
Converting a Series 2700 SCPI Application
to a Series 3700 System Switch/
Multimeter System Script Application

Introduction
For many years, instrument manufacturers have used “Standard
Commands for Programmable Instrumentation” or SCPI to con-
trol programmable test and measurement devices in instrumen-
tation systems. SCPI provides a uniform and consistent language
for the control of test and measurement instruments. The same
commands and responses control corresponding instrument
functions in SCPI equipment, regardless of the manufacturer or
the instrument type.

By design, Keithley’s new Series 3700 System Switch/
Multimeter instrument does not use SCPI commands. The plat-
form instead uses an internal Test Script Processor (TSP) to pro-
cess and run programs called “scripts.” The migration to TSP was
to address the more demanding system throughput requirements
common to today’s systems. Communication to any TSP instru-
ment is the same as interfacing to a conventional instrument
using commercially available software applications and appli-
cation development environment. The user simply sends text
strings containing either TSL or ICL commands to the instrument
using the communication interface. Although Keithley provides
an application suite called Test Script Builder (TSB), it is not
intended as the only tool to communicate to the instrument, nor
does not replace commercially available software applications.
TSB is a basic tool available to use to develop scripts for TSP
instruments.

A script is a collection of instrument control commands and/
or program statements. Program statements control script execu-
tion and provide facilities such as variables, functions, branching,
and loop control. TSB is a programming interface in which users
can create powerful, high speed, multi-channel tests to down-
load into either the unit’s volatile or nonvolatile memory. Using
the downloaded script, the unit controls itself, independent
of the system’s host controller. This capability can free up the
system controller to interface with other equipment in the rack
more frequently, thereby increasing the overall system through-
put. Furthermore, the Series 3700 has very deep memory; pro-
gram memory can hold 50,000 lines of code and data memory
can store at least 450,000 readings.

This application note compares the Series 2700 SCPI-based
applications with the new Series 3700 scripting approach.

Comparing SCPI to ICL Commands and Scripts
The SCPI Instrument Model

Some measurements require direct control over an instrument’s
hardware. To provide this control, SCPI-based instruments con-

tain command subsystems that control particular instrument
functions and settings.

The SCPI Instrument Model is divided among the SCPI com-
mand subsystems. In the case of the Series 2700, the command
subsystems are broken down into these categories:

1.	 Signal-Oriented Measurement: Commands used to acquire
readings.

2.	 Calculate: Used for math expressions, limit testing, and
statistics.

3.	 Display: Controls the display of the Integra instruments.

4.	 Format: Selects the data format for transferring readings
over the bus.

5.	 Route: Controls front/rear inputs or switching.

6.	 Sense: Configures and controls the measurement
functions.

7.	 Status: Controls the status registers.

8.	 System: Contains miscellaneous commands for instrument
setup.

9.	 Trace: Configures and controls data storage into the
buffer.

10.	Trigger: Configures the Trigger Model.

11.	Unit: Configure the query the displayed measurement
units

The TSP Instrument Model

Test Script Language (TSL) is the language of the Series 3700. ICL
is a group of predefined functions and variables that are used to
control the instrument. They are the instrument commands that
are equivalent to SCPI commands in the SCPI instruments. The
following command sets apply to the Series 3700:

1.	 Beeper: Commands used to control the built-in beeper.

2.	 Bit: Used to perform logic operations on one or two
numbers.

3.	 Delay: Used to control read/write and trigger operations
for the digital I/O port.

4.	 Digital I/O: Selects the data format for transferring
readings over the bus.

5.	 Display: Used to control display messaging on the front
panel of the Model 3700.

6.	 Error Queue: Used to read the entries in the error/event
queue.

7.	 Exit: Used to terminate a script that is presently running.

Number 2875

Application Note
Series

8.	 Format: Used for data printed with the printnumber and
printbuffer commands.

9.	 GPIB: Used to set the GPIB address.

10.	LocalNode: Used to set the power line frequency, control
(on/off) prompting, and control (hide/show) error
messages on the display.

11.	Make: Used to set and retrieve a value for an attribute.

12.	Operation Complete: Sets the OPC bit in the status
register when all overlapped commands are completed.

13.	PrintBuffer: Used to print data and numbers.

14.	Reset: Used to return a Model 3700 to its default settings.

15.	Setup: Used to save/recall setups and set the power-on
setup.

16.	Trigger: Used to control triggering.

17.	TSPLink: Used to assign node numbers to a mainframe
and initialize the TSP-Link system.

18.	UserString: Used to store/retrieve user-defined strings in
non-volatile memory.

19.	Wait Complete: Waits for all overlapped commands to
complete.

What may look like a larger list of command definitions com-
pared to the Series 2700 is instead a reduced set of individual
commands. For example, the SCPI subsystem for “Calculate” is
handled mostly through scripting; therefore, no ICL commands
exist for those functions. See Table 1 at the end of this document
for a list of ICL commands and the corresponding SCPI com-
mands.

There are two alternatives for programming and communicat-
ing with the Series 3700: either executing individual ICL com-
mands (similar to sending individual SCPI commands) or writing
test scripts using Test Script Language. Test Script Language
(TSL) is a programming language based on Lua, a standard pro-
gramming language (www.lua.org). TSL is capable of performing
branching, looping, and other attributes for the purpose of con-
trolling instruments using ICL commands.

Scripts are a collection (list) of instrument control commands
(ICL) and/or program statements (TSL). Series 3700 instruments
execute all commands and statements in a script. Running a
script at the instrument level is faster than running the test pro-
gram from the PC. Using scripts eliminates the time needed for
transmission from PC to instrument via GPIB. Thanks to the Test
Script Processor (TSP) built into the instrument, an entire TSL
control program can be loaded in the instrument. Then, sending
a single command can execute the whole program. In other cir-
cumstances, the applications might be better served if some por-
tion of the program resides on the PC. The beauty of scripting is
its ability to divide up the program in any way that makes sense.

To compare the difference between using SCPI commands
and ICL commands, let’s look at the two command sets in an
example that performs a simple scan. The Series 2700 SCPI com-
mands and the equivalent Series 3700 TSP script are shown in

Example 1. A complete comparison of the Series 3700 TSP lan-
guage commands versus the comparable SCPI commands for the
Series 2700 is listed in Table 1.

