Q}[cover.frm Page | Thursday, April 14,1994 1:44 PM @

DAS-1800 Series
Function Call Driver
User’s Guide

«@lﬁtlcpg.fnn Page 1 Thursday, April 14, 1994 1:45 PM

DAS-1800 Series
Function Call Driver
User’s Guide

Revison B — April 1994
Part Number: 78940

P hoticep.frm Page 2 Thursday, April 14, 1994 1:46 PM

I

The information contained in this manual is believed to be accurate and reliable. However, the
manufacturer assumes no responsibility for its use or for any infringements of patents or other rights of
third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of the manufacturer.

THE MANUFACTURER SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT, THIS PRODUCT
I8 NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY SUITABLE FOR USE
IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

All brand and product names are trademarks or registered trademarks of their respective companies.
© Copyright Keithley Instruments, Inc., 1993, 1994,

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
wnlawfiul,

-EB—anftB.toc Page iii Thursday, April 14, 1994 1:46 PM

Table of Contents

Preface

1 |Getting Started|

2 Available Operations

System Operations.coiiiii it . 2-1]
Initializing the Driver, .22
InitializingaBoard oL . 2-2]
Retrieving Revision Levels.2-4
Handling Brrors. o i i, .24

Analog Input Operationsci i ierirrrrrnees .2-4
Operation Modes., . 2-5]
Memory Allocation and Management2-6
GaIDS . .ottt e e e e .2-9
Channels i i ittt i i e 2-10

{1} Specifying Channels When Using EXP-1800 Expansion

Boards (DAS-1800ST/HR Series Only)........... 2-11
Acquiring Samples from a Single Channel, 2-13

Acquiring Samples from a Group of Consecutive
Channels i, 2-13
Acquiring Samples Using a Channel-Gain Queue. 2-14
ConversionModes ciiiiiniinna... 2-15
Clock Sources........ooviiin i, 2-15
PacerClock oo, 2-16
Burst Mode Conversion Clock. 2-17
BufferingModes.o it 2-18
¢ S 2-19
Trigger Sourceso.iviririniinenianenvenaann 2-19
Internal Trigger......., 2-19
Analog Trigger vt i i 2-20 |
Digital Trigger. . ..o voue v it iiir e ianen. 2-22
Post-Trigger Acquisition 2-23
Pre-Trigger Acquisitionooiiian, 2-24 |
About-Trigger Acquisition.coviviin v 2-25
Hardware Gates.oovunvii i iinannas 2-23 |
Analog Output Operations (DAS-1800HC Series Only)...... 2-26
iii

& &

Q}anft&toc Page iv Thursday, April 14, 1994 1:46 PM

Operation Modes. iiiiiininn..
Memory Allocation and Management
Channels o i,

BufferingModes............c.iii i
Digital /O Operationsooviiiiiiiiien e,
Operation Modes.ttt i,

Memory Allocation and Management

Digital Input Channel ovv..,

Digital Output Channel.,

Clock SOUICE. ..ot it e e et et e e

3 Programming with the Function Call Driver

How the Driver Works

.................................

Programming Overview. us

Preliminary Tasks.o ven i i
Operation-Specific Programming Tasks
Analog Input Operations.ooutin

Single Mode i i e e

InterruptMode
'EB‘ DMAMode ...

Analog Output Operations (DAS-1800HC Series Only) . .,
SingleMode............ ... i
InterruptMode oo

Digital /O Operations.oovvvnnin i,
Single Mode. ... i

InterruptModeoooviii i
Language-Specific Programming Information

C/C+H Languages. . ..ot iiee et

Allocating and Assigning Dynamically Allocated

Memory Buffersooi il
Single Memory Buffer

Multiple Memory Buffers.

Accessingthe Data

Dimensioning and Assigning Local Arrays..........|

Single ArTayt i i i i e
Multiple Arrays. i
Creating a Channel-Gain Queue

Programming in Microsoft C/C++.,

Programming in Borland C/C++

Programming in Microsoft QuickC for Windows,

& &

Q}Lraft&toc Page v Thursday, April 14, 1994 1:46 PM

Programming in Microsoft Visual C++............. 3-31
Pascal Languagesciiiiiiiiinnnnn. 3-31

Allocating and Assigning Dynamically Allocated
MemoryBuffers................... ... L. 3-32
Reducing the Memory Heap 3-32
Single Memory Buffer 3-33
Multiple Memory Buffers..................... 3-34
AccessingtheData 3-35
Dimensioning and Assigning Local Arrays,......... 3-35
Single Array i 3-36
Multiple Arrays. ... 3-36
Creating a Channel-Gain Queue 3-37
Programming in Borland Turbo Pascal (for DOS).. . .. 3-38
Programming in Borland Turbo Pascal for Windows . . |3-39
Microsoft Visual Basic for Windows, 3-40

Allocating and Assigning Dynamically Aliocated
Memory Buffers i, 3-40
Single Memory Buffer 3-40
Multiple Memory Buffers,....................] 3-41
Accessingthe Data 3-42
Dimensioning and Assigning Local Arrays........... 3-42
Single Array . ..o e e 3-42
Multiple Arrays.oovii it e 3-43
Creating a Channel-Gain Queue, 3-44
Programming in Microsoft Visual Basic for Windows . |3-45
BASICLanguages.uuvuirniiranranananns 3-46

Allocating and Assigning Dynamically Allocated
Memory Buffers L, 3-46
Reducing the Memory Heap. 3-46
Single Memory Buffer 3-46
Multiple Memory Buffers. 3-47
Accessingthe Data 3-48
Dimensioning and Assigning Local Arrays. 3-48
Single Array e 3-49
Multiple Arrays.ooiiiiiiiiiii.. 3-49
Creating a Channel-Gain Queue 3-50
Programming in Microsoft QuickBasic (Version 4.0) . . .|3-51
Programming in Microsoft QuickBasic (Version 4.5). . .[3-52

Programming in Microsoft Professional Basic

(Version 7.0) it it i i 3-53
Programming in Microsoft Visual Basic for DOS. 3-55
v

Q}L:afts.toc Page vi Thursday, April 14, 1994 1:46 PM

4 Function Reference

DASI800 DevOpencovvvviii it iiie s . .
DASI800 GetDevHandle, . 4-
K _ADRead.ot i it it ittt
KBuflistAddcci i, . 4-
K BuflistReset.oviir it it i A
K ClearFrameot ittt e it e s tetenannas
K _Clo8eDriVer. .. oot i e i st et e i
K_ClrAboutTrig. oo eiie e
K CirADFrecRuno iiiens .
K ClrComtRUn. . ..ottt i e tei e .
K DASDevInit ..ot it i it rsatenens X
K D AW .. i e i it c it e e .
K DIRead .. .v ittt i it ein ittt e inaneansnns .
K DMAAIOC ...t it e e ettt eeaaans .
O B T, . T .
K DMAStart . ottt bt A
K DMAS S . . ot i i it e et e A
K DMASOD . .. it e e e e e .
K DOWIIE ... ot e i e et e ,
K FormatChnGAryot iiiieanens A
Q} K FreeDevHandle........... ...t iiiiinnnvan. .
K FreeRrameottt i i v et e ien e .
K GetAboutTrig it it ie i enn .
K_GetADCommonMode,0viiiniinninannen. .
K GetADConfig ..ot it ciaa .
K GetADFrame.coviitiniiitenineanennnns .
K GetADFreeRun it ii i vetciecnnanans .
K GetADMoOdeot it ceii it ree v et .
K GetADTIE ... e .
QT 4 5 1 .
K GetBurstTickso oo e i eaaans
11 1 Y
K GetChnGALY i e e e
| O 1= 1] |
K GetCIkRatet it i i e i .
K GetContRuncoivininirininianinnnnes .
K GetDAFrame.t e e ettt s eninenranns .
K GetDevHandle.ccciiiir s, .
K GetDIFramet inn i inirirrniansenes .
K GetDITrig ... it it i st eenaianan i
K GetDOCurVal it .

Vi

{I}L(aftfi.toc Page vii Thursday, April 14, 1994 1:46 PM

K_GetDOFrame.ot e et enteenennnnnn
K GetErtMsg. ..o i i e
KGetExtCIkEdgecoviii it iii i
| € =
K GetGate. ..ottt et eiie e
K GetShellVer. i,
€ L - O
K _GetStartStopChnt i i
Ko GetStartStopG o e i it i e e
K GetTrig . oo e it e
K GetTrigHyst. e
K GetVer. ..o i i e it
K IntALOC . ot v it e s e e e e i e e
K oIntEree. ..ot i i e e e e
K oIS tart. o i e e e
K Mt tatts . i e e
K IntStop. ..o
KMakeDMABuf i i
K MoveArrayToBufcciviiiin....
K_MoveBufToArraycoiiiiiinin..
K OpenDriver..... ...t iiiiiiinnnnn. ..
K _RestoreChnGAry.ot i ii i anns
K SetAboutTrig. it
K _SetADCommonModeo v iieiie i
K SetADConfig.oiv it e i it
K SetADFreeRun,t iiiinin s

K SetBufl
K SetBurstTicks oo e i e et i ireeeenens
K SetChn. ... i i e as
K SetChnGAIy i i i
Ko SetCIk . . ot i i e e e
K SetCIkRAatettt inaraaans
K SetContRun, i it i et i nnan
K SetDITrig. . oo i e e e
K SetDMABU it e

K SCGAE - - o e oo
) D

.4-116

.4-119

. 4-121
.4-124

.4-126

.4-129

,4-132

. 4-135

.4-138

.4-142

L 4-145

.4-148

.4-151

L 4-154

.4-156

.4-158

. 4-162

.4-165
. 4-167
. 4-169
.4-171
L4-174
. 4-176
.4-179
. 4-181
L 4-183
. 4-185
4-187
4-191
L4-194
.4-196
. 4-198
4-201
4-204
4-207
L 4-210
L 4-212
4-215
4-218
4-220
4-222

L 4-224

vii

4 ldlaftS.toc Page viii Thursday, April 14,1994 1:46 PM

Vil

K_SetStartStopChn i 4-226
K SetStartStopG . oo i i e 4-230
Ko SetTrig. ..o i e 4-233
K SetTrigHyst. ... 4-236
A |Error/Status Codes |
B Data Formats
Converting Raw Counisto VoltageB-1
Converting VoltagetoRaw CountsB-3
Specifying an Analog Output Value
(DAS-1800HC Seriesonly).o, . .B-3
Specifying an Analog TriggerLevel. B4
Specifying a Hysteresis Value.B-5
Index
List of Figures
Figure 2-1. Example of Logical Channel Assignments 2-12
Figure 2-2. Trigger Events for Analog Triggers L 2-20
Figure 2-3. Using a Hysteresis Value. L 2-22
Figure 2-4. Trigger Events For Digital Triggers L 2-23
Figure 2-5. DigitalInput Bits. L 2-34
Figure 2-6. Digital Qutput Bits. L 2-35
Figure 3-1. Single-Mode Function. L, 3-2
Figure 3-2. Interrupt-Mode Operation................. .3-3

@L;afts.toc Page ix Thursday, April 14, 1994 1:46 PM

List of Tables

Table 2-1. Supported Operations2-1
Table 2-2. AnalogInputRanges...................... 2-10
Table 3-1. A/DFrameElements................c.... .3-5
Table 3-2, D/A FrameFElements...................... .3-7
Table3-3. DIFrameElements4 .3-8
Table 3-4, DOFrame Elements39
Table 3-5. Setup Functions for Interrupt-Mode

Analog Input Operations 3-13
Table 3-6. Setup Functions for DMA-Mode

Analog Input Operations 3-16
Table 3-7. Setup Functions for Interrupt-Mode

Analog Output Operations. 3-19

Table 3-8. Setup Functions for Interrupt-Mode

Digital Input and Digital Output Operations. . . |3-21

Table 4-1. FunctionS........cuvviiirre it onnens .4-2
Table 4-2. Data TypePrefixes4-7
Table A-1. EBmor/Status Codes. oo it A-1

Table B-1. Span Values For Data Conversion Equations . . |.B-2

Q}Lrafﬂ.toc Page x Thursday, April 14, 1994 1:46 PM

{}}Lrefacc.frm Page xi Thursday, April 14, 1994 1:47 PM

Preface

The DAS-1800 Series Function Call Driver User's Guide describes how
to write application programs for DAS-1800 Series boards using the
DAS-1800 Series Function Call Driver. The DAS-1800 Series Function
Call Driver supports the following DOS-based 1anguages:

@ .

Microsoft® QuickBasic™ (Versions 4.0 and 4.5)
Microsoft Professional Basic (Version 7.0 and higher)
Microsoft Visual Basic™ for DOS (Version 1.0)
Microsoft C/C++ (Version 4.0 and higher)

Borland® C/C++ (Version 1.0 and higher)

Borland Turbo Pascal® for DOS (Version 6.0 and higher)

The DAS-1800 Series Function Call Driver also supports the following
Windows™.-based languages:

Microsoft Visnal Basic for Windows (Version 1.0 and higher)
Microsoft QuickC® for Windows (Version 1.0)

Microsoft Visual C++™ (Version 1.0)

Borland Turbo Pascal for Windows (Version 1.0 and higher)

Xi

-Q}Lreface.frm Page xii Thursday, April 14, 1994 1:47 PM

xii

The manual is intended for application programmers using a DAS-1800
Series board in an IBM® PC AT® or compatible computer. It is assumed
that users have read the user’s guide for their board to familiarize
themselves with the board’s features, and that they have completed the
appropriate hardware installation and configuration. It is also assumed
that users are experienced in programming in their selected language and
that they are familiar with data acquisition principles.

The DAS-1800 Series Function Call Driver User’s Guide is organized as
follows:

e Chapter 1 contains the information needed to install the DAS-1800
Series Function Call Driver and to get help.

e Chapter 2 contains the background information needed to use the
functions included in the DAS-1800 Series Function Call Driver.

o Chapter 3 contains programming guidelines and language-specific
information related to using the DAS-1800 Series Function Call
Driver.

o Chapter 4 contains detailed descriptions of the DAS-1800 Series
Function Call Driver functions, arranged in alphabetical order.

e Appendix A contains a list of the error codes returned by DAS-1800
Series Function Call Driver functions.

e Appendix B contains instructions for converting raw counts to
voltage and for converting voltage to raw counts.

An index completes this manual,

Keep the following conventions in mind as you use this manual:

e References to DAS-1800 Series boards apply to all members of the
DAS-1800 family. When a feature applies to a particular board, that
board’s name is used.

¢ References to BASIC apply to all DOS-based BASIC languages
(Microsoft QuickBasic, Microsoft Professional Basic, and Microsoft
Visual Basic for DOS). When a feature applies to a specific language,
the complete language name is used. References to Visual Basic for
Windows apply to Microsoft Visual Basic for Windows.

e Keyboard keys are enclosed in square brackets ([]).

@-Lhap()l_.frm Page | Thursday, April 14, 1994 1:47 PM

1

Getting Started

The DAS-1800 Series Function Call Driver is a library of data acquisition
and control functions (referred to as the Function Call Driver or FCD
functions). It is part of the following two software packages:

o DAS-1800 standard software package - This is the software
package that is shipped with DAS-1800 Series boards; it includes the
following:

Libraries of FCD functions for Microsoft QuickBasic, Microsoft
Professional Basic, and Microsoft Visual Basic for DOS,

Support files, containing such program elements as function
prototypes and definitions of variable types, which are required
by the FCD functions.

Utility programs, running under DOS, that allow you to
configure, calibrate, and test the functions of DAS-1800 Series
boards.

Language-specific example programs,

¢ ASO-1800 software package - This is the Advanced Software
Option for DAS-1800 Series boards. You purchase the ASO-1800

software package separately from the board; it includes the following:

Libraries of FCD functions for Microsoft C/C++, Borland
C/C4+, and Borland Turbo Pascal.

Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
Visual Basic for Windows, Microsoft QuickC for Windows,
Microsoft Visual C++, and Borland Turbo Pascal for Windows.

Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions,

{l}}lchapm_.frm Page 2 Thursday, April 14, 1994 1:47 PM

- Utility programs, running under DOS and Windows, that allow
you to configure, calibrate, and test the functions of DAS-1800
Series boards.

— Language-specific example programs,
Before you use the Function Call Driver, make sure that you have
installed the software, set up the board, and created a configuration file

using the setup and installation procedures described in Chapter 3 of the
user’s guide for your DAS-1800 Series board.

If you need help installing or using the DAS-1800 Series Function Call
Driver, call your local sales office or the factory.

1-2 Getting Started

@) khap01_frm Page 3 Thursday, April 14, 1994 1:47 PM

Please make sure that you have the following information available

before you call:

DAS-1860ST/HR
Series Board
Configuration

Computer

Operating System

Software package

Compiler
(if applicable)

Accessories

Model

Serial #

Revision code

Base address setting

Interrupt level setting

Number of channels

Input (S.E. or Diff.)

Mode (uni. or bip.)

DMA chan(s)

Number of SSH-8s

Number of EXPs.

Manufacturer

CPU type

Clock speed (MHz)

KB of RAM

Video system
BIOS type

DOS version

Windows version

Windows mode

Name

Serial #

Version

Invoice/Order #

Language

Manufacturer

Version

Type

Type

Type

Type

Type

Type

Type

Type

1-3

@-LhapOl_.frm Page 4 Thursday, April 14, 1994 1:47 PM

-@-[zhapOZ_.frm Page | Thursday, April 14, 1994 1:48 PM

2

Available Operations

This chapter contains the background information you need to use the

FCD functions to perform operations on DAS-1800 Series boards. The
supported operations are listed in Table 2-1,

Table 2-1. Supported Operations

Operation Page Reference

System page 2-1

Analog output page 2-26

System Operations

This section describes the miscellaneous operations and general

maintenance operations that apply to DAS-1800 Series boards and to the
DAS-1800 Series Function Call Driver. It includes information on

initializing a driver, initializing a board, retrieving revision levels, and
handling errors.

2-1

{B—Lhapm_.frm Page 2 Thursday, April 14, 1994 1:48 PM

Initializing the Driver

Before you can use any of the functions included in the DAS-1800 Series
Function Call Driver, you must initialize the driver using one of the
following driver initialization functions:

e Board-specific driver initialization function - If you want to
initialize the DAS-1800 Series Function Call Driver only, use the
board-specific driver initialization function DAS1800_DevQOpen.
You specify a configuration file; DAS1800_DevOpen initializes the
driver according to the configuration file you specify.

o Generic driver initialization function - If you want to initialize
several different DAS Function Call Drivers from the same
application program, use the generic driver initialization function
K_OpenDriver. You specify the DAS board you are using, the
configuration file that defines this particular use of the driver, and the
driver handle (a name that uniquely identifies the particular use of the
driver). You can specify a maximum of 30 driver handles for all the
DAS boards accessed from youwr application program,

‘E‘} If a particular use of a driver is no longer required and you want to
free some memory or if you have used all 30 driver handies, you can
use the K_CloseDriver function to free a driver handle and close the
associated use of the driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver
are shut down and unloaded from memory.)

initializing a Board

The DAS-1800 Series Function Call Driver supports up to three boards.
You must use a board initialization function to specify the board(s) you
want to use and the name you want to use to identify each board; this
name is called the board handle. Board handles allow you to
communicate with more than one board. You use the board handle you
specify in the board initialization function in all subsequent function calls
related to the board.

2-2 Available Operations

Q}Lhapm,,.frm Page 3 Thursday, April 14, 1994 1:48 PM

The DAS-1800 Series Function Call Driver provides the following board
initialization functions:

Board-specific board initialization function - If you want to
initialize a DAS-1800 Series board only, use the board-specific board
initialization function DAS1800_GetDevHandle,

Generic board initialization function - If you want to initialize
several different supported DAS boards from the same application
program, use the generic board initialization function
K_GetDevHandle. You can specify a maximum of 30 board handles
for all the DAS boards accessed from your application program,

If a board is no longer being used and you want to free some memory
or if you have used all 30 board handles, you can use the
K_FreeDevHandle function to free a board handle.

To reinitialize a board during an operation, use the K_DASDevInit
function, which performs the following tasks:

Abort all operations currently in progress that are associated with the
board identified by the board handle.

Verify that the board identified by the board handle is the board
specified in the configuration file.

{]}Lhapoz_.frm Page 4 Thursday, April 14, 1994 1:48 PM

Retrieving Revision Levels

If you are using functions from different DAS Function Call Drivers in
the same application program or if you are having problems with your
application program, you may want to verify which versions of the
Function Call Driver, DAS Driver Specification, and DAS Shell are
installed on your board. The K_GetVer function allows you to get both
the revision number of the DAS-1800 Series Function Call Driver and the
revision number of the DAS Driver Specification to which the driver
conforms. The K_GetShellVer function allows you to get the revision
number of the DAS Shell (the DAS Shell is a group of functions that are
shared by all DAS boards).

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is recommended
that you check the returned code after the execution of each function. If
the status code equals 0, the function executed successfully and your
program can proceed. If the status code does not equal 0, an error

_$ occurred; ensure that your application program takes the appropriate
action. Refer to Appendix A for a complete list of error codes.

For C-language application programs only, the DAS-1800 Series

Function Call Driver provides the K_GetErrMsg function, which gets
the address of the string corresponding to an error code,

Analog Input Operations

This section describes the following:

e Analog input operation modes available,

e How to allocate and manage memory for analog input operations,

¢ How to specify the following for an analog input operation: channels

and gains, a conversion mode, a clock source, a buffering mode, a
trigger source, and a hardware gate.

2.4 Available Operations

{[}\:hapOZ_.frm Page 5 Thursday, April 14, 1994 1:48 PM

Operation Modes

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the board to the
computer. You can perform analog input operations in one of the
following modes:

o Single mode - In single mode, the board acquires a single sample
from an analog input channel. The driver initiates conversions; you
cannot perform any other operation until the single-mode operation is
complete.

Use the K_ADRead function to start an analog input operation in
single mode. You specify the board you want to use, the analog input
channel, the gain at which you want to read the signal, and the
variable in which to store the converted data.

s Interrupt mode - In interrupt mode, the board acquires a single
sample or multiple samples from one or more analog input channels,
A hardware clock initiates conversions. Once the analog input
operation begins, control returns to your application program. The
_@ hardware temporarily stores the acquired data in the onboard FIFO
(first-in, first-out data buffer) and then transfers the data to a
user-defined buffer in the computer using an interrupt service routine.

Use the K_IntStart function to start an analog input operation in
interrupt mode. You specify the board, analog input channel(s),
gain(s), clock source, buffering mode, buffer address(es), trigger
source, and gate use.

You can specify cither single-cycle or continuous buffering mode for
interrupt-mode operations, Refer to page 2-18 for more information
on buffering modes. Use the K_IntStop function to stop a
continuous-mode interrupt operation. Use the K_IntStatus function
to determine the current status of an interrupt operation.

¢ DMA mode - In DMA mode, the board acquires a single sample or
multiple samples from one or more analog input channels. A
hardware clock initiates conversions. Once the analog input operation
begins, control returns to your application program. The hardware
temporarily stores the acquired data in the onboard FIFC (first-in,

2-5

{B—LhapOZH.frm Page 6 Thursday, April 14, 1994 1:48 PM

first-out data buffer) and then transfers the data to a user-defined
DMA buffer in the computer.

Note: You can perform an analog input operation in single-DMA
mode or dual-DMA mode, depending on whether you specified one
or two DMA channels in your configuration file. Refer to your
DAS-1800 Series board user’s guide for more information.

Use the K_DMAStart function to start an analog input operation in
DMA mode. You specify the board, analog input channel(s), gain(s),
clock source, buffering mode, buffer address(es), trigger source, and
gate use.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations, Refer to page 2-18 for more information on
buffering modes. Use the K_DMAStop function to stop a
continuous-mode DMA operation. Use the K_DM AStatus function
to determine the current status of a DMA operation.

The converted data are stored as raw counts, For information on
G} converting raw counts to voltage, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode and DMA-mode analog input operations require memory
buffers in which to store the acquired data. You can reserve a single
memory buffer, or you can reserve multiple buffers (up to a maximum of
150) to increase the number of samples you can acquire, The maximum
number of samples each memory buffer can store (32K or 64K} depends
on the language you are using. See “Language-Specific Programming
Information™ on page 3-22 for more information.

2-6 Available Operations

{B«lchapoz_.frm Page 7 Thursday, April 14, 1994 1:48 PM

You can reserve the required memory buffer(s) in one of the following
ways:

¢ Within your application program’s memory area - The simplest

way to reserve memory buffers is to dimension arrays within your

application program. The advantage of this method is that the arrays
are directly accessible to your application program. The limitations of

this method are as follows:
— Certain programming languages limit the size of local arrays.
~ Local arrays may not be suitable for DMA-mode operations.

— Local arrays occupy permanent memory areas; these memory

areas cannot be freed to make them available to other programs or

processes.

Since the DAS-1800 Series Function Call Driver stores data in 16-bit

integers, you must dimension all local arrays as integers.

¢ Outside of your application program’s memory area - This is the
recommended way to reserve memory buffers. The advantages of this

method are as follows:

~ The number of buffers and the size of each buffer are limited by
the amount of free physical memory available in your computer

at run-time,

—~ The dynamically allocated memory buffers can be freed to make

them available to other programs or processes.

The limitation of this method is that, for BASIC and Visual Basic

languages, the data in a dynamically allocated memory buffer is not
directly accessible by your program, (The DAS-1800 Seties Function
Call Driver provides a function, K_MoveBufToArray, to make this

data accessible; refer to page 4-169 for more information.)

{B—Lh&pOZ_.frm Page 8 Thursday, April 14, 1994 1:48 PM

2-8

Use the K_IntAlloc function to allocate memory dynamically for
interrupt-mode operations and the K_DMA Alloc function to allocate
memory dynamically for DMA-mode operations. You specify the
operation requiring the buffer, the number of samples to store in the
buffer, the variable to store the starting address of the buffer, and the
name you want to use to identify the buffer (this name is called the
memory handle). When the buffer is no longer required, you can free
the buffer for another use by specifying this memory handle in the

K _IntFree function (for interrupt-mode operations) or the
K_DMAFree function (for DMA-mode operations).

Notes: For DOS-based languages, the area used for dynamically
allocated memory buffers is referred to as the far heap; for
Windows-based languages, this area is referred to as the global heap.
These heaps are areas of memory left unoccupied as your application
program and other programs run.

For DOS-based languages, the K_IntAlloc and K_DMA Alloc
functions use the DOS Int 21H function 48H to dynamically allocate
far heap memory. For Windows-based languages, the K_IntAlloc and
K_DMAAlloc functions call the GlobalAlloc API function to
allocate the desired buffer size from the global heap.

For Windows-based languages, dynamically allocated memory is
guaranteed to be fixed and locked in memory.

To eliminate page wrap conditions and to guarantee that dynamically
allocated memory is suitable for use by the computer’s 8237 DMA
controller, K DMA Alloc may allocate an area twice as large as
actually needed. Once the data in this buffer is processed and/or saved
elsewhere, use K_DMAFree to free the memory for other uses.

Available Operations

{}}Lhapoz_.frm Page 9 Thursday, April 14, 1994 1:48 PM

After you allocate your buffer(s), you must assign the starting address of
the buffer(s) and the number of samples to store in the buffer(s). Each
supported programming language requires a particular procedure for
allocating memory buffers and assigning starting addresses. Refer to page
3-23 for information when programming in C. Refer to page 3-31 for
information when programming in Pascal. Refer to page 3-40 for
information when programming in Visual Basic for Windows. Refer to
page 3-46 for information when programming in BASIC.

If you are using multiple buffers, use the K_BufListAdd function to add
each buffer to the list of multiple buffers associated with each operation
and to assign the starting address of each buffer. Use the K_BufListReset
function to clear the list of multiple buffers,

Note: If you are using multiple buffers, it is recommended that you use
the Keithley Memory Manager before you begin programming to ensure
that you can allocate large enough buffers. Refer to your DAS-1800
Series board user’s guide for more information about the Keithley
Memory Manager,

Gains

Each channel on a DAS-1800 Serics board can measure analog input
signals in one of four, software-selectable unipolar or bipolar analog input
ranges. The input range type (unipolar or bipolar) is initially set according
to your configuration file; use K_SetADMode to reset the input range
type. Refer to your DAS-1800 Series board user’s guide for more
information.

Table 2-2 lists the analog input ranges supported by DAS-1800 Series
boards and the gain and gain code associated with each range. (The gain
code is used by the FCD functions to represent the gain.)

€ kchap02_frm Page 10 Thursday, April 14, 1994 1:48 PM

Channeils

2-10

Table 2-2. Analog Input Ranges

Analog input Range
Gain

Boards Bipolar Unipolar Gain Code
DAS-1801HC 15V OtosSV 1 0
DAS-18018T

100 mV Oto 100 mV 50 2
DAS-1802HC Oto 10V
DAS-18028T
DAS-1802HR 3

2.5V 0to25V 4 2
DAS-1801ST with 0.1V Oto 01V 50 4

EXP-1800 attached

DAS-1802ST with

EXP-1800 attached;
DAS-1802HR with
EXP-1800 attached

002V 50 4

Oto5SmV

DAS-1800HC Series boards are configured with either 64 single-ended or
32 differential analog input channels, depending on the input
configuration specified in your configuration file. DAS-1800ST/HR
Series boards are configured with cither 16 onboard single-ended or 8
onboard differential analog input channels. On DAS-1800ST/HR Series
boards, you can increase the number of channels to 256 single-ended or
128 differential channels using the EXP-1300 expansion board, described
in the next section.

