DAC
SERIES 500 GPIB Eek controller

Includes D500GPIB Software Driver

Publication Date: January 1990
Document Number: 501-904-01 Rev. C

Table of Contents

Chapter 1: Introduction
1.1 DeSCriplion....ccciiiiiiiiiiniiiiiiininin e 1.1
1.2 Specifications.....cocoviiiiiiiiiiiii 2
1.3 AbbreviationS....cccoiiiiiiiiiiiiiiirinimneiiis e aneanas K
Chapter 2: Installation
2.1 INSPECHION.....ciiiiiiiiiiiiiii i e 2.1
2.2 Hardware Installation............cccooviiniiiiiiininiininisinnnen 12.1|
2.2.1 IEEE Adress Selection.....cc.ccccvervecinoniiiniiniinnnnnnen, 2.3
2.2.2 IEEE Bus Terminator Selection........c.ocviviininnn, 2.3
2.2.3 Series 500 Installation InStructions.............cccoem 2.5
2.2.4 System 570 Installation Instructions............ooiii 2.5
2.3 Software Installation........cccoeeiiveviiminiviniein i, 2.6
Chapter 3: Getting Started
3.1 Using DSO00GPIB with BASIC......c.ccccceivniiiiinniniininnn 3.1
3.1.1 Initializing the System.........ccccoiiiiimiiiiiin.. 3.1
3.1.2 Configuring the 195 DMM ..., 3.3
3.1.3 Taking Readings........cccooviiiviimiiiiniiiinn . 3.3
3.1.4 Polling for Status.........ccoceeiiiiiiiiiiiiienn, 3.4
3.1.5 The Complete BASIC Sample Program................coue. 3.6
Chapter 4: Data Transfers
4.1 TerminatorS. i eeereniiiiiiiiiiiria e raraiaanas 4.1
4.1.1 The End-Of-Line (EOL) Terminators.......ccoeeveereeerneneen 4.1
4.1.2 The TERM Terminators.....c..ccoveemreirivnsiisrmniinrerinens 4.2
4.2 Bus OUTPUT...ccciviiiiiiniiiiii i s 4.3
4.3 Bus ENTER.....cccociiiiiimiiiniiiii e, 4.3
Chapter 5: IEEE Operating Modes
5.1 IntroducCtion. . cuiieiiieeerioeimiiiieiiiniiniireeneieeienneernaneaan e 5.1
5.2 Operating Mode Transitions.......c.coviiniivninnn, 5.2
5.3 The GPIB Module as System Controller..........ccoviiinnnnnenns 53
Chapter 6: Command Set
6.1 IntrodUCtion.. ... cciiiiiniiiiiiiiiiiiin 6.1
6.2 Command Description Format.........ccccoooviiiiiiiiiiinininninnnn 6.2
6.2.1 SYNEAX...oiiiiiiiiiiiiiiiiiiiii e aaaas 6.2
6.2.1.1 Bus Addressing.......cccocceiiiiiiiniiiiiiiiiininn, 6.3
6.2.1.2 Character Count...ccviiiiiiiiniiniian, 6.3
6.2.1.3 ASCII Characters....ccociiiiiiiniisiinninirinrinsenes 6.3
6.2.1.4 ASCII Character Strings.......ccccccocevreeeerceneeene. 6.4
6.2.1.5 Terminators...cccovvenriniiininiiiiriii, 6.4
6.2.2 RESPONSE. ..ottt ettt 6.4
6.2.4 BUS StateS....ccceeenriiiviiireniiriniimi . 6.5
6.2.5 ExXamples....cccociiiiiiiiiiiiiiiinn s 6.5

6.3 The CommMAanAS....civiiriiiriririnicaraaiirisrienreeiaatensnsssnssns 6.5
A B O R T ittt ittt aietarnrerrersresensaanns 6.6
(0] 55 2. N . S S 6.7
|25 X S SO TP 6.8
15 28 59 31 O 2O RPN 6.10
| [0 1 03 B ST S S PPN 6.11
) (0104 N U SN 6.12
| D10 1 67N SR PO 6,13
LOCAL LOCKOUT .. i e snaaen 6.14
0101 b 24 O S ST PUPPPN 6.15
| & 200) 5 DT PO PTOT 6.16
PPOLL CONFIG .o ccvinnen e et aneanans 6.17
PPOLL DISABLE oot iieiese v s ensranaans 6.18
PPQOLL UNCONFIG ... iicinnnaseeasanenaas 6.19
REM O . ittt ettt rs st e satiannesnrsassaanns 6,20
RESUME. .. it ittt er i cnare s anaraaes 6,21
SEIN D . e e e e ettt e aa 6.22
L) 30 5 TR 6.24
TE R M i ettt es s s e e sarae e assainssenans 6.25
TIME QU T et e 6.27
TRIG G E R ..ttt ittt et itteseseaearatasssesaasssassnesnsenane 6.67
Chapter 7: IEEE 488 Primer
0 T 5 6T {+) o O U 7.1
T.2 General StrUuCIUIe.....vvvviiiiiiiiiiiiiireeiaeanrrirararacaenraranens 7.1
7.3 Send It To My Address.....coiciiiiiiiiinin 1.2
7.4 Bus Management Lines........ciiiiiiiiiiiiiiiiinni.. 7.2
7.4.1 Attention (ATN) oo 7.2
7.4.2 Interface Clear (IFC).iiviiiiiiiriiiiiiiiiiieiirieeenns 7.2
7.4.3 Remote Enable (REN)....ccoooiiiiiiiiiiiiiiiiiiiiieenen, 7.4
7.4.4 End or Identify (EOI).....c.ccooviviriiiiiirmriiiinercirininnnnn
7.4.5 Service Request (SRQ)...oooviiiiiiiiiniiiiiiiiiiiininnnnn
7.5 Handshake Lines........ccooviiiiiiiiiiiiiiiiiiiiiiniiniienieeienend .
7.5.1 Data Valid (DAV) i .
7.5.2 Not Ready for Data (NRFD).........c.cccvvnaniiiiiininnnnnn.
7.5.3 Not Data Accepted (NDAC)....cciviiiiiiiiiiinniincnene, .
T.6 Datd LineS. . iiiiiiiiiiiiiiieiiriis it e e s v e e s s raenarass .
7.7 Multiline Commands........ccoooviviiiiiiiiiiica e,

Go To Local (GTL)iiiiiiiiiiiiiiinriienirnrersrnrannns

Local Lockout (LLO) . riiiiiiiiiiiiiniriiincrraranens
Device Clear {(DCL).iviiiiiiiiiiiieririiineieesineresesanes

Serial Poll Disable (SPD)..ciiuviviiiiiiiiericriiieeernirsessens
0 Serial Poll Enable (SPE)........ccooviiiiiiniiiiininneinnen.
1 Group Execute Trigger (GET)...coconiviriiininnieieinninn,

3 Secondary Command Group (SCG)...ccovevvirieceinnenn.

1

2 Listen Address Group (LAG)...cooeiiiiiiiiiiiiiiieninnnnd .
3 Unlisten (UNL) i rvinenieanens .
4 Talk Address Group (TAG).....ccovviiiiiiiiiinriinn)
5 Untalk (UNT)i .
6

‘-J-J-J-J'-J*-l--.]-.i'-l--l--]‘-l--]--l

.
.
.
.
7.
7.
a7
7.8 Selected Device Clear (SDC)...cociiiviiiiiniiiininninann,
7.9
7.
.
7.
q.
.

1
1
12 Take Control (TCT)iiiiiiiiiiiiiiiiiiiiiniirercneans
1
1

2

4 Parallel Poll Configure (PPC).....c.ccovvvviivieirinninnennnn. .

R N e b
b e Tt RSV I | [e e e We Wa Ve e | (W RV NI R | § NSO N N N N

7.7.15 Parallel Poll Unconfigure (PPU).......cccccvvvieiiinnnn. 7.7

7.8 More on Service Requests.........ccccoovieriiiiiiiiiiiiineiecniennenn. 7.7
7.8.1 Serial Poll.....cooiiiiiiiiii 7.8

7.8.2 Parallel Poll........ooiiiiiiiiic e 7.8
Appendix A: Keyboard Controller Program...........ccocoeeveeieiiniesreeanns
Appendix B: Character Codes and IEEE Multiline Messages..................
Appendix C: Command SUMMATY......ccececerrierirenierieirrieneeeeieeeeennne

Chapter 1 Introduction

Introduction

1.1 Description

The Series 500 GPIB Controller consists of the D500GPIB software, the GPIB interface
module, the installation program provide with your system (INSTALL), and other utility programs.
Together, they provide a full implementation of the IEEE 488-1978 bus including advanced
capabilities such as Parallel Poll, Serial Poll, Secondary Addressing, and automatic error detection.

D500GPIB is the software interface between DOS and the GPIB controller module. It can be
accessed by virtually any language that can communicate with DOS files. The examples in this
manual are primarily for BASICA, or other similar BASICs (such as GW BASIC), but DS00GPIB is
compatible with most languages for the PC. Some examples are Aztec C, Microsoft C and Fortran,
Turbo Pascal, as well as Microsoft QuickBASIC.

D500GPIB receives simple, high-level commands from the program and carries them out using
the necessary IEEE bus control and handshaking.

1.1

Chapter 1 Introduction

1.2 Specifications

IEEE 488-1978 Interface

SH1, AHI, T6, TEQ, L4, LEO, SR1, PPO, RL0O, DC1, DT1, C0, E1/2
Controller subsets: C1, C2, C3, C4 and C10

Terminator: Software selectable characters and/or EQI

Connector: Standard Amphenol 57-20240 with metric studs

GPIB Interface Module
IEEE Controller Device: TI 9914
Speed: Software and IEEE device dependent

Environment: 0 to 35 Celsius, 0 to 70% RH
Fits in slot 10 of Series 500 or expansion slot of System 570

D500GPIB Device Driver Software
Memory Size: 16 Kbytes
Command Set: More than 20 commands providing complete IEEE bus control
Operating Modes: Bus Controller modes only
DOS Compatibility: MS-DOS or PC-DOS 3.1 or higher

Specifications subject to change without notice

1.2

Chapter 1

1.3 Abbreviations

The following IEEE 488 abbreviations are used throughout this manual.

addr n
ATN

IEEE bus address "n"
Attention line
Controller Active
Carriage Return

Data String

Device Clear

Group Execute Trigger
Go To Local

Listener Active

Listen Address Group
Line Feed

Local Lock Out

My Listen Address
My Talk Address
Paralle! Poll Configure
Parallel Poll Unconfigure
System Controller
Selected Device Clear
Serial Poll Disable
Serial Poll Enable
Service Request
Talker Active

Talker Address

Take Control
Terminator

Unlisten

Untalk

Unasserted

1.3

Introduction

Chapter 2 Installation

Installation

2.1 Inspection

The Keithley Series 500 GPIB system, including the GPIB interface module and the
D500GPIB software, are carefully inspected, both mechanically and electrically, prior to
shipment. When you receive the product, carefully unpack all items from the shipping carton and
check for any obvious signs of physical damage which may have occurred during shipment.
Immediately report any such damage found to the shipping agent. Remember to retain all
shipping materials in the event that shipment back to the factory becomes necessary.

2.2 Hardware Installation

To use the D500GPIB software, you must have a GPIB interface module installed in your
Series 500 or System 570. The module has a bracket that must be installed and switches that
must be positioned correctly before installing it into your system. The following sections will
discuss those things pertaining to either the Series 500 or System 570. This section details
those things needed for either one.

