HP 8719C, 8720C, and 8722A/C network analyzers

QuickC Programming Guide

for use with MS-DOS
personal computers

A :icicaro

HP Part No. 08720-80155
Printed in USA November 1992

©Copyright 1991, Hewlett-Packard, INC.
Microsoft® is a U.S. registered trademark of Microsoft Corp.
MS-DOS® is a U.S. registered trademark of Microsoft Corp.

Contents

1. Programming Basics

Introduction oL oL L. 1-1
Stazt-up L .. 1-2
Required equipment L. L L L. L. 1-2
Configuring the HP 82335A HP-IB interface card 1-2
Using other computer equipment i-2
Configuring Microsoft QuickC 1-3
Powering up thesystem 1-3
Programming techniques0 L. 1-5
Imtroductiono L. 1-5
Errorchecking o 1-5
Command intetrogate L. 1-6
Held commands 1-7
Operation complete L. 1-7
Preparing for HP-IB control 1-8
Measurement Programming 1-8

2. Basic Programming Examples

Example 1: Setting up a basic measurement 2-1
Program explanation 2-2
Rupning the program 2-4

Performing a measurement calibration 2-4
Calibration kits L L 2-4
Full 2-port calibrations 2-5

Example 2A: S3; 1-port calibration 2-5
Program explanation 2-7
Rumning theprogram L. 2-9

Example 2B: Full 2-port measurement calibration 2-9
Program explapation 2-11
Running theprogram 2-13

Datatransfer oL L. 2-14
Using markers to obtain trace data at specific points 2-14

Example 3A: Data transfer using markers 2-15
Program explamation L. 2-16
Running theprogram 2-17

Tracetramsfer oL Lo 2-18
Dataformats L 2-18
Datalevelso 2-19

Example 3B: Data transfer using Form 4 (ASCII transfer) 2-20
Program explapation 2-22
Rumning the program 2-23

Contents-1

Example 3C: Data transfer using Form 5, PC-compatible 32-bit floating point

format. L L L Lo Lo e e e e 2-24
Program explapation e e e e e 2-25
Runnping the program oo e e o 2-27

3. Advanced Programming Examples
Using list frequency mode L 3-1
Example 4: Setting up a list frequency sweep 3-1
Program explanation L. .00 e e . 3-4
Running theprogram00 3-6
Using imit limes e 3-6
Example 5A: Setting up imitlines L. 3-6
Program explanationo 0 0oL 3-9
Running the programm a 3-12
Example 5B: PASS/FAIL tests « . « « « v v o o . 3-12
Program explanationo oo 3-14
Running the program 3-16
Storing and recalling instrument states 3-17
Example 6A: Coordinating diskstorage 3-17
Program explanation Lo oL 3-21
Running theprogram + « « « « v 4 e e e 3-22
Example 6B: Reading calibrationdata 3-23
Programexplenationo 3-25
Running the program o0 0. 3-27
4. Miscellaneous/Reference Programming Examples
Example 7: Key Trapping . . . - - « « « « ¢« © v v v o v v v o 0o 4-1
Program explanation o . a0 e e e e 4-3
Running theprogramn«o 4-4
Example 8 CRT Graphics o o o v v v v v o o . 4-4
Program explanatiof+ . . ¢ 4 . 0 e 0 e e e e e e 4-6
Rupning theprogram a0 o0 4-7
Status Reporting e e e 4-8
Example 9A: Using the errorquene 4.8
Program explanation L0000 4-9
Running the programo 4-10
Example 9B: Using the status registers 4-11
Program explanation00 e e 4-13
Running the program0 e e e e 4-14
Example 10: Passing data to other application programs 4-14
Program explanation00 4-16
Running the program« « « o . L e 4-18

Contents-2

Figures

1-1. HP-IB connections in & typicalsetup 1-4
1-2. Typical Measurement Sequence 1-9
2-1. Sample Program: Basic Programming Measurement 2-2
2-2. Sample Program: S;; 1-Port Calibration 2-7
2-3. Sample Program: Full 2-Port Measurement Calibration 2-11
2-4. Sample Program: Data Transfer Using Markers 2-16
2-5. Dataprocessing chain L., 2-20
2-6. Sample Program: Data Transfer Using Form4 2-22
2-7. Sample Program: Data Transfer Using Form 5 2-25
3-1. Sample Program: Setting Up a List Frequency Sweep 3-3
3-2. Sample Program: Setting Up Limit Lines 3-9
3-3. Sample Program: PASS/FAIL tests 3-14
3-4. Datatransferpaths oL o L0 3-18
3-5. Sample Program: Coordinating Disk Storage - 3-20
3-6. Sample Program: Reading Calibration Data 3-25
4-1. Sample Program: Key Trapping 4-2
4-2. Sample Program: CRT Graphics 4-6
4-3. Sample Program: Using the Ertor Queue 4-9
4-4. Status reporting system e e e e 4-11
4-5. Sample Program: Using the Status Registers 4-13
4-6. Sample Program: Passing Data to Other Application Programs 4-16
Tables
2-1. Units as a Function of Display Format 2-15
3-1. Suggested Limits Lo oo 3-16

Contents-3

Programming Basics

Introduction

This programming guide is an introduction to remote operation of the HP 8719C, 8720C and
8722A/C network analyzers using an HP Vectra personal computer (or IBM compatible),
using 2 MS-DOS™ operating system, with the HP §2335A HP-IB command library and
Microsoft™ QuickC 2.5. It is a tutorial introduction using C programming examples. This
document is closely associated with the HP-IB Programming Reference (HP part number
08720-90160), which provides complete programming information in a concise format.
Incinded in the HP-IB Programming Reference is an alphabetical list of HP-IB mnemonics
and their explanations.

The reader should become familiar with the operation of the network analyzer before
controlling it over HP-IB. This document is not intended to teach C programming or to
discuss HP-IB theory except at an introductory level. Refer to the documents listed below
which are better suited to these tasks. 8

w For more information concerning the operatior of the network analyzer, refer to the
following: '

User’s Guide (HP part number 08720-90136)

Operating and Programming Reference Section (within the HP 8719C, 8720C, 87224/C
Operating Manual, HP part number 08720-90135)

» For more information concerning HP-IB and C, refer to the following:
HP-IB Programming Reference (HP part number 08720-90160)

Using the HP 82335A HP-IB Interface and Command Library Manual (HP part number
82335-90005)

Microsoft QuickC: Up and Running
Microsoft Quick(C: Tool Kit
C for Yourself

Caution The programming examples found in this guide are for example purposes
only. They may require modification to work with your particular personal
ﬁ computer.

Programming Basics 1-1

Start-up

Required equipment
To run the examples in this programming guide, the following equipment is required:
1. 3% HP 8719C, 8720C, or 8722A/C network analyzer.
2. The following computer equipment:
& HP Vectra personal computer {or compatible) with Microsoft QuickC 2.5
= HP 82335A HP-IB interface card or a compatible IEEE 488 interface card
® MS-DOS 3.3 or higher
» 512 Kbytes of memory. 9

3. HP 10833A/B/C/D HP-IB cables to interconnect the computer, the analyzer, and any
peripherals.

4. Calibration kit and appropriate test port cables.

. A device under test (DUT), such as the bandpass filter supplied with your instrument (HP
part number 0955-0446).

(1}

Configuring the HP 8§2335A HP-IB interface card

Configure the HP 82335A HP-IB interface card according to its respective manual. The
HP-IB interface cannot share the same memory address, nor the same interrupt level with
another card. If an expanded memory manager is used, make sure it does not use the same
memory space as the HP-IB interface.

The example programs in this guide assume the HP-IB interface card is configured with select
code 7. If it is not, the variables ISC, INSTR, and DISPLAY, in the following programs, will
have to be changed to reflect a different select code.

Using other computer equipment

Other versions of C can be substituted for QuickC. The programs in this guide are designed to
be easily translated into other language versions.

9The programs in this guide are specific to the HP 823354 HP-IB command library whickh is
part of the HP 82335A HP-IB interface card. Other IJEEE 488 cards can be used; however,
their I/O command library maybe different and the following example programs may have to
be translated accordingly.

Note There maybe some HP 82335A command lbrary commands that may not
have an equivalent command in other IJEEE 488 I/0 command libraries. In
this case, consult the manufacturer or program an equivalent command.

1-2 Programming Basics

Configuring Microsoft QuickC

It is important to configure Microsoft QuickC properly for correct operation with the HP
82335A HP-IB command library and the example programs in this guide. The following steps
shouid be verified before continuing.

1. Installing QuickC.

Wkhen installing QuickC, choose either the small or large memory model. Refer to the
QuickC manual for detailed installation information.

2. Copying the HP 82335A HP-IB command library.

It is assumed that QuickC is instalied in the “qc25” directory on the default drive. Copy
the following HP 82335A HP-IB command library files to their corresponding directories
already created by the installation of QuickC.

CLHPIB.LIB —> qc25/1ib/CLHPIB.LIB
CHPIB.H —> qc25/include/CHPIB.H
CFUNC.H -—> gc25/inctude/ CFUNC.H

3. Customizing QuickC for the HP 82335A command library.

Load QuickC by typing “QC” at the prompt. Activate the options menu by clicking the
mouse on the menu bar or by pressing the [ALT] [0] keys. Select the “environment” menu.
Enter the following directory names:

binary and help files = —> q¢25/bin
include files —> qc25/include
library files —> qc25/1ib

Select <QK> wﬁen done.

Again from the Options menu, select the “make” menu. Select the “linker flags™ option.
Enter the following for

"GLOBAL FLAGS: Stack Size": 4096
Also from this menu, enter the following for

“CUSTOM FLAGS: GLOBAL": qc25/1ib/clhpib.lib
Select <OK> when done.

Powering up the system
1. Set up the network analyzer as showr in Figure 1-1

Connect the instrument to the computer with an HP-IB cable. The instrument has only
one HP-IB interface, but it occupies two addresses: one for the instrument and one for
the display. The display address is the instrument address with the least significant bit
complemented. The defauit addresses are 16 for the instrument and 17 for the display.
Devices on the HP-IB cannot occupy the same address as the network analyzer.

Programming Basics 1-3

HP 23354 HP-IB
Interface Card

W

A

m—

HP EZ3B6A
HO Command | rary

: N
Network Analyzer : ‘

HE e Microsoft
: GuickC

/ e

Printer/Plotler

onno Honn

M
{]
g2

s

3
&

Eg

f

Figure 1-1, HP-IB connections in a typical setup

2. Turn the network analyzer on.

nt HP-IB address, press (LOCAL) ADDR and

. If the address has been changed from the default value 16,
return it to 16 for the examples in this document by pressing (1) (5) (x1) and then

tting the instrument. Make sure the instrument is in eithe or

; > mode, as indicated under the menu. These are the only modes
in which the network analyzer will accept commands over HP-IB.

1-4 Programming Basics

Programming techniques

Introduction

The following example programs introduce the interfacing capabilities of the instrument with
HP-IB and a computer. Each example program contains a description of the program, the
program listing, a line by line explanation, and detailed instructions for running the program.
Note that line numbers aren’t used in C programs but are included in the program listings for
functional explanations. For clarity, the HP-IB command Library functior names are shown in
upper case. Remember that C is a case-sensitive language.

There are four basic steps in designing a program in C to send a simple command to the
instrument:

1. Create a source file. This is a C program in text form. This file must contain the
proper “#include” definitions and variable declarations, including the “main” function

declaration.

2. Include in the main declaration the command to be sent. The command is sent with the
HP-IB command library function I00UTPUTS.

3. Compile and link the source file.
4. Run the compilied program.

These steps form the basis for programs that do more than send simple commands. More
complex programs should contain additional routines, such as error checking and initializing,
to support full I/O capabilities of the instrument.

Error checking

Error checking should be performed after every HP-IB library call. Each HP-IB command
library call returns a value corresponding to the error status of the current operation. An
error handler routine is a convenlent way of checking errors. For example, the following error
routine could be used:

void error_handle (int error, char *routine)

{
if (error !=NOERR)
{ /* If there is an error, priat an error */
/* message and exit */
printf ("HP-IB error im call to
%s: 4d, %s\n", routine, error,
errstr(error));
exit(1);
¥
return; /* No error, so return normally */
¥

Using the above error routine, a command, for exampie, can be sent to the instrument as
follows:

error_handle (IOOUTPUTS (716L,"PRES;",5), "IDOUTPUIS");

Programming Basics 1-5

error_handle: Passes an error number and appropriate display string to the error handling
routine.

I00UTPUTS{716L,"PRES;",5): Executes the HP-IB string data output command. 716L is the
address. The data is directed to interface 7 (HP-IB) and out to the device at address 16 {the
instrument). The “L” is required by the routine, which expects a long-integer. The command
“PRES;” is the factory preset command for the instrument. “S” indicates that the command
sent is five characters long.

Note Throughout this guide, the term HP-IB library command refers to an HP
82335A HP-IB command library function. The term instrument command
ﬁ refers to a set of commands which the instrument is programmed to process.

All HP-IB library commands begin with the prefix I0-. For instance,
IDOUTPUTS is an HP-IB library command, while PRES is an instrument
command.

Each instrument command sent is executed automatically upon receipt, taking precedence
over manual control. A command applies only to the active channel, except where functions
are coupled between channels, just as with front panel operation. Most commands are
equivalent to front panel functions.

The network analyzer automatically goes into remote mode when sent & command with the
HP-IB command library I0OUTPUTS statement. This turns on the remote (R} and listen

(L) HP-IB status indicators. In remote mode, all front panel keys except the local key

are ignored. Pressing the key returns the instrument to manual operation, unless
the HP-IB library command I0LLOCKOUT (7L) has been issued. This command puts the
instrument into local lockout. The only way to get out of local lockont is to execute the
TOLLOCAL(7L) command, or to cycle instrument power, which will return to local operation.

The debug mode can be used to aid in trouble-shooting systems. When the debug mode is
on, incoming HP-IB command 1l across the instrument display. To turn the mode on
manually, press To turn it on over HP-IB, execute:

error_handle {IOCUTPUTS (716L,"DEBUON;",7), “IOOUTPUTS")

Command interrogate

When the operator has changed a setting from the front panel, the computer can find out
the value of the new setting using the command interrogate function. If a question mark is
appended to the root of 2 commmand, the value of that function is sent. For instance, POWE
—20 DB sets the output power to —20 dBm, and POWE? outputs the current R¥ output power
at the test port.

Oxn/off commands can be also be interrogated. The reply is a one if the function is on, a zero
if it is off. Similarly, if a command controls a function that is underlined on the network
analyzer display whern active, interrogating that command yields a one if the command is
underlined, a zero if it is not. For example, there are nine options on the format menu, but
only one is underlined at a time. The underlined optior will return a one when interrogated.

1-6 Programming Basics

Held commands

When the network analyzer is executing a command that cannot be interrupted, it will hold
off processing new HP-IB commands. It will fill the 16 character input buffer, and then halt
HP-IB until the held command has completed execution. This action will be transparent to
a program unless HP-IB timeouts have been set with the IOTIMEOUT (7L, timeout_value)
command.

While a held command is executing, the instrument will still service the HP-IB interface
commands, such as I0SPOLL(716L,response_variable), IOCLEAR (716L), and I0ABORT(7L).
Executing T0CLEAR(716L) or INCLEAR(7L) will abort a command hold off, leaving the held
command to complete execution as if it had begun from the front panel. These commands
also clear the input buffer, destroying any commands received after the held command. If

the network analyzer has halted the bus because its input buffer was full, I0ABORT({7L) will
release the bus.

Operation complete

QOccasionally, there is a need to find out when certain operations have been completed. For
instance, a program should not have the operator connect the next calibration standard while
the instrument is still measuring the current one.

To provide such information, the network analyzer has an “Operation Complete” reporting
mechanism that will indicate when certain key commands have completed operation. The
mechanism is activated by sending either OPC or OPC? immediately before a command. Not
all commands can be preceded with OPC or OPC? If the operation complete mechanism was
interrogated with OPC?, the network analyzer will output a one when the command completes
execution. If OPC is used, the instrument will not output a response indicating an operation
complete, instead it will set bit 0 of the status byte (see Figure 4-4)

The following procedure, when called, only returns when it is has received a response following
an O0PC() command:

void ope ()

{
int one=1;
char reply;

error _handle (IOENTERS (716L,&reply.&one), "IOENTERSY);
}

For example, the following line sequence will not continue until a single sweep has been
completed:

error_handle (IDOUTPUTS (716L,"SWET3S;0PC?;SING:",17), "ICOUTPUTS");
opc (J;

The first line causes the instrument to single sweep for 3 seconds. Before the single sweep
commangd is executed, it is preceded with O0PC? which asks the instrument to output a one
when done with the following command. The next line calls the procedure 0PC() which will
wait until the instrument outputs a response.

Note that to use the 0PC () routine, an instrument command must be preceded with 0PC? and
not OPC.

Programming Basics 1-7

Preparing for HP-IB control

At the beginning of a program, the instrument has to be taken from an unknown state

and brought under computer control. One way to do this is with an abort/clear sequence.
TCABORT(7L) is used to halt bus activity and return control to the computer. IOCLEAR(716L)
will then prepare the instrument to receive commands by clearing syntax errors, the input
command buffer, and any messages waiting at the output. The abort/clear sequence makes
the instrument ready to receive HP-IB commands.

