
Number 2633

Diode Production Testing with Series
2600 System SourceMeter® Instruments

Application Note
Series

Introduction
Performing single-point pass/fail DC tests on packaged diodes is
critical to ensure compliance with manufacturers’ specifications
and weed out defective devices before they are shipped. Most
types of diodes undergo at least three basic DC parametric tests
during this final inspection process: the Forward Voltage Test
(VF), Breakdown Voltage Test (VR), and Leakage Current Test
(IR). While the reliability of these tests is essential to ensuring
product quality, it’s equally important that they be conducted
quickly to maintain high production throughput.

At one time, test engineers needed several instruments
to make these tests, such as a DMM, voltage source, and cur-
rent source. Such multi-instrument systems consume valuable
rack space and can limit test throughput rates. Using multiple
measurement instruments and sources makes trigger timing
more complex and can lead to increased triggering uncertainty.
Coordinating the operation of separate instruments can extend
the measurement cycle by increasing the amount of bus traffic
required. Additionally, three separate instruments also mean
there are three sets of commands to learn, complicating system
programming and maintenance.

Keithley’s Series 2400 SourceMeter instruments are widely
used for diode production testing because they enable test engi-
neers to configure a test system using a single instrument that
can source and measure both current and voltage. Another appli-
cation note (#1805) describes how to implement the diode tests
using the Series 2400’s source memory sweep feature, which is
a powerful test sequencer featuring advanced math, automatic
limit inspection, and conditional branching capabilities.

This application note describes how to implement a diode
test system using Keithley’s new Series 2600 System SourceMeter
instruments. This next-generation SourceMeter family includes
the single-channel Model 2601 and dual-channel Model 2602.
With a built-in Test Script Processor (TSP™) and a new inter-unit
communication interface (TSP-Link™), Series 2600 instruments
offer even more power and flexibility than their predecessors.

This application note outlines the three basic parametric
tests for diodes and algorithms for both the test system and
SourceMeter remote operation. In addition to the three paramet-
ric tests (also referred to as functional tests), this note describes
how to perform polarity testing on the diode, which is often
required on many of the newer surface mount diode packages,
such as the Small Outline Diode (SOD) package. Such diodes
don’t orient themselves automatically in the same direction in
a component handler, so the polarity of the device must some-

times be determined before beginning the full functional test
sequence. The results of the polarity test can be used in one
of two ways: the functional test parameters can be adjusted to
account for the orientation of the diode (i.e., using reversed
polarity test signals and adjusting data inspection accordingly) or
the handler can be triggered to rotate the device before function-
al testing begins. The choice between the two options usually
depends on the capability of the handler.

The example program (script) discussed in this note is avail-
able from Keithley’s web site. See the section on “Obtaining
Example Scripts” to learn how to obtain a copy of this and other
example scripts.

Test Descriptions
Figure 1 illustrates the test points for each of the tests described.

Vf test

V

I

VR test

IR test

Figure 1.	 Typical Diode I-V Curve and Test Points (not to scale)

Polarity Test

The polarity test is designed to determine the orientation of the
diode safely and quickly prior to performing functional tests
on the device. The breakdown characteristics of the diode are
used to generate an indication of the diode’s polarity. By prop-
erly choosing a test current level and voltage compliance limit,
it’s possible to distinguish a correctly oriented forward-biased
diode from an incorrectly oriented reverse-biased diode. If a
positive current is sourced through a properly oriented diode,
the diode will be forward-biased and the resulting forward volt-
age will generally be small (typically less than 1V). If the same
test current is forced through a diode with reversed orientation,
then the diode will be reverse-biased and the resulting reverse
voltage will be much higher than the forward voltage and will
easily exceed the compliance limit. Thus, by simply checking the

compliance state of the instrument, it’s possible to determine if
the diode is in the forward or reverse orientation. If compliance
is reached, the diode is in reversed orientation; otherwise, it’s in
forward orientation. It would be possible to perform this test by
actually measuring the voltage drop across the diode and com-
paring it to forward- and reverse-biased limits, but simply check-
ing for compliance is generally faster.

Forward Voltage Test (VF)
This functional test involves sourcing a specified forward bias
current within the normal operating range of the diode, then
measuring the resulting voltage drop after a specified period
of time (e.g., 1ms). To pass the test, the voltage must be within
specified minimum and maximum values (e.g., VF = 0.8V ± 5%).

Reverse Breakdown Voltage Test (VR)
In this test, a specified reverse current bias is sourced and the
resulting voltage drop across the diode is measured after a speci-
fied period of time (e.g., 1ms). To determine whether the diodes
pass or fail, the measurements are compared to a specified mini-
mum limit (e.g., VR ≤ –100V or |VR| ≥ 100V).

Leakage Current Test (IR)
The leakage test verifies the low level of current that leaks across
the diode under reverse voltage conditions. For this test, a speci-
fied reverse voltage is sourced for a specified period of time (e.g.,
10ms), and then the resulting leakage current is measured. Good
diodes will have a leakage current that doesn’t exceed a specified
maximum value (e.g., –10nA ≤ IR ≤ 0 or |IR| ≤ 10nA).

Test System Configuration

PC GPIB
Component Handler

RS-232

SMU A

260X SourceMeter

SMU B

Digital I/O

Test Fixture

Digital I/O
Mechanical
Connection

HI

LO

Control &
Triggers

*

*Diode shown in
FORWARD orientation

Figure 2.	 Block diagram of a SourceMeter-based system for diode production
testing.

The diode or diode package is placed in a test fixture and
connections are made to the input of the SourceMeter instru-
ment. Depending on their packaging, many diodes are photo-
sensitive. To prevent generating unwanted currents, use a test
fixture that shields the diode from light. The SourceMeter instru-
ment biases and measures the diode. The measurements are then
compared to pre-specified limits in the instrument and pass/fail
determinations are made. The 260X can be controlled like a typi-
cal programmable instrument by sending it discrete commands

via the IEEE-488 bus (GPIB) or RS-232. However, for maximum
throughput, a complete test script can be downloaded to the
instrument’s Test Script Processor, which can then perform
the complete test virtually independent of the host PC (system
controller).

Output signals from the SourceMeter instrument’s digital I/O
port are used for interfacing with the handler to initiate diode
orientation and/or binning. The instrument is equipped with 14
digital input/output lines, which can be used for digital control
or as input or output trigger lines. Each digital output code con-
veys a message, such as “part is good,” “part is bad,” “turn part,”
etc. As shown in Figure 2, a 260X SourceMeter instrument can
even communicate with a handler directly via its RS-232 serial
port if necessary (assuming it isn’t connected to the PC). The
ability of the SourceMeter instrument to interface directly with
the component handler frees the PC during handler control
operations. This makes it possible for the computer to download
and store test data while a new diode or diode package is being
positioned in the test fixture. On the other hand, the 260X has
very deep memory, which can eliminate the need to transfer data
after each diode. Each SMU channel has two nonvolatile buffers,
which can each hold up to 100,000 readings, and there is also
volatile memory available for even more data storage.

The three algorithms that follow describe diode testing for
three different scenarios, depending on handler capability and
diode package.

Diode Polarity Known
The following algorithm describes the operation of a Model
260X-based diode production test system to perform the meas-
urements described when the polarity of the diode is known
prior to functional testing.

1.	 Operator indicates to the PC that a diode production lot is in
place and ready for test.

2.	 The PC initiates 260X operation over the IEEE-488 bus (GPIB)
or RS-232 (see “Remote Operation…”). Note that the 260X
can be configured to allow the operator to make selections
at its front panel, possibly precluding the need for the PC to
initiate the action.

3.	 The 260X waits for a Start-of-Test (SOT) trigger from the
handler.

4.	 When the first diode is in position, the handler sends an SOT
trigger signal to the 260X, indicating the first diode is ready
for testing.

5.	 The 260X runs the diode functional tests in the order dictat-
ed by the test executive, makes pass/fail determinations, and
saves data for each test.

6.	 The 260X sends an overall pass/fail code and End-of-Test
(EOT) signal to handler and sends test data to the PC (opera-
tions occur in parallel).

7.	 Repeat Steps 3 through 6 for the remainder of the diodes in
the lot.

8.	 The 260X returns to the idle state. Operator installs a new lot
of diodes in the handler.

9.	 Repeat Steps 1 through 8 as required.

Diode Polarity/Orientation Unknown –
Component Handler Can Turn Device

The following algorithm describes the operation of a Model
260X-based diode production test system to perform the meas-
urements described when the polarity of the diode is unknown
prior to functional testing and the handler can turn the diode
end-for-end.

1.	 Operator indicates to the PC that a diode production lot is in
place and ready for test.

2.	 The PC initiates 260X operation over GPIB or RS-232 (see
“Remote Operation…”).

3.	 The 260X waits for a Start-of-Test (SOT) trigger from the
handler.

4.	 When the first diode is in position, the handler sends an SOT
trigger signal to the 260X, indicating the first diode is ready
for testing.

5.	 The 260X executes the polarity test. If the diode is verified in
forward polarity, the 260X proceeds with the functional tests
(Step 6). If it’s in reverse polarity, a signal is sent to the han-
dler to turn the device and return to Step 4.

6.	 Once the diode is in the proper orientation, the 260X runs
the diode functional tests in the order dictated by the test
executive, makes pass/fail determinations, and saves data for
each test.

7.	 The 260X sends an overall pass/fail code and End-of-Test
(EOT) signal to the handler and sends test data to the PC
(operations occur in parallel).

