Distributed by:
JAMECO

www.Jameco.com \downarrow 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

VDE
TUV

Panasonic ideas for life

10 A MINIATURE POWER RELAY

1a1b

FEATURES

- Large capacity in small size: 10 A 250 V AC (1a)
- High sensitivity: 200 mW nominal operating power
- High breakdown voltage 4,000 Vrms between contacts and coil 1,000 Vrms between open contacts Meeting FCC Part 68
- Sealed construction
- Latching types available
mm inch

RoHS Directive compatibility information http://www.nais-e.com/

COMMENTS ABOUT Cd FREE

We have introduced Cadmium free type products to reduce the material which is not good for our environment.
(The suffix "F" should be added to the part number.)
(Note: The Suffix "F" is required only for 1 Form A contact type. The 2 Form A and 1 Form A 1 Form B contact type is originally Cadmium free, the suffix " F " is not required.)
If you are still using Cadmium containing parts, which don't have " F " on the suffix of the part number, please use Cadmium free parts from now on. The life of the Cadmium free products may be shorter than the Cadmium containing parts based on the load condition, so please evaluate the Cadmium free parts with your actual application before use.

SPECIFICATIONS

Contact

Arrangement		1 Form A	2 Form A, 1 Form A 1 Form B
Initial contact resistance, max. (By voltage drop 6 V DC 1A)		$30 \mathrm{~m} \Omega$	
Contact material		AgSnO_{2} type	
Rating (resistive)	Nominal switching capacity	$\begin{aligned} & 10 \text { A } 250 \text { V AC } \\ & 10 \text { A } 30 \text { V DC } \end{aligned}$	$\begin{aligned} & 8 \text { A } 250 \text { V AC } \\ & 8 \text { A } 30 \text { V DC } \end{aligned}$
	Max. switching power	300 W, 2,500 VA	240 W, 2,000 VA
	Max. switching voltage	$\begin{gathered} 250 \text { V AC, } \\ 30 \text { V DC } \end{gathered}$	$\begin{gathered} 250 \mathrm{~V} \mathrm{AC}, \\ 30 \mathrm{~V} \text { DC } \end{gathered}$
	Max. switching current	10 A	8 A
	Min. switching capacity\#1	$10 \mathrm{~mA}, 5 \mathrm{~V}$ DC	
Expected life (min. operations)	Mechanical	5×10^{7}	
	Electrical (resistive)	$\begin{gathered} 10^{5} \\ (10 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}, \\ 10 \mathrm{~A} 30 \mathrm{~V} \text { DC) } \end{gathered}$	$\begin{gathered} 10^{5} \\ (8 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}, \\ 8 \mathrm{~A} 30 \mathrm{~V} \text { DC) } \end{gathered}$
Coil			
Nominal operating power		200 mW	

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{*} 3$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
${ }^{*} 4$ Excluding contact bounce time
${ }^{*_{5}}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

Characteristics

Max. operating speed			20 cpm (at rated load)
Initial insulation resistance*1			Min. 1,000 m (at 500 V DC)
Initial breakdown voltage*2	Between open contacts		1,000 Vrms
	Between contacts and coil		4,000 Vrms
Surge voltage between coil and contact*3			Min. 10,000 V
Operate time*4 (at nominal voltage)			Max. 10 ms (Approx. 5 ms)
Release time (without diode)*4 (at nominal voltage)			Max. 8 ms (Approx. 3 ms)
Temperature rise (at nominal voltage)			Max. $40^{\circ} \mathrm{C}$ with nominal coil voltage and at 10 A switching current
Shock resistance	Functiona**5		Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ \{10 G\}
	Destructive*6		Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance	Functional*7		$88.2 \mathrm{~m} / \mathrm{s}^{2}\{9 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 1.5 mm
	Destructive		$176.4 \mathrm{~m} / \mathrm{s}^{2}\{18 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3.0 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+149^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight	1 Form A		Approx. 5.6 g .20 oz
	$1 \text { Form A } 1 \text { Form B, }$ 2 Form A		Approx. 6 g .21 oz

