December 1991

HEWLETT

Efq PACKARD




LETT-PACKARD

HE
J O A Decemhgr 1991

Articles

HP Software Integration Sockets: A Tool for Linking Islands of Automation, by Mitchell J. Amino,
Cynthia Givens, Mark Ikemoto, Alan C. Miranda, Scott A. Gulland, Kathleen A. Fulton, and Irene S.

Smith

Configuration Files

Performance in the HP Sockets Domain

2 0 HP Sockets Gateway

24 Rigorous Software Engineering: A Method for Preventing Software Defects, by Stephen P Bear

and Tony W. Rush

32 Specifying an Electronic Mail System with HP-SL, by Patrick G. Goldsack and Tony W. Rush

38 Specification of State in HP-SL

40 Specifying Real-Time Behavior in HP-SL, by Paul D. Harry and Tony W. Rush

43 History Specifications

46 Using Formal Specification for Product Development, by B. Robert Ladeau and Curtis W.

o1

Freeman

Formal Specification and Structured Design in Software Development, by Judith L. Cyrus,
J. Daren Bledsoe and Paul D. Harry

2

December 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.



5 9 Telecommunications Network Monitoring System, by Nicola De Bello, Giuseppe Mazzucato,
Antonio Posenato, and Marco Silvestri

Departments

In this Issue
Cover

What's Ahead
Authors

1991 Index

Egtﬂlﬂﬂ

The Hewlett-Packard Journal is published bimonthly by the Hstiz-Packard Company 16 recognize technical contributions made by Hewlett-Packard

(HP) personnel, While the infarmation found in this publication is to be the Hewlett-Packard Company disclaims all warranties of
merchantahility and fitness for a particular pumuse and all abligations and liabilities for damages, including but nat limited to indirect, special, or conse-
quential damages, attorney’s and expert’s fees, and court costs, arising out of or in tan with this publi A

Subscriptions: The Hewlett-Packard Journal is distributed free of charge to HP research, design and manufacturing engineanng personnel, as well as to
qualified non-HP individuals, libraries, and educational institutions: Please address subscription or change of address requests on printed letterhead (or
include a business card) to the HP address on the hacl: cover that is closest to you, When submitting & change of address, please include your zip or
pastal code and a copy of your old label. Free sub ions may not be available in all countri

Submissions. Although articles in the Hewlett-Packard Journal are primarily aulhomli by HPF employees, anticles from nan- HP authors dealing with HP-re-
lated research or solutions to technical problems made possible by using HP equipment are also for p i Pleasa contact the Editor
befare submitting such articles. Also, the Hewlett-Packard Journal encourages ical di of the topics p d in recent articles and may
publish letters expected to be of interest to readers. Letters should be bnef, and are subject to editing by HP.

Copyright © 1931 Hewlett-Packard Cumpanv All nqhtl resarved, Permission 1n copy without fee all or part of this publication is hereby granted provided

that 1) the copies are not made, used, displayed, or distributed for il ge; 2) the Hewlett-Packard Company copyright notice and the title
of the puhhcmun and date appear on the copies; and 3) a notice stating that the copying is by permission of the Hewlent-Packard Company.
Please address ing sl and to: Editor, Hewlett-Packard Journal, 3200 Hillview Avenue, Paio Altg, CA 84304 U.S.A.

December 1991 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.



In this Issue

In the early days of factory automation, it was a lot easier to automate individual
processes or workcells than an entire factory. The result was islands of auto-
mation, each representing the best available solution to an individual need but
incapable of communicating easily with other islands or with higher-level sys-
tems because of differences in computers, interfaces, languages, operating
systems, and applications. Yet the goal has always been the integrated factory,
or CIM—computer-integrated manufacturing. The development of advanced
networks and communication protocols such as MAP (see the August 1990
issue) has brought the integrated factory closer to realization, but it can still be
a formidable task for a system integrator tu provide for transparent communica-
tions between diverse applications designed for different computing platforms. HP Sockets, our cover
subject, is a product that helps system integrators overcome incompatibilities and provide file and mes-
sage transfer between applications running on different network nodes. HP Sockets runs on and provides
communication between HP computers using the HP-UX and MPE XL operating systems. It can also com-
municate with non-HP systems through a gateway, an HP-UX node that uses a client/server model to ex-
tend HP Sockets capabilities to machines not using the MPE XL or HP-UX operating systems. Using HP
Sockets, a system integrator creates application adapters, which allow applications to “plug into” the HP
Sockets system. Data coming from an application is translated to an internal common data representation
format. Outgoing data is converted from this format to the format expected by the destination application.
The system provides a data manipulator to resolve differences in data structures and languages and a
data transporter to move the data from origin to destination, guided by user-created configuration files
describing the environment. The full story of HP Sockets design, operation, and performance can be found
in the article on page 6.

With the use of structured analysis and structured design becoming commonplace in software engineering,
where do we find the leading edge today in industrial software development methods? One range of methods
that's definitely leading-edge is rigorous software engineering, also called formal methods—rigorous, abstract
mathematics applied to software specification in an attempt to head off defects right at the start. HP Laborato-
ries in Bristol, England has been working on formal methods for several years, and one of these methods—the
HP Specification Language, or HP-SL—has reached a stage of development where it's ready to be used in real-
world software projects. The idea is to develop an abstract but precise description of the behavior of the soft-
ware system. This description can be reviewed to ensure that the system works properly and that defects are
not intfroduced because of deficiencies in specifying the required behavior. Although software behavior can be
specified using a natural language, it's difficult to do so unambiguously. Formal specification languages like
HP-SL use special syntax and special symbols based on discrete mathematics to avoid the ambiguities of natu-
ral language. The motivation for this approach and an overview of the symbols and syntax of HP-SL can be
found in the article on page 24. Examples illustrating the use of HP-SL are presented in the articles on pages 32
and 40, which show how an electronic mail system and a real-time alarm monitor are specified. In the articles
on pages 46 and 51, software engineers from two HP product divisions relate their experiences with HP-SL in
actual product development projects.
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Network monitoring can mean many things, depending on the type of network and the reasons for monitoring.
Some typical objectives of network monitoring are to measure traffic and plan for future needs, to determine
the quality of service, and to identify and locate faults. More and more, network monitoring is a distributed pro-
cess, with measuring devices permanently installed throughout the network reporting to a central computer.
The HP E3500A telecommunications network monitoring system described in the article on page 59 is a distrib-
uted system for monitoring telephone networks, mainly outside North America and Japan, that use the 2-mega-
hit-per-second primary rate interface and the CCITT (International Telephone and Telegraph Consultative Com-
mittee) R2 or Number 7 signaling systems. Peripheral units connected to the network collect and preprocess
data on various network parameters and transmit their measurements to a central computer, which elaborates
the data and provides the user interface. The parameters measured, some of which are specified by the CCITT,
are related to traffic intensity and type, the quality of service, and network efficiency and use.

December is our annual index issue. You'll find the 1991 index on page 69.

R.P. Dolan
Editor

Cover

An artist’s rendition of a typical HP Sockets domain (a less artistic rendition is given in Fig. 1 on page 6). The
cable-like strand going through the center of the spiral represents a LAN and the panels connected to the
strand represent diverse applications that are communicating with each other via HP Software Integration
Sockets.

What'’s Ahead

The February issue will have several articles on the design of the HP 54600 digitizing oscilloscopes. These are
100-MHz oscilloscopes that have the rapid display update rate characteristic of analog oscilloscopes along
with the data storage advantages of digital oscilloscopes. The HP LanProbe monitors and HP ProbeView soft-
ware for distributed monitoring of local area networks will be described in anather article. A tutorial paper on
neural networks will present the basic concepts of these computing architectures.
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HP Software Integration Sockets: A
Tool for Linking Islands of Automation

The task of integrating diverse applications over a network of HP and

non-HP machines is made easier with this software tool.

by Mitchell J. Amino, Cynthia Givens, Mark Ikemoto, Alan C. Miranda, Scott A. Gulland,

Kathleen A. Fulton, and Irene S. Smith

HP Software Integration Sockets (HP Sockets) is a sofi-
ware tool that enables efficient and reliable integration of
new and existing software applications in a network of
different computer systems and diverse applications. HP
Sockets is designed to help system integrators overcome
problems that are common in software integration and
difficult to solve. HP Sockets provides a comprehensive
set of communication features that are both broad and
deep. It is intended to fulfill the needs of interapplication
communications for file and message transfer. Messaging
functionality is particularly extensive for both random and
sequential, synchronous and asynchronous, destructive
and nondestructive data transfers. Communicating pro-
cesses can be written without regard to language, com-
puter type, or network topology. The same methods of
communication can be used for either local or remote
communication in a homogeneous (same machines and
operating systems) or heterogeneous (different machines
and operating systems) environment. Fig. 1 shows some
typical applications that could be integrated with HP
Sockets,

HP Sockets runs on HP 9000 Series 300, 400, 700, and
800 computers running the HP-UX* operating system, and
HP 3000 Series 900 computers running the MPE XL oper-
ating system. Sockets can also communicate with non-IP
systems (see “HP Sockets Gateway” on page 20),

After a brief overview, this article will describe the opera-
tion and implementation of the major components of HP
Sockets.

Overview

Using HP Sockets, a system integrator can shorten the
system integration time by up to 75%. HP Sockets helps
shield system integrators from all the vagaries of network
interfaces and differences in hardware and system soft-
ware. HP Sockets also helps resolve data incompatibilities
between communicating applications. For end users, HP
Sockets offers flexibilifty in the management of an inte-
grated system. System configuration can be easily
changed because HP Sockets supports incremental inte-
gration so that new hardware or software can be added
without modification of the existing links.

The major problems involved in integrating new and ex-
isting software applications result from the differences in
hardware platforms and their associated operating sys-
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Sockets Domain

Material Resource
Planner

Plant Central
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Scheduler

Cell Controller
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Fig. 1. Examples of the type of applications that might be integrated
in the HP Sockets domain.

tems, and differences in the applications themselves. Spe-
cifically, these integration problems include:

o Differences in hardware platforms and operating sys-

tems. Because computers are built on diverse hardware
architectures and operating systems, data from applica-
tions running on one system is often not usable on anoth-
er system.

¢ Diverse network services. Programmers must change

application code to create interfaces to different sets of
network services.

s Incompatible data types. Different applications use differ-

ent data types according to their specific needs. Program-
mers must write code to convert the data [rom a sending
application into types that a receiving application can
use.

o Differences in data structures. Incompatible data struc-

tures exist because applications group data elements in
various ways. For example, an element with a common
definition may be stored in two different ways: applica-
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Administration Components. The administration components
include:

» HP Sockets Manager. The HP Sockets manager lets the
user validate configurations, start up and shut down the
HP Sockets system, use the command processor, and
perform other HP Sockets management functions.

¢ Command Processor. The command processor allows
interactive testing of the messages and links to any pro-
cess within the HP Sockets domain. An HP Sockets do-
main is an environment consisting of all the nodes that
are integrated via HP Sockets.

+ HP Sockets Management Daemon (SMD). This process
assists the HP Sockets manager in performing manage-
ment tasks on local and remote nodes that are part of the
HP Sockets domain.

« Configuration Files. The configuration files are user-
created files containing information about the HP Sockets
domain. At the startup of this domain, information in
these configuration files is used to build the memory-resi-
dent configuration tables for the run-time part of HP
Sockets (see “Configuration Files” on page 13),

System Integrators
As a software tool for system integration, [P Sockets is
not a stand-alone solution. P Sockets is one of many
components that make up an integrated system. The par-
ticipating applications play a major part. P Sockets pro-
vides a foundation for the links between these applica-
tions, but these links have to be built by system
integrators. The tasks the system integrator must perform
to integrate applications with HP Sockets include:

s System analysis. The system integrator must determine
the system functional requirements, analyze data flows
between applications, determine data formats of the data
flows. and define the characteristics of each link.

Unmanipulated Message
Manipulated Message File
Natification |3
Data
Manipulation
Module

Outgoing
Network
Manager

Request

Request
Manager

File
Handling
Module

Incoming
Network

Information
Manager

Incoming
Message

e System design. By determining the functional require-
ments and by analyzing the data Mlows and data formats,
the svstem integrator will be able to design the bridges
between the applications and 1P Sockets—in other
words, design the application adapters.

Configuration. After building the application adapters, the
next task for the system integrator is to conligure the
integrated system, Configuration means deseribing to [P
Sockets the network topology, the participating pro-
cesses, and the data formats and data manipulations that
HP Sockets will need to perform for each link when it
transfers data between communicating applications.

Run-Time Architecture

The HP Sockets run-time architecture is designed (o pro-
vide the best performance possible while using minimal
system resources. HP Sockets builds its run-ime modules
and activates them across the nefwork without requiring
user intervention.

Two main components make up the HP Sockets run-time
architecture: the data transporter and the data manipula-
tion module. Each component is implemented as one or
more programs and consists of several modules (see Fig.
4). The architecture shown in Fig. 4 exists on every node
integrated via HP Sockets,

Data Manipulation Module. On the sending node this mod-
ule performs two operations: it manipulates outgoing data
into a format acceptable to the receiving application and
it encodes the data into a common data representation.
The encoding operation is called marshaling and the
common data representation is a language and machine
independent data format, The incoming network manager
on the receiving machine unmarshals the data (i.e., con-
verts it to local machine and language representation ).

Networking
Software

LAN

Status
and
Data
4 Requests and Data from Network
-
Requests

y

Access

Routines HP Sockets
i ocke
#p;:::;::?ﬂ Management

Daemon

Application

Run-Time

Error Logger Configuration

Tables

* Data Transporter
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For more about marshaling, common data representation,
and data manipulation, see “Data Manipulation™ on page
20.

Request Manager. This module routes application adapter
requests through the internal HP Sockets modules to the
request’s eventual destination. The data messages it re-
ceives from the incoming network manager are stored
until an application adapter issues a read request. The
request manager handles only requests and leaves the
data manipulation and file transfer tasks to other mod-
ules. Requests include message transfers, file transfers,
and local or remote program control.

Outgoing Network Manager. This module sends messages
over the network. It communicates with the incoming
network managers on the other nodes. It creates and
holds communication open to other nodes as required.
Resource use is minimized because this module is shared
by all the processes on a node, and it can clone itself as
resources are needed.

Incoming Network Manager. This module receives messages
from the outgoing network managers on other nodes.
When it receives data it converts (unmarshals) the data
from the common data representation that is used across
the network into its host node’s local representation. The
data is passed to the local request manager for delivery.
To optimize resource use, the incoming network manager
also clones itself to meet its needs.

File Handling Module. This module transfers files between
nodes. A process can request a file to be transferred and
a notification to be sent to the request manager on the
receiving node when the file arrives.

The error logger and the run-time configuration tables
shown in Fig. 4 are used by both the data transporter
modules and the data manipulation module. The error
logger logs any errors or notable events (e.g., startups,
shutdowns, etc.) detected during run-time operation. Ac-
cess routines are provided so that the user can log user-
defined messages using the error logger.

The run-time configuration tables contain data that HP
Sockets extracts from the configuration files for run-time
operation, such as node names and data manipulations,

Run-Time Operation

The run-time operation of HP Sockets on a sending node
typically begins with the request manager receiving re-
quests from an application adapter to perform a specific
task such as to send a message or file, or to retrieve a
message. Fig. 4 shows the data flows during these opera-
tions. If the request manager receives a request to send a
message that is destined for a remote node and the mes-
sage does not have to be manipulated, the message is
sent directly to the outgoing network manager. When a
message has to be manipulated, the request manager
sends the message to the data manipulation module. After
manipulating the message, the data manipulation module
sends the message to the outgoing network manager. If
the request manager receives a request to send a file, it
notifies the file handling module, which sends the file and
then sends a file notification message to the outgoing
network manager. The outgoing network manager for-

wards the file message to the incoming network manager
on the remote node.

On the remote node the incoming network manager sends
the message to its request manager. If the file message
has file notification turned on, the request manager sends
a signal notifying the receiving application that a file has
been sent to it. If file notification is not tumed on, the
application is not notified about the file sent to it. Status
messages indicating success or failure of a request are
returned to the sending application adapter when a re-
guest is made with wait.

Startup and shutdown are synchronized between the run-
time modules. After the run-time modules are started,
they perform initialization. All modules complete initializa-
tion and wait before they are allowed to process data so
that if one module fails to initialize, startup can be
aborted. Also, modules have some interdependencies that
need to be resolved before data processing begins. For
example, since modules rely on each others' system mes-
sage facilities such as message queues, these facilities
must be created by each module before data processing
can begin. The HP Sockets management daemon is the
process that notifies modules to start processing data. At
shutdown, the HP Sockets management daemon notifies
all modules to shut down. To prevent loss of messages in
transit between modules, modules perform a graceful
shutdown by sending last messages to the appropriate
modules before terminating. The HP Sockets startup and
shutdown functions are described in more detail later in
this article.

Adapters and Access Routines

To link existing applications without requiring them to
change, a bridge is needed between an application and
HP Sockets. That bridge is called an application adapter
(see Fig. 5). An adapter is usually a program, but it could
be a procedure if the application is capable of calling
user-written routines.

Application adapters are created with the access routines
supplied by HP Sockets. This programmatic interface con-
sists of HP Sockets routines callable from C, FORTRAN,
COBOL, or Pascal programs to send messages, copy files,
control processes, and so on. Any program or procedure
that uses an HP Sockets access routine is, in effect, an

| | 2 3 L
& Application Application 3| Application Application |5}
Adapter Adapter |8 | Adapter Adapter

: HF Sockets Syslaﬁ . " HP Sockets System
A ! bl B
Networking = Networking

Software
i TR | Y Y _I
>

Local Area Network

Fig. 5. Application integration with HP Sockets.

December 1991 Hewlett-Packard Journal 9

© Copr. 1949-1998 Hewlett-Packard Co.



L]

application adapter. The user determines how an applica-
tion adapter is implemented.

There are two main functions in an adapter: data access
and interfacing.

Data Access. The data access function retrieves data

from the application or delivers data to the application,
Data access can be as simple as reading an application
data file or accessing the application’s data base.
Interfacing. This means using HP Sockets access routines
to transmit data between applications, or asking HP
Sockets (o start or stop another process,

Once the scope of the adapter is determined, the features
of HP Sockets need to be factored into the design. The
adapter will use these features through the HP Sockets
access routines given in Table 1. These routines are the
door through which the HP Sockets world is entered.
They are easy to learn, consisting of only 12 procedures
which completely shield the interface developer from the
network services levels, All functionality is expressed in
functional terms such as read message, send message,
send files, and so on. Sophisticated interfaces can be
written with minimal programming.

HP Sockets provides a way o exercise these access rou-
tines interactively. This is done using the HP Sockets
command processor. The command processor is a pro-
gram that has a set of line mode commands that allow
the user to simulate an adapter using access routines.
Once HP Sockets has completed startup, with the com-
mand processor the user can read or send messages or
files, and start or stop a user process. Data can be sent
or displayed in either ASCII or binary.

The command processor can be used to test newly im-

plemenied adapters. Fig. 6 shows an example configura-

tion consisting of two adapters, adapter 1 and adapter 2.

Adapter 1 sends messages to adapter 2. If adapter 2 does

not receive the message sent from adapter 1 the error

can be found as follows:

Test 1

> sShut down adapter 1 and set up the command processor
to simulate adapter 1.

> Using the command processor, send a message to adapter
2 using the same format as would be sent by adapter 1. If
adapter 2 receives the message correctly, then the defect
is in adapter 1. If adapter 2 does not receive the message
or receives an incorrect message the defect may be in the
configuration or adapter 2.

o Proceed to test 2.

Command

A
Processor e
., Test2
v "
Command
Adapter 2 Processor

— — Test Connections

Fig. 6. Testing application adapters,
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¢ Test 2
Shut down adapter 2 and set up the command processor
to simulate adapter 2.
Start up adapter 1 and receive the message with the com-
mand processor. If the command processor can receive
the message correctly from adapter 1, the the defect is in
adapter 2.

Table |
HP Sockets Access Routines

Access Routine Description
These routines control adapters.

Initiate communication between HP
Sockets and a calling process.

Splnit
SpEnd End communication and clean up
resources allocated for the calling
process by HP Sockets.

SpStartProcess Start an HP Sockets configured

user process.

SpStopProcess Stop an HP Sockets configured user

process,

Log a user error message in the HP
Sockets error logfile. (Send applica-
tion-specific messages to the HP
Sockets error logger. )

SpErrLog

Retrieve ASCII messages corre-
sponding to the HP Sockets error
codes returned by routines.

SpError

These routines control data transfer between appli-
cations.

SpSendMsg Send a message to a local or remote
process.

SpSendFile Copy a file to a destinafion file on a
local or remote node.

SpControl Control the HP Sockets access rou-
tine options (such as timeout or
message notification) that are avail-
able to the calling program.

SpReadQ Read messages from the incoming
message queue for the process.

SpFlush Flush pending requests and clear

the timeout list for the process. Use
this only when doing a longjmp out of
an interrupt routine.

SpDelGuaranteedMsg  Remove a guaranteed message
from the guaranteed message spool

file.

Data Transport

Data communication between an application and HP
Sockets starts with the application adapter making a call
to the the access routine Spinit to initiate communications
with HP Sockets (see Fig. 7). This call sets up message
transfer facilities (message queues for HP-UX and mes-
sage files for MPE XL) for data and status messages be-
tween the application adapter and the request manager

© Copr. 1949-1998 Hewlett-Packard Co.



and generates an initialize request to the request manager.
The initialize request contains information such as the
calling adapter’s logical name, its process identification,
and its newly created message queue identifier. The re-
quest manager enables the communication links for the
calling process (whose name is already stored in the run-
time configuration table) and returns a status message
telling whether the Spinit call was successful: Once a pro-
cess’s communication link is enabled with a successful
Spinit call, it can make calls to any of the other HP Sock-
els access routines,

The HP Sockets access routines handle all data transport
between an application and the HP Sockets system. The
main routines used for data transport are SpSendFile,
SpSendMsg, and SpReadQ (see Table I). All access routines
communicate between their calling program and the re-
quest manager, whose main function is to receive re-
quests and route them between other internal modules,
and between local and remote application adapters. As an
example, the application adapter on the sending node
initiates a call to SpSendMsg, sending:

A data buffer

A destination process logical name (on a remote node)

An optional link logical name which indicates that data
manipulation must be done before data goes to the outgo-
ing network manager

A no-flags-set parameter, which indicates send with wait.

After some preliminary error checking, the SpSendMsg pa-
rameters are put into the HP Sockets standard message
structure and the message is sent to the requesi manager.

Application

Adapter

Splnit
(Initiate
Communication)

SpSendMsg

SpSendFile SpReadl

Initialize 4~ Read Requests
Ri
ﬁ!e e o™ Data
sy Message
Request
Shared Memo Request
Message m:: L ELENT Hup«f’rmg
Configuration _Canfiguration
Data Tahle
!;panl File  Guaranteed Status or Message
Message File from Incoming
=1 Network Manager
To Data Manipulation
Module or Outgoing
O-= Data Network Manager
&> Stalus

Fig. 7. Structure chart showing the communication data ows be-
tween the request manager and some of the HI? Sockets aceess rou-
tines,

Since the routine was called with wait, the SpSendMsg call
will not return to the calling routine until it either re-
ceives a status value back from the request manager or
times out.

When the request manager receives the message from
SpSendMsg, it validates the destination process logical
name against the data in the run-time configuration table,
and then checks to see if the destination process is con-
figured to be on a remote node. If this is the case, the
request manager sends a message to the outgoing net-
work manager to set up communication with the node if
it is not already done. Next, the logical link name is ex-
amined. If it is non-NULL, a message is sent to the data
manipulation module, where the data is massaged accord-
ing to the manipulations associated with that link name.
After the manipulations are done, the message is encoded
into the common data representation format and sent to
the outgoing network manager for transfer to the remote
node. If a link name had not been specified (i.e., a NULL
link name), the message is seni directly from the request
manager 1o the outgoing network manager, bypassing the
data manipulation module completely.

When the request manager on the remote node receives a
message (via the incoming network manager), it siores
the message in its memory area. When the message is
successfully stored, a return message containing the sta-
tus of the transfer is sent back to the originating (local)
node via the remote node’s outgoing network manager.
The local incoming network manager receives the return
message, unmarshals it, and passes it to the local request
manager. The local request manager sends it back to the
adapter that originated the access routine call, completing
the with-wait SpSendMsg call.

Onee a data message arrives for a process on the destina-
tion node, the message is not sent to the destination
adapter until the data is explicitly requested by a call to
SpRead0 from the destination adapter. Until that call is
made, data messages for all local processes are stored in
an area of shared memory called the shared memory mes-
sage area (an exception is guaranteed messages, which
are described later).

The destination adapter has two ways of finding out if it
has a data message waiting: polling and interrupt notifica-
tion. Polling involves continually making calls to SpReadl
to see if there is a message. There can be a user-specified
timeout for each of these calls. If a large enough timeout
is specified, the adapter will block until a message arrives
for it. Interrupt notification involves turning on the data
or file notification feature of HP Sockets. When turned
on, a notification (via a signal from HP-UX) is sent to the
destination adapter when a data message or file arrives
for that adapter. This feature is set up by the destination
adapter through the use of the SpControl access routine.
The adapter originating a SpSendFile or SpSendMsg call does
not know whether the destination adapter has set up noti-
fication.

The SpReadQ message is sent (o the request manager,
which scans its memory area to find data messages asso-
ciated with the calling adapter. I the correct data mes-
sage is found (particular messages can be requested using
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the SpReadQ tag parameters, or by specifying the logical
name of the sending process whose message the receiving
process wishes to read), it is removed from the shared
memory message area and sent to the calling adapter.

If an incoming message needs to be put into the shared
memory area, and either the whole memory area has
been filled or the user-configurable percent allocation for
a single process has been reached, the message is written
to a special overflow spool file. This file will hold all sub-
sequent messages for that process until space is freed in
the shared memory message area by calls to SpReadQ.
Anytime a successful SpRead@ is done for a process that
has overflow messages, the overflow messages are read
from the file into the shared memory area. This is done
until the memory area limit is reached again or until the
overflow spool file is emptied.

When the SpSendMsg access routine is called, a flag called
the guaranteed flag can be set. Setting this flag tells the
destination request manager to write the data message to
a disk file rather than put it into the shared memory mes-
sage area. The SpRead call done by the destination pro-
cess must likewise set this flag so that the disk file is
searched for the data message rather than the memory
area. It is slower to send and receive a guaranteed mes-
sage than a nonguaranteed message because of the over-
head of disk access. However, the benefit of a guaranteed
message is that the data will not be lost if a power fail-
ure occurs. The shared memory message area cannot be
recovered after a power failure.

Guaranteed messages can be deleted using an option in
SpRead@, but to be absolutely sure that the data has been
received the data should first be read with a flag indicat-
ing that the message is not to be removed from the disk
file (using the no-consume flag), then as a separate step a
call should be made to the SpDelGuaranteedMsg access rou-
tine to delete the message. A drawback of guaranteed
messages is that they can only be read in the order they
were received by the request manager; they cannot be
retrieved by their tag values, or by specifying the logical
name of the sending process.

Network Interface

The ouigoing network manager and the incoming network
manager are the modules within HP Sockets responsible
for transferring messages across the network. Optimum
performance is the reason neiwork input and output tasks
are divided between these two modules.

The incoming and outgoing network managers currently
use NetIPC! intrinsics to interface with the network pro-
tocols. (BSD sockets can be used by HP-UX nodes run-
ning HP Sockets provided that there are no MPE XL
nodes in the HP Sockets domain. MPE XL does not cur-
rently support BSD sockets.) With NetIPC, communication
between the incoming and outgoing network managers
involves establishing a virtual circuit connection, which is
referred to as a virtual circuit socket descriptor. Multiple
socket descriptors are needed for communication be-
tween multiple nodes. Socket descriptors are allocated
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Connections
per Onme

Onmp = Outgoing Network
Manager Process
Onmc = Dutgoing Network
Manager Child
Inmp = Incoming Network
Manager Process
Inme = Incoming Network
Manager Child

Fig. 8. Outgoing and incoming network manager processes and their
connecltions,

from the same space as file descriptors. A process is lim-
ited to a certain number of file and socket descriptors
that it can have open at any given time. The design of
the outgoing network manager and incoming network
manager allows HP Sockets to communicate with several
nodes at a time by having the two network managers'
parent modules (Onmp, Inmp) fork child processes (Onme,
Inmc) as needed to establish and hold connections (see
Fig. 8).

When an Onme or an Inme reaches its maximum number of
connections, another Onme or Inmc process is created. The
parents manage the children and do not hold any connec-
tions themselves.

When the request manager needs fo send a message (0 a
particular node for the first time, it notifies the Onmp,
which in turn assigns an Onmc process the responsibility
for communicating with that node. After the Onmc process
successfully establishes a connection with the remote
Inme, they exchange a message to ensure that the HP
Sockets configuration is a compatible version on both
nodes. If the versions are not compatible, communication
is terminated. Otherwise, the Onmc process can send mes-
sages it receives from local processes to the Inmc on the
destination node. After receiving a message, the Inme un-
marshals the message and sends it to the local request
manager, which is responsible for routing the message to
the end application.

