
Agilent 8703B Lightwave
Component Analyzer

Programmer’s Guide

© Copyright
Agilent Technologies 2001
All Rights Reserved. Repro-
duction, adaptation, or transla-
tion without prior written
permission is prohibited,
except as allowed under copy-
right laws.

Agilent Part No. 08703-90202
Printed in USA
July 2001

Agilent Technologies
Lightwave Division
3910 Brickway BoulevardSanta
Rosa, CA 95403, USA

Notice.
The information contained in
this document is subject to
change without notice. Compa-
nies, names, and data used in
examples herein are fictitious
unless otherwise noted. Agi-
lent Technologies makes no
warranty of any kind with
regard to this material, includ-
ing but not limited to, the
implied warranties of mer-
chantability and fitness for a
particular purpose. Agilent
Technologies shall not be liable
for errors contained herein or
for incidental or consequential
damages in connection with
the furnishing, performance, or
use of this material.

Restricted Rights Legend.
Use, duplication, or disclosure
by the U.S. Government is sub-
ject to restrictions as set forth
in subparagraph (c) (1) (ii) of
the Rights in Technical Data
and Computer Software clause
at DFARS 252.227-7013 for
DOD agencies, and subpara-
graphs (c) (1) and (c) (2) of
the Commercial Computer
Software Restricted Rights
clause at FAR 52.227-19 for
other agencies.

Warranty.
This Agilent Technologies
instrument product is war-
ranted against defects in mate-
rial and workmanship for a
period of one year from date of
shipment. During the war-
ranty period, Agilent Technolo-
gies will, at its option, either
repair or replace products
which prove to be defective.
For warranty service or repair,
this product must be returned
to a service facility designated
by Agilent Technologies. Buyer
shall prepay shipping charges
to Agilent Technologies and
Agilent Technologies shall pay
shipping charges to return the
product to Buyer. However,
Buyer shall pay all shipping
charges, duties, and taxes for
products returned to Agilent
Technologies from another
country.

Agilent Technologies warrants
that its software and firmware
designated by Agilent Technol-
ogies for use with an instru-
ment will execute its
programming instructions
when properly installed on that
instrument. Agilent Technolo-
gies does not warrant that the
operation of the instrument, or
software, or firmware will be
uninterrupted or error-free.

Limitation of Warranty.
The foregoing warranty shall
not apply to defects resulting
from improper or inadequate
maintenance by Buyer,
Buyer-supplied software or
interfacing, unauthorized mod-
ification or misuse, operation
outside of the environmental
specifications for the product,
or improper site preparation or
maintenance.

No other warranty is
expressed or implied. Agilent
Technologies specifically dis-
claims the implied warranties
of merchantability and fitness
for a particular purpose.

Exclusive Remedies.
The remedies provided herein
are buyer's sole and exclusive
remedies. Agilent Technologies
shall not be liable for any
direct, indirect, special, inci-
dental, or consequential dam-
ages, whether based on
contract, tort, or any other
legal theory.

Safety Symbols.
CAUTION

The caution sign denotes a
hazard. It calls attention to a
procedure which, if not cor-
rectly performed or adhered
to, could result in damage to or
destruction of the product. Do
not proceed beyond a caution
sign until the indicated condi-
tions are fully understood and
met.

WARNING

The warning sign denotes a
hazard. It calls attention to a
procedure which, if not cor-
rectly performed or adhered
to, could result in injury or loss
of life. Do not proceed beyond
a warning sign until the indi-
cated conditions are fully
understood and met.

The instruction man-
ual symbol. The prod-
uct is marked with this
warning symbol when
it is necessary for the
user to refer to the
instructions in the
manual.

The laser radiation
symbol. This warning
symbol is marked on
products which have a
laser output.

The AC symbol is used
to indicate the required
nature of the line mod-
ule input power.

 | The ON symbols are
used to mark the posi-
tions of the instrument
power line switch.

 ❍ The OFF symbols
are used to mark the
positions of the instru-
ment power line
switch.

The CE mark is a regis-
tered trademark of the
European Community.

The CSA mark is a reg-
istered trademark of
the Canadian Stan-
dards Association.

The C-Tick mark is a
registered trademark of
the Australian Spec-
trum Management
Agency.

This text denotes the
instrument is an Indus-
trial Scientific and
Medical Group 1 Class
A product.

Typographical Conventions.

The following conventions are
used in this book:

Key type for keys or text located
on the keyboard or instrument.

Softkey type for key names that
are displayed on the instru-
ment’s screen.

Display type for words or
characters displayed on the
computer’s screen or instru-
ment’s display.

User type for words or charac-
ters that you type or enter.

Emphasis type for words or
characters that emphasize
some point or that are used as
place holders for text that you
type.

ISM1-A

2

Contents
1. Alphabetical Command Reference
Alphabetical Command Reference 1-2
Symbol Conventions 1-3
Keys to Programming Commands 1-4
Programming Commands 1-15
PAUS 1-56
8703A Commands Not Supported in the 8703B 1-79

2. Command Listings
Alphabetical List of Commands 2-2
OPC-Compatible List of Commands 2-4

3. Introduction to Instrument Control
Introduction to Instrument Control 3-2
Instrument Control using the VXIplug&play Driver 3-3
Instrument Control using HP BASIC 3-9

4. GPIB Programming
GPIB Programming 4-2
Analyzer Command Syntax 4-3
Analyzer Operation 4-7
GPIB Operation 4-8
Calibration 4-19
Display Graphics 4-22
Disk File Names 4-25

5. Reading Analyzer Data
Reading Analyzer Data 5-2
Output Queue 5-3
Command Query 5-3
Identification 5-3
Output Syntax 5-4
Marker Data 5-5
Array-Data Formats 5-7
Trace-Data Transfers 5-8
Stimulus-Related Values 5-9

6. Data Processing Chain
Data Processing Chain 6-2
Data Arrays 6-2
Common Output Commands 6-3
Fast Data Transfer Commands 6-4
Data Levels 6-4
Learnstring and Calibration-Kit String 6-5

7. Error Reporting
Error Reporting 7-2
 Contents-1

Contents
Status Reporting 7-3
The Status Byte 7-6
The Event-Status Register and Event-Status Registers B and L 7-7
Error Output 7-8
Error Messages in Numerical Order 7-9

8. Programming Examples
Example Programs 8-2
Measurement Process 8-3
Programming Examples 8-5
Measurement Setup Examples 8-9
Measurement Calibration Examples 8-26
Measurement Data Transfer Examples 8-63
Measurement Process Synchronization Examples 8-74
Analyzer System Setup Examples 8-84
List-Frequency and Limit-Test Table Examples 8-92
Report Generation Examples 8-106
Limit Line and Data Point Special Functions 8-125

9. Preset State and Memory Allocation
Preset State and Memory Allocation 9-2
Preset State 9-3
Memory Allocation 9-13
Contents-2

1

Alphabetical Command Reference 1-2
Keys to Programming Commands 1-4
Programming Commands 1-15
8703A Commands Not Supported in the 8703B 1-79
Alphabetical Command Reference

Alphabetical Command Reference

Alphabetical Command Reference
Alphabetical Command Reference
In this chapter, you can find an alphabetical list and brief descriptions of the supported
commands for controlling the Agilent 8703B remotely.

NOTE Some commands have a range of values associated with them. If you send a
value that is beyond the analyzer’s capability, the analyzer will default to the
closest allowed value. Refer to the individual commands for the specific range
of values allowed.
1-2

Alphabetical Command Reference

Symbol Conventions
Symbol Conventions

<num> Required numerical data.

<choice1|choice2|…|choicen> An appendage that is part of the command. For example,
FORMAT<DOS|LIF> indicates that the actual commands are
FORMATDOS and FORMATLIF.

<$> Indicates a character string operand which must be
enclosed by double quotes.

| An either/or choice in an appendage or optional data.

[] Optional data.

A terminator indicates the end of a command string, and this manual uses a semicolon as the
terminator in all syntax examples. The analyzer also interprets line feeds and GPIB end or
identify (EOI) messages as terminators.

Terminators are not necessary for the analyzer to interpret commands correctly, however in
the case of a syntax error, the analyzer will attempt to recover at the next terminator.
Therefore, it is recommended that you conclude each command with a terminator.

Because this chapter is an “Alphabetical Command Reference,” the commands have been
listed alphabetically, rather than by function, in both the “Syntax” sections and the
“Description ” sections. Therefore, commands grouped together in the “Syntax” sections, are
grouped alphabetically and/or due to common syntax form, not necessarily due to common
functionality.

The softkeys listed in the “Front Panel Equivalents” tables may not be in the first menu
viewed when the associated hardkey is pressed. In many cases, more than one key press will
be required to locate the softkey. Refer to your analyzer’s reference guide for the exact
location of any softkey.

Some commands that do not have an associated query syntax can be queried by sending the
command (without a value) and then sending the OUTPACTI command, as in the following
example that queries the segment power value:

10 OUTPUT 716;”SEGPOWER;OUTPACTI;”

Many of the commands that do have a listed query syntax can also be queried in this manner.
1-3

Alphabetical Command Reference

Keys to Programming Commands
Keys to Programming Commands

Table 1-1. Front Panel Equivalents (1 of 11)

Hardkey Softkey Command

Avg AVERAGING FACTOR AVERFACT

AVERAGING <ON |OFF> AVERO <ON|OFF>

AVERAGING RESTART AVERREST

IF BW [] IFBW

SMOOTHING APERTURE SMOOAPER

SMOOTHING ON OFF SMOOO <ON|OFF>

Cal ISOLATION ISOL

Cal ALTERNATE A and B ALTAB

Cal ALTERNATE RFL/TRAN ALTAB

Cal CORRECTION ON OFF CORR

Cal DEFINE STANDARD DEFS

Cal DONE 1-PORT CAL SAV1

Cal DONE 2-PORT CAL SAV2

Cal DONE RESP ISOL’N CAL RAID

Cal DONE: DONE

Cal DONE: RESPDONE

Cal EXTENSION PORT 1 PORT1

Cal EXTENSION PORT 2 PORT2

Cal EXTENSIONS ON OFF PORE

Cal FULL 2-PORT CALIFUL2

Cal FWD ISOL’N FWDI

Cal FWD MATCH FWDM

Cal FWD TRANS FWDT

Cal INTERPOL ON OFF CORI

Cal ISOL’N STD RAIISOL

Cal ISOLATION DONE ISOD

Cal MAXIMUM FREQUENCY MAXF

Cal OMIT ISOLATION OMII
1-4

Alphabetical Command Reference

Keys to Programming Commands
Cal REFLECTION REFL

Cal RESPONSE CALIRESP

Cal RESPONSE RAIRESP

Cal RESPONSE & ISOL’N CALIRAI

Cal Response & Match (E/O) CALIEORM

Cal Response & Match (O/E) CALIOERM

Cal Response & Match: Done RAMD

Cal RESUME CAL SEQUENCE RESC

Cal REV ISOL’N REVI

Cal REV MATCH REVM

Cal REV TRANS REVT

Cal S11 1-PORT CALIS111

Cal S11A CLASS11A

Cal S11B CLASS11B

Cal S11C CLASS11C

Cal S22 1-PORT CALIS221

Cal S22A CLASS22A

Cal S22A CLASS22B

Cal S22A CLASS22C

Cal SET Z0 SETZ

Cal SLIDING LOAD DONE SLID

Cal SPECIFY CLASS DONE CLAD

Cal standard listed under softkey 1 STANA

Cal standard listed under softkey 2 STANB

Cal standard listed under softkey 3 STANC

Cal standard listed under softkey 4 STAND

Cal standard listed under softkey 5 STANE

Cal standard listed under softkey 6 STANF

Cal standard listed under softkey 7 STANG

Cal STANDARDS DONE REFD

Cal STANDARDS DONE TRAD

Table 1-1. Front Panel Equivalents (2 of 11)

Hardkey Softkey Command
1-5

Alphabetical Command Reference

Keys to Programming Commands
Cal TESTSET SW n Sweeps TSSWIn

Cal TRANSMISSN TRAN

Cal VELOCITY FACTOR VELOFACT

Center CENT

Chan 1 N/A CHAN1

Chan 2 N/A CHAN2

Chan 3 N/A CHAN3

Chan 4 N/A CHAN4

Copy LINE TYPE DATA LINTDATA

LINE TYPE MEMORY LINTMEMO

LIST VALUES LISV

NEXT PAGE NEXP

OP PARAMS OPEP

PLOT PLOT

RESTORE DISPLAY RESD

Table 1-1. Front Panel Equivalents (3 of 11)

Hardkey Softkey Command
1-6

Alphabetical Command Reference

Keys to Programming Commands
Display 2x:[1&2][3&4] D2XUPCH2

2x:[1&3][2&4] D2XUPCH3

4x:[1][2][3][4] D4XUPCH2

4x:[1][3][2][4] D4XUPCH3

AUX CHAN ON OFF AUXC <ON|OFF>

BACKGROUND INTENSITY BACI

BEEP DONE ON OFF BEEPDONE <ON|OFF>

BEEP FAIL ON OFF BEEPFAIL <ON|OFF>

BEEP WARN ON OFF BEEPWARN <ON|OFF>

BRIGHTNESS CBRI

DATA ->MEMORY DATI

DATA and MEMORY DISPDATM

DATA/MEM DISPDDM

DATA-MEM DISPDMM

DATA+MEM DISPDPM

DATA*MEM DISPDTM

MEM1/MEM2 DISPM1DM

MEM1-MEM2 DISPM1MM

MEM1+MEM2 DISPM1PM

MEM1*MEM2 DISPM1TM

MEM2/MEM1 DISPM2DM

MEM2-MEM1 DISPM2MM

MEM/DATA DISPMDD

MEM-DATA DISPMMD

MATH->MEM MATI

MEM1->MEM2 MEM1I

MEM2->MEM1 MEM2I

DEFAULT COLORS DEFC

DISPLAY: DATA DISPDATA

DUAL CHAN ON OFF DUAC <ON|OFF>

FREQUENCY BLANK FREO

INTENSITY INTE

Table 1-1. Front Panel Equivalents (4 of 11)

Hardkey Softkey Command
1-7

Alphabetical Command Reference

Keys to Programming Commands
down N/A DOWN

Entry Off N/A ENTO

Format DELAY DELA

IMAGINARY IMAG

LIN MAG LINM

LOG MAG LOGM

PHASE PHAS

POLAR POLA

REAL REAL

SMITH CHART SMIC

SWR SWR

Local ADDRESS: CONTROLLER ADDRCONT

ADDRESS: DISK ADDRDISC

ADDRESS: P MTR/GPIB ADDRPOWM

DISK UNIT NUMBER DISCUNIT

GPIB DIAG ON OFF DEBU <ON|OFF>

PLTR PORT GPIB ADDRPLOT

PRNTR PORT GPIB ADDRPRIN

USE PASS CONTROL USEPASC

Marker all OFF MARKOFF

D MODE OFF DELO

D REF = D FIXED MKR DELRFIXM

D REF = n DELR

FIXED MKR AUX VALUE MARKFAUV

FIXED MKR STIMULUS MARKFSTI

FIXED MKR VALUE MARKFVAL

MARKER n MARKn

MKR ZERO MARKZERO

Table 1-1. Front Panel Equivalents (5 of 11)

Hardkey Softkey Command
1-8

Alphabetical Command Reference

Keys to Programming Commands
Marker Fctn DISP MKRS ON OFF DISM

G + jB MKR SMIMGB

POLAR LIN MKR POLMLIN

SMITH LIN MKR SMIMLIN

POLAR LOG MKR POLMLOG

SMITH LOG MKR SMIMLOG

MARKER -> CENTER MARKCENT

MARKER -> DELAY MARKDELA

MARKER -> SPAN MARKSPAN

MARKER -> START MARKSTAR

MARKER -> STOP MARKSTOP

MARKERS: CONTINUOUS MARKCONT

MARKERS: COUPLED MARKCOUP

MARKERS: DISCRETE MARKDISC

MARKERS: UNCOUPLED MARKUNCO

MEASURE: STATS MEASTAT

SMITH R + jX MKR SMIMRX

POLAR Re/Im MKR POLMRI

SMITH Re/Im MKR SMIMRI

Marker Search BANDWIDTH MARK3DB

SEARCH LEFT SEAL

SEARCH RIGHT SEAR

SEARCH: MAX MARKMAXI

SEARCH: MAX SEAMAX

SEARCH: MIN MARKMINI

SEARCH: MIN SEAMIN

SEARCH: OFF SEAOFF

SEARCH: TARGET SEATARG

TRACKING ON OFF TRACK

WIDTH VALUE WIDV

WIDTHS ON OFF WIDT

Table 1-1. Front Panel Equivalents (6 of 11)

Hardkey Softkey Command
1-9

Alphabetical Command Reference

Keys to Programming Commands
Meas B MEASB

A MEASA

A/B AB

A/R AR

B/R BR

CONVERSION 1/S CONV1DS

CONVERSION OFF CONVOFF

CONVERSION Y:Refl CONVYREF

CONVERSION Y:Trans CONVYTRA

CONVERSION Z:Refl CONVZREF

CONVERSION Z:Trans CONVZTRA

E/O Trans MEASEO1

O/E Trans (Port 1) MEASOE1

O/E Trans (Port 2) MEASOE2

O Refl MEASO1

O Trans MEAS001

R MEASR

Refl:FWD S11 (A/R) S11

Refl:REV S22 (B/R) S22

Trans:FWD S21 (B/R) S21

Trans:REV S12 (A/R) S12

Power N/A POWE

PORT POWER PORTP

PWR RANGE AUTO MAN PWRR <PMAN|PAUTO>

RANGE n PRAN

SOURCE PWR ON OFF SOUP <ON|OFF>

Preset N/A PRES

N/A RST

Table 1-1. Front Panel Equivalents (7 of 11)

Hardkey Softkey Command
1-10

Alphabetical Command Reference

Keys to Programming Commands
Save/Recall CLEAR CLEAREG <01-31>

CLEAR ALL CLEARALL

DATA ARRAY ON OFF EXTMDATA

DATA ONLY EXTMDATO

FILE NAME TITF

FORMAT ARY ON OFF EXTMFORM

FORMAT INT DISK INID

GRAHPICS ON OFF EXTMGRAP

INTERNAL DISK INTD

LOAD LOAD

RAW ARRAY ON OFF EXTMRAW

READ FILE TITLES REFT

SAVE SAVEREG

SAVE FILE when GRAPH FMT [] is set to CSV and
FILETYPE: GRAPHIC is selected.

SAVECSV

SAVE FILE when GRAPH FMT [] is set to JPG and
FILETYPE: GRAPHIC is selected.

SAVEJPG

SAVE USING ASCII SAVUASCI

SAVE USING BINARY SAVUBINA

TITLE TITREG

Scale Ref AUTOSCALE AUTO

ELECTRICAL DELAY ELED

MARKER -> REFERENCE MARKREF

PHASE OFFSET PHAO

REFERENCE POSITION REFP

REFERENCE VALUE REFV

SCALE / DIV SCAL

Span N/A SPAN

Start N/A STAR

Stop N/A STOP

Table 1-1. Front Panel Equivalents (8 of 11)

Hardkey Softkey Command
1-11

Alphabetical Command Reference

Keys to Programming Commands
Sweep Setup ALL SEGS SWEEP ASEG

CONTINUOUS CONT

CONTINUOUS FRER

COUPLED CH ON OFF COUC

CW FREQ CWFREQ

CW TIME CWTIME

EXT TRIG ON SWEEP EXTTON

HOLD HOLD

LIN FREQ LINFREQ

LIST FREQ LISFREQ

LIST IF BW ON OFF LISIFBWM

LIST POWER ON OFF LISPWRM

LIST TYPE: STEPPED LISTTYPELSTP

LIST TYPE: SWEPT LISTTYPELSWP

LOG FREQ LOGFREQ

MANUAL TRG ON POINT MANTRIG

MEASURE RESTART REST

NUMBER of GROUPS NUMG

NUMBER of POINTS POIN <NUM>

POWER SWEEP POWS

SEGMENT IF BW SEGIFBW

SEGMENT POWER SEGPOWER

SINGLE SING

SINGLE SEG SWEEP SSEG

STEP SIZE STPSIZE

SWEEP TIME AUTO SWEA

SWEEP TIME MANUAL SWET <NUM>

TRIGGER: TRIG OFF EXTTOFF

EDIT LIST EDITLIST

Sweep Setup or Cal CLEAR LIST YES CLEL

Sweep Setup or System STEP SWP ON OFF STEPSWP ON|OFF>

Table 1-1. Front Panel Equivalents (9 of 11)

Hardkey Softkey Command
1-12

Alphabetical Command Reference

Keys to Programming Commands
System AMPLITUDE OFFSET LIMIAMPO

BEEP FAIL ON OFF BEEPFAIL ON|OFF>

BW DISPLAY on OFF BWLIMDISP ON|OFF>

BW TEST on OFF BWLIMTEST ON|OFF>

CLEAR LIST CLER

CLEAR LIST YES CLEAL

DELTA LIMITS LIMD

DEMOD: AMPLITUDE DEMOAMPL

DEMOD: OFF DEMOOFF

DEMOD: PHASE DEMOPHAS

EDIT LIMIT LINE EDITLIML

EDIT RIPL LIMIT EDITRLIM

FIRMWARE REVISION SOFR

FLAT LINE LIMTFL

FREQUENCY BAND SELBND

HARMONIC OFF HARMOFF

HARMONIC SECOND HARMSEC

HARMONIC THIRD HARMTHIR

LIMIT LINE ON OFF LIMILINE

LIMIT TEST ON OFF LIMITEST

LOWER LIMIT LIML

MARKER -> AMP. OFS. LIMIMAOF

MARKER -> CW MARKCW

MARKER -> MIDDLE MARKMIDD

MARKER -> STIMULUS MARKSTIM

MAXIMUM BANDWIDTH BWLIMMAX

MAXIMUM FREQUENCY RLIMSTP

MAXIMUM RIPPLE RLIMM

MIDDLE VALUE LIMM

MINIMUM BANDWIDTH BWLIMMIN

MINIMUM FREQUENCY RLIMSTR

N DB POINTS BWLIMDB

Table 1-1. Front Panel Equivalents (10 of 11)

Hardkey Softkey Command
1-13

Alphabetical Command Reference

Keys to Programming Commands
System or Sweep Setup or
Cal

SEGMENT DELETE SDEL

DONE EDITDONE

DONE SDON

EDIT SEGMENT SEDI

SEGMENT ADD SADD

up N/A UP

Table 1-1. Front Panel Equivalents (11 of 11)

Hardkey Softkey Command
1-14

Alphabetical Command Reference

Programming Commands
Programming Commands

AB
AB; or AB?;

ADDR

ADDR<CONT|DISC|PLOT|POWM|PRIN><num>; or ADDR<CONT|DISC|PLOT|POWM|PRIN>?;

Sets the GPIB address for the following peripherals.

ADJB

ADJB

Executes autobiasing of optical modulator. No query response

ALTAB

ALTAB; or ALTAB?;

Command Description Range Query Response

AB Measures and displays A/B on the active
channel.

N/A <0|1><L
F>

Command Description Range Query Response

ADDRCONT Controller GPIB address. The address
where control is returned after a pass
control.

integers 0–30 <num><L
F>

ADDRDISC External disk drive GPIB address. integers 0–30 <num><L
F>

ADDRPLOT Plotter GPIB address. integers 0–30 <num><L
F>

ADDRPOWM Power meter GPIB address. integers 0–30 <num><L
F>

ADDRPRIN Printer GPIB address. integers 0–30 <num><L
F>

Command Description Range Query Response

ALTAB Places the analyzer in the alternate inputs
measurement mode, where A and B
measurements are made on alternate
sweeps. See also “CHOPAB.”

N/A <0|1><L
F>
1-15

Alphabetical Command Reference

AR
AR

AR; or AR?;

ASEG

ASEG; or ASEG?;

AUTB;
AUTB<ON|OFF>;

Enable or disable autobiasing of optical modulator.

AUTO

AUTO;

AUXC

AUXC<ON|OFF>; or AUXC?;

Example

Command Description Range Query Response

AR Measures and displays A/R on the active
channel.

N/A <0|1><L
F>

Command Description Range Query Response

ASEG Uses all segments for list frequency sweep.
See also “SSEG”

N/A <0|1><L
F>

Command Description Range Query Response

AUTO Auto scale the active channel. N/A N/A

Command Description Range Query Response

AUXC Enables and disables auxiliary channels 3
and 4. OPC-compatible.

N/A <0|1><L
F>

10 OUTPUT 716;”CHAN1;AUXCON;” Turns on channel 3

20 OUTPUT 716;”CHAN2;AUXCON;” Turns on channel 4
1-16

Alphabetical Command Reference

AVER
AVER

AVERFACT<num>; or AVERFACT?;
AVERO<ON|OFF>; or AVERO?;
AVERREST;

BACI

BACI<num>; or BACI?;

Command Description Range Query Response

AVERFACT Sets the averaging factor on the active channel. integers 0–999 <num><L
F>

AVERO Turns averaging on and off on the active
channel.

N/A <0|1><L
F>

AVERREST Restarts the averaging on the active channel. N/A N/A

Command Description Range Query Response

BACI Sets the background intensity of the
display.

integers 0–100 <num><L
F>
1-17

Alphabetical Command Reference

BEEP
BEEP

BEEP<DONE|WARN|FAIL><ON|OFF>; or BEEP<DONE|WARN|FAIL>?;

BR

BR; or BR?;

BSAMP
BSAMP<ON|OFF>;

Switch B, sampler to : ON = LW, OFF = RF.

BWLIMDB

BWLIMDB<num>; or BWLIMDB?;

Command Description Range Query Response

BEEPDONE Causes the analyzer's warning beeper to
sound at the completion of functions such
as save, done with calibration standard,
and data trace saved.

N/A <0|1><L
F>

BEEPFAIL Causes the analyzer's warning beeper to
sound in the event of a limit test failure.

N/A <0|1><L
F>

BEEPWARN Causes the analyzer's warning beeper to
sound when a warning message is
generated.

N/A <0|1><L
F>

Command Description Range Query Response

BR Measures and displays B/R on the active
channel.

N/A <0|1><L
F>

Command Description Range Query Response

BWLIMDB Enters the N dB Point, the amplitude below
the peak that is used to measure the filter’s
bandwidth.

-500 to 500 dB <num><L
F>
1-18

Alphabetical Command Reference

BWLIMDISP
BWLIMDISP

BWLIMDISP<ON|OFF>; or BWLIMDISP?;

BWLIMMKR

BWLIMMKR<ON|OFF>; or BWLIMMKR?;

BWLIMMAX

BWLIMMAX<num>[HZ|KHZ|MHZ|GHZ]; or BWLIMMAX?;

BWLIMMIN

BWLIMMIN<num>[HZ|KHZ|MHZ|GHZ]; or BWLIMMIN?;

Command Description Range Query Response

BWLIMDISP Turns the measured bandwidth value in
the upper left corner of the display on and
off. The measured bandwidth value is
displayed near the bandwidth
Pass/Wide/Narrow message.

N/A <0|1><L
F>

Command Description Range Query Response

BWLIMMKR Turns the limit bandwidth marker on and
off.

N/A <0|1><L
F>

Command Description Range Query Response

BWLIMMAX Enters the maximum bandwidth value. If the
measured bandwidth is greater than this
value, the filter fails the bandwidth test.

stimulus rangea

a. Refer to “Preset State and Memory Allocation” in your analyzer’s reference guide.

<num><L
F>

Command Description Range Query Response

BWLIMMIN Enters the minimum bandwidth value. If the
measured bandwidth is less than this value,
the filter fails the bandwidth test.

stimulus rangea

a. Refer to “Preset State and Memory Allocation” in your analyzer’s reference guide.

<num><L
F>
1-19

Alphabetical Command Reference

BWLIMSTAT
BWLIMSTAT

BWLIMSTAT;

BWLIMTEST

BWLIMTEST<ON|OFF>; or BWLIMTEST?;

BWLIMVAL

BWLIMVAL;

CALI

CALI<EORM|OERM|FUL2|RAI|RESP|S111|S221>;
CALI<EORM|OERM|FUL2|RAI|RESP|S111|S221>?;

Command Description Range Response

BWLIMSTAT Returns the results of the bandwidth test. A
returned value of 0 indicates that the filter
passed the bandwidth test. A returned
value of −1 indicates that the filter failed
the bandwidth test because it is narrower
than the bandwidth limit. A returned value
of 1 indicates that the filter failed the
bandwidth test because it is wider than the
bandwidth limit.

N/A <−1|0|1><L
F>

Command Description Range Query Response

BWLIMTEST Turns the bandwidth test on and off. N/A <0|1><L
F>

Command Description Range Response

BWLIMVAL Returns the measured bandwidth value. N/A <num><L
F>

Command Description Range Query Response

CALIEORM Select E/O response and match
calibration.

<011>

CALIOERM Select O/E response and match
calibration.

<011>

CALIFUL2a Begins the sequence for a short, load, open,
thru (SLOT) 2-port calibration.

N/A <0|1><L
F>
1-20

Alphabetical Command Reference

CALK35MM
CALK35MM

CALK35MM;

CBRI

CBRI<num>; or CBRI?;

CENT

CENT<num>[HZ|DB]; or CENT?;

CALIRAI Begins the sequence for a response and
isolation calibration.

N/A <0|1><L
F>

CALIRESP Begins the sequence for a response
calibration.

N/A <0|1><L
F>

CALIS111 Begins the sequence for an S11 1-port
calibration (ES models), or a reflection
1-port calibration (ET models).

N/A <0|1><L
F>

CALIS221a Begins the sequence for an S22 1-port
calibration.

N/A <0|1><L
F>

a. The result of the query command only tells if the particular type of calibration is currently active. It does not
provide information on the status of the cal sequence.

Command Description Range Query Response

CALK35MM Selects the 3.5mm calibration kit
coefficients.

N/A N/A

Command Description Range Query Response

CBRI Adjusts the color brightness of the selected
display feature.

integers 0–100 <num><L
F>

Command Description Range Query Response

CENT Sets the center stimulus value. If a list
frequency segment is being edited, sets the
center of the list segment.

stimulus rangea

a. For frequency or power sweeps, refer to “Preset State and Memory Allocation,” in your analyzer’s reference guide.
For CW time: 0 to 24 hours. For frequency sweep, transform on: ± 1/frequency step. For CW time sweep, transform
on: ±1/time step.

<num><L
F>

Command Description Range Query Response
1-21

Alphabetical Command Reference

CHAN
CHAN

CHAN<1|2|3|4>;

Makes channel 1, 2, 3, or 4 the active channel. OPC-compatible. No query response.

NOTE These commands should use OPC? to prevent timing errors with subsequent
commands. Example code written in BASIC:

10 OUTPUT 716;"OPC?;CHAN2;"
20 ENTER 716;OPC

CLAD

CLAD;

CLASS

CLASS<11A|11B|11C|22A|22B|22C>;

These commands call reflection standard classes during a calibration sequence. If only one
standard is in the class, it is measured. If there is more than one, the standard being used
must be selected with STAN<A|B|C|D|E|F|G>. If there is only one standard in the class,
these commands are OPC-compatible.

EXAMPLE To measure the female open of a type-N cal kit:

OUTPUT 716;"CLASS11A;OPC?;STANB;"
ENTER 716 OPC;

Command Description Range Query Response

CLAD Class done (modify cal kit, specify class). N/A N/A

Command Description Range Query Response

CLASS11A S11A: S11 (forward reflection) 1-port, open N/A N/A

CLASS11B S11B: S11 (forward reflection) 1-port, short N/A N/A

CLASS11C S11C: S11 (forward reflection) 1-port, load N/A N/A

CLASS22A S22A: S22 (reverse reflection) 1-port, open N/A N/A

CLASS22B S22B: S22 (reverse reflection) 1-port, short N/A N/A

CLASS22C S22C: S22 (reverse reflection) 1-port, load N/A N/A
1-22

Alphabetical Command Reference

CLEAREG
CLEAREG

CLEAREG<num>;

CLEARALL;

CLEAL

CLEAL;

CLEL

CLEL;

Clears the currently selected list. This could be a frequency list, power loss list, or limit test
list. Must be preceded by an “EDIT” command. No query response.

CLES

CL[E]S;

CLER

CLER;

Clears (or deletes) the all of existing ripple test limits. No query response.

Command Description Range Query Response

CLEAREG Clears save/recall registers 01 through 31.
CLEAREG01 through CLEAREG05 are the
same as CLEA1 through CLEA5.
OPC-compatible.

two-digit
integers 01–31

N/A

CLEARALL Clears all the save/recall registers.
OPC-compatible.

N/A N/A

Command Description Range Query Response

CLEAL Clears the limit line list. Should be
preceded by EDITLIML.

N/A N/A

Command Description Range Query Response

CLES Clears the status byte register, the
event-status registers, and the enable
registers.

N/A N/A

CLS Same as CLES. N/A N/A
1-23

Alphabetical Command Reference

COEFA
COEFA
COEFA<1-4> [value]

Set numerator coefficients of response model.

COEFB
COEFB<1-4> [value]

Set denominator coefficients of response model.

COEFDELA
COEFDELA [value];

Set delay coefficient of response model.

COEFK;

COEFK;
Sets constant coefficient of response model.

CONS
CONS;

Continues the sequence that was paused.

CONT

CONT; or CONT?;

Command Description Range Query Response

CONT Places the analyzer in continuous sweep
trigger mode.

N/A <0|1><L
F>
1-24

Alphabetical Command Reference

CONV
CONV

CONV<1DS|OFF|YREF|YTRA|ZREF|ZTRA>; or CONV<1DS|OFF|YREF|YTRA|ZREF|ZTRA>?;

These 6 commands convert the S-parameter data to:

CORI

CORI<ON|OFF>; or CORI?;

CORR

CORR<ON|OFF>; or CORR?;

COU

COU<C><ON|OFF>; or COU<C>?;

Command Description Range Query Response

CONV1DS Inverted S-parameters. N/A <0|1><L
F>

CONVOFF Turns S-parameter conversion off. N/A <0|1><L
F>

CONVYREF Y:reflection (admittance). N/A <0|1><L
F>

CONVYTRA Y:transmission (transmission). N/A <0|1><L
F>

CONVZREF Z:reflection (impedance). N/A <0|1><L
F>

CONVZTRA Z:transmission (transmission). N/A <0|1><L
F>

Command Description Range Query Response

CORI Turns interpolative error correction on and
off.

N/A <0|1><L
F>

Command Description Range Query Response

CORR Turns error correction on and off. N/A <0|1><L
F>

Command Description Range Query Response

COUC Couples and uncouples the stimulus
between the channels.

N/A <0|1><L
F>
1-25

Alphabetical Command Reference

COUS
COUS
COUS<ON|OFF>;

Switch coupling to measurement parameter ON or OFF.

CWFREQ

CWFREQ<num>[HZ|DB]; or CWFREQ?;

CWTIME

CWTIME; or CWTIME?;

D2XUPCH

D2XUPCH<2|3>; or D2XUPCH<2|3>?;

Command Description Range Query Response

CWFREQ Sets the CW frequency for power sweep and
CW frequency modes. While the list
frequency table segment is being edited, it
sets the center frequency of the current
segment. See also “MARKCENT.”

stimulus rangea

a. For frequency or power sweeps, refer to “Preset State and Memory Allocation,” in the analyzer’s reference guide.
For CW time: 0 to 24 hours. For frequency sweep, transform on: ±1/frequency step. For CW time sweep, transform
on: ±1/time step.

<num><L
F>

Command Description Range Query Response

CWTIME Selects CW time as the sweep type. N/A <0|1><L
F>

Command Description Range Query Response

D2XUPCH2 Sets up a two-graticule display with
channel 2 on top.

N/A <0|1><L
F>

D2XUPCH3 Sets up a two-graticule display with
channel 3 on top.

N/A <0|1><L
F>
1-26

Alphabetical Command Reference

D4XUPCH
D4XUPCH

D4XUPCH<2|3>; or D4XUPCH<2|3>?;

DATI

DATI;

Stores the data trace in channel memory. OPC-compatible. No query response.

DEBU

DEBU<ON|OFF>; or DEBU?;

DEFC

DEFC;

Sets the default colors for all display features. No query response.

DEFS

DEFS<num>;

Command Description Range Query Response

D4XUPCH2 Sets up a four-graticule display with
channel 2 in the upper right quadrant of
the display.

N/A <0|1><L
F>

D4XUPCH3 Sets up a four-graticule display with
channel 3 in the upper right quadrant of
the display.

N/A <0|1><L
F>

Command Description Range Query Response

DEBU Turns the GPIB debug mode on and off.
When on, the analyzer scrolls incoming
GPIB commands across the display.

N/A <0|1><L
F>

Command Description Range Query Response

DEFS Begins standard definition during cal kit
modification. “<num>” is the standard
number.

integers 1–8 N/A
1-27

Alphabetical Command Reference

DEL
DEL

DEL<O|RFIXM>; or DEL<O|RFIXM>?;

DELR<num>; or DELR<num>?;

DELA

DELA; or DELA?;

DEMO

DEMO<AMPL|OFF|PHAS>; or DEMO<AMPL|OFF|PHAS>?;

Command Description Range Query Response

DELO Turns delta marker mode off. N/A <0|1><L
F>

DELR Makes the indicated marker the delta
reference.

integers 1–5 <0|1><L
F>

DELRFIXM Makes the fixed marker the delta reference. N/A <0|1><L
F>

Command Description Range Query Response

DELA Displays the data formatted as group delay. N/A <0|1><L
F>

Command Description Range Query Response

DEMOAMPL Turns on transform demodulation and sets
the transform demodulation to amplitude
demodulation. Only has a meaningful effect
with a CW time transform.

N/A <0|1><L
F>

DEMOOFF Turns the transform demodulation
function off.

N/A <0|1><L
F>

DEMOPHAS Sets the transform demodulation to phase
demodulation. Only has a meaningful effect
with a CW time transform.

N/A <0|1><L
F>
1-28

Alphabetical Command Reference

DISC
DISC

DISC<UNIT><num>; or DISC<UNIT>?;

DISM

DISM<ON|OFF>; or DISM?;

DISP

DISP<DATA|DATM|DDM|DMM|MEMO|DPM|DTM|M1DM|M1MM|M1PM|M1TM|M2DM|M2MM|MATH|MMD
|MDD>;

DISP<DATA|DATM|DDM|DMM|MEMO|DPM|DTM|M1DM|M1MM|M1PM|M1TM|M2DM|M2MM|MATH|MMD
|MDD>?;

These commands display the indicated combinations of data and trace memory on the active
channel.

Command Description Range Query Response

DISCUNIT Specifies which disk in an external
multiple-disk drive to be used for
save/recall.

integers 0–30 <num><L
F>

Command Description Range Query Response

DISM When on, displays the response and
stimulus values for all markers that are
turned on; when off, only the active
marker's value is displayed.

N/A <0|1><L
F>

Command Description Range Query Response

DISPDATA Data only. N/A <0|1><L
F>

DISPDATM Data and memory. N/A <0|1><L
F>

DISPDDM Data divided by memory (linear division,
log subtraction). See also “DIVI.”

N/A <0|1><L
F>

DISPDMM Data minus memory (linear subtraction).
See also “MINU.”

N/A <0|1><L
F>

DISPMEMO Memory only. N/A <0|1><L
F>

DISPDPM Display data plus memory. N/A <0|1><L
F>

DISPDTM Display data times memory. N/A <0|1><L
F>

DISPM1DM Display memory 1 divided by memory 2. N/A <0|1><L
F>
1-29

Alphabetical Command Reference

DONE
DONE

DONE;

Done with a class of standards, during a calibration. Only needed when multiple standards
are measured to complete the class. OPC-compatible. No query response.

DONM

DONM;

Done modifying a test sequence. No query response.

DOSEQ

DOSEQ<1-6>;

Start sequence 1-6. No query response.

DOWN

DOWN;

Decrements the value displayed in the active entry area (emulates pressing the down-arrow
key). No query response.

DISPM1MM Display memory 1 minus by memory 2 N/A <0|1><L
F>

DISPM1PM Display memory 1 plus memory 2. N/A <0|1><L
F>

DISPM1TM Display memory 1 times memory 2. N/A <0|1><L
F>

DISPM2DM Display memory 2 divided by memory 1. N/A <0|1><L
F>

DISPM2MM Display memory 2 minus memory 1. N/A <0|1><L
F>

DISPMATH Display math results N/A <0|1><L
F>

DISPMMD Display memory minus data N/A <0|1><L
F>

DISPMDD Display memory divided by data N/A <0|1><L
F>

Command Description Range Query Response
1-30

Alphabetical Command Reference

DRIVPORT
DRIVPORT
DRIVPORT<ON|OFF>;

Drive port; ON = LW, OFF = RF.

DUAC

DUAC<ON|OFF>; or DUAC?;

EDIT

EDIT<DONE|LIML|LIST>;

EDITRLIM

EDITRLIM;

Begins the editing of the ripple limit list. No query response.

ELED

ELED<num>[S]; or ELED?;

Command Description Range Query Response

DUAC Turns dual channel display on and off. N/A <0|1><L
F>

Command Description Range Query Response

EDITDONE Done editing list frequency, limit table, cal
sensor table, or power loss list.
OPC-compatible.

N/A N/A

EDITLIML Begins editing limit table. N/A N/A

EDITLIST Begins editing list frequency table. N/A N/A

Command Description Range Query Response

ELED Sets the electrical delay offset. ±10 seconds <num><L
F>
1-31

Alphabetical Command Reference

ENTO
ENTO

ENTO;

EOCAL
EOCAL;

Internal E/O service calibration parameter.

ESE

ESE<num>; or ESE?;

ESNL

ESNL<num>; or ESNL?;

ESL?

ESL?;

Command Description Range Query Response

ENTO Removes displayed information from the
active entry area on the screen.

N/A N/A

Command Description Range Query Response

ESE Enables the selected event-status register
bits to be summarized by bit 5 in the status
byte. An event-status register bit is enabled
when the corresponding bit in the operand
<num> is set.

integers 0–255 <num><L
F>

Command Description Range Query Response

ESNL Enables the selected event-status register L
bits to be summarized by bit 2 in the status
byte. An event-status register bit is enabled
when the corresponding bit in the operand
<num> is set.

integers 0–4095 <num><L
F>

Command Description Range Query Response

ESL? Query only. Outputs event-status register. N/A <num><L
F>
1-32

Alphabetical Command Reference

EXTM
EXTM

EXTM<DATA|FORM|GRAP|RAW><ON|OFF>; or EXTM<DATA|FORM|GRAP|RAW>?;

These commands include the indicated information when an instrument state is stored to
the internal floppy disk drive or an external disk.

EXTT

EXTT<ON|OFF>; or EXTT?;

FORM

FORM<1|2|3|4|5>;

These 5 commands set the data format for array transfers in and out of the instrument:

Command Description Range Query Response

EXTMDATA Adds error corrected data (real and

imaginary pairs) along with the other files.a

a. See Figure 6-1 on page 6-3. This error corrected data is the same as that output by the OUTPDATA command.

N/A <0|1><L
F>

EXTMFORM Formatted trace data. Uses currently
selected format for data.

N/A <0|1><L
F>

EXTMGRAP User graphics. N/A <0|1><L
F>

EXTMRAW Raw data arrays (real and imaginary pairs). N/A <0|1><L
F>

Command Description Range Query Response

EXTT Activates or deactivates the external
trigger mode. OPC-compatible.

N/A <0|1><L
F>

Command Description Range Query
Response

FORM1 The analyzer's internal binary format, 6 bytes-per-data point.
The array is preceded by a four-byte header. The first two
bytes represent the string “#A”, the standard block header.
The second two bytes are an integer representing the number
of bytes in the block to follow. FORM1 is best applied when
rapid data transfers, not to be modified by the computer nor
interpreted by the user, are required.

N/A N/A
1-33

Alphabetical Command Reference

FREO
FREO

FREO;

Frequency blank. Turns frequency notation off. Once the frequency notation has been turned
off (blanked), it cannot be turned back on until a preset or recall is initiated. No query
response.

FRER

FRER; or FRER?;

FORM2 IEEE 32-bit floating-point format, 4 bytes-per-number,
8 bytes-per-data point. The data is preceded by the same
header as in FORM1. Each number consists of a 1-bit sign, an
8-bit biased exponent, and a 23-bit mantissa. FORM2 is the
format of choice if your computer is not a PC, but supports
single-precision floating-point numbers.

N/A N/A

FORM3 IEEE 64-bit floating-point format, 8 bytes-per-number,
16 bytes-per-data point. The data is preceded by the same
header as in FORM1. Each number consists of a 1-bit sign, an
11-bit biased exponent, and a 52-bit mantissa. This format
may be used with double-precision floating-point numbers.
No additional precision is available in the analyzer data, but
FORM3 may be a convenient form for transferring data to
your computer.

N/A N/A

FORM4 ASCII floating-point format. The data is transmitted as ASCII
numbers, as described in “Output Syntax” on page 5-4. There
is no header. The analyzer always uses FORM4 to transfer
data that is not related to array transfers (i.e. marker
responses and instrument settings). Data is comma delimited.

N/A N/A

FORM5 PC-DOS 32-bit floating-point format with 4 bytes-per-number,
8 bytes-per-data point. The data is preceded by the same
header as in FORM1. The byte order is reversed with respect
to FORM2 to comply with PC-DOS formats. If you are using a
PC-based controller, FORM5 is the most effective format to
use.

N/A

Command Description Range Query Response

FRER Places the analyzer in GPIB free run mode.
(Same as continuous sweep trigger mode.)
See “CONT.”

N/A <0|1><L
F>

Command Description Range Query
Response
1-34

Alphabetical Command Reference

FWD
FWD

FWD<I|M|T>;

These commands are OPC-compatible if there is only one standard in the class. If there is just
one standard, that standard is measured automatically. If there is more than one standard in
the class, the standard being used must be selected with the STAN command.

HOLD

HOLD; or HOLD?;

IDN?

IDN?;

IFBW

IFBW<num>[HZ]; or IFBW?;

Command Description Range Query Response

FWDI Selects the forward isolation calibration
class during a 2-port calibration sequence.

N/A N/A

FWDM Selects the forward match calibration class
during a 2-port calibration sequence.

N/A N/A

FWDT Selects the forward transmission
calibration class during a 2-port calibration
sequence.

N/A N/A

Command Description Range Query Response

HOLD Puts the sweep trigger into hold mode. N/A <0|1><L
F>

Command Description Range Query Response

IDN? Query only. Outputs the identification string:
where 87NNEX is the model number of the
instrument, xxxxxxxxxx is the serial number of
the instrument, and X.XX is the firmware
revision of the instrument.

N/A See command description

Command Description Range Query Response

IFBW Sets the IF bandwidth. Choose from 10, 30,
100, 300, 1000, 3000

<num><L
F>
1-35

Alphabetical Command Reference

IMAG
IMAG

IMAG; or IMAG?;

INI

INI<D>;

Initializes the internal disk. All previous information on the disk will be destroyed. No query
response.

INPU

INPUCALC<num><array>;

INPU<CALK|DATA|FORM><array>;

INPULEAS<learnstring>; or INPULEAS?;

INPURAW<1|2|3|4><array>;

All of these commands (with a few noted exceptions) input an array and require that you set
the format for data transfers with the FORM command. All of these commands have an
associated OUTPut command that is used to transfer data from the analyzer. See “OUTP,”
later in this chapter.

Command Description Range Query Response

IMAG Selects the imaginary display format. N/A <0|1><L
F>

Command Description Range Query
Response

INPUCALC Error coefficient arraya <num>. two-digit
integers 01–12

N/A

INPUCALKb Inputs a cal kit array in FORM1 only. Can be read out
with the OUTCALK command. After the transfer, the data
should be saved into the user cal kit area with the
SAVEUSEK command.

N/A N/A

INPUDATA Inputs an error corrected data array, using the current
setting of the FORM command.

N/A N/A

INPUFORM Inputs a formatted data array, using the current setting
of the FORM command.

N/A N/A

INPULEASb Inputs a learn string in FORM1 only. Can be read out
with the OUTPLEAS command, or with INPULEAS?.

N/A <data><L
F>

INPURAW1 Inputs raw data array 1 (S11 data). After the data is
received, the analyzer stops sweeping, error-corrects the
data, then formats and displays the data.

N/A N/A
1-36

Alphabetical Command Reference

INPU
INPURAW2 Inputs raw data array 2 (S21 data). After the data is
received, the analyzer stops sweeping, error-corrects the
data, then formats and displays the data.

N/A N/A

INPURAW3 Inputs raw data array 3 (S12 data). After the data is
received, the analyzer stops sweeping, error-corrects the
data, then formats and displays the data.

N/A N/A

INPURAW4 Inputs raw data array 4 (S22 data). After the data is
received, the analyzer stops sweeping, error-corrects the
data, then formats and displays the data.

N/A N/A

a. These commands input an individual error coefficient array. Before sending an array, issue a CALIXXXX; command,
where XXXX specifies the calibration type. (See “CALI” earlier in this book.) Then input the array or arrays. Lastly
store the data with the SAVC command. The instrument goes into hold, displaying uncorrected data. Complete the
process by triggering a sweep, with the CONT command (for continuous sweep) or the SING command (for a single
sweep). See Table 1-1 on page 1-38 for the contents of the different arrays.

b. Does not require a preceding “FORM” command.

Command Description Range Query
Response
1-37

Alphabetical Command Reference

INT
INT

INT<D>;

Selects the internal disk as the active storage device. No query response.

Table 1-1. Error Coefficient Arrays

Array Response Response
& Isolation

1-port Enhanced
Response

2-port a

a. One path, 2-port cal duplicates arrays 1 to 6 in arrays 7 to 12.

TRL/
LRM

O/E
Response
& Match

E/O
Response
& Match

01 ER or ET EX (ED)b

b. Response and isolation corrects for crosstalk and transmission tracking in transmission measurements, and for
directivity and reflection tracking in reflection measurements.

ED ED EDF EDF EDR EDI

02 ET (ER) ES ES ESF ESF ESR ES

03 ER ER ERF ERF ERR ER

04 EX EXF EXF EXF EX

05 EL
c

c. This term is used to generate the calibration coefficients, but is not used during measurement error correction.

ELF ELF ELF ET

06 ET ETF ETF ETF

07 EDR EDR EDF

08 ESR ESR ESF

09 ERR ERR ERF

10 EXR EXR

11 ELR ELR

12 ETR ETR

Meaning of first subscript: Meaning of second subscript:
D: directivity F: forward

S: source match R: reverse

R: reflection tracking

X: crosstalk or isolation

L: load match

T: transmission tracking
1-38

Alphabetical Command Reference

INTE
INTE

INTE<num>; or INTE?;

ISO

ISO<D|L>;

LIM

LIM<D|L|M|S|U><num>[DB|HZ];

These commands edit a limit test segment. The limit table editing is begun with EDITLIML;,
and a segment is brought up for editing with SEDI<num>; or added using SADD;. The segment
is closed with SDON;, the table is closed with EDITDONE;.

NOTE Currently these commands can be queried by sending the command followed by

Command Description Range Query Response

INTE Sets the display intensity, 50 to 100
percent.

integers 50–100 <num><L
F>

Command Description Range Query Response

ISOD Done with isolation subsequence in a
2-port or enhance response calibration.
OPC-compatible.

N/A N/A

ISOL Begins the isolation subsequence step in a
2-port calibration.

N/A N/A

Command Description Range Query Response

LIMD Sets the limit delta value while editing a
limit line segment.

amplitude rangea

a. For log mag: ± 500 dB. For phase: ± 500 degrees. For Smith chart and Polar: ± 500 units. For linear magnitude: ± 500
units. For SWR: ± 500 units. The scale is always positive, and has minimum values of 0.001 dB, 10e-12 degrees,
10e-15 seconds, and 10 picounits.

see “Note” below

LIML Sets the lower limit value. amplitude rangea see “Note” below

LIMM Sets the middle limit value. amplitude rangea see “Note” below

LIMS Sets the limit stimulus break point. stimulus rangeb

b. For frequency or power sweeps, refer to “Preset State and Memory Allocation,” in your analyzer’s reference guide.
For CW time: 0 to 24 hours. For frequency sweep, transform on: ± 1/frequency step. For CW time sweep, transform
on: ±1/time step.

see “Note” below

LIMU Sets the upper limit value. amplitude rangea see “Note” below
1-39

Alphabetical Command Reference

LIMI
the OUTPACTI command, as in the following example to query the upper limit
value:

10 OUTPUT 716;”LIMU;OUTPACTI;”

Future revisions of firmware may support the standard query form (which
currently always returns a zero) for these commands.

LIMI

LIMI<AMPO|STIO><num>[HZ|DB]; or LIMI<AMPO|STIO>?;
LIMI<LINE|TEST><ON|OFF>; or LIMI<LINE|TEST>?;
LIMIMAOF;

These commands are used to define and display limit testing.

LIMT

LIMT<FL|SL|SP>; or LIMT<FL|SL|SP>?;

These commands edit a limit test segment. The limit table editing is begun with EDITLIML;,
and a segment is brought up for editing with SEDI N; or added using SADD;. The segment is
closed with SDON;, the table is closed with EDITDONE;.

Command Description Range Query Response

LIMIAMPO Enters the limit line amplitude offset. amplitude rangea

a. For log mag: ± 500 dB. For phase: ± 500 degrees. For Smith chart and Polar: ± 500 units. For linear magnitude: ± 500
units. For SWR: ± 500 units. The scale is always positive, and has minimum values of 0.001dB, 10e-12 degrees,
10e-15 seconds, and 10 picounits.

<num><L
F>

LIMILINE Turns the display of the limit lines on and
off.

N/A <0|1><L
F>

LIMIMAOF Marker to limit offset. Centers the limit
lines about the current marker position
using the limit amplitude offset function.

N/A N/A

LIMISTIO Enters the stimulus offset of the limit lines. stimulus rangeb

b. For frequency or power sweeps, refer to “Preset State and Memory Allocation,” in your analyzer’s reference guide.
For CW time: 0 to 24 hours. For frequency sweep, transform on: ± 1/frequency step. For CW time sweep, transform
on: ±1/time step.

<num><L
F>

LIMITEST Turns limit testing on and off. N/A <0|1><L
F>

Command Description Range Query Response

LIMTFL Makes the segment a flat line. N/A <0|1><L
F>

LIMTSL Makes the segment a sloping line. N/A <0|1><L
F>
1-40

Alphabetical Command Reference

LINFREQ
LINFREQ

LINFREQ; or LINFREQ?;

LINM

LINM; or LINM?;

LINT

LINT<DATA|MEMO><num>;

LIS

LISFREQ; or LISFREQ?;

LIS<IFBWM|PWRM><ON|OFF>; or LIS<IFBWM|PWRM>?;

List frequency functions.

LIMTSP Makes the segment a single point. N/A <0|1><L
F>

Command Description Range Query Response

LINFREQ Selects a linear frequency sweep. N/A <0|1><L
F>

Command Description Range Query Response

LINM Selects the linear magnitude display
format.

N/A <0|1><L
F>

Command Description Range Query Response

LINTDATA Enters the line type for plotting data. integers 0–10 N/A

LINTMEMO Enters the line type for plotting memory. integers 0–10 N/A

Command Description Range Query Response

LISFREQ Selects the list frequency sweep mode. N/A <0|1><L
F>

LISIFBWM Enables/disables the IFBW setting for a
list-frequency table in swept list mode.

N/A <0|1><L
F>

Command Description Range Query Response
1-41

Alphabetical Command Reference

LISTTYPE
LISTTYPE

LISTTYPE<LSTP|LSWP>; or LISTTYPE?;

LISV
LISV;

LOAD

LOAD<num>;

LISPWRM Enables/disables the power setting for a
list-frequency table in swept list mode.

N/A <0|1><L
F>

Command Description Range Query Responsea

a. 0 = stepped list mode
1 = swept list mode

LISTTYPELSTP Selects the stepped list mode for use with a
list-frequency table.

N/A <0|1><L
F>

LISTTYPELSWP Selects the swept list mode for use with a
list-frequency table.

N/A <0|1><L
F>

Command Description Range Query Response

LISV Activates the list values function. Requesting a
plot (or print) copies only the current page. See
also “NEXP,” “PREP,” “PLOT,” “PRINALL,” and
“PRINTALL.”

N/A N/A

Command Description Range Query Response

LOAD Loads the file from disk using the file name
provided by the preceding TITF<num>;
command. The actual file loaded depends
on the file title in the file position specified
by the TITF<num> command. Requires pass
control mode when using the GPIB port.

integers 1–5 N/A

Command Description Range Query Response
1-42

Alphabetical Command Reference

LOGFREQ
LOGFREQ

LOGFREQ; or LOGFREQ?;

LOGM

LOGM; or LOGM?;

MANTRIG

MANTRIG; or MANTRIG?;

MAN_LASER
MAN_LASER<ON|OFF>; or MAN_LASER?;

Toggles laser on and off (with autobias).

MARK

MARK<1|2|3|4|5><num>; or MARK<1|2|3|4|5>?;

MARK<3DB|BUCK|FAUV|FSTI|FVAL><num>; or MARK<BUCK|FAUV|FSTI|FVAL>?;

MARK<CONT|COUP|DISC|MAXI|MINI|OFF|UNCO>; or
MARK<CONT|COUP|DISC|MAXI|MINI|OFF|UNCO>?;

MARK<CENT|CW|DELA|MIDD|REF|SPAN|STAR|STIM|STOP|ZERO>;

Command Description Range Query Response

LOGFREQ Selects a log frequency sweep. N/A <0|1><L
F>

Command Description Range Query Response

LOGM Selects the log magnitude display format. N/A <0|1><L
F>

Command Description Range Query Response

MANTRIG Sets the trigger mode to manual trigger on
point. OPC-compatible.

N/A <0|1><L
F>

Command Description Range Query
Response

MARK1 Makes marker 1 active and sets its stimulus
value.

stimulus rangea <num><L
F>
1-43

Alphabetical Command Reference

MARK
MARK2 Makes marker 2 active and sets its stimulus
value.

stimulus rangea <num><L
F>

MARK3 Makes marker 3 active and sets its stimulus
value.

stimulus rangea <num><L
F>

MARK4 Makes marker 4 active and sets its stimulus
value.

stimulus rangea <num><L
F>

MARK5 Makes marker 5 active and sets its stimulus
value.

stimulus rangea <num><L
F>

MARK3DB Searches for 3dB bandwidth on the
bandpass high-side, using marker 1 as the
reference.

stimulus range <num><L
F>

MARKBUCK Places the active marker on a specific
sweep point (bucket). <num> is the bucket
number.

0 to (number-of-points − 1)

See footnoteb.
<num><L

F>

MARKCENT Sets the center stimulus value to that of the
active marker's stimulus value.

N/A N/A

MARKCONT Places the markers continuously on the
trace, not on discrete points (interpolates
the marker values between discrete points).

N/A <0|1><L
F>

MARKCOUP Couples the markers between the channels,
as opposed to MARKUNCO.

N/A <0|1><L
F>

MARKCW Sets the CW frequency to the active
marker's frequency.

N/A N/A

MARKDELA Sets electrical length so group delay is zero
at the active marker's stimulus.

N/A N/A

MARKDISC Places the markers on the discrete
measurement points.

N/A <0|1><L
F>

MARKFAUV Sets the auxiliary value of the fixed marker
position. Works in coordination with
MARKFVAL and MARKFSTI.

amplitude rangec <num><L
F>

MARKFSTI Sets the stimulus position of the fixed
marker.

stimulus rangea <num><L
F>

MARKFVAL Sets the value of the fixed marker position. amplitude rangec <num><L
F>

MARKMAXI Same as SEAMAX (search for maximum on
current channel's trace).

N/A <0|1><L
F>

MARKMIDD Makes the marker amplitude the limit
segment middle value during a limit
segment edit.

N/A N/A

MARKMINI Same as SEAMIN (search for minimum on
current channel's trace).

N/A <0|1><L
F>

Command Description Range Query
Response
1-44

Alphabetical Command Reference

MATI
MATI
MATI;

MATI to current memory.

MAXF

MAXF[<num>[freq suffix]];

MARKOFF Turns all markers and marker functions
off.

N/A <0|1><L
F>

MARKREF Sets the reference value to that of the active
marker's amplitude.

N/A N/A

MARKSPAN Sets the span for the entire trace to that of
the span between the active marker and the
delta reference marker.

N/A N/A

MARKSTAR Sets the start stimulus to that of the active
marker's.

N/A N/A

MARKSTIM During a limit segment edit, sets the limit
stimulus break point to that of the active
marker's.

N/A N/A

MARKSTOP Sets the stop stimulus to that of the active
marker's.

N/A N/A

MARKUNCO Uncouples the markers between channels,
as opposed to MARKCOUP.

N/A <0|1><L
F>

MARKZERO Places the fixed marker at the active
marker position and makes it the delta
reference.

N/A N/A

a. For frequency or power sweeps, refer to “Preset State and Memory Allocation.” For CW time: 0 to 24 hours. For
frequency sweep, transform on: ±1/frequency step. For CW time sweep, transform on: ±1/time step.

b. For example, on a 201 point sweep, <num> can range from 0 to 200.
c. For log mag: ± 500 dB. For phase: ± 500 degrees. For Smith chart and Polar: ± 500 units.

For linear magnitude: ± 500 units. For SWR: ± 500 units. The scale is always positive, and has minimum
values of 0.001dB, 10e−12 degrees, 10e−15 seconds, and 10 picounits.

Command Description Range Query Response

MAXF Sets the maximum valid frequency of a
standard being defined during a cal kit
modification.

0–1000 GHz N/A

Command Description Range Query
Response
1-45

Alphabetical Command Reference

MEAS
MEAS

MEAS<A|B|R|E01|O1|OE1|OE2|OFF|MEASOO1>; or
MEAS<A|B|RE01|O1|OE1|OE2|OFF|MEASOO1>?;

MEASTAT

MEASTAT<ON|OFF>; or MEASTAT?;

Command Description Range Query Response

MEASA Measures and displays input A on the
active channel.

N/A <0|1><L
F>

MEASB Measures and displays input B on the
active channel.

N/A <0|1><L
F>

MEASR Measures and displays input R on the
active channel.

N/A <0|1><L
F>

MEASEO1 Measures and displays electrical-to-optical
transmission.

N/A <0|1><L
F>

MEASO1 Measures and displays optical reflection. N/A <0|1><L
F>

MEASOE1 Measures and displays optical-to-electrical
transmission in port 1

N/A <0|1><L
F>

MEASOE2 Measures and displays optical-to-electrical
transmission in port 2.

N/A <0|1><L
F>

MEASOFF Switches off marker function
measurements.

N/A <0|1><L
F>

MEASOO1 Measures and displays optical
transmission.

N/A <0|1><L
F>

Command Description Range Query Response

MEASTAT Turns trace statistics on and off. N/A <0|1><L
F>
1-46

Alphabetical Command Reference

MEM
MEM
MEM<O1|O2|1I|2I>;

MENU

MENU<ON|OFF|AVG|CAL|COPY|DISP|FORM|MARK|MEAS|MRKF|POWE|RECA|SAVE|SCAL|SRCH
|STIM|SWEE|SYST>;

Command Description Range Query Response

MEMO1 Activate memory 1.

MEMO2 Activate memory 2.

MEM1I Memory 1 to memory 2.

MEM2I Memory 2 to memory 1.

Command Description Range Query
Response

MENUON Turns the softkey menu on. N/A N/A

MENUOFF Blanks the softkey menu. Use with caution, as this
may give unusual results when setting up an
instrument state. Recommend setting up states
using MENUON (default) and, when setup is complete,
using MENUOFF.

N/A N/A

MENUAVG Brings up the menu associated with the Avg front
panel key.

N/A N/A

MENUCAL Brings up the menu associated with the Cal front
panel key.

N/A N/A

MENUCOPY Brings up the menu associated with the Copy front
panel key.

N/A N/A

MENUDISP Brings up the menu associated with the Display front
panel key.

N/A N/A

MENUFORM Brings up the menu associated with the Format front
panel key.

N/A N/A

MENUMARK Brings up the menu associated with the Marker front
panel key.

N/A N/A

MENUMEAS Brings up the menu associated with the Meas front
panel key.

N/A N/A

MENUMRKF Brings up the menu associated with the Marker Fctn
front panel key.

N/A N/A

MENUSRCH Brings up the menu associated with the Marker Fctn
front panel key.

N/A N/A
1-47

Alphabetical Command Reference

MINMAX
Front Panel Equivalents

Press the associated hardkey listed above.

MINMAX

MINMAX<ON|OFF>; or MINMAX?;

For more information refer to “Limit Line and Data Point Special Functions” on page 8-125.

MINU

MINU; or MINU?;

MENUPOWE Brings up the menu associated with the Marker Fctn
front panel key.

N/A N/A

MENURECA Brings up the menu associated with the Save/Recall
front panel key

N/A N/A

MENUSAVE Brings up the menu associated with the Save/Recall
front panel key

N/A N/A

MENUSCAL Brings up the menu associated with the Scale Ref
front panel key.

N/A N/A

MENUSTIM Brings up the menu associated with the Sweep Setup
front panel key.

N/A N/A

MENUSWEE Brings up the menu associated with the Sweep Setup
front panel key.

N/A N/A

MENUSYST Brings up the menu associated with the System front
panel key.

N/A N/A

Command Description Range Query Response

MINMAX Enables/disables min/max recording per
segment. Min and max values are recorded
per limit segment. Limit testing need not be
active.

N/A <0|1><L
F>

Command Description Range Query Response

MINU Data minus memory (linear subtraction).
See also “DISPDMM.”

N/A <0|1><L
F>

Command Description Range Query
Response
1-48

Alphabetical Command Reference

MODEI;
MODEI;
Model to memory.

NEXP

NEXP;

Displays the next page of the operating parameters list. (Use OPEP to display the operating
parameters list.) No query response.

NUMG

NUMG<num>;

OMII

OMII;

Omits the isolation step of a calibration sequence. No query response.

OPC

OPC; or OPC?;

Command Description Range Query Response

NUMG Activates the indicated number of groups
of sweeps. A group is whatever is needed to
update the current parameter once. This
function restarts averaging if it is enabled.
OPC-compatible.

integers 1–999 N/A

Command Description Range Query Responsea

a. 0 = next command not yet completed
1 = next command completed

OPC Operation complete. Reports the
completion of the next command received
by setting bit 0 in the event-status register,
or by replying to an interrogation if OPC? is
issued.

N/A <0|1><L
F>
1-49

Alphabetical Command Reference

OPEP
OPEP

OPEP;

Presents a list of key operating parameters. Requesting a plot (or print) copies only the
current page. See also “NEXP,” “PREP,” “PLOT,” “PRINALL,” and “PRINTALL.” No query
response.

OUTP

In the following “Syntax” section, commands are grouped alphabetically by common syntax
form, not necessarily due to common functionality.

OUTP<ACTI|AMAX|AMIN|APER>;

OUTP<CALC|ICAL><num>;

OUTP<CALK|CHAN|CNTR|DATA|DATP|DATR|ERRO|FAIP|FORF|FORM>;

OUTPFARPLPT;

OUTP<IDEN|KEY|LEAS>;

OUTP<IPMCL><num>;

OUTP<MARK|MEMO|MSTA|MWID|OPTS|PLOT>;

OUTPLIM<num>;

OUTPLIM<F|L|M>;

OUTP<RAW><num>;

OUTP<PRIN>;

OUTP<RIPL|SEGAF|SEGAM|SEGF|SEGM>;

OUTPRPLBNDALL;

OUTPRPLBNDPF;

OUTPRPLBNDVAL;

OUTPSEQ<num>;

OUTP<SERN|STAT|TESS|TITL>;

NOTE Most commands that output an array require that you set the format for data
transfers with the FORM command.

