
Agilent IO Libraries Suite

Agilent SICL

User’s Guide for IO
Libraries Suite 16.3
Agilent Technologies

Notices
© Agilent Technologies, Inc. 1995-1996,
1998, 2000-2012

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Edition
Thirteenth edition, April 2012

Agilent Technologies, Inc.
5301 Stevens Creek Blvd.
Santa Clara, CA 95052 USA

Trademark Information

Warranty
The material contained in this doc-
ument is provided “as is,” and is
subject to being changed, without
notice, in future editions. Further,
to the maximum extent permitted
by applicable law, Agilent disclaims
all warranties, either express or
implied, with regard to this manual
and any information contained
herein, including but not limited to
the implied warranties of mer-
chantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connec-
tion with the furnishing, use, or
performance of this document or of
any information contained herein.
Should Agilent and the user have a
separate written agreement with
warranty terms covering the mate-
rial in this document that conflict
with these terms, the warranty
terms in the separate agreement
shall control.

Technology Licenses
The hardware and/or software described in
this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend
U.S. Government Restricted Rights. Soft-
ware and technical data rights granted to
the federal government include only those
rights customarily provided to end user
customers. Agilent provides this custom-
ary commercial license in Software and
technical data pursuant to FAR 12.211
(Technical Data) and 12.212 (Computer
Software) and, for the Department of
Defense, DFARS 252.227-7015 (Techni-
cal Data - Commercial Items) and DFARS
227.7202-3 (Rights in Commercial Com-
puter Software or Computer Software
Documentation).

Safety Notices

CAUTION

A CAUTION notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in damage to the product or loss
of important data. Do not proceed
beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice,
or the like that, if not correctly
performed or adhered to, could
result in personal injury or
death. Do not proceed beyond a
WARNING notice until the
indicated conditions are fully
understood and met.
Visual Studio® is a registered trademark
of Microsoft Corporation in the United
States and other countries.

Windows NT® is a U.S. registered trade-
mark of Microsoft Corporation.

Windows® and MS Windows® are U.S.
registered trademarks of Microsoft Corpo-
ration.

Software Revision
This guide is valid for Revisions 16.xx of
the Agilent IO Libraries Suite software,
where xx refers to minor revisions of the
software that do not affect the technical
accuracy of this guide.

Manual Part Number
5991-1389EN
2 Agilent SICL User’s Guide

jfox
Typewritten Text

Agilent SICL User’s Guide for Windows

1 Introduction
Agilent SICL User’s Guide
What’s in This Guide? 10

SICL Overview 11

Introducing VISA, VISA COM, and SICL 11

SICL Description 12

SICL Support 12
SICL Users 12
SICL Documentation 12

If You Need Help 14
2 Getting Started with SICL
Getting Started Using C 16

C Sample Program Code 16
C Sample Code Description 18
Compiling the C Sample Program 19
Running the C Sample Program 21
Where to Go Next 21

Getting Started Using Visual Basic 22

Visual Basic Program Sample Code 22
Visual Basic Sample Code Description 24
Building and Running the VB Sample Program 25
Where to Go Next 26
3 Programming with SICL
Building a SICL Application 30

Including the SICL Declaration File 30
Libraries for C Applications and DLLs 30
Compiling and Linking C Applications using Visual

C++ 31
3

4

Loading and Running Visual Basic Applications 32
Thread Support for 32-bit Windows Applications 32
Opening a Communications Session 32
Sending I/O Commands 36
Handling Asynchronous Events 56
Handling Errors 59
Using Locks 64
Additional Sample Programs 68
4 Using SICL with GPIB
Introduction to GPIB Interfaces 82

GPIB Interfaces Overview 82
Typical GPIB Interface 82
Configuring GPIB Interfaces 83

Selecting a GPIB Communications Session 85

SICL GPIB Functions 85
Using GPIB Device Sessions 86

Using GPIB Interface Sessions 92

SICL Functions for GPIB Interface Sessions 92
GPIB Interface Session Code Samples 94

Using GPIB Commander Sessions 97

SICL Functions for GPIB Commander Sessions 97
Addressing GPIB Commanders 98
Writing GPIB Interrupt Handlers 98
5 Using SICL with VXI
Introduction to VXI Interfaces 104

VXI Interfaces Overview 105

Typical VXI Interface 105
Configuring VXI Interfaces 106

VXI Communications Sessions 109
Agilent SICL User’s Guide

Agilent SICL User’s Guide
VXI Device Types 109
SICL Functions for VXI Interfaces 110
Programming VXI Message-Based Devices 111
Addressing VXI Message-Based Devices 112
Programming VXI Register-Based Devices 115
Addressing VXI Register-Based Devices 116

Programming Directly to Registers 118

Mapping Memory Space for Register-Based Devices 118
Reading and Writing Device Registers 120
Sample: VXI Register-Based Programming (C) 121

Programming VXI Interface Sessions 123

VXI Interface Sessions Functions 123
Addressing VXI Interface Sessions 123

Miscellaneous VXI Interface Programming 126

Communicating with VME Devices 126
VXI Backplane Memory I/O Performance 131
Using VXI-Specific Interrupts 135
6 Using SICL with RS-232
Introduction to RS-232 Interfaces 140

ASRL (RS-232) Interface Overview 140
Configuring RS-232 (ASRL) Interfaces 141
RS-232 Communications Sessions 142
RS-232 SICL Functions 144
Using RS-232 Device Sessions 147
Using RS-232 Interface Sessions 152
7 Using SICL with LAN
Introduction to LAN Interfaces 160

Considerations when Using SICL with LAN 162
SICL LAN Functions 164
5

6

Using Remote Sessions 165

Addressing Guidelines 165
Creating a Remote Session 165
SICL Function Support 168
Remote Interface Support 168
LAN Timeout Functions 169
Sample Programs 170

Using LAN Interface Sessions 174

Addressing LAN Interface Sessions 174
SICL Function Support 174

Using Locks, Threads, and Timeouts 176

Using Locks and Threads Over LAN 176
Using Timeouts with LAN 177
8 Using SICL with USB
USB Interfaces Overview 184

Communicating with a USB Instrument Using SICL 185

Operations Supported on All USBTMC Devices 187
Operations Supported Only on USBTMC-USB488

Devices 188
A Appendix A: SICL Library Information
SICL Library Information 192

File System Information 192
The Registry 193
B Appendix B: Troubleshooting SICL Programs
Troubleshooting SICL Programs 196

SICL Error Codes 196
Common Windows Problems 200
Common RS-232 Problems 200
Agilent SICL User’s Guide

Agilent SICL User’s Guide
Common LAN Problems 201
General Troubleshooting Techniques 201
LAN Client Problems 202
LAN Server Problems 204
Glossary
7

8 Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
1
Introduction

This Agilent SICL User’s Guide describes Agilent SICL and how to use
it to develop I/O applications on Microsoft Windows®. A “getting
started” chapter is provided to help you write and run your first SICL
program. Then, this guide explains how to build and program SICL
applications. Later chapters are interface-specific, describing how to use
SICL with GPIB, VXI, RS-232, LAN, and USB interfaces.
NOTE Before you can use SICL, you must install and configure the Agilent IO
Libraries Suite on your computer. See the Agilent IO Libraries Suite
Connectivity Guide wiith Getting Started for installation instructions.
This chapter includes:

• What’s in This Guide?

• SICL Overview

• If You Need Help
9Agilent Technologies

1 Introduction
What’s in This Guide?
10
This chapter provides an introduction and overview of SICL.
Subsequent chapters address the following topics:

• Chapter 2 - Getting Started with SICL shows how to build and run a
sample program in C/C++ and in Visual Basic.

• Chapter 3 - Programming with SICL shows how to build a SICL
application in a Windows environment and provides information on
communications sessions, addressing, error handling, locking, etc.

• Chapter 4 - Using SICL with GPIB shows how to communicate over
the GPIB interface.

• Chapter 5 - Using SICL with VXI shows how to communicate over
the VXIbus interface.

• Chapter 6 - Using SICL with RS-232 shows how to communicate
over the RS-232 interface.

• Chapter 7 - Using SICL with LAN shows how to communicate over a
Local Area Network (LAN).

• Chapter 8 - Using SICL with USB shows how to communicate over a
USB interface.

• Appendix A - SICL Library Information provides information on
SICL files and registry entries.

• Appendix B - Troubleshooting SICL Programs gives general
troubleshooting techniques and shows common Windows, RS-232,
and LAN problems.

• Glossary includes major terms and definitions used in this guide.
Agilent SICL User’s Guide

Introduction 1
SICL Overview
Agilent SICL User’s Guide
SICL is part of the Agilent IO Libraries Suite product. The Agilent IO
Libraries Suite includes three libraries: Agilent Virtual Instrument
Software Architecture (VISA), VISA for the Common Object Model
(VISA COM) and Agilent Standard Instrument Control Library (SICL).
Introducing VISA, VISA COM, and SICL
• Agilent Virtual Instrument Software Architecture (VISA) is an I/O
library designed according to the VXIplug&play System Alliance
that allows software developed from different vendors to run on the
same system.

• If you are using new instruments or are developing new I/O
applications or instrument drivers, we recommend you use Agilent
VISA or VISA COM. In particular, use VISA or VISA COM if you
want to use VXIplug&play instrument drivers in your applications,
or if you want the I/O applications or instrument drivers that you
develop to be compliant with VXIplug&play standards.

• Agilent Standard Instrument Control Library (SICL) is an I/O library
developed by Agilent that is portable across many I/O interfaces and
systems.

• You can use Agilent SICL if you have been using SICL and want to
remain compatible with software currently implemented in SICL.
NOTE Using VISA functions and SICL functions in the same I/O application is
not supported.
11

1 Introduction
SICL Description
12
Agilent Standard Instrument Control Library (SICL) is an I/O library
developed by Agilent that is portable across many I/O interfaces and
systems. SICL is a modular instrument communications library that
works with a variety of computer architectures, I/O interfaces, and
operating systems. Applications written in C/C++ or Visual Basic using
this library
can be ported at the source code level from one system to another with
very few, if any, changes.

SICL uses standard, commonly used functions to communicate over a
wide variety of interfaces. For example, a program written to
communicate with a particular instrument on a given interface can also
communicate with an equivalent instrument on a different type of
interface.
SICL Support
This 32-bit version of SICL is supported on Windows 2000, Windows
XP, and Windows Vista. (For information on 16-bit SICL support, and
support of older operating systems, see the revision history information
in the Agilent IO Libraries Suite Online Help.) C, C++, and Visual Basic
are supported on these Windows versions.
SICL Users
SICL is intended for instrument I/O and is best for C/C+ + or Visual
Basic programmers who are familiar with Windows programming. To
perform SICL installation and configuration on Windows 2000,
Windows XP, or Windows Vista, you must have system administrator
privileges on the applicable system.
SICL Documentation
The following table shows associated documentation you can use when
programming with Agilent SICL.
Agilent SICL User’s Guide

Introduction 1

Agilent SICL User’s Guide
Table 1 Agilent SICL Documentation

Document Description

Agilent SICL User’s
Guide for Windows

Shows how to use Agilent SICL.

SICL Online Help Function reference information is provided in
the form of Windows Help.

SICL Sample Programs Sample programs are provided online to help
you develop SICL applications. If the default
installation directory was used, SICL sample
programs are provided in the C:\
Program Files\Agilent\
IO Libraries Suite\
ProgrammingSamples subdirectory.

VXIbus Consortium
specifications (when using
VISA over LAN)

TCP/IP Instrument Protocol Specification -
VXI-11, Rev. 1.0
TCP/IP-VXIbus Interface Specification -
VXI-11.1, Rev. 1.0
TCP/IP-IEEE 488.1 Interface Specification -
VXI-11.2, Rev. 1.0
TCP/IP-IEEE 488.2 Instrument Interface
Specification - VXI-11.3, Rev. 1.0
13

1 Introduction
If You Need Help
14
• In the USA, you can reach Agilent Technologies at this telephone
number:

USA: 1-800-829-4444

• Outside the USA, contact your country’s Agilent support
organization. A list of contact information for other countries is
available on the Agilent web site:

http://www.agilent.com/find/assist

• The Agilent Developer Network (ADN),

http://www.agilent.com/find/adn

is a one-stop Web resource that supports your connectivity needs
with software downloads, sample code, technical notes and white
papers.
Agilent SICL User’s Guide

http://www.agilent.com/find/assist
http://www.agilent.com/find/assist

Agilent IO Libraries Suite
Agilent SICL User’s Guide
2
Getting Started with SICL

This chapter provides guidelines to help you get started programming
with SICL using the C/C++ and Visual Basic languages. This chapter
provides sample programs in C/C++ and in Visual Basic to help you
verify your configuration and introduce you to some of SICL’s basic
features. The chapter contents are:

• Getting Started Using C

• Getting Started Using Visual Basic
NOTE You may want to review the SICL Language Reference in online Help
to familiarize yourself with SICL functions. To see the reference
information online, click the IO Control (blue IO icon) in the Windows
notification area.
15Agilent Technologies

2 Getting Started with SICL
Getting Started Using C
16
This section describes a sample program called idn that queries a GPIB
instrument for its identification string. This sample builds a console
application for WIN32 programs (32-bit SICL programs on Windows
systems) using the C programming language.
C Sample Program Code
All files used to develop SICL applications in C or C++ are located in
the C subdirectory of the base Agilent IO Libraries Suite installation
directory. Sample C/C++ programs for SICL are located in the
C:\Program Files\
Agilent\IO Libraries Suite\ProgrammingSamples\C\
SICL subdirectory, if Agilent IO Libraries Suite was installed in the
default directory.

You must first compile the sample C/C++ programs before you can
execute them. Some sample programs include makefiles or project files
that you can use to build the programs.

The idn sample files are located in the
ProgrammingSamples\C\SICL\idn subdirectory under the base
Agilent IO Libraries Suite installation directory. This subdirectory
contains the source program, IDN.C. The source file IDN.C is listed
on the following pages. An explanation of the function calls in the
sample follows the program listing.

/* This program uses the Standard Instrument
Control Library to query a GPIB instrument for
an identification string and then prints the
result. This program is to be built as a WIN32
console application. Edit the DEVICE_ADDRESS
line to specify the address of the applicable
device. For example:
gpib0,0: refers to a GPIB device at bus address
0 connected to an interface named ‘gpib0’ by the
Connection Expert utility.
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
gpib0,9,0: refers to a GPIB device at bus
address 9, secondary address 0, connected to an
interface named “gpib0” by the Connection Expert
utility. */

#include <stdio.h>/* for printf() */
#include “sicl.h”/* SICL routines */
#define DEVICE_ADDRESS “gpib0,0” /* Modify for
 setup */

void main(void)
{

INST id; /* device session id */
char buf[256] = { 0 }; /* read buffer for idn
 string */

/* Install a default SICL error handler that
logs an error message and exits. View messages
with the Event Viewer. */

ionerror(I_ERROR_EXIT);

/* Open a device session using the
 DEVICE_ADDRESS */
id = iopen(DEVICE_ADDRESS);

/* Set the I/O timeout value for this session to
 1 second */
itimeout(id, 1000);

/* Write the *RST string (and send an EOI
 indicator) to put the instrument into a known
 state. */
iprintf(id, “*RST\n”);

/* Write the *IDN? string and send an EOI
indicator, then read the response into buf.*/
ipromptf(id, “*IDN?\n”, “%t”, buf);

printf(“%s\n”, buf);
iclose(id);

}

17

2 Getting Started with SICL
C Sample Code Description
18
sicl.h

The sicl.h file is included at the beginning of the file to provide the
function prototypes and constants defined by SICL.

INST

Notice the declaration of INST id at the beginning of main. The type
INST is defined by SICL and is used to represent a unique identifier that
will describe the specific device or interface that you are
communicating with. The id is set by the return value of the SICL iopen
call and will be set to 0 if iopen fails for any reason.

ionerror

The first SICL call, ionerror, installs a default error handling routine
that is automatically called if any of the subsequent SICL calls result in
an error. I_ERROR_EXIT specifies a built-in error handler that will
print out a message about the error and then exit the program. If you
wish, you can specify a custom error handling routine instead.
NOTE You can view SICL error messages with the Event Viewer utility
available from the Agilent IO Control on the Windows taskbar.
iopen

When an iopen call is made, the parameter string “gpib0,0” passed to
iopen specifies the GPIB interface followed by the bus address of the
instrument. The interface name gpib0 is the name given to the interface
during execution of the Connection Expert utility. The bus (primary)
address of the instrument follows (0 in this case) and is typically set
with switches on the instrument or from the front panel of the
instrument.
NOTE To modify the program to set the interface name and instrument address
to those applicable for your setup, see Chapter 3, “Programming with
SICL” for information on using SICL’s addressing capabilities.
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
itimeout

itimeout is called to set the length of time (in milliseconds) that SICL
will wait for an instrument to respond. The specified value will depend
on the needs of your configuration. Different timeout values can be set
for different sessions as needed.

iprintf and ipromptf

SICL provides formatted I/O functions that are patterned after those
used in the C programming language. These SICL functions support the
standard ANSI C format strings, plus additional formats defined
specifically for instrument I/O.

The SICL iprintf call sends the Standard Commands for
Programmable Instruments (SCPI) command *RST to the instrument
that puts it in a known state. Then, ipromptf queries the instrument for
its identification string. The string is read back into buf and then printed
to the screen. (Separate iprintf and iscanf calls could have been used to
perform this operation.)

The %t read format string specifies that an ASCII string is to be read
back, with end indicator termination. SICL automatically handles all
addressing and GPIB bus management necessary to perform these reads
and writes to the instrument.

iclose

The iclose function closes the device session to this instrument (id is no
longer valid after this point).
Compiling the C Sample Program
The ProgrammingSamples\C\SICL\idn subdirectory (default
path C:\Program Files\Agilent\
IO Libraries Suite\ProgrammingSamples\C\SICL\
19

20

2 Getting Started with SICL
idn) contains the idn.c source file for this sample program. Steps
required to compile the idn sample program in Microsoft Visual C++
6.0 follow:

1 Connect an instrument to a GPIB interface that is compatible with
IEEE 488.2.

2 In Visual C++, select File > New... to create a new project. Select
Win32 Console Application for this sample program, and type in a
name for your project.

3 Select Project > Settings from the menu. Click the Link tab and add
sicl32.lib to the Object/Library Modules list box. Optionally,
you may add the library directly to your project file. Click OK to
close the dialog box.

4 You may want to add the include files and library files search paths.
They are set as follows:

• Select Tools > Options from the menu.

• Click the Directories tab to set the include file path.

• Select Include Files from the Show Directories For list box.

• Click at the bottom of the list box and type:
C:\Program Files\Agilent\IO Libraries Suite
\include
(This assumes that you used the default installation location for
IO Libraries Suite.)

• Select Library Files from the Show Directories For list box.

• Click at the bottom of the list box and type:
C:\Program Files\Agilent\IO Libraries Suite
\lib
(This assumes that you used the default installation location for
IO Libraries Suite.)

5 Add or create your C or C++ source files. For this sample program,
select Project > Add to Project > Files... and type or browse to
C:\Program Files\Agilent\
IO Libraries Suite\ProgrammingSamples\C\SICL\
idn\idn.c (assuming the default installation location).

6 The program assumes the GPIB interface name is gpib0 (set using
the Connection Expert utility) and the instrument is at bus address 0.
If necessary, modify the interface name and instrument address on
the DEVICE_ADDRESS definition line in the IDN.C source file.
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
7 Click Build > Rebuild All to build the SICL program.
Running the C Sample Program
• To run the idn sample program, execute the program from a console
command prompt by selecting Project > Execute or Run > Go.

If the program runs correctly, a sample of the output if connected to a
54622A oscilloscope is:

AGILENT TECHNOLOGIES,54622A,22457869,A.01.50

If the program does not run, see the message logger for a list of run-time
errors, and see “Appendix B: Troubleshooting SICL Programs” for
guidelines to correct the problem.
Where to Go Next
Go to Chapter 3, “Programming with SICL.” In addition, see the
chapter(s) that describe how to use SICL with your specific interface(s):

• Chapter 4 - Using SICL with GPIB

• Chapter 5 - Using SICL with VXI

• Chapter 6 - Using SICL with RS-232

• Chapter 7 - Using SICL with LAN

• Chapter 8 - Using SICL with USB

You may also want to familiarize yourself with SICL functions, which
are defined in the reference information provided in the SICL online
Help. If you have any problems, see “Appendix B: Troubleshooting
SICL Programs” for more information.
21

2 Getting Started with SICL
Getting Started Using Visual Basic
22
This section provides guidelines to getting started programming
applications in Visual Basic 6.0 (VB 6.0).
Visual Basic Program Sample Code
This section describes a sample program called idn that queries a GPIB
instrument for its identification string. This sample builds a console
application using the Microsoft Visual Basic 6.0 programming
environment.
NOTE Be sure to include the sicl32.bas file in your Visual Basic project.
This file contains the necessary SICL definitions, function prototypes,
and support procedures to allow you to call SICL functions from Visual
Basic.
The default Agilent IO Libraries Suite install location is
C:\Program Files\Agilent\IO Libraries Suite.
Sample Visual Basic programs for SICL are located in the
C:\Program Files\Agilent\IO Libraries Suite\
ProgrammingSamples\VB6\SICL subdirectory. Each sample
program subdirectory contains a project file (.vbp) that you can open
from Visual Basic 6.0.

The idn sample files are located in the
ProgrammingSamples\VB6\SICL\idn subdirectory under the
base Agilent IO Libraries Suite installation directory. This subdirectory
contains the Visual Basic module, idn.bas. This module is listed on
the following pages (some comments are not listed). An explanation of
the function calls in the sample follows the program listing.

Option Explicit
'''
' idn.bas
' The following subroutine queries *IDN? on a
' GPIB instrument and prints out the result. No
' SICL error handling is set up in this
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
 example, but should be as good programming
 practice
'''

Sub Main()
 Dim id As Integer
 Dim strres As String * 80 ‘ Fixed-length
 ‘ String
 Dim actual As Long
 ' Open the instrument session
 ‘"gpib0" is the SICL Interface name as
 ‘ defined in the Connection Expert
 ' "22" is the instrument gpib address on the
 ' bus
 ' Change these to the SICL Name and gpib
 ‘ address for your instrument

 id = iopen("gpib0,22")
 Call itimeout(id, 5000)

 ' Query device's *IDN? string
 Call iwrite(id, "*IDN?" + Chr$(10), 6, 1, 0&)

 ' Read result
 Call iread(id, strres, 80, 0&, actual)

 ' Display the results
 MsgBox "Result is: " + strres, vbOKOnly,
 "*IDN? Result"

 ' Close the instrument session
 Call iclose(id)

End Sub
23

2 Getting Started with SICL
Visual Basic Sample Code Description
24
id

Notice the declaration of id at the beginning of Sub Main(). The integer
id is used to represent a unique identifier that will describe the specific
device or interface that you are communicating with. The id is set by the
return value of the SICL iopen call and will be set to 0 if iopen fails for
any reason.

iopen

When an iopen call is made, the parameter string “gpib0,22” passed to
iopen specifies the GPIB interface followed by the bus address of the
instrument. The interface name “gpib0” is the name given to the
interface during execution of the Connection Expert utility. The bus
(primary) address of the instrument follows (“22” in this case) and is
typically set with switches on the instrument or from the front panel of
the instrument.
NOTE To modify the program to set the interface name and instrument address
to those applicable for your setup, see Chapter 3, “Programming with
SICL” for information on using SICL's addressing capabilities.
NOTE You can view error messages by running the Event Viewer available
from the Agilent IO Control in the taskbar notification area.
itimeout

itimeout is called to set the length of time (in milliseconds) that SICL
will wait for an instrument to respond. The specified value will depend
on the needs of your configuration. Different timeout values can be set
for different sessions as needed.
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
iwrite and iread

The SICL I/O iwrite function sends a block of data to an interface or
device and iread reads raw data from the device or interface. The iwrite
call sends the Standard Commands for Programmable Instruments
(SCPI) command *IDN? to the instrument that asks for its identification
string.

The fixed-length string strres is read back into buf with iread and this is
then displayed in a Message Box. SICL automatically handles all
addressing and GPIB bus management necessary to perform these reads
and writes to the instrument.

iclose

The iclose function closes the device session to this instrument (id is no
longer valid after this point).
Building and Running the VB Sample Program
The ProgrammingSamples\VB6\SICL\idn subdirectory
contains the files you can use to build and run the sample:

idn.bas Microsoft Visual Basic 6.0 Module file
idn.vbp Microsoft Visual Basic 6.0 Project file
idn.vbw Microsoft Visual Basic 6.0 Workspace file

The steps to build and run the idn sample program follow.

1 Connect an instrument to a GPIB interface that is compatible with
IEEE 488.2.

2 Start the Visual Basic 6.0 application.
NOTE This example assumes you are building a new project (no .vbp file
exists for the project). If you do not want to build the project from
scratch, from the menu select File > Open Project..., select and open
the idn.vbp file, and skip to step 7.
3 Start a new Visual Basic (VB 6.0) Standard EXE project. VB 6.0 will
open up a new Project1 project with a blank Form, Form1.
25

26

2 Getting Started with SICL
4 From the menu, select Project > Add Module, select the Existing
tab, and browse to the idn directory. If you used default installation
paths, this directory is
C:\Program Files\Agilent\IO Libraries Suite\
ProgrammingSamples\VB6\SICL\idn. Select the file
idn.bas and click Open.

5 (Optional) Since the Main() subroutine is executed when the
program is run without requiring user interaction with a Form, you
may choose to delete Form1. To do this, right-click Form1 in the
Project Explorer window and select Remove Form1.

6 SICL applications in Visual Basic require that the SICL Visual Basic
declaration file sicl32.bas module be added to your VB project.
This file contains the SICL function definitions and constant
declarations needed to make SICL calls from Visual Basic. To add
this module to your project, from the menu select Project > Add
Module, select the Existing tab, browse to the include directory
under the Agilent IO Libraries Suite install directory (by default, this
is C:\Program Files\Agilent\
IO Libraries Suite\include), select sicl32.bas, and
click Open.

7 At this point, you can run and debug the Visual Basic project.

8 The program assumes the SICL interface ID is gpib0 (set using the
Connection Expert utility) and the instrument is at bus address 22. If
necessary, modify the interface name and instrument address.

9 If the program runs correctly, an example of the output if connected
to an Agilent 34401A multimeter would be:

AGILENT TECHNOLOGIES,34401A,123456789,A.01.01

10 If you want to make an executable file, from the menu select File >
Make idn.exe... and click Open. This will create idn.exe in the
idn directory.

11 If the program does not run, see the message logger for a list of
run-time errors and see “Appendix B: Troubleshooting SICL
Programs” for guidelines to correct the problem.
Where to Go Next
Go to Chapter 3, “Programming with SICL.” In addition, see the
chapter(s) that describe how to use SICL with your specific interface(s):
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
• Chapter 4 - Using SICL with GPIB

• Chapter 5 - Using SICL with VXI

• Chapter 6 - Using SICL with RS-232

• Chapter 7 - Using SICL with LAN

• Chapter 8 - Using SICL with USB

You may also want to familiarize yourself with SICL functions, which
are defined in the reference information provided in SICL online Help.
If you have any problems, see “Appendix B: Troubleshooting SICL
Programs” for more information.
27

28

2 Getting Started with SICL
Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
3
Programming with SICL

This chapter describes how to build a SICL application and discusses
SICL programming techniques. Sample programs are provided to help
you develop SICL applications.

The sample programs in this chapter can be found in the following
locations, if Agilent IO Libraries Suite were installed in the default
directory:

For C/C++: C:\Program Files\Agilent\IO Libraries Suite\
ProgrammingSamples\C\SICL

For Visual Basic:
C:\Program Files\Agilent\IO Libraries Suite\

ProgrammingSamples\VB6\SICL

The chapter includes:

• Building a SICL Application

• Opening a Communications Session

• Sending I/O Commands

• Handling Asynchronous Events

• Handling Errors

• Using Locks

• Additional Sample Programs
NOTE For details about SICL functions, see the SICL Online Help.
29Agilent Technologies

3 Programming with SICL
Building a SICL Application
30
This section provides guidelines to building a SICL application in a
Windows environment.
Including the SICL Declaration File
For C and C++ programs, you must include the sicl.h header file at
the beginning of every file that contains SICL function calls. This
header file contains the SICL function prototypes and the definitions for
all SICL constants and error codes.

#include “sicl.h”

For Visual Basic (version 4.0 or later) programs, you must add the
sicl32.bas file to each project that calls SICL.
Libraries for C Applications and DLLs
All WIN32 applications and DLLs that use SICL must link to the
sicl32.lib import library.

The SICL libraries are located in the lib directory under the Agilent IO
Libraries Suite base directory (for example,
C:\Program Files\Agilent\IO Libraries Suite\lib,
if you installed Agilent IO Libraries Suite in the default location). You
may want to add this directory to the library file path used by your
language tools.

Use the DLL version of the C run-time libraries, because the run-time
libraries contain global variables that must be shared between your
application and the SICL DLL.

If you use the static version of the C run-time libraries, these global
variables will not be shared and unpredictable results could occur. For
example, if you use isscanf with the %F format, an application error
will occur. The following sections describe how to use the DLL versions
of the run-time libraries.
Agilent SICL User’s Guide

Programming with SICL 3
Compiling and Linking C Applications using Visual C++
Agilent SICL User’s Guide
A summary of important compiler-specific considerations for Microsoft
Visual C++ follows.
NOTE If you are using a version of Microsoft Visual Studio® other than
Version 6.0, or if you are using another compiler, the menu structure
and selections may be different than indicated here.
1 Select Project > Settings (or Build > Settings for some older Visual
Studio versions) from the menu.

2 Click the C/C++ tab. Then, select Code Generation from the
Category list box and select Multithreaded Using DLL from the
Use Run-Time Library list box. Click OK to close the dialog box.

3 Select Project > Settings (or Build > Settings) from the menu. Click
the Link tab. Then add sicl32.lib to the Object/Library
Modules list box. Click OK to close the dialog box.

4 You may want to add the IO Libraries Suite directories (for example,
C:\Program Files\Agilent\ IO Libraries
Suite\include and
C:\Program Files\Agilent\IO Libraries Suite\
lib) to the include file and library file search paths. To do this,
select Tools > Options from the menu and click the Directories tab.
Then:

a To set the include file path, select Include Files from the Show
Directories for: list box. Next, click below the last listed path to
add a new path, and type C:\Program Files\Agilent\
IO Libraries Suite\include
Then, click OK.

b To set the library file path, select Library Files from the Show
Directories for: list box. Click below the last listed pat to add a
new path, and type
C:\Program Files\Agilent\IO Libraries Suite
\lib
Then, click OK.
31

3 Programming with SICL
Loading and Running Visual Basic Applications
32
To load and run an existing Visual Basic application, first start Visual
Basic. Then, open the project file for the program you want to run by
selecting File > Open Project from the Visual Basic menu. Visual
Basic project files have a .vbp file extension. After you have opened
the application’s project file, you can run the application by pressing F5
or by clicking the Run button on the Visual Basic toolbar.

You can create a standalone executable (.exe) version of this program
by selecting File > Make EXE File from the Visual Basic menu. Once
this is done, the application can be run standalone (just like any other
.exe file) without having to run Visual Basic.
Thread Support for 32-bit Windows Applications
SICL can be used in multi-threaded designs and SICL calls can be made
from multiple threads in WIN32 applications. However, there are some
important points to keep in mind:

• SICL error handlers (installed with ionerror) are per process (not
per thread), but are called in the context of the thread that caused the
error to occur. Calling ionerror from one thread will overwrite any
error handler presently installed by another thread.

• The igeterrno is per thread and returns the last SICL error that
occurred in the current thread.

• You may want to make use of the SICL session locking functions
(ilock and iunlock) to help coordinate common instrument accesses
from more than one thread.