Available Operations

Q}Lhapoz_.frm Page 11 Thursday, April 14, 1994 1:48 PM

The input channel configuration is initiatly set according to the
configuration file; use K_SetADConfig to reset the input channel
configuration. Use K_SetADCommonMode to set the common-mode
ground reference for DAS-18005T/HR Series boards in single-ended
input channel configuration.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following subsections describe how to
specify the channel(s) you are using.

Specifying Channels When Using EXP-1800 Expansion Boards
(DAS-1800ST/HR Series Only)

To increase the number of analog input channels, you can attach up to 16
EXP-1800 expansion boards to the DAS-1800 Series board. Each
EXP-1800 board has 16 analog input channels. If you are using

N EXP-1800 boards, you must attach them to DAS-1800 channels 0 to
N-1, Refer to the DAS-1800ST/HR Series User's Guide for information on
connecting EXP-1800 boards to DAS-1800ST/HR Series boards.

The analog input channel connections on a DAS-1800 Series board or
EXP-1800 board are labelled with white-on-green numbers from 0 to 15.
These numbers are the physical channel numbers. If a system includes a
DAS-1800 Series board and one or more EXP-1800 boards, then that
system contains duplicate physical channel numbers. To uniquely identify
a physical channel, the Function Call Driver uses a scheme of logical
channel numbers. The channel# argument for any FCD function must be
specified as a logical channel number.

2-1

-@-Lhapm_.frm Page 12 Thursday, April 14, 1994 1:48 PM

The logical channel number corresponding to a particular physical

channel number is given by one of the following equations;

If the physical channel is on a DAS-1800 Series board:
LogicalChan#t = PhysicalChan#+ (15 x NumEXPs)

If the physical channel is on an EXP-1800 board:
LogicalChan# = PhysicalChan#+ (16 x EXP#)

where

NumEXPs is an integer from O to 15 that identifies the number of
EXP-1800 boards connected to the DAS-1800 Series board, and

EXP# is an integer from O to 15 that indicates on which EXP-1800
board the physical channel is located (0 indicates the first EXP-1800
board).

For example, consider the system illustrated in Figure 2-1, in which three
EXP-1800 boards are connected to a DAS-1801ST.

'@’ o1 2 . 15)
EXP #0 Logical Channels 0 to 15
01 2 .15
5 EXP #1 Logical Channels 16 to 31
1 01 2 .. 15
” ’— EXP #2 Logical Channels 32 to 47
DAS-1801ST 3 Logical Channel 48
15 Logical Channsl 60
[—
Figure 2-1. Example of Logical Channel Assignments
2-12 Available Operations

@—LhapOZ_.frm Page 13 Thursday, April 14, 1994 1:48 PM

@

The logical channel that identifies channel 3 on the DAS-1801 board is
given by:

LogicalChan# =3+ (15x3) =3 +45 = 48

The logical channel that identifies channel 15 on the third EXP-1800
board is given by:

LogicalChan# = 15+ (16 %x2) =15+ 32 =47

Acquiring Samples from a Single Channel

You can acquire a single sample or multiple samples from a single analog
input channel.

For single-mode analog input operations, you can acquire a single sample
from a single anatog input channel. Use the K_ADRead function to
specify the channel and the gain code.

For interrupt-mode and DMA-mode analog input operations, you can
acquire a single sample or multiple samples from a single analog input
channel, Use the K_SetChn function to specify the channel and the
K_SetG function to specify the gain code.

Acquiring Samples from a Group of Consecutive Channels

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from a group of consecutive channels. Use the
K_SetStartStopChn function to specify the first and last channels in the
group. The channels are sampled in order from first to last; the channels
are then sampled again until the required number of samples are read.

For example, assume that the start channel is 14, the stop channel is 17,
and you want to acquire five samples. Your program reads data first from
channel 14, then from channels 15, 16, and 17, and finally from channel
14 again.

You can specify a start channel that is higher than the stop channel. For
example, assume that you are using a differential input configuration, the
start channel is 31, the stop channel is 2, and you want to acquire five
samples. Your program reads data first from channel 31, then from
channels 0, 1, and 2, and finally from channel 31 again.

2-13

{]}lchapoz_.frm Page 14 Thursday, April 14, 1994 1:48 PM

Use the K_SetG function to specify the gain code for all channels in the
group. (All channels must use the same gain code.) Use the
K_SetStartStopG function to specify the gain code, the start channel,
and the stop channel in a single function call.

Refer to Table 2-2 on page 2-10 for a list of the analog input ranges
supported by DAS-1800 Series boards and the gain code associated with
each range.

Acquiring Samples Using a Channel-Gain Queue

2-14

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from channels in a hardware channel-gain queue. In the
channel-gain queue, you specify the channels you want to sample, the
order in which you want to sample them, and a gain code for each
channel.

You can set up the channels in a channel-gain queue either in consecutive
order or in nonconsecutive order. You can also specify the same channel
more than once (up to a total of 64 entries in the queue for a
DAS-1800HC Series board, and up to 256 entries for a DAS-1800ST/HR
Series board).

The channels are sampled in order from the first channel in the queue to
the last channel in the queue; the channels in the queue are then sampled
again until the board reads the specified number of samples,

Refer to Table 2-2 on page 2-10 for a list of the analog input ranges
supported by DAS-1800 Series boards and the gain code associated with
each range,

The way that you specify the channels and gains in a channel-gain queue
depends on the language you are using, Refer to page 3-27 for
information when programming in C or C++. Refer to page 3-37 for
information when programming in Pascal. Refer to page 3-44 for
information when programming in Visual Basic for Windows. Refer to
page 3-50 for information when programming in BASIC,

After you create the channel-gain queue in your program, use the

K_SetChnGAry function to transfer the contents of the channel-gain
queue to the driver/board.

Available Operations

@

-@LhapOZ_.frm Page 15 Thursday, April 14, 1994 1:48 PM

Conversion Modes

The conversion mode determines how the board regulates the timing of
conversions when you are acquiring multiple samples from a single
channel or from a group of multiple channels (known as a scan). For
interrupt-mode and DMA-mode analog input operations, you can specify
one of the following conversion modes:

¢ Paced mode - Use paced mode if you want to accurately control the
period between conversions of individual channels in a scan. Paced
mode is the default conversion mode.

e Burst mode - Use burst mode if you want to accurately control both
the period between conversions of individual channels in a scan and
the period between conversions of the entire scan, Use the
K_SetADFreeRun function to specify burst mode.

Use burst mode with SSH if you want to simultaneously sample all
channels in a scan using the SSH-8 accessory board. Use the
K_SetSSH function to specify burst mode with SSH,

@’ Note: If you use an SSH-8 accessory board, you must use burst mode
with SSH. One exltra tick of the burst mode conversion clock is
required to allow the SSH-8 board to sample and hold the values,
Refer to the SSH-8 board documentation for more information,

Refer to your DAS-1800 Series board user’s guide for more information
about conversion modes.

Clock Sources

DAS-1800 Series boards provide two clock sources: a pacer clock and a
burst mode conversion clock. Each clock has a dedicated use. When
performing interrupt-mode and DM A-mode analog input operations in
paced mode, you use only the pacer clock; when performing
interrupt-mode and DM A-mode analog input operations in burst mode
and burst mode with SSH, you use both the pacer clock and the burst
mode conversion clock. These clock sources are described in the
following subsections.

2-15

{'}Lhap()z_.frm Page 16 Thursday, April 14, 1994 1:48 PM

Pacer Clock

In paced mode, the pacer clock determines the period between the
conversion of one channel and the conversion of the next channel, In
burst mode and burst mode with SSH, the pacer clock determines the
period between the conversions of one scan and the conversions of the
next scan. Use the K_SetClk function to specify an internal or an external
pacer clock. The internal pacer clock is the default pacer clock.

The internal and external pacer clocks are described as follows:

Internal pacer clock - The internal pacer clock uses two cascaded
counters of the onboard counter/timer circuitry. The counters are
normally in an idle state, When you start the analog input operation
(using K_IntStart or K_DMAStart), a conversion is initiated. Note
that a slight time delay occurs between the time the operation is
started and the time conversions begin.

After the first conversion is initiated, the counters are loaded with a
count value and begin counting down. When the counters count down
to 0, another conversion is initiated and the process repeats.

Because the counters use a 5 MHz time base, each count represents
0.2 ps. Use the K_8etClkRate function to specify the number of
counts {(clock ticks) between conversions. For example, if you specify
a count of 30, the period between conversions is 6 us

(166.67 ksamples/s); if you specify a count of 87654, the period
between conversions is 17.53 ms (57 samples/s).

You can specify a count between 15 and 4,294,967,295. The period
between conversions ranges from 3 ps to 14.3 minutes,

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

5 MHz time base
conversion rate

counts =

Available Operations

{]}Lhapoz_.frm Page 17 Thursday, April 14, 1994 1:48 PM Iy

For example, if you want a conversion rate of 10 ksamples/s, specify
a count of 500, as shown in the following equation:

5, 000, 000

10,000 - °%0

e External pacer clock - You connect an external pacer clock to the
DIO/XPCLK pin (pin B39} on the main [/O connector of the
DAS-1800HC Series board or to the XPCLK pin (pin 44) on the main
I/O connector of DAS-1800ST/HR Series boards. When you start an
analog input operation (using K_IntStart or K_DMAStart),
conversions are armed. At the next active edge of the external pacer
clock (and at every subsequent active edge of the external pacer
clock), a conversion is initiated. Use the K_SetExtClk Edge function
to specify the active edge (rising or falling) of the external pacer
clock. A falling edge is the default active edge for the external pacer
clock.

Note: The rate at which the computer can reliably read data from the
EB board depends on a number of factors, including your computer, the @
operating system/environment, the gains of the channels, and other
software issues. If you are using an external pacer clock, make sure that
the clock initiates conversions at a rate that the analog-to-digital converter
can handle.

Refer to your DAS-1800 Series board user’s guide for more information
about the pacer clock.

Burst Mode Conversion Clock

In burst mode and burst mode with SSH, the burst mode conversion clock
determines the period between the conversion of one channel in a scan
and the conversion of the next channel in the scan.

Because the burst mode conversion clock uses a 1 MHz time base, each
clock tick represents 1 ps. Use the K_SetBurstTicks function to specify
the number of clock ticks between conversions. For example, if you
specify 30 clock ticks, the period between conversions is 30 ps

(33.33 ksamples/s).

2-17

& @ &

{I}lchapoz_.frm Page 18 Thursday, April 14, 1994 1:48 PM

@

You can specify between 3 and 255 clock ticks. The period between
conversions ranges from 3 us to 0,255 ms.

When using the burst mode conversion clock, use the following formula
to determine the number of clock ticks to specify:

1 MHz time base
burst mode conversion rate

clock ticks =

For example, if you want a burst mode conversion rate of 10 ksamples/s,
specify 100 clock ticks, as shown in the following equation:

1, 000, 000

fo,000 = 100

Refer to your DAS-1800 Series board user’s guide for more information
about the burst mode conversion clock.

Buffering Modes

The buffering mode determines how the driver stores the converted data
in the buffer, For interrupt-mode and DMA-mode analog input
operations, you can specify one of the following buffering modes:

¢ Single-cycle mode - In single-cycle mode, after the board converts
the specified number of samples and stores them in the buffer, the
operation stops automatically. Single-cycle mode is the default
buffering mode.

¢ Continuous mode - In continuous mode, the board continuously
converts samples and stores them in the buffer until it receives a stop
function; any values already stored in the buffer are overwritten, Use
the K_SetContRun function to specify continuous buffering mode.

Available Operations

{E—\chapOQ_.frm Page 19 Thursday, April 14, 1994 1:48 PM

&

Triggers

A trigger is an event that starts or stops an interrupt-mode or DMA-mode
analog input operation. An operation can use either one or two triggers,
Every operation must have a start trigger that marks the beginning of the
operation. You can use an optional second trigger, the about trigger, to
define when the operation stops. If you specify an about trigger, the
operation stops when a specified number of samples has been acquired
after the occurrence of the about-trigger event.

A post-trigger acquisition refers to an operation that only uses a start
trigger. The about trigger provides the capability to define operations that
acquire data before a trigger event (pre-trigger acquisition) and operations
that acquire data about (before and after) a trigger event (about-1rigger
acquisition).

The following subsections describe the supported trigger sources and
post-, pre-, and about-trigger acquisitions.

Trigger Sources

The Function Call Driver supports three sources of triggers: internal,
analog, and digital. For interrupt-mode and DM A-mode analog input
operations, use K_SetTrig to specify the trigger source. The trigger
events for each trigger source are described below. Note that the trigger
event is not significant until the operation the trigger governs has been
enabled (using K_DMAStart or K_IntStart).

Internal Trigger

An internal trigger is a software trigger. It does not impose any external
conditions that must be satisfied before the operation executes. An
operation governed by an internal start trigger begins executing as soon as
the operation is enabled. Consequently, the call to K_DMAStart or
K_IntStart is considered the trigger event for an internal trigger. The
internal trigger is the default trigger source.

@Lhapoz_.frm Page 20 Thursday, April 14, 1994 1:48 PM

Analog Trigger

You can use the signal on any analog input channel as the trigger signal
for an analog trigger. The trigger events for analog triggers are illustrated
in Figure 2-2 and described as follows:

o [If the trigger polarity is positive, a trigger event occurs the first time
the trigger signal changes from a voltage that is Iess than the trigger
level to a voltage that is greater than the trigger level.

o If the trigger polarity is negative, a trigger event occurs the first time
the trigger signal changes from a voltage that is greater than the
trigger level to a voltage that is less than the trigger level.

Triggerlevel - --~-----f-----§%-------f-----

Trigger signal
Negative polarity

Trggerlevel ---------f-----¥-------f-----

Trigger avent

Trigger signal

Figure 2-2, Trigger Events for Analog Triggers

Note: Analog triggering is a feature of the Function Call Driver and is
not implemented at the hardware level. Consequently, there is a delay
between the time the trigger event occurs and the time the driver
recognizes that the trigger event occurred.

2-20 Available Operations

Q}Lhapm_.frm Page 21 Thursday, April 14, 1994 1:48 PM

You can specify a hysteresis value to prevent noise from triggering an
operation. Use the K_SetTrigHyst function to specify the hysteresis
value. For a positive-edge trigger, the analog signal must be below the
specified voltage level by at least the amount of the hysteresis value and
then rise above the voltage level before the trigger occurs; for a
negative-edge trigger, the analog signal must be above the specified
voltage level by at least the amount of the hysteresis value and then fall
below the voltage level before the trigger occurs.

The hysteresis value is an absolute number, which you specify as a raw
count value between 0 and 4095 for DAS-1800HC/ST Series boards and
between 0 and 65,535 for DAS-1800HR Series boards. When you add the
hysteresis value to the voltage level (for a negative-edge trigger) or
subtract the hysteresis value from the voltage level (for a positive-edge
trigger), the resulting value must also be between 0 and 4095 for
DAS-1B00ST/HC Series boards or between 0 and 65,535 for
DAS-1800HR Series boards, For example, assume that you ar¢ using a
negative-edge trigger on a channel of a DAS-1800HC/ST Series board
configured for an analog input range of £5 V. If the voltage level is +4.8 V
(4014 counts), you can specify a hysteresis value of 0.1 V (41 counts)
because 4014 + 41 is less than 4095, but you cannot specify a hysteresis

_Q} value of 0.3 V (123 counts) because 4014 + 123 is greater than 4095.
Refer to Appendix B for information on how to convert a voltage value to
a raw count value,

In Figure 2-3, the specified voltage level is +4 V and the hysteresis value
is 0.1 V. The analog signal must be below +3.9 V and then rise above

+4 V before a positive-edge trigger occurs; the analog signal must be
above +4.1 V and then fall below +4 V before a negative-edge trigger
occurs,

2-21

@»LhapOZ_.frm Page 22 Thursday, April 14, 1994 1:48 PM

Level +4V

+3.9V

41V

Level +4V

2-22

Positive-edge
trigger ocours

e U

N

NN\

}- Hysteresls =0.1 V

N

‘\Analog input operation
start function Is executed

/N

£\ /

} Hysleresis = 0.1V

// \-/ Nagnllva-eﬁe"

trigger occurs

Analog Input operation
‘\slart fancilon 1 executed

Figure 2-3. Using a Hysteresls Value

Digital Trigger

The digital trigger signal is available on the DI1/TGIN pin (pin B40) on
the main I/O connector of DAS-1800HC Series boards and on the TGIN
pin (pin 46) on the main I/O connector of DAS-1800ST/HR Series

boards. Use K_SetDITrig to specify whether you want the trigger event

to occur on a rising or falling edge. If the trigger

polarity is positive, then

a trigger event occurs at each rising edge of the trigger signal. If the
trigger polarity is negative, then a trigger event occurs at each falling edge
of the trigger signal. These trigger events are illustrated in Figure 2-4.

Available Operations

Q}Lhapoz_.frm Page 23 Thursday, April 14, 1994 1:48 PM Oy

Trigger

Positive polarity event \{

Trigger signal T
Trigger event
}
Trigger signal ——— I

Figure 2-4. Trigger Events For Digital Triggers

Post-Trigger Acquisition
_Q} Use post-trigger acquisition in applications where you want to collect data $
after a specific event. Acquisition starts on an internal, analog, or digital
trigger event and continues until a specified number of samples has been
acquired or until the operation is stopped by a call to K_DMAStop or
K_IntStop.

To specify post-trigger acquisition, use the following function calls:

1. If you want acquisition to continue until you stop it using
K _DMAStop or K_IntStop, usc K_SetContRun to set the buffering
mode to continuous.

2. If you want acquisition to stop afier a specified number of samples
has been acquired, use K_CIrContRun to set the buffering mode to
single-cycle (in this buffering mode, the operation stops as soon as
the board has acquired the number of samples specified by
K_SetBuf, K_SetDMABuf, K_SetBufl, or K_BufListAdd).

2-23

-@LhapOZ_.frm Page 24 Thursday, April 14, 1994 1:48 PM

3. Specify the trigger that will start the operation. Use K_SetTrig to
specify the trigger source (internal for an internal trigger, external for
an analog or digital trigger).

4. If you are using an analog or digital trigger, use K_SetADTrig (for an
analog trigger) or K_SetDITrig (for a digital trigger) to define the
trigger conditions.

5. Use K_CIrAboutTrig to disable the about trigger.

Pre-Trigger Acquisition

Use pre-trigger acquisition in applications where you want to collect data
before a specific digital trigger event (this is the about trigger event).
Acquisition starts on an internal, analog, or digital trigger event and
continues until the about-trigger event. Pre-trigger acquisition is available
with DMA-mode operations only.

To specify pre-trigger acquisition, use the following function calls:

1. Specify the trigger that will start the operation. Use K_SetTrig to
—@ specify the trigger source (internal for an internal trigger, external for
an analog or digital trigger).

2. If using an analog or digital start trigger, use K_SetADTrig (for an
analog trigger) or K_SetDITrig (for a digital trigger) to define the
trigger conditions.

3. Use K_SetAboutTrig to enable the about trigger and to set the
number of post-irigger samples to 1.

4. If the start trigger is not digital, specify the trigger conditions for the
about trigger. Use K_SetTrig to specify an external trigger, then use
K_SetDITrig to specify the trigger conditions, (If the start trigger is
digital, then its trigger conditions are also used for the about trigger).

2.04 Avallable Operations

@lchapoz_.frm Page 25 Thursday, April 14, 1994 1:48 PM

About-Trigger Acquisition

Use about-trigger acquisition in applications where you want to collect
data both before and after a specific digital trigger event (this is the about
trigger event). Acquisition starts on an internal, analog, or digital wigger
event and continues until a specified number of samples has been
acquired after the about-trigger event. About-trigger acquisition is
available with DMA-mode operations only.

To specify about-trigger acquisition, use the following function calls:

1. Specify the trigger that will start the operation. Use K_SetTrig to
specify the trigger source (internal for an intemal trigger, external for
an analog or digital trigger).

2. If using an analog or digital start trigger, use K_SetADTrig (for an
analog trigger) or K_SetDITrig (for a digital trigger) to define the
trigger conditions.

3. Use K_SetAboutTrig to enable the about trigger and to specify the
desired number of post-trigger samples.

4, Specify the trigger conditions for the about trigger. Use K_SetDITrig
to specify the trigger conditions. (If the start trigger is digital, then its
trigger conditions are also used for the about trigger).

Hardware Gates

A hardware gate is an externally applied digital signal that determines
whether conversions occur. You connect the gate signal to the DI1/TGIN
pin {pin B40) on the main I/O connector of DAS-1800HC Secries boards
or on the TGIN pin (pin 46) on the main I/O connector of
DAS-1800ST/HR Series boards. If you have started an interrupt-mode or
DMA-mode analog input operation (using K_IntStart or K_DMAStart)
and the hardware gate is enabled, the state of the gate signal determines
whether conversions occur.

If the board is configured with a positive gate, conversions occur only if
the signal to DII/TGIN (DAS-1800HC Series boards) or TGIN
(DAS-1800ST/HR Series boards) is high; if the signal to DI1/TGIN or
TGIN is low, conversions are inhibited. If the board is configured with a
negative gate, conversions occur only if the signal to DII/TGIN is low; if

2-25

&

{I}LhapOZ_.frm Page 26 Thursday, April 14, 1994 1:48 PM

the signal to DI1/TGIN is high, conversions are inhibited. Use the
K_SetGate function to enable and disable the hardware gate and to
specify the gate polarity (positive or negative). The default state of the
hardware gate is disabled.

You can use the hardware gate with an external analog trigger. The
software waits until the analog trigger conditions are met, and then the
hardware checks the state of the gate signal.

If you are not using an analog trigger, the gate signal itself can act as a
trigger. If the gate signal is in the inactive state when you start the analog
input operation, the hardware waits until the gate signal is in the active
state before conversions begin,

Note: You cannot use the hardware gate with an external digital trigger. If
you use a digital trigger at one point in your application program and later
want to use a hardware gate, you must first disable the digital trigger. You
disable the digital trigger by specifying an internal trigger in K_SetTrig
or by setting up an analog trigger (using the K_SetADTrig function).

@
Analog Output Operations (DAS-1800HC Series Only)

This section describes the following:
e Analog output operation modes available.
e How to allocate and manage memory for analog output operations.

e How to specify the following for an analog output operation:
channels, a clock rate, and a buffering mode.

Note: You cannot use an external trigger or external pacer clock with an
analog output operation.

2-26 Available Operations

{B—‘chapOZ_.frm Page 27 Thursday, April 14, 1994 1:48 PM

Operation Modes

The operation mode determines which attributes you can specity for an
analog output operation. You can perform analog output operations in one
of the following modes:

e Single mode - In single mode, the driver writes a single value to one
or both analog output channels; you cannot perform any other
operation until the single-mode operation is complete.

Use the K_DAWrite function to start an analog output operation in
single mode. You specify the board you want 1o use, the analog output
channel(s), and the value you want to write.

¢ Interrupt mode - In interrupt mode, the driver writes a single value
or multiple values to one or both analog output channels. A hardware
clock paces the updating of the analog output channel(s). Once the
analog output operation begins, control returns to your application
program. You store the values you want to write in a user-defined
buffer in the computer.

G} Use the K_IntStart function to start an analog output operation in
interrupt mode. You specify the board, analog output channel(s),
clock rate, buffering mode, and buffer address.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-30 for more information
on buffering modes. Use the K_IntStop function to stop a
continuous-mode interrupt operation. Use the K_IntStatus function
to determine the current status of an interrupt operation.

For an analog output operation, the values are written as raw counts. For
information on converting voltage to raw counts, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode analog cutput operations use a single memory buffer to
store the data to be written to the analog output channel(s). The maximum
number of samples each memory buffer can store (32K or 64K) depends
on the language you are using. See “Language-Specific Programming
Information™ on page 3-22 for more information.

2-27

& &

{I}[zhapm_.frm Page 28 Thursday, April 14, 1994 1:48 PM

Since analog output operations typically require small arrays of data, you
can reserve a memory buffer by dimensioning an array within your
application program’s memory area, Since the DAS-1800 Series Function
Call Driver writes data as 16-bit integers, you must dimension all local
arrays as integers.

Note: You can also use the K_IntAlloc function to allocate memory
dynamically, if desired. You specify the operation requiring the buffer, the
number of values you want to store in the buffer, the starting address of
the buffer, and the name you want to use to identify the buffer (this name
is called the memory handle), When the buffer is no longer required, you
can free the buffer for another use by specifying this memory handle in
the K_IntFree function.

After you dimension your array, you must assign the starting address of
the array and the number of samples stored in the array. Each supported
programming language requires a particular procedure for dimensioning
an array and assigning the starting address. Refer to page 3-23 for
information when programming in C or C++. Refer to page 3-31 for

'@’ information when programming in Pascal. Refer to page 3-40 for
information when programming in Visual Basic for Windows. Refer to
page 3-46 for information when programming in BASIC.

Channels

DAS-1800HC Series boards contain two digital-to-analog converters,
each of which is associated with an analog output channel. You can
perform an analog output operation on a single channel or on both
channels,

For single-mode analog output operations, you can write a single value to
one or both analog output channels. Use the K_DAWrite function to
specify the channel(s).

For interrupt-mode analog output operations, you can write a single value
or multiple values to one or both analog output channels. Use the
K_SetChn function to specify a single channel. Use the
K_SetStartStopChn function to specify analog output channel O as the
start channel and analog output channel 1 as the stop channel. When using

2-28 Available Operations

© &

G}IchapOZ_.frm Page 29 Thursday, April 14, 1994 1:48 PM

Clock Source

both channels, the first value in the buffer is writien to channel 0, the
second value is written to channel 1, the third value is written to channel O
again, and so on. After all the values in the buffer are written once, the
values are written again until the required number of values are written.

For example, assume that your buffer contains three values (123, 456, and
789) and you want to write five values. Your program writes 123 to
channel 0, 456 to channel 1, 789 to channel 0, 123 to channel 1, and 456
to channel 0.

When performing interrupt-mode analog output operations, you can use
the internal pacer clock to determine the period between the updating of a
single analog output channel or between each simultaneous updating of
both analog output channels.

Note: You can use the internal pacer clock only if it is not being used by
another operation.

The internal pacer clock uses two cascaded counters of the onboard
counter/timer circuitry. The counters are normally in an idle state. When
you start the analog output operation (using K_IntStart), the analog
output channel(s) are updated. Note that a slight time delay occurs
between the time the operation is started and the time the channel(s) are
updated.

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, the channel(s) are updated again and
the process repeats.

Because the counters use a 5 MHz time base, each count represents

0.2 us. Use the K_SetClkRate function to specify the number of counts
(clock ticks) between updates. For example, if you specify a count of
5000, the period between updates is 1 ms (1 ksamples/s); if you specify a
count of 87654, the period between updates is 17.53 ms (57 samples/s).

You can specify a count between 15 and 4,294,967,295. The period
between updates ranges from 3 ps to 14.3 minutes,

2-29

&

@Lhapoz_.ﬁm Page 30 Thursday, April 14, 1994 1:48 PM

Note: The driver accepts a count value as low as 15. However, since the
FIFO is not used to buffer values for analog output operations, a low
count value may cause an overrun error. The maximum observed update
rates for the internal pacer clock are 1 ksamples/s when running under
Windows and 5 ksamples/s when running under DOS. These rates would
indicate a minimum count of 5,000 when running under Windows and
1,600 when running under DOS.

Use the following formula to determine the number of counts to specify:

5 MHz time base
update rate

counts =

For example, if you want to update the analog output channels at a rate of
500 samples/s, specify a count of 10,000, as shown in the following
cquation:

3, 000, 000
@_ 500

Buffering Modes

= 10, 000

The buffering mode determines how the driver writes the values in the
buffer to the analog output channels. For interrupt-mode analog output
operations, you can specify one of the following buffering modes:

s Single-cycle mode - In single-cycle mode, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

¢ Continuous mode - In continuous mode, the driver continuously
writes values from the buffer until the application program issues a
stop function; when all the values in the buffer have been wriiten, the
driver writes the values again. Use the K_SetContRun function to
specify continuous buffering mode.

2-30 Available Operations

Q}lchapoz_.frm Page 31 Thursday, April 14, 1994 1:48 PM

Digital I/O Operations

This section describes the following:

o Digital I/O operation modes available.

¢ How to allocate and manage memory for digital 1/O operations.
e Digital I/O channels.

o How to specify the following for a digital I/O operation: a clock rate
and a buffering mode.