The dip switches on the GPIB module set the configuration of the interface. Most of the
selectable functions are read only at power up and should be set prior to applying power. The
figure on the next page illustrates the factory default settings. To modify any of these defaults,
follow this simple procedure. Turn the power off on the Series 500 or System 570 and modify the
switch settings as specified on the following pages. When the switch setting modifications are
complete, turn the system power back on, It will usually be necessary to reinitialize any
software that is being used to control the module as well. This can easily be done if the software
uses an IOCTL command near the beginning of the program. This command will be explained in
detail later, but make a mental note of it for now.

As you can see from the illustration, there are two parameters that can be controlled via
these switch settings. They are the IEEE bus address and the type of terminator used at the
end of a bus transmission (including EOI if required). The factory defaults are IEEE address 21
(a good starting point since it is infrequently used by bus devices), and a terminator of CR LF
with EOI set with the linefeed. This is practically an industry standard and is accepted by most
instruments supplied by Keithley. If any of these settings are not suitable, then refer to the
following sections for detailed information on how to modify them.

2.1

Chapter 2 Installation

Factory Default Switch Settings

IEEE Term EQI
[EEE Addr (21) CRLF enabled

ST N)

TalzTel:Telalals

Component side of board

2.2

Chapter 2 Installation

2.2.1 IEEE Address Selection

Switches 1 through 5 select the IEEE bus address as the SYSTEM CONTROLLER. The
address is selected by simple binary weighting with switch 1 being the least significant bit and switch
5 being the most significant bit. The factory default is 21. The following is an example of how you
might change the bus address to 08.

NOTE: That the switch logic is "low-true", i.e.

il

"ON" = Logic 0
"OFF" = Logic 1

Ox20———--
Ox21
0x22
1)(23

+ 0)(24

= 8

2.2.2 1EEE Bus Terminator Selection

Switches 6 through 8 set the IEEE bus terminator used for data which is sent to an instrument
on the bus. These are the only switch selectable parameters that can be modified under software
control (using the TERM command). As mentioned earlier, the factory default terminators are CR LF
(carriage return line feed) with EOI set on the line feed. Refer to the next page for all the various
switch configurations and their meanings.

2.3

Chapter 2

oy oo,
fnooeat] fomom:
fnnoonog fomoone

EEEEEEEEEE

EQI Disabled

Chapter 2 Installation

2.2.3 Series 500 Installation Instructions

The GPIB interface module is installed into expansion slots inside the Series 500
mainframe. The GPIB interface module may be installed into any vacant slot of a Series 500 but
slot 10 is the only one we recommend. The reason for this is that the mounting bracket supplied
with the module can only be used with slot 10. This bracket provides additional stability to the
module which is needed due to the bulky, stiff IEEE cables used to connect instruments to the
module.

Install the long L shaped mounting bracket supplied with the GPIB module using the
screws provided. The bracket should be attached to the soldered (non component) side of the
module with the short tab facing away from the card. The hole in this tab is designed to line up
with an existing screw in the base of your Series 500 mainframe near slot 10.

After attaching the bracket you are ready to install the module in the Series 500. Insert
the GPIB interface module into the expansion slot as follows: Make sure the Series 500 is
turned off, and unplug the power cord. Unscrew the cover mounting screws on the rear of the
unit. Remove the system unit cover by sliding it backward and tilting it up.

First look at the base of the Series 500 near slot 10. You should see the screw towards
the back of the unit that is used to secure the metal cover plate. Remove this screw and set it
aside. Carefully insert the GPIB interface module into expansion slot 10. With the board firmly
in place, fix its mounting bracket to the metal panel in the base of the unit using the longer screw
provided with the module. The original screw that was in the base unit can not be used because
it is too short.

Finally, slide the system unit cover back on, reattach it with its screws, plug it back in,
and turn it on.

2.2.4 System 570 Installation Instructions

The GPIB interface module is installed into the single expansion slot in the System 570.
A special mounting bracket is supplied with the module that replaces the existing bracket in the
rear of the 570. This bracket provides additional stability to the module which is needed due to
the bulky, stiff IEEE cables used to connect instruments to the module.

First remove the existing stabilizing bracket from the rear panel of the System 570. Save
the screws since they will be used to mount the GPIB module mounting bracket. Install the
short angled bracket supplied with the GPIB module using the screws provided. The bracket
should be attached to the soldered (non component) side of the card. The holes in this bracket
are designed to line up with the holes on the module and the existing holes for the original 570
bracket.

2.5

Chapter 2 Installation

After attaching the bracket you are ready to install the module in the System 570. Insert
the GPIB interface module into the expansion slot as follows: Make sure the System 570 is
turned off. Carefully insert the GPIB interface module into the expansion slot. With the board
firmly in place, fix its mounting bracket to the metal panel in the rear of the unit using the screws
provided with the original 570 bracket.

Finally, turn the power back on on the System 570 and close the cover.

2.3 Software Installation

Once the GPIB interface board has been configured and installed, the software must be
installed. The D500GPIB software is included on the Software disk that comes with the GPIB
Board. Before installing the software driver for the GPIB card you must know the following:

1. The address of the Keithley IBIN interface card used with the data acquisition system which
holds the GPIB card.
2. The slot number (1 through 10) that the GPIB card occupies in the data acquisition system.

To complete the installation you must edit your DOS AUTOEXEC.BAT file to include the
following line:

GPIB_PATH -I IBIN_ADDR -S SLOT_NUM

where:

GPIB_PATH s a complete DOS file specification to the Series 500 GPIB driver
(DGPIB500.COM).

IBIN_ADDR is the address of the IBIN card specified in hexadecimal format
(e.g. 0xCFF8).

SLOT_NUM is the slot number of the GPIB card (1 through 10).

Note: A space character must separate both the IBIN address and Slot Number from the
command line flags of -I and -S respectively. For example:

¢\SS50NDS00GPIB.COM -I Oxcff8 -S 10
c\DSOOGPIB.COM -1 OXDFF8 -S 0xA
Optionally, you can create a batch file with the above information in it which you run prior

to using the Series 500 GPIB device. In this way yhe driver is only resident in memory when
needed freeing up system RAM for your utilities.

2.6

Chapter 2 Installation

When the driver is installed properly, it will display a signon message with copyright notice as
follows:

D500GPIB Rev n.xx (C) Copyright 1987 Keithley DAC
After it is installed you can try the following program ...

10 OPEN "\dev\GPIBOUT" FOR OUTPUT AS 1
20 OPEN "\dev\GPIBIN" FOR INPUT AS 2
30 PRINT #1,"HELLO"

40 LINE INPUT #2,AS% : PRINT AS

The GPIB will respond with (and the host computer will display):

SERTES 500/488 Rev n.xx (C) Copyright IOtech Inc

If you obtain the above response, (or something very similar) then your GPIB module and
the D500GPIB software are working well together. If you did not receive the above message,
then you should contact our applications staff for assistance.

Now that the hardware and software are working properly, you can begin to use the rest
of the commands to control your IEEE bus peripherals. The following command descriptions

each have examples showing their use. You may also like to familiarize yourself with the
various commands using the "dumb” terminal program provided on the disc (TERMGPIB.BAS).

2.7

Chapter 3 Getting Started

Getting Started

Introduction

Once DS00OGPIB has been installed in your system, it is ready to begin controlling IEEE bus
devices. To show how this is done, we will develop a short program, in BASIC, to control a
Keithley Instruments Model 195 digital multimeter. The techniques used in this program are quite
general, and will apply to the control of most instruments.

3.1 Using D500GPIB with BASIC
3.1.1 Initializing the System

Any program using DSO0GPIB must first establish communications with the software driver.
In BASIC and most other languages this is accomplished using an OPEN statement. Communications
both to and from D5S00GPIB are required. In BASIC, this means that two files must be opened, one
for input, and one for output. Other languages may allow the same file to be opened for both input
and output. Three file names are allowed: \DEV\GPIBOUT", "\DEWGPIBIN", and "\DEV\GPIB".
By convention, they are used for output, input, and both input and output, respectively, but actually,
they are all really the same and any one of them can be used for input, output, or both, depending on
the programming language.

In BASIC, the files are opened with the following commands:

110 OPEN "\DEVAGPIBOUT" FOR QUTPUT AS #1
200 OPEN "\DEVA\GPIBIN" FOR INPUT AS #2

Of course, the line numbers and the file numbers may change as desired, but throughout this
manual, file #1 will be assumed to output to DSOOGPIB, and file #2 will be assumed to input from
D500GPIB.

Once these files are opened, we can send commands and receive responses from DSOOGPIB.
While D500GPIB should normally be in a reset, quiescent state, it is possible that is was left in some
unknown state by a previous program failure error or from a power up. In order to force DSO0GPIB
into its quiescent state we can use the TOCTL statement:

160 IOCTL#1, "BREAK"
IOCTL is a BASIC statement that sends commands through a "back door" to DSOOGPIB.

D300GPIB recognizes this "back door” command regardless of what else it might be doing and resets
itself so that it is ready to accept a normal command.

The TIOCTL BREAK command guarantees that DSO0OGPIB is ready for action. Note that the IOCTL

BREAK command is executed before file #2 is opened for input from D5S00GPIB. This guarantees
compatibility with the various versions of BASIC.

3.1

Chapter 3 Getting Started

With the initialization commands and some comments, the program now appears as follows:

100 'Establish communications with D500GPIB
110 OPEN "\DEVAGPIBOUT" FOR OUTPUT AS #1

150 'Reset D500GPIB

160 IOCTL#1, "BREAK"

190 'Open file to read responses from D500GPIB
200 OPEN "\DEVAGPIBIN" FOR INPUT AS #2

Once everything is reset, we can test the communications and read the Driver488 revision
number with the HELLO command:

310 PRINT#1, "HELLQO™
320 INPUTH#2,RS
330 PRINT AS$

First we PRINT the HELLO command to file #1, then we INPUT the response from file #2 into the
character string variable A$ ("A-string"). Finally we display the response with a PRINT to the
screen. Because BASIC cannot both PRINT and INPUT from the same file, we use two OPEN
statements, and two different file numbers to communicate with DSO0OGPIB. PRINT must reference
the file opened for output (in these examples, file #1) and TNPUT must reference the file opened for
input (file #2). Attempting to communicate with the wrong file (e.g. INPUT#1) will result in an
error,

It is not necessary to perform the HELLO command, but is included here as a simple example
of normal communication with D500GPIB. Its response is the revision identification of the
Driver488 software ("DSO0OGPIB Rev n.n (C) Copyright Keithley Instruments Inc,").

3.1.2 Configuring the 195 DMM

Once the system is initialized we are ready to start issuing bus commands. The IEEE bus has
already been cleared by the Interface Clear (IFC) that was sent by the BREAK command, and so we
know that all the bus devices are waiting for the controller to take some action. In the normal state,
IEEE bus devices are controlled from their front panel or keyboard. They are not normally enabled to
accept commands from the IEEE bus. To set them into the remote mode, so that they can accept bus
commands, they must be addressed to listen while the Remote Enable (REN) line is asserted. The
REMOTE command accomplishes this:

510 PRINT#1, "REMOTE 16"

where 16 is the bus device address of the bus device we wish to control (in this case a Keithley
Instruments Model 195 digital multimeter).

