Instrument BASIC Users Handbook

Version 2.0

Agilent Technologies

04155-90150
December 2000

Notice
The information contained in this document is subject to change without notice.

Agilent Technologies Inc. shall not be liable for any errors contained in this document.
Agilent MAKES NO WARRANTIES OF ANY KIND WITH REGARD TO THIS
DOCUMENT, WHETHER EXPRESS OR IMPLIED. Agilent SPECIFICALLY DISCLAIMS
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Agilent shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the information in
this documnet.

Warrenty Information

A copy of the specific warranty terms applicable to your Agilent product and replacement
parts can be obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause of
DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this p.roduct are restricted. Additional
copies of the software can be made for security and backup purpose only. Resale of the
software in its present form or with alterations is expressly prohibited.

MS-DOS is a U.S. registered trademark of Microsoft Corporation.

Copyright © 1992, 2000 Agilent Technologies, Inc.

Printing History
December 2000 - First Edition

Handbook Organization

Welcome

This manual will introduce you to the HP Instrument BASIC programming language, provide
some helpful hints on getting the most use from it, and provide a general programming
reference. It is divided into three books, HP Instrument BASIC Programming Techniques, HP
Instrument BASIC Interfacing Techniques, and HP Instrument BASIC Language Reference.
The first two books provide some introductory material on programming and interfacing.
However, if you have no programming knowledge, you might find it helpful to study a
beginning-level programming book.

This manual assumes that you are familiar with the operation of HP Instrument BASIC’s
front-panel interface or keyboard and have read or reviewed the manual that describes the
operation of HP Instrument BASIC with your specific instrument.

HP Instrument BASIC is implemented as an “embedded controller”—that is, a computer
residing inside an instrument. Hence, all references in this manual to the “computer” also
refer to HP Instrument BASIC installed in an instrument.

What’s In This Handbook?

HP Instrument BASIC Programming Techniques contains explanations and programming
hints organized by concepts and topics. It is not a complete keyword reference. Instead it
covers programming concepts, showing how to use the HP Instrument BASIC language.

For explanations and hints regarding interfacing, see the HP Instrument BASIC Interfacing
Techniques book.

HP Instrument BASIC Language Reference contains a detailed keyword reference.

Handbook Organization 1

For HP BASIC Programmers

Many programmers already familiar with HP Series 200/300 BASIC will want to use the HP
Instrument BASIC manual set to look up keywords and find specifics about the way HP
Instrument BASIC is implemented. If this is your situation, you may want to refer to the
following instrument-specific manuals and sections as needed:

m The graphics section of your instrument-specific manual for information on using the display
for graphics and text program output.

m Your instrument-specific manual to learn how HP Instrument BASIC interfaces with the
host device, (if using an embedded controller) and its external GPIB port.

m Your instrument-specific manual for a description of how to transfer data between external
and internal programs, how to upload and download programs and how to control HP
Instrument BASIC programs from an external controller.

m “Keyword Guide to Porting” at the end of HP Instrument BASIC Programming Techniques
for a quick determination of what commands are implemented and how they relate to recent
versions of the corresponding HP Series 200/300 BASIC command.

Most importantly, you will find a complete command reference and a list of error messages in
the HP Instrument BASIC Language Reference. If you need to refresh your memory on any
other topics, consult the manuals on programming and interfacing techniques as needed.

2 Handbook Organization

Programming Techniques

Agilent Technologies

December 2000

Contents

1.

Manual Organization

Welcome Lo oo 1-1
What’s In This Manual 1-1
Overview of Chapterso 1-1
What’s Not in this Manual 1-2
Program Structure and Flow
Sequenceo e e e e e e e e e 2-1
Halting Program Execution 2-1
The END Statement 2-1
The STOP Statement 2-1
The PAUSE Statement 2-2
Simple Branching 0oL oL L Coe 2-2
Using GOTO o o o 00 o e e 2-2
Using GOSUB e e 2-2
Selection L L Lo e 2-3
Conditional Execution of One Segment 2-3
Prohibited Statementso L L. Ce e 2-4
Conditional Branching L. 2-4
Multiple-Line Conditional Segments 2-4
Choosing One of Two Segments 2-5
Choosing One of Many Segments e e e Coe e 2-5
Repetition oL s 2-7
Fixed Number of Iterations 2-7
Conditional Number of Iterations 2-8
Arbitrary Exit Points 2-8
Event-Initiated Branching C e e e e e Ce e 2-9
Typesof Events 2-9
Deactivating Events e e 2-10
Disabling Events 2-10
Chaining Programs e e e e e e 2-11
Using GET e e 2-11
Example of Chaining with GET 2-12
Program-to-Program Communications 2-12

Contents-1

3. Numeric Computation

Numeric Data Types e e e e e e e e e s e e e 3-1
INTEGER Data Type e e e e e 3-1
REAL Data Type . e e e e e e e e e e e 3-1

Declaring Variables00 3-1

Assigning Variables 0oL oL oL 0L 3-2
Implicit Type Conversions 3-2

Evaluating Scalar Expressions 3-3
The Hierarchyo 3-3
Operators . . . e e e e s e 3-5

Expressions as Pass Parameters e e e e e e e e e 3-5
Strings in Numeric Expressions 3-6
Step Functions . . . e e e e e e e e 3-6
Comparing REAL Numbers e e e e e e 3-6

Resident Numerical Functions 3-7
Arithmetic Functions L. 3-7
Exponential Functions, 3-7
Trigonometric Functions . . . e e e 3-8

Trigonometric Modes: Degrees and Ra,dla,ns e e e e e 3-8
Binary Functions 3-8
Limit Functionso 3-9
Rounding Functions, 3-9
Random Number Function 3-9
Time and Date Functions 3-9
Base Conversion Functions 3-10

General Functions, 3-10

4. Numeric Arrays

Dimensioning an Array L. ... oo 4-1
Some Examples of Arrays 4-2
Problems with Implicit Dimensioning 4-4

Finding Out the Dimensions of an Array 4-4

Using Individual Array Elements 4-5
Assigning an Individual Array Element 4-5
Extracting Single Values From Arrays 4-5

Filling Arrays . . . e e e e e e 4-5
Assigning Every Element in an Array the Same Value e e e e e 4-5
Using the READ Statement to Fill an Entire Array 4-6
Copying Entire Arrays into Other Arrays 4-6

Printing Arrays oL oL oL oL oo 4-7
Printing an Entire Array .. e e e e e e e 4-7
Examples of Formatting Arrays for Dlsplay e e e e e e e e 4-7

Passing Entire Arrayso 0oL 4-9

Copying Subarrays Lo 4-9
Subarray Specifier . . . e e e e e e e e e e e e 4-9
Copying an Array into a Subarray e e e e e s 4-11
Copying a Subarray into an Array . . e e e e e e 4-11
Copying a Subarray into Another Subarray e e e e e e e 4-12
Copying a Portion of an Array into Itself 4-13
Rules for Copying Subarrays 4-14

Redimensioning Arrays oL oo 4-14

Contents-2

5.

String Manipulation
String Storage L.
String Arrays L.
Evaluating Expressions Containing Strings
Evaluation Hierarchy
String Concatenation
Relational Operations
Substrings
Single-Subscript Substrings L.
Double-Subscript Substrings
Special Considerations
String-Related Functions G e
Current String Length
Substring Position L.
String-to-Numeric Conversion
Numeric-to-String Conversion
String Functions L.
String Reverse
String Repeat
Trimming a String L.
Case Conversion

Subprograms and User-Defined Functions

Benefits of Subprograms L.
A Closer Look at Subprograms
Calling and Executing a Subprogram
Differences Between Subprograms and Subroutmes
Subprogram Location

Subprogram and User-Defined Function Names

Difference Between a User-Defined Function and a Subprogram ..

REAL Precision Functions and String Functions
Program/Subprogram Communication
Parameter Lists
Formal Parameter Lists
Pass Parameter Lists
Passing By Value vs. Passing By Reference
Example Pass and Corresponding Formal Parameter Lists
COM Blocks
COM vs. Pass Parameters
Hints for Using COM Blocks
Context Switching e e e
Variable Initialization
Subprograms and Softkeys
Subprograms and the RECOVER Statement
Editing Subprograms
Inserting Subprograms e e e e e
Loading Subprograms
Loading Subprograms One at a Time
Loading Several Subprograms at Once
Loading Subprograms Prior to Execution

...... 5-2
...... 5-2
e e 5-3
Ce e 5-3
...... 5-3
...... 5-3
...... 5-4
e 5-4
e 5-5
...... 5-6
...... 5-6
e 5-6
e 5-6
...... 5-7
...... 5-7
...... 5-7
...... 5-8
e 5-8
Ce e 5-8
e 5-8
...... 5-9

e 6-1
...... 6-1
S 6-1
e e 6-2
...... 6-2
e 6-2
e 6-2
...... 6-3
e 6-4
...... 6-4
e e 6-4
e 6-5
...... 6-5
Coe e 6-6
...... 6-7
...... 6-7
...... 6-8
e e 6-9
e 6-10
e e 6-10
...... 6-10
e 6-10
e e e e 6-10
...... 6-11
...... 6-11
...... 6-11
e e 6-12

Contents-3

Deleting Subprograms e e e e
Merging Subprograms
SUBEND and FNEND
Recursion e e e e e

7. Data Storage and Retrieval

Storing Data in Programs
Storing Data in Variables -
Data Input by the User
Using DATA and READ Statements

Examples o
Storage and Retrieval of Arrays
Moving the Data Pointer

File Input and Output (I/O)
Brief Comparison of Available File Types
Creating Data Files
Overview of FileI/O
A Closer Look at General File Access Ce e

Opening an I/O Path
Assigning Attributes00 L0
Closing I/O Paths . . . e e e C e e e

A Closer Look at Using ASCII Flles e e e e e e
Example of ASCII File I/O
Data Representations in ASCII Files
Formatted OUTPUT with ASCII Files

Using VALYo
Formatted ENTER with ASCII Files

A Closer Look at BDAT and HP-UX or DOS Files
Data Representations Available e e e
Random vs. Serial Access
Data Representations Used in BDAT Files e e e e

BDAT Internal Representations (FORMAT OFF)
ASCII and Custom Data Representations
Data Representations with HP-UX and DOS Files Ce e
BDAT File System Sector
Defined Records
Specifying Record Size (BDAT Files Only)
Choosing a Record Length (BDAT Files Only)
Writing Data to BDAT, HP-UX and DOS Files Ce e
Sequential (Serial) OUTPUT
Random OUTPUT
Reading Data from BDAT, HP-UX and DOS Flles e e
Reading String Data from aFile e e e e e e
Serial ENTER e e e e e e
Random ENTER e e e
Accessing Files with Single-Byte Records
Accessing Directories . . . e e
Sending Catalogs to External P11nters

Contents-4

6-12
6-12
6-13
6-13

7-1
7-1

7-2
7-3

7-4
7-5

7-6
7-7

7-8

7-9
7-10
7-11
7-11
7-12
7-13
7-15
7-15
7-16
7-16
7-16
7-16
7-17
7-18
7-18
7-19
7-19
7-19
7-20
7-21
7-22
7-22
7-23
7-23
7-23
7-24
7-25
7-26
7-26

10.

Using a Printer

Selecting the System Printer 8-1
Device Selectors 8-1
Using Device Selectors to Select Printers G 8-2

Using Control Characters and Escape Sequences Ce e 8-2
Control Characters 8-2
Escape-Code Sequences 8-3

Formatted Printing - 8-3
Using Images, Coe e 8-4

Numeric Image Specifiers 8-5
String Image Specifiers 8-6
Additional Image Specifiers Ce e 8-7

Special Considerations - 8-8

Handling Errors

Anticipating Operator Errors Coe e 9-1
Boundary Conditions e e e 9-1

Trapping Errors L. Coe 9-2
ON/OFFERROR e e e 9-2

Choosing a Branch Type Coe 9-2
ON ERROR Execution at Run-Time 9-2
ON ERROR Priority Ce 9-2
Disabling Error Trapping (OFF ERROR) e e 9-3
ERRN, ERRLN, ERRL, ERRDS, ERRM$ Ce 9-3
ONERROR GOSUB 9-4
ON ERROR GOTO 9-4
ON ERROR CALL e e 9-5
Using ERRLN and ERRL in Subprograms Coe 9-5
ON ERROR RECOVER 9-6

Keyword Guide to Porting

Index

Contents-5

Manual Organization

Welcome

This purpose of this manual is to introduce you to the HP Instrument BASIC programming
language and to provide some helpful hints on getting the most use from it. This manual
assumes that you are familiar with the operation of HP Instrument BASIC’s front-panel
interface or keyboard and have read or reviewed the manual that came with your instrument
that describes operation of HP Instrument BASIC with your specific instrument. Most topics
concerning running, recording, loading, saving and debugging programs are covered there.

This manual serves as a general language reference and programming tutorial for those with
a rudimentary knowledge of programming in BASIC or another language. If you have no
programming knowledge, you may find it helpful to study a beginning level programming
book. However, some beginners may find that they are able to start in this manual by
concentrating on the fundamentals presented in the first few chapters.

If you are a programming expert or are already familiar with the BASIC language of other HP
computers, you may start faster by going directly to the HP Instrument BASIC Language
Reference and checking the keywords you normally use.

HP Instrument BASIC is implemented as an “embedded controller”—that is, a computer
residing inside an instrument. Hence, all references in this manual to the “computer” also
refer to HP Instrument BASIC installed in an instrument.

What’s In This Manual

This manual contains explanations and programming hints organized by concepts and topics.
It is not an exhaustive keyword reference. Instead it covers programming concepts, showing
how to use the HP Instrument BASIC language. HP Instrument BASIC Language Reference
contains a detailed keyword reference. For explanations and hints regarding interfacing, see
the HP Instrument BASIC Interfacing Techniques book.

The following section gives an overview of the chapters in this manual.

Overview of Chapters

Chapter Topics

Chapter 2: Program This chapter describes program flow and how to control it.
Structure and Flow

Chapter 3: Numeric This chapter covers mathematical operations and the use of
Computation numeric variables.

Chapter 4: Numeric Arrays This chapter covers numeric array operations.

Manual Organization 1-1

Chapter 5: String
Manipulation

Chdpter 6: Subprograms and
User-Defined Functions

Chapter 7: Data Storage and
Retrieval

Chapter 8: Using a Printer
Chapter 9: Handling Errors

Chapter 10: Keyword Guide
to Porting

What’s Not in this Manual

This chapter explains the techniques used for the processing of
characters, words, and text in your program.

This chapter describes using alternate contexts (or
environments), available as user-defined functions or
subprograms.

This chapter shows many of the alternatives available for
storing the data that is intended as program input or created
as program output.

This chapter tells how to use an external printer, and how to
use formatted printing for both printer and CRT output.

This chapter discusses techniques for intercepting errors that
might occur while a program is running,.

This chapter summarizes the HP Instrument BASIC keywords
by categories, with differences between HP Instrument BASIC
and HP Series 200/300 BASIC.

This is a manual of programming techniques, helpful hints, and explanations of capabilities.
It is not a rigorous tutorial of the HP Instrument BASIC language. Any statements
appropriate to the topic being discussed are included in each chapter, whether they have
been previously introduced or not. Since most users will not read this manual from cover to
cover, the approach chosen should not present any significant problems. In cases where you
have difficulty getting the meaning of certain items from context, consult the Index to find

additional information.

1-2 Manual Organization

Program Structure and Flow

There are four general categories of program flow. These are:
m Sequence

m Selection (conditional execution)

m Repetition

m Event-Initiated Branching

This chapter tells you how to use these types of program flow.

Sequence

The simplest form of sequence is linear flow. Linear flow allows many program lines
to be grouped together to perform a specific task in a predictable manner. Keep these
characteristics of linear flow in mind:

m Linear flow involves no decision making. Unless there is an error condition, the program
lines will always be executed in exactly the same order.

m Linear flow is the default mode of program execution. Unless you include a statement that
stops or alters program flow, the computer will always execute the next higher-numbered
line after finishing the line it is on.

Halting Program Execution
There are three statements that can halt program flow: END, STOP, and PAUSE.

The END Statement

The primary purpose of the END statement is to mark the end of the main program. When
an END statement is executed, program flow stops and the program moves into the stopped
(non-continuable) state.

The STOP Statement

The STOP statement acts like an END statement in that it stops program flow. You can use
a STOP statement to halt program flow at some point other than the end of the program.
When a STOP statement is executed, program flow stops and the program moves into the
stopped (non-continuable) state.

Program Structure and Flow 2-1

The PAUSE Statement

Use the PAUSE statement to temporarily halt program execution, leaving the program
variables intact. Execution halts until instructed to continue by the operator.

Following is an example of the use of PAUSE:

100 Radius=5

110 Circum=PI*2*Radius
120 PRINT INT(Circum)
130 PAUSE

140 Area=PI*Radius~2
150 PRINT INT(Area)
160 END

When the program runs, the computer prints 31 on the CRT. Then when you continue, the
computer prints 78 on the CRT. One common use for the PAUSE statement is in program
troubleshooting and debugging. Another use for PAUSE is to allow time for the computer
user to read messages or follow instructions.

Simple Branching

An alternative to linear flow is branching. Branching is simply a redirection of sequential flow.
The simplest form of branching uses the statements GOTO and GOSUB. Both statements
cause an unconditional branch to a specified location in a program.

Using GOTO

The GOTO statement causes the program to branch to either a line number or the line label.
Following are examples of the GOTO statement:

30 REM GOTO branches here
100 GOTO 30
150 GOTO Label_xyz

300 Label_xyz:...

Using GOSUB

The GOSUB statement transfers program execution to a subroutine. A subroutine is simply a
segment of a program that is entered with a GOSUB and exited with a RETURN. There are
no parameters passed and no local variables are allowed in the subroutine.

The GOSUB is very useful in structuring and controlling programs. It is similar to a
procedure call in that program flow automatically returns to the line following the GOSUB
statement. The GOSUB statement can specify either the line label or the line number of the
desired subroutine entry point. The following are examples of GOSUB statements:

2-2 Program Structure and Flow

100 GOSUB 1000
200 GOSUB Label_abc

1000 REM subroutine begins here
1010 Label_abc:

1500 RETURN

Remember that each time a subroutine is called by a GOSUB, control returns to the line
immediately following the GOSUB when the RETURN is encountered in the subroutine. Note
that if you omit the RETURN statement in a subroutine the program will continue executing
beyond the point at which you expected it to return, until it encounters another RETURN or
one of the halting statements (PAUSE, STOP, or END).

Selection

The heart of a computer’s decision-making power is the category of program flow called
selection, or conditional execution. As the name implies, a certain segment of the program
either is or is not executed according to the results of a test or condition. This section
presents the conditional-execution statements according to various applications. The following
is a summary of these groupings.

m Conditional execution of one segment.
m Conditionally choosing one of two segments.

m Conditionally choosing one of many segments.

Conditional Execution of One Segment

The basic decision to execute or not execute a program segment is made by the IF ... THEN

statement. This statement includes a numeric expression that is evaluated as being either true
or false. If true (non-zero), the conditional segment is executed. If false (zero), the conditional
segment is bypassed. Note that any valid numeric expression is allowed for the test expression.

The conditional segment can be either a single HP Instrument BASIC statement or a program
segment containing any number of statements. The first example shows conditional execution
of a single statement.

100 IF Ph>7.7 THEN PRINT "Ph Value has been exceeded!"

Notice the test (Ph>7.7) and the conditional statement (Print “Ph Value ... ”) that appear
on either side of the keyword THEN. When the computer executes this program line, it
evaluates the expression Ph>7.7. If the value contained in the variable Ph is 7.7 or less, the
expression evaluates to 0 (false), and the line is exited. If the value contained in the variable
Ph is greater than 7.7, the expression evaluates as 1 (true), and the PRINT statement is
executed.

Program Structure and Flow 2-3

Prqhibited Statements

Certain statements are not allowed as the conditional statement in a single-line IF ... THEN.
The following statements are not allowed in a single-line IF ... THEN.

Keywords used in the declaration of variables:

COM DIM INTEGER REAL

Keywords that define context boundaries:

DEF FN FNEND SUB SUBEND END

Keywords that define program structures:

CASE END LOOP FOR REPEAT
CASE ELSE END SELECT IF SELECT
ELSE END WHILE LOOP UNTIL
END IF EXIT IF NEXT WHILE

Keywords used to identify lines that are literals:

DATA REM

Conditional Branching

Powerful control structures can be developed by using branching statements in an
IF ... THEN. For example:

110 TIF Free_space<100 THEN GOSUB Expand_file
120 ! The line after is always executed

This statement checks the value of a variable called Free_space, and executes a file-expansion
subroutine if the value tested is not large enough. One important feature of this structure

is that the program flow is essentially linear, except for the conditional “side trip” to a
subroutine and back.

The conditional GOTO is such a commonly used technique that the computer allows a special
case of syntax to specify it. Assuming that line number 200 is labeled “Start”, the following
statements will all cause a branch to line 200 if X is equal to 3.

IF X=3 THEN GOTO 200
IF X=3 THEN GOTO Start
IF X=3 THEN 200

IF X=3 THEN Start

When a line number or line label is specified immediately after THEN, the computer assumes
a GOTO statement for that line. This improves the readability of programs.
Multiple-Line Conditional Segments

If the conditional program segment requires more than one statement, a slightly different
structure is used. For example:

2-4 Program Structure and Flow

100 IF Ph>7.7 THEN

110 PRINT "The value of Ph has been exceeded!"
120 PRINT "Final Ph =";Ph

130 GOSUB Next_tube

140 END IF

150 ! Program continues here

If Ph is less than or equal to 7.7 the program skips all of the statements between the
IF..THEN and the END IF statements and continues with the line following the END IF
statement. If Ph is greater than 7.7, the computer executes the three statements between the
IF ... THEN and END IF statements. Program flow then continues at line 150. Any number
of program lines can be placed between a THEN and an END IF statement including other
IF..END IF statements. Including other IF..END IF statements is called nesting or nested
constructs. For example:

1000 IF Flag THEN
1010 IF End_of_page THEN

1020 FOR I=1 TO Skip_length
1030 PRINT

1040 Lines=Lines+1

1050 NEXT I

1060 END IF

1070 END IF

Choosing One of Two Segments

Often you want a program flow that passes through only one of two paths depending upon a
condition. This type of decision is shown in the following diagram:

Flag = 1 Flag = 0
I
| 400 IF Flag THEN —-
|
I

410 R=R+2 I

420 Area=PI*R"2 |

--- 430 ELSE <=
I 440 Width=Width+1 |
| 450 Length=Length+1 I
| 460 Area=Width*Length |
I 470 END IF !
--> 480 Print "Area ='";Area |
| 490 ! Program continues |
v v

HP Instrument BASIC has an IF ... THEN ... ELSE structure that makes the one-of-two
choice easy and readable.

Choosing One of Many Segments

The SELECT ... END SELECT is similar to the IF ... THEN ... ELSE ... END IF
construct, but allows the definition of several conditional program segments. Only one
segment executes each time the construct is entered. Each segment starts after a CASE or
CASE ELSE statement, and ends when the next program line is a CASE, CASE ELSE, or
END SELECT statement.

Consider for example, the processing of readings from a voltmeter. Readings have been
entered that contain a function code. These function codes identify the type of reading and
are shown in the following table:

Program Structure and Flow 2-5

Function Code Type of Reading
DV DC Volts
AV AC Volts
DI DC Current
Al AC Current
oM Ohms

This example shows the use of the SELECT construct. The function code is contained in the
variable Funct$. The rules about illegal statements and proper nesting are the same as those
for the IF ... THEN statement.

2000 SELECT Funct$
2010 CASE "DV"

2020 !

2030 ! Processing for DC Volts
2040 !

2050 CASE "AV"

2060 !

2070 ! Processing for AC Volts
2080 !

2090 CASE "DI"

2100 !

2110 ! Processing for DC Amps
2120 !

2130 CASE "AI"

2140 !

2150 ! Processing for AC Amps
2160 !

2170 CASE "OM"

2180 !

2190 ! Processing for Ohms
2200 !

2210 CASE ELSE

2220 BEEP

2230 PRINT "INVALID READING"
2240 END SELECT
2250 ! Program execution continues here

Notice that the SELECT construct starts with a SELECT statement specifying the variable
to be tested and ends with an END SELECT statement. The anticipated values are placed
in CASE statements. Although this example shows a string tested against simple literals,
the SELECT statement works for numeric or string variables or expressions. The CASE
statements can contain constants, variables, expressions, comparison operators, or a range
specification. The anticipated values, or match items, must be of the same type (numeric or
string) as the tested variable.

The CASE ELSE statement is optional. 1t defines a program segment that is executed if the
tested variable does not match any of the cases. If CASE ELSE is not included and no match
is found, program execution simply continues with the line following END SELECT.

2-6 Program Structure and Flow

A CASE statement can also specify multiple matches by separating them with commas, as
follows:

CASE -1,1,3T0 7,>15

If an error occurs when the computer tries to evaluate an expression in a CASE statement,
the error is reported for the line containing the SELECT statement. An error message
pointing to a SELECT statement actually means that there was an error in that line or in one
of the CASE statements following it.

Repetition

There are four structures available for creating repetition. The FOR ... NEXT structure
repeats a program segment a predetermined number of times. Two other structures,
REPEAT ... UNTIL and WHILE ... END WHILE, repeat a program segment indefinitely,
waiting for a specified condition to occur. The LOOP ... EXIT IF structure is used to create
an iterative structure that allows multiple exit points at arbitrary locations.

Fixed Number of Iterations

The general concept of repetitive program flow can be shown with the FOR ... NEXT
structure. The FOR statement marks the beginning of the repeated segment and establishes
the number of repetitions. The NEXT statement marks the end of the repeated segment.
This structure uses a numeric variable as a loop counter. This variable is available for use
within the loop, if desired. The following example shows the basic elements of a FOR ...
NEXT loop.

10 FOR X=10 TO 0 STEP -1

20 BEEP
30 PRINT X
40 WAIT 1
50 NEXT X
60 END

In this example, X is the loop counter, 10 is the starting value, 0 is the final value, -1 is the
step size and the repeated segment is composed of lines 20 through 50. Note that if the step
counter is not specified, a default value of 1 is assumed.

When all variables involved are integers, the number of iterations can be predicted using the
following formula:

INT((Step_Size + Final_Value — Starting_Value)/(Step_Size))

Thus, the number of iterations in the example above is 11.

Program Structure and Flow 2-7

Conditional Number of Iterations

Some applications need a loop that is executed until a certain condition is true regardless of
the number of loop iterations required. The REPEAT ... UNTIL and the WHILE ... END

WHILE structures provide this flexibility.

The REPEAT loop and the WHILE loop differ only in their location of the loop exit test.
The REPEAT loop has its test at the end of the loop. Therefore, the loop will always be
executed once because the condition is not tested until the end of the loop. The WHILE
loop has its test at the beginning of the loop, so the test is made before the loop is entered.
Therefore, it is possible for a WHILE loop to be skipped entirely.

For example, suppose you wat to print successive powers of two, but want to stop once the
value is greater than 1000. Consider the following examples programs:

REPEAT loop

10 X=2

20 PRINT X;

30 REPEAT

40 X=X*2

50 PRINT X;
60 UNTIL X>1000
70 END

WHILE loop

10 X=2

20 PRINT X;

30 WHILE X<1000
40 X=X*2

50 PRINT X;
60 END WHILE

70 END

If you ran either of these programs, the results would be:
2 4 8 16 32 64 256 512 1024
However, if you replace line 10 in each program with
10 X=1024
then the repeat loop would produce
1024 2048
whereas the WHILE loop would produce
1024

Arbitrary Exit Points

The looping structures discussed so far allow only one exit point. There are times when this is
not the desired program flow. The LOOP..EXIT IF construct allows you to have any number
of conditional exits points. Also, the EXIT IF statement can be at the top or bottom of the
loop. This means that the LOOP structure can serve the same purposes as REPEAT ...
UNTIL and WHILE ... END WHILE.

The EXIT IF statement must appear at the same nesting level as the LOOP statement for a
given loop. This is best shown with an example. In the “WRONG” example, the EXIT IF

2-8 Program Structure and Flow

statement has been nested one level deeper than the LOOP statement because it was placed
in an IF ... THEN structure.

WRONG:

600 LOOP
610 Test=RND-.5
620 IF Test<0 THEN

630 GOSUB Negative
640 ELSE

650 EXIT IF Test>.4
660 GOSUB Positive

670 END IF
680 END LOOP

RIGHT:

Here is the proper structure to use.

600 LOOP

610 Test=RND-.5
620 EXIT IF Test>.4
630 IF Test<0 THEN

640 GOSUB Negative
650 ELSE
660 GOSUB Positive

670 END IF
680 END LOOP

Event-Initiated Branching

HP Instrument BASIC provides a tool called event-initiated branching that uses interrupts

to redirect program flow. Each time the program finishes a line, the computer executes an
“event-checking” routine. If an enabled event has occurred, then this “event-checking” routine
causes the program to branch to a specified statement.

Types of Events

Event-initiated branching is established by the ON..event statements. Here is a list of the
statements:

ON ERROR an interrupt generated by a run-time error
ON INTR an interrupt generated by an an interface
ON KEY an interrupt generated by pressing a softkey

ON TIMEOUT an interrupt generated when an interface or device has taken longer than a
specified time to respond to a data-transfer handshake

Program Structure and Flow 2-9

The following example demonstrates an event-initiated branch using the ON KEY statement.

100 ON KEY 1 LABEL "Inc'" GOSUB Plus
110 ON KEY 5 LABEL "Dec" GOSUB Minus
120 ON KEY 8 LABEL "Abort'" GOTO Bye

130 !

140 Spin: DISP X
150 GOTO Spin
160 !

170 Plus: X=X+1
180 RETURN

190 !
200 Minus: X=X-1
210 RETURN

220 Bye: END

The ON KEY statements are executed only once at the start of the program. Once defined,
these event-initiated branches remain in effect for the rest of the program.

The program segment labeled “Spin” is an infinite loop. If it weren’t for interrupts,

this program couldn’t do anything except display a zero. However, there is an implied

“IF ... THEN” at the end of each program line due to the ON KEY action. As a result of
softkey presses, either the “Plus” or the “Minus” subroutines are selected or the program
branches to the END statement and terminates. If no softkey is pressed, the computer
continues to display the value of X.

The following section of “pseudo-code” shows what the program flow of the “Spin” segment
actually looks like to the computer.
Spin: display X
if Keyl then gosub Plus
if Key5 then gosub Minus
if Key9 then goto Bye
goto Spin

The labels are arranged to correspond to the layout of the softkeys. The labels are displayed
when the softkeys are active and are not displayed when the softkeys are not active. Any

label that your program has not defined is blank. The label areas are defined in the ON KEY
statement by using the keyword LABEL followed by a string.

Deactivating Events

All the “ON-event” statements have a corresponding “OFF-event” statement. This is one
way to deactivate an interrupt source. For example OFF KEY deactivates interrupts from the
softkeys. Pressing a softkey while deactivated does nothing.

Disabling Events

It is also possible to temporarily disable an event-initiated branch. This is done when an
active event is desired in a process, but there is a special section of the program that you
don’t want to be interrupted. Since it is impossible to predict when an external event will
occur, the special section of code can be “protected” with a DISABLE statement.

2-10 Program Structure and Flow

100 ON KEY 9 LABEL " ABORT" GOTO Leave
110 !

120 Print_line: !

130 DISABLE

140 FOR I=1 TO 10

150 PRINT I;

160 WAIT .3

170 NEXT I

180 PRINT

190 ENABLE

200 GOTO Print_line
210 !

220 Leave: END

This example shows a DISABLE and ENABLE statement used to “frame” the Print_line
segment of the program. The “ABORT” key is active during the entire program, but the
branch to exit the routine will not be taken until an entire line is printed. The operator can
press the “ABORT” key at any time. The key press will be logged, or remembered, by the
computer. Then when the ENABLE statement is executed, the event-initiated branch is
taken.

Chaining Programs

With HP Instrument BASIC, it is also possible to “chain” programs together; that is, one
program may be executed, which, in turn, loads and runs another. This method is often used
when you have several large program segments that will not all fit into memory at the same
time. This section describes program chaining methods.

Using GET

The GET command brings in programs or program segments from an ASCII file, with the
options of appending them to an existing program and/or beginning program execution at a
specified line.

The following statement:
GET "George",100

first deletes all program lines from 100 to the end of the program, then appends the lines in
the file named “George” to the lines that remained at the beginning of the program. The
program lines in file “George” would be renumbered to start with line 100.

GET can also specify where program execution begins. This is done by specifying two line
identifiers. For example:

100 GET "RATES",Append_line,Run_line
specifies that:

1. Existing program lines from the line label “Append_line” to the end of the program are to
be deleted.

2. Program lines in the file named “RATES” are to be appended to the current program,
beginning at the line labeled “Append_line”; lines of “RATES” are renumbered if
necessary.

Program Structure and Flow 2-11

3. Program execution is to resume at the line labeled “Run_line”.

Although any combination of line identifiers is allowed, the line specified as the start of
execution must be in the main program segment (not in a SUB or user-defined function).
Execution will not begin if there was an error during the GET operation.

Example of Chaining with GET

A large program can be divided into smaller segments that are run separately by using GET.
The following example shows a technique for implementing this method.

First Program Segment:

10 COM Ohms,Amps,Volts
20 Ohms=120

30 Volts=240

40 Amps=Volts/Ohms

50 GET "Wattage"

60 END

Program Segment in File Named “Wattage”:

10 COM Ohms,Amps,Volts

20 Watts=Amps*Volts

30 PRINT "Resistance (in ohms)
40 PRINT "Power usage (in watts)
50 END

'; Ohms
";Watts

Lines 10 through 40 of the first program are executed in normal, serial fashion. Upon reaching
line 50, the system deletes all program lines of the program, then GETs the lines of the
“Wattage” program. Note that since they have similar COM declarations, the COM variables
are preserved and used by the second program. This feature is very handy to have while
chaining programs.

Program-to-Program Communications

As shown in the preceding example, if chained programs are to communicate with one
another, you can place values to be communicated in COM variables. The only restriction
is that these COM declarations must match ezxactly, or the existing COM will be cleared
when the chained program is loaded. For a description of using COM declarations, see the
“Subprograms” chapter of this manual.

One important point to note is the use of the COM statement. The COM statement places
variables in a section of memory that is preserved during the GET operation. Since the
program saved in the file named “Wattage” also has a COM statement that contains three
scalar REAL variables, the COM is preserved (it matches the COM declaration of the
“Wattage” program being appended with GET).

If the program segments did not contain matching COM declarations, all variables in the
mismatched COM statements would be destroyed by the “pre-run” that the system performs
after appending the new lines but before running the first program line.

2-12 Program Structure and Flow

3

Numeric Computation

Numeric computations deal exclusively with numeric values. Adding two numbers and finding
a sine or a logarithm are all numeric operations, but converting bases and converting a
number to a string or a string to a number are not.

Numeric Data Types

There are two numeric data types available in HP Instrument BASIC: INTEGER, and REAL.
Any numeric variable not declared INTEGER is a REAL variable. This section covers these
two numeric data types.

INTEGER Data Type
An INTEGER variable can have any whole-number value from —32 768 through +32 767.

REAL Data Type

A REAL variable can be any value from :—1.797 693 134 862 315 x 103°® through
1.797 693 134 862 315 x 1038, The smallest non-zero REAL value allowed is approximately
+ 2.225 073 858 507 202 x 10398,

A REAL can also have the value of zero.

REAL and INTEGER variables may be declared as arrays.

Declaring Variables

You can declare variables to be of a particular type by using the INTEGER and REAL
statements. For example, the statements:

INTEGER I, J, Days(5), Weeks(5:17)
REAL X, Y, Voltage(4), Hours(5,8:13)

each declare two scalar and two array variables. A scalar variable represents a single value.
An array is a subscripted variable that contains multiple values accessed by subscripts. You
can specify both the lower and upper bounds of an array or specify the upper bound only, and
use the default lower bound of 0. You can also declare an array using the DIM statement.

DIM R(4,5)

Numeric Computation 3-1

Assigning Variables

The most fundamental numeric operation is the assignment operation, achieved with the LET
statement. The LET statement may be used with or without the keyword LET. Thus, the
following statements are equivalent:

LET A=A+ 1
A=A+1

Implicit Type Conversions

The computer will automatically convert between REAL and INTEGER values in assignment
statements and when parameters are passed by value in function and subprogram calls. When
a value is assigned to a variable, the value is converted to the data type of that variable.

For example, the following program shows a REAL value being converted to an INTEGER:

100 REAL Real_var

110 INTEGER Integer_var

120 Real_var = 2.34

130 Integer_var = Real_var ! Type conversion occurs here.
140 DISP Real_var, Integer_var

150 END

Executing this program returns the following result:
2.34 2

When parameters are passed by value, the type conversion is from the data type of the calling
statement’s parameter to the data type of the subprogram’s parameter. When parameters are
passed by reference, the type conversion is not made and a TYPE MISMATCH error will be
reported if the calling parameter and the subprogram parameters are different types.

When a REAL number is converted to an INTEGER, the fractional part is lost and the
REAL number is rounded to the closest INTEGER value. Converting the number back to a
REAL will not restore the fractional part. Also, because of the differences in ranges between
these two data types, not all REAL values can be rounded into an equivalent INTEGER
value. This problem can generate INTEGER OVERFLOW errors.

The rounding problem does not generate an execution error. The range problem can generate
an execution error, and you should protect yourself from this possibility.

The following program segment shows a method to protect against INTEGER overflow errors
(note that the variable X is REAL and Y is INTEGER):

200 IF (-32768<=X) AND (X<=32767) THEN

210 Y=X

220 ELSE

230 GOSUB Out_of_range
240 END IF

It is possible to achieve the same effect using MAX and MIN functions:
200 Y=MAX(MIN(x,32767),-32768)

Both these methods avoid the overflow errors, but only the first includes the fact that
the values were originally out of range. If out-of-range is a meaningful condition, an error
handling trap is more appropriate.

3-2 Numeric Computation

Evaluating Scalar Expressions
This section covers the following topics as they relate to evaluating scalar expressions.
m Hierarchy of expression evaluation

m HP Instrument BASIC operators: monadic, dyadic, and relational

The Hierarchy

If you look at the expression 24+4/2+6, it can be interpreted several ways:
m 2+(4/2)46 = 10

m (2+4)/246 =9

m 2+4/(246) = 2.5

m (2+4)/(246) = .75

To eliminate this ambiguity HP Instrument BASIC uses a hierarchy for evaluating expressions.
In order to understand how HP Instrument BASIC evaluates these expressions, let’s examine
the valid elements in an expression and the evaluation hierarchy (the order of evaluation of the
elements).

Six items can appear in a numeric expression:

m Operators (+, —, etc.)—modify other elements of the expression.

m Constants (7.5, 10, etc.)—represent literal, non-changing numeric values.
m Variables (Amount, X_coord, etc.)—represent changeable numeric values.

m Intrinsic functions (SQRT, DIV, etc.)—return a value that replaces them in the evaluation
of the expression.

m User-defined functions (FNMy_func, FNReturn_val, etc.)—also return a value that replaces
them in the evaluation of the expression.

m Parentheses—are used to modify the evaluation hierarchy.

Numeric Computation 3-3

The following table defines the hierarchy used by the computer in evaluating numeric
expressions.

Math Hierarchy

Precedence Operator

Highest Parentheses; they may be used to force any order of operation
Functions, both user-defined and intrinsic

Exponentiation: "

Multiplication and division: * / MOD DIV MODULO
Addition, subtraction, monadic plus and minus: + —
Relational Operators: = <> < > <= >=

NOT

AND

Lowest OR, EXOR

When an expression is being evaluated it is read from left to right and operations are
performed as encountered, unless a higher precedence operation is found immediately to
the right of the operation encountered, or unless the hierarchy is modified by parentheses.
If HP Instrument BASIC cannot deal immediately with the operation, it is stacked, and the
evaluator continues to read until it encounters an operation it can perform. It is easier to
understand if you see an example of how an expression is actually evaluated.

The following expression is complex enough to demonstrate most of what goes on in
expression evaluation.

A = 5+3%(4+2) /SIN(X) +X* (1>X) +FNNeg1* (X<5 AND X>0)

To evaluate this expression, it is necessary to have some historical data. We will assume that
DEG has been executed earlier, that X= 90, and that FNNeg1 returns -1. Evaluation proceeds
as follows:

3-4 Numeric Computation

5+3%(4+2) /SIN(X)+X*(1>X) +FNNeg1*(X<5 AND X>0)
5+3%6/SIN(X) +X* (1>X) +FNNeg1*(X<5 AND X>0)
5+18/SIN(X)+X*(1>X)+FNNeg1*(X<5 AND X>0)
5+18/1+X*(1>X)+FNNeg1#(X<5 AND X>0)
5+18+X* (1>X) +FNNeg1* (X<5 AND X>0)

23+X* (1>X) +FNNeg1# (X<5 AND X>0)
23+X*0+FNNeg1*(X<5 AND X>0)
23+0+FNNeg1#(X<5 AND X>0)

23+FNNeg1*(X<5 AND X>0)

23+-1%(X<5 AND X>0)

23+-1%(0 AND X>0)

23+-1%(0 AND 1)

23+-1%0

23+0

23

Operators
There are three types of operators in HP Instrument BASIC: monadic, dyadic, and relational.

m A monadic operator performs its operation on the expression immediately to its right. + -
NOT

m A dyadic operator performs its operation on the two values it is between. The operators are
as follows: ~, *, /, MOD, DIV, +, -, =, <>, <, >, <=, >=, AND, OR, and EXOR.

m A relational operator returns a 1 (true) or a 0 (false) based on the result of a relational test
of the operands it separates. The relational operators are a subset of the dyadic operators
that are considered to produce Boolean results. These operators are as follows: <, >, <=,
>=, =, and <>.

While the use of most operators is obvious from the descriptions in the language reference,
some of the operators have uses and side effects that are not always apparent.

Expressions as Pass Parameters

All numeric expressions are passed by value to subprograms. Thus, 5+X is obviously passed
by value. Not quite so obviously, +X is also passed by value. The monadic operator makes it
an expression.

For more information on pass parameters, read the chapter entitled “Subprograms and
User-Defined Functions.”

Numeric Computation 3-5

Strings in Numeric Expressions

String expressions can be directly included in numeric expressions if they are separated by
relational operators. The relational operators always yield Boolean results, and Boolean
results are numeric values in HP Instrument BASIC. For example:

110 Day_number=1*(Day$="Sun")+2*(Day$="Mon")

Executing the program line above would result in Day_number being equal to 1 if Day$ equals
“Sun” and 2 if Day$ equals "Mon" (or 0 otherwise).

Step Functions

The comparison operators are useful for conditional branching (IF ... THEN statements), but
are also valuable for creating numeric expressions representing step functions. For example,
suppose you want to output certain values depending on the value, or range of values of a
single variable. This is shown as follows:

m If variable < 0 then output =0
m If 0 < variable < 1 then output equals the square root of (A% + B2).
m If variable > 1 then output = 15

It is possible to generate the required response through a series of IF ... THEN statements,
but it can also be done with the following expression (where X is the variable and Y is the
output):

Y=(X<0)*0+(X>=0 AND X<1)#* SQR(A"2+B"2)+(X>=1)*15

The Boolean expressions each return a 1 or 0, which is then multiplied by the accompanying
expression. Expressions not matching the selection return 0, and are not included in the
result. The value assigned to the variable (X) before the expression is evaluated determines
the computation placed in the result.

Comparing REAL Numbers

When you compare INTEGER numbers, no special precautions are necessary since these
values are represented exactly. However, when you compare REAL numbers, especially those
that are the results of calculations and functions, it is possible to run into problems due to
rounding. For example, consider the use of comparison operators in IF ... THEN statements
to check for equality in any situation resembling the following:

100 DEG

110 A=25.3765477
120 IF SIN(A)“"2+C0S(A)"2=1.0 THEN

130 PRINT "Equal"

140 ELSE

150 PRINT "Not Equal"
160 END IF

You will find that the equality test fails due to rounding errors. Irrational numbers and most
repeating decimals cannot be represented exactly in any finite machine, and most rational
decimal numbers with fractional parts cannot be represented exactly with binary numbers,
which HP Instrument BASIC uses internally.

3-6 Numeric Computation

Resident Numerical Functions

The resident functions are the functions that are part of the HP Instrument BASIC language.
Numerous functions are included to make mathematical operations easier. This section covers
these functions by placing them in the categories given below.

m Arithmetic Functions

® Exponential Functions

m Trigonometric Functions

m Binary Functions

m Limit Functions

m Rounding Functions

m Random Number Function

m Base Conversion Functions

m General Functions

Arithmetic Functions

HP Instrument BASIC provides you with the following functions:

ABS

FRACT

INT

MAXREAL

MINREAL

SQRT or SQR

SGN

Returns the absolute value of an expression. Takes a REAL, or INTEGER
number as its argument.

Returns the “fractional” part of the argument.

Returns the greatest integer that is less than or equal to an expression.
The result is of the same type (INTEGER or REAL) as the original
number.

Returns the largest positive REAL number available in HP Instrument
BASIC. Its value is approximately 1.797 693 134 862 32E+308.

Returns the smallest positive REAL number available in HP Instrument
BASIC. Its value is approximately 2.225 073 858 507 24E—308.

Return the square root of an expression. Takes a REAL or INTEGER
number as their argument.

Returns the sign of an expression: 1 if positive, 0 if 0, —1 if negative.

Exponential Functions

These functions determine the natural and common logarithm of an expression, as well as the
Napierian e raised to the power of an expression. Note that all exponential functions take
REAL, or INTEGER numbers as their argument.

EXP
LGT
LOG

Raise the Napierian e to an power. e = 2.718 281 828 459 05.
Returns the base 10 logarithm of an expression.

Returns the natural logarithm (Napierian base e) of an expression.

Numeric Computation 3-7

Trigonometric Functions

Six trigonometric functions and the constant m are provided for dealing with angles and
angular measure. Note that all trigonometric functions take REAL or INTEGER numbers as
their argument.

ACS Returns the arccosine of an expression.

ASN Returns the arcsine of an expression.

ATN Returns the arctangent of an expression.

cos Returns the cosine of the angle represented by the expression.

SIN Returns the sine of the angle represented by an expression.

TAN Returns the tangent of the angle represented by an expression.

PI Returns the constant 3.141 592 653 589 79, an approximate value for pi.

Trigonometric Modes: Degrees and Radians

The default mode for all angular measure is radians. Degrees can be selected with the DEG
statement. Radians may be reselected by the RAD statement. It is a good idea to explicitly
set a mode for any angular calculations, even if you are using the default (radian) mode. This
is especially important in writing subprograms, as the subprogram inherits the angular mode
from the context that calls it. The angle mode is part of the calling context.

Binary Functions

All operations that HP Instrument BASIC performs use a binary number representation. You
usually don’t see this, because HP Instrument BASIC changes decimal numbers you input
into its own binary representation, performs operations using these binary numbers, and then
changes them back to their decimal representation before displaying or printing them.

The following HP Instrument BASIC functions deal with binary numbers:

BINAND Returns the bit-by-bit “logical and” of two arguments.

BINCMP Returns the bit-by-bit “complement” of its argument.

BINEGOR Returns the bit-by-bit “exclusive or” of two arguments.

BINIOR Returns the bit-by-bit “inclusive or” of two arguments.

BIT Returns the state of a specified bit of the argument.

ROTATE Returns a value obtained by shifting an INTEGER representation of an
argument a specific number of bit positions, with wraparound.

SHIFT Returns a value obtained by shifting an INTEGER representation of an

argument a specific number of bit positions, without wraparound.

When any of these functions are used, the arguments are first converted to INTEGER (if they
are not already in the correct form), then the specified operation is performed. It is best to
restrict bit-oriented binary operations to be declared INTEGERs. If it is necessary to operate
on a REAL, make sure the precautions described under “Conversions,” at the beginning of
this chapter, are employed to avoid INTEGER overflow.

3-8 Numeric Computation

Limit Functions

It is sometimes necessary to find the range of values in a list of variables. HP Instrument
BASIC provides two functions for this purpose:

MAX Returns a value equal to the greatest value in the list of arguments.

MIN Returns a value equal to the least value in the list of arguments.

Rounding Functions

Sometimes it is necessary to round a number in a calculation to eliminate unwanted
resolution. There are two basic types of rounding, rounding to a total number of decimal
digits and rounding to a number of decimal places (limiting fractional information). Both
types of rounding have their own application in programming.

The functions that perform the types of rounding mentioned above are as follows:

DROUND Rounds a numeric expression to the specified number of digits. If the
specified number of digits is greater than 15, no rounding takes place. If
the number of digits specified is less than 1, zero is returned.

PROUND Returns the value of the argument rounded to a specified power of ten.

Random Number Function

The RND function returns a pseudo-random number between 0 and 1. Since many
applications require random numbers with arbitrary ranges, it is necessary to scale the
numbers.

200 R= INT(RND*Range)+0ffset
The above statement will return an integer between Offset and Offset + Range.

The random number generator is seeded with the value 37 480 660 at power-on, SCRATCH,
SCRATCH A, and pre-run. The pattern period is 23! — 2. You can change the seed with the
RANDOMIZE statement, which will give a new pattern of numbers.

Time and Date Functions
The following functions return the time and date in seconds:
TIMEDATE Returns the current clock value (in Julian seconds).
For example, the statement
TIMEDATE
returns a value in seconds similar to the following:

2.11404868285E+11

Numeric Computation 3-9

Base Conversion Functions

The two functions IVAL and DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal number.

IVAL returns the INTEGER decimal value of a binary, octal, decimal, or hexadecimal
16-bit integer. The first argument is a string and the second argument is the radix
or base to convert from. For example,

IVAL("12740",8)
returns the following numeric value
5600

DVAL returns the decimal whole number value of a binary, octal, decimal, or hexadecimal
32-bit integer. The first argument is a string and the second argument is the radix
or base to convert from. For example,

DVAL("11111111111111111114111111111100",2)
returns the following numeric value:
-4

For more information and examples of these functions, read the section “Number-Base
Conversion” found in the “String Manipulation” chapter.

General Functions

When you are specifying select code and device selector numbers, it is more descriptive to use
a function to represent that device as opposed to a numeric value. For example, the following
command allows you to enter a numeric value from the keyboard.

ENTER 2;Numeric_value

The above statement used in a program is not as easy to read as this one is:
ENTER KBD ;Numeric_value

where you know the function KBD must stand for keyboard.

Functions that return a select code or device selector are listed below:

CRT Returns the INTEGER 1. This is the select code of the internal CRT.
KBD Returns the INTEGER 2. This is the select code of the keyboard.
PRT Returns the INTEGER 701.

3-10 Numeric Computation

4

Numeric Arrays

An array is a multi-dimensioned structure of variables that are given a common name. The
array can have one to six dimensions. Each location in an array contains one value, and each
value has the characteristics of a single variable, either REAL or INTEGER (string arrays are
discussed in the chapter, “String Manipulation”).

A one-dimensional array consists of n elements, each identified by a single subscript. A
two-dimensional array consists of m times n elements where m and n are the maximum
number of elements in the two respective dimensions. Arrays require a subscript in each
dimension, in order to locate a given element of the array. Arrays are limited to six
dimensions, and the subscript range for each dimension must lie between -32767 and 32767.
REAL arrays require eight bytes of memory for each element, plus overhead. It is easy to see
that large arrays can demand massive memory resources.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for
these elements is reserved whether you use them or not.

Dimensioning an Array

Before you use an array, you should tell the system how much memory to reserve for it. This
is called “dimensioning” an array. You can dimension arrays with the DIM, COM, ALLOCATE,
INTEGER or REAL statements. For example:

REAL Array_complex(2,4)

An array is a type of variable and as such follows all rules for variable names. Unless you
explicitly specify INTEGER type in the dimensioning statement, arrays default to REAL type.
The same array can only be dimensioned once in a context (there is one exception to this
rule: If you ALLOCATE an array, and then DEALLOCATE it, you can dimension the array again).
However, as we explain later in this section, arrays can be REDIMensioned.