• See Chapter 7, “Using SICL with LAN”, for thread information
when using SICL with LAN.
Opening a Communications Session
A communications session is a channel of communication with a
particular device, interface, or commander.

• A device session is used to communicate with a device on an
interface. A device is a unit that receives commands from a
controller. Typically a device is an instrument, but it could be a
computer, a plotter, or a printer.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
• An interface session is used to communicate with a specified
interface. Interface sessions allow you to use interface-specific
functions (for example, igpibsendcmd).

• A commander session is used to communicate with the interface’s
commander. Typically a commander session is used when a
computer is acting like a device (in a non-controller role).

Opening a Communications Session

There are two parts to opening a communications session with a specific
device, interface, or commander. First, you must declare a variable for
the SICL session identifier. C and C++ programs should declare the
session variable to be of type INST. Visual Basic programs should
declare the session variable to be of type Integer. Once you have
declared the variable, you can open the communication channel by
using the SICL iopen function, as shown in the following code sample.

C sample:

INST id;
id = iopen (addr);

Visual Basic sample:

Dim id As Integer
id = iopen (addr)

where id is the session identifier used to communicate to a device,
interface, or commander. The addr parameter specifies a device or
interface address, or the term cmdr for a commander session. See the
sections that follow for details on creating the different types of
communications sessions.

Your program may have several sessions open at the same time by
creating multiple session identifiers with the iopen function. Use the
SICL iclose function to close a channel of communication.

Device Sessions

A device session allows you to have direct access to a device without
knowing the type of interface to which the device is connected. On
GPIB, for example, you do not have to address a device to listen before
sending data to it. This insulation makes applications more robust and
portable across interfaces, and is recommended for most applications.
33

34

3 Programming with SICL
Device sessions are the recommended way of communicating using
SICL. They provide the highest-level programming method, best overall
performance, and best portability.

Addressing Device Sessions To create a device session, specify the
interface logical unit or a symbolic interface name and a device-specific
logical address in the addr parameter of the iopen function. The logical
unit is an integer corresponding to the interface.

The device-specific part of a SICL address generally consists of an
integer that corresponds to the device’s bus address. It may also include
a secondary address that is an integer. (Secondary addressing is not
supported on RS-232 interfaces.) The following are valid SICL
addresses.

The interface logical unit and interface ID are set by running the
Connection Expert utility from the Agilent IO Control (IO icon on the
taskbar). See the IO Libraries Suite Online Help for details.

Examples: Opening a Device Session The following code samples
open a device session with a GPIB device at bus address 23.

C sample:

INST dmm;
dmm = iopen (“gpib0,23”);

Visual Basic sample:

Table 2 Examples of Addressing Instruments

7,23 Device at address 23 connected to an interface card at logical
unit 7.

7,23,1 Device at address 23, secondary address 1, connected to an
interface card at logical unit 7.

gpib0,23 GPIB device at address 23.

gpib0,23,1 GPIB device at address 23, secondary address 1, connected to
a second GPIB interface card.

com1,488 RS-232 device
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Dim dmm As Integer
dmm = iopen (“gpib0,23”)

Interface Sessions

An interface session allows direct, low-level control of the specified
interface. A full set of interface-specific SICL functions exists for
programming features that are specific to a particular interface type
(GPIB, serial, etc.). This provides full control of the activities on a given
interface, but creates less-portable code.

Addressing Interface Sessions To create an interface session,
specify the interface logical unit or interface ID in the addr parameter of
the iopen function. The interface logical unit and interface ID are set by
running the Connection Expert utility from the Agilent IO Control (IO
icon on the taskbar). See the IO Libraries Suite Online Help for details.

The logical unit is an integer that corresponds to a specific interface.
The interface ID is a string that uniquely describes the interface. The
following are valid interface addresses.

Samples: Opening an Interface Session These code samples open
an interface session with an RS-232 interface.

C sample:

INST com1;
com1 = iopen (“com1”);

Visual Basic sample:

Dim com1 As Integer
com1 = iopen (“com1”)

Table 3 Valid SICL Addresses for Interfaces

7 Interface card at logical unit 7

gpib0 GPIB interface card.

gpib1 Second GPIB interface card.

com1 RS-232 interface card.
35

36

3 Programming with SICL
Commander Sessions

A commander session allows your computer to talk to the interface
controller. Typically, the controller is the computer used to
communicate with devices on the interface. When the computer is not
the active controller, commander sessions can be used to talk to the
computer that is the active controller. In this mode, the computer is
acting like a device on the interface.

Addressing Commander Sessions To create a commander session,
specify a valid interface ID or logical unit followed by a comma, and
then the string cmdr in the iopen function. The following are valid
commander addresses.

Samples: Creating a Commander Session These code samples
create a commander session with the GPIB interface. The function calls
open a session of communication with the commander on a GPIB
interface.

C sample:

INST cmdr;
cmdr = iopen(“gpib0,cmdr”);

Visual Basic sample:

Dim cmdr As Integer
cmdr = iopen (“gpib0,cmdr”)

Table 4 Valid Commander Addresses

gpib0,cmd
r

GPIB commander session.

7,cmdr Commander session on interface at logical unit 7.
Sending I/O Commands
Once you have established a communications session with a device,
interface, or commander, you can start communicating with that session
using SICL’s I/O routines. SICL provides formatted I/O and
non-formatted I/O routines.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
• Formatted I/O converts mixed types of data under the control of a
format string. The data is buffered, thus optimizing interface traffic.
The formatted I/O routines are geared towards instruments, and
reduce the amount of I/O code.

• Non-formatted I/O sends or receives raw data to or from a device,
interface, or commander. With non-formatted I/O, no format or
conversion of the data is performed. Thus, if formatted data is
required, the formatting must be done by the user.

Formatted I/O in C Applications

The SICL formatted I/O mechanism is similar to the C stdio
mechanism. SICL formatted I/O, however, is designed specifically for
instrument communication and is optimized for IEEE 488.2 compatible
instruments. The three main functions for formatted I/O in C
applications follow.

• The iprintf function formats according to the format string and sends
data to a device:

iprintf(id, format [,arg1][,arg2][,...]);

• The iscanf function receives and converts data according to the
format string:

iscanf(id, format [,arg1][,arg2][,...]);

• The ipromptf function formats and sends data to a device, and then
immediately receives and converts the response data:

ipromptf(id, writefmt, readfmt[,arg1]
 [,arg2][,...]);

The formatted I/O functions are buffered. Also, there are two
non-buffered and non-formatted I/O functions called iread and iwrite.
(See “Non-Formatted I/O” on page 53.) These are raw I/O functions and
should not be intermixed with formatted I/O functions.

If raw I/O must be mixed, use the ifread/ifwrite functions. These
functions have the same parameters as iread and iwrite, but read or
write raw output data to the formatted I/O buffers. See “Formatted I/O
Buffers” on page 52 for more details.
37

38

3 Programming with SICL
Formatted I/O Conversion Formatted I/O functions convert data
under the control of the format string. The format string specifies how
the argument is converted before it is input or output. A typical format
string syntax is:

%[format flags][field width][. precision]
[, array size][argument modifier]format code

Format Flags Zero or more flags may be used to modify the
meaning of the format code. The format flags are only used when
sending formatted I/O (iprintf and ipromptf). Supported format flags
are:

This example converts numb into a 488.2 floating point number and
sends the value to the session specified by id:

Table 5 Format Flags

Format Flag Description

@1 Converts to a 488.2 NR1 number.

@2 Converts to a 488.2 NR2 number.

@3 Converts to a 488.2 NR3 number.

@H Converts to a 488.2 hexadecimal number.

@Q Converts to a 488.2 octal number.

@B Converts to a 488.2 binary number.

+ Prefixes number with sign (+ or –).

– Left-justifies result.

space Prefixes number with blank space if positive or with – if
negative.

Uses alternate form. For o conversion, it prints a leading
zero. For x or X, a nonzero will have 0x or 0X as a prefix.
For e, E, f, g, or G, the result will always have one digit on
the right of the decimal point.

0 Causes left pad character to be a zero for all numeric
conversion types.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
int numb = 61;
iprintf (id, “%@2d&\n”, numb);

Sends: 61.000000

Field Width is an optional integer that specifies how many
characters are in the field. If the formatted data has fewer characters
than specified in the field width, it will be padded. The pad character is
dependent on various flags. You can use an asterisk (*) in place of the
integer to indicate that the integer is taken from the next argument.

This example pads numb to six characters and sends the value to the
session specified by id:

long numb = 61;
iprintf (id, “%6ld&\n”, numb);

Pads to six characters: 61

. Precision is an optional integer preceded by a period. When used
with format codes e, E, and f, the number of digits to the right of the
decimal point are specified. For the d, i, o, u, x, and X format codes, the
minimum number of digits to appear is specified. For the s and S
format codes, the precision specifies the maximum number of
characters to be read from the argument.

This field is only used when sending formatted I/O (iprintf and
ipromptf). You can use an asterisk (*) in place of the integer to indicate
that the integer is taken from the next argument.

This example converts numb so that there are only two digits to the
right of the decimal point and sends the value to the session specified by
id:

float numb = 26.9345;
iprintf (id, “.2f\n”, numb);

Sends: 26.93

, Array Size The comma operator is a format modifier which allows
you to read or write a comma-separated list of numbers (only valid with
%d and %f format codes). It is a comma followed by an integer. The
integer indicates the number of elements in the array. The comma
39

40

3 Programming with SICL
operator has the format of ,dd where dd is the number of elements to
read or write. This example specifies a comma-separated list to be sent
to the session specified by id.

int list[5]={101,102,103,104,105};
iprintf (id, “%,5d\n”, list);

Sends: 101,102,103,104,105

Argument Modifier The meaning of the optional argument modifier
h, l, w, z, or Z is dependent on the format code.

Table 6 Argument Modifiers in C Applications

Argument
Modifier

Forma
t
Codes

Description

h d,i Corresponding argument is a short integer.

h f Corresponding argument is a float for iprintf or
a pointer to a float for iscanf.

l d,i Corresponding argument is a long integer.

l b,B Corresponding argument is a pointer to a block of
long integers.

l f Corresponding argument is a double for iprintf
or a pointer to a double for iscanf.

w b,B Corresponding argument is a pointer to a block of
short integers.

z b,B Corresponding argument is a pointer to a block of
floats.

Z b,B Corresponding argument is a pointer to a block of
doubles.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Format Codes for sending and receiving formatted I/O are different.
The following tables summarize the format codes for each.

This example sends an arbitrary block of data to the session specified by
the id parameter. The asterisk (*) is used to indicate that the number is
taken from the next argument:

int size = 1024;
char data [1024];
.
.
iprintf (id, “%*b&\n”, size, data);

Table 7 iprintf and ipromptf Format Codes in C Applications

Format
Codes

Description

d,i Corresponding argument is an integer.

f Corresponding argument is a float.

b,B Corresponding argument is a pointer to an arbitrary block of
data.

c,C Corresponding argument is a character.

t Controls whether the END indicator is sent with each LF
character in the format string.

s,S Corresponding argument is a pointer to a null terminated
string.

% Sends an ASCII percent (%) character.

o,u,x,X Corresponding argument will be treated as an unsigned
integer.

e,E,g,G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

F Corresponding argument is a pointer to a FILE descriptor
opened for reading.
41

42

3 Programming with SICL
Sends 1024 characters of block data.

This example receives data from the session specified by the id
parameter and converts the data to a string:

char data[180];
iscanf (id, “%s”, data);

Sample: Formatted I/O (C) shows one way to send and receive
formatted I/O. This code sample opens a GPIB communications session
with a multimeter and uses a comma operator to send a
comma-separated list to the multimeter. The lf format codes are used to
receive a double from the multimeter.

/* formatio.c
This example program makes a multimeter
measurement with a comma-separated list passed
with formatted I/O and prints the results */

#include <sicl.h>
#include <stdio.h>

Table 8 iscanf and ipromptf Format Codes

Format
Codes

Description

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character.

s,S,t Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an unsigned
integer.

[Corresponding argument must be a character pointer.

F Corresponding argument is a pointer to a FILE descriptor
opened for writing.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
main()
{
INST dvm;
double res;
double list[2] = {1,0.001};

/* Log message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen (“gpib0,16”);
itimeout (dvm, 10000);

/*Initialize dvm*/
iprintf (dvm, “*RST\n”);

/*Set up multimeter and send comma-separated
 list*/
iprintf (dvm, “CALC:DBM:REF 50\n”);
iprintf (dvm, “MEAS:VOLT:AC? %,2lf\n”, list);

/* Read the results */
iscanf (dvm,”%lf”,&res);

/* Print the results */
printf (“Result is %f\n”,res);

/* Close the multimeter session */
iclose (dvm);

 return 0;
}

Format Strings for iprintf puts a special meaning on the newline
character (\n). The newline character in the format string flushes the
output buffer to the device. All characters in the output buffer will be
written to the device with an END indicator included with the last byte
(the newline character). This means you can control the point at which
the data is written to the device.

If no newline character is included in the format string for an iprintf
call, the characters converted are stored in the output buffer. You must
make another call to iprintf or a call to iflush to have those characters
written to the device.
43

44

3 Programming with SICL
This can be very useful in queuing up data to send to a device. It can
also raise I/O performance by doing a few large writes instead of several
smaller writes. You can change this behavior with the isetbuf and
isetubuf functions. See “Formatted I/O Buffers” on page 52 for details.

The format string for iscanf ignores most white-space characters. Two
white-space characters that it does not ignore are newlines (\n) and
carriage returns (\r). These characters are treated just like normal
characters in the format string, which must match the next
non-white-space character read from the device.

Formatted I/O Buffers The SICL software maintains both a read
and a write buffer for formatted I/O operations. Occasionally, you may
want to control the actions of these buffers. See the isetbuf function for
other options for buffering data.

The write buffer is maintained by the iprintf and the write portion of the
ipromptf functions. It queues characters to send to the device so that
they are sent in large blocks, thus increasing performance. The write
buffer automatically flushes when it sends a newline character from the
format string (see the %t format code to change this feature).

The write buffer also flushes immediately after the write portion of the
ipromptf function. It may occasionally be flushed at other
non-deterministic times, such as when the buffer fills. When the write
buffer flushes, it sends its contents to the device.

 The read buffer is maintained by the iscanf and the read portion of the
ipromptf functions. The read buffer queues the data received from a
device until it is needed by the format string. The read buffer is
automatically flushed before the write portion of an ipromptf. Flushing
the read buffer destroys the data in the buffer and guarantees that the
next call to iscanf or ipromptf reads data directly from the device rather
than from data that was previously queued.

Flushing the read buffer also includes reading all pending response data
NOTE
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator
from the device.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Related Formatted I/O Functions A set of functions related to
formatted I/O follows.

Formatted I/O in Visual Basic Applications

SICL formatted I/O is designed specifically for instrument
communication and is optimized for IEEE 488.2 compatible
instruments. The two main functions for formatted I/O in Visual Basic
applications are:

• The ivprintf function, which formats according to the format string
and sends data to a device:

Table 9 Functions Related to Formatted I/O

I/O Function Description

ifread Obtains raw data directly from the read formatted I/O buffer.
This is the same buffer that iscanf uses.

ifwrite Writes raw data directly to the write formatted I/O buffer.
This is the same buffer that iprintf uses.

iprintf Converts data via a format string and writes the arguments
appropriately.

iscanf Reads data from a device/interface, converts this data via a
format string, and assigns the values to your arguments.

ipromptf Sends, then receives, data from a device/instrument. It also
converts data via format strings that are identical to iprintf
and iscanf.

iflush Flushes the formatted I/O read and write buffers. A flush of
the read buffer means that any data in the buffer is lost. A
flush of the write buffer means that any data in the buffer is
written to the session’s target address.

isetbuf Sets the size of the formatted I/O read and the write buffers.
A size of zero (0) means no buffering. If no buffering is
used, performance can be severely affected.

isetubuf Sets the read or the write buffer to your allocated buffer. The
same buffer cannot be used for both reading and writing.
You should also be careful when using buffers that are
automatically allocated.
45

46

3 Programming with SICL
Function ivprintf(id As Integer, fmt As
 String, ap As Any) As Integer

• The ivscanf function, which receives and converts data according to
the format string:

Function ivscanf(id As Integer, fmt As
 String,ap As Any) As Integer
There are certain restrictions when using ivprintf and ivscanf with
Visual Basic. For details about these restrictions, see “Restrictions
Using ivprintf in Visual Basic” in the iprintf function or “Restrictions
Using ivscanf in Visual Basic” in the iscanf function of online Help.

NOTE
The formatted I/O functions are buffered. There are two non-buffered
and non-formatted I/O functions called iread and iwrite. (See
“Non-Formatted I/O” later in this chapter.) These are raw I/O functions
and do not intermix with the formatted I/O functions.

If raw I/O must be mixed, use the ifread/ifwrite functions. They have
the same parameters as iread and iwrite, but read or write raw output
data to the formatted I/O buffers. See “Formatted I/O Buffers” for
details.

Formatted I/O Conversion The formatted I/O functions convert
data under the control of the format string. The format string
specifies how the argument is converted before it is input or output.
The typical format string syntax is:

%[format flags][field width][. precision]
[, array size][argument modifier]format code

Format Flags Zero or more flags may be used to modify the
meaning of the format code. The format flags are only used when
sending formatted I/O (ivprintf). Supported format flags are:

Table 10 Format Flags for ivprintf in Visual Basic

Format
Flag

Description

@1 Converts to a 488.2 NR1 number.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
This example converts numb into a 488.2 floating point number to the
session specified by id. The function return values must be assigned to
variables for all Visual Basic function calls. Also, + Chr$(10) adds the
newline character to the format string to indicate that the formatted I/O
write buffer should be flushed. (This is equivalent to the \n character
sequence used for C/C++ programs.)

Dim numb As Integer
Dim ret_val As Integer

numb = 61
ret_val = ivprintf(id, “%@2d” + Chr$(10),
numb)

 Sends: 61.000000

@2 Converts to a 488.2 NR2 number.

@3 Converts to a 488.2 NR3 number.

@H Converts to a 488.2 hexadecimal number.

@Q Converts to a 488.2 octal number.

@B Converts to a 488.2 binary number.

+ Prefixes number with sign (+ or –).

– Left justifies result.

space Prefixes number with blank space if positive or with – if
negative.

Uses alternate form. For o conversion, it prints a leading zero.
For x or X, a nonzero will have 0x or 0X as a prefix. For e, E, f,
g, or G, the result will always have one digit on the right of the
decimal point.

0 Causes left pad character to be a zero for all numeric
conversion types.

Table 10 Format Flags for ivprintf in Visual Basic

Format
Flag

Description
47

48

3 Programming with SICL
Field Width is an optional integer that specifies how many
characters are in the field. If the formatted data has fewer characters
than specified in the field width, it will be padded. The padded character
is dependent on various flags. This example pads numb to six
characters and sends the value to the session specified by id:

Dim numb As Integer
Dim ret_val As Integer

numb = 61
ret_val = ivprintf(id, “%6d” + Chr$(10), numb)

Pads to six characters: 61

. Precision is an optional integer preceded by a period. When used
with format codes e, E, and f, the number of digits to the right of the
decimal point are specified. For the d, i, o, u, x, and X format codes, the
minimum number of digits to appear is specified. This field is only used
when sending formatted I/O (ivprintf).

This example converts numb so there are only two digits to the right of
the decimal point and sends the value to the session specified by id:

Dim numb As Double
Dim ret_val As Integer

numb = 26.9345
ret_val = ivprintf(id, “%.2lf” + Chr$(10),
numb)

Sends: 26.93

, Array Size The comma operator is a format modifier which allows
you to read or write a comma-separated list of numbers (only valid with
%d and %f format codes). It is a comma followed by an integer. The
integer indicates the number of elements in the array. The comma
operator has the format of ,dd where dd is the number of elements to
read or write.

This example specifies a comma-separated list to be sent to the session
specified by id.

Dim list(4) As Integer
Dim ret_val As Integer
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
list(0) = 101
list(1) = 102
list(2) = 103
list(3) = 104
list(4) = 105

ret_val = ivprintf(id, “%,5d” + Chr$(10),
 list(0))

Sends: 101,102,103,104,105

Argument Modifier The optional argument modifier h, l, w, z, or Z
is dependent on the format code.

Format Codes for sending and receiving formatted I/O are different.
The following tables summarize the format codes for each.

Table 11 Argument Modifiers in Visual Basic Application

Argument
Modifier

Format
Codes

Description

h d,i Corresponding argument is an Integer.

h f Corresponding argument is a Single.

l d,i Corresponding argument is a Long.

l d,B Corresponding argument is an array of Long.

l f Corresponding argument is a Double.

w d,B Corresponding argument is an array of Integer.

z d,B Corresponding argument is an array of Single.

Z d,B Corresponding argument is an array of Double.

Table 12 ivprintf Format Codes in Visual Basic Application

Format
Codes

Description

d, i Corresponding argument is an Integer.
49

50

3 Programming with SICL
This example receives data from the session specified by the id
parameter and converts the data to a string:

b, B Not supported in Visual Basic.

c,C Not supported in Visual Basic.

t Not supported in Visual Basic.

s,S Not supported in Visual Basic.

% Sends an ASCII percent (%) character.

o,u,x,X Corresponding argument will be treated as an Integer.

f,e,E,g,G Corresponding argument is a Double.

n Corresponding argument is an Integer.

F Corresponding arg is a pointer to a FILE descriptor.

Table 13 ivscanf format codes in Visual Basic Application

Format
Codes

Description

d,i,n Corresponding argument must be an Integer.

e,f,g Corresponding argument must be a Single.

c Corresponding argument is a fixed length String.

s,S,t Corresponding argument is a fixed length String.

o,u,x Corresponding argument must be an Integer.

[Corresponding argument must be a fixed length character
String.

F Not supported in Visual Basic.

Table 12 ivprintf Format Codes in Visual Basic Application

Format
Codes

Description
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Dim ret_val As Integer
Dim data As String * 180
ret_val = ivscanf(id, “%180s”, data)

‘ Example: Formatted I/O (Visual Basic)

Option Explicit
'''
'nonfmt.bas
'The following subroutine measures AC voltage
'on a multimeter and prints out the results.
'''

Sub Main()

 Dim dvm As Integer
 Dim strres As String * 20 'Fixed-length String
 Dim actual As Long

 'Open the multimeter session
 '"gpib0" is the SICL Interface name as defined
 'in the Connection Expert
 '"23" is the instrument gpib address on the bus
 'Change these to the SICL Name and gpib address
 'for your instrument

 dvm = iopen("gpib0,23")
 Call itimeout(dvm, 5000)

 'Initialize dvm
 Call iwrite(dvm, "*RST" + Chr$(10), 5, 1, 0&)

 'Set up multimeter and take measurements
 Call iwrite(dvm, "CALC:DBM:REF 50" + _
 Chr$(10), 16, 1, 0&)

 Call iwrite(dvm, "MEAS:VOLT:AC? 1, 0.001") +
 Chr$(10), 23, 1, 0&)

 'Read measurements
 Call iread(dvm, strres, 20, 0&, actual)

 'Display the results
 MsgBox "Result is " + Left$(strres, actual)
51

52

3 Programming with SICL
 'Close the multimeter session
 Call iclose(dvm)

 Exit Sub

End Sub

Format Strings In the format string for ivprintf, when the special
characters Chr$(10) are used, the output buffer to the device is flushed.
All characters in the output buffer will be written to the device with an
END indicator included with the last byte. This means you can control
at what point you want the data written to the device.

If no Chr$(10) is included in the format string for an ivprintf call, the
characters converted are stored in the output buffer. It will require
another call to ivprintf or a call to iflush to have those characters
written to the device. This can be very useful in queuing up data to send
to a device. It can also raise I/O performance by doing a few large writes
instead of several smaller writes.

The format string for ivscanf ignores most white-space characters. Two
white-space characters that it does not ignore are newlines (Chr$(10))
and carriage returns (Chr$(13)). These characters are treated just like
normal characters in the format string, which must match the next
non-white-space character read from the device.

Formatted I/O Buffers The SICL software maintains both a read
and write buffer for formatted I/O operations. Occasionally, you may
want to control the actions of these buffers.

The write buffer is maintained by the ivprintf function. It queues
characters to send to the device so that they are sent in large blocks, thus
increasing performance. The write buffer automatically flushes when it
sends a newline character from the format string. The write buffer may
occasionally be flushed at other non-deterministic times, such as when
the buffer fills. When the write buffer flushes, it sends its contents to the
device.

The read buffer is maintained by the ivscanf function. It queues the data
received from a device until it is needed by the format string. Flushing
the read buffer destroys the data in the buffer and guarantees that the
next call to ivscanf reads data directly from the device rather than data
that was previously queued.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
NOTE Flushing the read buffer also includes reading all pending response data
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator
from the device.
Related Formatted I/O Functions These functions are related to
formatted I/O in Visual Basic:

Non-Formatted I/O

There are two non-buffered, non-formatted I/O functions called iread
and iwrite. These are raw I/O functions and do not intermix with the
formatted I/O functions. If raw I/O must be mixed, use the ifread and
ifwrite functions that have the same parameters as iread and iwrite, but
read/write raw data from/to the formatted I/O buffers.

iread Function The iread function reads raw data from the device
or interface specified by the id parameter and stores the results in the
location where buf is pointing.

Table 14 Related Formatted I/O Functions

I/O
Function

Description

ifread Obtains raw data directly from the read formatted I/O buffer.
This is the same buffer that ivscanf uses.

ifwrite Writes raw data directly to the write formatted I/O buffer. This
is the same buffer that ivprintf uses.

ivprintf Converts data via a format string and converts the arguments
appropriately.

ivscanf Reads data from a device/interface, converts data via a format
string, and assigns the value to your arguments.

iflush Flushes the formatted I/O read and write buffers. A flush of the
read buffer means that any data in the buffer is lost. A flush of
the write buffer means that any data in the buffer is written to
the session’s target address.
53

54

3 Programming with SICL
C sample:

iread(id, buf, bufsize, reason, actualcnt);

VB sample:

Call iread(id, buf, bufsize, reason, actualcnt)

iwrite Function The iwrite function sends the data pointed to by
buf to the interface or device specified by id.

C sample:

iwrite(id, buf, datalen, end, actualcnt);

VB sample:

Call iwrite(id, buf, datalen, end, actualcnt)

Sample: Non-Formatted I/O (C) This C language program
illustrates using non-formatted I/O to communicate with a multimeter
over the GPIB interface. The SICL non-formatted I/O functions iwrite
and iread are used for communication. A similar example was used to
illustrate formatted I/O earlier in this chapter.

/* nonfmt.c
This example program measures AC voltage on a
multimeter and prints the results*/

#include <sicl.h>
#include <stdio.h>

main()

 {
 INST dvm;
 char strres[20];
 unsigned long actual;

 /* Log message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen (“gpib0,16”);
 itimeout (dvm, 10000);
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
 /*Initialize dvm*/
 iwrite (dvm, “*RST\n”, 5, 1, NULL);

 /*Set up multimeter and take measurements*/
 iwrite (dvm,”CALC:DBM:REF 50\n”,16,1,NULL);
 iwrite (dvm,”MEAS:VOLT:AC? 1,
 0.001\n”,23,1,NULL);

 /* Read measurements */
 iread (dvm, strres, 20, NULL, &actual);

 /* NULL terminate result string and print the
 results*/
 /* This technique assumes the last byte sent
 was a line-feed */

 if (actual){
 strres[actual - 1] = (char) 0;
 printf(“Result is %s\n”, strres);
 }

 /* Close the multimeter session */
 iclose(dvm);

 return 0; }

Sample: Non-Formatted I/O (Visual Basic)

' nonfmt.bas
' The following subroutine measures AC voltage
‘ on a multimeter and prints the results.
Sub Main ()
 Dim dvm As Integer
 Dim strres As String * 20
 Dim actual As Long ' Open the multimeter
session
 dvm = iopen(“gpib0,16”)
 Call itimeout(dvm, 10000)

 ' Initialize dvm
 Call iwrite(dvm,ByVal “*RST” + Chr$(10), 5,
 1,\ 0&)
55

56

3 Programming with SICL
 ' Set up multimeter and take measurements
 Call iwrite(dvm,ByVal “CALC:DBM:REF 50” +
 Chr$(10),16,1, 0&)

 Call iwrite(dvm,ByVal “MEAS:VOLT:AC? 1, 0.001”
 + Chr$(10),23,1, 0&)

 ' Read measurements
 Call iread(dvm,ByVal strres, 20, 0&, actual)

 ' Print the results
 Print “Result is “ + Left$(strres, actual)

 ' Close the multimeter session
 Call iclose(dvm)

 Exit Sub

End Sub
Handling Asynchronous Events
Asynchronous events are events that happen outside the control of your
application. These events include service requests (SRQs) and
interrupts. An SRQ is a notification that a device requires service. Both
devices and interfaces can generate SRQs and interrupts.
NOTE SICL allows installation of SRQ and interrupt handlers in C programs,
but does not support them in Visual Basic programs.
By default, asynchronous events are enabled. However, the library will
not generate any events until the appropriate handlers are installed in
your program.

If an application uses asynchronous events (ionsrq, ionintr), a callback
thread is created by the underlying SICL implementation to service the
asynchronous event. This thread will not be terminated until some other
thread of the application calls iclose. Some example declarations are:
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
void SICLCALLBACK my_int_handler(INST id, int
 reason,long sec)
 {
 /* your code here */
 }

void SICLCALLBACK my_srq_handler(INST id)
 {
 /* your code here */
 }

SRQ Handlers

The ionsrq function installs an SRQ handler. The currently installed
SRQ handler is called any time its corresponding device generates an
SRQ. If an interface is unable to determine which device on the
interface generated the SRQ, all SRQ handlers assigned to that interface
will be called.

Therefore, an SRQ handler cannot assume that its corresponding device
generated an SRQ. The SRQ handler should use the ireadstb function to
determine whether its device generated an SRQ. If two or more sessions
refer to the same device, the handlers for each of the sessions are called.

Interrupt Handlers

Two distinct steps are required for an interrupt handler to be called.
First, the interrupt handler must be installed. Second, the interrupt event
or events need to be enabled. The ionintr function installs an interrupt
handler. The isetintr function enables the interrupt event or events.

An interrupt handler can be installed with no events enabled.
Conversely, interrupt events can be enabled with no interrupt handler
installed. Only when both an interrupt handler is installed and interrupt
events are enabled will the interrupt handler be called.

Temporarily Disabling/Enabling Asynchronous Events

To temporarily prevent all SRQ and interrupt handlers from executing,
use the iintroff function to disable all asynchronous handlers for all
sessions in the process.
57

58

3 Programming with SICL
To re-enable asynchronous SRQ and interrupt handlers previously
disabled by iintroff, use the iintron function. This enables all
asynchronous handlers for all sessions in the process that had been
previously enabled. These functions do not affect the isetintr values or
the handlers (ionsrq or ionintr). The default value for both functions is
on.

For operating systems that support multiple threads (such as Windows
2000 and XP), SRQ and interrupt handlers execute on a separate thread
(a thread created and managed by SICL). This means a handler can be
executing when the iintroff call is made. If this occurs, the handler will
continue to execute until it has completed.

An implication of this is that the SRQ or interrupt handler may need to
synchronize its operation with the application’s primary thread. This
could be accomplished via WIN32 synchronization methods or by using
SICL locks, where the handler uses a separate session to perform its
work.

Calls to iintroff/iintron may be nested, meaning that there must be an
equal number of ons and offs. Thus, calling the iintron function may
not actually re-enable interrupts.

Occasionally, you may want to suspend a process and wait until an
event occurs that causes a handler to execute. The iwaithdlr function
causes the process to suspend until an enabled SRQ or interrupt
condition occurs and the related handler executes. Once the handler
completes its operation, this function returns and processing continues.

For this function to work properly, your application must turn interrupts
off (i.e., use iintroff). The iwaithdlr function behaves as if interrupts
are enabled. Interrupts are still disabled after the iwaithdlr function has
completed.