TYPICAL APPLICATIONS ORDERING INFORMATION

- Switching power supply
- Power switching for various OA equipment
- Control or driving relays for industrial machines (robotics, numerical control machines, etc.)
- Output relays for programmable logic controllers, temperature controllers, timers and so on.
- Home appliances

Notes: 1. Standard packing Carton: 50 pcs.; Case: 500 pcs.
UL/CSA, TÜV approved type is standard.
2. 1 coil latching type available.
3. Please inquire about the previous products (Cadmium containing parts). (1 Form A type only)

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ}$ F)

Single side stable

	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Nominal operating current, $m A(\pm 10 \%)$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating power, mW	Maximum allowable voltage, V DC (at $65^{\circ} \mathrm{C}$ $149^{\circ} \mathrm{F}$)
1 Form A	DK1a-3V-F	3	2.1	0.3	66.6	45	200	3.9
	DK1a-5V-F	5	3.5	0.5	40	125	200	6.5
	DK1a-6V-F	6	4.2	0.6	33.3	180	200	7.8
	DK1a-9V-F	9	6.3	0.9	22.2	405	200	11.7
	DK1a-12V-F	12	8.4	1.2	16.6	720	200	15.6
	DK1a-24V-F	24	16.8	2.4	8.3	2,880	200	31.2
1 Form A 1 Form B	DK1a1b-3V	3	2.1	0.3	66.6	45	200	3.9
	DK1a1b-5V	5	3.5	0.5	40	125	200	6.5
	DK1a1b-6V	6	4.2	0.6	33.3	180	200	7.8
	DK1a1b-9V	9	6.3	0.9	22.2	405	200	11.7
	DK1a1b-12V	12	8.4	1.2	16.6	720	200	15.6
	DK1a1b-24V	24	16.8	2.4	8.3	2,880	200	31.2
2 Form A	DK2a-3V	3	2.1	0.3	66.6	45	200	3.9
	DK2a-5V	5	3.5	0.5	40	125	200	6.5
	DK2a-6V	6	4.2	0.6	33.3	180	200	7.8
	DK2a-9V	9	6.3	0.9	22.2	405	200	11.7
	DK2a-12V	12	8.4	1.2	16.6	720	200	15.6
	DK2a-24V	24	16.8	2.4	8.3	2,880	200	31.2

2 coil latching

	Part No.	Nominal voltage, V DC	Set voltage, V DC (max.)	Reset voltage, V DC (max.)	Nominal operating current,$m A(\pm 10 \%)$		Coil resistance, Ω ($\pm 10 \%$)		Nominal operating power, mW		Maximum allowable voltage, V DC (at $65^{\circ} \mathrm{C}$ $149^{\circ} \mathrm{F}$)
					Set	Reset	Set	Reset	Set	Reset	
1 Form A	DK1a-L2-3V-F	3	2.1	2.1	66.6	66.6	45	45	200	200	3.9
	DK1a-L2-5V-F	5	3.5	3.5	40	40	125	125	200	200	6.5
	DK1a-L2-6V-F	6	4.2	4.2	33.3	33.3	180	180	200	200	7.8
	DK1a-L2-9V-F	9	6.3	6.3	22.2	22.2	405	405	200	200	11.7
	DK1a-L2-12V-F	12	8.4	8.4	16.6	16.6	720	720	200	200	15.6
	DK1a-L2-24V-F	24	16.8	16.8	8.3	8.3	2,880	2,880	200	200	31.2
1 Form A 1 Form B	DK1a1b-L2-3V	3	2.1	2.1	66.6	66.6	45	45	200	200	3.9
	DK1a1b-L2-5V	5	3.5	3.5	40	40	125	125	200	200	6.5
	DK1a1b-L2-6V	6	4.2	4.2	33.3	33.3	180	180	200	200	7.8
	DK1a1b-L2-9V	9	6.3	6.3	22.2	22.2	405	405	200	200	11.7
	DK1a1b-L2-12V	12	8.4	8.4	16.6	16.6	720	720	200	200	15.6
	DK1a1b-L2-24V	24	16.8	16.8	8.3	8.3	2,880	2,880	200	200	31.2
2 Form A	DK2a-L2-3V	3	2.1	2.1	66.6	66.6	45	45	200	200	3.9
	DK2a-L2-5V	5	3.5	3.5	40	40	125	125	200	200	6.5
	DK2a-L2-6V	6	4.2	4.2	33.3	33.3	180	180	200	200	7.8
	DK2a-L2-9V	9	6.3	6.3	22.2	22.2	405	405	200	200	11.7
	DK2a-L2-12V	12	8.4	8.4	16.6	16.6	720	720	200	200	15.6
	DK2a-L2-24V	24	16.8	16.8	8.3	8.3	2,880	2,880	200	200	31.2