When you dimension an array, the system reserves space in internal memory for it. The
system also sets up a table which it uses to locate each element in the array. The location
of each element is designated by a unique combination of subscripts, one subscript for each
dimension. For a two-dimensional array, for instance, each element is identified by two
subscript values. An example of dimensioning a two-dimensional array is as follows:

OPTION BASE 0 default numbering of subscripts begins with 0
DIM Array(3,5) declares elements (0,0) to (3,5)

OPTION BASE 1 default numbering of subscripts begins with 1
Array(2,3) defines elements (1,1) to (2,3)

OPTION BASE 0 default numbering of subscripts begins with 0
DIM A(1:4,1:4,1:4) explicitly defines elements (1,1,1) to ({,4,4)

Numeric Arrays 4-1

Each context defaults to an option base of 0 (but arrays appearing in COM statements with
an (*) keep their original base. However, you can set the option base to 1 using the OPTION
BASE statement. You can have only one OPTION BASE statement in a context, and it must
precede all explicit variable declarations.

Some Examples of Arrays

When we discuss two-dimensional arrays, the first dimension will always represent rows, and
the second dimension will always represent columns. Note also in the above example that the
first two dimensions use the default setting of 1 for the lower bound, while the third dimension
explicitly defines 0 as the lower bound. The numbers in parentheses are the subscript values
for the particular elements. These are the numbers you use to identify each array element.

The following examples illustrate some of the flexibility you have in dimensioning arrays.

10 OPTION BASE 1
20 DIM A(3,4,0:2)

oo 210 G [N
s \\\\\\\\ o
\ \,_

1st DIMENSION
Planes of a Three-Dimensional REAL Array

Dimension Size Lower Bound Upper Bound
st 3 1 3
2nd 4 1 4
3rd 3 0 2

10 OPTION BASE 1
20 COM B(1:5,2:6)

4-2 Numeric Arrays

10
20

Two-Dimensional REAL ARRAY

(1,2) (1,3) (1,4) (1,5) (1,6)
(2,2) (2,3) (2,4) (2,5) (2,6)
(3,2) (3,3) (3,4) (3,5) (3,6)
(4,2) (4,3) (4,4) (4,5) (4,6)
(5,2) (5,3) (5,4) (5,5) (5,6)
Dimension Size Lower Bound Upper Bound
1st 5 1 5
2nd 5 2 6

OPTION BASE 1
ALLOCATE INTEGER C(2:4,-2:2)

A Dynamically Allocated, Two-Dimensional INTEGER Array

(2v'2) (2)'1) (2’0) (2’1) (2’2)
(3:‘2) (3)'1) (3v0) (3»1) (3)2)
(4-2) (4-1) (4,0) (4,1) (4.2)
Dimension Size Lower Bound Upper Bound
1st 3 2 4
2nd 5 -2 2

Numeric Arrays 4-3

Note Throughout this chapter we will be using DIM statements without specifying
i what the current option base setting is. Unless explicitly specified otherwise,
% all examples in this chapter use option base 1.

As an example of a four-dimensional array, consider a five-story library. On each floor there
are 20 stacks, each stack contains 10 shelves, and each shelf holds 100 books. To specify the
location of a particular book you would give the number of the floor, the stack, the shelf,
and the particular book on that shelf. We could dimension an array for the library with the
statement:

DIM Library(5,20,10,100)

This means that there are 100,000 book locations. To identify a particular book you would
specify its subscripts. For instance, Library(2,12,3,35) would identify the 35th book on the
3rd shelf of the 12th stack on the 2nd floor.

Problems with Implicit Dimensioning

In any context, an array must have a dimensioned size. It may be explicitly dimensioned
through COM, INTEGER, REAL, or ALLOCATE. It can also be implicitly dimensioned through a
subscripted reference to it in a program statement other than a MAT or a REDIM statement.
MAT and REDIM statements cannot be used to implicitly dimension an array.

Finding Out the Dimensions of an Array

There are a number of statements that allow you to determine the size of an array. To find
out how many dimensions are in an array, use the RANK function. For example, this program

10 OPTION BASE 0
20 DIM F(1,4,-1:2)
30 PRINT RANK (F)
40 END

would print 3.

The SIZE function returns the size (number of elements) of a particular dimension. For
instance,

SIZE (F,2)
would return 5, the number of elements in F’s second dimension.

To find out what the lower bound of a dimension is, use the BASE function. Referring again to
array F,

BASE (F,1)

would return a 0, while,

BASE (F,3)
would return a -1, indicating this dimension has not been defined as part of F.

By using the SIZE and BASE functions together, you can determine the upper bounds of any
dimension (e.g., SIZE+BASE-1=Upper Bound).

4-4 Numeric Arrays

These functions are powerful tools for writing programs that perform functions on an array
regardless of the array’s size or shape.

Using Individual Array Elements

This section deals with assigning and extracting individual elements from arrays.

Assigning an Individual Array Element

Initially, every element in an array equals zero. There are a number of different ways to
change these values. The most obvious is to assign a particular value to each element. This is
done by specifying the element’s subscripts.

A(3,4)=13 the element in row 8, column 4, has the value 13

Extracting Single Values From Arrays

As with entering values into arrays, there are a number of ways to extract values as well. To
extract the value of a particular element, simply specify the element’s subscripts.

X=A(3,4,2)

BASIC automatically converts variable types. For example, if you assign an element from a
REAL array to an INTEGER variable, the system will round the REAL to an integer.

Filling Arrays

This section discusses three methods for filling an entire array:
m Assigning every element the same value

m Using READ to fill an entire array

m Copying arrays into other arrays

Assigning Every Element in an Array the Same Value

For some applications, you may want to initialize every element in an array to some particular
value. You can do this by assigning a value to the array name. However, you must precede
the assignment with the MAT keyword.

MAT A= (10)

Note that the numeric expression on the right-hand side of the assignment must be enclosed in
parentheses and that this expression may be INTEGER or REAL.

Numeric Arrays 4-5

Using the READ Statement to Fill an Entire Array

You can assign values to an array using READ and DATA. DATA allows you to create a stream of
data items, and READ enables you to enter the data stream into an array.

110 DIM A(3,3)

120 DATA -4,36,2.3,5,89,17,-6,-12,42

130 READ A(¥)

140 PRINT USING "3(3DD.DD,3DD.DD,3DD.DD,/)";A(*)
150 END

The asterisk in line 140 is used to designate the entire array rather than a single element.
Note also that the right-most subscript varies fastest. In this case, it means that the system
fills an entire row before going to the next one. The READ/DATA statements are discussed
further in the chapter “Data Storage and Retrieval”.

Executing the previous program produces the following results:

-4.00 36.00 2.30
5.00 89.00 17.00
-6.00 -12.00 42.00

Copying Entire Arrays into Other Arrays

Another way to fill an array is to copy all elements from one array into another (copying
sub-sets of arrays is discussed in the subsequent section of “Numeric Arrays” called “Copying
Subarrays”). Suppose, for example, that you have the two arrays A and B shown below.

0 0 0 3 5
A=10 0 0}|B=18 2
0 0 0 17

Note that A is a 3x3 array which is filled entirely with 0’s, while B is a 3X2 array filled with
non-zero values. To copy B to A, we would execute:

MAT A= B

Again, you must precede the assignment with MAT. The system will automatically redimension
the “result array” (the one on the left-hand side of the assignment) so that it is the same size
as the “operand array” (the one on the right side of the equation.) There are two restrictions
on redimensioning an array.

m The two arrays must have the same rank (e.g., the same number of dimensions.)

m The dimensioned size of the result array must be at least as large as the current size of the
operand array.

If BASIC cannot redimension the result array to the proper size, it returns an error.

Automatic redimensioning of an array will not affect the lower bounds, only the upper
bounds. So the BASE values of each dimension of the result array will remain the same. Also
keep in mind that the size restriction applies to the dimensioned size of the result array

and the current size of the operand array. Suppose we dimension arrays A, B and C to the
following sizes:

10 OPTION BASE 1
20 DIM A(3,3),B(2,2),0(2,4)

4-6 Numeric Arrays

We can execute,

MAT A= B

since A is dimensioned to 9 elements and B is only 4 elements. The copy automatically
redimensions A to a 2X2 array. Nevertheless, we can still execute:

MAT A= C

This works because the nine elements originally reserved for A remain available until the
program is scratched. A now becomes a 2x4 matrix. After MAT A= C, we could not execute:

MAT B= A
or
MAT B= C

since in each of these cases, we are trying to copy a larger array into a smaller one. But we
could execute

MAT C= A

after the original MAT A= B assignment, since C’s dimensioned size (8) is larger than A’s current
size (4).

Printing Arrays

Printing an Entire Array

Certain operations (e.g., PRINT, OUTPUT, ENTER and READ) allow you to access all elements of
an array merely by using an asterisk in place of the subscript list. The statement,

PRINT A(*);
would display every element of A on the current PRINTER IS device. The elements are
displayed in order, with the rightmost subscripts varying fastest. The semi-colon at the end
of the statement is equivalent to putting a semi-colon between each element. When they are

displayed, therefore, they will be separated by a space. (The default is to place elements in
successive columns.)

Examples of Formatting Arrays for Display

This section provides two subprograms which have both been given the name Printmat.
The first subprogram is used to display a two-dimensional INTEGER array and the second
subprogram is used to display a three-dimensional INTEGER array.

To display a two dimensional array, you can use the following subprogram:

Numeric Arrays 4-7

240 SUB Printmat (INTEGER Array(*))
250 OPTION BASE 1
260 FOR Row=BASE(Array,1) TO SIZE(Array,1)+BASE(Array,1)-1

270 FOR Column=BASE(Array,2) TO SIZE(Array,2)+BASE(Array,2)-1
280 PRINT USING "DDDD,XX,#";Array(Row,Column)

290 NEXT Column

300 PRINT

310 NEXT Row

320 SUBEND

Assuming that you intended to display a 5x5 array, your results should look similar to this:

11 12 13 14 156
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 B3 54 55

If you were to expand the above subprogram to print three-dimensional INTEGER arrays,
your subprogram would be similar to the following:

250 SUB Printmat (INTEGER Array(*))

260 OPTION BASE 1

270 FOR Zplane=BASE(Array,3) TO SIZE(Array,3)+BASE(Array,3)-1
280 PRINT TAB(6),"Plane ";Zplane

290 PRINT

300 FOR Yplane=BASE(Array,2) TO SIZE(Array,2)+BASE(Array,2)-1
310 FOR Xplane=BASE(Array,1) TO SIZE(Array,1)+BASE(Array,1)-1
320 PRINT USING "DDDD,XX,#";Array(Zplane,Yplane,Xplane)
330 NEXT Xplane

340 PRINT

350 NEXT Yplane

360 PRINT

370 NEXT Zplane

380 SUBEND

If you had a three dimensional array with the following dimensions:
DIM Arrayi(3,3,3)

filled with all 3’s, the results from executing the above subprogram would be as follows:

Plane 1
3 3 3
3 3 3
3 3 3
Plane 2
3 3 3
3 3 3
3 3 3
Plane 3
3 3 3
3 3 3
3 3 3

4-8 Numeric Arrays

Passing Entire Arrays

The asterisk is also used to pass an array as a parameter to a function or subprogram. For
instance, to pass an array A to the Printmat subprogram listed earlier, we would write:

Printmat (A(%))

Copying Subarrays
An earlier section discussed copying the contents of an entire array into another entire array.
MAT Array55= Array33

Each element of Array33 is copied into the corresponding element of Array55 which is
redimensioned if necessary.

Now suppose you would like to copy a portion of one array and place it in a special location
within another array. This process is called copying subarrays.

Array4x4 Array3x4

1M1 12 13 14
21 {29716 | 24
311 91 -5 | 34
41 4243 44

45 67 -8
<+ | 44{-9 1612
99 91 =519

Copying a Subarray into Another Subarray

Topics discussed in this section are:

m Subarray specifier

m Copying a subarray into an array

m Copying an array into a subarray

m Copying a subarray into a subarray

m Copying a portion of an array into itself
m Rules for copying subarrays

Dimensions for the arrays covered in the above topics will assume an option base of 1 (OPTION
BASE 1) unless stated differently.

Subarray Specifier

A subarray is a subset of an array (an array within an array). A subarray is indicated after
the array name as follows:

Array_name (subarray_specifier)

String_array$ (subarray_specifier)

The above subarray could take on many “sizes” and “shapes” depending on what you used as
dimensions for the array and the values used in the subarray_specifier. Note that “size” refers

Numeric Arrays 4-9

to the number of elements in the subarray and “shape” refers to the number of dimensions
and elements in each dimension, respectively [e.g. both of these subscript specifiers have
the same shape: (-2:1,-1:10) and (1:4,9:20)]. Before looking at ways you can express a
subarray, let’s learn a few terms related to the subarray specifier.

subscript range

is used to specify a set of elements starting with a beginning
element position and ending with a final element position. For
example, 5:8 represents a range of four elements starting with
element 5 and ending at element 8.

subscript expression is an expression which reduces the RANK of the subarray. For

default range

example if you wanted to select a one-element subarray from a
two-dimensional array which is located in the 2nd row and 3rd
column, you would use the following subarray specifier: (2,3:3).
The subscript expression in this subarray specifier is 2 which
restricts the subarray to row 2 of the array.

is denoted by an asterisk (i.e. (1,*)) and represents all of the
elements in a dimension from the dimension’s lower bound to
its upper bound. For example, suppose you wanted to copy the
entire first column of a two dimensional array, you would use
the following subarray specifier: (*,1), where * represents all
the rows in the array and 1 represents only the first column.

Some examples of subarray specifiers are as follows:

(1,%)

(1:2)

(*,-1:2)

(3,1:2)

(1’*’*)

(1,1:2,%)

(1’2)*)

(1:2,3:4)

a subscript expression and a default range which designate the first row of a
two-dimensional array.

a given subscript range which represents the first two elements of a
one-dimensional array.

a default range and subscript range which represents all of the elements in
the first four columns of a two-dimensional array (base of 2nd dimension
assumed to be -1).

a subscript expression and subscript range which represent the first two
elements in the third row of a two-dimensional array.

a subscript expression and two default ranges which represent a plane
consisting of all the rows and columns of the first plane in the first-dimension.

a subscript expression, subscript range and default range which represent the
first two rows in the first plane of the first-dimension.

two subscript expressions and a default range which represent the entire
second row in the first plane of the first-dimension.

two subscript ranges which represent elements located in the third and fourth
columns of the first and second rows of a two-dimensional array.

For more information on string arrays, see the “String Manipulation” chapter found in this

manual.

4-10 Numeric Arrays

Copying an Array into a Subarray

In order to copy a source array into a subarray of a destination array, the destination array’s
subarray must have the same size and shape as the source array.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Des_array(-3:1,5),Sor_array(2,3)
Suppose these arrays contain the following INTEGER values:

Des_array Sor_array

1" 12 13 14 15
21 22 23 24 25 TTTTTSTTS
31 32 33 34 35 21 29 23

41 42 43 44 45
51 52 53 54 55

you would copy the source array Sor_array into a subarray of the destination array
Des_array by using program line 190 given below:

190 MAT Des_array(-1:0,2:4)= Sor_array

Des_array would have the following values in it as the result of executing the above
statement:

Des_array

1M1 12 13 14 15
21 22 23 24 25
31 111 12 13f 35
41 {21 22 23| 45
51 52 53 54 55

Copying a Subarray into an Array

A subarray can be copied into an array as long as the array can be re-dimensioned to be the
size and shape of the subarray specifier.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Des_array(8),Sor_array(-5:4)

Suppose both of these one-dimensional arrays contain the following values:

Des_array Sor_array

(-1 14 8 4 98 43 90 -3)(-11i-4 1 2 3 4 78 {100 8 18)

Numeric Arrays 4-11

you would copy a subarray of the source array (Sor_array) into a destination array
(Des_array) by using program line 190 given below:

"190 MAT Des_array= Sor_array(-4:1)

Des_array will be re-dimensioned to have six elements with the following values in it as a
result of executing the above statement.

Des_array
((+ 1+ 2 3 4 7d)

Copying a Subarray into Another Subarray

Subarray specifiers must have the same size and shape when you are copying one subarray
into another.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Des_array(3,2,2),Sor_array(2,3,2)
120

130

Suppose these three-dimensional arrays contain the following values:

Des_array 3] 3
212||3]|3
1Liff2]2

Sor_array [211]212

N

1/1«‘(12 23125/2

15 et

1311132

W

in order to properly copy a source subarray (Sor_array(*,2,*)) into a destination subarray
using asterisks to represent the ranges of dimensions, you would use line 190 given below:

190 MAT Des_array(3,*,*)= Sor_array(*,2,%)

A three dimensional array with the following values in it would be the result of executing the
above statement.

4-12 Numeric Arrays

Des_array

e
) £ e

Copying a Portion of an Array into Itself

If you are going to copy a subarray of an array into another portion of the same array, the
two subarray locations should not overlap (e.g., MAT Array(2:4,1:3)= Array(1:3,2:4) is
an improper assignment). No error message will result from this misuse, but the result is
undefined.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Array(4,4)

Suppose this two dimensional array contains the following values:

Array

112 [13 14
21 22 |23 24
31 32 33 34
41 42 43 44

to copy a slice of this array into another portion of the same array, you would use program
line 190 given below:

190 MAT Array(3:4,1:2)= Array(1:2,3:4)

Array will have the following values in it as a result of executing the above statement.

11 12 13 14
21 22 23 24
13 14 33 34
23 24 43 44

Note that you cannot copy a subarray into the array it is part of with an implied
re-dimensioning of the array. A statement of the form:

MAT Array= Array(subarray_specifier)

will always generate a run-time error.

Numeric Arrays 4-13

Rules for Copying Subarrays

This section should help limit the number of syntax and runtime errors you could make when
copying subarrays. A previous section titled “Subarray Specifier” provided you with examples
of the correct way of writing subarray specifiers for copying subarrays. In this section, you will
be given rules to things you should not do when copying subarrays. The rules are as follows:

m Subarray specifiers must not contain all subscript expressions (i.e. (1,2,3) is not allowed, it
will produce a syntax error). This rule applies to all subscript specifiers.

m Subarray specifiers must not contain all asterisks (*) or default ranges (i.e. (*,*,*) is not
allowed, it will produce a syntax error). This rule applies to all subscript specifiers.

m If two subarrays are given in a MAT statement, there must be the same number of ranges in
each subarray specifier. For example:

MAT Des_array1(1:10,2:3)= Sor_array(5:14,*,3)

is the correct way of copying a subarray into another subarray provided the default range
given in the source array (Sor_array) has only two elements in it. Note that the source
array is a three-dimensional array. However, it still meets the criteria of having the same
number of ranges as the destination array because two of its entries are ranges and one is an
expression.

m If two subarrays are given in a MAT statement, the subscript ranges in the source array
must be the same shape as the subscript ranges in the destination array. For example, the
following example is legal:

MAT Des_array(1:5,0:1)= Sor_array(3,1:5,6:7)
however, the following example is not legal:
MAT Des_array(0:1,1:5)= Sor_array(1:5,0:1)

because both of its subarray specifiers do not have the same shape (i.e. the rows and
columns in the destination array do not match the rows and columns in the source array).

Redimensioning Arrays

In our discussion of copying arrays we saw that the system automatically redimensions an
array if necessary. BASIC also allows you to explicitly redimension an array with the REDIM
statement. As with automatic redimensioning, the following two rules apply to all REDIM
statements:

m A REDIMed array must maintain the same number of dimensions.

®m You cannot REDIM an array so that it contains more elements than it was originally
dimensioned to hold.

Suppose A is the 3x3 array shown below.
1 2 3
A=14 5 6
7 89

To redimension it to a 2x4 array, you would execute:

REDIM A(2,4)

4-14 Numeric Arrays

The new array now looks like the figure below:

1 2 3 4
A_[5678]

Note that it retains the values of the elements, though not necessarily in the same locations.
For instance, A(2,1) in the original array was 4, whereas in the redimensioned array it equals
5. For example, if we REDIMed A again, this time to a 2x2 array, we would get:

(3

We could then initialize all elements to 0:

REDIM A(0:1,0:1)

MAT A= (0)

0 0
A= 0 0)
It is also important to realize that elements that are out of range in the REDIMed array still
retain their values. The fifth through ninth elements in A still equal 5 through 9 even though
they are now inaccessible. If we REDIM A back to a 3x3 array, these values will reappear. For
example:

REDIM A(3,3)

results in:

0 0 0
A=10 5 6
7 8 9

One of the major strengths of the REDIM statement is that it allows you to use variables for
the subscript ranges: this is not allowed when you originally dimension an array. In effect,
this enables you to dynamically dimension arrays. This should not be confused with the
ALLOCATE statement which allows you to dynamically reserve memory for arrays. In the
example below, for instance, we enter the dimensions from the keyboard.

10 OPTION BASE 1

20 INTEGER A(100,100)

30 INPUT "Enter lower and upper bounds of dimensions',
Low1,Up1,Low2,Up2

40 IF (Upil-Lowi1+1)*(Up2-Low2+1)>10000 THEN Too_big

50 REDIM A(Low1:Up1,Low2:Up2)

Line 40 tests to see whether the new dimensions are too big. If so, program control is passed
to a line labelled “Too_big”. If line 40 were not present, the REDIM statement would return an
error if the dimensions were too large.

Numeric Arrays 4-15

S

String Manipulation

It is often desirable to store non-numerical information in the computer. A word, a name or a
message can be stored in the computer as a string. Any sequence of characters may be used in
a string. Quotation marks delimit the beginning and ending of the string. The following are
valid string assignments:

LET A$="COMPUTER"

Fail$="The test has failed."

File_name$="INVENTORY"
Test$=Fail$[5,8]

The left-hand side of the assignment (the variable name) is equated to the right-hand side of
the assignment (the literal). String variable names are identical to numeric variable names
with the exception of a dollar sign ($) appended to the end of the name.

The length of a string is the number of characters in the string. In the previous example, the
length of A$ is 8 since there are eight characters in the literal “COMPUTER”. A string with
length O (i.e., that contains no characters) is known as a null string.

HP Instrument BASIC allows the dimensioned length of a string to range from 1 to 32 767
characters. The current length (number of characters in the string) ranges from zero to the
dimensioned length.

The default dimensioned length of a string is 18 characters. The DIM and COM statements
define string lengths up to the maximum length of 32 767 characters. An error results
whenever a string variable is assigned more characters than its dimensioned length.

A string may contain any character. The only special case is when a quotation mark needs to
be in a string. Two quotes, in succession, will embed a quote within a string.

10 Quote$="The time is ""NOW""."
20 PRINT Quote$
30 END

produces

The time is "NOW".

String Manipulation 5-1

String Storage

Strings with a length that exceed the default length of 18 characters must have space reserved
before assignment. The following statements may be used:

DIM Long$ [400] Reserve space for a 400 character string.
COM Line$[80] Reserve an 80 character common variable.
ALLOCATE Search$[Length] Dynamic length allocation.

The DIM statement reserves storage for strings.
DIM Part_number$[10] ,Description$[64],Cost$[5]

The COM statement defines common variables that can be used by subprograms.
COM Name$ [40] ,Phone$ [14]

Strings that have been dimensioned but not assigned return the null string.

String Arrays
Large amounts of text are easily handled in arrays. For example,
DIM File$(1:1000) [80]

reserves storage for 1000 lines of 80 characters per line. Do not confuse the brackets, which
define the length of the string, with the parentheses, which define the number of strings in the
array. Each string in the array can be accessed by an index. For example,

PRINT File$(27)

prints the 27th element in the array. Since each character in a string uses one byte of memory
and each string in the array requires as many bytes as the length of the string, string arrays
can quickly use a lot of memory.

A program saved on a disc as an ASCII type file can be entered into a string array,
manipulated, and written back out to disc.

5-2 String Manipulation

Evaluating Expressions Containing Strings
This section covers the following topics:

m Evaluation Hierarchy

m String Concatenation

m Relational Operations

Evaluation Hierarchy

Evaluation of string expressions is simpler than evaluation of numerical expressions. The
three allowed operations are extracting a substring, concatenation, and parenthesization. The
evaluation hierarchy is presented in the following table.

Order Operation

High Parentheses

— Substrings and Functions

Low Concatenation

String Concatenation

Two separate strings are joined together by using the concatenation operator “&”. The
following program combines two strings into one:

10 One$="WRIST"

20 Two$="WATCH"

30 Concat$=0One$&Two$

40 PRINT One$,Two$,Concat$
50 END

prints
WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second string to the end of the first
string. The result is assigned to a third string. An error results if the concatenation operation
produces a string that is longer than the dimensioned length of the string being assigned.

Relational Operations

Most of the relational operators used for numeric expression evaluation can also be used for
the evaluation of strings.

The following examples show some of the possible tests:

"ABC" = "ABC" True
"ABC" = " ABC" False
"ABC'" < "AbC" True
MM > N7 False
AVARS VA False
"long" <= "longer" True
"RE-SAVE" >= "RESAVE" False

String Manipulation 5-3

Any of these relational operators may be used: <, >, <=, >=, =, <>.

Testing begins with the first character in the string and proceeds, character by character, until
the relationship has been determined.

The outcome of a relational test is based on the characters in the strings not on the length of
the strings. For example,

"BRONTOSAURUS" < "CAT"
is a true relationship since the letter “C” is higher in ASCII value than the letter “B”.

Substrings

You can append a subscript to a string variable name to define a substring. A substring may
comprise all or just part of the original string. Brackets enclose the subscript which can be a
constant, variable, or numeric expression. For example,

String$[4]

specifies a substring starting with the fourth character of the original string. The subscript
must be in the range 1 to the current length of the string plus 1. Note that the brackets
now indicate the substring’s starting position instead of the total length of the string as
when reserving storage for a string. Subscripted strings may appear on either side of the
assignment.

Single-Subscript Substrings

When a substring is specified with only one numerical expression, enclosed with brackets, the
expression is evaluated and rounded to an integer indicating the position of the first character
of the substring within the string.

The following examples use the variable A$, which has been assigned the literal
“DICTIONARY”:

Statement Output
PRINT A$ DICTIONARY
PRINT A$[0] (error)
PRINT A$[1] DICTIONARY
PRINT A$[5] IONARY
PRINT A$[10] Y

PRINT A$[11] (null string)
PRINT A$[12] (error)

When you use a single subscript it specifies the starting character position, within the string,
of the substring. An error results when the subscript evaluates to zero or greater than the
current length of the string plus 1. A subscript that evaluates to 1 plus the length of the
string returns the null string ("") but does not produce an error.

5-4 String Manipulation

Double-Subscript Substrings

A substring may have two subscripts, within brackets, to specify a range of characters. When
a comma is used to separate the items within brackets, the first subscript marks the beginning
position of the substring, while the second subscript is the ending position of the substring.
The form is: A$[Start,End]. For example, if A$ = “JABBERWOCKY?”, then

A$[4,6] specifies the substring BER

When a semicolon is used in place of a comma, the first subscript again marks the beginning
position of the substring, while the second subscript is now the length of the substring. The
form is: A$[Start;Length].

A$[4;6] specifies the substring BERWOC

In the following examples, the variable B$ has been assigned the literal
“ENLIGHTENMENT”:

Statement Output

PRINT B$ ENLIGHTENMENT
PRINT B$[1,13] ENLIGHTENMENT
PRINT B$[1;13] |ENLIGHTENMENT
PRINT B$[1,9] ENLIGHTEN
PRINT B$[1;9] ENLIGHTEN
PRINT B$[3,7] LIGHT

PRINT B$[3;7] LIGHTEN

PRINT B$[13,13] |N
PRINT B$[13;1] N
PRINT B$[13,26] |[(error)
PRINT B$[13;13] |(error)
PRINT B$[14;1] (null string)

An error results if the second subscript in a comma separated pair is greater than the current
string length plus 1 or if the sum of the subscripts in a semicolon separated pair is greater
than the current string length plus 1.

Specifying the position just past the end of a string returns the null string.

String Manipulation 5-5

Special Considerations

All substring operations allow a subscript to specify the first position past the end of a string.
This allows strings to be concatenated without the concatenation operator. For example,
10 A$="CONCAT"

20 A$[7]1="ENATION"
30 PRINT A$

40 END
produces
CONCATENATION

The substring assignment is only valid if the substring already has characters up to the
specified position. Access beyond the first position past the end of a string results in the error

ERROR 18 String ovfl. or substring err

It’s good practice to dimension all strings including those shorter than the default length of
eighteen characters.

String-Related Functions

Several intrinsic functions are available in HP Instrument BASIC for the manipulation of
strings. These functions include conversions between string and numeric values.

Current String Length

The “length” of a string is the number of characters in the string. The LEN function returns
an integer with a value equal to the string length. The range is from 0 (null string) through
32 767. For example,

PRINT LEN("HELP ME")
prints

7

Substring Position

The “position” of a substring within a string is determined by the POS function. The
function returns the value of the starting position of the substring or zero if the entire
substring was not found. For example,

PRINT POS("DISAPPEARANCE","APPEAR")
prints
4

Note that POS returns the first occurrence of a substring within a string. By adding a
subscript and indexing through the string, the POS function can be used to find all occurrences
of a substring.

5-6 String Manipulation

String-to-Numeric Conversion

The VAL function converts a string expression into a numeric value. The number will be
converted to and from scientific notation when necessary. For example,

PRINT VAL("123.4E3")
prints
123400

The string must evaluate to a valid number or error 32 will result.

ERROR 32 String is not a valid number

The NUM function converts a single character into its equivalent numeric value. The number
returned is in the range: 0 to 255. For example,

PRINT NUM("A")
prints 65

Numeric-to-String Conversion

The VAL$ function converts the value of a numeric expression into a character string. The
string contains the same characters (digits) that appear when the numeric variable is printed.
For example,

PRINT 1000000,VAL$(1000000)
prints
1.E+6 1.E+6

The CHRS function converts a number into an ASCII character. The number can be of type
INTEGER or REAL since the value is rounded, and a modulo 255 is performed. For example,

PRINT CHR$(97) ;CHR$ (98) ; CHR$ (99)
prints

abc

String Functions

This section covers string functions, which perform the following tasks:
m reversing the characters in a string

m repeating a string a given number of times

m trimming the leading and trailing blanks in a string

m converting string characters to the desired case

String Manipulation 5-7

String Reverse

The REVS$ function returns a string created by reversing the sequence of characters in the
given string. For example,

PRINT REV$ ("Snack cans")
prints

snac kcanS

String Repeat

The RPT$ function returns a string created by repeating the specified string, a given number
of times. For example,

PRINT RPT$("* *",10)
prints

X okk ckk okok dkk kk dkk dkk kok kk X

Trimming a String

The TRIMS$ function returns a string with all leading and trailing blanks (ASCII spaces)
removed. For example,

PRINT "*";TRIM(" 1.23 ");"x"
prints

*1.23%

Case Conversion

The case conversion functions, UPC$ and LWCS, return strings with all characters converted
to the proper case. UPC$ converts all lowercase characters to their corresponding uppercase
characters and LWC$ converts any uppercase characters to their corresponding lowercase
characters.

10 DIM Word$[160]

20 INPUT "Enter a few characters",Word$
30 PRINT

40 PRINT "You typed: ";Word$

50 PRINT "Uppercase: ";UPC$(Word$)

60 PRINT "Lowercase: '";LWC$(Word$)

70 END

5-8 String Manipulation

Number-Base Conversion

Utility functions are available to simplify the calculations between different number bases.
The two functions IVAL and DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal number. The IVAL$ and DVALS$ functions convert a decimal number
into a binary, octal, decimal, or hexadecimal string value. The IVAL and IVAL$ functions
are restricted to the range of INTEGER variables (-32 768 through 32 767). The DVAL
and DVALS functions allow “double length” integers and thus allow larger numbers to be
converted (-2 147 483 648 through 2 147 483 647).

Each function has two parameters: the number or string to be converted and the radix.
The radix is limited to the values 2, 8, 10 and 16, and represents the numeric base of the
conversion.

For example,

PRINT DVAL("FF5900",16)
PRINT IVAL("AA",16)
PRINT DVAL$(100,8)
PRINT IVAL$(-1,16)

prints

1.6734464E+7
170
00000000144
FFFF

String Manipulation 5-9

Subprograms and
User-Defined Functions

One of the most powerful constructs available in any language is the subprogram. A
subprogram can do everything a main program can do except that it must be invoked or
“called” before it is executed, whereas a main program is executed by an operator. This
chapter describes the benefits of using subprograms and shows many of the details of using
them.

A user-defined function is simply a special form of subprogram.

Benefits of Subprograms

A subprogram has its own “context” or state that is distinct from a main program and all
other subprograms. This means that every subprogram has its own set of variables, its own
softkey definitions, its own DATA blocks, and its own line labels. There are several benefits to
be realized by taking advantage of subprograms:

m The subprogram allows the programmer to take advantage of the top-down design method
of programming.

m The program is much easier to read using the subprogram calls.

m By using subprograms and testing each one independently of the others, it is easier to locate
and fix problems.

m You may want to perform the same task from several different areas of your program.

m Libraries of commonly used subprograms can be constructed for widespread use.

A Closer Look at Subprograms

This section shows a few of the details of using subprograms.

Calling and Executing a Subprogram

A SUB subprogram is invoked explicitly using the CALL statement. A nuance of SUB
subprograms is that the CALL keyword is optional when invoking a SUB subprogram.

The omission of the CALL keyword when invoking a SUB subprogram is left solely to the
discretion of the programmer; some will find it more aesthetic to omit CALL, others will
prefer its inclusion. There are, however, two instances that require the use of CALL when
invoking a subprogram.

Subprograms and 6-1
User-Defined Functions

CALL is required
1. if the subprogram is called after the THEN keyword in an IF statement
2. in an ON..event..CALL statement

Differences Between Subprograms and Subroutines
A subroutine and a subprogram are very different in HP Instrument BASIC.

m The GOSUB statement transfers program execution to a subroutine. A subroutine is a
segment of program lines within the current context. No parameters need to be passed, since
it has access to all variables in the context (which is also the context in which the “calling”
segment exists).

m The CALL statement transfers program execution to a subprogram, which is in a separate
context. Subprograms can have pass parameters, and they can have their own set of local
variables that are separate from all variables in all other contexts.

Subprogram Location

A subprogram is located after the body of the main program, following the main program’s
END statement. (The END statement must be the last statement in the main program
except for comments.) Subprograms may not be nested within other subprograms, but are
physically delimited from each other with their heading statements (SUB or DEF) and ending
statements (SUBEND or FNEND).

Subprogram and User-Defined Function Names

A subprogram has a name that may be up to 15 characters long, just as with line labels and
variable names. Here are some legal subprogram names:

Initialize

Read_dwm

Sort_2_d_array

Plot_data

Because up to 15 characters are allowed for naming subprograms, it is easy and convenient
to name subprograms in such a way as to reflect the purpose for which the subprogram was
written.

Difference Between a User-Defined Function and a Subprogram

A SUB subprogram (as opposed to a function subprogram) is invoked explicitly using the
CALL statement. A function subprogram is called implicitly by using the function name in an
expression. It can be used in a numeric or string expression the same way a constant would be
used, or it can be invoked from the keyboard. A function’s purpose is to return a single value
(either a REAL number or a string).

There are several functions that are built into the HP Instrument BASIC language that can
be used to return values, such as SIN, SQR, EXP, etc.

Y=SIN(X)+Phase
Root1=(-B+SQR(B*B-4*A*C))/ (2*A)

User defined functions can extend HP Instrument BASIC if you need a feature that is not
provided.

6-2 Subprograms and
User-Defined Functions

X=FNFactorial (N)
Angle=FNAtn2(Y,X)

Here is a general guideline for taking a set of data and analyzing it to generate a single value,
then implementing the subprogram as a function. On the other hand, if you actually want to
change the data itself, generate more than one value as a result of the subprogram, or perform

any I/O activity, it is better to use a SUB subprogram.

REAL Precision Functions and String Functions

A function is allowed to return either a REAL or a string value. Let’s examine one that
returns a string. There are two primary differences: the first is that a $ must be added to

the name of a function that is to return a string. This is used both in the definition of the
function (the DEF statement) and when the function is invoked. The second difference is that
the RETURN statement in the function returns a string instead of a number.

200 PRINT FNAscii_to_hex$(A$)
1550 DEF FNAscii_to_hex$(A$)
1560 ! Each ASCII byte consists of two hex
1670 ! digits; pretty formatting dictates that
1680 ! a space be inserted between every pair
1690 ! of hex digits. Thus, the output string
1600 ! will be three times as long as the input
1610 ! string.
1620 !
1630 ! upper four bits lower four bits
1640 ! UUUU LLLL UUUU LLLL
1650 ! shift 4 bits 0000 1111 mask (15)
1660 ! 0000 UUUU 0000 LLLL final
1670 !
1680 INTEGER I,Length,Hexupper,Hexlower
1690 Length=LEN(A$)
1695 Length=3*Length
1700 DIM Temp$[Length]
1710 FOR I=1 TO Length
1720 Hexupper=SHIFT(NUM(A$[I]),4)
1730 Hexlower=BINAND (NUM(A$[I],15)
1740 Temp$[3*I-2;1]=FNHex$ (Hexupper)
1750 Temp$[3*I-1;1]=FNHex$(Hexlower)
1760 Temp$[3*I;1]=" "
1770 NEXT I
1780 RETURN Temp$
1790 FNEND
1800 DEF FNHex$(INTEGER X)
1810 ! Assume 0<=X<=15)
1820 ! Return ASCII representation of the
1830 ! hex digit represented by the four
1840 ! bits of X.
1850 ! If X is between 0 and 9, return
1860 ! "o, .. "M
1870 ! If X > 9, return "A"..."F"
(Continued)

Subprograms and 6-3
User-Defined Functions

1880 IF X<=9 THEN

1890 RETURN CHR$(48+X) ! ASCII 48 through 57
1900 ! represent "Q'" - '"9"
1910 ELSE

1920 RETURN CHR$(55+X) ! ASCII 65 through 70
1930 ! represent "A'" - "F'"
1940 END IF

1950 FNEND

Lines 200, 1740, and 1750 show examples of how to call a string function. Lines 1550 and 1800
show where the two string function subprograms begin. Notice that the program could be
optimized slightly by deleting lines 1720 and 1730 and modifying lines 1740 and 1750:

1740 Temp$ [3*I-2; 1]1=FNHex$ (SHIFT(NUM(A$(I]) ,4))
1750 Temp$ [3*%I-1; 1]=FNHex$ (BINAND (NUM(A$[I],15))

Thus, it is perfectly legal to use expressions in the pass parameter list of a subprogram.

Program/Subprogram Communication

As mentioned earlier, there are two ways for a subprogram to communicate with the main
program or with other subprograms:

m By passing parameters

m By sharing blocks of common (COM) variables.

Parameter Lists
There are two places where parameter lists occur:
m The pass parameter list is in the CALL statement or FN call:
30 CALL Build_array(Numbers(*),20) ! Subprogram call.
50 PRINT FNSum_array(Numbers(*),20) ! User-defined function call.

It is known as the pass parameter list because it specifies what information is to be passed
to the subprogram.

m The formal parameter list is in the SUB or DEF FN statement that begins the
subprogram’s definition:

70 SUB Build_array(X(*),N) ! Subprogram "Build_array".
410 DEF FNSum_array(A(*),N) ! User-defined function "Sum_array".
This is known as the formal parameter list because it specifies the form of the information
that can be passed to the subprogram.
Formal Parameter Lists

The formal parameter list is part of the subprogram’s definition, just like the subprogram’s
name. The formal parameter list defines

m the number of values that may be passed to a subprogram

6-4 Subprograms and
User-Defined Functions

m the types of those values (string, INTEGER, or REAL, and whether they are simple or
array variables; or I/O path names)

m the variable names the subprogram will use to refer to those values. (This allows the name
in the subprogram to be different from the name used in the calling context.)

The subprogram has the power to demand that the calling context match the types declared
in the formal parameter list—otherwise, an error results.

Pass Parameter Lists

The calling context provides a pass parameter list that corresponds with the formal parameter
list provided by the subprogram. The pass parameter list provides

m the actual values for those inputs required by the subprogram.

m storage for any values to be returned by the subprogram (pass by reference parameters
only).

It is perfectly legal for both the formal and pass parameter lists to be null (non-existent).

Passing By Value vs. Passing By Reference
There are two ways for the calling context to pass values to a subprogram:
m pass by value—the calling context supplies a value and nothing more.

m pass by reference—the calling context actually gives the subprogram access to the calling
context’s value area (which is essentially access to the calling context’s variable).

The distinction between these two methods is that a subprogram cannot alter the value of
data in the calling context if the data is passed by value, while the subprogram can alter the
value of data in the calling context if the data is passed by reference.

The subprogram has no control over whether its parameters are passed by value or passed by
reference. That is determined by the calling context’s pass parameter list. For instance, in the
example below, the array Numbers(*) is passed by reference, while the quantity 20 is passed
by value.

30 CALL Build_array(Numbers(*),20) ! Subprogram call.
The general rules for passing parameters are as follows:

m In order for a parameter to be passed by reference, the pass parameter list (in the calling
context) must use a variable for that parameter.

m In order for a parameter to be passed by value, the pass parameter list must use an
expression for that parameter.

Note that enclosing a variable in parentheses is sufficient to create an expression and that
literals are expressions. Using pass by value, it is possible to pass an INTEGER expression
to a REAL formal parameter (the INTEGER is converted to its REAL representation)
without causing a type mismatch error. Likewise, it is possible to pass a REAL expression
to an INTEGER formal parameter (the value of the expression is rounded to the nearest
INTEGER) without causing a type mismatch error (an integer overflow error is generated if
the expression is out of range for an INTEGER).

Subprograms and 6-5
User-Defined Functions

Example Pass and Corresponding Formal Parameter Lists

Here is a sample formal parameter list showing which types each parameter demands:

SUB Read_dvm(@Dvm,A(*) ,INTEGER Lower,Upper,Status$,Errflag)

QDvm

A(x)

Lower, Upper

Status$

Errflag

This is an I/O path name that may refer to either an I/O device or a mass
storage file. Its name here implies that it is a voltmeter, but it is perfectly
legal to redirect I/O to a file just by using a different ASSIGN with @Dvm.

This is a REAL array. Its size is declared by the calling context. The
parameters Lower and Upper contain its limits.

These are declared here to be INTEGERs. Thus, when the calling program
invokes this subprogram, it must supply either INTEGER variables or
INTEGER expressions, or an error will occur.

This is a simple string that presumably could be used to return the status of
the voltmeter to the main program. The length of the string is defined by the
calling context.

This is a REAL number. The declaration of the string Status$ has limited
the scope of the INTEGER keyword which caused Lower and Upper to require
INTEGER pass parameters.

Let’s look at our previous example from the calling side (which shows the pass parameter list):

CALL Read_dvm(@Voltmeter,Readings(*),1,400,Status$,Errflag)

QVoltmeter

Readings(x)

1, 400

Status$

Errflag

This is the pass parameter that matches the formal parameter @Dvm in the
subprogram. I/O path names are always passed by reference, which means
the subprogram can close the I/O path or assign it to a different file or
device.

This matches the array A(*) in the subprogram’s formal parameter list.
Arrays, too, are always passed by reference.

These are the values passed to the formal parameters Lower and Upper. Since
constants are classified as expressions rather than variables, these parameters
have been passed by value. Thus, if the subprogram used either Lower or
Upper on the left-hand side of an assignment operator, no change would take
place in the calling context’s value area.

This is passed by reference here. If it was enclosed in parentheses, it would
be passed by value. Notice that if it was passed by value, it would be totally
useless as a method for returning the status of the voltmeter to the calling
context.

This is passed by reference.

6-6 Subprograms and
User-Defined Functions

COM Blocks

Since we’ve discussed parameter lists in detail, let’s turn now to the other method a
subprogram has of communicating with the main program or with other subprograms, the
COM block.

There are two types of COM (or common) blocks: blank and labeled. Blank COM is simply
a special case of labeled COM (it is the COM name that is nothing) with the exception that
blank COM must be declared in the main program, while labeled COM blocks don’t have to
be declared in the main program. Both types of COM blocks simply declare blocks of data
that are accessible to any context with matching COM declarations.

A blank COM block might look like this:
20 COM Conditions(15),INTEGER,Cmin,Cmax,@Nuclear_pile,Pile_status$[20], Tolerance

A labeled COM might look like this:
30 COM /Valve/ Main(10),Subvalves(10,15),@Valve_ctrl

A COM block’s name, if it has one, will immediately follow the COM keyword, and will be set
off with slashes, as shown above. The same rules used for naming variables and subprograms
are used for naming COM blocks.

Any context need only declare those COM blocks that it needs to have access to. If there are
150 variables declared in 10 COM blocks, it isn’t necessary for every context to declare the
entire set—only those blocks that are necessary to each context need to be declared. COM
blocks with matching names must have matching definitions. As in parameter lists, matching
COM blocks is done by position and type, not by name.

COM vs. Pass Parameters

There are several characteristics of COM blocks that distinguish them from parameter lists as
a means of communications between contexts:

m COM survives pre-run. In general, any numeric variable is set to 0, strings are set to the
null string, and I/O path names are set to undefined after instructing the program to run,
or upon entering a subprogram. This is true of COM the first time the program runs, but
after COM block variables are defined, they retain their values until one of the following
takes place:

o SCRATCH A or SCRATCH C is executed
O a statement declaring a COM block is modified by the user

O a new program is brought into memory using the GET command that doesn’t match the
declaration of a given COM block, or that doesn’t declare a given COM block at all

m COM blocks can be arbitrarily large. One limitation on parameter lists (both pass and
formal parameter lists) is that they must fit into a single program line along with the iine’s
number, possibly a label, the invocation or subprogram header, and possibly (in the case of
a function) a string or numeric expression. Depending upon the situation, this can impose a
restriction on the size of your parameter lists.

m COM blocks can take as many statements as necessary. COM statements can be interwoven
with other statements (though this is considered a poor practice). All COM statements
within a context that has the same name will be part of the definition of that COM block.

Subprograms and 6-7
User-Defined Functions

m COM blocks can be used for communicating between contexts that do not invoke each
other.

m COM blocks can be used to communicate between subprograms that are not in memory
simultaneously.

m COM blocks can be used to retain the value of “local” variables between subprogram calls.

m COM blocks allow subprograms to share data without the intervention of the main program.

Hints for Using COM Blocks

Any COM blocks needed by your program must be resident in memory at prerun time,
executing a RUN command, executing GET from the program, or executing a GET from the
keyboard and specifying a run line. Thus, if you want to create libraries of subprograms that
share their own labeled COM blocks, it is wise to collect all the COM declarations together in
one subprogram. This makes it easy to append them to the rest of the program for inclusion
at prerun time. (The subprogram need not contain anything but the COM declarations.)

COM can be used to communicate between programs that overlay each other using GET
statements, if you remember a few rules:

1. COM blocks that match each other exactly between the two programs will be preserved
intact. “Matching” requires that the COM blocks are named identically (except blank
COM), and that corresponding blocks have exactly the same number of variables declared,
and that the types and sizes of these variables match.

2. Any COM blocks existing in the old program that are not declared in the new program
(the one being brought in with the GET) are destroyed.

3. Any COM blocks that are named identically, but that do not match variables and types
identically, are defined to match the definition of the new program. All values stored in
that COM block under the old program are destroyed.

4. Any new COM blocks declared by the new program (including those mentioned above in
#3) are initialized implicitly. Numeric variables and arrays are set to zero, strings are set
to the null string, and I/O path names are set to undefined.

The first occurrence in memory of a COM block is used to define or set up the block.
Subsequent occurrences of the COM block must match the defining block, both in the number
of items and the types of the items. In the case of strings and arrays, the actual sizes need

be specified only in the defining COM blocks. Subsequent occurrences of the COM blocks
may either explicitly match the size specifications by re-declaring the same size, or they may
implicitly match the size specifications. In the case of strings, this is done by not declaring
any size, but by declaring the string name. In the case of arrays, this is done by using the (*)
specifier for the dimensions of the array instead of explicitly re-declaring the dimensions.

Consider the following COM block definition:

10 COM /Dvm_state/ INTEGER Range,Format,N,REAL
Delay,Lastdata(1:40),Status$[20]

The following occurrence of the same COM block within a subprogram matches the COM
block explicitly and is legal:

2000 COM /Dvm_state/ INTEGER Range,Format,N,REAL
Delay,Lastdata(1:40),Status$[20]

6-8 Subprograms and
User-Defined Functions

The following block within a different subprogram uses implicit matching and is also legal:

4010 COM /Dvm_state/ INTEGER Range,Format,N,REAL Delay,Lastdata(*),Status$

In general, the implicit size matching on arrays and strings is preferable to the explicit
matching because it makes programs easier to modify. If it becomes necessary to change the
size of an array or string in a COM block, it only needs to be changed in one statement,

the one that defines the COM block. If all other occurrences of the COM block use the ()
specifier for arrays and omit the length field in strings, none of those statements will have to
be changed as a result of changing an array or string size.

Context Switching

A subprogram has its own context or state that is distinct from a main program and all

other subprograms. In between the time a CALL statement is executed (or an FN name

is used) and the time the first statement in the subprogram is executed, the computer
performs a “prerun” on the subprogram. This “entry” phase is what defines the context of the
subprogram. The actions performed at subprogram entry are similar, but not identical, to the
actual prerun performed at the beginning of a program. Here is a summary:

m The calling context has a DATA pointer that points to the next item in the current DATA
block that will be used the next time a READ is executed (assuming of course that a
DATA block even exists in the calling program). This pointer is saved away whenever a
subprogram is called, and then the DATA pointer is reset to the first DATA statement in
the new subprogram context.

m The RETURN stack for any GOSUBs in the current context is saved and set to the empty
stack in the new context.

m The system priority of the current context is saved, and the called subprogram inherits this
value. Any change to the system priority that takes place within the subprogram (or any of
the subprograms that it calls in turn) is purely local, since the system priority is restored to
its original value upon subprogram exit.

m Any event-initiated GOTO/GOSUB statements are disabled for the duration of the
subprogram. If any of the specified events occur, this will be logged, but no action will
be taken. (The fact that an event did occur will be logged, but only once—multiple
occurrences of the same event will not be serviced.) Upon exiting the subprogram, these
event-initiated conditions will be restored to active status, and if any of these events
occurred while the subprogram was being executed, the proper branches will be taken.

m Any event-initiated CALL/RECOVER statements are saved away upon entering a
subprogram, but the subprogram still inherits these ON conditions since CALL/RECOVER
are global in scope. However, it is legal for the subprogram to redefine these conditions, in
which case the original definitions are restored upon subprogram exit.

m The current DEG or RAD mode for trigonometric operations and graphics rotations is
stored away. The subprogram will inherit the current DEG or RAD setting, but if it gets
changed within the subprogram, the original setting will be restored when the subprogram
is exited.

Subprograms and 6-9
User-Defined Functions

Variable Initialization

Space for all arrays and variables declared is set aside, whether they are declared explicitly
with DIM, REAL, or INTEGER, or implicitly just by using the variable. The entire value
area is initialized as part of the subprogram’s prerun. All numeric values are set to zero, all
strings are set to the null string, and all I/O path names are set to undefined.

Subprograms and Softkeys

ON KEYs are a special case of the event-initiated conditions that are part of context
switching. They are special because they are the only event conditions that give visible
evidence of their existence to the user through the softkey labels at the bottom of the CRT.
These key labels are saved away just as the event conditions are, and the labels get restored to
their original state when the subprogram is exited, regardless of any changes the subprogram
made in the softkey definitions. This means the programmer doesn’t have to make any special
allowances for reenabling his keys and their associated labels after calling a subprogram that
changes them—the language system handles this automatically.

Subprograms and the RECOVER Statement

The event-initiated RECOVER statement allows the programmer to cause the program to
resume execution at any given place in the context defining the ON ... RECOVER as a result
of a specified event occurring, regardless of subprogram nesting.

Thus, if a main program executes the ON part of an ON ... RECOVER statement (for
example a softkey or an external interrupt from the SRQ line on an GPIB), and then calls a
subprogram, which calls a subprogram, which calls a subprogram, etc., program execution can
be caused to immediately resume within the main program as a result of the specified event
happening.

Editing Subprograms

Inserting Subprograms

There are some rules to remember when inserting SUB and DEF FN statement in the middle
of the program. All DEF FN and SUB statements must be appended to the end of the
program. If you want to insert a subprogram in the middle of your program because your
prefer to see it listed in a given order, you must perform the following sequence:

SAVE the program.

Delete all lines above the point where you want to insert your subprogram.
SAVE the remaining segment of the program in a new file.

GET the original program stored in step 1.

Delete all lines below the point where you want to insert your subprogram.

Type in the new subprogram.

N gk W=

Do a GET from the new file created in step 3.