Now that the 195 is ready to accept commands, we can control any of its features. For
example, the command "FOROX" command sets the 195 to read DC volts with automatic range
selection:

610 PRINT#1, "OUTPUT 16;FOROX"

3.2

Chapter 3 Getting Started

The OUTPUT command takes a bus device address (16 in this case) and data ("FOR0X") and
sends the data to the specified device. The address can be just a primary address, such as 12, or 05,
or it can include a secondary address: 1201. Note that both the primary address and, if present, the
secondary address are two-digit decimal numbers. A leading zero must be used, if needed to make

the address two digits long,.

3.1.3 Taking Readings

Once we have set the 195's operating mode, we can take a reading and display it:

710 PRINT#1,"ENTER 16"
720 INPUT#2,RS
730 PRINT RS

The ENTER command takes a bus address (with an optional secondary address) and configures
that bus device so that it is able to send data (addressed to talk). No data is actually transferred,
however, until the INPUT statement requests the result from D500GPIB at which time data is

transferred to the program into the variable RS$.

Once the result has been received, any BASIC functions or statements can be used to modify or
interpret it, In this example the result will be in the form "NDCV+1.23456E-2" showing the range
("NDCV") and the numeric value of the reading ("+1.23456E-2"). The BASIC MID$ function can
be used to strip off the range characters and keep only the numeric part (the fifth character and
beyond), and the VAL function can be used to convert this string to a number:

740 NS=MIDS (RS, 5H)
741 N=VAL (N$)
742 PRINT "The read value is":;N

These may be combined for efficiency:

740 PRINT "The read value is";VAL(MIDS (RS$,5))

All the power of BASIC may be used to manipulate, print, store, and analyze the data read
from the IEEE bus. For example, the following statements print the average of ten readings from the
195:

810 SuM=0

820 FOR I=1 TO 10

830 PRINT#1, "ENTER 16"

840 INPUT#2,R$

850 SUM=SUM+VAL (MIDS$ (RS, 5))

860 NEXT I

870 PRINT "The average of ten readings is";SUM/10

3.3

Chapter 3 Getting Started

3.1.4 Polling for Status

The IEEE bus is designed to be able to attend to asynchronous (i.e. unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (SRQ) line to signal that condition to the controller. Once the controller notices the SRQ, it
can interrogate the bus devices, using Parallel Poll and/or Serial Poll to determine the source and
cause of the SRQ, and take the appropriate action.

Parallel Poll is the fastest method of determining which device requires service. Parallel Poll is
a very short, simple IEEE bus transaction that quickly returns the status from many devices. Each of
the eight IEEE bus data bits can holds the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the bus is occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possibilities down to a choice of at most two.

Unfortunately, the utility of Parallel Poll is limited when working with actual devices. Some
have no Paralle!l Poll response capability. Others must be configured in hardware, usually with
switches or jumpers, to set their Parallel Poll response. If Parallel Poll is not available, or several
devices share the same Parallel Poll response bit, then Serial Polling will still be required to determine
which device is requesting service.

Serial Poll, though it is not as fast as Parallel Poll, does offer two major advantages: It returns
additional status information beyond the simple request/no-request for service, and it is implemented
on virtually all bus devices.

The SRQ line can be monitored by using the SPOLL. command.

The 195 can be set to request service on any of several different internal conditions. In
particular, the M1 command will cause an SRQ when a reading has been completed by the 195:

540 PRINT#1,"OUTPUT 16;M1X"

This OUTPUT command is placed just after the 195 is placed in remote mode so that each reading
taken by the 195 will cause an SRQ if it is valid.

At this point BASIC can check for an SRQ using a Serial Poll subroutine. We will also read the
Serial Poll Status of the 195 to determine if there are any errors.

1999

2000 'Serial Poll routine used to check for reading
2001 ‘'completed as well as any other errors !!!!!1t!
2010 !

2050 'Check for an SRQ - walt until it occurs

2060 PRINT#1,"SPOLL"

2070 INPUT#2,SP

2080 IF SP=0 THEN GOTO 2060

Next we Serial Poll the 195 to determine its status. If there were other devices on the bus that could
be generating the SRQ, then each of them would be have to be checked in turn.

3.4

Chapter 3 Getting Started

2110 PRINT#1,"SPOLL 16"
2120 INPUT#2,ST195
2130 IF (ST195 AND 64) = O THEN PRINT "Non-195 SRQ!": STOP

Bit DIO7, with a value of 64, is returned as true (1) in the Serial Poll response of those devices
requesting service. In our simple example we expect that the 195 is the only possible cause of an
SRQ, and if it is not the cause then there must be some error.

Now that we have identified the device that is requesting service, we can further examine the
Serial Poll status to classify the request. If DIOS is set, then the 195 is signaling an error condition.
If that bit is clear, then some non-error condition caused the SRQ:

2160 IF ST195 AND 32 THEN 2300 'Test ERRCR Status Bit

2210 IF ST195 AND 1 THEN PRINT "Overflow"

2220 IF ST195 AND 2 THEN PRINT "Buffer Full"®
2230 IF ST195 AND 4 THEN PRINT "Buffer 1/2 Full"
2240 IF ST195 AND 8 THEN PRINT "Reading Done"
2250 IF ST195 AND 16 THEN PRINT "Busy”

2260 GOTO 2400

2310 IF ST185 AND
2320 IF ST195 AND

THEN PRINT "Illegal Command QOption™”
THEN PRINT "Illegal Command”

2330 IF ST195 AND THEN PRINT "No Remote"

2340 IF ST195 AND THEN PRINT "Trigger QOverrun”

2350 IF ST195 AND 16 THEN PRINT "Failed Selftest™

O N

Finally, once we have diagnosed the error, we are ready to return to the main program:

2400 RETURN

3.5

Chapter 3 Getting Started

3.1.5 The Complete BASIC Sample Program
This program is provided on the Supplemenatal disk as "DEMO195.BAS"

100 'Establish communications with DSQOGPIB
110 OPEN "\DEVAGPIBOUT" FOR OUTPUT AS #1

120 !

150 'Reset DLOQGPIB

160 IOCTL#1, "BREAK"

180 °

190 'Open file to read responses from D500GPIB
200 OPEN "\DEV\GPIBIN" FOR INPUT AS #2

290 !

300 'Read the signon and revision message
310 PRINT#1, "HELLO"

320 INPUT#2,AS

330 PRINT aS$

340 !

500 'Put the 195 (assuming bus address 16) into REMOTE
510 PRINT#1,"REMOTE 16"

520 '

530 'Enable 195 SRQ on Data Agquired

540 PRINT#1,"QCUTPUT 16;M1X"

550 °

600 'Set 195 to Autorange, DC Veolts

610 PRINT#1, "OUTPUT 16;FOROX"

620

700 'Display a reading here - wait for it!
705 GOSUB 1999

710 PRINT#1,"ENTER 16"

720 INPUT#2,RS

730 PRINT RS

740 PRINT "The read wvalue is";VAL({MIDS(RS,5))

790
800 'Find the average of 10 readings
810 SUM=0

820 FOR I=1 TO 10

830 GOSUEB 1999

835 PRINT#1,"ENTER 16"

840 INPUT#2,RS

850 SUM=SUM+VAL(MIDS (RS,5))

860 NEXT I

870 PRINT "The average of ten readings is";SUM/10
1900 END

1999 !

2000 'Serial Poll routine used to check for reading
2001 'completed as well as any other errcors 11!
2010 !

2050 'Check for an SRQ - wait until it occurs

2060 PRINT#1, "SPOLL"

2070 INPUT#2,SP

3.6

Chapter 3

2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2200
2210
2220
2230
2240
2250
2260
2270
2300
2310
2320
2330
2340
2350
2360
2390
2400

Getting Started

IF SP=0 THEN GOTC 2060
T

'Check the 195 Serial Poll status
PRINT#1, "SPCLL 16"

INPUT#2,ST195

IF {(ST195 AND 64) = 0 THEN PRINT "Non-195 SRQ!": STOP

'"Test for 195 ERRCR
IF ST195 AND 32 THEN 2300 'ERROR STATUS BIT
T

"Interpret no-error status

IF ST185
IF ST185
IF ST195
IF ST195
IF ST195

GOTO 2400

AND
AND
AND
AND
AND

1 THEN PRINT "Overflow"

2 THEN PRINT "Buffer Full"®

4 THEN PRINT "Buffer 1/2 Full"
8 THEN PRINT "Reading Done™

16 THEN PRINT "Busy"

'Interpret error status

IF ST195
IF ST195
IF ST1i95
IF ST195
IF ST195

AND
AND
AND
AND
AND

1 THEN PRINT "Illegal Command Option"
2 THEN PRINT "Illegal Command"

4 THEN PRINT "Nc Remcte"

8 THEN PRINT "Trigger Overrun"

16 THEN PRINT "Failed Selftest"

'Return to main program

RETURN

3.7

Chapter 4 Data Transfers

Data Transfers

4.1 Terminators

The following section deals with the subject of terminators in a general sense. Under normal
cicumstances you will have no need to know how terminators effect your programing. If you are
interested please read on, however this information is not needed to get started.

Every transfer of data, between a program and D5S00GPIB, or between DS00GPIB and a bus
device, must have a definite end. This is a common requirement in most systems. For example,
most printers will not print a line until they have received the carriage-return that ends that line.
Similarly, a BASIC INPUT statement will wait for the Enter key to be pressed before returning the
entered data to the program. The only time that some terminator is not required is when the number
of characters that compose the data is known in advance. This is the case, for example, when reading
fixed-length records from a random access disk file.

There are actually four terminators used by DS00GPIB:

The end-of-line (EOL) terminator for output from the program to D500GPIB.
The end-of-line (EOL) terminator for input to the program from D500GPIB.
The data terminator (TERM) for output to bus devices from D5S00GPIB.

The data terminator (TERM) to input from bus devices into DS00GPIB.

4.1.1 The End-Of-Line (EOL) Terminators

The EOL terminators mark the end of character strings transferred between the user's program
and D500GPIB. The EOL output terminator marks the end of strings transferred from the user's
program to DSOOGPIB, and the EOL input terminator marks the end of strings transferred into the
user's program from D500GPIB.

The EOL terminators consist of two ASCII characters each. These characters default to
carriage return and line feed and can not be modified under program control. It turns out that these
terminators serve well for the vast majority of languages and are particularly usefull for BASIC,

The EOL output terminator is sensed by D500GPIB to detect the end of a command or, in the
case of the OUTPUT...; data command, the end of the data. Most commands have many different
variations. It is the EOL output terminator that lets D500GPIB known when the command has been
completely received and is ready for execution. Without the EOL output terminator there would be no
way of determining when one command ends and the next begins.

The EOL input terminator is provided by DSO0GPIB to the user's program so that the program
will be able to detect the end of a response. BASIC needs to receive a carriage return, line feed

combination when using the INPUT statement to receive a response from D500GPIB. D500GPIB
automatically provides this EOL input terminator to the program.

As mentioned previously, the EOL output terminator is used to delimit the data portion of an

4.1

Chapter 4 Data Transfers

ouTPUT command. If, in the OUTPUT command, no character count is specified, then the EOL
output terminator does delimit data, but if a character count is specified, then DS00GPIB will accept
exactly that number of characters from the program for output to the bus, even if the EOL output
terminator is among those characters. Furthermore, if a character count is not specified, then the
TERM output terminator will be sent to the bus devices after the data. If a character count is
specified, then nothing will be sent to the bus except the exact characters that were sent from the
program. For example PRINT#1, "OUTPUT10;ABC" sends ABC<TERM output terminator> to
device 10, while PRINT#1, "OUTPUT10#5;DEF" sends DEF<CR><LF> to device 10 because
BASIC will send carriage return, line feed (<CR><LE>) at the end of the command, and a character
count of 5 was specified.

