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Abstract:  The ISO Guide to the Expression of Uncertainty in Measurement (GUM) [1] limits 

the description of the law of propagation of uncertainty to real input quantities and a single real 

output quantity.  The GUM provides little guidance for uncertainty analysis of measurements 

with multiple output quantities, such as complex valued S-Parameter measurements that have 

both real and imaginary components.  Complex measurement quantities are common in RF and 

microwave measurements.  Likewise, measurements with multiple output quantities exist in 

many disciplines.  Supplement 2 [2] to the GUM extends the law of propagation of uncertainty to 

an arbitrary number of output quantities, which is a more general solution.  This paper discusses 

this more general solution clearly and concisely using matrix notation.  It demonstrates that the 

GUM expressions for uncertainty propagation are a specific case of this more general solution.  

This method is then applied to a practical measurement uncertainty example involving complex 

quantities. 

1. Introduction 

The GUM [1] assumes that a measurement system is modeled as a function of multiple real input 

quantities and a single real output quantity.  This is represented as  

    (           ). (1)  

In this case, the measurand,  , is a scalar quantity as are each            .  There exist, 

however, measurement problems where the measurand must be represented by more than one 

quantity.  To demonstrate this, consider the following example from electrical metrology. 

A common task in electrical metrology is the measurement of sine waves.  Sine waves, of 

course, are represented by the sine function 

  ( )       (    ), (2)  

where 
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  = the magnitude of the peak deviation of  ( ) from zero, 

  = the angular frequency in radians per second, 

  = the sine wave phase, in radians, and 

  = time in seconds. 

 

As an electrical sine wave passes through a linear device, such as an amplifier, it is likely for the 

amplitude,  , to change and the phase,  , to shift as shown in Figure 1. 

  

Figure 1. Change of amplitude and phase of a sine wave. 

To characterize the effect an amplifier has on a sine wave requires a measurement of both the 

magnitude and phase change of the sine wave.  It is possible to independently measure 

magnitude and phase and determine uncertainty intervals about each using the methods of the 

GUM.  However, doing so fails to capture potential correlation between the magnitude and 

phase, and therefore the measurements and the information determined from them are 

incomplete.  It is necessary to consider the potential correlation if the intent is to use the 

measurement results and corresponding uncertainties as input to another measurement.  One of 

the primary tenets of the GUM is that uncertainty values are transferable.  That is, from the 

GUM
1
, “it should be possible to use directly the uncertainty evaluated for one result as a 

component in evaluating the uncertainty of another measurement in which the first result is 

used.”  This requires knowledge of the correlation.  Therefore, it is necessary to consider 

measurements and uncertainty propagation for measurement problems for which the measurand 

includes more than one value (that is, a vector quantity) and that the correlation between the 

measurand values is a critical factor. 

2. Matrices 

To extend the methods of the GUM [1] to a measurand represented by a vector quantity, it is 

convenient to represent variables using matrices.  A matrix is simply a rectangular array of 

numbers arranged into rows and columns.  Two matrix operations are necessary for the analysis 

                                                           
1
 GUM, Section 0.4. 

𝐴𝑖𝑛 𝐴𝑜𝑢𝑡 

𝜙  0 𝜙  𝜙𝑜𝑢𝑡 

Linear Amplifier Input Sine Wave Output Sine Wave 

𝑡 → 𝑡 → 
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that follows.  Those operations are the matrix transpose and matrix multiplication.  The matrix 

transpose, indicated by the superscript “T”, exchanges rows for columns.  For example, 

 [
    
    

]
 

 [
  
   
   

] . (3)  

When multiplying two matrices, the resulting matrix is the dot product of corresponding rows 

of the first matrix and columns of the second matrix, where the dot product is the sum of the 

products of the corresponding elements in each row and column.  For example, 

 

3. Propagation of Variance (for Scalar Output Quantities) 

Referring to Eq.  (1), the standard uncertainty of the measurand,  , is obtained by combining the 

standard uncertainties of the input quantities,   .  The GUM [1] describes this as the combined 

standard uncertainty and it is the positive square root of the combined variance, which, in the 

case of uncorrelated input quantities, is given by
2
 

   
 ( )  ∑ (

  

   
)
 

  (  )
 
   . (4)  

It is possible to derive Eq. (4) starting with the basic definition of variance.  Let   be a 

random variable such that   [       ].  The variance of   is the expected value of 

the square of the deviations from the mean.  That is, 

                                                           
2
 GUM, Section 5.1.2. 
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𝑎  𝑎  
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     [(    ( ))
 
]  

 

   
∑ (    ( ))

  
   , (5)  

and the mean of   is     ( ).  If we let    [    ( )     ( )      ( )], 

then the variance of   can be written using matrix notation as
3
 

     (     ). (6)  

If we recognize that    is a row vector and     is a column vector, carrying out the matrix 

multiplication for       is equivalent to the summation operation on the far right side of Eq. (5). 