Many of these commands have an associated INPUT command that is used to transfer data to
the analyzer. Refer to “Alphabetical Command Reference” on page 1-2 for a list of input
commands.
1-50

Alphabetical Command Reference

OUTP
Command Description Range Response

OUTPACTI Outputs the value of the active function, or
the last active function if the active entry
area is off. The value is returned in ASCII
format.

N/A <$><L
F>

OUTPAMAXa Outputs the max values for all limit line
segments. This is an ASCII transfer
(FORM4).

N/A <array><L
F>

OUTPAMINa Outputs the min values for all limit line
segments. This is an ASCII transfer
(FORM4).

N/A <array><L
F>

OUTPAPER Outputs the smoothing aperture in
stimulus units, rather than as a percentage.

N/A <num><L
F>

OUTPCALC Outputs the selected error coefficient array

for the active cal on the active channel.b
two-digit
integers 01–12

<array><L
F>

OUTPCALK Outputs the currently active calibration kit,
as a string of less than 1000 bytes. The data
is in FORM1.

N/A <$><L
F>

OUTPFARPLPT Outputs the onscreen failed ripple point
information in the following comma-
separated value format: the number of
failed points followed by pairs of numbers
representing the first failed frequency, first
failure value, second failed frequency,
second failure value, and so on.

N/A <num,array><L
F>

OUTPCHAN Outputs the active channel number: 1, 2, 3,
or 4.

N/A <num><L
F>

OUTCNTR Outputs the ABUS counter. N/A

OUTPDATA Outputs the error-corrected data from the
active channel in real/imaginary pairs. See
Figure 6-1 on page 6-3.

N/A <array><L
F>

OUTPDATP Outputs the trace data indexed by point
(see “SELPT”).

N/A <num,num><L
F>

OUTPDATR Outputs the trace data for a range of points
(see “SELMINPT,” “SELMAXPT”). This is an
ASCII (FORM4) transfer.

N/A <array><L
F>

OUTPERRO Outputs the oldest error message in the
error queue. Sends the error number first,
and then the error message itself, as an
ASCII (FORM4) string no longer than 50
characters.

N/A <num,$><L
F>
1-51

Alphabetical Command Reference

OUTP
OUTPFAIP This command is similar to OUTPLIMF
except that it reports the number of
failures first, followed by the stimulus and
trace values for each failed point in the

test. ASCII format.a

N/A <array><L
F>

OUTPFORM Outputs the formatted display data array
from the active channel, in current display
units. See Table 1-3 on page 1-79.

N/A <array><L
F>

OUTPIDEN Outputs the identification string for the
analyzer in the form:
Agilent,8703B,xxxxxxxxxx,X.XX where
8703B is the model number of the
instrument, xxxxxxxxxx is the serial
number of the instrument, and X.XX is the
firmware revision of the instrument. (Same
as the “IDN?” command.)

N/A <$><L
F>

OUTPLEAS Outputs the learn string, which contains
the entire front panel state, the limit table,
and the list frequency table. It is always in
binary format not intended for decoding.

N/A <learnstring><L
F>

OUTPLIM Outputs the status of the limit test for the

channel selected with <num>.a,c
integers 1–4 <0|1|−1><L

F>

OUTPLIMF Outputs the limit test results for each failed
point, followed by the number of failed

points. This is an ASCII transfer.a,d

N/A <array><L
F>

OUTPLIML Outputs the limit test results for each point

in the sweep. This is an ASCII transfer.a,c,d
N/A <array><L

F>

OUTPLIMM Outputs the limit test results at the active

marker.a,c,d
N/A <num,num,num,num><L

F>

OUTPMARK Outputs the active marker values. The first
two numbers are the marker response
values, and the last is the stimulus value.
See Table 1-3 on page 1-79 for the meaning
of the response values as a function of
display format.

N/A <num,num,num><L
F>

OUTPMAXP Outputs the maximum point value between
selected points.

N/A <num,num><L
F>

OUTPMEMO Outputs the memory trace from the active
channel. The data is in real/imaginary
pairs, and can be treated the same as data
read with the OUTPDATA command. See
Figure 6-1 on page 6-3.

N/A <array><L
F>

Command Description Range Response
1-52

Alphabetical Command Reference

OUTP
OUTPMINP Outputs the minimum point value between
selected points.

N/A <num,num><L
F>

OUTPMRIS Outputs three values for risetime. N/A <num,num,num><L
F>

OUTPMSTA Outputs the marker statistics in ASCII
format: mean, standard deviation, and
peak-to-peak variation in that order. If
statistics is not on, it is turned on to
generate current values and turned off
again. See also “MEASTAT.”

N/A <num,num,num><L
F>

OUTPMWID Outputs the marker bandwidths search
results in ASCII format: bandwidth, center,
and Q in that order. If widths is not on, it is
turned on to generate current values and
then turned off again.

N/A <num,num,num><L
F>

OUTPOPTS Outputs an ASCII string of the options
installed in the analyzer.

N/A <$><L
F>

OUTPPLOT Outputs the HP-GL plot string in ASCII
format to the GPIB port. Can be directed to
a plotter, or read into the computer.

N/A <$><L
F>

OUTPPRIN Outputs a PCL raster dump of the display,
intended for a graphics printer.

N/A <$><L
F>

OUTPRAW Outputs the selected raw data array. See
Figure 6-1 on page 6-3.

integers 1–4:
1=S11 data
2=S21 data
3=S12 data
4=S22 data

<array><L
F>

OUTPRIPL Outputs the peak-to-peak ripple between
selected points.

Frequency
range

<num,num><L
F>

OUTPRPLBNDALL Outputs the measured ripple values for all
active frequency bands in the following
comma-separated value format: the number
of bands followed by pairs of numbers
representing the first band number (1),
ripple value of first band, second band
number (2), ripple value of second band,
and so on.

N/A <num,array><L
F>

OUTPRPLBNDPF Outputs the pass/fail status for selected
frequency band (see “SELBND”) as “1”
(band passes) or as “0” (band fails).

N/A <0|1><L
F>

OUTPRPLBNDVAL Outputs the ripple value for selected
frequency band (see “SELBND”).

N/A <num><L
F>

Command Description Range Response
1-53

Alphabetical Command Reference

OUTP
OUTPSEGAF Outputs the segment number and its limit
test status for all active segments. This is an

ASCII transfer.a,c

N/A <array><L
F>

OUTPSEGAM Outputs the limit test min/max for all
segments. Outputs the segment number,
max stimulus, max value, min stimulus,
min value for all active segments. This is an

ASCII transfer.a,c

N/A <array><L
F>

OUTPSEGF Outputs the limit test status for a specified

segment. See also “SELSEG.”a,c
N/A <0|1|−1><L

F>

OUTPSEGM Outputs limit test min/max for a specified

segment. See also “SELSEG.”a
N/A <num,num><L

F>

OUTPSERN Outputs a string that contains the serial
number of the analyzer.

N/A <$><L
F>

OUTPSTAT Returns the status byte as an ASCII integer
(0–255) that can be interpreted as the 8-bit
status byte. Refer to “The Status Byte” on
page 7-6 for more information about the
status byte. This command is the same as
“STB?.”

N/A <num><L
F>

OUTPTESS Outputs the test status N/A

OUTPTITL Outputs the display title in ASCII format. N/A <$><L
F>

a. Refer to “Limit Line and Data Point Special Functions” on page 8-125.
b. See Table 1-1 on page 1-38 for the contents of the different arrays. Each array is output in the currently set form

determined by the FORM command. The data is in real/imaginary pairs, with the same number of pairs as points in the
sweep.

c. Values returned for limit test status are: 0 (fail), 1 (pass), or −1 (no limit).
d. This command outputs the limit test results. The results consist of four fields. First is the stimulus value for the point.

Second is an integer indicating test status. Third is the upper limit at that point. Fourth is the lower limit at that
point. If there are no limits at that point, the third and forth fields are zero.

Command Description Range Response
1-54

Alphabetical Command Reference

OUTP
OUTP Reference Tables

Table 1-2. Error Coefficient Arrays

Array Response Response
& Isolation

1-port Enhanced
Response

2-port a

a. One path, 2-port cal duplicates arrays 1 to 6 in arrays 7 to 12.

TRL/
LRM

O/E
Response
& Match

E/O
Response
& Match

01 ER or ET EX (ED)b

b. Response and isolation corrects for crosstalk and transmission tracking in transmission measurements, and for
directivity and reflection tracking in reflection measurements.

ED ED EDF EDF EDR EDI

02 ET (ER) ES ES ESF ESF ESR ES

03 ER ER ERF ERF ERR ER

04 EX EXF EXF EXF EX

05 EL
c

c. This term is used to generate the calibration coefficients, but is not used during measurement error correction.

ELF ELF ELF ET

06 ET ETF ETF ETF

07 EDR EDR EDF

08 ESR ESR ESF

09 ERR ERR ERF

10 EXR EXR

11 ELR ELR

12 ETR ETR

Meaning of first subscript: Meaning of second subscript:
D: directivity F: forward

S: source match R: reverse

R: reflection tracking

X: crosstalk or isolation

L: load match

T: transmission tracking
1-55

Alphabetical Command Reference

PAUS
PAUS
PAUS;

Pauses the sequence; to be followed by CONS to resume the sequence. No query response.

PHAO

PHAO<num>; or PHAO?;

PHAS

PHAS; or PHAS?;

PLOT

PLOT;

Initiates a plot. Requires pass control mode when using the GPIB port. No query response.

POIN

POIN<num>; or POIN?;

NOTE This command should be followed by a wait equal to 2 sweeps. Example wait
code written in BASIC:

OUTPUT 716;"POIN801;"
OUTPUT 716;”SWET?;”
ENTER 716;T

Command Description Range Query Response

PHAO Sets the phase offset. 0–360 degrees <num><L
F>

Command Description Range Query Response

PHAS Selects the phase display format. N/A <0|1><L
F>

Command Description Range Query Response

POIN Sets the number of points in the sweep, or
in a sweep segment.

Choose from:
3, 11, 21, 26, 51,
101, 201, 401,
801, 1601

<num><L
F>
1-56

Alphabetical Command Reference

POL
WAIT 2*T

POL

POL<A|MLIN|MLOG|MRI>; or POL<A|MLIN|MLOG|MRI>?;

PORE

PORE<ON|OFF>; or PORE?;

PORT

PORT<1|2><num>[S]; or PORT<1|2>?;

These commands set the port extension length for the indicated port or input.
Ports 1 and 2 refer to the test set ports.

Command Description Range Query Response

POLA Selects the polar display format. N/A <0|1><L
F>

POLMLIN Selects linear as the marker readout format
for polar display.

N/A <0|1><L
F>

POLMLOG Selects log as the marker readout format
for polar display.

N/A <0|1><L
F>

POLMRI Selects real/imaginary as the marker
readout format for polar display.

N/A <0|1><L
F>

Command Description Range Query Response

PORE Turns port extensions on and off. N/A <0|1><L
F>

Command Description Range Query Response

PORT1 Port 1 ±10 seconds <num><L
F>

PORT2 Port 2 ±10 seconds <num><L
F>
1-57

Alphabetical Command Reference

PORTP
PORTP

PORTP<CPLD|UNCPLD>; or PORTP?;

Command Description Range Query Responsea

a. 0 = uncoupled
1 = coupled

PORTP Selects either coupled or uncoupled for the
port powers of a given channel.

N/A <0|1><L
F>
1-58

Alphabetical Command Reference

POWE
POWE

POWE<num>[DB]; or POWE?;

POWS

POWS; or POWS?;

PRAN

Syntax

PRAN<num>;

PRES

PRES;

Presets the analyzer to the factory preset state. OPC-compatible. No query response.

NOTE Pressing the Preset key on the analyzer will either invoke the factory preset
state, or a user-selected state (if one has been set up). Sending the PRES
command will always invoke the factory preset state. This is true even if the
analyzer is currently set up to recall a user preset state when the Preset key is
pressed. Refer to “Preset State and Memory Allocation” on page 9-1. For more

Command Description Range Query Response

POWE Sets the output power level. output power
range of your

analyzera

a. The output power range of your analyzer depends upon the model and installed options. Refer to your analyzer’s
reference guide to determine the power range of your analyzer.

<num><L
F>

Command Description Range Query Response

POWS Selects power sweep, from the sweep type
menu.

N/A <0|1><L
F>

Command Description Range Query Response

PRAN Sets the source power range. integersa 0–7

integersb 01–12

a. PRAN0 through PRAN7 are used for ranges 0 through 7.
b. Use two-digit integers 01 through 12. PRAN01 through PRAN12 are used for ranges 0 through 11.

N/A
1-59

Alphabetical Command Reference

PWRR
information on user presets, see your analyzer’s user’s guide.

NOTE This command should use OPC? to prevent timing errors with subsequent
commands. Example code written in BASIC:

10 OUTPUT 716;"OPC?;PRES;"
20 ENTER 716;X

PWRR

PWRR<PMAN|PAUTO>; or PWRR?;

PULV [value];
Set pulse width search value.

PULW<ON|OFF>;
Select pulse width search OFF/ON.

RAI

RAI<D|ISOL|RESP>;

Command Description Range Query Response

PWRR Selects whether the power range is in auto
or manual mode.

N/A <0|1><L
F>a

a. 0 = manual mode
1 = auto mode

Command Description Range Query Response

RAID Completes the response and isolation cal
sequence. OPC-compatible.

N/A N/A

RAIISOL Calls the isolation class for the response
and isolation calibration.

N/A N/A

RAIRESP Calls the response class for the response
and isolation calibration.

N/A N/A
1-60

Alphabetical Command Reference

RAMD;
RAMD;
Response and match cal done.

READ

READ<DATE|TIME>;

REAL

REAL; or REAL?;

RECAREG

RECAREG<num>;

RECAREG<1-31>;

Recalls previously saved display colors. No query response.

RECEOUT<ON|OFF>;
Select path to receiver output; ON=CAL, OFF = OPT.

Command Description Range Query Response

READDATE Outputs the date in the following string
format: DD MMM YYYY.

N/A N/A

READTIME Outputs the time in the following string
format: HH:MM:SS.

N/A N/A

Command Description Range Query Response

REAL Sets the display format to real. N/A <0|1><L
F>

Command Description Range Query Response

RECAREG Recalls from save/recall registers 01–31.
OPC-compatible.

two-digit
integers 01–31

N/A
1-61

Alphabetical Command Reference

RECO
RECO

RECO;

Recalls previously saved display colors. No query response.

REF

REF<D|L>;

REF

REF<P|V><num>; or REF<P|V>?;

REFT

REFT;

Recalls file titles from disk. Requires pass control if using an external disk drive on GPIB. No
query response.

RESC

RESC;

Command Description Range Query Response

REFD Completes the reflection calibration
subsequence of a 2-port calibration.
OPC-compatible.

N/A N/A

REFL Begins the reflection calibration
subsequence of a 2-port calibration.

N/A N/A

Command Description Range Query Response

REFP Enters the reference position. 0 is the
bottom, 10 is the top of the graticule.

integers 0–10 <num><L
F>

REFV Enters the reference line value. amplitude rangea

a. For log mag: ± 500 dB. For phase: ± 500 degrees. For Smith chart and Polar: ± 500 units. For linear magnitude: ± 500
units. For SWR: ± 500 units. The scale is always positive, and has minimum values of 0.001dB, 10e−12 degrees,
10e−15 seconds, and 10 picounits.

<num><L
F>

Command Description Range Query Response

RESC Resume a previously started cal sequence. N/A N/A
1-62

Alphabetical Command Reference

RESD
RESD

RESD;

RESM;
Reset model 1.

RESPDONE

RESPDONE;

REST

REST;

Measurement restart. No query response.

REV

REV<I|M|T>;

These commands are OPC-compatible if there is only one standard in the class. If there is just
one standard, that standard is measured automatically. If there is more than one standard in
the class, the class command only calls another menu.

Command Description Range Query Response

RESD Restores the measurement display after
viewing the operating parameters or list
values.

N/A N/A

Command Description Range Query Response

RESPDONE Completes the response calibration
sequence. OPC-compatible.

N/A N/A

Command Description Range Query Response

REVI Calls the reverse isolation calibration class
during a full 2-port calibration.

N/A N/A

REVM Calls the reverse match calibration class
during a full 2-port calibration.

N/A N/A

REVT Calls the reverse transmission calibration
class during a full 2-port calibration.

N/A N/A
1-63

Alphabetical Command Reference

RLIMLINE
RLIMLINE

RLIMLINE<ON|OFF>; or RLIMLINE?;

RLIMM

RLIMM<num>[DB]; or RLIMM?;

RLIMSTP

RLIMSTP<num>[HZ|KHZ|MHZ|GHZ]; or RLIMSTP?;

RLIMSTR

RLIMSTR<num>[HZ|KHZ|MHZ|GHZ]; or RLIMSTR?;

RLIMTEST

RLIMTEST<ON|OFF>; or RLIMTEST?;

Command Description Range Query Response

RLIMLINE Turns the lines that represent the ripple
test limits on and off.

N/A <0|1><L
F>

Command Description Range Query Response

RLIMM Sets the value of the maximum allowable
ripple limit for current frequency band.

 0.01 to 100 dB <num><L
F>

Command Description Range Query Response

RLIMSTP Sets the stop frequency of the current
frequency band.

stimulus rangea

a. Refer to “Preset State and Memory Allocation.”

<num><L
F>

Command Description Range Query Response

RLIMSTR Sets the start frequency of the current
ripple limit.

stimulus rangea

a. Refer to “Preset State and Memory Allocation.”

<num><L
F>

Command Description Range Query Response

RLIMTEST Turns the ripple limit test on and off. N/A <0|1><L
F>
1-64

Alphabetical Command Reference

RLIMVAL
RLIMVAL

RLIMVAL<OFF|ABS|MAR>;

RST

RST;

Presets the analyzer to the factory preset state. OPC-compatible. See Chapter 9, “Preset State
and Memory Allocation” No query response.

NOTE Pressing the Preset key on the analyzer will either invoke the factory preset
state, or a user-selected state (if one has been set up). Sending the RST
command will always invoke the factory preset state. This is true even if the
analyzer is currently set up to recall a user preset state when the Preset key is
pressed. For more information on user presets, see your analyzer’s user’s guide.

S

S<11|12|21|22>; or S<11|12|21|22>?;

SADD

SADD;

Adds a new segment to the table during a list-frequency, limit-table, cal sensor table, or
power loss table edit. No query response.

Command Description Range Query Response

RLIMVAL Displays the ripple limit value of the
selected band (see “SELBND”) in absolute
format (ABS) or margin format (MAR). OFF
turns the displayed ripple limit value off.

N/A N/A

Command Description Range Query Response

S11 Forward reflection measurement N/A <0|1><L
F>

S12 Reverse transmission measurement N/A <0|1><L
F>

S21 Forward transmission measurement N/A <0|1><L
F>

S22 Reverse reflection measurement N/A <0|1><L
F>
1-65

Alphabetical Command Reference

SAV
SAV

SAV<1|2|C>;

SAVE

SAVEREG<num>;

SAVECSV

SAVECSV;

Saves the current measurement to the disk drive in the comma-separated value (CSV)
format. No query response.

SAVEJPG

SAVEJPG;

Saves the current display to the disk drive in the JPG format. OPC-compatible. No query
response.

Command Description Range Query Response

SAV1 Completes the 1-port calibration sequence.
OPC-compatible.

N/A N/A

SAV2 Completes the 2-port calibration sequence.
OPC-compatible.

N/A N/A

SAVC Completes the transfer of error correction
coefficients back into the instrument.
OPC-compatible.

N/A N/A

Command Description Range Query Response

SAVEREG Saves to save/recall registers 01–31.
SAVEREG01 through SAVEREG05 are the
same as SAVE1 through SAVE5.
OPC-compatible.

two-digit
integers 01–31

N/A
1-66

Alphabetical Command Reference

SAVU
SAVU

SAVU<ASCI|BINA>;

SCAL

SCAL<num>; or SCAL?;

SDEL

SDEL;

Deletes the current segment while editing a list frequency, a limit table, or a power loss list. No query
response.

SDON

SDON;

Closes a segment after editing a list frequency, a limit table, or a power loss list. No query response.

SEA

SEA<L|R>;

SEA<MAX|MIN|OFF>; or SEA<MAX|MIN|OFF>?;

SEATARG<num>; or SEATARG?;

These commands control the marker searches. The marker searches place the active marker
according to the indicated search criteria. The search is continuously updated if tracking is

Command Description Range Query Response

SAVUASCI Selects ASCII format for saving to disk.
Conforms to CITIFile specifications.

N/A N/A

SAVUBINA Selects binary format for saving to disk. N/A N/A

Command Description Range Query Response

SCAL Sets the trace scale factor. amplitude rangea

a. For log mag: ± 500 dB. For phase: ± 500 degrees. For Smith chart and Polar: ± 500 units. For linear magnitude: ± 500
units. For SWR: ± 500 units. The scale is always positive, and has minimum values of 0.001dB, 10e−12 degrees,
10e−15 seconds, and 10 picounits.

<num><L
F>
1-67

Alphabetical Command Reference

SEDI
ON (see “TRACK”).

SEDI

SEDI<num>; or SEDI?;

SEG

SEG<IFBW|POWER><num>;

Command Description Range Query Response

SEAL Search left for next occurrence of the target
value.

N/A N/A

SEAMAX Search for trace maximum on the current
channel.

N/A <0|1><L
F>

SEAMIN Search for trace minimum on the current
channel.

N/A <0|1><L
F>

SEAOFF Turns the marker search off. N/A <0|1><L
F>

SEAR Search right for next occurrence of the
target value.

N/A N/A

SEATARG Set the search target amplitude. amplitude rangea

a. For log mag: ± 500 dB. For phase: ± 500 degrees. For Smith chart and Polar: ± 500 units.
For linear magnitude: ± 500 units. For SWR: ± 500 units.

<num><L
F>

Command Description Range Query Response

SEDI During either a frequency, limit, or power
loss table edit, selects segment <num> for
editing.

state dependent.
Range for
frequency segment
= 1 to 30. Range for
limit test segment =
1 to 18 . Range for
power loss table
segment = 1 to 12

<num><L
F>

Command Description Range Query Response

SEGIFBW Sets the IFBW for the active segment of a
list-frequency table in swept list mode.

Choose from 10,
30, 100, 300,
1000, 3000,
3700, 6000

see “Note” below

SEGPOWER Sets the power for the active segment of a
list-frequency table in swept list mode.

output power
range of your

analyzera

see “Note below
1-68

Alphabetical Command Reference

SEL
NOTE Currently these commands can be queried by sending the command followed by
the OUTPACTI command, as in the following example to query the upper limit
value:

10 OUTPUT 716;”SEGIFBW;OUTPACTI;”

Future revisions of firmware may support the standard query form (which
currently always returns a zero) for these commands.

SEL

SEL<MAXPT|MINPT|PT|SEG><num>; or SEL<MAXPT|MINPT|PT|SEG>?;

NOTE For the definition of a limit segment, see “Limit Line and Data Point Special
Functions” on page 8-125.

SELBND

SELBND<num>; or SELBND?;

a. The output power range is dependent upon the model and option configuration of your analyzer. Refer to your
analyzer’s reference guide to determine the output power range of your analyzer.

Command Description Range Query Response

SELMAXPT Selects the last point number in the range
of points that the OUTPDATR command will
report.

0 to n−1, where
n=number of
points

<num><L
F>

SELMINPT Selects the first point number in the range
of points that the OUTPDATR command will
report.

0 to n−1, where
n=number of
points

<num><L
F>

SELPT Selects the point number that the
OUTPDATP command will report.

0 to n−1, where
n=number of
points

<num><L
F>

SELSEG Selects the segment number to report on
for the OUTPSEGF and OUTPSEGM
commands.

integers 1–18 <num><L
F>

Command Description Range Query Response

SELBND Selects the ripple frequency band for the
following commands: OUTPRPLBNDPF,
OUTPRPLBNDVAL, and RLIMVAL.

integers 1−12 <num><L
F>
1-69

Alphabetical Command Reference

SET
SET

SET<Z><num>; or SET<BIT|Z>?;

SET<DATE|TIME><$>;

SING

SING;

Single sweep. OPC-compatible. No query response.

SLI

SLI<D>;

Sliding load done. No query response.

SMI

SMI<C|MGB|MLIN|MLOG|MRI|MRX>; or SMI<C|MGB|MLIN|MLOG|MRI|MRX>?;

Command Description Range Query Response

SETDATE Sets the date in the following format: DD
MMM YYYY, where DD is the day and must
be 2 digits, MMM is the month and must be
three alpha characters (JAN, FEB, MAR,
APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,
DEC), and YYYY is the year and must be 4
digits.

See “Description .” N/A

SETTIME Sets the time in the following format:
HH:MM:SS, where HH is the hour, MM is
minutes, SS is seconds, and each must be 2
digits.

See “Description .” N/A

SETZ Sets the characteristic impedance of the
measurement system.

0.1 to 500 Ω <num><L
F>

Command Description Range Query Response

SMIC Selects Smith chart display format. N/A <0|1><L
F>

SMIMGB Selects G+jB (conductance and
susceptance) marker readout on a Smith
chart.

N/A <0|1><L
F>

SMIMLIN Selects linear magnitude marker readout
on a Smith chart.

N/A <0|1><L
F>
1-70

Alphabetical Command Reference

SMOO
SMOO

SMOOAPER<num>; or SMOOAPER?;
SMOOO<ON|OFF>; or SMOOO?;

SOFR

SOFR;

Displays the firmware revision on the screen. No query response.

SOFT

SOFT<num>;

SOUP

SOUP<ON|OFF>; or SOUP?;

SMIMLOG Selects log magnitude marker readout on a
Smith chart.

N/A <0|1><L
F>

SMIMRI Selects real/imaginary pairs (resistance
and reactance) marker readout on a Smith
chart.

N/A <0|1><L
F>

SMIMRX Selects R + jX marker readout on a Smith
chart.

N/A <0|1><L
F>

Command Description Range Query
Response

SMOOAPER Sets the smoothing aperture as a percent of the
trace.

0.05 to 20% <num><L
F>

SMOOO Selects whether smoothing is on or off. N/A <0|1><L
F>

Command Description Range Query Response

SOFT Acts as though the indicated softkey was
pressed.

integers 1–8 N/A

Command Description Range Query Response

SOUP Selects whether the source power is on or
off.

N/A <0|1><L
F>

Command Description Range Query Response
1-71

Alphabetical Command Reference

SPAN
SPAN

SPAN<num>[HZ|DB]; or SPAN?;

SPLD

SPLD<ON|OFF>; or SPLD?;

SPLID

SPLID<1|2|4>; or SPLID<1|2|4>?;

SRE

SRE<num>; or SRE?;

Command Description Range Query Response

SPAN Sets the stimulus span value. If a list
frequency segment is being edited, sets the
span of the list segment.

stimulus rangea

a. For frequency or power sweeps, refer to “Preset State and Memory Allocation,” in your analyzer’s reference guide.
For CW time: 0 to 24 hours. For frequency sweep, transform on: ± 1/frequency step. For CW time sweep, transform
on: ±1/time step.

<num><L
F>

Command Description Range Query Response

SPLD Turns the split display mode on and off. N/A <0|1><L
F>

Command Description Range Query Response

SPLID1 Puts all displayed channels on one full-size
graticule.

N/A <0|1><L
F>

SPLID2 Puts all displayed channels on two
graticules.

N/A <0|1><L
F>

SPLID4 Puts each displayed channel on a separate
graticule.

N/A <0|1><L
F>

Command Description Range Query Response

SRE Service request enable. A bit set in <num>
enables the corresponding bit in the status
byte to generate an SRQ.

integers 0–255 <num><L
F>
1-72

Alphabetical Command Reference

SSEG
SSEG

SSEG<num>; or SSEG?;

STAN

STAN<A|B|C|D|E|F|G>;

Standards A through G are associated with softkeys 1 through 7, respectively.

STAR

STAR<num>[HZ|DB]; or STAR?;

Command Description Range Query Response

SSEG Selects the desired segment of the
frequency list for a list frequency sweep.
See also “ASEG”.

integers 1–30 <num><L
F>

Command Description Range Query
Response

STANA These 7 commands (OPC-compatible) select a
standard from a class during a calibration sequence.
If a class is requested, as in CLASS11A (S11 1-port
cal) the analyzer will do one of two things:

• If there is only one standard in the class, it will
measure that standard automatically.

• If there are several standards in the class, then
one of these commands must be used to select
one of these standards, causing it to be
measured.

N/A N/A

STANB N/A N/A

STANC N/A N/A

STAND N/A N/A

STANE N/A N/A

STANF N/A N/A

STANG N/A N/A

Command Description Range Query Response

STAR Sets the start stimulus value. If a list
frequency segment is being edited, sets the
start of the list segment.

stimulus rangea

a. For frequency or power sweeps, refer to “Preset State and Memory Allocation,” in your analyzer’s reference guide.
For CW time: 0 to 24 hours. For frequency sweep, transform on: ± 1/frequency step. For CW time sweep, transform
on: ±1/time step.

<num><L
F>
1-73

Alphabetical Command Reference

STB?
STB?

STB?;

STEPSWP

Syntax

STEPSWP<ON|OFF>; or STEPSWP?;

STOP

STOP<num>[HZ|DB]; or STOP?;

STPSIZE

STPSIZE<num>[HZ|DB]; or STPSIZE?;

Command Description Range Query Response

STB? Query only. Outputs the status byte in
ASCII format (FORM4). Same as
OUTPSTAT.

N/A <num><L
F>

Command Description Range Query Response

STEPSWP Turns step sweep mode on or off. N/A <0|1><L
F>

Command Description Range Query Response

STOP Sets the stop stimulus value. If a list
frequency segment is being edited, sets the
stop of the list segment.

stimulus rangea

a. For frequency or power sweeps, refer to “Preset State and Memory Allocation,” in your analyzer’s reference guide.
For CW time: 0 to 24 hours. For frequency sweep, transform on: ± 1/frequency step. For CW time sweep, transform
on: ±1/time step.

<num><L
F>

Command Description Range Query Response

STPSIZE Sets the step size while editing a list
frequency segment.

stimulus rangea

a. For frequency or power sweeps, refer to “Preset State and Memory Allocation,” in your analyzer’s reference guide.
For CW time: 0 to 24 hours. For frequency sweep, transform on: ±1/frequency step. For CW time sweep, transform
on: ±1/time step.

<num><L
F>
1-74

Alphabetical Command Reference

SWE
SWE

SWEA;

SWET<num>[S]; or SWET?;

NOTE The SWET command should be followed by a wait equal to 2 sweeps. Example
wait code written in BASIC:

10 OUTPUT 716;"SWET.1;"
20 WAIT 2*.1

SWR

SWR; or SWR?;

TESS?

TESS?;

Command Description Range Query Response

SWEA Automatically selects the fastest sweep
time based on the current analyzer settings
for number of points, IF bandwidth, sweep
mode, averaging condition and frequency
span.

N/A N/A

SWET Sets the sweep time. (Setting SWET0 is
equivalent to sending the SWEA command.)

0–86,400 s <num><L
F>

Command Description Range Query Response

SWR Selects the SWR display format. N/A <0|1><L
F>

Command Description Range Query Response

TESS? Query only. Queries whether a test set is
connected. Returns a one on the standard
analyzer.

N/A <0|1><L
F>
1-75

Alphabetical Command Reference

TINT
TINT

TINT<num>; or TINT?;

TIT

TIT<F|REG><num><$>;

TIT<L><$>;

TITSQ;

TRA

TRA<D|N>;

TRACK

TRACK<ON|OFF>; or TRACK?;

Command Description Range Query Response

TINT Adjusts the tint for the selected display
feature.

integers 0–100 <num><L
F>

Command Description Range Query Response

TITF Titles the indicated file numbers. <num>: 1–5
<$>: 10 char. max.

N/A

TITL Enters a new display title. 48 characters max N/A

TITREG Titles save/recall registers 01 through 31.
TITREG01 through TITREG05 are the
same as TITR1 through TITR5.

<num>: 01–31
<$>: 10 char. max.

N/A

Command Description Range Query Response

TRAD Completes the transmission calibration
subsequence of a 2-port calibration or
enhanced response calibration.
OPC-compatible.

N/A N/A

TRAN Begins the transmission calibration
subsequence of a 2-port calibration or
enhanced response calibration.

N/A N/A

Command Description Range Query Response

TRACK Turns marker search tracking on and off. N/A <0|1><L
F>
1-76

Alphabetical Command Reference

TRIG
20 ENTER 716;X

TRIG

TRIG;

Wait for sweep trigger.

TST?

TST?;

TSTP

TSTP<P1|P2>;

Selects test port 1 or 2 for non-S-parameter measurements. No query response.

UP
UP;

Increments the value displayed in the active entry area (emulates pressing the up-arrow key). No query response.

USEPASC
USEPASC; or USEPASC?;

VELOFACT
VELOFACT<num>; or VELOFACT?;

Command Description Range Query Response

TST? Query only. Causes a self test and returns a
zero if the test is passed.

N/A <num><L
F>

Command Description Range Query Response

USEPASC Puts the analyzer in pass control mode. N/A <0|1><L
F>

Command Description Range Query Response

VELOFACT Enters the velocity factor of the
transmission medium.

0 to 10 <num><L
F>
1-77

Alphabetical Command Reference

WID
WID
WIDT<ON|OFF>; or WIDT?;
WIDV<num>; or WIDV?;

WINDUSEM

WINDUSEM;

Uses trace memory as window.

WRSK

WRSK<num><$>;

Command Description Range Query Response

WIDT Turns the bandwidth search on and off. N/A <0|1><L
F>

WIDV Enters the widths search parameter. amplitude rangea

a. For log mag: ± 500 dB. For phase: ± 500 degrees. For Smith chart and Polar: ± 500 units.
For linear magnitude: ± 500 units. For SWR: ± 500 units.

<num><L
F>

Command Description Range Query Response

WRSK Enters new softkey labels into the indicated
softkey positions. Initial use of these
commands requires previous commands
MENUFORM; and MENUOFF;.

<num>: integers 1–8
<$>: 10 char. max.

N/A
1-78

Alphabetical Command Reference

8703A Commands Not Supported in the 8703B
8703A Commands Not Supported in the 8703B

Table 1-3.

ALIS HARMSEC MAXF

ASAMP HARMTHIR MEASEO2

CALCEXEC INDEREFRxx MEASO2

CALCEXIT INPUOEO1 MEASOO2

CALCHECK INPUOEO2 MODRF

CWEXT INPUOEO3 OUTKEY

EXTAOPTI INPUOEO4 OUTMUPL

FRES INPUOEO5 WAVL1300

GUIS INPUOEO6 WAVL1550

HARMOFF KOR?
1-79

Alphabetical Command Reference

8703A Commands Not Supported in the 8703B
1-80

2

Alphabetical List of Commands 2-2
OPC-Compatible List of Commands 2-4
Command Listings

Command Listings

Alphabetical List of Commands
Alphabetical List of Commands

AB
ADDRCONT
ADDRDISC
ADDRPLOT
ADDRPOWM
ADDRPRIN
ADJB
ALTAB
AR
ASEG
AUTB
AUTO
AUXC
AVERFACT
AVERO
AVERREST
BACI
BEEPDONE
BEEPFAIL
BEEPWARN
BR
BSAMP
BWLIMDB
BWLIMDISP
BWLIMMAX
BWLIMMKR
BWLIMIN
BWLIMSTAT
BWLIMTEST
BWLIMVAL
CALIEORM
CALIOERM
CALIFUL2
CALIRAI
CALIRESP
CALIS111
CALIS221
CALK35MM
CBRI
CENT
CHAN1
CHAN2
CHAN3
CHAN4
CLAD
CLASS11A
CLASS11B
CLASS11C
CLASS22A
CLASS22B
CLASS22C
CLEAL
CLEARALL

CLEAREG<01-31>
CLEL
CLER
CLES
CLS
COEFA<1-4>
COEFB<1-4>
COEFDELA
COEFK
CONS
CONT
CONV1DS
CONVOFF
CONVYREF
CONVYTRA
CONVZREF
CONVZTRA
CORI
CORR
COUC
COUS
CWFREQ
CWTIME
D2XUPCH2
D2XUPCH3
D4XUPCH2
D4XUPCH3
DATI
DEBU
DEFC
DEFS
DELA
DELO
DELR<1-5>
DELRFIXM
DEMOAMPL
DEMOOFF
DEMOPHAS
DISCUNIT
DISM
DISPDATA
DISPDATM
DISPDDM
DISPDMM
DISPMATH
DISPMEMO
DISPDPM
DISPDTM
DISPM1DM
DISPM1MM
DISPM1PM
DISPM1TM
DISPM2DM

DISPM2MM
DISPMMD
DISPMDD
DONE
DONM
DOSEQ<1-6>
DOWN
DRIVPORT
DUAC<ON|OFF>
EDITDONE
EDITLIML
EDITLIST
EDITRLIM
ELED
ENTO
EOCAL
ESE
ESNB
ESR?
EXTMDATA
EXTMFORM
EXTMGRAP
EXTMRAW
EXTT
FORM1
FORM2
FORM3
FORM4
FORM5
FREO
FRER
FWDI
FWDM
FWDT
HOLD
IDN?
IFBW
IMAG
INID
INPUCALC<01-04>
INPUCALK
INPUDATA
INPUFORM
INPULEAS
INPURAW1
INPURAW2
INPURAW3
INPURAW4
INTD
INTE
ISOD
ISOL
LIMD

LIMIAMPO
LIMILINE
LIMIMAOF
LIMISTIO
LIMITEST
LIML
LIMM
LIMS
LIMTFL
LIMTSL
LIMTSP
LIMU
LINFREQ
LINM
LINTDATA
LINTMEMO
LISFREQ
LISIFBWM
LISPWRM
LISTTYPELSTP
LISTTYPELSWP
LISV
LOAD<1-5>
LOGFREQ
LOGM
LWALCI
LWALCV?
LWALCVxx
MAN_LASER
MANTRIG
MARK1
MARK2
MARK3
MARK4
MARK5
MARK3DB
MARKBUCK
MARKCENT
MARKCONT
MARKCOUP
MARKCW
MARKDELA
MARKDISC
MARKFAUV
MARKFSTI
MARKFVAL
MARKMAXI
MARKMIDD
MARKMINI
MARKOFF
MARKREF
MARKSPAN
MARKSTAR

MARKSTIM
MARKSTOP
MARKUNCO
MARKZERO
MATI
MAXF
MEASA
MEASB
MEASR
MEASEO1
MEAS01
MEASOE1
MEASOE2
MEASOFF
MEASOO1
MEASTAT
MENUAVG
MEMO1
MEMO2
MEM1I
MEM2I
MENUCAL
MENUCOPY
MENUDISP
MENUFORM
MENUMARK
MENUMEAS
MENUMRKF
MENUOFF
MENUON
MENUPOWE
MENURECA
MENUSAVE
MENUSCAL
MENUSRCH
MENUSTIM
MENUSWEE
MENUSYST
MINMAX
MINU
MODEI
NEXP
NUMG
OMII
OPC
OPEP
OUTPACTI
OUTPAMAX
OUTPAMIN
OUTPAPER
OUTPCALC<01-12>
OUTPCALK
OUTPCHAN
2-2

Command Listings

Alphabetical List of Commands
OUTCNTR
OUTPDATA
OUTPDATP
OUTPDATR
OUTPERRO
OUTPFAIP
OUTPFARPLPT
OUTPFORM
OUTPIDEN
OUTPLEAS
OUTPLIM<1-4>
OUTPLIMF
OUTPLIML
OUTPLIMM
OUTPMARK
OUTMAXP
OUTPMEMO
OUTPMINP
OUTPMRIS
OUTPMSTA
OUTMUPL
OUTPMWID
OUTPOPTS
OUTPPLOT
OUTPPRIN
OUTPRAW<1-4>
OUTPRIPL
OUTPRPLBNDALL
OUTPRPLBNDPF
OUTPRPLBNDVAL
OUTPSEGAF
OUTPSEGAM
OUTPSEGF
OUTPSEGM
OUTPSERN
OUTPSTAT
OUTPTESS
OUTPTITL
PAUS
PHAO
PHAS
PLOT
POIN
POLA
POLMLIN
POLMLOG
POLMRI
PORE
PORT1
PORT2
PORTP
POWE
POWS
PRAN<01-12>
PRES
PWRR
PULV
PULW

RAID
RAIISOL
RAIRESP
RAMD
READDATE
READTIME
REAL
RECAREG <01-31>
RECEOUTON
RECEOUTOFF
RECO
REFD
REFL
REFP
REFT
REFV
RESC
RESD
RESM
RESPDONE
REST
REVI
REVM
REVT
RISTON
RISTOFF
RLIMLINE
RLIMM
RLIMSTP
RLIMSTR
RLIMTEST
RLIMVAL<ABS|MAR|
OFF>
RST
S11
S12
S21
S22
SADD
SAV1
SAV2
SAVC
SAVECSV
SAVEJPG
SAVEREG<01-31>
SAVUASCI
SAVUBINA
SCAL
SDEL
SDON
SEAL
SEAMAX
SEAMIN
SEAOFF
SEAR
SEATARG
SEDI
SEGIFBW

SEGPOWER
SELBND
SELMAXPT
SELMINPT
SELPT
SELSEG
SETDATE
SETTIME
SETZ
SING
SLID
SMIC
SMIMGB
SMIMLIN
SMIMLOG
SMIMRI
SMIMRX
SMOOAPER
SMOOO<ON|OFF>
SOFR
SOFT<1-8>
SOUP
SPAN
SPLD
SPLID1
SPLID2
SPLID4
SRE
SSEG
STANA
STANB
STANC
STAND
STANE
STANF
STANG
STAR
STB?
STEPSWP
STOP
STPSIZE
SWEA
SWET
SWR
TESS?
TINT
TITF<1-5>
TITL
TITREG<01-31>
TRACK
TRAD
TRAN
TRIG
TST?
TSTP
UP
USEPASC
VELOFACT

WIDT
WIDV
WINDUSEM
WRSK<1-8>
2-3

Command Listings

OPC-Compatible List of Commands
OPC-Compatible List of Commands

AUXC
CHAN1
CHAN2
CHAN3
CHAN4
CLASS11A
CLASS11B
CLASS11C

CLASS22A
CLASS22B
CLASS22C
CLEARALL
CLEAREG
DATI
DONE
EDITDONE

FWDI
FWDM
FWDT
ISOD
MANTRIG
NUMG
PRES
RAID

RECAREG
REFD
RESPDONE
REVI
REVM
REVT
RST
SAV1

SAV2
SAVC
SAVEJPG
SAVEREG
SING
STAN
TRAD
2-4

3

Introduction to Instrument Control 3-2
Instrument Control using the VXIplug&play Driver 3-3
Instrument Control using HP BASIC 3-9
Introduction to Instrument Control

Introduction to Instrument Control

Introduction to Instrument Control
Introduction to Instrument Control
In this chapter, you can find an introduction to the remote operation of your analyzer using
an external controller. You should be familiar with the operation of the analyzer before
attempting to remotely control the analyzer over the General Purpose Interface Bus (GPIB).
See the analyzer’s user’s guide and reference guide for operating information.

This manual is not intended to teach programming or to discuss GPIB theory except at an
introductory level.

Programming examples that demonstrate the remote operation of the analyzer are
documented in Chapter 8, “Programming Examples” and are also provided on the CD-ROM
that was shipped with this manual. All example programs are provided in HP BASIC, and
most are also provided in Visual C++ and Visual BASIC for use with the VXIplug&play driver.
3-2

Introduction to Instrument Control

Instrument Control using the VXIplug&play Driver
Instrument Control using the VXIplug&play Driver
VXIplug&play is a term indicating conformance to a set of system-level standards produced
by the VXIplug&play Systems Alliance. The charter of the alliance was “to improve the
effectiveness of VXI-based solutions by increasing ease-of-use and improving the
interoperability of multi-vendor VXI systems.”

Installing the VXIplug&play driver on your computer will allow you to control the analyzer
via common programming environments without having to learn the instrument-specific
mnemonics.

Requirements

The VXIplug&play driver for your analyzer is designed for a PC operating Windows 95 or
Windows NT version 3.51 or higher. The driver requires a virtual instrument software
architecture (VISA)-compatible GPIB interface, and the VISA I/O Library version 1.1 or
higher. The driver is compatible with the following programming environments:

• Microsoft Visual Basic, version 4.0 or higher
• Microsoft Visual C++, version 4.0 or higher
• Borland C++, version 4.5 or higher
• HP VEE, version 3.2 or higher
• National Instruments LabWindows/CVI, version 4.0.1 or higher
• National Instruments LabVIEW, version 4.0.1 or higher

Installing the VXIplug&play Driver

NOTE This procedure assumes that you have installed a VISA-compatible GPIB
interface and the VISA I/O library, version 1.1 or higher. It also assumes that
you have installed—and are familiar with—one of the programming
environments listed above.

1. The install program for the VXIplug&play driver for your analyzer is located in the root
directory of the CD-ROM that accompanied this manual. The file is titled “875x.exe”

a. If you need to order a new CD-ROM, contact Agilent Technologies and order part
number 08703-10202.

b. You can also download the file from the Web. Go to http://www.tm.agilent.com and
follow the “Software and Driver” and “Instrument Driver” links.

2. Run “875x.exe” to install the VXIplug&play driver on your computer. The default
directory that is used by the install-shield is vxipnp\winxx\hp875x, where winxx
designates the operating system in use by your computer, such as winnt, win95, etc.

3. If you have difficulty installing the VXIplug&play driver, contact Agilent Technologies by
calling the nearest sales or service office.
3-3

Introduction to Instrument Control

Instrument Control using the VXIplug&play Driver
System Setup

1. Use an GPIB interconnect cable (such as 10833A/B/C/D) to connect the analyzer to the
GPIB interface card on your computer.

2. Switch on the computer.

3. Switch on the analyzer.

a. To verify the analyzer's address, press:

Local, SET ADDRESSES, ADDRESS: 8703

The analyzer has only one GPIB interface, though it occupies two addresses: one for
the instrument and one for the display. The display address is equal to the instrument
address with the least-significant bit incremented. The display address is
automatically set each time the instrument address is set.

The default analyzer addresses are:

— 16 for the instrument

— 17 for the display

CAUTION Other devices connected to the bus cannot occupy the same address as the
analyzer or the display.

The analyzer should now be displaying the instrument's address in the upper right
section of the display. If the address is not 16, return the address to its default setting
(16) by pressing:

16, x1, Preset

b. Set the system control mode to either “pass-control” or “talker/listener” mode. These
are the only control modes in which the analyzer will accept commands over GPIB. To
set the system-control mode, press:

Local, TALKER/LISTENER

or

Local, USE PASS CONTROL
3-4

Introduction to Instrument Control

Instrument Control using the VXIplug&play Driver
Verifying the Bus Connection

Check the interface bus connection and operation by following the appropriate procedure
(for the type of interface card you are using) below.

Interface Bus Verification Procedure (GPIB Interface Card)

1. Check the bus connection by running the VISA Assistant in the I/O Libraries. The VISA
Assistant will automatically report what it finds on the bus. Notice that the VISA
Assistant is reporting instruments at addresses 16 and 17. As mentioned earlier, these
addresses designate the instrument and its display, respectively.

Figure 3-1. VISA Assistant Window

2. To further verify GPIB operation, send a preset command to the analyzer by doing the
following in the VISA Assistant window:

a. Single-click on “GPIB0::16::INSTR” to highlight it.

b. Make sure that the “Formatted I/O” tab is selected.

c. Enter PRES; in the text box.

d. Click on “viPrintf.”

e. This command should preset the analyzer. If an instrument preset does not occur,
there is a problem. Check all GPIB address settings and physical connections. Most
GPIB problems are caused by an incorrect address or faulty/loose GPIB cables.
3-5

Introduction to Instrument Control

Instrument Control using the VXIplug&play Driver
Interface Bus Verification Procedure (National Instruments Card)

1. Check the bus connection by running Win32 VISA Interactive Control. When this program
is run, it automatically reports what it finds on the bus. Notice that the program is
reporting instruments at addresses 16 and 17. As mentioned earlier, these addresses
designate the instrument and its display, respectively.

Figure 3-2. Win32 VISA Interactive Control Window: Bus Report

2. To further verify GPIB operation, double click on “GPIB0::16::INSTR” and then perform
the following steps.

a. Make sure that the “Basic I/O” tab is selected.

b. Click on the “Write” tab.

c. Enter PRES; in the “Buffer” text box.

d. Click on “Execute.”

e. This command should preset the analyzer. If an instrument preset does not occur,
there is a problem. Check all GPIB address settings and physical connections. Most
GPIB problems are caused by an incorrect address or faulty/loose GPIB cables.
3-6

Introduction to Instrument Control

Instrument Control using the VXIplug&play Driver
Figure 3-3. Win32 VISA Interactive Control: Sending a Command

Controlling the Analyzer with the VXIplug&play Driver

The “Programming Examples” CD-ROM that was shipped with this manual includes many
example programs that can be used to control your analyzer. The following sections provide
some information on using the VXIplug&play driver with the Visual C++ and Visual BASIC
programming environments.

Using Visual BASIC to Control the Analyzer

When using Visual BASIC, you will need to include the two files listed below in your project.
They were installed on your computer in the following directories when you installed the
driver:

• \vxipnp\winxx\hp875x\hp875x.bas

• \vxipnp\winxx\include\visa32.bas

NOTE The directories shown above are the default locations for these files. (“winxx”
indicates the operating system you are using, such as winnt, win95, etc.) If you
designated a different path during installation, you will need to amend the path
above to include the specific path that you indicated during installation.
3-7

Introduction to Instrument Control

Instrument Control using the VXIplug&play Driver
Using Visual C++ to Control the Analyzer

When using Visual C++, you will need to include the file listed below in your project. The file
was installed on your computer in the following directory when you installed the driver:

\vxipnp\winxx\lib\msc\hp875x_32.lib

NOTE The directory shown above is the default location for this file. (“winxx”
indicates the operating system you are using, such as winnt, win95, etc.) If you
designated a different path during installation, you will need to amend the path
above to include the specific path that you indicated during installation.
3-8

Introduction to Instrument Control

Instrument Control using HP BASIC
Instrument Control using HP BASIC
This section describes how to control the analyzer using HP BASIC 6.2 (or higher), or
HP BASIC for Windows 6.3 (or higher) on one of the following computers:

• HP 9000 Series 200/300
• HP 9000 Series 700 with HP BASIC-UX
• PC with a GPIB interface card installed

.

Required Equipment

• Computer running HP BASIC 6.2 (or higher) or HP BASIC for Windows 6.3 (or higher)

• Supported GPIB interface card

• GPIB interconnect cables (such as 10833A/B/C/D)

System Setup and GPIB Verification

1. Connect the analyzer to the computer with an GPIB cable.

Table 3-1. Additional BASIC 6.2 Programming Information

Description HP/Agilent
Part Number

HP BASIC 6.2 Programming Guide 98616-90010

HP BASIC 6.2 Language Reference (2 Volumes) 98616-90004

Using HP BASIC for Instrument Control, Volume I 82303-90001

Using HP BASIC for Instrument Control, Volume II 82303-90002

HP BASIC for Windows Manual Set E2060-90100

Table 3-2. Additional GPIB Information

Description HP/Agilent
Part Number

HP BASIC 6.2 Interface Reference 98616-90013

Tutorial Description of the General Purpose Interface Bus 5021-1927
3-9

Introduction to Instrument Control

Instrument Control using HP BASIC
Figure 3-4. The Analyzer System with Controller

2. Switch on the computer, and launch HP BASIC or HP BASIC for Windows.

3. Switch on the analyzer.

a. To verify the analyzer's address, press:

Local, SET ADDRESSES, ADDRESS: 8703

The analyzer has only one GPIB interface, though it occupies two addresses: one for
the instrument and one for the display. The display address is equal to the instrument
address with the least-significant bit incremented. The display address is
automatically set each time the instrument address is set.

The default analyzer addresses are:

— 16 for the instrument

— 17 for the display

CAUTION Other devices connected to the bus cannot occupy the same address as the
analyzer.

The analyzer displays the instrument's address in the upper right section of the
display. If the address is not 16, return the address to its default setting (16) by
pressing:

16, x1, Preset
3-10

Introduction to Instrument Control

Instrument Control using HP BASIC
b. Set the system control mode to either “pass-control” or “talker/listener” mode. These
are the only control modes in which the analyzer will accept commands over GPIB. To
set the system-control mode, press:

Local, TALKER/LISTENER

or

Local, USE PASS CONTROL

4. Check the interface bus by performing a simple command from the computer controller.
Type the following command on the controller:

OUTPUT 716;”PRES;” Execute, or Return

NOTE HP 9000 Series 300 computers use the Return key as both execute and enter.
Some other computers may have an Enter, Execute, or Exec key that performs
the same function. For reasons of simplicity, the notation Return is used
throughout this document.

This command should preset the analyzer. If an instrument preset does not occur, there is
a problem. Check all GPIB addresses and connections. Most GPIB problems are caused by
an incorrect address or faulty/loose GPIB cables.
3-11

Introduction to Instrument Control

Instrument Control using HP BASIC
Sending Commands

A remote controller can manipulate the functions of the analyzer by sending commands to
the analyzer via the General Purpose Interface Bus (GPIB). The commands used are specific
to the analyzer. Remote commands executed over the bus take precedence over manual
commands executed from the instrument's front panel. Remote commands are executed as
soon as they are received by the analyzer. A command only applies to the active channel
(except in cases where functions are coupled between channels). Most commands are
equivalent to front-panel hardkeys and softkeys.

Command Structure in BASIC

Consider the following BASIC command for setting the analyzer's start frequency to 50 MHz:

OUTPUT 716;”STAR 50 MHZ;”

The command structure in BASIC has several different elements:

the BASIC command statement OUTPUT - The BASIC data-output statement.

the appendage 716 - The data is directed to interface 7 (GPIB), and
on to the device at address 16 (the analyzer). This
appendage is terminated with a semicolon. The next
appendage is STAR, the instrument mnemonic for
setting the analyzer's start frequency.

data 50 - a single operand used by the root mnemonic STAR
to set the value.

unit MHZ - the units that the operand is expressed in.

terminator ; - indicates the end of a command, enters the data,
and deactivates the active-entry area.

The “STAR 50 MHZ;” command performs the same function as pressing the following keys
on the analyzer's front panel:

Start, 50, M/u

STAR is the root mnemonic for the start key, 50 is the data, and MHZ are the units. Where
possible, the analyzer's root mnemonics are derived from the equivalent key label. Otherwise
they are derived from the common name for the function. Chapter 1, “Alphabetical
Command Reference” lists all the root mnemonics and all the different units accepted.

The semicolon (;) following MHZ terminates the command within the analyzer. It removes
start frequency from the active-entry area, and prepares the analyzer for the next command.
If there is a syntax error in a command, the analyzer will ignore the command and look for
the next terminator. When it finds the next terminator, it starts processing incoming
commands normally. Characters between the syntax error and the next terminator are lost.
A line feed also acts as a terminator. The BASIC OUTPUT statement transmits a carriage
return/line feed following the data. This can be suppressed by putting a semicolon at the end
of the statement.
3-12

Introduction to Instrument Control

Instrument Control using HP BASIC
The OUTPUT 716; statement will transmit all items listed (as long as they are separated by
commas or semicolons) including:

• literal information enclosed in quotes

• numeric variables

• string variables

• arrays

A carriage return/line feed is transmitted after each item. Again, this can be suppressed by
terminating the commands with a semicolon. The analyzer automatically goes into remote
mode when it receives an OUTPUT command from the controller. When this happens, the
front-panel remote (R) and listen (L) GPIB status indicators illuminate. In remote mode, the
analyzer ignores any data that is input with the front-panel keys, with the exception of Local.
Pressing Local, returns the analyzer to manual operation, unless the universal GPIB
command LOCAL LOCKOUT 7 has been issued. There are two ways to exit from a local
lockout. Either issue the LOCAL 7 command from the controller or cycle the line power on
the analyzer.

Setting a parameter such as start frequency is just one form of command the analyzer will
accept. It will also accept simple commands that require no operand at all. For example,
execute:

OUTPUT 716;"AUTO;"

In response, the analyzer autoscales the active channel. Autoscale only applies to the active
channel, unlike start frequency, which applies to both channels as long as the channels are
stimulus-coupled.

The analyzer will also accept commands that switch various functions on and off. For
example, to switch on dual-channel display, execute:

OUTPUT 716;"DUACON;"

DUACON is the analyzer root mnemonic for “dual-channel display on.” This causes the
analyzer to display both channels. To go back to single-channel display mode, for example,
switching off dual-channel display, execute:

OUTPUT 716;"DUACOFF;"

The construction of the command starts with the root mnemonic DUAC (dual-channel
display) and ON or OFF is appended to the root to form the entire command.

The analyzer does not distinguish between upper- and lower-case letters. For example,
execute:

OUTPUT 716;"auto;"

NOTE The analyzer also has a debug mode to aid in troubleshooting systems. When
the debug mode is ON, the analyzer scrolls incoming GPIB commands across
the display. To manually activate the debug mode, press Local, GPIB DIAG ON.
To deactivate the debug mode from the controller, execute:

OUTPUT 716;"DEBUOFF;"
3-13

Introduction to Instrument Control

Instrument Control using HP BASIC
Command Query

Suppose the operator has changed the power level from the front panel. The computer can
find the new power level using the analyzer's command-query function. If a question mark is
appended to the root of a command, the analyzer will output the value of that function.

For instance, POWE 7 DB; sets the analyzer's output power to 7 dB, and POWE?; outputs the
current RF output power at the test port to the system controller. For example:

Type SCRATCH and press Return, to clear old programs.

Type EDIT and press Return, to access the edit mode. Then type in:

10 OUTPUT 716;"POWE?;"
20 ENTER 716;Reply
30 DISP Reply
40 END

NOTE Most commands can also be queried by sending the command (without a value)
and then sending the OUTPACTI command, as in the following example that
queries the power value:

10 OUTPUT 716;”POWE;OUTPACTI;”

Running the Program The computer will display the preset source-power level in dBm.
Change the power level by pressing Local, Power, XX, x1. Now run the program again.

When the analyzer receives POWE?, it prepares to transmit the current RF source-power level.
The BASIC statement ENTER 716 allows the analyzer to transmit information to the
computer by addressing the analyzer to talk. This illuminates the analyzer front-panel talk
(T) light. The computer places the data transmitted by the analyzer into the variables listed
in the ENTER statement. In this case, the analyzer transmits the output power, which gets
placed in the variable Reply.

The ENTER statement takes the stream of binary-data output from the analyzer and
reformats it back into numbers and ASCII strings. With the formatting set to its default state,
the ENTER statement will format the data into real variables, integers, or ASCII strings,
depending on the variable being filled. The variable list must match the data the analyzer has
to transmit. If there are not enough variables, data is lost. If there are too many variables for
the data available, a BASIC error is generated.

The formatting done by the ENTER statement can be changed. The formatting can be
deactivated to allow binary transfers of data. Also, the ENTER USING statement can be used
to selectively control the formatting.

ON/OFF commands can be also be queried. The reply is a one (1) if the function is active, a
zero (0) if it is not active. Similarly, if a command controls a function that is underlined on
the analyzer softkey menu when active, querying that command yields a one (1) if the
command is underlined, a zero (0) if it is not. For example, press Meas. Though there are
seven options on the measurement menu, only one is underlined at a time. The underlined
option will return a one (1) when queried.
3-14

Introduction to Instrument Control

Instrument Control using HP BASIC
For instance, rewrite line 10 as:

10 OUTPUT 716;"DUAC?;"

Run the program once and note the result. Then press Local, Display, DUAL CHAN, to toggle
the display mode, and run the program again.

Another example is to rewrite line 10 as:

10 OUTPUT 716;"PHAS?;"

In this case, the program will display a one (1) if phase is currently being displayed. Since the
command only applies to the active channel, the response to the PHAS? inquiry depends on
which channel is active.

Operation Complete

Occasionally, there is a need to query the analyzer as to when certain analyzer operations
have completed. For instance, a program should not have the operator connect the next
calibration standard while the analyzer is still measuring the current one. To provide such
information, the analyzer has an “operation complete” reporting mechanism, or OPC
command, that will indicate when certain key commands have completed operation. The
mechanism is activated by sending either OPC or OPC? immediately before an
OPC-compatible command. When the command completes execution, bit 0 of the event-status
register will be set. If OPC was queried with OPC?, the analyzer will also output a one (1)
when the command completes execution.

As an example, type SCRATCH and press Return.

Type EDIT and press Return.

Type in the following program:

10 OUTPUT 716;"SWET 3 S;OPC?;SING;"
Set the sweep time to 3 seconds, and OPC a single sweep.

20 DISP "SWEEPING"

30 ENTER 716;Reply The program will halt at this point until the analyzer
completes the sweep and issues a one (1).

40 DISP "DONE"

50 END
3-15

Introduction to Instrument Control

Instrument Control using HP BASIC
Running the Program Running this program causes the computer to display the sweeping
message as the instrument executes the sweep. The computer will display DONE just as the
instrument goes into hold. When DONE appears, the program could then continue on, being
assured that there is a valid data trace in the instrument.

Preparing for Remote (GPIB) Control

At the beginning of a program, the analyzer is taken from an unknown state and brought
under remote control. This is done with an abort/clear sequence. ABORT 7 is used to halt
bus activity and return control to the computer. CLEAR 716 will then prepare the analyzer to
receive commands by:

• clearing syntax errors

• clearing the input-command buffer

• clearing any messages waiting to be output

The abort/clear sequence readies the analyzer to receive GPIB commands. The next step
involves programming a known state into the analyzer. The most convenient way to do this is
to preset the analyzer by sending the PRES (preset) command. If preset cannot be used, the
status-reporting mechanism may be employed. When using the status-reporting register,
CLES (Clear Status) can be transmitted to the analyzer to clear all of the status-reporting
registers and their enables.

Type SCRATCH and press Return.

Type EDIT and press Return. Type in the following program:

10 ABORT 7 This halts all bus action and gives active control to
the computer.

20 CLEAR 716 This clears all GPIB errors, resets the GPIB interface, and
clears the syntax errors. It does not affect the
status-reporting system.

30 OUTPUT 716;"PRES;" Presets the instrument. This clears the status-reporting
system, as well as resets all of the front-panel settings,
except for the GPIB mode and the GPIB addresses.

40 END Running this program brings the analyzer to a known
state, ready to respond to GPIB control.

The analyzer will not respond to GPIB commands unless the remote line is asserted. When
the remote line is asserted, the analyzer is addressed to listen for commands from the
controller. In remote mode, all the front-panel keys are disabled (with the exception of Local,
and the line-power switch). ABORT 7 asserts the remote line, which remains asserted until a
LOCAL 7 statement is executed.

Another way to assert the remote line is to execute:

REMOTE 716

This statement asserts the analyzer's remote-operation mode and addresses the analyzer to
listen for commands from the controller. Press any front-panel key except Local. Note that
none of the front-panel keys will respond until Local, has been pressed.
3-16

Introduction to Instrument Control

Instrument Control using HP BASIC
Local, can also be disabled with the sequence:

REMOTE 716
LOCAL LOCKOUT 7

After executing the code above, none of the front-panel keys will respond. The analyzer can
be returned to local mode temporarily with:

LOCAL 716

As soon as the analyzer is addressed to listen, it goes back into local-lockout mode. The only
way to clear the local-lockout mode, aside from cycling line power, is to execute:

LOCAL 7

This command un-asserts the remote line on the interface. This puts the instrument into
local mode and clears the local-lockout command. Return the instrument to remote mode by
pressing:

Local, TALKER/LISTENER

or

Local, USE PASS CONTROL

I/O Paths

One of the features of HP BASIC is the use of input/output paths. The instrument may be
addressed directly by the instrument's device number as shown in the previous examples.
However, a more sophisticated approach is to declare I/O paths such as: ASSIGN @Nwa TO
716. Assigning an I/O path builds a look-up table in the computer's memory that contains the
device-address codes and several other parameters. It is easy to quickly change addresses
throughout the entire program at one location. I/O operation is more efficient because it uses
a table, in place of calculating or searching for values related to I/O. In the more elaborate
examples where file I/O is discussed, the look-up table contains all the information about the
file. Execution time is decreased, because the computer no longer has to calculate a device's
address each time that device is addressed.

For example:

Type SCRATCH and press Return.

Type EDIT and press Return.

Type in the following program:

10 ASSIGN @Nwa TO 716 Assigns the analyzer to ADDRESS 716.

20 OUTPUT @Nwa;"STAR 50 MHZ;" Sets the analyzer's start frequency to 50 MHz.

NOTE The use of I/O paths in binary-format transfers allows the user to quickly
distinguish the type of transfer taking place. I/O paths are used throughout the
examples and are highly recommended for use in device input/output.
3-17

Introduction to Instrument Control

Instrument Control using HP BASIC
3-18

4

GPIB Programming 4-2
Analyzer Command Syntax 4-3
Analyzer Operation 4-7
GPIB Operation 4-8
Calibration 4-19
Display Graphics 4-22
Disk File Names 4-25
GPIB Programming

GPIB Programming

GPIB Programming
GPIB Programming
In this chapter, you can find an explanation of how various commands are derived from the
analyzer front panel keys. There is also information on specific commands that can help you
coordinate the timing of analyzer operations and command processing. You can find a
general overview of GPIB operation, requirements, and capabilities. This chapter ends with
information on remotely controlling a measurement calibration, display graphics, and
assigning disk filenames.
4-2

GPIB Programming

Analyzer Command Syntax
Analyzer Command Syntax

Code Naming Convention

The analyzer GPIB commands are derived from their front-panel key titles (where possible),
according to this naming convention:

Simple commands are the first four letters of the function they control, as in POWE, the
command name for power. If the function label contains two words, the first three mnemonic
letters are the first three letters of the first word, and the fourth mnemonic letter is the first
letter of the second word. For example, ELED is derived from electrical delay.

If there are many commands grouped together in a category, as in markers, the command is
increased to 8 letters. The first four letters are the category label and the last four letters are
the function specifier. As an example, category markers are represented by the command
MARK, which is used in combination with several functions such as MARKBUCK, MARKCENT.

The code naming guidelines, listed in the following table, are used in order to:

• make commands more meaningful and easier to remember

• maintain compatibility with other products (including the 8510 series analyzers)

NOTE There are times when these guidelines are not followed due to technical
considerations.
4-3

GPIB Programming

Analyzer Command Syntax
Some codes require appendages (ON, OFF, 1, 2, etc.). Codes that do not have a front-panel
equivalent are GPIB only commands. They use a similar convention based on the common
name of the function.

Valid Characters

The analyzer accepts the following ASCII characters:

• letters

• numbers

• decimal points

• +/−

• semicolons (;)

• quotation marks (“)

• carriage returns (CR)

• linefeeds (LF)

Both upper- and lower-case letters are acceptable. Carriage returns, leading zeros, spaces,
and unnecessary terminators are ignored, except for those within a command or appendage.
If the analyzer does not recognize a character as appropriate, it generates a syntax error
message and recovers at the next terminator.