6-10 Subprograms and
User-Defined Functions

Loading Subprograms

If you already have subprograms stored in PROG file(s), there are several options to choose
from in loading them into memory:

m If you want to load a specific subprogram from a PROG file, you would use something like
this:

LOADSUB Sub_name FROM "File"

m If you want to load all the subprograms from a specific PROG file, you would use the
LOADSUB ALL FROM statement.

LOADSUB ALL FROM "File"

m And, if you wanted to see which subprograms are still missing or load all those still needed,
you would use something like this:

LOADSUB FROM "File"
(Note that this statement is not programmable; that is, it cannot appear in a program line.)

You can also use INMEM to determine if a subprogram is already loaded. For example:

IF NOT INMEM ("Mysub")
THEN LOADSUB ALL FROM "MYSUBS"

Loading Subprograms One at a Time

Suppose your program has several options to select from, and each one needs many
subprograms and much data. All the options, however, are mutually exclusive; that is,
whichever option you choose, it does not need anything that the other options use. This
means that you can clean up everything you’ve used when you are finished with that option.

If all of your subprograms can be put into one file, you can selectively retrieve them as needed
with this sort of statement:

LOADSUB Subprog_1 FROM '"SUBFILE"

LOADSUB Subprog_2 FROM "SUBFILE"

LOADSUB FNNumeric_fn FROM "SUBFILE"
LOADSUB FNString_function$ FROM 'SUBFILE"

Note that only one subprogram per line can be loaded with this form of LOADSUB. If, for
any program option, you need so many subprograms that this method would be cumbersome,
you could use the following form of the command.

Loading Several Subprograms at Once

For this method, you store all the subprograms needed for each option in its own file. Then,
when the program’s user selects Program Option 1, you could have this line of code execute:

LOADSUB ALL FROM '"OPT1SUBFL"

and if the user selects Option 2,

LOADSUB ALL FROM "OP2SUBFL"
and so forth.

There is one other form of LOADSUB, but it cannot be used programmatically. This is
covered next.

Subprograms and 6-11
User-Defined Functions

Loading Subprograms Prior to Execution

In the LOADSUB FROM form, neither ALL nor a subprogram name is specified in the
command. This is used prior to program execution. It looks through the program in memory,
notes which subprograms are needed (referenced) but not loaded, goes to the specified file
and attempts to load all such subprograms. If the subprograms are found in the file, they

are loaded into memory; if they are not, an error message is displayed and a list of the
subprograms still needed but not found in the file is printed.

This can be handy in two ways. The first and obvious way is that subprograms can be loaded
quickly. The other way is this: Type a LOADSUB FROM command where the file name

is a file in which you know there are none of the subprograms you need (perhaps a null
PROG file). Of course, no subprograms will be loaded, but a list of those yet undefined will be
printed.

Any COM blocks declared in subprograms brought into memory with a LOADSUB by a
running program must already have been declared. LOADSUB does not allow new COM
blocks to be added to the ones already in memory. Furthermore, any COM blocks in the
subprograms brought in must match a COM block in memory in both the number and type of
the variables. Otherwise, an error occurs.

Note If a main program is in a file referenced by a LOADSUB, it will not be loaded;
i only subprograms can be loaded with LOADSUB. Main programs are loaded
* with the LOAD command.

With all this talk of loading subprograms from files, one question arises: How do you get the
subprograms in the file? Easily: type in the subprograms you want to be in one file, and then
STORE them with the desired file name. You must use STORE and not SAVE, because the
LOADSUB looks for a PROG-type file. If you can’t type in your subprograms error-free the
first time (and who can?), you can type in your program with all the subprograms it needs
and debug them. After storing everything in a file for safekeeping, delete what you do not
want in the file, and STORE everything else in the subprogram file from which you will later
do a LOADSUB. In this way, you know the subprograms will work when you load them.

Deleting Subprograms

It is not possible to delete either DEF FN or SUB statements unless you first delete all the
other lines in the subprogram. This includes any comments after the SUBEND or FNEND.
Another way to delete DEF N and SUB statements is to delete the entire subprogram, up to,
but not including, the next SUB or DEF FN line (if any).

Merging Subprograms

If you want to merge two subprograms together, first examine the two subprograms carefully
to insure that you don’t introduce conflicts with variable usage and logic flow. If you've
convinced yourself that merging the two subprograms is really necessary, here’s how you go
about it:

1. SAVE everything in your program after the SUB or DEF FN statement you want to delete.
2. Delete everything in your program from the unwanted SUB statement to the end.

3. GET the program segment you saved in step 1 back into memory, taking care to number
the segment in such a way as not to overlay the part of the program already in memory.

6-12 Subprograms and
User-Defined Functions

SUBEND and FNEND

The SUBEND and FNEND statements must be the last statements in a SUB or function
subprogram, respectively. These statements don’t ever have to be executed; SUBEXIT and
RETURN are sufficient for exiting the subprogram. (If SUBEND is executed, it will behave
like a SUBEXIT. If FNEND is executed, it will cause an error.) Rather, SUBEND and
FNEND are delimiter statements that indicate to the language system the boundaries between
subprograms. The only exceptions to this rule are the comment statements “REM” and “!”.
They are allowed after SUBEND and FNEND.

Recursion

Both function subprograms and SUB subprograms are allowed to call themselves. This is
known as recursion. Recursion is a useful technique in several applications.

The simplest example of recursion is the computation of the factorial function. The factorial
of a number N is denoted by N! and is defined to be N x (N—1)! where 0!=1 by definition.
Thus, N! is simply the product of all the whole numbers from 1 through N inclusive. A
recursive function that computes N factorial is

100 DEF FNFactorial (INTEGER N)
110 IF N=0 THEN RETURN 1

120 RETURN N*FNFactorial(N-1)
130 FNEND

Subprograms and 6-13
User-Defined Functions

Data Storage and Retrieval

This chapter describes some useful techniques for storing and retrieving data.

m First we describe how to store and retrieve data that is part of the HP Instrument BASIC
program. With this method, DATA statements specify data to be stored in the memory
area used by HP Instrument BASIC programs; thus, the data is always kept with the
program, even when the program is stored in a mass storage file. The data items can be
retrieved by using READ statements to assign the values to variables. This is a particularly
effective technique for small amounts of data that you want to maintain in a program file.

m For larger amounts of data and for data that will be generated or modified by a program,
mass storage files are more appropriate. Files provide means of storing data on mass storage
devices. The two types of data files available with HP Instrument BASIC are described in
this chapter.

o ASCII - used for general text and numeric data storage. (These are the interchange -
method with many other Agilent systems.)

o BDAT—provide the most compact and flexible data storage mechanism.

More details about these files, including how to choose a file type and how to access each, are
described in this chapter.

Storing Data in Programs

This section describes a number of ways to store values in memory. In general, these
techniques involve using program variables to store data. The data are kept with the program
when it is stored on a mass storage device (with SAVE). These techniques allow extremely
fast access of the data. They provide good use of the computer’s memory for storing relatively
small amounts of data.

Storing Data in Variables

Probably the simplest method of storing data is to use a simple assignment, such as the
following LET statements:

100 LET Cm_per_inch=2.54
110 Inch_per_cm=1/Cm_per_inch

The data stored in each variable can then be retrieved simply by specifying the variable’s
name. This technique works well when there are relatively few items to be stored or when
several data values are to be computed from the value of a few items. The program will
execute faster when variables are used than when expressions containing constants are used;
for instance, using the variable Inch_per_cm in the preceding example would be faster than

Data Storage and Retrieval 7-1

using the constant expression 1/2.54. In addition, it is easier to modify the value of an item
when it appears in only one place (i.e., in the LET statement).

Data Input by the User

You also can assign values to variables at run-time with the INPUT statement as shown in the
following examples.

100 INPUT "Type in the value of X, please.",Id
200 DISP "Enter the value of X, Y, and Z.";
210 INPUT "",X,Y,Z

Note that with this type of storage, the values assigned to the corresponding variables are not
kept with the program when it is stored; they must be entered each time the program is run.
This type of data storage can be used when the data are to be checked or modified by the user
each time the program is run. As with the preceding example, the data stored in each variable
can then be retrieved simply by specifying the variable’s name.

Using DATA and READ Statements

The DATA and READ statements provide another technique for storing and retrieving data
from the computer’s read/write (R/W) memory. The DATA statement allows you to store a
stream of data items in memory, and the READ statement allows you retrieve data items from
the stream.

You can have any number of READ and DATA statements in a program in any order you
want. When you RUN a program, the system concatenates all DATA statements in the same
context into a single “data stream.” Each subprogram has its own data stream. The following
DATA statements distributed in a program would produce the following data stream.

100 DATA 1,A,50
200 DATA "BB",20,45

300 DATA X,Y,77

pata sTrReam: | 1| a [solesf20]4s] x| v [77]

As you can see from the example above, a data stream can contain both numeric and string
data items; however, each item is stored as if it were a string.

Each data item must be separated by a comma and can be enclosed in optional quotes.
Strings that contain a comma, exclamation mark, or quote mark must be enclosed in quotes.
In addition, you must enter two quote marks for every one you want in the string. For
example, to enter the string QUOTE“QUO”TE into a data stream, you would write

100 DATA "QUOTE""QUO""TE"

7-2 Data Storage and Retrieval

To retrieve a data item, assign it to a variable with the READ statement. Syntactically,
READ is analogous to DATA; but instead of a data list, you use a variable list. For instance,
the statement

100 READ X,Y,Z$

would read three data items from the data stream into the three variables. Note that the first
two items are numeric and the third is a string variable.

Numeric data items can be READ into either numeric or string variables. If the numeric data
item is of a different type than the numeric variable, the item is converted (i.e., REALSs are
converted to INTEGERs, and INTEGERs to REALs). If the conversion cannot be made, an
error is returned. Strings that contain non-numeric characters must be READ into string
variables. If the string variable has not been dimensioned to a size large enough to hold the
entire data item, the data item is truncated.

The system keeps track of which data item to READ next by using a “data pointer.” Every
data stream has its own data pointer that points to the next data item to be assigned to the
next variable in a READ statement. When you run a program segment, the data pointer is
placed initially at the first item of the data stream. Every time you READ an item from the
stream, the pointer is moved to the next data item. If a subprogram is called by a context,
the position of the data pointer is recorded and then restored when you return to the calling
context.

Starting from the position of the data pointer, data items are assigned to variables one by one
until all variables in a READ statement have been given values. If there are more variables
than data items, the system returns an error, and the data pointer is moved back to the
position it occupied before the READ statement was executed.

Examples

The following example shows how data is stored in a data stream and then retrieved. Note
that DATA statements can come after READ statements even though they contain the data
being READ. This is because DATA statements are linked during program prerun, whereas
READ statements aren’t executed until the program actually runs.

10 DATA November,26

20 READ Month$,Day,Year$

30 DATA 1981,"The date is"

40 READ Str$

50 Print Str$;Month$,Day,Year$
60 END

prints

The date is November 26 1981

Storage and Retrieval of Arrays

In addition to using READ to assign values to string and numeric variables, you can also
READ data into arrays. The system will match data items with variables one at a time
until it has filled a row. The next data item then becomes the first element in the next row.
You must have enough data items to fill the array or you will get an error. In the following
example, we show how DATA values can be assigned to elements of a 3-by-3 numeric array.

Data Storage and Retrieval 7-3

10 DIM Examplei(2,2)

20 DATA 1,2,3,4,5,6,7,8,9,10,11

30 READ Examplel (*)

40 PRINT USING "3(K,X),/";Examplel (%)
50 END

prints

N e
0 1N
(o B«) RV

The data pointer is left at item 10; thus, items 10 and 11 are saved for the next READ
statement.

Moving the Data Pointer

In some programs, you will want to assign the same data items to different variables. To do
this, you have to move the data pointer so that it is pointing at the desired data item. You

i can accomplish this with the RESTORE statement. If you don’t specify a line number or
label, RESTORE returns the data pointer to the first data item in the data stream. If you do
include a line identifier in the RESTORE statement, the data pointer is moved to the first
data item in the first DATA statement at or after the identified line. The example below
illustrates how to use the RESTORE statement.

100 DIM Array1(1:3)
110 DIM Array2(0:4)
120 DATA 1,2,3,4
130 DATA 5,6,7

! Dimensions a 3-element array.
! Dimensions a 5-element array.
! Places 4 items in stream.
! Places 3 items in stream.
140 READ A,B,C ! Reads first 3 items in stream.
150 READ Array2(*) ! Reads next 5 items in stream.
160 DATA 8,9 ! Places 2 items in stream.
!
1
1
!
!
[}

170
180 RESTORE Re-positions pointer to 1st item.

Reads first 3 items in stream.
Moves data pointer to item '"8".
Reads "8".

190 READ Array1(*)
200 RESTORE 140
210 READ D

220 !
230 PRINT "Arrayl contains:';Arrayl(*);" "
240 PRINT "Array2 contains:';Array2(*);" "
250 PRINT "A,B,C,D equal:";A;B;C;D

260 END

Arrayl contains:

123
Array2 contains: 4 5 6 7 8
A,B,C,D equal: 1 2 3 8

7-4 Data Storage and Retrieval

File Input and Output (1/0)

The rest of this chapter describes the second general class of data storage and retrieval—that
of using mass storage files. It presents HP Instrument BASIC programming techniques used
for accessing files.

m The first section gives a brief introduction to the general steps you might take to
o choose a file type
o store data in any file

m Subsequent sections describe details of these steps with ASCII, BDAT, and HP-UX or DOS
files.

Brief Comparison of Available File Types

With HP Instrument BASIC, there are three different types of files in which you can store and
retrieve data, ASCII, BDAT, and HPUX or DOS. Understanding the characteristics of each
file type will help you choose the one best suited for your specific application.

Note Note that not every system will implement all of these file types.

v

m ASCII—used for general text and numeric data storage.

Here are the advantages of this type of file:

o There is less chance of reading the contents into the wrong data type (which is possible
with BDAT and HP-UX files). Thus, it is the easiest file to read when you don’t know
how it was written.

o The file format provides fairly compact storage for string data.

o ASCII files are compatible with other HP computers that support this file type. (The
full name of ASCII files is “LIF ASCIL.” LIF stands for Logical Interchange Format, a
directory and data storage format that is used by many HP computers.)

o ASCII files containing HP Instrument BASIC program lines can be read with GET and
written with SAVE.

The main disadvantages of ASCII files are that:
o They can be accessed serially but not randomly.

o They can be written in only default ASCII format (no formatting is possible, and the
data cannot be stored in internal representation). It is possible, however, to format data
by first sending it to a string variable (with OUTPUT ... USING), and then OUTPUT
this string’s contents to the file. (See the subsequent section called “Formatted OUTPUT
with ASCII Files” for examples.)

m BDAT—provide the most compact and flexible data storage mechanism.
These files have several advantages:
o They can be randomly or serially accessed.

o More flezibility in data formats and access methods.

Data Storage and Retrieval 7-5

o Faster transfer rates.
o Generally more space-efficient than ASCII files (except for string data items).

o They allow data to be stored in ASCII format, internal format, or in a “custom” format
(which you can define with IMAGE specifiers).

The disadvantages are that:

o You must know how the data items were written (as INTEGERs, REALs, strings, etc.) in
order to correctly read the data back.

o These data files cannot be interchanged with as many other systems as can ASCII files.

m HP-UX-—similar to BDAT files in structure, but also have some of the advantages of ASCII
files:

o Like BDAT files, they can also be accessed randomly or serially, and they can use ASCII,
internal, or custom data representations.

o Like ASCII files, they are useful for data-file interchange; however, the set of computers
with which they can be interchanged is slightly different than LIF ASCII files. HP-UX
files can be interchanged with any other system that uses the Hierarchical File System
(HFS) format for mass storage volumes (such as HP-UX systems, and HP Series 200/300
Pascal systems beginning with version 3.2).

o HP-UX files containing HP Instrument BASIC program lines can be read with GET and
written with RE-SAVE.

m DOS—identical to HP-UX files, they provide file compatibility with MS-DOS.

If in doubt about the type of file to use, choose a BDAT file because of its speed and compact
data storage.

Creating Data Files

You can use three BASIC statements to create data files. Use CREATE ASCII to create an
ASCII file, CREATE BDAT to create a BDAT file, or simply CREATE to create an HP-UX or DOS
file. Note that the CREATE statement creates a DOS file on a DOS file system. Otherwise, it
creates an HP-UX file.

For example, the statements

CREATE ASCII "Text",100
CREATE BDAT "Text",100
CREATE "Data_file",100

all create a data file with a length of 100 records in the current mass storage volume and
directory. The file type is ASCII for the first statement, BDAT for the second, and HP-UX or
DOS for the third.

Note that you can use CREATE, CREATE ASCII, and CREATE BDAT to create files
within LIF volumes, HFS volumes and DOS volumes. Each of these statements contains a
file specifier that can include a volume and directory specification. If no volume or directory
is specified, it creates the file in the current volume and directory as determined by the last

MASS STORAGE IS statement.

7-6 Data Storage and Retrieval

Overview of File 1/0

Storing data in files requires a few simple steps. The following program segment shows a
simple example of placing several items in a data file.

100 REAL Real_array1(1:50,1:25),Real_array2(1:50,1:25)
110 INTEGER Integer_var
120 DIM String$[100]

390 ! Specify default mass storage.

400 MASS STORAGE IS ":,700,1"

410 !

420 ! Create BDAT data file with ten (256-byte) records
430 ! on the specified mass storage device (:,700,1).
440 CREATE BDAT "File_1",10

450 !

460 ! Assign (open) an I/0 path name to the file.

470 ASSIGN QPath_1 TO "File_1"

480 !

490 ! Write various data items into the file.

500 OUTPUT @Path_1;'"Literal" ! String literal.
510 OUTPUT @Path_1;Real_arrayl(*) ! REAL array.

520 OUTPUT @Path_1;255 ! Single INTEGER.
630 !

540 ! Close the I/0 path.
5560 ASSIGN QPath_1 TO *

790 ! Open another I/0 path to the file (assume same default drive).
800 ASSIGN QF_1 TO "File_1"

810 !

820 ! Read data into another array (same size and type).

830 ENTER @QF_1;String_var$! Must be same data types

840 ENTER QF_1;Real_array2(x*) ! used to write the file.

850 ENTER @F_1;Integer_var ! "Read it like you wrote it."
860 !

870 ! Close I/0 path.
880 ASSIGN QF_1 TO =*

Line 400 specifies the default mass storage device, that is to be used whenever a mass storage
device is not explicitly specified during subsequent mass storage operations. The term mass
storage volume specifier (msvs) describes the string expression used to uniquely identify which
device is to be the mass storage. In this case, “:,700,1” is the msvs.

To store data in mass storage, a data file must be created (or already exist) on the mass
storage media. In this case, line 440 creates a BDAT file; the file created contains 10 defined
records of 256 bytes each. (Defined records and record size are discussed later in this chapter.)

The term file specifier describes the string expression used to uniquely identify the file. In
this example, the file specifier is simply File_1, which is the file’s name. If the file is to be
created (or already exists) on a mass storage device other than the default mass storage, the
appropriate mass storage unit specifier (msus) must be appended to the file name. If that
device has a hierarchical directory format (such as HFS or MS-DOS discs), then you may
also have to specify a directory path (such as /USERS/MARK/PROJECT_1 for LIF or
\USERS\MARK\PROJECT_1 for MS-DOS).

Data Storage and Retrieval 7-7

Then, in order to store data in (or retrieve data from) the file, you must assign an I/O path
name to the file. Line 470 shows an example of assigning an I/O path name to the file (also
called opening an I/O path to the file). Lines 500 through 520 show data items of various
types being written into the file through the I/O path name.

The I/0 path name is closed after all data have been sent to the file. In this instance, closing
the I/O path may have been optional, because a different I/O path name is assigned to the
file later in the program. (All I/O path names are automatically closed by the system at the
end of the program.) Closing an I/O path to a file updates the file pointers.

Since these data items are to be retrieved from the file, another ASSIGN statement is
executed to open the file (line 800). Notice that a different I/O path name was arbitrarily
chosen. Opening this I/O path name to the file sets the file pointer to the beginning of the
file. (Re-opening the I/O path name @File_1 would have also reset the file pointer.)

Notice also that the msvs is not included with the file name. This shows that the current
default mass storage device, here “:,700,1”, is assumed when a mass storage device is not
specified.

The subsequent ENTER statements read the data items into variables; with BDAT and
HP-UX files, the data type of each variable must match the data type type of each data item.
With ASCII files, for instance, you can read INTEGER items into REAL variables and not
have problems.

This is a fairly simple example, however, it shows the general steps you must take to access
files.

A Closer Look at General File Access

Before you can access a data file, you must assign an I/O path name to the file. Assigning

an I/O path name to the file sets up a table in computer memory that contains various
information describing the file, such as its type, which mass storage device it is stored on, and
its location on the media. The I/O path name is then used in I/O statements (OUTPUT, and
ENTER) that move the data to and from the file.

Opening an 1/O Path

I/O path names are similar to other variable names, except that I/O path names are preceded
by the “@” character. When an I/O path name is used in a statement, the system looks up
the contents of the I/O path name and uses them as required by the situation.

To open an I/O path to a file (to set the validity flag to Open), assign the I/O path name to a
file specifier by using an ASSIGN statement. For example, the statement

ASSIGN @Pathl TO "Example"

assigns an I/O path name called “@Pathl” to the file “Example”. The file that you

open must already exist and must be a data file. If the file does not satisfy one of these
requirements, the system will return an error. If you do not use an msus in the file specifier,
the system will look for the file on the current MASS STORAGE IS device. If you want to
access a different device, use the msus syntax described earlier. For instance, the statement

ASSIGN @Path2 TO "Example:HP9122,700"

opens an I/O path to the file “Example” on the specified mass storage device. You must
include the protect code or password, if the LIF file has one.

7-8 Data Storage and Retrieval

Once an I/O path has been opened to a file, you always use the path name to access the file.
An I/0O path name is only valid in the context in which it is opened, unless you pass it as a
parameter or put it in the COM area. To place a path name in the COM area, simply specify
the path name in a COM statement before you ASSIGN it. For instance, the following two
statements would declare an I/O path name in an unnamed COM area and then open it:

100 COM @Path3
110 ASSIGN @Path3 TO "Filel"

Assigning Attributes

When you open an I/O path, certain attributes are assigned to it that define the way data is
to be read and written. There are two attributes that control how data items are represented:
FORMAT ON and FORMAT OFF.

m With FORMAT ON, ASCII data representations are used.
m With FORMAT OFF, HP Instrument BASIC’s internal data representations are used.

Additional attributes are available that provide control of such functions as changing

end-of-line (EOL) sequences. (See “ASSIGN” in HP Instrument BASIC Language Reference
for further details.)

As mentioned in the tutorial section, BDAT files can use either data representation; however,
ASCII files permit only ASCII-data format. Therefore, if you specify FORMAT OFF for an
I/O path to an ASCII file, the system ignores it. The following ASSIGN statement specifies a
FORMAT attribute:

ASSIGN QPathl TO "Filel" ;FORMAT OFF

If Filel is a BDAT or HP-UX file, the FORMAT OFF attribute specifies that the internal
data formats are to be used when sending and receiving data through the I/O path. If the
file is of type ASCII, the attribute will be ignored. Note that FORMAT OFF is the default
FORMAT attribute for BDAT and HP-UX files.

Executing the following statement directs the system to use the ASCII data representation
when sending and receiving data through the I/O path:

ASSIGN @Path2 TO "File2";FORMAT ON

If File2 is a BDAT or HP-UX file, data will be written using ASCII format, and data read
from it will be interpreted as being in ASCII format. For an ASCII file, this attribute is
redundant since ASCII-data format is the only data representation allowed anyway.

If you want to change the attribute of an I/O path, you can do so by specifying the I/O path
name and attribute in an ASSIGN statement while excluding the file specifier. For instance, if
you wanted to change the attribute of @Path2 to FORMAT OFF, you could execute

ASSIGN @QPath2;FORMAT OFF
Alternatively, you could reenter the entire statement
ASSIGN QPath2 TO "File2" ;FORMAT OFF

These two statements, however, are not identical. The first one only changes the FORMAT
attribute. The second statement resets the entire I/O path table (e.g., resets the file pointer
to the beginning of the file).

Data Storage and Retrieval 7-9

Closing I/O Paths

I/O path names not in the COM area are closed whenever the system moves into a stopped
state (e.g., STOP, END, SCRATCH, EDIT, etc.). I/O path names local to a context are
closed when control is returned to the calling context. Re-ASSIGNing an I/O path name will
also cancel its previous association.

You can also explicitly cancel an I/O path by ASSIGNing the path name to an * (asterisk).
For instance, the statement

ASSIGN @Path2 TO *

closes @Path2. @Path2 cannot be used again until it is reassigned. You can reassign a path
name to the same file or to a different file.

7-10 Data Storage and Retrieval

A Closer Look at Using ASCII Files

You have already been introduced to general file I/O techniques in the example of writing and
reading a BDAT file in the preceding section. This section gives you a closer look at ASCII
file I/O techniques.

Example of ASCII File 1/O

Storing data in ASCII files requires a few simple steps. The following program segment shows
a simplistic example of placing several items in an ASCII data file. Note that it is nearly
identical to the first example in the preceding “Overview of File I/O” section, except for
changes to the CREATE statement (line 440) and file name.

100
110
120

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

790
800
810
820
830
840
850
860

870
880

REAL Real_array1(1:50,1:25),Real_array2(1:50,1:25)
INTEGER Integer_var
DIM String$[100]

! Specify "default" mass storage device.
MASS STORAGE IS ":,700,1"

[}

! Create ASCII data file with 10 sectors

! on the "default'" mass storage device.
CREATE ASCII "File_2",10

'

! Assign (open) an I/0 path name to the file.
ASSIGN @Path_1 TO "File_2"

!

! Write various data items into the file.

OUTPUT @Path_1;"Literal" ! String literal.
OUTPUT @Path_1;Real_arrayl(*) ! REAL array.
OUTPUT @Path_1;255 ! Single INTEGER.

! Close the I/0 path.
ASSIGN @QPath_1 TO *

! Open another I/0 path to the file (assume same default drive).
ASSIGN @F_1 TO "File_2"

'

! Read data into another array (same size and type).

ENTER @F_1;String_var ! Must be same data types.

ENTER QF_1;Real_array2(*)

ENTER QF_1;Integer_var

'

! Close I/0 path.
ASSIGN QF_1 TO =*

Data Storage and Retrieval 7-11

Data Representations in ASCII Files

In an ASCII file, every data item, whether string or numeric, is represented by ASCII
characters; one byte represents one ASCII character. Each data item is preceded by a
two-byte length header that indicates how many ASCII characters are in the item. However,
there is no “type” field for each item; data items contain no indication (in the file) as to
whether the item was stored as string or numeric data. For instance, the number 456 would
be stored as follows in an ASCII file:

Lolsl [sfsfe] [eeey

N N —

LENGTH ASCI
HEADER = copES
BINARY 4

Note that there is a space at the beginning of the data item. This space signifies that the
number is positive. If a number is negative, a minus sign precedes the number. For instance,
the number —456, would be stored as follows:

Lof#]=lslsle] [ey

vw
LENGTH q¢
HEADER = (opes
BINARY 4

If the length of the data item is an odd number, the system “pads” the item with a space to
make it come out even. The string “ABC”, for example, would be stored as follows:

Lofsfalefcle] [ooy
Ny e s, e’

LENGTH ASCH
HEADER = CODES

BINARY 3

There is often a relatively large amount of overhead for numeric data items. For instance, to
store the integer 12 in an ASCII file requires the following six bytes:

Lols] [ri]afeo] [ooy
N N !

LENGTH ASCI|

HEADER = CODES

BINARY 3

Similarly, reading numeric data from an ASCII file can be a complex and relatively slow
operation. The numeric characters in an item must be entered and evaluated individually by
the system’s “number builder” routine, which derives the number’s internal representation.

7-12 Data Storage and Retrieval

(Keep in mind that this routine is called automatically when data are entered into a numeric
variable.) For example, suppose that the following item is stored in an ASCII file:

[ofofalefe]=] [i]ofalx[v] [ee3
\ A - J
LENGTH ASCI
HEADER = CODES
BINARY 10

Although it may seem obvious that this is not a numeric data item, the system has no way
of knowing this since there is no type-field stored with the item. Therefore, if you attempt to
enter this item into a numeric variable, the system uses the number-builder routine to strip
away all non-numeric characters and spaces and assign the value 123 to the numeric variable.
When you add to this the intricacies of real numbers and exponential notation, the situation
becomes more complex. For more information about how the number builder works, see the
chapter called “Entering Data” in HP Instrument BASIC Interfacing Techniques.

Because ASCII files require so much overhead (for storage of “small” items), and because
retrieving numeric data from ASCII files is sometimes a complex process, they are not the
preferred file type for numeric data when compactness is important. However, ASCII files are
interchangeable with many other Agilent products.

In this chapter, we refer to the data representation described above as ASCII-data format.

As mentioned earlier, you can also store data in BDAT files in ASCII format (by using the
FORMAT ON attribute). Be careful not to confuse the ASCII-file type with the ASCII-data
format. The ASCII format used in BDAT files when FORMAT ON is specified differs from
the format used in ASCII files in several respects. Each item output to an ASCII file has its
own length header; there are no length headers in a FORMAT ON BDAT file. At the end of
each OUTPUT statement an end-of-line sequence is written to a FORMAT ON BDAT file
unless suppressed by an IMAGE or EOL OFF. No end-of-line sequence is written to an ASCII
file at the end of an OUTPUT statement.

In general, you should only use ASCII files when you want to transport data between HP
Instrument BASIC and other machines. There may be other instances where you will want to
use ASCII files, but you should be aware that they cause a noticeable transfer rate degradation
compared to BDAT and HP-UX files (especially for numeric data items).

Formatted OUTPUT with ASCII Files

As mentioned in the “Brief Comparison of File Types,” you cannot format items sent to
ASCII files; that is, you cannot use the following statement with an ASCII file:

OUTPUT @Ascii_file USING "#,DD.D,4X,5A";Number,String$

You can, however, direct the output to a string variable first, and then OUTPUT this
formatted string to an ASCII file:

OUTPUT String_var$ USING "#,DD.D,4X,5A" ;Number,String$
OUTPUT @Ascii_file;String_var$

When a string variable is specified as the destination of data in an OUTPUT statement,
source items are evaluated individually and placed into the variable according to the free-field
rules or the specified image, depending on which type of OUTPUT statement is used. Thus,

Data Storage and Retrieval 7-13

item terminators may or may not be placed into the variable. The ASCII data representation
is always used during outputs to string variables; in fact, data output to string variables is
ezactly like that sent to devices through I/O paths with the FORMAT ON attribute.

When using OUTPUT to a string, characters are always placed into the variable beginning
at the first position; no other position can be specified as the beginning position at which
data will be placed. Thus, random access of the information in string variables is not allowed
from OUTPUT and ENTER statements; all data must be accessed serially. For instance,

if the characters “1234” are output to a string variable by one QOUTPUT statement, and

a subsequent OUTPUT statement outputs the characters “5678” to the same variable,

the second output does not begin where the first one left off (i.e., at string position five).
The second OUTPUT statement begins placing characters in position one, just as the first
OUTPUT statement did, overwriting the data initially output to the variable by the first
OUTPUT statement.

The string variable’s length header (2 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before
all items have been output, an error is reported; however, the string contains the first n
characters output (where n is the dimensioned length of the string).

The following example program shows how outputs to string variables can be used to reduce
the overhead required in ASCII data files. To do this, the program compares two possible
methods for storing data in an ASCII data file. The first method stores 64 two-byte items

in a file one at a time. Each two-byte item is preceded by a two-byte length header. The
second method stores 64 two-byte items in a string array that is output to a string variable.
The string variable is then output to an ASCII data file with only one two-byte length header
being used. Since the second method used only one two-byte length header to store 64
two-byte items, it can easily be seen that the second method required less overhead. Note that
the second method is also the only way to format data sent to ASCII data files.

100 PRINTER IS CRT

110 !

120 ! Create a file 1 record long (=256 bytes).
130 ON ERROR GOTO File_exists

140 CREATE ASCII "TABLE",1

150 File_exists: OFF ERROR

160 !

170 !

180 ! First method outputs 64 items individually..
190 ASSIGN @Ascii TO "TABLE"

200 FOR Item=1 TO 64 ! Store 64 2-byte items.

210 OUTPUT @Ascii;CHR$(Item+31)&CHRS (64+RND*32)
220 STATUS @Ascii,5;Rec,Byte
230 DISP USING Image_1;Item,Rec,Byte

240 NEXT Item

250 Image_1: IMAGE "Item ",DD," Record ",D," Byte ",3D
260 DISP

270 Bytes_used=256*(Rec-1)+Byte-1

280 PRINT Bytes_used;" bytes used with 1st method."

290 PRINT

300 PRINT

310 !

320 !

330 ! Second method consolidates items.

340 DIM Array$(1:64)[2],String$[128]
350 ASSIGN @Ascii TO "“TABLE"
360 !

7-14 Data Storage and Retrieval

370 FOR Item=1 TO 64

380 Array$(Item)=CHR$(Item+31) ZCHR$ (64+RND*32)

390 NEXT Item

400 !

410 OUTPUT String$;Array$(*); ! Consolidate in string variable.
420 OUTPUT @Ascii;String$! OUTPUT to file as 1 item.

430 !

440 STATUS @Ascii,5;Rec,Byte

450 Bytes_used=256*(Rec-1)+Byte-1

460 PRINT Bytes_used;" bytes used with 2nd method."
470 !

480 END

The program shows many of the features of using ASCII files and string variables. The first
method of outputting the data items shows how the file pointer varies as data are sent to the
file. Note that the file pointer points to the nezt file position at which a subsequent byte will
be placed. In this case, it is incremented by four by every OUTPUT statement (since each
item is a two-byte quantity preceded by a two-byte length header).

The program could have used a BDAT file, that would have resulted in using slightly less
disc-media space; however, using BDAT files usually saves much more disc space than would
be saved in this example. The program does not show that ASCII files cannot be accessed
randomly; this is one of the major differences between using ASCII and BDAT (and HP-UX)
files.

Using VAL$

The VAL$ function (or a user-defined function subprogram) and outputs made to string
variables can be used to generate the string representation of a number. The advantage of
the latter method is you can explicitly specify the number’s image. The following program
compares a string generated by the VALS$ function to that generated by outputting a number
to a string variable:

100 X=12345678

110 !

120 PRINT VAL$(X)

130 !

140 OUTPUT Val$ USING "#,3D.E";X
150 PRINT Val$

160 !

170 END

prints

1.2345678E+7
123.E+05

Formatted ENTER with ASCII Files

Data is entered from string variables in much the same manner as output to the variable. For
example,

ENTER @File;String$
ENTER String$;Varl, Var2$

All ENTER statements that use string variables as the data source interpret the data
according to the FORMAT ON attribute. Data is read from the variable beginning at the
first string position; if a subsequent ENTER statement reads characters from the variable,

Data Storage and Retrieval 7-15

the read also begins at the first position. If more data is to be entered from the string than
is contained in the string, an error is reported; however, all data entered into the destination
variable(s) before the end of the string was encountered remain in the variable(s) after the
erTor OCCurs.

When entering data from a string variable, the computer keeps track of the number

of characters taken from the variable and compares it to the string length. Thus,
statement-termination conditions are not required; the ENTER statement automatically
terminates when the last character is read from the variable. However, item terminators are
still required if the items are to be separated and the lengths of the items are not known. If
the length of each item is known, an image can be used to separate the items.

A Closer Look at BDAT and HP-UX or DOS Files

As mentioned earlier, BDAT and HP-UX files are designed for flexibility (random and serial
access, choice of data representations), storage-space efficiency, and speed. This chapter
provides several examples of using these types of files.

Data Representations Available
The data representations available are

m HP Instrument BASIC internal formats (allow the fastest data rates and are generally the
most space-efficient)

m ASCII format (the most interchangeable)
m custom formats (design your own data representations using IMAGE specifiers)

The remainder of this section gives more details for each type of data representation.

Random vs. Serial Access

Random access means that you can directly read from and write to any record within the file,
while serial access only permits you to access the file in order, from the beginning. That is,
you must read records 1, 2, ... , n—1 before you can read record n. Serial access can waste a
lot of time if you’re trying to access data at the end of a file. On the other hand, if you want
to access the entire file sequentially, you are better off using serial access than random access,
because it generally requires less programming effort and often uses less file space. BDAT and
HP-UX files can be accessed both randomly and serially, while ASCII files can be accessed
only serially.

Data Representations Used in BDAT Files

BDAT files allow you to store and retrieve data using internal format, ASCII format, or
user-defined formats.

s With internal format (FORMAT OFF), items are represented with the same format the
system uses to store data in internal computer memory. (This is the default FORMAT for
BDAT and HP-UX files.)

m With ASCII format (FORMAT ON), items are represented by ASCII characters.

7-16 Data Storage and Retrieval

m User-defined formats are implemented with programs that employ OUTPUT and ENTER
statements that reference IMAGE specifiers (items are represented by ASCII characters).

Complete descriptions of ASCII and user-defined formats are given in HP Instrument

BASIC Interfacing Techniques. This section shows the details of internal (FORMAT OFF)
representations of numeric and string data.

BDAT Internal Representations (FORMAT OFF)

In most applications, you will use internal format for BDAT files. Unless we specify otherwise,
you can assume that when we talk about retrieving and storing data in BDAT files, we are

also talking about internal format. This format is synonymous with the FORMAT OFF
attribute described later in this chapter.

Because FORMAT OFF assigned to BDAT files uses almost the same format as internal
memory, very little interpretation is needed to transfer data between the computer and a

FORMAT OFF file. FORMAT OFF files, therefore, not only save space but also save time.

Data stored in internal format in BDAT files require the following number of bytes per item:

Data Type Internal
Representation

INTEGER 2 bytes

REAL 8 bytes

String 4-byte length header; 1 byte
per character (plus 1 pad
byte if string length is an odd
number)

INTEGER values are represented in BDAT files that have the FORMAT OFF attribute by

using a 16-bit, two’s-complement notation that provides a range —32 768 through 32 767. If
bit 15 (the MSB) is 0, the number is positive. If bit 15 equals 1, the number is negative; the
value of the negative number is obtained by changing all ones to zeros, and all zeros to ones,
and then adding one to the resulting value.

Binary Decimal
Representation Equivalent
00000000 00010111 23
11111111 11101000 —-24
10000000 00000000 —32768
01111111 11111111 32767
11111111 11111111 -1
00000000 00000001 1
00100011 01000111 9031
11011100 10111001 —9031

Data Storage and Retrieval

7-17

REAL values are stored in BDAT files by using their internal format (when FORMAT OFF
is in effect): the IEEE-standard, 64-bit, floating-point notation. Each REAL number is
comprised of two parts: an exponent (11 bits), and a mantissa (53 bits). The mantissa uses
a sign-and-magnitude notation. The sign bit for the mantissa is not contiguous with the rest
of the mantissa bits; it is the most significant bit (MSB) of the entire eight bytes. The 11-bit
exponent is offset by 1 023 and occupies the 2nd through the 12th MSB’s. Every REAL
number is internally represented by the following equation. (Note that the mantissa is in
binary notation):

-qmantissa sign . gexpoment — 1023 4 p.ipissa

String data are stored in FORMAT OFF BDAT files in their internal format.

Every character in a string is represented by one byte that contains the character’s ASCII
code. A 4-byte length header contains a value that specifies the length of the string. If the
length of the string is odd, a pad character is appended to the string to get an even number of
characters; however, the length header does not include this pad character.

The string “A” would be stored:

00000000 00000000 00000000 00000001 01000001 00100000
Length = 0001 (binary) ASCIT 65 ASCII 32

In this case, the space character (ASCII code 32) is used as the pad character; however, not
all operations use the space as the pad character.

ASCIl and Custom Data Representations

When using the ASCII data format for BDAT files, all data items are represented with ASCII
characters. With user-defined formats, the image specifiers referenced by the OUTPUT or
ENTER statement are used to determine the data representation (which is ASCII characters).

OUTPUT @File USING "SDD.DD,XX,B,#";Number,Binary_value
ENTER @QFile USING "B,B,404,%";Bin_vall,Bin_val2,String$

Using both of these formats with BDAT files produce results identical to using them
with devices. The entire subject is described fully in HP Instrument BASIC Interfacing
Techniques.

Data Representations with HP-UX and DOS Files
HP-UX and DOS files are very similar to BDAT files. The only differences between them are:
m The internal representation (FORMAT OFF) of strings is slightly different:

o HP-UX and DOS FORMAT OFF strings have no length header; instead, they are
terminated by a null character, CHR$(0).

o BDAT FORMAT OFF strings have a 4-byte length header;

m HP-UX and DOS files have a fized record length of 1. (BDAT files allow user-definable
record lengths.)

m HP-UX and DOS files have no system sector like BDAT files do (see the next section for
details).

7-18 Data Storage and Retrieval

The FORMAT ON representations for HP-UX files are the same as for devices. The entire
subject is described fully in HP Instrument BASIC Interfacing Techniques.

Note Throughout this section on Files, you should be able to assume that, unless
i otherwise stated, the techniques shown will apply to HP-UX and DOS as well
W as BDAT files.

BDAT File System Sector

On the disc, every BDAT file is preceded by a system sector that contains an end-of-file
(EOF) pointer and the number of defined records in the file. All data is placed in succeeding
sectors. You cannot directly access the system sector. However, as you shall see later, it is
possible to indirectly change the value of an EOF pointer.

SECTOR: 0 1 5 3
! NUMBER Y
EOF 1 OF
POINTER I DEFINED e
! RECORDS
N 7\
Y hd
SYSTEM SECTOR DATA

EOF Pointer: e number of sectors from beginning of file
(32=bit binary number)

e number of bytes from beginning of sector
(32—-bit binary number)

Number of defined records: See description below
(32=bit binary number)

Defined Records

To access a BDAT file randomly, you specify a particular defined record. Records are the
smallest units in a file directly addressable by a random QOUTPUT or ENTER.

m With BDAT files, defined records can be anywhere from 1 through 65 534 bytes long.
m With HP-UX and DOS files, defined records are always 1 byte long.

Specifying Record Size (BDAT Files Only)

Both the length of the file and the length of the defined records in it are specified when you
create a BDAT file. This section shows how to specify the record length of a BDAT file. (The
next section talks about how to choose the record length.)

For example, the following statement would create a file called Example with 7 defined
records, each record being 128 bytes long:

CREATE BDAT "Example",7,128

If you don’t specify a record length in the CREATE BDAT statement, the system will set
each record to the default length of 256 bytes.

Data Storage and Retrieval 7-19

Both the record length and the number of records are rounded to the nearest integer.

For example, the statement

CREATE BDAT "0d44",3.5,28.7

would create a file with 4 records, each 30 bytes long. On the other hand, the statement
CREATE "Odder",3.49,28.3

would create a file with 3 records, each 28 bytes long.

Once a file is created, you cannot change its length, or the length of its records. You must
therefore calculate the record size and file size required before you create a file.

Choosing a Record Length (BDAT Files Only)

Record length is important only for random OUTPUTs and ENTERs. It is not important for
serial access. The most important consideration in selecting of a proper record length is the
type of data being stored and the way you want to retrieve it. Suppose, for instance, that you
want to store 100 real numbers in a file, and be able to access each number individually. Since
each REAL number uses 8 bytes, the data itself will take up 800 bytes of storage.

SYSTEM SECTOR e oo

Y

800 BYTES OF DATA

The question is how to divide this data into records. If you define the record length to be
8 bytes, then each REAL number will fill a record. To access the 15th number, you would
specify the 15th record. If the data is organized so that you are always accessing two data
items at a time, you would want to set the record length to 16 bytes.

The worst thing you can do with data of this type is to define a record length that is not
evenly divisible by eight. If, for example, you set the record length to four, you would only be
able to randomly access half of each real number at a time. In fact, the system will return an
End-Of-Record condition if you try to randomly read data into REAL variables from records
that are less than 8 bytes long.

So far, we have been talking about a file that contains only REAL numbers. For files that
contain only INTEGERs, you would want to define the record length to be a multiple of two.
To access each INTEGER individually, you would use a record length of two; to access two
INTEGERs at a time, you would use a record length of four, and so on.

Files that contain string data present a slightly more difficult situation since strings can
be of variable length. If you have three strings in a row that are 5, 12, and 18 bytes long,
respectively, there is no record length less than 22 that will permit you to randomly access
each string. If you select a record length of 10, for instance, you will be able to randomly
access the first string but not the second and third.

If you want to access strings randomly, therefore, you should make your records long enough
to hold the largest string. Once you’ve done this, there are two ways to write string data to a

7-20 Data Storage and Retrieval

BDAT file. The first, and easiest, is to output each string in random mode. In other words,
select a record length that will hold the longest string, then write each string into its own
record. Suppose, for example, that you wanted to OUTPUT the following 5 names into a
BDAT file and be able to access each one individually by specifying a record number.

John Smith
Steve Anderson
Mary Martin
Bob Jones
Beth Robinson

The longest name, “Steve Anderson”, is 14 characters. To store it in a BDAT file would
require 18 bytes (four bytes for the length header). So you could create a file with record
length of 18 and then OUTPUT each item into a different record:

100 CREATE BDAT "Names'",5,18 ! Create a file.

110 ASSIGN @File TO "Names" ! Open the file (FORMAT OFF).
120 OUTPUT QFile,1;'"John Smith" ! Write names to

130 OUTPUT @File,2;"Steve Anderson" ! successive records

140 OUTPUT @QFile,3;'"Mary Martin" ! in file.

150 OUTPUT @File,4;'"Bob Jones"

160 OUTPUT @QFile,5;'"Beth Robinson"

On the disc, the file Names would look like the figure below. The four-byte length headers
show the decimal value of the bytes in the header. The data are shown in ASCII characters.

ofofofrdufofn]n] fsfm] ijt|nh} fx]x[xJofofoft4]s[t[e]v]e] [aln]d]e]

(risfolnfofofofriMafr]y] [M[afr]t]i]nfef[x]xJofofo]e]Ble]b] [u]o]

(nfefsfalx]x]|xJoJojofisBleft [n] [RIofb] i[n]sJolnf@x]xTxTx]x]x]x]

1 = length header
x = whatever data previously resided in that space
@ = pad character

The unused portions of each record contain whatever data previously occupied that physical
space on the disc.

Writing Data to BDAT, HP-UX and DOS Files

Data is always written to a file with an OUTPUT statement via an I/O path. You can
OUTPUT numeric and string variables, numeric and string expressions, and numeric and
string arrays. When you OUTPUT data with the FORMAT OFF, data items are written to
the file in internal format (described earlier).

There is no limit to the number of data items you can write in a single OUTPUT statement,
except that program statements are limited to two CRT lines. Also, if you try to OUTPUT
more data than the file can hold, or the record can hold (if you are using random access), the
system will return an EOF or EOR condition. If an EOF or EOR condition occurs, the file
retains any data output before the end condition occurred.

There is also no restriction on mixing different types of data in a single OUTPUT statement.
The system decides which data type each item is before it writes the item to the disc. Any
item enclosed in quotes is a string. Numeric variables and expressions are OUTPUT according

Data Storage and Retrieval 7-21

to their type (8 bytes for REAL values, and 2 bytes for INTEGER values). Arrays are written
to the file in row-major order (right-most subscript varies quickest).

Each data item in an OUTPUT statement should be separated by either a comma or
semi-colon (there is no operational difference between the two separators with FORMAT
OFF). Punctuation at the end of an OUTPUT statement is ignored with FORMAT OFF.

Sequential (Serial) OUTPUT

Data is written serially to BDAT and HP-UX files whenever you do not specify a record
number in an OUTPUT statement. When writing data serially, each data item is stored
immediately after the previous item (with FORMAT OFF in effect, there are no separators
between items). Sector and record boundaries are ignored. Data items are written to the file
one by one, starting at the current position of the file pointer. As each item is written, the file
pointer is moved to the byte following the last byte of the preceding item. After all of the
data items have been OUTPUT, the file pointer points to the byte following the last byte just
written.

There are a number of circumstances where it is faster and easier to use serial access

instead of random access. The most obvious case is when you want to access the entire file
sequentially. If, for example, you have a list of data items that you want to store in a file and
you know that you will never want to read any of the items individually, you should write
the data serially. The fastest way to write data serially is to place the data in an array, then
OUTPUT the entire array at once.

Another situation where you might want to use serial access is if the file is so small that it can
fit entirely into internal memory at once. In this case, even if you want to change individual
items, it might be easier to treat the entire file as one or more arrays, manipulate as desired,
then write the entire array(s) back to the file.

Random OUTPUT

Random OUTPUT allows you to write to one record at a time. As with serial OUTPUT,
there are EOF and file pointers that are updated after every OUTPUT. The EOF pointers
follow the same rules as in serial access. The file pointer positioning is also the same, except
that it is moved to the beginning of the specified record before the data is OUTPUT. If you
wish to write randomly to a newly created file, start at the beginning of the file and write
some “dummy” data into every record.

If you attempt to write more data to a record than the record will hold, the system will report
an End-Of-Record (EOR) condition. An EOF condition will result if you try to write data
more than one record past the EOF position. EOR conditions are treated by the system just
like EOF conditions, except that they return Error 60 instead of 59. Data already written to
the file before an EOR condition arises will remain intact.

7-22 Data Storage and Retrieval

Reading Data from BDAT, HP-UX and DOS Files

Data is read from files with the ENTER statement. As with OUTPUT, data is passed along
an I/0 path. You can use the same I/O path you used to OUTPUT the data or you can use a
different I/O path.

You can have several variables in a single ENTER statement. Each variable must be
separated from the other variables by either a comma or semi-colon. It is extremely important
to make sure that your variable types agree with the data types in the file. If you wrote a
REAL number to a file, you should ENTER it into a REAL variable; INTEGERs should be
entered into INTEGER variables; and strings into string variables. The rule to remember is

Read it the way you wrote it.
That is the only technique that is always guaranteed to work.

In addition to making sure that data types agree, make sure that access modes agree. If you
wrote data serially, you should read it serially; if you wrote it randomly, you should read it
randomly. There are a few exceptions to this rule that we discuss later. However, you should
be aware that mixing access modes can lead to erroneous results unless you are aware of the
precise mechanics of the file system.

Reading String Data from a File

When reading string data from a file, you must enter it into a string variable. How the system
does this depends on file type and FORMAT attribute assigned to the file:

m With FORMAT OFF assigned to a BDAT file, the system reads and interprets the first
four bytes after the file pointer as a length header. It will then try to ENTER as many
characters as the length header indicates. If the string has been padded by the system to
make its length even, the pad character is not read into the variable.

s With FORMAT OFF assigned to an HP-UX file, strings have no length header. Instead,
they are assumed to be null-terminated; that is, entry into the string terminates when a null
character, CHR$(0), is encountered.

m With FORMAT ON assigned to either type of file, the system reads and interprets the bytes
as ASCII characters. The rules for item and ENTER-statement termination match those for
devices. (See “Entering Data” in HP Instrument BASIC Interfacing Techniques for details.)

After an ENTER statement has been executed, the file pointer is positioned to the next
unread byte. If the last data item was a padded string (written to a BDAT file when using
FORMAT OFF), the file pointer is positioned after the pad. If you use the same I/O path
name to read and write data to a file, the file pointer will be updated after every ENTER and
OUTPUT statement. If you use different I/O path names, each will have its own file pointer
which is independent of the other. However, be aware that each also has its own EOF pointer
and that these pointers may not match, which can cause problems.

Entering data does not affect the EOF pointers. If you attempt to read past an EOF pointer,
the system will report an EOF condition.
Serial ENTER

When you read data serially, the system enters data into variables starting at the current
position of the file pointer and proceeds, byte by byte, until all of the variables in the ENTER
statement have been filled. If there is not enough data in the file to fill all of the variables,

Data Storage and Retrieval 7-23

the system returns an EOF condition. All variables that have already taken values before the
condition occurs retain their values.

The following program creates a BDAT file, assigns an I/O path name to the file (with default
FORMAT OFF attribute), writes five data items serially, and then retrieves the data items.

10 CREATE BDAT "STORAGE",1 ! Could also be an HP-UX file.

20 ASSIGN @Path TO '"STORAGE"

30 INTEGER Num,First,Fourth

40 Num=5

60 OUTPUT @Path;Num,'squared"," equals",Num*Num,"."

70 ASSIGN @Path TO "STORAGE"

80 ENTER @Path;First,Second$,Third$,Fourth,Fifth$

90 PRINT First;Second$;Third$,Fourth,Fifth$

100 END

prints

5 squared equals 25.