Note: You cannot use an external trigger or external pacer clock with a
digital 1/0 operation,

Operation Modes

{B The operation mode determines which attributes you can specify for a
digital I/O operation. You can perform digital I/O operations in one of the
following modes:

o Single mode - In a single-mode digital input operation, the driver
reads the value of digital input channel 0 once; in a single-mode
digital output operation, the driver writes a value to digital output
channel 0 once. You cannot perform any other operation until the
single-mode operation is complete.

Use the K_DIRead function to start a digital input operation in single
mode; use the K_DDOWrite function to start a digital output operation
in single mode. You specify the board you want to use, the digital 1/0
channel, and the variable in which the value is stored.

2-31

{f}lchapOZ_.frm Page 32 Thursday, April 14, 1994 1:48 PM

Notes: Since digital input channel 0 is only four bits wide, you must
mask the value stored by K_DIRead with 15 (OFh) to obtain the
actual digital input value.

The value written by K_DOWrite must be a 32-bit value. For
DAS-1800HC Series boards, the eight least significant bits contain
the actual digital output value, and all other bits are irrelevant, For
DAS-1800ST/HR Series boards, the four least significant bits contain
the actual digital output value, and all other bits are irrelevant.

¢ Interrupt mode - In an interrupt-mode digital input operation, the
driver reads the value of digital input channel 0 multiple times; in an
interrupt-mode digital output operation, the driver writes a single
value or muitiple values to digital output channel 0 multiple times. A
hardware clock paces the digital 1/0 operation. Once the digital I/O
operation begins, control returns to your application program. The
driver stores digital input values in a user-defined buffer in the
computer; you store digital output values in a user-defined buffer in
the computer.

Note: The digital input buffer and the digital output buffer each
contain 16-bit integers. Each digital input value is stored in the four
least significant bits of each integer in the digital input buffer, For
DAS-1800HC Series boards, each digital output value is stored in the
eight least significant bits of each integer in the digital output buffer.
For DAS-1800ST/HR Series boards, each digital output value is
stored in the four least significant bits of each integer in the digital
output buffer.

Use the K_IntStart function to start a digital I/O operation in
interrupt mode. You specify the board, digital I/O channel, clock rate,
buffering mode, and buffer address.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-38 for more information
on buffering modes. Use the K_IntStop function to stop a
continuous-mode interrupt operation. Use the K_IntStatus function
to determine the current status of an interrupt operation.

2-32 Available Operations

{I}LhapOZH.frm Page 33 Thursday, April 14, 1994 1:48 PM

Memory Allocation and Management

Interrupt-mode digital [/O operations use a single memory buffer to store
the data to be read or written. The maximum number of samples each
memory buffer can store (32K or 64K) depends on the language you are
using. See “Language-Specific Programming Information” on page 3-22
for more information.

Since digital I/O operations typically require small arrays of data, you can
reserve a memory buffer by dimensioning an array within your
application program’s memory area. Since the DAS-1800 Series Function
Call Driver reads and writes data as 16-bit integers, you must dimension
all local arrays as integers.

Note: You can also use the K_IntAlloc function to allocate memory
dynamically, if desired. You specify the operation requiring the buffer, the
number of values to store in the buffer, the variable in which to store the
starting address of the buffer, and the name you want to use to identify the
buffer (this name is called the memory handle). When the buffer is no
longer required, you can free the buffer for another use by specifying this
memory handle in the K_IntFree function.

After you dimension or allocate your array, you must assign the starting
address of the array and the number of samples to store in the array. Each
supported programming language requires a particular procedure for
dimensioning an array and assigning the starting address. Refer to page
3-23 for information when programming in C or C++. Refer to page 3-31
for information when programming in Pascal. Refer to page 3-40 for
information when programming in Visnal Basic for Windows. Refer to
page 3-46 for information when programming in BASIC,

2-33

{B—LhapOZ_.frm Page 34 Thursday, April 14, 1994 1:48 PM

Digital Input Channel

DAS-1800 Series boards contain one 4-bit digital input channel

(channel 0). As shown in Figure 2-5, bit 0 contains the value of digital
input line 0 (DIO/XPCLK on DAS-1800HC Series boards, DI0 on
DAS-1800ST/HR Series boards); bit 1 contains the value of digital input
line 1 (DI1/TGIN on DAS-1800HC Series boards, DI1 on
DAS-1800ST/HR Series boards); bit 2 contains the value of digital input
line 2 (DI2); bit 3 contains the value of digital input line 3 (DI3).

bit 3 bit2 bit1 bito
DAS-1800HC DI/ |Dlor
pis 02 1 taIN |xpoLK
bit 3 bit2 bit1 bito
‘GB DAS-1800ST/HR DI3 Di2 DIt | Dlo

Figure 2-5. Digital Input Bits

A value of 1 in the bit position indicates that the input is high; a value of 0
in the bit position indicates that the input is low. For example, if the value
is 5 (0101), the input at DIO/XPCLK and DI2 is high and the input at
DI1/TGIN and DI3 is low.

2-34 Available Operations

-@—Lhapm_.frm Page 35 Thursday, April 14, 1994 1:48 PM

Notes: If no signal is connected to a digital input line, the input appears
high (value is 1).

(DAS-1800HC Series boards only) If you are using an external pacer
clock, you cannot use digital input line 0 for general-purpose digital input
operations. If you are using an external digital trigger, you cannot use
digital input line 1 for general-purpose digital input operations. When
reading digital input channel 0, ignore the value of these bits.

Digital Output Channel

DAS-1800HC Series boards contain one 8-bit digital output channel
{channel 0). DAS-1800ST/HR Series boards contain one 4-bit digital
output channel (channel 0). As shown in Figure 2-6, bit 0 contains the
value to be written to digital output line 0 (DOQ), bit 1 contains the value
to be written to digital output line 1 (DO1), and so on.

DAS-18008T/HR Series

[|
bit7 bité bit5 bit4 bit3 bit2 bit1 bito

DO7 | DO6 | DO5 | DO4(DO3 | DOZ2 | DOT1 | DOO

DAS-1800HC Series

Figure 2-6. Digital Output Bits

A value of 1 in the bit position indicates that the output is high; a value of
0 in the bit position indicates that the output is low. For example, if the
value written is 12 (00001100), the output at DOO, DO1, DO4, DOS,
DO6, and DO7 is forced low and the output at DO2 and DO3 is forced
high.

2-35

@-LhapOZ_.frm Page 36 Thursday, April 14, 1994 1:48 PM

Note: The DAS-1800 Series Function Call Driver provides the
K_GetDOCurVal function to read the last digital output value written to
digital output channel 0 using K_DOWrite.

Clock Source

When performing interrupt-mode digital I/0 operations, you can use the
internal pacer clock to determine the period between reading the digital
input channel or writing to the digital output channel.

Note: You can use the internal pacer clock only if it is not being used by
another operation.

The internal pacer clock uses two cascaded counters of the onboard
counter/timer circuitry. The counters are normally in an idle state, When
you start the digital I/O operation (using K_IntStart), a value is read or
written. Note that a slight time delay occurs between the time the

JGB operation is started and the time the reading or writing begins,

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, another value is read or written and
the process repeats.

Because the counters use a S MHz time base, each count represents

0.2 ps. Use the K_SetClkRate function to specify the number of counts
(clock ticks) between reads or writes. For example, if you specify a count
of 5000, the period between reads or writes is 1 ms (1 ksamples/s); if you
specify a count of 87654, the period between reads or writes is 17.53 ms
(57 samples/s).

You can specify a count between 15 and 4,294,967,295. The period
between reads or writes ranges from 3 ps to 14,3 minutes.

2-36 Available Operations

-Ef}lchapm_.frm Page 37 Thursday, April 14, 1994 1:48 PM

Note: The driver accepts a count value as low as 15. However, since the
FIFO is not used to buffer values for digital 1/O operations, a low count
value may cause overrun errors. The maximum observed update rates for
the internal pacer clock are 1 ksamples/s when running under Windows
and 5 ksamples/s when running under DOS. These rates would indicate a
minimum count of 5,000 when running under Windows and 1,000 when
running under DOS.

Use the following formula to determine the number of counts to specify:

5 MHz time base
read/write rate

counts =

For example, if you want to write data to digital output channel O at a rate
of 500 samples/s, specify a count of 10,000, as shown in the following
equation:

5, 000, 000

ﬂ} 500

= 10, 000

2-37

Q}Lhapoz_.frm Page 38 Thursday, April 14, 1994 1:48 PM

Buffering Modes

The buffering mode determines how the driver reads or writes the values
in the buffer. For interrupt-mode digital I/O operations, you can specify
one of the following buffering modes:

e Single-cycle mode - In a single-cycle-mode digital input operation,
after the driver fills the buffer, the operation stops automatically, In a
single-cycle-mode digital output operation, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode,

e Continuous mode - In a continuous-mode digital input operation, the
driver continuously reads digital input channel 0 and stores the values
in the buffer until the application program issues a stop function; any
values already stored in the buffer are overwritten, In a continuous
mode digital output operation, the driver continuously writes values
from the buffer to digital output channel 0 until the application
program issues a stop function; when all the values in the buffer have
been written, the driver writes the values again. You use the
K_SetContRun function to specify continuous buffering mode.

2-38 Available Qperations

»@Lhapm_.frm Page | Thursday, April 14, 1994 1:50 PM

3

Programming with the
Function Call Driver

This chapter contains an overview of the structure of the DAS-1800

Series Function Call Driver, as well as programming guidelines and

language-specific information to assist you when writing application
programs with the DAS-1800 Series Function Call Driver.

How the Driver Works

When writing application programs, you can use functions from one or
more DAS Function Call Drivers. You initialize each driver according to
a particular configuration file. If you are using more than one driver or
more than one configuration file with a single driver, the driver handle
uniquely identifies each driver or each use of the driver.

You can program one or more boards in your application program. You
initialize each board using a board handle to uniquely identify each board.
Each board handle is associated with a particular driver,

The Function Call Driver(s) allow you to perform I/O operations in
various operation modes, For single mode, the 1/0 operation is performed
with a single call to a function; the attributes of the I/O operation are
specified as arguments to the function. Figure 3-1 illustrates the syntax of
the single-mode, analog input operatton function K_ADRead.

3-1

@-LhapOB_.frm Page 2 Thursday, April 14, 1994 1:50 PM

3-2

Single-Mode Function Aftributes of Operation
K_ADRead (board, «—— > Board number

channel, <—— > Analog Input channel
gain, «——————— Gain appiled to channel

buffer) «—— > Buffer for data

Figure 3-1. Single-Mode Function

For other operation modes, such as interrupt mode and DMA mode, the
driver uses frames to perform the 1/O operation. A frame is a data
structure whose elements define the attributes of the 1/0 operation, Each
frame is associated with a particular board, and therefore, to a particular
driver,

Frames help you create structured application programs. You set up the
attributes of the I/O operation in advance, using a separate function call
for each attribute, and then start the operation at an appropriate point in
your program, Frames are useful for operations that have many defining
atiributes, since providing a separate argument for cach attribute could
make a function’s argument list unmanageably long. In addition, some
attributes, such as the clock source and trigger source, are only available
for I/O operations that use frames.

You indicate that you want to perform an I/O operation by getting an
available frame for the driver and specifying the name you want to use to
identify the frame; this name is called the frame handle. You then specify
the attributes of the I/C operation by using setup functions to define the
elements of the frame associated with the operation. For example, to
specify the channel on which to perform an 1/0 operation, you might use
the K_SetChn setup function.

For each setup function, the Function Call Driver provides a readback
function, which reads the current definition of a particular element, For

example, the K_GetChn readback function reads the channel number
specified for the I/O operation,

Programming with the Function Call Driver

<

{]}Lhapm_.frm Page 3 Thursday, April 14, 1994 1:50 PM

You use the frame handle you specified when accessing the frame in ali
setup functions, readback functions, and other functions related to the IO
operation, This ensures that you are defining the same I/O operation.

When you are ready to perform the I/O operation you have set up, you can
start the operation in the appropriate operation mode, referencing the
appropriatc frame handle. Figure 3-2 illustrates the syntax of the
interrupt-mode operation function K_IntStart.

K_intStart (frameHandie}

l

Frame Attributes of Operation
Start Channel «—————> First analog input channel
Stop Channel «—————> Last analog Input channel
Clock Source > Pacer clock source
-@- Trigger Source «—— > Trigger source

Figure 3-2. Interrupt-Mode Operation

Different I/O operations require different types of frames. For example, to
perform a digital input operation, you use a digital input frame; to
perform an analog output operation, you use an analog output frame.

For DAS-1800 Series boards, interrupt-mode and DMA-mode operations
require frames. The DAS-1800 Series Function Call Driver provides the
following types of frames:

e Analog input frames, called A/D {analog-to-digital) frames. You use
the K_GetADFrame function to access an available A/D frame and
specify a frame handle,

@—l@hapOS_.frm Page 4 Thursday, April 14, 1994 1:50 PM

e Analog output frames, called ID/A (digital-to-analog) frames. You use
the K_GetDAFrame function to access an available D/A frame and
specify a frame handle,

¢ Digital input frames, called DI frames. You use the K_GetDIFrame
function to access an available DI frame and specify a frame handle.

e Digital output frames, called DO frames, You use the
K_GetDOFrame function to access an available DO frame and
specify a frame handle.

If you want to perform an interrupt-mode or DMA-mode operation and all
frames of a particular type have been accessed, you can use the
K_FreeFrame function to free a frame that is no longer in use. You can
then redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You
can also use the K_ClearFrame function to reset all the elements of a
frame to their default values.

Table 3-1 lists the elements of a DAS-1800 Series A/D frame; Table 3-2
lists the clements of a DAS-1800 Scrics D/A frame; Table 3-3 lists the
elements of a DAS-1800 Series DI frame; Table 3-4 lists the elements of a
DAS-1800 Series DO frame, These tables also list the default vatue of
each element, the setup function(s) used to define ecach clement, and the
readback function(s) used to read the current definition of the element.

Programming with the Function Call Driver

@

> khap03_.frm Page 5 Thursday, April 14, 1994 1:50 PM

Table 3-1. A/D Frame Elements

Element Default Value Setup Function Readback Function
Buffer! 0 (NULL) K_SetBuf K_GetBuf

K_SetBufl

K_SetDMABuf

K_BufListAdd

Buffering Mode

K_SetContRun K_GetContRun
K_CIrContRun?

Single-cycle

ariSEapdl ArERioN _*
Stop Channel 0 K_SetStartStopChn | K_GetStartStopChn
K_SetStartStopG K_GetStartStopG

Channel-Gain
Queue

0 (NULL) K_SetChnGAry K_GetChnGAry

SSH Mode

Disabled K_SetSSH K_GetSSH

Pacer Clock Rate

1] K_SetClkRate K_GetClkRate

Burst Clock Rate

K_GetBurstTicks

3 (333 ksamples/s) | K_SetBurstTicks

TR

AHARRRAXAACR SR

Trigger Type

K_GetADTrig
K_GetDITrig

K_SetADTrig
K_SetDITrig

3-5

€ chap03_frm Page 6 Thursday, April 14, 1994 1:50 PM

Table 3-1. A/D Frame Elements {(cont.)

m———.

Element Default Value Setup Function Readback Function

Trigger Polarity Positive (for analog | K_SetADTrig K_GetADTrig
rigger)
Positive (for digital | K_SetDITrig K_GetDITrig
trigger)

K_SetADTrig GetADTrig

Not used* Not applicable? Not applicable?

—q} Hardware Gate Disabled K_SetGate K_GetGate

Notes

! This element must be set.

2 Use this function to reset the value of this particular frame element to its default setting without
clearing the frame or getting a new frame. Whenever you clear a frame or get a new frame, this
frame element is set to its default value antomatically.

3 The default value of this element cannot be changed.

This element is not currently used; it is included for future compatibility.

3-6 Programming with the Function Call Driver

© @

- khap03_frm Page7 Thursday, April 14, 1994 1:50 PM

Table 3-2. D/A Frame Elements

Element Default Value | Setup Function Readback Function
Buffer! 0 (NULL) K_SetBuf K_GetBuf
K_SetBufl

Number of Samples | 0 K_SetBuf
K_SetBuil

K_GetBuf

“Biag

K_SetStartStopChn | K_GetStartStopChn

™

Pacer Clock Rate! 0

K_SetClkRate K_GetClkRate

Notes
! This element must be set.

Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a

'$ new frame, this frame element is set to its default value automatically,
3 The default value of this element cannot be changed.

3-7

{B hap03_.frm Page 8 Thursday, April 14, 1994 1:50 PM

Table 3-3. Dl Frame Elements

Element Default Value | Setup Function Readback Function
Buffer 0 (NULL) K_SetBuf K_GetBuf

K_SetBuft

Number of Samples | 0 K_SetBuf K_GetBuf
K_SetBufl

N appiic)
Stop Channel Not applicable3 Not applicable3
o toe , | ot ap lioable?
Pacer Clock Rate! |0 K_SetClkRate K_GetClkRate
Notes

! This element must be set.
Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or gefting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.
‘Q} 3 The default value of this element cannot be changed.

3-8 Programming with the Function Call Driver

& N

€D khap03_frm Page9 Thursday, April 14, 1994 1:50 PM

Table 3-4. DO Frame Elements

Element Default Value | Setup Function | Readback Function
Buffer! 0 (NULL) K_SetBuf K_GetBuf
K_SetBufl

s

Number of Samples | 0

Stop Channel

K_SetBuf
K_SetBufl

2R3

K_GetBuf

Not a]_:>plicable3

Pacer Clock Rate!

: B

K_SetClkRate

K_GetClkRate

Notes

! This element must be set.

2 Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame., Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

3 The default value of this element cannot be changed.

Note: The DAS-1800 Series Function Call Driver provides many other

functions that are not related to controlling frames, defining the elements
of frames, or reading the values of frame elements. These functions
include single-mode operation functions, initialization functions, memory
management functions, and miscellancous functions

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4.

3-9

Q}Lhapos__.frm Page 10 Thursday, April 14, 1994 1:50 PM

Programming Overview

To write an application program using the DAS-1800 Series Function
Call Driver, perform the following steps:

1. Define the application's requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation.

2. Write your application program. Refer to the following for additional
information:

— Preliminary Tasks, the next section, describes the programming
tasks that are common to all application programs.

— Operation-Specific Programming Tasks, on page 3-11, describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

— Chapter 4 contains detailed descriptions of the FCD functions.

—e} — The DAS-1800 Series standard software package and the
AS0-1800 software package contain several example programs.
The FILES. TXT file in the installation directory lists and
describes the example programs,

3. Compile and link the program. Refer to Language-Specific
Programming Information, starting on page 3-22, for compile and

link statements and other language-specific considerations for each
supported language.

3-10 Programming with the Function Call Driver

& @

@Lhap()?a_.frm Page 11 Thursday, April 14, 1994 1:50 PM

&

Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1. Include the function and variable type definition file for your
language. Depending on the specific language you are using, this file
is included in the DAS-1800 Series standard software package or the
ASO-1800 software package.

2. Declare and initialize program variables.

3. Use a driver initialization function (DAS1800_DevOpen or
K_OpenDriver) to initialize the driver.

4. Use a board initialization function (DAS1800_GetDevHandle or
K_GetDevHandle) to specify the board you want to use and to
initialize the board. If you are using more than one board, use the
board initialization function once for each board you are using.

Operation-Specific Programming Tasks

After completing the preliminary tasks, perform the appropriate
operation-specific programming tasks. The operation-specific tasks for
analog and digital I/O operations are described in the following sections.

Note: Any FCD functions that are not mentioned in the
operation-specific programming tasks can be used at any point in your
application program.

Analog Input Operations
The following subsections describe the operation-specific programming

tasks required to perform single-mode, interrupt-mode, and DM A-mode
analog input operations.

3-11

-E]} Lhap{B_.frm Page 12 Thursday, April 14, 1994 1:50 PM

Single Mode
For a single-mode analog input operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single analog input
value.

2. Use the K_ADRead function to read the single analog input value;
specify the attributes of the operation as arguments to the function.

Interrupt Mode

For an interrupt-mode analog input operation, perform the following
tasks:

1. Use the K_GetADFrame function to access an A/D frame.

2. Allocate the buffer(s) or dimension the array(s) in which to store the
acquired data. Use the K_IntAlloc function if you want to allocate
the buffer(s) dynamically outside your program’'s memory area.

{BL 3. Ifyou want to use a channel-gain queue to specify the channels
acquiring data, define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-11 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-5.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-5 for a list
of the default values of A/D frame elements.

3-12 Programming with the Function Call Driver

P @

€ khap03_frim Page 13 Thursday, April 14, 1994 1:50 PM

Table 3-5. Setup Functions for Interrupt-Mode

Analog Input Operations

Attribute Setup Function(s)
Buffer! K_SetBuf
K_SetBufl

K_BufListAdd

Buffering Mode

K_SetContRun
K_ClrContRun?

Stop Channel

K_SetStartStopChn
K_SetStartStopG

Input Range Type

K_SetADMode

i

Gain

Ehann

Conversion Mode

K_SetG
K_SetStartStopG

K_SetADFreeRun
K_ClrADFreeRun?

S

Clock Source

K_SetClk

K_SetExtCIkEdge

Trigger Source

K_SetTrig

{B~Lhap03_.frm Page 14 Thursday, April 14, 1994 1:50 PM

3-14

Table 3-5. Setup Functions for Interrupt-Mode
Analog Input Operations (cont.

Attribute

Setup Function(s)

Trigger Channel

K_SetADTrig

Trigger Level

K_SetADTrig

Hardware Gate

K_SetGate

Notes

! This element must be set.
Use this function to reset the value of this particnlar
frame element to its default setting without clearing
the frame or getting a new frame.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup

functions.

5. Use the K_IntStart function to start the interrupt-mode operation.

6. Use the K_IntStatus function to monitor the status of the

interrupt-mode operation.

7. If you specified continuous buffering mode, use the K_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been acquired.

8. If you are programming irn Visual Basic for Windows or BASIC and
you used K_IntAlloc to allocate your buffer(s), use the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to a local array that your program can use.

9. Ifyou used K_IntAlloc to allocate your buffer(s), use the K_IntFree
function to deallocate the buffer(s).

10, If you used K_BufListAdd to specify a list of muitiple buffers, use the
K_BufListReset function to clear the list.

&

Programming with the Function Call Driver

Q}Ichapm_.frm Page 15 Thursday, April 14, 1994 1:50 PM

11. Use the K_FreeFrame function to retum the frame you accessed in
step 1 to the pool of available frames.

DMA Mode
For a DMA-mode analog input operation, perform the following tasks:
1. Use the K_GetADFrame function to access an A/D frame.

2. Allocate the buffer(s) or dimension the array(s) in which to store the
acquired data. Use the K_DMA Alloc function if you want to allocate
the buffer(s) dynamically outside your program's memory area.

3. Ifyou want to use a channel-gain queue to specify the channels
acquiring data, define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-11 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-6.

e} Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-5 for a list
of the default values of A/D frame elements.

3-15

- kchap03_frm Page 16 Thursday, April 14, 1994 1:50 PM

Table 3-6. Setup Functions for DMA-Mode

Analog Input Operations

Atiribute

Setup Function(s)

Buffer!

K_SetDMABuf
K_BufListAdd

e

Buffering Mode

K_SetContRun
K_ClrContRun?

Stop Channel

K_SetStartStopChn
K_SetStartStopG

Input Range Type

K_SetADMode

K_SetG
K_SetStartStopG

K_SetADFreeRun
K_CerDFreeRun2

K_SetExtClkEdge

K_SetTrig

Programming with the Function Call Driver

&

{]}Lhapos_.frm Page 17 Thursday, April 14, 1994 1:50 PM

Table 3-6. Setup Functions for DMA-Mode
Analog Input Operations (cont.)

Attribute Setup Function(s)

Trigger Channel K_SetADTrig

Trigger Level K_SetADTrig

About-Trigger Mode K_SetAboutTrig
K_ClrAboutTrig?

Notes

I'This element must be set,
Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame.

-61} Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

5. Use the K_DMAStart function to start the DMA-mode operation.

6. Use the K_DMAStatus function to monitor the status of the
DMA-mode operation.

7. If you specified continuous buffering mode, use the K_DMAStop
function to stop the DMA-mode operation when the appropriate
number of samples has been acquired.

8. [If you are programming in Visual Basic for Windows or BASIC and
you used K_DMAAlloc to allocate your buffer(s), use the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to a local array that your program can use,

9. If you used K_DMAAlloc to allocate your buffer(s), usc the
K_DMAFree function to deallocate the buffer(s).

317

-@—]chapOS_.frm Page 18 Thursday, April 14, 1994 1:50 PM

10. If you used K_BufListAdd to specify a list of multiple buffers, use the
K_BufListReset function to clear the list.

11. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames,

Analog Output Operations (DAS-1800HC Series Only)

The following subsections describe the operation-specific programming
tasks required to perform single-mode and interrupt-mode analog output

operations.
Single Mode

For a single-mode analog output operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single analog
output value.

2. Use the K_DAWrite function to write the single analog output value;

@ specify the attributes of the operation as arguments to the function.
Interrupt Mode

For an interrupt-mode analog output operation, perform the following

tasks:

1. Use the K_GetDAFrame function to access a D/A frame.

2. Allocate the buffer or dimension the array in which to store the data to
be written. Use the K_IntAlloc function if you want to allocate the
buffer dynamically outside your program'’s memory area.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-7.

3-18 Programming with the Function Call Driver

& &

A khap03_frm Page 19 Thursday, April 14, 1994 1:50 PM

Note: When you access a new DfA frame, the frame clements
contain default values. f the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-2 on page 3-7 for a list
of the default values of D/A frame elements.

Table 3-7. Setup Functions for Interrupt-Mode
Analog Output Operations

Attribute Setup Function(s)
Buffer! K_SetBuf
K_SetBufl

K_SetContRun
K_CerontRun2

Stop Channel K_SetStartStopChn

Notes

! This element must be set,
Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are programming in Visual Basic for Windows or BASIC and
you used K_IntAlloc to allocate your buffer, use the

K_MoveArrayToBuf function to transfer the data from the local
array to the dynamically allocated buffer that the driver can use.

5. Use the K_IntStart function to start the interrupt-mode operation.

3-1¢

& &

'@-LhapOS_.frm Page 20 Thursday, April 14, 1994 1:50 PM

&

6. Use the K_IntStatus function to monitor the status of the
interrupt-mode operation,

7. If you specified continuous buffering mode, use the K_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been written,

8. If vou used K_IntAlloc to allocate your buffer, use the K_IntFree
function to deallocate the buffer.

9. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Digital 10 Operations

Single Mode

3-20

The following subsections describe the operation-specific programming
tasks required to perform single-mode and interrupt-mode digital I/0

operations,

For a single-mode digital /O operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single digital 1/0

value.

2. Use one of the following digital I/O single-mode operation functions,
specifying the attributes of the operation as arguments to the function:

Function Purpose
K_DIRead Reads a single digital input value.
K_DOWrite Writes a single digital output value,

Programming with the Function Call Driver

©

@Lhapmm.frm Page 21 Thursday, April 14, 1994 1:50 PM

interrupt Mode
For an interrupt-mode digital 1/O operation, perform the following tasks:

1. Use the K_GetDIFrame function to access a DI frame; use the
K_GetDOFrame function to access a DO frame.

2. Allocate the buffer or dimension the array in which to store the data to
be read or written. Use the K_IntAlloc function if you want to
allocate the buffer dynamically outside your program's memory area.

3. Use the appropriate setup functions to specify the atiributes of the
operation. The setup functions are listed in Table 3-8.

Note: When you access a new DI or DO frame, the frame elements
contain default values, If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element, Refer to Table 3-3 on page 3-8 for a list
of the default values of DI frame elements; refer to Table 3-4 on page
3-9 for a list of the default values of DO frame elements.

Table 3-8. Setup Functions for Interrupt-Mode
Digital Input and Digital Output Operations

Attribute Setup Function(s)

Buffer! K_SetBuf
K_SetBufl

Buffering Mode K_SetContRun
K_ClrContRun?

iy

Notes
! This element must be set.

Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame,

3-21

-E]}lchapOB_.frm Page 22 Thursday, April 14, 1994 1:50 PM

10.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

If you are performing a digital output operation, you are
programming in Visual Basic for Windows or BASIC, and you used
K_IntAlloc to allocate your buffer, use the K MoveArrayToBuf
function to transfer the data from the local arvay to the dynamically
allocated buffer that the driver can use.

Use the K_IntStart function to start the interrupt-mode operation,

Use the K_IntStatus function to monitor the status of the
interrupt-mode operation.

If you specified continuous buffering mode, use the K_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been written,

If vou are performing a digital input operation, you are programming
in Visual Basic for Windows or BASIC, and you used K_IntAlloc to
allocate your buffer, use the K_MoveBufToArray function to
transfer the data from the allocated buffer to a local array that your
program can use.

If you used K_IntAlloc to allocate your buffer, use the K_IntFree
function to deatlocate the buffer.

Use the K_FreeFrame function to return the frame you accessed in
step | to the pool of available frames.

Language-Specific Programming Information

3-22

This section provides programming information for each of the supported
languages. Note that the compilation procedures for alf languages assume
that the paths and/or environment variables are set correctly.

Programming with the Function Call Driver

&

@Lhapm_.frm Page 23 Thursday, April 14, 1994 1:50 PM

C/C++ Languages

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in C or C++, as well as language-specific information for
Microsoft C/C++, Borland C/C++, Microsoft QuickC for Windows, and
Microsoft Visual C++.

Note: When programming in C/C++, proper typecasting may be required
to avoid C/C++ type-mismatch warnings.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in C or
C++. Refer to the example programs on disk for more information.

Notes: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions.

If you are programming in Windows’ Enhanced mode, you may be
limited in the amount of memory you can allocate. It is recommended that
you install the Keithley Memory Manager before you begin programming
to ensure that you can allocate a large enough buffer or buffers. Refer to
your DAS-1800 Series board user’s guide for more information about the
Keithley Memory Manager.

Single Memory Buffer

You can use a single, dynamically allocated memory buifer for
interrupt-mode analog input, analog output, and digital I/O operations and
for DMA-mode analog input operations.

The following code fragment illustrates how to use K_DMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and

3-23

@

B khap03_frm Page 24 Thursday, April 14, 1994 1:50 PM

how to use K_SetDMABuf to assign the starting address of the buffer;
the buffer can store a maximum of 65,536 samples.

void far *AcqgBuf; //Declare pointer to buffer

WORD hMem; //Declare word for memory handle
wDasErr K_DMAAlLloc (hFrame, Samples, &AcgBuf, &hMem);

whasErr

n i

K_SetDMABuf {hFrame, AcgBuf, Samples);

The following code illustrates how to use K_DMAFree to later free the
allocated buffer, using the memory handle stored by K_DMA Alloc.

wDagsErr = K_DMAFree (hMem):

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations and for DMA-mode analog input
operations.

The following code fragment illustrates how to use K_DMA Alloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K_BufListAdd to assign the starting
addresses of the five buffers; each buffer can store a maximum of 63,536
samples.

void far *AcqgBuf|5]; //Declare 5 pointers to 5 buffers

WORD hMem[5];

//Declare 5 words for 5 memory handles

for (i = 0; 1 < 5; i++) {

whasBErr = K_DMAAlloc (hADFrame, Samples, &AcgBufl[il,&hMem[i]);
wDasErr = K_BufListAdd (hADFrame, AcqgBuf([i], Samples);

¥

3-24 Programming with the Function Call Driver

@

@Lhapm_.frm Page 25 Thursday, April 14, 1994 1:50 PM

The following code illustrates how to use K_DMAFree to later free the
allocated buffers, using the memory handles stored by K_DMA Alloc; if
you free the allocated buffers, you must also use K_BufListReset to reset
the buffer list associated with the frame.

for (1 = 0; i < 5; 14+4) (
wDasErr = K_DMAFree (hMeml[i]):
}
wDasBErr = K_BufListReset (hADFrame);

Notes: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

You access the data stored in dynamically allocated buffers through
C/C++ pointer indirection, For example, assume that you want to display

_@ the first 10 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqBuf[1]). The following code
fragment illustrates how to access and display the data.

int far *pData; //Dec¢lare a pointer called pData

pData = {int far *) AcgBuf[l]}; //Assign pData to 2nd buffer
for (1 = 0; 1 < 10; 14+4)

printf (“Sample #%d %X", i, *(pData+i));

Dimensioning and Assigning Local Arrays
This section provides code fragments that describe how to dimension and

assign local arrays when programming in C or C++, Refer to the example
programs on disk for more information.

3-26

-@Lhap()’i_.frm Page 26 Thursday, April 14, 1994 1:50 PM

3-26

whasgErr

Single Array

You can use a single, local array for interrupt-mode analog input, analog
output, and digital 1/O operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array. The maximum array
size is 65,536.

int Data[100600]; //Dimension array of 10,000 samples

whasErr = K_SetBuf {(hFrame, Data, 10000);

Note: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors,

Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to allocate two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
K_BufListAdd to assign the starting addresses of the arrays. The
maximum array size is 65,536,

int Datal[32000]; //Allocate Array #1 of 32,000 samples

int Data2[32000}; //Allocate Array #2 of 22,000 samples
wDasBErr K_BufliigtAdd (hADFrame, Datal, 32000);

I

K_Bufliztadd (hADFrame, Data2, 32000);

Note: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

Programming with the Function Call Driver

&

{}}Lhapos_.frm Page 27 Thursday, April 14, 1994 1:50 PM

Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type
(GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable
{
WORD num_of_codes;
struct{
char Chan;
char Gain;
} GainChanaAry[256];
} GainChanTable;

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-1802HC board by declaring and
initializing a variable of type GainChanTable.

GainChanTable MyChanGainQueue =

{8, //Number of entries
0, 0, //Channel 0, gain of 1
{$} 1, 1, //Channel 1, gain of 2
2, 2, //Channel 2, gain of 4
3, 3, //Channel 3, gain of 8
3, 0, //Channel 3, gain of 1
2, 1, //Channel 2, gain of 2
1, 2, //Channel 1, gain of ¢
0, 3}; //Channel 0, gain of &

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

whasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);

Note: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

3-27

@Lhapos_.frm Page 28 Thursday, April 14, 1994 1:50 PM

When you start the next analog input operation (using K_IntStart or
K_DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft C/C++

To program in Microsoft C/C++, you need the following files; these files
are provided in the ASO-1800 software package.

File Description

DAS1800.LIB Linkable driver.
...... 2k : o

DASDECL.H Include file when ;ompihng inC(c p;:)grams‘;.

DASDECL,HPP Include file when compiling in C++ (,cpp programs).

USE1800.0BJ Linkable object.

To create an executable file in Microsoft C/C++, use the following
compile and link statements. Note that filename indicates the name of
your application program.

Type of Compile | Compile and Link Statements

C CL fc filename.c
LINK filename+use1800.0bj,,,das 1800+dasrface;

C++ CL /c filename.cpp
LINK filename+use1800.0bj,,,das1800+dasrface;

Refer to page 3-23 for information about allocating and assigning
dynamically allocated memory buffers when programming in Microsoft
C/C++. Refer to page 3-25 for information about dimensioning and
assigning local arrays when programming in Microsoft C/C++, Refer to
page 3-27 for information about creating a channel-gain queue when
programming in Microsoft C/C++.

3-28 Programming with the Function Call Driver

© L

4 khap03_frm Page 29 Thursday, April 14, 1994 1:50 PM

Programming in Borland C/C++

To program in Borland C/C++, you need the following files; these files
are provided in the ASO-1800 software package.

File Description

DAS1800.LIB Linkable driver.

A St

DASDECL.H Include file when compiling in C (.c programs).
il

Include file when compiling in C++ (.cpp programs).

DASDECL.HFP

USE1800.0B] Linkahle object.

To create an executable file in Borland C/C++, use the following compile
and link statements. Note that filename indicates the name of your

-@ application program.
Type of . 1
Compile Compile and Link Statements
C BCC -ml filename.c use1800.0bj das1800.1ib dasrface.lib
C++ BCC -ml filename.cpp use1800.0bj dasi800.lib dasrface.lib
Notes

! These statements assume a large memory model; however, any memory
model is acceptable.

3-29

{J}Lhapos_.frm Page 30 Thursday, April 14, 1994 1:50 PM

Programming in Microsoft QuickC for Windows

To program in Microsoft QuickC for Windows, you need the following
files; these files are provided in the ASO-1800 software package.

File Description

DASSHELL.DLL Dynamic Link Library,

Dynamic Link Library.

R

DAS1800.DLL

DAS1800.H Include file.

D1800IMP.LIB

DAS-1800 Impaorts

To create an executable file in Microsoft QuickC for Windows, perform
the following steps:

1. Load filename.c into the QuickC for Windows environment, where
filename indicates the name of your application program.

2. Create a project file. The project file should contain all necessary
files, including filename.c, filename,xc, filename.def, filename.h,
DASIMPLIB, and D1800IMP LIB, where filename indicates the
name of your application program.

3. From the Project menu, choose Build to create a stand-alone
executable file (EXE) that you can execute from within Windows.

3-30 Programming with the Function Call Driver

© @

{B—Lhap()fi_.frm Page 31 Thursday, April 14, 1994 1:50 PM

Programming in Microsoft Visual C++

To program in Microsoft Visual C++, you need the following files; these
files are provided in the ASO-1800 software package.

File Description

DASSHELL.DLL Dynamic Link Library.

Dynamic Link Library.

DAS1800.H Include file.
A% Sheth)
D180OIMP.LIB DAS-1800 Imports

To create an executable file in Visual C++, perform the following steps:

—Q} 1. Create a project file by choosing New from the Project menu. The
project file should contain all necessary files, including filename.c,
filename.rc, filename.def, DASIMPLIB, and D1800IMP.LIB, where
filename indicates the name of your application program.

2. From the Project menu, choose Rebuild All FILENAME EXE to
create a stand-alone executable file ((EXE) that you can execute from
within Windows.

Pascal Languages

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in Pascal, as well as language-specific information for
Borland Turbo Pascal (for DOS) and Borland Turbo Pascal for Windows.

3-31

{]}Lhap%_.frm Page 32 Thursday, April 14, 1994 1:50 PM

Allocating and Assigning Dynamically Allocated Memory Buffers

3-32

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in
Pascal. Refer to the example programs on disk for more information.

Notes: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions.

If you are using Borland Turbo Pascal for Windows in Enhanced mode,
you may be limited in the amount of memory you can atlocate. It is
recommended that you use the Keithley Memory Manager before you
begin programming to ensure that you can allocate a large enough buffer
or buffers. Refer to your DAS-1800 Series board user’s guide for more
information about the Keithley Memory Manager.

Reducing the Memory Heap

Note: Reducing the memory heap is recommended for Borland Turbo
Pascal (for DOS) only; if you are programming in Borland Turbo Pascal
for Windows, proceed to the next section.

By default, when Borland Turbo Pascal (for DOS) programs begin to run,
Pascal reserves all available DOS memory for use by the internal memory
manager; this allows you to perform GetMem and FreeMem operations.
Pascal uses the compiler directive $M to distribute the available memory.
The default configuration is {$m 16384, 0, 655360}, where 16384 bytes
is the stack size, 0 bytes is the minimum heap size, and 655360 is the
maximum heap size.

It is recommended that you use the compiler directive $M to reduce the

maximum heap reserved by Pascal to zero bytes by entering the
following:

{Sm (16384, 0, 0}))}

Programming with the Function Call Driver

@

-EBI:hapOB_.frm Page 33 Thursday, April 14, 1994 1:50 PM

Reducing the maximum heap size to zero bytes makes all far heap
memory available to DOS (and therefore available to the driver) and
allows your application program to take maximum advantage of the
K_IntAlloc and K_DMA Alloc functions. You can reserve some space for
the internal memory manager or for DOS, if desired. Refer to your
Borland Turbo Pascal (for DOS) documentation for more information.

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
interrupt-mode analog input, analog output, and digital I/O operations and
for DMA-mode analog input operations.

The following code fragment illustrates how to use K_DMA Alloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use K_SetDMABuf (o assign the starting address of the buffer.
The maximum array size is 65,536.

It is recommended that you declare a dummy type array of Alnteger. The
dimension of this array is irrelevant; it is used only to satisfy Pascal’s
type-checking requirements.

{(Sm (16384, 0, 0}} { Turbo Pascal for DOS only }

Type
IntArray = Array[0..1l] of Integer;

Var
AcgBuf : “IntArray; { Declare buffer of dummy type }
hMem : Word; { Declare word for memory handle, hMem }
whDasErr := K_DMAAlloc (hFrame, Samples, @AcgBuf, hMem);
whasErr := K_SetDMABuf (hFrame, AcgBuf, Samples);

The following code illustrates how to use K_DMAFree to later free the
allocated buffer, using the memory handle stored by K_DMA Alloc.

wDhasErr := K_DMAFree (hMem);

3-33

-@»lchapOS_.frm Page 34 Thursday, April 14, 1994 1:50 PM

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations and for DMA-mode analog input
operations,

The following code fragment illustrates how to use K_DMAAlloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K_BufListAdd to assign the starting
addresses of the five buffers. The maximum array size is 65,536.

It is recommended that you declare a dummy type array of Alnteger. The
dimension of this array is irrelevant; it is used only to satisfy Pascal’s
type-checking requirements.

{sm (16384, 0, 03} { Turbo Pascal for DOS only 3}
¢

IntArray = Array[0..l] of Integer;

Var

AcgBuf : Array[0..4] of "“IntArray; {5 buffers, dummy type)

hMem : Array[0..4] of Word; {5 words for 5 memory handles)

For i := 0 to 4 do bhegin

wDasErr := K_DMAAllcc (hADFrame, Sanmples, @AcgBuf[i], hMem([i]);
whasErr := K_BufListAdd (hADFrame, AcgBufl[il, Samplesg);
End;

The following code illustrates how to use K_DMAFree to later free the
allocated buffers, using the memory handles stored by K_DMA Alloc; if
you free the allocated buffers, you must also use K_BufListReset to reset
the buffer list associated with the frame.

For 1 := 0 teo 4 do begin

wDasErr := K_DMAFree (hMem[i]);
End;
3-34 Programming with the Function Call Driver

& &

{}}Lhapm_.frm Page 35 Thursday, April 14, 1994 1:50 PM s

wDagErr := K_BufListReset (hADFrame):

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

You access the data stored in dynamically allocated buffers through
Pascal pointer indirection. For example, assume that you want to display
the first 10 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqBuf[1]). The following code
fragment illustrates how to access and display the data.

for i := 0 to 10 de begin
writeln {’Sample #‘, i,' =', AcqBuf[l]l~[i]};
End;

{B Dimensioning and Assigning Local Arrays
This section provides code fragments that describe how to dimension and

assign local arrays when programming in Pascal. Refer to the example
programs on disk for more information,

3-35

{I}Lhapos_.frm Page 36 Thursday, April 14, 1994 1:50 PM

Single Array

You can use a single, local array for interrupt-mode analog input, analog
output, and digital 1/O operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array; the array can store a
maximum of 65,536 samples,

Data : Array[0..9999] of Integer:;

wDasErr := K_SetBuf (hFrame, Data(0), 10000);

Note: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

@_ Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to allocate two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
K_BufListAdd to assign the starting addresses of the arrays; each array
can store a maximum of 65,536 samples.

Datal : Array[0..31999] of Integer; { Allocate Array #1 }
Data2 : Array[0..31999] of Integer; { Allocate Array #2 }

K_BuflistAdd (hADFrame, Datal(0), 32000)};
K_BufListAdd (hADFrame, Data2{0), 32000);

whasEry :
wDasErr :

Note: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

3-36 Programming with the Function Call Driver

@ &

@-lchapOS_.frm Page 37 Thursday, April 14, 1994 1:50 PM

Creating a Channel-Gain Queue

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-1802HC board by defining a
Record as a new type. You must use K_SetChn(Ary to assign the
starting address of MyChanGainQueue to the frame defined by hFrame.

Type
GainChanTable = Record;
num of_codes : Integer;
queue : Array[0..255] of Byte;
end;
Const
MyChanGainQueue : GainChanTable = (
num_of_codes : (8); { Number of entries }

queue :{0, 0, { Channel 0, gain of 1 }

1, 1, { Channel 1, gain of 2)}
2, 2, { Channel 2, gain of 4)}
3, 3, { Channel 23, gain of 8 }
3, 0, { Channel 3, gain of 1 }
2, 1, { Channel 2, gain of 2)}
{i} 1, 2, { Channel 1, gain of 4 }
0, 3) { Channel 0, gain of 8 }
HH
wDasErr := K_SetChnGAry (hFrame, MyChanGainQueue.num_of__codes);

Note: Make sure that you always check the returned valve (wDasErr in
the previous example) for possible errors.

When you start the next analog input operation (using K_IntStart or
K_DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on,

3-37

-@-LhapOB_.frm Page 38 Thursday, April 14, 1994 1:50 PM

Programming in Borland Turbo Pascal (for DOS)

To program in Botland Turbo Pascal, you need the following files; these
files are provided in the ASO-1800 software package.

File! Description

DI1R0OTP6.TPU Turbo Pascal unit for Version 6.0,

Notes

Ly you must create a new Turbo Pascal unit when compiling in Boriand Turbo
Pascal for versions higher than 7.0, refer to FILES.TXT for a list of the files to
use.

To create an executable file in Borland Turbo Pascal, use the following
compile and link statement:

TPC filename.pas
where filename indicates the name of your application program.

Refer to page 3-32 for information about allocating and assigning
dynamically allocated memory buffers when programming in Borland
Turbo Pascal. Refer to page 3-35 for information about dimensioning and
assigning local arrays when programming in Borland Turbo Pascal. Refer
to page 3-37 for information about creating a channel-gain queue when
programming in Borland Turbo Pascal.

3-38 Programming with the Function Call Driver

@

-Q}LhapOS_.frm Page 39 Thursday, April 14, 1994 1:50 PM

Programming in Borland Turbo Pascal for Windows

To program in Borland Turbo Pascal for Windows, you need the
following files; these files are provided in the ASO-1800 software
package.

File Description

DASSHELL.DLL | Dynamic Link Library.

DAS1800.DLL Dynamic Link Library.

DASI800.INC Include file,

To create an executable file in Borland Turbo Pascal for Windows,
perform the following steps:

1. Load filename.pas into the Borland Turbo Pascal for Windows
Q} environment, where filename indicates the name of your application
program,

2. From the Compile menu, choose Make.

Refer to page 3-32 for information about allocating and assigning
dynamically allocated memory buffers when programming in Borland
Turbo Pascal for Windows. Refer to page 3-35 for information about
dimensioning and assigning local arrays when programming in Borland
Turbo Pascal for Windows. Refer to page 3-37 for information about
creating a channel-gain queue when programming in Borland Turbo
Pascal for Windows.

3-39

Q}Lhapoa_.frm Page 40 Thursday, April 14, 1994 1:50 PM

Microsoft Visual Basic for Windows

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in Microsoft Visual Basic for Windows, as well as
language-specific information for Microsoft Visual Basic for Windows.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in
Microsoft Visual Basic for Windows. Refer to the example programs on
disk for more information.

Note: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions.

{j} If you are using Windows Enhanced mode, you may be limited in the
amount of memory you can allocate. It is recommended that you use the
Keithley Memory Manager before you begin programming to ensure that
you can allocate a large enough buffer or buffers. Refer to your
DAS-1800 Serics board user’s guide for more information about the
Keithley Memory Manager.

Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
interrupt-mode analog input, analog output, and digital I/O operations and
for DMA-mode analog input operations.

The following code fragment illustrates how to use K_DMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and

how to use K_SetDMABuf to assign the starting address of the buifer;
the buffer can store a maximum of 32,767 samples.

3-40 Programming with the Function Call Driver

& @

@- hap03_.frm Page 41 Thursday, April 14, 1994 1:50 PM

Global aAcgBuf As Long ' Dec¢lare pointer to buffer

Global hMem Az Integer ' Declare integer for memory handle
whasErr = K_DMAAlloc (hFrame, Samples, AcgBuf, hMem)
wDagErr = K_SetDMABuf (hFrame, AcgBuf, Samples)

The following code illustrates how to use K_DMAFree to later free the
allocated buffer, using the memory handle stored by K_DMAAlloc.

whDagErr = K_DMAFree {(hMem)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

fultiple Memory Butfers

G} You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations and for DMA-mode analog input
operations.

The following code fragment illustrates how to use K_DMAAlloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K_BufListAdd to assign the starting
addresses of the five buffers; each buffer can store a maximum of 32,767

sarnples.
Glokal acqBuf(%) As Long ' Declare 5 pointers to 5 buffers
Global hMem(5) As Integer ' Declare 5 memory handles

for i% = 0 to 4
wDagErr = K_DMAAlloc (hFrame, Samples, AcaBuf(i%), hMem(i%))
wDasErr = K_BuflListAdd (hFrame, AcgBuf{i%), Samples)

next i%

3-41

G}Lhapﬂ?),.frm Page 42 Thursday, April 14, 1994 1:50 PM

The following code illustrates how to use K_DMAFree to later free the
allocated buffers, using the memory handles stored by K_DMA Alloc; if
you free the allocated buffers, you must also use K_BufListReset to reset
the buffer list associated with the frame.

for 1% = 0 to 4

wDasErr = K_DMAFree (hMem(i%))
next i%
wDasErr = K_BuflListReset (haDFrame)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in dynamically allocated memory buffers. You must
{B' use K_MoveBufToArray to move a subset of the data into a local buffer
as required. The following code fragment illustrates how to move the first
100 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqBuf(1)) to a local memory buffer.

Dim Buffer (1000} As Integer ! Declare local memory buffer

wDasBrr = K_MoveBufToArray (Buffer(G), AcgBuf(l), 100}

Dimensioning and Assigning Local Arrays
This section provides code fragments that describe how to dimension and

assign local arrays when programming in Microsoft Visual Bagic for
Windows. Refer to the example programs on disk for more information.

Single Array

You can use a single, local array for interrupt-mode analog input, analog
output, and digital I/O operations.

3-42 Pragramming with the Function Call Driver

% &

-G}Lhap%_.frm Page 43 Thursday, April 14, 1994 1:50 PM

The following code fragment illustrates how {0 dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBufl to assign the starting address of the array; the local array can
store a maximum of 32,767 samples.

Global Data{l0000) As Integer ' Allocate array

wDasErr = K_SetBufl (hFrame, Data(0), 10000)

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

{B The following code fragment illustrates how to dimension two arrays of
32,000 samples each for the frame defined by hADFrame and how to usc
K _BufListAdd to assign the starting addresses of the arrays; each local
array can store a maximum of 32,767 samples.

Global Datal (32000) As Integer ' Allocate Array #1

Global Data2(32000) As Integer * Allocate Array #2
whDagErr = K_BuflistAdd (hADFrame, Datal(0}, 32000)
wDasErr = K_BufListAdd (hADFrame, Data2(0), 32000)

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

3-43

P khap03_.frm Page 44 Thursday, April 14, 1994 1:50 PM

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. To accommodate
the maximum possible channel-gain queue (256 entries), declare an array
of 513 integers ((256 x 2) + 1). Next, you must fill the array with the
channel-gain information. After you create the channel-gain gueue, use
K_FormatChnGAry to reformat the channel-gain queue so that it can be
used by the DAS-1800 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1802HC board
and how to use K SetChnG Ary to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Global MyChanGainQueue (513} As Integer ‘Maximum # of entries

MyChanGainQueue (0)

= 4 ' Number of channel-gain pairs
MyChanGainQueue (1) = 0 ‘* Channel 0
MyChanGainQueue(2) = 0 ' @Gain of 1
MyChanGainQueue(3) = 1 * Channel 1
{i} MyChanGainQueue(4) = 1 ' Gain of 2
MyChanGainQueue (5) = 2 ' Channel 2
MyChanGainQueue(6) = 2 ! Gain of 4
MyChanGainQueue(7) = 2 ‘ Channel 2
MyChanGainQueue(8) = 3 ’ Gain of 8

whkasErr
whasErr

K_FormatChnGAry {MyChanGainQueue(0))
K_SetChnGAry {(hFrame, MyChanGainQueue{0})

It

Once the channel-gain queue is formatted, your Visual Basic for
Windows program can no longer read it. To read or modify the array after
it has been formatted, you must use K_RestoreChnGAry as follows:

whasBrr = K_RestoreChnGAry {(MyChanGainQueuel(())

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors.

3-44 Programming with the Function Call Driver

N i

@Lhapoe._.frm Page 45 Thursday, April 14, 1994 1:50 PM

When you start the next analog input operation (using K_IntStart or
K_DMAStart), channel 0 is sampled at a gain of 1, channel 1 is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the ASO-1800 software
package.

File Description

DASSHELL.DLL Dynamic Link Library.

DAS1800.DLL Dynamic Link Library.

s A

DAS1800.BAS Include file; must be added to the Project List,

€B To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the Run menu,

Refer to page 3-40 for information about allocating and assigning
dynamically allocated memory buffers when programming in Microsoft
Visual Basic for Windows. Refer to page 3-42 for information about
dimensioning and assigning local arrays when programming in Microsoft
Visual Basic for Windows. Refer to page 3-44 for information about
creating a channel-gain queue when programming in Microsoft Visual
Basic for Windows.

3-45

{{}lchapoa_.frm Page 46 Thursday, April 14, 1994 1:50 PM

BASIC Languages

The following sections contain information you need to allocate and
assign memory buffers and to create channel-gain queues when
programming in BASIC, as well as language-specific information for
Microsoft QuickBasic (Versions 4.0 and 4.5), Microsoft Professional
Basic (Version 7.0), and Microsoft Visual Basic for DOS.

Allocating and Assigning Dynamically Allocated Memory Buffers

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in
BASIC. Refer to the example programs on disk for more information,

Note: The code fragments for dynamically allocated memory assume
that you are using DMA mode; the code for interrupt mode is identical,
except that you use the appropriate interrupt-mode functions instead of
the DMA-mode functions,

_@ Reducing the Memory Heap

By default, when BASIC programs run, all available memory is left for
use by the internal memory manager. BASIC provides the SetMem
function to distributc the available memory (the Far Heap). It is necessary
to re-distribute the Far Heap if you want to use dynamically allocated
buffers. It is recommended that you include the following code at the
beginning of BASIC programs to free the Far Heap for the driver’s use:

FarHeapSize& = SetMem(0)
NewFarHeapSize& = SetMem(-FarHeapSize&/2)

Single Memary Buffer

You can use a single, dynamically allocated memory buffer for
interrupt-mode analog input, analog output, and digital IfO operations and
for DM A-mode analog input operations.

The foliowing code fragment illustrates how to use K_DMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and

3-46 Programming with the Function Call Driver

L N

{B— hap03_.frm Page 47 Thursday, April 14, 1994 1:50 PM {1}

how to use K_SetDMABuf to assign the starting address of the buffer;
the buffer can store a maximum of 65,536 samples.

Dim AcgBuf As Long * Declare pointer to buffer

Dim hMem As Integer ' Declare integer for memory handle
wDasErr KDMAAlloc (hFrame, Samples, AcgBuf, hMem)

o

wDasErr KSetDMABUf (hFrame, AcgBuf, Samples)

The following code illustrates how to use K_DMAFree to later free the
allocated buffer, using the memory handle stored by K_DMA Alloc.

wDasErr = KDMAFree (hMem)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Multiple Memory Bufters

You can use multiple, dynamically allocated memeory buffers for
interrupt-mode analog input operations and for DMA-mode analog input
operations.

The following code fragment illustrates how to use K_DMA Alloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to use K_BufListAdd to assign the starting
addresses of the five buffers; each buffer can store a maximum of 32,767

sampies.
Dim AcgBuf({5) As Long * Declare 5 pointers to 5 buffers
Dim hMem(%) As Integer ¢ Declare 5 memory handles

for 1% = 0 to 4
wDasErr = KDMAAlloc (hFrame, Samples, AcgBuf(i%), hMem(i%))
whagErr = KBufListAdd (hFrame, AcqgBuf{i%), Samples)

next 1%

3-47

{]}lchapos_.frm Page 48 Thursday, April 14, 1994 1:50 PM

The following code illustrates how to use K_DMAFree to later free the
allocated buffers, using the memory handles stored by K_DMA Alloc; if
you free the allocated buffers, you must also use K_BufListReset to reset
the buffer list associated with the frame.

for i% = ¢ to 4

wDasErr = K_DMAFree (hMem(i%)}
next 1%
wDasErr = K_BuflListReset (hADFrame)

Note: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Accessing the Data

In BASIC, you cannot directly access analog input samples stored in
dynamically allocated memory buffers. You must use

@ K_MoveBufToArray to move a subset of the data into a local buffer as
required. The following code fragment illustrates how to move the first
100 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcqgBuf(1)) to a local memory buffer.

Dim Buffer (1000} As Integer ' Declare local memory buffer

wDasErry = K_MoveBufTeoArray (Buffer(0), AcgBuf(l), 100)

Dimensioning and Assigning Local Arrays

This section provides code fragments that describe how to dimension and
assign local arrays when programming in BASIC, Refer to the exampie
programs on disk for more information,

3-48 Programming with the Function Call Driver

& <

-GB—lchapOS_.frm Page 49 Thursday, April 14, 1994 1:50 PM

Single Array

You can use a single, local array for interrupt-mode analog input, analog
output, and digital I/O operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBufI to assign the starting address of the array; the local array can
store a maximum of 32,767 samples.

Dim Data (10000} As Integer * Allocate array

whDagErr = K_gSetBufl (hFrame, Datal(0), 10000)

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors,

G} Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to dimension two arrays of
32,000 samples cach for the frame defined by hADFrame and how to use
K_BufListAdd to assign the starting addresses of the arrays; each local
array can store a maximum of 32,767 samples.

Dim Datal (32000) As Integer " Allocate Array #1

Dim Data2(32000) As Integer ' Allocate Array #2
wDagBrr KBufliistAdd (hADFrame, Datal(0), 32000}

whasErr = KBufListAdd (hADFrame, DataZ2(0), 32000)

Notes: Make sure that you always check the returned value (wDasErr in
the previous example) for possible errors,

3-49

ﬂ}[chap%_.frm Page 50 Thursday, April 14, 1994 1:50 PM

Creating a Channel-Gain Queue

3-50

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries, To accommodate
the maximum possible channel-gain queue (256 entries), declare an array
of 513 integers ((256 x 2} + 1), Next, you must fill the array with the
channel-gain information. After you create the channel-gain queue, use
K_FormatChnGAry to reformat the channel-gain queue so that it can be
used by the DAS-1800 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1802HC board
and how to use K_SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Dim MyChanGainQueue (513} As Integer ‘Maximum # of entries

MyChanGaingQueue(0)

= 4 Nunmber of channel-gain pairs
MyChanGainQueue(l) = 0 Channel 0
MyChanGainQueue(2) = 0 Gain of 1
MyChanGainQueue (3) = 1 Channel 1
MyChanGainQueue (4) = 1 Gain of 2
MyChanGainQueue (5) = 2 Channel 2
MyChanGainQueue(6) = 2 Gain of 4
MyChanGainQueue (7) = 2 Channel 2
MyChanGainQueue (8) 3 Gain of 8

wDasErr
wDasEry

KFormatChnGAry (MyChanGainQueue({0))
KSetChnGAry (hFrame, MyChanGainQueue(0})

Once the channel-gain queue is formatted, your BASIC program can no
longer read it. To read or modify the array after it has been formatted, you
must use K_RestoreChnGAry as follows:

wDasErr = KRestoreChnGAry (MyChanGainQueue(0})

Notes: Make sure that you always check the returned value (wDasErr in
the previous examples) for possible errors.

Programming with the Function Call Driver

-Q}Lhapm_.frm Page 51 Thursday, April 14, 1994 1:50 PM

When you start the next analog input operation (using K_IntStart or
K_DMAStart), channel 0 is sampled at a gain of 1, channel I is sampled
at a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Programming in Microsoft QuickBasic (Version 4.0)

To program in Microsoft QuickBasic (Version 4.0), you need the
following files; these files are provided in the DAS-1800 Series standard

software package.

File Description

D1800Q40.LIB Linkable driver for QuickBasic, Version 4.0,
stand-alone, executable (.EXE) programs.

QB4DECL.BI

Include file.

DAS1800.BL Include file.

For Microsoft QuickBasic (Version 4.0), you can crecate an exccutable file
from within the programming environment, or you can use a compile and
link statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment;
QB /L D1800Q40 filename.bas
where filename indicates the name of your application program.

2. From the Run menu, choose Make EXE File.

3-51

-Q}lchapOB_.frm Page 52 Thursday, April 14, 1994 1:50 PM

To use a compile and link statement, enter the following:

BC filename.bas /O
Link filename.obj,,,D18000Q40.1ib+BCOM40.11b;

where filename indicates the name of your application program,

Refer to page 3-48 for information about dimensioning and assigning
local arrays when programming in Microsoft QuickBasic (Version 4.0).
Refer to page 3-48 for information about creating a channel-gain queue
when programming in Microsoft QuickBasic (Version 4.0),

Programming in Microsoft QuickBasic (Version 4.5)

3-52

To program in Microsoft QuickBasic (Version 4.5), you need the
following files; these files are provided in the DAS-1800 Series standard
software package.

File Description

D1800Q45.LIB Linkable driver for QuickBasic, Version 4.5,
stand-alone, executable { EXE) programs.

QB4DECL BI Include file.

DAS1800.BI Include file.

For Microsoft QuickBasic (Version 4.5), you can create an executable file
from within the programming environment, or you can use a compile and
link statement.

Programming with the Function Call Driver

©

D chap03_frm Page 53 Thursday, April 14, 1994 1:50 PM

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:
QB /L D1800Q45 filename.bas
where filename indicates the name of your application program.
2. From the Run menu, choose Make EXE File.
To use a compile and link statement, enter the following:

BC filename.bas /0O
Link filename.obj,,,D1800045.1ib+BCOMA5.11ib;

where filename indicates the name of your application program.

Refer to page 3-48 for information about dimensioning and assigning
local arrays when programming in Microsoft QuickBasic (Version 4.5).
Refer to page 3-50 for information about creating a channel-gain queue
when programming in Microsoft QuickBasic (Version 4.5),

&

Programming in Microsoft Professional Basic (Version 7.0)

To program in Microsoft Professional Basic (Version 7.0), you need the
following files; these files are provided in the DAS-1800 Series standard

software package.
Flte Description
D1800QBX.LIB Linkable driver for Professional Basic, Version 7.0,

DASDECL.BI Include file.

3-53

$Lhap03_.frm Page 54 Thursday, April 14, 1994 1:50 PM

3-54

For Microsoft Professional Basic (Version 7.0}, you can create an
executable file from within the programming environment, or you can use
a compile and link statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:
QBX /L D1800QBRX filename.bas
where filename indicates the name of your application program.
2. From the Run menu, choose Make EXE File.
To use a compile and link statement, enter the following:

BC filename.bas /o;
lLink filename.obj,,,DL800QBX.lib;

where filename indicates the name of your application program.
Refer to page 3-50 for information about dimensioning and assigning
local arrays when programming in Microsoft Professional Basic (Version

7.0). Refer to page 3-50 for information about creating a channel-gain
queue when programming in Microsoft Professional Basic (Version 7.0).

Programming with the Function Call Driver

&

Q}LhapOS_.frm Page 55 Thursday, April 14, 1994 1:50 PM

Programming in Microsoft Visual Basic for DOS

To program in Microsoft Visual Basic for DOS, you need the following
files; these files are provided in the DAS-1800 Series standard software
package.

File Description

DI800VBD.LIB Linkable driver for Visual Basic for DOS stand-alone,
executable ((EXE) programs,

DASDECL.BI Include file.

To create an executable file in Microsoft Visual Basic for DOS, perform

the following steps:
'Q} 1. Tnvoke the Visual Basic for DOS ¢nvironment by entering the
following:

VBDOS /L D1800VBD.QLB filename.BAS
where filename indicates the name of your application program.
2. From the Run menw, choose Make EXE File.
Refer to page 3-50 for information about dimensioning and assigning
local arrays when programming in Microsoft Visual Basic for DOS. Refer

to page 3-50 for information about creating a channel-gain queue when
programming in Microsoft Visual Basic for DOS.

3-55

-Q}LhapOB_.frm Page 56 Thursday, April 14, 1994 1:50 PM

Q}lchapm_.frm Page 1 Thursday, April 14, 1994 1:57 PM

4

Function Reference

The FCD functions are organized into the following groups:
e Initialization functions

e Operation functions

¢ Frame management functions

s Memory management functions

e Buffer address functions

e Buffering mode functions

s Conversion mode functions

e Channel and gain functions

o Clock functions

e Trigger functions

e Gate functions

e Miscellancous functions

The particular functions associated with each function group are presented

in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-1

€ kchap04_frm Page 2 Thursday, April 14, 1994 1:57 PM

Table 4-1. Functions

Function Type

Function Name

Page Number

Initialization

DAS1800_DevOpen

page

4-8

K_CloseDriver

page

4-25

page 4-105

page 4-33
Operation :
K_DOWrite page 4-56
K_DMAStatus page 4-49
K_IntStart
K_IntStop page 4-162
Frame Management i3

K_GetDAFrame

page 4-102

RRAAGRUON

K_GetDOFrame

page

4-116

K_ClearFrame

page

4-23

Function Reference

D-lohap04_frm Page 3 Thursday, April 14, 1994 1:57 PM

Table 4-1. Functions (cont.)

Function Type Function Name Page Number
Memory Management | vEAA ;\:

K_DMAFree

K_IntFree

K_MoveArrayToBuf page 4-167
Buffer Address K_SetBuf page 4-191

K_GetBui

K_BufListAdd page 4-17
Buffering Mode K_ClrContRun page 4-31

K_GetContRun page 4-99
Conversion Mode

K_CirADFreeRun

K_GetSSH page 4-132

4-3

P khap04_frm Page 4 Thursday, April 14, 1994 1:57 PM

Table 4-1. Functions (cont.)

Function Type Function Name Page Number

Channel and Gain K_SetChn page 4-198

K_SetG page 4-220

K_SetChnGAry page 4-201

Al e s Tl S

K_RestoreChnGAry page 4-174

K_GetStartStopChn page 4-135

K_GetStartStopG

K_SetADCommonMode

K_SetADMode

K_GetADConfig page 4-69

Clock K_SetClk page 4-204

K_GetClk page 4-93

K_SetBurstTicks page 4-196

K_SetExtClkEdge page 4-218

4-4 Function Reference

> khap04_frm Page 5 Thursday, April 14, 1994 1:57 PM

Table 4-1. Functions {cont.)

Function Type

Function Name

Page Number

Trigger K_SetTrig page 4-233
K_SetTrigHyst page 4-236
page 4-176
K_GetTrig page 4-142
pag
K_GetTrigHyst page 4-145
K_GetAboutTrig
Gate :

K_GetGate

Miscellaneous

page 4-126

page 4-148

K_GetDOCurVal

page 4-113

Keep the following conventions in mind throughout this chapter:

e Under “Boards Supported,” All refers to the following boards:
DAS-1801HC, DAS-1802HC, DAS-1801ST, DAS-1802ST,

DAS-1802HR.

¢ Although the function names are shown with underscores, do not use
the underscores in the BASIC languages.

e The data types DDH, FRAMEH, DWORD, WORD, and BYTE are
defined in the language-specific include files.

—EI}LhapOtl_.frm Page 6 Thursday, April 14, 1994 1:57 PM

e Variable names are shown in italics.

e The return value for all DAS-1800 Series FCD functions is the
error/status code. Refer to Appendix A for more information,

e The description shows the prototype for the function.

o In the examples, the variables are not defined. It is assumed that they
are defined as shown in the syntax.

The name of each function argument in the Description and Usage sections

includes a prefix that indicates the associated data type. These prefixes are
described in Table 4-2.

4-6 Function Reference

> khap04_frm Page 7 Thursday, April 14, 1994 1:57 PM

Table 4-2. Data Type Prefixes

Prefix | Data Type

Comments

h Handle to device, frame, and
memory block

Handle-type variables are declared in the user program
as long or DWORD, depending on what the language
allows, The actual user variable is passed to the driver
by value.

p Pointer to a variable

These are pointers to all types of variables, except
handles (h). This type is typically used when passing a
parameter of any type to the driver by reference.

w A 16-bit word

This type is typically used when passing an unsigned
integer to the driver by value.

Denotes a single-precision floating-point number,

A 32-bit double word

This type is typically used when passing an unsigned
long to the driver by value.

4-7

{DLhapOtl_.frm Page 8 Thursday, April 14, 1994 1:57 PM

DAS1800_DevOpen

Boards All

Supported

Purpose Initializes the DAS-1800 Series Function Call Driver,
Prototype C/Ces

DASErr far pascal DAS1800_DevOpen (char far *szCfgFile,
char far *pBoards),

Turbo Pascal
Function DAS1800_DevOpen (Var szCfgFile : char;
Var pBoards ; Integer) : Word; far; external DAS1800';

Turbo Pascal for Windows
Function DAS1800_DevOpen (Var szCfgFile : char;
Var pBoards : Integer) : Word; far; external DAS1800%

Q} Visual Basic for Windows
Declare Function DAS1800_DevOpen Lib "DAS1800.DLL"
(ByVal szCfgFile As String, pBoards As Integer) As Integer

BASIC

DECLARE FUNCTION DAS1800DEVOPEN% ALIAS
"DAS1800_DevOpen" (BY VAL szCfgFile AS LONG,
SEG pBoards AS INTEGER)

Parameters szCfgFile Driver configuration file.
Valid values: The name of a configuration file.

pBoards Number of boards defined in szCfgFile.
Valid values: 1to3

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-8 Function Reference

P-khap04_frm Page 9 Thursday, April 14, 1994 1:57 PM

DAS1800_DevOpen (cont.)

Remarks This function initializes the driver according to the information in the
configuration file specified by szCfgFile and stores the number of boards
defined in pBoards.

You create a configuration file using the D 1800CFG.EXE utility, Refer to
your DAS-1800 Series board user’s guide for more information.

See Also K_OpenDriver

Usage CiC++
#include "DAS1800.H" // Use "DAS1800.HPP for C++

int nBoards;

whasErr = DAS1800_DevOpen ("DAS1802.CFG", &nBoards):

Turbo Pascal
$ uses DL80OTP7; (* Use D1800TP6 for TP ver 6.0 *)

gzCfgName : String;
nBoards : Integer;

gzCfgName := 'DAS1B802.CFG' + #0;
wDasErr := DAS1800_DevOpen(szCfgName[l]l, nBcards);

Turbo Pascal for Windows
{$I DASDECL.INC}

gzCfgName : String;
nBoards : Integer;

gzCfgName := 'DAS1IB802.CFPG' + #0;
wDasErr := DAS1800_DevOpen(szCfgName[l], nBoards);

@—Lhapm_.frm Page 10 Thursday, April 14, 1994 1:57 PM

DAS1800_DevOpen (cont.)

4-10

Visual Basic for Windows
(Include DAS1800.BAS in your program make file)

DIM nBoards AS INTEGER
DIM szCfgName AS STRING

wDasErr = DAS1800_DevOpen{szCfgName, nBoards)

BASIC
* $INCLUDE: 'DAS1800.BI'

DIM nBoards AS INTEGER
DIM szCfgName AS STRING

azCfgName = "DAS1IB0Z2.CFG"™ + CHRS(0)

whasErr = DAS1800DEVOPEN% (SSEGADD (szCfgName), nBoards)

Function Reference

&

{B—lchapm_.frm Page 11 Thursday, April 14, 1994 1:57 PM

DAS1800_GetDevHandle

Boards All

Supported

Purpose Initializes a DAS-1800 Series board.

Prototype CiC++
DASEr far pascal DAS1800_GetDevHandle (WORD nBrdNum,
DWORD far *phDev);

Turbo Pascal
Function DAS1800_GetDevHandle (nBrdNum : Word,
Var phDev : Longint) : Word; far; external 'DAS 1800

Turbo Pascal for Windows
Function DAS1800_GetDevHandle (nBrdNum : Word;
Var phDev : Longint) : Word; far; external DAS1800";

- Visual Basic for Windows
Declare Function DAS1800_GetDevHandle Lib "DAS 1800.DLL"
(ByVal nBrdNum As Integer, phDev As Long) As Integer

BASIC

DECLARE FUNCTION DAS1800GETDEVHANDLE% ALIAS
"DAS1800_GetDevHandle" (BY VAL nBrdNum AS INTEGER,
SEG phDev AS LONG)

Parameters nBrdNum Board number.
Valid values: 0to2

phDev Handle associated with the board.

Return Value - This function returns an integer error/status code. Error/status code (0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-11

@-Lhapm_.frm Page 12 Thursday, April 14, 1994 1:57 PM

DAS1800_GetDevHandle (cont.)

Remarks This function initializes the board specified by nBrdNum, and stores the
board handle of the specified board in phDeyv,

The value stored in phDev is intended to be used exclusively as an
argument to functions that require a board handle. Your program should
not modify the value stored in phDeyv.

See Also K_GetDevHandle

Usage C/C++
#include "DAS18Q0.H" // Uze "DAS1800.HPP for C++

DWORD hDev;
wDasErr = DAS1800_GetDevHandle (0, &hDev);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

35 hDev : Longint; { Device Handle }

wDagErr := DAS1800_GetDevHandle{ 0, hDev }:

Turbo Pascal for Windows
{$I DASDECL.INC)

hDev : Longint; { Device Handle)

wDasErr := DAS1800_GetDevHandle{ 0, hDev };

Visual Basic for Windows
{Include DAS1800.BAS in your program make file)

Global hDev As Long ' Device Handle

wDasErr = DAS1800_GetDevHandle {0, hDev)

4-12 Function Referance

{B—IchapO-fL.frm Page 13 Thursday, April 14, 1994 1:57 PM

DAS1800_GetDevHandle (cont.)

BASIC
' $INCLUDE: 'DAS1800.BI'

DIM hDev AS LONG ' Device Handle

wDasErr = DAS1800GetDevHandle% (0, hDev)

4-13

@-LhapOL.frm Page 14 Thursday, April 14, 1994 1:57 PM

K_ADRead

Boards All
Supported

Purpose Reads a single analog input value.

Prototype CiC++
DASErr far pascal K_ADRead (DWORD hDev, BYTE nChan,
BYTE nGain, void far *pData),

Turbo Pascal
Function K_ADRead (hDev : Longint; nChan : Byte; nGain : Byte;
pData : Pointer) : Word;

Turbo Pascal for Windows
Function K_ADRead (hDev : Longint; nChan : Byte; nGain : Byte;
pData : Pointer) : Word, far; external DASSHELL,

{Er Visual Basic for Windows
Declare Function K_ADRead Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal nGain As Integer, pData As Integer) As Integer

BASIC

DECLARE FUNCTION KADRead% ALIAS "K_ADRead"
(BYVAL hDev AS LONG, BY VAL nChan AS INTEGER,
BYVAL nGain AS INTEGER, SEG pData AS INTEGER)

Parameters nDev Handle associated with the board.

4-14 Function Reference

6 khap04_frm Page 15 Thursday, April 14, 1994 1:57 PM

K_ADRead (cont.)

nChan Analog input channel. Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-1800HC gto31 0 to 63

DAS-1800ST/HR with N Not applicable Oto 15(N +1)
EXP-1800 expansion boards
attached

nGain Gain code.

Valid values: 0 to 3 for DAS board channels
0 to 7 for EXP-1800 channels
-EB— Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated witk each gain code.

pData Acquired analog input value.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

Remarks This function reads the analog input channel nC#an on the board
specified by hDev at the gain represented by nGGain, and stores the raw
count in pData.

Refer to Appendix B for information on converting the raw count stored
in pData to voltage.

See Also K_DMAStart, K_IntStart

4-15

B-khap04_frm Page 16 Thursday, April 14, 1994 1:57 PM

K_ADRead (cont.)

Usage

4-16

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for Ci++

int wADValue;

wDasErr = K_ADRead (hDev, 0, 0, &wADValue)

Turbo Pascal
uses D180OTP7; (* Use D1800TP6& for TP ver 6.0 *)

wADValue : Integer;

wDasErr := K_ADRead (hDev, 0, 0, @wADValue);

Turbo Pascal for Windows
{$I DASDECL.INC)

wADValue : Integer;

wDagErr := K_ADRead (hDev, 0, 0, @wADValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Glebal wADValue As Integer

whasErr = K_ADRead (hDev, 0, 0, wADValue)

BASIC
' $INCLUPE: 'DASDECL.BI'

DIM wADValue AS INTEGER

wDasErr = KADRead% (hDev, 0, 0, wADValue)

Function Reference

{j}lﬁhapmﬂ.frm Page 17 Thursday, April 14, 1994 1:57 PM

K_BufListAdd

Boards All

Supported

Purpose Adds a buffer to the list of multiple buffers.

Prototype CiCes
DASE;r far pascal K_BufListAdd (DWORD #hFrame, void far *pBuf,
DWORD dwSamplesy;

Turbo Pascal
Function K_BufListAdd (AFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_BuiListAdd (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word; far; external ' DASSHELL'";

-@ Visual Basic for Windows
Declare Function K_BufListAdd Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

BASIC
DECLARE FUNCTION KBulListAdd% ALIAS "K_BufListAdd"
(BY VAL hFrame AS LONG, SEG pBuf AS INTEGER,

BYVAL dwSamples AS LONG)

Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of buifer.
dwSamples Number of samples in the buffer.

Retumn Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-17

-Q}Lhapﬂél_.frm Page 18 Thursday, April 14, 1994 1:57 PM

&

K_BufListAdd (cont.)

"Remarks For the operation defined by AFrame, this function adds the buffer at the

address pointed to by pBuf to the list of multiple buffers; the number of
samples in the buffer is specified in dwSamples. The driver supports
multiple buffers for analog input operations only.

Before you add the buffer to the multiple-buffer list, you must either
allocate the buffer dynamically (using K_IntAlloc or K_DMA Alloc), or
dimension the buffer locally.

Make sure that you add buffers to the multiple-buffer list in the order in
which you want to use them. The first buffer you add is Buffer 1, the
second buffer you add is Buffer 2, and so on. You can add up to 149
buffers, You can use K_IntStatus or K_DMAStatus to determine which
buffer is currently in use,

See Also K_BufListReset, K_DMAAlloc, K_IntAlloc
Usage
C/C+s
#include "DASDECL.H" /{ Use “DASDECL.HPP for C++
void far *pBuf[5]; // Buffer pointers
WORD hMem[5]; // Buffer handles
for {i = 0; i < 5; i44) {
whasErr = K_DMAAlloc (hAD, dwSamples, &pBuf[i], &hMem[il};
wDasErr = K_BufListAdd {(haAD, pBuf{il, dwSamples};
}
4-18 Function Reference

P hap04_frm Page 19 Thursday, April 14,1994 1:57 PM

K_BufListAdd (cont.)

Turbo Pascal
useg D180OTP7; {* Use D1800TP6 for TP ver 6.0 *)
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : Array [0..4] of ~BufType; { Buffer pointers }
hMem : Array [0..4] of Word; { Buffer handles }
FOR I := 0 te 4 DO
BEGIN

wDasErr := K_DMAAlloc (hAD, dwSamples, Addr(pBuf[I]), hMem[I]};
whDagEry := K_BufListAdd (hAD, pBuf(l], dwSamples);
END;

Turbo Pascal for Windows
{$1 DASDECL.INC)

TYPE
{$} BufType = Array [0..1] of Integer;

VAR

pBuf : Array [0..4] of "BufType; { Buffer pointers }

hMem : Array [0..4] of Word; { Buffer handles }

FOR I := 0 to 4 DO
BEGIN
whasErr := K_DMAAlloc (hAD, dwSamples, Addr{pBuf[I]), hMem[I]);
wDagBrr := K_BuflListAdd (hAD, pBuf[I], dwSamples);

END;

Visual Basic for Windows
{Include DASDECL,.BAS in your program matke file)

Global pBuf({5) As Londg ' Buffer pointers
Global hMem(5) As Integer ' Buffer handles

For 1% = 0 To 4
wDasEry = K_DMAAlloc (hAD, dwSamples, pBuf(I%), hMem(I%))
whasErr = K_BuflistAdd (hAD, pRuf(I%), dwBamples)

Next I%

4-19

Q}lchapm,,.frm Page 20 Thursday, April 14, 1994 1:57 PM

K_BufListAdd (cont.)

KDMAAlloc% (hAD, dwSamples, pBuf(l%), hMem(I%)}

BASIC
' SINCLUDE: 'DASDECL.BI‘
DIM pBuf (5} AS LONG ' Buffer pointers
DIM hMem(5) AS INTEGER ' Buffer handles
For I% = 0 To 4

wDasErr =

wDasErr = KBuflListAdd% (hAD, pBuf(I%),
Next I%

4-20

dawSamples)

Function Raference

{BLhapm_.frm Page 21 Thursday, April 14, 1994 1:57 PM

K_BufListReset

Boards All

Supported

Purpose Clears the list of multiple buffers.
Prototype C/C++

DASErr far pascal K_BufListReset (DWORD hFrame);

Turbo Pascal
Function K_Bufl.istReset (hF rame : Longint) : Word;

Turbo Pascal for Windows
Function K_BufListReset (hFrame : Longint) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_Bufl.istReset Lib "DASSHELL.DLL"
{I} (ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KBufListReset% ALIAS "K_BufListReset"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by hAFrame, this function clears all buffers from
the list of multiple buffers.

This function does not deallocate the buffers in the list. If dynamically
allocated buffers are no longer needed. you can use K_IntFree or
K_DMAFree to free the buffers before resetting the buffer list.

4-21

{}}Lhapm_.frm Page 22 Thursday, April 14, 1994 1:57 PM

K_BufListReset (cont.)

See Also K_DMAFree, K_IntFree, K_SetBuf, K_SetDMABuf

Usage CiC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_BufListReset (hAD);

Turbo Pascal
uses D1800TP7; {(* Use D1800TP6 for TP ver 6.0 *)

wDagErr := K_BufListReset (hAD);

Turbo Pascal for Windows
{$T DASDECL.INC)

wDasErr := K_BufListReset (hAD);

Visual Basic for Windows
{B‘ (Include DASDECL.BAS in your program make file)

wDasErr = K_BuflListReset (hAD)

BASIC
* $INCLUDE: 'DASDECL.BI'

wDasErr = KBufListReset% (hAD)

4.22 Function Reference

@Lhapm_.frm Page 23 Thursday, April 14, 1994 1:57 PM

K_ClearFrame

Boards All

Supported

Purpose Sets the elements of a frame to their default values.
Prototype C/C++

DASETm far pascal K_ClearFrame (DWORD hFrame),

Turbo Pascal
Function K_ClearFrame (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_ClearFrame (AFrame : Longint) : Word,; far;
external DASSHELL";

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL."
@ (ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KClearFrame% ALIAS "K_ClearFrame"”
(BYVAL hFrame AS LONG)

Parametetrs hFrame Handle to the frame that defines the operation.

Retumn Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function sets the elements of the frame specificd by hFrame to their
default values.

Refer to Table 3-1 on page 3-5 for the default values of the elements of an
A/D frame, Table 3-2 on page 3-7 for the default values of the elements of
an D/A frame, Table 3-3 on page 3-8 for the default values of the clements
of an DI frame, and Table 3-4 on page 3-9 for the default values of the
elements of an DO frame.

4-23

© &

{]}Lhapm_.frm Page 24 Thursday, April 14, 1994 1:57 PM

K_ClearFrame (cont.)

See Also K_GetADFrame, K_GetDAFrame, K_GetDIFrame, and K_GetDOFrame
Usage CiCt++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDagErr = K_ClearFrame (haAD);

Turbo Pascal
uses DI180OOTP7; (* Ugse D1800TP6 for TP ver 6.0 *)

wDasErr := K_ClearFrame (hAD);

Turbo Pascal for Windows
{$1 DASDECL.INC)

wDasErr := K_ClearFrame (hAD);

Visual Basic for Windows
{[} (Include DASDECL BAS in your program make file)

wDagErr = K_ClearFrame (hAD)

BASIC
' $INCLUDE: ‘DASDECL.BI'

wDasErr = KClearFrame$% (hAD)

4-24 Function Referance

@Lhapm_.frm Page 25 Thursday, April 14, 1994 1:57 PM

K_CloseDriver

Boards All

Supported

Purpose Closes a previously initialized DAS Function Call Driver.
Prototype C/C++

DASETrr far pascal K_CloseDriver (DWORD ADrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_CloseDriver (hDrv : Longint) : Word; far;
external DASSHELL;

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"

@ (ByVal ADrv As Long) As Integer
BASIC
Not supported
Parameters hDrv Driver handle you want to free.
Return Value This function returns an integer error/status code. Error/status code

indicates that the function executed successfully, A non-zero error/status
cade indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function frees the driver handle specified by #Drv and closes the
associated use of the Function Call Driver. This function also frees all
board handles and frame handles associated with ADrv.

If hDrv is the last driver handle specified for the Function Call Driver, the
driver is shut down (for all languages) and unloaded (for Windows-based
languages only).

4-25

@Lhap(lfl_.frm Page 26 Thursday, April 14, {994 1:57 PM

K_CloseDriver (cont.)

See Also K_FreeDevHandle
Usage C/Ce++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDhasBErr = K_CloseDriver (hDrv);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_CloseDriver {(hDrv);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_CloseDriver (hDrv)

4-26 Function Reference

{]}Lhapm_.frm Page 27 Thursday, April 14, 1994 1:57 PM

K_ClrAboutTrig

Boards
Suppotied

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Disablests p the about trigger for an analog input operation.

C/C+s
DASEir far pascal K_ClrAboutTrig (DWORD AFrame);

Turbo Pascal
Function K_ClrAbowtTrig (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_ClrAboutTrig (AF rame : Longint) : Word; far;
external DASSHELL";

Visual Basic for Windows
Declare Function K_ClrAboutTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC

DECLARE FUNCTION KClrAboutTrig% ALIAS "K_ClrAboutTrig"

{(BYVAL hFrame AS LONG)

hFrame Handle to the frame that defines the operation.

This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information.

This function disables the about trigger for the operation defined by
hFrame.

K_GetADFrame and K_ClearFrame also disables the about trigger.

K_ClearFrame, K_GetADFrame, K_SetAboutTrig

4-27

@-]chap(m_.frm Page 28 Thursday, April 14, 1994 1:57 PM

K_ClrAboutTrig (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDagErr = K_ClrAboutTrig (hAD);

Turbo Pascal
uses D1800TP7; {(* Uge D1800TP6 for TP ver 6.0 *)

wDasErr := K_ClrAboutTrig (hAD);

Turbo Pascal for Windows
{4$T DASDECL.INC)

wDasExr := K_ClrAboutTrig (haD};

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

{i} whasErr = K_ClrAboutTrig (hAD)

BASIC
' $INCLUDE: ’DASDECL.BI'

wDasBry = KClrAboutTrig% (hAD)

4-28 Function Reference

{B-Lhapm_.frm Page 29 Thursday, April 14, 1094 1:57 PM

K_CIirADFreeRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Sets paced conversion mode for an analog input operation.