4.1.2 The TERM Terminators

Just as the EOL terminators delimit the end of strings transferred between the user's program
and D500GPIB, the TERM terminators delimit the end of strings transferred between DS0OGPIB and
bus devices. The TERM output terminator marks the end of strings transferred from D500GPIB to
bus devices, and the TERM input terminator marks the end of strings transferred into DSOOGPIB
from bus devices. One major difference between EOL and TERM is that TERM is programable while
EOL is not. TERM input is, however, much like EOL in that it defaults to LF (linefeed) but can be
modified on a "one shot" basis by appending the desired terminator to the end of the ENTER
command. TERM output defaults to the values specied by the switch settings, but can be modified by
the TERM command to D500GPIB.

The TERM terminators differ from the EOQL terminators in one important aspect. While the
EOL terminators are composed of one or two characters, the TERM terminators can include the IEEE
bus signal EOI. The EOI signal, when asserted during a character transfer, marks that character as
the last of the transfer. This allows the detection of the end of data regardless of what characters
compose the data. This feature is very useful in binary data transfers which might very well contain
any ASCII values from O to 255.

During normal OUTPUT, without a specified character count or buffer, the EOL output
terminator received by DS00GPIB is replaced by the TERM output terminator before sending the data
to the bus devices. During normal ENTER the TERM input terminator received by D500GPIB is
replaced with the EOL input terminator before being returned to the program. In this way, the
program communicates with D500GPIB using the EOL terminators, and D5060GPIB communicates
with bus devices using the TERM terminators.

See the ENTER and OUTPUT command descriptions below and in Chapter 6 for more details.

4.2

Chapter 4 Data Transfers

4.2 Bus OUTPUT
The OUTPUT command sends data to bus devices. For example, the statement
PRINT#1, "OUTPUT 05;8pP1;"

will send the characters “"SP1;"<TERM output> to device 5. This is an example of direct I/O as the
data is communicated directly to the DSOOGPIB through the PRINT statement. As discussed above,
D500GPIB recognizes the EOL output terminator as the end of the data and sends the TERM output
terminator in its place after sending the data. Binary direct output is also possible. For example,
the following statements send all 256 ASCII characters:

PRINT#1, "OUTPUT 05 #256;";
FOR I=0 TO 255
PRINT#1,CHRS (I);

NEXT I

The first statement tells DSOOGPIB to expect 256 characters to follow that are to be sent to
device 5. Note the semicolon just after the #256. This marks the end of the actual OUTPUT
command and the start of the data. The semicolon at the end of the line tells BASIC not to send
anything else, such as the normal carriage return, line feed combination, after sending the quoted
characters. The next three lines send the 256 ASCII characters from 0 to 255 in order to DSOOGPIB
for transfer to device 5. The semicolon at the end of the third line has the same function as the
semicolon at the end of the first line: it prevents BASIC from sending any extra characters. In this
example we are performing a binary transfer. D500GPIB knows how many characters are to be
transferred and neither requires EOL output terminators to end the command, nor sends TERM output
terminators to the bus device. The data is transferred to the bus device exactly as sent from the
program.

4.3 Bus ENTER
The ENTER command is used to read data from bus devices. For example, the commands

PRINT#1, "ENTER 16"
INPUT#2,AS

read data from device 16 and store the returned data in the A$ variable. This is an example of direct
ENTER input as the data received from the bus is read into the program via the INPUT statement that
reads the result directly from D500GPIB. As discussed above, DS00GPIB will accept data from
device 16 until it detects the TERM input terminator, It returns the replaces the TERM input
terminator with the EQL output terminator and returns the result to the program. BASIC accepts the
data just as it accepts character data from any file, This allows us to use the varieties of BASIC input
staternents to control how the data is received. For example, if the data read form the device is in the
form of a valid number then we can read it as a number:

4.3

Chapter 4 Data Transfers

PRINT#1, "ENTER 16"
INPUT#2,N

Or, if the data consists of several values separated by commas, then we can read it as several values:

PRINT#1, "ENTER 16"
INPUT#2,A3,N,BS, I

Or, if we want to read the entire input, even if it includes commas or other special characters, we can
use LINE INPUT:

PRINT#1, "ENTER 16"
LINE INPUT#2Z,LS

Finally, just as we can perform direct binary OUTPUT, we can also perform binary direct ENTER:

PRINT#1, "ENTER 16#128"
AS=INPUTS (128,2)

When performing a binary ENTER, D500GPIB does not check for TERM input terminators when
reading from the bus. The data is returned to the program just as it is received from the bus device,
The I1NPUTS function which is designed to read a specific number of characters from a file or device
is ideal for reading the result from D500GPIB. A normal INPUT statement will also work, as
D500GPIB even provides the EOL input terminators on binary ENTERS, however, the transfer may
be terminated abnormally if the EOL sequence occurs within the data.

4.4

Chapter 5 IEEE Operating Modes

IEEE Operating Modes

5.1 Introduction

The following section deals with the subject of IEEE operating modes in a general sense.
Under normal cicumstances you will have no need to know these modes since the GPIB module can
only act as the system controller and all other devices must therfore be peripherals. If you are
interested please read on, however this information is not needed to get started.

Although the GPIB module can only be the System Controller it is usefull to discuss the modes
that can occur on the IEEE bus. There are actually four types of IEEE bus devices: Active
Controllers, Peripherals, Talk-only devices, and Listen-always devices. Talk-only and Listen-always
devices are usually used together, in simple systems, such as a Talk-only digitizer sending results to a
Listen-always plotter. In these simple systems no controller is needed because the talker assumes that
it is the only talker on the bus, and the listener(s) assume that they are all supposed to receive all the
data send over the bus. This is a simple and effective method of transferring data from one device
and another, but is not adequate for more complex systems where, for example, one computer is
controlling many different bus devices.

In more complex systems, the Active Controller sends commands to the various bus
Peripherals telling them what to do. Commands such as Unlisten, Listen Address Group, Untalk,
and Talk Address Group are sent by the controller to specify which device is to send data, and which
are to receive it. For more details about the IEEE bus protocols see Chapter 7.

When an IEEE bus system is first turned on, some device must be the Active Controller. This
device is the System Controller and always keeps some control of the bus. In particular, the System
Controller controls the Interface Clear (IFC) and Remote Enable (REN) bus management lines. By
asserting Interface Clear, the System Controller forces all the other bus devices to stop their bus
operations, and regains control as the Active Controller.,

5.2 Operating Mode Transitions

The System Controller is initially the Active Controller. It can, if desired, Pass Control to
another device and thereby make that device the Active Controller. Note that the System Controller
remains the System Controller, even when it is not the Active Controller, (NOTE: The GPIB module
currently does not implement the Pass Control feature.) Of course, the device to which control is
passed must be capable of taking on the role of Active Controller. It would make no sense to try to
pass control to a printer. Control should only be passed to other computers that are capable, and
ready, to become the Active Controller. Further, note that there must be exactly one System
Controller on the IEEE bus. All other potential controller must be configured as Peripherals when
they power up.

The state diagram below shows the relationships between the various operating modes. The
top half of the state diagram shows the two operating states of a System Controller. At power on, it
is the active controller. It directs the bus transfers by sending the bus commands mentioned
previously. It also has control of the Interface Clear and Remote Enable bus lines. The System
Controller can pulse Interface Clear to reset all of the other bus devices.

3.1

Chapter 5 IEEE Operating Modes

a Controller (S

Active : B System
System { Controller,
Controller : Not Active

X_SCe*CA

Active Pt ‘ Peripheral,
Controller, \ = i |- +f NotSystem
Not System g Controller
Controller i
LN *SCe*CA /S

IEEE Bus Operating Modes State Diagram

As shown in the diagram, the System Controller can pass control to some other bus device and
thereby become a Peripheral to the new Active Controller. If the System Controller receives control
from the new Active Controller, then it will once again become the Active Controller. The System
Controller can also force the Active Controller to relinquish control by asserting the Interface Clear

signal.

The bottom half of the state diagram shows the two operating states of a Not System Controller
device. At power on, it is a Peripheral to the System Controller which is the Active Controller. If it
receives control from the Active Controller, then it becomes the new Active Controller, Even though
it is the Active Controller, it is still not the System Controller. The System Controller can force the
Active Controller to give up control by asserting Interface Clear. The Active Controller can also give
up control by Passing Control to another device, which may or may not be the System Controller.

5.2

Chapter 5 IEEE Operating Modes

In summary, a bus device is set in hardware as either the sole System Controller in the system,
or as a non-System Controller. At power on, the System Controller is the Active Controller, and the
other devices are Peripherals. The System Controller can give up control by Passing Control, and
can regain control by asserting Interface Clear, or by receiving control. A Peripheral can become the
Active Controller by receiving control, and can give up control by Passing Control, or upon detecting
Interface Clear.

5.3 The GPIB Module as System Controller

The most common D500GPIB configuration is as the System Controller, controlling several
IEEE bus instruments. In this mode, D500GPIB can perform all of the various IEEE bus protocols
necessary control and communicate with any IEEE 488 bus devices. As the System Controller in the
Active Controller mode, DS00GPIB can use all of the commands available for the Active Controller
state, plus control the Interface Clear and Remote Enable lines. The allowed bus commands and their
actions are as follows:

ABORT

LOCAL
REMOTE

LOCAL LOCKOUT

CLEAR
TRIGGER

ENTER
OUTPUT

SPOLL

PPOLL

PPOLL CONFIG
PPOLL DISABLE
PPOLL UNCONFIG

SEND
RESUME

Pulse Interface Clear,

Unassert Remote Enable, or send Go To Local to selected devices.
Assert Remote Enable, optionally setting devices to Remote,

Prevent local (front-panel) control of bus devices.

Clear all or selected devices.
Trigger selected devices.

Receive data from a bus device.
Send data to bus devices,

Serial Poll a bus device, or check the Service Request state,
Parallel Poll the bus.

Configure Parallel Poll responses.

Disable the Parallel Poll response of selected bus devices.
Disable the Parallel Poll response of all bus devices.

Send low-level bus sequences.
Unassert Attention. Used to allow Peripheral-to-Peripheral transfers.

5.3

Chapter 6 Command Descriptions

Command Descriptions

6.1 Introduction

This chapter contains a detailed listing of each of the high-level commands available for
D500GPIB. There are two types of commands: bus commands, and system commands. Bus
commands communicate with the IEEE 488 bus. System commands configure or request information
from D500GPIB.

Bus Commands:

ABORT PPOLL DISABLE
CLEAR PPOLL UNCONFIG
ENTER REMOTE

LOCAL REQUEST

LOCAL LOCKOUT RESUME

OUTPUT SEND

SPOLL PPOLL

PPOLL CONFIG TRIGGER

System Commands:

HELLO I0CTL
TERM TIME OUT

6.2 Command Description Format

Each command description is divided into several areas as follows:

6.2.1 Syntax
The syntax section of the command description describes the proper command syntax which

must be sent to DSOOGPIB using the BASIC PRINT# command or its equivalent in other languages.
The following conventions are used in the syntax descriptions:

No command may be more than 255 characters long. The data part of the

OUTPUT command does not count in this length and so the OUTPUT data may be

as long as necessary.

