
Comparing a Series 7000
SCPI Application to a Series 3700
Script Application

Introduction

For many years, instrument manufacturers have used “Standard
Commands for Programmable Instrumentation” or SCPI to con-
trol programmable test and measurement devices in instrumen-
tation systems. SCPI provides a uniform and consistent language
for the control of test and measurement instruments. The same
commands and responses control corresponding instrument
functions in SCPI equipment, regardless of the manufacturer or
the instrument type.

By design, Keithley’s new Series 3700 System Switch/
Multimeter instruments do not use SCPI commands. Instead,
instruments on this platform use an internal Test Script
Processor (TSP) to process and run programs called “scripts.”
The motivation to migrate toward the use of TSP was to address
today’s more demanding system throughput requirements.
Communication with any TSP-based instrument is much the
same as interfacing to a conventional instrument, using commer-
cially available software applications and an application develop-
ment environment. The user simply sends text strings containing
either TSL (Test Script Language) or ICL (Instrument Control
Library) commands to the instrument via the communication
interface. Although Keithley provides an application suite called
Test Script Builder (TSB) for use in developing scripts for TSP-
based instruments, it is not intended to be the only tool used for
communicating to the instrument, nor does not replace commer-
cially available software applications.

A script is a collection of instrument control commands and/
or program statements. Program statements control script execu-
tion and provide facilities such as variables, functions, branch-
ing, and loop control. TSB provides a programming interface in
which users can create powerful, high speed, multi-channel tests
to download into either the unit’s volatile or nonvolatile memory.
Using the downloaded script, the unit controls itself, indepen-
dent of the system’s host controller. This capability can free up
the system controller to interface with the other equipment in
the test rack more frequently, thereby increasing the
overall system throughput. Series 3700 instruments have very
deep memory; program memory can hold 50,000 lines of code
and data memory can store at least 650,000 readings.

This application note compares SCPI commands with the new
Series 3700 scripting approach and illustrates how to convert a
Series 7000 SCPI-based application to a Series 3700 test script
application.

The SCPI Instrument Model
Some measurements require direct control over an instrument’s
hardware. To provide this control, SCPI-based instruments con-
tain command subsystems that control particular instrument
functions and settings. These commands trade interchangeably
for fine control. The ability to configure instruments and make
measurements with different degrees of control is a major advan-
tage of SCPI.

The SCPI Instrument Model controls the way instrument
functionality is divided among the SCPI command subsystems.
In the case of Series 7000 instruments, the command subsystems
are broken down into the following categories:

DISPlay: Controls the display of the 700X.1.	

OUTput:Controls the polarities of the digital output port.2.	

ROUTe: Controls the signal routine through the switch 3.	
system.

SENSe: Used to read the digital input ports.4.	

SOURce: Controls the logic level(True or False) of each 5.	
digital output line.

STATus: Controls the status registers.6.	

SYSTem: Contains miscellaneous commands for scanner 7.	
setup.

TRIGger: Contains a series of commands to configure the 8.	
three layers of the Trigger Model.

TSP and Scripting: A More Efficient
Programming Method
The TSP language of the Series 3700 offers an equivalent set of
instrument commands. The following command set applies to
the Series 3700:

1.	 Beeper: Commands used to control the built-in beeper.

2.	 Bit: Used to perform logic operations on one or two
numbers.

3.	 Channel: Commands used to configure and control the
channels of the switching cards.

4.	 Delay: Used to control trigger operations.

5.	 Digital I/O: Configures parameters of the digital I/O
features (write/read, trigger and limits).

6.	 Display: Used to control display messaging on the front
panel of the Series 3700 instrument.

7.	 Error: Used to read the entries in error event queue.

8.	 Exit: Used to terminate a script that is presently running.

Number 2897

Application Note
Series

9.	 Format: Used for data printed with the printnumber
and printbuffer commands.

10.	GPIB: Used to set the GPIB address.

11.	LAN: Used to set Local Area Network parameters.

12.	Local node: Used to set the power line frequency
control (on/off) prompting and control (hide/show) error
messages on the display.

13.	Reset: Used to set all the logical instruments in the system
to the default settings.

14.	Scan: Used to specify and configure channels and/or
change channel patterns to scan. As well as associated
buffers, triggers, or other scanning aspects.