Note that we re-ASSIGNed the I/O path in line 70. This was done to reposition the file
pointer to the beginning of the file. If we had omitted this statement, the ENTER would have
produced an EOF condition.

Random ENTER

When you ENTER data in random mode, the system starts reading data at the beginning
of the specified record and continues reading until either all of the variables are filled or the
system reaches the EOR or EOF. If the system comes to the end of the record before it has
filled all of the variables, an EOR condition is returned.

In the following example, we randomly OUTPUT data to 5 successive records, and then
ENTER the data into an array in reverse order.

10 CREATE BDAT "SQ_ROOTS",5,2%8

20 ASSIGN @Path TO "SQ_ROOTS" ! Default is FORMAT OFF.
30 FOR Inc=1 to 5
40 OUTPUT @Path,Inc;Inc,SQR(Inc) ! Outputs two 8-byte REALs each time.
50 NEXT Inc

60 FOR Inc=5 TO 1 STEP -1
70 ENTER @Path,Inc;Num(Inc),Sqroot(Inc)
80 NEXT Inc
920 PRINT "Number",'Square Root'"

100 FOR Inc=1 TO 5

110 PRINT Num(Inc),Sqroot(Inc)

120 NEXT Inc

130 END

prints

Number Square Root

1 1

2 1.41421356237

3 1.73205080757

4 2

5 2.2360679775

In this example, there was no need to re-ASSIGN the I/O path because the random ENTER
automatically repositions the file pointer.

7-24 Data Storage and Retrieval

Line 40 of the above program outputs two 8-byte REALs to the BDAT file called SQ_ROOTS.
Note that this line would have to be changed for outputs made to HP-UX files because
HP-UX files always have a record length of one. For example, the OUTPUT statement would
look like this:

OUTPUT @Path, ((Inc-1)*2*8)+1;Inc,SQR(Inc)
And the ENTER statement would look like this:
ENTER @Path, ((Inc-1)*2*8)+1;Num(Inc),Sqroot(Inc)

Executing a random ENTER without a variable list has the effect of moving the file pointer to
the beginning of the specified record. This is useful if you want to serially access some data in
the middle of a file. Suppose, for instance, that you have a BDAT file containing 100 8-byte
records, and each record has a REAL number in it. If you want to read the last 50 data items,
you can position the file pointer to the 51st record and then serially read the remainder of the
file into an array.

100 REAL Array(50)

110 ENTER @Realpath,51; ! 51%8 is HP-UX record number.
120 ENTER @Realpath;Array(*)

Accessing Files with Single-Byte Records

With BDAT files, you can define records to be just one byte long (defined records in HP-UX
files are always 1 byte long). In this case, it doesn’t make sense to read or write one record at
a time since even the shortest data type requires two bytes to store a number.

Random access to one-byte records, therefore, has its own set of rules. When you access a
one-byte record, the file pointer is positioned to the specified byte. From there, the access
proceeds in serial mode. Random OUTPUTs write as many bytes as the data item requires,
and random ENTERs read enough bytes to fill the variable.

The example below illustrates how you can read and write randomly to one-byte records.

10 INTEGER Int

20 CREATE BDAT "BYTE",100,1

30 ASSIGN @Bytepath TO "BYTE"
40 OUTPUT @Bytepath,1;3.67

50 OUTPUT @Bytepath,9;3

60 OUTPUT @Bytepath,11;"string"
70 ENTER @Bytepath,9;Int

80 ENTER @Bytepath,1;Real

90 ENTER @Bytepath,11;Str$

100 PRINT Real
110 PRINT Int
120 PRINT Str$
130 END

prints

3.67
3
string

Note that we had to declare the variable Int as an INTEGER. If we hadn’t, the system would
have given it the default type of REAL and would therefore have required 8 bytes.

Data Storage and Retrieval 7-25

Accessing Directories

A directory is merely an index to the files on a mass storage media. The HP Instrument
BASIC language has several features that allow you to obtain information from the directories
of mass storage media. This section presents several techniques that will help you access this
information.

To get a catalog listing of a directory, you will use the CAT statement. Executing CAT with
no media specifier directs the system to get a catalog of the current system mass storage
directory.

CAT

Including a media specifier directs the system to get a catalog of the specified mass storage.
Here are some examples:

CAT '":HP9122,700"

CAT ":,700,0"
CAT "\BLP\PROJECTS" DOS Volumes Only
CAT "/WORK/PROJECTS" HFS Volumes Only

Both of the preceding statements sent the catalog listing to the current system printer (either
specified by the last PRINTER IS statement, or defaulting to CRT).

Sending Catalogs to External Printers

The CAT statement normally directs its output to the current PRINTER IS device. The CAT
statement can also direct the catalog to a specified device, as shown in the following examples:

CAT TO #726
CAT TO #External_prtr
CAT TO #Device_selector

The paramenter following the # is known as a device selector.

7-26 Data Storage and Retrieval

Using a Printer

Sooner or later a program needs to print something. A wide range of printers are
supported by HP Instrument BASIC. This chapter covers the statements commonly used to
communicate with external printers.

Selecting the System Printer

The PRINT statement normally directs text to the screen of the CRT where one is present
on the instrument. Text may be redirected to an external printer by using the PRINTER IS
statement.

After the printer is switched on and the computer and printer have been connected via an
interface cable, there is only one piece of information needed before printing can begin. The
computer needs to know the correct device selector for the printer. This is analogous to
knowing the correct telephone number before making a call.

Device Selectors

A device selector is a number that uniquely identifies a particular device connected to the
computer. When only one device is allowed on a given interface, it is uniquely identified by
the interface select code. In this case, the device selector is the same as the interface select
code.

For example, the internal CRT is the only device at the interface whose select code is 1. To
direct the output of PRINT statements to the CRT, use one of the following statements:

PRINTER IS 1
PRINTER IS CRT

These statements define the screen of the CRT to be the system printer. Until changed,

the output of PRINT statements will appear on the screen of the CRT. (See your
instrument-specific HP Instrument BASIC manual for information regarding the CRT display
usage.)

Note To view data on the CRT of some host instruments running HP Instrument
i BASIC, you may need to allocate a display partition. Refer to your
ﬁ instrument-specific HP Instrument BASIC manual for information on display
partitions.

When more than one device can be connected to an interface, such as the internal GPIB
interface (interface select code 7), the interface select code no longer uniquely identifies the
printer. Extra information is required. This extra information is the primary address.

Using a Printer 8-1

Using Device Selectors to Select Printers

A device selector is used by several different statements. In each of the following, the numeric
expressions are device selectors.

PRINTER IS 701 Specifies a printer with interface select code 7 and primary address

PRINTER IS PRT 01 (PRT is a numeric function whose value is always 701).

PRINTER IS 1407 Specifies a printer with interface select code 14 and primary
address 07.

CAT TO #701 Prints a disc catalog on the printer at device selector 701.

LIST #701 Lists the program in memory to a printer at 701.

Most statements allow a device selector to be assigned to a variable. Either INTEGER or
REAL variables may be used.

PRINTER IS Hal
CAT TO #Dog

The following three-letter mnemonic functions have been assigned useful values.

Mnemonic Value
PRT 701
KBD 2
CRT 1

The mnemonic may be used anywhere the numeric device selector can be used.

Another method may be used to identify the printer within a program. An I/O path name
may be assigned to the printer; the printer is subsequently referenced by the I/O path name.

Using Control Characters and Escape Sequences

Most ASCII characters are printed on an external printer just as they appear on the screen of
the CRT. For some printers, there may be exceptions. Several printers will also support an
alternate character set: either a foreign character set, a graphics character set, or an enhanced
character set. If your printer supports an alternate character set, it usually is accessed by
sending a special command to the printer.

Contro! Characters

In addition to a “printable” character set, printers usually respond to control characters.
These non-printing characters produce a response from the printer. The following table shows
some of the control characters and their effect.

8-2 Using a Printer

Typical Printer Control Characters

Printer’s Response Control Character ASCII Value
Ring printer’s bell 7
Backspace one character 8
Horizontal tab (cTrRU(D 9
Line-feed 10
Form-feed 12
Carriage-return (CTRUM) 13

One way to send control characters to the printer is the CHRS$ function. Execute the
following:

PRINT CHR$(12)

Refer to the appropriate printer manual for a complete listing of control characters and their
effect on your printer.

Escape-Code Sequences

Similar in use to control characters, escape-code sequences allow additional control over most
printers. These sequences consist of the escape character, CHR$(27), followed by one or more
characters.

Since each printer may respond differently to control characters and escape code sequences,
check the manual that came with your printer.

Formatted Printing

For many applications the PRINT statement provides adequate formatting. The simplest
method of print formatting is by specifying a comma or semicolon between printed items.

When the comma is used to separate items, the printer will print the items on field
boundaries. Fields start in column one and occur every ten columns (columns 1, 11, 21,
31, ...). Using the following values in a PRINT statement: A=1.1, B=-22.2, C=3E+5,
D=5.1E+8.

10 PRINT RPT$("1234567890",4)
20 PRINT A4,B,C,D

prints

1234567890123456789012345678901234567890
1.1 -22.2 300000 5.1E+8

Note the form of numbers in a normal PRINT statement. A positive number has a leading
and a trailing space printed with the number. A negative number uses the leading space
position for the “—” sign. This is why the positive numbers in the previous example appear to
print one column to the right of the field boundaries. The next example shows how this form
prevents numeric values from running together.

Using a Printer 8-3

10 PRINT RPT$("1234567890",4)
20 PRINT A;B;C;D

prints

1234567890123456789012345678901234567890
1.1 -22.2 300000 5.1E+8

Using the semicolon as the separator caused the numbers to be printed as closely together as
the “compact” form allows. The compact form always uses one leading space (except when
the number is negative) and one trailing space.

The comma and semicolon are often all that is needed to print a simple table. By using
the ability of the PRINT statement to print the entire contents of of a array, the comma or
semicolon can be used to format the output.

If each array element contained the value of its subscript, the statement

PRINT Array (*) ;

prints

0123456789 10 11 12 13 14 ...

Another method of aligning items is to use the tabbing ability of the PRINT statement.
PRINT TAB(25);-1.414

prints

123456789012345678901234567890123
-1.414

While PRINT TAB works with an external printer, PRINT TABXY may not. PRINT
TABXY may be used to specify both the horizontal and vertical position when printing to an
internal CRT.

A more powerful formatting technique employs the ability of the PRINT statement to allow
an image to specify the format.

Using Images

Just as a mold is used for a casting, an image can be used to format printing. An image
specifies how the printed item should appear. The computer then attempts to print to item
according to the image.

One way to specify an image is to include it in the PRINT statement. The image specifier is
enclosed within quotes and consists of one or more field specifiers. A semicolon then separates
the image from the items to be printed.

PRINT USING "D.DDD";PI

This statement prints the value of pi (3.141592659 ...) rounded to three digits to the right of
the decimal point.

3.142

8-4 Using a Printer

For each character “D” within the image, one digit is to be printed. Whenever the number
contains more non-zero digits to the right of the decimal than provided by the field specifier,
the last digit is rounded. If more precision is desired, more characters can be used within the
image.

PRINT USING "D.10D";PI

3.1415926536

Instead of typing ten “D” specifiers, one for each digit, a shorter notation is to specify a
repeat factor before each field specifier character. The image “DDDDDD” is the same as the
image “6D”.

The image specifier can be included in the PRINT statement or on it’s own line. When the
specifier is on a different line, the PRINT statement accesses the image by either the line
number or the line label.

100 Format: IMAGE 6Z.DD
110 PRINT USING Format;A,B,C
120 PRINT USING 100;D,E,F

Both PRINT statements use the image in line 100.

Numeric Image Specifiers

Several characters may be used within an image to specify the appearance of the printed
value.

Numeric Image Specifiers

Image Purpose
Specifier
D Replace this specifier with one digit of the number to be printed. If the digit is a

leading zero, print a space. if the value is negative, the position may be used by the
negative sign.

Same as “D” except that leading zeros are printed.

E Prints two digits of the exponent after printing the sequence “E+”. This specifier is
equal to “ESZZ”. See the HP Instrument BASIC Language Reference for more details.

K Print the entire number without leading or trailing spaces.

S Print the sign of the number: either a “+” or “”.

M Print the sign if the number is negative; if positive, print a space.

Print the decimal point.

H Similar to K, except the number is printed using the European number format
(comma radix).

R Print the comma (European radix).

Like Z, except that asterisks are printed instead of leading zeros.

To better understand the operation of the image specifiers examine the following examples
and results.

Using a Printer 8-5

Examples of Numeric Image Specifiers

Statement Output
PRINT USING "K'";33.666 33.666
PRINT USING "DD.DDD";33.666 33.666
PRINT USING "DDD.DD";33.666 33.67
PRINT USING "ZZZ.DD";33.666 033.67
PRINT USING "ZZZ";.444 000
PRINT USING "ZZZ"; .555 001
PRINT USING "SD.3DE";6.023E+23 +6.023E+23
PRINT USING "S3D.3DE";6.023E+23 +602.300E+21
PRINT USING "S5D.3DE";6.023E+23 +60230.000E+19
PRINT USING "H'";3121.55 3121,55
PRINT USING "DDRDD";19.95 19,95
PRINT USING "***'"; 555 *k1

To specify multiple fields within the image, the field specifiers are separated by commas.

Multiple-Field Numeric Image Specifiers

Statement Output
PRINT USING "K,5D,5D";100,200,300 100 200 300
PRINT USING "DD,ZZ,DD";1,2,3 102 3

If the items to be printed can use the same image, the image need be listed only once. The
image will then be reused for the subsequent items.

PRINT USING "5D.DD";3.98,5.95,27.50,139.95

prints

123456789012345678901234567890123
3.98 5.95 27.50 139.95

The image is reused for each value. An error will result if the number cannot be accurately
printed by the field specifier.
String Image Specifiers

Similar to the numeric field image characters, several characters are provided for the
formatting of strings.

8-6 Using a Printer

String Image Specifiers

Image Purpose
Specifier
A Print one character of the string. If all characters of the string have been printed, print
a trailing blank.
K Print the entire string without leading or trailing blanks.
X Print a space.
“literal” Print the characters between the quotes.

The following examples show various ways to use string specifiers.

PRINT USING

"5X,104,2X,10A";"Tom","Smith"

12345678901234567890123456789

Tom

PRINT USING

Smith

"6X,"" John"",2X,10A";"Smith"

12345678901234567890123456789
John Smith

PRINT USING

"""PART NUMBER"'",2x,10d4';90001234

12345678901234567890123456789

PART NUMBER

90001234

Additional Image Specifiers

The following image specifiers serve a special purpose.

Additional Image Specifiers

Image Purpose
Specifier

B Print the corresponding ASCII character. This is similar to the CHRS$ function.

Suppress automatic end-of-line (EOL) sequence.

L Send the current end-of-line (EOL) sequence; with IO, see the PRINTER IS statement
in the HP Instrument BASIC Language Reference for details on redefining the EOL
sequence.

/ Send a carriage return and a line feed.

@ Send a form feed.

+ Send a carriage return as the EOL sequence. (Requires 10)

- Send a line feed as the EOL sequence. (Requires 10)

For example:

PRINT USING "@,#" outputs a form feed.

PRINT USING "D,X,3A,""OR NOT"",X,B,X,B,B";2,"BE",50,66,69

Using a Printer 8-7

Special Considerations

If nothing prints, see if the printer is ON LINE. When the printer if OFF LINE, the computer
and printer can communicate but no printing will occur.

Sending text to a non-existent printer will cause the computer to wait indefinitely for the
printer to respond. ON TIMEOUT may be used within a program to test for the printer.

Since the printer’s device selector may change, keep track of the locations in the program
where a device selector is used.

If the program must use the PRINTER IS statement frequently, assign the device selector to a
variable; then if the device selector changes, only one program line will need to be changed.

8-8 Using a Printer

9

Handling Errors

Most programs are subject to errors at run time. This chapter describes how HP Instrument
BASIC programs can respond to these errors, and shows how to write programs that attempt
to either correct the problem or direct the program user to take some sort of corrective action.

There are three courses of action that you may choose to take with respect to errors:
1. Try to prevent the error from happening in the first place.

2. Once an error occurs, try to recover from it and continue execution.

3. Do nothing—Ilet the system stop the program when an error happens.

The remainder of this chapter describes how to implement the first two alternatives.

The last alternative, which may seem frivolous at first glance, is certainly the easiest to
implement, and the nature of HP Instrument BASIC is such that this is often a feasible
choice. Upon encountering a run-time error, the computer will pause program execution and
display a message giving the error number and the line in which the error happened, and the
programmer can then examine the program in light of this information and fix things up. The
key word here is “programmer.” If the person running the program is also the person who
wrote the program, this approach works fine. If the person running the program did not write
it, or worse yet, does not know how to program, some attempt should be made to prevent
errors from happening in the first place, or to recover from errors and continue running.

Anticipating Operator Errors

When you write a program, you know exactly what the program is expected to do, and what
kinds of inputs make sense for the problem. Sometimes you overlook the possibility that other
people using the program might not understand the boundary conditions. You have no choice
but to assume that every time a user has the opportunity to feed an input to a program, a
mistake can be made and an error can be caused. You should make an effort to make the
program resistant to errors.

Boundary Conditions

A classic example of anticipating an operator error is the “division by zero” situation.
An INPUT statement is used to get the value for a variable, and the variable is used as a
divisor later in the program. If the operator should happen to enter a zero, accidentally
or intentionally, the program pauses with an error 31. It is far better to plan for such an
occurrence. One such plan is shown in the following example.

Handling Errors 9-1

100 INPUT '"Miles traveled and total hours'",Miles,Hours
110 IF Hours=0 THEN

120 BEEP

"130 PRINT "Improper value entered for hours."

140 PRINT "Try again!"

150 GOTO 100

160 END IF

170 Mph=Miles/Hours

Trapping Errors

Despite the programmer’s best efforts at screening the user’s inputs in order to avoid errors,
errors will still happen. It is still possible to recover from run-time errors, provided the
programmer predicts the places where errors are most likely to happen.

ON/OFF ERROR

The ON ERROR statement sets up a branching condition that will be taken any time a
recoverable error is encountered at run time. The branch action taken may be GOSUB,
GOTO, CALL or RECOVER. GOTO and GOSUB are purely local in scope—that is, they are
active only within the context in which the ON ERROR is declared. CALL and RECOVER
are global in scope—after the ON ERROR is setup, the CALL or RECOVER will be executed
any time an error occurs, regardless of subprogram environment.

Choosing a Branch Type

The type of branch that you choose (GOTO vs. GOSUB, etc.) depends on how you want to
handle the error.

m Using GOSUB indicates that you want to return to the statement that caused the error
(RETURN).

m GOTO, on the other hand, may indicate that you do not want to reattempt the operation
after attempting to correct the source of the error.

ON ERROR Execution at Run-Time

When an ON ERROR statement is executed, HP Instrument BASIC will make sure that the
specified line or subprogram exists in memory before the program will proceed. If GOTO,
GOSUB, or RECOVER is specified, then the line identifier must exist in the current context
(at pre-run). If CALL is used, then the specified subprogram must currently be in memory (at
run-time). In either case, if the system can’t find the given line, error 49 is reported.

ON ERROR Priority

ON ERROR has a priority of 16, which means that it will always take priority over any other
ON-event branch, since the highest user-specifiable priority is 15.

9-2 Handling Errors

Disabling Error Trapping (OFF ERROR)

The OFF ERROR statement will cancel the effects of the ON ERROR statement, and no
branching will take place if an error is encountered.

The DISABLE statement has no effect on ON ERROR branching.

ERRN, ERRLN, ERRL, ERRDS, ERRM$

ERRN is a function that returns the error number that caused the branch to be taken. ERRN
is a global function, meaning it can be used from the main program or from any subprogram,
and it will always return the number of the most recent error.

100 IF ERRN=80 THEN ! Media not present in drive.

110 PRINT "Please insert the ’Examples’ disc,"
120 PRINT "and press the ’Continue’ key (£2)."
130 PAUSE

140 END IF

ERRLN is a function that returns the line number of the program line where the most recent
error has occurred.
100 IF ERRLN<1280 THEN GOSUB During_init

110 IF (ERRLN>=1280 AND ERRLN<=2440) THEN GOSUB During_main
120 IF ERRLN>2440 THEN GOSUB During_Last

You can use this function, for instance, in determining what sort of situation-dependent action
to take. As in the above example, you may want to take a certain action if the error occurred
while “initializing” your program, another if during the “main” segment of your program, and
yet another if during the “last” part of the program.

Note that program statements using ERRLN may not behave correctly following a renumber
operation. To avoid this problem, use the ERRL function whenever possible (see below).

ERRL is another function that is used to find the line in which the error was encountered;
however, the difference between this and the ERRLN function is that ERRL is a Boolean
function. The program gives it a line identifier, and either a 1 or a 0 is returned, depending
upon whether or not the specified identifier indicates the line that caused the error.

100 TIF ERRL(1250) OR ERRL(1270) THEN GOSUB Fix_12xx
110 IF ERRL(1470) THEN GOSUB Fix_1470
120 IF ERRL(2450) OR ERRL(2530) THEN GOSUB Fix_24xx

ERRL is a local function, which means it can only be used in the same environment as

the line that caused the error. This implies that ERRL cannot be used in conjunction

with ON ERROR CALL, but it can be used with ON ERROR GOTO and ON ERROR
GOSUB. ERRL can be used with ON ERROR RECOVER only if the error did not occur in a
subprogram that was called by the environment that set up the ON ERROR RECOVER.

Line number parameters to ERRL are renumbered properly by a renumber operation.
The ERRL function will accept either a line number or a line label. For example:
1140 DISP ERRL(710)
910 IF ERRL(Compute) THEN Fix_compute

ERRMS is a string function that returns the text of the error that caused the branch to be
taken. '

Handling Errors 9-3

100 DISP ERRM$! Display default message.

ERROR 31 in 10 Division (or MOD) by zero J

ON ERROR GOSUB

The ON ERROR GOSUB statement is used when you want to return to the program line
where the error occurred.

Note that if you do not correct the problem and subsequently use RETURN, HP Instrument
BASIC will repeatedly reexecute the problem-causing line (which will result in an infinite loop
between the ON ERROR GOSUB branch and the RETURN).

When an error triggers a branch as a result of an ON ERROR GOSUB statement being
active, system priority is set at the highest possible level (16) until the RETURN statement
is executed, at which point the system priority is restored to the value it was when the error
happened.

100 Radical=B*B-4%A*C

110 Imaginary=0

120 ON ERROR GOSUB Esr

130 Partial=SQRT(Radical)
140 OFF ERROR

350 Esr: IF ERRN=30 THEN

360 Imaginary=1
370 Radical=ABS(Radical)
380 ELSE
390 BEEP
400 DISP "Unexpected Error (";ERRN;")"
410 PAUSE
420 END IF
430 RETURN
Note You cannot trap errors with ON ERROR while in an ON ERROR GOSUB

i service routine.

ON ERROR GOTO

The ON ERROR GOTO statement is often more useful than ON ERROR GOSUB, especially
if you are trying to service more than one error condition. However, ON ERROR GOTO does
not change system priority.

As with ON ERROR GOSUB, one error service routine can be used to service all the error
conditions in a given context. By testing both the ERRN (what went wrong) and the ERRLN
(where it went wrong) functions, you can take proper recovery actions.

One advantage of ON ERROR GOTO is that you can use another ON ERROR statement
in the service routine (which you cannot use with ON ERROR GOSUB). This technique,
however, requires that you reestablish the original error service routine after correcting any

9-4 Handling Errors

errors (by reexecuting the original ON ERROR GOTO statement). The disadvantage is that
more programming may be necessary in order to resume execution at the appropriate point
after each error service.

ON ERROR CALL

ON ERROR CALL is global, meaning once it is activated, the specified subprogram will be
called immediately whenever an error is encountered, regardless of the current context. System
priority is set to level 17 inside the subprogram and remains that way until the SUBEXIT is
executed, at which time the system priority will be restored to the value it was when the error
happened.

As with ON ERROR GOSUB, you will generally use the ON ERROR CALL statement when
you want to return to the program where the error occurred.

Remember that if you do not correct the problem, the SUBEXIT statement will repeatedly
reexecute the problem-causing line (which will result in an infinite loop between the ON
ERROR CALL branch and the SUBEXIT).

Note You cannot trap errors with ON ERROR while in an ON ERROR CALL

i service routine.

Using ERRLN and ERRL in Subprograms

You can use the ERRLN function in any context, and it returns the line number of the most
recent error. However, the ERRL function will not work in a different environment than

the one in which the ON ERROR statement is declared. For instance, the following two
statements will only work in the context in which the specified lines are defined:

100 IF ERRL(40) THEN GOTO Fix40
100 IF ERRL(Line_label) THEN Fix_line_label

The line identifier argument in ERRL will be modified properly when the program is
renumbered (such as explicitly by REN or implicitly by GET); however, that is not true of
expressions used in comparisons with the value returned by the ERRLN function.

So when using an ON ERROR CALL, you should set things up in such a manner that the line
number either doesn’t matter, or can be guaranteed to always be the same one when the error
occurs. This setup can be accomplished by declaring the ON ERROR immediately before the

line in question, and immediately using OFF ERROR after it.

Handling Errors 9-5

5010 ON ERROR CALL Fix_disc
5020 ASSIGN QFile TO "Data_file"
- 5030 OFF ERROR

7020 SUB Fix_disc
7030 SELECT ERRN
7040 CASE 80

7050 DISP '"No disc in drive -- insert disc and continue"
7060 PAUSE

7080 CASE 83

7090 DISP "Write protected -- fix and continue"

7100 PAUSE

7120 CASE 85

7130 DISP "Disc not initialized -- fix and continue"
7140 PAUSE

7160 CASE 56

7170 DISP '"Creating Data_file"

7180 CREATE BDAT "Data_file",20

7190 CASE ELSE

7200 DISP "Unexpected error '";ERRN

7210 PAUSE

7220 SUBEND

ON ERROR RECOVER

The ON ERROR RECOVER statement sets up an immediate branch to the specified line
whenever an error occurs. The line specified must be in the context of the ON ... RECOVER
statement. ON ERROR RECOVER is global in scope—it is active not only in the
environment in which it is defined, but also in any subprograms called by the segment in
which it is defined.

If an error is encountered while an ON ERROR RECOVER statement is active, the system
will restore the context of the program segment that actually set up the branch, including its
system priority, and will resume execution at the given line.

3250 ON ERROR RECOVER Give_up

3260 CALL Model_universe

3270 DISP "Successfully completed"
3280 STOP

3290 Give_up: DISP "Failure " ;ERRN
3300 END

9-6 Handling Errors

10

Keyword Guide to Porting

The following sections summarize the HP Instrument BASIC keywords by categories. All
keywords are used by both HP Instrument BASIC and HP Series 200/300 BASIC languages,
although some features of certain keywords are not supported by HP Instrument BASIC.
Where differences exist between HP Instrument BASIC and recent versions of HP Series
200/300 BASIC the most significant discrepancies are listed. This chapter is intended only
as a quick reference to the keywords and their compatibility. For detailed information, refer
to HP Instrument BASIC Keyword Reference and your HP Series 200/300 BASIC Language
Reference Manual.

Keyword Guide to Porting 10-1

Program HP BASIC Function HP Instrument BASIC
Entry/Editing
COPYLINES Copies contiguous program lines from Full support.
one location to another.
DELSUB Deletes one or more subprograms or Full support.
user-defined functions from memory.
INDENT Indents program lines in the edit Full support.
window to reflect the programs
structure and nesting.
LIST Lists program lines to system printer. ~ No support for softkey listing.
MOVELINES Moves contiguous program lines from Full support.
one location to another.
REM and ! Allows comments on program lines. Full support.
SECURE Protects program lines so they cannot Full support.
be listed.
Debugging

CAUSE ERROR

ERRL

ERRLN

ERRMS$

ERRN

Simulates the occurrence of an error of
the specified number.

Indicates whether an error occurred
during execution of a specified line.

Returns the program-line number of the
most recent error.

Returns text of the last error message.

Return the most recent program
execution error.

Full support.

No support for TRANSFER
or Data Communications

No support for TRANSFER,
Data Communications,

CLEAR ERROR, or LOAD.

No support for TRANSFER,
CLEAR ERROR, or LOAD.

No support for TRANSFER,
CLEAR ERROR, or softkeys.

Memory Allocation
ALLOCATE

COM

DEALLOCATE

DIM

INTEGER

OPTION BASE

Dynamically allocates memory for
arrays and string variables during
program execution.

Dimensions and reserves memory for
variables in a common area for access
by more than one context.

Deallocates memory space reserved by
the ALLOCATE statement.

Dimensions and reserves memory for
REAL numeric arrays and strings.

Dimensions and reserves memory for
INTEGER variables and arrays.

Specifies default lower bound of arrays.

No support for COMPLEX.

No support for BUFFER,
COMPLEX, LOAD, or

subarrays.

No support for COMPLEX.

No support for BUFFER,
COMPLEX, or subarrays.

No support for BUFFER or
subarrays.

Full support.

10-2 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Memory Allocation
(continued)

REAL

REDIM

SCRATCH

Dimensions and reserves memory for
full-precision (REAL) variables and
arrays.

Changes the subscript range of
previously dimensioned arrays.

Erases all or portions of memory.

No support for BUFFER or
subarrays.

No support for BUFFER.

ALL and COM are
supported.

Relational Operators

<>

Equality

Inequality

Less than

Less than or equal to
Greater than

Greater than or equal to

Full Support.
Full Support.
Full Support.
Full Support.
Full Support.
Full Support.

General Math
+

X

ABS

DIV

DROUND

EXP

FRACT

INT

LET
LGT

LOG

Addition operator

Subtraction operator

Multiplication operator

Division operator

Exponentiation operator

Returns an argument’s absolute value.

Divides one argument by another and
returns the integer portion of the
quotient.

Returns the value of an expression,

rounded to a specified number of digits.

Raises the base e to a specified number

of digits.

Returns the fractional portion of an
expression.

Returns the integer portion of an
expression.

Assigns values to variables.

Returns the logarithm (base 10) of an
argument

Returns the natural logarithm (base €)

of an argument

Full Support.
Full Support.
Full Support.
Full Support.
Full Support.
No support for COMPLEX.
Full support.

Full support.

No support for COMPLEX.

Full support.

Full support.

Full support.
No support for COMPLEX.

No support for COMPLEX.

Keyword Guide to Porting 10-3

Program HP BASIC Function HP Instrument BASIC

General Math (continued)

MAX Returns the largest value in a list of Full support.
arguments

MAXREAL Returns the largest number available. Full support.

MIN Returns the smallest value in a list of Full support.
arguments

MINREAL Returns the smallest number available. Full support.

MOD Returns remainder of integer division. Full support.

MODULO Returns the modulo of division. Full support.

PI Returns an approximation of pi. Full support.

PROUND Returns the value of an expression, Full support.
rounded to the specified power of ten.

RANDOMIZE Modifies the seed used by the RND Full support.
function.

RND Returns a pseudo-random number. Full support.

SGN Returns the sign of an argument. Full support.

SQRT (or SQR) Returns the square root of an argument No support for COMPLEX.

Binary Functions

BINAND Returns the bit-by-bit logical-and of Full support.
two arguments.

BINCMP Returns the bit-by-bit complement of Full support.
an argument.

BINEOR Returns the bit-by-bit exclusive-or of Full support.
two arguments.

BINIOR Returns the bit-by-bit inclusive-or of Full support.
two arguments.

BIT Returns the state of a specified bit of Full support.
an argument.

ROTATE Returns a value obtained by shifting an Full support.

argument’s binary representation a
number of bit positions, with
wrap-around.

SHIFT Returns a value obtained by shifting an Full support.
argument’s binary representation a
number of bit positions, without
wrap-around.

10-4 Keyword Guide to Porting

Program HP BASIC Function HP Instrument BASIC

Trigonometric
ACS Returns the arccosine of an argument. No support for COMPLEX.
ASN Returns the arcsine of an argument. No support for COMPLEX.
ATN Returns the arctangent of an argument. No support for COMPLEX.
COS Returns the cosine of an argument. No support for COMPLEX.
DEG Sets the degrees mode. Full support.
RAD Sets the radians mode. Full support.
SIN Returns the sine of an argument. No support for COMPLEX.
TAN Returns the tangent of an argument. No support for COMPLEX.
Logical Operators
AND Returns 1 or 0 based on the logical Full support.

AND of two arguments.
EXOR Returns 1 or 0 based on the logical Full support.

exclusive-or of two arguments.

NOT Returns 1 or 0 based on the logical Full support.
complement of an argument.

OR Returns 1 or 0 based on the logical Full support.
inclusive-or of two arguments.

Keyword Guide to Porting 10-5

Program

HP BASIC Function

HP Instrument BASIC

String Operations
&
CHRS$

DVAL
DVALS$

IVAL

IVALS
LEN
LWC$

MAT

NUM
POS
REVS
RPTS$
TRIMS$
UPCS
VAL

VALS$

Concatenates two string expressions.

Converts a numeric value into an ASCII
character.

Converts an alternate-base
representation into a numeric value.

Converts a numeric value into
alternate-base representation.

Converts an alternate-base
representation into an INTEGER
number.

Converts an INTEGER into
alternate-base representation.

Returns the number of characters in a
string expression.

Returns the lowercase value of a string
expression.

Performs a variety of operations on
matrices and other numeric and string
arrays.

Returns the decimal value of the first
character in a string.

Returns the position of a string within
a string expression.

Reverses the order of the characters in
a string expression.

Repeats the characters in a string
expression a specified number of times.

Removes the leading and trailing blanks
from a string expression.

Returns the uppercase value of a string
expression.

Converts a string of numerals into a
numeric value.

Returns a string expression representing
a specified numeric value.

Full support.
Full support.

Full support.

Full support.

Full support.

Full support.
Full support.
STANDARD lexical order is

ASCII.
No support for COMPLEX

MAT, SEARCH, MAP, or
SORT

Full support.

Full support.

Full support.

Full support.

Full support.

STANDARD lexical order is
ASCIL

Full support.

Full support.

10-6 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Mass Storage
ASSIGN

CAT

COPY

CREATE

CREATE ASCII

CREATE BDAT

CREATE DIR

DELSUB

GET

INITIALIZE

LOAD
LOADSUB

MASS STORAGE IS/ MSI

PURGE
RENAME
SAVE/RE-SAVE

Assigns an I/O path name and
attributes to a file.

Lists the contents of the mass storage
media’s directory.

Provides a method of copying mass
storage files and volumes.

Creates an HP-UX or MS-DOS-type file
on the mass storage media.

Creates an ASCII-type file on the mass
storage media.

Creates an BDAT-type file on the mass
storage media.

Creates an HFS or MS-DOS-type
directory on the mass storage media.

Deletes one or more subprograms or
user-defined functions from memory.

Reads an ASCII file into memory as a
program.

Formats a mass storage media and
places a LIF or DOS directory on the
media.

Loads STOREd programs into memory.

Loads HP Instrument BASIC
subprograms from a STOREd program
into memory.

Specifies the default mass storage
device.

Deletes a file entry from the directory.
Changes a file’s name.

Creates an ASCII file and copies
program lines from memory into the
file.

No support for BUFFER,
BYTE, WORD, CONVERT,
RETURN, PARITY, or
DELAY. The device selector
must be a single I/O device
or mass storage file.

No support for NAMES,
EXTEND, PROTECT,
SELECT, SKIP, COUNT,
NO HEADER, or PROG
files.

Full support.
Full support.
Full support.
Full support.
Full support.
Full support.
Full support.
No support for EPROM.

No support for BIN, or KEY.
Full support.

No support for DCOMM,
BUBBLE, or EPROM.

Full support.
Full support.
Full support.

Keyword Guide to Porting 10-7

Program

HP BASIC Function

HP Instrument BASIC

Mass Storage (continued)
RE-STORE

STORE

Writes the current HP Instrument
BASIC program to the specified file in
a special compace, fast-loading format.

Writes the program currently in
memory to a PROG file in a special
binary form.

No support for KEY.

Full support.

Program Control

CALL

DEF FN/ FNEND
END

FN

FOR ... NEXT
GOSUB

GOTO

IF ... THEN ELSE
LOOP/ EXIT IF/ END
LOOP

ON

PAUSE

REPEAT ... UNTIL

RETURN

SELECT ... CASE

STOP

Transfers program execution to a
specified subprogram and passes
parameters.

Defines the bounds of a user-defined
function subprogram.

Terminates program execution and
marks the end of the main program
segment.

Invokes a user-defined function.

Defines a loop that is repeated a
specified number of times.

Transfers program execution to a
specified subroutine.

Transfers program execution to a
specified line.

Provides a conditional execution of a
program segment.

Provides looping with conditional exit.

Transfers program control to one of
several destinations.

Suspends program execution.

Allows execution of a program segment
until the specified condition is true.

Transfers program execution from a
subroutine to the line following the
invoking GOSUB.

Allows execution of one program
segment of several.

Terminates execution of the program.

Full support.

No support for COMPLEX,
BUFFER, NPAR, or
OPTIONAL.

Full support.

No support for COMPLEX.
Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

No support for ON END or
ON KNOB.

Full support.

Full support.

Full support.

Full support.

10-8 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Program Control (continued)
SUB/ SUBEND

SUBEXIT
WAIT

WHILE

Defines the bounds of a subprogram.

Transfers control from within a
subprogram to the calling context.

Causes program execution to wait a
specified number of seconds.

Allows execution of a program segment
while the specified condition is true.

No support for COMPLEX,
OPTIONAL or BUFFER.
Full support.

Full support.

Full support.

Event-Initiated Branching
ENABLE/ DISABLE

ENABLE INTR/ DISABLE

ON CYCLE/ OFF CYCLE

ON ERROR/ OFF ERROR

ON INTR/ OFF INTR

ON KEY ... LABEL/ OFF
KEY

ON TIMEOUT/ OFF
TIMEOUT

SYSTEM PRIORITY

Enables or disables event-initiated
branching (except for ON ERROR, and
ON TIMEOUT).

Enables or disables interrupts defined
by the ON INTR statement.

Enables or disables an event-initiated
branch to be taken each time the
specified number of seconds has elapsed.

Sets up an event-initiated branch when
a trappable program error occurs.

Sets up an event-initiated branch when
a specified interface card generates an
interrupt.

Sets up an event-initiated branch when
a specified softkey is pressed.

Sets up an event-initiated branch when
an I/O timeout occurs on a specified
interface.

Sets a minimum level of system priority
for event-initiated branches.

Full support.

Bit mask value is ignored.

Full support.

No support for CSUB.

No support for CSUB.

No support for CSUB,
LINPUT, or ENTER KBD.

Key selector range is 0-9.

No support for CSUB,
PRINTALL IS, PLOTTER
IS, READIO, or WRITEIO.

Full support.

Graphics Control
ALPHA ON/OFF

AREA

CLIP

GCLEAR

ON shows the alpha window; OFF
clears the alpha window

Sets the color used to shade graphical
regions subsequently created by various
graphics plotting commands.

Defines, enables, or disables the soft-clip
limits for subsequent graphics output.

Clears the graphics area.

Full support.

Full support.

Full support.

No support for external
plotter or Multi-Plane
displays.

Keyword Guide to Porting 10-9

Program HP BASIC Function HP Instrument BASIC

Graphics Control (continued)

GESCAPE Used for communicating Full support.
device-dependent graphics information.
Type, size, and shape of the arrays
must be appropriate for the requested

operation.

GINIT Establishes a set of default values for Full support.
system variables affecting graphics
operation.

GLOAD Loads the contents of an INTEGER Full support.
array into the graphics window.

GRAPHICS Shows or hides the graphics window. Full support.

GSTORE Stores the current contents of the No support for source
graphics window in an integer array. devices.

MERGE ALPHA Performs a no-op which makes it Dedicated to RMB-UX.
compatible with HP-UX RMB.

PLOTTER IS Determines whether graphics colors No hard-copy device, clip
operate in the color-mapped or limits, or file support.
non-color-mapped mode.

RATIO Returns the ratio of the width (in Full support.

pixels) to the height (in pixels) of the
graph window.

SEPARATE ALPHA Compatible with HP-UX RMB. Dedicated to RMB-UX.

SET PEN Assigns a color to graphics pen(s). Full support.

SHOW Defines an isotropic current Full support.
unit-of-measure for graphics operations.

VIEWPORT Defines an area (in GDUs) onto which Full support.
WINDOW and SHOW statements are
mapped.

WHERE Returns the current logical position of Full support.

the graphics pen.

WINDOW Define an anisotropic current Full support.
unit-of-measure for graphics operations.

Graphics Plotting

AREA Sets the color used to shade graphical Full support.
regions subsequently created by various
graphics plotting commands.

DRAW Draws a line to a specified point. No support for PIVOT.
GLOAD Loads the contents of an INTEGER Full support.
array into the graphics window.
GSTORE Stores the current contents of the No support for source
graphics window in an integer array. devices.

10-10 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Graphics Plotting
(continued)

IDRAW

IMOVE

IPLOT

LINE TYPE

MOVE
PDIR

PEN
PENUP

PIVOT

PLOT

POLYGON
POLYLINE
RECTANGLE
RPLOT
RPEN

WHERE

Draws a line from the current position
to a position calculated by adding the
X and Y displacements to the current
pen position.

Moves the graphics pen an incremental
distance from the current position
without drawing a line.

Moves the graphics pen an incremental
distance from the current position.
Plotting action is determined by the
current line type and the optional pen
control parameter.

Selects the line type (solid or dashed)
for all subsequent lines

Updates the logical pen position.

Specifies the rotation angle at which
the output from IPLOT, RPLOT,
POLYGON, POLYLINE, and
RECTANGLE is drawn.

Selects the pen number on plotting
device.

Lifts the pen on the current plotting
device.

Specifies a rotation of coordinates
which is applied to all drawn lines, but
not to labels or axes.

Moves the graphics pen from the
current position to the specified X and
Y coordinates.

Draws all or part of a closed, regular
polygon.

Draws all or part of an open, regular
polygon.

Draws a rectangle.

Moves the pen from the current pen

position to the specified relative X and
Y position.

Assigns a color to one or more graphics
pens.

Returns the current logical position of
the graphics pen.

Full support.

Full support.

Full support.

Full support.

No support for PIVOT.
Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Keyword Guide to Porting 10-11

Program HP BASIC Function HP Instrument BASIC

Graphics Axes and Labeling

AXES Draws a pair of axes with optional, Full support.
equally spaced tick marks.

CSIZE Sets the height and aspect ratio Full support.
(width:height) of the character cell used
by LABEL.

FRAME Draws a frame around the current Full support.

graphics clipping area using the current
pen number and line type.

GRID Draws a full grid pattern. Full support.

LORG Specifies the relative origin of labels Full support.
with respect to the current pen
position.

LABEL Draws text labels with the graphics pen Full support.
at the pen’s current position.

LDIR Defines the angles at which labels are ~ Full support.
drawn.

GPIB Control

ABORT Terminates bus activity and asserts Full support.
IFC.

CLEAR Places specified devices in a No support for Data
device-dependent state. Communications Interface.

LOCAL Returns specified devices to their local ~ Full support.
state.

LOCAL LOCKOUT Sends the LLO message, disabling all Full support.
device’s front-panel controls.

PASS CONTROL Passes Active Controller capability to Full support.
another device.

REMOTE Sets specified devices to their remote Full support.
state.

SPOLL Returns a serial poll byte from a Full support.
specified device.

TRIGGER Sends the trigger message to specified Full support.
devices.

10-12 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Clock and Calendar
DATE

DATE$

TIME

TIMES

SET TIME

SET TIMEDATE

TIMEDATE

Converts a formatted date string into a

numeric value in seconds.

Formats a number of seconds into a
string representing the formatted date

(DD MMM YYYY).

Converts a formatted time-of-day string
into number of seconds past midnight.

Converts the number of seconds past
midnight into a string representing the
formatted time of day (HH:MM:SS).

Resets the time-of-day given by the

real-time clock.

Resets the absolute seconds (time and
day) given by the real-time clock.

Returns the value of the real-time clock.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

General Device
Input/Output

ASSIGN

BEEP

CRT
DATA

DISP
DUMP

ENTER

Associates an I/O path name and
attributes with a mass storage file,

device or group of devices.

Produces an audible tone of a defined

frequency and duration.

Returns the device selector of the CRT.
Specifies data accessible via READ

statements.

Outputs items to the CRT display line.

DUMP ALPHA copies the contents of
the alphanumeric display to the default
printer specified in the Windows

Control Panel.

DUMP GRAPHICS copies the contents
of the graphics display to the default
printer specified in the Windows

Control Panel.

Inputs data from a device, file or string

to a list of variables.

No support for BUFFER,
BYTE, WORD, CONVERT,
PARITY, TRANSFER,
LOAD, or RETURN. I/O
path name is limited to a
single device or mass storage

file.
No support for HIL.

Full support.
Full support.

No support for COMPLEX.

No support for source or
destination devices.

No support for COMPLEX,
BUFFER, TRANSFER, or
CRT as source.

Keyword Guide to Porting 10-13

Program

HP BASIC Function

HP Instrument BASIC

General Device
Input/Output (continued)

IMAGE
INPUT

KBD
OUTPUT
PRINT
PRINTER IS
PRT

READ
RESTORE

TAB

TABXY

Provides formats for use with ENTER,
OUTPUT, DISP, and PRINT
operations.

Inputs data from the front-panel
(keyboard) to a list of variables.

Returns the device selector of the
keyboard.

Outputs items to a specified device, file,

string, or buffer.

Outputs items to the current
PRINTER IS device.

Specifies a device for PRINT, CAT, and

LIST statements.

Returns 701, usually the device selector
of external printer.

Inputs data from DATA lists to
variables.

Causes a READ statement to access the

specified DATA statement.

Moves the print position ahead to a

specified point; used within PRINT and

DISP statements.

Specifies the print position on the
internal CRT; used with PRINT
statements.

Full support.

No support for COMPLEX
or specific keys.

Full support.

No support for COMPLEX,
BUFFER, or TRANSFER .
No support for COMPLEX.
No support for DELAY.
Full support.

No support for COMPLEX.

Full support.

Full support.

Full support.

Display and Keyboard
Control
ALPHA ON/OFF

CLEAR SCREEN/ CLS
CRT

KBD

SET ALPHA MASK

ON shows the alpha window; OFF
clears the alpha window

Clears the alpha display screen.

Returns 1, which is the select code of
the CRT display.

Returns 2, which is the select code of
the keyboard.

Specifies which plane(s) can be
modified by alpha display operations.

Full support.

Full support.
Full support.

Full support.

Full support

10-14 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Array Operations
BASE

DET

DOT

MAT

MAT REORDER

RANK

REDIM

SIZE

SUM

Returns the lower bound of a dimension
of an array.

Returns the lower bound of a dimension
of an array.

Returns the lower bound of a dimension
of an array.

Performs a variety of operations on
matrices and other numeric and string
arrays.

Reorders elements in an array according
to the subscript list in a vector.

Returns the number of dimensions in an
array.

Changes the subscript range of
previously dimensioned arrays.

Returns the number of elements in a
dimension of an array.

Returns the sum of all the elements in a
numeric array.

Full support.

Full support, except
COMPLEX.

Full support, except
COMPLEX.

Full support, except
COMPLEX, MAT SORT,
and MAT SEARCH.

Full support.
Full support.
No support for BUFFER

Full support.

Full support, except
COMPLEX.