Now, assume we wish to determine the variance of the output quantity of a function with two 

input quantities.  Let   be the value a function of the random variables   and  , 

    (   ). (7)  

If we assume that the variance of   and   are small (an assumption we usually make for 

uncertainty analysis), then, from basic statistics, we can state, 

    
  

  
   

  

  
  , (8)  

where, for the purpose of this analysis, 

    [    ( )     ( )      ( )] , and (9)  

    [    ( )     ( )      ( )]. (10)  

The variance of   is 

     (     )  (11)  

and if we rewrite Eq.  (8) in matrix form, 

    [
  

  

  

  
] [

  
  

], (12)  

we can then combine these two equations 

      ([
  

  

  

  
] [

  
  

]) ([
  

  

  

  
] [

  
  

])
 

 , and (13)  

     [([
  

  

  

  
] [

  
  

])([      ] [

  

  

  

  

])] . (14)  

                                                           
3
 The expectation function in equation (6) simply divides       by (   ). 
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The partial derivatives of   are constant and the expected value of a constant is the constant 

value.  This allows moving the partial derivatives outside the expected value function, 

    [
  

  

  

  
]  ([

  
  

] [      ]) [

  

  

  

  

]. (15)  

Carrying out the matrix multiplication inside the expected value function gives  

    [
  

  

  

  
]  

 (     )  (     )

 (     )  (     )
 [

  

  

  

  

]. (16)  

Note that the inner matrix in Eq.  (16) contains the variance of   and the variance of  .  That 

is,      (     ) and      (     ).  The additional terms in the inner matrix represent the 

covariance of   and  , expressed as     and    .  The equation for covariance is given by  

          (     )   (     )  
 

   
∑ (    ( ))(    ( )) 

   . (17)  

Accordingly, Eq. (16) can be rewritten as 

    [
  

  

  

  
] [

     

     
] [

  

  

  

  

]. (18)  

We can now generalize Eq.  (18) by referring to Eq.  (1),    (           ), where the 

variance of   is  

    [
  

   

  

   
 

  

   
] [

   
     

      

     
   

      

    
     

     
    

]

⏟                  
                   

[
 
 
 
 
 
 
 
 

  

   

  

   

 

  

   ]
 
 
 
 
 
 
 
 

. (19)  

The inner matrix of Eq.  (19) is referred to as the variance-covariance matrix.  Later in the 

analysis, we will use the variance-covariance matrix to represent the uncertainty of complex 

numbers. 

Equation (19) is an equivalent representation of the GUM [1] uncertainty equation, Eq.  (4).  

To demonstrate this, let us consider the case of uncorrelated input parameters.  In this case, all 
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the covariance values are zero, and only the variance terms along the diagonal of the variance-

covariance matrix remain, 

    [
  

   

  

   
 

  

   
]

[
 
 
 
 
   

0  0

0    
 0

    
0 0     ]

 
 
 
 

[
 
 
 
 
 
 
 
 

  

   

  

   

 

  

   ]
 
 
 
 
 
 
 
 

. (20)  

We now carry out the matrix multiplication, which gives  

    [
  

   
   

  

   
   

 
  

   
   ]

[
 
 
 
 
 
 
 
 

  

   

  

   

 

  

   ]
 
 
 
 
 
 
 
 

, and (21)  

    (
  

   
)
 
   

 (
  

   
)
 
   

   (
  

   
)
 
   

 ∑ (
  

   
)
 
   

 
   . (22)  

With a minor change in notation, Eq.  (22) is equivalent to  the combined variance equation 

from the GUM [1], 

    ∑ (
  

   
)
 
   

 
      

 ( )  ∑ (
  

   
)
 
  (  )

 
   . (23)  

Equation (19), therefore, is the GUM uncertainty expression in matrix form.  Furthermore, if 

we consider non-zero covariance terms in the variance-covariance matrix, carrying out the 

matrix multiplication for Eq.  (19) gives the GUM equation for combined variance for correlated 

input quantities
4
. 