Items in capital letters, such as ENTER or OUTPUT must be used exactly as stated.

Items in lower case, such as addr or count represent parameters which must be
substituted with an appropriate value.

6.1

Chapter 6 Command Descriptions

Blank spaces in commands are generally ignored. Thus, LOCAL LOCK QUT is the

same as LOCALLOCKOUT. Spaces are not ignored in three places: the data part of
an OQUTPUT command, within quoted strings in a SEND ¢command, and after an
apostrophe (') in a terminator specification (t erm).

The number sign character (#) and the semi-colon (;) must be present exactly as
shown. A comma (,) represents an address separator. The oblique or slash
character (/) may be used in its place as the address separator.

Items enclosed in square brackets ([item]) are optional. Multiple items enclosed

in square brackets separated by vertical lines ([iteml |item2|item3]) are
optional, any one or none may be chosen. No more than one item may be selected.

Ellipses (...) within square brackets mean that the items in the brackets may be
repeated as many times as desired. For example [, addr..] means that any
number of address separator-address combinations may be used.

Braces, or curly brackets, ({iteml|item2}) mean that exactly one of the
enclosed items is required.

Combinations of brackets are possible. For example, {term{term] [EQT]

|EOTI} allows the choice of term, term EQI, term term, termterm EQI, or
just EOI, but does not allow the choice of "nothing."

Several of the commands require additional or optional parameters. These are further described with
each command, but the more common ones are discussed below.

6.2

Chapter 6 Command Descriptions

6.2.1.1 Bus Addressing
pri-addr A two-digit primary device address in the range of 00 to 30,

sec—addr An optional two-digit secondary device address in the range of 00

to 31.
addr An IEEE bus address. Bus addresses optionally include a
secondary address. Thus they are of the form

pri-addr[sec-addr] where pri-addr is a two-digit
primary address in the range from 00 through 30 and sec-addr
is a two-digit secondary address from 00 through 31. Addresses
must be given as two-digit numbers, e.g. 05 for address 5, and
1601 for primary address 16, secondary address 1

[,addr..] An optional list of bus addresses, each one preceded by an address
separator; either a comma (,) or a slash (/).

No more than 15 bus addresses are allowed in any single
command.

6.2.1.2 Character Count

#count The number of characters to be transferred. A pound sign (#)
followed by an integer in the range of 1 to 65535 (216-1). A
character count of zero is invalid.

6.2.1.3 ASCII Characters

$char A single character whose ASCII value is the number char, a
decimal number in the range of 0 to 255 For example, $65 is the
letter "A".

CR The carriage return character ($13),

LF The line feed character ($10).

"X Any {usually) printable character. The apostrophe is immediately

followed, without any intervening spaces, by a single character
which is taken to be the character specified.

6.3

Chapter 6 Command Descriptions

6.2.1.4 ASCII Character Strings

data An arbitrary string of characters. None of the special forms given
above ($char, CR, LF, or 'X) are used. For example, CRLF as
data is taken as the letters, "C", "R", "L", and "F", not as
carriage return line feed.

'data’ An arbitrary string of characters enclosed in apostrophes.

6.2.1.5 Terminators

term Any single character, specified as CR, LF, 'X, or $char as
described above ({CR|LF|'X]Schar}). Part of terminator
sequence used to mark the end of lines of data and commands.

[term] An optional term character. term[term] means that one or two
terminators may be specified.

EOI The IEEE bus End-Or-Identify signal. When asserted during the
transfer of a character, EOI signals that that character is the last in
the transfer. On input, EOI, if specified, causes the input to stop.
On output, EOI causes the bus EOI signal to be asserted during
transmission of the last character transferred.

6.2.2 Response
The response section of the command description describes the response that the user's

program should read after sending the command. If a response is provided, it must be read. Errors
will occur if it is not.

6.4

Chapter 6 Command Descriptions

6.2.3 Bus States

This section describes the bus command and data transfers using IEEE bus mnemonics
abbreviated as follows:

DIO lines

87654321
ATN Attention
data Data String
DCL Device Clear x 0010100
GET Group Execute Trigger x 0001000
GTL Go To Local x 0000001
LLAG Listen Address Group x 01 addrn
LLO Local Lock Out x 0010001
MLA My Listen Address x 01 addrn
MTA My Talk Address x 1 0addrn
PPC Parallel Poll Configure x 0000101
PPD Paralle]l Poll Disable x 1110000
PPE Parallel Poll Enable x 1 10 S P3P2PI
PPU Parallel Poll Unconfigure x 0 0 1 0 1 O 1
SDC Selected Device Clear x 0000100
SPD Serial Poll Disable x 0011001
SPE Serial Poll Enable x 0011000
SRQ Service Request
TAG Talker Address Group x 1 0addrn
TCT Take Control x 0001001
term Terminator
UNL Unlisten x 0111111
UNT Untalk x 1011111

(x = "don't care™)

If a command is preceded by an asterisk then that command is unasserted. For example,
*REM states that the remote enable line is unasserted. Conversely, REM without the asterisk states
that the line becomes asserted.

6.2.4 Examples

This section gives programming examples written in the BASIC language, For examples in
other programming languages, refer to chapter 3.

6.3 The Commands

The commands, in alphabetical order, are described on the following pages.

6.5

Chapter 6 Command Descriptions

ABORTIO

As the System Controller (SC), the ABORTIO command causes the Interface Clear (IFC) bus
management line to be asserted for at least 500 microseconds. By asserting IFC, DSO0GPIB regains
control of the bus even if one of the devices has locked it up during a data transfer. Asserting IFC
also makes DS00GPIB the Active Controller, If a Non System Controller was the Active Controller
then it will be forced to relinquish control to D5O0GPIB. ABORT forces all IEEE bus device
interfaces into a quiescent state.

SYNTAX ABORTIO
RESPONSE None
BUS STATES IFC, *IFC

EXAMPLE PRINT#1, "ABORTIO"

6.6

Chapter 6 Command Descriptions

CLEAR

The CLEAR command causes the Device Clear (DCL) bus command to be issued by
D500GPIB. If the optional addresses are included, the Selected Device Clear (SDC) command is
issued to all specified devices. IEEE 488 bus devices which receive a Device Clear or Selected Device
Clear command normally reset to their power-on state.

SYNTAX CLEAR [addr[,addr..l]

addr is a device address (primary with optional secondary).
. 1s the address separator, either a comma "," or a slash "/".
RESPONSE None

BUS STATES ATN<DCL (all devices)
ATN+UNL, MTA, LAG,SDC (selected devices)

EXAMPLES PRINT #1,"CLEAR" issue a Device Clear to all devices

PRINT #1,"CLEAR12,18" issue a Selected Device Clear to devices 12
and 18.

6.7

Chapter 6 Command Descriptions

ENTER

The ENTER ¢ommand reads data from the IEEE bus. If a device address (with optional
secondary address) is specified, then that device will be addressed to talk. If no address is specified,
then DS00GPIB must already be configured to receive data, either as a result of an immediately
preceding ENTER command, or as a result of a SEND command. If the character count, count, is
specified, then exactly that number of characters will be read from the device. Otherwise, ENTER
terminates reception on detection of the IEEE bus input terminator, which may be overridden by
specifying the terminator in the ENTER command. The received terminator is then replaced with the
EOL terminator before being returned to the user's program.

SYNTAX ENTER[addr] [#count | term[term] [EQT] | [EOQI]]

addr is the IEEE bus device address.
count is the number of characters to ENTER.
term and EOT override the normal IEEE bus input terminator.

RESPONSE Device-dependent data. If count is specified, then exactly count characters
will be returned. EOL is appended for convienience but need not be read back.
Otherwise the response ends when the IEEE bus input terminator is detected and
EOL is appended to the returned data.

BUS STATES ATN-UNL, MLA, TAG, *ATN, data..., ATN (With addr)

*ATN, data..., ATN (Without addr)
EXAMPLES PRINT#1, "ENTER16" Read data from device 16.

INPUT#2,AS

PRINT#1, "ENTER16" Read an entire line of data from

LINE INPUT#2,AS device 16 even if it contains commas or

other punctuation,

PRINT#1, "ENTER16 CR" Read data from device 16 until CR is
INPUT#2,AS$ encountered.

PRINT#1, "ENTER16 $000" Read data until a NULL is encountered.
INPUT#2,AS

PRINT#1, "ENTER16 LF EOI" Read data until LF or EOI is detected.
INPUT#2,AS

6.8

Chapter 6

PRINT#1, "ENTER(Q702"
INPUT#2,AS

PRINT#1, "ENTER12#5"
AS=INPUTS (5, #2)
PRINT#1, "ENTER#20"
AS=INPUTS (20, #2)

6.9

Command Descriptions

Read data from device 7, secondary
address 2.

Read 5 bytes from device 12.
INPUTS returns 5 bytes from file #2
Read 20 more bytes.

Chapter 6 Command Descriptions

HELLO

The HELLO command is used to verify communication with D500GPIB, and to read the
software revision number. When the command is sent, DSOOGPIB returns the following string:

SERIES 500/488 Rev n.xx (C) Copyright 1987 I0tech Inc

where n.xx is the software revision number.
SYNTAX HELLO
RESPONSE SERIES 500/488 Rev n.xx (C) Copyright 1987 IOtech Inc
BUS STATES None

EXAMPLE PRINT#1, "HELLO" Get the HELLO response
INPUT#2,AS
PRINT AS and display it.

6.10

Chapter 6 Command Descriptions

IOCTL (BASIC statement)

IOCTL is a BASIC statement that can be used to unconditionally reset DSOOGPIB. When the
message "BREAK" is sent to D5SGOGPIB via the 10CTL DOS function (accessible via the TOCTL
BASIC statement), D500GPIB stops any command currently executing, and prepares to accept a new
command. This can be used even when D500GPIB is not expecting a command, but transferring
data. Commands such as ABORT or RESET may then be used to reset the entire IEEE bus.

No IOCTL commands other than BREAK are supported by DSOOGPIB.
SYNTAX IOCTL#2, "BREAK"
RESPONSE None
BUS STATES None

EXAMPLE IOCTL#2, "BREAK" Send the IOCTL message "BREAK" to the
DS500GPIB.

6.11

Chapter 6 Command Descriptions

IOCTLS (BASIC function)

T10CTLS is a BASIC function that can be used to determine the communication state of
D500GPIB. IOCTLS returns a character single ASCH character, either "0", "1", "2" , or "3". The
meaning of these responses is as folows:

"0" A response of "0" indicates that DSOOGPIB is ready to receive a command. It has
no data to read, nor is it expecting data for output to the IEEE bus.

“1" A response of "1" indicates that DSOOGPIB has a response ready to be read by the
user's program. The program should read the response before sending a new
command (except IOCTL "BREAK"),

The IQCTLS$ function has one primary use: in the Keyboard Controller Program (see
Appendix A) it allows the program to know when D5S00GPIB has data available to read.

SYNTAX AS=TOCTLS (#2)
AS is a string variable that is set to "0" if there is nothing to read, "1" if there is.
RESPONSE None
BUS STATES None
EXAMPLE 100 PRINT#1,"ENTER1G"
110 AS=IOCTLS (#2)

120 IF AS="1" THEN PRINT INPUTS(1,#2); : GOTO 110
130 PRINT "NO INPUT READY"

6.12

Chapter 6 Command Descriptions

LOCAL

In the System Controller mode, the LOCAL command without optional addresses causes
D500GPIB to unassert the Remote Enable line. This causes devices on the bus to return to manual
operation. As the Active Controller, with bus addresses specified, bus devices are placed in the local
mode by the Go To Local (GTL) bus command. If addresses are specified, then the Remote Enable
line is not unasserted,

SYNTAX LOCAL
BUS STATES *REM

SYNTAX LOCAL addr[,addr...]

addr is a bus device address.