The next step is to set it to a known state. The most convenient way to do this is to send
PRES, which returns the instrument to the factory preset state. If the factory preset cannot be
used and the status reporting mechanism is going to be used, CLES can be sent to clear all of
the status reporting registers and their enables. The user preset can be recalled by RECAS.

For example, the following initialize routine can be used to set up the instrument:

void initialize ()

{
error_handle (IGABCGRT (7L), "IDABORT"):
error_handle (IOCLEAR (7i6L), "IOCLEARY);
error_handle (IOTIMEQOUT (7L,15.0), "IOTIMEQUI");
error_handle (IOOUTPUTS {716L,"PRES:",5), "IDOUTPUTSY);
}

This routine brings the network analyzer to a known state, ready to respond to HP-IB control.
The I0OTIMEOUT (7L,15.0) sets a timeout of 15 seconds, long enough for most commands.

The timeout value passed must be a floating point integer, so a decimal point must be
included.

The network analyzer will not respond to HP-IB commands unless the remote line is
asserted. When the remote line is asserted and the network analyzer is addressed to listen,
it automatically goes into remote mode. Remote mode means that all the front panel keys
are disabled except and the line power switch. I0ABORT (7L) asserts the remote line,
which remains asserted until a TOLOCAL (7L) statement is executed. Another way to assert
the remote line is to execute IOREMOTE (716L). This statement asserts remote operation and
addresses the network analyzer to listen.

1-8 Progranriming Basics

Measurement Programming

The previous sections outlined some basic programming techniques, along with demonstrating
how to send commands to the network analyzer. The next step is to organize the commands
into a measurement sequence. A typical measurement sequence is shown in Figure 1-2.

Set up the
Network Analyzer

¥
Calibrate
¥
Connect the
device under test

)

Take data

4

Post Process data
within the instrument
Transfer data
to the computer

END

Figure 1-2. Typical Measurement Sequence

» Set up the network analyzer

Define the measurement by setting all of the basic measurement parameters. These include
all the stimulus parameters: sweep type, frequency, sweep time, number of points, and RF
power level. They also include the parameter to be measured, and both IF averaging and
IF bandwidth. These parameters define the way data is gathered and processed within

the instrument. Each time one of the above parameters is changed, a new sweep must be
triggered.

There are other parameters that can be set within the instrument that do not affect data
gathering directly, such as smoothing, setting trace resolution (scale), or performing trace
math. These functions are classed as post processing functions: they can be changed with
the instrument in hold mode, and the data will correctly reflect the current state.

The save/recall registers is a rapid way of setting up an entire instrument state.
u Calibrate

Programming Basics 1-8

Measurement calibration is normally performed once the instrument state has been defined.
Measurement calibration is not required to make a measurement, but it does improve the
measurement accuracy. ‘

There are several ways to calibrate the instrument.

o The simplest is to stop the program and have the operator perform the calibration from
the front panel.

o Alternatively, the computer can be used to guide the-operator through the calibration, as
discussed in Example 2A, Sq1 1-port calibration and Example 2B, Full 2-port calibration.

o The last option is to transfer calibration data from a previous calibration back into the
instrument as discussed in Example 6B, Reading calibration data.

m Connect the device under test

The computer can be used to prompt the operator to connect and adjust the device and
it can be also used to speed the adjustment process by setting up such functions as limit
testing, bandwidth searches, and frace statistics.

m Take data

Once the device is connected and adjusted, measure its frequency response, and store the
data within the instrument so that there is a valid trace to analyze.

The single sweep command SING is designed to ensure a valid sweep. All stimulus changes
are completed before the sweep is started, and the HP-IB hold state is not released until
the formatted trace is displayed. When the sweep is completed the instrument is put into
hold, freezing the data inside the instrument. A single sweep can be preceded with OPC7;
therefore, it is easy to determine when the sweep has been completed.

The number of groups commands, NUMGn, is designed to work the same as a single sweep,
except that it triggers n sweeps. This is useful, for example, in making a measurement with
an averaging factor n (n can take on values between 1 and 999.) Both single sweep and
number of groups restart averaging.

w Post process data within the instrument

With valid data to operate on, the post-processing functions can be used. Referring ahead
to Figure 2-5, any function that affects the data after the error correction stage can be used.
The most useful functions are trace statistics, marker searches, electrical delay offset, time
domain, and gating. If a 2-port calibration is active, then any of the four S-parameters can
be viewed without taking a new sweep.

m Transfer data to the computer

Lastly, read the results out of the instrument. All the data output commands are designed
to ensure that the data transmitted reflects the current state of the instrument:

m QUTPDATA, OUTPRAUWR, and OUTPFORY, etc. will transmit entire data traces.
o QUTPLIML, OUTPLIMM, and OUTPLIMF will transmit limit testing results.

o OUTPMARK will transmit the currently active marker’s results. This command will activate
a marker if one is not already selected.

o OUTPMSTA will transmit the statistics that have been calculated for data between the
active marker and the delta reference marker. If there is no delta reference, the entire
trace data is used.

1-10 Programming Basics

O QUTPMWID will transmit the resnits of a bandwidth search.
Data transfer is discussed further in Examples 3A through 3C.

Programming Basics 1-11

Basic Programming Examples

Example 1: Setting up a basic measurement

In general, the procedure for setting up measurements on the network analyzer via HP-IB
follows the same sequence as if the setup was performed manuaily. There is no reguired order,
as long as the desired frequency range, number of points and power level are set prior to
performing the calibration.

This example illustrates how a basic measurement can be set up. The program will first select
the desired S-parameter, the measurement format, and then the frequency range. Performing
calibrations is described later.

Since the standard network analyzer has a frequency resolution of 100 kHz, it is required

that all of the data points in the sweep be at some integer multiple of 100 kHz {10.1 MHz,
2.0011 GHz, 19.9985 GHz for example). Therefore, the actual frequencies that are set may be
slightly different from those specified by the user. By interrogating the instrument, the user
can determine the actual values of the start and stop frequencies. Note that if you are using a
network analyzer which has 1 Hz frequency resolution, (Option 001), the actual frequencies set
by the analyzer will be identical to those specified using the START and STOP commands.

Caution The programming examples found in this gnide are for example purposes
only. They may require modification to work with your particular personal
a computer.
1 /# HP 8719C, 8720C, 8722A/C QuickC IPG Program 1 */
2:
5: #include <stdio.h>
10: #include <cfunc.hd>

20: #include <chpib.h>

40: $#define isc TL
50: #define instr T16L

70: void error_handle (int, char =*);
80: void output (char *);
90: void initialize(void);

100:

110: void error_handle {(int error, char *routine)

120: {

130: if (error !'=NOERR)

140: {

150: printf ("HP-IB error in call to §s: %d, %s\n",

routine, error, errstr(error));

Basic Programming Examples 2-1

1601 exit(1);

170: 3

180: return;

190: }

200:

210: void output (char *sendstr)

220: {

230: error_handle (IOQUTPUTS (instr,sendstr,strlen(sendstr)), "I00UTPUTS");
240: }

250:

260: veid initialize ()

270: {

280: error_handle (IOTIMEOUT (isc,5.0), "IODTIMEOUT);
290: error_handle (IOABORT (isc), "IDABORT"):
300: error_handle (IOCLEAR (isc), "IDCLEARY):
310: output ("PRES;");

320: }

330:

340: main ()

350: {

360: char cmd[80];

370: float f_start,f_stop;

380:

390: initvialize (J;

400: output {"CHAN1;S11;LOGM;");

410: output {("CHANZ2;S11;PHAS;DUACON;: ") ;

420: printf ("Enter start frequency (GHz): ");
430: scanf ("4f",&f _start); '

440: printf (“Enter stop frequency (GHz): ");
450: scanf ("LE",&f_stop);

460: sprintf (cmd,"STARYFGHZ;STOPYfCHZ;" ,f_start,f_stop);
470: output {cmd);

480: output {"CHANT ; AUTO ; CHANZ ; AUTD ;") ;

490: }

Figure 2-1. Sample Program: Basic Programming Measurement

Program explanation

Line 5

Line 10

Line 20

Line 40

Line 50

Tell the compiler which file includes information on the standard I/0
routines.

Tell the compiler which file includes information on the HP 823354
HP-IB command library I/O functions.

Tell the compiler which file includes information on the HP-IB
command librarv error constants.

Define a variable to contain the HP-IB interface select code, 7.

Define a variable to contain the instrument address, 716.

2-2 Basic Programming Examples

Line 70
Line 80
Line 90
Line 110

Line 130
Line 150
Line 180
Line 210

Line 230

Line 260
Line 280
Line 290
Line 300
Line 310
Line 340
Line 360
Line 390
Line 400

Line 410

Line 420
Line 430
Line 440
Line 450
Line 460

Line 470
Line 480

Function prototype for the error_handier () routine.
Function prototype for the output () routine.
Function prototype for the initialize () routine.

Define a routine that handles errors returned from the HP-IR
command library I/0 functions.

Check to see if there is an error.
Am error has occurred, so display a message and halt.
No error has occurred, so return.

Define 2 routine that outputs string commands and performs error
trapping.

Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Define a routine to initialize the instrument.
Define a timeout value of five seconds.
Abort any HP-IB transfers.

Clear the instrument’s HP-IB interface.
Preset the instrument.

Main declaration

Declare the needed variables.

Call the initialize () routine.

Output commands to the instrument to switch to channel one, and
measure the log magnitude of §;7.

QOutput commands to the instrument to switch to channel two,
measure the phase of Sy3, and display both channel one and chanpel
two.

Request the start frequency.
Input the start frequency.
Request the stop frequency.
Input the stop frequency.

Create an output string to contain commands to tell the analyzer
what the start and stop frequencies are.

Qutput this string.

Autoscale both channel one and channel two.

Basic Programming Examples 2-3

Running the program

The program will set up a measurement of 511, log magnitude on channel one, and 351, phase
on channel two, and turn on the dual channel display mode. When prompted for the start
and stop frequencies, enter any value in GHz from .050 (50 MHz) to 13.5 GHz, 20 GHz, or 40
GHz. These will be entered in the instrument, and the actual frequencies that the instrument
is set to will be displayed on the instrument.

Performing a measurement calibration

This section will demonstrate how to coordinate a measurement calibration over HP-IB. The
HP-IB command sequence follows the same key sequence required to calibrate from the front
panel: there is a coramand for each step.

The general key sequence is to select the calibration, measure the calibration standards, and
then declare the calibration done. The actual sequence depends on the calibration kit and
changes slightly for 2-port calibrations, which are divided into three calibration sub-sequences.

Calibration kits

The calibration kit definition tells the network analyzer what standards to use at each step of
the calibration. The set of standards associated with a given calibration is termed a class. For
example, measuring the short during a §;; 1-port calibration is one calibration step. All of the
shorts that can be used for this calibration step make up the class, which is called class 51;B.
For the 2.4 mm, 3.5 mm, and 7 mm calibration kits, class S1;B has only one standard in it.
For type-N calibration kits, class S11B has two standards in it: male and female shorts.

When doing a Sy; 1-port calibration in 2.4 mm, 3.5 mm, or 7 mm, selecting i
automatically measures the short because there is only one standard in the class. When doing
the same calibration in type-N, selecting brings up a second menu, allowing the user
to select which standard in the class is to asured.

Doing an S11 1-port calibration over HP-IB is very similar. In 2.4 mm, 3.5 mm, and 7 mm,
sending CLASS11B will automatically measure the short. In type-N, sending CLASS11B brings
up the menu with the male and female short options. To select a standard, use STANA or
STANB. The STAN command is appended with the letters A through G, corresponding to the
standards listed under softkeys 1 through 7, softkey 1 being the topmost softkey.

The STAN command can be preceded with OPC?. A command that calls a class can only

be preceded with OPC? if that class has only one standard in it. If there is more than one
standard in a class, the command that calls the class only brings up another menu, and there
is no need to OPCT it.

Hence, both the manual and HP-IB calibration sequences depend heavily on which calibration
kit is active.

2-4 Basic Programming Examples

Full 2-port calibrations

Each full 2-port measurement calibration is divided into three sub-sequences: transmission,
reflection, and isolation. Each sub-sequence is treated like a calibration in its own right: each
must be opened, have all the standards measured, and then be declared done. The opening
and closing statements for the transmission sub-sequence are TRAK and TRAD. The opening and
closing statements for the refiection sub-sequence are REFL and REFD. The opening and closing
statements for isolation are ISOL and ISCD.

Example 2A: S41 1-port calibration

To demonstrate coordinating a calibration over HP-IB, the following program does an Sy;
I-port calibration using the HP 85052B 3.5 mm calibration kit. This program simplifies the
calibration for the operator by giving explicit directions on the computer display.

100:
110:
120:
130:
140:
150:
160:
170:

180:
180:
200:
210:;
220:
230:
240
250;
260;
270:
280:
280:

/* HP 8719C, 8720C, 87224/C QuickC IPG Program 24 */

#include <stdio.h>
#include <cfunc.h>
#include <chpib.h>

#define isc 7L
#define instr 716L

void error_handle {(int, char *);
veid output (char *);

void opec (void);

void inditialize {void)};

void disp_prompt {(char *);

void errer_handle (int error, char *routine)

{
if (error !'=NOEERR)
{
printf ("HP-IB error in call to ¥%s: %d,%s\n",
routine, error, errstr(error));
exit(1);
}
return;
}

void output (char #*sendstr)

{
error_handle (IOOUTPUTS (instr,sendstr,strien(sendstr)), "I0OOUTPUTSY):

¥

void opec ()
{

Basic Programming Exampies 2-5

300: int one=i;

310: char reply;

320:

330: error_handle (ICENTERS (instr,&reply,&ome), "IDENTERS");
340: }

350:

360: void imitialize (O

370: {

380: error_handle (I0TIMEOUT (isc,45.0), "IOTIMEOUT");
390: error _handle (I0ABRORT (isc), "IDABORT");

400: error_handle (IOCLEAR (isc), "IOCLEAR");

410: output ("CLES;");

420: }

430:

440: void disp_prompt (char *prompt)

450:

460: char ch;

470:

480: printf ("Ys",prompt);

490: printf (", then press [RETURN]\n");

500: ch=getche();

510: }

520:

£30: mair ()

540: {

550; int index;

560:

570: initialize ();

580: output ("CALK35MM;CLES;CALIS:;1;%);

590: disp.prompt ("Connect OPEN at port 1"};

600: output ("0PC?;CLASSyi4;");

610: opc ();

620: disp_prompt ("Connect SHORT at port 1");

630: output ("OPC?;CLASS.4B;");

640: ope ();

650: disp.prompt ("Connect LOWBAND LDAD at port 1%);
660 output (“CLASS.4C;0PC?;STANC;");

870: opc ();

680: disp_prompt ("Conmnect SLIDING LOAD at port 1%);
890: output ("STANB;");

700: for (index=1; index<=5; index++)

710: {

720: disp_prompt ("Set SLIDE in position®);

730: output ("SLIS;");

740: +

750: output (“SLID;");

760: printf("Computing calibration coefficients.\n");

770: output ("DONE;OPC?;SAVi;™);
780: opc (J;
790: printf ("DONE\n");

2-6 Basic Programming Examples

800: }

Figure 2-2. Sample Program: $44 1-Port Calibration

Program explanation

Line 5 Tell the compiler which file includes information on the standard I/0
routines.

Line 10 Tell the compiler which file includes information or the HP 82335A
HP-IB command library I/O functions.

Line 20 Tell the compiler which file includes information on the HP-IB
command Library error constants.

Line 40 Define a variable to contain the HP-IB interface select code, 7.

Line 50 Define a variable to contain the instrument address, 716.

Line 70 Function prototype for the error_handler () routine.

Line 80 Function prototype for the output () routine.

Line 90 Function prototype for the opc () routine.

Line 100 Function prototype for the initialize () routine.

Line 110 Function prototype for the disp_prompt () routine.

Line 130 Define a routine that handles errors returned from the HP-IB
command library I/O functions.

Line 150 Check to see if there is an error.

Line 170 An error has occurred, so display a message and hait.

Line 200 No error has occurred, so return.

Line 230 Define 2 routine that outputs string commands and performs error
trapping. '

Line 250 Send a string to the instrument located at the value of instr, 716.

Perform error checking.

Line 280 Define a routine that when called will only return when it receives a
response from the instrument. This routine is called after an OPC?
command has been issued.

Line 310 Define a variable to hold the response.

Line 330 Input the response into the variable reply and do nothing with it.
Line 360 Define a routine to initialize the instrument.

Line 380 Define a timeout value of five seconds.

Line 390 Abort any HP-IB transfers.

Line 400 Clear the instrument’s HP-IB interface.

Line 410 Clear the instrument’s status.

Basic Programming Exampies 2-7

Line 440

Line 480
Line 500
Line 530
Line 550
Line 560
Line 580

Line 590
Line 600

Line 610
Line 620
Line 630
Line 640
Line 650
Line 660

Line 670
Line 680
Line 690
Line 700

Line 720
Line 730
Line 750

Line 770

Define a routine to display a prompt and wait for to be
pressed.