Keyword Guide to Porting 10-15

Index

A

ABS function, 3-7

ACS function, 3-8

Actual values, 6-5

Anticipating Operator Errors, 9-1

Arbitrary Exit Points, 2-8

Arithmetic Functions, 3-7

Arithmetic Operators, 3-3

Array Element, Assigning an Individual, 4-5

Array, four-dimensional, 4-4

Array, Planes of a Three-Dimensional REAL,
4-2

Array, Printing an Entire, 4-7

Arrays, Extracting Single Values From, 4-6

Arrays, Filling, 4-6

Arrays, Passing Entire, 4-7

Arrays, Printing, 4-6

Arrays, Some Examples of, 4-2

Arrays, Storage and Retrieval of, 7-3

Arrays, String, 5-2

Array, Three-Dimensional INTEGER, 4-4

Array, Using the READ Statement to Fill an
Entire, 4-6

ASCII and Custom Data Representations, 7-19

ASCII file, 7-9, 7-12-13, 7-15

ASCII File I/O, Example of, 7-11

ASCII file I/O techniques, 7-11

ASCII files, 7-6

ASCII Files, A Closer Look at Using, 7-11

ASCII Files, Data Representations in, 7-12

ASCII Files, Formatted ENTER, with, 7-16

ASCII Files, Formatted OUTPUT with, 7-14

ASCII file type, 7-13

ASCII format, 7-17

ASN function, 3-8

Assigning an Individual Array Element, 4-5

Assigning Variables, 3-2

ASSIGN statement, 7-8

ATN function, 3-8

Attributes, Assigning, 7-9

Base Conversion Functions, 3-10
BASE function, 4-5
BASIC Programs, Trapping Errors with, 9-2

BDAT and HP-UX Files, A Closer Look at,
7-16

BDAT and HP-UX Files, Reading Data From,
7-23

BDAT file, 7-7-8, 7-11, 7-15, 7-17-19, 7-21

BDAT files, 7-6, 7-9, 7-13

BDAT File System Sector, 7-19

BDAT Internal Representations (FORMAT
OFF), 7-17

BINAND function, 3-8

Binary Functions, 3-8

BINCMP function, 3-8

BINEOR function, 3-8

BINIOR function, 3-8

BIT function, 3-8

Boundaries, keywords that define, 2-4

Boundary Conditions, 9-1

Branch Type, Choosing a, 9-2

C

CALL statement, 6-1-2, 6-9

Case conversion, 5-8

CASE ELSE statement, 2-4, 2-7

CASE statement, 2-4, 2-7

Chaining Programs, 2-11

Chapter Previews, 1-1

Characters, Control, 8-3

CHRS string function, 5-7

COM blocks, 6-7

COM Blocks, Hints for Using, 6-8
Communication, Program/Subprogram, 6-4
COM statement, 2-4, 2-12-13, 4-1, 4-4, 5-2, 7-9
COM vs. Pass Parameters, 6-7
Concatenation, String, 5-3

Conditional Branching, 2-4

Conditional execution, 2-3

Conditional segment, 2-3

Conditional Segments, Multiple-Line, 2-5
Context Switching, 6-9

Control Characters, 8-3

CONT statement, 2-2

Conversion, Case, 5-8

Conversion, Number-Base, 5-9
Conversions, Implicit Type, 3-2

COS function, 3-8

CREATE BDAT statement, 7-20

Index-1

CREATE statement, 7-11

CRT function, 3-10

D

DATA and READ Statements, Using, 7-2

Data From a File, Reading String, 7-24

Data From BDAT and HP-UX Files, Reading,
7-23

Data in Programs, Storing, 7-1

Data Input by the User, 7-2

Data in Variables, Storing, 7-1

Data Pointer, Moving the, 7-4

Data Representations, ASCII and Custom, 7-19

Data Representations Available, 7-16

Data Representations in ASCII Files, 7-12

Data Representations with DOS Files, 7-19

Data Representations with HP-UX Files, 7-19

DATA statement, 2-4, 4-6, 6-9, 7-1

Data Storage and Retrieval, 7-1

Data Type, INTEGER, 3-1

Data Type, REAL, 3-1

Data, Writing, 7-22

Date Functions, Time and, 3-9

Deactivating events, 2-11

Declaration of variables, keywords used in the,
2-4

Declaring Variables, 3-1

Default dimensioned length of a string, 5-1

Default mass storage device, 7-7

DEF FN statement, 2-4, 6-4, 6-10

Defined Records, 7-20

Degradation, rate, 7-13

Degrees, 3-8

DEG statement, 3-8, 6-9

Deleting Subprograms, 6-11

DEL LN statement, 6-11

Determining Error Number and Location, 9-3

Device selector, 8-1

Device selectors, using, 8-2

Dimensioning, Problems with Implicit, 4-4

DIM statement, 2-4, 3-1, 4-1, 5-2

DISABLE statement, 2-11, 9-3

Disabling Error Trapping (OFF ERROR), 9-3

Disabling Events, 2-11

DOS files, 7-6

DOS Files, Data Representations with, 7-19

Double-Subscript Substrings, 5-5

DROUND function, 3-9

DVAL function, 3-10, 5-9

DVALS string function, 5-9

Dyadic operator, 3-5

Index-2

E

Editing Subprograms, 6-10

ENABLE statement, 2-11

END IF statement, 2-4

END LOOP statement, 2-4

End-of-line (EOL) sequences, 7-9
End-Of-Record, 7-21

End-Of-Record (EOR), 7-23

END SELECT statement, 2-4, 2-7

END statement, 2-1, 2-4, 6-2

END WHILE statement, 2-4

ENTER, Random, 7-25

ENTER, Serial, 7-24

ENTER statement, 7-8, 7-14, 7-16, 7-23
ERRL function, 9-3

ERRL in Subprograms, Using ERRLN and, 9-5
ERRLN and ERRL in Subprograms, Using, 9-5
ERRLN function, 9-3

ERRMS string function, 9-3

ERRN function, 9-3

Error Number and Location, Determining, 9-3
Error Responses, Overview of, 9-1

Errors, Anticipating Operator, 9-1

Errors, Handling, 9-1

Errors, Trapping, 9-2

Error Trapping and Recovery, Scope of, 9-2
Error Trapping (OFF ERROR), Disabling, 9-3
Escape-Code Sequences, 8-3

Evaluating Expressions Containing Strings, 5-2
Evaluating Scalar Expressions, 3-3

Evaluation Hierarchy, 5-3

Event-checking, 2-10

Event-initiated branching, 2-1, 2-10
Event-initiated RECOVER statement, 6-10
Events, Disabling, 2-11

Events, Types of, 2-10

EXIT IF statement, 2-4, 2-8

EXP function, 3-7

Exponential Functions, 3-7

Expressions as Pass Parameters, 3-b
Expressions, hierarchy for, 3-3

External Printer, Using the, 8-2

F

File Access, A Closer Look at General, 7-8
File Input and Output, 7-5

File pointer, 7-15

File specifiers, 7-7

File Types, Brief Comparison of Available, 7-5
FNEND statement, 2-4, 6-11

FOR ... NEXT structure, 2-7

Formal parameter lists, 6-4, 6-6

FORMAT attribute, 7-9

FORMAT attributes, 7-9

FORMAT OFF statement, 7-9, 7-17

FORMAT ON attribute, 7-14

FORMAT ON statement, 7-9, 7-16

Formatted ENTER with ASCII Files, 7-16

Formatted OUTPUT with ASCII Files, 7-14

Formatted Printing, 8-3

FOR statement, 2-4

Four-dimensional array, 4-4

FRACT function, 3-7

Function, ABS, 3-7

Function, ACS, 3-8

Function and a Subprogram, Difference, 6-2

Function, ASN, 3-8

Function, ATN, 3-8

Function, BINAND, 3-8

Function, BINCMP, 3-8

Function, BINEOR, 3-8

Function, BINIOR, 3-8

Function, BIT, 3-8

Function, COS, 3-8

Function, CRT, 3-10

Function, DROUND, 3-9

Function, DVAL, 3-10, 5-9

Function, ERRL, 9-3

Function, ERRLN, 9-3

Function, ERRN, 9-3

Function, EXP, 3-7

Function, FRACT, 3-7

Function, INT, 3-7

Function, IVAL, 3-10, 5-9

Function, KBD, 3-10

Function, LGT, 3-7

Function, LOG, 3-7

Function, MAX, 3-9

Function, MAXREAL, 3-7

Function, MIN, 3-9

Function, MINREAL, 3-7

Function, NUM, 5-7

Function, PI, 3-8

Function, PROUND, 3-9

Function, PRT, 3-10

Function, RND, 3-9

Function, ROTATE, 3-8

Functions and String Functions, REAL Precision,
6-3

Functions, Arithmetic, 3-7

Functions, Base Conversion, 3-10

Functions, Binary, 3-8

Functions, Exponential, 3-7

Functions, General, 3-10

Function, SGN, 3-7

Function, SHIFT, 3-8

Function, SIN, 3-8

Functions, Limit, 3-9

Functions, Numerical, 3-7

Function, SQR, 3-7

Function, SQRT, 3-7
Functions, String, 5-7
Functions, String-Related, 5-6
Functions, Subprograms and User-Defined, 6-1
Functions, Time and Date, 3-9
Functions, Trigonometric, 3-8
Function, TAN, 3-8

Function, TIMEDATE, 3-9
Function, VAL, 5-7

Function, VALS$, 7-15

G

General File Access, A Closer Look at, 7-8
General Functions, 3-10

GET statement, 2-11-13, 6-8

GET, Using, 2-11

GOSUB statement, 2-2, 6-9

GOTO statement, 2-2, 2-4, 6-9

H

Halting Program Execution, 2-1

Handling Errors, 9-1

Hierarchy, Evaluation, 5-3

Hierarchy for expressions, 3-3

Hierarchy, Math, 3-3

HP-UX file, 7-9, 7-20

HP-UX files, 7-6

HP-UX Files, Data Representations with, 7-19

IF ... THEN ... ELSE statement, 2-5
IF ... THEN statement, 2-4

IF ... THEN structure, 2-8

IF statement, 2-4

Image Specifiers, Additional, 8-7
Image Specifiers, Numeric, 8-5

Image Specifiers, String, 8-6

Images, Using, 8-4

Implicit Dimensioning, Problems with, 4-4
Implicit Type Conversions, 3-2
Individual Array Elements, Using, 4-5
Infinite loop, 2-10

Initialization, Variable, 6-10

INPUT statement, 7-2

Inserting Subprograms, 6-10
INTEGER data type, 3-1, 4-1
INTEGER statement, 2-4, 4-1, 4-4
Interface select code, 8-1

INT function, 3-7

1/0 path names, 7-8

I/O Path, Opening an, 7-8

I/O Paths, Closing, 7-10

I/O techniques, ASCII file, 7-11

Index-3

IVAL function, 3-10, 5-9
IVALS string function, 5-9

K

KBD function, 3-10

Keywords that define boundaries, 2-4

Keywords that define program structures, 2-4

Keywords used in the declaration of variables,
2-4

Keywords used to identify lines that are literals

2-4

L

Length header, string variable’s, 7-14

LET statement, 3-2, 7-1

LGT function, 3-7

LIF file, 7-8

Limit Functions, 3-9

Linear flow, 2-1

Literals, keywords used to identify lines that
are, 2-4

LOAD statement, 6-8

LOG function, 3-7

Loop counter, 2-7

LOOP ... END LOOP structure, 2-8

Loop iterations, conditional, 2-8

Loop iterations, fixed, 2-8

Loop iterations formula, 2-7

LOOQOP statement, 2-4, 2-8

LWCS$ string function, 5-8

Manual Organization, 1-1

Mass storage files, 7-1

MASS STORAGE IS statement, 7-8
Math Hierarchy, 3-3

MAX function, 3-9

MAXREAL function, 3-7

Merging Subprograms, 6-11

MIN function, 3-9

MINREAL function, 3-7

Monadic operator, 3-5

MOVELINES statement, 6-11

Moving the Data Pointer, 7-4
Multiple-Field Numeric Image Specifiers, 8-6
Multiple-Line Conditional Segments, 2-5

N

Nested constructs, 2-5

NEXT statement, 2-4

Null string, 5-1

Number-Base Conversion, 5-9
Number builder routine, 7-13
Numerical Functions, 3-7

Index-4

Numeric Arrays, 4-1

Numeric Computation, 3-1

Numeric data items, 7-12

Numeric Data Types, 3-1

Numeric Expressions, Strings in, 3-6
Numeric Image Specifiers, 8-5

Numeric Image Specifiers, Examples of, 8-5
Numeric Image Specifiers, Multiple-Field, 8-6
Numeric-to-String Conversion, 5-7

NUM function, 5-7

o

OFF-event, 2-11

OFF KEY statement, 2-11

One-dimensional array, 4-1

ON ... event statement, 2-10

ON ERROR branching, 9-3

ON ERROR CALL, A Closer Look At, 9-5

ON ERROR Execution at Run-Time, 9-2

ON ERROR GOSUB, 9-4

ON ERROR GOTO, A Closer Look At, 9-4

ON ERROR Priority, 9-2

ON ERROR RECOVER, A Closer Look At,
9-6

ON ERROR statement, 2-10

ON-event, 2-11

ON-event statement, 2-10

ON INTR statement, 2-10

ON KEY statement, 2-10, 6-10

ON TIMEOUT statement, 2-10, 8-8

Operator, dyadic, 3-5

Operator Errors, Anticipating, 9-1

Operator, monadic, 3-5

Operator, relational, 3-5

Operators, 3-5

OUTPUT, Random, 7-23

OUTPUT, Serial, 7-23

OUTPUT statement, 2-3, 7-14-15, 7-22

Overhead in ASCII data files, reducing the, 7-14

P

Parameter Lists, Formal, 6-4

Parameters, Expressions as Pass, 3-5

Parameters Lists, 6-4

Parameters passed by reference, 3-2

Parameters passed by value, 3-2

Passing by Value vs. Passing By Reference, 6-5

Passing Entire Arrays, 4-7

Pass parameter lists, 6-5

Pass Parameters, COM vs., 6-7

Pass Parameters, Expressions as, 3-5

PAUSE statement, 2-2

PI function, 3-8

Planes of a Three-Dimensional REAL Array,
4-2

Pointer, Moving the Data, 7-4

Precision Functions and String Functions, REAL,

6-3
Printer Control Characters, 8-3
PRINTER IS device, 4-7
PRINTER IS statement, 8-1
Printer, system, 8-1
Printer, Using a, 8-1
Printer, Using the External, 8-2
Printing Arrays, 4-6
PRINT TAB statement, 8-4
PRINT TABXY statement, 8-4
Priority, ON ERROR, 9-2
Program counter, 2-2
Program flow, 2-1
Programs, chaining, 2-11
Program structures, keywords that define, 2-4
Program/Subprogram Communication, 6-4
Program-to-Program Communication, 2-12
Prohibited Statements, 2-4
PROUND function, 3-9
PRT function, 3-10

R

Radians, 3-8

RAD statement, 3-8, 6-9

Random access, 7-14, 7-16

Random ENTER, 7-25

RANDOMIZE statement, 3-9

Random Number Function, 3-9

Random OUTPUT, 7-23

Random vs. Serial Access, 7-17

RANK function, 4-5

Rate degradation, 7-13

Reading Data From BDAT and HP-UX Files,
7-23

Reading String Data From a File, 7-24

READ statement, 4-6, 7-1

READ Statement to Fill an Entire Array, Using

the, 4-6
REAL data type, 3-1, 4-1
REAL Data Type, 3-1

REAL Precision Functions and String Functions,

6-3

REAL statement, 2-4, 4-1, 4-4

Record Length (BDAT Files Only), Choosing
A, 7-21

Records, Defined, 7-20

Record Size (BDAT Files Only), Specifying,
7-20

RECOVER statement, 6-9

RECOVER Statement, Subprograms and the,
6-10

Recovery, Scope of Error Trapping and, 9-2

Recursion, 6-11

Reducing the overhead in ASCII data files, 7-14

Reference, Pass by, 6-5

Relational Operations, 5-3
Relational operator, 3-5

REM statement, 2-4

REPEAT ... UNTIL structure, 2-7
REPEAT statement, 2-4, 2-8
Repeat, String, 5-8

RESTORE statement, 7-4
RETURN stack, 6-9

RETURN statement, 2-2

Reverse, String, 5-8

REVS$ string function, 5-8
ROTATE function, 3-8

Rounding problem, 3-2

RPTS$ string function, 5-8

RUN command, 6-1

Run-Time, ON ERROR Execution at, 9-2

S

SAVE statement, 7-1

Scalar Expressions, Evaluating, 3-3
Scope of Error Trapping and Recovery, 9-2
SELECT constructs, 2-6

Selection, 2-3

SELECT statement, 2-4, 2-6

Serial access, 7-16

Serial ENTER, 7-24

Serial OUTPUT, 7-23

Service Routines, Setting Up Error, 9-2
Setting Up Error Service Routines, 9-2
SGN function, 3-7

SHIFT function, 3-8

Simple Branching, 2-2

SIN function, 3-8

Single-Byte Access, 7-26
Single-Subscript Substrings, 5-4

SIZE function, 4-5

Softkeys, Subprograms and, 6-10
Specifiers, Additional Image, 8-7
Specifiers, Numeric Image, 8-5

Specifying Record Size (BDAT Files Only), 7-20

SQRT function, 3-7

STOP statement, 2-1

Storage and Retrieval of Arrays, 7-3
Storage-space efficiency, 7-16

Storing Data in Programs, 7-1

Storing Data in Variables, 7-1

String, 5-1

String Arrays, 5-2

String Concatenation, 5-3

String Data From a File, Reading, 7-24
String, default dimensioned length of a, 5-1
String Function, CHRS$, 5-7 '
String Function, DVALS, 5-9

Index-5

String Function, ERRMS$, 9-3

String Function, IVAL$, 5-9

String Function, LWC$, 5-8

String Function, REVS, 5-8

String Function, RPT$, 5-8

String Functions, 5-7

String Functions, REAL Precision Functions
and, 6-3

String Function, TRIMS, 5-8

String Function, UPC$, 5-8

String Function, VALS, 5-7

String Image Specifiers, 8-6

String Length, Current, 5-6

String Manipulation, 5-1

String-Related Functions, 5-6

String Repeat, 5-8

String Reverse, 5-8

Strings, Evaluating Expressions Containing, 5-2

Strings in Numeric Expressions, 3-6

String Storage, 5-2

String-to-Numeric Conversion, 5-7

String, Trimming a, 5-8

String variable, 5-1

String variable’s length header, 7-14

SUBEND statement, 2-4, 6-11

SUBEXIT statement, 6-11

Subprogram and User-Defined Function Names,
6-2

Subprogram, Difference Between a User-Defined
Function and a, 6-2

Subprogram Location, 6-2

Subprograms, A Closer Look at, 6-1

Subprograms and Softkeys, 6-10

Subprograms and Subroutines, Differences
Between, 6-2

Subprograms and the RECOVER Statement,
6-10

Subprograms and User-Defined Functions, 6-1

Subprograms, Benefits of, 6-1

Subprograms, Deleting, 6-11

Subprograms, Inserting, 6-10

Subprograms, Merging, 6-11

Subroutine, 2-2

SUB statement, 2-4, 6-1, 6-4, 6-10

Index-6

Substring Position, 5-6
Substrings, 5-4

Substrings, Double-Subscript, 5-5
Substrings, Single-Subscript, 5-4
System printer, 8-1

System Sector, BDAT File, 7-19

T

TAN function, 3-8

Three-Dimensional INTEGER Array, 4-4
Time and Date Functions, 3-9

TIMEDATE function, 3-9

Trapping and Recovery, Scope of Error, 9-2
Trapping Errors, 9-2

Trapping (OFF ERROR), Disabling Error, 9-3
Trigonometric Functions, 3-8

Trimming a String, 5-8

TRIMS string function, 5-8
Two-dimensional, 4-1

Two-Dimensional INTEGER Array, 4-3
Type Conversions, Implicit, 3-2

u

UNTIL statement, 2-4
UPCS string function, 5-8
User-defined formats, 7-17

v

VALS$ function, 7-15

VAL function, 5-7

VALS string function, 5-7

Value, Pass by, 6-5

Variable Initialization, 6-10

Variables, Assigning, 3-2

Variables, Declaring, 3-1

Variables, keywords used in the declaration of,
2-4

w

WHILE ... END structure, 2-7
WHILE ... END WHILE structure, 2-8
WHILE statement, 2-4, 2-8

Writing Data, 7-22

Interfacing Techniques

Agilent Technologies

December 2000

Contents

1.

Manual Overview

Introduction

Manual Organization

Chapter Previews
Chapter 2: Interfacing Concepts
Chapter 3: Directing Data Flow

Chapter 4: Outputting Data

Chapter 5: Entering Data

Chapter 6: I/O Path Attributes
Specific Interfaces

Interfacing Concepts
Terminology ..
Why Do You Need an Interface"

Electrical and Mechanical Compatlblhty .

Data Compatibility
Timing Compatibility

Additional Interface Functions

Interface Overview .

The GPIB Interface ..
The RS-232C Serial Interface .

Data Representations e e
Bits and Bytes
Representing Numbers
Representing Characters .

The I/0 Process .

I/O Statements and Parameters
Specifying a Resource
Data Handshake

Directing Data Flow
Specifying a Resource e e
String-Variable Names
Formatted String I/O
Device Selectors . .
Select Codes of Built- In Interfaces .
GPIB Device Selectors .
[/OPaths
I/O Path Names
ReAssigning I/O Path Names
Closing I/O Path Names . .
I/O Path Names in Subprograms

......

1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-2

2-1
2-2
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-6
2-6
2-7
2-7
2-8
2-8
2-8
2-8

31
31
31
3-2
3-2
3-2
33
3-3
3-3

34
3-4

Contents-1

Assigning I/O Path Names Locally Within Subprograms ..

Passing I/O Names as Parameters

Declaring I/O Path Names in Common .
Benefits of Using I/O Path Names

Execution Speed e e e e e

Redirecting Data e e e e

Access to Mass Storage Flles .

Attribute Control .

4. Outputting Data
Introduction
Free-Field Outputs
Examples e
The Free-Field Conventlon Ce e
Standard Numeric Format
Standard String Format
Item Separators and Terminators
Changing the EOL Sequence . .
Using END in Freefield OUTPUT . .
Additional Definition .
END with GPIB Interfa,ces
Examples e e ..
Outputs that Use Images . e e e e
The OUTPUT USING Statement .
Images . e
Example of Usmg an Ima,ge e e e
Image Definitions During Outputs
Numeric Images -
Numeric Examples
String Images
String Examples
Binary Images
Binary Examples
Special-Character Images
Special-Character Examples
Termination Images .
Termination Examples .
Additional Image Features .
Repeat Factors . . .
Examples
Image Re-Use
Nested Images .
END with OUTPUTs that Use Images
Examples .. e
Additional END Deﬁmtlon .
END with GPIB Interfaces
Examples

Contents-2

3-5
3-6

3-6
3-7
3-7
3-7

4-1
4-1
4-1
4-1

4-2
4-2

4-5
4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-8
4-9
4-10
4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-16
4-16
4-17
4-18
4-18
4-18
4-19
4-19
4-19

5.

Entering Data

Free-Field Enters o000 5-1
Item Separatorso o e e 5-1
Item Terminatorso 5-2
Entering Numeric Data with the Number Builder 5-2
Entering String Datao 5-5

Terminating Free-Field ENTER Statements 5-7
EOI Termination o000 5-7

Enters that Use Images00 5-8
The ENTER USING Statement 5-9

Images oL e e e e e e e e e 5-9
Example of an Enter Using an Image 5-9

Image Definitions During Enter 5-10
Numeric Images o000 0o e 5-11

Examples of Numeric Images 5-11
String Images L. oo 0 Lo Lo o . 5-12
Examples of String Images L. 5-12
Ignoring Characterso 5-13
Examples of Ignoring Characters 5-13
Binary Images o000 oL 000 o 5-13
Examples of Binary Images 5-14

Terminating Enters that Use Images e e 5-14
Default Termination Conditions 5-14
EOI Redefinitiono oL 5-14
Statement-Termination Modifiers 5-15

Examples of Modifying Termination Conditions 5-16

Additional Image Features e e e 5-16
Repeat Factorso oL o oo 5-16
Image Reuse o000 o e 5-16

Examples oL Lo oL s 5-16
Nested Images oL L0 5-17
Example oo o e e 5-17

I/0 Path Attributes

The FORMAT Attributes 6-1
Assigning Default FORMAT Attributes 6-2
Specifying I/O Path Attributes 6-3
Changing the EOL Sequence Attribute 6-3
Restoring the Default Attributes 6-4

Concepts of Unified I/Oo 6-4
Data-Representation Design Criteria 6-4
I/O Pathsto Fileso 6-5
BDAT, HPUX and DOS Files 6-5

ASCIT Files o . o o oo 6-6
Data Representation Summary e 6-7

Applications of Unified I/O e e e e Ce 6-7

I/O Operations with String Variables Coe 6-7
Outputting Data to String Variables Ce e 6-7
Example L oL Lo e 6-8
Example e 6-9
Entering Data From String Variables 6-9

Contents-3

Example 6-10
Example Lo, 6-10

Index

Contents-4

Manual Overview

Introduction

This manual presents the concepts of computer interfacing that are relevant to programming
in HP Instrument BASIC. Note that not all features described in this manual may be
implemented on your instrument. Please consult your instrument-specific manual for

a description of implemented features. The topics presented herein will increase your
understanding of interfacing the host instrument and external devices and computers with HP
Instrument BASIC programs.

Manual Organization

This manual is organized by topics and is designed as a learning tool, not a reference. The
text is arranged to focus your attention on interfacing concepts rather than to present only a
serial list of the HP Instrument BASIC language I/O statements. Once you have read this
manual and are familiar with the general and specific concepts involved, you can use either
this manual or the HP Instrument BASIC Language Reference when searching for a particular
detail of how a statement works.

This manual is designed for easy access by both experienced programmers and beginners.

Beginners may want to begin with Chapter 2, “Interfacing Concepts”, before reading
about general or interface-specific techniques.

Experienced may decide to go directly to the chapter in your instrument-specific manual

programmers that describes the particular interface to be used. It is also usually helpful to
become familiar with display and keyboard I/O operations, since these are
helpful in seeing results while testing I/O programs.

If you need more background as you read about a particular topic, consult
chapters 3 through 6 for a detailed explanation.

The brief descriptions in the next section will help you determine which chapters you will need
to read for your particular application.

Manual Overview 1-1

Chapter Previews

This manual is intended to provide background and tutorial information for programmers
who have not written HP Instrument BASIC I/O programs before. It presents topics and
programming techniques applicable to all interfaces.

Chapter 2: Interfacing Concepts

This chapter presents a brief explanation of relevant interfacing concepts and terminology.
This discussion is especially useful for beginners as it covers much of the “why” and “how”
of interfacing. Experienced programmers may also want to review this material to better
understand the terminology used in this manual.

Chapter 3: Directing Data Flow

This chapter describes how to specify which instrument resource is to send data to or receive
data. The use of device selectors, string variable names, and “I/O path names” in I/O
statements are described.

Chapter 4: Outputting Data

This chapter presents methods of outputting data to devices. All details of this process are
discussed, and several examples of free-field output and output using images are given. Since
this chapter completely describes outputting data to devices, you may only need to read the
sections relevant to your application.

Chapter 5: Entering Data

This chapter presents methods of entering data from devices. All details of this process are
discussed, and several examples of free-field enter and enter using images are given. As with
Chapter 4, you may only need to read sections of this chapter relevant to your application.

Chapter 6: 1/O Path Attributes

This chapter presents several powerful capabilities of the I/O path names provided by the
BASIC language system. Interfacing to devices is compared to interfacing to mass storage
files, and the benefits of using the same statements to access both types of resources are
explained. This chapter is also highly recommended to all readers.

Specific Interfaces

Since each host instrument for HP Instrument BASIC implements the display, keyboard and
other interfaces in slightly different manners, this manual does not cover the operation of
interfaces. For specific details on the operation of interfaces with HP Instrument BASIC,
consult the instrument-specific manual for your host instrument.

1-2 Manual Overview

Interfacing Concepts

This chapter describes the functions and requirements of interfaces between the host
instrument and its resources. Concepts in this chapter are presented in an informal manner.
All levels of programmers can gain useful background information that will increase their
understanding of the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. The purpose of
this section is to make sure that our terms have the same meanings.

computer

hardware

software

firmware

computer
resource

1/0

output

input

bus

is herein defined to be the processor, its support hardware, and the HP
Instrument BASIC-language system of the host instrument; together these
system elements manage all computer resources.

describes both the electrical connections and electronic devices that make up
the circuits within the computer; any piece of hardware is an actual physical
device.

describes the user-written, BASIC-language programs.

refers to the preprogrammed, machine-language programs that are invoked by
BASIC-language statements and commands. As the term implies, firmware is
not usually modified by BASIC users. The machine-language routines of the
operating system are firmware programs.

is herein used to describe all of the “data-handling” elements of the system.
Computer resources include: internal memory, display, keyboard, and disc
drive, and any external devices that are under computer control.

is an acronym that comes from “Input and Output”; it refers to the process of
copying data to or from computer memory.

involves moving data from computer memory to another resource. During
output, the source of data is computer memory and the destination is any
resource, including memory.

is moving data from a resource to computer memory; the source is any
resource and the destination is a variable in computer memory. Inputting data
is also referred to as “entering data” in this manual for the sake of avoiding
confusion with the INPUT statement.

refers to a common group of hardware lines that are used to transmit
information between computer resources. The computer communicates
directly with the internal resources through the data and control buses.

Interfacing Concepts 2-1

computer is an extension of these internal data and control buses. The computer
backplane communicates indirectly with the external devices through interfaces
' connected to the backplane hardware.

Why Do You Need an Interface?

The primary function of an interface is to provide a communication path for data and
commands between the computer and its resources. Interfaces act as intermediaries between
resources by handling part of the “bookkeeping” work, ensuring that this communication
process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer bus is driven by electronic hardware that generates and
receives electrical signals, this hardware was not designed to be connected directly to external
devices. The internal hardware has been designed with specific electrical logic levels and drive
capability in mind.

Second, you cannot be assured that the connectors of the computer and peripheral are
compatible. In fact, there is a good probability that the connectors may not even mate
properly, let alone that there is a one-to-one correspondence between each signal wire’s
function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that
the data sent will be interpreted properly by the receiving device. Some peripherals expect
single-bit serial data while others expect data to be in 8-bit parallel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as
to when the data transfer will occur; and when the transfer does begin, the transfer rates will
probably not match.

As you can see, interfaces have a great responsibility to oversee the communication between
computer and its resources.

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match; if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly.
The interfaces connect with the computer buses. The peripheral end of the interfaces have
connectors that match those on peripherals.

Data Compatibility

Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult requirements to fulfill before exchanging data is that the format and meaning of
the data being sent is identical to that anticipated by the receiving device. Even though some
interfaces format data, most do not; most interfaces merely move data to or from computer
memory. The computer must make the necessary changes, if any, so that the receiving device
gets meaningful information.

2-2 Interfacing Concepts

Timing Compatibility

Since all devices do not have standard data-transfer rates, nor do they always agree as to
when the transfer will take place, a consensus between sending and receiving device must be
made. If the sender and receiver can agree on both the transfer rate and beginning point (in
time), the process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving
device that it has the data and that the sender can transfer the next data item; this process
is known as a “handshake.” Both types of transfers are utilized with different interfaces and
both will be fully described as necessary.

Additional Interface Functions

Another powerful feature of some interfaces is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface vary widely and are
described in the next section of this chapter.

Interfacing Concepts 2-3

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are available
for the computer. Each of these interfaces is specifically designed for specific methods of data
transfer; each interface’s hardware configuration reflects its function.

The GPIB Interface

This interface is Hewlett-Packard’s implementation of the IEEE-488 1978 Standard
Digital Interface for Programmable Instrumentation. The acronym “ GPIB’ comes from
Hewlett-Packard Interface Bus, often called the “bus”.

Data
8 N
GPIB 4
Interface
Handshake -
Data and 3 9 | Shielded Cable
Control Hardware § to Device(s)
Backplane 700 ‘ and S 5
Connectors Firmware ©
Control -
% ——:
ITe)
N
Logic and
Shield Grounds
(——>

Block Diagram of the GPIB Interface

The GPIB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface
cable to the desired GPIB device and begin programming. All resources connected to the
computer through the GPIB interface must adhere to this IEEE standard.

The “bus” is somewhat of an independent entity; it is a communication arbitrator that
provides an organized protocol for communications between several devices. The bus can be
configured in several ways. The devices on the bus can be configured to act as senders or
receivers of data and control messages, depending on their capabilities.

2-4 Interfacing Concepts

The RS-232C Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the
data through a two-wire (usually shielded) cable; data is received in this serial format and is
converted back to parallel data. This use of two wires makes it more economical to transmit
data over long distances than to use 8 individual lines.

Bit—Serial
Data

: {n)

| Paratiell/

ﬁDota Serial Out) P
Converter| Handshake

Parallel

Data and | (uarT) ” S | Shielded Cable
Control . @ to a Device
Serial c
Backplane c
Interface Q
Connectors . &
Hardware Special Purpose c
£
6]
7|7 1)
N
Grounds

(———

Block Diagram of the Serial Interface

Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all. The main use of this interface is in communicating with simple devices.

Interfacing Concepts 2-5

Data Representations

As long as data is only being used internally, it really makes little difference how it is
represented; the computer always understands its own representations. However, when data
is to be moved to or from an external resource, the data representation is of paramount
importance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digits), each
of which can take on one of two logic levels (high or low). Depending on how the computer
interprets these bits, they may mean on or not on (off), true or not true (false), one or zero,
busy or not busy, or any other bi-state condition. These logic levels are actually voltage levels
of hardware locations within the computer. The following diagram shows the voltage of a
point versus time and relates the voltage levels to logic levels.

Voltage of
a Point
+5v
\/\ Logic High
Logic Ground P= Logic Low
(Ov) t t t, Time
1 2 3

Volitage and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT, BINCMP, BINIOR, BINEOR,
BINAND, ROTATE, and SHIFT) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all
data in computer memory are somehow represented with binary numbers.

The computer’s hardware accesses groups of sixteen bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65 536 (65 536=216)
different bit patterns can be produced. The computer can also use groups of eight bits at a
time; this size group is known as a byte. With this smaller size of bit group, 256 (256=2%)
different patterns can be produced. How the computer and its resources interpret these
combinations of ones and zeros is very important and gives the computer all of its utility.

2-6 Interfacing Concepts

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers 0 through 255 can be represented with this particular

scheme.

Most-Significant Bit

Least-Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 1 0 1 1 0
Value=128 | Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1

Notice that the value of a 1 in each bit position is equal to the power of two of that position.
For example, a 1 in the Oth bit position has a value of 1 (1=2°), a 1 in the 1st position has a
value of 2 (2=2!), and so forth. The number that the byte represents is then the total of all
the individual bit’s values.

0x20=0

1x2t=2

1x22=4 Number represented =
0x22=0

1x2t=16 24+4+4+ 16 + 128 = 150
0x2°=0

0x26=0

1x 27 =128

The preceding representation is used by the “NUM” function when it interprets a byte of
data. The next section explains why the character “A” can be represented by a single byte.
100 Number=NUM("A")

110 PRINT " Number = " ;Number
120 END

prints

Number = 65

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a
character. The most widely used character set is defined by the ASCII standard. ASCII
stands for “American Standard Code for Information Interchange”. This standard defines the
correspondence between characters and bit patterns of individual bytes. Since this standard
only defines 128 patterns (bit 7 = 0), 128 additional characters are defined by the computer
(bit 7 = 1). The entire set of the 256 characters on the computer is hereafter called the
“extended ASCII” character set.

When the CHRS$ function is used to interpret a byte of data, its argument must be specified
by its binary-weighted value. The single (extended ASCII) character returned corresponds to
the bit pattern of the function’s argument.

Interfacing Concepts 2-7

100 Number=65 ! Bit pattern is '"01000001"
110 PRINT " Character is ";

120 PRINT CHR$(Number)

130 END

prints

Character is A

The 1/0 Process

When using statements that move data between memory and internal computer resources,
you do not usually need to be concerned with the details of the operations. However, you
may have wondered how the computer moves the data. This section describes I/O operations
regarding how the computer outputs and enters data.

I/O Statements and Parameters

The I/O process begins when an I/O statement is encountered in a program. The computer
first determines the type of I/O statement to be executed (such as, OUTPUT, ENTER,
USING, etc.) Once the type of statement is determined, the computer evaluates the
statement’s parameters.

Specifying a Resource

Each resource must have a unique specifier that allows it to be accessed to the exclusion of
all other resources connected to the computer. The methods of uniquely specifying resources
(output destinations and enter sources) are device selectors, string variable names, and I/O
path names. These specifiers are further described in the next chapter.

For instance, before executing an OUTPUT statement, the computer first evaluates the
parameter that specifies the destination resource. The source parameter of an ENTER
statement is evaluated similarly.

OUTPUT Dest_parameter;Source_item

ENTER Sourc_parameter;Dest_item

Data Handshake

Each byte (or word) of data is transferred with a procedure known as a data-transfer
handshake (or simply “handshake”). It is the means of moving one byte of data at a time
when the two devices are not in agreement as to the rate of data transfer or as to what point
in time the transfer will begin. The steps of the handshake are as follows:

1. The sender signals to get the receiver’s attention.
2. The receiver acknowledges that it is ready.

3. A data byte (or word) is placed on the data bus.
4

. The receiver acknowledges that it has gotten the data item and is now busy. No further
data may be sent until the receiver is ready.

5. Repeat these steps if more data items are to be moved.

2-8 Interfacing Concepts

3

Directing Data Flow

Data can be moved between computer memory and several resources. These resources include:
s Computer memory

m Internal and external devices

m Mass storage files

This chapter describes in general terms how devices and string variables are specified in
I/O statements. Each of these topics is covered in more detail in subsequent chapters. This
chapter also describes the use of I/O pathnames in specifying devices for later use in I/0
statements.

Specifying a Resource

Each resource must have a specifier that allows it to be accessed to the exclusion of all other
computer resources. String variables are specified by variable name, while devices can be
specified by either their device selector or a data type known as an I/O path name. This
section describes how to specify these resources in OUTPUT and ENTER statements.

String-Variable Names

Data is moved to and from string variables by specifying the string variable’s name in an
OUTPUT or ENTER statement. Examples of each are shown below:

200 OUTPUT To_string$;Data_out$; ! ";" suppresses CR/LF.
240 ENTER From_string$;To_string$

Data is always copied to the destination string (or from the source string) beginning at the
first position of the variable; subscripts cannot be used to specify any other beginning position
within the variable.

Formatted String 1/O

The use of outputting to and entering from string variables is a very powerful method of
buffering data to be output to other resources. With OUTPUT and ENTER statements that
use images, the data sent to the string variables can be explicitly formatted before being sent
to (or while being received from) the variable.

Directing Data Flow 3-1

Device Selectors

Devices include an internal CRT, keyboard, external printers and instruments, and all other
physical entities that can be connected to the computer through an interface. Each interface
has a unique number by which it is identified, known as its interface select code.

In order to send data to or receive data from a device, merely specify the select code of its
interface in an OUTPUT or ENTER statement. Examples of using select codes to access
devices are shown below.

OUTPUT 1;"Data to CRT"
ENTER CRT;Crt_line$

HPib_device=722
OUTPUT 722;"F1R1"
ENTER Hpib_device;Reading

The following pages explain select codes and device selectors.

Select Codes of Built-In Interfaces

The internal devices are accessed with the following, permanently-assigned interface select
codes.

Note Some host instruments may not contain all of the following interfaces.

v

Select Codes of Built-Iin Devices

Built-In Interface/Device Permanent

Select Code
Alpha Display 1
Keyboard 2
Built-in GPIB interface 7
Built-in serial interface 9

The host instrument may have other built-in interfaces. See your instrument-specific HP
Instrument BASIC manual for information regarding these interfaces and their select codes.

GPIB Device Selectors

Each device on the GPIB interface has a primary address by which it is uniquely identified;
each address must be unique so that only one device is accessed when one address is specified.
The device selector is then a combination of the interface select code and the device’s address.
Some examples are shown below.

3-2 Directing Data Flow

GPIB Device Selector Examples

Device Location Device Example I/O Statement
Selector
interface select code 7, 722 OUTPUT 722;"Data" ENTER
primary address 22 722; Number
interface select code 10, 1001 OUTPUT 1001;"Data" ENTER
primary address 01 1001 ; Number

/O Paths

All data entered and output via an interface to files or devices is moved through an “I/O
Path.” The I/O paths to devices and mass storage files can be assigned special names called
I/0 path names. I/O paths to strings cannot use I/O path names. The next section describes
how to use I/O path names along with the benefits of using them.

I/O Path Names

An I/O path name is a data type that describes an I/O resource. With HP Instrument
BASIC, you can assign I/O path names to either a device or a data file on a mass storage
device. The following examples show how this is done.

Devices ASSIGN @Device TO 722
Files ASSIGN @File TO "MyFile"

Once assigned, the I/O path names can be used in place of the device selectors to specify the
resource with which communication is to take place. For example:

ASSIGN @Display TO 1 Assigns the I/O path name @Display to the CRT.

OUTPUT @Display;'Data" Sends characters to the display.

ASSIGN @Printer TO 701 Assigns @Printer to GPIB device 701.

OUTPUT @Printer;'Data" Sends characters to the printer.

ASSIGN @Gpio TO 12 Assigns @Gpio to the interface at select code 12.

ENTER @Gpio;A_number Enters one numeric value from the interface.

Note HP Instrument BASIC does not support assigning an I/O path name to
i multiple devices.

Since an I/O path name is a data type, a fixed amount of memory is allocated for the
variable, similar to the manner in which memory is allocated to other program variables
(integer, real and string). This I/O path information is only accessible to the context in which
it was allocated, unless it is passed as a parameter or appears in the proper COM statements.

ReAssigning I/O Path Names

If an I/O path name already assigned to a resource is to be reassigned to another resource, the
preceding form of the ASSIGN statement is also used. The resultant action is that the the

Directing Data Flow 3-3

I/O path name to the device is implicitly closed. A new assignment is then made just as if the
first assignment never existed.

100 ASSIGN @Printer TO 1 ! Initjal assignment.
110 OUTPUT @Printer;'"Datal
120 !

130 ASSIGN @Printer TO 701 ! 2nd ASSIGN closes 1st

140 OUTPUT @Printer;"Data2" ! and makes a new assignment.
150 PAUSE

160 END

The result of running the program is that “Datal” is sent to the CRT, and “Data2” is sent to
GPIB device 701.

Closing 1/0 Path Names

A second use of the ASSIGN statement is to ezplicitly close the name assigned to an I/O
path. For example, to close the path name @Printer you would use the following statement:

ASSIGN @Printer TO *

After executing this statement for a particular I/O path name, the name cannot be used in
subsequent I/O statements until it is reassigned.

1/0 Path Names in Subprograms

When a subprogram (either a SUB subprogram or a user-defined function) is called, the
“context” is changed to that of the called subprogram. The statements in the subprogram
only have access to the data of the new context. Thus, in order to use an I/O path name in
any statement within a subprogram, one of the following conditions must be true:

m The I/O path name must already be assigned within the context (i.e., the same instance of
the subprogram)

m The I/O path name must be assigned in another context and passed to this context by
reference (i.e., specified in both the formal-parameter and pass-parameter lists)

m The I/O path name must be declared in a variable common (with COM statements) and
already be assigned within a context that has access to that common block

The following paragraphs and examples further describe using I/O path names in
subprograms.

Assigning 1/O Path Names Locally Within Subprograms

Any I/0 path name can be used in a subprogram if it has first been assigned to an I/O path
within the subprogram. A typical example is shown below.

10 CALL Subprogram_x

20 END

30 !

40 SUB Subprogram_x

50 ASSIGN @Log_device TO 1 ! CRT.
60 OUTPUT @QLog_device;'"Subprogram"
70 SUBEND

3-4 Directing Data Flow

When the subprogram is exited, all [/O path names assigned locally within the subprogram
are automatically closed. If the program (or subprogram) that called the exited subprogram
attempts to use the I/O path name, an error results. An example of this closing local I/O
path names upon return from a subprogram is shown below.

10 CALL Subprogram_x

11 OUTPUT @Log_device;"Main" ! inserted line
20 END

30 !

40 SUB Subprogram_x

50 ASSIGN @Log_device TO 1 ! CRT.

60 OUTPUT @Log_device;'Subprogram'

70 SUBEND

When the above program is run, error 177, Undefined 1/O path name, occurs in line 11.

Each context has its own set of local variables. These variables are not automatically
accessible to any other context. Consequently, if the same I/O path name is assigned to I/O
paths in separate contexts, the assignment local to the context is used while in that context.
Upon return to the calling context, any I/O path names accessible to this context remain
assigned as before the context was changed.

1 ASSIGN QLog_device to 701 ! Inserted line
2 OUTPUT @Log_device;"First Main" ! Inserted line
10 CALL Subprogram_x

11 OUTPUT @Log_device;"Second Main" ! Changed line
20 END

30 !

40 SUB Subprogram_x

50 ASSIGN @Log_device TO 1 ! CRT.

60 OUTPUT QLog_device;'Subprogram'

70 SUBEND

The results of the above program are that the outputs “First Main” and “Second Main”

are directed to device 701, while the output “Subprogram” is directed to the CRT. Notice
that the original assignment of @Log_device made to interface select code 1 was local to the
subprogram.

Passing 1/O Names as Parameters

I/O path names can be used in subprograms if they are assigned and have been passed to the
called subprogram by reference; they cannot be passed by value. The I/O path names(s) to be
used must appear in both the pass-parameter and formal-parameter lists.

1 ASSIGN QLog_device to 701
2 OUTPUT @Log_device;"First Main"

10 CALL Subprogram_x(Q@Log_device) ! Add pass parameter
11 OUTPUT @Log_device;'"Second Main'

20 END

30 !

40 SUB Subprogram_x(@Log) ! Add formal parameter

50 ASSIGN @Log TO 1 ! CRT.
60 OUTPUT @Log;'Subprogram"
70 SUBEND

Upon returning to the calling routine, any changes made to the assignment of the I/O path
name passed by reference are maintained; the assignment local to the calling context is not
restored as in the preceding example, since the I/O path name is accessible to both contexts.

Directing Data Flow 3-5

In this example, @Log_device remains assigned to interface select code 1; thus, “Subprogram”
and “Second Main” are both directed to the CRT.

Declaring 1/O Path Names in Common

An I/0 path name can also be accessed by a subprogram if it has been declared in a COM
statement (labeled or unlabeled) common to calling and called contexts, as shown in the
following example.

1 COM @Log_device ! Insert COM statement

3 ASSIGN @Log_device to 701
4 OUTPUT @Log_device;"First Main"

10 CALL Subprogram_x ! Parameters not necessary
11 OUTPUT @Log_device;"Second Main"

20 END

30 !

40 SUB Subprogram_x ! Parameters not necessary
41 COM @ Log_device ! Insert COM statement

50 ASSIGN @Log_device TO 1 ! CRT.
60 OUTPUT @Log_device;'Subprogram"
70 SUBEND

If an I/O path name is common is modified in any way, the assignment is changed for all
subsequent contexts; the original assignment is not “restored” upon exiting the subprogram.
In this example, “First Main” is sent to the GPIB device 701, but “Subprogram” and
“Second Main” are both directed to the CRT. This is identical to the preceding action when
the I/O path name was passed by reference.

Benefits of Using 1/0 Path Names

Assigning names to I/O paths provide improvements in performance and additional
capabilities over using device selectors. These advantages fall in the following areas:

m execution speed
m redirecting data to or from other destinations
m access to mass storage files

m attribute control

Execution Speed

When a device selector is used in an I/O statement to specify the I/O path to a device, first
the numeric expression must be evaluated, then the corresponding attributes of the I/O path
must be determined before the I/O path can be used. If an I/O path name is specified in

an QUTPUT or ENTER statement, all of this information has already been determined at
the time the I/O path name was assigned. Thus, an I/O statement containing an I/O path
name executes slightly faster than using the corresponding I/O statement containing a device
selector (for the same set of source-list expressions).

3-6 Directing Data Flow

Redirecting Data

Using numeric-variable device selectors, as with I/O path names, allows a single statement
to be used to move data between the computer and several devices. Simple examples of
redirecting data in this manner are shown in the following programs.

Example of Re-Directing with Device Selectors

100 Device=1
110 GOSUB Data_out

200 Device=701
210 GOSUB Data_out

410 Data_out: OUTPUT Device;Data$
420 RETURN

Example of Re-Directing with I/O Path Names

100 ASSIGN @Device TO 1
110 GOSUB Data_out

200 ASSIGN @Device TO 9
210 GOSUB Data_out

410 Data_out: OUTPUT @Device;Data$
420 RETURN

The preceding two methods of redirecting data execute in approximately the same amount of
time.

Access to Mass Storage Files

The third advantage of using I/O path names is that device selectors cannot be used to direct
data to or from mass storage files. Therefore, I/O path names are the only access to files. If
the data is ever to be directed to a file, you must use I/O path names.

Attribute Control

I/0 paths have certain “attributes” that control how the system handles data sent through
the I/O path. For example, the FORMAT attribute possessed by an I/O path determines
which data representation will be used by the path during communications. If the path
possesses the attribute of FORMAT ON, the ASCII data representation will be used. This

is the default attribute automatically assigned by the computer when I/O path names are
assigned to device selectors. If the I/O path possesses the attribute of FORMAT OFF, the
internal data representation is used; this is the default format for BDAT files. Further details
of these and additional attributes are discussed in the “I/O Path Attributes” chapter.

The final factor that favors using I/O path names is that you can control which attribute(s)
are to be assigned to the I/O path. Attributes can be attached to an I/O path name when
it is assigned to a device (via the ASSIGN statement) and can specify data representation
(ASCII or internal) as well as the end-of-line sequence for all data using the path. Details of
these attributes are discussed in the “I/O Path Attributes” chapter.

Directing Data Flow 3-7

Outputting Data

Introduction

This chapter describes the topic of outputting data to devices; outputting data to string
variables, and mass storage files is described in the “I/O Path Attributes” chapter of this
manual, in “Data Storage and Retrieval”, chapter 7 of HP Instrument BASIC Programming
Techniques.

There are two general types of output operations. The first type, known as “free-field
outputs”, use the HP Instrument BASIC’s default data representations. The second type
provides precise control over each character sent to a device by allowing you to specify the
exact “image” of the ASCII data to be output.

Free-Field Outputs
Free-field outputs are invoked when the following types of OUTPUT statements are executed.

Examples

OUTPUT @Device;3.14%Radius~2
OUTPUT Printer;'String data';Num_1
OUTPUT 9;Test,Score,Student$

OUTPUT Escape_code$;CHR$ (27)&"&A1S";

The Free-Field Convention

The term “free-field” refers to the number of characters used to represent a data item.

During free-field outputs, HP Instrument BASIC does not send a constant number of ASCII
characters for each type of data item, as is done during “fixed-field outputs” which use images
(described later). Instead, a special set of rules is used that govern the number and type of
characters sent for each source item. The rules used for determining the characters output for
numeric and string data are described in the following paragraphs.

Standard Numeric Format

The default data representation for devices is to use ASCII characters to represent numbers.
The ASCII representation of each expression in the source list is generated during free-field
output operations. Even though all REAL numbers have 15 (and INTEGERs can have up
to 5) significant decimal digits of accuracy, not all of these digits are output with free-field
OUTPUT statements. Instead, the following rules of the free-field convention are used when
generating a number’s ASCII representation.

Outputting Data 4-1

All numbers between 1E—5 and 1E+6 are rounded to 12 significant digits and output in
floating-point notation with no leading zeros. If the number is positive, a leading space is
output for the sign; if negative, a leading “—” is output.

For example:

32767
-32768
123456.789012
-.000123456789012

If the number is less than 1E—5 or greater than 1E+6, it is rounded to 12 significant digits
and output in scientific notation. No leading zeros are output, and the sign character is a
space for positive and “—” for negative numbers.

For example:

-1.23456789012E+6
1.23456789012E-5

Standard String Format

No leading or trailing spaces are output with the string’s characters.

String characters.
No leading or trailing spaces.

Item Separators and Terminators

Data items are output one byte at a time, beginning with the left-most item in the source
list and continuing until all of the source items have been output. Items in the list must be
separated by either a comma or a semicolon. However, items in the data output may or may
not be separated by item terminators, depending on the use of item separators in the source
lists.

The general sequence of items in the data output is as follows. The end-of-line (EOL)
sequence is discussed in the next section.

1st item 2nd item e last EOL
item terminator item terminator item sequence

Using a comma separator after an item specifies that the item terminator (corresponding
to the type of item) will be output after the last character of this item. A carriage-return,
CHR$(13), and a line-feed, CHR$(10), terminate string items.

QUTPUT Device;"Item",-1234

| tlem]|CRILF]I—-11]12]13]| 4 EOL The default EOL sequence is a CR/LF
sequence

4-2 Outputting Data

A comma separator specifies that a comma, CHR$(44), terminates numeric items.

OUTPUT Device;-1234,"Item"

—l1l213)4] .1 1] t]lelm EOL
sequence

If a separator follows the last item in the list, the proper item terminator will be output
instead of the EOL sequence.

OUTPUT Device;"Item", OUTPUT Device;-1234,

Using a semicolon separator suppresses output of the (otherwise automatic) item’s terminator.

OUTPUT 1;"Iteml";"Item2" OUTPUT 1;-12;-34

Iltlelm|1]1|t]lelm]2 EOL -l1]2]-|3]4 EOL
sequence sequence

If a semicolon separator follows the last item in the list, the EOL sequence and item
terminators are suppressed.

QUTPUT 1;"Iteml";"Item2";

Neither of the item teminators nor
the EOL sequence are output.

If the item is an array, the separator following the array name determines what is output after
each array element. (Individual elements are output in row-major order.)

110 DIM Array(1:2,1:3)
120 FOR Row=1 TO 2

130 FOR Column=1 TO 3

140 Array (Row, Column)=Row*10+Column

150 NEXT Column

160 NEXT Row

170 !

180 OUTPUT CRT;Array(*) ! No trailing separator.
190 '

200 OUTPUT CRT;Array(*), ! Trailing comma.

210 !

220 OUTPUT CRT;Array(#); ! Trailing semi-colon.
230 !

240 OUTPUT CRT;"Done"

250 END

Outputting Data 4-3

Resultant OQutput

tbof o fod2t o (o3 L2l 212 |2]3 EOL
sequence
1111, 1121, 1131, 2111, 2121, 213
111 112 113 211 212 213
Dlo|N|E EOL
sequence

Item separators cause similar action for string arrays.

110 DIM Array$(1:2,1:3)[2]
120 FOR Row=1 TO 2

130 FOR Column=1 TO 3

140 Array$(Row,Column)=VAL$ (Row*10+Column)
150 NEXT Column

160 NEXT Row

170 !

180 OUTPUT CRT;Array$(*) ! No trailing separator.
190 !

200 OUTPUT CRT;Array$(*), ! Trailing comma.

210 !

220 OUTPUT CRT;Array$(*); ! Trailing semi-colon.
230 !

240 OUTPUT CRT;"Done"

250 END

Resultant Output

11 |criLtFl 1 |2 |cRILF] 1 | 3|crRILF| 2| 1 [crRILF[2|2 [crR[LF| 2| 3 EOL
sequence
11 |erltF] 1]2 |cr|LtF] 1] 3fcr|LF| 2| 1 |crRILFf 2|2 [crR[LF| 2] 3 EOL
sequence
11121321]2]22]3

plo|N|E EOL
sequence

Changing the EOL Sequence

An end-of-line (EOL) sequence is normally sent following the last item sent with OUTPUT.
The default EOL sequence consists of a carriage-return and line-feed (CR/LF), sent with
no device-dependent END indication. It is also possible to define your own special EOL
sequences that include sending special characters, and sending an END indication.

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an I/O
path must be used. The EOL sequence is specified in one of the ASSIGN statements that
describe the I/O path. An example is as follows.

ASSIGN @Device TO 7;EOL CHR$(10)&CHR$(10)&CHR$ (13)

The characters following EOL are the new EOL-sequence characters. Any character in the
range CHR$(0) through CHR$(255) may be included in the string expression that defines the
EOL characters; however, the length of the sequence is limited to eight characters or less.

4-4 Outputting Data

If END is included in the EOL attribute, an interface-dependent “END” indication is sent
with (or after) the last character of the EOL sequence. However, if no EOL sequence is sent,
the END indication is also suppressed. The following statement shows an example of defining
the EOL sequence to include an END indication.

ASSIGN @Device TO 7;EOL CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent with
the last EOL character.

The default EOL sequence is a CR and LF sent with no END indication; this default can be
restored by assigning EOL OFF to the I/O path.

EOL sequences can also be sent by using the “L” image specifier. See “Outputs that Use
Images” for further details.

Using END in Freefield OUTPUT

The secondary keyword END may be optionally specified following the last source-item
expression in a freefield QUTPUT statement. The result is to suppress the End-of-Line
(EOL) sequence that would otherwise be output after the last byte of the last source item. If
a comma is used to separate the last item from the END keyword, the corresponding item
terminator will be output as before (carriage-return and line-feed for string items and comma
for numeric items).

The END keyword has additional significance when the destination is a mass storage file. See
the “Data Storage and Retrieval” chapter of HP Instrument BASIC Programming Techniques
for further details.