Units

The analyzer can input and output data in basic units such as Hz, dB, seconds, etc.

Table 4-1. Code Naming Convention

Convention Key Title For GPIB Code Use Example

One word Power First four letters POWE

Start STAR

Two words ELECTRICAL DELAY First three letters of first word,
first letter of second word

ELED

SEARCH RIGHT SEAR

Two words in a
group

MARKER → CENTER Four letters of both MARKCENT

Three words FIXED MKR VALUE First four Letters of first word,
first letter of second word, first
three letters of third word

MARKFVAL

S Seconds HZ Hertz

V Volts DB dB or dBm
4-4

GPIB Programming

Analyzer Command Syntax
Input data is assumed to be in basic units (see above) unless one of the following units is
used (upper and lower case are equivalent):

Command Formats

The GPIB commands accepted by the analyzer can be grouped into five input-syntax types.
The analyzer does not distinguish between upper- and lower-case letters.

General Structure:

The general syntax structure is: [code][appendage][data][unit][terminator]

The individual sections of the syntax code are explained below.

[code] The root mnemonic

[appendage] A qualifier attached to the root mnemonic. Possible appendages are ON or
OFF (toggle a function on or off), or integers, which specify one capability
out of several. There must be no spaces or symbols between the code and the
appendage.

[data] A single operand used by the root mnemonic, usually to set the value of a
function. The data can be a number or a character string. Numbers are
accepted as integers or decimals, with power of ten specified by E (for
example, STAR 0.2E+10; sets the start frequency to 2 GHz). Note the space
between the root mnemonic and the operand. Character strings must be
enclosed by double quotation marks.

For example:

A title string using RMB BASIC would look like:
OUTPUT 716;"TITL"""Unit1""";"
where the first two "" are an escape so that RMB BASIC will interpret the
third " properly.

[unit] The units of the operand, if applicable. If no units are specified, the analyzer
assumes the basic units as described previously. The data is entered into the
function when either units or a terminator are received.

MS Milliseconds KHZ Kilohertz

US Microseconds MHZ Megahertz

NS Nanoseconds GHZ Gigahertz

PS Picoseconds FS Femtoseconds
4-5

GPIB Programming

Analyzer Command Syntax
[terminator] Indicates the end of the command, enters the data, and switches the
active-entry area off. A semicolon (;) is the recommended terminator.

CAUTION Terminators are not necessary for the analyzer to interpret commands
correctly. But in the event of a syntax error, the analyzer will attempt to recover
at the next terminator. Therefore, it is recommended that each command
include a terminator. The analyzer also interprets line feeds and GPIB end or
identify (EOI) messages as terminators.

Syntax

Each command entry listed in Chapter 1, “Alphabetical Command Reference” includes the
proper syntax for the command. The conventions used are as follows:

<num> Required numerical data.

<choice1|choice2|…|choicen> An appendage that is part of the command. For example,
EDIT<DONE|LIML|LIST> indicates that the actual
commands are EDIT DONE, EDITLIML, and EDITLIST.

<$> Indicates a character string operand which must be
enclosed by double quotes.

| An either/or choice in appendages or optional data.

[] Optional data.

Syntax Example For example, the following is provided as the syntax for the CHAN
command:

CHAN<1|2|3|4>;
4-6

GPIB Programming

Analyzer Operation
Analyzer Operation

Held Commands

The analyzer cannot process GPIB commands while executing certain key commands known
as “held” commands. For example, SING; is a held command because it requires the analyzer
to take one sweep of data before executing any other commands.

Once a held command is received, the analyzer will read new commands into the input
buffer, but it will not begin the execution of any commands until the completion of the held
command. When the 15-character input buffer is full, the analyzer will put hold on the bus
until it is able to process the commands in the buffer.

NOTE Commands that call a calibration class are held if there is just one standard in
the class, since such commands trigger a measurement.

Operation Complete

Occasionally, there is a need to know when certain analyzer operations have been completed.
There is an operation-complete function (OPC) that allows a synchronization of programs
with the execution of certain key commands. This mechanism is activated by issuing OPC; or
OPC?; prior to an OPC-compatible command. The status byte or ESR operation-complete bit
will then be set after the execution of the OPC-compatible command. For example, issuing
OPC;SING; causes the OPC bit to be set when the single sweep is finished. Issuing OPC?; in
place of OPC; causes the analyzer to output a one (1) when the command execution is
complete. The analyzer will halt the computer by not transmitting the one (1) until the
command has completed. For example, executing OPC?;PRES;, and then immediately
querying the analyzer causes the bus to halt until the instrument preset is complete and the
analyzer outputs a one (1).

As another example, consider the timing of sweep completion. Send the command string
SWET 3 S;OPC?;SING; to the analyzer. This string sets the analyzer sweep time to 3 seconds,
and then waits for completion of a single sweep to respond with a one (1). The computer
should be programmed to read the number one (1) response from the analyzer indicating
completion of the single sweep. At this point a valid trace exists and the trace data could be
read into the computer.

For a list of OPC-compatible commands, refer to Chapter 2, “Command Listings”.
4-7

GPIB Programming

GPIB Operation
GPIB Operation
The general purpose interface bus (GPIB) is Agilent Technologies' hardware, software,
documentation, and support for IEEE 488.2 and IEC-625 worldwide standards for
interfacing instruments. This interface allows you to operate the analyzer and peripherals
via two methods:

• with an external system controller
• with the analyzer in system-controller mode

Device Types

The GPIB employs a party-line bus structure in which up to 15 devices can be connected on
one bus. The interface consists of 16 signal lines and 8 ground lines within a shielded cable.
With this cabling system, many different types of devices including instruments, computers,
power meters, plotters, printers, and disk drives can be connected in parallel.

Every GPIB device must be capable of performing one or more of the following interface
functions:

Talker

A “talker” is a device capable of transmitting device-dependent data when addressed to talk.
There can be only one active talker at any given time. Examples of this type of device include:

• power meters
• disk drives
• voltmeters
• counters
• tape readers

The analyzer performs as a talker when it sends trace data or marker information over the
bus.

Listener

A listener is a device capable of receiving device-dependent data over the interface when
addressed to listen. There can be as many as 14 listeners connected to the interface at any
given time. Examples of this type of device include:

• printers
• power supplies
• signal generators

The analyzer performs as a listener when it is controlled over the bus by a system controller.
4-8

GPIB Programming

GPIB Operation
Controller

A controller is defined as a device capable of:

• managing the operation of the bus

• addressing talkers and listeners

There can only be one active controller on the interface at any time. Examples of controllers
include desktop computers, minicomputers, workstations, and the analyzer. In a
multiple-controller system, active control can be passed between controllers, but there can
only be one system controller connected to the interface. The system controller acts as the
master and can regain active control at any time. The analyzer is an active controller when it
plots, prints, or stores to an external disk drive in the pass-control mode. The analyzer is also
a system controller when it is operating in the system controller mode.

GPIB Bus Structure

Figure 4-1. GPIB Bus Structure
4-9

GPIB Programming

GPIB Operation
Data Bus

The data bus consists of 8 bidirectional lines that are used to transfer data from one device
to another. Programming commands and data transmitted on these lines are typically
encoded in ASCII, although binary encoding is often used to speed up the transfer of large
arrays. Both ASCII and binary data formats are available to the analyzer. In addition, every
byte transferred over GPIB undergoes a handshake to insure valid data.

Handshake Lines

A three-line handshake scheme coordinates the transfer of data between talkers and
listeners. To ensure data integrity in multiple-listener transfers, this technique forces data
transfers to occur at the transfer rate of the slowest device connected to the interface. With
most computing controllers and instruments, the handshake is performed automatically,
making it transparent to the programmer.

Control Lines

The data bus also has five control lines. The controller uses these lines to address devices
and to send bus commands.

IFC (Interface Clear) This line is used exclusively by the system controller. When this line
is true (low), all devices (whether addressed or not) unaddress and revert to an idle state.

ATN (Attention) The active controller uses this line to define whether the information on
the data bus is command-oriented or data-oriented. When this line is true (low), the bus is in
the command mode, and the data lines carry bus commands. When this line is false (high),
the bus is in the data mode, and the data lines carry device-dependent instructions or data.

SRQ (Service Request) This line is set true (low) when a device requests service and the
active controller services the requesting device. The analyzer can be enabled to pull the SRQ
line for a variety of reasons such as requesting control of the interface, for the purposes of
printing, plotting, or accessing a disk.

REN (Remote Enable) This line is used exclusively by the system controller. When this line
is set true (low), the bus is in the remote mode, and devices are addressed by the controller
to either listen or talk. When the bus is in remote mode and a device is addressed, it receives
instructions from the system controller via GPIB rather than from its front panel (pressing
Local returns the device to front-panel operation). When this line is set false (high), the bus
and all of the connected devices return to local operation.

EOI (End or Identify) This line is used by a talker to indicate the last data byte in a
multiple-byte transmission, or by an active controller to initiate a parallel-poll sequence. The
analyzer recognizes the EOI line as a terminator, and it pulls the EOI line with the last byte of
a message output (data, markers, plots, prints, error messages). The analyzer does not
respond to parallel poll.
4-10

GPIB Programming

GPIB Operation
GPIB Requirements

Number of Interconnected Devices:

15 maximum.

Interconnection Path Maximum Cable Length:

20 meters maximum or 2 meters per device (whichever is less).

Message Transfer Scheme:

Byte serial, bit parallel asynchronous data transfer using a 3-line handshake
system.

Data Rate:

Maximum of 1 megabyte-per-second over the specified distances with
tri-state drivers. Actual data rate depends on the transfer rate of the slowest
device connected to the bus.

Address Capability:

Primary addresses: 31 talk, 31 listen. A maximum of 1 talker and 14
listeners can be connected to the interface at given time.

Multiple-Controller Capability:

In systems with more than one controller (such as this instrument), only one
controller can be active at any given time. The active controller can pass
control to another controller, but only the system controller can assume
unconditional control. Only one system controller is allowed.
4-11

GPIB Programming

GPIB Operation
GPIB Operational Capabilities

On the analyzer's rear panel, next to the GPIB connector, there is a list of GPIB device
subsets as defined by the IEEE 488.2 standard. The analyzer has the following capabilities:

These codes are completely explained in the IEEE Std 488 documents, published by:

The Institute of Electrical and Electronic Engineers, Inc.
345 East 47th Street
New York, New York 11017

Or, visit their Web site at http://standards.ieee.org

GPIB Status Indicators

When the analyzer is connected to other instruments over the GPIB, the GPIB status
indicators illuminate to display the current status of the analyzer. The GPIB status indicators
are located in the instrument-state function block on the front panel of the analyzer.

R = Remote Operation

L = Listen mode

T = Talk mode

S = Service request (SRQ) asserted by the analyzer

SH1 Full-source handshake.

AH1 Full-acceptor handshake.

T6 Basic talker, answers serial poll, unaddresses if MLA is issued. No talk-only mode.

L4 Basic listener, unaddresses if MTA is issued. No listen-only mode.

SR1 Complete service request (SRQ) capabilities.

RL1 Complete remote/local capability including local lockout.

PP0 Does not respond to parallel poll.

DC1 Complete device clear.

DT1 Responds to a Group Execute Trigger (GET) in the hold-trigger mode.

C1,C2,C3 System controller capabilities in system-controller mode.

C10 Pass control capabilities in pass-control mode.

E2 Tri-state drivers.

LE0 No extended listener capabilities.

TE0 No extended talker capabilities.
4-12

GPIB Programming

GPIB Operation
Bus Device Modes

The analyzer uses a single-bus architecture. The single bus allows both the analyzer and the
host controller to have complete access to the peripherals in the system.

Three different controller modes are possible in an GPIB system:

• system-controller mode
• talker/listener mode
• pass-control mode

Figure 4-2. Analyzer Single Bus Concept

System-Controller Mode

This mode allows the analyzer to control peripherals directly in a stand-alone environment
(without an external controller). This mode must be selected manually from the analyzer's
front panel. It can only be used if no active computer or instrument controller is connected
to the system via GPIB. If an attempt is made to set the analyzer to the system-controller
mode when another controller is connected to the interface, the following message is
displayed on the analyzer's display screen:

“ANOTHER SYSTEM CONTROLLER ON GPIB BUS”

The analyzer must be set to the system-controller mode in order to access peripherals from
the front panel. In this mode, the analyzer can directly control peripherals (plotters, printers,
disk drives, power meters, etc.) and the analyzer may plot, print, store on external disk or
perform power meter functions.
4-13

GPIB Programming

GPIB Operation
NOTE Do not attempt to use this mode for programming. Agilent recommends using
an external instrument controller when programming. See the following
section, “Talker/Listener Mode.”

Talker/Listener Mode

This is the mode that is normally used for remote programming of the analyzer. In
talker/listener mode, the analyzer and all peripheral devices are controlled from an external
instrument controller. The controller can command the analyzer to talk and other devices to
listen. The analyzer and peripheral devices cannot talk directly to each other unless the
computer sets up a data path between them. This mode allows the analyzer to act as either a
talker or a listener, as required by the controlling computer for the particular operation in
progress.

Pass-Control Mode

This mode allows the computer to control the analyzer via GPIB (as with the talker/listener
mode), but also allows the analyzer to take control of the interface in order to plot, print, or
access a disk. During an analyzer-controlled peripheral operation, the host computer is free
to perform other internal tasks (i.e. data or display manipulation) while the analyzer is
controlling the bus. After the analyzer-controlled task is completed, the analyzer returns
control to the system controller.

NOTE Performing an instrument preset does not affect the selected bus mode,
although the bus mode will return to talker/listener mode if the line power is
cycled. To set the bus mode from the front panel, use the Local key.

Analyzer Bus Modes

As discussed earlier, under GPIB control, the analyzer can operate in one of three modes:
talker/listener, pass-control, or system-controller mode.

In talker/listener mode, the analyzer behaves as a simple device on the bus. While in this
mode, the analyzer can make a plot or print using the OUTPPLOT; or OUTPPRIN; commands.
The analyzer will wait until it is addressed to talk by the system controller and then dump
the display to a plotter/printer that the system controller has addressed to listen. Use of the
commands PLOT; and PRINTALL; require control to be passed to another controller.

In pass-control mode, the analyzer can request control from the system controller and take
control of the bus if the controller addresses it to take control. This allows the analyzer to
take control of printers, plotters, and disk drives on an as-needed basis. The analyzer sets
event-status register bit 1 when it needs control of the interface, and the analyzer will
transfer control back to the system controller at the completion of the operation. It will pass
control back to its controller address, specified by ADDRCONT.
4-14

GPIB Programming

GPIB Operation
The analyzer can also operate in the system-controller mode. This mode is only used when
there is no remote controller on the bus. In this mode, the analyzer takes control of the bus,
and uses it whenever it needs to access a peripheral. While the analyzer is in this mode, no
other devices on the bus can attempt to take control. Specifically, the REN, ATN, and IFC
lines must remain unasserted, and the data lines must be freed by all but the addressed
talker.

Setting GPIB Addresses

In systems interfaced using GPIB, each instrument on the bus is identified by an GPIB
address. This address code must be different for each instrument on the bus. These
addresses are stored in non-volatile memory and are not affected when you press Preset or
cycle the power. The analyzer occupies two GPIB addresses: the instrument itself and the
display. The display address is derived from the instrument address by complementing the
instrument's least-significant bit. Hence, if the instrument is at an even address, the display
occupies the next higher address. If the instrument is at an odd address, the display occupies
the next lower address. See “Display Graphics” on page 4-22.

The analyzer addresses are set by pressing Local SET ADDRESSES. In system-controller
mode, the addresses must be set for the plotter, printer, disk drive, and power meter.

The default address for the analyzer is device 16, and the display address is device 17.

NOTE There is also an address for the system controller. This address refers to the
controller when the analyzer is being used in pass-control mode. This is the
address that control is passed back to when the analyzer-controlled operation
is complete.

Response to GPIB Meta-Messages
 (IEEE-488 Universal Commands)

Abort

The analyzer responds to the abort message (IFC) by halting all listener, talker, and
controller functions.

Device Clear

The analyzer responds to the device clear commands (DCL, SDC) by clearing the input and
output queues, and clearing any GPIB errors. The status registers and the error queue are
unaffected.

Local

The analyzer will go into local mode if the local command (GTL) is received, the remote line
is unasserted, or the front-panel local key is pressed. Changing the analyzer's GPIB status
from remote to local does not affect any of the front-panel functions or values.
4-15

GPIB Programming

GPIB Operation
Local Lockout

If the analyzer receives the local-lockout command (LLO) while it is in remote mode, it will
disable the entire front panel except for the line power switch. A local-lockout condition can
only be cleared by releasing the remote line, although the local command (GTL) will place the
instrument temporarily in local mode.

Parallel Poll

The analyzer does not respond to parallel-poll configure (PPC) or parallel-poll unconfigure
(PPU) messages.

Pass Control

If the analyzer is in pass-control mode, is addressed to talk, and receives the take-control
command (TCT), from the system control it will take active control of the bus. If the analyzer
is not requesting control, it will immediately pass control to the system controller's address.
Otherwise, the analyzer will execute the function for which it sought control of the bus and
then pass control back to the system controller.

Remote

The analyzer will go into remote mode when the remote line is asserted and the analyzer is
addressed to listen. While the analyzer is held in remote mode, all front-panel keys (with the
exception of Local) are disabled. Changing the analyzer's GPIB status from remote to local
does not affect any front-panel settings or values.

Serial Poll

The analyzer will respond to a serial poll with its status byte, as defined in “Error Reporting”
on page 7-2. To initiate the serial-poll sequence, address the analyzer to talk and issue a
serial-poll enable command (SPE). Upon receiving this command, the analyzer will return its
status byte. End the sequence by issuing a serial-poll disable command (SPD). A serial poll
does not affect the value of the status byte, and it does not set the instrument to remote
mode.

Trigger

In hold mode, the analyzer responds to device trigger by taking a single sweep. The analyzer
responds only to selected-device trigger (SDT). This means that it will not respond to group
execute-trigger (GET) unless it is addressed to listen. The analyzer will not respond to GET if
it is not in hold mode.
4-16

GPIB Programming

GPIB Operation
IEEE 488.2 Common Commands

IEEE 488.2 defines a set of common commands. All instruments are required to implement a
subset of these commands, specifically those commands related to status reporting,
synchronization and internal operations. The rest of the common commands are optional.
The following list details which of these IEEE 488.2 common commands are implemented in
the analyzer and the response of the analyzer when the command is received.

*CLS Clears the instrument Status Byte by emptying the error queue and clearing
all event registers, also cancels any preceding *OPC command or query (does
not change the enable registers or transition filters).

*ESE <num> Sets bits in the Standard Event Status Enable Register — current setting is
saved in non-volatile memory.

*ESE? Reads the current state of the Standard Event Status Enable Register.

*ESR? Reads and clears the current state of the Standard Event Status Register.

*IDN? Returns a string that uniquely identifies the analyzer. The string is of the
form:
AGILENT,8703B,0,X.XX
where X.XX is the firmware revision of the instrument.

*LRN? This returns a binary string of device specific characters that, when sent
back to the analyzer will restore the instrument state active when *LRN?
was sent. Data formatting (ENTER USING “-K” in HP BASIC) or a similar
technique should be used to ensure that the transfer does not terminate on a

carriage return or line feed (both <C
R> and <L

F> are present in the learn
string as part of the data).

*OPC Operation complete command. The analyzer will generate the OPC message
in the Standard Event Status Register when all pending overlapped
operations have been completed (e.g. a sweep, or a preset).

*OPC? Operation complete query. The analyzer will return an ASCII “1” when all
pending overlapped operations have been completed.

*PCB <num> Sets the pass-control-back address (the address of the controller before a
pass control is executed).

*RST Executes a device reset and cancels any pending *OPC command or query.

*SRE <num> Sets bits in the Service Request Enable Register. Current setting is saved in
non-volatile memory.

*SRE? Reads the current state of the Service Request Enable Register.

*STB? Reads the value of the instrument Status Byte. This is a non-destructive
read—the Status Byte is cleared by the *CLS command.
4-17

GPIB Programming

GPIB Operation
*TST? Returns the result of a complete self-test. An ASCII 0 indicates no failures
found. Any other character indicates a specific self-test failure. Does not
perform any self-tests.

*WAI Prohibits the instrument from executing any new commands until all
pending overlapped commands have been completed.
4-18

GPIB Programming

Calibration
Calibration
Measurement calibration over GPIB follows the same command sequence as a calibration
from the front-panel. For detailed information on measurement calibration, refer to your
analyzer’s user’s guide.

1. Start by selecting a calibration kit, such as 3.5mm(CALK35MM;).

2. Select a calibration type, such as S11 1-port (CALIS111;).

3. Call each class used by the calibration type, such as FORWARD: OPEN (CLASS11A;)
During a 2-port calibration, the reflection, transmission, and isolation subsequences must
be opened before the classes in the subsequence are called, and then closed at the end of
each subsequence.

4. If a class has more than one standard in it, select a standard from the menu presented
(STANA to STANG).

5. If, during a calibration, two standards are measured to satisfy one class, the class must be
closed with DONE;.

6. Declare the calibration done, such as with DONE 1-PORT CAL (SAV1;).

The STANA to STANG commands will hold off the GPIB until completion because they trigger a
sweep. If a class has only one standard in it, which means that it will trigger a sweep when
called, the class command will also hold off the GPIB.

NOTE Since different cal kits can have a different number of standards in a given
class, any automated calibration sequence is valid only for a specific cal kit.
4-19

GPIB Programming

Calibration
Table 4-2. Relationship between Calibrations and Classes

Class

 R
es

p
on

se

 R
es

p
o

n
se

 &
 I

so
la

ti
o

n

S
11

 1
-p

o
rt

S
22

 1
-p

o
rt

O
n

e
p

at
h

 2
-p

or
t

F
u

ll
 2

-p
or

t

T
R

L
/

L
R

M

F
w

d
 E

n
h

 R
es

p

R
ev

 E
n

h
R

es
p

E
/O

 R
es

p
 &

 M
at

ch

O
/E

 R
es

p
 &

 M
at

ch

Reflection:a

a. These subheadings must be called when doing full 2-port calibrations.

• • • • • •

S11A, RE FW MTCH • • • • • • •

S11B, LN FW MTCH • • • • • • •

S11C, LN FW TRAN • • • • • • •

S22A, LN RV MTCH • • • • •

S22B, LN RV TRAN • • • • •

S22C, LN RV TRAN • • • • •

Transmission:a • • • • • • •

Forward match • • • • •

Forward trans • • • • • •

Reverse match • • •

Reverse trans • • •

Isolation:a • • • • • • •

Forward • • • • • •

Reverse • • •

Response •

Response and isolation:

Response •

Isolation •

TRL thru:b

b. These subheadings must be called when doing TRL 2-port calibrations

•

TRL reflect:b •

TRL line or matchb: •
4-20

GPIB Programming

Calibration
Table 4-3. Error Coefficient Arrays

Array Response Response
& Isolation

1-port Enhanced
Response

2-port a

a. One path, 2-port cal duplicates arrays 1 to 6 in arrays 7 to 12.

TRL/
LRM

O/E
Response
& Match

E/O
Response
& Match

01 ER or ET EX (ED)b

b. Response and isolation corrects for crosstalk and transmission tracking in transmission measurements, and for
directivity and reflection tracking in reflection measurements.

ED ED EDF EDF EDR EDI

02 ET (ER) ES ES ESF ESF ESR ES

03 ER ER ERF ERF ERR ER

04 EX EXF EXF EXF EX

05 EL
c

c. This term is used to generate the calibration coefficients, but is not used during measurement error correction.

ELF ELF ELF ET

06 ET ETF ETF ETF

07 EDR EDR EDF

08 ESR ESR ESF

09 ERR ERR ERF

10 EXR EXR

11 ELR ELR

12 ETR ETR

Meaning of first subscript: Meaning of second subscript:
D: directivity F: forward

S: source match R: reverse

R: reflection tracking

X: crosstalk or isolation

L: load match

T: transmission tracking
4-21

GPIB Programming

Display Graphics
Display Graphics

User Graphics Units

Size of graticule only:

• length = 350 to 4915

• height = 150 to 3950

Size of complete display (graticule plus annotation and softkey labels)

• length = 0 to 5850

• height = 0 to 4095

HP-GL Commands

AF

Erases the user graphics display.

CS

Turns off the measurement display.

DIrun,rise

Specifies the direction in which characters are lettered.

DF

Sets the default values.

LB<text><etx>

Labels the display, placing the symbols starting at the current pen position. All incoming
characters are printed until the etx symbol is received. The default etx symbol is the ASCII
value 3 (not the character 3).

run,rise Direction

1,0 0 degrees

0,1 90 degrees

−1,0 180 degrees

0,−1 270 degrees
4-22

GPIB Programming

Display Graphics
LTa

Specifies line type:

OP

Outputs P1 and P2, the scaling limits: 0,0,5850,4095.

PAx,y

Draws from the current pen position to x,y. There can be many pairs of x,y coordinates
within one command. They are separated by commas, and the entire sequence is terminated
with a semicolon.

PD

Pen down. A line is drawn only if the pen is down.

PG

Erases the user graphics display.

PRx,y

Plot relative: draws a line from the current pen position to a position y up and x over.

PU

Pen up. Stops anything from being drawn.

RS

Turns on the measurement display.

SIh,w

Sets the character size, for height h and width w in centimeters:

a line type

0 solid

1 solid

2 short dashes

3 long dashes

h w char size

0.16 0.20 smallest

0.25 0.30

0.33 0.39

0.41 0.49 largest
4-23

GPIB Programming

Display Graphics
SPn

Selects pen n:

Accepted but ignored HP-GL commands

n brightness

0 blank

1 yellow

2 green

3 light blue

4 light red

5 white

6 red

7 blue

Command Description

IM Input service request mask

IP Input Pl,P2 scaling points

IW Input window

OC Output current pen position

OE Output error

OI Output identity

OS Output status

SL Character slant

SR Relative character size
4-24

GPIB Programming

Disk File Names
Disk File Names
Disk files created by the analyzer consist of a state name of up to eight characters, such as
“FILTER,” appended with up to two characters. In LIF format, the file name is “FILTERXX.”
In DOS format, the filename is “FILTER.XX.” The first appended character is the file type,
telling the kind of information in the file. The second appended character is a data index,
used to distinguish files of the same type.

Error-corrected data, raw data, formatted data, memory traces, and calibration files are
FORM 3 data files (IEEE 64-bit floating point format). The other files are not meant to be
decoded. The following table lists the appended characters and their meanings.

Table 4-4. File Suffix Character Meaning

Char 1 Meaning Char 2 Meaning

I, P Instrument state

W Four-channel instrument state

G Graphics 1 Display graphics

D Error-corrected data 1
2
3
4

Channel 1
Channel 2
Channel 3
Channel 4

2 Channel 2

R Raw data 1 to 4 Channel 1/Channel 3, raw arrays 1 to 4

5 to 8 Channel 2/Channel 4, raw arrays 1 to 4

F Formatted data 1
2
3
4

Channel 1
Channel 2
Channel 3
Channel 4

M Memory trace 1
2
3
4

Channel 1
Channel 2
Channel 3
Channel 4

C Cal kit K

1 Cal data, channel 1 O
1 to 9
A
B
C

Stimulus state
Coefficients 1 to 9
Coefficient 10
Coefficient 11
Coefficient 12

2 Cal data, channel 2 0 to C Same as channel 1
4-25

GPIB Programming

Disk File Names
F Full page (HP-GL plot) P

L Left (HP-GL plot) L
U

Lower
Upper

R Right (HP-GL plot) L
U

Lower
Upper

S Error-corrected data (S2P) 1
2

Channel 1
Channel 2

Table 4-4. File Suffix Character Meaning

Char 1 Meaning Char 2 Meaning
4-26

5

Reading Analyzer Data 5-2
Output Queue 5-3
Command Query 5-3
Identification 5-3
Output Syntax 5-4
Marker Data 5-5
Array-Data Formats 5-7
Trace-Data Transfers 5-8
Stimulus-Related Values 5-9
Reading Analyzer Data

Reading Analyzer Data

Reading Analyzer Data
Reading Analyzer Data
In this chapter, you can find information on how to remotely query the analyzer for
measurement data, extract the data, and then transfer the data to a medium for later
analysis.
5-2

Reading Analyzer Data

Output Queue
Output Queue
Whenever an output-data command is received, the analyzer puts the data into the output
queue (or buffer) where it is held until the system controller outputs the next read command.
The queue, however, is only one event long: the next output-data command will overwrite the
data already in the queue. Therefore, it is important to read the output queue immediately
after every query or data request from the analyzer.

Command Query
All instrument functions can be queried to find the current on/off state or value. For
instrument state commands, append the question mark character (?) to the command to
query the state of the functions. Suppose the operator has changed the power level from the
analyzer's front panel. The computer can ascertain the new power level using the analyzer's
command-query function. If a question mark is appended to the root of a command, the
analyzer will output the value of that function. For instance, POWE 7DB; sets the source
power to 7 dB, and POWE?; outputs the current RF source power at the test port. When the
analyzer receives POWE?;, it prepares to transmit the current RF source power level. This
condition illuminates the analyzer front-panel talk light (T). In this case, the analyzer
transmits the output power level setting to the controller.

On/off commands can also be queried. The reply is a one (1) if the function is on, or a zero (0)
if it is off. For example, if a command controls an active function that is underlined on the
analyzer display, querying that command yields a one (1) if the command is underlined or a
zero (0) if it is not. As another example, there are nine options on the format menu and only
one option is underlined at a time. Only the underlined option will return a one when
queried.

For instance, send the command string DUAC?; to the analyzer. If dual-channel display is
switched on, the analyzer will return a one (1) to the instrument controller.

Similarly, to determine if phase is being measured and displayed, send the command string
PHAS?; to the analyzer. In this case, the analyzer will return a one (1) if phase is currently
being displayed. Since the command only applies to the active channel, the response to the
PHAS?; query depends on which channel is active.

Identification
The analyzer's response to IDN?; is “AGILENT,8703B,xxxxxxxxxx,X.XX” where
xxxxxxxxxx is the serial number, and X.XX is the firmware revision of the instrument.

The analyzer also has the capability to output its serial number with the command
OUTPSERN;, and to output its installed options with the command OUTPOPTS;.
5-3

Reading Analyzer Data

Output Syntax
Output Syntax
The following three types of data are transmitted by the analyzer in ASCII format:

• response to query

• certain output commands

• ASCII floating-point (FORM4) array transfers

Marker-output commands and queried commands are output in ASCII format only, meaning
that each character and each digit is transmitted as a separate byte, leaving the receiving
computer to reconstruct the numbers and strings. Numbers are transmitted as 24-character
strings, consisting of:

Figure 5-1. FORM4 (ASCII) Data-Transfer Character String

When multiple numbers are sent, the numbers are separated by commas. When number pairs

are sent, the numbers are separated by a comma and terminated with a line feed, <L
F>.

Sign ‘−’ for negative, blank for positive.

3 digits Digits to the left of the decimal point.

Decimal Point Standard decimal point.

15 digits Digits to the right of the decimal point.

E Exponent notation.

Sign (in exponent) ‘−’ for negative, ‘+’ for positive.

Exponent Two digits for the exponent.
5-4

Reading Analyzer Data

Marker Data
Marker Data
The analyzer offers several options for outputting trace-related data. Data can be selectively
read from the trace using the markers, or the entire trace can be read by the controller. If
only specific information is required (such as a single point on the trace or the result of a
marker search), the marker output command can be used to read the information. Specific
data points can be read using the OUTPDATP or OUTPDATR commands. These commands allow
a much faster data transfer than when using markers to output specific data points.

A marker must first be assigned to the desired frequency before it can be used to read the
trace data. This is accomplished using the marker commands. The controller sends a marker
command followed by a frequency within the trace-data range. If the actual desired
frequency was not sampled, the markers can be set to continuous mode and the desired
marker value will be linearly interpolated from the two nearest points. This interpolation can
be prevented by putting the markers into discrete mode. Discrete mode allows the marker to
only be positioned on a measured trace-data point.

As an alternative, the analyzer can be programmed to choose the stimulus value by using the
Marker Search functions. Maximum, minimum, target value, or bandwidth search can be
automatically determined with Marker Search functions. To continually update the search,
switch the marker tracking on. The trace-value search will remain activated until one of the
following occurs:

• The search is switched off.

• The tracking is switched off.

• All markers are switched off.

Marker data can be output to a controller by using analyzer commands. These commands
cause the analyzer to transmit three numbers: marker value 1, marker value 2, and marker
stimulus value. For example, in log-magnitude display mode we get the log magnitude at the
marker (value 1), zero (value 2), and the marker frequency. Table 5-1, “Units as a Function of
Display Format,” on page 5-6 for a complete listing of all the possibilities for values 1 and 2.
The possibilities for the marker stimulus value are:

• frequency

• CW time

• power (in power sweep mode)
5-5

Reading Analyzer Data

Marker Data
Table 5-1. Units as a Function of Display Format

Display
Format

Marker
Mode

OUTPMARK OUTPFORM Marker Readouta

a. The marker readout values are the marker values displayed in the upper right-hand corner of the display.
They also correspond to the value and auxiliary value associated with the fixed marker.

Value 1 Value 2 Value 1 Value 2 Value Aux
Value

LOG MAG dB N/Sb

b. Value 2 is not significant in this format, though it is included in data transfers. .

dB N/Sb dB N/S

PHASE degrees N/Sb degrees N/Sb degrees N/S

DELAY seconds N/Sb seconds N/Sb seconds N/S

SMITH CHART LIN MKR lin mag degrees real imag lin mag degrees

LOG MKR dB degrees real imag dB degrees

Re/Im real imag real imag real imag

R + jX real
ohms

imag
ohms

real imag real
ohms

imag
ohms

G + jB real
Siemens

imag
Siemens

real imag real
Siemens

imag
Siemens

POLAR LIN MKR lin mag degrees real imag lin mag degrees

LOG MKR dB degrees real imag dB degrees

Re/Im real imag real imag real imag

LIN MAG lin mag N/Sb lin mag N/Sb lin mag N/S

SWR SWR N/Sb SWR N/Sb SWR N/S

REAL real N/Sb real N/Sb real N/S

IMAGINARY imag N/Sb imag N/Sb imag N/S
5-6

Reading Analyzer Data

Array-Data Formats
Array-Data Formats
The analyzer can transmit and receive arrays in the analyzer's internal binary format as well
as four different numeric formats. The current format is set with the FORM1, FORM2, FORM3,
FORM4, and FORM5 commands. These commands do not affect learnstring transfers,
calibration-kit string transfers, or non-array transfers, such as command query, or output
marker values.

A transmitted array will be output in the current format, and the analyzer will attempt to
read incoming arrays according to the current format. Each data point in an array is a pair of
numbers, usually a real/imaginary pair. The number of data points in each array is the same
as the number of points in the current sweep.

The five formats are described below:

FORM1 The analyzer's internal binary format, 6 bytes-per-data point. The array is
preceded by a four-byte header. The first two bytes represent the string
“#A”, the standard block header. The second two bytes are an integer
representing the number of bytes in the block to follow. FORM1 is best
applied when rapid data transfers, not to be modified by the computer nor
interpreted by the user, are required.

FORM2 IEEE 32-bit floating-point format, 4 bytes per number, 8 bytes-per-data
point. The data is preceded by the same header as in FORM1. Each number
consists of a 1-bit sign, an 8-bit biased exponent, and a 23-bit mantissa.
FORM2 is the format of choice if your computer is not a PC, but supports
single-precision floating-point numbers.

FORM3 IEEE 64-bit floating-point format, 8 bytes per number, 16 bytes-per-data
point. The data is preceded by the same header as in FORM1. Each number
consists of a 1-bit sign, an 11-bit biased exponent, and a 52-bit mantissa.
This format may be used with double-precision floating-point numbers. No
additional precision is available in the analyzer data, but FORM3 may be a
convenient form for transferring data to your computer.

FORM4 ASCII floating-point format. There is no header. The analyzer always uses
FORM4 to transfer data that is not related to array transfers (i.e. marker
responses and instrument settings).

FORM5 PC-DOS 32-bit floating-point format with 4 bytes-per-number, 8
bytes-per-data point. The data is preceded by the same header as in FORM1.
The byte order is reversed with respect to FORM2 to comply with PC-DOS
formats. If you are using a PC-based controller, FORM5 is the most effective
format to use.

The analyzer terminates each transmission by asserting the EOI interface line with the last
byte transmitted. Table 5-2 offers a comparative overview of the five array-data formats.
5-7

Reading Analyzer Data

Trace-Data Transfers
Trace-Data Transfers
Transferring trace-data from the analyzer using an instrument controller can be divided into
three steps:

1. Allocating an array to receive and store the data

2. Commanding the analyzer to transmit the data

3. Accepting the transferred data

Data residing in the analyzer is always stored in pairs for each data point (to accommodate
real/imaginary pairs). Hence, the receiving array must be two elements wide, and as deep as
the number of points in the array being transferred. Memory space for the array must be
declared before any data can be transferred from the analyzer to the computer.

As mentioned earlier, the analyzer can transmit data over GPIB in five different formats. The
type of format affects what kind of data array is declared (real or integer), because the
format determines what type of data is transferred.

Table 5-2. Analyzer Array-Data Formats

Format
Type

Type of Data Bytes per
Data
Value

Bytes per point
2 data values

(201 pts)
Bytes per trace

Total Bytes
with header

FORM 1 Internal
Binary

N/A 6 1206 1210

FORM 2 IEEE 32-bit
Floating-Point

4 8 1608 1612

FORM 3 IEEE 64-bit
Floating-Point

8 16 3216 3220

FORM 4 ASCII Numbers 24
(Typical)

50
(Typical)

10,050
(Typical)

10,050a
(Typical)

a. FORM4 does not use a header.

FORM 5 PC-DOS 32-bit
Floating-Point

4 8 1608 1612
5-8

Reading Analyzer Data

Stimulus-Related Values
Stimulus-Related Values
Frequency-related values are calculated for the analyzer display. The start and stop
frequencies or center and span frequencies of the selected frequency range are available to
the programmer.

In a linear frequency range, the frequency values can be easily calculated because the trace
data points are equally spaced across the trace. Relating the data from a linear frequency
sweep to frequency can be done by querying the start frequency, the frequency span, and the
number of points in the trace.

Given that information, the frequency of point n in a linear-frequency sweep is represented
by the equation:

In most cases, this is an easy solution for determining the related frequency value that
corresponds with a data point. This technique is illustrated in “Example 3B: Data Transfer
Using FORM 4 (ASCII Transfer)” on page 8-66.

When using log sweep or a list-frequency sweep, the points are not evenly spaced over the
frequency range of the sweep. In these cases, an effective way of determining the frequencies
of the current sweep is to use the OUTPLIML command. Although this command is normally
used for limit lines, it can also be used to identify all of the frequency points in a sweep.
Limit lines do not need to be on in order to read the frequencies directly out of the
instrument with the OUTPLIML command. Refer to “Example 3D: Data Transfer Using
Frequency-Array Information” on page 8-70.

NOTE Another method of identifying all of the frequency points in a sweep is to use
the marker commands MARKBUCK<num> and OUTPMARK in a “FOR NEXT”
programming loop that corresponds to the number of points in the sweep.
MARKBUCK<num> places a marker at a point in the sweep, where <num> is the
number of the point in a sweep, and OUTPMARK outputs the stimulus value as
part of the marker data.

F StartFrequency n 1–() Span
Points 1–()

------------------------------×+=
5-9

Reading Analyzer Data

Stimulus-Related Values
5-10

6

Data Processing Chain 6-2
Data Arrays 6-2
Common Output Commands 6-3
Fast Data Transfer Commands 6-4
Data Levels 6-4
Learnstring and Calibration-Kit String 6-5
Data Processing Chain

Data Processing Chain

Data Processing Chain
Data Processing Chain
This chapter contains descriptions of how the analyzer processes measurement data.

NOTE Refer to “OUTP” on page 1-50 for detailed information (such as proper syntax)
for the output commands discussed in this chapter.

Data Arrays
The following figure shows the different kinds of data available within the instrument:

• pre-raw measured data

• raw measured data

• error-corrected data

• formatted data

• trace memory

• calibration coefficients

Trace memory can be directly output to a controller with OUTPMEMO;, but it cannot be
directly transmitted back.
6-2

Data Processing Chain

Common Output Commands
Figure 6-1. The Data-Processing Chain For Measurement Outputs

Common Output Commands
All the data-output commands are designed to insure that the data transmitted reflects the
current state of the instrument:

• OUTPDATA, OUTPRAW, and OUTPFORM will not transmit data until all formatting functions
have completed.

• OUTPLIML, OUTPLIMM, and OUTPLIMF will not transmit data until the limit test has
occurred (if activated).

• OUTPMARK will activate a marker if a marker is not already selected. It will also insure that
any current marker searches have been completed before transmitting data.

• OUTPMSTA ensures that the statistics have been calculated for the current trace before
transmitting data. If the statistics are not activated, it will activate the statistics long
enough to update the current values before deactivating the statistics.
6-3

Data Processing Chain

Fast Data Transfer Commands
• OUTPMWID ensures that a bandwidth search has been executed for the current trace before
transmitting data. If the bandwidth-search function is not activated, it will activate the
bandwidth-search function long enough to update the current values before switching off
the bandwidth-search functions.

Fast Data Transfer Commands
The analyzer has a distinct fast data transfer command. These command circumvents the
internal “byte handler” routine and output trace dumps as block data. In other words, the
analyzer outputs the entire array without allowing any process swapping to occur. FORM4,
ASCII data transfer times are not affected by these routines. However, there are speed
improvements with binary data formats. The following is a description of the fast data
transfer command:

• OUTPFORF outputs the formatted display trace array from the active channel in the
current output format. Only the first number in each of the OUTPFORM data pairs is
actually transferred for the display formats LOG MAG, PHASE, group DELAY, LIN MAG,
SWR, REAL and IMAGinary. Because the data array does not contain the second value for
these display formats, the INPUFORM command may not be used to re-input the data back
into the analyzer. The second value may not be significant in some display formats thus
reducing the number of bytes transferred.

Data Levels
Different levels of data can be read out of the instrument. The following sections describe the
different types of data that are available from the analyzer.

Raw Data

The basic measurement data, reflecting the stimulus parameters, IF averaging, and IF
bandwidth. If a full 2-port measurement calibration is activated, there are actually four raw
arrays kept: one for each raw S-parameter. The data can be output to a controller with the
OUTPRAW commands. Normally, only raw 1 is available, and it holds the current parameter. If
a 2-port measurement calibration is active, the four arrays refer to S11, S21, S12, and S22
respectively. This data is represented in real/imaginary pairs.
6-4

Data Processing Chain

Learnstring and Calibration-Kit String
Error Coefficients

The results of a measurement calibration are arrays containing error coefficients. These
error coefficients are then used in the error-correction routines. Each array corresponds to a
specific error term in the error model. Your analyzer’s user’s guide details which error
coefficients are used for specific calibration types, as well as the arrays those coefficients
can be found in. Not all calibration types use all 12 arrays. The data is stored as
real/imaginary pairs.

Error-Corrected Data

This is the raw data with error-correction applied. The array represents the currently
measured parameter, and is stored in real/imaginary pairs. The error-corrected data can be
output to a controller with the OUTPDATA; command. The OUTPMEMO; command reads the
trace memory, if available. The trace memory also contains error-corrected data. Note that
neither raw nor error-corrected data reflect such post-processing functions as
electrical-delay offset, or trace math.

Formatted Data

This is the array of data actually being displayed. It reflects all post-processing functions
such as electrical delay. The units of the array output depend on the current display format.

Generally, formatted data is the most useful of the five data levels, because it is the same
information the operator sees on the display. However if post-processing is unnecessary
(such as in some cases involving smoothing), error-corrected data may be more desirable.
Error-corrected data also affords the user the opportunity to input the data to the analyzer
and apply post-processing at another time.

Learnstring and Calibration-Kit String
The learn string is a summary of the instrument state. It includes all the front-panel settings,
the limit-test tables, and the list-frequency table for the current instrument state. It does not
include calibration data or the information stored in the save/recall registers.

The learn string can be output to a controller with the OUTPLEAS; command, which
commands the analyzer to start transmitting the binary string. The string has a fixed length
for a given firmware revision. The array has the same header as in FORM 1. Refer to
“Example 5A: Using the Learn String” on page 8-84.

The calibration kit includes a set of key characteristics of the calibration standards used to
determine the calibration accuracy. There are default kits for several different connector
types. There is also space for a user-defined calibration kit. The command OUTPCALK outputs
the currently active calibration kit as a binary string in FORM 1. As with the learn string, the
calibration-kit string has a fixed length for a given firmware revision.
6-5

Data Processing Chain

Learnstring and Calibration-Kit String
6-6

7

Error Reporting 7-2
Status Reporting 7-3
The Status Byte 7-6
The Event-Status Register and Event-Status Registers B and L 7-7
Error Output 7-8
Error Messages in Numerical Order 7-9
Error Reporting

Error Reporting

Error Reporting
Error Reporting
This chapter contains descriptions of analyzer error reporting process. The descriptions
include how the analyzer reports errors to a status register and how you can cause the
register to output the errors messages.
7-2

Error Reporting

Status Reporting
Status Reporting
The analyzer status reporting structure is depicted in the following figure and tables.

Figure 7-1. Status Reporting Structure
7-3

Error Reporting

Status Reporting
Table 7-1. Status Byte: Status Bit Definitions

Status Byte

Bit Name Definition

0 Waiting for reverse GET Not available.

1 Waiting for forward GET Not available.

2 Check event-status register B One of the enabled bits in event status register B has been set.

3 Check error queue An error has occurred and the message has been placed in the
error queue, but has not been read yet.

4 Message in output queue A command has prepared information to be output, but it has not
been read yet.

5 Check event-status register One of the enabled bits in the event-status register has been set.

6 Request service One of the enabled status-byte bits is causing an SRQ.

7 Preset An instrument preset has been executed.

Table 7-2. Event Status Register: Status Bit Definitions

Bit Name Definition

0 Operation complete A command for which OPC has been enabled has completed
operation.

1 Request control The analyzer has been commanded to perform an operation that
requires control of a peripheral, and needs control of GPIB.
Requires pass-control mode.

2 Query error The analyzer has been addressed to talk but there is nothing in
the output queue to transmit.

3 Sequence Bit A sequence has executed the assert SRQ command.

4 Execution error A command was received that could not be executed.

5 Syntax error The incoming GPIB commands contained a syntax error. The
syntax error can only be cleared by a device clear or an
instrument preset.

6 User request The operator has pressed a front-panel key or turned the RPG.

7 Power on A power-on sequence has occurred since the last read of the
register.
7-4

Error Reporting

Status Reporting
Table 7-3. Event Status Register B: Status Bit Definitions

Bit Name Definition

0 Single sweep, number of
groups, or calibration step
complete

A single sweep, group, or calibration step has been completed
since the last read of the register.

1 Service routine waiting or
done

An internal service routine has completed operation, or is waiting
for an operator response.

2 Data entry complete A terminator key has been pressed or a value entered over GPIB
since the last read of the register.

3 Limit failed, Channel 2 Limit test failed on Channel 2.

4 Limit failed, Channel 1 Limit test failed on Channel 1.

5 Search failed, Channel 2 A marker search was executed on Channel 2, but the target value
was not found.

6 Search failed, Channel 1 A marker search was executed on Channel 1, but the target value
was not found.

7 Copy Complete A copy has been completed since the last read of the register.

Table 7-4. Event Status Register L: Status Bit Definitions

Bit Name Definition

0 Laser Temp Loop Open 1 = Laser temperature control is not functioning.

1 Modulator Temp Loop Open 1 = Modulator temperature control is not functioning.

2 Receiver Temp Loop Open 1 = Reciever Temperature control is not functioning.

3 Lightwave Test Set Missing 1 = No lightwave test set installed or cable to test set not
connected.

4 Bias Adjust Signal Missing 1 = Laser bias signal missing.

5 Laser Softkey Off 1 = Laser is off via softkey.

6 Laser Keyswitch Off 1 = Laser is off via keyswitch.

7 Autobias Off 1 = Autobias is turned on.
7-5

Error Reporting

The Status Byte
The Status Byte
The analyzer has a status-reporting mechanism that reports information about specific
analyzer functions and events. The status byte (consisting of summary bits) is the top-level
register. Each bit reflects the condition of another register or queue. If a summary bit is set
(equals 1), the corresponding register or queue should be read to obtain the status
information and clear the condition. Reading the status byte does not affect the state of the
summary bits. The summary bits always reflect the condition of the summarized queue or
register.

The status byte can be read by a serial poll or by using the command OUTPSTAT. OUTPSTAT
does not automatically put the instrument in remote mode, thus giving the operator access to
the analyzer front-panel functions. OUTPSTAT will return an ASCII (text) integer (0–255) that
can be interpreted as the 8-bit status byte. Using the OUTPSTAT command will not necessarily
return the same status byte value as when using a serial poll because the “Message in Output
Queue” bit is always set when using OUTPSTAT.

The status byte:

• summarizes the error queue

• summarizes two event-status registers that monitor specific conditions inside the
instrument

• contains a bit that is set when the instrument is issuing a service request (SRQ) over GPIB

• contains a bit that is set when the analyzer has data to transmit over GPIB

Any bit in the status byte can be selectively enabled to generate a service request (SRQ) when
set. Setting a bit in the service-request-enable register with the SREnn command enables the
corresponding bit in the status byte. The units variable nn represents the binary equivalent

of the bit in the status byte. For example, SRE24; enables status-byte bits 3 and 4 (since 23 +

24 = 24) and disables all the other bits. SRE will not affect the state of the status-register bits.

The sequencing bit can be set during the execution of a test sequence to assert an SRQ.

The status byte also summarizes two queues: the output queue and the error queue. (The
error queue is described in the next section.) When the analyzer outputs information, it puts
the information in the output queue where it resides until the controller reads it. The output
queue is only one event long. Therefore, the next output request will clear the current data.
The summary bit is set whenever there is data in the output queue.
7-6

Error Reporting

The Event-Status Register and Event-Status Registers B and L
The Event-Status Register and Event-Status Registers B and L
The event-status register, the event-status register B, and the event-status register L are the
other three registers in the status-reporting structure. They are selectively summarized by
bits in the status byte via enable registers. The event-status registers consist of latched bits.
A latched bit is set at the beginning of a specific trigger condition in the instrument. It can
only be cleared by reading the register. The bit will not be reactivated until the condition
occurs again. If a bit in one of these three registers is enabled, it is summarized by the
summary bit in the status byte. The registers are enabled using the commands ESEnn; and
ESNBnn;, both of which work in the same manner as SREnn. The units variable nn represents
the binary equivalent of the bit in the status byte. Event-status register L is primarily a
hardware status register for information specific to the lightwave portion of the analyzer.

If a bit in one of the event-status registers is enabled, and therefore, the summary bit in the
status byte is enabled, an SRQ will be generated. The SRQ will not be cleared until one of the
five following conditions transpire:

• The event-status register is read, clearing the latched bit.

• The summary bit in the status byte is disabled.

• The event-status register bit is disabled.

• The status registers are cleared with the CLES; command.

• An instrument preset is performed.

Service requests generated when there are error messages or when the instrument is waiting
for the group execute trigger (GET) command are cleared by:

• reading the errors

• issuing GET (disabling the bits)

• clearing the status registers
7-7

Error Reporting

Error Output
Error Output
When an error condition is detected in the analyzer, a message is generated, displayed on the
analyzer's display screen, and placed in the error queue. Error messages consist of an error
number followed by an ASCII string no more than 50 characters long. The string contains the
same message that appears on the analyzer's display. The error queue holds up to 20 error
messages in the order in which they occur. The error messages remain in the error queue
until the errors are read by the system controller using the command OUTPERRO. The
OUTPERRO command outputs one error message.

NOTE The error queue can only be cleared by performing an instrument preset or by
cycling the line power. In order to keep the queue up-to-date, it is important to
read all of the messages out of the queue each time errors are detected.
7-8

Error Reporting

Error Messages in Numerical Order
Error Messages in Numerical Order

Error
Number

Error

2 INVALID KEY

4 PHASE LOCK CAL FAILED

5 NO IF FOUND: CHECK R INPUT LEVEL

6 POSSIBLE FALSE LOCK

7 PHASE LOCK FAILURE

8 PHASE LOCK LOST

9 LIST TABLE EMPTY

10 CONTINUOUS SWITCHING NOT ALLOWED

11 SWEEP TIME INCREASED

12 SWEEP TIME TOO FAST

13 AVERAGING INVALID ON NON-RATIO MEASURE

14 FUNCTION NOT VALID

15 NO MARKER DELTA - SPAN NOT SET

17 DEMODULATION NOT VALID

21 POWER SUPPLY HOT!

22 POWER SUPPLY SHUT DOWN!

24 PRINTER: not on, not connect, wrong addrs

25 PRINT ABORTED

26 PLOTTER: not on, not connect, wrong addrs

27 PLOT ABORTED

28 PLOTTER NOT READY-PINCH WHEELS UP

30 REQUESTED DATA NOT CURRENTLY AVAILABLE

31 ADDRESSED TO TALK WITH NOTHING TO SAY

32 WRITE ATTEMPTED WITHOUT SELECTING INPUT TYPE

33 SYNTAX ERROR

34 BLOCK INPUT ERROR

35 BLOCK INPUT LENGTH ERROR
7-9

Error Reporting

Error Messages in Numerical Order
36 SYST CTRL OR PASS CTRL IN LOCAL MENU

37 ANOTHER SYSTEM CONTROLLER ON GPIB

38 DISK: not on, not connected, wrong addrs

39 DISK HARDWARE PROBLEM

40 DISK MEDIUM NOT INITIALIZED

41 NO DISK MEDIUM IN DRIVE

42 FIRST CHARACTER MUST BE A LETTER

43 ONLY LETTERS AND NUMBERS ARE ALLOWED

44 NOT ENOUGH SPACE ON DISK FOR STORE

45 NO FILE(S) FOUND ON DISK

46 ILLEGAL UNIT OR VOLUME NUMBER

47 INITIALIZATION FAILED

48 DISK IS WRITE PROTECTED

49 DISK WEAR-REPLACE DISK SOON

50 TOO MANY SEGMENTS OR POINTS

51 INSUFFICIENT MEMORY

54 NO VALID MEMORY TRACE

55 NO VALID STATE IN REGISTER

56 INSTRUMENT STATE MEMORY CLEARED

57 OVERLOAD ON INPUT R, POWER REDUCED

58 OVERLOAD ON INPUT A, POWER REDUCED

59 OVERLOAD ON INPUT B, POWER REDUCED

60 ANALOG INPUT OVERLOAD

61 8703 SOURCE PARAMETERS CHANGED

62 NOT VALID FOR PRESENT TEST SET

63 CALIBRATION REQUIRED

64 CURRENT PARAMETER NOT IN CAL SET

66 CORRECTION TURNED OFF

68 ADDITIONAL STANDARDS NEEDED

69 NO CALIBRATION CURRENTLY IN PROGRESS

Error
Number

Error
7-10

Error Reporting

Error Messages in Numerical Order
70 NO SPACE FOR NEW CAL. CLEAR REGISTERS

71 MORE SLIDES NEEDED

72 EXCEEDED 7 STANDARDS PER CLASS

73 SLIDES ABORTED (MEMORY REALLOCATION)

74 CALIBRATION ABORTED

75 FORMAT NOT VALID FOR MEASUREMENT

77 WRONG DISK FORMAT, INITIALIZE DISK

111 DEADLOCK

112 SELF TEST #n FAILED

114 NO FAIL FOUND

116 POWER METER INVALID

117 PWR MTR: NOT ON/CONNECTED OR WRONG ADDRS

118 POWER METER NOT SETTLED

119 DEVICE: not on, not connect, wrong addrs

123 NO MEMORY AVAILABLE FOR INTERPOLATION

124 SELECTED SEQUENCE IS EMPTY

125 DUPLICATING TO THIS SEQUENCE NOT ALLOWED

126 NO MEMORY AVAILABLE FOR SEQUENCING

127 CAN'T STORE/LOAD SEQUENCE, INSUFFICIENT MEMORY

130 D2/D1 INVALID WITH SINGLE CHANNEL

131 FUNCTION NOT VALID DURING MOD SEQUENCE

132 MEMORY FOR CURRENT SEQUENCE IS FULL

133 THIS LIST FREQ INVALID

144 NO LIMIT LINES DISPLAYED

145 SWEEP TYPE CHANGED TO LINEAR SWEEP

150 LOG SWEEP REQUIRES 2 OCTAVE MINIMUM SPAN

151 SAVE FAILED / INSUFFICIENT MEMORY

152 D2/D1 INVALID: CH1 CH2 NUM PTS DIFFERENT

153 SEQUENCE MAY HAVE CHANGED, CAN'T CONTINUE

154 INSUFFICIENT MEMORY, PWR MTR CAL OFF

Error
Number

Error
7-11

Error Reporting

Error Messages in Numerical Order
157 SEQUENCE ABORTED

159 CH1 (CH2) TARGET VALUE NOT FOUND

163 FUNCTION ONLY VALID DURING MOD SEQUENCE

164 TOO MANY NESTED SEQUENCES. SEQ ABORTED

165 PARALLEL PORT NOT AVAILABLE FOR GPIO

166 PRINT/PLOT IN PROGRESS, ABORT WITH LOCAL

167 PARALLEL PORT NOT AVAILABLE FOR COPY

168 INSUFFICIENT MEMORY FOR PRINT/PLOT

169 GPIB COPY IN PROGRESS, ABORT WITH LOCAL

170 COPY: device not responding; copy aborted

171 PRINTER: paper error

172 PRINTER: not on line

173 PRINTER: not connected

174 PRINTER: power off

175 PRINTER: error

176 PRINTER: busy

177 PRINTER: not handshaking

178 print color not supported with EPSON

179 POWER OUT MAY BE UNLEVELED

180 DOS NAME LIMITED TO 8 CHARS + 3 CHAR EXTENSION

181 BAD FREQ FOR HARMONIC

183 BATTERY FAILED. STATE MEMORY CLEARED

184 BATTERY LOW! STORE SAVE REGS TO DISK

185 CANNOT FORMAT DOS DISKS ON THIS DRIVE

187 SWEEP MODE CHANGED TO CW TIME SWEEP

188 DIRECTORY FULL

189 DISK READ/WRITE ERROR

190 DISK MESSAGE LENGTH ERROR

192 FILE NOT FOUND

193 ASCII: MISSING 'BEGIN' statement

Error
Number

Error
7-12

Error Reporting

Error Messages in Numerical Order
194 ASCII: MISSING 'CITIFILE' statement

195 ASCII: MISSING 'DATA' statement

196 ASCII: MISSING 'VAR' statement

197 FILE NOT FOUND OR WRONG TYPE

198 NOT ALLOWED DURING POWER METER CAL

199 CANNOT MODIFY FACTORY PRESET

200 ALL REGISTERS HAVE BEEN USED

201 FUNCTION NOT VALID FOR INTERNAL MEMORY

202 FUNCTION NOT AVAILABLE

203 CANNOT READ/WRITE HFS FILE SYSTEM

205 LIMIT TABLE EMPTY

206 ARGUMENT OUT OF RANGE

207 POWER OUT MAY BE UNLEVELED

208 EXT R CHAN MUST BE ON FOR FREQUENCY OFFSET MODE

209 SWEEP MUST BE STEPPED FOR FREQUENCY OFFSET MODE?

211 OVERLAP!LIST TYPE CHANGED TO STEPPED

212 ANALOG BUS DISABLED IN 6 KHZ IF BW

213 RANGE CAUSED POWER LVL CHANGE IN LIST

214 CORRECTION ON: AUX CHANNEL(S) RESTORED

215 CAUTION: CORRECTION OFF: AUX CHANNEL(S) DISABLED

218 CAUTION: FLOPPY DISK IS FULL

219 LASER TEMPERATURE LOOP OPEN

220 MODULATOR TEMPERATURE LOOP OPEN

221 RECEIVER TEMPERATURE LOOP OPEN

223 ISOL AVGS < SWP AVGS

Error
Number

Error
7-13

Error Reporting

Error Messages in Numerical Order
7-14

8

Example Programs 8-2
Measurement Process 8-3
Programming Examples 8-5
Measurement Setup Examples 8-9
Measurement Calibration Examples 8-26
Measurement Data Transfer Examples 8-63
Measurement Process Synchronization Examples 8-74
Analyzer System Setup Examples 8-84
List-Frequency and Limit-Test Table Examples 8-92
Report Generation Examples 8-106
Limit Line and Data Point Special Functions 8-125
Programming Examples

Programming Examples

Example Programs
Example Programs
This chapter provides explanations and listings for the example programs that are included
on the CD-ROM (part number 08703-10202) that is shipped with the analyzer. Refer to
“Measurement Process” on page 8-3 for a description of the typical measurement process.

All of the examples on the CD-ROM are provided in HP BASIC. See Chapter 3, “Introduction
to Instrument Control” for information on using HP BASIC, and installing and using the
VXIplug&play driver.

NOTE “Example 1A: Setting Parameters for Electrical Devices” on page 8-9 includes
program listings for HP BASIC, Visual C++, and Visual BASIC. These listings are
provided for you to see a comparison of the different programming languages.
The rest of the examples in this manual only include the HP BASIC listing. You
can readily view all of the programs by accessing the CD-ROM that was shipped
with this manual.
8-2

Programming Examples

Measurement Process
Measurement Process
This section explains how to organize instrument commands into a measurement sequence.
A typical measurement sequence consists of the following steps:

1. setting up the instrument
2. calibrating the test setup
3. connecting the device under test
4. taking the measurement data
5. post-processing the measurement data
6. transferring the measurement data

Step 1. Setting Up the Instrument

Define the measurement by setting all of the basic measurement parameters. These include:

• the sweep type
• the frequency span
• the sweep time
• the number of points (in the data trace)
• the RF power level
• the type of measurement
• the IF averaging
• the IF bandwidth

You can quickly set up an entire instrument state, using the save/recall registers and the
learn string. The learn string is a summary of the instrument state compacted into a string
that the computer reads and retransmits to the analyzer. See “Example 5A: Using the Learn
String” on page 8-84.

Step 2. Calibrating the Test Setup

After you have defined an instrument state, you should perform a measurement calibration.
Although it is not required, a measurement calibration improves the accuracy of your
measurement data.

The following list describes several methods to calibrate the analyzer:

• Stop the program and perform a calibration from the analyzer's front panel.

• Use the computer to guide you through the calibration, as discussed in “Measurement
Calibration Examples” on page 8-26.

• Transfer the calibration data from a previous calibration back into the analyzer, as
discussed in “Example 5C: Saving and Restoring the Analyzer Instrument State” on
page 8-88.
8-3

Programming Examples

Measurement Process
Step 3. Connecting the Device under Test

After you connect your test device, you can use the computer to speed up any necessary
device adjustments such as limit testing, bandwidth searches, and trace statistics.

Step 4. Taking the Measurement Data

Measure the device response and set the analyzer to hold the data. This captures the data on
the analyzer display.

By using the single-sweep command (SING), you can ensure a valid sweep. When you use this
command, the analyzer completes all stimulus changes before starting the sweep, and does
not release the GPIB hold state until it has displayed the formatted trace. Then when the
analyzer completes the sweep, the instrument is put into hold mode, freezing the data.
Because single sweep is OPC-compatible, it is easy to determine when the sweep has been
completed.

The number-of-groups command (NUMGn) triggers multiple sweeps. It is designed to work the
same as single-sweep command. NUMGn is useful for making a measurement with an
averaging factor n (n can be 1 to 999). Both the single-sweep and number-of-groups
commands restart averaging.

Step 5. Post-Processing the Measurement Data

Figure 6-1 on page 6-3 shows the process functions used to affect the data after you have
made an error-corrected measurement. These process functions have parameters that can be
adjusted to manipulate the error-corrected data prior to formatting. They do not affect the
analyzer's data gathering. The most useful functions are trace statistics, marker searches,
and electrical-delay offset.

After performing and activating a full 2-port measurement calibration, any of the four
S-parameters may be viewed without taking a new sweep.

Step 6. Transferring the Measurement Data

Read your measurement results. All the data-output commands are designed to ensure that
the data transmitted reflects the current state of the instrument.
8-4

Programming Examples

Programming Examples
Programming Examples
The following example programs provide you with factory-tested solutions for several
remotely-controlled analyzer processes. The programs can be used in their present state or
modified to suit specific needs. The programs discussed in this section can be found on the
“Programming Examples” CD-ROM that was shipped with this manual.

Table 8-1. Measurement Setup Example Programs

Example
Number

Description File Name(s) on
CD-ROM

1A Setting Parameters for Electrical Devices EXAMP1A
EXAMP1A.CPP
EXAMP1A.FRM

1B

1C

Setting Parameters on Two Channels for Optical Devices

Setting Parameters on Four Channels for Optical Devices

LEXAMP1B

LEXAMP1C

1D Verifying Parameters EXAMP1D

Table 8-2. Measurement Calibration Example Programs

Example
Number

Description File Name(s) on
CD-ROM

2A Response Calibration for E/E Devices EXAMP2A

2B Response Calibration for O/O, E/O, O/E Devices LEXAMP2B

2C 1-Port Measurement Calibration for E/E Devices EXAMP2C

2D Enhanced Response Calibration for E/E Devices EXAMP2D

2E Full 2-Port Measurement Calibration for E/E Devices EXAMP2E

2F Response and Match Calibration for O/E Devices LEXAMP2F

2G Adapter Removal Calibration for E/E Devices EXAMP2G

2H Using Raw Data to Create a Calibration (Simmcal) for E/E
Devices

EXAMP2H

2I Response and Match Calibration for E/O Devices LEXAMP2I

2J Take4 — Error Correction Processed on an External PC EXAMP2J

Table 8-3. Measurement Data Transfer Example Programs

Example
Number

Description File Name(s) on
CD-ROM

3A Data Transfer Using Markers EXAMP3A

3B Data Transfer Using FORM 4 (ASCII Transfer) EXAMP3B

3C Data Transfer Using Floating-Point Numbers EXAMP3C
8-5

Programming Examples

Programming Examples
3D Data Transfer Using Frequency−Array Information EXAMP3D

3E Data Transfer Using FORM 1 (Internal Binary Format) EXAMP3E

Table 8-4. Measurement Process Synchronization Example Programs

Example
Number

Description File Name(s) on
CD-ROM

4A Using the Error Queue EXAMP4A

4B Generating Interrupts EXAMP4B

4C Power Meter Calibrationa EXAMP4C

a. This example program will not work with HP BASIC for Windows.

Table 8-5. Measurement Process Synchronization Example Programs

Example
Number

Description File Name(s) on
CD-ROM

5A Using the Learn String EXAMP5A

5B Reading Calibration Data EXAMP5B

5C Saving and Restoring the Analyzer Instrument State EXAMP5C

Table 8-3. Measurement Data Transfer Example Programs

Example
Number

Description File Name(s) on
CD-ROM
8-6

Programming Examples

Programming Examples
Table 8-6. Limit-Line Testing Example Programs

Example
Number

Description File Name(s) on
CD-ROM

6A Setting Up a List-Frequency Table in Stepped List Mode EXAMP6A

6B Setting Up a List-Frequency Table in Swept List Mode EXAMP6B

6C Selecting a Single Segment from a Table of Segments EXAMP6C

6D Setting Up a Limit Test Table EXAMP6D

6E Performing PASS/FAIL Tests while Tuning EXAMP6E

Table 8-7. Report Generation Example Programs

Example
Number

Description File Name(s) on
CD-ROM

7A Operation Using Talker/Listener Mode EXAMP7A

7B Controlling Peripherals Using Pass-Control Modea

a. This example program will not work with HP BASIC for Windows.

