Manual Supplement
Using HP Instrument BASIC
with the HP 8711

: ﬁf HEWLETT

RPACKARD

HP Part lNo. 08711-30112
Printed in USA July 1293

Microwave Instruments Division

Contents
—— - T A ST
1. Introduction
Overview of HP Instrument BASIC« « . . . o 1.2
Using HP Instrument BASIC C e e e 1-2
Typographical Conventions« oo e 1-3
2. Recording Programs
Keystroke Recording o o ..o e oo e e 2-1
What is Keystroke Recording?« .+ o o o 2-1
IBASIC Programs and the HP-IB Buffer 2-2
What’s in a Recorded Program « « « o« .« . . o e o 2-2
The OUTPUT Statement « « « o « o o o« o o = o o o o . 2-3
The ASSIGN Statement« « « o« - o e e o e e e e 2-3
SOPI MDEmORICS . « & v v v e e e e e e e e e e e e e e e e e e 2-3
How Recording Works o o o o oo oo e 2-4
Operations That Do Not Record« o o v oo o e 2-5
Front Panel Operations Without Mnemonics - « .. 2-5
HP Instrument BASIC Operations -« « « « « « « -+ .- 2-6
Operations Requiring Additional Programming - - - 2-6
Synchronization e e e e e e e 2-6
Active Control of the HP-IB Interface« - - - 2-6
Mnemonics With No Corresponding Front Panel Operation 2-7
Avoiding Recording Egrorso .. e oo e e 2-7
Use Instrument Preset « o« . . o . e e e e e e 2-7
Specifically Select Parameters 2-8
Use HP-IBEcho o o o c v v v v i e e e e e e e e e 2-8
Using the Built-in Editor to Write Programs « .« - - - 2-8
3. Running, Pausing and Stopping Programs
AUTOSTART Programs - = « ¢« =« =« =« o o o o o o o o = 3-1
Running and Continuing a Program « . . - . .. 3-2
Pausing a PTOZIAIN . . .+ -+« o o s e e e e e e e e e e 3-3
Stopping a Program . . . - « e e e o e e e e e e e 3-3
o 4. Saving and Recalling Programs
Selecting a Disk T T 4-2
Saving a PTOZTam - - « « « 4 o . s e e e e e e e 4-2
AUTOSTART Programs « o « « v v o o 0 o o s n o oo o oo 4-3
Recalling a Program«o e e e 4-3

Contents-1

5. Developing Programs

External Editors oo o000 -
HP IBASIC for Windows
HP BASIC o o e e e e e e e
ASCII Word Processors« o v . .o w e e e e
Using . .
The IBASIC Edztor e e e e e e e e e e e
Recording into an Existing Program
Editing with an External Keyboard
Inserting Lineso 00
Editing Lineso o000 e
Entering Program Lineso
Editing from the Front Panelo
Character Entry e e
The Label Windowo oL
Imserting Limeso
Removing Program Texto
Deleting Characters o
Deleting Lines«o o e e
Recallinga Deleted Line
Renumbering, Copying, Moving, and Indenting Lines
Using :

Using

6. Debugging Programs
Setting Breakpointso 000
Examining Variables oL L0000
Examining Stringso Lo
Examining Arrays00 o e e e
Displaying the Last Error Encountered oL Lo L

7. Graphics and Display Techniques
Using the Partitions - Lo
Allocating Partitionso L
De-Allocating Partitionso 0oL
Operation with No Partition
Displaying Text«o oo
Graphics Initialization and Secalingo 0oL
Using Graphics L ... oo e e e e e
Drawing Figures L0000
GRAPHICS EXCEPTIONS
GRID, RECTANGLE, POLYGON, and POLYLINE scaling differences
Labeling with Different Partitions
HP 8711 User Graphics Commands

Contents-2

5-2
5-2
5-2
5-3

5-4

5-5

7-2

7-3
7-4
7-5

7-6
7-8

7-9
7-9

8.

Interfacing with External Devices
Communrnication with Devices . .
HEP-IB Device Selectors

Moving Data Through the HP-IB
General Structure of the HP-IB
The System Controller
Using the Serial and Parallel Ports
General Bus Management
REMOTE
Host Instrument -
LOCAL LOCKOUT

Host Instrument

LOCAL L

Host Instrument

TRIGGER . . » « o o e oo et
Host Instrument
CLEAR v o v v v v

Host Instrument

ABORT«
Aborting the Internal Bus
HP-IB Service Requests

Setting Up and Enabling SRQ Interrupts

Servicing SRQ Interrupts
Example C.
Conducting a Serial Poll
Passing and Regaining Control
The IBASIC HP-IB Model
External and Internal Busses
Service Request Indicators
IBASIC as the Active Controller

Passing Active Control to the Instrument

IBASIC as a Non-Active Controller
Interfacing with an External Controller . . .
Transferring Data Between Programs . . .

Using OQUTPUT and ENTER statements

......

........

..............

..............

..............

..............

..............

Data Transfer Example — External Program
Data Transfer Example — Internal Program

Setting and Querying Variables
Downloading and Uploading Programs . . .
Downloading
Uploading « «

8-1
8-1
8-2
8-3
8-3

8-5
8-5

8-6
8-6

8-6
8-7

8-7
87

8-7
8-8

8-9

8-9

&9
8-10
8-10
8-10
810
811
8-11
8-12
8-12
8-13
813
8-14
8-16
817
R-18
8-18
8-20

Contents-3

9. Using Subprograms
User-Created Subprograms00 .
Built-In High-Speed Subprograms
Example Programs« o i v e e e e e e e
Avoiding Multiple Loads of Subprograms

18. HP 8711 IBASIC Keyword Summary

11. Exzample Programs
Program Summaries0 v e e
DATA_EXT — Data transfer between internal and external programs . .
DATA_INT — Data transfer between internal and external programs . .
DOWNLOAD — Download program to HP 8711
DRAWS711 — Drawing setup diagrams C e e e .
DUALCTRL — Two controller operation
REPORT — Using the parallelport
UPLOAD — Upload program from HP 8711
USER..BIT — Using the USER bit C e e e
USERKEYS ~ Customized softkeys
BAR, AVG, LOG — Barcode Programs -
DATA_EXT — Data transfer between internal and external programs . . .
DATA_INT — Data transfer between internal and external programs .
DOWNLOAD — Download program to HP 8711
DRAWSE711 — Drawing setup diagrams e e e e e
DUALCTRL — Two controller operation e
REPORT — Using the parallelport
UPLOAD — Upload program from HP 8711
USER_BIT — Using the USER bt
USERKEYS — Customized softkeys Co
BAR — Using Barcode Reader
AVG — Using Barcode Reader
LOG — Using Barcode Reader

Contents-4

9-1
9-2
9-4
9-4

i1-1
11-1
11-1
11-1
11-2
11-2
11-2
11-2
11-2
1i-2
11-2
1i-3
11-6
11-8
11-10
11-13
11-16
11-20
11-22
11-24
11-27
11-32
11-36

Figures

4-1. The SETEETL .« v v v e e e e e e e e e 4-2
5-1. The HP IBASIC Program Editor 5-3
5-2. The PC Keyboardo 5-6
5-3. The IBASIC display partitions Ce e e 5-12
7-1. Display partitions on the HP 8711 7-1
7-2. Using INPUT with no display partition o 7-3
7-3. Printing to a display partition o .. . 7-4
7-4. Pixel Dimensions with Available Display Partitions 7-5
7-5. “HELP” program output« +« . o . o o o e e e . 7-8
11-1. Sample Barcodeso ... e e e .. 13440
Tables
5-1. IBASIC Display Partitions 5-11
7-1. IBASIC Display Partitions oo - 7-2
7-2. SCPI graphics commands Lo oL 7-10

Contents-5

Introduction

A built-in HP Instrument BASIC (IBASIC) controller (option 1C2) can be ordered with the
HP 8711 RF Network Analyzer. An upgrade (HP model no. 862244)is also available to add
the controller to an HP 8711 that was not purchased with this option.

This manual describes creating and using IBASIC software on the HP 8711 RF Network
Analyzer. It demonstrates how to use IBASIC’s programming, editing and debugging features.
Tt also describes how to save and recall programs and how certain instrument-specific IBASIC
features are implemented in the HP 8711.

The reader should become familiar with the operation of the HP 8711 network analyzer
before programming it. This manual introduces the IBASIC operating and programming
environment and provides examples of intermediate and advanced IBASIC programs. It
assumes familiarity with the HP 8711 and HP Instrument BASIC for Windows or HP Series
200/300 BASIC.

Related information can be found in the following references:

e Information on the IBASIC language, including keyword descriptions, error messages,
interface specifics and programming techniques is available in the HP Instrument BASIC
Users Handbook:

s Information on operating the HP 8711 is available in the HP 8711 Operating Manual and
the HP 8711 User’s Guide.

o Information on programming the HP 8711, including example programs, is available in the
analyzer’s HP-1B Programming Guide.

s Information on the HP 8711's HP-IB command mnemonics is available in the analyzer’s
HP-IB Command Reference. This document includes a menu map of the HP 8711 that
shows the corresponding command for each key in addition to a complete alphabetical
listing of HP-1B commands.

¢ Information concerning HP Instrument BASIC for Windows (HP model no. E2200A) is
available in Installing and Using HP Instrument BASIC for Windows.

¢ Information on the SCPI (Standard Commands for Programmable Instruments)
programming language is available in A Beginners Guide to SCPI.

¢ Information on using the HP-IB is available in the Tutorial Descripiion of the
_ Hewlett-Packard Interface Bus.

introduction 1-1

Overview of HP Instrument BASIC

Wher installed in your HP 8711, HP Instrument BASIC (IBASIC) can be used for a wide
range of applications, from simple recording and playback of measurement sequences to
remote control of other instruments.

IBASIC is a complete system controller residing inside your analyzer. It communicates with
the analyzer via HP-IB commands over an internal interface bus (select code 8). It can also
communicate with other instruments, computers, and peripherals using the external HP-IB
interface (select code 7} or the serial {select code) or parallel (select code 15) 1/0 ports.

Note The HP 8711 can also be controlled by an external controlier. It has a factory
i default external HP-IB address of 16. When using IBASIC to control other
.é instruments, no other device should use the same address.

The external HP-IR address can be changed using either the front panel keys
(SYSTEM OPTIONS } - or the SCPI mnemonic
"SYST:COMM:GPIB:ADDR".

Using HP Instrument BASIC

You need not be proficient in a programming language to successfully use HP Instrument
BASIC (IBASIC). In keystroke recording mode, IBASIC automatically builds an executable
program by capturing measurement sequences as they are performed. With little or no editing
of these program lines, you can immediately put your program to work controlling and
automating your HP 8711 network analyzer.

IBASIC’s programming interface includes an editor. Softkeys are available to allow you to Tun
or continue a program or configure the display.

The IBASIC command set is a subset of the command set of HP Series 200/300 BASIC. In
fact, IBASIC programs can be run on any HP BASIC workstation with very few changes.
When an external PC keyboard (with a DIN connector) is connected to the HP 8711, the
IBASIC user interface emulates the user interface of the HP Series 200/300 BASIC. The PC
keyboard can be used for command entry, editing and program inputs.

IBASIC programs can be developed on external computers as long as correct IBASIC syntax
is used. The recommended environment for external program development is HP Instrument
BASIC for Windows (HP model no. E2200A) running on a PC compatible. Refer to chapter
8, “Interfacing with the HP-IB,” for information on interfacing IBASIC and other computing
environments. Porting information can be found in the “HP Instrument BASIC Language
Reference” section of the HP Instrument BASIC Users Handbook.

1-2 introduction

Typographical Conventions

The following conventions are used in this manual when referring to various parts of the HP
Instrument BASIC and HP 8711 operation environments: '

The name of 2 hardkey on the front panel of the HP 8711. This notation
is also used to represent keys on an external keyboard connected to the
HP 8711°s DIN interface.

The label of a softkey.

Upper case selection in a softkey indicates the state AFTER the softkey

is pressed.
A series of hardkeys and softkeys represents the path to a given softkey
or menu.
Bold Boi.ci typeface is used to emphasize a particular word or phrase.
Rtalic Italic typeface is used when referring to the name of a different manual.
< element > Angle brackets are used to signify a syntax element in a statement.

Introduction 1-3

Recording Programs

IBASIC programs for the HP 8711 can be created from the instrument’s front panel using an
external PC keyboard (option 1CL), on a PC compatible running IBASIC for Windows, on
an HP Series 200/300 controller Tunning HP BASIC, or on a workstation or PC using a text
editor.

Keystroke recording, described in this chapter, is ideal for creating simple programs or
measurement sequences for instrument control. If a program requires data processing, decision
making, prompts for an operator or graphical setup diagrams these must be entered using
another technique. Alternative methods of program development can be used to supplement
keystroke recording and create more sophisticated programs. These methods are covered in
chapter 5, “Developing Programs”.

Keystroke Recording

Of all the available methods of creating IBASIC programs, keystroke recording is by far the
easiest. It requires only a couple of steps to set up and run, and can be accomplished with
very little knowledge of programming.

What is Keystroke Recording?

Keystroke recording is a way to automatically create IBASIC measurement
sequence programs. To enable recording, simply press ((SYSTEM OPTIONS J

. Then press the normal key sequences of a measurement ou the

IBASIC programs communicate with the HP 8711 over an internal bus. They use the

same set of commands used by external controliers for remote operation of the instrument.
Keystroke recording works by finding the bus command, called a SCPI mnemonic, that fits
each operation performed from the front panel and then building a program line to duplicate
that operation when executed.

Recording Programs 2-1

All program lines built by keystroke recording are entered into the analyzer’s program buffer.
If the buffer contains no existing lines, a complete executable program will be created. If
there is a program in the buffer when recording is turned on, the recorded statements are
simply inserted into the existing program. Refer to chapter 5, “Developing Programs,” for a
description of how to record into existing programs.

IBASIC Programs and the HP-IB Buffer

Recorded programs work by sending HP-IB commands to the instrument. These commands
are queued into an input buffer by the instrument. An IBASIC program generally outputs
the commands much faster than the instrument can execute them. This often causes the
program to complete while the instrument is still executing commands in the input buffer.
The instrument continues processing these commands until the buffer is empty.

This may have some side-effects if you are not aware of this interaction. For example, it may
not be immediately obvious that the program has actually finished, since the instrument is
still functioning “remotely.” This could cause confusion if you try to pause and continue a
program that has actually completed.

You can clear the buffer from within your program by inserting the statement CLEAR 8 at the
beginning of your program (see chapter 5 for information on editing programs).

Another side-effect of the speed with which the analyzer processes commands is that it is .
possible for a command to execute bhefore a previous command has completed execution. The
most common example of this is a data query that executes before a measurement sweep is
complete. This interaction can lead to erroneous data being collected. For more information
on synchronizing the execution of commands, refer to the “Synchronization” section of the
HP-IB Programming Guide.

What’s in a Recorded Program

If you look at any program created using keystroke recording you will find that it is composed
of three fundamental IBASIC statements: ASSIGN, OUTPUT and END. The following simple
program demonstrates these statements:

1 ASSIGN @Hp8711 TO 800
2 QUTPUT @Hp8711;"SOURL:FPOW -10 dEm"
10 END

The ASSIGN and EED statements are automatically created when keystroke recording is used to
create a new program (as opposed to modifying an existing one).

There will only be one ASSIGN statement at the beginning of a program and one END
statement at the end, but in a typical program there will be many OUTPUT statements. Since
the QUTPUT statement does the actual work of controlling the HP 8711, let’s take a closer look
at how it is used.

2-2 Recording Programs

The OUTPUT Statement
The IBASIC statement
DUTPUT < destination >; < data >

tells the internal computer to send some information (data) to a device at a specific address
(destination). The destination can be a device selector (a number), or a name representing
a number, called a path name. The data can take several forms but in recorded IBASIC
programs it is a string containing commands for the instrument (a miemonic}.

Although the OUTPUT command is very flexible it is used only one way when generated by a
recording. The following represents a typical OUTPUT command from a recording session:

QUTPUT @Hp8711;"SOURL:POW ~10 dBr"

Notice that the OUTPUT command is followed by a name representing a device selector
(eHp87T11), followed by a semicolon and the data ("SOUR1:POW -10 dBm").

The ASSIGN Statement

The destination in an OUTPUT statement specifies the address of the device. In recorded
programs this address is represented by the I/O path name @Hp8711. The following line
appears in all recorded programs before any CUTPUT statements:

ASSIGN @Hp8711 to 800

The ASSIGN statement allows you to substitute an I/O path name (a variable preceded by
the @ symbol) for a device selector number. Therefore, after the above ASSIGN statement, the
program line

OUTPUT @Hp8711;"S0URL:POW -10 dBm"
is equivalent to
QUTPUT 800 ;"SOUR1:POW ~10 dBm"

The device selector 800 specifies the host instrument as the destination of any data sent by
the OUTPUT command. The program communicates with the HP 8711 via select code 8, the
internal HP-IB interface, which is only used for communication between IBASIC programs
and the analyzer. The analyzer will respond to any address on the internal interface from 800
to 899 (800 is typically used).

SCPI1 Mnemonics

The data sent to the HP 8711 by the OUTPUT command is called a SCPI (Standard Commands
for Programmable Instruments) mnemoric and is found in quotes following the device selector
path name and semicolon:

OUTPUT ©Hp8711;"S0URL:POW -10 dBm"

SCPI is a standard instrument control programming language providing commands that are
common from one product to another, reducing the number of “device specific” commands. It
uses easy to learn, self explanatory syntax that provides flexibility for both novice and expert
Programmers.

Recording Programs 2-3

The SCPI mnemonic codes used by IBASIC are the same ones used to control the instrument
remotely via an external computer. External computers communicate with the HP 8711 over
the external HP-IB bus while IBASIC programs communicate with it over the internal bus. In
our example, the mnemonic "SOUR1:POW -10 dBm" tells the instrument to set the source power
to -10 dBm.

For more information on HP-IB interfacing using IBASIC refer to chapter &, “Interfacing with
the HP-IB.” The SCPI mnemonics for the HP 8711 are documented in the HP-IB Command
Reference.

How Recording Works

To fully understand IBASIC recording, it is imporfant to understand the relationship between
front panel instrument operation and the program that is generated to emulate that operation.

Note SCPI mnemonics entered in a program during a recording session do not have
{ a one-to-one correlation with the actual keys that are pressed during that

“# session.

The fact that the generated SCPI mnemonics do not exactly correspond to the keys actually
pressed is important to remember. As you press a sequence of keys to perform an operation,
the corresponding SCPI mnemonic for that operation is generated. The operation may take
one keystroke or several, but the mnemonic is not generated until after a valid sequence of
keystrokes is completed.

In other words, it is the functional operation of the instrument that is recorded as a
mnemonic, not the keystrokes that it takes to perform that operation.

For example, recording the simple key sequence:
requires six keystrokes and produces only one mnemonic,
is generated after the sequence is completed. This is then a,utomatxcaﬂy formed into the
command:

OUTPUT @Ep8711;"SOURL:POW ~10 dBm"

and inserted into the program.

This means that if you accidentally press the wrong key in a sequence, it may not show
up in the recorded program. Additionally, you cannot exactly mimic keystrokes to leave
the instrument in a specific front panel state, unless it is a state that appears as a natural
consequence of a completed operation.

As shown in the above example, pressing the hardkey in a recording session has the
effect of bringing up the menu, but does not, by itself, generate a program line. You
could not therefore leave the instrument with the menu displayed.

2-4 Recording Programs

Operations That Do Not Record

Although keystroke recording works automatically in most situations, there are some
operations that cannot be captured or can only be partially captured using this method.
These generally fall into one of the following areas:

o Front panel operations with no corresponding SCPI mnemonic (such as transitional key
sequences).

o IBASIC front panel operations (such as some of the softkey operations found under the
((SYSTEM OPTIONS } '

e Operations requiring additional programming steps (such as passing control of the HP-IB
to the instrument for hardcopy output).

» HP-IB operations with no front panel equivalent (such as HP-IB query commands or data
transfer).

Note Do not recall programs in keystroke record mode; doing so may overwrite
i previously recorded program steps.

Front Panel Operations Without Mnemonics
There are some areas of front panel operation which have no corresponding SCPI mnemonics.

¢ Most operations on the front panel that require numeric entry allow you to use the knob
to increment or decrement the current value. This will not record as a program line.
You must always use the numeric keypad or step keys to enter any value if you want the
operation to be recorded.

s During a measurement sequence it may take several key presses to cause an operation that
will generate a mnemonic. The transitional sequences between actual instrument events
are not recordable.

e Any default states you setup prior to recording or encounter while recording (and
consequently do not select) are not recorded.

Note Instrument states that are not specifically selected or changed are not
i recorded.

v

Since these default states are not recorded, you must either actively select them to
generate a program statement or make sure the instrument is in the same exact state
when the program is run as when it was recorded. This is discussed further in the
“Avoiding Recording Errors” section of this chapter.

Recording Programs 2-5

HP Instrument BASIC Operations

Some softkeys under the (SYSTEM OPTIONS) -

on programs, such as
record. You can, however, record chsplay pa,r itions and all other save and rec
not having to do with IBASIC programs.

operations

Although IBASIC operations cannot be recorded, many do have corresponding SCPI
mnemonics that allow an external controller to control and communicate with internal
IBASIC programs. For more information refer to chapter 8, “Interfacing with the HP-IB.”

Operations Requiring Additional Programming

Some operations that work well when performed from the front panel have circumstances
that require special attention when used in a program. This is due to two kinds of problems,
synchronization and active control.

Synchrenization

Timing and synchronization must always be anticipated where one event must complete before
another can occur. One example of this is when you need to detect a state in the instrument
before issuing the next command. For example, suppose you want your program to perform a
limit test on data, but only after a sweep has been completed. You can record the command
to perform the limit test by pressing key sequences. However, to detect when the instrument
has completed a sweep, you must edit the program and include a routine that waits for a
status register to indicate the end of the sweep.

Note Synchronization is only a problem with overlapped commands (such as the
' command to trigger a sweep), that is commands that don’t hold off the
@ processing of subsequent commands. The HP 8711 adds an extra command

*WAI when an overlapped command is created using keystroke recording.
*WAI prevents the HP 8711 from executing any further commands until the
overlapped command has finished. For more information on synchronization
see the “Synchronization” section of the HP-IB Programming Guide.

Active Coniroi of the HP-IB Interface

Some operations require the analyzer to be the active controller on the external HP-IB bus.
This generally means that the analyzer must be the System Controller (or active control
must be passed to it from an external controller, if one is connected}. When an IBASIC
program begins running, however, the instrument’s active control of the external interface is
automatically passed to the program, so active control must be passed back to the analyzer
before these operations can be performed.

2.6 Recording Programs

These operations include all of the following actions when they are directed to HP-IB devices.
Note that active control of the HP-IB interface is only a problem if that bus is being used.
Hardcopy output to devices on the serial or parallel ports do not require control of the HP-IB.

(HARD <OPY)
(GARD Copv)
‘

SAVE RECALL

SAVE RECALL]

You can keystroke record any of these operations but you will not be able to successfully run
the program that is generated. You will need to enter the program lines necessary to first pass
control to the analyzer and then wait for control to be passed back to the program.

See the “Passing and Regaining Control” section of chapter 8 for an example of passing
control to the analyzer.

Mnemonics With No Corresponding Front Panel Operation

Several of the HP 8711 SCPI mnemonics for the instrument perform operations that are
not available from the front panel and which, therefore, cannot be recorded. These include
operations such as querying instrument status, transferring data over HP-IB, setting and
cleating status registers and general HP-IB housekeeping.

These operations are useful for the more advanced HP-IB programmer using IBASIC. Because
they fall outside the direct operating realm of the HP 8711, they cannot be recorded. They
can be added to a recorded program using the built-in editor or another editing environment.
See the HP-IB Command Reference for a complete description of the analyzer’s HP-1B
command set.

Avoiding Recording Errors

Use Instrument Preset

In most cases, you should perform a preset before recording a measurement sequence and
again before running the recorded program. This sets the instrument to its default state and
avoids the risk of creating a program that depends on instrument settings that were present at
the time of the keystroke recording but may be different when the program is run.

Recording Programs 2-7

You can include the command to perform a preset in your program by pressing
immediately after turning recording on. This inserts the following line prior to all other
QUTPUT statements in your program:

QUTPUT @Hp8711;"SYST :PRES;*WAT"

Specifically Select Parameters

If you do not want the instrument preset before a recorded program is run (for example, you
may be recording a section of a larger measurement sequence), be sure to specifically activate
every instrument setting that you will need in your automated sequence. For example, if you
want the data format to be Log Mag, press and then -, even though Log
-Mag is already the default setting. This will generate a program line to specifically set the
data format to Log Mag.

In some cases you may have to select another setting first and then re-select the original
setting in order to generate the correct program line. For exampie if you want to generate a
program line to set the sweep trigger to Continuous, t it is already set to
Continuous when you start recording, press first — then press

You can easily remove unwanted program lines generated by this procedure

Use HP-IB Echo

HP-IB Echo is a useful HP 8711 feature that allows vou to view the SCPI mnemonic or
mnemonics corresponding to any operation executed from the front panel. To turn on HP-IB
Echo, press (_SYSTEM OPTIONS }: . After doing this you
will see a mnemonic appear in a mplete any key sequence
that has a matching SCPI mnemonic. This is the exact mnemonic that is generated in your
recorded program during a recording session.

Using HP-IB Echo you can preview the SCPI mnemonic commands that will be stored in your
program before you actually record them. While this is not essential, it can be very useful
when you are in doubt as to what a particular key sequence will record, or precisely when a
key sequence corresponding to a mnemonic is completed.

Using the Built-in Editor to Write Programs

The HP 8711 has a built-ir editor which can be used to write or modify IBASIC programs.
Using the HP 8711’s built-in editor aliows you to write more powerful programs than you can
create with simple keystroke recording.

For more information about using the editor to write programs see chapter 5, “Developing
Programs.”

2-8 Recording Programs

Running, Pausing and Stopping Programs

Program control — starting, pausing and stopping an IBASIC program — can be managed
from the HP 8711 front panel using various hardkeys and softkeys. These actions and their
corresponding keys are described in this chapter.

A special case is ap autostart program which executes automatically on power-up if it exists
on the HP 8711’s built-in floppy disk drive.

IBASIC programs may also be remotely controlled via SCPI commands over the HP-IB.
For information on running, pausing and stopping programs from an external controlier see
chapter 8, “Interfacing with the HP-IB.”

AUTOSTART Programs

When the HP 8711 is powered up, it automatically searches the built-in floppy disk drive
for a program named AUTOST or AUTOST.BAS. When an AUTOST program is found, it is
automatically loaded and executed.

The AUTOST program can be used for anything from configuring the HP 8711 for specific
measurements, much like an internal instrument state Save/Recall register, to diagramming
measurement setups using graphics commands, as in a guided measurement sequence.

Refer to chapter 4, “Saving and Recalling Programs,” for information on using the HP 8711 to
name programs before they are saved.

Running, Pausing and Stopping Programs 3-1

Running and Continuing a Program

To run an IBASIC program that is already in the HP 8711 program buffer, press the

softkey in the (SYSTEM OPTIONS] i IR - menu. The RUN command can also be executed
from an external keyboard in either of two ways.