Additional Definition

HP Instrument BASIC defines additional action when END is specified in a freefield
OUTPUT statement directed to the GPIB interface.

END with GPIB Interfaces

With GPIB interfaces, END has the additional function of sending the End-or-Identify signal
(EOI) with the last data byte of the last source item; however, if no data is sent from the last
source item, FOI is not sent.

Examples

ASSIGN @Device TO 701

OUTPUT @Device;-10,END

-1110

—

EOl sent with the last character
(numeric item terminator).

Outputting Data 4-5

OUTPUT @Device;"AB";END

AlB
——

EOI sent with the last character of the item.

OUTPUT @Device;END
OUTPUT @Device;""END

Neither EOL sequence nor EOI is sent, since no data is sent.

Outputs that Use Images

The free-field form of the OUTPUT statement is very convenient to use. However, there may
be times when the data output by the free-field convention is not compatible with the data
required by the receiving device.

Several instances for which you might need to format outputs are: special control characters
are to be output; the EOL sequence (carriage-return and line-feed) needs to be suppressed; or
the exponent of a number must have only one digit. This section shows you how to use image
specifiers to create your own, unique data representations for output operations.

The OUTPUT USING Statement

When this form of the OUTPUT statement is used, the data is output according to the
format image referenced by the “USING” secondary keyword. This image consists of one or
more individual image specifiers that describe the type and number of data bytes (or words)
to be output. The image can be either a string literal, a string variable, or the line label or
number of an IMAGE statement. Examples of these four possibilities are listed below.

100 OUTPUT 1 USING '"6A,SDDD.DDD,3X";" K= ",123.45

100 Image_str$='"6A,SDDD.DDD,3X"
110 OUTPUT CRT USING Image_str$;" K= ';123.45

100 OUTPUT CRT USING Image_stmt;" K= '";123.45
110 Image_stmt: IMAGE 6A,SDDD.DDD,3X

100 OUTPUT 1 USING 110;" K= ';123.45
110 TIMAGE 6A,SDDD.DDD,3X

4-6 Outputting Data

Images

Images are used to specify the format of data during I/O operations. Each image consists
of groups of individual image (or “field”) specifiers, such as 6A, SDDD.DDD, and 3X in the
preceding examples. Each of these field specifiers describe one of the following things:

m It describes the desired format of one item in the source list. For example, 6A specifies that
a string item is to be output in a “6-character Alpha” field. SDDD.DDD specifies that
a numeric item is to be output with Sign, 3 Decimal digits preceding the decimal point,
followed by 3 Decimal digits following the decimal point.

m It specifies that special character(s) are to be output. For example, 3X specifies that 3
spaces are to be output. There is no corresponding item in the source list.

Thus, you can think of the image list as either a precise format description or as a procedure.
It is convenient to talk about the image list as a procedure for the purpose of explaining how
this type of OUTPUT statement is executed.

Again, each image list consists of images that each describe the format of data item to be
output. The order of images in the list corresponds to the order of data items in the source
list. In addition, image specifiers can be added to output (or to suppress the output of)
certain characters.

Example of Using an Image

We will use the first of the four, equivalent output statements shown above. Don’t worry if
you don’t understand each of the image specifiers used in the image list; each will be fully
described in subsequent sections of this chapter. The main emphasis of this example is that
you will see how an image list is used to govern the type and number of characters output.

OUTPUT CRT USING "64,SDDD.DDD,3X";" K= ",123.45

The data stream output by the computer is as follows.

K|= +1 11213 .|4]15]|0 CR]| LF
b - % Vv A v e
6A s D DD . D D D 3X default EOL
sequence
Step 1. The computer evaluates the first image in the list. Generally, each group of

specifiers separated by commas is an “image”; the commas tell the computer
that the image is complete and that it can be “processed”. In general, each
group of specifiers is processed before going on to the next group. In this case,
6 alphanumeric characters taken from the first item in the source list are to be
output.

Step 2. The computer then evaluates the first item in the source list and begins outputting
it, one byte (or word) at a time. After the 4th character, the first expression has
been “exhausted”. In order to satisfy the corresponding specifier, two spaces
(alphanumeric “fill” characters) are output.

Step 3. The computer evaluates the next image (note that this image consists of several '
different image specifiers). The “S” specifier requires that a sign character be

Outputting Data 4-7

Step 4.

Step 5.

Step 6.

output for the number, the “D” specifiers require digits of a number, and the

“” specifies where the decimal point will be placed. Thus, the number of digits
following the decimal point have been specified. All of these specifiers describe the
format of the next item in the source list.

The next data item in the source list is evaluated. The resultant number is output
one digit at a time, according to its image specifiers. A trailing zero has been
added to the number to satisfy the “DDD” specifiers following the decimal point.

The next image in the list (“3X”)is evaluated. This specifier does not “require”
data, so the source list needs no corresponding expression. Three spaces are output
by this image.

Since the entire image list and source list have been “exhausted”, the computer
then outputs the current (or default, if none has been specified) “end-of-line”
sequence of characters (here we assume that a carriage-return and line-feed are the
current EOL sequence).

The execution of the statement is now complete. As you can see, the data specified in the
source list must match those specified in the output image in type and in number of items.

Image Definitions During Outputs

This section describes the definitions of each of the image specifiers when referenced by
OUTPUT statements. The specifiers have been categorized by data type. It is suggested that
you scan through the description of each specifier and then look over the examples. You are
also highly encouraged to experiment with the use of these concepts.

4-8 Outputting Data

Numeric Images

These image specifiers are used to describe the format of numbers.

Sign, Digit, Radix and Exponent Specifiers

Image Specifier

Meaning

Specifies a “+” for positive and a “—” for negative numbers is to be output.

Specifies a leading space for positive and a “—” for negative numbers is to be
output.

Specifies one ASCII digit (“0” through “9”) is to to be output. Leading spaces
and trailing zeros are used as fill characters. The sign character, if any, “floats”
to the immediate left of the most-significant digit. If the number is negative and
no S or M is used, one digit specifier will be used for the sign.

Same as “D” except that leading zeros are output. This specifier cannot appear
to the right of a radix specifier (decimal point or R).

Like D, except that asterisks are output as leading fill characters (instead of
spaces). This specifier cannot appear to the right of a radix specifier (decimal
point or R).

Specifies the position of a decimal point radix-indicator (American radix) within
a number. There can be only one radix indicator per numeric image item.

ESZ
ESZZZ

Specifies the position of a comma radix indicator (European radix) within a
number. There can be only one radix indicator per numeric image item.

Specifies that the number is to be output using scientific notation. The “E” must
be preceded by at least one digit specifier (D, Z, or *). The default exponent is a
four-character sequence consisting of an “E”, the exponent sign, and two
exponent digits, equivalent to an “ESZZ” image. Since the number is left-justified
in the specified digit field, the image for a negative number must contain a sign
specifier (see the next section).

Same as “E” but only 1 exponent digit is output.

Same as “E” but three exponent digits are output.

K, -K

Specifies that the number is to be output in a “compact” format, similar to the
standard numeric format; however, neither leading spaces (that would otherwise
replace a “+” sign) nor item terminators (commas) are output, as would be with
the standard numeric format.

Like K, except that the number is to be output using a comma radix (European
radix).

Outputting Data 4-9

Numeric Examples

OUTPUT @Device USING "DDDD";-123.769

EOL
sequence

OUTPUT @Device USING "4D";-1.2

sequence

OUTPUT @Device USING "ZZ.DD";1.675

0o 9 EOL
sequence
OUTPUT @Device USING "Z.D"; .35
0 EOL
sequence
OUTPUT @Device USING "DD.E" ;12345
1 2 £ EOL
sequence
OUTPUT @Device USING "2D.DDE";2E-4
210 ofo 5 EOL
sequence
OUTPUT @Device USING "K";12.400
112 EOL
sequence
OUTPUT CRT USING "MDD.2D";-12.449
- 1112 EOL
sequence

4-10 Outputting Data

OUTPUT CRT USING '"MDD.DD";2.09

2 9 EOL
sequence
OQUTPUT 1 USING "SD.D";2.449
sequence
QUTPUT 1 USING "SZ.DD"; .49
sequence
OUTPUT CRT USING "SDD.DDE";-2.35
-12|3 5 —lol1 EOL
sequence
OUTPUT @Device USING "*x.D";2.6
«| 2 EOL
sequence
OUTPUT @Device USING "DRDD";3.1416
3 EQL
sequence
OUTPUT @Device USING "H'";3.1416
3) 1 6 EOL
sequence

Outputting Data 4-11

String Images

These types of image specifiers are used to specify the format of string data items.

Character Specifiers

Image Specifier Meaning

A Specifies that one character is to be output. Trailing spaces are used as fill
characters if the string contains less than the number of characters specified.

“literal” All characters placed in quotes form a string literal, which is output exactly as is.
Literals can be placed in output images, which are part of OUTPUT statements
by enclosing them in double quotes.

K, —K, H, —H Specifies that the string is to be output in “compact” format, similar to the
standard string format; however, no item terminators are output as with the
standard string format.

String Examples
OUTPUT @Device USING "8A";"Characters"

Clh]a ria c t] e EOL
sequence
OUTPUT @Device USING "K,""Literal""";"AB"
alslelilt]lelrlall EOL
sequence
OUTPUT @Device USING "K";" Hello "
Hlel t] 1o EOL
sequence

OUTPUT @Device USING "5A";" Hello "

Hl e EOL
sequence

4-12 Outputting Data

Binary Images

These image specifiers are used to output bytes (8-bit data) and words (16-bit data) to the
destination. Typical uses are to output non-ASCII characters or integers in their internal

representation.

Binary Specifiers

Image Specifier

Meaning

B

Specifies that one byte (8 bits) of data is to be output. The source expression is
evaluated, rounded to an integer, and interpreted MOD 256. If it is less than
—32 768, CHR$(0) is output. If is greater than 32 767, CHR$(255) is output.

Specifies that one word of data (16 bits) are to be sent as a 16-bit,
two’s-complement integer. The corresponding source expression is evaluated and
rounded to an integer. If it is less than —32 768, then —32 768 is sent; if it is
greater than 32 767, then 32 767 is sent.

If the destination is a BDAT or HPUX file, or string variable, the WORD
attribute is ignored and all data are sent as bytes; however, pad byte(s),
CHR$(0), will also be output whenever necessary to achieve alignment on a word
boundary.

Since HP Instrument BASIC only supports 8-bit interfaces, two bytes are always
output, with the most significant byte first. This image specifier has been
included primarily to maintain compatibility with HP Series 200/300 BASIC
programs that include this specifier.

Like W, except that no pad bytes are output to achieve alignment on a word
boundary.

Binary Examples

OUTPUT @Device USING "B,B,B";65,66,67

AlBlC EOL -
sequence

OUTPUT @Device USING "B";13

OUTPUT @Device USING "W'";256%65+66

Al B EOL
sequence

Outputting Data 4-13

Special-Character Images

These specifiers require no corresponding data in the source list. They can be used to output
spaces, end-of-line sequences, and form-feed characters.

Special-Character Specifiers

Image Specifier Meaning
X Specifies that a space character, CHR$(32), is to be output.
/ Specifies that a carriage-return character, CHR$(13), and a line-feed character,
CHR$(10), are to be output.
@ Specifies that a form-feed character, CHR$(12), is to be output.

Special-Character Examples
OUTPUT @Device USING "A,4X,A";"M", "A"

M A EOL
sequence

OUTPUT @Device USING "50X"

-¢— (50 spaces) —P= EOL
sequence

OUTPUT @Device USING "@,/"

FFcr|LF| EOL
sequence

OUTPUT @Device USING "/"

cR[LF|__EOL
sequence

4-14 Outputting Data

Termination Images

These specifiers are used to output or suppress the end-of-line sequence output after the last
data item.

Termination Specifiers

Image Specifier Meaning

L Specifies that the current end-of-line sequence is to be output. The default EOL
characters are CR and LF; see “Changing the EOL Sequence” for details on how
to redefine these characters.

Specifies that the EOL sequence that normally follows the last item is to be
suppressed.

% Is ignored in output images but is allowed to be compatible with ENTER images.

+ Specifies that the EOL sequence that normally follows the last item is to be

replaced by a single carriage-return character (CR).

- Specifies that the EOL sequence that normally follows the last item is to be
replaced by a single line-feed character (LF).

Termination Examples

OUTPUT @Device USING "4A,L";"Data"

olalt]lal EOL EOL
sequence | sequence

OUTPUT @Device USING "#,K";"Data"

OUTPUT @Device USING "#,B";12

OUTPUT @Device USING "+,K";"Data"

Outputting Data 4-15

OUTPUT @Device USING "-,L,K";"Data"

EOL Dla] t]| a]|LF
sequence

Additional Image Features

Several additional features of outputs that use images are available with the computer.
Several of these features, which have already been shown, will be explained here in detail.

Repeat Factors

Many of the specifiers can be repeated without having to explicitly list the specifier as many
times as it is to be repeated. For instance, to a character field of 15 characters, you do not
need to use “AAAAAAAAAAAAAAA”; instead, you merely specify the number of times that
the specifier is to be repeated in front of the image (“15A”). The following specifiers can be
repeated by specifying an integer repeat factor; the specifiers not listed cannot be repeated in
this manner.

Repeatable Specifiers Nonrepeatable Specifiers

Z’D’A)X)/)@’L S’M)')R)E)K’H)B’W$Y’#)%’+)-

Examples
OUTPUT @Device USING "4Z.3D";328.03

of3fl2]s].lol3]o0 EOL
sequence

D]alt]a b| EOL
sequence

OUTPUT @Device USING "5X,2A";"Data"

DI a EOL
sequence

4-16 Outputting Data

OUTPUT @Device USING "2L,4A";"Data"

EOL EoL |plaltlo| EOL
sequence | sequence sequence

OUTPUT @Device USING "8A,2Q@";"The End"

Tlhle Efn]|d FFIFF] EOL
sequence

OUTPUT @Device USING "2/"

CR|LF|crR]LF| EOL
sequence

Image Re-Use

If the number of items in the source list exceeds the number of matching specifiers in the
image list, the computer attempts to reuse the image(s) beginning with the first image.

110 ASSIGN @Device TO CRT

120 Num_1=1

130 Num_2=2

140 !

150 OUTPUT @Device USING "K";Num_1,"Data_1",Num_2,'"Data_2"
160 OUTPUT @Device USING "K,/";Num_1,"Data_1",Num_2,"Data_2"
170 END

Resultant Display

1Data_12Data_2
1

Data_1

2

Data_2

Since the “K” specifier can be used with both numeric and string data, the above OUTPUT
statements can reuse the image list for all items in the source list. If any item cannot be
output using the corresponding image item, an error results. In the following example, “Error
100 in 150” occurs due to data mismatch.

110 ASSIGN @Device TO CRT

120 Num_1=1
130 Num_2=2

140 !
150 OUTPUT @Device USING "DD.DD'";Num_1,Num_2,"Data_1"
160 END

Outputting Data 4-17

Nested Images

Another convenient capability of images is that they can be nested within parentheses. The
entire image list within the parentheses will be used the number of times specified by the
repeat factor preceding the first parenthesis. The following program is an example of this
feature.

100 ASSIGN @Device TO 701

110 !
120 OUTPUT @Device USING "3(B),X,DD,X,DD";65,66,67,68,69
130 END

Resultant Output

AlBlcC 618 6|9 EOL
sequence

This nesting with parentheses is made with the same hierarchy as with parenthetical nesting
within mathematical expressions. Only eight levels of nesting are allowed.

END with OUTPUTs that Use Images

Using the optional secondary keyword END in an OUTPUT statement that uses an image
produces results that differ from those of using END in a freefield OUTPUT statement.
Instead of always suppressing the EOL sequence, the END keyword only suppresses the EOL
sequence when no data are output from the last source-list expression. Thus, the “#” image
specifier generally controls the suppression of the otherwise automatic EOL sequence, while
the END keyword suppresses it only in less common usages.

Examples

Device=12

OUTPUT Device USING "K';"ABC'",END
OUTPUT Device USING "K";"ABC'";END
OUTPUT Device USING "K";"ABC'" END

AlBJ|C EoL The EOL sequence is not suppressed.
sequence

OUTPUT Device USING "L,/,""Literal"",X,@"

EOL CRILFl L iltlelr]all FF EOL
sequence sequence

4-18 Outputting Data

In this case, specifiers that require no source-item expressions are used to generate characters
for the output; there are no source expressions. The EOL sequence is output after all
specifiers have been used to output their respective characters. Compare this action to that
shown in the next example.

QUTPUT Device USING "L,/,""Literal"",X,@";END

EOL cRILFl L]l ilt]lelr]ali FF
sequence

The EOL sequence is suppressed because no source items were included in the statement; all
characters output were the result of specifiers that require no corresponding expression in the
source list.

Additional END Definition

The END secondary keyword has been defined to produce additional action when included in
an OUTPUT statement directed to GPIB interfaces.

END with GPIB Interfaces

With GPIB interfaces, END has the additional function of sending the End-or-Identify signal
(EOI) with the last character of either the last source item or the EOL sequence (if sent). As
with freefield OUTPUT, no FOI is sent if no data is sent from the last source item and the
EOL sequence is suppressed.

Examples.
ASSIGN @Device TO 701

OUTPUT @Device USING "K'";'"Data'",END
OUTPUT @Device USING "K'";"Data","",END

Dlal|lt]a]| EOL
sequence

'

EOl sent with last character
of the EOL sequence.

OUTPUT @Device USING "#,K";"Data'" END

Dlal|lt]a

—

EOl sent with this character.

EOI is sent with the last character of the last source item when the EOL sequence is
suppressed, because the last source item contained data that was used in the output.

OUTPUT @Device USING "#,K";"Data","'",END
OUTPUT @Device USING "'"'"Data'"';END

Outputting Data 4-19

The EOI was not sent in either case, since no data were sent from the last source item and the
EOL sequence was suppressed.

4-20 Outputting Data

S

Entering Data

This chapter discusses the topic of entering data from devices. You may already be familiar
with the OUTPUT statement described in the previous chapter; many of those concepts are
applicable to the process of entering data. Earlier in this manual, you were told that the

data output from the sender had to match that expected by the receiver. Because of the many
ways that data is represented in external devices, entering data can sometimes require more
programming skill than outputting data. In this chapter, you will see what is involved in
being the receiving device. Both free-field enters and enters that use images are described, and
several examples are given with each topic.

Free-Field Enters

Executing the free-field form of the ENTER invokes conventions that are the “converse” of
those used with the free-field OUTPUT statement. In other words, data output using the
free-field form of the OUTPUT statement can be readily entered using the free-field ENTER
statement; no explicit image specifiers are required. The following statements exemplify this
form of the ENTER statement.

For example:

ENTER @Voltmeter;Reading

ENTER 724;Readings (*)

ENTER From_string$;Average,Student_name$
ENTER @From_file;Data_code,Str_element$(X,Y)

Item Separators

Destination items in ENTER statements can be separated by either a comma or a semicolon.
Unlike the OUTPUT statement, it makes no difference which is used; data will be entered
into each destination item in a manner independent of the punctuation separating the
variables in the list. However, no trailing punctuation is allowed. The first two of the
following statements are equivalent, but an error is reported when the third statement is
executed.

For example:

ENTER @From_a_device;N1,N2,N3
ENTER QFrom_a_device;N1;N2;N3

Entering Data 5-1

Iltem Terminators

Unless the receiver knows exactly how many characters are to be sent, each data item output
by the sender must be terminated by special character(s). When entering ASCII data

with the free-field form of the ENTER statement, the computer does not know how many
characters will be output by the sender.

Item terminators must signal the end of each item so that the computer enters data into the
proper destination variable. The terminator of the last item may also terminate the ENTER
statement (in some cases). The actual character(s) that terminate entry into each type of
variable are described in the next sections.

In addition to the termination characters, each item can be terminated (only with selected
interfaces) by a device-dependent END indication. For instance, some interfaces use a signal
known as EOI (End-or-Identify). The EOI signal is only available with the HP-IB, and
keyboard interfaces. EOI termination is further described in the next sections.

Entering Numeric Data with the Number Builder

When the free-field form of the ENTER statement is used, numbers are entered by a routine
known as the “number builder”. This firmware routine evaluates the incoming ASCII numeric
characters and then “builds” the appropriate internal-representation number. This number
builder routine recognizes whether data being entered is to be placed into an INTEGER or
REAL variable and then generates the appropriate internal representation.

The number builder is designed to be able to enter several formats of numeric data. However,
the general format of numeric data must be as follows to be interpreted properly by HP
Instrument BASIC.

Mantissa | Mantissa | E | Exponent| Exponent Terminator
sign digit(s) sign digit(s) (character or
END indication)
| A A A J
Y h Y
Optional At least Optional Required
one digit
is required

Numeric characters include decimal digits “0” through “9” and the characters “.”, “4”,
“«_7 “E”, and “e”. These last five characters must occur in meaningful positions in the data
stream to be considered numeric characters; if any of them occurs in a position in which it
cannot be considered part of the number, it will be treated as a non-numeric character.

5-2 Entering Data

The following rules are used by the number builder to construct numbers from incoming
streams of ASCII numeric characters.

1. All leading non-numerics are ignored; all leading and embedded spaces are ignored.

100 ASSIGN @Device TO Device_selector
110 ENTER @Device;Number ! Default is data type REAL.

120 END
Consumed
~~=
Nfjul[m[e]e]r]= 1{2] [3]w
- g A vV J‘V"
Ignored Number Terminator

(for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that Number
receives a value of 123. The line-feed (statement terminator) is required since Number is
the last item in the destination list.

2. Trailing non-numerics terminate entry into a numeric variable, and the terminating
characters (of both string and numeric items) are “consumed”. In this manual, “consumed”
characters refers to characters used to terminate an item but not entered into the variable;
“ignored” characters are entered but are not used.

ENTER @Device;Real_number,String$

Cou:.sltq:ed Consumed
“
[InJulmo]e]r]|=] [1]2]3] J4]a]le]c]o]|rer crip]
N— - A o A | v Ay - J
lgnored Real_number Numeric String$ Terminator
item (for both item
terminator and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number receives the value 123.4 and String$ receives the characters “BCD”. The “A”
was lost when it terminated the numeric item; the string-item terminator(s) are also lost.
The string-item terminator(s) also terminate the ENTER statement, since String$ is the
last item in the destination list.

3. If more than 16 digits are received, only the first 16 are used as significant digits. However,
all additional digits are treated as trailing zeros so that the exponent is built correctly.

Entering Data 5-3

ENTER @Device;Real_number_1

Consumed
~—
Lilela«ls]e]7]s]o]o]r]2]s]4]5]6]rF]
\ > 4“-‘ i
Real_number_1 Terminator

(for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number_1 receives the value 1.234567890123456 E+15.

ENTER @Device;Real_number_2

Used only
to build
the exponent. Consumed
M
(EELEEE L e]
b v J‘\r"
Real_number_2 Terminator

(for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that
Real _number_2 receives the value 1.234567890123456 E+17.

4. Any exponent sent by the source must be preceded by at least one mantissa digit and an
E(or e) character. If no exponent digits follow the E (or e), no exponent is recognized, but
the number is built accordingly.

ENTER @Device;Real_number

Consumed
~
el el [efs] [ef-[ifafc]olu]r]ir
N v A g A’
Ignored Real_number Numeric Ignored Terminator
terrﬁ?u:?:tor

The result of entering the preceding data with the given ENTER statement is that

Real _number receives a value of 8.85 E—12. The character “C” terminates entry into
Real _number, and the characters “oul” are entered (but ignored) in search of the required
line-feed statement terminator. If the character “C” is to be entered but not ignored, you
must use an image. Using images with the ENTER statement is described later in this
chapter.

5-4 Entering Data

5. If a number evaluates to a value outside the range corresponding to the type of the numeric
variable, an error is reported. If no type has been declared explicitly for the numeric
variable, it is assumed to be REAL.

ENTER @Device;Real_number

Consumed
~=
[i]2]s] [«lel+[3]o]7]F] evaluates to 1234E+300.
N " A ;
The resultant value Terminator
cannot be stored (for both items
in Real_number. and statement)

The data is entered but evaluates to a number outside the range of REAL numbers.
Consequently, error 19 is reported, and the variable Real_number retains its former

value.

6. If the item is the last one in the list, both the item and the statement need to be properly
terminated. If the numeric item is terminated by a non-numeric character, the statement
will not be terminated until it either receives a line-feed character or an END indication
(such as EOI signal with a character). The topic of terminating free-field ENTER
statements is described later.

Entering String Data

Strings are groups of ASCII characters of varying lengths. Unlike numbers, almost any
character can appear in any position within a string; there is not really any defined structure
of string data. The routine used to enter string data is therefore much simpler than the
number builder. It only needs to keep track of the dimensioned length of the string variable
and look for string-item terminators (such as CR/LF, LF, or EOI sent with a character).

String-item terminator characters are either a line-feed (LF) or a carriage-return followed by
a line-feed (CR/LF). As with numeric-item terminators characters, these characters are not
entered into the string variable (during free-field enters); they are “lost” when they terminate
the entry. The EOI signal also terminates entry into a string variable, but the variable must
be the last item in the destination list (during free-field enters).

All characters received from the source are entered directly iemph appropriate string variable
until any of the following conditions occurs:

m An item terminator character is received.
m The number of characters entered equals the dimensioned length of the string variable.
m The EOI signal is received.

The following statements and resultant variable contents illustrate the first two conditions; the
next section describes termination by EOI. Assume that the string variables Five_char$ and
Ten_char$ are dimensioned to lengths of 5 and 10 characters, respectively.

Entering Data 5-5

ENTER @Device;Five_char$

Consumed
=
[alelcfolef[F{a|n]|cr|[r
- v A Y W
Five_char$ Ignored Terminator

(for both item
and statement)

The variable Five_char$ only receives the characters “ABCDE”, but the characters “FGH” are
entered (and ignored) in search of the terminating carriage-return/line-feed (or line-feed).

ENTER @Device;Ten_char$

Consumed Consumed
) -
alelc|ole|r|c]r] o [a]Bfc|o]e]F]|c]cr[ir]
\ v A~/ b vV e Vend
Ten_char$ Terminator Ten_char$ Terminator
(for both item (for both item
and statement) and statement)

The result of entering the preceding data with the given ENTER statement is that Ten_char$
receives the characters “ABCDEFG” and the terminating LF (or CR/LF) is lost.

5-6 Entering Data

Terminating Free-Field ENTER Statements
Terminating conditions for free-field ENTER statements are as follows.

1. If the last item is terminated by a line-feed or by a character accompanied by EOI, the
entire statement is properly terminated.

2. If an FEND indication is received while entering data into the last item, the statement is
properly terminated. Examples of END indications are encountering the last character of a
string variable while entering data from the variable and receiving EOI with a character.

3. If one of the preceding statement-termination conditions has not occurred but entry into
the last item has been terminated,up to 256 additional characters are entered in search of a
termination condition. If one is not found, an error occurs.

One case in which this termination condition may not be obvious can occur while entering
string data. If the last variable in the destination list is a string and the dimensioned length
string has been reached before a terminator is received, additional characters are entered (but
ignored) until the terminator is found. The reason for this action is that the next characters
received are still part of this data item, as far as the data sender is concerned. These
characters are accepted from the sender so that the next enter operation will not receive these
“leftover” characters.

Another case involving numeric data can also occur. (See the example given with “rule 4”
describing the number builder.) If a trailing non-numeric character terminates the last item
(which is a numeric variable), additional characters will be entered in search of either a
line-feed or a character accompanied by EOI. Unless this terminating condition is found before
256 characters have been entered, an error is reported.

EOI Termination

A termination condition for the GPIB Interface is the EOI (End-or-Identify) signal. When
this message is sent, it immediately terminates the entire ENTER statement, regardless

of whether or not all variables have been satisfied. However, if all variable items in the
destination list have not been satisfied, an error is reported.

For example:

ENTER @Device;String$

|A]B|C|D|E|F|or[A]B|c|D|E]F|LF|or|A|B|c|D|E|F|CR|LF|

- - -
Sent with Sent with Sent with
EOI EOI EOI

The result of entering the preceding data with the given ENTER statement is that String$
receives the characters “ABCDEF”. The EOI signal being received with either the last
character or with the terminator character properly terminates the ENTER statement. If the
character accompanied by EOI is a string character (not a terminator), it is entered into the
variable as usual.

Entering Data 5-7

For example:

ENTER @Device;Number

builéseﬁ,urfber Consumed Consumed
~ = ~=
[1]2]a]e]s]or{1f2]3]e]s]a]or|i|2]3]a]5]r]
“v \ N ‘v \ e Jv
Number Sent with Number Sent with Number Sent with
EQI EOI EQI

The result of entering any of the above data streams with the given ENTER statement is that
Number receives the value 12345. If the EOI signal accompanies a numeric character, it is
entered and used to build the number; if the EOI is received with a numeric terminator, the
terminator is lost as usual.

ENTER @Device;Number,String$

An error is reported
[! I 2 I 3J 4 | 5J (Error 153 Insufficient data for ENTER).

_MJ
Number Sent with
EQI

The result of entering the preceding data with the given statement is that an error is reported
when the character “5” accompanied by EOI is received. However, Number receives the value
12345, but String$ retains its previous value. An error is reported because all variables in

the destination list have not been satisfied when the EOI is received. Thus, the EOI signal is
an immediate statement terminator during free-field enters. The EOI signal has a different
definition during enters that use images, as described later in this chapter.

Enters that Use Images

The free-field form of the ENTER statement is very convenient to use; the computer
automatically takes care of placing each character into the proper destination item. However,
there are times when you need to design your own images that match the format of the

data output by sources. Several instances for which you may need to use this type of enter
operations are: the incoming data does not contain any terminators; the data stream is not
followed by an end-of-line sequence; or two consecutive bytes of data are to be entered and
interpreted as a two’s-complement integer.

5-8 Entering Data

The ENTER USING Statement

The means by which you can specify how the computer will interpret the incoming data is to
reference an image in the ENTER statement. The four general ways to reference the image in
ENTER statements are as follows.

100 ENTER @Device_x USING "6A,DDD.DD";String_var$,Num_var

100 Image_str$="6A,DDD.DD"
110 ENTER @Device_x USING Image_str$;String_var$,Num_var

100 ENTER @Device USING Image_stmt;String_var$,llum_var
110 Image_stmt: IMAGE 6A,DDD.DD

100 ENTER @Device USING 110;String_var$,Num_var
110 TIMAGE 6A,DDD.DD

Images

Images are used to specify how data entered from the source is to be interpreted and placed
into variables; each image consists of one or more groups of individual image specifiers that
determine how the computer will interpret the incoming data bytes (or words). Thus, image
lists can be thought of as a description of either

m the format of the expected data, or

m the procedure that the ENTER statement will use to enter and interpret the incoming data
bytes.

The examples given here treat the image list as a procedure.

All of the image specifiers used in image lists are valid for both enters and outputs. However,
most of the specifiers have a slightly different meaning for each operation. If you plan to use
the same image for output and enter, you must fully understand how both statements will use
the image.

Example of an Enter Using an Image

This example is used to show you exactly how the computer uses the image to enter incoming
data into variables. Look through the example to get a general feel for how these enter
operations work. Afterwards, you should read the descriptions of the pertinent specifier(s).

Assume that the following stream of data bytes are to be entered into the computer.

[lelmlel [=1 [[+lole] [s] [rlofnfcfefnfnfefi]t]
\ v A v JVL N J
Ignored Degrees Units$ Ignored A

Assume EQI is
sent with
this character

Entering Data 5-9

Given the preceding conditions, let’s look at how the computer executes the following ENTER
statement that uses the specified IMAGE statement.

300 ENTER @Device USING Image_1;Degrees,Units$
310 Image_1: IMAGE 8X,SDDD.D,A

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

The computer evaluates the first image of the IMAGE statement. It is a special
image in that it does not correspond to a variable in the destination list. It
specifies that eight characters of the incoming data stream are to be ignored. Eight
characters, “Temp.= ", are entered and are ignored (i.e., are not entered into any
variable).

The computer evaluates the next image. It specifies that the next six characters
are to be used to build a number. Even though the order of the sign, digit, and
radix are explicitly stated in the image, the actual order of these characters in
the incoming data stream does not have to match this specifier exactly. Only the
number of numeric specifiers in the image (here, six) is all that is used to specify
the data format. When all six characters have been entered, the number builder
attempts to form a number.

After the number is built, it is placed into the variable “Degrees”; the
representation of the resultant number depends on the numeric variable’s type
(INTEGER, or REAL).

The next image in the IMAGE statement is evaluated. It requires that one
character be entered for the purpose of filling the variable “Units$”. One byte is
then entered into Units$.

All images have been satisfied; however, the computer has not yet detected a
statement-terminating condition. A line-feed or a character accompanied by EOI
must be received to terminate the ENTER statement. Characters are then entered,
but ignored, in search of one of these conditions. The statement is terminated
when the EOI is sent with the “t”. For further explanation, see “Terminating
Enters that Use Images”.

The above example should help you to understand how images are used to determine the
interpretation of incoming data. The next section will help you to use each specifier to create
your desired images.

Image Definitions During Enter

This section describes the individual image specifiers in detail. The specifiers have been
categorized into data and function type.

5-10 Entering Data

Numeric Images

Sign, digit, radix, and exponent specifiers are all used identically in ENTER images. The
number builder can also be used to enter numeric data.

Numeric Specifiers

Image Specifier Meaning

D Specifies that one byte is to be entered and interpreted as a numeric character. If
the characters is non-numeric (including leading spaces and item terminators), it
will still “consume” one digit of the image item.

Z,* Same action as D. Keep in mind that A and * can only appear to the left of the
radix indicator (decimal point or R) in a numeric image item.

S, M Same action as D in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must follow either of these specifiers in an
image item.

Same action as D in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must accompany this specifier in an image
item.

R Same action as D in that one byte is to be entered and interpreted as a numeric
character; however, when R is used in a numeric image, it directs the number
builder to use the comma as a radix indicator and the period as a terminator to
the numeric item. At least one digit specifier must accompany this specifier in
the image item.

E Equivalent to 4D, if preceded by at least one digit specifier (Z, *, or D) in the
image item.

The following specifiers must also be preceded by at least one digit specifier.

ESZ Equivalent to 3D.
ESZZ Equivalent to 4D.
ESZ7Z7Z Equivalent to 5D.
K, -K Specifies that a variable number of characters are to be entered and interpreted
according to the rules of the number builder (same rules as used in “free-field”
ENTER operations).
H, -H Like K, except that a comma is used as the radix indicator, and a period is used

as the terminator for the numeric item.

Examples of Numeric Images

These 5 are equivalent:

ENTER @Device USING '"SDD.D";Number
ENTER @Device USING "3D.D";Number
ENTER @Device USING "5D";Number

ENTER @Device USING "DESZZ'";Number
ENTER @Device USING '"#**.DD";Number

Use the rules of the number builder:

ENTER Device USING "K";Number

Entering Data 5-11

Enter five characters, using comma as radix:

ENTER €@Device USING "DDRDD";Number

Use the rules of the number builder, but use the comma as radix:

ENTER @Device USING "H";Number

String Images

The following specifiers are used to determine the number of and the interpretation of data
bytes entered into string variables.

String Specifiers

Image Specifier

Meaning

A

Specifies that one byte is to be entered and interpreted as a string character. Any
terminators are entered into the string when this specifier is used.

Specifies that “free-field” ENTER, conventions are to be used to enter data into a
string variable; characters are entered directly into the variable until a
terminating condition is sensed (such as CR/LF, LF, or an END indication).

L,@

Like K, except that line-feeds (LF’s) do not terminate entry into the string;
instead, they are treated as string characters and placed in the variable.
Receiving an END indication terminates the image item (for instance, receiving
EOI with a character on an HP-IB interface, encountering an end-of-data, or
reaching the variable’s dimensioned length).

These specifiers are ignored for ENTER operations; however, they are allowed for
compatibility with OUTPUT statements (that is, so that one image may be used
for both ENTER and OUTPUT statements). Note that it may be necessary to
skip characters (with specifiers such as X or /) when ENTERing data that has
been sent by including these specifiers in an OUTPUT statement.

Examples of String Images

Enter 10 characters:

ENTER @Device USING '"10A";Ten_chars$

Enter using the free-field rules:

ENTER @Device USING "K'";Any_string$

Enter two strings:

ENTER @Device USING "5A,K";String$,Number$

Enter a string and a number:

ENTER @Device USING "5A,K";String$,Number

Enter characters until string is full or END is received:

ENTER @Device USING "-K";All_chars$

5-12 Entering Data

Ignoring Characters

These specifiers are used when one or more characters are to be ignored (i.e., entered but not
placed into a string variable).

Specifiers Used to Ignore Characters

Image Specifier Meaning
X Specifies that a character is to be entered but ignored (not placed into a variable).
“literal” Specifies that the number of characters in the literal are to be entered but
ignored (not placed into a variable).
/ Specifies that all characters are to be entered but ignored (not placed into a
variable) until a line-feed is received. EOI is also ignored until the line-feed is
received.

Examples of Ignoring Characters

Ignore first five and use second five characters:

ENTER @Device USING '"5X,5A";Five_chars$

Ignore 6th through 9th characters:
ENTER @Device USING "SA,4X,10A";S_1$,S_2$

Ignore 1st item of unknown length:

ENTER @Device USING '"/,K";String2$

Ignore two characters:

ENTER @Device USING "'""zz'"" AA";S_2%$

Binary Images

These specifiers are used to enter one byte (or word) that will be interpreted as a number.

Binary Specifiers

Image Specifier Meaning
B Specifies that one byte is to be entered and interpreted as an integer in the range
0 through 255.
W Specifies that one 16-bit word is to be entered and interpreted as a 16-bit, two’s

complement INTEGER. Since all HP Instrument BASIC interfaces are 8-bit, two
bytes are always entered; the first byte entered is most significant. If the source is
a file, or string variable, all data are entered as bytes; however, one byte may still
be entered and ignored when necessary to achieve alignment on a word boundary.

Y Like W, except that pad bytes are never entered to achieve word alignment.

Entering Data 5-13

Examples of Binary Images
Enter three bytes, then look for LF or END indication:
ENTER @Device USING "B,B,B";N1,N2,N3
Enter the first two bytes as an INTEGER, then the rest as string data:

ENTER @Device USING "W,K";N,N$

Terminating Enters that Use Images

This section describes the default statement-termination conditions for enters that use images
(for devices). The effects of numeric-item and string-item terminators and the end-or-identify
(EOI) signal during these operations are discussed in this section. After reading this section,
you will be able to better understand how enters that use images work and how the default
statement-termination conditions are modified by the #, %, +, and - image specifiers.

Default Termination Conditions

The default statement-termination conditions for enters that use images are very similar to
those required to terminate free-field enters. FEither of the following conditions will properly
terminate an ENTER statement that uses an image.

m An END indication (such as the EOI signal or end-of-data) is received with the byte that
satisfies the last image item within 256 bytes after the byte that satisfied the last image
item.

m A line-feed is received as the byte that satisfies the last image item (exceptions are the “B”
and “W?” specifiers) or within 256 bytes after the byte that satisfied the last image item.

EOI Redefinition

It is important to realize that when an enter uses an image (when the secondary keyword
“USING?” is specified), the definition of the EOI signal is automatically modified. If the

EOI signal terminates the last image item, the entire statement is properly terminated, as
with free-field enters. In addition, multiple FOI signals are now allowed and act as item
terminators; however, the EOI must be received with the byte that satisfies each image item.
If the EOI is received before any image is satisfied, it is ignored. Thus, all images must be
satisfied, and EOI will not cause early termination of the ENTER-USING-image statement.

The following table summarizes the definitions of EOI during several types of ENTER
statement. The statement-terminator modifiers are more fully described in the next section.

5-14 Entering Data

Effects of EOI During ENTER Statements

Free-Field ENTER ENTER ENTER
ENTER USING USING USING
Statements without # or ¥ with # with %
Definition of EOI Immediate Item terminator |Item terminator |Immediate
statement or statement or statement statement
terminator terminator terminator terminator
Statement Terminator |Yes Yes No No
Required?
Early Termination No No No Yes
Allowed?

Statement-Termination Modifiers

These specifiers modify the conditions that terminate enters that use images. The first one
of these specifiers encountered in the image list modifies the termination conditions for the
ENTER statement. If another of these specifiers is encountered in the image list, it again

modifies the terminating conditions for the statement.

Statement-Termination Modifiers

Image Specifier

Meaning

Line-feeds are ignored as statement terminators; however, they will still terminate

Specifies that a statement-termination condition is not required; the ENTER
statement is automatically terminated as soon as the last image item is satisfied.
% Also specifies that a statement-termination condition is not required. In addition,
EOI is redefined to be an immediate statement terminator, allowing early
termination of the ENTER before all image items have been satisfied. However,
the statement can only be terminated on a “legal item boundary”. The legal
boundaries for different specifiers are as follows:
Specifier Legal Boundary
K,—K With any character, since this specifies a variable-width field of
characters.
S,M,D,E,Z,,A, Only with the last character that satisfies the image (e.g., with
X,literal, B,W the 5th character of a 54 image). If EOI is received with any
other character, it is ignored.
/ Only with the last line-feed character that satisfies the image
(e.g., with the 3rd line-feed of a “3/” image); otherwise, it is
ignored.
+ Specifies that an END indication is required to terminate the ENTER statement.

items (unless a —K or —H image is used for strings).

Specifies that a line-feed is required to terminate the statement. EOI is ignored,
and other END indications (such as EOF or end-of-data) cause an error if

encountered before the line-feed.

Entering Data 5-15

Examples of Modifying Termination Conditions
Enter a single byte:
ENTER @Device USING "#,B";Byte
Enter a single word:
ENTER @Device USING "#,W";Integer
Enter an array, allowing early termination by EOI:
ENTER @Device USING ",K";Array(*)

Enter characters into String$ until line-feed received, then continue entering characters it
until END received:

ENTER @Device USING "+,K'";String$

Enter characters until line-feed received; ignore EOI, if received:

ENTER @Device USING "-,K";String$

Additional Image Features

Several additional image features are available with this BASIC language. Some of these
features have already been shown in examples, and all of them resemble the additional
features of images used with OUTPUT statements.

Repeat Factors

All of the following specifiers can be preceded by an integer that specifies how many times the
specifier is to be used.

Repeatable Specifiers Non-Repeatable Specifiers

Z’D)A)X)/?@)L S’M)"R’E’K)H)B,W’Y)#)%’+)-

Image Reuse

If there are fewer images than items in the destination list, the list will be reused, beginning
with the first item in the image list. If there are more images than there are items, the
additional specifiers will be ignored.

Examples

The "B" is reused:

ENTER @Device USING "#,B";B1,B2,B3

The "W" is not used:
ENTER @Device USING '"2A,2A,W'";A$,B$

5-16 Entering Data

Nested Images

Parentheses can be used to nest images within the image list. The hierarchy is the same
as with mathematical operations; evaluation is from inner to outer sets of parentheses. The
maximum number of levels of nesting is eight.

Example
ENTER @Source USING "2(B,5A,/),/";N1,N1$,N2,N2$

Entering Data 5-17

6

1/0 Path Attributes

This chapter contains two major topics, both of which involve additional features provided by
I/O path names.

m The first topic is that I/O path names can be given attributes which control the way
that the system handles the data sent and received through the I/O path. Attributes
are available for such purposes as controlling data representations and defining special
end-of-line (EOL) sequences.

m The second topic is that one set of I/O statements can access most system resources instead
of using a separate set of statements to access each class of resources. This second topic,
herein called “unified I/O”, may be considered an implicit attribute of I/O path names.

The FORMAT Attributes

All I/0O paths possess one of the two following attributes:
m FORMAT ON—means that the data are sent in ASCII representation.
s FORMAT OFF—means that the data are sent in BASIC internal representation.

Before getting into how to assign these attributes to I/O paths, let’s take a brief look at each
one.

With FORMAT ON, internally represented numeric data must be “formatted” into its ASCII
representation before being sent to the device. Conversely, numeric data being received from

the device must be “unformatted” back into its internal representation. These operations are
shown in the diagrams below:

Internal—Form ASCIll Data
Data

Computer "Formatter" Computer
Memory Routine Resource

Numeric Data Transformations with FORMAT ON

With FORMAT OFF, however, no formatting is required. The data items are merely copied
from the source to the destination. This type of I/O operation requires less time, since fewer
steps are involved.

1/O Path Attributes 6-1

Internal—Form
Data
Computer Computer
Memory Resource

Numeric Data Transfer with FORMAT OFF

The only requirement is that the resource also use the exact same data representations as the
internal HP Instrument BASIC representation.

Here are how each type of data item is represented and sent with FORMAT OFF:
= INTEGER: two-byte (16-bit), two’s complement.
m REAL: eight-byte (64-bit) IEEE floating-point standard.

m String: four-byte (32-bit) length header, followed by ASCII characters. An additional ASCII
space character, CHR$(32), may be sent and received with strings in order to have an even
number of bytes.

Here are the FORMAT OFF rules for OUTPUT and ENTER operations:
m No item terminator and no EOL sequence are sent by OUTPUT.
m No item terminator and no statement-termination conditions are required by ENTER.

m If either OUTPUT or ENTER uses an IMAGE (such as with OUTPUT 701 USING
“4D.D”), then the FORMAT ON attribute is automatically used.

Assigning Default FORMAT Attributes

As discussed in the “Directing Data Flow” chapter, names are assigned to I/O paths between
the computer and devices with the ASSIGN statement. Here is a typical example:

ASSIGN Any_name TO Device_selector

This assignment fills a “table” in memory with information that describes the I/O path.

This information includes the device selector, the path’s FORMAT attribute, and other
descriptive information. When the I/O path name is specified in a subsequent I/O statement
(such as OUTPUT or ENTER), this information is used by the system in completing the I/O
operation.

Different default FORMAT attributes are given to devices and files:

m Devices—since most devices use an ASCII data representation, the default attribute
assigned to devices is FORMAT ON. (This is also the default for ASCII files.)

m BDAT and HP-UX or DOS files—the default for BDAT and HPUX or DOS files is
FORMAT OFF. (This is because the FORMAT OFF representation requires no translation
time for numeric data; this is possible because humans never see the data patterns written
to the file, and therefore the items do not have to be in ASCII, or humanly- readable, form.)

One of the most powerful features of this BASIC system is that you can change the attributes
of I/O paths programmatically.

6-2 1/O Path Attributes

Specifying I/O Path Attributes
There are two ways of specifying attributes for an I/O path:

Specify the desired attribute(s) when the I/O path name is initially assigned. For example:
100 ASSIGN @Device TO Dev_selector; FORMAT ON

or

100 ASSIGN @Device TO Dev_selector ! Default for devices is FORMAT ON.

Specify only the attribute(s) in a subsequent ASSIGN statement:
250 ASSIGN @Device; FORMAT OFF ! Change only the attribute.

The result of executing this last statement is to modify the entry in the I/O path name
table that describes which FORMAT attribute is currently assigned to this I/O path. The
implicit ASSIGN @Device TO *, which is automatically performed when the “T0 ... ” portion
is included, is not performed. Also, the I/O path name must currently be assigned (in this
context), or an error is reported.

Changing the EOL Sequence Attribute

In addition to the FORMAT attributes, another attribute is available to direct HP Instrument
BASIC system to redefine the end-of-line sequence normally sent after the last data item in
output operations.

An end-of-line (EOL) sequence is normally sent following the last item sent with free-field
OUTPUT statements and when the “L” specifier is used in an QOUTPUT that uses an
image. The default EOL characters are carriage-return and line-feed (CR/LF), sent with
no device-dependent END indication. You can also define your own special EOL sequences
that include sending special characters, sending an END indication, and delaying a specified
amount of time after sending the last EOL character.

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an
I/0 path must be used. The EOL sequence is specified in one of the ASSIGN statements
that describe the I/O path. Here is an example that changes the EOL sequence to a single
line-feed character.

ASSIGN @File TO '"file_one';EOL CHR$(10)
The characters following the secondary keyword EOL are the EOL characters. Any character in

the range CHR$(0) through CHR$(255) may be included in the string expression that defines
the EOL characters; however, the length of the sequence is limited to eight characters or less.

If END is included in the EOL attribute, an interface-dependent “END” indication is sent
with (or after) the last character of the EOL sequence. However, if no EQL sequence is sent,
the END indication is also suppressed. The following statement shows an example of defining
the EOL sequence to include an END indication.

ASSIGN @Device TO 20;EOL CHR$(13)&CHR$(10) END

With the GPIB Interface, the END indication is an End-or-Identify message (EOI) sent with
the last EOL character.

The default EOL sequence is a CR and LF sent with no end indication. This default can be
restored by using the EOL OFF attribute.

1/0 Path Attributes 6-3

Restoring the Default Attributes

If any attribute is specified, the corresponding entry in the I/O path name table is changed
(as above); no other attributes are affected. However, if no attribute is assigned (as below),
then all attributes are restored to their default state (such as FORMAT ON for devices.)

340 ASSIGN @Device ! Restores ALL default attributes.

Concepts of Unified I/0

The HP Instrument BASIC language provides the ability to communicate with the several
system resources with the OUTPUT and ENTER statements.

The next section of this chapter describes how data can be moved to and from string variables
with OUTPUT and ENTER statements. And, if you have read about mass storage operations
in the “Data Storage and Retrieval” chapter of HP Instrument BASIC Programming
Techniques, you know that the ENTER and OUTPUT statements are also used to move data
between the computer and mass storage files.

This ability to move data between the computer and all of its resources with the same
statements is a very powerful capability of the HP Instrument BASIC language.

Before briefly discussing I/O paths to mass storage files, the following discussion will
present some background information that will help you understand the rationale behind
implementing the two data representations used by the computer. The remainder of this
chapter then presents several uses of this language structure.

Data-Representation Design Criteria

As you know, the computer supports two general data representations—the ASCII and the
internal representations. This discussion presents the rationale of their design.

The data representations used by the computer were chosen according to the following
criteria:

m to maximize the rate at which computations can be made
m to maximize the rate at which the computer can move the data between its resources
m to minimize the amount of storage space required to store a given amount of data

m to be compatible with the data representation used by the resources with which the
computer is to communicate

The internal representations implemented in the computer are designed according to the first
three of the above criteria. However, the last criterion must always be met if communication is
to be achieved. If the resource uses the ASCII representation, this compatibility requirement
takes precedence over the other design criteria. The ASCII representation fulfills this last
criterion for most devices and for the computer operator. The first three criteria are further
discussed in the following description of data representations used for mass storage files.

6-4 1/O Path Attributes

I/O Paths to Files

There are three types of data files: ASCII, BDAT, and HP-UX or DOS. Only the ASCII data
representation is used with ASCII files, but either the ASCII (FORMAT ON) or the internal
(FORMAT OFF) representation can be used with BDAT and HP-UX or DOS files.

BDAT, HPUX and DOS Files

BDAT, HP-UX and DOS files have been designed to maximize the efficiency with which

HP Instrument BASIC moves, stores and manipulates data. Both numeric and string
computations are much faster. These internal data representations allow much more data to
be stored on a disc because there is no storage overhead (for numeric items), that is, there are
no “record headers” for numeric items.

The transfer rates for each data type has also been increased. Numeric output operations
are always much faster because there is no time required for “formatting”. Numeric

enter operations are also faster because the system does not have to search for item- and
statement-termination conditions.

In addition, I/O paths to BDAT and HP-UX files can use either the ASCII (FORMAT ON)
or the internal (FORMAT OFF) representation.

The following program shows a few of the features of BDAT files. The program first outputs
an internal-form string (with FORMAT ON), and then enters the length header and string
characters with FORMAT OFF.

110 DIM Length$[4],Data$[256],Int_form$[256]

120 !

130 ! Create a BDAT file (1 record; 256 bytes/record.)
140 ON ERROR GOTO Already_created

150 CREATE BDAT "B_file",1

160 Already_created: OFF ERROR

170 !

180 ! Use FORMAT ON during output.

190 ASSIGN @Io_path TO "B_file';FORMAT ON
200 !

210 Length$=CHR$(0)&CHR$(0) ! Create length header.
220 Length$=Length$&CHR$ (0) &CHR$ (252)

230 !

240 ! Generate 256-character string.

250 Data$="01234567"

260 FOR Doubling=1 TO 5

270 Data$=Data$&Data$

280 NEXT Doubling

290 ! Use only 1st 252 characters.

300 Data$=Data$[1,252]

310 !

320 ! Generate internal-form and output.