If an Onme fails to establish or maintain communication
with a node for any reason, such as a node or network
failure, it spools to disk all messages that the sending
application specifies as critical and that are destined for
the node associated with the failure.

|continued on page 14}
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Network Definition File (NETWDEF]. The NETWDEF file identifies the nodes
(computer systems) in the HP Sockets domain, giving their logical and physical
names, hardware types, startup status, and C compiler availability see Fig. 2)
Nodes are identified by their physical LAN name and are given a logical name
{e.g., cpul in Fig. 2). All references to a node are done with the logical name so
that if a node is removed, all HP Sockets functionality can be transferred to anoth-
er name with just a change in the NETWDEF file. The startup status says whether
or not a node should be started up

Process Definition File (PROCDEF). The PROCDEF file lists all processes known
1o the HP Sockets domain {see Fig. 3). This file also ties a process to a logical node
name {e.g.. in Fig. 3 process lookupcp is tied to node cpul). When the user speci-
fies the movement of data in the system, the receiving process name is used, not
the node name. The carrect node is identified using the PROCDEF data. For pro-
cesses listed in this file that are to be started or stopped using HP Sockets, the
user can specify a run string with parameters in the PROCDEF file. Also, execution
information such as the user identifier and password can be kept in this file

File Definition File (FILEDEF). The FILEDEF file lists any attributes of files that will
be transferred using HP Sockets. This file is optional. File attributes refer to the
receiving node, and define such things as type (ASCH or binary), record size, and if
the existing file can be replaced. Files that are not specified in this file can be
moved using HP Sockets, provided the default file attributes used by HP Sockets
are acceptable.

Data Definition File (DATADEF). This file defines the structure of the data trans-
ported between processes or applications. This file is optional

Data Manipulation Definition File (DMANDEF). This file defines the manipula-
tions that must be performed on the data to make it understandable to the receiv-
ing application. This file is also optional

LINKDEF
Node Name
File Name
Data Definition
Manipulation —

PROCDEF
Process Location

e ——
DMADNEF
Manipulation Name

Data Definition

FILEDEF
File Definition

NETWDEF
Node Name

DATADEF
Source Data
Destination Data

Fig. 1. HP Sockets configuration files and the fields in each file that associate one file with
another

#The Network Definition file, NETWDEF. must contain 2a entry for each node in the HP
#Sockets domain.

¥
#This is the format for sach emtry. The bers in parenth indi the
#length of each field. Optional items are d in square b
£
ﬁindz-Lngll:llﬂodaHumn Mackine Type
(3] (16}
l{Susz:an‘upStlm]
' 1
[CompilationMode = CompilationNodeFlag)
# il

#{MaxClones = MaxClonesNumber]
:{Mnﬂmnmu =MaxMsgAreaSize]
ﬁmul'er?mcm = MuMsgA.rnPrn:Hsi
:ﬂmnﬂtTm Netwaorking Tﬂ]a Ph\rstca::;;dnhm

Node = cpul : HPI00O/SB00

Startup =1

CompilationNode = 1

MaxClones =0

MaxMessagesArea = 100

MaxPerProcess = 50

NetworkType = LAN : hpiacig.hp.com

# Use the nodename command from the shell 1o get this name.
L

This is the end of the node definitions.

Fig. 2. A portion of a network definition file (NETWDEF)

Link Definition File (LINKDEF), This file ties the data manipulations in the
DMANDEF file and the data definitions in the DATADEF file to the sending architec-
ture, and to the sending and receiving languages. The same manipulation defini-
tion can be used in links describing differing languages and source system types.
This modular approach to data movement allows the user to specify more easily
many different types of links by leveraging from a single user message representa-
tion. This file is optional

Link definitions are used to describe a specific link (data transfer) between two
applications. Each link defines the language used by the source application to
produce the data and the language that is used by the consuming application to
access the data. Each link must also describe the format of the data at the sending
and receiving ends of the link and any data manipulation that should he applied to
the data

In essence, a link definition name is used to bind the physical characteristics and
operations that must be performed on data being transferred between two appli-
cations. This link name is used by the sending application at run time to invoke the
operations necessary to get the data into-a format usable by the receiving applica-

#The Process Definition file, PROCDEF, must contain an entry for each process known to the
#HPSockets Domain.

#This is the format for each entry. The bers in p b indi the
#length of each field. Optional items are in syuare L

¥

#PLN = ProcessLogic Name : LogicalNodeName [:CloneFlag]

# (16 (16} (1)

#{Exec = Execinfo]

* {128)

#[Run = DefaultRunString]

# {255)

PLN = lookupcp : cpul : 0

Exec = 100 user : passwd

Run = your_home_di ¥ ial{prog kupcp

#

PLN = ingcp : cpul : 0

Exec = 100 user : passwd

Run = your_home directory ial/prog qep

#

#ingep is the end of the process definitions.

Fig. 3. A portion of 2 process definition file (PROCDEF)
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FILEDEF
DATADEF
DMANDEF
LINKDEF

DbL

Compiler

Catalog File

DML
Compiler

Manipulation
C Source Files

Fig. 4. The configuration validation process

tion. At validation time; the link information is used to help generate the source
code that carries out the pperations at run time

Examples of a data definition file, a data manipulation definition file, and a link
definition file are provided in "Data Manipulation™ on page 20.

Changing Configuration
Changing a canfiguration is a simple task performed via the HF Sockets manager
A configuration is changed to add nodes {computers) to the domain or remove
them from 1t, or 1o alter definitions, processes, manipulations; or links. The steps
required to change 10 @ new configuration include

= Madifying the configuration files. This can be done while HP Sockets is running &
current configuration

» Validating the new configuration files. This can be done while HP Sockets s run-
ning a current configuration.

» Shutting down HP Sockets when validation is successfully completed.

« Starting HP Sockets with the new configuration,

Configuration Validation

Before the configuration files can be used by the HP Sockets run-time modules
they must be checked against one anather for correctness, and the files comaining
the data definition and data manipulation definition data must be compiled. The
process to get all this donie is kniown as canfiguration validation {see Fig 4). Con-
figuration validation takes place on the administration node and includes the
following activities;

e The validation program reads the network definition (NETWDEF), process definition

(PROCDEF), and file definition (FILEDEF] configuration files from the user's directory
« The validation program invokes the DDL (data definition language) and DML (data
manipulation language) compilers, which read the DATADEF and DMANDEF files
respectively. The DML compiler also reads the link definitions from the LINKDEF

file.

= Code generation takes place in two phases. The first phase generates the code to
perform data manipulations and occurs as each data manipulation is recognized.
The second phase occurs after all of the data manipulation definitions have been
processed and is responsible for generating the data manipulation C source files

e The validation program generates a catalog file which contains information about
the files used for the latest validation
The validated configuration files are in a format that can be Ivaded into memory to
become the memory-resident configuration tables

For the code generation process described above, one area of great concem 15 the
ability to add support quickly for new languages and computer architectures. To
aid this goal, the code generator has been designed to be table-driven. Two princi-

pal types of tables are used. The first type describes the physical representation of

the data types for a specific language on a specific architecture and the second is
used to describe legal type conversions between data types and the functions to
call to generate the code to perform the type conversions:

If communication fails because of a connection failure,
the Onme process notifies its child process Onmh (outgoing
network manager helper) to begin trying to detect when
it is possible to communicate with the node again. The
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Onmh, in turn, notifies the Onmec when fo fry fo communi-
cate with the node again. The Onme sends the spooled
messages when the cause of the network service failure
disappears and the Onme can successfully establish a con-
nection to the node.

The Dnme spools messages destined for different nodes to
the same spool file, rather than maintaining a spool file
for each node. This is done primarily to save file descrip-
tors for connections. The spool file is segmented into file
blocks. A file block is associated with a node and all file
blocks belonging to one node are linked together. Mes-
sages, including spooled messages, are always sent o a
node in the same order in which they are received.

HP Sockets Management Daemon

The management of HP Sockets across various nodes
linked by a LAN requires the existence of a daemon pro-
cess on every node, which is responsible for performing
the various management tasks on that node. This daemon
is called the HP Sockets management daemon, or SMD.
The atfributes of the SMD include:

Providing support for the HP Sockets functions on a node
in the HP Sockets domain

Remembering the steps of any task performed so that

they can be undone if requested or if the network connec-
tion to the requester is lost

Supporting a wide variety of requests from the HP Sock-
efs manager (smain) on any node

Providing extensiblity for future requirements

Supporting requests from various nodes simultaneously.

The HP Sockets management daemon, as its name im-
plies, is designed to run in the background and disassoci-
ate itself from the login session. It uses a slight variation
of the approach suggested in reference 2.

The SMD is also responsible for scheduling the HP Sock-
ets programs on the local node. For example, in the HP-
UX environment some of the programs need to be sched-
uled as the HP Sockets user (hpskts) while others need to
be scheduled as the root user. To accomplish this the SMD
is itself scheduled as root. It then switches itself to being
an hpskts user. This sets ils real-user identifier and its ef-
fective-user identifier to hpskts and its saved-user identifier
to root. So now the SMD can switch itself between an
effective-user identifier of root and an effective-user identi-
fier of hpskts as needed.

When the SMD is scheduled it also starts the error logger
program and the file transfer daemon. It monitors these
programs because they are critical to the operation of HP
Sockets on that node. If either program fails then the
SMD stops all activity on the node and shuts itsell down.
The SMD always keeps track of the current status of the
node by saving status information in an internal variable
called NodeState. This information can then be made avail-
able to any HP Sockets program that requests it.

Some of the requests that the SMD supports are mutually
exclusive (e.g., the HP Sockets manager functions startup,
shutdown, and switchadmin). Such requests are called major
requests. Other requests like nodestat can be made al any-
time on any node. To control the major requests on the

node, the SMD maintains an internal flag called the Major-
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ReguestFlag. When an HP Sockets program wanis {0 ex-
ecute a major request. it first aftempts to set this flag
before proceeding with the request itself. Information
about the major request currently being execuied on the
node is stored in a separate global variable called MajorRe-
guest. The MajorReguest variable also keeps track of the
connection on which this request is made. The SMD uses

this connection and other factors to identify who has con-

trol of the MsjorReguestFlag

The SMD's primary task is to handle local or remote re-
quests from the HP Sockets manager (see below). The
SMD sets up a network call socket on which it can re-
ceive a connection request from the HP Sockeis manager.

After accepting the connection request, the SMD creates a

virtual connection to the HP Sockets manager. This con-
nection is left open until the HP Sockets manager decides
to shut it down. If the connection is lost for any reason
then the SMD reverses the steps taken during the request
and clears the MajorReguestFlag (if it was set by the HP
Sockets manager on the lost connection).

Once a connection has been established to the HP Sock-
efs manager, the SMD processes the requesis sent by the
HP Sockets manager. The reply to the request will depend
on the request itself and the success or failure of the
SMD in executing the request. To facilifate the communi-
cation, the SMD has a well-defined message buffer that it
transmits across the network. This buffer is used by all
HP Sockets programs that want to communicate with the
SMD.

Another function of the SMD is to help expedite certain
requests, especially the startup of nodes across the LAN.
One way is to have the SMD copy (i.e., pull) the files
required by its node rather than have them copied (i.e.,
pushed) by the HP Sockets manager. This approach also
gets around the need for the HP Sockets manager to have
special permissions to do the push.

Fig. 9 shows a simplified illustration of the connections
between the HIP Sockets manager and its local SMD and
some remote SMDs,

HP Sockets Manager

The HP Sockets manager program (smain) is the main
administration component of HP Sockets. It can be run
from any node in the HP Sockets domain, The HP Sock-
ets manager is used by the system integrator for creating
an integrated system and by the system administrator to
manage the integrated system. The HP Sockets manager
uses passwords to guard against unauthorized access.

The primary tasks that can be performed by a system
administrator through the HP Sockets manager commands
are:

e Starting up and shutting down the system from the ad-

ministration node

+ Establishing a security scheme for the system from the

administration node

* Responding to errors recorded in the error log file by HP
Sockets from any node

* Customizing the error log files to meet system needs from
any node

¢ Checking status of the HP Sockets domain from any node

Remote Node

Local Node

HP Sockets
Manager

(smain)

Remote Node

SMD = HP Sockets Management
Daemon

Fig. 9. Connections betwween the HP Sockets manager and its local
SMD and remote SMDs. The message buffer contains status and re-
quest data

Switching administration capability from one node to
another from an administration or alternate administra-
tion node

Changing HP Sockets parameter values from the adminis-
tration node only.

Switch Administration. The switch administration (switchad-
min) function of the HP Sockets manager was created so
that the major IIP Sockets administration functions would
not be lost if the administration node is unavailable.
There can only be one administration node in an HP
Sockets domain of nodes. However, any of the other
nodes may be designated to be alternate administration
nodes. Alternate administration nodes are the nodes in
the TP Sockets domain that are able to take on the title
and functions of the administration node, This is done
using the switchadmin function on the alternate administra-
tion node.

When the user invokes the switchadmin function, the local
HP Sockets management daemon (SMD) is contacted for
status information. The SMD returns status about the lo-
cal node, and a check is done to see whether the node
requesting the switchadmin is an alternate administration
nogle.

The switchadmin first tries o make a network connection
with the SMD on the current administration node. It then
sends a message to that SMD telling it to switch itself
from an administration to an alternate administration
node. This switch involves updating internal variables in
the SMD) that contain the administration status, and the
logical and physical names of the new administration
node. Next, the switchadmin module connects fo its local
SMD, sending a message telling it to switch itsell to an
administration node. This also involves updating the same
SMD internal variables. Finally, after the old and new
administration nodes are in synchronization, a list is
created containing all the other nodes configured in the
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current HP Sockets system. Connections are made to the
SMDs on these nodes, and messages are sent informing
these SMDs of the new administration node’s logical and
physical names.

If one or more nodes are down when a switchadmin is
done, they can be resynchronized later by rerunning the
switchadmin function from the administration node.

Node Status. The HP Sockets manager node status func-
tion (nedestat) gives information on one or all of the nodes
configured in the current HP Sockets domain, or in anoth-
er as yet unstarted domain whose configuration files are
in a userspecified directory.

Nodestat makes a connection with the SMD on each node
from which it is obtaining status information. The SMD
on each node retrieves the status information from its
internal variables, and sends it back to the requesting
process. Typing nodestat at the HP Sockets manager
prompt will give information about the local node, and
typing nodestat <node logical name> gives information about a
particular node. Typing nodestat * will list information
about all nodes.

The information shown for node status includes:

s Logical name

e Physical name

e Run-time status (running or stopped)

o Administration class (administration, alternate adminis-
tration, or nonadministration)

e Machine type

» Administration node logical name

e Administration node physical name.

Security. The HP Sockets manager security function al-
lows the user to add and delete user names and pass-
words that are required to access the HP Sockets manag-
er. The allowable commands for the security module are:
o Add. Add a user name and password to the user file
» Delete. Delete a user name and password from the user
file
e List. List all user names in the user file.

The security file is disseminated to all the nodes in the
domain at startup and after each update.

Performance in the HP Sockets Domain

Since it is impossible to predict the performance of HP Sockets for all possible
configurations, some results are presented for several example test configurations.
These tests represent typical configurations in which HP Sockets oparates. De-
scriptions of factors contributing to performance results are also given.

Test Configuration

The system factors affecting HP Sockets performance include the CPU type. oper-
ating system, LAN activity, and network configuration. Tests were performed
between HP 8000 Series 300 and Series 800 computers connected by a LAN. All
systems used the HP-UX 7.0 operating system and contained 18 megabytes of
main memory. All tests were run on an (solated LAN link. Except for virtual memory
daemans, no other system processes were running during test execution. Fig. 1
shows three sending adapters and one destination adapter running on separate
nodes. All messages were directed to a single destination adapter and both nodes
were sending and receiving messages concurrently through HP Sockets. The mes-
sage transit time between two adapters was estimated by measuring the time 1o
transfer a large batch of messages {typically 5000 messages) between each send-
ing and destination adapter pair. The message transit ime was calculated as the
time difference between the first send and the last receive, divided by the batch
size. File transfer time was measured using the same method. Also, CPU utilization
and the number of LAN packets going across the network were monitored while
the tests were executing.

For the setup shown in Fig. 1, each sending adapter sent messages as fast as it
could. The overall sending rate was increased by increasing the number of sending
adapters. For stress tests, 96 sending adapters were successfully tested.

Performance Results
Some of the product-specific factors that affect the performance of HP Sockets
are

 The sending rate (in Fig. 1, the number of sending adapters)

« Whether delivery is with wait or without wait

« Whether delivery is guaranteed or not guaranteed

« The size of the message or file

 The data manipulation required for each message.

Message transfer times were studied for message sizas of 64, 256, 788, and 1024
bytes. HP Socket's maximum message size is 1024 bytes. The maximum file size
tested was one megabyte

III Sending |
8 Adapter |

' Sending § . HP HP g Destination

i Adapter | Sockets @ Sockets b Adapter

: Sending |
| Adapter |

P

LAN

Fig. 1. Test configuration for performance tests.

A sending adapter can deliver 2 message with or without wait. When delivering
with wait, the sending adapter does not continue until it receives an acknowledg-
ment from the destination node. Therefore, the time for a round trip occurs be-
tween each message sent. In contrast, when a sending adepter delivers a batch of
messages without wait, it can send messages at a higher rate.

The throughput is faster for & batch of messages delivered without wait. In fact, if
the systems are not heavily Ipaded, delivery without wait can double the through-
put. If the systems are heavily loaded, the increase in throughput may not be
noticeable.

Similarly, a sending adapter can deliver a message with or without guarantee.
Messages delivered with guarantee are written and flushed to a disk file: thus two
disc accesses (a write followed by a read) are done for each guaranteed message
transfer. In contrast, messages delivered without guarantee are kept in shared
mamory. Guaranteed massage delivery requires more system resources (CPU and
disk 1/0), However, the total message transit time may be unaffected, unless the
systems have extremely high |/0 activity.
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Fig. 2 HP Sockets file transit ime as & function of file size using an HP 9000 Series 370.

Fig. 2 shows the performance for file transfer between two HP 8000 Series 370
computers. File transfer time for a small file {less than 10 kilobytes) is about 600
milliseconds. File transfer time increases with file size—from about 0.6 second for
a 10-kilobyte file to about 4 seconds for a one-megabyte file.

Fig. 3 shows the message transfer time as a function of message size. Again two
HP 8000 Series 370 computers were used. The data in Fig. 3 was generated for
delivery without wait and without guarantee, but tests with wait and with guaran-
tee showed results that were only slightly higher The line labeled "No Data Ma-
nipulation” shows the results for messages sent without data manipulation. Since
these messages were transmitted directly to their destination, the transfer time
was fast and showed little dependence on the message size. Even for the maxi-
mum-sized messages, transfer time without data manipulation was always less
than 22 milliseconds

The line labeled "Host Data Converted" |s for messages that required simple data
manipulation. Message transfer time increased with the message size to about 70
milliseconds for large messages. The line labeled "Extensive Data Manipulation”
is for messages transferred with extensive data conversion, In these 1ests, an
array with elements of type integer was converted to an array with elements of
type real, For example, 8 message size of 1024 bytes required 256 integer-to-real
conversions. Under these conditions, transit time was always under 100 millisec-
onds

Performance tests for HP Sockets are conducted continually under many environ-
ments and conditions. The results given here represent a typical enviranment,
consisting of a single sending adapter and a single destination adapter, each on
separate nodes, sending a large batch of messages. [f CPU and/or LAN loading is
normal, these results represent a conservative estimate

100 —
Host Data
Converted
B0+ =
e Extensive Data B L
E Manipulation .« -
= -+ e o J
E ,’ -
= ,/ =
E w0+ poee
E x S Nl_t Dalq
= = Manipulation
m —+
0 } i + f
B4 258 758 1024

Message Size (bytes)

Fig. 3. HP Suckets message transit time as a function of message size Using two HP 9000
Saries 370s.

Startup and Shutdown

The startup of the HP Sockets run-time programs on the
various nodes connected by a LAN poses some interesting
problems. It is necessary to distribute the configuration
files to all the nodes in the network that need them and
to coordinate the multistep startup sequence concurrently
on all the nodes. At the same time, the startup sequence
must be flexible enough to allow the user to back out of
the startup sequence at any time. A further requirement is
the need to abort the startup automatically if a major
catastrophe occurs, like the loss of the connection be-
tween the startup program and the local SMD. Additional-
ly, the number of nodes that need to be started can far
exceed the system limits on the number of open connec-
tions that any process, like the HP Sockets manager, is
allowed to have. This section outlines how these prob-
lems were solved and Fig. 10 shows some of the data
flows between the administration node and a node in-
volved in the startup process.

All network connections are established using a connec-
tion-oriented protocol, such as TCP/IP? Once a connec-
tion has been established, the HP Sockeis manager on the
administration node, with the help of the local and re-
mote SMDs, keeps the connection open until all the steps
in the startup sequence are completed. The design of the
SMD allows the HP Sockets manager to request that the
connection to a particular node he temporarily relin-
quished, thereby suspending the startup process on that
node before the sequence is finished. The SMD can also
automatically undo the startup sequence on a node if the
network connection between the SMD and the HP Sock-
ets manager is lost before the entire sequence is done.

Before beginning a startup sequence, six configuration
files must be validated (see “Configuration Files” on page
13). Configuration file validation converts the files to a
format that allows them to be leaded into memory. Once
the configuration files have been validated, the user in-
vokes the startup command from the HP Sockets manag-
er screen, and specifies (among other things) the directo-
ry path to the validated configuration files to be used for
the startup.™

The HP Sockets manager connects to the SMD on the
local node and sets the MajorRequestFlag maintained by the
SMD to ensure that the node is not interrupted during the
startup sequence. This network connection to the local
SMD is never relinquished for any reason. If the connec-
tion is lost then the startup sequence is aborted on all
the remaining nodes and an automatic cleanup is per-
formed by the SMD on each affected node.

After setting the MajorRequestFlag, the HP Sockets manager
requests the local SMD to report on the current status of
the local node. The HP Sockets manager then verifies
that the startup request was issued from the administra-
tion node, and if not, the startup sequence aborts.

*There can be more than ene set of validated configlration files, each in a different direc-

tory
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If the user has specified a new configuration file directory
in the startup call, the 1P Sockets manager copies the
configuration source files and the validated configuration
files to its working directory (0 Fig. 10). The HP Sockets
manager then requests the SMD to load a copy of the
validated configuration files into local memory, creating
the run-time configuration table (2 in Fig. 10). The start-
up program extracts configuration information from this
table to build a singly-linked list (called the domain node
list) containing all the nodes that are configured in the
HP Sockets domain (@ in Fig. 10). This list enables the
startup program to coordinate the network-wide startup
of all the nodes by keeping track of each node’s status.
While the domain node list is being built, a list of compi-
lation nodes is also created.

Compilation nodes are nodes in the HP Sockets domain
that deliver and create (via C compiles) data manipulation
modules for specific machine architecture groups. For
example, one of the HP 9000 Series 300 machines in an
HP Sockets domain would be designated for compiling
and distributing data manipulation modules to other Se-
ries 300 machines in the domain. The same would be true
for each of the other machine architecture groups (HP
9000 Series 800, HP 3000 Series 900) in the domain, See
“Data Manipulation” on page 20 for more about data ma-
nipulation modules.

After the lists are built, the HP Sockets manager connects
to the SMD on each node that has been designated by
the user for startup. If it cannot establish a connection to
a node in three fries, startup on that node is aborted and
the domain node list is updated. The connections are all
established in parallel. When the HP Sockets manager

runs out of nodes to be connected to or cannot make any
more network connections (because of system or process
limits) then it waits for responses to come back on the
connections that have been established.

To reduce the time required to start up all the nodes in
the domain, files are copied (pulled) by the SMDs on the
respective nodes.

The HP Sockets manager uses a connection management
table to keep track of all the remote SMDs to which it is
connected at any time. The table is an array of pointers
to the corresponding nodes in the domain node list. The
status of the network connection from the HP Sockets
manager to the SMD on a remote node is kept in the
appropriate list element. For example, whenever the star-
tup process is aborted on a node (for whatever reason)
the domain node list is updated accordingly.

As a response is received on a connection, the HP Sock-
ets manager processes that response and posts the next
request (in the startup sequence) to that SMD. If there
are nodes that did not get a chance to perform the cur-
rent step in the startup sequence because there were no
more network connections available to the HP Sockets
manager al that time, then the node that just replied is
temporarily disconnected from the HP Sockeis manager.
The HP Sockets manager then connects to a node that is
behind in the startup sequence and posts the current re-
quest. This approach is followed for each step in the
startup sequence. Only the connection to the local SMD is
never relinquished, If there are no nodes that are behind
in the startup sequence then the next request in the se-
quence is posted to the node that just replied.

Node to Be Started

Sockets

Administration Node LAN
HP
Sockets I
Management
Daemon
* Domain Node List, Compilation J-r

Node List, and Nodes that Need
Data Manipulation Modules
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Management |

Fig. 10. Some of the processes and
data flows involved in HP Sockets
startup.
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The HP Sockets manager asks the SMD to set the MajorBe- * Distributes the data manipulation module to the node by

guestFlag on that node. (If the flag cannot be set then the
startup process is aborted on that node.) After setting the
MajorRequestFiag, the HP Sockets manager asks the SMD to
report on the current status of the node. The startup se-
quence will be halied on a node if the machine type does
not match the machine type configured, or the run-time
programs are running but with a different configuration
identifier from that used in the startup.

The HP Sockets manager checks to see if any data ma-
nipulation modules need to be built for any of the ma-
chine architecture groups in the configuration. If' a data
manipulation module needs to be built for a given ma-
chine architecture group then the HP Sockets manager
connects to the SMD on the compilation node for that
machine architecture group. It requests that the SMD
schedule the data manipulation module builder. The HP
Sockets manager then communicates direetly with the
data manipulation module builder and requests ii to pull
the relevant C source file from the adminisiration node
(1 in Fig. 11). Then a list of nodes (of that machine ar-
chitecture group) that require data manipulation modules
is supplied to the data manipulation module builder (2 in
Fig. 11). For each node that needs a manipulation mod-
ule, the builder:

Compiles the appropriate C source files (3 in Fig. 11)
Builds the data manipulation module

Administration Node lf!‘

o 7

Compilation Node

A Data
& Manipulation |
Module ;
= Builder J

HP
Sockets
Manager

. C Compiler

i HP Sockets §
i Management

Daemon

A

Fig. 11. Activities taking place between the administration node and

a compilation node during startup and the creation of data manipula-
tion modules.

requesting that the SMD on that node pull it over (£ in
Fig. 11).

As the data manipulation module builder completes the
task for a given node on the list it reports the status
back to the HP Sockets manager. If the data manipulation
module cannot be built for a given node then that node is
not started.

After finishing with the compilation nodes, the HP Sock-
ets manager asks the SMDs on the other nodes 1o pull
the validated configuration files (& in Fig. 10) required to
build the memory-resident run-time configuration table on
that node. Onee this step has been successfully accom-
plished the SMD is asked to prepare the run-time pro-
grams on that node for startup. All these sieps are per-
formed on each node in the sequence indicated but are
done in parallel on all the nodes.

Once the run-time programs have been prepared for start-
up on all the nodes designated by the user (and did not
fail any of the steps outlined above), the user is asked if
the startup should proceed or be aborted. The user’s deci-
sion 15 communicated to the SMD daemon on all the
nodes waiting to start.

When these steps in the startup procedure are completed,
the SMD on each node is told to transfer (i.e., pull) the
security file from the administration node (@ in Fig. 10)
so that all nodes in the domain have the same security
file.

The user is allowed {0 abort the startup process at any
time except when the configuration files are being frans-
ferred from the user’s directory to the HP Sockets work-
ing directory and when the data manipulation modules
are being buill on the various compilation nodes. If the
1P Sockets manager decides to abort the startup se-
quence on any node for whatever reason, then the steps
that were accomplished so far on that node are undone
by the SMD on that node and the status of the node is
returned to its prestartup state.

If the node that is being started already has the latest
configuration files available from a previous startup, then
some of the steps listed above are omitted. This signifi-
cantly speeds up the startup process.

The user can shut down HP Sockets from the HP Sockets
manager sereen on the administration node. During shut-
down, the HP Sockels manager uses an approach that is
very similar to that used during startup. It goes through
the same sequence of first setiing the MajorRequest Flag
held by the SMD on the local node. After checking the
status of the local node, it connects 1o the SMDs on all
the nodes that need to be shut down.

Once the SMDs on all the nodes marked for shutdown

have been alerted o the impending shutdown, the user is
asked if the shutdown should proceed or be aborted. The
user's decision is communicated to the SMD on all the
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HP Sockets Gateway

The HP Sockets Gateway product uses a client/server model to extend HP Sockets
capabilities to machines not using the HP-UX or MPE XL operating systems. The
client is a user application running on a machine such as an 1BM 3030 mainframe
or a PC. The server is an HP Sockets adapter (called a server adapter| running on a
gateway node, which is an HP-UX node within the HP Sockets domain that has
been designated to run the gateway server.