Example 1: Volts Measurement/Simple Scan Channels 1–20

The following example code (Example 1) will:

Set channels for DC Volts•	

Specify a scan list from channels 1 through 20•	

Return the voltage readings to the host PC•	

Example 1.

SCPI Command Comments
*RST Restore GPIB defaults
:SENS:FUNC ‘VOLT’, (@101:120) Configures for DCV function with channel list
:ROUT:SCAN(@101:120) Specify channel to scan
:SAMP:COUN 20 Sample count to 20
:TRIG:COUN 1 Trigger one scan
:ROUT:SCAN:LSEL INT Enable scan mode
:TRAC:FEED:CONT NEXT Enable trace Buffer
INIT Init scan
DATA? Request buffer readings

ICL command Script Comments
Reset() Restore GPIB defaults

dmm.setconfig("1001:1020","dcvolts")
Specify channel to scan and
associated function

mybuffer=dmm.makebuffer(20)
Creates a 20-reading user buffer
named mybuffer

reading=dmm.measure(mybuffer)

scan.create(“1001:1020”)
Creates a scan list for channels 1–20
on slot 1

scan.scancount=1 Trigger one scan

scan.execute(mybuffer)
Specifies mybuffer as the reading
buffer for the scan to use

print(printbuffer(1,20, mybuffer)) Print contents of my buffer

The SCPI program shown in Example 1 converts easily to
an equivalent ICL script. Note the similarity in structure of the
ICL commands to the SCPI commands. One difference is how
the readings are taken. In the SCPI protocol, getting a reading is
actually a two-step process. First, it’s necessary to ask for a read-
ing using one of several query commands. This example used
the “DATA?” command to retrieve the data from the internal
buffer. Once the query is sent, the readings are stored in a read-
ing queue. The control program must then get the reading from
the queue to complete the process. If any further commands or
queries are sent without getting the complete reading from the
reading queue, the instrument will give a ‑410 query-interrupted
error. These ‑410 query-interrupted errors are a result of inter-
rupting the query and are a common pitfall for SCPI-based
products.

In the SCPI instrument, the INIT command is sent to initi-
ate the scan, and the measurements are always automatically
stored into an internal buffer. This is not the case with the ICL
commands. Note that in the code in Example 1, the scan is initi-
ated by the scan.execute(mybuffer) command. In TSL, a
buffer named mybuffer was created to store the measurements.
Another option is to create a variable, then the variable can be

used within the TSP script for other operations, such as limit test-
ing, a math operation, or as part of an overall testing strategy.
This is where the power of the TSP functions begins.

TSP language goes well beyond just sending instrument com-
mands; it also includes capabilities like variable and variable typ-
ing, math operators and operations, tables and arrays, creation
of user functions that are callable from scripts, precedence, logi-
cal operators, string concatenation, conditional branching, loop
control, and built-in standard string and math callable libraries.
These tools, which are built into the TSP language, open up the
programming potential for the Series 3700 instruments, but
more importantly, makes application development simpler than
with SCPI programming.

Comparing Switching of the
Series 2700 and Series 3700
Assigning Channels

To illustrate the potential of the TSP, let’s look at more SCPI
Series 2700 application examples and compare them with Series
3700 scripts. But first, we’ll review interpreting channel numbers.
Basically, the difference between them is the Series 2700’s use
of three numbers versus the Series 3700’s use of four. The addi-
tional number represents the one-hundredth place and is most
commonly used for backplane channels.

Series 2700: (@101:110)
Series 3700 (“1031,1921”)

Note how both series use a comma ‘,’ to indicate individual
channels and a colon ‘:’ to include all channels in between.

To designate channel number,

Series 2700: (@101)

1 0 1

Channel #
(10 place)

Channel #
(1 place)

Slot #

Series 3700: ("1031")

Channel #
(100 place)

“9” designates the
analog backplane

1 0 3 1

Channel #
(10 place)

Channel #
(1 place)

Slot #

Series 3700 instruments offer greater switching capabili-
ties than the Series 2700. The channel designation includes the
backplane channel in the number. Backplane channels connect
the output of the switch to the measuring instrument (DMM).
By default, the Series 2700 backplane relays are closed. Opening
backplane channels allows disconnecting from the internal
DMM. Backplane channels can be individually controlled using
the ROUT:MULTI command to disconnect from the DMM input
terminals. In other words, backplane channels cannot be con-

trolled using the scan function. This limitation requires detailed
management of DMM function, opening/closing the channel(s)
and backplane relay(s). See the Series 2700 instrument manual
for details.

By default, the Series 3700 backplane relays are open. In
addition to DMM connection backplane channels, there are four
other analog backplanes available to interconnect between cards.
Having direct access to control the analog backplanes offers flex-
ibility in the switching configuration not possible with the Series
2700. . The Series 3700 also offers greater control over how
things are opened or closed as well as the relay connection meth-
od. As expected, with this flexibility comes multiple choices for
the appropriate ICL command, as discussed in the next section.

Closing Channels

Series 2700:

The ROUT:CLOS command is used to close a specified chan-
nel. However, this command also executes an open all channels
prior to closing the designated channel. If required to main-
tain channel closures while closing an additional channel, the
ROUT:MULTI command is used.