15.	Setup: Used to save or recall stored set-up configurations
and to set the power-on state.

16.	Timer: The timer can be used to measure the time it takes
to perform various actions.

17.	Trigger: Used to control triggering.

18.	TSPLink: Used to assign node numbers to a mainframe
and initialize the TSP-Link system.

19.	UserString: Used to store/retrieve user-defined strings in
non-volatile memory.

20.	Print Buffer: Used to print numbers and data.

21.	Slot[1]: Used to program attributes in different slots in
mainframe.

There are two simple ways to program and communicate
with the Model 3706 Switch System: either by executing indi-
vidual TSP commands (similar to sending individual SCPI com-
mands) or by writing test scripts. Scripts are a collection (list)
of instrument control commands and/or program statements.
All commands and statements in the script are executed by the
Model 3706 Switch system. Running a script at the switch system
is faster than running the test program from the PC. The use of
scripts can eliminate the transmission time from the PC to the
switch system.

Table 1 compares the SCPI approach for a Series 7000 instru-
ment to the scripting approach for a Model 3706 for performing
a simple scan of the first 10 channels on slot one.	

Note that there are only four steps in this example:

Reset the unit.1.	

Create the scan list.2.	

Configure the scan count, which is defined as how many 3.	
times the instrument goes through the scan list.

Start the scan.4.	

Memory Pattern Scan
This example takes advantage of the memory pattern feature of
Series 7000 and Series 3700 instruments. The memory pattern
feature allows multiple channel closures to be saved in a memory
location, then the memory location is placed in the scan list. The
scan list can be run as a standard sequential scan but with the
memory patterns instead of single channels. This is a powerful
feature that can be used in applications that require multiple
switch closures in a system in order to have certain configura-
tions for the specific test.

In this example, two channels are closed and saved in each
memory location. Note that the Model 7002 requires the SCPI
commands to be sent and processed. The Model 3706‑S can do
this using either of two techniques. The first technique is similar
to that of the Series 7000 instrument, where commands, either
SCPI or ICL, are simply sent to the instrument to create the mem-
ory pattern, memory location, and scan list. Even when using
this technique, the Model 3706-S uses fewer commands, making
the programming easier.

The second technique is the script technique in which the
Model 3706-S is running the user-created “test program/script”
rather than waiting to receive each command via the computer
bus, which can be slowed significantly by command traffic.
Notice that the channels are never closed and saved as in the
Model 7002 SCPI codes. The channel.pattern.setimage com-
mand does this automatically. See the example script in Table 2.

Model 2400 Sweep and Model 3706 Scan
Here is an example using the Model 700X as a scanner and a
Model 2400 SourceMeter® instrument performing a voltage
sweep from 1V to 10V in 1V steps. Each voltage step in the sweep
is on a different channel of the 700X. Table 3 also compares the
Model 2400 and Model 3706 commands.

Table 1. Simple Scan Comparison

Series 7000 SCPI Description Model 3706 ICL Description
*RST Reset reset() Reset
:ROUTe:SCAN (@1!1:1!10) Set scan list scan.create(“1001:1010”) Set scan list
:TRIGger:COUNt 10 Set trigger count to 10 scan.scancount = 1 Set to go through all scan list channels once
:INIT Start scan scan.execute() Start scan

Table 2.

Model 7002 SCPI Description Model 3706-S ICL Description
*RST Reset Reset() Reset

:ROUTe:OPEN ALL Open all channels channel.pattern.setimage(“1001,
1021,1031”,”mem1”)

Set image and channel pattern for mem1

:ROUTe:CLOSe (@1!1,1!21) Close channels 1 and 21 channel.pattern.setimage(“1002,
1022,1032”,”mem2”)

Set image and channel pattern for mem2

:MEMory:SAVe M1 Save pattern in memory 1 channel.pattern.setimage(“1003,
1023,1033”,”mem3”)

Set image and channel pattern for mem3

:ROUTe:OPEN ALL Open all channels scan.create(“mem1,mem2,mem3”) Set scan list of mem1, mem2 and mem3
:ROUTe:CLOSe (@1!2,1!22) Close channels 2 and 22 scan.scancount=10 Do scan list 10 times
:MEMory:SAVe M2 Save pattern in memory 2 scan.execute() Start scan
:ROUTe:OPEN ALL Open all channels end End program
:ROUTe:CLOSe (@1!3,1!23) Close channels 3 and 23
:MEMory:SAVe M3 Save pattern in memory 3
:ROUTe:OPEN ALL Open all channels
:ROUTe:SCAN (@M1,M2,M3) Set scan list of M1, M2 and M3
:TRIGger:COUNt 9 One trigger for each channel

TRIGger:DELay 1 Delay of one second for each
channel

:INIT Start scan

Script method
Reset()
Scan.create()
For x=1,10,do
	 Chan1=1000+x
	 Chan2=1020+x
	 Chan3=1030+x
	 Channel.pattern.setimage(chan1..”,”..chan2..”,”..chan3,”mem”..x)
	 Scan.add(“mem”..x)
End
Scan.scancount=1
Scan.execute

Table 3.

Model 700X SCPI Description Model 3706 ICL Description
*RST Reset reset() Reset
:ROUTe:OPEN ALL Open all channels channel.open(“allslots”) Open all channels

:TRIGger:SOURce TLINk Source of trigger is trigger link digio.trigger[1].mode = digio.TRIG _
FALLING

Source of trigger is digio

:TRIGger:COUNt 100 100 trigger count scan.scancount = 10 100 readings (10 channels × 10 scans)
:TRIGger:DELay 0.1 Delay after trigger 100msec No trigger delay command

:TRIGger:TCONTrol:DIRection SOURce
Drop through trigger layer on
the first pass scan.bypass = 1

Drop through scan layer first time
(default)

:ROUT:SCAN (@1!1:1!10) Scan list of ten channels scan.create(“1001:1010”) Scan list of ten channels
digio.trigger[1].clear() Clears event on line 1
scan.trigger.channel.stimulus = digio.
trigger[1].EVENT _ ID

Set trigger input event for digio trigger
on line 1

scan.trigger[2].stimulus = scan.
trigger.EVENT _ CHANNEL _ READY

Set trigger output to line 2

digio.trigger[2].mode = digio.TRIG _
FALLING

Falling edge trigger on line 2

digio.trigger[2].pulsewidth=0.001 Set pulse width to 1msec.
Model 2400 SCPI Description Model 2400 SCPI Description
*RST Reset *RST Reset
:SOURCe:FUNCtion:MODE VOLT Source voltage :SOURCe:FUNCtion:MODE VOLT Source voltage
:SOURce:SWEep:SPACe LINear Linear sweep :SOURce:SWEep:SPACe LINear Linear sweep
:SOURce:VOLT:STARt 1 Start volt at 1V :SOURce:VOLT:STARt 1 Start volt at 1V
:SOURce:VOLT:STOP 10 Stop at 10V :SOURce:VOLT:STOP 10 Stop at 10V
:SOURce:VOLT:STEP 1 Step by 1V :SOURce:VOLT:STEP 1 Step by 1V
:TRIGger:COUNt 100 100 triggers :TRIGger:COUNt 100 100 triggers
:SOURce:VOLT:MODE SWEep Sweep mode :SOURce:VOLT:MODE SWEep Sweep mode
:TRIGger:DIRection ACCeptor Wait for first trigger :TRIGger:DIRection ACCeptor Wait for first trigger

Model 2400 SCPI Description Model 2400 SCPI Description

:TRIGger:OUTPut SENSe
Output trigger after
measurement :TRIGger:OUTPut SENSe Output trigger after measurement

:TRIGger:SOURce TLINk Source of trigger TLINK :TRIGger:SOURce TLINk Source of trigger TLINK
:TRIGger:ILINe 2 Input trigger on line 2 :TRIGger:ILINe 2 Input trigger on line 2
:TRIGger:OLINe 1 Ouput trigger on line 1 :TRIGger:OLINe 1 Ouput trigger on line 1
:SENSe:FUNCtion ‘CURRent’ Measure current :SENSe:FUNCtion ‘CURRent’ Measure current
:FORMat:ELEMents CURRent Send only current data :FORMat:ELEMents CURRent Send only current data
:TRACe:CLEar Clear buffer :TRACe:CLEar Clear buffer
:TRACe:POINts 100 Store 100 readings :TRACe:POINts 100 Store 100 readings
:TRACe:FEED:CONTrol NEXT Fill buffer and stop :TRACe:FEED:CONTrol NEXT Fill buffer and stop
:STATus:MEASure:ENABle 512 SRQ on buffer full :STATus:MEASure:ENABle 512 SRQ on buffer full
*SRE 1 Enable SRQ *SRE 1 Enable SRQ
:OUTPut ON Enable output :OUTPut ON Enable output
:INIT Initiate sequence :INIT Initiate sequence
Model 7001 Description Model 3706 Description
:INIT Start scan.background() Start scan
Wait for buffer full SRQ

