
Migrating from Series 2600 System
SourceMeter® Instruments to Series 2600A

Shorter product life and increased technology drive the need
for configurable test systems that maximize manufacturers’
investments. The introduction of the Series 2600A System
SourceMeter instruments updates the existing Series 2600
instruments to address the parallel test requirements and time-
critical applications of today’s test engineers.

Just what improvements were made? Table 1 provides an
overview of the significant differences between the Series 2600A
and the Series 2600.

Feature
Capability/performance

Series 2600 (non-A) Series 2600A

Built-in sweep
generation Using factory script only

Built-in ICLs to configure
linear, log, and list
sweeps. Tie directly to
trigger model for precise
timing control.

Flexible trigger model No Yes

Precision pulse timing

Minimum pulse width
= 200µs. Pulsing
synchronization limited
to maximum of two
channels. Pulse width
of SMUA must be 40µs
longer than pulse width
of SMUB.

Minimum pulse width =
100µs. Includes ability to
output synchronize pulses
from multiple nodes
without regard to pulse
width.

Pulsing in extended
operating area

Only on Models 2611,
2612

10A pulse capability on
all models

Parallel test

Only using multiple
TSP-Link networks.
Synchronization possible
only by external cabling
between digital I/O ports.

Asynchronous and
synchronous parallel test
possible within a single
TSP-Link network. No
additional cabling needed
for synchronization.

Single measure-only
reading rate to memory 10,000 readings/second 20,000 readings/second

USB memory storage No Yes

Lower wideband
source noise

Source noise varies by
model. Models 2601/02/
11/12 had higher source
noise than 2635/36.

Lower source noise
on Models 2601A/02A/
11A/12A to meet 2635/36
specifications. Source
noise for all models is less
than 20mVp-p (typical).

LAN interface with
software LXI triggering Not available Yes

Embedded web-based
software for quick, easy
testing

Not available Yes, and it’s free!

Table 1. Comparison of features/capabilities of the Series 2600 System
SourceMeter Instruments features vs. Series 2600A.

Current users of the Series 2600 SourceMeter instruments
will find migrating their applications to Series 2600A instruments
easy. Nearly all the commands for the Series 2600A are backward
compatible, so existing programs should run with little or
no modification. Better still, with some code modification to
support the new trigger model, the Series 2600A offers users

the potential to achieve throughput improvements, as well
as synchronization of source and measure operations across
multiple units.

To highlight the advantages the Series 2600A offers, this
application note considers new features in light of common
semiconductor test applications.

Built-In Sweep Generation Capabilities Enable
Faster Throughput and Precise Timing Control
Flexibility has been one of the advantages Series 2600
instruments provided. Such flexibility was due in part to their
independence from a rigid trigger model, which was common
to SCPI-based instrumentation. However, using a trigger model
has the benefit of more precise timing control over source and
measure operations. With the Series 2600A, Keithley introduces a
trigger model with far more flexibility and better timing control
than trigger models for other Keithley products and competitive
products. Series 2600A trigger latency (i.e., the period from
receipt of input trigger to source change) can be less than 10µs.
Additionally, users can achieve sub-microsecond synchronization
between source changes on a single unit or across a multi-unit
network connected via TSP-Link. Also, programming flexibility is
maintained because the user has the choice of operating outside
of the trigger model.

Built-in sweep generation functions to program linear,
log, and list sweeps easily in a single command statement
are provided in addition to the trigger model. Similar sweep
capability was available on the Series 2600 (non-A) but only by
using factory script functions or user-created loops that ramped
source levels and took measurements.

To understand the power of the new triggering and sweeping
capabilities of the Series 2600A, this application note now
considers the implementation of a Gummel test on a Bipolar
Junction Transistor (BJT). A simplified schematic of the test is in
Figure 1. Let’s first consider how the test would be performed
using a Model 2636 (non-A) SourceMeter instrument. Refer to the
appendix of this note for the test script to program a Model 2636
to perform a Gummel test.