» Press the function key that corresponds to the softkey (see note below).

o Type RUN on a command line and press (Enter). A command line is always available when
an IBASIC display is partitioned. (See chapter 5 “Developing Programs” for information
about display partitions.) You can also activate a command line {from an external
keyboard with no IBASIC displays partitioned by pressing the key on your external

keyboard.

Note When an external keyboard is connected, its function keys (Fi_) through
i (Fz_) always represent the HP 8711’ eight softkeys. The analyzer’s hardkeys
ﬁ are each represented by a combination of ((Shit_J or (Ctrdl) and one of the

function keys. Refer to Appendix B at the end of Chapter 7 in the HP

8711 Operating Manual for more information on the external keyboard
interface. The (SYSTEM OPTIONS : menu can be accessed from an
external kevboard using (Cud) + (F3) (for{ svsTem options)) and (1) (for

The RUN command is executed in two phases: prerun initialization and program execution.
The prerun initialization phase consists of:

s Reserving memory space for variables specified in COM {both labeled and blank), DIM, REAL
or INTEGER statements, or implied in the main program segment. Numeric variables are
initialized to 0; string variables are initialized to the null string.

s Checking for syntax errors that require more than one program line to detect. Inciuded in
this are errors such as incorrect array references, and mismatched parameter or COM lines.

After prerun has been successfully completed, the program will begin the execution phase.
Program lines will be executed until one of the following events occurs:

1. An END or STOP statement is encountered in the program.
2. The hardkey is pressed to reset the instrument.
. softkey is pressed to pause the program.

4. A PAUSE statement is encountered in the prograrm.

To continue a program from a paused state, press the softkey ((F2_) on an

external keyboard) in the (SYSTEM OPTIONS } menu. Contmumg a paused program
resumes program operation from where it was pa,use y retalmng the current program context
(variable values, etc).

3-2 Running, Pausing and Stopping Programs

Pausing a Program

When an IBASIC program is running on the HP 8711 a softkey menu is always available. .
This “Program Running” menu has seven user-defined softkeys and a: softkey. Press

the
repr

© softkey to suspend execution of a program.
by on an external keyboard.

The program can also be paused by inserting a PAUSE statement in the program. The
instrument responds as if you had pressed the : - softkey. Refer to chapter 5,
“Developing Programs,” to learn how to insert | nts in your recorded program. Note
that PAUSE is one of the IBASIC keywords included in the editor’s label window (described in
chapter 5}.

< is the eighth softkey and is

To continue the program, press the softkey { on an external keyboard) in

menu. This menu automatically appears when a program is

the { sYSTEM OPTIONS)
paused.

Pausing a program does not close any files that have been opened by the program. You will
not be able to perform any of the following disk operations after pausing a program that has
left a file open on that medium:

RENAME FILE
DELETE FILE
DELETE ALL FILES
COPY FILES

COPY DISK

FORMAT DISK

To close all open files, you must complete the execution of the program or perform an IBASIC

RESET. This can be done by pressing the hardkey. The hardkey is
represented by + on an external keyboard. Keystroke recorded programs do not
open files and therefore avoid this problem.

Stopping a Program

To stop a program completely, press the hardkey at any time while the program is
running. This causes an IBASIC RESET. Placing a STOP statement in your program will also
terminate the program, but does not perform a BASIC RESET operation. The END statement
can also be used to stop program execution, but it must be the last line in the main program
segment.

The program remains in the program buffer after executi il it is cleared. To clear
the program buffer, press ((SYSTEM OPTIONS)
off the instrument.

For more information on the PAUSE and STOP statements see the “HP Instrument BASIC
Language Reference” section of the HP Instrument BASIC Users Handbook.

Running, Pausing and Stopping Programs 3-3

4

Saving and Recalling Programs

M

IBASIC programs can reside in memory, on disk, or in an external computer.

To transfer a program between the instrument’s buffer and a ma

SAVE RECALL _menu. To access the (SAVE RECALL)
external keyboard, use + (for ((SAVE RECALL) } and (for - Prog

The GET, SAVE, LOAD, STORE, RE-STORE, and RE-SAVE commands can be used within a
program or from an IBASIC command line to transfer program files to and from mass storage.
An autoload feature also exists to allow for a program (named AUTOST or AUTOST.BAS) fo be
automatically recalled from disk at power-up and run.

ge device, use the
menu using an

Another mode of program transfer is between the analyzer and an external controller, such as
an HP Series 200/300 controller or a PC compatible running IBASIC for Windows. Using an
external comtroller, you can combine the convenience of keystroke recording in IBASIC with
the ease of program editing in a dedicated external workstation by recording the measurement
sequence and then uploading the program to the external controller for further editing. Fully
developed programs may be downloaded from an external controller as well. The methods of
transferring programs between the HP 8711 and an external controller are described in detail
in chapter 8, “Interfacing with the HP-IB.”

This chapter describes all program transfer operations between the program buffer and the
HP 8711 internal memory, internal floppy disk drive and external mass storage devices.

Note The IBASIC file system can work with both LIF (Logical Interchange Format)
i and DOS (Disk Operating System) formatted disks. When it catalogs or
% loads files from a disk, the HP 8711 automatically recognizes the correct disk
format.

Saving and Recalling Programs 4-1

Selecting a Disk

When the ((SAVE RECALL } . - menu is selected the HP 8711 automatically catalogs
the selected disk or memory The selected disk is one of the following mass storage devices:

¢ Internal Memory
e Internal Floppy Disk Drive
¢ External Disk Drive

- softkey in the ((SAVE RECALL) menu.

To select a mass storage device press the -
Then press the key corresponding to

drive is set under the { SAVE RECALL)

Saving a Program

To save the current content

in the
ASCII, with the
file with a defa

f the HP 8711 program buffer to a file, pres
- menu. If desired, specify the type of file, binary or

- softkey; default is ASCIL. The program is saved to an ASCII-
e on the currently selected mass storage device or disk. Bach time
the key is used a new file is created. These files are named PROGO.BAS,

PROG1.BAS, ... with the number being changed for each new file. For portability, save files in
ASCII: binary files can not be read by an HP 8711 with firmware revision 1.90 or below.

HEWLETT PACKARD CG 8201721 10:28:32.00 PG/ gProqrczms
\MEMORY.C Bos AVAILABLE(BYTES: H483¢1
FILE NAME TYPE SIZE LAST CHANGE Save
LKPARENT> <DIR> Program
FROGO FRG bos 7673 21-0CT-91 1G:37
STATED STA BDAT 13086 17 —JAN=02 13:.52 Re—Save
Program
TRANS STa BDAT 3338 1§ daN-B2 08114
REFLS STA BDaT 3328 1§mJBN~3T 0820 File ype
bin ASCH
Reeeh
Frograr
Save
AUTOST
1BASIC
Prier Menu

pdEie

Figure 4-1. The Screen

If you are re-saving a program at is, saving a file to a disk that already contains the file
name - press [SAVE RECALL] and use the arrow keys to highlight the name of
the file to be re-saved. Then press -ogram and the file is saved. The disk is

automatically catalogued when the menu is selected.

4-2 Saving and Recalling Programs

The

file name. Highlight any file or directory on the disk and press -
the new program’s name using the external keyboard or the internal label maker.
with that name exists on the disk a new file is created.

softkey can also be used to save a new program with a non-default
Enter
no file

AUTOSTART Programs

IBASIC allows you to designate a program to be automatically loaded and run when the
instrument is first powered up. To make an autoloading program save it with the file
name AUTCST on the internal floppy disk drive. This can be done from t

ot by using the ' softkey

menu by pressing -
and entering the file name AUTOST.

At power-up, IBASIC searches the internal floppy disk drive for the file AUTOST. If found, it is
loaded and executed immediately.

Recalling a Program

To recall a program file from mass storage to the program buffer, use the (SAVE RECALL)
menu to catalog the disk. Select the desired mass storage device or disk, use the

arrow keys to highlight the file and pres

The recalled program file is entered into the program buffer one line at 2 time and checked for
syntax errors. Lines with syntax errors are commented out and the IBASIC syntax error is
displayed briefly in an error message and written to the CRT at the same time. To view error
messages logged to the CRT, use the ((SysTem OPTIONS) - menu
to allocate a screen partition for IBASIC.

m Tecalled to the program buffer using the

menu will overwrite the current contents of the program buffer.

Note

v

Saving and Recalling Programs 4-3

Developing Programs

For many applications, you can use keystroke recording to create and run programs without
needing to alter the program code that is generated. However, with some knowledge of

the IBASIC language and the program development capabilities of the HP 8711, you can
significantly increase the power of your recorded programs ot create your OWn programs from
the ground up.

This chapter describes the operation of the following keys in the (SYSTEM OPTIONS }
ment, and any softkeys found in their underlying menus:

primarily under the (_SYSTEM OPTIONS)

places you in the editor where you can make changes to your program on 2
line-by-line basis.

_menu allows you to select what part, if any, of the CRT display is

avai he use of IBASIC. An IBASIC display partition provides you with a command
line you can use to execute IBASIC commands from an external keyboard. It also provides an
area for viewing graphics and program output.

allows you to Clear Programs from the program buffer, allocate memory for
program use, or secure program lines.

Developing Programs 5-1

External Editors

In addition to using the built-in IBASIC editor, programs can be developed in the following
external environments.

s HP IBASIC for Windows editor
e HP BASIC editors
¢ ASCH word processors

The external editing environments provide many advantages, the most notable being speed
and flexibility. Precautions must be taken because most of them do not provide the syntax
checking available when using the internal editor.

After editing & program in an external environment, the best practice is to GET the
program from an IBASIC command line using the following procedure (instead of using the

keys described in chapter 4).
1. Partition an IBASIC display (as described later in this chapter).

2. Use an external keyboard to enter the command GET "PR0OGO: ,4" (this command loads a
program file PROGO from the internal floppy disk drive).

3. Watch the IBASIC display as the program is loaded — syntax errors result in error
messages displayed on the screen.

4. Edit the program to correct any errors found.

HP IBASIC for Windows

IBASIC for Windows is the recommended environment for external program development.
This is because the syntax checking done by its editor can be changed by modifying the
contents of a compatibility file (IBASIC.INI). To make the IBASIC for Windows editor check
the syntax of a program written to run on the HP 8711 (IBASIC instrument version 2.0} the
compatibility file should contain the following line.

COMPATIBILITY_ INSTR=2.0

For more information on IBASIC for Windows and the compatibility file refer to Installing
and Using IBASIC for Windows.

HP BASIC

The HP BASIC editor checks for the syntax of the version of HP BASIC being used. Because
IBASIC is a subset of HP BASIC it may not find all of the errors — the most common error
is the use of HP BASIC commands that are not supported by IBASIC. For a listing of the
commands supported by IBASIC refer to the HP Instrument BASIC User’s Handbook.

5-2 Developing Programs

ASCH Word Processors

When an ASCII word processor is used to edit a program no syntax checking occurs until the
program is loaded by the instrument. Another complication with using a word processor is
that program line numbers are not automatically renumbered when new lines are inserted. -

It is recommended that you renumber the program (REN 10,10}, as described later in this
chapter, to reduce the possibility of errors. (Errors in numbering lines usually do not result in
a syntax error, they write over other program lines.)

Using

The editor is used for creating and altering lines in an IBASIC program. Those familiar with
the editor found in IBASIC for Windows or HP Series 260/300 BASIC will find it somewhat
similar to the instrument’s IBASIC editor; others should find it easy to learn and use. This
section tells you how to edit and enter an IBASIC program.

softkey (on an external keyboard) in the

(SYSTEM OPTIONS] menu. You will see the program, if one is in the buffer, appear
on the display with a cursor on the first line of the program, as shown in Figure 5-1. If the
program buffer is empty, the first line number 10 appears with the cursor positioned to begin
entering text.

To start the editor, press the

CA@L?PRINTjABORT SUB SUBEND DATA LOCAL DIM BIT ABCDEFGHIJKLM Sdit
10 [te=)
— X i Insert
20 I This program m2asures the transmission and Line
20 t reflection characteristics of a bandpass filter
40 1 Insert
50 ASSIGN @HPpB7ii TO 800 Char
80 ON KEY ¢ LABEL 'TRAN" CALL Transmission
70 ON KEY 1 LABEL *REFL" CALL Reflection Deig\:e
80 ON KEY 3 LABEL "SETUP" CALL Setup_diag Line
30 ON KEY & LABEL "EXIT™ GOYTO End,.prog
Recall
100 LOOP L.ine
110 DISP "WAITING FOR SELECTION®
120 END LO0P
130 End_prog:DISP Delete
140 END Crar
150 e T T e S 5 S 4 R
160 8UB Transmission Entar
170 Transmission:!
180 QUTPUT @Hp8711; "CONF "FILT:TRAN'"
319G OQUTPUT @Hp8714; "DISP: ANNIFREQL :MODE CSPANT
200 CQUTPUT @HD8711; "SENSL:FREG:CENT 173 MHZT
Prior Menu

Figure 5-1. The HP IBASIC Program Editor

Developing Programs 5-3

The HP 8711 editor is accompanied by a “Label Window” at the top of the screen. This
window is filled with characters and IBASIC keyword commands and has its own cursor.

The current program line (the line containing the cursor) always appears as two lines on the
screem, allowing you to enter up to 108 characters if needed. All other lines have only their
first 51 characters displayed (excluding line numbers).

Each line has a numeric field in the first 6 columns in which program line numbers are right
justified. Although program lines are automatically numbered by the editor, you can edit '
the current line number to copy or move it to a different location in th The range
of line numbers is from 1 to 32767. To end an editing session press the - :
softkey { on a 1 keyboard) in the edit menu. This will return you to the
{(SYSTEM OPTIONS } ment.

The IBASIC Editor

The editor has two sets of softkey menus, the Edit keys a
edit menu is activated when you press (SYSTEM OPTIONS) i
above the softkeys shows the label Edit.

Entry keys. The
. The menu box

The edit menu provides the following softkeys:

(&)
(&)
(&)
((E))
(&)
(E)
()

The character entry menu is described in the “Editing from the Front Panel” section of this
chapter.

Recording into an Existing Program

One way to enter lines into your program is to use the keystroke recording capabilities of
IBASIC. To record measurement sequences or other front panel operations into your program
follow the procedure described below.

1. Activate the editor by pressing ((SYSTEM OPTIONS } -

2. Use the step keys on the analyzer or the cursor keypad on an external keyboard to position
the cursor on the line above which you want the recorded statements inserted.

to exit the editor.

4. Press - o activate keystroke recording.

5.4 Developing Programs

5. Record the measurement sequence or front panel operation.

6. Press [SYSTEM OPTIONS |
session.

o conclude the recording

The inserted recording acts the same as if you had pressed i
and generated OUTPUT statements in insert mode.

Note The 4SSIGN @Hp8711 to 800 statement is NOT generated when you are
i recording into an existing program and MUST be included in your program
% prior to any recorded OUTPUT commands. If you initially created the program

using recording, this statement should already exist. If it does not exist, you
will need to enter it.

Editing with an External Keyboard

With an external keyboard connected to the HP 8711, it is easy to edit or create an IBASIC
program using the internal editor. Note that the Front Panel Editor described in the next
section is always available, even when an external keyboard is in use.

Note The HP 8711 and the IBASIC editor work with PC-AT compatible keyboards
[(US only) that have a standard DIN interface. Foreign language keyboards
W will not cause an error, they simply will not be recognized as different from

the US keyboard. A compatible keyboard can be purchased by ordering option
1CL with the HP 8711. The keyboard can be purchased alone by ordering the
HP C1405 keyboard, option ABA (US English).

The PC-AT keyboard, Figure 5-2, has four major key areas: the typewriter keypad, the
numeric keypad, the cursor keypad, and the function keys. Alphanumeric text can be entered
using the typewriter and numeric keypads as needed. The cursor keypad can be used to move
the cursor up/down a line or left/right to the next character positions. The function keys of
the kevboard map to the softkeys on the HP 8711 front panel.

Developing Programs 5-5

FUNCTION KEYS

. — " ——— o —— 1 et i i, . e . ettt o . . it o e e L T2 ,_____________

[EassEnasEREREC ?;«e@c}u CO0)
OOCCoO00C0000)| 1001 0000 |
(OO L e 1000
0000000000 & 000,
O CC sl bcoljlessll]

—— e —— e ——————— | e —— s

Figure 5-2. The PC Keyboard

Connect the keyboard to the rear panel DIN connector of the HP 8711 with the power off.
Turn on the power, res nd load the IBASIC program to be edited. Select
the (SYSTEM OPTIONS } menu and use the cursor keypad to position the
cursor within the program for editing operations. The Page Up and Page Down keys on the
keyboard scroll through the program quickly and easily.

Inserting Lines

Insert one or more program lines above an existing line by placing the cursor on that line
and pressing (_shift) + (nsert } on the keyboard (press both keys simultaneously). This key
combination functions as a toggle to turn insert mode on and off.

As an example, assume you want to insert some lines between two adjacent program lines
numbered 90 and 100. Place line 100 in the current line position and press ((shift J -+ (Insert).
The program display “opens” and a new line, number 91, appears between line 90 and line
100. Enter the inserted line and another inserted line, number 92, will appear. If, after
continuing to enter lines in this manner, the inserted line number increments to 100, then the
current line 100 will be renumbered one higher to accommodate the inserted line.

To stop inserting lines either press (snift } + (insert) again or use the cursor keys to move to
another program line. Make sure you have entered any changes to yvour final inserted line
before exiting the insert mode. Remember any changes you have made to the current line will
be lost if you move the cursor to another line without pressing (_Enter).

Editing Lines

Use the cursor keypad on the kevboard to move around the program for editing. The left and
right arrow keys move within a program line while the up and down arrow keys move between
lines. The alphanumeric keypad on the keyboard can be used for entering or editing text.
Another key that is useful is the key, which deletes the character highlighted by the
CUrsor.

When you finish editing or changing 2 program line, store it into the program by pressing
on the keyboard. The computer checks the line for syntax errors and converts letter

5-6 Developing Programs

case to the required form for names and keywords (IBASIC commands;. If no errors are
detected, it then stores the line in the program buffer.

Entering Program Lines

When you finish entering or changing a program line, to store it into the program bnﬁer you
must ENTER it in one of four ways:

1. Use the key on the front panel of the analyzer.

2. Use the
3. Use the key on the external keyboard.

4. Use the function key on the keyboard ((Fe_}) that represents the

The computer checks the line for syntax errors and converts letter case to the required form
for names and keywords (IBASIC commands). If no errors are detected, it then stores the

line.
Note If you edit or enter text on the current program line and then move off the
I line without pressing ENTER, all editing on the line will be lost.

Editing from the Front Panel

Use the step keys to move the cursor up and down the lines in the program. When the cursor
is located at the beginning of a line you want to change, use the knob to position the cursor
within the line.

Character Entry

The character entry ment and the associated Jabel window are activated by pressing the
softkeys. The knob and step keys now move the cursor in

the label window.

Use the knob or step keys to move the label window’s cursor until it highlights the desired
letter or keyword and press Continue editing until the line is correct.

Press . The computer checks the line for syntax and then stores it in the program if

to return to the edit menu.

the syntax is correct. Pres

The character entry menu provides the following softkeys:

Developing Programs 5-7

Inserts the character or word highlighted by the label window
cursor at the position marked by the program cursor.

Inserts a space at the position marked by the program cursor.
Deletes the character highlighted by the program cursor.
Deletes the last character before the program cursor.

Enters the edited program line.

Returns to the edit menu and de-activates the label window.

The Label Window

The label window is a scrolling list of the most common characters, symbols and keywords
used in IBASIC programming. It contains the uppercase alphabet, the numbers 0 to 9,
symbols such as single and double quotation marks, parentheses, signs for mathematical and
string operations as well as numerous other characters and symbols. It also contains the
following IBASIC keywords:

ABORT ENTER NoT
ASSIGN FOR QUTPUT
BIT G010 PAUSE
CALL IF PRINT
CLEAR INPUT SUB
DATA INTEGER SUBEND
DIN LIST THEN
pIs?P LOCAL TO

EED REXT WALT

Inserting Lines

To insert one | lines above any existing line, place the cursor on the existing
line and press .. This causes the cursor to move to a new line that appears
above the existing one. Enter and store the inserted line and another inserted line will appear.
Remember, each line must be ENTERed or any changes will be lost when the cursor is moved
to a different line.

Removing Program Text

You can remove individual characters or entire lines from within the editor.

Deleting Characters

The :
to the left one place. Repeatedly pressing

softkey removes the character under the cursor and moves all characters

ar will cause text to the right of

the cursor to be removed one character at a time. The | oftkey functions
the same in both the line number and program statement used in the line
number field, it deletes only line numbers to the right of the cursor (not program statement
characters).

5-8 Developing Programs

When using an external keyboard there are other keys that perform the same function as the
at softkey. These are the kev in the cursor keypad and the function key
aps to the appropriate softkey, for the edit menu or for the character entry

Another way to remove text on a line is by backspacing. Pressing the (= /=) hardkey or the
softkey on the front panel of the HP 8711 removes the letter to the left of the .
cursor and moves the cursor {and all characters to the right of the cursor) one space to the
left. The function key or the key on the typewriter keypad of the external
keyboard perform the same function. When the cursor is on a line number, using backspace
simply moves the cursor back one position without deleting the number.

Deleting Lines

softkey allows vou to remove the current program line. When the

current program line disappears, all subsequent lines in the display move up one line, but
are not renumbered. The cursor maintains its column-relative position on the next highest
numbered line.

‘ s pressed when the cursor is on the last program line, the line text is
removed but the line number remains with the cursor resting in the first column of line. This
puts the editor in insert mode on the last line of the program (see “Inserting Lines”). (To get
out of insert mode, simply move the cursor up one line.)

Pressing will NOT remove a subprogram line with the SUB keyword in it
unless all program lines belonging to that subprogram have already been deleted. A block
of program lines can be deleted by executing the command DELETE x,y from an IBASIC
command line (where x is the first line number in the block and y is the last line number).

When using an external keyboard there are other keys that perform the same function as the
: softkey. These [Delete J in the cursor keypad and the function

key () that maps to th

Recalling a Deleted Line

The last line that was deleted usin s buffered in the analyzer. To recall this

line press the softkey or on an external keyboard. Press
restore the line to the program.

Renumbering, Copying, Moving, and Indenting Lines

If you want to change the line number of an edited program line, simply move the cursor to
the line number field and enter the line number you want. Changing the line number causes
a copy operation, not a move. Therefore, if you only want to move the line, change the line
and then delete the original line. If you want to create an edited

copy of the current line, edit the line and then change the line number and press
The edits will only appear in the copied line.

If you are inserting a program line and you change the line number, the line will move to its
new location when you ENTER it. The editor will remain in msert mode at the new location
in the program.

Developing Programs 5-9

You will notice that when the cursor is in the line number field, entries operate in an overtype
fashion rather than in the insert fashion as in the text portion of the program line. Also

the (=) (backspace) key simply moves the cursor over line numbers without deleting the
number.

Note To renumber the entire program, [BASIC supports the RENumber command
i — BUT — you need an external keyboard to execute it. The command can
ﬁ be executed by following the steps listed below.

1. EXIT the edit mode by pressing -
(SYSTEM OPTIONS J

menu i1s active.

2. Partition an IBASIC display as described next in this chapter.

3. Enter the command REN x,y (where X is the new beginning line number
and y is the increment) from the command line of the IBASIC display.

4. Another way to “renumber” program lines with an external keyboard is
to use the COPYLINES and MOVELINES commands. Use the INDENT
command to make your code more readable.

Using

Pressing the (SYSTEM OPTIONS) IBASIC = IBJ - softkey (on an
external keyboard) allows you to allocate a part nalyzer’s display to be used
alternately, to return any allocated partition to the analyzer. The
menu contains the following softkeys:

()
()
(=)
(E)
(&)

The HP 8711 display is divided into two small partition areas {Upper and Lower) or one large
area (Full), which encompasses both the Upper and Lower partition areas.

All screen output commands, such as PRINT and DRAW, require that you allocate a partition
of the screen in order to view the nd. This can be performed in your
program or interactively using the softkey.

5-10 Developing Programs

Allocating display partitions can be accomplished from within your program using the SCPI
mnemonic "DISP:PROG" and specifying the parameter UPPER, LOWER or FULL. For example the
statement

OUTPUT 800; "DISP:PROG FULL"

allocates the entire display, corresponding to selecting | from the

menu.

An IBASIC display partition cannot occupy the same location as a measurement channel
display. When an IBASIC display is partitioned it limits the amount of the CRT available
to simultaneously show measurement data. Table 5-1 shows the
softkeys, their corresponding SCPI mnemonics, their functions and the measurement data that
can be viewed when the display partition is allocated.

Table 5-1. IBASIC Dispiay Partitions

SOFTKFEY SCPI MNEMONIC ALLOCATES VISIBLE DATA
DISPlay:PROGram OFF No Display Channels ! and 2
DISPlay:PROGram FULL The Whole Display None
DISPlay:PROGram UPPer Upper Channel Area Channel 2 only
DISPlay:PROGram LOWer Lower Channel Area Channel 1 only

Note When the UPPER or LOWER display partition is selected, the measurement
display automatically selects the “split-screen” format. This format uses half
ﬁ of the CRT to display each channel’s measurement data. Channel 1 data is

always shown on the upper half of the screen, channel 2 data is shown on the
lower half. The split-screen format allows measurement data to be viewed
simultaneously with IBASIC program output. For more information about the
split-screen format, or other parts of the measurement display, refer to the HP
8711 Cperating Manual.

Most display allocation should be handled by your program via the SCPI mnemonics. These
softkeys are best utilized during program development.

An IBASIC partition can be very useful during program development. It can be used to
view program output, to query variables and to execute IBASIC commands (such as GET and
REN) outside of your program. Figure 5-3 shows the relative size and location of the different
IBASIC partitions and their command and display lines.

Developing Programs 5-11

UPPER paritition

FULL partition Display 1102 o e e

LOWER partition
Display line = 7 T T T T Bieplay tire __ __ __
Commang line Command iine

Figure 5-3. The IBASIC display partitions

More information about using display partitions within a program is available in chapter 7,
“Graphics and Display Technigues.”

Using
Pressing the [System Optionsi

allows vou to clear the program buffer,
program.

: softkey (F6 on an external keyboard)
ocate memory for program use, or secure your

s Clear Program (F1)
¢ Memory Size (F2)
o Secure (F3)

erases the current program buffer and frees all memory
currently allocated. Memory size (see below) is reset to 8192 bytes. You will be prompted to
ensure you do not accidentally erase the program.

allows you to set stack memory to be used by your program. At power up
it is set by default to 8192 bytes. However, when a program is {RUN}, the 8711 will try to
automatically set the Memory Size large enough to accommodate the program’s Stack and
COM memory requirements.

For some programs the antomatic memory sizing will be too small and you will get the
message:

Error 2 in 100 Memory overflow

When this error occurs, you must manually set the % to the value in bytes
required by your program, up to the available memory in your system.

5-12 Developing Programs

is used to secure lines of your program. Secured lines can not be listed, edited, or
displayed. After you press this key you will see:

e Start Line # (softkey 1)
¢ End Line # (softkey 2)

s Perform Secure (softkey 4)

After you have set the start and stop line numbers, execute the .

operation.
Caution Once you have secured your program lines, there is no way to remove the
security. Do not secure the only copy of your program. Make a copy of your
0 program, Secure the copy, and keep the original in a safe place. This prevents

the upauthorized users from listing your program.