Interrupts must be disabled if you use iwaithdlr. Use iintroff to disable
interrupts. The reason for disabling interrupts is that there may be a race
condition between the isetintr and iwaithdlr. If you only expect one
interrupt, it might come before the iwaithdlr. This may or may not have
the desired effect. For example:

...
ionintr (gpib0, act_isr);
isetintr (gpib0, I_INTR_INTFACT, 1);
...
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
iintroff ();
igpibpassctl (gpib0, ba);
while (!done)
iwaithdlr (0);
iintron ();
...
Handling Errors
This section provides guidelines to handling errors in SICL, including:

• Logging SICL Error Messages

• Using Error Handlers in C

• Using Error Handlers in Visual Basic

Logging SICL Error Messages

This section shows how to use the Event Viewer to log SICL error
messages. Run the Event Viewer after you run the SICL program.

Using the Event Viewer SICL logs internal messages as Windows
events. This includes error messages logged by the I_ERROR_EXIT
and I_ERROR_NOEXIT error handlers. While developing your SICL
application or tracking down problems, you can view these messages by
opening the Agilent IO Control (IO icon on the taskbar) and clicking
Event Viewer. Both system and application messages can be logged to
the Event Viewer from SICL. SICL messages are identified by SICL
LOG or by the driver name (e.g., ag341i32).

Using Error Handlers in C

When a SICL function call in a C/C++ program results in an error, it
typically returns a special value such as a NULL pointer or a non-zero
error code. SICL allows you to install an error handler for all SICL
functions within a C/C++ application to provide a convenient
mechanism for handling errors.

Installing an error handler allows your application to ignore the return
value, and permits the error procedure to detect errors and recover. The
error handler is called before the function that generated the error
completes. Error handlers are per process (not per session or per thread).
59

60

3 Programming with SICL
ionerror Function The function ionerror used to install an error
handler is defined as:

int ionerror (proc);
void (*proc)();

where:

void SICLCALLBACK proc (id, error);
INST id;
int error;

The routine proc is the error handler and is called whenever a SICL
error occurs. Two special reserved values of proc may be passed to the
ionerror function.

This mechanism has substantial advantages over other I/O libraries,
because error handling code is located away from the center of your
application.

Sample: Installing an Error Handler (C) Typically, error
handling code is intermixed with the I/O code in an application.
However, with SICL error handling routines, no special error handling
code is inserted between the I/O calls. Instead, a single line at the top
(calling ionerror) installs an error handler that gets called any time an
error occurs. In this code sample, a standard, system-defined error
handler is installed that logs a diagnostic message and then exits.

/* errhand.c
This example demonstrates how a SICL error
handler can be installed. */

#include <sicl.h>
#include <stdio.h>

Table 15 Reserved Values for proc

I_ERROR_EXIT This value installs a special error handler which will log a
diagnostic message and then terminate the process.

I_ERROR_NOE
XIT

This value installs a special error handler which will log a
diagnostic message and then allow the process to continue
execution.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
main ()
 {
 INST dvm;
 double res;

 ionerror (I_ERROR_EXIT);
 dvm = iopen (“gpib0,16”);
 itimeout (dvm, 10000);
 iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?”);
 iscanf (dvm, “%lf”, &res);
 printf (“Result is %lf\n”, res);
 iclose (dvm);

 return 0;
 }

Sample: Writing an Error Handler (C) This is an example of
writing and implementing your own error handler.
NOTE If an error occurs in iopen, the id passed to the error handler may not be
valid.
/* errhand2.c
This program shows how you can install your own
error handler*/
#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

void SICLCALLBACK err_handler (INST id, int
error) {
fprintf (stderr, “Error: %s\n”, igeterrstr
(error));
exit (1);
}
main ()
 {
 INST dvm;
 double res;
61

62

3 Programming with SICL
 ionerror (err_handler);
 dvm = iopen (“gpib0,16”);
 itimeout (dvm, 10000);
 iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?”);
 iscanf (dvm, “%lf”, &res);
 printf (“Result is %lf\n”, res);
 iclose (dvm);

 return 0;
 }

Using Error Handlers in Visual Basic

Typically in an application, error handling code is intermixed with the
I/O code. However, by using Visual Basic’s error handling capabilities,
you need not insert special error handling code between the I/O calls.
Instead, a single line at the top (On Error GoTo) installs an error
handler in the subroutine that gets called any time a SICL or Visual
Basic error occurs.

When a SICL call results in an error, the error is communicated to
Visual Basic by setting Visual Basic’s Err variable to the SICL error
code. Error$ is set to a human-readable string that corresponds to Err.
This allows SICL to be integrated with Visual Basic’s built-in error
handling capabilities. SICL programs written in Visual Basic can set up
error handlers with the Visual Basic On Error statement.

The SICL ionerror function for C programs is not used with Visual
Basic. Similarly, the I_ERROR_EXIT and I_ERROR_NOEXIT default
handlers used in C programs are not defined for Visual Basic.

When an error occurs within a Visual Basic program, the default
behavior is to display a dialog box indicating the error and then halt the
program. If you want your program to intercept errors and keep
executing, you will need to install an error handler with the On Error
statement. For example:

On Error GoTo MyErrorHandler

This will cause your program to jump to code at the label
MyErrorHandler when an error occurs. Note that the error handling
code must exist within the subroutine or function where the error
handler was declared.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
If you do not want to call an error handler or have your application
terminate when an error occurs, you can use the On Error statement to
tell Visual Basic to ignore errors. For example:

On Error Resume Next

This tells Visual Basic to proceed to the statement following the
statement in which an error occurs. In this case, you could call the
Visual Basic Err function in subsequent lines to find out which error
occurred.

Visual Basic error handlers are only active within the scope of the
subroutine or function in which they are declared. Each Visual Basic
subroutine or function that wants an error handler must declare its own
error handler. This is different than the way SICL error handlers
installed with ionerror work in C programs. An error handler installed
with ionerror remains active within the scope of the whole C program.

Sample: Error Handlers (Visual Basic) In this Visual Basic code
sample, the error handler displays the error message in a dialog box and
then terminates the program. When an error occurs, the Visual Basic
Err variable is set to the error code and the Error$ variable is set to the
error message string for the error that occurred.

Option Explicit
'''
'errhand.bas
'In this example, the error handler displays the
'error message in a Message Box and then
'terminates the program.
'''

Sub Main()

 Dim dvm As Integer
 Dim res As Double

 'Install an error handler
 On Error GoTo ErrorHandler

 '"gpib0" is the SICL Interface name as
 'defined in Connection Expert
63

64

3 Programming with SICL
 '"22" is the instrument gpib address on the bus
 'Change these to the SICL Name and gpib address
 ‘for your instrument

 dvm = iopen("gpib0,22")

 'Set timeout to 5 seconds
 Call itimeout(dvm, 5000)

 'Take a measurement
 Call ivprintf(dvm, "MEAS:VOLT:DC?" + Chr$(10),
 0&)

 'Read the results
 Call ivscanf(dvm, "%lf", res)

 MsgBox "Result is " + Format(res)

 iclose (dvm)

 'Tell SICL to cleanup for this task
 Call siclcleanup

 Exit Sub

ErrorHandler:

 'Display the error message
 MsgBox "*** Error : " + Error, vbExclamation

End Sub
Using Locks
Because SICL allows multiple sessions on the same device or interface,
the action of opening does not mean you have exclusive use. In some
cases this is not an issue, but it should be a consideration if you are
concerned with program portability.

What are Locks?

The SICL ilock function is used to lock an interface or device. The
SICL iunlock function is used to unlock an interface or device.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Locks are performed on a per-session (device, interface, or commander)
basis. Also, locks can be nested. The device or interface only becomes
unlocked when the same number of unlocks are done as the number of
locks. Doing an unlock without a lock returns the error
I_ERR_NOLOCK.

What does it mean to lock? Locking an interface (from an interface
session) restricts other device and interface sessions from accessing this
interface. Locking a device restricts other device sessions from
accessing this device; however, other interface sessions may continue to
access the interface for this device. Locking a commander (from a
commander session) restricts other commander sessions from accessing
this commander.
CAUTION It is possible for an interface session to access a device locked from a
device session. In such a case, data may be lost from the device session
that was underway. For example, Agilent VEE applications use SICL
interface sessions. Therefore, I/O operations from VEE applications can
supersede any device session that has a lock on a particular device.
Not all SICL routines are affected by locks. Some routines that set or
return session parameters never touch the interface hardware and
therefore work without locks. For information on using locks in
multi-threaded SICL applications over LAN, see Chapter 7, “Using
SICL with LAN.”

Lock Actions

If a session tries to perform any SICL function that obeys locks on an
interface or device currently locked by another session, the default
action is to suspend the call until the lock is released, or, if a timeout is
set, until the call times out.

This action can be changed with the isetlockwait function. If the
isetlockwait function is called with the flag parameter set to 0 (zero),
the default action is changed. Rather than causing SICL functions to
suspend, an error will be returned immediately.

To return to the default action, to suspend and wait for an unlock, call
the isetlockwait function with the flag set to any non-zero value.
65

66

3 Programming with SICL
Locking in a Multi-User Environment

In a multi-user/multi-process environment where devices are being
shared, it is a good idea to use locking to ensure exclusive use of a
particular device or set of devices. However, as explained in “Using
Locks” on page 64, an interface session can access a device locked from
a device session.

In general, it is not good programming practice to lock a device at the
beginning of an application and unlock it at the end. This can result in
deadlocks or long waits by others who want to use the resource.

The recommended procedure is to use locking per transaction. Per
transaction means that you lock before you set up the device, then
unlock after all desired data has been acquired. When sharing a device,
you cannot assume the state of the device, so the beginning of each
transaction should have any setup needed to configure the device or
devices to be used.

Sample: Device Locking (C)

/* locking.c
This example shows how device locking can be
used to gain exclusive access to a device*/

#include <sicl.h>
#include <stdio.h>

main()
 {
 INST dvm;
 char strres[20];
 unsigned long actual;

 /* Log message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen (“gpib0,16”);
 itimeout (dvm, 10000);
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
 /* Lock the multimeter device to prevent
 access from other applications*/
 ilock(dvm);

 /* Take a measurement */
 iwrite (dvm, “MEAS:VOLT:DC?\n”, 14, 1, NULL);

 /* Read the results */
 iread (dvm, strres, 20, NULL, &actual);

 /* Release the multimeter device for use by
 others */
 iunlock(dvm);

 /* NULL terminate result string and print
 results */
 /* This technique assumes the last byte sent
 was a line-feed */

 if (actual) {
 strres[actual - 1] = (char) 0;
 printf(“Result is %s\n”, strres);
 }

 /* Close the multimeter session */
 iclose(dvm);

 return 0;}

Sample: Device Locking (Visual Basic)

Option Explicit
'''
' locking.bas
' This example shows how device locking can be
 used to gain exclusive access to a device
'''

Sub Main()

 Dim dvm As Integer
 Dim strres As String * 20 'Fixed length String
 Dim actual As Long
67

68

3 Programming with SICL
 'Install an error handler
 On Error GoTo ErrorHandler

 'Open the multimeter session
 dvm = iopen("gpib0,23")
 Call itimeout(dvm, 10000)

 'Lock the multimeter device to prevent access
 ‘from other applications
 Call ilock(dvm)

 'Take a measurement
 Call iwrite(dvm, "MEAS:VOLT:DC?" + Chr$(10),
 14, 1, 0&)

 'Read the results
 Call iread(dvm, strres, 20, 0&, actual)

 'Release the multimeter for use by others
 Call iunlock(dvm)

 'Display the results
 MsgBox "Result is " + Left$(strres, actual)

 'Close the multimeter session
 Call iclose(dvm)

 Exit Sub

ErrorHandler:

 'Display the error message.
 MsgBox "*** Error : " + Error

End Sub
Additional Sample Programs
This section contains two additional sample programs that provide
guidelines to help you develop SICL applications.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Sample: Oscilloscope Program (C)

This C sample programs an oscilloscope (such as an Agilent 54601),
uploads the measurement data, and instructs the oscilloscope to print its
display to a printer. This program uses many SICL features and
illustrates some important C and Windows programming techniques for
SICL.

Program Files The oscilloscope sample files are located in the
C:\Program Files\Agilent\IO Libraries Suite\
c\samples\scope subdirectory, if Agilent IO Libraries Suite was
installed in the default directory. The subdirectory contains the source
program and a number of files to help you build the sample with specific
compilers, depending on the Windows environment used.

scilloscope Program
Table 16 Program Files for the C O

SCOPE.C Sample program source file.

SCOPE.H Sample program header file.

SCOPE.RC Sample program resource file.

SCOPE.ICO Sample program icon file.
Building the Project File This section shows how to create the
project file for this sample using Microsoft Visual C++ 6.0.

To compile and link the sample program with Microsoft Visual C:

1 Select File > New from the menu. Select the Project tab.

2 Type the name you want for the project in the edit box labeled
Project name. Then, select Win32 Application from the project
type list box. Specify a directory location for the project in the
Location edit box. Click the OK button.

3 The Win32 Application wizard will appear. Select An empty project
and click Finish.

4 Click Project > Add to Project > Files.... Browse to the sample
folder (by default, this is C:\Program Files\Agilent\
IO Libraries Suite\ProgrammingSamples\C\SICL\
scope). Select the source files scope.c, scope.rc, and
69

70

3 Programming with SICL
scope.h to add them to the project. Also add sicl32.lib from
the lib directory (by default, C:\
Program Files\Agilent\IO Libraries Suite\lib).

5 Select Project > Settings from the menu and click the C/C++ tab.
Select Code Generation from the Category list box. Then, select
Multithreaded DLL from the Use run-Time library list box and
click OK.

6 Select Tools > Options from the menu and click the Directories tab
in the Options dialog box. Select Include Files from the Show
Directories for: list box, click the New icon, click below the last
directory in the list box, browse to the IO Libraries Suite include
directory (by default, C:\Program Files\Agilent\
IO Libraries Suite\include) and click OK.

7 Select Build > Build samplename.exe to build the application.

If there are no errors reported, you can execute the program by selecting
Build > Execute samplename.exe. An application window will open.
Several commands are available from the Action menu, and any results
or output will be printed in the program window. To end the program,
select File > Exit from the program menu.

Program Overview You may want to view the program with an
editor as you read through this section. The entire program is not listed
here because of its length. This program illustrates specific SICL
features and programming techniques and is not meant to be a robust
Windows application. See the SICL online Help for detailed
information on the SICL features used in this program.

Custom Error Handler The oscilloscope program defines a custom
error handler that is called whenever an error occurs during a SICL call.
The handler is installed using ionerror before any other SICL function
call is made, and will be used for all SICL sessions created in the
program.

void SICLCALLBACK my_err_handler(INST id, int
 error)
 {
 ...
 sprintf(text_buf[num_lines++], “session id=%d,
 error = %d:%s”, id, error, eterrstr(error));
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
 sprintf(text_buf[num_lines++], “Select ‘File |
 Exit’ to exit program!”);...

 // If error is from scope, disable I/O actions
 // by graying out menu picks.
 if (id == scope) {
 ... code to disallow further I/O requests
 from user
 }
 }

The error number is passed to the handler, and igeterrstr is used to
translate the error number into a more useful description string. If
desired, different actions can be taken depending on the particular error
or id that caused the error.

Locks SICL allows multiple applications to share the same interfaces
and devices. Different applications may access different devices on the
same interface, or may alternately access the same device (a shared
resource). If your program will be executing along with other SICL
applications, you may want to prevent another application from
accessing a particular interface or device during critical sections of your
code. SICL provides the ilock/iunlock functions for this purpose.

void get_data (INST id)
 {
 ... non-SICL code

 /* lock device to prevent access from other
 applications */
 ilock(scope);

 ...

 SICL I/O code to program scope and get data

 /* release the scope for use by other
 applications */
 iunlock(scope);

 ... non-SICL code
 }
71

72

3 Programming with SICL
Lock the interface or device with ilock before critical sections of code,
and release the resource with iunlock at the end of the critical section.
Using ilock on a device session prevents any other device session from
accessing the particular device. Using ilock on an interface session
prevents any other session from accessing the interface and any device
connected to the interface.

Formatted I/O SICL provides extensive formatted I/O functionality
to help facilitate communication of I/O commands and data. The sample
program uses a few of the capabilities of the iprintf/iscanf/ipromptf
functions and their derivatives.

The iprintf function is used to send commands. As with all of the
formatted I/O functions, the data is actually buffered. In this call, the \n
at the end of the format:

 iprintf(id,”:waveform:preamble?\n”);

causes the buffer to be flushed and the string to be output. If desired,
several commands can be formatted before being sent and then all
commands outputted at once. The formatted I/O buffers are
automatically flushed whenever the buffer fills (see isetbuf) or when an
iflush call is made.

When reading data back from a device, the iscanf function is used. To
read the preamble information from the oscilloscope, use the format
string “%,20f\n”:

iscanf(id,”%,20f\n”,pre);

This string expects to input 20 comma-separated floating point numbers
into the pre array.

To upload the oscilloscope waveform data, use the string “%#wb\n”.
The wb indicates that iscanf should read word-wide binary data. The #
preceding the data modifier tells iscanf to get the maximum number of
binary words to read from the next parameter (&elements):

iscanf(id,”%#wb\n”,&elements,readings);

The read will continue until an EOI indicator is received or the
maximum number of words have been read.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Interface Sessions Sometimes it may be necessary to control the
GPIB bus directly instead of using SICL commands. This is
accomplished using an interface session and interface-specific
commands. This sample uses igetintfsess to get a session for the
interface to which the oscilloscope is connected. (If you know which
interface is being used, it is also possible to just use an iopen call on that
interface.)

Then, igpibsendcmd is used to send some specific command bytes on
the bus to tell the printer to listen and the oscilloscope to send its data.
The igpibatnctl function directly controls the state of the ATN signal on
the bus.

void print_disp (INST id)
 {
 INST gpib0intf ;
 ...

 gpib0intf = igetintfsess(id);
 ...

 /* tell oscilloscope to talk and printer to
 listen. The listen command is formed by adding
 32 to the device address of the device to be a
 listener. The talk command is formed by adding
 64 to the device address of the device to be a
 talker. */

 cmd[0] = (unsigned char)63 ; // 63 is unlisten
 cmd[1] = (unsigned char)(32+1) ; /* printer at
 addr 1,make it a listener */
 cmd[2] = (unsigned char)(64+7) ; /* scope at
 addr 7,make it a talker */
 cmd[3] = ‘\0’; /* terminate the string */

 length = strlen (cmd) ;

 igpibsendcmd(gpib0intf,cmd,length);
 igpibatnctl(gpib0intf,0);

 ...
 }
73

74

3 Programming with SICL
SRQs and iwaithdlr Many instruments are capable of using the
service request (SRQ) signal on the GPIB bus to signal the controller
that an event has occurred. If an application needs to respond to SRQs,
an SRQ handler must be installed with the ionsrq call. All SRQ
handlers are called whenever an SRQ occurs.

In the sample handler, the oscilloscope status is read to verify that the
oscilloscope asserted SRQ, and then the SRQ is cleared and a status
message is displayed. If the oscilloscope did not assert SRQ, the handler
prints an error message.

void SICLCALLBACK my_srq_handler(INST id)
 {
 unsigned char status;

 /* make sure it was the scope requesting
 service */
 ireadstb(id,&status);

 if (status &= 64) {
 /* clear the status byte so the scope can
 assert SRQ again if needed. */
 iprintf(id,”*CLS\n”);
 sprintf(text_buf[num_lines++], “id = %d, SRQ
 received!, stat=0x%x”, id,status);
 } else {
 sprintf(text_buf[num_lines++],
 “SRQ received, but not from the scope”);
 }
 InvalidateRect(hWnd, NULL, TRUE);
 }

In the routine that commands the oscilloscope to print its display, the
oscilloscope is set to assert SRQ when printing is finished. While the
oscilloscope is printing, the sample program has the application suspend
execution. SICL provides the function iwaithndlr that will suspend
execution and wait until either an event occurs that would call a handler,
or a specified timeout value is reached.

In the sample, interrupt events are turned off with iintroff so that all
interrupts are disabled while interrupts are being set up. Then, the SRQ
handler is installed with ionsrq. Code to program the oscilloscope to
print and send an SRQ is next, then the call to iwaithdlr, with a timeout
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
value of 30 seconds. When the oscilloscope finishes printing and sends
the SRQ, the SRQ handler will be executed and then iwaithdlr will
return. A call to iintron re-enables interrupt events.

void print_disp (INST id)
 {
 ...

 iintroff();
 ionsrq(id,my_srq_handler);/* Not supported on
 82335 */

 /* tell the scope to SRQ on ‘operation
 complete’ */
 iprintf(id,”*CLS\n”);
 iprintf(id,”*SRE 32 ; *ESE 1\n”) ;

 /* tell the scope to print */
 iprintf(id,”:print ; *OPC\n”) ;

 ... code to tell the scope to print

 /* wait for SRQ before continuing program */
 iwaithdlr(30000L);
 iintron();

 sprintf (text_buf[num_lines++],”Printing
 complete!”) ;
 ...
 }

Sample: Oscilloscope Program (Visual Basic)

This Visual Basic sample program uses SICL to get and plot waveform
data from an Agilent 54601A (or compatible) oscilloscope. This routine
is called each time the cmdGetWaveform command button is clicked.

Program Files The oscilloscope sample files are located in the
C:\Program Files\Agilent\IO Libraries Suite\
vb\samples\scope subdirectory, if Agilent IO Libraries Suite was
installed in the default directory. The files are listed in the following
table.
75

76

3 Programming with SICL
Loading and Running the Program Follow these steps to load and
run the SCOPE sample program:

1 Connect an Agilent 54601A oscilloscope to your interface.

2 Run Visual Basic 6.0.

3 Open the project file scope.vbp by selecting File > Open Project
from the Visual Basic menu.

4 Edit the scope.frm file to set the scope_address constant to the
address of your oscilloscope. To do this:

a If a Project Tree is not already visible, select View > Project
Explorer from the Visual Basic menu.

b Under Forms, right-click scope.frm and select View Code.

c Edit the following line so the address is set to the address of the
oscilloscope:

 Private Const scope_address = "gpib0,7" '
 Address of SCOPE

5 Run the program by pressing the F5 key or by clicking the RUN
button on the Visual Basic Toolbar.

6 Press the Waveform button to get and display the waveform.

7 Press the Integral button to calculate and display the integral.

8 After performing these steps, you can create a standalone executable
(.exe) version of this program by selecting File > Make
scope.exe... from the Visual Basic menu.

Program Overview You may want to view the program with an
editor as you read through this section. The entire program is not listed
here because of its length. This program illustrates specific SICL

Table 17 Files Used for the Oscilloscope Sample Program

SCOPE.FRM Visual Basic source for the SCOPE sample program.

SCOPE.VBP Visual Basic project file for the SCOPE sample program.

SCOPE.VBW Visual Basic workspace file for the SCOPE sample
program.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
features and programming techniques and is not meant to be a robust
Windows application. See the SICL online Help for detailed
information on the SICL features used in this program.

Table 18 Functions of the Sample Program

Listing Description

CmdGetWaveform_Click Subroutine that is called when the
cmdGetWaveform command button is pressed.
The command button is labeled Waveform.

On Error This Visual Basic statement enables an error
handling routine within a procedure. In this
sample, an error handler is installed starting at
label ErrorHandler within the
cmdOutputCmd_Click subroutine.
The error handling routine is called any time an
error occurs during the processing of the
cmdGetWaveform_Click procedure. SICL
errors are handled in the same way that Visual
Basic errors are handled with the On Error
statement.

CmdGetWaveform.Enable
d

The button that causes the
cmdGetWaveform_Click routine to be called is
disabled when code is executing inside
cmdOutputCmd_Click. This is good
programming style.

iopen An iopen call is made to open a device session
for the oscilloscope. The device address for the
oscilloscope is in the scope_address string.In
this sample, the default address is “gpib0,7.”
The interface name gpib0 is the name given to
the interface with the Connection Expert utility.
The bus (primary) address of the oscilloscope
follows, in this case 7. You may want to change
the scope_address string to specify the correct
address for your configuration.
77

78

3 Programming with SICL
igetintfsess igetintfsess is called to return an interface
session id for the interface to which the
oscilloscope instrument is connected. This
interface session will be used by the following
iclear call to send an interface clear to reset the
interface.

iclear The iclear function is called to reset the
interface.

itimeout itimeout is called to set the timeout value for the
oscilloscope's device session to 3 seconds.

ivprintf The ivprintf function is called four times to set
up the oscilloscope and then request the
oscilloscope's preamble information. In each
case Chr$(10) is appended to the format string
passed as the second argument to ivprintf. This
tells ivprintf to flush the formatted I/O write
buffer after writing the string specified in the
format string.

ivscanf The ivscanf function is called to read the
oscilloscope's preamble information into the
preamble array. The preamble array is passed as
the third parameter to ivscanf. This passes the
address of the first element of the preamble
array to the ivprintf SICL function.

ivprintf ivprintf is called to prompt the oscilloscope for
its waveform data. Again, Chr$(10) is appended
to the format string passed as the second
argument to ivprintf. This tells ivprintf to flush
the formatted I/O write buffer after writing the
string specified in the format string.

Table 18 Functions of the Sample Program

Listing Description
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
iread iread is called to read in the oscilloscope's
waveform. The waveform is read in as a
specified number of bytes. The format string
passed as the third parameter to iread specifies
that a maximum of 2010 Byte values be read
into the Byte array. A null value, vbNull, is
passed as the fourth value and a Long variable,
actual, returns the number of bytes actually
read. 0& may also be used for a null value.

iclose The iclose subroutine closes the scope_id
device session for the oscilloscope as well as the
intf_id interface session obtained with
igetintfsess.

cmdGetWaveform.Enable
d

The button that causes the
cmdGetWaveform_Click routine to be called is
re-enabled when execution inside
cmdGetWaveform_Click is finished. This
allows the program to get another waveform.

Exit Sub This Visual Basic statement causes the
cmdGetWaveform_Click subroutine to be
exited after normal processing has completed.

errorhandler: This label specifies the beginning of the error
handler that was installed for this subroutine.
This handler is called whenever a run-time error
occurs.

Error$ This Visual Basic function is called to get the
error message for the error. The error returned is
the most recent run-time error when no
argument is passed to the function.

iclose The iclose subroutine is called inside the error
handler to close the scope_id device session for
the oscilloscope as well as the intf_id interface
session obtained with igetintfsess.

Table 18 Functions of the Sample Program

Listing Description
79

80

3 Programming with SICL
CmdGetWaveform.Enable
d

This re-enables the button that causes the
cmdGetWaveform_Click routine to be called.
This allows the program to get another
waveform.

Exit Sub This Visual Basic statement causes the
cmdGetWaveform_Click subroutine to be
exited after processing an error in the
subroutine's error handler.

Table 18 Functions of the Sample Program

Listing Description
Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
4
Using SICL with GPIB

This chapter shows how to open a communications session and
communicate with GPIB devices, interfaces, or controllers. The sample
programs in this chapter can be found in the following locations, if
Agilent IO Libraries Suite was installed in the default directory:

For C/C++:
C:\Program Files\Agilent\IO Libraries Suite\

ProgrammingSamples\C\SICL\

For Visual Basic:
C:\Program Files\Agilent\IO Libraries Suite\

ProgrammingSamples\VB6\SICL\

This chapter includes:

• Introduction to GPIB Interfaces

• Using GPIB Device Sessions

• Using GPIB Interface Sessions

• Using GPIB Commander Sessions

• Writing GPIB Interrupt Handlers
81Agilent Technologies

4 Using SICL with GPIB
Introduction to GPIB Interfaces
82
This section provides an introduction to using SICL with the GPIB
interface, including:

• GPIB Interfaces Overview

• Selecting a GPIB Communications Session

• SICL GPIB Functions
GPIB Interfaces Overview
This section provides an overview of GPIB interfaces, including typical
hardware configuration using the Connection Expert utility, and
example configurations using SICL.
Typical GPIB Interface
As shown in the following figure, a typical GPIB interface consists of a
Windows PC with one or more GPIB cards (PCI and/or ISA) cards
installed in the PC and one or more GPIB instruments connected to the
GPIB cards via GPIB cable. I/O communication between the PC and the
instruments is via the GPIB cards and the GPIB cable. This figure
shows GPIB instruments at addresses 3 and 5.
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
Configuring GPIB Interfaces

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB Cable

82350 GPIB Card #2

GPIB Interface (82350 PCI GPIB Cards)
An IO interface can be defined as both a hardware interface and as a
software interface. One function of the Connection Expert utility is to
associate a unique interface name with a hardware interface.

SICL uses an Interface Name or Logical Unit Number to identify an
interface. This information is passed in the parameter string of the iopen
function call in a SICL program. Connection Expert assigns a default
Interface Name and Logical Unit Number, as well as other necessary
configuration values, when the interface hardware is configured; you
can change these values by running the Connection Expert utility. See
the IO Libraries Suite Online Help for details.

Example: GPIB (82350) Interface

The GPIB interface system in the following figure consists of a
Windows PC with two 82350 GPIB cards connected to three GPIB
instruments via GPIB cables. For this system, the Connection Expert
83

84

4 Using SICL with GPIB
utility has been used to assign GPIB card #1 a SICL name of gpib0 and
to assign GPIB card #2 a SICL name of gpib1. With these names
assigned to the interfaces, the SICL addressing is as shown in the figure.
Since unique names have been assigned by Connection Expert, you can
use the iopen command to open the I/O paths shown.
Agilent SICL User’s Guide

Using SICL with GPIB 4
Selecting a GPIB Communications Session
Agilent SICL User’s Guide
When you have determined the GPIB system is set up and operating
correctly, you can start programming with the SICL functions. First, you
must determine what type of communications session to use.

The three types of communications sessions are device, interface, and
commander. To use a device session, see “Using GPIB Device
Sessions”; to use an interface session, see “Using GPIB Interface
Sessions”; to use a commander session, see “Using GPIB Commander
Sessions” in this chapter.
SICL GPIB Functions
Table 19 SICL GPIB Functions

Function Name Action

igpibatnctl Sets or clears the ATN line.

igpibbusaddr Changes bus address.

igpibbusstatus Returns requested bus data.

igpibgett1delay Returns the current T1 setting for the interface.

igpibllo Sets bus in Local Lockout Mode.

igpibpassctl Passes active control to specified address.

igpibppoll Performs a parallel poll on the bus.

igpibppollconfig Configures device for PPOLL response.

igpibppollresp Sets PPOLL state.

igpibrenctl Sets or clears the REN line.

igpibsendcmd Sends data with ATN line set.

igpibsett1delay Sets the T1 delay value for this interface.
85

4 Using SICL with GPIB
Using GPIB Device Sessions
86
A device session allows you direct access to a device without knowing
the type of interface to which it is connected. The specifics of the
interface are hidden from the user.

SICL Functions for GPIB Device Sessions

This section shows how some SICL functions are implemented for
GPIB device sessions. The data transfer functions work only when the
GPIB interface is the Active Controller. Passing control to another
GPIB device causes this device to lose active control.

Addressing GPIB Devices

To create a device session, specify the interface logical unit or symbolic
name and a particular device logical address in the addr parameter of
the iopen function. The interface logical unit and symbolic name are set
by running the Connection Expert utility.

Table 20 SICL Functions for GPIB Sessions

Functio
n

Description

iwrite Causes all devices to untalk and unlisten. It sends this controller’s
talk address followed by unlisten and then the listen address of the
corresponding device session. Then, it sends the data over the bus.

iread Causes all devices to untalk and unlisten. It sends an unlisten, then
sends this controller’s listen address followed by the talk address
of the corresponding device session. Then, it reads the data from
the bus.

ireadstb Performs a GPIB serial poll (SPOLL).

itrigger Performs an addressed GPIB group execute trigger (GET).

iclear Performs a GPIB selected device clear (SDC) on the device
corresponding to this session.
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
Opening Connection Expert To open the Connection Expert
utility, click the Agilent IO Control (IO icon on the taskbar) and click
Agilent Connection Expert. See the IO Libraries Suite Online Help for
details on this utility.