4. Propagation of Variance (for Vector Output Quantities) 

In Eq.  (19), we now have an expression for propagating variance, using matrix notation, for a 

scalar measurand.  However, our objective is to develop an expression for a measurand 

                                                           
4
 GUM, Section 5.2.2. 
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represented by a vector quantity.  For this, we redefine our measurement function as a column 

vector, 

   [

  (           )

  (           )
 

  (           )

]. (24)  

Similarly, the measurand is also defined as a column vector, 

   [

  

  

 
  

]. (25)  

In Eq. (19), the partial derivatives of the measurement function are represented as a row 

vector (and its transpose is a column vector).  Since we now have defined   measurement 

functions and, for each, an output quantity, it is now necessary to represent the partial derivatives 

as a     matrix, where   is the number of functions and output quantities, and   is the 

number of input quantities.  When carrying out the matrix multiplication, the result is an     

variance-covariance matrix.  The matrix diagonal gives the variance of each output quantity, 

            while the off-diagonal terms give the covariance.  The general equation is  
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(26)  

The matrix of the partial derivatives in Eq. (26) is known as the Jacobian matrix
5
 and is 

denoted here as   .  Equation (26) can be written as 

          
 , (27)  

where  

                                                           
5
 More formally, the Jacobian is the M by N matrix of first-order partial derivatives of M functions in N variables. 



©2014 Keysight Technologies 
 

   = the variance-covariance matrix of the measurand,  , 

   = the Jacobian matrix of the measurement functions,  , and 

   = the variance-covariance matrix of the input quantities,  . 

 

Equation (27) is the general equation for propagating variance for an arbitrary number of input 

quantities and an arbitrary number of output quantities
6
. 

5. Complex Numbers 

Now let us return to our example of measuring a sine wave and apply Eq. (27).  Representing 

sine waves with magnitude and phase is common because of the direct effect systems typically 

have on either the magnitude or the phase of the sine wave.  For instance, if the amplifier in our 

example has unity gain, the magnitude of the sine wave does not change as it passes through the 

amplifier, but a phase shift is still likely.  However, determining statistics for magnitude and 

phase is problematic.  A distribution of magnitude values, for instance, has a lower bound of zero 

(magnitude is always a positive number).  Phase values that are multiples of    are equivalent to 

each other.  This can lead to mathematical complications and biased statistics (see [3]).  When 

measuring sine waves, therefore, it is common to represent them as complex numbers in 

rectangular form as real and imaginary values rather than in polar form as magnitude and phase. 

Complex numbers are represented in the form       , where   is the real component,   is 

the imaginary component and   √  .  If we assume the measurand of our measurement 

problem is complex, then we need to consider the uncertainty of both the real and imaginary 

parts.  Furthermore, we must also consider correlation between the real and imaginary parts. 

The variance of a complex number, composed of a real and an imaginary value, is 

represented using a     variance-covariance matrix.  That is, 

    [
     

     
], (28)  

where 

   = the variance-covariance matrix for a complex number, 

   = the variance of the real part, 

   = the variance of the imaginary part, and 

        = the covariance between the real and imaginary parts. 

 

For example, the data shown in Table 1 are from measurements of the coupler-directivity on one 

                                                           
6
 GUM Supplement 2, Section 6.2. 
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port of a vector network analyzer
7
.  Directivity is one parameter routinely measured as part of the 

vector network analyzer calibration and the measured directivity value is used to correct for 

systematic error.  The data represents the vector network analyzer directivity repeatability error 

for the environment in which it is located.  For a complete treatment of vector network analyzer 

uncertainty evaluation, see [4]. 

Measurement Real Imaginary 

1 0.01159 0.02699 

2 0.01056 0.02599 

3 0.01118 0.02660 

4 0.01156 0.02798 

5 0.01128 0.02823 

6 0.01094 0.02746 

7 0.01097 0.02720 

8 0.01159 0.02719 

9 0.01150 0.02782 

10 0.01170 0.02799 

11 0.01153 0.02747 

12 0.01170 0.02812 

13 0.01220 0.02838 

14 0.01009 0.02697 

Table 1.  Directivity Measurements 

We can use Eq.  (5) to determine the variance of the real and imaginary components and Eq.  

(17) to determine the covariance between the real and imaginary component.  Using these 

equations and the data from Table 1, the directivity variance-covariance matrix is  

              [
                  
                  

]. (29)  

For this data, the covariance terms are non-zero, and plotting the directivity data clearly 

shows correlation between the real and imaginary components.  For scalar quantities, it is 

customary to draw a 95 % confidence uncertainty interval about a measured result by 

multiplying the standard uncertainty by a coverage factor
8
.  For a complex number result, it is 

still desirable to draw a 95 % confidence uncertainty interval, but it must be drawn on the real-

imaginary plane in two dimensions.  If we assume the data are samples from a bivariate normal 

distribution, the uncertainty region is elliptical where the major and minor ellipse axes are set by 

the uncertainty of the real and imaginary components, while the tilt of the ellipse is set by the 

correlation between the real and imaginary components (see the Appendix).  Figure 2 shows the 

measured directivity and the 95 % confidence uncertainty region centered on the mean of the 

data (indicated by the “+” in the center of the ellipse). 