EXAMP7B

7C Printing with the Parallel Port EXAMP7C

7D Plotting to a File and Transferring the File Data to a Plotter EXAMP7D

7E Reading Plot Files From a Diska EXAMP7E

7F Reading ASCII Disk Files to the Instrument Controller's Disk
File

EXAMP7F
8-7

Programming Examples

Programming Examples
Program Information

The following information is provided for every HP BASIC example program included on the
CD-ROM that is shipped with the analyzer:

• A program description

• An outline of the program's processing sequence

• A step-by-step instrument-command-level tutorial explanation of the program including:

❏ The command mnemonic and command name for the GPIB instrument command used
in the program.

❏ An explanation of the operations and affects of the GPIB instrument commands used
in the program.

Analyzer Features Helpful in Developing Programming Routines

Analyzer-Debug Mode

The analyzer-debug mode aids you in developing programming routines. The analyzer
displays the commands being received. If a syntax error occurs, the analyzer displays the last
buffer and points to the first character in the command line that it could not understand.

You can enable this mode from the front panel by pressing Local, HP-IB DIAG ON. The debug
mode remains activated until you preset the analyzer or deactivate the mode. You can also
enable this mode over the GPIB using the DEBUON; command and disable the debug mode
using the DEBUOFF; command.

User-Controllable Sweep

There are three important advantages to using the single-sweep mode:

1. The user can initiate the sweep.

2. The user can determine when the sweep has completed.

3. The user can be confident that the trace data has be derived from a valid sweep.

Execute the command string OPC?;SING; to place the analyzer in single-sweep mode and
trigger a sweep. Once the sweep is complete, the analyzer returns an ASCII character one (1)
to indicate the completion of the sweep.

NOTE The measurement cycle and the data acquisition cycle must always be
synchronized. The analyzer must complete a measurement sweep for the data
to be valid.
8-8

Programming Examples

Measurement Setup Examples
Measurement Setup Examples
The programs included in this section provide the option to perform instrument-setup
functions for the analyzer from a remote controller. Examples 1A, 1B, and 1C are programs
designed to set up the analyzer's measurement parameters. Example 1D is a program
designed to verify the measurement parameters.

Example 1A: Setting Parameters for Electrical Devices

In general, the procedure for setting up measurements on the analyzer via GPIB follows the
same sequence as if the setup was performed manually. There is no required order, as long as
the desired frequency range, number of points, and power level are set prior to performing
the calibration first, and the measurement second.

This example sets the following parameters:

• data display formats

• number of channels and graticules displayed

• frequency range

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The analyzer is adjusted to measure return loss (S11) on channel 1 and display as log
magnitude.

• The analyzer is adjusted to measure return loss (S11) on channel 2 and display the phase.

• The dual-channel display mode is activated.

• The system operator is prompted to enter the frequency range of the measurement.

• The displays are autoscaled.

• The system operator is prompted to press “Enter” on the computer keyboard to view four
types of measurements simultaneously.

• Channels 3 and 4 are turned on.

• Channel 2 is adjusted to measure transmission (S21) displayed in log magnitude, and then
the display is autoscaled.

• Channel 3 is adjusted to measure reflected power (A) displayed in log magnitude, and
then the display is autoscaled.

• Channel 4 is adjusted to measure transmitted power (B) displayed in log magnitude, and
then the display is autoscaled.

• The four channels are each displayed in a separate graticule.

• The analyzer is released from remote control and the program ends.
8-9

Programming Examples

Measurement Setup Examples
BASIC Program Listing

10 ! This program demonstrates setup of various measurement parameters such
20 ! as start frequency, stop frequency, etc. The program first selects one
30 ! type of measurement to be viewed using dual-channel display format.
40 ! The specified start and stop frequencies are then programmed and the
50 ! analyzer display is autoscaled. The program concludes by displaying
60 ! four types of measurements simultaneously.
70 !
80 ! EXAMP1A Setting Parameters for Electrical Devices
90 !
100 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
110 !
120 CLEAR SCREEN
130 ! Initialize the system
140 ABORT 7 ! Generate an IFC (Interface Clear)
150 CLEAR @Nwa ! SDC (Selected Device Clear) analyzer
160 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
170 ENTER @Nwa;Reply ! Read in the 1 returned
180 !
190 ! Set up measurement and display
200 OUTPUT @Nwa;”CHAN1;” ! Channel 1
210 OUTPUT @Nwa;”AUXCOFF;” ! Turn off auxiliary channel, if it is on
220 OUTPUT @Nwa;”S11;” ! Return Loss (Reflection) measurement
230 OUTPUT @Nwa;”LOGM;” ! Log magnitude display
240 !
250 OUTPUT @Nwa;”CHAN2;” ! Channel 2
260 OUTPUT @Nwa;”AUXCOFF;” ! Turn off auxiliary channel, if it is on
270 OUTPUT @Nwa;”S11;” ! Return Loss (Reflection) measurement
280 OUTPUT @Nwa;”PHAS;” ! Phase display
290 !
300 OUTPUT @Nwa;”DUACON;” ! Dual channel display
310 !
320 ! Request start and stop frequency
330 INPUT “ENTER START FREQUENCY (MHz):”,F_start
340 INPUT “ENTER STOP FREQUENCY (MHz):”,F_stop
350 !
360 ! Program the analyzer settings
370 OUTPUT @Nwa;”STAR”;F_start;”MHZ;” ! Set the start frequency
380 OUTPUT @Nwa;”STOP”;F_stop;”MHZ;” ! Set the stop frequency
390 !
400 ! Autoscale the displays
410 OUTPUT @Nwa;”CHAN1;AUTO;” ! Autoscale channel 1 display
420 OUTPUT @Nwa;”CHAN2;AUTO;” ! Autoscale channel 2 display
430 !
440 PRINT “The display should now be autoscaled.”
450 INPUT “Press RETURN to view four types of measurements simultaneously”,X
460 !
470 OUTPUT @Nwa;”CHAN1;AUXCON;” ! Turn on auxiliary channel (Channel 3)
480 OUTPUT @Nwa;”CHAN2;AUXCON;” ! Turn on auxiliary channel (Channel 4)
490 !
500 ! Channel 2 Insertion Loss (Transmission) measurement
510 OUTPUT @Nwa;”S21;”
520 OUTPUT @Nwa;”LOGM;AUTO;” ! Channel 2 log magnitude and autoscale
530 !
540 ! Channel 3 Reflected Power measurement
550 OUTPUT @Nwa;”CHAN3;MEASA;”
560 OUTPUT @Nwa;”LOGM;AUTO;” ! Channel 3 log magnitude and autoscale
8-10

Programming Examples

Measurement Setup Examples
570 !
580 ! Channel 4 Transmitted Power measurement
590 OUTPUT @Nwa;”CHAN4;MEASB;”
600 OUTPUT @Nwa;”LOGM;AUTO;” ! Channel 4 log magnitude and autoscale
610 !
620 OUTPUT @Nwa;”SPLID4;” ! Display as four separate graticules
630 !
640 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
650 ENTER @Nwa;Reply ! Read the 1 when complete
660 LOCAL @Nwa ! Release HP-IB control
670 END

Visual C++ Program Listing

#include <stdlib.h>
#include <stdio.h>
#include <conio.h>

#include “visa.h”
#include “875x_cpp.h”

ViStatus initialize(ViRsrc Nwa, ViBoolean id_query, ViBoolean do_reset, ViPSession
vi_ptr);
ViStatus checkErr(ViSession vi, ViStatus err_status);

/***/
/* hp875x Instrument Driver EXAMPLE #1A */
/* */
/* This program demonstrates setup of various measurement parameters such */
/* as start frequency, stop frequency, etc. The program first selects one */
/* type of measurement to be viewed using dual-channel display format. */
/* The specified start and stop frequencies are then programmed and the */
/* analyzer display is autoscaled. The program concludes by displaying */
/* four types of measurements simultaneously. */
/***/
int main ()
{
ViSessionvi;
ViStatuserr_status;
ViRsrc nwa;
ViReal64 f_start;
ViReal64 f_stop;
ViBoolean reply;

printf(“Example 1a --\n”);
printf(“This program demonstrates setup of various measurement parameters such\n”);
printf(“as start frequency, stop frequency, etc. The program first selects one\n”);
printf(“type of measurement to be viewed using dual-channel display format.\n”);
printf(“The specified start and stop frequencies are then programmed and the\n”);
printf(“analyzer display is autoscaled. The program concludes by displaying\n”);
printf(“four types of measurements simultaneously.\n\n”);

nwa = “GPIB0::16::INSTR”;

// Initialize the instrument
initialize(nwa, VI_FALSE, VI_TRUE, &vi);
8-11

Programming Examples

Measurement Setup Examples
// Set the timeout to 3000 msec (3 sec)
err_status = hp875x_timeOut(vi, 3000);
checkErr(vi, err_status);

// Set up measurement and display

// Channel 1
err_status = hp875x_channelSelect(vi, hp875x_CH1);
checkErr(vi, err_status);
// Turn auxiliary channel off.
err_status = hp875x_auxChannel(vi, hp875x_CH1, hp875x_OFF);
checkErr(vi, err_status);
// Return Loss measurement, no parameter conversion
// hp875x_S_PAR11 is interpreted as hp875x_REFL
err_status = hp875x_measType(vi, hp875x_S_PAR11, hp875x_CONV_OFF);
checkErr(vi, err_status);
// Log magnitude display
err_status = hp875x_displaySelect(vi,hp875x_CH1,hp875x_DISP_DATA,hp875x_DISP_LOGM);
checkErr(vi, err_status);
// Channel 2
err_status = hp875x_channelSelect(vi, hp875x_CH2);
checkErr(vi, err_status);
// Turn auxiliary channel off.
err_status = hp875x_auxChannel(vi, hp875x_CH2, hp875x_OFF);
checkErr(vi, err_status);
// Return Loss measurement, no parameter conversion
err_status = hp875x_measType(vi, hp875x_S_PAR11, hp875x_CONV_OFF);
checkErr(vi, err_status);
// Phase display
err_status = hp875x_displaySelect(vi,hp875x_CH2,hp875x_DISP_DATA,hp875x_DISP_PHAS);
checkErr(vi, err_status);
// Dual channel display (single graticule)
err_status = hp875x_dualSplit(vi, hp875x_DUAL_CHAN_ON, hp875x_SPLIT_CHAN_OFF);
checkErr(vi, err_status);
// Request start and stop frequency
printf(“Enter Start Frequency (MHz)\n”);
scanf(“%lf”, &f_start);
f_start *= 1000000;
printf(“Enter Stop Frequency (MHz)\n”);
scanf(“%lf”, &f_stop);
f_stop *= 1000000;
// Program the frequency settings
err_status = hp875x_frequency(vi, hp875x_FREQ_STRT_STOP, f_start, f_stop);
checkErr(vi, err_status);
// Autoscale the displays
err_status = hp875x_channelSelect(vi, hp875x_CH1);
checkErr(vi, err_status);
err_status = hp875x_autoscale(vi);
checkErr(vi, err_status);
err_status = hp875x_channelSelect(vi, hp875x_CH2);
checkErr(vi, err_status);
err_status = hp875x_autoscale(vi);
checkErr(vi, err_status);
printf(“The display should now be autoscaled.\n”);
printf(“Press any key on the computer keyboard to view four types of measurements\n”);
printf(“simultaneously on the analyzer display.\n”);
// Wait for keyboard input, then remove character from buffer
while (!_kbhit());
8-12

Programming Examples

Measurement Setup Examples
while (_kbhit()) getch();
// Channel 1
err_status = hp875x_channelSelect(vi, hp875x_CH1);
checkErr(vi, err_status);
// Turn auxiliary channel on.
err_status = hp875x_auxChannel(vi, hp875x_CH1, hp875x_ON);
checkErr(vi, err_status);
// Channel 2
err_status = hp875x_channelSelect(vi, hp875x_CH2);
checkErr(vi, err_status);
// Turn auxiliary channel on.
err_status = hp875x_auxChannel(vi, hp875x_CH2, hp875x_ON);
checkErr(vi, err_status);
// Channel 2 Insertion Loss measurement, no parameter conversion
// hp875x_S_PAR21 is interpreted as hp875x_TRANS
err_status = hp875x_measType(vi, hp875x_S_PAR21, hp875x_CONV_OFF);
checkErr(vi, err_status);
// Log magnitude and autoscale
err_status = hp875x_displaySelect(vi,hp875x_CH2,hp875x_DISP_DATA,hp875x_DISP_LOGM);
checkErr(vi, err_status);
err_status = hp875x_autoscale(vi);
checkErr(vi, err_status);
// Channel 3 Reflected Power measurement, no parameter conversion
err_status = hp875x_channelSelect(vi, hp875x_CH3);
checkErr(vi, err_status);
err_status = hp875x_measType(vi, hp875x_IN_MA, hp875x_CONV_OFF);
checkErr(vi, err_status);
// Log magnitude and autoscale
err_status = hp875x_displaySelect(vi,hp875x_CH3,hp875x_DISP_DATA,hp875x_DISP_LOGM);
checkErr(vi, err_status);
err_status = hp875x_autoscale(vi);
checkErr(vi, err_status);
// Channel 4 Transmitted Power measurement, no parameter conversion
err_status = hp875x_channelSelect(vi, hp875x_CH4);
checkErr(vi, err_status);
err_status = hp875x_measType(vi, hp875x_IN_MB, hp875x_CONV_OFF);
checkErr(vi, err_status);
// Log magnitude and autoscale
err_status = hp875x_displaySelect(vi,hp875x_CH4,hp875x_DISP_DATA,hp875x_DISP_LOGM);
checkErr(vi, err_status);
err_status = hp875x_autoscale(vi);
checkErr(vi, err_status);
// Display all 4 measurements, each in a separate graticule, Channel 3 in upper right
err_status = hp875x_dualSplit4Parm(vi, hp875x_DUAL_CHAN_ON, hp875x_DISP_4_GRAT,
hp875x_DISP_2_CHAN3_TOP, hp875x_DISP_4_CHAN3_UPR);
checkErr(vi, err_status);
// Wait for analyzer to finish
err_status = hp875x_opc_Q(vi, “WAIT”, &reply);
checkErr(vi, err_status);
// Close the session
err_status = hp875x_close(vi);
checkErr(vi, err_status);
printf(“Program completed\n”);
return(0);
}

ViStatus initialize(ViRsrc Nwa, ViBoolean id_query, ViBoolean do_reset, ViPSession
vi_ptr)
8-13

Programming Examples

Measurement Setup Examples
{
ViSession vi;
ViStatuserr_status;
ViChar err_message[256];

/* Note that this function can verify that the instrument specified is an */
/* hp875x (id_query=VI_TRUE) and can send a reset to the instrument */
/* (do_reset=VI_TRUE). */

 err_status = hp875x_init(Nwa, id_query, do_reset, &vi);

 if ((err_status < VI_SUCCESS) || (vi == VI_NULL))
 {
 printf(“\ninit failed with return code %d\n”, err_status);
 if (vi != VI_NULL)
 {
 hp875x_error_message(vi,err_status,err_message);
 printf(“ Error Status: %d\n”, err_status);
 printf(“ Error Message: %s\n”, err_message);
 }
 exit (err_status);
 }

 *vi_ptr = vi;

 return(VI_SUCCESS);
}

ViStatus checkErr (ViSession vi, ViStatus err_status)
{
 ViInt32 inst_err;
 ViChar err_message[256];

 if(VI_SUCCESS > err_status)
 {
 /* Send a device clear to ensure communication with */
 /* the instrument. */

 hp875x_dcl(vi);

 /* If the driver is set to detect instrument errors, and */
 /* an instrument error is detected, the error code is */
 /* hp875x_INSTR_ERROR_DETECTED (see 875x_cpp.h). In this */
 /* case, query the instrument for the error and display */
 /* it. Otherwise, the error is a driver error. Query the */
 /* driver for the error and display it. */

 if(hp875x_INSTR_ERROR_DETECTED == err_status)

 {
 hp875x_error_query(vi, &inst_err, err_message);
 printf(“Instrument Error : %ld, %s\n”, inst_err, err_message);

 }
 else
 {
 hp875x_error_message(vi, err_status, err_message);
8-14

Programming Examples

Measurement Setup Examples
 printf(“Driver Error : %ld, %s\n”, err_status, err_message);
 }

 /* Optionally reset the instrument, close the */
 /* instrument handle, and exit the program. */

 /* hp875x_reset(vi); */
 /* hp875x_close(vi); */
 /* exit(err_status); */
 return VI_TRUE;
 }

return VI_SUCCESS ;
}

Visual BASIC Program Listing

VERSION 5.00
Begin VB.Form frmExample1a
 Caption = “hp875x Visual Basic Programming Example 1a”
 ClientHeight = 5610
 ClientLeft = 1140
 ClientTop = 1515
 ClientWidth = 5895
 LinkTopic = “Form1”
 PaletteMode = 1 ‘UseZOrder
 ScaleHeight = 5610
 ScaleWidth = 5895
 Begin VB.ListBox lstText
 Height = 4350
 ItemData = “frmExamp1a.frx”:0000
 Left = 360
 List = “frmExamp1a.frx”:0002
 TabIndex = 2
 Top = 120
 Width = 5175
 End
 Begin VB.CommandButton cmdQuit
 Caption = “Quit”
 Height = 495
 Left = 3120
 TabIndex = 1
 Top = 4800
 Width = 1455
 End
 Begin VB.CommandButton cmdExecute
 Caption = “Execute Program”
 Height = 495
 Left = 1200
 TabIndex = 0
 Top = 4800
 Width = 1455
 End
End
Attribute VB_Name = “frmExample1a”
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
8-15

Programming Examples

Measurement Setup Examples
Attribute VB_Exposed = False
‘***
‘* hp875x Instrument Driver EXAMPLE #1A *
‘* *
‘* This program demonstrates setup of various measurement parameters such *
‘* as start frequency, stop frequency, etc. The program first selects one *
‘* type of measurement to be viewed using dual-channel display format. *
‘* The specified start and stop frequencies are then programmed and the *
‘* analyzer display is autoscaled. The program concludes by displaying *
‘* four types of measurements simultaneously. *
‘***

Private Sub cmdExecute_Click()

Dim vi As Long
Dim err_status As Long
Dim nwa As String
Dim retString As String
Dim msg As String
Dim f_start As Double
Dim f_stop As Double
Dim iRetVal As Integer
Dim reply As Integer

lstText.Clear
lstText.AddItem “Example 1a --”
lstText.AddItem “This program demonstrates setup of various measurement parameters
such”
lstText.AddItem “as start frequency, stop frequency, etc. The program first selects
one”
lstText.AddItem “type of measurement to be viewed using dual-channel display format.”
lstText.AddItem “The specified start and stop frequencies are then programmed and the”
lstText.AddItem “analyzer display is autoscaled. The program concludes by displaying”
lstText.AddItem “four types of measurements simultaneously.”
lstText.AddItem ““

nwa = “GPIB0::16::INSTR”

‘ Initialize the instrument
Call initialize(nwa, VI_FALSE, VI_TRUE, vi)

‘ Set the timeout to 3000 msec (3 sec)
err_status = hp875x_timeOut(vi, 3000)
Call checkErr(vi, err_status)

‘ Set up measurement and display

‘ Channel 1
err_status = hp875x_channelSelect(vi, hp875x_CH1)
Call checkErr(vi, err_status)
‘ Turn auxiliary channel off.
err_status = hp875x_auxChannel(vi, hp875x_CH1, hp875x_OFF)
Call checkErr(vi, err_status)
‘ Return Loss measurement, no parameter conversion
‘ hp875x_S_PAR11 is interpreted as hp875x_REFL
err_status = hp875x_measType(vi, hp875x_S_PAR11, hp875x_CONV_OFF)
Call checkErr(vi, err_status)
‘ Log magnitude display
8-16

Programming Examples

Measurement Setup Examples
err_status = hp875x_displaySelect(vi, hp875x_CH1, hp875x_DISP_DATA, hp875x_DISP_LOGM)
Call checkErr(vi, err_status)
‘ Channel 2
err_status = hp875x_channelSelect(vi, hp875x_CH2)
Call checkErr(vi, err_status)
‘ Turn auxiliary channel off.
err_status = hp875x_auxChannel(vi, hp875x_CH2, hp875x_OFF)
Call checkErr(vi, err_status)
‘ Return Loss measurement, no parameter conversion
err_status = hp875x_measType(vi, hp875x_S_PAR11, hp875x_CONV_OFF)
Call checkErr(vi, err_status)
‘ Phase display
err_status = hp875x_displaySelect(vi, hp875x_CH2, hp875x_DISP_DATA, hp875x_DISP_PHAS)
Call checkErr(vi, err_status)
‘ Dual channel display (single graticule)
err_status = hp875x_dualSplit(vi, hp875x_DUAL_CHAN_ON, hp875x_SPLIT_CHAN_OFF)
Call checkErr(vi, err_status)
‘ Request start and stop frequency
retString = InputBox$(“Enter Start Frequency (MHz)”, frmExample1a.Caption)
If retString = ““ Then Exit Sub
f_start = Val(retString) * 1000000# ‘ Convert to real value in Hz
retString = InputBox$(“Enter Stop Frequency (MHz)”, frmExample1a.Caption)
If retString = ““ Then Exit Sub
f_stop = Val(retString) * 1000000# ‘ Convert to real value in Hz
‘ Program the frequency settings
err_status = hp875x_frequency(vi, hp875x_FREQ_STRT_STOP, f_start, f_stop)
Call checkErr(vi, err_status)
‘ Autoscale the displays
err_status = hp875x_channelSelect(vi, hp875x_CH1)
Call checkErr(vi, err_status)
err_status = hp875x_autoscale(vi)
Call checkErr(vi, err_status)
err_status = hp875x_channelSelect(vi, hp875x_CH2)
Call checkErr(vi, err_status)
err_status = hp875x_autoscale(vi)
Call checkErr(vi, err_status)
msg = “The display should now be autoscaled.” & Chr$(13) & Chr$(10)
msg = msg & “Click OK to view four types of measurements “
msg = msg & “simultaneously on the analyzer display.”
iRetVal = MsgBox(msg, vbOKCancel, frmExample1a.Caption)
If iRetVal = vbCancel Then Exit Sub
‘ Channel 1
err_status = hp875x_channelSelect(vi, hp875x_CH1)
Call checkErr(vi, err_status)
‘ Turn auxiliary channel on.
err_status = hp875x_auxChannel(vi, hp875x_CH1, hp875x_ON)
Call checkErr(vi, err_status)
‘ Channel 2
err_status = hp875x_channelSelect(vi, hp875x_CH2)
Call checkErr(vi, err_status)
‘ Turn auxiliary channel on.
err_status = hp875x_auxChannel(vi, hp875x_CH2, hp875x_ON)
Call checkErr(vi, err_status)
‘ Channel 2 Insertion Loss measurement, no parameter conversion
‘ hp875x_S_PAR21 is interpreted as hp875x_TRANS
err_status = hp875x_measType(vi, hp875x_S_PAR21, hp875x_CONV_OFF)
Call checkErr(vi, err_status)
‘ Log magnitude and autoscale
8-17

Programming Examples

Measurement Setup Examples
err_status = hp875x_displaySelect(vi, hp875x_CH2, hp875x_DISP_DATA, hp875x_DISP_LOGM)
Call checkErr(vi, err_status)
err_status = hp875x_autoscale(vi)
Call checkErr(vi, err_status)
‘ Channel 3 Reflected Power measurement, no parameter conversion
err_status = hp875x_channelSelect(vi, hp875x_CH3)
Call checkErr(vi, err_status)
err_status = hp875x_measType(vi, hp875x_IN_MA, hp875x_CONV_OFF)
Call checkErr(vi, err_status)
‘ Log magnitude and autoscale
err_status = hp875x_displaySelect(vi, hp875x_CH3, hp875x_DISP_DATA, hp875x_DISP_LOGM)
Call checkErr(vi, err_status)
err_status = hp875x_autoscale(vi)
Call checkErr(vi, err_status)
‘ Channel 4 Transmitted Power measurement, no parameter conversion
err_status = hp875x_channelSelect(vi, hp875x_CH4)
Call checkErr(vi, err_status)
err_status = hp875x_measType(vi, hp875x_IN_MB, hp875x_CONV_OFF)
Call checkErr(vi, err_status)
‘ Log magnitude and autoscale
err_status = hp875x_displaySelect(vi, hp875x_CH4, hp875x_DISP_DATA, hp875x_DISP_LOGM)
Call checkErr(vi, err_status)
err_status = hp875x_autoscale(vi)
Call checkErr(vi, err_status)
‘ Display all 4 measurements, each in a separate graticule, Channel 3 in upper right
err_status = hp875x_dualSplit4Parm(vi, hp875x_DUAL_CHAN_ON, hp875x_DISP_4_GRAT,
hp875x_DISP_2_CHAN3_TOP, hp875x_DISP_4_CHAN3_UPR)
Call checkErr(vi, err_status)
‘ Wait for analyzer to finish
err_status = hp875x_opc_Q(vi, “WAIT”, reply)
Call checkErr(vi, err_status)
‘ Close the session
err_status = hp875x_close(vi)
Call checkErr(vi, err_status)
‘ Display “Example Completed” message box
iRetVal = MsgBox(“The example has completed”, vbOKOnly, frmExample1a.Caption)
End Sub

Private Sub cmdQuit_Click()
 ‘ Close the application
 End
End Sub

Public Sub initialize(ByVal nwa As String, ByVal id_query As Integer, ByVal do_reset
As Integer, vi As Long)

Dim err_status As Long
Dim err_msg As String * 256

‘ Note that this function will verify that the instrument
‘ specified is an hp875x (id_query=VI_TRUE) and will send
‘ a reset to the instrument (do_reset=VI_TRUE).

err_status = hp875x_init(nwa, id_query, do_reset, vi)

If ((err_status < VI_SUCCESS) Or (vi = VI_NULL)) Then

 msg = “init failed with return code “ & err_status
8-18

Programming Examples

Measurement Setup Examples
 If (vi <> VI_NULL) Then
 err_status = hp875x_error_message(vi, err_status, err_msg)
 msg = msg & “, Error Status: “ & err_status

 msg = msg & “, Error Message: “ & err_msg
 End If
 MsgBox msg, vbInformation, frmExample1a.Caption
 End
End If
End Sub

Sub checkErr(ByVal vi As Long, ByVal err_status As Long)

Dim inst_err As Long
Dim err_message As String * 250
Dim retStatus As Long

Dim nl
nl = Chr(10)

If VI_SUCCESS > err_status Then

 ‘Send a device clear to ensure communication with ‘the instrument.

 retStatus = hp875x_dcl(vi)

 If (hp875x_INSTR_ERROR_DETECTED = err_status) Then

 ‘query the instrument for the error
 retStatus = hp875x_error_query(vi, inst_err, err_message)

 msg = “CHECK :Instrument Error :” & inst_err & nl & “Error Message = “ &
err_message

 MsgBox msg, vbOKOnly, frmExample1a.Caption
 Else
 ‘get the driver error message
 retStatus = hp875x_error_message(vi, err_status, err_message)
 msg = “CHECK :Driver Error :” & errStatus & nl & “Error Message = “ &
err_message

 MsgBox msg, vbInformation, frmExample1a.Caption
 End If

End If
‘ optionally reset the instrument, close the instrument handle

‘retStatus=hp875x_reset(vi)
‘retStatus=hp875x_close(vi)

End Sub
8-19

Programming Examples

Measurement Setup Examples
Example 1B: Setting Parameters on Two Channels for Optical Devices

In general, the procedure for setting up measurements on the analyzer via GPIB follows the
same sequence as if the setup was performed manually. There is no required order, as long as
the desired frequency range, number of points, and power level are set prior to performing
the calibration.

This example shows how to setup various measurement parameters.

This example sets the following parameters:

• data display formats

• number of channels and graticules displayed

• frequency range

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The analyzer is adjusted to measure O/O transmission on channel 1 and display as log
magnitude.

• The analyzer is adjusted to measure O/O transmission on channel 2 and display the
phase.

• The dual-channel display mode is activated.

• The system operator is prompted to enter the frequency range of the measurement.

• The displays are autoscaled.

• The analyzer is released from remote control and the program ends.

BASIC Program Listing

10 ! This program demonstrates setup of various measurement parameters such

20 ! as start frequency, stop frequency, etc. The program first selects one

30 ! type of measurement to be viewed using dual-channel display format.

40 ! The specified start and stop frequencies are then programmed and the

50 ! analyzer display is autoscaled.

60 ! .

70 !

80 ! LEXAMP1B Setting Parameters for Optical Devices

90 !

100 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer

110 !

120 CLEAR SCREEN

130 ! Initialize the system

140 ABORT 7 ! Generate an IFC (Interface Clear)

150 CLEAR @Nwa ! SDC (Selected Device Clear) analyzer

160 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
8-20

Programming Examples

Measurement Setup Examples
170 ENTER @Nwa;Reply ! Read in the 1 returned

180 !

190 ! Set up measurement and display

200 OUTPUT @Nwa;”CHAN1;” ! Channel 1

210 OUTPUT @Nwa;”AUXCOFF;” ! Turn off auxiliary channel, if it is on

220 OUTPUT @Nwa;”MEASOO1;” ! O/O measurement

230 OUTPUT @Nwa;”LOGM;” ! Log magnitude display

240 !

250 OUTPUT @Nwa;”CHAN2;” ! Channel 2

260 OUTPUT @Nwa;”AUXCOFF;” ! Turn off auxiliary channel, if it is on

270 OUTPUT @Nwa;”MEASOO1;” ! O/O measurement

280 OUTPUT @Nwa;”PHAS;” ! Phase display

290 !

300 OUTPUT @Nwa;”DUACON;” ! Dual channel display

310 !

320 ! Request start and stop frequency

330 INPUT “ENTER START FREQUENCY (MHz):”,F_start

340 INPUT “ENTER STOP FREQUENCY (MHz):”,F_stop

350 !

360 ! Program the analyzer settings

370 OUTPUT @Nwa;”STAR”;F_start;”MHZ;” ! Set the start frequency

380 OUTPUT @Nwa;”STOP”;F_stop;”MHZ;” ! Set the stop frequency

390 !

400 ! Autoscale the displays

410 OUTPUT @Nwa;”CHAN1;AUTO;” ! Autoscale channel 1 display

420 OUTPUT @Nwa;”CHAN2;AUTO;” ! Autoscale channel 2 display

430 !

440 PRINT “The display should now be autoscaled.”

450 ! Release HP-IB control

460 END

Example 1C: Setting Parameters on Four Channels for Optical Devices

In general, the procedure for setting up measurements on the analyzer via GPIB follows the
same sequence as if the setup was performed manually. There is no required order, as long as
the desired frequency range, number of points, and power level are set prior to performing
the calibration.

This example sets the following parameters:

• data display formats

• number of channels and graticules displayed

• frequency range
8-21

Programming Examples

Measurement Setup Examples
The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The analyzer is adjusted to measure return loss (S11) on channel 1 and display as log
magnitude.

• The analyzer is adjusted to measure return loss (S11) on channel 2 and display the phase.

• The dual-channel display mode is activated.

• The system operator is prompted to enter the frequency range of the measurement.

• The displays are autoscaled.

• The system operator is prompted to press “Enter” on the computer keyboard to view four
types of measurements simultaneously.

• Channels 3 and 4 are turned on.

• Channel 2 is adjusted to measure E/O transmission displayed in log magnitude, and then
the display is autoscaled.

• Channel 3 is adjusted to measure reflected power (S22) displayed in log magnitude, and
then the display is autoscaled.

• Channel 4 is adjusted to measureO/O transmission displayed in log magnitude, and then
the display is autoscaled.

• The four channels are each displayed in a separate graticule.

• The analyzer is released from remote control and the program ends.

BASIC Program Listing

10 ! This program demonstrates setup of various measurement parameters such

20 ! as start frequency, stop frequency, etc. The program first selects one

30 ! type of measurement to be viewed using dual-channel display format.

40 ! The specified start and stop frequencies are then programmed and the

50 ! analyzer display is autoscaled. The program concludes by displaying

60 ! four types of measurements simultaneously.

70 !

80 ! LEXAMP1C Setting Parameters for Optical Devices

90 !

100 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer

110 !

120 CLEAR SCREEN

130 ! Initialize the system

140 ABORT 7 ! Generate an IFC (Interface Clear)

150 CLEAR @Nwa ! SDC (Selected Device Clear) analyzer

160 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait

170 ENTER @Nwa;Reply ! Read in the 1 returned
8-22

Programming Examples

Measurement Setup Examples
180 !

190 ! Set up measurement and display

200 OUTPUT @Nwa;”CHAN1;” ! Channel 1

210 OUTPUT @Nwa;”AUXCOFF;” ! Turn off auxiliary channel, if it is on

220 OUTPUT @Nwa;”S11;” ! Return Loss (Reflection) measurement

230 OUTPUT @Nwa;”LOGM;” ! Log magnitude display

240 !

250 OUTPUT @Nwa;”CHAN2;” ! Channel 2

260 OUTPUT @Nwa;”AUXCOFF;” ! Turn off auxiliary channel, if it is on

270 OUTPUT @Nwa;”S11;” ! Return Loss (Reflection) measurement

280 OUTPUT @Nwa;”PHAS;” ! Phase display

290 !

300 OUTPUT @Nwa;”DUACON;” ! Dual channel display

310 !

320 ! Request start and stop frequency

330 INPUT “ENTER START FREQUENCY (MHz):”,F_start

340 INPUT “ENTER STOP FREQUENCY (MHz):”,F_stop

350 !

360 ! Program the analyzer settings

370 OUTPUT @Nwa;”STAR”;F_start;”MHZ;” ! Set the start frequency

380 OUTPUT @Nwa;”STOP”;F_stop;”MHZ;” ! Set the stop frequency

390 !

400 ! Autoscale the displays

410 OUTPUT @Nwa;”CHAN1;AUTO;” ! Autoscale channel 1 display

420 OUTPUT @Nwa;”CHAN2;AUTO;” ! Autoscale channel 2 display

430 !

440 PRINT “The display should now be autoscaled.”

450 INPUT “Press RETURN to view four types of measurements simultaneously”,X

460 !

470 OUTPUT @Nwa;”CHAN1;AUXCON;” ! Turn on auxiliary channel (Channel 3)

480 OUTPUT @Nwa;”CHAN2;AUXCON;” ! Turn on auxiliary channel (Channel 4)

490 !

500 ! E/O measurement

510 OUTPUT @Nwa;”MEASEO1;”

520 OUTPUT @Nwa;”LOGM;AUTO;” ! Channel 2 log magnitude and autoscale

530 !

540 ! Channel 3 Reflected Power measurement

550 OUTPUT @Nwa;”CHAN3;S22;” ! OUTPUT @NWA;”CHAN3#;#S22;”

560 OUTPUT @Nwa;”LOGM;AUTO;” ! Channel 3 log magnitude and autoscale

570 !

580 ! Channel 4 O/O measurement

590 OUTPUT @Nwa;”CHAN4;MEASOE2;” ! OUTPUT @NWA;”CHAN4;MEASOE2;”

600 OUTPUT @Nwa;”LOGM;AUTO;” ! Channel 4 log magnitude and autoscale
8-23

Programming Examples

Measurement Setup Examples
610 !

620 OUTPUT @Nwa;”SPLID4;” ! Display as four separate graticules

630 !

640 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish

650 ENTER @Nwa;Reply ! Read the 1 when complete

660 LOCAL @Nwa ! Release HP-IB control

670 END

Example 1D: Verifying Parameters

This example shows how to read analyzer settings into your controller. Appending a “?” to a
command that sets an analyzer parameter will return the value of that setting. Parameters
that are set as ON or OFF when queried will return a zero (0) if off or a one (1) if active.
Parameters are returned in ASCII format, FORM 4. This format varies in length from 1 to 24
characters-per-value. In the case of marker or other multiple responses, the values are
separated by commas.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The number of points in the trace is queried and dumped to a printer.

• The start frequency is queried and output to a printer.

• The averaging is queried and output to a printer.

• The analyzer is released from remote control and the program ends.

Running the Program

The analyzer is preset. The preset values are returned and printed out for: the number of
points, the start frequency, and the state of the averaging function. The analyzer is released
from remote control and the program ends.

BASIC Program Listing

10 ! This program performs some example queries of network analyzer
20 ! settings. The number of points in a trace, the start frequency
30 ! and if averaging is turned on, are determined and displayed.
40 !
50 ! EXAMP1D Verifying Parameters
60 !
70 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
80 !
90 CLEAR SCREEN
100 ! Initialize the system
110 ABORT 7 ! Generate an IFC (Interface Clear)
120 CLEAR @Nwa ! SDC (Selected Device Clear)
130 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
140 ENTER @Nwa;Reply ! Read in the 1 returned
150 !
8-24

Programming Examples

Measurement Setup Examples
160 ! Query network analyzer parameters
170 OUTPUT @Nwa;”POIN?;” ! Read in the default trace length
180 ENTER @Nwa;Num_points
190 PRINT “Number of points “;Num_points
200 PRINT
210 !
220 OUTPUT @Nwa;”STAR?;” ! Read in the start frequency
230 ENTER @Nwa;Start_f
240 PRINT “Start Frequency “;Start_f
250 PRINT
260 !
270 OUTPUT @Nwa;”AVERO?;” ! Averaging on?
280 ENTER @Nwa;Flag
290 PRINT “Flag =”;Flag;” “;
300 IF Flag=1 THEN ! Test flag and print analyzer state
310 PRINT “Averaging ON”
320 ELSE
330 PRINT “Averaging OFF”
340 END IF
350 !
360 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
370 ENTER @Nwa;Reply ! Read the 1 when complete
380 LOCAL @Nwa ! Release HP-IB control
390 END
8-25

Programming Examples

Measurement Calibration Examples
Measurement Calibration Examples
This section shows you how to coordinate a measurement calibration over GPIB. You can use
the following sequence for performing either a manual measurement calibration, or a remote
measurement calibration via GPIB:

1. Select the calibration type.
2. Measure the calibration standards.
3. Declare the calibration done.

The actual sequence depends on the calibration kit and changes slightly for 2-port
calibrations, which are divided into three calibration sub-sequences. The following examples
are included:

• Example 2A is a program designed to perform a response calibration for E/E devices.

• Example 2B is a program designed to perform a response calibration for O/O, O/E, and
E/O devices.

• Example 2C is a program designed to perform a 1-port measurement calibration for E/E
devices.

• Example 2D is a program designed to perform an enhanced response calibration for E/E
devices.

• Example 2E is a program designed to perform a full 2-port measurement calibration for
E/E devices.

• Example 2F is a program designed to perform a response and match calibration for O/E
devices.

• Example 2G is a program designed to accurately measure a “non-insertable” 2-port E/E
device, using adapter removal.

• Example 2H is a program designed to use raw data to create a calibration, sometimes
called Simmcal for E/E devices.

• Example 2I is a program designed to perform a response and match calibration for E/O
devices.

• Example 2J is a program designed to offload the calculation of the 2-port error corrected
data to an external computer.

Example programs for E/E devices illustrate how to perform different types of calibrations
using any of the following calibration kits:

If you wish to use a different calibration kit, modify the example program accordingly.
These programs simplify the calibration by providing explicit directions on the analyzer
display while allowing the user to run the program from the controller keyboard. More

Calibration Kits

85052B/D (3.5-mm)

85056A/D (2.4-mm)
8-26

Programming Examples

Measurement Calibration Examples
information on selecting calibration standards can be found in your analyzer’s user’s guide.
For type-N connectors, the sex of the connector that the calibration standard will mate to
must be observed. These programs assume that the connector on PORT 1 is a female test port
and that PORT 2 is a male test port.

Calibration Kits

The calibration kit tells the analyzer what standards to expect at each step of the calibration.
The set of standards associated with a given calibration is termed a “class.” For example,
measuring the short during a 1-port measurement calibration is one calibration step. All of
the shorts that can be used for this calibration step make up the class, which is called class
S11B. For the 7-mm and the 3.5-mm cal kits, class S11B uses only one standard. For type-N
cal kits, class S11B contains two standards: male and female shorts.

When doing a 1-port measurement calibration using a 7- or 3.5-mm calibration kit, selecting
SHORT, automatically measures the short because the class contains only one standard.
When doing the same calibration in type-N, selecting SHORT, brings up a second menu,
allowing the operator to select which standard in the class is to be measured. The sex listed
refers to the test port: if the test port is female, then the operator selects the female short
option. Once the standard has been selected and measured, the DONE, key must be pressed
to exit the class.

Doing a 1-port measurement calibration over GPIB is very similar. When using a 7- or 3.5-mm
calibration kit, sending CLASS11B will automatically measure the short. In type-N, sending
CLASS11B brings up the menu with the male and female short options. To select a standard,
use STANA or STANB. The STAN command is appended with the letters A through G,
corresponding to the standards listed under softkeys 1 through 7, softkey 1 being the
topmost softkey.

The STAN command is OPC-compatible. A command that calls a class is only OPC-compatible
if that class has only one standard in it. If there is more than one standard in a class, the
command that calls the class brings up another menu, and there is no need to query it. DONE;
must be sent to exit the class.

Example 2A: Response Calibration for E/E Devices

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The appropriate calibration kit is selected.

• The softkey menu is deactivated.

• The response calibration sequence is run.

• The response calibration data is saved.

• The softkey menu is activated.

• The analyzer is released from remote control and the program ends.
8-27

Programming Examples

Measurement Calibration Examples
Running the Program

NOTE This program does not modify the instrument state in any way. Before running
the program, set up the desired instrument state.

The program assumes that the test ports have a 7-mm, type-N 50 Ω, 3.5-mm, or 2.4-mm
interface or an adapter set using a 7-mm, type-N 50 Ω, 3.5-mm, or 2.4-mm interface. The
prompts appear just above the message line on the analyzer display. Pressing Enter, on the
controller keyboard continues the program and measures the standard. The program will
display a message when the measurement calibration is complete.

BASIC Program Listing

10 ! This program guides the operator through a response calibration
20 ! using a thru (cable).
120 !
130 ! The routine Waitforkey displays a message on the instrument’s
140 ! display and the console, to prompt the operator to connect the
150 ! calibration standard. Once the standard is connected, the
160 ! ENTER key on the computer keyboard is pressed to continue.
170 !
180 ! EXAMP2A Response Calibration for E/E Devices
190 !
200 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
210 !
220 CLEAR SCREEN
230 ! Initialize the system
240 ABORT 7 ! Generate an IFC (Interface Clear)
250 CLEAR @Nwa ! SDC (Selected Device Clear)
390 OUTPUT @Nwa;”CALK35MD;”
430 !
440 OUTPUT @Nwa;”MENUOFF;” ! Turn softkey menu off.
450 !
460 OUTPUT @Nwa;”CALIRESP;” ! Response CAL initiated
470 !
480 CALL Waitforkey(“CONNECT THRU BETWEEN PORTS”)
520 OUTPUT @Nwa;”OPC?;STANC;” ! Select the third standard, C
540 ENTER @Nwa;Reply ! Read in the 1 returned
550 !
560 DISP “COMPUTING CALIBRATION COEFFICIENTS”
570 !
580 OUTPUT @Nwa;”OPC?;RESPDONE;” ! Finished with the CAL cycle
590 ENTER @Nwa;Reply ! Read in the 1 returned
600 !
610 DISP “RESPONSE CAL COMPLETED. CONNECT TEST DEVICE.”
620 OUTPUT @Nwa;”MENUON;” ! Turn on the softkey menu
630 !
640 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
650 ENTER @Nwa;Reply ! Read the 1 when complete
660 LOCAL @Nwa ! Release HP-IB control
670 !
680 END
690 !
700 ! **************************** Subroutines ******************************
710 !
8-28

Programming Examples

Measurement Calibration Examples
720 Waitforkey: ! Prompt routine to read a keypress on the controller
730 SUB Waitforkey(Lab$)
740 ! Position and display text on the analyzer display
750 OUTPUT 717;”PG;PU;PA390,3700;PD;LB”;Lab$;”, PRESS ENTER WHEN READY;”&CHR$(3)
760 !
770 DISP Lab$&” Press ENTER when ready”;! Display prompt on console
780 INPUT A$! Read ENTER key press
790 !
800 OUTPUT 717;”PG;” ! Clear analyzer display
810 SUBEND

Example 2B: Response Calibration for O/O, E/O, O/E Devices

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The appropriate calibration kit is selected.

• The softkey menu is deactivated.

• The response calibration sequence is run.

• The response calibration data is saved.

• The softkey menu is activated.

• The analyzer is released from remote control and the program ends.

10 ! This program guides the operator through a response calibration

20 ! using a thru (optical cable for O/O devices or optical and electrical cables for
E/O and O/E devices).

30 !

40 !

50 ! The routine Waitforkey displays a message on the instrument’s

60 ! display and the console, to prompt the operator to connect the

70 ! calibration standard. Once the standard is connected, the

80 ! ENTER key on the computer keyboard is pressed to continue.

90 !

100 ! LEXAMP2B Response Calibration for O/O, E/O, O/E Devices

110 !

120 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer

130 !

140 CLEAR SCREEN

150 ! Initialize the system

160 ABORT 7 ! Generate an IFC (Interface Clear)

170 CLEAR @Nwa ! SDC (Selected Device Clear)

180 ! Select Meas type

190 PRINT “Enter one of the following numbers:”

200 PRINT “1 to do an O/O Response Cal,”
8-29

Programming Examples

Measurement Calibration Examples
210 PRINT “2 to do an O/E Response Cal,”

220 PRINT “3 to do an E/O Response Cal,”

230

240 INPUT Kit

250 SELECT Kit

260 CASE 1

270 OUTPUT @Nwa;”MEASOO1;”

280 CASE 2

290 OUTPUT @Nwa;”MEASOE1;”

300 CASE 3

310 OUTPUT @Nwa;”MEASEO1;”

320 END SELECT

330 !

340 OUTPUT @Nwa;”MENUOFF;” ! Turn softkey menu off.

350 !

360 OUTPUT @Nwa;”CALIRESP;” ! Response CAL initiated

370 !

380 CALL Waitforkey(“CONNECT THRUs BETWEEN ELECTRICAL AND OPTICAL PORTS”)

390 OUTPUT @Nwa;”OPC?;STANA;” ! Select the third standard, C

400 ENTER @Nwa;Reply ! Read in the 1 returned

410 !

420 DISP “COMPUTING CALIBRATION COEFFICIENTS”

430 !

440 OUTPUT @Nwa;”OPC?;RESPDONE;” ! Finished with the CAL cycle

450 ENTER @Nwa;Reply ! Read in the 1 returned

460 !

470 DISP “RESPONSE CAL COMPLETED. CONNECT TEST DEVICE.”

480 OUTPUT @Nwa;”MENUON;” ! Turn on the softkey menu

490 !

500 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish

510 ENTER @Nwa;Reply ! Read the 1 when complete

520 LOCAL @Nwa ! Release HP-IB control

530 !

540 END

550 !

560 ! **************************** Subroutines ******************************

570 !

580 Waitforkey: ! Prompt routine to read a keypress on the controller

590 SUB Waitforkey(Lab$)

600 ! Position and display text on the analyzer display

610 OUTPUT 717;”PG;PU;PA390,3700;PD;LB”;Lab$;”, PRESS ENTER WHEN READY;”&CHR$(3)

620 !

630 DISP Lab$&” Press ENTER when ready”;! Display prompt on console
8-30

Programming Examples

Measurement Calibration Examples
640 INPUT A$! Read ENTER key press

650 !

660 OUTPUT 717;”PG;” ! Clear analyzer display

670 SUBEND

Example 2C: 1-Port Calibration for E/E Devices

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The appropriate calibration kit is selected.

• The softkey menu is deactivated.

• The 1-port calibration sequence is run.

• The 1-port calibration data is saved.

• The softkey menu is activated.

• The analyzer is released from remote control and the program ends.

Running the Program

NOTE This program does not modify the instrument state in any way. Before running
the program, set up the desired instrument state.

The program assumes that the test ports have a 3.5-mm interface. Pressing Enter, on the
controller keyboard continues the program and measures the standard. The program will
display a message when the measurement calibration is complete.

BASIC Program Listing

10 ! This program guides the operator through a 1-port calibration.
120 ! The routine Waitforkey displays a message on the instrument’s
130 ! display and the console, to prompt the operator to connect the
140 ! calibration standard. Once the standard is connected, the
150 ! ENTER key on the computer keyboard is pressed to continue.
160 !
170 ! EXAMP2C 1-Port Measurement Calibration for E/E Devices
180 !
190 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
200 !
210 CLEAR SCREEN
220 ! Initialize the system
230 ABORT 7 ! Generate an IFC (Interface Clear)
240 CLEAR @Nwa ! SDC (Selected Device Clear)
380 OUTPUT @Nwa;”CALK35MD;”
430 OUTPUT @Nwa;”MENUOFF;” ! Turn softkey menu off.
440 !
450 OUTPUT @Nwa;”CALIS111;” ! S11 1 port CAL initiated
460 !
8-31

Programming Examples

Measurement Calibration Examples
470 ! Open reflection CAL
480 CALL Waitforkey(“CONNECT OPEN AT PORT 1 (REFLECTION PORT)”)
530 OUTPUT @Nwa;”OPC?;CLASS11A;” ! Only one standard in class
550 ENTER @Nwa;Reply ! Read in the 1 returned
560 OUTPUT @Nwa;”DONE;” ! Finished with class standards
570 !
580 ! Short reflection CAL
590 CALL Waitforkey(“CONNECT SHORT AT PORT 1 (REFLECTION PORT)”)
640 OUTPUT @Nwa;”OPC?;CLASS11B;” ! Only one standard in class
660 ENTER @Nwa;Reply ! Read in the 1 returned
670 OUTPUT @Nwa;”DONE;” ! Finished with class standards
680 !
690 ! Reflection load CAL
700 CALL Waitforkey(“CONNECT LOAD AT PORT 1 (REFLECTION PORT)”)
720 OUTPUT @Nwa;”CLASS11C;”
730 OUTPUT @Nwa;”OPC?;STANA;” ! Select the first standard, A
740 ELSE
750 OUTPUT @Nwa;”OPC?;CLASS11C;” ! Only one standard in class
760 END IF
770 ENTER @Nwa;Reply ! Read in the 1 returned
780 OUTPUT @Nwa;”DONE;” ! Finished with class standards
790 !
800 DISP “COMPUTING CALIBRATION COEFFICIENTS”
810 !
820 OUTPUT @Nwa;”OPC?;SAV1;” ! Save the ONE PORT CAL
830 ENTER @Nwa;Reply ! Read in the 1 returned
840 !
850 DISP “S11 1-PORT CAL COMPLETED. CONNECT TEST DEVICE.”
860 OUTPUT @Nwa;”MENUON;” ! Turn softkey menu on
870 !
880 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
890 ENTER @Nwa;Reply ! Read the 1 when complete
900 LOCAL @Nwa ! Release HP-IB control
910 !
920 END
930 !
940 ! **************************** Subroutines ******************************
950 !
960 Waitforkey: ! Prompt routine to read a keypress on the controller
970 SUB Waitforkey(Lab$)
980 ! Position and display text on the analyzer display
990 OUTPUT 717;”PG;PU;PA390,3700;PD;LB”;Lab$;”, PRESS ENTER WHEN READY;”&CHR$(3)
1000!
1010 DISP Lab$&” Press ENTER when ready”;! Display prompt on console
1020 INPUT A$! Read ENTER key press
1030!
1040 OUTPUT 717;”PG;” ! Clear analyzer display
1050 SUBEND

Example 2D: Enhanced Response Calibration for E/E Devices

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.
8-32

Programming Examples

Measurement Calibration Examples
• The appropriate calibration kit is selected.

• The softkey menu is deactivated.

• The enhanced response calibration sequence is run.

• The enhanced response calibration data is saved.

• The softkey menu is activated.

• The analyzer is released from remote control and the program ends.

Running the Program

NOTE This program does not modify the instrument state in any way. Before running
the program, set up the desired instrument state.

The program assumes that the test ports have a 3.5-mm interface. Pressing Enter, on the
controller keyboard continues the program and measures the standard. The program will
display a message when the measurement calibration is complete.

BASIC Program Listing

10 ! This program guides the operator through an enhanced response
20 ! calibration.
120 !
130 ! The routine Waitforkey displays a message on the instrument’s
140 ! display and the console, to prompt the operator to connect the
150 ! calibration standard. Once the standard is connected, the
160 ! ENTER key on the computer keyboard is pressed to continue.
170 !
180 ! EXAMP2D Enhanced Response Calibration for E/E Devices
190 !
200 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
210 !
220 CLEAR SCREEN
230 ! Initialize the system
240 ABORT 7 ! Generate an IFC (Interface Clear)
250 CLEAR @Nwa ! SDC (Selected Device Clear)
380 OUTPUT @Nwa;”CALK35MD;”
420 !
430 OUTPUT @Nwa;”MENUOFF;” ! Turn softkey menu off.
440 !
450 OUTPUT @Nwa;”CALIERC;” ! Enhanced response CAL initiated
460 !
470 OUTPUT @Nwa;”REFL;” ! Reflection CAL
480 !
490 ! Open reflection CAL
500 CALL Waitforkey(“CONNECT OPEN AT PORT 1 (REFLECTION PORT)”)
550 OUTPUT @Nwa;”OPC?;CLASS11A;” ! Only one standard in class
570 ENTER @Nwa;Reply ! Read in the 1 returned
580 OUTPUT @Nwa;”DONE;” ! Finished with class standards
590 !
600 ! Short reflection CAL
610 CALL Waitforkey(“CONNECT SHORT AT PORT 1 (REFLECTION PORT)”)
660 OUTPUT @Nwa;”OPC?;CLASS11B;” ! Only one standard in class
680 ENTER @Nwa;Reply ! Read in the 1 returned
8-33

Programming Examples

Measurement Calibration Examples
690 OUTPUT @Nwa;”DONE;” ! Finished with class standards
700 !
710 ! Reflection load CAL
720 CALL Waitforkey(“CONNECT LOAD AT PORT 1 (REFLECTION PORT)”)
740 OUTPUT @Nwa;”CLASS11C;”
750 OUTPUT @Nwa;”OPC?;STANA;” ! Select the first standard, A
790 ENTER @Nwa;Reply ! Read in the 1 returned
800 OUTPUT @Nwa;”DONE;” ! Finished with class standards
810 !
820 DISP “COMPUTING REFLECTION CALIBRATION COEFFICIENTS”
830 !
840 OUTPUT @Nwa;”REFD;” ! Reflection portion complete
850 !
860 OUTPUT @Nwa;”TRAN;” ! Transmission portion begins
870 !
880 CALL Waitforkey(“CONNECT THRU BETWEEN PORTS”)
890 DISP “MEASURING FORWARD TRANSMISSION”
900 OUTPUT @Nwa;”OPC?;FWDT;” ! Measure (forward) transmission
910 ENTER @Nwa;Reply ! Read in the 1 returned
920 !
930 OUTPUT @Nwa;”OPC?;FWDM;” ! Measure (forward) load match
940 ENTER @Nwa;Reply ! Read in the 1 returned
950 !
960 OUTPUT @Nwa;”TRAD;” ! Transmission CAL complete
970 !
980 INPUT “SKIP ISOLATION CAL? Y OR N.”,An$
990 IF An$=”Y” THEN
1000 OUTPUT @Nwa;”OMII;” ! Skip isolation cal
1010 GOTO 1150
1020 END IF
1030 !
1040 CALL Waitforkey(“ISOLATE TEST PORTS”)
1050!
1060 OUTPUT @Nwa;”ISOL;” ! Isolation CAL
1070 OUTPUT @Nwa;”AVERFACT10;” ! Average for 10 sweeps
1080 OUTPUT @Nwa;”AVEROON;” ! Turn on averaging
1090 DISP “MEASURING ISOLATION”
1100 OUTPUT @Nwa;”OPC?;FWDI;” ! Measure (forward) isolation
1110 ENTER @Nwa;Reply ! Read in the 1 returned
1120!
1130 OUTPUT @Nwa;”ISOD;AVEROOFF;” ! Isolation complete averaging off
1140!
1150 DISP “COMPUTING CALIBRATION COEFFICIENTS”
1160 OUTPUT @Nwa;”OPC?;ERCDONE;” ! Finished with the CAL cycle
1170 ENTER @Nwa;Reply ! Read in the 1 returned
1180!
1190 DISP “ENHANCED RESPONSE CAL COMPLETED. CONNECT TEST DEVICE.”
1200 OUTPUT @Nwa;”MENUON;” ! Turn softkey menu on
1210!
1220 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
1230 ENTER @Nwa;Reply ! Read the 1 when complete
1240 LOCAL @Nwa ! Release HP-IB control
1250!
1260 END
1270!
1280! **************************** Subroutines ******************************
1290!
1300 Waitforkey: ! Prompt routine to read a keypress on the controller
8-34

Programming Examples

Measurement Calibration Examples
1310 SUB Waitforkey(Lab$)
1320! Position and display text on the analyzer display
1330 OUTPUT 717;”PG;PU;PA390,3700;PD;LB”;Lab$;”, PRESS ENTER WHEN READY;”&CHR$(3)
1340!
1350 DISP Lab$&” Press ENTER when ready”;! Display prompt on console
1360 INPUT A$! Read ENTER key press
1370!
1380 OUTPUT 717;”PG;” ! Clear analyzer display
1390 SUBEND

Example 2E: Full 2-Port Measurement Calibration for E/E Devices

A full 2-port calibration removes both the forward- and reverse-error terms so that all four
S-parameters of the device under test can be measured.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The appropriate calibration kit is selected.

• The softkey menu is deactivated.

• The 2-port calibration sequence is run.

• The operator is prompted to choose or skip the isolation calibration.

• The softkey menu is activated.

• The analyzer is released from remote control and the program ends.

Running the Program

NOTE This program does not modify the instrument state in any way. Before running
the program, set up the desired instrument state.

The program assumes that the test ports have either a 3.5-mm interface. After the prompt is
displayed, pressing Enter, on the computer console continues the program and measures the
standard. The operator has the option of omitting the isolation calibration. If the isolation
calibration is performed, averaging is automatically employed to ensure a good calibration.
The program will display a message when the measurement calibration is complete.
8-35

Programming Examples

Measurement Calibration Examples
BASIC Program Listing

10 ! This program guides the operator through a full 2-port calibration.
 “ , “
110 !
120 ! The routine Waitforkey displays a message on the instrument’s
130 ! display and the console to prompt the operator to connect the
140 ! calibration standard. Once the standard is connected, the
150 ! ENTER key on the computer keyboard is pressed to continue.
160 !
170 ! EXAMP2E Full 2-Port Measurement Calibration for E/E Devices
180 !
190 ASSIGN @Nwa TO 716 ! Assign an I/O path to the analyzer
200 !
210 CLEAR SCREEN
220 ! Initialize the analyzer
230 ABORT 7 ! Generate an IFC (Interface Clear)
240 CLEAR @Nwa ! SDC (Selected Device Clear)
380 OUTPUT @Nwa;”CALK35MD;”
420 !
430 OUTPUT @Nwa;”MENUOFF;” ! Turn softkey menu off.
440 !
450 OUTPUT @Nwa;”CALIFUL2;” ! Full 2 port CAL
460 !
470 OUTPUT @Nwa;”REFL;” ! Reflection CAL
480 !
490 ! S11 open CAL
500 CALL Waitforkey(“CONNECT OPEN AT PORT 1”)
550 OUTPUT @Nwa;”OPC?;CLASS11A;” ! Only one standard in class
570 ENTER @Nwa;Reply ! Read in the 1 returned
580 OUTPUT @Nwa;”DONE;” ! Finished with class standards
590 !
600 ! S11 short CAL
610 CALL Waitforkey(“CONNECT SHORT AT PORT 1”)
660 OUTPUT @Nwa;”OPC?;CLASS11B;” ! Only one standard in class
680 ENTER @Nwa;Reply ! Read in the 1 returned
690 OUTPUT @Nwa;”DONE;” ! Finished with class standards
700 !
710 ! S11 load CAL
720 CALL Waitforkey(“CONNECT LOAD AT PORT 1”)
740 OUTPUT @Nwa;”CLASS11C;”
750 OUTPUT @Nwa;”OPC?;STANA;” ! Select the first standard, A
790 ENTER @Nwa;Reply ! Read in the 1 returned
800 OUTPUT @Nwa;”DONE;” ! Finished with class standards
810 !
820 ! S22 open CAL
830 CALL Waitforkey(“CONNECT OPEN AT PORT 2”)
880 OUTPUT @Nwa;”OPC?;CLASS22A;” ! Only one standard in class
900 ENTER @Nwa;Reply ! Read in the 1 returned
910 OUTPUT @Nwa;”DONE;” ! Finished with class standards
920 !
930 ! S22 short CAL
940 CALL Waitforkey(“CONNECT SHORT AT PORT 2”)
990 OUTPUT @Nwa;”OPC?;CLASS22B;” ! Only one standard in class
1010 ENTER @Nwa;Reply ! Read in the 1 returned
1020 OUTPUT @Nwa;”DONE;” ! Finished with class standards
1030 !
1040 ! S22 load CAL
8-36

Programming Examples

Measurement Calibration Examples
1050 CALL Waitforkey(“CONNECT LOAD AT PORT 2”)
1070 OUTPUT @Nwa;”CLASS22C;”
1080 OUTPUT @Nwa;”OPC?;STANA;” ! Select the first standard, A
1120 ENTER @Nwa;Reply ! Read in the 1 returned
1130 OUTPUT @Nwa;”DONE;” ! Finished with class standards
1140 !
1150 DISP “COMPUTING REFLECTION CALIBRATION COEFFICIENTS”
1160 !
1170 OUTPUT @Nwa;”REFD;” ! Reflection portion complete
1180 !
1190 OUTPUT @Nwa;”TRAN;” ! Transmission portion begins
1200 !
1210 CALL Waitforkey(“CONNECT THRU [PORT1 TO PORT 2]”)
1220 DISP “MEASURING FORWARD TRANSMISSION”
1230 OUTPUT @Nwa;”OPC?;FWDT;” ! Measure forward transmission
1240 ENTER @Nwa;Reply ! Read in the 1 returned
1250 !
1260 OUTPUT @Nwa;”OPC?;FWDM;” ! Measure forward load match
1270 ENTER @Nwa;Reply ! Read in the 1 returned
1280 !
1290 DISP “MEASURING REVERSE TRANSMISSION”
1300 OUTPUT @Nwa;”OPC?;REVT;” ! Measure reverse transmission
1310 ENTER @Nwa;Reply ! Read in the 1 returned
1320 !
1330 OUTPUT @Nwa;”OPC?;REVM;” ! Measure reverse load match
1340 ENTER @Nwa;Reply ! Read in the 1 returned
1350 !
1360 OUTPUT @Nwa;”TRAD;” ! Transmission CAL complete
1370 !
1380 INPUT “SKIP ISOLATION CAL? Y OR N.”,An$
1390 IF An$=”Y” THEN
1400 OUTPUT @Nwa;”OMII;” ! Skip isolation cal
1410 GOTO 1600
1420 END IF
1430 !
1440 CALL Waitforkey(“ISOLATE TEST PORTS”)
1450 !
1460 OUTPUT @Nwa;”ISOL;” ! Isolation CAL
1470 OUTPUT @Nwa;”AVERFACT10;” ! Average for 10 sweeps
1480 OUTPUT @Nwa;”AVEROON;” ! Turn on averaging
1490 DISP “MEASURING REVERSE ISOLATION”
1500 OUTPUT @Nwa;”OPC?;REVI;” ! Measure reverse isolation
1510 ENTER @Nwa;Reply ! Read in the 1 returned
1520 !
1530 DISP “MEASURING FORWARD ISOLATION”
1540 OUTPUT @Nwa;”OPC?;FWDI;” ! Measure forward isolation
1550 ENTER @Nwa;Reply ! Read in the 1 returned
1560 !
1570 OUTPUT @Nwa;”ISOD;AVEROOFF;” ! Isolation complete averaging off
1580 OUTPUT 717;”PG;” ! Clear analyzer display prompt
1590 !
1600 DISP “COMPUTING CALIBRATION COEFFICIENTS”
1610 OUTPUT @Nwa;”OPC?;SAV2;” ! Save THE TWO PORT CAL
1620 ENTER @Nwa;Reply ! Read in the 1 returned
1630 !
1640 DISP “DONE WITH FULL 2-PORT CAL. CONNECT TEST DEVICE.”
1650 OUTPUT @Nwa;”MENUON;” ! Turn softkey menu on
1660 !
8-37

Programming Examples

Measurement Calibration Examples
1670 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
1680 ENTER @Nwa;Reply ! Read the 1 when complete
1690 LOCAL @Nwa ! Release HP-IB control
1700 !
1710 END
1720 !
1730 ! ************************* Subroutines *******************************
1740 !
1750 SUB Waitforkey(Lab$)
1760 ! Position and display prompt on the analyzer display
1770 OUTPUT 717;”PG;PU;PA390,3700;PD;LB”;Lab$;”, PRESS ENTER WHEN READY;”&CHR$(3)
1780 !
1790 DISP Lab$&” Press ENTER when ready”; ! Display prompt on console
1800 INPUT A$! Read ENTER keypress on controller
1810 OUTPUT 717;”PG;” ! Clear analyzer display
1820 SUBEND

Example 2F: Response and Match Calibration for O/E Devices

A response and match calibration effectively removes the frequency response errors of the
test setup for transmission measurements of electrical-to-optical devices.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The appropriate calibration kit is selected.

• The softkey menu is deactivated.

• The response and match calibration sequence is run.

• The operator is prompted to choose or skip the isolation calibration.

• The softkey menu is activated.

• The analyzer is released from remote control and the program ends.
8-38

Programming Examples

Measurement Calibration Examples
BASIC Program Listing

10 ! This program guides the operator through a response and match calibration.

20 !

30 !

40 ! The routine Waitforkey displays a message on the instrument’s

50 ! display and the console to prompt the operator to connect the

60 ! calibration standard. Once the standard is connected, the

70 ! ENTER key on the computer keyboard is pressed to continue.

80 !

90 ! EXAMP2F Response and Match Measurement Calibration for O/E Devices

100 !

110 ASSIGN @Nwa TO 716 ! Assign an I/O path to the analyzer

120 !

130 CLEAR SCREEN

140 ! Initialize the analyzer

150 ABORT 7 ! Generate an IFC (Interface Clear)

160 CLEAR @Nwa ! SDC (Selected Device Clear)

170 !

180 OUTPUT @Nwa;”MENUOFF;” ! Turn softkey menu off.

190 OUTPUT @Nwa;”MEASOE2;” ! O/E port 2

200 OUTPUT @Nwa;”CALIOERM;” ! Response & Match CAL

210 !

220 OUTPUT @Nwa;”REFL;” ! Reflection CAL

230 !

240 ! Forward open CAL

250 CALL Waitforkey(“CONNECT OPEN AT PORT 1”)

260 !