The gateway server maintains a netwark connection to one or more client applica-
tions running on the client machine, Every gateway node has one server daemon
for each networking service; it creates server adapters required by the client ap-
plications. The server adapter provides the functionality of HP Sockets to a client
application. It is also called a virtual adapter since it acts on behalf of & client
application,

An application on a client machine is linked with the client HP Sockets access
routing library. This library lets a client application send or receive message or file
data to or from any other processes within the HP Sockets domain. The parameter
list and return values for this library are the same as for the HP Sockets HP-LIX
access routing library. Functional differences between the client access routine
library and the HP Sockets HP-UX access routing library have been minimized

The current release of the HP Sockets Gateway uses TCP/IP for interprocess com-
munication across the netwaork and ftp {file transfer protocol) for file transfers
Currently software is available for connections to an IBM 3090 mainframe running
the MVS operating system, or a PC running MS-D0S,

HP Sockets Gateway Components

The HP Sockets Gateway compaonents consist of the server daemon., the server
adapters, the client HP Sockets access routine library, and the client applications.
Fig. 1 shows the server daemon and three server adapters running on the gateway
node, MachineA. The dotted lines in the figure indicate that the server adapter
processes are child processes of the server daemon process. Each of the three
server adapter processes services a client application. The node labaled MachineB
could be a PC running MS-D0S. The node labeied MachineC could be a mainframe
like the IBM 3030 system.

The purpose of the server daemon process is 1o accept connection requests and
create server adapter processes. The server daemon is always active, ready 1o
create multiple server adapters when connection requests are made. It listens ata
well-known port number associated with the HP Sockets Gateway service. The
client applications make connection requests to the server daemon through the
gateway service via access routing library calls,

MachineA
HP Sockets
Gateway Node

LAN

' Application
L MRP2

MachineC

------ Parent/Child Process Connections
Network C tions
MRP = Material Resource Planner

Fig. 1. A server daemon and three server adaplers running on the gateway node
{Machinega).

Each server adapter is associated with an HP Sockets logical process name. Since
a server adapter is a virtual adapter, this logical process name is also the effective
logical process name of its client. The logical process names are entered in the HP
Sockets process definition file (PROCDEF), described in “Configuration Files” on
page 13.

All ‘access routing library calls are serviced by the server adapter on behalf of the
client application. For example, when a client calls the access routing SpReadQ, a
message is sent aver the gateway network connection to the server adapter. The
message contains all the parameters of the SpReadQ access routine call. The
server adapter then i1ssues an SpRead0 call to HP Sockets using the same parame-
ters. When the SpReadQ tall completes at the server adapter, it returns the output
parameters and return codes to the client application. Except for the Spinit routing,
all calls 1o client library access routines are handled the same way.

When a client issues a call to Spinit for the first time, a new server adapter is
created. When the Spinit call completes successfully, the client has a virtual con-
nection to a dedicated server adapter, and through it to HP Sockets

nodes waiting to shut down. The user is allowed to abort
the shutdown process at any time.

Using a single control point for startup and shutdown of
the entire HP Sockets domain relieves the user of the
obligation to start and stop each communicating CPU
individually, In addition, HP Sockets automatically distrib-
utes all control information to designated alternate admin-
istration nodes to prevent the single control point from
being a single point of failure. This prevents undelivered
messages from being lost or processes from hanging on
unfulfillable reads.

Data Manipulation

The data produced by one program may not be usable by
a different program because the selection of elements in
that data is not what the receiving program expecis. Less
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obvious is fhe problem of the basic data element types
not being readable by a receiving program either because
the sending and receiving programs are written in differ-
ent programming languages or because they reside on
machines that have different architectures.

The same data type passed from one program to another
can have a different format in each program if the pro-
grams were written in different programming languages.
The same data type sent and received between two pro-
grams written in the same programming language can
have different formats if the two programs were compiled
on different machine architectures. Not only can the data
type formatting be different when programs reside on
different machine types, but the data type sizes and align-
ments (address locations used in memory) can also be
different between the two programs. Most of these differ-
ences are because the language compiler optimizes the
code by taking advantage of the data type efficiencies
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and sizing that the underlying machine architecture pro-
vides.

A brute-foree method of dealing with data type format
and language-to-machine incompatibilities is to write spe-
cial conversion routines converting data fypes from lan-
guage A on machine type B to language C on machine
type D. These conversion routines would grow in number
and complexity with the addition of each new language
or machine type supported. The amount of conversion
code would eventually become unwieldy and difficult to
maintain. Another drawback is that one would have to go
back and add code to already supported machines to sup-
port the new language or machine type.

The HP Sockets solution to this problem is twofold. First,
HP Sockets uses a standard, common way of representing
values for a particular data type independent of the
source or target language and machine type. This is
called common data representation, or CDR. Secondly, the
application-specific manipulation is done only on the
sending machines. Fig. 12 provides a simplified illustra-
tion of what happens when a data structure from applica-
fion A is manipulated to be compatible with the data
structure required by application B, which is on another
node. Note that CDR conversion is done on both nodes,
but application-specific manipulation is performed only on
node A, the sending node.

Common Data Representation

Implementation of the common data representation for-
mat on any system in the HP Sockets domain requires
two sets of conversion routines for each language sup-
ported for that machine type: one set to convert from one
local language into CDR and another to convert from
CDR back into that local language. Going from a local
language to CDR is called marshaling and going from
CDR to a local language is called unmarshaling. A big
advantage of this method is that as new languages and
machine types are added to the network, code changes to
support the new languages or machine types are isolated.

Fig. 12. A simplified illustration of
the data manipulation, marshaling,
and unmarshaling of data in the
HP Sockets domain.

The Basic Encoding Rules (BER) of Abstract Syntax No-
tation One (ASN.1)* 7 were chosen for the format of the
CDR data types. ASN.1 is an OSI (Open Systems Intercon-
nection) standard that specifies the different types of data
structures that can be transferred between protocol layers
of an OSI stack. The Basic Encoding Rules define the
encoding and decoding rules for these data structures.

As shown in Fig. 12, the target information is marshaled

and sent with the CDR data so that the receiving side can
unmarshal and localize the CDR data appropriately. Thus,
the CDR data is self-describing for eventual unmarshaling.

ASN.1 does not make the CDR data completely self-de-
scribing. For example, ASN.1 allows marshaling an integer
into a generic representation. That integer will eventually
be unmarshaled into a localized integer data type. The
problem is in determining which local integer data type to
convert the CDR data into. If the local language is C, the
CDR integer could be converted into either a short inte-
ger, integer, or long integer data type. The target data
type 1o use is specified by the user through data defini-
tion declarations made via the data definition and data
manipulation languages, or DDL and DML respectively.
These languages make up the application-specific manipu-
lations shown in Fig. 12,

This extra, self-descriptive information is called type at-
tributes. For example, the ASN.1 string type encoding
indicates the current size of the string but not the maxi-
mum size it should be on the receiving end of the trans-
fer. This maximum size is included with the CDR data
and is a type attribute.

Because of the complexity of the task of data manipula-
tion and the need for the best performance possible,
there is tight coupling between the CDR marshaling and
unmarshaling routines and the HP Sockets-generated data
manipulation code that calls them. Thus, the CDR rou-
tines cannot be used apart from the rest of the product.
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struct{
char Operator{20};
int Month; struet]
int Day; char Dperator{15];
int Year; char Date[11];
Hid; 2
(a) (b}
DATA_DEFINITION
BEGIN

[*Define structure id as a record named
input_data in DOLY/

input_data = RECORD OF]

Operator : STRING[20]
Manth : INTEGER:
Day : INTEGER;
Year : INTEGER;

/* Define structure r1 as a record named reportl in

poLY/

report] = RECORD O

Operator : STRING[15L

Month : ARRAY(2] OF CHAR;
Slash1 : CHAR

Day . ARRAY[2] OF CHAR;
Slash2 . CHAR;

Year : STRING[S;

L

(e}
/* The format of the Data Manipulation Definition file (DMANDEF) is shown below.

DEFINE MANIPULATION ManipulationName;
SOURCE_DATA : SourceDataStructureName;
DESTINATION_DATA : DestinationData5

BEGIN_MANIPULATION

<manipulation statementss;

END MANIPULATION:

*

DEFINE_MANIPULATION i_to_repont];
SOURCE_DATA
DESTINATION_DATA

BEGIN MANIPULATION
MOVE input_data TO reportl;
reportl Slash1="f,"
reportl.Slash2="f;"
END_MANIPULATION;

(d}

N
eName;

input_data;
reportl;

Fig. 13. An example of defining a numeric-to-ASCH conversion in
DDL. (a) Original structure in some sending application. (b) Strue-
ture in which the operator and date information will exist in the
receiving application.(c) DDL definition for the two structures. (d)
Data manipulation definition for moving the data in a data struc-
ture like input_data to the structure delined in reportl.

Data Definition Language

Data definition means defining the format of the data
transmitted between processes or applications. HP Sock-
ets uses these data definitions along with the data manip-
ulations defined via the data manipulation language to
manipulate the souree data so that its format is under-
standable by the destination process.

These data definitions for HP Sockets are writien in the
data definition language (DDL), which is a high-level lan-
guage for specifying the format of the data exchanged by
processes. The DDL is used to describe the type and
structure (logical layout) of data produced and consumed
by applications. A data definition is independent of any
particular computer language's or machine architecture’s
physical representation.
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The DDL serves the function of a presentation layer simi-
lar to that of ASN.1 in the OSI Reference Model. Howewv-
er, unlike ASN.1, whose primary purpose is to describe
how data is represented while in transit across the net-
work independent of language or machine architecture,
the DDL is meant to describe how data should be repre-
sented at the end points of the communication link—the
applications.

This functionality is needed in heterogeneous computing
environments because different computer architectures
and languages represent the same information in different
ways (see Figs. 13a and 13b). Without a description of
the data, there would be no way to correct the data for
the representational differences between differing comput-
er architectures and languages.

The syntax chosen for the DDL is similar to that of other
high-level languages, such as C or PASCAL. A lex/yacc-
based compiler is used to compile the DDL source file
and to produce an in-memory symbol table. This symbol
table is used later to drive the code generator which pro-
duces the C source files that perform data manipulation
and conversion to a common data representation. Fig. 13¢
shows the DDL declarations required to describe the
structures defined in Figs. 13a and 13b.

Data Manipulation Language

As mentioned earlier, data types and data organization
may differ between source and destination nodes. There-
fore, the manipulations that must be performed on source
data so that it becomes the destination data must be de-
fined. Manipulations require the definition of the source
and destination data contained in the data definition file.

Data manipulations are described using a high-level lan-
guage called the data manipulation language (DML). This
language allows the systems integrator to specify how to
transform the data produced by one application so that it
is more acceptable to another application. Standard trans-
formations include the ability to reorder the fields in a
data structure, delete data fields that are not needed by
the consuming application, and add and initialize new
data fields not provided by the source application but
needed by the destination application. Fig. 13d shows the
DML statements that define how to move and manipulate
data coming from a data structure like that defined in the
input_data record shown in Fig. 13c¢ to the report1 record
shown in Fig. 13c.

In addition to manipulating the structure of the data, ca-
pabilities have been provided for automatic type conver-
sion and resizing of data fields. For example, converting
an integer into an ASCII string, an integer to real value,
or a short integer into a long integer.

As with the DDL, the DML source file is compiled using a
lex/yacc-based compiler. However, code generation is post-
poned until a data manipulation has been completely rec-
ognized and checked for semantic errors.
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Data Manipulation Module

The DDL and DML specifications created by the user
wind up in the user-defined configuration files.The user
also indicates the programming language of the sending
and receiving applications for each manipulation or data
definition in the link definition file (see Fig. 14). This
information enables HP Sockets to provide automatic con-
version between different languages—for example, con-
verting a FORTRAN two-dimensional array (stored in col-
umn-major order) into a C two-dimensional array (stored
in row-major order), or a C string into a Pascal string.
The languages currently supported in HP Sockets are C,
FORTRAN, Pascal, and COBOL. Before HP Sockets is
started up, these files are compiled via DDL and DML
compilers into C source files and then the C files are
compiled into executables called data manipulation mod-
ules. These data manipulation modules are placed on the
machines where they will be used. Configuration files and
the creation of data manipulation modules are described
on page 13.

The data manipulation module eliminates the need for a
sending application to be knowledgeable about the data
representation required by the destination application.

Fig. 15a shows the values assigned to a data structure
like that shown in Fig. 13a by a sending application, and

#The Link Definition file, LINKDEF. contains HP Sockets link definitions:
#

#This is the lormat for each entry, The numbers in p L indicate the
#length of each field. Optional items are d in square b

#

Link = LinkName:M = ManipName | D = DataDefName | NULL

# (16} (16} 116)

#{Sourcel = guage]

#

#[SourceFileDel = SourceFileDefName | DEFAULT]
# 16|

# DestLanguage = DestLanguage]

i

#DesiFileDel=DestFileDefName | DEFAULT]

#

#S N S NodeName[:5 Name|[S

L (16) (16) (16}
Link = link:M = i_to_reportl

Sourcelanguage = C

DestLanguage = C

SourceName = cpul

#

Name]..[\|

&This is the end of the link definitions.

Fig. 14. Link defimtion file for the manipulation described in
Fig. 1:3d.

Agpplication Call OQutput
pylid Of “Barry Limd i Op is Barry Litttenam

id.Month = 1, Date is 1301990

idDay = 30;

id. Year = 1990

fa (b)

Fig. 15. (a) Values assigned to the original data structure shown in
Fig 2a. (b) After manipulation and printout from the destination
application

Fig. 15b shows the printout from the receiving application
after data manipulation.
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Rigorous Software Engineering: A
Method for Preventing Software

Defects

Formal specification languages enable software engineers to apply the
rigorous concepts of discrete mathematics to the software development

process.

by Stephen P. Bear and Tony W. Rush

The technology base of electronics and computer compa-
nies like Hewlett-Packard is changing—software has be-
come pervasive. In all market sectors the proportion of
software in individual products continues to increase. Fig.
1 shows the dramatic increase of software in products of
one family developed between 1979 and 1989

Product A produced in 1979 was entirely hardware, and
contained no software at all. Product B contained 38
KNCSS (thousands of lines of noncomment source state-
ments) of Pascal. In 1986, product C contained 200
KNCSS of structured assembly language, which is equiva-
lent to about 100 KNCSS of a high-level language like
Pascal or C. The current member of the family, product D
released in 1989, contains some 350 KNCSS of (.

400

350 |
Product D

250

200

KNCSS

150

100 +
Product C

Product A Product B

B2 83 B84 8 B8 87 8 89 89

Year of Release

| B0 B

Fig. 1. Software content of a particular medical product family
from 1979 to 1989,
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Growth like this is not accidental because there is a feed-
back loop that drives the increased functionality provided
by increased software. Software enables us to design
products with greater functionality. Initially, this function-
ality provides a competitive advantage, but it soon be-
comes essential to success in the market. To make an
impact, each new product must have more features and
more software.

Software Takes Too Long

This massive change in products, with software providing
much of the functionality, is happening despite significant
shortcomings in the current software development pro-
cesses. The principal problem is that sofiware develop-
ment takes too long. The development process is difficult
to control and defect removal can introduce seemingly
arbitrary delays.

Delays increase development costs, but more important,
they also reduce market share and affect overall lifetime
profit. Studies of high-growth, short-lifecycle markets sug-
gest that a six-month delay in introducing a product can
reduce profit by 33%.! One HP Division esiimates that for
each new product, finding and removing bugs can cost
over 1 million dollars.

Software development takes too long because it is waste-
ful. Errors and defects are introduced during develop-
ment, but are not detected quickly. Further work is then
built upon the erroneous development. When a defect is
detected, there are many interlocking details, and these
must be reworked or discarded. During development this
happens repeatedly. Again and again, work carried out at
one stage is thrown away and must be replaced.

Defects not detected until late in the software develop-
ment process can affect large amounts of work. They are
difficult, time-consuming, and expensive to correct. De-
fects detected early in the development process require
less work and typically they are easier and cheaper to
correct.

Fig. 2 shows the cost of removing defects detected at
various points in the software development process, as
calculated by the software quality engineering group at
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Fig. 2. Calculated cost of defect correction at point of detection in
the lifecyele.

one HP Division. Notice that costs of removal increase
exponentially as the development proceeds.

It is instructive to look at these figures in a slightly dif-
ferent way, and to consider the cost of introducing an
error at various points of the development process. If an
error is detected by a code inspection or design review
soon after it is introduced, it can be fixed gquickly and
cheaply. For example, if a specification error is detected
at specification time, it will be cheap to repair. However,
if it is not detected at this stage, then il is likely to lie
dormant until the consequences of the error are observed,
by which time it will be much more expensive to correct.

It turns out that the introduction and detection of the
consequences of an error are nested because typically:
Errors introduced during low-level design and coding are
observed quickly during compilation and unit test

Errors introduced during high-level design are observed
during integration and system test

Errors introduced during specification are not observed
until system test and use.”

We can use this relationship to estimate the relative costs
of introducing a defect at various points in the develop-
ment process. It shows that a defect introduced early in
the development process—and not detected immediate-
ly—will be much more expensive to fix than an error
introduced during coding (see Fig. 3).

Clearly, defect prevention during specification and design
is extremely important. Getting it right at this point is
where it really matiers. However, if we look at current
practice, we see that the analytical and descriptive tools
used during specification and design are very weak. There
is little attempt to capture behavior at the specification
stage. Early narrative documents describe features, but
these are inevitably ambiguous, incomplete, and often
contradictory. High-level descriptions of behavior are just
as vague, and precise descriptions often resort to imple-
mentation details.

The result is a rush to code. Developers do not spend
time understanding and describing behavior because it is
hard to capture and communicate. Instead they use the
implementation to document issues and resolve problems.
Often, the implementation is the first precise description
of what the software will do.

Many important decisions about overall behavior are
made by programmers working at the lowest level of de-
tail. This is not a good way to think about behavior, and
decisions made in this way are often inconsistent or un-
desirable. Aspecis of behavior emerge from interactions
that have never been explicitly considered or analyzed.
Behavioral defects embedded in the code are difficult to
detect by inspection or review. However, they are the
defects that begin the costly cyele of rework and waste.

Rigorous Software Engineering

Rigorous software engineering is an approach to sofiware
development that addresses quality and productivity by
emphasizing the early stages in the development process.
Rigorous software engineering concentrates on developing
an early, precise understanding of the required behavior
of the system under development. Expensive specification
and design errors can be avoided, or detected and cor-
rected before the implementation begins.

The rigorous software engineering philosophy could be
summarized as one of defect prevention. Think carefully
about what you want to do and get it right the first time.

The approach is to develop an abstract, but precise de-
seription of the behavior of the software system. This
description can be reviewed to ensure that the system
does what is required. If there are problems, they can be
fixed quickly and cheaply—long before an implementation
is created.

Underlying the rigorous approach are formal specification
languages. These are mathematically based languages that
provide support for abstract and precise descriptions of
software systems.

Rigor in the Software Lifecycle
Rigor can be used effectively at all stages of the software
lifecycle. Naturally, if the early stages of the development
are more error-prone or more costly if flawed, then those
stages are likely to benefit mosi.

If we take a simple model of software development—
specification then design then implementation then test-
ing—we can show the application and benefits of

Relative Cost

i t }
Specification Design Code
Development Phase

System Test

Fig. 3. Relative costs of defects introduced in various development
phases,
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rigorous software engineering for each stage. In real sofl-
ware development, these phases will appear, but they may
be interleaved, repeated, or omitted.

Specification. Rigorous techniques are particularly useful
at the specification stage. A rigorous system of specifica-
tion is both abstract and precise. Abstraction focuses
attention on the essential aspects of behavior. An abstract
description is not cluttered or confused with irrelevant
details. It makes the behavior of the system easier to
understand and to think about. Precision encourages care-
ful thought because issues must be resolved and cannot
be hidden in an ambiguous narrative.

Together, abstraction and precision make it possible to
communicate the proposed behavior. Reviews and inspec-
tions can be more effective. Other people ean understand
what is suggested because they can analyze consequences
and identify problems or omissions.

The specification of the system will construct a model
that shows all the required properties of the system. This
model can be used to resolve difficult issues of behavior.
If the model cannot resolve these issues, then it is flawed
and needs improvement. In praciice, this makes it diffi-
cult to ignore tricky areas ol the specification.

A rigorous specification, then, provides benefits to both
the authors of the specification documents and the re-
viewers of those documents. Clarity of thought and con-
cept helps prevent defects from being introduced. Clarity
of expression empowers reviewers and helps ensure that
defects are quickly identified and removed.

Design. A feature of the rigorous software engineering
approach is the ability to separate concerns. In the speci-
fication phase, emphasis is placed on what a system is to
do. In the design phase emphasis is placed on how the
system is to be built because decisions about behavior
have already been made. It is not necessary 1o resolve
requirements issues while doing design.

Precise specifications provide detailed guidance for de-
signers. Teams of designers know what is to be done.
This makes it easier for the development to be well-man-
aged because tasks can be defined precisely (design the
feature whose specification is as follows) and allocated 1o
developers. Misunderstandings causing integration prob-
lems or system errors can be dramatically reduced.

It is straightforward to combine the rigorous approach
with techniques such as structured design.*? This gives
many benefits, especially the ability to trace which parts
of the design implement which parts of the specification.
This traceability is an important attribute of any develop-
ment process, allowing subsequent enhancements to code
to be done in a controlled way and improving the quality
of the finished software product. The article on page 51
shows the combination of structured design techniques
and rigorous specifications.

Good specifications are especially important when sofi-
ware is developed by subcontractors. Rigorous specifica-
tions can be made tight enough to allow subcontractors
to implement precisely the desired functionality, and for
there to be much less disagreement over the required
behavior of the system.

26 December 18591 Hewlett-Packard Joumnal

Implementation. As with design, decisions about require-
ments have already been made. In addition, at this stage,
design decisions have also been made. Effort is concen-
trated on producing an efficient implementation of the
desired behavior.

The code modules can be traced to the design descrip-
tions and the design descriptions can be traced to the
specifications, The vocabulary of the specification is used
in the commentary for the code—for example, to state
properties that particular functions depend on to work
correctly.

Testing and Inspections. Throughout the development, the
deliverables of the various stages can be fested or in-
spected. Before executable code is available, the specifi-
cations and design documents can be formally inspected
using standard industry practices.” The descriptions pro-
vide precise, independent eriteria for correctness. In a
formal inspection the reviewers know what the design or
code is supposed to do and can check whether it meets
these requirements.

The correctness of test cases can also be reviewed
against the specifications. The behavior of the sysiem
should be predictable from the specification and fests can
be chosen to verify this. Industry-standard testing tech-
niques™® can be used to supplement the tests from the
specifications to catch additional code-orienfed errors.

Formal Specification Languages

Rigorous software engineering requires precise but ab-
stract descriptions of behavior. It is possible to write
these descriptions in a natural language such as English,
German, or Japanese, but it is very difficult to do so
without introducing ambiguity and other problems. The
key to rigorous software engineering is the use of formal
specification languages to describe behavior.

Formal specilication languages look like programming
languages in that they both have special syntax and use
special symbols, but they do very different jobs. A formal
specification language is designed to describe whal a
product is to do while a programming language is de-
signed {o describe how it is to be done.

The syntax and symbols of formal specification languages
are based on discrete mathematics. This can be intimidat-
ing to begin with, but in fact the math is quite simple—
far easier than the continuous mathematics routinely used
by hardware engineers. The math is used to provide an
abstract mathematical model of the system. This is not a
new idea since it is the standard approach in engineering
to use a model to understand the behavior and properties
of a systen.

One such language is the Hewleti-Packard Specification
Language, HP-SLY. HP-SL has been developed at HP Labo-
ratories in Bristol, England, and has already been used on
real software development projects at several divisions in
HP. The language is supported by a toolset (the HP Speci-
fication Toolset), based on the emacs editor with an op-
tional interface to the HP Softbench!? product. The tool-
set allows the production of specification documents
containing a mixture of natural language and HP-SL. Us-
ing the toolset, specifications can be checked for syntac-
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tic correctness and for type correciness. The toolset is
not a Hewlett-Packard product, but has been made avail-
able to academic and research institutions.

HP-SL is a specification language that uses data types,
functions and logic to describe properties of software
systems. These properties can be expressed at both a
high level of abstraction and a high level of precision.
This combination of abstraction and precision allows im-
portant behavior to be captured withoui becoming lost in
a mass of detail.

An Overview of HP-SL

The HP Specification Language, or HP-SL, is a notation
for deseribing the behavior of software systems and com-
ponents in an abstract yet precise manner. The language
allows attention to be focused on what a system does,
while deferring decisions on how a system is imple-
mented.

The following sections introduce some of the main paris
of HP-SL. This should provide a useful guide to interpret-
ing the HP-SL specifications presented in this issue.

Values

In HP-SL, values can be given names. These names can
then be used o represent values. The following declara-
tion gives the name num to the value 3.

val num: Int & 3

The declaration also says that num is of type Int (integer).
Int is one of the predefined HP-SL types. A declaration
need not define exactly which value is chosen for a
name. For example,

val num;y : Int

says that numy is the name for some value of type Int, but
does not say which particular value is chosen. Later sec-
tions will show that logic can be used to constrain values
that are given names.

Value declarations can appear at the top level of a speci-
fication (as above) in which case their scope is the entire
specification. They can also be used to define local values
using a let expression. The let construct is similar to that
found in many functional programming languages. For
example, the value of the expression:

let
val one; Nat1 & 1

val ten: Nat1 & 10
in

one + ten
endlet

is the natural number 11. The names one and ten are de-
fined in an inner scope and are not visible outside the let
expression.

Types

Types in HP-SL are much like types in a programming
language in that they are collections of similarly struc-
tured values that permit the same set of operations. Thus,

numbers and Booleans (truth values TRUE and FALSE) are
distinct types, since arithmetic operators (+, —, =. elc.)
work on numbers but not on truth values, and the logical
operators ( A, v, =, etc.) work on truth values but not
on numbers.

HP-SL provides a number of predefined types and ways
of constructing brand new types from existing types. HP-
SL also allows names to be given to types.

Predefined Types. Table [ lists the predefined types in HP-
SL. These types are available for use in all specifications.

Table |

HP-SL Predefined Types
Name Description Values
Bool Boolean, truth values TRUE, FALSE
Real Real numbers 0, 3.142, 0.00023
Int Integers 50,99
Nat0 Natural numbers from 0 9,0
Nat1 Natural numbers from 1 9.1
Char Characters ‘a’, Anewline]
String Sequences of characters “abc”

The numerical types (Real, Int, Nat0, and Nat1) have all the
expected arithmetical operators defined on them (+, —,
#,/, <, = mod, etc.). The Boolean type has the five stan-
dard Boolean operators defined on it ( A logical AND, Vv
logical OR, = logical implication, — logical negation, and
<> logical equivalence).

Naming Types. In HP-SL, types can be given additional
names. The following declaration gives the name MyNum
to the existing type Nat0.

syntype MyNum 2 Nat0

This declaration does not introduce a new type, but mere-
ly gives another name to an existing type. Values of type
MyNum are indistinguishable from values of type Nat0. (The
kevword syntype derives from synonym type).

Constructing Types. I1P-SL has some predefined type
constructors that provide ways ol creating more compli-
cated types from other types. The most common of these
are sets, sequences, and maps.

Sets. These types are used to model collections of data
for which order and repetition are unimportant. Set types
in HP-SL are constructed using the type constructor Set.
For example,

syntype Natset & Set Nat0

associates the name Natset with sets of natural numbers.
‘alues of the set types are written as follows:

val empty_set: Natset & { }

val even_set: Natset £ {2, 4,6}

where empty_set is a name for the empty set, and even_set
is a name for the set containing three elements 2, 4,
and 6,
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For large sets, it is not practical to list all the values,
Therefore, HP-SL provides a syntax similar to the conven-
tional mathematical set comprehension.

val ane_to_a thousand & { x | x: NatD - x =1 A x << 1000 }

The set one_to_a_thousand contains all the natural numbers

between 1 and 1000.

HP-SL provides all the conventional set operators (U set
union, M set intersection, & set membership, \ set differ-
ence, and C subset).

3 € {1.5 =TRUE

{12} U {234} = {1,234}
1.2 N {234} = {&}
{12t \ {2.3.4} = {1}

{1,2} C {1,2,3} = TRUE

Sequences. These types are used to model collections of
data for which order and repetition are important. Se-
quence types in HP-SL are constructed using the type
constructor Seq. For example,

syntype Natseq £ Seq Nat0

associates the name Natseg with sequences of natural
numbers. Values of this sequence type are written as fol-
lows:

val empty_seq: Natseq bes
val even_seq: Natseq & < 2,4 »

where empty_seq is defined to be the empty sequence, and
even_seq is defined to be the sequence of two elements,
the first of which is 2 and the second of which is 4.

There are a few standard names for sequence operators.
The names for the HP-SL sequence operators are listed in
Table II

Table Il
Operators for Sequences
Operator Meaning Example
hd Head of a se- hd« 2,99 >=2
quence
1l Tail of a sequence tl< 2,99 > =< 99 >
2] Sequence con- &2,99> G <2,99> =
catenation <2,99,2, 99>
elem Sequence lookup  (elem <2, 9933 2) = 99
len Length of a len <2, 995 =2
sequence

Maps. These types are used to associate values of some
type with values of another type. In programming lan-
guages, maps are implemented by structures such as hash
tables, association lists, and trees. In HP-SL map types
are constructed directly using the type constructor =.
For example, the definition:

syntype Char_to_num 2 Char ™ Natd

gives the name Char_to_num to the type mapping values of
type Char to values of type Natl. Values of this map type
are written as follows:
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val empty: Char_to_num 2 [ ]
val amap: Char_to_num & ['a’ ++2,'m -+ 1,°p' = 1]

where empty is the empty map and amap is the map that
associates ‘a’ with 2, 'm" with 1, and ‘p’" with 1.

The function lookup is provided to return the associated
value in a map. For example,

lookup amap ‘a’ = 2.