330 Int_form$=Length$&Data$
340 OUTPUT @Io_path;Int_form$;
350 ASSIGN @Io_path TO *

360 !
370 ! Use FORMAT OFF during enter (default).
380 ASSIGN @Io_path TO "B_file"
390 !
(Continued)

I/O Path Attributes 6-5

400 ! Enter and print data and # of characters.
410 ENTER Data$

420 PRINT LEN(Data$);'characters entered."

430 PRINT

440 PRINT Data$

450 ASSIGN @Io_path TO * ! Close I/0 path.

460 !
470 END
ASCII Files

ASCII files are designed for interchangeability with other HP computer systems. This
interchangeability imposes the restriction that the data must be represented with ASCII
characters. Each data item sent to these files is a special case of FORMAT ON representation;
each item is preceded by a two-byte length header (analogous to the internal form of string
data). In order to maintain this compatibility, there are two additional restrictions placed on
ASCII files:

m The FORMAT OFF attribute cannot be assigned to an ASCII file
m You cannot use QUTPUT..USING or ENTER..USING with an ASCII file.

The following program shows the I/O path name @lo_path being assigned to the ASCII
file named ASC_FILE. Notice that the file name is in all uppercase letters; this is also a
compatibility requirement when using this file with some other systems.

The program creates an ASCII file, and then outputs program lines to the file. The program
then gets and runs this newly created program. (If you type in and run this program, be sure
to save it on disc, because running the program will load the program it creates, destroying
itself in the process.)

100 DIM Line$(1:3)[100] ! Array to store program.
110 !

120 ! Create if not already on disc.

130 ON ERROR GOTO Already_exists

140 CREATE ASCII "ASC_FILE",1 ! 1 record.

150 Already_exists: OFF ERROR

160 !

170 ASSIGN @Io_path TO "ASC_FILE"

180 STATUS @Io_path,6;Pointer

190 PRINT "Initially: file pointer='";Pointer
200 PRINT
210 !

220 Line$(1)="100 PRINT ""New program."" "
230 Line$(2)="110 BEEP"

240 Line$(3)="120 END"

250 !

260 OUTPUT @Io_path;Line$(*)

270 STATUS @Io_path,6;Pointer

280 PRINT "After OUTPUT: file pointer=";Pointer

290 PRINT

300 !

310 GET "ASC_FILE" ! Implicitly closes I/0 path.
320 !

330 END

6-6 1/0 Path Attributes

Data Representation Summary

The following table summarizes the control that programs have on the FORMAT attribute
assigned to I/O paths.

Program Control of the FORMAT Attribute

Type of Default FORMAT Can Default FORMAT
Resource Attribute Used Attribute Be Changed?
Devices FORMAT ON Yes (if an I/O path is used)!
BDAT files FORMAT OFF Yes
HP-UX or DOS files FORMAT OFF Yes
ASCII files FORMAT ON? No
String variables FORMAT ON No

IFORMAT ON is always used whenever an OUTPUT ... USING or ENTER ... USING
statement is used, regardless of the FORMAT attribute assigned to the I/O path.
2The data representation used with ASCII files is a special case of the FORMAT ON

representation.

Applications of Unified 1/0

This section describes two uses of the powerful unified-I/O scheme of the computer. The first
application contains further details and uses of I/O operations with string variables. The
second application involves using a disc file to simulate a device.

I/O Operations with String Variables

This section describes both the details of and several uses of outputting data to and entering
data from string variables.

Outputting Data to String Variables

When a string variable is specified as the destination of data in an OUTPUT statement,
source items are evaluated individually and placed into the variable according to the free-field
rules or the specified image, depending on which type of OUTPUT statement is used. Thus,
item terminators may or may not be placed into the variable. The ASCII data representation
is always used during outputs to string variables.

Characters are always placed into the variable beginning at the first position; no other
position can be specified as the beginning position at which data will be placed. Thus,
random access of the information in string variables is not allowed from OUTPUT and
ENTER statements; all data must be accessed serially. For instance, if the characters “1234”
are output to a string variable by one OUTPUT statement, and a subsequent QOUTPUT
statement outputs the characters “5678” to the same variable, the second output does

not begin where the first one left off (i.e., at string position five). The second OUTPUT

1/0 Path Attributes 6-7

statement begins placing characters in position one, just as the first OUTPUT statement did,
overwriting the data initially output to the variable by the first OUTPUT statement.

The string variable’s length header (4 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before
all items have been output, an error is reported; however, the string contains the first n
characters output (where n is the dimensioned length of the string).

Example

The following program outputs string and numeric data items to a string variable and then
calls a subprogram that displays each character, its decimal code, and its position within the
variable.

100 ASSIGN €Crt TO 1 ! CRT is disp. device.

110 !

120 OUTPUT Str_var$;12,"AB",34

130 !

140 CALL Read_string(@Crt,Str_var$)

150 !

160 END

170 !

180 !

190 SUB Read_string(@Disp,Str_var$)

200 !

210 ! Table heading.

220 OUTPUT @Disp;"---- "

230 OUTPUT @Disp;'Character Code Pos."

240 OUTPUT @Disp;"--------- ———= ——==n

250 Dsp_img$="2X,44,5X,3D,2X,3D"

260 !

270 ! Now read the string’s contents.

280 FOR Str_pos=1 TO LEN(Str_var$)

290 Code=NUM(Str_var$[Str_pos;1])

300 IF Code<32 THEN ! Don’t disp. CTRL chars.
310 Char$="CTRL"

320 ELSE

330 Char$=Str_var$[Str_pos;1] ! Disp. char.
340 END IF

350 !

360 OUTPUT @Disp USING Dsp_img$;Char$,Code,Str_pos
370 NEXT Str_pos

380 !

390 ! Finish table.

400 OUTPUT @Disp;" ——
410 OUTPUT @Disp ! Blank line.

420 !

430 SUBEND

6-8 I/O Path Attributes

Character Code Pos.

32 1
1 49 2
2 50 3
s 44 4
A 65 5
B 66 6
CTRL 13 7
CTRL 10 8

32 9
3 51 10
4 52 11
CTRL 13 12
CTRL 10 13

Outputting data to a string and then examining the string’s contents is usually a more
convenient method of examining output data streams than using a mass storage file. A string
may contain both printing and non-printing (control) characters. Printing string contents that
contain control characters could interfere with examining the data stream. The preceding
subprogram may facilitate viewing this data without viewing such strings.

Example

Outputs to string variables can also be used to generate the string representation of a number,
rather than using the VALS$ function (or a user-defined function subprogram). The main
advantage is that you can explicitly specify the number’s image while still using only a single
program line. The following program compares the string generated by the VAL$ function to
that generated by outputting the number to a string variable.

100 X=12345678

110 !

120 PRINT VAL$(X)

130 !

140 OUTPUT Val$ USING "#,3D.E";X
150 PRINT Val$

160 !

170 END

1.2345678E+7 Printed results
123.E+05

Entering Data From String Variables

Data are entered from string variables in much the same manner as output to the variable.
All ENTER statements that use string variables as the data source interpret the data
according to the FORMAT ON attribute. Data is read from the variable beginning at the
first string position; if subsequent ENTER statements read characters from the variable, the
read also begins at the first position. If more data are to be entered from the string than are
contained in the string, an error is reported; however, all data entered into the destination
variable(s) before the end of the string was encountered remain in the variable(s) after the
error occurs.

I/0 Path Attributes 6-9

When entering data from a string variable, the computer keeps track of the number

of characters taken from the variable and compares it to the string length. Thus,
statement-termination conditions are not required; the ENTER statement automatically
terminates when the last character is read from the variable. However, item terminators are
still required if the items are to be separated and the lengths of the items are not known. If
the length of each item is known, an image can be used to separate the items.

Example

The following program shows an example of the need for either item terminators or length of
each item. The first item was not properly terminated and caused the second item to not be
recognized.

100 OUTPUT String$;'"ABC123"; ! OUTPUT w/o CR/LF.
110 !

120 ! Now enter the data.

130 ON ERROR GOTO Try_again

140 !

150 First_try: !

160 ENTER String$;Str$,Num

170 OUTPUT 1;"First try results:"

180 OUTPUT 1;"Str$= '";Str$,"Num=";Num

190 BEEP ! Report getting this far.

200 STOP

210 !

220 Try_again: OUTPUT 1;"Error";ERRN;" on 1st try"
230 OUTPUT 1;"STR$=";Str$,"Num=";Num
240 OUTPUT 1

250 OFF ERROR ! The next one will work.
260 l

270 ENTER String$ USING '"3A,3D";Str$,Num
280 OUTPUT 1;"Second try results:"

290 OQUTPUT 1;"Str$= '";Str$,"Num=";Num
300 !

310 END

This technique is convenient when attempting to enter an unknown amount of data or when
numeric and string items within incoming data are not terminated. The data can be entered
into a string variable and then searched by using images.

Example

ENTERs from string variables can also be used to generate a number from ASCII numeric
characters (a recognizable collection of decimal digits, decimal point, and exponent
information), rather than using the VAL function. As with outputs to string variables, images
can be used to interpret the data being entered.

30 Number$="Value= 43.5879E-13"
40 !

50 ENTER Number$;Value

60 PRINT "VALUE=";Value

70 END

6-10 1/O Path Attributes

Index

A

Additional Interface Functions, 2-3

Address, primary, 3-2

ASCII Files, 6-6

ASSIGN statement, 3-3-4, 6-2
Attribute control, 3-7
Attributes, EOL Sequence, 6-3
Attributes, FORMAT, 6-1
Attributes, I/O Path, 6-1

Attributes, Restoring the Default, 6-4

Backplane, computer, 2-2
BDAT Files, 6-5

Binary images, 4-13
Binary Images, 5-13
Binary specifier, 4-13
Bits and Bytes, 2-6

Bus, 2-1

o

Chapter Previews, 1-2
Characters, Ignoring, 5-13
Character specifier, 4-12
Characters, Representing, 2-7
Closing I/O Path Names, 3-4
Comma separator, 4-2
Computer backplane, 2-2

D

Data Compatibility, 2-2
Data, Entering, 5-1

Data Flow, Directing, 3-1
Data Handshake, 2-8
Data, Outputting, 4-1
Data, Re-Directing, 3-7

Data-Representation Design Criteria, 6-4

Data Representations, 2-6

Data Representation Summary, 6-7

Device Selectors, 3-2
Digit specifier, 4-9
Directing Data Flow, 3-1

E

Electrical and Mechanical Compatibility, 2-2

END in Freefield OUTPUT, 4-6

End-of-line (EOL), 4-2

End-of-line sequence, 4-5, 6-1, 6-3

End-or-identify, 5-7, 5-14

END with GPIB Interfaces, 4-6, 4-19

END with OUTPUTs that Use Images, 4-18

ENTER images, 4-15
Entering Data, 5-1
Entering String Data, 5-5

ENTER statement, 2-8, 3-1, 5-1, 5-8

Enters that Use Images, 5-8

ENTER USING statement, 5-9

EOI Re-Definition, 5-14
Execution Speed, 3-6
Explicitly close, 3-4
Exponent specifier, 4-9

F
Files, ASCII, 6-6

Files, BDAT, 6-5

Files, I/O Paths to, 6-5
FORMAT attributes, 6-1

FORMAT Attributes, Assigning Default, 6-2

FORMAT OFF statement, 3-7, 6-1
FORMAT ON statement, 3-7, 6-1

FORMAT statement, 6-1
Free-Field Enters, 5-1

Free-Field ENTER Statements, 5-7

Free-field output, 4-1

Freefield OUTPUT, END in, 4-6

H

Handshake, Data, 2-8
GPIB Device Selectors, 3-2
GPIB interface, 2-4

Image Definitions During Outputs, 4-9

Image output, 4-1

Image OUTPUT, 4-1
Image Repeat Factors, 4-16
Image Re-Use, 4-17, 5-16
Images, 4-7, 5-9

Index-1

Images, binary, 4-13

Images, ENTER, 4-15

Images, nested, 4-18

Images, numeric, 4-9

Images, Outputs that Use, 4-7
Images, Special-Character, 4-14
Images, string, 4-12

Images, Terminating Enters that Use, 5-14
Input, 2-1

Interface Functions, Additional, 2-3
Interface, primary function of an, 2-2
Interfaces, select codes, 3-2
Interfacing Concepts, 2-1

I/0, 2-1

I/0, Applications of Unified, 6-7
I/0, Concepts of Unified, 6-4

I/O Operations with String Variables, 6-7
I/O Path Attributes, 6-1

I/O Path Attributes, Specifying, 6-3
I/O Path Benefits, 3-6

I/0 path name, 3-3, 6-1

I/O Path Names, Closing, 3-4

I/O Path Names, Re-Assigning, 3-3
I/0 paths, 3-3

I/O Paths to Files, 6-5

I/O Process, 2-8

I/O Statements and Parameters, 2-8
Item Separators, 4-2, 5-1

Item Terminators, 4-2, 5-2

Manual Organization, 1-1
Mechanical Compatibility, Electrical and, 2-2
Modifiers, Statement-Termination, 5-15

Names, string-variable, 3-1
Nested Images, 4-18, 5-17
Non-Repeatable Specifiers, 5-16
Number builder, 5-2

Numbers, Representing, 2-7
Numeric Format, Standard, 4-1
Numeric Images, 4-9, 5-11
Numeric specifier, 5-11

(o)

Output, 2-1

OUTPUT statement, 2-8, 3-1, 4-1, 5-1
Outputs that Use Images, 4-7
Outputting Data, 4-1

OUTPUT USING statement, 4-7

Index-2

P

Previews, Chapter, 1-2
Primary address, 3-2
Primary function of an interface, 2-2

R

Radix specifier, 4-9

Re-Assigning I/O Path Names, 3-3
Re-Directing Data, 3-7

Repeatable specifier, 4-16, 5-16
Repeat Factors, 5-16

Repeat Factors, Image, 4-16
Resource, specifying a, 3-1
RS-232C Serial Interface, 2-5

S

Select codes (of built-in interfaces), 3-2
Selectors, Device, 3-2
Selectors, HP-IB Device, 3-2
Semicolon separator, 4-3
Separator, Comma, 4-2
Separator, semicolon, 4-3
Serial Interface, RS-232C, 2-5
Sign specifier, 4-9
Special-Character Images, 4-14
Specifiers

Binary, 4-13

Character, 4-12

Digit, 4-9

Exponent, 4-9

Numeric, 5-11

Radix, 4-9

Repeatable, 4-16

Sign, 4-9

Special-Character, 4-14

Termination, 4-15
Specifying an I/O resource, 3-1
Speed, Execution, 3-6
Statement-Termination Modifiers, 5-15
String Data, Entering, 5-5
String Format, Standard, 4-2
String images, 4-12, 5-12
String-variable names, 3-1

String Variables, Entering Data From, 6-9
String Variables, Outputting Data to, 6-7

T

Terminating Enters that Use Images, 5-14

Termination Conditions, Default, 5-14
Termination specifier, 4-15
Terminology, 2-1

Timing Compatibility, 2-3

1]
Unified 1/0, 6-7

Language Reference

Agilent Technologies

December 2000

Contents

1.

Using the Language Reference
Syntax Drawings Explained

Comments
Keywords and Spaces
Keyboards

Keyword Dictionary

ABORT

ACS oo

ANDo o000
AREAo 000
ASN . . .o oo o oo
ASSIGN oo
ATN o000

BEEP
BINAND
BINCMP
BINEOR
BINIOR
BIT

CAT
CAUSE ERROR
CHR$

CLIP

COPY

.............

.................

.................

.................

.................

.................

.................

.................

.............

.................

.................

.................

.............

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

1-2
1-3
1-4
1-5

2-2

2-4

2-5

2-6

2-8

2-9
2-10
2-12
2-13
2-18
2-19
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-32
2-33
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-46
2-47
2-49
2-51
2-53
2-54

Contents-1

CREATE
CREATE
CREATE
CRT .

DEL .

DIM .

DISP .

DRAW

ELSE

FORMAT

ASCIT o o oo e e
BDATo
DIR o s e

...............................
...............................
...............................
...............................

...............................

...............................
...............................
...............................

..............................
...............................
...............................

...............................

...............................
...............................
...............................

...............................

...............................
.............................
...............................
...............................
...............................
.............................

..............................

...............................

...............................

...............................
...............................
...............................

.............................
...............................
...............................

...............................

...............................
...............................
...............................
...............................
...............................

...........................

FOR ... NEXT o oo

FRACT

Contents-2

...............................

2-56
2-57
2-59
2-60
2-61
2-62
2-64
2-65
2-66
2-67
2-69
2-70
2-71
2-72
2-73
2-75
2-76
2-77
2-84
2-85
2-86
2-87
2-88
2-89
2-91
2-93
2-94
2-96
2-97
2-98
2-99
2-100
2-101
2-102
2-103
2-104
2-113
2-114
2-115
2-116
2-117
2-118
2-119
2-120
2-121
2-122
2-123
2-125
2-126
2-127
2-129

FRAME
GCLEAR
GESCAPE
GET

GRAPHICS . . .
GRID
GSTORE
IDN
IDRAW
IF ... THEN . . .
IMAGE
IMOVE
INDENT
INITIALIZE . . .
INPUT
INT

LGT

LisT
LOAD
LOADSUB
LOCAL

MOD
MODULO

Contents-3

MOVE o o oo e 2-222

MOVELINES o o oo o s 2-223
0 2-225
NEXT o oo e s e e e 2-226
NOT . . . o o o e e e e e e e 2-227
NUM . . o oo e e e e e e e e e e 2-228
OFF CYCLE« . o o o o v h e e 2-229
OFFERROR o o o oo 0. 2-230
OFFINTR o . o 0o oo oo o s s 2-231
OFFKEY o o o o e s 2-232
OFF TIMEOUT« o v o v v oo v e 2-233
ON . e s e e e s e 2-234
ONCYCLE o . o o oo s e e e e e e 2-235
ONERROR oo v o oo 2-237
ONINTR o o oo oo o o 2-239
ONKEY o s e e 2-241
ONTIMEOUT o o o oo 2-243
OPTION BASE o o o oo e 2-245
OR . . .« . o 2-246
OUTPUT oo oo oo oo e e 2-247
PASS CONTROL o 0 o 2-255
PAUSE s e e e 2-256
PDIR o o e e e e 2-257
PEN o o e e e e 2-258
PENUP o o o o oo e e 2-261
PI . o e e s e e e 2-262
PIVOT o oo e 2-263
PLOT o o e e e 2-264
PLOTTERIS o o o o o o oo oo 2-269
POLYGON o o o oo oo s e e e 2-272
POLYLINE o o o o o oo e e e e 2-274
POS e e e e e 2-276
PRINT o o oo s e e e e e e e e 2-277
PRINTERIS o o o o o oo oo e 2-283
PROUND o oo oo e e e e e 2-286
PRT o o e e e e e 2-287
PURGE o o o e e e e 2-288
RAD e e e e e e 2-290
RANDOMIZE o v v e v e v e e e e e e e e 2-291
RANK o o o s e e e e 2-292
RATIO« . e e e e e e e 2-293
READ o e s e e e e e 2-294
REAL o o oo e s e e 2-296
RECTANGLE o . o o o oo oo e 2-297
REDIM o oo e e e 2-299
REM o o e e e e e 2-300
REMOTE o o o o e e e 2-301
REN . . . o o o e e e s e e e e e 2-303
RENAME o . . oo e 2-305
REPEAT ... UNTIL o v v v v v oo o 2-307
RE-SAVE oo e e e 2-308

Contents-4

RESTORE o o oo e 2-310

RE-STORE o it it i s 2-311
RETURN ot oo e e e e s s 2-312
RETURN o oo e e s, 2-313
REVS o 2-314
RND . . oo 2-315
ROTATE i 2-316
RPLOT v o e e 2-317
RPTS . . o . o oo 2-322
RUN . . oo o 2-323
SAVE 2-325
SCRATCH o it s s s 2-327
SECURE . . . o . v v i 2-328
SELECT ... CASE o . o i i, 2-329
SEPARATE ALPHA it i, 2-331
SET ALPHA MASK o v it e e 2-332
SETPEN v o 2-333
SET TIME v v 2-335
SET TIMEDATE o i ittt 2-336
SGN . . o 2-337
SHIFT . . . o o o v oo 2-338
SHOW . . o oo o 2-339
SIN . o o 2-340
SIZE . . . 2-341
SPOLL . . . o o vt o, 2-342
SQR . . o 2-344
SQRT . . v o o e e 2-345
STATUS . . . o v o o 2-346
STOP . . . o o v o 2-348
STORE o i 2-349
SUB . . o e 2-350
SUBEND ot 2-352
SUBEXIT o vt e 2-353
SUM o o o o e 2-354
SYSTEM PRIORITY i vttt 2-355
SYSTEMS o o o 2-356
TAB 2-357
TABXY . . . o 2-358
TAN . . o 2-359
TIME o 2-360
TIMES, 2-361
TIMEDATE o 2-362
TRIGGER o i 2-363
TRIMS 2-364
UNTIL . o oot o o oo e e 2-365
UPCS . . . o o o, 2-366
VAL . o, 2-367
VALS . . . o, 2-368
VIEWPORTo ittt e 2-369
WAIT . . . o, 2-370
WHERE, 2-371

Contents-5

WHILE o 0 o s 2-372
WILDCARDS 2-373
WINDOW 2-375
A. Error Messages
B. Glossary

C. Interface Registers

I/O Path Registers C-1

Registers for Al I/O Paths C-1

I/O Path Names Assigned toan ASCII File C-1

I/O Path Names Assigned toa BDAT File C-2

I/O Path Names Assigned toa DOS File C-3

CRT and CONTROL Registers C-3

Keyboard STATUS and CONTROL Registers C-3

GPIB STATUS and CONTROL Registers C-3

RS232C Serial STATUS and CONTROL Registers C-3
Index

Contents-6

Using the Language Reference

This section contains an alphabetical reference to all the keywords currently available with
the HP Instrument BASIC language. Each entry defines the keyword, shows the proper
syntax for its use, gives some example statements, and explains relevant semantic details. A
cross reference is provided in the “Keyword Guide to Porting” chapter of the HP Instrument
BASIC Programming Techniques manual, that groups the keywords into several functional
categories.

Using the Language Reference 1-1

Syntax Drawings Explained

Statement syntax is represented pictorially. All characters enclosed by a rounded envelope
must be entered exactly as shown. Words enclosed by a rectangular box are names of items
used in the statement.

A description of each item is given either in the table following the drawing, another drawing,
or the Glossary.

Statement elements are connected by lines. Each line can be followed in only one direction,
as indicated by the arrow at the end of the line. Any combination of statement elements that
can be generated by following the lines in the proper direction is syntactically correct. An
element is optional if there is a path around it. Optional items usually have default values.
The table or text following the drawing specifies the default value that is used when an
optional item is not included in a statement.

1-2 Using the Language Reference

Comments

Comments

Comments may be added to any valid line. A comment is created by placing an exclamation
point after a statement, or after a line number or line label.

100 PRINT "Hello" ! This is a comment.
110 ! This is also a comment.

The text following the exclamation point may contain any characters in any order.

The drawings do not necessarily deal with the proper use of spaces (ASCII blanks). In
general, whenever you are traversing a line, any number of spaces may be entered. If two
envelopes are touching, it indicates that no spaces are allowed between the two items.
However, this convention is not always possible in drawings with optional paths, so it is
important to understand the following rules for spacing.

Using the Language Reference 1-3

Keywords and Spaces

HP Instrument BASIC uses spaces, as well as required punctuation, to distinguish the
boundaries between various keywords, names, and other items. In general, at least one space
is required between a keyword and a name if they are not separated by other punctuation.
Spaces cannot be placed in the middle of keywords or other reserved groupings of symbols.
Also, keywords are recognized whether they are typed in uppercase or lowercase. Therefore,
to use the letters of a keyword as a name, the name entered must contain some mixture of
uppercase and lowercase letters. The following are some examples of these guidelines.

Space Between Keywords and Names

The keyword NEXT and the variable Count are properly entered with a space between them,
as in NEXT Count. Without the space, the entire group of characters is interpreted as the name
Nextcount.

No Spaces in Keywords or Reserved Groupings

A function call to “A$” must be entered as FNA$, not as FN A $. The I/O path name
“@Meter” must be entered as @Meter, not as @ Meter. The “exceptions” are keywords that
contain spaces, such as END IF.

Using Keyword Letters for a Name

Attempting to store the line IF X=1 THEN END will generate an error because END is a keyword
not allowed in an IF ... THEN. To create a line label called “End”, type IF X=1 THEN ENd.
This or any other mixture of uppercase and lowercase will prevent the name from being
recognized as a keyword.

Also note that names may begin with the letters of an infix operator (such as MOD, DIV,
and EXOR). In such cases, you should type the name with a case switch in the infix operator
portion of the name (e.g., MOdULE, DiVISOR).

1-4 Using the Language Reference

Keyboards

Keyboards
The HP Instrument BASIC instruments and computers support many keyboard styles.

Throughout the manuals that document HP Instrument BASIC, specific keys are mentioned.
Because many key labels are different on each keyboard, you will not have all the keys
mentioned. For example, (ENTER) and (Return) normally have the same meaning, but only one of
them appears on any one keyboard. The instrument-specific HP Instrument BASIC manual
included with your instrument discusses the keyboard for your device.

Using the Language Reference 1-5

Keyword Dictionary

Keyword Dictionary 2-1

ABORT
ABORT terminates I/O activity on the specified GPIB interface.

Syntax
o o T
@ 1/0 path
name
Item Description | Range
interface select numeric expression, rounded to an integer 5, 7 through 31
code
I/O path name name assigned to an GPIB interface —
Example Statements
ABORT 7
ABORT Isc
IF Stop_code THEN ABORT @Source
Details
Use ABORT to control only GPIB interfaces. If you specify a select code for any

other type of interface, error 150 will result.

If the computer is the system controller, but not currently the active controller, executing
ABORT causes the computer to assume active control.

Note that ABORT interface_select is allowed, but ABORT primary.address is not. For example:

ABORT 7 allowed
ABORT 721 not allowed

2-2 Keyword Dictionary

Summary of Bus Actions

ABORT

System Controller

Not System Controller

Active Controller IFC (duration ATN
>100 psec) MTA

REN UNL
ATN ATN

Not Active Controller IFC (duration No
>100 psec)? Action

REN
ATN

1 The IFC message allows a non-active controller (which is the system controller) to become

active.

Keyword Dictionary 2-3

ABS

ABS returns the absolute value of its argument.

Syntax
Item Description/Default Range
Restrictions
argument numeric expression within valid ranges of

Example Statements

PRINT "Value =";ABS(X1)

2-4 Keyword Dictionary

INTEGER and REAL data
types for INTEGER and
REAL arguments.

ACS

ACS

ACS returns the arccosine of its argument.

Syntax
ACS “ argument *@—D{
Item Description/Default Range
Restrictions
argument numeric expression —1 through +1 for INTEGER

and REAL arguments.

Example Statements
Angle=ACS(Cosine)

Details

The angle mode (set by RAD or DEG) determines whether the value returned is in degrees

or radians. If the current angle mode is DEG, the range of the result is 0 to 180 degrees. If
the current angle mode is RAD, the range of the result is 0 to 7 radians. The angle mode is
radians unless you specify degrees with the DEG statement.

Keyword Dictionary 2-5

ALLOCATE

ALLOCATE dynamically allocates memory for arrays and string variables during program
execution.

Syntax
ALLOCATE
<)=
= 1,
i i
uEEC OO
(e
{ A\
(C > bound
[
bound :
e
{ ~
»| array (> upper
name L | bound
lower
m bound :
Item Description Range
array name name of a numeric array any valid name
lower bound numeric expression, rounded to an integer; —32 768 through +32 767 (see
default = OPTION BASE value (0 or 1) “array” in Glossary)
upper bound numeric expression, rounded to an integer —32 768 through +32 767 (see
“array” in Glossary)
string name name of a string variable any valid name
string length numeric expression, rounded to an integer 1 through 32 767

Example Statements
ALLOCATE Temp (Low:High)
ALLOCATE INTEGER Array(Index,2,8)
ALLOCATE R$[LEN(A$)+1]
ALLOCATE Text$(Lines) [80]

2-6 Keyword Dictionary

ALLOCATE

Details

Memory reserved by the ALLOCATE statement can be freed by the DEALLOCATE
statement. However, because of the stack discipline used when allocating, the freed memory
space does not become available unless all subsequently allocated items are also deallocated.
For example, assume that A$ is allocated first, then B$, and finally C$. If a DEALLOCATE
AS$ statement is executed, the memory space for A$ is not available until B$ and C$ are
deallocated.

The variables in an ALLOCATE statement cannot appear in the same context in declaration
statements such as COM, DIM, or INTEGER. If variable(s) are to be allocated in a
subprogram, the variable(s) cannot have been included in the subprogram’s formal parameter
list. Implicitly declared variables cannot be allocated. Numeric variables for which a type is
not specified are assumed to be REAL. A variable can be reallocated in its program context
only if it has been deallocated and its type and number of dimensions remain the same.

ALLOCATE allows you to dynamically allocate memory for arrays. However, the array
dimensions are determined statically. Thus you can change the size of the dimensions, but you
cannot change the number of dimensions of an array within a program context.

Exiting a subprogram automatically deallocates any memory space allocated within that
program context.

Keyword Dictionary 2-7

ALPHA ON/OFF
ALPHA ON shows the alpha window; ALPHA OFF hides it.

Syntax

(ApHa oN

Example Statements
ALPHA ON
IF Graph THEN ALPHA OFF

2-8 Keyword Dictionary

AND

AND

AND returns a 1 or a 0 based on the logical AND of its two arguments.

Syntax

> numer[c AND numerfc >
expression expression

Example Statements
IF Flag AND Test2 THEN Process
Final=Initial AND Valid

Details

A non-zero value (positive or negative) is treated as a logical 1; only zero is treated as a
logical 0.

A|(B(AANDB
0 0
011 0
110 0
111 1

Keyword Dictionary 2-9

AREA

AREA sets the color used to shade in graphical regions subsequently created by various
graphics plotting commands.

Syntax

hue —P@—P staturation —b@—ﬂ luminosity

INTENSITY red —PQ—'F green —DO—P blue
pen
selector
Item Description Range

hue numeric expression 0 through 1
saturation numeric expression 0 through 1
luminosity numeric expression 0 through 1
red numeric expression 0 through 1
green numeric expression 0 through 1
blue numeric expression 0 through 1
pen selector numeric expression, rounded to an integer —32 768 through +32 767

Example Statements
AREA COLOR Hue,Saturation,Luminosity
AREA INTENSITY Red(I),Green(I),Blue(I)
AREA PEN 3

Details

The default fill color is the color specified by pen 1. This color is solid white after power-up,
SCRATCH A, GINIT.

A fill color remains in effect until the execution of an AREA, GINIT, or SCRATCH A. Other
statements that may alter the current fill color (if the data passed to them is an array) are

s PLOT
m RPLOT
s IPLOT

SET PEN affects pen colors, and therefore can also affect fill colors specified with AREA
statements.

2-10 Keyword Dictionary

AREA

Specifying color with the SET PEN and AREA PEN statements (resulting in non-dithered
color) results in a much more accurate representation of the desired color than the same color
requested with an AREA COLOR or AREA INTENSITY statement.

AREA PEN Details ...
AREA COLOR Details ...
Alternate Pen Mode ...

AREA PEN

A fill color specified with AREA PEN is guaranteed to be non-dithered, and the AREA PEN
statement executes faster than AREA COLOR or AREA INTENSITY.

The pen numbers have the same effect as described in the PEN statement for line color except
that in the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement. Pen 0 in normal pen mode erases; it does not complement.

AREA COLOR

When AREA COLOR executes, the HSL parameters are converted to RGB values. Then, if
the color requested is not available in the color map, the computer creates the closest possible
color in RGB color space to the one requested by filling the 4 by 4 dither cell with the best
combination of colors from the color map.

Alternate Pen Mode Fills

If the alternate drawing mode is in effect when the fill is performed, the area will be filled with
non-dominant color. See GESCAPE operation selectors 4 and 5.

In the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement.

Keyword Dictionary 2-11

ASN

ASN returns the arcsine of its argument.

Syntax
Item Description/Default Range
Restrictions
argument numeric expression —1 through +1 for INTEGER and

REAL arguments

Example Statements
Angle=ASN(Sine)

Details

The angle mode (set by RAD or DEG) determines whether the value returned is in degrees
or radians. If the current angle mode is DEG, the range of the result is -90 to +90 degrees.
If the current angle mode is RAD, the range of the result is -7/2 to +7 /2 radians. The angle
mode is radians unless you specify degrees with the DEG statement.

2-12 Keyword Dictionary

ASSIGN

ASSIGN

ASSIGN assigns an I/O path name and attributes to one of the following:
m a file

m an instrument

m a peripheral device

Syntax for Files

1/Q path ol
(ASSIGN) (@: /nonF':e ATl
3\ device
T0 selector
file attribute >
"] specifier

—»@ J

literal form of file specifier:

__@ [ile f
j name
directory LIF protect volume
path code specifier

kw—/ \ J

Y
HFS or DOS files only LIF files only

directory path:

“ - directory /
° name 4

|
-——==h

|
|
|

|
! |
- - — - —d |
DOS only L~ _

end—of—line
characters

END

Keyword Dictionary 2-13

ASSIGN

Item

Description

Range

I/0O path name
device selector
file specifier
attribute
directory path

file name
LIF protect code
volume specifier

end-of-line
characters

name identifying an I/O path

numeric expression

string expression

attribute to be assigned to the I/O path
literal

literal

literal; first two non-blank characters are
significant

literal

string expression; default=CR and LF

Example Statements

These statements assign an I/O path name to a file:

ASSIGN QFile
ASSIGN @QFile

TO File_name$
TO File_name$; FORMAT OFF

any valid name

(see Glossary)

(see drawing)

(see drawing)

(see MASS STORAGE IS)

depends on volume’s format (see
Glossary)

> not allowed

(see MASS STORAGE IS)

up to 8 characters

ASSIGN @File TO File_name$; FORMAT OFF, SWAP OFF
ASSIGN @QFile TO * ! Close the file.

These statements assign an I/O path name to an instrument:
ASSIGN @Hpib_scope TO 724
ASSIGN @Serial_scope TO 9

Details

The ASSIGN statement serves a variety of purposes. Its main purpose is to open (create)
an I/O path name and assign that name to a resource. ASSIGN can specify attributes that
describe how data is shared with the resource. ASSIGN can also close (terminate) an I/0
path.

I/O path names can be placed in COM statements and can be passed by reference as
parameters to subprograms. They cannot be evaluated in a numeric or string expression and
cannot be passed by value.

Using ASSIGN with Files ...
Using ASSIGN with Instruments ...

2-14 Keyword Dictionary

ASSIGN

Wildcards

Wildcard file specifiers used with ASSIGN must match one, and only one, file name. You
must first enable wildcard recognition using WILDCARDS. Refer to the keyword entry for
WILDCARDS for details.

Using FORMAT

Assigning the FORMAT ON attribute to an I/O path name directs the computer to use its
ASCII data representation while sending and receiving data through the I/O path. Assigning
the FORMAT OFF attribute to an I/O path name directs the computer to use its internal
data representation when using the I/O path.

If the file was created with the CREATE ASCII statement, the file is always accessed as

a LIF ASCII file. LIF ASCII is a file type used by certain HP computers, such as the

HP BASIC Workstation. If you specify FORMAT ON or FORMAT OFF for such a file, it is
ignored.

If a FORMAT attribute is not explicitly given to an I/O path, a default is assigned. The
following table shows the default FORMAT attribute assigned to computer resources.

Resource Default Attribute
interface/device FORMAT ON
ASCII file (always ASCII format)
BDAT file . |FORMAT OFF
DOS file FORMAT OFF
HP-UX file FORMAT OFF

Using Files

Assigning an I/O path name to a file associates the I/O path with the file and opens the file
for reading and writing. The file must be a data file. You cannot, for example, ASSIGN an
I/0 path to a PROG (program) file. The file must already exist; ASSIGN does not do an
implied CREATE.

Files have a position pointer that is associated with each I/O path name. The pointer
identifies the next byte to be written or read. The pointer is reset to the beginning of the file
when the file is opened and updated with each ENTER or OUTPUT that uses that I/O path

name. It is best if a file is open with only one I/O path name at a time.

BDAT files have an additional physical end-of-file pointer. This end-of-file pointer (which
resides on the media) is read when the file is opened. This end-of-file pointer is updated on
the media at the following times:

m the current end-of-file changes
m END is specified in an OUTPUT statement directed to the file

m a CONTROL statement directed to the I/O path name changes the position of the
end-of-file pointer

Keyword Dictionary 2-15

ASSIGN

Using Instruments and Other Devices

I/O path names are assigned to instruments and other devices by placing the device selector
after the keyword TO. The statement ASSIGN @Meter TO 710 creates the I/O path name
@Meter and assigns it to a device on GPIB.

A device can have more than one I/O path name associated with it. Each I/O path name
can have different attributes (such as FORMAT and SWAP), depending upon how the device
is used. The specific I/O path name used for an I/O operation determines which set of
attributes is used for that operation.

Changing Attributes

The attributes of a currently valid I/O path may be changed, without otherwise disturbing
the state of that I/O path or the resource(s) to which it is assigned, by omitting the

TO resource clause of the ASSIGN statement. For example, ASSIGN @File; FORMAT OFF assigns
the FORMAT OFF attribute to the I/O path name @File without changing the file pointers
(if assigned to a mass storage file).

A statement such as ASSIGN @Device restores the default attributes to the I/O path name, if
it is currently assigned.

Using ASSIGN With SWAP

The secondary keyword SWAP sets the order in which bytes are transferred for an I/O path
assigned with FORMAT OFF. If the ASSIGN statement does not create the I/O path with
FORMAT OFF, any SWAP clause in the statement is ignored. The default behavior of
ASSIGN is SWAP OFF.

When SWAP is OFF, data is transferred by sending the least significant byte first. When
SWAP is ON, data is transferred by sending the most significant byte first.

SWAP affects only these types of data:

m two-byte integers (such as INTEGER variables)

m eight-byte reals (such as REAL variables)

m strings written to BDAT files with FORMAT OFF

Note that no other type of data is handled properly by SWAP. For example, you cannot
properly read a long integer (a four-byte integer) into two INTEGER variables with SWAP
ON.

SWAP is useful in these situations:

m You want to transfer integer or real numbers between an instrument and
HP Instrument BASIC with FORMAT OFF to increase throughput. Use SWAP ON/OFF
as necessary to transfer bytes in the order that is compatible with the instrument.

m You want to share BDAT or DOS data files written with FORMAT OFF between
HP Instrument BASIC and other versions HP BASIC. In this case, you must use SWAP
ON.

Suppose you want to send commands to an instrument as strings and receive numeric data
from the instrument as unformatted bytes. You also want to read string data from the
instrument, such as error messages. You could use this approach:

2-16 Keyword Dictionary

ASSIGN

100 ASSIGN @Device TO Dev_selector
110 ASSIGN @Device_bin TO Dev_selector;FORMAT OFF,SWAP ON

120 OUTPUT @Device;Cmd$! Cmd$ contains an instrument command.
130 ENTER @Device_bin;Real_var ! Real_var is a REAL variable.
140 ENTER @Device;Err_msg$! Err_msg$ contains an error message string.

Suppose you want to read a BDAT file written on a DOS disk by the HP Measurement
Coprocessor. These are the statements that wrote the file:

100 INTEGER Int_var

110 CREATE BDAT "MYFILE"

120 ASSIGN QFile TO "MYFILE" ! Default for BDAT files is FORMAT OFF.
130 OUTPUT @File;Real_var,Int_var,String$

It is important to note that the default formatting for I/O paths assigned to BDAT files
is FORMAT OFF. To read MYFILE with HP Instrument BASIC, you must use these

statements:

100 INTEGER Int_var
110 ASSIGN QFile TO "MYFILE';SWAP ON
120 ENTER QFile;Real_var,Int_var,String$

Closing 1/O Paths

There are a number of ways that I/O paths are closed and the I/O path names rendered
invalid. Closing an I/O path cancels any ON-event actions for that I/O path. I/0O path names
that are not included in a COM statement are closed at the following times:

m when they are explicitly closed; for example, ASSIGN @File TO *

m when a currently assigned I/O path name is reassigned to a resource, the original I/O path
is closed after the new one is opened. The reassignment can be to the same resource or a
different resource. No closing occurs when the ASSIGN statement only changes attributes
and does not include the “TO ... ” clause.

m when an I/O path name is a local variable within a subprogram, it is closed when the
subprogram is exited by SUBEND, SUBEXIT, ERROR SUBEXIT, RETURN..expression,
or ON-event..RECOVER.

m when SCRATCH, SCRATCH A, or SCRATCH C is executed, any form of STOP occurs, or
an END, LOAD, or GET is executed.

I/0 path names that are included in a COM statement remain open and valid during a
LOAD, GET, STOP, END, or simple SCRATCH. I/0O path names in COM are only closed at
the following times:

m when they are explicitly closed; for example, ASSIGN @File TO *
m when SCRATCH A or SCRATCH C is executed

m when a LOAD, GET, or EDIT operation brings in a program that has a COM statement
that does not exactly match the COM statement containing the open I/O path names

Keyword Dictionary 2-17

ATN

ATN returns the arctangent of its argument.

Syntax
O O~
Item Description/Default Range
Restrictions
argument numeric expression within valid ranges of INTEGER
or REAL data types for
INTEGER and REAL arguments

Example Statements
Angle=ATN(Tangent)

Details

The angle mode (set by RAD or DEG) determines whether the value returned is in degrees
or radians. If the current angle mode is DEG, the range of the result is -90 to 490 degrees.
If the current angle mode is RAD, the range of the result is -7/2 to +7/2 radians. The angle
mode is radians unless you specify degrees with the DEG statement.

2-18 Keyword Dictionary

AXES

AXES

AXES draws a pair of axes with optional, equally spaced tick marks.

Syntax

AXES) L..
x tick

y axis

spacing —
y tic
spacing l

location
X axis
location J

O

Item

X major

major
tick size

count
y major
count |

Description

Range

x tick spacing

y tick spacing

y axis location

x axis location

X major count

y major count

major tick size

numeric expression in current units;
default = 0, no ticks

numeric expression in current units;
default = 0, no ticks

numeric expression specifying the location of
the y axis in x-axis units; default = 0

numeric expression specifying the location of
the x axis in y-axis units; default = 0

numeric expression, rounded to an integer,
specifying the number of tick intervals between
major tickmarks; default = 1 (every tick is
major)

numeric expression, rounded to an integer,
specifying the number of tick intervals between
major tick marks; default = 1 (every tick is
major)

numeric expression in graphic display units;
default = 2

(see text)

(see text)

1 through 32 767

1 through 32 767

Keyword Dictionary 2-19

AXES

Example Statements
AXES 10,10
AXES Xspace,Yspace

AXES Xspace,Yspace,Xlocy,Ylocx,Xmajor,Ymajor,Majorsize

Details

Tick marks are positioned so that a major tick mark coincides with the axis origin, whether or
not that intersection is visible. Both axes and tick marks are drawn with the current line type
and pen. Minor tick marks are drawn half the size of major tick marks.

The X and Y tick spacing must not generate more than 32,768 tick marks in the clip area
(including the axis), or error 20 will be generated.

The axes and tick marks drawn by AXES are affected by scaling resulting from SHOW and
WINDOW. The axes and tick marks are not affected by rotations resulting from PIVOT and
PDIR.

2-20 Keyword Dictionary

BASE

BASE

BASE returns the lower subscript bound of a dimension of an array.

Syntax
array @0. amension ())
name
Item | Description | Range
array name name of an array any valid name
dimension numeric expression, rounded to an integer 1 through 6;

< the RANK of the array
Example Statements

Lowerbound=BASE (Array,Dimension)

Upperbound(2)=BASE(A,2)+SIZE(A,2)-1

Keyword Dictionary 2-21

BDAT
See the CREATE BDAT statements.

2-22 Keyword Dictionary

BEEP

BEEP

BEEP generates an audible tone.

Syntax
(seer) _j‘ >
frequency seconds
Item Description Range
frequency numeric expression, rounded to the nearest 81 through 5208
tone; default = 1220.7
seconds numeric expression; rounded to the nearest .01 through 2.55

hundredth; default = 0.2

Example Statements

BEEP

Keyword Dictionary 2-23

BINAND
BINAND returns the bit-by-bit logical AND of its arguments.

Syntax
o argument —PO—P argument -@—D
Item I Description I Range
argument | numeric expression, rounded to an integer I —32 768 through +32 767

Example Statements
Low_4_bits=BINAND(Byte,15)
IF BINAND(Stat,3) THEN Bit_set

Details

The arguments for BINAND are represented as 16-bit two’s-complement integers. Each bit in
an argument is AND’ed with the corresponding bit in the other argument. The results of all
the AND’s are used to construct the integer which is returned.

In the following example, the statement Ctrl_word=BINAND(Ctrl_word,-9) clears bit 3 of
Ctrl_word without changing any other bits.

12 = 00000000 00001100 old Ctrl_word
-9 = 11111111 11110111 mask to clear bit 3
4 = 00000000 00000100 new Ctri_word

2-24 Keyword Dictionary

BINCMP

BINCMP
BINCMP returns the value of the bit-by-bit complement of its argument.
Syntax
O D+
Item l Description | Range
argument Inumeric expression, rounded to an integer | —32 768 through +32 767

Example Statements
True=BINCMP(Inverse)
PRINT X,BINCMP(X)

Details

The argument for BINCMP is represented as a 16-bit, two’s-complement integer. Each bit in
the representation of the argument is complemented, and the resulting integer is returned. For
example, the complement of -9 equals +8:

-9 = 11111111 11110111 argument

+8 = 00000000 00001000 complement of argument

Keyword Dictionary 2-25

BINEOR
BINEOR returns the bit-by-bit exclusive OR of its arguments.

Syntax
o argument N argument —>®—>
Item l Description | Range
argument Inumeric expression, rounded to an integer | —32 768 through +32 767

Example Statements
Toggle=BINEOR(Toggle,1)
True_byte=BINEOR(Inverse_byte,255)

Details

The arguments for BINEOR are represented as 16-bit, two’s-complement integers. Each bit
in an argument is exclusively OR’ed with the corresponding bit in the other argument. The
results of all the exclusive OR’s compose the returned integer.

In the following example, the statement Ctrl_word=BINEOR(Ctrl_word,4) inverts bit 2 of
Ctrl_word without changing any other bits.

12 = 00000000 00001100 old Ctrl_word
4 = 00000000 00000100 mask to invert bit 2
8 = 00000000 00001000 new Ctrl_word

2-26 Keyword Dictionary

BINIOR

BINIOR
BINIOR returns the bit-by-bit inclusive OR of its arguments.
Syntax
0 argument —PQ—P argument —>®—>-
Item l Description | Range
argument Inumeric expression, rounded to an integer |—32 768 through +32 767

Example Statements
Bits_set=BINIOR(Valuel,Value2)
Top_bit_on=BINIOR(All_bits,2715)

Details

The arguments for BINIOR are represented as 16-bit, two’s-complement integers. Each bit
in an argument is inclusively OR’ed with the corresponding bit in the other argument. The
results of all the inclusive OR’s are used to construct the integer which is returned.

In the following example, the statement Ctrl_word=BINIOR(Ctrl_word,6) sets bits 1 and 2 of
Ctrl_word without changing any other bits.

19 = 00000000 00010011 old Ctrl_word
6 = 00000000 00000110 mask to set bits 1 & 2
23 = 00000000 00010111 new Ctrl_word

Keyword Dictionary 2-27

BIT

BIT returns a 1 or 0 representing the value of the specified bit of its argument.

Syntax
BIT (argument —PO—P po:iittion —P@—P
Item Description | Range
argument numeric expression, rounded to an integer —32 768 through +32 767
bit position numeric expression, rounded to an integer 0 through 15

Example Statements
Flag=BIT(Info,0)
IF BIT(Word,Test) THEN PRINT "Bit #'";Test;"is set"

Details

The argument for BIT is represented as a 16-bit, two’s-complement integer. Bit 0 is the
least-significant bit, and bit 15 is the most-significant bit.

The following example reads the controller status register of the internal GPIB and takes a
branch to “Active” if the interface is currently the active controller.

100 STATUS 7,3;S Reg 3 = control status
110 IF BIT(S,6) THEN Active Bit 6 = active control

2-28 Keyword Dictionary

CALL

CALL

CALL transfers program execution to the specified subprogram and optionally passes
parameters to the subprogram.

Syntax

CALL subprogram

name
pass
parameters

~O—

string
name g
G O
parameters
pass parameters:
M

I ./

o 7Y /0 path -

'@ name | N

| 5] variable

Passed by Reference T

Passed by Value l

| variable)

name

| string or numeric
array element

1 substring
—»@ literal @—»
»1 string expressions >

> numeric)

expressions|

Keyword Dictionary 2-29

CALL

Item Description Range

subprogram name |name of the SUB or CSUB subprograms to |any valid name
be called

string name a simple string variable containing the name |loaded SUBs and CSUBS
of a user-defined subprogram

I/O path name name assigned to a device, devices, or mass |any valid name (see ASSIGN)
storage file

variable name name of a string or numeric variable any valid name

substring string expression containing substring (see Glossary)
notation

literal string constant composed of characters from |—

the keyboard

Example Statements
CALL Process(Reference,(Value),@Path)
CALL Transform(Array(*))
Transform(Array(*))
CALL MySub$
CALL MySub$ WITH (X,Y,A$)

Details
Subprograms may be invoked recursively.

The keyword CALL may be omitted if it is the first word in a program line. However, the
keyword CALL is required in all other instances.

The pass parameters must be of the same type (numeric, string, or I/O path name) as

the corresponding parameters in the SUB statement. Numeric values passed by value are
converted to the numeric type of the corresponding formal parameter. Variables passed by
reference must match the corresponding parameter in the SUB statement exactly. An entire
array may be passed by reference by using the asterisk specifier.

If there is more than one subprogram with the same name, the lowest-numbered subprogram
is invoked by a CALL.

Program execution generally resumes at the line following the subprogram CALL. However,
if the subprogram is invoked by an event-initiated branch, program execution resumes at the
point at which the event-initiated branch was permitted.

2-30 Keyword Dictionary

CALL

CALL Using String Names

You can specify the subprogram accessed by CALL using either the subprogram name or a
string expression that evaluates to the subprogram name. All of the calls to Mysub in the
following code segment are legal:

100
110
120
120
130
140
150
160
170

Name$="Mysub" using subprogram name with CALL
CALL Mysub(1)

Mysub(2) using subprogram name without CALL
CALL Name$ WITH (3) using string name with CALL

END

]
SUB Mysub(I)

PRINT "HELLO";I
SUBEND

Note that the string name must match the subprogram name ezactly, including upper and
lower case letters. Also note that you must use the keyword CALL with string subprogram

names.

Keyword Dictionary 2-31

CASE
See SELECT ... CASE.

2-32 Keyword Dictionary

CAT

CAT

CAT lists the contents (files) in a specified directory or mass storage volume.

Syntax
< CAT} C ::
L directory 1 0 catalog
specifier device selector
string
array name $ (%)
literal form of directory specifier:
" ol directory "
name
directory volume
path specifier
HFS or DOS files only
Item Description Range

directory specifier

volume specifier

directory path

catalog device
selector

string array name

media specifier

string expression; default=MASS STORAGE
IS directory

string expression; default=MASS STORAGE
IS volume

literal

numeric expression, rounded to an integer;
default=PRINTER IS device

name of a string array (see text)

sting expression specifying media address

Example Statements

CAT

CAT TO A$(*)

(see MASS STORAGE IS)
(see MASS STORAGE IS)

(see MASS STORAGE IS)
(see Glossary)

any valid name

any valid media

! List the contents of the current MSI volume/directory.

! List the contents of the current MSI to a string variable.

CAT "Dir1/Dir2" ! List the contents of a subdirectory.

CAT ":,701,0"

! Example of media specifier.

Keyword Dictionary 2-33

CAT

Details

The catalog shows information such as the name of each file, whether or not it is protected,
the file’s type and length, and the number of bytes per logical record.

See the WILDCARDS statement for more on the use of wildcards with CAT.

Note that the format of the catalog listing is different depending on whether the catalog
information is sent to the alpha window or a string variable.

CAT "A:\DIR1\DIR2" ! This catalog listing is sent to
! the alpha display in DOS format.

CAT "A:\DIR1\DIR2" TO A$(*) ! This catalog listing is sent to
! the the string variable A$ in
! "to string" format.