270 OUTPUT @Nwa;”OPC?;CLASS11A;” ! Only one standard in class

280 ENTER @Nwa;Reply ! Read in the 1 returned

290 OUTPUT @Nwa;”DONE;” ! Finished with class standards

300 !

310 ! Forward short CAL

320 CALL Waitforkey(“CONNECT SHORT AT PORT 1”)

330 !

340 OUTPUT @Nwa;”OPC?;CLASS11B;” ! Only one standard in class

350 !

360 ENTER @Nwa;Reply ! Read in the 1 returned

370 OUTPUT @Nwa;”DONE;” ! Finished with class standards

380 !

390 ! Forward load CAL

400 CALL Waitforkey(“CONNECT LOAD AT PORT 1”)

410 OUTPUT @Nwa;”CLASS11C;”
8-39

Programming Examples

Measurement Calibration Examples
420 OUTPUT @Nwa;”OPC?;STANA;” ! Select the first standard, A

430 ENTER @Nwa;Reply ! Read in the 1 returned

440 OUTPUT @Nwa;”DONE;” ! Finished with class standards

450 !

460 ! Reverse open CAL

470 CALL Waitforkey(“CONNECT OPEN AT PORT 2”)

480 !

490 OUTPUT @Nwa;”OPC?;CLASS22A;” ! Only one standard in class

500 ENTER @Nwa;Reply ! Read in the 1 returned

510 OUTPUT @Nwa;”DONE;” ! Finished with class standards

520 !

530 ! Reverse short CAL

540 CALL Waitforkey(“CONNECT SHORT AT PORT 2”)

550 !

560 OUTPUT @Nwa;”OPC?;CLASS22B;” ! Only one standard in class

570 ENTER @Nwa;Reply ! Read in the 1 returned

580 OUTPUT @Nwa;”DONE;” ! Finished with class standards

590 !

600 ! Reverse load CAL

610 CALL Waitforkey(“CONNECT LOAD AT PORT 2”)

620 OUTPUT @Nwa;”CLASS22C;”

630 OUTPUT @Nwa;”OPC?;STANA;” ! Select the first standard, A

640 ENTER @Nwa;Reply ! Read in the 1 returned

650 OUTPUT @Nwa;”DONE;” ! Finished with class standards

660 !

670 DISP “COMPUTING REFLECTION CALIBRATION COEFFICIENTS”

680 !

690 OUTPUT @Nwa;”REFD;” ! Reflection portion complete

700 !

710 OUTPUT @Nwa;”TRAN;” ! Transmission portion begins

720 !

730 CALL Waitforkey(“CONNECT THRUS BETWEEN ELECTRICAL AND OPTICAL PORTS”)

740 DISP “MEASURING FORWARD TRANSMISSION”

750 OUTPUT @Nwa;”OPC?;FWDT;” ! Measure forward transmission

760 ENTER @Nwa;Reply ! Read in the 1 returned

765 ! Select Calibration Standard Type

770 PRINT “Enter one of the following numbers”

775 PRINT “1. Do THRUS standard”

780 PRINT “2. Do THRU/SRC standard

785 INPUT std type

790 ! Select Std Type

795 CASE 1

800 OUTPUT @Nwa;”STANA;”
8-40

Programming Examples

Measurement Calibration Examples
802 CASE 2

804 OUTPUT @ NWa;”STANB;”

810 OUTPUT @Nwa;”DONE;” ! Finished with class standards

820 !

830 OUTPUT @Nwa;”OPC?;FWDM;” ! Measure forward match thru

840 ENTER @Nwa;Reply ! Read in the 1 returned

850 !

890 !

920 !

930 OUTPUT @Nwa;”TRAD;” ! Transmission CAL complete

940 !

950 INPUT “SKIP ISOLATION CAL? Y OR N.”,An$

960 IF An$=”Y” THEN

970 OUTPUT @Nwa;”OMII;” ! Skip isolation cal

980 GOTO 1180 !”COMPUTING CALIBRATION COEFFICIENTS”

990 END IF

1000 !

1010 CALL Waitforkey(“ISOLATE TEST PORTS”)

1020 !

1030 OUTPUT @Nwa;”ISOL;” ! Isolation CAL

1040 OUTPUT @Nwa;”AVERFACT10;” ! Average for 10 sweeps

1050 OUTPUT @Nwa;”AVEROON;” ! Turn on averaging

1060 DISP “MEASURING REVERSE ISOLATION”

1070 OUTPUT @Nwa;”OPC?;REVI;” ! Measure reverse isolation

1080 ENTER @Nwa;Reply ! Read in the 1 returned

1090 !

1100 DISP “MEASURING FORWARD ISOLATION”

1110 OUTPUT @Nwa;”OPC?;FWDI;” ! Measure forward isolation

1120 ENTER @Nwa;Reply ! Read in the 1 returned

1130 !

1140 OUTPUT @Nwa;”ISOD;AVEROOFF;” ! Isolation complete averaging off

1150 OUTPUT 717;”PG;” ! Clear analyzer display prompt

1160 !

1170 OUTPUT @Nwa;”REMD; ! press Done Response & Match

1180 DISP “COMPUTING CALIBRATION COEFFICIENTS”

1190 OUTPUT @Nwa;”OPC?;SAVE2;” ! Save THE TWO PORT CAL

1200 ENTER @Nwa;Reply ! Read in the 1 returned

1210 !

1220 DISP “DONE WITH RESPONSE AND MATCH CAL. CONNECT TEST DEVICE.”

1230 OUTPUT @Nwa;”MENUON;” ! Turn softkey menu on

1240 !

1250 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish

1260 ENTER @Nwa;Reply ! Read the 1 when complete
8-41

Programming Examples

Measurement Calibration Examples
1270 LOCAL @Nwa ! Release HP-IB control

1280 !

1290 END

1300 !

1310 ! ************************* Subroutines *******************************

1320 !

1330 SUB Waitforkey(Lab$)

1340 ! Position and display prompt on the analyzer display

1350 OUTPUT 717;”PG;PU;PA390,3700;PD;LB”;Lab$;”, PRESS ENTER WHEN READY;”&CHR$(3)

1360 !

1370 DISP Lab$&” Press ENTER when ready”; ! Display prompt on console

1380 INPUT A$! Read ENTER keypress on controller

1390 OUTPUT 717;”PG;” ! Clear analyzer display

1400 SUBEND

Example 2G: Adapter Removal Calibration for E/E Devices

This program shows how to accurately measure a “non-insertable” 2-port device. A device is
termed “non-insertable” if its connectors do not match those of the analyzer front panel.
More information on the adapter removal technique can be found in your analyzer’s user’s
guide.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The internal disk is selected as the active storage device.

• The system operator is prompted for the name of the instrument state file which has a
2-port calibration performed for Port 1's connector.

• The calibration arrays for Port 1 are recalled from the corresponding disk file.

• The system operator is prompted for the known electrical delay value of the adapter.

• The new calibration coefficients, with the effects of the adapter removed, are computed
by the analyzer using the adapter delay in conjunction with the calibration arrays for both
ports.

• The analyzer is released from remote control and the program ends.

CAUTION Do not mistake the line switch for the disk eject button. If the line switch is
mistakenly pushed, the instrument will be turned off, losing all settings and
data that have not been saved.

Running the Program

The analyzer is initialized and the internal disk drive is selected. The operator is queried for
8-42

Programming Examples

Measurement Calibration Examples
the name of the instrument state file having a 2-port calibration performed for Port 1's
connector. The calibration arrays for Port 1 are recalled from the corresponding disk file.
The system operator is prompted for the name of the instrument state file having a 2-port
calibration performed for Port 2's connector. The calibration arrays for Port 2 are recalled
from the corresponding disk file. The system operator is prompted for the known electrical
delay of the adapter and this value is written to the analyzer. The calibration coefficients
with adapter effects removed are computed and the program ends.
8-43

Programming Examples

Measurement Calibration Examples
BASIC Program Listing

1 ! This program demonstrates how to do adapter removal over HP-IB.
2 !
3 ! EXAMP2G Adapter Removal Calibration for E/E Devices
4 !
5 REAL Delay ! Adapter electrical delay in picoseconds
6 !
7 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
8 CLEAR SCREEN
9 ! Initialize the system
10 ABORT 7 ! Generate an IFC (Interface Clear)
11 CLEAR @Nwa ! SDC (Selected Device Clear) analyzer
12 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
13 ENTER @Nwa;Reply ! Read in the 1 returned
14 !
15 ! Select internal disk.
16 !
17 OUTPUT @Nwa;”INTD;”
18 !
19 ! Assign file #1 to the filename that has a 2-port
20 ! cal previously performed for Port 1’s connector.
21 !
22 PRINT “Enter the name of the instrument state file which”
23 PRINT “has a 2-port cal performed for Port 1’s connector”
24 INPUT ““,F1$
25 OUTPUT @Nwa;”TITF1”””;F1$;”””;”
26 !
27 ! Recall the cal set for Port 1.
28 !
29 DISP “Loading cal arrays, please wait”
30 OUTPUT @Nwa;”CALSPORT1;”
31 OUTPUT @Nwa;”OPC?;NOOP;”
32 ENTER @Nwa;Reply
33 !
34 ! Assign file #2 to the filename that has a 2-port
35 ! cal previously performed for Port 2’s connector.
36 !
37 CLEAR SCREEN
38 PRINT “Enter the name of the instrument state file which”
39 PRINT “has a 2-port cal performed for Port 2’s connector”
40 INPUT ““,F2$
41 OUTPUT @Nwa;”INTD;TITF2”””;F2$;”””;”
42 !
43 ! Recall the cal set for Port 2.
44 !
45 DISP “Loading cal arrays, please wait”
46 OUTPUT @Nwa;”CALSPORT2;”
47 OUTPUT @Nwa;”OPC?;NOOP;”
48 ENTER @Nwa;Reply
49 !
50 ! Set the adapter electrical delay.
51 !
52 INPUT “Enter the electrical delay for the adapter in picoseconds”,Delay
53 OUTPUT @Nwa;”ADAP1”&VAL$(Delay)&”PS;”
54 !
55 ! Perform the “remove adapter” computation.
56 !
8-44

Programming Examples

Measurement Calibration Examples
57 DISP “Computing cal coefficients...”
58 OUTPUT @Nwa;”MODS;”
59 OUTPUT @Nwa;”OPC?;WAIT;”
60 ENTER @Nwa;Reply
61 LOCAL 7 ! Release HP-IB control
62 DISP “Program completed”
63 END

Example 2H: Using Raw Data to Create a Calibration (Simmcal) for E/E
Devicse

This program simulates a full 2-port cal by measuring the raw data for each “standard” and
then loading it later into the appropriate arrays. The program can be adapted to create
additional calibrations using the same arrays. It uses the analyzer’s default 3.5mm cal kit.

CAUTION This feature is not currently supported with TRL calibrations.

The following is an outline of the programs' processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initiated.

• The instrument ID is queried so that the program can later branch accordingly for the
S11C and S22C (load) classes.

• The number of points is set to correspond to the size of the dimensioned memory arrays
and ASCII data format is selected.

• The 3.5-mm calibration kit is selected, sweep time is set to 1 second, and the analyzer is
placed into hold mode.

• S11 measurement is selected for gathering the forward reflection standards.

• The system operator is prompted to connect each of the three standards, one at a time.

• Following each prompt, a single sweep is taken and the raw measured data for that
standard is read from the analyzer into a corresponding memory array in the controller.

• S22 measurement is selected for gathering the reverse reflection standards.

• The system operator is prompted in the same manner as before and the raw data for the
three standards is measured and stored away as before.

• The system operator is prompted to make the thru connection between Port 1 and Port 2.

• S21 measurement is selected, a single sweep is taken and the raw data is read into an
array corresponding to forward transmission.

• S11 measurement is selected, a single sweep is taken and the raw data is read into an
array corresponding to forward thru match.

• S12 measurement is selected, a single sweep is taken and the raw data is read into an
array corresponding to reverse transmission.

• S22 measurement is selected, a single sweep is taken and the raw data is read into an
8-45

Programming Examples

Measurement Calibration Examples
array corresponding to reverse thru match.

• The analyzer begins the normal 2-port calibration procedure, but with the default beep
turned off.

• A single sweep is taken for the measurement of each standard to provide “dummy” data,
which is immediately replaced with the previously measured raw data from the array
corresponding to that measurement.

• The analyzer uses the raw data to compute the error coefficients and is placed back into
continuous sweep mode.

• The analyzer is released from remote control and the program ends.

Running the Program

The system is initialized, the number of points is set to 51, and the 3.5-mm calibration kit is
selected. Sweep time is set to 1 second and the analyzer is placed into hold mode.

The S11 measurement is selected and the system operator is prompted to connect each of the
three forward reflection standards, one at a time. Following each prompt, a single sweep is
taken, which concludes with a beep from the external controller.

The S22 measurement is selected for gathering the reverse reflection standards. The system
operator is prompted in the same manner as before and the three standards are measured as
before.

The system operator is prompted to make the thru connection between Port 1 and Port 2.
A single sweep is taken for each of the four S-parameters, each concluding with a beep.

The analyzer begins the normal 2-port calibration procedure, but with the default beep
turned off. A single sweep is taken for each measurement of each standard, providing
“dummy” data which is immediately replaced with the data from the array corresponding to
that measurement. The analyzer computes the error correction coefficients and is placed
back into continuous sweep mode. The default beep is re-enabled and the program ends.

10 ! This program simulates a full 2-port cal by first getting the

20 ! raw data for each “standard” and then loading it into the

30 ! appropriate arrays later.

100 !

110 ! EXAMP2H Using Raw Data to Create a Calibration (Simmcal) for E/E Devices

120 !

130 !

140 !

150 ! Allocate the arrays. The numbers correspond to the subsequent

160 ! cal coefficient array that will be written.

170 !

180 DIM Array01(1:51,1:2) ! forward OPEN measurement

190 DIM Array02(1:51,1:2) ! forward SHORT

200 DIM Array03(1:51,1:2) ! forward LOAD

210 DIM Array04(1:51,1:2) ! forward ISOLATION if necessary

220 DIM Array05(1:51,1:2) ! forward LOAD MATCH
8-46

Programming Examples

Measurement Calibration Examples
230 DIM Array06(1:51,1:2) ! forward TRANS

240 DIM Array07(1:51,1:2) ! reverse OPEN

250 DIM Array08(1:51,1:2) ! reverse SHORT

260 DIM Array09(1:51,1:2) ! reverse LOAD

270 DIM Array10(1:51,1:2) ! reverse ISOLATION if necessary

280 DIM Array11(1:51,1:2) ! reverse LOAD MATCH

290 DIM Array12(1:51,1:2) ! reverse TRANS

300 !

310 ! Initialize the system

320 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer

330 ABORT 7 ! Generate an IFC (Interface Clear)

340 CLEAR @Nwa ! SDC (Selected Device Clear) analyzer

350 CLEAR SCREEN

360 !

440 ! Preset the analyzer, set to 51 points, ASCII format, desired cal

450 ! kit definition (3.5mm). Sweep time set to 1 second (could be whatever

460 ! user would like), analyzer put in hold mode.

470 !

480 OUTPUT @Nwa;”opc?;pres;”

490 ENTER @Nwa;X

500 OUTPUT @Nwa;”POIN51;FORM4;”

510 OUTPUT @Nwa;”CALK3.5MM;SWET1S;HOLD;”

520 !

530 ! Select S11 to gather the forward reflection standards

540 ! (open, short, load).

550 !

560 OUTPUT @Nwa;”S11;”

570 INPUT “CONNECT OPEN AT PORT 1”,X

580 OUTPUT @Nwa;”opc?;sing;”

590 ENTER @Nwa;X

600 BEEP

610 OUTPUT @Nwa;”OUTPRAW1”

620 ENTER @Nwa;Array01(*)

630 !

640 INPUT “CONNECT SHORT AT PORT 1”,X

650 OUTPUT @Nwa;”opc?;sing;”

660 ENTER @Nwa;X

670 BEEP

680 OUTPUT @Nwa;”OUTPRAW1”

690 ENTER @Nwa;Array02(*)

700 !

710 INPUT “CONNECT BROADBAND LOAD AT PORT 1”,X

720 OUTPUT @Nwa;”opc?;sing;”
8-47

Programming Examples

Measurement Calibration Examples
730 ENTER @Nwa;X

740 BEEP

750 OUTPUT @Nwa;”OUTPRAW1”

760 ENTER @Nwa;Array03(*)

770 !

780 ! Now select S22 to gather the reverse reflection standards.

790 !

800 OUTPUT @Nwa;”S22”

810 INPUT “CONNECT OPEN AT PORT 2”,X

820 OUTPUT @Nwa;”opc?;sing;”

830 ENTER @Nwa;X

840 BEEP

850 OUTPUT @Nwa;”OUTPRAW1”

860 ENTER @Nwa;Array07(*)

870 !

880 INPUT “CONNECT SHORT AT PORT 2”,X

890 OUTPUT @Nwa;”opc?;sing;”

900 ENTER @Nwa;X

910 BEEP

920 OUTPUT @Nwa;”OUTPRAW1”

930 ENTER @Nwa;Array08(*)

940 !

950 INPUT “CONNECT BROADBAND LOAD AT PORT 2”,X

960 OUTPUT @Nwa;”opc?;sing;”

970 ENTER @Nwa;X

980 BEEP

990 OUTPUT @Nwa;”OUTPRAW1”

1000 ENTER @Nwa;Array09(*)

1010 !

1020 INPUT “CONNECT THRU [PORT1 TO PORT 2]”,X

1030 !

1040 ! Now select S21 to gather forward transmission raw array.

1050 !

1060 DISP “MEASURING FORWARD TRANSMISSION”

1070 OUTPUT @Nwa;”S21;OPC?;SING;”

1080 ENTER @Nwa;Reply

1090 BEEP

1100 OUTPUT @Nwa;”OUTPRAW1”

1110 ENTER @Nwa;Array06(*)

1120 !

1130 ! Now select S11 to gather forward match raw array.

1140 !

1150 OUTPUT @Nwa;”S11;OPC?;SING;”
8-48

Programming Examples

Measurement Calibration Examples
1160 ENTER @Nwa;Reply

1170 BEEP

1180 OUTPUT @Nwa;”OUTPRAW1”

1190 ENTER @Nwa;Array05(*)

1200 !

1210 ! Now select S12 for reverse transmission raw array.

1220 !

1230 DISP “MEASURING REVERSE TRANSMISSION”

1240 OUTPUT @Nwa;”S12;OPC?;SING;”

1250 ENTER @Nwa;Reply

1260 BEEP

1270 OUTPUT @Nwa;”OUTPRAW1”

1280 ENTER @Nwa;Array12(*)

1290 !

1300 ! Now select S22 for reverse match raw array.

1310 !

1320 OUTPUT @Nwa;”S22;OPC?;SING;”

1330 ENTER @Nwa;Reply

1340 BEEP

1350 OUTPUT @Nwa;”OUTPRAW1”

1360 ENTER @Nwa;Array11(*)

1370 !

1380 ! Done with gathering measurements except for isolation. If

1390 ! isolation desired, then put forward isolation into ‘Array04’,

1400 ! reverse isolation into ‘Array10’.

1410 !

1420 ! Now download and let analyzer compute the full 2-port error

1430 ! correction.

1440 !

1450 ! First select the calibration type desired.

1460 !

1470 OUTPUT @Nwa;”CALIFUL2;”

1480 !

1490 ! Turn off the beep indicating standard done.

1500 !

1510 OUTPUT @Nwa;”BEEPDONEOFF;”

1520 !

1530 ! Set up for the reflection standards.

1540 !

1550 OUTPUT @Nwa;”REFL;”

1560 !

1570 ! Input the forward ‘open’ standard’s raw array. For all of

1580 ! these, the analyzer is first taking a “dummy” measurement, goes
8-49

Programming Examples

Measurement Calibration Examples
1590 ! into hold, then the computer downloads the data using an

1600 ! INPUCALC command which overwrites the “dummy” data with the raw

1610 ! array gathered previously.

1620 !

1630 OUTPUT @Nwa;”OPC?;CLASS11A;”

1640 ENTER @Nwa;Reply

1650 OUTPUT @Nwa;”INPUCALC01”,Array01(*)

1660 !

1670 ! Input the forward ‘short’ standard’s raw array.

1680 !

1690 OUTPUT @Nwa;”OPC?;CLASS11B;”

1700 ENTER @Nwa;Reply

1710 OUTPUT @Nwa;”INPUCALC02”,Array02(*)

1720 !

1730 ! Input the forward ‘load’ standards’s raw array.

1740 !

1780 OUTPUT @Nwa;”CLASS11C;OPC?;STANA;”

1800 ENTER @Nwa;Reply

1810 OUTPUT @Nwa;”INPUCALC03”,Array03(*)

1820 !

1830 ! Input reverse ‘open’.

1840 !

1850 OUTPUT @Nwa;”OPC?;CLASS22A;”

1860 ENTER @Nwa;Reply

1870 OUTPUT @Nwa;”INPUCALC07”,Array07(*)

1880 !

1890 ! Input reverse ‘short’.

1900 !

1910 OUTPUT @Nwa;”OPC?;CLASS22B;”

1920 ENTER @Nwa;Reply

1930 OUTPUT @Nwa;”INPUCALC08”,Array08(*)

1940 !

1950 ! Input reverse ‘load’.

1960 !

2000 OUTPUT @Nwa;”CLASS22C;OPC?;STANA;”

2020 ENTER @Nwa;Reply

2030 OUTPUT @Nwa;”INPUCALC09”,Array09(*)

2040 !

2050 ! Tell analyzer that reflection measurements done.

2060 !

2070 OUTPUT @Nwa;”REFD;”

2080 DISP “COMPUTING REFLECTION CALIBRATION COEFFICIENTS”

2090 !
8-50

Programming Examples

Measurement Calibration Examples
2100 ! Now start the transmission standard downloads.

2110 !

2120 OUTPUT @Nwa;”TRAN;”

2130 !

2140 ! Now input the forward transmission raw arrays.

2150 !

2160 OUTPUT @Nwa;”OPC?;FWDT;”

2170 ENTER @Nwa;Reply

2180 OUTPUT @Nwa;”INPUCALC06”,Array06(*)

2190 !

2200 OUTPUT @Nwa;”OPC?;FWDM;”

2210 ENTER @Nwa;Reply

2220 OUTPUT @Nwa;”INPUCALC05”,Array05(*)

2230 !

2240 ! Now input the reverse transmission arrays.

2250 !

2260 !DISP “MEASURING REVERSE TRANSMISSION”

2270 OUTPUT @Nwa;”OPC?;REVT;”

2280 ENTER @Nwa;Reply

2290 OUTPUT @Nwa;”INPUCALC12”,Array12(*)

2300 !

2310 OUTPUT @Nwa;”OPC?;REVM;”

2320 ENTER @Nwa;Reply

2330 OUTPUT @Nwa;”INPUCALC11”,Array11(*)

2340 !

2350 ! Tell analyzer that transmission inputs done.

2360 !

2370 OUTPUT @Nwa;”TRAD”

2380 !

2390 ! Omitting isolation for this example. Could be easily

2400 ! incorporating by using method shown for tranmission and

2410 ! reflection.

2420 !

2430 OUTPUT @Nwa;”ISOL;”

2440 OUTPUT @Nwa;”OMII;” !IF ISOLATION CAL NOT DESIRED

2450 ! Here’s how to download isolation. Un-comment these lines.

2460 !

2470 !OUTPUT @Nwa;”OPC?;REVI;” ! reverse isolation term

2480 !ENTER @Nwa;Reply

2490 !OUTPUT @Nwa;”INPUCALC10”,Array10(*)

2500 !

2510 !OUTPUT @Nwa;”OPC?;FWDI;” ! forward isolation term

2520 !ENTER @Nwa;Reply
8-51

Programming Examples

Measurement Calibration Examples
2530 !OUTPUT @Nwa;”INPUCALC04”,Array04(*)

2540 !

2550 ! Tell analyzer that done with isolation measurements.

2560 !

2570 OUTPUT @Nwa;”ISOD;”

2580 DISP “COMPUTING CALIBRATION COEFFICIENTS”

2590 !

2600 ! Tell analyzer to compute full 2-port error coefficients.

2610 !

2620 OUTPUT @Nwa;”OPC?;SAV2;”

2630 ENTER @Nwa;Reply

2640 DISP “DONE”

2650 !

2660 ! Put analyzer back into continuous sweep so that you can verify

2670 ! the proper application of the error correction.

2680 !

2690 OUTPUT @Nwa;”CONT;”

2700 OUTPUT @Nwa;”BEEPDONEON;” ! Re-enable the beep

2710 LOCAL 7 ! Release HP-IB control

2720 END

Example 2I: Response and Match Calibration for E/O Devices

A response and match calibration effectively removes the frequency response errors of the
test setup for transmission measurements of optical-to-electrical devices.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The softkey menu is deactivated.

• The operator is prompted to connect the standards for the reflection portion of the
calibration.

• The operator is prompted to connect the standards for the transmission portion of the
calibration.

• The operator is prompted to connect the standards for the isolation portion of the
calibration.

• The calibration is saved.

• The analyzer is released from remote control and the program ends.

10 ! This program guides the operator through an E/O Response & Match calibration.

20 !

30 !
8-52

Programming Examples

Measurement Calibration Examples
40 ! The routine Waitforkey displays a message on the instrument’s

50 ! display and the console, to prompt the operator to connect the

60 ! calibration standard. Once the standard is connected, the

70 ! ENTER key on the computer keyboard is pressed to continue.

80 !

90 ! LEXAMP2I Response and Match Calibration for E/O Devices

100 !

110 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer

120 !

130 CLEAR SCREEN

140 ! Initialize the system

150 ABORT 7 ! Generate an IFC (Interface Clear)

160 CLEAR @Nwa ! SDC (Selected Device Clear)

170 OUTPUT @Nwa;”MENUOFF;” ! Turn softkey menu off.

180 !

190 OUTPUT @Nwa;”MEASEO1;” ! E/O Measurment

200 OUTPUT @Nwa;”CALIEORM;” ! Response & MaAtch 1 port CAL initiated

210 OUTPUT @Nwa;”SOFT1;”

220 ! Open reflection CAL

230 CALL Waitforkey(“CONNECT OPEN AT PORT 1 (REFLECTION PORT)”)

240 !

250 OUTPUT @Nwa;”OPC?;CLASS11A;”

260 !

270 ENTER @Nwa;Reply ! Read in the 1 returned

280 ! OUTPUT @Nwa;”DONE;” ! Finished with class standards

290 !

300 ! Short reflection CAL

310 CALL Waitforkey(“CONNECT SHORT AT PORT 1 (REFLECTION PORT)”)

320 !

330 OUTPUT @Nwa;”OPC?;CLASS11B;” ! Only one standard in class

340 !

350 ENTER @Nwa;Reply ! Read in the 1 returned

360 ! OUTPUT @Nwa;”DONE;” ! Finished with class standards

370 !

380 ! Reflection load CAL

390 CALL Waitforkey(“CONNECT LOAD AT PORT 1 (REFLECTION PORT)”)

400 OUTPUT @Nwa;”CLASS11C;”

410 OUTPUT @Nwa;”OPC?;STANA;” ! Select the first standard, A

420 ENTER @Nwa;Reply ! Read in the 1 returned

430 OUTPUT @Nwa;”DONE;” ! Finished with class standards

440 OUTPUT @Nwa;”REFD;” ! Finished with class standards

450 !

460 DISP “COMPUTING CALIBRATION COEFFICIENTS”
8-53

Programming Examples

Measurement Calibration Examples
470 !

480 ! Starting FWD TRANS THRUS

490 OUTPUT @Nwa;”FWDT;”

500 CALL Waitforkey(“CONNECT THRUS BETWEEN ELECTRICAL AND OPTICAL PORTS”)

505 PRINT “Enter one of the following numbers”

510 PRINT “1. Do THRUS standard”

515 PRINT “2. Do THRUS/RCVR standard”

520 INPUT Std type

525 ! Select Std type

530 CASE 1

535 OUTPUT @Nwa;”STANA;”

540 CASE 2

545 OUTPUT @Nwa;”STANB;”

560 OUTPUT @Nwa;”DONE;”

570 ! Select Isolation

580 OUTPUT @Nwa;”ISOL;”

590 CALL Waitforkey(“ISOLATE PORTS “)

600 OUTPUT @Nwa;”OMII;”

610 !

620 OUTPUT @Nwa;”RAMD;”

630 !

640 OUTPUT @Nwa;”OPC?;SAVE1;” ! Save the ONE PORT CAL

650 ENTER @Nwa;Reply ! Read in the 1 returned

660 DISP “E/O RESPONSE & MATCH 1-PORT CAL COMPLETED. CONNECT TEST DEVICE.”

670 OUTPUT @Nwa;”MENUON;” ! Turn softkey menu on

680 !

690 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish

700 ENTER @Nwa;Reply ! Read the 1 when complete

710 LOCAL @Nwa ! Release HP-IB control

720 END

730 !

740 ! **************************** Subroutines ******************************

750 !

760 Waitforkey: ! Prompt routine to read a keypress on the controller

770 SUB Waitforkey(Lab$)

780 ! Position and display text on the analyzer display

790 OUTPUT 717;”PG;PU;PA390,3700;PD;LB”;Lab$;”, PRESS ENTER WHEN READY;”&CHR$(3)

800!

810 DISP Lab$&” Press ENTER when ready”;! Display prompt on console

820 INPUT A$! Read ENTER key press

830 !

840 OUTPUT 717;”PG;” ! Clear analyzer display

850 SUBEND
8-54

Programming Examples

Measurement Calibration Examples
Example 2J: Take4 — Error Correction Processed on an External PC for
E/E Devices

Take4 mode offloads the error correction process to an external PC in order to increase
throughput on the analyzer.

When using the analyzer with error correction turned off, it will only sweep in one direction,
collecting data for the parameter selected under the Meas, key. To emulate the error
correction process in an external computer, you collect the raw data for each of the four
S-parameters.

Take4 initiates a mode in which every measurement cycle is characterized by sweeping in
both the forward and reverse directions and collecting raw data for all four S-parameters.
Using previously extracted calibration arrays, you can then extract the raw data (or the
pre-raw data, as explained later in this section) for the S-parameters and perform the error
correction in an external computer. When measuring more than one parameter, this process
can be done in less time than if using the normal instrument error correction and data
transfer (Refer to Table 8-8 on page 8-57).

NOTE This mode is intended for remote use only. Any attempt to change the
measured parameter or any attempt to apply a calibration will turn off the
Take4 mode. The displayed trace data is always uncorrected S11, regardless of
what the display may indicate.

Using the Take4 mode requires the following steps:

Manual steps:

1. Set up the measurement state.

2. Turn off raw offsets by selecting System, CONFIGURE MENU, RAW OFFSET OFF. This
selection achieves two things:

• Eliminates attenuator offsets and sampler hardware offsets from the cal arrays, which
are generated in the 2-port error correction. This makes the cal arrays and the
eventual OUTPPRE arrays compatible, both using pre-raw data.

• Eliminates sampler correction, a frequency response correction that is normally
contained in pre-raw data. This is done because sampler correction is not needed for
data that will be fully corrected, and because instrument states recall faster without it.
To realize this efficiency, you must also disable spur avoidance (see next step).

3. Optional step: Turn off spur avoidance by selecting System, CONFIGURE MENU, SPUR
AVOID OFF. Spur avoidance creates a table of values as part of the sampler offset table.
The creation of this table takes considerable time during a recall of an instrument state.
Turning off spur avoidance will save time during frequency changes and instrument state
recalls.

4. Perform a 2-port error correction and save it to a register.

5. Connect the device under test (DUT).
8-55

Programming Examples

Measurement Calibration Examples
The instrument is now configured for the program to read the correction arrays and apply
the Take4 mode.

Programming steps:

6. Extract the twelve calibration arrays using the commands OUTPCALC[01-12].

7. Enable Take4 mode using the command TAKE4ON.

8. Take a sweep and extract the four pre-raw or raw arrays.

• To extract pre-raw data arrays (see previous discussion on raw offsets), you can use
the commands SWPSTART (initiate a single sweep) with OUTPPRE[1-4]. These
commands are more efficient than SING and OUTPRAF[1-4] because the analyzer will
respond to OUTPPRE1 and OUTPPRE2 as soon as the forward sweep is done and
transfer the data during the reverse sweep. With SING, the GPIB bus is held off until
the entire sweep is complete.

• To extract raw data arrays, you can use the commands SING (initiate a single sweep)
with OUTPRAW[1-4], or the slightly faster OUTPRAF[1-4]. If the cal arrays were
created using RAW OFFSET ON, you should use this method so that your measurement
data is compatible with the calibration data.

9. Apply the calibration arrays (see Table 4-3 on page 4-21) to either the pre-raw or raw data
as described in programming example 2H and in the user's guide (see the figure titled
“Full 2-Port Error Model”).
8-56

Programming Examples

Measurement Calibration Examples
Programming example 2J is the complete execution of a two port error correction offloaded
to an external PC.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer. Binary mode is used for data transfers in order
to get the fastest response.

• The system is initialized.

• The state of raw offsets is queried and turned off if they had been on.

• The analyzer is placed into local mode and the system operator is prompted to set up a
2-port calibration before continuing.

• The calibration coefficients are read from the analyzer into memory arrays.

• The calibration is turned off and the analyzer is placed into TAKE4 mode and HOLD
mode.

• The operator is prompted to connect the DUT and select which S-parameter to send back
to the analyzer.

• The currently displayed data is saved to the analyzer's internal memory to initialize the
memory array.

• The analyzer is set up to display memory only and the default beep is turned off.

• The operator is prompted to press any key to terminate the program.

• A sweep is initiated and the main loop of the program begins.

• After the sweep concludes, the four pre-raw S-parameters are read from the analyzer into
an array in the computer.

Table 8-8. Measurement Speed: Data Output and Error Correction to an
External PC

Mode
(data output to external
PC)

Time (secs)
1-parameter

Time (secs)
2-parameters

Time (secs)
3-parameters

Time (secs)
4-parameters

Full band, IF BW=3700, 201 points, SPUR AVOID OFF, RAW OFFSET OFF, Blank Display ON

Take4 0.780 0.780 0.780 0.780

Normal error correction 0.712 0.907 0.970 1.03

Narrow band, IF BW=3700, 201 points, CF=1.8GHz, Span=200MHz, SPUR AVOID OFF, ,RAW
OFFSET OFF, Blank Display ON

Take4 0.215 0.215 0.215 0.215

Normal error correction 0.151 0.224 0.290 0.350

Take4 mode used in conjunction with an HP Omnibook 5500CT laptop, 133 MHz Pentium, running
HP VEE 4.0 as program language.
8-57

Programming Examples

Measurement Calibration Examples
• The error-corrected (calibrated) S-parameters are calculated using the pre-raw data and
calibration coefficients.

• The calibrated data for the S-parameter selected earlier is sent into the analyzer and
saved to the analyzer's internal memory.

• A new sweep is initiated and the loop repeats if there has been no keyboard activity.

• Upon exit of the loop, the analyzer is set up to display the active measurement trace.

• The analyzer's internal calibration is turned back on and continuous sweep mode is
resumed.

• The analyzer is released from remote control and the program ends.

Running the Program

The analyzer is initialized and raw offsets are turned off. After the analyzer is placed in local
mode, the operator is prompted to set up a 2-port calibration before continuing. The
resulting calibration coefficients are read from the analyzer into memory arrays.

Next, the calibration is turned off and the analyzer is placed into TAKE4 mode and HOLD
mode. After being prompted to connect the DUT, the operator selects which S-parameter to
send back to the analyzer. The currently displayed data is saved to the analyzer's internal
memory and the analyzer is set up to display memory only. The operator is prompted to
press any key to terminate the program, a sweep is initiated and the main loop of the
program begins.

After the sweep concludes, the four pre-raw S-parameters are read from the analyzer into
memory arrays. The error-corrected (calibrated) S-parameters are calculated and the
calibrated data for the S-parameter selected earlier is read into the analyzer and saved to the
analyzer's internal memory. A new sweep is initiated and the loop repeats if there has been
no keyboard activity.

Upon exit of the loop, the analyzer is set up to display the active measurement trace. The
analyzer's internal calibration is turned back on and continuous sweep mode is resumed
before the program ends.

BASIC Program Listing

1 ! This program demonstrates the TAKE4 mode.
2 ! The program first asks the user to set up the instrument
3 ! with a 2-port calibration. The subroutine “Read_Cal_co”
4 ! is used to read the 12 term error correction arrays into
5 ! a (N x 12) 2-dimension array (N = number of points). This will
6 ! be used in the “Calc_2_port” subroutine. The program turns off
7 ! error correction, puts the analyzer in hold, turns on TAKE4
8 ! mode, and starts a sweep. The subroutine “Read_4_raw” reads in
9 ! the uncorrected data. The subroutine “Calc_2_port” calculates
10 ! the error correction and returns the corrected arrays.
11 ! The corrected S-parameter is re-input to the analyzer, stored
12 ! in the memory trace and displayed in memory for a visual
13 ! indication of the take4 function.
14 !
15 ! EXAMP2J Take 4-Error Correction Processed on an External PC
16 !
17 !!
8-58

Programming Examples

Measurement Calibration Examples
18 !
19 ! Initialize Arrays and Variables
20 !
21 !!
22 !
23 INTEGER Hdr,Length
24 COMPLEX S11x,S21x,S12x,S22x,D
25 COMPLEX Calcoe(1:1601,1:12) ! Cal Coefficients
26 COMPLEX S11r(1:1601) ! Pre-Raw Data
27 COMPLEX S21r(1:1601) ! Pre-Raw Data
28 COMPLEX S12r(1:1601) ! Pre-Raw Data
29 COMPLEX S22r(1:1601) ! Pre-Raw Data
30 COMPLEX S11a(1:1601) ! Corrected Data
31 COMPLEX S21a(1:1601) ! Corrected Data
32 COMPLEX S12a(1:1601) ! Corrected Data
33 COMPLEX S22a(1:1601) ! Corrected Data
34 !
35 ! Initialize output commands
36 !
37 DIM Out_cmd$(1:12)[10]
38 DATA “OUTPCALC01”,”OUTPCALC02”,”OUTPCALC03”,”OUTPCALC04”
39 DATA “OUTPCALC05”,”OUTPCALC06”,”OUTPCALC07”,”OUTPCALC08”
40 DATA “OUTPCALC09”,”OUTPCALC10”,”OUTPCALC11”,”OUTPCALC12”
41 READ Out_cmd$(*)
42 !
43 ! Setup Network Analyzer
44 !
45 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
46 ASSIGN @Nwdat TO 716;FORMAT OFF! Binary mode to read and write data
47 ABORT 7 ! Generate an IFC (Interface Clear)
48 CLEAR @Nwa ! SDC (Selected Device Clear) analyzer
49 CLEAR SCREEN
50 !
51 OUTPUT @Nwa;”RAWOFFS?;” ! Query whether raw offsets are on
52 ENTER @Nwa;I
53 IF I=1 THEN
54 PRINT “Raw offsets must be turned off prior to calibration.”
55 PRINT “Turning them off now.”
56 OUTPUT @Nwa;”RAWOFFSOFF;”
57 END IF
58 !
59 !
60 Check_for_cal: ! Turn on two-port cal, check and read
61 REPEAT
62 LOCAL @Nwa
63 INPUT “Set up a 2-port cal, hit return when ready”,A
64 OUTPUT @Nwa;”CORR?;”
65 ENTER @Nwa;I
66 UNTIL I=1
67 !
68 ! Read the Calibration Coefficients
69 !
70 DISP “Reading in Calibration Coefficient Arrays: Please wait.”
71 GOSUB Read_cal_co
72 !
73 ! Setup TAKE4 Mode,
74 !
75 OUTPUT @Nwa;”Corroff;take4on;hold;”
8-59

Programming Examples

Measurement Calibration Examples
76 !
77 ! Choose an S-Parameter to send back to the Network Analyzer
78 !
79 REPEAT
80 INPUT “SELECT S-Parameter: 1=S11, 2=S21, 3=S12, 4=S22”,Disp
81 SELECT Disp
82 CASE 1
83 Title$=”S11”
84 Again=0
85 CASE 2
86 Title$=”S21”
87 Again=0
88 CASE 3
89 Title$=”S12”
90 Again=0
91 CASE 4
92 Title$=”S22”
93 Again=0
94 CASE ELSE
95 Again=1
96 END SELECT
97 UNTIL Again=0
98 OUTPUT @Nwa;”TITL”””&Title$&”””;”
99 !
100 ! For this demonstration, we will return corrected values to the
101 ! memory trace. Therefore, display memory only
102 !
103 !!
104 !
105 ! Note: Displaying MEMORY only inhibits the analyzer’s data
106 ! processing. Raw, Data, and Formatted arrays are not
107 ! updated. PreRaw is good.
108 !
109 OUTPUT @Nwa;”DATI;DISPMEMO;BEEPDONEOFF;”
110 PRINT “PRESS ANY KEY TO STOP”
111 Time1=TIMEDATE
112 !
113 ! Take the first sweep
114 !
115 OUTPUT @Nwa;”OPC?;SWPSTART;”
116 Run=1
117 Count=0
118 !
119 ! Now keep looping until any key is pressed
120 !
121 Timefmt:IMAGE “Cycle: “,2D,5X,” 2-port Cal: “,2D.DD,X,”secs, + displayed:
“,2D.DDD,X,”seconds.”
122 ON KBD GOSUB Stop_running
123 REPEAT
124 Count=Count+1
125 ENTER @Nwa;Done ! Read the OPC from the SWPSTART Command
126 GOSUB Read_4_raw ! Read the four raw S-parameters
127 GOSUB Calc_2_port ! Calculate the Corrected S-parameters
128 Time2=TIMEDATE
129 OUTPUT @Nwa;”INPUDATA;” ! Input them into the data array
130 OUTPUT @Nwdat;Hdr,Length ! Data header, same as the cal coeff’s
131 SELECT Disp
132 CASE 1
8-60

Programming Examples

Measurement Calibration Examples
133 OUTPUT @Nwdat;S11a(*) ! Send corrected S11 data to analyzer OR
134 CASE 2 !
135 OUTPUT @Nwdat;S21a(*) ! Send corrected S21 data to analyzer OR
136 CASE 3 !
137 OUTPUT @Nwdat;S12a(*) ! Send corrected S12 data to analyzer OR
138 CASE 4
139 OUTPUT @Nwdat;S22a(*) ! Send corrected S22 data to analyzer
140 END SELECT
141 OUTPUT @Nwa;”DATI;” ! Put the data into memory
142 OUTPUT @Nwa;”OPC?;SWPSTART;”! and start another sweep
143 Time3=TIMEDATE
144 DISP USING Timefmt;Count,Time2-Time1,Time3-Time1
145 Time1=TIMEDATE
146 UNTIL Run=0
147 OUTPUT @Nwa;”DISPDATA;CORRON;CONT;”
148 ABORT 7
149 LOCAL @Nwa
150 STOP
151 Stop_running: ! Terminate program upon keyboard input
152 Run=0
153 OFF KBD
154 RETURN
155 Read_4_raw: ! Read in the pre-raw arrays
156 A$=”OUTPPRE”
157 FOR B=1 TO 4
158 Out_cmd1$=A$&VAL$(B)&”;” ! Build up the OUTPPREXX commands
159 OUTPUT @Nwa;Out_cmd1$
160 ENTER @Nwdat;Hdr,Length ! Read in the header
161 SELECT B
162 !
163 ! Now read in each raw array
164 !
165 CASE 1
166 ENTER @Nwdat;S11r(*)
167 CASE 2
168 ENTER @Nwdat;S21r(*)
169 CASE 3
170 ENTER @Nwdat;S12r(*)
171 CASE 4
172 ENTER @Nwdat;S22r(*)
173 END SELECT
174 NEXT B
175 RETURN
176 Read_cal_co: ! This loops through 12 times, reading each cal.
177 ! coefficient. First set up the FORM
178 OUTPUT @Nwa;”FORM3;HOLD;”
179 OUTPUT @Nwa;”POIN?;”
180 ENTER @Nwa;Numpoints
181 !
182 ! Redimension the Calcoe array according to the number of points
183 !
184 REDIM Calcoe(1:Numpoints,1:12)
185 !
186 ! Also redimension all the other arrays used here, as this
187 ! routine only runs once at setup.
188 !
189 REDIM S11a(1:Numpoints)
190 REDIM S21a(1:Numpoints)
8-61

Programming Examples

Measurement Calibration Examples
191 REDIM S12a(1:Numpoints)
192 REDIM S22a(1:Numpoints)
193 REDIM S11r(1:Numpoints)
194 REDIM S21r(1:Numpoints)
195 REDIM S12r(1:Numpoints)
196 REDIM S22r(1:Numpoints)
197 FOR Cx=1 TO 12
198 OUTPUT @Nwa;Out_cmd$(Cx) ! OUTPCALCXC commands
199 ENTER @Nwdat;Hdr,Length ! Read the header using FORMAT OFF mode
200 FOR N=1 TO Numpoints
201 ENTER @Nwdat;Calcoe(N,Cx) ! Read data using FORMAT OFF mode
202 NEXT N
203 NEXT Cx
204 !
205 RETURN
206 Calc_2_port: ! Perform 2 Port Calibration
207 FOR N=1 TO Numpoints
208 !
209 ! First correct for crosstalk, directivity, and tracking
210 !
211 ! Subtract Directivity, divide by tracking
212 S11x=(S11r(N)-Calcoe(N,1))/Calcoe(N,3)
213 !
214 ! Subtract Crosstalk, divide by tracking
215 S21x=(S21r(N)-Calcoe(N,4))/Calcoe(N,6)
216 !
217 ! Subtract Crosstalk, divide by tracking
218 S12x=(S12r(N)-Calcoe(N,10))/Calcoe(N,12)
219 !
220 ! Subtract Directivity, divide by tracking
221 S22x=(S22r(N)-Calcoe(N,7))/Calcoe(N,9)
222 !
223 ! Now calculate the common denominator
224 !
225 D=(1+S11x*Calcoe(N,2))*(1+S22x*Calcoe(N,8))-(S21x*S12x*Calcoe(N,5)*Calcoe(N,11))
227 !
228 ! Now calculate each S-parameter
229 !
230 S11a(N)=((S11x*(1+S22x*Calcoe(N,8)))-(S21x*S12x*Calcoe(N,5)))/D
231 S21a(N)=((1+S22x*(Calcoe(N,8)-Calcoe(N,5)))*(S21x))/D
232 S12a(N)=((1+S11x*(Calcoe(N,2)-Calcoe(N,11)))*(S12x))/D
233 S22a(N)=((S22x*(1+S11x*Calcoe(N,2)))-(S21x*S12x*Calcoe(N,11)))/D
234 NEXT N
235 RETURN
236 END
8-62

Programming Examples

Measurement Data Transfer Examples
Measurement Data Transfer Examples
There are two methods that can be used to read trace information from the analyzer:

• selectively, using the trace markers
• completely, using the trace-data array

If only specific information (such as a single point on the trace or the result of a marker
search) is required, the marker output command can be used to read the information. If all of
the trace data is required, see Examples 3B through 3E for examples of the various formats
available.

Trace-Data Formats and Transfers

Refer to Table 8-9 on page 8-66. This table shows the number of bytes required to transfer a
201-point trace in the different formats. As you will see in the first example (FORM 4), ASCII
data is the easiest to transfer, but the most time consuming due to the number of bytes in the
trace. If you are using a PC-based controller, a more suitable format would be FORM 5. To use
any trace data format other than FORM 4 (ASCII data) requires some care in transferring the
data to the computer. Data types must be matched to read the bytes from the analyzer
directly into the variable array. The computer must be told to stop formatting the incoming
data and treat it as a binary-data transfer. All of the binary data formats also have a four-byte
header to deal with. The first two bytes are the ASCII characters “#A” that indicate that a
fixed length block transfer follows, and the next two bytes form an integer containing the
number of bytes in the block to follow. The header must be read in to separate it from the rest
of the block data that is to be mapped into an array. “Array-Data Formats” on page 5-7
discusses the different types of formats and their compositions.

Data may also be transferred from several different locations in the trace-processing chain.
These examples will illustrate formatted-data transfers, but other locations in the trace-data
processing chains may be accessed. See Figure 6-1 on page 6-3.

In this section, an example of each of the data formats will be shown for comparison. In
general, FORM 1 (internal binary format) should be used for traces that are not being utilized
for data content. Calibration data that is being transferred to a file and back is good example.
See “Example 3D: Data Transfer Using Frequency-Array Information” on page 8-70.

Arrays which will be interpreted or processed within your program should be in FORM 2, 3
or 5, whichever is appropriate for your computer. Example 3C shows how to transfer a trace
in these formats.

In Examples 3B and 3C, the frequency counterpart of each data point in the array is also
determined. Many applications generate a frequency and magnitude, or a phase array for the
test results. Such data may be required for other data processing applications (such as
comparing data from other measurements).

In Example 3B, the frequency data is constructed from the frequency span information.
Alternatively, it is possible to read the frequencies directly out of the instrument with the
OUTPLIML command. OUTPLIML reports the limit-test results by transmitting the stimulus
point tested, a number indicating the limit-test results, and then the upper and lower limits
at that stimulus point (if available). The number indicating the limit results is a −1 for no
8-63

Programming Examples

Measurement Data Transfer Examples
test, 0 for fail, and 1 for pass. If there are no limits available, the analyzer transmits zeros.
For this example, we delete the limit test information and keep the stimulus information.

In Example 3C, the limit-test array is read into the controller and used to provide the values
directly from the analyzer memory. Reading from the limit-test array is convenient, although
it outputs the results in ASCII format (form 4), which may be slow. If there is no other way to
obtain the frequency data, this transfer time may be acceptable. Frequency information
becomes more difficult to determine when not using the linear sweep mode. Log-frequency
sweeps and list-frequency sweeps have quite different values for each data point. For these
special cases, the additional time spent reading out the limit test results is an acceptable
solution for obtaining the valid frequency information for each data point in the trace.

Example 3A: Data Transfer Using Markers

Markers are the simplest form of trace-data transfer. A marker may be positioned using one
of three methods:

• by a frequency location
• by an actual data point location
• by a trace-data value

In the following example, the marker is positioned on the trace's maximum value. Once
positioned on the trace, the trace data at that point can be read into the controller. The
marker data is always returned in FORM 4, ASCII format. Each number is sent as a
24-character string. Characters can be digits, signs, or decimal points. All characters should
be separated by commas. In the case of markers, three numbers are sent. The display format
determines the values of the marker responses. See Table 5-1 on page 5-6.

When using trace data, it is important to control the analyzer's sweep function (and therefore
the trace data) from the computer. Using the computer to control the instrument's sweep
ensures that the data you read into the controller is in a quiescent or steady state. It also
ensures that the measurement is complete.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The selected frequency span is swept once.

• The marker is activated and placed on the maximum trace value.

• The three marker values are output to the controller and displayed.

• The instrument is returned to local control and the program ends.
8-64

Programming Examples

Measurement Data Transfer Examples
Running the Program

Run the program. The analyzer is preset and a sweep is taken. Marker 1 is enabled and
positioned on the largest value in the trace. The marker is output to the controller and
printed on the controller display. The analyzer is returned to local control. Position the
marker using the front panel knob or data-entry keys, and compare the displayed value on
the analyzer with the value that was transmitted to the controller.

The three values returned to the controller are:

1. reflection, in dB
2. a non-significant value
3. the stimulus frequency at the maximum point

A non-significant value means that the analyzer returned a value that is meaningless in this
data format.

Table 5-1 on page 5-6 provides an easy reference for the types of data returned with the
various data-format operational modes.

BASIC Program Listing

10 ! This program takes a sweep on the analyzer and turns on a marker.
20 ! The marker is positioned on the trace maximum and the marker data
30 ! is output in ASCII format.
40 !
50 ! EXAMP3A Data Transfer Using Markers
60 !
70 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
80 !
90 CLEAR SCREEN
100 ! Initialize the analyzer
110 ABORT 7 ! Generate an IFC (Interface Clear)
120 CLEAR @Nwa ! SDC (Selective Device Clear)
130 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
140 ENTER @Nwa;Reply ! Read in the 1 returned
150 !
160 OUTPUT @Nwa;”OPC?;SING” ! Single sweep mode and wait
170 ENTER @Nwa;Reply ! Read 1 when sweep complete
180 !
190 OUTPUT @Nwa;”MARK1;” ! Turn on marker 1
200 OUTPUT @Nwa;”SEAMAX;” ! Find the maximum
210 !
220 OUTPUT @Nwa;”OUTPMARK;” ! Request the current marker value
230 ENTER @Nwa;Value1,Value2,Stim ! Read three marker values
240 !
250 ! Show the marker data received.
260 PRINT “ Value 1”,” Value 2”,” Stimulus (Hz)”
270 PRINT Value1,Value2,Stim ! Print the received values
280 PRINT
290 PRINT “ Compare the active marker block with the received values”
300 !
310 LOCAL @Nwa ! Release HP-IB control
320 END
8-65

Programming Examples

Measurement Data Transfer Examples
Example 3B: Data Transfer Using FORM 4 (ASCII Transfer)

This example shows you how to transfer a trace array from the analyzer using FORM 4, an
ASCII data transfer.

The next most common data transfer is to transfer a trace array from the analyzer. Table 8-9
shows the relationship of the two values-per-point that are transferred to the analyzer. When
FORM 4 is used, each number is sent as a 24-character string, each character represented by
a digit, sign, or decimal point. Each number is separated from the previous number with a
comma. Since there are two numbers-per-point, a 201-point transfer in FORM 4 takes 10,050
bytes. This form is useful only when input-data formatting is difficult with the instrument
controller. Refer to Table 8-9 for a comparison with the other formats.

An example of a simple data transfer using FORM 4 (ASCII data transfer) is shown in this
program. A fairly common requirement is to create frequency-amplitude data pairs from the
trace data. No frequency information is included with the trace data transfer, because the
frequency data must be calculated. Relating the data from a linear frequency sweep to
frequency can be done by querying the analyzer start frequency, the frequency span, and the
number of points in the sweep. Given that information, the frequency of point N in a linear
frequency sweep is:

Example 3B illustrates this technique. It is a straight-forward solution for linear uniform
sweeps. For other sweep types, frequency data is more difficult to construct and may best be
read directly from the analyzer's limit-test array. See “Example 3D: Data Transfer Using
Frequency-Array Information” on page 8-70.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

Table 8-9. Analyzer Array-Data Formats

Format
type

Type of Data Bytes per
Data Value

Bytes per
point 2 data
values

(201 pts)
Bytes per
trace

Total Bytes
with header

FORM 1 Internal Binary 3 6 1206 1210

FORM 2 IEEE 32-bit
Floating-Point

4 8 1608 1612

FORM 3 IEEE 64-bit
Floating-Point

8 16 3216 3220

FORM 4 ASCII Numbers 24
(Typical)

50
(Typical)

10,050
(Typical)

10,050*
(Typical)

FORM 5 PC-DOS 32-bit
Floating-Point

4 8 1608 1612

*No header is used in FORM 4.

F StartFrequency N 1–() Span
Points 1–()

------------------------------×+=
8-66

Programming Examples

Measurement Data Transfer Examples
• The trace-data array is allocated.

• The trace length is set to 11.

• The selected frequency span is swept once.

• The FORM 4, ASCII format is set.

• The formatted trace is read from the analyzer and displayed.

• The frequency increments between the points are calculated.

• The marker is activated and placed at the lowest frequency of the analyzer (50 MHz).

• The instrument is returned to local control and the program ends.

Running the Program

Run the program and watch the controller console. The analyzer will perform an instrument
preset. The program will then print out the data values received from the analyzer. The
marker is activated and placed at the left-hand edge of the analyzer's display. Position the
marker with the knob and compare the values read with the active marker with the results
printed on the controller console. The data points should agree exactly. Keep in mind that no
matter how many digits are displayed, the analyzer is specified to measure:

• magnitude to a resolution of 0.001 dB
• phase to a resolution of 0.01 degrees
• group delay to a resolution of 0.01 ps

Changing the display format will change the data sent with the OUTPFORM transfer. See
Table 8-9 for a list of the specific data that is provided with each format. The data from
OUTPFORM reflects all the post processing such as:

• electrical delay
• trace math
• smoothing

BASIC Program Listing

10 ! This program shows an ASCII format trace data transfer using form 4.
20 ! The data is received as a string of ASCII characters, 24 characters
30 ! per data point and transferred into a real array in the controller. The
40 ! corresponding frequency data is calculated from the analyzer settings.
50 !
60 ! EXAMP3B Data Transfer Using LORT (ASCII Transfer)
70 !
80 ASSIGN @Nwa TO 716 ! Assign an I/O path to the analyzer
90 !
100 CLEAR SCREEN
110 ! Initialize
120 ABORT 7 ! Generate an IFC (Interface Clear)
130 CLEAR @Nwa ! SDC (Selective Device Clear)
140 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer
150 ENTER @Nwa;Reply ! Read the 1 when complete
160 !
170 ! Trace values are two elements per point, display format dependent
180 DIM Dat(1:11,1:2) ! Trace data array
190 !
8-67

Programming Examples

Measurement Data Transfer Examples
200 OUTPUT @Nwa;”POIN 11;” ! Set trace length to 11 points
210 OUTPUT @Nwa;”OPC?;SING;” ! Single sweep mode and wait
220 ENTER @Nwa;Reply ! Read reply
230 !
240 OUTPUT @Nwa;”FORM4;” ! Set form 4 ASCII format
250 OUTPUT @Nwa;”OUTPFORM;” ! Send formatted trace to controller
260 ENTER @Nwa;Dat(*) ! Read in data array from analyzer
270 !
280 ! Now to calculate the frequency increments between points
290 OUTPUT @Nwa;”POIN?;” ! Read number of points in the trace
300 ENTER @Nwa;Num_points
310 OUTPUT @Nwa;”STAR?;” ! Read the start frequency
320 ENTER @Nwa;Startf
330 OUTPUT @Nwa;”SPAN?;” ! Read the span
340 ENTER @Nwa;Span
350 !
360 F_inc=Span/(Num_points-1) ! Calculate fixed frequency increment
370 !
380 PRINT “Point”,”Freq (MHz)”,” Value 1”,” Value 2”
390 IMAGE 3D,7X,5D.3D,3X,3D.4D,3X,3D.4D ! Formatting for controller display
400 !
410 FOR I=1 TO Num_points ! Loop through data points
420 Freq=Startf+(I-1)*F_inc ! Calculate frequency of data point
430 PRINT USING 390;I,Freq/1.E+6,Dat(I,1),Dat(I,2)! Print analyzer data
440 NEXT I
450 !
460 OUTPUT @Nwa;”MARKDISC;” ! Discrete marker mode
470 OUTPUT @Nwa;”MARK1 3E+8;” ! Position marker at 300 KHz
480 !
490 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
500 ENTER @Nwa;Reply ! Read the 1 when complete
510 LOCAL 7 ! Release HP-IB control
520 !
530 PRINT
540 PRINT “Position the marker with the knob and compare the values”
550 !
560 END

Example 3C: Data Transfer Using Floating-Point Numbers

This example program illustrates data transfer using FORM 3 in which data is transmitted in
the floating-point formats. FORM 2 is nearly identical except for the IEEE 32-bit format of 4
bytes-per-value. FORM 5 reverses the order of the bytes to conform with the PC conventions
for defining a real number.

The block-data formats have a four-byte header. The first two bytes are the ASCII characters
“#A” that indicate that a fixed-length block transfer follows, and the next two bytes form an
integer containing the number of bytes in the block to follow. The header must be read in so
that data order is maintained.

This transfer is more than twice as fast than a FORM 4 transfer. With the FORM 4 transfer,
10,050 bytes are sent (201 points × 2 values-per-point × 24 bytes-per-value). Using FORM 2 to
transfer the data, only 1612 bytes are sent (201 points × 2 values-per-point × 4
bytes-per-value). See “Array-Data Formats” on page 5-7.
8-68

Programming Examples

Measurement Data Transfer Examples
The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The integer variables are defined to contain the header information.

• The number of points in the trace is set to 11.

• The selected frequency span is swept once.

• Data-transfer format 3 is set.

• The headers are read from the trace.

• The array size is calculated and allocated.

• The trace data is read in and printed.

• The marker is activated and placed at the lowest frequency of the analyzer (50 MHz).

• The instrument is returned to local control and the program ends.

Running the Program

Run the program. The computer displays the number of elements and bytes associated with
the transfer of the trace, as well as the first 10 data points. Position the marker and examine
the data values. Compare the displayed values with the analyzer's marker values.

BASIC Program Listing

10 ! This program shows how to read in a data trace in IEEE 64 bit
20 ! format. The array header is used to determine the length of the
30 ! array and to allocate the array size.
40 !
50 ! Program Example 3C Data Transfer Using Floating-Point Numbers
60 !
70 CLEAR SCREEN
80 ! Initialize the analyzer
90 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
100 ASSIGN @Nwadat TO 716;FORMAT OFF ! Binary data path definition
110 !
120 ABORT 7 ! Generate an IFC (Interface Clear)
130 CLEAR @Nwa ! SDC (Selected Device Clear)
140 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
150 ENTER @Nwa;Reply ! Read the 1 when completed
160 !
170 INTEGER Dheader,Dlength ! Integer variables for header info
180 Numpoints=11 ! Number of points in the trace
190 OUTPUT @Nwa;”POIN”;Numpoints;”;” ! Set number of points in trace
200 !
210 ! Set up data transfer
220 OUTPUT @Nwa;”OPC?;SING” ! Single sweep and wait
230 ENTER @Nwa;Reply ! Read the 1 when completed
240 !
250 OUTPUT @Nwa;”FORM3;” ! Select form 3 format
260 OUTPUT @Nwa;”OUTPFORM;” ! Send formatted output trace
270 !
280 ENTER @Nwadat;Dheader,Dlength ! Read headers from trace data
8-69

Programming Examples

Measurement Data Transfer Examples
290 !
300 ALLOCATE Dat(1:Dlength/16,1:2) ! Use length to determine array size
310 ENTER @Nwadat;Dat(*) ! Read in trace data
320 !
330 PRINT “Size of array “;Dlength/16;” elements”
340 PRINT “Number of bytes “;Dlength
350 !
360 ! Print out the data array
370 PRINT “Element”,”Value 1”,” Value 2”
380 IMAGE 3D,6X,3D.4D,6X,3D.4D
390 FOR I=1 TO Numpoints ! Loop through the data points
400 PRINT USING 380;I,Dat(I,1),Dat(I,2)
410 NEXT I
420 !
430 OUTPUT @Nwa;”MARKDISC;” ! Discrete marker mode
440 OUTPUT @Nwa;”MARK1 3E+8;” ! Position marker at 300 KHz
450 !
460 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
470 ENTER @Nwa;Reply ! Read the 1 when complete
480 LOCAL @Nwa ! Release HP-IB control
490 !
500 PRINT
510 PRINT “Position the marker with the knob and compare the values.”
520 !
530 END

Example 3D: Data Transfer Using Frequency-Array Information

Example 3C was used to read in the trace-data array. Example 3D explains how to use the
limit-test array to read the corresponding frequency values for the completed trace array
into the controller. The analyzer is set to sweep from 50 MHz to 200 MHz in log-frequency
mode with the number of points in the trace set to 11. This makes it very difficult to compute
the frequency-point spacing in the trace. The points are equally spaced across the trace, but
not equally spaced in relation to frequency (because the frequency span is displayed in a
logarithmic scale, as opposed to a linear scale). The limit-test data array may be read from
the analyzer to provide the frequency values for each data point. Four values are read for
each data point on the analyzer. The test results and limit values are not used in this
example. Only the frequency values are used. This technique is an effective method of
obtaining the non-linear frequency data from the analyzer display. The test data and
frequencies are printed on the controller display and the marker is enabled to allow the
operator to examine the actual locations on the analyzer display.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The integer variables for the header information are defined.

• The number of points in the trace is set to 11.

• The frequency span (50 MHz to 200 MHz) is selected.

• The log-frequency sweep is selected.
8-70

Programming Examples

Measurement Data Transfer Examples
• The data-transfer format 3 is set.

• The headers are read from the trace.

• The array size is calculated and allocated.

• The trace data is read in.

• The limit-test array is calculated and allocated.

• The limit-line test array is read in.

• The table header is printed.

• The program cycles through the trace values.

• The trace data and frequency are printed.

• The discrete-marker mode is activated.

• The marker is activated and placed at the lowest frequency of the analyzer (50 MHz).

• The instrument is returned to local control and the program ends.

Running the Program

Run the program. Observe the controller display. The corresponding frequency values are
shown with the trace-data values. Position the marker and observe the relationship between
the frequency values and the point spacing on the trace. Compare the trace-data values on
the analyzer with those shown on the controller display.

BASIC Program Listing

10 ! This program shows an ASCII format trace data transfer using form 4.
20 ! The data is received as a string of ASCII characters, 24 characters
30 ! per data point and transferred into a real array in the controller. The
40 ! corresponding frequency data is calculated from the analyzer settings.
50 !
60 ! EXAMP3B Data Transfer Using LORT (ASCII Transfer)
70 !
80 ASSIGN @Nwa TO 716 ! Assign an I/O path to the analyzer
90 !
100 CLEAR SCREEN
110 ! Initialize
120 ABORT 7 ! Generate an IFC (Interface Clear)
130 CLEAR @Nwa ! SDC (Selective Device Clear)
140 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer
150 ENTER @Nwa;Reply ! Read the 1 when complete
160 !
170 ! Trace values are two elements per point, display format dependent
180 DIM Dat(1:11,1:2) ! Trace data array
190 !
200 OUTPUT @Nwa;”POIN 11;” ! Set trace length to 11 points
210 OUTPUT @Nwa;”OPC?;SING;” ! Single sweep mode and wait
220 ENTER @Nwa;Reply ! Read reply
230 !
240 OUTPUT @Nwa;”FORM4;” ! Set form 4 ASCII format
250 OUTPUT @Nwa;”OUTPFORM;” ! Send formatted trace to controller
260 ENTER @Nwa;Dat(*) ! Read in data array from analyzer
270 !
8-71

Programming Examples

Measurement Data Transfer Examples
280 ! Now to calculate the frequency increments between points
290 OUTPUT @Nwa;”POIN?;” ! Read number of points in the trace
300 ENTER @Nwa;Num_points
310 OUTPUT @Nwa;”STAR?;” ! Read the start frequency
320 ENTER @Nwa;Startf
330 OUTPUT @Nwa;”SPAN?;” ! Read the span
340 ENTER @Nwa;Span
350 !
360 F_inc=Span/(Num_points-1) ! Calculate fixed frequency increment
370 !
380 PRINT “Point”,”Freq (MHz)”,” Value 1”,” Value 2”
390 IMAGE 3D,7X,5D.3D,3X,3D.4D,3X,3D.4D ! Formatting for controller display
400 !
410 FOR I=1 TO Num_points ! Loop through data points
420 Freq=Startf+(I-1)*F_inc ! Calculate frequency of data point
430 PRINT USING 390;I,Freq/1.E+6,Dat(I,1),Dat(I,2)! Print analyzer data
440 NEXT I
450 !
460 OUTPUT @Nwa;”MARKDISC;” ! Discrete marker mode
470 OUTPUT @Nwa;”MARK1 3E+8;” ! Position marker at 300 KHz
480 !
490 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
500 ENTER @Nwa;Reply ! Read the 1 when complete
510 LOCAL 7 ! Release HP-IB control
520 !
530 PRINT
540 PRINT “Position the marker with the knob and compare the values”
550 !
560 END

Example 3E: Data Transfer Using FORM 1 (Internal-Binary Format)

FORM 1 is used for rapid I/O transfer of analyzer data. It contains the least number of
bytes-per-trace and does not require re-formatting in the analyzer. This format is more
difficult to convert into a numeric array in the controller.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The integer variables for the header information are defined.