Another function, dom, is provided to calculate the ele-
ments in a map’s domain. For example, dom amap = {'a’, ‘m’,
‘ol

Introducing New Types. We have already seen ways of giv-
ing names to types using the syntype keyword. Doing this
does not introduce a new type, it merely gives a name to
an existing type. To introduce a new type, HP-SL provides
the keyword type. This can be used in a variety of ways
to construct new types, most of which are advanced top-
ics in HP-SL. The most common use of type is to make
record and union types. Record types contain values of
several other types, and union types permit choices be-
tween alternatives.

For example, consider a record type used to represent
boats. To represent a boat in this simple example, we
only need to know the displacement of the boat and the
number of engines it has. The type Boat will be adequate
for this (assume we already have a type Weight to record
the displacement).

type Boat &
[ boat
(engines: Natl,
displacement: Weight)
1

This definition states that values of type Boat have two
fields: engines and displacement. The type of the engines field
is Natl, while the type of the displacement field is Weight. We
can construct values of Boat using the name before the &
symbol—boat.

val single: Boat & boat(1, 5000)
val double: Boat & hoat{2, 7000)

The value single is intended to represent a single-engine
boat with displacement 5000, and double a twin-engine boat
with displacement 7000. Just as in a programming lan-
guage, the fields of a record value can be accessed. In
HP-SL, the fields are accessed by functions generated
from the field names used in the type definition.

engines{double) = 2
displacement{single) = 5000

Consider now a type Ship, values of which are either
boats (as before) or vachts. Yachts have sails, not en-
gines, and an important statistic is the sail area. We de-
fine this using the following union type:

type Ship £
[ boat[>
(engines: Natl,
displacement: Weight)

]
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[ yacht &>
(sail_area: Area,

displacement: Weight)
1

The symbol “I” is used to indicate alternatives in union
types.

We can redefine the previous boais as ships:

val single: Ship 2 boat{1, 5000)
val double: Ship £ hoat(2, 7000)
val yacht;: Ship £ yacht(400, 2000)

The field accessing mechanism works as before:

displacement{double) = 7000
displacement{yacht;) = 2000

Functions

Functions are used to model computations and calcula-
tions. Functions in HP-SL are “pure” in the sense that
they cannot have side effects.

Functions are defined in one of two ways—explicitly or
implicitly. An explicit function definition gives a formula
to calculate a result from the inputs. An implicit function
definition gives a test or definition of which result is cor-
rect for the given inputs. To make this clearer, consider a
function max that returns the maximum of two integers.

Defined explicitly, a function looks like:

:fnmax : Int x Int — Int
: is max(x, y)
A

ifx<y
then y
else x
. endif

S ONERto ko) o

Line 1 gives the signature* of the function. In this exam-
ple the signature says that max takes two values of type
Int and returns one value of type Int. Line 2 gives names
for the formal parameters of max, x and y. Line 3
introduces the body of the function definition, and says
that what follows will be an algorithm to calculate the
result given the inputs. Lines 4 to 7 are the explicit algo-
rithm.

Defined implicitly, a function looks like:

1: fn max : Int x Int — Int

2: is maxl(x, y)

3: return larger

4: post

5. (larger = x v larger = y)
6 A

7. larger >x

8 A

9:  larger >y

Lines 1 and 2 of this definition are identical to the explic-
it definition. Line 3 introduces the name larger for the re-
sult. Line 4 introduces the body of the implicit definition
{(known as a postcondition, hence the keyword post).

* A signature defines the argument types and the result type of a function

Lines 5 to 9 are a test which is true precisely when the
value larger is the correct result for the function.

The implicit style can allow quite complicated functions
to be defined in a simple way, without having to give an
algorithm. For example, a square root function could be
specified implicitly as follows:

fn sqrt: Real — Real
is sqrtir)
return s
post
F=8 = §

The square root example as given is, of course, incorrect.
The square root of a negative real number is not itself a
real number. A specifier has two choices here—extend
the definition to complex numbers or restrict the defini-
tion to nonnegative reals. A particular strength of HP-SL
is its ability to restrict the scope of function definitions in
a natural way. This is done by adding a precondition to
the function definition. This precondition is a Boolean
test that determines valid inputs to the function. In the
square root example, the definition given is only valid for
inputs greater than or equal to zero. Hence the correcied
definition is:

fn sqrt: Real — Real

is sqrt(r)

prer =0

return s

post

r=s = s

Relations
For modeling operations on the system state, it is useful
to identify the particular kinds of functions that return a
Boolean result. Such functions are called relations and
have a special syntax in HP-SL. For example:

reln vowel : Char

is vowel(c)
A

P Ry T

c € {a, ‘e, 0, v}

defines a relation called vowel which is true just for those
characters that are vowels. So the expression vowell'a’) is
TRUE, whereas the expression vowel('k’) is FALSE. The mail
system described in the article on page 32 shows how
relations are used to model system operations.

Using Logic

The use of logic is pervasive in HP-SL. Logic can be used
to constrain values, types, and functions to specify in-
tended properties precisely without needing to give algo-
rithms. The implicit form of the function definition is one
way in which logic can be used.

Logic can be used to constrain value definitions by using
the sat keyword. The sat is shorthand for satisfies.

val x: Int sat x > 10

val y: Int saty € {1,9,31}
This defines x to be some integer greater than 10, and y
to be one of the values 1, 9, or 31.
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Logic can also be used 1o constrain types. Consider a set
of characters. To model part of a system, it may be true
that these sets can never be empty. HP-SL gives a simple
way of stating such constraints using the inv keyword (inv
is short for data type invariant).

syntype N_e_char set & Set Charinvs - s 5 {1}

The s between the inv and the « is a name that represents

a typical member of the type N_e_char_set. This name is
used in the logical expression after the - to state that all
such members would be nonempty. So the set {a', 8%}
would be of type N_e_char_set but the set {} would not.
The notion of invariant allows powerful statements about
expected properties of systems. This aids the production
and analysis of specilications.

In addition to the simple logic expressions used so far
(propositional logic), HP-SL also provides predicate logic.
Predicate logic extends propositional logic by introducing
quantifiers that allow statements about all values of some
type or about some values. The symbol V¥, read as “for
all” or “for any,” is used to make statements about all
members of some type. The expression

{ ¥ x: Natd - x = 0)

says that: for all x of type Nat0, x = 0. Another quantifier
is the symbol 3, read as “there exists,” which allows
statements about some values. For example, the expres-
sion

{3 x: Char - x ="3")

says that: there exists an x of type Char such that x = ‘a":

Who Has Used Rigorous Techniques?

Rigorous methods are creating increasing interest in the
software development community. The articles on pages
46 and 51 describe experiences using IP-SL on real proj-
ects at two HP divisions. HP Laboratories Bristol is also
providing consulting services to HP divisions in Colorado,
California, and Seotland.

Organizations outside of P have used formal specifica-

tions in various ways. For instance, one organization used
formal specifications to develop a reusable framework for

a family of software products for instruments.!! They
concluded that the application of formally based tech-
niques in this fashion proved to be cost-effective, and the
reusability of the specifications has translated into reus-
able components. Another organization used formal tech-
niques as part of their reengineering efforts on a major
software product.! They used the formal notation Z,
which is very similar to HP-SL, to manage the introdue-
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tion of new features into the product. The specification
document became a record of the commitment promised
by the designer to the customer. Many software houses in
Europe have successfully used formal and rigorous tech-
niques for a wide range of applications ranging from safe-
ty-critical applications like air-traffic control to telecom-
munications conirollers.

Introducing Rigorous Techniques into a Project

For many people, rigorous techniques represent a radical-
ly different way of approaching software development.
Adopting this approach can be far from straightforward.
In recognition of this problem, the software engineering
department at HP Labs in Bristol has a project team
called the applied methods group, or AMG, whose mis-
sion is 1o act in collaboration with other parts of HP to
introduce formally based methods.

To date, a phased approach has been taken which starts
with a small, low-risk project and develops to a more
substantial collaborative project. It is important that the
projects have the following features:

Enthusiasm from the project engineers to try something
new

Full effective commitment from all the managers in-
volved, from project manager to lab manager
Commitment to project-centered training just before the
collaborative project

Realistic expectations of what benefits and costs are in-
volved.

In addition, the product being developed needs to have a
high chance of successful delivery to market. The collabo-
rations aim to be at the center of the product develop-
ment, not merely providing an ancillary technology.

As with introducing any new technology, there are re-
quirements on the rigorous techniques. These require-
ments include training, effective technical support, ade-
quate documentation, and high-quality supporting tools
that can be integrated into the normal development envi-
ronment of the project. A large part of the team’s work
has been fo ensure that this level of support is available.

Conclusion

Rigorous software engineering is an approach that is both
practical and theoretically sound. Its introduction into the
software engineering community is progressing. It offers
scope for substantial improvements in software quality
and productivity. In addition, the approach is likely to be
developed further to support a wider range of applica-
tions.
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Specifying an Electronic Mail System

with HP-SL

Starting with a list of system features and capabilities, an HP-SL
specification for a simple mail system is developed and the steps involved

in this process are analyzed.

by Patrick C. Goldsack and Tony W. Rush

Specifications tend to be used for three main purposes.
The first is to help analyze the requirements of a system
by constructing an abstract model. The process of
constructing the model, and the subsequent reasoning
about its behavior, will typically result in extensive dis-
cussion about the fundamental required behavior of the
system. The second purpose is Lo provide concrete, unam-
biguous descriptions of the system that are open to de-
tailed review. The third purpose is to act as a guide to
the developers of the system by desecribing the necessary
properties of their programs.

This paper provides an introduction to using HP-SL nota-
tion for the specification of a simple mail system. Al-
though the mail system and its specification are simpli-
fied, enough of the system is specified to demonstrate the
essential aspects of the HP-SL notation and the specifica-
tion process. Most of the HP-SL notation used in this pa-
per is deseribed in the article on page 24.

The System

The mail system defined in this paper is similar to the
electronic mail systems in common use such as HP Desk-
Manager and the various mail systems available on sys-
tems like the HP-UX operating system. Our example mail
system has the following features and capabilities.

The system has a collection of users who are registered
with the system.

Each user has three trays: an in_tray, an out_tray, and a pend-
Ing_tray.

Users compose messages by entering them into their
pending_tray.

Users may read and delete messages from theirin_tray.
Users post messages by moving them from their pend-
ing_tray to their out_tray.

The system transmits messages from a given out_tray to
the recipients’ in_tray.

A real mail system would provide many more features.
However, this choice of features is sufficient to illustrate
the use of HP-SL and demonstrate some of the advan-
tages of formal specification.

Building the Specification

From the natural language description above, we can
identify the following entities (data types) that must be
modeled:
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« Users
« Messages
« Trays (in_tray, out_tray, and pending_tray).

There are also constraints between the entities—for ex-
ample, each user has three trays. We can also identify
items of vocabulary that must be defined such as the
meaning of each of the three tray types and the notion of
being registered. Finally, several operations are identified:
Reading a message

Deleting a message

Entering a message

Posting a message

Transmitting messages.

Message Data Types

Entities within a specification are represented as values
of a type—a concept present in many high-level program-
ming languages. However, HP-SL has a variety of types
that are particularly suited to modeling requirements and
behavior.

Person. The first type we define is that of person, which
will be used to represent potential users.

type Person

This is an example of an abstract type. In this example,
by making Person an abstract type and providing no func-
tions that operate on values of the type, we are stating
that the particular properties and attributes of the type
are irrelevant to the specification. In fact, the only prop-
erty we can assert about values of type Person is equality
(or inequality ).

Contents. The next type is that of the message contents.
This is also defined as an abstract type. Later, this could
be refined, for example, into a sequence of bytes. Be-
cause its structure is unimportant to the specification, the
type Contents is left abstract.

type Contents

Message. To define a message, we note that there are
three interesting properties of messages in the systen:
e The identity of the sender of the message
« The identity of the message’s intended recipients
« The contents of the message.

© Copr. 1949-1998 Hewlett-Packard Co.



In addition, we need to be able to construct messages.
We could define Message as an abstract type as before,
and define functions to construct messages and (o exiract
information.

type Message

fn message: Person x Set Person x Contents — Message
fn sender: Message — Person

fn recipients: Message — Set Person

fn contents; Message — Contents

The function message will construct messages and the
other three functions will extract the appropriate informa-
tion from values of type Message.

We could also use the following shorthand to define what
these functions do.

type Message &

[ message =
{sender: Persan,
recipients: Set Person,
contents: Contents)

I

This type is essentially equivalent to a programming lan-
guage record type. Messages are constructed using the
function message and the functions sender, recipients,
and contents are equivalent to field selectors in a pro-
gramming language.

Validating the Message Definition

The definition of the type Message makes certain decisions
regarding the behavior of the mail system which should
be validated against the intended properties of the sys-
tem. In any completed specification document, all formal
descriptions should be accompanied by a discussion of
the reallife interpretation of the mathematical model. If
one looks at the information captured in each message,
the following questions and considerations arise.

Sender. A single person or multiple authors? We decide
here that the sender field is used to represent the name
of the person who actually enters and posts the message.
This can be compared to the differing approaches of HP
Desk and HP-UX mail

Recipients. The recipients are expressed as a set of type
Person. Because a set has no order and no duplicates, the
consequences of this choice must be explained. The lack
of ordering implies that no precedence can be given to
individuals within the set by virtue of their membership
of the set. This seems a reasonable decision for this spec-
ification.

The lack of duplicates can be interpreted in one of two
ways. First, it can mean that a message may not be
created when a person occurs multiple times in the recipi-
ents field of a message. This seems unreasonable if aliases
for sets of people are introduced and such aliases are
allowed to overlap. Second, it can mean that duplication
of a person in the recipients field has no effect on the
behavior of the mail system. It is just as though that per-
son were mentioned just once, which in this case is the
intended interpretation. If one really wanted the first in-
terpretation there are alternative ways of modeling the
type that would be more natural.

Contents. This is a type for which we have no further de-
tails about its internal makeup because it has no effect
on the mail system behavior. This is perhaps one of the
most significant differences between this example specifi-
cation and a real mail system. In practice, an arbitrary set
of conventions is used to give significance to certain
forms of message contents such as a line starting with
the character “." or with the string “To:".

This choice of properties is the minimum necessary for
this specification example. In a real system, messages
would have many more properties defined, such as date
sent and priority. In this specification, these would be
added as additional fields of the type Message.

Defining the types used in a system builds up a vocabu-
lary that can be used to describe the system’s properties.
This vocabulary can be extended to describe all aspects
of the system in a completely formal and unambiguous
way. This is done by defining functions that manipulate
the data at a higher level. Once this extended vocabulary
is in place, statements of system behavior become
straightforward. This leads to one of the main benefits of
formal specification—the right language with the right
abstractions make discussing design issues much easier.

For messages, a useful concept is the set of people refer-
enced within the header of a message—the sender and
the set of recipients. The function addressed obtains this
information from a message.

fn addressed: Message — Set Person is
addressed(m) 2 {senderfm}} U recipients(m)

The value sender(m) is a set containing only the person
who sent the message. This is added into the set of recip-
ients (using set union U) to produce the set of all per-
sons mentioned in the message.

Tray Definition

The initial description of the system mentions three sorts
of trays that belong to each user. The specification
groups these three together as a type Trays.

type Trays &

[ trays I»
{in_tray: Tray,
out_tray: Tray,
pending_tray: Tray)

I

Each of the three trays is of type Tray, which is delined fo
be a set of messages.

syntype Tray & Set Message

Note that this type declaration is slightly different from
the previous ones. For a start it is infroduced by the key-
word syntype which stands for synonym type. A syntype
introduces a name for a type, not a new type (unlike a
type declaration). Thus the type expression Set Message
may be used interchangeably with the type expression
Tray.

Validating the Tray Definition
The decision to model the tray as a set of messages de-
serves closer inspection. As previously discussed, using
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sets has two consequences. First, there is no order in the
messages reflected within the tray's structure, and second,
duplicate messages are not possible within a tray. The
question to be answered is whether either of these two
restrictions will cause difficulties in modeling the behav-
ior.

Ordering the messages in a tray might reflect one of two
kinds of attributes: message attributes and dynamic ariri-
butes,

Message Attributes. These are attributes that are only de-
pendent on already existing fields of the mail messages.
Examples of message atiribute orderings include:

The alphabetical order of the senders

A priority order with the priority of a message being cap-
tured within the as yet undefined contents lield of the
message.

This kind of ordering can be recreated whenever it is
required, so not capturing this information in the Tray type
is relatively unimportant. However, in practice it would be
useful to use an ordered data type if the atiribute order-
ing were central to the operation of the system.

Dynamic Attributes. These are attributes that are the resuli
of some action or ordering of actions. An example of this
might be the order in which messages are placed in a
tray. It is always possible to capture this order by having
information that represents a message's position in the
sequence added as an attribute of the type Message. It
would be better, however, fo take a much more direct
approach and use, say, a sequence instead of a set.

Thus a particular choice of modeling is achieved by con-
sidering both the mathematical properties of the model
and the directness with which it captures the intended
interpretation of the real system. In this instance, mail
messages in a tray are identified directly rather than by
position in an ordered sequence, so an unordered collec-
tion seems to be a reasonable decision.

The restriction on duplicate messages is somewhat less
clear. Consider the in_tray. The intention is to ensure that
recipients only get a single copy of a message. However,
this is already indicated for the recipients' being a set ol
people, and therefore, messages are only ever transmitted
once to an individual. The only other way in which a
message can be sent twice is for the sender to do so
explicitly as two separate send operations. The question
is whether we wish repeated transmissions to collapse
identical messages at the receiving end. It is not clear
that this is an intended aspect of the behavior of the mail
system. The type used for the in_tray field could be weak-
ened to an unordered collection with duplicates (com-
monly called a multiset or bag).

Note that there is a temptation at this point fo say that
the undefined contents field might contain a unique refer-
ence for every message placed in the in_tray, so that dupli-
cates caused by repeated transmission in fact result in
different messages. However, if this were the case, il
would be an essential property of the system’s behavior
at the current level of abstraction and so should be mod-
eled directly. Similar arguments for allowing duplicates
may be made for the two other trays. For the purposes of
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this example specification, the type Tray will remain as a
set to avoid introducing large amounts of HP-SL text.

Although this example may be elementary, it is typical
when using formal specification languages that many
questions arise both from the process of constructing the
specification and from formal reviews of the specification.
A style is rapidly acquired that questions every modeling
decision in great detail and considers the consequences,
This is only possible if the underlying modeling technique
has a formal basis allowing sound reasoning.

With many data types it is convenient to defline additional
properties that make other parts of the specification sim-
pler—in this case, the mail in a tray for a particular user.
The function mail_for formally defines this property.

fn mail_for: Person x Tray — Set Message is
mail_far (u, tray)
return msgs
post
¥ m:Message -
m £ msgs <= m £ tray Au £ recipients{m)
)

This function returns the set of messages (msgs) in which
cach message m both is in the tray (m € tray) and has the
addressed person u as one of the recipients (u £ recipi-
ents{m)).

System Definition

The mail system consists of a collection of people, each
with three trays. This association is specified by using a
map from values ol type Person to values of type Trays.
The following definition states that each user can only be
associated with a single collection of Trays.

syntype Mail_system 2 Person 2. Trays

Now that the system has been defined, the concept of a
user being registered on the system can be specified. We
say that a person is registered if that person is in the
domain of the system mapping. Hence that person is
associated with a collection of trays in the system.

fn registered: Person = Mail_system — Bool is
registered (u, s) & u € dom(s)

The registered function returns a TRUE value if the person u
is registered in system s, The type Mail_system will be re-
fined later in this specification.

Operations on the System

The types of data used in the system have now been de-
fined along with functions defining additional properties
of the data. The operations listed in the informal require-
ments description can now be defined.

Users compose messages by entering them into their
pending_tray

Users may read or delete messages from their in_tray
Users post messages by moving them from their pend-
ing_tray to their out_tray

The system transmits messages from a given out_tray to
the recipienis’ in_tray.
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Entering a Message. The relation input defines the operation
of entering a message into a user’s pending_tray (in prepa-
ration for sending). This will be defined as a relation be-
tween the state of the mail system before the message is
entered, the message to be entered, and the state of the
mail system after the message has been entered. In HP-
SL. this relation looks like:

reln input: Mail_system x Message > Mail_system is

input (sys, message, sys')

e

This relation is true if the parameters are in the relation-
ship and false otherwise. The input parameters sys and
sys’ are used to indicate the before and after state of the
mail system (see “Specification of State in HP-SL" on
page 38).

When defining operations, it is useful to consider what
constraints can be placed on the operation’s parameters.
It might be considered a valid restriction on the use of
the input operation that the message placed in the pend-
ing_tray can only be addressed to registered mail-system
users. If so, this restriction may be captured using a pre-
condition, which is a predicate that must be satisfied by
the input parameters before the operation can be used.

reln input : Mail_system x Message < Mail_system is
input {sys, message, sys')
pre
(v user £ addressed (message) - registeredluser,sys))

=3

This restriction imposed by this precondition is artificial
since it does not prevent a message from being addressed
to a user who might be deregistered from the system
after the message is placed in the pending_tray but before
transmission. A less restrictive form of the precondition
would be to require that the sender of the message be
registered with the system. The following definition says
that the sender’s pending tray has the new message added
to it and that this is the only change.

1: reln input : Mail_system x Message x Mail_system is
2 input (sys, message, sys’)

3: pre registered (senderimessage), sys)

44

5 let

6 wval from 2 sender (message)

7. val trays D lookup sys from

8  valtrays' & lookup sys' from

9 in
10: dom sys’ = dom sys
1% A

12 (¥ p = ( dom sys \ {from})-
(lookup sys' p} = (lookup sys p}}

13 A

14:  in_trayltrays’) = in_tray (trays)

1% A

16:  out_trayltrays') = out tray (trays)

17 A

18:  pending_trayltrays’) = pending_tray(trays) U {message}
19: endlet

Lines 6 to 8 provide local names for:
® The sender of the message (from)
® The sender’s trays before the operation (trays)

* The sender’s trays afier the operation (trays’).

The first two clauses (lines 10 and 12) ensure that the
system does not change in an unwanted way. The first
clause ensures that no people are added or removed from
the system (the domains of the before and after states
are identical), and the second clause states that for all
but the sender, the system map does not change.

The final three clauses (lines 14, 16, and 18) state how
the senders trays change (if at all), one clause for each
of the three trays.

Clauses that state that the system does not change (lines
10-12) can be captured in the following relation between
iwo states and a person.

reln change_only: Mail_system x Person x Mail_system is
change_only (sys, user, sys’)

=3

dom sys’ = dom sys
A
(¥ p € (dom sys" \ {user}) - (lookup sys” p ) = (lookup sys p))

Given this definition, input can be rewritten mare succinci-
ly as:
reln input: Mail_system x Message x Mail_system is
input (sys, message, sys’)
pre
registered (sender(message), sys)

e

let
val from 2 sender (message)
val trays & lookup sys from
val trays' & lookup sys' from
in
change_only (sys, from, sys’)
A
in_tray(trays’) = in_tray{trays)
A
out_tray(trays’) = out_trayl(trays)
N
pending_trayltrays’) = pending_trayitrays) LI {message}
endlet

Deleting a Message. The operation delete removes a mes-
sage from a user's in_tray. The operation takes a user (of
type Person) who is deleting the message and a message
to be deleted as parameters. The new state differs from
the old only in that the message has been removed from
the user’s in_tray. The form of the definition is very similar
to the relation input.

reln delete: Mail_system x Parson x Message < Mail_system
IS
delete(sys, user, message, sys')
pre
registered (user,sys)
i
message = in_tray (lookup sys user)

e

change_only (sys, user, sys')

A

in_tray (lookup sys' user) = in_tray (lookup sys user)\
{messagel

I

out_tray (lookup sys' user) = out_tray (lookup sys user)
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N
pending_tray {lookup sys' user) = pending tray (lookup sys
user)

This relation has a precondition that states two things:
¢ The user is registered (in the domain of the system map)
* The given message is initially in the user’s in_tray.

Given that the precondition is satisfied, the remainder of
the relation specifies that only trays associated with the
user should be changed and that the message should be
deleted from the user’s in_tray, but the user's out_tray and
pending_tray remain unchanged,

The second part of the precondition might be considered
overly restrictive. The behavior specified in the precondi-
tion is actually valid whether the message was there at
the start or not (removing a nonexistent element from a
set leaves the set unchanged). However, this would imply
that the correct behavior is silently to do nothing when
the user asks to delete a nonexistent message. In this
specification we wish to leave open the possibility of
some other error behavior so we do not fully define the
operation.

Posting a Message. When a user wishes to move a mes-
sage in the pending_tray to the out_tray for delivery, the
post_message operation is used.

reln post_message: Mail_system x Message x Mail_system is
post_message (sys, message, sys')
pre
registered (sender(message),sys)
A
message = pending_tray {lookup sys {sender message))

e

let
val from £ sender (message)
in
change_only (sys, from, sys’)
A
in_tray(iookup sys' from) = in_tray{lookup sys from)
A
out_tray{lookup sys’ from) = out_tray{lockup sys from)
U {message}
A
pending_tray(lockup sys' from) =
pending_tray(lookup sys from) \ {message}
endlet

The specification states that the message is deleted from
the user’s pending_tray and added to the user’s out_tray. No
other parts of the system are changed.

Transmitting a Message. The nexi specification defines the
action of the system in transmitting all messages in a
particular out_tray to their intended recipients’ in_trays.

reln transmit: Mail_system x Person x Mail_system is
transmit (sys, user, sys’)

: pre

registered (usersys)

>

1:
2
3
4
Bk
6: dom (sys’) = dom [sys)

7 A

8 out_tray(lookup sys’ user) ={ }
9 A
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10: (V¥ p = domisys)
11 pending_tray(lookup sys’ p) = pending_tray(lookup sys p)

12: A

13: in_tray(lookup sys' p) =

14: in_trayllookup sys p) U

15 mail_forlp, out_tray{lookup sys user))
16: A

7 p # user == (out_tray (lookup sys’ pl

18 = out_tray (lookup sys p))

19 )

This specification has a slightly different format from the
others. All users are treated identically with respect to
their in_trays (in lines 14 and 15 the messages [or the user
are added to the in_tray) and their pending_trays (in line 11
the pending_trays do not change).

The behavior with respect to the out_trays differs between
the sender and the other users. The sender’s out_tray is

left empty (line 8). The other out_trays are unchanged (line
17), care being taken to ensure that this clause does not
apply to the sender by guarding it with the condition p =
user.

The clause on line 6 ensures that no one is added or re-
moved from the system by this operation.

Because every user’s trays are potentially altered, the
change_only relation cannot be used.

Reading a Message. The final operation is that of reading

messages, This operafion is modeled by the function mes-
sages_of, which returns the set of messages contained in a
user’s in_tray.

fn messages_of: Mail_system x Person — Set_Message is
messages_of (sys, user)

pre
registered{user,sys)

in_trayllookup sys user)

Reasoning About the System

The primary advantage of formal specifications over infor-
mal specification techniques is the ability to reason about
the properties of the specification. This is done for two
reasons:

Since statements about behavior can be written in a for-
mal language for which there is a sound set of inference
rules, it can be determined if these statements are consis-
tent .

It can be determined when a specification is complete
(when the model has been fully defined at the chosen

level of abstraction). At this point, it should be possible to
answer all questions regarding pertinent behavior.

Neither of these properties holds for informal techniques.
In a normal software lifecycle it is not until the code is
written (the first complete formal description) that many
questions regarding behavior can be answered with any
certainty, either by code reviews or by testing. This is
typically too late in the project, and contributes to many
of the problems of software development.

Many questions can be answered purely by inspection of
the formal specification just as programs can be under-
stood by examining code. However, formal techniques
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also allow properties to be verified formally. This is ac-

complished by stating a particularly property required of
the system and then proving that the specification satis-
fies this property.

Formal verification in this style is difficult and time-con-
suming, and current tool support for reasoning is ex-
tremely inadequate. In practice, it is not expected that
users of formal technigues carry out this process in de-
tail. However, it is always useful to understand how to
consider properties formally even when carrying out in-
formal, but rigorously based. arguments.

As an example, suppose we wish to show that all mes-
sages in each of the system’s in_trays are addressed to the
owner of that tray. The property can be stated in HP-SL
with the clause:

[ ¥ sys: Mail_system -
( ¥ person £ dom(sys)-
( ¥V msg £ lin_tray({lookup sys person))-
person& recipients(msg)
1l

which says that for any mail system sys and for every
person registered in that mail system, each person is a
recipient of all the messages (msg) in that person’s in_tray.

This property can be easily disproved by construction of
a counterexample—say a system with one user called A
whose in_tray contains a message addressed to user B,

What we actually need to show is that this is a property
that is guaranteed to be maintained by the operations
provided. In other words, if a mail system is in a state
where no message has been misassigned to an in_tray then
the operations provided will not cause this to happen. In
addition, since this property is clearly true of an emply
mail system (one with no messages), and mail systems
are only created by application of the operations de-
scribed, then we know that for all achievable states of
the mail system this will be true (a proof by induction).

The proof is frivial because the only operation that adds
any values to the in_tray is the transmit operation, which
clearly maintains the required property. The argument for
the proof runs as follows:

The initial state of the system has the property that all
users have empty trays

A user’s in_tray is modified by the addition of messages
generated by mail_for applied to this user

mail_for returns only mail that has the user in the recipi-
ents field

Hence the property is maintained.