Display the message prompt.
Wait for a key to be pressed.
Main declaration

Declare the needed variables.
Call the initialize () routine.

Select the 3.5 mm calibration kit, clear the instrument status, and
open the 531 1-port calibration.

Display a prompt to connect an OPEN at port 1.

Measure the standard. Since there is only one choice in this class,
the CLASS command is OPC’able. Using the OPC? command causes
the program to wait until the standard has been measured before
continuing. This is very important because the prompt to connect
the next standard should only appear after the first standard is
measured.

Wait for the 0PC? command to return a response.

Display a prompt to connect a SHORT at port 1.

Measure the standard.

Wait for the OPC? command to return a response.

Display a prompt to connect a LOWBAND LOAD at port 1.

Measure the standard. Since there is more than one standard in the
loads class, the program must identify the specific standard within
that class. The lowband load is the third softkey selection from the
top in the menu; so to select a lowband load as the standard use the
command STANC.

Wait for the 0PC? command to return a response.
Display a prompt to connect a SLIDING LOAD at port 1.
Select the appropriate softkey.

It will require five different positions of the sliding load to properly
characterize the directivity error term.

Display a prompt to set the SLIDE.
Measure the slide standard.

Tell the instrument that the sliding load calibration has been
completed.

Affirm the completion of the calibration, and save the calibration.

2-8 Basic Programming Examples

Running the program

The program assumes that the test port being calibrated is a 3.5 mm, either male or female.
The program interacts with the operator through the computer. When the measurement
calibration is complete, it will display DONE.

Before running the program, set up the desired instrument state. This program does not
modify the instrument state in any way. Run the program, and connect the standards as
prompted. When the standard is connected, press to measure it.

Example 2B: Full 2-port measurement calibration

The following example shows how to perform a full 2-port measurement calibration using the
HP 85052D calibration kit. In this example, the calibration process allows the removal of both
the forward and reverse erzor terms, so that-all four S-parameters of the device under test

can be measured. Since the HP 85052D calibration kit is used, a broadband load will be used
instead of the sliding load used in Example 2A. Use of the broadband load results in a more
convenient calibration, since only one measurement is required for the load calibration, as
opposed to five measurements when the sliding load is used.

/* HP 8719C, 8720C, 87224/C QuickC IPG Program 2B */

i

2:

5: #include <stdic.h>
10: #include <cfunc.h>
20: #include <chpib.h>

40: #define isc 7L
50;: #define instr Ti8L

70: void error_handle (int, char *);
80: void output {char *);

90: void ope {veid);

100: void imitialize (void);

110: void disp_prompt (char *);

120:

130: void errer_handle (int error, char *routine)

140: {

150: if (error '=NOERR)

160: {

170: printf ("HP-IB error in call to ¥%s: %d,%s\n",
routine,error, errstrierror)):

180: exit(1};

180: ¥

200: return;

210: 3}

220

230: void output (char *sendstr)

240: {

Basic Programming Examples 2-9

250: error_handle (I00UTPUTS (instr,sendstr,strlen(sendstr)), "IOOUTPUTS");

260: }

270:

280: void opc OO

280: 4

300: int one=1;

310: char reply;

320:

330: error_handle (IDENTERS (instr,&reply,&one), "IOENTERS");
340: }

350:

360: void initialize ()

370: {

380: error.handle (IOTIMEOUT (isc,45.0), "IOTIMEOUT");
390: error_handle (IOABORT (isc), "IOABORT");
400: error_handle (TOCLEAR (isc), "IOCLEAR");
410 cutput ("CLES;");

420: }

430:

440: void disp_prompt (char *prompt)

450: {

480: char ch;

470:

480: printf ("%s",prompt);

490: printf (", then press [RETURNI\n");

800: ch=getche();

510: }

520:

530: main)

540: {

550: initialize);

560: output ("CALK3SMM;CLES;CALIFULZ2;REFL;");
570: disp_prompt ("Connect OPEN at port 1");
580: output ("OPC?;CLASS14;");

§90: opc ()3

600: disp_prompt ("Comnect SHORT at port i");
610: output ("OPC?;CLASS::B;");

620: ope OO

630: disp_prompt (“Connect BROADBAND LOAD at port 1%);
640: output ("CLASS,1C;0PCT7;STANA;");

850: opc (J;

660: disp_prompt ("Comnect OPEN at port 2");

670: output ("OPC?7;CLASS224;");

680 ope ();

690: disp_prompt ("Connect SHORT at port 2");

T00: output ("0PC7;CLASS22B;");

710: opec ();

720: disp_prompt ("Conmect BROADBAND LOAD at port 2");

730: output ("CLASS22C;0PCT;STANA;");
740: ope ()3
750: output ("REFD;");

2-10 Basic Programming Examples

T60:
770:
780:
T90:
800;
810C:
820:
830:
840:
850:
860:
870:
880;
880:
800:
910:
920:
930:
940:
950:
860
o70:
980:
290:
1000:
1010:
1020:;
1030:

printf ("Computing reflection calibration coefficients\n");
output {"TRAN;"};

disp_prompt ("Comnect TERU [port 1 to port 21");
printf ("Measuring forward transmission\n");
output ("OPCT;FWDT:");

ope ();

output (“OPC?;FWDM;");

opc (J;

printf ("Measuring reverse transmission\n");
output ("OPC?;REVT;");

opc (J;

output ("OPC7;REVM;");

opc (0;

output ("TRAD;");

disp.prompt ("Isolate test ports");

output ("AVERFACT16;AVERON;ISOL;");

printf ("Measuring reverse 1solat10n\n"}

output ("OPC?;REVI;");

opc {J;

printf ("Measuring forward isolation\n");
cutput ("OPCT;FWDI;");

opc (J;

output ("ISOD;AVEROFF;");

printf ("Computing calibration coefficients\n");
cutput ("OPC?;SAV2;");

opec (J;

printf (“DONE");

Figure 2-3. Sample Program: Full 2-Port Measurement Calibration

Program explanation

Line 5

Line 10

Line 20

Line 40
Line 50
Line 70
Line 80
Line 90
Line 100
Line 110

Tell the compiler which file includes information on the standard I/0
routines.

Tell the compiler which file includes information on the HP 82335A
HP-IB command library I/O functions.

Tell the compiler whick file includes information on the HP-IB
command library error constants.

Define a variable to contain the HP-IB interface select code, 7
Define a variable to contain the instrument address, 716.
Function prototype for the error_handler () routine.
Function prototype for the output () routine.

Function prototype for the opc {) routine.

Function prototype for the initialize () routine.

Function prototype for the disp_prompt () routine.

Basic Programming Examples 2-11

Line 130

Line 150
Line 170
Line 200
Line 230

Line 2508

Line 280

Line 310
Line 330
Line 360
Line 380
Line 390
Line 400
Line 410
Line 440

Line 480
Line 500
Line 530
Line 550
Line 560

Line 570
Line 580
Line 590
Line 600
Line 610
Line 620
Line 630
Line 640
Line 650
Line 660

Define a routine that handles errors returned from the HP-IB
commarnd library I/O functions.

Check to see if there is an error.
An error has occurred, so display a message and halt.
No error has occurred, so return.

Define a routine that outputs string commands and performs error
trapping.

Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Define a routine that when called will only return when it receives a
response from the instrument. This routine is called after an 0OPC?
command has been issued.

Define 2 variable to hold the response.
Input the response into the variable reply and do nothing with it.
Define a routine to initialize the instrument.

Define a timeout value of five seconds.

~ Abort any HP-IB transfers.

Clear the instrument’s HP-IB interface.
Clear the instrument’s status.

Define a routine to display a prompt and wait for to be
pressed.

Display the message prompt.
Wait for a key to be pressed.
Main declaration

Call the initialize () routine.

Select the 3.5 mm calibration kit, clear the instrument status, and
open the full 2-port calibration.

Display a prompt to connect an OPEN at port 1.

Measure the standard.

Walt for the OPC? command to return a response.

Display a prompt to connect a SHORT at port 1.

Measure the standard.

Wait for the OPC? command to return a response.

Display a prompt to connect 2 BROADBAND LOAD at port 1.
Measure the standard.

‘Wait for the O0PC? command to return a response.

Display a prompt to connect an OPEN at port 2.

2-12 Basic Programming Exampies

Line 670
Line 680
Line 690
Line 700
Line 710
Line 720
Line 730
Line 740
Line 750
Line 770
Line 780
Line 800
Line 810
Line 820
Line 830
Line 850
Line 870
Line 8§90
Line 900
Line 910

Line 930
Line 960
Line 980
Line 1010

Measure the standard.
Wait for the OPC? command to return a response.
Display a prompt to connect a SHORT at port 2.
Measure the standard.

Wait for the OPC? command to return a response.

‘Display a prompt to connect a BROADBAND LOAD at port 2.

Measure the standard.

Wait for the OPC? command to return a response.
Close the reflection calibration sub-sequence.
Open the transmission calibration sub-sequence.
Display a prompt to connect a THRU conmection.
Measure forward transmission.

Wait for the OPC? command to return a response.
Measure forward load match.

Wait for the OPC? command to return a response.
Measure reverse transmission.

Measure reverse load match.

Close the transmission calibration sub-sequence.
Display a prompt to isolate test ports.

Define an averaging factor of 16, turn on averaging, and open the
isolation calibration sub-sequence.

Measure reverse isolation.
Measure forward isolation.
Close the isolation calibration sub-sequence, and turn off averaging.

Wait until the instrument calculates the calibration coefficients before
continuing.

Running the program

The program assumes that the test ports being calibrated are 3.5 mm, either male or female,
and that the HP 85052D 3.5 mm economy calibration kit is to be used (no sliding loads). The
program will display DONE when the measurement calibration is complete.

Before running the program, set up the desired instrument state. This program does not
modify the instrument state in any way. Run the program, and connect the standards as
prompted. When the standard is connected, press to measure it.

Basic Programming Examples 2-13

Data transfer
Trace information can be read out of the network analyzer in two ways:
= Data can be read off the trace point-by-point with markers, or

® the entire trace can be read out.

Using markers to obtain trace data at specific points

To obtain data off the trace using a marker, the marker has to first be set to the desired
frequency. This is done with the marker commands. For example, the instrument commmand
MARK1 1.56GHZ would place marker one at 1.56 GHz. If the markers are in continuous mode,
the marker value will be linearly interpolated from the two nearest points 1f 1. 9600 GHz was
not sampled. This interpolation can be prevented te mode.
The key sequence for this is (LOCAL), (MKR), To do
it over HP-IB execute the instrument command MARKDISC. After executmg this, note that
the marker may no longer be precisely at 1.56 GHz. (This depends on the start and stop
frequencies).

Another way of using the markers is to let the network analyzer pick the stimulus value on the
basis of one of the marker search functions: maximum, minimum, target value, or bandwidth
search. For example, the instrument command SEAMAX will initiate & one-time trace search

for the trace maximum, and put a marker at that point. In order to continually update

the search, turn tracking on. The key sequence is (MKR FCTN),

. To do it over HP-IB use the instrument commands: TRACKON;SEAMAX;. The
trace maximum search will stay on until the search is turned off, tracking is turned off, or all
markers are turned off.

Marker data is read out with the instrument comnmand OUTPMARK. This command causes the
network analyzer to transmit three numbers: marker value 1, marker value 2, and marker
stimulus value. Refer to Table 2-1 for all the different possibilities for values one and two, and
the stimulus value.

2-14 Basic Programming Examples

Table 2-1. Units as a Function of Display Format

Display Marker OUTPMARK OUTPFORM
Format Mode Marker Readout! vaiue 1, value 2
value 1, valne 2
LOG MAG dB, value 2° dB, value 22
PHASE degrees, value 22 degrees, value 27
DELAY seconds, value 22 seconds, value 27
SMITH LIN MKR lin mag, degrees real, imag
CHART LOG MKER |dB, degrees real, imag
Re/Im real, imag real, imag
R+ X real, imag ohms real, imag
G +iB real, imag Siemens real, imag
POLAR LIN MKR lin mag, degrees real, imag
LOG MKR |dB, degrees real, imag
Re/Im real, irag real, imag
LIN MAG lin mag, value 22 lin mag, value 22
REAL Teal, value 22 real, value 22
SWR SWR, value 22 SWR, value 22

1 The marker readout values are the marker values displayed in the upper right hand
corner of the display. They also correspond to the value and auxilary value associated
with the fixed marker.

2 Value 2 not significant in this form, but is included in data transfers.

Example 3A: Data transfer using markers

The following program searches out the trace minimum and returns the marker values.

/* HP 8719C, 8720C, 8722A/C QuickC IPG Program 34 */

#include <stdio.h>
10: #include <cfunc.h>
20: #include <chpib.h>

40: #define isc TL
50: #define instr T16L

70: void error_handle {(int, char *);
80: void output {(char *);
90: void initialize (void);

100:

110: void error_handle (int error, char *routine)
120: {

130: if (error !'=NOERR)

Basic Programming Examples 2-15

140: 1

150: printf ("HP-IB errcr in call to is: %d, %s\n",
routine, error, errstrerror)):

160: exit(1);

170: 3

180: return;

180: }

200:

210: void output (char *sendstr)

220: 1

230: error_handle (I00UTPUTS (instr,sendstr,strien{(sendstr)), "IDDUTPUTS"};

240: ¥

250:

260: void initialize ()

270: {

280: error_handle (IOTIMEQUT {(isc,5.0), "IDTIMEQUT®);

280: error_handle (IDABORT (isc), "IDABORT");

300: error.handle (IOCLEAR (isc), "IOCLEAR");

310: output ("CLES;");

320: 3

330:

340: main ()

350: {

360: float vall[3];

370: int length=3;

380:

390: initialize ()

400: output ("SING;MARK1;SEAMIN;FORMS;0UTPMARK;") ;

410; error_handle (IOENTERA (instr,val,Zlength), "IOENTERA");

420: printf ("Value 1: %f\nValue 2: f\nStimulus: %f\n",
val[0],vall1],vall21);

430: }

Figure 2-4. Sample Program: Data Transfer Using Markers

Program explanation

Line 5 Tell the compiler which file includes information on the standard I/O
routines.

Line 10 Tell the compiler which file includes information on the HP 82335A
HP-IB command library I/O functions.

Line 20 Tell the compiler whick file includes information on the HP-IB
command library error constants.

Line 40 Define a variable to contain the HP-IB interface select code, 7.

Line 50 Define a variable to contain the instrument address, 716.

Line 70 Function prototype for the error_handler () routine.

Linpe 80 Function prototype for the output () routine.

2-16 Basic Programming Examples

Line 80 Function prototype for the initialize () routine.

Line 110 Define a routine that handles errors returned from the HP-IB
command Iibrary I/0 functions.

Line 130 Check to see if there is an error.

Line 150 An error has occurred, so display & message and halt.

Line 180 No error has occurred, so return.

Line 210 Define a routine that outputs string commands and performs error
trapping.

Line 230 Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Line 260 Define a routine to initialize the instrument.

Line 280 Define a timeout value of five seconds.

Line 290 Abort any HP-IB transfers.

Line 300 Clear the instrument’s HP-IB interface.

Line 310 Clear the instrument’s status.

Line 340 Main declaration

Line 360 Declare the needed variables.

Line 390 Call the initialize () routine.

Line 400 Perform a single trace, turn on marker one, place marker one at the
single trace minimum, and output the marker data.

Line 410 Input three values, the stimulus value, value one and value two.

Line 420 Display both values, and the stimulus.

Running the program

The values displayed by the computer shouid agree with the marker values, except that

the second value displayed will be meaningless in some formats. To see the possibilities for
different values, run the program three times: once in log magnitude format, once in phase
format, and once in Smith chart format. To change display format, press (LOCAL), (FORMAT },
and then select the desired format.

Basic Programiming Exampies 2-17

Trace transfer

Getting trace data with a computer can be broken down into three steps:
1. Setting up the receive array.

2. Telling the network analyzer to transmit the data.

3. Accepting the transferred data.

Data is always stored in values, to accommodate real/imaginary pairs, for each data point.
Therefore, the receiving array has to be two elements wide, and as deep as the qumber of
points. The memory space for this array must be declared before any data is to be transferred
to the computer.

Data formats

The network analyzer can transmit data over HP-IB in five different formais. Of the five
formats, Form 5 is the most appropriate for personal computers.

w Form 1

Internal binary format. In this mode, each point takes 6 bytes. This means that a 201 point
transfer takes 1,206 bytes. Re-formatting must be done in order to decode the information.
This is the format the network analyzer uses to store data. Form 1 also has a four byte
header.

= Form 2

TEEE-754 32-bit floating point format. In this mode, each number takes 4 bytes. This
means that a 201 point transfer takes 1608 bytes. This form also has a four byte header.

= Form 3

JEEE-754 64-bit floating point format. In this mode, each number takes 8 bytes. This
means that a 201 point transfer takes 3,216 bytes. This form also has a four byte header.

