 719;"+yal™ 'Wait until complete.
OUTPUT 719; "MARK:MAX;GLOB" !Search for max energy.

QUTPUT 719;"MARK.X?" Which frequency?

The timeline now looks like this.

|
SENS:REST

|
*WAI
| |

MARK:MAX:GLOB

MARK:X?

The *WAI command keeps the search from taking place until the measurement is completed. The
MARK:X query will return the correct value.

2-10

Behavior in an HP-IB System
Synchronization

*OPC? and *0OPC

If you send *OPC?, a 1 is placed in the analyzer’s output queue when the NPO flag is set to 1. This
allows you to effectively pause the controller until all pending overlapped commands are completed.
Just design your program so that it must read the queue before it continues.

If you send *OPC, bit 0 of the Standard Event register is set to 1 when the NPO flag is set to 1. This
allows you to use the analyzer’s register structure to generate a service request when all pending
overlapped commands are completed. However, your program must also have enabled bit 0 of the
Standard Event register and bit 5 of the Status Byte register. When you synchronize the analyzer
and controller in this manner, the controller is free to perform some other task until the service
request is generated.

*QOPC does not hold off the processing of subsequent commands; it only informs you when the NPO

flag is set to 1. As a result, you should not send any commands to the analyzer between the time you
send *OPC and the time you receive a service request.

2-11

Behavior in an HP-IB System
Passing Control

Passing Control

The HP 3588A requires temporary control of the HP-1B to complete some commands. (In the
description of each command, a field called “Pass control required” indicates whether or not the
command requires control of the bus.) After sending such a command, the active controller must
pass control to the analyzer. When the analyzer completes the command, it automatically passes
control of the bus back to the controller. For control to be passed back and forth smoothly, you
must take steps to ensure that the following conditions are met:

w The analyzer must know the controller’s address so it can pass control back.
e The controlier must be informed when the analyzer passes control back.

Here is a procedure for passing control:

1.
2.

Send the controller’s HP-IB address with the ¥*PCB command.

Clear the analyzer’s status registers with the *CLS command.

. Enable the analyzer’s status registers to generate a service request when the Operation

Complete bit is set. (Send *ESE with a value of 1 and *SRE with a value of 32.)

Enable the controller to respond to the service request.

. Send the command that requires control of the bus followed by the *OPC command.

Pass control to the analyzer and wait for the service request. The service request indicates that
the command has been completed and control has been passed back to the controller.

Note For this procedure to work properly, no overlapped commands should be pending

9

except the command that requires control of the bus. For more information on
overlapped commands, see “Synchronization” in this chapter.

chapter 6, “Programming Examples,” contains an example program that passes control to the
analyzer. In the example, control is passed so the analyzer can print the contents of its screen.

2-12

Programming with TMSL Commands

Introduction

- This chapter will help you create more efficient programs with TMSL commands. It describes the
general structure of the TMSL command tree and the syntax rules for TMSL program and response
messages. It also explains how to do all of the following things:

a Send multiple commands.

w Shorten commands by abbreviating mnemonics.

» Shorten commands by omitting implied mnemonics.

Programming with TMSL Commands
The Command Tree

The Command Tree

The TMSL standard organizes related instrument functions by grouping them together on a
common branch of a command tree. Each branch is assigned a mnemonic to indicate the nature of
the related functions. For example, the HP 3588A’s marker functions are grouped together on the
MARKER branch of the command tree. The MARKER branch is only one of 23 major TMSL
branches—called subsystems-—used by the HP 3588A.

When many functions are grouped together on a particular branch, additional branching is used to
organize these functions into groups that are even more closely related. The MARKER branch
serves as a good example because the analyzer provides many marker functions. Offset marker
functions are grouped together on the OFFSET branch of the MARKER branch, peak search
marker functions are grouped together on the MAXIMUM branch, and so on.

The branching process continues until each analyzer function is assigned to its own branch. For
example, the function that turns the analyzer’s peak track marker on and off is assigned to the
TRACK branch of the MAXIMUM branch of the MARKER branch. The command looks like this:

MARKER :MAXTMUM: TRACK ON

»

Notice that branching points on the command tree are indicated with colons. Also notice that the
parameter you assign to the function—ON in this case~is separated from the rest of the command
by a space.

Programming with TMSL. Commands
Sending Multiple Commands

Sending Multiple Commands

You can send multiple commands within a single program message by separating the commands with
semicolons. For example, the following program message—sent within an HP BASIC OUTPUT
statement-——would turn on the offset marker and move the main marker to the highest peak on the
trace:

OUTPUT 719;"MARKER:OFFSET ON; :MARKER:MAXIMUM:GLOBAL"

The analyzer’s command parser allows you to simplify the previous program message. This is
because one of the parser’s main functions is to keep track of a program message’s position in the
command tree. If you take advantage of this parser function, you can create the equivalent, but
simpler, program message:

OUTPUT 719; "MARKER:OFFSET ON;MAXIMUM:GLOBAL"

In the first version of the program message, the semicolon that separates the two commands is
followed by a colon. Whenever this occurs, the command parser is reset to the base of the command
tree. As a result, the next command is only valid if it includes the entire mnemonic path from the
base of the tree.

In the second version of the program message, the semicolon that separates the two commands is
not followed by a colon. Whenever this occurs, the command parser assumes that the mnemonics of
the second command arise from the same branch of the tree as the final mnemonic of the preceding
command. OFFSET, the final mnemonic of the preceding command, arises from the MARKER
branch. So MAXIMUM, the first mnemonic of the second command, is also assumed to arise from
the MARKER branch.

Here is a longer series of commands—again, sent within HP BASIC OUTPUT statements—that can
be combined into a single program message:

OUTPUT 719;"MARKER:STATE ON"
QUTPUT 719;"MARKER:OFFSET ON"
OUTPUT 719; "MARKER:MAXIMUM:GLOBAL"
OUTPUT 719; "MARKER :MAXIMUM:RIGHT"

The single program message would be:

QUTPUT 719;"MARKER:STATE ON;OFFSET ON;MAXIMUM:GLOBAL;RIGHT"

3-3

Programming with TMSL Commands
Command Abbreviation

Command Abbreviation

Each command mnemonic has a long form and a short form. The short forms of the mnemonics
allow you to send abbreviated commands. The mnemonics’ short forms are created according to the
following rules:

» If the long form of the mnemonic has less than four characters, the short form is the same as the
long form. For example, ARM remains ARM.

» If the long form of the mnemonic has exactly four characters, the short form is the same as the
long form. For example, USER remains USER.

» If the long form of mnemonic has more than four characters and the fourth character is a
consonant, the short form consists of the first four characters of the long form. For example,
AVERAGE becomes AVER.

» If the long form of mnemonic has more than four characters and the fourth character is a vowel,
the short form consists of the first three characters of the long form. For example, LIMIT
becomes LIM. '

Note The syntax descriptions in the Command Reference chapters use upper-case
characters to identify the short form of a particular mnemonic.

If the rules listed in this section are applied to the last program message in the preceding section, the
statement:

OUTPUT 719;"MARKER:STATE ON;OFFSET ON;MAXIMUM:GLOBAL;RIGHT"

becomes

OUTPUT 719;"MARK:STAT ON;OFFS ON;MAX:GLOB;RIGH"

3-4

Programming with TMSL Commands
Implied Mnemonics

Implied Mnemonics

You can omit some mnemonics from TMSI. commands without changing effect of the command.
These special mnemonics are called implied mnemonics, and they are used in many subsystems.

The MARKER subsystem contains the implied mnemonic STATE at its first branching point. Asa
result, you can send either of the following commands to the analyzer (using HP BASIC) to turn on
the main markers:

OUTPUT 719;"MARKER:STATE ON"

OUTPUT 719;"MARKER ON"

The first mnemonic in the SENSE subsystem is also an implied mnemonic, so you can omit it from
any SENSE command. These two commands are equivalent:

OUTPUT 719;"SENSE:FREQUENCY:SPAN:FULL"

OUTPUT 719;"FREQUENCY:SPAN:FULL"
and so are these:

OUTPUT 719;"SENSE:SWEEP:MODE AUTO"

OUTPUT 719;"SWEEP:MODE AUTO"

Programming with TMSL Commands
Message Syntax

Message Syntax

As mentioned in chapter 2, the analyzer uses program messages and response messages to
communicate with other devices on the HP-IB. This section uses syntax diagrams to describe the
general syntax rules for both kinds of messages.

Conventions

The flow of syntax diagrams is generally from left to right. However, elements that repeat require a
return path that goes from right to left. Any message that can be generated by following a diagram
from its entry point to its exit point, in the direction indicated by the arrows, is valid.

Angle brackets < > enclose the names of syntactic items that need further definition. The
definition is included either in the text accompanying the diagram, in a subsequent diagram, or in the
next section, “Common Definitions.”

The symbol ::= means “is defined as.” When two items are separated by this symbol, the second
item can replace the first in any statement that contains the first item.

Common Definitions

The syntax diagrams have the following definitions in common:

<LF> is the line feed character (ASCII decimal 10).

<~ END> is assertion of the HP-IB END message while the last byte of data is on the bus.
<SP > is the space character (ASCII decimal 32).

<WSP> is one or more white space characters (ASCII decimal 0-9 and 11-32).

<digit> is one character in the range 0-9 (ASCII decimal 48-57).

<alpha> is one character of the alphabet. The character can be either upper-case (ASCII
decimal 65-90) or lower-case (ASCII decimal 97-122) unless otherwise noted.

Special Syntactic Elements
Several syntactic elements have special meanings:

» colon (:) — When a command or query contains a series of mnemonics, the mnemonics are
separated by colons. A colon immediately following a mnemonic tells the command parser that
the program message is proceeding to the next level of the command tree. A colon immediately
following a semicolon tells the command parser that the program message is returning to the
base of the command tree. For more information, see “The Command Tree” and “Sending
Multiple Commands” at the beginning of this chapter.

3-6

Programming with TMSL Commands
Message Syntax

» semicolon (;) -~ When a program message contains more than one command or query, a
semicolon is used to separate them from each other. For example, if you want to autorange the
analyzer’s inputs and then start a measurement using one program message, the message would
be:

SENSE: POWER:RANGE:AUTO ONCE;:ABORT; :INITIATE: IMMEDIATE

= comma (,) ~— A comma separates the data sent with a command or returned with a response.
For example, the SYSTEM:TIME command requires three values to set the analyzer’s clock:
one for hours, one for minutes, and one for seconds. A message to set the clock to 8:45 AM
would be:

SYSTEM:TIME 8,45,0

u <WSP> — One or more white space characters are optional in many parts of a program
message. However, at least one is required to separate a program header (the command or
query) from its program data (the parameters). The previous example contains a space between
the program header (SYSTEM:TIME) and its program data (8,45,0).

® <message terminator > — A message terminator is required at the end of a program message or

a response message. Program message terminators are described in “Program Message Syntax.”
Response terminators are described in “Response Message Syntax.”

Program Message Syntax

The syntax for a terminated program message is:

<pfogram =program messade
O WS 3 '] fermingtors>

<program message terminator>::=

e
—-Ib«{ < H<“END>}——>

X

3-7

Programming with TMSL Commands

Message Syntax

<program message > ;=

ke Oy [k

<program
messgge unit>

<program message unit>:

<comihdand
message whil>

<quer

- -

¥ /
message unit>

<command message unit>::=

(O

<program | f
’ MSQJib i e <W3P> \
i

<query message unit>:=

<program
hegder>

<program
dafa>

e
<WSP> e

‘

-

<Drogram
dafo»

<WSP>

£

<program header>::=

i <gimple
T lprogram headers

<gompound
progrom headey =

<COmman
program heoder>

<simple program header>::=

<program

<compound program header>:=

<common program header>:=

<progrom
MEmOnIC>

<program
™ mnemonic>

Programming with TMSL Commands
Message Syntax

Programming with TMSL Commands
Message Syntax

<program mnemonic> =

o e e

<digit> ;»M/

<program data>:=

<NRf decimal <guffix data> e
numeric_dotg> ; '}
<character K
datg>
<sgtring data> | =
<expression
dato> i

<definite length S
block dato>

W, <igefinite length T
block dato>

Y

T The definition of indefinite length block data includes termination with <LF> < ~END=>. This
serves the dual function of terminating the data and terminating the program message.

Program data and response data are described in chapter 4, “Transferring Data.” <suffix data> is
dependent on the command sent.

Response Message Syntax

The syntax for a terminated response message is:

<response <response message
mEssape> terminator>=

<response message terminator>::=

-———-bi <l o L———’i <~ENDO> l—’i

<Iesponse message>::=

. T <response .

dato>

Programming with TMSL Commands
Message Syntax

3-11

Programming with TMSL. Commands
Message Syntax

<response data>:=

<NR1 decimat
numeric data>

y

v

a] <NRZ decimai
T numeric doto>

<NR3 decimal
fumeric dgata>

o <Chorocter &

w data>
-*{ <siring dato> ¥
<EXDTESSION N

) dutor

g =gafinite length
biock dofo>

Response data and program data are described in chapter 4, “Transferring Data.”

3-12

Transferring Data

Introduction

Data can be transferred between the HP 3588A and a controller via the HP-IB data lines, DIO1
through DIOS. Such transfers occur in a byte-serial (one byte at a time), bit-parallel (8 bits at a
time) fashion. This chapter discusses the following aspects of data transfer:

» The different data types used during data transfers.

w Data encoding used during transfers of numeric block data.

Transferring Data
Data Types

Data Types

The HP 3388A uses a number of different data types during data transfers. They are described in
this section using syntax diagrams.

Conventions

The flow of syntax diagrams is generally from left to right. However, elements that repeat require a
return path that goes from right to left. Any data you can generate by following a diagram from its
entry point to its exit point, in the direction indicated by the arrows, is valid.

Angle brackets < > enclose the names of syntactic items that need further definition. The
definition is included either in the text accompanying the diagram, or in the next section, “Common
Definitions.”

Common Definitions

The syntax diagrams have the following definitions in common:

<LF> is the line feed character (ASCII decimal 10).

<~ END> is assertion of the HP-IB END message while the last byte of data is on the bus.
<SP> is the space character (ASCII decimal 32).

<WSP> is one or more white space characters (ASCII decimal 0-9 and 11-32).

<digit> is one character in the range 0-9 (ASCII decimal 48-57).

<non-zero digit> is one character in the range 1-9 (ASCII decimal 49-57).

<alpha> is one character of the alphabet. The character can be either upper-case (ASCH
decimal 65-90) or lower-case (ASCII decimal 97-122) unless otherwise noted.

Decimal Numeric Data

The analyzer returns three types of decimal numeric data in response to queries:

= Integers—returned as NRI data.
» Fixed-point numbers—returned as NR2 data.
m Floating-point numbers-—returned as NR3 data.

You can use the more flexible syntax of NRf data when sending any of the three decimal numeric
data types to the analyzer. The NRx data syntax is described in the following four syntax diagrams.

NR1 data:

"NR2 data:

@

- <0igit>

NR3 data;

NRf data:

2

o~ <gigit>

<digit>
e

<digit>

{

Transferring Data
Data Types

e <ligit> i % o

i R

4-3

Transferring Data
Data Types

Character Data

The format you use to send character data is:

e

‘The “_” in the circle is the underscore character (ASCII decimal 95).

The format used when the analyzer returns character data is the same as the format used to send
character data, with one exception—the analyzer never returns lower-case alpha characters.

String Data

The format you use to send string data is:

ASCE chor other
than double-~quote

ASCH char ather
thon single-gquote |-

Note that you must use two double-quote characters (") to represent one (") in a string that is
delimited by double-quote characters. You must use two single-quote characters () to represent
one () in a string that is delimited by single-quote characters.

The format used when the analyzer returns string data is the same as the format used to send string
data, with one exception: the analyzer never returns string data using the single-quote path.

4-4

Transferring Data
Data Types

Expression Data

The format you use to send expression data is:

< EXDFESSION
elemant>

The the only command that uses expression data is CALC:MATH:EXPR. The syntax description
for that command contains a list of acceptable expression elements.

[

The analyzer returns expression data surrounded by double-quotes: "<expression data>".

Block Data

The analyzer returns one type of block data in response to queries: definite length block data.
However, when you send block data to the analyzer, you can send it either as definite length or
indefinite length block data.

Note The analyzer always accepts block data, regardiess of the setting of FORM:DATA.
However, if FORM:DATA is set to ASC, values in the block must be encoded as
d 64-bit binary floating-point numbers. (For more information, see the next section of
this chapter, “Data Encoding for Block Data.”

45

Transferring Data
Data Types

Definite Length Block Data

The format you use to send definite length block data is:

gata Dyfeg

B <MON-Zera digits

pom << (1] 1>
e

The elements #, <non-zero digit>, and <digit> make up a header for the block data. <non-zero
digit> indicates how many times <digit> is repeated. The <digits> are interpreted as a single
decimal number, which indicates how many bytes of data follow in the block. Here is an example:

l Block Header | Block Data |
| byte1 byte2 byte3 byted | byte 5 byte 6 byte 19 !
2 1 5 <data_byte_1> <data_byte 2> <data_byte 15>

<non-zero digit> is 2, which means that the following two bytes should be taken together as a single
decimal number. In this case, the pumber is 15. The following 15 bytes are the 5% through 19"
bytes of the data transfer, but they are the 1* through 15" bytes of the data block.

indefinite Length Block Data

The format you use to send indefinite length block data is:

e @ data byte i | F> }-—D«fﬂt{Nbe

The first two bytes of the data transfer, # and 0, make up a header for the block data. The data itself
does not begin until the third byte of the data transfer.

4-8

Transferring Data
Data Encoding for Block Data

Data Encoding for Block Data

The FORM:DATA command selects the data type and data encoding that will be used to transfer
large blocks of numeric data between the analyzer and an external controller:

s REAL selects the block data type (either the definite or indefinite length syntax). The block is
transferred as a series of binary-encoded floating-point numbers.

s ASCiiselects the decimal numeric data type (either the NR1, NR2, NR3, NRf syntax). The
block is transferred as a series of ASClI-encoded NRx numbers separated by commas.

Blocks that contain mixed data—both numbers and ASCII characters—ignore the setting of
FORM:DATA. They are always transferred as either definite or indefinite length block data. The
following commands transfer blocks of mixed data:

CALC:MATH:DATA
DISP:LIM:LOW:DATA
DISP:LIM:UPP:DATA
PROG:SEL:DEF
SYST:SET

ASCH Encoding

The ASCII 7-bit code is defined by the ANSI X3.4-1977 standard. When an ASCII-encoded byte is
sent over the HP-IB, bits 0 through 6 of the byte (bit 0 being the least significant bit} correspond to
the HP-IB data lines DIO1 through DIO7. DIOS is ignored.

When you use ASCII encoding for block data, you can specify the number of significant digits to be
returned for each number in the block. For example, if you send the command FORM:DATA
ASC,7 then all numbers will be returned as NR3 data with 7 significant digits.

Transferring Data
Data Encoding for Block Data

Binary Encoding

When you use binary encoding for block data, all numbers in the block are transferred as 32-bit or
64-bit binary floating-point numbers. The binary floating-point formats are defined in the IEEE
754-1985 standard. Send FORM:DATA REAL,32 to select the 32-bit format. Send FORM:DATA
REAL,64 to select the 64-bit format.

Many controllers, and the languages that run on them, use the binary floating-point formats. Both
formats have three fields in common, but the length of the fields are different for each. The fields
and their bit lengths appear in the following table:

Table 4-1. Fields in Binary Fioating-point Numbers

Field Width of Field
32-bit format 64-bit format
sign (s 1 bit 1 bit
exponent {e) 8 11
fraction (f) 23 52

When the 32-bit format is used, the decimal value of the exponent field ranges from —126 to +127,
with a bias of +127. When the 64-bit format is used, the decimal value of the exponent field ranges
from - 1022 to +1023, with a bias of +1023.

You can use the following formulas to determine the value (x) of a 32-bit binary floating-point
number. (s, €, and f must be converted from binary to decimal before using the formulas.)

fe=285andf= § then x is not a number
ffe=255andf=0 then x = -1%(e0)

10 < e < 255 then x = 1521271 4+ 1)
ffe=0andf= 0 then x = -15(28"1%0(0 + 1)
fe=0andf=0 then x = -15(0)

32-bit binary floating-point numbers are sent over the bus as follows:

po| 8 7 6 5 4 3 2 1|

| |

byte 1] e e] g e g]
byte 2 e f f f f f f f
bytes 3 and 4 1 f f { f H 1 1

Transferring Data
Data Encoding for Block Data

You can use the following formulas to determine the value {x) of a 64-bit binary floating-point
number. (Again, s, ¢, and { must be converted from binary to decimal before using the formulas.)

ffe=72047andf= 0 then x is not & number
fe=2047 andf =0 then x = —13(e)

0 < e < 2047 then x = —13(2%" 10831 + 1)
e=0andfs 0 then x = ~15(25"1092)(0 + 1)
fe=0andf=0 then x = —15(0)

64-bit binary floating-point numbers are sent over the bus as follows:

o|s 7 6 5 4 3 2 1|

byte 1] £ e e 8 e g 8
byte 2 g
bytes 3 through 8 1

—h o
el «: 4
e < +]
—r
b,
.
—

Here is an example of a number encoded in the 32-bit binary floating-point format:

byte 1 | byte 2 | byla 3 I byte 4
01000001 10010000 Q0000000 00000000
seeeeeee efffFFfF fEFFEFEF fEELELEEf
Where:
f binary [dacimal
§= 0 = 0
= 10000011 = 131
f= O = 125 .
Therefore:

x=(-1)00(131-127)4 125
= (241125
= 18

Using Status Registers

Introduction

. The HP 3588A’s status registers contain information about various analyzer conditions. This
chapter describes the registers and tells you how to use them in your HP-IB programs. The registers
are explained in the following sections:

» General Status Register Model

m The Service Request Process

= The HP 3588A’s Register Sets

51

Using Status Registers
General Status Register Model

General Status Register Model

Overview

The general status register model, shown in figure 5-1, is the building block of the HP 3588As status
system. Most register sets in the analyzer include all of the registers shown in the general model
(although commands are not always available for reading or writing a particular register). The
information flow within a register set starts at the condition register and ends at the register
summary bit. You control the flow by altering bits in the transition and enable registers.

Two register sets—Status Byte and Standard Event—are 8 bits wide. All others are 16 bits wide, but
the most significant bit (bit 15) in the larger registers is always set to 0.

Condition Transition Evernt Enghie L.ogical
Register Registers Register Register OR
Paos. Neg,
st o [0 ™ [A
Bit 1 |1 " " - Sun'jmary
Bt 7 [2 R o Bit
a4 L3 » L] . -
Bit Nams —i » . ® ° .
:] L] L] L] L] L]
Bit Number

Figure 5-1. General Status Register Model

Condition Register

Condition registers continuously monitor hardware and firmware status. Bits in a condition register
are not latched or buffered, they are updated in real time. When the condition monitored by a
particular bit becomes true, the bit is set to 1. When the condition becomes false, the bit is reset to
0. Condition registers are read-only.

Transition Registers

Transition registers control the reporting of condition changes to the event registers. Positive
changes in the state of a condition bit (0 to 1) are only reported to the event register if the
corresponding positive transition bit is set to 1. Negative changes in the state of a condition bit (1 to
0} are only reported to the event register if the corresponding negative transition bit is set to 1. (If
you set both transition bits to 1, positive and negative changes are reported to the corresponding
event bit.) You can read and write most transition registers.

Using Status Registers
General Status Register Model

Event Register

Event registers latch any reported condition changes. When a transition bit allows a condition
change to be reported, the corresponding event bit is set to 1. Once set, an event bit is no longer
affected by condition changes. It remains set until the event register is cleared— either when you
read the register or when you send the *CLS (clear status) command. Event registers are read-only.

An event register is cleared when you read it. All event registers are cleared when you send the
*CLS command.

Enable Register

Enable registers control the reporting of events (latched conditions) to the register summary bit. If
an enable bit is set to one, the corresponding event bit is included in the logical ORing process that
determines the state of the summary bit. (The summary bit is only set to 1 if one or more enabled
event bits are set to 1.) You can read and write all enable registers.

5-3

Using Status Registers
The Service Request Process

The Service Request Process

Two Ways to Use Registers

There are two methods you can use to access the information in status registers:

& The direct-read method.
x The service request (SRQ) method.

In the direct-read method, the analyzer has a passive role. It only tells the controller that conditions
have changed when the controller asks the right question. In the SRQ method, the analyzer takes a
more active role. It tells the controller when there has been a condition change without the
controller asking. Either method allows you to monitor one or more conditions.

When you monitor a condition with the direct-read method, you must do the following things:

1. Determine which register contains the bit that monitors the condition.
2. Send the unique HP-IB query that reads that register.

3. Examine the bit to see if the condition has changed.

The direct-read method works well if you do not need to know about changes the moment they
occur. It does not work well when you must know about condition changes immediately. Your
program would need to continuously read the registers at very short intervals. Since this would make
the program relatively inefficient, it would be better to use the SRQ method.

When you monitor a condition with the SRQ method, you must do the following things:

1. Determine which bit monitors the condition,
2. Determine how that bit reports to the request service (RQS) bit of the Status Byte.

3. Send HP-IB commands to enable the bit that monitors the condition and to enable the
summary bits that report the condition to the RQS bit.

4. Enable the controller to respond to service requests.

When the condition changes, the analyzer sets its RQS bit and the HP-IB’s SRQ line. Your
program determines how the controller responds to the SRQ, but the important point is this: the
controlier is informed of the change as soon as it occurs. The time the controller would otherwise
have used to monitor the condition can now be used to perform other tasks.

Generating a Service Request
To use the SRQ method, you must understand how service requests are generated. As shown in

figure 5-2, other register sets in the HP 3588A report to the Status Byte. (Most of them report
directly, but three report indirectly—via the Questionable Data register set.)

54

Using Status Registers
The Service Request Process

from other Status Service
register Byte Reguest
sels register enable
ragister
(0]] Z N
1
iz] | %
=N - =y
L Y
F] — =y
s) - > 3
RS | MSS L X
7 Serarams n@
Service f
Servicg Reques!
Reques! «—————Process
(SRGY

Figure 5-2. Generating a Service Request

When a register set causes its summary bit in the Status Byte to change from 0 to 1, the analyzer may
initiate the service request (SRQ) process. However, the process is only initiated if both of the
following conditions are true:

» The corresponding bit of the Service Request enable register is also set to 1.

a The analyzer does not have a service request pending. (A service request is considered to be
pending between the time the analyzer’s SRQ process is initiated and the time the controller
reads the Status Byte register with a serial poll.)

The SRQ process sets the HP-IB’s SRQ line true and also sets the Status Byte's request service
(RQS) bit to 1. Both actions are necessary to inform the controller the HP 3588A requires service.
Setting the SRQ line only informs the controller that some device on the bus requires service.
Setting the RQS bit allows the controller to determine that the HP 3588A, in particular, requires
service.

If your program enables the controller to detect and respond to service requests, it should instruct
the controller to perform a serial poll when the HP-IB’s SRQ line is set true. Each device on the bus
returns the contents of its Status Byte register in response to this poll. The device whose RQS bit is
set to 1 is the device that requested service.

Note When you read the analyzer’s Status Byte with a serial poll, the RQS bit is
reset to 0. Other bits in the register are not affected.

As implied in figure 5-2, bit 6 of the Status Byte register serves two functions. Two different
methods for reading the register allow you to access the two functions. Reading the register with a

serial poll allows you to access the bit’s RQS function. Reading the register with *STB allows you to
access the bit’s MSS function.

Using Status Registers
The HP 3588A’s Register Sets

The HP 3588A’s Register Seis

Register Summary

The HP 3588A uses nine register sets to keep track of instrument status:

Status Byte.

Device State.

Limit Fail.

Questionable Data.
Questionable Frequency.
Questionable Power.
Standard Event.
Standard Operation.
User Defined.

Their reporting structure is summarized in figure 5-3. They are described in greater detail in the
following sections.

5-6

Using Status Registers
The HP 3588A’s Register Sets

User Defined

|

bl
I\\ Uogicat DR N

Questionable Power

P Device Stale
L . 7 -
< ;
N fg e
B A
g -y
) &
-~ — S
.
——

Questionable Frequency
Questionable Datla

R
E ‘ — Status Byle
mm.mmwm
|
J

N

L4

J'L l ”‘lTELOR

9

Lagicol OR

[

l
.
kS

Ll

I
N

Limit Fol Qutput Queue —¥

ANCRRRAN

Iﬂﬂﬂ?%ﬂﬂﬂ
Lol l)

—
—
—|

J—

Standard Event

A

el
—]

]
l’) +ORMS,410 ! } — R

ESSCogeat DR

Lddbd b

_Ggical OR N

-——

Standard Operation
™ |
—

._.%’

|
£ |
)

7

. 7

Logica

Lidd

Figure 5-3. HP 3588A Register Summary

Using Status Registers
The HP 3588A’s Register Sets

Status Byte Register Set

The Status Byte register set summarizes the states of the other register sets and monitors the

analyzer’s output queue. It is also responsible for generating service requests (see “Generating
Service Requests” in this chapter).

serial poll (bit 6 = Request Service)

% *STR? (bit 6 = Master Summary Status)
8it Weights " *SRE
‘ L
User Defined Summary o)
1
Device State Summary (2 | T o
Quastionable Data Summary ER | =
Messoge Avaiable EN L » %
Standard Event Summary B &
. 5 s -
Reguest Service/Master Summary Sigtus ROS i M5S K
Standord Operction Summory 7 n é

l

Figure 5-4. Status Byte Register Set

The Status Byte register set does not conform to the general status register model described at the
beginning of this chapter. It contains only two registers: the Status Byte register and the Service
Request enable register. The Status Byte register behaves like a condition register for all bits except

bit 6. The Service Request enable register behaves like a standard enable register except that bit 6 is
always set to 0.

Bits in the Status Byte register are set to 1 under the following conditions:

s User Defined Summary (bit 0) is set to 1 when one or more enabled bits in the User Defined
event register are set to 1.

= Device State Summary (bit 2) is set to 1 when one or more enabled bits in the Device State
event register are set to 1.

» Questionable Data Summary (bit 3) is set to 1 when one or more enabled bits in the
Questionable Data event register are set to 1.

m Message Available (bit 4) is set to 1 when the output queue contains a response message.

» Standard Event Summary (bit 5) is set to 1 when one or more enabled bits in the Standard Event
event register are set to 1.

Using Status Registers
The HP 3588A’s Register Sets

» Master Summary Status (bit 6, when read by *STB) is set to 1 when one or more enabled bits in
the Status Byte register are set to 1.

s Request Service (bit 6, when read by serial poll) is set to 1 by the service request process (see
“Generating a Service Request” in this chapter).

» Standard Operation Summary (bit 7) is set to 1 when one or more enabled bits in the Standard
Operation event register are set to 1.

Additional information is available under the commands you use to read and write the Status Byte
registers. The commands are shown in figure 5-4; they are described in chapter 8.

5-9

Using Status Registers
The HP 3588A’s Register Sets

Device State Register Set

The Device State register set monitors the states of three device specific parameters.

STATus DEVice CONDition?
STATus DEVice PTRansition

! e STATUs DEVice -NTRansition
STATus DEVice EVENE?

§rw«mw‘:':'ﬂt\Tus Device :ENABe

Bit Waights 1 .L |

MTM 1 Adtocal OFf 10| " . 7 7

112 Sweep Spant Limited 11 |] L] 7

2 14 Hordware Failed |2 - || ;

3 18 Performonce Taests Runming 31]] 3

R 5%]]

L2} 52 ER] . &

. ?;8 —;——- — e] 8it 7

L] - 7 g -+ Status Byle

EREED 5]]] 2 . y

ER L EN]] 7

| 10 1024 K=]] T

1112048 41]

| 127 4096 |12 | _— _— 7

[5] o192 = T

| 14] 16384 | 1 L F]

] X . - i

Figure 5-5. Device State Register Set

Bits in the Device State condition register are set to 1 under the following conditions:

» Autocal Off (bit 0) is set to 1 when the analyzer’s autocalibration function is disabled
(CAL:AUTO OFF).

m Sweep Span Limited (bit 1) is set to 1 when the current combination of span and center

frequencies do not allow the measurement to fill an entire trace. (Trace values outside the range
of 0 to 150 MHz are not allowed.)

s Hardware Failed (bit 2) is set to 1 when analyzer detects a failure in its own hardware.

s Performance Test Running (bit 3) is set to 1 when performance tests are running.

Additional information is available under the commands you use to read and write the Device State
registers. The commands are shown in figure 5-5; they are described in chapter 27.

Using Status Registers
The HP 3588A’s Register Sets

Limit Fail Register Set
The Limit Fail register set monitors limit test results for both traces.

STATus QUESHonabte LMt :CONDition?

STATus QUESHonable LM PTRansition

STATus QUESHonoble (LMt NTRansition

STATus QUESHonanie LMl EVENE?

- STATus AUESHonabte LMt ENABle

l i
| N
Bit Weights
—)] —_ ol o
G Trace A Upper Faileg (0]] m
1112 Troce A Lower Foiled |1 | | |
L2 14 Trace B Upper Failed [Z |] |
1318 Trace B Lower Faled 13 | L
2] [u T]
(5|32 R - . &
e - — —— P Bit 9
”""g"““ 1225?3 ;— : Z 'é >+ Questionable Data
5] 512 el .] -
011024 10] |]
| 11] 2048 i1] |]
121 4096 12]]
131 8192 13 |] m
| 14 16384 1] m a
%]] — — 4

Figure 5-6. Limit Fail Register Set

Bits in the Limit Fail condition register are set to 1 under the following conditions:

» Trace A Upper Failed (bit 0) is set to 1. when any point on trace A exceeds its upper limit.

m Trace A Lower Failed (bit 1) is set to 1 when any point on trace A falls below its lower limit.
m Trace B Upper Failed (bit 2} is set to 1 when any point on trace B exceeds its upper limit.

w Trace B Lower Failed (bit 3) is set to 1 when any point on trace B falls below its lower limit.

Additional information is available under the commands you use to read and write the Limit Fail
registers. The commands are shown in figure 5-6; they are described in chapter 27.

5-11

Using Status Registers
The HP 3588A’s Register Sets

Questionable Data Register Set

The Questionable Data register set monitors conditions that affect the quality of measurement data.

e STATus QUESHznabkie (CONDition?
STATus (QUESHonable PTRansion

i
STATus QUESHonabte NTRansition
— STATus QUEStionabie :EVENI?
STATus QUEStioncbla ENABe
Bit wWeights ;

T) 70 ™
011 R]] y
KR 1 m] o
24 1z] - |
3418 Power |3 .] /‘
L4 115 X -]
S 132 Frequency |5] L B &
L 64 e et - T Bit 3
71128 - - | -
M o Catibration [8]] B ~—+ Status Byte
Ry Limit Fat [| . . -
|10 1024 10] -] '
1] 2048 kil - = 7
| 121 4096 |17 3] - y
| i3] 8192 113 | | o -
4] 16384 34 | - —
5 N - - 4

Figure 5-7. Questionable Data Register Set

Bits in the Questionable Data condition register are set to 1 under the following conditions:

= Power (bit 3) is set to 1 when one or more enabled bits in the Questionable Power event register
‘aresetto 1.

= Frequency (bit 5) is set to 1 when one or more enabled bits in the Questionable Frequency event
register are set to 1.

» Calibration (bit 8) is set to 1 when the last self-calibration attempted by the analyzer failed.

n Limit Fail (bit 9) is set to 1 when one or more enabled bits in the Limit Fail event register are set
to 1.

Additional information is available under the commands you use to read and write the Questionable
Data registers. The commands are shown in figure 5-7; they are described in chapter 27.

512

Using Status Registers
The HP 3588A’s Register Sets

Questionable Frequency Register Set

The Questionable Frequency register set monitors conditions that affect the frequency accuracy of
measurement data.

rm STATus QUESHonabie [FREQuency :CONDition?
; STATus QUEStionahle [FREQuency PTRansihion
§ STATus [QUESHonable FREGQuency :NTRansition
’ — STATus QUESHonable FREQuency EVEN?
| STATus QUESHonable FREGQuency [ENARie
Bif Weighis _L
(0] Spon Uncalibreted []] - 7 =
1]z LS Untocked 1 - t
214 Reference Unlocked |2]]
2.8 EN - L]
4 |16 2]] O ¢
EAE EN | - £
b B] — B Bit 5
% ;251 %—- - _— =9 >~"+ Questionable Dato
Q
EREir 5]] | -
|10 1024 130 m M
1] 2048 111]]
121 4098 112 m]
1318192 143)
| 141 16384 1% m | 7
X El .] 3

Figure 5-8. Questionable Frequency Register Set

Bits in the Questionable Frequency condition register are set to 1 under the following conditions:

» Span Uncalibrated (bit 0) is set to 1 when you request a span and sweep time that cannotbe
realized.

s LO Unlocked (bit 1) is set to 1 when the analyzer’s local oscillator is not locked to its internal
reference signal(s).

» Reference Unlocked (bit 2) is set to 1 when the analyzer’s internal reference signal is not locked
to the external reference signal being applied to the analyzer’s rear panel.

Additional information is available under the commands you use to read and write the Questionable
Frequency registers. The commands are shown in figure 5-8; they are described in chapter 27.

5-13

Using Status Registers
The HP 3588A’s Register Sets

Questionable Power Register Set

The Questionable Power register set monitors conditions that affect the amplitude accuracy of
measurement data.

— STATus QUE Stionoble :POwWer (LONDioR”?

STATus QUESHenable POWer PTRansition
- STATus QUESHonable POwer NTRansition
STATus [QUESHonable :POWer :EVEN?
 STATus QUESHonoble FOWer £NABle
Bit Weights
& —
ERK Input Ovariooged [0]] [] 7
1132 Uncaol Oversweep (1 |]]
2 |4 nput Tripped |2] 1 1| »
38 Source Tripped |3 |] |
L) ADC Overlogded |4 ", - w7
EXEE EN] iz
e = 5 s
5l = - —] -+ Questionable Dato
15 256 EN] i a0
L9 1512 EN L -
110} 1024 110 |]]
1] 2048]]] o
2] 4098 112] - —
[13] 8192 [15] l]
14| 16384 1 ///

Figure 5-8. Questionable Power Register Set

Bits in the Questionable Power condition register are set to 1 under the following conditions:

m Input Overloaded (bit 0) is set to 1 when any signal between 0 and 150 MHz exceeds the current
input range.

s Uncal Oversweep (bit 1) is set to 1 when the analyzer is sweeping too fast to provide accurate
measurement results.

» Input Tripped (bit 2) is set to 1 when the analyzer’s input-protection relay has been tripped
{opened).

= Source Tripped (bit 3) is set to 1 when the analyzer’s source-protection relay has been tripped
(opened).

» ADC Overloaded (bit 4) is set to 1 when the analyzer’s analog-to-digital converter is being
overloaded.

Additional information is available under the commands you use to read and write the Questionable
Power registers. The commands are shown in figure 5-9; they are described in chapter 27.

5-14

Using Status Registers
The HP 3588A’s Register Sets

Standard Event Register Set

The Standard Event register set monitors TMSL errors and synchronization conditions.

=ESR?
*ESE
Bit Weights _Em
o 11 Operation Complete [0 .7
R request Control |1 e ,
'z 4 Query Error [2 |] & .
ERE: Device Dependent Error | 3] 5 i Bit 5
KX Execution Error | 4 | Mo Status Byte
| S 132 Command Error |3 } L & _
X ¥] J Note: Ev = Event
L7 1128 Power On | 7 |) _4 Ern « Enable
Ev Er

Figure 5-10. Standard Event Register Set

The Standard Event register set does not conform to the general status register model described at
the beginning of this chapter. It contains only two registers: the Standard Event event register and
the Standard Event enable register. The Standard Event event register is similar to other event
registers, but it acts like conditions are always reported through a positive transition register that has
all bits set to 1. The Standard Event enable register is the same as other enable registers.

Bits in the Standard Event event register are set to 1 under the following conditions:

w Operation Complete (bit 0) is set to one when the following two events occur (in the order
listed):

- Yousend the *OPC command to the analyzer.

- The analyzer completes all pending overlapped commands (see “Synchronization” in
Chapter 2).

» Request Control (bit 1) is set to 1 when both of the following conditions are true:
- The analyzer is configured as an addressable-only HP-IB device (see “Controller
Capabilities” in Chapter 2).

- The analyzer is instructed to do something (such as plotting or printing) that requires it to
take control of the bus.

5-15

Using Status Registers

The

HP 3588A’s Register Sets
Query Error (bit 2) is set to 1 when the TMSL command parser detects a query error.

Device Dependent Error (bit 3) is set to 1 when the TMSL command parser detects a
device-dependent error.