Proofs can be fully elaborated to the required degree of
formality. However, this kind of semiformal rigorous argu-
ment is much more common.

Adding System Invariants
If a property such as that just examined is true for all

achievable mail systems, it is useful to highlight it by stat-

ing that it is a system invariant (a property or relation-
ship that must hold for all instances of a particular type).
In HP-SL, this tan be done by modifying the type defini-
tion.

syntype Mail_system &
(Person = Trays)
inv sys-
| ¥ user = domlsys) -
(¥ msg € in_tray(lookup sys user):

user £ addressed( msa))

The definition of Mail_system is similar to the earlier defini-
tion except that a logical constraint has been added. This
constraint is specified by stating that the logical expres-
sion following the - is true for all possible staies of the
mail system sys. The logical expression states thai the
only messages in users’ in_trays are messages that are ad-
dressed to them.

The type definition with the added invariant asserts that a
mail system must never get into a state where the invari-
ant is false. It is required that every operation on the mail
system does not break this condition. As we have seen,
this is true of all the operations so far defined. In addi-
tion, the definition of each operation can assume that the
invariant holds when the operation is called.

In fact, another invariant property exists for the mail sys-
tem. This is that the out_tray and pending_tray of a person
can only contain messages that have that person as the
sender. Hence the system type definition with the com-
plete invariant is:

syntype Mail_system =
(Person 2. Trays)
inv sys-
| ¥ user = doml(sys)-
( ¥ msg = in_tray(lookup sys user)
user = recipientsimsg))
A
{ ¥ msg € out_tray(lookup sys user) U
pending_tray(lookup sys user) -user = sender(msg))
)

Analysis of the system and its intended behavior may well
reveal other invariant properties, but for this example
specification these two will suffice.

Reasoning is, of course, not limited to invariant proper-
ties. Other aspects of behavior can be analyzed. For ex-
ample, the specification has made certain assumptions
about the behavior of the system when posting a mail
message that contains an unregistered recipient. The for-
mal specification gives a way of deciding il assumptions
such as these are reasonable.

Limitations of the Specification

Now that we have a have a specification ol a mail sys-
tem, there are several problems with this model of a mail
systen.

The model is lacking many important operations. It
should be elear that many more operations on the mail
system could be added. However, for this paper relatively
little benefit would be gained so the additional definitions
have been left out for the sake of brevity.
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Specification of State in HP-SL

HP-SL is primarily a functional specification language. There is no direct concept of
state variables within the language. Hence there can be no notion of side effect,
no concept of sequence, and no statements—aonly expressions. This adds to the
clarity of specifications and facilitates reasoning.

This does not mean that we cannat describe state dependent systems in HP-SL
State-related behavior can be modeled in a completely straghtforward way. If we
analyze the use of state variables in programming languages, we see that there
are just two distinct forms:

Local variables used in algorithms to evaluate the result efficiently

The system state, which is the persistent data that is kept and used by the system
operations.

The first of these uses is not relevant when dealing with the style of specification
used in HP-SL. HP-SL specifications make assertions about behavior with no con-
cern for run-time efficiency. Efficiency is seen as a separate concern which is
addressed during design, not specification

However, system state is useful because it gives a very natural style of describing,
designing. and implementing large numbers of systems. To specify system state in
HP-SL, all that is necessary is a type that can represent all the information neces-
sary to specify the operations on the system. Hence, every possible state of the
system can be represented as a value of this type.

Every state-modifying system operation is defined as a relation between the initial
state (the state existing before the operation), any parameters necessary for the
pperation, the result returned by the operation (if any), and the final state (that
resulting from the call of the operation)

The typical form of such a refation is

reln a_relation : System .. % System

is a_relation (sys, .. , sys')
A

By convention, sys is the name used for state and the initial value of the state is
distinguwished from the final value by the use of an apostrophe (). Thus, the final
valuge is called sys'

The model is inadequate because it does not deal with
issues of concurrency. The specification assumes that
every operation on the mail system is complete before
another can start. This is clearly not a reasonable restric-
tion. Why should users not add messages to their pend-
ing_trays while others are transmitting the messages in
their out_trays.

This concurrency could be modeled at the expense of
greater complexity in the specification. If the purpose of
the specification is to reason about concurrent behavior,
then this should be done as a separate step.

The model is inadequate because it does not deal with an
unreliable communication medium.

None of these limitations invalidates the specification
when considered as a specification of message address-
ing, tray manipulation, and so forth. It does describe an
abstract view of some properties of the mail system but
it makes no claim about defining all behavior.

In principle, very detailed models of systems and their
properties can be defined. However, these are rarely the
best specifications to write at least as an initial system
specification. In particular, detailed specifications can
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mask overall abstract behavior and make it harder fo
reason about a system'’s properties. It is part of the skill
of using notations such as HP-SL to decide which aspects
of the system are important and which may safely be
deferred. Specification can be used in just those areas
that are considered likely to be difficult. The specification
process may be repeated at several levels ol detail and at
different points in the project.

Refinement

An important feature of using formal specifications is the
ability to write specifications of the system in increasing
levels of detail and to reason about the relationship be-
tween such specifications. The process of constructing a
more detailed specification from a more abstract one and
demonstrating their correspondence is called refinement.

Refinement is rarely done in practice for whole systems
(it takes too much time) but an abstract specification of a
whole system, followed by detailed specifications of one
or more key subsystems is practical and useful. As with
reasoning about system properties, reasoning about the
correctness of refinement steps can be carried out in an
informal or semiformal manner as required.

In refinement, one of the key principles is to show that
the properties of the abstract specification are maintained
in the second, more concrete specification. For example,
in moving to a more concrete representation of messages,
one might expand the definition of a message to include
other fields. This moves the abstract specification closer
to a representation that can be modeled directly in an
implementation. So, for example, a sequence could be
used instead of a set since it is typically easier to imple-
ment a list in a programming language than a set.

type New message &
{new message |

(new_sender: Person,
new_recipients: Seq Persan,
creation_date: Date,
sending_date: Date,
text: Contents
}

1

The correspondence between this model for a message
and the one given earlier for type message is demonstrated
by the use of a function (technically called a refrieve
function) which shows how the new type represents the
old type. This is part of a process that shows that the
more complex type is capable of representing all possible
values of the more abstract type.

fn retrieve_message: New message — Message is
retrieve._message(new_msg)

return msg
post
sender(msg) = new sender(new_msg)
A
recipientsimsg) = elems(new recipients(new_msg))
A

contents(msa) = textinew_msg)

Given this, the process of demonstrating the correctness
of this step continues with showing that the new specifi-
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cation’s operations behave equivalently to those of the * Creating such specifications forces the specifier to con-
original abstract one. Unfortunately, this is too complex front questions regarding the behavior of the system that

to demonstrate and explain in an introductory paper. might otherwise be overlooked.
In principle, refinement could continue all the way to * The ability to reason about the specification is important
code, thus ensuring that the final code implements the to provide a firm base for specification reviews and for

original specification. Unfortunately the technology need- subsequent coding.
ed to help with the proofs is not yet available and so this * The clarification of understanding of a system forced by

is not feasible for whole complex systems. What refine- the search for appropriate abstractions is an essential
ment does give is a definition of what it means to imple-  part of the system definition.

ment abstraci data types and operations. This definition » The notation provides a clear and unambiguous state-
can be informally checked as part of the process of soft- ment of behavior, without the confusion of discussing
ware construction. mechanisms and algorithms.

Conclusion

This paper has shown how HP-SL formal notations can be
used in the specification process by discussing a simple
example. In particular:

December 191 Hewlott-Packard Journal - 39
© Copr. 1949-1998 Hewlett-Packard Co.



L]

Specifying Real-Time Behavior in

HP-SL

Using the event and history specification features of HP-SL, the software

for a real-time alarm monitor is specified.

by Paul D. Harry and Tony W. Rush

Many of the systems that HP builds must be able to ex-
hibit real-time properties such as concurrency. Therefore,
it is important to be able to specify not just what hap-
pens in a system, but also when events happen. This pa-
per provides an example of using a feature of the HP
Specification Language (HP-SL) called history types to
specify an alarm monitor for an electrocardiogram (ECG).

Alarm Monitor

As part of the efforts to work with divisions in HP's Med-
ical Products Group, we in the applied methods group of
HP’s Bristol laboratory were presented with the following
specification for a raise alarm system monitor (alarm
monitor) for ECG measurements.

The system monitors incoming ECG measurements and
compares them with maximum and minimum limits.

The alarm is initially canceled.

If the incoming measurement exceeds the alarm limits for
more than a predefined timeout (delay) period, the alarm
should be set.

When an in-limits value is received the alarm is canceled.
The user can enter new alarm limits af any time.

There are initial (default) limits.

From this informal specification we can identify three
states the raise alarm system can be in (normal, delay,
and alarm), and two values of the alarm (alarm_set and
alarm_canceled). A constant, t_delay, is the time for which all
the measurements have to be out of limits before an
alarm is raised. Fig. |1 shows the relationship between
measurements, alarm limits, states, and the alarm values.

Alarms, Measurements, and Limits
From the natural language specification, the following
HP-SL data type can be defined:

Alarm Values alarm_canceled alarm_set alarm_canceled
t_delay
State Normal Delay Alarm Normal
Time
Measurements  In Limits ' Not in Limits In Limits

Fig. 1. Measurements, states, and alarm values,
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*An invariant is 3 property that must always be maintained f

syntype Alarm_limits & Real x Real inv {min, max) - min < max

This type consists of pairs of real numbers, with the add-
ed constraint that the first member of the pair must be
strictly less than the second. This is a use of the tuple
data type with an invariant® subtype. Therefore, the value
(9, 100.5) is of type Alarm_limits but the value (9, 2.5) is
not.

There is some default value for the alarm limits. We shall
merely state that this constant is of type Alarm_limits, but
not give an actual value. This is an example of under-
specification.

val default_limits: Alarm_limits
The alarm itsell can be either set or canceled.
type Alarm & [ alarm_set [ | [ alarm_canceled |

The type Alarm is modeled as an enumerated type with
the two (distinet) values alarm_set and alarm_canceled.

The incoming measurements, which are constructed from
the ECG wave, are simply real numbers.

syntype Measurement £ Real

A given measurement is either within the alarm limits or
not. This can be observed by the function in_limits,

fn in_limits : Measurement = Alarm_limits — Bool
is

in_limits{value, (min, max))

A

min < value A max = value

So, for example, the expression: in_limits(5, (2, 9.5)) is true,
whereas the expression: in_limits(1, (2, 95)) is false.

The raise_alarm Process

We can specily this system by the raise_alarm process. Fig.
2 is a first attempi at drawing a data flow diagram for
this process. The process takes two inputs (the alarm
limits and the measurement) and produces one output
(the alarm state). In the data flow diagrams ol structured
analysis, the flows consist of individual values. For exam-
ple, the meas flow consists of individual values of type
Measurement.

The behavior of the raise_alarm process depends not just
on one measurement, but rather on many previous mea-

articular type
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alarm: Alarm

meas: Measaremeant

Fig. 2. Initial data flow diagram of the raise_alarm process

surements. In other words, the behavior depends on the
entire history of measurement values. In structured analy-
sis the necessary historical information would have 1o be
saved within process raise_alarm, which would be done by
decomposing the process into subprocesses and a dala
store. Fortunately, there is a more direct way of specify-
ing the behavior using a style of specification known as
history specification. Instead of defining a process in
terms of the current values on its data flows, history
specifications define the process in terms of all the past
values on the flows, that is, in terms of histories of val-
ues.

History Types
There are two forms of histories, eveni hisiories and state
histories, each reflecting different time properties.

Event Histories. Event histories model flows that have
events occurring at discrete times., Examples of event
histories include:

Pulses from a revolution counter on a car drive shaft
Debits and credits on a bank account

Button presses

The incoming measurements in the ECG alarm systen.

Event histories are characterized by the significance of
duplication. For example, two debits to a bank account
{even if they have the same value) are different from one
debit. Event histories can be illustrated by a timeline as
shown in Fig. 3.

The timeline diagram shows:

The start time and end time of the history. In Fig. 3 the
start time is t0, and the end time is 15. This gives the time
interval over which this history models the events.

The events, shown as X svmbols, Each event has a value
(shown above the line) and a time (shown below the
line). For example, in Fig. 3 there is an event with value b
at time t3.

Event histories are modeled by the HP-SL type construc-
tor Histe. For example, a history of measurement events
would have type Hist,(Measurement).

The expression times(h) is the set consisting of all the
times of events in history h. Using the history hg defined
in Fig. 3

times(he) = { 12, 13, 14 }

—» Time
10 n 12 13 17 L] 5

Fig. 3. An event history, by,

Values

i

c r— 1
I |
| |
a —_— | |
| | | |
| | I |
b — : | |
| ! I |
| | | |

L I 1 1 L Time
n 7] 3 7 4 B B

Fig. 4. A state history, h;.

The operators starty and end, return the start and end
times of an event history. From the example history in
Fig. 3,

startatha) = t0
endg(hs) = 15

Given an event history h, we can find the value of the
most recent event relative to some time t using the ex-
pression previous_event(h, t). The result is undefined if there
is no event at or before time t. Retuming to the example
history:

previous_event(hy, t3) = b
previous_event(hg, t7) = b
previous_eventhg, t1) /* not defined */

Finally, a time range can be checked using the operator
in_interval,. For example, the expression

t ‘in_intervaly h

tests whether a time t is within the range of times cov-
ered by the history h. From Fig. 3,

t7 ‘in_interval hg = TRUE
t6 ‘in_interval hg = FALSE.

State Histories. State histories model flows that always
have a current value. Examples of state histories include:
Distance traveled by a car

The balance in a bank account

The current condition of a switch (e.g., on or off)

The alarm limits in the ECG alarm system

The state of the alarm in the ECG alarm system.

State histories are characterized by the insignificance of
duplication. For example, if the bank balance is overwrit-
ten twice in succession with the same value, this is indis-
tinguishable from overwriting once. Further, state histo-
ries always have a possibly underspecified initial value.
State histories can be illustrated by the graph shown in
Fig. 4.

State histories are modeled by the HP-SL type constructor
Hist, and just like event histories, state histories have end-
point operators written as: startg and end.. The current
value of a state history is found by the expression h @ t.
Since state histories always have a current value, this
operator can be applied at any time within the endpoints
of the history. The following formulas hold for the history
illustrated in Fig. 4.
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iny: Histy (Event)

A
outy; Dutputy,

Fig. 5. A count process,

startslhg) = t1

endglhe) = 15

hs @ t7 = b /* at time t7, hg has value b */
hs@td=bh

hs @8 =c

(Vt:Timesat 3 <t At<td: hgy@t=b)

Note that the use of sat on the last line constrains t to be
between t3 and 4.

Specifying Processes

In history specifications processes are specified by relat-
ing entire histories of inputs to histories of outputs. In
Fig. 5 the process count has input of type Histy(Event), and
an output of type Output,. The input models a stream of
events. The count process outputs a continuously updated
count of the number of input events received, Since the
output is continuously updated, it is modeled by a state
history. The following invariant ensures that the initial
value of this history is zero.

syntype Outputy, = Hists( Nat0 ) inv h - h @ start(h) = 0

Using an HP-SL relation the count process is specified as
follows:

reln count : Histy (Event) x Outputy
is countling, outy)

)
let
val now 2 endgling)
in
outy, @ now = number_of eventsling)
endlet

The local value now is set to the end time of the history
of input evenis. The left-hand part of the main expres-
sion, outy @ now, is the current value of the output state
history. The right-hand part, number of events(in,), is the
number of events in the input history.

This is the usual form in which we present history speci-
fications. However, the history specification alone does
not say enough. The output history is only partly defined
because we have defined its value at the end time, but
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have said nothing about its values at earlier times. We
really want the relation between the current output value
and the number of events applied throughout the output
history. To do this we should surround the above relation
with a universal quantification (V, read as “for all”) over
all times along the histories. Fortunately, the notation
used in history specifications does this for free, so there
is no need to write it ourselves.

The overall meaning of the count process specification is
therefore:
At any time, the output history of the system (out,) is
correct with respect to the given input history (ing) if
the current value of the output history equals the num-
ber of events in the input history.

Using the Histories

Fig. 6 shows the data flow diagram for the raise_alarm pro-
cess with the correct types on the data flows. Dotted
lines are used for event histories and solid lines for state
histories.

The type definitions for the input and output histories
shown in Fig. 6 are defined as:

syntype Measurement;, 2 Histy(Measurement)

syntype Limitsy Q HistglAlarm_limits) inv h -
h @ startg(h) = default limits

syntype Alarmy, é Hists(Alarm)

Note that the types Limitsy and Alarmy, are declared to be
state histories, whereas the type Measurementy, is declared
to be an event history. This is a suitable modeling choice
because there are initial values for the alarm and both
alarm limits, whereas there is no initial value for mea-
surements. Indeed we shall see that one of the functions,
in_limits,, needs to test whether there have been any mea-
surements before a given time. Such a fest is not mean-
ingful for a state history.

We can now start to define the process by the relation:

reln raise_alarm : (Measurement, x Limitsy) x Alarmy

is raise_alarm({meas, limits), alarm)
A

Timity: Limitsy

raise_alarm

A

measy, Measurementy, alarmy: Alarmy,

Fig. 6. Data flow diagram of the raise_alarm process with the correct
data flows.
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History Specifications

Unified Graphical Notation. History ¢

z-graphica NET

Composition.

example, we could ago pro

and to veto the alarm. This

shown in

Specification Styles. The ¢
mail system {see page 32 can be incorporated into history specifications. |
example, the compasition diagram for the mail system is shown in Fig. 2

The following guidelines could be used 1o determine which specification style to
use
Use state-based specifications when
The system Is similar to a database. It 1s surprising how many systems
can be partitioned into a central data store accessed by read and
update operations.
The system has few properties dependent an time
The structure of the system is sufficiently simple not to need a graphical
index 10 the system

max_limit_step ~ min_limit_step

veto

limits

veto_alorm

3

vetoed alarm
Alarm Bell

measurement

Fig. 1. Composition diagram for the alarm system

Mail_system init[ |

'—
A | 4

post

input_operation delete_speration message_operation

2

user_message

new_message

Fig. 2 Compasition diagram fot the mail system

« Use history specifications when
The system has many properties dependent on time
The hierarchical structuring of data flow diagrams is adeguate, but thair
ambiguity and limitations are not
The system is structured into a core and concentric outer fringes

Implementation route. There |s a systematic implementation route from specifi-
cation to code via structured design. This route consists of five steps:

« The starting point 1s the history specification in which processes relate wholg
histories of values

« The history specification is treated as a classical data flow diagram and trans-
formed into & structure chart, This structure chart will alse be in terms of whole
historigs

« No implementation can handle histories, so each histary must be replaced by the
tata that needs 1o be stored For example, in the count process the history of
necarming events is replaced by a count so far. The result 1s known as the reduced
gesign

« The reduced design is optimized.

« Module specifications are written. This is usually only necessary when optimiza-
tion has made it hard to understand the modules from the original process specifi-
cations

Detecting Out of Limits Values

In an earlier section that described alarms, measurements,
and limits, a4 Boolean function, in_limits, was defined which
is true when a given value of the ECG measurement is
between given alarm limits. The alarm monitor's behavior
depends not just on whether the current measurements
are in limits. but also on whether older measurements are
in limits. To do this we define a function in_limits;, over the
histories Measurement;, and Limits,. This function returns
TRUE if, at a given time t, the measurement is in limits, or
if there have been no measurements,

fn in_limits, : Measurement, * Limitsy, = Time — Boal
is in limitsy{meas, limits, 1)
pre
(t ‘in_interval, meas) A {t ‘in_intervals limits)
4
(3 t1 € times{meas) + t1 = t)

—=

in_limits{previous_eventimeas, t), limits @ t )

The precondition uses the functions ‘in_interval, and
‘in_interval, 10 ensure that the histories are defined at the
given Lime, t.

Deciding if there have been any measurements yet is
done by the expression:

{311 £ times(meas) - 11 = )

which is true just when there is at least one event af
some time t1 in the history meas earlier than time t. (The
existential operator 3 is read as “there exists” or “there
exists one or more.”)

The function returns a default value of TRUE if there are
no measuremenis before the given time t. If there are
earlier measurements, then the value of the current mea-
surement is found by using the previous event operator. The
current limits are found by using the current value opera-
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tor (@) at the given fime t. These measurement and limit
values are then compared using the in_limits function.

Alarm Detection

From the natural language specification for the alarm
monitor it is elear that:

The alarm is only set after all measurements have been

outside the alarm limits for a given time

o Any occurrence of an in-limits value cancels the alarm.

The value of the time delay before out-of-limits values
cause an alarm is not important to this specification.
Instead, a constant is defined without specifying an
associated value.

val t_delay: Time

In practice, the value of this constant would be con-
strained to be within clinically acceptable limits.

For an alarm to be raised at a particular time, called now,
the value of the measurement history must have been o
consistently out of limits for a time t_delay. Hence at any
particular time, a key value is the portion of the measure-
ment history occurring between now and now - t_delay. In
fact, of most importance is the value of the function
in_limitsy, at all times between the interval now and now —
t_delay. Informally, an alarm will be raised only if in_limitsy,
is FALSE at all times in this time interval. 5o, for an alarm
to be raised at time now, the following condition should
he TRUE.

{V t: Time sat {(now — t_delay) =t A t = now -
= in_limitsy( meas, limits, t } ) /*— = unary operator not™/

This is not quite enough since it fails to take into account
the behavior of the system when it starts, that is, when
now - t_delay < start_time. The normal way to specify such
a condition in HP-SL is to use the existential quantifier 3.
Informally we can say that an alarm condition exists if
(and only if) the system has been operating for at least
time t_delay, and for all times between now and now — t_delay
the measurement was not in limits. This can be expressed
formally as follows:

{ 3 tg = (now — t_delay) sat t; > start_time -

(Wt Timesattg =t At = now -
= in_limitsy( meas, limits, t }})

=

This expression is true only when we can construct a
time (t;) that is t delay before now and after the start time,
such that the value of the measurement history is out of
limits at all times between t; and now. In particular, the
expression cannot be frue until now is greater than t_delay
(because no valid t; can be constructed).

Final Specification
The following is the final specification for the raise_alarm
Process.
e Alarms, limits, and measurements:
syntype Alarm_limits A Real x Real inv {min, max) - min < max
val default_limits: Alarm_limits

type Alarm 2 [ alarm_set ] | [ alarm_canceled ]
syntype Measurement £ Real /*ECG measurements from
patient™/

fr in_limits : Measurement x Alarm_limits — Bool

a1

coember [ CWICTL-ac Karao Jourms
(] ber 1981 Hewlett-Packard Journal

1s in_limits(value, (min, max))
fa

min < value A max = value
History definitions:

syntype Measurement, £ Hist,(Measurement)
syntype Limitsy, & HistglAlarm_limits) inv h -
h @ startg(h) = default_limits

syntype Alarmy, £ Hist(Alarm)

Detecting out-of-limit values:

fn in_limitsy, : Measurementy, x Limits;, x Time — Bool
is in limitsy(meas, limits, 1)
pre

{t ‘in_interval, meas) A [t ‘in_intervalg limits)

=

=

_{ 3 t1 £ times(meas) - t1 =

=

in_limitstprevious_event{meas, t}, limits @ 1t }

t)

Alarm detection:

val t_delay: Time /* duration of out-of-limit values needed
to raise the alarm®/

reln raise_alarm : (Measurementy, > Limitsy) » Alarmy

is raise_alarm({meas, limits), alarm)
A

let
val now = endglmeas)
val start_time = starty(meas)

in
if
{ 3 ts = (now — t_delay) sat t; > starf_time -
{Vt:Timesatts =t At = now -
- in limitsy{meas, mits, t)))
then
alarm @ now = alarm_set
else
alarm @ now = alarm_canceled
endif
endlet

Exploring the Specification

One of the advantages of specifying a system formally is
that the specification provides an opportunity to reason
about the system and the consequences of the choices
made. For instance, some of the questions that can be
raised about this example include:

Is the system’s behavior at startup correct?

What exactly happens when no ECG signal is received?
What happens when alarm limits are changed?

On startup, no alarm can be raised. This is ensured by
the test in the if expression of raise_alarm being false.
Hence the output value is alarm_canceled. This would seem
to be correct when evaluated against the informal require-
ments.

When no ECG signal is received, the value of in_limits, is
found by looking backwards in the measurement history
for the last received measurement. Hence, if the last mea-
surement value was out of range, an alarm will be raised
after t_delay. If the last value was in range, no alarm will
be raised. If there have never been any values, the default
behavior of in_limits;, ensures that no alarm is raised.
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When limits are changed, the function in_limits; automati-
cally uses the new value of the limits to test incoming
values. An interesting case is when the limits are changed
and no ECG measurements are received. In this case, the
most recent value on the ECG input is compared with the
new limits. This has the consequence that an alarm might
be raised even though no new ECG data is received be-
cause the limits have been changed. Is this the correct
behavior?

The answer is that this is a feature of the product that
needs to be decided. This question can be fed into the
normal product requirements definition activity. The use
of a more formal specification highlights these boundary
cases at an early stage in the software development pro-
Cess.

Conclusion
This article has introduced the history data types of HP-
SL, and has shown how they are used in history specifi-

cations to specify processes. We have found that in prac-
tice this style of specification works extremely well in
describing embedded systems. For example, see the ar-
ticle “Formal Specification and Structured Design in Soft-
ware Development”™ on page 51.

History specifications are an attempt to combine the best
features of formal specifications and structured analysis.
Like structured analysis, they have an accessible graphical
notation that allows a large system to be decomposed
into a hierarchy. Like formal specifications, they have a
rich data language and a fully defined meaning, and sup-
port abstraction or underspecification. In addition, history
specifications allow properties involving time to be stated
very directly. A problem that might require a control
specification, a data store, and several subprocesses in
structured analysis may only require a couple of functions
when using histories.
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Using Formal Specification for
Product Development

In one product development project, the use of precise software
specifications helped to uncover potential problems that might ordinarily
be overlooked, and raised some interesting issues about using formal

techniques.

by B. Robert Ladeau and Curtis W. Freeman

Early in 1989 a collaboration was set up between a proj-
ect team at the cardiac care systems (CCS) business unit
at HP's Waltham Division and the applied methods group
(AMG) at HP Laboratories in Bristol, England. The collab-
oration involved project engineers from both groups, with
communication taking place through a few on-site visits
and a lot of electronic-mail correspondence.

At a very high level, the goal for both groups was to im-
prove the quality of the software that was 1o be devel-
oped. There were additional goals specific (o each group.
We at Waltham were interested in adding more discipline
to our software development process and learning more
about formal methods. Goals specific to the AMG were 1o
transfer the latest software development technologies to
other HP divisions. In our case this meant enough train-
ing and support in the HP Specification Language (HP-SL)
to enable us to write our own formal specifications. In
return, the AMG engineers would get feedback from proj-
ects within HP produet divisions specific to their research
interests at HP Laboratories.

This paper reviews the results of our collaboration involv-
ing the introduction and use of formal specification dur-
ing the development of a medical product software en-
hancement. We discuss the lessons learned during this
process of introducing an advanced soltware enginecring
methodology into an R&D environment. We also describe
the specific achievements and problems that were experi-
enced in using formal methods to specily parts of the
software functionality,

The Project

The project at Waltham was created 1o add a new feature
(ST segment measurement) to an existing medical prod-
uct. The product is a bedside monitor that is used to
monitor vital signs of patients in intensive eare units and
operating rooms. ST segment measurement is a measure-
ment of the change in a portion of a patient’s electrocar-
diogram (ECG) called the ST segment (see Fig. 1).
Changes in the ST segment of a person's ECG can indi-
cate reduced blood flow (ischemia) to an area of the
heart. These changes may be clinically significant in cer-
tain patient populations, specifically patients who have
had heart attacks. Changes in this portion of an ECG
waveform occur slowly, can be asymptomatic (produce no
pain or discomfort), and are often hard to detect by the
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Point
Fig. 1. ECG [or one cardiac evele (one heart beat),

user (physician or nurse). By providing this functionality
in a patient monitor, we aim to supply the user with an
early warning that one of these episodes of silent isch-

emia is occurring,.

Using HP-SL

As described in the article on page 24, HP-SL is a nota-
tion for describing systems and components in an ab-
stract vel precise manner, allowing a user to focus atten-
tion on what a system should do and defer details
relating to how to build the system until later stages of
development. During this collaboration, we used HP-SL to
create abstract yet precise descriptions (models) of vari-
ous bits and pieces of the software to better understand
the desired behavior early in the development process.

The software developed on this project continuously mea-
sures & portion of an ECG complex called the ST seg-
ment. Modeling the ECG wave at an abstract level makes
it easy to understand and capture (document) essential
properties of an ECG wave, properties that must exist for
valid ST measurements 1o be made.

Modeling the ECG Wave

The ECG data that is input to the ST segment measure-
ment algorithm is basically a stream of voltages (see Fig.
2), along with some configuration information such as:
The voltage source (the lead)

How much filtering has been done on the signal (the
bandwidth)
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Electrical View of
the Heart (A Lead)

« Wave content information such as which voltages repre-
sent usable patient information and which are invalid (the
validity)

+ Time.