Developing Programs 5-13

Debugging Programs

The process of creating programs usually involves correcting errors. You can minimize these
errors by using keystroke recording for measurements and other front panel sequences and by
writing structured, well-designed programs.

Of course bugs can and do appear in even the best designed programs and IBASIC contains
some features that can help you to track them down. Some IBASIC capabilities useful

for program debugging are simple and, used properly, can be very helpful. Some of these
capabilities are:

s RUN or CONTINUE your program
e STEP through your program, executing one line at a time
» Display the last error encountered in your program

¢ Examine program variables

By examining the values assigned to variables at various places in the program, you can get a
much better idea of what is really happening in your program.

By inserting a PAUSE statement in your program you can pause the program at any line
and then examine the values of variables at that point in the program. You can then press
in the { SYSTEM OPTIONS } meny 10 resume operation to the next
PAUSE statement (or the program end).

These capabilities can be used together to effectively examine the program’s operation and
solve your particular problems.

Note Most of the debugging techniques described in this chapter make use of an
external keyboard. The HP 8711 and the IBASIC editor work with PC-AT
% compatible keyboards (US only) that have a standard DIN interface. Foreign

language keyboards will not cause an error, they simply will not be recognized
as different from the US keyboard. A keyboard can be ordered with the HP
8711 network analyzer by ordering option 1CL.

Debugging Programs 6-1

Setting Breakpoints

A common method of debugging a program involves the use of breakpoints. A breakpoint
causes the program to stop before executing a specified line so that you can examine the
program state at that point. In IBASIC this can be accomplished by inserting PAUSE
statements in the program code. Note that PAUSE is one of the IBASIC keywords included
in the editor’s label window (described in chapter 5, “Developing Programs”). When the
program is then run, you can use the command line to check or change variable values.

Execution of the program can be resumed in one of two ways.

s Press (on an external keyboard) to execute next program line.

¢ Press ({F2) on an external keyboard) to continue the program until the
next PAUSE, STOP or END statement is encountered.

Examining Variables

To examine a variable it is ne to pause the program. Pausing the program can be -
accomplished by pressing the softkey { on an external keyboard) that is
available when a program is runaning, or by inserting a PAUSE statement in your prograim.

A command Ene is becomes active when an IBASIC program is paused or stopped and

an IBASIC display partition is present. (For information on creating an IBASIC display
partition, see “Using IBASIC Display” in chapter 5, “Developing Programs.”) You may also
activate the command line when no IBASIC window is partitioned by pressing the key
on the external keyboard. A cursor will appear in the lower left portion of the screen when
the command line is active. Strike the key again to de-activate. Once the command
line is active, a variable can be examined in two ways. Both methods require the use of an
external keyboard.

1. Enter the variable name (without a line number) on the command line. This results in the
value assigned to that variable being shown in the display line of the IBASIC window.

2. Execute the command PRINT Value from the command line (where Value is the name of
the variable being examined). This results in the value assigned to that variable being
shown on the print screen of the IBASIC window.

To examine a variable without accessing a command line it is necessary to add the statement
PRINT Value {or DISP Value) to the program before the PAUSE statement that temporarily
stops the program. PAUSE, PRINT and DISP are all keywords that are included in the IBASIC
editor’s label window (see chapter 5, “Developing Programs” for a description of the label
window).

6-2 Debugging Programs

Note An IBASIC display partition must be active to view the results of a PRINT
i statement or to access a command line. The display line (accessed with the
”’? DISP command) is available even when no IBASIC display is present.

Examining Strings

Enter string variables as you would any other variable. Any string variable entered without
delimiters will display as much of the string as will fit on the display lize of the screen {up to
58 characters).

To select only a section of a string, use the IBASIC subsiring syntax (see the “HP Instrument
BASIC Programming Techniques” section of the HP Instrument BASIC Users Handbook). For
example, to examine the 7 character substring starting at the second character of AS enter
A$12;7] ot the command line or execute the command PRINT A$[2;7].

Examining Arrays

To select an array to be examined you can either select individual elements or the entire array.
For example the entry:

I_array(i),I array(2),I_array(3)
selects the elements 1 through 3 of the array I_array to be displayed.

You may select an entire array to be examined by entering the array variable name and
specifying a wildcard () for the element (such as I_array(x)). If I.array(20) is an integer
array, and the first and second elements are set to 100, entering I_array(*) would display:

100 100 © 0 0 O O ¢ © 00 0 0 6 0 0 0 0 ¢ 0

Individual array elements (e.g., I-array(17)) can also be specified in the same way as any
other single variable.

Displaying the Last Error Encountered

It is sometimes useful to review the last error encountered by a program that is being run.
This is done from the command line by examining the value assigned to the variable name
ERRM$. This value will include the error number and message of the last error encountered by
the program.

An additional method of displaying the error message is to use an error trapping subroutine.
For example, insert the following line at the beginning of a program.
OF ERROR GOSUB Errormsg

The subroutine Errormsg should then be included at the end of the program (after execution
is stopped but before the END command).

Debugging Programs 5-3

100 Exrrormsg: !
110 DISP ERRM$
120 PAUSE
130 RETURN

The error message is automatically shown on the display line of the IBASIC window and
program execution is paused when an error message is encountered.

6-4 Debugging Programs

Graphics and Display Techniques

The HP 8711 has two measurement channels which can be displayed simultaneously. The
instrument’s screen can be split into two trace areas for this purpose (upper for channel 1 and
lower for channel 2). Additionally, the two measurements can be overlaid onto one full size
screen (the default setting).

IBASIC programs have the ability to allocate portions of the instrument’s display for program
output, including text and graphics. This section provides a description of the various
programming techniques used to do both. Any of the three measurement display areas,

called display partitions, can be used by an IBASIC program. These partitions are shown in
Figure 7-1.

BCran LiTramseission LG MAg 10.0 af Ae? 000 &8 BChan 1:fransmission Lo Man 10,0 Bi fet .00 &8
benan :Reflection Log Meg 5.0 M7 Raf 0.00 oF 7
o
e
-1 ./\ / ~
20 =
[¥
-a0 Al A0,
/ { Contor 175,000 M4t Span 300,000 M
~40 \ Dohan 2:Refisdtion Lf 5.0 oBy Ref 0.00 b
-50 /
ik
/ i v
-7 !
N ’) i
~BO T i
T
Contor 375.000 bt Spar BUG. 200 M Cenler 175000 Mz Sper 300.000 MHz

Figure 7-1. Display partitions on the HP 8711

In this manual the termu Measurement Window is used to refer to a part of the instrument’s
display when it is being used to show measurement data. The part of the instrument’s display
allocated for use by IBASIC is referred to as an IBASIC Window.

Using the Partitions

Many IBASIC commands {such as PRINT, DISP, CLEAR SCREEN, MOVE, DRAW and GCLEAR})
require a CRT as an output device. These commands output data to the screen by writing to
a screen buffer. Since IBASIC programs share all the hardware resources with the instrument,
the display must be shared for instrument and program use.

Graphics and Display Techniques 7-1

In order to view this output buffer, 2 port:on of the display must be released from

the instrument. W

{ SYSTEM OPTIONS)}

can do this manually, using the
softkey menu. To do this within 2 running

prograr requires sending a command to the analyzer both to borrow a part of the display and
again to return it for the instrument’s use.

This process is called the allocation of display partitions. Manual allocation of display
partitions is described in chapter 5, “Developing Programs.” Table 7-1 below includes a
summary of the available partitions, their locations and the SCPI mnemonic used to select
each partition.

Table 7-1. IBASIC Display Partitions

SOFTKEY SCPI MNEMONIC ALLOCATES
() DISPlay:PROGram OFF No Display

()

DISPlay:PROGram FULL

The Whole Display

DISPlay:PROGram UPPer

Upper Channel Area

()

DISPlay:PROGram LOWer

Lower Channel Area

Allocating Partitions

To request a display partition from the analyzer for use by an IBASIC program, send the
instrument the corresponding SCPI mnemonic. "DISP:PROG UPPer" allocates the upper
partition, "DISP:PROG LOWer" allocates the lower partition, and "DISP:PROG FULL" allocates
the full screen partition.

For example, to print a message to the upper partition area, you might use a program segment
like this:

30 ASSIGN QHp8711 TO 800

40 QUTPUT @Hp8711;"DISP:PROG UPPer”
50 CLEAR SCREEN

80 PRINT "This is the upper partition”

To be sure that you are not writing to a partition that has not yet been assigned, you should
include a WAIT statement or, even better, add a SCPI query command followed by ar ENTER
statement to synchronize the program with the instrument. The previous example might then
look like this:

30 ASSIGK eHp8711 T) 800

40 QUTPUT @Hp8711;"DISP:PROG UPPer”
42 (OUTPUT @Hp8711;"DISP:PROG?"

44 ENTER @Hp8711;Screen$

46 IF Screen$<>"UPP” THEN GOTO 42

50 CLEAR SCREEN

60 PRINT "This is the upper partition"

The mnemonic DISP :PROG? (line 42 above) requests the instrument to send the current
partition status. The ENTER statement on the next line reads that status and then continues.

7-2 Graphics and Display Techniques

De-Allocating Partitions

To return the display partition to the analyzer for use as a measurement screen, use the
“DISP:PROG OFF" mnemonic. This should be done before the termination of any program that
has allocated a display partition. It may also be required within the program to allow the user
to view instrument measurement data. The following example demonstrates this command:

830 {UTPUT @Hp8T11;"DISP:PROG CFF"

Operation with No Partition

IBASIC programs can also access the analyzer’s display when no partition has been allocated.
This can be done through the use of certain areas of the screen. One of these areas is to the
right of the measurement display. This area is reserved for softkey labels. It can be accessed
using the OF XEY statement.

A second area is a display line (or command line) that appears when no part of the display

is allocated for use by IBASIC. This display line, which is located at the lower left corner of
the active channel graticule, appears when needed by the INPUT or DISP commands or when
activated. To activate the command line, press on an external keyboard. Figure 7-2
shows an example of the use of this display line. When the INPUT command is being used, the
IBASIC editor’s label window and character entry softkey menu appear. Refer to chapter 5 5,
“Developing Programs,” for a description of the IBASIC editor.

PBCDEF GHLJKLMNOPGRS TUVWAYZ0123456789 /¥=<>()a" " * . /2:: []]
7 PChan Z:Reflection Log Mag 10.0 48/ Ref G.00 dB
chi:Mkri 175.760 MHz
a8 -0.59 48
Chz ¥
Ch2:Mxrl 175,760 MHz
4200.00 dB

1

- Y
REA
[

T S b L e

w“ , L A
VRl N i I
]

-0 ?
-7
~80 = P 5
Enter|Start Freguency (MHz) !
Abs
Start 0.300 M-z Stop 1 300.000 Mz

Figure 7-2. Using INPUT with no dispiay partition

Graphics and Display Technigues 7-3

In addition to the commands described above, the HP 8711 has “User Graphics” commands
that can write to any of the display partitions. These commands can be used to write to
measurement windows as well as the IBASIC window. These commands are described in the
“SCPI Graphics Commands” section of this chapter.

Displaying Text

Most of IBASIC’s text capabilities are covered in detail in the “HP Instrument BASIC
Programming Techniques” section of the HP Instrument BASIC Users Handbook. The PRINT
statement works the same way in every display partition. Information is printed starting at
the top left corner of the current partition and continues until the display line of the partition
is reached. The screen then scrolls up to aliow additional lines to be printed. Figure 7-3 shows
the different display partitions and the location of text printed to them. Note that causing the
screen to scroll does not affect any graphics displayed on the screen, since text and graphics
are writter to different planes of the display.

All partitions have a width of 58 characters. The height varies according to partition. Both
upper and lower partitions contain 10 lines, while the full partition contains 22 lines.

This information is useful if you are using the PRINT TABXY statement to position text. For
example, the following program segment prints a message in the center of the full partition
(assuming it has been allocated earlier in the program).

100 Maxlines=22
110 Tabx={58-LEN("This is CENTERED text."))/2
120 PRINT TABXY(Tabx,Maxlines/2);"This is CENTERED text."

This 1s CENTERED text,

(L.22) (58,22

Figure 7-3. Printing to a display partition

7-4 Graphics and Display Techniques

A useful technique to get text onto the screen quickly is to write your display message to a
long string using the OUTPUT statement, and then print the string to the screen. This speeds
up screen display time considerably. The following program segment demonstrates this:

60 DIM Temp$[100],Big$[2000]

70 OUTPUT Temp$;"This is the first line of text”
80 Big$=Big$&Temp$

90 OUTPUT Temp$;"This is the second line of text"
100 Big$=Big$&Temp$

110 PRINTER IS CRT; WIDTH 2000

120 PRINT Big$

You can also print to the screen using the OUTPUT statement in conjunction with the display
address (1). For example, line 150 below writes a string to the screen.

150 QUTPUT CRT;"0OUTPUT 1 WORKS WELL TCO"

Graphics Initialization and Scaling

In 2ll partitions, display coordinate 0,0 is at the bottom left corner and clipping occurs
automatically if the X,Y coordinate exceeds the displayable range of the current partition.
Figure 7-4 shows the different partitions and the pixel dimensions (GESCAPE values) for
each.

After a GINIT command, the display is dimensioned as 100 GDU’s {Graphical Display Units)
high and 245 GDU’s wide (assuming full partition). This gives a RATIO result of 2.45 and
provides the same results as issuing a WINDOW 0,245,0,100 command. In order to prevent
circles from appearing oval shape, this ratio shouid be maintained. You can also issue a
WINDOW 0,861,0,351 command. This will maintain the same ratio but the display will now
be dimensioned in actual pixel unit. This may be more useful than the default GINIT values
since fractional display units are not needed, allowing integers only to be used; thus speeding
execution. These are also the same values that are returned by utilizing the GESCAPE
command (see BAR program example). The GESCAPE command will always return the
current pixel dimension sizes. Because the results of this command can vary drastically

with partition size, you must first partition the display BEFORE executing the GINIT and
GESCAPE commands.

Note Upon power up, the default display coordinates are 0,861,0,351 and will
i remain that until a GINIT is performed. It is recommended that a GINIT
@ command always be part of any graphics program and that it be executed

only after the display partition is set.

{0351} {861,551} (0.759} {61,158}
UPBER dispiay portition

(0.0) £861.3)

FULL dizplay pariition

{2,157} {883.357)

LOWER disptay podition

(0,0} (851,03 (5.0} (851,0)

pd€le

Figure 7-4. Pixel Dimensions with Available Display Partitions

Graphics and Display Techniques 7-5

Using Graphics

IBASIC’s graphics commands are easy to understand and use. You can use the MOVE
statement to move the “pen” to a specific pixel location (without drawing) and then draw a
line from the current pen location to another pixel coordinate using the DRAW statement. The
GCLEAR statement removes all graphics.

The PEN command provides an easy method of erasing lines drawn by the DRAW command.
When PEN 1 is issued (the default state), all DRAW commands act normally, drawing a line
with the full intensity. When PEN 0 is issued, all DRAW commands erase any pixels their path
encounters. Where there are no lines in the path, no change is visible. As an example of using
the MOVE and DRAW commands, the following statement moves the logical pen to a point 100
units to the right of, and 150 units above, the lower left corner of the display:

100 MOVE 100,150

This statement then draws a line to coordinates (200,10):
11¢ DRAW 200,10

Finally, these two statements erase the previously drawn line:

120 PEN O
13C DRAW 100,150

As with text output, the program has to be assigned a partition before graphics can be
viewed. Text and graphics output to a partition appear on separate planes.

Drawing Figures

Some IBASIC keywords listed below may be used to simplify drawings ard setup diagrams.
See also, the paragraph below titled “Graphics Exceptions™.

POLYGON - Draws all or part of a regular polygon
RECTANGLE - Draws a rectangle

LABEL - Produces alphanumeric labels

CSIZE - Sets size and aspect ratio of labels

LDIR - Defines the angle at which a label is to be drawn
LORG - Defines the relative origin of a label

These keywords are used in the “BAR” program example listed in Chapter 9, “Example
Programs”, and on the IBASIC Example Programs Disk. The keywords appear in the
subprograms ‘Box’, ‘Circle’, and ‘Label’ described below.

1620 ! Draw a box in the active IBASIC partition

1621 ! Xpos,Ypos specify the CENTER of the box

1622 ! Xsize,Ysize are width and height dimensions

1623 ! 3¢ is a scaling factor for the figure being drawn
1624 ' 1.79 is a correction factor used by the 8711 only
1630 Box:SUB Box(Xpos,Ypos,Xsize,¥size)

7-6 Graphics and Display Techniques

1640 COM /Scale/ Sc,INTEGER X,Y

1650 MOVE X+(Xpos-Xsize/2)*Sc,Y+(Ypos-Ysize/2)#*Sc

1660 RECTANGLE Xsize*Sc,Ysize*Sc+1.79 !8711 Pixel H:W Ratio
1670 SUBEND

1681 ! Draw a circle in the active IBASIC partition
1682 ! Xpos,Ypos specify the center of the circle

1683 ! Radius is the size of the circle

1684 ! Sc is a scaling factor for the figure being drawn
1680 Circle:SUB Circle(Xpos,Ypos,Radius)

1700 COM /Scale/ Sc,INTEGER X,Y

1710 MOVE X+Xpos*Sc,Y+Ypos*Sc

720 POLYGON Radius#Sc,16,16

1730 SUBEND

1890 ! Creates a label in the active IBASIC partition

1891 ' Text$ is the alphanumeric label
1892 ! Xpos,Ypos is the position of the label
1893 ! Lorg references the label orientation to Xpos,Ypos

1895 ! Pen is pen number (0 erases)

1896 1 Sc¢ is a scaling factor for the figure being drawn
1900 Label :SUB Label(Text$,Xpos,Ypos,Size,Lorg,Ldr ,Pen)
1910 COM /Scale/ Sc,INTEGER %,Y

1920 LORG Lerg

1930 LDIR Ldr

1940 CSIZE Sizex*Sc,l

1950 MOVE X+Xpos#*Sc,Y+Ypos*Sc

1960 - PEN Pen

197¢ LABEL Text$

!
!
!
1894 ! Ldr is the angle in which the label will be drawn
I
t

1980 PEN 1
1990 SUBEKD
2000 !

The following program displays a “HELP” screen and demonstrates many of the techniques
discussed so far. Running this program produces the screen display shown in Figure 7-5.

10 DIM A$[58],String$ [1000]

20 ASSIGN eip8711 TO 800

30 OUTPUT @Hp8711;"DISP:PROG FULL; *WAI"

40 GINIT

50 GCLEAR

60 MOVE 0,89

70 RECTAKGLE 200,14

80 PRINT TABXY(24,2);"HELP"

90 QUTPUT A$;"This program demonstrates how to print several”
100 String$=String$zi$

110 QUTPUT 4$;"lines of text at one time. This method offers"
120 String$=Stringda$

130 OUTPUT A$;"the fastest possible print speed.”

140 String$=Stringdi$

Graphics and Display Techniques 7-7

150 PRINTER IS CRT;WIDTH 1000 ! Prevent auto cr/lf
160 PRINT TABXY(1,5);String$
170 END

HELP

Tnis program dermonyirotes how to primt severcl
fines of text ol ons fime, Ihis method offers
the fastest possible print speed.

pdElo

Figure 7-5. “HELP” program output

GRAPHICS EXCEPTIONS

The following graphics commands do not conform to the keyword description found in the HP
Instrument BASIC Users Handbook:

VIEWPORT - Does not create isotropic units that are physically square. Does not soft clip
the display area.

CLIP - The HP 8711 does not support graphics clipping.
SHOW - Does not create isotropic units.

POLYLINE, POLYGON, RECTANGLE, RPLOT - The HP 8711 does not support the
FILL or EDGE options. Also see next paragraph.

GRID, RECTANGLE, POLYGON, and POLYLINE scaling differences

When the display is initialized using GINIT, the display will be scaled to a height of 100
GDU’s and 2 width of 245 GDU’s. The ratio is 2.453 and the pixel height-to-width ratio is
fixed at 1.79 (non square pixels). This can cause scaling difficulties if not well understood,
and will produce different results than is seen on HP BASIC computers or workstations. The
following examples should help clarify some scaling issues.

After GINIT, performing a GRID 10,10 command will produce a grid array 10 high and 24.5
wide. The individual grids will be rectangular {taller than wide). To produce square grids,
perform a GRID 10*1.79,10 command. This will produce square grids; 10 high and just under
14 wide. If you move the starting point to approximate center (MOVE 120,50} and request a
square 55 wide by 35 high {RECTANGLE 55,55), the HP 8711 will automatically scale this
$0 as to appear square. The width will be 55 GDU’s but the height will be 55/1.79 or 30.7
units high. This will appear square and is quite a different result thar would be obtained by
attempting to plot 2 “square” 55 units on each side; this would instead, produce a rectangle.

A similar scaling is done with the POLYGON command. If a POLYGON 80 command is
given, the HP 8711 will produce a circle with a horizontal radius of 80, but with a vertical
radius of 44.7 GDU’s; even so, it will appear circular.

7-8 Graphics and Display Techniques

The following is a simple rule to remember with GINIT values (or the equivalent WINDOW
ratio) on the HP 8711: The HP 8711 will produce circles with the POLYGON/POLYLINE
command and squares with the RECTANGLE command (assuming equal x,y) in all cases.
However, the radius or width (in GDU’s) will be accurate only in the horizontal axis and wili
be 1.79 times LESS in the vertical axis.

Try this simple program to demonstrate the above examples. Un-comment line 60 and
comment out line 50 to show the difference in the two GRID statements. The rectangle may
be hard to see since it will partially lie on a gridline; its lower left corner is at the centered
dot.

10 ASSIGH @Hp8711 TO 800
20 OUTPUT @Hp8711;"DISP:PROG FULL"

30 GINIT

40 GCLEAR

5C GRID 10,10 ! makes rectangular grids
60 ! GRID 10%1.79,10 ! makes square grids

70 MOVE 120,50 ! move to center

80 POLYGON 1 ! make small dot

90 RECTANGLE 55,55 ! makes square
100 POLYGON 80
110 EED

Labeling with Different Partitions

The LABEL command may be used to label graphs, however, the following should be noted.
Labels that may be of the correct size for a full screen partition will appear half as big if a
GINIT is performed after the 8711 has been set to either the upper or lower half partition.
This is because the CSIZE command scales according to display height, not width. Since
the display height is one-half, the character size will also be one-half. Labels that are scaled
properly for full screen displays will not be scaled properly for half screen displays and
vice-versa.

HP 8711 User Graphics Commands

In addition to the commands described earlier in this chapter, there are several SCPI
mnemonics that can be used to create graphics and messages on the display of the HP 8711.

These commands are instrument specific mnemonics, not standard IBASIC commands. They
are also different from the previously described IBASIC commands in that they do not require
an IBASIC display partition. This means that they can be used to write or draw directly to a
measurement window.

These commands, listed in Table 7-2 are SCPI mnemonics and are programmable from an
external controller as well as from IBASIC. The commands are of the form

DISPlay:WINDow[1[2]110] :GRAPhics :<command>.

The number specified in the WINDow part of the command selects where the graphics are to be
written.

Graphics and Display Techniques 7-9

WINDowi draws the graphics to the channel 1 measurement window.
WINDow2 draws the graphics to the channel 2 measurement window.
WINDow10 draws the graphics to an IBASIC display partition.

Note When SCPI graphics commands are used to write directly to a measurement
i window they write to the static graphics plane (the same plane where the
% graticule is drawn). There is no sweep-to-sweep speed penalty once the

graphics have been drawn.

Table 7-2. SCPI graphics commands

SCPI Command

Function

DISP:WINDE1i2110]

:GRAP:CIRC <radius>

Draws a circle of the specified radius (in pixels)
centered at the current pen location using the
current pen color

DISP:WIED[112110]

:GRAP:CLEAR

Clears the user graphics

DISP:WIND[112]|10]

:GRAP:COLOR <num>

Sets the color of the user graphics pen — choose
from 1 to draw, 0 to erase

DISP:WIN¥DLt|21103

:GRAP:DRAW <x>,<y>

Draws a line from the current pen location to the
specified pen location (in pixels) using the current
pen color

DISP:WINDI1l2i10]

:GRAP:LABEL <text>

Prints a label with lower left corner at the current
pen location using the current fent type

DISP:WINDL1l2!10]

:GRAP:LABEL:FONT

Sets the text font —choose from BCOLD, SLANT,
SMALL, NORMAL, HBOLD, ... {use of H before a
font type highlights the text)

DISP:WIND{1i2110]

:GRAP:MOVE <x>,<y>

Moves to the specified location (in pixels)

DISP:Winpilizii0]
<xsizer,<ysize>

:GRAP :RECT

Draws a rectangle of the specified size {(in pixels)
with lower left corner at the current pen location
using the current pen color

For more information about the HP 8711’s user graphics commands, refer to the HP-IB
Programming Guide and the HP-IB Command Reference. To see graphics example programs,
refer to chapter 11, “Example Programs”.

7-10 Graphics and Dispiay Techniques

Interfacing with External Devices

This section describes the techniques necessary for programming the HP-IB interface. It
describes how this interface works and how to use it to control or interface with systems
containing various HP-IB devices. It also describes how to interface with external devices
using the serial and parallel interfaces.

The HP-IB interface is Hewlett-Packard’s implementation of the IEEE-488.1 Digital Interface
for Programmable Instrumentation. The acronym HP-IB stands for “Hewlett-Packard
Interface Bus,” and is often referred to as the “bus.” The interface is easy to use and allows
great flexibility in communicating data and control information between an HP Instrument
BASIC program and external devices.

IBASIC is essentially an HP-IB instrument controller residing inside an instrument. It uses
the instrument’s HP-IB interface for external communication and an internal HP-IB interface
to communicate with the instrument. This unique arrangement presents a few differences
between IBASIC’s implementation of HP-IB control and the standard HP IBASIC for
Windows or HP Series 200/300 BASIC controllers. A description of the interaction of IBASIC
with the host instrument and the external HP-IB interface is given in the section entitled
“The IBASIC HP-IB Model.”

Communication with Devices

HP-IB Device Selectors

Since the HP-IB allows several devices to be interconnected, each device must be uniquely
identified. Specifying the select code of the HP-IB interface (such as 7 or 8) to which a device
is connected is not enough to uniquely identify each specific device on the bus.

Each device on the bus has a primary address that identifies it. This address can be set by
the user. It must be unique to allow individual access of each device. When a particular
HP-IB device is to be accessed, it must be identified with both its interface select code and its
bus address. '

The interface select code is the first part of an HP-IB device selector. IBASIC programs run
inside an instrument and communicate with it over an internal bus (interface select code 8).
IBASIC programs can also communicate with external devices using the instrument’s HP-IB
interface {select code 7).

The second part of an HP-IB device selector is the device’s primary address, an integer in
the range of 0 through 30. For example, to specify the device on the interface at select code

Interfacing with External Devices 8~1

7 with a primary address of 22, use device selector 722. Secondary HP-IB addressing is
also supported for those devices requiring it. These devices will have at least 5-digit service
selection such as 72201.