Execution Error (bit 4) is set to 1 when the TMSL command parser detects an execution error.
Command Error (bit 5) is set to 1 when the TMSL command parser detects a command error.

Power On (bit 7) is set to 1 when you turn the analyzer on.

Additional information is available under the commands you use to read and write the Standard
Event registers. The commands are shown in figure 5-10; they are described in chapter 8.

5-16

Using Status Registers
The HP 3588A’s Register Sets

Standard Operation Register Set

The Standard Operation register set monitors conditions in the analyzer’s measurement process. It
also monitors the state of the current HP Instrument BASIC program.

STATus OPERation :LONDition?
STATus :OPERation PTRansition

TaTus (OPERgtion NTRansition

f

STATus OPERation :EVENI?

STATus OPERation :ENABle
Bit Weights
R Catiprating [0]] ’Z/, b
ERY, Sefting |1 |] b ¥
T L Ranging |2 | |]
ERE Sweeping |3 |] -
a6 Measuring |4 | L o
R Waiting for TRIG |5 L | ol
6 164 waiting for ARM _%_]] —g/ git 7
A
% 122;86 Averaging8......., W— p— g -+ Status Byte
[& e — Sl .
5512 ER m n s
(101 1024 10 - —
| 1] 2048 N — h—
| 12] 4096 ea] foed
13] B9z NER - -
"Z1 16384 Progrom Running 14]] I
X X - - -

Figure 5-11. Standard Operation Register Set

Bits in the Standard Operation condition register are set to 1 under the following conditions:

» Calibrating (bit 0) is set to 1 while the self-calibration routine is running,
u Settling (bit 1) is set to 1 while the measurement hardware is settling,
» Ranging (bit 2) is set to 1 while the input range is changing.

n Sweeping (bit 3) is set to 1 during the data collecting portion of any swept spectrum
measurement (including manual sweep and zero span).

a Measuring (bit 4) is set to 1 during the data collecting portion of any swept spectrum or narrow
band zoom measurement.

» Waiting for TRIG (bit 5) is set to 1 when the analyzer is ready to accept a trigger signal from one
of the trigger sources. (If a trigger signal is sent before this bit is set, the signal is ignored.)

5-17

Using Status Registers
The HP 3588A’s Register Sets

u Waiting for ARM (bit 6) is set to 1 when both of the following conditions are true:
- Manual arming is selected.
- The analyzer is ready to be armed.

(If you send the ARM:IMM command before this bit is set, the command is ignored.)

s Averaging (bit 8) is set to 1 when video averaging is enabled (AVER:TYPE VID and
AVER:STAT ON).

s Program Running (bit 14) is set to 1 when the current HP Instrument BASIC program is running.

Additional information is available under the commands you use to read and write the Standard
Operation registers. The commands are shown in figure 5-11; they are described in chapter 27.

5-18

Using Status Registers
The HP 3588A’s Register Sets

User Defined Register Set

The User Defined register set detects STAT:USER:PULS commands and key-presses of the
analyzer’s [USER SRQ x] softkeys.

— STATus USER PULSe
bits 0-14 aiwoys se!l fo 1
bits 0-14 aiways set to U
STATus USER EVENI?
e STATUS LUSER ENABIR

i

i
(o] 0]]] zh
112 Ll] L]
| 2[4 2]] m
|3 18 EN] |
L4 |18 £ n B
=) = 11—

c — i
=] B v — 5] Bit ¢
—;4 ;25?, %—" — — B8 -+ Status Byte

L G
EXET EX —] =
10 1024 [0] -]
] 056) B | Nole: £ = Condgiti
121 409 ofe: T = Congition
KEl 8(1]926 % 2 [P = Positive Transition
—éZ' 38 e o — N o= Negitive Transition
16384 - — — Ev = Evenf

X =S — o il En = Enabie

C Ev En

Figure 5-12. User Defined Register Set

The User Defined register set conforms to the general status register model (described at the
beginning of this chapter) with the following exceptions:

» You can write (but not read) the condition register.
» You cannot write or read the transition registers.
s Bits in the positive transition register are always set to 1.

= Bits in the negative transition register are always set to 0.

Bits in the User Defined condition register are normally set to 0, but are set to 1 (briefly) when you
press a [USER SRQ x] softkey or send a STAT:USER:PULS command. If you press [USER SRQ 5], bit 5
of the condition register is pulsed high. If you send STAT:USER:PULS 32, bit 5 of the condition
register is pulsed high (2° = 32).

5-19

Programming Examples

This chapter contains listings of example programs written for the HP 3588A. All of the programs
were written in HP BASIC for use on an HP Series 200/300 computer, although most are easily
adaptable to other languages or programs. Most programs have been written to demonstrate one
specific application and thus have been kept short and concise. The programs are grouped
according to function as follows:

» Passing control

- PASSCNTL

a» Measurement synchronization
- WAI _SYNC
- OPC_SYNC
- OPCQ_SYNC

» Generating SRQ’s
- RANGE _SRQ
- AVER SRQ
- USER_SRQ

« Transferring data
- MOVE _STATE
- TRC_LOAD
- LOG_XAXIS

= Measurement applications
- SHAPE
- THD

= Plotter applications
- PLOT_CTRL

&-1

Programming Examples

PASSCNTL.

PASSCNTL

10 ! HP BASIC Program: PASSCNTL - Passing control to HP3588A

20 R D T i

30 ! This program instructs the HP 3588A perform a screen dump to a

49 ! printer and generate a service request when dome. Control is

50 ! passed to the HP 3588A when the print command is issued and

60 t automatically passed back when the instrument no longer needs it.

70 !

80 Scode=7 tInterface select code

90 Address=19 tAddress for HP3588A

100 Hp3588a=5code*l00+Address

110 QUTPUT Hp3588a;"*CLS" tClear the STATUS BYTE register
120 !

130 ! Program the instrument to generate SRQ on OPERATION COMPLETE. This
140 ! requires programming the STATUS BYTE and EVENT STATUS enable regs.
150 QUTPUT Hp3588a;"*ESE 1" IBit 1 = OPERATION_ COMPLETE

160 QUTPUT Hp3588a;"*SRE 32" IBit 5 = EVENT_ STATUS

170 QUTPUT Hp3588a;"*PCB 21" ISet up Pass control back address

180 !

190 ON INTR Scode GOTO Srq_handler 1Set up interrupt branching

200 ENABLE INTR Scode;?2 tEnable interrupt on SRQ

210 !

220 DISP "KEP3588A Printing screen..."

230 OUTPUT Hp3588a;"PRIN:DUMP:ALL" !Instruct analyzer to print the screen
240 QUTPUT Hp3588a;"“*0PC" !Set OPC hit when everythings complete
250 PASS CONTROL Hp3588a 1Give control of the bus to the 3588A
260 1

270 Wait_here:WAIT .5 1Walt for OPC to generate an interrupt
280 GOTO Wait_here

290 1

300 Srq_handler: 'If there's an. interrupt, then

310 IControl was passed back

320 IF BINAND(SPOLL{Hp3588a),64) THEN [HP3588A is requesting service

330 BEEFP

340 DISP "HP3588A Done Printing"

350 ELSE 'It wasn't the HP3588A

360 DISP "UNKNOWN SRQ"

370 END IF

380 END

Programming Examples

WAI_SYNC
WAI_SYNC
10 ! HP BASIC program: WAI SYNC - Measurement synchronization
20 | L L e e R
30 ! This program demonstrates how to use the *WAI command to
40 I prevent execution of an HP-IB command until all previous
50 ! commands have finished. 1In this example, the trace display
60 { will not change to the UPPER/LOWER FORMAT until after the
70 ! measurement has finished.
80 !
90 ! The *WAI command does not affect program operation. The
100 ! program will run to completion, sending all of the commands to
110 ! to the HP3588A without waiting for them to be executed.
120 L L L L T T
130 Scode=7 IInterface select code
140 Address=19
150 Hp3588a=Scode*100-+Address
160 !
16l DISP "Sending HP-IB commands..."
170 OUTPUT Hp3588a;"SCR:CONT TRACE;FORM SING" !Set format to single
180 OUTPUT Hp3588a,;"SWE:TIME 8 s !Set record length to 8 seconds
190 QUTPUT Hp3588a;"ABORT; INIT" !Start the measurement
260 OUTPUT Hp3588a; "*WAI" tTell analyzer to wait here until
210 tall HP-IB commands have finished
220 OUTPUT Hp3588a;"SCR:CONT TRACE;FORM ULOW" !Go to upper/lower
230 BEEP
240 DIS? "Finished. Display will go to UPPER/LOWER when meas. done"
250 END

Programming Examples

OPC_SYNC

OPC_SYNC

10 ! HP BASIC program: OPC_SYNC - Measurement synchronization

20 I e
30 ! This program demonstrates the how to use the *0PC command to

40 ! allow an SRQ to interrupt program execution. *0OPC will set

50 ! the OPERATION COMPLETE bit in the EVENT STATUS register

60 ! when all pending HP-IB commands have finished. With the proper

70 ! register masks, this will generate a service request.

90 !

100 Scode=7 ! Interface select code

110 Address=19

120 Hp3588a=5code*100+Address

130 !

140 OUTPUT Hp3588a;"SWE:TIME 8" ! Set record length to 8 seconds
150 OUTPUT Hp3588a;"*«CLS" ! Clear the STATUS BYTE register
160 OUTPUT Hp3588a;"*ESE 1" !Program the EVENT STATUS ENABLE reg.
170 OUTPUT Hp3588a;"+*SRE 32" 'Program the STATUS BYTE ENABLE reg.
180 !

190 ON INTR Scode,2 GOTO Srgq handler !{Set up Interrupt branching

200 ENABLE INTR Scode;?2 1Allow SRQ to generate an interrupt
210 !

220 OUTPUT Hp3588a;"ABORT; INIT® 1Start the measurement

230 OUTPUT Hp3588a;"+*0PC" IGenerate SRQ when all commands have
240 1finished.

250 Start_time=TIMEDATE

260 LOOP Do something useful while waiting
270 DISP USING "14A, 2D.D";"Elapsed time :",TIMEDATE-Start time

280 WAIT .1

290 END LOOP

300 !

310 Srg_handler: !Got an SRQ

320 Stb=SPOLL(HEp3588a) IRead STATUS BYTE and clear SRQ
330 BEEP

340 OUTPUT Hp3588a;"+ESR?" 'Read and clear EVENT STATUS reg.
350 ENTER Hp3588a;Esr

360 DISP "Got the SRQ! SPOLL returns:";Stb;" ESR returns:";Esr

370 END

Programming Examples
OPCQ_SYNC

OPCQ_SYNC

10 ! HP BASIC program: OPCQ_SYNC -
20 L T e R
30

40

50

60 !

70 !

20 Scode=7

90 Hp3588a=Scode*100+19

100 !

110 OUTPUT Hp3588a;"*RST"

120 QUTPUT Hp35884a;"*0PC?"

130 ENTER Hp3588a;0pc

140 !

150 OQUTPUT Hp3588a;"SWE:TIME 8"
160 DISP "Measurement started ..."
170 OUTPUT Hp3588a;"ABOR; INIT"
180 OUTPUT Hp3588a;"*0PCT"

190 ENTER Hp3588a;0pc

200 BEEP

210 - DISP "Measurement done"

220 END

Measurement synchronization

! This program demonstrates how to use the *0PC? HP-IB command
! to suspend the bus prior to continuing on with the

! program. After all pending HP-IB commands have finished,

!

the HP 3588A will return a 'l' in response to *0PC?.

IPreset the HP3588A
|Pause on ENTER statement until
1 **RST' command has finished

1Set record length to 8 seconds
!Start the measurement

'Pause until all pending HP-IB commands
thave finished.

Programming Examples

RANGE_SRQ

RANGE_SRQ

16 ¢t HP BASIC program: RANGE_SRQ

L e R I L
30 This program demonstrates using the instrument's status registers
40 to enable SRQs for event initiated program interrupts.

50

L i e R T
70 !

80 Se=7

50 Addr=19

100 Device=(Sc*100)+Addr

110 ASSIGN @H1p3588a TO Device

120 CLEAR SCREEN

130 !

140 ! Setup registers to detect range changes.

150 1

160 OUTPUT @Hp3588a;"+*CLS" ! CLEAR REGISTERS

170 OUTPUT @Hp3588a;"*SRE 128" ! ENABLE OPERATICONAL STATUS SUMMARY
180 OUTPUT @Hp3588a;"STAT:0PER:ENAB 4" ! ENABLE RANGE BIT

130 OUTPUT @Hp3588a;"STAT:OPER:PTR 4" ! ENABLE POS TRANSITIONS

200 QUTPUT @Hp3588a;"STAT:OPER:NTR 0" ! DISBALE NEG TRANSITIONS

210 !

220 ON INTR Sc GOSUB Check srgq

230 ENABLE INTR Sc;2

240 LOCAL 7

250 DISP." Press [Range/Input] hardkey then [SINGLE AUTORANGE] softkey"
260 ! Wait for SRQ

270 !

280 Hang_out: GOTO Hang_ out

290 !

300 Check _srg: !

310 1

320 PRINT "SRQ Received"

330 Sh=SPOLL(Device)

340 PRINT "SPOLL(";Device;") = ";Sb

350 Send_query(@Hp3588a,"STAT:OPER:EVEN?")

360 PRINT

376 ENABLE INTR Sc

380 LOCAL 7

390 DISP " Press [Range/Input] hardkey then [SINGLE AUTORANGE] softkey™
400 RETURN

410 1

420 END

430 RERRE ek Rtk drob ot St Ak b s e ek sk e e ok

440 I Send a query command and print the return value.

450 DRkeddrdddordodetb st dobdednb ook b kb e stk sk e b

460 SUB Send query(@Device,Cmd$)

470 OUTPUT @Device;Cmd$

480 ENTER @Device;Resp

450 PRINT Cmd$;" ";Resp

500 SUBEND

6-6

Programming Examples

AVER_SRQ
AVER_SRQ
i ! HP BASIC program: AVER_SRQ
2 I D
3 ! This program demonstrates using the instrument’s
4 ! status registers and SRQs for sensing sweep
5 ! completions while making a multi-sweep averaged
) ! measurement.
7 R T R R R R
8 !
9 Se=7
10 Addr=19
11 Device={8c*100)+Addr
12 ASSIGN @Hp3588a TO Device
13 !
14 ! Setup registers to detect measurement complete.
15 !
15 OUTPUT @Hp3588a;"*CLS" ! CLEAR REGISTERS
17 OUTPUT @Hp3588a;"+SRE 128" ! ENABLE OPERATIONAL STATUS SUMMARY
18 OUTPUT @Hp3588a;"STAT:0PER:ENAB 16" t ENABLE MEAS BIT
19 OUTPUT (@Hp3588a;"STAT:OPER:PTR O ! DISABLE POS TRANSITIONS
20 QUTFUT @Hp3588a;"STAT:0PER:NTR 16" | ENABLE NEG TRANSITICNS
21 !
22 ON INTR Sc GOSUB Check_srq
23 !
24 ! Setup the instrument to take a 10 sweep average, each
25 ! sweep individually armed. HP-IB trigger (*TRG)
26 ! could also be used.
27 !
28 OUTPUT @Hp3588a;"AVER:COUNT 10"
29 OUTPUT {@Hp3588a;"AVER ON"
30 OUTPUT (@Hp3588a;"ARM:SOUR MAN"
31 OUTPUT @Hp3588a;"ABORT; INIT"
32 FOR I=~1 TO 10
33 OUTPUT @Hp3588a;"ARM:IMM"
34 IF I<10 THEN
35 GOSUB Swp_wait
36 DISP "Hit CONTINUE to take next sweep..."
37 PAUSE
38 END IF
39 NEXT I
40 OUTPUT @Hp3588a;"+0PC?™
41 ENTER @Hp3588a;X
42 DISP "ALL DONE!"
43 STOP
44 !
45 Swp_wait: !
46 DISP "Sweeping..."
47 ENARBRLE INTR Sc¢;2
48 !
49 I Wait for SRQ
50 !

Programming Exarmnples

AVER_SRQ

51 Hang_out: !

52 IF NOT Sweep_domne THEN

53 GOTO Hang_out

54 END IF

55 Sweep_done=0

56 RETURN

57 !

58 Check_srg: !

39 !

60 Sbh=SPOLL(Device)

&l Send_query(@Hp3588a,"STAT:OPER:EVEN?")

62 Sweep_done=1

63 RETURN

64 !

65 END

66 1 ek o S S e A R s R s S R A s sk S R ek R e R ek
67 ! Send a query command and print the return value.
68 1 sl skl e s s e o e e R e e e R A R ok
69 SUB Send_query(@Device,Cmd$)

70 OUTPUT @Device;Cmd$

71 ENTER (@Device;Resp

72 SUBEND

6-8

Programming Examples

USER_SRQ
USER_SRQ
10 ! HP BASIC Program: USER_SRQ - Responding to USER SRQ's
20 L el bl el et
30 ! Responding to User SRQ's
40 Hp3588a=719 lAddress of HP 3588A
20 INTEGER User_status_reg
60 !
70 QUTPUT Hp3588a;"+*CLS" {Clear all of the Status Registers
80 !
90 !Set USER STATUS REGISTER MASK to all 1's.
100 OUTPUT Hp3588a;"STAT:USER:ENAB 32767"
110 !
120 !Set STATUS BYTE Mask to generate SRQ on USER_EVENT STATUS only
130 OUTPUT Hp3588a;"*SRE 1"
140 LOCAL Hp3588a 'Put the instrument in LOCAL mode
150 !
160 ! Instrument ig set up; Enable interupts to detect an SRQ
170 ON INTR 7 GOSUB Srq_handler !Set up interrupt branching
180 ENABLE INTR 7;2 lEnable interupt on SRQ
150 1
200 CLEAR SCREEN t{Clear the alpha screen
210 Wait:DISP "On the HP 3588A, Press [Local/HP-IB] [USER SRQ] [SRQx1"
220 GOTO Wait 'Wait for SRQ to occur
230 !
240 Srg_handler: !
250 IF BINAND(SPOLL(Hp3588a),64) THEN IBit 6 set, 3588 requires service
260 OUTPUT Hp3588a;"STAT:USER:EVEN?" 'Read USER STATUS REGISTER
270 ENTER Hp3588a;User status_reg
280 !
290 ! Check all 16 bits in the User_ status_reg
300 ! Note: Bits 10-15 can only be set via HP-IB
310 FOR Usrgq_number=0 TO 15
320 IF BIT(User_status_reg,Usrq_number) THEN
330 SELECT Usrq_number
340 CASE O
350 GOSUB Service_usrq0 !Gosub service routine for USER SRQ 0
360 CASE 1
370 GOSUBR Service_usrql !Gosub service routine for USER SRG 1
380 CASE 2 TO 15
390 GOSUB Service_usrqx !Goto service routine for other USER SRQ's
400 END SELECT
410 END IF
420 NEXT Usrq_number
430 ENABLE INTR 7 lre-enable interupts
440 LOCAL 7 ' 'put the instrument in local mode
450 ELSE
460 BEEP
470 DISP "UNKNOWN INTERRUPT" 1Don’t know how to handle other
480 STOP tinterrupts.
490 END IF :
500 RETURN

Programming Examples
USER_SRQ

510 Service usrq0: !Service routine
520 PRINT "USER PRESSED SRQ O"

53¢ RETURN

540 Service_usrqgl: 1Service routine
550 PRINT "USER PRESSED SRQ i

560 RETURN

270 Service_usrgx: !Service routine
580 PRINT "USER SRQ was between 2 and
590 RETURN

600 END

6-10

to handle USER SRQ O

to handle USER SRQ 1

to handle other USER SRQ's
15"

Programming Examptes
MOVE_STATE

MOVE_STATE

10

20

30

40

50

60

70

80

80

100
110
120
130
140
150
160
176
180
190
200
210
220
230
240
250
2690
270
280
290
300
305
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
450

t BP BASIC program: MOVE_STATE

-1 Program that demonstrates how to download and upload state files
! on the HP3588A.

INTEGER Dig”cnt,State(l:2000)
DIM Resp${200]

ASSIGN @Hp3588a TO 71%;FORMAT ON
!

CLEAR SCREEN

CLEAR @Hp3588a

OUTPUT @Hp3588a;"FORM:DATA REAL"
! Upload state data via HP-IB

!

QUTPUT (@Hp3588a;"SYST:SET?"

!

ENTER @Hp3588a USING "% ,A,D";Resp$,Dig_cnt
!

IF (RespS<"#") OR (Dig_ent<=0) THEN
PRINT "Not correct block mode"
BEEP
CLEAR @Hp3588a
STOYP
END IF
1
DISP "Uploading state"
ENTER @Hp3588a USING "%,"&VALS(Dig_ent)&"D";Num bytes
PRINT "Number of bytes to upload ";Num_bytes
ASSIGN @Hp3588a;FORMAT OFF
REDIM State(l:Num_bytes/2)
ENTER @Hp3588a;State(¥)
ASSIGN @Hp3588a;FORMAT ON
ENTER (@Hp3588a;Resp$! READ TERMINATING LF
t
Rep 1}’$‘* nwyn
INPUT "Download state to instrument?"”,Reply$
IF (UPCS{Reply$[1,1]) = "Y")y THEN GOTO Download
t
! Save state into file compatible with SAVE/RECALL STATE
f
DISP "Creating state file"
MASS STORAGE I$ " :INTERNAL,4,0"
ON ERROR GOTO Create_file
PURGE "STATE"
!
Create_file: OFF ERROR
CREATE BDAT "STATE",l1,Num bytes
ASSIGN @F TO "STATE"
DISP "Writing file"

Frogramming Examples
MOVE_STATE

500 OUTPUT @F;State(*)
510 ASSIGN @F TO *
520 DISP "File transfer complete.™

530 STOP

540 ¢

550 ! Download state via HP-IB
560 1t

570 Download: !

580 ReplyS$="y"

590 INPUT “"Download state to instrument?" Reply$

600 IF (UPCS(Reply$([l,1]) = "¥Y*) THEN

810 DISP "Definite block transfer ";

620 OUTPUT @Hp3588a USING "#,K,D,"&VALS(Dig_cnt)&"D";"SYST:SET
#",Dig_cnt,Num_bytes

630 ELSE

640 BISP "Indefinite block transfer ";

650 QUTPUT @Hp3588a;"SYST:SET #0";

660 END IF

670 !

680 | Upload state data via HP-IB
690 |

700 ASSIGN (@Hp3588a;FORMAT OFF
710 OUTPUT @Hp3588a;State(*)

720 ASSIGN @Hp3588a;FORMAT ON
730 OUTPUT (@Hp3588a;CHRS$(10) EKD
740 DISP "complete."

750 1

760 END

612

Programming Examples

TRC _LOAD
TRC_LOAD
1 ! HP BASIC program: TRC_LOAD
2 I e Rl
3 ! Program to demonstrate dumping and uploading a trace on the
4 1 HP 3588 with HF BASIC.
5 !
6 R il I
7 1
8 DIM Dump_data(l:401),Load_data(i:401)
9 INTEGER Num_pts
10 !
11 ASSIGN @Hp3588a TO 719
12
13 (CLEAR SCREEN
14 QUTPUT @Hp3588a;"FORM:DATA REAL"
15 DISP "Dumping trace..."
16 Dumpmtrace(@HpBSSSa,Dumpmdata(*),Num_pts,"TRAC:QATA?")
17 OUTPUT @Hp3588a;"ARM:SOUR MAN"
18 !
19 ! Flip-flop data points before uploading
20 !
21 DISP "Reversing data points..."
22 FOR I=1 TO Num pts
23 Load_data{Num_pts-I+1)=Dump_data(l)
24 NEXT 1
25 1
26 DISP "Uploading trace..."
27 Uploadﬂtrace(@HpSSBBa,Loadmdata(*),”TRAC:DATA")
28 DISP
29 QUTPUT @Hp3588a;"ARM:SOUR IMM"
30 !
31 END
32 UHHEHHHHHEEHA AR AR
33 !
34 SUB Dump_trace(@ip3588a,REAL Trace_data(%*), INTEGER Num_pts, Command$)
R R R e il
36 | MODULE DESCRIPTION:
37 1 This module dumps a trace of data from the instrument.
38 !
39 ! INPUTS: @Hp3588a : Device to dump data from,
40 ! Command$: HP-IB mnemonic used to prompt the instrument
41 1 for the trace of data.
42 1 QUTPUTS: Trace_data : Array of data received from instrument.
43 1 Num_pts : Number of points dumped into Trace_data.
G4 1
2 B e I I
46 DIM AS[10]
47 INTEGER Dig_cnt
48 CLEAR @Hp3588a
49 QUTPUT @Hp3588a;Command$
50 ASSIGN (@Hp3588a;FORMAT ON

6-13

Programming Examples

TRC_LOAD

51 Dig_cnte=-1

52 ENTER @Hp3588a USING "%,A,D";A$,Dig ent

53 IF (A$<"#") OR (Dig_cnt<=0) THEN

5& PRINT "NOT CORRECT BLOCK MODE"

55 CLEAR @Hp3588a

56 ELSE

57 ENTER @Hp3588a USING "%,"&VALS(Dig_ecnt)&"D";Num_pts

58 IF (Num_pts MOD 8=0) THEN

59 Num_pts=Num_pts DIV §

60 ASSIGH @Hp3588a;FORMAT OFF

61 ENTER (@Hp3588a;Trace_data(®)

62 ASSIGN (@Hp3588a;FORMAT ON

63 ENTER @Hp3588a;A% ! Read CR/LF

64 ELSE

65 PRINT Data_read;" not float size (divisible by 8&)"

66 CLEAR @Hp3588a

57 END IF

58 END IF

69 SUBEND

70 VMMM R AR A A
71 ! :

72 SUB Upload trace(@Hp3588a,REAL Trace_data(*),Command$)

I R e R T TR
74 1 MODULE DESCRIPTION:

75 1 This module uploads a trace of data,

76 1

77 1 INPUTS: @Hp3588a : Device to dump data to.

78 ! Command$: HP-IB mnemonic used to load the trace of
79 data into the instrument

80 | OUTPUTS: Trace_data : Array of data to load into instrument.
81 I

R T e T e v
83 CLEAR (@Hp3588a

84 OUTPUT @Hp3588a;"FORM:DATA REAL"

85 OUTPUT @Hp3588a;Command$;" #0%;

86 ASSIGN @Hp35B8a;FORMAT OFF

87 OUTPUT @Hp3588a;Trace_data(*),END

B8 ASSIGK @Hp3588a;FORMAT ON

89 SUBEND

6-14

Programming Examples

LOG_XAXIS
LOG_XAXIS
1 ! HP BASIC program: LOG_XAXIS
2 R R e
3 ! Program to demonstrate dumping, re-scaling and plotting a trace of
& ! transform-coordinated data on the computer display.
5 !
6 e I e St il
7 !
8 GOM REAL X axis(1:401),Start _freq,Stop_freq
G DIM Dump_data(l:401)
10 INTEGER Num pts
11 !
12 ASSIGN (@Hp3588a T0 719
13 GRAPHICS ON
14 GCLEAR
15 CLEAR SCREEN
16 !
17 LoO?
18 DISP "Dumping trace..."
19 Dump_trace(@ip3588a,Dump_data(*),Num_pts, "CALC:DATA?")
20 DISP Num_pts;" points dumped.”
21 !
22 Log xaxis(@Hp3588a,Num_pts) ! Compute log x-axis
23 !
24 OUTPUT @Hp3588a;"ARM:SOUR MAN"
25 DISP "Plotting trace..."
26 Plot_trace(Dump_data(®) ,X_ axis(*),Num_pts)
27 OUTPUT @Hp3588a;"ARM:SOUR IMM"
28 i '
29 DISP "Press CONTINUE for next trace"
30 PAUSE
31 END LOOP
32 1
33 END
R L G B G S B e e e e e
35 !
36 SUB Dump_trace(@Hp3588a,REAL Trace_data(*),INTEGER Num_pts,Command$)
K A e e
38 ! MODULE DESCRIPTION:
39 ¢ This module dumps a trace of data from the instrument.
40 !
41 | INPUTS: (@Hp3558a : Device selector of instrument.
42 1 Command$: HP-IB mnemonic used to prompt the instrument
43 for the trace of data.
44 | OUTPUTS: Trace_data : Array of data received from instrument.
45 1 Num pts : Number of points dumped into Trace_data.
46 |
I e R e e L T T TR R
48 DIM AS${10]
49 INTEGER Dig_cnt
50 CLEAR @Hp3588a

6-15

Programming Examples
LOG_XAXIS

51
52
53
54
55
56
57
58
59
60
51
62
63
64
65
66
67
68
649
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
B5
86
87
88
89
90
91
92
93
94
95
96
97
98
g9
100
101
102

OUTPUT @Hp3588a;"FORM:DATA REAL, 64"
OUTPUT @Hp3588a;Command$
ASSIGN @Hp3588a;FORMAT ON
Dig cnt=-1
ENTER @Hp3588a USING "%,A,D";AS8,Dig cnt
IF (AS<>"4#")} OR (Dig_cnt<=0) THEN
PRINT "NOT CORRECT BLOCK MODE"
CLEAR @Hp3588a
ELSE
ENTER @Hp3588a USING "%,"&VAL$(Dig_cnt)&"D" ;Num_pts
IF (Num_pts MOD 8=0) THEN
Num_pts=Num_pts DIV 8
ASSIGN @Hp3588a;FORMAT OFF
ENTER @Hp3588a;Trace_data(¥)
ASSIGN @Hp3588a;FORMAT ON
ENTER @Hp3588&;A% ! Read CR/LF
ELSE
PRINT Data_read;" not float size (divisible by 8)"
CLEAR @Hp3588a
END IF
END 1IF
SUBEND

VHEEEHHHHAAHHEHHAAHEHRRRHE AR AR AR
L

SUB Plot_trace(REAL Trace_data(*),Xarray(*),INTEGER Num_pts)

MODULE DESCRIPTION:
This module plots a trace of data.

INPUTS: Trace_data: Array of data to plot.
Xarray : Array of x-axis values (corresponds to Trace_data)
Num_pts : Number of points in Trace_data to plot.

REAL Y_scaler ! 1/(Delta per vertical pixel)

REAL Max_val,Min_wval ! Maximum and minimum values in data trace
REAL Height . ! Display height

INTEGER Orig x,0rig v ! Origin (in pixels)

1

Height=60

Orig_x=10

Orig_y=20

!

GCLEAR

Max_val=MAX(Trace_data(¥*})

Min val=MIN(Trace_data(¥*))

!

! Perform display auto-scale on data

!

Y _scaler=Helght/(ABS(Max val-Min val))

X_scaler~=.25 ! HP9836 Display
Top_pixel=(Height+0Orig v)

MOVE Orig_x,Top_pixel-(ABS(Max_val-Trace_data(l))*Y _scaler)

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Programming Exampies
LOG_XAXIS

FOR X=1 TO Num _pts

Scaled_x = Orig_x+(Xarray(X)-1)*X_scaler

Scaled v = Top_pixel- (ABS(Max_val-Trace_data(X))*Y_scaler)
DRAW Scaled _x, Scaled_y

NEXT X

SUBEND

!

i HHHHRHHEERHHHHHA AR AR AR
1

SUB Log_xaxis(@Hp3588a,INTEGER Num_pts)

! MODULE DESCRIPTION:

This module computes a logarithmic x-axis for a linearly spaced
array of data.

! Num_pts : Number of points in X_axis to calculate.
! QUTPUTS: X axis : Array of z-axis values calculated,

1
1
!
!
! INPUTS: @Hp3558a : bevice selector of instrument.
1
!
1

COM REAL X_axis(1:401),Start_freq,Stop_freq
INTEGER I
REAL X,K,C,Inc,Temp_start,Temp_stop
1
Displaywidth=401

OUTPUT @Hp3588a;"FREQ:STAR?"
ENTER @Hp3588a;Temp_start
OUTPUT @Hp3588a;"FREQ:STOP?"
ENTER @Hp3588a;Temp stop
!
! Check for changes in frequency coverage
!
IF (Temp_start<>Start_freq) OR (Temp_stop<>Stop_freq) THEN
Start_freq=Temp_start
Stop_freq=Temp_stop
ELSE
GOTO Bail
END IF
OUTPUT (@Hp3588a;"ARM:SOUR MAN'
!
! Need to check for ~0 start frequency -> log crash
!
DISP "Recalculating x-axis scaling®

IF (Start_£freq<.000000000001) THEN
Start_freq=10.0

END IF

Ine={Stop_f£freq-Start_ freq)/(Num_pts-1)

K«Displaywidth/(LGT(Stop_freq)-1GT(Start_£freq))

C=LGT(Start_freq)*(-K)

I=1

X=Start_ freg

6-17

Programming Examples

LOG_XAXIS

156 LOOP

157 EXIT IF ((X>Stop_freq) OR (I>Num pts))
158 X axis{I)=C+K*LGT(X)

159 I=I+1

160 X=X+Inc

161 END 1LOOP

162 !

163 OUTPUT @Hp3588a; "ARM;SOUR IMM"
164 Bail:SUBEND

6-18

Programming Examples

SHAPE
SHAPE
1 ! HP BASIC program: SHAPE
2 e R
3 ! Shape factor calculation test
4 L e I
5 !
6 REAL Meas_span,Peak freq,Search_freq,Freq_per_bin
7 REAL Target_ampl,Left freq,Right_freq
8 REAL Sixty db bw
9 INTEGER Sliope_up
10
11 Shape_image: IMAGE "Shape factor = ",D.DD
120
13 ASSIGN @Hp3588a TO 719
14 1
15 t Recall "3dB" State
16 1
17 OUTPUT @Hp3588a;"SYST:PRES"
18
19 Pass=1
20 LooP
21 EXIT IF Pass>2
22 IF Pass=] THEN
23 GOSUE Setup_ 3db
24 ELSE
25 GOSUB Setup_60db
26 END IF
27 DISP CHRS$(129)&"Setting up filter measurement"&CHR$(128)
28 CUTPUT @Hp3588a;"REST; *WAI" ! Take averaged measurement
29 OUTPUT @Hp3588a;"ARM:SOUR MAN" ! Stop measurement
30 !
31 OUTPUT @Hp3588a;"DISPL:Y:SCAL:AUTO ONCE"
32 OUTPUT {@Hp3588a;"FREQ:SPAN?"
33 ENTER @Hp3588a;Meas_span
34 Freq_per_bin=Meas_span/400.
35 OUTPUT @Hp3588a;"MARK:MAX:GLOB"
36 OUTPUT @Hp3588a;"MARK:FREQ?"
37 ENTER @Hp3588a;Peak freq
38 !
39 OUTPUT @Hp3588a;"MARK:AMPL?"
40 ENTER @Hp3588a;Target_ampl
41 !
42 IF Pass=1 THEN
43 Target_ampl=Target_ampl-3. ! (peak - 3 dB)
L4 DISP CHR$(129)&"Calculating -3.0 dB Bandwidth"&CHR$(128)
45 ELSE
46 Target ampl~=Target_ampl-60. ! (peak - 60 dB)
47 DISP CHR$(129)&"Calculating -60.0 dB Bandwidth"&CHRS(128)
48 END IF
49 1
50 ! Search for left target point

6-19

Programming Examples
SHAPE

51 !

52 Right freq=Peak freq

53 Left_freq=-Right_freq-.(Meas_span/2.)

54 Slope_up=l

35 GOSUB Bin_search

56 OUTPUT @Hp3588a;"MARK:OFFS ON; OFFS:DELT:X 0; Y ¢"
57 !

58 ! Search for right target point
59 !
&0 Target_ampli=0. ! Relative to OFFSET MARKER

61 Right_fregq=Peak freq+(Meas_span/2.)
62 left_freq=Peak_ freq

63 Slope_up=0

64 GOSUB Bin_search

65 !

66 OUTPUT @Hp3588a;"MARK:OFFS:DELT:X?"
67 IF Passg=]1 THEN

68 ENTER (@Hp3588a;Three_db_bw
69 ELSE

70 ENTER @Hp3588a;Sixty_db_bw
71 END IF

72 !

73 Pass=Pass+1

74 QUTPUT @Hp3588a; "MARK:0FFS OFF"
75 END LOOP

76 1

77 BEEP

78 DISP USING Shape_image;Sixty_db_bw/Three db_bw
79

80 OQUTPUT @Hp3588a;"ARM:SOUR IMM" ! Re-start measurement
81 STOP

82 1

83 Bin_search: !

84 !

85 | Look for Target ampl +- 0.0l dB

86

87 1| Left_freq and Right freq bound area of search
88 |

89 Search_freq=Left freg+(Meas_span/4.)

g0 1!

91 LooP

92 OUTPUT (@Hp3588a;"MARK:X ";Search_freq
93 IF Slope_up=0 THEN

a4 OUTPUT (@Hp3588a;"MARK:OFFS:DELT:Y?" ! Searching for right target
95 ELSE

96 OUTPUT @Hp3588a;"MARK:Y?"

97 END IF

98 ENTER (@Hp3588a;Search_ampl
99 EXIT IF (ABS(Target_ampl-Search_ampl)<=.01) OR
(ABS(Left_freq-Right_freq)<=Freq per_bin)

100 !
101 IF Slope_up THEN
102 IF (Search_ampl>Target ampl) THEN

6-20

Programming Examples

SHAPE
103 Right freg=Search_freq
104 ELSE
105 Left_freg=Search_freq
106 END IF
107 ELSE
108 IF {(Search_ampl>Target_ampl) THEN
109 left freq=Search_freq
110 ELSE
111 Right_freg=Search freq
112 END IF
113 END IF
114 !

115 Search_freq=Left_freq+(Right_ freq-Left_ freq}/2.
116 END LOOP

117 RETURN
118 1t
119 ! Setup for 3 dB measurement

120 Setup_3db: !

121 OQUTPUT @Hp3588a;"TEST:INP:CONF CAL"
122 OUTPUT @Hp3588a;"FREQ:CENT 10 MHz"
123 QUTPUT @Hp3588a; "BAND:AUTO OFF™

124 OUTPUT @Hp3588a;"FREQ:SPAN 2 kHz"
125 QUTPUT @Hp3588a;"BAND:RES 580 Hz"
126 RETURN

127 1

128 t Setup for 60 dB measurement

129 Setup_60db; !

130 OUTPUT @Hp3588a;"ARM:S0UR IMM" | Re-start measurement
131 OUTPUT (@Hp3588a;"FREQ:SPAN 5 kHz"
132 RETURN

133 END

6-21

Programming Examples
THD

THD

10 ! HP BASIC program: THED
20 T T T G .
30 ! Total Harmonic Distortion (THD) test
40 b mmm e it e -
50 1
60 COM /Dut/ @Hp3588a
70 DIM Prompt${60]

1

80 !

90 Fund_ image: IMAGE " Fundamental : ",K," Hz, ", 3D.2D, " dBm"

100 Thd_image: IMAGE * THD ", 2D.3D,"% (", 3D.2D, " 4B)"
110 !

120 ASSIGN @Hp3588a TO 719

13¢ !

140 Prompt$="Move marker past last harmonic, then press MEASURE THD."
150 !

160 Start: !

170 !

180 OUTPUT (@Hp3588a;"SYST:PRES™
190 1

200 CLEAR SCREEN
210 GCLEAR
220 !OUTPUT @Hp3588a;"TEST:INP:CONF CAL" ! THD of square wave cal signal
230 OUTPUT @Hp3588a;"SYST:RPGLOCK OFF"
240 DISP Prompt$
250 t
260 ON KEY O LABEL "“MEASURE THD" GOSUB Measure
270 FORI - 1 TO 9
280 ON KEY I LABEL "" GOSUB Do_nothing
290 NEXT I
300 Hang_out: GOTO Hang_out
310 !
320 Do_mnothing: RETURN
340 Measure: !
350 CLEAR SCREEN
360 !
370 ! MEASURE LAST HARMONIC FREQUENCY LIMIT
380 !
390 QUTPUT @Hp3588a;"MARK:X?"
400 ENTER @Hp3588a;Last x
1

410 !

420 ! MEASURE FUNDAMENTAL FREQUENCY

430 !

440 DISP "Frequency counting fundamental."
450 !

460 OUTPUT @Hp3588a;"ARM:SOUR IMM"

470 OUTFUT (@Hp3588a; "MARK:MAX:GLOR"

480 OUTPUT {Hp3588a; "MARK:FUNC:FCO ONY

490 OUTPUT (@Hp3588a;"REST; :ARM; #WAI"

500 OUTPUT @Hp3588a;"MARK:OFFS ON; OFFS:DELT:X 0; Y O"
510 OUTPUT @Hp3588a;"MARK:X:FCO?"

6-22

520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890

ENTER @Hp3588a;Fund_x

QUTPUT @Hp3588a;"MARK:Y?"