• The string variable for the header is defined.

• The selected frequency span is swept once.

• The internal-binary format is selected.

• The error-corrected data is output from the analyzer.

• The two data-header characters and the two length bytes are read in.

• The string buffer is allocated for data.

• The trace data is read into the string buffer.

• The analyzer is restored to continuous-sweep mode and queried for command completion.
8-72

Programming Examples

Measurement Data Transfer Examples
• The instrument is returned to local control and the program ends.

Running the Program

The analyzer is initialized. The header and the number of bytes in the block transfer are
printed on the controller display. Once the transfer is complete, the number of bytes in the
data string is printed. Compare the two numbers to be sure that the transfer was completed.

BASIC Program Listing

10 ! This program is an example of a form 1, internal format data
20 ! transfer. The data is stored in a string dimensioned to the
30 ! length of the data being transferred.
40 !
50 ! EXAMP3E Data Transfer Using FORM 1 (Internal Binary Format)
60 !
70 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
80 ASSIGN @Nwa_bin TO 716;FORMAT OFF ! Binary path for data transfer
90 !
100 CLEAR SCREEN
110 ! Initialize the analyzer
120 ABORT 7 ! Send IFC Interface Clear
130 CLEAR @Nwa ! SDC (Selective Device Clear)
140 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
150 ENTER @Nwa;Reply ! Read the 1 when completed
160 !
170 INTEGER Length ! Header length 2 bytes
180 DIM Header$[2] ! Header string 2 bytes
190 !
200 OUTPUT @Nwa;”OPC?;SING;” ! Single sweep and wait
210 ENTER @Nwa;Reply ! Read the 1 when completed
220 !
230 OUTPUT @Nwa;”FORM1;” ! Select internal binary format
240 OUTPUT @Nwa;”OUTPDATA;” ! Output error corrected data
250 !
260 ! Read in the data header two characters and two bytes for length
270 ! “#,2A”
280 ! # no early termination, terminate when ENTER is complete
290 ! 2A read two chars
300 !
310 ENTER @Nwa_bin USING “#,2A”;Header$! Read header as 2 byte string
320 ENTER @Nwa_bin;Length ! Read length as 2 byte integer
330 PRINT “Header “;Header$,”Array length”;Length
340 !
350 ALLOCATE Data$[Length] ! String buffer for data bytes
360 ! “+,-K” format statement
370 ! + EOI as a terminator LF is suppressed and read as data
380 ! -K All characters are read and not interpreted LF is included
390 ENTER @Nwa_bin USING “+,-K”;Data$! Read trace into string array
400 !
410 PRINT “Number of bytes received “;LEN(Data$)
420 !
430 OUTPUT @Nwa;”CONT;” ! Restore continuous sweep
440 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
450 ENTER @Nwa;Reply ! Read the 1 when complete
460 !
470 LOCAL @Nwa ! Release HP-IB control
480 END
8-73

Programming Examples

Measurement Process Synchronization Examples
Measurement Process Synchronization Examples

Figure 8-1. Status Reporting Structure

Status Reporting

The analyzer has a status reporting mechanism, illustrated in Figure 8-1, that provides
information about specific analyzer functions and events. The status byte is an 8-bit register
8-74

Programming Examples

Measurement Process Synchronization Examples
with each bit summarizing the state of one aspect of the instrument. For example, the error
queue summary bit will always be set if there are any errors in the queue. The value of the
status byte can be read with the GPIB serial poll operation. This command does not
automatically put the instrument in remote mode, which gives you access to the analyzer
front-panel functions. The status byte can also be read by sending the command OUTPSTAT.
Reading the status byte does not affect its value.

The status byte summarizes the error queue, as mentioned before. It also summarizes two
event-status registers that monitor specific conditions inside the instrument. The status byte
also has a bit (6) that is set when the instrument is issuing a service request over GPIB, and a
bit (0) that is set in the event-status register when the analyzer has data to send out over
GPIB. See “Error Reporting” on page 7-2 for a discussion of the event-status registers.

Example 4A: Using the Error Queue

The error queue holds up to 20 instrument errors and warnings in the order that they
occurred. Each time the analyzer detects an error condition, the analyzer displays a message,
and puts the error in the error queue. If there are any errors in the queue, bit 3 of the status
byte will be set. The errors can be read from the queue with the OUTPERRO command.
OUTPERRO causes the analyzer to transmit the error number and message of the oldest error
in the queue.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The error-message string is allocated.

• The analyzer is released from remote control.

• The program begins an endless loop to read the error queue.

• The status byte is read with a serial poll.

• The program tests to see if an error is present in the queue.

• The error-queue bit is set.

• The program requests the content of the error queue.

• The error number and string are read.

• The error messages are printed until there are no more errors in the queue.

• The instrument is returned to local control.

• The controller emits a beep to attract the attention of the operator and resumes searching
for errors.

Running the Program

Run the program. The analyzer goes through the preset cycle. Nothing will happen at first.
The program is waiting for an error condition to activate the error queue. To cause an error,
press a blank softkey. The message CAUTION: INVALID KEY will appear on the analyzer. The
computer will beep and print out two error messages. The first line will be the invalid key
error message, and the second line will be the NO ERRORS message. To clear the error queue,
8-75

Programming Examples

Measurement Process Synchronization Examples
you can either loop until the NO ERRORS message is received, or wait until the bit in the
status register is cleared. In this case, we wait until the status bit in the status register is
clear. Note that while the program is running, the analyzer remains in the local mode and the
front-panel keys may be accessed.

The error queue will hold up to 20 errors until all the errors are read out or the instrument is
preset. It is important to clear the error queue whenever errors are detected. Otherwise, old
errors may be mistakenly associated with the current instrument state.

Press System, and then the unlabeled key several times quickly and watch the display. The
number of errors observed should correspond to the number of times you pressed the key.

As another example, press Cal, CORRECTION ON. A complete list of error messages and their
descriptions can be found in your analyzer’s reference guide.

The program is in an infinite loop waiting for errors to occur. End the program by pressing
Reset, or Break, on the controller keyboard.

NOTE Not all messages displayed by the analyzer are put in the error queue: operator
prompts and cautions are not included.

BASIC Program Listing

10 ! This program is an example of using the error queue to detect
20 ! errors generated by the analyzer. The status byte is read and
30 ! bit 3 is tested to determine if an error exists. The error queue
40 ! is printed out and emptied.
50 !
60 ! EXAMP4A Using the Error Queue
70 !
80 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
90 !
100 CLEAR SCREEN
110 ! Initialize the analyzer
120 ABORT 7 ! Generate an IFC (Interface Clear)
130 CLEAR @Nwa ! SDC (Selective Device Clear)
140 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
150 ENTER @Nwa;Reply ! Read the 1 when complete
160 !
170 DIM Error$[50] ! String for analyzer error message
180 !
190 LOCAL @Nwa ! Release analyzer from remote control
200 !
210 LOOP ! Endless loop to read error queue
220 REPEAT
230 Stat=SPOLL(@Nwa) ! Read status byte with serial poll
240 UNTIL BIT(Stat,3) ! Test for error queue present
250 !
260 ! Error queue bit is set
270 REPEAT ! Loop until error number is 0
280 OUTPUT @Nwa;”OUTPERRO;” ! Request error queue contents
290 ENTER @Nwa;Err,Error$! Read error number and string
300 PRINT Err,Error$! Print error messages
310 UNTIL Err=0 ! No more errors in queue
320 !
330 LOCAL @Nwa ! Release analyzer from remote
8-76

Programming Examples

Measurement Process Synchronization Examples
340 BEEP 600,.2 ! Beep to attract attention
350 END LOOP ! Repeat error search
360 !
370 END

Example 4B: Generating Interrupts

It is also possible to generate interrupts using the status-reporting mechanism. The
status-byte bits can be enabled to generate a service request (SRQ) when set. In turn, the
instrument controller can be set up to generate an interrupt on the SRQ and respond to the
condition which caused the SRQ.

To generate an SRQ, a bit in the status byte is enabled using the command SREn. A one (1) in
a bit position enables that bit in the status byte. Hence, SRE 8 enables an SRQ on bit 3, the
check-error queue, since the decimal value 8 equals 00001000 in binary representation.
Whenever an error is put into the error queue and bit 3 is set, the SRQ line is asserted,
illuminating the (S) indicator in the GPIB status block on the front panel of the analyzer. The
only way to clear the SRQ is to disable bit 3, re-enable bit 3, or read out all the errors from
the queue.

A bit in the event-status register can be enabled so that it is summarized by bit 5 of the status
byte. If any enabled bit in the event-status register is set, bit 5 of the status byte will also be
set. For example ESE 66 enables bits 1 and 6 of the event-status register, since in binary, the
decimal number 66 equals 01000010. Hence, whenever active control is requested or a
front-panel key is pressed, bit 5 of the status byte will be set. Similarly, ESNBn enables bits in
event-status register B so that they will be summarized by bit 2 in the status byte.

To generate an SRQ from an event-status register, enable the desired event-status register bit.
Then enable the status byte to generate an SRQ. For instance, ESE 32;SRE 32; enables the
syntax-error bit. When the syntax-error bit is set, the summary bit in the status byte will be
set. This will, in turn, enable an SRQ on bit 5 of the status byte, the summary bit for the
event-status register.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The status registers are cleared.

• The event-status register bit 5 is enabled.

• The status-register bit 5 is enabled.

• The interrupt pointer is enabled and points to a subroutine.

• Two bad commands are sent to the analyzer to generate errors.

• The controller reads a serial-poll byte from GPIB in the event of an interrupt.

• The program tests for an SRQ.

• If the SRQ is not generated by the analyzer, the subroutine stops and displays SRQ FROM
OTHER DEVICE.
8-77

Programming Examples

Measurement Process Synchronization Examples
• If the SRQ was generated by the analyzer, the program reads the status byte and
event-status register.

• If bit 5 in the event-status register is set, the program prints: SYNTAX ERROR FROM
ANALYZER.

• If bit 5 in the event-status register is not set, the program prints: SYNTAX ERROR BIT NOT
SET.

• The SRQ interrupt is re-enabled on the bus.

• At the finish, the interrupt is deactivated.

• The analyzer is released from remote control and the program ends.

Running the Program

Run the program. The computer will preset the analyzer, then pause for a second or two.
After pausing, the program sends an invalid command string “STIP 2 GHZ;” to cause a
syntax error. This command is intended to be “STOP 2 GHZ;”. The computer will display a
series of messages from the SRQ-handler routine. The analyzer will display CAUTION:
SYNTAX ERROR and the incorrect command, pointing to the first character it did not
understand.

The SRQ can be cleared by reading the event-status register and clearing the latched bit, or
by clearing the enable registers with CLES. The syntax-error message on the analyzer display
can only be cleared by the GPIB Device Clear (DCL) message or Selected Device Clear (SDC)
message. Device Clear is not commonly used because it clears every device on the bus.
Selected Device Clear can be used to reset the input and output queue and the registers of a
specific instrument on the bus. This will also clear all the interrupt definitions.

BASIC Program Listing

10 ! This program is an example of using an SRQ based interrupt to
20 ! detect an error condition in the analyzer. In this example, a
30 ! syntax error is generated with an invalid command. The status byte
40 ! is read in and tested. The error queue is read, printed out and
50 ! then cleared.
60 !
70 ! EXAMP4B Generating Interrupts
80 !
90 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
100 !
110 CLEAR SCREEN
120 ! Initialize the analyzer
130 ABORT 7 ! Generate and IFC (Interface Clear)
140 CLEAR @Nwa ! SDC (Selective Device Clear)
150 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
160 ENTER @Nwa;Reply ! Read the one from the analyzer
170 !
180 DIM Error$[50] ! String for analyzer error message
190 ! Set up syntax error interrupt
200 OUTPUT @Nwa;”CLES;” ! Clear the status registers
210 !
220 ! Generate SRQ when bit 5 is set
230 OUTPUT @Nwa;”ESE 32;” ! Event status register bit 5 enabled
240 !
8-78

Programming Examples

Measurement Process Synchronization Examples
250 ! Generate bit 5 in status register when syntax error occurs
260 OUTPUT @Nwa;”SRE 32;” ! Status register bit 5 enabled
270 !
280 ! Setup the interrupt pointer to a subroutine
290 ON INTR 7 GOSUB Srq_det ! When interrupt occurs go to Srq_det
300 Stat=SPOLL(@Nwa) ! Clear any pending SRQs
310 ENABLE INTR 7;2 ! Set interrupt on HP-IB bit 2 (SRQ)
320 !
330 DISP “Waiting for bad syntax”
340 WAIT 2 ! Pause for 2 seconds
350 !
360 OUTPUT @Nwa;”STIP 2GHZ;;” ! Send bad STOP command syntax
370 !
380 WAIT 2 ! Pause for 2 seconds
390 DISP ““ ! Clear display line
400 GOTO Finish ! Exit program example
410 !
420 !************************** Subroutines ******************************
430 !
440 Srq_det: ! SRQ handler
450 Stat=SPOLL(@Nwa) ! Read serial poll byte from HP-IB
460 PRINT “Stat from Serial Poll”;Stat
470 IF BIT(Stat,6) THEN ! Test for SRQ
480 PRINT “SRQ received from analyzer”
490 ELSE ! No SRQ from analyzer
500 PRINT “SRQ from other device”
510 STOP ! Stop if not from analyzer
520 END IF
530 !
540 IF BIT(Stat,5) THEN ! Event status register bit set
550 PRINT “Event Status Register caused SRQ”
560 ELSE ! Some other bit set
570 PRINT “Some other bit caused the SRQ”
580 STOP ! Stop if bit not set
590 END IF
600 !
610 REPEAT
620 OUTPUT @Nwa;”OUTPERRO;” ! Read analyzer error queue
630 ENTER @Nwa;Err,Error$! Read error number and string
640 PRINT Err,Error$! Print error message
650 UNTIL Err=0 ! No more errors in queue
660 !
670 PRINT ! White space
680 ENABLE INTR 7;2 ! Re-enable SRQ interrupt on HP-IB
690 RETURN
700 !
710 !************************** End Subroutines ******************************
720 !
730 Finish: ! End of program and exit
740 DISP “Finished”
750 OFF INTR 7 ! Turn off interrupt
760 LOCAL @Nwa ! Release HP-IB control
770 END
8-79

Programming Examples

Measurement Process Synchronization Examples
Example 4C: Power Meter Calibration

NOTE This example program will not work with HP BASIC for Windows.

For increased accuracy of the analyzer's PORT 1-output power, a power meter calibration is
available. This measurement-accuracy enhancement technique is described in your
analyzer’s user’s guide. The example described will perform the sample and sweep
calibration under GPIB remote control.

The power meter is usually connected to PORT 1 for the forward measurements. Its address
must be set correctly and it must be connected to the GPIB. The power meter address can be
set by pressing: Local, SET ADDRESSES, ADDRESS P MTR/HPIB, and using the up, and down,
keys or the numeric key pad to complete the process. The appropriate command must be
selected for the model number of power meter being used. Press POWER MTR: [], until the
model being used is displayed between the brackets.

The correction factors for the power sensor are entered into the analyzer. All of these steps
are explained in your analyzer’s user’s guide.

The number of readings-per-point must also be selected before starting. The number of
points directly affects the measurement time of the calibration sequence. The power meter
must be triggered and read by the analyzer for each trace point. Typically, two
readings-per-point is considered appropriate. More than two readings-per-point could lead to
unacceptable processing time.

To control a power meter calibration via GPIB, the analyzer must be set to pass-control
mode. The analyzer must step to the next point in the sweep and read the power present at
the power meter sensor. For this operation to take place, the system controller must set up
the measurement and then pass control to the analyzer to read each data point in the sweep.
After reading the data point from the power meter, the analyzer passes control back to the
system controller. The analyzer then sets up to measure the next point and again requests
control from the system controller. This process continues until the analyzer signals that the
entire sweep has been measured point-by-point.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The number of points in the trace is set.

• The number of readings-per-point is set.

• The frequency span is set.
8-80

Programming Examples

Measurement Process Synchronization Examples
NOTE The frequency span of this example program may need to be modified in order
to correspond to the frequency ranges of your analyzer.

• The reference channel is measured.

• The power meter calibration array is allocated.

• The power meter model is chosen.

• The status registers are cleared.

• The request-control summary bit is enabled.

• The pass-control mode is enabled.

• A calibration sweep is taken to begin the sequence.

• The status byte is read until control is requested.

• The computer passes control to the analyzer.

• The display is cleared and the analyzer is set to talker/listener mode.

• The GPIB interface status is read until control is returned.

• The program loops until all the points have been measured.

• The power meter calibration is enabled.

• The calibration data is output to the controller in FORM 4, ASCII format.

• The power meter-calibration factors are read into the controller.

• The analyzer is released from remote control and the program ends.

Running the Program

The analyzer is preset and the power meter-calibration routine begins. The analyzer displays
the message “WAITING FOR GPIB CONTROL” when it is requesting control. The system
controller display prints “Passing Control” when control is passed to the analyzer. The
controller displays “Waiting for request” while the analyzer has control and is reading
the power meter.

The interaction of the messages and the movement of the cursor allow observation of the
calibration process. Once the calibration is complete, the analyzer displays “POWER METER
CAL IS COMPLETE” and the system controller displays “Finished with Power meter
Cal”.

The power meter-calibration mode (with one sweep of correction data) is enabled and the
calibration is switched on. At the completion of the program, talker/listener mode is
restored, the event-status registers are cleared (to halt the status-byte interaction), the
power meter correction factors are displayed, the sweep is placed in continuous-sweep
mode, the analyzer is released from GPIB control, and the program ends.
8-81

Programming Examples

Measurement Process Synchronization Examples
BASIC Program Listing

10 ! This routine does a power meter cal using pass control.
20 ! A measurement cycle takes place on each point of the trace. The
30 ! point is measured by the power meter and the measured value read
40 ! into the analyzer. The command TAKCS; arms this measurement mode.
50 ! The number of measurements is determined by the number of points in
60 ! the trace, the number of readings per point and an extra measurement
70 ! cycle to release the powr meter.
80 ! Control is passed to the analyzer, the point is measured and
90 ! the data is transferred to the analyzer. Control is passed back to
100 ! the controller and the cycle begins again. Serial poll is used to
110 ! read the status byte of the analyzer and test the logic.
120 ! The HP-IB interface status register is monitored to determine when
130 ! control is returned to the interface from the analyzer.
140 !
150 ! EXAMP4C Power Meter Calibration
160 !
170 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
180 !
190 CLEAR SCREEN
200 ! Initialize the analyzer
210 ABORT 7 ! Generate an IFC (Interface Clear)
220 CLEAR @Nwa ! SDC (Selective Device Clear)
230 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
240 ENTER @Nwa;Reply ! Read the 1 when complete
250 !
260 INTEGER Stat
270 !
280 ! Set up the analyzer parameters
290 Numpoints=11 ! Number of points in the trace
300 Numreads=2 ! Number of readings per point
310 Startf=1.00E+8 ! Start frequency
320 Stopf=5.0E+8 ! Stop frequency
330 !
340 OUTPUT @Nwa;”POIN”;Numpoints;”;” ! Set trace length to numpoints
350 OUTPUT @Nwa;”NUMR”;Numreads;”;” ! Set number of readings per point
360 OUTPUT @Nwa;”STAR”;Startf ! Set start frequency
370 OUTPUT @Nwa;”STOP”;Stopf ! Set stop frequency
380 OUTPUT @Nwa;”MEASR;” ! Measure the reference channel
390 !
400 ALLOCATE Pmcal(1:Numpoints) ! Create power meter cal array
410 !
420 ! Store the original trace for comparison
430 OUTPUT @Nwa;”DATI;”
440 OUTPUT @Nwa;”DISPDATM;”
450 OUTPUT @Nwa;”AUTO;”
460 !
470 ! Select the power meter being used for cal
480 ! OUTPUT @Nwa;”POWM ON;” ! Select 436A power meter
490 OUTPUT @Nwa;”POWMOFF;DEBUON;” ! Select 437B/438A power meter
500 !
510 ! Set analyzer HP-IB, status regs to interrupt on pass control
520 OUTPUT @Nwa;”CLES;” ! Clear status registers
530 OUTPUT @Nwa;”ESE2;” ! Enable request control summary bit
540 OUTPUT @Nwa;”SRE32;” ! SRQ on events status register
550 !
560 PRINT “Beginning Power Meter CAL”
8-82

Programming Examples

Measurement Process Synchronization Examples
570 OUTPUT @Nwa;”USEPASC;” ! Enable pass control operation
580 OUTPUT @Nwa;”TAKCS;” ! Take Cal Sweep
590 !
600 FOR I=1 TO Numpoints*Numreads+1 ! Points * Number of readings plus 1
610 ! Serial poll does not place analyzer in remote operation
620 ! and does not require the analyzer to process the command.
630 !
640 REPEAT ! Repeat until SRQ detected
650 Stat=SPOLL(@Nwa) ! Serial poll to read status byte
660 DISP “Stat “;Stat;” Waiting for request”
670 UNTIL BIT(Stat,6) ! SRQ detected for request control
680 OUTPUT @Nwa;”ESR?;” ! Read status register to clear
690 ENTER @Nwa;Reply ! Read and discard register value
700 !
710 PRINT “Passing Control” ! status read and pasing control
720 PASS CONTROL @Nwa ! Pass control to analyzer
730 !
740 REPEAT
750 ! Read HP-IB interface state information register.
760 STATUS 7,6;Hpib ! Test HP-IB register for control
770 !
780 ! Reading the interface status register does not interact with the
790 ! analyzer. Bit 6 is set when control is returned.
800 !
810 DISP “Waiting for control”
820 UNTIL BIT(Hpib,6) ! Loop until control is returned
830 NEXT I
840 !
850 PRINT “Finished with Power meter Cal”
860 DISP ““ ! Clear display message
870 !
880 OUTPUT @Nwa;”TALKLIST;” ! Restore Talker/Listener operation
890 OUTPUT @Nwa;”CLES;” ! Clear and reset status byte operation
900 !
910 OUTPUT @Nwa;”PWMCONES;” ! Power meter cal correct one sweep
920 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
930 ENTER @Nwa;Reply ! Read the 1 when complete
940 !
950 ! Read the power meter cal correction factors
960 OUTPUT @Nwa;”FORM4;” ! ASCII data format to read cal data
970 OUTPUT @Nwa;”OUTPPMCAL1;” ! Request the power meter cal factors
980 ENTER @Nwa;Pmcal(*) ! Read the factors
990 !
1000! Display the power meter cal factors
1010 PRINT “Point”,”Factor”
1020 FOR I=1 TO Numpoints ! Cycle throught the factors
1030 PRINT I,Pmcal(I)
1040 NEXT I
1050!
1060 CLEAR @Nwa ! SDC (Selective Device Clear)
1070 LOCAL @Nwa ! Release HP-IB control
1080 END
8-83

Programming Examples

Analyzer System Setup Examples
Analyzer System Setup Examples

Saving and Recalling Instrument States

NOTE The most efficient option for storing and recalling analyzer states is using the
analyzer's internal registers to save the CAL data. Recalling these registers is
the fastest solution to restoring analyzer setups. See your analyzer’s user’s
guide for detailed information on the analyzer's internal storage registers.

In the event that all the registers have been used, the internal disk drive is not
used, or if internal memory limitations exist, then these external solutions
become viable.

The purpose of this example is to demonstrate several programming options for storing and
recalling entire instrument states over GPIB. The examples describe two different processes
for storing and recalling instrument states. The first example accomplishes the task using the
learn string. The second example involves reading both the learn string and the calibration
arrays out of the analyzer and storing them to disk or storing them in the system controller
itself.

Using the learn string is a very rapid way of saving the instrument state, but using direct disk
access has the advantage of automatically storing calibrations, cal kits, and data along with
the instrument state.

A complete analyzer setup requires sending the learn string and a calibration array to set the
analyzer parameters. The CAL array may also be placed in the analyzer, just as if a
calibration was performed. By sending both sets of data, the analyzer may be quickly setup
for a measurement.

Several different measurements may be required in the course of testing a device. An
efficient way of performing multiple measurements is to send both the calibration array and
the learn string, and then perform the measurements.

Example 5A: Using the Learn String

The learn string is a very fast and easy way to read an instrument state. The learn string
includes all front-panel settings, the limit table for each channel, and the list-frequency table.
It can be read out of the analyzer with the command OUTPLEAS, and input to the analyzer
with the command INPULEAS.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The string storage is allocated.

• The learn string is requested.

• The string is read without any processing.
8-84

Programming Examples

Analyzer System Setup Examples
• The analyzer is released from remote control.

• The instrument state is changed by the operator.

• The learn string is sent back to the analyzer.

• The analyzer is released from remote control and the program ends.

Running the Program

Run the program. When the program stops, change the instrument state and press Enter, on
the controller. The analyzer will be returned to its original state by using the learn string.

BASIC Program Listing

1 ! This program shows how to retrieve a learn string from the analyzer
2 ! into a string array. The state of the analyzer is then changed and the
3 ! learn string re-loaded to return the analyzer to the previous settings.
4 !
5 ! EXAMP5A Using the Learn String
6 !
7 OPTION BASE 1
8 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
9 ASSIGN @Nwa_bin TO 716;FORMAT OFF
10 !
11 CLEAR SCREEN
12 ! Initialize the analyzer
13 ABORT 7 ! Generate an IFC (Interface Clear)
14 CLEAR @Nwa ! SDC (Selected Device Clear)
15 !
16 INTEGER Header,Length ! 2-byte header and length of string
17 !
18 OUTPUT @Nwa;”OUTPLEAS;” ! Output the learn string
19 ENTER @Nwa_bin;Header,Length ! Read header and length first
20 !
21 ALLOCATE INTEGER State(Length/2) ! Integer array to contain the string
22 !
23 ENTER @Nwa_bin;State(*) ! Read the string
24 LOCAL @Nwa ! Release HP-IB control
25 !
26 INPUT “Change state and press ENTER”,A$
27 !
28 OUTPUT @Nwa;”INPULEAS;” ! Send the learnstring to analyzer
29 OUTPUT @Nwa_bin;Header,Length,State(*)
30 DISP “Analyzer state has been restored!”
31 !
32 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analzyer to finish
33 ENTER @Nwa;Reply ! Read the 1 when complete
34 LOCAL @Nwa ! Release HP-IB control
35 END

Example 5B: Reading Calibration Data

This example demonstrates:

• how to read measurement calibration data out of the analyzer
• how to read it back into the analyzer
8-85

Programming Examples

Analyzer System Setup Examples
• how to determine which calibration is active

The data used to perform measurement-error correction is stored inside the analyzer in one
(or more) of twelve calibration-coefficient arrays. Each array is a specific error coefficient,
and is stored and transmitted as an error-corrected data array. Each point is a
real/imaginary pair, and the number of points in the array is the same as the number of
points in the sweep. The five data formats also apply to the transfer of calibration-coefficient
arrays. Your analyzer’s user’s guide contains information on the storage locations for
calibration coefficients and different calibration types.

A computer can read out the error coefficients using the commands OUTPCALC01,
OUTPCALC02,…through OUTPCALC12. Each calibration type uses only as many arrays as
required, beginning with array 1. Hence, it is necessary to know the type of calibration about
to be read out. Attempting to read an array not being used in the current calibration causes
the “REQUESTED DATA NOT CURRENTLY AVAILABLE” warning.

A computer can also store calibration coefficients in the analyzer. To do this, declare the type
of calibration data about to be stored in the analyzer just as if you were about to perform that
calibration. Then, instead of calling up different classes, transfer the calibration coefficients
using the INPUCALCnn; commands. The variables nn are a data pair appended to the
command representing a calibration number from 01 through 12. When all the coefficients
are stored in the analyzer, activate the calibration by issuing the mnemonic SAVC;, and
trigger a sweep on the analyzer.

This example reads the calibration coefficients into a very large array, from which they can
be examined, modified, stored, or put back into the instrument. If the data is to be directly
stored onto disk, it is usually more efficient to use FORM 1 (analyzer's internal-binary
format), and to store each coefficient array as it is read in.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• A binary path is assigned.

• The system is initialized.

• The calibration types and number of arrays are defined.

• The integer variables for reading the headers are defined.

• The calibration type and number of arrays are read by the controller.

• The output is formatted in FORM 3.

• The number of points in the trace is read.

• The memory is allocated for the calibration arrays.

• Each calibration array is requested from the analyzer.

• Header information is read with a binary I/O path.

• The elements from each calibration array are read in.

• The next calibration array is requested until all the arrays have been read.

• The calibration type is sent to the analyzer.

• Each calibration array is sent.
8-86

Programming Examples

Analyzer System Setup Examples
• The calibration is activated.

• The analyzer is released from remote control and the program ends.

Running the Program

Before executing the program, perform a calibration.

The program is able to detect which type of calibration is active. With that information, it
predicts how many arrays to read out. When all the arrays have been sent to the computer,
the program prompts the user. The operator then turns the calibration off or performs a
completely different calibration on the analyzer and continues the program. The computer
reloads the old calibration. The operator should not preset the analyzer because the
instrument settings must be the same as those that were present when the calibration was
taken.

NOTE The retransmitted calibration is associated with the current instrument state:
the instrument has no way of knowing the original state associated with the
calibration data. For this reason, it is recommended that the learn string be
used to store the instrument state whenever calibration data is stored. The next
example demonstrates how to reload the analyzer state with both the learn
string and the calibration arrays.

BASIC Program Listing

10 ! This program shows how to manipulate calibration data from the analyzer.
20 ! It demonstrates how to read calibration data from the analyzer, and
30 ! how to replace it. The type of calibration active is determined and
40 ! the program reads in the correct number of arrays. The number of points
50 ! in the trace, and in the cal array, is determined and used to dimension
60 ! storage arrays.
70 !
80 ! EXAMP5B Reading the Calibration Data
90 !
100 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
110 ASSIGN @Nwa_bin TO 716;FORMAT OFF ! Assign binary path
120 !
130 CLEAR SCREEN
140 ! Initialize the analyzer
150 ABORT 7 ! Generate an IFC (Interface Clear)
160 CLEAR @Nwa ! SDC (Selected Device Clear)
170 !
180 ! Data for determining CAL type and number of arrays
190 DATA “CALIRESP”,1,”CALIRAI”,2,”CALIS111”,3
200 DATA “CALIS221”,3,”CALIFUL2”,12,”CALIEORM”,7,”CALIOERM”,10
210 DATA “NOOP”,0
220 !
230 INTEGER Hdr,Lgth,I,J ! Integers for reading headers
240 !
250 READ Calt$,Numb ! Read CAL type from data statement
260 IF Numb=0 THEN GOTO 690 ! If no CAL type is present Exit
270 OUTPUT @Nwa;Calt$;”?;” ! Query if CAL type is active
280 ENTER @Nwa;Active ! Read 1 if active
290 IF NOT Active THEN GOTO 250 ! Load another CAL type and re-try
300 !
8-87

Programming Examples

Analyzer System Setup Examples
310 PRINT Calt$,Numb ! Active CAL and number of arrays
320 !
330 OUTPUT @Nwa;”FORM3;” ! Form 3 IEEE 64 bit floating point
340 OUTPUT @Nwa;”POIN?;” ! Request trace length
350 ENTER @Nwa;Poin ! Read number of points
360 ALLOCATE Cal(1:Numb,1:Poin,1:2) ! Arrays for CAL arrays
370 ! Number of arrays, number of points real and imag value per point
380 !
390 FOR I=1 TO Numb ! Read arrays
400 OUTPUT @Nwa USING “K,ZZ”;”OUTPCALC”,I ! Format I to add 0 in command
410 ENTER @Nwa_bin;Hdr,Lgth ! Read header & length from array
420 FOR J=1 TO Poin ! Read elements for CAL array
430 ENTER @Nwa_bin;Cal(I,J,1),Cal(I,J,2) ! Read real & imag pair elements
440 NEXT J ! Next location in array
450 NEXT I ! Next CAL array
460 !
470 ! All CAL arrays have been read
480 !
490 INPUT “PRESS RETURN TO RE-TRANSMIT CALIBRATION”,Dum$
500 !
510 OUTPUT @Nwa;”FORM3;” ! Use same format as read
520 OUTPUT @Nwa;Calt$;”;” ! Send CAL type to analyzer
530 !
540 FOR I=1 TO Numb ! Send each array in CAL
550 DISP “TRANSMITTING ARRAY: “,I ! Show array number
560 OUTPUT @Nwa USING “K,ZZ”;”INPUCALC”,I ! Send array number 0 format
570 OUTPUT @Nwa_bin;Hdr,Lgth ! Send header & array length
580 FOR J=1 TO Poin ! Send each array element
590 OUTPUT @Nwa_bin;Cal(I,J,1),Cal(I,J,2) ! Real and Imag pair
600 NEXT J ! Next element in array
610 NEXT I ! Next array
620 !
630 OUTPUT @Nwa;”SAVC;” ! Activate CAL
640 !
650 OUTPUT @Nwa;”CONT;” ! Restore continuous sweep
660 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for analyzer to finish
670 ENTER @Nwa;Reply ! Read the 1 when complete
680 !
690 DISP “Finished with CAL transfer”
700 LOCAL @Nwa ! Release HP-IB control
710 END

Example 5C: Saving and Restoring the Analyzer Instrument State

NOTE The instrument state may also be stored in the analyzer's internal registers.
This is the fastest and most efficient method for toggling between instrument
states. This example is for use when the analyzer's internal memory is full, or
when the are other internal-memory limitations.

This example demonstrates how to use both the learn string and the calibration arrays to
completely re-program the analyzer state. If you were performing two entirely different
measurements on a device and wanted to quickly change between instrument states and
perform the measurements, this example program is a potential solution.
8-88

Programming Examples

Analyzer System Setup Examples
The example will request the learn string and calibration array from the analyzer and store
them in a disk file on the system controller. Once the storage is complete, the operator will be
prompted to change the state of the analyzer and then re-load the state that was previously
stored in the disk file. Once the file is created on the disk, the state information can be
retrieved from the controller and restored on the analyzer.

NOTE The disk file can only be created once. Errors will occur if the operator
repeatedly tries to recreate the file.

For this example, only a thru calibration will be performed and transferred. This means only
one calibration array will be read from the analyzer and written to the disk file with the
instrument state. To work with more elaborate calibrations, additional arrays will need to be
defined and transferred to the disk file. This is not difficult, but requires some further
programming steps which were omitted in the interest of presenting a simple example.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• A binary path is assigned.

• The integers for reading the headers are defined.

• The system is initialized.

• An array is created to hold the learn string.

• The learn string is requested by the controller.

• The number of points in the trace is read.

• The controller allocates an array for the calibration data.

• The calibration data is read into the controller.

• The controller creates and assigns a data file for the calibration array and the learn string.

• The learn string and calibration array are stored in the disk file.

• The operator presses Enter, on the controller to read the calibration data back into the
analyzer.

• The learn string is read from the disk file and output to the analyzer.

• The calibration array is read in from the disk file and stored in the analyzer.

• The analyzer is returned to continuous-sweep mode.

• The analyzer is released from remote control and the program ends.

Running the Program

Setup the analyzer and perform a through calibration.

Run the program. The program prompts the operator to change the state of the analyzer and
then press Enter, to continue. At this point, the analyzer state is stored on the disk file in the
controller. Pressing Enter, will begin the transfer from the disk file to internal arrays within
the controller and then on to the analyzer.
8-89

Programming Examples

Analyzer System Setup Examples
Once completed:

• The original state will be restored.
• The analyzer will be sweeping.
• The analyzer will be calibrated.
• COR will be displayed on the analyzer's display.

BASIC Program Listing

10 ! This program reads an instrument state and stores it in a disk file.
20 ! The learn string and CAL array are both read into the controller and
30 ! then transferred to a disk file for storage. The file contents are
40 ! then restored to the analyzer.
50 !
60 ! EXAMP5C Saving and Restoring the Analyzer Instrument State
70 !
80 OPTION BASE 1
90 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
100 ASSIGN @Nwa_bin TO 716;FORMAT OFF ! Assign a binary path
110 !
120 INTEGER Header,Str_len,Cal_len ! Integer 2 byte format for headers
130 !
140 CLEAR SCREEN
150 ! Initialize the analyzer
160 ABORT 7 ! Generate an IFC (Interface Clear)
170 CLEAR @Nwa ! SDC (Selected Device Clear)
180 !
190 OUTPUT @Nwa;”OPC?;SING;” ! Place analyzer in single sweep
200 ENTER @Nwa;Reply ! Read the 1 when complete
210 !
220 OUTPUT @Nwa;”OUTPLEAS;” ! Request learn string
230 ENTER @Nwa_bin;Header,Str_len ! Read header and length first
240 ALLOCATE INTEGER State(Str_len/2) ! Integer array to contain the string
250 ENTER @Nwa_bin;State(*) ! Read the string
260 !
270 ! Allocate an array for storing the CAL data
280 OUTPUT @Nwa;”POIN?;” ! Find number of points in trace
290 ENTER @Nwa;Num_points ! Read number to allocate array
300 ALLOCATE Cal_array(1:Num_points,1:2) ! Real and Imag for each point
310 !
320 ! Read Cal array
330 OUTPUT @Nwa;”FORM3;” ! Form 3 64 bit floating point data
340 OUTPUT @Nwa;”OUTPCALC01;” ! Request the cal array
350 !
360 ! Read the #A and 2 byte length as integers
370 ENTER @Nwa_bin;Header,Cal_len,Cal_array(*) ! Read cal array data
380 !
390 ! Write instrument state data to disk file
400 File$=”A:DATAFILE” ! Example HP BASIC for Windows data
file
410 ! File$ = “DATAFILE:,1406” ! Example Workstation HP BASIC data
file
420 CREATE BDAT File$,1,Str_len+Cal_len+8 ! Create data file once!
430 ASSIGN @File TO File$! Assign I/O path to file
440 OUTPUT @File;Header,Str_len,State(*) ! Send learn string to disk file
450 OUTPUT @File;Header,Cal_len,Cal_array(*) ! Send CAL arrays to disk file
460 ASSIGN @File TO * ! Close file
8-90

Programming Examples

Analyzer System Setup Examples
470 !
480 INPUT “Cal data received. Press ENTER to send it back.”,A$
490 !
500 ! Read arrays from file
510 !
520 ASSIGN @File TO File$! Open file for reading arrays
530 ENTER @File;Header,Str_len ! Read learn string headers from file
540 ALLOCATE INTEGER State2(Str_len/2) ! new learn string array from file
550 ENTER @File;State2(*) ! Read learn string from file
560 !
570 ENTER @File;Header,Cal_len ! Read CAL data headers from file
580 Arrsize=Cal_len/16 ! Array is 2 numbers, 8 bytes per number
590 ALLOCATE Cal_array2(1:Arrsize,1:2) ! new cal array from file
600 ENTER @File;Cal_array2(*) ! Read cal array from disk file
610 !
620 ! Send Learn string back
630 OUTPUT @Nwa;”INPULEAS;” ! Send learn string to analyzer
640 OUTPUT @Nwa_bin;Header,Str_len,State2(*)
650 !
660 ! Send Cal array back
670 OUTPUT @Nwa;”CALIRESP;” ! Send CAL type (Response)
680 OUTPUT @Nwa;”FORM3;INPUCALC01;” ! Output CAL array to analyzer
690 OUTPUT @Nwa_bin;Header,Cal_len,Cal_array2(*)
700 OUTPUT @Nwa;”OPC?;SAVC;” ! Save the CAL array
710 ENTER @Nwa;Reply ! Read the 1 when complete
720 !
730 OUTPUT @Nwa;”CONT;” ! Start the analyzer sweeping
740 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
750 ENTER @Nwa;Reply
760 LOCAL @Nwa ! Release HP-IB control
770 END
8-91

Programming Examples

List-Frequency and Limit-Test Table Examples
List-Frequency and Limit-Test Table Examples

Using List Frequency Sweep Mode

The analyzer normally takes data points spaced at regular intervals across the overall
frequency range of the measurement. For example, for a 2 GHz frequency span using 201
points, data will be taken at intervals of 10 MHz. The list frequency sweep mode allows the
operator to select the specific points, or frequency spacing between points, at which
measurements are to be made. This mode of operation allows flexibility in setting up tests
that ensure device performance. By only sampling specific points, measurement time is
reduced. List frequency sweeps are also discussed in your analyzer’s user’s guide.

The following three example programs illustrate the use of the analyzer's list frequency
sweep mode to perform arbitrary frequency testing. Examples 6A (Stepped List Mode) and
6B (Swept List Mode) allow the operator to construct a table of list frequency segments
which is then loaded into the analyzer's list frequency table. There are a maximum of 30
segments available. Each segment stipulates a start and stop frequency, and the number of
data points to be taken over that frequency range. In Example 6B (Swept List Mode), each
segment also stipulates a power value and IF bandwidth. List frequency segments can be
overlapped in the stepped list mode but not in the swept list mode. The total number of
points in all the segments must not exceed 1601.

Examples 6A (Stepped List Mode) and 6B (Swept List Mode) take advantage of the
computer's capabilities to simplify creating and editing a list frequency table. The table is
entered and completely edited before being transmitted to the analyzer. To simplify the
programming task, options such as entering center frequency, frequency span, or step size
are not included.

Example 6C lets the operator select a specific segment to “zoom-in.” A single instrument can
be programmed to measure several different devices, each with its own frequency range,
using a single calibration. When a specific device is connected, the operator selects the
appropriate segment for that device.

The command sequence for entering a list frequency table imitates the key sequence followed
when entering a table from the front panel: there is a command for every key-press. Editing a
segment is also the same as the front-panel key sequence, but the analyzer automatically
reorders each edited segment in order of increasing start frequency.

The list frequency information may be acquired using the limit-test results array. The actual
stimulus points are available as the first element in the array.

The list frequency table is also carried as part of the learn string. While the table cannot be
modified as part of the learn string, it can be stored and recalled with very little effort by
storing and recalling the learn string. See “Example 5A: Using the Learn String” on page 8-84
and “Learnstring and Calibration-Kit String” on page 6-5 for details on using learn strings.

Example 6A: Setting Up a List Frequency Table in Stepped List Mode

The purpose of this example is to show how to create a list frequency table in stepped list
mode and then transmit the table to the analyzer.
8-92

Programming Examples

List-Frequency and Limit-Test Table Examples
In the stepped list mode, the source steps to the next frequency point where it stops long
enough for the analyzer to take data. For electrically long devices, this mode ensures that the
measurement will not be impacted by IF delay. In addition, this mode provides the most
flexibility in specifying the list of frequencies.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The existing list frequencies are edited and cleared.

• The number of segments to define is read in.

• An array for the list segments is defined.

• The parameters for each segment are requested.

• If the operator wants to edit, the segment parameters are re-entered.

• The new list is sent to the analyzer.

• The analyzer is released from remote control and the program ends.

Running the Program

The program displays the frequency list table as it is entered. During editing, the displayed
table is updated as each line is edited. The table is not re-ordered. At the completion of
editing, the table is entered into the analyzer, and list frequency sweep mode is switched ON.
During editing, pressing Enter, leaves an entry at the old value.

The start frequency, stop frequency, and number of points for the last segment entered may
be observed on the analyzer's display.

Activate a marker and select the discrete-marker mode to observe the point spacing. Use an
exaggerated scale with just a few points to find the list-frequency spacing between points.

BASIC Program Listing

10 ! This program shows how to enter and edit a list frequency table.
20 ! Any existing table is deleted and a new table is defined and
30 ! edited. This list is then sent to the analyzer. Any number of
40 ! segments or points may be entered. Be sure not to enter more than
50 ! 1601 points or 30 segments.
60 !
70 ! EXAMP6A Setting Up a List-Frequency Table in Stepped List Mode
80 !
90 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
100 !
110 CLEAR SCREEN
120 ! Initialize the analyzer
130 ABORT 7 ! Generate an IFC (Interface Clear)
140 CLEAR @Nwa ! SDC (Selective Device Clear)
150 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
160 ENTER @Nwa;Reply ! Read the 1 when complete
170 !
180 ! Edit the list frequency table and set its type
190 ! LISTTYPE = LSTP (stepped list mode)
200 !
8-93

Programming Examples

List-Frequency and Limit-Test Table Examples
210 OUTPUT @Nwa;”EDITLIST;LISTTYPELSTP;”
220 !
230 OUTPUT @Nwa;”CLEL;” ! Clear the existing list frequencies
240 !
250 INPUT “Number of segments?”,Numb ! Read number of segments to define
260 ALLOCATE Table(1:Numb,1:3) ! Define an array for the list segments
270 !
280 PRINT USING “10A,15A,15A,20A”;”SEGMENT”,”START(MHZ)”,”STOP(MHZ)”,”NUMBER OF
POINTS”
290 !
300 FOR I=1 TO Numb ! Cycle through the segments and read in the values
310 GOSUB Loadpoin
320 NEXT I
330 !
340 LOOP
350 INPUT “DO YOU WANT TO EDIT? Y OR N”,An$
360 EXIT IF An$=”N”
370 INPUT “ENTRY NUMBER?”,I ! Get an entry number
380 GOSUB Loadpoin ! Go load point
390 END LOOP
400 !
410 OUTPUT @Nwa;”EDITLIST” ! Send the new list to the analyzer
420 FOR I=1 TO Numb ! Send one segment at a time
430 OUTPUT @Nwa;”SADD;” ! Add a segment
440 OUTPUT @Nwa;”STAR”;Table(I,1);”MHZ;” ! Start frequency
450 OUTPUT @Nwa;”STOP”;Table(I,2);”MHZ;” ! Stop frequency
460 OUTPUT @Nwa;”POIN”,Table(I,3),”;” ! Number of points
470 OUTPUT @Nwa;”SDON;” ! Segment done
480 NEXT I ! Next segment to send to the analyzer
490 !
500 OUTPUT @Nwa;”EDITDONE;” ! Done with list
510 OUTPUT @Nwa;”LISFREQ;” ! Set list frequency mode
520 !
530 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for analyzer to finish
540 ENTER @Nwa;Reply ! Read the 1 when complete
550 LOCAL @Nwa ! Release HP-IB control
560 STOP ! End of main program
570 !
580 ! ***************************Subroutines ******************************
590 !
600 Loadpoin: ! Sub to read in each segment value
610 INPUT “START FREQUENCY? (MHZ)”,Table(I,1) ! Read start frequency
620 INPUT “STOP FREQUENCY? (MHZ)”,Table(I,2) ! Read stop frequency
630 INPUT “NUMBER OF POINTS?”,Table(I,3) ! Read number of points in seg
640 IF Table(I,3)=1 THEN Table(I,2)=Table(I,1)! Single point same start stop
650 !
660 ! Print new segment into table on display
670 PRINT TABXY(0,I+1);I;TAB(10);Table(I,1);TAB(25);
680 PRINT Table(I,2);TAB(40),Table(I,3)
690 RETURN
700 END

Example 6B: Setting Up a List Frequency Table in Swept List Mode

The purpose of this example is to show how to create two tables: a list frequency table in
swept list mode, and a limit-test table. Both tables are then transmitted to the analyzer.
8-94

Programming Examples

List-Frequency and Limit-Test Table Examples
In the swept list mode, the source sweeps through each segment, with the analyzer taking
data during the sweep. This can increase throughput by up to 6 times over a stepped sweep.
In addition, this mode expands the list table to include a power value and IF bandwidth for
each defined segment. The only restriction is that you cannot specify segments with
overlapping frequencies. For more information on the swept list mode, refer to your
analyzer’s user’s guide.

The following is an outline of the program's processing sequence:

• An array for the type of limit line is defined and initialized.

• An array for the list table (frequency list and limit lines) is defined and initialized with
data.

• An I/O path is assigned for the analyzer.

• The system is initialized.

• A variable is initialized with the number of segments in the list table.

• The analyzer is placed into hold mode and (for ES model analyzers) the port powers are
uncoupled for the active channel.

• The existing list frequencies are edited and the analyzer swept list mode is selected.

• The analyzer is instructed to set the IF bandwidth and port power levels according to the
values from the list table.

• The new frequency list table is sent to the analyzer.

• The sweep mode is set to list frequency mode and S21 (transmission) measurement. A
single sweep is taken.

• The analyzer display is autoscaled.

• The existing limit lines are edited and cleared.

• The new limit table is sent to the analyzer.

• The limit lines and limit test are turned on.

• The analyzer is released from remote control and the program ends.

The program is written as follows:

Running the Program

The program requires no input from the operator. The list frequency table data and limit-test
table data is read directly from the program code into the array. Next, the analyzer is set up
to respond to the IF bandwidth and port power parameters of the list frequency table. After
the list frequency data is entered into the analyzer, the list frequency sweep mode is initiated
and a single sweep is taken. Lastly, the limit-test table data is entered into the analyzer and
the limit lines and limit test are activated.

The analyzer should now indicate whether the measurement trace passes or fails the limit
test.

BASIC Program Listing

10 ! This program creates a swept list table for a specific filter measurement.
8-95

Programming Examples

List-Frequency and Limit-Test Table Examples
20 ! The program first builds a list frequency table from a hardcoded set of
30 ! list segments. It then builds a limit table based on the same hardcoded
40 ! data. When modifying the table data below, make sure that no two segments
50 ! overlap in frequency.
60 !
70 ! EXAMP6B Setting Up a List-Frequency Table in a Swept List Mode
80 !
90 !--
100! The following constants are used to represent limit line “type”
110! in the table below.
120!
130 No_limit=0
140!
150! 1 = flat line
160! 2 = sloped line
170! 3 = single point (also used to terminate a line segment)
180!--
190!
200 DIM Limtype$(1:3)[2]
210 DATA FL, SL, SP
220 READ Limtype$(*)
230!
240! The list below has the following entries:
250! Start: start frequency
260! Stop: Segment stop
270! Pts: Segment number of points
280! P1: Power at port 1
290! P2: Power at port 2 (ES model analyzers only)
300! IFBW: Segment IFBW
310! upper: Upper Limit
320! lower: Lower Limit
330! strt type: Limit Line type for start of segment
340! end type: Limit Line type for end of segment
350!--
360 DIM Listtable(1:6,1:10)
370 Freqlist: ! |strt|end
380! List: Start | Stop | Pts | P1 | P2 | IFBW | uppr | lower |type|type
390! ---
400! ---
410 DATA 570.000, 588.000, 5, 10, 0, 10, -90, -200, 1, 0
420 DATA 588.000, 598.000, 11, 0, 0, 100, -85, -200, 1, 3
430 DATA 600.000, 664.000, 15, -10, -10, 3700, 0, 0, 0, 0
440 DATA 664.000, 678.000, 100, -10, -10, 3700, 0, -6, 1, 3
450 DATA 678.000, 768.000, 10, -10, -10, 1000, 0, 0, 0, 0
460 DATA 768.000, 768.000, 1, 10, 0, 10, -90, -200, 3, 3
470! ---
480 READ Listtable(*)
490!
500 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
510!
520 CLEAR SCREEN
530! Initialize the system
540 ABORT 7
550 CLEAR @Nwa
560 OUTPUT @Nwa;”OPC?;PRES;”
570 ENTER @Nwa;Done
580 Numb=SIZE(Listtable,1) ! Number of segments in list table
590 OUTPUT @Nwa;”HOLD;” ! Hold mode allows faster set up
8-96

Programming Examples

List-Frequency and Limit-Test Table Examples
600!
610! For ET model analyzers, comment out this next line
620 OUTPUT @Nwa;”PORTPUNCPLD;” ! Uncouple ports
630!
640! Create the list frequency table from the table above
650! LISTTYPE = LSWP (swept list mode)
660!
670 OUTPUT @Nwa;”EDITLIST;LISTTYPELSWP;”
680!
690! Turn on list power mode for each port (uncoupled)
700! Turn on list ifbw mode
710!
720 OUTPUT @Nwa;”LISIFBWMON;” ! IF bandwidth set by list
730 OUTPUT @Nwa;”S21;LISPWRMON;” ! Port 1 power set by list
740!
750! For ET model analyzers, comment out this next line
760 OUTPUT @Nwa;”S22;LISPWRMON;” ! Port 2 power set by list
770!
780 FOR I=1 TO Numb
790 OUTPUT @Nwa;”SADD;STAR”;Listtable(I,1);”MHZ;”
800 OUTPUT @Nwa;”STOP”;Listtable(I,2);”MHZ;”
810 OUTPUT @Nwa;”POIN”;Listtable(I,3);”;”
820 OUTPUT @Nwa;”S11;” ! Port 1 active
830 OUTPUT @Nwa;”SEGPOWER”;Listtable(I,4),”;”
840!
850! For ET model analyzers, comment out these next two lines
860 OUTPUT @Nwa;”S22;” ! Port 2 active
870 OUTPUT @Nwa;”SEGPOWER”;Listtable(I,5),”;”
880!
890 OUTPUT @Nwa;”SEGIFBW”;Listtable(I,6),”;”
900 OUTPUT @Nwa;”SDON;”
910 NEXT I
920 OUTPUT @Nwa;”EDITDONE;”
930 OUTPUT @Nwa;”LISFREQ;S21;OPC?;SING;”
940 ENTER @Nwa;Done
950 OUTPUT @Nwa;”AUTOSCAL;WAIT;”
960!
970! Now create the corresponding limit table
980!
990 OUTPUT @Nwa;”EDITLIML;CLEAL;” ! Initiate the limit table
1000 FOR I=1 TO Numb
1010 IF Listtable(I,9)<>No_limit THEN
1020 OUTPUT @Nwa;”SADD” ! Add a new limit segment
1030 OUTPUT @Nwa;”;LIMS”;Listtable(I,1);”MHZ”
1040 OUTPUT @Nwa;”;LIMU”;Listtable(I,7)
1050 OUTPUT @Nwa;”;LIML”;Listtable(I,8)
1060 OUTPUT @Nwa;”;LIMT”;Limtype$(Listtable(I,9))
1070 OUTPUT @Nwa;”;SDON;”
1080 IF Listtable(I,10)<>No_limit THEN !
1090 OUTPUT @Nwa;”SADD “ ! Add a new limit segment
1100 OUTPUT @Nwa;”;LIMS”;Listtable(I,2);”MHZ”
1110 OUTPUT @Nwa;”;LIMT”;Limtype$(Listtable(I,10))
1120 OUTPUT @Nwa;”;SDON;”
1130 END IF
1140 END IF
1150 NEXT I
1160 OUTPUT @Nwa;”EDITDONE;LIMILINEon;LIMITESTon;”
1170!
8-97

Programming Examples

List-Frequency and Limit-Test Table Examples
1180 LOCAL @Nwa
1190 END

Example 6C: Selecting a Single Segment from a Table of Segments

This example program demonstrates how to define a single segment as the
operating-frequency range of the analyzer from a table of segments stored in the controller.
The program assumes that a list frequency table has already been entered into the analyzer,
either manually, or using the program in Example 6A or Example 6B.

The program first loads the list frequency table into the computer by reading the start and
stop frequencies of each segment and the number of points for each segment. The segment's
parameters are then displayed on the computer screen, and the operator can choose which
segment is to be used by the analyzer. Note that only one segment can be chosen at a time.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The list frequency segment is edited.

• The largest segment number is set.

• The highest segment number is requested.

• The number of actual segments is read in.

• A list frequency table is defined and the segments are read in to the controller from the
analyzer.

• The operator selects one of the segments of the sweep.

• The controller “zooms-in” and sweeps the defined segment.

• The operator ends the program by entering segment number “0.”

• The analyzer returns to sweeping all the segments in the table.

• The activation loop is ended and the program ends.

Running the Program

The program will read the parameters for each list-frequency segment from the analyzer, and
build a table containing all the segments. The parameters of each segment will be printed on
the computer screen. If there are more than 17 segments, the program will pause. Press
Return, to see more segments. The maximum number of segments that can be read is 30 (the
maximum number of segments the analyzer can hold). Use the computer's Page Up, and Page
Down, keys to scroll through the list of segments if there are more than 17.

After all the segments are displayed, the program will prompt the operator for a specific
segment to be used. Type in the number of the segment, and the analyzer will then “zoom-in”
on that segment. The program will continue looping, allowing continuous selection of
different segments. To exit the loop, type 0. This will restore all the segments (with the
command ASEG), allowing the analyzer to sweep all of the segments, and the program will
8-98

Programming Examples

List-Frequency and Limit-Test Table Examples
terminate.

BASIC Program Listing

10 ! This program shows how to select a single segment from a list
20 ! frequency sweep and activate it as the sweep. The list frequency
30 ! table is read from the analyzer and displayed on the computer
40 ! screen. The operator is prompted to select a segment and the
50 ! program then activates it. All the segments are activated upon
60 ! completion.
70 !
80 ! EXAMP6C Selecting a Single Segment from a Table of Segments
90 !
100 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
110 !
120 CLEAR SCREEN
130 ! Initialize the analyzer
140 ABORT 7 ! Generate an IFC (Interface Clear)
150 CLEAR @Nwa ! SDC (Selected Device Clear)
160 !
170 ! Print header for table of existing segments
180 PRINT USING “10A,15A,15A,20A”;”SEGMENT”,”START(MHZ)”,”STOP(MHZ)”,”NUMBER OF
POINTS”
190 OUTPUT @Nwa;”EDITLIST;” ! Edit list frequency segment
200 OUTPUT @Nwa;”SEDI30;” ! Set largest segment number
210 OUTPUT @Nwa;”SEDI?;” ! Request number of highest segment
220 ENTER @Nwa;Numsegs ! Read number of actual segments
230 !
240 ! Setup table and read segments from analyzer
250 ALLOCATE Table(1:Numsegs,1:3) ! Allocate table of segments
260 FOR I=1 TO Numsegs ! Cycle through segments
270 GOSUB Readlist ! Read in segment definitions
280 NEXT I ! Next segment
290 !
300 ! Loop and read segment to be activated
310 LOOP ! Request operator to enter segment
320 INPUT “SELECT SEGMENT NUMBER: (0 TO EXIT)”,Segment
330 EXIT IF Segment=0 ! Exit point
340 OUTPUT @Nwa;”EDITDONE;”;”SSEG”;Segment;”;” ! Set active segment to sweep
350 END LOOP ! End activation loop
360 !
370 OUTPUT @Nwa;”ASEG;” ! Set all segment sweep
380 DISP “PROGRAM ENDED”
390 !
400 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for analyzer to finish
410 ENTER @Nwa;Reply ! Read the 1 when complete
420 LOCAL @Nwa ! Release HP-IB control
430 STOP ! End of main program
440 !
450 ! ************************** Subroutines *******************************
460 !
470 Readlist: ! Read segment list from analyzer
480 OUTPUT @Nwa;”EDITLIST;” ! Edit segment list
490 OUTPUT @Nwa;”SEDI”,I,”;” ! Select segment to edit
500 OUTPUT @Nwa;”STAR;” ! Send start freq to display value
510 OUTPUT @Nwa;”OUTPACTI;” ! Output active function value
520 ENTER @Nwa;Table(I,1) ! Read start frequency
8-99

Programming Examples

List-Frequency and Limit-Test Table Examples
530 OUTPUT @Nwa;”STOP;” ! Send stop freq to display value
540 OUTPUT @Nwa;”OUTPACTI;” ! Output active function value
550 ENTER @Nwa;Table(I,2) ! Read stop frequency
560 OUTPUT @Nwa;”POIN;” ! Send number of points to display
570 OUTPUT @Nwa;”OUTPACTI;” ! Output active function value
580 ENTER @Nwa;Table(I,3) ! Read number of points
590 !
600 IF I=18 THEN ! Pause if more than 17 segments
610 INPUT “PRESS RETURN FOR MORE”,A$! Read Return to continue
620 END IF
630 ! Print new header for segment data
640 IMAGE 4D,6X,4D.6D,3X,4D.6D,3X,4D ! Format image to disp segment data
650 PRINT USING 640;I;Table(I,1)/1.E+6;Table(I,2)/1.E+6;Table(I,3)
660 RETURN
670 !
680 END

Using Limit Lines to Perform PASS/FAIL Tests

There are two steps to performing limit testing on the analyzer via GPIB. First, limit
specifications must be defined and loaded into the analyzer. Second, the limits are activated,
the device is measured, and its performance to the specified limits is signaled by a pass or
fail message on the analyzer's display.

Example 6D illustrates the first step, setting up limits. Example 6E performs the actual limit
testing.

Example 6D: Setting Up a Limit-Test Table

The purpose of this example is to show how to create a limit-test table and transmit it to the
analyzer.

The command sequence for entering a limit-test table imitates the key sequence followed
when entering a table from the analyzer's front panel: there is a command for every
key-press. Editing a limit line is also the same as the key sequence, but remember that the
analyzer automatically re-orders the table in order of increasing start frequency.

The limit-test table is also carried as part of the learn string. While it cannot be modified as
part of the learn string, the learn string can be stored and recalled with very little effort. See
“Example 5A: Using the Learn String” on page 8-84 and “Learnstring and Calibration-Kit
String” on page 6-5 for details on using learn strings.

This example takes advantage of the computer's capabilities to simplify creating and editing
the table. The table is entered and completely edited before being transmitted to the
analyzer. To simplify the programming task, options such as entering offsets are not
included.

This example automates the front-panel operation of entering a limit-test table. Front-panel
operation and limits are discussed in your analyzer’s user’s guide.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.
8-100

Programming Examples

List-Frequency and Limit-Test Table Examples
• The system is initialized.

• The limit lines are edited and cleared.

• The number of limits is requested.

• The limit table is created.

• The string array of limit types is created.

• The operator is prompted to enter the new limit values.

• The new limit table is sent back to the analyzer.

• The limit line is activated.

• The limit test is activated.

• The analyzer is returned to local control and the program ends.

Running the Program

CAUTION This example program will delete any existing limit lines before entering the
new limits. If this is not desired, omit the line(s) that clear the existing limits
(in this case, the command “CLEL;” contained in LINE 190). This program
begins by presetting the analyzer. The programmer will have to add the
necessary command lines to set the analyzer to the operating conditions
required for testing. The example program will show the limit lines defined, but
the limits will always fail without additional analyzer setup.

The program displays the limit table as it is entered. During editing, the displayed table is
updated as each line is edited. The table is not reordered. At the completion of editing, the
table is entered into the analyzer, and limit-testing mode switched ON. The analyzer will
rearrange the table in ascending order starting with the lowest start frequency entry. During
editing, simply pressing Enter, leaves an entry at the old value.

BASIC Program Listing

10 ! This program shows how to create a limit table and send it to the
20 ! analyzer. The operator enters the desired limits when prompted for
30 ! the stimulus value, upper and lower value and type of limit
40 ! desired. Once the table is created, the limits are sent to the
50 ! analyzer and activated.
60 !
70 ! EXAMP6D Setting Up a Limit Test Table
80 !
90 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
100 !
110 CLEAR SCREEN
120 ! Initialize the analyzer
130 ABORT 7 ! Generate an IFC (Interface clear)
140 CLEAR @Nwa ! SDC (Selected Device Clear)
150 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
160 ENTER @Nwa;Reply ! Read the 1 when completed
170 !
180 OUTPUT @Nwa;”EDITLIML;” ! Edit limit lines
190 OUTPUT @Nwa;”CLEL;” ! Clear any existing limits
8-101

Programming Examples

List-Frequency and Limit-Test Table Examples
200 INPUT “NUMBER OF LIMITS?”,Numb ! Request the number of limits
210 ALLOCATE Table(1:Numb,1:3) ! Create a table
220 ALLOCATE Limtype$(Numb)[2] ! Create string array of limit types
230 !
240 ! Print out the header for the table
250 PRINT USING “10A,20A,15A,20A”;”SEG”,”STIMULUS (MHz)”,”UPPER (dB)”,”LOWER
(dB)”,”TYPE”
260 !
270 ! Prompt the operator to enter the limit values
280 FOR I=1 TO Numb ! Cycle through the limits
290 GOSUB Loadlimit ! Go read limit values
300 NEXT I ! Next limit value
310 !
320 ! Allow the operator to edit the array entered
330 LOOP ! Cycle to edit limit lines
340 INPUT “DO YOU WANT TO EDIT? Y OR N”,An$
350 EXIT IF An$=”N” ! Exit loop on N and send to analyzer
360 INPUT “ENTRY NUMBER?”,I ! Read limit number to edit
370 GOSUB Loadlimit ! Go read limit values
380 END LOOP ! Next edit entry
390 !
400 ! Send the limit line array segments to the analyzer
410 OUTPUT @Nwa;”EDITLIML;” ! Edit the limit
420 FOR I=1 TO Numb ! Each segment of the limit
430 OUTPUT @Nwa;”SADD;” ! Add segment
440 OUTPUT @Nwa;”LIMS”;Table(I,1);”MHZ” ! Send segment stimulus value
450 OUTPUT @Nwa;”LIMU”;Table(I,2);”DB” ! Upper limit value
460 OUTPUT @Nwa;”LIML”;Table(I,3);”DB” ! Lower limit value
470 IF Limtype$(I)=”FL” THEN OUTPUT @Nwa;”LIMTFL;” ! Flat limit
480 IF Limtype$(I)=”SL” THEN OUTPUT @Nwa;”LIMTSL;” ! Sloping limit
490 IF Limtype$(I)=”SP” THEN OUTPUT @Nwa;”LIMTSP;” ! Point limit
500 OUTPUT @Nwa;”SDON;” ! Segment done
510 NEXT I ! next segment
520 !
530 OUTPUT @Nwa;”EDITDONE;” ! Edit complete
540 OUTPUT @Nwa;”LIMILINEON;” ! Turn limit line on
550 OUTPUT @Nwa;”LIMITESTON;” ! Turn limit test on
560 !
570 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for the analyzer to finish
580 ENTER @Nwa;Reply ! Read the 1 when complete
590 !
600 LOCAL @Nwa ! Release HP-IB control
610 STOP ! End of main program
620 !
630 !**************************** Subroutines ********************************
640 !
650 Loadlimit: ! Sub to interact to load data
660 INPUT “STIMULUS VALUE? (MHz)”,Table(I,1) ! and print table created
670 INPUT “UPPER LIMIT VALUE? (DB)”,Table(I,2)
680 INPUT “LOWER LIMIT VALUE? (DB)”,Table(I,3)
690 INPUT “LIMIT TYPE? (FL=FLAT, SL=SLOPED, SP=SINGLE POINT)”,Limtype$(I)
700 !
710 ! Format and display table values
720 PRINT
TABXY(0,I+1);I;TAB(10);Table(I,1);TAB(30);Table(I,2);TAB(45),Table(I,3),TAB(67);Limty
pe$(I)
730 RETURN ! Next limit value
740 !
8-102

Programming Examples

List-Frequency and Limit-Test Table Examples
750 END

Example 6E: Performing PASS/FAIL Tests While Tuning

The purpose of this example is to demonstrate the use of the limit/search-fail bits in
event-status register B, to determine whether a device passes the specified limits. Limits can
be entered manually, or using Example 6D.