BUS STATES ATNeUNL, MTA, LAG,GTL
EXAMPLES PRINT#1, "LOCAL" Unassert the Remote Enable Line

PRINT#1, "LOCAL12, 16" Send Go To Local to devices 12 and 16

6.13

Chapter 6 Command Descriptions

LOCAL LOCKOUT

The LOCAL LOCKOUT command causes D500GPIB to issue a Local Lockout IEEE bus
command. Bus devices that support this command are thereby inhibited from being controlled
manually from their front panels.

SYNTAX {LOCAL LOCKOUT}
BUS STATES ATN-LLO

EXAMPLES PRINT#1, "LOCAL LOCKCUT" Send Local Lockout bus command.

6.14

Chapter 6 Command Descriptions

OuUTPUT

The oUTPUT command sends data to the IEEE bus. If device addresses (with optional
secondary addresses) are specified then those devices will be addressed to listen. If no addresses are
specified, then D5S00GPIB must already be configured to send data, either as a result of an
immediately preceding CUTPUT command or as the result of a SEND command. If the character
count, count, is specified then exactly that number of characters will be sent to the bus devices.
Otherwise, QUTPUT terminates data transfer upon detection of the EOL output terminator from the
user's program. The EOL output terminator is replaced with the bus output terminator before being
sent to the bus devices.

SYNTAX QUTPUT [addr[,addr...]] [#count];data
addr is a bus device address. Up to 15 addresses may be specified.
count is the number of characters to QUTPUT.

data is a string of characters to OUTPUT terminated by the EOL output
terminator (unless count is specified in which case no terminator is needed).

RESPONSE None

BUS STATES *ATN, data {without addr)
ATN-MTA, UNL, LAG, *ATN, data (with addr)

EXAMPLES PRINT#1, "OUTPUT22;ROCOT1X" Send "ROCOTIX" to device 22.
PRINT#1, "OUTPUTO6, 12;ARC" Send "ABC" to devices 6 and 12.
PRINT#1, "OUTPUT; XYZ" And send them "XYZ".
PRINT#1, "OUTPUTO0602;DEF" Send "DEF" to device 6, secondary

address 2.

PRINT#1, "OUTPUTO6#26; abcdefghijklmnopgrstuvwxyz"
Send the 26 letters of the alphabet without
terminators to device 6.

6.15

Chapter 6 Command Descriptions

POLL

The Parallel Poll command, PPOLL, is used to request status information from many bus
devices simultaneously. If a device requires service then it will respond to a Parallel Poll by asserting
one of the eight IEEE bus data lines (DIO1 through DIOS, with DIO1 being the least significant). In
this manner, up to eight devices may simultaneously be polled by the controller. More than one
device can share any particular DIO line. In this case it is necessary to perform further Serial Polling
to determine which device actually requires service.

Parallel polling is often used upon detection of a Service Request (SRQ), though it may also be
performed periodically by the controller. In either case, PPOLT will respond with a number from 0
to 255 corresponding to the eight binary DIO lines.

Not every device supports parallel polling. Refer to the manufacturer's documentation for each
bus device to determine if Parallel Poll capabilities are supported.

SYNTAX PPOLL
RESPONSE Number in the range of 0 to 255
BUS STATES ATN<EOI,<parallel poll response>, *EQI

EXAMPLE PRINT#1"PPOLL" Conduct a Parallel Poll
INPUT#2,PPSTAT Receive the PPOLL status

6.16

Chapter 6 Command Descriptions

PPOLL FIG

PPOLL CONF IG (Parallel Poll Configure) configures the Parallel Poll response of a specified
bus device. Not all devices support Parallel Polling and, among those that do, not all support
software control of their Parallel Poll response. Some devices are configured by internal switches.

The Parallel Poll response is set by a four-bit binary number (S P2 P1 PO), response. The
most significant bit of response is the Sense (S) bit. The Sense bit is used to determine when the
device will assert its Parallel Poll response. Each bus device has an internal individual status {is?).
The Parallel Poll response will be asserted when this ist equals the Sense bit value. istis normally a
logic "1" when the device requires attention, so the S bit should normally also be a logic "1". If the S
bit is "0" then the device will assert its Parallel Poll response when its ist is a logic "0", i.e. it does
not require attention. However, the meaning of ist can vary between devices, so refer to your IEEE
bus device documentation.

The remaining 3 least significant bits of response, P2, P1, and PO, specify which DIO bus
data line will be asserted by the device in response to a Parallel Poll. These bits form a binary
number with a value from 0 through 7, specifying data lines DIO1 through DIOS, respectively.

SYNTAX PPOLL CONFIG addr;response
addr is a bus address.
response is the decimal equivalent of the four binary bits S, P2, P1, and PO
where S is then Sense bit, and P2, P1, and PO assign the bus data line used for
the response.
RESPONSE None
BUS STATES ATN-UNL, MTA, LAG, PPC, PPE
EXAMPLES PRINT #1,"PPCONFIG23;13" Configure device 23 to assert DIO6
when it desires service (ist ="1") and
it is Parallel Polled (&HOD = 1101

binary; S=1, P2PIP0=101 =5
decimal = DIO®6).

6.17

Chapter 6 Command Descriptions

PPOLL DISABLE

PPOLL DISARLE disables the Parallel Poll response of selected bus devices.

SYNTAX PPOLL DISABLE addrl,addr..]
addr is a bus device address
RESPONSE None
BUS STATES ATN-UNL, MTA, LAG, PPC, PPD
EXAMPLE PRINT#1, "PPOLL DISARBLELS,06,13"

Disable Parallel Poll response of devices 18§,
6, and 13.

6.18

Chapter 6 Command Descriptions

PPOLL UNCONFIG

PPOLL UNCONF IG (Parallel Poll Unconfigure) disables the Parallel Poll response of all bus
devices.

SYNTAX {PPOLL UNCONFIG}
RESPONSE None
BUS STATES ATN+PPU

EXAMPLE PRINT #1,"PPOLL UNCONFIG" Disable the Parallel Poll response of all
bus devices.

6.19

Chapter 6 Command Descriptions

REMOTE

The REMOTE command asserts the Remote Enable (REN) bus management line. If the

optional bus addresses are specified, then REMOTE also address those devices to listen, placing them
in the Remote state.

SYNTAX REMOTE
RESPONSE None
BUS STATES REN

SYNTAX REMOTE addr[,addr..]

addr is a bus device address
RESPONSE None
BUS STATES REN, ATN-UNL, MTA, LAG

EXAMPLES PRINT #1, "REMOTE" Assert Remote Enable

PRINT #1,"REMOTEL6, 28" Assert Remote Enable and address devices 16
and 28 to listen.

6.20

Chapter 6 Command Descriptions

RESUME

The RESUME command unasserts the Attention (ATN) bus signal . Attention is normally kept
asserted by D5S0O0OGPIB, but it must be unasserted to allow transfers to take place between two

Peripheral devices. In this case, DSO0GPIB SENDs the appropriate talk and listen addresses, and the
must unassert Attention with the RESUME command.

SYNTAX RESUME
RESPONSE None
BUS STATES *ATN

EXAMPLE PRINT#1, "RESUME" Unassert ATTENTION line.

6.21

Chapter 6 Command Descriptions

SEND

The SEND command provides byte-by-byte control of data and control transfers on the bus and
gives greater flexibility than the other commands. The command can specify exactly which operations
will be executed by DS00GPIB.

The following are available within the SEND command:

UNT Send the multiline Untalk command. ATN is asserted.
UNL Send the multiline Unlisten command. ATN is asserted.
MTA Send My (D500GPIB) Talk Address. ATN is asserted.
MLA Send My (DSOOGPIB) Listen Address. ATN is asserted.

TALKaddr Send Talk Address addr device (TAG). ATN is asserted.

LISTENaddr[, addr..]
Send Listen Addresses (LAG). ATN is asserted.

DATA'data' Send character string data with ATN unasserted.

DATA char],char..]
Send characters with the given numeric ASCII values with ATN unasserted.

CMD'data' Send character string data with ATN asserted.

CMD char[,char..]
Send characters with the given numeric ASCII values with ATN asserted.

The DATA and, CMD subcommands send data bytes or characters over the bus. The characters
to be sent are specified either as a quoted string ('data ') or as individual ASCII values
{char(, ¢har..]). For example, DATA'ROX"' sends the characters R, 0, and X to the active
listeners, and DATA 13, 10 sends carriage-return and line-feed.

The cMD subcommand sends the data bytes with Attention (ATN) is asserted. This tells the
bus devices that the characters are to be interpreted as IEEE bus commands, rather than as data. EOI
is not asserted during CMD transfers. For example CMD 63 is the same as Unlisten (UNL).

Note that the maximum length of the SEND command, including any subcommands, is 255
characters. If large amounts of data must be transferred using the SEND command, then multiple
SEND commands must be used so that they are each less than 255 characters long. For example

PRINT#1,"SEND; UNT UNL MTA LISTEN 16 DATA 1,2,3,4,5,6"

is equivalent to

6.22

Chapter 6 Command Descriptions

PRINT#1, "SEND; UNT UNL MTA LISTEN 16"
PRINT#1,"SEND; DATA 1,2,3"
PRINT#1, "SEND; DATA 4,5,6"
In this way, a long SEND command can be broken up into shorter commands.
SYNTAX SEND; subcommand[subcommand..]
RESPONSE None
BUS STATES user defined
EXAMPLES PRINT#1, "SEND; MTA UNL LISTEN16 DATA 'TI1SOR2X'"
is the same as
PRINT#1, "OUTPUT16; T1SOR2X"
PRINT#1,"SEND; CMD 128,0G,10 DATA 156,35 EOI 'ABC'"

sends the following byte sequence:

Data ATN EOI
10000000 ATN *EQI
00000000 ATN *EOIL
00001010 ATN *EQOI
10011100 *ATN *EOI
00100011 *ATN *EOI
(1000001 *ATN *EQOI
01000010 *ATN *EOI
(01000011 *ATN EOI

6.23

Chapter 6 Command Descriptions

SPOLL

The SPOLL command performs a Serial Poll of the bus device specified and responds with
number from 0 to 255 representing the decimal equivalent of the eight-bit device response. If rsv
(DIO7, decimal value 64) is set, then that device is signaling that it requires service. The meanings of
the other bits are device-specific.

Serial Polls are normally performed in response to assertion of the Service Request (SRQ) bus
signal by some bus device.

In Active Controller mode, with no bus address specified, the SPOLL command returns the in
SRQ line status. If the SRQ status is set, which indicates that the SRQ line is asserted, then
D500GPIB will return a "64", if it is not set, indicating that SRQ is not asserted, then D5S00GPIB
will return a "0".
SYNTAX SPOLL [addr]
addr is the bus device to be Serial Polled

RESPONSE 0 or 64 (without addr)
Number in the range from 0 to 255 (with addr)

BUS STATES ATN-UNL, MLA, TAG, SPE, *ATN, data, ATN+SPD, UNT

EXAMPLES PRINT#1, "SPOLL 16" Serial Poll device 16
INPUT#2, SPSTAT Receive the Spoll status
IF SPSTAT AND 64 THEN.. Testrsv...
PRINT#1, "SPOLL" Check the SRQ status
INPUT#2, SRQ
IF SRQ<>0 THEN.., If SRQ is asserted then ...