Since the HP 8711 is the only device on the internal interface, its primary address on that
interface is arbitrary and the instrument will respond to any primary address with a select
code equal to 8 (e.g., 800, 811, 822, etc.).

Note Fach device’s address must be unique. The HP 8711 is shipped from the
I factory with a primary address of 16. No other device on the bus should use
ﬁ the same address.

The procedure for setting the address of an HP-IB device is given in the
installation manual for each device. To set the address of the HP 8711, use the
softkey in the { SYSTEM OPTIONS menwu, or the
SCPI mnemonic SYST:COMM:GPIB: ADDR.

Moving Data Through the HP-IB

Data is output and entered into the program through the HP-IB with the OUTPUT and ENTER
statements, respectively. The only difference between the OUTPUT and ENTER statements for
the HP-IB and those for other interfaces is the addressing information within HP-IB device
selectors.

Examples

100 Hpib=7

110 Device_addr=22

120 Device_selector=Hpib * 100 + Device_addr
136 ¢

140 OUTPUT Device_selector;"FI1RTT2T3"

150 ENTER Device_selector;Reading

320 ASSIGE @Hpib._device TO 702

330 OUTPUT @Hpib.device;"Data message"
340 ENTER @Hpib_device;HNumber

440 QUTPUT 800;"SOURL:POW 10 dBm"

480 ENTER 724;Readings(*)

8-2 Interfacing with External Devices

General Structure of the HP-IB

Communications through the HP-IB are made according to a precisely defined standard (the
IEEE 488.1 standard). The rules set by IEEE 488.1 ensure that orderly communication takes
place on the bus. For more information about the structure of the HP-IB and the IEEE 488:1
standard, refer to the Tutorial Description of the Hewlett-Packard Interface Bus.

Devices that communicate over the HP-IB perform one or more of the following three
functions.

e Talk - send data over the bus
s Listen — receive data over the bus
o Control — contro! the exchange of data on the bus

The System Controller

The controller is a device that has been designated to control the communication occurring on
the bus. It specifies which device talks, which device listens and when the exchange of data
takes place.

An HP-IB system can have more than one device with the ability to control the bus, but only
one of these devices is allowed to control the exchange of data at any given time. The device
that is currently controlling the exchange of data is called the Active Controller.

One device must be able to take control of the bus even if it is not the active controller.
The device designated as the System Controller is the only device with this ability. To
designate the HP 8711 as the system controller use the

[SYSTEM OPTIONS

The system controller is generally designated before running a program and should not be
changed under program control. An exception to this is when an IBASIC program is running
on the HP 8711%s internal controller. If the IBASIC program controls other HP-IB devices,
the analyzer must be designated as the system controller.

A SCPI mnemonic SYST:COMM:GPIB:CONT <ON|OFF> can be used to make the HP 8711 the
systemn controller. Program execution should be carefully synchronized, using *0PC? and
waiting for a reply before any OUTPUT 7xx command is sent. {Refer to the “Synchronization”
section of the HP-IB Programming Guide for more information on the *0PC? command.)

Using the Serial and Parallel Ports

The HP 8711 has two additional ports that can be used to control peripherals, material
handlers or other devices, Active control of the HP-IB interface is not needed when these
ports are being used. These ports are a parallel port and a serial port for use with hardcopy
output to non-HP-IB printers and plotters.

In addition to the serial and parallel ports, there are also two BNC connectors on the rear
panel of the HP 8711. These connectors provide access (using TTL signal levels) to two
programmable bits.

o Limit Test Result bit — indicates the results of a pass/fail limit test
s User bit — to be used as needed (for example to use with a foot pedal)

Interfacing with External Devices 8-3

IBASIC programs can be used to directly control all of these ports and bits. This control can
be accomplished using the READIO and WRITEIO commands as described below.

WRITEIO

YRITEID

YRITEID

WRITEIOD

WRITEID

READIO
READIO
READIC

9,0

15,0

15,1

15,2

15,3

9,0
15,0
i5, 1

Outputs a byte to the serial port. The byte is output serially according to
the configuration of the serial port (baud rate and handshake settings).

Qutputs 8-bit data to the DO through 37 lines of the parallel port. D0 is
the least significant bit, D7 is the most significant bit. Checks the staius
lines for

Out of Paper

Printer Not on Line

BUSY

ACKNOWLEDGE

Sets/clears the “user” bit according to the least significant bit (LSB) of the
data writien. An LSB of | sets the bit high, while an LSB of 0 clears the bit.

Sets/clears the “limit test result” bit according to the least significant bit
(LSB) of the data written. An LSB of 1 sets the bit high, while an LSB of ¢
clears the bit.

Qutputs 8-bit data to the DO thru D7 lines of the parallel port. Do is the
least significant bit, D7 is the most significant bit. Does not check the
status lines.

Reads the serial port.
Reads the 8-bit data port, DO thru DY.
Reads the 8-bit status port

D0 - Acknowledge
D1 - Busy

D2 - Out of Paper
D3 —~ On Line

D4 — Printer Error

D5 — TTL Limit Test Result bit
D6 — TTL User bit

D7 — HP-1B System Controller

An example program, REPORT, demonstrating peripheral control over the parallel port is
provided in chapter 9, “Example Programs.”

8-4 Interfacing with External Devices

General Bus Management

The HP-IB standard provides several mechanisms that allow managing the bus and the
devices on the bus. Here is a summary of the IBASIC statements that use these control
mechanisms.

ABORT — abruptly terminates all bus activity and resets all devices to their power-on HP-IB
states.

CLEAR — sets selected (or all) devices to a pre-defined, device-dependent HP-IB state.

LOCAL — returns selected (or all) devices to local (front panel) control.

LOCAL LOCKOUT — disables selected (or all) devices’ front panel controls.

REMOTE — puts selected {or all) devices into their device-dependent, remote modes.

SPOLL — performs a serial poll of the specified device (which must be capable of responding).
TRIGGER — sends the trigger message to a device (or selected group of devices).

These statements (and functions) are described in the following discussion. However, the
actions that a device takes upon receiving each of the above commands are, in general,
different for each device. For external devices, refer to the particular device’s manuals to
determine how it will respond.

All of the bus management commands, with the exception of ABORT, require that the program
be the active controller on the interface. A running IBASIC program is always active
controller on the internal interface (select code 8). For the program to be active controiler on
the external interface (select code 7}, the instrument must either be set as system controller or
have control passed to it from an external controller. The program automatically assumes the
controller status of the host instrument. For more information refer to “The IBASIC HP-IB
Model” section later in this chapter.

Note In this section the term Host Instrument refers to the instrument where the
I IBASIC controller is located.

v

REMOTE

Most HP-IB devices can be controlled either from the front panel or from the bus. If the
device’s front panel controls are currently functional, it is in the Local state. If it is being
controlled through the HP-IB, it is in the Remote state. Unless operating in the Local
Lockout mode, each HP-IB device has method {usually a key) to return itself to Local (front
panel) control.

When HP 8711 is being controlled by a program running on an external controller, the
- - softkey is always available to return the analyzer to Local control.

The Remote message is automatically sent to all devices whenever the system controller
is powered on, reset, or sends the Abort message. A device also enters the Remote state
automatically whenever it is addressed. The REMOTE statement also outputs the Remote

Interfacing with External Devices 8-5

message, which causes all (or specified) devices on the bus to change from local control to
remote control. The host instrument must be designated as the system controller before an
IBASIC program can execute the REMOTE statement on select code 7.

Host Instrument

The REMOTE statement has no effect on the host instrument since it is always in remote control
whenever an IBASIC program is running. Specifying the internal interface in a REMOTE
statement will not generate an error, but will have no effect.

LOCAL LOCKOUT

The Local Lockout message effectively locks out the “local” switch present on most HP-IB
device front panels. It maintains system integrity by preventing a user from interfering with
system operations by pressing buttons. As long as Local Lockout is in effect, no bus device
can be returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL LOCKOUT statement. This message
can be sent to all devices on the external interface by specifying the bus address (7).
Specifying a single address on the bus (i.e. 722) sends the command to only the device at that
address. The Local Lockout message is cleared when the Local message is sent by executing
the LOCAL statement. However, executing the ABORT statement does not cancel the Local
Lockout message.

Host instrument

The Local Lockout message is not supported for the host instrument since front panel control
is always necessary in order to pause or abort the program. Specifying the internal interface in
a LOCAL LOCKOUT statement will not generate an error, but will have no effect.

LOCAL

During system operation, it may be necessary for an operator to interact with one or more
external devices. For instance, an operator might need to work from the front panel to make
special tests or to troubleshoot. It is also good systems practice to return all devices to local
control when remote-control operations are complete. Executing the LOCAL statement returns
the specified devices to local {front panel) control.

If primary addressing is specified, the Go-to-Local message is sent only to the specified
device(s). However, if only the interface select code is specified (LOCAL 7), the Local message
is sent to all devices on the external interface and any previous Local Lockout message (which
is still in effect) is automatically cleared.

Host Instrument

The LOCAL statement has no effect on the host instrument since it is always in remote control
whenever an IBASIC program is running. Specifying the internal interface in a LOCAL
statement will not generate an error.

8-6 Interfacing with External Devices

TRIGGER

The TRIGGER statement sends a Trigger message to a selected device or group of devices. The
purpose of the Trigger message is to initiate some device-dependent action; for example, it can
be used to trigger a digital voltmeter to perform its measurement cycle. Because the response
of a device to a Trigger message is strictly device-dependent, neither the Trigger message nor
the interface indicates what action is initiated by the device. '

Specifying only the interface select code outputs a Trigger message to all devices currently
addressed to listen on the bus. Including a device address in the statement triggers only the
device addressed by the statement.

Host Instrument
The TRIGGER statement is not supported by the HP 8711.

CLEAR

The CLEAR statement provides a means of “initializing” a device to its predefined
device-dependent state. When the CLEAR statement is executed, the Clear message is sent
either to all devices or to the specified device, depending on the information contained within
the device selector. If only the interface select code is specified, all devices on the specified
HP-IB interface are cleared. If primary-address information is specified, the Clear message is
sent only to the specified device. Only the active controller can send the Clear message.

Host Instrument

The CLEAR statement is fully compatible on the internal interface.

ABORT

This statement may be used to terminate all activity on the external bus and return the
HP-IB interfaces of all devices to reset {or power-on) condition. Whether this affects other
modes of the device depends on the device itself. The IBASIC program must be either the
active or the system controller to perform this function. If it is the system controiler and has
passed active control to another device, executing this statement causes active control to be
returned. Only the interface select code may be specified; primary-addressing information
(such as 724) must not be included.

Aborting the Internai Bus

ABORT is not supported for select code 8. Executing ABORT 8 will not generate an error.

Interfacing with External Devices 8-7

HP-IB Service Requests

Most HP-IB devices, such as voltmeters, frequency counters, and network analyzers, are
capable of generating a “service request” when they require the active controller to take
action. Service requests are generally made after the device has completed a task {such as
making a measurement) or when an error condition exists (such as a printer being out of
paper). The operating and/or programming manuals for each device describe the device’s
capability to request service and conditions under which the device will request service. To
request service, the device sends a Service Request message (SRQ) to the active controller.
The mechanism by which the active controller detects these requests is the SRQ interrupt.
Interrupts allow an efficient use of system resources, because the system may be executing a
program until interrupted by an event’s occurrence. If enabled, the external event initiates a
program branch to a routine which “services” the event (executes remedial action).

Setting Up and Enabling SRQ Interrupts

In order for an HP-IB device to be able to initiate a service routine in the active controller,
two prerequisites must be met: the SRQ interrupt event must have a service routine defined,
and the SRQ interrupt must be enabled to initiate the branch to the service routine.

The following program segment shows an example of setting up and enabling an SRQ
interrupt.

100 Hpib=T7

110 ON INTR Hpib GOSUB Service_routine
120 !

i30 Mazsk=2

140 ENABLE INTR Hpib;Mask

Since IBASIC recognizes only SRQ interrupts, the value assigned to the mask is meaningless.
However, a mask value may be present as a placeholder for compatibility with HP Series
200/300 BASIC programs.

When an SRQ interrupt is generated by any device on the bus, the program branches to the
service routine when the current line is exited (either when the line’s execution is finished or
when the line is exited by a call to a user-defined function). The service routine, in general,
must perform the following operations:

Determine which device(s) are requesting service
Determine what action is requested

Clear the SRQ line

Performn the requested action

Re-enable interrupts

Return to the former task (if applicable)

W o=

o o

Note The ON INTR statement must always precede the ENABLE INTR statement when
i the two are used in the same program.

8.8 Interfacing with External Devices

Servicing SRQ Inmterrupts

The SRQ is a level-sensitive interrupt; in other words, if an SRQ is present momentarily

but does not remain long enough to be sensed by the controller, an interrupt will not be
generated. The level-sensitive nature of the SRQ line also has further implications, which are
described in the following paragraphs. .

Example

Assume that only one device is currently on the bus. The following service routine serially
polis the device requesting service and clears the interrupt request. In this case, the controller
does not have to determine which device was requesting service because only one device is
present. Since only service request interrupts are enabled in IBASIC, the type of interrupt
does not need to be determined either. The service is performed, and the SRQ event is
re-enabled to generate subsequent interrupts.

500 Serv_rtn: Ser_poll=SPOLL(@Device)
510 ENTER @Device:Value

520 PRIKT Value

530 ENABLE INTR 7 ! Use previous mask.
540 RETURN

The IEEE standard states that when an interrupting device is serially polied, it is to stop
interrupting until a new condition occurs (or the same condition occurs again). To “clear”
the SRQ line, a serial poll must be performed on the device. By performing this serial poll,
the controller acknowledges to the device that it has seen the request for service and is
responding. The device then removes its request for service (by releasing SRQ).

If the SRQ line had not been released, the controller would have branched to the service
routine immediately upon re-enabling interrupts on this interface. This is due to the
level-sensitive nature of the SRQ interrupt.

Also note that once an interrupt is sensed and logged, the interface cannot generate another
interrupt until the first interrupt is serviced. The controller disables all subsequent interrupts
from an interface until a pending interrupt is serviced.

Conducting a Serial Poll

A sequential poll of individual devices on the bus is known as a Serial Poll. A byte of
device-specific status is returned in response to a Serial Poll. This byte is called the “Status
Byte” message and, depending on the device, may indicate an overload, a request for service,
or a printer being out of paper. The particular response of each device depends on the device.

The SPOLL function performs a Serial Poll of the specified device; the program must currently
be the active controller in order to execute this function.

Examples
ASSIGN @Device TD 700
Status_byte=SPOLL(@Device)
Spoll_724=SPOLL{724)

The Serial Poll is meaningless for an interface since it must poil individual devices on the
interface. Therefore, primary addressing must be used with the SPOLL function.

Interfacing with External Devices 8-8

Passing and Regaining Control

Active control of the bus can be passed between controllers using the PASS CONTROL command.
The following statements first define the HP-IB interface’s select code and the new active
controller’s primary address and then pass control to that controlier.

100 Hp_ib=7
110 New_ac_addr=20
120 PASS CONTRODL 100%Hp_ ib+New_ac_addr

Omnce the new active controller has accepted active control, the controller passing control
assumes the role of a non-active controller on the specified HP-IB interface. The concept of
using pass control with IBASIC is discussed in the next section, “The IBASIC HP-IB Model.”

The IBASIC HP-IB Model

The fact that IBASIC resides in, and coexists with an instrument poses a large set of possible
interactions, both internal to the instrument and externally with other controllers and
instruments. This section defines the principal players and rules of order when IBASIC is
running within the host instrument.

External and Internal Busses

There is physically only one HP-IB port and one HP-IB address for the HP 8711, IBASIC has
access to two HP-IB ports: the “real” external port (select code 7) and a “virtual” internal
port {select code 8), through which it communicates with the HP 8711.

The HP 8711 has only one output buffer, one input buffer and one set of status registers.
Commands and data from both ports are placed in the same input buffer and data read out of
both ports comes from the same output buffer. The instrument will not provide any kind of
arbitration between an external controller and an IBASIC program.

The HP 8711 always behaves as if there is only one controller. If an IBASIC program is
running, it is assumed to be the controller and therefore will receive all SRQ’s from the host
instrument (via the internal port). An IBASIC program cannot generate an SRQ on the
external port while running.

Service Request Indicators

An external controller may perform a serial poll (SPOLL) at any time without affecting a
running IBASIC program. There are two Service Request Indicators (SRI) - one for the
external port and one for the internal port. The internal SRI can only be cleared by an
IBASIC program performing an SPOLL on device 800. The external SRI can only be cleared
by an SPOLL from an external controller and can only be set when there is not an active
IBASIC program.

8-10 Interfacing with External Devices

The two SRI’s will be set to their OR’d value when a program starts, and again when it
finishes. This assures that any pending SRQ’s can be serviced by the instrument’s new
controller.

The pausing or termination of a program will cause the Program Running bit in the Device
Status register to go low. This can be used to generate an external SRQ. (For an example, see
the DUALCTLR example in chapter 9, “Example Programs.”)

IBASIC as the Active Controller

The IBASIC program is always the active controller on the internal interface (select code

8). When a program starts running, the HP-IB controller status of the instrument is
automatically passed to the program. For example, if the instrument is set as System
Controller, a program running in the instrument automatically becomes system controller and
active controller on the external bus and the instrument relinquishes active control. When the
program stops, the instrument regains active control.

Also, if an instrument set as Talker/Listener is passed control from an external controller, any
program running in the instrument becomes active controller on the external interface.

Thus, there are two cases where a program running in an instrument can be active controller
on the external interface:

o When the host instrument is set as System Controiler and the program has not passed
control

¢ When the host instrument is set as Talker/Listener and the instrument has been passed
control from an external controlier.

Passing Active Control to the Instrument

The only way that the HP 8711 can gain active control of the external interface while 2
program is running is if the program is currently the active controller on select code 7 and
passes control to the instrument. Normally, the active controller on the 7 bus can pass control
to any device on the interface by using the statement

PASS CONTROL 7xx

where "xx" represents the address of the device on the bus. Because an IBASIC program does
not interface with the host instrument over select code 7, a different method is used to pass
control in this case. To pass active control of the external interface from an IBASIC program
to the host instrument, use the statement

PASS CONTROL 8xx

where “xx” represents any two digit number from 00 to 99. This allows the instrument to
control external plotters, printers and disk drives. When the instrument is finished with its
HP-IB control activity, it automatically passes control back to the program.

Interfacing with External Devices 8-11

Note Control over the internal bus is used to govern access to the external bus.
When the instrument is given control over the internal bus, it is actually given
ﬁ access to the external HP-IB hardware.

IBASIC as a Non-Active Controlier

IBASIC programs are always the active controller on the internal interface. There are two
cases where an IBASIC program does not have control of the external HP-IB interface:

o Whern the host instrument is set as Talker/Listener and active control has NOT been
passed from an external device

e When the host instrument is set as Systemn Controller and the program has passed control
to either the host instrument or another device on the external interface

In both of these cases, the program cannot perform activities of any kind on the external
interface.

Note An IBASIC program cannot act as a device on the external bus. To
i communicate with an external controller, the IBASIC program must be
ﬁ active controller and the external controller must act as the device (see the

“Interfacing with an External Controller” section that follows).

Interfacing with an External Controller

So far, we have discussed the ability to interface IBASIC programs with a network of external
devices using the HP-IB. The idea of including an external controller in that network, and
interfacing an IBASIC program with a program running in that computer presents some new
possibilities.

External controller programs can interface with IBASIC programs (referred to as “internal
programs”) over HP-IB in two basic ways:

First, the two programs can pass data back and forth using simple OUTPUT and ENTER
statements. This requires coordination of both the internal and external programs and also
requires that the internal program be the active controller during the interaction. To get an
internal program and an external program to work together successfully, you should have a
good understanding of the HP-IB model, presented earlier in this chapter.

Second, the external program can make use of the extensive set of HP 8711 HP-IB commands
that interface with IBASIC programs. These munemonics fall under the subsystem PROGram
and allow the external comtrolier to remotely perform many of the IBASIC front panel
activities. This includes the ability to run, stop, pause, continue and delete an internal
program. You can also remotely query or set the values of numeric and string variables.

8-12 Interfacing with External Devices

Also inciuded in the HP 8711 HP-IB command set are commands that allow you to transfer
programs and program data to and from the instrument. Programs can be transferred
{uploaded and downloaded) between an external controller and the program buffer in the
instrument, and data can be transferred between an external program and a non-running
internal program by setting and querying internal program variables. These SCPI mnemonics
are described in the HP-IB Command Eeference.

Transferring Data Between Programs

Using OUTPUT and ENTER statements

All data sent from an external controller to the instrument’s external port is received by the
instrument and not by any program running in it. Therefore, a non-active controller IBASIC
program can never enter or output data via the external interface. This means that in order
to pass data between an external controller and an internal program using OUTPUT and ENTER
statements, the internal program must be given active conirol and the external controller must
become the non-active controller. HP IBASIC for Windows and HP Series 200/300 BASIC
controllers have the ability to enter and output data via HP-IB while acting as a non-active
controller.

Note Moving data through the HP-IB and running a measurement in the host
instrument at the same time can slow both operations significantly. It is
ﬁ recomnmended that you do not perform these operations simultaneously.

One method of passing data between the two controllers is to set the instrument as
Talker/Listener and run a program on the external controller that starts the IBASIC
program and passes control to it. The IBASIC program can then output data to, and enter
data from, the external controller. The following two programs, also included in chapter

9, “Example Programs,” demonstrate how to transfer data between an internal program

and an external controller program. The first program, DATA_EXT, is run from an external
controller. It assumes that a disk containing the corresponding IBASIC program DATA_INT is
in the disk drive of the HP 8711. It remotely loads the IBASIC program, starts it and then
transfers active control to it. The IBASIC program DATA_INT, with active control of the
interface, queries the external program for name of the drive to catalog, and then outputs the
catalogued string to the external program and passes active control back. After receiving the
catalog data, the external program goes into a loop (line 1080) executing a command that
continues to generate an error until the host computer again becomes active controlier when
control is passed back.

Interfacing with External Devices 8-13

Data Transfer Example — External Program.

10

20

3¢

40

5O

60

70

80

80

100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
480
470
480
490

8-14

! BASIC program: DATA_EXT - Data transfer (external)

! an IBASIC program running on the HP 8711 to an

¢ HP BASIC program (or an IBASIC program running

! externally). This program was designed torunon a
! computer or PC. It loads a program into the HP 8711,
! runs it, and then gives it control of the bus.

! This program then acts as a device on the bus;

! sending and receiving data.
1

1
1
'
! This program demonstrates how to transfer data from
i
i
i
i

! Before running this program, a disc with the progran
! DATA_INT’ shouid be in the HP 8711°s internal drive.
I

Initialize variables for the interface select code
and the HP-IB address of the HP 8711.

L T ey

Scode=7

Address=16

Wa=Scode*100+Address

]

i Abort any bus traffic, clear the input/output queues
! of the analyzer, clear the analyzer’s status

! registers and the display.

t

ABORT 5code

CLEAR Na

OUTPUT Ha;"*CLS"

CLEAR SCREEN

1

! Dimension an array to hold the catalog listing.
§

DIM Directory$(1:100) [85]

1

! Prompt the operator to insert the disk in the

! HP 8711, load the program and wait until done.

!

INPUT “Put disc with program ’DATA_INT’® into the HP 8711. Press <ENTER>",A$
DISP "Loading programon HP 8711 ... "

QUTPUT Ka;"PROG:EXEC *GET ""DATA_INT""?"

OUTPUT Ra;®*0PC?"

ENTER XNa;0pc

1

! Read the analyzer’s event status register and

! check for any errors when loading file.

interfacing with External Devices

500
510
520
530
540
550
560
870
580
580
8600
6190
620
630
640
650
660
870
830
680
700
710
720
730
T40
750
760
770
780
7380
800
810
820
830
840
850
860
870
880
880
900
210
920
830
940
950
960
970
980
990

QUTPUT Na;"*ESRT"
ENTER Na;Esr
IF Esr>C THEN
BEEP
DISP “"Error occurred while loading *DATA_INT’ ... Program stopped.”
STOP
END IF
!
! Determine the HP-IB address of the controller
! and set the pass control back address.
i
INTEGER Stat,Addr
STATUS 7,3;5tat
Addr=BINAND(Stat,31)
OUTPUT Na;"*PCB ";Addr

! Send the command tc run the DATA_IKT program.
i

DISP "Running the program ... "

OUTPUT Na;"PROG:STAT RUN"

H

! Monitor the program’s status. When it has

! paused, set the variable for the controller’s
! gP-IB address.

1

OUTPUT Na; "PROG:STATT"

ENTER Na;Prog$

IF Prog$<>""PAUS" THEN GOTO 760

OUTPUT Na;"PRGG:NUMB 'Host’,";Addr

OUTPUT Na;"PROG:STAT CONT"

! Pass control of the bus to the HP 8711.
]

PASS CONTROL Na

L

! Wait until addressed to talk by the HP 8711,
! then send the name of the disk to catalog.

]

OUTPUT Scode; " : INTERKALY

1

! Wait until addressed to listen by the HP 8711,
! then read the directory from the analyzer.

1

DISP "Reading data ... "

ENTER Scode;Directory$(*)

i

! Print the catalog to the computer’s display.
t

FOR I=1TO 100

interfacing with External Devices

8-15

1000
1010
1020
1030
1040
1050
1060
1070
1080
1080
1100
1110

IF LEN(Directory${I))>0 THEN PRINT Directory$(I)
NEXT I
1 .
! Try to return the HP 8711 to LOCAL control.
! If the analyzer is still the active controller
! an error will be generated and the progranm
! will loop until control of the bus is received.
i
0¥ ERROR GOTO 1080
LOCAL Na
DZSP Fn
END

Data Transfer Example — Internal Program.

10

20

30

40

50

80

70

80

80

100
110
120
130
140
150
160
170
180
i90
200
210
220
230
240
250
260
270
280
280
300
310
320
330
340
350
360

This program demonstrates how to transfer data to

dew cwe Gee Ve eme tmm bmm Lah

at the program listing for *DATA_INT’.

!
! This IBASIC program is intended to run on the
{ HP 8711’s internal controller.

E

1
! Dimension an array to hold the catalog listing.
1

DI¥ Directory$(1:100)[85]

1

! Pause the program and wait for the controller to
! set the *Host’ variable with its’ HP-IB address.
! The controller continues this program after the
! variable has been passed.

1

Host=0

PAUSE

!

! Address the external controller to talk, read

! the device to catalog. If the HP 8711 is not

! active controller on the bus an error will occur
! and the program will loop until control is

! received.

i

ON ERROR GOTO 140

ENTER Host;Stor_dev$

OFF ERROR

8-16 Interfacing with External Devices

IBASIC program: DATA_INT ~ Data transfer (internal)

and from an external controller. In this examplea
catalog listing is transferred from the HP 8711 to
the external controller. For more information look

370 %

380 ! Catalog the requested storage device into
390 ! the string array.

400 §

410 DISP "Reading catalog ... "

420 CAT Stor_dev$ TO Directory$(*)

430 !

440 ! Address the external controller te listen,
450 ! send the éatalog array to the controller.
480 !

470 DISP "Transferring data ... ”

480 OUTPUT Host;Directory$(*)

450 !