Model 2400 Description Model 2400 Description
:TRACe:DATA? Set up to read buffer data :TRACe:DATA? Set up to read buffer data
Read the data with GPIB read
command

Read the data with GPIB read command

:STATus:MEASure? Query status :STATus:MEASure? Query status
Read status Read to reset SRQ enable Read status Read to reset SRQ enable

Table 3 (continued)

It is important to note the trigger model of both units. The
Model 2400 and Model 3706 must trigger each other. The sce-
nario goes as follows:

Set Model 3706 to the number of channels to scan, scan 1.	
list, external trigger, input and output trigger lines.

Set Model 2400 to sweep voltage, read current, configure 2.	
trigger input and output, number of triggers/readings and
set up the buffer to store the readings.

Send commands to enable the output on 2400 and arm it 3.	
for the incoming trigger from the Model 3706.

Send the command “4.	 scan.background()” to the Model
3706 to begin the scan. At this point the 3706 closes the
first channel, then sends a trigger the Model 2400 to go to
the first step in the sweep.

Model 2400 does a Source Delay Measure cycle and 5.	
outputs a trigger to the Model 3706 to go to the next
channel in the scan list.

This continues until all the channels and readings are 6.	
taken.

When the scan/read is complete the command 7.	
“trace:data?” is sent to the Model 2400 and a GPIB
read is sent, all of the buffer data is now transferred to the
computer.

Conclusion
This application note touches on a few of the applications that
can potentially be converted from a Series 7000 scanner SCPI
program to a Series 3700 scanner TSP program.

Although the commands are somewhat similar, there are dif-
ferences in two phases: the command syntax and command of
features. The command syntax differences are shown in Table
4. The command features are basically the features of the instru-
ment. If one instrument has a feature the other instrument does
not, the table indicates this feature is not applicable (N/A).

Once the command sequences have been mastered, the
power of the Series 3700 TSP language is available to create reus-
able test sequence scripts that can solve applications ranging
from the simple to the sophisticated.

TSP Command Series 7000 Command(s)
Beeper Commands
beeper.enable = 0/1 N/A
beeper.beep(duration,frequency) N/A
Bit Commands
bit.bitand(value1,value2) N/A
bit.bitor(value1,value1) N/A
bit.bitxor(value1,value2) N/A
bit.clear(value1,index) N/A
bit.get(value1,index) N/A
bit.getfield(value1,index,width) N/A
bit.set(value1,index) N/A
bit.setfield(value1,index,width,fi
eldvalue)

N/A

bit.test(value1.index) N/A
bit.toggle(value1,index) N/A
Channel Commands
channel.close(ch list) ROUTe:CLOSe

channel.connectrule = rule N/A
channel.connectsequential =
channel.ON

N/A

channel.exclusiveclose(ch list) N/A
channel.exclusiveslotclose(ch
list)

NA

channel.getbackplane(ch _ list) N/A
channel.getclose(ch _ list) ROUTe:CLOSe?

channel.getcount(ch _ list) N/A
channel.getdelay(ch _ list) N/A
channel.getimage(ch _ list) N/A
channel.getlabel(ch _ list) N/A
channel.getpole(ch _ list) N/A
channel.getstate(ch _ list) ROUTe:CLOSe:STATe?

Query closed channels in
specified list

:ROUTe:MULTiple:CLOSe:STATe?

Query closed channels in
specified list

channel.open(ch _ list) :ROUTe:OPEN:ALL

channel.pattern.catalog() N/A
channel.pattern.delete(name) N/A
channel.pattern.getimage(name) N/A
channel.pattern.setimage(ch _
list,name)

N/A

channel.pattern.snapshot(name) N/A
channel.reset(ch _ list) N/A
channel.setbackplane(ch _
list,abuslist)

N/A

channel.setdelay(ch _ list,value) N/A
channel.setlabel(ch _ list,label) N/A
channel.setpole(ch _ list,value) N/A
Delay Command
Delay * TRIGger:DELay *

Digital I/O Commands
digio.readbit(N) OUTPut:TTL:LSENse?

digio.readport() OUTPut:TTL:LSENse?

digio.trigger[N].assert() N/A
digio.trigger[N].clear() N/A
digio.trigger[N].mode N/A
digio.trigger[N].overrun N/A
digio.trigger[N].puslewidth N/A
digio.trigger[N].release() N/A
digio.trigger[N].stimulus N/A

