

Sat, Oct 23, 2021 at 7:27 AM

Re: [HP-Agilent-Keysight-equipment] E4407B restoration project: EEPROMs

4 messages

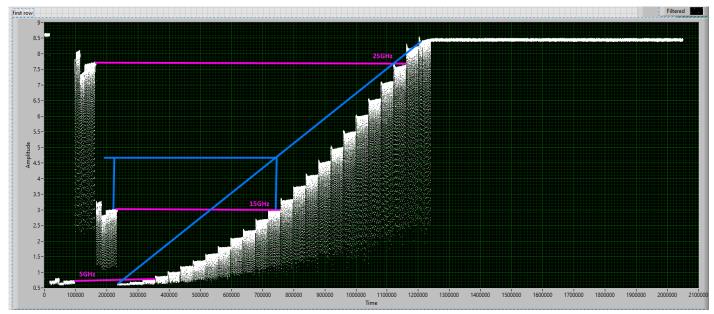
Techfreakz <alex@techfreakz.net> Reply-To: HP-Agilent-Keysight-equipment@groups.io To: "HP-Agilent-Keysight-equipment@groups.io" <HP-Agilent-Keysight-equipment@groups.io>

Hello zs,

Sorry for the slow reply, I don't check this group very often.

I put about a month in to learning how the look-up is performed, reverse engineering the EEPROM contents and re-generating the correct contents - quite a feat of engineering!

My most important discovery (late in the process) was that there is a serial (RS232) debug port on the CPU card (its the pin header you can see on the rear panel). During the YTF alignment process, there is lots of information written out this port. I made a little cable to convert from the 2mm(?) pitch header to a 9-way D-type.


Attached are some captures of the debug output (for the NFA) during boot and (failed) alignment and a successful alignment.

So, what I found (for the NFA), was that the instrument uses a polynomial to perform the look-up of frequency -> YTF tuning voltage.

If I recall correctly, the alignment process does something along the following lines during "YTF Align":

- 1. It uses the current polynomial constants to set the YTF at the bottom, top and middle of the band, seeping the LO to detect the noise-peak in the receivers pass band.
- 2. It then steps through many frequency points, performing peaking of the noise (by tuning the YTF) at each frequency.
- 3. Upon successful completion of the calibration sweep, the polynomial is re-calculated and programmed to the EEPROM (when you click Save, I think).

Here's the YTF voltage monitored over time during the alignment process.

There is actually a significant loop-hole in the YTF alignment process. If the instrument has a fault and the YTF alignment process is run and saved, then the (very) incorrect YTF polynomial values are stored to memory. If the unrelated instrument fault is fixed, the instrument will still never be able to align itself back to a corrected state!

NOTE: Calibration data actually spans the two EEPROMs on instruments with a wide frequency range (e.g. those that go up to 26.5GHz, may the 6 & 13GHz models too). The YTF polynomial only actually has a few coefficients. The majority of the data on the EEPROM is the amplitude correction & mixer bias settings across the band. For the NFA, this data isn't important, as it corrects itself during it measurement process, but the the ESAs this may be more important for accurate measurements. If you just have incorrect YTF coefficients, then you will not need to touch the other EEPROM contents. If this is the case, I would strongly encourage you to back-up the contents of these EEPROMs before making any changes!!

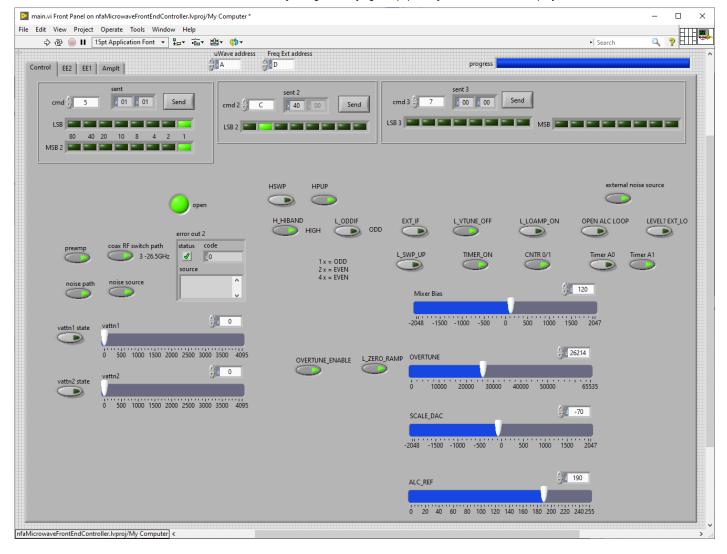
BTW, each section in the EEPROM is checksum'd (I never did determine the CRC calculation used), but I seem to recall the instrument doesn't check this anyway!