The results of this test are plotted in Figure 2. The set-up
time is the time required to configure the source and measure
parameters of the SMU prior to executing the sweep. Therefore,
the set-up interval is required only once. Thereafter, the sweep
can be run as many times as the user desires. In this test, the
Model 2636 was configured to take measurements at very
short integration times (NPLC = 0.001), but default source

Number 2998

Application Note
Series

and measure delays were maintained for necessary settling on
low current ranges. For the Model 2636, the set-up time was
approximately 78ms. The test execution time was 91.9ms.

The same code was also run on a Model 2636A. That data is
also plotted in Figure 2. Note the excellent correlation between
the data produced by the two instruments. The Model 2636A
set-up times and test execution times are comparable to those of
the Model 2636.

Next, the Model 2636A is configured to perform a Gummel
test using the new sweeping functions and trigger model. See
the appendix for the test script to program the Model 2636A to
execute a Gummel test using the trigger model.

The results from this test are also plotted in Figure 2. Note
again how well the data correlates with the data taken with the
Model 2636.

The set-up time for the Model 2636A when using the trigger
model was approximately 88ms, slightly longer (by about 9ms)
when using the trigger model than without using the trigger
model. Again, however, note that this set-up interval is non-
recurring. Also, the increase in set-up time is offset by the
improvement in test execution time. The test execution time
when using the trigger model was 55.8ms, a test time reduction
of nearly 40%, using the same default source and measure
delays as the Model 2636. This example clearly shows the speed
advantage of the Series 2600A trigger model, even when making
low current measurements.

Achieve Precision Pulse Timing and
DC Bias Turn-On Sequencing

Precision Timing of DC Bias Turn-On Sequence

In many ICs and ASICs, the turn-on sequence of multiple power
supplies is critical. Equally important is the timing between
the turn-on of the various supplies. In Series 2600 (non-A)
instruments, the precision of the delay between the turn-on of
various power supplies was limited by the command execution
of sequential command lines. The following command sequence
might be used to program a 200µs delay between the turn-on of
SMUA and SMUB:
reset()
smua.source.levelv = 0
smub.source.levelv = 0
smua.source.output = smua.OUTPUT_ON
smub.source.output = smub.OUTPUT_ON
smua.source.levelv = 5
delay(200e-6)
smub.source.levelv = 3.5

Figure 3 shows the results of executing the preceding
sequence on a Model 2602. The actual delay is nearly 1.5ms,
more than 7 times the programmed value. Furthermore, the
command execution time is multiplied for each node connected
to the TSP-Link network.

Figure 3. DC Bias Sequencing with Model 2602. Desired delay was 200µs.
Actual delay was 1.45ms.

The Series 2600A trigger model allows the user to
preprogram source levels and delay times with accuracies on
the order of microseconds. The following command sequence
programs a 200µs delay between turn-on of SMUA and SMUB on
a Model 2602A.
reset()
smua.trigger.source.listv({5})
smua.trigger.source.action = smua.ENABLE
smub.trigger.source.listv({3.5})
smub.trigger.source.action = smub.ENABLE
--Program timer with a delay of 200us
trigger.timer[1].delay = 200e-6
trigger.timer[1].stimulus = smua.trigger.ARMED_EVENT_ID
trigger.timer[1].count = 1
trigger.timer[1].passthrough = false

10V
(SMU A) Start = 0V

 Stop = 0.7V
 # Points = 71

(SMU B)

C

E

B

V

+

–

Figure 1. SMU configuration for Gummel test on BJT

Gummel Plot on 2N3904

Ic
, I

b
(A

)

Vbe (V)
1.00E–13

1.00E–12

1.00E–11

1.00E–10

1.00E–09

1.00E–08

1.00E–07

1.00E–06

1.00E–05

1.00E–04

1.00E–03

1.00E–02

1.00E–01

1.00E+00
0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700

2636 Ib

2636 Ic

2636A Ic without Trigger Model

2636A Ib without Trigger Model

2636A Ib (A) with Trigger Model

2636A Ic (A) with Trigger Model

Figure 2. Gummel plot data using Models 2636 and 2636A.

smua.trigger.source.stimulus = 0
smub.trigger.source.stimulus = trigger.timer[1].EVENT_ID
smua.trigger.endsweep.action = smua.SOURCE_HOLD
smub.trigger.endsweep.action = smub.SOURCE_HOLD
smua.source.output = smua.OUTPUT_ON
smub.source.output = smub.OUTPUT_ON
smub.trigger.initiate()
smua.trigger.initiate()

The results of the preceding command sequence are captured
in Figure 4. Note that the delay between the channels is
approximately 196.8µs (measured at 50% amplitude of SMUA to
50% amplitude of SMUB).