Primary and Secondary Addresses SICL supports both primary
and secondary addressing on GPIB interfaces. The primary address
must be between 0 and 30 and the secondary address must be between 0
and 30. The primary and secondary addresses correspond to the GPIB
primary and secondary addresses. Some example GPIB addresses for
device sessions are:

VXI Mainframe Connections For connections to a VXI mainframe
via an E1406 Command Module (or equivalent), the primary address
passed to iopen corresponds to the address of the Command Module,
and the secondary address must be specified to select a specific
instrument in the card cage.

Secondary addresses of 0, 1, 2, ... 30 correspond to VXI instruments at
logical addresses of 0, 8, 16, ... 240, respectively. See “GPIB Device
Session Code Samples” for a sample program to communicate with a
VXI mainframe via the GPIB interface.

Sample code to open a device session with a GPIB device at bus address
16 follows.

C sample:

INST dmm;
dmm = iopen (“gpib0,16”);

Visual Basic sample:

Dim dmm As Integer
dmm = iopen (“gpib0,16”)

Table 21 GPIB Primary and Secondary Addresses

GPIB,7 A device address corresponding to the device at primary address 7.

gpib0,3,
2

A device address corresponding to the device at primary address 3,
secondary address 2.
87

88

4 Using SICL with GPIB
GPIB Device Sessions and Service Requests There are no
device-specific interrupts for the GPIB interface, but GPIB device
sessions do support Service Requests (SRQs). On the GPIB interface,
when one device issues an SRQ, the library informs all GPIB device
sessions that have SRQ handlers installed.

This is an artifact of how GPIB handles the SRQ line. The interface
cannot distinguish which device requested service. Therefore, the
library acts as if all devices require service. The SRQ handler can
retrieve the device’s status byte by using the ireadstb function. For
more information, see “Writing GPIB Interrupt Handlers” in this
chapter.

GPIB Device Session Code Samples

This section provides C language and Visual Basic language sample
programs for GPIB device sessions.

Sample: GPIB Device Session (C) This sample opens two GPIB
communications sessions with VXI devices (via a VXI Command
Module). Then, a scan list is sent to a switch and measurements are
taken by the multimeter every time a switch is closed.

/* gpibdev.c
This example program sends a scan list to a
switch and, while looping, closes channels and
takes measurements. */

#include <sicl.h>
#include <stdio.h>

main()
 {
 INST dvm;
 INST sw;
 double res;
 int i;

 /* Log message and terminate on error */
 ionerror (I_ERROR_EXIT);
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
 /* Open the multimeter and switch sessions*/
 dvm = iopen (“gpib0,9,3”);
 sw = iopen (“gpib0,9,14”);
 itimeout (dvm, 10000);
 itimeout (sw, 10000);

 /*Set up trigger*/
 iprintf (sw, “TRIG:SOUR BUS\n”);

 /*Set up scan list*/
 iprintf (sw,”SCAN (@100:103)\n”);
 iprintf (sw,”INIT\n”);

 for (i=1;i<=4;i++)
 {
 /* Take a measurement */
 iprintf (dvm,”MEAS:VOLT:DC?\n”);

 /* Read the results */
 iscanf (dvm,”%lf”,&res);

 /* Print the results */
 printf (“Result is %lf\n”,res);

 /* Trigger to close channel */
 iprintf (sw, “TRIG\n”);
 }

 /* Close the multimeter and switch sessions */
 iclose (dvm);
 iclose (sw);

 return 0;
 }

Sample: GPIB Device Session (Visual Basic) This sample opens
two GPIB communications sessions with VXI devices (via a VXI
Command Module). Then, a scan list is sent to a switch and
measurements are taken by the multimeter every time a switch is closed.

Option Explicit
''
‘ gpibdv.bas
' This example program sends a scan list to a
89

90

4 Using SICL with GPIB
‘ switch and while looping closes channels and
‘ takes measurements.
'''

Sub Main()

 Dim dvm As Integer
 Dim sw As Integer
 Dim res As Double
 Dim i As Integer
 Dim argcount As Integer

 'Open the multimeter and switch sessions
 '"gpib0" is the SICL Interface name as defined
 'in Connection Expert

 'Change this to the SICL name you have defined

 dvm = iopen("gpib0,9,3")
 sw = iopen("gpib0,9,14")

 ' set timeouts
 Call itimeout(dvm, 10000)
 Call itimeout(sw, 10000)

 ' Set up trigger
 argcount = ivprintf(sw, "TRIG:SOUR BUS" +
 Chr$(10))

 ' Set up scan list
 argcount = ivprintf(sw, "SCAN (@100:103)" +
 Chr$(10))
 argcount = ivprintf(sw, "INIT" + Chr$(10))

 'Display Form1 and print voltage measurements
 'default form, (Name) "Form1", containing no
 ‘ controls)

 Form1.Show
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
 For i = 1 To 4
 'Take a measurement
 argcount = ivprintf(dvm, "MEAS:VOLT:DC?" +
 Chr$(10))

 ' Read the results
 argcount = ivscanf(dvm, "%lf", res)

 ' Print the results
 Form1.Print "Result is " + Format(res)

 ' Trigger switch
 argcount = ivprintf(sw, "TRIG" + Chr$(10))
 Next i

 ' Close the sessions
 Call iclose(dvm)
 Call iclose(sw)

 ' Tell SICL to cleanup for this task
 Call siclcleanup

End Sub
91

4 Using SICL with GPIB
Using GPIB Interface Sessions
92
Interface sessions allow direct, low-level control of the specified
interface, but the programmer must provide all bus maintenance settings
for the interface and must know the technical details about the interface.
Also, when using interface sessions, interface-specific functions must
be used. Thus, the program cannot be used on other interfaces and
becomes less portable.
SICL Functions for GPIB Interface Sessions
This section describes how some SICL functions are implemented for
GPIB interface sessions.

Table 22 Implementing SICL Functions for GPIB

Function Description

iwrite Sends the specified bytes directly to the interface without
performing any bus addressing. The iwrite function always clears
the ATN line before sending any bytes, thus ensuring that the
GPIB interface sends the bytes as data, not as command bytes.

iread Reads the data directly from the interface without performing any
bus addressing.

itrigger Performs a broadcast GPIB group execute trigger (GET) without
additional addressing. Use this function with igpibsendcmd to
send a UNL followed by the appropriate device addresses. This
will allow the itrigger function to be used to trigger multiple
GPIB devices simultaneously. Passing the I_TRIG_STD value to
the ixtrig function also causes a broadcast GPIB group execute
trigger (GET). There are no other valid values for the ixtrig
function.

iclear Performs a GPIB interface clear (pulses IFC), which resets the
interface.
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
Addressing GPIB Interfaces

To create an interface session on your GPIB system, specify the
particular interface logical unit or symbolic name in the addr parameter
of the iopen function. The interface logical unit and symbolic name are
set by running the Connection Expert utility.

Opening Connection Expert To open the Connection Expert
utility, click the Agilent IO Control (IO icon on the taskbar) and click
Agilent Connection Expert. See the IO Libraries Suite Online Help for
details on this utility. Example interface addresses follow.

These code samples open an interface session with the GPIB interface.

C sample:

INST hpib;
hpib = iopen (“hpib”);

Visual Basic sample:

Dim hpib As Integer
hpib = iopen (“hpib”)

GPIB Interface Sessions Interrupts There are specific interface
session interrupts that can be used. See “Writing GPIB Interrupt
Handlers” in this chapter for more information.

Table 23 Interface Names

GPIB An interface symbolic name.

hpib An interface symbolic name.

gpib2 An interface symbolic name.

IEEE488 An interface symbolic name.

7 An interface logical unit.
93

94

4 Using SICL with GPIB
GPIB Interface Sessions and Service Requests GPIB interface
sessions support Service Requests (SRQs). On the GPIB interface, when
one device issues an SRQ, the library will inform all GPIB interface
sessions that have SRQ handlers installed. For more information, see
“Writing GPIB Interrupt Handlers” in this chapter.
GPIB Interface Session Code Samples
This section provides C language and Visual Basic language sample
programs for GPIB interface sessions.

Sample: GPIB Interface Session (C)

/* gpibstat.c
This example retrieves and displays GPIB bus
status information. */

#include <stdio.h>
#include <sicl.h>

main()
 {
 INST id; /* session id */
 int rem; /* remote enable */
 int srq; /* service request */
 int ndac; /* not data accepted */
 int sysctlr; /* system controller */
 int actctlr; /* active controller */
 int talker; /* talker */
 int listener; /* listener */
 int addr; /* bus address */

 /* exit process if SICL error detected */
 ionerror(I_ERROR_EXIT);

 /* open GPIB interface session */
 id = iopen(“gpib0”);

 itimeout (id, 10000);
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
 /* retrieve GPIB bus status */
 igpibbusstatus(id, I_GPIB_BUS_REM, &rem);
 igpibbusstatus(id, I_GPIB_BUS_SRQ, &srq);
 igpibbusstatus(id, I_GPIB_BUS_NDAC, &ndac);
 igpibbusstatus(id, I_GPIB_BUS_SYSCTLR,
 &sysctlr);
 igpibbusstatus(id, I_GPIB_BUS_ACTCTLR,
 &actctlr);
 igpibbusstatus(id, I_GPIB_BUS_TALKER,
 &talker);
 igpibbusstatus(id, I_GPIB_BUS_LISTENER,
 &listener);
 igpibbusstatus(id, I_GPIB_BUS_ADDR, &addr);

 /* display bus status */
 printf(“%-5s%-5s%-5s%-5s%-5s%-5s%-5s%-5s\n”,
 REM”, “SRQ”,“NDC”, “SYS”, “ACT”,
 “TLK”,“LTN”,“ADDR”);
 printf(“%2d%5d%5d%5d%5d%5d%5d%6d\n”, rem, srq,
 ndac, sysctlr, actctlr, talker, listener,
 addr);

 /* This call is no-op for WIN32 programs.*/
 _siclcleanup();

 return 0;
 }

Sample: GPIB Interface Session (Visual Basic)

‘gpibstat.bas
‘ The following example retrieves and displays
‘ GPIB bus status information.

Sub main ()
 Dim id As Integer‘ session id
 Dim remen As Integer‘ remote enable
 Dim srq As Integer‘ service request
 Dim ndac As Integer‘ not data accepted
 Dim sysctlr As Integer‘ system controller
 Dim actctlr As Integer‘ active controller
 Dim talker As Integer‘ talker
 Dim listener As Integer‘ listener
95

96

4 Using SICL with GPIB
 Dim addr As Integer‘ bus address
 Dim header As String‘ report header
 Dim values As String‘ report output

 ‘ Open GPIB interface session
 id = iopen(“gpib0”)
 Call itimeout(id, 10000)

 ‘ Retrieve GPIB bus status
 Call igpibbusstatus(id, I_GPIB_BUS_REM, remen)
 Call igpibbusstatus(id, I_GPIB_BUS_SRQ, srq)
 Call igpibbusstatus(id, I_GPIB_BUS_NDAC, ndac)
 Call igpibbusstatus(id, I_GPIB_BUS_SYSCTLR,
 sysctlr)
 Call igpibbusstatus(id, I_GPIB_BUS_ACTCTLR,
 actctlr)
 Call igpibbusstatus(id, I_GPIB_BUS_TALKER,
 talker)
 Call igpibbusstatus(id, I_GPIB_BUS_LISTENER,
 listener)
 Call igpibbusstatus(id, I_GPIB_BUS_ADDR, addr)

 ‘ Display form1 and print results
 form1.Show
 form1.Print “REM”; Tab(7); “SRQ”; Tab(14);
 “NDC”;
 Tab(21);“SYS”; Tab(28); “ACT”; Tab(35); “TLK”;
 Tab(42); “LTN”; Tab(49);“ADDR” form1.Print
 remen;
 Tab(7); srq; Tab(14); ndac; Tab(21);sysctlr;
 Tab(28); actctlr; Tab(35); talker; Tab(42);
 listener; Tab(49); addr

 ‘ Tell SICL to clean up for this task
 Call siclcleanup

End Sub
Agilent SICL User’s Guide

Using SICL with GPIB 4
Using GPIB Commander Sessions
Agilent SICL User’s Guide
Commander sessions are intended for use on GPIB interfaces that are
not the active controller. In this mode, a computer that is not the
controller is acting like a device on the GPIB bus. In a commander
session, the data transfer routines only work when the GPIB interface is
not the active controller.
SICL Functions for GPIB Commander Sessions

NOTE Because the Agilent 82357 USB/GPIB Interface Converter and the
Agilent E5810 LAN to GPIB Gateway do not support non-controller
roles, they also do not support GPIB commander sessions.
This section describes how some SICL functions are implemented for
GPIB commander sessions.

Table 24 SICL Functions for GPIB Commander Sessions

Function Description

iwrite If the interface has been addressed to talk, the data is written
directly to the interface. If the interface has not been addressed
to talk, it will wait to be addressed to talk before writing the
data.

iread If the interface has been addressed to listen, the data is read
directly from the interface. If the interface has not been
addressed to listen, it will wait to be addressed to listen before
reading the data.

isetstb Sets the status value that will be returned on a ireadstb call
(that is, when this device is SPOLLed). Bit 6 of the status byte
has a special meaning. If bit 6 is set, the SRQ line will be set. If
bit 6 is clear, the SRQ line will be cleared.
97

4 Using SICL with GPIB
Addressing GPIB Commanders
98
To create a commander session on your GPIB interface, specify the
particular interface logical unit or symbolic name in the addr parameter
followed by a comma and the string cmdr in the iopen function.

The interface logical unit and symbolic name are set by running the
Connection Expert utility. To open Connection Expert, click the Agilent
IO Control (IO icon on the taskbar) and click Agilent Connection
Expert. See the IO Libraries Suite Online Help for details on this utility.
Example GPIB addresses for commander sessions follow.

These code samples open a commander session with the GPIB interface.

C sample:

INST gpib;
gpib = iopen (“gpib0,cmdr”);

Visual Basic sample:

Dim gpib As Integer
gpib = iopen (“gpib0,cmdr”)

GPIB Commander Sessions Interrupts There are specific
commander session interrupts that can be used. See “Writing GPIB
Interrupt Handlers” in the following section for more information.

Table 25 Addressing GPIB Commanders

GPIB,cmdr A commander session with the GPIB interface.

gpib0,cmdr A commander session with the gpib0 interface.

7,cmdr A commander session with the interface at logical unit 7.
Writing GPIB Interrupt Handlers
This section provides some additional information for writing interrupt
handlers for GPIB applications in SICL.
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
Multiple I_INTR_GPIB_TLAC Interrupts

This interrupt occurs whenever a device has been addressed to talk or
untalk, or a device has been addressed to listen or unlisten. Due to
hardware limitations, your SICL interrupt handler may be called twice
in response to any of these events.

Your GPIB application should be written to handle this situation
gracefully. This can be done by keeping track of the current talk/listen
state of the interface card and ignoring the interrupt if the state does not
change.

Handling SRQs from Multiple GPIB Instruments

GPIB is a multiple-device bus and SICL allows multiple device sessions
open at the same time. On the GPIB interface, when one device issues a
Service Request (SRQ), the library will inform all GPIB device sessions
that have SRQ handlers installed.

This is an artifact of how GPIB handles the SRQ line. The underlying
GPIB hardware does not support session-specific interrupts like VXI
does. Therefore, your application must reflect the nature of the GPIB
hardware if you expect to reliably service SRQs from multiple devices
on the same GPIB interface.

It is vital that you never exit an SRQ handler without first clearing the
SRQ line. If the multiple devices are all controlled by the same process,
the easiest technique is to service all devices from one handler. The
pseudo-code for this follows. This algorithm loops through all the
device sessions and does not exit until the SRQ line is released (not
asserted).

while (srq_asserted) {
serial_poll (device1)
if (needs_service) service_device1
serial_poll (device2)
if (needs_service) service_device2
...
check_SRQ_line
}

99

100

4 Using SICL with GPIB
Sample: Servicing Requests (C) This sample shows a SICL
program segment that implements this algorithm. Checking the state of
the SRQ line requires an interface session. Only one device session
needs to execute ionsrq because that handler is invoked regardless of
which instrument asserted the SRQ line. Assuming IEEE-488
compliance, an ireadstb is all that is needed to clear the device’s SRQ.

Since the program cannot leave the handler until all devices have
released SRQ, it is recommended that the handler do as little as possible
for each device. The previous sample assumed that only one iscanf was
needed to service the SRQ. If lengthy operations are needed, a better
technique is to perform the ireadstb and set a flag in the handler. Then,
the main program can test the flags for each device and perform the
more lengthy service.

Even if the different device sessions are in different processes, it is still
important to stay in the SRQ handler until the SRQ line is released.
However, it is not likely that a process that only knows about Device A
can do anything to make Device B release the SRQ line.

In such a configuration, a single unserviced instrument can effectively
disable SRQs for all processes attempting to use that interface. Again,
this is a hardware characteristic of GPIB. The only way to ensure true
independence of multiple GPIB processes is to use multiple GPIB
interfaces.

/* Must be global */
INST id1, id2, bus;

void handler (dummy)
INST dummy;
 {
 int srq_asserted = 1;
 unsigned char statusbyte;

 /* Service all sessions in turn until no one is
 requesting service */
 while (srq_asserted) {
 ireadstb(id1, &statusbyte);
 if (statusbyte & SRQ_BIT)
 {
 /* Actual service actions depend upon the
 application */
 iscanf(id1, “%f”, &data1);
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
 }
 ireadstb(id2, &statusbyte);
 if (statusbyte & SRQ_BIT){
 iscanf(id2, “%f”, &data2);
 }
 igpibbusstatus(bus, I_GPIB_BUS_SRQ,
 &srq_asserted);
 }
 }

main() {
 /* Device sessions for instruments */
 id1 = iopen(“gpib0, 17”);
 id2 = iopen(“gpib0, 18”);

 /* Interface session for SRQ test */
 bus = iopen(“gpib0”);

 /* Only one handler needs to be installed */
 ionsrq(id1, handler);
 .
 .
101

102

4 Using SICL with GPIB
Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
5
Using SICL with VXI

This chapter shows how to use SICL to communicate over the VXIbus.
The sample programs in this chapter can be found in the following
locations, if Agilent IO Libraries Suite was installed in the default
directory:

For C/C++: C:\Program Files\Agilent\IO Libraries Suite\
ProgrammingSamples\C\SICL\

For Visual Basic:
C:\Program Files\Agilent\IO Libraries Suite\

ProgrammingSamples\VB6\SICL\

This chapter includes:

• Introduction to VXI Interfaces

• Programming VXI Message-Based Devices

• Programming VXI Register-Based Devices

• Programming VXI Interface Sessions

• Miscellaneous VXI Interface Programming
103Agilent Technologies

5 Using SICL with VXI
Introduction to VXI Interfaces
104
This section provides an introduction to using SICL with the VXI
interface, including:

• VXI Interfaces Overview

• VXI Communications Sessions

• VXI Device Types

• SICL Functions for VXI
Agilent SICL User’s Guide

Using SICL with VXI 5
VXI Interfaces Overview
Agilent SICL User’s Guide
This section provides an overview of VXI interfaces, including typical
hardware configuration, using Connection Expert, and example
configuration using SICL.
Typical VXI Interface
As shown in the following figure, a typical VXI interface consists of
one of two main hardware configurations: E1406A Command Module
or E8491B IEEE-1394 to VXI Module.

• The E1406A Command Module version consists of a Windows PC
with an 82350 (or equivalent) GPIB card and a VXI mainframe with
an E1406A Command Module and one or more VXI instruments.
I/O communication from the PC to the VXI instruments is via the
GPIB card, GPIB cable, and E1406A Command Module.

• The E8491B Module version consists of a Windows PC with an
IEEE-1394 OHCI-Compliant (FireWire) PC card and a VXI
mainframe with an E8491B IEEE-1394 to VXI Module and one or
more VXI instruments. I/O communication from the PC to the VXI
instruments is via the PC card, IEEE-1394 to VXI cable, and E8491B
Module.
105

106

5 Using SICL with VXI
Configuring VXI Interfaces

82359 GPIB Card

Windows PC

. . .

VXI Interfaces

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI Mainframe

GPIB

. . .

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .
IEEE-1394 OHCI-

Compliant
 PC Card

IEEE-1394
to VXI
An IO interface can be defined as both a hardware interface and as a
software interface. One function of the Connection Expert utility is to
associate a unique interface name with a hardware interface.

SICL uses an Interface Name or Logical Unit Number to identify an
interface. This information is passed in the parameter string of the iopen
function call in a SICL program. Connection Expert assigns a default
Interface Name and Logical Unit Number, as well as other necessary
configuration values, when the interface hardware is configured; you
can change these values by running the Connection Expert utility. See
the Connect IO Works Online Help for details.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
Example: VXI (E1406A) Interface

The VXI interface system in the following figure consists of a Windows
PC with an 82350 GPIB card that connects to an E1406A Command
Module in a VXI Mainframe. The VXI mainframe includes one or more
VXI instruments. The E1406A is configured for primary address 9 and
logical address (LA) 0. The three VXI instruments shown have logical
addresses 8, 16, and 24.

The Connection Expert utility has been used to assign the 82350 GPIB
card a SICL name of gpib0. With these names assigned to the
interfaces, the SICL addressing is as shown in the figure. For
information on the E1406A Command Module, see the Agilent E1406A
Command Module User’s Guide. For information on VXI instruments,
see the applicable VXI Instrument User’s Guide.
107

108

5 Using SICL with VXI
Example: VXI (E8491) Interface

The VXI interface system in the following figure consists of a Windows
PC with an E8491 PC card that connects to an E8491B IEEE-1394 to
VXI Module in a VXI Mainframe. The VXI mainframe includes one or
more VXI instruments. For this system, the three VXI instruments
shown have logical addresses 8, 16, and 24.

The Connection Expert utility has been used to assign the E8491 PC
card a SICL name of vxi. With this name assigned to the interface, you
can use the SICL addressing shown in the figure. For information on the
E8491B module, see the Agilent E8491B User’s Guide. For information
on VXI instruments, see the applicable VXI Instrument User’s Guide.
E8491 PC Card

Windows PC

. . .

Interface SICL Name

SICL Name

"vxi"

SICL Addressing

iopen ("vxi,24")

VXI Interface (E18491B IEEE-1394 to VXI Module)

Open IO path to VXI instrument at logical address 24 using
E8491 PC Card and E8491 IEEE-1394 to VXI Module

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeIEEE-1394 to VXI

LA 8 LA 24 LA 16
Agilent SICL User’s Guide

Using SICL with VXI 5
VXI Communications Sessions
Agilent SICL User’s Guide
Before you begin programming your VXI system, ensure that the
system is set up and operating correctly. To begin programming a VXI
system, you must first determine the type of communication session to
be used. The two types of supported VXI communication sessions
follow. Commander Sessions are not supported with VXI interfaces.

• Device Session. A VXI device session allows direct access to a
device regardless of the type of interface to which the device is
connected.

• Interface Session. A VXI interface session allows direct, low-level
control of the specified interface that provides full control of the
activities on a given interface, such as VXI.

Device sessions are the recommended method for communicating while
using SICL, since they provide the highest level of programming, best
overall performance, and best portability.
VXI Device Types
There are two different types of VXI devices: message-based and
register-based. To program a VXIbus system that is mixed with both
message-based and register-based devices, open a communications
session for each device in the system and program as shown in the
following sections.

Message-Based Devices

Message-based devices have their own processors that allow them to
interpret high-level Standard Commands for Programmable Instruments
(SCPI) commands. When using SICL, place the SCPI command within
the SICL output function call and the message-based device then
interprets the SCPI command.

Register-Based Devices

Register-based devices typically do not have their own processor to
interpret high-level commands and therefore accept only binary data.
You can use the following methods to program register-based devices:
109

110

5 Using SICL with VXI
• Interpreted SCPI. Use the SICL iscpi interface and program using
high-level SCPI commands. Interpreted SCPI (I-SCPI) interprets
high-level SCPI commands and sends the data to the instrument.
I-SCPI is supported over LAN, but register programming (imap,
ipeek, ipoke, etc.) is not supported over LAN. I-SCPI runs on a LAN
server in a LAN-based system.

• Direct Register programming. Do register peeks and pokes and
program directly to the device’s registers with the vxi interface.

• Compiled SCPI. Use the C-SCPI product and program with
high-level SCPI commands (achieve higher throughput as well).

• Command Module. Use a Command Module to interpret the
high-level SCPI commands. The gpib interface is used with a
Command Module. A Command Module may also be accessed over
a LAN using a LAN-to-GPIB gateway.
SICL Functions for VXI Interfaces
A summary of VXI-specific functions follows. Using these VXI
interface-specific functions means that the program cannot be used on
other interfaces and, therefore, becomes less portable. These functions
will work over a LAN-gatewayed session if the server supports the
operation.

Table 26 SICL Functions for VXI Interfaces

Function Name Action

ivxibusstatus
ivxigettrigroute
ivxirminfo

ivxiservants
ivxitrigoff
ivxitrigon

ivxitrigroute
ivxiwaitnormop
ivxiws

Returns requested bus status information
Returns the routing of the requested trigger line
Returns information about VXI devices

Identifies active servants
De-asserts VXI trigger line(s)
Asserts VXI trigger line(s)

Routes VXI trigger lines
Suspends until normal operation is established
Sends a word-serial command to a device
Agilent SICL User’s Guide

Using SICL with VXI 5
Programming VXI Message-Based Devices
Agilent SICL User’s Guide
Message-based devices have their own processors which allow them to
interpret high-level SCPI commands. When using SICL, place the SCPI
command within the SICL output function call and the message-based
device interprets the SCPI command. SICL functions used for
programming message-based devices include iread, iwrite, iprintf,
iscanf, etc.
NOTE If a message-based device has shared memory, you can access the
device’s shared memory with register peeks and pokes. See
“Programming VXI Register-Based Devices” for information on
register programming.
VXI Message-Based Device Functions

This section describes how some SICL functions are implemented for
VXI device sessions for message-based devices.
111

112

5 Using SICL with VXI
Table 27 VXI Device Functions

Function name Action

iwrite Sends data to a (message-based) servant using the
byte-serial write protocol and the byte available
word-serial command.

iread Reads data from a (message-based) servant using the
byte-serial read protocol and the byte request word-serial
command.

ireadstb Performs a VXI readSTB word-serial command.

itrigger Sends word-serial trigger to specified message-based
device.

iclear Sends word-serial device clear to specified
message-based device.

ionsrq Can be used to catch SRQs from message-based devices.
Addressing VXI Message-Based Devices
To create a VXI device session, specify the interface symbolic name or
logical unit and a device’s address in the addr parameter of the iopen
function. The interface symbolic name and logical unit are set by
running the Connection Expert utility. To open Connection Expert, click
the Agilent IO Control (IO icon on the taskbar) and click Agilent
Connection Expert. See the IO Libraries Suite Online Help for details
on this utility.

Addressing Guidelines

Primary address must be between 0 and 255. The primary address
corresponds to the VXI logical address and specifies the address in the
A16 space of the VXI device. SICL supports only primary addressing
on the VXI device sessions. Specifying a secondary address causes an
error.

Some example addresses for VXI device sessions follow. These
examples use the default symbolic name specified during the system
configuration. To change the name listed, you must also change the
symbolic name or logical unit specified during the configuration. The
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
name used in the SICL program must match the logical unit or symbolic
name specified in the system configuration. Other possible interface
names are VXI, vxi, etc.

An example of opening a device session with the VXI device at logical
address 64 follows.

INST dmm;
dmm = iopen (“vxi,64”);

Sample: VXI Message-Based Device Session (C)

This sample program opens a communication session with a VXI
message-based device and measures the AC voltage. The measurement
results are then printed.

/* vximdev.c
This example program measures AC voltage on a
multimeter and prints out the results */

#include <sicl.h>
#include <stdio.h>

main()
 {
 INST dvm;
 char strres[20];

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen (“vxi,24”);
 itimeout (dvm, 10000);

Table 28 Addressing VXI Instruments

vxi,24 A device address corresponding to the device at primary address
24 on the vxi interface.

vxi,128 A device address corresponding to the device at primary address
128 on the vxi interface.
113

114

5 Using SICL with VXI
 /* Initialize dvm */
 iwrite (dvm, “*RST\n”, 5, 1, NULL);

 /* Take measurement */
 iwrite (dvm,”MEAS:VOLT:AC? 1, 0.001\n”, 23, 1,
 NULL);

 /* Read measurements */
 iread (dvm, strres, 20, NULL, NULL);

 /* Print the results */
 printf(“Result is %s\n”, strres);

 /* Close the multimeter session */
 iclose(dvm);

 }

Sample: VXI Message-Based Device Session (Visual Basic)

'''
' vximdev.bas
' This example program opens a communication
‘ session with a VXI message-based device and
‘ measures the DC voltage. Then measurement
' results are printed.

'''

Sub Main()

 Dim id As Integer
 Dim strres As String * 80 'Fixed-length String
 Dim actual As Long

 ' Open the instrument session

 ' "vxi" is the SICL Interface name as defined
 ‘ in Connection Expert
 '"216" is the instrument logical address.
 'Change these to the SICL name and logical
 ‘ address for your instrument

 id = iopen("vxi,216")
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 ' Set timeout to 10 seconds
 Call itimeout(id, 10000)

 ' Initialize dvm
 Call iwrite(id, "*RST" + Chr$(10), 6, 1, 0&)

 ' Take measurement
 Call iwrite(id, "MEAS:VOLT:DC? 1, 0.001" + _
 Chr$(10), 23, 1, 0&)

 ' Read result
 Call iread(id, strres, 80, 0&, actual)

 ' Display the results
 MsgBox "Result is: " + strres, vbOKOnly, _
 "DVM DCV Result"

 ' Close the instrument session
 Call iclose(id)

 ' Tell SICL to clean up for this task
 Call siclcleanup

End Sub
Programming VXI Register-Based Devices
You can use one or more of the following methods to communicate with
VXI register-based devices.

• I-SCPI Interface Programming. Use the SICL iscpi interface and
program using SCPI commands. The iscpi interface interprets the
SCPI commands and allows direct communication with
register-based devices. This method is supported over LAN. Agilent
VISA must be installed to use the iscpi interface.

• Direct Register Programming. Use the vxi interface to program
directly to the device’s registers with a series of register peeks and
pokes. This method can be very time-consuming and difficult. This
method is not supported over LAN.
115

116

5 Using SICL with VXI
• Compiled SCPI Programming. The Compiled SCPI (C-SCPI)
product is a programming language that can be used with SICL to
program register-based devices using SCPI commands. Because
Compiled SCPI interprets SCPI commands at compile time,
Compiled SCPI can be used to achieve high throughput of
register-based devices. See the applicable C-SCPI documentation for
programming information.

• Command Module Programming. You can use a Command
Module to communicate with VXI devices via GPIB. The Command
Module interprets the high-level SCPI commands for register-based
instruments and sends low-level commands over the VXIbus
backplane to the instruments. See Chapter 4, “Using SICL with
GPIB” for details on communicating via a Command Module.
Addressing VXI Register-Based Devices
To create a device session, specify the interface symbolic name or
logical unit and a device’s address in the addr parameter of the iopen
function. The interface symbolic name and logical unit are set by
running the Connection Expert utility. To open Connection Expert, click
the Agilent IO Control (IO icon on the taskbar) and click Agilent
Connection Expert. See the IO Libraries Suite Online Help for details
on this utility.

Functions Not Supported

Because VXI register-based devices do not support the word serial
protocol and other features of message-based devices, the following
SICL functions are not supported with register-based device sessions
unless you use the iscpi interface. All other functions will work with all
VXI devices (message-based, register-based, etc.). Use the i?peek and
i?poke functions to communicate with register-based devices.

Table 29 Unsupported Functions

Category Functions Not Supported

Non-formatted I/O iread, iwrite, itermchr

Formatted I/O iprintf, iscanf, ipromptf, ifread, ifwrite, iflush,
isetbuf, isetubuf

Device/Interface Control iclear, ireadstb, isetstb, itrigger
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
Addressing Guidelines

The primary address corresponds to the VXI logical address and must
be between 0 and 255. SICL supports only primary addressing on VXI
device sessions. Specifying a secondary address causes an error. Some
example addresses for VXI device sessions follow.

These examples use the default symbolic name specified during the
system configuration. To change the name listed, you must also change
the symbolic name or logical unit specified during the configuration.
The name used in your SICL program must match the logical unit or
symbolic name specified in the system configuration. Other possible
interface names are VXI, vxi, etc.

An example of opening a device session with the VXI device at logical
address 64 follows.

INST dmm;
dmm = iopen (“vxi,64”);

Service Requests igetonsrq, ionsrq

Timeouts igettimeout, itimeout

VXI Specific ivxiws

Table 30 Addressing Guidelines

iscpi,32 A register-based device address corresponding to the device at
primary address 32 on the iscpi interface.

vxi,24 A device address corresponding to the device at primary address
24 on the vxi interface.

vxi,128 A device address corresponding to the device at primary address
128 on the vxi interface.

Table 29 Unsupported Functions

Category Functions Not Supported
117

5 Using SICL with VXI
Programming Directly to Registers
118
When communicating with register-based devices, you must either send
a series of peeks and pokes directly to the device’s registers or use a
command interpreter to interpret the high-level SCPI commands.
Command interpreters include the iscpi interface, Agilent Command
Module, Agilent B-Size Mainframe (built-in Command Module), or
Compiled SCPI (C-SCPI).

When sending a series of peeks and pokes to the device’s registers, use
the following process. This procedure is only used on register-based
devices that are not using the iscpi interface. Note that programming
directly to the registers is not supported over LAN.

• Map memory space into your process space.

• Read the register’s contents using i?peek.

• Write to the device registers using i?poke.

• Unmap the memory space.
Mapping Memory Space for Register-Based Devices
When using SICL to communicate directly to the device’s registers, you
must map a memory space into the process space by using the SICL
imap function:

imap (id, map_space, pagestart, pagecnt,
 suggested);

This function maps space for the interface or device specified by the id
parameter. pagestart, pagecnt, and suggested indicate the page number,
number of pages, and a suggested starting location respectively.
map_space determines the memory location to map the space to.

Due to hardware constraints on given devices or interfaces, not all
address spaces may be implemented. In addition, there may be a
maximum number of pages that can be simultaneously mapped.

If a request is made that cannot be granted due to hardware constraints,
the process will hang until the desired resources become available. To
avoid this, use the isetlockwait with the flag parameter set to 0 and thus
generate an error instead of waiting for the resources to become
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
available. You may also use the imapinfo function to determine
hardware constraints before making an imap call. Some valid
map_space choices follow.

Some example imap function calls follow.

/* Map to the VXI device vm starting at
 pagenumber 0 for 1 page */

base_address = imap (vm, I_MAP_VXIDEV, 0, 1,
 NULL);

/* Map to A32 address space (16 Mbytes) */
ptr = imap (id, I_MAP_A32, 0x000, 0x100,
 NULL);

/* Map to device’s A24 or A32 extended memory */
ptr=imap (id, I_MAP_EXTEND, 0, 1, 0);

Table 31 Mapping Memory Space

Function Description

I_MAP_A16 Maps in VXI A16 address space (device or interface
sessions, 64K byte pages).

I_MAP_A24 Maps in VXI A24 address space (device or interface
sessions, 64K byte pages).

I_MAP_A32 Maps in VXI A32 address space (device or interface
sessions, 64K byte pages).

I_MAP_VXIDE
V

Maps in VXI A16 device registers (device session only,
64 bytes).

I_MAP_EXTEN
D

Maps in VXI device extended memory address space in
A24 or A32 address space (device sessions only).

I_MAP_SHARE
D

Maps in VXI A24/A32 memory that is physically located
on the computer (sometimes called local shared memory,
interface sessions only).

I_MAP_AM |
address modifer

Maps in the specified region (address modifer) of VME
address space. See the “Communicating with VME
Devices” section later in this chapter for more
information on this map space argument.
119

120

5 Using SICL with VXI
/* Map to computer’s A24 or A32 shared memory */
ptr=imap (id, I_MAP_SHARED, 0, 1, 0);

Use the following table to determine which map-space argument to use
with a SICL imap/iunmap function. All accesses through the *_D32
map windows can only be 32-bit transfers. The application software
must do a 32-bit assignment to generate the access and only accesses on
32-bit boundaries are allowed. If 8- or 16-bit accesses to the device are
also necessary, a normal I_MAP_A16/24/32 map must also be
requested.

Table 32 Mapping Memory Space

imap/iunmap
(map-space argument)

Widths VME Data Access Mode

I_MAP_A16 D8,D16 Supervisory

I_MAP_A24 D8,D16 Supervisory

I_MAP_A32 D8,D16 Supervisory

I_MAP_A16_D32 D32 Supervisory

I_MAP_A24_D32 D32 Supervisory

I_MAP_A32_D32 D32 Supervisory
Reading and Writing Device Registers
When you have mapped the memory space, use the SICL i?peek and
i?poke functions to communicate with register-based instruments. With
these functions, you need to know which register you want to
communicate with and the register’s offset. See the instrument’s user’s
manual for a description of the registers and register locations. An
example using iwpeek follows.

id = iopen (“vxi,24”);
addr = imap (id, I_MAP_VXIDEV, 0, 1, 0);
reg_data = iwpeek (addr + 4);

Be sure you use the iunmap function to unmap the memory space when
the space is no longer needed. This frees the mapping hardware so it can
be used by other processes.
Agilent SICL User’s Guide

Using SICL with VXI 5
Sample: VXI Register-Based Programming (C)
Agilent SICL User’s Guide
This sample program opens a communication session with a
register-based device connected to the address entered by the user. The
program then reads the Id and Device Type registers and prints the
register contents.

/* vxirdev.c
The following example prompts the user for an
instrument address and then reads the id
register and device type register. The contents
of the register are displayed.*/

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

void main (){
 char inst_addr[80];
 char *base_addr;
 unsigned short id_reg, devtype_reg;
 INST id;

 /* get instrument address */
 puts (“Please enter the logical address of the
 register-based instrument, for example,
 vxi,24 : \n”);
 gets (inst_addr);

 /* install error handler */
 ionerror (I_ERROR_EXIT);

 /* open communication session with instrument
 */
 id = iopen (inst_addr);
 itimeout (id, 10000);

 /* map into user memory space */
 base_addr = imap (id, I_MAP_VXIDEV, 0, 1,
 NULL);
121

122

5 Using SICL with VXI
 /* read registers */
 id_reg = iwpeek ((unsigned short *)(base_addr
 + 0x00));
 devtype_reg = iwpeek ((unsigned short
 *)(base_addr + 0x02));

 /* print results */
 printf (“Instrument at address %s\n”,
 inst_addr);

 printf “ID Register = 0x%4X\n Device Type
 Register =0x%4X\n”, id_reg, devtype_reg);

 /* unmap memory space */
 iunmap (id, base_addr, I_MAP_VXIDEV, 0, 1);

 /* close session */
 iclose (id);}
Agilent SICL User’s Guide

Using SICL with VXI 5
Programming VXI Interface Sessions
Agilent SICL User’s Guide
VXI interface sessions allow direct low-level control of the interface.
However, the programmer must provide all bus maintenance for the
interface and have considerable knowledge of the interface. When using
interface sessions, you must use interface-specific functions, which
means the program cannot be used on other interfaces and becomes less
portable.
VXI Interface Sessions Functions
The following table describes how some SICL functions are
implemented for VXI interface sessions. I-SCPI interface sessions only
support service requests and locking (ionsrq, ilock, and iunlock).

Table 33 Implementing SICL Function for VXI

Function Name Action

iwrite and iread Not supported for VXI interface sessions. Returns the
I_ERR_NOTSUPP error.

iclear Causes the VXI interface to perform a SYSREST on
interface sessions. This causes all VXI devices to reset. If
the iscpi interface is being used, the iscpi instrument will
be terminated.

If this happens, a No Connect error message occurs and
you must reopen the iscpi communications session. All
servant devices cease to function until the VXI resource
manager runs and normal operation is re-established.
Addressing VXI Interface Sessions
To create an interface session on a VXI system, specify the interface
symbolic name or logical unit in the addr parameter of the iopen
function. The interface symbolic name and logical unit are set by
running the Connection Expert utility. To open Connection Expert, click
the Agilent IO Control (IO icon on the taskbar) and click Agilent
Connection Expert. See the IO Libraries Suite Online Help for details
on this utility.
123

124

5 Using SICL with VXI
Addressing Guidelines

Some example addresses for VXI interface sessions follow. These
examples use the default symbolic name specified during the system
configuration. To change the name listed, you must also change the
symbolic name or logical unit specified during the configuration.

The name used in your SICL program must match the logical unit or
symbolic name specified in the system configuration. Other possible
interface names are VXI, vxi, etc. The only interface session operations
supported by I-SCPI are service requests and locking.

This example opens an interface session with the VXI interface.

INST vxi;
vxi = iopen (“vxi”);

Sample: VXI Interface Session (C)

This sample program opens a communication session with the VXI
interface and uses the SICL interface-specific ivxirminfo function to
get information about a specific VXI device. This information comes
from the VXI resource manager and is only valid as of the last time the
VXI resource manager was run.

/* vxiintr.c
The following example gets information about a
specific vxi device and prints it out. */

#include <stdio.h>
#include <sicl.h>

void main () {
 int laddr;
 struct vxiinfo info;
 INST id;

Table 34 Symbolic Interface Names

vxi An interface symbolic name.

iscpi An interface symbolic name.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 /* get instrument logical address */
 printf (“Please enter the logical address of
 the register-based instrument, for example,
 24 : \n”);
 scanf (“%d”, &laddr);

 /* install error handler */
 ionerror (I_ERROR_EXIT);

 /* open a vxi interface session */
 id = iopen (“vxi”);
 itimeout (id, 10000);

 /* read VXI resource manager information for
 specified device*/
 ivxirminfo (id, laddr, &info);

 /* print results */
 printf (“Instrument at address %d\n”, laddr);
 printf (“Manufacturer’s Id = %s\n Model =
 %s\n”, info.manuf_name, info.model_name);

 /* close session */
 iclose (id);
 }
125

5 Using SICL with VXI
Miscellaneous VXI Interface Programming
126
This section provides other information for programming via the VXI
interface, including:

• Communicating with VME Devices

• VXI Backplane Memory I/O Performance

• Using VXI-Specific Interrupts
Communicating with VME Devices
Although VXI is an extension of VME, VME is not easy to use in a VXI
system. Since the VXI standard defines specific functionality that would
be custom designs in VME, some resources required for VME custom
design are actually used by VXI. Therefore, there are certain limitations
and requirements when using VME in a VXI system.
NOTE VME is not an officially supported interface for SICL and is not
supported over LAN.
Use these processes when using VME devices in a VXI mainframe:

• Declaring Resources

• Mapping VME Memory

• Reading and Writing Device Registers

• Unmapping Memory

Declaring Resources

The VXI Resource Manager does not reserve resources for VME
devices. Instead, a configuration file is used to reserve resources for
VME devices in a VXI system. Use the VXI Device Configurator to edit
the DEVICES file (or edit the file directly) to reserve resources for
VME devices. The VXI Resource Manager reads this file to reserve the
VME address space and VME IRQ lines. The VXI Resource Manager
then assigns the VXI devices around the already reserved VME
resources.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
For VME devices requiring A16 address space, the device’s address
space should be defined in the lower 75% of A16 address space
(addresses below 0xC000). This is necessary because the upper 25% of
A16 address space is reserved for VXI devices.

For VME devices using A24 or A32 address space, use A24 or A32
address ranges just higher than those used by your VXI devices. This
will prevent the VXI Resource Manager from assigning the address
range used by the VME device to any VXI device. (The A24 and A32
address range is software programmable for VXI devices.)

Mapping VME Memory

SICL defaults to byte, word, and longword supervisory access to
simplify programming VXI systems. However, some VME cards use
other modes of access that are not supported in SICL. Therefore, SICL
provides a map parameter that allows you to use the access modes
defined in the VMEbus Specification. See the VMEbus Specification for
information on these access modes.
NOTE Use care when mixing VXI and VME devices. You must know the
VME address space and offset within that address space the VME
devices use. VME devices cannot use the upper 16K of the A16 address
space since this area is reserved for VXI instruments.

When accessing VME or VXI devices via an embedded controller,
current versions of SICL use the “supervisory data” address modifiers
0x2D, 0x3D, and 0x0D for A16, A24, and A32 accesses, respectively.
(Some older versions of SICL use the “non-privileged data” address
modifiers.)
Use the I_MAP_AM | address modifer map space argument in the
imap function to specify the map space region (address modifer) of
VME address space. See the VMEbus Specifications for information on
values to use as the address modifier. If the controller does not support
the specified address mode, the imap call will fail (see table in the next
section).
127

128

5 Using SICL with VXI
This maps A24 non-privileged data access mode:

prt = imap (id, (I_MAP_AM | 0x39), 0x20, 0x4,
 0);

This maps A32 non-privileged data access mode:

prt = imap (id, (I_MAP_AM | 0x09), 0x20, 0x40,
 0);

This table lists VME access modes supported on Agilent controllers.

Reading and Writing Device Registers

After you have mapped the memory space, use the SICL i?peek and
i?poke functions to communicate with the VME devices. With these
functions, you need to know the register to communicate with and the
register’s offset.

See the instrument’s user’s manual for descriptions of registers and
register locations. This is an example using iwpeek:

id = iopen (“vxi”);
addr = imap (id, (I_MAP_AM | 0x39), 0x20, 0x4,
 0);
reg_data = iwpeek ((unsigned short *)(addr +
 0x00));

Unmapping Memory Space

Make sure you use the iunmap function to unmap the memory space
when it is no longer needed. This frees the mapping hardware so it can
be used by other processes.

Table 35 VME Mapping Support

 A16
 D08 D16 D32

 A24
 D08 D16 D32

 A32
 D08 D16 D32

Supervisory data X X X X X X X X X

Non-Privileged data
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
VME Interrupts

There are seven VME interrupt lines that can be used. By default, VXI
processing of the IACK value will be used. However, if you configure
VME IRQ lines and VME Only, no VXI processing of the IACK value
will be done. That is, the IACK value will be passed to a SICL interrupt
handler directly.

Sample: VME Interrupts (C)

This ANSI C sample program opens a VXI interface session and sets up
an interrupt handler. When the I_INTR_VME_IRQ1 interrupt occurs,
the function defined in the interrupt handler is called. The program then
writes to the registers, causing the I_INTR_VME_IRQ1 interrupt to
occur.

You must edit this program to specify the starting address and register
offset of your specific VME device. This sample program also requires
the VME device to be using I_INTR_VME_IRQ1, and the controller to
be the handler for the VME IRQ1.

/* vmedev.c
 This example program opens a VXI interface
session and sets up an interrupt handler. When
the specified interrupt occurs, the procedure
defined in the interrupt handler is called. You
must edit this program to specify starting
address and register offset for your specific
VME device. */

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

#define ADDR “vxi”

void handler (INST id, long reason, long
secval){
printf (“Got the interrupt\n”);
}

129

130

5 Using SICL with VXI
void main ()
 {
 unsigned short reg;
 char *base_addr;
 INST id;

 /* install error handler */
 ionerror (I_ERROR_EXIT);

 /* open an interface communications session */
 id = iopen (ADDR);
 itimeout (id, 10000);

 /* install interrupt handler */
 ionintr (id, handler);
 isetintr (id, I_INTR_VME_IRQ1, 1);

 /* turn interrupt notification off so that
 interrupts are not recognized before the
 iwaithdlr function is called*/
 iintroff ();

 /* map into user memory space */
 base_addr = imap (id, I_MAP_A24, 0x40, 1,
 NULL);

 /* read a register */
 reg = iwpeek((unsigned short *)(base_addr +
 0x00));

 /* print results */
 printf (“The registers contents were as
 follows: 0x%4X\n”, reg);

 /* write to a register causing interrupt */
 iwpoke ((unsigned short *)(base_addr + 0x00),
 reg);

 /* wait for interrupt */
 iwaithdlr (10000);

 /* turn interrupt notification on */
 iintron ();

 /* unmap memory space */
 iunmap (id, base_addr, I_MAP_A24, 0x40, 1);
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 /* close session */
 iclose (id);
 }
VXI Backplane Memory I/O Performance
SICL supports two different memory I/O mechanisms for accessing
memory on the VXI backplane.

Using Single Location Peek/Poke

Single location peek/poke or direct memory dereference is the most
efficient in programs that require repeated access to different addresses.
On many platforms, the peek/poke operations are actually macros which
expand to direct memory dereferencing.

An exception is Windows platforms, where ipeek/ipoke are
implemented as functions since (under certain conditions) the compiler
will attempt to optimize a direct dereference and cause a VXI memory
access of the wrong size.

For example, when masking the results of a 16-bit read in an expression:

data = iwpeek(addr) & 0xff;

the compiler will simplify this to an 8-bit read of the contents of the
addr pointer. This would cause an error when attempting to read
memory on a VXI card that did not support 8-bit access. When iwpeek
is implemented as a function, the correct size memory access is
guaranteed.

Table 36 VXI Supported Memory I/O Mechanisms

Single location peek/poke and
direct memory dereference

imap, iunmap, ibpeek, iwpeek, ilpeek,
ibpoke, iwpoke, ilpoke, value = *pointer,
*pointer = value

Block memory access imap, iunmap, ibblockcopy, iwblockcopy,
ilblockcopy, ibpushfifo, iwpushfifo,
ilpushfifo ibpopfifo, iwpopfifo, ilpopfifo
131

132

5 Using SICL with VXI
Using Block Memory Access

The block memory access functions provide the highest possible
performance for transferring large blocks of data to or from the VXI
backplane. Although these calls have higher initial overhead than the
ipeek/ipoke calls, they are optimized on each platform to provide the
fastest possible transfer rate for large blocks of data.

These routines may use DMA, which is not available with ipeek/ipoke.
For small blocks, the overhead associated with the block memory access
functions may actually make these calls longer than an equivalent loop
of ipeek/ipoke calls.

The block size at which the block functions become faster depends on
the particular platform and processor speed.

Sample: VXI Memory I/O (C)

A code sample follows that demonstrates the use of simple and block
memory I/O methods in SICL.

/*
siclmem.c
This example program demonstrates the use of
simple and block memory I/O methods in SICL. */

#include <sicl.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI_INST “vxi,24”

void main () {
 INST id;
 unsigned short *memPtr16;
 unsigned short id_reg;
 unsigned short devtype_reg;
 unsigned short memArray[2];
 int err;

 /* Open a session to the instrument */
 id = iopen(VXI_INST);
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 /* ============== Simple memory I/O==========
 = iwpeek()
 = direct memory dereference

 On many platforms, the ipeek/ipoke operations
 are actually macros which expand to direct
 memory dereferencing. The exception is on
 Microsoft Windows platforms where ipeek/ipoke
 are implemented as functions.

 This is necessary because under certain
 conditions, the compiler will attempt to
 optimize a direct dereference and cause a VXI
 memory access of the wrong size. For example,
 when masking the results of a 16-bit read in a
 expression:

 data = iwpeek(addr) & 0xff;

 the compiler will simplify this to an 8-bit
 read of the contents of the addr pointer. This
 would cause an error when attempting to read
 memory on a VXI card that did not support 8-bit
 access. */

 /* Map into memory space */
 memPtr16 = (unsigned short *)imap(id,
 I_MAP_VXIDEV, 0, 1, 0);

/* ============ Using Peek ================= */

 /* Read instrument id register contents */
 id_reg = iwpeek(memPtr16);

 /* Read device type register contents */
 id_reg = iwpeek(memPtr16+1);

 /* Print results */
 printf(“ iwpeek: ID Register = 0x%4X\n”,
 id_reg);
 printf(“ iwpeek: Device Type Register =
 0x%4X\n”, devtype_reg);
133

134

5 Using SICL with VXI
 /* Use direct memory dereferencing */
 id_reg = *memPtr16;
 devtype_reg = *(memPtr16+1);

 /* Print results */
 printf(“dereference: ID Register = 0x%4X\n”,
 id_reg);
 printf(“dereference: Device Type Register =
 0x%4X\n”, devtype_reg);

 /* =============== Block Memory I/O ==========
 = iwblockcopy
 = iwpushfifo
 = iwpopfifo

 These commands offer the best performance for
 reading and writing large data blocks on the
 VXI backplane. For this example, we are only
 moving 2 words at a time. Normally, these
 functions would be used to move much larger
 blocks of data. */

 /* ======== Demonstrate Block Read ======== */

 /* Read the instrument id register and device
 type register into an array. */

 err = iwblockcopy(id, memPtr16, memArray, 2,
 0);

 /* Print results */
 printf(“ iwblockcopy: ID Register = 0x%4X\n”,
 memArray[0]);
 printf(“ iwblockcopy: Device Type Register =
 0x%4X\n”, memArray[1]);

 /* ======= Demonstrate popfifo =============*/

 /* Do a popfifo of the Id Register */
 err = iwpopfifo(id, memPtr16, memArray, 2, 0);
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 /* Print results */
 printf(“ iwpopfifo: 1 ID Register = 0x%4X\n”,
 memArray[0]);
 printf(“ iwpopfifo: 2 ID Register = 0x%4X\n”,
 memArray[1]);

 /* ============ Cleanup and Exit ==========*/

 /* Unmap memory space */
 iunmap(id, (char *)memPtr16, I_MAP_VXIDEV, 0,
 1);

 /* Close instrument session */
 iclose(id);
 }
Using VXI-Specific Interrupts
Sample: VXI Interrupt Actions (C)

This pseudo-code describes the actions performed by SICL when a
VME interrupt arrives and/or a VXI signal register write occurs.

VME Interrupt arrives:
get iack value

send I_INTR_VME_IRQ?

is VME IRQ line configured VME only

if yes then
 exit
do lower 8 bits match logical address of one of
our servants?
if yes then
 /* iack is from one of our servants */
 call servant_signal_processing(iack)
else
 /* iack is from non-servant VXI or VME device*/
 send I_INTR_VXI_VME interrupt to interface
 sessions

Signal Register Write occurs:
get value written to signal register
135

136

5 Using SICL with VXI
send I_INTR_ANY_SIG
do lower 8 bits match logical address of one of
our servants?
if yes then
 /* Signal is from one of our servants */
 call Servant_signal_processing(value)
else
 /* Stray signal */
 send I_INTR_VXI_UKNSIG to interface sessions
 servant_signal_processing (signal_value)
/* Value is form one of our servants */
is signal value a response signal?
If yes then
 process response signal
exit
/* Signal is an event signal */
is signal an RT or RF event?
 if yes then
/* A request TRUE or request FALSE arrived */
 process request TRUE or request FALSE event
 generate SRQ if appropriate
exit
is signal an undefined command event?
if yes then
 /* Undefined command event */
 process an undefined command event
exit
/* Signal is a user-defined or undefined event
*/
send I_INTR_VXI_SIGNAL to device sessions for
this device
exit

Sample: Processing VME Interrupts (C)

/* vmeintr.c
This example uses SICL to cause a VME interrupt
from an E1361 register-based relay card at
logical address 136.*/

#include <sicl.h>
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
static void vmeint (INST, unsigned short);
static void int_setup (INST, unsigned long);
static void int_hndlr (INST, long, long);
int intr = 0;
main() {
 int o; INST id_intf1;
 unsigned long mask = 1;

 ionerror (I_ERROR_EXIT);
 iintroff ();
 id_intf1 = iopen (“vxi,136”);
 int_setup (id_intf1, mask);
 vmeint (id_intf1, 136);
 /* wait for SRQ or interrupt condition */
 iwaithdlr (0);

 iintron ();
 iclose (id_intf1);
 }
 static void int_setup(INST id, unsigned long
 mask) {
 ionintr(id, int_hndlr);
 isetintr(id, I_INTR_VXI_SIGNAL, mask);
 }
 static void vmeint (INST id, unsigned short
 laddr) {
 int reg;
 char *a16_ptr = 0;

 reg = 8;
 a16_ptr = imap (id, I_MAP_A16, 0, 1, 0);

 /* Cause uhf mux to interrupt: */
 iwpoke ((unsigned short *)(a16_ptr + 0xc000 +
 laddr * 64 + reg), 0x0);
 }
 static void int_hndlr (INST id, long reason,
 long sec) {
 printf (“VME interrupt: reason: 0x%x, sec:
 0x%x\n”, reason,sec);
 intr = 1;
 }
137

138

5 Using SICL with VXI
Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
6
Using SICL with RS-232

This chapter shows how to open a communications session and
communicate with a device via an RS-232 connection. The sample
programs in this chapter can be found in the following locations, if
Agilent IO Libraries Suite was installed in the default directory:

For C/C++: C:\Program Files\Agilent\IO Libraries Suite\
ProgrammingSamples\C\SICL

For Visual Basic:
C:\Program Files\Agilent\IO Libraries Suite\

ProgrammingSamples\VB6\SICL

The chapter includes:

• Introduction to RS-232 Interfaces

• Using RS-232 Device Sessions

• Using RS-232 Interface Sessions
139Agilent Technologies

6 Using SICL with RS-232
Introduction to RS-232 Interfaces
140
This section provides an introduction to using SICL with the RS-232
interface, including:

• ASRL (RS-232) Interface Overview

• Configuring RS-232 Interfaces

• RS-232 Communications Sessions

• RS-232 SICL Functions
ASRL (RS-232) Interface Overview
This section provides an overview of RS-232 interfaces, including
typical hardware configuration, using the Connection Expert utility, and
example configuration using SICL.

Typical RS-232 Interface

As shown in the following figure, a typical ASRL (RS-232) interface
consists of a Windows PC with one or more RS-232 COM Ports. Each
COM port can be connected to one, and only one, Serial instrument via
an RS-232 cable.
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Configuring RS-232 (ASRL) Interfaces

RS-232 COM Port 1

Windows PC Serial
Instruments

RS-232 Cable

RS-232 COM Port 2

ASRL Interface (RS-232 COM Ports)
An IO interface can be defined as both a hardware interface and a
software interface. One function of the Connection Expert utility is to
associate a unique interface name with a hardware interface.

SICL uses an interface ID or logical unit number to identify an
interface. This information is passed in the parameter string of the iopen
function call in a SICL program. Connection Expert assigns a default
SICL interface ID and logical unit, as well as other necessary
configuration values, when the interface hardware is configured; you
can change these values by running the Connection Expert utility. See
the IO Libraries Suite Online Help for details.

Sample: Configuring RS-232 Interface

The ASRL (RS-232) interface system in the following figure consists of
a Windows PC with two RS-232 COM ports, each of which is
connected to a single serial instrument via RS-232 cables. Connection
141

142

6 Using SICL with RS-232
Expert has been used to assign COM Port 1 a SICL name of COM1 and
to assign COM Port 2 a SICL name of COM2. Since unique names
have been assigned by Connection Expert, you can now use the SICL
iopen command to open the I/O paths to the GPIB instruments as shown
in the figure.
RS-232 Communications Sessions

RS-232 COM Port 1

Windows PC Serial
Instruments

RS-232 CableInterface SICL Names

RS-232 COM Port 2

SICL Name

 "COM1"

 "COM2"

SICL Addressing

iopen ("COM1,488")
iopen ("COM2,488")

ASRL Interface (RS-232 COM Ports)

Open IO path to Serial instrument using COM Port 1
Open IO path to Serial instrument using COM Port 2
RS-232 is a serial interface that is widely used for instrumentation.
Although RS-232 is slow in comparison to GPIB or VXI, its low cost
makes it an attractive solution in many situations. Because SICL uses
the RS-232 facilities built into the Windows operating system,
controlling RS-232 instruments is easy.

After you have configured your system for RS-232 communications,
you can start programming using the SICL functions. Using SICL to
communicate with a device via RS-232 is similar to using SICL to
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
communicate via the GPIB interface. To use SICL, you must first
determine the type of communications session required. An RS-232
communications session can be either a device session or an interface
session. Commander sessions are not supported on RS-232.

Device Sessions

For direct access to a device, communication is with a device session.
An RS-232 device session should be used when sending commands and
receiving data from an instrument.

Interface Sessions

SICL also allows interface-specific actions, such as setting device
addresses or other interface-specific characteristics. To do this, you
communicate with an interface session. Setting interface characteristics
(such as the baud rate) must be done with an interface session.

With RS-232, only one device is connected to the interface, so it may
seem like extra work to have both device sessions and interface
sessions. However, structuring the code so that interface-specific actions
are isolated from actions on the device itself makes programs easier to
maintain. This is especially important if you want to use a program with
a similar device on a different interface, such as GPIB.
143

6 Using SICL with RS-232
RS-232 SICL Functions
144
Table 37 The iserialctrl Functions

Function Name Action

iserialctrl Sets the following characteristics of the RS-232
interface:

Table 38 iserialctrl Sets the State for these RS-232 Characteristics

Request Characteristic Settings

I_SERIAL_BAUD Data rate 2400, 9600, etc.

I_SERIAL_PARITY Parity I_SERIAL_PAR_NONE
I_SERIAL_PAR_IGNO
RE
I_SERIAL_PAR_EVEN
I_SERIAL_PAR_ODD
I_SERIAL_PAR_MAR
K
I_SERIAL_PAR_SPAC
E

I_SERIAL_STOP Stop bits / frame I_SERIAL_STOP_1
I_SERIAL_STOP_2

I_SERIAL_WIDTH Data bits / frame I_SERIAL_CHAR_5
I_SERIAL_CHAR_6
I_SERIAL_CHAR_7
I_SERIAL_CHAR_8

I_SERIAL_READ_B
UFSZ

Receive buffer size Number of bytes

I_SERIAL_DUPLEX Data traffic I_SERIAL_DUPLEX_H
ALF
I_SERIAL_DUPLEX_F
ULL
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
I_SERIAL_FLOW_C
TRL

Flow control
I_SERIAL_FLOW_NO
NE
I_SERIAL_FLOW_XO
N
I_SERIAL_FLOW_RTS
_CTS
I_SERIAL_FLOW_DTR
_DSR

I_SERIAL_READ_E
OI

EOI indicator for reads I_SERIAL_EOI_NONE
I_SERIAL_EOI_BIT8
I_SERIAL_EOI_CHAR
| (n)

I_SERIAL_WRITE_E
OI

EOI indicator for writes I_SERIAL_EOI_NONE
I_SERIAL_EOI_BIT8

I_SERIAL_RESET Interface state (none)

Table 39 iserialstat

Function Name Action

iserialstat Gets the following information about the RS-232
interface:

Table 40 iserialstat Captures Status for these RS-232 Characteristics

Request Characteristic Value

I_SERIAL_BAUD Data rate 2400, 9600, etc.

I_SERIAL_PARITY Parity I_SERIAL_PAR_*

I_SERIAL_STOP Stop bits / frame I_SERIAL_STOP_*

I_SERIAL_WIDTH Data bits / frame I_SERIAL_CHAR_*

I_SERIAL_DUPLEX Data traffic I_SERIAL_DUPLEX_*

Table 38 iserialctrl Sets the State for these RS-232 Characteristics

Request Characteristic Settings
145

146

6 Using SICL with RS-232
I_SERIAL_MSL Modem status
lines

I_SERIAL_DCD
I_SERIAL_DSR
I_SERIAL_CTS
I_SERIAL_RI
I_SERIAL_TERI
I_SERIAL_D_DCD
I_SERIAL_D_DSR
I_SERIAL_D_CTS

I_SERIAL_STAT Misc. status I_SERIAL_DAV
I_SERIAL_TEMT
I_SERIAL_PARITY
I_SERIAL_OVERFLOW
I_SERIAL_FRAMING
I_SERIAL_BREAK

I_SERIAL_READ_B
UFSZ

Receive buffer
size

Number of bytes

I_SERIAL_READ_D
AV

Data available Number of bytes

I_SERIAL_FLOW_C
TRL

Flow control I_SERIAL_FLOW_*

I_SERIAL_READ_E
OI

EOI indicator for
reads

I_SERIAL_EOI*

I_SERIAL_WRITE_E
OI

EOI indicator for
writes

I_SERIAL_EOI*

Table 41 Other RS-232 Functions

Function Name Action

iserialmclctrl Sets or Clears the modem control lines. Modem control
lines are either I_SERIAL_RTS or I_SERIAL_DTR.

iserialmclstat Gets the current state of the modem control lines.

Table 40 iserialstat Captures Status for these RS-232 Characteristics

Request Characteristic Value
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
iserialbreak Sends a break to the instrument. Break time is 10
character times, with a minimum time of 50 milliseconds
and a maximum time of 250 milliseconds.

Table 41 Other RS-232 Functions
Using RS-232 Device Sessions
An RS-232 device session allows direct access to a device, regardless of
the type of interface to which the device is connected. The specifics of
the interface are hidden from the user.

Addressing an RS-232 Device

To create a device session, specify the interface logical unit or symbolic
name, followed by a device logical address of 488. The device address
of 488 tells SICL that communication is with a device that uses the
IEEE-488.2 standard command structure.

For other interfaces (such as GPIB), SICL supports the concept of
primary and secondary addresses. However, for RS-232, the only
primary address supported is 488. SICL does not support secondary
addressing on RS-232 interfaces.
NOTE If a device does not “speak” IEEE-488.2, you can still use SICL to
communicate with the device. However, some SICL functions that work
only with device sessions may not operate correctly. See “SICL
Functions for RS-232 Device Sessions” for details.
The interface logical unit and symbolic name are defined by running the
Connection Expert utility. To open Connection Expert, click the Agilent
IO Control (IO icon on the taskbar) and click Agilent Connection
Expert. See the IO Libraries Suite Online Help for details on this utility.

Some example addresses for RS-232 device sessions:

COM1,488
serial,488

Examples of opening a device session with an RS-232 device:

• C sample:
147

148

6 Using SICL with RS-232
INST dmm;
dmm = iopen (“com1,488”);

• Visual Basic sample:

Dim dmm As Integer
dmm = iopen (“com1,488”

SICL Functions for RS-232 Device Sessions

This section describes how some SICL functions are implemented for
RS-232 device sessions. There are specific device session interrupts that
can be used.

Table 42 SICL Functions for RS-232 Device Sessions

Function Description

iprintf, iscanf,
ipromptf

SICL’s formatted I/O routines depend on the concept
of an EOI indicator. Since RS-232 does not define an
EOI indicator, SICL uses the newline character (\n)
by default.

You cannot change this with a device session.
However, you can use the iserialctrl function with
an interface session. See “SICL Functions for
RS-232 Interface Sessions” in this chapter for
details.

ireadstb Sends the IEEE 488.2 command *STB? to the
instrument, followed by the newline character (\n). It
then reads the ASCII response string and converts it
to an 8-bit integer. This will work only if the
instrument understands this command.

itrigger Sends the IEEE 488.2 command *TRG to the
instrument, followed by the newline character (\n).
This will work only if the instrument understands
this command.

iclear Sends a break, aborts any pending writes, discards
any data in the receive buffer, resets any flow control
states (such as XON/XOFF), and resets any error
conditions. To reset the interface without sending a
break, use: iserialctrl (id, I_SERIAL_RESET, 0)
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Device Session Sample Programs

This section contains two sample programs for RS-232 interface device
session programming.

Sample: RS-232 Device Session (C)

This sample program takes a measurement from a DVM using a SICL
device session. This sample program was tested with a 34401A digital
voltmeter. When you run the program with a serial connection to the
34401A, be sure that DTR/DSR flow control is set for the serial port.
Otherwise, the program will appear not to work.

/* ser_dev.c
This example program takes a measurement from a
DVM using a SICL device session.*/

#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

#if !defined(WIN32)
#define LOADDS __loadds
#else
#define LOADDS
#endif

void SICLCALLBACK LOADDS error_handler (INST id,
 int error) {

 printf (“Error: %s\n”, igeterrstr (error));
 exit (1);
 }

ionsrq Installs a service request handler for this session.
Service requests are supported for both device
sessions and interface sessions. See “SICL Functions
for RS-232 Interface Sessions” in this chapter for
details.

Table 42 SICL Functions for RS-232 Device Sessions
149

150

6 Using SICL with RS-232
main()
 {
 INST dvm;
 double res;

 /* Log message and terminate on error */
 ionerror (error_handler);

 /* Open the multimeter session */
 dvm = iopen (“COM1,488”);
 itimeout (dvm, 10000);

 /* Prepare the multimeter for measurements */
 iprintf (dvm,”*RST\n”);
 iprintf (dvm,”SYST:REM\n”);

 /* Take a measurement */
 iprintf (dvm,”MEAS:VOLT:DC?\n”);

 /* Read the results */
 iscanf (dvm,”%lf”,&res);

 /* Print the results */
 printf (“Result is %f\n”,res);

 /* Close the voltmeter session */
 iclose (dvm);

 /* This call is a no-op for WIN32 programs */
 _siclcleanup();

 return 0;
 }

Sample: RS-232 Device Session (Visual Basic)

This sample program takes a measurement from a DVM using a SICL
device session. This sample program was tested with a 34401A digital
voltmeter. When you run the program with a serial connection to the
34401A, be sure that DTR/DSR flow control is set for the serial port.
Otherwise, the program will appear not to work.
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Option Explicit
'''
' ser_dev.bas
' This example program takes a measurement from
‘ a DVM using a SICL RS-232 device session.
'''

Sub Main()

 Dim dvm As Integer
 Dim res As Double
 Dim argcount As Integer

 ' Open the multimeter session
 ' "COM1" is the SICL Interface name as defined
 ‘ in Connection Expert
 ' Change this to the SICL name you have defined
 dvm = iopen("COM1,488")

 ' Set timeout to 10 sec
 Call itimeout(dvm, 10000)

 ' Prepare the multimeter for measurements
 argcount = ivprintf(dvm, "*RST" + Chr$(10),
 0&)
 argcount = ivprintf(dvm, "SYST:REM" +
 Chr$(10), 0&)

 ' Take a measurement
 argcount = ivprintf(dvm, "MEAS:VOLT:DC?" +
 Chr$(10))

 ' Read the results
 argcount = ivscanf(dvm, "%lf", res)

 ' Print the results
 MsgBox "Result is " + Format(res),
 vbExclamation

 ' Close the multimeter session
 Call iclose(dvm)

 ' Tell SICL to cleanup for this task
 Call siclcleanup

End Sub
151

6 Using SICL with RS-232
Using RS-232 Interface Sessions
152
RS-232 interface sessions can be used to get or set the characteristics of
the RS-232 interface. Examples of some of these characteristics are
baud rate, parity, and flow control. There are specific interface session
interrupts that can be used.

Addressing RS-232 Interfaces

To create an interface session on RS-232, specify the interface logical
unit or SICL interface ID in the addr parameter of the iopen function.
The interface logical unit and SICL interface ID are defined by running
the Connection Expert utility. To open Connection Expert, click the
Agilent IO Control (IO icon on the taskbar) and click Agilent
Connection Expert. See the IO Libraries Suite Online Help for details
on this utility. Some example addresses for RS-232 interface sessions
follow.

These code samples open an interface session with the RS-232
interface.

• C sample:

INST intf;
intf = iopen (“COM1”);

• Visual Basic sample:

Dim intf As Integer
intf = iopen (“COM1”)

SICL Functions for RS-232 Interface Sessions

This section describes how some SICL functions are implemented for
RS-232 interface sessions.

Table 43 Sample RS-232 Addresses

COM1 A SICL interface ID

serial A SICL interface ID

1 An interface logical unit
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Table 44 Implementing Some SICL Functions for RS-232

Functions Description

iwrite, iread All I/O functions (non-formatted and formatted) work the
same as for device sessions. However, it is recommended
that all I/O be performed with device sessions to make
your programs easier to maintain.

ixtrig Provides a method of triggering using either the DTR or
RTS modem status line. This function clears the specified
modem status line, waits 10 milliseconds, then sets it
again. Specifying I_TRIG_STD is the same as specifying
I_TRIG_SERIAL_DTR.

itrigger Pulses the DTR modem control line for 10 milliseconds.

iclear Sends a break, aborts any pending writes, discards any
data in the receive buffer, resets any flow control states
(such as XON/XOFF), and resets any error conditions. To
reset the interface without sending a break, use:
iserialctrl (id, I_SERIAL_RESET, 0)

ionsrq| Installs a service request handler for this session. The
concept of service request (SRQ) originates from GPIB.
On a GPIB interface, a device can request service from
the controller by asserting a line on the interface bus.

RS-232 does not have a specific line assigned as a service
request line. However, you can assign one of the modem
status lines (RI, DCD, CTS, or DSR) as the service
request line by running the Connection Expert utility.

Any transition on the designated service request line will
cause an SRQ handler in your program to be called. (Be
sure not to set the SRQ line to CTS or DSR if you are also
using that line for hardware flow control.)

Service requests are supported for both device sessions
and interface sessions. When the designated SRQ line
changes state, the RS-232 driver calls all SRQ handlers
installed by either device sessions or interface sessions.
153

154

6 Using SICL with RS-232
iserialctrl Sets the characteristics of the Serial interface. The
following requests are clarified:

I_SERIAL_DUPLEX: The duplex setting determines
whether data can be sent and received simultaneously.
Setting full duplex allows simultaneous send and receive
data traffic. Setting half duplex (the default) will cause
reads and writes to be interleaved, so that data is flowing
in only one direction at any given time. (The exception to
this is if XON/XOFF flow control is used.)

I_SERIAL_READ_BUFSZ: The default read buffer size
is 2048 bytes.

I_SERIAL_RESET: Performs the same function as the
iclear function on an interface session, except that a break
is not sent.

iserialstat Gets the characteristics of the Serial interface. The
following requests are clarified:

I_SERIAL_MSL: Gets the state of the modem status
line. Because of the way Windows supports RS-232, the
I_SERIAL_RI bit will never be set. However, the
I_SERIAL_TERI bit will be set when the RI modem
status line changes from high to low.

I_SERIAL_STAT: Gets the status of the transmit and
receive buffers and the errors that have occurred since the
last time this request was made. Only the error bits
(I_SERIAL_PARITY, I_SERIAL_OVERFLOW,
I_SERIAL_FRAMING, and I_SERIAL_BREAK) are
cleared. The I_SERIAL_READ_DAV and
I_SERIAL_TEMT bits reflect the status of the buffers at
all times.

I_SERIAL_READ_DAV: Gets the current amount of
data available for reading. This shows how much data is
in Windows’ receive buffer, not how much data is in the
buffer used by the formatted input functions such as
iscanf.

Table 44 Implementing Some SICL Functions for RS-232
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Interface Sessions Sample Programs

This section contains two sample programs for RS-232 interface device
session programming.

Sample: RS-232 Interface Session (C)

/*ser_intf.c
This program gets the current configuration of
the serial port, sets it to 9600 baud, no
parity, 8 data bits, and 1 stop bit, and prints
the old configuration.*/

#include <stdio.h>
#include <sicl.h>

main()
 {
 INST intf; /* interface session id */
 unsigned long baudrate, parity, databits,
 stopbits;
 char *parity_str;

 /* Log message and exit program on error */
 ionerror (I_ERROR_EXIT);

 /* open RS-232 interface session */
 intf = iopen (“COM1”);
 itimeout (intf, 10000);

iserialmclctrl Controls the modem control lines RTS and DTR. If one of
these lines is being used for flow control, you cannot set
that line with this function.

iserialmclstat Determines the current state of the modem control lines.
If one of these lines is being used for flow control, this
function may not give the correct state of that line.

Table 44 Implementing Some SICL Functions for RS-232
155

156

6 Using SICL with RS-232
 /* get baud rate, parity, data and stop bits */
 iserialstat (intf, I_SERIAL_BAUD, &baudrate);
 iserialstat (intf, I_SERIAL_PARITY, &parity);
 iserialstat (intf, I_SERIAL_WIDTH, &databits);
 iserialstat (intf, I_SERIAL_STOP, &stopbits);

 /* determine string to display for parity */
 if (parity == I_SERIAL_PAR_NONE) parity_str =
 “NONE”;
 else if (parity == I_SERIAL_PAR_ODD)
 parity_str = “ODD”;
 else if (parity == I_SERIAL_PAR_EVEN)
 parity_str = “EVEN”;
 else if (parity == I_SERIAL_PAR_MARK)
 parity_str = “MARK”;
 else /*parity == I_SERIAL_PAR_SPACE*/
 parity_str = “SPACE”;

 /* set to 9600,NONE,8,1 */
 iserialctrl (intf, I_SERIAL_BAUD, 9600);
 iserialctrl (intf, I_SERIAL_PARITY,
 I_SERIAL_PAR_NONE);
 iserialctrl (intf, I_SERIAL_WIDTH,
 I_SERIAL_CHAR_8);
 iserialctrl (intf, I_SERIAL_STOP,
 I_SERIAL_STOP_1);

 /* Display previous settings */
 printf(“Old settings: %5ld,%s,%ld,%ld\n”,
 baudrate, parity_str, databits, stopbits);

 /* close port */
 iclose (intf);

 /* This call is a no-op for WIN32 programs. */
 _siclcleanup();

 return 0;
 }
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Sample: RS-232 Interface Session (Visual Basic)

Option Explicit
'''
' set_intf.bas
' This program (1) gets the current
‘ configuration of the ' serial port; (2) sets
‘ it to 9600 baud, no parity, 8 data bits, and 1
‘ stop bit;(3) prints the old configuration
'''

Sub Main()

 Dim intf As Integer
 Dim baudrate As Long
 Dim parity As Long
 Dim databits As Long
 Dim stopbits As Long
 Dim parity_str As String
 Dim msg_str As String

 ' open RS-232 interface session
 ' "COM1" is the SICL Interface name as defined
 ‘ in Connection Expert
 ' Change this to the SICL Name you have
 ‘ defined in Connection Expert

 intf = iopen("COM1")

 Call itimeout(intf, 10000)

 ' get baud rate, parity, data bits, and stop
 ‘ bits
 Call iserialstat(intf, I_SERIAL_BAUD,
 baudrate)
 Call iserialstat(intf, I_SERIAL_PARITY,
 parity)
 Call iserialstat(intf, I_SERIAL_WIDTH,
 databits)
 Call iserialstat(intf, I_SERIAL_STOP,
 stopbits)
157

158

6 Using SICL with RS-232
 ' determine string to display for parity
 Select Case parity
 Case I_SERIAL_PAR_NONE
 parity_str = "NONE"
 Case I_SERIAL_PAR_ODD
 parity_str = "ODD"
 Case I_SERIAL_PAR_EVEN
 parity_str = "EVEN"
 Case I_SERIAL_PAR_MARK
 parity_str = "MARK"
 Case Else
 parity_str = "SPACE"
 End Select

 ' set to 9600,NONE,8, 1
 Call iserialctrl(intf, I_SERIAL_BAUD, 9600)

 Call iserialctrl(intf, I_SERIAL_PARITY,_
 I_SERIAL_PAR_NONE)
 Call iserialctrl(intf, I_SERIAL_WIDTH,_
 I_SERIAL_CHAR_8)
 Call iserialctrl(intf, I_SERIAL_STOP,
 I_SERIAL_STOP_1)

 ' display previous settings
 msg_str = "Old settings: " & _
 Str$(baudrate) & "," & _
 parity_str & "," & _
 Str$(databits) & "," & _
 Str$(stopbits)
 MsgBox msg_str, vbExclamation

 ' close port
 Call iclose(intf)

 ' Tell SICL to cleanup for this task
 Call siclcleanup

End Sub
Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
7
Using SICL with LAN

This chapter shows how to open a communications session and
communicate with devices over a Local Area Network (LAN). The
sample programs in this chapter can be found in the following locations,
if Agilent IO Libraries Suite was installed in the default directory:

For C/C++: C:\Program Files\Agilent\IO Libraries Suite\
ProgrammingSamples\C\SICL

For Visual Basic:
C:\Program Files\Agilent\IO Libraries Suite\

ProgrammingSamples\VB6\SICL

 The chapter includes:

• LAN Interfaces Overview

• Using Remote Sessions

• Using LAN Interface Sessions

• Using Locks, Threads, and Timeouts

NOTE This chapter describes SICL programming using the VISA TCPIP inter-
face type to communicate directly with a LAN-connected device, as
well as using a remote interface (also known as a LAN client) to emu-
late a GPIB, serial (ASRL), or USB interface on the local machine to
communicate with a LAN-connected device.

See the Agilent IO Libraries Suite Online Help for information on how
to start and stop the Remote IO Server software, and on how to create
and configure LAN interfaces and remote GPIB/USB/serial interfaces.

See the Connectivity Guide for detailed information on connecting
instruments to a LAN, and for a discussion of network protocols.
159Agilent Technologies

7 Using SICL with LAN
Introduction to LAN Interfaces
160
This section provides an introduction to using SICL with Local Area
Network (LAN) interfaces, including:

• LAN and Remote Interfaces Overview

• Considerations when Using SICL with LAN

LAN and Remote Interfaces Overview

This section provides an overview of LAN (Local Area Network)
interfaces. A LAN is a way to extend the control of instrumentation
beyond the limits of typical instrument interfaces. To communicate with
instruments over the LAN, you must first configure a LAN interface or
a remote GPIB, USB, or serial interface, using the Agilent Connection
Expert.

Direct LAN Connection versus Remote IO Server/Client
Connection

Some instruments support direct connection to the LAN. These
instruments include an RJ-45 or other standard LAN connector and
software support for operating as an independent device on the network.
Some of these instruments are Web-enabled, meaning that they host a
Web page which you can access over the LAN.

With the Agilent IO Libraries Suite, you can connect to instruments
across the LAN even if they do not have direct LAN capability, if they
are connected to gateways (such as the Agilent E5810A) or to another
PC running the Remote IO Server software.

Refer to the IO Libraries Suite and the Connectivity Guide for
information on connecting and configuring different types of LAN
instrument connections.

Remote IO Server/Client Architecture

The Remote IO Server and Client software provided with Agilent IO
Libraries Suite allows instrumentation to be controlled over a LAN.
Using standard LAN connections, instruments can be controlled from
computers that do not have special interfaces for instrument control.
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
Client/server model. The IO Libraries Suite software uses the
client/server model of computing. Client/server computing refers to a
model in which an application (the client) does not perform all
necessary tasks of the application itself. Instead, the client makes
requests of another computing device (the remote I/O server) for
certain services.

As shown in the following figure, a remote I/O client (a Windows PC)
makes VISA requests over the network to a remote I/O server (such as a
Windows PC, an E5810 LAN/GPIB Gateway, or a Series 700 HP-UX
workstation).

Gateway operation. The remote I/O server is connected to the
instrumentation or devices to be controlled. Once the remote I/O server
has completed the requested operation on the instrument or device, the
remote I/O server sends a reply to the client. This reply contains the
requested data and status information that indicates whether or not the
operation was successful. The remote I/O server acts as a gateway
between the LAN software that the client system supports and the
instrument-specific interface that the device supports.
161

162

7 Using SICL with LAN
.

Considerations when Using SICL with LAN

Windows PCs

Client

LAN

Remote
I/O
Server

Series 700
workstation or
Windows PC

GPIB
bus

GPIB
Instrument

GPIB
Instruments

E5810
LAN/GPIB
Gateway

GPIB bus
(or other)

LAN Instruments
(VXI-11.2 GPIB Emulation
 or
VXI-11.3 LAN Instruments)
Specifying Protocol and Socket Number in iopen Calls

As described in the IO Libraries Suite Online Help, you can choose
either of two protocols – VXI-11 or SICL-LAN – to associate with a
LAN interface. (If you are using a remote GPIB, remote USB, or remote
serial interface, you will use Connection Expert to specify a LAN
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
interface associated with the remote interface. The protocol is defined in
the associated LAN interface.) In SICL, you can override this
configuration setting by specifying the protocol in the iopen string.
Some examples are:

• iopen("lan[machineName]:gpib0,1") will use the configured
default protocol. If AUTO is configured, SICL-LAN protocol will be
attempted. If that is not supported, VXI-11 protocol will be used.

• iopen("lan;auto[machineName]:gpib0,1") will automatically
select the protocol (SICL-LAN if available and VXI-11 otherwise).

• iopen("lan;sicl-lan[machineName]:gpib0,1") will use SICL-LAN
protocol.

• iopen("lan;vxi-11[machineName]:gpib0,1") will use VXI-11
protocol.

The IO Libraries Suite also supports TCP/IP socket reads and writes. To
open a socket session, use iopen("lan,socketNbr[machineName]"). For
example, iopen("lan,7777[machineName]") will open a socket
connection for socket number 7777 on 'machineName.'

LAN Clients and Threads

You can use multi-threaded designs (with SICL calls made from
multiple threads) in Win32 SICL applications over LAN. However, only
one thread is permitted to access the LAN driver at a time. This
sequential handling of individual threads by the LAN driver prevents
multiple threads from colliding or overwriting one another. Requests are
handled sequentially even if they are intended for different LAN
servers.

Use multiple processes to process concurrent threads simultaneously
with SICL over LAN. See Chapter 3, “Programming with SICL”, for
more information on using threads in SICL applications. Also see
“Using Locks and Threads Over LAN” on page 176 for information on
using locks in multi-threaded applications.

SICL LAN Performance

As with other client/server applications on a LAN, when you deploy an
application that uses SICL over LAN, you must consider the
performance and configuration of the network to which the client and
163

164

7 Using SICL with LAN
server will be attached. If the network to be used is neither a dedicated
LAN nor otherwise isolated via a bridge or other network device,
current use of the LAN must be considered.

Depending on the amount of data to be transferred over the LAN via the
SICL application, that application and/or other network users may
experience performance problems due to insufficient bandwidth. This is
not unique to SICL over LAN, but is a general design consideration for
any client/server application.

If you have questions concerning the ability of your network to handle
SICL traffic, consult with your network administrator or network
equipment providers. If you are connecting to a VXI-11 device, you can
configure a VXI-11 interface (rather than AUTO) in the Connection
Expert utility and connect through it to achieve slightly better iopen
performance.
SICL LAN Functions
This table summarizes the SICL functions for the LAN interface.

Table 45 SICL LAN Functions

Function Name Action

ilantimeout Sets LAN timeout value.

ilangettimeout Returns LAN timeout value.

igetgatewaytype Indicates whether the session is via a LAN gateway.
Agilent SICL User’s Guide

Using SICL with LAN 7
Using Remote Sessions
Agilent SICL User’s Guide
This section provides guidelines to using remote SICL sessions,
including:

• Addressing Guidelines

• SICL Function Support

• Sample Programs
Addressing Guidelines
Communicating with a device over a LAN via a TCP/IP or remote
GPIB, USB, or serial interface preserves the functionality of the
gatewayed interface, with a few exceptions. Thus, most operations over
a local interface (such as GPIB connected directly to your controller)
can also be performed over a remote interface.

The only portions of your application that must be changed are the
addresses passed to the iopen calls (unless you use aliases or store those
addresses in a configuration file, in which case no changes to the
application itself are required). The address used for a local interface
must have a LAN prefix added so the SICL software knows to direct the
request to a LAN server on the network.
Creating a Remote Session
To create a remote session (also called a LAN-gatewayed session),
specify the LAN’s interface logical unit or interface ID, the IP address
or hostname of the server machine, and the address of the remote
interface or device in the addr parameter of the iopen function. The
interface logical unit and interface ID are defined in the Connection
Expert utility.

To open Connection Expert, click the Agilent IO Control icon on the
taskbar and then click Agilent Connection Expert. See the IO
Libraries Suite Online Help for information on Connection Expert.
165

166

7 Using SICL with LAN
Example: Remote Addressing

Some examples of remote SICL addresses follow. If you are using the
IP address rather than the hostname of the server machine, you must use
the bracket (not the comma) notation.

lan,128.10.0.3:gpib (Incorrect)
lan[128.10.0.3]:gpib (Correct)

Table 46 Examples of LAN Addressing

Address Description

lan[instserv]:GPIB,7 A device address corresponding to the
device at primary address 7 on the GPIB
interface attached to the machine named
instserv. The default LAN protocol set when
the LAN interface was configured with
Connection Expert will be used.

lan;vxi-11[instserv]:GPIB,7 A device address corresponding to the
device at primary address 7 on the GPIB
interface attached to the machine named
instserv. The VXI-11 protocol (TCP/IP
Instrument protocol) will be used.

lan;sicl-lan [instserv]:GPIB,7 A device address corresponding to the
device at primary address 7 on the GPIB
interface attached to a machine named
instserv. The SICL-LAN protocol will be
used.

lan;auto[instserv]:GPIB,7 A device address corresponding to the
device at primary address 7 on the GPIB
interface attached to a machine named
instserv. The SICL-LAN protocol will be
used if the server supports it. Otherwise, the
VXI-11protocol will be used.

lan;default[instserv]:GPIB,7 A device address corresponding to the
device at primary address 7 on the GPIB
interface attached to a machine named
instserv. The default LAN protocol set when
the lan interface was configured with
Connection Expert will be used. This is the
same as not specifying a protocol.
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
lan[instserv.agilent.com]:gpib,
7

A device address corresponding to the
device at primary address 7 on the gpib
interface attached to the machine named
instserv in the agilent.com domain. (Fully
qualified domain names may be used.)

lan1[128.10.0.3]:GPIB0,3,2 A device address corresponding to the
device at primary address 3, secondary
address 2, on the GPIB0 interface attached
to the machine with IP address 128.10.0.3.

lan1[instserv]:GPIB2 An interface address corresponding to the
GPIB2 interface attached to the machine
named instserv.

30,instserv:gpib,3,2 A device address corresponding to the
device at primary address 3, secondary
address 2, on the gpib interface attached to
the machine named instserv. (30 is the
default logical unit for LAN.)

lan[instserv]:GPIB,cmdr A commander session with the GPIB
interface attached to the machine named
instserv (assuming the server supports GPIB
commander sessions).

lan[instserv]:COM1 An interface address corresponding to the
RS-232 COM1 interface attached to the
machine named instserv.

lan[instserv]:COM1,488 A device address corresponding to an
RS-232 device attached to the machine
named instserv.

lan[instserv]:usb0[2391::1031
::SN_041001::0]

A device address corresponding to a USB
device attached to the machine named
instserv.

lan[instserv]:UsbDevice1 A device address corresponding to a USB
device attached to the machine named
instserv. The alias name UsbDevice1 is
defined on the machine named instserv.

Table 46 Examples of LAN Addressing
167

7 Using SICL with LAN
SICL Function Support
168
This table shows the relationship between the address passed to iopen,
the session type returned by igetsesstype, the interface type returned by
igetintftype, and the value returned by igetgatewaytype.
Remote Interface Support

Table 47 Relationships Between SICL Functions

Address Session Type Interface Type
(VXI-11 Protocol)

Interface Type
(SICL-LAN
Protocol)

Gateway Type

lan I_SESS_INTF I_INTF_LAN I_INTF_NONE I_INTF_NONE

lan[instserv]:inst0 I_SESS_DEV I_INTF_LAN I_INTF_USRDEF I_INTF_LAN

lan[instserv]:gpib0 I_SESS_INTF I_INTF_GPIB I_INTF_GPIB I_INTF_LAN

lan[instserv]:gpib0,7 I_SESS_DEV I_INTF_GPIB I_INTF_GPIB I_INTF_LAN

gpib0 I_SESS_INTF I_INTF_GPIB I_INTF_GPIB I_INTF_NONE

gpib0,7 I_SESS_DEV I_INTF_GPIB I_INTF_GPIB I_INTF_NONE
A gatewayed session to a remote interface provides the same SICL
function support as if the interface were local, with the following
exceptions or qualifications.

Table 48 Exceptions to Remote Interface Support

Type of Functions SICL Functions NOT Supported

SICL functions not
supported over LAN
using either protocol

iblockcopy, imap, imapinfo, ipeek, ipoke, ipopfifo,
ipushfifo, iunmap, iblockmovex, imapx, iunmapx,
ipeekx, ipokex, iunmapx

SICL functions, in
addition to those listed
above, not supported
with the VXI-11
protocol

All RS-232/serial specific functions
igetlu, ionintr, isetintr, igetintfsess, igetonintr,
igpibgett1delay, igpibppoll,
igpibppollconfig, igpibppollresp, igpibsett1delay
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
For the igetdevaddr, igetintftype, and igetsesstype functions to be
supported with the VXI-11 (TCP/IP instrument protocol), the remote
address strings must follow the VXI-11 naming conventions – gpib0,
gpib1, etc. For example:

gpib0,7
gpib1,7,2
gpib2
vxi0, vxi1, etc. (for example: vxi0,8 or vxi0)

However, since the interface IDs at the remote server may be
configurable, this conformance is not guaranteed. Correct behavior of
iremote and iclear depend on the correct address strings being used.
When iremote is executed over the VXI-11 protocol, iremote sends the
LLO (local lockout) message in addition to placing the device in the
remote state.
LAN Timeout Functions
Any of the following functions may time out over LAN, even those
functions that cannot time out over local interfaces. (See “Using
Timeouts with LAN” in this chapter for more details.) These functions
all cause a request to be sent to the server for execution:

These SICL functions perform as follows with LAN-gatewayed
sessions.

All GPIB-specific functions
All RS-232/serial-specific functions
iabort, iclear, iclose, iflush, ifread, ifwrite, igetintfsess, ilocal, ilock, ionintr,
ionsrq, iopen, iprintf, ipromptf, iread, ireadstb, iremote, iscanf, isetbuf, isetintr,
isetstb, isetubuf, itrigger, iunlock, iversion, iwrite, ixtrig

Table 49 How SICL Functions Perform for LAN Gatewayed Devices

idrvrversion Returns the version numbers from the server.

iwrite, iread actualcnt may be reported as 0 when some bytes were
transferred to or from the device by the server. This can
happen if the client times out while the server is in the middle
of an I/O operation.
169

7 Using SICL with LAN
Sample Programs
170
Two sample programs for LAN-gatewayed sessions follow, one for C
and one for Visual Basic 6.0.

Sample: LAN-gatewayed Session (C) This sample program opens
a GPIB device session via a LAN-to-GPIB gateway. This sample is the
same as the sample in Chapter 4 - Using SICL with GPIB, except the
addresses passed to the iopen calls are modified. The addresses in this
sample assume a machine with hostname instserv is acting as a
LAN-to-GPIB gateway.

/* landev.c
This example program sends a scan list to a
switch and, while looping, closes channels and
takes measurements.*/

#include <sicl.h>
#include <stdio.h>

main(){

 INST dvm;
 INST sw;
 double res;
 int i;

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter and switch sessions */
 dvm = iopen (“lan[instserv]:gpib0,9,3”);
 sw = iopen (“lan[instserv]:gpib0,9,14”);
 itimeout (dvm, 10000);
 itimeout (sw, 10000);

 /*Set up trigger*/
 iprintf (sw, “TRIG:SOUR BUS\n”);

 /*Set up scan list*/
 iprintf (sw,”SCAN (@100:103)\n”);
 iprintf (sw,”INIT\n”);
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
 for (i=1;i<=4;i++) {
 /* Take a measurement */
 iprintf (dvm,”MEAS:VOLT:DC?\n”);

 /* Read the results */
 iscanf (dvm,”%lf”, &res);

 /* Print the results */
 printf (“Result is %f\n”,res);
 /*Trigger to close channel*/
 iprintf (sw, “TRIG\n”);
 }

 /* Close the multimeter and switch sessions */
 iclose (dvm);
 iclose (sw);
 }

Sample: LAN-gatewayed Session (Visual Basic 6.0)

This sample program opens a GPIB device session via a LAN-to-GPIB
gateway.