                                                           
7
 The data are from measurements on a Keysight N5247A PNA-X Microwave Network Analyzer, including port 

cables, located in a manufacturing environment (25 C ± 3 C) and using a Keysight N4694A Electronic Calibration 
Module, measured at 10 GHz over an 18-day period. 
8
 GUM section 6. 
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Figure 2. Coupler Directivity Measurements with 95 % Confidence Region. 

Now suppose we wish to use the directivity and associated uncertainty as an input quantity to 

a measurement equation.  This is a common step in the error correction algorithms for vector 

network analyzers.  Furthermore, it is common to multiply the complex valued directivity by 

another complex quantity.  As an example, assume we want to multiply the directivity by another 

complex number.  Let us assume that the value and variance-covariance matrix of a complex 

multiplier,  , are  

   
 

√ 
 

 

√ 
 , and  (30)  

    [
0 000 0

0 0 000 
]. (31)  

Note that the magnitude of   is one, since the magnitude is the square root of the sum of the 

real part squared and the imaginary part squared.  Also, note that the real and imaginary parts are 

equal resulting in a phase angle of   ⁄  radians.  Since the magnitude of   is one, multiplying the 

directivity by   simply rotates the directivity value by   ⁄  radians.  From the variance-

covariance matrix of Eq.  (31), note that variance of the real and imaginary components are equal 

and that no correlation exists between them.  Equal variance for both the real and imaginary 
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components produces a circular uncertainty region.  Finally, for this example, assume that the 

multiplier,  , and the directivity,  , are uncorrelated.  The measurement equation, for this 

example is, 

      , (32)  

where  

  = the complex measurand, which is the directivity rotated by   ⁄  radians, 

  = the complex multiplier given by Eqs. (30) and (31), and 

  = directivity, with the variance-covariance matrix given in Eq. (29). 

 

The measurement equation is simply the multiplication of two complex numbers.  Once 

again, we can take advantage of matrix notation to simplify the calculations.  A complex number 

can be represented as a     matrix.  That is, 

   [
     
    

], (33)  

where    is the real component and    is the imaginary component of  .  Represented this way, 

matrix multiplication gives the result expected for complex multiplication and the matrix 

transpose is equivalent to the complex conjugate.  The  measurement equation is evaluated as  

       [
     
    

]   
     

    
   

                   

                   
 . (34)  

Notice that the result is consistent with the matrix notation for complex numbers.  That is, the 

diagonal terms are equal, while the off-diagonal terms are equal but with opposite sign. 

Now let us propagate the uncertainties from our input quantities to the output quantities of 

our measurement equation, Eq.  (32).  For this, we will rely on Eq.  (27), our general equation for 

uncertainty propagation.  The general form of the propagation equation for our example is  

            
  [

  

  

  

  
]  [

     

     
]  [

  

  
  

  

]. (35)  

Note that 
  

  
 and 

  

  
 are complex numbers, which we represent as     matricies.  The Jacobian 

matrix, [
  

  

  

  
], therefore, is a matrix of matrices, which expands to a     matrix for our example.  

Likewise, the variance-covariance matrix, [
     

     
], expands to a     matrix. 

We can note the following from our measurement equation 

 
  

  
  , and (36)  
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  . (37)  

Assume that the nominal value of   is the complex mean of the data from Table 1.  That is, 

  0 0     0 0     .  Equation (30) gives the nominal value of  .  Given that   and   are 

complex, the Jacobian matrix is  

    [
  

  

  

  
]  [  ]  [

0 0     0 0    
 

√ 
 

 

√ 

0 0    0 0    
 

√ 

 

√ 

]. (38)  

Now let us construct the variance-covariance matrix.  Equation (29) gives the variance-

covariance matrix for  .  Equation (31) gives the variance-covariance matrix for  .  We assume 

that   and   are uncorrelated.  The variance-covariance, therefore, is  

 

    [
     

     
]  [

       
     

     

    
   

     
     

          
   

    

          
    

   

] 

 

 [

0 000 0 0 0
0 0 000 0 0
0 0                   
0 0                   

]. 