Figure 4. DC bias sequencing with Model 2602. Desired delay was 200µs.
Actual delay was 196.8µs.

With Series 2600A instruments, a minimum delay time of
10µs seconds is possible.

Precision Pulsing in Diode Junction
Temperature Measurements

The precision timing made possible when using the Series 2600A
trigger model has advantages in applications that involve pulsing.
Consider, for instance, measuring the junction temperature
of diodes.

Junction temperature measurements are performed by
correlating device temperature to diode forward voltage drop.
The forward voltage is measured using very short current pulses
in order to avoid additional heating of the junction to capture
the true temperature of the junction. Short pulses are especially
important if the drive current is high, as is often the case with
high brightness LEDs.

All Series 2600A SourceMeter instruments provide 10A pulse
capability, which the original Models 2601 and 2602 did not.
Series 2600A instruments also cut the minimum pulse width of
the Series 2600 instruments in half, allowing users to program
pulses as short as 100µs. Moreover, pulses can now be precisely
synchronized in time over all nodes over a Series 2600A network.
Compare the dual channel pulse performance between Models
2612 and 2612A in Figures 5 and 6.

Figure 5. Two-channel 10A pulse into 100mW resistor. Shown are minimum
programmable pulse widths of 200µs and 240µs, created using KIPulse
scripts on a Model 2612.1

Figure 6. Two-channel 10A pulse into 100mW resistor. Minimum
programmable pulse width of 100µs shown, created using trigger model on
Model 2612A.

Other Significant Features/Enhancements

Asynchronous and Synchronous Parallel Testing

Parallel script execution is the ability to run scripts on remote
nodes in a TSP-Link network. When the Series 2600 was
originally introduced, scripts could only be executed on one
node of a TSP-Link network. That one node (the master node),
defined by a unique GPIB address, was capable of controlling
the source and measure actions of other nodes (remote nodes),
but such operations could only be performed sequentially. These
limitations made it impossible to obtain true parallel test in
a single TSP-Link network. Consequently, the use of TSP-Link
was largely abandoned for parallel test applications in favor of
separate GPIB communication cables to multiple nodes and

1	Previous software written for Series 2600 Instruments that uses KIPulse scripts works
without modification on Series 2600A Instruments.

triggering by means of a separate connection to the Series 2600
digital I/O port.

Series 2600A addresses the limitations of parallel test over
TSP-Link by enabling execution of scripts on remote nodes
of the TSP-Link network. Figure 7 illustrates one parallel test
application. Nodes can be configured into groups and a group
leader can execute scripts to control the operations of any node
in its group. Such group assignments are dynamic, making it
possible to test one device with a collection of SMUs and then
later reassign the same SMUs to different groups in order to
run tests on multiple devices independently. These assignments
are made using only software commands. Furthermore, the
Series 2600A trigger model makes it possible to synchronize
the source and measure actions across all nodes within
the TSP-Link network using hardware trigger signals in the
TSP-Link connection.

This flexibility of test configurations maximizes resource
utilization by allowing test engineers to regroup and reassign
SMUs quickly in preparation for testing a new device. Dynamic
configuration, coupled with the ability to perform tests in
parallel, lowers the cost of test by minimizing the time spent
changing hardware setups and allowing independent tests to run
on all SMUs simultaneously.

HI

LO
SMU A

Model 2602A
(Node 1)
(Group 1)

TSP-Link
HI

LO
SMU B

HI

LO
SMU A

Model 2636A
(Node 2)
(Group 2)

TSP-Link
HI

LO
SMU B

Node 1 executes a script that
performs I-V characterization on
two diodes.

At the same time, Node 2
executes a separate script that
performs I-V characterization on a
Bipolar Junction Transistor (BJT).

The different tests can be
configured to execute
asynchronously or synchronously
using hardware trigger signals in
the TSP-Link connection.