500 ! Pass control back to the external controller.
510 !

520 PASS CONTROL Host

530 DISP “DORE"

540 END

Setting and Querying Variables

Another means of transferring data between an internal and an external program involves
the ability to set and query infernal program variables from an external program. The
"PROGram[:SELected] : NUMBer" and "PROGram[:SELected] :STRing" mnemonics (and their
query counterparts) are part of the HP 8711 HP-IB commands. The internal program must
not be running when these commands are executed.

The command
PROG:NUMB < string >, < value >

sets the value of a numeric variable in the program. The command
PROG:STR < string >, < value >

sets the value of a string variable in the program. In both the PROG:NUMB and PROG:STR
commands and queries, < string > is the variable name and must be string data (in quotes).
In the PROG:STR command, < value > is also string data (in quotes).

Numeric and string parameters can also be queried. The query
PROG:NUMBer? < string >
returns the value of the specified numeric variable.

Arrays of REAL or INTEGER type may be sent or queried but arrays of strings are not allowed.
Array elements are separated by commas.

Examples
QUTPUT 716; "PROG:NUMBER *Test’ ,98"

OUTPUT @Ibasic;"PROG:STRING ’A$’, ’String Data’™"

OUTPUT 716;"PROG:NUMB? ’Iarray(*)’"

interfacing with External Devices 8-17

The following program segment sends both numeric and string variable queries and enters the
resulting data:

10 ASSIGN @Prog TO 716

20 QUTPUT @Prog;"FORM ASCII,3"

30 OUTPUT @Prog;"PROG:NUMB? *Test’"

40 ENTER @Prog; Testval

50 PRINT "The value of the variable Test = ";Testval
60 OUTPUT @Prog;"PROG:STR? *A$ "

70 ENTER @Prog; Str$

80 PRINT "A$ = ";5tr$

90 END

Downloading and Uploading Programs

Programs can be transferred between an external controller and program memory using

the HP-IB download command "PROGram[:SELected] :DEFine" and its upload guery
"PROGram[:SELected] :DEFine?". Programs that use these mnemonics are run in the external
controller.

Downloading

Program data transferred (downloaded) from the external controller to the instrument is
always transferred as an “arbitrary block.” The arbitrary block may be a definite length or
indefinite length block. The indefinite length block is by far the easiest and is simply a block
of data that begins with the characters "#0" preceding the first line and ends with a line-feed
character accompanied by an EOI signal on the HP-IB interface.

When using the mnemonic PROG:DEF to download program lines, the #0 must not be followed
by a line-feed. Each program line must have a line number at its beginning and a line-feed at
its end. To end the arbitrary block of program lines, a single line-feed must be output with
the OUTPUT END parameter, which sends the EOI (End or Identify) signal on the HP-IB control
lines.

The following example, DOWNLOAD, is also included in chapter 9, “Example Programs,” and on
the IBASIC Example Programs Disk.

1O e e o e o
20 ! -

30 ! BASIC program: DOWNLUAD - Download program to HP 8711
40 !

50 ! This program demonstrates how to download an IBASIC

80 ! program to the HP8711. This program is designed to

70 ! run on an external controller.

8¢ !

B0 B e e e
100 !

110 ! Initialize variables for the interface select code

120 ¢ and the HP-IB address of the HP 8711.

130 !

8-18 Interfacing with External Devices

140 Scode=T

150 Address=16

180 Na=Scodex100+Address

170 ¢

180 ! Initialize variables, abort any bus traffic and
190 ! clear the input/output queues of the analyzer.
200 ! :

210 DIM Line$[255]

220 ABORT Scede

230 C(CLEAR Na

240 !

250 ! Get the program’s filename and open the file.
260 !

270 Get_filename: INPUT "Program tc be transferred?” ,Filename$
280 0N ERROR GOTO No_file

290 DISP "Checking file ... "

300 ASSIGN @Basic_prog TO Filename$;FORMAT ON

310 (FF ERROR '

320 !

330 ! Clear the contents of the analyzer’s program buffer.
----- 350 OQUTPUT Na;"PROG:DEL:ALL"
- 360 !

370 ! Change the EOL (end of line) character to line feed
380 ! and initialize the line counter.
390 i
400 Transfer: ASSIGN @Prog TO Na;EOL CHR$(10)
410 Line_count=0

o 420 !

..... | 430 ! Initiate the program transfer (an indefinite length
440 ! block data transfer).
450 !
480 OUTPUT @Prog;"FROG:DEF #0";
470 !
480 ! Read each program line from the file and send it to
490 ! the HP 8711. Loop until the end of file is reached.
8500 !
510 0¥ ERROR GOSUB End_file
520 LOOP
530 ENTER @Basic_prog;Line$
540 QUTPUT €Prog;Line$
850 Line_count=Line_count+1
560 DISP "Lines transferred: ";Line_count
57C END LOCP
580 !
590 ! End the data transfer (output a line feed with EQI)
600 ! and close the file. Return the analyzer to LOCAL
610 ! control and stop this program.
620 |
630 End_block: OUTPUT @Prog;CHR$ (10) END

Interfacing with External Devices 8-18

640 ASSIGHN @Basic_prog T0 *

650 DISP "Transfer complete"

660 LOCAL Xa

670 STOP

680 !

690 ! This subroutine is the error handler for opening
700 ! the file - if the £ile won’t open it returns to
710 ! get a new file name.

720 1

T30 No_file: BEEP

740 DISP "CAN’T OPEN: """;Filename$;""" —- ";

750 GOTO Get_filename

780 RETURN

770

780 This subroutine is the error handler for the

§
!
790 ! data transfer. When the end of file is reached
!
!
{

800 it generates an error. Execution is resumed
810 outside of the transfer loop.
820

830 End_file: IF ERRN=59 THEN GDTC End_block
840 DISP ERRM$;" occurred during data transfer®

850 STOP
860 RETURN
870 END

Notice that the QUTPUT statement on line 460 is terminated with a semicolon. This suppresses
the line-feed that would otherwise occur.

As each line of the program is downloaded it is checked for syntax. If an error is found, the
error message is displayed on the CRT and the line is commented and checked for syntax
again. If it still causes an error (for example the line may be too long) the line is discarded.

Axny lines that currently exist in the memory buffer will remain unless they are overwritten by
downloaded program lines. This makes it easy to edit lines in an external controller and then
download only the edited lines into an existing program. If you want to completely overwrite
the current program in memory, you must delete the program first. This can be done remotely
using the extended command PROG:DEL:ALL (see line 350).

Uploading

The mnemonic PROG:DEF7 is used to upload a program from the program buffer. The entire
program is then returned as a definite length arbitrary block. A definite length biock starts
with the "#" character followed by a single digit defining the number of following digits to
read as the biock length.

The following example, UPLOAD, demonstrates an uploading routine run on an external

controller. It is included in chapter 9, “Example Programs,” and on the IBASIC Ezample
Programs Disk.

8-20 Interfacing with External Devices

10

20

30

40

50

60

70

80

30

100
110
120
130
140
180
160
170
180
1380
200
210
220
230
240
250
280
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
480
500

BASIC program: UPLOAD - Upload program from HP 8711

This program uploads the current IBASIC program
in the HP 8711’s program buffer to an ASCII file
on the controller’s current mass storage device.

T

Assign an I/0 path name to the HP 8711, initialize
the variables, and clear the analyzer’s input/output
gueues.

- b sum rem s

ASSIGN eHp8711 TO 716
DIM Prog_line$[256]
CLEAR @Hp8711

! Enter the name of the file to be created.

t

INPUT "ENTER NAME OF FILE TO UPLOAD PROGRAM TO “,Filename$
PRINT Filename$

1

! Query the HP 8711 for the contents of its

! program buffer.

i

OUTPUT @Hp8711;"PROG:DEF?"
]
! Read the block header, the number of digits in
! the file size, and the file size.
t
ENTER @Hp8711 USING "#,4,D";Prog. line$ Ndigits
ENTER @Hp8711 USING "#,"&VAL$ (Ndigits)&"D" ;Nbytes
H
t Create the target ASCII file on the current mass
! storage device and assign it an I/0 path name.
1
Openfile(@File,Filename$,Nbytes)
ASSIGN @File TO Filename$; FORMAT ON
'
! Read the program one line at a time, and write
! it to the new £file. Print each line on the
! display as it is read.
i
Loop
ENTER @Hp8711;Prog_line$
EXIT IF LEN(Prog_line$)=0
PRINT Prog_line$
OUTPUT @File;Prog._line$
END LOOP

Interfacing with External Devices

8-21

510 1
520 ! Close the new file.

530 ¢

540 ASSIGN @File TO *

550 END

BB F o n e i
570 SUB Openfile(@File,Filename$,Fsize)

580 T o o s T T e
580 !

600 ! This subprogram creates an ASCIT file with the

610 t name ’Filename$’ of the specified size ’Fsize’.

620 ! Error trapping is used to detect any errors in

630 ! opening the file. If the controller is HP IBASIC

640 ! for Windows & DOS file is created, otherwise the

850 ! LTF format 1s used.

660 !

670 o et e o

680 0N ERROR GOTO Openerr

690 IF SYSTEM$("SYSTEM ID")="IBASIC/WINDOWS" THEN
700 CREATE Filename$,1

710 ELSE

720 IF Fsize MOD 256>0 THEN Fsize=Fsize+256

730 CREATE ASCII Filename$,Fsize DIV 256

740 END IF

750 !

760 Openerr: IF ERRN<>54 THEN PRINT ERRM$
77¢ SUBEND

The subroutine Openfile (lines 570 through 770) creates an ASCII file to save the uploaded
program to. The number of 256 byte records declared in the CREATE ASCII statement (line
730) is simply the file size (declared in the definite block header) divided by 256. Line 720
accommodates any remainder in this calculation by increasing the file size number by one
record if any remainder exists.

Although this simple method works for many uploaded programs, there may still be a problem
with the file size caused by the OUTPUT statement in line 490. This is because every ASCII line
in a LIF file contains a two byte length header and possibly one additional pad byte to make
the length an even number of bytes. These extra bytes are not included in the definite length
block header information. You can account for this extra overhead by allocating an extra 10
to 15 percent of space when you create the ASCII file. For example, the Openfile subroutine
could be rewriiten as:

§70 SUB Openfile(@File,Filename$,Fsize)

680 ON ERROR GOTO Openerr

716 FsizezFsize+(Fsizex0.15)

720 IF Fsize MOD 256>0 THEN Fsize=Fsize+2b6
730 CREATE ASCII Filename$,Fsize DIV 258

8-22 Interfacing with External Devices

Using Subprograms

HP 8711 products shipped with the IBASIC option, revision 2, can run subprograms. The
subprograms may be user-created or built-in.

User-Created Subprograms

You can use the LOADSUB keyword with subprograms of your own creation. LOADSUB
enables you to append subprograms to other programs and is supported as described in the
RMB manual. When using LOADSUB, keep in mind the following:

m Subprograms must be stored to files using the STORE keyword when first created.

m Subprograms may be stored from the external keyboard or from the front panel if the [File
Type] format is BIN.

m BIN type files are generally not transportable between the HP 8711 and other development
systems (only ASCII files are compatible with other systems).

Typical examples of LOAD/STORE:
From an external keyboard:
LOAD “MYFILE”
STORE “MYFILE”

From the front panel:

{Save/Recall i

(Gave/Recall)
Typical examples of LOADSUB:
LOADSUB subprogram.name FROM “filename”
LOADSUB ALL FROM “filename”

User-created subprograms are appended to the end of the BASIC program currently stored in
the EDIT buffer.

Using Subprograms 9-1

Built-In High-Speed Subprograms

In addition, you can use LOADSUB to access pre-compiled routines stored as instrument
firmware in internal memory. Any IBASIC program running on the HP 8711 can access these
subprograms; programs running on external computers can not. The external program must
use the equivalent code listed in the table below in place of a built-in subprogram.

IBASIC programs which use the built-in subprograms are simpler and run faster. For
example, most data transfer operations run twice as fast when using the built-in subprograms;
math operations run many times faster. Built-in subprograms are stored in memory
designated as “MEM,0,0”.

Independent files are stored in internal memory. Subprograms within these files may be loaded
as a group or loaded individually into active programs.

m “XFER” file adds support to transfer trace data between the instrument and the IBASIC
program.

m “MATH?” file adds high speed support for complex array operations.

8-2 Using Subprograms

Built-in Subprogram Description (Filenames found in :¥EX,0,0)

Filename

Subprogram Name (parameter list)

Description

XFER

MATH

Define Complex Array
Operations

Define Complex Number
Operations

Read_fdata(INTEGER Chan,REAL A(*))

Read _fmen(INTEGER ChanREAL A(*))
Read_cdata(INTECER Chan REAL A(*))
Read_cmem(INTEGER Chan,REAL A(%))
Write_fdata(INTEGER Chan,REAL A(%))
Write_fmem(INTEGER Chan,REAL A(*))
Write_cdata(INTEGER Chan,REAL A(*))
Write_cmem({INTEGER Chan,REAL A(*))
Read.rdata(INTEGER Chan,Input$, REAL A(*))
Write_rdata(INTEGER Chan,Input$,REAL A (*))
Read..corrf{INTEGER Chan, N.REAL A(*))
Write_corr(INTEGER Chan, N,REAL A(*))

Croplx_mag(REAL Cdata(*)Mag(*),INTEGER Sz)

complex array

to B

Cadd(REAL Opl1({*)INTEGER Rowl , REAL
Op2(*),INTEGER Row2,REAL Ans(*},INTEGER
Rowans}

Csub(REAL Op1(*),INTEGER Rowi,REAL
Op2(*},INTEGER Row2,REAL Ans(*),INTEGER

Rowans)

Croul(REAL Op1(*),INTEGER Row1,REAL
Op2(*),INTEGER Row2,REAL Ans(*),INTEEGER

Rowans}

Cdiv(REAL Opl1(*),INTEGER Rowl,REAL
Op2(*},INTEGER Row2 REAL Ans(*).INTEGER
Rowans)

Croplx_arg(REAL Cdata(*),Arg(*),INTEGER Sz) lArg of

Cmplx..conjg(REAL A(*),B{*)) !Complex conj of array A

Read real formatted data
Read real formatted mem
Read complex data

Read compiex memory
Write real formnatted data
Write real formatted mem.
Write complex data
Write complex memory
Read raw complex data
Write raw complex data
Read complex error coef.

Write complex error coef.

Mag of complex array

Complex Ans=0pl+0p2

Complex Ans=0pl-Op2

Comoplex Ans=0p1*0p2

Complex Ans=0pl/0p2

Using Subprograms 9-3

Example Programs

1 Fzample use of built in sub
programs
10 LOADSUB Read_fdata FROM "XFER:MEM,0,0" Appends Read_data sub pro-

gram to end of this program.
This sub program can now be

called.
20 Reads Channel 1 data into
30 Trace_array(*)

40

50 REAL Trace_array(1:201)

60 Read_Data(1, Trace_array(*))

70 LOADSUB ALL FROM “MATH:MEM,0,0" Appends all math sub pro-
grams defined in “MATH”

to the end of this program.
80 END Read real formatted data.
90 SUB Read_fdata(INTEGER Chan,REAL A(*))
100 SUB Cmplx_mag(REAL Cdata(*),Mag(*),INTEGER Sz) Mag of complez array.
110 SUB Cmplx.arg(REAL Cdata(*),Arg(*),INTEGER Sz) Arg of complezr array.
120 .

Note Built in sub programs can not be edited since they are compiled and built
into the firmware. However, any sub program can be deleted by the DELSUB
ﬁ keyword support in revision 2 IBASIC.

RUNTIME Built in subprogram Errors

Number Description

8,9,16 Improper of inconsistent dimensions found which specify array size. Using the wrong
number of subscripts when referencing an array element.

983 Wrong type or number of parameters. An improper parameter list for a machine
resident function.

Avoiding Multiple Loads of Subprograms

To avoid multiple LOADS of a subprogram which has already been loaded, the following
exarple may be used.

10 0N ERROR GOTO 30

20 DELSUB Read_fdata

30 LOADSUB Read_fdata FROM “XFER:MEM,C,0V
40 OFF ERROR

9.4 Using Subprograms

10

HP 8711 IBASIC Keyword Summary

This chapter summarizes the HP Instrument BASIC keyword implementation in the HP
8711A with firmware revision 2.0. Table 10-1 is aiphabetical. It indicates the type of support
for each entry and notes exceptions, if any. A bullet in the second column indicates that

the keyword is NEW to IBASIC revision 2. Exceptions are major differences between

the keywords descriptions in the “HP Instrument BASIC Language Reference” and their
implementation in the HP 8711. When differences are too extensive to be summarized, see the
“HP Instrument BASIC Language Reference.”

Table 10-2 is categorical, but otherwise a repeat of the first.

Table 10-1. Alphabetical List of IBASIC Revision 2.0 Keywords Supported by
the HP 87 11A with Firmware Revision 2.0

HP IBASIC Keyword New Support Exceptions
Item FP=Front Panel
EK=FExternal
Kevboard
P=Programmable

& FP.EK,P

* EK.P

+ EK,P

; EK P

/ KpP

<<= L=, P

ABORT - EX.P Select Code = 7,8,9,15

ABS EK,P

ACS FP,EK,P

ALLOCATE . EK,P

AND FPEKP

ASN FP.EK.P

ASSIGN EK P

ATN FPEK,P

AXES . EK P

BEEP EKP

BINAND FP,EK,P

BINCMP FPEK.P

BINEOR FP,EK.P

BINIOR FPEK,P

BIT FPEK P

HP 8711 IBASIC Keyword Summary 10-1

Table 10-1. Alphabetical List of IBASIC Revision 2.0 Keywords Supported by
the HP 87 11A with Firmware Revision 2.0 (continued)

HF IBASIC Keyword New Support Exceptions
Ttem FP=Front Panel
EK=External
Keyboard
P=Programmable

CALL EXK.P
CASE P
CASE ELSE P
CAT FP,EK.P Supports 58 columns. See manual.
CHRS FP.EK,P
CLEAR EK.P Select Code = 7,8,9,15
CLEAR SCREEN EK.P
CLS EK,P
COM P
CONT EK,FP Line number support from EK only
COPY FP.EK,P
COPYLINES ® EK
COSs FP.EK,P Abs vals less than 1.7083127722e+10
CREATE .
CREATE ASCH EK,P
CREATE BDAT EX.P
CREATE DIR ®
CRT EK.P ENTER CRT(ENTER 1) not supported
CSIZE . EK.P
DATA P
DATE » EK P
DATES . EK.P
DEALLOCATE . EK,P
DEF FN P
DEG FPEK,P
DEL FP.EK Front Panel deletes only 1 line
DELSUB . EK.P
DET . EK.,P
DIM P
DISABLE P
DISABLE INTR P Interface Select Code =7 or §
DISP EK.P
DIV EK,P
DOT ° EK,P
DRAW EK.,P

10-2 HP 8711 IBASIC Keyword Summary

Table 10-1. Alphabetical List of IBASIC Revision 2.0 Keywords Supported by
the HP 8711A with Firmware Revision 2.0 (continued)

HP IBASIC Keyword New Support Exceptions
Item FP=Front Panel
EK=External
Keyboard
P=Programmable

DROUND EK.P
DUMP ALPHA none Use HPIB command
DVAL FP.EK,P
DVALS$ FP.EK,P
EDIT FP.EK Front Panel EDITs default line #
ELSE P
ENABLE P
ENABLE INTR P Interface Select Code = 7 or §
END P
END IF P
END LOOP P
END SELECT P
END WHILE P
ENTER EK.P
ERRL() P
ERRLN() EKP
ERRMS EKP
ERRN EK,P
EXIT IF P
EXOR FP.EK,P
EXP EK.P
FN P
FNEND P
FOR NEXT P
FRACT EK.P
FRAME . EK,P
GCLEAR EX,P
GET FP,EK P
GINIT ® EK,P
GOSUB P
GOTO P
GRID * EK.P
IDRAW . EK.,P
IF THEN P

HP 8711 IBASIC Keyword Summary 10-3

Tabie 10-1. Alphabetical List of IBASIC Revision 2.0 Keywords Supported by
the HP 8711A with Firmware Revision 2.0 {continued)

HP IBASIC Keyword New Support Exceptions
Ttem FP=Front Panel
EK=FExternal
Keyboard
P=Programmable

IMAGE P
IMOVE . EK,P
INDENT . EK
INITIALIZE FP.EK.,P
INPUT P See Manual.
INT EK,P
INTEGER P
IPLOT . EK.,P
IVAL FP,EK.P
IVALS FP,EK.P
KBD F Returns select code =2.
LABEL . EK,P
LDIR e EK,P
LEN FP.EK,P
LET EK.P
LGT EX.P
LIST EK.,P Valid Device Selectors
LOAD . FPEK,P
LOADSUB . FP.EKP
LOADSUB ALL FROM FP.EK.P
LOCAL EK.P Select Code 7 only.
LOCAL LOCKOUT EK.,P Select Code 7 only.
LOG EK,P
LOOP P
LORG . EX.P
LWC8 FP.EK,P
MAT EK.P
MAT REORDER 2 EK.P
MAT REORDER ... BY s EK,P
MAT foo=CSUM(bar) s EK,P
MAT foo=IDN » EX,P
MAT foo=INV(bar) s EK,P
MAT foo=RSUM(bar . EK.P

10-4 HP 8711 IBASIC Keyword Summary

Table 10-1.. Alphabetical List of IBASIC Revision 2.0 Keywords Supported by
the HP 8711A with Firmware Revision 2.0 (continued)

HP IBASIC Keyword New Support Exceptions
Item FP=Front Panel
EK=External
Keyboard
P=Programmable

MAX EK,P
MAXLEN FPEK.P
MAXREAL EK,P
MIN EK.P
MINREAL EK.P
MGOD EK,P
MODULO EK,P
MOVE EK.,P
MOVELINES . TK
MSI FP,EK,P MSI may be altered by the instr.
NOT FP,EK,P
NUM FP.EKP
ON|OFF CYCLE » P
ON|OFF ERROR | 4
ONiOFF INTR p Interface Select Code = 7 or 8
ON|{OFF KEY P Key selectors 1 thru 7
ON|OFF TIMEOUT P Interface Select Code = 7 or 8
OPTION BASE » P
OR FP.EK,P
QUTPUT EK,P Select Code 1,7,8
PASS CONTROL EK,P Select Code 7 or 8
PAUSE EK,FP.P
PDIR . EK.P
PEN EK.P {=erase l=draw
PENUP . EK.P
P EX.P
PIVOT ° EK.P
PLOT . EK,P
POLYGON ® EK,P FILL not supported. Scaling diffs.
POLYLINE » EK.P
POS FP.EK P
PRINT EK,P
PRINTER IS EK,P
PROUND EK.P

HP 8711 IBASIC Keyword Summary 10-5

Table 10-1. Aiphabetical List of IBASIC Revision 2.0 Keywords Supported by
the HP 8711A with Firmware Revision 2.0 {continued)

HP IBASIC Keyword New Support Exceptions
Ttemn FP=Front Panel
EK=Exiernal
Keyboard
P=Programmable
PRT EK,P
PURGE FPEK,P
RAD FP,EK,P
RANDOMIZE EK,P
RATIO * EX P
RE-SAVE FP.EK,P
RE-STORE FP.EK,P
READ EK,P
READIO EX.P Select Code 9 or 15. See manual.
REAL P
RECTANGLE . EX.P FILL not supported. Scaling diffs.
REDIM . EK,P
REM P
REMOTE EK,P Select Code 7
REN EK
RENAME FP.EK,P
REPEAT UNTIL P
RESTORE » P
RETURN P
{REVS FP,EK,P
RND EK.P
ROTATE FP,EK,P
RPLOT . EK,P Fill not supported. Scaling diffs.
RPTS FP,EK,P
RUN EK,FP,P
SAVE FP EK,P
SCRATCH FP.EK Front Panel executes SCRATCH A.
SECURE FP,EK
SELECT P
SET TIME foo ® FP.EK,P
SET TIMEDATE foo . EK.P
SGN EK,P
SHIFT FP,EK,P
SHOW . EK,P

10-6 HP 8711 IBASIC Keyword Summary

Table 10-1, Alphabetical List of IBASIC Revision 2.0 Keywords Supported by
the HP 87 11A with Firmware Revision 2.0 {continued)

HF IBASIC Keyword New Support Exceptions
Item FP=Frout Panel
EK=External
Keyboard
P=Programmable

SIN FP,EK,P
SPOLL EK.P Select Code 7
SQR EK,P
SQRT EK.P
STEP FP,EK
STOP FP,P
STORE . FP.EK,P
SUB P
SUBEND P
SUBEXIT P
SUM . EK,P
SYSTEM PRIQRITY P
SYSTEMS EK,P
TAB(EK,P
TABXY() EK.P
TAN FP.EK,P
TIME » EK,P
TIMES$. EK,P
TRIGGER EK.P Select Code 7
TRIM$S FPEK,P
TRN . EK.P
UPCS FP.EK,P
USING EK.P
VAL FP,EK,P
VALS FP,EK.,P
VIEWPORT . EK,P
WAIT EK.P
WHERE . EK,P
WHILE P
WIDTH EK.,P
WINDOW . EK,P
WRITEIO EX.P Select Code 9 or 15. See manual.
" EK.P

HP 8711 iBASIC Keyword Summary 10-7

Table 10-2. Categorical List of IBASIC Revision 2.0 Keywords Supported by

the HP 87 11A with Firmware Revision 2.0

HP Instrument BASIC Keyword

Support
FP=Front Panel
EK=External
Keyboard

P=Programmable

Exceptions

Program Entry/Editing

COFPYLINES
DEL
DELSUB
EDIT

INDENT
LIST

MOVELINES
REM
REN
SECURE
Program Debugging
ERRL()
ERRLN{)
ERRMS
ERRN
STEP
Memory Altocation
ALLOCATE
COoOM
DEALLOCATE
DELSUB
DIM
INTEGER
LOADSUB
QOPTION BASE
REAL
SCRATCH

Relational Operators
L= =, e

General Math
*

+

/

EK
FP,EK
EK
FPEK

EK
EK,P

EK
P
EX
FP,EK

EK,P
EK,P
EK,P

FP,EK

EK.P
EK.P
EK.P
EK.P

¥ront Panel deletes only 1 line.

Front Panel EDITs default line #. See
Manual.

Valid Device Selectors #7Txx, FTxxxx,
#9, #£15.

Front Panel executes SCRATCH A.