The limit/search-fail bits are set and latched when limit testing or a marker search fails.
There are four bits, one for each channel for both limit testing and marker search. See
Figure 7-1 on page 7-3 and Table 5-1 on page 5-6 for additional information. Their purpose is
to allow the computer to determine whether the test/search executed was successful. They
are used in the following sequence:

1. Clear event-status register B.
2. Trigger the limit test or marker search.
3. Check the appropriate fail bit.

When using limit testing, the best way to trigger the limit test is to trigger a single sweep. By
the time the single sweep command (SING) finishes, limit testing will have occurred.

NOTE If the device is tuned during the sweep, it may be tuned into and then out of
limit, causing a limit test to qualify as “passed” when the device is not in fact
within the specified limits.

When using marker searches (max, min, target, and widths), outputting marker or
bandwidth values automatically triggers any related searches. Therefore, all that is required
is to check the fail bit after reading the data.

In this example, several consecutive sweeps must qualify as “passing” in order to ensure that
the limit-test pass was not extraneous due to the device settling or operator tuning during
the sweep. Upon running the program, the number of “passed” sweeps for qualification is
entered. For very slow sweeps, a small number of sweeps such as two are appropriate. For
relatively fast sweeps, where the device requires time to settle after tuning, as many as six or
more sweeps may be more appropriate.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The pass counter is initialized on entry.

• The analyzer takes a sweep.

• The event-status register B byte is output and the channel-1 limit is tested.

• If the device fails the first sweep, the operator is prompted to ensure it is tuned correctly
and the device is measured again.

• If the device passes the first sweep, the operator is prompted not to touch the device as
testing continues.
8-103

Programming Examples

List-Frequency and Limit-Test Table Examples
• If the device passes the required number of sweeps, the operator is prompted that the
device has passed and to connect the next device for testing.

• The program initializes the pass counter and begins to measure the new device.

Running the Program

NOTE This program assumes a response calibration (through calibration) or a full
2-port calibration has been performed prior to running the program.

Set up a limit-test table on channel 1 for a specific device either manually, or using the
program in Example 6D.

Run the program, and enter the number of passed sweeps desired for qualification. After
entering the qualification number, connect the device. When a sweep passes, the computer
beeps. When enough consecutive sweeps qualify the device as “passing,” the computer emits
a dual-tone beep to attract the attention of the operator, and then prompts for a new device.

To test the program's pass/fail accuracy, try causing the DUT to fail by loosening the cables
connecting the DUT to the analyzer and running the program again.

BASIC Program Listing

10 ! This program demonstrates Pass/Fail tests using limit lines. The
20 ! program uses the latch-on-fail limit bits in event status register
30 ! B to determine if the device performance passes the specified test
40 ! limit lines. It then requires that the device passes for multiple
50 ! consecutive sweeps in order to ensure that the device is static in
60 ! the response and not varying. The operator specifies how many sweeps
70 ! are required to pass the test.
80 !
90 ! EXAMP6E Performing PASS/FAIL Tests while Tuning
100 !
110 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
120 !
130 CLEAR SCREEN
140 ! Initialize the analyzer No preset to retain settings for testing
150 ABORT 7 ! Generate an IFC (Interface Clear)
160 CLEAR @Nwa ! SDC (Selected Device Clear)
170 !
180 INPUT “Number of consecutive passed sweeps for qualification?”,Qual
190 Pass=0 ! Initialize pass counter on entry
200 !
210 Tune: DISP “TUNE DEVICE AS NECESSARY” ! Device is not passing warning
220 !
230 Measure:OUTPUT @Nwa;”OPC?;SING;” ! Single sweep and wait
240 ENTER @Nwa;Reply ! Read the 1 when completed
250 !
260 OUTPUT @Nwa;”ESB?;” ! Event status register B byte
270 ENTER @Nwa;Estat ! Reading byte clears the register
280 !
290 IF BIT(Estat,4) THEN ! Bit 4 is failed limit on channel 1
300 IF Pass>0 THEN BEEP 1200,.05 ! passed before? Now not passing beep
310 Pass=0 ! Reset pass to 0
320 GOTO Tune ! Adjust and measure again
330 END IF
8-104

Programming Examples

List-Frequency and Limit-Test Table Examples
340 !
350 BEEP 2500,.01 ! Limit test passed passing beep
360 Pass=Pass+1 ! Increment number of passes
370 DISP “LEAVE DEVICE ALONE” ! Warn not to adjust as it passed
380 !
390 IF Pass<Qual THEN GOTO Measure ! If not enough passes to qualify
400 !
410 ! Device passed
420 DISP “DEVICE PASSED!” ! Number of passes enough to qualify
430 FOR I=1 TO 10 ! Announce the device passed and
440 BEEP 1000,.05 ! prompt operator to connect new
450 BEEP 2000,.01 ! device to test.
460 NEXT I
470 !
480 INPUT “PRESS RETURN FOR NEXT DEVICE”,Dum$
490 Pass=0 ! Initialize pass counter
500 GOTO Measure ! Begin measurement
510 !
520 END
8-105

Programming Examples

Report Generation Examples
Report Generation Examples
The analyzer has three operating modes with respect to GPIB. These modes can be changed
by accessing softkeys in the Local menu. System-controller mode is used when no computer
is present. This mode allows the analyzer to control the system. The other two modes allow a
remote system controller to coordinate certain actions: in talker/listener mode the remote
system controller can control the analyzer, as well as coordinate plotting and printing; and in
pass-control mode the remote system controller can pass active control to the analyzer so
that the analyzer can plot, print, control a power meter, or load/store to disk. The amount of
peripheral interaction is the main difference between talker/listener and pass-control mode.

Example 7A: Operation Using Talker/Listener Mode

The commands OUTPPLOT and OUTPPRIN allow talker/listener mode plotting and printing via
a one way data path from the analyzer to the plotter or printer. The computer sets up the
path by addressing the analyzer to talk, the plotter to listen, and then releasing control of the
analyzer in order to transfer the data. The analyzer will then make the plot or print. When it
is finished, it asserts the End or Identify (EOI) control line on GPIB. The controller detects
the presence of EOI and re-asserts control of the GPIB. This example program makes a plot
using the talker/listener mode.

NOTE One of the attributes of the OUTPPLOT command is that the plot can include the
current softkey menu. The plotting of the softkeys is enabled with the PSOFTON;
command and disabled with the PSOFTOFF; command.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The selected frequency span is swept once.

• The plot command is sent to the analyzer.

• The analyzer is set to talker mode and the plotter is set to listener mode.

• The plot is spooled to the plotter.

• The analyzer is set to listener mode when the controller detects an EOI from the analyzer.

• The controller puts the analyzer back in continuous-sweep mode.

• The analyzer is returned to local control and the program ends.

Running the Program

The analyzer will go into remote, and make the plot. During the plot, the computer will
display the message Plotting and waiting for EOI. When the plot is completed, the
analyzer asserts the EOI line on the GPIB. The computer detects this and displays the End of
plot message.

If a problem arises with the plotter, such as no pen or paper, the analyzer cannot detect the
8-106

Programming Examples

Report Generation Examples
situation because it only has a one-way path of communication. Hence, the analyzer will
attempt to continue plotting until the operator intervenes and aborts the plot by pressing the
analyzer's Local, key.

Pressing Local, will do the following:

• Aborts the plot.
• Causes the warning message CAUTION: PLOT ABORTED.
• Asserts EOI to return control of the bus to the system controller.

Because of possible peripheral malfunctions, it is generally advisable to use pass-control
mode, which allows two way communication between the peripherals and the analyzer.

BASIC Program Listing

10 ! This example shows a plot operation under the control of the
20 ! analyzer. The analyzer is commanded to output plot data, the
30 ! plotter is addressed to listen, and the analyzer to talk. The
40 ! controller watches for EOI at the end of the plot sequence and
50 ! then regains control of the HP-IB operations.
60 !
70 ! EXAMP7A Operation Using Talker/Listener Mode
80 !
90 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
100 !
110 CLEAR SCREEN
120 ! Initialize analzyer without preset to preserve data
130 ABORT 7 ! Generate an IFC (Interface Clear)
140 CLEAR @Nwa ! SDC (Selected Device Clear)
150 !
160 OUTPUT @Nwa;”OPC?;SING;” ! Stop sweep and prepare for plot
170 ENTER @Nwa;Reply ! Read in “1” when completed
180 !
190 OUTPUT @Nwa;”OUTPPLOT;” ! Send plot command
200 SEND 7;UNL LISTEN 5 TALK 16 DATA ! Unlisten address devices and plot
210 DISP “Plotting and waiting for EOI”
220 WAIT .5 ! Pause 500 mS to start process
230 !
240 REPEAT ! Loop until EOI detected bit is set
250 STATUS 7,7;Stat ! Read HP-IB interface register 7
260 UNTIL BIT(Stat,11) ! Test bit 11 EOI on HP-IB
270 !
280 End_plot:DISP “End of plot”
290 !
300 OUTPUT @Nwa;”CONT;” ! Restore continuous sweep
310 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for analyzer to finish
320 ENTER @Nwa;Reply ! Read the 1 when complete
330 LOCAL @Nwa ! Release remote control
340 END

Example 7B: Controlling Peripherals Using Pass-Control Mode

NOTE This example program will not work with HP BASIC for Windows.
8-107

Programming Examples

Report Generation Examples
If the analyzer is in pass-control mode and it receives a command telling it to plot, print,
control a power meter, or store/load to disk, it sets bit 1 in the event-status register to
indicate that it requires control of the bus. If the computer then uses the GPIB pass-control
command to pass control to the analyzer, the analyzer will take control of the bus and access
the peripheral. When the analyzer no longer requires control, it will pass control back to the
computer.

In this example, the pass-control mode is used to allow the analyzer to dump a screen display
to a printer.

Pass-control mode allows the analyzer to control the printer while sending the screen display
to be printed. The analyzer requests control from the instrument controller and the
controller allows the analyzer to take control of the GPIB and dump the plot. The instrument
controller must not interact with the GPIB while this remote analyzer control is taking place.
Once the printer-dump operation is complete, the analyzer passes control back to the
controller and the controller continues programming the analyzer.

NOTE The analyzer assumes that the address of the computer is correctly stored in its
GPIB addresses menu under Local, SET ADDRESSES, ADDRESS: CONTROLLER.
If this address is incorrect, control will not return to the computer. Similarly, if
control is passed to the analyzer while it is in talker/listener mode, control will
not return to the computer.

Control should not be passed to the analyzer before it has set event-status-register bit 1
making it Request Active Control. If the analyzer receives control before the bit is set, control
is passed immediately back to the controller.

When the analyzer becomes the active system controller, it is free to address devices to talk
and listen as required. The only functions denied the analyzer are the ability to assert the
interface clear line (IFC), and the remote line (REN). These are reserved for the master
system controller. As the active system controller, the analyzer can send and receive
messages from printers, plotters, and disk drives.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• The system is initialized.

• The status registers are cleared.

• Bit 1 of ESR request control is set.

• The ESR interrupt for SRQ is enabled.

• The pass-control mode is enabled.

• The data is dumped to the printer.

• The program loops until the SRQ bit is set.

• The status byte is read with a serial poll.

• The program tests for bit 6, SRQ.

• If SRQ is detected, the program tests for pass control (bit 5 of the status byte).
8-108

Programming Examples

Report Generation Examples
• If the analyzer requests control, the system controller gives the analyzer control of the
bus.

• The program loops and waits for the analyzer to complete the print dump.

• The analyzer reads the interface.

• If bit 6 is active in the controller, control is returned from the analyzer to the controller.

• The status-byte assignments are cleared.

• The analyzer returns to continuous-sweep mode.

• The analyzer is returned to local control and the program ends.

Running the Program

The analyzer will briefly flash the message WAITING FOR CONTROL, before actually receiving
control and generating the printer output. The computer will display the Printing from
analyzer and waiting for control message.

When the printer output is complete, the analyzer passes control back to the address stored
as the controller address under the Local, SET ADDRESSES, menu. The computer will detect
the return of active control and exit the wait loop. The controller will display the message
Control returned from analyzer and then release the analyzer from remote control.

NOTE Because the program waits for the analyzer's request for control, it can be used
to respond to front-panel requests as well. Remove the “PRINALL;” command
from the program and run the program. Nothing will happen until the operator
requests a print, plot, or disk access from the front panel of the analyzer. For
example, press Local, Copy, and PRINT MONOCHROME.

BASIC Program Listing

10 ! This example shows a pass-control operation to print the display
20 ! under the analyzer HP-IB control. The controller reads the status
30 ! of the analyzer looking for SRQ to indicate that the analyzer is
40 ! requesting control. Once control is passed to the analyzer, the
50 ! controller monitors the status of its interface registers to detect
60 ! when the interface is again the active controller. The analyzer will
70 ! pass control back to the controller when finished.
80 !
90 ! EXAMP7B Controlling Peripherals Using Pass-Control Mode
100 !
110 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
120 !
130 CLEAR SCREEN
140 ! Initialize the analyzer without preset to preserve data
150 ABORT 7 ! Generate an IFC (Interface Clear)
160 CLEAR @Nwa ! SDC (Selected Device Clear)
170 !
180 OUTPUT @Nwa;”OPC?;SING;” ! Single sweep and stop for print
190 ENTER @Nwa;Reply ! Read in “1” when complete
200 !
210 OUTPUT @Nwa;”CLES;” ! Clear status registers
220 OUTPUT @Nwa;”ESE2;” ! Enable bit 1 of ESR request control
8-109

Programming Examples

Report Generation Examples
230 OUTPUT @Nwa;”SRE32;” ! Enable ESR interrupt for SRQ
240 !
250 OUTPUT @Nwa;”USEPASC;” ! Enable pass control mode
260 OUTPUT @Nwa;”PRINALL;” ! Begin printer dump
270 !
280 REPEAT ! Loop until SRQ bit is set
290 Stat=SPOLL(@Nwa) ! Read status byte with serial poll
300 UNTIL BIT(Stat,6) ! Test for bit 6, SRQ
310 !
320 Pass_control: ! SRQ detected. Test for pass control
330 IF BIT(Stat,5) THEN ! Requested pass control
340 PASS CONTROL @Nwa ! Send take control message
350 ELSE ! Not bit 5, some other event
360 DISP “SRQ but not request pass control”
370 STOP ! Halt program
380 END IF
390 !
400 DISP “Printing from analyzer and waiting for control”
410 !
420 REPEAT ! Loop and wait for completion
430 STATUS 7,6;Hpib ! Read HP-IB interface register
440 UNTIL BIT(Hpib,6) ! Bit 6 is active controller
450 !
460 DISP “Control returned from analyzer”
470 OUTPUT @Nwa;”TALKLIST;” ! Set talker/listener mode again
480 OUTPUT @Nwa;”CLES;” ! Clear status byte assignments
490 !
500 OUTPUT @Nwa;”CONT;” ! Start analyzer sweeping again
510 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for analyzer to finish
520 ENTER @Nwa;Reply ! Read the 1 when complete
530 !
540 LOCAL @Nwa ! Release HP-IB control
550 END

Example 7C: Printing with the Parallel Port

This program will select the parallel port and program the analyzer to copy its display to a
printer. There are a number of commands associated with the serial and parallel ports which
allow you to configure output modes such as the baud rate and the handshake type used by
the port and the printer. In this example, the parallel port is configured by the program. The
interface may also be configured from the analyzer's front-panel keys by pressing Local, SET
ADDRESSES, PRINTER PORT. This menu allows manual selection of the parallel-interface
parameters.

Since the GPIB port is not being used for the copy operation, programming of the analyzer
and measurement operations may continue once the copy operation has been initiated. An
internal spooler in the analyzer's memory provides buffering of the printer operation. In the
example which follows, the status byte of the analyzer is checked to determine when the
print operation is complete.

• An I/O path is assigned to the analyzer.

• The analyzer is initialized.
8-110

Programming Examples

Report Generation Examples
• A single sweep is taken and the analyzer is placed in hold mode.

• The status registers are cleared.

• The copy-complete bit is set and enabled.

• The printer operation and communication modes are set.

• The print command is sent.

• The analyzer is released from remote control and placed in continuous-sweep mode.

• The analyzer is polled until the status bit representing copy complete is detected.

• The analyzer is released from remote control and the program ends.

Running the Program

Run the program. The analyzer is initialized, set to single-sweep mode, and a sweep is taken.
The program sets the system up to print the analyzer's display to a printer connected to the
parallel port. At this time, the analyzer can continue making measurements as printer prints
the display. When the analyzer display has finished printing, the controller displays the
message: “DONE”, the analyzer is released from GPIB control, and the program ends.

BASIC Program Listing

10 ! This program shows how to set up and print the display through the
20 ! parallel printer port.
30 !
40 ! EXAMP7C Printing with the Parallel Port
50 !
60 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
70 !
80 CLEAR SCREEN
90 ! Initialize the analzyer without preset to preserve the data
100 ABORT 7 ! Generate an IFC (Interface Clear)
110 CLEAR @Nwa ! SDC (Selected Device Clear)
120 !
130 OUTPUT @Nwa;”OPC?;SING;” ! Single sweep and stop for print
140 ENTER @Nwa;Reply ! Read the 1 when complete
150 !
160 OUTPUT @Nwa;”CLES;” ! Clear status registers
170 OUTPUT @Nwa;”ESNB128;” ! Enable copy complete
180 OUTPUT @Nwa;”SRE4;” ! Enable Event Status Register B
190 OUTPUT @Nwa;”PRNTRAUTF OFF;” ! Set printer auto feed off
200 OUTPUT @Nwa;”PRNTYPLJ;” ! Select LaserJet printer
210 OUTPUT @Nwa;”PRNPRTPARA;” ! Select parallel port for output
240 !
250 OUTPUT @Nwa;”PRINALL;” ! Print screen
260 !
270 DISP “PRINTING”
280 !
290 ! Set up next measurement over HP-IB
300 OUTPUT @Nwa;”CONT;” ! Restore continuous sweep
310 !
320 ! Measurements can continue but wait for print to finish
330 REPEAT ! Test for bit 2 (4) ESRB
340 Stat=SPOLL(@Nwa)
350 UNTIL BIT(Stat,2) ! Wait for printer to complete
8-111

Programming Examples

Report Generation Examples
360 !
370 DISP “DONE”
380 LOCAL @Nwa ! Release HP-IB control
390 END

Example 7D: Plotting to a File and Transferring the File Data to a Plotter

Another report-generation technique is to transfer the plotter string to a disk file, and
retrieve and plot the disk file at another time. Test time is increased when a hardcopy plot
occurs during the measurement process. It may be more convenient to plot the data at
another site or time. One solution to this problem is to capture the plot data using the
controller and store it to a disk file. This disk file may then be read from the controller and
the contents transferred to a plotter. This next example shows a method of accomplishing
this task.

The analyzer is initialized without presetting the analyzer. The data that is in place on the
analyzer is not disturbed by the program operation. A large string is dimensioned to hold the
plotter commands as they are received from the analyzer. The length of this string depends
upon the complexity of the analyzer's display. The analyzer is placed in the single-sweep
mode and OPC?;SING; is used to make sure that operation is complete before plotting. The
plotting begins with the OUTPPLOT; command.

The string transfer is ended by the controller detecting the EOI line which the analyzer pulls
at the end of the transfer. The string transfer terminates and the plot data is now stored in a
string in the analyzer.

These strings contain ASCII characters which represent the plotter commands in HP-GL
(Hewlett-Packard Graphics Language). A disk file is created and the string is written into the
file containing the display-plot commands.

Once the strings are transferred to the disk file, the file pointer is rewound and the data is
read out into a string for plotting. The string is sent to the plotter which uses the commands
to generate a plot.

The following is an outline of the program's processing sequence:

• An I/O path is assigned for the analyzer.

• An I/O path is assigned for the plotter.

• The system is initialized.

• The string for plotter commands is defined.

• The frequency span is swept once.

• The plotter output is requested and read into the plot string.

• A plot file is created in the controller.

• The plot string is stored into the disk file.

• The plot string is read from the disk file and sent to the plotter.

• The analyzer returns to continuous-sweep mode.
8-112

Programming Examples

Report Generation Examples
• The analyzer is returned to local control and the program ends.

Running the Program

The program begins by initializing the analyzer and placing it into single-sweep mode. The
plotter commands are captured into strings in the controller. The controller display prompts
Plotter output complete. Press RETURN to store on disk. Pressing Return, causes
the data to be stored to disk. Once this task is complete, the program prompts once more,
Plot to file is complete. Press Return to plot. After pressing Return, again, the
string output is sent to the plotter and the plot begins. Once the plot is complete, the
program prompts Plot is complete. End of program. and the analyzer begins sweeping
and returns to local control.

BASIC Program Listing

10 ! This program shows how to read the plotter output from the analyzer
20 ! and store it in a disk file as an ASCII file. The disk file is then
30 ! read back into the controller and the plot commands sent to a
40 ! plotter to generate the plot of the analyzer display. This allows
50 ! plotting at a different time than data collection.
60 !
70 ! EXAMP7D Plotting to a File and Transferring the File Data to a Plotter
80 !
90 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
100 ASSIGN @Plt TO 705 ! Assign an I/O path for the plotter
110 !
120 CLEAR SCREEN
130 ! Initialize the analyzer without preset to preserve data
140 ABORT 7 ! Generate an IFC (Interface Clear)
150 CLEAR @Nwa ! SDC (Selected Device Clear)
160 !
170 DIM Plot$[32000] ! Define string for plotter commands
180 !
190 OUTPUT @Nwa;”OPC?;SING;” ! Stop sweep for plot and wait
200 ENTER @Nwa;Reply ! Read the 1 when complete
210 OUTPUT @Nwa;”OUTPPLOT;” ! Request plotter output
220 !
230 ENTER @Nwa;Plot$! Plotter output of analyzer display
240 !
250 INPUT “Plotter output complete. Press RETURN to store on disk.”,Reply$
260 !
270 ! Disk file operations
280 ! Create data file on disk 32000/256 = 125 records
290 !CREATE ASCII “PLOTFILE:,1400”,125 ! Use only once to generate file
300 ASSIGN @File TO “PLOTFILE:,1400” ! Assign file I/O path
310 OUTPUT @File;Plot$! Write plot string to file
320 !
330 INPUT “Plot to file is complete. Press Return to plot.”,A$
340 !
350 ! Read plotter commands from file and send to plotter
360 RESET @File ! Reset file pointer to beginning
370 ENTER @File;Plot$! Read plot string from file
380 OUTPUT @Plt;Plot$! Send plot string to plotter
390 !
400 !
410 DISP “Plot is complete. End of program.”
420 OUTPUT @Nwa;”CONT;” ! Restore continuous sweep
8-113

Programming Examples

Report Generation Examples
430 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for analzyer to finish
440 ENTER @Nwa;Reply ! Read the 1 when complete
450 LOCAL @Nwa ! Release HP-IB control
460 END

Utilizing PC-Graphics Applications Using the Plot File

You can use Example 7D to generate a plot that can be read into a PC and used in several
different graphics generation programs. HP-GL is a commonly recognized graphic format and
may be used to transfer information to PC application programs such as CorelDRAW!®, Lotus
Freelance® and other graphics packages. By importing the graphics data into these
application packages, you can generate reports in many word-processors.

You can then use graphic-data files to generate the following:

• test results documentation
• data sheets from testing results
• archival information for a digital-storage medium

If you would like to create a disk file for graphics processing, modify the previous program to
only store the plotter commands to the disk file. Once the file is renamed to include the
extension “.hpg”, the PC will have a DOS-format file that can be imported and examined by
the graphics package.

Once the HP-GL file is present in the DOS file system, the HP-GL file is imported and
examined with the graphics package. The text labels may need to be rescaled, but on the
whole, the graphics results are quite usable.

Example 7E: Reading Plot Files from a Disk

NOTE This example program will not work with HP BASIC for Windows.

This example program reads and plots files which have been stored on a LIF formatted disk
by the analyzer. The plots may be sent to either a plotter with auto-feed capability, such as
the HP 7550B, or an HP-GL/2 compatible printer, such as a LaserJet 4 Series (monochrome)
printer or a DeskJet 1200C (color) printer.

NOTE Sending plots to disk is discussed in your analyzer’s user’s guide.

This section provides detailed information on file naming conventions and
instructions on printing multiple plots-per-page.

This program requires HP BASIC 6.0 or greater which provides the use of wild
cards with the catalog command.

The peripheral GPIB addresses and the hard copy device selection are hard
coded and may need to be changed for different systems configurations. Refer
to lines 1130 through 1240 in the example program.
8-114

Programming Examples

Report Generation Examples
This program example provides the form feeds to separate the plots. If the analyzer has been
configured to store multiple plots-per-page, this program will generate those plots. A file
naming convention has been devised to allow the program perform several printer-setup
functions. These include: initializing the printer for HP-GL/2 at the beginning of a page,
configuring the printer to plot multiple plots to the same page, if desired, and then sending a
page eject (form feed) to the hardcopy device at the completion of the printing process.

The plot file name is made up of four parts. The first three are generated automatically by the
analyzer whenever a plot is requested:

1. the prefix “PLOT”

2. a two-digit sequence number in the range of 00 to 31

3. a two-letter output-format code to indicate the plot quadrant position:

• LU (Left Upper)
• LL (Left Lower)
• RU (Right Upper)
• RL (Right Lower)
• FP (Full Page)

For example, the first full page plot to a disk would be named “PLOT00FP.” The second plot,
to be located in the lower-right hand corner of the page would be named “PLOT01RL,” and so
on.

The fourth part is an optional character. It is used to indicate that the file is part of a
multiple-file plot on the same graticule. See your analyzer’s user’s guide for information on
printing multiple measurements per page.

For detailed information on plotting to disk and outputting the plot files to a printer/plotter
see your analyzer’s user’s guide.

The following is an outline of the program's processing sequence:

• Hardcopy device control strings are created.

• The hardcopy output device is defined.

• The disc storing the file names is cataloged.

• Files that match the name specifier in the file name array (Flnm$) are counted.

• Flnm$ is dimensioned for the number of files that match the name specifier.

• The file name array is sorted.

• A form feed is sent to the hardcopy device.

• Each of the files in the file name array is processed and sent to the output device.

❏ The current file name root string is defined.

❏ If the hardcopy device is a printer, then an HP-GL initialization string is output.

❏ Each file which matches the file name root string to the hardcopy device is output.

❏ After a form feed is sent to the hardcopy device, the printing/plotting process begins.
8-115

Programming Examples

Report Generation Examples
Running the Program

This program allows you to plot or print as many as four analyzer display dumps (stored on a
LIF formatted disk) on one side of a single sheet of paper. Refer to the instructions detailed
in your analyzer’s user’s guide.

BASIC Program Listing

10 ! This example program reads and plots files which have been stored on
20 ! a LIF formatted disk by the analyzer. The plots are sent to either a
30 ! plotter with auto-feed capability, such as the HP7550B, or an HP-GL/2
40 ! compatible printer, such as the LaserJet 4 series (monochrome) or the
50 ! DeskJet 1200C (color).
60 !
70 ! Sending plots to disk is discussed in the Printing, Plotting and Saving
80 ! Measurement Results section of the analyzer Users Guide. The file
90 ! naming conventions are discussed in this section and will provide more
100 ! details.
110 !
120 ! This program example will provide form feeds to separate the plots. If
130 ! multiple plots per page have been stored, this program will generate
140 ! those plots.
150 ! A file naming convention has been devised to allow the program
160 ! to initialize the printer for HP-GL/2 at the beginning of a
170 ! page, to plot multiple plots to the same page, if desired, and
180 ! when all plots to the same page have been completed then send a
190 ! page eject (form feed) to the hardcopy device.
200 !
210 ! The plot file name is made up of four parts, the first three of which
220 ! are generated automatically by the analyzer whenever a plot is requested:
230 ! The prefix, “PLOT”, a two digit sequence number, in the range of 00 to
240 ! 31, a two letter output format code to indicate the plot quadrant
250 ! position or full page, LU (Left Upper), LL (Left Lower), RU (Right
260 ! upper), RL (Right Lower) or FP (Full Page). For example, the first
270 ! full page plot to a disk would be named “PLOT00FP”.
280 !
290 ! a. Build hardcopy device control strings.
300 ! b. Define output hardcopy device.
310 ! c. Catalog disc storing the file names which match file name specifier
320 ! in the file name array, Flnm$, and setting the number of files that
330 ! match.
340 ! d. Dimension Flnm$ for the number of files matched.
350 ! e. Sort the file name array.
360 ! f. Form feed the hardcopy device.
370 ! g. Process each of the files in the file name array.
380 ! 1. Define the current file name root string.
390 ! 2. If hardcopy device is a printer then output HP-GL initialization
400 ! string.
410 ! 3. Output each file which matches the file name root string to the
420 ! hardcopy device.
430 ! 4. Output a form feed to the hardcopy device.
440 !
450 ! This program requires HP BASIC 6.0 or greater which provides the use of
460 ! wild cards with the catalog command.
470 !
480 ! The peripheral HP-IB addresses and the hard copy device selection are
490 ! hard coded and may need to be changed for different systems
500 ! configurations. See lines 1130 to 1240.
8-116

Programming Examples

Report Generation Examples
510 !
520 ! EXAMP7E Reading Plot Files from a Disk
530 !
540 WILDCARDS UX;ESCAPE “\” ! Enable HP-UX style wild cards
550 OPTION BASE 1 ! Set numeric arrays to start at 1
560 DIM Flnm$(1:200)[14] ! Plot filename array
570 DIM Hpglinit$[80] ! Printer HPGL initialization string
580 DIM Srch$[60] ! Search string for plot filenames
590 DIM Esc_chr$[1] ! Escape character ASCII 27
600 INTEGER Plt_arry1(1:32767) ! Plotter command array
610 INTEGER Plt_arry2(1:2,1:32767) ! Additional plot arrays if required
620 INTEGER Plttr ! Plotter for output
630 INTEGER Prntr ! Printer for output
640 INTEGER Outputdvc ! Output device selected
650 INTEGER Root_mtch ! Root plot file flag
660 INTEGER Flnm_idx ! Pointer to filename array
670 INTEGER Nbr_files ! Number of files which are plot files
680 INTEGER Prfx_lngth ! Length of prefix defined in filename
690 INTEGER Root_lngth ! Length of root name in file name
700 INTEGER Arry1_sz ! Number of data works in plot file
710 INTEGER Arry2_sz ! Number of arrays in plot file
720 INTEGER Plttr_addr ! Plotter address
730 INTEGER Prntr_addr ! Printer address
740 REAL Rcrd_lngth ! Record length in plot file
750 REAL Nmbr_rcrds ! Number of records in plot file
760 REAL Nmbr_wrds ! Number of data words in plot file
770 !
780 Esc_chr$=CHR$(27) ! Escape character (1B hex) ASCII 27 (Decimal)
790 !
800 ! *** Build control string for printers ***
810 !
820 ! Build hardcopy device control string containing setup commands for
830 ! printer output.
840 ! Reset, conditional page eject
850 Hpglinit$=Esc_chr$&”E”
860 ! Page size A 8.5 x 11
870 Hpglinit$=Hpglinit$&Esc_chr$&”&12A”
880 ! Landscape orientation
890 Hpglinit$=Hpglinit$&Esc_chr$&”&l1O”
900 ! No left margin
910 Hpglinit$=Hpglinit$&Esc_chr$&”&a0L”
920 ! No right margin
930 Hpglinit$=Hpglinit$&Esc_chr$&”&a400M”
940 ! No top margin
950 Hpglinit$=Hpglinit$&Esc_chr$&”&l0E”
960 ! Picture frame size 10.66 inches x 7.847 inches
970 ! (720 decipoints per inch)
980 Hpglinit$=Hpglinit$&Esc_chr$&”*c7680x5650Y”
990 ! Move cursor to anchor point
1000 Hpglinit$=Hpglinit$&Esc_chr$&”*p50x50Y”
1010 ! Set picture frame anchor point
1020 Hpglinit$=Hpglinit$&Esc_chr$&”*c0T”
1030 ! Set CMY palette
1040 Hpglinit$=Hpglinit$&Esc_chr$&”*r-3U”
1050 ! Enter HPGL mode with the cursor (pen) at the PCL current save position
1060 !
1070 ! Exit HPGL mode to accept printer command
1080 Hpgl_exit$=Esc_chr$&”%0A”
8-117

Programming Examples

Report Generation Examples
1090 !
1100 ! Conditional form feed (page eject)
1110 Form_feed$=Esc_chr$&”E”
1120 !
1130 ! *** Initialize varibles and assign output device ***
1140 !
1150 ! Define device selection flags to determine plotter or printer
1160 ! Select device with 1 and set Outputdvc to define it
1170 Plttr=1 ! Select plotter for output
1180 Prntr=0 ! Select printer for output
1190 Outputdvc=Plttr ! define output device as plotter
1200 !
1210 False=0 ! Define flags for logic tests
1220 True=1
1230 !
1240 Prfx$=”PLOT” ! define plot file name prefix string
1250 !
1260 ! *** Initialize HP-IB device addresses ***
1270 !
1280 Prntr_addr=701 ! Printer HP-IB address
1290 Plttr_addr=705 ! Plotter HP-IB address
1300 !
1310 ! Set address of flexible disk drive containing plot files
1320 Msi$=”:,1400”
1330 !
1340 ! Define I/O paths for plot output with no formatting on data
1350 IF Outputdvc=Plttr THEN ! select output device for plotting
1360 ASSIGN @Prntpltdvc TO Plttr_addr;FORMAT OFF ! Select plotter
1370 ELSE
1380 ASSIGN @Prntpltdvc TO Prntr_slctr;FORMAT OFF ! Select printer
1390 END IF
1400 !
1410 ! *** Search disk for plot files ***
1420 !
1430 ! Define the plot file name specifier: Prefix (Prfx$), two
1440 ! sequence digits([0-9][0-9]), two output format specifier
1450 ! characters ([FLR][LPU]) and an optional character (s)
1460 Srch$=Prfx$&”[0-9][0-9][FLR][LPU]*”
1470 !
1480 ! Catalog the files that match the plot file name specifier by
1490 ! putting the names in the string array Flnm$ and the number of files
1500 ! in the integer Nbr_files. Suppress the catalog header text.
1510 CAT Srch$&Msi$ TO Flnm$(*);COUNT Nbr_files,NO HEADER,NAMES
1520 !
1530 ! If no files are found then print message and stop
1540 IF Nbr_files=0 THEN
1550 PRINT “No files found; program terminated”
1560 STOP
1570 END IF
1580 !
1590 ! *** Sort the plot file names found ***
1600 !
1610 ! Re-dimension the file name array to the actual number of files that
1620 ! were found.
1630 REDIM Flnm$(1:Nbr_files)
1640 !
1650 ! Sort the file names into alphabetical order
1660 MAT SORT Flnm$(*)
8-118

Programming Examples

Report Generation Examples
1670 !
1680 GOSUB Frm_fd ! Send a form feed to hardcopy device
1690 PRINT
1700 !
1710 ! *** Cycle through the filenames and plot the data ***
1720 !
1730 Flnm_idx=1 ! Initialize the Flnm$ array index
1740 Prfx_lngth=LEN(Prfx$) ! Find the length of the Prfx$ string
1750 !
1760 ! Process each of the files in the Flnm$ array
1770 WHILE Flnm_idx<=Nbr_files
1780 ! Define Root$ = file name prefix string plus the two sequence digits
1790 Root$=Flnm$(Flnm_idx)[1;Prfx_lngth+2]
1800 ! Find length of the Root$
1810 Root_lngth=LEN(Root$)
1820 ! If the two output specifier characters are “FP” (full page) then
1830 ! include them as part of the Root$
1840 IF Flnm$(Flnm_idx)[Root_lngth+1;2]=”FP” THEN
1850 Root$=Root$&”FP”
1860 Root_lngth=Root_lngth+2
1870 END IF
1880 !
1890 Root_mtch=True ! initialize file matches Root$ flag
1900 ! If the ouput device is a printer send HP-GL initiliazation string
1910 IF Outputdvc=Prntr THEN
1920 OUTPUT @Prntpltdvc USING “#,K”;Hpglinit$
1930 END IF
1940 !
1950 ! *** Plot files on the same page ***
1960 !
1970 ! While the root portion of the file names match Root$, output the
1980 ! plot files to the same page.
1990 WHILE Root_mtch=True
2000 ! Print the name of the plot file
2010 PRINT Flnm$(Flnm_idx),
2020 ! Output the plot file to the hardcopy device
2030 GOSUB Otpt_fl
2040 ! Increment Flnm$ array index
2050 Flnm_idx=Flnm_idx+1
2060 ! If all plot files have been output or the plot file name does not
2070 ! match Root$ then set Root_Mtch=False to end plotting of the same
2080 ! page.
2090 IF Flnm_idx>Nbr_files THEN
2100 Root_mtch=False
2110 ELSE
2120 IF Root$<>Flnm$(Flnm_idx)[1;Root_lngth] THEN Root_mtch=False
2130 END IF
2140 END WHILE ! Loop to plot to the same page
2150 !
2160 PRINT
2170 ! Output form feed to output device to eject page
2180 GOSUB Frm_fd
2190 END WHILE ! Loop to plot next page
2200 !
2210 STOP
2220 !
2230 !***************************Subroutines ******************************
2240 !
8-119

Programming Examples

Report Generation Examples
2250 Otpt_fl:! Read the file into an array(s) and then output the array(s)
2260 ! to the hardcopy device.
2270 !
2280 ! Open and read the plot file size
2290 ASSIGN @Ldisc TO Flnm$(Flnm_idx)&Msi$
2300 !
2310 ! Get number of records in file from I/O path status registers
2320 STATUS @Ldisc,3;Nmbr_rcrds
2330 !
2340 ! Get record length
2350 STATUS @Ldisc,4;Rcrd_lngth
2360 !
2370 ! Compute the number of words of data in the file
2380 Nmbr_wrds=Nmbr_rcrds*Rcrd_lngth/2
2390 !
2400 ! Determine the number of arrays necessary to hold the plot file data.
2410 ! The maximum size of an RMB array is 32767. If the number of words of
2420 ! data is greater than 32767 then multiple arrays must be used to hold
2430 ! all of the data.
2440 !
2450 ! Compute the dimensions of Plt_arry1 and Plt_arry2 that are required
2460 ! to hold the plot data.
2470 Arry1_sz=Nmbr_wrds MOD 32767
2480 Arry2_sz=INT(Nmbr_wrds/32767)
2490 !
2500 ! Re-dimension Plt_arry1 to the correct size
2510 REDIM Plt_arry1(1:Arry1_sz)
2520 !
2530 ! If the number of words of data is less than 32767 then use one array
2540 IF Arry2_sz=0 THEN
2550 ENTER @Ldisc;Plt_arry1(*) ! Read the plot data from the file
2560 ELSE
2570 ! Use 2 arrays to read data
2580 ENTER @Ldisc;Plt_arry2(*),Plt_arry1(*) ! Read the plot data from file
2590 END IF
2600 !
2610 ASSIGN @Ldisc TO * ! Close plot file
2620 !
2630 ! Output the data to the hardcopy device
2640 IF Arry2_sz=0 THEN ! Only one array <32767 words
2650 OUTPUT @Prntpltdvc;Plt_arry1(*)
2660 ELSE ! Data > 32767 so send 2 arrays
2670 OUTPUT @Prntpltdvc;Plt_arry2(*),Plt_arry1(*)
2680 END IF
2690 RETURN
2700 !
2710 !**
2720 !
2730 Frm_fd:! Send a form feed (page eject) command to the hardcopy device
2740 IF Outputdvc=Plttr THEN ! Plotter output
2750 OUTPUT @Prntpltdvc USING “#,K”;”PG;”
2760 ELSE ! For printer output. The
2770 ! printer first must exit HP-GL mode before sending form feed command
2780 OUTPUT @Prntpltdvc USING “#,K”;Hpgl_exit$&Form_feed$
2790 END IF
2800 RETURN
2810 !
2820 END
8-120

Programming Examples

Report Generation Examples
Example 7F: Reading ASCII Disk Files to the Instrument Controller's Disk
File

Another way to access the analyzer's test results is to store the data onto a disk file from the
analyzer. This operation generates an ASCII file of the analyzer data in a CITIFILE format. A
typical file generated by Example 7F is shown below:

CITIFILE A.01.00
#NA VERSION HP8703B.04.13

NAME DATA
VAR FREQ MAG 11
DATA S[1,1] RI
SEG_LIST_BEGIN
SEG 100000000 200000000 11
SEG_LIST_END
BEGIN
8.30566E-1,-1.36749E-1
8.27392E-1,-1.43676E-1
8.26080E-1,-1.52069E-1
8.25653E-1,-1.60003E-1
8.26385E-1,-1.68029E-1
8.26507E-1,-1.77154E-1
8.26263E-1,-1.87316E-1
8.26721E-1,-1.97265E-1
8.2724E-1,-2.07611E-1
8.28552E-1,-2.19940E-1
8.29620E-1,-2.31109E-1
END

This data file is stored by the analyzer under remote control or manually from the front
panel. See your analyzer’s user’s guide for more details on manual operation. This program
performs the same steps that are required to manually store a file from front panel.

This program stores a file in the same manner as an operator would store a file onto the
analyzer's internal disk drive from the front panel.

This example explains the process of storing the data from the analyzer to a file on the
internal disk drive. There is also a program to read the data from the file into a data array for
further processing or reformatting to another file type. The internal drive will store in the
same format that is present on the disk. A new disk may be formatted in either LIF or DOS.
For the example, the assumption has been made that the format transformation has already
taken place, and there is a file that can be read record by record, from which data can be
retrieved.

The goal of this example is to recover an array of stimulus frequency along with the
trace-data values. CITIFILES contain the real and imaginary values of each data point. Some
further transformation will be required to obtain magnitude values, for example.

The disk file contents for this example are shown above. This file contains more information
than will be used in this example. The file is accessed and the records read from the file and
printed on the controller display to observe the actual file contents. The file pointer is reset
and the records are then read and interpreted for their data contents.
8-121

Programming Examples

Report Generation Examples
The first six records are skipped for this example. The seventh record contains the
stimulus-frequency values and the number of points in the trace. These values are read from
the record. The frequency increment, or point spacing, is calculated and used later in the
frequency-data calculations for a point. Two more records are skipped and the next is the
first record representing data values. The data values are read in a loop until the values for
the number of points have been recovered from the file. The data values are tabulated and
printed out on the controller display.

The following is an outline of the program's processing sequence:

• An I/O path is assigned to the analyzer.

• The system is initialized.

• A string is dimensioned to hold a file record.

• The analyzer operating state is set.

• The internal drive is selected for storage (only ASCII data is stored).

• A file name is entered and the data stored into it.

• The operator is prompted to move the disk to the controller disk drive.

• The disk file is read and the contents displayed.

• The file pointer is rewound.

• The file contents are converted to trace data.

• The frequency and complex-data pair is displayed for each point.

• The analyzer is restored to continuous-sweep mode.

• The analyzer is returned to local control and the program ends.

CAUTION Do not mistake the line switch for the disk eject button. If the line switch is
mistakenly pushed, the instrument will be turned off, losing all settings and
data that have not been saved.

NOTE If the command EXTMDATOON is used, it will override all of the other save
options (such as EXTMFORMON). Because this type of data is only intended for
computer manipulation, the file contents of a EXTMDATOON (data only) save
cannot be recalled and displayed on the analyzer.

Running the Program

The analyzer is initialized and the operating range re-defined to an 11-point trace from 100
to 200 MHz. This setup gives a restricted range to be evaluated when the ASCII data file
(CITIFILE) is read in from the controller. The operator is prompted for a 5-character
filename to use for storing the data. The analyzer is setup for external storage and stores the
data file. Once the “pass control/storage/return control” operation is complete, the operator
is prompted to place the disk in the controller disk drive and press Return. The disk is then
read and the records contained in the file are printed on the controller display. A prompt
8-122

Programming Examples

Report Generation Examples
appears, Press return to continue, which allows viewing of the file contents. Once
Return, is pressed, the data records are read and decoded and a table of the stimulus
frequency and the data values are printed.

BASIC Program Listing

10 ! This program shows how to store an ASCII data file in CITIFILE format
20 ! and retrieve the data with the controller. The disk is written in the
30 ! analyzer system and then moved to the controller disk and the data
40 ! accessed.
50 !
60 ! EXAMP7F Reading ASCII Disk Files to the Instrument Controller’s Disk File
70 !
80 ASSIGN @Nwa TO 716 ! Assign an I/O path for the analyzer
90 !
100 CLEAR SCREEN
110 ABORT 7 ! Generate an IFC (Interface Clear)
120 CLEAR @Nwa ! SDC (Selected Device Clear)
130 OUTPUT @Nwa;”OPC?;PRES;” ! Preset the analyzer and wait
140 ENTER @Nwa;Reply ! Read the 1 when complete
150 !
160 DIM Record$[80] ! String to read the disk records
170 !
180 ! Set up analyzer
190 OUTPUT @Nwa;”STAR100MHZ;” ! Start frequency 100 MHz
200 OUTPUT @Nwa;”STOP 200MHZ” ! Stop frequency 200 MHz
210 OUTPUT @Nwa;”POIN11;” ! Trace length 11 points
220 OUTPUT @Nwa;”OPC?;SING;” ! Single sweep and wait
230 ENTER @Nwa;Reply ! Read in the 1 when complete
240 !
250 ! Program disk storage operation
260 !
270 OUTPUT @Nwa;”INTD;” ! Select internal disk file
280 OUTPUT @Nwa;”EXTMFORMON;” ! Store formated data
290 OUTPUT @Nwa;”EXTMDATOON;” ! Store data file only
300 INPUT “Enter data file name (5 chars)”,File_name$! Get file name
310 File_name$=UPC$(File_name$) ! File names are uppercase
320 OUTPUT @Nwa;”TITF1”””;File_name$;”””;” ! Title for save reg 1
330 OUTPUT @Nwa;”SAVUASCI;” ! Save as ASCII file
340 !
350 OUTPUT @Nwa;”STOR1;” ! Store data to disk file
360 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait until store is complete
370 ENTER @Nwa;Reply
380 !
390 ! File storage is complete
400 !
410 INPUT “Place disk in controller disk drive, then press Return”,A$
420 !
430 ! Read data file information
440 !
450 ASSIGN @File TO File_name$&”D1:,1400” ! Open an I/O path for file
460 Record_cnt=1 ! Counter to count records
470 !
480 PRINT CHR$(12); ! Formfeed to clear display
490 PRINT “Contents of data file” ! Show contents of the data file
500 Readfile: !
510 ON END @File GOTO End_file ! Test for end of file and exit
520 ENTER @File;Record$! Read ASCII record
8-123

Programming Examples

Report Generation Examples
530 PRINT Record_cnt,Record$! print record on display
540 Record_cnt=Record_cnt+1 ! Increment record counter
550 GOTO Readfile ! Read next record
560 !
570 End_file: ! ! Reached the end of file
580 PRINT “End of File. “;Record_cnt-1;” Records found”
590 INPUT “Press Return to continue”,A$
600 PRINT CHR$(12); ! Formfeed to clear display
610 !
620 ! Read file data into arrays
630 !
640 RESET @File ! Rewind file pointer to begining
650 FOR I=1 TO 6
660 ENTER @File;Record$! Skip first six records
670 NEXT I
680 ENTER @File;Record$! Read frequency data record
690 Record$=Record$[POS(Record$,” “)+1] ! skip SEG to first space + 1
700 Startf=VAL(Record$) ! Read start frequency
710 Record$=Record$[POS(Record$,” “)+1] ! Skip to next space + 1
720 Stopf=VAL(Record$) ! Read stop frequency
730 Record$=Record$[POS(Record$,” “)+1] ! Skip to next space +1
740 Num_points=VAL(Record$) ! Read the number of points
750 PRINT “ Number of points in file “;Num_points
760 PRINT ! White space
770 !
780 Freq_inc=(Stopf-Startf)/(Num_points-1) ! Compute frequency increment
790 !
800 ALLOCATE Array(Num_points,2) ! Allocate array from Num_points
810 ENTER @File;Record$! Skip SEG_LIST_END record
820 ENTER @File;Record$! Skip BEGIN record
830 !
840 ! Read in the data array
850 PRINT “Freq (MHz) Data 1 Data 2” ! Table header for data array
860 FOR I=1 TO Num_points ! Read in array entries
870 ENTER @File;Record$! Read in the record of 2 entries
880 !
890 Array(I,1)=VAL(Record$) ! Read first data value
900 Data$=Record$[POS(Record$,”,”)+1] ! Skip to comma and next value
910 Array(I,2)=VAL(Data$) ! Read second data value
920 !
930 Freq=Startf+(Freq_inc*(I-1)) ! Compute stimulus value for array
940 Freq=Freq/1.E+6 ! Convert frequency to MHz
950 !
960 PRINT Freq,Array(I,1),Array(I,2) ! Print data array values
970 NEXT I ! Read next array data points
980 !
990 OUTPUT @Nwa;”CONT;” ! Restore continuous sweep
1000 OUTPUT @Nwa;”OPC?;WAIT;” ! Wait for analyzer to finish
1010 ENTER @Nwa;Reply ! Read the 1 when complete
1020 LOCAL @Nwa ! Release HP-IB control
1030 END
8-124

Programming Examples

Limit Line and Data Point Special Functions
Limit Line and Data Point Special Functions
The analyzer has special functions in the area of limit testing and in the detection of
min/max data points within limit segments. The information in this section will teach you
how to use these limit line and data point special functions. The following topics are
included:

• Overview

• Constants Used Throughout This Document

• Output Limit Test Pass/Fail Status Per Limit Segment

• Output Pass/Fail Status for All Segments

• Output Minimum and Maximum Point Per Limit Segment

• Output Minimum and Maximum Point For All Segments

• Output Data Per Point

• Output Data Per Range of Points

• Output Limit Pass/Fail by Channel

Overview

The limit line and data point special functions are available as remote commands only. Each
command is overviewed in the following table.
8-125

Programming Examples

Limit Line and Data Point Special Functions
Table 8-10. Limit Line and Data Point Special Functions Commands

Action Mnemonic Synta
x

? Description

MIN/MAX DATA DETECTION PER LIMIT SEGMENT

Min/max
recording

MINMAX<ON|OFF> 2 1,0 Enables/disables min/max recording per
segment. Min and max values are recorded per
limit segment.

Max values OUTPAMAX 1 Outputs max values for all limit line segments.
OUTPAMAX values and OUTPAMIN values are
both output using OUTPSEGAM.

Min values OUTPAMIN 1 Outputs min values for all limit line segments.
OUTPAMIN values and OUTPAMAX values are
both output using OUTPSEGAM.

Min/max
values

OUTPSEGAM 1 Outputs limit test min/max for all segs. Outputs
the segment number, max stimulus, max value,
min stimulus, and min value for all active
segments.†

Min/max
value

OUTPSEGM 1 Outputs limit test min/max for a specified
segment. See “SEL” on page 1-69.†

Segment SELSEG<num> 3 <num> Selects segment number for the OUTPSEGF and
OUTPSEGM commands to report on. <num> can
range from 1 to 18.†

OUTPUT TRACE DATA BY SELECTED POINTS

Last point SELMAXPT<num> 3 <num> Selects the last point number in the range of
points that the OUTPDATR command will
report. <num> can range from 0 to the number of
points minus 1.

First point SELMINPT<num> 3 <num> Selects the first point number in the range of
points that the OUTPDATR command will
report. <num> can range from 0 to the number of
points minus 1.

Specify point SELPT<num> 3 <num> Selects the single point number that the
OUTPDATP command will report. <num> can
range from 0 to the number of points minus 1.

Data: point OUTPDATP 1 Outputs a single trace data value indexed by
point. (See “SELPT” on page 1-69.)

Data: range OUTPDATR 1 Outputs trace data for range of points. (See
“SELMINPT” and “SELMAXPT” on page 1-69.)

† For the definition of a limit segment, see “Example Display of Limit Lines” on page 8-127.
8-126

Programming Examples

Limit Line and Data Point Special Functions
Example Display of Limit Lines

The features that output data by limit segment are implemented based on the current
definition of a limit segment. The actual limit lines formed by the limit table almost never
have a 1-for-1 relationship with the segment numbers in the limit edit table. Out of 18
segments in the limit table, you can create 18 limit lines if (a) all limit segments are
contiguous and (b) the last segment extends to the stop frequency. Otherwise, terminating a
segment requires a single point which means that constructing a limit line requires two
entries (segments) of the limit table. Thus you have a minimum of 9 lines available and those
lines will not be referenced by sequential segment numbers.

The following figure is an example of a screen print of limit lines set up on the two
instrument channels. The limit line examples shown are of Flat Line, Slope Line and Single
Point Limits.

LIMIT TEST STATUS BY CHANNEL

Limit test:
ch1

OUTPLIM1 1 Outputs status∗ of limit test for channel 1.

Limit test:
ch2

OUTPLIM2 1 Outputs status∗ of limit test for channel 2.

LIMIT TEST STATUS BY SEGMENT

Segment SELSEG<num> 3 <num> Selects the segment number for the OUTPSEGF
and OUTPSEGM commands to report on. <num>
can range from 1 to 18.†

Limit test
status

OUTPSEGAF 1 Outputs the segment number and its limit test
status∗ for all active segments.†

Limit test
status

OUTPSEGF 1 Outputs the limit test status∗ for a specified
segment. See “SELSEG” on page 1-69.†

LIMIT TEST STATUS BY POINT

Fail report OUTPFAIP 1 This command is similar to OUTPLIMF except
that it reports the number of failures first,
followed by the stimulus and trace values for
each failed point in the test (note: use command
LIMITEST<ON> to function properly).

† For the definition of a limit segment, see “Example Display of Limit Lines” on page 8-127.

∗ Values returned for limit test status are: 1 (PASS), 0 (FAIL), −1 (NO_LIMIT)

Table 8-10. Limit Line and Data Point Special Functions Commands

Action Mnemonic Synta
x

? Description
8-127

Programming Examples

Limit Line and Data Point Special Functions
Figure 8-2. Limit Segments Versus Limit Lines

Limit Segments

The values in the table below were used to create the limit lines in the figure.

Table 8-11. Limit Segment Table for Figure 7-3

Segment Num. Stimulus
(Frequency)

Upper Limit
(dB)

Lower Limit
(dB)

Limit Type

Channel 1

1 200 MHz 2 −2 Flat Line (FL)

2* 500 MHz 2 −2 Single Point (SP)

3 1000 MHz 0.5 −0.5 Slope LIne (SL)

4* 2000 MHz 1 0 Single Point (SP)

5 3000 MHz −0.5 −1.5 Single Point (SP)

6 4000 MHz 0 −2 Flat Line (FL)

7 4800 MHz 1 −1 Flat Line (FL)

Channel 2

1 500 MHz 2.5 −2.5 Flat Line (FL)

2 1100 MHz 2 −2 Single Point (SP)

3 2500 MHz 1.5 −1.5 Flat Line (FL)

4* 4500 MHz 1.5 −1.5 Single Point (SP)

5 5000 MHz 1.5 −10 Slope Line (SL)

6 5800 MHz 0 −5 Slope Line (SL)
8-128

Programming Examples

Limit Line and Data Point Special Functions
Note that if a single point limit is used to terminate slope lines, no test limit-segment is
created. (See Figure 8-2: CH1, Seg4.) Also, if a single point limit is used to terminate a flat
line, no test limit-segment is created. (See Figure 8-2: CH1, Seg2.) However, if the single point
limit used to terminate the flat line limit has different limit values, a single-point test
limit-segment is created. (See Figure 8-2: CH2, Seg2.)

Output Results

Table 8-12 shows the output of the OUTPSEGAM test (min/max of all active segments); note
that the segments with asterisks (*) from Table 8-11 have no output in Table 8-12.

* No test limit-segment is created.

Table 8-12. Example Output: OUTPSEGAM (min/max of all segments)

Channel 1
Segment

Freq. at Minimum
Value (Hz)

Minimum Value
(dB)

Freq. at
Maximum Value
(Hz)

Maximum
Value (dB)

1 480027600 −0.1268225 330028350 0.9590923

3 1140024300 −0.09223454 1680021600 1.258809

5 3000015000 −0.2199298 3000015000 −0.2199298

6 4020009900 −2.203248 4770006150 −0.2444123

7 5820000900 −4.473375 4860005700 0.23913

Channel 2 Segment

1 780026100 −0.2838693 990025050 0.6258904

2 1110024450 0.2364199 1110024450 0.2364199

3 3960010200 −2.745585 2640016800 0.888033

5 5790001050 −4.136453 5010004950 −1.064739

6 5820000900 −4.472594 6000000000 −3.501008

Table 8-11. Limit Segment Table for Figure 7-3

Segment Num. Stimulus
(Frequency)

Upper Limit
(dB)

Lower Limit
(dB)

Limit Type
8-129

Programming Examples

Limit Line and Data Point Special Functions
Constants Used Throughout This Document

NOTE The logic values attached to pass and fail indicators were chosen to be
consistent with the current logic used in the standard OUTPLIML and OUTPLIMF
commands.

Table 8-13 is an interpretation of the Pass/Fail/No_Limit status constants. These constants
are used to identify the Pass/Fail/No_Limit state on the data strings if status is returned.

Table 8-14 is an interpretation of the min/max test constants. If the selected segment has no
associated limit, the NO_DATA string is generated, which reports a stimulus value of 0 and a
data value of −1000.

Output Limit Test Pass/Fail Status Per Limit Segment

Two commands allow you to query the pass/fail test status on a limit segment basis.

• SELSEG<num> will select the segment.

• OUTPSEGF will return the status of the limit test for that segment: 1 (PASS), 0 (FAIL) or −1
(NO_LIMIT) if no limit exists for the selected segment number. Due to the non-sequential
numbering of actual limit line segments on the screen, some segment numbers will have
no associated limits and will thus return −1 (NO_LIMIT).

Under the following conditions, OUTPSEGF will issue the following errors:

❏ If the limit testing is off: “30: Requested Data Not Currently Available.” To clear the
error message, turn the limit test on.

❏ If the limit table is empty: “204: Limit Table Empty” (this is a new message). To clear
the error message, enter a limit table.

In both cases, the error is issued and the command responds with −1 (NO_LIMIT).

The argument for SELSEG<num> is limited by the maximum number of segments allowed in
the limit table, which is currently 22. The minimum value for the argument is 1. If the user
inputs a number that is outside this range, the active entry limits are invoked, causing the
analyzer to return the status for limit 22.

Example:

Table 8-13. Pass/Fail/No_Limit Status Constants

Status Definition Status Indicator

PASS 1

FAIL 0

NO_LIMIT −1

Table 8-14. Min/Max Test Constants

String Stimulus Value Data Value

NO_DATA 0 −1000
8-130

Programming Examples

Limit Line and Data Point Special Functions
Sending SELSEG3 and OUTPSEGF may return the following:

1 (segment number 3 passed)

NOTE The output is ASCII. Currently, the formatting for integer numbers appears to
append a trailing space.

Output Pass/Fail Status for All Segments

The GPIB command OUTPSEGAF will return the number of segments being reported, followed
by pairs of data consisting of the segment number and its status. A segment is reported only
if it has an associated limit. The output is only valid if limit test is on. See “Output Limit Test
Pass/Fail Status Per Limit Segment” on page 8-130.

Example:

Sending OUTPSEGAF may return the following:

3
1, 0
3, 1
5, 0

For an explanation of these results, see Table 8-15.

NOTE A new Line Feed character <L
F> is inserted after the number of segments and

after each data pair.

Table 8-15 is an interpretation of the data returned by the command OUTPSEGAF. For
clarification, status definition is also included.

Table 8-15. Example Output: OUTPSEGAF (pass/fail for all segments)

Segments
Reported

Segment Number Status Status Definition

3

1 0 FAIL

3 1 PASS

5 0 FAIL
8-131

Programming Examples

Limit Line and Data Point Special Functions
Example Program of OUTPSEGAF Using BASIC

The following program is not included on the “Programming Examples” CD-ROM:

10 OUTPUT 716; "outpsegaf;"

20 ENTER 716; Numsegs

30 PRINT "Receiving status for"; Numsegs; "segments."

40 IF Numsegs>0 THEN

50 FOR I=1 TO Numsegs

60 ENTER 716; Segnum, Pf

70 PRINT USING "DD, 2X, 8A"; Segnum, Pf

80 NEXT I

The example program shows how the OUTPSEGAF command can be used to request the
number of active segments and their status. Notice that each segment result must use a new
enter command as a line feed terminates each segment data result.

Output Minimum and Maximum Point Per Limit Segment

The command MINMAX<ON|OFF> toggles a feature which records the minimum and maximum
data points in all active limit segments. Note that limit testing need not be turned on.

The command OUTPSEGM will report the min/max data for the segment previously selected by
SELSEG. The data is returned in a comma delimited string with the segment number,
minimum point stimulus, minimum trace value, maximum point stimulus and maximum
trace value.

Under the following conditions, OUTPSEGM will issue the following errors:

• If the min/max testing is off: “30: Requested Data Not Currently Available.” To clear the
error message, turn the min/max testing on.

• If the limit table is empty: “204: Limit Table Empty” (this is a new message). To clear the
error message, enter a new limit table.

When the above error conditions occur, there is no data to report, thus no output is
generated.

If the selected segment has no associated limit, the NO_DATA string is generated, which
reports a stimulus value of 0 and a data value of −1000.
8-132

Programming Examples

Limit Line and Data Point Special Functions
Example:

Sending SELSEG3 and OUTPSEGM may return the following:

3, 1.900000000E+09, −9.900000E−01, 2.123456789E+09, 2.123456E+00

For an explanation of these results, see Table 8-16.

Table 8-16 is an interpretation of the min/max data returned using the SELSEG and
OUTPSEGM commands.

NOTE A new Line Feed character <L
F> is inserted after the segment number and after

each data pair.

Output Minimum and Maximum Point for All Segments

Three GPIB commands allow the user to dump the min-or-max or min-and-max values for all
active segments:

• OUTPSEGAM: outputs min and max data for each active segment.

• OUTPAMIN: outputs the min data for each active segment.

• OUTPAMAX: outputs the max data for each active segment.

The OUTPSEGAM output consists of:

• The total number of segments being reported.

• The following data for each segment:

❏ segment number
❏ min stimulus
❏ min value
❏ max stimulus
❏ max value

Table 8-16. Example Output: OUTPSEGM (min/max per segment)

Segment Min Pt Stimulus
(Frequency)

Min Pt Value
(dB)

Max Pt Stimulus
(Frequency)

Max Pt
Value (dB)

3 1.9 GHz −.99 2.12 GHz 2.12
8-133

Programming Examples

Limit Line and Data Point Special Functions
Example:

Sending OUTPSEGAM may return the following:

5,

1, 1.900000000E+09, −9.900000E−01, 2.123456789E+09, 2.123456E+00

3, 2.300000000E+09, −10.00000E−01, 2.600000000E+09, 3.100000E+00

5, 3.200000000E+09, −10.00000E−01, 3.400000000E+09, 3.100000E+00

7, 4.300000000E+09, −10.00000E−01, 4.700000000E+09, 3.100000E+00

8, 5.000000000E+09, −10.00000E−01, 5.400000000E+09, 3.100000E+00

For an explanation of these results, see Table 8-17.

NOTE A new line feed character <L
F> is inserted after the segment number and after

each data pair.

Table 8-17 is an interpretation of the min/max data returned using the OUTPSEGAM
command.

Table 8-17. Example Output: OUTPSEGAM (min/max for all segments)

Segments
Reported

Segment
Number

Min Pt
Stimulus
(Frequency)

Min Pt
Value (dB)

Max Pt
Stimulus
(Frequency)

Max Pt
Value (dB)

5

1 1.9 GHz −.99 2.12 GHz 2.12

3 2.3 GHz −1.0 2.6 GHz 3.1

5 3.2 GHz −1.0 3.4 GHz 3.1

7 4.3 GHz −1.0 4.7 GHz 3.1

8 5.0 GHz −1.0 5.4 GHz 3.1
8-134

Programming Examples

Limit Line and Data Point Special Functions
Example Program of OUTPSEGAM Using BASIC

The following program is not included on the Programming Examples CD-ROM:

10 Minmax: !

20 Mm: IMAGE DD,":",2X,D.DDDE,2X,SD.DDDE,2X,D.DDDE,2X,SD.DDDE

30 PRINT "TESTING: OUTPSEGAM: min/max points for each segment"

40 OUTPUT 716;"minmaxon;"

50 OUTPUT 716;"outpsegam;"

60 ENTER 716;Numsegs

70 PRINT "receiving data for";Numsegs;"segments"

80 FOR I=1 TO Numsegs

90 ENTER 716;Segnum,Minstim,Minval,Maxstim,Maxval

100 PRINT USING Mm; Segnum, Minstim, Minval,Maxstim,
Maxval

110 NEXT I
8-135

Programming Examples

Limit Line and Data Point Special Functions
Output Data Per Point

The GPIB command OUTPDATP returns the value of the selected point using FORM4 (ASCII).
The point is selected using the SELPT command. This returns the last point if the selected
point is out of range. Otherwise, it uses the same format as that used by the marker value
command. These formats are as follows:

The commands in the following example are sent while using the format command LOGM.

Example:

Sending SELPT5 and OUTPDATP may return the following:

−3.513410E+00, 0.00915E+15 (Note that the second number is insignificant.)

Table 8-18. Example Output: OUTPDATP (data per point)

Display
Format

Marker
Mode

Marker
Readout Format

Example
Returns

Log Mag dB* −3.521 (dB) 9.7E−39*

Phase degrees* 157.8 (Deg) 5.3E−15*

Delay seconds* 0.5068x10−9 0*

Smith Chart LIN MKR lin mag, degrees

LOG MKR dB, degrees

Re/Im real, imag

R + jX real, imag ohms 10.37 Ω 9.399 Ω

G + jB real, imag Siemens

POLAR LIN MKR lin mag, degrees 0.6667 157.8 (Deg)

LOG MKR dB, degrees −3.521 (dB) 157.8 (Deg)

Re/Im real, imag −0.6173 0.2518

LIN MAG lin mag * 0.6667 0*

REAL real *

SWR SWR * 5.001 0*

* Value is insignificant, but is included in data transfers.
8-136

Programming Examples

Limit Line and Data Point Special Functions
Output Data Per Range of Points

The GPIB command OUTPDATR returns the value of the selected points using FORM4 (ASCII).
This ASCII format requires many data bytes per point for transfer. For a large number of
points, it may be faster to make trace data dumps (OUTPDATA) using a binary format. The
range of points is selected using the SELMINPT and SELMAXPT commands (select minimum
point, select maximum point of desired point range). These commands return the last max
point if the selected points are out of range. Only the SELMAXPT will be returned if the
selected minimum point is greater than the selected maximum point.

The commands in the following example are sent while using the format command LOGM.

Example:

Sending SELMINPT5, SELMAXPT7 and OUTPDATR may return the following:

3.880465E−01, 0.000039E−01

1.901648E−01, 1.363988E+11

5.57587E−01, 1.258655E+30 (Note that the second number is insignificant.)

For an explanation of these results see Table 8-19.

NOTE A new line feed character <L
F> is inserted after the segment number and after

each data pair.

Table 8-19 is an interpretation of the min/max data per range of points returned using the
SELMINPT5, SELMAXPT7 and OUTPDATR commands.

Output Limit Pass/Fail by Channel

The GPIB commands OUTPLIM1 and OUTPLIM2 output the status of the limit test for channel
1 and channel 2, respectively.

These commands return the values 1 (PASS), 0 (FAIL), or −1 (NO_LIMIT) if limit testing is
disabled. Currently, the results of limit testing can be retrieved by reading a bit in the status
register.