6.24

Chapter 6

TIME OUT

Command Descriptions

The TIME O0UT command sets the number of seconds that D300GPIB will wait for a transfer
before declaring a time out error.

Time out checking may be suppressed by specifying time out after zero seconds. The default
time out is 10 seconds.

SYNTAX

RESPONSE
BUS STATES
EXAMPLES

TIME OUT; n

n is the number of seconds to allow in the range of 0 to 65535, If n is zero,
ignore time outs.

None

None

PRINT#1, "TIME OUT; 10" Reset to default (10 seconds).
PRINT#1, "TIME QUT;3600" Wait an hour before time out error,
PRINT#1,"TIME OQUT;O0O" Ignore time outs,

6.25

Chapter 6 Command Descriptions

TRIGGER

The TRTGGER command issues a Group Execute Trigger (GET) bus command to the specified
devices. If no addresses are specified, then the GET will only affect those devices that are already in

the listen state as a result of a previous QUTPUT or SEND command.

SYNTAX TRIGGER [addr[,addr..]1]

addr is a bus device address 1o be triggered.

RESPONSE None
BUS STATES ATN<GET (without addr)
ATN.UNL, MTA, LAG, GET (with addr)
EXAMPLES PRINT#1, "TRIGGER02,04,16" Issue Group Execute Trigger to devices
2,4, and 16.
PRINT#1, "TRIGGER" Trigger all current listeners.

6.26

Chapter 7 IEEE 488 Primer

IEEE 488 Primer

7.1 History

The IEEE 488 bus is an instrumentation communication bus adopted by the Institute of
Electrical and Electronic Engineers in 1975 and revised in 1978. The Personal488 conforms to this
most recent revision designated IEEE 488-1978.

Prior to the adoption of this standard, most instrumentation manufacturers offered their own
versions of computer interfaces. This placed the burden of system hardware design on the end user.
If his application required the products of several different manufacturers, then he might need to
design several different hardware and software interfaces. The popularity of the IEEE 488 interface
(sometimes called the General Purpose Interface Bus or GPIB) is due to the total specification of the
electrical and mechanical interface as well as the data transfer and control protocols. The use of the
IEEE 488 standard has moved the responsibility of the user from design of the interface to design of
the high level software that is specific to the measurement application.

7.2 General Structure

The main purpose of the GPIB is to transfer information between two or more devices. A
device can either be an instrument or a computer. Before any information transfer can take place, it is
first necessary to specify which will do the talking (send data) and which devices will be allowed to
listen (receive data). The decision of who will talk and who will listen usually falls on the System
Controller which is, at power on, the Active Controller.

The System Controller is similar to a committee chairman. On a well run committee, only one
person may speak at a time and the chairman is responsible for recognizing members and allowing
them to have their say. On the bus, the device which is recognized to speak is the Active Talker.
There can only be one Talker at a time if the information transferred is to be clearly understood by all.
The act of “giving the floor” to that device is called Addressing to Talk. If the committee chairman
can not attend the meeting, or if other matters require his attention, he can appoint an acting chairman
to take control of the proceedings. For the GPIB, this device becomes the Active Controller.

At a committee meeting, everyone present usually listens, This is not the case with the GPIB.
The Active Controller selects which devices will listen and commands all other devices to ignore what
is being wransmitted. A device is instructed to listen by being Addressed to Listen. This device is
then referred to as an Active Listener. Devices which are to ignore the data message are instructed to
Unlisten.

The reason some devices are instructed to Unlisten is quite simple. Suppose a college
instructor is presenting the day’s lesson. Each student is told to raise their hand if the instructor has
exceeded their ability to keep up while taking notes. If a hand is raised, the instructor stops his
discussion to allow the slower students the time to catch up. In this way, the instructor is certain that
each and every student receives all the information he is trying to present. Since there are a lot of
students in the classroom, this exchange of information can be very slow. In fact, the rate of
information transfer is no faster than the rate at which the slowest note-taker can keep up. The
instructor, though, may have a message for one particular student. The instructor tells the rest of the
class to ignore this message (Unlisten) and tells it to that one student at a rate which he can
understand. This information transfer can then happen much quicker, because it need not wait for the

7.1

Chapter 7 IEEE 488 Primer

slowest student,

The GPIB transfers information in a similar way. This method of data transfer is called
handshaking.

For data transfer on the IEEE 488, the Active Controller must...

a) Unlisten all devices to protect against eavesdroppers,

b) Designate who will talk by addressing a device to talk.

¢) Designate all the devices who are to listen by addressing those devices to listen.
d) Indicate to all devices that the data transfer can take place.

7.3 Send It To My Address

In the previous discussion, the terms Addressed to Talk and Addressed to Listen were used.
These terms require some clarification.

The IEEE 488 standard permits up to 15 devices to be configured within one system, Each of
these devices must have a unique address to avoid confusion. In a similar fashion, every building in
town has a unique address to prevent one home from receiving another home's mail. Exactly how
each device's address is set is specific to the product’'s manufacturer. Some are set by DIP switches
in hardware, others by software. Consult the manufacturer's instructions to determine how to set the
address.

Addresses are sent with universal {multiline) commands from the Active Controller. These
commands include My Listen Address (MLA), My Talk Address (MTA), Talk Address Group
(TAG), and Listen Address Group (LLAG).

7.4 Bus Management Lines

Five hardware lines on the GPIB are used for bus management., Signals on these lines are
often referred to as uniline (single line) commands. The signals are active low, i.e. a low voltage
represents a logic "1" (asserted), and a high voliage represents a logic "0" (unasserted).

7.4.1 Attention (ATN)

ATN is one of the most important lines for bus management. If Attention is
asserted, then the information contained on the data lines is to be interpreted as a multiline
command. If it is not, then that information is to be interpreted as data for the Active
Listeners. The Active Controller is the only bus device that has control of this line.

7.4.2 Interface Clear (IFC)
The IFC line is used only by the System Controller. It is used to place all bus
devices in a known state. Although device configurations vary, the IFC command usually

places the devices in the Talk and Listen Idle states (neither Active Talker nor Active
Listener).

7.2

Chapter 7 IEEE 488 Primer

To Other Devices
7\
v N
TAAAT ATA PN
Device 1 k
Personal488
Able to Talk,
Listen, and Control
Data Bus
Device 2 K
Digital Multimeter
Able to Talk Data Byte
and Listen Transfer
Control
Device 3 K
Printer
Only Able to Listen General
Interface
Management
K =
Device 4 e
Frequency Counter
Only Able to Talk
| } DIO1-8
DAV
NRFD
NDAC
TEEE 488 Bus Structure IFC
) ATN
Figure 7.1 SRQ
REN
EOIL

7.3

Chapter 7 IEEE 488 Primer

7.4.3 Remote Enable (REN)

When the System Controller sends the REN command, bus devices will respond to
remote operation. Generally, the REN command should be issued before any bus
programming is attempted. Only the System Controller has control of the Remote Enable
line.

7.4.4 End or Identify (EOI)

The EOI line is used to signal the last byte of a multibyte data transfer. The device
that is sending the data asserts EOI during the transfer of the last data byte. The EOI signal
is not always necessary as the end of the data may be indicated by some special character
such as carriage return.

The Active Controller also uses EOI to perform a Parallel Poll by simultaneously
asserting EOl and ATN.

7.4.5 Service Request (SRQ)

When a device desires the immediate attention of the Active Controller it asserts
SRQ. It is then the Controller's responsibility to determine which device requested
service. This is accomplished with a Serial Poll or a Parallel Poll.

7.5 Handshake Lines

The GPIB uses three handshake lines in an "I'm ready - Here's the data - I've got it” sequence.
This handshake protocol assures reliable data transfer, at the rate determined by the slowest Listener.
One line is controlled by the Talker, while the other two are shared by all Active Listeners. The
handshake lines, like the other IEEE 488 lines, are active low.

7.5.1 Data Valid (DAV)

The DAYV line is controlled by the Talker. The Talker outputs data on the bus and
waits until NRFD is unasserted which indicates that all Addressed Listeners are ready to
accept the information. At the same time, the Talker also verifies that NDAC is asserted
which indicates that all Listeners have accepted the previous data byte transferred. If these
conditions are not met, the Talker must wait until the NRFD and the NDAC line are in the
proper state. Once in the proper state, the Talker asserts DAV to indicate that the data on
the bus is valid.

7.5.2 Not Ready for Data (NRFD)

This line is used by the Listeners to inform the Talker when they are ready to accept
new data. The Talker must wait for each Listener to unassert this line which it will do
when it is ready for more data. This assures that all devices that are to accept the
information are ready to receive it.

7.4

Chapter 7 IEEE 488 Primer

7.5.3 Not Data Accepted (NDAC)

The NDAC line is also controlled by the Listeners. This line indicates to the Talker
that each device addressed to listen has accepted the information. Each device releases
NDAC at its own rate, but the NDAC will not go high until the slowest Listener has
accepted the data byte.

7.6 Data Lines

The GPIB provides eight data lines for a bit parallel/byte serial data transfer. These eight data
lines use the convention of DIO1 through DIOS instead of the binary designation of DO to D7. The
data lines are bidirectional and are active low.

Datax e Talker

DAV ‘ Valid Talker
NRFD | Listener
NDAC Listener

Data Transfer Data Transfer
Begins Ends

IEEE Bus Handshaking

7.7 Multiline Commands

Multiline (bus) commands are sent by the Active Controller over the data bus with ATN
asserted. These commands include addressing commands for talk, listen, Untalk and Unlisten.

7.7.1 Go To Local (GTL)

This command allows the selected devices to be manually controlled. ($01)

1.5

Chapter 7 IEEE 488 Primer

7.7.2 Listen Address Group (LAG)

There are 31 (0 to 30) listen addresses associated with this group. The 3 most
significant bits of the data bus are set to 011 while the 5 least significant bits are the
address of the device being told to listen,

7.7.3 Unlisten (UNL)

This command tells all bus devices to Unlisten. The same as Unaddressedto Listen.
($3F)

7.7.4 Talk Address Group (TAG)

There are 31 (0 to 30) talk addresses associated with this group. The 3 most
significant bits of the data bus are set to 101 while the 5 least significant bits are the
address of the device being told to talk.

7.7.5 Untalk (UNT)
This command tells bus devices to Untalk. The same as Unaddressed to Talk.
($5F)
7.7.6 Local Lockout (LLO)
‘ Issuing the LLO command prevents manual control of the instrument's functions.
($11)
1.7.7 Device Clear (DCL)

This command causes all bus devices to be initialized to a predefined or power up
state. ($14)

7.7.8 Selected Device Clear (SDC)

This causes a single device to be initialized to a predefined or power up state. ($04)

71.1.9 Serial Poll Disable (SPD)

The SPD command disables all devices from sending their Serial Poll status byte.