The SCPI command ROUT:CLOSE(@101) performs the follow-
ing sequence:

1.	 Breaks before make connection

2.	 Opens all channels previously closed

3.	 Closes channel 1 in slot 1 including appropriate backplane

Series 3700:

The Series 2700 offers two channel close commands
(:ROUT:CLOS and :ROUT:MULT:CLOS), while the Series 3700 has
four unique commands to perform a channel close. Each com-
mand executes channel close slightly differently, offering added
flexibility and various advantages for choosing one over the
other. For example, there are “switch only” commands that do
nothing to configure the DMM, or ensure a good measurement
path that provides measurement integrity. Then there are other
commands that not only close the channel, but perform addi-
tional tasks to configure the DMM function to ensure the proper
switches are closed for that configuration. The following is a list
of the commands and what each of them do:

dmm.close: Automatically closes the appropriate backplane
channels when a function is associated with it. By default, there
is no function associated with a channel. This command will
generate an error when a measurement function is not associ-
ated with the channel. The command to associate a function
with a channel is the dmm.setconfig command. For example,
dmm.setconfig("1031","dcvolts") associates the DC volts
function to channel 31.

dmm.close performs four sequential tasks:

1.	 Opens channels associated with card bank

2.	 Opens any other backplane relay of any other cards
connected to Analog Backplane 1 and 2

3.	 Closes the specified channel and closes the appropriate
backplane relay(s) to connect the closed channel to the
DMM

4.	 Configures the DMM as per the configuration previously
assigned

channel.close: Similar to the :ROUT:MULT:CLOS command
of the Series 2700, this command never changes the DMM func-
tion, open channels or close associated backplane channels
(unless the backplane relay(s) are part of the channel list or
configured via channel.set.backplane commands). Basically,
this low level command strictly closes the selected channel(s). It
offers the most switching and timing control because it does not
perform any background or switch management tasks.

channel.exclusiveclose: Similar to the ROUT:CLOS com-
mand used in Series 2700 instruments, which closes the speci-
fied channel (and opens all others). The exclusive close opens
previously closed channels and analog backplane relays on all
slots and then closes desired channel(s) and specified analog
backplane relays.

Channel.exclusiveslotclose: Opens only the previously
closed channels in all slots associated with the channels in the
channel list prior to closing the designated channel.

Backplane Channel Control
Series 2700:

By default, the Integra (Series 2700) products have a measure-
ment function (DCV) associated with the channel. Backplane
channels are automatically closed based on the measurement
function selections (i.e., two-wire versus four-wire ohms).

Series 3700:

The Series 3700 differs from the Series 2700 in that it is opti-
mized to be a stand-alone switching system. A critical difference
is that there is no default function automatically associated with
a channel. If a channel is not associated with a measurement
function, the backplane channels are opened to allow disconnec-
tion from the internal DMM. To take a measurement, the user
must associate a channel with a function to connect to the inter-
nal DMM. Then, with a close command such as the dmm.close,
the backplane channels are automatically closed. Refer to the
Series 3700 instrument manual for more details on controlling
backplane channels when using these instruments strictly as a
switch system.

Connection Methods
The Model 2700 offers one connection method: the break before
make method. Multiple connection methods are available for the
Series 3700, but connection options apply to only scan or exclu-
sive close methods.

Series 2700:

Break before Make: This connection method breaks or discon-
nects the previous contact before making or connecting to the
next contact. Since this is only connection schema offered for
Series 2700 instruments there is no SCPI command(s) for con-
figuration.

Series 3700:

Series 3700 offers three user-selectable connection methods:

Break before make: 1.	 channel.connectrule=channel.
BREAK _ BEFORE _ MAKE
This connection method breaks or opens the contact
before making or connecting to the next contact. Break
before Make is the default and is the identical to the Series
2700.

Make before break: 2.	 channel.connectrule=channel.
MAKE _ BEFORE _ BREAK
This connection method makes contact before opening or
breaking previous contact.

OFF mode: 3.	 channel.connectrule=channel.OFF
This connection method does not guarantee connection
method. It is offered to obtain the fastest execution
possible. Using this method the second switch operation
does not wait for the first one to complete. Although faster
scan times can be achieved, it is at the cost of potentially
closing more than one switch at a time. Users are
advised to exercise caution when selecting this particular
connection method, due to inherent risks associated with
the transition of multiple relays closed at the same time
(one relay is opening while another is closing in undefined
sequence).

Converting a Series 2700 SCPI Application
to a Series 3700 (ICL) Script

Temperature Measurement/Close Channel
Measuring temperature is a common data acquisition application.
Thermocouples offer a low cost way to acquire a wide range of
temperatures. To improve accuracy, a cold junction compensa-
tion (CJC) reference measurement is acquired with thermocouple
measurements. Some of the Series 2700 modules, including the
popular Model 7700 (20 channel) or the 7708 (40 channel) have
multiple CJCs built on the module.

Series 3700 instruments implement an external screw panel
accessory that houses the built-in CJC. The Model 3720 multi-
plexer card relay places the CJC reference on an accessory mod-
ule, the Model 3720-ST terminal, which is capable of connecting
up to 60 thermocouples. The 3721-ST card accessory for the
40-channel Model 3721 card also has a built-in CJC. This second
example monitors a single channel for temperature measure-
ment.

Example 2: Temperature measurement convert-
ing SCPI commands to ICL commands:

Configures a channel for type J thermocouple measurement•	

Close a channel and•	

Take a reading•	

Model 2750 commands:
*RST resets the instrument to default state
UNIT:TEMP F Configure Temperature units to F
SENS:FUNC ‘TEMP’ Configure temperature function

SENS:TEMP:TRAN TC
Configure Transducer for
Thermocouple

SENS:TEMP:TC:TYPE J Configure Thermocouple type “J”

SENS:TEMP:TC:RJUN:RSEL INT, (@101)
Configure Temp for internal
reference

ROUT:CLOS (@101) Close Channel 1
READ? Initiate and request for reading

Model 3700 commands:
reset() Resets to default state
dmm.func = "temperature" Change function to Temperature
dmm.transducer = dmm.TEMP _
THERMOCOUPLE

Sets transducer type to Thermocouple

dmm.thermocouple = dmm.
THERMOCOUPLE _ J

Sets thermocouple type to “J”

dmm.units = dmm.UNITS _
FAHRENHEIT

Configures Temperature units to “F”

dmm.refjunction=dmm.REF _
JUNCTION _ INTERNAL

Configures reference for internal

dmm.configure.set ("mytemp") Configures for Temperature function
dmm.setconfig("1031",
"mytemp")

Specify channel to close with associated
function

dmm.close("1031”)
Close channel 1031 in slot 1 with
associated backplane channel (1921) and
configures DMM

print(dmm.measure())
Initiates a measurement and prints the
result to the output queue

Four-Wire Low Resistance Scan Example
Measuring low resistance is a typical application for the Model
2750 and Series 3700. The next example demonstrates the con-
version of a Series 2700 SCPI to a Series 3700 ICL for a four-wire
resistance scan. In the SCPI code, a delay period in the program
is required to allow the scan time to complete prior to sending
the DATA?