ENTER @Hp2588a;Fund_y

OUTPUT @Hp3588a; "MARK:FUNC:FCO OFF"
PRINT

PRINT

PRINT USING Fund image;Fund x,Fund y
!

DISP "Manually sweeping harmonics.”
!

QUTPUT @Hp3588a;"SWE:MODE MAN"
!

Thd=0

Harm x=2%Fund x

1

LOOP
EXIT IF Harm x>Last_x
OUTPUT @Hp3588a; "FREQ:MAN" ;Harm x;"HZ"
OUTPUT @Hp3588a;"REST; :ARM; *WAIL"
QUTPUT @Hp3588a;"MARK:X";Harm x;"Hz"
OUTPUT @Hp3588a; "*WAI"
QUTPUT @Hp3588a;"MARK:OFFS:DELT:Y?"
ENTER @Hp3588a;Y
Thd=Thd+10." (Y/10.)
Harm_ x=Harm_ x+Fund x

END LOOP

'

Db=10.*LGT{Thd)

Pexr=100.*10." (Db/20.)

PRINT

PRINT USING Thd_ image;Per,Db

f

OUTPUT @Hp3588a;"SWE:MODE AUTG"

OUTPUT (@Hp3588a;"ARM:SOUR IMM"

OUTPUT (@Hp3588a;"MARK:OFFS OFF"

DISP Prompt$

RETURN

END

Programming Examples
THD

6-23

Programming Examples

6-24

PLOT _CTRL

PLOT_CTRL

10 ! HP BASIC program: PLOT_CTRL

20 D e T R TR
30 !

&0 ! Plot controller

50 ! '

60 ! Controls setting of rotation, Pl and P2 on HP-GL plotters for report
70 ! formatting.

80 !

90 ! For HP-GL plotters (at least 7473A)
S100 1

110 ¢ ¥o rotation gives landscape format.

120 ¢ Pl specifies the lower left corner of the plot in (X,Y) coords
130 ! P2 specifies the upper right corner of the plot in (¥,¥Y) coords
140 1

150 ! For 7475A :

160 !

170 1t 1. 4 per page landscape

180 1

180 ! * Rotation = 0 degrees

200 1 * Upper left quadrant P1(1000,4500) P2(4700,7600)
210 ¢ * Upper right guadrant PL(6000,4300) P2(9700,7600)
220 1 * Lower left quadrant P1(1000,500) P2(4700,3600)
230 1t * Lower right quadrant PL(6000,500) ©P2(9700,3600)
2640 1t

250 2. 2 per page portrait (side by side)

260 1

270 1 * Rotation = 90 degrees

280 ! * Upper left P1(100,7000) P2(4000,10000)

290 ! * Upper right P1(4500,7000) P2(7900,10000)

300 !

B L B T i
320 !

330 INTEGER Rotate,Pl_x,Pl_y,P2_x,P2 y,Plot_done

340 ASSIGN @Hp3588a TO 719

345 OUTPUT @Hp3588a;"+*PCB 21"

350

360 LoOP

370 DISP "Setup next screen to plot, then press CONTINUE."®
380 PAUSE

390 !

400 ! Prompt user for rotation of plot.

410 !

420 INPUT "Enter rotation (degrees) : ",Rotate

430 OUTPUT 705;"RO ";Rotate;";" | Send rotation to plotter
440 !

450 !' Prompt user for Pl and P2 for plot.

460 !

470 INPUT "Enter P1¥, PlY, P2X, P2Y : ",P_x,Pl_y,P2_x,P2 ¥y
480 OUTPUT 705;"IP ";P1_x,Pl_vy,P2 x,P2_vy;";"

490 !

500
510
520
530
540
550
560
570
580
590
600
610
520
630
640
650
660
670

OUTPUT @Hp3588a;"PLOT:DUMP:ALL" | Plot screen
CALL Passcentrl
END LOOP

! Passes control to the analyzer and waits
! for control to to be passed back.

SUB Passcntrl
PASS CONTROL 719
ON ERROR GOTO Not_done
Hot_done: !
WAIT 1
CLEAR 7
OFF ERROR
SUBEND

Programming Examples
PLOT CTRL

6-25

Introduction to the Command Reference

The command reference chapters describe all of the HP 3588A’s TMSL. commands. The command
descriptions have the following things in common:

» A brief description of the command. This one- or two-line description appears just below
the heading.

» A syntax description. This consists of one or two fields, depending on whether the command has
just a command form, just a query form, or both. It shows you the syntax expected by the
analyzer’s TMSL command parser.

s Example statements. This field appears at the end of the first syntax description. It contains two
HP BASIC output statements that use the command.

» A returned format description. This field is only used if the command has a query form. It tells
you how data is returned in response to the query.

» An attribute summary. This field defines the command’s preset state. It also defines attributes
that affect command synchronization. (See “Synchronization” in chapter 2 for more
information.)

» A detailed description. This field contains information that will help you use the command more
efficiently.

7-1

introduction to the Command Reference
Finding the Right Command

Finding the Right Command

If you are looking for a command you've seen in a program, remember that commands can omit
implied mnemonics. For example, the command SENSe:FREQuency:CENTer 10 MHZ contains
the implied mnemonic SENSe. But SENSe can be omitted to create the equivalent command
FREQuency:CENTer 10 MHZ. (See “Implied Mnemonics™ in chapter 2.)

You will not find an entry for FREQuency:CENTer—or any other command that omits an implied
mnemonic—in the command reference. If you don’t find a command where you expect it, try
scanning the command list in appendix A for the equivalent command that contains the implied
mnemonic. After you locate the equivalent command, you can find its description in one of the
command reference chapters.

If you are looking for a command that accesses a particular function, use the index. For example, if
you want to find the command that changes the analyzer’s center frequency, look for “center
frequency” in the index. It sends you to the page that describes the SENSe:FREQuency:CENTer
command.

7-2

Introduction to the Command Reference
Conventions

Conventions

Syntax and returned format descriptions use the following conventions:

» < > Angle brackets enclose the names of syntactic items that need further definition. The
definition will be included in accompanying text.

w = “is defined as” When two items are separated by this symbol, the second item can replace
the first in any statement that contains the first item. For example, A::=B indicates that B can
replace A in any statement that contains A.

s | “or” When items in a list are separated by this symbol, one and only one of the items can be
chosen from the list. For example, A|B indicates that A or B can be chosen, but not both.

» ... Anellipsis (trailing dots) is used to indicate that the preceding element may be repeated one
Or more times.

s |] Square brackets indicate that the enclosed items are optional.

w { } Braces are used to group items into a single syntactic element. They are most often used to
enclose lists and to enclose elements that are followed by an ellipsis.

In addition, the case of letters in the command mnemonics is significant. Mnemonics that are longer
than four characters can have a short form or a long form. The analyzer accepts either form.
Upper-case letters show the short form of a command mnemonic. For more information, see
“Command Abbreviation” in chapter 3.

Common Commands

This chapter contains all of the IEEE 488.2 common commands that are implemented in the
HP 3588A. Animportant property of all common commands is that you can send them without
regard to a program message’s position in the command tree. For more information on the
analyzer’s command tree, see chapter 3.

Common Commands

*CAL? query

Calibrates the analyzer and returns the result.
Query Syntax: *CAL?

Example Statements: Output 719;"*CAL?"
Output 719;"%cal?"

Return Format: +{0]1}

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

The analyzer performs a full calibration when you send this query. If the calibration completes
without error, the analyzer returns 0. If the calibration fails, the analyzer returns 1.

This query is the same as the CAL:ALL? query.

8-2

Common Commands

*CLS command

Clears the Status Byte by emptying the error queue and clearing all event registers.
Command Syntax: *CLS

Example Statements: Output 719;"*Cls"
Output 719;"+*CLS"

Attribute Summary: Preset state; not applicable
Overlapped: no
Pass control required: no

Description:

This command clears the Status Byte register. It does so by emptying the error queue and clearing
(setting to 0} all bits in the event registers of the following register sets:

User Event.

Device State.
(uestionable Power.
Questionable Frequency.
Limit Fail.

Questionable Data.
Event Status.

Standard Operation.

In addition, *CLS cancels any preceding *OPC command or query. This ensures that bit 0 of the
Standard Event register will not be set to 1 and that no response will be placed in the analyzer’s
output queue when pending overlapped commands are completed.

*CLS does not change the current state of enable registers or transition filters.

Note To guarantee that the Status Byte’s Message Available and Master Summary Status
bits will be cleared, send *CLS immediately following a Program Message
Terminator.

See chapter 5 for more information on the Status Byte register.

83

Common Commands

*ESE command/query

Sets bits in the Standard Event enable register.

Command Syntax: *ESE {<number> |<bound>}

<number> ;:= an integer (NRf data)

limits: 0:255

<bound> ::= MAX|MIN

Example Statements: Output 719;"%ese 1"
Output 719;"*Ese 64"

Query Syntax: *ESE?
Return Format: <number>
<number> ::= an integer (NR1 data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: yes
Pass control required: no

Description:

This command allows you to set bits in the Standard Event enable register. Assign a decimal weight
to each bit you want set (to 1) according to the following formula:

z(hit_number)

with acceptable values for bit_number being 0 through 7. Then add the weights and send the sum
with this command.

When an enable register bit is set to 1, the corresponding bit of the Standard Event event register is
enabled. All enabled bits are logically ORed to create the Standard Event summary, which reports
to bit 5 of the Status Byte. Bit 5 is only set to 1 if both of the following are true:

s One or more bits in the Standard Event event register are set to 1.
w At least one set bit is enabled by a corresponding bit in the Standard Event enable register.

The setting last specified with *ESE is saved in nonvolatile memory. It can be recalled at power-up,
depending on the setting of the Power-on Status Clear flag (set with *PSC). When the flagis 0 at
power-up, all bits in the Standard Event enable register are set according to the saved *ESE value.
When the flag is 1 at power-up, all bits in the Standard Event enable register are initialized to 0.

The query returns the current state of the Standard Event enable register. The state is returned as a
sum of the decimal weights of all set bits.

For more information on the Standard Event register set, see chapter 5.

8-4

Common Commands

*ESR? query

Reads and clears the Standard Event event register.
Guery Syntax: *ESR?

Example Statements: Output 719;"*ESR?"
Qutput 719;"¥esr?"

Return Format: <number>

<number> ::= an integer (NRl data)
limits: G:255

Attribute Summary: Preset state: mnot defined

Overlapped: no
Pass control required: neo

Description:

This query returns the current state of the Standard Event event register, The state is returned as a

sum of the decimal weights of all set bits. The decimal weight for each bit is assigned according to
the following formula:

z(bit_number)

with acceptable values for bit_number being 0 through 7.
The register is cleared after being read by this query.

A bit in this register is set to 1 when the condition it monitors becomes true. A set bit remains set,
regardless of further changes in the condition it monitors, until one of the following occurs:

m You read the register with this query.
s You clear all event registers with the *CLS command.

For more information on the Standard Event register set, see chapter 3.

8-5

Common Commands

*IDN?

Returns a string that uniquely identifies the analyzer.

Query Syntax:

Example Statements:

Return Format:

<company> .
<model> :
<serial num> :

Attribute Summary:

Description:

*IDN?

Output 719;"*Idn?"
Output 719;"*IDN?"

"<company>,<model>,<serial num>,60"

= HEWLETT-PACKARD
t= 3588A
tex 10 ASCIT characters

Preset state: instrument-dependent
Overlapped: no
Pass control required: no

The response to this query uniquely identifies your analyzer.

8-6

query

Common Commands

*OPC command/query

Tells you when all pending overlapped commands have been completed.
Command Syntax: *0FPC

Example Statements: Output 719;"*¥opc"
Qutput 719;"*0Ope?”

Query Syntax: *QPC?
Return Format: +1
Attrribute Summary; Preset state: not applicable

Overlapped: ves
Pass control required: no

Description:

Some commands are processed sequentially by the analyzer. A sequential command holds off the
processing of subsequent commands until it has been completely processed. However, most
commands do not hold off the processing of subsequent commands; they are referred to as
overlapped commands.

The analyzer uses the No Pending Operation (NPO) flag to keep track of overlapped commands
that are still pending (that is, not completed). The NPO flag is reset to 0 when an overlapped
command is pending. Itis set to 1 when no overlapped commands are pending. You cannot read
the NPO flag directly, but you can use *OPC and *OPC? to tell when the flag is set to 1.

If you use *OPC, bit 0 of the Event Status event register is set to 1 when the NPO flagis set to 1.
This allows the analyzer to generate a service request when all pending overlapped commands are
completed (assuming you have enabled bit 0 of the Event Status register and bit 5 of the Status Byte
register).

If you use *OPC?, 1 is placed in the output queue when the NPO flag is set to 1. This allows you to
effectively pause the controller until all pending overlapped commands are completed. It must wait
until the response is placed in the queue before it can continue.

Note The *CLS and *RST commands cancel any preceding *OPC command or query.
Pending overlapped commands are still completed, but you can no longer determine
when. Two HP-IB bus management commands — Device Clear (DCL) and

Selected Device Clear (SDC) — also cancel any preceding *OPC command or
query.

8-7

Common Commands

*PCB command

Sets the pass-control-back address.

Command Syntax: *PCB <number_1>[,<number 2>}

MAX|MIN|an integer (NRf data)
limits:; 030
MAXIMIN|an integer (NRf data)
limits: 0:30

<number_1> ::

<number_2> ::

Example Statements: Output 719;"%PCB 21"
Output 719;"*pch 17"

Attribute Summary: Preset state: not affected by Preset
Overlapped: no
Pass control required: no

Description;

Use this command to specify the address of your controller before you pass control of the HP-IB to
the analyzer. When the analyzer completes the operation that required it to have control of the bus,
it automatically passes control back to the controller at the specified address.

The optional second number is only used for controllers that support extended addressing. It is
interpreted as the secondary address of the controller.

The address last specified with this command is saved in nonvolatile memory, so it is unaffected
when you turn the analyzer off and on. It is also unaffected by the *RST command.

8-8

Common Commands

*PSC command/query

Sets the state of the Power-on Status Clear flag.

Command Syntax: *PSC {<number>|<bound>)

<pnumber> ::= an integer (NRf data)
limits: -32767:32767

<bound> ::= MAX|MIN

Example Statements: Output 719;"“#*Psc O"
Qutput 719;"*PSC 1"

Query Syntax: *PSC?
Return Format: +0|1)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass control required: neo

Description:

This command lets you specify whether or not the Service Request enable register and the Event
Status enable register should be cleared (all bits reset to 0) at power-up.

The settings of the Service Request enable register and the Event Status enable register are saved in
nonvolatile memory when you turn the analyzer off. These settings can be recalled when you turn
the analyzer on, but only if the Power-on Status Clear (PSC) flag is reset to 0. When the PSC flag is
set to 1, the two enable registers are cleared at power-up. Use *PSC to specify the state of the
PSCflag.

The number last specified with *PSC is saved in nonvolatile memory, so it is unaffected when you
turn the analyzer off and back on. It is also unaffected by the *RST command.

If you want the analyzer to generate a service request at power-up, bit 7 of the Event Status event
register and bit 5 of the Status Byte register must be enabled. This is only possible if the PSC flag is

reset to .

The query returns the current state of the PSC flag.

8-9

Common Commands

*RST

Executes a device reset.

Command Syntax:

Example Statements:

Attribute Summary:

Description:

*RST

Qutput 719;"*rst"
Qutput 719;"+*Rst"

Preset state: not applicable
Overlapped: no
Pass control required: no

command

‘This command returns the analyzer to its preset state. In addition, it cancels any pending *OPC
command or query.

Note

v

The preset state of each parameter is listed under the Attribute Summary of the
associated command.

The following are not affected by this command:

8-10

The state of the Power-on Status Clear flag.
The state of all enable and transition registers.

The HP-IB input and

output queues.

The time and date (SYST:TIME and SYST:DATE).
The HP-IB address settings (SYST:COMM:GPIB:ADDR, PLOT:ADDR, and PRIN:ADDR).

The HP-IB controller
The defauls disk selec

capability setting.
tion (MMEM:MSI).

Contents of limit, data, function, and constant registers.
Contents of the RAM disks.

Calibration constants.

Commaon Commands

*SRE | command/query
Sets bits in the Service Request enable register.

Command Syntax: *SRE {<number>|<bound>)

an integer (NRf data)

limits: 0:255
<bound> ::= MAX|MIN

<number>

]

Example Statements: Output 719;"*SRE 12"
Output 719;"*sre 4"

Query Syntax: *SRE?
Return Format: <number>
<number> ::= an integer (NRl data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass controel required: no

Description:

This command allows you to set bits in the Service Request enable register. Assign a decimal weight
to each bit you want set (to 1) according to the following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 7. Then add the weights and send the sum
with this command.

Note The analyzer ignores the setting you specify for bit 6 of the Service Request enable
register. This is because the corresponding bit of the Status Byte register is always
enabled.

Common Commands

The analyzer requests service from the active controller when one of the following occurs:

a A bit in the Status Byte register changes from 0 to 1 while the corresponding bit of the Service
Request enable register is set to 1.

s A bit in the Service Request enable register changes from 0 to 1 while the corresponding bit of
the Status Byte register is set to 1.

The setting last specified with *SRE is saved in nonvolatile memory. It can be recalled at power-up,
depending on the setting of the Power-on Status Clear flag (set with *PSC). When the flag is 0 at
power-up, all bits in the Service Request enable register are set according to the saved *SRE value.
When the flag is 1 at power-up, all bits in the Service Request enable register are initialized to 0.

The query returns the current state of the Service Request enable register. The state is returned as
a sum of the decimal weights of all set bits.

8-12

Common Commands

*STB? . query

Reads the status byte register.

Query Syntax: *STB?

Example Statements: COutput 719;"*Stb?"

Output 719;"*STB?"

Return Format: <number>

<pumber> ::= an integer (NRl data)
limits: 0:255

Attribute Summary: Preset state: not defined

Overlapped: no
Pass control required: no

Description:

This query returns the current state of the Status Byte register. The state is returned as a sum of the
decimal weights of all set bits. The decimal weight for each bit is assigned according to the following
formula:

2(bit_number)

with acceptable values for bit_number being O through 7.

The register is not cleared by this query. To clear the Status Byte register, you must send the *CLS
command.

Bits in the Status Byte register are defined as follows:

Bit 0 summarizes all enabled bits of the User Status event register.

Bit 1 is reserved.

Bit 2 summarizes all enabled bits of the Device State event register.

Bit 3 summarizes all enabled bits of the Questionable Data event register.

Bit 4 is the Message Available (MAV) bit. It is set whenever there is something in the analyzer's
output queue.

Bit 5 summarizes all enabled bits of the Event Status event register.

Bit 6, when read with this query (*STB?), acts as the Master Summary Status (MSS) bit. It
summarizes all enabled bits of the Status Byte register. (Bit 6 acts as the Request Service (RQS)
bit when it is read by a serial poll.)

Bit 7 summarizes all enabled bits of the Standard Operation event register.

For more information on the Status Byte register, see chapter 5.

8-13

Common Commands

*TRG command
Triggers the analyzer if TRIG:SOUR is BUS.

Command Syntax: *TRG

Example Statements: QOutput 719;"*trg"
Output 719;"*Trg"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

This command triggers the analyzer if the following two conditions are met:

» The HP-IB is designated as the trigger source. (Send the TRIG:SOUR BUS command.)
® The analyzer is waiting to trigger. (Bit 5 of the Standard Operation condition register must be
set.)

The *TRG command has the same effect as TRIG:IMM. It also has the same effect as the HP-1B
bus management command Group Execute Trigger (GET) with the following exception: *TRG is
sent to the input queue and processed in the order received, but GET is processed immediately,
even if the input queue contains other commands.

Common Commands

*TST? query
Tests the analyzer hardware and returns the result.
Query Syntax: *TST?

Example Statements: Qutput 719,;"*TS5T?"
Qutput 719;"*tst?"

Return Format: +{0]1}

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

The analyzer's self-test performs a full calibration and then compares the resulting trace to specified
limits. If the trace is within the limits, the analyzer returns 0. If the trace exceeds the limits, the
analyzer returns 1.

8-15

Common Commands

*WAI command

Holds off processing of subsequent commands until all preceding commands have been processed.
Command Syntax: *WAT

Example Statements: OQutput 719;"*WAI"
Output 719;"*wai"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

Some commands are processed sequentially by the analyzer. A sequential command holds off the
processing of any subsequent commands until it has been completely processed. However, most
commands do not hold off the processing of subsequent commands; they are referred to as
overlapped commands, *WAI ensures that overlapped commands will be completely processed
before subsequent commands (those sent after *WAI) are processed.

B-16

ABORt Subsystem

This subsystem contains a single command—ABORt—which is used to immediately stop the current
measurement.

9-1

ABORt Subsystem

ABORt command

Immediately stops the measurement in progress and starts a new one.
Command Syntax: ABORt

Example Statements: Qutput 719;"Abort™
Output 719;"ABOR"

Attribute Summary: Preset state: not applicable
Qverlapped: ves
Pass control required: no

Description:

Although this command aborts any measurement in progress, it does not set INIT:CONT to OFF (as
defined in the TMSL standard). The HP 3588A does not support the OFF state for INFT:CONT.
As a result, ABOR has the same effect as SENS:REST—it aborts the current measurement and
starts a new one.

Both ABOR;INIT:IMM and SENS:REST serve a special synchronizing function. When you send
either of these program messages to restart a measurement, the analyzer’s No Pending Operation
(NPO) flag is not set to 1 until the measurement is complete. The two commands that test the state
of this flag—*WAI and *OPC—allow you to hold off subsequent actions until the measurement is
complete. See “Synchronization” in chapter 2 for more information on the NPO flag.

Note When video averaging is enabled (AVER:TYPE RMS and AVER:STAT ON), the
i NPO flag is not set to 1 until » measurements have been combined into one trace.
v You specify the value of n with the AVER:COUN command.

9-2

10

ARM Subsystem

The ARM subsystem contains two commands that control the analyzer’s trigger arming functions.
One command selects the type of arming (automatic or manual). The other command arms the

trigger (when manual arming is selected). See the TRIGger subsystem for commands that control
other trigger functions.

10-1

ARM Subsystem

ARM[:IMMediate] command
Arms the trigger if ARM:SOUR is MAN.

Command Syntax: ARM[:IMMediate]

Example Statements: Output 719;"arm"”
Qutput 719;"Arm:Imm"

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: no

Description:
Two conditions must be met before this command can arm the trigger:

s Manual arming must be selected (ARM:SOUR 1s MAN).

w Bit 1 (Settling) or bit 6 (Waiting for ARM) of the Standard Operation condition register must be
setto 1.

ARM:IMM is ignored at all other times.

10-2

ARM Subsystem

ARM:SOURce command/query

Specifies whether arming is automatic or manual.
Command Syntax: ARM:SOURce {IMMediate|MANual}

Example Statements: Output 719;"ARM:SOURCE IMMEDIATE"
Output 719;"arm:sour man"

Query Syntax: ARM:S0OURce?
Return Format: IMM | MAN
Attribute Summary: Preset state: IMM

Overlapped: ves
Pass control required: no

Description:

Send IMM to select automatic arming. Send MAN to select manual arming.

When automatic arming is selected, the analyzer waits for the hardware to settle, and then waits for
a trigger signal (specified by TRIG:SOUR) before starting a measurement. When manual arming is
selected, the analyzer waits for the hardware to settle, waits for ARM:IMM, and then waits for a
trigger signal before starting a measurement.

Note If you send ARM:SOUR MAN and TRIG:SOUR IMM, then you can use
6 ARM:IMM to trigger a single sweep.

10-3

11

AVERage Subsystem

The AVERage subsystem contains commands that define how the results of several measurements
will be combined in one trace.

AVERage Subsystem

AVERage:COUNt command/query

Specifies a count and a weighting factor for averaged measurement data.

Command Syntax: AVERage : COUNt {<number>|<step>|<bound>}

<pumber>

an integer (NRf data)
Timits: 1:1024

<step> ::= UP|DOWN
<bound> ::= MAX|MIN

i

Example Statements: Cutput 719%;"Aver:Coun 10"
Output 719;"AVERAGE:CQUNT 5"

Query Syntax: AVERage : COUNt?
Heturn Format: <number>

<number> ::= an Integer (NR1 data)
Attribute Summary: Preset state: +10

Overlapped: yes
Pass control required: no

Description:

The value in AVER:COUN is only used when the following conditions are met:

= AVER:STAT s ON (1).
a AVER:TYPEis VID (RMS).

In its role as a counter, AVER:COUN determines how many measurement results will be combined
in one trace before the No Pending Operation (NPO) flag is set to 1 for SENS:REST. This lets you
use *OPC to determine when the specified number of measurement results have been combined.
(See “Synchronization” in chapter 2 for more information on the NPO flag.)

In its role as a weighting factor, AVER:COUN (N) determines how the results of the current

measurement (new data) will be combined with the averaged trace (old data). Data is combined,
point by point, according to the following formula:

1 N—1
(N X new)+(——N—~— X old)

Note Averaging does not stop after the count is reached.

AVERage Subsystem

AVERage[:STATe] command/query
Turns the selected averaging function (AVER:TYPE) on and off.

Command Syntax: AVERage[:STATe] (OFF|O|ON|1)}

Example Statements: Output 719;"average:state off"
Cutput 719;"Aver 1"

Query Syntax: AVERage| :STATe]?
Return Format: +{011)
" Attribute Summary: Preset state: +0

Overlapped: yes
Pass control required: no

Description:

When you select OFF, each trace represents the results of a single measurement. When you select
ON, each trace represents the combined results of several measurements, and the averaging
function specified in AVER:TYPE determines how results are combined.

When averaging is on and AVER.TYPE is RMS, SENS:REST does not set the No Pending
Operation (NPO) flag to 1 until the specified number (AVER:COUN) of measurement results have
been combined. When averaging is on and AVER:TYPE is MAX (or when averaging is off),
SENS:REST sets the NPO flag to 1 each time a measurement is completed. See “Synchronization”
in chapter 2 for more information on the NPO flag.

Note Trigger conditions must be met for each measurement-—even when averaging is

turned on.

AVERage Subsystem

AVERage:TCONtrol command/query
Specifies the analyzer’s behavior after the count (AVER:COUN) is reached.

Command Syntax: AVERage :TCONtrol {EXPonential]

Example Statements: Output 719;"AVER:TCON EXP"
Outputr 719,;"average:tcontrol exponential®

Query Syntax: AVERage : TCONtrol?
Return Format: EXP
Attribute Summary: Preset state: EXP

Overlapped: ves
Pass control required: no

Description:

EXP is the only valid option for the HP 3588A. It indicates that averaging doesn’t stop when the
count (AVER:COUN) is reached. This command is only included for TMSL compatibility.

114

AVERage Subsystem

AVERagé;TYPE command/query

Selects a method for combining the results of several measurements.
Command Syntax: AVERage : TYPE {RMS |MAX|VIDeo|PEAK)

Example Statements: OQutput 719;"Average:.Type Max"
Output 719;"AVER:TYPE VID"

Query Syntax: AVERage :TYPE?

Return Format: RMS |MAX
Attribute Summary: Preset state: RMS

Overlapped: yes
Pass control required: no

Description:

RMS and VID both select the analyzer’s video averaging function. MAX and PEAK both select the
analyzer’s peak hold function. Use the TMSL-supported RMS and MAX parameters if you plan to
use your program with other TMSL instruments.

To enable the selected averaging function, you must set AVER:STAT to ON.

11-5

12

CALCulate Subsystem

The CALCulate subsystem contains commands that control the processing of measurement data.
The commands let you select a coordinate system for display of the measurement data, define trace
math functions and constants, and dump coordinate transformed data to your controller. The
following block diagram shows you how measurement data is processed:

ey

5

Caordinale
Transformation
> Matn Linear » -~
Measuremgn! Operations | EMGgmude. ‘ Dispiay

Lagarithmic

/ | Magnitude) l L

| k .

TRACDATA

Figure 12-1. Flow of Measurement Data

After measurement data is collected, any specified math operations are performed. Data is then
transformed into the specified coordinate system and sent to the display. TRAC:DATA gives you
access to the raw measurement data after math operations have been performed. CALC:DATA
gives you access to the display data—after the coordinate transformation.

Note You can take measurement data out of the analyzer with either TRAC:DATA or
6 CALC:DATA, but you can only put it back into the analyzer with TRAC:DATA.

The CALCulate mnemonic contains an optional trace specifier: {1]2]. To direct a command to
trace A, omit the specifier or use 1. To direct a command to trace B, use 2. Commands that are not
trace-specific—like CALC:MATH:EXPR—ignore the specifier.

12-1

CALCuiate Subsystem

CALCulate[1|2]:DATA? query

Returns trace data that is transformed to the current coordinate system (CALC:FORM).
Query Syntax: CALCulate[1]2]:DATA?

Example Statements: Output 719;"calc?:data?"
Output 719;"Calculatel:Data?"
Return Format: <block>
When data is ASClI-encoded, (FORM ASC) <block> takes the following form:

<block> ::= <point>{,<peoint>}...
<point> ::

i

y-axis value for 1 of the 401 peints that make up
a trace
limits: -9.9E37:9.9E37

When data is binary-encoded, (FORM REAL) <block> takes the following form:

<block> ::= fi<byte><length bytes>{<point>}...

<byte> ::= one ASCII-encoded byte specifying the number of length
bytes to follow
<length_bytes> ::= ASCII-encoded bytes specifying the number of data
bytes to follow
<point> ::= y-axis value for 1 of the 401 points that make up
a trace

limits: -9.9E37:9.9E37

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

This query returns a block of coordinate-transformed trace data. The block is returned as a series of
401 amplitude values. The unit for these values is the same as the reference level unit (returned
with DISP:Y:SCAL:MAX? UNIT).

You cannot return trace data to the display with CALC:DATA, because it has no command form.
Use TRAC:DATA if you want to read and write trace data. (See the introduction to this chapter for
more information.)

12-2

CALCulate Subsystem

CALCulate[1}|2]:FORMat command/query

Selects a coordinate system for displaying and dumping trace data.
Command Syntax: CALCulate[1|2]:FORMat {MLINear |MLOGarithmic|NONE)

Example Statements: Output 719;"CALCULATE2:FORMAT MLOGARITHMIC"
Qutput 719;"calecl:form mlin”

Query Syntax: CALCulate[l]|2]:FORMat?
Return Format: MLIN[MLOG
Attribute Summary: Preset gstate: MLOG (both traces)

Overlapped: yes
Pass control required: no
Description:

Send MLIN to select a coordinate system that displays linear magnitude amplitude data versus
frequency (or time). Send MLOG to select a coordinate system that displays logarithmic magnitude
amplitude data versus frequency (or time).

If you query the analyzer with CALC:DATA?, the values returned are already transformed to the
coordinate system you specify with CALC:FORM.

12-3

CALCulate Subsystem

CALCulate[1]|2]:MATH:CONStant command/query

Loads a number into one of the constant registers.

Command Syntax: CALCulate|1]2]:MATH:CONStant <const>, {<number>|<bound>)
<const> ::= (KL|K2|K3|K&|KS5)}
<number> ::= a real number (NRf data)
limits: -9.9E37:9.9E37
<bound> ::= MAXIMIR

Example Statements: Output 719;"Calc:Math:Cons K1,.707"
Output 719:"CALCULATEL:MATH:CONSTANT K5,1.414"

Query Syntax: CAlLCulate{1]2]:MATH:CONStant? <const>

Return Format: <pumber>

<number> ::= a real number (NR2 or NR3 data)

Attribute Summary: Preset state! not affected by Presget
Overlapped: yes
Pass control required: no

Description:

To use a constant in a trace math function, you must first Joad it into one of the analyzer’s five
constant registers: K1 through K5. You can then include thé constant register’s name at the
appropriate place in your function. (Functions are defined with the CALC:MATH:EXPR
command.) :

12-4

CALCutate Subsystem

CALCulate[1|2]:MATH:DATA command/query
Loads a complete set of math definitions.
Command Syntax: CALCulate{1]2] :MATH:DATA <block>

<block> ::= {i<byte>[<length_bytes>]<data_bytes>

<byte> ::= one ASCII-encoded byte specifying the number of length
bytes to follow

]

<length bytes> ::= ASCII-encoded bytes specifying the number of data
bytes to follow

<data_bytes> ::= the bytes that make up a complete set of math
definitions

Example Statements: Output 719;"calculate2:math:data?"
Cutput 719;"Calc:Math:Data?"

Query Syntax: CALCulate[1]|2}:MATH:DATA?
Return Format: <block>
Attribute Summary: Preset state: not applicable

Overlapped: yes
Pass control required: no

Description:

This command allows you to transfer a complete set of math definitions—the same information
contained in a math file—between the analyzer and your controller. This allows you to store a set of
math definitions on your controller’s file system. The definitions cannot be altered.

When you transfer a set of math definitions to the analyzer, you can use either the definite or the
indefinite length block syntax. When the analyzer returns the set to a controller, it always uses the
definite length block syntax. See “Block Data” in chapter 4 for more information.

12-5

CALCulate Subsystem

CALCulate[1|2]:MATH[:EXPRession] command/query

Loads an expression into one of the constant registers.

Command Syntax: CALCulate[1]|2]:MATH[:EXPRession] <func>,<expr>
<func> ::= {F1|F2|F3|F4]F5}
<expr> ::= ([<expr_element>]...)
<expr_element> ::= SPEC, D1:D8, K1:K5, F1:F5, SQRT(NBW), (,), +, —, *, /

Example Statements: Output 719;"CALC:MATH F3, (SPEC/D1)"
Output 719;"calculatel:math:expression f£2Z, (spec*k2)"

Query Syntax: CaALCulate[1]2] :MATH[:EXPRession}? <funec>
Return Format: "<expr>"
Attribute Summary: Preset state: not affected by Preset

Overlapped: yes
Pass control required: no

Description:

Before you can display the results of a trace math function, you must load the function into one of
the analyzer’s five function registers: F1 through F5. Once you have loaded the function register
with CALC:MATH:EXPR, you can display the results with DISP:RES.

You define trace math functions using operands (SPEC, D1:D8, K1:K5, F1:F5, SQRT(NBW)) and
operators (+, —, *,/). You combine these elements according to the rules of standard algebraic

notation. Use parentheses to control the order of operations.

Refer to the help text or the HP 35884 Operating Manual for more information on trace math
functions.

12-6

13

CALibration Subsystem

The CALibration subsystem contains the commands that control the analyzer’s self-calibration
functions. You can initiate a single calibration or enable the autocalibration function. After
calibration, you can display the calibration data for the active trace.

This subsystem also contains a command that allows you to enable and disable the analyzer’s
oversweeping function. :

13-1

CALibration Subsystem

CAlLibration[:ALL]? query

Calibrates the analyzer and returns the result.
Query Syntax: CAlibrationf:aALL]?

Example Statements: Output 719;"Calibration:All?"
Cutput 719;"CAL?"

Return Format: +{0]1)

Attribute Summary: Preset state: not applicabie
Overlapped: no
Pass control required: no

Description:

The analyzer performs a full calibration when you send this query. If the calibration completes
without error, the analyzer returns 0. If the calibration fails, the analyzer returns 1.

This query is the same as the *CAL? query.

13-2

CAlibration Subsystem

CAlLibration:AUTO command/query

Calibrates the analyzer or sets the state of the autocalibration function.
Command Syntax: ¢calibration:AUTO {OFF|C|ON|1|ONCE)

Example Statements: Output 719;"cal:auto 0"
Output 719;"Calibration:Auto Off"

Query Syntax: CALibration:AUTO?
Return Format: +{0]|1}
Attribute Summary: Preset state: +]

Overlapped: yes
Pass control required: no

Description:

Send ON to enable the analyzer's autocalibration function, OFF to disable it. This function
calibrates the analyzer several times during the first hour of operation and once per hour thereafter.

Send ONCE to initiate a single calibration.

13-3

CALibration Subsystem

CAlibration:CORRection:SRATe command/query

Turns oversweeping on and off.
Command Syniax: CALibration:CORRection:SRATe {OFF|{O|ON|1}

Example Statements: Output 719;"CALIBRATION:CORRECTION:SRATE ON"
Qutput 719;"cal:corr:srat 0"

Query Syntax: CALibration:CORRection:SRATe?
Return Format: +{0]|1}
Attribute Summary: Preset state: +1

Overlapped: vyes
Pass control required: no

Description:

The analyzer provides calibrated measurement results for sweep rates at or below the following
limits (given in Hz/s): :

s Oversweepon: RBW? x 2

s Oversweep off: RBW ti2
where RBW is the setting of SENS:BAND:RES (in Hz)

13-4

14

DIAGnostics Subsystem

Commands in the DIAGnostics subsystem access functions that should only be used as described in
the HP 3588A4 Performance Test Guide. Refer to that manual for more information on these
functions.

14-1

DIAGhostlcs Subsystem

DIAGnostics:SOURce:PAD:TEN command/query

Switches the source’s 10 dB attenuator in and out.
Command Syntax: DIAGnostics:SOURce:PAD:TEN {IN|OUT)

Example Statements: Output 719;"diagnostics:source:pad:ten out"”
Output 719;"biag:Sour:Pad:Ten Out"

Query Syntax: DIAGnostics:SOURce:PAD:TEN?
Return Format: IN|OUT
Attribute Summary: Preset state: QUT

Overlapped: yes
Pass control required: no

Description:

Use this command only as directed in the HP 35884 Performance Test Guide.

14-2

DIAGnostics Subsystem

DIAGnostics:SOURce:PADA: TWENty command/query

Switches the source’s first 20 dB attenuator in and out.
Command Syntax: DIAGnostics:SOURce: PADA: TWENty {IN|OUT}

Example Statements: Output 719;"DIAG:SOUR:PADA:TWEN OUT"
Qutput 719;"diagnostics:source:pada:twenty in"

Query Syntax: DIAGnostics:SQURce ; PADA: TWENty?
Return Format: INjOUT
Attribute Summary: Preset state: OUT

Overlapped: ves
Pass control required: no

Description:

Use this command only as directed in the HP 35884 Performance Test Guide.

14-3

DIAGnostics Subsystem

DIAGnostics:SOURce:PADB: TWENty command/query

Switches the source’s second 20 dB attenuator in and out.
Command Syntax: DIAGnostics:S0URce : PADB: TWENty { IN|OUT)

Example Statements: Output 719;"Diagnostics:Source:Padb:Twenty In”
Output 719;"DIAG:SOUR:PADB:TWEN OUT"

Query Syntax: DIACGnostics:SOURce: PADB: TWENty?
Return Format: IN|OUT
Attribute Summary: Preset state: OUT

Overlapped: ves
Pass control required: no

Deseription:

Use this command only as directed in the HP 35884 Performance Test Guide.

14-4

15

DISPlay Subsystem

DISPlay is one of two subsystems that control the analyzer’s presentation of data on its front-panel
display—the other is SCReen. DISPlay also allows you to define trace limits and control limit
testing.

The DISPlay mnemonic contains an optional trace specifier: [1]|2]. To direct a command to trace A,
omit the specifier or use 1. To direct a command to trace B, use 2. Commands that are not
trace-specific—Iiike DISP:PART:CLE—ignore the specitier.

15-1

DiSPlay Subsystem

DiSPlay[1|2):LIMit:BEEP command/query

Turns the limit-fail beeper on and off.
Command Syntax: DISPlay[1}2]:LIMit:BEEP {OFF|0|ON|1}

Example Statements: Cutput 719%;"disp:lim:beep 1"
Qutput 71%;"Display2:Limit:Beep Off"

Query Syntax: DISPlay[1§2]:LIMit:BEEP?
Return Format: +{0]|1}
Attribute Summary: Preset state: +0 (bothdisplays)

Overlapped: yes
Pass control required: no

Description:

The limit-fail beeper emits an audible tone when all of the following conditions are met:
w DISP:LIM:BEEP is ON.
& SYST:BEEP:STAT is ON.

= DISP:LIM:STAT is ON.

& The trace falls outside its current limits.

You can use DISP:LIM:LOW:SEGM and DISP:LIM:UPP:SEGM to define a trace’s current limits
via the HP-1B.

15-2

DISPlay Subsystem

DISPlay[1]|2]:LIMit:LINE command/query

Turns limit lines on and off in the specified display.
Command Syntax: DISPlay[1]2]:LIMit:LINE {OFF|0|ON|1}

Example Statements: Output 719;"Displ:Lim:Line Off"
Qutput 719;"DISPLAY:LIMIT:LINE 1"

Query Syntax: DISPlay[1l|2]:LIMit:LINE?
Return Format: +{0]1}
Aitribute Summary: Preset state: +0 (both displays)

Overlapped: yes
Pass control required: no
Description:

Sending DISP:LIM:LINE ON only enables the display of limit lines in the specified trace. To test
the trace against those limits, you must send DISP:LIM:STAT ON.