REFERENCE DATA

1.1 Form A type

7. Contact resistance (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Sample: DK1a-24V (50 pcs.)

2. 1 Form A 1 Form B type, 2 Form A type1. 1 Form A type

1. Maximum operating power

2. Operate/Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) Sample: DK1a1b-12V, 5 pcs.

3. Coil temperature rise

Sample: DK1a1b-12V, 5 pcs.
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

5. Ambient temperature characteristics

DIMENSIONS

1. 1 Form A type

Single side stable type

2 coil latching type

PC board pattern (Copper-side view)

2 coil latching (Reset condition)

Since this is a polarized relay, the connection to the coil should be done according to the above schematic.
2. 1 Form A 1 Form B type, 2 Form A type

Schematic (Bottom view)
<1 Form A 1 Form B type>
Single side stable $\quad 2$ coil latching (Deenergized condition) (Reset condition)

<2 Form A>
Single side stable $\quad 2$ coil latching (Deenergized condition) (Reset condition)

Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

DK relay socket

TYPES AND RELAY COMPATIBILITY

Relay		1 Form A		1 Form A 1 Form B, 2 Form A	
		Single side stable type	2 coil latching type	Single side stable type	2 coil latching type
1 Form A	Single side stable type	DK1a-PS	DK1a-PSL2	-	-
	2 coil latching type	-	DK1a-PSL2	-	-
1 Form A 1 Form B 2 Form A	Single side stable type	-	-	DK2a-PS	DK2a-PSL2
	2 coil latching type	-	-	-	DK2a-PSL2

SPECIFICATIONS

Breakdown voltage ${ }^{* 1}$	$4,000 \mathrm{Vrms}$ (Except the portion between coil terminals)
Insulation resistance	Min. $1,000 \mathrm{~m} \Omega$ (at 500 V DC)
Heat resistance	$150{ }^{\circ} \mathrm{C}$ (for 1 hour)
Max. continuous current	10 A (DK1a-PS, DK1a-PSL2), $8 \mathrm{~A}(\mathrm{DK2a-PS}, \mathrm{DK2a-PSL2)}$

Remarks

${ }^{*}$ Detection current: 10 mA

DIMENSIONS

PC board pattern (Copper-side view) 1 Form A

1 Form A 1 Form B

The above shows 2 coil latching type. No. 2 and 5 terminal are eliminated on single side stable type.

Tolerance: $\pm 0.1 \pm .004$

FIXING AND REMOVAL METHOD

1. Match the direction of relay and socket.

2. Both ends of the relay are to be secured firmly so that the socket hooks on the top surface of the relay.

3. Remove the relay, applying force in the direction shown below.

4. In case there is not enough space to grasp relay with fingers, use screwdrivers in the way shown below.

NOTES

1. Phase synchronization of AC-load switching
In case of switching the contact synchronized with phase of load voltage, the life of contact might be shorter or contact failure might be caused. Please confirm this matter in the actual system in this case. If necessary, the phase control would be recommended.

2. Soldering should be done under the following conditions:
$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 10 s
$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ within 5 s
$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ within 3s