Option Explicit
'''
' landev.bas
' This example program opens a GPIB device
‘ session via a LAN-to-GPIB gateway. The
‘ addresses in this example assume a machine
‘ with hostname 'instserv' is acting as a
‘ LAN-to-GPIB gateway.
'''

Sub Main()

 Dim dvm As Integer, sw As Integer
 Dim nargs As Integer, I As Integer
 Dim actual As Long
 Dim res As String * 20

 ' Set up an error handler within this
 ‘ subroutine that will get called if a SICL
 ' error occurs.
171

172

7 Using SICL with LAN
 On Error GoTo ErrorHandler

 ‘Open the multimeter and switch sessions
 dvm = iopen("lan[intserv]:gpib0,9,3")
 sw = iopen("lan[intserv]:gpib0,9,14")
 Call itimeout(dvm, 10000)
 Call itimeout(sw, 10000)

 ' set up the trigger
 nargs = iwrite(sw, "TRIG:SOUR BUS" + Chr$(10)
 + Chr$(0), 14, 1, actual)

 ' set up scan list
 nargs = iwrite(sw, "SCAN (@100:103)" +
 Chr$(10) + Chr$(0), 15, 1, actual)
 nargs = iwrite(sw, "INIT" + Chr$(10) +
 Chr$(0), 5, 1, actual)

 For I = 1 To 4 Step 1
 ' Take a measurement
 nargs = iwrite(dvm, "MEAS:VOLT:DC?" +
 Chr$(10)+ Chr$(0), 14, 1, actual)

 ' Read the results
 nargs = iread(dvm, res, 20, 0&, actual)

 ‘ Print the results
 MsgBox "Channel " & I & " result: " + res &
 vbCrLf

 ' Trigger switch
 nargs = iwrite(sw, "TRIG" + Chr$(10) +
 Chr$(0), 5, 1, actual)
 Next I

 Call iclose(dvm)
 Call iclose(sw)

 Exit Sub

ErrorHandler:

 ' Display the error message in the txtResponse
 ‘ TextBox.

 MsgBox "*** Error : " + Error$
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
 ' Close the device session if iopen was
 ‘ successful.

 If dvm <> 0 Then
 Call iclose(dvm)
 End If

 If sw <> 0 Then
 Call iclose(sw)
 End If

End Sub
173

7 Using SICL with LAN
Using LAN Interface Sessions
174
The LAN interface, unlike most other supported SICL interfaces, does
not allow for direct communication with devices via interface
commands. LAN interface sessions, if used at all, will typically be used
only for setting the client-side LAN timeout. (See “Using Timeouts with
LAN” on page 177.)
Addressing LAN Interface Sessions
To create a LAN interface session, specify the interface logical unit or
interface name in the addr parameter of the iopen function. The
interface logical unit and SICL interface ID are defined by the
Connection Expert utility.

To open Connection Expert, click the Agilent IO Control IO icon on the
taskbar and then click Agilent Connection Expert. See the IO
Libraries Suite Online Help for information on Connection Expert.
Some examples of SICL interface IDs for LAN interfaces follow.

Table 50 SICL Interface ID Examples

lan A LAN interface address using the interface name lan.

30 A LAN interface address using the logical unit 30. (30 is the default
logical unit for LAN.)
SICL Function Support
These SICL functions are not supported over LAN interface sessions;
they return I_ERR_NOTSUPP.

These SICL functions perform as follows with LAN interface sessions.

All GPIB specific functions
All serial specific functions
All formatted I/O routines
iwrite, iread, ilock, iunlock, isetintr, itrigger, ixtrig,
ireadstb, isetstb, imapinfo, ilocal, iremote
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
Table 51 SICL Functions for LAN Interface Sessions

iclear Performs no operation, returns I_ERR_NOERROR.

ionsrq Performs no operation against LAN gateways for SICL, returns
I_ERR_NOERROR.

ionintr Performs no operation, returns I_ERR_NOERROR.

igetluinfo Returns information about local interfaces only. Does not return
information about remote or LAN interfaces.
175

7 Using SICL with LAN
Using Locks, Threads, and Timeouts
176
This section gives guidelines to use locks, threads, and timeouts over
LAN, including:

• Using Locks and Threads Over LAN

• Using Timeouts Over LAN
Using Locks and Threads Over LAN
If two or more threads are accessing the same device or interface using
two or more different sessions over LAN, and are using SICL locks to
synchronize access, some scenarios may cause timeouts, or may “hang”
an application that does not use timeouts.

Scenarios to Avoid

For proper operation, all threads that use their own sessions to access
the same device or interface should use the same string to identify the
device or interface in their calls to iopen. Therefore, the following
scenarios should be avoided.

• Avoid using a hostname to identify the remote host in one call to
iopen while using an alias or IP address to identify the same host in
another call to iopen.

• Avoid using a device symbolic name, or alias, in one call to iopen
(such as “dmm,” where “dmm” equals “gpib,1”) while using the
fully specified device name (such as “gpib,1”) in another call.

• Avoid using a remote interface’s logical unit (such as “7”) in one call
while using the remote interface’s SICL interface ID (such as “gpib”)
in another.

• Avoid using igetintfsess to open an interface session (which
internally uses the logical unit to identify the remote interface) while
opening the interface with its SICL interface ID for another session.
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
Recommended Usage

You can avoid each of the above scenarios by always using the same
strings to identify the same device or interface in multi-threaded
applications. You can also use the igetintfsess function if other sessions
use the logical unit instead of the SICL interface ID to specify the
interface.

If any thread uses ilock and iunlock to synchronize access to a
particular device or interface, all threads accessing that same device or
interface using a different session must also use ilock and iunlock. You
can also use Win32 synchronization techniques to ensure that a thread
does not attempt I/O (iread/iwrite, etc.) to a device already locked via a
different session from a different thread within the same process.

If a session has an interface locked, and if a different thread using its
own session attempts to lock a device on that interface, the device lock
will be held off either until the interface is unlocked by the other thread,
or until a timeout occurs on the device lock. This is different from how
ilock works on other interfaces (where a lock on a device when the
device’s interface is already locked will not hold off the ilock operation,
but rather will hold off any subsequent I/O to the device).
Using Timeouts with LAN
The client/server architecture of the remote I/O software requires use of
two timeout values: one for the client and one for the server. The
server’s timeout value is the SICL timeout value specified with the
itimeout function. The client’s timeout value is the LAN timeout value,
which may be specified with the ilantimeout function.

Client/Server Operation

When the client sends an I/O request to the server, the timeout value
specified with itimeout or with the SICL default is passed with the
request. The server uses that timeout in performing the I/O operation,
just as if that timeout value had been used on a local I/O operation.

If the server’s operation is not completed in the specified time, the
server sends a reply to the client that indicates that a timeout occurred,
and the SICL call made by the application returns I_ERR_TIMEOUT.
177

178

7 Using SICL with LAN
When the client sends an I/O request to the server, it starts a timer and
waits for the reply from the server. If the server does not reply in the
time specified, the client stops waiting for the reply from the server and
returns I_ERR_TIMEOUT to the application.

LAN Timeout Functions

The ilantimeout and ilangettimeout functions can be used to set or
query the current LAN timeout value. They work much like the
itimeout and igettimeout functions. The use of these functions is
optional, however, since the software will calculate the LAN timeout
based on the SICL timeout in use and the configuration values set via
Connection Expert.

Once the application calls ilantimeout, the automatic LAN timeout
adjustment is turned off.

A timeout value of 1 used with the ilantimeout function has special
significance, causing the LAN client to not wait for a response from the
LAN server. However, the timeout value of 1 should be used only in
special circumstances and should be used with extreme caution.

Default LAN Timeout Values

Connection Expert specifies two timeout-related configuration values
for the LAN software. These values are used by the software to
calculate timeout values if the application has not previously called
ilantimeout.

Table 52 LAN Software Timeout Values

LAN maximum
timeout

Timeout value passed to the server when an
application either uses the SICL default timeout value
of Infinity or sets the SICL timeout to infinity (0).
Value specifies the number of seconds the server will
wait for the operation to complete before returning
I_ERR_TIMEOUT.

A value of 0 in this field will cause the server to be
sent a value of infinity if the client application also
uses the SICL default timeout value of infinity or sets
the SICL timeout to infinity (0).
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
Timeout Algorithm

Once ilantimeout is called, the software no longer sends the server
timeout value to the server and no longer attempts to determine a
reasonable client-side timeout. It is assumed that the application itself
wants full control of timeouts, both client and server. Also, ilantimeout
is per process. That is, all sessions going out over the network are
affected when ilantimeout is called.

If the application has not called the ilantimeout function, timeouts are
adjusted via the following algorithm:

• The SICL timeout, which is sent to the server for the current call, is
adjusted if it is currently infinity (0). In that case it will be set to the
Server Timeout value.

• The LAN timeout is adjusted if the SICL timeout plus the Client
Delta Timeout is greater than the current LAN timeout. In that case
the LAN timeout will be set to the SICL timeout plus the Client
Delta Timeout.

• The calculated LAN timeout only increases as necessary to meet the
needs of the application, but never decreases. This avoids the
overhead of readjusting the LAN timeout every time the application
changes the SICL timeout.

• The first iopen call used to set up the server connection uses the
Client Delta Timeout specified via Connection Expert for portions of
the iopen operation. The timeout value for TCP connection
establishment is not affected by the Client Delta Timeout.

To change the timeout values:

1 Exit any applications that use SICL.

2 Run the Connection Expert utility. (Click the Agilent IO Control and
then click Agilent Connection Expert.)

Client delta timeout Value added to the SICL timeout value (server’s
timeout value) to determine the LAN timeout value
(client’s timeout value). Value specifies the number
of seconds.

Table 52 LAN Software Timeout Values
179

180

7 Using SICL with LAN
3 Click on the TCPIP interface shown in the explorer view, then click
Change Properties... in the properties pane on the right.

4 Change the LAN Maximum Timeout and/or Client Delta Timeout
value(s) and click OK to save the changes.

5 Restart your application(s).

Timeouts in Multi-threaded Applications

If you want to manually set the client-side timeout in an application
using multiple threads, be aware that ilantimeout may itself time out
due to contention for the LAN subsystem, in cases where multiple
threads in an application are simultaneously using SICL over LAN.

Thus, if multiple threads are using SICL over LAN at the same time and
LAN timeouts are expected by the application, it is recommended that
you call ilantimeout only when no other LAN I/O is occurring, such as
immediately after session creation (iopen).

If you use the no-wait value and multiple threads are attempting I/O
over the LAN, I/O operations using the no-wait option will wait for
access to the LAN for two minutes. If another thread is using the LAN
interface for longer than two minutes, the no-wait operation will time
out.

Timeout Configurations to Be Avoided

The LAN timeout used by the client should always be greater than the
SICL timeout used by the server. This avoids the situation where the
client times out while the server continues to attempt the request,
potentially holding off subsequent operations from the same client. This
also avoids having the server send unwanted replies to the client.

The SICL timeout used by the server should generally be less than
infinity. Having the LAN server wait less than forever allows the LAN
server to detect network problems or clients that have ceased operation
abruptly, and subsequently release resources associated with those
clients, such as locks.

Using the smallest possible timeout for your application will maximize
the server’s responsiveness to dropped connections, including dropped
connections that result from the client application being terminated
abnormally. You can set a value less than infinity by setting the LAN
Maximum Timeout configuration value in the Connection Expert utility.
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
Even if your application uses the SICL default of infinity, or if itimeout
is used to set the timeout to infinity, by setting the LAN Maximum
Timeout value to some reasonable number of seconds, you allow the
server to time out, detect network trouble, and release resources.

Application Terminations and Timeouts

If an application is stopped in the middle of a SICL operation performed
at the remote I/O server, the server continues to try the operation until
the server’s timeout is reached. By default, the remote I/O server
associated with an application that is using a timeout of infinity and is
stopped may not discover that the client is no longer running for two
minutes. If you are using a server other than the Agilent Remote IO
Server on Windows or the Agilent E5810 LAN/GPIB gateway, check
your server’s documentation for its default behavior.

If your application uses itimeout to set a long timeout value, or if both
the LAN client and LAN server are configured to use infinity or a long
timeout value, the server may appear “hung” (unresponsive). If this
situation occurs, configure the LAN interface (via the Client Delta
Timeout value set with Connection Expert) or the Remote IO Server
(via its Server Timeout value) to use a shorter timeout value.

If you must use long timeouts, you may reset the server to regain server
response. You can reset a remote I/O server by logging into the server
system and stopping the Remote IO Server software that is running.
This will affect all clients connected to the server. See “Appendix B:
Troubleshooting SICL Programs” for more details. Also, see the
documentation on the server you are using for methods to reset the
server.
181

182

7 Using SICL with LAN
Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
8
Using SICL with USB

This chapter provides guidelines for SICL programming of USB
instruments that conform to USBTMC (Universal Serial Bus Test and
Measurement Class) and/or USBTMC-USB488 (Universal Serial Bus
Test and Measurement Class, Subclass USB488 Specification).

The chapter contents are:

• USB Interfaces Overview

• Communicating with a USB Instrument Using SICL
183Agilent Technologies

8 Using SICL with USB
USB Interfaces Overview
184
USBTMC/USBTMC-USB488 instruments are detected and
automatically configured by Agilent IO Libraries Suite when they are
plugged into the computer. The IO Libraries Suite Online Help
describes the USB instrument configuration process in more detail.
NOTE Do not confuse the Agilent 82357 USB/GPIB Interface with a
USBTMC device. The 82357 is automatically configured as a GPIB
interface, not as a USBTMC device, when it is plugged into the
computer. Only USBTMC/USBTMC-USB488 devices will be
configured as USB devices by Agilent IO Libraries Suite.
Agilent SICL User’s Guide

Using SICL with USB 8
Communicating with a USB Instrument Using SICL
Agilent SICL User’s Guide
Each USBTMC device can be uniquely identified by a set of four
parameters. These parameters are described in the following table.

When a USBTMC instrument is attached to the computer, Agilent IO
Libraries Suite automatically configures a USB interface with the name
usb0 if one does not already exist. (See the IO Libraries Suite Online
Help for more details.) A dialog box is also displayed, showing an alias
(which you can change) and the four unique USB parameters for the
device.

To establish communications with a USB device using SICL, you can
use either the full SICL resource string for the device or use the alias.
Using the alias is recommended, for reasons described below.

Using the full SICL resource string to open a USB instrument, the iopen
call would look like this:

id = iopen("usb0[2391::1031::SN_001001::0]");

Since in this example the USBTMC interface ID has the default value of
0, it does not have to be specified. The iopen call would then look like
this:

id = iopen("usb0[2391::1031::SN_001001]");

Following is a summary of the components of this call.

Table 53 USBTMC Device Parameters

Parameter Data Type Example Value Default Value

Manufacturer ID 16-bit unsigned
integer

2391 n/a

Model Code 16-bit unsigned
integer

1031 n/a

Serial Number String (128
characters max)

SN_001001 n/a

USBTMC
Interface Number

8-bit unsigned
integer

0 0
185

186

8 Using SICL with USB
This address string uniquely identifies the USB device. The values
needed for the resource string are displayed in a dialog box when the
device is plugged into the computer. The same values can also be
obtained by running the Connection Expert utility and selecting the
USB interface in the explorer view; the values will be shown in the
properties view (right pane of the Connection Expert window).

To simplify the way a USB device is identified, SICL also provides an
alias which can be used in place of this resource string. The first USB
device that is plugged in is assigned a default alias of UsbDevice1.
Additional devices are assigned aliases of UsbDevice2, UsbDevice3,
etc. You can modify the alias to one of your choosing at the time a
device is plugged in, or by running the Connection Expert utility and
modifying the properties of the USB interface.

Note that the Connection Expert displays (and allows editing of) VISA
aliases, not SICL aliases. However, Connection Expert creates a SICL
alias to correspond to each VISA alias, so if you do not use other tools
to edit your aliases, the VISA and SICL aliases in your test system will
be identical.

Although the case of an alias is preserved, case is ignored when the alias
is used in place of the full resource string in an iopen call. For example,
UsbDevice1, usbdevice1 and USBDEVICE1 all refer to the same
device.

Using the alias, an iopen call would look like this:

id = iopen("UsbDevice1");

Table 54 Summary of Full-String iopen Call

Value Description

usb0 the SICL name for the USB interface

2391 Manufacturer ID

1031 Model Code

SN_001001 Serial Number

0 USBTMC Interface Number
Agilent SICL User’s Guide

Using SICL with USB 8

Agilent SICL User’s Guide
As you can see, this is much simpler than having to use the full resource
string for a USB device.

Using the alias name in a program also makes it more portable. For
example, two identical USB function generators have different resource
strings because they have different serial numbers. If these function
generators are used in two different test systems and you use the full
resource string to access the function generator in the test program, you
cannot use that same program for both test systems, since the function
generators’ full resource strings are different. By using the alias name in
the program, however, you can use the same program in both test
systems. All you need to do is make sure the same alias name is used for
the function generator in both systems.
Operations Supported on All USBTMC Devices
The following USB-specific SICL functions can be used on all
USBTMC and USBTMC-USB488 device sessions. (See the SICL
Online Help for specific information on these functions.)

Interrupts are not supported on USBTMC or on USBTMC-USB488
devices.

Table 55 Operations Supported on All USBTMC Devices

Function Name Action

iusbctrl Used to set parameters affecting the USB device.

iusbgetcapabilitie
s

Returns a structure containing capabilities information
about the USB device.

iusbgetinfo Returns a structure containing general information about
the USB device.

iusbstat Used to retrieve the settings of parameters affecting the
USB device.
187

8 Using SICL with USB
Operations Supported Only on USBTMC-USB488 Devices
188
The iusbgetcapabilities function can be used to determine if a device
supports the USBTMC-USB488 protocol. See the SICL Online Help for
specific information on this function and the definition of the structure
that it returns. If the bcdUSB488 structure element is non-zero, the
device implements the USBTMC-USB488 protocol. The
intf488Capabilities and dev488Capabilities bit masks in this structure
provide the details of what the device supports (e.g. REN Control,
Triggering, SCPI commands, etc.)

SRQs (ionsrq) and triggers (itrigger) are supported only on
USBTMC-USB488 devices. They are not supported on USBTMC
devices that do not implement the USBTMC-USB488 protocol.

On USBTMC-USB488 devices that support REN control, the following
state diagram shows how state transitions are made using various SICL
functions.
Agilent SICL User’s Guide

Using SICL with USB 8

Agilent SICL User’s Guide
The following SICL functions are used to control the Remote/Local
state transitions in USBTMC-USB488 devices sessions. (See the SICL
Online Help for specific information on these functions.)
189

190

8 Using SICL with USB
Table 56 SICL Functions for Remote/Local State Transition

Function Name Action

igpibllo Locks out the front panel interface of the device (if REN
is true).

igpibibrenctl

iremote

Sets the REN (remote enable) state:
 igpibrenctl(id, 0) sets REN false.
 igpibrenctl(id, 1) sets REN true.
 iremote(id) sets REN true.

ilocal Enables the front panel interface of the device.

iremote Sets the device REN (remote enable) state to true.
NOTE Although igpibllo and igpibrenctl are documented as GPIB-specific
functions that are only valid on interface sessions, these functions can
be called on USBTMC-USB488 device sessions.
Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
Appendix A: SICL Library
Information
191Agilent Technologies

A Appendix A: SICL Library Information
SICL Library Information
192
This appendix provides information on SICL software files and
Windows system interactions.
File System Information
This section describes SICL file system information for Windows
systems.

All SICL files are installed in the base directory specified by the person
who installs Agilent IO Libraries Suite, with the exception of several
common files that Windows must be able to locate. On Windows 2000,
the following files are copied to the Windows subdirectory. On
Windows XP, the files are copied to Winnt.
Agilent SICL User’s Guide

Appendix A: SICL Library Information A

Agilent SICL User’s Guide

In f

W indow s 2000/X P

<W ind ir>*

1394 ip t.in f
ag tgp ib .in f
ausb tm c.in f

 D rivers

1394 ip t.d ll
ag tgp ibc lass.d ll
s ic l32 .d ll
s ic lrpc .d ll
vbs ic l32 .d ll
82357 ip t.d ll
ausbhe lper.d ll

1394 ip t.sys
ag074 i32 .sys
ag341 i32 .sys
agt82341.sys
agt82350.sys
agte2050.sys
ausbtm c.sys
agt82357.sys

S ys tem 32

*<W ind ir>
W indow s 2000 = W innt
W indow s X P = W indow s
The Registry
Agilent IO Libraries Suite places the following keys in the Windows
registry under HKEY_LOCAL_MACHINE:
Software\Agilent\IO Libraries\CurrentVersion
Software\Agilent\IO Libraries Suite\CurrentVersion

Also, if the Remote IO Server is configured, the following key will be
created under HKEY_LOCAL_MACHINE if it did not previously
exist:
Software\Microsoft\Windows\CurrentVersion\
RunServices
193

194

A Appendix A: SICL Library Information
Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
Appendix B: Troubleshooting SICL
Programs
195Agilent Technologies

B Appendix B: Troubleshooting SICL Programs
Troubleshooting SICL Programs
196
This appendix contains a description of SICL error codes and provides
guidelines for troubleshooting common problems with SICL. The
chapter contents are:

• SICL Error Codes

• Common Windows Problems

• Common RS-232 Problems

• Common LAN Problems

See the Agilent IO Libraries Suite Online Help and the Agilent
USB/LAN/GPIB Interfaces Connectivity Guide for additional
troubleshooting guidelines.
SICL Error Codes
When you install a default SICL error handler such as I_ERROR_EXIT
or I_ERROR_NOEXIT with an ionerror call, a SICL internal error
message is logged.

SICL logs internal messages as events that you can view by clicking the
Agilent IO Control (on the taskbar) and then clicking Event Viewer.
Both system and application messages can be logged to the Event
Viewer from SICL. SICL messages are identified by SICL LOG or by
the driver name (such as hp341i32 for the GPIB driver).

For C programs, you can use ionerror to install a custom error handler.
The error handler can call igeterrstr with the given error code and the
corresponding error message string will be returned. See Chapter 3 -
Programming with SICL for more information on error handlers. This
table summarizes SICL error codes and messages.
Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B

Agilent SICL User’s Guide
Table 57 List of SICL Error Codes

Error
Number

Error Code Error String Description

23 I_ERR_ABORTED Externally aborted A SICL call was aborted by external means.

3 I_ERR_BADADDR Bad address The device/interface address passed to iopen
does not exist. Verify that the interface name is
the one assigned with Connection Expert.

24 I_ERR_BADCONFIG Invalid configuration An invalid configuration was identified when
calling iopen.

13 I_ERR_BADFMT Invalid format Invalid format string specified for iprintf or
iscanf.

4 I_ERR_BADID Invalid INST The specified INST id does not have a
corresponding iopen.

19 I_ERR_BADMAP Invalid map request The imap call has an invalid map request.

28 I_ERR_BUSY Interface is in use by
non-SICL process

The specified interface is busy.

14 I_ERR_DATA Data integrity violation The use of CRC, Checksum, and so forth imply
invalid data.

128 I_ERR_INTERNAL Internal error occurred SICL internal error.

129 I_ERR_INTERRUPT Process interrupt occurred A process interrupt (signal) has occurred in your
application.

21 I_ERR_INVLADDR Invalid address The address specified in iopen is not a valid
address (for example, “hpib,57”).

17 I_ERR_IO Generic I/O error An I/O error has occurred for this
communication session.

11 I_ERR_LOCKED Locked by another user Resource is locked by another session (see
isetlockwait).

27 I_ERR_NESTEDIO Nested I/O Attempt to call another SICL function when
current SICL function has not completed
(WIN16). More than one I/O operation is
prohibited.

25 I_ERR_NOCMDR Commander session is not
active or available

Tried to specify a commander session when it is
not active, available, or does not exist.
197

B Appendix B: Troubleshooting SICL Programs
6 I_ERR_NOCONN No connection Communication session has never been
established, or connection to remote has been
dropped.

20 I_ERR_NODEV Device is not active or
available

Tried to specify a device session when it is not
active, available, or does not exist.

0 I_ERR_NOERROR No Error No SICL error returned; function return value is
zero (0).

10 I_ERR_NOINTF Interface is not active Tried to specify an interface session when it is
not active, available, or does not exist.

12 I_ERR_NOLOCK Interface not locked An iunlock was specified when device was not
locked.

7 I_ERR_NOPERM Permission denied Access rights violated.

9 I_ERR_NORSRC Out of resources No more system resources available.

22 I_ERR_NOTIMPL Operation not implemented Call not supported on this implementation. The
request is valid, but not supported on this
implementation.

8 I_ERR_NOTSUPP Operation not supported Operation not supported on this implementation.

18 I_ERR_OS Generic O.S. error SICL encountered an operating system error.

16 I_ERR_OVERFLOW Arithmetic overflow Arithmetic overflow. The space allocated for
data may be smaller than the data read.

5 I_ERR_PARAM Invalid parameter The constant or parameter passed is not valid for
this call.

2 I_ERR_SYMNAME Invalid symbolic name Symbolic name passed to iopen not
recognized.

Table 57 List of SICL Error Codes (continued)

Error
Number

Error Code Error String Description
198 Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B
1 I_ERR_SYNTAX Syntax error Syntax error occurred parsing address passed to
iopen. Make sure you have formatted the
string properly. White space is not allowed.

15 I_ERR_TIMEOUT Timeout occurred A timeout occurred on the read/write operation.
The device may be busy, in a bad state, or you
may need a longer timeout value for that device.
Check also that you passed the correct address to
iopen.

26 I_ERR_VERSION Version incompatibility The iopen call has encountered a SICL library
that is newer than the drivers. Need to update
drivers.

Table 57 List of SICL Error Codes (continued)

Error
Number

Error Code Error String Description
Agilent SICL User’s Guide 199

B Appendix B: Troubleshooting SICL Programs
Common Windows Problems

Common RS-232 Problems

Table 58 Windows Errors

Program Appears to Hang and Cannot
Be Stopped

Check that an itimeout value has been set for all SICL sessions in your
program. Otherwise, when an instrument does not respond to a SICL read or
write, SICL will wait indefinitely in the SICL kernel access routine,
preventing the application from being stopped.

To stop the application, click the button in the upper-left corner of the window
and then close the window. After a few seconds, an End Task dialog box
appears. Press the End Task button to stop the application.

Formatted I/O Using %F Causes
Application Error

Verify $(cvarsdll) is used when compiling the application, and either
$(guilibsdll) for Windows applications or $(conlibsdll) for console
applications when linking your application.

Also, the %F format character for iprintf only works with languages that use
MSVCRT.DLL, MSVCRT20.DLL, or MSVCRT40.DLL for their run-time
library.

Some versions of Visual C/C++ use their own versions of the run-time
library. They cannot share global data with SICL’s version of the run-time
library and, therefore, cannot use %F.
200
Unlike GPIB, special care must be taken to ensure that RS-232 devices
are correctly connected to the computer. Verifying the configuration
first may save many hours of debugging time.
Table 59 Common RS-232 Problems

No Response from Instrument Be sure the RS-232 interface is configured to match the instrument. Check the
Baud Rate, Parity, Data Bits, and Stop Bits. Also, be sure you are using the
correct cabling. See Appendix A - SICL Library Information for RS-232 cabling
information.

If you are sending several commands at once, try sending commands one at a
time either by inserting delays or by single-stepping the program.

Data Received from Instrument is
Garbled

Check the interface configuration. Install an interrupt handler in your program
that checks for communication errors.
Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B
Common LAN Problems

Data Lost During Large Transfers Check:
Flow control setting match
Full/half duplex for 3-wire connections
Cabling is correct for hardware handshaking

Table 59 Common RS-232 Problems
Agilent SICL User’s Guide
General Troubleshooting Techniques

NOTE Both the LAN client and LAN server may log messages to the Event
Viewer under certain conditions, whether or not an error handler has
been registered.
Before SICL over LAN can function, the client must be able to talk to
the server over the LAN. You can use the following techniques to
determine if the problem is a general network problem or is specific to
the LAN software provided with SICL.

Using the ping Utility

If the application cannot open a session to the LAN server for SICL, the
first diagnostic to try is the ping utility. This utility allows you to test
general network connectivity between client and server machines.

Using ping looks something like the following, where each line after the
Pinging line is an example of a packet successfully reaching the server.

>ping instserv.agilent.com

Pinging instserv.agilent.com[128.10.0.3] with 32
bytes of data:Reply from 128.10.0.3:bytes=32
 time=10ms TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms
 TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms
 TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms
 TTL=225
201

202

B Appendix B: Troubleshooting SICL Programs
However, if ping cannot reach the host, a message similar to the
following is displayed that indicates the client was unable to contact the
server. In this case, you should contact your network administrator to
determine if there is a LAN problem. When the LAN problem has been
corrected, you can retry your SICL application over LAN.

Pinging instserv.agilent.com[128.10.0.3] with 32
bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
LAN Client Problems
iopen Fails - Syntax Error

In this case, iopen fails with the error I_ERR_SYNTAX. If using the
“lan,net_address” format, ensure that the net_address is a hostname, not
an IP address. If you must use an IP address, specify the address using
the bracket notation, lan[128.10.0.3], rather than the comma notation
lan,128.10.0.3.

iopen Fails - Bad Address

An iopen fails with the error I_ERR_BADADDR, and the error text is
core connect failed: program not registered. This indicates the
Remote IO Server software has not registered itself on the server
machine. This may also be caused by specifying an incorrect hostname.
Ensure that the hostname or IP address is correct and, if so, check the
Remote IO Server’s installation and configuration.

iopen Fails - Unrecognized Symbolic Name

The iopen fails with the error I_ERR_SYMNAME, and the error text is
bad hostname, gethostbyname() failed. This indicates the hostname
used in the iopen address is unknown to the networking software.
Ensure that the hostname is correct and, if so, contact your network
administrator to configure your machine to recognize the hostname. The
ping utility can be used to determine if the hostname is known to your
system. If ping returns with the error Bad IP address, the hostname is
not known to the system.
Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B

Agilent SICL User’s Guide
iopen Fails - Timeout

An iopen fails with a timeout error. Increase the Client Delta Timeout
configuration value via the Connection Expert utility. See Chapter 8 -
Using SICL with LAN for more information.

iopen Fails - Other Failures

An iopen fails with some error other than those already mentioned. Try
the steps at the beginning of this section to see if the client and server
can talk to one another over the LAN. If the ping and rpcinfo
procedures work, check any server error logs that may be available for
further clues. Check for possible problems such as a lack of resources at
the server (memory, number of SICL sessions, etc.).

I/O Operation Times Out

An I/O operation times out even though the timeout being used is
infinity. Increase the Lan Maximum Timeout configuration value via the
Connection Expert utility. Also, ensure the LAN client timeout is large
enough if ilantimeout is used. See Chapter 8 - Using SICL with LAN
for more information.

Operation Following a Timed Out Operation Fails

An I/O operation following a previous timeout fails to return or takes
longer than expected. Ensure the LAN timeout being used by the system
is sufficiently greater than the SICL timeout being used for the session
in question. The LAN timeout should be large enough to allow for the
network overhead in addition to the time that the I/O operation may
take.