Note A trace can be evaluated against limits even when limit lines are not displayed.

v

You can use DISP:LIM:LOW:SEGM and DISP:LIM:UPP:SEGM to define limit lines via the
HP-IB.

15-3

DiSPlay Subsystem

DISPlay[1|2]:LIMit:LOWer:DATA command/query

Loads a complete lower limit line into the specified display.

Command Syntax: DISPlay[1]2]:LIMit:LOWer:DATA <block>
<block> ::= fi<byte>[<iength bytes>]<data_bytes>
<byte> ::= one ASCII-encoded byte specifying the number of length
bytes to follow
<length_bytes> ::= ASCII-encoded bytes specifying the number of data

bytes to follow
<data_bytes> ::= the bytes that make up a complete lower limit line

Example Statements: Qutput 719;"display2:limit:lower:data?"
Output 719;"Disp:Lim:Low:Data?"

Query Syntax: DISPlay[1]2]:LIMit:LOWer :DATA?
Return Format: <block>
Attribute Summary: Preset state: not applicable

Overlapped: yes
Pass contrel required: neo

Description:

This command transfers a complete lower limit line—the same information contained in a lower
limit file—between the analyzer and your controller. This allows you to store a complete lower limit
on your controller’s file system. The limit cannot be altered.

When you transfer a complete lower limit to the analyzer, you can use either the definite or the

indefinite length block syntax. When the analyzer returns the limit to a controller, it always uses the
definite length block syntax. See “Block Data” in chapter 4 for more information.

15-4

DISPlay Subsystem

DiSPlay[t |2]:LIMit:LOWer:DELete command

Deletes the lower limit line from the specified display.
Command Syntax: DISPlay[1]2}:LIMit:LOWer:DELete

Example Statements: Output 719:"DISPLAYL1:LIMIT:LOWER :DELETE"
Output 719;"disp2:lim:low:del"

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: no

Description:

To delete a lower limit, send DISP:LIM:LOW:DEL. To delete an upper limit, send
DISP:LIM:UPP:DEL.

15-6

DISPlay Subsystem

DiSPlay[1]2]:LIMit:LOWer:MOVE command/query

Moves the lower limit line up or down in the specified trace.

Command Syntax: DISPlay[1]2]:LIMit:LOWer:MOVE {<number>|<step>|<bound>)

<number> ::= a real number (NRf data)
limits: -9.9E37:9.,9E37

<step> ::= UP|DOWN
<bound> ::= MAX|MIN

B

Example Statements: Output 719;"DISPLAY1:LIMIT:LOWER:MOVE 3"
Output 719;"disp:lim:low:move -12"

Query Syntax: DISPlay[1|2]:LIMit:LOWer:MOVE?

Return Format: <number>

<number> ::= a real number (NR2Z or NR3 data)

Attribute Summary: Preset state: not affected by Preset
Overlapped: ves
Pass control required: no

Description:

DISP:LIM:LOW:MOVE specifies a vertical offset for every segment in a lower limit. The offset is
referenced to the limit's original y-axis position. The offset is unitless, so it assumes the current
vertical/division unit (returned with DISP:Y:SCAL:PDIV? UNIT).

15-6

DISPlay Subsystem

DISPlay[1|2]:LIMit:LOWer:REPort? query

Returns the frequency, amplitude, and failure value for all points failing the lower limit test.
Query Syntax: DISPlayil|2]:LIMit:LOWer:REPort?

Example Statements: Output 719;"DISP2:LIM:LOW:REP?"

Output 719;"display:limit:lower:report?”
Return Format: <block>
When data is ASClIl-encoded, (FORM ASC) <block> takes the following form:

<block> ::= [<point>[,<point>]...]
<point> ::= <frequency>,<amplitude>,<failed by>

When data is binary-encoded, (FORM REAL) <block> takes the following form:

<block> ::= f<byte><iength_bytes>[<point>]...

<byte> ::= one ASCII-encoded byte specifying the number of length
bytes to follow

It

ASCII-encoded bytes specifying the number of data
bytes to follow

<length_bytes> ::

<point> ::= <frequency><amplitude><failed by>

The following definitions apply to both ASCIHI- and binary-encoded data.

<frequency> ::= a real number (frequency of the failed point)
limite: 0.0:150.0E6 (Hz)
<amplitude> ::= a real number (amplitude of the failed point)

limits: -9.9E37:9.9E37

<failed by> ::= a real number (amplitude offset from limit)
limits: -9.9E37:9.9E37

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

The unit for returned amplitude values is the same as the current reference level unit (returned with
DISP:Y:SCAL:MAX? UNIT). The unit for returned failure values is the same as the current
vertical/division unit (returned with DISP:Y:SCAL:PDIV? UNIT).

No data is returned if limit testing is disabled (DISP:LIM:STAT OFF) or if all trace points are above
the specified lower limit. '

167

DiSPlay Subsystem

DISPlay[1]|2]:LIMit:LOWer:SEGMent command/query

Loads one or more segments of a lower limit line into the specified display.

Command Syntax: DISPlay(1]2]:LIMit:LOWer:SEGMent <block>
When data is ASCH-encoded, (FORM ASC) <block> takes the following form:

<block> ::= <segment>[, <segment>]...
<segment> ::= <start_ freq>,<start_ampl>,<stop_freq>,<stop_ampl>

When data is binary-encoded, (FORM REAL) <block> takes the following form:

<block> ::= fi<byte>[<length_bytes>]<segment>[<segment>]...

<byte> ::= one ASCII-encoded byte specifying the number of length
bytes to follow
<length bytes> ::= ASCII-encoded bytes specifying the number of data
bytes to follow
<segment> ::= <start_freg><start_ampl><stop_freq><stop_ampl>

The following definitions apply to both ASCII- and binary-encoded data.

a real number
limits: 0.0:150.0E6 (Hz)

a real number
limits: -+9.9E37:9.9E37

<stop_freg> ::= a real number
limits: 0.0:150.0E6 (Hz)

a real number
limits: -9.9E37:9.9E37

<start_freg> :.:

B

<start_ampl> ::

k

<stop_ampl> ::

Example Statements: Output 719;"Displayi:Limit:Lower:Segment 7e6,0,10e6,5"
Qutput 719;"DISP:LIM:LOW:SEGM 10E6,5,13E6,0,13E6,0,16e6,-5"

Query Syntax: DISPlay[1}2]:LIMit:LOWer:SEGMent?
Return Format: <biock>
Attribute Summary: Preset state: not affected by Preset

Overlapped: yes
Pass control reguired: no

Descriptiorn:
The amplitude values you send with each segment are unitless, sa they assume the current reference
level unit (returned with DISP:Y:SCAL:MAX? UNIT).

The analyzer doesn’t clear the previous lower limit definition when you send new segments—it only
overwrites those portions of the limit redefined by the new segments. Send DISP:LIM:LOW:DEL
if you want to clear the previous limit.

15-8

DiSPlay Subsystem

DISPlay[1]|2]:LIMit:MODE command/query

Specifies how limit lines should respond to changes in the reference level setting.
Command Syntax: DISPlay[1]2]:LIMit:MODE {ABSolute|RELative}

Example Statements: Output 719;"disp2:lim:mode rel”
Output 719;"Display:Limit:Mode Absolute”

Query Syntax: DISPlay[1}2]:LIMit:MODE?
Return Format: ABS |REL
Attribute Summary: Preset state: ABS (both displays)

Overlapped: vyes
Pass control reguired: no

Description:

When you select ABS, the absolute y-axis values of limit lines are held constant when the reference
level changes. When you select REL, the y-axis offsets between limit lines and the reference level
are held constant when the reference level changes. (You change the reference level with the
DISP:Y:SCAL:MAX command.)

i5-9

DISPlay Subsystem

DiSPlay[1|2]:LIMit:RESult? query

Returns the result of the last limit test (passed or failed).
Query Syntax: DISPlay{1{2]:LIMit:RESult?

Example Statements: Output 719;"Disp2:Lim:Res?"
Qutput 719;"DISPLAY:LIMIT:RESULT?"

Return Format: OFF|UND | PASS | FAIL

Atiribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

This query only returns PASS or FAIL if the limit testing is turned on (DISP:LIM:STAT ON) and a
limit is defined for the specified trace. If limit testing is turned off, this query returns OFF. If no
limit is defined, this query returns UND (undefined).

You can use DISP:LIM:LOW:SEGM and DISP:LIM:UPP:SEGM to define limits via the HP-IB.

15-10

DISPlay Subsystem

DISPlay[1]|2]:LIMit:STATe command/query

Turns limit testing on and off.
Command Syniax: DISPlay[1[2]:LIMit:STATe {(OFF|0|ON]|1)

Example Statements: Output 719;"display2:limit:state on"
OQutput 719;"Disp:Lim:Stat 1"

Query Syntax: DISPlay[1]2}:LIMit:STATe?
Return Format: +{0] 1)
Attribute Summary: Preset state: +0 (both displays)

Overlapped: vyes
Pass control required: no

Description:

When limit testing is on, the current trace is evaluated against the limits delined in its upper and
Jower limit registers. You can load these registers via the HP-IB using the DISP:LIM:LOW:SEGM
and DISP:LIM:UPP:SEGM commands.

To determine whether or not a trace is within the specified limits, you can send the DISP:LIM:RES
query or monitor bits in the Limit Fail condition register. To return failed points, you can send the
DISP:LIM:LOW:REP and DISP:LIM:UPP:REP queries.

Note Limit lines are not automatically displayed when limit testing is enabled. To display
1 limits, you must send DISP:LIM:LINE ON.

v

15-11

DiSPlay Subsystemn

DiSPlay[1|2]:LIMit:UPPer:DATA command/query
Loads a complete upper limit line into the specified display.
Command Syntax: DISPlay{1]|2]:LIMit:UPPer:DATA <block>

<block> ::
<byte> ::

#i<byte>{<length_bytes>]<data_bytes>

one ASCII-encoded byte specifying the number of length
bytes to follow

It

ASCI1-encoded bytes specifying the number of data
bytes to follow

<length bytes> ::

i

<data_bytes> ::= the bytes that make up a complete upper limit line

Example Statements: Output 719;"DISP1:LIM:UPP:DATA?"
Qutput 719;"display?:limit:upper:data?”

Query Syntax: DISPilay[1]|2]:LIMit:UPPer:DATA?
Return Format: <block>
Attribute Summary: Preset state: not applicable

Overlapped: yes
Pass control required: no

Descriptiom:

This command just transfers a complete upper limit line—the same information contained in a upper
limit file—between the analyzer and your controller. This allows you to store a complete upper limit
on your controller’s file system. The limit cannot be altered.

When you transfer a complete upper limit to the analyzer, you can use either the definite or the

indefinite length block syntax. When the analyzer returns the limit to a controller, it always uses the
definite length block syntax. See “Block Data” in chapter 4 for more information.

15-12

DISPlay Subsystem

DiISPlay[1]|2]:LIMit:UPPer:DELete command
Deletes the upper limit line from the specified display.

Command Syntax: DISPlay[1]2]:LIMit:UPPer:DELete

Example Statements: Output 719:"DISPLAY1:LIMIT:UPPER:DELETE"
Output 719;"disp2:lim:upp:del”

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: no

Description:

To delete an upper limit, send DISP:LIM:UPP:DEL. To delete a lower limit, send
DISP:LIM:LOW:DEL.

15-13

DISPlay Subsystem

DISPlay[1|2]:LIMit:UPPer:MOVE command/query

Moves the upper limit line up or down in the specified trace.

Command Syntax: DISPlay[1|2]:LIMit:UPPer:MOVE {<number>|<step>|<bound>}
<number> ::= a real number (NRf data)
limits: -9.9E37:9.9E37
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"DISPLAY1:LIMIT:UPPER:MOVE 3"
Output 719;"disp:lim:upp:move -12"

Query Syntax: DISPlay[1]2}:LIMit:UPPer:MOVE?
Return Format: <number>

<number> ::= a real number (NR2 or NR3 data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: yes
Pass control required: no
Description:

DISP:LIM:UPP:MOVE specifics a vertical offset for every segment in an upper limit. The offset is
referenced to the limit’s original y-axis position. The offset is unitless, so it assumes the current
vertical/division unit (returned with DISP:Y:SCAL:PDIV? UNIT).

15-14

DISPlay Subsystem

DISPlay[1]2]:LIMit:UPPer:REPoOIt? query

Returns the frequency, amplitude, and failure value for all points failing the upper limit test.
Query Syntax: DISPlay[1l]2]:LIMit:UPPexr:REPort?

Example Statements: Output 719;"Display2:Limit:Upper:Report?”
Output 719;"DISP:LIM:UPP.REP?"
Return Format: <block>
When data is ASCII-encoded, (FORM ASC) <block> takes the following form:
<block> ::= [<point>[,<point>]...]
<point> ::= <frequency>,<amplitude>,<failed by>
When data is binary-encoded, (FORM REAL) <block> takes the following form:

<block> ::= fi<byte><length bytes>[<point>]...
<byte> ::

]

one ASCII-encoded byte specifying the number of length
bytes to follow :

<length_bytes> ::= ASCII-encoded bytes specifying the number of data
bytes to follow

<point> ::= <frequency><amplitude><failed by>
The following definitions apply to both ASCIH- and binary-encoded data.
<frequency> ::= a real number (frequency of the failed point)

limits: ©0.0:150.0E6 (Hz)

a real number (amplitude of the failed point)
limits: -9.9E37:9.9E37

<failed by> ::= a real number (amplitude offset from limit)
limits: -9.9E37:9.9E37

<amplitude> ::

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

The unit for returned amplitude values is the same as the current reference level unit (returned with
DISP:Y:SCAL:MAX? UNIT). The unit for returned failure values is the same as the current
vertical/division unit (returned with DISP:Y:SCAL:PDIV? UNIT).

No data is returned if limit testing is disabled (DISP:LIM:STAT OFF) or if all trace points are below
the specified upper limit.

15-15

DISPlay Subsystem

DISPlay[1]2]:.LIMit:UPPer.SEGMent command/query

Loads one or more segments of an upper limit line into the specified display.

Command Syniax: DISPlay[1]2]:LIMit:UPPer:SEGMent <block>
When data is ASCll-encoded, (FORM ASC) <block> takes the following form:

<block> ::= <segment>[, <segment>]...
<segment> .= <start“freq>,<startmampl>,<stopmfreq>,<stog_ampi>

When data is binary-encoded, (FORM REAL) <block> takes the following form:

<block> ::= fi<byte><length_bytes><segment>[<segment>]...

<byte> ::= one ASCII-encoded byte specifying the number of length
bytes to follow

<length_bytes> ::= ASCII-encoded bytes specifying the number of data

bytes to follow

<segment> ::= <start freg><start_ampl><stop_freq><stop_ampl>
The following definitions apply to both ASCII- and binary-encoded data.
<start_freq> ::= a real number
limits: 0.0:150.0E6 (Hz)

a real number
limits: -9.9E37:9.9E37

<stop_freg> ::= a real number
limits: ©0.0:150.0E6 (Hz)

a real number
limits: -9.9E37:9.9E37

<start_ampl> ::

i

<stop_ampl> ::

Example Statements: Output 719;"DISP:LIM:UPP:SEGM 1086,5,13E6,0,13E6,0,16E6, -5"
Qutput 719;"Display2:Limit:Upper:Segment 7e6,0,10e6,5"

Query Syntax: DISPlay[1l]|2}:LIMit:UPPer:SEGMent?
Return Format: <block>
Attribute Summary: Preset state: not affected by Preset

Overlapped: yes
Pass control required: no
Description:
The amplitude values you send with each segment are unitless, so they assume the current reference

level unit (returned with DISP:Y:SCAL:MAX? UNIT).

The analyzer doesn’t clear the previous upper limit definition when you send new segments—it only
overwrites those portions of the limit redefined by the new segments. Send DISP:LIM:UPP:DEL if
you want to clear the previous limit.

15-16

DiSPlay Subsystem

DiSPlay[1]2]:PARTition command/query

Select the portion of the analyzer’s screen to be used for HP Instrument BASIC program output.
Command Syntax: DISPlay[1|2]:PARTition (OFF|O}FULL|UPPer|LOWer)

Example Statements: QOutput 719;"DISPLAY:PARTITION FULL"
Output 719;"disp:part 0"

Query Syntax: DISPlay[1]2]:PARTition?
Return Format: OFF | FULL|UPP|LOW
Attribute Summary: Preset state: OFF

Overlapped: yes
Pass control required: no
Description:

OFF allocates no display area for program output. FULL allocates the entire trace display area.
UPP allocates that portion of the trace display area normally used by the upper trace (when
SCR:FORM is ULOW). LOW allocates that portion of the trace display area normally used by the

lower trace.

This command is only valid if HP Instrument BASIC is installed.

15-17

DiSPlay Subsystem

DISPlay[1|2]:PARTition:CLEar command

Clear the portion of the analyzer’s screen allocated to HP Instrument BASIC program outpul.
Command Syntax: DISPlay[1|2]:PARTition:CLEaxr

Example Statements: Output 719;"Disp:Part:Cle”
Qutput 719;"DISPLAY2:PARTITION:CLEAR"

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: no

Description:

You aliocate the portion of the screen cleared by this command with the DISP:PART command.

This command is only valid if HP Instrument BASIC is installed.

15-18

DISPlay Subsystem

DISPlay[1|2]:RESults command/query
Select the data to be displayed in the specified trace.
Command Syntax: DISPlay([1}2]:RESults <param>

<param> ::= {SPECtrum|NORMalize|F1:F5|K1:K5{D1:D8)

Example Statements: Output 719;"displayl:results spectrum"”
Qutput 719;"Disp:Res Norm"

Query Syntax: DISPlay[l|2]:RESults?
Return Format: <param>

<param> ::= {SPEC|NORM|F1:F5|K1:K5|D1:D8)}
Aftribute Summary: Preset state: SPEC (both displays)

Overlapped: ves
Pass control required: no

Description:

SPEC displays the results of the current measuremeni. NORM displays a normalized spectrum
(SPEC/DS). F1 through F5 display the results of the corresponding trace math function. K1
through K5 display the amplitude of the corresponding trace math constants. D1 through D8 display
the contents of the corresponding data registers.

15-19

DiSPlay Subsystem

DISPlay[1]2].Y:SCALe:AUTO command/query

Rescales and repositions the trace vertically to provide the best display of trace data.
Command Syntax: DISPlay[1|2]:Y:SCALe:AUTO {ONCE|OFF|0}

Example Statements: Output 719;"DISP2:Y:SCAL:AUTO ONCE"
gutput 719;"display2:y:scale:auto 0"

Query Syntax: DISPlay[1l}2]:Y:SCALe:AUTO?
Return Format: +0
Attribute Summary: Preset state: +0 (both displays)

Overlapped: ves
Pass control required: no

Description:

Send DISP:Y:SCAL:AUTO ONCE 1o initiate vertical autoscaling of the specified trace. The
analyzer’s autoscaling algorithm changes the values of DISP:Y:SCAL:MAX and
DISP:Y:SCAL:PDIV to provide the best display of your data.

OFF has no effect on the analyzer. ON is not a valid option, because the analyzer does not support
a continuous autoscaling mode.

15-20

DiSPlay Subsystem

DISPlay[1]2]:Y:SCALe:MAXimum command/query

Sets the reference level in the specified display.

Command Syntax: DISPlay[1}2]:Y:SCALe :MAXimum {<value>|<step>|<bound>)
<value> ::= <number>[<unit>]
<number> ::= a real number (NRf data)
limits: -140.0:50.0
<unit> ::= DBM|VRMS
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"Displayl:Y:Scale:Maximum -15dBm"
Qutput 719;"DISP:Y:SCAL:MAX 10"

Guery Syntax: DISPlay[1]2]:Y:SCALe :MAXimum? [UNIT]

Return Format: <number>{{ "<unit>")

<number> ::= a real number (NRZ or NR3 data)

<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: not defined
Overlapped: ves
Pass control reguired: no

Description:

The reference level determines the upper limit of the specified trace display area. The trace moves
up or down in the display area when you change the reference level.

You can link the reference level to the current input range with the DISP:Y:SCAL:MAX:AUTO
command.

15-21

DISPlay Subsystem

DiSPlay[1]|2]:Y:SCALe:MAXimum:AUTO command/query

Turns reference level tracking on and off.
Command Syntax: DISPlay{1]2]:Y:SCALe:MAXimum:AUTO {(OFF|0|ON|1}

Example Statements: Output 719;"disp:y:scal:max:auto 1"
OQutput 719;"Displayl:¥:Scale:Maximum:Auto On"

Query Syntax: DISPlay[1]|2]:Y:SCALe :MAXimum:AUTO?
Return Format: +{0] 1}
Attribute Summary: Preset state: +] (bothdisplays)

Overlapped: yes
Pass control required: no
Description:

If reference level tracking is enabied, the analyzer maintains the current offset between reference
level (DISP:Y:SCAL:MAX) and input range (SENS:POW:RANG) whenever the range changes.

Note Reference level never tracks input range changes while constants or data registers
i are displayed (DISP:RES Kx or DISP:RES Dx).

15-22

DISPlay Subsystem

DISPlay[1|2]:Y:SCALe:PDIiVision command/query

Compresses or expands displayed data along its vertical axis.

Command Syntax: DISPlay[1]2]:Y:8CALe:PDIVision {<value>|<step>]|<bound>)
<value> :!:= <number>[<unit>]
<number> ::= a real number (NRf data)
limits: 1.0E-3:50.0
<unit> ::= DB|VRMS
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"DISPLAY2:Y:SCALE:PDIVISION 2.5"
Output 719;"displ:y:scal:pdiv 40 mvrms”

Query Syntax: DISPlay{1|2]:Y:SCALe:PDIVision? [UNIT]
Return Format: <number>| ("<unit>")
<number> ::= a real number (NR2 or NR3 data)

<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: +1.00E+1 dBm {both displays)
Qverlapped: ves
Pass control required: no

Description:

This command defines the height of each vertical division on the specified trace. When the trace
display format is single (SCR:FORM SING) or front/back (SCR:FORM FBAC), the number of
vertical divisions is 10. When the format is upper/lower (SCR:FORM ULOW), the number of
vertical divisions is 5.

15-23

16

FORMat Subsystem

The FORMat subsystem contains a single command—FORM:DATA. The command determines
which data type and data encoding will be used when large blocks of numeric data are transferred

between the HP 3588A and a controller.

1641

FORMat Subsystemn

FORMat[:DATA] command/query

Specifies the data type and data encoding to be used during transfers of some block data.

Command Syntax: FORMat [:DATA] (ASCii|REAL} [, {<number>|<bound>)!

<number> ::= an integer (NRf data)
limits: 3:64
<bound> ::= MAX|MIN

Example Statements: Output 719;"Form Asc, 10"
Qutput 719;"FORMAT:DATA REAL"

Query Syntax: FORMat{ :DATA]?

Return Format: {ASC}REAL} ,<number>

<number> ::= an integer {(NR1 data)
limits: 3:64

Attribute Summary: Preset state: ASC,3
Overlapped: no
Pass control required: no

Description:

FORM:DATA only affects data transfers initiated by the following commands:

CALC:DATA?
DISP:LIM:LOW:REP?
DISP.LIM:LOW:.SEGM
DISP:.LIM:UPP:REP?
DISP:LIM:UPP:.SEGM
PROG:SEL:NUMB
TRAC:DATA

FORM:DATA ASC selects NRf data for transfers fo the analyzer and NR3 data for transfers from
the analyzer. Data encoding is ASCIL You control the number of significant digits in the returned
numbers with the second parameter, which has a range of 3 through 12 when the first parameter is
ASC.

FORM:DATA REAL selects definite or indefinite length block data for transfers to the analyzer
but only definite length block data for transfers from the analyzer. Data encoding is binary (the
binary floating-point format defined in the IEEE 754-1985 standard). The only allowed values for
the second parameter are 32 and 64; it determines how many bits will be used for each number.

See “Data Encoding for Block Data” in chapter 4 for more information.

18-2

17

INITiate Subsystem

The INITiate subsystem contains two commands used to control initiation of the trigger system in
TMSL instruments. However, neither of these commands affects the HP 3588A’s trigger system
because it differs slightly from the TMSL definition. The commands are included so you can write
programs that work with the HP 3588A and with other TMSL instruments.

17-1

INiTiate Subsystem .

INITiate:CONTinuous command/query

Sets the trigger system to a continuously initiated state.
Command Syntax: INITiate:CONTinuous {ON|1}

Example Statements: Output 719;"initiate:continuous on"
Qutput 719;"Init:Cont 1"

Query Syntax: INITiate:CONTinuous?
Return Format: +1
Attribute Summary: Preset state: +1

Overlapped: no
Pass control required: neo

Desgcription:

The HP 3588A’s trigger system is always continuously initiated. As a result, this command has no
effect on the analyzer state. It is included so you can write programs that work with this analyzer and
with other TMSL instruments.

17-2

INITiate Subsystem

INITiate[:IMMediate] command

Forces the triggering system to exit the idle state.
Command Syntax: INITiate[:IMMediate]

Example Statements: Ourput 719;"INIT"
OQutput 719;"initiate:immediate”

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

The HP 3588A’s trigger system never enters the idle state. As a result, this command has no effect
on the analyzer state. It is included so you can write programs that work with this analyzer and with
other TMSL instruments.

Note The program message ABOR; INIT:IMM is equivalent to the message SENS:REST.
ﬁﬁl Both restart a measurement. However, SENS:REST is not supported by the TMSL
standard.

17-3

18

INPut Subsystem

INPut is one of two subsystems that control the characteristics of the analyzer’s input circuitry—the
other is SENSe (under its POWer mnemonic). The commands in the INPut subsystem control input
impedance and the input-protection relay.

18-1

INPut Subsystem

INPut:iMPedance

command/query

Selects the impedance of the analyzer’s input circuitry.

Command Syntax:

<value> :

<number>

<unit>
<bound> ::

Example Statements:

Query Syntax:

Heturn Format:

<number>
<unit> :

Attribute Summary:

Description;

INPut:IMPedance {<value>|<bound>}

r= <pumber>[<unit>]

;:= a real number {(NRf data)
limits: 50.0:1.0E6
discrete wvalues: 50, 75, 1Eé

= OHM
MAX |MIN

Output 719 "Input:Impedance 50 Ohm"
Output 719;"INP:IMP 1E6&"

INPut:IMPedance? [UNIT]

<number>| { "<unit>"}

:= a real number (NR2 or NR3 data)

i= unit that applies to returned number

Preset state: +5.00E+1 ohm
Overlapped: yes
Pass control required: no

When you select an input impedance of 1 megohm, dBm calculations use the reference impedance
value you specify with the INP:IMP:REF command. Also, only the 0 dBm input range (referenced
to 50 ohms) is available. {(Input range is set with the SENS:POW:RANG command.)

Note When you select an input impedance of 75 ohms, you must use the 25 ohm adapter
barrel (supplied with the instrument) for accurate results. Insert the adapter
between your test signal and the input connector.

18-2

INPut Subsystem

INPut:iMPedance:REFerence command/query

Selects the reference impedance to be used for dBm calculations when the input impedance is 1

megohm.

Command Syntax;

<value>

<numbey>

<unit>
<step> ::
<bound> ::

Example Statements:

Query Syntax:

Return Format:

<number>
<unit>

Attribute Summary:

Description:

INPut: IMPedance :REFerence {<value>!<step>|<bound>)

D 1= <number>{<unit>]

::= a real number (NRf data)
limits: 1.0:1.0Es6

;= OHM
UP | DOWN
MAX [MIN

i

Qutput 719;"inp:imp:ref 600 ohm”
Output 719;"Input:Impedance:Reference 50"

INPut:IMPedance:REFerence? [UNIT]

<number>| {"<unit>")

::= a real number (NRZ? or NR3 data)

::= unit that applies to returned number

Preset state: +5.00E+1 ohm
Overlapped: yes
Pass control required: no

The value entered with this command is only used for dBm calculations when you select the 1
megohm input impedance (INP:IMP 1 MOHM). The dBm calculations determine trace amplitude
values when the logarithmic magnitude coordinate system is selected (CALC:FORM MLOG).

18-3

INPut Subsystem

INPut: TRIP:CLEar command

Resets the analyzer’s input-protection relay.
Command Syntax: INPut:TRIP:CLEar

Example Statements: Output 719;"INPUT:TRIP:CLEAR"
Output 719;"inp:trip:cle"

Attribute Summary: Preset state: not applicable
Overlapped: ves
Pass control required: no

Description:

The input-protection relay is tripped (opened) when the signal level at the input connector is
significantly above the maximum input range. Bit 2 (Input Tripped) of the Questionable Power
condition register tells you if the input-protection relay has been tripped.

184

19

MARKer Subsystem

The MARKer subsystem lets you control most of the analyzer’s marker functions and read marker
values. One marker function not controlled by this subsystem is limit testing. Commands that
_control limit testing and limit data are found in the DISPlay subsystem (under its LIMit mnemonic).

The MARKer mnemonic contains an optional trace specifier: {1|2]. To direct a command to trace
A, omit the specifier or use 1. To direct a command to trace B, use 2. Commands that are not
trace-specific—like MARK:STAT—ignore the specifier.

15-1

MARKer Subsystem

MARKer[1]|2]:FUNCtion:FCOunt command/query

Turns the frequency counter on and off.
Command Syntax: MARKer([1|2]:FUNCtion:FCOunt {OFF|0|ON|1}

Example Statements: Output 719;"Mark:Func:Fco O
Output 719;"MARKER:FUNCTION:FCOUNT ON*

Query Syntax: MARKer([1!2]:FUNCtion:FCOunt?
Return Format: +{0|1}
" Attribute Summary: Preset state: +0

Overlapped: yes
Pass control required: no
Description;

The frequency counter determines the frequency of the largest signal at the main marker position.
You can move the main marker with MARK:X, MARK:POIN, MARK:MIN, or one of the
MARK:MAX commands. You can read the counted frequency with the MARK:X:FCO query.

19-2

MARKer Subsystem

MARKer[1]|2]:FUNCtion:NOISe command/query

Turns the noise level function on and off.
Command Syntax: MARKer[1|2] :FUNCtion:NOISe (OFF{0O]ON|1}

Example Statements: Output 719;"marker:function:ncise on"
Qutput 719;"Mark:Func:Neis Off"

Query Syntax: MARKer[1{2]:FUNCtion:NOISe?
Return Format: +{0]1}
Aftribute Sumrmary: Preset state: +0

Overlapped: yes
Pass control required: no

Description:

"The noise level marker determines the noise spectral density (normalized to a 1 Hz bandwidth) at
the main marker position. You can move the main marker with MARK:X, MARK:POIN,
MARK:MIN, or one of the MARK:MAX commands. You can read the noise spectral density with
the MARK:Y:NOIS query.

Note The noise level marker is not available for narrow band zoom measurements
(SENS:FUNC "POW.FFT").

18-3

MARKer Subsystem

MARKer[1|2]:MAXimum:GLOBal command

Moves the main marker to the highest peak on the specified trace.
Command Syntax: MARKer{1]2]:MAXimum:GLOBal

Example Statements: Output 719;"MARKZ: MAX:GLOB"
OQutput 719;"marker:maximum:global”

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

This command moves the marker to the highest peak one time. Another
command—MARK:MAX:TRAC—controls a marker function that automatically moves the marker
to the highest peak each time the trace is updated.

19-4

MARKer Subsystem

MARKer[1|2]::MAXimum:LEFT command

Moves the main marker one peak to the left of its current location on the specified trace.
Command Syntax: MARKer{1|2]:MAXimum:LEFT

Example Statements: Output 719;"Markerl:Maximum:Left"
Qutput 719;"MARK2 :MAX:LEFT"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: neo

Description:

A peak is a local maximum on a trace. The slope of a trace is positive to the left of a peak and
negative to the right. In addition, the slope on one side of a peak must not change for at least one
vertical division (one-half division if SCR:FORM is ULOW).

This command only finds peaks that are at least one point to the left of the current marker location.
If the peak search algorithm doesn’t find a peak, the marker doesn’t move. You can increase the
number of peaks found by decreasing the value of DISP:Y:SCAL:PDIV.

19-5

MARKer Subsystem

MARKer[1]2]:MAXimum:RIGHt command

Moves the main marker one peak to the right of its current location on the specified trace.
Command Syntax: MARKer[1]|2]:MAXimum:RIGHt

Example Statements: Output 719;"mark:max:righ"
Output 719;"Marker2:Maximum:Right"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

A peak is a local maximum on a trace. The slope of a trace is positive to the left of a peak and
negative to the right. In addition, the slope on one side of a peak must not change for at least one
vertical division (one-half division if SCR:FORM is ULOW).

This command only finds peaks that are at least one point to the right of the current marker
location. If the peak search algorithm doesn’t find a peak, the marker doesn’t move. You can
increase the number of peaks found by decreasing the value of DISP:Y:SCAL:PDIV.

18-6

MARKer Subsystem

MARKer[1|2]:MAXimum:TRACK command/query

Turns the peak tracking function on and off.
Command Syntax: MARKer[1]2] :MAXimum:TRACk {OFF|0|ON]|1}

Example Statements: Output 719;"MARKER:MAXIMUM:TRACK ON"
Output 719;"mark:max:trac O"

Query Syntax: MARKer[1|2]:MAXimum:TRACk?
Return Format: +(0]|1)
Attribute Summary: Preset state: +0

Overlapped: no
Pass control required: no
Bescription:

When peak tracking is enabled, the analyzer automatically positions the main marker on the fargest
peak of the active trace (SCR:ACT) each time the trace is updated. If you just want to move the
marker to the highest peak one time, use the MARK:MAX:GLOB command.

19-7

MARKer Subsystem

MARKer[1]|2]:MINimum:GLOBal command

Moves the main marker to the lowest point on the specified trace.
Command Syntax: MARKer[1}2] :MINimum:GLOBal

Example Statements: Output 719;"Markl:Min:Glob"
Qutput 719; "MARKERZ2 :MINIMUM:GLOBAL"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

This command moves the marker to the lowest peak one time. To move the marker to the highest
peak one time, use the MARK:MAX:GLOB command.

19-8

MARKer Subsystem

MARKer[1]2]:OFFSet command/query

Turns the offset marker on and off in the specified trace.
Command Syntax: MARKer[1|2]:0FFSet {OFF|0|ON}{1}

Example Statements: Output 719;"marker2:offset on"
Qutput 719;"Mark:0ffs 1"

Query Syntax: MARKer[1|Z] :0FFSet?
Return Format: +{0]1)
Attribute Summary: Preset state: +0 (both traces)

Overlapped: no
Pass control required: no
Description:

This command just controls the display of offset markers. You can always set and query an offset
marker’s position, even when it is not being displayed. Use MARK:OFFS:X, MARK:OFFS:Y,
MARK:OFFS:DELT:X, and MARK:OFFS:DELT:Y to set and query an offset marker’s position.

198

MARKer Subsystemn

MARKer[1]2]:OFFSet:DELTa:X command/query

Specifies the offset marker's x-axis position as an offset from the main marker’s position.

Command Syntax:

<value> :

<number> :

<unit> 1
<bound>

Example Statements:

Query Syntax:

Return Format:

<number> ::

<unit>

Attribute Summary:

Description:

MARKer[1]2]:0FFSet:DELTa:X {<value>|<bound>)}

(= <number>[<unit>]

:= a real number (NRf data)
limits: -150.0E6:150.0E6

HZ |[MHZ|S
t= MAX|MIN

i

Output 719;"MARK2:0FFS:DELT:X 10KHZ"
Output 719;"markerl:offset:delta:x S5eb"

MARKer[1|2):0FFSet:DELTa:X? [UNIT]

<number>| {"<unit>"}

a real number (NR2 or NR3 data)

unit that applies to returned number

i

Preset state: +0.00E+0 Hz (both traces)
Overlapped: no
Pags control required: no

This command specifies the offset marker’s x-axis position as an offset from the main marker’s
position. To specify the offset marker’s absolute x-axis position, use the MARK:OFFS:X command.

19-10

MARKer Subsystem

MARKer[1|2]:OFFSet:DELTaY command/query

Specifies the offset marker’s y-axis position as an offset from the main marker’s position.

Command Syntax: MARKer[1]2]:0FFSet:DELTa:Y {<value>|<bound>}
<value> ::= <number>[<unit>]
<number> ::= a real number (NRf data)
limits: -50.0:50.0
<unit> ::= DB{VRMS
<bound> ::= MAX|MIN

Example Stetements: Output 719:"Markerl:0ffset:Delta:Y 34B"
Qutput 719;"MARK:OFFS:DELT:Y 7"

Query Syntax: MARKer[1]|2]:0FFSet:DELTa:Y?

Return Format: <number>| { "<unit>"}

<pumber> ::= a real number (NRZ or NR3 data)

<unit> ::

4

unit that applies to returned number

Attribute Summary: Preset state: not defined
Qverlapped: no
Pass control required: no

Description:

This command specifies the offset marker’s y-axis position as an offset from the main marker’s
position. To specify the offset marker’s absolute y-axis position, use the MARK:OFFS:Y command.

19-11

MARKer Subsystem

MARKer[1]|2]:0FFSet:X command/query

Specifies the offset marker’s x-axis position.

Command Syntax: MARKer[1]2):0FFSet: X {<value>|<step>|<bound>}
<value> ::= <number>[<unit>]
<number> ::= a real number (NRf data)
limits: 0.0:150.0E6
<unit> ::= HZIMHZ|S
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"mark?:offs:x 50e6"
OQutput 719;"Marker2:0ffset:X 4CO0kHz"

Query Syntax: MARKer{1|2]:0FFSet:X? {UNIT]

Return Format: <number>|("<unit>")

i

a real number {NR2 or NR3 data)

unit that applies to returned number

<number> ::

It

<unit> ::

Attribute Summary: Preset state: +7.51E+7 Kz (both traces)
Overlapped: no
Pass control required: no

Description:

This command specifies the offset marker’s absolute x-axis position. To specify the offset marker’s
x-axis position as an offset from the main marker’s position, use the MARK:OFFS:DELT:X
command.

18-12

MARKer Subsystem

MARKer[1|2]:OFFSet:Y command/query

Specifies the offset marker’s y-axis position.

Command Syntax: MARKer{1]2]:0FFSet:Y {<value>|<bound>]
<value> ::= <number>[<unit>]
<number> ::= a real number (NRf data)
limits: -140.0:50.0
<unit> ::= DBM|VRMS
<bound> ::= MAX|MIN

Example Statements: Output 719;"MARKER1:OFFSET:Y 0.2 VRMS"
Qutput 719;"mark2:offs:y -10dbm"

Query Syntax: MARKer[1]2]:0FFSet:Y? [UNIT]

Return Format: <number>| {"<unit>")

<number> ::= a real number (NK2 or NR3 data)

<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: +0.00E+0 dBm (both traces)
Overlapped: no
Pass control required: neo

Description:

This command specifies the offset marker's absolute y-axis position. To specify the offset marker’s
y-axis position as an offset from the main marker’s position, use the MARK:OFFS:DELT:Y
command.

18413

MARKer Subsystem

MARKer[1|2]:POINt command/query

Moves the main marker to a particular display point.

Command Syntax: MARKer[1}2]:POINt {<number>|<step>|<bound>]
<pumber> ::= an integer (NRf data)
limits: 0:400
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"Mark:Poin O
Output 719;"MARKER2:POINT 200"

Query Syntax: MARKer{1|2]:POINt?

Return Format: <number>

<number> ::= an integer (NR1 data)

Attribute Summary: Preset state: +200 (both traces)
Overlapped: no
Pass control required: no

Description:

A trace is divided into 401 points along its x-axis. This command specifies the main marker’s x-axis
position by point number. To specify its x-axis position by frequency (or time), use the MARK:X
command.

18-14

MARKer Subsystem

MARKer[1]|2][:STATe] command/query

Enables the main markers or disables all markers and marker functions at once.
Command Syntax: MARKer{1|2][:STATe] {OFF|0|ON|1}

Example Statements: Output 719;"marker:state off"
Output 719;"Mark 1"

Query Syntax: MARKer[1|2][:STATe]?
Return Format: +{0]1}
Attribute Summary: Preset state: +1

Overlapped: no
Pass control required: no

Description:

ON enables the display of the main markers.
OFF disables the display of main and offset markers for both traces, even if you append a trace
specifier to the MARKer mnemonic. In addition, it disables the frequency counter

(MARK:FUNC:FCO), the noise-level marker (MARK:FUNC:NOIS), and the peak tracking
function (MARK:MAX:TRACK).

18-15

MARKer Subsystem

MARKer[1[2]:TO:SPAN command

Resets the span to the frequency difference between the main and offset markers.
Command Syntax: MARKer[1|2]:TO:SPAN

Example Statements: Output 719;"MARK2:TD:SPAN"
Qutput 719;"markerl:to:span”

Attribute Summary: Preset state: not applicable
Overiapped: no
Pass control required: no

Description:

When swept spectrum measurements are selected (SENS:FUNC 'POW:SWEP”), this command
resets the start frequency (SENS:FREQ:STAR) to the smaller of the two marker’s frequencies. It
resets the stop frequency (SENS:FREQ:STOP) to the larger of the two frequencies.

When narrow band zoom measurements are selected (SENS:FUNC 'POW:FFT"), this command
resets the center frequency (SENS:FREQ:CENT) to one-half the sum of the main and offset
marker frequencies. It resets the span (SENS:FREQ:SPAN) to the difference between these two
frequencies. (If the difference doesn’t exactly match one of the spans available for narrow band
zoom measurements, the analyzer selects the next larger span.)

18-16

MARKer Subsystemn

MARKer[1|2]:X command/query

Specifies the main marker’s x-axis position.

Command Syntax: MARKer[1]2]:X {<value>|<step>|<bound>)

<value> ::= <number>[<unit>]

<number> ::= a real number (NRf data)
limits: 0.0:150.0E6
<unit> ::= HZ|MHZ|S
<step> ::= UP|DOWN
<bound> ::= MAX{MIN

Example Statements: Output 719;"mark:x 98.1 mahz"
Output 719;"Marker:X 150ms"

Query Syntax: MARKer([1]2]:X? [UNIT]

Return Format: <numbexr>| { "<unit>"}

a real number (NRZ or NR3 data)

unit that applies to returned number

<number> | :
<unit>

1

Attribute Summary: Preset state: +7.51E+7 Hz (both traces)
Overlapped: no
Pass control required: no -

Description:

This command specifies the main marker’s x-axis position by frequency (or time). To specify its
x-axis position by display point number, use the MARK:POIN command.

19-17

MARKer Subsystern

MARKer[1|2]:X:FCOunt? query
Returns the last frequency measured by the frequency counter.
Query Syntax: MARKer[1|2]:X:FCOunt? [UNIT]

Example Statements: Output 719;"MARKER:X:FCOUNT?"
Qutput 719;"mark:x:fco?”

Return Format: <number>| { "<unit>")

<number> ::= a real number (NRZ or NR3 data)

<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: not defined
Overlapped: no
Pass contrel required: no

Description:

The frequency counter must be turned on before you can read a value with this query. Send
MARK:FUNC:FCO ON to turn the frequency counter on.

18-18

MARKer Subsystem

MARKer[1|2]:Y?

query

Returns the main marker’s y-axis position.

Query Syntax:

Example Statements:

Return Format:

<number> ::
<unit>

Attribute Summary:

Description:

MARKer[1|2]:Y? [UNIT]

Output 719;"Mark:Y?"
Output 719;"MARKER1:Y?"

<number>] {"<unit>")

= a real number (NR2 or NR3 data)

:= unit that applies to returned number

Preset state: not defined
Overlapped: no
Pass control required: no

This query always returns the y-axis position of the main marker, even if the marker is not currently
displayed on the analyzer’s screen. The value returned tells you the amplitude of the specified trace
at the marker’s x-axis position (specified with MARK:X or MARK:POIN).

19-19

MARKer Subsystem

MARKer[1|2}:Y:NOISe? query
Returns the value last measured by the noise level marker.
Query Syntax: MARKer[1]|2]:Y:NOISe? [UNIT]

Example Statements: Output 719;"marker:y:nocise?"
Output 719;"Mark:Y:Nois?"

Return Format: <number>| { "<unit>"}

<numbetr> ::= a real number {NR2 or NR3 data)

<unit> ::= unit that applies to returned number

Aftribute Summary: Preset state: not defined
Overlapped: no
Pass control required: no

Description:

The noise level marker must be turned on before you can read a value with this query. Send
MARK:FUNC:NOIS ON to turn on the noise-level marker.

19-20

20

MMEMory Subsystem

The MMEMory subsystem contains commands that control the analyzer’s mass storage (disk}
functions. Two of the mass storage devices are RAM-based disks—one using non-volatile RAM and
the other using volatile RAM. The other mass storage device is an internal disk drive that uses
3.5-inch flexible disks. (The internal drive may be deleted on some instruments.)

Most MMEMory commands are directed to one of the disks with the following disk specifiers:
m NVRAM:—This specifies the non-volatile RAM disk.
» RAM:—This specifics the volatile RAM disk.

w INT:—This specifies the internal disk.

If you omit disk specifiers from MMEMory commands, the commands are automatically directed to
the default disk. You select the default disk with the MMEM:MSI command.

20-1

MMEMory Subsystem

MMEMory:COPY command

Copies the contents of one disk to another or one file to another.

Command Syntax: MMEMory:COPY '<pathname>', '<pathname>'

]

[<disk>] [<filename>]
NVRAM: |RAM: | INT:

1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore)

<pathname> !:
<disk>

<filename> ::

I

Example Statements: Output 719;"MMEM:COPY 'RAM:’,'INT:'"
Output 719;"mmemory:copy 'STATEL’, 'RAM:STATEL""

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

To copy a disk, just use a disk specifier for each <pathname>. To copy a file, use disk specifiers and
filenames. If you just want to rename a file, use the MMEM:REN command.

20-2

MMEMory Subsystem

MMEMory:DELete command

Deletes one file or the contents of an entire disk.

Command Syntax: MMEMory:DELete ' [<disk>][<filename>]'
<disk> ::= NVRAM: |RAM:|INT:
<filename> ::= 1 through 10 ASCII characters (use A!Z, a:z, 0:9, and
underscore)

Example Statements: Qutput 719;"Mmemory:Delete 'RAM:'"
Qutput 719;"MMEM:DEL ‘NVRAM:TRACEZ'"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

If you send the command with a disk specifier only, the contents of the entire disk are deleted.

20-3

MMEMory Subsystem

MMEMory:GET:PROGram command

Loads an HP Instrument BASIC program into the analyzer from the specified disk.

Command Syntax: MMEMory:GET:PROGram ' [<disk>]<filename>’

<disk> ::= NVRAM:|RAM:|INT:

<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore); file must contain a program

Example Statements: Qutput 719;"mmem:get:prog 'MEAS_SEQ5""
OQutput 719;"Mmemory:Get:Program 'RAM:ZERO_SPAN'""

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

You can load an HP Instrument BASIC program from disk either with this command or with the
MMEM:LOAD:PROG command. However, only MMEM:LOAD:PROG is supported by the
TMSL standard. You can load a program from your controller with the PROG:SEL:DEF command.

This command is only valid if the HP Instrument BASIC option is installed.

20-4

MMEMory Subsystem

MMEMory:INITialize

Formats the specified disk.

Command Syntax: MMEMory:INITialize '<disk>’[, (<number>|<bound>}]

<disk> ::= NVRAM:|RAM:|INT:

<number> ::= an integer {(NRf data)

limits: 0:5
<bound> ::= MAX|MIN

Example Statements: Output 719 "MMEMORY: INITIALIZE 'RAM:’,5"

Output 719;"mmem:initc "INT:’, 1"

Attribute Summary: Preset state: +0
Overlapped: no
Pass control required:

Description:

The parameter you enter after the disk specifier is actually an encoded value that determines the

disk’s formatted capacity (in kilobytes):

no

Rumber RAM Disk NVRAM Disk Internal Disk
0 64 63 640
1 640 . 640
2 710 ' 710
3 788 . 788
4 270 . —
5 640 . 64

The interleave factor for the internal disk is always 1.

command

20-5

MMEMory Subsystem

MMEMory:LOAD:LIMit:LOWer command

Looads a lower limit into the analyzer from the specified disk.

Command Syntax: MMEMory:LOAD:LIMit:LOWer {A|B}, ' [<disk>]<filename>’
<disk> ::= NVRAM:|RaM:|INT:
<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and

underscore); file must contain a limit or a trace

Example Statements: Output 719;"Mmem:Load:Lim:Low A, 'INT:L LIMZ'"
Qutput 719;"MMEMGRY:LCAD:LIMIT:LOWER B,'ocldLim’"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control reguired: no

Description:

This command loads the contents of a file into the lower limit register of the specified trace. The file
must have been saved either with the MMEM:STOR:LIM:UPP, MMEM:STOR:LIM:LOW, or
MMEM:STOR:TRAC command. Additional limit commands are available under DISP:LIM.

20-6

MMEMory Subsystem

MMEMory:LOAD:LIMit:UPPer command
Loads an upper limit into the analyzer from the specified disk.
Command Syntax: MMEMory:LOAD :LIMit:UPPer (A]B), ' [<disk>]<filename>'

<disk> ::

<filename> ::

NVRAM: |RAM: [INT:

1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore): file must centain a limit or a trace

I

Example Statements: Output 719;"mmemory:load:limit:upper b,’oldLim""
Output 719;"Mmem:Load:Lim:Upp B, 'INT:U_LIM2'"

 Attribute Summary: Preset state: not applicable
Overiapped: no
Pass control required: no

Description:

This command loads the contents of a file into the upper limit register of the specified trace. The
file must have been saved either with the MMEM:STOR:LIM: UPP, MMEM:STOR:LIM:LOW, or
MMEM:STOR:TRAC command. Additional limit commands are available under DISP:LIM.

20-7

MMEMory Subsystem

MMEMory:.LOAD:MATH command

Loads a complete set of math definitions into the analyzer from the specified disk.

Command Syntax: MMEMory: LOAD:MATH ' [<disk>]<filename>’

<disk> ::= NVRAM:|RAM:|INT:

<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore); file must contain a set of math
definitions

Example Statements: Output 719;"MMEM:LOAD:MATH 'NVRAM:myMath'"
Qutput 719;"mmemory:load:math 'MATH1'"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

This command uses the contents of a file to load all of the analyzer’s function registers (F1 through
F5) and constant registers (K1 through K5). The file must have been saved with the
MMEM:STOR:MATH command.

20-8

MMEMory Subsystem

MMEMory:LOAD:PROGram command

Loads an HP Instrument BASIC program into the analyzer from the specified disk.

Command Syntax: MMEMory :LOAD: PROGram ' [<disk>]<filename>'
<disk> ::= NVRAM:|RAM:|INT:
<filename> ::= 1 through 10 ASCII characters {(use A'Z, a:iz, 0:9, and

underscore); file must contain a program
Example Statements: Output 719;"Mmemory:Load:Program 'PROGZ'"
Output 719;"MMEM:LOAD:PROG ‘INT:MYPROG'"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

You can load an HP Instrument BASIC program from disk either with this command or with the
MMEM:GET:PROG command. However, only MMEM:LOAD:PROG is supported by the TMSL
standard. You can load a program from your controller with the PROG:SEL:DEF command.

This command is only valid if the HP Instrument BASIC option is installed.

20-9

MMEMory Subsystem

MMEMory:LOAD:STATe command

Loads an instrument state into the analyzer from the specified disk.

Command Syniax; MMEMory:LOAD:STATe (1 |MAX|MIN}, ' [<disk>]<filename>’

<disk> ::= NVRAM:|RAM: |INT:

<filename> ::= 1 through 10 ASCII characters {(use A:Z, a:z, 0:9, and
underscore); file must contain an instrument state

Example Statements: Output 719;"mmem:load:stat 1,'statel’"
Output 719;"Mmemory:load:State 1,'STATE 2'"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

This command uses the contents of a file to redefine the instrument state. The file must have been
saved with the MMEM:STOR:STAT command.

20-10

MMEMory Subsystem

MMEMory:LOAD:TRACe command
Loads a trace into the analyzer from the specified disk.
Command Syntax: MMEMory:LOAD : TRACe <data_reg>, ' [<disk>]<filename>’
<data_reg> ::= {D1]|D2|D3|D4|D5|D6|D7|D8)
<disk> ::= NVRAM:|RAM:|INT:

<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore); file must contain a trace

Example Statements: Output 719;"MMEMORY:LOAD:TRACE D6, 'SPEC'"
OQutput 719;"mmem:load:trac d2, INT:trace4’™

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass contrel regquired: no

Description:

This command loads the contents of a file into one of the analyzer’s eight data registers (D1 through
D8). The file must have been saved with the MMEM:STOR:TRAC command. After loading the
data register, you can display its contents with the DISP:RES command.

20-11

MMEMory Subsystem

MMEMory:MSI command/query
Selects a default disk for file and disk operations.
Command Syntax: MMEMory:MSI ‘<disk>'

<disk> ::= NVRAM:|RAM:|INT:

Example Statements: Output 719;"Mmem:Msi *INT:'"
Qutput 719;"MMEMORY:MSI 'NVRAM:'"

Query Syntax: MMEMory:MSI?
Return Format: "<disk>"
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass control required: no

Description:

If you omit disk specifiers from MMEMory commands, the commands are automatically directed to
the default disk. This command uses the following mnemonics to select the default disk:

= NVRAM:——This selects the non-volatile RAM disk.
s RAM:—This selects the volatile RAM disk.

m INT:—This selects the internal disk.

20-12

MMEMory Subsystem

MMEMory:PACK command

Increases the amount of usable space on the specified disk.

Command Syntax: MMEMory:PACK ['<disk>’]

<disk> ::= NVRAM:|RAM:|INT:
Example Statements: Output 719;"mmemory:pack "INT:'"
Cutput 719;"Mmem:Pack"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

When you delete files from a LIF-formatted disk, you sometimes leave spaces that are too small to
be used for new files. This command recovers these unusable spaces.

20-13

MMEMory Subsystem

MMEMory:REName command

Renames a file.

Command Syntax: MMEMory:REName '<pathname>’,'<filename>’'
<pathname> ::= [<disk>]<filename>
<disk> ::= NVRAM:|RAM:|INT:

<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore)

Example Statements: Output 719;"MMEM:REN 'INT:LIMIT', OLDLIMIT'"
Output 719;"mmemory:rename 'myprog','yourProg'"

Attribute Summary: Preset state: mnot applicable
Overlapped: no
Pass control required: no

Description:

Renaming only allows you to change a file’s name on the current disk. It does not allow you to move
a file by changing the file’s name and disk specifier. To move a file, first copy it to another disk with
the MMEM:COPY command, then delete it from the original disk with the MMEM:DEL command.

20-14

MMEMory Subsystem

MMEMory:RESave:PROGram

Saves a program that has already been saved once.

Command Syntax: MMEMory:RESave :PROGram ' [<disk>]<filename>'
<disk> ::= NVRAM:|RAM:|INT:
<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z,
underscore)

Example Statements: Output 719;"Mmemory:Resave:Program 'meas_seqs’"
Output 719;"MMEM:RES:PROG 'NVRAM:Program2’”

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control regquired: no

Description:

command

0:9, and

This command saves the current HP Instrument BASIC program to the specified disk. If the
filename you specify matches the name of another file on the disk, the old file is overwritten. (Use
MMEM:SAVE:PROG or MMEM:STOR:PROG if you want to ensure that the old file is not

overwritten.)

This command is only valid when the HP Instrument BASIC option is installed.

20-15

MMEMory Subsystem

MMEMory:SAVE:PROGram command
Saves a program for the first time.
Command Syntax: MMEMory:SAVE:PROGram ' [<disk>]<filename>'

<disgk> ::

<filename> ::

NVRAM: |RAM: | INT:
1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore)

Example Statements: Output 719;"mmem:save:prog 'PROGRAM 1'"
Qutput 719;"Mmemory:Save:Program 'RAM:yourProg’"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

You can use this command or the MMEM:STOR:PROG command to save the current

HP Instrument BASIC program to the specified disk. (However, only MMEM:STOR:PROG is
supported by the TMSL standard.) If the filename you specify matches the name of another file on
the disk, the save is aborted to preserve the old file. (Use MMEM:RES:PROG if you want to
overwrite the old file.)

This command is only valid when the HP Instrument BASIC option is installed.

20-16

MMEMory Subsystem

MMEMory:STORe:LIMit:LOWer command

Saves the specified lower limit to a disk.

Command Syntax: MMEMory:STORe :LIMit:LOWer {A|B},’ [<disk>]<filename>’

<disk> ::= NVRAM:|RAM: |INT:
<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore)

Example Statements: Output 719;"MMEMORY:STORE:LIMIT:LOWER B,'ocldLim'"
Output 719;"MMEM:STORE:LIM:LOW A,'INT:L LIMZ'"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

The first parameter specifies which Jower limit you are saving—the one from trace A or the one
from trace B. If the filename you specify matches the name of another file on the disk, the old file is
overwritten.

2017

MMEMory Subsystem

MMEMory:STORe:LIMit:UPPer command

Saves the specified upper limit to a disk.

Command Syntax: MMEMory:STORe: LIMit:UPPer {A|B),’ [<disk>]<filename>’

<disk> ::= NVRAM:|RAM:|INT:
<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore)

Example Statements: Output 719;"Mmem:Stor:Lim:Upp A, 'RAM:ulLim2'"
Output 719;"MMEMORY:STORE:LIMIT:UPPER A, 'LIMIT'"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Bescription:

The first parameter specifies which upper limit you are saving—the one from trace A or the one
from trace B. If the filename you specify matches the name of another file on the disk, the old file is
overwritten.

20-18

MMEMory Subsystem

MMEMofy:STORe:MATH command

Saves a complete set of math definitions to the specified disk.

Command Syntax: MMEMory: STORe :MATH ' [<disk>]<fiiename>’
<disk> ::= NVRAM:|RAM: |INT:
<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and

underscore)

Example Statements: Output 719;"mmemory:store:math 'MATHL'"
Qutput 719;"Mmem:Stor:Math 'NVRAM:myMath'"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

A complete set of math definitions includes the current values in all of the function registers (F1
through F5) and all of the constant registers (K1 through K5). If the filename you specify with this
command matches the name of another file on the disk, the old file is overwritien.

20-19

MMEMory Subsystem

MMEMory:STORe:PROGram command

Saves a program for the first time.

Command Syntax: MMEMory:STORe : PROGram ' [<disk>1<filename>’

<disk> ::= NVRAM:|RAM:|INT:

<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore)

Example Statements: Output 719;"MMEM:STOR:PROG 'PROGZ'"
Output 719;"mmemory:store;program 'INT:myProg

£ 1

Attribute Summary: Preset state: not applicable
Overlapped: no
Passz control required: no

Description:

You can use this command or MMEM:SAVE:PROG to save the current HP Instrument BASIC
program to the specified disk. (However, only MMEM:STOR:PROG is supported by the TMSL
standard.) If the filename you specify matches the name of another file on the disk, the save is

aborted to preserve the old file. (Use MMEM:RES:PROG if you want to overwrite the old file.)

This command is only valid when the HP Instrument BASIC option is installed.

20-20

MMEMory Subsystem

MMEMory:STORe:STATe command

Saves the instrument state to the specified disk.

Command Syntax: MMEMory:STORe : STATe {1|MAX|MIN},' [<disk>]<filename>
<disk> ::= NVRAM:|RAM: |INT:
<filename> ::= 1 through 10 ASCII characters (use A:Z, a:z, 0:9, and
underscore)

Example Statements: Output 719;"Mmemory:Store:State 1,'STATE_2'"
Qutput 719;"MMEM:STOR:STAT 1,’'statel’"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

If the filename you specify with this command matches the name of another file on the disk, the old
file is overwritten.

20-21

MMEMory Subsystem

MMEMory:STORe:TRACe command
Saves the specified trace to a disk.
Command Syntax: MMEMory:STORe : TRACe {AlBR}, ' [<disk>]<filename>’

<disk>

<filename> ::

i

NVRAM: |RAM: | INT:
1 through 10 ASCII characters {use A:Z, a:z, 0:9, and
underscore)

Example Statements: Qutput 719;"mmem:stor:trac a,'INT:traceld’"
Qutput 719;"Mmemory:Store:Trace B, 'SPEC'"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

The first parameter specifies which trace you are saving—trace A or trace B. If the filename you
specify matches the name of another file on the disk, the old file is overwritten.

20-22

PLOT Subsystem

21

The PLOT subsystem contains commands that control piotting parameters. It also contains
commands that allow you to plot different portions of the analyzer’s screen.

PLOT Subsystem

PLOT.ADDRess command/query

Tells the analyzer which HP-IB address is assigned to your plotter.

Command Syntax: PLOT:ADDRess {<number>|<step>|<bound>}

<number> ::= an integer (NRf data)
limits: ©0:30
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"PLOT:ADDRESS O"
Qutput 719;"plot:addr 3"

Query Syntax: PLOT:ADDRess?
Return Format: <number>
<number> ::= an integer (NRL1 data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass contrel required: no
Description:

When you initiate a plot with one of the PLOT:DUMP commands, the analyzer expects to find a
plotter at the HP-IB address specified with PLOT:ADDR. If there isn’t a plotter at the specified
address, the plot is automatically aborted.

212

PLOT Subsystem

PLOT:DUMP:ALL command

Plots everything currently displayed on the analyzer’s screen.
Command Syntax: PLOT:DUMP:ALL

Example Statements: Output 719;"Plot:Dump:All”
Output 719;"PLOT:DUMP:ALL"

Attribute Summary: Preset state: not applicable
Overlapped: ves
Pass control required: yes

Description:

This command allows you to plot anything you can display with the SCR:CONT command.

Everything on the screen is plotted except the softkey labels.

If you don’t know how to pass control, see “Passing Control” in chapter 2.
y P £ P

21-3

PLOT Subsystem

PLOT:DUMP:GRATIcule command

Plots all displayed graticules.
Command Syntax: PLOT:DUMP:GRATicule

Example Statements: Output 719;"plot:dump:graticule”
Output 719;"Plot:Dump:Grat"

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: yes

Description:

Graticules are always plotted with solid lines, regardless of their appearance on the analyzer’s screen.

If you don’t know how to pass control, see “Passing Control” in chapter 2.

214

PLOT Subsystem

PLOT:DUMP:MARKer command

Plots all displayed main markers and their coordinates.
Command Syntax: PLOT:DUMP :MARKer

Example Statements: Output 719;"PLOT:DUMP:MARK"
Qutput 719;"plot:dump:marker”

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: yes

Description:

Markers must be displayed (MARK:STAT ON) before they can be plotted. Markers are annotated
with their x-axis and y-axis coordinates when you plot them with PLOT:DUMP:MARK.

If you don’t know how to pass control, see “Passing Control” in chapter 2.

21-5

PLOT Subsystem

PLOT:DUMP:OFFSet:MARKer command

Plots all displayed offset markers and their coordinates.
Command Syntax: PLOT : DUMP:OFFSet:MARKer

Fxample Statements: Qutput 719;"Plot:Dump:0ffset:Marker"
Output 719;"PLOT:DUMP:OFFS :MARK"

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: yes

Description:

Offset markers must be displayed (MARK:OFFS ON) before they can be plotted. Offset markers
are annotated with their x-axis and y-axis coordinates when you plot them with
PLOT:DUMP:OFFS:MARK.

If you don’t know how to pass control, see “Passing Control” in chapter 2.

21-6

PLOT Subsystem

PLOT:DUMP:TRACe command

Plots all displayed traces.
Command Syntax: PLOT:DUMP.TRACe

Example Statements: Output 719;"plot:dump:trac”
Qutput 719;"Plet:Dump:Trace”

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass contrel required: yes

Description:

When you use this command, displayed traces are plotted without graticules, annotation, or markers.

If you don’t know how to pass control, see “Passing Control” in chapter 2.

PLOT Subsystem

PLOT:EJECt command/query

Turns the page-eject feature on and off for plotters that support such a feature.
Command Syntax: PLOT:EJECt {OFF|0O|ON{1}

Example Statements: Output 719;"PLOT:EJECT ON"
Qutput 719;"plot:ejec 0"

Query Syntax: PLOT:EJECC?
Return Format: +{0|1}
Attribute Summary: Preset state: +1

Overlapped: no
Pass control required: no

Description:

Check your plotter’s documentation to be sure that it supports the requested page-cject state.

21-8

PLOT Subsystem

PLOT:LTYPe:TRACe[1[2] command/query

Selects the line type for the specified trace.

Command Syntax: PLOT:LTYPe:TRACe[1]|2] {<number>|<bound>)}

<number> ::= an integer (NRf data)
limits: -4096:4096

<bound> ::= MAX]MIN
Example Statements: Qutput 719;"Plot:Ltyp:Tracl -4096"
Output 719;"PLOT:LITYPE:TRACE2 1"

Query Syntax: PLOT:LTYPe:TRACe[1]|2]?

Return Format: <number>
<number> ::= an integer (NR1 data)

Attribute Summary: Preset state: -4096 (both traces)
Overlapped: no
Pass control required: no

Description:

The trace specifier determines whether you are selecting the line type for trace A or trace B. Omit
the specifier or send 1 for trace A; send 2 for trace B. The <number> parameter is actually an
encoded value. Encoded values for the most commonly used line types follow:

» Solid: -4096

m Dotted: 1

w Dashed: 2

Check your plotter’s documentation to see if it supports additional line types.

21-9

PLOT Subsystem

PLOT:PEN:ALPHa

Selects the pen to be used for plotting alpha characters.

Command Syntax:

<number> 1.

<step> :
<bound> :

Example Statements:

Query Syntax:

Return Format:

<number>

Attribute Summary:

Description:

PLOT:PEN:ALPHa {<number>|<step>|<bound>)

an integer (NRf data)
limits: 1:16

:= UP|DOWN

1= MAX|MIN

Output 719;"plot:pen:alpha 6"
Qutput 719;"Plot:Pen:Alph 1"

PLOT:PEN:ALPHa?

<number>
:= an integer (NR1 data)
Preset state: +4

Overlapped: no
Passg control required: no

command/query

The alpha pen is used to plot the instrument state and the disk catalog. (You can display these with
the SCR:CONT command.)

21-10

PLOT Subsystem

PLOT:PEN:GRATIicule command/query

Selects the pen to be used for plotting graticules.

Command Syntax: PLOT:PEN:GRATicule {<number>|<step>|<bound>)

<number> ::= an integer (NRf data)
limits: 1:16
<step> ::= UP|DOWN
<bound> ::= MAXIMIN

L]

Example Statements: Output 719;"PLOT:PEN:GRAT 1"
Qutput 719;"plot:pen:graticule 2"

Query Syntax: PLOT:PEN:GRATicule?
Return Format: <number>

<number> ::= an integer (NR1 data)
Attribute Summary: Preset state: +1

Overlapped: no
Pass control required: no

Description:

The graticule pen is used to plot trace graticules, the border around the instrument state, and the
border arcund the disk catalog.

21-11

PLOT Subsystem

PLOT:PEN:INITialize

Returns plotter pen assignments to their default values.
Command Syntax: PLOT:PEN:INITialize

Example Statements: Output 719;"Plot:Pen:Initialize"”
Output 719;"PLOT:PEN:INIT"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

Here are the default pen values:

PLOT:PEN:ALPH = 4
PLOT:PEN:GRAT = 1
PLOT:PEN:MARKI = 5
PLOT:PEN:MARKZ =6
PLOT:PEN:TRAC1 =2
PLOT:PEN:TRAC2 =3

21-12

command

PLOT Subsystem

PLOT:PEN:MARKer[1|2] command/query

Selects the pen used to plot markers for the specified trace.

Command Syntax: PLOT: PEN:MARKer[1!2] {<number>|<step>|<bound>)
<number> ::= an integer (NRf data)
limits: 1:16
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"plot:pen:markl 3n
Output 719;"Plot:Pen:Markerl 2"

Query Syntax: PLOT:PEN:MARKer[1|2}7
Return Format: <pumber>
<pumber> ::= an integer (NRl data)
Attribute Summary: Preset state: +5 (MARK1), +6 {MARKZ)

Overlapped: no
Pass control required: no
Description:

The marker pen is used to plot markers and limit lines. The trace specifier you send with this
command determines whether you are selecting the pen number for trace A markers or trace B
markers. Omit the specifier or send 1 for trace A; send 2 for trace B.

2113

PLOT Subsystem

PLOT:PEN:TRACe[1|2] command/query

Selects the pen used to plot the specified trace.

Command Syntax: PLOT: PEN:TRACe[1]2] (<number>|<step>|<bound>}

f

<number> ::= an integer (NRI data)

limits: 1:16
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"plot:pen:trace2 10"
Output 719;"Plot:Pen:Trac2 1"

Query Syntax: PLOT:PEN:TRAGCe[1]2]?
Return Format: <number>
<number> ::= an integer (NR1 data)
Attribute Summary: Preset state: +2 (TRACL), +3 (TRAGCZ)

Overlapped: no
Pass control reqguired: no

Description:

The trace pen is used to plot traces and all of the following trace-specific annotation:

Trace title.
Marker readout,
X-axis annotation.
Y-axis annotation.
Limit test resuits.

The trace specifier you send with this command determines whether you are selecting the pen
number for trace A or trace B. Omit the specifier or send 1 for trace A; send 2 for trace B.

21-14

PLOT Subsystem

PLOT:SPEed

Specifies the plotting speed that will be requested by the analyzer.

Command Syntax:

<number> ::

<step> .
<bound> ::

Example Statements:

Query Syntax:

Return Format:

<number>

Attribute Summary:

Description:

PLOT:SPEed {<number>|<step>|<bound>}

an integer (NRf data)
limits: 1:100
UP | DOWR

MAX |MIN

i

i

Qutput 719;"PLOT:SPE 50"
Output 719;"plot:speed 10"

PLOT:S5PEed?

<number>

:= an integer (NR1 data)

Preset state: +50
Overlapped: no
Pass control required: no

command/query

You request a plot speed in units of cm/s. Check your plotter’s documentation to be sure that it
supports the requested plotting speed.

21-15

22

PRINt Subsystem

The PRINt subsystem contains two commands. One command telis the analyzer where to send print
data; the other prints the contents of the analyzer’s screen.

22-1

PRINt Subsystem

PRINt:ADDRess command/query

Tells the analyzer which HP-IB address is assigned to your printer.

Command Syntax: PRINt:ADDRess {<number>|<step>|<bound>}
<number> ::= an integer (NRf data)
limits: 0:3C
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"Print:Address 1"
Output 719;"PRIN:ADDR 14"

Query Syntax: PRINt:ADDRess?

Return Format: <number>

<number> ::= an integer (NRl data)

Attribute Summary: Preset state: not affected by Preset
Uverlapped: no
Pags control required: no

Description:

When you initiate a print operation with the PRIN:DUMP:ALL command, the analyzer expects to
find a printer at the HP-IB address specified with PRIN:ADDR. If there isn’t a printer at the
specified address, the print operation is automatically aborted.

22-2

PRINt Subsystem

PRINtL:DUMP:ALL command

Prints everything currently displayed on the analyzer’s screen.
Command Syntax: PRINt:DUMP:ALL

Example Statements: Output 719;"prin:dump:all”
Qutput 719;"Print:Dump:All"

Attribute Summary: Preset state. not applicable
Overlapped: ves
Pass control required: yes

Description:

This command allows you to print anything you can display with the SCR:CONT command.
Everything on the screen is printed except the softkey labels.

Note Print information is sent as a bit-mapped graphic, so your printer must accept raster

é dumps.

223

- 93

PROGram Subsystem

The commands in the PROGram subsystem are only available when the HP Instrument BASIC
option is installed. They allow you to interact with the program currently loaded in the analyzer.

All of the commands in this subsystem are grouped under the mnemonic SELected. Since SELected
is an implied mnemonic, you can omit it from all PROGram commands. See “Implied Mnemonics™

in chapter 3 for more information.

23-1

PROGram Subsystem

PROGram[:SElLected]:DEFine command/query

Loads an HP Instrument BASIC program into the analyzer from an external controller. (Use the
query form to save.)

Command Syntax: PROGram[: SELected] :DEFine <block>

<block> ::= fi<byte>[<length_bytes>]<data_bytes>

one ASCIT-encoded byte specifying the number of length
bytes to follow

ASCII-encoded bytes specifying the number of data
bytes to follow

<byte> ::

f

<length_bytes> ::

<data_bytes> ::= the bytes that define a program

Example Statements: Output 719;"PROGRAM:SELECTED:DEFINE?"
Output 719;"prog:def?"

Query Syntax: PROGram| : SELected] :DEFine?
Heturn Format: <block>
Attribute Summary: Preset state: not applicable

Overlapped: no
Pass control required: no
Description:
This command transfers a program between the analyzer and your controller. This allows you to

develop a program on your controller and then load it into the analyzer when it’s done.

When you transfer a program to the analyzer, you can use either the definite or the indefinite length
block syntax. When the analyzer returns the program to your controller, it always uses the definite
length block syntax. See “Block Data” in chapter 4 for more information.

23-2

PROGram Subsystem

PROGram|[:SELected]:DELete[:SELected] command

Deletes the current HP Instrument BASIC program.
Command Syntax: PROGram| :SELected] :DELete[: SELected]

Example Statements: Output 719;"program:selected:delete:selected”
Qutput 719;"Prog:Del”

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

In addition to deleting the current program, this command deletes all of the programs
variables—both those in COM and those not in COM.

23-3

PROGram Subsystem

PROGram[:SElLected]:MALLocate command/query

Allocates stack space for HP Instrument BASIC programs.

Command Syntax:

<number>

<bound> ::

Example Statements:

Query Syntax:

Return Format:

<number>>

Attribute Summary:

Description:

PROGram[: SELected] :MALLocate (<number>|<bound>|DEFault)

;:= an integer (NRf data)
limits: 1200 bytes:3 megabytes

MAX | MIN

il

Output 719;"PROG:SEL:MALL DEF"
Qutput 719:"program:selected:mallocate 8192"

PROGram| :SELected] :MALLocate?

<number>
i:= an integer (NR1 data)
Preset state: not affected by Preset

Overlapped: no
Pass control required: no

Stack space is the portion of memory used for temporary storage of program variables (excluding
those variables stored in COM). It provides the programs “working space.”

Note If you encounter the message “ERROR 2 Memory overflow.” while your program
ﬁ! is running, you need to allocate more stack space.

23-4

PROGram Subsystem

PROGram|[:SELected]:NUMBer command/query

Loads a new value for the specified numeric variable.

Command Syntax: PROGram] :SELected] :NUMBer '<variable>',<block>

<variable> ::= name of a numeric wvariable
When data is ASCII-encoded, (FORM ASC) <block> takes the foliowing form:

<block> ::= <number>[, <number>]...

<number> ::= a real number (NRf data)
limits: -9.9E37:9.9E37

When data is binary-encoded, (FORM REAL) <block> takes the following form:

<block> ::
<byte> ::

4

fi<byte>[<length_bytes>]<number>[<number>]...

one ASCII-encoded byte specifying the number of length
bytes to follow

<length_bytes> ::

ASCII-encoded bytes specifying the number of
data bytes to follow

k

<number> ::= a real number (32- or 64-bit binary floating point)

limits: -9.9E37:9.9E37

Example Statements: Qutput 719;"Program;Number 'Address’, 19"
Output 719;"PROG:NUMB 'Scode’,7"

Query Syntax: PROGram] :SELected} :NUMBer? '<variable>’
Return Format: <block>
Attribute Summary: Preset state: not applicable

Overlapped: no
Pass control required: no

Description:

When you load an array with this command, values in the <block> parameter are loaded into the 1
through n'® clements of the array (where n is the number of values in the block).

23-5

PROGram Subsystem

PROGram[:SELected]:STATe command/query
Selects the state of the current HP Instrument BASIC program.
Command Syntax: PROGram| :SELected] : STATe <param>

<param> ::= {STOP|PAUSe|RUN|CONTinue}

Example Statements: Output 719%;"prog:sel:stat paus”
Qutput 719:;"Program:State Continue"

" Query Syntax: PROGram| :SELected] :STATe?
Return Format: STOP | PAUS |RUN
Attribute Summary: Preset state: STOP

Overlapped: no
Pass control required: no

Description:

The analyzer generates an error message if you send RUN or CONT while a program is running. It
also generates an error if you send CONT while a program is stopped.

23-6

PROGram Subsystem

PROGram[:SELected]}:STRing command/query

Loads a new value for the specified string variable.

Command Syntax: PROGram{ :SELected] :STRing '<variable>’, '<string>’
<variable> ::= name of a string variable
<string> ::= 0 through 255 ASCII characters

Example Statements: Output 719;"PROGRAM:STRING 'AS', 'Done.’"
Qutput 719;"prog:str 'Message$’,'Measuring.’”

Query Syntax: PROGram{ :SELected] :STRing? '<variable>'
Return Format: "<string>"
Attribute Summary: Preset state: not applicable

Overlapped: no
Pass control reguired: no

Description:

Use this command to load string variables. Use the PROG:SEL:NUMB command to load numeric
variables.

23-7

24

SCReen Subsystem

SCReen is one of two subsystems that control the analyzer’s presentation of data on its front-panel
display. The other subsystem is DISPlay (excluding the commands grouped under its LIMit
mnemonic).

24-1

SCReen Subsystem

SCReen:ACTive

Selects the active trace.

Command Syntax:

Example Statements:

Query Syntax:
Return Format:

Attribute Summary:

Description:

SCReen:ACTive {A|B)

Output 719;"Scr:Act A"
Output 719;"SCREEN:ACTIVE B"

SCReen:ACTive?
AlB

Preset state: A
Overlapped: yes
Pass control required: no

command/query

Only the active trace is displayed on the analyzer’s screen when SCR:FORM is SING.

24-2

SCReen Subsystem

SCReen:ANNotation command/query

Enables and disables the display of frequency information on the analyzer’s screen.
Command Syntax: SCReen:ANNotation {OFF|0|ON}{1)

Example Statements: Output 719;"screen:annotation off"
Output 719;"Scr:ann O

Query Syntax: SCReen:ANNotation?
Return Format: +{0|1)
Attribute Summary: Preset state: +1

Overlapped: vyes
Pass control required: no

Description:

When SCR:ANN is OFF, frequency information is not displayed on the analyzer’s screen and it is
not printed or plotted. However, all frequency information is still available via HP-1B.

24-3

SCReen Subsystem

SCReen:CONTents command/query

Specifies what will be displayed on the analyzer’s screen.
Command Syntax: SCReen:CONTents {TRACe | STATe |[MMEMory)

Example Statements: Output 719;"SCR:CONT STAT"
Output 719;"screen:contents trace"

Query Syntax: SCReen:CONTents?
Return Format: TRAC | STAT | MMEM
Attribute Summary: Preset state: TRAC

Overlapped: yes
Pass contrel required: no

Description:

Send TRAC to display any trace data. (You can then choose the trace data you want to display with
the DISP:RES command.) Send STAT to display the current state of the most important
measurement setup parameters. Send MMEM to display the contents of the analyzer’s default disk.
(You select the default disk with the MMEM:MSI command.)

24-4

SCReen Subsystem

SCReen:FORMat command/query

Selects a format for displaying trace data,
Command Syntax: SCReen:FORMat {SINGle|ULOWer|FBACk}

Example Statements: Output 719;"Screen:Format Single"”
Output 719;"SCR:FORM ULOW"

Guery Syntax: SCReen:FORMat?
Return Format: SING|ULOW|FBAC
Attribute Summary: Preset state: SING

Overlapped: yes
Pass control required: no

Description:

When you select SING, the analyzer uses the entire trace display area for the active trace
(SCR:ACT). When you select ULOW, the analyzer uses the upper half of the trace display area for
trace A and the lower half for trace B. When you select FBAC, the analyzer uses the ¢ntire trace
display area, but overlays the two traces in that area.

24-5

SCReen Subsystem

SCReen:GRATIcule command/query

Turns the trace graticules on and off.
Command Syntax: SCReen:GRATicule {OFF|0|ON|1}

Example Statements: Output 719;"scr:grat on"
Qutput 719;"Screen:Graticule Off"

Query Syntax: SCReen:GRATicule?
Return Format: +{011}
Attribute Summary: Preset state: +1

Overlapped: ves
Pass control required: no

Description:

When the graticules are turned off they are not displayed on the analyzer’s screen and they are not
plotted or printed.

24-8

SCReen Subsystem

SCReen[:STATe] command/query

Turns the analyzer’s screen on and off.
Command Syntax: SCReen| :STATe] (OFF|0O|ON|1}

Example Statements: Output 719;"SCREEN:STATE OFF"
Output 719;"scr 1"

Query Syntax: SCReen[:8TATe]?
Return Format: +{0|1)
Attribute Summary: Preset state: +1

Overlapped: ves
Pass control required: no

Description:

When the screen is turned off, the message “DISPLLAY BLANKING ON?” replaces all other
information. Only this message is plotted or printed.

24-7

o5

[SENSe] Subsystem

Commands in the SENSe subsystem determine how measurement data will be acquired. Because
SENSe is an implied mnemonic, you can omit from all SENSe commands. See “Implied
Mnemonics” in chapter 3 for more information.

25-1

[SENSe] Subsystem

[SENSe:]BANDwidth:NOISe? query

Returns the noise equivalent bandwidth for the current measurement.
Query Syntax: [SENSe:]BANDwidth:NOISe? [UNIT]

Example Statements: Qutput 719;"SENSE:BANDWIDTH:NOISE?"
Output 719;"band:nois?"

Return Format: <number>| { "Hz"}
<number> ::= & real number (NR2 or NR3 data)
Attribute Summary: Preset state: +1.81E+4 Hz

Overlapped: no
Pass control required: no

Description:

To create a power spectral density trace, you can divide each point of a linear magnitude spectrum
(DISP:RES SPEC and CALC:FORM MLIN) by the square root of the noise equivalent bandwidth.
You can transfer a linear magnitude spectrum to your controller with CALC:DATA.

25-2

-

[SENSe] Subsystem

[SENSe:n]BANDwidth:NO!Se:CORRection? query

Returns the noise correction factor for the current measurement.
Query Syntax; [SENSe: |BANDwidth:NOISe:CORRection? [UNIT]

Example Statements: Output 719;"SENSE:BANDWIDTH:NOISE:CORRECTION?®
Qutput 719;"band:nois:corr?”

Return Format: <number>| {"dB")
<number> ::= a real number (NRZ or NR3 data)
Attribute Summary: Preset state: +4.26E+]1 dB

Overlapped: no
Pass control required: no
Description:

To create a power spectral density trace, you can subtract the noise correction factor from each
point of a logarithmic magnitude spectrum (DISP:RES SPEC and CALC:FORM MLOG). You can
transfer a logarithmic magnitude spectrum to your controller with CALC:DATA.

25-3

[SENSe] Subsystem

[SENSe:]BANDwidth{:RESoiution} command/query

Selects a value for the resolution bandwidth filter.

Command Syntax: [SENSe:]BANDwidth[:RESolution] {<value>|<step>|<bound>}
<value> :!= <number>[<unit>]
<number> ::= a real number (NRf data)

limitg: 1.1:17000.0
discrete valueg: 1.1, 2.3, 4.5, 9.1, 18, 36, 73,
150, 290, 580, 1200, 2300, 4600, 9100, 17000

<unit> ::= HZ|{MHZ
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"Band Down"
Qutput 719;"SENSE:BANDWIDTH:RESOLUTION 4., 6KHZ"

Query Syntax: [SENSe: |BANDwidth[:RESolution]? [UNIT]

Return Format: <number>| {"<unit>"}

<number> ::= a real number (NR2 or NR3 data)

<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: +1.7E+4 Hz
Overlapped: ves
Pass control required: no

Description:

The resolution bandwidth filter determines the frequency resolution of swept spectrum
measurements (SENS:FUNC 'POW:SWEP’).

Note When bandwidth coupling is on (SENS:BAND:RES:AUTO ON}), changes in
frequency span (SENS:FREQ:SPAN) can force antomatic changes in the resolution
bandwidth setting.

25-4

ISENSe] Subsystem

[SENSe:]BANDwidth[:RESolution]:AUTO command/query

" Turns bandwidth coupling on and off.
Command Syntax: [SENSe: |BANDwidth[:RESolution]:AUTO (OFF|C|ON|1|ONCE}

Example Statements: Output 719;"bandwidth:resolution:auto once”
Qutput 719;"Sens:Band:Auto 1"

Query Syntax: [SENSe: |BANDwidth{ :RESolutlion]:AUTO?
Return Format: +{01]1)
Attribute Summary: Preset state: +1

Overlapped: yes
Pass control required: no

Description:

When bandwidth coupling is on, the analyzer couples (creates dependencies among) the following
parameters:

m Frequency span, set with SENS:FREQ:SPAN.

m Resolution bandwidth (RBW), set with SENS:BAND:RES.

= Video bandwidth (VBW), set with SENS:BAND:VID.

m Sweep time, set with SENS:SWE:TIME.

Here is the order of dependency among coupled parameters (from least dependent to most):
Span —> RBW —> VBW -—> Sweep time

If you change a particular parameter when bandwidth coupling is on, the analyzer changes the more
dependent parameters automatically. For example, if you change RBW, the analyzer changes
VIDEO BANDWIDTH and sweep time. Be sure to set the least dependent parameters first when
bandwidth coupling is on. See the help text or your HP 35884 Operating Manual for more
information on bandwidth coupling.

When you send SENS:BAND:RES:AUTO ONCE, you restore the optimum relationships between

the coupled parameters. This provides the best compromise between frequency resolution and
speed for most measurements.

25-5

[SENSe] Subsystem

[SENSe:]BANDwidth[:RESolution]:FFT? query

Returns the measurement resolution value for the current narrow band zoom measurement.
Query Syntax: [SENSe: 1BANDwidth[:RESolution] :FFT? [UNIT]

Example Statements: Output 719;"SENSE:BANDWIDTH:RESOLUTION:FFT?"
Output 719;"band:fft?"

Return Format: <number>| {"Hz"}
<number> ::= a real number (NRZ or NR3 data)
Attribute Summary: Preset state: +3.59E+2 Hz

Overlapped: no
Pass control required: no

Description:

The measurement resolution value is dependent on span (SENS:FREQ:SPAN) and zoom type
(SENS:WIND:TYPE). It is only valid for narrow band zoom measurements (SENS:FUNC
'POW:FFT). It is analogous to the resolution bandwidth value (SENS:BAND:RES) used for swept
spectrum measurements.

25-6

ISENSe] Subsystem

[SENSe:]BANDwidth:ViDeo command/query

Selects a value for the video bandwidth filter,

Command Syntax: [SENSe: |BANDwidth:VIDeo (<value>|<step>|<bound>}
<value> !:= <number>[<unit>]
<number> ::= a real number (NRf data)
limits: 0.019:26248.0
<unit> ::= HZ|MHZ
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"BAND:VID UP"
Output 719; "bandwidth:video 2000"

Query Syntax: [SENSe: | BANDwidth:VIDeo? [UNIT]

Return Format: <number>]| { "<unit>"}

<numbetr> ::= a real number (NR2 or NR3 data)

<unit> ;= unit that applies to returned number

Attribute Summary: Preset state: +2,62E+4 Hz
Overlapped: ves
Pass control required: no

Description:

The video filter has a trace smoothing function for swept spectrum measurements (SENS:FUNC
'POW:SWEP’). You increase the amount of smoothing by decreasing the bandwidth of the filter.

Note When bandwidth coupling is on (SENS:BAND:RES:AUTO ON), changes in
frequency span (SENS:FREQ:SPAN) or resolution bandwidth
(SENS:BAND:RES) can force automatic changes in the video bandwidth setting.

Use the SENS:BAND:VID:STAT command to turn the video filter on and off.

25-7

[SENSe] Subsystem

[SENSe:]BANDwidth:ViDeo:STATe command/query

Turns video filtering on and off.

Command Syntax:

Example Statements:

Query Syntax:
Return Format:

Attribute Summary:

Description:

[SENSe:] BANDwidth:VIDeo:STATe (OFF[O[ON|1}

Qutput 719;"Senge:Bandwidth:Video:State Off"
Output 719;"BAND:VID:STAT 1"

[SENSe: |BANDwidth:VIDeo:5TATe?
+(0}1)

Preset state: +0
Overlapped: yes
Pass control required: no

This command turns the video filter on and off. To set the filter’s bandwidth, use the
SENS:BAND:VID command.

25-8

[SENSe] Subsystem

[SENSe:]DETector[:FUNCtion] command/query

"Turns the peak detector on and off.

Command Syntax: [SENSe: |DETector [:FUNCtion] (POSitive|SAMPle)

Example Statements: OQutput 719;"det pos”
Output 719;"Sense:Detector:Function Positive”

Query Syntax: [SENSe:]DETector|[:FUNCtion]?
Return Format: POS | SAMP
Attribute Summary: Preset state: POS

Overlapped: ves
Pass control required: mo

Description:

POSitive turns the peak detector on. SAMPle turns the peak detector off. See the help text or your
HP 35884 Operating Manual for more information about the peak detector.

Note The peak detector should be on for all swept spectrum measurements. It should be
off for scalar network measurements (made with the analyzer’s source).

25-9

[SENSe] Subsystem

[SENSe:]DETector:STIiMe command/query

Specifies the sampling time for manually swept measurements.

Command Syntax:

<value> :
<number> ::

<step> ::

<bound>

Example Statements:

Query Syntax:

Return Format:

<number>

Attribute Summary:

Description:

[SENSe: |DETector:STIMe {<value>|<step>|<bound>}

i= <number>[S)]

a real nurber (NRf data)
limits: 4.0E-6:4295.0

UP | DOWN
s 1= MAX|MIN

I

Output 719;"DETECTOR:STIME 4.0E-6 S"
OQutput 719:"det:stim up"

[SENSe: |DETector:STIMe? [UNIT]

<number>|{"s"}
ii= g real number (NR2 or NR3 data)

Preset state: +4 00E-6s
Overlapped: yes
Pass contrel required: no

Sample time specifies how long the analyzer should measure at a single frequency during manual
sweeps (SENS:SWE:MODE MAN). It does not specify the time berween measurements, which can
be significantly longer than the sample time.

25-10

ISENSe] Subsystem

[SENSe:JFREQuency:CENTer command/query

Specifies the center frequency for the current measurement.

Command Syntax: [SENSe:] FREQuency:CENTer {<value>|<step>|<bound>)
<value> ::= <pumber>|[<unit>]
<number> ::= a real number (NRf data)
limits: 0.0:150.0E6
<unit> ::= HZ|MHZ
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"Sens:Freq:Cent 20e6 Hz"
Qutput 719;"SENSE:FREQUENCY:CENTER %98.1 MAHZ"

Guery Syntax: [SENSe:) FREQuency: CENTer? [UNIT]

Return Format;: <number>| { "<unit>"}

<number> :!= a real number (NR2 or NR3 data)

<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: +7,505E+7 Hz
Overlapped: yves
Pass controel required: no

Description:

SENS:FREQ:CENT and SENS:FREQ:SPAN work together to define the band of frequencies you

want to analyze. The current value of one parameter is held constant when you change the value of
the other.

Note When SENS:FREQ:SPAN is set to 0, the analyzer acts as a fixed-tuned receiver and
ﬁ SENS:FREQ:CENT tunes the receiver to the desired frequency.

25-11

[SENSe] Subsystem

[SENSe:IFREQuency:CENTer:TRACK command/query

Turns the signal tracking function on and off.
Command Syntax: TSENSe:] FREQuency: CENTer : TRACk {OFF|O|ON|1}

Example Statements: Output 719;"frequency:center:track off”
Qutput 719;"Sens:Freq:Cent:Trac 0"

Query Syntax: [SENSe: JFREQuency:CENTer: TRACK?
Return Format: +{0]1)
Aftribute Summary: Preset state: +0

Overlapped: yes
Pass control required: ne
Deseription:

When signal tracking is turned on, the analyzer automatically tracks a drifting signal. It works by
adjusting the value of SENS:FREQ:CENT to keep the largest signal centered in the current
frequency span (SENS:FREQ:SPAN).

25-12

[SENSe] Subsystem

[SENSe:JFREQuency:MANual command/query

Specifies the measurement frequency during manually swept measurements.

Command Syntax: [SENSe: | FREQuency :MANual {<value>|<step>|<bound>)
<value> ::= <number>[<unit>]
<number> ::= a real number (NRf data)
limits: 0.0:150.0E6
<unit> ::= HZ|MHZ
<step> ::=~ UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"FREQ:MAN 114980000"
OQutput 719;"frequency:manual 490khz"

Query Syntax: [SENSe: | FREQuency :MANwal? [UNIT]

Return Format: <number>| { "<unit>")}

<number> ::= a real number (NR2 or NR3 data)

<gnit> ::= unit that applies to returned number

Attribute Summary: Preset state: +7.505E+7 Hz
Overlapped: yes)
Pass control required: no

Description:

The manual frequency value is only used if manually sweeping is enabled (SENS:SWE:MODE
MAN). The range of values you can specify for manual frequency is limited by the current values of
SENS:FREQ:STAR and SENS:FREQ:STOP.

25-13

[SENSe] Subsystem

[SENSe:]JFREQuency:SPAN command/query

Specifies the frequency span for the current measurement.

Command Syntax: [SENSe: | FREQuency :SPAN {<value>|<step>|<bound>)

<value> ::= <number>[<unit>]

<number> ::= a real number (NRf data)
limits: 0.0:150.0E6
<unit> ::= HZ|MHZ
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: OQutput 719;"Sense:Frequency:Span 40 kHz"
Qutput 719;"FREQ:SPAN DOWN"

Query Syntax: [SENSe: | FREQuency: SPAN? [UNIT]

Return Format: <number>| {"<unit>")

<number> ;:= a real number (NRZ or NR3 data)
<unit> ::= unit that applies to returned number

Aftribute Summary: Preset state: +1.499E+8 Hz
Overlapped: yes
Pass contrel required: no

Description:

SENS:FREQ:SPAN and SENS:FREQ:CENT work together to define the band of frequencies you
want to analyze. The current value of one parameter is held constant when you change the value of
the other.

Note When SENS:FREQ:SPAN is set to 0, the analyzer acts as a fixed-tuned receiver and
SENS:FREQ:CENT tunes the receiver to the desired frequency. This
measurement setup is called zero span.

25-14

[SENSe] Subsystem

During swept spectrum measurements (SENS:FUNC 'POW:SWEP"), the frequency span can be

0 Hz or it can be within the range of 10 Hz to 150 MHz. During narrow band zoom measurements
(SENS:FUNC 'POW:FFT), the frequency span is limited to 16 discrete values ranging from 1.22 Hz
to 40 kHz. The values are derived from the following formula:

40,000 /2"
where n has integer values ranging from 0 to 15.

When bandwidth coupling is on (SENS:BAND:RES:AUTO ON) changes in span can force
automatic changes in the following parameters:

m Resolution bandwidth, set with SENS:BAND:RES
n Video bandwidth, set with SENS:BAND:VID
w Sweep time, set with SENS:SWE:TIME

25-15

[SENSe] Subsystem

[SENSe:]FREQuency:SPAN:FULL command

Sets the analyzer to the widest frequency span available for the current measurement type.
Command Syntax: [SENSe: | FREQuency:SPAN:FULL

Example Statements: Output 719;"freq:span:full®
Output 719;"Sense:Frequency:Span:Full®

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: no

Description:

During swept spectrum measurements (SENS:FUNC 'POW:SWEP”), this command sets
SENS:FREQ:SPAN to 150 MHz and SENS:FREQ:CENT to 75 MHz. During narrow band zoom
measurements (SENS:FUNC 'POW:FFT"), this command sets SENS:FREQ:SPAN to 40 kHz and
leaves SENS:FREQ:CENT unchanged.

25-18

[SENSe] Subsystem

[SENSe:]FREQuency:STARt command/query

Specifies the start frequency for the current measurement.

Command Syntax: [SENSe: JFREQuency: STARt {<value>|<step>|<bound>}
<value> ::= <number>[<unit>]
<number> ::= a real number (NRf data)
limits: 0.0:150.0E6
<unit> ::= HZ|MHZ
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements; Output 719;"FREQUENCY:START 10"
Qutput 719;"sens:freq:star 100khz"

Query Syntax; [SENSe: | FREQuency:STARt? [UNIT]

Return Format: <number>| ("<unit>")

<number> ::= a real number (NR2 or NR3 data)
<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: +1.00E+5 Hz
Overlapped: yes
Pass control required: no

Description:

SENS:FREQ:STAR and SENS:FREQ:STOP work together to define the band of frequencies you
want to analyze. SENS:FREQ:STAR defines the band’s lower limit, SENS:FREQ:STOP defines its
upper limit. Here’s how they work together for each of the two measurement types:

m Swept spectrum (SENS:FUNC 'POW:SWEP")—The current value of one parameter is held
constant when vou change the value of the other.

m Narrow band zoom (SENS:FUNC 'POW:FFT")—The offset between the two parameters is held
constant when you change the value of either.

Note During swept spectrum measurements, the span changes when you change the start
frequency. This can cause changes in other parameters if bandwidth coupling is on.
See SENS:BAND:RES:AUTO for more information.

25-17

[SENSe] Subsystem

[SENSe:JFREQuency:STEP command/query

Specifies the step size to be used for changing frequency parameters.

Command Syntax: [SENSe:] FREQuency:STEP {<value>|<step>|<bound>}
<value> !:= <pumber>[<unit>]
<number> ::= a real number (NRf data)

limits: -150.0E6:150.0E6

<unit> ::= HZ|MHZ
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"Freg:Step 60 Hz"
Qutput 719;"SENSE:FREQUENCY:STEP 1E6"

Query Syntax: [SENSe: | FREQuency : STEP? [UNIT]

Return Format: <number>| ("<unit>")

<murber> ::= a real number (NR2 or NR3 data)

<unit> ::+~ unit that applies to returned number

Attribute Summary: Preset gtate: +1,00E+3 Hz
Overlapped: ves
Pass control required: no

Description:

Step size determines the frequency change that results when you send UP or DOWN with any of the
following commands:

SENS:FREQ:CENT
SENS:FREQ:STAR
SENS.FREQ:STOP
SENS:FREQ:MAN

The step size you specify with SENS:FREQ:STEP is only used for the listed commands when
SENS:FREQ:STEP:STAT is MAN,

25-18

{SENSe] Subsystem

[SENSe:]FREQuency:STEP:STATe command/query

Specifies whether the step size for frequency parameters is determined by the analyzer or by the
value of SENS:FREQ:STEP.

Command Syntax: [SENSe: JFREQuency:STEP:STATe {AUTO{MANual}

Example Statements: OQutput 719;"sense:frequency:step:state auto”
Qutput 719;"Freq:Step:Stat Man"

Query Syntax: [SENSe: |FREQuency :STEP:STATe?
Return Format: AUTO | MAN
Attribute Summary: Preget state: AUTO

Overlapped: ves
Pass control required: no

Description:

SENS:FREQ:STEP:STAT allows you to enable either the analyzer-determined (AUTO) or the
user-determined (MAN) step size for the following frequency commands:

SENS:FREQ:CENT
SENS:FREQ:STAR
SENS:FREQ:STOP
SENS:FREQ:MAN

Step size determines the change that results when you send UP or DOWN with a command. Use
SENS:FREQ:STEDP to define the user-determined step size for the listed commands.

25-19

[SENSe] Subsystem

[SENSe:]JFREQuency:STOP command/query

Specifies the stop frequency for the current measurement.

Command Syntax: [SENSe: | FREQuency: STOP {<value>|<step>|<bound>)
<value> ::= <number>[<unit>]
<number> ::= g real number (NRf data)
limits: 0.0:150.0E6
<unit> ::= HZ|MHZ
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"FREQ:STOP 150E+6 HZ"
Output 719;"frequency:stop 480khz"

Query Syntax: [SENSe:] FREQuency:STOP? [UNIT]

Return Format: <number>| {"<unit>"}

<number> [:= a real number (NR2 or NR3 data)

<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: +1.5E+8 Hz
Overlapped: yes
Pass control required: no

Description:

SENS:FREQ:STOP and SENS:FREQ:STAR work together to define the band of frequencies you
want to analyze. SENS:FREQ:STOP defines the band’s upper limit, SENS:FREQ:STAR defines its
lower limit. Here’s how they work together for each of the two measurement types:

w Swept spectrum (SENS:FUNC 'POW:SWEP")}—The current value of one parameter is held
constant when you change the value of the other.

s Narrow band zoom (SENS:FUNC 'POW:FFI")—The offset between the two parameters is held
constant when you change the value of either.

Note During swept spectrum measurements, the span changes when you change the stop
frequency. This can cause changes in other parameters if bandwidth coupling is on.
See SENS:BAND:RES:AUTO for more information.

25-20

[SENSe] Subsystem

[SENSe:»]FUNCtion command/query

Selects one of the analyzer’s two major measurement types.
Command Syntax: [SENSe:] FUNCtion ' {POWer:FFT|POWey: SWEPt}'

Example Statements: Output 719;"Function 'Power:Fft’"
Output 719;"SENS:FUNC 'POW:SWER'"

Query Syntax: [SENSe: JFUNCtion?
Return Format: " { POWER: FFT| POWER: SWEPT}"
Attribute Summary: Preset state: "POWER:SWEPT"

Overlapped: yes
Pass control required: no

Description:

When you switch between swept spectrum (SENS:FUNC 'POW:SWEP”) and narrow band zoom
(SENS:FUNC 'POW:FFT’) measurements, the state of many other parameters can change. Asa
result, you should select the measurement type near the beginning of any program sequence that
defines the instrument state.

See the help text or your HP 35884 Operating Manual for information on the analyzer’s two
measurement types.

25-21

[SENSe] Subsystem

[SENSe:JFUNCtion:POWer:FFT command

Selects the narrow band zoom measurement as the current measurement type.
Command Syntax: [SENSe: |FUNCtion:POWer:FFT

Example Statements: Output 719;"func:pow:fft"”
Output 719;"Sense:Function:Power:Ffc"

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: no

Description:

When you switch between narrow band zoom (SENS:FUNC:POW:FFT) and swept spectrum
(SENS:FUNC:POW:SWEP) measurements, the state of many other parameters can change. Asa
result, you should select the measurement type near the beginning of any program sequence that
defines the instrument state.

Note Since this command has no query form, you must use the SENS:FUNC query to
| determine which measurement type is currently selected. The query returns
ﬁ "POW.FFT” when narrow band zoom is selected.

See the help text or your HP 35884 Operating Manual for information on the analyzer’s two
measurement types.

25-22

[SENSe] Subsystem

[SENSe:]JFUNCtion:POWer:SWEPt command

Selects the swept spectrum measurement as the current measurement type.
Command Syntax: [SENSe:]FUNCtion:POWer : SWEPL

Example Statements: Output 719;"FUNCTION:POWER:SWEPT"
Qutput 719;"func:pow:swep"

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: no

Description:

When you switch between swept spectrum (SENS:FUNC:POW:SWEP) and narrow band zoom

(SENS:FUNC:POW:FFT) measurements, the state of many other parameters can change. Asa

result, you should select the measurement type near the beginning of any program sequence that
defines the instrument state.

Note Since this command has no query form, you must use the SENS:FUNC query to
determine which measurement type is currently selected. The query returns
'POW:SWEP’ when swept spectrum is selected.

See the help text or your HP 35884 Operating Manual for information on the analyzer’s two
measurement types.

25-23

{SENSe] Subsystem

[SENSe:]POWer:RANGe command/query
Selects the sensitivity of the analyzer’s input circuitry.
Command Syntax: [SENSe: | POWer :RANGe {<value>|<step>[<bound>}

<value> ::= <number>i<unit>]

<number> ::= & real number (NRf data)
limits: -20,0:20.0

<unit> ::= DBM!VRMS
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"Pow:Rang Up"
Qutput 719;"SENSE:POWER:RANGE 0 DBM"

Query Syntax: [SENSe: | POWer :RANGe? [UNIT]

Return Format: <number>! { "<unit>"}

<number> ::= a real number (NR2 or NR3 data)

<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: not defined
Overlapped: yes
Pass control reguired: no

Description:

The range setting determines the maximum ac signal level that can be applied to the analyzer’s input
connector without overdriving the input circuitry. The following table shows the range settings
available for each of the analyzer’s three input impedances (INP:IMP).

50Q 75Q 1 MO
20 dBm 21.76 dBm
{2.24 Vrms} {3.35 Vrms)
10 dBm 11.76 ¢Bm
{707 mVrms) {1.08 Vrms)
G dBm 1.76 dBm 0dBm*
{223 mVrms) {335 mVrms) (223 mVrms)
(—13 dBV)
- 10 dBm - 8.23dBm
(70.7 mVrms) (106 mVrms)
- 20 dBm ~ 18.23 dBm
(22.4 mVrms) (33.5 mVirms)
* Referenced to 5052

25-24

ISENSe] Subsystem

You can set the range manually with SENS:POW:RANG, or you can let the analyzer select the
range automatically with SENS:POW:RANG:AUTO. If you set the range manually, two bits in the
Questionable Power condition register help you decide when to change the range setting:

» Bit 0 (Input Overloaded) is set to 1 when any signal between 0 and 150 MHz exceeds the current
input range.

x Bit 4 (ADC Overloaded) is set to 1 when any signal in the current span is overloading the
analyzer’s analog-to-digital converter.

Note If reference level tracking is on (DISP:Y:SCAL:MAX:AUTO ON), the reference
ﬁ level setting (DISP:Y:SCAL:MAX) changes automatically when the range changes.

25-25

[SENSe] Subsystem

[SENSe:jPOWerzRANGe:AUTO command/query

Automatically selects the best range for the current input signal.
Command Syntax: [SENSe:]| POWer :RANGe:AUTO {OFF|0O|ON|1|ONCE}

Example Statements: Output 719;"sense:power:range:auto on”
Output 719;"Pow:Rang:Auto Once"

Query Syntax: [SENSe: |POWer :RANGe :AUTO?
Return Format: +(0}1}
Attribute Summary: Preset state: +1

Overlapped: ves
Pass contrel required: no

Description:

Send SENS:POW:RANG:AUTO ONCE to execute the analyzer’s autoranging algorithm one time
for the current input signal. Send SENS:POW:RANG:AUTO ON to enable the algorithm to
continuously monitor the input signal and adjust the range.

The autoranging algorithm selects the best input range for the current input signal. The algorithm
selects a less sensitive range if the signal level is large enough to overdrive the input circuitry. It
selects a more sensitive range if the signal level is small enough to compromise dynamic range. (See
SENS:POW:RANG for more information on the available ranges.)

25-26

[SENSe] Subsystem

[SENSe:]POWer:RANGe:LDIStortion command/query

Enables and disables the analyzer’s low distortion mode.
Command Syntax: [SENSe:] POWer :RANGe:LDIStortion {OFF|C|ON|1}

Example Statements: Output 71%;"SENS:POW:RANG:LDIS O
Output 719;"power:range:ldistortion 1"

Query Syntax: [SENSe:]POWer :RANGe:LDIStortion?
Return Format: +(C]|1)
Attribute Summary: Preset state: +0

Overlapped: yes
Pass control required: ne
Description:

Low-distortion mode reduces the distortion contribution of the HP 3588A’s analog input circuitry.
If you are measuring signal components that are within 10 dB of the analyzer’s published distortion
specification, this mode may improve your measurement results.

Refer to the help text or the HP 35884 Operating Manual for more information on low-distortion
mode.

25-27

[SENSe] Subsystem

[SENSe:]RESTart command

Immediately stops the current measurement and starts a new one.
Command Syntax: [SENSe:]RESTart

Example Statements: Output 719,;"Sense:Restart"
Qutput 719;"REST"

Aftribute Sumimary: Preset state: not applicable
Overlapped: yes
Pass controel required: no

Description:

Although SENS:REST allows you to abort the current measurement and start a new one it is not
supported by the TMSL standard. The program message ABOR;INIT:IMM aborts the current
measurement and starts a new one for gny TMSL instrument.

Both SENS:REST and ABOR;INIT:IMM serve a special synchronizing function. When you send
either of these commands to restart a measurement, the analyzer’s No Pending Operation (NPO)
flag is not set to 1 until the measurement is complete. The two commands that test the state of this
flag—*WAIT and *OPC—allow you to hold off subsequent actions until the measurement is
complete. See “Synchronization” in chapter 2 for more information on the NPO flag.

Note ‘When video averaging is enabled (AVER:TYPE RMS and AVER:STAT ON), the
6 NPO flag is not set to 1 until # measurements have been combined into one trace.
You specify the value of n with the AVER:COUN command.

25-28

[SENSe] Subsystem

[SENSe:]SWEep:MODE command/query

Specifies whether sweeping is done automatically or manually.
Command Syntax: [SENSe:] SWEep :MODE {AUTO |MANual)

Example Statements: Qutput 719,;"swe:mode man”
Qutput 719;"Sense:Sweep:Mode Auto”

Query Syntax: [SENSe: }SWEep:MODE?
Return Format: AUTO | MAN
Attribute Summary: Preset state: AUTO

Overlapped: yes
Pass control required: no

Description:

When you select automatic sweeping (AUTO), the analyzer sweeps from SENS:FREQ:STAR to
SENS:FREQ:STOP at a speed determined by SENS:SWE:TIME. When you select manual
sweeping (MAN), the analyzer measures at a single frequency-—the manual frequency
(SENS:FREQ:MAN). The analyzer samples the manual frequency for an amount of time
determined by SENS:DET:STIM.

The setting of SENS:SWE:MODE is ignored for narrow band zoom measurements (SENS:FUNC
"POW:FFT").

25-29

[SENSe] Subsystem

[SENSe:]SWEep:TIME command/query

Specifies the sweep time for automatically swept measurements.

Command Syntax: [SENSe: |$WEep:TIME {<value>]|<step>|<bound>)
<value> ::= <number>[S]
<number> !:= a real number (NRf data)
limits: 1.0E-3:72,0E3
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"SWEEFP:TIME DOWN"
Qutput 719;"swe:time 400 ms”

Query Syntax: [SENSe: |SWEep: TIME? [UNIT]

Return Format: <number>|{"s"}

ii= g real number (NR2Z or NR3 data)

Attribute Summary; Preset state: +2.608E-1s
Overlapped: yes
Pass control required: no

Description:

This command specifies how long the analyzer takes to sweep from SENS:FREQ:STAR to
SENS:FREQ:STOP. If you select a sweep time that is too short to provide calibrated measurement
results, bit 1 (Uncal Oversweep) of the Questionable Power condition register is set to 1.

When bandwidth coupling is on (SENS:BAND:RES:AUTO ON), changes in any of the following
parameters can force automatic changes in the sweep time setting:

m Frequency span, set with SENS:FREQ:SPAN.
m Resolution bandwidth, set with SENS:BAND:RES.
= Video bandwidth, set with SENS:BAND:VID.

25-30

[SENSe] Subsystem

[SENSe:.]WiNDow[:WPE] command/query

Determines the frequency resolution of narrow band zoom measurements.
Command Syntax: [SENSe: JWINDow[: TYPE] (HANNing|FLATtop]

Example Statements: Output 719;"Wind Flat*
Qutput 719;"SENSE:WINDOW:TYPE HANNING®

Query Syntax: [SENSe: |WINDow[:TYPE]?
Return Format: HANN | FLAT
Attribute Summary: Preset state: FLAT

Overlapped: yes
Pass control required: no

Description:

HANN selects the Hanning window, which provides better frequency resclution for narrow band
zoom measurements (SENS:FUNC POW:FFT"). FLAT selects the Flat Top window, which
provides better amplitude accuracy. Sending HANN is equivalent to pressing the [HI RES ZOOM]
softkey on the analyzer’s front panel. Sending FLAT is equivalent to pressing the {Hl AGCRCY ZOOM]

softkey.

25-31

26

SOURce Subsystem

Commands in the SOURce subsystem control the analyzer’s source (tracking generator).

26-1

SOURce Subsystem

SOURce:OUTPut:IMPedance command/query

Selects the impedance of the analyzer’s source.

Command Syntax: SOURce : OUTPut : IMPedance {<value>|<bound>)
<value> ::= <number>[<unit>]
<number> ::= an integer (NRf data)

limics: 50~75
discrete values: 50, 75

<unit> ::= OHM|MEGOHM
<bound> ::= MAX|MIN

Example Statements: Output 719;"source:output:impedance 50"
Qutput 719;"Sour:Outp:Imp 75 Chm"

Query Syntax; SOURce : 0UTPut: IMPedance? [UNIT]

Return Format: <number>| { "<unit>"}

<number> ::= an integer (NR1l data)

<unit> ::= unit that applies to returned number

Aftribute Summary: Preset state: +50 ohm
Overlapped: yes
Pass control required: no

Description:

You can select the source’s output impedance explicitly with this command, or you can couple it to
the input impedance with the SOUR:OUPT:IMP:MODE command.

Note When you select an output impedance of 75 ohms, you must use the 25 ohm adapter
barrel (supplied with the instrument) for accurate results. Insert the adapter
between the analyzer’s source connector and your test device.

26-2

SOURce Subsystem

SOURce:OUTPut:IMPedance:MODE command/query

Turns impedance coupling on and off.
Command Syntax: SOURce : OUTPut: IMPedance :MODE {OFF|0|ON}1}

Example Statements: Output 719;"SOUR:0UTP:IMP:MODE 1"
Qutput 719;"source:output:impedance:mode on"

Guery Syntax: SOURce: 0UTPut: IMPedance :MCDE?
Return Format: +{0]1}
Attribute Summary: Preset state: +1

Overiapped: ves
Pass control required: no

Description:

When impedance coupling is turned on, the output impedance (SOUR:OUTP:IMP) tracks changes
in the input impedance (INP:IMP) with one exception: If you switch from a 50 or 75 ohm input
impedance to a 1 megohm input impedance, the output impedance retains its current setting.

Note If you set the output impedance explicitly with the SOUR:OUTP:IMP command,
impedance coupling is automatically turned off.

26-3

SOURce Subsystem

SOQURce:OUTPuUt:PROTection:CLEar command

Resets the analyzer’s source-protection relay.
Command Syntax: SOURce : OUTPut: PROTection:CLEar

Example Statements: Output 719;"Source:Output:Protection:Clear”
Qutput 719;"SOUR:QUTP:PROT:CLE"

Attribute Summary: Preset state: not applicable
Overlapped: ves
Pass control required: no

Description:

The source-protection relay is tripped (opened) when the signal level at the analyzer’s source
connector is significantly above the maximum source amplitude or when excessive dc voltage is
present. Bit 3 (Source Tripped) of the Questionable Power condition register tells you if the
source-protection relay has been tripped.

26-4

SOURce Subsystem

SOURce:OUTPut[:STATe] command/query

Turns the analyzer’s source on and off.
Command Syntax: SOURce ; OUTPut | :STATe] {OFF|{O|ON|1)

Example Statements: Output 719;"sour:outp 0"
OQutput 719;"Source:Qutput:State On”

Query Syniax: SOURce : QUTPut| :STATe}?
Return Format: +{0]1)
Attribute Summary: Preset state: +0

Overlapped: yes
Pass control required: no

Description:

When the source is off, the output amplitude is approximately -100 dBm.

26-5

SOURce Subsystem

SOURce:POWer[:LEVel][:IMMediate][.AMPLitude] command/query

Specifies the output amplitude of the analyzer’s source.

Command Syntax: SOURce:POWer [:LEVel][:IMMediate] | :AMPLitude] <param>
<param> ::= (<number>[<unit>]}|<step>|<bound>
<number> ::= a real number (NRf data)
limits: -61.7:10.0
<upit> ::= DBM|VRMS
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"SOUR:POW:LEV:IMM:AMPL O DBM"
Qutput 719;"source:power .2 vrms"

Query Syntax: SOURce: POWer[:LEVel][:IMMediate]{:AMPLitude]? [UNIT]

Return Format: <number>| {"<unit>")

It

a real number (NR2 or NR3 data)

unit that applies to returned number

<number> ::
<unit> 1

Attribute Summary: Preset state: -1.00E+1 dBm
Overlapped: yes
Pass control required: no

Description:

The smallest possible increment between source amplitude values is 0.1 dBm. You can select the
increment with the SOUR:POW:LEV:IMM:AMPL:STEP command.

26-6

SOUHRce Subsystem

SOURce:POWer[:LEVel][:IMMediate][:AMPLitude]:STEP command/query

Specifies the step size to be used for changing the source amplitude.

Command Syntax: SOURce:POWer[:LEVel]|:IMMediate][:AMPLitude]:STEP <param>

{<number>[<unit>]}|<step>|<bound>

<param> ::
<number> ::= a real number (NRf data)
limits: -61.7:10.0

<unit> ::= DB|VRMS
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: QOutput 719;"Sour:Pow:Lev:Imm:Ampl:Step 0.1"
Output 719;"SOURCE:POWER:IMMEDIATE:STEP 4GOMVRMS"

Query Syntax: SOURce :POWer [:LEVel][:IMMediate][:AMPLitude]:STEP? [UNIT]
Return Format: <number>|{"<unit>")
<number> ::= a real number (NR2Z or NR3 data)

<unit> ::= unit that applies to returned number

Attribute Summary: Preset state: +1.00E-14dB
Qverlapped: yes
Pass control required: no

Description:

Step size determines the amplitude change that results when you send UP or DOWN with the
SOUR:POW:LEV:IMM:AMPL command.

26-7

27

STATus Subsystem

The STATus subsystem provide access to most of the HP 3588As status reporting structures
(register sets). Some of the common commands (described in chapter 8) provide access to the other
register sets.

Most of the commands in this subsystem are used to set bits in registers; most of the queries are used
to read registers. Decimal weights are assigned to bits according to the following formula:

weight = 2"
where n is the bit number (with acceptable values of 0 through 14).
To set a single register bit to 1, send the decimal weight of that bit with the command that writes the
register. To set more than one bit to 1, send the sum of the decimal weights of all the bits. Queries

that read registers always return the sum of the decimal weights of all bits that are currently set to 1.

See chapter 5 for more information about the analyzer's register sets.

27-1

STATus Subsystem

STATus:DEVice:CONDition? query

Reads the Device State condition register.
Query Syntax: STATus:DEVice:CONDition?

Example Statements: Output 719;"status:device:condition?”
OQutput 719;"Stat:Dev:Cond?"

Return Format: <numbetr>>
<number> ::= an integer (NR1l data)

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:
This query returns the sum of the decimal weights of all bits currently set to 1 in the Device State
condition register. (The decimal weight of a bit is 2", where n is the bit number.)

See “Device State Register Set” in chapter 5 for a definition of bits in the register set. See “General
Status Register Model” in chapter 5 for information about the role of condition registers in register
sets.

272

STATus Subsystem

STATus:DEVice:ENABIe command/query

Sets bits in the Device State enable register.

Command Syntax: STATus:DEVice:ENABle (<number>|<bound>)

<number> ::= an integer (NRf data)
limits: 0:32767

<bound> ::= MAX|MIN

Example Statements: Output 719;"STAT:DEV:ENAB O"
Qutput 719;"status:device:enable 4"

Query Syntax: STATus :DEVice :ENABle?
Return Format: <number>
<number> ::= an integer (NRL data)
Attribute Summary: Preset state: not affected by Preset

Qverlapped: no
Pass control required: no
Description:

To set a single bit in the Device State enable register to 1, send the bit’s decimal weight with this
command. To set more than-one bit to 1, send the sum of the decimal weights of all the bits. (The -
decimal weight of a bit is 2", where » is the bit number.)

See “Device State Register Set” in chapter 5 for a definition of bits in the register set. See “General
Status Register Model” in chapter 5 for information about the role of enable registers in register sets.

27-3

STATus Subsystemn

STATus:DEVice[:EVENt]? query

Reads and clears the Device State event register.
Query Syntax: STATus:DEVice[:EVENt]?

Example Statements: Output 719;"Status:Device:Event?”
Output 719;"STAT:DEV?"

Return Format: <number>
<number> ::!= an integer (NR1 data)
Attribute Summary: Preset state: not applicable

Overlapped: no
Pass control required: no
Description:

This query returns the sum of the decimal weights of all bits currently set to 1 in the Device State
event register. (The decimal weight of a bit is 2%, where n is the bit number.)

Note The Device State event register is automatically cleared after it is read by this query.

See “Device State Register Set” in chapter 5 for a definition of bits in the register set. See “General
Status Register Model” in chapter 5 for information about the role of event registers in register sets.

274

STATus Subsystem

STATus:DEVice:NTRansition command/query

Sets bits in the Device State negative transition register.

Command Syntax: STATus :DEVice:NTRansition {<number>|<bound>)

<number> ::= an integer (NRf data)
limits: 0:32767

<bound> ::= MAX|MIN

Example Statements: Output 719;"stat:dev:ntr 2"
Qutput 719;"Status:Device:Ntransition 7"

GQuery Syntax: STATus :DEVice :NTRansition?
Return Format: <number>
<pumber> ::= an integer (NR1 data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass control required: no

Description:

To set a single bit in the Device State negative transition register to 1, send the bit's decimai weight
with this command. To set more than one bit to 1, send the sum of the decimal weights of all the
bits. (The decimal weight of a bit is 2%, where # is the bit number.)

See “Device State Register Set™ in chapter 5 for a definition of bits in the register set. See “General

Status Register Model” in chapter 5 for information about the role of negative transition registers in
register sets.

275

STATus Subsystem

STATus:DEVice:PTRansition command/query

Sets bits in the Device State positive transition register.

Command Syntax: STATus :DEVice:PTRansition {<number>|<bound>)

an integer (NRf data)
limits: 0:32767

MAX | MIN

<number> 1

<bound> ::

Example Statements: Output 719;"STATUS:DEVICE:PTRANSITION 4"
Qutput 719;"stat:dev:ptr 6"

Query Syntax: STATus :DEVice:PTRansition?
Return Format: <number>
<number> ::= an integer (NR1 data)
Attribute Summary: Preset state: not affectedby Preset

Overlapped: no
Pass control required: no

Description:

To set a single bit in the Device State positive transition register to 1, send the bit’s decimal weight
with this command. To set more than one bit to 1, send the sum of the decimal weights of all the
bits. (The decimal weight of a bit is 2", where # is the bit number.)

See “Device State Register Set” in chapter 5 for a definition of bits in the register set. See “General

Status Register Model” in chapter 5 for information about the role of positive transition registers in
register sets.

276

STATus Subsystem

STATus:OPERation:CONDition? query

Reads the Standard Operation condition register.
Query Syntax: STATus :0PERation:CONDition?

Example Statements: Output 719;"Stat:0Oper:Cond?"
Qutput 719;"STATUS:OPERATION:CONDITION?"

Return Format: <number>
<pumber> ::= an integer (NR1 data)
Aftribute Summary: Preset state: not applicable

Overlapped: no
Pass control required: no
Description:
This query returns the sum of the decimal weights of all bits currently set to 1 in the Standard

Operation condition register. (The decimal weight of a bit is 2, where # is the bit number.)

See “Standard Operation Register Set” in chapter 5 for a definition of bits in the register set. See
“General Status Register Model” in chapter 5 for information about the role of condition registers
in register sets.

27-7

STATus Subsystem

STATus:OPERation:ENABIle command/query

‘Sets bits in the Standard Operation enable register.

Command Syntax: STATus :OPERation:ENABle {<number>|<bound>)

<pumber> .= an integer (NRf data)
limits: 0:32767

<bound> ::= MAX|MIN

Example Statements: Output 719;"status:operation:enable 16384"
Output 719;"Stat:Oper:Enab 64"

Query Syntax: STATus :OPERation: ENABle?
Return Format: <number>
<number> ::= an integer (NRl data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass control required: no

Description:

To set a single bit in the Standard Operation enable register to 1, send the bit’s decimal weight with
this command. To set more than one bit to 1, send the sum of the decimal weights of all the bits.
(The decimal weight of a bit is 2", where » is the bit number.)

See “Standard Operation Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Model” in chapter 5 for information about the role of enable registers in
register sets.

27-8

STATus Subsystem

STATus:OPERation[:EVENt]? query

Reads and clears the Standard Operation event register.
Query Syntax: STATus :OPERation|[:EVENt]?

Example Statements: Output 719;"STAT:OPER?"
Qutput 719:"status:operation:event?”

Return Format: <number>
<number> ::= an integer (NR1 data)
Attribute Summary: Preset state: not applicable

Overlapped: mo
Pass control required: no
Description:

This query returns the sum of the decimal weights of all bits currently set to 1 in the Standard
Operation event register. (The decimal weight of a bit is 2%, where n is the bit number.)

Note The Standard Operation event register is automatically cleared after it is read by

this query.

See “Standard Operation Register Set” in chapter 5 for a definition of bits in the register set. See
“General Status Register Model” in chapter 5 for information about the role of event registers in
register sets.

27-9

STATus Subsystem

STATus:OPERation:NTRansition command/query

Sets bits in the Standard Operation negative transition register.

Command Syntax: STATus :OPERation:NTRansition {<number>}<bound>}

<number> ::= an integer (NRf data)

limits: 0:32767

<bound> ::= MAX|MIN

Example Statements: Output 719;"Status:Operation:Ntransition 1"
Output 719;"STAT:OPER:NTR 65535"

Query Syntax: STATus:O0PERation:NTRansition?

Return Format: <number>

<number> :;= an integer (NR1 data)

Attribute Summary: Preset gtate: not affected by Preset
' Overlapped: no
Pass control required: no

Description:

To set a single bit in the Standard Operation negative transition register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal weights of all
the bits. (The decimal weight of a bit is 2°, where n is the bit number.)

See “Standard Operation Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Model” in chapter S for information about the role of negative transition
registers in register sets.

27-10

8TATus Subsystem

STATus:OPERation:PTRansition command/query

Sets bits in the Standard Operation positive transition register.

Command Syntax: STATus : OPERation:PTRansition {<number>|<bound>)}

3

an integer (NRf data)
limits: 0:32767

<bound> ::= MAX|MIN

<pumber> 1:

Example Statements: Output 719;"stat:oper:ptr 16"
Output 719;"Status:Operation:Ptransition 0"

Query Syntax: STATus :0PERation:PIRansition?
Return Format; <number>

<number> ;:= an integer (NR1 data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass control required: no

Description:

To set a single bit in the Standard Operation positive transition register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal weights of all
the bits. (The decimal weight of a bit is 2", where n is the bit number.)

See “Standard Operation Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Mode!” in chapter 5 for information about the role of positive transition
registers in register sets.

27-11

STATus Subsystem

STATus:PRESet command

Sets bits in most enable and transition registers to their default state.

Command Syntax: STATus:PRESet

Example Statements: Qutput 719;"Stat:Pres”
Qutput 719;"STATUS:PRESET"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

STAT:PRES has the following effect on the Limit Fail, Questionable Frequency, and Questionable
Power register sets:

» Sets all enable register bits to 1.
s Sets all positive transition register bits to 1.
s Sets all negative transition register bits to 0.

It has the following effect on the Device State, Questionable Data, and Standard Operation register
sets:

a Sets all enable register bits to 0.
s Sets all positive transition register bits to 1.
a Sets all negative transition register bits to 0.

STAT:PRES also sets all bits in the User Defined enable register to 0. It has no effect on any other
register.

27-12

STATus Subsystem

STATus:QUEStionable:CONDition? query

Reads the Questionable Data condition register.
Query Syntax: STATus :QUEStionable:CONDition?

Example Statements: Output 719;"status:questionable:condition?”
Output 719;"Stat:Ques:Cond?"

Return Format: <number>

<number> ::= an integer (NRl data)

Attribute Summary: Preset state: not appiicable
Overlapped: no
Pass control required: no

Description:
This query returns the sum of the decimal weights of all bits currently set to 1 in the Questionable
Data condition register. (The decimal weight of a bit is 2", where » is the bit number.)

See “Questionable Data Register Set” in chapter 5 for a definition of bits in the register set. See
“General Status Register Model” in chapter 5 for information about the role of condition registers
in register sets.

27-13

STATus Subsystem

STATus:QUEStionable:ENABIe command/query

Sets bits in the Questionable Data enable register.

Command Syntax: STATus :QUEStionable:ENABle {<number>|<bound>)

<number> ::= an integer (NRf data)
limits: 0:32767

<bound> ::= MAX|MIN

Example Statements: Output 719;"STAT:QUES:ENAB 40"
Output 719;"status:questionable:enable O"

Query Syntax: STATus :QUEStionable :ENABle?
Return Format: <number>
<number> ::= an integer (NRI data)
Attribute Summary: Preset state: not affected by Preset

Qverlapped: no
Pass control required: no

Description:

To set a single bit in the Questionable Data enable register to 1, send the bit’s decimal weight with
this command. To set more than one bit to 1, send the sum of the decimal weights of all the bits.
(The decimal weight of a bit is 2", where n is the bit number.)

See “Questionable Data Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Model” in chapter 5 for information about the role of enable registers in
register sets. '

27-14

STATus Subsystem

STATus:QUEStionable[:EVENLt]? query
Reads and clears the Questionable Data event register.

Query Syntax: S§TATus:QUEStionable| : EVENL]?

Example Statements: Output 719;"Status:Questionable?"
Qutput 719;"STAT:QUES:EVEN?"

Return Format: <number>

<number> ::= an integer (NR1 data)

Attribute Summary: Preset state: not applicable
Qverlapped: no
Pass control required: no

Description:

This query returns the sum of the decimal weights of all bits currently set to 1 in the Questionable
Data event register. (The decimal weight of a bit is 2", where # is the bit number.)

Note The Questionable Data event register is automatically cleared after it is read by this

6 query.

See “Questionable Data Register Set” in chapter 5 for a definition of bits in the register set. See
“General Status Register Model” in chapter 5 for information about the role of event registers in
register sets.

27-15

STATus Subsystem

STATus:QUEStionable:FREQuency:CONDition? query

Reads the Questionable Frequency condition register.
Query Syntax: STATus :QUEStionable : FREQuenecy:CONDition?

Example Statements: Output 719;"stat:ques:freq.cond?”
Output 719;"Status:Questionable:Frequency:Condition?”

Return Format: <number>
<number> ::= an integer (NR1l data)
Attribute Summary: Preset state: not applicable

Overlapped: no
Pass control required: no
Description:
This query returns the sum of the decimal weights of all bits currently set to 1 in the Questionable

Frequency condition register. (The decimal weight of a bit is 2%, where # is the bit number.)

See “Questionable Frequency Register Set” in chapter 5 for a definition of bits in the register set.
See “General Status Register Model” in chapter 5 for information about the role of condition
registers in register sets.

27-16

STATus Subsystem

STATus:QUEStionable:FREQuency:ENABIe command/query

Sets bits in the Questionable Frequency enable register.

Command Syntax: $TATus :QUEStionable:FREQuency:ENABle {<number>|<bound>)

<number> ::= an Iinteger (NRf data)
limits: 0:32767

<bound> ::= MAX|MIN
Example Statements: Output 719;"STATUS:QUESTIONABLE:FREQUENCY:ENABLE 4"
) OQutput 719;"stat:ques:freg:enab 5"

Query Syntax: STATus :QUEStionable:FREQuency:ENABle?

Return Format: <number>

<numbet> .= an integer (NRl data)

Attribute Summary: Preset state: not affected by Preset
Overlapped: no
Pass control required: no

Description:

To set a single bit in the Questionable Frequency enable register to 1, send the bit’s decimal weight
with this command. To set more than one bit to 1, send the sum of the decimal weights of all the
bits. (The decimal weight of a bit is 2%, where # is the bit number.)

See “Questionable Frequency Register Set” in chapter 5 for a definition of bits in the register set.

See “General Status Register Model” in chapter 5 for information about the role of enable registers
in register sets.

27-17

STATus Subsystam

STATus:QUEStionable:FREQuency[:EVENt]? query

Reads and clears the Questionable Frequency event register.
Query Syntax: STATus:QUEStionable:FREQuency[:EVENL]?

Example Statements: Qutput 719;"Stat:Ques:Freq:Even?”
Output 719;"STATUS:QUESTIONABLE: FREQUENCY 7"

Return Format: <pumber>
<number> ::= an Ilnteger (NRl data)
Aftribute Summary: Preset state: not applicable

Overlapped: no
Pass control required: no
Description:

This query returns the sum of the decimal weights of all bits currently set to 1 in the Questionable
Frequency event register. (The decimal weight of a bit is 2°, where # is the bit number.)

Note The Questionable Frequency event register is automatically cleared after it is read

by this query.

See “Questionable Frequency Register Set” in chapter 5 for a definition of bits in the register set.
See “General Status Register Model” in chapter 5 for information about the role of event registers
in register sets.

27-18

STATus Subsystem

STATus:QUEStionable:FREQuency:NTRansition command/query

Sets bits in the Questionable Frequency negative transition register.

Command Syntax: STATus :QUEStionable: FREQuency:NTRansition <param>
<param> ::= <number>|<bound>
<pumber> ::= an integer (NRf data)
limits: 0:32767
<bound> ::= MAX|MIN

Example Statements: Output 719;"status:questionable:frequency:ntransition 0"
Qutput 719;"Stat:Ques:Freq:Ntr 7"

Query Syntax: STATus :QUEStionable : FREQuency:NTRansition?
Return Format: <number>

<number> ::= an integer (NR1l data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass control required: no

Description:

To set a single bit in the Questionable Frequency negative transition register to 1, send the bit’s
decimal weight with this command. To set more than one bit to 1, send the sum of the decimal
weights of all the bits. (The decimal weight of a bit is 2", where # is the bit number.)

See “Questionable Frequency Register Set” in chapter 5 for a definition of bits in the register set.
See “General Status Register Model” in chapter 5 for information about the role of negative
transition registers in register sets.

27-19

STATus Subsystem

STATus:QUEStionablie:FREQuency:PTRansition command/query

Sets bits in the Questionable Frequency positive transition register.

Command Syntax: STATus : QUEStionable: FREQuency: PTRansition <param>

<param> ::= <number>|<bound>

<number> ::= an integer (NRf data)
limits: 0:32767

<bound> ::= MAX|MIN

Example Statements: Output 719;"STAT:QUES:FREQ:PTR 2"
Output 719;"status:questionable:frequency:ptransition 3"

Query Syntax: STATus :QUEStionable: FREQuency:PTRansition?
Return Format: <number>

<number> ::= an integer (NR1 data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass control required: no

Description:

To set a single bit in the Questionable Frequency positive transition register to 1, send the bit’s
decimal weight with this command. To set more than one bit to 1, send the sum of the decimal
weights of all the bits. (The decimal weight of a bit is 2°, where n is the bit number.)

See “Questionable Frequency Register Set” in chapter 5 for a definition of bits in the register set.
See “General Status Register Model” in chapter 5 for information about the role of positive
transition registers in register sets.

27-20

STATus Subsystem

STATus:QUEStionable:LIMit: CONDition? query

Reads the Limit Fail condition register.
Query Syntax: STATus:QUEStionable:LIMit:CONDition?

Example Statements: Output 719;"stat:ques:lim:cond?”
Qutput 719;"Status:Questionable:Limit:Condition?"”

Return Format: <number>
<number> ::= an integer (NRl data)
Attribute Summary: Preset state: not appiicable

Overlapped: no
Pass control required: no

-

Description:
This query returns the sum of the decimal weights of all bits currently set to 1 in the Limit Fail
condition register. (The decimal weight of a bit is 2", where # is the bit number.)

See “Limit Fail Register Set” in chapter 5 for a definition of bits in the register set. See “General
Status Register Model” in chapter 5 for information about the role of condition registers in register
sets.

27-21

STATus Subsystem

STATus:QUEStionable:LIMit: ENABIle command/query

Sets bits in the Limit Fail enable register.

Command Syntax: STATus :QUEStionable:LIMit:ENABle {<number>|<bound>)

I

<number> ::= an integer (NRf data)

limits: 0:32767
<bound> ::= MAX|MIN

Example Statements: Output 719;"STATUS:QUESTIONABLE:LIMIT:ENABLE 4"
Output 719;"stat:ques:lim:enab 12"

Query Syntax: STATus:QUEStionable:LIMit:ENABie?

Return Format: <number>

<number> ::= an integer (NR1 data)

Attribute Summary: Preset state: not affected by Preset
Overlapped: no
Pass control required: no

Description:

To set a single bit in the Limit Fail enable register to“‘-l, send the bit’s decimal weight with this
command. To set more than one bit to 1, send the swm of the decimal weights of all the bits. (The
decimal weight of a bit is 2”, where n is the bit number.)

See “Limit Fail Register Set” in chapter 5 for a definition of bits in the register set. See “General
Status Register Model” in chapter 5 for information about the role of enable registers in register sets.

27-22

STATus Subsystem

STATus:QUEStionable:LIMit[:EVENt]? query

Reads and clears the Limit Fail event register.
Query Syntax: STATus :QUEStionable:LIMit[:EVENL]?

Example Statements: Output 719;"Stat:Ques:Lim:Even?”
Output 719;"STATUS:QUESTIONABLE:LIMIT?"

Return Format: <number>
<number> ::= an integer (NRI1 data)
Attribute Summary: Preset state: not applicable

Overlapped: no
Pass control required: no
Description:

This query returns the sum of the decimal weights of all bits currently set to 1in the Limit Fail event
register. (The decimal weight of a bit is 2", where n is the bit number.)

Note The Limit Fail event register is automatically cleared after it is read by this query.

¥

See “Limit Fail Register Set” in chapter 5 for a definition of bits in the register set. See “General
Status Register Model” in chapter 5 for information about the role of event registers in register sets.

27-23

STATus Subsystem

STATus:QUEStionable:LIMit:NTRansition command/query

Sets bits in the Limit Fail negative transition register.

Comrmand Syntax:

<param> !

<number> 1

<bound> ::

" Example Statements:

Query Syntax:

Return Format:

<number>

Attribute Summary:

Description:

STATus :QUEStionable:LIMit:NTRansition <param>

<number>|<bound>

]

an integer (NRf data)
limits: 0:32767

MAX [MIN

Output 719;"status:questionable:limit:ntransition 0"
OQutput 719;"Stat:Ques:Lim:Ntr 15"

S$TATus:QUEStionable:LIMit:NTRansition?

<number>
;= an integer (NR1l data)
Preset state: not affected by Preset

Overlapped: no
Pass control required: no

To set a single bit in the Limit Fail negative transition register to 1, send the bit’s decimal weight
with this command. To set more than one bit to 1, send the sum of the decimal weights of all the
bits. (The decimal weight of a bit is 2", where n is the bit number.)

See “Limit Fail Register Set” in chapter 5 for a definition of bits in the register set. See “General
Status Register Model” in chapter 5 for information about the role of negative transition registers in

register sets.

27-24

STATus Subsystemn

STATus:QUEStionable:LIMit:PTRansition command/query

Sets bits in the Limit Fail positive transition register.

Command Syntax: STATus :QUEStionable:LIMit:PTRansition <param>

<param> ::= <number>|<bound>

<number> ::= an integer (NRf data)
limits: 0:32767
<bound> ::= MAX|MIN

Example Statements: Output 719;"STAT:QUES:LIM:PTIR 2"
OQutput 719;"status:questionable:limit:ptransition 3"

Query Syntax: STATus:QUEStionable:LIMit:PTRansition?

Return Format: <number>
<number> :!:= an integer (NR1l data)

Attribute Summary: Preset state: not affected by Preset
Overlapped: no
Pass control required: no

Description:

To set a single bit in the Limit Fail positive transition register to 1, send the bit’s decimal weight with
this command. To set more than one bit to 1, send the sum of the decimal weights of all the bits.
(The decimal weight of a bit is 2", where n is the bit number.)

See “Limit Fail Register Set” in chapter 5 for a definition of bits in the register set. See “General

Status Register Model” in chapter 5 for information about the role of positive transition registers in
register sets.

27-25

STATus Subsystem

STATus:QUEStionable:NTRansition command/query

Sets bits in the Questionable Data negative transition register.

Command Syntax: STATus :QUEStionable:NTRansition {<number>|<bound>}

<number> ::= an integer (NRf data)
limits: 0:32767

<bound> ::= MAX|MIN
Example Statements: Output 719;"Status:Questionable:Ntransition 8"
Qutput 719;"STAT:QUES:NTR 65535"

Query Syntax: STATus ;QUEStionable:NTRansition?

Return Format: <number:>

<number> ::=~ an integer (NR1 data)

Attribute Summary: Preset state: not affectedby Preset
Overlapped: no
Pass control required: no

Description:

To set a single bit in the Questionable Data negative transition register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal weights of ali-
the bits. (The decimal weight of a bit is 2", where n is the bit number.)

See “Questionable Data Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Model” in chapter 5 for information about the role of negative transition
registers in register sets. :

27-26

STATus Subsystem

STATus:QUEStionable:POWer:CONDition? query

Reads the Questionable Power condition register.
Query Syntax: STATus :QUEStionable: POWer :CONDition?

Example Statements: Output 719;"stat:ques:pow:cond?”
Qutput 719;"Status:Questionable:Power:Condition?"

Return Format: <number>
<number> ::= an integer (NR1 data)

Attribute Summary: Preset state. not applicable
Overlapped: no
Pass control required: no

Description:

This query returns the sum of the decimal weights of all bits currently set to 1 in the Questionable
Power condition register. (The decimal weight of a bit is 2", where 7 is the bit number.)

See “Questionable Power Register Set” in chapter 5 for a definition of bits in the register set. See
“General Status Register Model” in chapter 5 for information about the role of condition registers
in register sets. '

27-27

STATus Subsystem

STATus:QUEStionable:POWer:ENABIe command/query

Sets bits in the Questionable Power enable register.

Comrand Syntax: STATus :QUEStionable:POWer : ENABle {<number>|<bound>)

<number> ::= an Iinteger {(NRf data)
limits: 0:32767

<bound> ::= MAX|MIN

Example Statements: Output 719;"STATUS:QUESTIONABLE:POWER:ENABLE 17"
Qutput 719;"stat:ques:pow:enab 31"

Query Syntax: STATus:QUEStionable:POWer:ENABle?
Return Format: <number>

<number> ::= an integer (NR1 data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass contrel required: no

Description:

To set a single bit in the Questionable Power enable register to 1, send the bit’s decimal weight with
this command. To set more than one bit to 1, send the sum of the decimal weights of all the bits.
(The decimal weight of a bit is 2", where n is the bit number.)

See “Questionable Power Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Model” in chapter 5 for information about the role of enable registers in
register sets.

27-28

STATus Subsystem

STATus:QUEStionable:POWer[:EVENL]? query

Reads and clears the Questionable Power event register.
Query Syntax: STATus:QUEStionable:POWer | EVENt)?

Example Statements: Output 719;"Stat:Ques:Pow?”
Qutput 719;"STATUS :QUESTIONABLE: POWER EVENT?™

Return: Format: <number>

<number> ::= an integer (NR1 data)

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

This query returns the sum of the decimal weights of all bits currently set to 1 in the Questionable
Power event register. (The decimal weight of a bit is 27, where n is the bit number.)

Note The Questionable Power event register is automatically cleared after it is read by

d this query.

See “Questionable Power Register Set” in chapter 5 for a definition of bits in the register set. See
“General Status Register Model” in chapter 5 for information about the role of event registers in
register sets.

27-29

STATus Subsystem

STATus:QUEStionable:POWer:NTRansition command/query

Sets bits in the Questionable Power negative transition register.

Command Syntax: STATus :QUEStionable:POWer :NTRansition {<number>|<bound>}

<number> ::= an integer (NRf data)
iimits: 0:32767

<bound> ::= MAX|MIN

Example Statements: Output 719;"status:questionable:power:ntransition 0"
Qutput 719;"Stat:Ques:Pow:Ntr 12"

Query Syntax: STATus :QUEStionable:POWer:NTRansition?
Return Format: <numbexr>

<number> ::= an integer (NR1 data)
Attribute Summary: Preset gtate: not affected by Preset

Overlapped: no
Pass control required: no

Description:

To set a single bit in the Questionable Power negative transition register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal weights of all
the bits. (The decimal weight of a bit is 2", where n is the bit number.)

See “Questionable Power Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Model” in chapter 5 for information about the role of negative transition
registers in register sets.

27-30

STATus Subsystem

STATus:QUEStionable:POWer:PTRansition command/query
Sets bits in the Questionable Power positive transition register.
Command Syntax: STATus :QUEStionable:POWer:PTRansition {<number>|<bound>)

an integer (NRf data)
Timits: 0:32767

<bound> ::= MAX|MIN

i

<number> .

Example Statements: Output 719;"STAT:QUES:POW:PTR 65535"
Output 719;"status:questionable:power.ptransition 2"

Query Syntax: STATus :QUEStionable:POWer:PTRansition?
Return Format: <number>

<number> ::= an integer (NR1 data)
Atiribute Summary: Preset state: not affectedby Preset

Overiapped: no
Pass control required: no

Description:

To set a single bit in the Questionable Power positive transition register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal weights of &
the bits. (The decimal weight of a bit is 2", where n is the bit number.)

See “Questionable Power Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Model” in chapter 5 for information about the role of positive transition
registers in register sets.

27-31

STATus Subsystem

STATus:QUEStionable:PTRansition command/qguery

Sets bits in the Questionable Data positive transition register.

Command Syntax: STATus :QUEStionable:PTRansition (<number>|<bound>)

<number> .= an integer (NRf data)

limits: 0:32767
<bound> ::= MAX|MIN

Example Statements: Output 719;"Status:Questionable:Ptransition 21"
Output 719;"STAT:QUES:PTR 31"

Query Syntax: STATus:QUEStionable:PTRansition?
Return Format: <number>

<pumber> ::= an integery (NR1l data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass control required: no

Description:

To set a single bit in the Questionable Data positive transition register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal weights of all
the bits. (The decimal weight of a bit is 2", where # is the bit number.)

See “Questionable Data Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Model” in chapter 5 for information about the role of positive transition
registers in register sets.

27-32

STATus Subsystem

STATus:USER:ENABIe command/query

Sets bits in the User Defined enable register.

Command Syntax: STATus :USER:ENABle {<number>|<bound>}

<number> ::= an integer (NRf data)
Iimits: 0:32767

<bound> ::= MAX|[MIN

Example Statements: Output 719;"stat:user:enab 63535"
gutput 719;"Status:User:Enable 1023"

Query Syntax: STATus :USER:ENABle?
Return Format: <number>
<pumber> ::= an integer (NRl data)
Attribute Summary: Preset state: not affectedby Preset

Overlapped: no
Pass control required: no

Description:

To set a single bit in the User Defined enable register to 1, send thie bit’s decimal weight with this
command. To set more than one bit to 1, send the sum of the decimal weights of all the bits. (The
decimal weight of a bit is 2%, where n is the bit number.)

See “User Defined Register Set” in chapter 5 for a definition of bits in the register set. See

“General Status Register Model” in chapter 5 for information about the role of enable registers in
register sets.

27-33

STATus Subsystem

STATus:USER[:EVENt]? query

Reads and clears the User Defined event register.
Query Syntax: STATus:USER{ :EVENt]?

Example Statements: Output 719;"STATUS:USER:EVENT?"
Output 719;"STATUS :USER?"

Return Format: <number>
<number> ::= an integer (NR1 data)
Attribute Summary: Preset state: not applicable

Overlapped: mno
Pass control required: no
Description:

This query returns the sum of the decimal weights of all bits currently set to 1 in the User Defined
event register. (The decimal weight of a bit is 2", where n is the bit number.)

Note The User Defined event register is automatically cleared after it is read by this query.

v

See “User Defined Register Set” in chapter 5 for a definition of bits in the register set. See
“General Status Register Model” in chapter 5 for information about the role of event registers in
register sets.

27-34

STATus Subsystem

STATus:USER:PULSe command

Pulse bits in the User Defined condition register.

Command Syntax: STATus:USER:PULSe {<number>|<bound>}

<number> ::= an integer (NRf data)
limits: 0:32767

<bound> ::= MAX|MIN
Example Statements: Output 719;"Stat:User:Puls O"
Qutput 719;"STATUS:USER:PULSE 512"

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

Each bit in the User Defined condition register is normally set to 0, but is set to I (briefly) when you
send the bit’s decimal weight with the STAT:USER:PULS command. (The decimal weight of a bit is
2", where n is the bit number.)

See “User Defined Register Set” in chapter 5 for more information.

27-35

28

SYSTem Subsystem

'The SYSTem subsystem collects commands that are not related to analyzer performance. Instead,
these commands control global functions, such as instrument preset, time, and date.

28-1

SYSTem Subsystem

SYSTem:BEEPer:STATe command/query

Toggles the analyzer’s beeper on and off.
Command Syntax: SYSTem: BEEPer:STATe (OFF|O[ON|1}

Example Statements: Cutput 719;"system:beeper:state on"
Qutput 719;"Syst:Beep:Stat 1"

Query Syntax: SYSTem:BEEPer:STATe?
Return Format: +{0]|1)
Attribute Summary: Preset state: +1

Overlapped: no
Pass control required: no

Description:

When the beeper is enabled, it emits an audible tone when some messages are either displayed or
placed in the error queue. It also emits an audible tone when a trace falls outside its specified limits
if limit testing and the limit-fail beeper are enabled (DISP:LIM:STAT ON and DISP:LIM:BEEP
ON).

28-2

SYSTem Subsystem

SYSTem:COMMunicate:GPIB:ADDRess command/guery
Sets the analyzer’s HP-IB address.

Command Syntax: SYSTem:COMMunicate :GPIB:ADDRess {<number>|<step>|<bound>)

I

<number> ::= an integer (NRf data)

limits: 0:30
<step> ::= UP|DOWN
<bound> ::= MAX|MIN

Example Statements: Output 719;"SYST:COMM:GPIB:ADDR 19"

Output 719;"system:communicate:gpib:address 11"
Query Syntax: SYS8Tem: COMMunicate:GPIB:ADDRess?

Return Format: <number>
<number> ::= an integer (NR1 data)

Attribute Summary: Preset state: not affected by Preset
Overlapped: no
Pass control required: no

Description:

The analyzer’s address is saved in non-volatile memory, so it is retained when you turn the analyzer
off and on.

Note When you use this command, wait at least 5 seconds before sending another
ﬁ command to the new address.

28-3

SYSTem Subsystem

SYSTem:COMMunicate:GPIB:ECHO command/query

Enables and disables the echoing of TMSL command mnemonics to the analyzer’s screen.
Command Syntax: SYSTem:COMMunicate :GPIB:ECHO {OFF|{O|ON{1)

Example Statements: Qutput 719;"System:Communicate:Gpib:Echo CEf"
Qutput 719;"SYST:COMM:GPIB:ECHO 1™

Query Syntax: SYSTem:COMMunicate :GPIB:ECHO?
Return Format: +{0]1}
Attribute Summary: Preset state: +0

Overlapped: no
Pass control required: no

Description:

When echoing is enabled, you can operate the analyzer from the front panel and it will display the
TMSL commands you must send over the HP-IB to achieve the same results. Mnemonics are
displayed in the lower-left corner of the screen.

28-4

8YSTem Subsystem

SYSTem:DATE command/query

Sets the date in the analyzer’s battery-backed clock.

Command Syntax: SYSTem:DATE <year>, <month>,<day>
<year> ::= MAX|MIN|an integer (NRf data)
limits: 0:9999
<month> ::= MAX|MINjan integer (NRf data)
limitg: 1:12
<day> ::= MAX|MIN|an integer (NRf data)
limits: 1:31

Example Statements: Output 719;"syst:date 19%90,2,20"
Output 719;"System:Date 1991,11,4"

Query Syntax: SYSTem:DATE?

Return Format: <year>,<month>,<day>

<year> ::= an integer (NR1 data)
<month> ::= an integer (NRLl data)
<day> ::= an integer (NR1 data)
Attribute Summary: Preset state: not affected by Preset

Overlapped: no
Pass control required: no

Description:

You must enter the year as a four-digit number, including century and millennium information
(1990, not 90).

28-6

8YS8Tem Subsystem

SYSTem:ERRor? query

Returns one error message from the analyzer’s error queue.
Query Syntax: SYSTem: ERRor?

Example Statements: Output 719;"SYSTEM:ERROR?"
' Qutput 719;"syst:err?"

Return Format: <err_num>, "<gen Info>;<details>"

<err_num> ::= an integer (NR1 data)
<gen_info> ::
<details> ::

general description of error

additional details (if any)

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

The error queue temporarily stores up to 20 error messages. When you send the SYST:ERR query,
one message is moved from the error queue to the output queue so your controller can read the
message. The error queue delivers messages to the output queue in the order received.

Note The error queue is cleared when you turn on the analyzer and when you send the

ﬁ *CLS command.

Appendix B lists the HP 3588A’s error messages.

28-6

8YSTem Subsystem

SYSTem:PRESet command

Returns most of the analyzer’s parameters to their preset states.
Command Syntax: SY¥YSTem:PRESet

Example Statements: Output 719;"Syst:Pres"
Qutput 719;"SYSTEM:PRESET"

Aftribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: no

Description:

In addition to returning parameters to their preset states, this command does all of the following
things:
s Cancels any pending *OPC command or query.

» Clears the error queue.
w Clears all event registers (sets all bits to 0).

Note The preset state of each parameter is listed under the Attribute Summary of the
associated command.

SYST:PRES does not affect the following parameters:

The state of the Power-on Status Clear flag.

The state of all enable and transition registers.

The HP-IB input and output queues.

The time and date. (SYST:TIME and SYST:DATE).

‘The HP-IB address settings. (SYST:COMM:GPIB:ADDR, PLOT:ADDR, and PRIN:ADDR)
The HP-IB controller capability setting.

The default disk selection. (MMEM:MSI)

Contents of limit, data, function, and constant registers.

Contents of the RAM disks.

Calibration constants.

28-7

SYSTem Subsystem

SYSTem:RPGLock command/query

Enables and disables the knob on the analyzer’s front panel.
Command Syntax: §YSTem:RPGLock {OFF|0{ON|1)

Example Statements: Output 719;"System:Rpglock Off"
Output 719;"SYST:RPGL 1"

Query Syntax: SYSTem:RPGLock?
Return Format: +{0|1}
Attribute Summary: Preset state: +1

Overlapped: no
Pass control required: no

Descriptiom:

When the knob is enabled, front-panel operators can position the marker or scroll through the disk
catalog while the analyzer is being controlled via HP-1B.

28-8

8YSTem Subsystem

SYSTem:SET command/query

Transfers an instrument state between the analyzer and an external controller.

Command Syntax: SYSTem: SET <block>

¥

<block> ::
<byte> ::

f#<byte>[<length bytes>]<data_bytes>

one ASCII-encoded byte specifying the number of length
bytes to follow

ASCII-encoded bytes specifying the number of data
bytes to follow

<data_bytes> ::=~ the bytes that define an instrument state

It

il

<length_bytes> ::

Example Statements: Output 719;"system:set?"
Output 719;"Syst:Set?"

Query Syntax: $YSTem: SET?
Return Format: <block>
Attribute Summary: Preset state: not defined

Cverlapped: yes
Pass control required: no

Description:

This command transfers a complete instrument state—the same information contained in a state
file—between the analyzer and your controller. This allows you to store an instrument state on your
controller’s file system. The state cannot be altered.

When you transfer an instrument state to the analyzer, you can use either the definite or the

indefinite length block syntax. When the analyzer returns the state to a controller, it always uses the
definite length block syntax. See “Block Data” in chapter 4 for more information.

28-9

SYS8Tem Subsystem

SYSTem:SNUMber? query

Returns the analyzer’s serial number.
Query Syntax: SYSTem: SNUMber?

Example Statements: Output 719;"SYST:SNUM?"
Qutput 719;"system:snumber?"

Return Format: "<ser_ num>"

<ser_num> ::= 10 ASCII characters
Attribute Summary: Preset state: not applicable

Overlapped: no
Pass contrel required: no

Description:

This query returns the analyzer’s serial number.

28-10

SYSTem Subsystem

SYSTem:TIME command/query

Sets the time in the analyzer’s battery-backed clock.

Command Syntax: SY¥YSTem: TIME <hour>,<minute>,<second>

<hour> ::= MAX|MIN|an integer (NRf data)
limits: 0:23

<minute> ::= MAX|MIN|an integer (NRf data)
limits: 0:59

MAX [MIN|an integer (NRf data)
limits: 0:59

<second> ::

Example Statements: Output 719;"System:Time 14,5,00"
Output 719;"SYSTem:TIME 8,58,00"

Query Syntax: SYSTem:TIME?

Return Format: <hour>,<ainute>,<second>

<hour> ::= an integer (NR1 data)
<minute> ::= an integer (NR1 data)
<second> ::= an integexr (NR1 data)

Attribute Summary: Preset state: not affected by Preset
Overlapped: no
Pass control required: no

Description:

Set the time using a 24-hour format. For example, 3:05 pm becomes 15:05 and is sent as
SYST:TIME 15,5,0.

28-11

29

TEST Subsystem

Commands in the TEST subsystem access functions that should only be used as described in the
HP 35884 Performance Test Guide. Refer to that manual for more information on these functions.

28-1

TEST Subsystem

TEST:INPut:CONFig . command/query

Connects the input circuitry either to the input BNC or the calibrator signal.
Command Syntax: TEST: INPut:CONFig {FPANel|CALibrator)

Example Statements: Output 719;"test:inp:conf cal™
Output 719;"Test:Input:Config Fpanel"

Query Syntax: TEST:INPut:CONFigure?
Return Format: FPAN|CAL
Attribute Summary: Preset state: FPAN

Overlapped: no
Pass control required: no

Description:

Use this command only as described in the HP 35884 Performance Test Guide.

29-2

TEST Subsystem

TEST:SOURce:DAC:ATTenuation command/query

Sets the source’s attenuation DAC.

Command Syntax: TEST:SOURce :DAC:ATTenuation {<value>|<step>|<bound>)
<value> ::= <number>[DB]
<number> ::= a real number (NRf data)
limits: 0,0:39.9
<step> ::= UP{DOWN
<bound> ::= MAX|MIN

Example Statements: Output 715;"TEST:SOURCE:DAC:ATTENUATION O"
Output 719;"test:sour:dac:att 20"

Query Syntax: TEST:S0URce : DAC: ATTenuation? [UNIT)
Return Format: <number>| {"dB"}

<number> ::= a real number (NRZ2 or NR3 data)
Attribute Summary: Preset state: +0.00E+0 dB |

Overlapped: no
Pass control required: no

Description:

Use this command only as described in the HP 35884 Performance Test Guide.

29-3

30

TRACe Subsystem

The TRACe subsystem contains commands that are used to define and manipulate trace data. One
of these commands—TRAC:DATA—allows you to transfer measurement data between the
analyzer and an external controller. The following block diagram shows you the position of
TRAC:DATA in the data flow:

Coordinate
Mt Transformation
) N, aih i {Lnear i
Megsurement Operalions Magnitude. Display
Logaritnmig —
4~ Magmtude.l i
| |
| |
3 {/
CALCOATA

TRACDATA

Figure 30-1. Flow of Measurement Data

After measurement data is collected, any specified math operations are performed. Data is then
transformed into the specified coordinate system and sent to the display. TRAC:DATA gives you
access to the raw measurement data after math operations have been performed. CALC:DATA
gives you access to the display data—after the coordinate transformation.

Note You can take measurement data out of the analyzer with either TRACE:DATA or
CALC:DATA, but you can only put it back into the analyzer with TRAC:DATA.

The TRACe mnemonic contains an optional trace specifier: [1{2]. To direct a command to trace A,
omit the specifier or use 1. To direct a command to trace B, use 2.

30-1

TRACe Subsystem

TRACe[1]|2]:COPY command

Copies the specified trace into a data register.
Command Syntax: TRACe[1}2]:COPY {D1{D2|D3|D&{D5|D6|D7|D8)

Example Statements: Output 719;"Trac:Copy D2"
Qutput 719;"TRACEL:COPY D5™

Attribute Summary: Preset state: not applicable
Overlapped: no
Pass control required: no

Description:

The trace in a data register can either be displayed directly (using DISP:RES) or included in a math
function (using CALC:MATH:EXPR).

Note To save the contents of a data register to disk, you must display the contents in trace
A or trace B (with DISP:RES) and then save trace A or trace B (with
MMEM:STOR:TRAC).

30-2

TRACe Subsystem

TRACe[1]|2]:DATA command/query

Transfers a trace between the analyzer and an external controller.

Command Syntax: TRACe[1]2] :DATA <block>
When data is ASCII-encoded, (FORM ASC) <block> takes the following form:

<bloeck> ::
<point> ::

[<point>{,<point>]...]

yv-axis value for 1 of the 40l points that make up

a trace
limits: -9.9E37:9.9E37

When data is binary-encoded, (FORM REAL) <block> takes the following form:

<block> ::= f<byte>[<length_bytes>][<point>]...

<byte> ::= one ASCII-encoded byte specifying the number of length
bytes to follow

It

<length _bytes> ::= ASCII-encoded bytes specifying the number of data
bytes to follow

<point> ::= y-axis value for 1 of the 401 points that make up
a trace
limits: -9,9E37:9%.9E37

Example Statements: Output 719;"trace:data 1,1,1,1,1"
Qutput 719;"Trac?:Data?"

Query Syntax: TRACe[1]2] :DATA?
Return Format: <block>
Attribute Summary; Preset state: not applicable

Overlapped: no
Pass contrel required: no

Description:

‘This command transfers a block of corrected measurement data (after math operations have been
performed) between the analyzer and your controller. The block is transferred as 401 amplitude
values. The unit for these values is Vrms.

Note If you send fewer than 401 values, the analyzer replaces points 0 through (n - 1) of
ﬁ the specified trace with the values you send (where # is the number of values you
send). The remaining points are unchanged.

30-3

TRACe Subsystem

TRACe[1|2]:TiTLe command/query
Loads a title for the specified trace.
Command Syntax: TRACe[1}2]:TITLe '<title>’

<title> ::= O through 15 ASCII characters

Example Statements: Qutput 719;"TRAC2:.TITL 'Filter Shape'"
Output 719;"tracel title *’'"

Query Syntax: TRACe[1]2):TITLe?
Return Format: "<ritle>"
Attribute Summary: Preset state: "" (both traces)

Overlapped: no
Pass control required: no

Description:

Trace titles appear above the upper-left corner of traces and can be up to 15 characters long. They
replace the default trace titles supplied by the analyzer. You can delete a user-defined trace title by
sending the null string (") with this command; this causes the analyzer to display the default trace
title. -

Note If you send *RST or SYST:PRES, user-defined titles are automatically deleted,
restoring the default titles for both traces.

30-4

31

TRIGger Subsystem

The TRIGger subsystem contains commands that control two of the analyzer’s trigger functions.
One command selects the source of the trigger signal. The other command triggers the analyzer if
the trigger source is BUS. See the ARM subsystem for commands that control the trigger arming
functions.

311

TRIGger Subsystem

TRiGger[:IMMediate] command
Triggers the analyzer if TRIG:SOUR is BUS.

Command Syntax: TRIGger|:IMMediate]

Example Statements: Output 719;"Trigger:Immediate"
Output 719;"TRIG"

Attribute Summary: Preset state: not applicable
Overlapped: yes
Pass control required: no

Description:

This command triggers the analyzer if the following two conditions are met:

s The HP-IB is designated as the trigger source. (Send the TRIG:SOUR BUS command.)
s The apalyzer is waiting to trigger. (Bit 5 of the Standard Operation condition register is set.)

It is ignored at all other times.

TRIG:IMM has the same effect as *TRG. It also has the same effect as the HP-IB bus management
command Group Execute Trigger (GET) with the following exception: TRIG:IMM is sent to the
input queue and processed in the order received, but GET is processed immediately, even if the
input queue contains other commands.

31-2

TRIGger Subsystem

TRIGger:SOURce command/query

Selects the source of a trigger event.
Command Syntax: TRIGger :SOURce {IMMediate!EXTernal|BUS)

Example Statements: Qutput 719;"trig:sour ext"
Output 719;"Trigger:Source Immediate”

Query Syntax: TRIGger:SOURce?
Return Format: IMM|EXT|BYS
Attribute Summary: Preset state: TMM

Overlapped: ves
Pass control required: no

Description:

Send IMM to select free run triggering, which automatically triggers the analyzer as soon as it is
armed.

Send EXT to select the analyzer’s EXT TRIG connector (on the rear panel) as the trigger source. If
EXT is selected, the analyzer is triggered by a high-to-low transition of the TTL signal applied to this
connector.

Send BUS to select the analyzer’s HP-IB connector (also on the rear panel) as the trigger source. If
BUS is selected, the analyzer is triggered when you send any of the following HP-IB commands:

s *TRG

s TRIG:IMM

w Group Execute Trigger (GET)

GET is a bus management command. See “Response to Bus Management Commands” in chapter 2
for more information.

Note The analiyzer must be waiting to trigger when it receives an external trigger signal or
bus trigger command, otherwise the signal or command is ignored. Bit 5 of the
Standard Operation condition register is set to 1 when the analyzer is waiting to
trigger.

31-3

HP 3588A Command Summary

Introduction

This appendix contains a listing of all the TMSL commands recognized by the HP 3588A. Tt begins
with the common commands and then lists the subsystern commands in alphabetical order. The
appendix uses the following conventions:

s Syntaxis taken from the command descriptions in the Command Reference chapters. Refer to
those descriptions for more information on a particular command.

s Indentation is used to show a subsystem command’s relative position in the TMSL command
tree. See chapter 3 for more information on the command tree.

= An italic font is used for commands that fill a position in the command tree but do not affect the
analyzer state. For example, DISPlay[1]|2]:LIMit:UPPer gives you access to the command
DISPlay[1|2]:LIMit:UPPer:DElLete, but it does not affect the analyzer state. (In fact, it is not
even recognized by the command parser.)

A-1

HP 3588A Command Summary
Command List

Command List

Common Commands

*CAL?

*CLS

*ESE { <number> | <bound>}
*ESR?

*IDN?

*OPC

*PCB <number_1>[,<number_2>]
*PSC { <number> | <bound>}
*RST

*SRE {<number> | <bound>}
*STB?

*TRG

*TST?

*WAI

ABORt

ARM

ARM!{IMMediate]
ARM:SOURce {IMMediate | MANual}

AVERage

AVERage:COUNt { <number> | <step> | <bound>}
AVERage[:STATe] {OFF|0|ON|1}

AVERage: TCONtrol {EXPonential}
AVERage:TYPE {RMS|MAX|VIDec|PEAK}

CALCulate[1]2]

CALCulate[1{2]:DATA?

CALCulate[1[2]:FORMat {MLINear | MLOGarithmic|[NONE}

CALCulate[1|2]:MATH
CALCulate[1|2]:MATH:CONStant <const>,{<number> | <bound>}
CALCulate[1|2]:MATH:DATA <block>
CALCulate[1|2]:MATH[:EXPRession] <func>,<expr>

HP 3588A Command Summary
Command List

CAlLibration

CAlLibration[:ALL]?

CALibratiomAUTO {OFF|0|ON|1|ONCE}

CALibration:CORRection
CALibration:CORRection:SRATe {OFF|0{ON |1}

DIAGnostics

DIAGnostics:SOURce
DIAGnostics: SOURce:PAD
DIAGnostics:SOURce:PAD:TEN {IN|OUT}
DIAGnostics:SOURce:PADA
DIAGnostics:SOURce:PADA TWENty {IN|OUT}
DIAGnostics:SOURce:PADB
DIAGnostics:SOURce:PADB:TWENty {IN|OUT}

DISPlay[1]2]

DISPlay[1|2]:LIMit
DISPlay{1 |2):LIMitBEEP {OFF|0|ON|1}
DISPlay{1|2]:LIMit:LINE {OFF|0|ON|1}
DISPlay[1|2]:LIMit:LOWer
DISPlay(1 |2J:LIMit: LOWer:DATA <block>
DISPlay|[1]2}:LIMit:LOWer:DELete
DISPlay[1]2]:LIMit:LOWer:MOVE { <number> | <step> | <bound>}
DISPiay[1 | 2):LIMit:LOWer:REPort?
DISPlay[1|2):LIMit:LOWer:SEGMent <block>
DISPlay[1 | 2:LIMit:MODE {ABSolutc | RELative}
DISPlay[1|2]:LIMit:RESult?
DISPlay[1]2]:LIMit:STATe {OFF|0|ON|1}
DISPlay[1|2]:LIMit:UPPer
DISPlay[1|2}:LIMit:UPPer:DATA <block>
DISPlay[1|2]:LIMit:UPPer:DELete
DISPlay[1]2):LIMit:UPPer:zMOVE { <number> | <step> | <bound> }
DISPlay[1|2]:LIMit:UPPer:REPort?
DISPlay[1|2]:LIMit:UPPer:SEGMent <block>
DISPlay[1|2]:PARTition {OFF|0|FULL |UPPer|LOWer}
DISPlay[1]2]:PARTition:CLEar
DISPlay[1!2]}:RESults <param>
DISPlay(1{2]:Y
DISPlay[112]:Y:SCALe
DISPlay[12]:Y:SCALe:AUTO {ONCE|OFF|0}
DISPlay[1|2]:Y:SCALe:MAXimum {<value> | <step> | <bound>}
DISPlay[1]2]:Y:SCALe:MAXimum:AUTO {OFF [0|ON|1}
DISPlay[1]2]):Y:SCALe:PDIVision { <value> | <step> | <bound>}

FORMat
FORMat[:DATA] {ASCii|REAL}{,{ <number> | <bound>}]

HP 3588A Command Summary
Command List

IN[Tiate

INITiate:CONTinuous {ON
INITiate[:IMMediate]

1}

INPut

INPut:IMPedance { <value> | <bound>}
INPut:IMPedance:REFerence { <value> | <step>| <bound>}
INPut.TRIP
INPut:TRIP:CLEar

MARKer{1]2]

MARKer{1|2]:FUNCtion
MARKer([1]2]:FUNCtion:FCOunt {OFF|0|ON|1}
MARKer[1|2]:FUNCtion:NOISe {OFF|0|ON|1}
MARKer{1|2]:MAXimum
MARKer[1|2]:MAXimum:GLOBal
MARKer([1|2}:MAXimum:LEFT
MARKer{1|2]:MAXimum:RIGH!
MARKer[1]2]:MAXimum:TRACk {OFF|0{ON|1}
MARKer[1|2]:MINimum
MARKer{1 | 2]:MINimum:GLOBal
MARKer{1|2]:0FFSet {OFF|0|ON|1}
MARKer{1|2]:OFFSet:DELTa
MARKer{1|2}:OFFSet:DELTa:X { <value> | <bound>}
MARKer([1|2]:0FFSet:DELTa:Y {<value> | <bound>}
MARKer[1]2]:OFFSet:X { <value> | <step> | <bound>}
MARKer{1]2]:OFFSet:Y {<value> | <bound>}
MARKer{1|2}:POINt { <number> | <step> | <bound >}
MARKer{1|2][:STATe] {OFF|0|ON|1}
MARKer[1|2]:TO
MARKer[1]2]:TO:SPAN
MARKer{1|2]:X {<value> | <step> | <bound>}
MARKer[1{2}:X:FCOunt? [UNIT]
MARKer[1]2]):Y? [UNIT]
MARKer[1]2}:Y:NOISe? [UNIT]

A-4

HP 3588A Command Summary
Command List

MMEMory

MMEMory:COPY ’<pathname>’, <pathname>’
MMEMory:DELete '[<disk>][<filename>]’
MMEMory-GET
MMEMory:GET:PROGram [<disk>]<{ilename>’
MMEMory:INITialize ’<disk>"{,{ <number> | <bound>}]
MMEMory:LOAD
MMEMory:LOAD:LIMit
MMEMory:LOAD:LIMit: LOWer {A|B},[<disk>]<filename>’
MMEMory:LOAD:LIMit:UPPer {A|B},’[<disk>]<filename>’
MMEMory: LOAD:MATH ’[<disk>]<filename>’
MMEMory:LOAD:PROGram '[<disk>]<filename>’
MMEMory:LOAD:STATe {1 |MAX|MIN},[<disk>]<filename>’
MMEMory:LOAD:TRACe <data_reg>,’[<disk>]<filename>’
MMEMory:MSI’<disk>’
MMEMory:PACK [’ <disk>"}
MMEMory:REName *<pathname>", <filename >’
MMEMory:RESave
MMEMory:RESave:PROGram ‘[<disk>] <filename>’
MMEMory:SAVE
MMEMory:SAVE:PROGram [<disk>]<filename>’
MMEMory:STORe
MMEMory:STORe:LIMit
MMEMory:STORe:LIMit:LOWer {A|B},’[<disk>]<filename>’
MMEMory:STORe:LIMit:UPPer {A|B},"[<disk>]<filename>’
MMEMory:STORe:MATH ’[<disk>] <filename>’
MMEMory:STORe:PROGram | <disk>] <filename>’
MMEMory:5TORe:STATe {1|MAX|MIN},[<disk>]<filename >’
MMEMory:STORe:TRACe {A|B},[<disk>]<filename>’

A-5

HP 3588A Command Summary
Command List

PLOT

PLOT:ADDRess { <number> | <step> | <bound>}

PLOT.DUMP
PLOT:DUMP:ALL
PLOT:DUMP:GRATicule
PLOT:DUMP:MARKer
PLOT:DUMP:OFFSet

PLOT:DUMP:OFFSet:MARKer

PLOT:DUMP:TRACe

PLOT:EIECt {OFF|0]ON|1}

PLOT:LTYPe
PLOT:LTYPe:TRACe[1]|2] {<number> | <bound>}

PLOT:PEN

PLOT:PEN:ALPHa { <number> | <step> | <bound>}

PLOT:PEN:GRATicule { <number> | <step> | <bound>}

PLOT:PEN:INITialize

PLOT:PEN:MARKer{1|2] {<number> | <step> | <bound>}

PLOT:PEN:TRACe[1]|2] { <number> | <step>| <bound>}
PLOT:SPEed { <number> | <step>| <bound>}

PRINt

PRINt:ADDRess { <number> | <step> | <bound >}
PRINt:DUMP
PRINt:DUMP:ALL

PROGram

PROGram{:SELected]
PROGram|:SELected]:DEFine <block>
PROGram/|:SELected]:DELete

PROGram[:SElLected]:DELete[:SELected]

PROGram[:SELected]:MALLocate {<number> | <bound> | DEFault}
PROGram{[:SEIL ected:NUMBer ’<variable>",<block>
PROGram{:SELected]:STATe <param>
PROGram[:SELected]:STRing ’<variable>",’<string>"

SCReen

SCReen:ACTive {A|B}

SCReen:ANNotation {OFF|[0|ON|1}
SCReen:CONTents {TRACe |STATe| MMEMory}
SCReen:FORMat {SINGle | ULOWer|FBACk}
SCReen:GRATiIcule {OFF|0|ON|1}
SCReen[:STATe] {OFF|0|ON|1}

A-B

HP 3588A Command Summary

[SENSe:]

[SENSe: | BANDwidth
[SENSe:]BANDwidth:NOISe?
[SENSe:]BANDwidth:NOISe:CORRection?
[SENSe:]BANDwidth[:RESolution] { <value> | <step>| <bound>}
[SENSe:]BANDwidth[:RESolution]:AUTO {OFF|0|ON|1|ONCE}
[SENSe:]BANDwidth{:RESolution]:FFT?
[SENSe:]BANDwidth:VIDeo { <value> | <step> | <bound>}
[SENSe:]BANDwidth:VIDeo:STATe {OFF|0|ON| 1}
[SENSe:]DETector
[SENSe:]DETector[:FUNCtion] {POSitive | SAMPle}
[SENSe:]DETector:STIMe { <value> | <step> | <bound>}
[SENSe:JFREQuency
[SENSe:]FREQuency:CENTer { <value> | <step> | <bound>}
[SENSe:]JFREQuency:CENTer:TRACk {OFF{0|ON|1}
[SENSe:]JFREQuency:MANual { <value> | <step> | <bound>}
[SENSe:]JFREQuency:SPAN { <value> | <step> | <bound>}
[SENSe:]FREQuency:SPAN:FULL
[SENSe:][FREQuency:STARt { <value> | <step> | <bound>}
ISENSe:]JFREQuency:STEP { <value> | <step> | <bound>}
[SENSe:JFREQuency:STEP:STATe {AUTO|MANual}
[SENSe:]JFREQuency:STOP { <value> | <step> | <bound >}
[SENSe:]JFUNCtion '{POWer:FFT | POWer:SWEPt}’
[SENSe:]FUNCtion:POWer
[SENSe:[FUNCtion:POWer:FFT
[SENSe:]FUNCtion:POWer:SWEPt
[SENSe:[POWer
[SENSe:]JPOWer:RANGe { <value> | <step> | <bound>}
[SENSe:]POWer: RANGe:AUTO {OFF|0|ON|1[ONCE}
[SENSe:]POWer:RANGe:LDIStortion {OFF|0]ON|1}
[SENSe:]RESTart
[SENSe:[SWEep
[SENSe:]SWEep:MODE {AUTO |MANual}
[SENSe:]SWEep:TIME { <value> | <step> | <bound>}
[SENSe:JWINDow
[SENSe:]WINDow[: TYPE] {HANNing |FLATtop}

Command List

HP 3588A Command Summary
Command List

SOURce

SOURce:OUTPut
SOURce:OUTPut:IMPedance { <value> | <bound>}
SOURce:OUTPut:IMPedance: MODE {OFF[0ION]1}
SOURce:QUTPut:PROTection
SOURce:OUTPut:PROTection:CLEar
SOURce:OUTPut[:STATe] {OFF|0|ON|{1}
SOURce:POWer
SOURce:POWer[{:LEVel]
SOURce:POWer[:LEVel] [IMMediate]
SOURce:POWer[:LEVel][:IMMediate}[:AMPLitude] <param>
SOURce:POWer[:LEVel][:IMMediate][:AMPLitude]:STEP <param>

HP 3588A Command Summary
Command List

STATus

STATus:DEVice
STATus:DEVice:CONDition?
STATus:DEVice:ENABIle { <number> | <bound>}
STATus:DEVice[:EVEN]?
STATus:DEVice:NTRansition { <number> | <bound>}
STATus:DEVice:PTRansition { <number> | <bound >}
STATus:OPERation
STATus:OPERation:CONDition?
STATus:OPERation:ENABIe {<number> | <bound>}
STATus:OPERation[:EVENt]?
STATus:OPERation:NTRansition { <number> | <bound>}
STATus:OPERation:PTRansition { <pumber> | <bound>}
STATus:PRESet
STATus:QUEStionable
STATus:QUEStionable:CONDition?
STATus:QUEStionable:ENABIle {<number> | <bound>}
STATus:QUEStionable[:EVENt]?
STATus:QUEStionable:FREQuency
STATus:QUEStionable:FREQuency: CONDition?
STATus:QUEStionable:FREQuency:ENABIe { <number> | <bound>}
STATus:QUEStionable:FREQuency[:EVENt]?
STATus:QUEStionable:FREQuency:NTRansition <param>
STATus:QUEStionable:FREQuency:PTRansition <param>
STATus:QUEStionable: LIMit
STATus:QUEStionable:LIMit: CONDition?
STATus:QUEStionable:LIMit:ENABIe { <number> | <bound>}
STATus:QUEStionable:LIMit[:EVEN]?
STATus:QUEStionable:LIMit:NTRansition <param>
STATus:QUEStionable:LIMit:PTRansition <param>-
STATus:QUEStionable:NTRansition { <number> | <bound>}
STATus:QUEStionable:POWer
STATus:QUEStionable:POWer:CONDition?
STATus:QUEStionable:POWer:ENABIe { <number> | <bound >}
STATus:QUEStionable:POWer[:EVENL]?
STATus:QUEStionable:POWer:NTRansition { <number> | <bound>}
STATus:QUEStionable:POWer:PTRansition { <number> | <bound>}
STATus:QUEStionable:PTRansition { <number> | <bound>}
STATus:USER
STATus:USER:ENABIe { <number> | <bound>}
STATus:USER[:EVENL]?
STATus:USER:PULSe {<number> | <bound>}

A-8

HP 3588A Command Summary
Command List

SYSTem

SYSTem:BEEPer
SYSTem:BEEPer:STATe {OFF|0|ON|1}
SYSTem:COMMunicate
SYSTem:COMMunicate:GPIB
SYSTem:COMMunicate:GPIB:ADDRess { <number> | <step> | <bound>}
SYSTem:COMMunicate:GPIB:ECHO {OFF|0|ON|1}
SYSTem:DATE <year>,<month>,<day>
SYSTem:ERRor?
SYSTem:PRESet
SYSTem:RPGLock {OFF|0]ON|1}
SYSTem:SET <block>
SYSTem:SNUMber?
SYSTem:TIME <hour>,<minute>, <second>

TEST

TEST:INPut
TEST:INPut:CONFigure {FPANel|CALibrator}
TEST:SOURce
TEST:SOURce:DAC
TEST:SOURce:DAC:ATTenuation {<value> | <step> | <bound>}

TRACe[1]2]

TRACe[1]2]:COPY {D1|D2|D3|D4|D5|D6|D7| D8}
TRACe[1|2]:DATA <block>
TRACe[1|2):TITLe *<title>’

TRIGger

TRIGger[:IMMediate]
TRIGger:SOURce {IMMediate | EXTernal | BUS}

A-10

Error Messages

Introduction

This appendix contains a listing of all the error messages that can be generated by the HP 3588A in
response to TMSL commands. Each message consists of an error number (always negative}
followed by a string. The string contains a general description of the error followed by additional
information about the cause of the error. In many cases, the additional information is just a listing of
the command that caused the error.

In this appendix, error numbers and their general descriptions are shown using a bold font. Phrases
that complete the descriptions with additional information are grouped under the associated error

number.

Up to 20 error messages are temporarily stored in the analyzer's error queve. They are returned to
the controller, one message at a time, when you send the SYST:ERR query.

B-1

Error Messages
Command Errors

Command Errors

-100,"Command error;
-101,"Invalid character;
-102,"Syntax error;
-103,"Invalid separator;
-104,"Data type error;
~-105,"GET not allowed;

-108,"Parameter not allowed;
Too many parameters.

-109,"Missing parameter;

Missing Parameter

Extra Parameter(s)
-110,"Command header error;
-111,"Header separator error;
-112,"Program mnemonic too long;
-113,"Undefined header;
-114,"Header suffix out of range;
-120,"Numeric daia error;
-121,"Invalid character in number;
-123,"Exponent too large;
-124,"Too many digits;
-128,"Numeric data not allowed;
-130,"Suffix error,

-131,"Invalid suffix;
Invalid Suffix

-138,"Sutfix not allowed,;
-140,"Character data error;
-141,"Invalid character data;
-148,"Character data not aliowed;
-150,"String data error;
-151,"Invalid string data;
-158,"String data not allowed;
-160,"Block data error;
-161,"Invalid block data;
-168,"Block data not allowed;
-170,"Expression error;
-171,"invalid expression;

-178,"Expression data not allowed;

Error Messages
Command Errors

B-3

Error Messages
Execution Errors

Execution Errors

-200,"Execution error;
Recording mode canceled because: %s
Instrument BASIC not installed.
SAVE/RECALL PROGRAM Not Allowed while RECORDING ENABLED.
Marker Value is not valid.
Received HP-IB control without requesting it.
HP-IB control not received.
Instrument State Controller Missing
Invalid Function Code
Invalid Instrument State Request
Invalid Instrument State Value
Invalid Instrument State
Flot/Print Already In Progress
Serial number must be 10 characters.
Not a valid serial number.
Fod definition is not valid for execution.

-201,"Invalid while in local;
-210,"Trigger error;
-211,"Trigger ignored;
-212,"Arm ignored;

-220,"Parameter error;
Invalid Instrument State Parameter

-221,"Settings conflict;
Invalid program state change requested.
Marker is not ON.

Qffset Marker is not ON.
Invalid during NARROW BAND ZOOM.

-222,"Data out of range;
Out of range.

~223,"Too much data;
-224,"tlegal parameter value;

-231,"Data questionable;

B-4

Error Messages
Execution Errors

-240,"Hardware error;
Hardware failure: %s
INPUT PROTECTION TRIPPED Clear trip in Range menu,
SOURCE PROTECTION TRIPPED Clear trip in Source menm.
Local Oscillator Unlocked
Hardware Failure

-241,"Hardware missing;

-250,"Mass storage error;
Improper mass storage unit specifier.
Improper file name
Disk operation aborted.
Mass storage units must be same when renaming,
Improper file type.
File does not contain a STATE.
File does not contain a TRACE,
File does not contain MATH definitions.
File does not contain LIMIT definitions.
Source and destination units are same.
Operation not allowed while file(s) open.
Ilegal format parameter(s).
Bad disk.

-251,"Missing mass storage;
Mass storage unit not present.

-252,"Missing media;
Disk not in drive.

-253,"Corrupt media;
Not a valid directory.

-254,"Media full;
Insufficient disk space.

-255,"Directory full;
Full directory.

-256,"File name not found;
File name 1s undefined.

-257,"File name error;
DPuplicate file name.

Error Messages
Execution Errors

-258,"Media protected;
Write protected disk.

-260,"Expression error;

-280,"Program error;
Zos

-283,"lllegal variable name;
Iliegal variable name.

-284,"Program currently running;
Program currently running,

-285,"Program syniax error;
ERROR 949 Syntax error at cursor

Downloaded program line must have a line number.

-286,"Program runtime error;

B-6

Error Messages
Device-Specific Etrors

Device-Specific Errors
-300,"Device-specific error;
-310,"System error;
Calibration Failure
Calibration DMA Timeout

Calibration Overloads
Serial number already set.

-311,"Memory error;
-314,"Save/recall memory lost;

-350,"Too many errors;

Query Errors
-400,"Query error;
~410,"Query INTERRUPTED:
-420,"Query UNTERMINATED;
-430,"Query DEADLOCKED:

-450,"Query not ailowed:

A

aborting a measurement 9-2, 25-25

absolute limit lines 15-9

active controller 1-3,2-2-2-3,2-%

active trace 24-2
address
controller 2-12
general 1.3
HP 3588A 1.8,28-3
plotter 21-2
printer 22.2
addressable-only 1-9,2-2
alpha 3-6
amplitude
source output 26-6
step size 26-7
analyzer identification 8-6
arm
automatic 10-3
manual 10-2 - 10-3
See also trigger
ASCII
data transfer format 16-2
ASCII encoding 4-7
autoranging 25-23

antoscaling
vertical 15-20
averaging
count 11-2
enabling 11-3
max 1i-5
peak hold 11-5
rms 11-5
video 11-8
weighting 11.2, 11-4
B
bandwidth
coupling 25.3
resolution 25-2
video 25-4-25.5
BASIC
See HP Instrument BASIC
beeper
Limit test 15-2
main 28-2

binary encoding 4-8

blanking
entire screen 24-7
frequency annotation 24-3
block data 4-5,4-7-4-9
bus management command 1-3,2-2
Bus Management Commands vs. Device Commands
2-2
bus trigger 8-14, 31-3

C

calculate data
format 12.3
See also trace data
transferring via HP-IB 122
calibration
automatic 13.3
displaying calibration data 13-5
single 13-3
test 8-2,13-2
catalog 24-4
center frequency 25-8
character data 4-4
clearing status 8-3
on power-up §-9
clock
setting date 28-3
setting time 28-10
Command Abbreviation 3-4
command message unit 3-8
command mode 2-2
command parser 2-8,3-3
resetting 2-8
command tree 3.2
common command 2-2
common program header 3-9
compound program header 3-9
condition register
Device State 27-2
Limit Fail 27-21
Questionable Data 27-13
Questionable Frequency 27-16
Questionable Power 27-27
Standard Operation 27-7
Configuring the HP-IB System 1.7
constant
defining 124
displaying 15-19

index (Continued)

continuing a program 23-6
continuous trigger

See free run trigger
controller 1-3

See also active controller

See also system controlier
Controller Capabilities 2-2
coordinates

lincar magnitude 12-3

logarithmic magnitude 12-3
copy

disk 20-2

file 20-2
counter

enabling 19-2

value 1918

D

data encoding 4-7 - 4-9
data formats 4-2 « 4-6
data mode 2-2
data register
displaying 15-19
loading 30-2
data transfer format
ASCII 16-2
real 16-2
data type 4-2
block data 4-3
character data 4.4
decimal numeric data 4-2
expression data 4-8
fixed-point number 4-2
floating-point number 4.2
NR1data 4-3
NR2 data 4.3
NR3 data 4-3
NRfdata 4-3
string data 44
date 28-5
decimal numeric data 4-2
default disk 20-12
definite length block data 4-6
delete
disk 2043
file 20-3
lower Limit lines 18-5
program 23-3
upper limit lines 15-13
Device Clear (DCL) 2-3
device command 1.3, 2-2
Device State register set 5-10
condition register 27-2

enable register 27-3
event register 27-4
negative transition register 27-5
positive transition register 27-6
digit 3-8
disk
copying 2{-2
defauit 20-12
deleting 20-3
displaying catalog 24-4
formatting 20-3
initializing 20-5
packing 20-13
specifiers 20-1
display
See screen
display data
See calculate data
See also trace data
display scaling
See scaling

E

echoing mnemonics 28-4

enable register
Device State 27-3
Limit Fail 27-22
Questionable Data 27-14
Questionable Frequency 27-17
Questionable Power 27-28
Standard Operation 27-8
User Defined 27-33

~END 3-6

SITOT MESSAREs
reading 28-6

error queue 2.7

event register
Device State 274
Limit Fail 27.23
Questionable Data 27-15
Questionable Frequency 27-18
Questionable Power 27-29
Standard Operation 27-9
User Defined (reading) 27-34
User Defined (setting) 27-35

expression data 4-3

external trigger 31-3

F

files

copying 20-2
deleting 203

See also loading
packing 20-13
renaming 20-14
See also storing
fixed-point number 4-2
floating-point number 4-2
format
data transfer 16-2
trace display 24-5
formatting disks 20-5
free run trigger 31-3
frequency
annotation blanking 24-3
center 25-8
counter 19.2
counter value 19-18
full span 25-13
manual 25-10
resolution 25-2, 2528
span 25.11
start 25-14
step size (enabling) 25-16
step size (setting) 25-18
stop 25.17
zero span 25-11
full span 25-13
function
defining 12-6
displaying 15-19

G

Generating a Service Request 5-4
getting
See also loading
programs 20-4
Go To Local (GTL) 2-3
£0-10 go testing
See limit test
graticule
assigning plotter pen 21-11
displaying 24-6
plotting 21-4
Group Execute Trigger {GET) 2-3

H

high-accuracy zoom 25-28

high-resolution zoom 25-28

HP Instrument BASIC
allocating stack space 23-4
clearing screen output 15-18
continuing a program 23-6
deleting program 23-3

Index (Continued)

loading programs from disk 20-4, 20-9
partitioning screen for 15-17
pausing a program 23-6
reading and writing numeric variables 23-8
reading and writing string variables 23.7
resaving programs 20-15
running a program 23-6
saving programs 20-16
stopping a program 23-6
storing programs 20-20
transferring programs via HP-IB 23.2
HP-IB Interface Capabilities 2-1
HP-IB Overview 1.3 - 1-4
HP-IB Setup 1-7-1-12
HP-IB trigger
See bus trigger

I

identifying the analyzer 8-6
IEEE 488.1 standard 1-5
IEEE 488.2 standard 1-5
impedance
coupling source and input 26-3
input 18-2
reference 18-3
source 262
Implied Mnemonics 3-5
indefinite length block data 4-6
input
autoranging 25-23
impedance 18-2
reference impedance 18-3
resetting the protection relay 18-4
setting range manually 28-21
input queve 2-7
instrument state
displaying 24-4
loading from disk 20-10
storing to disk 20-21
transferring via HP-IB 28-8
integer 4-2
interface capabilities 2-1
Interface Clear (IFC) 2.3

L

LF 36

Limit Fail register set 5-11
condition register 27-21
enable register 27-22
event register 27-23
negative transition register 27-24
positive transition register 27-2%

iii

index (Continued)

limit lines |
absolute 15.9
defiming lower segments 15-8
defining upper segments 13-16
deleting lower lines 15-5
deleting upper lines 15-13
displaying 15-3
See also limit test
loading lower lines from disk 20-6
loading upper lines from disk 20-7
moving lower bnes 15-6
moving upper lines 15-14
relative 159
storing lower lines to disk 20-17
storing upper lines to disk 20-18
transferring lower lines via HP-IB 154
transferring upper lines via HP-IB 15-12
limit test
beeper 15-2
displaying limits 15-3
enabling 15-11
See also limit lines
reporting failed points 15-7, 15-18
result 15-10
line types
defining 21-9
See also plotter
linear magnitude 12-3
listener 1-3
loading
instrument state (from disk) 20-10
instrument state (via HP-IB) 28-8
lower limit lines (from disk) 20-6
lower Limit lines (via HP-IB) 15-4
math definitions (from disk) 20-8
math definitions (via HP-IB) 12-5
programs (from disk) 20-4, 20-9
programs {via HP-IB) 23.2
traces files 20-11
upper limit lines (from disk) 20.7
upper limit lines (via HP-IB) 15-12
Local Lockout (LLO) 2-4
logarithmic magnitude 12-3
long form 3-4
low distortion mode 25.24

M

Manual Overview 1-2
manual sweep

enabling 25-26

sample time 25-7

selecting frequency 25-10
marker

assigning plotter pen 21-13
disabling all 19-15
enabling main marker 19-18
frequency counter enabling 19-2
frequency counter value 19-18
main marker x-axis position 19-17
main marker y-axis position 19-19
noise level enabling 19-3
noise level value 19-20
See also offset marker
peak searchleft 19-5
peak search right 19-6
peak tracking 19-7
plotling main marker 21-3
plotting offset marker 21.6
position by display point 19-14
to highest peak 19-4
to lowest point 19-8
IMass memory
See disk
mass storage
See disk
math
defining constants 12-4
defining functions 12-6
displaying constants 15-19
displaying functions 15-19
loading definitions from disk 20-8
storing definitions to disk 20-1%
transferring definitions via HP-IB 12-8
max averaging 11-5
measurement data
See trace data
measurement mode
See measurcment fype
measurement type
narrow band zoom 25-18 - 25-19
swept spectrum 25-18, 25.20
Message Exchange 2-6 - 2-8
Message Syntax 3-6 - 3-12
mnemonic
echoing 284
implied 3-%

N

narrow band zoom measurement
selecting 25-18 - 25-19
setting frequency resolution 25-28
negative transition register
Device State 27-8
Limit Fail 27-24
Questionable Data 27-26
Questionable Frequency 27-19

index {Continued)

Questionable Power 27-30 assigning marker pens 21-13
Standard Operation 27-10 assigning trace pens 21-14
No Pending Operation flag 2-9, 8-7 defining line types 21-9
noise level marker initializing pen assignments 21-12
enabling 19-3 page eject enabling 21-8
value 19-20 speed setting 21-185
non-zero digit** 4-2 plotting
normalization entire screen 21-3
displaying normalized spectrum 15.19 graticule 21-4
NPO flag 2-9 main marker 21-5
NR1data 4-3 offset marker 21-6
NR2 data 4-3 trace only 21.7
NR3data 4-3 positive transition register
NRfdata 4-3 Device State 27-6
Limit Fail 27-25
% Questionable Data 27-32

Questionable Frequency 27-20
Questionable Power 27-31
Standard Qperation 27-11
preset
device 8-10, 28.7
status 27-12
preset states
See the individual commands
printer address 22-2
printing screen contents 22-3

offset marker
absolute position 19-12 -19-13
enabling 19-9
Sece also marker
position relative to main marker 19-10 - 19-11
tospan 19-16
*orPC 2-11
*OPC? 2-11
output queue 2-7
overlapped command 2-9, 8.7, 8-16

oversweep program
enabling 134 See HP Instrument BASIC
program data 3-10
p program header 3-9
program message 2-8, 3-6,3-8
packing files 20-13 Program Message Syntax 3-7
page eject program message terminator 3-7
enabling 21-§ program message unit 3-8
See also plotter program mnemonic 3-10
Parallel Poll 24 protection relay
passing control 2-12, 8-8 ' . input 18-4
pausing a program 23-6 source 26-4
pecak detector 25-6
peak hold averaging 11-8 Q
peak search it 3.8
continuous 19-7 query Message unll 5-8
. Query Response Generation 2-8
single 194 . .
toleft 19-5 Questionable Data register set 5-12
toright 19-6 condition register 27-13
eak tracking 19-7 enable register 27-14
P : . event register 27-15
See also signal tracking

negative transition register 27-26

per;g:SIgIOttcints positive transition register 27-32
plott crp Questionable Frequency register set 5-13

condition register 27.16

enable register 27-17

event register 27-18

negative transition register 27-19

address 21-2
assigning alphapen 21-10
assigning graticule pen 21-11

index (Continued)

positive transition register 27-20
Questionable Power register set 5-14

condition register 27-27

enable register 27-28

event register 27429

negative transition register 27-30

positive transition register 27-31
quenes 277
Quick Verification 1-10

R

range
autoranging 25-23
manuai selection 25-21
real
data transfer format 16-2
recalling
See loading
reference impedance 18-3
reference level
See also scaling
sefting 15-21
tracking input range 18-22
reference tracking 15-22
register set
Device State 5-10
Sce also Device State register set
Limit Fail 5-11
Questionable Data 5-12
See also Questionable Data register set
Questionable Frequency 5-13
See also Questionable Frequency register set
Questionable Power 5-14
See also Questionable Power register set
Standard Event 5-15
See also Standard Event register set
Standard Operation $-17
See also Standard Operation register set
Status Byte 5-§
See also Status Byte register set
User Defined 5-1%
See also User Defined register set
register summary 5.7
relative limit lines 15-9
Remote Enable (REN} 24
renaming files 20-14
resaving
programs 20-15
See also storing
reset
device 8-18,28-7
resolution
for narrow band zoom measurements 25-28

vi

for swept spectrum measurements 25-2
resolution bandwidth 25-2
response data 3-12
response message 2-6, 3-6,3-11
Response Message Syntax 3-11
response message terminator 3-11

Response to Bus Management Commands 2-3 - 2-8

restarting a measurement 9-2, 25.25
rms averaging 11-5
running a program 23-6

S

sample time 25-7
saving
programs 20-16
See also storing
scaling
increment per vertical division 15-23
reference fevel 15-21
vertical avtoscaling 13-20
screen
blanking entire screen 24-7
blanking frequency annotation 24-3
clearing HP Instrument BASIC area 15-1§
displaying graticules 24-6
partitioning for HP Instrument BASIC 1517
plotting 21-3
printing 22-3
selecting contents 15-19, 24-4
selecting the active trace 24-2
trace display format 24-5
Selected Device Clear (SDC) 24
self-test 8-18
Sending Commands Over the HP-IB 13
Sending Multiple Commands 3-3
sensttivity
See range
sequential command 2.9
serial number 28-9
Serial Poll 2-5, 8-8
service request 5-4 - 5-5
enabling 8-11
on power-up 8.9
Service Request enable register §-5
short form 34
signal tracking 25-9
See also peak tracking
simple program header 3-9
source
amplitude step 26-7
coupling impedance to input 26-3
enabling 26-5
impedance 26-2

resetting the protection relay 26-4
setting amplitude 26-6
SP 3-6
span
frequency 25-11
foll 25-13
zero 25-11
Special Syntactic Elements 3-6
spectrum
displaying 15-19
SRQ
See service request
stack space
allocating for programs 234
See also HP Instrument BASIC
Standard Event register set 5-18
command descriptions 8-4 - 8-5
Standard Operation register set 5-17
condition register 27-7
enable register 27-8
event register 27-9
negative transition register 27-10
positive transition register 27-11
start frequency 25-14
starting a measurement
See restarting a measurement
state
Sec instrument state
Status Byte register 5-5
reading 8-13
Status Byte register st 5-8
status clearing 8-3
on power-up 8-9
status group
See register set
status preset 27-12
step size
frequency (enabling) 25-16
frequency (setting) 25-18
source amplitude 267
stop frequency 25.17
stopping a program 23-6
storing
instrument state (to disk) 20-21
instrument state (via HP-IB) 28-8
lower Emit lines (to disk) 2017
lower limit lines (via HP-IB) 154
math definitions (to disk) 20-19
math definitions (via HP-IB) 12-3
programs (to disk) 20-1% - 20-16, 20-20
programs (via HP-IB) 23-2
trace files 20-22
upper limit lines (to disk) 20.18

index (Continued)

upper limit lines (via HP-IB) 15-12
string data 4-4
subsystem 3.2
subsystem command 2-2
sweep
mannal 23-26
oversweep 13-4
See also swept spectrum measurement
time 25-27
swept spectrum measurement
selecting 25-18,25-20
setting frequency resolution 25-2
sweep time 25-27
Synchronization 2.9 -2-11
syntax conventions
program and response messages 3-6
system controller 1-3,1-9,2-2

T

Take Control Talker (TCT) 2-3
talker 1-3
terminated program message 3-7
terminated response message 3-11
terminator
program message 3-7
response message 3-11
test
See limit test
See self-test
time 28-18
TMSL
background 1-§
trace data
assigning plotter pens 21-14
See also caleulate data
copying to data register 30.2
creating a title for 384
display format 24-8
displaying 15.19, 24.4
loading from disk 20-11
plotting 21-7
storing to disk 20-22
transferring via HP-IB 30-3
trace type
See coordinates
tracking
peak 197
signal 25.9
tracking generator
See source
trigger
See also arm
automatic 313 -

Vi

index {Continued)

bus 8-14, 31-3

exiting the idle state 17-3
external 31-3

freerun 31.3

initiating 17-2

manual 31-2

u

User Defined register set 5-19
enable register 27-33
event register, reading 27-34
event register, sefting 27-38

v

variable
See also HP Instrument BASIC
reading and writing 23-§, 23.7
Verification Program 1-12
vertical scaling
See scaling
video averaging 11-5
video bandwidth filter
enabling 25-5
selecting 25-4

w

*WAI 2.10
window 25-28
WSP 3.5

Z

zero span 25-11
zoom type 25.28

viii

Hewlett-Packard Sales and Service Offices

To obtain Servicing information or to order replacement parts, contact the nearest Hewlett-Packard
Sales and Service Office listed in HP Catalog, or contact the nearest regional office listed below:

In the United States

California

P.O. Box 4230

1421 South Manhattan Avenue
Fullerton 92631

Georgia

P.O. Box 105005

2000 South Park Place
Atlanta 30339

Hlinois
5201 Tollview Drive
Rolling Meadows 60008

New Jersey

W. 120 Century Road
Paramus 07652

in Canada

Hewlett-Packard (Canada) Ltd.

17500 South Service Road
Trans-Canada Highway
Kirkland, Quebec H9J 2M5

In France
Hewiett-Packard France
F-91947 Les Ulis Cedex
Orsay

In German Federal Republic
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berner Strasse 117

Postfach 560 140

D-6000 Frankfurt 56

In Great Britain
Hewlett-Packard Ltd.
King Street Lane
Winnersh, Wokingham
Berkshire RG11 5AR

In Other Enropean Countries
Switzerland

Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan

Case Postale 365

CH-1217 Meyrin

In All Other Locations
Hewlett-Packard Inter-Americas
3155 Porter Drive

Palo Alto, California 94304