Figure 7. Example configuration for parallel script execution.

Easier Communication and Synchronization
with External Instruments

As mentioned previously, Series 2600A instruments connected
via TSP-Link offer enhanced triggering and synchronization
capabilities. Such synchronization also easily extends to other
TSP-based instruments using the three hardware synchronization
lines in the TSP-Link cable.

The Series 2600A trigger model also enables precise
triggering between the SMU and external non-TSP and non-
Keithley instruments. This is done by (1) low trigger latency for
digital I/O triggering and (2) LAN triggering:

Digital I/O Triggering: Trigger latency from receipt of 1.	
digital input trigger to start of source or measure change
has been reduced from 150µs on the Series 2600 to
10µs on the Series 2600A. This permits more precise
alignment of SMU operations with operations on external
instruments.

LAN triggering: Series 2600A instruments are LXI-C 2.	
compatible. Beyond basic LXI-C specifications,
however, Series 2600A includes software LAN triggers
that permit handshaking with LXI instruments with
triggering capability.

Command Compatibility with Programs
Written for Series 2600 Instruments
One cost aspect of implementing new test equipment includes
the cost for migrating existing, stable software programs to
support new products. These types of costs are significantly
minimized when migrating to Series 2600A SourceMeter
Instruments because these instruments are nearly 100%
command-compatible with software programs written for Series
2600 instruments. The minor differences between them are
outlined in the following paragraphs.

Script Management Changes
With Series 2600A instruments, scripts can be stored in internal
nonvolatile memory or in a memory device plugged into the
front panel USB port. To enable this USB storage functionality,
the save() function for scripts has been updated to allow
the user to specify a directory and filename. For example, the
following command can be used to save the script "myscript"
to a folder on the USB port named "test1" as a file named
"example1.tsp".

myscript.save("usb1/test1/example1.tsp")

It is no longer possible to save a script with a different name
using the save() function, as was possible with the Series 2600
(non-A). To save a script to a different name, the script must be
renamed before the save() function2 is called.

Make it more difficult to access script source code
Occasionally, programmers want to discourage other users
from accessing the source code of a script. In the Series 2600
instruments, the Binary Distribution example script (available on
www.keithley.com) could be used to make it difficult to read the
script source code. In the Series 2600A instruments, however,
the source code of a script can be deleted and still maintain the
ability to run the script. To delete the script source code, set the
source attribute of a script to nil. Afterward, reading the script
source code returns only the binary-encoded version of the code.
The following is an example of how to delete the source code
of the myScript. The results of attempts to retrieve the script
source code are included.
myScript.source = nil
print(myScript.source)

2	A script can be renamed by assigning a string to the script’s name attribute. The following
example renames the script "myscript" to "exampleScript".

	 myscript.name = "exampleScript"

	 Renaming a script does change the name of any variables that reference the script. When
a script is created using the loadscript function, the Series 2600/2600A SourceMeter
Instrument also creates a global variable with the same name. Generally, this global
variable is accessed in order to perform operations on the script. Therefore, in the
preceding example, the variable myscript still references the script with the new name
"exampleScript".

Series 2612A returns the following:
loadstring(table.concat(
{
 "\27LuaP\0\4\4\4\6\8\9\9\8A}\245\23h\147\9\182\0\
0\ 0\1\0\0\0",
 "\0\0\0\0\0\2\0\0\0\12\0\0\0\1\0\0\0\1\0\0\0\1\0\
0\0\2\0\0\0\2",
 "\0\0\0\2\0\0\0\3\0\0\0\3\0\0\0\3\0\0\0\4\0\0\0\4
\0\0\0\4\0\0",
 "\0\0\0\0\0\0\0\0\0\8\4\0\0\0\5smua\0\4\0\0\0\
7source\0\4\0\0",
 "\0\5func\0\3?\240\0\0\0\0\0\0\4\0\0\0\7leveli\0\
4\0\0\0\8mea",
 "sure\0\3\0\0\0\0\0\0\0\0\4\0\0\0\6sense\0\0\0\0\
0\0\0\0\12\0",
 "\0\0\5\0\0>\198\0~?I\0\0\0\5\0\0>\198\0\127?I\0\
0\0\5\0\0?\198",
 "\0~@\9\0\0\0\5\0\128\191I\0\0\128\27"
}
))()

Data Storage Changes

The 2× increase of the maximum measurement to memory
reading rate in the Series 2600A is sure to demand more reading
buffer storage. In addition to increasing the internal reading
buffer storage on the Series 2600A, a front panel USB port was
added to facilitate user access to more memory. Users can now
select from a variety of data storage devices in order to meet
their memory requirements without being limited by the Series
2600A’s internal memory allotment.