Example 3: Four wire Resistance compares
SCPI commands to ICL commands:

Configure 10 channels for four-wire resistance function•	

Configure for enhanced accuracy: enable offset •	
compensation, NPLC setting of 10, using the 1Ω range.

Only the readings are returned•	

Perform two scans•	

Model 2750 SCPI commands:
*RST resets the instrument to default state
INIT:CONT OFF Disable continuous initiation
TRAC:CLE:AUTO OFF Clears internal 55,000 reading buffer
FORM:ELEM READ Specifies Data elements to return Reading
SENS:FUNC ‘FRES’,(@101:110) Configure channels 4W Res function
SENS:FRES:NPLC 10, (@101:110) Configure Resistance for NPLC 10
SENS:FRES:RANG 1 Configure measurement range for 1 Ohm
SENS:FRES:OCOM ON, (@101:110) Enable offset compensation feature
TRIG:COUN 2 Trig count for 2
SAMP:COUN 10 Sample count for 10
ROUT:SCAN:LSEL INT Enable internal scan
ROUT:SCAN (@101,110) Scan list for channels 1 & 10
INIT Initiate scan
DATA? Requests data stored in the buffer

These lines of SCPI commands can be directly converted to
a Series 3700 TSP test sequence. The following lines of TSP code
can be used to perform the same function:

Model 3700 ICL commands:

reset()
Resets the System Switch/Multimeter
to default state

mybuffer=dmm.makebuffer(20)
Create 10 point buffer called
mybuffer

dmm.func="fourwireohms" Change function to 4-wire ohms
dmm.nplc=10 Configure Resistance for NPLC 10

dmm.range=1
Configure measurement range for
1 Ohm

dmm.offsetcompensation=dmm.ON Enable offset compensation feature
dmm.drycircuit=dmm.ON Enable dry circuit function

dmm.configure.set("myfres")

Creates a DMM configuration with
attributes based on the 4 wire
resistance function and associates
with the name “myfres”

dmm.setconfig("1001:1010","myfres")
Associates “myfres” with items
specified in the parameter channel
list

scan.create("1001:1010")
Creates a new scan list using “myfres”
with channels 1-10

scan.scancount=2 Set scan count to 2
scan.execute(mybuffer) Specifies to use mybuffer during scan
printbuffer(1,20,mybuffer) Print buffered readings

Note that the SCPI and ICL command structures are similar
and English-like. One uses colons (SCPI) while the other uses
periods (ICL), one is not case sensitive (SCPI) while the other
is (ICL). But both indicate basically what the user wants to be
performed. So, what is the advantage of one language over
the other?

The advantage is found using the scripting compatibilities.
Let’s look at a script example to examine how a script can per-
form the same functionality as a scan. This example performs a
loop in code, rather than configuring the instrument to perform
a scan.

Example 4: Four-Wire Low Resistance script:
function 4wireR_(loops)
reset()			 	 --reset
reading_buffer=dmm.makebuffer(400000)	 --create reading buffer
reading_buffer.appendmode=1 	 --Turn Buffer append mode on
dmm.func = dmm.FOUR_WIRE_OHMS 	 --configure 4 wire ohms function
dmm.nplc=.1		 	 --configure nplc setting
dmm.range=1000	 	 --configure range
dmm.configure.set("myfres") 	 --saves configures as “myfres”
dmm.setconfig("1001:1040","myfres")	 --associates configuration to channels
for z=1, loops do
for k =1, 40 do

	 chan=1000+k
	 chan_num=tostring(chan)
	 dmm.close(chan_num)
	 dmm.measure(reading_buffer)
end
end

printbuffer(1,40, reading_buffer)
channel.open("slot1")
end

The preceeding example is intended to demonstrate TSP
script function capabilities. Instead of the instrument using
an internal scan feature, scanning channels is accomplished
using TSL to pass parameters that perform a simple for… next
loop. The function 4wireR passes the parameter (loops) while
chan=1000+k adds “1” to the channel variable with the com-
mand dmm.close until the for…next loop is fulfilled.

This script function can then be loaded into the instrument
and called within a program by sending “4wireR(5)”. This would
run the function and assign the value of 5 to the variable “loops.”
Developing a function script, in place of using a scan feature,
allows for dynamic configuration of the number of loops and
number of channels each time the function is run. Scripting
offers advantages from a programming perspective, but using the
built-in scan mode is the preferred method to squeak out a few
extra milliseconds of speed. The example uses dmm.close to
manage backplane relays as well as configure the DMM.

SCPI Series 2700 Commands to
Perform Built-in Limit Testing
Both Series 2700 and Series 3700 instruments have the same
built-in limits capability of two sets of limits. Both Limit 1 and
Limit 2 use High and Low limits (HI1 and LO1 and HI2 and
LO2). The status indication applies to the first limit that fails,
even should both limits fail.

0

INLOW HIGH

Limit 1

Limit 2

HI1 HI2LO1LO2

Although Limits are not a global parameter, when configured
for a simple scan, the limit value and state applies to all channels
in the scan. When configured as an advanced scan, each channel
can have its own unique limit configuration.

The following simple command sequence configures the
Model 2750 to perform a Limit 1 test on a DCV reading (default
parameters). If the 100mV limit is reached, digital output #2 will
be pulled low. If the –100mV limit is reached, digital output #1
will be pulled low.

*RST One shot measurement mode DCV
:CALC3:LIM1:UPP 0.1 Set HI1 limit to 100mV
:CALC3:LIM1:LOW –0.1 Set LO1 limit to –100mV
:CALC3:LIM1:STAT ON Enable limit 1
:CALC3:OUTP:LSENS ALOW Set logic sense to active low
:CALC3:OUTP ON Enable Digital outputs
READ? Trigger and request reading
:CALC3:LIM1:FAIL? Request result of limit 1 test

Series 3700 TSP Script to Perform
Multiple Limit Testing:
Although the Series 3700 has the same built-in limit testing capa-
bilities as the Series 2700, this next example is intended to dem-
onstrate the power of scripting language. Similar to the previous
for next loop example, this example creates a function script that
can be loaded in the Series 3700. This example performs limit
testing outside of the instrument’s built in two limit capability.