If ilantimeout is used, you must determine and set the LAN timeout
manually. Otherwise, ensure the Client Delta Timeout configuration
value is large enough (via the Connection Expert utility). See Chapter 8
- Using SICL with LAN for more information.

iopen Fails or Other Operations Fail Due to Locks

An iopen fails due to insufficient resources at the server or I/O
operations fail because some other session has the device or interface
locked. LAN server connections for SICL from previous clients may not
203

204

B Appendix B: Troubleshooting SICL Programs
have terminated properly. Consult your server’s troubleshooting
documentation and follow the instructions for cleaning up any previous
server processes.
LAN Server Problems
SICL LAN Application Fails - RPC Error

After starting the LAN server, a SICL LAN application fails and returns
a message similar to the following:

RPC_PROG_NOT_REGISTERED

There is a short (approximately 5 second) delay between starting the
LAN server and the LAN server being registered with the Portmapper.
Try running the SICL LAN application again.

rpcinfo Does Not List 395180 or 395183

A rpcinfo query fails to indicate that program 395180 (SICL LAN
Protocol) or 395183 (TCP/IP Instrument Protocol) is available on the
server. If you have not yet started the LAN server, do so now. See the IO
Libraries Suite Online Help for details on how to start the LAN server.
If you have started the LAN server, try rpcinfo again after a few
seconds to ensure the LAN server had time to register itself.

iopen Fails

An iopen fails when you run your application, but rpcinfo indicates the
LAN server is ready and waiting. Ensure the requested interface has
been configured on the server. See the IO Libraries Suite Online Help
for information on using the Connection Expert utility to configure
interfaces for SICL.

LAN Server Appears “Hung”

The LAN server appears “hung” (possibly due to a long timeout being
set by a client on an operation that will never succeed). Login to the
LAN server and stop the hung LAN server process. To stop the LAN
server, see the IO Libraries Suite Online Help.
Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B

Agilent SICL User’s Guide
This action will affect all connected clients, even those that may still be
operational. If informational logging has been enabled using the
Connection Expert utility, connected clients can be determined by log
entries in the Event Viewer utility.

rpcinfo Fails - cannot contact portmapper

An rpcinfo returns the message rpcinfo: can’t contact portmapper:
RPC_SYSTEM_ERROR - Connection refused.

If the LAN server is not running, start it. If the LAN server is running,
stop the currently running LAN server and then restart it.

Use Ctrl+Alt+Del to display a task list. Ensure that both LAN Server
and Portmap are not running before restarting the LAN server. See the
IO Libraries Suite Online Help for details on how to start and stop the
LAN server.

rpcinfo Fails - program 395180 is not available

An rpcinfo -t server_hostname 395180 1 returns the following
message:

rpcinfo: RPC_SYSTEM_ERROR - Connection refused
program 395180 version 1 is not available

Ensure that the LAN server program is running on the server.

Mouse “Hung” When Stopping LAN Server

After you attempt to stop a LAN server via either Ctrl+C or the
Windows Close button (the x in the upper-right hand corner of the
window), the mouse may appear to be “hung.” Press any keyboard key
and the LAN server will stop and the mouse will again be operational.
205

206

B Appendix B: Troubleshooting SICL Programs
Agilent SICL User’s Guide

Agilent IO Libraries Suite
Agilent SICL User’s Guide
Glossary

access board

The GPIB interface to which a particular device is connected.

Active Controller

See “Controller in Charge”.

address

A string (or other language construct) that uniquely locates and
identifies a resource. VISA defines an ASCII-based grammar that
associates address strings with particular physical devices or
interfaces and VISA resources.

Agilent 488

An I/O library provided in Agilent IO Libraries Suite for
compatibility with existing test & measurement programs that were
developed using National Instruments’ NI-488 or other similar
libraries. Agilent 488 supports communication with GPIB devices
and interfaces, but does not support USB, LAN, RS-232, or VXI
communications.

alias

See VISA alias.

API

Application Programming Interface. The interface that a programmer
sees when creating an application. For example, the VISA API
consists of the sum of all of the operations, attributes, and events of
each of the VISA ResourceClasses.
207Agilent Technologies

208

Glossary
attribute

In VISA and SICL, a value that indicates the operational state of a
resource. Some attributes can be changed; others are read-only.

board

A GPIB interface. It may be a physical board, an adapter (such as the
82357 USB/GPIB adapter), or a remote GPIB interface.

board descriptor

A handle, returned from ibfind, that uniquely identifies a GPIB
interface (board) in Agilent 488 original API calls. Also called an
interface descriptor or board unit descriptor.

board-level

Refers to Agilent 488 functions that operate on an interface (board),
rather than on a device.

bus error

An error that signals failure to access an address. Bus errors occur in
conjunction with low-level accesses to memory, and usually involve
hardware with bus mapping capabilities. Bus errors may be caused
by non-existent memory, a non-existent register, an incorrect device
access, etc.

bus error handler

Software that runs when a bus error occurs.

CIC

Controller in Charge.

command bytes

GPIB commands encoded as individual bytes. Also called GPIB
commands or interface messages.
Agilent SICL User’s Guide

Glossary

Agilent SICL User’s Guide
commander

In test-system architectures, a device that has the ability to control
another device. In a specialized case, a commander may also be the
device that has sole control over another device (as with the VXI
Commander/Servant hierarchy).

commander session

A session that communicates to the interface’s commander.
Commander sessions are used when an interface is in a
non-Controller role.

communication channel

A communication path between a software element and a resource.
In VISA, “communication channel” is synonymous with “session.”
Every communication channel in VISA is unique.

Connection Expert

An Agilent software utility that helps you quickly establish
connections between your instruments and your PC. It also helps you
troubleshoot connectivity problems. Connection Expert is part of the
Agilent IO Libraries Suite product.

Controller

A device (typically a computer) used to communicate with another
device or devices (typically instruments). The Controller is in charge
of communications and device operation; it controls the flow of
communication and performs addressing and other bus management
functions.

Controller in Charge

The device currently in control of the GPIB.
209

210

Glossary
device

A unit that receives commands from a Controller. A device is
typically an instrument, but can also be a computer acting in a
non-Controller role or another peripheral such as a printer or plotter.
In VISA, a device is logically represented by the association of
several VISA resources.

device descriptor

A handle, returned from ibdev or ibfind, that uniquely identifies a
device in Agilent 488 original API calls. Also called a device unit
descriptor.

device driver

Software code that communicates with a device: for example, a
printer driver that communicates with a printer from a PC. A device
driver may either communicate directly with a device by reading to
and writing from registers, or it may communicate through an
interface driver.

device session

A session that communicates as a Controller with a single, specific
device such as an instrument.

device-level

Refers to Agilent 488 functions that operate on a device (instrument),
rather than on an interface.

direct I/O

Programmatic communication with instruments not involving an
instrument driver. Direct I/O may be accomplished by using an IO
Library (VISA, VISA COM, SICL, or Agilent 488) or by using
direct I/O tools such as those provided by Agilent VEE.

driver

See instrument driver and device driver.
Agilent SICL User’s Guide

Glossary

Agilent SICL User’s Guide
explorer view

The tree view within the Connection Expert window that shows all
devices connected to a test system.

handler

A software routine that responds to an asynchronous event such as an
SRQ or an interrupt.

instrument

A device that accepts commands and performs a test and
measurement function.

instrument driver

Software that runs on a computer to allow an application to control a
particular instrument.

Interactive IO

An Agilent application that allows you to interactively send
commands to instruments and read the results. Interactive IO is part
of the Agilent IO Libraries Suite product.

interface

A connection and medium of communication between devices and
controllers. Interfaces include mechanical, electrical, and protocol
connections.

interface descriptor

A handle, returned from ibfind, that uniquely identifies a GPIB
interface (board) in Agilent 488 original API calls. Also called a
board descriptor or board unit descriptor.

interface driver

Software that communicates with an interface. The interface driver
also handles commands used to perform communications on an
interface.
211

212

Glossary
interface messages

GPIB commands encoded as individual bytes. Also called GPIB
commands or command bytes.

interface session

A session that communicates and controls parameters affecting an
entire interface.

interrupt

An asynchronous event that requires attention and actions that are
out of the normal flow of control of a program.

IO Control

The icon in the Windows notification area (usually the lower right
corner of your screen). The IO Control gives you access to Agilent
I/O utilities such as Connection Expert, Agilent I/O documentation,
and VISA options.

IO Libraries

Application programming interfaces (APIs) for direct I/O
communication between applications and devices. There are four
Agilent IO Libraries in the Agilent IO Libraries Suite: VISA, VISA
COM, SICL, and Agilent 488.

Listener

A device that can receive data from the bus when instructed
(addressed to listen) by the System Controller.

lock

A state that prohibits other users from accessing a resource such as a
device or interface.
Agilent SICL User’s Guide

Glossary

Agilent SICL User’s Guide
logical unit

A number associated with an interface. A logical unit, in SICL and
Agilent VEE, uniquely identifies an interface. Each interface on the
controller must have a unique logical unit.

mapping

An operation that returns a reference to a specified section of an
address space and makes the specified range of addresses accessible
to the requester. This function is independent of memory allocation.

non-Controller role

A computer is in a non-Controller role when it acts as a device
communicating with a computer that is in a Controller role.

notification area

The area on the Windows taskbar where notifications are posted,
typically in the lower right corner of the screen. Also called taskbar
notification area or Windows notification area.

operation

A defined action that can be performed on a resource.

primary VISA

The VISA installation that controls the visa32.dll file. The primary
VISA will be used by default in VISA applications. See also
secondary VISA.

process

An operating system component that shares a system's resources. A
single-process computer system allows only a single program to
execute at any given time. A multi-process computer system allows
multiple programs to execute simultaneously, each in a separate
process environment.
213

214

Glossary
programming alias

See VISA alias.

refresh

In Connection Expert, the action that invokes the discovery
mechanism for detecting interfaces and instruments connected to
your computer. The explorer view is then refreshed to show the
current, discovered state of your test system.

register

An address location that contains a value that represents the state of
hardware, or that can be written into to cause hardware to perform a
specified action or to enter a specified state.

resource (or resource instance)

In VISA, an implementation of a resource class (in object-oriented
terms, an instance of a resource class). For example, an instrument is
represented by a resource instance.

resource class

The definition of a particular resource type (a class in object-oriented
terms). For example, the VISA Instrument Control resource classes
define how to create a resource to control a particular capability of a
device.

resource descriptor

A string, such as a VISA resource descriptor, that specifies the I/O
address of a device.

SCPI

Standard Commands for Programmable Instrumentation: a standard
set of commands, defined by the SCPI Consortium, to control
programmable test and measurement devices in instrumentation
systems.
Agilent SICL User’s Guide

Glossary

Agilent SICL User’s Guide
secondary VISA

A VISA installation that does not install visa32.dll in the standard
VISA location. The secondary VISA installation names its VISA
DLL with a different name (agvisa32.dll) so that it can be accessed
programmatically. The primary VISA will be used by default in
VISA applications. See also primary VISA.

session

VISA term for a communication channel. An instance of a
communications path between a software element and a resource.
Every communication channel in VISA is unique.

SICL

Standard Instrument Control Library. SICL is an Agilent-defined
API for instrument I/O. Agilent SICL is one of the IO Libraries
installed with Agilent IO Libraries Suite.

side-by-side

A side-by-side installation allows two vendors' implementations of
VISA to be used on the same computer. See also primary VISA and
secondary VISA.

SRQ

An IEEE-488 Service Request. This is an asynchronous request (an
interrupt) from a remote device that requires service. In GPIB, an
SRQ is implemented by asserting the SRQ line on the GPIB. In VXI,
an SRQ is implemented by sending the Request for Service True
event (REQT).

Standby Controller

A device or interface that has Controller capability, but is not
currently the Active Controller.
215

216

Glossary
status byte

A byte of information returned from a remote device that shows the
current state and status of the device. If the device follows IEEE-488
(GPIB) conventions, bit 6 of the status byte indicates whether the
device is currently requesting service.

symbolic name

A name corresponding to a single interface. This name uniquely
identifies the interface on this Controller or gateway. When there is
more than one interface on the Controller or gateway, each interface
must have a unique symbolic name.

System Controller

One Controller on a GPIB is the System Controller. This is a master
Controller; it has the ability to demand control and to assert the IFC
(Interface Clear) and REN (remote enable) lines.

system tray

See notification area.

Talker

A device that transmits data onto the bus when instructed (addressed
to talk).

task guide

The information and logic represented in the left pane of the
Connection Expert window. The task guide provides links to actions
and information that help guide you through the most common I/O
configuration tasks.

taskbar notification area

See notification area.
Agilent SICL User’s Guide

Glossary

Agilent SICL User’s Guide
test system

An entire test setup including a controller (often a PC), instruments,
interfaces, software, and any remote controllers, instruments, and
interfaces that are configured to be used as part of the system.

thread

An operating system object that consists of a flow of control within a
process. A single process may have multiple threads, each having
access to the same data space within the process. Each thread has its
own stack, and all threads may execute concurrently (either on
multiple processors, or by time-sharing a single processor).

ViFind32

A console application that uses the viFindRsrc and viFindNext VISA
functions to enumerate all resources visible to VISA. This
application is useful for verifying that all expected interfaces have
been configured by Connection Expert, and that the expected devices
have been attached. ViFind32 is part of the Agilent IO Libraries
Suite.

virtual instrument

A name given to the grouping of software modules (such as VISA
resources with any associated or required hardware) to give them the
functionality of a traditional stand-alone instrument. Within VISA, a
virtual instrument is the logical grouping of any of the VISA
resources. The VISA Instrument Control Resources Organizer serves
as a means to group any number of any type of VISA Instrument
Control Resources within a VISA system.

VISA

Virtual Instrument Software Architecture. VISA is a standard I/O
library that allows software from different vendors to run together on
the same platform. Agilent VISA is part of the Agilent IO Libraries
Suite.

VISA address

A resource descriptor that can be used to open a VISA session.
217

218

Glossary
VISA alias

A string that can be used instead of a resource descriptor in VISA
programs. Using VISA aliases rather than hard-coded resource
descriptors makes your programs more portable. You can define
VISA aliases for your instruments in Connection Expert.

VISA COM

The VXIplug&play specification for a COM-compliant VISA I/O
library and its implementation. Agilent VISA COM is part of the
Agilent IO Libraries Suite.

VISA Instrument Control Resources

The VISA definition of device-specific resource classes. VISA
Instrument Control Resources include all VISA-defined device and
interface capabilities for direct, low-level instrument control.

VISA name

The prefix of a VISA address, also called the VISA interface ID.
The VISA name specifies the interface.

VISA resource manager

The part of VISA that manages resources. This management includes
support for opening, closing, and finding resources, setting attributes,
retrieving attributes, and generating events on resources.

VISA resource template

The part of VISA that defines the basic constraints and interface
definition for the creation and use of a VISA resource. Each VISA
resource must derive its interface from the VISA resource template.

VXI Resource Manager

A software utility that initializes and prepares a VXI system for use.
The VXI Resource Manager is part of the Agilent IO Libraries Suite.
Agilent SICL User’s Guide

Glossary

Agilent SICL User’s Guide
Windows notification area

See notification area.
219

220

Glossary
Agilent SICL User’s Guide

Index
A
addressing device sessions, 34
addressing RS-232 devices, 147
addressing RS-232 interfaces, 152
addressing VXI message-based

devices, 112
Agilent

telephone numbers, 14
web site, 14

Agilent 488, 207
asynchronous events,

enabling/disabling, 57
asynchronous events, handling, 56

B
buffers, formatted I/O, 44, 52
building SICL applications, 30

C
C applications, compiling, 31
command module, 110
commander session, 33
common LAN problems, 201
communications sessions,

opening, 32
compiled SCPI (C-SCPI), 110
compiling C applications, 31
configuring RS-232 interfaces, 141
Connection Expert, 18

D
device session, 32
device sessions, addressing, 34
device sessions, RS-232, 143
device types, VXI, 109
DLLs, C applications, 30
Agilent SICL User’s Guide
E
error handlers

using in Visual Basic, 62
error handlers, using in C, 59
error handling, 59
Event Viewer, 59
Event Viewer utility, 196
examples

C Example Program Code, 16
Configuring RS-232

Interface, 141
Creating a Commander

Session, 36
Device Locking (C), 66
Device Locking (Visual

Basic), 67
Error Handlers (Visual Basic), 63
Formatted I/O (Visual Basic), 51
GPIB (82350) Interface, 83
GPIB Device Session (C), 88
GPIB Device Session (Visual

Basic), 89
GPIB Interface Session (C), 94
GPIB Interface Session (Visual

Basic), 95
Installing an Error Handler

(C), 60
LAN-gatewayed Addressing, 166
LAN-gatewayed Session (C), 170
LAN-gatewayed Session (Visual

Basic), 171
Non-Formatted I/O (C), 54
Non-Formatted I/O (Visual

Basic), 55
Opening a Device Session, 34
Opening an Interface Session, 35
Oscilloscope Program (C), 69
Oscilloscope Program (Visual

Basic), 75
Processing VME Interrupts

(C), 136
RS-232 Device Session (Visual
Basic), 150

RS-232 Interface Session (C), 155
RS-232 Interface Session (Visual

Basic), 157
Servicing Requests (C), 100
Visual Basic Program Example

Code, 22
VME Interrupts (C), 129
VXI Interface Session (C), 124
VXI Interrupt Actions (C), 135
VXI Memory I/O (C), 132
VXI Message-Based Device

Session (C), 113
VXI Register-Based Programming

(C), 121
Writing an Error Handler (C), 61

F
formatted I/O

buffers, 44, 52
C applications, 37
conversion, 38, 46
related functions, 45
Visual Basic applications, 45
Visual Basic functions, 53

G
getting started using C, 16
getting started using Visual Basic, 22
GPIB

handling SRQs, 99
interface sessions, 92
interrupt handlers, 98
multiple interrupts, 99
primary/secondary addresses, 87
VXI mainframe connections, 87

GPIB commander sessions, 97
interrupts, 98
221

Index
GPIB communications sessions,
selecting, 85

GPIB device sessions, service
requests, 88

GPIB device sessions, SICL
functions, 86

GPIB device sessions, using, 86
GPIB devices, addressing, 86
GPIB interface sessions

service requests, 94
GPIB interface sessions,

interrupts, 93
GPIB interface sessions, SICL

functions, 92
GPIB Interfaces, configuring, 83
GPIB interfaces, introduction, 82
GPIB SICL functions, 85

H
handling errors, 59

I
I/O commands, sending, 36
interface session, 33
interface sessions, RS-232, 143, 152
interpreted SCPI (I-SCPI), 110
interrupt handlers, 57
interrupts, 56
I-SCPI interface, 115

L
LAN

application
terminations/timeouts, 181

clients and threads, 163
default timeout values, 178
hardware architecture, 160
interface sessions, 174
interface sessions, SICL

functions, 174
interfaces overview, 160
IP addresses, 166
Lan-gatewayed sessions, 165
locks, 176
SICL configuration, 163
SICL performance, 163
222
threads, 176
timeout functions, 178
timeouts, 177
timeouts in multi-threaded

applications, 180
Using the ping Utility, 201

LAN interface sessions, 174
SICL functions, 174

LAN interfaces, overview, 160
LAN-gatewayed sessions, 165
libraries, C applications, 30
locking

multi-user environment, 66
locks

actions, 65
locking multi-user

environment, 66
locks, using, 64

M
message-based devices,

programming, 111
message-based devices, VXI, 109

N
NI-488, 207
non-formatted I/O, 53

O
opening communications

sessions, 32
overview, guide, 10
overview, SICL, 11

P
peeks and pokes, register, 110
programming VXI register-based

devices, 115

R
register peeks and pokes, 110
register-based devices, 109
register-based devices,

programming, 115
RS-232
common problems, 200
communications sessions, 142
device sessions, 143, 147
interface sessions, 143, 152
interface sessions, SICL

functions, 152
SICL functions, 144

RS-232 device sessions
SICL function support, 148

RS-232 devices, addressing, 147
RS-232 interfaces, addressing, 152
RS-232 interfaces, configuring, 141
RS-232 interfaces, introduction, 140

S
sample code

See also examples, 9
selecting GPIB communications

sessions, 85
sending I/O commands, 36
SICL

description, 12
GPIB functions, 85
GPIB interface sessions, 92
SICL declaration file, 30

SICL applications, building, 30
SICL error codes, 196
SICL error messages, logging, 59
SICL functions, GPIB device

sessions, 86
SICL functions, VXI interfaces, 110
SICL overview, 11
SICL programs, troubleshooting, 196
SRQ handlers, 57
SRQs, 56
status byte, 88

T
troubleshooting

common LAN problems, 201
common Windows problems, 200
LAN client problems, 202
LAN server problems, 204
RS-232 problems, 200
SICL

error codes, 196
Agilent SICL User’s Guide

Index
SICL programs, 196

U
USB

communicating with instruments
using SICL, 185

interfaces overview, 184
using GPIB commander sessions, 97
using GPIB interface sessions, 92
using RS-232 interface sessions, 152
using VXI interface sessions, 123

V
VISA, 11
Visual Basic applications,

running, 32
VME devices

communicating with, 126
declaring resources, 126
interrupts, 129
mapping VME memory, 127
reading/writing to device

registers, 128
unmapping memory space, 128

VXI
backplane memory I/O

performance, 131
block memory access, 132
command module, 116
compiled SCPI, 116
device types, 109
I-SCPI interface, 115
message-based devices, 109
message-based devices,

addressing, 112
programming message-based

devices, 111
register programming, 115
register-based devices, VXI, 109
SICL function support, 131
single location peek/poke, 131

VXI interface sessions, 123
VXI interfaces, SICL functions, 110
Agilent SICL User’s Guide
W
Windows applications, thread

support, 32

X
XON/XOFF, 153
223

5991-1389EN
224
 Agilent SICL User’s Guide

	Agilent SICL User’s Guide for Windows
	Introduction
	What’s in This Guide?
	SICL Overview
	Introducing VISA, VISA COM, and SICL

	SICL Description
	SICL Support
	SICL Users
	SICL Documentation

	If You Need Help

	Getting Started with SICL
	Getting Started Using C
	C Sample Program Code
	C Sample Code Description
	sicl.h
	INST
	ionerror
	iopen
	itimeout
	iprintf and ipromptf
	iclose

	Compiling the C Sample Program
	Running the C Sample Program
	Where to Go Next

	Getting Started Using Visual Basic
	Visual Basic Program Sample Code
	Visual Basic Sample Code Description
	id
	iopen
	itimeout
	iwrite and iread
	iclose

	Building and Running the VB Sample Program
	Where to Go Next

	Programming with SICL
	Building a SICL Application
	Including the SICL Declaration File
	Libraries for C Applications and DLLs
	Compiling and Linking C Applications using Visual C++
	Loading and Running Visual Basic Applications
	Thread Support for 32-bit Windows Applications
	Opening a Communications Session
	Opening a Communications Session
	Device Sessions
	Addressing Device Sessions
	Examples: Opening a Device Session

	Interface Sessions
	Addressing Interface Sessions
	Samples: Opening an Interface Session

	Commander Sessions
	Addressing Commander Sessions
	Samples: Creating a Commander Session

	Sending I/O Commands
	Formatted I/O in C Applications
	Formatted I/O Conversion
	Format Flags
	Field Width
	. Precision
	, Array Size
	Argument Modifier
	Format Codes
	Sample: Formatted I/O (C)
	Format Strings
	Formatted I/O Buffers
	Related Formatted I/O Functions

	Formatted I/O in Visual Basic Applications
	Formatted I/O Conversion
	Format Flags
	Field Width
	. Precision
	, Array Size
	Argument Modifier
	Format Codes
	Format Strings
	Formatted I/O Buffers
	Related Formatted I/O Functions

	Non-Formatted I/O
	iread Function
	iwrite Function
	Sample: Non-Formatted I/O (C)
	Sample: Non-Formatted I/O (Visual Basic) ' nonfmt.bas ' The following subroutine measures AC voltage ‘ on a multimeter and prints the results. Sub Main () Dim dvm As Integer Dim strres As String * 20 Dim actual As Long

	Handling Asynchronous Events
	SRQ Handlers
	Interrupt Handlers
	Temporarily Disabling/Enabling Asynchronous Events

	Handling Errors
	Logging SICL Error Messages
	Using the Event Viewer

	Using Error Handlers in C
	ionerror Function
	Sample: Installing an Error Handler (C)
	Sample: Writing an Error Handler (C)

	Using Error Handlers in Visual Basic
	Sample: Error Handlers (Visual Basic)

	Using Locks
	What are Locks?
	Lock Actions
	Locking in a Multi-User Environment
	Sample: Device Locking (C)
	Sample: Device Locking (Visual Basic)

	Additional Sample Programs
	Sample: Oscilloscope Program (C)
	Program Files
	Building the Project File
	Program Overview
	Custom Error Handler
	Locks
	Formatted I/O
	Interface Sessions
	SRQs and iwaithdlr

	Sample: Oscilloscope Program (Visual Basic)
	Program Files
	Loading and Running the Program
	Program Overview

	Using SICL with GPIB
	Introduction to GPIB Interfaces
	GPIB Interfaces Overview
	Typical GPIB Interface
	Configuring GPIB Interfaces
	Example: GPIB (82350) Interface

	Selecting a GPIB Communications Session
	SICL GPIB Functions
	Using GPIB Device Sessions
	SICL Functions for GPIB Device Sessions
	Addressing GPIB Devices
	Opening Connection Expert
	Primary and Secondary Addresses
	VXI Mainframe Connections
	GPIB Device Sessions and Service Requests

	GPIB Device Session Code Samples
	Sample: GPIB Device Session (C)
	Sample: GPIB Device Session (Visual Basic)

	Using GPIB Interface Sessions
	SICL Functions for GPIB Interface Sessions
	Addressing GPIB Interfaces
	Opening Connection Expert
	GPIB Interface Sessions Interrupts
	GPIB Interface Sessions and Service Requests

	GPIB Interface Session Code Samples
	Sample: GPIB Interface Session (C)
	Sample: GPIB Interface Session (Visual Basic)

	Using GPIB Commander Sessions
	SICL Functions for GPIB Commander Sessions
	Addressing GPIB Commanders
	GPIB Commander Sessions Interrupts

	Writing GPIB Interrupt Handlers
	Multiple I_INTR_GPIB_TLAC Interrupts
	Handling SRQs from Multiple GPIB Instruments
	Sample: Servicing Requests (C)

	Using SICL with VXI
	Introduction to VXI Interfaces
	VXI Interfaces Overview
	Typical VXI Interface
	Configuring VXI Interfaces
	Example: VXI (E1406A) Interface
	Example: VXI (E8491) Interface

	VXI Communications Sessions
	VXI Device Types
	Message-Based Devices
	Register-Based Devices

	SICL Functions for VXI Interfaces
	Programming VXI Message-Based Devices
	VXI Message-Based Device Functions

	Addressing VXI Message-Based Devices
	Addressing Guidelines
	Sample: VXI Message-Based Device Session (C)
	Sample: VXI Message-Based Device Session (Visual Basic)

	Programming VXI Register-Based Devices
	Addressing VXI Register-Based Devices
	Functions Not Supported
	Addressing Guidelines

	Programming Directly to Registers
	Mapping Memory Space for Register-Based Devices
	Reading and Writing Device Registers
	Sample: VXI Register-Based Programming (C)

	Programming VXI Interface Sessions
	VXI Interface Sessions Functions
	Addressing VXI Interface Sessions
	Addressing Guidelines
	Sample: VXI Interface Session (C)

	Miscellaneous VXI Interface Programming
	Communicating with VME Devices
	Declaring Resources
	Mapping VME Memory
	Reading and Writing Device Registers
	Unmapping Memory Space
	VME Interrupts
	Sample: VME Interrupts (C)

	VXI Backplane Memory I/O Performance
	Using Single Location Peek/Poke
	Using Block Memory Access
	Sample: VXI Memory I/O (C)

	Using VXI-Specific Interrupts
	Sample: VXI Interrupt Actions (C)
	Sample: Processing VME Interrupts (C)

	Using SICL with RS-232
	Introduction to RS-232 Interfaces
	ASRL (RS-232) Interface Overview
	Typical RS-232 Interface

	Configuring RS-232 (ASRL) Interfaces
	Sample: Configuring RS-232 Interface

	RS-232 Communications Sessions
	Device Sessions
	Interface Sessions

	RS-232 SICL Functions
	Using RS-232 Device Sessions
	Addressing an RS-232 Device
	SICL Functions for RS-232 Device Sessions
	Device Session Sample Programs
	Sample: RS-232 Device Session (C)
	Sample: RS-232 Device Session (Visual Basic)

	Using RS-232 Interface Sessions
	Addressing RS-232 Interfaces
	SICL Functions for RS-232 Interface Sessions
	Interface Sessions Sample Programs
	Sample: RS-232 Interface Session (C)
	Sample: RS-232 Interface Session (Visual Basic)

	Using SICL with LAN
	Introduction to LAN Interfaces
	LAN and Remote Interfaces Overview
	Direct LAN Connection versus Remote IO Server/Client Connection
	Remote IO Server/Client Architecture
	Client/server model.
	Gateway operation.

	Considerations when Using SICL with LAN
	Specifying Protocol and Socket Number in iopen Calls
	LAN Clients and Threads
	SICL LAN Performance

	SICL LAN Functions

	Using Remote Sessions
	Addressing Guidelines
	Creating a Remote Session
	Example: Remote Addressing

	SICL Function Support
	Remote Interface Support
	LAN Timeout Functions
	Sample Programs
	Sample: LAN-gatewayed Session (C)
	Sample: LAN-gatewayed Session (Visual Basic 6.0)

	Using LAN Interface Sessions
	Addressing LAN Interface Sessions
	SICL Function Support

	Using Locks, Threads, and Timeouts
	Using Locks and Threads Over LAN
	Scenarios to Avoid
	Recommended Usage

	Using Timeouts with LAN
	Client/Server Operation
	LAN Timeout Functions
	Default LAN Timeout Values
	Timeout Algorithm
	Timeouts in Multi-threaded Applications
	Timeout Configurations to Be Avoided
	Application Terminations and Timeouts

	Using SICL with USB
	USB Interfaces Overview
	Communicating with a USB Instrument Using SICL
	Operations Supported on All USBTMC Devices
	Operations Supported Only on USBTMC-USB488 Devices

	Appendix A: SICL Library Information
	SICL Library Information
	File System Information
	The Registry

	Appendix B: Troubleshooting SICL Programs
	Troubleshooting SICL Programs
	SICL Error Codes
	Common Windows Problems
	Common RS-232 Problems
	Common LAN Problems
	General Troubleshooting Techniques
	Using the ping Utility

	LAN Client Problems
	iopen Fails - Syntax Error
	iopen Fails - Bad Address
	iopen Fails - Unrecognized Symbolic Name
	iopen Fails - Timeout
	iopen Fails - Other Failures
	I/O Operation Times Out
	Operation Following a Timed Out Operation Fails
	iopen Fails or Other Operations Fail Due to Locks

	LAN Server Problems
	SICL LAN Application Fails - RPC Error
	rpcinfo Does Not List 395180 or 395183
	iopen Fails
	LAN Server Appears “Hung”
	rpcinfo Fails - cannot contact portmapper
	Mouse “Hung” When Stopping LAN Server

	Glossary
	access board
	Active Controller
	address
	Agilent 488
	alias
	API
	attribute
	board
	board descriptor
	board-level
	bus error
	bus error handler
	CIC
	command bytes
	commander
	commander session
	communication channel
	Connection Expert
	Controller
	Controller in Charge
	device
	device descriptor
	device driver
	device session
	device-level
	direct I/O
	driver
	explorer view
	handler
	instrument
	instrument driver
	Interactive IO
	interface
	interface descriptor
	interface driver
	interface messages
	interface session
	interrupt
	IO Control
	IO Libraries
	Listener
	lock
	logical unit
	mapping
	non-Controller role
	notification area
	operation
	primary VISA
	process
	programming alias
	refresh
	register
	resource (or resource instance)
	resource class
	resource descriptor
	SCPI
	secondary VISA
	session
	SICL
	side-by-side
	SRQ
	Standby Controller
	status byte
	symbolic name
	System Controller
	system tray
	Talker
	task guide
	taskbar notification area
	test system
	thread
	ViFind32
	virtual instrument
	VISA
	VISA address
	VISA alias
	VISA COM
	VISA Instrument Control Resources
	VISA name
	VISA resource manager
	VISA resource template
	VXI Resource Manager
	Windows notification area

	Index