With the original Series 2600s, instrument data in dedicated
reading buffers (smua.nvbuffer1, smua.nvbuffer2, smub.
nvbuffer1, and smub.nvbuffer2) was automatically saved to
non-volatile memory. Series 2600A instruments require a specific
function call to save data in dedicated reading buffers. Use the
smuX.savebuffer function to save reading buffers to internal
memory or to a USB memory device. Specify a filename and
format (.csv or .xml) with the smuX.savebuffer function to
store to USB memory device. When smuX.savebuffer is called
without any parameters, the buffer is saved to the Series 2600A
internal nonvolatile memory.

Series 2600A reading buffers also have a different base
timestamp than reading buffers in Series 2600 instruments. The
base timestamp for Series 2600A instruments is in number of
seconds from 12:00 AM January 1, 1970.3 For Series 2600 reading
buffers, the base time stamp is the number of seconds since the
instrument was powered on.

Miscellaneous Changes

There are a few other differences of note between Series 2600
and Series 2600A instruments:

Double-precision math:•	 Series 2600 instruments
use single-precision floating point math. Series 2600A
instruments use double-precision floating point math.

3	The base timestamp of the reading buffer is different from timestamps element. The
base timestamp is a real-time reference for the first reading stored in the reading buffer.
The timestamps attribute of the reading buffer is an array of timestamps, in seconds for
each reading of the reading buffer. These timestamps are relative to the base timestamp.
Therefore, the timestamp for the first reading stored in the buffer is always zero seconds.

This is important to note if the existing software program
was written in a way as to be susceptible to roundoff or
truncation error. Typical ramifications include:

–	 Different exit behaviors for conditional loops. For
example, assume a loop is programmed to exit when
(voltage <1.0). A measured value of 0.999999990
would continue looping in double-precision, but exit in
single-precision.

–	 Slightly different results for calculated parameters and
mathematical values. This includes interpolated or
extrapolated values (such as threshold voltage); values
from numerical differential or slope calculations (such as
transconductance); or numerically integrated values (such
as charge calculated by integrating measured current).

reset()•	 command: Issuing a reset() on the Series
2600A is far more comprehensive than on Series 2600
instruments. Some properties have different default states.
For example, the default trigger mode for digital I/O lines
is now TRIG_BYPASS, which permits direct read and write
to digital I/O lines. On firmware version 1.3.4 and earlier,
the default mode for Series 2600 (non-A) instruments was
TRIG_FALLING. To send and receive triggers on the Series
2600A digital I/O lines, the mode must be explicitly set for
one of the supported hardware trigger modes.

Updating of factory scripts:•	 Any software programs
that call functions created in Keithley factory scripts are
backward compatible. Moreover, users can access the source
code for all factory scripts, including KI Pulse functions.
Many of the factory script functions have been rewritten
to utilize new features of Series 2600A instruments, such
as the trigger model. This source code can serve as an
excellent set of examples for users who need to write
similar functions and scripts for their own applications.

Conclusion
Keithley’s release of Series 2600A represents a commitment
to meet the ever-expanding needs of today’s test engineers.
The high level of command compatibility between the Series
2600 and Series 2600A allows test engineers to maintain
their existing test stands but still invest in new technology.
Engineers can prepare to unlock new Series 2600A capabilities
at times convenient in their test processes. Implementing these
enhancements allows for potential throughput enhancement,
precise timing of source and measure actions, dynamic test
configurations, and improved parallel test capabilities.