The ST algorithm uses this incoming ECG data and other
information to find and measure the ST segment of an
ECG wave. If an ECG wave is measurable, an ST mea-
surement will be produced. To capture the notion of mea-
surability it is helpful to be able to look at the problem
at an abstract level without concerns about resource lim-
itations. ECG data is received as a sequence ol wave
samples that includes all the information mentioned
above. Therefore, an ECG wave sample can be viewed as
the cross product of these elements, and can be modeled
using an HP-SL record as:

type Wave_sample &
[lwave sample [~
(voltage : Ecg_voltage,
validity : Validity,
lead : Lead,
bandwidth: Bandwidth,
time : Time)

|

An ECG wave can then be modeled simply as a sequence
of wave samples:

syntype Ecqg_wave & Seq Wave_sample

Now the notion of measurability can be specified. An
ECG wave is measurable if all of the wave samples are
valid, have a specific bandwidth (0.05 Hz high-pass), are
derived from the same lead, and are continuous in time.
Using HP-SL this property can be expressed as a relation-
ship involving the elements of a wave sample.

reln measurable : Ecg_wave
is measurable (ecq wave) &
(¥ (wv_samplel € elems (ecq_wave)).

validity(wv_samplel) = valid
A
bandwidth{wy_samplel) = hz_point05
A
{ ¥ (wv_sample2 € elems (ecq wave)),
leadiwv_samplel) = lead{wv_sample2))
A
continuous (ecqg_wave))

The final relation, called continuous, specifies the require-
ment that the wave segment must be a continuous streaim
of wave samples (no gaps). This relation simply states

Fig. 2. Setup for making ECG
measurements, showing the strean
of voltage signals from one of the
ECG leads.

Patient Monitor

that if two wave samples occur one after the other in
sequence, the time associated with the second wave sam-
ple is one time unit after the time associated with the
first sample. With HP-SL this notion is expressed as:

reln continuous : Ecg_wave
is continuous (ecg_wave) &
(¥ (i = inds (ecg wave), | € inds (ecg_wave))-
] = i1 ==

timelecg_wavelj)) = successor{timelecy_wave(i)))

The HP-SL operator inds returns the indexes of a se-
quence.

In our products an ECG wave is typically implemented as
a stream of data that consists only of voltages. Because
of resource limitations (CPU time, RAM), the other in-
formation (validity, lead, etc.) is inpul via separate data
streams where the data is updated less frequently. This
works fine in an implementation if the developer knows
what the relationship is between the streams of vollages
and other data, so that changes in validity, for example,
can be associated with the correct voltages. Problems
arise if the developer hasn't learned, or forgets, these
implicit relationships.

The model shown above makes these relationships explic-
it. For example, the requirement that all wave samples be
derived from the same lead has been made explicit and
available for review. By modeling the problem at an ab-
stract level, implicit relationships can be made explicit.
HP-SL provides a framework for making important prop-
erties explicit and increases the chance that an important
property will be maintained across different implementa-
tions.

A Problem Uncovered

The process of understanding and specifying the notion of
measurability uncovered a problem in an existing product.
An ST measurement is actually made on a beat (see Fig.
1). A beat is a portion of an ECG wave that represents
the electrical activity present during one cardiac cycle
(one heartbeat). When a measurement is made, the corre-
sponding beat is displayed to the user for review.

In one case the requirement that all of the wave samples
that make up a beat be valid was not met. If a certain
mixture of valid and invalid samples was present, the
beat would mistakenly be considered measurable. The
result was benign (the ST measurement was labeled inval-
id), but it was possible to display a strange looking beat
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for a shori amount of time. Our effort {o capture a pre-
cise, abstract notion of measurability made this hidden
problem visible for the first time.

Focus on Precision

One benefit that we noticed from our introduction to for-
mal specification was that an emphasis on precision
started to pervade our development process. We found
that uncovering potential problems was pushed to an ear-
lier stage of the development process than would have
been the case had we not been focusing as much on pre-
cise specifications.

The primary function of a patient monitor is (o transform
the electrical signals coming from a patient into informa-
tion that is useful to clinicians. These electrical signals
are transformed into streams of digital samples represent-
ing a wave. This wave is analyzed and a numeric value is
produced that represents a piece of the information con-
tained in the wave, such as heart rate derived from an
ECG wave, or blood pressure derived from a blood pres-
sure wave. This numeric value is called a parameter,

In our case we needed to analyze three separate ECG
waves and produce three separate ST measurements. We
needed to give the user control over the ST measure-
ments both as a group (e.g., turn the ST measurement for
all the ECG waves on or off) and independently (measure
the ST only on the second ECG wave). This requirement
for both separate and combined controls was met through
the use of a multichannel parameter. The ST parameter
has three channels (ST1, ST2, ST3), with one ST value for
cach channel.

The patient monitor also contains data management soft-
ware that provides the user with a irend of changes in
the ST measurements. Depending on the on/off state of
the ST parameier and channels, ST values are stored or
rejected by the data management software. To communi-
cate this information, the ST software needs to maintain
two fields in a message, a parameter on/off field and a
channel on/off field. These two fields were defined as
Boolean fields within a larger data structure, The
associated textual description was:

Parameter ON/OFF: Parameters may be switched off from a central
task window ... This has no effect an the internal functionality ...

Channel ON/OFF: Channels may be switched on and off, but the
effect is as with Parameter ON/OFF: Processing remains unaffected

We felt that our introduction to formal specification
helped us quickly notice a potential problem, specifically
the lack of an invariant in this description. HP-SL sup-
ports the specification of invariants on data that is being
modeled, and when used in a data type definition, an
invariant defines a relationship that must hold for all
instances of that data type. A quick look at the descrip-
tion of the data structure containing the above fields
shows that there is little discussion of any relationship
between the parameter on/off fields and the channel on/
off fields.

We expected to see an invariant indicating that if the pa-
rameter was in the off state then the channel must be in
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the off state. The lack of this invariant raised a warning
flag. It turned out that the data management software
received all three channels of ST measurement informa-
tion, but used only the parameter on/off field to deter-
mine whether or not to store the information. When we
turned a channel off but left the parameter on (a reason-
able scenario from our point of view) the data manage-
ment software would display an ST trend with invalid
data, since no ST measurements were being made while
the channel was in the off state. We were able {o resolve
this problem through discussions with the trend software
developer long before the product was released to cus-
tomers.

Similar ambiguous specification problems were encoun-
tered in a related area—alarm handling. There was no
clear description of the expected behavior of multiple
alarms on multiple channels of a single parameter. As a
result we developed software that we thought behaved
reasonably. After several unsuccessful attempts at making
our alarm behavior maich the expected alarm behavior
(the behavior of the existing alarm handling soltware),
discussions with the alarm software developer again led
to resolution of the problem before produet release.

If a description is ambiguous then multiple users of that
description can easily have different interpretations. If a
developer can provide a single, precise description (a
model) of what is to be implemented, then there is at
least an opportunity for the adequacy of the model to be
tested through reviews, and ambiguities cleared up at the
earlier stages of a project. The single. precise model may
be wrong, but at least multiple reviewers can focus on
the same wrong model instead of making incorrect as-
sumptions about an ambiguous model.

Issues

Any new process, no matter how great the benefits, will
encounter some difficulty in gaining acceptance or reach-
ing the point where the benefits become real and tangi-
ble. Introducing formal specification is no exception. The
issues raised fall into two categories: learning and apply-
ing formal specification, and introducing a new methodol-
ogy into an existing software development process.

Learning and Applying Formal Methods. The issues related to
this category included:

Differing learning curves for reading versus applying the
modeling tools provided by HP-SL.

This problem is akin to reading versus speaking a foreign
language. 1f the words and syntax have already been put
together by someone else, it is not difficalt to follow
most of what is written down. It is much more difficult
to find the correct words and apply the correct syntax on
one’s own. A similar learning curve must be overcome in
becoming proficient at creating models using HP-SL, and
it involves practice and making mistakes. Mistakes are
not easy things fo figure into a schedule.

At the start of this collaboration the AMG gave a one-
week P-SL course to our project team and software
engineers [rom other projects. The goal of the course was
to introduce formal methods and HP-SL, and to have all
participants feel comfortable reading HP-SL specifications.
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This goal was reached. After the five-day course most
participants felt comfortable reading HP-SL. But most also
felt that more practice was needed to feel comfortable
writing HP-SL specifications.

Wondering if we could get the benefits of formal specifi-
cation without learning another language or being so for-
mal

This issue was raised frequently by ourselves and others
during this collaboration. As mentioned earlier, we fell
that the focus on early problem analysis had both a direct
and an indirect impact on our development effort. For
example, the problem discussed earlier in which the prop-
erty of measurability was not met was found as a direct
result of creating a precise specification. The second
problem, the ambiguous parameter and channel descrip-
tions, was quickly noticed as a result of our better under-
standing of what it means to create a solid specification.
Even though we are still in the learning stage, we feel
that we need to master the use of this rigorous approach
to software development before we can make the best
judgments about where added rigor can be most produc-
tive.

Using formal specification techniques to capture the es-
sential behavior of an existing software implementation.

We found it to be very difficult to use formal notation to
document the behavior of an existing implementation and
felt that it was one of the least productive ways for us to
make use of formal specification. We attempted this for
software that was being ported from an existing product.
Although this effort did in faet point out an existing prob-
lem, the resulting specification was not very abstract and
ended up being focused on behavior that was a result of
our specific implementation rather than on behavior re-
sulting from a more abstract view of the problem.

Understanding where increased formality is appropriate
and where it is not.

We found that deciding where to use formal specification
was fo some extent a judgment call. Our projects are
typically not neat, tidy projects in which all of the re-
quirements are precisely known at the start and each
software engineer has a clean sheet of paper from which
to begin development. Many of the medical algorithms
and associated behaviors (e.g., alarm handling) need to be
reimplemented (with enhancements) in new products, and
there is often software in another product (e.g., data-
bases, data review screens) that can be leveraged.

For example, to create a display for a new measurement
in the patient monitor, a developer typically uses existing
display software as a template, a case in which there
doesn't appear to be much of an underlying model to
capture. On the other hand, we did find that the time
spent modeling the notion of measurability was useful,
In this case, there appeared to be a significant difference
between the underlying model and the implementation.
Our software development efforts are best termed soft-
ware reengineering, and in this setting, we feel that for-
mal specification needs to be mastered and used as a
tool at the discretion of the developer.

Introducing a New Technology. The issues related to this
category included:

» The effect on project schedule.

The use of this level of rigor for software development
was new to us, and we devoted a lot of effort learning
how to use formal specification for our tasks. At the start
of the project we scheduled time for taking an HP-SL
course and workshop. In addition, we lengthened the pre-
implementation stages of the schedule to account for
what we thought was the additional time required to
learn and apply formal specification. In retrospect, we
underestimated how much time it would take to get com-
fortable with this tool and overestimated the number of
portions of the software task that we thought we could
specify. Limiting our efforts to more manageable-sized
portions of the task is one way we could have limited the
potential schedule cost.

e The need for up-front commitment of resources.

On this project, as on most of our projects, two very pre-
cious resources are time and money. The additional time
in a project schedule allotted to learning a new software
development method must be accepted by all parties.
Also, the transfer of this technology involved a collabora-
tion between geographically separated groups. To collabo-
rate means to work together, and this, despite modern
systems of electronic communication, requires some face-
to-face time. In our case travel was a necessary part of
such a collaboration.

The difficulties in measuring the benefits of formal speci-
fication.

Improvements in software quality can be difficult to mea-
sure based on the metrics from a single software project.
The size of the project, design and code complexity, skill
sets of the personnel involved, and time allotied to the
project can all affect the metrics used to measure the
benefits of a software process change.

In Table 1 the metrics for our project are compared to a
project of similar complexity. Our metrics were good,
and, although there are a number of ways to explain the
data (e.g., that defect density is proportional to test
hours) we believe that the focus on up-front problem
analysis encouraged by learning and using a formal nota-
tion played a significant role in achieving a high-quality
product.

Table |
Comparison of Project Metrics
Defect
Project KNCSS*  TestHours  Density**
Our Project 16.1 20.3 0.06
Project X 81.8 61.2 0.20

*Thousands of noncomment source Statements
**Defects per KNCSS
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Conclusion

Many challenges must be faced in a collaboration to
introduce a new methodology into an existing software
development process. The biggest change we would make
is to have all parties view the collaboration as part of the
project, not something extra that can be done if time per-
mits. Only one schedule should exist and it should in-
clude allowances for the collaboration. Only if the effort
is given this importance and support can the people in-
volved make it a true success.

We used this collaboration as a vehicle for learning more
about the benefits and costs of using formal specification.
In practice it was very difficult to balance the introduc-
tion of a new method with the need to produce a rela-
tively simple software enhancement in a short amount of
time. We are convinced that there is much to be gained
by using a formal specification language like HP-SL to
capture the essential behavior of the software machines
that we design and build, and are continuing to use this
methodology in our development efforts,
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Formal Specification and Structured
Design in Software Development

HP-SL history specifications and technigues from structured analysis are

used to create a formal specification for a critica
medical instrument.

portion of the code fora

by Judith L. Cyrus, J. Daren Bledsoe, and Paul D. Harry

The cardiology business unit at HP’s McMinnville Division
is responsible for producing medical instruments, some of
which have life-critical functionality and require a high
degree of reliability. These instruments are used in a high-
tension environment by medical personnel who are not
necessarily computer literate and do not use the instru-
ments on a daily basis. Our project team (from the car-
diology business unit) is responsible for the development
of one of these life-critical instruments.

Previous generations of the product are viewed as having
defect-free software, bul there is no formal way to verify
this belief. The code in these earlier instruments was
writlen in assembly language and is tightly coupled with
the hardware. Also, the code is considered to be hard to
understand and is not reusable. To remedy this situation
we established the following goals for the new software
in the product:

Produce defect-free, safety-critical software with fewer
debug cycles

Create software that can be reused in the current product
family and in future products

Write unambiguous documentation that deseribes the
safety-critical functionality of the product

Perform a validation process that compares the imple-
mentation against the specification

Meet or exceed regulatory requirements for safety-critical
products.

This paper describes our experiences with using formal
specification techniques to help implement a safety-criti-
cal portion of the embedded software system for the
instrument.

Why Formal Methods?

During the project investigation stage, formal methods
were seen as an aid toward meeting our soltware goals.
We were convineed that we should use the best available
methods to achieve the high reliability needed for our
product. We also saw formal specification as a way to
ensure that product requirements were well-understood
by our current project team and by future development
teams or maintainers. The applied methods group (AMG)
from HP’s Bristol laboratories provided us with informa-
tion about their work with a formal specification language
called HP-SL (HP Specification Language ) and offered 1o
collaborate with us on the project. We saw the collabora-

tion as a way to establish expertise in formal methods
within our division.

The AMG had previously collaborated with another group
at our division to use formal notation for a small part of
the software for an another product. Although this was
done on a very small scale with limited success, there
was enough positive impact to influence management
approval for our decision to use formal methods. This
was a critical factor in successfully using formal methods
because we felt that we needed to include time in the
project schedule for using formal specification techniques.

After deciding that we wanied to use formal methods in
our development process, the first thing we did was to
establish a collaboration plan between the HP McMinn-
ville project team and the consultants from the AMG in
Bristol. This plan defined the roles of the collaboration
team members and established a modified produet life-
cycle plan that provided for the anticipated [ront-end
loading on the project schedule, One MeMinnville engi-
neer and one AMG engineer actively engaged in the safe-
ty-critical software development effort. Other collabora-
tion team members participated in support activities,
primarily serving as reviewers.

The Formal Specification

The team decided that it wounld be too ambitious to at-
tempt to specily the entire software system formally.
Therefore, the system functionality was divided into safe-
ty-critical and nonsafety-critical subsystems. Fig. 1 illus-
trates this division. The safety-critical code is located in
the safety-critical controller and occupies about 16K bytes
of ROM.

Based primarily on the product’s external specification
(ES).* the collaboration team produced a complete formal
specification of the saflety-critical part of the sofiware.
The formal specification provided a process model of the
system, specifying the relationship of inputs and outputs
over time. This model uses the HP-SL history specifica-
tion (see article on page 40), which associates data values
with time, thereby capturing timing constraints and speci-
fying a data object’s value for all time. This allows com-
parisons between data objects at any particular fime, and

*The external specification is a natural language descoptian of thi: product requirements
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Fig. 1. System architecture showing the separation hetween safely-
eritical and nonsafety-critical functionality.

provides a history of what has happened before so that
new data values can be derived from previous values.

The specification is illustrated by a variant of data flow
diagrams. These diagrams look much like traditional
structured analysis data flow diagrams,! ? but the mean-
ing of some of the symbols is changed to better illustrate
the formal specification. An example of one of these dia-
grams is shown in Fig. 2. The data flows between pro-
cesses correspond to HP-SL histories, and the dashed
lines, which indicate control data in traditional structured
analysis data flow diagrams, are used to indicate optional
data which is only present in some product family mem-
bers.

Early in the project, we decided to use two views of data
to support a need for concreteness at the external level
and abstraction at an internal level. The external view
represents hardware dependencies such as the register
bits that hold voltage information. The internal view pro-
vides a hardware independent representation of data—for
example, a data structure that just holds voltage values
regardless of the source or destination. The internal view,
or core, specifies instrument functionality that is common
to all of our product family members. This two-level view
allowed us to separate and more abstractly specify the
core of the system in a way that isolates it from the im-
pact of hardware changes and makes it easier to reuse.
Specifying the external view in a concrete way enabled
us to correlate our design with the hardware design spec-
ification.

The formal specification includes an HP-SL data model of
the external and internal views, HP-SL conversion pro-
cesses which specify how the internal view of the data is
derived from the external view, and a complete HP-SL
specification of the system core process. The simplified
top-level data flow diagram shown in Fig. 2 shows this
data view and the conversion processes that convert from
the external view to the abstract internal view. Data flows
(histories) coming into and going out of the diagram
around the edges illustrate external interfaces. The six
bubbles around the outside illustrate the conversion pro-
cesses with the internal data flowing into and out of the
core process.

A preliminary formal review raised many requirement
issues. Initially we thought that the product’s external
specification would be a sufficient source on which to
base the formal specification. It turned out that this left
many requirement issues ambiguous or undefined and did
not provide enough information about the hardware and
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monitor_message_in

option_user_controls

read_
monitor_message option_failure
2
sync_pulse
external_sync
2
ext_power_supply ) status
int_power_supply,
feedback
read_
hw_state
3 int_hw_input
] evenl
[l asEr controls int_hw_control
ext_hw_input
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4
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Fig. 2. Data flow diagram showing
ext_hw_contral the processes involved in trans-
forming the external view of data
a into the internal, or abstract view.
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timing to complete the specification. Following the pre-
liminary review, project team members were asked fo
provide timing diagrams and hardware and software inter-
face documents, which would otherwise have been re-
quired later in the project. Only when these were avail-
able could the formal specification be completed.

Implementation Route

One of the major benefits of using an HP-SL specification
structured as a data flow diagram is that the fraditional
route from structured analysis to struciured design can,
with modifications, be used. The data flow diagrams that
illustrate the HP-SL specification drive the basic layout of
structure charts.

Fig. 3 provides a simplified comparison befween portions
of the traditional structured analysis to structured design
implementation route and the formal process specification
implementation route. In both approaches the process
specifications define the system requirements and the
module specifications define the design and implementa-
tion of the system.

In the traditional approach, informal process specifica-
tions define primitive processes (processes that are not

decomposed into further processes). Composite processes,

and ultimately entire systems are defined by combining
the primitive processes according to the data flow dia-
grams. Module specifications describe the functionality of
the individual routines that implement the system.

In the HP-SL approach, a process specification is a pre-
cise description of the transformation of incoming data
into outgoing data. The modified data flow diagrams de-
fine how the process specifications are combined to form
the process specifications of higher-level processes. As in
the traditional approach, module specifications define the
implementation routines.

This systematie development route preserves traceability
between modules of the implementation and processes of
the specification. Traceability permits verification of the
implementation against the specification, and also allows
test plan designers to make the best use of the specifica-
tion in defining test cases. The following steps are taken
to implement this systematic development route.

1. Start with an HP-SL specification and the accompany-
ing data flow diagram. Fig. 4 shows the data flow dia-
gram for one of the subsystems in the product. Remem-
ber, dashed lines indicate optional data flows, which exist
only in systems that have this option installed.

2. Treating the data flow diagram from step 1 as a classi-
cal structured analysis data flow diagram, transform it
into a hierarchical structure chart. Fig. 5 illustrates a
structure chart for the example process. In this example,
the second-level modules correspond to the processes of
the data flow diagram, except for the process derive_op-
tion_failure, which has been moved to a lower level for a
more efficient implementation. The data couples shown in
Fig. 5 represent entire histories.

3. No implementation can afford to pass entire histories
between modules. A reduced design must be produced in
which each history is replaced by just the current value.

Process
Specification
Data Flow
Diagram
;) —»
e
Moduie
Specification
y —»
/
(a)
\
Formal Process
Specifications
Histary
Specifications
»
e
S
Structure
Chart
Reduced Optional
Structure Formal Module
Chart Specifications

(b)

Fig. 3. The production of module specifications. (a) In the tradi-
tional SA/SD approach they are produced after structure charts are
defined. (b). In the formal specification itmpletmentation, the pro-

cess specification can usually replace the need for module specifi-
cations.
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Any historical information required must be explicitly
stored in local stores (see the hexagon-shaped boxes in
Fig. 6). Notice that two local stores have been added to
module time_pulse. One keeps track of the time since the
last pulse was fired and the other keeps track of the time
since the last external pulse was detected.
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4. The structure chart is optimized. For example, modules
are moved to different levels in the hierarchy (see the
reduced structure chart in Fig. 3b).

5. If necessary, produce module specifications. Many
times modules are closely related to the process specifi-
cations, thus eliminating the need for module specifica-
fions because the process specifications are sufficient,
However, if the optimization performed in step 4 is exten-
sive, optional module specifications may be required (see
Fig. 3b).

6. Code is written from the structure charts, the HP-SL
process specifications, and if any were generated, the
optional module specifications.

Implementing a Process Specification

The data flow diagrams and structure charts shown in
Figs. 4, 5, and 6 provide a graphical representation of the
soltware being developed using the formal implementation
steps described above. This section describes the develop-
ment of the HP-SL process specification for the process
time_pulse, and the module that implements this process
(labeled time_pulse_m in Fig. 6). The history and event
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specifications described in the article on page 40 are used
to develop the HP-SL specification for this module.

Pulses. Before considering the time_pulse process, we first
consider pulses and the definition of an overdue pulse. A
pulse is a dataless event occurring within a specified time
interval. A dataless or single-valued item can be modeled
by the type Unit. Pulses can then be modeled by an event
history of units.

syntype Pulse, = Hist{Unit)

If we have a history pulse;, of type Pulsep, we can lest a
pulse at time t with the expression pulse, @? t, which is
true if and only if a pulse occurred at v

A pulse is overdue if, from some time t_start {0 the cur-
rent time now, there have been no pulses, and the system
has been in state running. This is formalized by the expres-
sion:
{Vtsatistart <t A t<now -

—pulse, @7 t

A

statey, @ t = running

)

The time t_start is fire_interval_msecs (time between pulses)
earlier than current time, or t_start = now — fire_inter-
val_msecs.

n_pall_
cycle m

’} system_mode
) system_puise

L

i
option_failure &

option_
control_m
system_mode
0 F Hada S ) mode
state '.']nmpllwén
mode _ -
me Y y state
’m""mdl’_,f Jsyne_pulse
- r
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derive_pption n_drive
internal_ option_m
data_m
e e
mode  # L}
st~
e 4 - aption
I : # hardware _ option_state
pul ss'_?' U

n_put_option
hardware_m

derive_option_
failure_m

As in the raise_alarm process (see article on page 40), we
must consider the behavior just after startup. When now <
fire_interval_msecs a pulse cannot be overdue. This behavior
can be specified by an existential quantifier, 3 (exists),
which tests whether t_start is earlier than the startup time.
Combining the test for an overdue pulse with the test to
verify that t start is earlier than the startup time, we get:

fn pulse_overdue: Histy Pulse x Hist; State — Bool

is pulse_overduel pulsey, statey, )

A

let
val now £ end.|statey)
val start_time 2 startg(statey)
val fire_interval_msecs £ 1000 / rate;, @ now
in
(3 t start = now — fire_interval_msecs sat t_start =
start_time -
(Vtsatt start =t A t<now -
- (pulsey, @7 1)
A
state, @ t = running

)
endlet

which returns a TRUE value when a pulse is overdue.
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Fig. 6. Structure chart without
histories, Local stores preserve
necessary historie data,
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Time Pulse Process. The time_pulse process generates
pulses, and there are two pulse generation modes: de-
ferred and fixed. In fixed mode pulses are generated peri-
odically and in deferred mode pulses are generated only
if an external source of pulses has failed. The process
has four inputs: system state, pulse mode, the required
rate of pulse generation (which determines the pulse in-
terval), and the external pulses. There is one output—
pulses generated when a pulse is overdue in either mode.

The process specification for time_pulse is of the form:

reln time_pulse:
(Hist State x Hist; Mode x Histe Rate x Hist, Pulse) x
(Hist, Pulse)
is time_pulse( (statey, modey, ratey, external_pulsey), pulsey)
A

The occurrence of an output pulse can be detected by
the expression pulse_h @? now. However, we want to base
pulse generation not only on when an output pulse oc-
curs, but also when the pulse does not occur. This can be
achieved with the operator <=, read as “if and only if."

In fixed mode, an output pulse is generated if and only if
there has been no output pulse for more than a given
time, that is, if the output pulse is overdue. This property
can be formalized by the expression:

pulse, @7 now
=

pulse_overduel(pulsey,, statey)

In deferred mode, there is an additional constraint. Not
only must there have been no output pulse, but there
must also have been no external pulse.

pulse_h @? now
=3

(pulse_overduelpulsey, statey) A pulse_overdue{external_pulsey,
statey,))

Which test applies depends on the current mode (mode, @
now).

Process Specification. The following is the final specifica-
tion for the time_pulse process.

1: reln time_pulse:

2. [(Hists State x Hist; Mode x Hist, Rate x Hist, Pulse) x
3 (Hist Pulse)

4 is ime_pulse( (statep, modey, ratey, external_pulsey), pulsey)
5 4

6: let val now & end,(state,)

1: in

8. pulse, @7 now <=

g cases mode, @ now of

10: case [ fixed || then

11 pulse_overduelpulsey, statey)

12: case [ deferred ] then

13 pulse_overdue(puisey, statey)

14: pulse_overdue(external_pulsey, statey)

15: endcases

16: endlet

This relation specifies that a pulse occurs (line 8) in fixed
mode (line 10) if the interval since the previous generated
pulse (line 11) reaches the interval determined by the
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rate seiting in the pulse_overdue function. A pulse occurs in
deferred mode (line 12) if both the interval since the pre-
vious generated pulse (line 13), and the interval since the
previous external pulse (line 14) reach the interval deter-
mined by the rate setting in the pulse_overdue function.

The fest for mode and overdue pulses (lines 9-15) can be
rewritten as:
pulse_overdue{pulsey, statey)
A (modey, @ now = deferred v pulse_overduelexternal_pulsey,
statey,) )

In the C code implementation described below, this deci-
sion structure is used directly on lines 25 to 30.

Implementation. The following is the C code for imple-
menting the time_pulse function.

1: #include “ic_global.h”

2: typedef enum { PULSE, NO_PULSE } type_pulse ;

3: typedef enum { FIXED, DEFERRED } type option_mode;

4: typedef enum { RUNNING, STOPPED } type_option_state;
5: extern unsigned 16 rate_tablel];

6: type_pulse time_pulselexternal_pulse, mode, state, rate )
7: type_pulse external_pulse;

8 type_option_state state;

9: type_option_mode mode;

10: unsigned_8 rate;

11: 4 [*** Begin Function ***/

12: static unsigned_16 external_pulse_h_timer;

13: static unsigned_16 pulse_h_timer;

14: type_pulse pulse;

15: /* Reset the timers whenever the option is not running.*/
16: That way the timers will never expire and no pulses will be fired®/
17: if (state != RUNNING)

18: {

19:  external_pulse h_timer = Q;

20:  pulse_h_timer = 0;

21:  pulse = NO_PULSE;

22}

23 else /* option is running */
24 {

25: pulse = ({ pulse_h_timer >= rate_table[rate]) /* pulse overdue */

26 && /* and if not in deferred mode®/

27: ({ mode != DEFERRED) /* the ext. pulse must also be overdue
1

28: Il {external_pulse_h_timer >= rate_table[rate]))

29: 7 PULSE

30: : NO_PULSE;

3. if (pulse 2 PULSE) pulse_h timer = 0;

32 else if (pulse_h_timer <= rate_table[rate:) pulse_h_timer++;

33 if {external_pulse & PULSE) external_pulse_h_timer = 0;

34: else if (external_pulse_h_timer <= rate_table[rate])
external_pulse_h_ timer++;

35 } /* end option is running */
36: returnipulse);
3ar}

The two calls to pulse_overdue are replaced by two timers,
external_pulse_h_timer and pulse_h_timer (lines 19 and 20).
They are reset to zero whenever the state is no longer
running (lines 17 to 22), or the corresponding pulse oc-
curs (lines 31 and 33), otherwise they are incremented
(lines 32 and 34).
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In the specification world we typically do not worry
about size limits. However in an implementation, size lim-
its are critical. If we repeatedly increment the timers they
could overflow. Fortunately we are not interested in how
big the timers get once they are beyond the overdue time.
Thus the code stops incrementing the timers once they
reach the rate table limit (lines 32 and 34).

Impact on Project

The decision to use a formal notation for the safety-criti-
cal software had a major impact on the project schedule
and the way in which we performed our implementation.
Because of the learning curve we found that froni-end
loading the project schedule was necessary 1o use formal
methods successfully for the first time. In our case the
steep learning curve was offset by support from the HP
Bristol team. Thus, the overall impact on the schedule
turned out to be minor. The benefits of a more complete
external specification (ES), early requirements decisions,
complete interface specification, and a good software
design paid back the time needed to produce the formal
specification. In fact, the compleieness of design made it
possible for one engineer to code the entire safety-critical
subsystem in less than the usual amount of time required
to complete a subsystem of this type.

The impact formal specification had on our implementa-
tion is that it enabled us to identify and deal with prob-
lem areas early in the project, contributing both to the
quality of the final external specification and to hardware
design decisions. Specific areas of this impact include:
To isolate the safety-critical software, we decided to use
separate microcontrollers for safety-critical and nonsafe-
ty-critical tasks.

The formal specification affected the structure and con-
tent of the ES. It exposed ES ambiguities and incomplete
product definition. For example, the ES described normal
system functionality, but did not define system behavior
during abnormal situations, such as when multiple keys
are pressed simultaneously. The specification forced us
to deal with these issues.

Problem areas in the formal specification identified the
need for additional documentation (timing diagrams and
hardware/software interface documents) early in the
project. A timing issue that was mentioned in general
terms in the ES was exposed by the specification as a
hazard. These timing problems had to be better under-
stood before the specification could be finished.

The need to make firm requirements decisions for writing
a formal specification that could be reused in follow-on
products encouraged early definition of possible future
systems and peripheral interfaces.

Work on the formal specification helped new team mem-
bers learn the product requirements by exposing areas of
misunderstanding or ambiguity.

The formal specification identified important test cases
and boundary conditions. Some processes have precondi-
tions or invariants that define corner cases, which had to
be tested.

The formal specification helped in dealing with the regu-
latory process by helping define and plan for potential
hazards (e.g., interprocess communication failure ).
Software changes resulting from late hardware changes
were easy to make and document.

« The goal of maximizing code reusibility for the safety-crit-
ical software was achieved.

Problem Areas

We did encounter a few problems during development.
These can be classified as problems associated with the
project development process and problems associated
with using formal methods.

Problems we found associated the development process
were:

» The external specification has a dual role in our division.

It serves both as the natural language requirements docu-
ment and as an input to the business decision at the in-
vestigation-to-implementation checkpoint meeting. This
typically results in an ES that is not optimally suited to
either, and in many cases does not contain sufficient de-
tail on which to base the formal specification. This prob-
lem can be solved by producing, in addition to the busi-
ness-needs-driven ES, a software requiremenis document
that addresses functionality details, timing requirements,
and hardware and software boundaries.

» Some interfaces were not tied down for a long time. This

meant the formal specification for the interfaces had to
wait, and sometimes this meant changing the core pro-
cess when the interface was finally understood.

* The need for a concrete definition of the boundaries and

interfaces when specifying only a part of the system was
not initially recognized. Early availability of interface
requirements would have greatly simplified the specifica-
tion process.

Problems we encountered with using formal methods
were:

* When we learned HP-SL, we learned notation, but not

abstraction or modeling. It is very hard to stop thinking in
programming terms. A better grasp of abstraction would
have helped in getting the most benefit from the modeling
power of formal notation. This comes with practice.

* (lever parts of the HP-SL specification were intellectually

pleasing but not understandable by other members of the
team or reviewers.

* Formal notation does not provide early estimates of code

size and execution performance. This means that gross
estimations (guesses) were used for ROM and RAM re-
quirements—decisions that were needed early in the proj-
ect. As it turned out, these estimations were remarkably
accurate.

Conclusion

A number of factors were vital to the successful comple-
tion of the formal specification and its usefulness in our
software development. The most critical factor was that
the decision to use formal notation was made early in the
project. Experience on other projects has shown that ret-
rofitting abstractions into an existing product implementa-
tion is not very successful. A late decision would also
have reduced the positive impact the process had on the
external specification document. There were several key
factors that contributed to our success with formal speci-
fication. Some of these include:

* The collaboration with HP Labs was crucial. The HP Lab

team from Bristol spent some time with us to begin the
specification and their participation in the product’s HP-
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SL review, which included both the hardware and soft-
ware engineers from McMinnville, provided necessary
HP-SL expertise.

® The diagrammatic overview of the specification provided
both a visual way to see how the parts of the specifica-
tion fit together and a more traditional view of the soft-
ware which is useful when working with non-HP-SL read-
ers.

e The division of the specification into an abstract reusable
core and a less abstract, customized interface, saved re-
writing the entire specification when hardware changes
were made.

* The implementation route paralleling traditional ap-
proaches helped reduce the negative impact of introduc-
ing a new development process.
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Formal specification has often driven the capture of prod-
uct requirements and product design. Even hardware de-

sign has been influenced. The safety-critical nature of our
product steered us to use a formal notation. However, the
influences of the process on our project demonstrate that
it provides benefits which are helpful to any project, and

not just safety-critical projects.
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Telecommunications Network

Monitoring System

This system supervises any telephone network using the 2-Mbit/s CEPT
primary rate interface and the CCITT BZ or #7 signaling system. It
automatically collects and analyzes data on CCITT-specified and other
parameters related to the calls flowing through the network nodes.

by Nicola De Bello, Giuseppe Mazzucato, Antonio Posenato, and Marco Silvestri

Telecommunication networks need to be monitored for
several reasons. First, for planning purposes, the network
manager has to identify the most effective locations for
investment in new resources. To do this the manager
needs to know the network areas where the traffic is
most critical and the quality of service is low. Monitoring
is also done to certify the quality level of the network as
seen by normal users and, more often, by managers re-
sponsible for other connected nefworks. The third reason

for monitoring is to identify faults and verify the behavior

of the network in eritical situations. All of these reasons
are growing in importance, while telephone networks are
becoming more complex and geographically exiensive.

Network behavior is monitored by measuring some pa-
rameters related to the calls flowing through the network
nodes. These parameters, in part specified by the CCITT,
provide information on several aspects of network status.
Some parameters, such as the number of telephone calls
and their mean duration, are related to the traffic intensi-
ty and type. Others, such as the number of calls resulting
in a congestion signal, provide a measurement of the
quality of service offered by the network. The parameter
most commonly used for this purpose is the answersei-
zure ratio (ASR), defined as the ratio between the num-
ber of successful calls (answers) and the total number of
call attempts (seizures). This ratio represents the proba-
bility that a user will be able to complete a call on any
given attempt. Other parameters are related to network
efficiency and use. In any case, to understand network
behavior fully, it is very important to calculate the param-
eters separately for each of the paths in the network dur-
ing the time of interest.

Monitoring System Requirements

Parameter measurements have to be made using instru-
ments distributed throughout the network of interest.
Then, to analyze the network from a global point of view,
the raw data has to be correlated with network topology
information.

Some network elements contain embedded instrumenta-
tion for monitoring, but it is difficult to use this informa-
tion for monitoring all of the network. In fact, the ele-
ments of a telephone network are usually made by

different manufacturers using various technologies, so the
performance information that can be gathered is not ho-
mogeneous. Another point to note is that monitoring is
not the main function of the network elements, so when
one of them becomes busy performing its main function,
it usually means that the measuremenis must be halted.

A monitoring system has to be very flexible. In fact, there
are several different types of networks, from small private
networks to large public ones, from local access net-
works (o those covering very wide areas. Every neiwork
has its own problems to solve and every organization has
its own way of resolving them. Also, inside an organiza-
tion, there are several departments interested in different
aspects of network behavior. A system for telephone net-
work monitoring has to be adaptable to meet all of these
situations.

Telephone networks are always evolving to meet their
users’ needs. It is therefore important that the monitoring
system be able to grow with the network.

Monitoring is a distributed process, so it is more efficient
to perform a greater part of the processing where the
data is collected than to centralize the data for process-
ing. This improves data transmission efficiency and the
scalability of the system. The distributed approach also
ensures uniform quality and format of the data across the
whole network irrespective of network element types.

System Architecture

The HP E3500A network monitoring system, shown in
Fig. 1, is composed of two main parts:

Peripheral units, which are connected to the network and
collect the data

A central unit, which is a processing system that elabo-
rates the data and provides a user interface to the sys-
tem.

The HP E3500A network monitoring system is applicable
to networks using the CCITT R2 and CCITT #7 signaling
systems and the CEPT 2-Mbit/s primary rate interface.
The peripheral units collect the data related to the net-
work behavior by analyzing the 2-Mbit/s sireams used to
connect the network switching elements. This monitoring
point has been chosen because it is a logical border be-
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Central

WS = Workstations or Terminals
PU = Peripheral Units

Fig. 1. HP E3500A network monitoring system architecture. The
central unit is an HP 9000 Series 300, 400, or 800 computer. There
are typically 2 to 6 users. The network symbols on the lower laver
represent local and transit exchanges.

tween the “active” elements and it provides an external
view of the network that is similar to the user’s point of
view. In addition, the 2-Mbit/s PCM digital link has been
accepted as a standard in Europe and in many other
countries around the world so there are fewer interfacing
problems.

The peripheral unit analyzes the information on the digital
link by monitoring the telephone calls flowing in the link.
The peripheral unit stores a database record for each
telephone call observed. This record contains all the in-

formation about the call that is required for calculation of

the call parameters mentioned above. The simplified call
record format is shown in Fig. 2. To perform its job, the
peripheral needs to capture the signaling messages sent
by the exchanges in both directions and recognize the
service tones sent to the user. There are several interna-
tional standard signaling systems and a number of coun-
try-specific and vendor-specific versions of these stan-
dards. The peripheral unit’s hardware and software were
designed to be able to work with different standards and
make the actual signaling system used fransparent to the
upper levels. The data format is almost independent of
the signaling system in use so it is easy fo integrate the
data coming from the different links.

The peripheral units are distributed around the network
and are connected to the central unit using, typically,
leased lines and modems. In the case of peripheral units
located near the computer it is possible to make the con-
nection using an RS-232 cable. If leased lines are not
available it is also possible to use switched lines. To mini-
mize the number of lines used to communicate with pe-
ripherals, several peripheral units can be connected to-
gether and managed by the central unit using a single
communication line. Interconnection and control of the
peripherals connected in this way are realized using the
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RS-485 serial bus and the ISO 1745 multipoint communi-
cation protocol.

Peripheral unit operations are completely controlled by
the central unit. The central unit bootstraps the peripheral
units with the appropriate application program, sends
measurement commands, and monitors peripheral unit
status. In general, the system manager can manage the
measurement system completely from any of the termi-
nals attached to the central unit. For maintenance pur-
poses, a portable operator terminal is also available

which can be connected locally to the peripheral unit.

Peripheral Unit

The number of PCM links to be monitored at each loca-
tion depends on the organization of the network. Addi-
tionally, different signaling systems can coexist at the
same measurement site, and particular functions may be
required only at certain network nodes.

These facts led to a modular architecture for the periph-
eral unit, in which the required special functions are per-
formed by optional boards. Speech signal processing is

performed digitally to ensure a high degree of flexibility.

The peripheral unit is a multiprocessor device organized
in a master-slave architecture. As Fig. 3 shows, the pe-
ripheral unit is divided into independent measurement
modules controlled by a master board. The number of
slave modules to be installed depends on user needs and
network needs.

Master CPU

The master CPU is a general-purpose Motorola 68000-
based CPU board, largely configurable by means of pro-
grammable logic devices (PLD). The CPU has 512K bytes
of RAM expandable to 2M bytes, 64K bytes of EPROM
expandable to 512K bytes, 2K bytes of EEPROM, and a
number of peripheral chips such as programmable input/
output ports, serial communication controllers, and tim-
ers. The master CPU controls between one and four slave

Signaling Code

Time
ETH
Circuit Number
Seizure Duration
Dialing Duration
Anomaly Code
Recognized Tones
Charge Pulses

Charge Rate

Fig. 2. Simplified cal] record format. The flags field shows the status
of the seizure signal. answer signal, and answer complete flags.
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modules through the system bus which includes data.
address, interrupt, reset, monitoring, and control signals.

The master and slave CPUs are obtained from the same
CPU board configured in different ways.

The interprocessor link is based on dual-port RAMs which
are located on the slave CPU boards. These special com-
ponents simplify the interface circuitry and allow rapid
exchanges of large amounts of data with reduced inter
processor overhead

The master CPU manages all the slave modules in the
peripheral unit by:

Bootstrapping

Managing commands between the central unit and each
slave module

Managing messages between different slave modules
(relay function)

Uploading measurement data from each slave module to
the cenitral unit.

All communications with the central unit, whether via the
communication board or the internal modem, are con-
trolled by the master CPU. This allows the slave CPUs to
foeus on data collection and reduce the overhead for
communication tasks.

In addition, the master CPU controls the portable opera-
tor interface, a simplified R5-232 interface which is used
with a portable PC during installation operations or local
diagnosis of the peripheral unit.

Slave Module

Each slave module consists of a CPU board named the
slave CPL, a PCM interface board, and an optional digital
signal processing board.

The CPU board controls the other two boards via a local
bus similar to the one used by the master CPU, using a
master-slave concept. A high-speed dedicated bus con-
nects the PCM interface board and the digital signal pro-
cessing board.

Portahle Operator Interface

<

Master CPU

Depending on the user needs, each module can be re-
motely and independently configured. Moreover, the user
can change the configuration at any time because all the
application programs are located in RAM and boot-
strapped during system startup.

Each slave module is able to:
Monitor one 4-wire, 2-Mbit/s PCM link

« Detect frame and multiframe PCM alarms

Analyze channel associated signaling (CAS) systems with
pulse dialing.* This is performed simultaneously on all 30
channels in the stream

Analyze CAS systems with multifrequency dialing. The

part of the signaling located in the signaling time slot is
analyzed fully (100% coverage at the busiest times),

whereas the in-channel multifrequency signaling is simul-
taneously inspected on up to 4 channels (corresponding

to 97% coverage al the busiest times). This provides a

good compromise between measurement performance

and cost.

Analyze common channel signaling (CCS) systems com-
patible with CCITT Signaling System #7 up to layer 2.7
Detect service tones (such as ringing tone, busy tone and

S0 on).

The main data collection functions of the module are pro-
vided by the PCM interface board under control of the
slave CPL. When required, analysis of multifrequency
signaling in the voice channels is performed by the digital
signal processing board.

The PCM interface board consists of three basic parts:
the PCM interface, the PCM stream memories, and the
digital signal processing unit for signaling channel analy-
sis. The PCM interface manages the two 2-Mbit/s PCM
signals, which are in compliance with CEPT standards,
The signals are decoded and synchronized before the
frame octels are stored in memory.

*Application depends on the loaded software.

Communication
Board

Slave Module 1

Digital Signal
Processing
Board

PCM
Interface
Board

Slave
Module

Slave
Module
2 3

v
Twisted
Pair
Slave
Module
4 Fig. 3. Peripheral unit architec-
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Depending on the signaling system in use and the slave
CPU setlings, the 64-kbit/s data stream that is used for
common channel signaling is extracted from each PCM
stream.

The typical PCM alarms such as loss of incoming signal
(LIS), loss of frame alignment (LFA), alarm indication sig-
nal (AlS), and others are detected, sampled, and stored in
such a way that the events are recorded with the best
accuracy and resolution in terms of their duration, for
instance, 250 us for AlS. The alarm circuitry is capable of
revealing a loss of incoming signals with durations of
only a few microseconds,

It is important to record these PCM alarms to be able to
correlate service failures with the quality of the physical
link.

Application-specific integrated circuit (ASIC) chips were
developed to generate control and synchronization signals.
These help increase reliability, reduce cost, and save
board space.

The PCM stream memories consist of dual-port RAMs
that are used for temporary storage of the PCM frame
octets which appear every two milliseconds. When re-
quired, these 16-byte packets are transferred to the CPU
and digital signal processing units for further processing.
Special circuits are dedicated to controlling the data rout-
ing between the memories and the processing units. To
reduce CPU loading, these circuits are responsible for
downloading the PCM data packets to the selected digital
signal processing unit and only need to be started by the
CPU..

The digital signal processing unit, based on a Texas In-
struments TMS320010 processor working with a 20-MHz
clock, processes the Adaw-coded® bytes downloaded from
the dual-port RAMs into FIFO chips. The use of FIFOs
speeds up interface operations and simplifies the circuitry.

Use of digital processing allows complex and time-inde-
pendent analysis, flexibility, and multiplexing. In addition,
the application programs used by the PCM interface are
loaded in RAM and can be changed at any time by the
CPL depending on user needs.,

The digital signal processing unit implements up to 16
service tone detectors (425-Hz tones) using reliable digital
filtering techniques.

The PCM interface board offers a powerful self-test capa-
bility to detect hardware failures or malfunctions. For
example, an on-board generated signal can be substituted
for the external PCM signal; this signal simulates all the
frame alarms and fests the specialized PCM circuits.

The slave CPU selects the operating mode of the mod-
ule’s boards and, after processing the signaling data, ex-
tracts information concerning felephone traffic. In the
case of channel associated signaling, it analyzes the sig-
naling time slot information (usually extracted from time
slot 16), which is stored in the dual-port RAMs, and the

*During analog-to-digital conver it 2 voice signal, A-law encoding

from unifarm g
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digital signal processing results. For common-channel sig-
naling, a two-channel serial communication controller
analyzes the two data streams that come from the PCM
interface board. The results of this analysis consist mainly
of call and alarm records, which are stored in an internal
database before being forwarded to the central unit via
the master CPU.

If multifrequency signaling analysis is required, the slave
module requires an optional digital signal processing
board. This board contains three digital signal processing
units that are identical to the single digital signal process-
ing unit on the PCM interface board. In reality, only two
of the units are used to realize four multifrequency re-
ceivers; the last one is a spare. The data to be processed
is directly provided by the PCM interface board through a
high-speed bus (20 Mbits/s peak).

A very simple hardware structure and digital processing
based on a fast Fourier transform (FFT) algorithm ensure
the detector’s reliability. The efficiency of the detector is
further increased by the use of Hamming windowing and
shifting the analyzed spectrum to minimize the leakage
errors resulting from the finite length of the time record.!

The peripheral unit’s application software has been de-
signed to be easy to adapt to the different signaling sys-
tems that are in use around the world. The different soft-
ware measurement modules can be linked differently to
achieve the desired results but they all use the same op-
erating environment and services. This enables a rapid
development process and ensures high software quality.
Only the higher-level module used to decode the seman-
ties of the signaling is developed specially for each signal-
ing version. To simplify this process, this layer has been
written using the Specification and Description Language
(SDL), a very high-level language. This language, specified
by the CCITT, has the advantage that it is well-known
among signaling experts and allows reliable communica-
tion between specifiers and designers.

Finally, its physical dimensions make the peripheral unit
suitable for simple installation in the 189-inch standard
racks that are commonly found in central office premises.

The Central Unit

The central unit for the HP E3500A network monitoring
system is an HP 9000 computer running the HP-UX oper-
ating system, version 7.0 or higher. The system software
has been developed so that any member of the HP 9000
family (Series 300, 400, or 800) can be used, depending
on the size of the network and the number of peripheral
units required. The HP E3500A network monitoring sys-
tem peripherals can be grouped in clusters (up fo a maxi-
mum of 16 units on a single RS-485 bus) and each cluster
is connected to the central unit using a serial line.

The central unit is responsible for:
* Managing all of the connected peripherals
® Collecting data from the peripherals
® Processing the collected data to obtain quality indexes
® Storing the quality indexes and all the elementary data
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= Displaying the quality indexes (and, if required, elemen-
tary data) as required by the system operator.

The central unit software uses a relational database
{Oracle RDBMS Version 6.0 for the current release) for all
of its system configuration and elaboration needs. In the
following descriptions this database is referred to as the
“disk database” while “database” refers to a generic data
base entity.

The central unit software can be divided into three main
parts:

¢ The communications software manages the communica-
tions between the central unit and the peripheral units.

» The elaboration software provides interpretation and
analysis of collected data.

» The user interface allows control of the system and dis-
plays network performance. The operator accesses the
system through this OSF/Motif-style interface.

In addition to these main parts, there is a supervisor
function that manages system behavior and resources.
The following descriptions focus on the elaboration soft-
ware (Fig. 4), to show how the performance required for
the HP E3500A network monitoring system was achieved.

Elaboration Software

In the HP E3500A network monitoring system the data
sent from the peripherals to the central unit is always
packed in the same format: the call record. A call record
contains all the information about a single call attempted
by a user of the monitored telephone network. It contains
information such as: the start time of the call, dialed dig-
its, duration, answer type, and so on. All of the call re-
cords coming from all of the peripherals are sent by the
communication software to the ELAB_QUEUE message
quene. The ELAB process takes each call record from
ELAB_QUEUE and then:

» Finds the time slice, origin, and destination of the call.

Call Records from
Peripheral Units

HP Real-Time
Database

CONFAG_INFO

call | g
Records " Configuration
/ ~ Information
INDEXES
v
b s
— —=
I “Indexes Indexes
Marked Call
Records
Daily Indexes
Marked Call
Records
Marked Call Records Disk

Datahase

Fig. 4. Simplified block diagram of the elaboration software

Classifies the call (determines whether the call is
successful or unsuccessful because of caller behavior,
network congestion, destination busy, or any other rea-
son).

Updates the quality indexes for the current time slice,
origin, and destination triple with the current call contri-
bution.

Stores each (eclassified) call record and the updated guali-
ty indexes in the disk database.

To perform the first three tasks, ELAB must read the re-
quired information (network topology, peripheral set de-
scription and other network-related information) from the
disk database, and then write to the disk database for the
last task. About ten disk database queries (one of which
is sequential) are needed to complete these tasks for a
single call record. At the same time, for a given number
of peripherals, large amounts of data are being entered
into ELAB_QUEUE via the communication software (that is,
from the peripheral units). For example, a typical system
consisting of 20 clusters with a total of 100 peripheral
units must deal with about 300 call records per second.
This is considered the target level of performance for a
large HP 9000 Model 835-based system and is based on
experimental data obtained from peripherals installed in
the Italian telephone network. The size of a call record
after the expansion performed by the communication soft-
ware is 105 bytes. It is obvious that a consumer (ELAB)
using the disk database cannot cope with a producer
such as the HP E3500A network monitoring system pe-
ripheral units,

The solution adopted uses the HP Real-Time Database’
(HHP RTDB) as a cache memory before finally storing the
data in the disk database. HP RTDB is a high-perform-
ance real-time database management system built on the
HP-UX shared memory feature, which allows multiple
processes 1o access the database concurrently.

The RTDB is initially created by the system manager dur-
ing system configuration. Using some offline utilities that
come with the system, the system manager can copy
some of the tables required by ELAB from the disk data-
base into the RTDB. These are then loaded into memory
at system startup. When the system is running, ELAB can
read the information it needs for call record elaboration
from the RTDB (CONFIG_INFO in Fig. 4), and write the qual-
ity indexes into the RTDB (INDEXES in Fig. 4). At a rate of
300 call records per second or more, which would require
at least 3000 database queries per second or more, the
performance offered by the RTDB is far beyond current
needs. By this method, the database access requirements
of ELAB are no longer a bottleneck for the system.

HP RTDB is a memory-resident database, so there must
be a process that definitively stores its data in the disk
database. The process named FREEZY works in the back-
ground, continuously scanning the RTDB INDEXES table.
When it finds an entry (day, time slice, origin, destination)
in the table that has been marked as CLOSED by ELAB, it
freezes it in the corresponding day table in the disk data-
base as an entry consisting of time slice, origin, and des-
tination. The algorithm used by ELAB to mark an entry
applies a user-programmable time window (whose span is
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given in units of time slices) which moves on with new
incoming call records. When a time slice TS slides
through the lower edge of the time window, ELAB marks
all the entries belonging to TS (the old time slice) as
CLOSED and discards any further incoming call records for
that time slice (if any).

The only remaining problem is the call record storage
process. Because of their total size—up to 1 Mbyte per
day per peripheral unit, it is not possible to store all of
the call records in the memory-resident RTDB, and ELAB
cannot write them directly into the disk database. The
solution that was implemented uses a new process (CACH-
ER in Fig. 4) and a virtual-memory-based algorithm. ELAB
now receives call records from ELAB_QUEUE, elaborates
each of them as quickly as possible thanks to the HP
RTDB, and simply sends them to the new CACHER_QUEUE
message queue. CACHER is a very fast consumer. It contin-
uously checks the CACHER_QUEUE message queue, reads
any call records that it contains, and stores them in
memory. Only when it is not busy (that is, when there is
nothing to receive from CACHER_QUEUE), does it free the
call records and put them in the disk database. The fol-
lowing listing is a nonformal pseudolanguage description
of the CACHER_QUEUE algorithm:

flag = WAIT;
for ;) {
if (msgrevl... flag) == ENOMSG) {
if (something in memory) free_and_storel...);
eise flag = WAIT,
1
else {
malloc_in_memory(...);
flag = NOWAIT;
}
}
Since mallocl) works with virtual memory, the run-time
storage limit for CACHER is only limited by the disk size.

We performed a series of load tests on an HP 9000 Model
835 computer with 32M bytes of RAM. The following set-
tings were made:
The queue size was modified to the maximum allowed in
HP-UX (64K bytes, equivalent to two seconds fill time at
300 call records per second).
The semaphores and shared memory paramefers were
modified according to HP RTDB needs.
The HP RTDB tables were LOCKED in memory to avoid
disk swapping.
The user was given LOCKRDONLY and RTPRIO privileges.
CACHER was configured to store call records in memory in
100K-byte blocks and the following real-time priorities
were given to the processes:

Protocol processes: time-sharing priority

Receiving processes: real-time priority 91

ELAB: real-time priority 90

CACHER: real-time priority 92.

The system was then loaded with programmable bursts of
call records and the test results are shown in the follow-
ing table.

64

December 1991 Hewlett-Packard Journal

HP E3500A Network Monitoring System Load Test Results on an

HP 9000 Model 835
NRec Pause  NLines Call- CPU Disk
Rec/s Load%  Use %
15 500 2 515 30 70
15 500 4 110 55 60
15 500 10 230 70 35
15 250 10 285 85 20

NRec = call records/burst
Pause = time between two bursts in ms
NLines = number of serial lines in the system

Note that CPU load increases with throughput, while the
disk use decreases because CACHER has less time left to
store call records in the disk database. The queues never
seemed to get full and the virtual memory usage can in-
crease almost indefinitely, allowing it to follow peak
throughput rates for a long time. From the table it can be
seen that an HP 9000 Model 835 can manage a through-
put of 250 to 300 call records per second, which could
support a system containing 60 to 100 peripheral units.

Quality Indexes

Quality indexes must give an overview of network load
and service quality. The procedure to compute them must
deal with some basic requirements:

It must be simple for the system administrator to define
and/or modify index names and definitions.

Indexes should give aggregate information.

The computing procedure must be able to manage physi-
cal differences between network nodes (node main
switching units can use different electrical models).

It must be possible to examine computed values for pos-
sible network fault conditions.

Computed values must match statistical significance crite-
ria.

A description of how each of these requirements was
fulfilled is given in the following sections.

Index Names and Evaluation Algorithms

The definition and modification of index names and the
algorithms used to define them were made easy to per-
form and use by a programming approach. The user can
describe indexes and their algorithms in a text file that is
read and interpreted each time the system software is
started. The programming language is simple to use yet
powerful enough to allow arithmetic computations, vari-
ables, and flow control by means of IF-THEN-ELSE and
WHILE constructs. The individual fields of call records are
available for computafion as predefined variables. Vari-
ables declared as indexes are automatically evaluated
online for every call record received and subsequently
stored in the system database. These elementary indexes
consist of parameters that can be extracted directly from
call records such as number of attempted calls, number
of successful calls, and so on.
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Aggregate Information

The need to get aggregate information—for instance, the
mean duration of telephone calls between two nodes dur-
ing a specific time period—was satisfied by introducing a
second group of indexes. The algorithms to compute
these compound indexes are called offline from the user
interface and can use the values of the corresponding
elementary indexes (recalled from the disk database for

this purpose).

Physical Differences

Network pairs of origin link and destination are logically
grouped in sets according to the signaling system
adopted. The programming language takes this into ac-
count and provides the class construct to match each set
with the related description. When ELAB updates a sei of
indexes, it uses the origin link and the destination node
of the call record to index the proper class and the
associated computing procedure.

Network Fault Detection

It is useful to have the system automatically detect possi-
ble fault conditions within the monitored network and
focus operator attention on those faults. A simple way of
doing it is to compare each evaluated index with a prede-
termined threshold value. Most indexes are defined so
that faults are indicated by low values, so a possible fault
will be linked to a value under the given threshold. How-
ever, there is not always a clear distinetion between ac-
ceptable values and faulty ones. Therefore, it was decided
to associate every index with two threshold values for the
three following situations (lower to higher value):
Alert/Possible Fault

Warning

OK.

The value of the fault test is returned with the index val-
ue affer computation has been completed and is used in
the display phase to highlight possible problems. The fault
thresholds for an index can be redefined within each
class.

Statistical Significance

Phone eall parameters (number and duration) and aggre-
gate indexes (mean duration, total number of calls in a
time period, and so on) can be seen as random processes
with given characteristics (unilateral exponential vari-
ables, binomial variables, Poisson processes, and the
like). Thus the evaluated indexes can be used not only to
see the state of the network at a certain time in the past,
but also as a means of forecasting its future performance,
This is, of course, one of the most meaningful uses of the

HP E3500A network monitoring system in addition to
network fault detection.