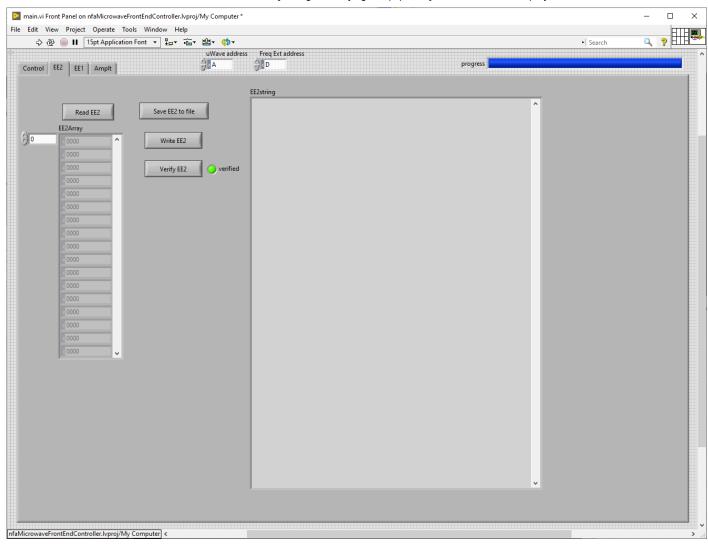
The following data is stored in the first (of two) EEPROMs:

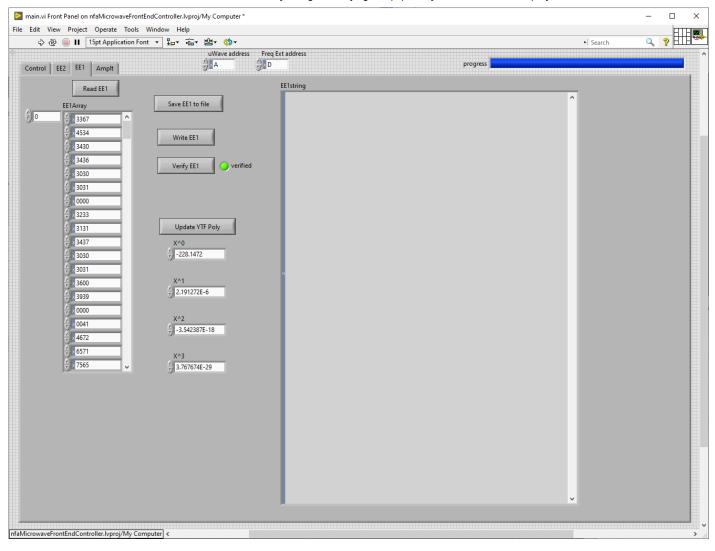
Model, serial, description and revision												
3367	4534	3430	3436	3030	3031	0000	3233					
3131	3437	3030	3031	3600	3939	0000	0041					
4672	6571	7565	6E63	7920	4578	7465	6E73					
696F	6E00	0000	0000	0000	0000	0000	9D3D					
0901	0500	0000	0000	0000	0000	0000	9030					
ALC reference level = 8 bits (written with address = 0xD, register = 0xC)												
82CA	003F	0087	006F	006F	0093	0800	008F					
YTF DAC Polynomial (double polynominal in 64bits, X^0, X^1, X^2, X^3)												
4090	6B3B	A000	0000	3E87	BF3E	A000	0000					
3C8E	CD38	C000	0000	BA1C	A744	A000	0000					
0000	0000	0000	0000	0000	0000	0000	0000					
0000	0000	0000	0000	0000	0000	0000	0000					
4088												
	Unknown. Likely Mixer bias level is in here											
26FB	E76C	8B44	410D	EE80	0000	0000	3F19					
06E2	1C6A	43EC	3EE0	D12A	F7C7	C49D	C083					
2922	D0E5	6042	BCDA	C05A	8E88	2CA3	3E20					
42C0	4307	107A	BC55	8119	4633	00EF	3FE7					
CED9	1687	2B02	BAD0	18E6	0000	0276						
BF20	25E7	F115	8171	3EFA	6C92	D051	BC8B					
0000	0000	0000	0000	0000	0000	0000	0000					
BE60	5A63	F94C	A62C	0000	0000	0000	0000					
0000	0000	0000	0000	0000	0000	0000	0000					
3DC4	2D10	D9C0	A872	0000	0000	0000	0000					
4034	1B08	AAC9	6CC6	0000	0000	0000	0000					
0000	0000	0000	0000	0000	0000	0000	0000					
000F	0055	0000	0000	0001								
000F	0055	0000	0000	0001								
0D48	0000	0244										
0D48	0000	02A8										
0D48	0000	02DA										
0210	0000	56271										