Appendix

Series 2600-Compatible Code
for BJT Gummel Plot test
function Gummel(vbestart, vbestop, vbesteps, vcebias)
--[[Configure SMUB to perform a voltage sweep on
the base (Vbe) from start to stop in a user defined
number of steps while SMUA performs a fixed voltage
bias on the collector-emitter. Returns measured Ib,

Ic, and Vbe.]]--

--Global variables
timer.reset() –- Reset timer to start setup timer.
local l_icmpl = 100E-3 --Source compliance
		
--Shared local variables
local l_nplc = 0.001 --Integration rate of
measurement

--Local sweep variables
local l_vbestart = vbestart --Base sweep start
voltage
local l_vbestop = vbestop --Base sweep stop voltage
local l_vbesteps = vbesteps --Number of steps in
sweep

local l_vcebias = vcebias --Collector-emitter voltage

--Calculate Vbe step size
local l_vbestep = (l_vbestop - l_vbestart)/ (l_
vbesteps - 1)
local l_vbesource_val = l_vbestart --Source value
during sweep
local l_vbe_i = 1 --Iteration variable
	
--Data tables
local l_vbe = {} --Create data table for sourced
voltage
local l_ic = {} --Create data table for Ic
local l_ib = {} --Create data table for Ib

smua.reset() --Reset SMU
smub.reset() --Reset SMU
	
errorqueue.clear() --Clear the error queue
	
--Configure Collector/Emitter (SMUA) source and
measure settings
smua.source.func = smua.OUTPUT_DCVOLTS
smua.source.autorangev = smua.AUTORANGE_ON --Enable
source autorange
smua.source.levelv = 0
smua.source.limiti = l_icmpl
smua.measure.autorangei = smua.AUTORANGE_ON --Enable
measure autorange

smua.measure.autozero = smua.AUTOZERO_ONCE
smua.measure.nplc = l_nplc --Measurement integration
rate
 	
smua.source.output = smua.OUTPUT_ON --Enable Output

--Configure Base (SMUB) source and measure settings
smub.source.func = smub.OUTPUT_DCVOLTS
smub.source.autorangev = smub.AUTORANGE_ON --Enable
source autorange
smub.source.levelv = 0
smub.source.limiti = l_icmpl
smub.measure.autorangev = smub.AUTORANGE_ON --Enable
measure autorange

smub.measure.autozero = smub.AUTOZERO_ONCE
smub.measure.nplc = l_nplc --Measurement integration
rate
 	
smub.source.output = smub.OUTPUT_ON --Enable Output

smua.source.levelv = l_vce_bias
 	
local setuptime = timer.measure.t() –- Capture setup
time
print("Setup Time = "..setuptime)
--End setup

 	
timer.reset() -- Reset timer to start test execution
timer
--Execute sweep
for l_vbe_i = 1,l_vbesteps do
 		
if (l_vbe_i == 1) then --Intialize start source value
		 l_vbesource_val = l_vbestart
	 end --if
			
	 delay(0.01) --Delay
	 l_vbe[l_vbe_i] = smub.measure.v() --Measure Vbe
	 l_ib[l_vbe_i] = smub.measure.i() --Measure Ib
	 l_ic[l_vbe_i] = smua.measure.i() --Measure Ic
		
	 l_vbesource_val = l_vbesource_val + l_vbestep
--Calculate new source value
				 		
 		
	 if (l_vbe_i == l_vbesteps) then --Reinitialize
voltage value after last iteration
		 l_vbesource_val = l_vbestart
	 end --if
				
		 smub.source.levelv = l_vbesource_val --Increment
source
end --for
 	 	
smua.source.output = smua.OUTPUT_OFF --Disable output
smub.source.output = smub.OUTPUT_OFF --Disable output
	
smua.source.levelv = 0 --Return source to bias level
smub.source.levelv = 0 --Return source to bias level	

local total_test_time = timer.measure.t()	
print("Total Test Time = "..total_test_time)
 	
end--function Gummel()

--Use following command to run Gummel test
Gummel(0,0.7,71,10)

Series 2600A Code for BJT Gummel
Plot Test (Uses Trigger Model)
function Gummel(vbestart, vbestop, vbesteps, vcebias)
--[[Configure SMUB to perform a voltage sweep on
the base (Vbe) from start to stop in a user defined
number of steps while SMUA performs a fixed voltage
bias on the collector-emitter. Returns measured Ib,
Ic, and Vbe.]]--