8.	 Repeat Steps 3 through 7 for the remainder of diodes in
the lot.

9.	 The 260X returns to the idle state. Operator installs a new lot
of diodes in the handler.

10.	Repeat Steps 1 through 9 as required.

Diode Polarity/Orientation Unknown –
Component Handler Can’t Turn Device

This algorithm is slightly different from the previous one. It
describes the operation of a diode production test system to per-
form the measurements described when the polarity of the diode
is unknown prior to functional testing and the handler can’t turn
the device under test.

1.	 Operator indicates to the PC that a diode production lot is in
place and ready for test.

2.	 The PC initiates 260X operation over the GPIB or RS-232 (see
“Remote Operation…”).

3.	 The 260X waits for a Start-of-Test (SOT) trigger from the
handler.

4.	 When the first diode is in position, the handler sends an SOT
trigger signal to the 260X, indicating the first diode is ready
for testing.

5.	 The 260X executes the polarity test. If the diode is forward-
biased, then the 260X proceeds with the functional tests
using forward polarity parameters. If it’s reverse-biased, then
the 260X runs tests using reverse polarity parameters.

6.	 Depending on the results of the polarity test, the 260X runs
either the forward polarity diode functional tests or the
reverse polarity diode tests in the order dictated by the test
executive. It makes pass/fail determinations and saves data for
each test.

7.	 The 260X sends an overall pass/fail code, diode polarity indi-
cator, and End-of-Test (EOT) signal to the handler and sends
test data to the PC (operations occur in parallel).

8.	 Repeat Steps 3 through 7 for the remainder of diodes in lot.

9.	 The 260X returns to the idle state. Operator installs a new lot
of diodes in the handler.

10.	Repeat Steps 1 through 9 as required.

Remote Operation and Using the
Test Script Processor
Series 2600 System SourceMeter instruments have a powerful
embedded computer or Test Script Processor (TSP™), which
offers capabilities never seen before in rack-and-stack instru-
ments. A complete test program (script) can be downloaded
to the TSP. As with other common programming languages, a
well-designed script creates reusable functions or subroutines,
which can be called by a test executive or other functions. It’s
possible to pass parameters to these functions. In the diode test
example presented here, functions are created to perform the
polarity test and various functional tests, to inspect the data, and
to return the results. These functions can be called from a test
executive in the system controller PC or, as in this example, from
a test executive function, which resides in the TSP. The script,
which creates these functions, must be downloaded to the 260X
using either GPIB or RS-232. When the script is first downloaded,
it’s stored in volatile memory. However, it can be saved to non-
volatile memory if desired. The script must be run to create the
functions. These functions always reside in volatile memory,
which means they must be recreated any time power is cycled.
The creation script can be explicitly run at any time or it can be
set to run automatically at power-up. The test executive function
determines the order in which the various tests are executed.
The executive is written in such a way that it will wait for an SOT
trigger from the handler or the system controller PC. In response
to the single trigger, the instrument executes the test sequence
without system controller intervention, thereby saving communi-
cations time and increasing system throughput.

A script can be created using any text editor. However,
Keithley provides a free application called Test Script Builder,
which can be used to create, debug, and organize scripts. Test

Script Builder can download scripts to volatile instrument mem-
ory or save them in nonvolatile instrument memory. It can also
run the scripts. Scripts can also be loaded and run using appli-
cations created in other languages, such as Visual Basic, Visual
C/C++, or LabVIEW. Once the script is in memory, it can even be
run from the front panel.

All measurements, calculations and inspections can be
performed by the 2602, so it isn’t necessary to send data to a
host computer for processing. However, it’s possible to do so
if desired for recordkeeping or other purposes. As seen in the
example script, “print” statements are used to send data back
to the system controller (host computer). The data listed in the
print statement is placed in the instrument’s output queue for
retrieval by the host. The output queue can hold up to 1000
print responses or a maximum of 32 kilobytes, whichever is less.
If the output queue is allowed to fill up before all print actions
have completed, program execution will be held up until there
is room in the output queue for the additional data. Therefore,
to ensure that a program will operate quickly, the output queue
should be read often enough to avoid overloading it.

There are no set rules for partitioning a test program
between the TSP and a system controller because one must con-
sider the complete test system to determine how partitioning
may simplify system control and improve system throughput.
The significant thing is that the 260X family gives the test engi-
neer the option to consider such partitioning, thus providing a
new level of design flexibility for rack-and-stack instruments.

Diode Test Example Script
For the following example, it’s assumed that it’s necessary to per-
form a polarity test. As described earlier, the actions that must be
taken after performing the polarity test depend on the capabil-
ity of the handler. If the diode is in reverse orientation and the
handler can physically turn the part, then an appropriate digital
control signal would be sent to the handler to tell it to turn the
diode. If the handler can’t turn the part, then it’s necessary to
use test signals appropriate for the forward- and reversed-bias
conditions. The example is based on the latter situation.

The diode test script creates the following functions:

1.	 ChkPolarity(smu, irange, ilevel, srcdelay, vcmpl)

2.	 Vfwd_Vrev(smu, irange, ilevel, srcdelay, vcmpl)

3.	 Ileakage(smu, vrange, vlevel, srcdelay, icmpl)

4.	 TestStatus(testvalue, lolim, hilim)

5.	 TestFail(teststatus)

6.	 PartStatus(tst1fail, tst2fail, tst3fail)

7.	 BinPart(tst1fail, tst2fail, tst3fail)

8.	 DisplayTestStatus(testname, teststatus)

9.	 DisplayPartStatus(partstatus, bins)

10.	DiodeTest(smu, ndiodes, speed)

The script excerpts that follow don’t necessarily list the entire
function. Rather, they just show the basic commands and code
structure required to perform a particular test or series of tests.
The actual diode test script contains the complete functions, as
well as many comments and notations, which explain what the
script does. Comments are identified by a double dash (--).

As one might expect, the function ChkPolarity() performs
the polarity check test. The parameters passed to the function
enable the user to specify the source current range, the test cur-
rent level, the delay before checking the compliance state, and
the voltage compliance level. The user can also select the source-
measure unit (SMU) to use for the test. The Model 2601 has only
one SMU, “smua,” and the Model 2602 has two SMUs, “smua”
and “smub.” After performing the compliance check, the function
returns either “FWD” or “REV” to the calling function or host
program, indicating whether the diode is in the forward orienta-
tion or the reverse orientation. The 260X SourceMeter instru-
ments don’t use SCPI (Standard Commands for Programmable
Instruments). However, the commands included in the
Instrument Control Language (ICL) are similar to many instru-
ment driver attributes and functions. Their plain English syntax
makes them easy to learn, even for first-time users of the instru-
ment. Keithley Application Note #2616, “Converting a Series
2400 SourceMeter SCPI Application to a Series 2600 System
SourceMeter Script Application,” shows how straightforward it is
to move from one command language to another.

function ChkPolarity(smu, irange, ilevel, srcdelay, vcmpl)

	 -- Default to smua if no smu is specified.
	 if smu == nil then smu = smua end
	
	 -- Temporary variables used by this function.
	 local l_testcurrent, l_incompliance, l_polarity

	 -- Configure source and measure settings
	 smu.source.func = smu.OUTPUT_DCAMPS
	 smu.source.rangei = irange
	 smu.source.leveli = ilevel
	 smu.source.limitv = vcmpl

	 -- Wait before making measurement
	 delay(srcdelay)
	 -- Check compliance attribute (i.e., state); returns boolean true or false
	 l_incompliance = smu.source.compliance
	
	 if l_incompliance then	 -- if source is in compliance, then
		 l_polarity = “REV”	 -- diode is reverse biased (reversed orientation)
	 else	 -- otherwise
		 l_polarity = “FWD”	 -- diode is forward biased (forward orientation)
	 end --if
	
	 return l_polarity

end --function ChkPolarity

The forward voltage and reverse voltage breakdown tests both require measuring the voltage drop across the diode developed in
response to an applied test current. The most significant difference is that for a diode in the forward orientation, the forward voltage
test requires a positive applied test current and the reverse voltage test requires a negative applied test current. For a diode in the
reverse orientation, the exact opposite test current polarities are required. Therefore a single function, Vfwd_Vrev(), can be used for
both the forward and reverse voltage tests. The passed parameters enable the user to specify the SMU, the source current range, the
test current level, the delay before measuring the voltage, and the voltage compliance level. In this example, the compliance level is
also used to determine the voltage measurement range, but another range could be selected if desired. Finally, the function returns
both the measured value of the test current and the measured value of the forward or reverse voltage to the calling function or host
program, where the voltage value is inspected. The test current is measured to demonstrate the “source readback” capability of the
instrument. This enables the user to verify the actual value of the test current. However, if the source accuracy alone is sufficient to
meet test requirements, then the current measurement can be eliminated.

function Vfwd_Vrev(smu, irange, ilevel, srcdelay, vcmpl)

	 -- Default to smua if no smu is specified.
	 if smu == nil then smu = smua end
	
	 -- Temporary variables used by this function.
	 local l_testcurrent, l_vmeasured

	 -- Configure source and measure settings
	 smu.source.func = smu.OUTPUT_DCAMPS
	 smu.source.rangei = irange
	 smu.source.leveli = ilevel
	 smu.source.limitv = vcmpl
	 smu.measure.rangev = vcmpl

	 -- Wait before making measurement
	 delay(srcdelay)
	
	 -- Measure current and voltage
	 l_testcurrent, l_vmeasured = smu.measure.iv()	
 	 return l_vmeasured, l_testcurrent
end --function Vfwd_Vrev

The function Ileakage() performs the leakage current measurement when the diode is reverse-biased. The parameters passed to
the function specify the SMU, the source voltage range, the test voltage level, the delay before measuring the current and the current
compliance level. The compliance level is used to determine the measurement range, but as before, another current range could be
selected. Finally, if the source accuracy alone is sufficient to meet test requirements, then the voltage measurement can be eliminated.

function Ileakage(smu, vrange, vlevel, srcdelay, icmpl)
	 -- Default to smua if no smu is specified.
	 if smu == nil then smu = smua end

	 -- Temporary variables used by this function.
	 local l_testvoltage, l_imeasured

	 -- Configure source and measure settings
	 smu.source.func = smu.OUTPUT_DCVOLTS
	 smu.source.rangev = vrange
	 smu.source.levelv = vlevel
	 smu.source.limiti = icmpl
	 smu.measure.rangei = icmpl

	 -- Wait before making measurement
	 delay(srcdelay)
	
	 -- Measure current and voltage
	 l_imeasured, l_testvoltage = smu.measure.iv()	

	 --Set source output to 0
	 smu.source.levelv = 0
		
	 return l_testvoltage, l_imeasured

end --function Ileakage

The functions TestStatus() and PartStatus() are used to inspect the results of the functional tests and determine if the diode under
test is good or bad. TestStatus() determines the PASS/FAIL status of an individual test within the test sequence, and creates a Boolean
“fail” flag, which is TRUE if the subject test fails. The parameters passed to this function include the result of an individual test and
the minimum and maximum acceptable values for the subject test result. PartStatus() determines the GOOD/BAD status of the part
based on the results of all of the tests in the test sequence. Any individual test failure causes the part to be BAD. The Boolean “fail”
flags for the functional tests are passed to PartStatus() to determine the overall part status.

function TestStatus(testvalue, lolim, hilim)

	 -- Temporary variables used by this function.
	 local l_status
	 local l_testfail

	 if (testvalue >= lolim) and (testvalue <= hilim) then
		 l_status = “PASS”
		 l_testfail = false
	 else
		 l_status = “FAIL”
		 l_testfail = true
	 end --if
	
	 return l_status, l_testfail

end --function TestStatus

function PartStatus(tst1fail, tst2fail, tst3fail)

	 -- Temporary variables used by this function.
	 local l_status = “GOOD”

	 if tst1fail or tst2fail or tst3fail then l_status = “BAD” end
	
	 return l_status

end --function PartStatus

The BinPart() function increments a “Part Bins” table, simulating the bins a component handler may use. For this example, the
three functional tests are always performed, even if the diode-under-test fails one of the tests. Upon completion of the tests, the part
is binned based on the first test failure. If no failures occur, the part is put into the “good” bin. Although the component bins are
simulated, this function actually does write binning codes to the instrument’s digital I/O port, bits 1 through 4. It’s assumed that all

other bits or lines are protected or their state is a “don’t care.” Note that parameters passed to a function are passed by reference,
which allows the table “bins” to be modified by this function.

function BinPart(tst1fail, tst2fail, tst3fail, bins)

	 if tst1fail then	 -- If part first failed Forward Voltage Test
		 bins[2] = bins[2] + 1
		 digio.writeport(2)	 -- Write bit pattern 0010 (decimal 2) to DIO
	
	 elseif tst2fail then	 -- If first failed Reverse Leakage Current Test
		 bins[3] = bins[3] + 1
		 digio.writeport(4)	 -- Write bit pattern 0100 (decimal 4) to DIO
			
	 elseif tst3fail then	 -- If first failed Reverse Voltage Breakdown Test
		 bins[4] = bins[4] + 1
		 digio.writeport(8)	 -- Write bit pattern 1000 (decimal 8) to DIO
		
	 else	 -- Part is GOOD; does not fail any tests
		 bins[1] = bins[1] + 1
		 digio.writeport(1)	 -- Write bit pattern 0001 (decimal 1) to DIO
		
	 end --if

end -- function BinPart

The functions DisplayTestStatus() and DisplayPartStatus() write test results to the front panel display of the 260X SourceMeter
instrument, primarily to show that such a capability exists. See the complete diode test script to look at these functions. These func-
tions can simply be deleted if this functionality isn’t required for a specific test application.

Finally, the function DiodeTest() is the “test executive” function, which calls all of the other functions and dictates the order in
which tests and other actions occur. The system controller might call this function whenever a new batch of diodes is installed in the
handler and is ready to be tested. The pass parameters for this function include the SMU to use for the tests, the number of diodes to
be tested, and a speed flag, which is either “SLOW” or “FAST.” The “SLOW” setting slows the tests down so the user can see the pro-
gression of the tests on the instrument display. To demonstrate the type of throughput that can be achieved with a 260X SourceMeter
instrument, the “FAST” setting maximizes test speeds without regard for the impact on measurement accuracy.. A review of the com-
plete diode test script will show that the speed flag affects the settings for the measurement integration time (NPLC), the state of the
autozero function, the source (signal settling) delays, other program delays, and the state of the display. Test speed and measurement
accuracy are generally inversely related, which means that speed and accuracy requirements usually have to be traded off for a real
test application. The test script is easily modified to eliminate the speed flag.

The DiodeTest() function also defines the test variables for all of the functional tests, including source and measure ranges, test
signal levels and polarities, inspection limits, and so on. It performs some initial setup of the 260X, which is applicable to all tests. It
also configures the digital I/O port, setting up the binning control bits and the input and output trigger lines for the SOT trigger and
the EOT trigger. For each diode being tested, the SourceMeter waits for an SOT from the handler to begin the tests and then issues
an EOT signal after the binning code is written to the DIO port (i.e., the handler). Finally, it displays the results on the front panel
displays and prints the test data the instrument’s output queue, where it can be retrieved by the host computer. Each print statement
requires a corresponding “enter” statement in the host program to pull the data from the output queue.

The first test is the polarity check. This test determines if the diode is in forward or reverse orientation. If it’s reversed, then the
test functions are called using the negative of the test current or voltage (e.g., Vfwd_Vrev(smu, irange, -ilevel, srcdelay, vcmpl)); other-
wise, they are called using the normal polarity (e.g., Vfwd_Vrev(smu, irange, ilevel, srcdelay, vcmpl)). Using the negative of the test sig-
nal causes the polarity of the test result to be the opposite of what is expected for a diode in the forward orientation. Therefore, the
negative of the test result is passed to the TestStatus() function when the diode is reversed (e.g., TestStatus(-testvalue, lolim, hilim)).
This is simpler than adjusting the limits for the reversed orientation case. For the forward orientation case, the TestStatus() function
is called using the measured value as is (e.g., TestStatus(testvalue, lolim, hilim))

function DiodeTest(smu, ndiodes, speed)
	 •	 Declare local variables including test parameters and inspection limits
	 •	 Set parameters based on speed flags
	 •	 Declare local variables to hold test data
	 •	 Perform initial setup of 260X applicable to all tests

	 -- Configure Digital I/O Port

	 digio.writeprotect = 0	 -- Unprotect all bits
	 digio.writeport(48)	 -- Set bits/lines 5 and 6 high; set all other bits low
	 digio.writeprotect = 48	 -- Write protect lines 5 and 6, which are used for triggers
	 digio.writeport(0)	 -- Set all unprotected bits to zero
	
	 -- Configure trigger lines 5 (input SOT) and 6 (output EOT)

	 digio.trigger[5].mode = digio.TRIG_FALLING	 -- Detect falling edge as input
	 digio.trigger[5].clear()	 -- Clear any "latched" triggers
	
	 digio.trigger[6].mode = digio.TRIG_FALLING	 -- Assert TTL-low pulse for output
	 digio.trigger[6].pulsewidth = 10E-6	 -- Guaranteed minimum time output
			 -- trigger line will be asserted;
			 -- 10us is default value 		
	 smu.source.output = smu.OUTPUT_ON
	
	 for l_i = 1, ndiodes do
	
		 l_sot_received = digio.trigger[5].wait(10E-3)	 -- Wait for SOT; timeout after 10ms
		 -- if not(l_sot_received) then
			 -- Take appropriate action if times out before getting SOT trigger
			 -- In this example, simply proceed to next command
		 -- end --if
		
		 -- Perform Polarity Check Test (PC)

		 l_pc_bias_dir[l_i] = ChkPolarity(smu, l_pc_isrc_rng, l_pc_isrc_lev, l_pc_src_del, l_pc_vcmpl)
		
		 if l_pc_bias_dir[l_i] == “REV” then	-- If diode is in reversed orientation, then
		
			 -- Perform Forward Voltage Test (Vf)

			 l_vf_data[l_i], l_vf_test_curr[l_i] = Vfwd_Vrev(smu, l_vf_isrc_rng, -l_vf_isrc_lev, l_vf_
src_del, l_vf_vcmpl)
			 l_vf_status[l_i], l_vf_fail[l_i] = TestStatus(-l_vf_data[l_i], l_vf_lowlim, l_vf_highlim)
			 if l_disp_on then DisplayTestStatus(“Vf = “, -l_vf_data[l_i], “V”, l_vf_status[l_i], l_
delay) end

			 -- Perform Reverse Leakage Current Test (Ir)
		
			 -- Perform Reverse Voltage Breakdown Test (Vr)
		
		 else	 -- If diode is in forward orientation, then
		
			 -- Perform Forward Voltage Test (Vf)

			 l_vf_data[l_i], l_vf_test_curr[l_i] = Vfwd_Vrev(smu, l_vf_isrc_rng, l_vf_isrc_lev, l_vf_
src_del, l_vf_vcmpl)
			 l_vf_status[l_i], l_vf_fail[l_i] = TestStatus(l_vf_data[l_i], l_vf_lowlim, l_vf_highlim)
			 if l_disp_on then DisplayTestStatus(“Vf = “, l_vf_data[l_i], “V”, l_vf_status[l_i], l_
delay)
	 end

			 -- Perform Reverse Leakage Current Test1 (Ir)
		
			 -- Perform Reverse Voltage Breakdown Test (Vr)
		
		 end --if

		 -- Determine cumulative part status
		
		 l_part_status[l_i] = PartStatus(l_vf_fail[l_i], l_ir_fail[l_i], l_vr_fail[l_i])		

		 -- Bin the part
		
		 BinPart(l_vf_fail[l_i], l_ir_fail[l_i], l_vr_fail[l_i], l_bins)

		 -- Output EOT trigger
		
		 digio.trigger[6].assert()
		
		 -- Clear binning code (set all unprotected bits to zero)

		
		 digio.writeport(0)
	
		 if l_disp_on then DisplayPartStatus(l_part_status[l_i], l_bins) end
		 delay(3 * l_delay)		
		
	 end --for	

	 smu.source.output = smu.OUTPUT_OFF
	
	
	 -- Print test data to output queue

	 print(“D#”, “POL”, “ Vf”, “ Ir”, “ Vr”)	-- Headings
	 for l_i = 1, ndiodes do
		 x = string.format(“%03d,%s,%+2.4f,%+3.3E,%+2.4f”,l_i, l_pc_bias_dir[l_i], l_vf_data[l_i], l_ir_
data[l_i], l_vr_data[l_i])
		 print(x)
		
	 end --for
	
end --function DiodeTest

Running the example diode test script using Test Script
Builder or other application only creates the functions; it
doesn’t perform any tests. Actually executing the diode tests
requires calling the DiodeTest() function. For example, to test
100 diodes, the system controller must only send the command
“DiodeTest(smua, 100, “FAST”).” In response to this command,
the 260X will execute the diode test sequence 100 times using
SMU A and the high speed test parameters. Test data will be put
into the 260X output queue, so the system controller must read
it back, either during the test or upon completion of the test.
Imagine performing this test series using a conventional pro-
grammable instrument, where many of the commands must be
sent over and over to the instrument via GPIB or RS-232. There
is a significant speed improvement due simply to the reduced
number of commands that must be sent to the instrument.
Additionally, the system controller is freed up to interface with

other instruments in the rack more frequently, which can further
increase the overall system throughput.

Switching Multiple Diodes

For diode arrays or multi-die packages, switching can be used
to connect a single SourceMeter instrument to each of the indi-
vidual elements. The configuration discussed in Application Note
#1805 applies equally well to a Series 2600 System SourceMeter
instrument. The Series 2600 also provides another option. For
little more than the cost of adding a switch to the test system,
two Model 2602s can be configured as shown in Figure 3. The
configuration pictured is made possible by the Series 2600’s Test
Script Processor and new TSP-Link bus. The Test Script Processor
isn’t only an embedded computer; with TSP-Link, it is also a
scalable computer. TSP-Link is an inter-unit communication and
trigger synchronization bus—essentially an external backplane.
With TSP-Link, users can connect multiple Series 2600 instru-

PC

GPIB

Component Handler

SMU A

2602 SourceMeter

SMU B

Digital I/O

Test Fixture

Digital I/O
Mechanical
Connection

HI

LO

Triggers

TSP-Link

SMU B

2602 SourceMeter

SMU ANode 1

Control

#1 #2 #3 #4

HI

LO
Node 2

HI

LO

HI

LO

Figure 3.	 Using multiple Series 2600 SourceMeter instruments with TSP-Link™ to test multiple diodes

ments and program them as a single instrument, just as though
they were housed in the same chassis. The simple programming
interface allows creating powerful, high speed, multichannel
tests quickly. There’s no mainframe to restrict them, so users can
create seamlessly integrated test systems with up to 64 nodes.
In this example, each node is a dual-channel Model 2602, so the
system could be scaled up to 128 SMU channels. Actual systems
can be configured for any number of diode elements and for
various electrical specifications. Switching is still easily combined
with multiple Series 2600 instruments when appropriate for the
application.

In Figure 3, each 2602 is assigned a unique node number.
Node 1, which is connected to the system controller in this
example, is the “master” unit and Node 2 is the “slave” unit. A
program running on Node 1 controls both nodes. The script for
the single-diode, single-instrument example can be easily modi-
fied for use in a multi-node system. All commands simply require
the inclusion of a node number. For example, the command for
setting the current level in a single node system is “smua.source.
leveli = ilevel.” In a multi-node system, it would be “node[1].
smua.source.leveli = ilevel” or “node[2].smua.source.leveli =
ilevel.” See the Series 2600 User and Reference Manuals for more
information about setting up a multi-node system.

Typical Sources of Error
Lead Resistance
A common source of voltage measurement error is the series
resistance from the test leads running from the instrument to
the diode. This series resistance is added into the measurement
when making a two-wire connection (see Figure 4). The effects
of lead resistance are particularly detrimental when long con-
necting cables and high currents are used, because the voltage
drop across the lead resistance becomes significant compared to
the measured voltage.

To eliminate this problem, use the four-wire remote sensing
method rather than the two-wire technique. With the four-wire
method (Figure 5), a current is forced through the diode using
one pair of leads and the voltage across the diode is measured
through a second set of leads. As a result, only the voltage drop
across the diode is measured.

Leakage Current
Stray leakage in cables and fixtures can be a source of error in
measurements involving very low currents, such as for leakage
currents. To minimize this problem, construct test fixturing with
high resistance materials.

Another way to reduce leakage currents is to use the built-in
guard of the Series 2600 instrument. The guard is a low imped-
ance point in the circuit that is nearly the same potential as the
high impedance point to be guarded. This is best illustrated by
example (Figure 6).

In this example, the diode to be measured is mounted on
two insulated standoffs (RL). Guard is used in this circuit to

ensure that all the current flows through the diode and not
through the standoffs. In general, a guard should be used when
sourcing or measuring currents of less than 1µA. This circuit is
guarded by connecting one of the Guard terminals of the instru-
ment to the metal plate. This puts the bottom of insulator RL1 at
almost the same potential as the top. Both ends of the insulator
are at nearly the same potential, so no significant current flows
through it. Thus, all the current will flow through the diode as
desired.

WARNING: Guard is at the same potential as output HI.
Therefore, if hazardous voltages are present at output HI,
they are also present at the Guard terminal.

Electrostatic Interference
High resistance measurements may be affected by electrostatic
interference, which occurs when an electrically charged object
is brought near an uncharged object. To reduce the effect of
electrostatic fields, a shield can be built to enclose the circuit

RL1

Standoffs

RL2

Metal Plate

Metal Case
Series 2600
SourceMeter

x1

A

Guard

LO

HI

Figure 6. Series 2600 guarding technique

Series 2600
SourceMeter

Sense
HI

Output
HI

Sense
LO

Output
LO

Figure 5. Four-wire connection

+
Series 2600
SourceMeter

Sense
HI

Output
HI

Sense
LO

Output
LO

–

Figure 4. Two-wire connection

being measured. As shown in Figure 6, a metal shield con-
nected to ground surrounds the diode under test. The LO of the
SourceMeter instrument must be connected to the metal shield
to avoid noise due to common mode and other interference. This
also acts as a safety shield because the metal plate is at guard
potential.

Test System Safety
Many electrical test systems or instruments are capable of meas-
uring or sourcing hazardous voltage and power levels. It’s also
possible, under single fault conditions (e.g., a programming error
or an instrument failure), to output hazardous levels even when
the system indicates no hazard is present. These high voltage and
power levels make it essential to protect operators from any of
these hazards at all times. Protection methods include:

•	 Design test fixtures to prevent operator contact with any haz-
ardous circuit.

•	 Make sure the device under test is fully enclosed to protect
the operator from any flying debris. For example, capacitors
and semiconductor devices can explode if too much voltage or
power is applied.

•	 Double insulate all electrical connections that an operator
could touch. Double insulation ensures the operator is still
protected, even if one insulation layer fails.

•	 Use high reliability, fail-safe interlock switches to disconnect
power sources when a test fixture cover is opened.

•	 Where possible, use automated handlers so operators do not
require access to the inside of the test fixture or have a need
to open guards.

•	 Provide proper training to all users of the system so they
understand all potential hazards and know how to protect
themselves from injury. It’s the responsibility of the test sys-
tem designers, integrators, and installers to make sure opera-
tor and maintenance personnel protection is in place and
effective.

Equipment List
The following equipment is required to assemble a diode pro-
duction test system and run the example scripts available from
Keithley:

1.	 Keithley Model 2601 or 2602 SourceMeter instrument.

2.	 Component handler with test fixture

3.	 IEEE-488 (GPIB) Interface Card (KUSB-488, KPCI-488 or
equivalent)

4.	 Keithley 7007 IEEE-488 interface cables

5.	 Custom DB-25 digital I/O handler interface cable to interface
the instrument to the handler

6.	 Test leads to connect the instrument to the test fixture

Obtaining Example Scripts
The example script discussed in this Application Note is avail-
able for download on Keithley’s web site (www.keithley.com).
The script can be viewed, edited, loaded and executed using Test
Script Builder.

Two diode test demonstration scripts are also included with
Test Script Builder. These scripts are similar to the example
script, but they don’t include any SOT/EOT triggering. However,
these scripts add front panel menu selections, which allow them
to be run from the front panel. They also include a function to
perform a Dynamic Impedance test, which is another common
type of diode test, especially for zener diodes.

Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc. 	 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168
		 1-888-KEITHLEY (534-8453) • www.keithley.com	

© Copyright 2005 Keithley Instruments, Inc.		 No. 2633
Printed in the U.S.A.		 0605