» Form 4

ASCII data transfer format. In this mode, each number is sent as a 24 character string,
each character being a digit, sign, or decimal point. Since there are two numbers per point,
a 201 point transfer takes 9,648 bytes. This form does not have a four byte header.

= Form 5

PC-compatible 32-bit fioating point format. This mode is a modification of the IEEE-754
32-bit floating point format with the byte order reversed. Therefore, a 201 point transfer
takes 1,608 bytes. This form also has a four byte header. In this mode, a MS-DOS personal
computer can store data internally without reformatting it.

2.18 Basic Programming Examples

Data levels
Different levels of data can be read out of the instrument (Refer to Figure 2-5)
» Raw Data.

This is basic measurement data with no error correction applied. If a full 2-port
measurement calibration is ON, there are actually four raw arrays kept: one for each raw
S-parameter. The data is read out with the command OUTPRAW{n}, where n ranges from
1 to 4. Normally, only raw 1 is available and it holds the current parameter. If a 2-port
calibration is ON, the four arrays refer to Si1, Soi, S12, and Sgo respectively. This data is
always in real/imaginary pairs.

m Error-corrected data.

This is data with error-correction applied. The array corresponds to the currently measured
parameter, and is always in real/imaginary pairs. The error-corrected data is read out with
OUTPDATA. OUTPMEMO reads the trace memory if available, which is also error-corrected data.
Note that neither raw nor error-corrected data reflect such post-processing functions as
electrical delay offset, trace math, or time domain gating.

» Formatted data.

This is the array of data actually being displayed. It reflects all post-processing functions.
The units of the array read out depends on the current display format. Refer to Table 2-1
for the various units as a function of display format. The formatted data is read out with
OUTPFORM.

m Calibration coefficients.

The results of a calibration are arrays of calibration coefficients which are used in the
error-correction routines. Each array corresponds to a specific error term in the error model.
The calibration coefficients can be read out with BUTPCALC{n}, where n ranges from 1 to 12.

Formatted data is generally the most useful, being the same information seen on the
display. However if the post processing is unneeded or unwanted, as may be the case with
smoothing, error-corrected data is more desirable. Error-corrected data also give you the
opportunity to put the data into the instrument and apply post-processing at a later time.

Basic Programming Examples 2-19

* One chain per chanel

{ Input
- | feut
OUTPRAW 4 <§§;> 1‘55'}-» OUTPCALS
Eeror

Correction

Trare Eﬂa
CUTPMENO 4R ; Corrected] B OUTPDATA

Figure 2-5. Data processing chain

Example 3B: Data transfer using Form 4 (ASCII transfer)

In Form 4, each number is sent as a 24 character string, each character being a digit or
decimal point. Since there are two numbers per point, a 201 point transfer in Form 4 takes

9,648 bytes

/* HP 8T719C, 8720C, 87224 QuickC IPG Program 3B */
$include <stdioc.h>

10: #include <cfunc.h>

20: #include <chpib.h>

40: #define isc 7L
50: #define instr 716L

70: wvoid error_handle {int, char *);
80: void output (char *);

2-20 Basic Programming Examples

90: void ope (void);
100: void initialize (void);

110:

120: void error_handie (int error, char #*routine)

130: £

140: if (error !=NDERR)

150: {

160+ printf ("EP-IB error in call to #s: %4, ¥s\n",
routine, error, errstr(error}};

170: exit(1);

180: T

190: return;

200: ¥

210:

220: void output {char *sendstr)

230: {

240 error_handle (IDOUTPUTS (instr,sendstr,strlen(sendstr)), “I0QUTPUTSY);

250: }

260:

270: void opc ()

280: {

280: int one=1;

360: char reply;

210:

320: error_handle (IOENTERS (instr,&reply,&one), "IOENTERS");
330: }

340:

350:

360: void irnitialize ()

370: {

380: error_handle (IOTIMEOUT (isc,45.0), "IOTIMEOUTY};
380: error_handle (IOABORT (isc), "IQABORT');

400: error_handle (IOCLEAR (isc), "IOCLEAR");

410: error_handle (IOMATCH (isc,’\n’,0), "IDMATCH");
420 output ("PRES;");

430: %

440:

450: main

4601 o

470+ char ascii_dat[5501;

480: int elements=550,1,3;

480:

500: initialize();

510: output ("POIN 11;0PC?;SING;");

520: opc (J);

530: output ("FORM4;0UTPFORM;");

540: error_handle (IDENTERS {(instr,ascii_dat,&elements), "IOENTERS"):
550: for (i=0; i<5628; i=i+bB0)

580 {

570: printf ("\nPoint: %2d Value 1: ",(i/50)+1);
580: for (j=1; j<=24; j=j+1)

Basic Programming Examples 2-21

580: printf
600: printf ("

610: for (j=1;
620: printf
630: }

640: ¥

("fc",ascii dat[i+j]);
Value 2: ");

je=24; j=i+1)
("Y%c",ascii_dat[i+j+24]);

Figure 2-6. Sample Program: Data Transfer Using Form 4

Program explanation

Line 5
Line 10
Line 20

Line 40
Line 50
Line 70
Line 80
Line 90
Line 100
Line 120

Line 140
Line 160
Line 190
Line 220

Line 240

Line 270

Line 310
Line 320
Line 360
Line 380
Line 390

Tell the compiler which file includes information on the standard I/0
routines.

Tell the compiler which file inclu&es information on the HP 82335A
HP-IB command library I/O functions.

Tell the compiler which file includes information on the HP-IB
command Hbrary error constants.

Define a variable to contain the HP-IB interface select code, 7.
Define a variable to contain the instrument address, 716.
Function ;Jrototypé for the error_handler () routine.
Function prototype for the cutput {) routine.

Function prototype for the opc () routine.

Function prototype for the initialize () routine.

Define a routine that handles errors returned from the HP-IB
command library I/0 functions

Check to see if there is an error.
An error has occurred, so display a message and balt.
No error has occurred, so return.

Define a routine that outputs string commands and performs error
trapping.

Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Define a routine that when called will only return when it receives a
response from the instrument. This routine is called after an OPC?
command has been issued.

Define a variable to hold the respoxnse.

Input the response info the variable reply and do nothing with it.
Define a routine to initialize the instrument.

Define a timeout value of 45 seconds.

Abort any HP-IB transfers.

2-22 Basic Programming Examples

Line 400 Clear the instrument’s HP-IB interface.

Line 410 Disable character matching. This command defines the character
used by IOENTERB and IOENTERS for termination. The “If” enter
terminator should be turned off because “if” is a valid binary value.

Line 420 Preset the instrument.

Line 450 Main declaration

Line 470 Define the needed variables.

Line 500 Call the initialize () routine.

Line 510 Set the number of points sampled to eleven and perform 2 single
trace.

Line 520 Wait for the 0PC? command to return a response.

Line 530 Define the data format as ¥orm 4 (ASCII transfer), and request the
instrument’s formatted data.

Line 540 Input the data from the instrument.

Line 550 Define a loop to display the data. Each point has 50 bytes associated

with it. There are two values which occupy 24 bytes each, and two
bytes to signal the termination of the string.

Line 580 Loop 24 times to display the first value.
Line 590 Display the first value.

Line 610 Loop 24 times to display the second value.
Line 620 Display the second value.

Running the program

Changing the display format will change the data sent with the OUTPFORM transfer. Refer to
Table 2-1 for a list of how data is provided by format. The data from OUTPFORM reflects all the
post processing such as time domain, gating, electrical delay, trace math, smoothing, etc.

Relating the data from a linear frequency sweep to frequency can be done by interrogating the
start frequency, the frequency span, and the number of points. Given that information, the
frequency of point N in 2 linear frequency sweep is just:

F = Start.frequency + (N-1} X Span/(Points-1)

Alternatively, it is possible to read the frequencies directly out of the instrument with the
OUTPLIML command. OUTPLIML reports the limit test results by transmitting the stimmlus
point tested, a number indicating the limit test results, and then the upper and lower limits at
that stimulus point, if available. The number indicating the limit results is a —1 for no test, 0
for fail, and 1 for pass. If there are no limits available, zeros are transmitted as the upper and
lower limits.

Basic Programming Examples 2-23

Example 3C: Data transfer using Form 5, PC-compatible 32-bit
floating point format.

Form 5 transfers two numbers for each trace point. Each number is a four byte real number.
Form 5 also has additional four byte header. The first two bytes are the ASCII characters
“HA” that indicate that a fixed block length transfer follows, and the next two bytes form
an integer containing the number of bytes in the block to follow. Thus, a 201 point transfer
requires 1612 (201%4*2+4) bytes.

80:

100:
110:
120:
130:
140:
150:
160:
170:
180:
196:
200:
210:
220:
230:
240;
250:

260;
270:
280:
280:
300:
310:
320:
330:
340:
350:
360:

/% HP 8718C, 8720C, 87224/C QuickC IPG Program 3C */

#include <stdio.h>
#include <cfunc.h>
#include <chpib.h>

#define isc 7L
#define instr T16L

void error_handle (int, char *);
void output (char *);

void initialize (void);

void opc (void};

void opc (O

{
int one=1;
char reply;

error_handle (IOENTERS (instr,&reply,&one), "IOENTERS");
}

veid error_handle {int error, char #routine)
{
if (error !=NOERR)
{
printf ("HP-IB error in call to 4s: %d, %s\n",
routine, error, errstr{error));
exit(1);
}
return;

}

void output (char *sendstr)

{
error_handle (I0OUTPUTS (instr,sendstr,strlen(sendstr}), "IODQUTPUTSY);

}

void initialize ()

2-24 Basic Programming Examples

370: {
380:

error_handle (IDTIMEQUT (isc,15.0), “IOTIMEOUT"):

390: error_handie (IOABORT (isc), "I0DABORT");

400: error_handle (IOCLEAR (isc), "IOCLEAR");

410: error_handle (IOMATCE (isc,’\m’,0), "IOMATCH");

420 cutput ("CLES;");

430: }

440:

450: main ()

460: {

470 int bytes,i,length;

480: float datal50];

490: char header[2];

500:

510: initialize();

520: cutput ("POIN 11;0PC?;SING;");

530: ope ()3

540:; output ("FORMS;O0UTPFORM;");

550: length=2;

560; error_handle (IOENTERS (instr,header,&length), "IOENTERS");

§70: error_handle (ICENTERB (instr,&bytes,&length,1), "IOENTERB");

580: printf (YHeader: Ys\nNumber of bytes: %d\n\n",header,bytes);

590: length=bytes;

600: error_handle (IOENTERB (instr,data,&length,1), "IOENTERB");

610: for (i=0; i<=20; i=i+2)

620: privtf ("Point: ¥5d, Value 1: %f, Value 2: %f\n",
(i/2)+1,datal[i],datali+1]);

630: } '

Figure 2-7. Sample Program: Data Transfer Using Form §

Program explanation

Line 5

Line 10

Line 20

Line 40
Line 50
Line 70
Line 80
Line 90
Line 100

Tell the compiler which file includes information on the standard I/0
routines.

Tell the compiler which file includes information on the HP 82335A
HP-IB command library I/0 functions.

Tell the compiler which file includes information on the HP-IB
command library error constants.

Define a variable to contain the HP-IB interface select code, 7.
Define a variable to contain the instrument address, 716.
Function prototype for the error_handler () routine.
Function prototype for the output () routine.

Function prototype for the initialize () routine.

Function prototype for the opc () routine.

Basic Programming Examples 2-25

Line 120

Line 150
Line 170
Line 210

Line 230
Line 250
Line 280
Line 310

Line 330

Line 360
Line 380
Line 390
Line 400
Line 410

Line 420
Line 450
Line 470
Line 510
Line 520

Line 530
Line 540

Line 550

Line 560
Line 570

Line 580
Line 590
Line 600

Define a routine that when called will only return when it receives a
response from the instrument. This routine is called after an OPC?
command has been issued.

Define a variable to hold the respomnse.
Input the response into the variable reply and do nothing with it.
Define a routine that handles errors returned from the HP-IB

command library 1/O functions

Check to see if there is an error.
An error has occurred, so display a message and halt.
No error has occurred, so return.

Define a routine that outputs string commands and performs error
trapping.

Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Define a routine to initialize the instrument.
Define a timeout value of 15 seconds.

Abort any HP-IB transfers.

Clear the instrument’s HP-IB interface.

Disable character matching. This command defines the character
used by IDENTERB and IOENTERS for termination. The “lf” enter
terminator should be turned off because “If” is a valid binary value.

Clear the instrument’s status.
Main declaration

Define the needed variables.
Call the initialize () routine.

Set the number of points sampled to eleven and perform a single
trace.

Wait for the OPC? command to return a response.

Define the data format as Form 5 (PC-compatibie 32-bit foating
point integer transfer), and request the instrument’s formatted data.

Define a variable, length, to contain the number of bytes to read
from the instrument.

Input the header.

Input the number of bytes in the block to follow. Put this in the
variable, bytes.

Display the header and the number of bytes.
Assign the variable, length, the number of bytes to read.
Read the data.

2-26 Basic Programming Examples

Line 610 Loop enough times to display all the data points.
Line 620 Display the point number, value one and value two.

Running the program

Run the program. It will set the number of points to eleven, and display the header and
number of bytes required to input the data. It will also show the two values associated with

each of the eleven data points.

Basic Programming Examples 2-27

Advanced Programming Examples

Using list frequency mode

The list frequency mode allows selection of specific points or frequency spacing between points
at which measurements are to be made. Sampling specific points reduces the measurement
time, since additional time is not spent measuring device characteristics at unnecessary
frequencies.

Example 4: Setting up a list frequency sweep

This example shows how to create a list frequency table and transmit it to the network
analyzer. The command sequence for entering a list frequency table imitates the key sequence
foliowed when entering a table from the front panel: there is a command for every key

press. Editing a segment is also the same as the key sequence, but the network analyzer
automatically re-orders each edited segment in order of increasing start frequency.

The list frequency table is also carried as part of the learn string. While it cannot be modified
as part of the learn string, it can be stored and easily recalled.

This example takes advantage of the computer’s capabilities to simplify creating, adding to,
and editing the table. The table is entered and completely edited before being transmitted to
the network analyzer.

/* HP 8719C, 8720C, 8722A/C QuickC IPG Program 44 */

#include <stdioc.h>
10: #include <cfunc.h>
20: #include <chpib.h>
30: #include <graph.h>

40:

50: #define isc 7L

60: $#define instr T16L

70:

80: int points[30],starti30] .stop[30];
90:

100: void error_handle (int, char *);

110: void output {char *);

120: void initialize (void);

130: void getsegment (int);

140: int edit(void);

150:

160: void error_handie {int error, char *routine)

Advanced Programming Examples 3-1

170:
180:
190:
200:

210:
220;
230:
240:
250:
260:
270;
280:
280:
300:
310:
320:
330:
340
350:
360:
370:
380:
380:
400;
410:
420:
430:
440
450
460
470:
480:
480
£00:
510:
520:
530:
540:
£50:
£60:
570:
580:
580:
600:
610:
620:
630:
640
650:
660:

{

}

if (error !=NOERR)
{
printf ("HP-IB error in call to %s: %d, %s\n",
routine, error, errstrlerror)):
exit(i});
}

return;

void output (char ¥sendstr)

{ .

¥

error_handle (IOOUTPUTS (instr,sendstr,strlen(sendstr)), “IDOUTPUTS");

void inmitialize ()

{

T

error_handle (IOTIMEOUT (isc,45.0), "IOTIMEQUT");
error_handle (IOABORT {isc), "IUABORT");
error_handle (IOCLEAR (isc), "IOCLEAR");

output (YPRES;");

void getsegment (int number)

{

}

_settextwindow (20,0,25,80);
_clearscreen (_GWINDOW);
_settextwindow (0,0,25,80);
_settextposition (20,0};

printf ("Start Frequency (GHz)? ");
scanf ("%4",&start[numberl);
printf ("Stop Frequency (GHz)? ");
scanf ("%d",&stop[numberl);

printf (“Number of Points? "“);
scanf ("%d",&points[number]);

if (points[number] == 1) stoplnumber]=start[number];
.Settextposition {(number+1,0);
printf ("%4",number);
_settextposition (number+1,20);
printf ("%d",start[number]);
.Settextposition (number+1,40);
printf (*%d",stop[number]);
.settextposition (number+1,60};
printf ("%4",points[number]);

int edit()

{

int edit_t;

.Settextposition (24,0};

3-2 Advanced Programming Exampies

670: printf ("Edit which segment (O=exit)? "};

680: scanf ("}d".&edit_t);

690: return (edit_t);

T00: ¥

710:

720: main ()

730: {

740: int edit_num,i;

750: float segments;

760: char cmd[803;

770:

780: initialize();

790: output ("EDITLIST;");

800: for (i=0; i < 20; izi+i);

810: cutput ("SDEL;");

820: printf ("Number of segments? ");

830: scanf ("%f",&segments);

840: _clearscreen (_GCLEARSCREEN);

850: _settextposition (1,0);

860: printf ("SEGMENT");

870: .settextposition (1,20);

880: printf (“START");

890: .sSettextposition (1,40);

900: printf ("STOP");

910: _settextposition (1,60);

920: printf ("NUMBER OF POINTS\n");

930: for (i=1l; i<=segments; i=i+1)

940: getsegment (i);

950: edit_num=edit();

960: while (edit_num = 0)

970: {

980: getsegment (edit_num);

990: edit num=edit ();

1000: s

1010: output ("EDITLIST;");

1020: for (i=1; i<=segments; i=i+1)

1030: {

1040: sprintf (cmd,"SADD;STARYJdGHZ;STOPYdGHZ ;POINYd;SDON;",
startfi],stop[i],points[il);

1050: output (cmd);

1060: }

1670: output ("EDITDORE;LISFRER;");

1080: }

Figure 3-1. Sample Program: Setting Up a List Frequency Sweep

Advanced Programming Examples 3-3

Program explanation

Line 5 Tell the compiler which file includes information on the standard I/0
routines.