10-8 HP 8711 IBASIC Keyword Summary

Tabie 10-2. Categorical List of IBASIC Revision 2.0 Keywords Supported by
the HP 8711A with Firmware Revision 2.0 (continued)

HP Instrument BASIC Keyword

Support

FP=Front Panel

EX=FExternal
Keyboard

P=Programmable

Exceptions

ABS

DIV
DROUND
EXP
FRACT
INT

LET

LGT

LOG
MAX
MAXREAL
MIN
MINREAL
MOD
MODULO
Pl
PROUND
RANDOMIZE
RND

SGN

SQR
SQRT

Binary Functions
BINAND
BINCMP
BINEOR
BINIOR
BIT
ROTATE
SHIFT

Trigonometric Operations
ACS
ASN
ATN
COS
DEG

EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EX,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EX,P
EK,P

FP,EK,P
FP,EK, P
FP,EK,P
FP,EKP
FP.EK,P
FP,EK,P
FP,EK,P

FP.EK,P
FP,EK.P
FP,EK,P
FP,EK,P
FP,EK,P

Abs vals less than 1.7083127722e+10

HFP 8711 IBASIC Keyword Summary 10-9

Table 16-2. Categorical List of IBASIC Revision 2,0 Keywords Supported by

the HP 87 11A with Firmware Revision 2.0 (continued)

HP Instrument BASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P=Prograxmmable
RAD FPEK.P
SIN FP.EK.P
TAN FP,EK.P
String Operations
& FPEK.P
CHRS FPEK,P
DVALS FP.EK,P
DVAL FP.EK,P
IVALS FP.EK,P
IVAL FP.EK,P
LEN FPEK,P
IWCS FP.EK,P
MAXLEN FP.EK.P
NUM FP.EK,P
POS FPEK,P
REVS FPEK,P
RPT$ FPEK,P
TRIMS FP.EK,P
UPCS FP.EK.P
VALS FP.EK.P
VAL FPEK,P
Logical Operations
AND FP.EK,P
EXOR FPEK,P
NOT FP,EK,P
OR ¥P.EK.P
Mass Storage
CAT FP,EK,P Supports 58 columns. See manual.
COPY FP.EK,P
CREATE
CREATE ASCII EKP
CREATE BDAT EK,P
CREATE DIR
GET FP,EK.P

10-10 HP 8711 IBASIC Keyword Summary

Table 10-2. Categorical List of IBASIC Revision 2.0 Keywords Supported by
the HP 8711A with Firmware Revision 2.0 (continued)

HP Instrument BASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P=Programmable
INITIALIZE FPEK,P
LOAD FP.EK P
LOADSUB FP.EK,P
LOADSUB ALL FROM ... FP.EK,P
MS]I FPEK.P MSI may be altered by the instr. When
save/recalling programs to/from DOS
subdirectories.
PURGE FP.EK,P
RE-SAVE FP.EK.P
RENAME FP.EK.P
RE-STORE FP.EK.P
SAVE FP.EK,P
STORE FP,EK.,P
Program Conirol .

CALL EKP
CASE P
CASE ELSE P
CONT EK,FP Line number support from EX only
DEF FN P
ELSE P
END P
END IF P
END LOCP P
END SELECT P
END WHILE P
EXIT IF P
FN P
FNEND P
FOR NEXT P
GOSUB P
GOTO P
IF THEN P
LGOP P
PAUSE EK,FP,P
REPEAT UNTIL P

HP 8711 IBASIC Keyword Summary 10-11

Table 10-2. Categorical List of IBASIC Revision 2.0 Keywords Supported by
the HP 8711A with Firmware Revision 2.0 (continued)

HP Instrument BASIC Keyword Support Exceptions
FP=Front Panel
EK=FExternal
Keyboard
P=Programmable
RETURN P
RUN EK,FP,P
SELECT P
STOP FP.P
SUB P
SUBEND P
SUBEXIT P
SYSTEMS EK.P
WAIT EKP
WEHILE P
Event Initiated Branching
DISABLE P
DISABLE INTR P Interface Select Code = 7 or 8.
ENABLE P
ENABLE INTR p Interface Select Code = 7 or 8. Must
not precede an ON INTR statement.
ON|OFF CYCLE P
ON|OFF ERROR P
ON|OFF INTR P Interface Select Code = 7 or 8. Must
precede ENABLE INTR statement.
ON|OFF KEY P Key selectors 1 thru 7
ON|OFF TIMEOUT P Interface Select Code = 7 or 8
SYSTEM PRIORITY P
Graphics Control
GCLEAR EK,P
GINIT EK.P
RATIO EX.P
SHOW EK.P
VIEWPORT EK.P
WHERE EK.P
WINDOW EK,P
Graphics Plotting
DRAW EK,P
IDRAW EK.P
IMOVE EK,P

10-12 HP 8711 IBASIC Keyword Summary

Table 10-2. Categorical List of IBASIC Revision 2.0 Keywords Supported by
the HP 8711A with Firmware Revision 2.0 (continued)

HP Instrument BASIC Keyword Support Exceptions
FP:==Front Panel
EE =External
Keyboard
P=Programmable
IPLOT EK.P
MOVE EK.,P
PDIR EX,P
PEN EX,P O=erase l=draw
PENUP EK.P
PIVOT EK.P
PLOT ERP
POLYGON EK,P FILL not supported. Scaling diffs.
POLYLINE EK,P
RECTANGLE EK.P FILL not supported. Sealing diffs.
RPLOT EK,P FILL noi supported. Scaling diffs.
Graphics Axis and Labeling
AXES EKP
CSIZE EK.P
FRAME EK,P
GRID EK,P
LABEL EK.P
LDIR EK,P
LORG EK,P
HP-IB Control
ABORT EKP Select Code = 7,8,9,15
CLEAR EX,P Select Code = 7.8,9,15
LOCAL EKP Select Code 7 only.
LOCAL LOCKQUT EEK.P Select Code 7 only.
PASS CONTROL EK.P Select Code 7 or §
REMOTE EK,P Select Code 7
SPOLL EK.P Select Code 7
TRIGGER EK,P Select Code 7
Clock and Calendar
DATE EK.P
DATES EK,P
SET TIME foo FP.EK,P
SET TIMEDATE foo EK.P
TIME EK,P
TIMES EK,P

HP 8711 IBASIC Keyword Summary 198-13

Table 10-2. Categorical List of IBASIC Revision 2.0 Keywords Supported by

the HP 8711A with Firmware Revision 2.0 (continued)

HP Instrument BASIC Keyword

Support

FP=Front Panel

EX=Fxternal
Keyboard

P—=Programmable

Exceptions

General Device Input/Output
ASSIGN
BEEP
CRT
DATA
DISP
ENTER
IMAGE
INPUT
KBD
OUTPUT
PRINT
PRINTER IS5
PRT
READ
READIO
RESTORE
TAB{)
TABXY()
USING
WIDTH
WRITEIO
Display and Keyboard Control
CLEAR SCREEN
CLS
Array Operations
DET
DOT
MAT
MAT foo=IDN
MAT foo=INV(bar)
MAT foo=CSUM(bar)
MAT foo=RSUM(bar)
MAT REORDER
MAT REORDER ... BY
REDIM
SUM
TRN

EK.P
EK,P
EK,P
P
EK,P
EK,P
P
P
p
EK,P
EK,P
EK,P
EK,P
EX,P
EK,P

EK,P
EK.P
EK.P
EE.P
EK,P

EX,P
ER.P

EK,P
EK,P
EK.P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P

ENTER CRT(ENTER 1) not supported

See Manual.
Returns select code =2.
Select Code 1,7,8

Select Code 9 or 15. See manual.

Select Code § or 15. See manual.

10-14 HP 8711 IBASIC Keyword Summary

11

Example Programs

m

Program Summaries

This chapter contains listings of the example programs referred to throughout this manual.
These programs are all available on the IBASIC Ezample Programs Disk that accompanies
this manual.

In addition to these example programs, there are two additional disks of examples for the HP
8711. These disks are the HP 8711 Ezample Programs Disk — DOS Format and the HP 8711
Ezample Programs Disk — LIF Format. These disks are included with the network analyzer
when it is delivered. All the programs on these disks are designed to run on the analyzer’s
internal JBASIC controller.

The example programs listed in this chapter include the following:

DATA_EXT — Data transfer between internal and external programs

This program is designed to Tun on an external controller — either HP IBASIC for Windows
running on a PC or HP BASIC running on an HP workstation.

This program demonstrates how to transfer data from an IBASIC program running on the HP
8711 to an HP BASIC or IBASIC program running externally. It loads a program into the HP
8711, rums it, sets a variable and then gives it control of the bus. This program then acts as a
device on the bus (sending and receiving data).

DATA_INT - Data transfer between internal and external programs

This program is designed to run on the HP 8711’ internal IBASIC controller.

This program demonstrates how to transfer data to and from an exterpal controller. In
this example a catalog Listing is transferred from the HP 8711 to the external controller.
A murneric variable value is also downloaded from the external controller to the HP 8711s
program.

DOWNLOAD — Download program to HP 8711

This program demonstrates how to download an IBASIC program to the HP 8711. It is
designed (in HP BASIC or HP IBASIC for Windows}) to run on an external workstation or
PC.

Example Programs 11-1

DRAWS711 - Drawing setup diagrams

This program draws the HP 8711 network analyzer and a device under test to the full screen
IBASIC display partition. The drawing can be scaled to fit the application.

DUALCTRL — Two controller operation

This program demonstrates how the external controller and HP IBASIC can work together. It
is designed to run on an external controller {in HP BASIC or HP IBASIC for Windows). The
program downloads an IBASIC program to the HP 8711 and runs it twice. After each rum,
two program variables are read from the analyzer and displayed.

REPORT -— Using the parallel port

This program uses the HP 8711 to generate a report, making a hardcopy on a printer
connected to the parallel port. It uses a subprogram to send the output to the parallel port
one line at a time.

UPLOAD — Upload program from HP 8711

This program uploads the IBASIC program in the HP 8711’ program buffer to an ASCII file
on the external controller’s current mass storage device.

USER_BIT — Using the USER bit

This program demonstrates how to read and write to the USER bit. The USER bit is a
TTL signal accessible by a BNC connector on the HP 8711’ rear panel. IBASIC’s graphics
commands are used to draw the USER bit value to the display.

USERKEYS - Customized softkeys

This program provides an example of how the HP 8711’s softkeys can be customized. The
example demonstrates how to set up six instrument states, store them to the analyzer’s
internal memory, and setup two interactive softkey menus to choose between them.

BAR, AVG, LOG - Barcode Programs

You may use barcode readers to simplify your measurement setups. The HPCK-1210
KeyWand scanner or compatible barcode scanner will work with the HP 8711. Connect your
barcode scanner to the DIN keyboard connector. You may connect a keyboard or other DIN
key input device in parallel with the barcode scanner. The barcode scanner will work in place
of, or in addition to, your keyboard.

The INPUT statement is used to read the barcode from the scanner. When the input
statement is encountered, the program will wait until the user has completed an input. The
input is completed whenever a carriage return is received from the keyboard or a barcode has
been successfully scanned by the barcode scanner.

The following three programs, designed to run on the HP 8711’s internal IBASIC controller,
demonstrate the use of barcode scanner applications as well as other useful applications.
While a barcode scanner is useful in demonstrating these programs, it is not required; one
can simply press ENTER and the program will input default values. Sample barcodes are
provided for experimentation. The three programs are as follows:

BAR - This program demonstrates basic barcode scanning to select one of three filter setups
depending upon what is scanned. RYF stimulus is set and response limits are read, set and

11.2 Example Programs

tested for each device. Depending upon tesult, the program prints “PASS” or “FAIL” on the
CRT. Most useful in this program is a subprogram to draw an HP 8711 representation on the
CRT. This code can be re-used in any user application that may require a guided setup.

The HP 8711 image (and DUT image) can be both scaled to any size, and offset in the X or
Y axis as required. This is an excellent program to familiarize yourself with graphic routines
using IBASIC graphics commands.

AVG - This program first reads a DUT barcode and sets the RF stimulus accordingly. It then
displays a running average of all similar devices and constantly updates the display with both
the current DUT and the current average of all devices tested so far. Also demonstrates the
use of two of the built-in CSUB routines for reading and writing trace data from/to the HP
8711.

LOG - This program will very quickly store measured trace data for one of three filters to
internal HP 8711 memory in a formmat that can be read by spreadsheet programs for further
analysis. Because the data is stored to RAM, the time delay inherent with disks is not an
issue; trace data can be stored in a fraction of a second. With 101 data points per trace
selected, the internal memory will hold over 20 device test results. At this point, the program
automatically transfers the data to disk. Of course, more data points will take longer to

store and fill the memory sooner. The program will read the barcode and select the stimulus
accordingly. It then measures the device and upon request, stores it under 2 unique name
dependent upon model number and serial number. Once the internal memory is full, or at any
user requested time, all trace data is transferred to disk.

DATA_EXT — Data transfer between internal and external programs

10 rm e e e T T
20 ¢

30 ! BASIC program: DATA_EXT - Data transfer (external)

40 !

50 ! This program demonstrates how to transfer data from

60 ! an IBASIC program running on the HP 8711 to an

70 ! HP BASIC program (or an IBASIC program running

80 ! externally). This program was designed to runon a

90 ! computer or PC. It loads a program into the HP 8711,

100 ! runs it, and then gives it control of the bus.

110 ! This program then acts as a device on the bus;

120 ! sending and receiving data.

130

140 ! Before running this program, a disc with the program

150 ! DATA_INT’ should be in the HP 8711’s internal drive.
160 !

170 s e e e e T T ST s
180

200 ! and the HP~-IB address of the HP 8711.
210 1

220 Scode=T7

230 Address=16

240 HNa=Scode*100+Address

1

190 ! Initialize variables for the interface select code
§
1

Example Programs 11-3

250 |

260 ! Abort any bus traffic, clear the input/output queues
270 ! of the analyzer, clear the analyzer’s status

280 ! registers and the display.

296 !

300 ABORT Scode

310 CLEAR Na

320 OUTPUT Na;"*CL3"

330 CLEAR SCREEN

340 !

350 ! Dimension an array to hold the catalog listing.
380 1}

370 DIM Directory$(1:100}[85]

380 !

380 ! Prompt the operator to insert the disk in the

400 ! HP 8711, load the program and wait until done.

416 !

420 INPUT "Put disc with program *DATA_INT’ into the HP 871i. Press <ENTER>",A$
430 DISP "Loading programon HP 8711 ... "

440 QUTPUT Na;"PROG:EXEC *GET ""DATA_INT:INTERNAL""’"

450 QUTPUT Na; “*(QPC?"

460 ENTER Na;0pc

470 !

480 ! Read the analyzer’s event status register and
490 ! check for any errors when loading file.

500 !

510 OUTPUT Ha;'"*ESR?"

520 ENTER Na;Esr

530 IF Esr>0 THEN

540 BEEP

550 DISP "Error occurred while loading *DATA_INT’ ... Program stopped."
560 STOP

E70 END IF

580 ¢

530 ! Determine the HP-IB address of the controller
600 ! and set the pass control back address.

610 !

620 INTEGER Stat,Addr

630 STATUS 7,3;Stat

640 Addr=BINAND(Stat,31)

650 OUTPUT Ha;"+PCB ";Addr

8680 !

870 ! Send the command to run the DATA_INT progranm.
680 ! '

690 DISP "Running the program... "

700 QUTPUT Na; “PROG:STAT RURY

710 !

720 ! Monitor the program’s status. When it has
730 ! paused, set the variable for the controller’s
740 ! BP-1B address.

11-4 Example Programs

750
760
770
780
790
800
810
820
830
840
850
86U
870
880
890
900
910
820
3930
240
250
960
870

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1020
1100
1110

DUTPUT Na;"PROG:STAT?H

ENTER Na;Prog$

IF Prog$<>"PAUS" THEN GOTO 760

OUTPUT Na;"PROG:NUMB *Host’,";Scode*x100+Addr
QUTPUT Na;"PROG:STAT CONT"

'

! Pass control of the bus to the HP 8711.
i

PASS CONTROL Na

i

t Wait until addressed to talk by the HP 8711,
! then send the name of the disk to catalog.

1

GUTPUT Scode; " : INTERNAL"

'

! Wait until addressed to listen by the HP 8711,
! then read the directory from the analyzer.

l

DISP "Reading data ... "

ENTER Scode;Directory$(*)

I

! Print the catalog to the computer’s display.

!
FOR I=1TO 100

IF LEN(Directory$(I))>0 THEN PRINT Directory$ (1) .

NEXT I

!

! Try to return the HP 8711 to LOCAL control.

! If the analyzer is still the active contreller
! an error will be generated and the program

! will loop until control of the bus is received.
!

ON ERROR GOTO 1020

LOCAL Na

DISP iy

END

Example Programs 11-5

DATA_INT — Data transfer between internal and external programs

10 b s e e e i o
20 !

30 ! IBASIC program: DATA_INT - Data transfer (inmternal)

40 !

50 ! This program demonstrates how to transfer data to

60 ! and from an external controller. In this example a

70 ! catalog listing is transferred from the HP 8711 to

80 ! the external controller. For more information lock

90 ! at the program listing for *DATA_INT*.

1060

110 1 This IBASIC program is intended to run on the
120 ! HP 8711’s internal controller.

130 !

140 o e
180 ¢

160 ! Dimension an array to hold the catalog listing.
170 ¢

180 DIM Directory$(1:100)[85]

180 ¢

200 ! Pause the program and wait for the controller to
210 ! set the *Host’ variable with its’ HP-IB address.
220 | The controller continues this program after the
23¢ ! variable has been passed.

240 !

250 Host=0

260 PAUSE

270 !

280 1! Address the external controller te talk, read
290 ! the device to cataleg. If the HP 8711 is not

300 ! active contreller on the bus an error will occur
310 ! and the program will loop until control is

320 ! received.

330 !

340 0¥ ERROR GOTO 340

350 ENTER Host;Stor_dev$

360 OFF ERROR

370 !

380 ! Catalog the requested storage device into -

390 ! the string array.

400 !

410 DISP "Reading catalog... "

420 CAT Stor_dev$ TO Directory$ (=)

430 !

440 ! Address the external controller to listen,

450 ! send the catalog array to the controller.

460 !

470 DISP "Transferring data ... "

11-6 Example Programs

480
430
500
510
520
530
540

OUTPUT Host;Directory$(*)
]

! Pass control back to the external controller.
1

PASS CONTROL Host

DISP "DCNE"

ERD

Example Programs 11-7

DOWNLOAD — Download program to HP 8711

10
20
30
40
50
80
70
80
80
100
11¢
126
130
140
150
160
1790
180
190
200
210
220
230
240
250
260

BASIC program: DOWNLOAD - Download program to HP 8711

This program demonstrates how to download an IBASIC
program te the HP8711. This program is designed to
run on an external controller.

1

! Initialize variables for the interface select code
! and the HP-IB address of the HP 8711.
!

Scode=T

Address=16

Na=Scode*100+Address

i

! Initialize variables, abort any bus traffic and
! clear the input/output queues of the analyzer.
¥

DIM Line$[255]

ABORT Scode

CLEAR Na

i

! Get the program’s filename and open the file.
!

270 Get filename: INPUT "Program to be transferred?" ,Filename$

280
280
300
310
320
330
340
350
360
370
380
390

ON ERROR GOTO No_file

DISP “Checking file ... "

ASSIGN @Basic_prog TO Filename$; FORMAT ON
OFF ERROR

!

! Clear the contents of the analyzer’s program buffer.
i

OUTPUT Ha;"PROG:DEL:ALL"
3
! Change the EOL (end of 1ine) character to line feed

! and initizlize the line counter.
i

400 Transfer: ASSIGN @Prog TO Na;EOL CHR$(10)

410
420
430
440
450
460
470

Line_count=0

i

! Initiate the program transfer (an indefinite length
! block data transfer}.

i

QUTPUT @Prog;"PROG:DEF #0";

11-8 Example Programs

480
430
500
510
520
530
540
550
560
570
580
590
800
810
820

! Read each program line from the file and send it to

! the HP 8711. Loop until the end of file is reached.

0% ERROR GOSUB End._ file
LOOP
ENTER @Basic_prog;Line$
QUTPUT @Prog;Line$
Line_count=Line_count+l
DISP "Lines transferred: ";Line_count
ERD LOOP
t
! End the data transfer {output a line feed with ECI)
! and close the file. Return the analyzer to LOCAL
! control and stop this program.
1

630 End_block: OUTPUT @Prog;CHR$ (10) END

640
650
860
670
680
690
700
710
720

ASSIGN @Basic_prog TO *

DISP "Transfer complete"

LOCAL Ka

STOP

'

! This subroutine is the error handler for opening
! the file -~ if the file won’t open it returns to

! get a new file name.
i

730 No_file: BEEP

740
780
760
770
780
790
8OO
810
820

DISP "CAN’T OPEN: ""*;Filenamed;""" -- ";

GOTO Get_filename

RETURN

]

! This subroutine is the error handler for the

! data transfer. When the end of file is reached
! it generates an error. Execution is resumed

! putside of the transfer loop.
i

830 End_file: IF ERRN=59 THEN GOTO End_block

840
850
860
870

DISP ERRM$;" occurred during data transfer”
STOP

RETURN

END

Example Programs

11-9

DRAWS711 — Drawing setup diagrams

10l

30 ! IBASIC program: DRAW8711 - Drawing setup diagrams
40 !
50 ! This program draws the HP 8711 network analyzer

80 ! and a device under test to the full screen IBASIC
70 ! display partition. The drawing can be scaled to
80 ! fit the application. Setting the scale factor to
90 ! 1.0 creates a drawing of about 400 pixels wide

100 ! (1/2 screen width) and 100 pixels high (1/3 screen
110 ! height).

120 !

180 1 e o o e et S T T e e
140 !

150 ! Setup an I/0 path name for the internal bus and
160 ! declare variables.

70 !

180 INTEGER X0,YO

190 REAL Scale

200 ASSIGN @Ep8711 TO 800

210 !

220 ! Preset the analyzer and wait until it is done.

230 1

240 (QUTPUT QHp8&711;"SYST:PRES;*0PC?"

250 ENTER @Hp8T11;0pc

260 !t

270 | Allocate the full screen as an IBASIC display

280 ! and clear the graphics buffer.

280 !

300 OUTPUT @Hp8711;"DISP:PROG FULL"

310 QUTPUT @Hp8711;"DISP:WIND10:GRAP:CLEAR"

320 !

330 ! Setup the origin and scale parameters for the

340 ! drawing. Draw the network analyzer and dut.

350 %

360 X0=100

370 Y0=100

380 Scale=1,

390 CALL Praw_na(XC,Y0,Scale)

400 CALL Draw_dut(X0,Y0,Scale)

410 END

G20 o e
430 SUB Draw_na(INTEGER X0,INTEGER YO,REAL Sc)

440 o e o e e o e e e

480 !
460 ! This subroutine draws the HP 8711 at origin X0,Y0
470 ! and scale Sc. The drawing is done to the IBASIC

11-10 Example Programs

480

480

500

510

520

530

540

550

560

70

580

590

600

610

620

630

640

850

660

870

680

630

700

710

720

730

T40

750

! display (window 10) using the HP 8711°s user

! graphics commands.

ASSIGN @Hp8711 TO 800
OUTPUT @Hp8711;"DISP:
ZVAL$(YO)

OUTPUT @Hp&711;"DISP:
EVALS(INT (Sc*100))
OUTPUT @Hp8711;"DISP:
ZVAL$ (YO+INT (Sc*10))
QUTPUT @Hp8711;"DISP:
ZVALS (INT(Sc*80))
OUTPUT @Hp8711;"DISP:
ZVALS(YO+INT(Sc%80))
OUTPUT @Hp8711;"DISP:
VAL (INT (Sc#8))
OUTPUT @Hp8711;"DISP:
ZVALS (YO+INT (Sc*70))
QUTPUT @Hp8711;"DISP:
EVALS(INT(Scx8))
OUTPUT @Hp8711;"DISP:
SVALS (YO+INT(Sc*60))
QUTPUT @Hp8711;"DISP:
EVALS (INT(Scx*8))
QUTPUT @Hp8711;"DISP
EVALS (YO+INT(Sc*50))
DUTPUT @Hp8711;"DISP
ZVALS(INT(Sc*8))
DUTPUT @Hp8711;"DISP
EVALS (YO+INT(Sc*40))
OUTPUT @Hp8711;"DISP:
ZVAL$ (INT(Sc*8))
QUTPUT @Hp8711;"DISP
EVALS (YO+INT(Scx30))
OUTPUT @Hp8711;"DISP
ZVAL$ (INT(Sc#*8))
QUTPUT ©Hp8711;"DISP
EVAL$ (YO+INT (Sc*20))
OUTPUT @Hp8711;"DISP:
EVALS (THT(Sc*8))
QUTPUT @Hp8711;"DISP
ZVAL$ (YO+INT(Sc*10))
OUTPUT @Hp8711;"DISP
ZVALS (INT(Sc*8))
OUTPUT @Hp8711;"DISP:
EVALS (YO+INT{Sc%80))
OUTPUT @Hp8711;"DISP:
ZVALE(INT(Sc*13))

QUTPUT @Hp8711;"DISP:

:WIND1O

WIND10O:

WIND10:

WIND10

WIKD1G:

WIND10

WINDLO

WIND1O:

WIND1O:

WIND1O:

WIND1O

:WIKD10:

:WIND10:

WIND1O:

:WIND1O:

:WINDIO:

:WIND1O:

WIND1O:

WIND1O:

:WIND1O:

WIND10:

WIKD1O:

WIND1O:

GRAP:

GRAP:

:GRAP

GRAP:

:GRAP

:GRAP:

GRAP

GRAP

GRAP

:GRAP

GRAP:

QRAP:

:GRAP

GRAP:

GRAP

GRAP:

GRAP:

GRAP

GRAP

GRAP:

GRAP

GRAP:

GRAP

MOVE "&VAL$ (X0)&","

RECT "&VAL$ (INT(Scx360))&","

:MOVE "&VAL$ (XO+INT(Sc*10))&","

RECT "&VAL$ (INT(Sc*180))&","

:MOVE “&VAL$ (RO+INT(Sc*200))&","

RECT "&VAL$ (INT(Sc*15})&","

:MOVE "2VALS (XO+INT(Sc%200))&","
:RECT “&VAL$ (INT(Sc*15))&","
:MOVE P&VAL$ (XO+INT(Sc*200))&","

+RECT "&VAL$ (INT(Sc*158))¢&","

MOVE "&VAL$ (XO+INT (Sc#200))&","

RECT "&VAL$ (INT(Sc*15))&","

:MOVE "&VAL$ (XO+INT(Sc*200))&","

RECT "&VAL$ (INT(Sc*15))&","

:MOVE "&VAL$ (XO+INT(Sc*200))&","

RECT "&VAL$ (INT(Sc*15))&","

MOVE "&VAL$ (X0+INT(Sc*200))&","

:RECT "&VAL$ (INT{Sc*15))¢&","

:MOVE "&VAL$ (XO+INT(Sc*200))&","

RECT "&VAL$ (INT(Sc*x15))g","

:MOVE "&VALS (XO+INT(Sc*265))&","

RECT "&VAL$ (INT(Sc*70))&","

:MOVE "&VAL$ (XO+INT(Sc*230))&","

Example Programs

11-11

760
770
780
790

800
810

820
830

840
850
860
870
880C
830
900
910
920
930
940
9850
960

970
980
290
1000
1010
1020
1030

1040

ZVALS(YO+INT(Sc%81))
OUTPUT @Hp8711;"DISP:WIND10:GRAP:RECT HEVALS (INT(Scx20))&","
ZVALS (INT (Sc*10))

QUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE "&VAL$(XO+INT(8c*275))¢&","

ZVALS (YO+INT(Sc*85))
OUTPUT @Hp8711;"DISP:WIND10:GRAP:RECT ngVALS (INT(ScxE0) Y &","
&VAL$ (INT{Sc*3))

OUTPUT @HpS8711;"DISP:WIND10:GRAP:MOVE "gVALS (XO+INT(Sc#295))&","

&VALS (YO+INT (Sc*50))
QUTPUT @HpS8711;"DISP:WIND10:GRAP :CIRC "&VAL$ (INT(Sc*8))

QUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE NgVALS (X0+INT(Sc*245))&","

ZVAL$ (YO+INT(Scx15))
QUTPUT @Hp8711;"DISP:WINDO: GRAP:CIRC "&VALS (INT(Sc*4))

DUTPUT @Hp8711;"DISP:WIND10:GRAP: MOVE ngVALS (XO+INT(Sc*325))&","

ZVALS (YO+INT (Scx15))
QUTPUT @Hp8711;"DISP:WIND10:GRAP:CIRC NEVALS (INT(Sc*4))

SUBEND

| This subprogram draws a device under test (dut)
1 and connects it to the HP 8711 that was drawn
t with an origin at X0,Y0 and a scale of Sc.