(39)  

Finally, the measurand variance-covariance matrix for this example is  

             
  [

     0             
            0      

]. (40)  

The uncertainty region for this variance-covariance matrix is shown as the ellipse on the left 

side of Figure 3.  Note that the tilt of the ellipse has changed compared to the tilt of the 

directivity ellipse (on the right side of Figure 3).   
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Figure 3. Rotated Coupler Directivity. 

The change in the tilt is an indication that the correlation has changed.  Also note that the 

new ellipse is more circular.  This is due to the uncertainty of the complex multiplier.  The 

complex multiplier has equal uncertainty for both the real and imaginary components.  As noted 

earlier, this produces a circular uncertainty region.  If the complex multiplier had dominated the 

directivity uncertainty, then the resulting uncertainty would have been nearly circular. 

6. Conclusion 

This paper provides a general solution to the law of propagation of uncertainty for measurements 

with an arbitrary number of output quantities.  This solution is equally suited to measurement 

problems with a single output quantity.  Additionally, this paper has demonstrated the utility of 

matrix notation for implementation of GUM Supplement 2 [2] in analysis of complex quantities 

common in RF and microwave measurements.   

One final point to make is that software libraries exist that implement the concepts presented 

in this paper.  One such software library is the UncLib [5] library available from the Federal 

Institute of Metrology in Switzerland (METAS).  The following snippet of MATLAB code uses 

the UncLib library to evaluate the example from this paper.  Note that this library determines the 

Jacobian matrix automatically, so that all that is necessary is to assign the variance-covariance 
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matrix to the two input quantities.  The library is also very useful for scalar measurement 

problems. 

>> vc = [ 0.0001 0; 0 0.0001 ]; 

>> vd = [ 2.8624e-7 2.4261e-7; 2.4261e-7 4.6598e-7 ]; 

>> c = LinProp( sqrt( 1/2 ) + 1i*sqrt( 1/2 ), vc ); 

>> d = LinProp( 0.01131 + 0.02746i, vd ); 

>> y = c * d; 

>> get_covariance( y ) 

 

ans = 

 

   1.0e-06 * 

 

    0.2217   -0.0899 

   -0.0899    0.7069 
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Appendix A. Geometric Shape of the Variance-Covariance Uncertainty Interval 

Involving Bivariate Quantities 

Consider plotting two quantities with associated uncertainties and correlation between them on a 

Cartesian coordinate system; the first quantity,  , on the x-axis and second quantity,  , on the y-

axis and both quantities have uncertainty around the mean value. Intuitively we can see that the 

shape of this coverage interval would be some kind of surface, maybe circular, or more generally 

an ellipse. 

A conic section can be generally expressed with the following quadratic, 

                     0, (A.1) 

where  ,   and   are not all equal to zero.  In matrix form, Eq. (A.1) is expressed as  

 [   ] [

       
       
       

]  
 
 
 
  0. (A.2) 

The type of conic section can be determined by examining the submatrix formed by ignoring 

the last row and column of the inner matrix of Eq.  (A.2), 

  
    

    
 . (A.3) 

From the determinant of the matrix above, when        0 the conic is an ellipse, when 

       0 the conic is a parabola and when        0 the conic is a hyperbola. 

For a conic section centered on the origin,   and   in Eq.  (A.2) are both zero, which results 

in  

 [   ] [
    0

    0
0 0  

]  
 
 
 
  0, and (A.4) 

 [  ]  
    

    
 [

 
 ]    . (A.5) 

We have seen that the propagation of variance with two quantities to the first order can be 

expressed as  

   [
  

  

  

  
] [

     

     
] [

  

  

  

  

]. (A.6) 

Note that Eq.  (A.6) takes the same form as Eq.  (A.5) and that the determinant of the 

variance-covariance matrix is positive, hence, the coverage interval is geometrically an ellipse. 
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The following snippet of MATLAB code plots the elliptical 95 % expanded uncertainty 

region for a given set of   and   data vectors. 

    c = cov( x, y ); 

    [ d, ev ] = eig( c ); 

    k = 2.45; 

    a = k .* sqrt( ev( 1, 1 ) ); 

    b = k .* sqrt( ev( 2, 2 ) ); 

    r = d( 2, 1 ) ./ d( 1, 1 ); 

    w = atan( r ); 

    t = linspace(0, 2*pi, 500); 

    X = a*cos( t ); 

    Y = b*sin( t ); 

    mx = mean( x ); 

    my = mean( y ); 

    xe = mx + X .* cos( w ) - Y .* sin( w ); 

    ye = my + X .* sin( w ) + Y .* cos( w );  

    plot( xe, ye ); 

    hold on; 

    plot( mx, my, '+' );  

    plot( x, y, '.' ); 

    axis equal; 

    hold off; 

 