Line 10 Tell the compiler which file includes information on the HP 823354
HP-IB command library I/O functions.

Line 20 Tell the compiler which file includes information on the HP-1B
command library error constants.

Line 30 Tell the compiler which file includes information on screen
commands.

Line 58 Define a variable to contain the HP-IB interface select code, 7.

Line 60 Define a variable to contain the instrument address, 716.

Line 80 Define some global variables. These contain the start, stop, and
number of points for each of the segments.

Line 100 Function prototype for the error_handler (} routine.

Line 110 Function prototype for the output () routine.

Line 120 Function prototype for the initialize () routine.

Line 130 Function prototype for the getsegment () routine.

Line 140 Function prototype for the edit () routine.

Line 160 Define a routine that handles errors returped from the HP-IB
command library I/0 functions

Line 180 Check to see if there is an error.

Line 200 An error has occurred, so display a2 message and halt.

Line 230 No error has occurred, so return.

Line 260 Define a routine that outputs string commands and performs error
trapping.

Line 280 Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Line 310 Define a routine to injtialize the instrument.

Line 330 Define a timeout value of 45 seconds.

Line 340 Abort any HP-IB transfers.

Line 350 Clear the instrument’s HP-IB interface.

Line 360 Preset the instrument.

Line 390 Define a routine to input each of the segments.

Line 410 Define a window to inciude the bottom half of the screen.

Line 420 Delete the above window.

Line 430 Return the window back to full screen.

Line 440 Position the text.

3-4 Advanced Programming Examples

Line 470
Line 480
Line 500
Line 510

Line 320
Line 530
Line 540
Line 550
Line 560
Line 570
Line 580
Line 590
Line 620

Line 660
Line 680
Line 690
Line 720
Line 740
Line 780
Line 790
Line 800
Line 830
Line 840
Line 850
Line 860
Line 880
Line 900
Line 920
Line 930
Line 940
Line 950
Line 960

Line 980

Input the start frequency.
Input the stop frequency.
Input the number of points.

If the number of points is equal to one, then the stop frequency
should equal the start frequency.

Position the inputted text in a column format.
Display the segment number.

Position the pext column.

Display the start frequency.

Position the next column.

Display the stop frequency.

Position the next column.

Display the number of points.

Define a routine to determine which segment to edit and return that
segment value.

Position the text to be displayed.

Input the segment number to edit.
Return the segment number.

Main declaration

Define the needed variables.

Call the initialize () routine.

Edit the segment list in the instrument.
Loop to delete the segment list.

Input the number of segments to enter.
Clear the screen.

Position the text for the header.
Display the SEGMENT header.
Display the START header.

Display the STOP header.

Display the NUMBER OF POINTS header.
Loop to input the segments.

Input each segment. '
Determine which segment to edit.

If the segment does not equal zero then continue, otherwise go to line
1010.

Re-input the segment to be edited.

Advanced Programming Examples 3-5

Line 990 Determine which segment to edit.

Line 1010 Edit the segment list in the instrument.

Line 1020 Loop to output the segment list to the instrument.

Line 1040 Create an appropriate string that adds a segment with the correct
start and stop frequencies, and number of points.

Line 1050 Output this siring.

Line 1070 Declare the editing done, and activate the frequency list sweep mode.

Running the program

The program displays the frequency list table as it is entered. During editing, the displayed
table is updated as each line is edited. The table is not re-ordered. At the completion of
editing, the table is entered into the instrument, and the list frequency mode turned ox.

Any segments already ir the frequency list table will be deleted by the program. Thus, new
segments will be entered on top of the old ones.

Using limit lines

There are two steps to performing limit testing under HP-IB control. First, limits must

be specified and loaded into the analyzer. Second, the limits are activated, the device is
measured, and its performance to the specified limits is signaled by a pass or fail message on
the display.

Example 5A: Setting up limit lines

This example shows how to create a limit table and transmit it. The command sequence for
entering a limit table imitates the key sequence followed when entering a table from the front
panel: there is a command for every key press. Editing a limit is also the same as the key
sequence, but remember that the instrument automatically re-orders the table in order of
increasing start frequency.

The limit table is also carried as part of the learn string. While it cannot be modified as part
of the learn string, it can be stored and recalled with very little effort.

This example takes advantage of the computer’s capabilities to simplify creating and editing
the table. The table is entered and completely edited before being transmitted. To simplify
the programming task, options such as entering offsets are not included.

/% HP 8719C, 8720C, 87224/C QuickC IPG Program 54 %/

1

2:

s: #include <stdio.h>
10: #include <cfunc.h>
20: #include <chpib.h>
30: #include <graph.h>

3-6 Advanced Programming Examples

40 :

50: #define isc TL

60: #define imstr 716L

TO: #define fl ’FL?

80: #define sl I

80: #define sp et

100:

110: int 1_type[30],lower[30],stimulus[30],upper[30];
120:

130:

140: void error_handle {int, char %);
180: void output (char *);

160: void initialize (void);

170: void getlimit (int);

180: Int edit(veid);

180:

200:

210: void error_handle (int error, char #routine)

220: {

230: if {error !=NOERR)

240: {

250: printf ("HP-IB error in call to ¥s: ¥%d, %s\n“,
routine, error, errstrierror));

260; exit(1);

270: }

280: return;

280: }

300;

310: void output (char *sendstr)

320: {

330: error_handle (IOOUTPUTS (instr,sendstr,strlen(sendstr)), “IO0OUTPUTS");

340: }

350:

360: void initialize ()

370: {

380: error_handle (IOTIMEOUT (isc,45.0), "IOTIMEQUT"):

390: error handie (I0DABORT (isc), "IOABORTY);

&00: error_handle (IDCLEAR (isc), "IOCLEAR"):

410: output ("PRES;");

420: }

430 :

440: void getlimit (int number)

450: {

460: -settextwindow (19,0,25,80);

470: _clearscreen {_GWINDOW);

480: -settextwindow (0,0,25,80);

490: -Settextposition (18,0);

500: printf ("Stimulus Value (GHz)? "),
£10: scanf ("%d",&stimilus[number]);

520;: printf ("Upper Limit Value (dB)? ");
530 scanf ("%d",&upper [number]) ;

Advanced Programming Examples 3-7

540: printf ("Lower Limit Value (dB}? “};

§50: scanf ("%d",&lower [number]);

560: printf ("Limit Type (1=Flat, 2=Sloped, 3=Point)? ");
570: scanf ("%4",&l_type[number]);

580: _settextposition (number+1,0);
590: printf ("%d",pumber);

600: _settextposition (number+1,15};
610: printf ("%d",stimulus[number]);
620: _settextposition (number+1,30);
630: printf ("%d",upper[number]l);
640: _settextposition (number+1,45);
650: printf ("%4",lower [number]);
660: _settextposition (number+1,60);
670: switch (1_type[number])

680: {

690: case 1: printf ("FL");

700: break;

710: case 2: printf ("SL");

720: break;

730: case 3: printf ("SP");

T40: break;

750 }

760: }

770

780: int edit()

790: {

800: int edit_t;

810:

820: _settextposition (24,0);

830: printf ("Edit which limit (O=exit)? ");
840: scanf ("Yd%,&edit_t);

850: return {edit_t);
860: }

870:

880: main ()

g890: {

800: int edit_num,i;
910: float limits;
920 char c<md[80];
930:

940: initialize();
950: output ("EDITLIML;");

960: for (i=0; i < 30; i=i+1)
970: {

880: output {"SDEL;");

990 : T)

1000: printf ("Number of limits? “);
1010: scanf {("4fY,&limits);

1020: _clearscreen {_GCLEARSCREEN);
1030: _settextposition (1,0);

1040: printf ("LIMIT");

3-8 Advanced Programming Examples

1050: _settextposition (1,15);
1060: printf (“STIMULUS");

1070: _settextposition (1,30);
1080: primtf {"UPPER");
1090: _settextposition (1,45);
1100: printf ("LOWER");
1110: _settextposition (1,60);

1120: printf ("TYPE\n");

1130: for (i=1; i<=limits; i=i+1)
1140: getlimit (i);

1150: edit_rnum=edit();

1160: ° while (edit_num i= 0)

1170: I

1180: getlimit (edit_num);
1190 edit_num=edit ();
1200: 3

1210: output ("EDITLIML;");
1220: for {(i=1; i<=limits; i=i+1)

1230: {

1240: sprintf (cmd,"SADD;LIMSYdGHZ;LIMU%4DB;LIMLYdDB;",
stimulus[i],upper[i],lowerfi]);

1250: output (cmd);

1260: switch (Q_typelil)

1270: £

1280: case 1: output ("LIMTFL;SDON;");

1280: break;

1300: case 2: output ("LIMTSL;SDON;");

1310: break; -

1320: case 3: output ("LIMTSP;SDON;");

1330: break;

1340: }

1350 ¥

1360: output (“EDITDONE;LIMILINEON;LIMITESTON;");

1370: }

Figure 3-2. Sample Program: Setting Up Limit Lines

Program explanation

Line 5 Tell the compiler which file includes information on the standard I/0
routines.

Line 10 Tell the compiler which file includes information on the HP 82335A
HP-IB command library 1I/0 functions.

Line 20 Tell the complier which file includes information on the HP-IB
command library error constants.

Line 30 Tell the compiler which file includes information on screen
commands.

Line 50 Define a variable to contain the HP-IB interface select code, 7.

Advanced Programming Exampies 3.9

Line 60
Line 70

Line 80

Line 90

Line 110

Line 140
Line 150
Line 160
Line 170
Line 180
Line 210

Line 230
Line 250
Line 280
Line 310

Line 330

Line 360
Line 380
Line 396
Line 400
Line 410
Line 440
Line 460
Line 470
Line 480
Line 480
Line 510
Line 530
Line 550
Line 570

Define a variable to contain the instrument address, 716.

Define a variable to contain the string "F1° for flat line. This string is
sent to the instrument when z flat line is desired.

Define a variable to contain the string *SL’ for sioped line. This
string is sent to the instrument when 2 sloped line is desired.

Define a variable to contain the string 'SP’ for single point. This

‘string is sent to the instrument when a single point is desired.

Define some global variables. These contain the stimulus, upper and
lower limits, and the line type of the limit line.

Function prototype for the error_handier () routine.
Function prototype for the cutput () routine.
Function prototype for the initialize () routine.
Function prototype for the getlimit () routine.
Function prototype for the edit () routine.

Define a routine that handles errors returned from the HP-IB
command library I/0 functions

Check to see if there is an error.
Axn error has occurred, so display a message and halt.
No error has occurred, so return.

Define a routine that outputs string commands and performs error
trapping.

Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Define a routine to initialize the instrument.
Define a timeout value of 45 seconds.

Abort any HP-IB transfers.

Clear the instrument’s HP-IB interface.

Preset the instrument.

Define a routine to input each of the limit lines.
Define a window to include the bottom half of the screen.
Delete the above window.

Return the window back to full screen.

Position the text.

Input the stimulus.

Input the upper limit.

Input the lower limit.

Input the line type.

3-10 Advanced Programming Examples

Line 580
Line 590
Line 600
Line 610
Line 620
Line 630
Line 640
Line 650
Line 660
Line 670

Line 780

Line 820
Line 840
Line 850
Line 880
Line 900
Line 940
Line 950
Line 960
Line 1010
Line 1020
Line 1030
Line 1050
Line 1060
Line 1080
Line 1100
Line 1120
Line 1130
Line 1140
Line 1150
Line 1160

Line 1180
Line 1190

Position the inputted text in a column format.

Display the limit line number.
Position the next column.
Display the stimulus.

Position the next column.

- Display the upper limit.

Position the next columan.
Display the lower limit.

Position the next colamn.

Display the appropriate limit line type corresponding to each of the

three values.

Define a routine to determine which limit line to edit and return that

segment value.

Position the text to be displayed.

Input the limit line number to edit.
Return the limit line number.

Main declaration

Define the needed variables.

Call the initialize () routine.

Edit the limit line list in the instrument.
Loop to delete the limit line list.

Input the number of limit lines to enter.
Clear the screen.

Position the text for the header.
Display the LIMIT number header.
Display the STIMULUS header.
Display the UPPER limit header.
Display the LOWER limit header.
Display the limit line TYPE header.
Loop to input the limit lines.

Input each limit line.

Determine which limit line to edit.

I the limit line number does not equal zero then continue, otherwise

go to line 1220.
Re-input the limit line to be edited,
Determine which lmit line to edit.

Advanced Programming Examples 3-11

Line 1210 Edit the limit line list in the instrument.

Line 1220 Loop to output the limit line list to the instrument.

Line 1246 Create an appropriate string that adds a limit line with the correct
stimulus, and upper and lower limits.

Line 1250 Output this string.

Line 1260 Determine which string to output to the instrument corresponding to

the type of Iimit line (flat, sloped, or single point).
Line 1360 Declare the editing done, and activate the limit lines and test.

Running the program

The program displays the limit table as it is entered. During editing, the displayed table is
updated as each line is edited. The table is not reordered. At the completion of editing, the
table is entered, and limit testing mode is turned on. This example program will delete any
existing limit lines before entering the new limits.

Example 5B: PASS/FAIL tests

This example demonstrates the use of the limit/search fail bits in event status register B to
determine whether a device passes the specified limits. Limits can be entered manually, or by
Example 5A.

The limit/search fail bits are set and latched when limit testing or marker search fails. There
are four bits, one for each channel for both limit testing and marker search. Their purpose is
to allow the computer to determine whether the test/search just executed was successful. To
use them, clear event status register B, trigger the limit test or marker search, and then check
the appropriate fail bit.

In the case of limit testing, the best way to trigger the limit test is to trigger a single

sweep. By the time the SING command finishes, limit testing will have occurred. A second
consideration when dealing with limit testing is that if the device is tuned during the sweep, it
may be tuned into and then out of limit, causing a Limit test pass when the device is not in
fact within limits.

In the case of marker searches (max, min, target, and widths), outputting marker or
bandwidth values antomatically triggers any related searches. Hence, all that is needed is to
check the fail bit after reading the data.

Several sweeps in a row should be performed before determining whether or not a device has
passed. This gives confidence that the device has passed not due io settling or tuning. Upon
running the program, the number of sweeps for qualification has to be entered. For slow
sweeps, a small pumber such as two is appropriate. For very fast sweeps, where the device
needs time to settle after tuning and the operator needs time to get away from the device, as
many sweeps as six or more might be appropriate.

1: /% BEP 8719C, 8720C, 8722A/C QuickC IPG Program 5B */

3-12 Advanced Programming Exampies

10:
20:
30:
40:
50:
80:
70:
80:
90:

100:
110:
. 120:
130:
140:
1506:
160:
170:

180:
180:
200:
210:
220:
230:
240:
250:
260:
270:
280:
2980!
300:
310:
320:
330:
340
350;
360;
370:
380;
380:
400:
410:
420:
430:
440
450
460;
470:
480:
490:

#include <stdic.h>
#include <cfunc.h>
#include <chpib.h>

#define isc TL
#define instr T7i6L

void error_handle (int, char *);
void output (char %) ;

void opc (void);

void initialize (wvoid);

veid disp_prompt (char *);

void error_handle {(int error, char *routine)

{
if {error !=NOERR)
{
printf ("HP-IB error in call to Y%s: %d, Y%s\n",
routine, error, errstr{error));
exit(1);
¥
return;
}
void output {(char *sendstr)
{
error_handle (I0OUTPUTS(instr,sendstr,strlen(sendstr)), "IOOUTPUTS");
¥
void opc ()
{
int one=1;
char reply;
error_handle (IOENTERS (instr,&reply,&one), "IOENTERS");
¥
void initialize ()
{ .
error_handle (IOTIMEOUT (isc,15.0), "ICTIMEOUT");
error_handle (I0ABORT (isc), “IDABORT");
error_handie (IOCLEAR (isc), “IOCLEAR"):
output ("CLES;");
}

void disp_prompt (char *prompt)

{
char ch;

printf ("%s, then press [RETURN]\n",prompt);
ch=getche();

Advanced Programming Examples 3-13

500: }

510:

520: main)

830: {

540: float e.stat;

E50: int fail_flag,i,stat,qual_tests;

560:

570: initialize ();

580: printf ("Number of test for qualification? ");
590: scant ("%d4",&qual_tests);

600: fail flag=0;

610: printf ("Test #: ");

620: for (i=1; i<=qual_tests; i=i+1)

630: {

640: output ("OPC7;SING;");

650: opc ()3

660: printf ("4d...".,3i);

670: output ("ESB7;");

680: error_handle (IDENTER (instr,&e_stat), "IDENTER"};
690: stat=e_stat;

700: if (stat & 16) fail_flag=i;

710: T

720: if (fail_flag == 1) printf ("\nDEVICE FAILED!\n");
730: else printf ("\nDEVICE PASSED!\n");

740: % :

Figure 3-3. Sample Program: PASS/FAIL tests

Program explanation

Line & Tell the compiler which file includes information on the standard I/0
routines.