CiCe+
DASErr far pascal K_CIrADFreeRun (DWORD hFrame);

Turbo Pascal
Function K_ClrADFreeRun (hFrame : Longint) : Word,;

Turbo Pascal for Windows
Function K_ClrADFreeRun (AFrame : Longint) : Word; far;
external 'DASSHELL",

Visual Basic for Windows
Declare Function K_ClrADFrecRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC

DECLARE FUNCTION KCIrADFreeRun% ALIAS "K_CIrADFreeRun”

(BYVAL hFrame AS LONG)

hFrame Handle to the frame that defines the operation.

This function returns an integer error/status code. Error/status code O

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information.

This function sets the conversion mode for the operation defined by
hFrame to paced mode and sets the Conversion Mode element in the
frame accordingly.

K_GetADFrame and K_ClearFrame also enable paced conversion
mode.

4-29

-Q}Lhapotl_h.frm Page 30 Thursday, April 14, 1994 1:57 PM

K_CIrADFreeRun (cont.)

See Also

Usage

4-30

K_ClearFrame, K_GetADFrame, K_SetADFreecRun

C/C++

#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_ClrADFreeRun {(hAD);

Turbo Pascal

uses D1IS0OTPT; (* Use D180OTP6 for TP ver 6.0 *)

wDagEry := K_ClrADFreeRun (hAD);

Turbo Pascal for Windows
{$T DASDECL.INC}

whasErr := K_ClrADFreeRun (hAD);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_ClraDFreeRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI’

wDasErr = KClrADFreeRun% (hAD)

Function Reference

@Lhapm_.frm Page 31 Thursday, April 14, 1994 1:57 PM

K_CirContRun

Boards All

Supported

Purpose Sets single-cycle buffering mode.
Prototype C/Cas

DASErmr far pascal K_ClrContRun (DWORD hFrame);

Turbo Pascal
Function K_ClrContRun (hFrame : Longint) : Word,;

Turbo Pascal for Windows
Function K_ClrContRun (AFrame : Longint) : Word; far;
external DASSHELL,

Visual Basic for Windows
Declare Function K_ClrContRun Lib "DASSHELL,DLL"
—GB- (ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KClrContRun% ALIAS "K_ClrContRun"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function execuied successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function sets the buffering mode for the operation defined by
hFrame to single-cycle mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame also enable single-cycle buffering
mode.

4-31

{}}Lhapm_.frm Page 32 Thursday, April 14, 1994 1:57 PM

K_CIrContRun (cont.)

Refer to page 2-18 for more information on buffering modes for analog
input operations, page 2-30 for more information on buffering modes for
analog output operations, and page 2-38 for more information on
buffering modes for digital 1/O operations.

See Also K_SetContRun

Usage C/iCs+
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whasErr = K_ClrContRun (hAD);

Turbo Pascal

uses D1800TP7; {* Use D1800TP6 for TP ver 6.0 *)
wDagErr := K_ClrContRun (hAD);

Q} Turbo Pascal for Windows
{$1 DASDECL.INC)

whasErr := K_ClrContRun (hAD);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDasErr = K_ClrContRun {(hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

whasErr = KClrContRun% {hAD)

4-32 Function Reference

{I}Lhapm_.frm Page 33 Thursday, April 14, 1994 1:57 PM

K_DASDevinit

Boards All

Supported

Purpose Reinitializes a board.
Prototype C/C++

DASErr far pascal K_DASDevInit (DWORD hDev);

Turbo Pascal
Function K_DASDevInit (#Dev : Longint) : Longint;

Turbo Pascal for Windows
Function K_DASDevInit (hDev : Longint) : Longint; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DASDevInit Lib "DASSHELL.DLL"

{B— (ByVal hDev As Long) As Integer
BASIC
DECLARE FUNCTION KDASDevInit% ALIAS "K_DASDevInit"
(BYVAL hDev AS LLONG)
Parameters hDev Handle associated with the board.
Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function stops all current operations and resets the board specified by
hDev and the driver to their power-up states.

Usage C/Ce++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whasErr = K_DASDevInit (hDev);

4-33

& &

-@»Lhap(}él_.frm Page 34 Thursday, April 14, 1994 1:57 PM

K_DASDevlInit (cont.)

Turbo Pascal
uses D1800TP7; {(* Use D1800TP6 for TP ver 6.0 *}

wDagErr := K_DASDevInit (hDev);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_DASDevInit (hDev);

Visual Basic for Windows
(Include DASDECL BAS in your program make file)

wDagErr = K_DASDevInit (hDev)

BASIC
' $INCLUDE: 'DASDECL.BI'
{$} whasErr = KDASDevInit% (hDev)
4-34 Function Reference

{}}Lhapm_.frm Page 35 Thursday, April 14, 1994 1:57 PM

K_DAWrite
Boards DAS-1801HC, DAS-1802HC
Supported
Purpose Writes a single analog output value.
Prototype C/C++
DASEIrT far pascal K_DAWrite (DWORD hDev, BYTE nChan,
DWORD dwData);

Turbo Pascal
Function K_DAWTite (hDev : Longint; nChan : Byte;
dwDatg : Longint) : Word;

Turbo Pascal for Windows
Function K_DAWrite (hDev : Longint; nChan : Byte;
dwData : Longint) : Word; far; external DASSHELL';

G} Visual Basic for Windows
Declare Function K_DAWrite Lib "DASSHELL.DLL"
(ByVal #Dev As Long, ByVal nChan As Integer,
ByVal dwData As Long) As Integer

BASIC
DECLARE FUNCTION KDAWrite% ALIAS "K_DAWrite"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,

BYVAL dwData AS LONG)
Parameters hDev Handle associated with the board.
nChan Analog output channel.
Valid values: 0 = Channel 0
1 = Channel 1
2 = Both channels
dwData Analog output value,

Valid values: 0 to 4,095

4-35

- khap04_frm Page 36 Thursday, April 14, 1994 1:57 PM

K_DAWrite (cont.)

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function writes the value dwDatra to the analog output channel
specified by nChan on the board specified by hDev. Refer to page 2-26 for
more information on analog output operations.

dwData is a 32-bit variable, but the output value must contain only 12
bits. Refer to Appendix B for a description of the data format.

See Also K_IntStart

Usage C/Ca+
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD dwDAValue;

dwDAValue = (DWORD) (5.0 * 4096 / 20) + 2048;
wDasErr = K_DAWrite (hDev, 0, &dwDAValue};

Turbo Pascal
uses D180OTP7; (* Use D1800TP6 for TP ver 6.0 *)

dwDAValue : Longint:

dwDAValue := Round{ (5.0 * 40%96.0 / 20.0) + 2048};
wDasErxr := K_DAWrite (hDev, 0, dwDaAValue}:

Turbo Pascal for Windows
{$I DASDECL.INC}

dwDAValue : Longint;

dwDhaAValue := Round((5.0 * 4096.0 / 20.0) + 2048);
whasErr := K_DAWrite (hDev, 0, dwDAValue};

4-36 Function Reference

-@—Lhapm_.frm Page 37 Thursday, April 14, 1994 1:57 PM

K_DAWrite (cont.)

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Global dwDAValue Ag Long

dwDAValue = INT(5.0 * 4096! / 20!) + 2048
wDasEry = K_DAWrite (hDev, 0, dwDAValue)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM dwDAValues AS LONG

dwDAValue = INT(5.0 * 4096! / 20!} + 2048
wDhasErr = KDAWrite% (hDev, 0, dwDaAValue}

4-37

{E—Lhapm_.frm Page 38 Thursday, April 14, 1994 1:57 PM

K_DIRead

Boards All

Supported

Purpose Reads a single digital input value,

Prototype C/C++
DASEir far pascal K_DIRead (DWORD hDev, BYTE nChan,
void far *pData);

Turbo Pascal

Function K_DIRead (hDev : Longint; nChan : Byte;
pData : Pointer) : Word,;

Turbo Pascal for Windows

Function K_DIRead (#Dev : Longint; nChan : Byte;
pData : Pointer) : Word; far; external DASSHELL";
Visual Basic for Windows

Declare Function K_DIRead Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer, pData As Integer) As
Integer

BASIC

DECLARE FUNCTION KDIRead% ALIAS "K_DIRead"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
SEG pData AS INTEGER)

Parameters hDev Handle associated with the board.
nChan Digital input channel,

Valid value: 0
pData Digital input value.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-38 Function Reference

@

D-khap04_frm Page 39 Thursday, April 14, 1994 1:57 PM

K_DIRead (cont.)

Remarks This function reads the values of all digital input lines on the board
specified by ADev, and stores the value in pData,

pData is a 16-bit variable. The acquired digital value is stored in bits 0, 1,
2, and 3; the values in the remaining bits of pData are not defined. Refer
to page 2-34 for more information.

See Also K_IntStart
Usage CiGes
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wDIValue;

whDagsErr = K_DIRead (hDev, 0, &wDIValue);

Turbo Pascal

uses D1800TP7; (* Use Di1iB800TP6 for TP ver 6.0 *}
| wDIValue : Word;
wDasgErr := K_DIRead (hDev, 0, @wDIValue)};

Turbo Pascal for Windows
{$I DASDECL.INC)

wDIValue : Word;

whagErr := K_DIRead (hDev, 0, 8wDIValue};

Visual Basic for Windows
{Include DASDECL BAS in your program make file)

Gleobhal whDIValue As Integer

wDagErr = K_DIRead {(hDev, 0, wDIValue);

4-39

Q}Lhapm_.frm Page 40 Thursday, April 14, 1994 1:57 PM

K _DIRead (cont.)

BASIC
' $INCLUDE: ‘'DASDECL.BI'

DIM wDIValue AS INTEGER

whasErr = KDIRead% (hDev, 0, wDIValue)

4-40 Function Reference

-@[zhapﬂéi_.frm Page 41 Thursday, April 14, 1994 1:57 PM

K_DMAAlloc
Boards All
Supported
Purpose Allocates a buffer for a DMA-mode analog input operation.
Prototype C/C++

DASErr far pascal K_DMA Alloc (DWORD hFrame,
DWORD dwSamples, void far * far *pBuf, WORD far * phiMem);

Turbo Pascal
Function K_DMAAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem : Word) : Word;

Turbo Pascal for Windows
Function K_DMAAIlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem : Word) : Word; far; external 'DASSHELL",

{1} Visual Basic for Windows
Declare Function K_DMAAlloc Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwSamples As Long, pBuf As Long,
phMem As Integer) As Integer

BASIC

DECLARE FUNCTION KDMAAlloc% ALIAS "K_DMAAlloc"
(BYVAL hFrame AS LONG, BY VAL dwSamples AS LONG,
SEG pBuf AS LONG, SEG paiMem AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.
dwSamples Number of samples.
Valid values: 1 to 32,767 for Visual Basic for
Windows and BASIC
1 to 65,536 for all other languages
pBuf Starting address of the allocated buffer.
phMem Handle associated with the allocated buffer.

4-41

{BLhapm_.frm Page 42 Thursday, April 14, 1994 1:57 PM

&

K_DMAAIloc {cont.)

Return Value

This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by hFrame, this function allocates a memory
block (a buffer of the size dwSamples) from the available memory heap.
On return, pBuf contains the far memory address of a buffer that is
suitable for a DMA-mode analog input operation, Use K_SetDMABuf or
K_BufListAdd to assign pBufto an A/D frame. phMem, as returned by
this function, is later used to free the allocated memory block by calling
K_DMAFree.
Turbo Pascal and BASIC require that you re-distribute available memory
before you dynamically allocate a buffer. Refer to “Reducing the Memory
Heap” on page 3-32 (Turbo Pascal) or page 3-46 (BASIC) for additional
information.
See Also K_DMAFree, K_SetDMABuf, K_BufListAdd
Usage
C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
void far *pBuflb}; // Pointers to allocated DMA buffer
WORD hMem[5]; // Memory Handles to buffers

for (i = 0; 1 < 5; i++) {

wDasErr
wDasErr

4-42

n

K_DMaAlloc (hAD, dwSamples, &pBufli], &hMem[i]);
K_BufListAdd (hAD, pBufl[i], dwSamples);

Funetion Reference

Al PR . T 1A 1OOA 1.5 DA
ﬁ;%]chap()f-l_.trm Page 43 Thursday, April 14, 1954 157 FM

K_DMAAIlioc (cont.)

Turbo Pascal

uses D1800TP7; (* Uge D180QTPE for TP ver 6.0 *}
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : Array [0..4] of "BufType; { DMA buffer pointers }
hMem : Array [0..4] of Word; { Handles to DMA buffers }
FOR I := 0 to 4 DO
BEGIN
wDasBrr := K_DMAAlloc(hAD, dwSamples, Addr(pBuf[I]), hMemiI]);
wDasErr := K_BufListAdd (hAD, pBuf(I], dwSamples);
END;

Turbo Pascal for Windows
{$I DASDECL.INC)

TYPE

BufType = Array [0..1] of Integer;

VAR

pBuf : Array [0..4] of ~BufType; { DMA buffer pointers }
hMem : Array [0..4] of Word; { Handles to DMA buffers }

FOR I := 0 to 4 DO
BEGIN
whasErr := K_DMAAllcc (hAD, dwSamples, Addr{pBuf[I]), hMem[I]);
wDasErr K_BuflListAdd {(haD, pBuf[I], dwSamples);
END;

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Glokal pBuf(5} As Long
Global hMem(5) As Integer

For I% = 0 To 4
whasErr = K_DMAAlloc (hAD, dwSamples, pBuf(I%), hMem(I%))
whasErr = K_BufListAdd (hAD, pBuf({I%), dwSamples)

Next I%

4-43

¢

$Lhap04_.frm Page 44 Thursday, April 14, 1994 1:57 PM

K_DMAAIlloc (cont.)

BASIC
' SINCLUDE: 'DASDECL.BI'

DIM pBuf(5) AS LONG
DIM hMem(S) AS INTEGER

For I% = 0 To 4

whasErr = KDMAAlloc% (hAD, dwSamples, pBuf(I%), hMem(I%)}
wDasErr = KBufListAdd% (hAD, pBuf(I%}, dwSamples)
Next I%
4-44 Function Reference

@ l\:hap04_.frm Page 45 Thursday, April 14, 1994 1:57 PM

K_DMAFree

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Frees a buffer allocated for a DMA-mode analog input operation.

C/C++
DASErm far pascal K_DMAFree (WORD hMem);

Turbo Pascal
Function K_DMAFree (hMem : Word) : Integer,;

Turbo Pascal for Windows
Function K_DMAFree (hMem : Word) : Integer; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_DMAFree Lib "DASSHELL.DLL"
(ByVal hMem As Integer) As Integer

BASIC
DECLARE FUNCTION KDMAFree% ALIAS "K_DMAFree"
(BYVAL hMem AS INTEGER)

iMem Handle to DMA buffer.

This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information.

This function frees the buffer specified by AMem; the buffer was
previousty allocated dynamically using K_DMA Alloc.

K_DMAlloc, K_SetDMABuf, K_BufListAdd

4-45

Q}l‘hapm_.frm Page 46 Thursday, April 14, 1994 1:57 PM

K_DMAFree (cont.)

Usage

4-46

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDagsErr = K_DMAFree (hMem);

Turbo Pascal
uses D1300TP7; {* Use D1800OTP6 for TP ver 6.0 *)

wDasErr := K_DMAFree (hMem);

Turbo Pascal for Windows
{81 DASDECL.INC}

wDagErr := K_DMAFree (hMem);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDasErr = K_DMAFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KDMAFree% (hMem)

Function Reference

@Lhapm_.frm Page 47 Thursday, April 14, 1994 1:57 PM

K_DMAStart
Boards All
Supported
Purpose Starts a DMA-mode analog input operation,
Prototype C/iC++

DASEIr far pascal K_DMAStart (DWORD AFramey;

Turbo Pascal
Function K_DMAStart (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStart (hFrame : Longint) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_DMAStart Lib "DASSHELL.DLL"
(0] (ByVal hFrame As Long) As Integer

BASIC
DECL.ARE FUNCTION KDMAStart% ALIAS "K_DMAStart"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle o the frame that defines the operation.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information.

Remarks This function starts the DMA operation defined by #Frame.
Refer to Chapter 3 for a discussion of the programming tasks associated
with DMA operations.

See Also K_DMAStatus, K_DMAStop

4-47

—G]}IChapM__.frm Page 48 Thursday, April 14, 1994 1:57 PM

K_DMAStart (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasFErr = K_DMAStart (hAD);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP wver 6.0 *)

wDasErr := K_DMAStart (hAD};

Turbo Pascal for Windows
{$I DASDECL.INC)

wDagErr := K_DMAStart (hAD);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

'EB' wDasErr = K_DMAStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI‘

wDasBrr = KDMAStart% (hAD)

4-48 Function Reference

-@—Lhap()tt_.frm Page 49 Thursday, April 14, 1994 1:57 PM

K_DMAStatus

Boards All

Supported

Purpose Gets status of a DMA-mode analog input operation.

Prototype CiC++
DASErr far pascal K_DMA Status (DWORD AFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_DMAStatus (hFrame : Longint; Var pStatus : Word,
Var pCount : Longint) : Word,

Turbo Pascal for Windows
Function K_DMAStatus (#Frame : Longint; Var pStatus : Word,;
Var pCount : Longint) : Word; far; external DASSHELL';

{}} Visual Basic for Windows
Declare Function K_ DM AStatus Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long) As
Integer

BASIC
DECLARE FUNCTION KDMAStatus% ALIAS "K_DMAStatus”
(BYVAL hFrame AS LONG, SEG pStarus AS INTEGER,

SEG pCount AS LONG)
Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of DMA-mode analog input operation; see

Remarks below for value stored.,

pCount Number of samples that were acquired into the
current buffer.
Value stored; 0 to 65,536

4-49

—E}}lchap()él_.frm Page 50 Thursday, April 14, 1994 1:57 PM

K_DMAStatus (cont.)

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer 1o Appendix A for additional
information,

Remarks For the DMA operation defined by #Frame, this function stores the status
in pStatus and the number of samples acquired in pCount.

The value stored in pStatus depends on the settings in the Status word, as
shown below:

Bt 15 14 13 12 11 10 8 & 7 & 5 4 3 2 1 0

N

Active buifer number About-trigger:
00 = Disabled
_$ 01 = Armed
10 = Active
11 = Dene

0 = Buffer not filled
1 = Buffer filled

0 = No FIFO overflow
1 = FIFO overtiow

\

0 = Buffer A active
1 = Buffer B aclive '

0 = DMA operation Inactive
1 = DMA operation acilve

4-50 Function Reference

{I}Lhapoél_.frm Page 51 Thursday, April 14, 1994 1:57 PM

K_DMAStatus (cont.)

The bits are described as follows:

¢ Bit 0: Indicates whether 8 DMA-mode analog input operation is in
progress.

o Bit I: The Buffer A/B active bit. If you are using multiple buffers, this
bit toggles each time acquisition sample storage is switched to a new
buffer. If you are using a single buffer and the operation is in
continuous mode, this bit toggles each time an acquisition sample is
stored at the beginning of the buffer.

o Bit 2: When set, this bit indicates that the onboard FIFQO has
overflowed, This event automatically stops all conversions.

s Bit 3: Not used for DMA mode.
e Bit 4: This bit is used during continuous buffering mode; it is set
when all data acquisition buffers that are currently assigned to the
@— active operation have been filled with data at least once.
e Bit 5: Unassigned
e Bits 6-7: These bits indicate the state of the about trigger.
e Bits 8-15: In multiple-buffer acquisitions, these bits indicate the

current active buffer number. The active buffer number is related to
the Status word as follows:

Status word

active huffer = 756

See Also K_DMAStart, K_DMAStop

4-51

D kchap04_frm Page 52 Thursday, April 14, 1994 1:57 PM

K_DMAStatus (cont.)

Usage C/Cu»
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wsStatus;
DWORD dwCounkt;

wDasErr = K_DMAStatus (hAD, &wStatus, &dwCount);

Turbo Pascal
uses D180OQOTP7; (* Use D1800TP6 for TP ver 6.0 *)

wStatus : Word;
dwCount : Longint;

wDasErr := K_DMAStatus (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$I DASDECL.INC})

{$} wStatus : Word;

dwCount : Longint;

whasErr := K_DMAStatus (hAD, wStatus, dwCount);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Gicbhal wStatus As Integer
Global dwCount As Long

wDagErr = K_DMAStatus (hAD, wStatus, dwCount}

BASIC
' SINCLUDE: 'DASDECL.BI‘

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KDMAStatus% (hAD, wStatus, dwCount}

4-52 Function Reference

+

@—Lhapm_.frm Page 53 Thursday, April 14, 1994 1:57 PM

K_DMAStop
Boards All
Supported
Purpose Stops a DMA-mode analog input operation.
Prototype C/Ce++
DASErr far pascal K_DMAStop (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_DMAStop (hFrame : Longint; Var pStatus : Word;
Var pCount ; Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStop (hFrame : Longint; Var pStatus : Word,;
Var pCount : Longint) : Word; far; external DASSHELL';

G} Visual Basic for Windows
Declare Function K_DMAStop Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long) As
Integer

BASIC
DECLARE FUNCTION KDMAStop% ALIAS "K_DMAStop”
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,

SEG pCount AS LONG)

Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of DMA-mode analog input operation.
pCount Number of samples that were acquired into the

current huffer.

Value stored: @ to 65,536

4-53

P hap04_frm Page 54 Thursday, April 14,1994 1:57 PM

K_DMAStop (cont.)

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function stops the DMA operation defined by AF rame and stores the
status of the DMA operation in pStatus and the number of samples
acquired in pCount.

Refer to page 4-50 for the meaning of the value stored in pStatus.
If a DMA operation is not in progress, K_DMAStop is ignored.

See Also K_DMAStart, K_DMAStatus
Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
WORD wStatus;
{i} DWORD dwCount;

whasErr = K_DMAStop (hAD, &wStatusg, &dwCount);

Turbo Pascal
uges D1800TPEY; (* Use D1800TP6 for TP ver 6.0 *)

wStatus : Word;
dwCount : Longint;

wDhasErr := K_DMAStop (hAD, wStatus, dwCount};

Turbo Pascal for Windows
{$I DASDECL.INC)

wStatug : Word;
dwCount : Longint;

wDasErr := K_DMAStop (hAD, wStatusg, dwCount);

4-54 Function Reference

{I}Lhapm_.frm Page 55 Thursday, April 14, 1994 1:57 PM

K_DMAStop (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Global dwCount As Long

whDagErr = K_DMAStop (hAD, wStatus, dwCount}

BASIC
* $INCLUDE: ‘'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KDMAStop% (hAD, wStatus, dwCount}

4-55

@‘chapm_.ﬁm Page 56 Thursday, April 14, 1994 1:57 PM

K_DOWrite

Boards All
Supported

Purpose Writes a single digital output value to the digital output channel.

Prototype C/Cas
DASEIr far pascal K_DOWrite (DWORD hDev, BYTE nChan,
DWORD dwData),

Turbo Pascal
Function K_DOWrite (hDev : Longint; nChan : Byte;
dwData : Longint) : Word,;

Turbo Pascal for Windows
Function K_DOWrite (hDev : Longint; nChan : Byte;
dwData : Longint) : Word; far; external ' DASSHELL'";

Q} Visual Basic for Windows
Declare Function K_DOWrite Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal dwData As Long) As Integer

BASIC

DECLARE FUNCTION KDOWrite% ALIAS "K_DOWrite"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
BYVAL dwData AS LONG)

Parameters hDev Handle associated with the board.

nChan Digital output channel.
Valid value: 0

dwData Digital output value.
Valid values: @ to 255 for DAS-1800HC Series
boards
0 to 15 for DAS-1800ST/HR
Series boards

4-56 Function Refarence

{Blchapozt_.frm Page 57 Thursday, April 14, 1994 1:57 PM

K_DOWrite (cont.)

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function writes the value dwData to the digital output lines on the
board specified by hDev.

dwData is a 32-bit variable, The value to be written is stored in bits 0
through 7 for DAS-1800HC Series boards or bits 0 through 3 for the
DAS-1800ST/HR Series boards; the values in the remaining bits of
dwData are not defined. Refer to page 2-35 for more information.

See Also K_IntStart, K_GetDOCurVal
Usage C/Cs++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
'@' DWORD dwDOValue;

dwhOValue = 0x5;
wDasBEyxyr = K_DOWrite (hDO, 0, dwDQValue);

Turbo Pascal
uses D180O0TP7; (* Use D180QTP6 for TP ver 6.0 *)

dwDOValue : Longint

dwDOValue := §5;
whasErr := K_DOWrite (hDO, 0, dwDOValue);

Turbo Pascal for Windows
{41 DASDECL.INC)

dwDOValue : Longint

dwDOValue := $5;
wDagErr := K_DOWrite (hDO, (0, dwDOValue};

4-57

-@—Lhapﬂét_.frm Page 58 Thursday, April 14, 1994 1:57 PM

K_DOWrite (cont.)

4-58

Visual Basic for Windows

{Include DASDECL BAS in your program make file)

Global dwDOValue As Long

dwDOValue &HS

wDasErr = K_DOWrite (hDC, 0, dwDOValue)

BASIC
' $INCLUDE: ‘'DASDECL.BI'

DIM dwDOValue AS LONG

dwDOValue = &H5
wDasErr = KDOWrite% (hDO,

0,

dwDOValue)

Function Reterence

{]}lchapm_.frm Page 59 Thursday, April 14, 1994 1:57 PM

K_FormatChnGAry

Boards All
Supported
Purpose Converts the format of a channel-gain queue,
Prototype C/Ct++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KFormatChanGAry% ALIAS
"K_FormatChnGAry" (SEG pArray AS INTEGER)

Parameters pArray Channel-gain queue starting address.

Return Value This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

Remarks This function converts a channel-gain queue created in BASIC or Visual
Basic for Windows using double-byte (16-bit) values to a channel-gain
queue of single-byte (8-bit) values that the K_SetChnGAry function can
use.

After you use this function, your program can no longer read the
converted list. You must use the K_RestoreChnGAry function to return
the list to its original format. Refer to page 4-174 for more information,

4-59

© N

) kchap04_frm Page 60 Thursday, April 14, 1994 1:57 PM

K_FormatChnGAry (cont.)

See Also K_SetChnG Ary, K_RestoreChnGAry
Usage

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global ChanGainArray (16} As Integer ' Chan/Gain array

' Create the array of channel/gain pairs

ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(l) = 0: ChanGainArray(2) = 0
ChanGainarray (3} = l: ChanGainArray(4) = 1

wDasErr = K_FormatChnGAry (ChanGainArray(0))

BASIC
' SINCLUDE: 'DASDECL.BI'

$ DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' ¥ of chan/gain pairs
ChanGainArray (i) = 0: ChanGainlArray(2) = 0

It

ChanGainArray(3) 1: ChanGainArray(4) = 1
wDasErr = KFormatChnGArv% (ChanGainArray(0))

4-60 Function Referance

{B—[Ehapm_.frm Page 61 Thursday, April 14, 1994 1:57 PM

K_FreeDevHandle

Boards All

Supported

Putpose Frees a previously specified board handle.
Prototype C/C++

DASEir far pascal K_FrecDevHandle (DWQORD kD ev);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_FreeDevHandle (hDev : Longint) : Word; far;
external DASSHELL;

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL . DLL"

-@- . (ByVal hDev As Long) As Integer
BASIC
Not supported
Parameters hDev Board handle you want to free.
Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function frees the board handle specified by #Dev as well as all
frame handles associated with sADev.

See Also K_GetDevHandle

4-61

{}}Ichapozl_.frm Page 62 Thursday, April 14, 1994 1:57 PM

K_FreeDevHandle (cont.)

Usage C/Ca+
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_FreeDevHandle {(hDev};

Turbo Pascal for Windows
{$I DASDECL. INC}

wDasErr := K_FreeDevHandle (hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDagsErr = K_FreeDevHandle (hDev)

4-62 Function Reierence

{}}Lhapm_.frm Page 63 Thursday, April 14, 1994 1:57 PM

K_FreeFrame

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Frees a frame.

C/C++
DASErr far pascal K_FreeFrame (DWORD hF rame);

Turbo Pascal
Function K_FreeFrame (hF rame : Longint) : Word;

Turbo Pascal for Windows
Function K_FreeFrame (hFrame : Longint) ; Word; far;
external ' DASSHELL';

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal iFrame As Long) As Integer

BASIC
DECLARE FUNCTION KFreeFrame% ALIAS "K_FrecFrame"
{(BYVAL hFrame AS LONG) :

hFrame Handle to frame you want to free.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

This function frees the frame specified by hFrame, making the frame
available for another operation.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

4-63

{{}Lhapozt_.frm Page 64 Thursday, April 14, 1994 1:57 PM

K_FreeFrame (cont.)