TSP Command Series 7000 Command(s)
digio.trigger[N].wait (timeout) N/A
digio.writebit

digio.writeport

digio.writeprotect

Display Command
display.clear() DISPlay:WINDow1:TEXT:DATA

display.getannunciators() N/A
display.getcursor() N/A
display.getlastkey() N/A
display.gettext() DISPlay:WINDow1:TEXT:DATA

display.inputvalue(format) N/A
display.loadmenu.
add(displayname,chunk)

N/A

display.loadmenu.
delete(displayname)

N/A

display.locallockout N/A
display.menu N/A
display.prompt(format, units, help) N/A
display.screen DISPlay:WINDow1:TEXT:STATe

display.sendkey(keycode) SYSTem:KEY

display.setcursor(row,column) N/A
display.settext(“text”) DISPlay:WINDow1:TEXT:DATA

DISPlay:WINDow1:TEXT:STATe

display.waitkey() N/A
Error Queue
errorqueue.clear() N/A
errorqueue.count N/A
errorqueue.next() SYSTem:ERRor?

Exit Function
exit N/A
Format
format.asciiprecision N/A
format.byteorder N/A
format.data N/A
GPIB
Gpib.address *IDN?

Trigger
For lan ones, N is 0 to 7

lan.trigger[N].assert() N/A
lan.trigger[N].clear() N/A
lan.trigger[N].mode N/A
lan.trigger[N].pseudostate N/A
lan.trigger[N].overrun N/A
lan.trigger[N].stimulus TRIGger:SOURce
lan.trigger[N].protocol N/A
lan.trigger[N].wait(timeout) N/A
Local Node Attributes
localnode.linefreq N/A
localnode.model *IDN?
localnode.prompts N/A
localnode.reset() N/A
localnode.revision *IDN?
localnode.serialno *IDN?
localnode.settime N/A
localnode.setup.poweron SYStem:POSetup
localnode.setup.recall SYStem:POSetup
localnode.setup.save *SAV
localnode.showerrors System:ERRor?
Reset
reset *RST or SYSTem:PRESet

Table 4. Model 3706 scanner commands vs. Model 700X scanner commands

TSP Command Series 7000 Command(s)
Scan
scan.abort :ABORT or ROUTe:OPEN ALL

scan.add(ch _ list,dmm _ config) :ROUTe:SCAN (list)

scan.background N/A

scan.bypass
TRIGger:TCONtrol:DIRection
SOURce

scan.create(chlist,dmm _ config) ROUTe:SCAN list

scan.execute :INIT

scan.list ROUTe:SCAN?

scan.mode ROUTE:OPEN ALL

scan.reset() *RST

scan.scancount
ARM:LAYer1:COUNt() or
ARM:LAYer2:COUNt()

scan.state N/A
scan.stepcount TRIGger:COUNt?

scan.trigger.arm.clear()

scan.trigger.arm.set()

scan.trigger.arm.stimulus ARM:LAYer1:SOURce () or

ARM:LAYer1:SOURce()

scan.trigger.channel.clear N/A
scan.trigger.channel.set() N/A
scan.trigger.channel.stimulus TRIGger:SOURce ()

scan.trigger.clear N/A
scan.trigger.sequence.clear N/A
scan.trigger.sequence.set N/A
scan.trigger.sequence.stimulus N/A
scan.trigger.count

Set Up Functions
setup.poweron SYSTem:POSetup

setup.recall *RCL

setup.save *SAV

setup.cards ROUTe:CONFigure:SLOTX:CTYPe?

slot[X] Attributes
slot[X].commonsideohms
where X is to 6 for slot number N/A

slot[X].connectionmethod
where X is to 6 for slot number N/A

slot[X].digio
where X is to 6 for slot number N/A

slot[X].endchannel.amps
where X is to 6 for slot number N/A

slot[X].endchannel.isolated
where X is to 6 for slot number N/A

slot[X].endchannel.voltage
where X is to 6 for slot number N/A

slot[X].idn
where X is to 6 for slot number ROUTe:CONFigure:SLOTX:CTYPe?