Line 10 Tell the compiler which file includes information on the HP 82335A
HP-IB command library I/O functions.

Line 20 Tell the compiler which file includes information on the HP-IB
command library error constants.

Line 40 Define a variable to contain the HP-IB interface select code, 7.

Line 50 Define a variable to contain the instrument address, 716.

Line 70 Function prototype for the error_handler () routine.

Line 80 Function prototype for the output () routine.

Line 90 Function prototype for the opc () routine.

Line 100 Function prototype for the initialize () routine.

Line 110 Function prototype for the disp_prompt () routine.

Line 130 Define a routine that handles errors returned from the HP-IB

command library I/0 functions

3-14 Advanced Programming Examples

Line 150 Check to see if there is an error.

Line 170 An error has occurred, so display a message and halt.

Line 200 No error has occurred, so return.

Line 230 Define a routine that outputs string commands and performs error
trapping.

Line 250 Send a string to the instrument located at the value of instr, 716.

Perform error checking.

Line 280 Define a routine that when called will only return when it receives a
response from the instrument. This routine is called after an 02C7
command has beexn issued.

Line 310 Define a variable to hold the response.

Line 330 Input the response into the variable reply and do nothing with it.

Line 360 Define a routine to initialize the instrument.

Line 380 Define a timeout value of 15 seconds.

Line 390 Abort any HP-IB transfers.

Line 400 Clear the instrument’s HP-IB interface.

Line 410 Clear the instrument’s status.

Line 440 Define a routine to display a prompt and wait for to be
pressed.

Line 480 Display the message prompt.

Line 480 Wait for a key to be pressed.

Line 520 Main declaration

Line 540 Declare the necessary variables.

Line 570 Call the initialize () routine.

Line 590 Determine the number of tests needed for qualification.

Line 600 Set the fail_flag to zero. The fail_ flag determines if the device
has failed. A one represents a failure.

Line 610 Display the current test number text.

Line 620 Loop to test the device.

Line 640 Perform a single trace.

Line 650 Wait for the OPC? command to issue a response.

Line 660 Display the current test number.

Line 670 Request event status register B byte.

Line 680 Input the event status register B byte.

Line 690 Convert the floating point integer to an integer.

Line 700 If bit 4 is set, then the device has failed, so set the fail_flag.

Advanced Programming Examples 3-15

Line 720 If the fail_flag is set, then the device has failed, otherwise, it has

passed.

Running the program

Set up a limit table on channel one for a specific device either manually, or using the program
in Example 5A. The recommended device is the bandpass filter supplied with the instrument
(HP part number 0955-0446). Run the program, and enter the number of sweeps desired for
pass qualification. After entering the number of sweeps, connect the filter. When enough
sweeps in a Tow pass, the computer displays DEVICE PASSED. For the bandpass filter, the

suggested limits are as follows.

Table 3-1. Suggested Limits

Seg Stimuius Upper Lower Type
(GHZ) (dB) (dB)
1 8.0 -70 -200 FL
2 9.0 -70 -200 514
3 9.4 -80 200 SL
4 0.0 -3 -200 SP
5 10.2 0 -3 FL
] 10.3 0 -3 SP
7 10.5 -3 -200 SL
8 11.1 -60 -200 1
9 115 =70 -200 FL
10 12.5 -T0 -200 1

These are only suggestions. Your filter may vary slightly, and the limits may need to be
modified to allow the filter to pass. The program assumes a response calibration (thru
calibration) or full 2-port calibration has been performed prior to running the program. Try
causing the filter to fail by loosening the cables connecting the filter and then re-tightening

them.

3-16 Advanced Programming Examples

Storing and recalling instrument states

The following examples demonstrate ways of storing and recalling instrument states over
HP-IB. Example 6A coordinates disk storage, while Example 6B shows an example of how to
read calibration data. Example 6A can be easily applied to the coordination of printer and
plotters.

There are three operating modes with respect to HP-IB, as set under the menu:
system controller mode, taiker/listener mode, and pass control mode. System controller mode
is used when no computer is present. The other two modes allow the computer to coordinate
certain actions: in talker/listener mode the computer can control the network analyzer, as well
as coordinate plotting and printing, and in pass control mode the computer can pass active
control to the network analyzer so that it can plot, print, or load/store to disk. Peripheral
control is the major difference between the two modes.

If the network analyzer is in pass control mode and receives a command telling it to plot,
print, or store/ioad to disk, it sets bit one in the event status register to indicate that it needs
control of the bus. If the computer then uses the HP-IB library control command, JOPASSCTL
to pass control, the network analyzer will return control back to the computer when its
operation is complete.

Control should not be passed to the network analyzer before it has set event status register bit
one, (Request Active Control.) If the network analyzer receives control before the bit is set,
control is immediately passed back.

‘While the network analyzer has control , it is free to address devices to talk and listen, as
needed. The only functions denied it are the ability to assert the interface clear line (IFC),
and the remote line (REN). These are reserved for the system controller. As active controller,
the network analyzer can send messages to and back from printers, plotters, and disk drives.

Example 6A: Coordinating disk storage

Refering to Figure 3-4, a personal computer can transfer data to the instrument using any five
array transfer formats. The instrument then can transfer this data to an external drive using
CS5-80 commands to store the data in LIF format. A LIF formatted disk can be converted to a
DOS formatted disk through addition software.

Advanced Programming Examples 3-17

Array Transfer Using:
Form 1 {nternal binary)
Form 2 (32-bit floating point}
Form 3 {64-bit floating point
Form 4 (ASCID Saving/Recaliing Using:
Form 5 (PC~compatible 32-bit floating point} CS-80 Commands to format in LIF

7 - ¥
% | < mE > EEE

External Disk
Metwork Analyzer leg G122C/Y

Personal Computer

DOS Format LiF Format

LIF to PC-DOS
Format
Software

Figure 3-4. Data transfer paths

To have the instrument store an instrument state on disk, specify the state name by titling
a file using TITFn, then specify a STORn of that file, where n is the file pumber, 1 to 5. Oz
receipt of the store command, the instrument will request active control. When control is
i i ill store the instrument state on disk as defined under the (SAVE),

To have the network analyzer load a file from disk, title the file with TITFn, and then request
a LOADn of that file. The i i itles on the disk are, is to

use the sequence (RECALL), |
Note that the instrument assumes that the address of the disk drive is correctly stored in its

HP-IB addresses menu under the ntry. The default address for an external
disk drive is 0.

The instrument command USEPASC puts the instrument in pass control. This is neccessary

if the instrument is to receive control. When the computer has passed control and the
instrument i dv to pass back control, the instrument will pass control to the address under
{LocaL), This address should be the default 30
address. If this is not

3-18 Advanced Programming Examples

Note The default address can be changed with the library command I0CONTROL
(716L,7,bus_address), where bus_address is the address of the controller.

The librarv command I0STATUS (716L,7,bus_address) will determine the
current bus address.

The address of the controller must be properly set so that controller return is
possible.

/* HP 8713C, 8T20C, 8722A/C QuickC IPG Program 64 */

i
2:
5: #include <stdio.h>
10: #include <cfunc.h>
20: #include <chpib.h>

40: #define isc TL
50: #define instr T16L
60: #define quote ™’

80: void error_handle (int, char #);
90: void output (char *);

100: void opc (void);

110: void initialize (void);

120:

130: void error_handle (int error, char *routine)

140: {

150: if (error !=HOERR)

160: {

170: printf ("HP-IB error in call to Y%s: %d, ¥%s\zn",
routine, error, errstr{error));

180: exit(1);

180: ¥

200: return;

210: }

220

230: void output (char *sendstr)

240: {

250: error_handle (IBOUTPUTS (instr,sendstr,strlen(sendstr)), "IO0UTPUTS!);

260: }

270:

280: void opc ()

280: {

300: int one=1;

310: char reply;

320:

330: error_handle (IDENTERS (instr,&reply,&one), "IOENTERS");

340: :

350:

380: void initialize ()

370: {

Advanced Programming Examples 3-19

380: errer_handle (IOTIMEOUT (isc,45.0), "IOTIMEQUT");

380: error_handle (IOABORT (isc), “IOABORT");
400: error_handle (I0CLEAR (isc), “IOCLEAR");
410: output ("CLES;"};

420: ¥

430:

440: main ()

450: {

460 int hpib,stat;

470: char ch,cmd[80] ,name{87;

480:

430: initialize ();

500: output ("ADDRCONT30;USEPASC:");

510: printf("File name to SAVE (up to 8 char.)? ");

520: scanf ("{s" ,&name) ;

530: sprintf (cmd,"CL3;ESE 2;0PC?;TITF1)cls¥%c;STORL; ", quote ,name,quote) ;
540; ocutput (cmd);

550: printf ("\nSaving on Disk...");

560: do

870: error_handle (I0SPOLL (instr,&stat), "I0OSPOLLY);
580: while (!t (stat & 32));

590: error_handle (IOPASSCTL (instr), "IOPASSCTL®);

600: do

610: error_handle (JOSTATUS (isc,4,&hpid), "IOSTATUS");

620: while (hpib i= 1);

630: printf ("Done.\n\n");

640: printf ("HIT [RETURN] to recall instrument state.\n");

650: ch=getch();

660: printf ("Loading...");

670: sprintf (cmd,"CLS;ESE 2;0PC?;TITF1)c¥s¥c;L0AD1;", quote,name,quote);

680; output (cmd);

690: do

700: error_handle (IOSPOLL {instr,&stat), "I0OSPOLL");
710: while (!(stat & 32));

720: error_handle {(I0PASSCTL {(instr), "IOPASSCTL"};

730: do

740: error handie (IUSTATUS (isc,4,&hpib), "IOSTATUS");

T50: while (hpib != 1);
760: printf ("Dome.\n");
770: }

Figure 3-5. Sample Program: Coordinating Disk Storage

3-20 Advanced Programming Examples

Program explanation
Line 5

Line 10
Line 20

Line 40
Line 50
Line 80
Line 90
Line 100
Line 110
Line 130

Line 150
Line 170
Line 200
Line 230

Line 250

Line 280

Line 310
Line 330
Line 360
Line 380
Line 390
Line 400
Line 410
Line 440
Line 460
Line 490
Line 500
Line 520

Tell the compiler which file includes information on the standard I/0
routines.

Tell the compiler which file includes information on the HP 82335A
HP-IB command library I/0O functions.

Tell the compiler which file includes information on the HP-IB
command library error constants.

Define a variable to contain the HP-IB interface select code, 7.
Define a variable to contain the instrument address, 716.
Function prototype for the error_handler () routine.
Function prototype for the output () routine.

Function prototype for the opc () routine.

Function prototype for the initialize () routine.

Define a routine that handles errors returned from the HP-IB
command library I/0 functions

Check to see if there is an error.
An error has occurred, so display a message and halt.
No error has occurred, so return.

Define a routine that outputs string commands and performs error
trapping.

Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Define a routine that when called will only return when it receives 2
response from the instrument. This routine is called after an 0PC?
command has been issued.

Define a variable to hold the response.
Input the response into the variable reply and do nothing with it.
Define a routine to initialize the instrument.
Define a timeout value of 45 seconds.

Abort any HP-IB transfers.

Clear the instrument’s HP-IB interface.
Clear the instrument’s status.

Main declaration

Define the needed variables.

Call the initialize () routine.

Set the instrument state as pass control.

Input the file name to be saved.

Advanced Programming Examples 3-21

Line 530 Prepare a string to clear the instrument’s status, specify bit two of
the event status register to be summarized by bit five of the status
byte, specify a disk file, and save.

Line 540 Qutput this string.

Line 560 Loop until bit five of the status byte is set, thus indicating that the
instrument is ready to take control.

Line 570 ‘Read the status byte.

Line 590 Pass control to the instrument.

Line 600 Loop until the interface is active controlier.

Line 610 Read the current interface status.

Line 640 Display a message that the program is ready to recall the saved
instrument state.

Line 650 Wait for a key to be pressed.

Line 670 Prepare a string to clear the instrument’s state, specify bit two of

the event status register to be summarized by bit five of the status
register, specify a disk file, and load.

Line 680 Qutput this string.

Line 690 Loop until bit five of the status byte is set, thus indicating that the
instrument is ready to take control.

Line 700 Read the status byte.

Line 720 Pass control to the instrument.

Line 730 Loop until the interface is active controller.

Line 740 Read the current interface status.

Running the program

Put 2 formatted disk in the disk drive, and set the disk address, unit number, and volume
number for that drive. Run the example and enter a valid file name. The program will save
the current instrument state, wait for to be pressed, and load the previously saved
state. When the program pauses, change the instrument state so that a change will be
noticeable.

3.22 Advanced Programming Examples

Example 6B: Reading calibration data
This example demonstrates how to read and write measurement calibration data.

The data used to perform measurement error correction is stored in up to twelve calibration
coefficient arrays. Fach array is a specific error coefficient and always contains a real and
imaginary part corresponding to the each point in the sweep. The five data formats also apply
to the transfer of calibration coefficient azrays.

A computer can read out the error coefficients using the command OUTPCALC{n}, where n can
range from 1 to 12. Each calibration type uses only as many arrays as needed, starting with
array one. Therefore, it is necessary to know the type of calibration that was used to produce
the coefficients (ie. 1-port vs. 2-port). Attempting to read an array not being used in the
current calibration causes the "REQUESTED DATA NOT CURRENTLY AVATLABLE" warning. Refer
to the HP-IB Programming Reference (HP part number 08720-90160) for the definitions of
calibration types, standard classes, and calibration coefficients.

A computer can also store calibration coeflicients in the instrument. To do this, declare
the type of calibration data about to be stored just as if you were about to perform that
calibration. Then instead of calling up different classes, transfer the calibration coefficients
using the INPUCALC{n} (n ranges from 1 to 12) command. When all the coefficients are in,
activate the calibration by issuing the mnemonic SAVC, and take a sweep.

This example reads the response calibration coefficients from a response calibration, using
Form 1, into an array, from which they can be examined, modified, stored, or put back into
the instrument. In Form 1, each data point is sent out as it is stored inside the network
analyzer, in a six byte binary string. Hence, it is a very fast transfer, using only 1,206 bytes to
transfer 201 points, but it is difficult to interpret by the computer since it is not a standard
data format. (Real/imaginary data uses the first two bytes for the imaginary fraction
mantissa, the middie two bytes for the real fraction mantissa, the fifth byte for additional
resolution when transferring raw data, and the last byte as the common power of two).

/* HP 8719C, 8720C, 87224/C QuickC IPG Program 6B */

#include <stdioc.h>
10: #include <cfunc.h>
20: #include <chpib.h>

30:
40: #define isc TL
50: #define instr Ti6L
80:

70: wvoid error_handie {int, char *):
80: void output (char *);

90: void initialize (veoid):

100: void opc (veid);

110:

120: void opc (O

130: {

140: int one=1;

150: char reply;

180:

170: error_handle (IOENTERS (instr,&reply,%one), “IOENTERS®);

Advanced Programming Examples 3-23

180:

180:
200:
210:
220:
230:
240:
250:

260:
270:
280:
280:
300:
310:
320:
330:
340:
350:
360:
370:
380:
320:
400:
410:
420
430:
440;
450:
460:
470:
480:
490:
500:
510:
520:
530:
540:
550:
560:
570:
580:
580:
600:
610:
620:
630:

640:
650:
660:
670C:

}

void error _handle (int error, char *routine)

{
if (error i=NDERR)
{
printf ("HP-IB error in call to %s: %d, %s\n",
routine, error, errstr(error));
exit(i);
}
return;
}
void output {char *sendstr)
{
error_handle (I00UTPUTS (instr,sendstr,strlen(sendstr)), "IOOUTPUTLS"):
}
void initialize ()
{
error_handle (IOTIMEQUT (isc,15.0), "IOTIMEOUT"):
error_handle (IDABORT {(isc), "IOABORT");
error_handle (IOCLEAR (isc), "IOCLEAR™);
output ("CLES;");
¥
main ()
{

int bytes,i,length;
char ascii_dat[1300],carline=’\n’,ch,cmd[80] ,header[2],response;

initialize();
cutput ("CORRON;0PC?;SING;");
ope (J;
output ("CALIRESP?;");
length=1; .
error_handle (IOENTERS (instr,&response,&length), "IDENTERS");
if (response == ’0?)
{
printf ("Calibration Response data not available.\n");
exit (1);
¥
output ("FORMI;OUTPCALCO1;%);
length=2;
error_handle (IOMATCH (isc,’\n’,0), "IOMATCH");
error_handle (IOENTERS (instr,header,&length), "IOENTERSY);
error_handle (IOENTERB (instr,&bytes,&length,2), "IOENTERBY);
printf ("Header: %s\nNumber of bytes: %d\n\n",header,bytes);
length=bytes;
error_handle (IDERTERB (instr,ascii_dat,&length,1), "IOENTERB");

3-24 Advanced Programming Examples

680:
680:
700:
T1i0:
T20:
730:
T40:
750:
760:
770:
780:
790:
800:
810:
820:
830:
840: ¥

printf ("\nData is now loaded using Form i.\n\n");

printf ("\nPress [RETURN] to re-transmit calibratiom\zn");
ch=getch();

initialize ()

output ("CALIRESP;FORMi;");

error_handle {(IDEQL (isc,&carline,0), "IOEQOL");

error_handle (IOE0I (isc,0), "IDEQI");

output ("INPUCALCO1");

length=2;

error_handle (IOOUTPUTS (instr,header,length), "IOOUTPUTS');
error_handle (IDOUTPUTB (instr,&bytes,length,2), “IOGUTPUIB®);
length=bytes;

error_handle (IOOUTPUTB (instr,ascii_dat,length,1), "IOOUTPUTB");
error_handle (TIOEQL (isc,&carline,1), "IDEOL");

error_handle (IUEQY (isc,1), "IOEDIV);

output ("SAVC;CONT;");

Figure 3-6. Sample Program: Reading Calibration Data

Program explanation

Line 5

Line 10

Line 20

Line 40
Line 50
Line 70
Lipe 80
Line 80
Line 100
Line 120

Line 150
Line 170
Line 210

Line 230
Line 250

Tell the compiler whick file includes information on the standard I/0O
routines.