Usage

4-64

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_FreeFrame (hAD);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
wDhagsErr := K_FreeFrame {(hAD);

Turbo Pascal for Windows
{$T DASDECL.INC}

wDasErr := K_FreeFrame (hAD);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDhasErr = K_FreeFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

whDagErr = KFreeFrame% (hAD)

Function Reference

@Lhapm_.frm Page 65 Thursday, April 14, 1994 1:57 PM

K_GetAbouiTrig

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gets the number of post-trigger samples as specified by
K_SetAboutTrig.

C/Ce+
DASEIr far pascal K_GetAboutTrig (DWORD hFrame,
DWORD far *pSamples);

Turbo Pascal
Function K_GetAboutTrig (hFrame : Longint;
Var pSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_GetAboutTrig (hFrame : Longint;
Var pSamples : Longint) : Word; far; external ' DASSHELL';

Visual Basic for Windows
Declare Function K_GetAboutTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pSamples As Long) As Integer

BASIC

DECLARE FUNCTION KGetAboutTrig% ALIAS "K_GetAboutTrig"

(BYVAL hFrame AS LONG, SEG pSamples AS LONG)

hFrame Handle to the frame that defines the operation.

pSamples Number of post-trigger samples.

This function returns an integer error/status code, Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information,

For the operation specificd by hFrame, this function stores the number of

post-trigger samples to acquire in pSamples.

&

4-65

-@-Lhap()tl_.frm Page 66 Thursday, April 14, 1994 1:57 PM

K_GetAboutTrig (cont.)

See Also K_SetAboutTrig, K_ClrAboutTrig
Usage C/Ca+
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_GetAboutTrig (hAD, &dwSamples);

Turbo Pascal
uses D1800TP7; {(* Use D1800TP6 for TP ver 6.0 *)

whDasErr := K_GetAboutTrig (hAD, dwSamples);

Turbo Pascal for Windows
{$I DASDECL.INC)}

wDasErr := K_GetAboutTrig (hAD, dwSamples);

Visual Basi¢ for Windows
'EB" (Include DASDECL.BAS in your program make file)

wDagErry = K_GetAboutTrig (hAD, dwSamples)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KGetAbcutTrig% (hAD, dwSamples)

4-66 Function Reterence

-@Lhapm_.frm Page 67 Thursday, April 14, 1994 1:57 PM B

K_GetADCommonMode

Boards DAS-1801ST, DAS-1802ST, DAS-1802HR
Supported
Purpose Get a DAS board’s A/D common-mode ground reference.
Prototype C/Cus
DASErr far pascal K_GetADCommonMode (DWORD #hDeyv,
WORD far *pMode);

Turbo Pascal
Function K_GetADCommonMode(hDe¢v : Longint;
Var pMode : Word) : Word,

Turbo Pascal for Windows
Function K_GetADCommonMaode (D¢v : Longint;
Var pMode : Word) : Word, far; external DASSHELL";

{1} Visual Basic for Winhdows Q}

Declare Function K_GetADCommonMode Lib "DASSHELL.DLL"
(ByVal #Dev As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetADCommonMode% ALIAS
"K_GetADCommonMode" (BY VAL ADev AS LONG,

SEG pMode AS INTEGER)
Parameters hDev Handle to the frame that defines the operation.
pMode A/D common-mode ground reference.

Value stored: 0 for LL-GND
1 for user-defined

Return Vatue This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-67

EBLhapOél_.frm Page 68 Thursday, April 14, 1994 1:57 PM

K_GetADCommonMode (cont.)

Remarks For the board specified by ADev, this function stores the code that
indicates the A/D common-mode ground reference in pMode.

See Also K_SetADCommonMode
Usage C/C+s
#include “DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_CetADCommonMode (hDev, &nADCommMode) ;

Turbo Pascal
uges D18COTP7:; (* Use D1800TP6 for TP ver 6.0 *)

whasErr := K_GetADCommonMode (hDev, wADCommMode) ;

Turbo Pascal for Windows
(4T DASDECL.INC}

wDasBrr := K_GetADCommonMode (hDev, wADCommMode) ;

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_GetADCommonMode (hDev, wADCommMode)

BASIC
* S$INCLUDE: 'DASDECL.BI'

wDasErr = KGetADCommonMode% {(hDev, wADCommMode}

4-68 Function Reference

{[}Lhap()fl_.frm Page 69 Thursday, April 14, 1994 1:57 PM

K_GetADConfig

Boards All
Supported
Purpose Get a DAS board’s A/D input channel configuration.
Prototype C/C++
DASEr far pascal K_GetADConfig (DWORD ADev,
WORD far *pMode),

Turbo Pascal
Function K_GetADConfig (hDev : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetADConfig (hDev : Longint; Var pMode : Word) : Word,
far; external DASSHELL';

Visual Basic for Windows
& Declare Function K_GetADConfig Lib "DASSHELL DLL"
(ByVal hDev As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetADConfig% ALIAS "K_GetADConfig"
(BYVAL hDev AS LONG, SEG pMode AS INTEGER)

Parameters hDev Handle associated with the board.

pMode A/D input channel configuration.
Value stored: 0 for Differential
1 for Single-ended

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

Remarks This function stores the code that indicates the A/D input channel
configuration in pMode for the board specified by ADev.

4-69

& &

D khap04_frm Page 70 Thursday, April 14, 1994 1:57 PM

K_GetADConfig (cont.)

See Also K_SetADConfig

Usage CiCe++
#include "DASDECL.H" // Use *DASDECL.HPP for C++
DWORD hAD;

wDasEry = K_GetADConflig (hDev, &wADCeonfig);

Turbo Pascal
uses D1800TP7; {(* Use D1800TP6 for TP ver 6.0 ¥*)

hAD : Longint;
wDasErr := K _GetADConfig (hDev, wADConfig);

Turbo Pascal for Windows
($I DASDECL.INC)

‘ hAD

whasErr := K_GetADConfig (hDev, wADConfig);

: Longint;

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global hAD As Long

wDasErr = K_GetADConfig {(hDev, wADCommMode)

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM hAD AS LONG

wDasErr = KGetADCenfig% (hDev, wADConfig)

4-70 Function Referance

{E—Lhﬂpm_.frm Page 71 Thursday, April 14, 1994 1:57 PM

K_GetADFrame

Boards All
Supported
Purpose Accesses an A/D frame for an analog input operation.
Prototype CiCe+
DASErr far pascal K_GetADFrame (DWORD hDev,
DWORD far * pFrame);

Turbo Pascal
Function K_GetADFrame (hDev : Longint;
Var pFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_GetADFrame (hDev : Longint;
Var pFrame : Longint) : Word; far; external DASSHELL';

-@ Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
{ByVal hDev As Long, pFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGetADFrame% ALIAS "K_GetADFrame"
(BYVAL hDev AS LONG, SEG pFrame AS LONG)

Parameters hDev Handle associated with the board.
pFrame Handle to the frame that defines the operation.
Remarks This function specifies that you want to perform a DMA-mode or

interrupt-mode analog input operation on the board specified by hDev,
and accesses an available A/D frame with the handle AFrame. The frame
is initialized to its default settings; the default settings are given in Table
3-1 on page 3-5.

See Also K _ClearFrame, K_FreeFrame

4-71

P khap04_frm Page 72 Thursday, April 14, 1994 1:57 PM &

K_GetADFrame (cont.)

Usage CiCus
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD haAD;
whDasErr = K_GetADFrame {hDev, &hAD);

Turbo Pascal
ugeg DLBOOTP7; (* Use D1800TP6 for TP ver 6.0 *)

hAD : Longint;
wDasErr := K_@GetADFrame (hDev, hAD);

Turbo Pascal for Windows
{41 DASDECL.INC}

hAD : Longint;
{$} wDasErr := K_GetADFrame (hDev, hAD}; {$}

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global hAD As Long

whasErr = K_GetADFrame {(hDev, hAD)}

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM hAD AS LONG

wDasErr = KGetADFrame% (hDev, hAD)

4-72 Function Reference

K_GetADFreeRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Gets the conversion mode,

C/Ce++
DASEtr far pascal K_GetADFreeRun (DWORD hFrame,
short far *pStatus);

Turbo Pascal
Function K_GetADFreeRun (#F rame : Longint;
Var pStarus : Word) : Word;

Turbo Pascal for Windows
Function K_GetADFreeRun (#Frame : Longint;
Var pStatus : Word) : Word; far; external ' DASSHELL";

Visual Basic for Windows
Declare Function K_GetADFreeRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer) As Integer

BASIC

DECLARE FUNCTION KGetADFreeRun% ALIAS
"K_GetADFreeRun" (BY VAL hFrame AS LONG,
SEG pStatus AS INTEGER)

hFrame Handle to the frame that defines the operation.

pStatus Code that indicates the conversion mode.
Value stored: 0 for Paced
0 for Burst

This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/siatus
code indicates that an error occurred. Refer to Appendix A for additional

information,

4-73

ﬁa

B khap04_frm Page 74 Thursday, April 14, 1994 1:57 PM

K_GetADFreeRun (cont.)

Remarks For the operation defined by hFrame, this function stores the code that
indicates the conversion mode in pStatus.

The pStatus variable contains the value of the Conversion Mode element.
Refer to page 2-15 for information on conversion modes.

See Also K_SetADFrecRun

Usage C/C++
$include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wMode:
whasErr = K_CGetADFreeRun (hAD, &wMode);

Turbo Pascal

uses D1800OTP7; (* Use D1800TP6 for TP ver 6.0 *}
{i} wMode : Word;
whagEry := K_GetADFreeRun (hAD, wMode);

Turbo Pascal for Windows
{$I DASDECL.INC}

wMode : Word;
wDasErr := K_GetADFreeRun (hAD, wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wMode As Integer

wDaskErr = K_GetADFreeRun (hAD, wMode}

4-74 Function Reierence

@—lchap()cl_.frm Page 75 Thursday, April 14, 1994 1:57 PM

K_GetADFreeRun (cont.)

BASIC
' SINCLUDE: '‘'DASDECL.BI'

DIM wMode AS INTEGER

wDagErr = KGetADFreeRun% (hAD, wMode)

4-75

{I}Lhapm_.frm Page 76 Thursday, April 14, 1994 1:57 PM

K_GetADMode

Boards All
Supported
Purpose Get a DAS board’s A/D input range type.
Prototype C/C++
DASEr far pascal K_GetADMode (DWORD hDey,
WORD far *pMode);
Turbo Pascal

Function K_GetADMode (hDev : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetADMode (hDev : Longint; Var pMode : Word) : Word;
far; external "DASSHELL';

Visual Basic for Windows
Q} Declare Function K_GetADMode Lib "DASSHELL.DLL"
{ByVal hDev As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetADMode% ALIAS "K_GetADMode"
(BYVAL hDev AS LONG, SEG pMode AS INTEGER)

Parameters hDev Handle associated with the board.

pMode A/D input range type.
Value stored: 0 for Bipolar
1 for Unipolar

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function stores the code that indicates the A/D input range type for
the board specified by ADev in pMode.

4-76 Function Refarence

© @

P khap04_frm Page 77 Thursday, April 14,1994 1:57 PM

K_GetADMode (cont.)

See Also K_SetADMode

Usage CiC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
DWORD hAD;

wDasErr = K_GetADMode (hDev, &nADMode) ;

Turbo Pascal
uses D13800TP7; {(* Use D1800TP6 for TP ver 6.0 *)

hAD : Longint;
wDagErr := X_GetADMode (hDev, wADMode);

Turbo Pascal for Windows
{41 DASDECL.INC}

hAD : Longint;
wDasErr := K_GetADMode {(hDev, wADMode) ;

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Glebal hAD As Long

wDasErr = K_GetADMode (hDev, wADMode)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM hAD AS LONG

whasErr = KGetADMcde% {(hDev, wADMcde)

477

{B—Lhapm_.frm Page 78 Thursday, April 14, 1994 1:57 PM

K_GetADTrig

Boards All

Supported

Purpose Gets the current analog trigger conditions.
Prototype C/C++

DASETr far pascal K_GetADTrig (DWORD hFrame, short far *pOpt,
short far *pChan, DWORD far *pLevel);

Turbo Pascal
Function K_GetADTrig (hF rame : Longint; Var pOpt ; Word;
Var pChan : Word; Var pLev : Longint) : Word;

Turho Pascal for Windows

Function K_GetADTrig (hFrame : Longint; Var pOpt : Word;
Var pChan : Word; Var pLev : Longint) : Word; far;

external DASSHELL',

Visual Basic for Windows

Declare Function K_GetADTrig Lib "DASSHELL,DLL"
(ByVal hFrame As Long, pOpt As Integer, pChan As Integer,
pLevel As Long) As Integer

BASIC

DECLARE FUNCTION KGetADTrig% ALIAS "K_GetADTrig"
(BYVAL hFrame AS LONG, SEG pOpt AS INTEGER,

SEG pChan AS INTEGER, SEG pLevel AS LONG)

Parameters hFrame Handle to the frame that defines the operation.
pOpt Analog trigger polarity.
Value stored: 0 for Positive edge
2 for Negative edge
4-78 Function Reference

@-Lhap()tl_.frm Page 79 Thursday, April 14, 1994 1:57 PM

©

K_GetADTrig (cont.)

Return Value

Remarks

See Also

pChan Analog input channel used as trigger channel.
Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-1800HC D03l 0to 63

Not applicable Oto15(N+1)
EXP-1800 expansion boards
attached
pLevel Level at which the trigger event occurs.

This function returns an integer error/status code, Error/status code
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by hAFrame, this function stores the channel
used for an analog trigger in pChan, the level used for the analog trigger
in pLevel, and the trigger polarity in pOpt.

The pOpt variable contains the value of the Trigger Polarity element,
The pChan variable contains the value of the Trigger Channel element.

The pLevel variable contains the value of the Trigger Level element. The
value of pLevel is represented in raw counts. Refer to Appendix B for
information on converting the raw count stored in pLevel to voltage.,

K_SetADTrig

4-79

D thap04_frm Page 80 Thursday, April 14,1994 1:57 PM

K_GetADTrig (cont.)

Usage C/Cas
#include "DASDECL.H" // Use "DASDECL.HPP for C++

int nOpt, nChan;
DWORD dwLevel;

wDasErr = K_GetADTrig (hAD, &nOpt, &nChan, &dwLevel);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

nopt : Integer;
nChan : Integer;

dwlLevel : Longint;

whagErr := K_GetADTrig (hAD, nOpt, nChan, dwlhevel);

Turbo Pascal for Windows
{B' {41 DASDECL.INC}

nopt : Integer;
nChan : Integer;

dwLevel : Longint;

wDasErr := K_GetADTrig (hAD, nOpt, nChan, dwLevel);

Visual Basic for Windows
(Include DASDECL BAS in your program make file)

Global nOpt As Integer
Global nChan As Integer
Global dwLevel As Long

wDagsErr = K_@GetADTrig (hAD, nOpt, nChan, dwLevel)

4-80 Function Reference

{Blchapm_.frm Page 81 Thursday, April 14, 1994 1:57 PM

K _GetADTrig (cont.)

BASIC
‘ $INCLUDE: 'DASDECL.BI'

DIM nOpt AS INTEGER
DIM nChan AS INTEGER
DIM dwLevel AS LONG

wDasErr = KGetADTrig$% (hAD, nOpt, nChan, dwLevel)

4-81

Q}LhapOL.frm Page 82 Thursday, April 14, 1994 1:57 PM

K_GetBuf

Boards All
Supported

Purpose Returns the address and size of a buffer assigned to a frame.

Prototype C/C++
DASEir far pascal K_GetBuf (DWORD hFrame, void far * far *pBuf,
DWORD far *pSamples);

Turbo Pascal
Function K_GetBuf (hFrame : Longint; Var pBuf : Pointer;
Var pSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_GetBuf (hFrame : Longint; Var pBuf ; Pointer;
Var pSamples : Longint) : Word; far; external 'DASSHELL",

-Q} Visual Basic for Windows
Declare Function K_GetBuf Lib "DASSHELL.DLL"
(ByVal AFrame As Long, pBuf As Long, pSamples As Long) As Integer

BASIC

DECLARE FUNCTION KGetBuf% ALIAS "K_GetBuf"
(BYVAL hFrame AS LONG, SEG pBuf AS LONG,

SEG pSamples AS LONG)

Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer.

pSamples ‘ Number of samples.
Value stored: 0 to 65,535

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-82 Function Reference

{]}Lhapm_.frm Page 83 Thursday, April 14, 1994 1:57 PM

K_GetBuf (cont.)

Remarks For the operation specified by AFrame, this function stores either the
address of the currently allocated buffer (if you are using a single buffer)
or the address of the first buffer (if you are using multiple buffers) in pBuf
and the number of samples stored in that buffer in pSamples.

Use this function to retrieve the address of the buffer whose address was
specified by K_SetBuf, K_SetBufl, or K_BufListAdd.

The pBuf variable contains the value of the Buffer element.
The pSamples variable contains the value of the Number of Samples

element,
See Also K_BufListAdd, K_SetBuf, K_SetBuil
Usage CiCe+

#include "DASDECL.H" // Usze "DASDECL.HPP for C++

void far *pADBuffer;
{i} DWORD dwSamples:

wDasErr = K_GetBuf {hAD, &pADBuffer, &dwSamples);

Turbo Pascal
uses D180CTP7; (* Use D1800TP& for TP ver 6.0 *)

pADBuffer : Longint;
dwSamples : Longint;

wDasErr = K_GetBuf (hAD, @pADBuffer, dwSamples);

Turbo Pascal for Windows
{4I DASDECL.INC}

pADBuffer : Longint;
dwSamples : Longint;

wDasErr = K_GetBuf (haAD, @pADBuffer, dwSamples);

4-83

-Q}Lhapofl_.frm Page 84 Thursday, April 14, 1994 1:57 PM

K_GetBuf (cont.)

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Dim pADBuffer As Long

wDasErr = K_GetBuf (hAD, pADRBuffer, dwSamples);

BASIC
' $INCLUDE: ‘DASDECL.BI'

Dim pADBuffer As Long

wDasErr = K_GetBuf% (hAD, pADBuffer, dwSamples);

4-84 Function Reference

Q}Ichapm_.frm Page 85 Thursday, April 14, 1994 1:57 PM &

K_GetBurstTicks

Boards All
Supported
Purpose Gets the number of clock ticks between conversions to determine the

burst mode conversion rate.

Prototype C/iC++
DASEitr far pascal K_GetBurstTicks (DWORD hFrame,
short far *pTicks);

Turbo Pascal
Function K_GetBurstTicks (hFrame : Longint;
Var pTicks : Word) : Word,;

Turbo Pascal for Windows
Function K_GetBurstTicks (AFrame : Longint;
Var pTicks : Word) : Word, far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_GetBurstTicks Lib "DASSHELL.DLL"
(ByVal hFrame as Long, pTicks As Integer) As Integer

BASIC
DECLARE FUNCTION KGetBurstTicks% ALIAS "K_GetBurstTicks"
(BYVAL hFrame AS LONG, SEG pTicks AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

pTicks Number of clock ticks between conversions.
Value stored: 3 to 255

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-85

P hap04_frm Page 86 Thursday, April 14, 1994 1:57 PM

K_GetBurstTicks (cont.)

Remarks For the operation defined by hFrame, this function stores the number of
clock ticks between conversions of each channel in a scan in pTicks.

The pTicks variable contains the value of the Burst Clock Rate element,

See Also K_SetBurstTicks
Usage C/iC++
#include "DASDECL.H" // Use “"DASDECL.HPP for C++

int nCount;

wDasErr = K_GetBurstTicks (hAD, &nCount);

Turbo Pascal
ugeg D180OTP7T; {(* Use D180QTP6 for TP ver 6.0 *)
nCount : Integer;

{1} wDasErr := K_GetBurstTicks (hAD, nCount};

Turbo Pascal for Windows
{41 DASDECL.INC)

nCount : Integer;

wDagErr := K_GetBurstTicks (hAD, nCount);

Visual Basic for Windows
{Include DASDECL . BAS in your program make file)

Glebal nCount As Integer

wDasErr = K_GetBurstTicks (hAD, nCount})

4-86 Function Reference

-E]}Lhapm_.frm Page 87 Thursday, April 14, 1994 1:57 PM

K_GetBurstTicks (cont.)

BASIC
' SINCLUDE: 'DASDECL.BI'

DIM nCount AS INTEGER

wDasErr = KGetBurstTicks$% (hAD, nCount)

4-87

Q}Lhapm_.frm Page 88 Thursday, April 14, 1994 1:57 PM

K_GetChn

Boards All
Supported

Purpose Gets a single channel number,

Prototype C/Ce+
DASErr far pascal K_GetChn (DWORD AFrame, short far *pChan);

Turbo Pascal
Function K_GetChn (hFrame : Longint; Var pChan : Word) : Word;

Turbo Pascal for Windows
Function K_GetChn (hWFrame : Longint; Var pChan . Word) : Word; far;
external DASSHELL";

Visual Basic for Windows
Declare Function K_GetChn Lib "DASSHELL.DLL"
{{} (ByVal hFrame As Long, pChan As Integer) As Integer

BASIC
DECLARE FUNCTION KGetChn% ALIAS "K_GetChn"
(BYVAL hFrame AS LONG, SEG pChan AS INTEGER)

4-88 Function Reference

{]}Ichapm_.frm Page 89 Thursday, April 14, 1994 1:57 PM

K_GetChn (cont.)

Parameters

{I} Return Value

Remarks

See Also

Usage

hFrame Handle to the frame that defines the operation.
pChan Channel on which to perform the operation.
Valid values:

Valid chanhnel humbers

Board Difterentlal Single-ended
DAS-1800HC 01031 0to 63

Not applicable 0to 15(N + 1)

DAS-1800ST/HR with N
EXP-1800 expansion boards
attached

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

For the operation defined by hF rame, this function stores the channel
number in pChan.

The pChan variable contains the value of the Start Channel and Stop
Channel elements.

K_SetChn, K_SetStartStopChn, K_SetStartStopG

C/iC++
#include "DASDECL.H" // Use “DASDECL.HPP for C++

gshort nChan;

wDasErr = K_GetChn (hAD, &nChan);

4-89

B khap04_frm Page 90 Thursday, April 14, 1994 1:57 PM

K_GetChn (cont.)

Turbo Pascal
uses DL8QOTP7; (* Use D1800OTP& for TP ver 6.0 *)

nChan : Integer;

wDagsErr := K_GetChn (hAD, nChan);

Turbo Pascal for Windows
{SI DASDECL.INC}

nChan : Integer;

wDagEryr := K_GetChn {hAD, nChan);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Global nChan AS Integer
' whagErr = K_GetChn (hAD, nChan)

BASIC
' $INCLUDE: 'DASDECL,BI'

DIM nChan AS INTEGER

wDasErr = KGetChn% (hAD, nChan)

4-90 Function Reference

Q}Lhapm_.frm Page 91 Thursday, April 14, 1994 1:57 PM

K_GetChnGAry

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Gets the starting address of a channel-gain queue.

C/Ce+
DASErr far pascal K_GetChnGAry (DWORD hFrame,
void far * far *pArray),

Turbo Pascal
Function K_GetChnGAry (hFrame : Longint;
Var pArray : Integer) : Word;

Turbo Pascal for Windows
Function K_GetChnGAry (AFrame : Longint;
Var pArray : Integer) : Word; far; external DASSHELL";

Visual Basic for Windows
Declare Function K_GetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pArray As Long) As Integer

BASIC
DECLARE FUNCTION KGetChnGAry% ALIAS "K_GetChnGAry"
(BYVAL hFrame AS LONG, SEG pArray AS LONG)

hFrame Handle to the frame that defines the operation.

PArray Channel-gain queue starting address.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information.

4-91

P khap04_frm Page 92 Thursday, April 14,1994 1:57 PM

K_GetChnGAry (cont.)

Remarks For the operation defined by AFrame, this function stores the starting
address of the channel-gain queue in pArray.

The pArray variable contains the value of the Channel-Gain Queue
element.

Refer to page 2-14 for information on setting up a channel-gain queue.

See Also K_SetChnGAry
Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

void far *plArray;

whasErr = K_GetChnGAry (hAD, &pArray);

Turbo Pascal
useg D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

pArray : Integer;

whasErr = K_GetChnGAry (hAD, pArray};

Turbo Pascal for Windows
{41 DASDECL.INC}

pArray : Integer;

wDasErr = K_GetChnGAry (hAD, pArray);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

whDasErr = K_GetChnGAry {(hAD, pArray)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = K_GetChnGAry (hAD, pArray)

4-92 Function Referance

& &

-@Lhapm_.frm Page 93 Thursday, April 14, 1994 1:57 PM

K_GetClk

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gets the pacer clock source.

CiC++
DASE?r far pascal K_GetClk (DWORD AF rame, short far *pMode);

Turbo Pascal
Function K_GetClk (hFrame : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetClk (hFrame : Longint; Var pMode : Word) : Word; far,
external ' DASSHELL";

Visual Basic for Windows
Declare Function K_GetClk Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetClk% ALIAS "K_GetCKk"
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER)

hFrame Handle to the frame that defines the operation.

pMode Pacer clock source.
Value stored; 0 for Internal
1 for External

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information,

For the operation defined by hFrame, this function stores the pacer clock
source in pMode.,

4-93

G}Lhapm_.frm Page 94 Thursday, April 14, 1994 1:57 PM

K_GetCIk (cont.)

An internal clock source is the output of the onboard counter/timer
circuitry; an external clock source is an external signal connected to the
DIO/XPCLK pin (DAS-1800HC Series) or XPCLK pin
{DAS-1800ST/HR Series).

Refer to page 2-15 (for analog input operations), page 2-29 (for analog
output operations), and page 2-36 (for digital I/O operations) for more
information about pacer clock sources.

The pMode variable contains the value of the Clock Source ¢lement.
See Also K_SetClk, K_SetClkRate

Usage CiC++
#include “DASDECL.HY // Use "DASDECL.HPP for C++

Word wMode;
whasErr = K_GetClk (hAD, &wMode};

Turbo Pascal
uses D18Q0TPE7; {* Use D1800TP6 for TP ver 4.0 *)

wMode : Word;

wDagsErr := K_GetClk (hAD, wMode);

Turbo Pascal for Windows
{31 DASDECL.INC}

wMode : Word;

whasErr := K_GetClk {(hAD, wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Glebal wMode As Integer

whasErr = K_GetClk (haD, wMode)

4-94 Function Reference

& <

Q}Lhapo4_.ﬁm Page 95 Thursday, April 14, 1994 1:57 PM

K_GetClk (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wMode AS INTEGER

wDasErr = KGetClk% (hAD, wMode)

4-95

-@-lchapoéiw.frm Page 96 Thursday, April 14, 1994 1:57 PM

K_GetClkRate

Boards All
Supported
Purpose Gets the intemnal clock divisor (clock ticks) for the 5 MHz clock source.
Prototype C/Ca+
DASEir far pascal K_GetClkRate (DWORD hFrame,
DWORD far *pRate);

Turbo Pascal
Function K_GetClkRate (hF rame : Longint; Var pRate : Longint) : Word,;

Turbo Pascal for Windows
Function K_GetClkRate (hF rame : Longint; Var pRate : Longint) : Word;
far; external DASSHELL";

Visual Basic for Windows
—a} Declare Function K_GetClkRate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pRate As Long) As Integer

BASIC
DECLARE FUNCTION KGetClkRate% ALIAS "K_GetClkRate"
(BYVAL hFrame AS LONG, SEG pRate AS LONG)

Parameters hFrame Handle to the frame that defines the operation.,

pRate Number of clock ticks between conversions,
Value stored; 15 to 4,294,967,295

Return Value This function returns an integer error/status code, Error/status code ()
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by AFrame, this function stores the number of
clock ticks between conversions in pRate.

The pRate variable contains the value of the Pacer Clock Rate element.

4-96 Function Reference

@ &

-khap04_.frm Page 97 Thursday, April 14, 1994 1:57 PM

K_GetClkRate (cont.)

This function applies to an internal clock source only.

After an interrupt-mode or DMA-mode analog input operation, the value
stored in pRate represents the actual count used, not necessarily the count
set by K _SetClkRate.

See Also K_SetClkRate

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD dwRate;

whasErr = K_GetClkRate (hAD, &dwRate);

Turbo Pascal
useg D1800TP7: (* Use D1800TP& for TP ver &.0 *)

{$} dwRate : Longint;

wDasErr := K_GetClkRate (hAD, dwRate);

Turbo Pascal for Windows
{$I DASDECL.INC}

dwRate : Longint;
whasErr := K_GetClkRate (hAD, dwRate);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Glohal dwRate As Long

wDhasErr = K_GetClkRate (hAD, dwRate)

4-97

Q}Lhapm_.frm Page 98 Thursday, April 14, 1994 1:57 PM

K_GetClkRate (cont.)

BASIC
' SINCLUDE: 'DASDECL.BI'

DIM dwRate AS LONG

wDagErr = KGetClkRate% (hAD, dwRate)

4-98 Function Reference

ﬂ}[:hapm_.frm Page 99 Thursday, April 14, 1994 1:57 PM

K_GetContRun

Boards All

Supported

Purpose Gets the buffering mode.