Of interest is the "YTF DAC Polynomial". This data is stored as a double precision floating point number (8 x 8 bytes = 64 bits).

If I recall correctly, the short answer to what I did was to connect the YTF to my Network Analyser to perform an S21 measurement. I connected an external power supply to the YTF control input and swept the control voltage whilst noting the centre frequency of the pass band. A polynomial was fitted to the curve and these coefficients were programmed in to the EEPROM as a more sensible starting point for the YTF Align. I think I only needed the first one or two terms as its very linear. I then re-ran the YTF alignment process several times. Each time, it would get closer to the final characteristic and finally the alignment completed successfully at every frequency.


You can run the calibration (even if it fails), note the polynomial generated at the end. Read back the EEPROM and verify what was programmed matches what was computed and shown in the debug log. You can then adjust these coefficient values, as shown above, to bring the alignment back to a correct state.


As an aside, I reverse engineered the pseudo-SPI bus that the CPU card uses to talk to all the other cards across the backplane. I then wrote a LabVIEW application with buttons and sliders to control some elements of the operation of the instrument. To do this, I pulled out the CPU card, and made connections to the pseudo-SPI bus on one of the plug-in cards.


FTDI	ADBUS	Mask	Direction	Value	A7A4 pins
Black	-				90
Grey	4	0x10	1		89
Orange	0	0x01	1		88
White	6	0x40	1		87
Yellow	1	0x02	1		86
Purple	5	0x20	1		85
Green	2	0x04	0		84
Brown	3	0x08	0		34
Blue	7	0x80	0		81

I think the cable I used was one of these: https://ftdichip.com/products/c232hm-ddhsl-0-2/

Gmail - Re: [HP-Agilent-Keysight-equipment] E4407B restoration project: EEPROMs

v c	§			Font 🔻 🖫		∰ ≺ \$ \$ ▼ uWave addr		Ext addres	5				• Search	<u> </u>
ol	EE2	EE1 An	nplt		ŝ	A	∆ D				progre	ess		
Rea	ad Ampl	itude Corr	ection	Save	EE1+ EE2 to 1	file	Update	EE Arrays fr	om comp Array	1				
a)	100	leCorrectio	onArray							correction				
	()37	0	0	0	0	0	0	0	>	8.5-				
	<u>^)</u> 37	0	0	0	0	0	0	0	>	7.5 7 6.5				
	∧ Ţ) 37	13.2G <	0	0	0	0	0	0	>	6- 5.5- 5-				
	<u>^</u>]37	4.13 ≮	0	0	0	0	0	0	>	4.5-				
	A) 37	0	0	0	0	0	0	0	>	(9) 4- ····································				
	<u>∧</u> ₹) <mark>37</mark>	0	0	0	0	0	0	0	>	2- 1.5- 1-				
	<u>^</u>]37	25.75G <	26G	26.25G	26.5G	26.75G	27G	0	>	0.5-				
	<u>^)</u> 37	8	8	8	8.5	8.5	8.5	0	> v	-0.5-				
E	E1+EE2									2Ġ 4Ġ 6Ġ	8G 10G	12G 14G 16G 18 Frequency (Hz)	G 20G 22G	24G 26G 28
									^		Band 1	Band 2	Band 3	A Band 4
										length				
										dO				