ASSIGN Q@HpBT11 T 800

QUTPUT @Hp8711;"DISP:WIND10: GRAP :MOVE "EVALS (X0+INT(Sc*245))&","

LVALS (YO+INT(Sc*18))

OUTPUT @Hp8711;"DISP:WIND10:GRAP :DRAW “EVALS (XO+INT(Scx245) 3&","

EVAL$ (YO-INT(Sc*20))

QUTPUT @Hp8711;"DISP:WIND10:GRAP :DRAW HEVALS (XO+INT (Sc*2853)&","

EVALS (YO~INT{Scx20))

QUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE "gVALS (XO+INT(Sc*265))&","

ZVALS(YO-INT(Sc*22))
OUTPUT @Hp8711;"DISP:WIND10:GRAP :RECT HEVALS (INT(Sc*40))&","
EVALS(INT(Sc*4))

QUTPUT @Hp8711;"DISP:WIND10:GRAP :MOVE HEVALS (XO+INT{Sc*305))&","

VAL$ (YO-INT(Sc*20))

OUTPUT @Hp8711;"DISP:WIND10:GRAP :DRAW “EVALS (XO+INT(Sc*325))&","

EVALS (YO-INT(Sc*20))

DUTPUT @Hp8711;"DISP:WIND10:GRAP :DRAW "ZVAL$ (XO+INT(Sc*328))&","

ZVALS (YO+INT (Scx15))
SUBEND

11.12 Exampie Programs

DUALCTRL — Two controlier operation

10

20

30

40

50

&0

70

80

20

100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
280
280
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

BASIC program: DUALCTRL - Two controller operation

This program is designed to run on an external
controller. It demonstrates how the external
controller and HP IBASIC can work together. The
program downloads an IBASIC program to the HP 8711
and runs it twice. After each run, two program

t variables are read from the analyzer and displayed.
i

Cue smm e e tem tem g b

] o e o R

!

! Initialize the variables for the interface select
! code and the HP-IB address of the HP 8711.
]

Scode=7

Address=16

Na=Scode*100+Address

i

! Prepare the analyzer for remote operation, clear
! the analyzer’s input/output queues, the display
! and scratch any progranm in the buffer.

1

CLEAR Na

CLEAR SCREEN

OUTPUT Na;"PROG:DEL:ALLY

1
! Download the program as an indefinite block length
! data transfer, terminate the data transfer by

! sending a carriage return and EOI.

1

DISP “Downloading the program... "

ASSIGN €Prog TO Na

QUTPUT @Prog;"PROG:DEF #0";

QUTPUT @Prog;" 10 COM INTEGER Times_run,Test${10]"

OUTPUT @Prog;"20 Times_run=Times_run+l"

DUTPUT @Prog;"30 IF Times.run=1 THEN Test$=""PASS"""
QUTPUT @Prog; 40 IF Times_run=2 THEN Test$=""FAIL"""
QUTPUT @Prog;"50 FOR I= 1 TO 20"

QUTPUT @Prog;*60 BEEP"

OUTPUT @Prog;"'70 KEXT I"

OUTPUT @Prog; " 80 END"

OUTPUT @Prog;CHR$(10) END

i

t Initialize interrupt registers - clear the status byte,
! the service request enable register, the standard event

Example Programs

11-13

480 ! enable register, and preset the other status registers.
490 !

500 OUTPUT Na;'*CL3"

510 OUTPUT Na; "*SRE 0"

52G OUTPUT Na;“*ESE 0"

530 OUTPUT Na;“"STAT:PRES"

540 !

550 ! Set up the status registers to generate an interrupt
560 ! on negative transition of the Program Running bit
570 ! (bit 14 in the Operational Status register).

580 ¢

590 OUTPUT Na;"STAT:0PER:NTR #HFFFF"

600 QUTPUT Na;"STAT:0PER:ENAB 16384"

610 QUTPUT Na;"#*CLS"

620 CUTPUT Na;"#+SRE 128"

630 !

€640 ! Run the program, read and display the variables.

650 !

660 DISP "Running the program... "

670 OUTPUT Na;"PROG:EXEC *RUN’"

680 Display_res(Na,Scode)

690 (OUTPUT Na;"PROG:EXEC *RUN’"

700 Display.res{Na,Scode)

710 i

720 ! Return the analyzer to front panel control, this
730 ! is the end of the progranm.

740 !

750 LOCAL Na

760 DISP "DONE !*

770 END

780 !

TBO e e o e e e e e e e e e
800 !

810 SUB Display_res{Na,Scode)

820 o e e e e e e e
830 !

840 ! This subprogram waits for an SRQ interrupt to

850 ! signal that an IBASIC program running on the

860 ! analyzer has finished. It then reads and clears
870 ! the HP-1B status registers. The values of two

880 ! program variables are then read and displayed.

880 !

900 e e e e e
810 !

920 ! Setup branching to an interrupt handling routine,
930 ! enable the interrupts and wait unti] one occurs.
940 !

950 ON INTR Scode GOTO Read_results

960 ENABLE INTR Scode;2

970 Idle: GOTO Idle

i11~-14 Example Programs

980 Read_results: !

920

1600
1C10
1020
1030
1040
1080
1060
1070
1080
1080
1100
1110
1120
113¢
11490
1180
1160
1170

i

! The program has finished running - read and clear

! the operational status register and status byte.

i

A=SPOLL(Na)

QUTPUT Na; "STAT:OPER:EVENT"

ENTER Na;Event

QUTPUT Na;"#CLS"

I

! Read a numeric variable (Times_run) and a string

! variable (Test$) and display the values.

i

QUTPUT Na; “PROG:NUMB? ’Times_run’®

ENTER Na USING "X,K";Times.run

QUTPUT Na; "PROG:STR? *Test$’"

ENTER Na USING "X,K";Test$

DISP "Times_run: ";Times_run,"Test$: ";Test$

PRINT "Times_run: ";Times_run,"Test$: ";Test$
SUBEND

Exampie Programs 11-15

REPORT - Using the parallel port

10] e o o o T e
20 ! '

30 ! IBASIC program: REPORT - Using the parallel port

40 !

50 ! This program uses the 8711 to generate a report,

60 ! making a hardcopy on a printer connected to the

70 ! parallel port. It uses a subprogramto send the

80 ! output to the parallel port one line at a time.

g0 !

100 ! This example uses five different font types that

110 ! may or may not be supported for your printer.

120 ! These character fonts are available for HP LaserJet

130 ! printers. Refer to your printer manual to modify

140 t the example fonts for your printer.

160 !

LBO oo o o o e e
170 !

180 ! Assign an I/0 path name for the internal bus and

19¢ ! declare and initialize variables.

200 !

210 COM /Cset/ Block$[50],Title$[50],51ant$[50] ,Banner$ [50] ,Medium$ {507
220 ASSIGN @Hp8711 TO 800

230 Esc$=CHR${27)

240 !

250 ! Preset the analyzer, put it in Trigger HOLD mode,

260 | allocate the full IBASIC display and clear the

270 ! screen.

280 !

290 OUTPUT @Hp8711;"SYST:PRES;*WAL"

300 OUTPUT @Hp8711;"ABOR;:INIT:CONT OFF;*WAI"

310 OUTPUT @Hp8711;"DISP:PROG FULL"

320 CLEAR SCREEN

330 !

340 ! Define the escape sequence for sach font that is

350 ! used. Refer to your printer manual.

360 !

370 Block$=Esc$z"£100"&Esc$&" (8U"&Esc$&" (s1piOh12v0 s0bOT"
380 Title$=Esc$&"&100"¢Esc$g" (8U"gEsc$E" (s1p8h12v0s0 bOT"
390 Slant$=Esc$&"&100"&Esc$g" (7I"&Esc$&" (sOp6hl4visO bOT"
400 Banner$=Esc$&"£100"&¢Esc$e” (7I"kEsc$&" (sOp4h24v0 sObOT"
410 Medium$=Esc$&"&100"&Esc$&" (7J"<esc|E|sc$&" (20p8hidv 0sOLOT"
420 !

43¢ ! Select the font to use writing the company name

440 ! and address, send the company name and address.

450 !

460 CALL Send_line(Title$,1)

470 CALL Send_line(“COMPANY NAME",1)

11-16 Example Programs

480
480
500
510
520
530
540
550
560
E70
580
590
800
610
620
830
640
650
860
670
680
6390
700
710
T20
730
740
750
780
770
780
790
800
810
320
830
840
850
860
870
880
890
200
910
920
230
940
abo
960
270

CALL Send_line("CITY, STATE, COUNTRY",1)

CALL Send._line("

“,1)

! Select the font to use writing the device name,
! send the device nape.

CALL Send_line(Banner$,i)

CALL Send_line("
CALL Send_line("
CALL Send_line("
CALL Send_line("
CALL Send_line("
CALL Send_line("
CALL Send_line("
CALL Send_line(”
CALL Send_line("

CALL Send_line("
!

21,00

_,”,1)

31,1)

l1’1>

BPF-175 Bandpass Filter”,1)
“,i)

",1)

2",0)

Z1)

ll’}.)

t Select the font to use writing the device

! specifications
'

, send the information.

CALL Send_line(Slant$,1)

CALL Send_line(" ",1)

CALL Send_1ine("PASS BAND (MHZ) 3 4B 80 +/~ 5%",1)
CALL Send_line(" ",1)

CALL Send_line(" 20 4B g0 +/-5,1",1)
CALL Send_line(' ",1)

CALL Send_line(¥ 40 dB 120 +/~ 5", 1)
CALL Send_line(" ",1)

CALL Send_ line("SWR PASSBAND (typical) 1.8:1",1)

CALL Send_line(™ ", 1)

CALL Send_line("SWR STOPBAND (typical) 1.8:1%,1)

CALL Send_liine(" *,1)

CALL Send_line("Cost per unit: 36.95",1)

! Select the font to use for the performance data
! title, send the title.

i

CALY Send_line{(Block$,1)

CALL Send_line("

CALL Send_1ine("
1

t , 0)
Transmission Characteristics”,1)

! Return the display to the analyzer.

QUTPUT €Hp8711;"DISP:PROG OFF"

! Setup the device measurement. This example
! measures the transmission response of a
! bandpass filter at 175 MHz.

Example Programs 11-17

280

290

1000
1010
1020
1030
1040
1050
1060
1070
1080
1080
1100
11310
1120
1130
1140
1150
1160
1170
1180
1180
1200
1210
1220
1230
1240
1250
1260
1270
1280
1280
1300
1310
1320
1330
1340
1350
136G
137¢
1380
1320
1400
14190
1420
1430
1440
1450
1460
1470

QUTPUT @Hp8711;"DISP:ANN:FREQ1:MODE SSTOP"

OUTPUT @Hp8711;"SENS1:FREQ:STAR 10 MHz ; STOP 400 MHz;*WAI"
0UTPUT @Hp8711;"DISP:WIND1:TRAC:Y:PDIV 20 dB;RLEV -50 dB;RPOS 5"
0UTPUT @Hp8711;"DISP:ANN:TITL ON;TITL1:DATA *HP 8711 RF NETWORK ANALYZER’"
1

! Take a measurement sweep and wait for it to

! complete. Perform a -3 dB bandwidth search.

!

QUTFUT @Hp8711;"INIT1 ;»0PC?"

ENTER @Hp8711;0pc

OUTFUT @Hp871t;"CALC1:MARK1 ON;MARK:BWID -3"

1

} Select the parallel port and the printer’s

! control langnage as the hardcopy device.

! Set the printer resolution and margins -

! turn off automatic form feed.

3

QUTPUT @Hp8711;"HCOP:DEV:LANG PCL;PORT CENT"

QUTPUT @Hp8711;"HCOP:DEV:RES 300"

QUTPUT @Hp8711;"HCOP :PAGE : MARG : LEFT 40"

QUTPUT @Hp8T11;"HCOP:PAGE:WIDT 110"

QUTPUT @Hp8711;"HCOP:ITEM1 :FFE:STAT JFF"

!

! Send the measurement data {graph and marker

! values) to the printer.

!

QUTPUT @Hp8711; "HCOP

]

! Select the fonts and send the "footer"

! information for the report.

i

CALL Send_line(Banner$,1)

CALL Send_line(" ",1)

CALL Send_line(" *,1)

CALL Send_line("IN STOCK IMMEDIATE DELIVERY!",1)

CALL Send_line(Medium$,1)

CALL Send.line(" "0

CALL Send_line{“For more information: Call 1-800-Filter",1)
I

! Send a form feed to the printer.
i

WRITEIQ 15,0;12

END

(I/0 port 15). The Crlf flag determines whether

1

! The subprogram sends a string to the parallel port
£

! 3 carriage return (ASCII 13) and line feed (ASCII

11-18 Example Programs

1480

1490

1500
1510
1520
1530
1540
1550
1560
1670
1580
1580
1600

! 10) are needed at the end of the string.

INTEGER Length
Length=LEN(String$)
FOR I=1 TO Length
WRITEIC 15,0;NUM{String$(I;1]>
NEXT I
IF Crlf=1 THEN
WRITETO 15,0;10
WRITEIS 15,0;13
END IF
SUBEND

Example Programs 11-19

UPLOAD - Upload program from HP 8711

2 !

30 ! BASIC program: UPLOAD - Upload program from HP 8711
40 !

50 ! This program uploads the current IBASIC program
60 ! in the HP 8711’s program buffer to an ASCIT file
70 ! on the controller’s current mass storage device.
80 !

0 e e e e e e
100 !

110 ! Assign an I/0 path name to the HP 8711, initialize
120 ! the variables, and clear the analyzer’s input/output
130 ! gueunes.

140 1

150 ASSIGN @Hp8T11 TO 716

160 DIM Prog_line$[256]

170 CLEAR @Hp8711

180 ! .

180 ! Enter the name of the file to be created.

200 !

210 INPUT YENTER NAME OF FILE TO UPLOAD PROGRAM TO " ,Filename$
220 PRINT Filename$

230 |

240 ! Query the HP 8711 for the contents of its

250 ! program buffer.

260 !

270 QUTPUT @Hp8711;"PROG:DEF?"

280 !

290 ! Read the block header, the number of digits in
300 ! the file size, and the file size.

316 !

320 ENTER @Hp8711 USING "#,A,D";Prog.line$ Ndigits
330 ENTER @Hp8T711 USING "#,"&VAL$(Ndigits)&"D";Nbytes
340 !

385G ! Create the target ASCII file on the current mass
360 ! storage device and assign it an I/0 path name.

370 I

380 Openfile(@File,Filename$,Nbytes)

320 ASSIGN @File TO Filename$;FORMAT ON

400 !

410 ! Read the program one line at a time, and write

420 ! it to the new file. Print each line on the

430 ! display as it is read.

440 1

450 LOOP

460 ENTER @Hp8711;Prog_line$

470 EXIT IF LEN(Prog_line$)=0

11-20 Example Programs

480
480
500
510
520
530
540
550
560
570
580
580
600
610
620
630
640
850
660
670
680
580
700
710
720
730
740
750

PRINT Prog.line$

OUTPUT @File;Prog._line$
END LGCP
!

! Close the new file.
]

ASSIGN @F1le TO =
END

This subprogram creates an ASCII file with the
name ’Filename$’ of the specified size ’Fsize’.
Error trapping is used to detect any errors in
opening the file. If the controller is HP IBASIC
for Windows a DOS file is created, otherwise the
LIF format is used.

[T T T Y YY)

0K ERROR GOTO Openerr

IF SYSTEM$(VSYSTEM ID")="IBASIC/WINDOWS" THEN
CREATE Filename$,1

ELSE
IF Fsize MOD 256>0 THEN Feize=Fsize+256
CREATE ASCII Filename$,Fsize DIV 256

END IF

760 Openerr: IF ERRN<>54 THEN PRINT ERRM$

770

SUBEND

Example Programs 11-21

USER_BIT — Using the USER bit

10

20

30

40

50

60

70

80

S0

100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

450

460
470

11.22

IBASIC program: USER_BIT - Using the USER bit

This progran reads and writes to the USER bit.
IBASIC’s graphics commands are used to draw the
USER bit value to the display.

e tmm AW dME jam dse cem

E
! Assign an I/0 path name to the internal bus and
! initialize variables.

i

LSSIGN @Hp8T711i TO 800

INTEGER Beeper,Count

Count=0
Beeper=0

I

| Preset the analyzer, setup measurement and display

! parameters for a measurement and put the analyzer

! in Trigger HOLD mode.

i

QUTPUT @Hp8711;"SYST:PRES; ¥WAT"

OUTPUT @Hp871i1;"DISP:ANN:FREQ1:MODE S5TOP"

QUTPUT @Hp8711;"SENS1:FREG:STAR 100 MHz;STOP 400 MHz ;+WAL"
OUTPUT @Hp8711;"DISP:WIND1:TRAC:Y:PDIV 20 dB;RLEV -60 dB;RPOS 8"
OUTPUT @Hp8711;"SENS1:SWE:POIN 101;TIME .1 s;*WAL"

QUTPUT @HpS8T711;"ABOR; :INIT1:CONT OFF ;*WAT"

|

t Wait for all the setup operations to be complete

! before continuing the program.

]

OUTPUT @Hp8T11,;"*0PCT"

ENTER @Hp8711;0pc

1

| Allocate the lower dispiay partition.

i

QUTPUT @Hp8711;"DISP:PROG LOW"

3

! Setup a softkey menu to enable and disable the

| beeper. Clear the analyzer’s input/output queues.
i

ON KEY 1 LABEL "Beep Enable" GOSUB Beep_on

0N KEY 2 LABEL "Beep Disable" GOSUB Beep off
CLEAR @Hp8T11

| Trigger 100 sweeps. Beep (if the beeper flag is set)

Example Programs

480
430
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650

! and toggle the USER bit after each sweep.
1
DISP "USER bit example program. End of sweep toggles USER bit."
PRINT "Draw the end of sweep USER bit value ... "
MGVE 0,80
FOR I=1 TO 100
GUTPUT @Hp8711;"INITL;=0PCT"
ENTER @Hp8711;0pc
GOSUB Toggle
KEXT I
DISP "End program"
STOP
'
! The 0dd flag’s value alternates between 1 and 0
! depending on the number of sweeps that have been
! taken. It is the value that is written to the

! USER bis.
!

660 Toggle: !

870
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890

IF Ddd=0 THEN
WRITEIG 15,1;0
0dd=1

ELSE
WRITEID 15,1;1
0dd=0

END IF

IF Beeper=1 THEN
BEEP

END IF

4

! Read the value of the USER bit and draw it to the

! TBASIC display.

1

Val=READIO(15,1)

Val=Val*x30

DRAW 8% (I-1),Val+50

DRAW 8%I,Val+50

RETURN

[}

! These two subroutines set a flag that is used

! to turn on or off the beeper.
i

200 Beep_on: Beeper=1

310
920

RETURK
!

930 Beep_off: Beeper=0

940
250

RETURN
E¥D

Example Programs

11-23

USERKEYS — Custiomized softkeys

10 e e e e e e 2
20 !

30 ! IBASIC program: USERKEYS -~ Customized softkeys

40 1

50 ! This program provides an example template for use

60 ! in customizing the HP 8711°s softkeys. The example

70 ! demonstrates how to set up six instrument states,

80 ! store them to the analyzer’s internal memory, and

90 ! setup two interactive softkey menus te choose

i00 ! between them.

110 !

120 e o e e o
130

140 ! Assign an 1/0 path name to the internal bus, preset

1
i
150 ! the analyzer, wait until the preset is complete,
1
1
1

160 ! turn on Trigger HOLD mode and set the display scale
170 ! and reference values.
180

19C ASSIGN eHp8711 TO 800

200 OQUTPUT @Hp8T711;"SYST:PRES ;*QPCT"

210 ENTER QHp8711;0pc

220 QUTPUT @Hp8711;"ABOR; :INIT1:CONT OFF;*WAI"
230 OUTPUT @Hp8711;"DISP:WIND1:TRAC:Y:PDIV 20 dB;RLEV -60 dB;RPOS 5"
240 1

250 ! Setup six instrument states and store them to the
260 ! internal memory.

270 !

280 GOSUB Save_1

280 GOSUB Save 2

300 GOSUB Save_3

310 GOSUB Save. 4

320 GOSUB Save_5

330 GOSUB Save_6

340 !

350 ! Setup the Main Menu keys.

360 ¢

370 GOSUB Menu_1

380 !

390 ! Wait until a softkey is pressed.

4600 !

410 Suspend: !

420 WAIT 100000

430 GOY0 Suspend

440 STOP

450 1

460 ! This subroutine sets up the softkey menus -
470 ! Mepul sets up the main menu, Menu2 sets up

11-24 Example Programs

480
490

! the second level menu.
3

500 Menu_.1: BEEP

510
520
530
540
55¢
560
570
580

DISP “"MAIN MENU"

ON KEY 1 LABEL "Setup #1° GOSUB Load_1

ON KEY 2 LABEL "Setup #2" GOSUB Load_2

0N KEY 3 LABEL "Setup #3" GUSUB Load.3

ON KEY 5 LABEL "Autoscale’ GOSUB Autoscale
ON KEY & LABEL " Next Menu" GUSUB Menu_2

RETURN
]

£90 Menu..2: BEEP

600
610
620
630
640
650
660
670
680
630
700

DISF "MORE MENU"

ON KEY 1 LABEL "Setup #4" GOSUB Load_4

ON KEY 2 LABEL "Setup #5'" GOSUB Load.b

ON KEY 3 LABEL "Setup #6" GOSUB Load_6

ON KEY 5 LABEL "Autoscale' GOSUB Autoscale

ON KEY 6 LABEL "Prior Menu" GOSUB Menu_1

RETURN

]

| This subroutine automatically sets the scale and

! reference values of the display.
[

710 Autoscale: OUTPUT @Hp8711;"DISP:WIKD1:TRAC:Y:AUTO ONCE"

720
730
740
750
760
770
780

OUTPUT @Hp8711;"DISP:WIND2:TRAC:Y:AUTO ONCE"
RETURN

!

! These six subroutines each set up the analyzer to
! make a different measurement and store that setup

! to the instrument’s internal memory.
1

790 Save_1: OUTPUT @Hp8711;"SENS1:STAT ON;*WAI"

800
810
820
830
840
850

QUTPUT @Hp8711;"DISP:ANN:FREQ1:MODE SSTOP"

OUTPUT @Hp8711;"SENS1:FREQ:STAR 100 MHz;STOP 400 MHz;*WAI"
OUTPUT @Hp8711;"INITI ;*WATL"

OUTPUT @Hp8711; “MMEM:STOR:STAT i, ’MEM:STATEL1.STA"

RETURN

2

860 Save_2: QUTPUT QHp8711;"SENS2:STAT ON;#WAI"

870
880
830
200
910
920
930

OUTPUT @Hp8711;"SENS2:FUNC *XFR:POW:RAT 1,0’ ;DET NBAK;*WAT"
QUTPUT @Hp8711;"DISP:ANN:FREQ2:MODE CSPANY

DUTPUT @Hp8711;""SENS2:FREQ:CENT 200 MHz;SPAN 300 MHz ;*WAI"
QUTPUT @Hp8711;"INITZ2;*WAI"

OUTPUT @Hp8711; "MMEM:STOR:STAT 1,’MEM:STATEZ.5TA’"

RETURN
!

940 Save_3: QUTPUT @Ep8711;""CALC2:FORM SWR"

950
960
970

OUTPUT QHp8711;"INIT2;*WAL"
OUTPUT @Hp8711;"MMEM:STOR:STAT 1,’MEM:STATE3.STA’"
QUTPUT @Hp8711;"CALC2:FORM MLOG"

Example Programs

11-25

880 RETURN

980 !

1000 Save_4:0UTPUT @Hp8711;"SENS2:8TAT OFF"

1010 OUTPUT @Hp8711;"SENS1:SWE:POIN 1601 ;*WAI"

1020 OUTPUT @Hp8711;"INITL;#WAI"

1030 QUTPUT @Hp8711;"MMEM:STOR:STAT 1, MEM:STATE4.STA’"

10640 RETURN

g0 v

1060 Save_5:0UTPUT ¢Hp8711;"CALCL :MARK:BWID ~3;FUNC:TRAC ON"
1070 QUTPUT @Hp8711;"INIT1;*WAI"

1080 QUTPUT @Hp8711;"MMEM:STOR:STAT 1,°MEM:STATES.STA?"

1080 RETURN

1100 !

1110 Save_6:CUTPUT ¢Hp8711;"SENS1:BWID 250 Hz; #WwAI"

1120 OUTPUT @Hp8711;"SENS1:SWE:POIN 101;*WAI"

1130 QUTPUT @Hp8711;"INITL;*WAI"

1140 QUTPUT @Hp8711;"MMEM:STOR:STAT 1, °MEM:STATE6.5TA"

1150 RETURK

1160 !

1170 ! These sgix subrocutines each recall one of the

1180 ! measurement setups that were stored earlier.

1190 !

1200 Load_1:DISP "Setup 1"

1210 QUTPUT @Hp8711;"MMEM:LOAD:STAT 1, MEM:STATEL1.STA’ ;#WATL"
1220 OUTPUT @Hp8711;"INIT1;*WAI"

1230 RETURN

1240 !

1250 Load 2:DISP "Setup 2"

1260 OUTPUT @Hp8T711;"MMEM:LOAD:STAT 1, MEM:STATE2.STA® ;*WAL"
1270 OUTPUT @Hp8711;"INIT2;*WAI"

1280 RETURN

1290 !¢

1300 Load_3:DISP "Setup 3"

1310 DUTPUT @Hp8711;"MMEM:LOAD:STAT 1,’MEM:STATES.STA? ;*WAI"
1320 OUTPUT @Hp8711;"INIT2;=WAI"

1330 RETURN

1340 1!

1350 Load_ 4:DISP "Setup 4"

1360 OQUTPUT @Hp8&711;"MMEM:LOAD:STAT 1, MEM:STATE4.STA? ;*WAI"
1370 OUTPUT @Hp8714;"INITi;*WAI"

1380 RETURN

1380 !

1400 Load _5:DISP "Setup 5"

1410 OUTPUT @Hp8711;"MMEM:LOAD:STAT 1, MEM:STATES.STA’ ;*#WAI"
1420 OUTPUT @Hp8711;"INIT1;*WAI"

1430 RETURN

1440 !