--Global variables
timer.reset() -- Reset timer
local l_icmpl = 100E-3 --Source compliance
		
--Shared local variables
local l_nplc = 0.001 --Integration rate of
measurement

--Local sweep variables
local l_vbestart = vbestart --Base sweep start
voltage
local l_vbestop = vbestop --Base sweep stop voltage
local l_vbesteps = vbesteps --Number of steps in
sweep
	
local l_vcebias = vcebias --Collector-emitter voltage

local l_vbestep = (l_vbestop - l_vbestart)/ (l_
vbesteps - 1) --Vbe step size
local l_vbesource_val = l_vbestart --Source value

during sweep
local l_vbe_i = 1 --Iteration variable

smua.reset() --Reset SMU
smub.reset() --Reset SMU
	
errorqueue.clear() --Clear the error queue
	
trigger.blender[1].clear()
--[[Initialize reading buffers by clearing and
setting them to append mode, collect time stamps and
source values]]--
smua.nvbuffer1.clear()
smua.nvbuffer2.clear()
smua.nvbuffer1.appendmode = 1
smua.nvbuffer2.appendmode = 1
smua.nvbuffer1.collectsourcevalues = 1
smua.nvbuffer2.collectsourcevalues = 1
smua.nvbuffer1.collecttimestamps = 1
smua.nvbuffer2.collecttimestamps = 1
smua.makebuffer(l_vbesteps)
	
smub.nvbuffer1.clear()
smub.nvbuffer2.clear()
smub.nvbuffer1.appendmode = 1
smub.nvbuffer2.appendmode = 1
smub.nvbuffer1.collectsourcevalues = 1
smub.nvbuffer2.collectsourcevalues = 1
smub.nvbuffer1.collecttimestamps = 1
smub.nvbuffer2.collecttimestamps = 1
smub.makebuffer(l_vbesteps)

--[[Configure Sweeping SMUB]]--
smub.trigger.arm.stimulus = 0
smub.trigger.source.stimulus = 0
smub.trigger.endpulse.stimulus = trigger.blender[1].
EVENT_ID
smub.trigger.measure.stimulus = smub.trigger.SOURCE_
COMPLETE_EVENT_ID
smub.trigger.endpulse.action = smub.SOURCE_HOLD
smub.trigger.endsweep.action = smub.SOURCE_IDLE
smub.trigger.arm.count = 1
smub.trigger.count = l_vbesteps
smub.trigger.measure.action = smub.ENABLE
smub.trigger.source.action = smub.ENABLE

--[[Configure SMUA]]—
smua.trigger.arm.stimulus = 0 	
smua.trigger.source.stimulus = 0
smua.trigger.endpulse.stimulus = 0
smua.trigger.measure.stimulus = smub.trigger.SOURCE_
COMPLETE_EVENT_ID
smua.trigger.endpulse.action = smua.SOURCE_HOLD
smua.trigger.endsweep.action = smua.SOURCE_IDLE
smua.trigger.arm.count = 1
smua.trigger.count = l_vbesteps
smua.trigger.measure.action = smua.ENABLE
smua.trigger.source.action = smua.ENABLE
	
trigger.blender[1].orenable = false --{set to false
for AND mode }
	
trigger.blender[1].stimulus[1] = smua.trigger.MEASURE_
COMPLETE_EVENT_ID
trigger.blender[1].stimulus[2] = smub.trigger.MEASURE_
COMPLETE_EVENT_ID
	
--Configure Collector/Emitter (SMUA) source and
measure settings
smua.source.func = smua.OUTPUT_DCVOLTS
smua.source.autorangev = smua.AUTORANGE_ON --Disable
source autorange
smua.source.levelv = 0
smua.source.limiti = l_icmpl

smua.measure.autorangei = smua.AUTORANGE_ON --Disable
measure autorange
smua.measure.autozero = smua.AUTOZERO_ONCE
smua.measure.nplc = l_nplc --Measurement integration
rate
smua.measure.count = 1
smua.source.delay = 0
smua.sense = smua.SENSE_LOCAL

smua.trigger.source.linearv(l_vce_bias, l_vce_bias,
l_vbesteps)