slot[X].interlock.override N/A
slot[X].interlock.state N/A
slot[X].isolated
where X is to 6 for slot number N/A

slot[X].matrix
where X is to 6 for slot number N/A

slot[X].maxsettlingtime
where X is to 6 for slot number N/A

slot[X].maxvoltage
where X is to 6 for slot number N/A

TSP Command Series 7000 Command(s)
slot[X].multiplexer
where X is to 6 for slot number N/A

slot[X].poles.four
where X is to 6 for slot number ROUTe:CONFigure:SLOTX:POLE?

slot[X].poles.one
where X is to 6 for slot number ROUTe:CONFigure:SLOTX:POLE?

print(slot[X].poles.two)
where X is to 6 for slot number ROUTe:CONFigure:SLOTX:POLE?

slot[X].pseudocard=<value>)
where X is to 6 for slot number ROUTe:CONFigure:SLOTX (name)

slot[X].startchannel.amps
where X is to 6 for slot number N/A

slot[X].startchannel.isolated
where X is to 6 for slot number N/A

slot[X].startchannel.voltage
where X is to 6 for slot number N/A

print(slot[X].tempsensor)
where X is to 6 for slot number N/A

Timer
timer.measure.t N/A
timer.reset N/A
Trigger Functions
trigger.clear N/A
trigger.wait N/A
TRIGGER.BLENDER
trigger.blender[N].clear N/A
trigger.blender[N].orenable N/A
trigger.blender[N].overrun N/A
trigger.blender[N].stimulus[N] N/A
trigger.blender[N].wait
where N is 1 to 4 for triggersource and
N in 1 ? for blender

N/A

trigger.timer[N].clear N/A
trigger.timer[N].count N/A
trigger.timer[N].delay N/A
trigger.timer[N].overrun N/A
trigger.timer[N].passthrough N/A
trigger.timer[N].stimulus N/A
trigger.timer[N].wait
where N is 1 to ? N/A

TSPLINK Function
tsplink.node N/A
tsplink.reset N/A
tsplink.state N/A
tsplink.trigger[N].assert N/A
tsplink.trigger[N].clear N/A
tsplink.trigger[N].mode N/A
tsplink.trigger[N].overrun N/A
tsplink.trigger[N].release N/A
tsplink.trigger[N].stimulus N/A
tsplink.trigger[N].wait N/A

userstring.add N/A
userstring.catalog N/A
userstring.delete N/A
userstring.get N/A

Table 4. Model 3706 scanner commands vs. Model 700X scanner commands (continued)

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.

All other trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc. ■ 28775 Aurora Road ■ Cleveland, Ohio 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com

Belgium
Sint-Pieters-Leeuw
Ph: 02-363 00 40
Fax: 02-363 00 64
www.keithley.nl

china
Beijing
Ph: 8610-82255010
Fax: 8610-82255018
www.keithley.com.cn

finland
Espoo
Ph: 09-88171661
Fax: 09-88171662
www.keithley.com

france
Saint-Aubin
Ph: 01-64 53 20 20
Fax: 01-60-11-77-26
www.keithley.fr

germany
Germering
Ph: 089-84 93 07-40
Fax: 089-84 93 07-34
www.keithley.de

india
Bangalore
Ph: 080-26771071-73
Fax: 080-26771076
www.keithley.com

italy
Milano
Ph: 02-553842.1
Fax: 02-55384228
www.keithley.it

japan
Tokyo
Ph: 81-3-5733-7555
Fax: 81-3-5733-7556
www.keithley.jp

korea
Seoul
Ph: 82-2-574-7778
Fax: 82-2-574-7838
www.keithley.co.kr

Malaysia
Penang
Ph: 60-4-656-2592
Fax: 60-4-656-3794
www.keithley.com

netherlands
Gorinchem
Ph: 0183-63 53 33
Fax: 0183-63 08 21
www.keithley.nl

singapore
Singapore
Ph: 65-6747-9077
Fax: 65-6747-2991
www.keithley.com.sg

sweden
Solna
Ph: 08-50 90 46 00
Fax: 08-655 26 10
www.keithley.com

Switzerland
Zürich
Ph: 044-821 94 44
Fax: 41-44-820 30 81
www.keithley.ch

taiwan
Hsinchu
Ph: 886-3-572-9077
Fax: 886-3-572-9031
www.keithley.com.tw

UNITED KINGDOM
Theale
Ph: 0118-929 75 00
Fax: 0118-929 75 19
www.keithley.co.uk

© Copyright 2007 Keithley Instruments, Inc. Printed in the U.S.A. No. 2897 Dec. 07