1450 Load_6:DISP “Setup 6"

1460 OUTPUT @Hp8711;"MMEM:LOAD:STAT 1, MEM:STATES.STA? ;*WAL"
1470 OUTPUT Q@HpBT11;"INIT1;*xWAI"

11-26 Exampie Programs

1480 RETURR
1430 ERD

BAR — Using Barcode Reader

10
20
30
40
50
60
70
80
20
100
110
120
136
140
180
160
170
180
180

! TBASIC program: BAR ~ Using barcode reader

1

3

!

! This HP 8711 IBASIC program was written for a barcode
! reader, but it is not required. Sets the 8711’s

! state depending on model # of DUT being measured.

! Expects to see BARCODE with the following format:

! Model Number (6 char), space, Serial Number (5 char)
! Valid Models: BPF17&, BPF200, SAW134

! REVA.02.00 930615.JVV

COM /Hpib/ @Hp8711
COM /Scale/ Sc,INTEGER X,Y
DIM Name$[50],5tat$[50],Scan$[90],Lim$(1:3,1:5) [30] ,Test$(C:1) [4]

INTEGER Tab,Fail_flg,G(1:4)
!

200 Init:!

210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

Test$(0)="PASS"

Test$(1)="FAIL"

ASSIGN QHp8711 TO 800

Sc=1 ! Scales the 8711 drawing and DUT
X=5 ! Starting ¥ posn of 8711 plot

Y=35 I :

Tab=38 ! Tab position for text

OUTPUT @Hp&711;"SYST:PRES;*0PCT"

ENTER @Hp8711;0pc

OUTPUT @Hp8711;"DISP:PROG UPP"

GINIT

GCLEAR

GESCAPE 1,3;G(*)

WINDOW G{1),G(3),G(2),6(4

OUTPUT @Ep8711;"SENS1:STAT OFF; :SENS2:STAT oN
GUTPUT @Ep8711;"DISP:WIND2:TRAC:Y:RPOS 8"
OUTPUT @Hp8&711;"ABOR; : INIT:CONT QFF"

380 Setup: !

320
400
410
420
430
440

BEEP 500, .1

INPUT "Enter Operator’s Name:",Name$
BEEP 3000, .03

INPUT "Enter Station Number:",Stat$
BEEP 3000, .03

OUTPUT @Ep8711;"SYST:DATE?"

Example Programs

11-27

450
460
470

480
490
500

ENTER @Hp8711;Year ,Month,Day
CALL Draw_na ! Draw HP8T11.
Box(670,35,240,130) ! Draw text box

PRINT TABXY(Tab,3);"Oper: ™ ;Name$[1,15]
PRINT TABXY(Tab,4);"Station: ";Stat$ 1,113
PRINT TABXY(Tab,5);"Date: ";Year;Month;Day

510 Meas_dev: !

520
530
540
B850
560
570
580
590
600
610
620
630

Logr
CALL Draw_dut{i)
CALL Scan_dut(Scan$,Cent$,Span$,Loss$,Lim$ (%))
PRINT TABXY(Tab,7);"Model: "&Scan$[1,6]
PRINT TABXY(Tab,8) :"Serial: "&Scan$[8,12]
GOSUB Set_stim
DISP "MEASURING THE DEVICE"Y
OUTPUT @Hp8711;"ABOR; : INIT2:CONT OFF; :INIT2;*WAI"
OUTPUT @Hp8T11;"CALC2:MARK1 ON; MARX : FUNC MAX"
OUTPUT @Hp8711;"CALC2:MARK1 H Sk
ENTER @Hp8711;Loss
PRINT TABXY(Tab,9);"Loss (dB): ";Loss

640 Disp.result: !

650
660
670
680
690

~ QUTPUT @Hp8711;"STAT:QUES:LIM:COND?"
ENTER @Hp8711;Fail_flg
Fail_flg=BIT(Fail_flg,1) ! Bit 1 is for ch?
IF Fail_flg THEN BEEP 2100, .5
Label(Test$ (Fail_flg),125,50,24,5,0,1)

T00 Continue: !

7190
720
730
740
750
760
770
780
790

CALL Draw._dut(0)
BEEP 300, .05
INPUT “Disconnect DUT. Measure another? (Y/n)",Ans§
EXIT IF UPC3(Ans$[1,1])="N" _
Label(Test$(Fail_£1g),125,50,24,8,0 ,0)
END LOOP
OUTPUT @Hp8711;"ABOR; :INIT:CONT ON"

ST0P
!

800 Set_stim: ! Set Fregs and Limit lines

810
820
830
840
850
860

QUTPUT @Hp8711;"DISP:ANN:FREQ:MODE CSPAN"
OUTPUT @Hp8711;"SENS:FREQ:CENT "&Cent$&” MHZ;SPAN "gSpan$&” M BZ"
OUTPUT @Hp8711;"DISP:WIND2:TRAC:Y:RLEV"; -PROUND (VAL (Loss$) ,1);"DB"
FOR I=17T03 1§ SET LIMIT LINES
QUTPUT @Hp8711;"CALC2:LIM:SEGM"&VALS(I)&" : TYPE "gLim$ (I,1)&" ;STAT ON"
OUTPUT @Hp8711;"CALC2:LIM:SEGM"&VAL$(1)&":FREQ:STAR "gLim$(I,2)&"

MHZ;STOP "&Lim$(I,3)&" MHZ"

870

QUTPUT @Hp8711;"CALC2:LIM:SEGM"EVALS(I)&":AMPL:STAR "&Lim$(I,4)&" ;STOP

"gLim$(I,5)

880
890
900
10
920

11-28

NEXT I

QUTPUT @Hp8711;"CALC2:LIM:DISP ON;STAT ON"
RETURN

ERD

U #f4444844 SUBPROGRAMS ####3###%

Example Programs

930

940 Draw_na:SUB Draw_na

950

960

970

380

990

1000
1610
1020
1030
1040
1050
1060
1070
1080
1020
1100
1110
1120
1130
1140

¢t This draws HP 8711 at origin X,Y
Box(231,50,460,100) ! Frame
Box(231,50,462,102)
Box(125,50,180,72) ! CRT
Box(128,50,182,75)

FOR I=19 TD 82 STEP ¢ ! Keys

Box(235,I,15,5)
NEXT I
Box(285,88,15,7) ! BEGIN
Box{375,88,105,12) ¢ Drive
Box(375,88,75,4)
Circie(365,80,15) ! ¥nob
Circle(300,15,10) ! Dut
Circle(410,15,10) lin
Box(15,20,7.10) ! Switch

Circle{16,33.,4)
Label{"RF UUT",300,28,8,5,0,1)
Label("RF IN",410,28,8,5,0,1)

SUBEND

f

1150 Draw_dut:SUB Draw_dut (INTEGER Pen)

1160
1170
118G
1120
1200
1210
1220
1230

! This connects DUT to HP 8711
PEHN Pen
Connect (300,15,320,-20,0)
Box(355,~20,70,15)
Connect(410,15,390,-20,0)
PER 1

SUBEND

1240 Scan_dut :SUB Scan_dut(Scan$,Cent$,Span$,Loss$,Lim$ (*))

1250
1260
1270
1280
1220
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410

Looy
Invalid=0
Scan$="BPF175 12345" ! Default model/serial
BEEP 500, .05

INPUT “Connect and scan the Device.",5can$! SCAN BARCODE HERE
IF LEN(Scan$)<12 THEN !Valid device needs 12 char.

Invalid=1
ELSE
Model$=Scan$l1,6]
SELECT UPC$ (TRIM$ (Model$))
CASE "BPF1i75","BPF177"
RESTORE F1
CASE "BPF200"
RESTORE F2
CASE "SAW134Y
RESTORE F3
CASE ELSE

Example Programs 11-29

1420 Invalid=1

1430 END SELECT

1440 END IF

1450 EXIT TF NOT Invalid

1460 DISP Scan$;" <<--is INVALID! Try again."
1470 BEEP 1500, .2

1480 WAIT 1

1490 END LOGP

1800 BEEP 3000, .03

1810 READ Cent$,Span$,loss$,Lim$ (*)
1520 ! Limit lines format: Center, Span, Loss, (LIM TYPE, STRT, STP, STRT4B,
STP4BR)

1530 F1:DATA 175,250,2 1 17h MH=z BPF
1540 DATA "LMIN®, 160,190,-5,-5

1550 DATA "1MAX", 100,140,-50,-%

1560 DATA "LMAXY, 210,240,-7,-30

1570 F2:DATA 200,100,1 - 1 200 MHz BPF
1580 DATA YLMIN®", 196,204,-3,-3

15880 DATA "1LMAX", 180,180,-40,-10

1600 DATA "LMAX", 210,220,-10,-40

1610 F3:DATA 134,40,22 | 134 MH=z SAW BPF
1820 DATA VLMINY, 128,140,-27,-27

1630 DATA YIMaX©", 123,125,-65,-30

1640 DATA YLMAX", 143,145,-30,-65

1650 SUBERND

1660 !

1670 Box :SUB Box(Xpos,Ypos,Xsize,Ysize)
1680 COM /Scale/ Sc,INTEGER X,Y

1690 MOVE X+(Xpos-Xsize/2)*Sc,Y+(Ypos-Ysize/2)*Sc
1700 RECTANGLE Xsize*Sc,YsizexScx1.79 ! 1.79 = 8711 Pixel H:W Batio
171G SUBEND

1720 1

1730 Circle:SUB Circle(Xpos,Ypos,Radius)
1740 COM /Scale/ Sc,INTEGER X,Y

1750 MOVE X+Xpos#*Sc,Y+Ypos*Sc

1760 POLYGON Radius*Sc,16,16

1770 SUBEND

1780 ¢

1790 Connect:SUB Connect(X1,Y1,X2,Y2,How)
1800 COM /Scale/ Sc,INTEGER X,Y

1810 MOVE X+4X1%#38c,Y+Y1*Sc

1820 SELECT How

1830 CASE 1 ! ... diagonal
1840 DRAW Z+X2*Sc, Y+Y2%Sc
1850 CASEQ

1860 DRAW X+X1%5¢c,¥Y+Y2%Sc
1870 DRAW X+X2%8c,¥+Y2%Sc
i880 CASE -1

1890 DRAW X+X2%5¢c,Y+¥1*xSc
1800 DRAW X+X2%5¢c,Y+Y2*%Sc

11-30 Example Programs

1910 END SELECT

1920 SUBEND

1930 !

1940 Label:SUB Label(Text$,Xpos,Ypos,Size,Lorg,Ldr ,Pen}
1950 COM /Scale/ Sc,INTEGER X,Y

1960 LORG Lorg

1870 LDIR Ldr

1980 CSIZE Size*3c,1

1990 MOVE X+Xpos#*Sc,Y+Ypos*Sc

2000 PEN Pen

2010 LABEL Text$

2020 PEN 1

2030 SUBEND

2040 !

2050 Amp:SUB Amp (Xpos,Ypos,Size) ! Draws > Triangle
2080 COM /Scale/ Sc,INTEGER X,Y

2070 MOVE X+(Xpos+Size/2)*5c,Y+Ypos*3c

2080 POLYGOY Sizex*Sc,3,3

2090 SUBEND

Example Programs 11-31

AVG — Using Barcode Reader

10 e e o o e e
20 ¢ '

30 ! IBASIC program: AVG - Using barcode reader

40 !

50 ! This HP 8711 IBASIC program uses a barcode reader.
60 ! Displays running average of selected BPF passbands.
70 ! Finds linear avg of log data (ie Avg of 1dB & 6dB =3
80 ! Expects to see BARCODE with the following format:
90 ! Model Number (6 char), space, Serial Number (5 char)

100 ! Valid Models: BPF175, BPF200, SAW134

110 ! REV A.01.00 830615.3VV

120 !

130 1 s e e e
140 !

150 Init: !}

160 COM /Hpib/ @Hp8711

170 COM Csub_loaded

180 DIM A(1:1601),M(1:1601)

180 INTEGER Points,N,I,Chan

200 Points=201 ! # of trace points

210 Chan=2

220 ASSIGN @Hp8711 TO 800

230 IF NOT Csub_loaded THEN

240 LOADSUB Read_fdata FROM "XFER:MEM O,0"

250 LOADSUB Write. fmem FROM "XFER:MEM 0,0"

260 Csub_loaded=1

270 END IF

280 OUTPUT @Hp8&T11;"SYST:PRES;*0PC?"

290 ENTER @Hp8711;0pc

300 OUTPUT @Hp8711;"DISP:PROG UFP”

310 GINIT

320 GCLEAR

330 OQUTPUT @Hp8711;"DISP:ANN:MESS:STAT O

340 QUTPUT @Hp8711;"SENS1:STAT OFF; :SENS2:STAT ON"
350 OQUTPUT @Hp8711;"SENS2:SWE:POIN ";Points ! points
360 OUTPUT @Hp8711;"DISP:WIND2:TRAC:Y:RPOS 9;PDIV 1 DB;*0PCT"
370 ENTER @Hp8T11;0pc

380 =0

380 Setup: !

400 LOOP

410 GOSUB Scan.next

420 ON KEY 1 LABEL " AVER THIS DATA" GUSUB Avg_this
430 ON KEY 3 LABEL "SCAN ANOTHER" GOSUB Scan_next
449 0¥ XEY & LABEL "DONE" GOSUB Exit

450 LOOP
480 DISP "SELECT A SOFTKEY."
470 WAIT 1

11-32 Example Programs

480
480
500
510
520

DISP
WAIT .3
END LOOP
END LOOP

530 Exit: ¢

540
550
560
570
580
520

CLEAR SCREEX

DISP "PROGRAM PAUSED!"
LOCAL @Hp8711

PAUSE

RETURN

6800 Scan_next: !

610
620
630
640
650
660
670
680
690
700
710
720
T30
740
780
760
770

Loop
Scan_dut (Model$,Serial$,Cent$,Span$,Loss$)
IF Model$="ABORT" THEN GOTO Exit
IF NOT N THEN Curr_model$=Model$
EXIT IF Model$=Curr_model$
DISP "Inconsistent Model #, Try againt”
BEEP 2100, .1
WAIT 1
END LOOP
CLEAR SCREEN
PRINT TABXY(1,4);"Device currently under test:"
PRINT "Model # ";Model$;" Serial # ";Serial$
PRINT TABXY(1,6);"# Avg’d:";N
PRINT TABXY(1,7);"Status of Serial # "ZSerial$g”
GUSUB Set_stim

RETURN
1

780 Avg_this: !

7980
800
810
820
830
840
850
860
870
880
890
900
910
220

230
940
850
960
970

PRINT TABXY(1,7);"Status of Serial # "&Serial$&"
Read_fdata(Chan,A(*))
N=N+1
PRINT TABXY(1,7);"Status of Serial # “&Serial$z"
IF =1 THEN

MAT M= A

OUTPUT @Hp8711;"TRAC CH2SMEM,CH2SDATAY

OUTPUT @Hp8711;"CALC2:MATH (IMPL); :DISP:WIND2

OUTPUT @Hp8711;"ABOR; : INIT2:CONT ON;*WAI"
ELSE

FOR I=1 TO Points

M(I)=(N-1)/N*M(I)+A(I) /N

NEXT I

END IF

PRINT TABXY(1,8);"# Averaged:";N

PRINT TABXY(1,7);"Status of Serial # "&Serial$e"
YWrite_fmem{Chan,M(x})

PRINT TABXY(1,7);"Status of Serial # "&Serial$e”
GOSUB Scan_next

: MEASURING *

: READING DATA"

: AVERAGING "

:TRAC1 ON;TRAC2 *0K ;+WAI"

: WRITING DATA"

: AVG COMPLETE"

Exampie Programs 11-33

980 RETURN

980 !

1000 Set_stim:! Set Freqgs

1010 QUTPUT @Hp8711;"DISP:ANN:FREQ:MODE CSPARY

1020 QUTPUT @Hp8711;"SENS:FREQ:CENT "&Cent$&" MHZ;SPAN "&Span$&" MHZ"
1030 QUTPUT @Hp8711;"DISP:WIND2:TRAC:Y:RLEV -"&Loss$&" DB;*0PC?"
1040 ENTER @Hp8711;0pc

1050 RETURN

1060 !

1070 ERD

1080 !

1090 ! #####4d44 SUBPROGRAMS #3diiiddy
1100 !

1110 Scan_dut :SUB Scan_dut(Model$,Serial$,Cent$,Span$,Loss$)
1120 ALLOCATE Scan$ [80]

1130 LOCP

1140 Invalid=0

1150 Scan$="ABORT"

1160 Scan$="BPF175 12345" t####s## These 3 lines for deme only
1170 S$=VAL$ (RND*1.E+9) ####### Generates randem S/N

1180 Scan$[8,12]=84[3,77 ####### Delete all to enable abort.
1190 BEEP 500, .05

1200 TNPUT "Connect & scan DUT or leave blank to exit.?,Scan$!SCAN *BARCODE
1210 IF LEN{Scan$)<12 THEN ! Valid device needs 12 char.

1220 Invalid=1

1230 ELSE

1240 Model$=Scan$[1,6]

1280 SELECT UPCE (TRIM$ (Model$))

1260 CASE "BPF175" ,"BPF177"

1270 RESTORE F1

1280 CASE "BPF200"

1290 RESTORE F2

1300 CASE '"SAW134*"

1310 RESTORE F3

1320 CASE ELSE

1330 Invalid=1

1340 END SELECT

1350 END IF
1380 EXIT IF NOT Invalid

1370 IF POS(UPC$(Scan$) ,"ABORT") THEN

1380 Model$="ABORT"

1380 SUBEXIT

1400 END IF

1410 DISP Scan$;" <<~--is INVALID! Try again."
1420 BEEP 15600, .2

1430 WAIT 1

1440 END LOOP

1450 BEEP 3000, .03

1480 Serial$=Scan$8,12]
1470 READ Cent$,Span$,Loss$

11-34 Example Programs

1480 ! Data format: Center, Span, Loss
1490 F1: DATA 175,50,2 ! 175 MHz BPF

1500 F2: DATA 200,12,1 ! 200 MHz BPFF

1510 F3: DATA 134,15,22 ! 134 MHz SAW BPF
1520 SUBEND

Example Programs 11-35

LOG — Using Barcode Reader

10 o e e e e o o
20 !

30 f IBASIC program: LOG - Using barcode reader

40 !

50 ! This HP 8711 IBASIC program uses a barcode reader.
60 ! Stores ASCII trace data in internal memory until full.
70 ! Then copies stored files to disc.

80 | Expects to see BARCUDE with the following format:
90 ! Model Number (6 char), space, Serial Number (5 char)
100 ! Valid Models: BPF17S, BPF200, SAWi34

110 ! REV A.01.00 930615.JW

120 !

T30 1 e o
140 !

150 Init: !

160 COM /Hpib/ @Hp8711

170 IF SYSTEM$("SYSTEM ID")="HP 8711i" THEN

180 ASSTIGN €Hp8711 TO 800

190 ELSE

200 CLEAR 716

210 ASSIGN @Hp8711 TD 716

220 END IF

230 OUTPUT @Hp8711;"SYST:PRES;*0PCT"

240 ENTER @Hp8711;0pc

250 OUTPUT @Hp8T11;"DISP:PROG UPP"

260 GINIT

270 GCLEAR

280 GOSUB Warning ! May be deleted

290 CUTPUT @Hp8711;"DISP:ANN:MESS:STAT O

300 OQUTPUT @Hp8711;"SENS1:STAT OFF; :SENS2:STAT OR"

310 QUTPUT @Hp8711;"SENS2:SWE:POIN 201" ! 201 points
320 QUTPUT @Hp8711;"DISP:WIND2:TRAC:Y:RPOS 9"

330 OUTPUT @Hp8711;"MMEM:MSIS °*MEM: "

340 OUTPUT @Ep8711;"MMEM:INIT °MEM:’,D0S"

350 (QUTPUT @Hp871i;"MMEM:STCR:STAT:IST OFF;CORR OFF;TRAC OFF ;*0PC?"
360 ENTER @Hp8711;0pc

370 Setup: !

380 LOOP

390 GOSUB Scan.next

400 ON KEY 1 LABEL "STORE THIS DATA" GOSUB Stor_mem
410 ON XEY 2 LABEL "STORE MEM TG DISK" CALL Store_disk
420 ON KEY 3 LABEL "SCAN ANOTHER" GOSUB Scan_next
430 ON KEY 5 LABEL "DONE" GOSUB Exit

440 Loop

480 DISP "SELECT A SOFTKEY"

480 WAIT 1

470 DISP

11-36 Exampie Programs

480
430
500
510

WAIT .3
END 1L.OOP
ERD LOOP

520 Exit: !

530
540
5860
560
570
580G
580

Store_disk

CLEAR SCREEN

DISP "PROGRAM PAUSED!®
LOCAL eHp8711

PAUSE

RETURN

600 Scan_next: !

610
820
630
640
650
860
670
630
690
700

Scan_dut (Model$,Serial$,Cent$,Span$,Loss$)

IF ¥odel$="ABORT" THEN GOTD Exit

CLEAR SCREEN

PRINT TABXY(1,3);"Device currently under test:"

PRINT

PRINT "Model % ":Model$;" Serial # ";Seriall

PRINT TABXY(1,7);"Status of Serial # "&Serial$s”: MEASURING "
GOSUB Set_stim

RETURN

i

710 Stor_mem: !

720
730
740
750
760
770

PRINT TABXY(1,7);"Status of Serial # "&Serial$g”: STORING TO RAM"
Store_ram{Model$,Serial$)

PRINT TARXY(1,7):"Status of Serial # "&Serial$g": STORING DONE ©
GOSUB Scan_next

RETURN
:

780 Set_stim: ! Set Freqs

790 OUTPUT @Hp8711;"DISP:ANN:FREQ:MODE CSPAN"

800 OUTPUT @Hp8711;"SENS:FREQ:CENT “&Cent$&" MHZ;SPAN "&Span$&" MHZ"
810 OUTPUT @Hp8711;"DISP:WIKD2:TRAC:Y:RLEV -"&Loss$&" DB;*OPCT"
820 ENTER @Hp8711;0pc

830 RETURN

840G !

850 Warning: !

860 BEEP 3000,.3

870 PRINT TABXKY(15,4);"WARNING!"

880 PRINT "This program will initialize the INTERNAL memory."
890 PRINT "All internally saved files will be lost!”

90C PRINT

910 PRINT "Do you wish to continue? {(y/MO"

920 INPUT “Continue?",Ans$

930 CLEAR SCREEN

940 IF UPC$(Ans$[1,1])="Y" THEN RETURN

950 END '

860 1

970 t #RFH##H4EE SUBPROGRAMS #R#######

Example Programs

11-37

980

!

990 Scan_dut:SUB Scan_dut(Model$,Serial$,Cent$,Span$,Loss$)

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1180
1200
1210
1220
1230
1240
1250
1260
1270
1280
1280
1300
1310
1320
1330
1340
1350
1360

ALLOCATE Scan$ [80]

LooP
Invalid=0
Scan$="ABORT"

Scan$="BPF175 12345" !####### These 3 lines for demo only
S$=VALS (RND*1 .E+9) !####### Generates random S/N
Scan$[8,121=84[3,7] !####2#% Delete all to enable abort.
BEEP 500,.05
INPUT "Connect & scan DUT or leave blank to exit.",Scan$!SCAN *BARCODE
IF LEN(Scan$)<12 THEKN ! Valid device needs 12 char.
Invalid=1
ELSE
Model$=Scan$[1,6]
SELECT UPC$ (TRIM$ (Model$))
CASE "BPF175" ,"BPF177"
RESTORE F1i
CASE "BPF200"
RESTORE F2
CASE "SAWi34"
RESTORE F3
CASE ELSE
Invalid=1
END SELECT
END IF
EXIT IF RBOT Invalid
IF POS(UPC$(Scan$) ,"ABORT") THEN
Model$="ABORT" *
SUBEXIT
END IF
DISP Scan$;" <<~~-is INVALID! Try again."
BEEP 1500, .2
WAIT 1
END LOOP
BEEP 3000, .03
Serial$=Scan$[8,12]
READ Cent$,Span$,Loss$
! Data format: Center, Span, Loss

1370 F1: DATA 175,300,2 ! 175 MHz BPF
1380 F2: DATA 200,100,1 ! 200 MHz BPF
1390 F3: DATA 134,30,22 ! 134 MH=z SAW BPF

1400

1410
1420
1430
1440
1450
1460
1470

SUBEND
I

SUB Store_ramn(Model$,Serial$)
COM /Hpib/ @Hp8T711
Td$=Model$[3,412"_"&Serial$! 2 unique chars + Ser
ALLOCATE Exrr${80]
DISABLE
REPEAT

20 11-38 0 Exampie:Programs

1480 OUTPUT @Hp8T11;"*CLS"

1490 DUTPUT @Ep8711;“"MMEM:MSIS *MEM: "

1500 OUTPUT @HEp8711;"MMEM:STOR:TRAC CH2FDATA,’ vyIdge? ;xWATY
1510 QUTPUT @Hp8711;"SYST:ERR?"

1520 ENTER @Hp8711;Err$

1530 SELECT VAL(Err$)

1540 CASE O ! No Problem

1550 CASE -254 ! Internal Mem full

1560 CALL Store_disk

1570 CASE -257 ! dupl file name

158¢ QUTPUT @Ep8711;"MMEM:DEL *"&Id$&"’ ;#WAI" !ERASE OLD
1590 CASE ELSE

1800 BEEP 2000, .5

1610 DISP Err$;

1620 INPUT " Fix, Press ENTER",Ans$

1630 END SELECT

1640 UNTIL VAL(Err$)=0

1650 ENABLE

1660 SUBEND

1870 ¢

1680 SUB Store_disk

1680 COM /Hpib/ @Hp8T11

1700 ALLOCATE Err$[80]

1710 BEEP 700, .1

1720 DISP "Standby: Transferring internal f£iles to disk."

1730 Loagp

1740 QUTPUT @Hp8711;"*CL3"

1750 QUTPUT @Hp8711;"MMEM:COPY **. %’ , ?INT:’ ;*WAI"
1760 QUTPUT @Hp8711;V"SYST:ERRYY

1770 ENTER @Hp8711%;Err$

1780 EXIT IF NOT VAL(Err$)

1790 GOSUB Trap_err

1800 END LOOP

1810 DUTPUT @Hp871i1;"MMEM:MSIS *MEM:’;DEL ’*. %"
1820 SUBEXIT

1830 !

1840 Trap_err: !

1850 IF VAL(Err$)=-250 THEN SUBEXIT! no file to xfer
1860 BEEP 2000,.5

1870 CLEAR SCREEN

1880 PRINT TABXY(1,4);"DISK ERROR DETECTED"

1890 PRINT "#¥* "ZErT$L" sex"

1900 INPUT “Fix above problem, then press ENTER",Ans$
1910 CLEAR SCREEN

1920 SUBEND

Example Programs. » 11-39

I
.
I
i
HININ
il
W
AR

LI
El!lil! ii! I i!iﬁ%liéiﬁl T

BN ARG

&&&&&&&&&&&&&&&&&&&&

(R GRTRNA AR

!llllil!llll! .

000000000

AR

T

00000000000

IATMMTAmWmWEY

llllllil ll!i Il INI AR

~ [MMVTAMEN
e
LT
QAR QMR ERm

.