Example:

Sending OUTPLIM1 or OUTPLIM2 (channel 1 or channel 2) may return the following:

1 (PASS), 0 (FAIL), or if limit test not enabled then −1 (NO_LIMIT).

Table 8-19. Example Output: OUTPDATPR (data per range of points)

Point Value Value*

5 0.3880465 0.000039E−01

6 0.1901648 1.363988E+11

7 0.557587 1.258655E+30

* These values are insignificant.
8-137

Programming Examples

Limit Line and Data Point Special Functions
8-138

9

Preset State 9-3
Power-On Conditions (versus Preset) 9-11
Memory Allocation 9-13
Preset State and Memory Allocation

Preset State and Memory Allocation

Preset State and Memory Allocation
Preset State and Memory Allocation
This chapter contains information about instrument settings that occur when

• the Preset key is pressed

• a preset command is sent over GPIB

• an instrument power-cycle occurs

You can also find information in this chapter on saving instrument states to internal memory
locations, or to internal or external disks.
9-2

Preset State and Memory Allocation

Preset State
Preset State
When the Preset key is pressed, the analyzer reverts to a known state called the factory
preset state. This state is defined in Table 9-1 on page 9-3. There are subtle differences
between the preset state and the power-up state. These differences are documented in
Table 9-3 on page 9-11. If power to non-volatile memory is lost, the analyzer will have certain
parameters set to default settings. The affected parameters are shown in Table 9-4 on
page 9-11.

When line power is cycled, the analyzer performs a self-test routine. Upon successful
completion of that routine, the instrument state is set to the conditions shown in Table 9-1.
The same conditions are true following a “PRES;” or “RST;” command over GPIB, although
the self-test routines are not executed.

You also can create an instrument state and define it as your user preset state:

1. Set the instrument state to your desired preset conditions.

2. Save the state (save/recall menu).

3. Rename that register to “UPRESET”.

4. Press Preset, PRESET:USER.

The Preset, key is now toggled to the USER, selection and your defined instrument state will
be recalled each time you press Preset, and when you turn power on. You can toggle back to
the factory preset instrument state by pressing Preset, and selecting FACTORY.

NOTE When you send a preset over GPIB, you will always get the factory preset. You
can, however, activate the user-defined preset over GPIB by recalling the
register in which it is stored.

Table 9-1. Preset Conditions

Preset Conditions Preset Value

Analyzer Mode

Analyzer Mode analyzer Mode

Drive Port lw

Offset Value 0

Stimulus Conditions

Sweep Type Linear Frequency

Step Sweep On

Display Mode Start/Stop
9-3

Preset State and Memory Allocation

Preset State
Trigger Type Continuous

External Trigger Off

Sweep Time 459 ms, Auto Mode (depends on model)

Start Frequency 50 MHz

Stop Frequency 20.05 GHz

Frequency Span Stop Frequency--Start Frequency

Start Time 0

Time Span 100 ms

CW Frequency 1000 MHz

Source Power Setting 0 dBm

Start Power −15.0 dBm

Power Span 20 dB

Coupled Channel Power On

Source Power On/Off On

Coupled Channels On

Coupled Port Power On

Power Range Auto; Range 0

Laser Internal

Number of Points 201

List Freq Sweep Mode Stepped

Frequency List

Frequency List Empty

Edit Mode Start/Stop, Number of Points

Response Conditions

Parameter Channel 1: Trans: O/O

Channel 2: Trans: O/O

Channel 3: Trans: E/O

Channel 4: Trans: O/E (Port 1)

Table 9-1. Preset Conditions (Continued)

Preset Conditions Preset Value
9-4

Preset State and Memory Allocation

Preset State
Conversion Off

Format Log Magnitude (all inputs)

Display Data

Color Selections Same as before Preset

Dual Channel Off

Active Channel Channel 1

Auxiliary Channel Off

Frequency Blank Disabled

Retrace Power Standard

Test Set Switch Hold

Split Display 2X

Intensity If set to <15%, Preset increases intensity to
15%. Otherwise, Preset has no effect.

Beeper: Done On

Beeper: Warning Off

D2/D1 to D2 Off

Title Channel 1 = Empty

Channel 2 = Empty

IF Bandwidth 3000 Hz

IF Averagine On/Off Off

IF Averaging Factor 16

Smoothing Aperture On/Off Off

Smoothing Aperture Setting 1% SPAN

Phase Offset 0 Degrees

Electrical Delay 0 ns

Scale/Division 10 dB/Division

Calibration

Correction Off

Calibration Type None

Calibration Kit 3.5-mm

Table 9-1. Preset Conditions (Continued)

Preset Conditions Preset Value
9-5

Preset State and Memory Allocation

Preset State
Enhanced Reflection Calibration Off

System Z0 50 Ohms

Velocity Factor 1

Extensions Off

Port 1 0 s

Port 2 0 s

Input A 0 s

Input B 0 s

Optical Output 0 s

Chop A and B On

Power Meter Calibration Off

Number of Readings 1

Power Loss Correction Off

Sensor A/B A

Interpolated Error Correction On

Index of Refraction 1

Wavelength 1550 nm

Magnitude Offset dB

Markers (coupled)

Markers On/Off All Markers Off

Marker Setting (all Markers) 1 GHz

Last Active Marker 1

Reference Marker None

Marker Mode Continuous

Display Markers On

Delta Marker Mode Off

Coupling On

Marker Search Off

Marker Target Value −3 dB

Marker Width On/Off Off

Table 9-1. Preset Conditions (Continued)

Preset Conditions Preset Value
9-6

Preset State and Memory Allocation

Preset State
Marker Width Value −3 dB

Marker Tracking Off

Marker Stimulus Offset 0 Hz

Marker Value Offset 0 dB

Marker Aux Offset (Phase) 0 Degrees

Marker Statistics Off

Polar Marker Lin Mkr

Smith Marker R+jX Mkr

Limit Menu

Limit Lines

 Limit Lines Off

 Limit Testing Off

Limit List Empty

 Edit Mode Upper Limits, Lower Limits

Stimulus Offset 0 Hz

 Amplitude Offset 0 dB

Limit Type Sloping Line

 Beep Fail Off

Ripple Limit

Ripple Limit Off

Ripple Test Off

Bandwidth Limit

Bandwidth Test Off

Bandwidth Display Off

Bandwidth Marker Off

System Parameters

GPIB Addresses Last Active State

GPIB Mode Last Active State

Clock Time Stamp On

Table 9-1. Preset Conditions (Continued)

Preset Conditions Preset Value
9-7

Preset State and Memory Allocation

Preset State
Preset: Factory/User Last Selected State

Copy Configuration

Parallel Port Last Active State

Plotter Type Last Active State

Plotter Port Last Active State

Plotter Baud Rate Last Active State

Plotter Handshake Last Active State

GPIB Address Last Active State

Printer Type Last Active State

Printer Port Last Active State

Printer Baud Rate Last Active State

Printer Handshake Last Active State

Printer GPIB Address Last Active State

Disk Save Configuration (Define Store)

Data Array Off

Raw Data Array Off

Formatted Data Array Off

Graphics Off

Data Only Off

Directory Size Defaulta

Save Using Binary

Select Disk Internal Memory

Disk Format DOS

Sequencingb Preset switches off sequencing modify (edit)
mode and stops any running sequence.

Loop Counter 0

TTL OUT High

Service Modes

Table 9-1. Preset Conditions (Continued)

Preset Conditions Preset Value
9-8

Preset State and Memory Allocation

Preset State
GPIB Diagnostic Off

Source Phase Lock Loop On

Aux Input Resolution Low

Analog Bus Node 11 (Aux Input)

Laser ON

Bias Mode ON (AUTO)

B SAMPLER LW

Receiv Out OPT

Coupled SW ON

Plot

Plot Data On

Plot Memory On

Plot Graticule On

Plot Text On

Plot Marker On

Autofeed On

Plot Quadrant Full Page

Scale Plot Full

Plot Speed Fast

Pen Number:

 Ch1/Ch3 Data 2

Ch2/Ch4 Data 3

Ch1/Ch3 Memory 5

Ch2/Ch4 Memory 6

Ch1/Ch3 Graticule 1

Ch2/Ch4 Graticule 1

Ch1/Ch3 Text 7

Ch2/Ch4 Text 7

Ch1/Ch3 Marker 7

Ch2/Ch4 Marker 7

Table 9-1. Preset Conditions (Continued)

Preset Conditions Preset Value
9-9

Preset State and Memory Allocation

Preset State
Line Type:

Ch1/Ch3 Data 7

Ch2/Ch4 Data 7

Ch1/Ch3 Memory 7

Ch2/Ch4 Memory 7

Print

Printer Mode Last Active State

Auto-Feed On

Printer Colors

Ch1/Ch3 Data Magenta

Ch1/Ch3 Mem Green

Ch2/Ch4 Data Blue

Ch2/Ch4 Mem Red

Graticule Cyan

Warning Black

Text Black

Reference Line Black

a. The directory size is calculated as 0.013% of the floppy disk size
(which is ≈256) or 0.005% of the hard disk size.

b. Pressing preset turns off sequencing modify (edit) mode and stops any running
sequence.

Table 9-2. Preset Conditions

Format Table Scale Reference

Position Value

Log Magnitude (dB) 10.0 5.0 0.0

Phase (degree) 90.0 5.0 0.0

Group Delay (ns) 10.0 5.0 0.0

Smith Chart 1.00 NA 1.0

Polar 1.00 NA 1.0

Table 9-1. Preset Conditions (Continued)

Preset Conditions Preset Value
9-10

Preset State and Memory Allocation

Preset State
Linear Magnitude 0.1 0.0 0.0

Real 0.2 5.0 0.0

Imaginary 0.2 5.0 0.0

SWR 1.00 0.0 1.0

Table 9-3. Power-On Conditions (versus Preset)

GPIB MODE Talker/listener.

SAVE REGISTERS Power meter calibration data and calibration data not
associated with an instrument state are cleared.

COLOR DISPLAY Default color values.

SEQUENCES Sequence 1 through 5 are erased.

DISK DIRECTORY Cleared.

Table 9-4. Results of Power Loss to Non-Volatile Memory

GPIB ADDRESSES are set to the following defaults:

ANALYZER 16

USER DISPLAY 17

PLOTTER 5

PRINTER 1

POWER METER 13

DISK 0

DISK UNIT NUMBER 0

DISK VOLUME NUMBER 0

POWER METER TYPE is set to 438A/437

INTERNAL REGISTER TITLESa are set to defaults: REG1 through REG32

EXTERNAL REGISTER TITLESa (store files) are set to defaults: FILE1 through FILE 5

PRINT TYPE is set to default: MONOCHROME

PRINTING/PLOTTING SETUPS are set to the following defaults:

PARALLEL PORT COPY

Table 9-2. Preset Conditions

Format Table Scale Reference

Position Value
9-11

Preset State and Memory Allocation

Preset State
PLOTTER TYPE PLOTTER

PLOTTER PORT GPIB

PLOTTER BAUD RATE 9600

PLOTTER HANDSHAKE Xon-Xoff

PRINTER TYPE DESKJET

PRINTER PORT PARALLEL

PRINTER BAUD RATE 19200

PRINTER HANDSHAKE Xon-Xoff

a. Only applies to GPIB operation.

Table 9-4. Results of Power Loss to Non-Volatile Memory
9-12

Preset State and Memory Allocation

Memory Allocation
Memory Allocation
The analyzer is capable of saving complete instrument states for later retrieval. It can store
these instrument states into the internal memory, to the internal disk, or to an external disk.
This section contains information on the following subjects:

• “Types of Memory and Data Storage” (below)

• “Determining Memory Requirements” on page 9-14

• “Storing Data to Disk” on page 9-18

• “Conserving Memory” on page 9-20

• “Using Saved Calibration Sets” on page 9-20

Types of Memory and Data Storage

The analyzer utilizes two types of internal memory and can also utilize the internal disk
drive or be connected to an external disk drive:

Volatile Memory

This is dynamic read/write memory, of approximately 4 Mbytes, that contains all of the
parameters that make up the current instrument state. An instrument state consists of all
the stimulus and response parameters that set up the analyzer to make a specific
measurement.

Some data that you may think is part of the instrument state (such as calibration data and
memory traces) are actually stored in non-volatile memory. See “Non-Volatile Memory” to
read more about the differences.

Volatile memory is cleared upon a power cycle of the instrument and, except as noted, upon
instrument preset.

Non-Volatile Memory

This is CMOS read/write memory that is protected by a battery to provide storage of data
when line power to the instrument is turned off. With this battery protection, data can be
retained in memory for ≈ 250 days at 70 °C and for ≈ 10 years at 25 °C (characteristically).

Non-volatile memory consists of a block of user-allocated memory and a block of fixed
memory.

The user-allocated memory is available for you to save the following data:

• instrument states
• measurement calibration data
• power meter calibration data
• user calibration kit definitions
• memory traces
• user preset
9-13

Preset State and Memory Allocation

Memory Allocation
NOTE Even though calibration data is stored in non-volatile memory, if the associated
instrument state is not saved, you will not be able to retrieve the calibration
data after a power cycle.

The fixed memory is used to store the following data (you cannot change where this data is
stored and it does not affect your memory availability for storing user-allocated data):

• GPIB addresses

• copy configuration (printer and plotter type, port, baud rate, handshake)

• power meter type (436/437/438)

• display colors

• sequence titles

• sixth sequence

• power sensor calibration factors and loss tables

• user-defined calibration kits

• system Z0

• factory preset

• GPIB configuration

• display intensity default

The maximum number of instrument states, calibrations, and memory traces that can reside
in non-volatile memory at any one time is limited to 31 instrument states, 128 calibrations (4
per instrument state, including the present instrument state), and 64 memory traces (4 per
instrument state, including the present instrument state).

In addition, the number of instrument states and associated calibrations and memory traces
are limited by the available memory. To display the amount of unused memory on the
analyzer, press Save/Recall. (Be sure you have selected INTERNAL MEMORY, as your disk
type.) In the upper right-hand portion of the display, the value displayed as Bytes free: is
the unused non-volatile memory. When you save to the internal memory, you will see the
number of bytes free decrease. When you delete files, the number of bytes free increases.
There is a maximum of 2 MBytes available.

If you have deleted registers since the last time the instrument was preset, the bytes available
for you to use may be less than the actual “bytes free” that is displayed. Deleting registers to
increase the available memory will work in cases where the registers being deleted and the
registers needing to be added are of the same standard size (such as instrument states not
having calibrations associated with them). In certain other cases, however, you may have to
press Preset, after deleting registers so that the “bytes free” value equals the available
memory value. During a preset, the analyzer runs a memory packer that de-fragments the
free memory into one contiguous block.

Determining Memory Requirements

Table 9-5 shows the memory requirements of calibration arrays and memory trace arrays to
9-14

Preset State and Memory Allocation

Memory Allocation
help you approximate memory requirements. For example, add the following memory
requirements:

• a full 2-port calibration with 801 points (58 k)

• the memory trace array (4.9 k)

• the instrument state (6 k)

The total memory requirement is 68.9 kbytes. There is sufficient memory to store
29 calibrations of this type. However, the same calibration performed with 1601 points and
2 channels uncoupled would require 255 k bytes:

• a full 2-port calibration with 1601 points, two channels, uncoupled (230 k)

• the memory trace array (19 k)

• the instrument state (6 k)

Only 2 of these calibrations could reside in memory before the available memory would be
depleted.
9-15

Preset State and Memory Allocation

Memory Allocation
Table 9-5. Memory Requirements of Calibration and Memory Trace Arrays

Calibration Arrays Data Length (Bytes)a Approximate Totals (Bytes)

401
pts

801
pts

1601 pts

1 chan 1 chan 2
chans

Reflection O and
Transmission O/O

 Response

 Response and isol.
N × 6 + 52

N × 6 × 2 + 52

N × 6 × 3 + 52

2.5 k

5 k

7 k

5 k

10 k

14 k

10 k

19 k

29 k

19 k

38 k

58 k

Transmission E/O

Response

Response and isol.

Response and match

N × 6 × 3+ 52

N × 6 × 4 + 52

N × 6 × 7 + 52

7 k

9.7 k

17 k

14 k

19.3 k

33.7 k

29 k

38.5 k

67.3 k

58 k

77 k

134.5k

Transmission E/O

Response

Response and isol.

Response and match

N × 6 × 2 + 52

N × 6 × 3+ 52

N × 6 × 10+ 52

5 k

7 k

24.1 k

10 k

14 k

48.1 k

19 k

29 k

96.1 k

38 k

58 k

192.2k

Reflection and
Transmission E/E

Response

Response and isol.

 1-Port

 2-Port

 Interpolated cal

N × 6 + 52

N × 6 × 2 + 52

N × 6 × 3 + 52

N × 6 × 12 + 52

Same as above in addition to
regular cal

2.5 k

5 k

7 k

29 k

5 k

10 k

14 k

58 k

10 k

19 k

29 k

115 k

19 k

38 k

58 k

230 k

Power Meter Calb (Nc × 2 × number channelsd) +208 1 k 1.8 k 3.4 k 6.6 k

Measurement Data

 Memory trace arrayb N × 6 + 52 2.5 k 4.9 k 9.7 k 19 k

Instrument Statee 6 k 6 k 6 k 6 k

a. N = number of points
9-16

Preset State and Memory Allocation

Memory Allocation
The analyzer attempts to allocate memory at the start of a calibration. If insufficient memory
is available, an error message is displayed. It is possible that the CMOS memory might be
fragmented due to the sequence of saving and deleting states of various sizes. So another
alternative would be to store the current state to disk and then press Preset. The analyzer
runs a memory packer which might regain some previously inaccessible memory. If memory
is still inadequate, delete an instrument state and restart the calibration.

b. This variable is allocated once per active channel.
c. The number of points that was set at the time the cal was turned on.
d. If the channels are coupled, this number is always 1. If the channels are uncoupled, this

number refers to the number of channels that have power meter cal on.
e. This value may change with different firmware revisions.
9-17

Preset State and Memory Allocation

Memory Allocation
Storing Data to Disk

You can use the internal disk drive or connect an external disk drive for storage of
instrument states, calibration data, measurement data, and plot files. (Refer to “What You
Can Save to a Floppy Disk” on page 6-4 in the user’s guide for more information on saving
measurement data and plot files.)

The analyzer displays one file name per stored instrument state when you list the disk
directory. In reality, several files are actually stored to the disk when you store the
instrument state. Thus, when the disk directory is accessed from a remote system controller,
the directory will show several files associated with a particular saved state. The maximum
number of files that you can store on a disk depends on the directory size. You can define the
directory size when you format a disk. For the default directory size for floppy disks and
hard disks, refer to Table 9-1.

The maximum number of instrument states and calibrations that can reside on a disk is
limited by the available disk space. To see the available disk space displayed on the analyzer,
press Save/Recall. (Be sure you have selected either INTERNAL DISK, or EXTERNAL DISK,
depending on your disk type.) In the upper right-hand portion of the display, the value
displayed as Bytes free: is the available disk space. If your disk is formatted in LIF, this
value is the largest contiguous block of disk space. Since the analyzer is reporting the largest
contiguous block of disk space, you may or may not see the bytes free number change when
you delete files. If your disk is formatted in DOS, the number reported as bytes free is the
total available disk space. That number is updated whenever you save to or delete files from
the disk.

A disk file created by the analyzer appends a suffix to the file name. (This is on the analyzer's
directory and is not visible.) The suffix consists of one or two characters: the first character
is the file type and the second is a data index. (Each suffix character is defined in Table 9-6.)
9-18

Preset State and Memory Allocation

Memory Allocation
Table 9-6. Suffix Character Definitions

Char 1 Definition Char 2 Definition

I, P Instrument statea

W Four-channel instrument state

G Graphics 1

0

Display graphics

Graphics index

D Error corrected data 1

2

3

4

Channel 1

Channel 2

Channel 3

Channel 4

R Raw data 1 to 4

5 to 8

Channel 1/3, raw arrays 1 to 4b

Channel 2/4, raw arrays 5 to 8

F Formatted data 1

2

3

4

Channel 1

Channel 2

Channel 3

Channel 4

C Cal K Cal kit

1 Cal data, channel 1 0

1 to 9

A

B

C

Stimulus state

Coefficients 1 to 9

Coefficient 10

Coefficient 11

Coefficient 12

2 Cal data, channel 2 0 to C same as channel 1

M Memory trace data 1

2

3

4

Channel 1

Channel 2

Channel 3

Channel 4

S Error corrected data (S2P)c 1

2

Channel 1

Channel 2

a. These are two-channel instrument states readable by previous firmware versions.
b. Files R1 through R8 will be saved if a full two-port calibration is active. Otherwise, only R1 is

saved for Channel 1, R5 for Channel 3, R2 for Channel 2, and R6 for Channel 4.
c. These files are written only when a 2-port error correction (full 2-port or TRL) has been

applied.
9-19

Preset State and Memory Allocation

Memory Allocation
If correction is on at the time of an external store, the calibration set is stored to disk. (Note
that inactive calibrations are not stored to disk.) When an instrument state is loaded into the
analyzer from disk, the stimulus and response parameters are restored first. If correction is
on for the loaded state, the analyzer will load a calibration set from disk that carries the
same title as the one stored for the instrument state.

Conserving Memory

If you are concerned about conserving memory, either internal memory or external disk
space, some of the most memory-intensive operations include:

• two-port error correction

• interpolated error correction

• 1601 measurement points

• saving data arrays and graphics with the instrument state

Using Saved Calibration Sets

When you are saving to internal memory (CMOS, non-volatile memory), calibration sets are
linked to the instrument state and measurement parameter for which the calibration was
done. Therefore a saved calibration can be used for multiple instrument states as long as the
measurement parameter, frequency range, and number of points are the same. A full 2-port
calibration is valid for any measurement with the same frequency range and number of
points. When an instrument state is deleted from memory, the associated calibration set is
also deleted if it is unused by any other state.

The following hints will help you avoid potential problems:

• If a measurement is saved with calibration and interpolated calibration on, it will be
restored with interpolated calibration on.

• A calibration stored from one instrument and recalled by a different one will be invalid.
To ensure maximum accuracy, always recalibrate in these circumstances.

• No record is kept in memory of the temperature when a calibration set was stored.
Instrument characteristics change as a function of temperature, and a calibration stored
at one temperature may be inaccurate if recalled and used at a different temperature.
Refer to Chapter 1, “Specifications and Regulatory Information” in the Reference.
9-20

Index
Symbols
*CLS, 4-17
*ESE, 4-17
*ESE?, 4-17
*ESR?, 4-17
*IDN?, 4-17
*LRN?, 4-17
*OPC, 4-17
*OPC?, 4-17
*OPT?, 4-17
*PCB, 4-17
*PSC, 4-17
*RST, 4-17
*SRE, 4-17
*SRE?, 4-17
*STB?, 4-17, 4-18
*TRG, 4-18
*TST?, 4-18
*WAI, 4-18
? command, 5-3

A
A, 1-46
A/R, 1-16
AB, 1-15
abort message (IFC), 4-15
abort sequence, 3-16
absolute value, ripple test, 1-65
active segment

IFBW, 1-68
power, 1-68

adapter removal
calibration, 8-35

add segment, 1-65
ADDR, 1-15
ADDRCONT, 1-15
ADDRDISC, 1-15
address

capability, 4-11
controller, 1-15
disk drive, 1-15
LO Source, 1-15
pass-control-back, 4-17
peripheral, 1-15
plotter, 1-15
power meter, 1-15
printer, 1-15

addresses
GPIB, 4-15

ADDRLSRC, 1-15
ADDRPERI, 1-15
ADDRPLOT, 1-15
ADDRPOWM, 1-15
ADDRPRIN, 1-15
adjust

brightness, 1-21
tint, 1-76

AF, 4-22
AH1 (full-acceptor handshake), 4-12
all markers off, 1-43
all segs sweep, 1-16
allocation, memory, 9-13
ALTAB, 1-15
alternate inputs, 1-15
amplitude

demodulation, 1-28
offset, 1-40

analyzer array-data formats, 5-7
analyzer bus mode, 4-14
analyzer command syntax, 4-3
analyzer control of peripherals, 4-13
analyzer data reading, 5-1
analyzer features helpful in developing

programs, 8-8
analyzer identification, 5-3
analyzer operating modes, 3-4, 3-11

pass-control mode, 3-4, 3-11, 8-107
system-control mode, 3-4, 3-11
talker/listener, 3-4, 3-11

analyzer operation, 4-7
analyzer single bus concept, 4-13
analyzer status reporting structure, 7-3
analyzer-debug mode, 8-8
aperture, smoothing, 1-71
appendage in syntax, 4-5
AR, 1-16
array

data, 1-33
format, 1-33

array-data formats, 5-7, 8-66
FORM 1, 8-66
FORM 2, 8-66
FORM 3, 8-66
FORM 4, 8-64, 8-66
FORM 5, 8-66

arrays
calibration, 1-36
error coefficient, 1-38, 1-55, 4-20,

4-21
arrays of data, 6-2
arrays related to frequency, 5-9
arrow down key, 1-30
arrow up key, 1-77
ASCII

save format, 1-67
ASCII disk files, 8-121

reading, 8-121
ascii, print, 1-77, 1-78
ASEG, 1-16
ATN (attention) control line, 4-10
attention (ATN) control line, 4-10
attenuator offsets, 8-46
AUTO, 1-16
auto scale, 1-16

aux channel display, 1-16
AUXC, 1-16
averaging, 1-17

restart, 1-17
averaging factor, 1-17
AVERFACT, 1-17
AVERO, 1-17
AVERREST, 1-17

B
B, 1-46
B/R, 1-18
BACI, 1-17
background intensity, 1-17
bandwidth search, marker, 1-78
bandwidth test

display of measurement status, 1-20
display of measurement value, 1-19
maximum width, 1-19
minimum width, 1-19
on/off control, 1-20
returning measured value, 1-20
setting dB point amplitude, 1-18

bandwidth, IF, 1-35
basic talker (T6), 4-12
BASIC, Visual, 3-3
BEEP, 1-18
BEEPDONE, 1-18
beeper on done, 1-18
beeper on warning, 1-18
beeper, limit test failure, 1-18
BEEPFAIL, 1-18
BEEPWARN, 1-18
bi-directional lines, 4-10
binary

save format, 1-67
blank frequency, 1-34
BR, 1-18
brightness adjust, 1-21
bus device modes, 4-13
bus structure, 4-8, 4-9
BWLIMDB, 1-18
BWLIMDISP, 1-19
BWLIMMAX, 1-19
BWLIMMIN, 1-19
BWLIMSTAT, 1-20
BWLIMTEST, 1-20
BWLIMVAL, 1-20

C
C++, Visual, 3-3
C1,C2,C3 (system controller

capabilities), 4-12
C10 (pass control capabilities), 4-12
CALI, 1-19, 1-20
calibrating the test setup, 8-3
calibration
Index-1

Index
adapter removal, 8-35
arrays, 1-50, 1-79
enhanced reflection, 1-19, 1-20
enhanced response, 1-19, 1-20, 1-66
external, 8-46
isolation, 1-39
isolation, omitting, 1-49
kit modification, 1-21, 1-22, 1-70
LRM, 1-19, 1-20, 1-66
one-port, 1-19, 1-20, 1-66
reflection, 1-62
reflection standard classes, 1-22
response, 1-63
response and isolation, 1-19, 1-20,

1-60
resume sequence, 1-62
simulated, 8-43
standards, 1-73
transmission, 1-76
TRL, 1-19, 1-20, 1-66
two-port, 1-19, 1-20, 1-35, 1-62,

1-63, 1-66, 1-76
using raw data, 8-43

calibration arrays, 1-36, 4-20
calibration coefficients, 1-36, 4-20,

6-2, 6-4
calibration command sequence, 4-19
calibration data

inputting, 8-86
outputting, 8-86
reading, 8-85

calibration kit string and learn string,
6-5

calibration kits, 8-27
calibration sequence, begin, 1-19, 1-20
calibration/classes relationship, 4-19
CALIERC, 1-19, 1-20
CALIEREFL, 1-19, 1-20
CALIFUL2, 1-19, 1-20
CALIRAI, 1-19, 1-20
CALIRESP, 1-19, 1-20
CALIS111, 1-19, 1-20
CALIS221, 1-19, 1-20
CALITRL2, 1-19, 1-20
CBRI, 1-21
CD-ROM, part number, 8-2
CENT, 1-21
center frequency, 1-21
chain for data processing, 6-1
chan power

coupling, 1-25
CHAN1, 1-22
CHAN2, 1-22
CHAN3, 1-22
CHAN4, 1-22
channel, 1-22
channels

coupled, 1-25
characters that are valid, 4-4
citifile

save format, 1-67
CLAD, 1-21, 1-22
class done, 1-21, 1-22
class, done, 1-30

CLASS11A, 1-22
CLASS11B, 1-22
CLASS11C, 1-22
CLASS22A, 1-22
CLASS22B, 1-22
CLASS22C, 1-22
CLEA, 1-23
CLEAL, 1-23
clear device, 4-15
clear limit line list, 1-23
clear list, 1-23
clear register, 1-23
clear registers, 1-23
clear sequence, 3-16
CLEARALL, 1-23
CLEAREG, 1-23
clearing any messages waiting to be

output, 3-16
clearing syntax errors, 3-16
clearing the input-command buffer,

3-16
CLEL, 1-23
CLER, 1-23
CLES, 1-23
clock, 1-61
close segment, 1-67
CLS, 1-23
code naming conventions, 4-3
code syntax structure, 4-5
colors, default, 1-27
command formats, 4-5
command query, 5-3
command structure, 3-12
command structure elements, 3-12

appendage, 3-12
BASIC command statement, 3-12
data, 3-12
terminators, 3-12
unit, 3-12

command syntax, 4-3
command syntax structure, 4-5
commands

IEEE 488.2, 4-17
overlapped, 4-17, 4-18

comma-separated values, saving, 1-66
complete operation, 4-7
complete service request capabilities

(SR1), 4-12
computer controllers, 4-9
connecting the device under test, 8-4
conserving memory, 9-20
constants, 8-130
CONT, 1-24
continuous sweep mode, 1-24, 1-34
control lines, 4-10
control, pass, 1-77
controlled sweep, 8-8
controller

address, 1-15
controller interface function, 4-9
CONV1DS, 1-25
conventions for code naming, 4-3
conversion

S-parameter, 1-25

CONVOFF, 1-25
CONVYREF, 1-25
CONVYTRA, 1-25
CONVZREF, 1-25
CONVZTRA, 1-25
copy display, 1-56
CORI, 1-25
CORR, 1-25
correction, 1-25

interpolative, 1-25
COUC, 1-25
COUP, 1-25
coupled channels, 1-25
coupling

port power, 1-58
power, 1-25

CS, 4-22
CSV files, saving, 1-66
CW freq, 1-26
CW time, 1-26
CWFREQ, 1-26
CWTIME, 1-26

D
SELSEG, 8-125
D2XUPCH2, 1-26
D2XUPCH3, 1-26
D4XUPCH2, 1-27
D4XUPCH3, 1-27
data

include with disk files, 1-33
data array, 1-33
data arrays, 6-2
data bus, 4-10
data for markers, 5-5
data formats and transfers, 8-63
data levels, 6-4
data only

include with disk files, 1-33
data rate, 4-11
data reading, 5-1
data storage, 9-13
data taking, 8-4
data to memory, 1-27
data transfer, 4-10, 8-4, 8-63

to a plotter, 8-112
using floating-point numbers, 8-68
using FORM 1, 8-72
using FORM 4, 8-66
using frequency-array information,

8-70
using markers, 8-64

Data Transfer Commands
Fast, 6-4

data transfer for traces, 5-8
data units, 4-4
data, storing to disk, 9-18
data/memory, 1-29
data-array formats, 5-7
data-memory, 1-29, 1-48
data-processing chain, 6-1
data-transfer character definitions, 5-4
date, 1-61, 1-70
DATI, 1-27
Index-2

Index
DC1 (complete device clear), 4-12
DEBU, 1-27
debug, 1-27
debug mode, 3-13, 8-8
default colors, 1-27
DEFC, 1-27
define standard, 1-27
definitions of status bit, 7-3
DEFS, 1-27
DELA, 1-28
delay, 1-28

electrical, 1-31
set to mkr, 1-43

delete frequency band list, 1-23
delete segment, 1-67
DELO, 1-28
delta limits, 1-39
delta reference, 1-28
DEMOAMPL, 1-28
demodulation, 1-28
DEMOOFF, 1-28
DEMOPHAS, 1-28
determining memory requirements,

9-14
developing program features, 8-8
device

reset, 4-17
device clear, 4-15
device clear (DC1), 4-12
device connection, 8-4
device trigger, 4-16
device types for GPIB, 4-8
DF, 4-22
diagnostics, GPIB, 1-27
disabling the front panel, 4-16
DISCUNIT, 1-29
DISCVOLU, 1-29
disk

format, 1-36
internal, 1-38
load file, 1-42

disk drive
address, 1-15

disk drive unit, 1-29
disk drive volume, 1-29
disk file names, 4-25
DISM, 1-29
disp mkrs, 1-29
DISPDATA, 1-29
DISPDATM, 1-29
DISPDDM, 1-29
DISPDMM, 1-29
display

bandwidth test measurement status,
1-20

bandwidth test measurement value,
1-19

four channel, 1-27
restore, 1-63
ripple test measured value, 1-65
two channel, 1-26

display A/B, 1-15
display A/R, 1-16
display B/R, 1-18

display data, 1-29
display data mem, 1-29
display data to mem, 1-27
display data/mem, 1-29
display format units, 5-6
display graphics, 4-22
display intensity, 1-39
display memory, 1-29
DISPMEMO, 1-29
does not respond to parallel poll (PPO),

4-12
DONE, 1-30
done, 1-67

with class, 1-30
with isolation, 1-39
with reflection, 1-62
with transmission, 1-76

done editing segment, 1-67
done modify sequence, 1-30
done resp & isol cal, 1-60
done with segment edit, 1-31
DONM, 1-30
DOWN, 1-30
down arrow key, 1-30
DT1 (responds to a group execute

trigger), 4-12
DUAC, 1-31
dual channel display, 1-31

E
E2 (tri-state drivers), 4-12
edit

ripple test limit list, 1-31
edit limit table, 1-31
edit list, 1-31
edit segment, 1-68
edit segment done, 1-67
EDITDONE, 1-31
EDITLIML, 1-31
EDITLIST, 1-31
EDITRLIM, 1-31
electrical delay, 1-31
ELED, 1-31
end or identify, 4-5
end or identify (EOI) control line, 4-10
enhanced reflection calibration, 1-19,

1-20
enhanced response calibration, 1-19,

1-20, 1-66
ENTO, 1-32
entry off, 1-32
EOI, 4-5
EOI (end or identify) control line, 4-10
error coefficient arrays, 1-38, 1-55,

4-21
error coefficients, 1-36, 1-50, 1-79,

4-20, 6-4
error correction, 1-25
error messages in numerical order, 7-9
error output, 7-8
error queue, 8-75
error reporting, 7-1
error-corrected data, 6-2
ESE, 1-32

ESNB, 1-32
ESR?, 1-32
event status register, 1-32
event-status register, 1-32, 7-3, 7-7
event-status-register B, 8-103
example

operation using talker/listener mode,
8-106

plotting plot files stored on disk,
8-114

printing plot files stored on disk,
8-114

Reading ASCII Disk Files to the
Instrument Controller's Disk
File, 8-121

using the learn string, 8-84
extended listener capabilities (LEO),

4-12
extensions, port, 1-57
external calibration, 8-46
external PC, 8-46
external trigger, 1-33
EXTMDATA, 1-33
EXTMDATOON|OFF>, 1-33
EXTMFORMON|OFF>, 1-33
EXTMGRAPON|OFF>, 1-33
EXTMRAWON|OFF>, 1-33
EXTTHIGH, 1-33
EXTTLOW, 1-33
EXTTOFF, 1-33
EXTTON, 1-33
EXTTPOIN, 1-33

F
Fast Data Transfer Commands, 6-4
features helpful in developing

programming routines, 8-8
file

load, 1-42
file name, 1-76
file names

disk, 4-25
file titles, 1-76

recall, 1-62
firmware revision, 1-71
firmware revision identification, 5-3
fixed mkr, 1-43
flat line type, 1-40
form 4 data-transfer character string,

5-4
FORM1, 1-33
FORM1 format, 5-7
FORM2, 1-33
FORM2 format, 5-7
FORM3, 1-33
FORM3 format, 5-7
FORM4, 1-33
FORM4 format, 5-7
FORM5, 1-33
FORM5 format, 5-7
format display units, 5-6
format external disk, 1-36
format internal disk, 1-36
Index-3

Index
formats and transfers of trace-data,
8-63

formats for array-data, 5-7
formats for commands, 4-5
formatted data, 6-2

include with disk files, 1-33
forward calibration class, 1-35
forward isolation, 1-35
forward match, 1-35
forward transmission, 1-35
four channel display, 1-27
free run, 1-34
FREO, 1-34
frequency

center, 1-21
CW, 1-26
linear, 1-41
log, 1-43
span, 1-72
start, 1-73
stop, 1-74

frequency band
clearing list, 1-23

frequency bands
selecting for ripple test, 1-69

frequency blank, 1-34
frequency calculation equation, 8-66
frequency list, 1-41
frequency notation, 1-34
frequency-related arrays, 5-9
FRER, 1-34
full 2-port cal, 1-19, 1-20
full-acceptor handshake (AH1), 4-12
full-source handshake (SH1), 4-12
FWDI, 1-35
FWDM, 1-35
FWDT, 1-35

G
G + jB mkr, 1-70
general structure of syntax, 4-5
GPIB

address capability, 4-11
addresses, 4-15
bus structure, 4-8, 4-9
command formats, 4-5
data rate, 4-11
device types, 4-8
message transfer scheme, 4-11
meta-messages, 4-15
multiple-controller capability, 4-11
operation, 4-8
operational capabilities, 4-12
requirements, 4-11
status indicators, 4-12

GPIB diagnostics, 1-27
GPIO bit, 1-70
graphic files

saving as JPG, 1-66
graphics

character size, 4-23
default values, 4-22
display off, 4-22
display on, 4-23

draw to x,y, 4-23
erase display, 4-22, 4-23
label display, 4-22
line type, 4-22
output scaling limits, 4-23
pen down, 4-23
pen up, 4-23
plot relative, 4-23
select pen, 4-24

graphics commands, 4-22
graphics, saving, 1-33
group delay, 1-28
group execute trigger response (DT1),

4-12
guidelines for code naming, 4-3

H
halting all modes and functions, 4-15
handshake lines, 4-10
held commands, 4-7
helpful features for developing

programs, 8-8
HOLD, 1-35
HP-GL

character size, 4-23
commands accepted but ignored,

4-24
default values, 4-22
display off, 4-22
display on, 4-23
draw to x,y, 4-23
erase display, 4-22, 4-23
label display, 4-22
line type, 4-22
output scaling limits, 4-23
pen down, 4-23
pen up, 4-23
plot relative, 4-23
select pen, 4-24

HP-GL subset, 4-22

I
identification

of analyzer, 5-3
of firmware revision, 5-3

identification string, 1-35
identifying the analyzer, 4-17
IDN?, 1-35, 5-3
IDN?. See *IDN?
IEEE 488.2, 4-17
IEEE 488.2 common commands, 4-17
IEEE-488 universal commands, 4-15
IF bandwidth, 1-35
IFBW, 1-35

active segment, 1-68
IFBW list, 1-41
IFC (abort message), 4-15
IFC (interface clear) control line, 4-10
IM, 4-24
IMAG, 1-36
imaginary, 1-36
information on programs, 8-8
INID, 1-36

initialize disk, 1-36
INPU, 1-36
INPUCAL, 1-36
INPUCALK, 1-36
INPUDATA, 1-36
INPUFORM, 1-36
INPULEAS, 1-36
INPUPMCAL, 1-36
INPURAW, 1-36
input/output path, 3-17
instrument identification, 1-35
instrument setup, 8-3
instrument state summary, 6-5
instrument states, 8-84

recalling, 8-84, 8-88
saving, 8-84, 8-88

INTD, 1-38
INTE, 1-39
intensity, 1-39

background, 1-17
interface addresses, 4-15
interface clear (IFC) control line, 4-10
interface functions

controller, 4-9
listener, 4-8
talker, 4-8

internal disk, 1-38
internal memory, 1-38
interpolation, 1-25
interpolative correction, 1-25
interrupts, generating, 8-77
INTM, 1-38
IP, 4-24
ISOD, 1-39
ISOL, 1-39
isolation calibration, 1-39
isolation calibration, omitting, 1-49
ISOOP, 1-39
IW, 4-24

J
JPG files, saving, 1-66

K
kits of calibration standards, 8-27

L
L (listen mode), 4-12
labels, softkey, 1-78
LB, 4-22
LCD title, 1-76
LE0 (no extended listener capabilities),

4-12
learn string and calibration kit string,

6-5
learn string use example program, 8-84
levels of data, 6-4
LIMD, 1-39
LIMI, 1-40
LIMIAMPO, 1-40
LIMILINE, 1-40
LIMIMAOF, 1-40
LIMISTIO, 1-40
Index-4

Index
limit line amplitude offset, 1-40
limit line and data point special

functions, 8-125
limit line list clear, 1-23
limit line on/off, 1-40
limit line stimulus offset, 1-40
limit lines, 8-100

setting up, 8-100
limit list

editing for ripple test, 1-31
limit table, 8-100

edit, 1-31
limit test beeper, 1-18
limit test on/off, 1-40
limit tests

setting up, 8-100
LIMITEST, 1-40
limit-line table, 8-100
limit-line testing, 8-92

list frequency table, selecting a single
segment, 8-98

performing PASS/FAIL tests, 8-100
limits

displaying ripple test, 1-64
limit-test array used to read values

example program, 8-70
limit-test table, 8-100
limit-test tables, 8-92
LIML, 1-39
LIMM, 1-39
LIMS, 1-39
LIMTFL, 1-40
LIMTSL, 1-40
LIMTSP, 1-40
LIMU, 1-39
lin freq, 1-41
lin mag, 1-41
lin mkr, 1-57, 1-70
line feeds, 4-5
line type

data, 1-41
memory, 1-41

linear sweep, 1-41
lines for control, 4-10
lines for handshaking, 4-10
LINFREQ, 1-41
LINM, 1-41
LINT, 1-41
LINTDATA, 1-41
LINTMEMO, 1-41
LIS, 1-41
LISFREQ, 1-41
LISIFBWM, 1-41
LISPWRM, 1-41
list

clear, 1-23
edit, 1-31

list freq, 1-41
list IFBW, 1-41
list power, 1-41
list sweep, 1-41
list type, 1-42
list values, 1-42

print, 1-77, 1-78

listen mode (L), 4-12
listener interface function, 4-8
list-frequency mode, 8-92
list-frequency sweeps, 8-92
list-frequency tables, 8-92
LISTTYPE, 1-42
LISTTYPELSTP, 1-42
LISTTYPELSWP, 1-42
LISV, 1-42
LOAD, 1-42
load

sliding, 1-70
load file, 1-42
local command (GTL), 4-15
local lockout, 3-13
local lockout command (LLO), 4-16
local mode, 3-13
log mag, 1-43
log mkr, 1-57, 1-70
log sweep, 1-43
LOGFREQ, 1-43
LOGM, 1-43
low pass frequency, 1-70
lower limit

segment, 1-39
LRM calibration, 1-66
LRN?. See *LRN?
LTa, 4-22

M
MANTRIG, 1-43
manual trigger, 1-43
margin value, ripple test, 1-65
MARK, 1-43
MARKBUCK, 1-43
MARKCENT, 1-43
MARKCONT, 1-43
MARKCOUP, 1-43
MARKCW, 1-43
MARKDELA, 1-43
MARKDISC, 1-43
marker

delta reference, 1-28
fixed, 1-43
polar, 1-57
reference, 1-28
Smith chart, 1-70

marker bandwidth search, 1-78
marker data, 5-5
marker parameters

print, 1-77, 1-78
marker positioning, 8-64

by data point location, 8-64
by frequency location, 8-64
by trace-data value, 8-64

marker search
left, 1-67
maximum, 1-67
minimum, 1-67
off, 1-67
right, 1-67
target, 1-67
tracking, 1-76

marker statistics, 1-46

marker to center, 1-43
marker to CW frequency, 1-43
marker to delay, 1-43
marker to limit offset, 1-40
marker to middle

segment, 1-43
marker to reference, 1-43
marker to start, 1-43
marker to stimulus

segment, 1-43
marker to stop, 1-43
marker width, 1-78
marker zero, 1-43
markers

continuous, 1-43
discrete, 1-43
displayed, 1-29

markers coupled, 1-43
markers off, 1-43
markers uncoupled, 1-43
MARKFAUV, 1-43
MARKFSTI, 1-43
MARKFVAL, 1-43
MARKMIDD, 1-43
MARKMINI, 1-43
MARKOFF, 1-43
MARKREF, 1-43
MARKSPAN, 1-43
MARKSTAR, 1-43
MARKSTIM, 1-43
MARKSTOP, 1-43
MARKUNCO, 1-43
MARKZERO, 1-43
MAXF, 1-45
maximum

allowable ripple value, 1-64
bandwidth value, 1-19

maximum frequency, 1-45
MEAS, 1-46
MEASA, 1-46
MEASB, 1-46
MEASR, 1-46
MEASTAT, 1-46
measure stats, 1-46
measured value

for ripple test, output of, 1-53
measurement

returning bandwidth test value, 1-20
measurement calibration, 4-19
measurement channel, 1-22
measurement data post-processing, 8-4
measurement data taking, 8-4
measurement parameters

required order, 8-9
setting, 8-9
verifying, 8-24

measurement process, 8-3
measurement restart, 1-63
measurement setup, 8-9
measurement specifications, 8-67

group delay, 8-67
magnitude, 8-67
phase, 8-67

measurements
Index-5

Index
saving as graphic files, 1-66
saving as text files, 1-66

memory, 1-29, 9-13
internal, 1-38
non-volatile, 9-13
volatile, 9-13

memory allocation, 9-13
conserving memory, 9-20
determining memory requirements,

9-14
storing data to disk, 9-18
types of memory and data storage,

9-13
using saved calibration sets, 9-20

MENU, 1-47
MENUAVG, 1-47
MENUCAL, 1-47
MENUCOPY, 1-47
MENUDISP, 1-47
MENUFORM, 1-47
MENUMARK, 1-47
MENUMEAS, 1-47
MENUMRKF, 1-47
MENURECA, 1-47
MENUSAVE, 1-47
MENUSCAL, 1-47
MENUSEQU, 1-47
MENUSTIM, 1-47
MENUSYST, 1-47
message transfer scheme, 4-11
meta-messages, 4-15
methods of GPIB operation, 4-8
middle value

segment, 1-39
min/max recording, 1-48
minimum

bandwidth value, 1-19
MINMAX, 1-48
MINMAXON|OFF>, 8-125
MINU, 1-48
modes

analyzer bus, 4-14
debug, 8-8
pass-control, 4-14
system-controller, 4-13
talker/listener, 4-14

modes for bus device, 4-13
modify sequence done, 1-30
multiple-controller capability, 4-11

N
n dB

setting for bandwidth test, 1-18
naming conventions, 4-3
NEXP, 1-49
next page, 1-49
no extended talker capabilities (TEO),

4-12
non-volatile memory, 9-13
number, 1-3, 4-6
number of GPIB devices allowed, 4-8
number of groups, 1-49
number of listeners allowed, 4-8
number of points, 1-56

NUMG, 1-49

O
OC, 4-24
OE, 4-24
offloading error correction, 8-46
offset

phase, 1-56
OI, 4-24
OMII, 1-49
omit isolation, 1-49
on/off control

bandwidth test, 1-20
ripple test, 1-64

one-grid display, 1-72
one-path 2-port cal, 1-19, 1-20
one-port calibration, 1-19, 1-20, 1-66
OP, 4-23
op param, 1-50
OPC, 1-49
OPC-compatible commands, 4-7
OPEP, 1-50
operating parameters, 1-49, 1-50
operation complete, 1-49, 4-7
operation complete commands, 3-15
operation of analyzer, 4-7
operation of GPIB, 4-8
operation using talker/listener mode

example program, 8-106
operational capabilities for GPIB, 4-12
OPT?. See *OPT?
OS, 4-24
OUTP, 1-50, 1-79
OUTPACTI, 1-50, 1-79, 3-14
OUTPAMAX, 8-125
OUTPAMIN, 8-125
OUTPCALC, 1-50, 1-79
OUTPCALK, 1-50, 1-79
OUTPCHAN, 1-50, 1-79
OUTPDAPT, 8-125
OUTPDATA, 1-50, 1-79
OUTPDATF, 1-50, 1-79
OUTPDATR, 1-50, 1-79, 8-125
OUTPERRO, 1-50, 1-79
OUTPFAIP, 1-50, 1-79, 8-125
OUTPFARPLPT, 1-51
OUTPFORF, 1-50, 1-79
OUTPFORM, 1-50, 1-79
OUTPICAL, 1-50, 1-79
OUTPIDEN, 1-50, 1-79
OUTPIPMCL, 1-50, 1-79
OUTPKEY, 1-50, 1-79
OUTPLEAS, 1-50, 1-79
OUTPLIM, 1-50, 1-79
OUTPLIM1, 8-125
OUTPLIM2, 8-125
OUTPLIMF, 1-50, 1-79
OUTPLIML, 1-50, 1-79
OUTPLIMM, 1-50, 1-79
OUTPMARK, 1-50, 1-79
OUTPMEMF, 1-50, 1-79
OUTPMEMO, 1-50, 1-79
OUTPMSTA, 1-50, 1-79
OUTPMWID, 1-50, 1-79

OUTPMWIL, 1-50, 1-79
OUTPOPTS, 1-50, 1-79
OUTPPLOT, 1-50, 1-79
OUTPPMCAL, 1-50, 1-79
OUTPPRE, 8-46
OUTPPRIN, 1-50, 1-79
OUTPPRNALL, 1-50, 1-79
OUTPRAF, 1-50, 1-79
OUTPRAW, 1-50, 1-79
OUTPRE, 1-50, 1-79
OUTPRFFR, 1-50, 1-79
OUTPRPLBNDALL, 1-53
OUTPRPLBNDPF, 1-53
OUTPRPLBNDVAL, 1-53
OUTPSEGAF, 1-50, 1-79, 8-125
OUTPSEGAM, 1-50, 1-79, 8-125
OUTPSEGF, 1-50, 1-79, 8-125
OUTPSEGM, 1-50, 1-79, 8-125
OUTPSEQ, 1-50, 1-79
OUTPSERN, 1-50, 1-79, 8-125
OUTPSTAT, 1-50, 1-79
OUTPTITL, 1-50, 1-79
output

failed ripple test points, 1-51
plot string, 1-50, 1-79
ripple test measured value, 1-53
ripple test measured values, 1-53
ripple test pass/fail status, 1-53

Output Data Per Point, 8-136
Output Data Per Range of Points,

8-137
Output Limit Pass/Fail by Channel,

8-137
output limit test min/max, 1-50, 1-79
Output Limit Test Pass/Fail Status Per

Limit Segment, 8-130
output limit test status, 1-50, 1-79
Output Minimum and Maximum Point

For All Segments, 8-133
Output Minimum and Maximum Point

Per Limit Segment, 8-132
output of errors, 7-8
Output Pass/Fail Status for All

Segments, 8-131
output power, 1-59
output pre-raw data, 1-50, 1-79
output queue, 5-3
output segment number, 1-50, 1-79
output serial number, 1-50, 1-79
output syntax, 5-4
output-data command, 5-3
outputting trace-related data, 5-5
overlapped commands, 4-17, 4-18

P
page, next, 1-49
parallel poll configure, 4-16
parallel poll non response (PPO), 4-12
parameters, operating, 1-50
part number for CD-ROM, 8-2
pass control, 1-77
pass control capabilities (C10), 4-12
pass control mode, 4-16
pass/fail status
Index-6

Index
for ripple test, output of, 1-53
PASS/FAIL tests, 8-103
pass-control mode, 4-14
pass-control-back address, 4-17
pause to select sequence, 1-56
PAx,y, 4-23
PC-graphics applications example

program, 8-114
PD, 4-23
peripheral

address, 1-15
peripheral addresses, 4-15
PG, 4-23
PHAO, 1-56
PHAS, 1-56
phase, 1-56
phase demodulation, 1-28
phase offset, 1-56
PLOT, 1-56
plot file and PC-graphics example

program, 8-114
plot name, 1-76
plot string

output, 1-50, 1-79
plotter

address, 1-15
plotting

to a file, 8-112
plotting plot files stored on disk

example program, 8-114
plotting, remote, 8-106, 8-107
plug&play driver, 3-3
POIN, 1-56
point trigger, 1-33
points

specify, 1-56
POL, 1-57
POLA, 1-57
polar, 1-57
polar markers, 1-57
POLMLIN, 1-57
POLMLOG, 1-57
POLMRI, 1-57
PORE, 1-57
port extensions, 1-57
port power coupling, 1-58
PORT1, 1-57
PORT2, 1-57
PORTA, 1-57
PORTB, 1-57
PORTP, 1-58
PORTR, 1-57
PORTT, 1-57
post-processing the measurement data,

8-4
POWE, 1-59
power

active segment, 1-68
port, coupling, 1-58

power coupling, 1-25
power level, 1-59
power list, 1-41
power meter

address, 1-15

power meter calibration, 8-80
power range, 1-59, 1-60
power sweep, 1-59
power, source, 1-71
POWS, 1-59
PPO (does not respond to parallel poll,

4-12
PRAN, 1-59
preparing for remote operation, 3-16
pre-raw data, 8-46
pre-raw data,output, 1-50, 1-79
pre-raw measured data, 6-2
PRES, 1-59
preset, 1-59, 1-65
preset state, 9-3
pre-setting the instrument, 3-16
print ascii, 1-77, 1-78
PRINTALL, 1-77, 1-78
printer

address, 1-15
printing

using the serial port, 8-110
printing plot files stored on disk

example program, 8-114
printing, remote, 8-106, 8-107
process of measuring, 8-3
processing after taking measurement

data, 8-4
processing data chain, 6-1
program debugging, 8-8
program development features, 8-8
program example

operation using talker/listener mode,
8-106

plotting plot files stored on disk,
8-114

printing plot files stored on disk,
8-114

using the learn string, 8-84
program information, 8-8
PRx,y, 4-23
PSC. See *PSC
PTOS, 1-56
PU, 4-23
PWRR, 1-60
PWRRMAN, 1-60
PWRRPAUTO, 1-60

Q
query command, 5-3
querying commands, 3-14
queue for output, 5-3

R
R, 1-46
R (remote operation), 4-12
R + jX mkr, 1-70
RAID, 1-60
RAIISOL, 1-60
RAIRESP, 1-60
range

power, 1-59
raw data

creating a calibration, 8-43
include with disk files, 1-33

raw data array, 1-33
raw measured data, 6-2
raw offsets, 8-46
Re/Im mkr, 1-57, 1-70
read file titles, 1-62
READDATE, 1-61
reading analyzer data, 5-1
READTIME, 1-61
REAL, 1-61
recall colors, 1-61, 1-62
RECO, 1-61, 1-62
REF, 1-62
REFD, 1-62
reference marker, 1-28
reference position, 1-62
reference value, 1-62
REFL, 1-62
reflection calibration, 1-62
reflection measurement, 1-65
reflection standard classes, 1-22
REFOP, 1-62
REFP, 1-62
REFT, 1-62
REFV, 1-62
register

cleas, 1-23
service request enable, 4-17

register, clear, 1-23
register, event-status, 1-32
remote enable (REN) control line, 4-10
remote mode, 3-13, 4-16
remote operation (R), 4-12
remote/local capability (RL1), 4-12
REN (remote enable) control line, 4-10
report generation, 8-106
reporting of errors, 7-1
reporting on status, 7-3
reporting status, 8-74
RESC, 1-62
RESD, 1-63
reset, 1-59, 1-65
reset device, 4-17
resp & isol cal, 1-60
RESPDONE, 1-63
response & isol’n cal, 1-19, 1-20
response cal, 1-19, 1-20
response calibration, 1-63
REST, 1-63
restart averaging, 1-17
restart measurement, 1-63
restore display, 1-63
resume cal sequence, 1-62
reverse isolation, 1-63
reverse match, 1-63
reverse transmission, 1-63
REVI, 1-63
revision, firmware, 1-71
REVM, 1-63
REVT, 1-63
ripple test

band start frequency, 1-64
band stop frequency, 1-64
Index-7

Index
clear frequency band list, 1-23
display limits, 1-64
display measured value, 1-65
edit limit list, 1-31
maximum ripple, 1-64
on/off control, 1-64
output all band measured values,

1-53
output measured value, 1-53
output pass/fail status, 1-53
outputting failed points, 1-51
selecting frequency bands, 1-69

RL1 (complete remote/local
capability), 4-12

RLIMLINE, 1-64
RLIMM, 1-64
RLIMSTP, 1-64
RLIMSTR, 1-64
RLIMTEST, 1-64
RLIMVAL, 1-65
round seconds softkey, 1-70
routing debugging, 8-8
RS, 4-23
rules for code naming, 4-3

S
S (service request asserted by the

analyzer), 4-12
S11, 1-65
s11 1-port cal, 1-19, 1-20
S12, 1-65
S21, 1-65
S22, 1-65
s22 1-port cal, 1-19, 1-20
SADD, 1-65
sampler correction, 8-46
sampler offsets, 8-46
SAV1, 1-66
SAV2, 1-66
SAVC, 1-66
SAVE, 1-66
save

measurements as graphic files, 1-66
measurements as text files, 1-66

save register, 1-66
save using ascii, 1-67
save using binary, 1-67
SAVECSV, 1-66
saved calibration sets, 9-20
SAVEJPG, 1-66
SAVEREG, 1-66
SAVT, 1-66
SAVUASCI, 1-67
SAVUBINA, 1-67
SCAL, 1-67
scale

auto, 1-16
SDEL, 1-67
SDON, 1-67
SEAL, 1-67
SEAMAX, 1-67
SEAMIN, 1-67
SEAOFF, 1-67
SEAR, 1-67

search, marker, 1-67
SEATARG, 1-67
SEDI, 1-68
SEGIFBW, 1-68
segment

add, 1-65
close, 1-67
delete, 1-67
edit, 1-68
min/max, 1-48

segment done softkey, 1-67
segment edit done, 1-31
segment select, 1-73
segment sweep, 1-16
SEGPOWER, 1-68
SELBAND, 1-69
select first point, 1-69
select last point, 1-69
select point number, 1-69
select segment number, 1-69
self-test, 4-18
SELMAXPT, 1-69, 8-125
SELMINPT, 1-69, 8-125
SELPT, 1-69, 8-125
SELSEG, 1-69, 8-125
sequence

modify done, 1-30
pause to select, 1-56
title, 1-76

serial poll, 4-16
service request, 8-77

enable register, 4-17
service request (SRQ) control line,

4-10
service request asserted by the analyzer

(S), 4-12
set bandwidth, 1-35
set bit, 1-70
set day softkey, 1-70
set hour softkey, 1-70
set minutes softkey, 1-70
set month softkey, 1-70
set reference

reflect, 1-70
thru, 1-70

set seconds softkey, 1-70
set year softkey, 1-70
SETBIT, 1-70
SETDATE, 1-70
SETF, 1-70
SETRREFL, 1-70
SETRTHRU, 1-70
SETTIME, 1-70
setting GPIB addresses, 4-15
setting up the instrument, 8-3
SETZ, 1-70
SH1 (full-source handshake), 4-12
SIh,w, 4-23
simmcal, 8-43
SING, 1-70
single bus concept, 4-13
single point type, 1-40
single seg sweep, 1-73
single sweep, 1-70

SL, 4-24
SLID, 1-70
sliding load, 1-70

done, 1-70
set, 1-70

SLIL, 1-70
SLIS, 1-70
sloping line type, 1-40
SMIC, 1-70
SMIMGB, 1-70
SMIMLIN, 1-70
SMIMLOG, 1-70
SMIMRI, 1-70
SMIMRX, 1-70
Smith chart, 1-70
SMOOAPER, 1-71
SMOOO, 1-71
smoothing, 1-71
smoothing aperture, 1-71
SOFR, 1-71
SOFT, 1-71
softkey, 1-71
softkey labels, 1-78
SOUP, 1-71
source power, 1-59
source power on/off, 1-71
source power range, 1-59
SPAN, 1-72
S-parameters, 1-65
specify class done, 1-21, 1-22
specify points, 1-56
SPLD, 1-72
SPLID, 1-72
SPLID1, 1-72
SPLID2, 1-72
SPLID4, 1-72
split display, 1-72
SPn, 4-24
spur avoidance, 8-46
SR, 4-24
SR1 (complete service request

capabilities), 4-12
SRE, 1-72
SRE. See *SRE
SRE?. See *SRE?
SRQ (service request) control line,

4-10
SSEG, 1-73
STANA, 1-73
STANB, 1-73
STANC, 1-73
STAND, 1-73
standard

calibration, 1-73
standard definition, 1-27
standard event status

register, 4-17
STANE, 1-73
STANF, 1-73
STANG, 1-73
STAR, 1-73
start frequency, 1-73

ripple test bands, 1-64
statistics
Index-8

Index
marker, 1-46
status bit definitions, 7-3
status byte, 1-74, 4-17, 7-3, 7-6, 8-74

clearing, 4-17
status constants, 8-130
status indicators, 4-12
status register, 1-32
status reporting, 7-3, 8-74
STB?, 1-74
STB?. See *STB?
step down, 1-30
step size, 1-74
step up, 1-77
stepped list mode, 1-42, 8-92
stepped sweep, 1-74
STEPSWP, 1-74
stimulus offset softkey, 1-40
stimulus value

segment, 1-39
STOP, 1-74
stop frequency, 1-74

ripple test bands, 1-64
storage

disk, 1-38
internal memory, 1-38

storing data to disk, 9-18
STPSIZE, 1-74
string for calibration kit, 6-5
structure of command syntax, 4-5
structure of GPIB bus, 4-9
structure of status reporting, 7-3
SWEA, 1-75
sweep

hold, 1-35
power, 1-59
segment, 1-16, 1-73

sweep time, 1-75
sweep user-controlled, 8-8
sweep, stepped, 1-74
swept list mode, 1-42, 8-94
SWET, 1-75
SWPSTART, 8-46
SWR, 1-75
synchronization, 8-74
syntax for commands, 4-3
syntax for output, 5-4
syntax structure, 4-5
syntax types, 4-6
system controller capabilities

(C1,C2,C3), 4-12
system setups, 8-84

reading calibration data, 8-85
system-controller mode, 4-13

T
T (talk mode), 4-12
T6 (basic talker), 4-12
Take4 mode, 1-50, 1-79, 8-46
TAKE4ON, 8-46
take-control command, 4-16
taking the measurement data, 8-4
talk mode (T), 4-12
talker interface function, 4-8
talker/listener mode, 4-14

talker/listener mode operation example
program, 8-106

TE0 (no extended talker capabilities),
4-12

terminators, 4-5
TESS?, 1-75
test port selection, 1-77
test setup calibration, 8-3
text files

saving as CSV, 1-66
time, 1-61, 1-70

CW, 1-26
time specify, 1-75
time, sweep, 1-75
TINT, 1-76
TITF, 1-76
TITF0, 1-76
TITL, 1-76
title

LCD, 1-76
title disk file, 1-76
title features, 1-76
title plot file, 1-76
title register, 1-76
title sequence, 1-76
TITP, 1-76
TITR, 1-76
TITREG, 1-76
TITSEQ, 1-76
TITSQ, 1-76
trace memory, 6-2
trace-data formats and transfers, 8-63
trace-data transfers, 5-8
trace-related data, 5-5
TRACK, 1-76
tracking, marker search, 1-76
TRAD, 1-76
TRAN, 1-76
transfer of data, 4-10
transferring plot-file data to a plotter

example program, 8-114
transferring plot-file data to a printer

example program, 8-114
transferring the measurement data, 8-4
transfers and formats of trace-data,

8-63
transfers of trace-data, 5-8
transform demodulation, 1-28
transmission cal, 1-76
transmission measurement, 1-65
TRAOP, 1-76
TRG. See *TRG
trigger

continuous, 1-24, 1-34
external, 1-33
hold, 1-35
manual, 1-43
number of groups, 1-49
single, 1-70

trigger device, 4-16
tri-state drivers (E2), 4-12
trl/lrm cal, 1-19, 1-20
TRL/LRM calibration, 1-66
troubleshooting, 3-11, 3-13

TST?, 1-77
TST?. See *TST?
TSTP, 1-77
TSTPP1, 1-77
TSTPP2, 1-77
two channel display, 1-26
two-grid display, 1-72
two-port calibration, 1-19, 1-20, 1-62,

1-63, 1-66, 1-76
types of syntax, 4-6

U
units, 4-4
units as a function of display format,

5-6
universal commands, 4-15
UP, 1-77
up arrow key, 1-77
upper limit

segment, 1-39
use pass control, 1-77
USEPASC, 1-77
user graphics

include with disk files, 1-33
user-controllable sweep, 8-8

V
valid characters, 4-4
velocity factor, 1-77
VELOFACT, 1-77
Visual BASIC, 3-3
Visual C++, 3-3
volatile memory, 9-13
volume number, 1-29
VXIplug&play driver, 3-3

W
waiting-for-group-execute-trigger,

4-16
waiting-for-reverse-get bit, 4-16
WIDT, 1-78
width value, 1-78
widths, search, 1-78
WIDV, 1-78
WRSK, 1-78

Z
Z0, 1-70
Index-9

Index
Index-10

	Contents
	Alphabetical Command Reference
	Alphabetical Command Reference
	Symbol Conventions
	Keys to Programming Commands
	Programming Commands
	PAUS
	8703A Commands Not Supported in the 8703B

	Command Listings
	Alphabetical List of Commands
	OPC-Compatible List of Commands

	Introduction to Instrument Control
	Introduction to Instrument Control
	Instrument Control using the VXIplug&play Driver
	Instrument Control using HP BASIC

	GPIB Programming
	GPIB Programming
	Analyzer Command Syntax
	Analyzer Operation
	GPIB Operation
	Calibration
	Display Graphics
	Disk File Names

	Reading Analyzer Data
	Reading Analyzer Data
	Output Queue
	Command Query
	Identification
	Output Syntax
	Marker Data
	Array-Data Formats
	Trace-Data Transfers
	Stimulus-Related Values

	Data Processing Chain
	Data Processing Chain
	Data Arrays
	Common Output Commands
	Fast Data Transfer Commands
	Data Levels
	Learnstring and Calibration-Kit String

	Error Reporting
	Error Reporting
	Status Reporting
	The Status Byte
	The Event-Status Register and Event-Status Registers B and L
	Error Output
	Error Messages in Numerical Order

	Programming Examples
	Example Programs
	Measurement Process
	Programming Examples
	Measurement Setup Examples
	Measurement Calibration Examples
	Measurement Data Transfer Examples
	Measurement Process Synchronization Examples
	Analyzer System Setup Examples
	List-Frequency and Limit-Test Table Examples
	Report Generation Examples
	Limit Line and Data Point Special Functions

	Preset State and Memory Allocation
	Preset State and Memory Allocation
	Preset State
	Memory Allocation
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Index