LIF Catalogs

The LIF catalog format is shown below. This catalog format requires that the PRINTER IS
device have the capability of displaying 65 or more characters. If the printer width is less than
65, the DATE and TIME columns are omitted.

:CS80,700
VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS DATE TIME

MyProg PROG 14 256 16 23-May-87 7:58
VisiComp ASCII 29 256 30 8-Apr-87 6:00
GRAPH BIN 171 256 59 1-May-87 1:00
GRAPHX BIN 108 256 230 10-Aug-87 9:00

The first line of the catalog shows the volume specifier (:CS80,700 in this example).

The second line shows the volume label—a name, containing up to 6 characters, stored on the
media (B9836 in this example).

The third line labels the columns of the remainder of the catalog. Here is what each column
means:

FILE NAME lists the names of the files in the directory (up to 10 characters).

PRO indicates whether the file has a protect code (* is listed in this column if the
file has a protect code).

FILE TYPE lists the type of each file.

REC/FILE indicates the number of records in the file.

BYTE/REC indicates the record size.

ADDRESS indicates the number of the beginning sector in the file.
DATE indicates when the date the file was last modified.
TIME indicates the time the file was last modified.

2-34 Keyword Dictionary

CAT

DOS File System Catalogs

Here is a typical catalog listing of a DOS directory:

DIRECTORY: C:\PROJECTS\PROJECT.ONE
LABEL: HARD_DISK_C
FORMAT: DOS
AVAILABLE SPACE: 66776

FILE NUM REC MODIFIED
FILE NAME TYPE RECS LEN DATE TIME PERMISSION
ASCII_1 ASCII 100 256 15-Apr-91 18:06 RW-RW-RW-
BDAT_1 BDAT 5 256 15-Apr-91 18:10 RW-RW-RW-
MEMOS DIR 0 1 15-Apr-91 14:29 RWXRWXRWX

The first line of the catalog shows the path name of the directory to be cataloged
(C:\PROJECTS\PROJECT_ONE in this example).

The second line gives the volume label of the MS-DOS disk.

The third line gives the format of the mass storage medium, which is “DOS” for any DOS

volume.

The forth line lists the number of 256-byte sectors on the disk (66776 in this example).

The fifth and sixth lines label the columns of the catalog.

FILE NAME

FILE TYPE

NUM RECS

REC LEN

MODIFIED
DATE TIME

PERMISSION

Lists the name of the file. The standard MS-DOS file-name conventions are
used (up to eight characters followed by an optional period and an extension
of up to three characters).

Lists the type of the file. DIR specifies a directory. ASCII, BDAT, and
PROG specify the standard HP Instrument BASIC data and program file
types. DOS specifies an “untyped” MS-DOS file.

Lists the number of logical records (the number of records allocated to the file
when it was created). For a DIR file, NUM RECS is always 0.

The logical record size. The record length is always 256 for an ASCII file, and
always 1 for a DOS file. The default record length for a BDAT file is 256,
but you can specify a user-defined record length. For a DIR file, REC LEN is

always 1.

The date and time when the file was last modified.

Specifies who has access rights to the file:

R indicates that the file can be read. W indicates that the file can be written
to. X indicates that the file can be searched (meaningful for directories only).

There are three classes of user permissions for each file:

OWNER (left-most 3 characters). GROUP (center 3 characters). OTHER
(right-most 3 characters).

By default, the DF'S binary sets the permissions for all new files to
“RW-RW-RW-" and for all new directories to “RWXRWXRWX”. You can use
the PERMIT statement to make a file read-only. However, if you change the

Keyword Dictionary 2-35

CAT

OWNER bits, the GROUP and OTHER bits will also change. Refer to the
PERMIT statement for more details.

CAT to a String Array
Refer to CAT listings for details on fields. Note the different DOS and LIF formats.

The catalog can be sent to a string array. The array must be one-dimensional, and each
element of the array must contain at least 80 characters for a directory listing or 45 characters
for a PROG file listing. If the directory information does not fill the array, the remaining
elements are set to null strings. If the directory information “overflows” the array, the
overflow is not reported as an error. When a CAT of a mass storage directory is sent to a
string array, the catalog’s format is different than when sent to a device. This format (the
SRM directory format) is shown below. Protect status is shown by letters, instead of an
asterisk. An unprotected file has the entry MRW in the PUB ACC (public access) column. A
protected BDAT file has no entry in that column. Other types of protected files show R (read
access). In addition to the standard information, this format also shows OPEN in the OPEN
STAT column when a file is currently assigned.

:CS80,702,0
VOLUME LABEL: B9836
FORMAT: LIF
AVATLABLE SPACE: 11

SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT
SYSTEM_BAS 1 98X6 SYSTM 1024 256 29 Nov 86 15:24:55 MRW
AUTOST 1 98X6 PROG 38 256 29 Nov 86 09:25:07 MRW

To aid in accessing the catalog information in a string, the following table gives the location of
some important fields in the string.

Field Position (in String)

File Name 1 through 21

File Type 32 through 36
Number of Records 37 through 45
Record Length 46 through 54
Time Stamp 56 through 71
Public Access Capabilities 73 through 75
Open Status 77 through 80

2-36 Keyword Dictionary

CAUSE ERROR

CAUSE ERROR

CAUSE ERROR simulates the occurrence of an error of the specified number, affecting error
functions: ERRN, ERRM$, ERRL, and ERRLN.

Syntax

(cause ErrROR) ror |

Item | Description | Range

1 through 999;
1001 through 1080

error number numeric expression, rounded to an integer

Example Statements
CAUSE ERROR Err_num
IF Testing THEN CAUSE ERROR 80

Details

When the CAUSE ERROR statement is executed, it initiates the normal error-reporting
action taken by the system when an error is encountered in a program line.

If ON ERROR is in effect and CAUSE ERROR is executed in a program line, the appropriate
branch is initiated—just as if an actual error occurred on that line. When executed from a
running program, CAUSE ERROR affects the error indications ERRN, ERRM$, ERRL, and
ERRLN; each is set to the value appropriate for the specified error number and line number.
However, ERRDS is not affected.

If CAUSE ERROR is executed at the keyboard, or if executed in a running program (while
ON ERROR is not in effect), HP Instrument BASIC shows the error number and error
message in the system message line of the alpha window. (Note that errors caused by
executing statements from the command line do not affect the error indications listed in the
preceding paragraph.)

Keyword Dictionary 2-37

CHR$

CHRS$ converts a numeric expression into an ASCII character.

Syntax
Item | Description l Range
argument |numeric expression rounded to an integer |0 through 255

Example Statements
Lowercase$=CHR$ (NUM(Uppercase$) +32)
A$ [Marker;1]1=CHR$ (Digit+128)
Esc$=CHR$(27)

2-38 Keyword Dictionary

CLEAR

CLEAR

CLEAR clears the specified GPIB interface by sending a Device Clear or Selected Device
Clear message.

Syntax

70 path

CLEAR) T
device
selector
Item Description | Range

I/O path name name assigned to a device or devices any valid name (see ASSIGN)
device selector numeric expression, rounded to an integer (see Glossary)

Example Statements
CLEAR 7
CLEAR Voltmeter
CLEAR @Source

Details

GPIB Interfaces

CLEAR places all or only selected GPIB devices into a predefined, device-dependent state.
The computer must be the active controller to execute this statement. The bus messages sent
are the same whether or not the computer is the system controller. When primary addresses
are specified, the bus is reconfigured and the SDC (Selected Device Clear) message is sent to
all devices that are addressed by the LAG message.

Summary of CLEAR Bus Actions

Interface Select Code Only Primary Address Specified
ATN ATN
DCL MTA
UNL
LAG
SDC

Keyword Dictionary 2-39

CLEAR SCREEN
CLEAR SCREEN clears the contents of the alpha window.

(cLear screen

Syntax

Example Statements
CLS
CLEAR SCREEN
IF Loop_count=1 THEN CLEAR SCREEN

2-40 Keyword Dictionary

CLIP

CLIP

CLIP defines, enables, or disables the soft clip limits for subsequent graphics output.

Syntax

right bottom top
edge edge edge I I

Item Description Range
left edge numeric expression in current units —
right edge numeric expression in current units —
bottom edge numeric expression in current units —
top edge numeric expression in current units —

Example Statements
CLIP Left,Right,Bottom,Top
CLIP ON
CLIP OFF

Details

Executing CLIP with numeric parameters allows the soft clip area to be set to the specified
soft clip limits. If CLIP is not executed, the clipping area is either the entire graph window
(if VIEWPORT has not been executed) or the area defined by the most recent VIEWPORT
statement. All plotted points, lines, or labels are clipped at this boundary.

The hard clip area is determined by the physical limits of the graphics display area. The
soft clip area is specified by the VIEWPORT and CLIP statements. CLIP ON sets the soft
clip boundaries to the last specified CLIP or VIEWPORT boundaries, or to the hard clip
boundaries if no CLIP or VIEWPORT has been executed. CLIP OFF sets the soft clip
boundaries to the hard clip limits.

Keyword Dictionary 2-41

CLS
CLS is identical to CLEAR SCREEN.

2-42 Keyword Dictionary

COM

COM

COM dimensions and reserves memory for variables in a special “common” memory area so
more than one program context can access the variables.

Syntax

declared
(com) items —.l
block

name

3

Expanded diagram:

‘ COM ;
block
(:) name

- W
numeric ol
"] name ~ o
(iNTeceR) [()=
~O G ,~s§5:;l—(>), -
lower
bound
o o)
>))
B € -(O~mePO——
(e
e e E-0-0-
~O ® e e O e
lower
bound
‘ ())
» L
@ 1/0 path)

Keyword Dictionary 2-43

COM

Item

Description

Range

block name
declared items
numeric name
string name

lower bound

upper bound

string length
I/O path name

name identifying a labeled COM area
list of common variables

name of a numeric variable

name of a string variable

integer constant; default = OPTION BASE
value (0 or 1)

integer constant

integer constant

name assigned to a device, devices, mass
storage file, or buffer

Example Statements

COM X,Y,Z

COM /Block/ Text$,Q@Path,INTEGER Points(*)

COM INTEGER I,J,REAL Array(-128:127)

Details

any valid name
see expanded diagram
any valid name
any valid name

—32 767 through +32 767 (see
“array” in Glossary)

—32 767 through +32 767 (see
“array” in Glossary)

1 through 32 767
any valid name (see ASSIGN)

Storage for COM is allocated at prerun time in an area of memory that is separate from the
data storage used for program contexts. This reserved portion of memory remains allocated
until SCRATCH A or SCRATCH C is executed.

Changing the definition of the COM space is accomplished by a full program prerun. This can
be done by i

m pressing the or key when no program is running
m executing a RUN command when no program is running
m executing any GET or LOAD from a program

m executing a GET or LOAD command that tells program execution to begin (such as LOAD
"File",1)

When COM allocation is performed at prerun, the new program’s COM area is compared
to the COM area currently in memory. When comparing the old and new areas,

HP Instrument BASIC looks first at the types and structures declared in the COM
statements. If the “text” indicates that there is no way the areas could match, then those
areas are considered mismatched. If the declarations are consistent, but the shape of an array
in memory does not match the shape in a new COM declaration, HP Instrument BASIC
takes the effect of REDIM into account. If the COM areas could be matched by a REDIM,
they are considered to be in agreement. When this happens, the treatment of the arrays

in memory depends upon the program state. If the COM matching occurred because of

a programmed LOADSUB, the arrays in memory keep their current shape. If the COM
matching occurred for any other reason (such as RUN or programmed LOAD), the arrays

2-44 Keyword Dictionary

COM

in memory are redimensioned to match the declarations. Any variable values are left intact.
All other COM areas are rendered undefined, and their storage area is not recovered by

HP Instrument BASIC. New COM variables are initialized at prerun: numeric variables to 0,
string variables to the null string.

Each context may have as many COM statements as needed (within the limits stated below),
and COM statements may be interspersed between other statements. If there is an OPTION
BASE statement in the context, it must appear before COM statement. COM variables do
not have to have the same names in different contexts. Formal parameters of subprograms are
not allowed in COM statements. A COM mismatch between contexts causes an error.

The total number of COM elements is limited to a maximum memory usage of 16 777 215
bytes (or limited by the amount of available memory, whichever is less).

If a COM area requires more than one statement to describe its contents, COM statements
defining that block may not be intermixed with COM statements defining other COM areas.

Numeric variables in a COM list can have their type specified Specifying a variable type
implies that all variables that follow in the list are of the same type. The type remains in
effect until another type is specified. String variables and I/O path names are considered a
type of variable and change the specified type. Numeric variables are assumed to be REAL
unless their type has been specified otherwise.

COM statements (blank or labeled) in different contexts that refer to an array or string must
specify it to be of the same size and shape. The lowest-numbered COM satement containing
an array or string name must explicitly specify the subscript bounds and/or string length.
Subsequent COM statements can reference a string by name only or an array only by using an
asterisk specifier (*).

No array can have more than six dimensions. The lower bound value must be less than or
equal to the upper bound value. The default lower bound is specified by the OPTION BASE
statement.

Any LOADSUB that attempt to define or change COM areas while a program is running
generates error 145.

Unlabeled or Blank COM

Blank COM does not contain a block name in its declaration. Blank COM (if it is used)
must be created in a main context. The main program can contain any number of blank
COM statements (limited only by available memory). Blank COM areas can be accessed by
subprograms, if the COM statements in the subprograms agree in type and shape with the
main program COM statements.

Labeled COM

Labeled COM contains a name for the COM area in its declaration. Memory is allocated
for labeled COM at prerun time according to the lowest-numbered occurrence of the labeled
COM statement. Each context that contains a labeled COM statement with the same label
refers to the same labeled COM block.

Keyword Dictionary 2-45

CONT

CONT resumes execution of a paused program at the specified line. If no line is specified,
execution resumes at the next line that would have executed if the program had not PAUSEA.

Syntax
((cont) >
line
number
line
label
Item Description Range
line number integer constant identifying a program line; |1 through 32 766
default = next program line

line label name identifying a program line any valid name

Example Commands

CONT
CONT 550
CONT Sort

Details

CONT can be executed by pressing or by executing a CONT command. Variables
retain their current values whenever CONT executes. CONT causes the program to resume
execution at the next statement that would have occurred, unless a line is specified.

When a line label is specified, program execution resumes at the specified line, provided that
the line is in either the main program or the current subprogram. If a line number is specified,
program execution resumes at the specified line, provided that the line is in the current
program context. If there is no line in the current context with the specified line number,
program execution resumes at the next higher-numbered line. If the specified line label does
not exist in the proper context, an error results.

2-46 Keyword Dictionary

CONTROL

CONTROL

The behavior of this statement will be instrument specific. Refer to the instrument specific
manual for more information.

Appendix C contains more information on registers for I/O path names, interfaces, and
pseudo-select code 32.

CONTROL writes data to one of the following:
m hardware interface registers

m the internal table associated with an I/O path name

Syntax
contro)—{ I § T
register
770 path ! number
@ name
Item Description Range
interface select numeric expression, rounded to an integer 1 through 32
code (interface-dependent)
I/0O path name name assigned to a device, devices, mass any valid name
storage file, or buffer (see ASSIGN)
register number numeric expression, rounded to an integer; interface-dependent
default = 0
control word numeric expression, rounded to an integer —231 through 23'—1
(interface-dependent)

Example Statements
CONTROL @Rand_file,7;File_length ! Write to a file.

CONTROL Interface,Register;Value ! Write to a hardware interface.

CONTROL @Serial,3;9600 ! Set the baud rate of a serial interface.

Keyword Dictionary 2-47

CONTROL

Writing to File 1/O Paths

I/O path names assigned to files have an association table that can be accessed as a set of
registers.

CONTROL writes to this table, starting with the specified register and continuing in turn
through the remaining registers until all control words are used. The number of control words
must not exceed the number of registers available.

Register assignments can be found in the instrument-specific HP Instrument BASIC manual
included with your instrument.

Writing to Hardware Interfaces

Control words are written to the interface registers, starting with the specified register number
and continuing in turn through the remaining registers until all the control words are used.
The number of control words must not exceed the number of registers available.

Register assignments can be found in the instrument-specific HP Instrument BASIC manual
included with you instrument.

2-48 Keyword Dictionary

CcoPY

COPY

COPY copies individual files or entire disks. When an entire disk is copied, all old files on the
destination disk are destroyed.

Syntax
() , T il
copy ‘ ;:\pecif;eer T0 fsf)Zt:ir'i'eer —II o T /
d vol w vol
OIspec:‘:i]fiuer::'e _@_. nespeczi::ne
literal form of file specifier:
f' "
-~ oo (O~
L.directory _I l_.@_. LIF protect _.@_j L volume J
path code specifier
\ J \ v J
HFS or DOS files only LIF files only
Item Description Range
file specifier string expression (see drawing)
directory path literal (see MASS STORAGE IS)
file name literal depends on volume’s format; 10
characters for LIF; 8 characters for
DOS (short file name); (see
Glossary)
LIF protect code |literal; first two non-blank characters are > not allowed
significant
volume specifier string expression (see MASS STORAGE IS)

Example Statements
COPY "OLD_FILE" TO "New_file"
COPY "new" TO "archive" ;PURGE
COPY "A:\DIR\FILE1" TO "B:\DIR\FILE2"

Details
The contents of the old file are copied into the new file, and a directory entry is created.
HP Instrument BASIC will not replace existing files unless you specify the PURGE option.

An error is returned if there is not enough room on the destination device, or if the new file
name already exists in the destination directory and the PURGE option is not specified.

If the mass storage volume specifier (msvs) is omitted from a file specifier, the MASS
STORAGE IS device is assumed.

Keyword Dictionary 2-49

CcoPY

If the directory path is also omitted, the MASS STORAGE IS directory is assumed.

Using Wildcards with COPY ...
Using PURGE with COPY ...

Using Wildcards with COPY

If you are using a version of HP Instrument BASIC that supports wildcards, you can use them
in file specifiers with COPY. You must first enable wildcard recognition using WILDCARDS.
Refer to the keyword entry for WILDCARDS for more details.

You may use wildcards in both the source and destination of the COPY. If the wildcard
specification for the source matches more than one file, then the destination must be a
directory.

Note that HP Instrument BASIC handles the command
COPY "file_name" TO "dir_name"
in a different manner when wildcards are enabled than when they are disabled.

When wildcards are enabled, HP Instrument BASIC permits you to copy a file to a directory.
It interprets the above command as make a copy of file_name and place that copy in a
directory called dir_name.

When wildcards are disabled, HP Instrument BASIC interprets the above command as make
a copy of file_name and place it in the file called dir_name. If a file or a directory already
exists that uses the name dir_name, HP Instrument BASIC generates ERROR 54, Duplicate
file name.

Using the PURGE Option
The PURGE option allows the COPY command to replace existing files.

HP Instrument BASIC interprets the command COPY "file1" TO "file2"; PURGE as copy the
file filel to file2, replacing file2 if it exists.

HP Instrument BASIC interprets the command
COPY "file_name" TO "dir_name"; PURGE
in different ways depending on whether wildcards are enabled or disabled.

When wildcards are enabled, the preceding statement copies file_name into the directory
dir_name. If a file with the name file_name already exists in that directory, COPY will
replace it.

When wildcards are disabled, HP Instrument BASIC replaces the directory identified by
dir_name with the file specified by file_name. This works only if dir_name is empty.

2-50 Keyword Dictionary

COPYLINES

COPYLINES

COPYLINES copies contiguous program lines from one location to another.

Syntax
COPYUNesji g Iineen:i::gber TO) .o
beginning . torget
line number M L ending line nimber
line label
beginning target
line label line label
Item Description Range
beginning line integer constant identifying program line 1 to 32 766
number
beginning line label | name of a program line any valid name
ending line number | integer constant identifying program line 1 to 32 766
ending line label name of a program line any valid name
target line number |[integer constant identifying program line 1 to 32 766
target line label name of a program line any valid name

Example Commands

COPYLINES 1200 TO 3255
COPYLINES 10,120 TO 500
COPYLINES Labell,Label2 TO Label3

Details
If the beginning line identifier is not specified, only one line is copied.

The target line identifier will be the line number of the first line of the copied program
segment. Copied lines are renumbered if necessary. Any lines that are “pushed down” to make
room for the copied lines are renumbered as necessary.

Line number references to the copied code are updated as they would be using REN, with
these exceptions: line number references in lines not being copied remain linked to the source
lines rather than being renumbered; references to non-existent lines are renumbered as if the
lines existed.

If there are any DEF FN or SUB statements in the copied code, the target line number must
be greater than any existing line number.

If you try to copy a program segment to a line number contained in the segment, an error will
be reported and no copying will occur.

If the starting line number does not exist, the next line is used. If the ending line number
does not exist, the previous line is used. If a line label doesn’t exist, an error occurs and no
copying occurs.

Keyword Dictionary 2-51

COPYLINES

If an error occurs during a COPYLINES (for example, a memory overflow), the copy is
terminated and the program is left partially modified.

2-52 Keyword Dictionary

Ccos

COS
COS returns the cosine of the specified angle.
Syntax
cos 0 argument *@—H
Item Description/Default Range
Restrictions
argument numeric expression in current units of angle |absolute values less than 1.708 312

when INTEGER or REAL argument

Example Statements
Cosine=C0S(Angle)

PRINT COS(X+45)

Details

772 2 E+10 deg. or 2.981 568 244
292 04 E+8 rad. for INTEGER
and REAL arguments

The angle mode set by RAD or DEG determines whether the angle is interpreted in degrees or
radians. The angle mode is radians unless you specify degrees using the DEG statement.

Keyword Dictionary 2-53

CREATE
CREATE creates a DOS file.

Syntax
()| fil ber of
CREATE spelc;ier _.O_’ nur?c::dso >
literal form of file specifier:
_,@ o file ol o
name
Ldirectory_j 1_.@_. LIF protect _.@_j l_. volume
path code specifier
H_-—J N y)
HFS or DOS files only UF ﬁleYs only
Item Description Range
file specifier string expression (see drawing)
number of records |numeric expression, rounded to an integer 1 through 23! — 1
directory path literal (see MASS STORAGE IS)
file name literal depends on volume’s format (see
Glossary)
LIF protect code |[literal; first two non-blank characters are > not allowed
significant
volume specifier literal (see MASS STORAGE IS)

Example Statements
CREATE File_spec$,N_records
CREATE "My_file",12

Details

The name of the newly created file must be unique within its directory. CREATE does not
open the file; that is performed by ASSIGN. If there is an error, no directory entry is made
and the file is not created.

The number of records parameter specifies how many logical records are to be initially
allocated to the file. Files created with CREATE are extensible; refer to the following
explanation of extensible files for details.

The data representation used in the file depends on the FORMAT option used in the ASSIGN
statement used to open the file. See ASSIGN for details.

2-54 Keyword Dictionary

CREATE

Extensible Files

Files created with CREATE are “extensible”. This means that the file system automatically
allocates additional space for the file as new data is written to it.

Keyword Dictionary 2-55

CREATE ASCII

CREATE ASCII is supported for backward compatibility with older versions of other
HP BASIC products. For new applications, use CREATE instead of CREATE ASCII.

CREATE ASCII creates a file using LIF ASCII format. LIF ASCII is a format used by older
HP computers and disk drives.

Syntax
CREATE ASCI file _,O_’ number of >
specifier records
literal form of file specifier:
file »of ©
name
[; directory] l_.@__’ LIF protect _.@_j volume _j
path code specifier
— \ v v
HFS or DOS files only LIF files only
Item Description Range
file specifier string expression (see drawing)
number of records |numeric expression, rounded to an integer 1 through (23! — 1)/256
directory path literal (see MASS STORAGE IS)
file name literal depends on volume’s format (see
Glossary)
LIF protect code literal; first two non-blank characters are > not allowed
significant
volume specifier literal (see MASS STORAGE IS)

Example Statements
CREATE ASCII "TEXT",100
CREATE ASCII "/Diri/Dir2/AsciiFile",25
CREATE ASCII "C:\MYFILE.ASC",100

Details

CREATE ASCII creates a new ASCII file and directory entry on the mass storage media.
The name of the newly created ASCII file must be unique within its containing directory.
CREATE ASCII does not open the new file; that is performed by the ASSIGN statement. In
the event of an error, no directory entry is made and the file is not created.

The physical records of an ASCII file have a fixed length of 256 bytes; logical records have
variable lengths that are automatically determined when the OUTPUT, SAVE, or RE-SAVE
statements are used.

2-56 Keyword Dictionary

CREATE BDAT

CREATE BDAT

CREATE BDAT is supported for backward compatibility with older versions of other
HP BASIC products. For new applications, use CREATE instead of CREATE BDAT.

CREATE BDAT creates a file using LIF BDAT (Binary DATa) format. LIF BDAT is a
format used by older HP computers and disk drives.

Syntax

file number of
‘ CREATE BDAT)’ specifier _’O—' records l :

literal form of file specifier:

ol
1
record

size

file
name
directory LIF protect volume
path code specifier
\

— g

J

HFS or DOS files only LIF files only

Item

Description

Range

file specifier

number of records

record size

directory path

file name

LIF protect code

volume specifier

string expression

numeric expression, rounded to an integer

numeric expression, rounded to next even
integer (except 1), which specifies
bytes/record; default = 256

literal

literal

literal; first two non-blank characters are
significant

string expression

Example Statements

CREATE BDAT
CREATE BDAT
CREATE BDAT
CREATE BDAT
CREATE BDAT

"File",Records,Rec_size
"George",48
"Protected<PC>",Length, 128
Name$&Volume$,Bytes,1
"/Dir1/Dir2/BDATfile",25,128

(see drawing)

1 through
(231 — 769)/(record size)

1 through 65 534

(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)

> not allowed

(see MASS STORAGE IS)

Keyword Dictionary 2-57

CREATE BDAT

Details

CREATE BDAT creates a new BDAT file and directory entry on the mass storage media.
The name of the newly created BDAT file must be unique within its containing directory.
CREATE BDAT does not open the file; that is performed by ASSIGN. In the event of an
error, no directory entry is made and the file is not created.

A sector at the beginning of the file is reserved for system use. This sector cannot be directly
accessed by HP Instrument BASIC programs.

2-58 Keyword Dictionary

CREATE DIR

CREATE DIR

CREATE DIR creates the specified directory.

Syntax

Item

CREATE DIR directory

specifier

e

literal form of file specifier

(.
3

directory
path

“ directory >
name
volume

directory path:

specifier

|, directory
| “ | name

| |
—_—

e - — -
DOS only

Description

DOS only

Range

directory specifier
directory path

directory name

volume specifier

string expression
literal

literal

literal

Example Statements

CREATE DIR "WORK_DIR"

CREATE DIR "C:\DIR_1\DIR_2\MY_DIR"

CREATE DIR "Dir3/Dir4:,700"

Details

(see drawing)
(see drawing)

depends on volume’s format; 8
characters for DOS (short file
name); (see Glossary)

(see MASS STORAGE IS)

The name of the newly created directory must be unique within its parent directory.

If no directory path is included in the specifier for the new directory, the new directory is
created within the current working directory (the directory specified in the latest MASS
STORAGE IS statement).

Keyword Dictionary 2-59

CRT
CRT returns 1, the device selector of the CRT.

Syntax

CRT

Example Statements
PRINTER IS CRT
ENTER CRT;Array$(*)

2-60 Keyword Dictionary

CSIZE

CSIZE

CSIZE sets the height and aspect ratio (width:height) of the character cell used by LABEL.
Syntax

CSIZE height >
(_)_, L_.O_. width /height _j
ratio
Item | Description I Range

height numeric expression; default = 5 —

width/height ratio | numeric expression; default = 0.6 —

Example Statements
CSIZE 10
CSIZE 5,0.6
CSIZE Height,Width/Height

Details

At power-on, RESET, and GINIT, the height is 5 graphic-display-units (GDUs), and the
aspect ratio is 0.6 (width = 3 GDUs). A negative number for either parameter inverts the
~ character along the associated dimension.

The drawing below shows the relation between the character cell and a character.

Character in a Character Cell

Keyword Dictionary 2-61

DATA

DATA statements contain in-line data that is read by READ statements.

Syntax
(e
G { ~ 1
DATA y S

o] numeric .

constant
literal
‘PG literal @—J
Item Description Range

numeric constant |numeric quantity expressed using numerals, and | —
optionally a sign, decimal point, or exponent
notation

literal string constant composed of characters from the | —
keyboard

Example Statements
DATA 1,1.414,1.732,2
DATA wordl,word2,word3

DATA"ex-point(!)","quote("")","comma(,)"

Details

A program or subprogram can contain any number of DATA statements at any location.
When a program runs, the first item in the lowest numbered DATA statement is read by

the first READ statement encountered. When a subprogram is called, the location of the
next item to be read in the calling context is remembered in anticipation of returning from
the subprogram. Within the subprogram, the first item read is the first item in the lowest
numbered DATA statement within the subprogram. When program execution returns to the
calling context, the READ operations pick up where they left off in the DATA items.

A numeric constant must be read into a variable that can store the value it represents. The
computer cannot determine the intent of the programmer; although attempting to read a
string value into a numeric variable will generate an error, numeric constants will be read into
string variables with no complaint. In fact, the computer considers the contents of all DATA
statements to be literals, and processes items to be read into numeric variables with a function
similar to VAL. Error 32 results if the numeric data is not of the proper form (see VAL).

Unquoted literals must not contain quote marks (which delimit strings), commas (which
delimit data items), or exclamation marks (which indicate the start of a comment). Leading

2-62 Keyword Dictionary

DATA

and trailing blanks are deleted from unquoted literals. Enclosing a literal in double quotes
enables you to include any punctuation you wish, including embedded double quotes, which
are represented by a set of two adjacent double quotes.

DATA "Say ""Hello"" to him." ! Embedded quotes.

DATA "Danger, power ON!" ! Space, comma, and ! in the data.

Keyword Dictionary 2-63

DATE

DATE converts a formatted date string into a numeric value (in seconds).

Syntax
DATE o formatted date —D@—DI
literal form of formatted date
—»@—» day P detimiter} 3] month | detimiterf{ year —»@—»
Item Description Range
formatted date string expression _ (see drawing and text)
day integer constant : 1 through end-of-month
month literal (lettercase ignored) JAN, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT,
NOV, DEC
year integer constant 1900 through 2079
delimiter any non-numeric character except the
negative (minus) sign

Example Statements
PRINT DATE("30 MAY 1987")
Days=(DATE(Day1$)-DATE(Day2$)) DIV 86400

Details
Specifying an invalid date, such as the thirty-first of February, will result in an error.

Leading blanks or non-numeric characters are ignored. ASCII spaces are recommended as
delimiters between the day, month and year. However, any non-alphanumeric character,
except the negative sign (minus sign), may be used as the delimiter.

2-64 Keyword Dictionary

DATES$

DATE$S

DATES formats a number of seconds into a string representing the formatted date (DD MMM
YYYY).

Syntax
DATES o seconds —b@—ﬂ
Item ' Description | Range
seconds numeric expression —4.623 683 256 E+13 through

4.653 426 335 039 9 E413

Example Statements
PRINT DATE$ (TIMEDATE)
Day1$=DATE$ (Event1)

Details

The date returned is in the form: DD MMM YYYY, where DD is the day of the month,
MMM is the month mnemonic, and YYYY is the year.

The day is blank filled to two character positions. Single ASCII spaces delimit the day,
month, and year.

The first letter of the month is capitalized and the rest are lowercase characters.

Years less than the year 0 are expressed as negative years.

Keyword Dictionary 2-65

DEALLOCATE
DEALLOCATE deallocates memory space reserved by the ALLOCATE statement.

Syntax
o/
variabl
(oeaLocate)—E hame @&
Item ‘ Description | Range
variable name Iname of an array or string variable any | valid name

Example Statements
DEALLOCATE A$,B$,C$
DEALLOCATE Text$(*)
DEALLOCATE Array(*)

Details

Memory for ALLOCATEQJ variables is managed as a stack. As a result, the memory used
for a particular variable might not become available as soon as it is DEALLOCATEd.

For example, suppose you ALLOCATE memory for A, B, and C (in that order) and then
DEALLOCATE B. The memory associated with B is not available until you DEALLOCATE
C.

Strings and arrays must be deallocated completely. Deallocation of an array is requested by
the (*) specifier.

Attempting to DEALLOCATE a variable that is not allocated in the current context results
in an error. When DEALLOCATE is executed from the keyboard, deallocation occurs within
the current context.

2-66 Keyword Dictionary

DEF FN

DEF FN

DEF FN indicates the beginning of a function subprogram. It also indicates whether the
function is string or numeric and defines the formal parameter list.

Syntax

required
parameters

(oer)

function

name
parameter
list

Y

Note: A user—defined function
may contain any number of
RETURN statements.

program
segment
numeric
RETURN expression
string
expression
program
segment
subprogram
SuB name l
program
segment

- parameter list:

parameter

)

list

I

A

na

|| string

=[O

numeric
name

-©

1/0 path

name

Keyword Dictionary 2-67

DEF FN

Item Description Range
function name name of the user-defined function any valid name
numeric name name of a numeric variable any valid name
string name name of a string variable any valid name
I/O path name name assigned to a device, devices, or mass any valid name (see ASSIGN)

storage file

program segment | any number of contiguous program lines not —
containing the beginning or end of a main
program or subprogram

Example Statements

970 ! main program here.
980 END
990 !

1000 DEF FNNew$(String$)
1010 ! Additional statements
1020 RETURN Result$

1030 FNEND

Details

User-defined functions must appear after the main program. The first line of the function
must be a DEF FN statement. The last line must be an FNEND statement. Comments after
the FNEND are considered to be part of the function.

Variables in a function’s formal parameter list may not be declared in COM or other
declaratory statements within the function. A user-defined function may not contain any
SUB statements or DEF FN statements. User-defined functions can be called recursively and
may contain local variables. A unique labeled COM must be used if the local variables are to
preserve their values between invocations of the user-defined function.

The RETURN statement is important in a user-defined function. If the program actually
encounters an FNEND during execution (which can only happen if the RETURN is missing or
misplaced), error 5 is generated. The expression in the RETURN statement must be numeric
for numeric functions, and string for string functions. A string function is indicated by the
dollar sign suffix on the function name. If RETURN specifies a numeric expression, the value
returned by the function is always a real number, never an integer.

The purpose of a user-defined function is to compute a single value. While it is possible
to alter variables passed by reference and variables in COM, this can produce undesirable
side effects, and should be avoided. If more than one value needs to be passed back to the
program, SUB subprograms should be used.

2-68 Keyword Dictionary

DEG

DEG

DEG selects degrees as the current angle mode (unit of measure for angles).

Syntax

DEG

Example Statements
DEG

Details

Unless you set the angle mode to degrees, it is radians. HP Instrument BASIC sets the angle
mode to radians when you do one of the following;:

m start HP Instrument BASIC
m load or enter a new program

m execute SCRATCH, SCRATCH A, or SCRATCH C

Executing DEG sets the current angle mode to degrees. All functions that return an angle will
return an angle in degrees. All operations with parameters representing angles will interpret
the angle in degrees.

To set the angle mode to radians, use RAD.

A subprogram “inherits” the angle mode of the calling context. If the angle mode is changed
in a subprogram, the mode of the calling context is restored when execution returns to the
calling context.

Keyword Dictionary 2-69

DEL

DEL deletes one or more program lines from memory.

Syntax
DEL . ending
(J line number
beginning
line number ending
line label
beginning
line label
Item Description Range
beginning line integer constant identifying a program line 1 through 32 766
number
beginning line label | name of a program line any valid name
ending line number |integer constant identifying a program line 1 through 32 766
ending line label name of a program line any valid name

Example Commands

DEL 15
DEL Start,Last
DEL Sort,32000

Details

DEL cannot be executed while a program is running. If DEL is executed while a program is
paused, HP Instrument BASIC changes to the stopped state.

When a line is specified by a line label, the computer uses the lowest numbered line that has
the label. If the label does not exist, error 3 is generated. An attempt to delete a non-existent
program line is ignored when the line is specified by a line number. An error results if the
ending line number is less than the beginning line number. If only one line is specified, only
that line is deleted.

When deleting SUB and FN subprograms, the range of lines specified must include the
statements delimiting the beginning and ending of the subprogram (DEF FN and FNEND
for user-defined function subprograms; SUB and SUBEND for SUB subprograms), as well as
all comments following the delimiting statement for the end of the subprogram. Contiguous
subprograms may be deleted in one operation.

2-70 Keyword Dictionary

DELSUB

DELSUB

DELSUB deletes one or more subprograms or user-defined functions from memory.

Syntax
M
= |
DELSUB function y >
S
b .
D R gy
Item Description | Range

function name name of a user-defined function any valid name
subprogram name |name of a SUB or CSUB subprogram any valid name

Example Statements
DELSUB FNTrim$
DELSUB Mysub
DELSUB Process TO END
DELSUB Speciall,Special3

Details

Subprograms being deleted do not need to be contiguous in memory. The order of the names
in the deletion list does not have to agree with the order of the subprograms in memory. If
there are subprograms with the same name, the one occurring first (lowest line number) is
deleted.

The lines deleted begin with the line delimiting the beginning of the subprogram (SUB or
DEF FN) and include the comments following the line delimiting the end of the subprogram
(SUBEND or FNEND). If TO END is included, all subprograms following the specified

subprogram are also deleted.

You cannot delete the following;:

m busy subprograms (ones being executed)

m subprograms that are referenced by active ON-event CALL statements

If an error occurs while attempting to delete a subprogram, the subprogram is not deleted,
and neither are any subprograms listed to the right of that subprogram in the DELSUB
statement.

Keyword Dictionary 2-71

DET

DET returns the determinant of a matrix.

Syntax

Y

DET
matrix
name

Item | Description I Range

name of a square, two-dimensional numeric any valid name

array; default = (see text)

matrix name

Example Statements
Last_det=DET
PRINT DET(Matrix)

Details

If you do not specify a matrix, DET returns the determinant of the most recently inverted
matrix. This value is not affected by context switching. If no matrix has been inverted since
power-on, pre-run, SCRATCH or SCRATCH A, 0 is returned.

The determinant provides an indication of whether an inverse is valid. If the determinant of
a matrix equals 0, then the matrix has no inverse. If the determinant is very small compared
with the elements of its matrix, then the inverse may be invalid and should be checked.

2-72 Keyword Dictionary

DIM

DIM

DIM dimensions and reserves memory for

m REAL numeric arrays

m strings

m string arrays

Syntax

Item

numeric (I
array name l

lower
bound

string

5 QPP

string
length

lower
bound

Description

=
o)

upper | l ’() }
bound 4

upper string
bound length

Y

Range

numeric array
name

string name

lower bound

upper bound

string length

name of a numeric array

name of a string variable

integer constant; default = OPTION BASE

value (0 or 1)

integer constant

integer constant

Example Statements
DIM String$[100] ,Name$ (12) [32]
DIM Param(48,8,8,2,2,2)

DIM Array(-128:127,16)

any valid name

any valid name

—32 767 through + 32 767 (see
“array” in Glossary)

—32 767 through +32 767 (see
“array” in Glossary)

1 through 32 767

Keyword Dictionary 2-73

DIM

Details

A program can have any number of DIM statements. The same variable cannot be declared
twice within a program (variables declared in a subprogram are distinct from those declared
in a main program, except those declared in COM). The DIM statements can appear
anywhere within a program, as long as they do not precede an OPTION BASE statement.
Dimensioning occurs at pre-run or subprogram entry time. Dynamic run-time allocation of
memory is provided by the ALLOCATE statement.

No array can have more than six dimensions. Each dimension can have a maximum of 32,767
elements.

The total number of variables is limited by the fact that the maximum memory usage for
all variables—numeric and string—within any context is 16,777,215 bytes (or limited by the
amount of available memory, whichever is less).

All numeric arrays declared in a DIM statement are REAL, and each element of type REAL
requires 8 bytes of storage. A string requires one byte of storage per character, plus two bytes
of overhead.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for
these elements is reserved whether you use them or not. Any time a lower bound is not
specified, it defaults to the OPTION BASE value.

2-74 Keyword Dictionary

DISABLE

DISABLE

DISABLE disables all event-initiated branches currently defined, except for branches defined

by these statements:
= ON ERROR
= ON TIMEOUT

Syntax

Example Statements
DISABLE

Keyword Dictionary 2-75

DISABLE INTR

DISABLE INTR disables interrupts from an interface by turning off the interrupt-generating
mechanism on the interface.

Syntax

) > interface
(DISABLE INTR select code —.|

Example Statements
DISABLE INTR 7
DISABLE INTR Isc

2-76 Keyword Dictionary

DISP

DISP

DISP prints the specified items on the display line. The display line is a single line near the
bottom of the alpha window.

Syntax
>l
(oisp) ~
image display
USING items items
(oisp) T g
r image line
USING number
image line
image items < label
image
specifier
.
) (U ’
1,
\Uh
string »l
> expression 4 1
display items <« Py
g
] array name $ ®
| 5| numeric > - .
expression trailing punctuation
not allowd with USING
L | numeric (t)
array name
. 0 column -’@—‘ tab function not allowed with USING

literal form of image specifier

image] 1"
specifier list
repeat image
factor specifier list

Keyword Dictionary 2-77

DISP

image specifier list

I

> Q

4
5]

HOHOOE

)

)G

)

JloXe

Y
|
T

o

repeat _j

factor

N

repeat

factor

()
"o

@j factor
- repeat] ,

*

A

Q

A

- repeat| 1

factor

Radix specifier cannot
be used without a
digit specifier

000¢] ||||[]]1]]

repeat
factor

9]¢

repeat
factor

c

Y

G U O

repeat
factor

A

repeat
factor

N

|] L] L] £

repeat
factor

N

2-78 Keyword Dictionary

&
©

©] 0] ©)

literal

Item

Description

Range

DISP

image line number

image line label
image specifier
string array name

numeric array
name

column
image specifier list
repeat factor

literal

integer constant identifying an IMAGE
statement

name identifying an IMAGE statement
string expression
name of a string array

name of a numeric array

numeric expression, rounded to an integer
literal
integer constant

string constant composed of characters entered
from the keyboard

Example Statements

DISP Prompt$;

DISP TAB(5),First,TAB(20),Second

DISP

DISP Name$,Id;Code

DISP USING Form3;Item(1),Item(2)

DISP USING "5Z.DD";Money

Details

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1E-4 and less than 1E+6, it is

1 through 32 766

any valid name
(see diagram)
any valid name

any valid name

1 through screenwidth

(see diagram)

1 through 32 767

quote mark not allowed

rounded to 12 digits and displayed in floating point notation. If it is not within these limits,
it is displayed in scientific notation. The standard numeric format is used unless USING is
selected and may be specified by using K in an image specifier.

Automatic End-Of-Line Sequence

After the display list is exhausted, an End-Of-Line (EOL) sequence is sent to the display line,

unless it is suppressed by trailing punctuation or a pound-sign (#) image specifier.

Keyword Dictionary 2-79

DISP

Control Codes

Some ASCII control codes have a special effect in DISP statements:

Character Keystroke Name Action

CHRS(7) CTRL-G bell Sound the beeper

CHR3(8) CTRL-H backspace Move the cursor back one
character.

CHR$(12) CTRL-L form-feed Clear the display line.

CHR$(13) CTRL-M carriage-return | Move the cursor to column 1.
The next character sent to
the display clears the display
line, unless it is a
carriage-return.

Arrays

Entire arrays may be displayed using the asterisk specifier. Each element in an array is
treated as a separate item by the DISP statement, as if the items were listed separately,
separated by the punctuation following the array specifier. If no punctation follows the array
specifier, a comma is assumed. The array is output in row major order (rightmost subscript
varies fastest).

Display without USING

If DISP is used without USING, the punctuation following an item determines the width

of the item’s display field; a semicolon selects the compact field, and a comma selects the
default display field. When the display item is an array with the asterisk array specifier, each
array element is considered a separate display item. Any trailing punctation will suppress the
automatic EOL sequence, in addition to selecting the display field to be used for the display
item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are
displayed with one trailing blank. String items are displayed with no leading or trailing
blanks.

The default display field displays items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is displayed with one leading blank if the number is positive, or with a minus
sign if the number is negative, whether in compact or default field.

In the TAB function, a column parameter less than one is treated as one. A column
parameter greater than the screen width (in characters) is treated as equal to the screen

width.

2-80 Keyword Dictionary

DISP

Display with USING

When the computer executes a DISP USING statement, it reads the image specifier, acting
on each field specifier (field specifiers are separated from each other by commas) as it is
encountered. If nothing is required from the display items, the field specifier is acted upon
without accessing the display list. When the field specifier requires characters, it accesses the
next item in the display list, using the entire item. Each element in an array is considered a
separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
display item (and the specifier requires a display specifier). If the image specifiers are
exhausted before the display items, they are reused, starting at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are
provided by the field specifier, an error is generated. A minus sign takes a digit place if M
or S is not used, and can generate unexpected overflows of the image field. If the number
contains more digits to the right of the decimal point than specified, it is rounded to fit the
specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are
lost. If it is shorter than the specifier, trailing blanks are used to fill out the field.

Keyword Dictionary 2-81

DISP

Effects of the image specifiers on the DISP statement are shown in the following table:

Image Meaning
Specifier
K Compact field. Displays a number or string in standard form with no leading or trailing
blanks.
-K Same as K.
H Similar to K, except the number is displayed using the European number format (comma
radix). (Requires 10.)
—H |Same as H. (Requires 10.)
S Displays the number’s sign (+ or —).
M Displays the number’s sign if negative, a blank if positive.
D Displays one digit character. A leading zero is replaced by a blank. If the number is
negative and no sign image is specified, the minus sign will occupy a leading digit position.
If a sign is displayed, it will “float” to the left of the left-most digit.
V/ Same as D, except that leading zeros are displayed.
* Same as Z, except that asterisks are displayed instead of leading zeros. (Requires 10.)
Displays a decimal-point radix indicator.
R Displays a comma radix indicator (European radix). (Requires 10.)
E Displays an E, a sign, and a two-digit exponent.
ESZ |Displays an E, a sign, and a one-digit exponent.
ESZZ |[Same as E.
ESZZ7 |Displays an E, a sign, and a three-digit exponent.
A Displays a string character. Trailing blanks are output if the number of characters specified

is greater than the number available in the corresponding string. If the image specifier is
exhausted before the corresponding string, the remaining characters are ignored.

2-82 Keyword Dictionary

DISP

I]_—nage Mea.ning
Specifier
X Displays a blank.
literal | Displays the characters contained in the literal.

B Displays the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an INTEGER, and the least-significant byte is sent. If
the number is greater than 32 767, then 255 is used; if the number is less than —32 768,
then 0 is used.

W Displays two characters represented by the two bytes of a 16-bit, two’s-complement integer.
The corresponding numeric item is rounded to an INTEGER. If it is greater than 32 767,
then 32 767 is used; if it is less than —32 768, then —32 768 is used. The most-significant
byte is sent first.

Y Same as W. (Requires 10.)

Suppresses the automatic output of an EOL (End-Of-Line) sequence following the last
display item.

% Ignored in DISP images.

+ Changes the automatic EOL sequence that normally follows the last display item to a single

carriage-return. (Requires 10.)

Changes the EOL automatic sequence that normally follows the last display item to a single
line-feed. (Requires I0.)

Sends a carriage-return and a line-feed to the display line.

Same as /.

Sends a form-feed to the display line.

Keyword Dictionary 2-83

DIV

DIV returns the integer portion of the quotient of the dividend and the divisor.

Syntax
—» dividend W1\ divisor F"
Item Description I Range
dividend numeric expression —
divisor numeric expression not equal to 0

Example Statements
Quotient=Dividend DIV Divisor

PRINT "Hours =";Minutes DIV 60
Details

DIV returns a REAL value unless both arguments are INTEGER. In the latter example, the
returned value is INTEGER.

2-84 Keyword Dictionary

DOT

DOT

DOT returns the inner (dot) product of two numeric vectors.

Syntax
vector 3 () > vector 3 (:) 5
DOT 0 name name
Item | Description | Range
vector name Iname of a one-dimensional numeric array Iany valid name

Example Statements
Res=D0T(Vecl,Vec2)
PRINT DOT(A,B)

Details

The dot product is calculated by multiplying corresponding elements of the two vectors and
then summing the products. The two vectors must be the same current size. If both vectors
are INTEGER, the product will be an INTEGER. Otherwise, the product will be of type
REAL.

Keyword Dictionary 2-85

DRAW

DRAW draws a line from the pen’s current position to the specified X and Y coordinate
position using the current line type and pen number.

Syntax
DRAW x coordinate —DQ—P y coordinate |
Item | Description l Range
x coordinate numeric expression, in current units
y coordinate numeric expression, in current units

Example Statements
DRAW 10,90
DRAW Next_x,Next_y

Details
The X and Y coordinate information is interpreted according to the current unit-of-measure.

A DRAW to the current position generates a point. DRAW updates the logical pen position
at the completion of the DRAW statement and leaves the pen down. The line is clipped at the
current clipping boundary.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical
pen position is updated.

Graphics Transformations

The output of DRAW is affected by only these graphics transformations:
m scaling specified by WINDOW

m scaling specified by SHOW

m rotations specified by PIVOT

2-86 Keyword Dictionary

DROUND

DROUND

DROUND rounds a numeric expression to the specified number of digits. If the specified
number of digits is greater than 15, no rounding takes place. If the number of digits specified
is less than 1, zero is returned.

Syntax
number
DROUND o argument —DO—D of digits —b@—b
Item I Description | Range
argument numeric expression —
number of digits numeric expression, rounded to an integer e

Example Statements
Test_real=DROUND(True_real,12)
PRINT "Approx. Volts =";DROUND(Volts,3)

Keyword Dictionary 2-87

DUMP

DUMP ALPHA copies the contents of the alphanumeric display to the default printer
specified in the Windows Control Panel.

DUMP GRAPHICS copies the contents of the graphics display to the default printer specified
in the Windows Control Panel. DUMP GRAPHICS will work with any printer that supports
Windows graphics output.

Syntax
Item Description Range
source device numeric expression, rounded to an integer; (see Glossary)
selector default = last CRT plotting device
destination device |numeric expression, rounded to an integer; external interfaces and
selector default = DUMP DEVICE IS device windows only (see Glossary)

Example Statements
DUMP ALPHA
DUMP GRAPHICS

Details
To set the size of the output produced by DUMP GRAPHICS, use GESCAPE 39.

2-88 Keyword Dictionary

DVAL

DVAL

DVAL converts a binary, octal, decimal, or hexadecimal character representation to a numeric
value.

Syntax
0 2 O o N = O I 2O 2e
Item | Description | Range
string argument string expression, containing digits valid for the |(see tables)
specified base
radix numeric expression, rounded to an integer 2,8, 10, or 16

Example Statements
Number=DVAL(String$,Radix)
PRINT DVAL("FF5900",16)

Detail_s

The radix is a numeric expression that will be rounded to an integer and must evaluate to 2,
8, 10, or 16.

The string expression must contain only the characters allowed for the particular number base
indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two’s-complement form. If all 32 digits are specified and
the leading digit is a 1, the returned value is negative.

Octal strings are presumed to be in the octal representation of two’s-complement form. If all
11 digits are specified, and the leading digit is a 2 or a 3, the returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.

Hex strings are presumed to be in the hex representation of the two’s-complement binary
form. The letters A through F may be specified in either uppercase or lowercase letters. If all
8 digits are specified and the leading digit is 8 through F, the returned value is negative.

Radix Base String Range String Length
2 binary 0 through 11111111111111111111111111111111 1 to 32 characters
8 octal 0 through 37777777777 1 to 11 characters
10 decimal —2 147 483 648 through 2 147 483 647 1 to 11 characters
16 hexadecimal 0 through FFFFFFFF 1 to 8 characters

Keyword Dictionary 2-89

DVAL

Radix Legal Characters Comments

2 +,0,1 —

8 +,0,1,2,3,4,5,6,7 Range restricts the leading character.
Sign, if used, must be a leading
character.

10 +,-,0,1,2,3,4,5,6,7,8,9 Sign, if used, must be a leading
character.

16 +,0,1,2,3,4,5,6,7,8,9, A/a=10,B/b=11,C/c =12,D/d =

A,B,C,D,E,Fab,c,d,e,f 13,E/e = 14, F/f = 15

2-90 Keyword Dictionary

DVALS

DVALS
DVALS$ converts a numeric value to a string of binary, octal, decimal, or hexadecimal digits.
Syntax
o)~ 2% O o PO+
Item I Description Range
“32-bit” argument [numeric expressi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>