Example 5: limit testing using script:

This script uses limits to sort resistors into three bins:

Configures for two-wire resistance measurement•	

Bins will be defined using the digital outputs•	

Bin 1 is for resistors with in 1% of nominal Value•	

Bin 2 is for resistors with in >1% and < 5 %•	

Bin 3 is for resistors Greater than 5% of nominal Value•	

function limits_Setup_1()
nominal=100
reset()
digio.writeport(0)
dmm.func = dmm.TWO_WIRE_OHMS
dmm.nplc=1
--dmm.range=10
reading=dmm.measure()
Diff=nominal-reading
Diff=math.abs(Diff)
if Diff <= (nominal*.01) then
	 print("Bin 1")
	 digio.writebit(1,1)
elseif Diff > (nominal*.01) and Diff <= (nominal*.05) then-- Bin 2 (5%)
	 print ("Bin 2")
	 digio.writebit(2,1)
elseif Diff > (nominal*.05) then 				
(>5%)
	 print ("Bin 3")
	 digio.writebit(3,1)
end
print (reading)
print (Diff)

end

DIO Differences
In regard to the DIO, one difference between the two series of
instruments is the Series 3700 can write directly to the DIO. Its
DIO port is no longer confined to limits testing or installing a
Model 7707 40-channel single-pole control module as in the
Series 2700. Another obvious difference is the significant increase
in available digital I/O lines. Series 3700 offers 14 digital I/O lines
compared to only four lines for the Series 2700.

For the Series 2700, either a beeper or the DIO output line
is controlled via limit testing. There are five digital output lines
(pins 1–5) controlled by 2 sets of limits. The digital I/O interface
is a DB-9 connector on the rear panel. Figure 3 illustrates the
pin-out configuration.

Figure 3

The 370X’s digital I/O interface is a DB-25 connector on the
rear panel. Figure 4 illustrates the pin-out configuration.

Figure 4

Conclusion
It is well recognized that communications between test equip-
ment and the system controller can be a significant bottleneck
that limits test system throughput. It is common practice to per-
form command and data transfers while a prober or handler is
performing mechanical operations to avoid consuming valuable
test time. However, as test systems have become increasingly
complex and more controller/instrument interaction is generally
required, this is increasingly difficult to achieve. Keithley’s Series
3700 instruments address this throughput issue with the Test
Script Processor (TSP). Loading the script on the instrument as a
TSP function will minimize communication requirements. Once
loaded in the Series 3700 instrument, the function can be called
and reused at any time.

This application note touched on just a few of the poten-
tial applications that can be converted from a Series 2700 SCPI
program to a Series 3700 TSP language script. Table 1 maps
Series 3700 TSP language commands to their equivalent Series
2700 SCPI commands. The Series 3700 commands have been
optimized for greater flexibility of operation than to the Series
2700 SCPI commands. In many cases, there are no equivalent
SCPI commands. The table simplifies reviewing existing Series
2700 SCPI programs to determine if there is an equivalent Series
3700 command. Once it’s been determined that a command
maps, the power of the Series 3700 TSP language allows creating
reusable test sequence scripts to address many challenging test
applications.

Table 1. Series 3700 ICL/2700 SCPI Command Comparison

TSP Command Series 2700 Command(s)
Beeper Commands
beeper.enable = 0/1 SYSTem:BEEPer:STATe
beeper.beep(duration,frequency) N/A
Bit Commands
bit.bitand(value1,value2) N/A
bit.bitor(value1,value1) N/A
bit.bitxor(value1,value2) N/A
bit.clear(value1,index) N/A
bit.get(value1,index) N/A
bit.getfield(value1,index,width) N/A
bit.set(value1,index) N/A
bit.setfield(value1,index,width,fieldvalue) N/A
bit.test(value1.index) N/A
bit.toggle(value1,index) N/A
Channel Commands
channel.close(ch list) ROUTe:MULTiple:CLOSe
channel.connectrule = rule N/A
channel.connectsequential = channel.ON N/A
channel.exclusiveclose(ch list) N/A
channel.exclusiveslotclose(ch list) NA
channel.getbackplane(ch _ list) N/A
channel.getclose(ch _ list) ROUTe:CLOSe?
channel.getcount(ch _ list) N/A
channel.getdelay(ch _ list) N/A
channel.getimage(ch _ list) N/A
channel.getlabel(ch _ list) N/A
channel.getpole(ch _ list) N/A

channel.getstate(ch _ list)

ROUTe:CLOSe:STATe?
Query closed channels in specified list
:ROUTe:MULTiple:CLOSe:STATe?
Query closed channels in specified list

channel.open(ch _ list) :ROUTe:OPEN:ALL
channel.pattern.catalog() N/A
channel.pattern.delete(name) N/A
channel.pattern.getimage(name) N/A
channel.pattern.setimage(ch _ list,name) N/A
channel.pattern.snapshot(name) N/A
channel.reset(ch _ list) N/A
channel.setbackplane(ch _ list,abuslist) N/A
channel.setdelay(ch _ list,value) N/A
channel.setlabel(ch _ list,label) N/A
channel.setpole(ch _ list,value) N/A
Delay Command
Delay * TRIGger:DELay *
Digital I/O Commands
digio.readbit(N) OUTPut:TTL:LSENse?
digio.readport() OUTPut:TTL:LSENse?
digio.trigger[N].assert() N/A
digio.trigger[N].clear() CALCulate3:LIMX:CLEar[IMMediate} @

digio.trigger[N].mode

CALCulate3:MLIMit:LATched @
:CALCulate3:OUTPut[:STATe
:CALCulate3:OUTPut:LSENse <AHIGh or ALOW>
:CALCulate3:OUTPut:PULSE[:STATe]

digio.trigger[N].overrun N/A
digio.trigger[N].puslewidth CALCulate3:OUTPut:PULSe:TIME
digio.trigger[N].release() N/A
digio.trigger[N].stimulus N/A
digio.trigger[N].wait (timeout) N/A
digio.writebit N/A
digio.writeport N/A
digio.writeprotect N/A
Display Command
display.clear() DISPlay:WINDow1:TEXT:DATA
display.getannunciators() N/A
display.getcursor() N/A
display.getlastkey() N/A
display.gettext() DISPlay:WINDow1:TEXT:DATA
display.inputvalue(format) N/A
display.loadmenu.add(displayname,chunk) N/A
display.loadmenu.delete(displayname) N/A
display.locallockout N/A
display.menu N/A
display.prompt(format, units, help) N/A
display.screen DISPlay:WINDow1:TEXT:STATe
display.sendkey(keycode) SYSTem:KEY
display.setcursor(row,column) N/A
display.settext(“text”) DISPlay:WINDow1:TEXT:DATA

TSP Command Series 2700 Command(s)
DISPlay:WINDow1:TEXT:STATe
display.waitkey() N/A
DMM FUNCTIONS
dmm.adjustment.count N/A
dmm.adjustment.date N/A

dmm.aperture

:SENSe:VOLTage:APERture <n>
:SENSe:CURRent:APERture <n>
:SENSe:VOLTage:AC:APERture <n>
:SENSe:CURRent:AC:APERture <n>
:SENSe:RESistance:APERture <n>
:SENSe:FRESistance:APERture <n>
:SENSe:TEMPerature:APERture <n>
:SENSe:FREQuency:APERture <n>
:SENSe:PERiod:APERture <n>

dmm.autodelay N/A

dmm.autorange

:SENSe:VOLTage:RANGe:AUTO <n>
:SENSe:CURRent: RANGe:AUTO <n>
:SENSe:VOLTage: RANGe:AUTO <n>
:SENSe:CURRent: RANGe:AUTO <n>
:SENSe:RESistance: RANGe:AUTO <n>
:SENSe:FRESistance: RANGe:AUTO <n>

dmm.autozero :SYSTem:AZERo <n>
dmm.calibration.ac CAL:AC:STEPx
dmm.calibration.dc CALDC:STEPx
dmm.calibration.lock CAL:PROT:LOCK
dmm.calibration.password CAL:PROT:CODE
dmm.calibration.save CAL:PROT:SAVE
dmm.calibration.unlock CAL:PROT:CODE and CAL:PROT:INIT
dmm.calibration.verifydate CAL:PROT:DATE
dmm.close ROUTe:CLOSE
dmm.configure.catalog N/A
dmm.configure.delete N/A
dmm.configure.query N/A
dmm.configure.recall CONFigure

dmm.configure.set

:SENSe:FUNCtion ‘VOLTage’, <ch list>
:SENSe:FUNCtion ‘CURRent’, <ch list>
:SENSe:FUNCtion ‘VOLTage:AC’, <ch list>
:SENSe:FUNCtion ‘CURRent:AC’, <ch list>
:SENSe:FUNCtion ‘RESistance’, <ch list>
:SENSe:FUNCtion ‘FRESistance’, <ch list>
:SENSe:FUNCtion ‘TEMPerature’, <ch list>
:SENSe:FUNCtion ‘FREQuency’, <ch list>
:SENSe:FUNCtion ‘PERiod’, <ch list>
:SENSe:FUNCtion ‘CONTinuity’, <ch list>

dmm.connect N/A

dmm.dbreference
:UNITs:VOLTage[:DC]:DB:REFerence
:UNITs:VOLTage:AC:DB:REFerence

dmm.detectorbandwidth
:SENSe:VOLTage:AC:DETector:BANDwidth <n>
:SENSe:CURRent:AC:DETector:BANDwidth <n>

dmm.drycircuit SENSe:FRESistance:DCIRcuit (2750 only)

dmm.filter.count

:SENSe:VOLTage[:DC]:AVERage:COUNt <n>
:SENSe:CURRent[DC]:AVERage:COUNt <n>
:SENSe:VOLTage:AC:AVERage:COUNt <n>
:SENSe:CURRent:AC: AVERage:COUNt <n>
:SENSe:RESistance: AVERage:COUNt <n>
:SENSe:FRESistance:AVERage:COUNt <n>
:SENSe:TEMPerature:AVERage:COUNt <n>

dmm.filter.enable

:SENSe:VOLTage[:DC]:AVERage[:STATe]<n>
:SENSe:CURRent[DC]:AVERage[:STATe] <n>
:SENSe:VOLTage:AC:AVERage[:STATe] <n>
:SENSe:CURRent:AC: AVERage[:STATe] <n>
:SENSe:RESistance: AVERage[:STATe] <n>
:SENSe:FRESistance:AVERage[:STATe] <n>
:SENSe:TEMPerature:AVERage[:STATe] <n>

dmm.filter.type

:SENSe:VOLTage[:DC]:AVERage:TCONtrol <name>
:SENSe:CURRent[DC]:AVERage:TCONtrol <name>
:SENSe:VOLTage:AC:AVERage:TCONtrol <name>
:SENSe:CURRent:AC: AVERage:TCONtrol <name>
:SENSe:RESistance: AVERage:TCONtrol <name>
:SENSe:FRESistance:AVERage:TCONtrol <name>
:SENSe:TEMPerature:AVERage:TCONtrol <name>

dmm.filter.window

:SENSe:VOLTage[:DC]:AVERage:WINDow <n>
:SENSe:CURRent[DC]:AVERage:WINDow <n>
:SENSe:VOLTage:AC:AVERage:WINDow <n>
:SENSe:CURRent:AC: AVERage:WINDow <n>
:SENSe:RESistance: AVERage:WINDow <n>
:SENSe:FRESistance:AVERage:WINDow <n>
:SENSe:TEMPerature:AVERage:WINDow <n>

dmm.fourrtd :SENSe:TEMPerature:FRTD:TYPE <name>
dmm.func :SENSe:FUNCtion <name>
dmm.getconfig N/A
dmm.inputdivider :SENSe:VOLTage[:DC]:IDIVider

TSP Command Series 2700 Command(s)
dmm.limit[Y].autoclear :CALCulate3:LIMit:CLEAR:AUTO
dmm.limit[Y].enable :CALCulate3:LIMit:STATe
print(dmm.limit[Y].high.fail) :CALCulate3:LIMX:FAIL?
dmm.limit[Y].high.value :CALCulate3:LIMit:UPPer[:DATA]
print(dmm.limit[Y].low.fail) :CALCulate3:LIMX:FAIL?
dmm.limit[Y].low.value :CALCulate3:LIMit:LOWer[:DATA]
dmm.linesync :SYSTem:LSYN[:STATe]
dmm.makebuffer N/A
dmm.math.enable CALC1:STATe
dmm.math.format CALCulate{1}:FORMat <NONE,MXB,PERcent or RECiprocal
dmm.math.mxb.bfactor CALC1:KMATh:MBFactor or MA0Factor
dmm.math.mxb.mfactor CALC1:KMATh:MMFactor or MA1Factor
dmm.math.mxb.units CALC1:KMATh:MUNits
dmm.math.mxb.percent CALC1:KMATh:PERCent

dmm.measure()
FETCh?
READ?
MEAS[:<function>]

dmm.measure(reading _ buffer) DATa[:LATest]?
DATa:FRESh?
dmm.measurecount = <value> N/A
dmm.measurewithtime N/A

dmm.nplc

:SENSe:VOLTage[:DC]:NPLCycles
:SENSe:VOLTage:AC:NPLCycles
:SENSe:CURRent[:DC]:NPLCycles
:SENSe:CURRent:AC:NPLCycles
:SENSe:RESistance:NPLCycles
:SENSe:FRESistance:NPLCycles
:SENSe:TEMPerature:NPLCycles

dmm.offsetcompensation = <value> :SENSe:FRESistance:OCOMpensated
dmm.open N/A
dmm.opendetector TEMP:Tcouple:ODETect

dmm.range

:SENSe:VOLTage[:DC]:RANGe[:UPPer]
:SENSe:VOLTage:AC:RANGe[:UPPer]
:SENSe:CURRent[:DC]:RANGe[:UPPer]
:SENSe:CURRent:AC:RANGe[:UPPer]
:SENSe:RESistance:RANGe[:UPPer]
:SENSe:FRESistance:RANGe[:UPPer]

dmm.refjunction
:TEMP:TC:RJUNction:RSELect
<SIMulate,INTernal, or EXTernal>

dmm.rel.acquire

dmm.rel.enable

:SENSe:VOLTage[:DC]:REF:STATe
:SENSe:VOLTage:AC:REF:STATe
:SENSe:CURRent[:DC]:REF:STATe
:SENSe:CURRent:AC:REF:STATe
:SENSe:RESistance:REF:STATe
:SENSe:FRESistance:REF:STATe
:SENSe:TEMPerature:REF:STATe
:SENSe:FREQUency:REF:STATe

dmm.rel.level

:SENSe:VOLTage[:DC]:REFerence
:SENSe:VOLTage:AC:REFerence
:SENSe:CURRent[:DC]:REFerence
:SENSe:CURRent:AC:REFerence
:SENSe:RESistance:REFerence
:SENSe:FRESistance:REFerence
:SENSe:TEMPerature:REFerence
:SENSe:FREQUency:REFerence
:SENSe:PERiod:REFerence

dmm.reset() *RST
dmm.rtdalpha :TEMP:FRTD:ALPha (USER type constant)
dmm.rtdbeta :TEMP:FRTD:BETA (USER type constant)
dmm.rtddelta :TEMP:FRTD:DELTa (USER type constant)
dmm.rtdzero :TEMP:FRTD:RZERo (USER type constant)
dmm.savebuffer
dmm.setconfig :SENSe:FUNCtion with channel list parameter
dmm.simreftemperature :TEMP:TC:RJUCN:SIMulated
dmm.thermistor :TEMP:THERmistor[:TYPE]
dmm.thermocouple :TEMP:TCouple[:TYPE] <J,K,T,E,R,S,B,N>
dmm.threertd N/A

dmm.threshold
:FREQ:THReshold:VOLTage:RANGe
PER:THReshold:VOLTage:RANGe
CONTinuity:THReshold

dmm.transducer TEMP:TRANsducer <TCouple, FRTD or THERmistor>

dmm.units
UNIT:VOLTage[:DC] <V or DB>
UNIT:VOLTage:AC <V or DB>
UNIT:TEMPerature <C,CEL,F,FAR or K>

ERROR QUEUE
errorqueue.clear() :SYSTem:CLEar
errorqueue.count N/A
errorqueue.next() SYSTem:ERRor?
Exit Function
exit N/A

TSP Command Series 2700 Command(s)
FORMAT
format.asciiprecision N/A

format.byteorder
:FORMat:BORDer <name>
NORMal or SWAPped

format.data
:FORMat:ELEMent <item list>
READing, CHANnel, UNITsm RNUMber, TSTamp and LIMits