To be able to use an index value as an estimate (accept-
able to a certain extent) for the characteristic of the ran-
dom process it is associated with, the index must match
the criteria of probability theory. To get an estimate with
a given probability of maximum relative error (relative to
the theoretical random process value), the system has to
monitor a minimum number of calls.

This led to the introduction of two more thresholds for
each index to cover the three situations:

Statistically unacceptable value

Low statistical significance

Statistically significant value.

The intermediate level was introduced to take into ac-
count situations where a low number of samples deprives
the index of its full statistical meaning but can neverthe-
less signal a network fault. As for the index threshold,
the value of this test is returned with the index value
after the computation and is used in the display phase
combined with the fault test value. Like the fault thresh-
olds, the statistical thresholds for an index can be rede-
fined within each class.
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Analyzer and the HP T1400C Lightwave Signal Analyzer

20-GHz Lightwave Test Set and Accessories, Joel P Dunsmore and
John V. Vallelunga

Accuracy Considerations and Error Correction Techniques for 20-GHz
Lightwave Component Analysis, Daniel R Harkins and Michael A.
Heinzelman

Development of an Optical Modulator for a High-Speed Lightwave
Component Analyzer, Roger L. Jungerman and David J. MeQuate
High-Performance Optical Isolator for Lightwave Systems, Kok-Wai
Chang, Siegmar Schmidl, Wagne V. Sorin, Jimmie L. Yarnell, Harry
Chou, and Steven A. Newton

A Broadband, General-Purpose Instrumentation Lightwave Converter,
Christopher M. Miller and Roberto A. Collins

A Lightwave Multimeter for Basic Fiber Optic Measurements, Bernd
Muaisenbacher and Walfgang Reiclert

Design of a Series of High-Performance Lightwave Power Sensor Mod-
ules, Jochen Rivoir, Horst Selnveikardt, and Envmerich Miller
Calibration of Fiber Optic Power Meters, Christian Hentschel
Semiconductor Laser Sources with Superior Stability for Optical Loss
Measurements, Frank A, Maicr

Lightwave Multimeter Firmware Design, Wilfried Pless, Michael Pott,
and Robert Jahn

A Visual User Interface lor the HP-UX and Domain Operating Systems,
Mark A. Champine

Open Dialogue

HP Visual User Interface, Version 2.0

April 1991

A Family of High-Performance Synthesized Sweepers, Roger P2 Oblad,
John R. Regazzi, and Jomes E. Bossaller

Designing for Low Cost of Ownership

Strife Testing the Alphanumeric Display

Front Panel Designed for Manufacturability

Built-in Synthesized Sweeper Self-Test and Adjustments, Michael .1,
Seibel

Automatic Frequency Span Calibration

Accessing a Power Meter for Calibration

A High-Performance Sweeper Output Power Leveling System, Glen M.
Baker, Mark N, Davidson, and Laviee E. Hoag

Mismatch Error Caleulation for Relative Power Measurements with
Changing Source Match

A 0.01-t0-40-GHz Switched Frequency Doubler, James K. Zellervs

A High-Speed Microwave Pulse Modulator, Mary K. Koeniy

New technology in Synthesized Sweeper Microcireuits, Richard 8.
Bischof, Ronald C. Blane, and Patrick B, Harper

Volume 42 January 1991 through December 1991

Modular Microwave Breadboard System

Quasi-Elliptic Low-Pass Filters

DC-to-50-GHz Programmable Step Attenuators, David R. Veteran
50-t0-110-GHz High-Performance Millimeter-Wave Source Modules,
Mohamed M. Sayed and Giovonnae F. Anderson

The Use of the HP Microwave Design system in the W-Band Tripler De-
sign

The use of HP ME 10/30 in the W-Band Tripler Design

Flatness Correction

High-Power W-Band Source Module

An Instrument for Testing North American Digital Cellular Radios, Da-
vid M. Hoover

HP 11846A Filtering Technigque

Measuring the Modulation Accuracy of /4 DQPSK Signals for Digital
Cellular Transmitters, Raymond A. Birgenheier

A Test Verification Tool for C and C++ Programs, David L. Neuder

June 1991

HP 485X Scientific Expandable Calculator: Innovation and Evolution,
William . Wickes and Charles M. Patton

The HP 485X Interfaces and Applications, Ted W. Beers, Diana K.
Byrne, Gabe L. Eisenstein, Robert W. Jones, and Patrick J. Megowan
HP Solve Equation Library Application Card, Evie L, Vogel

Hardware Design of the HP 485X Scientific Expandable Calculator,
Muark A. Smith, Lester S. Moove, Preston D, Brown, James P Dickie,
Dawid L. Swith, Themas B Lindberg, and M. Jock Muranani
Industrial Design of the HP 485X Calculator

HP 485X Custom Integrated Cirenit

Mechanieal Design of the HP 488X Memory Card and Memory Card
Connector

The HI? 488X Caleulator Input/Output System, Steven L. Harper and
Robevt 8. Worsley

Manufacturing the HP48SX Caleulator, Richard W, Riper

A 10-Hz-to-150-MHz Spectrum Analyzer with a Digital [F Section, Kirs-
ten C. Carison, James H. Cawthorn, Thmotly L, Hillstrom, Roy L. Ma-
son, Joseph £ Tavantino, Jay M. Wardle, and Eric S Wicktund
Spectrinn Analyzer Self-Calibration

Adaptive Data Acquisition

Help System with Hyperfexi

User Interface Compiler

Easy-to-Use Performance Tools with a Consistent User Interface
across HP Operating Sysiems, Rer A, Backman

Design Prototyping for HP GlancePlus

The Performance Tool Quadrant

Improving the Produet Development Process, Spencer B, Graves, Wil-
tigm P Carmichael, Dowglas Daelz, and Edith Wilson

DSEE: A Software Configuration Management Tool, David C. Lubkin
A Mechanism ta Support Parallel Development via RCS, Jofir W Good-
now

Building and Managing an Integrated Project Support Environment,
Ronald F Richardson
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October 1991
Introduction to the HP Component Monitoring System, Christoph

Westerteicher

Medical Expectations of Today's Patient Monitors

Component Monitoring System Hardware Architecture, Christoph
Westerteicher and Werner E. Heim

Component Monitoring System Software Architecture, Martin
Reiche

Component Monitoring System Software

Component Monitoring Sysiem Software Development Environment
Component Monitoring System Parameter Module Interface, Winfried
Kaiser

Measuring the ECG Signal with a Mixed Analog-Digital Application-
Specific IC, Wolfgang Grossbach

A Very Small Noninvasive Blood Pressure Measurement Device, Rain-
er Rometsch

A Patient Monitor Two-Channel Stripchart Recorder, Leslie Bank
Patient Monitor Human Interface Design, Gerhard Tivig and Wilhelm
Meier

Globalization Tools and Processes in the HP Component Monitoring
System, Gerhard Tivig

The Physiological Calculation Application in the HP Component Moni-
toring System, Steven J. Weisner and Paul Johnson

Mechanical Implementation of the HP Component Monitoring System,
by Karl Dauniiller and Emvin Flachsidnder

An Automated Test Environment for a Medical Patient Monitoring Sys-
tem, Dieter Garing

Production and Final Test of the HP Component Monitoring System,
Otto Schuster and Joachim Weller

Caleulating the Real Cost of Software Defects, Williom 1. Ward

A Case Study of Code Inspections, Frank W. Blakely and Mark E. Boles
The HP Veetra 486 Personal Computer, Lavry Shintaku

The HP Vectra 486 EISA SCSI Subsystem
The HP Veectra 486/33T
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The EISA Connector, Michael B. Raynham and Douglas M. Thom
EISA Configuration Software

The HP Vectra 486 Memory Controller, Marilyn .J. Lang and Gary W.
Lum

The HP Vectra 486 Basic /O System, Viswanathan S. Narayanan,
Thomas Tom, Irvin R. Jones, Jr, Philip Garcia, and Christophe
Grosthor

Performance Analysis of Personal Computer Workstations, David W.
Blevins, Christopher A, Bartholomew, and John D. Graf

December 1991

HP Software Integration Sockets: A Tool for Linking Islands of
Automation, Mitchell J. Amino, Cynthia Givens, Mark Ikemoto, Alan
. Miranda, Seott A. Gulland, Kathleen A. Fulton, and Irene 5. Smith
Configuration Files

Performance in the HP Sockets Domain

HP Sockets Gateway

Rigorous Software Engineering: A Method for Preventing Software De-
fects, Stephen P Bear and Tony W. Rush

Specifying an Electronic Mail System with HP-SL, Patrick G. Goldsack
and Tony W Rush

Specification of State in HP-5L

Specifying Real-Time Behavior in HP-SL, Paul D). Havry and Tony W.
Rush

History Specifications

Using Formal Specification for Product Development, B. Robert La-
deaw and Curtis W. Freeman

Formal Specification and Structured Design in Software Development,
Judith L. Cyrus, J. Darven Bledsoe and Poul 1. Harry
Telecommunications Network Monitoring System, Nicola De Bello,
Giuseppe Mazzucalo, Antonio Posenato, and Marco Silvestri
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Part 2: Subject Index

Subject Page/Month
A

Absorptionbands . . .......... .. bl/Apr.
Abstract data type . . 32/Dec.
Access routines, HP Sockets ...... 9/Dec.
Adapters, HP Sockets ............ 9Dec.
Adaptive data acquisition .. ...... 5l/June
Administration node,

HP-Sockets rcon i s s s 15/Mec.
Alarmmonitor ................. 40/Dec
AIRAS. . e s e e e n s T 16, 32/0ct.
A i v e 30/Feb
ALC, SWeeper ....c.icviivaieaan 24/Apr.
Amplifier doubler, R-band ... . . ... 58/Apr.
Amplifier doubler, V-band . ... ... 56/Apr.
Amplifier tripler, W-band . ........ 54/Apr.

Analyzer, lightwave component . .. 13/Feb,
Application management, HP 485X . 9/June

Array of choices ., ... ... ... ... 34/0¢t.
AR, e iy 11, 22, 23/Qct.
ABWE s et e 21/Dec.
Atmospheric windows . .......... 50/Apr.
Attenuators, programmable, step . 47/Apr
AUTOMAN keypusher . .......... 50/0ct.
AUTEOYEST oo 49/0¢t.
B

Basic Encoding Rules (BER) ..... 21/Dec.
BIOMON (backplane /O

activity monitor) ............... 94/0¢t.
BIOS (Basic /O System),

Veetrg dBE i s siiiainserai 830ct.
Birefringent crystals . ........... 46/Feh.
Bismuth-substituted YIG films . ... 46/Feb.
Bloodpressure ............... 6, 25/0ct.
Bondless microcireuits . ......0. .. 38/Apr.
Bottom case assembly, HP 488X . . 30/June
Branch analysis ................ 83/ Apr.
Brandhes!DEEE ... ...ovameeinmas T8lhune
Breadboard system, microwave ... 41/Apr.
Break-even time (BET) .......... Tl June
Build management . . ............ 85/ June
Burst-mode read, Vectra 486 ... .. 81/0¢t.
Bis saster - v awne e sinaei i T30ct.

C

4+, HP Branch

Naldator - v ovwsus s semses 91/ Apr.
Cache memory, Vectra 486 .. ... .. T8Ot
Cache simulator . .. .oooaioo i 45/0ct.
Calculation evaluator . .......... 42/0ct.

Caleulator, seientific expandable . . . 6/June

Calibration, lightwave

ANAIVERE . . .. cvvnvnansoenaane 20, 34/Feb.
T0/Feb.
Calibration, self, spectrum analyzer 47/June

19, 21, 22, 26/Apr,

Calibration. optical power meter . .

Calibration, sweeper

Callrecord ... .............. B0/Dec.
Cardiac work (LCW/RCW) ....... 41/0¢ct.
Cellular system (NADMCS) ...... 63/Apr.
Centralplane ................ 7, 12/0ct.
Central unit, network monitor . ... 62/Dec.
Check out and checkin.......... 87/June
Chromatic dispersion ............ 9/Feb,
Circular interpolation ........... 32/Feb.
Client servermodel ............. 20/Mec.
Code inspections ............... B8/Oct.
Common data representation . . . .. 20/Dec.
Communicationmodel .......... 16/0ct.
Communication protocol ........ 20/0ct.
Compiler(mte) .. .................. 15/0ct.
Compiler, NLStext . ............. 39/0ct.
Compiler, user interface ......... 37June
Component Monitoring System . ... 6/0ct.
Computermodule ............... T/0ct.
Computing environment ......... A0/ June
Computing support model ..., .. 94/June
Configuration, automated . ....... 17/0ct.
Configuration files . ............. 13/ Dee.
Configuration threads, DSEE . . . .. 80/June
Converter, lightwave ............ 51/Feb.
Cost of ownership, sweeper . ... .. 1/Apr.
Coupler detectors, V and W bands . 53/Apr.
QPR cardE= s s ea e e R s s TIOct.
Crossover frequency, amplifier ... 52/Feh.
Customization, HP 488X . ........ 15/June
D

Daemon, HP Sockets .. ...ovvvevis 14/Dec.
Database, real-time ............. G Dec.
Data definition language (DDL) ... 21/Dec.
Data flow diagrams . ............ 52/Mec,
Data management package ....... 41/0ct.
Data manipulation ............ 8, 20/Dec.
Data manipulation

language (DML) +..ovvvivesoiis 22/Dec.
Data transceivers, Vectra 486 . . . .. 80/0ct.
De-to~de cOnVerter . ....c.cvaain i T/0et.
Decisionpoints ................ G8/Apr.
Design for manufacturability ... .. 15/Apr.
Design prototyping,

HP GlancePlus .. .............. 69/ June
Digital cellular radios ........... G5/Apr.
Digital cellular transmitters ...... T3/ Apr.
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Digital IF, spectrum analyzer .. 44, 4%/June
Digital modulation _...__....... . 66/Apr.
Digital value placement . . ........ 34/0ct.
Directory links . . . . 86/une
Diskless workstation . . ...... ... 84/ June
Display front assembly .......... 45/0ct
Displays, patient monitor ...... 7, 12/0¢t.
PR ANE e e el T7/June
Double-width parameter module .. 27/0ct.
Doubler, 40-GHz switched ....... 31/Apr.
DQPSK modulation ............. 67/Apr.
Dual lasersource ............... T6/Feb
Dual-wavelength capability ...... 16/Feb
dward s cnessensGER 78/0¢ct
E

RGeSt S 46/Dec.
Edgeline attenuator design . .. .. .. 47/Apr.
EISA configuration software .. 75, 84/0Oct.
EISA connector ............. 73, T5/0ct.
BISA consartiittn: - =i\ s s T4/0¢t.
EISA (Extended Industry Standard

e T 1 o ) 69, 73/0ct.
EISA initializafion ... ... om0 84/0ct.
Elaboration, network data ....... 63/ Dee.
Electrocardiogram

(4 e ey o 6, 21/0ct., 40/Dec.
Electronic mail system, HP-SL . . .. 32/Dec.
Equation librarycard . . .......... 22/ une
EquationWriter application . .. .. .. 15/ June
Error correction, lightwave ... 21, 34/Feb.
Error vector magnitude . ......... T3/Apr.
BRenbipes ui i <ol 41/Dec.
Exception-based reporting . ...... 664Iune
Esgtutiononiodel ... ... coasvenome 16/0et.
Execution trees .. .............¢ 16/0¢t.
Extension, Command Set 80 ... ... 51/Feb.
ExBnetionTann ... ... nnesnsvs e 44/Feb.

F

Fabry-Perot sensors ............ 11/Feb.
Feedforward ALC .............. 25/Apr.
Filtering, HP 11846A ............ TL/Apr.
Filters, quasi-elliptic .......... 42 44/ Apr.
FIR filter, HP 11846A ... ... ...... 69/Apr.
Firmware, lightwave multimeter . . 77/Feb.
Firmware, patient monitor ....... 14/0¢t.
Firmware, spectrum analyzer . . . .. 67/ June
Flatness correction ............. 59/Apr.
Formal specification ......... 46, 51/Dec.
Formal specification language . ... 26/Dec.
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Funconcards ... oo i v nmne T/0ct.,

Functions, HP-SL .. ............. 20/Dec.
G
Gate array, pOWer sensor ........ 68/Feb.
Globalization .............. cevi STOCE:
Graded-indexlens .............. 6i/Feb.
Graphics, HP48SX . .. ........... 17/June
H
Hardware architecture,
patient MoRitor 1w vl il i ey 10/Oct.
Hardware design, HP 488X ... .. .. 25/June
Harmonic analysis . ............. 60/Apr.
Help, context sensitive .......... 32/0ct.
Heterogeneous configuration
MANAZETARNL . .\ v vvvveevrnavnss 81/June
Heterogeneous environment,
HP Boekets s v msarn s enmsias 8/Dec,
Hexpander .................... 39/0¢ct.
23571 1 30/0ct.
High-resolution ADC ............ 67/Feb.
History specifications ........... 43/Dec.
History types, HP-SL . ........... 41/Dec,
HP Specification Language
(HPBLY s SR T 27/Dec.
HE Starbanw 10 oo s s v s s 91/June
HP Sockets management
daemon(SMD} ................. 14/Dec.
HP MR 20 97/Feb.
Human interface, patient monitor . 29/0ct.
Hypertext help system .. ........ §3/June
|
L8 Y E 1505 0o oI I A DD 42/Apr.
Indexes, network quality .. ....... 64/Dec.
In-process project retrospective
PEVIBING. oo i smrsesmnivto s sinssmiiiioe T3/ June
Input/output system, HP485X .. .. 35/June
Integral contaects .o 38/Apr.
Integration, test system . ,......., 53/0ct.
INtel486 ...ovvisvnnepinonaas G4, 78/0ct.
Interface, parameter module .. 17, 19/0ct.
Interfaces, HP 488X . ......... 36, 37/ June
ISA (Industry Standard
ATCRHMEEITE . o v sinmp sm e 73/0ct.
Isolator, optical - .ousisaiiiian 16/Feb.
J
K
Kermiit protocol ..........:.. 36, 39/June
Keypad, patient monitor ......... 34/0ct.
L
Laser FMresponse . .............. 9/Feb.
BASBERORIGE v owenwaiesiis 59, T3/Feb.

72 December 1991 Hewlett-Packard Journal

Lightwave component analysis,

SORGHE ov oe a di  aaa 6/Feb.
Lightwave multimeter ........... 58/Feb.
Lightwave receiver .......... 19, 30/Feb.
Lightwave source ... ... 7, 15, 29, T3(Feb,
Lightwave testset ........... 15, 23/Feb.
Lithiumniobate ................ 42/Feb.
LOamplifier . .........ocurommes 40/Apr.
LO feedthrough nulling ........., 47/ June
Local oscillator, spectrum
BRANERY < s P e A04June
Localization ................... 37/0et.
Loss measurements, optical ..., .. 60/Feb.
Low-band microcircuit ....... 36, 39/Apr.
M
Mach-Zender interferometer ... .. 42/Feb
Magnetooptic isolator ... ........ 46/Feb
MAIBHR.. ... . oo v ssmins 77, 84/June
Manufacturing, HP 485X .. ..... .. 404June
Manufacturing, patient monitor ... 52/Oct.
Maps, HPSL ............cinnnnn 28/Dec.
Master CPU ........ T — 60/Dec.
Material flow, vertical ........... 52/0ct.
Measurement interface model . ... 684June
Mechanical design,
patientmenitor............o000es 44/0ct.
Memory architecture, Vectra 486 .. 79/0ct.
Memory card and connector ... .. 32/June
Memory controller, Vectra 486 .. .. 78/Oct.
Memory initialization,
Veolra ABB oz s oes smmnsinies H0/Oct.
Memory subsystem simulator . ... 95/0ct.
Message classes ............... 16/0ct.
Message passingbus .......... 8, 11/0ct,
Metrics database . ........ii00.. HB/0Oet.
Microcircuit design techniques ... 36/Apr.
1 £ et ) 3 NS SO 87/0ct.
Microwave design system ... ... .. H3/Apr.
L5 TP o ) o 1 ) O e 28/Apr.
Mixer, triple balanced ........... 40/Apr.
Modsplitter, microcireuit . . ... 36, 43/Apr.
Modulator, optical ........... 18, 41/Feb.
Modulator,pulse ............... 34/Apr.
Maduleraek o.ovzia. S T/0ct.
Module specifications .. ......... HidMDec.
Moduletables .................. 17/0ct.
Monitor configuration table ....... 17/0ct
WL DAENTE o urvsi s s mmaismen 6/Oct.
Monitor, telephone network .. .. .. 5Dec.
Multimeter, lightwave ........... H&/Febh.
Multiple equation solver . ........ 23/June
Mulliplyving DAGC .- .o ov e vewsans G66/Feb.
Multiprocessor system .. ........ 10/0ct.
N
Network interface ............ .. 12/Dec.
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Network monitoring system,

tRlephoOne. cocsnasii s e e 59/Dec.
North American dual-mode

T AIAGFRINS v w505 o1 5 00 wasiirars GG/Apr.
NES Qatabase .. esiiasem 38/0ct.
NEB oIS, i sae s, 39/0ct,
Nulling, LO feedthrough ......... 47/June

0
Ohjéct types, BPL .vunivevvssvnein 8/June
Open Dialogue, HPVUE ......... 93/Feb.
Optical launch measurement . . . .. 10/Feb.
Optical power measurements . . .. 58Feb.
Optical reflection and transmission
MEeASUrements .. ..vwieeesass 9, 25/Feb.
OSEMotiE HPEVUE . visieeis s H/Feb.
P

w4 DQPSK modulation .......... G5/Apr.
Pace pulse detection circuit .. .... 23/0ct.
Parameter modules ........ 7, 19, 47/0ct.
Parameterized outer loop ........ 13/ June
Patient monitoring system .. ....... 6/0ct
Patient simulators .............. 50/0ct.
Performance, HP Sockets ........ 16/Dec.
Performance, software .......... 65/ June
Performance tool quadrant . . ... .. T0/June
Performance, Vectra486 ......... 92/0ct.
Peripheralunits ................ 60/Dec,
Personal computer, Vectra 486 , . .. 69/0ct.
Physiological caleulations . ... ... 40/0ct.
Plotting, HP 488X . .. .. ... s, 17/ une

Plug-in management, HP 485X . . ... 9June
PMON (process activity

0510158 F i) o) s A S TN e o P 92/0¢t.
Poiseuille’slaw ... ...ccvnennnnass 41/0¢t.
Polarization controller .......... 17/Feb.
Post-introduction product

o Lo S i T2/June
Power leveling, sweeper ......... 24/Apr.
Power measurements, optical . ... 58/Feb
Power sensors, optical .......... 63/Feb.
Preciflon HP-SL: i iore s 48/Dec.
Preprocessors, HP Branch

Validator oo sinncsssiiaiein S4/Apr.
Printed circuit assembly, HP 485X . 29/June
Printhead control .......... ... .. 28/0ct.
Process specification, HP-SL . .. .. 54/Dec.
Product development process . ... 7l4une
Programmable-gain amplifier . .. .. 66/Feb.
Project management, DSEE . . . ... 79/ hune
Pulmonary vascular resistance

1 & 4 B 41/0¢t.
Pulse oximeter (SaO2) ............ 6/0ct.
Pump assembly ................ 256/0ct.



QPSKmodulalion .. ..«.covesrees 67/Apr.
Quadratic gradient constant .. .... 64/Feb.
Quality function deployment

CRER) . oo s s otema e e erae T4/June

Quality, manufacturing process ... 54/0ct.
Quasi-elliptic low-pass filters .. 42, 44/Apr.

R
R2 signaling system ............. 8%Dec.
Rack interface controller ........ 20/0¢t.

RCS (revision control system) . ... 84/June
Real-time specifications, HP-SL . . . 40/Dec.

Receiver, lightwave .......... 19, 30/Feb.
Receiver, spectrum analyzer. . .. .. 45/June
Recorder, stripchart . ... .......... 26/0ct
Reference/trigger section, spectrum
analyzer ... . .....ooiiniiiiiii.. 53/June
Refinement, HP-SL .. ............ 38Dec.
Reflection measurements,
BT aVE IERNES  Sirs v o oo s 11/Feb.
Remapping, Vectra 486 .......... 89/0ct.
Report generator,
HP Branch Validator ............ 88/Apr.
Resolution bandwidth filters,
SWEBPIRE . i s smass 55/June
Resting display .....co.oc0oe0 o 33/0ct.
RF'deck, sweeper ............... B/Apr.
T T 13/Feh
Rigorous software engineering . .. 25/[Dec
ROMPARY - o sinlimnasenniis 9 June
ROMPTE i s s 104 June
RPL operating system . ........... Trlune
POtle CIyatals v s s 47/Feb,
S
Satellite module rack . ............ TOet,
SeanYable -z s is 20/0¢t.
Sereen cookbiook .. ...ciiciaan s 31/0et.
5 B, S e e S 16/Apr.
SCPEAYIVEr imniiieen saiensase 81/Feb
S(S1-2 (Small Computer System
Interface), Vectra 486 ......... .. T30er.
Security, Vectra 486 ............. 87/0ct.
Self-test design, sweeper......... L7/Apr.
Sequences, HP-SL. ...... .00, 28/Dec.
Serial distribution network (SDN) . 11/0et.
Shadowing, Vectra 486 .......... 88/0ct.

Signal processing, HP 11847A . ... T4/Apr,

SIMM (singie in-line memory

ORI} . s s e s T80ct.
Simulationtool ................. 30/0Oct.
SEvETOATIE: . - vvs e e 61/Dec.

Slotline-to-microstrip transition . . . 32/Apr.
SoftBench interface, HP Branch

Validator ...................... S%Apr.
Software architecture,

preslent IONIEOr .« - . ... 0o 130ct
Software configuration

management ... .......... 77, 79, 84/June
Software defects ......... 85, 58, 91/0ct.
Software defect costs ........... 55/0ct

Software defect profit loss

calculation ....... e R 57/0ct

Software development

environment ............ 84/June, 15/0ct.
Software integration,

HPSackels s Y e e G/Dec.
Software lifecycle .............. 24/Dec.
Software mefrics ......-..... 55, 58/0ct.
Sofrware performance tools . .. 65, T0/June
Salve, BPEESX oo 22/June
Source, lightwave . ... ... 7,15, 29, 73/Feb.
Source match, changing ......... 28/Apr.
Source, millimeterwave ......... BU/Apr
Source, spectrum analyzer ....... 52/June
Source temperature control ... ... 16/Feb,
Spectrum analyzer, 150-MHz ... .. 44/June
Split-band amplifier ............. 52/Feb.
e R R P e 5%Dec.

STSERIMERIS o s 46/Dec.
Standard display ............... 34/0ct.
Standard parameter

HRETEARE iy il o s i e 17, 19/0ct.
Startup and shutdown,

0 T e R p 14/Dec.
State histories ... 41/Dec.
State specifications ............. 38/MDec.
Strife testing, display . ........... 13/Apr.
Strokeindex (SI) . .......0ovunnn 41/0¢t.
Stnietiee ehart . oo aisies 53/Dec.
Structured analysis: ............. 53/Dec.
Structured design .. ............. 53/Dec.
Sweep dynamics, spectrum

RN -0 B e v ) G e s oy s i ah/iune
Sweepers, to50GHz ... _........ 6/Apr.
Symbolic identification . ..., ..... 16/0ct.
Syrta Chetker. ... vovve vosenin 39/0ct.
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System administration . . ......... 93/June

System integrator, HP Sockets . .. .. 8/Dec.

System invariants, HPSL ........ 37/Dec.

Systemic vascular resistance

T 41/0ct.
T

EARIEE - s s e 41/June

Tagged queuing .......... TO/Oct.

Taskwindows . ................. 35/0¢t.

Telephone network monitoring

BWICTR o 2 aram a3 e L e ma i 59/Dec.

Test automation, HP Branch

1 S e R 83/Apr.

Test environment, automated . .. .. 49/0ct.

Test opportunities, HP Branch

NBHARIOE oo /s imcniimerers o ioiins 83/Apr.

Test sets, RF and lightwave ... 13, 20/Feb.

Testing, software ........ 83/Apr., 91/0¢t.

Topcase assembly, HP 488X .. .. .. 26/June

Transimpedance amplifier ....... 65/Feb.

Translation toal .. vccniw i ans 40/0et.

Transmission measurements,

lightwave .....oovineiirniennnns 11/Feb.

Tpes BHPSL o civeansanessaaiin 27/Dec
u

Unequally spaced diodes ........ 34/Apr.

Usabilityiteste s LG s v 31/0et.

User interface compiler ......... 57/June

User interface, lightwave analyzer 19/Feb.

User interface, patient monitor ... 29/0ct.
User interface, sweeper ......... 12/Apr.
v
NauesHE-SE et i s o s 27/Dec.
Variable speed control . ... .. ... 85/0ct.

Ventricular stroke work

(LUSWIRNSW s snivan s sains 41/0ct.

Versioncontrol .. ............... 77/ une

Virtual processor ............... 15/0¢t.

Vision, aatomated .............. 43/ une

Visual shell (vsh) . ............... B89/Feb.
W

h7L 17 ) 5 R 46/Feb.
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Part 3: Product Index

Domain software engineering environment (DSEE) .. ....... June
HP 11846A /4 DQPSK I-Q generator ..........c.cveweeesns Apr.
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