Tell the compiler which file includes information on the HP 823354
HP-IB command library I/0 functions.

Tell the compiler which file includes information on the HP-IB
command library error constants.

Define a variable to contain the HP-IB interface select code, 7
Define a variable to contain the instrument address, 716.
Function prototype for the error_handler () routine.
Function prototype for the output () routine.

Function prototype for the initialize () routine.

Function prototype for the opc () routine.

Define a routine that when called will only return when it receives a
response from the instrament. This routine is called after an OPC?
command has been issued.

Define a variable to hold the response.
Input the response into the variable reply and do nothing with it.

Define a routine that handles errors returned from the HP-IB
command library I/0 functions

Check to see if there is an error.

An error has occurred, so display a message and halt.

Advanced Programming Examples 3-25

Line 280
Line 310

Line 330

Line 360
Line 380
Line 390
Line 400
Line 410
Line 440
Line 450
Line 490
Line 500
Line 510
Line 520
Line 530

Line 540
Line 550

Line 580
Line 600

Line 610

Line 620

Line 630
Line 640
Line 650
Line 670
Line 680
Line 700
Line 710

Line 720

No error has occurred, so return.

Define a routine that outputs string commands and performs error
irapping.

Send a string to the instrument located at the value of instz, 716.
Perform error checking.

Define a routine to initialize the instrument.
Define a timeout value of 15 seconds.

Abort any HP-IB transfers.

Clear the instrument’s HP-IB interface.

Clear the instrument’s status.

Main declaration

Define the needed variables.

Call the initialize () routine.

Switch debug on, correction on, and perform a single trace.
Wait for the 0PC? command to issue a response.
Request if calibration response is active.

Define a variable, length, that contains the length of the inputted
data. In this case, only one byte.

Input the response.

¥ the response is zero, then calibration response is not active and
therefore its data is not available.

Exit.

Request calibration coefficients of array one, using form 1 (binary
internal format).

Set the length of the header and number of bytes of the block to
follow to two.

Disable character matching. This command defines the character

~ used by IOENTERB and IDENTERS for termination. The “If” enter

terminator should be turned off because “If” is a valid binary value.
Input the header.

Input the number of bytes in the block to follow.

Display the header and the number of bytes in the block.

Read in the calibration coefficient data.

Display a confirmation that data has been loaded.

Wait for a (RETURN).

Initialize the instrument to remote, in case the user has changed the
instrument calibration.

Open the calibration response menu. Prepare for a Form 1 transfer.

3-26 Advanced Programming Examples

Line 730 Disable End of Line (EQL) character. This command defines the
character used by I00UTPUT, T00UTPUTA, I00UTPUTB, and I0QUTPUTS
for termination. The “If” enter terminator should be turned off
because “If” is a valid binary value.

Line 740 Disable End Or Identify {EOI).

Line 750 Request the analyzer to input calibration data.

Line 770 Output the header.

Line 780 Output the number of bytes in the block to follow.

Line 800 Output the calibration coefficients.

Line 810 Enable End of Line (EQL) character as the “If” enter terminator.
Line 820 Enable End Or Identify (EOI).

Line 830 Create a calibration set based on the current error coefficient arrays

loaded. Turn on the continuous sweep trigger mode.

Running the program

Before executing the program, perform a response calibration. Run the program, and when it
pauses, perform a different calibration. When the program resumes, the old calibration d?,ta
will be loaded in and activated.

The program will determine if response calibration data is active. I it is not, it will halt and
display an appropriate message.

Advanced Programming Exampies 3-27

Miscellaneous/Reference Programming Examples

Example 7: Key Trapping

It is possible to sense operator action with the front panel keys. The user request bit, bit 6,
in the event status register is set whenever a front panel key is pressed or the knob is turned,
whether the instrument is in remote or local mode. Each key has a number associated with it.
The number of the key last pressed can be read with the KOR? and the OUTPKEY commands.
With KOR?, a knob turn is reported as a negative number encoded with the number of counts
turned. With OUTPKEY, a knob turn is always reported as a negative one.

Refer to the HP-IB Programming Reference (HP part number 08720-90160) for the codes of
the front panel keys.

In this example, the OUTPKEY command is used to re-define the top four and eighth softkeys.

100:
110:
120:
130:
140:
150:

160:
170:
180:
190:
200:
210:
220:
230:
240:
250:

/* HP 8718C, 8720C, 8722A/C QuickC IPG Program 7 */

#incliude <stdio.h>
#incliude <cfunc.h>
#include <chpib.h>

#define isc TL
#define instr Ti6L

void error_handle (int, char *);
void output (char *);

void initialize (void);

void error_handle {(int error, char #*routine)

{
if (error 1=KUOERR)
{
printf ("HP-IB error im call to Ys: ¥%d, %s\n",
routine, error, errstr(error));
exit(1);
¥
return;
}
void output (char *sendstr)
{
error_handle (IDOUTPUTS (instr,sendstr,strlen(sendstr)), “I00UTPUTSY);
¥

Miscelianeous/Reference Programming Examples 4-1

260: void initialize ()

270: {

280 error_handle (IGTIMEOUT (isc,45.0), “IOTIMEOUT");
290: ervor_handle (IGABORT (isc), "IOABORT");
300: error_handle (IOCLEAR (isc), "IOCLEAR");
310: cutput ("PRES;");

320: }

3230:

340: main

350: {

360: int Xeycode,status;

370: = float value;

380:

380; initialize (;

400: output ("CLES;ESE64;MENUDFF");
410: printf ("Ready...\n");

420: do

430: {

440: do

450 error_handle (IOSPOLL (instr, &status), "IOSPOLL");
460 while (! (status & 32));

470: output ("OUTPKEY;");

480: error_handle (IOENTER (instr, &value), “"IOENTER");
490 : keycodesvalue;

500: switch (keycode)

510: {

520: case 60: printf (“Calibration #1\n");
£30: break; :

540: case 61: printf ("Test #1\n");

550: break;

560: case 56: printf (“Calibration #2\n“};
570: break:;

580: case 59: printf ("Test #2\n");

590: break;

600: case 10: printf ("Abort \n");

610: break;

620: default: printf (“x** UNDEFINED #**\n");
630: break;

640: }

650 output ("CLES;ESE64;");

660: i

670: while (keycode !=10);

680: output ("MENUON;");

690: }

Figure 4-1. Sample Program: Key Trapping

4-2 Miscellaneous/Reference Programming Examples

Program explanation

Line 5 Tell the compiler which file includes information on the standard I/0
routines.

Line 10 Tell the compiler which file includes information on the HP 82335A
HP-IB command library I/O functions.

Line 20 Tell the compiler which file includes information on the HP-IB
command library error constants.

Line 40 Define a variable to contain the HP-IB interface select code, 7.

Line 50 Define a variable to contain the instrument address, 716.

Line 70 Function prototype for the error_handler () routine.

Line 80 Function prototype for the output () routine.

Line 90 Function prototype for the initialize () routine.

Line 110 Define a routine that handles errors returned from the HP-IB
command library I/O functions

Line 130 Check to see if there is an error.

Line 150 An error has occurred, so display a message and halt.

Line 180 No error has occurred, so return.

Line 210 Define a routine that outputs string commands and performs error
trapping.

Line 230 Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Line 260 Define a routine to initialize the instrument.

Line 280 Define a timeout value of 45 seconds.

Line 290 Abort any HP-IB transfers.

Line 300 Clear the instrument’s HP-IB interface.

Line 310 Preset the instrument.

Line 340 Main declaration

Line 360 Declare the needed variables.

Line 390 Call the initialize () routine.

Line 400 Clear the instrument’s status, specify bit six of the event status

register to be summarized by bit five of the status byte, and turn off
the softkey menus.

Line 420 Do until keycode is equal to ten. keycode contains the current key
code for the front key pressed.

Line 450 Loop until bit five of the status register is set. This indicates that bit
six of the event status register is set.

Line 470 Request the key code of the key just pressed.

Line 480 Input the key code.

Miscellaneous/Reference Programming Examples 4-3

Line 490 Convert the key code to an integer.

Line 500 If the key code is any of the top four or eighth softkeys, then display
an appropriate message, otherwise, the key pressed is undefined.

Line 650 Clear the status register and specify bit six of the event status
register to be summarized by bit five of the status byte.

Line 680 Turn the softkey menus back on.

Running the program

The program will turn off the current softkey menu and trap the first four and eighth softkeys.
Whern any of the first four softkeys are pressed, a softkey specific message is displayed on the
screen. The eighth softkey is defined as ABORT, and will terminate the program.

Example 8: CRT Graphics

The following example program illustrates how to display graphics on the instrument.
Graphics can be drawn by sending HP-GL (Hewlett-Packard Graphics Language) commands
to the network analyzer display.

The display address is the instrument address with the least significant bit complemented. I
the instrument address is 716 then the display address will be 717. In the foﬁowmg program,
the routine disp_output sends output commands to address 717.

Note This program uses the QuickC math include file and the HP-IB include
file. Including both of these files causes QuickC to issue a warning that
é the variable ERANGE has been defined twice. For this example program, the

warning can be disregarded.

/% HP 8719C, 8720C, 87224/C GQuickC IPG Program 8 #/

#include <stdio.h>
10: #include <cfunc.h>
20: #include <chpib.h>
30: #include <math.h>

50: #define isc 7L
60: #define instr T1i6L
70: #define display 7171

90: void error_handle (int, char *);

100: void disp.output (char *)};

110: void output (char *);

120: void initialize (void);

130:

140:

150; void error_handle (int error, char *routine)

4-4 Miscellaneous/Reference Programming Exampies

160: {

170: if {error !=NDERR)

180: {

180: printf ("HP-IB error in call o Ys: %d, Y%s\a",
routine, error, errstr(error));

200 exit($);

210: ¥

220: return;

230: }

240:

250: void disp_output (char *sendstr)

260: {

270: error_handle (IOOUTPUTS (display,sendstr,strlen(sendstr)),

"TOOUTPUTS) ;

280: }

290:

300: void output {(char *sendstr)

310: {

320: error_handle (IOOUTPUTS (instr,sendstr,strlen(sendstr)), "ICOUTPUTS"):

330: ¥

340:

350: woid initialize ()

360: {

370: error_handle (IOTIMEOUT (isc,45.0), "IOTIMEQUT");

380: error_handle (I0ABORT (isc), Y“IUABORT");

380: error_handle (IOCLEAR (isc), "IOCLEAR");

400: output ("PRES;");

410: ¥

420

430: main ()

440; {

450: int z,¥;

460: double i=0;

470: char cmd[80];

480

490: initialize ();

500: disp_output ("AF;CS;SP4;PU;PA 0,1500;PD;PA 5850,1500;%);

510C: disp_output ("SP5;PU;PA 0,2000;PD;PA £5850,2000;");

52C: disp_output ("SP4;PU;PA 0,2500;PD;P4 5850,2500;");

530: disp_output ("PU;SP2;PA 0,2000;%");

540: do

550: {

560: i=i+(3.14/10);

570: x=i%370;

580: 7=(sin(i)*500)+2000;

580: sprintf (cmd,“PD;PAZd,Zd;",X,Y);

600: disp_output (cmd);

610: }

620: while (i < (3.14%8));

630: disp_output ("SL.16,.20;SP5;PU;PA T00,1000;LBS I NE W 4 V E\3;");

640 disp.output ("SL.16,.20;SP1;PA 100,3950;LBHewlett Packard\3;");

Miscellaneous/Reference Programming Exampies 4-5

650: }

Figure 4-2. Sample Program: CRT Graphics

Program explanation

Line 5 Tell the compiler which file includes information on the standard I/0
routines.

Line 10 Tell the compiler which file includes information on the HP 82335A
HP-IB command library I/O functions.

Line 20 Tell the compiler which file includes information on the HP-IB
command library error constants.

Line 30 Tell the compiler which file include information on the math
functions.

Line 50 Define a variable to contain the HP-IB interface select code, 7.

Line 60 Define a variable to contain the instrument address, 716.

Line 70 Define a variable to contain the instrument display address, 717.

Line 90 Function prototype for the error_handler () routine.

Line 100 Function prototype for the disp_output () routine.

Line 110 Function prototype for the output () routine.

Line 120 Function prototype for the initialize () routine.

Line 150 Define a routine that handles errors returned from the HP-IB

command library 1/0 functions

Line 170 Check to see if there is an error.

Line 190 Axn error has occurred, so display a message and halt.

Line 220 No error has occurred, so return.

Line 250 Define a routine that outputs string commands to the instrument
display and performs error checking.

Line 270 Send a string to the instrument located at the value of display, 717.
Perform error checking. _

Line 300 Define a routine that outputs string commands to the instrument and
performs error trapping.

Line 320 Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Line 350 Define a routine to initialize the instrument.

Tine 370 Define a timeout value of 45 seconds.

Line 380 Abort any HP-IB transfers.

Line 390 Clear the instrument’s HP-IB interface.

Line 400 Preset the instrument.

4-6 Miscellaneous/Reference Programming Examples

Line 430 Mair declaration

Line 450 Define the needed variables.
Line 490 Call the initialize () routine.
Line 500 Output the following command sequence to the instrument display:

erase the user graphics display, turn off measurement display, select
color four, pen up, pen position (0, 1500, pen down, pen draw to
5850,1500. This prepares the graphics display, and draws a single

line.

Line 510 Draw a second line using color five.

Line 520 Draw a third line using color four.

Line 530 Position the pen to begin drawing a sine wave.

Line 540 Loop to draw a sine wave.

Line 560 The variable 1 is the radian sine value. i is increased by 1/10th of pi.
For increased resolution, this value should be increased.

Line 570 Scale the x-axis.

Line 580 Scale the y-axis.

Line 590 Prepare a string to draw 1/20th of the period of a sine wave.

Line 600 Output this string to the instrument display.

Line 620 Loop until two and half periods have been completed.

Line 630 Select character size, color five, and place label “SINE WA VE” at
position 700, 1000 on the display.

Line 640 Select character size, color one, and place label “Hewlett Packard”

at position 100, 3950 on the display.

Running the program

The program will display a sine wave along with two text labels on the instrument. The
HP-GIL commands can perform three basic types of functions:

= Label text,
m Change line types and colors, and
u Draw lines.

Using key trapping to take over the instrument’s front panel along with HP-GL commands, a
custom user interface can be easily created.

Miscellaneous/Reference Programming Examples 4-7

Status Reporting

The network analyzer has a status reporting mechanism that gives information about specific
functions and events inside the instrument. The status byte is an eight bit register with each
bit summarizing one aspect of the instrument state. For example, the error queue summary
bit will always be set if there are any errors in the gueue. The value of the status byte can be
read with the IOSPOLL statement. This command does not automatically put the instrument
in remote mode, thus giving the operator access to the front panel functions. The status byte
can also be read by sending the command OUTPSTAT. Reading the status byte does not affect
its value.

The status byte summarizes the error queue, as mentioned before. It also summarizes two
event status registers that monitor specific conditions inside the instrument. The status byte
also has a bit that is set when the instrument is issuing a service request over HP-IB, and a
bit that is set when network analyzer has data to send out over HP-IB. See Figure 4-4 for 2
definition of the status registers.

Example 9A: Using the error queue

The error queue holds up to 20 instrument errors and warnings in the order that they
occurred. Fach time the analyzer detects an error condition, it displays a message on the CRT
and puts the error in the error queue. If there are any errors in the queue, bit three of the
status byte will be set. The errors can be read from the queue with the GUTPERRO command,
which causes the apalyzer to transmit the error number and error message of the oldest error
in the queue.