Amazing what you can do when you put your mind to it 😉

Best regards,

А

From: HP-Agilent-Keysight-equipment@groups.io <HP-Agilent-Keysight-equipment@groups.io> on behalf of zs437442 via groups.io <zs437442=gmail.com@groups.io> Sent: 01 June 2021 22:43 To: HP-Agilent-Keysight-equipment@groups.io <HP-Agilent-Keysight-equipment@groups.io> Subject: Re: [HP-Agilent-Keysight-equipment] E4407B restoration project: EEPROMs

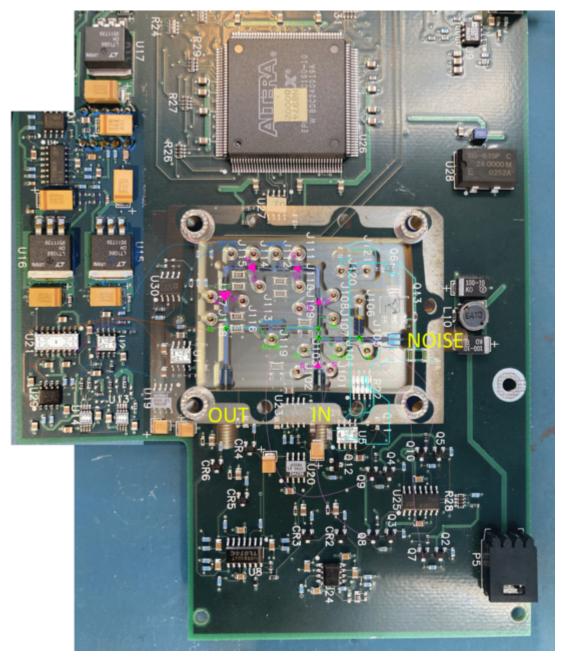
Hi Alex,

Were you able to regenerate the YTF alignment/correction data? I am in the need to do the same for my ESA where the YTF needs to to re-adjusted. Did you find out the format of the values stored for that on the freq. extension board, and the best way to regenerate the correct values?

Thanks,

--ZS

Groups.io Links:


You receive all messages sent to this group.

View/Reply Online (#119574) | Reply To Group | Reply To Sender | Mute This Topic | New Topic Your Subscription | Contact Group Owner | Unsubscribe [eckertkp@gmail.com]

2 attachments boot and ytf align log.txt 131K completely Successful calibration.txt 5K

Techfreakz <alex@techfreakz.net> Reply-To: HP-Agilent-Keysight-equipment@groups.io To: HP-Agilent-Keysight-equipment@groups.io Sat, Oct 23, 2021 at 8:04 AM

P.S. If anyone needs to work on the NFA "uWave Front End" module, here's the "chip & wire" and DC PCB reverse engineered!

Groups.io Links:

You receive all messages sent to this group.

View/Reply Online (#119575) | Reply To Group | Reply To Sender | Mute This Topic | New Topic

[Quoted text hidden]

Techfreakz <alex@techfreakz.net>

Reply-To: HP-Agilent-Keysight-equipment@groups.io To: HP-Agilent-Keysight-equipment@groups.io Sat, Oct 23, 2021 at 8:06 AM

P.S. If anyone needs to work on the NFA "uWave Front End" module, here's the "chip & wire" and DC PCB reverse engineered!

Groups.io Links:

You receive all messages sent to this group.

View/Reply Online (#119576) | Reply To Group | Reply To Sender | Mute This Topic | New Topic

[Quoted text hidden]

uWave module overlay.png 5815K

Techfreakz <alex@techfreakz.net> Reply-To: HP-Agilent-Keysight-equipment@groups.io To: HP-Agilent-Keysight-equipment@groups.io Sat, Oct 23, 2021 at 8:14 AM

P.P.S. Here's a photo of the serial debug cable.

Groups.io Links:

You receive all messages sent to this group.

View/Reply Online (#119577) | Reply To Group | Reply To Sender | Mute This Topic | New Topic

[Quoted text hidden]