GPIB
Gpib.address N/A
TRIGGER
For lan ones, N is 0 to 7
lan.trigger[N].assert() N/A
lan.trigger[N].clear() N/A
lan.trigger[N].mode N/A
lan.trigger[N].pseudostate N/A
lan.trigger[N].overrun N/A
lan.trigger[N].stimulus TRIGger:SOURce
lan.trigger[N].protocol N/A
lan.trigger[N].wait(timeout) N/A
localnode attributes
localnode.linefreq :SYSTem:LFRequency?
localnode.model *IDN?
localnode.prompts N/A
localnode.reset() *RST
localnode.revision *IDN?
localnode.serialno *IDN?
localnode.settime :SYSTem:TIME
localnode.setup.poweron SYStem:POSetup
localnode.setup.recall SYStem:POSetup
localnode.setup.save *SAV
localnode.showerrors System:ERRor?
opc *OPC
reset *RST or SYSTem:PRESet
scan.abort :ABORT or ROUTe:OPEN ALL
scan.add(ch _ list,dmm _ config) :ROUTe:SCAN (list)
scan.background N/A
scan.bypass TRIGger:TCONtrol:DIRection SOURce
scan.create(chlist,dmm _ config) ROUTe:SCAN list
scan.execute :INIT
scan.list ROUTe:SCAN?
scan.mode ROUTE:OPEN ALL
scan.reset() *RST
scan.scancount ARM:LAYer1:COUNt() or ARM:LAYer2:COUNt()
scan.state N/A
scan.stepcount TRIGger:COUNt?
scan.trigger.arm.clear() N/A
scan.trigger.arm.set() N/A
scan.trigger.arm.stimulus ARM:LAYer1:SOURce () or ARM:LAYer1:SOURce()
scan.trigger.channel.clear N/A
scan.trigger.channel.set() N/A
scan.trigger.channel.stimulus TRIGger:SOURce ()
scan.trigger.clear N/A
scan.trigger.sequence.clear N/A
scan.trigger.sequence.set N/A
scan.trigger.sequence.stimulus N/A
setup functions
setup.poweron SYSTem:POSetup
setup.recall *RCL
setup.save *SAV
setup.cards ROUTe:CONFigure:SLOTX:CTYPe?
slot[X] atributes
slot[X].commonsideohms where X is to 6 for slot number N/A
slot[X].connectionmethod where X is to 6 for slot number N/A
slot[X].digio where X is to 6 for slot number N/A
slot[X].endchannel.amps where X is to 6 for slot number N/A
slot[X].endchannel.isolated where X is to 6 for slot number N/A
slot[X].endchannel.voltage where X is to 6 for slot number N/A
slot[X].idn where X is to 6 for slot number ROUTe:CONFigure:SLOTX:CTYPe?
slot[X].interlock.override N/A
slot[X].interlock.state N/A
slot[X].isolated where X is to 6 for slot number N/A
slot[X].matrix where X is to 6 for slot number N/A
slot[X].maxsettlingtime where X is to 6 for slot number N/A
slot[X].maxvoltage where X is to 6 for slot number N/A
slot[X].multiplexer where X is to 6 for slot number N/A
slot[X].poles.four where X is to 6 for slot number ROUTe:CONFigure:SLOTX:POLE?
slot[X].poles.one where X is to 6 for slot number ROUTe:CONFigure:SLOTX:POLE?
print(slot[X].poles.two) where X is to 6 for slot number ROUTe:CONFigure:SLOTX:POLE?
slot[X].pseudocard=<value>) where X is to 6 for slot number ROUTe:CONFigure:SLOTX (name)

TSP Command Series 2700 Command(s)
slot[X].startchannel.amps where X is to 6 for slot number N/A
slot[X].startchannel.isolated where X is to 6 for slot number N/A
slot[X].startchannel.voltage where X is to 6 for slot number N/A
print(slot[X].tempsensor) where X is to 6 for slot number N/A
timer functions
timer.measure.t N/A
timer.reset N/A
trigger functions
trigger.clear N/A
trigger.wait N/A
trigger.blender N/A
trigger.blender[N].clear N/A
trigger.blender[N].orenable N/A
trigger.blender[N].overrun N/A
trigger.blender[N].stimulus[N] N/A
trigger.blender[N].wait where N is 1 to 4 for triggersource and
N in 1 ? for blender

N/A

trigger.timer[N].clear N/A
trigger.timer[N].count N/A
trigger.timer[N].delay N/A
trigger.timer[N].overrun N/A
trigger.timer[N].passthrough N/A
trigger.timer[N].stimulus N/A
trigger.timer[N].wait where N is 1 to ? N/A
tsplink function
tsplink.node N/A
tsplink.reset N/A
tsplink.state N/A
tsplink.trigger[N].assert N/A
tsplink.trigger[N].clear N/A
tsplink.trigger[N].mode N/A
tsplink.trigger[N].overrun N/A
tsplink.trigger[N].release N/A
tsplink.trigger[N].stimulus N/A
tsplink.trigger[N].wait where N is 1 to 3 N/A

userstring.add N/A
userstring.catalog N/A
userstring.delete N/A
userstring.get N/A
upgrade
upgrade.unit N/A
waitcomplete
waitcomplete *WAI

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.

All other trademarks and trade names are the property of their respective companies.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Keithley Instruments, Inc. ■ 28775 Aurora Road ■ Cleveland, Ohio 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com

Belgium
Sint-Pieters-Leeuw
Ph: 02-363 00 40
Fax: 02-363 00 64
www.keithley.nl

china
Beijing
Ph: 8610-82255010
Fax: 8610-82255018
www.keithley.com.cn

finland
Espoo
Ph: 09-88171661
Fax: 09-88171662
www.keithley.com

france
Saint-Aubin
Ph: 01-64 53 20 20
Fax: 01-60-11-77-26
www.keithley.fr

germany
Germering
Ph: 089-84 93 07-40
Fax: 089-84 93 07-34
www.keithley.de

india
Bangalore
Ph: 080-26771071-73
Fax: 080-26771076
www.keithley.com

italy
Milano
Ph: 02-553842.1
Fax: 02-55384228
www.keithley.it

japan
Tokyo
Ph: 81-3-5733-7555
Fax: 81-3-5733-7556
www.keithley.jp

korea
Seoul
Ph: 82-2-574-7778
Fax: 82-2-574-7838
www.keithley.co.kr

Malaysia
Kuala Lumpur
Ph: 60-3-4041-0899
Fax: 60-3-4042-0899
www.keithley.com

netherlands
Gorinchem
Ph: 0183-63 53 33
Fax: 0183-63 08 21
www.keithley.nl

singapore
Singapore
Ph: 65-6747-9077
Fax: 65-6747-2991
www.keithley.com.sg

sweden
Solna
Ph: 08-50 90 46 00
Fax: 08-655 26 10
www.keithley.com

Switzerland
Zürich
Ph: 044-821 94 44
Fax: 41-44-820 30 81
www.keithley.ch

taiwan
Hsinchu
Ph: 886-3-572-9077
Fax: 886-3-572-9031
www.keithley.com.tw

UNITED KINGDOM
Theale
Ph: 0118-929 75 00
Fax: 0118-929 75 19
www.keithley.co.uk

© Copyright 2007 Keithley Instruments, Inc. Printed in the U.S.A. No. 2875 1007