/% HP 8719C, 8720C, 8722A/C QuickC IPG Program 94 */

#include <stdio.h>
10: #include <cfunc.h>
20: #include <chpib.h>

40: #define isc 7L
50: #define instr T1i6L

70: void error_handle (int, char *);
80: void output (char x);
90: void initialize (void);

i00:

110: void error_handle (int error, char *routine)

120: {

130: if (error !'=NOERR)

140; {

150 printf ("HP-IB error im call to %s: %d, %s\n",
routine, error, errstrerror));

160: exit{1);

170: iy

180: return;

4.8 Miscellaneous/Reference Programming Examples

190: }

206:

210: void cutput (char *sendstr)

220: {

230: error_handie (IOOUTPUTS (instr,sendstr,strlen(sendstr)), "IOOUTPUTS");
240: }

250:

260: wvoid dinitialize ()

270: {

280: error handle (IOTIMEOUT (isc,45.0), "IOTIMEQUT");
23C: error handle (IOABORT (isc), “IDABORT"):

300: = error_handie (IOCLEAR (isc), "IOCLEAR");

310: output ("PRES;");

320: }

330:

340: main ()

350: {

360: int bhpib,length,stat;

370: char err_datal80]:

380:

390: initialize ();

400: top:

410: error.handle (IOLOCAL (instr), "IOLOCAL");

420: do

430: error_handle (IOSPOLL (instr,&stat), "IOSPOLLY);
440: while (!{stat & 8));

450: cutput ("OUTPERRD;");

460: length=80;

470: errer handle (IOENTERS (instr,err.data,&length), "IOENTERS");
480: printf ("Ys",err_data);

490: goto top;

500: ¥

Figure 4-3. Sample Program: Using the Error Queue

Program explanation

Line 5

Line 10

Line 20

Line 40
Line 50
Line 70
Line 80

Tell the compiler which file includes information on the standard I/0
routines.

Tell the compiler which file includes information on the HP 82335A
HP-IB command library I/0 functions.

Tell the compiler whick file includes information on the HP-IB
command library error constants.

Define a variable to contain the HP-IB interface select code, 7.
Define a variable to contain the instrument address, 716.
Function prototype for the error_handler () routine.

Function prototype for the output () routine.

Miscellaneous/Reference Programming Examples 4-8

Line 80
Line 110

Line 130
Line 150
Line 180
Line 210

Line 230

Line 260
Line 280
Line 290
Line 306
Line 310
Line 340
Line 360
Line 390
Line 400
Line 410
Line 430
Line 450
Line 460

Line 470

Line 480
Line 490

Function prototype for the initialize () routine.

Define a routine that handles errors returned from the HP-IB
command lbrary I/0 functions

Check to see if there is an error.
An error has occurred, so display a message and halt.
No error has occurred, so return.

Define a routine that outputs string commands and performs error
trapping.

Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Define a routine to initialize the instrument.
Define a timeout value of 45 seconds.

Abort any HP-IB transfers.

Clear the instrument’s HP-IB interface.
Preset the instrument.

Main declaration

Declare the needed variables.

Call the initialize () routine.

Label this point as top:.

Put the instrument into local mode.

Loop until bit three of the status is set. This is the error queue bit.
Request the error message.

Define the length of the error message to be an arbitrary number,
80.

Input the error message. On return, the variable length contains the
actual length of the message.

Display the error message.

Loop unconditionally to top:.

Running the program

Preset the network analyzer and run the program. Nothing should happen at first. To get
something to happen, press a blank softkey. The message “CAUTION: INVALID KEY” will
appear followed by a second message “NO ERRORS”. Hence, to clean the error queue, you can
either loop until the no errors message is received, or until the bit in the status register is
cleared. Note that throughout all this, the front panel is in local mode.

To break from the program loop, press <CTRL-Break>, followed by a blank softkey.

Because the error queue will keep up to 20 errors, it is important to clear out the error quene
whenever errors are detected so that old errors are not associated with the current instrument

4-10 Miscellaneous/Reference Programming Examples

state. Not all messages displayed are put in the error queune: operator prompts and cautions
are not included.

Bouest | s b Outpot] Error | Statws | Mot 1 Net

‘_T |- [Jese
7 T f
T T i A T 1 0
Limit Lamit Data | Service
le

Falled | Faiicd | Entry | Foutine |
om a2 ot]onz detel Waiting

EVENT STATUS REGISTER B
i | ! i | | | ese
L] [| + k3 3
5 4 E 2 ¢ o
Power | User
On

ka .
S:an * Quety {Foquest
Request B = Ereor | Control [Comy
EVENT STATUS REQISTER

Figure 4-4, Status reporting system

Example 9B: Using the status registers

The other two key components of the status reporting system are the event status register,
and event status register B. These eight bit registers consist of latched event bits. A latched
bit is set at the onset of the monitored condition, and is cleared only by a read of the register
or by clearing the status registers with CLES.

This program uses the instrument command KOR? to determine a key press. The keycode
encoding with KOR? is as follows. Clockwise rotations of the knob are reported as numbers
from -1 to -64, -1 being a very small rotation. Counterclockwise rotations are reported as the
numbers -32767 to -32703, -32767 being a very small rotation. Hence, clockwise rotations
don’t need any decoding at all, and counterclockwise rotations can be decoded by adding
32,768. There are approximately 120 counts per knob rotation, and the sign of the count
depends on the direction the knob was turned. :

Miscellanecus/Reference Programming Examples 4-11

1:

2:

5:

10:
20:
30:
40:
50:
60:
70:
80:
90:

100:
110:
120:
130:
140:
150:
160:

170:
180:
190:
200:
210;
220:
230;
240;
250:
260:
270:
280;
290:
300:
310:
320:
330:
340:
350:
360:
370:
380:
390:
400:
410:
420:
430:
440:
450:
460:
470;

/* HP 8719C, 8720C, 87224/C QuickC IPG Program 9B */

#include <stdio.h>
#include <cfunc.h>
#include <chpib.h>

#define isc 7L
#define instr 716L

veid error_handle (int, char %);

void output (char *);
void initialize (void);

void error_handle (int error, char *routine}

{
if (error !=NOERR)
{
printf ("HP-IB error in call to }s: %d, ¥%s\n",
routine, error, errstr(error));
exit(1l);
¥
return;
}
void output (char *sendstr)
{
error_handle (I0OOUTPUTS (instr,sendstr,strlen(sendstr)),
}
void initialize ()
{
error_handle (IOTIMEOUT (isc,45.0), "IQTIMEOUT");
error_handle (IOABORT (isc), "IOABOGRT");
error_handle (IOCLEAR (isc), "IOCLEAR");
output ("PRES;");
¥
main ()
{

float e_stat,keycode;
int stat;

initialize ();

top:

do

{
output ("ESR7;");
error_handle (IOENTER (instr,&e_ _stat), "IOENTER"):
stat=e_stat;

b

4-12 Miscellaneous/Reference Programming Examples

1I00UTPUTS") ;

480:
490:
500:
510:
520:
h30:
540:
550: ¥

while (! (stat & 64));
cutput {"KOR?;");
error_handle (IOENTER (instr,Zkeycode), "IOENTER");
if (keycode >= 0) printf (“Key ");

else if (keycode < -400.0) keycodeskeycode+32768;
printf ("code = %.0f\n",keycode);
goto top;

Figure 4-5. Sample Program: Using the Status Registers

Program explanation

Line 5

Line 10

Line 20

Line 40
Line 50
Line 70
Line 80
Line 90
Line 120

Line 140
Line 160
Line 190
Line 220

Line 240

Line 270
Line 290
Line 300
Line 310
Line 320
Line 350
Line 370

Tell the compiler whick file includes information on the standard I/0
routines.

Tell the compiler which fiie includes information on the HP 82335A
HP-IB command library I/0 functions.

Tell the compiler which file includes information on the HP-IB
command library error constants.

Define a variable to contain the HP-IB interface select code, 7.
Define a variable to contain the instrument address, 716.
Function prototype for the error_handler () routine.
Function prototype for the output () routine.

Function prototype for the initialize () routine.

Define a routine that handles errors returned from the HP-IB
command library I/0 functions

Check to see if there is an error.
An error has occurred, so display a message and halt.
No error has occurred, so return.

Define a routine that outputs string commands and performs error
trapping.

Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Define a routine to initialize the instrument.
Define a timeout value of 45 seconds.

Abort any HP-IB transfers.

Clear the instrument’s HP-IB interface.
Preset the instrument.

Main declaration

Declare the needed variables.

Miscellaneous/Reference Programming Examples 4-13

Line 400 Call the initiaiize () routine.

Line 410 Label this point as top:.

Line 420 Loop until bit six of the event status register is set.

Line 440 Request the event status register.

Line 450 Input the event status register.

Line 460 Convert floating point integer to-an integer value.

Line 490 Reguest the key code of the key just pressed.

Line 500 Input the key code.

Line 510 If the key code is greater than or equal to zero, then no decoding is
necessary, and the key pressed is not a knob count.

Line 520 Otkerwise, the key code needs decoding.

Line 530 Display the key code.

Line 540 Loop unconditionally to the position of top:.

Running the program

Run the program. Pressing a front panel key causes the computer to display the keycode
associated with that key. Note that since the instrument is in remote mode, the normal
function of that key is not executed. In effect, we have taken over the front panel and can now
re-define the keys.

To break from the program loop, press <CTRL-Break>.

Example 10: Passing data to other application programs

The following example creates a formatted data file that can be sent to/recalled from an
application-specific program.

The program performs two data transfers from the instrument. The first, using OUTPLIML
with Form 4 (ASCII transfer format)}, reads out limit data to obtain the stimulus frequencies.
{UTPLIML reads out the stimulus frequency, result, upper limit, and lower lower limit of limit
data. Since stimulus frequency is only needed, the other values are discarded.

The second data transfer uses OUTPFORM with Form 5 (PC-compatible 32-bit floating point
format) to read out magnitude data.

/* BEP 8719C, 8720C, 87224/C QuickC IPG Program 10 */

#include <stdio.h>
0: #include <cfunc.h>
0: #include <chpib.h>
0:

4£0: #define isc TL
50: #define instr T16L

WA= N

4-14 Miscellanecus/Reference Programming Examples

60:

70: void error_handle (int, char *);
80: wvoid output (char *};

90: void pad {(int);

100:

110: void error_handle (int error, char *routine)

120: {

130: if (error !=NDERR)

140: {

150! printf ("HP-IB error in call to ¥s: Yd, ¥%s\n",
routine, error, errstr(error)):

160: exit(1);

170: ¥

i80: return;

180: 7}

200:

210: void output (char *sendstr)

220: {

230: error_handle (IDOUTPUTS (instr,sendstr,strlien(sendstr)), "I00UTPUTS");

240: }

250:

260: void pad {(int pad_num)

270: £

280: char pad[40];

280:

300: error_handle (TOENTERS (instr,pad,&pad_num), "IQOENTERS");

310: ¥

320:

330: main ()

340: {

350: char ascii_dat[15],filename[10],header[2],reply;

360: int bytes,elements,i,one=1;

370: float data,peints,seek_len;

380: FILE =*f_ptr;

380:

400: error_handle (IOTIMEOUT (isc,45.0), "IOTIMEOUT");
410: error_handle (IOABORT (disc), "IDABORT");

420: error_handle (IOCLEAR (isc), "IOCLEAR");

430: error_handle (IOMATCH (isc,’\n’,0), "IDMATCH");

440: output ("OPC?;SING;");

450: error_handle (IOENTERS (instr,&reply,&one), "IDENTERS");
460: output ("POINT;");

470: error_handle (IOENTER (instr,&points), "IOENTER");

480: printf ("Save under what DOS file name? ");
490: gets (filename);

500: f_ptr=fopen (filename,"w+");
§10: if (f_ptr t= NULL)

520: {

530: printf ("\n\nSaving ... ");
540: output ("FORM4;0UTPLIML;");
550: elements=15;

Miscelianeous/Reference Programming Examples 4-15

560:
570:
580:
£80:
800:
810:
620:
630:
640:
650:
660:
6870:
680:
620:
700:
T10:
T20:
T30:
T40:
T80:
760:
T70:
780:
730:
800:
810:
820:
830: }

for (i=0; i<points; i++)

{
pad(2);
error_handle (IOENTERS (instr,ascii_dat,&elements), "IOENTERS");
pad{38);
fprintf (f_ptr,"is, \n",ascii_dat);
}

fseek (f“ptr,i?L,SEEK_SET);
ocutput (YFORMS : OUTPFDRM; ") ;
elements=2;
error_handle (IOENTERS (instr,header,Zelements), "IOENTERS");
error_handle (IOENTERB (instr,&bytes,&elements,1), "IOENTERB'");
elements=4;
for (i=0; i<points; i++)
{
error_handle (IOENTERB (instr,&data,Zelements,1), “IDENTERB");
fprintf (f_ptr,"if,",data);
error_handle (IDENTERB (instr,&data,&elements,1), "IOENTERB'");
fprintf (f_ptr,"/Af",data);
seek_lenzi+i;
seek len=(seek_len%48)+17;
fseek(f ptr,seek.len,SEEK_SET);
}
fclose (f.ptr);
printf ("donei\n");

else printf ("Could not open file\n");

Figure 4-6. Sample Program: Passing Data to Other Application Programs

Program explanation

Line 5

Line 10

Line 20

Line 40
Line 50
Line 70
Line 80
Line 90
Line 110

Tell the compiler which file includes information on the standard I/O
routines.

Tell the compiler which file includes information on the HP 82335A
HP-IB command library I/O functions.

Tell the compiler which file includes information on the HP-IB
command library error constants.

Define a variable to contain the HP-IB interface select code, 7.
Define a variable to contain the instrument address, 716.
Function prototype for the error_handler () routine.
Function prototype for the output () routine.

Function prototype for the pad () routine.

Define 3 routine that handles errors returned from the HP-1B
commmand library I/0 functions

4-16 Miscellanecus/Reference Programming Exampies

Line 130
Line 150
Line 180
Line 210

Line 230

Line 260

Line 330
Line 350
Line 400
Line 410
Line 420
Line 430

Line 440
Line 450
Line 460
Line 470
Line 480
Line 500
Line 510

Line 530
Line 540
Line 550

Line 560
Line 580
Line 590
Line 600

Line 610

Check to see if there is an error.
An error has occurred, so display a message and halt.
No error has occurred, so return.

Define a routine that outputs string commands and performs error
{rapping.

Send a string to the instrument located at the value of instr, 716.
Perform error checking.

Define a routine that reads a specified number of bytes from the
instrument located at the value of instr, 716. The passed variable
pad_num determines the number of bytes to read and discard.

Main declaration

Declare the needed variables.

Define a timeout value of 45 seconds.
Abort any HP-IB transfers.

Clear the instrument’s HP-IB interface.

Disable character matching. This command defines the character
nsed by I0ENTERE and IOENTERS for termination. The “If” enter
terminator should be turned off because “If” is a valid binary value.

Perform a single trace.

Determine when the trace has been completed.
Ask for the number of points sampled.

Input the number of points sampled.

Determine the filename to save the formatted data.
Open the filename.

If there are no errors in opening the file, continue, otherwise go to
line 820.

Displaying the “Saving ... ” message.
Ask for the results of a limit test in ¥orm 4.

Define a variable, elements, to contain the length of the sent data
values.

Loop and read the data.
Disregard the first two characters.
Input the stimulus value.

Disregard the next 38 characters, which contain the results of a limit
test, and the upper and lower limits of limit data.

Output the stimulus values to a file.

Miscellaneous/Reference Programming Examples 4-17

Line 630 Prepare to write to the file the second and third columns, the first
and second data values. Specifically, offset seventeen characters from
the beginning of the file.

Line 640 Ask for the trace data in Form 5.

Line 650 Define the variable, elements, to contain the length of the header
and number of bytes in the data block to follow.

Line 660 Input the header.

Line 670 Input the number of bytes in the data block to follow.

Line 680 Define the length of each point. Since each point is sent as a 32-bit
floating point integer, the length of each point is four bytes long.

Line 690 Loop and read the data.

Line 710 Input the first value.

Line 720 Output the first value to the second column in the file.

Line 730 Input the second value.

Line 740 Output the second value to the third column in the file.

Line 750 The variable seek_len contains the offset from the beginning of the
file to the placement of the second column.

Line 770 Position the file pointer to the next line of the second column.

Line 790 Close the file.

Line 800 Display “done!”.

Line 820 If the file could not be opened, display an appropriate message.

Running the program

Set up the instrument with a DUT connected. Run the program. The program will ask for a
filename to save data. Note that if this filename exists, it will be erased with no warning.

The stored data is formatted in three columns separated by commas. The first column is the
stimulus frequency, the second column is the first value, and the third column is the second
value. Refer to Table 2-1 for the units on value one and value two with respect to the display
format.

Note that since the program does not store data in arrays, but rather in a file, it is not limited
to the amount of memory available to it. Thus it is not Hmited to the number of points
sampled.

4-18 WMiscellaneous/Reference Programming Examples