--Configure Base (SMUB) source and measure settings
smub.source.func = smub.OUTPUT_DCVOLTS
smub.source.autorangev = smub.AUTORANGE_ON --Enable
source autorange
smub.source.levelv = 0.0
smub.source.limiti = l_icmpl
smub.measure.autorangei = smub.AUTORANGE_ON --Enable
measure autorange
smub.measure.autozero = smub.AUTOZERO_ONCE
smub.measure.nplc = l_nplc --Measurement integration
rate
smub.source.delay = 0
smub.measure.count = 1

smub.trigger.source.linearv(l_vbestart, l_vbestop, l_
vbesteps)
smub.sense = smub.SENSE_LOCAL

--[[Turn SMUs ON, enable Output]]--
smua.source.output = smua.OUTPUT_ON --Enable Output
smub.source.output = smub.OUTPUT_ON --Enable Output

smua.source.levelv = l_vce_bias
 	
local setuptime = timer.measure.t()
print("Setup Time = "..setuptime) 	 --End setup
 	
timer.reset() -- Reset timer

--[[Initiates the steping and sweeping smus	
]]--
smua.trigger.initiate()
smub.trigger.initiate()
	
--[[Waits for the sweeps to complete]]--
waitcomplete()

--[[Diasble Output]] --
smua.source.output = smua.OUTPUT_OFF --Disable output
smub.source.output = smub.OUTPUT_OFF --Disable output
	
smua.source.levelv = 0 --Return source to bias level
smub.source.levelv = 0 --Return source to bias level	

	
local total_test_time = timer.measure.t()
print("Total Test Time = "..total_test_time)
	
end--function Gummel()

--Use following command to run Gummel test
Gummel(0,0.7,71,10)

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Keithley Instruments, Inc. ■ 28775 Aurora Road ■ Cleveland, Ohio 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com

Belgium
Sint-Pieters-Leeuw
Ph: 02-3630040
Fax: 02-3630064
info@keithley.nl
www.keithley.nl

china
Beijing
Ph: 8610-82255010
Fax: 8610-82255018
china@keithley.com
www.keithley.com.cn

finland
Espoo
Ph: 09-88171661
Fax: 09-88171662
finland@keithley.com
www.keithley.com

france
Saint-Aubin
Ph: 01-64532020
Fax: 01-60117726
info@keithley.fr
www.keithley.fr

germany
Germering
Ph: 089-84930740
Fax: 089-84930734
info@keithley.de
www.keithley.de

india
Bangalore
Ph: 080-26771071,-72,-73
Fax: 080-26771076
support_india@keithley.com
www.keithley.com

italy
Peschiera Borromeo (Mi)
Ph: 02-5538421
Fax: 02-55384228
info@keithley.it
www.keithley.it

japan
Tokyo
Ph: 81-3-5733-7555
Fax: 81-3-5733-7556
info.jp@keithley.com
www.keithley.jp

korea
Seoul
Ph: 82-2-574-7778
Fax: 82-2-574-7838
keithley@keithley.co.kr
www.keithley.co.kr

Malaysia
Penang
Ph: 60-4-643-9679
Fax: 60-4-643-3794
chan_patrick@keithley.com
www.keithley.com

netherlands
Gorinchem
Ph: 0183-635333
Fax: 0183-630821
info@keithley.nl
www.keithley.nl

singapore
Singapore
Ph: 65-6747-9077
Fax: 65-6747-2991
koh_william@keithley.com
www.keithley.com.sg

sweden
Stenungsund
Ph: 08-50904600
Fax: 08-6552610
sweden@keithley.com
www.keithley.com

Switzerland
Zürich
Ph: 044-8219444
Fax: 044-8203081
info@keithley.ch
www.keithley.ch

taiwan
Hsinchu
Ph: 886-3-572-9077
Fax: 886-3-572-9031
info_tw@keithley.com
www.keithley.com.tw

UNITED KINGDOM
Theale
Ph: 0118-9297500
Fax: 0118-9297519
info@keithley.co.uk
www.keithley.co.uk

© Copyright 2009 Keithley Instruments, Inc. Printed in the U.S.A. No. 2998 4.17.09