($19)

7.6

Chapter 7 IEEE 488 Primer

7.7.10 Serial Poll Enable (SPE)

A device which is Addressed to Talk will output its Serial Poll status byte after SPE
is sent and ATN is unasserted. ($18)

7.7.11 Group Execute Trigger (GET)

This command usually signals a group of devices to begin executing a triggered
action. This allows actions of different devices to begin simultaneously. ($08)

7.7.12 Take Control (TCT)

This command passes bus control responsibilities from the current Controller to
another device which has the ability to control. ($09)

7.7.13 Secondary Command Group (SCG)

These are any one of the 32 possible commands (0 to 31) in this group. They must
immediately follow a talk or listen address. (360 to $7F)

7.7.14 Parallel Poll Configure (PPC)

This configures devices capable of performing a Parallel Poll as to which data bit
they are to assert in response to a Parallel Poll. ($05)

7.7.15 Parallel Poll Unconfigure (PPU)
This disables all devices from responding to a Parallel Poll. ($15)

7.8 More on Service Requests

Most of the commands covered, both uniline and multiline, are the responsibility of the Active
Controller to send and the bus devices to recognize. Most of these happen routinely by the interface
and are totally transparent to the system programmer. Other commands are used directly by the user
to provide optimum system control. Of the uniline commands, SRQ is very important to the test
system and the software designer has.easy access to this line by most devices. Service Request is the
method by which a bus device can signal to the Controller that an event has occurred. It is similar to
an interrupt in a microprocessor based system.

Most intelligent bus peripherals have the ability to assert SRQ. A DMM might assert it when
its measurement is complete, if its input is overloaded or for any of an assortment of reasons. A
power supply might SRQ if its output has current limited. This is a powerful bus feature that
removes the burden from the System Controller to periodically inquire, "Are you done yet?".
Instead, the Controller says, "Do what I told you to do and let me know when you're done" or "Tell
me when something is wrong."

7.7

Chapter 7 IEEE 488 Primer

Since SRQ is a single line command, there is no way for the Controller to determine which
device requested the service without additional information. This information is provided by the
multiline commands for Serial Poll and Parallel Poll.

7.8.1 Serial Poll

Suppose the Controller receives a service request. For this example, let's assume
there are several devices which could assert SRQ. The Controller issues an SPE (Serial
Poll enable) command to each device sequentially. If any device responds with DIO7
asserted it indicates to the Controller that it was the device that asserted SRQ. Often times
the other bits will indicate why the device wanted service. This Serial Polling sequence,
and any resulting action, is under control of the software designer.

7.8.2 Parallel Poll

The Parallel Poll is another way the Controller can determine which device requested
service. It provides the who but not necessarily the why. When bus devices are
configured for Parallel Poll, they are assigned one bit on the data bus for their response.
By using the Status bit, the logic level of the response can be programmed to allow logical
OR/AND conditions on one data line by more than one device. When SRQ is asserted, the
Controller (under user's software) conducts a Parallel Poll, The Controller must then
analyze the eight bits of data received to determine the source of the request. Once the
source is determined, a Serial Poll might be used to determine the why.

Of the two polling types, the Serial Poll is the most popular due to its ability to determine the
who and why. In addition, most devices support Serial Poll only.

7.8

Appendix A Keyboard Controller Program

Keyboard Controller Program

The Keyboard Controller Program is a simple BASIC program that accepts commands from
the keyboard and sends them to DSOOGPIB, It then displays any responses from D500GPIB on the
screen. The Keyboard Controller Program is the most convenient method of exercising DS00GPIB
and becoming familiar with the commands and their actions. It also demonstrates the use of ON
ERROR to trap IfO errors. This program is provided on the D500GPIB disk as "TERMGPIB.BAS"

10 !
20 ¢
30 ' For use with the Keithley DAC D5Q0GPIB
40 ' driver and GPIB module
50
60 OPEN "\DEVAGPIBOUT" FOR OUTPUT AS #1
70 IOCTL#1, "BREAK"
80 OPEN "\DEV\GPIBIN" FOR INPUT AS #2
90 !
100 ON ERROR GOTO 210
110 '
120 LINE INPUT "CMD> ",CMDS$
130 PRINT#1,CMDS$
140 °
150 IF IOCTLS(2)<>"1" THEN 120
160 PRINT INPUTS(1,2);
170 GOTO 150
]

D500GPIB Keyboard Controller Program

180

190 ' Error Handler

200 7

210 IOCTL#1, "BREAK"

220 PRINTY"————m——w—-— ETrYrOr ———w————— > n

230 RESUME NEXT

Appendix B Character Codes and IEEE Multiline Messages

500 010 16§20 32830 48[840 64350 80J§60 96570 112
NUL | DLE Sp 0 @ P : p
00 16 00 16 SCG SCG
501 1811 17p21 3331 49B41 65[8S1 81§61 9771 113
SOH | DC1 ! 1 A Q a q
GIL LLO 01 17 01 17 SCG 5CG
502 20812 18fs22 34§32 sofs42 66852 8262 98[§72 114
STX DC2 " 2 B R b r
02 18 02 18 SCG SCG
503 3813 19J523 351533 51643 671553 83[963 99573 115
ETX | DC3 # 3 C S c S
03 19 03 19 SCG SCG
B04 4514 20p24 36334 s52f544 68[354 8464 100[$74 116
EOT | DC4 $ 4 D T d t
SDC DCL 04 20 04 20 SCG SCG
505 515 2125 37835 5345 69855 85§65 101875 117
ENQ | NAK %o 5 E 0] e u
PPC PPU 05 21 05 21 SCG SCG
506 6516 2226 38[836 5446 70[356 86[g66 102[s76 118
ACK | SYN & 6 F \Y% f v
06 22 06 22 SCG 5CG
507 717 2327 390537 55847 71557 8767 103[$77 119
BEL ETB ‘ 7 G w g W
07 23 07 23 SCG SCG
508 gls18 2428 40[538° 56548 72[858 88568 104578 120
BS CAN (8 H X h X
GET SPE 08 24 08 24 SCG SCG
509 ot 25F29 41539 3749 73859 8969 105579 121
HT EM) 9 I Y i y
TCT SPD 09 25 09 25 SCG $CG
S0A 10[S1A 26[82A 42|S3A 58[S4A 74[55A O0B6A 106[57A 122
LF SUB * : J y j z
10 26 10 26 SCG SCG
0B 11[$1B 2782B 43[83B S9J4B 7SPSB - 9186BR 107P7B 123
VT ESC + ; K [k {
11 27 11 27 $CG SCG
B0C 121C 28[F2C 44[83C 6O4C Te[SC 92f6C 108B7C 124
FF FS , < L \ 1 I
12 28 12 28 5CG $CG
50D 13[$1D 29p2D 45[83D 61fg4aD 77[85D 936D 109[§7D 125
CR GS - = M] m }
13 29 13 29 $CG SCG
BOE 14[$1E 30B2E 46[$3E 62B4E 78[SE 94JS6E 110[$7E 126
SO RS . > N A n ~
14 30 14 30 SCG SCG
SOF 15[S1F 312F 47P3F 63J84F 79BSF 95F6F 111[7F 127
SI Us / ? O _ 0 DEL
15 UNL 15 UNT SCG SCG
= ACG—-UCG - LAG TAG — SCG
ACG = Addressed Command Group TAG = Talk Address Group
UCG = Universal Command Group SCG = Secondary Command Group

LAG = Listen Address Group

B.1

Command Summary

Command Summary

ENTER [addr][;][#count|term{term] [EQI] | [ECIL]]

Read the Personal488 revision identification.

BASIC statement. Force Personal488 to accept commands from the user's

BASIC statement. Test if there is any response to be read from
Personal488 (A$="1"), A$="0" if not, "2" if waiting for data, "3" if
waiting for the remainder of a command.

Appendix C
ABORTIO ABQORTIO
Send IFC Stops bus activity.
CLEAR CLEAR [addr[,addr..l)
Clear all or selected devices.
ENTER
Read data from bus device.
HELLO HELLO
IOCTL IOCTL#2, "BREAK"
program.
IOCTLS AS=TOCTLS (#2)
LOCAL LOCAL

LOCAL LOCKOUT

QUTPUT

Unassert Remote Enable line (SC) or send Go To Local commands (CA)

LOCAL LOCKOUT

Prevent bus devices from acting upon manual (front-panel) control.

QUTPUT [addrl,addr...}){#count];data

Send data to bus device(s).

C.1

Appendix C

POLL

PPOLL CONFIG

PPOLL DISABLE

PPOLL UNCONFIG

REMOTE

RESUME

SEND

SPOLL

Command Summary

PPOLL

Read the Parallel Poll response from all bus devices.

PPOLL CONFIG addr;response Or

Set the Parallel Poll response of a bus device. response is the decimal
equivalent of four bits: S P2 P1 P0.

PPOLL DISABLE addr([,addr..] or

Prevent bus devices from responding to Parallel Poll.

PPOLL UNCONFIG

Prevent all bus devices from responding to Parallel Poll.

REMOTE [addr{,addr..}]

Assert the Remote Enable line. Optionally address devices to listen, putting
them in the Remote state.

RESUME

Unassert Attention. Used to allow Peripheral-to-Peripheral transfers.

SEND; subcommand[subcommand...]

Send low-level bus sequences. Subcommands are: UNT, UNL, MTA, MLA,
TALK addr, LISTEN addr [, addr..], DATA 'data’', DATA
char[,char..], EQI 'data’,EQI char|[,char..],CMD "data’,
and CMD char{,char..].

SPOLL [addr]

Read device's Serial Poll response. Get internal SRQ state (CA), or Serial
Poll status (*CA).

C2

Appendix C Command Summary

TERM TERM; [term[term]][EOI]

Set the terminators for IEEE bus transfers.

TIME QUT TIME OUT; n

Set the number of seconds (1 to 65535) to wait for a bus transfer before a
Time Out error will be declared. Checking for Time QOut is suppressed by
specifying 0 seconds.

TRIGGER TRIGGER [addr([,addr..]1]

Trigger bus devices by sending optional listen addresses followed by Group
Execute Trigger.

C3

KEITHLEY jOA®

Data Acquisition and Control Division Keithley Instruments, Inc. ¢ 28775 Aurora Road ¢ Cleveland, Ohic 44139 (216) 248-0400 » Fax: 248-6168

WEST GERMANY: Keithley Instruments Gmbll » Heiglhofstr. 5 » Munchen 70 ¢ 089-71002-0 ¢ Telex: 52-12160 » Fax: 089-7100259

GREAT BRITAIN: Keithley Instruments, Lid, » | Boulion Road » Reading, Berkshire RG 2 ONL « 0734-861287 Telex: 847 047 # Fax: 0734-863665

FRANCE: Keithley Instruments SARL » 3 Allee des Garays « B.P, 60 » 91124 Palaiscau ® Z.I # 1-6-0115 155 » Telex: 600 933 » Fax: 1-6-0117726

NETHERLANDS: Keithley Instruments BY+Avelingen West 49 = 4202 M$ Gorinchens « P.O. Dox 559 « 4200 AN Gorinchern » 01830-35333 « Telex: 24 684 « Fax: 01830-30821
SWITZERLAND: Keithley Instrumenis SA » Krigsbachsir, 4 « 860 Dubendorf » 01-821-9444 » Telex: 828 472 « Fax: 0222-315366

AUSTRIA: Keithley Instruments GesmbH » Rosenhugelsirasse 12 « A-1120 Vienna » (0222) 84 65 48 » Telex: 131677 » Fax: (0222) 84 3547

ITALY: Keithtey Instruments SRL o Yiale S, Gimignano 4/A » 20146 Milano » 02-4120360 or 02-4156540 + Fax: 02-4121249

	ToC:

