

Verification

VERIFICATION PROCEDURE

Self Test	3
RF Accuracy	4
RF Level Accuracy (ANT Connector)	6
BE Level Accuracy (BE I/O Connector)	9
Harmonic and Spurious	12
VSWB (BE I/O and SWB Connectors)	14
Marker Beacon	16
VOB	17
Localizer	20
Glideslope	22
ILS	24
СОММ АМ	27
СОММ FM	28
SELCOM	29
Frequency Counter	30
AM Meter	32
FM Meter	33
SWR Meter	35
Power Meter	37
AM Audio - AUX Connector	43
121.5/243.0 MHz Beacon	44
406 MHz Beacon	45
SSB Receive	47
SSB Transmit	48

ALTERNATE VERIFICATION PROCEDURE	PAGE
RF Accuracy	
Marker Beacon	70
VOR	71
Glideslope	74
ILS	80

PAGE

A. Verification Schedule

The Verification Procedures should be performed as a result of one or more of the following conditions:

• Failure to Meet Specifications

If, during the course of normal operation, the Test Set or any major function thereof fails to meet the performance specifications, the Verification Procedures should be performed.

If any failure occurs during performance of the Verification Procedures, the user is instructed as to the pertinent Calibration Procedure or hardware failure associated with the failure.

Module/Assembly Replacement

If one or more of the Test Set assemblies are replaced, the Verification Procedures should be performed.

• Annual Verification

Aeroflex recommends an annual Verification on the Test Set to maintain proper testing standards.

B. Precautions

The Verification Procedures are performed with the Test Set Covers in place. No internal adjustments or probing points are required.

- C. Requirements
 - (1) Performance

It is strongly recommended that personnel thoroughly read and understand all steps of the procedures prior to performing each procedure. Knowledge of external test equipment connections and operation is also recommended.

(2) Test Equipment

Appendix A contains a list of test equipment suitable for performing the Verification Procedures. Other equipment meeting specifications listed in Appendix A may be substituted in place of the recommended models.

(3) Disassembly

No disassembly is required to perform the Verification Procedures.

(4) Environment

For best results, environmental conditions should be identical to the conditions at the normal operating location.

D. Test Record

Verification Data Sheets are provided for recording the results obtained while performing the Verification Procedures.

E. Verification

The Verification Procedures are developed for system software 2.0 and higher. If the unit being tested has system software prior to 2.0, the COMM AM Screen references in the verification steps can be performed on the VHF AM and UHF Mode Screens.

Alternate Verification Procedures (para G) are available for selected Test Set modes.

(1) Self Test

TEST EQUIPMENT:NoneVERIFICATION FAILURE:If any step in this procedure fails or is out of tolerance,
this indicates a failure in the Test Set. Refer to the
IFR 4000 Maintenance Manual for corrective action.

STEP

PROCEDURE

- 1. Connect Test Set to an appropriate AC power source with the External DC Power Supply. Press POWER Key ON.
- 2. Press the SETUP Key to display the Setup Menu.
- 3. Press the H/W TOOLS Soft Key to display the Hardware Tools Screen.
- 4. Press the DIAGS Soft Key to display the Diagnostics Screen.
- 5. Press the SELFTEST Soft Key to display the Self Test Screen.
- 6. Press the RUN Soft Key to initiate the Self Test.
 - **NOTE:** The Self Test cannot be performed until the Test Set has finished the warm-up cycle. If the user attempts to initiate the Self Test before the Test Set is ready, the following message is displayed:

Instrument warming up Please wait xx secs

The message counts down to zero (0) then the Self Test can be initiated.

7. Verify all tests pass.

(2) RF Accuracy

TEST EQUIPMENT:	Modulation Analyzer
VERIFICATION FAILURE:	If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP	PROCEDURE	
1.	Connect the Modulation Analyzer (RF Input) to the ANT Connector.	
2.	Configure the Modulation Analyzer as an RF Counter.	
3.	Press the SETUP Key to display the Setup Menu.	
4.	Set the Test Set as follows:	
	FIELD	SETTING
	PORT GEN FREQ	ANT PRESET
5.	Press the MODE Select Key until the VOR Mode Screen.	
6.	Set the Test Set as follows:	
	FIELD	SETTING
	FREQ RF LVL MOD TONE	108.000 MHz -20.0 dBm OFF
7.	Verify 108.0 MHz (\pm 108 Hz) on the Modulation Analyzer.	
8.	Press the MODE Select Key until the LOCALIZER Mode Screen.	
9.	Set the Test Set as follows:	
	FIELD	SETTING
	FREQ RF LVL MOD TONE	108.100 MHz -20.0 dBm OFF
10.	Verify 108.1 MHz (± 108.1 Hz) on the Modulation Analyzer.	
11.	Press the MODE Select Key until the GLIDESLOPE Mode Screen.	
12.	Set the Test Set as follows:	
	FIELD	SETTING
	FREQ RF LVL	334.700 MHz -20.0 dBm
13.	Verify 334.7 MHz (± 334.7 Hz) on the Modulation Analyzer.	
14.	Press the MODE Select Key until the MARKER BEACON Mode Screen.	
15.	Set the Test Set as follows:	
	FIELD	SETTING
	FREQ RF LVL MOD TONE	75.000 MHz -20.0 dBm OFF
16.	Verify 75.0 MHz (±75 Hz) on the Modulation Analyzer.	

17. Press the MODE Select Key until the COMM AM Mode Screen is displayed.

PROCEDURE

18. Set the Test Set as follows:

10.	Set the rest Set as follows:	
	FIELD	SETTING
	FREQ RF LVL MOD TONE	118.000 MHz -20.0 dBm OFF
19.	If the COMM AM Mode Screen is in RECEIVING Mode, p GEN/RX Soft Key to switch the COMM AM Mode Screen	ress the SWITCH to GENERATING Mode.
20.	Verify 118.0 MHz (\pm 118 Hz) on the Modulation Analyzer.	
21.	Set the FREQ Field to 137.000 MHz.	
22.	Verify 137.0 MHz (\pm 137 Hz) on the Modulation Analyzer.	
23.	Set the FREQ Field to 225.000 MHz.	
24.	Verify 225.0 MHz (±225 Hz) on the Modulation Analyzer.	
25.	Set the FREQ Field to 312.000 MHz.	
26.	Verify 312.0 MHz (±312 Hz) on the Modulation Analyzer.	
27.	Set the FREQ Field to 400.000 MHz.	
28.	Verify 400.0 MHz (\pm 400 Hz) on the Modulation Analyzer.	
29.	Press the SETUP Key to display the Setup Menu.	
30.	Set the Test Set as follows:	
	FIELD	SETTING
	PORT GEN FREQ	ANT VAR
31.	Press the MODE Select Key until the SELCAL Mode Scr	een is displayed.
32.	Set the Test Set as follows:	
	FIELD	SETTING

- 118.001 MHz -20.0 dBm
- 33. Verify 118.001 MHz (± 118.001 Hz) on the Modulation Analyzer.
- 34. Set the FREQ Field to 118.002 MHz.

FREQ

RF LVL

- 35. Verify 118.002 MHz (±118.002 Hz) on the Modulation Analyzer.
- 36. Set the FREQ Field to 118.003 MHz.
- 37. Verify 118.003 MHz (\pm 118.003 Hz) on the Modulation Analyzer.
- 38. Set the FREQ Field to 118.004 MHz.
- 39. Verify 118.004 MHz (\pm 118.004 Hz) on the Modulation Analyzer.
- 40. Set the FREQ Field to 10.000 MHz.
- 41. Verify 10.000 MHz (\pm 10 Hz) on the Modulation Analyzer.
- 42. Set the FREQ Field to 30.000 MHz.
- 43. Verify 30.000 MHz (±30 Hz) on the Modulation Analyzer.
- 44. Disconnect the Modulation Analyzer from the ANT Connector.

(3) RF Level Accuracy (ANT Connector)

TEST EQUIPMENT:	Power Meter
	Power Sensor
	Measuring Receiver

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP	PROCEDURE	
1.	Connect the Power Sensor to the Power Meter (POWER RE zero Power Meter.	F Connector) and
2.	Disconnect the Power Sensor from the Power Meter (POWE and connect the Power Sensor to the ANT Connector.	R REF Connector)
3.	Press the SETUP Key to display the Setup Menu.	
4.	Set the Test Set as follows:	
	FIELD	SETTING
	PORT FREQ	ANT VAR
5.	Press the MODE Select Key until the COMM AM Mode Scre	en is displayed.
6.	Set the Test Set as follows:	
	FIELD	SETTING.
	FREQ RF LVL MOD TONE M MOD	10.000 MHz -30.0 dBm OFF 0%
7.	If the COMM AM Mode Screen is in RECEIVING Mode, pres GEN/RX Soft Key to switch the COMM AM Mode Screen to (s the SWITCH GENERATING Mode.
8.	Verify -30 dBm (\pm 3 dB) on the Power Meter.	
9.	Set the FREQ Field to 30.000 MHz.	
10.	Verify -30 dBm (\pm 3 dB) on the Power Meter.	
11.	Set the FREQ Field to 75.000 MHz.	
12.	Set the RF LVL Field to -16 dBm.	
13.	Verify -16 dBm (\pm 3 dB) on the Power Meter.	
14.	Set the RF LVL Field to -30 dBm.	
15.	Verify -30 dBm (\pm 3 dB) on the Power Meter.	
16.	Set the FREQ Field to 108.000 MHz.	
17.	Set the RF LVL Field to -16 dBm.	
18.	Verify -16 dBm (\pm 3 dB) on the Power Meter.	
19.	Set the RF LVL Field to -30 dBm.	
20.	Verify -30 dBm (\pm 3 dB) on the Power Meter.	
21.	Set the FREQ Field to 108.100 MHz.	
22.	Set the RF LVL Field to -16 dBm.	

- 23. Verify -16 dBm (\pm 3 dB) on the Power Meter.
- 24. Set the RF LVL Field to -30 dBm.
- 25. Verify -30 dBm (±3 dB) on the Power Meter.
- 26. Set the FREQ Field to 118.000 MHz.
- 27. Set the RF LVL Field to -16 dBm.
- 28. Verify -16 dBm (\pm 3 dB) on the Power Meter.
- 29. Set the RF LVL Field to -30 dBm.
- 30. Verify -30 dBm (\pm 3 dB) on the Power Meter.
- 31. Set the FREQ Field to 137.000 MHz.
- 32. Set the RF LVL Field to -16 dBm.
- 33. Verify -16 dBm (\pm 3 dB) on the Power Meter.
- 34. Set the RF LVL Field to -30 dBm.
- 35. Verify -30 dBm (\pm 3 dB) on the Power Meter.
- 36. Set the FREQ Field to 175.000 MHz.
- 37. Set the RF LVL Field to -16 dBm.
- 38. Verify -16 dBm (\pm 3 dB) on the Power Meter.
- 39. Set the RF LVL Field to -30 dBm.
- 40. Verify -30 dBm (\pm 3 dB) on the Power Meter.
- 41. Set the FREQ Field to 225.000 MHz.
- 42. Set the RF LVL Field to -16 dBm.
- 43. Verify -16 dBm (\pm 3 dB) on the Power Meter.
- 44. Set the RF LVL Field to -30 dBm.
- 45. Verify -30 dBm (\pm 3 dB) on the Power Meter.
- 46. Set the FREQ Field to 334.700 MHz.
- 47. Set the RF LVL Field to -16 dBm.
- 48. Verify -16 dBm (±3 dB) on the Power Meter.
- 49. Set the RF LVL Field to -30 dBm.
- 50. Verify -30 dBm (\pm 3 dB) on the Power Meter.
- 51. Set the FREQ Field to 400.000 MHz.
- 52. Set the RF LVL Field to -16 dBm.
- 53. Verify -16 dBm (\pm 3 dB) on the Power Meter.
- 54. Set the RF LVL Field to -30 dBm.
- 55. Verify -30 dBm (±3 dB) on the Power Meter.
- 56. Set the FREQ Field to 118.000 MHz.

STEP

PROCEDURE

57. Set the RF LVL Field to the following settings and verify levels on the Power Meter:

RF LVL	LEVEL
-57 dBm	-57 dBm (±3 dB)
-47 dBm	-47 dBm (±3 dB)
-37 dBm	-37 dBm (±3 dB)
-27 dBm	-27 dBm (±3 dB)
-17 dBm	-17 dBm (±3 dB)
-7 dBm	-7 dBm (±3 dB)
+3 dBm	+3 dBm (±3 dB)
+13 dBm	+13 dBm (±3 dB)

- 58. Set the RF LVL Field to -67 dBm.
- 59. Disconnect the Power Sensor from the ANT Connector and connect the Measuring Receiver to the ANT Connector.
- 60. Calibrate the Measuring Receiver for 118.000 MHz in Tuned RF Level Mode.
- 61. Verify -67 dBm (±3 dB) on the Measuring Receiver.
- 62. Disconnect the Measuring Receiver from the ANT Connector.

(4) RF Level Accuracy (RF I/O Connector)

TEST EQUIPMENT:	Power Meter Power Sensor Measuring Receiver
VERIFICATION FAILURE:	If any step in this procedu

FICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP	PROCEDURE

- 1. Connect the Power Sensor to the Power Meter (POWER REF Connector) and zero Power Meter.
- 2. Disconnect the Power Sensor from the Power Meter (POWER REF Connector) and connect the Power Sensor to the RF I/O Connector.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the Test Set as follows:

FIELD	SETTING
PORT	RF I/O
FREQ	VAR

- 5. Press the MODE Select Key until the COMM AM Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ RF LVL	10.000 MHz -50.0 dBm
MOD TONE	OFF
M MOD	0%

- 7. If the COMM AM Mode Screen is in RECEIVING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM AM Mode Screen to GENERATING Mode.
- 8. Verify -50 dBm (± 2 dB) on the Power Meter.
- 9. Set the FREQ Field to 30.000 MHz.
- 10. Verify -50 dBm (± 2 dB) on the Power Meter.
- 11. Set the FREQ Field to 75.000 MHz.
- 12. Set the RF LVL Field to -39 dBm.
- 13. Verify -39 dBm (±2.5 dB) on the Power Meter.
- 14. Set the RF LVL Field to -50 dBm.
- 15. Verify -50 dBm (± 2 dB) on the Power Meter.
- 16. Set the FREQ Field to 108.000 MHz.
- 17. Set the RF LVL Field to -39 dBm.
- 18. Verify -39 dBm (± 2.5 dB) on the Power Meter.
- 19. Set the RF LVL Field to -50 dBm.
- 20. Verify -50 dBm (± 2 dB) on the Power Meter.
- 21. Set the FREQ Field to 108.100 MHz.
- 22. Set the RF LVL Field to -39 dBm.

PROCEDURE

- 23. Verify -39 dBm (±2.5 dB) on the Power Meter.
- 24. Set the RF LVL Field to -50 dBm.
- 25. Verify -50 dBm (±2 dB) on the Power Meter.
- 26. Set the FREQ Field to 118.000 MHz.
- 27. Set the RF LVL Field to -39 dBm.
- 28. Verify -39 dBm (±2.5 dB) on the Power Meter.
- 29. Set the RF LVL Field to -50 dBm.
- 30. Verify -50 dBm (± 2 dB) on the Power Meter.
- 31. Set the FREQ Field to 137.000 MHz.
- 32. Set the RF LVL Field to -39 dBm.
- 33. Verify -39 dBm (± 2.5 dB) on the Power Meter.
- 34. Set the RF LVL Field to -50 dBm.
- 35. Verify -50 dBm (±2 dB) on the Power Meter.
- 36. Set the FREQ Field to 175.000 MHz.
- 37. Set the RF LVL Field to -39 dBm.
- 38. Verify -39 dBm (± 2.5 dB) on the Power Meter.
- 39. Set the RF LVL Field to -50 dBm.
- 40. Verify -50 dBm (± 2 dB) on the Power Meter.
- 41. Set the FREQ Field to 225.000 MHz.
- 42. Set the RF LVL Field to -39 dBm.
- 43. Verify -39 dBm (± 2.5 dB) on the Power Meter.
- 44. Set the RF LVL Field to -50 dBm.
- 45. Verify -50 dBm (±2 dB) on the Power Meter.
- 46. Set the FREQ Field to 334.700 MHz.
- 47. Set the RF LVL Field to -39 dBm.
- 48. Verify -39 dBm (±2.5 dB) on the Power Meter.
- 49. Set the RF LVL Field to -50 dBm.
- 50. Verify -50 dBm (±2 dB) on the Power Meter.
- 51. Set the FREQ Field to 400.000 MHz.
- 52. Set the RF LVL Field to -39 dBm.
- 53. Verify -39 dBm (± 2.5 dB) on the Power Meter.
- 54. Set the RF LVL Field to -50 dBm.
- 55. Verify -50 dBm (±2 dB) on the Power Meter.
- 56. Set the FREQ Field to 118.000 MHz.
- 57. Disconnect the Power Sensor from the RF I/O Connector and connect the Measuring Receiver to the RF I/O Connector.
- 58. Calibrate the Measuring Receiver for 118.000 MHz in Tuned RF Level Mode with a 3.8 Special entered.

STEP

PROCEDURE

59. Set the RF LVL Field to the following settings and verify levels on the Measuring Receiver:

RF LVL	LEVEL
-12 dBm	-12 dBm (±2.5 dB)
-22 dBm	-22 dBm (±2.5 dB)
-32 dBm	-32 dBm (±2.5 dB)
-42 dBm	-42 dBm (±2 dB)
-52 dBm	-52 dBm (±2 dB)
-62 dBm	-62 dBm (±2 dB)
-72 dBm	-72 dBm (±2 dB)
-82 dBm	-82 dBm (±2 dB)
-92 dBm	-92 dBm (±2 dB)
-102 dBm	-102 dBm (±3 dB)
-112 dBm	-112 dBm (±3 dB)
-120 dBm	-120 dBm (±3 dB)

- 60. Set the FREQ Field to 334.700 MHz.
- 61. Calibrate the Measuring Receiver for 334.700 MHz in Tuned RF Level Mode with a 3.8 Special entered.
- 62. Set the RF LVL Field to the following settings and verify levels on the Measuring Receiver:

RF LVL	LEVEL
-12 dBm	-12 dBm (±2.5 dB)
-22 dBm	-22 dBm (±2.5 dB)
-32 dBm	-32 dBm (±2.5 dB)
-42 dBm	-42 dBm (±2 dB)
-52 dBm	-52 dBm (±2 dB)
-62 dBm	-62 dBm (±2 dB)
-72 dBm	-72 dBm (±2 dB)
-82 dBm	-82 dBm (±2 dB)
-92 dBm	-92 dBm (±2 dB)
-102 dBm	-102 dBm (±3 dB)
-112 dBm	-112 dBm (±3 dB)
-120 dBm	-120 dBm (±3 dB)

63. Disconnect the Measuring Receiver from the RF I/O Connector.

(5) Harmonic and Spurious

STEP

TEST EQUIPMENT: Spectrum Analyzer

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

PRO	CED	URE
1 110		

- 1. Connect the Spectrum Analyzer (Input) to the ANT Connector.
- 2. Press the SETUP Key to display the Setup Menu.
- 3. Set the PORT Field to ANT.
- 4. Press the MODE Select Key until the VOR Mode Screen is displayed.
- 5. Set the Test Set as follows:

FIELD	SETTING
FREQ	108.000 MHz
RF LVL	0.0 dBm
MOD TONE	OFF
M MOD	0%

- 6. Verify the harmonic is <-20 dBc and the spurious is <-35 dBc.
- 7. Press the MODE Select Key until the GLIDESLOPE Mode Screen is displayed.
- 8. Set the Test Set as follows:

FIELD	SETTING
FREQ	334.700 MHz
RF LVL	0.0 dBm
M MOD	0%

- 9. Verify the harmonic is <-20 dBc and the spurious is <-35 dBc.
- 10. Press the MODE Select Key until the MARKER BEACON Mode Screen is displayed.
- 11. Set the Test Set as follows:

FIELD	SETTING
FREQ	75.000 MHz
MOD TONE	OFF
M MOD	0%

- 12. Verify the harmonic is <-20 dBc and the spurious is <-35 dBc.
- 13. Press the MODE Select Key until the COMM AM Mode Screen is displayed.
- 14. Set the Test Set as follows:

FIELD	SETTING
FREQ	137.000 MHz
RF LVL	0.0 dBm
MOD TONE	OFF
M MOD	0%

- 15. If the COMM AM Mode Screen is in RECEIVING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM AM Mode Screen to GENERATING Mode.
- 16. Verify the harmonic is <-20 dBc and the spurious is <-35 dBc.

- 17. Set the FREQ Field to 400.000 MHz.
- 18. Verify the harmonic is <-20 dBc and the spurious is <-35 dBc.
- 19. Press the SETUP Key to display the Setup Menu.
- 20. Set the FREQ Field to VAR.
- 21. Press the SETUP Key to return to the COMM AM Mode Screen.
- 22. Set the FREQ Field to 10.000 MHz.
- 23. Verify the spurious is <-32 dBc.
- 24. Set the FREQ Field to 30.000 MHz.
- 25. Verify the spurious is <-32 dBc.
- 26. Disconnect the Spectrum Analyzer from the ANT Connector.

(6) VSWR (RF I/O and SWR Connectors)

TEST EQUIPMENT:	Spectrum Analyzer
	VSWR Bridge

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP	PROCEDURE

1. Connect test equipment as shown:

056M-20

RF I/O CONNECTOR

- 2. Set the Spectrum Analyzer Tracking Generator Level to 0 dBm.
- 3. Set the Spectrum Analyzer Tracking Generator Frequency to 75, 225 and 400 MHz and record the levels as reference.
- 4. Connect VSWR Bridge (Device Under Test Connector) to RF I/O Connector.
- 5. Set the Spectrum Analyzer Tracking Generator Frequency to 75, 225 and 400 MHz and record the levels.
- Calculate the return loss for the levels recorded in Steps 3 and 5 and record. (Return Loss = Reference - Reading).
- 7. Verify VSWR is <1.3 for 75 MHz, <1.3 for 225 MHz and <1.35 for 400 MHz.

 $Γ = 10 ^ (- RL / 20)$ VSWR = (1 + Γ) / (1 - Γ)

Where Γ = Reflection Coefficient

RL = Return Loss

8. Disconnect VSWR Bridge from RF I/O Connector.

PROCEDURE

SWR CONNECTOR

9. Connect VSWR Bridge (Device Under Test Connector) to SWR Connector.

056M-21

- 10. Set the Spectrum Analyzer Tracking Generator Frequency to 75, 225 and 400 MHz and record the levels.
- 11. Calculate the return loss for the levels recorded in Steps 3 and 10 and record. (Return Loss = Reference - Reading).
- 12. Verify VSWR is <1.3 for 75 MHz, <1.3 for 225 MHz and <1.35 for 400 MHz.

 $Γ = 10 ^ (- RL / 20)$ VSWR = (1 + Γ) / (1 - Γ)

Where Γ = Reflection Coefficient

RL = Return Loss

13. Disconnect VSWR Bridge from SWR Connector.

(7) Marker Beacon

STEP

TEST EQUIPMENT:	Modulation Analyzer
VERIFICATION FAILURE:	If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

PR	ററ	ED	11	RF
гп	υu	ィニレ	0	ᇚᆮ

- 1. Connect the Modulation Analyzer (RF Input) to the ANT Connector.
- 2. Set the Modulation Analyzer to AM Measurement.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.
- 5. Press the MODE Select Key until the MARKER BEACON Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ	75.000 MHz
RF LVL	10.0 dBm
MOD TONE	400 Hz
M MOD	CAL

- 7. Verify 400 Hz ($\pm 0.02\%$) with <2.5% distortion and an AM Depth of 95% AM $(\pm 5\%$ AM) on the Modulation Analyzer.
- 8. Set the MOD TONE Field to 1300.
- 9. Verify 1300 Hz (±0.02%) with <2.5% distortion and an AM Depth of 95% AM $(\pm 5\%$ AM) on the Modulation Analyzer.
- 10. Set the MOD TONE Field to 3000.
- 11. Verify 3000 Hz ($\pm 0.02\%$) with <2.5% distortion and an AM Depth of 95% AM $(\pm 5\%$ AM) on the Modulation Analyzer.
- 12. Disconnect the Modulation Analyzer from the ANT Connector.

(8) VOR

TEST EQUIPMENT:Modulation AnalyzerVERIFICATION FAILURE:If any step in this procedure fails or is out of tolerance,
this indicates a failure in the Test Set. Refer to the
IFR 4000 Maintenance Manual for corrective action.

STEP

9.

PROCEDURE

- 1. Connect the Modulation Analyzer (RF Input) to the ANT Connector.
- 2. Set the Modulation Analyzer to AM Measurement.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.

MODULATION FREQUENCY, DISTORTION AND DEPTH ACCURACY

- 5. Press the MODE Select Key until the VOR Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ	108.000 MHz
RF LVL	10.0 dBm
MOD TONE	1020 Hz
M MOD	CAL
30 Hz MOD	0%
9960 Hz MOD	0%

- 7. Verify 1020 Hz (±0.02%) with <2.0% distortion and an AM Depth of 30% AM (±2% AM) on the Modulation Analyzer.
- 8. Set the Test Set as follows:

FIELD	SETTING
MOD TONE 30 Hz MOD	OFF 30%
Verify 30 Hz ($\pm 0.02\%$) with <2.0% distortion and an AM ($\pm 1\%$ AM) on the Modulation Analyzer.	I Depth of 30% AM

10. Set the Test Set as follows:

FIELD	SETTING
30 Hz MOD	0%
9960 Hz MOD	30%
TONE DEL	REF

- 11. Verify 9960 Hz ($\pm 0.02\%$) with <2.0% distortion and an AM Depth of 30% AM ($\pm 1\%$ AM) on the Modulation Analyzer.
- 12. Set the Test Set as follows:

FIELD	SETTING
30 Hz MOD TONE DEL	30% -

13. Verify AM Depth of 60% AM ($\pm 2\%$ AM) on the Modulation Analyzer.

STEP

PROCEDURE

FM DEVIATION ACCURACY

- 14. Set the Modulation Analyzer to DEV 9.96K.
- 15. Verify 480 Hz (\pm 25 Hz) on the Modulation Analyzer.

BEARING ACCURACY

- 16. Set the Modulation Analyzer to Phase Measurement.
- 17. Press the SETUP Key to display the Setup Menu.
- 18. Set the VOR BRG Field to FIXED.
- 19. Press the MODE Select Key until the VOR Mode Screen is displayed.
- 20. Set the Test Set as follows:

FIELD	SETTING
30 Hz MOD	30%
9960 Hz MOD	30%
TO/FROM	то

21. Set the BRG Field to the following settings and verify readings on the Modulation Analyzer:

BRG	READING
30	210° (±0.1°)
90	270° (±0.1°)
150	330° (±0.1°)
210	30° (±0.1°)
270	90° (±0.1°)
330	150° (±0.1°)

- 22. Set the TO/FROM Field to FROM.
- 23. Set the BRG Field to the following settings and verify readings on the Modulation Analyzer:

BRG	READING
30	30° (±0.1°)
90	90° (±0.1°)
150	150° (±0.1°)
210	210° (±0.1°)
270	270° (±0.1°)
330	330° (±0.1°)

- 24. Press the SETUP Key to display the Setup Menu.
- 25. Set the VOR BRG Field to VAR.
- 26. Press the MODE Select Key until the VOR Mode Screen is displayed.

PROCEDURE

27. Set the BRG Field to the following settings and verify readings on the Modulation Analyzer:

BRG	READING
1	1° (±0.1°)
2	2° (±0.1°)
10.1	10.1° (±0.1°)
10.2	10.2° (±0.1°)

28. Disconnect the Modulation Analyzer from the ANT Connector.

(9) Localizer

STEP

TEST EQUIPMENT:	Modulation Analyzer
VERIFICATION FAILURE:	If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set _ Befer to the

IFR 4000 Maintenance Manual for corrective action.

- 1. Connect the Modulation Analyzer (RF Input) to the ANT Connector.
- 2. Set the Modulation Analyzer to AM Measurement.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.

MODULATION FREQUENCY, DISTORTION AND DEPTH ACCURACY

- 5. Press the MODE Select Key until the LOCALIZER Mode Screen is displayed.
- 6. Set the Test Set as follows:

SETTING
108.100 MHz
10.0 dBm
1020 Hz
CAL
FIXED
0.000 CENTER
90 & 150

- 7. Verify 1020 Hz (±0.02%) with <2.5% distortion and an AM Depth of 30% AM $(\pm 2\%$ AM) on the Modulation Analyzer.
- 8. Set the Test Set as follows:

FIELD	SETTING
MOD TONE	OFF
TONE DEL	150

- 9. Verify 90 Hz ($\pm 0.02\%$) with <2.5% distortion and an AM Depth of 20% AM $(\pm 2\% \text{ AM})$ on the Modulation Analyzer.
- 10. Set the TONE DEL Field to 90.
- 11. Verify 150 Hz ($\pm 0.02\%$) with <2.5% distortion and an AM Depth of 20% AM (±2% AM) on the Modulation Analyzer.

DDM ACCURACY

- 12. Set the Modulation Analyzer to DDM.
- 13. Set the Test Set as follows:

FIELD	SETTING
TONE DEL	OFF
90/150 Hz	OFF

PROCEDURE

14. Set the LOC DDM Field to the following settings and verify readings on the Modulation Analyzer:

LOC DDM	READING
0.000 CENTER	0.000 (±0.0015 DDM)
0.093 LEFT	0.093 (±0.0015 DDM + ±3% of setting)
0.093 RIGHT	0.093 (±0.0015 DDM + ±3% of setting)
0.155 LEFT	0.155 (±0.0015 DDM + ±3% of setting)
0.155 RIGHT	0.155 (±0.0015 DDM + ±3% of setting)
0.200 LEFT	0.200 (±0.0015 DDM + ±3% of setting)
0.200 RIGHT	0.200 (±0.0015 DDM + ±3% of setting)

- 15. Set the DEV STEP Field to VAR.
- 16. Set the LOC DDM Field to the following settings and verify readings on the Modulation Analyzer:

LOC DDM	READING
0.094	0.094 (±0.0025 DDM + ±3% of setting)
0.095	0.095 (±0.0025 DDM + ±3% of setting)
0.096	0.096 (±0.0025 DDM + ±3% of setting)
0.097	0.097 (±0.0025 DDM + ±3% of setting)

17. Set the Test Set as follows:

FL	FI	D

SETTING

0.000 CENTER

FIXED

DEV STEP LOC DDM

PHASE ACCURACY

 Set the 90/150 Hz Field to the following settings and verify readings on the Modulation Analyzer:

90/150 Hz	READING
0	0° (±0.5°)
5	-5° (±0.5°)
10	-10° (±0.5°)
20	-20° (±0.5°)
40	-40° (±0.5°)
80	40° (±0.5°)
120	0° (±0.5°)

- 19. Set the 90/150 Hz Field to **0**.
- 20. Disconnect the Modulation Analyzer from the ANT Connector.

(10) Glideslope

STEP

TEST EQUIPMENT:	Modulation Analyzer	
-----------------	---------------------	--

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

- 1. Connect the Modulation Analyzer (RF Input) to the ANT Connector.
- 2. Set the Modulation Analyzer to AM Measurement.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.

MODULATION FREQUENCY, DISTORTION AND DEPTH ACCURACY

- 5. Press the MODE Select Key until the GLIDESLOPE Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ	334.700 MHz
RF LVL	10.0 dBm
M MOD	CAL
DEV STEP	FIXED
90/150 Hz	OFF
TONE DEL	150

- 7. Verify 90 Hz (±0.02%) with <2.5% distortion and an AM Depth of 40% AM (±2% AM) on the Modulation Analyzer.
- 8. Set the TONE DEL Field to 90.
- 9. Verify 150 Hz (±0.02%) with <2.5% distortion and an AM Depth of 40% AM (±2% AM) on the Modulation Analyzer.

DDM ACCURACY

- 10. Set the Modulation Analyzer to DDM.
- 11. Set the TONE DEL Field to OFF.
- 12. Set the G/S DDM Field to the following settings and verify readings on the Modulation Analyzer:

LOC DDM	READING
0.000 CENTER	0.000 (±0.003 DDM
0.091 UP	0.091 (±0.003 DDM + ±3% of setting)
0.091 DOWN	0.091 (±0.003 DDM + ±3% of setting)
0.175 UP	0.175 (±0.003 DDM + ±3% of setting)
0.175 DOWN	0.175 (±0.003 DDM + ±3% of setting)
0.400 UP	0.400 (±0.003 DDM + ±3% of setting)
0.400 DOWN	0.400 (±0.003 DDM + ±3% of setting)

13. Set the DEV STEP Field to VAR.

PROCEDURE

14. Set the G/S DDM Field to the following settings and verify readings on the Modulation Analyzer:

G/S DDM	READING
0.176	0.176 (±0.0048 DDM + ±3% of setting)
0.177	0.177 (±0.0048 DDM + ±3% of setting)
0.178	0.178 (±0.0048 DDM + ±3% of setting)
0.179	0.179 (±0.0048 DDM + ±3% of setting)

15. Set the Test Set as follows:

FIELD	SETTING
DEV STEP	FIXED
G/S DDM	0.000 CENTER

PHASE ACCURACY

16. Set the 90/150 Hz Field to the following settings and verify readings on the Modulation Analyzer:

90/150 Hz	READING
0	0° (±0.5°)
5	-5° (±0.5°)
10	-10° (±0.5°)
20	-20° (±0.5°)
40	-40° (±0.5°)
80	40° (±0.5°)
120	0° (±0.5°)

- 17. Set the 90/150 Hz Field to 0.
- 18. Disconnect the Modulation Analyzer from the ANT Connector.

(11) ILS

TEST EQUIPMENT:	Modulation Analyzer
	Measuring Receiver
	10 dB Pad (Inline)

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP	P PROCEDURE	
1.	Connect the Modulation Analyzer (RF Input) and 10 dB Pad to the ANT Connector.	
2.	Set the Modulation Analyzer to AM Measurement.	
3.	Press the SETUP Key to display the Setup Menu.	
4.	. Set the PORT Field to ANT .	
	MARKER BEACON	
5.	Press the MODE Select Key until the ILS Mode Screen is displayed.	
6.	Set the Test Set as follows:	
	FIELD	SETTING
	FREQ RF LVL MOD TONE 400 M MOD	108.100 MHz -30.0 dBm Hz (Marker ON) CAL
7.	Verify 75 MHz (\pm 75 Hz) and tone frequency of 400 Hz (\pm 0.02%) with <5% distortion and an AM Depth of 95% AM (\pm 5% AM) on the Modulation Analyzer.	
8.	Set the MOD TONE Field to 1300 Hz.	
9.	Verify 1300 Hz ($\pm 0.02\%$) with <3.75% distortion and an AM Depth of 95% AM ($\pm 3.75\%$ AM) on the Modulation Analyzer.	
10.	Set the MOD TONE Field to 3000 Hz.	
11.	Verify 3000 Hz (\pm 0.02%) with <3.75% distortion and an (\pm 3.75% AM) on the Modulation Analyzer.	AM Depth of 95% AM
	LOCALIZER	
12.	Set the Test Set as follows:	
	FIELD	SETTING
	MOD TONE TONE DEL	1020 Hz 90 & 150
13.	Verify 108.100 MHz (±108.100 Hz) and tone frequency of -10 dBm (±2.5 dB) with <2.5% distortion and an AM Dep on the Modulation Analyzer.	f 1020 Hz (±0.02%) at th of 30% AM (±2% AM)

14. Set the Test Set as follows:

FIELD	SETTING
MOD TONE	OFF
TONE DEL	150

PROCEDURE

- 15. Verify 90 Hz (±0.02%) with <2.5% distortion and an AM Depth of 20% AM (±2% AM) on the Modulation Analyzer.
- 16. Set the TONE DEL Field to 90.
- 17. Verify 150 Hz (\pm 0.02%) with <2.5% distortion and an AM Depth of 20% AM (\pm 2% AM) on the Modulation Analyzer.
- 18. Set the Modulation Analyzer to DDM.
- 19. Set the Test Set as follows:

FIELD	SETTING
DEV STEP	FIXED
TONE DEL	OFF
90/150 Hz	OEF

20. Set the LOC DDM Field to the following settings and verify readings on the Modulation Analyzer:

LOC DDM	READING
0.000 CENTER	0.000 (±0.0015 DDM)
0.093 LEFT	0.093 (±0.0015 DDM + ±3% of setting)
0.093 RIGHT	0.093 (±0.0015 DDM + ±3% of setting)
0.155 LEFT	0.155 (±0.0015 DDM + ±3% of setting)
0.155 RIGHT	0.155 (±0.0015 DDM + \pm 3% of setting)
0.200 LEFT	0.200 (±0.0015 DDM + ±3% of setting)
0.200 RIGHT	0.200 (±0.0015 DDM + ±3% of setting)

- 21. Set the DEV STEP Field to VAR.
- 22. Set the LOC DDM Field to the following settings and verify readings on the Modulation Analyzer:

LOC DDM	READING
0.094	0.094 (±0.0025 DDM + ±3% of setting)
0.095	0.095 (±0.0025 DDM + ±3% of setting)
0.096	0.096 (±0.0025 DDM + ±3% of setting)
0.097	0.097 (±0.0025 DDM + ±3% of setting)

23. Set the Test Set as follows:

SETTING

DEV STEP LOC DDM

FIELD

FIXED 0.000 CENTER

STEP

PROCEDURE

PHASE ACCURACY

24. Set the 90/150 Hz Field to the following settings and verify readings on the Modulation Analyzer:

90/150 Hz	READING
0	0° (±0.5°)
5	-5° (±0.5°)
10	-10° (±0.5°)
20	-20° (±0.5°)
40	-40° (±0.5°)
80	40° (±0.5°)
120	0° (±0.5°)

25. Set the 90/150 Hz Field to **0**.

GLIDESLOPE

- 26. Disconnect the Modulation Analyzer and 10 dB Pad from the ANT Connector and connect the Measuring Receiver to the ANT Connector.
- 27. Calibrate the Measuring Receiver for 334.700 MHz in Tuned RF Level Mode.
- 28. Set the RF LVL Field to -30 dBm.
- 29. Verify -30 dBm (\pm 3 dB) on the Measuring Receiver.
- 30. Set the RF LVL Field to -10 dBm.
- 31. Verify -10 dBm (\pm 3 dB) on the Measuring Receiver.
- 32. Disconnect the Measuring Receiver from the ANT Connector.

(12) COMM AM

Modulation Analyzer

TEST EQUIPMENT:

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP

- 1. Connect the Modulation Analyzer (RF Input) to the ANT Connector.
- 2. Set the Modulation Analyzer to AM Measurement.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.
- 5. Press the MODE Select Key until the COMM AM Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ	137.000 MHz
RF LVL	10.0 dBm
MOD TONE	1020 Hz
M MOD	CAL

- 7. If the COMM AM Mode Screen is in RECEIVING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM AM Mode Screen to GENERATING Mode.
- 8. Verify 1020 Hz ($\pm 0.02\%$) with <2.5% distortion and an AM Depth of 30% AM (±2% AM) on the Modulation Analyzer.
- 9. Set the FREQ Field to 312.000 MHz.
- 10. Verify 1020 Hz ($\pm 0.02\%$) with <2.5% distortion and an AM Depth of 30% AM (±2% AM) on the Modulation Analyzer.
- 11. Disconnect the Modulation Analyzer from the ANT Connector.

(13) COMM FM

TEST EQUIPMENT:	Modulation Analyzer	
VERIFICATION FAILURE:	If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.	

STEP	
------	--

- 1. Connect the Modulation Analyzer (RF Input) to the ANT Connector.
- 2. Set the Modulation Analyzer to FM Measurement.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.
- 5. Press the MODE Select Key until the COMM FM Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ RF LVL MOD TONE M MOD	156.000 MHz 10.0 dBm 1000 Hz CAL
MDEV	CAL: 5 KHZ

- 7. If the COMM FM Mode Screen is in RECEIVING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM FM Mode Screen to GENERATING Mode.
- 8. Verify 1000 Hz (±0.02%) with <5% distortion and a FM Deviation of 5 kHz (±500 Hz) on the Modulation Analyzer.
- 9. Disconnect the Modulation Analyzer from the ANT Connector.

(14) SELCOM

Modulation Analyzer

TEST EQUIPMENT:

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP

- 1. Connect the Modulation Analyzer (RF Input) to the ANT Connector.
- 2. Set the Modulation Analyzer to AM Measurement.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.
- 5. Press the MODE Select Key until the SELCAL Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ RF LVL SELCAL TONE M MOD	118.000 MHz 10.0 dBm AA-AA CAL(80%)
TX MODE	CONTINUOUS

- 7. Press the START Soft Key
- 8. Verify 312.6 Hz ($\pm 0.02\%$) Audio tone frequency and an AM Depth of 80% AM (±4% AM) on the Modulation Analyzer.
- 9. Set the SELCAL TONE Field to SS-SS.
- 10. Verify 1479.1 Hz ($\pm 0.02\%$) Audio tone frequency and an AM Depth of 80% AM (±4% AM) on the Modulation Analyzer.
- 11. Disconnect the Modulation Analyzer from the ANT Connector.

(15) Frequency Counter

STEP

TEST EQUIPMENT:	RF Signal Generator
	Function Generator

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

	~ ~ -		
PR	OCE	ΞDU	JRE

- 1. Press the SETUP Key to display the Setup Menu.
- 2. Set the PORT Field to ANT.
- 3. Press the MODE Select Key until the COMM AM Mode Screen is displayed.
- 4. If the COMM AM Mode Screen is in GENERATING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM AM Mode Screen to RECEIVING Mode.
- 5. Connect the RF Signal Generator (Output) to the ANT Connector.
- 6. Set the RF Signal Generator to -35 dBm.
- 7. Set the RF Signal Generator to the following settings and verify readings on the Test Set:

FREQUENCY	READING
10 MHz	10 MHz (±10 Hz + ±1 count)
10.001 MHz	10.001 MHz (±10.001 Hz + ±1 count)
100.101 MHz	100.101 MHz (±100.101 Hz + ±1 count)
399.999 MHz	399.999 MHz (±399.999 Hz + ±1 count)

- 8. Press the SETUP Key to display the Setup Menu.
- 9. Set the PORT Field to RF I/O.
- 10. Press the MODE Select Key until the COMM FM Mode Screen is displayed.
- 11. Disconnect the RF Signal Generator from the ANT Connector and connect the RF Signal Generator (Output) to the RF I/O Connector.
- 12. Set the RF Signal Generator to 0 dBm.
- 13. Set the RF Signal Generator to the following settings and verify readings on the Test Set:

FREQUENCY	READING
10 MHz	10 MHz (±10 Hz + ±1 count)
10.001 MHz	10.001 MHz (±10.001 Hz + ±1 count)
100.101 MHz	100.101 MHz (±100.101 Hz + ±1 count)
399.999 MHz	399.999 MHz (±399.999 Hz + ±1 count)

- 14. Press the MODE Key until the FREQUENCY COUNTER Mode Screen is displayed.
- 15. Set the RESOLUTION Field to 1 Hz.
- 16. Connect the Function Generator (Output) to the AUX I/O Connector.

STEP

PROCEDURE

17. Set the Function Generator as follows:

CONTROL	SETTING
Level	1 Vp-p
Frequency	1 MHz Sinewave
Output Impedance	50 Ω

- 18. Verify 1 MHz (\pm 1 Hz + \pm 1 count) on the Test Set.
- 19. Set Function Generator Frequency to 1.00001 MHz.
- 20. Verify 1.00001 MHz (\pm 1.00001 Hz + \pm 1 count) on the Test Set.
- 21. Set Function Generator Frequency to 3.00000 MHz.
- 22. Verify 3.00000 MHz (\pm 3.00000 Hz + \pm 1 count) on the Test Set.
- 23. Set Function Generator Frequency to 5.10001 MHz.
- 24. Verify 5.10001 MHz (\pm 5.10001 Hz + \pm 1 count) on the Test Set.
- 25. Set Function Generator Frequency to 9.99999 MHz.
- 26. Verify 9.99999 MHz (\pm 9.99999 Hz + \pm 1 count) on the Test Set.
- 27. Disconnect the Function Generator from the AUX I/O Connector.
- 28. Disconnect the RF Signal Generator from the RF I/O Connector.

(16) AM Meter

TEST EQUIPMENT:	RF Signal Generator
	Measuring Receiver
	Power Sensor

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP PROCEDURE

- 1. Connect the Power Sensor to the RF Signal Generator (Output).
- 2. Set the RF Signal Generator Frequency to 400 MHz.
- 3. Set the RF Signal Generator Level and AM Depth as follows and record the AM readings:

LEVEL	AM DEPTH	AM READINGS
-20 dBm	10%	Record as X1
-20 dBm	50%	Record as X2
-20 dBm	90%	Record as X3
-10 dBm	10%	Record as X4
-10 dBm	50%	Record as X5
-10 dBm	90%	Record as X6

- 4. Press the SETUP Key to display the Setup Menu.
- 5. Set the PORT Field to ANT.
- 6. Press the MODE Select Key until the COMM AM Mode Screen is displayed.
- 7. If the COMM AM Mode Screen is in GENERATING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM AM Mode Screen to RECEIVING Mode.
- 8. Disconnect the Power Sensor from the RF Signal Generator and connect the RF Signal Generator (Output) to the ANT Connector.
- 9. Set the RF Signal Generator Level and AM Depth as follows and verify the AM readings:

LEVEL	AM DEPTH	AM READINGS
-20 dBm	10%	(X1 ÷ 1.1) < Reading < (X1 ÷ 0.9)
-20 dBm	50%	(X2 ÷ 1.1) < Reading < (X2 ÷ 0.9)
-20 dBm	90%	(X3 ÷ 1.1) < Reading < (X3 ÷ 0.9)
-10 dBm	10%	(X4 ÷ 1.1) < Reading < (X4 ÷ 0.9)
-10 dBm	50%	(X5 ÷ 1.1) < Reading < (X5 ÷ 0.9)
-10 dBm	90%	(X6 ÷ 1.1) < Reading < (X6 ÷ 0.9)

10. Disconnect the RF Signal Generator from the ANT Connector.

(17) FM Meter

TEST EQUIPMENT:

RF Signal Generator Measuring Receiver Power Sensor

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

- 1. Connect the Power Sensor to the RF Signal Generator (Output).
- 2. Set the RF Signal Generator as follows:

CONTROL	SETTING
Frequency	165 MHz
Level	-20 dBm

 Set the RF Signal Generator Tone and FM Deviation as follows and record the FM readings:

TONE	FM DEVIATION	FM READINGS
400 Hz	15 kHz	Record as X1
400 Hz	10 kHz	Record as X2
400 Hz	1 kHz	Record as X3
1000 Hz	15 kHz	Record as X4
1000 Hz	10 kHz	Record as X5
1000 Hz	1 kHz	Record as X6

- 4. Press the SETUP Key to display the Setup Menu.
- 5. Set the PORT Field to ANT.
- 6. Press the MODE Select Key until the COMM FM Mode Screen is displayed.
- 7. Set the FREQ Field to 165.000 MHz.
- 8. Disconnect the Power Sensor from the RF Signal Generator and connect the RF Signal Generator (Output) to the ANT Connector.
- 9. Set the RF Signal Generator Tone and FM Deviation as follows and verify the FM readings:

TONE	FM DEVIATION	FM READINGS
400 Hz	15 kHz	[(X1 - 0.4) ÷ 1.08] < Reading < [(X1 + 0.4) ÷ 0.92]
400 Hz	10 kHz	[(X2 - 0.4) ÷ 1.08] < Reading < [(X2 + 0.4) ÷ 0.92]
400 Hz	1 kHz	[(X3 - 0.4) ÷ 1.08] < Reading < [(X3 + 0.4) ÷ 0.92]
1000 Hz	15 kHz	[(X4 - 0.4) ÷ 1.08] < Reading < [(X4 + 0.4) ÷ 0.92]
1000 Hz	10 kHz	[(X5 - 0.4) ÷ 1.08] < Reading < [(X5 + 0.4) ÷ 0.92]
1000 Hz	1 kHz	[(X6 - 0.4) ÷ 1.08] < Reading < [(X6 + 0.4) ÷ 0.92]

- 10. Press the SETUP Key to display the Setup Menu.
- 11. Set the PORT Field to *RF I/O*.
- 12. Set the RF Signal Generator Level to 0 dBm.

STEP

PROCEDURE

- 13. Disconnect the RF Signal Generator from the ANT Connector and connect the RF Signal Generator (Output) to the RF I/O Connector.
- 14. Set the RF Signal Generator Tone and FM Deviation as follows and verify the FM readings:

TONE	FM DEVIATION	FM READINGS
1000 Hz	15 kHz	[(X4 - 0.4) ÷ 1.08] < Reading < [(X4 + 0.4) ÷ 0.92]
1000 Hz	10 kHz	[(X5 - 0.4) ÷ 1.08] < Reading < [(X5 + 0.4) ÷ 0.92]
1000 Hz	1 kHz	[(X6 - 0.4) ÷ 1.08] < Reading < [(X6 + 0.4) ÷ 0.92]

15. Disconnect the RF Signal Generator from the RF I/O Connector.

(18) SWR Meter

TEST EQUIPMENT:

 Ω Load Ω Load Ω Load Ω Load

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP

PROCEDURE

- 1. Press the SETUP Key to display the Setup Menu.
- 2. Set the GEN FREQ Field to VAR.
- 3. Press the MODE Select Key until the SWR Mode Screen is displayed.
- 4. Connect the 50 Ω Load to the SWR Connector.
- 5. Set the FREQ Field as follows and verify readings on the Test Set:

FREQ	READINGS
75	1.000 (±0.2 + ±20% of reading)
137	1.000 (±0.2 + ±20% of reading)
225	1.000 (±0.2 + ±20% of reading)
312	1.000 (±0.2 + ±20% of reading)
400	1.000 (±0.2 + ±20% of reading)

- 6. Disconnect the 50 Ω Load from the SWR Connector and connect the 75 Ω Load to the SWR Connector.
- 7. Set the FREQ Field as follows and verify readings on the Test Set:

FREQ	READINGS
75	1.500 (±0.2 + ±20% of reading)
137	1.500 (±0.2 + ±20% of reading)
225	1.500 (±0.2 + ±20% of reading)
312	1.500 (±0.2 + ±20% of reading)
400	1.500 (±0.2 + ±20% of reading)

- 8. Disconnect the 75 Ω Load from the SWR Connector and connect the 100 Ω Load to the SWR Connector.
- 9. Set the FREQ Field as follows and verify readings on the Test Set:

FREQ	READINGS
75	2.000 (±0.2 + ±20% of reading)
137	2.000 (±0.2 + ±20% of reading)
225	2.000 (±0.2 + ±20% of reading)
312	2.000 (±0.2 + ±20% of reading)
400	2.000 (±0.2 + ±20% of reading)

10. Disconnect the 100 Ω Load from the SWR Connector and connect the 150 Ω Load to the SWR Connector.

PROCEDURE

11. Set the FREQ Field as follows and verify readings on the Test Set:

FREQ	READINGS
75	3.000 (±0.3 + ±20% of reading)
137	3.000 (±0.3 + ±20% of reading)
225	3.000 (±0.3 + ±20% of reading)
312	3.000 (±0.3 + ±20% of reading)
400	3.000 (±0.3 + ±20% of reading)

12. Disconnect the 150 Ω Load from the SWR Connector.

(19) Power Meter

TEST EQUIPMENT:

RF Signal Generator RF Power Amplifier Power Meter Directional Coupler 3 dB Attenuator 20 dB Attenuator 15 MHz Low-Pass Filter 45 MHz Low-Pass Filter 450 MHz Low-Pass Filter

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

- 1. Press the SETUP Key to display the Setup Menu.
- 2. Set the PORT Field to RF I/O.
- 3. Press the H/W TOOLS Soft Key to display the Hardware Tools Screen:

	BAT 1.2 Hr	HARDWARE TOOLS	BAT 1.2 Hr
		MICRO VER 1.2 MICRO OPT 1	
RS232 DIAGS CAL	RETURN	RS232 DIAGS CAL	RETURN

- 4. If "MICRO VER 1.2 and MICRO OPT 1" are displayed on the Hardware Tools Screen, perform Steps 26 through 47; otherwise, perform Steps 6 through 25.
- 5. Press the RETURN Soft Key to display the Setup Menu.
- 6. Connect test equipment as shown.

Subject to Export Control, see Cover Page for details.

PROCEDURE

- 7. Characterize and record the offset of the Power Meter Setup:
 - Measure the loss (at 10, 30, 100 and 300 MHz) between the Signal Generator and the 20 dB attenuator on the coupled port of the directional coupler. Record as A.
 - Measure the loss (at 10, 30, 100 and 300 MHz) between the Signal Generator and the end of the coaxial cable going to the RF I/O Connector. Record as B.
 - Calculate the offset at each frequency by subtracting Loss (B) from Loss (A) and record.
- 8. Press the SETUP Key to display the Setup Menu.
- 9. Set the PORT Field to RF I/O.
- 10. Press the MODE Select Key until the COMM AM Mode Screen is displayed.
- 11. If the COMM AM Mode Screen is in GENERATING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM AM Mode Screen to RECEIVING Mode.
- 12. Connect the 15 MHz Low-Pass filter into the test setup.
- 13. Set the Power Meter to measure Watts and the frequency to 10 MHz.
- 14. Set the Power Meter offset for 10 MHz calculated in Step 7.
- 15. Set the RF Signal Generator Frequency to 10 MHz and the RF Power Amplifier Level to the following settings and verify the readings on the Test Set:
 - CAUTION: USE CAUTION WHEN PERFORMING THE >10 W TESTS AS THE TEST SET IS NOT RATED FOR CONTINUOUS INPUT AT THESE LEVELS. COMPLETE THESE STEPS AS QUICKLY AS POSSIBLE, AND REDUCE THE INPUT POWER AS SOON AS POSSIBLE. (INPUT POWER MAY NEED TO BE REDUCED BETWEEN HIGHER LEVEL SETTINGS TO ALLOW THE POWER TERMINATION TO COOL.)

FREQUENCY	POWER	READING
10 MHz	0.1 W	0.1 W (\pm 12% of reading + \pm 1 count)
10 MHz	1.0 W	1.0 W (\pm 12% of reading + \pm 1 count)
10 MHz	5.0 W	5.0 W (\pm 12% of reading + \pm 1 count)
10 MHz	10.0 W	10.0 W (\pm 12% of reading + \pm 1 count)
10 MHz	20.0 W	20.0 W (\pm 12% of reading + \pm 1 count)
10 MHz	25.0 W	25.0 W (±12% of reading + ±1 count)

- 16. Remove the 15 MHz Low-Pass filter and connect the 45 MHz Low-Pass filter into the test setup.
- 17. Set the Power Meter frequency to 30 MHz and the offset to 30 MHz (calculated in Step 7) into the Power Meter.

PROCEDURE

18. Set the RF Signal Generator Frequency to 30 MHz and the RF Power Amplifier Level to the following settings and verify the readings on the Test Set:

FREQUENCY	POWER	READING
30 MHz	0.1 W	0.1 W (\pm 12% of reading + \pm 1 count)
30 MHz	1.0 W	1.0 W (\pm 12% of reading + \pm 1 count)
30 MHz	5.0 W	5.0 W (\pm 12% of reading + \pm 1 count)
30 MHz	10.0 W	10.0 W (\pm 12% of reading + \pm 1 count)
30 MHz	20.0 W	20.0 W (\pm 12% of reading + \pm 1 count)
30 MHz	25.0 W	25.0 W (\pm 12% of reading + \pm 1 count)

- 19. Remove the 45 MHz Low-Pass filter and connect the 150 MHz Low-Pass filter into the test setup.
- 20. Set the Power Meter frequency to 100 MHz and the offset to 100 MHz (calculated in Step 7) into the Power Meter.
- 21. Set the RF Signal Generator Frequency to 100 MHz and the RF Power Amplifier Level to the following settings and verify the readings on the Test Set:

FREQUENCY	POWER	READING
100 MHz	0.1 W	0.1 W (\pm 8% of reading + \pm 1 count)
100 MHz	1.0 W	1.0 W (\pm 8% of reading + \pm 1 count)
100 MHz	5.0 W	5.0 W (\pm 8% of reading + \pm 1 count)
100 MHz	10.0 W	10.0 W (\pm 8% of reading + \pm 1 count)
100 MHz	20.0 W	20.0 W (\pm 8% of reading + \pm 1 count)
100 MHz	25.0 W	25.0 W (\pm 8% of reading + \pm 1 count)

- 22. Remove the 150 MHz Low-Pass filter and connect the 450 MHz Low-Pass filter into the test setup.
- 23. Set the Power Meter frequency to 300 MHz and the offset to 300 MHz (calculated in Step 7) into the Power Meter.
- 24. Set the RF Signal Generator Frequency to 300 MHz and the RF Power Amplifier Level to the following settings and verify the readings on the Test Set:

FREQUENCY	POWER	READING
300 MHz	0.1 W	0.1 W (\pm 8% of reading + \pm 1 count)
300 MHz	1.0 W	1.0 W (\pm 8% of reading + \pm 1 count)
300 MHz	5.0 W	5.0 W (\pm 8% of reading + \pm 1 count)
300 MHz	10.0 W	10.0 W (\pm 8% of reading + \pm 1 count)
300 MHz	20.0 W	20.0 W (\pm 8% of reading + \pm 1 count)
300 MHz	25.0 W	25.0 W (\pm 8% of reading + \pm 1 count)

25. Disconnect the RF Signal Generator and the RF Power Amplifier from the RF I/O Connector. Procedure is completed.

STEP

PROCEDURE

26. Connect test equipment as shown.

- 27. Characterize and record the offset of the Power Meter Setup:
 - Measure the loss (at 10, 30, 100, 300 and 400 MHz) between the Signal Generator and the 20 dB attenuator on the coupled port of the directional coupler. Record as A.
 - Measure the loss (at 10, 30, 100, 300 and 400 MHz) between the Signal Generator and the end of the coaxial cable going to the RF I/O Connector. Record as B.
 - Calculate the offset at each frequency by subtracting Loss (B) from Loss (A) and record.
- 28. Press the SETUP Key to display the Setup Menu.
- 29. Set the PORT Field to RF I/O.
- 30. Press the MODE Select Key until the COMM AM Mode Screen is displayed.
- 31. If the COMM AM Mode Screen is in GENERATING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM AM Mode Screen to RECEIVING Mode.
- 32. Connect the 15 MHz Low-Pass filter into the test setup.
- 33. Set the Power Meter to measure Watts and the frequency to 10 MHz.
- 34. Set the Power Meter offset for 10 MHz calculated in Step 26.

PROCEDURE

- 35. Set the RF Signal Generator Frequency to 10 MHz and the RF Power Amplifier Level to the following settings and verify the readings on the Test Set:
 - CAUTION: USE CAUTION WHEN PERFORMING THE >10 W TESTS AS THE TEST SET IS NOT RATED FOR CONTINUOUS INPUT AT THESE LEVELS. COMPLETE THESE STEPS AS QUICKLY AS POSSIBLE, AND REDUCE THE INPUT POWER AS SOON AS POSSIBLE. (INPUT POWER MAY NEED TO BE REDUCED BETWEEN HIGHER LEVEL SETTINGS TO ALLOW THE POWER TERMINATION TO COOL.)

FREQUENCY	POWER	READING
10 MHz	0.1 W	0.1 W (\pm 12% of reading + \pm 1 count)
10 MHz	1.0 W	1.0 W (\pm 12% of reading + \pm 1 count)
10 MHz	5.0 W	5.0 W (\pm 12% of reading + \pm 1 count)
10 MHz	10.0 W	10.0 W (\pm 12% of reading + \pm 1 count)
10 MHz	20.0 W	20.0 W (\pm 12% of reading + \pm 1 count)
10 MHz	25.0 W	25.0 W (±12% of reading + ±1 count)

- 36. Remove the 15 MHz Low-Pass filter and connect the 45 MHz Low-Pass filter into the test setup.
- 37. Set the Power Meter frequency to 30 MHz and the offset to 30 MHz (calculated in Step 26) into the Power Meter.
- 38. Set the RF Signal Generator Frequency to 30 MHz and the RF Power Amplifier Level to the following settings and verify the readings on the Test Set:

FREQUENCY	POWER	READING
30 MHz	0.1 W	0.1 W (\pm 12% of reading + \pm 1 count)
30 MHz	1.0 W	1.0 W (\pm 12% of reading + \pm 1 count)
30 MHz	5.0 W	5.0 W (\pm 12% of reading + \pm 1 count)
30 MHz	10.0 W	10.0 W (±12% of reading + ±1 count)
30 MHz	20.0 W	20.0 W (±12% of reading + ±1 count)
30 MHz	25.0 W	25.0 W (±12% of reading + ±1 count)

- 39. Remove the 45 MHz Low-Pass filter and connect the 150 MHz Low-Pass filter into the test setup.
- 40. Set the Power Meter frequency to 100 MHz and the offset to 100 MHz (calculated in Step 26) into the Power Meter.
- 41. Set the RF Signal Generator Frequency to 100 MHz and the RF Power Amplifier Level to the following settings and verify the readings on the Test Set:

FREQUENCY	POWER	READING
100 MHz	0.1 W	0.1 W (\pm 8% of reading + \pm 1 count)
100 MHz	1.0 W	1.0 W (\pm 8% of reading + \pm 1 count)
100 MHz	5.0 W	5.0 W (\pm 8% of reading + \pm 1 count)
100 MHz	10.0 W	10.0 W (\pm 8% of reading + \pm 1 count)
100 MHz	20.0 W	20.0 W (\pm 8% of reading + \pm 1 count)
100 MHz	25.0 W	25.0 W (\pm 8% of reading + \pm 1 count)

42. Remove the 150 MHz Low-Pass filter and connect the 450 MHz Low-Pass filter into the test setup.

STEP

PROCEDURE

- 43. Set the Power Meter frequency to 300 MHz and the offset to 300 MHz (calculated in Step 26) into the Power Meter.
- 44. Set the RF Signal Generator Frequency to 300 MHz and the RF Power Amplifier Level to the following settings and verify the readings on the Test Set:

FREQUENCY	POWER	READING
300 MHz	0.1 W	0.1 W (\pm 8% of reading + \pm 1 count)
300 MHz	1.0 W	1.0 W (\pm 8% of reading + \pm 1 count)
300 MHz	5.0 W	5.0 W (\pm 8% of reading + \pm 1 count)
300 MHz	10.0 W	10.0 W (\pm 8% of reading + \pm 1 count)
300 MHz	20.0 W	20.0 W (\pm 8% of reading + \pm 1 count)
300 MHz	25.0 W	25.0 W (\pm 8% of reading + \pm 1 count)

- 45. Set the Power Meter frequency to 400 MHz and the offset to 400 MHz (calculated in Step 26) into the Power Meter.
- 46. Set the RF Signal Generator Frequency to 400 MHz and the RF Power Amplifier Level to the following settings and verify the readings on the Test Set:

FREQUENCY	POWER	READING
400 MHz	0.1 W	0.1 W (\pm 8% of reading + \pm 1 count)
400 MHz	1.0 W	1.0 W (\pm 8% of reading + \pm 1 count)
400 MHz	5.0 W	5.0 W (\pm 8% of reading + \pm 1 count)
400 MHz	10.0 W	10.0 W (\pm 8% of reading + \pm 1 count)
400 MHz	20.0 W	20.0 W (\pm 8% of reading + \pm 1 count)
400 MHz	25.0 W	25.0 W (\pm 8% of reading + \pm 1 count)

47. Disconnect the RF Signal Generator and the RF Power Amplifier from the RF I/O Connector.

(20) AM Audio - AUX Connector

TEST EQUIPMENT:	RF Signal Generator Audio Analyzer
VERIFICATION FAILURE:	If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.
STEP	PROCEDURE

- 1. Press the SETUP Key to display the Setup Menu.
- 2. Set the Test Set as follows:

FIELD	SETTING
PORT	ANT
AUDIO	ON

- 3. Press the MODE Select Key until the COMM AM Mode Screen is displayed.
- 4. Set the FREQ Field to 156.000 MHz.
- 5. If the COMM AM Mode Screen is in GENERATING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM AM Mode Screen to RECEIVING Mode.
- 6. Connect the RF Signal Generator (Output) to the ANT Connector.
- 7. Set the RF Signal Generator as follows:

CONTROL	SETTING
Frequency	156 MHz
Level	0 dBm
Modulation	AM
% Modulation	80%
Modulation Rate	1 kHz

- 8. Connect the Audio Analyzer (High Z Input) to the AUX I/O Connector.
- 9. Verify the signal level is >0.75 Vrms.
- 10. Disconnect the Audio Analyzer from the AUX I/O Connector.
- 11. Disconnect the RF Signal Generator from the ANT Connector.

(21)	121.5/243.0	MHz	Beacon
------	-------------	-----	--------

TEST EQUIPMENT:	RF Signal Generator Arbitrary Waveform Generator
VERIFICATION FAILURE:	If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

D	D	\sim	\sim	n	11	D	
	n	U.	C	υ	υ	п	

- 1. Press the SETUP Key to display the Setup Menu.
- 2. Set the PORT Field to ANT.
- 3. Press the MODE Select Key until the 121.5/243.0 Beacon Mode Screen is displayed.
- 4. Set the FREQ Field to 121.500 MHz.
- 5. Set the Arbitrary Waveform Generator as follows:

SETTING
Max (10 kΩ)
Square Wave
5 V
0 V
33%
On
1600 Hz
300 Hz
33.3 ms
Linear

- 6. Connect the ARB output to the RF Signal Generator pulse input. Enable ARB Output.
- 7. Connect the RF Signal Generator (Output) to the ANT Connector.
- 8. Set the RF Signal Generator as follows:

CONTROL	SETTING
Frequency	121.5 MHz
Level	-30 dBm
Modulation	Pulse

9. Verify the Test Set displays the following:

Frequency:	121.5 MHz (±121 Hz)
AM Depth:	>95%
Beacon Start Frequency:	1600 Hz (±128 Hz)
Beacon Stop Frequency:	300 Hz (±24 Hz)

- 10. Set the RF Signal Generator Frequency to 243.0 MHz.
- 11. Set the UUT FREQ Field to 243.000 MHz..
- 12. Verify the Test Set displays the following:

Frequency:	243.0 MHz (±243 Hz)
AM Depth:	>95%
Beacon Start Frequency:	1600 Hz (±128 Hz)
Beacon Stop Frequency:	300 Hz (±24 Hz)

(22) 406 MHz Beacon

TEST EQUIPMENT:	RF Signal Generator Arbitrary Waveform Generator (2) PC with Intuilink Software
VERIFICATION FAILURE:	If any step in this procedure fails or

LURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP PROCEDURE

1. Connect test equipment as shown:

2. Set Arbitrary Waveform Generator 1 (ARB-1) as follows:

CONTROL	SETTING
Function Period Hi Level LO Level Width Output Load Burst Burst Mode	Pulse 5 Sec. 5.0 V 0.0 V 521 ms High Z ON Gated
Output	Lilabled

- 3 Load Arbitrary Waveform Generator 2 (ARB-2) with Waveform (waveform.csv) from IFR 4000 Maintenance Manual CD using Intuilink Software.
- 4. Set Arbitrary Waveform Generator 2 (ARB-2) as follows:

CONTROL	SETTING
Function	Arb
Frequency	1 Hz.
Hi Level	+1.0 V
LO Level	-1.0 V
Output Load	High Z
Sync	ON
Output	Enabled

PROCEDURE

5. Set the RF Signal Generator as follows:

CONTROL	SETTING
Frequency	406.025 MHz. -30 dBm
Modulation Modes	Phase, Pulse
Phase Mod Deviation	2.2 Radian
Pulse Modulation Modulation	ON Enabled

- 6. Press the SETUP Key to display the Setup Menu.
- 7. Set the PORT Field to ANT.
- 8. Press the MODE Select Key until the 406 BCN Mode Screen is displayed
- 9. Verify the following decoded beacon message:

DDD6AF7252000C8C236CA570017151

(23) SSB Receive

TEST EQUIPMENT: RF Signal Generator

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

ст	
51	FP
~ .	

PROCEDURE

- 1. Press the SETUP Key to display the Setup Menu.
- 2. Set the PORT Field to ANT.
- 3. Press the MODE Select Key until the COMM SSB Mode Screen is displayed.
- 4. If the COMM SSB Mode Screen is in GENERATING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM SSB Mode Screen to RECEIVING Mode.
- 5. Connect the RF Signal Generator (Output) to the ANT Connector.
- 6. Set the RF Signal Generator as follows:

CONTROL	<u>SETTING</u>
Frequency 25.	001 MHz
Level	-10 dBm

- 7. Set the FREQ Field to 25.000 MHz.
- 8. Verify the AUDIO FREQ reading is 1000 Hz (±100 Hz).
- 9. Set the RF Signal Generator Frequency to 24.999 MHz.
- 10. Verify the AUDIO FREQ reading is 1000 Hz (\pm 100 Hz).

(24) SSB Transmit

STEP

TEST EQUIPMENT: Frequency Counter

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

PROCEDURE

- 1. Press the SETUP Key to display the Setup Menu.
- 2. Set the PORT Field to ANT.
- 3. Press the MODE Select Key until the COMM SSB Mode Screen is displayed.
- 4. If the COMM SSB Mode Screen is in RECEIVING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM SSB Mode Screen to GENERATING Mode.
- 5. Connect the Frequency Counter (Input) to the ANT Connector.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ RF LVL SIDE BAND M TONE	20.000 MHz -17.0 dBm UPPER 1000 Hz

- 7. Verify 20.001 MHz (± 6.5 Hz) on the Frequency Counter.
- 8. Set the SIDE BAND Field to LOWER.
- 9. Verify 19.999 MHz (± 6.5 Hz) on the Frequency Counter.

E. Verification Data Sheet

Test Set S/N:	DATE:
TECHNICIAN:	
STEP DATA	RESULT
(1) Self Test	
7. Verify all tests pass	(✓)
(2) RF Accuracy	
7. Verify 108.0 MHz (±108 Hz)	
10. Verify 108.1 MHz (±108.1 Hz)	
13. Verify 334.7 MHz (±334.7 Hz)	
16. Verify 75.0 MHz (±75 Hz)	
20. Verify 118.0 MHz (±118 Hz)	
22. Verify 137.0 MHz (±137 Hz)	
24. Verify 225.0 MHz (±225 Hz)	
26. Verify 312.0 MHz (±312 Hz)	
28. Verify 400.0 MHz (±400 Hz)	
33. Verify 118.001 MHz (±118.001 Hz)	
35. Verify 118.002 MHz (±118.002 Hz)	
37. Verify 118.003 MHz (±118.003 Hz)	
39. Verify 118.004 MHz (±118.004 Hz)	
41. Verify 10.000 MHz (±10 Hz)	
43. Verify 30.000 MHz (±30 Hz)	

STE	P	DATA	RESULT
(3)	RF Le	evel Accuracy (ANT Connector)	
	8.	Verify -30 dBm (±3 dB) at 10.000 MHz	
	10.	Verify -30 dBm (±3 dB) at 30.000 MHz	
	13.	Verify -16 dBm (±3 dB) at 75.000 MHz	
	15.	Verify -30 dBm (±3 dB) at 75.000 MHz	
	18.	Verify -16 dBm (±3 dB) at 108.000 MHz	
	20.	Verify -30 dBm (±3 dB) at 108.000 MHz	
	23.	Verify -16 dBm (±3 dB) at 108.100 MHz	
	25.	Verify -30 dBm (±3 dB) at 108.100 MHz	
	28.	Verify -16 dBm (±3 dB) at 118.000 MHz	
	30.	Verify -30 dBm (±3 dB) at 118.000 MHz	
	33.	Verify -16 dBm (±3 dB) at 137.000 MHz	
	35.	Verify -30 dBm (±3 dB) at 137.000 MHz	
	38.	Verify -16 dBm (±3 dB) at 175.000 MHz	
	40.	Verify -30 dBm (±3 dB) at 175.000 MHz	
	43.	Verify -16 dBm (±3 dB) at 225.000 MHz	
	45.	Verify -30 dBm (±3 dB) at 225.000 MHz	
	48.	Verify -16 dBm (±3 dB) at 334.700 MHz	
	50.	Verify -30 dBm (±3 dB) at 334.700 MHz	
	53.	Verify -16 dBm (±3 dB) at 400.000 MHz	
	55.	Verify -30 dBm (±3 dB) at 400.000 MHz	
	57.	Verify levels:	
		-57 dBm -57 dBm (±3 dB) at 118.000 MHz	
		-47 dBm -47 dBm (±3 dB) at 118.000 MHz	
		-37 dBm -37 dBm (±3 dB) at 118.000 MHz	
		-27 dBm -27 dBm (±3 dB) at 118.000 MHz	
		-17 dBm -17 dBm (±3 dB) at 118.000 MHz	
		-7 dBm -7 dBm (±3 dB) at 118.000 MHz	
		+3 dBm +3 dBm (±3 dB) at 118.000 MHz	
		+13 dBm +13 dBm (±3 dB) at 118.000 MHz	
	61.	Verify -67 dBm (±3 dB) at 118.000 MHz	

STE	Р		DATA	RESULT
(4)	RF Le	evel Accuracy (RF I/C) Connector)	
	8.	Verify -50 dBm (±2 d	B) at 10.000 MHz	
	10.	Verify -50 dBm (±2 d	B) at 30.000 MHz	
	13.	Verify -39 dBm (±2.5	dB) at 75.000 MHz	
	15.	Verify -50 dBm (± 2 d	B) at 75.000 MHz	
	18.	Verify -39 dBm (±2.5	dB) at 108.000 MHz	
	20.	Verify -50 dBm (\pm 2 d	B) at 108.000 MHz	
	23.	Verify -39 dBm (±2.5	dB) at 108.100 MHz	
	25.	Verify -50 dBm (\pm 2 d	B) at 108.100 MHz	
	28.	Verify -39 dBm (±2.5	dB) at 118.000 MHz	
	30.	Verify -50 dBm (± 2 d	B) at 118.000 MHz	
	33.	Verify -39 dBm (± 2.5	dB) at 137.000 MHz	
	35.	Verify -50 dBm (± 2 d	B) at 137.000 MHz	
	38.	Verify -39 dBm (±2.5	dB) at 175.000 MHz	
	40.	Verify -50 dBm (± 2 d	B) at 175.000 MHz	
	43.	Verify -39 dBm (±2.5	dB) at 225.000 MHz	
	45.	Verify -50 dBm (± 2 d	B) at 225.000 MHz	
	48.	Verify -39 dBm (±2.5	dB) at 334.700 MHz	
	50.	Verify -50 dBm (±2 d	B) at 334.700 MHz	
	53.	Verify -39 dBm (±2.5	dB) at 400.000 MHz	
	55.	Verify -50 dBm (±2 d	B) at 400.000 MHz	
	59.	Verify levels:		
		-12 dBm	-12 dBm (±2.5 dB)	
		-22 dBm	-22 dBm (±2.5 dB)	
		-32 dBm	-32 dBm (±2.5 dB)	
		-42 dBm	-42 dBm (±2 dB)	
		-52 dBm	-52 dBm (±2 dB)	
		-62 dBm	-62 dBm (±2 dB)	
		-72 dBm	-72 dBm (±2 dB)	
		-82 dBm	-82 dBm (±2 dB)	
		-92 dBm	-92 dBm (±2 dB)	
		-102 dBm	-102 dBm (±3 dB)	
		-112 dBm	-112 dBm (±3 dB)	
		-120 dBm	-120 dBm (±3 dB)	

DATA

(4) RF Level Accuracy (RF I/O Connector) (cont)

62. Verify levels:

-12 dBm	-12 dBm (±2.5 dB)	
-22 dBm	-22 dBm (±2.5 dB)	
-32 dBm	-32 dBm (±2.5 dB)	
-42 dBm	-42 dBm (±2 dB)	
-52 dBm	-52 dBm (±2 dB)	
-62 dBm	-62 dBm (±2 dB)	
-72 dBm	-72 dBm (±2 dB)	
-82 dBm	-82 dBm (±2 dB)	
-92 dBm	-92 dBm (±2 dB)	
-102 dBm	-102 dBm (±3 dB)	
-112 dBm	-112 dBm (±3 dB)	
-120 dBm	-120 dBm (±3 dB)	

STE	P		DATA	RESULT
(5)	Harm	onic and Spurious		
	6.	Verify:		
		Harmonic is <-20 dBc		
		Spurious is <-35 dBc		
	9.	Verify:		
		Harmonic is <-20 dBc		
		Spurious is <-35 dBc		
	12.	Verify:		
		Harmonic is <-20 dBc		
		Spurious is <-35 dBc		
	16.	Verify:		
		Harmonic is <-20 dBc		
		Spurious is <-35 dBc		
	18.	Verify:		
		Harmonic is <-20 dBc		
		Spurious is <-35 dBc		
	23.	Verify:		
		Spurious is <-32 dBc		
	25.	Verify:		
		Spurious is <-32 dBc		

STE	ΕP		DATA	RESULT
(6)	vswi	R (RF I/O and SW	R Connectors)	
		RF I/O CONNEC	TOR	
	3.	Record levels (R	eference):	
		75 MHz		
		225 MHz		
		400 MHz		
	5.	Record levels:		
		75 MHz		
		225 MHz		
		400 MHz		
	6.	Calculate return	loss for Steps 3 and 5 and record.	
		10 MHz		
		30 MHz		
		75 MHz		
		225 MHz		
		400 MHz		
	7.	Verify VSWR:		
		75 MHz	<1.3	
		225 MHz	<1.3	
		400 MHz	<1.35	
		SWR CONNECTO	DR	
	10.	Record levels:		
		75 MHz		
		225 MHz		
		400 MHz		
	11.	Calculate return	loss for Steps 3 and 10 and record.	
		10 MHz		
		30 MHz		
		75 MHz		
		225 MHz		
		400 MHz		
	12.	Verify VSWR:		
		75 MHz	<1.3	
		225 MHz	<1.3	
		400 MHz	<1.35	

STE	P		DATA	RESULT	
(7)	Mark	ker Beacon			
	7.	Verify 400 Hz (±0.02% of 95% AM (±5% AM)	%) with <2.5% distortion and AM Depth		
	9.	Verify 1300 Hz (±0.02 of 95% AM (±5% AM)	2%) with <2.5% distortion and AM Depth		
	11.	Verify 3000 MHz (±0. of 95% AM (±5% AM)	02%) with <2.5% distortion and AM Depth		
(8)	VOR				
. ,		MODULATION FREQ	UENCY, DISTORTION AND DEPTH ACCURA	CY	
	7.	Verify 1020 Hz (±0.02 30% AM (±2% AM)	2%) with <2.0% distortion and AM Depth of		
	9.	Verify 30 Hz (±0.02% 30% AM (±1% AM)) with <2.0% distortion and AM Depth of		
	11.	Verify 9960 Hz (±0.02 30% AM (±1% AM)	2%) with <2.0% distortion and AM Depth of		
	13.	Verify AM Depth of 60	0% AM (±2% AM)		
		FM DEVIATION ACCU	JRACY		
	15.	Verify 480 Hz (±25 Hz	z)		
		BEARING ACCURAC	Y		
	21.	Verify readings:			
		30	210° (±0.1°)		
		90	270° (±0.1°)		
		150	330° (±0.1°)		
		210	30° (±0.1°)		
		270	90° (±0.1°)		
		330	150° (±0.1°)		
	23.	Verify readings:			
		30	30° (±0.1°)		
		90	90° (±0.1°)		
		150	150° (±0.1°)		
		210	210° (±0.1°)		
		270	270° (±0.1°)		
	07	330 Marifa ng dia na	330° (±0.1°)		
	27.	verity readings:			
			1° (±0.1°)		
		2	$2 (\pm 0.1)$		
		10.2	10.2° (+0.1°)		

VERIFICATION IFR 4000

DATA

(9)	Loca	lizer		
		MODULATION FREQU	ENCY, DISTORTION AND DEPTH ACCURA	CY
	7.	Verify 1020 Hz (±0.02% 30% AM (±2% AM)	6) with <2.5% distortion and AM Depth of	
	9.	Verify 90 Hz (±0.02%) 20% AM (±2% AM)	with <2.5% distortion and AM Depth of	
	11.	Verify 150 Hz (±0.02%) 20% AM (±2% AM)) with <2.5% distortion and AM Depth of	
		DDM ACCURACY		
	14.	Verify readings:		
		0.000 CENTER	0.000 (±0.0015 DDM	
		0.093 LEFT	0.093 (±0.0015 DDM + ±3% of setting)	
		0.093 RIGHT	0.093 (±0.0015 DDM + ±3% of setting)	
		0.155 LEFT	0.155 (±0.0015 DDM + ±3% of setting)	
		0.155 RIGHT	0.155 (±0.0015 DDM + ±3% of setting)	
		0.200 LEFT	0.200 (±0.0015 DDM + ±3% of setting)	
		0.200 RIGHT	0.200 (±0.0015 DDM + ±3% of setting)	
	16.	Verify readings:		
		0.094	0.094 (±0.0025 DDM + ±3% of setting)	
		0.095	0.095 (±0.0025 DDM + ±3% of setting)	
		0.096	0.096 (±0.0025 DDM + ±3% of setting)	
		0.097	0.097 (±0.0025 DDM + ±3% of setting)	
		PHASE ACCURACY		
	18.	Verify readings:		
		0	0° (±0.5°)	
		5	-5° (±0.5°)	
		10	-10° (±0.5°)	
		20	-20° (±0.5°)	

-40° (±0.5°)

 40° (±0.5°)

0° (±0.5°)

40

80

120

SIE	:P		DATA	RESULI					
(10)	Glide	slope							
	MODULATION FREQUENCY, DISTORTION AND DEPTH ACCUR								
	7.	Verify 90 Hz (±0.02%) 40% AM (±2% AM)	with <2.5% distortion and AM Depth of						
	9.	Verify 150 Hz (±0.02% 40% AM (±2% AM)) with <2.5% distortion and AM Depth of						
		DDM ACCURACY							
	12.	Verify readings:							
		0.000 CENTER	0.000 (±0.003 DDM						
		0.091 UP	0.091 (±0.003 DDM + ±3% of setting)						
		0.091 DOWN	0.091 (±0.003 DDM + ±3% of setting)						
		0.175 UP	0.175 (±0.003 DDM + ±3% of setting)						
		0.175 DOWN	0.175 (±0.003 DDM + ±3% of setting)						
		0.400 UP	0.400 (±0.003 DDM + ±3% of setting)						
		0.400 DOWN	0.400 (±0.003 DDM + ±3% of setting)						
	14.	Verify readings:							
		0.176	0.176 (±0.0048 DDM + ±3% of setting)						
		0.177	0.177 (±0.0048 DDM + ±3% of setting)						
		0.178	0.178 (±0.0048 DDM + ±3% of setting)						
		0.179	0.179 (±0.0048 DDM + ±3% of setting)						
		PHASE ACCURACY							
	16.	Verify readings:							
		0	0° (±0.5°)						
		5	-5° (±0.5°)						
		10	-10° (±0.5°)						
		20	-20° (±0.5°)						
		40	-40° (±0.5°)						
		80	40° (±0.5°)						

0° (±0.5°)

STEP

ΠΑΤΑ

120

(11) ILS

MARKER BEACON

7. Verify 75 MHz (\pm 75 Hz) and tone frequency of 400 Hz (\pm 0.02%) with <5% distortion and AM Depth of 95% AM (\pm 5% AM)

DATA

- Verify 1300 Hz (±0.02%) with <3.75% distortion and AM Depth of 95% AM (±3.75% AM)
- Verify 3000 Hz (±0.02%) with <3.75% distortion and AM Depth of 95% AM (±3.75% AM)

LOCALIZER

- Verify 108.100 MHz (±108.001 Hz) and tone frequency of 1020 Hz (±0.02%) at -10 dBm (±2.5 dB) with <2.5% distortion and AM Depth of 30% AM (±2% AM)
- Verify 90 Hz (±0.02%) with <2.5% distortion and AM Depth of 20% AM (±2% AM)
- Verify 150 Hz (±0.02%) with <2.5% distortion and AM Depth of 20% AM (±2% AM)
- 20. Verify readings:

	, ,		
	0.000 CENTER	0.000 (±0.0015 DDM + ±3% of setting)	
	0.093 LEFT	0.093 (±0.0015 DDM + ±3% of setting)	
	0.093 RIGHT	0.093 (±0.0015 DDM + ±3% of setting)	
	0.155 LEFT	0.155 (±0.0015 DDM + ±3% of setting)	
	0.155 RIGHT	0.155 (±0.0015 DDM + ±3% of setting)	
	0.200 LEFT	0.200 (±0.0015 DDM + ±3% of setting)	
	0.200 RIGHT	0.200 (±0.0015 DDM + ±3% of setting)	
22.	Verify readings:		
	0.094	0.094 (±0.0025 DDM + ±3% of setting)	
	0.095	0.095 (±0.0025 DDM + ±3% of setting)	
	0.096	0.096 (±0.0025 DDM + ±3% of setting)	

0.097 (±0.0025 DDM + ±3% of setting)

- PHASE ACCURACY
- 24. Verify readings:

0.097

 0° (±0.5°)	0
 -5° (±0.5°)	5
 -10° (±0.5°)	10
 -20° (±0.5°)	20
 -40° (±0.5°)	40
 40° (±0.5°)	80
 0° (±0.5°)	120

STE	P		DATA	RESULT
(11)	ILS (cont)		
		GLIDESLOPE		
	29.	Verify -30 dBm (±3 c	IB)	
	31.	Verify -10 dBm (\pm 3 c	IB)	
(12)	сомі	МАМ		
	8.	Verify 1020 Hz (±0.0 30% AM (±2% AM)	2%) with <2.5% distortion and AM Depth of	
	10.	Verify 1020 Hz (±0.0 30% AM (±2% AM)	2%) with <2.5% distortion and AM Depth of	
(13)	сомі	ИГМ		
	8.	Verify 1000 Hz (±0.0 5 kHz (±500 Hz)	2%) with <5% distortion and FM Deviation of	
(14)	SELC	ОМ		
	8.	Verify 312.6 Hz (±0. 80% AM (±4% AM)	02%) Audio tone frequency and AM Depth of	
	10.	Verify 1479.1 Hz (±0 80% AM (±4% AM)	0.02%) Audio tone frequency and AM Depth of	
(15)	Frequ	uency Counter		
	7.	Verify readings:		
		10 MHz	10 MHz (±10 Hz + ±1 count)	
		10.001 MHz	10.001 MHz (±10.001 Hz + ±1 count)	
		100.101 MHz	100.101 MHz (±100.101 Hz + ±1 count)	
		399.999 MHz	399.999 MHz (±399.999 Hz + ±1 count)	
	13.	Verify readings:		
		10 MHz	10 MHz (±10 Hz + ±1 count)	
		10.001 MHz	10.001 MHz (±10.001 Hz + ±1 count)	
		100.101 MHz	100.101 MHz (±100.101 Hz + ±1 count)	
		399.999 MHz	399.999 MHz (±399.999 Hz + ±1 count)	
	18.	Verify 1 MHz (±1 Hz	+ ±1 count)	
	20.	Verify 1.00001 MHz	(±1.00001 Hz + ±1 count)	
	22.	Verify 3.00000 MHz	(±3.00000 Hz + ±1 count)	
	24.	Verify 5.10001 MHz	(±5.10001 Hz + ±1 count)	
	26.	Verify 9.99999 MHz	(±9.99999 Hz + ±1 count)	

STE	P DATA	RESULT
(16)	AM Meter	
	3. Record AM readings:	
	X1	
	X2	
	X3	
	X4	
	X5	
	X6	
	9. Verify AM readings:	
	(X1 ÷ 1.1) < Reading < (X1 ÷ 0.9)	(√)
	(X2 ÷ 1.1) < Reading < (X2 ÷ 0.9)	(√)
	(X3 ÷ 1.1) < Reading < (X3 ÷ 0.9)	(✓)
	(X4 ÷ 1.1) < Reading < (X4 ÷ 0.9)	(✓)
	(X5 ÷ 1.1) < Reading < (X5 ÷ 0.9)	(√)
	(X6 ÷ 1.1) < Reading < (X6 ÷ 0.9)	(✓)
(17)	FM Meter	
	3. Record FM readings:	
	X1	
	X2	
	Х3	
	X4	
	X5	
	X6	
	9. Verify FM readings:	
	[(X1 - 0.4) ÷ 1.08] < Reading < [(X1 + 0.4) ÷ 0.92]	(✓)
	[(X2 - 0.4) ÷ 1.08] < Reading < [(X2 + 0.4) ÷ 0.92]	(✓)
	[(X3 - 0.4) ÷ 1.08] < Reading < [(X3 + 0.4) ÷ 0.92]	(✓)
	[(X4 - 0.4) ÷ 1.08] < Reading < [(X4 + 0.4) ÷ 0.92]	(✓)
	[(X5 - 0.4) ÷ 1.08] < Reading < [(X5 + 0.4) ÷ 0.92]	(✓)
	[(X6 - 0.4) ÷ 1.08] < Reading < [(X6 + 0.4) ÷ 0.92]	(✓)
	14. Verify FM readings:	
	[(X4 - 0.4) ÷ 1.08] < Reading < [(X4 + 0.4) ÷ 0.92]	(✓)
	[(X5 - 0.4) ÷ 1.08] < Reading < [(X5 + 0.4) ÷ 0.92]	(✓)
	[(X6 - 0.4) ÷ 1.08] < Reading < [(X6 + 0.4) ÷ 0.92]	(√)

STE	P		DATA	RESULT
(18)	SWR	Meter		
	5.	Verify readings:		
		75	1.000 (±0.2 + ±20% of reading)	
		137	1.000 (±0.2 + ±20% of reading)	
		225	1.000 (±0.2 + ±20% of reading)	
		312	1.000 (±0.2 + ±20% of reading)	
		400	1.000 (±0.2 + ±20% of reading)	
	7.	Verify readings:		
		75	1.500 (±0.2 + ±20% of reading)	
		137	1.500 (±0.2 + ±20% of reading)	
		225	1.500 (±0.2 + ±20% of reading)	
		312	1.500 (±0.2 + ±20% of reading)	
		400	1.500 (±0.2 + ±20% of reading)	
	9.	Verify readings:		
		75	2.000 (±0.2 + ±20% of reading)	
		137	2.000 (±0.2 + ±20% of reading)	
		225	2.000 (±0.2 + ±20% of reading)	
		312	2.000 (±0.2 + ±20% of reading)	
		400	2.000 (±0.2 + ±20% of reading)	
	11.	Verify readings:		
		75	3.000 (\pm 0.3 + \pm 20% of reading)	
		137	3.000 (\pm 0.3 + \pm 20% of reading)	
		225	$3.000 (\pm 0.3 + \pm 20\% \text{ of reading})$	
		312	$3.000 (\pm 0.3 + \pm 20\% \text{ of reading})$	
		400	3.000 (±0.3 + ±20% of reading)	

DATA

(19) Power Meter

7. Characterize Test Setup:

EQ	Α	В	OFFSET
MHz			
	EQ MHz MHz MHz MHz	EQ A MHz MHz MHz	EQ A B MHz MHz MHz MHz MHz MHz

15. Verify readings:

	10 MHz	0.1 W	0.1 W (\pm 12% of reading + \pm 1 count)	
	10 MHz	1.0 W	1.0 W (\pm 12% of reading + \pm 1 count)	
	10 MHz	5.0 W	5.0 W (±12% of reading + ±1 count)	
	10 MHz	10.0 W	10.0 W (±12% of reading + ±1 count)	
	10 MHz	20.0 W	20.0 W (±12% of reading + ±1 count)	
	10 MHz	25.0 W	25.0 W (±12% of reading + ±1 count)	
18.	Verify readings	:		
	30 MHz	0.1 W	0.1 W (\pm 12% of reading + \pm 1 count)	
	30 MHz	1.0 W	1.0 W (±12% of reading + ±1 count)	
	30 MHz	5.0 W	5.0 W (±12% of reading + ±1 count)	
	30 MHz	10.0 W	10.0 W (±12% of reading + ±1 count)	
	30 MHz	20.0 W	20.0 W (±12% of reading + ±1 count)	
	30 MHz	25.0 W	25.0 W (±12% of reading + ±1 count)	
21.	Verify readings	:		
	100 MHz	0.1 W	0.1 W ($\pm 8\%$ of reading + ± 1 count)	
	100 MHz	1.0 W	1.0 W (\pm 8% of reading + \pm 1 count)	
	100 MHz	5.0 W	5.0 W ($\pm 8\%$ of reading + ± 1 count)	
	100 MHz	10.0 W	10.0 W (\pm 8% of reading + \pm 1 count)	
	100 MHz	20.0 W	20.0 W (\pm 8% of reading + \pm 1 count)	
	100 MHz	25.0 W	25.0 W (\pm 8% of reading + \pm 1 count)	
24.	Verify readings	:		
	300 MHz	0.1 W	0.1 W ($\pm 8\%$ of reading + ± 1 count)	
	300 MHz	1.0 W	1.0 W (\pm 8% of reading + \pm 1 count)	
	300 MHz	5.0 W	5.0 W (\pm 8% of reading + \pm 1 count)	
	300 MHz	10.0 W	10.0 W (±8% of reading + ±1 count)	
	300 MHz	20.0 W	20.0 W (±8% of reading + ±1 count)	
	300 MHz	25.0 W	25.0 W (\pm 8% of reading + \pm 1 count)	

STER	P			DA	ΓA			RESULT
(19)	Powe	er Meter (cont)						
	27.	Characterize T	est Setup:					
		FREQ		A		В	OF	FSET
		10 MHz						
		30 MHz						
		100 MHz						
		300 MHz						
		400 MHz						
	35.	Verify readings	:					
		10 MHz	0.1 W	0.1 W	(±12% o	f reading + :	±1 count)	
		10 MHz	1.0 W	1.0 W	(±12% o	f reading + :	±1 count)	
		10 MHz	5.0 W	5.0 W	(±12% o	f reading + :	±1 count)	
		10 MHz	10.0 W	10.0 V	V (±12%	of reading +	±1 count)	

	10 MHz	10.0 W	10.0 W (±12% of reading + ±1 count)	
	10 MHz	20.0 W	20.0 W (\pm 12% of reading + \pm 1 count)	
	10 MHz	25.0 W	25.0 W (\pm 12% of reading + \pm 1 count)	
38.	Verify readings:	:		
	30 MHz	0.1 W	0.1 W (\pm 12% of reading + \pm 1 count)	
	30 MHz	1.0 W	1.0 W (\pm 12% of reading + \pm 1 count)	
	30 MHz	5.0 W	5.0 W (\pm 12% of reading + \pm 1 count)	
	30 MHz	10.0 W	10.0 W (\pm 12% of reading + \pm 1 count)	
	30 MHz	20.0 W	20.0 W (\pm 12% of reading + \pm 1 count)	
	30 MHz	25.0 W	25.0 W (\pm 12% of reading + \pm 1 count)	
41.	Verify readings:			
	100 MHz	0.1 W	0.1 W ($\pm 8\%$ of reading + ± 1 count)	
	100 MHz	1.0 W	1.0 W ($\pm 8\%$ of reading + ± 1 count)	
	100 MHz	5.0 W	5.0 W ($\pm 8\%$ of reading + ± 1 count)	
	100 MHz	10.0 W	10.0 W (\pm 8% of reading + \pm 1 count)	
	100 MHz	20.0 W	20.0 W (±8% of reading + ±1 count)	
	100 MHz	25.0 W	25.0 W (\pm 8% of reading + \pm 1 count)	

DATA STEP (19) Power Meter (cont) 44. Verify readings: 300 MHz 0.1 W 0.1 W ($\pm 8\%$ of reading + ± 1 count) 300 MHz 1.0 W 1.0 W (\pm 8% of reading + \pm 1 count) 300 MHz 5.0 W 5.0 W ($\pm 8\%$ of reading + ± 1 count) 300 MHz 10.0 W 10.0 W (\pm 8% of reading + \pm 1 count) 300 MHz 20.0 W 20.0 W (\pm 8% of reading + \pm 1 count) 300 MHz 25.0 W 25.0 W (\pm 8% of reading + \pm 1 count) 46. Verify readings: 400 MHz 0.1 W 0.1 W (\pm 8% of reading + \pm 1 count) 400 MHz 1.0 W 1.0 W (\pm 8% of reading + \pm 1 count) 400 MHz 5.0 W 5.0 W (\pm 8% of reading + \pm 1 count) 400 MHz 10.0 W 10.0 W ($\pm 8\%$ of reading + ± 1 count) 400 MHz 20.0 W 20.0 W (\pm 8% of reading + \pm 1 count) 25.0 W 400 MHz 25.0 W (±8% of reading + ±1 count) _____ (20) AM Audio - AUX Connector 9. Verify signal level is >0.75 Vrms (21) 121.5/243.0 MHz Beacon 9. Verify readings: Frequency: 121.5 MHz (±121 Hz) AM Depth: >95% 1600 Hz (±128 Hz) Beacon Start Frequency: Beacon Stop Frequency: 300 Hz (±24 Hz) 12. Verify readings: Frequency: 243.0 MHz (±243 Hz) AM Depth: >95% Beacon Start Frequency: 1600 Hz (±128 Hz) Beacon Stop Frequency: 300 Hz (±24 Hz) (22) 406 MHz Beacon 11. Verify decoded message: DDD6AF7252000C8C236CA570017151

(23) SSB Receive

- 8. Verify AUDIO FREQ reading is 1000 Hz (±100 Hz)
- 10. Verify AUDIO FREQ reading is 1000 Hz (±100 Hz)

STEP	DATA	RESULT
(24) SSB Transmit		
7. Verify 20.001 MI	Hz (±6.5 Hz)	
9. Verify 19.999 MI	Hz (±6.5 Hz)	

THIS PAGE INTENTIONALLY LEFT BLANK.

- F. Alternate Verification Procedures
 - (1) RF Accuracy

TEST EQUIPMENT:	Measuring Receiver
VERIFICATION FAILURE:	If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP	PROCEDURE	
1.	Connect the Measuring Receiver (RF Input) to the ANT Cor	nnector.
2.	Set the Measuring Receiver to Auto Tune, Frequency measurement and Specia Function 7.4 for 1 Hz resolution.	
3.	Press the SETUP Key to display the Setup Menu.	
4.	Set the Test Set as follows:	
	FIELD	SETTING
	PORT GEN FREQ	ANT PRESET
5.	Press the MODE Select Key until the VOR Mode Screen.	
6.	Set the Test Set as follows:	
	FIELD	SETTING
	FREQ RF LVL M MOD	108.000 MHz 0.0 dBm 0%
7.	Verify 108.0 MHz (\pm 108 Hz) on the Modulation Analyzer.	
8.	Press the MODE Select Key until the LOCALIZER Mode Sci	reen.
9.	Set the Test Set as follows:	
	FIELD	SETTING
	FREQ RF LVL M MOD	108.100 MHz 0.0 dBm 0%
10.	Verify 108.1 MHz (\pm 108.1 Hz) on the Modulation Analyzer.	
11.	Press the MODE Select Key until the GLIDESLOPE Mode S	creen.
12.	Set the Test Set as follows:	
	FIELD	SETTING
	FREQ RF LVL M MOD	334.700 MHz 0.0 dBm 0%
13.	Verify 334.7 MHz (± 334.7 Hz) on the Modulation Analyzer.	
14.	Press the MODE Select Key until the MARKER BEACON Mo	ode Screen.

STEP

PROCEDURE

15. Set the Test Set as follows:

SETTING
75.000 MHz
0.0 dBm
OFF
0%

- 16. Verify 75.0 MHz (±75 Hz) on the Modulation Analyzer.
- 17. Press the MODE Select Key until the COMM AM Mode Screen is displayed.
- 18. Set the Test Set as follows:

FIELD	SETTING
FREQ	118.000 MHz
RF LVL	0.0 dBm
MOD TONE	OFF

- 19. If the COMM AM Mode Screen is in RECEIVING Mode, press the SWITCH GEN/RX Soft Key to switch the COMM AM Mode Screen to GENERATING Mode.
- 20. Verify 118.0 MHz (±118 Hz) on the Modulation Analyzer.
- 21. Set the FREQ Field to 137.000 MHz.
- 22. Verify 137.0 MHz (±137 Hz) on the Modulation Analyzer.
- 23. Set the FREQ Field to 225.000 MHz.
- 24. Verify 225.0 MHz (±225 Hz) on the Modulation Analyzer.
- 25. Set the FREQ Field to 312.000 MHz.
- 26. Verify 312.0 MHz (±312 Hz) on the Modulation Analyzer.
- 27. Set the FREQ Field to 400.000 MHz.
- 28. Verify 400.0 MHz (\pm 400 Hz) on the Modulation Analyzer.
- 29. Press the SETUP Key to display the Setup Menu.
- 30. Set the Test Set as follows:

FIELD	SETTING
PORT	ANT
GEN FREQ	VAR

- 31. Press the MODE Select Key until the SELCAL Mode Screen is displayed.
- 32. Set the Test Set as follows:

FIELD	SETTING
FREQ	118.001 MHz
RF LVL	0.0 dBm

- 33. Verify 118.001 MHz (±118.001 Hz) on the Modulation Analyzer.
- 34. Set the FREQ Field to 118.002 MHz.
- 35. Verify 118.002 MHz (±118.002 Hz) on the Modulation Analyzer.
- 36. Set the FREQ Field to 118.003 MHz.
- 37. Verify 118.003 MHz (±118.003 Hz) on the Modulation Analyzer.
- 38. Set the FREQ Field to 118.004 MHz.

PROCEDURE

- 39. Verify 118.004 MHz (\pm 118.004 Hz) on the Modulation Analyzer.
- 40. Set the FREQ Field to 10.000 MHz.
- 41. Verify 10.000 MHz (\pm 10 Hz) on the Modulation Analyzer.
- 42. Set the FREQ Field to 30.000 MHz.
- 43. Verify 30.000 MHz (\pm 30 Hz) on the Modulation Analyzer.
- 44. Disconnect the Modulation Analyzer from the ANT Connector.

VERIFICATION

(2) Marker Beacon

TEST EQUIPMENT:	Measuring Receiver
	Audio Analyzer

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP	PROCEDURE
1.	Connect the Measuring Receiver (RF Input) to the ANT Connector, and the Measuring Receiver Modulation Output to the Input on the Audio Analyzer.
2.	Set the Measuring Receiver to AM Measurement, and the Audio Analyzer to Distortion.
3.	Press the SETUP Key to display the Setup Menu.
4.	Set the PORT Field to ANT.

- 5. Press the MODE Select Key until the MARKER BEACON Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ	75.000 MHz
RFLVL	10.0 dBm
MOD TONE	400 Hz
M MOD	CAL

- 7. Verify 400 Hz ($\pm 0.02\%$) with <2.5% distortion and an AM Depth of 95% AM (±5% AM) on the Measuring Receiver and Audio Analyzer.
- 8. Set the MOD TONE Field to 1300.
- 9. Verify 1300 Hz (±0.02%) with <2.5% distortion and an AM Depth of 95% AM $(\pm 5\%$ AM) on the Measuring Receiver and Audio Analyzer.
- 10. Set the MOD TONE Field to 3000.
- 11. Verify 3000 Hz ($\pm 0.02\%$) with <2.5% distortion and an AM Depth of 95% AM (±5% AM) on the Measuring Receiver and Audio Analyzer.
- 12. Disconnect the Measuring Receiver from the ANT Connector.

(3) VOR

TEST EQUIPMENT:

Measuring Receiver Audio Analyzer Frequency Counter Oscilloscope RF Detector/Amplifier VOR Radial Standard

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP

PROCEDURE

- 1. Connect the Measuring Receiver (RF Input) to the ANT Connector, and the Modulation output to the input on the Audio Analyzer.
- 2. Set the Measuring Receiver to AM Measurement, and the Audio Analyzer to Distortion Measurement.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.

MODULATION FREQUENCY, DISTORTION AND DEPTH ACCURACY

- 5. Press the MODE Select Key until the VOR Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ	108.000 MHz
RF LVL	0.0 dBm
MOD TONE	1020 Hz
M MOD	CAL
30 Hz MOD	0%
9960 Hz MOD	0%

- 7. Verify 1020 Hz (\pm 0.02%) with <2.0% distortion and an AM Depth of 30% AM (\pm 2% AM) on the Measuring Receiver and Audio Analyzer.
- 8. Set the Test Set as follows:

FIELD	SETTING
MOD TONE	OFF
30 Hz MOD	30%

- Verify <2.0% distortion and an AM Depth of 30% AM (±2% AM) on the Measuring Receiver and Audio Analyzer.
- Connect Measuring Receiver Modulation Output to Frequency Counter and verify 30 Hz (±0.02%).
- 11. Reconnect Measuring Receiver Modulation Output to Audio Analyzer.
- 12. Set the Test Set as follows:

30 Hz MOD 0% 9960 Hz MOD 30% TONE DEL BEE	FIELD	SETTING
	30 Hz MOD 9960 Hz MOD TONE DEL	0% 30% REF

STE	ΞP
-----	----

PROCEDURE

- Verify 9960 Hz (±0.02%) with <2.0% distortion and an AM Depth of 30% AM (±2% AM) on the Measuring Receiver and Audio Analyzer.
- 14. Set the Test Set as follows:

FIELD	SETTING
30 Hz MOD	30%
TONE DEL	OFF

15. Verify AM Depth of 60% AM (\pm 4% AM) on the Measuring Receiver.

FM DEVIATION ACCURACY

16. Set the Test Set as follows:

FIELD	SETTING
30 Hz MOD	0%
9960 Hz MOD	30%

- 17. Connect the Measuring Receiver Modulation output to the Oscilloscope input.
- 18. Set Oscilloscope to 100 $\mu s/div$ and adjust vertical scaling for full scale deflection of audio signal.
- 19. Set Oscilloscope trigger to positive edge trigger and adjust for a stable display with the first zero crossing occurring on the major horizontal axis.
- 20. Select X10 horizontal magnifier or delay time for a 5 μ s/div display.
- Adjust delay and/or horizontal position to center the sixth positive zero crossing on the display. (Nearly a full screen of zero crossings can be seen due to the FM modulation on the 9960 audio tone.)
- 22. Measure the time from the first zero crossing to the last zero crossing on the current display and verify the measurement is 48.5 μ s (±2.5 μ s).

BEARING ACCURACY

- 23. Connect the RF Detector/Amplifier (RF Input) to the ANT Connector.
- 24. Connect the RF Detector/Amplifier (Audio Output) to the VOR Comp Input on the VOR Radial Standard.
- 25. Press the SETUP Key to display the Setup Menu.
- 26. Set the VOR BRG Field to FIXED.
- 27. Press the MODE Select Key until the VOR Mode Screen is displayed.
- 28. Set the Test Set as follows:

FIELD	SETTING
RF LVL	5.0 dBm
30 Hz MOD	30%
9960 Hz MOD	30%
TO/FROM	то

PROCEDURE

29. Set the BRG Field to the following settings and verify readings on the VOR Radial Standard:

BRG	READING
30	210° (±0.1°)
90	270° (±0.1°)
150	330° (±0.1°)
210	30° (±0.1°)
270	90° (±0.1°)
330	150° (±0.1°)

- 30. Set the TO/FROM Field to FROM.
- 31. Set the BRG Field to the following settings and verify readings on the VOR Radial Standard:

BRG	READING
30	30° (±0.1°)
90	90° (±0.1°)
150	150° (±0.1°)
210	210° (±0.1°)
270	270° (±0.1°)
330	330° (±0.1°)

- 32. Press the SETUP Key to display the Setup Menu.
- 33. Set the VOR BRG Field to VAR.
- 34. Press the MODE Select Key until the VOR Mode Screen is displayed.
- 35. Set the BRG Field to the following settings and verify readings on the VOR Radial Standard:

BRG	READING
1	1° (±0.1°)
2	2° (±0.1°)
10.1	10.1° (±0.1°)
10.2	10.2° (±0.1°)

36. Disconnect the RF Detector/Amplifier from the ANT Connector.

(4) Localizer

STEP

TEST EQUIPMENT:	Measuring Receiver Audio Analyzer Frequency Counter Digital Multimeter
VERIFICATION FAILURE:	If any step in this procedure

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

PROCEDURE

- 1. Connect the Measuring Receiver (RF Input) to the ANT Connector, and the Measuring Receiver Modulation Output to the input on the Audio Analyzer.
- 2. Set the Measuring Receiver to AM Measurement and the Audio Analyzer to distortion.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.

MODULATION FREQUENCY, DISTORTION AND DEPTH ACCURACY

- 5. Press the MODE Select Key until the LOCALIZER Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ	108.100 MHz
RF LVL	0.0 dBm
MOD TONE	1020 Hz
M MOD	CAL
DEV STEP	FIXED
LOC DDM	0.000 CENTER
TONE DEL	90 & 150

- Verify 1020 Hz (±0.02%) with <2.5% distortion and an AM Depth of 30% AM (±2% AM) on the Measuring Receiver and Audio Analyzer.
- 8. Set the Test Set as follows:

FIELD	SETTING
MOD TONE	OFF
TONE DEL	150

- 9. Verify <2.5% distortion and an AM Depth of 20% AM (±2% AM) on the Measuring Receiver and Audio Analyzer.
- Connect Measuring Receiver Modulation Output to Frequency Counter and verify 90 Hz (±0.02%).
- 11. Set the TONE DEL Field to 90.
- 12. Verify 150 Hz ($\pm 0.02\%$) on the Frequency Counter.
- 13. Reconnect Measuring Receiver Modulation Output to Audio Analyzer.
- Verify <2.5% distortion and an AM Depth of 20% AM (±2% AM) on the Measuring Receiver and Audio Analyzer. Record AM Depth measurement for DDM Accuracy calculations.

PROCEDURE

DDM ACCURACY

- 15. Disconnect the Modulation Output of the Measuring Receiver from the Audio Analyzer and connect the Modulation Output of the Measuring Receiver to the Digital Multimeter.
- 16. Set the LOC DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

LOC DDM	
0.000 CENTER	
0.093 LEFT	
0.093 RIGHT	
0.155 LEFT	
0.155 RIGHT	
0.200 LEFT	
0.200 RIGHT	

- 17. Set the TONE DEL Field to 150.
- 18. Set the LOC DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

LOC DDM		
0.000 CENTER		
0.093 LEFT		
0.093 RIGHT		
0.155 LEFT		
0.155 RIGHT		
0.200 LEFT		
0.200 RIGHT		

- 19. Set the DEV STEP Field to VAR.
- 20. Set the LOC DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

LOC DDM	
0.094 RIGHT	
0.095 RIGHT	
0.096 RIGHT	
0.097 RIGHT	

- 21. Set the TONE DEL Field to 90.
- 22. Set the LOC DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

LOC DDM
0.094 RIGHT
0.095 RIGHT
0.096 RIGHT
0.097 RIGHT

STEP

PROCEDURE

- 23. Perform the calculations in the data sheet and verify all DDM readings are within tolerance.
- 24. Select Range Hold on Measuring Receiver.
- 25. Set the Test Set as follows:

 FIELD
 SETTING

 TONE DEL
 OFF

 DEV STEP
 FIXED

 LOC DDM
 0.000 CENTER

PHASE ACCURACY

- 26. Connect the Modulation Output of the Measuring Receiver to the Oscilloscope input and adjust for a stable display.
- 27. Set the 90/150 Hz Field to the following settings and monitor the displayed signal on the Oscilloscope:
 - **NOTE:** Change in Reading column indicates there is a change in the waveform. Using this verification procedure, this specification cannot be verified to the published specification and can only be tested for functionality.

90/150 Hz	READING
0	Reference waveform
5	Change
10	Change
20	Change
40	Change
60	Peak waveform
120	Matches reference waveform

- 28. Set the 90/150 Hz Field to 0.
- 29. Disconnect the Measuring Receiver from the ANT Connector and clear Range Hold on Measuring Receiver.

(5) Glideslope

TEST EQUIPMENT:

Measuring Receiver Audio Analyzer Frequency Counter Digital Multimeter

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP

PROCEDURE

- 1. Connect the Measuring Receiver (RF Input) to the ANT Connector, and the Measuring Receiver Modulation Output to the input on the Audio Analyzer.
- 2. Set the Measuring Receiver to AM Measurement and the Audio Analyzer to distortion.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.

MODULATION FREQUENCY, DISTORTION AND DEPTH ACCURACY

- 5. Press the MODE Select Key until the GLIDESLOPE Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ	334.250 MHz
RFLVL	0.0 dBm
M MOD	CAL
DEV STEP	FIXED
90/150 Hz	OFF
TONE DEL	150

- 7. Verify <2.5% distortion and an AM Depth of 40% AM ($\pm 2\%$ AM) on the Measuring Receiver and Audio Analyzer.
- Connect Measuring Receiver Modulation Output to Frequency Counter and verify 90 Hz (±0.02%).
- 9. Set the TONE DEL Field to 90.
- 10. Verify 150 Hz ($\pm 0.02\%$) on the Frequency Counter.
- 11. Reconnect Measuring Receiver Modulation Output to Audio Analyzer.
- Verify <2.5% distortion and an AM Depth of 40% AM (±2% AM) on the Measuring Receiver and Audio Analyzer and record AM Depth measurement for DDM Accuracy calculations.

DDM ACCURACY

- Disconnect the Modulation Output of the Measuring Receiver from the Audio Analyzer and connect the Modulation Output of the Measuring Receiver to the Digital Multimeter.
- 14. Set the TONE DEL Field to **OFF** and select Range Hold on Measuring Receiver.
- 15. Set the TONE DEL Field to 90.

STEP

PROCEDURE

16. Set the G/S DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

G/S DDM		
0.000	CENTER	
0.091	UP	
0.091	DOWN	
0.175	UP	
0.175	DOWN	
0.400	UP	
0.400	DOWN	

- 17. Set the TONE DEL Field to 150.
- 18. Set the G/S DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

G/S	DDM
0.000 0	ENTER
0.091 L	JP
0.091 E	DOWN
0.175 L	JP
0.175 E	DOWN
0.400 L	JP
0.400 [OWN

- 19. Set the DEV STEP Field to VAR.
- 20. Set the G/S DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

G/S DDM
0.176 UP
0.177 UP
0.178 UP
0.179 UP

- 21. Set the TONE DEL Field to 90.
- 22. Set the G/S DDM Field to the following settings and record the AC Voltage reading from the voltmeter:

G/S DDM
0.176 UP
0.177 UP
0.178 UP
0.179 UP

23. Perform the calculations in the data sheet and verify all DDM readings are within tolerance.

PROCEDURE

24. Set the Test Set as follows:

FIELD

DEV STEP G/S DDM TONE DEL SETTING FIXED 0.000 CENTER

OFF

PHASE ACCURACY

- 25. Connect the Modulation Output of the Measuring receiver to the Oscilloscope input and adjust for a stable display.
- 26. Set the 90/150 Hz Field to the following settings and monitor the displayed signal on the Oscilloscope:
 - **NOTE:** Change in Reading column indicates there is a change in the waveform. Using this verification procedure, this specification cannot be verified to the published specification and can only be tested for functionality.

90/150 Hz	READING
0	Reference waveform
5	Change
10	Change
20	Change
40	Change
60	Peak waveform
120	Matches reference waveform

- 27. Set the 90/150 Hz Field to 0.
- 28. Disconnect the Measuring Receiver from the ANT Connector and clear Range Hold on Measuring Receiver.

(6) ILS

TEST EQUIPMENT:	Measuring Receiver Audio Analyzer	
	Frequency Counter	
	Digital Multimeter	
	10 dB Pad (Inline)	

VERIFICATION FAILURE: If any step in this procedure fails or is out of tolerance, this indicates a failure in the Test Set. Refer to the IFR 4000 Maintenance Manual for corrective action.

STEP

PROCEDURE

- 1. Connect the Measuring Receiver (RF Input) and 10 dB Pad to the ANT Connector.
- 2. Set the Measuring Receiver to AM Measurement.
- 3. Press the SETUP Key to display the Setup Menu.
- 4. Set the PORT Field to ANT.

MARKER BEACON

- 5. Press the MODE Select Key until the ILS Mode Screen is displayed.
- 6. Set the Test Set as follows:

FIELD	SETTING
FREQ	108.100 MHz
RF LVL	-60.0 dBm
MOD TONE	400 Hz (Marker ON)
M MOD	CAĹ

- Verify 75 MHz (±75 Hz) and tone frequency of 400 Hz (±0.02%) with <5% distortion and an AM Depth of 95% AM (±5% AM) on the Measuring Receiver and Audio Analyzer.
- 8. Set the MOD TONE Field to 1300 Hz.
- 9. Verify 1300 Hz (\pm 0.02%) with <3.75% distortion and an AM Depth of 95% AM (\pm 3.75% AM) on the Measuring Receiver and Audio Analyzer.
- 10. Set the MOD TONE Field to 3000 Hz.
- Verify 3000 Hz (±0.02%) with <3.75% distortion and an AM Depth of 95% AM (±3.75% AM) on the Measuring Receiver and Audio Analyzer.

LOCALIZER

12. Set the Test Set as follows:

FIELD	SETTING
MOD TONE	1020 Hz
TONE DEL	90 & 150

 Verify 108.100 MHz (±108.100 Hz) and tone frequency of 1020 Hz (±0.02%) at -10 dBm (±2.5 dB) with <2.5% distortion and an AM Depth of 30% AM (±2% AM) on the Measuring Receiver and Audio Analyzer.

PROCEDURE

14. Set the Test Set as follows:

FIELD	SETTING
MOD TONE	OFF
TONE DEL	150

- 15. Verify <2.5% distortion and an AM Depth of 20% AM (±2% AM) on the Measuring Receiver and Audio Analyzer.
- Connect Measuring Receiver Modulation Output to Frequency Counter and verify 90 Hz (±0.02%).
- 17. Set the TONE DEL Field to 90.
- 18. Verify 150 Hz ($\pm 0.02\%$) on the Frequency Counter.
- 19. Reconnect Measuring Receiver Modulation Output to Audio Analyzer.
- Verify <2.5% distortion and an AM Depth of 20% AM (±2% AM) on the Measuring Receiver and Audio Analyzer. Record AM Depth measurement for DDM Accuracy calculations.

DDM ACCURACY

- 21. Disconnect the Modulation Output of the Measuring Receiver from the Audio Analyzer and connect the Modulation Output of the Measuring Receiver to the Digital Multimeter.
- 22. Set the LOC DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

LOC DDM
0.000 CENTER
0.093 LEFT
0.093 RIGHT
0.155 LEFT
0.155 RIGHT
0.200 LEFT
0.200 RIGHT

- 23. Set the TONE DEL Field to 150.
- 24. Set the LOC DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

LOC DDM
0.000 CENTER
0.093 LEFT
0.093 RIGHT
0.155 LEFT
0.155 RIGHT
0.200 LEFT
0.200 RIGHT

25. Set the DEV STEP Field to VAR.

STEP

PROCEDURE

26. Set the LOC DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

LOC DDM	
0.094 RIGHT	
0.095 RIGHT	
0.096 RIGHT	
0.097 RIGHT	

- 27. Set the TONE DEL Field to 90.
- 28. Set the LOC DDM Field to the following settings and record the AC Voltage reading from the Digital Multimeter:

LOC DDM
0.094 RIGHT
0.095 RIGHT
0.096 RIGHT
0.097 RIGHT

- 29. Perform the calculations in the data sheet and verify all DDM readings are within tolerance.
- 30. Select Range Hold on the Measuring Receiver.
- 31. Set the Test Set as follows:

FIELD	SETTING
TONE DEL	OFF
DEV STEP	FIXED
LOC DDM	0.000 CENTER

PHASE ACCURACY

- 32. Connect the Modulation Output of the Measuring receiver to the Oscilloscope input and adjust for a stable display.
- 33. Set the 90/150 Hz Field to the following settings and monitor the displayed signal on the Oscilloscope:
 - **NOTE:** Change in Reading column indicates there is a change in the waveform. Using this verification procedure, this specification cannot be verified to the published specification and can only be tested for functionality.

90/150 Hz	READING
0	Reference waveform
5	Change
10	Change
20	Change
40	Change
60	Peak waveform
120	Matches reference waveform

34. Set the 90/150 Hz Field to **0**.

PROCEDURE

GLIDESLOPE

- 35. Disconnect the Modulation Analyzer and 10 dB Pad from the ANT Connector and connect the Measuring Receiver to the ANT Connector.
- 36. Clear Range Hold on the Measuring Receiver and calibrate the Measuring Receiver for 334.700 MHz in Tuned RF Level Mode.
- 37. Set the RF LVL Field to -30 dBm.
- 38. Verify -30 dBm (\pm 3 dB) on the Measuring Receiver.
- 39. Set the RF LVL Field to -10 dBm.
- 40. Verify -10 dBm (\pm 3 dB) on the Measuring Receiver.
- 41. Disconnect the Measuring Receiver from the ANT Connector.

THIS PAGE INTENTIONALLY LEFT BLANK.

G. Alternate Verification Procedures Data Sheet

Test S	et S/N: DA ⁻	TE:
TECHN	IICIAN:	
STEP	DATA	RESULT
(1) R	F Accuracy	
	7. Verify 108.0 MHz (±108 Hz)	
	10. Verify 108.1 MHz (±108.1 Hz)	
	13. Verify 334.7 MHz (±334.7 Hz)	
	16. Verify 75.0 MHz (±75 Hz)	
	20. Verify 118.0 MHz (±118 Hz)	
	22. Verify 137.0 MHz (±137 Hz)	
	24. Verify 225.0 MHz (±225 Hz)	
	26. Verify 312.0 MHz (±312 Hz)	
	28. Verify 400.0 MHz (±400 Hz)	
	33. Verify 118.001 MHz (±118.001 Hz)	
	35. Verify 118.002 MHz (±118.002 Hz)	
	37. Verify 118.003 MHz (±118.003 Hz)	
	39. Verify 118.004 MHz (±118.004 Hz)	
	41. Verify 10.000 MHz (±10 Hz)	
	43. Verify 30.000 MHz (±30 Hz)	
(2) M	arker Beacon	
	 Verify 400 Hz (±0.02%) with <2.5% distortion and Al of 95% AM (±5% AM) 	M Depth
	 Verify 1300 Hz (±0.02%) with <2.5% distortion and A of 95% AM (±5% AM) 	AM Depth
	 Verify 3000 MHz (±0.02%) with <2.5% distortion and of 95% AM (±5% AM) 	d AM Depth

STE	EP		DATA	RESULT
(3)	VOR			
		MODULATION FR	EQUENCY, DISTORTION AND DEPTH ACCURA	CY
	7.	Verify 1020 Hz (±0 30% AM (±2% AM)	0.02%) with <2.0% distortion and AM Depth of	
	9.	Verify 30 Hz (±0.0 30% AM (±2% AM)	2%) with <2.0% distortion and AM Depth of	
	10.	Verify 30 Hz (±0.0	2.	
	13.	Verify 9960 Hz (±0 30% AM (±2% AM)	0.02%) with <2.0% distortion and AM Depth of	
	15.	Verify AM Depth o	f 60% AM (±4% AM)	
		FM DEVIATION A	CCURACY	
	22.	Verify 48.5 µs (±2.	.5 μs)	
		BEARING ACCUR	ACY	
	28.	Verify readings:		
		30	210° (±0.1°)	
		90	270° (±0.1°)	
		150	330° (±0.1°)	
		210	30° (±0.1°)	
		270	90° (±0.1°)	
		330	150° (±0.1°)	
	30.	Verify readings:		
		30	30° (±0.1°)	
		90	90° (±0.1°)	
		150	150° (±0.1°)	
		210	210° (±0.1°)	
		270	270° (±0.1°)	
		330	330° (±0.1°)	
	34.	Verify readings:		
		1	1° (±0.1°)	
		2	2° (±0.1°)	
		10.1	10.1° (±0.1°)	
		10.2	10.2° (±0.1°)	

STE	P		DATA	RESULT
4)	Loca	lizer		
		MODULATION FREQUEN	CY, DISTORTION AND DEPTH ACCURA	CY
	7.	Verify 1020 Hz (±0.02%) v 30% AM (±2% AM)	with <2.5% distortion and AM Depth of	
	9.	Verify <2.5% distortion an	d AM Depth of 20% AM (\pm 2% AM)	
	10.	Verify 90 Hz (±0.02%)		
	12.	Verify 150 Hz (±0.02%)		
	14.	Verify <2.5% distortion ar	nd AM Depth of 20% AM (±2% AM)	
		Record AM Depth Measur	ement (% Mod)	
		DDM ACCURACY		
	16.	Record 150 Hz Voltage re	adings:	
		0.000 CENTER		
		0.093 LEFT		
		0.093 RIGHT		
		0.155 LEFT		
		0.155 RIGHT		
		0.200 LEFT		
		0.200 RIGHT		
	18.	Record 90 Hz Voltage rea	dings:	
		0.000 CENTER		
		0.093 LEFT		
		0.093 RIGHT		
		0.155 LEFT		
		0.155 RIGHT		
		0.200 LEFT		
		0.200 RIGHT		
	Cal	culate DDM Ratio by the fo	llowing equation:	
		DR = (% mod from Step 1	4)/(Center voltage from Step 16 * 100)	
	Cal	culate DDM by the followin	g equation:	
		DDM = DR ^ (value from S	step 18 - value from Step 16)	
		0.093 LEFT	-0.093 (±0.0043 DDM)	
		0.093 RIGHT	0.093 (±0.0043 DDM)	
		0.155 LEFT	-0.155 (±0.0062 DDM)	
		0.155 RIGHT	0.155 (±0.0062 DDM)	
		0.200 LEFT	-0.200 (±0.0075 DDM)	
		0.200 RIGHT	0.200 (±0.0075 DDM)	

STE	Р	DATA	RESULT
(4)	Loca	lizer (cont)	
	20.	Record 90 Hz Voltage readings:	
		0.094 Right	
		0.095 Right	
		0.096 Right	
		0.097 Right	
	22.	Record 150 Hz Voltage readings:	
		0.094 Right	
		0.095 Right	
		0.096 Right	
		0.097 Right	
	Cal	culate DDM by the following equation (using DR from Step 18):	
		DDM = DR * (value from Step 20 - value from Step 22)	

0.094 Right	0.094 (±0.0053 DDM)	
0.095 Right	0.095 (±0.0054 DDM)	
0.096 Right	0.096 (±0.0054 DDM)	
0.097 Right	0.097 (±0.0054 DDM)	

PHASE ACCURACY

27. Verify readings:

0	Reference	(√)
5	Change	(√)
10	Change	(√)
20	Change	(√)
40	Change	(√)
60	Peak waveform	(√)
120	Matches reference waveform	(√)

STE	P		DATA	RESULT
(5)	Glide	slope		
. ,		MODULATION FREQUENC	Y, DISTORTION AND DEPTH ACCURA	CY
	7.	Verify <2.5% distortion and	d AM Depth of 40% AM (±2% AM)	
	8.	Verify 90 Hz (±0.02%)		
	10.	Verify 150 Hz (±0.02%)		
	12.	Verify <2.5% distortion and	d AM Depth of 40% AM (\pm 2% AM)	
		Record AM Depth Measure	ement (% Mod)	
		DDM ACCURACY		
	16.	Record 150 Hz Voltage rea	adings:	
		0.000 CENTER		
		0.091 UP		
		0.091 DOWN		
		0.175 UP		
		0.175 DOWN		
		0.400 UP		
		0.400 DOWN		
	18. Record 90 Hz Voltage readings:			
		0.000 CENTER		
		0.091 UP		
		0.091 DOWN		
		0.175 UP		
		0.175 DOWN		
		0.400 UP		
		0.400 DOWN		
	Cal	culate DDM Ratio by the fol	lowing equation:	
		DR = (% mod from Step 12	?)/(Center voltage from Step 16 * 100)	
	Cal	culate DDM by the following	g equation:	
		DDM = DR * (value from S	tep 16 – value from Step 18)	
		0.000 CENTER	0.000 (±0.003 DDM	
		0.091 UP 0	0.091 (±0.0057 DDM)	
		0.091 DOWN -	0.091 (±0.0057 DDM)	
		0.175 UP 0	0.175 (±0.0083 DDM)	
		0.175 DOWN -	0.175 (±0.0083 DDM)	
		0.400 UP 0	0.400 (±0.0150 DDM)	
		0.400 DOWN -	0.400 (±0.0150 DDM)	

STE	P	DATA	RESULT					
(5)	Glid	eslope (cont)						
	20.	20. Record 90 Hz Voltage readings:						
		0.176 UP						
		0.177 UP						
		0.178 UP						
		0.179 UP						
	22.							
		0.176 UP						
		0.177 UP						
		0.178 UP						
		0.179 UP						

Calculate DDM by the following equation (using DR from Step 18):

(value f	From Ctor		from	Cton	201
(value l	nom Step) ZZ – value	nom	Step	20)

0.176 UP	0.176 (±0.0101 DDM)	
0.177 UP	0.177 (±0.0101 DDM)	
0.178 UP	0.178 (±0.0101 DDM)	
0.179 UP	0.179 (±0.0101 DDM)	

PHASE ACCURACY

26. Verify readings:

0	Reference	(√)
5	Change	(√)
10	Change	(√)
20	Change	(√)
40	Change	(√)
60	Peak waveform	(√)
120	Matches reference waveform	(√)

(6) ILS MARKER BEACON 7. Verify 75 MHz (\pm 75 Hz) and tone frequency of 400 Hz (\pm 0.02%) with <5% distortion and AM Depth of 95% AM (±5% AM) _____ 9. Verify 1300 Hz (\pm 0.02%) with <3.75% distortion and AM Depth of 95% AM (±3.75% AM) _____ 11. Verify 3000 Hz ($\pm 0.02\%$) with <3.75% distortion and AM Depth of 95% AM (±3.75% AM) _____ LOCALIZER 13. Verify 108.100 MHz (\pm 108.1 Hz) and tone frequency of 1020 Hz $(\pm 0.02\%)$ at -10 dBm $(\pm 2.5 \text{ dB})$ with <2.5% distortion and AM Depth of 30% AM (±2% AM) 15. Verify <2.5% distortion and AM Depth of 20% AM (\pm 2% AM) 16. Verify 90 Hz (±0.02%) _____ 18. Verify 150 Hz (±0.02%) _____ 20. Verify <2.5% distortion and AM Depth of 20% AM (±2% AM) _____ Record AM Depth Measurement (% Mod) _____ DDM ACCURACY 22. Record 150 Hz Voltage readings: 0.000 CENTER _____ 0.093 LEFT _____ 0.093 RIGHT _____ 0.155 LEFT _____ 0.155 RIGHT _____ 0.200 LEFT _____ 0.200 RIGHT 24. Record 90 Hz Voltage readings: 0.000 CENTER 0.093 LEFT _____ 0.093 RIGHT _____ 0.155 LEFT _____ 0.155 RIGHT ____ 0.200 LEFT _____ 0.200 RIGHT _____

STEP

DATA

бΤЕ	P		DATA	RESULT
6)	ILS (cont)			
	Calculate	DDM Ratio by the	following equation:	
	DR =	(% mod from Step	20)/(Center voltage from Step 22 * 100)	
	Calculate	DDM by the follow	ing equation:	
	DDM	= DR * (value from	Step 24 - value from Step 22)	
		0.000 CENTER	0.000 (±0.0015 DDM)	
		0.093 LEFT	-0.093 (±0.0043 DDM)	
		0.093 RIGHT	0.093 (±0.0043 DDM)	
		0.155 LEFT	-0.155 (±0.0062 DDM)	
		0.155 RIGHT	0.155 (±0.0062 DDM)	
		0.200 LEFT	-0.200 (±0.0075 DDM)	
		0.200 RIGHT	0.200 (±0.0075 DDM)	
	26. Reco	ord 90 Hz Voltage r	eadings:	
		0.094 Right		
		0.095 Right		
		0.096 Right		
		0.097 Right		
	28. Reco	ord 150 Hz Voltage	readings:	
		0.094 Right		
		0.095 Right		
		0.096 Right		
		0.097 Right		
	Calculate	DDM by the follow	ing equation (using DR from Step 24 abov	ve):
	DDM	= DR * (value from	Step 26 - value from Step 28)	
		0.094 Right	0.094 (±0.0053 DDM)	

 0.094 (±0.0053 DDM)	0.094 Right
 0.095 (±0.0054 DDM)	0.095 Right
 0.096 (±0.0054 DDM)	0.096 Right
 0.097 (±0.0054 DDM)	0.097 Right

STEP	DATA	RESULT
(6) ILS (cont)		
PHASE ACCURACY		

33. Verify readings:

0	Reference	(√)
5	Change	(√)
10	Change	(√)
20	Change	(√)
40	Change	(√)
60	Peak waveform	(√)
120	Matches reference waveform	(√)

GLIDESLOPE

38.	Verify -30 dBm (±3 dB)	
40.	Verify -10 dBm (±3 dB)	

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX A - TEST EQUIPMENT REQUIREMENTS

This Appendix contains a list of test equipment suitable for performing the Verification Procedures. Other equipment meeting the specifications of the equipment listed in this Appendix may be substituted in place of the recommended models.

ТҮРЕ	MODEL
Adapter, TNC (M) to N-Type (F)	N/A
Arbitrary Waveform Generator	Agilent 33220A or Equivalent
Attenuator, 3 dB, 100 W (N-Type)	N/A
Attenuator, 10 dB (BNC)	N/A
Attenuator, N-Connector 20 dB	N/A
Audio Analyzer	HP-8903A or Equivalent
Digital Multimeter	Agilent 34401A or Equivalent
Directional Coupler, 20 dB (N-Type)	N/A
Frequency Counter	Agilent 53131A or Equivalent
Function Generator	Agilent 33120A or Equivalent
Load, 50 Ω	N/A
Load, 75 Ω	N/A
Load, 100 Ω	N/A
Load, 150 Ω	N/A
Low-Pass Filter, 15 MHz (N-Type)	N/A
Low-Pass Filter, 45 MHz (N-Type)	N/A
Low-Pass Filter, 150 MHz (N-Type)	N/A
Low-Pass Filter, 450 MHz (N-Type)	N/A
Measuring Receiver	HP-8902A or Equivalent
Measuring Receiver Sensor Module	HP-11722A or Equivalent
Modulation Analyzer	R&S FMAV or Equivalent
Power Meter	HP-E4418B or Equivalent
Power Sensor	HP-E4412A or Equivalent
RF Amplifier (100 W)	N/A
Signal Generator	Aeroflex 2023B or Equivalent
Spectrum Analyzer	AN-920 or Equivalent
VSWR Bridge	Wiltron 62NF50 or Equivalent

TEST EQUIPMENT FOR ALTERNATE VERIFICATION PROCEDURES ONLY

ТҮРЕ	MODEL
Adapter, TNC (M) to BNC (F)	N/A
RF Detector/Amplifier	Aeroflex JPN 01-0817-00 or Equivalent
Oscilloscope	Tektronix 2445A or Equivalent
VOR Radial Standard	CPN 622-3701-001 (78-3 Zifor III)