Prototype C/C++
DASEirr far pascal K_GetContRun (DWORD AFrame,
short far *pMode);

Turbo Pascal
Function K_GetContRun (hFrame : Longint; Var pMode ; Word) : Word;

Turbo Pascal for Windows
Function K_GetContRun (AFrame : Longint; Var pMode : Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
e Declare Function K_GetContRun Lib "DASSHELL DLL"
(ByVal hFrame As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetContRun% ALIAS "K_GetContRun"
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

pMode Buffering mode.
Value stored: 0 for Single-cycle
0 for Continuous

Return Value This function retwrns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by AF rame, this function stores the buffering
mode in pMode.

4-99

{B—Lhapm_.frm Page 100 Thursday, April 14, 1994 1:57 PM

K_GetContRun (cont.)

The pMode variable contains the value of the Buffering Mode element.

Refer to page 2-18 (for analog input operations), page 2-30 (for analog
output operations) section, and page 2-38 (for digital 1/O operations) for a
description of buffering modes.

See Also K_SetContRun, K_ClrContRun

Usage CiCe+
#include "DASDECL.H" // Use "DASDECL.HPP for C++
WORD wMode;

wDasErr = K_GetContRun (hAD, &wMode);

Turbo Pascal

uzes D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
{3}_ wMode : Word;

wDasErr := K_CGetContRun (hAD, wMode);

Turbo Pascal for Windows
($I DASDECL.INC)

wMode : Word;

whasBErr := K_GetContRun (hAD, wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file}

Glchal wMode As Integer

wDasErr = K_GetlontRun (hAD, wMode)

4-100 Function Reference

-@Lhap(){.frm Page 101 Thursday, April 14, 1994 1:57 PM

K_GetContRun (cont.)

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM wMode AS INTEGER

wDasErr = KGetContRun% (hAD, wMode)

4-101

G}Iihapm_.frm Page 102 Thursday, April 14, 1994 1:57 PM

K_GetDAFrame

Boards DAS-1801HC, DAS-1802HC
Supported
Purpose Accesses a D/A frame for an analog output operation.
Prototype C/C++
DASEImT far pascal K_GetDAFrame (DWORD /iDev,
DWORD far * pFrame);

Turbo Pascal
Function K_GetDAFrame (#Dev : Longint;
Var pFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_GetDAFrame (hDev : Longint;
Var pFrame : Longint) : Word; far; external ' DASSHELL";

—E{} Visual Basic for Windows
Declare Function K_GetDAFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGetDAFrame% ALIAS "K_GetDAFrame"
(BYVAL hDev AS LONG, SEG AFrame AS LONG)

Parameters hDev Handle associated with the board.,
pFrame Handle to the frame that defines the D/A
operation.
Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-102 Function Reference

€D chap04_frm Page 103 Thursday, April 14, 1994 1:57 PM

K_GetDAFrame (cont.)

Remarks This function specifies that you want to perform an interrupt-mode analog
output operation on the board specified by Dev, and accesses an
available D/A frame with the handle pFrame. The frame s initialized to
its default settings; the default settings are given in Table 3-2 on page 3-7.

See Also K_FreeFrame, K_ClearFrame

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
DWORD hDA;

wDagBrr = K_GetDAFrame (hDev, &hDAa);

Turbo Pascal

uses D180QTP7; (* Ugse D1BOOTPE for TP ver 6.0 *)
{$} hDA : Longint;
wDasErr := K_GetDAFrame (nDev, hDA);

Turbo Pascal for Windows
{41 DASDECL.INC}

hDA : Longint;
wDaaByy := K_GetDAFrame {hDev, hDAY;

Visual Basic for Windows
(Include DASDECL BAS in your program make file)

Global hDA As Long

wDagBErr = K_CGetDAFrame {hDev, hDA)

4-103

{B-Lhap()«ft_.frm Page 104 Thursday, April 14, 1994 1:57 PM

K_GetDAFrame (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM hDA AS LONG

wDasErr = KGetDAFrame’® (hDev, hDA)

4-104 Function Reference

—@Lhap(m_‘frm Page 105 Thursday, April 14, 1994 1:57 PM

K_GetDevHandie

Boards All

Supported

Purpose Initializes any supported DAS board.
Prototype C/C++

DASErr far pascal K_GetDevHandle (DWORD hDrv,
WORD nBoardNum, DWORD far * pDev);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_GetDevHandle (hDrv : Longint; nBoardNum : Integer;
Var pDey : Longint) : Word; far; external 'DASSHELL,

Visual Basic for Windows

-El} Declare Function K_GetDevHandle Lib "DASSHELL.DLL"

(ByVal hDrv As Long, ByVal nBoardNum As Integer, pDev As Long)
As Integer
BASIC
Not supported

Parameters " hDrv Driver handle of the associated Function Call

Driver.

nBoardNum Board number.

Valid values: 0to 2

pDev Handle associated with the board.

4-105

B khap04_frm Page 106 Thursday, April 14, 1994 1:57 PM

K_GetDevHandle (cont.)

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function execuied successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function initializes the board associated with 2Drv and specified by
nBoardNum, and stores the board handle of the specified board in pDev.

The value stored in pDev is intended o be used exclusively as an
argument to functions that require a board handle. Your program should
not modity the value stored in pDev.

This function is available for C, Borland Turbo Pascal for Windows, and
Visual Basic for Windows application programs only.

See Also K_FreeDevHandle
Usage C/Ce++
{i} #include "DASDECL.H" // Use "DASDECL.HPP for C++
DWORD hDev;

whagErr = K_GetDevHandle (hDrv, 0, &hDev);

Turbo Pascal for Windows
{$I DASDECL.INC}

hbev : Longint;
wDasErr := K_GetDevHandle {hDrv, 0, hDev);

Visual Basic tor Windows
{Include DASDECL.BAS in your program make file)

Global hDev As Long

wDasErr = K_GetDevHandle {hDrv, 0, hDev)

4-106 Function Reference

{}}Lhapm_.frm Page 107 Thursday, April 14, 1994 1:57 PM

K_GetDIFrame

Boards All
Supported
Purpose Accesses a DI frame for a digital input operation.
Prototype CiC++
DASErr far pascal K_GetDIFrame (DWORD hDev,
DWORD far * pFrame),

Turbo Pascal
Function K_GetDIFrame (D ev : Longint; Var pFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_GetDIFrame (hDev : Longint; Var pF rame ; Longint) ; Word;
far; external 'DASSHELL';

Visual Basic for Windows
@ Declare Function K_GetDIFrame Lib "DASSHELL.DLL"
(ByVal hiDev As Long, pFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGetDIFrame% ALIAS "K_GetDIFrame”
(BYVAL hDev AS LONG, SEG pFrame AS LONG)

Parameters hDev Handle associated with the board.
pFrame Handle to the frame that defines the digital input
operation.
Return Value This function returns an integer error/status code. Error/status code

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-107

> khap04_frm Page 108 Thursday, April 14, 1994 1:57 PM

K_GetDIFrame (cont.)

Remarks This function specifies that you want to perform an interrupt-mode digital
input operation on the board specified by ADev, and accesses an available
digital input frame with the handle pFrame. The frame is initialized to its
default settings; the default settings are given in Table 3-3 on page 3-8.

See Also K_FreeFrame, K_ClearFrame

Usage C/C++
#include “DASDECL.H" // Use "DASDECL.HPP for C++

DWORD hDI;
wDasErr = K_GetDIFrame (hDev, &hDI);

Turbo Pascal

uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)
' hDI : Longint;
wDasErr := K_GetDIFrame {(hDev, hDI);

Turbo Pascal for Windows
{41 DASDECL.INC}

hDI : Longint;
whasErr := ¥X_GetDIFrame (hDev, hDI);

Visual Basic for Windows
{Include DASDECL BAS in your program make file)

Global hDI As Long

whasBEry = K_GetDIFrame {(hDev, hDI)

4-108 Function Reference

-@Ichapofl_.frm Page 109 Thursday, April 14, 1994 1:57 PM

K_GetDIFrame (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM hDI AS LONG

whasErr = KGetDIFrame% (hDev, hDI)

4-109

{[}Lhapozl_.frm Page 110 Thursday, April 14, 1994 1:57 PM

K_GetDiTrig

Boards All

Supported

Purpose Reads the current digital trigger conditions.
Prototype C/C++

DASEm far pascal K_GetDITrig (DWORD hFrame, short far * pOpt,
short far *pChan, DWQRD far *pPattern),

Turbo Pascal
Function K_GetDITrig (hFrame : Longint; Var pOpt : Word;
Var pChan : Word; Var pPattern ; Longint) : Word;

Turbo Pascal for Windows

Function K_GetDITrig (WFrame « Longint; Var pOpt - Word,
Var pChan : Word; Var pPattern : Longint) : Word, far;
external ' DASSHELL';

Visual Basic for Windows

Declare Function K_GetDITrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pOpt As Integer, pChan As Integer,
pPattern As Long) As Integer

BASIC

DECLARE FUNCTION KGetDITrig% ALIAS "K_GetDITrig"
(BYVAL hFrame AS LONG, SEG pOpt AS INTEGER,

SEG pChan AS INTEGER, SEG pPattern AS LONG)

Parameters hFrame Handle to the frame that defines the operation.
pOpt Trigger polarity and sensitivity.
Value stored: (¢ for Positive edge
2 for Negative edge
pChan Trigger channel.
Value stored: 0
plattern Trigger pattern.
4-110 Function Reference

@ &

€ khap04_frm Page 111 Thursday, April 14,1994 1:57 PM

&

K_GetDITrig {cont.)

Return Value

Remarks

See Also

Usage

This function returns an integer error/statug code. Ervor/status code 0
indicates that the function exccuted successfully, A non-zero error/status
code indicates that an error occurred. Refer 10 Appendix A for additional
information.

For the operation defined by hF rame, this function stores the trigger
polarity and trigger sensitivity in pOpt, the channel used for the digital
trigger in pChan, and the trigger pattern in pPattern,

Since the DAS-1800 Series Function Call Driver does not currently
support digital pattern triggering, the value of pPattern is meaningless;
the pPattern parameter is provided for future compatibility.

The pOpt variable contains the value of the Trigger Polarity and Trigger
Sensitivity elements.

The pChan variable contains the value of the Trigger Channel element.
K_Se(DITrig

C/C++
#tinclude "DASDECL.H" // Use "DASDECL.HPP for C++

short nOpt, nChan,
WORD wPat:;

wDasBErr = K_GetDITrig (hAD, &nOpt, &nChan, &wPat):;

Turbo Pascal
uses D180CTPR7; (* Use D1800TPE for TP ver 6.0 *)

nopt : Integer;
nChan : Integer;

wPat : Word;

wDasErr := K_GetDITrig (hAD, nOpt, nChan, wPat);

4111

P kchap04_frm Page 112 Thursday, April 14, 1994 1:57 PM

K_GetDITrig (cont.)

Turbo Pascal for Windows
{$I DASDECL.INC}

nOpt : Integer;
nChan : Integer;

wPat : Word;

wDasErr := K_GetDITrig (hAD, nOpt, nChan, wPat};

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nOpt As Integer
Global nChan As Integer
Global wPat Ag Integer

wDasErr = K_GetDITrig (haD, nOpt, nChan, wPat)

Q} BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nOpt AS INTEGER
DIM nChan A3 INTEGER
DIM wPat AS INTEGER

wDasErr = KGetDITrig% (hAD, nOpt, nChan, wPat)

4-112 Function Refarence

{}}Lhapm_.frm Page 113 Thursday, April 14,1994 1:57 PM

K_GetDOCurVal

Boards
Supported

Purpose

Prototype

Parameters

All

Gets the digital output value.

C/C++
DASErr far pascal K_GetDOCurVal (DWORD hFrame,
void far *pValue),

Turbo Pascal
Function K_GetDQCurVal (AF rame : Longint;
Var pValue : Longint) : Word;

Turbo Pascal for Windows
Function K_GetDQCurVal (hFrame : Longint;
Var pValue : Longint) ; Word; far; external DASSHELL';

Visual Basic for Windows
Declare Function K_GetDQCurVal Lib "DASSHELL.DLL"
(ByVal ~”Frame As Long, pValue As Long) As Integer

BASIC
DECLARE FUNCTION KGetDOCurVal% ALIAS "K_GetDOCurval”
(BYVAL hFrame AS LONG, SEG pValue AS LONG)

hFrame Handle to the frame that defines the digital
output operation.
pValue Digital output value.
Value stored: 0 to 255 for DAS-1800HC Series
boards

(} to 15 for DAS-1800ST/HR
Series boards

4-113

P kchap04_frm Page 114 Thursday, April 14, 1994 1:57 PM

K_GetDOCurVal (cont.)

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information.

Remarks On return, pValue contains the digital output value that was specified as
the pValue parameter in the most recent call to K_DOWrite. This value is
not necessarily the current value at the digital output channel.

Only the least-significant eight bits of pValue are valid for DAS-1800HC
Serics boards; only the Jeast-significant four bits of pVaiue are valid for
DAS-1800ST/HR Series boards.

See Also K_DOWrite
Usage CiC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
@ DWORD dwDOValue;

whagFrr = K_GetDOCurVal (hDO, &dwDOValue);

Turbo Pascal
uses D1I8JOOTPR7; {(* Uge D1800OTPS6 for TP ver £.0 *)

dwDOValue : Longint;

wDasErr := K_GetDOCurVal (hDO, dwDOValue};

Turbo Pascal for Windows
{$I DASDECL.INC}

dwDOValue : Longint;

wDasErr := K_CetDOCurVal (hDO, dwDOValue);

4-114 Function Reference

Q}Lhapm_.frm Page 115 Thursday, April 14, 1994 1:57 PM

K_GetDOCurVal (cont.)

Visual Basic for Windows
(Include DASDECL . BAS in your program make file)

Global dwDOValue As Long

wDhasErr = K_GetDOCurVal (hD0O, dwDOValue)

BASIC
' S$INCLUDE: 'DASDECL.BT'

DIM dwDOValue AS LONG

wDagErr = KGetDOCurVal% (hDO, dwDOValue)

4-115

{}}Lhapozt_.frm Page 116 Thursday, April 14, 1994 1:57 PM

K_GetDOFrame

Boards All

Supported

Purpose Accesses a DO frame for a digital output operation.
Prototype C/C++

DASErr far pascal K_GetDOFrame (DWORD ADey,
DWORD far * pFrame);

Turbo Pascal
Function K_GetDOFrame {(ADev : Longint;
Var pFrame : Longint) : Word,

Turbo Pascal for Windows
Function K_GetDOFrame (hDev : Longint;
Var pFrame : Longint) : Word; far; external ' DASSHELL';

G} Visual Basic for Windows
Declare Function K_GetDOFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGetDOFrame% ALIAS "K_GetDOFrame”
(BYVAL hDev AS LONG, SEG pFrame AS LONG)

Parameters hDev Handte associated with the board.

hFrame Handle to the frame that defines the digital
output operation.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-116 Function Reterence

B kchap04_frm Page 117 Thursday, April 14, 1994 1:57 PM

K_GetDOFrame (cont.)

Remarks This function specifies that you want to perform an interrupt-mode digital
output operation on the board specified by ADev and accesses an availabie
digital output frame with the handle AFrame. The frame is initialized to
its default settings; the default settings are given in Table 3-4 on page 3-9.

See Also K_FreeFrame, K_ClearFrame

Usage CiC+4+
#include "DASDECL.H" // Use "DASDECL.HPP for C++
DWORD hDO;

wDasErr = K_GetDOFrame (hDev, &hDO);

Turbo Pascal

uses D1800TP7; (* Use D1800GTPE for TP ver 6.0 *)
$ hDO : Longint;
wDasErr := K_GetDOFrame (hDev, hDO);

Turbo Pascal for Windows
{$I DASDECL.INC)

hDO : Longint;
wDasErr := K_GetDOFrame {(hDev, hDO);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Glokal hDO Az Long

wDagErr = K_GetDOFrame (hDev, hDO)

4-117

{B—LhapOﬁL_.frm Page 118 Thursday, April 14,1994 1:57 PM

K_GetDOFrame (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM hDO AS LONG

wDasErr = KGetDOFrame% (hDev, hDO}

4-118 Function Reference

Q}Lhapm_.frm Page 119 Thursday, April 14, 1994 1:57 PM

K_GetErrMsg

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gets the address of an error message string.

C/iC++
DASErr far pascal K_GetErrMsg (DWORD hDev, short nDASETrr,
char far * far * pErrMsg);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Not supported

BASIC

Not supported

hDev Handle associated with the board.
nDASErr Error message number.

pErrMsg Address of error message string.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information,

For the board specified by ADev, this function stores the address of the
string corresponding to error message number nDASErr in pErrMsg.

Refer to page 2-4 for more information about error handling. Refer to

Appendix A for a list of error codes and their meanings.

4-119

{]}Lhapm_.frm Page 120 Thursday, April 14, 1994 1:57 PM

K_GetErrMsg (cont.)

Usage CiC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

char far *pErrMsqg;

whasErr = K_GetErrMsg (hDev, wDasErr, &pErrMsg);

4-120 Function Reference

G}Lhapm_.frm Page 121 Thursday, April 14, 1994 1:57 PM

K_GetExtClkEdge

Boards All

Supported

Purpose Reads the active edge of the external clock.

Prototype C/iC++
DASErr far pascal K_GetExtClkEdge (DWORD hFrame,
short far *pEdge),

Turbo Pascal
Function K_GetExtClkEdge (hFrame : Longint;
Var pEdge : Word) : Word;

Turbo Pascal for Windows
Function K_GetExtClkEdge (hFrame : Longint;
Var pEdge : Word) : Word; far; external 'DASSHELL;

G} Visual Basic for Windows
Declare Function K_GetExtClkEdge Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pEdge As Integer) As Integer

BASIC
DECLARE FUNCTION KGetExtClkEdge% ALIAS
"K_GetExtClkEdge" (BY VAL AFrame AS LONG,

SEG pEdge AS INTEGER)
Parameters hErame Handle to the frame that defines the operation,
pEdge Active edge of external clock.

Value stored: 0 for Negative edge
1 for Positive edge

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-121

ﬂ}l@hapm_.frm Page 122 Thursday, April 14, 1994 1:57 PM

K_GetExtClkEdge (cont.)

Remarks For the operation defined by hf rame, this function stores the active edge
of the external clock in pEdge.

The pEdge variable contains the value of the External Clock Edge

element,

See Also K_SetExtClkEdge

Usage C/C+4+
#include “DASDECL.H" // Use "DASDECL.HPP for C++
ﬁééB wMode;

whasErr = K_GetExtClkEdge (hAD, &wMode);

Turbo Pascal

uses D1B0O0TPY; {* Uge D1800TP6 for TP ver 6.0 *)
{$} wMode : Word;
wDasErr := K_GetExtClkEdge (hAD, wMode);

Turbo Pascal for Windows
{4I DASDECL.INC)

wMode : Word;

whasErr := K_CetExtClkEdge (hAD, wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wMode As Integer

whasErr = K_GetExtClkEdge (hAD, wMode}

4-122 Function Reterence

Q}Lhapm_.ﬁm Page 123 Thursday, April 14,1994 1:57 PM

K_GetExiClkEdge (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wMode AS INTEGER

wDasEry = KGebExtClkEdge% (hAD, wMode)

4-123

@—Lhapm_.frm Page 124 Thursday, April 14, 1994 1:57 PM

K_GetG

Boards All
Supported

Purpose Gets the gain.

Prototype C/C++
DASErr far pascal K_GetG (DWORD AFrame, short far *pGain);

Turbo Pascal
Function K_GetG (hFrame : Longint; Var pGain : Word) : Word;

Turbo Pascal for Windows
Function K_GetG (AFrame : Longint; Var pGain : Word) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_GetG Lib "DASSHELL .DLL"
Q} (ByVal hFrame As Long, pGain As Integer) As Integer

BASIC
DECLARE FUNCTION KGetG% ALIAS "K_GetG"
(BYVAL hFrame AS LONG, SEG pGain AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation,

pGain Gain code,
Valid values: 0 to 3 for DAS board channels
0 to 7 tor EXP-1800 channels
Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated with each gain code.

Retumn Value This function returns an integer error/status code. Errot/fstatus code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-124 Function Reference

@) kchap04_frm Page 125 Thursday, April 14,1994 1:57 PM

K_GetG (cont.)

Remarks

See Also

Usage

For the operation defined by #Frame, this function stores the gain code
for a single channel or for a group of consecutive channels in pGain,

K_SetG, K_SctStartStopG

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wGain;
wDasErr = K_GetG (hAD, &wGain);

Turbo Pascal
uses D18OOTP7; {* Use DLBO0OTP6 for TP ver 6.0 *}

wGain : Word;
whagBErr := X_GetG (hAD, wGain);

Turbo Pascal for Windows
{$T DASDECL.INC}

wGain : Word;
wDasErr := K_GetG (hAD, wGain);

Visual Basic for Windows
{Include DASDECIL .BAS in your program make file)

Global wGain As Integer

wDagsErr = K_GetG (hAD, wGain)

BASIC
' $INCLUDE: °‘DASDECL.BI'

DIM wGain AS INTEGER

wDasErr = KGetG% (hAD, wGain)

4-125

&

G}Lhapm_.ﬁm Page 126 Thursday, April 14, 1994 1:57 PM

K_GetGate
Boards All
Supported
Purpose Gets the status of the hardware gate.
Prototype CiCs++
DASErr far pascal K_GeiGate (DWORD hFrame, short far *pMode);
Turbo Pascal
Function K_GetGate (hFrame : Longint; Var pMode : Word) : Word;
Turbo Pascal for Windows
Function K_GetGate (hFrame : Longint; Var pMode : Word) : Word, far;
external DASSHELL';
Visual Basic for Windows
Declare Function K_GetGate Lib "DASSHELL.DLL"
@ (ByVal hFrame As Long, pMode As Integer) As Integer
BASIC
DECLARE FUNCTION KGetGate% ALIAS "K_GetGate"
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER)
Parameters hFrame Handle to the frame that defines the operation.
pMode Status of the hardwarc gate.
Value stored: 0 for Gate disabled
1 for Positive gate enabled
2 for Negative gate enabled
Return Value This function relurns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.
4-126 Function Reference

- khap04_frm Page 127 Thursday, April 14,1994 1:57 PM

K_GetGate (cont.)

Remarks For the operation defined by AF rame, this function stores the status of the
hardware gate in pMode.

The pMode variable contains the value of the Hardware Gate element,

See Also K_SetGate

Usage C/Ce++
#tinclude "DASDECL.H" // Use "DASDECL.HPP for C++
WORD wMode;

wDasErr = K_GetGate (hAD, &wMode);

Turbo Pascal
uses D1800TP7; (* Use DI80O0TP6 for TP ver 6.0 *)

wMode ; Word;
3; wDasErr := K_GetGate (hAD, wMode);

Turho Pascal for Windows
{31 DASDECL.INC}

wMode : Word;
wDasErr := K_GetGate (hAD, wMode);

Visual Basic for Windows
{Include DASDECL BAS in your program make file)

Global wMode As Integer

whasErr = K_GetGate (hAD, wMode)

4-127

Q}Lhapozt_.frm Page 128 Thursday, April 14, 1994 1:57 PM

K _GetGate (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wMode AS INTEGER

whasErr = KGetGate% (hAD, wMode)

4-128 Funciion Reference

{B-lchapOk.frm Page 129 Thursday, April 14, 1994 1:57 PM

K_GetShellVer

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gels the current DAS shell version.

C/Ce+
DASEur far pascal K_GetShellVer (WORD far *pVersion);

Turho Pascal
Function K_GetShellVer (Var pVersion : Word) : Word,

Turbo Pascal for Windows
Function K_GetShellVer (Var pVersion : Word) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL . DLL"
(pVersion As Integer) As Integer

BASIC
DECLARE FUNCTION KGetShellVer% ALIAS "K_GetShell Ver"
(SEG pVersion AS INTEGER)

pVersion A word value containing the major and minor
version numbers of the DAS shell.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

To obtain the major version number of the DAS shell, divide pVersion by
256. To obtain the minor version number of the DAS shell, perform a
Boolean AND operation with pVersion and 256 (OFF hex),

4-129

- khap04_frm Page 130 Thursday, April 14, 1994 1:57 PM

K_GetShellVer (cont.)

Usage

CiC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wsShellVer;

wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & Oxff);

Turbo Pascal
uses D18QQTP7; (* Use D18COTPE for TP ver 6.0 *)

wshellVer : Word;

wDasErr := K_GetShellvVer (wShellVer);

FormatStr{VerStr, ' %4x ', nfhellVer / 256, '.', nShellVer And
SEE);
{$} writeln(' 8Shell Ver ', VerStr):

Turbo Pascal for Windows
{$I DASDECL.INC}

wShellvVer : Word;

wDasErr := K_GetShellVer (wShellVer);

Format8tr (VexrStr, ' %4x ', nShellvVer / 256, '.', nShellVer And
S££);
writeln(' Shell Ver ', VerStr);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wshellVer As Integer;
wDhasErr = K_GetShellVer (wShellVer)
ShellVer$ = LTRIMS (STRS {wShellVer / 256}) + "." +

LTRIMS (STRS {wShellVer AND &HFF})
PRINT "Driver Ver: " + ShellVer$

4-130 Function Reference

{]}lchapm_.frm Page 131 Thursday, April 14, 1994 1:57 PM

K_GetShellVer (cont.)

BASIC
' SINCLUDE: 'DASDECL.BI’

DIM wShellVer AS INTEGER
whagErr = KGetShellVer% (wShellVer)
ShellVerd = LTRIMS (STRS (nShellVer / 256)) + "." 4+ .

LTRIMS (STRS (nShellVer AND &HFF))
PRINT "Shell Ver: " + ShellVer$

4-131

Q}Lhapm_.frm Page 132 Thursday, April 14, 1994 1:57 PM

K_GetSSH

Boards All
Supported

Purpose Gets the status of the SSH mode.

Prototype CiC++
DASE:r far pascal K_GetSSH (DWORD AFrame, WORD far *pMode),

Turbo Pascal
Function K_GetSSH (hF rame : Longint; Var pMode : Word) : Word,;

Turbo Pascal for Windows
Function K_GetSSH (hFrame : Longint; Var pMode : Word) : Word; far;
external 'DASSHELL",

Visual Basic for Windows
Declare Function K_GetSSH Lib "DASSHELL.DLL"
$ (ByVal hFrame As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetSSH% ALIAS "K_GetSSH"
(BYVAL hFrame AS LONG, SEG pMode AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

pMode Code that indicates the SSH mode.
Value stored: 0 for Disabled
1 for Enabled

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-132 Function Reference

) khap04_frm Page 133 Thursday, April 14,1994 1:57 PM

K _GetSSH (cont.)

Remarks

See Also

Usage

For the operation defined by AFrame, this function stores the code that
indicates the SSH mode in pMode.

The pMode variable contains the value of the SSH Mode element.
Refer to page 2-15 for information on conversion modes.

K_SetSSH

C/C++
#include "DASDECL.H" // Use "“DASDECL.HPP for C++

WORD wMode;
whDasBrr = K_Get88H (hAD, &wMode);

Turbo Pascal
uses D1800TP7; (* Use D1800TP6 for TP ver 6.0 *)

wMode : Word;
whasErr := K_GetSSH (hAD, wMode);

Turbo Pascal for Windows
(4TI DASDECL.INC)

wMode : Word;
whasErr := K_GetSSH (haD, wMode};

Visual Basic for Windows
(Inciude DASDECL.BAS in your program make file)

Global wMcde As Integer

wDasErr = K_Get3SH (hAD, wMcde)

4-133

{]}lchapm_.frm Page 134 Thursday, April 14, 1994 1:57 PM

K_GetSSH (cont.)

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM wMcode AS INTEGER

wDasErr = KGet8S8SH% (hAD, wMode)

4-134 Function Reference

{B-[thapm_.frm Page 135 Thursday, April 14, 1994 1:57 PM

K_GetStartStopChn

Boards
Supported

Purpose

Prototype

Parameters

All

Gets the first and last channels in a group of consecutive channels.

C/Ca+
DASErr far pascal K_GetStartStopChn (DWORD hFrame,
short far *pStart, short far *pStop);

Turbo Pascal
Function K_GetStartStopChn (AFrame : Longint; Var pStart : Word;
Var pStop . Word) : Word;

Turbo Pascal for Windows
Function K_GetStartStopChn (hFrame : Longint; Var pStart . Word,
Var pStop : Word) : Word; far; external 'DASSHELL'";

Visual Basic for Windows
Declare Function K_GetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFFrame As Long, pStart As Integer, pStop As Integer) As Integer

BASIC

DECLARE FUNCTION KGetStartStopChn% ALIAS
"K_GetStartStopChn" (BYVAL hFrame AS LONG,
SEG pStart AS INTEGER, SEG pStop AS INTEGER)

hframe Handle to the frame that defines the operation.

4-135

-E{}Ichap04_.frm Page 136 Thursday, April 14, 1994 1:57 PM

K_GetStartStopChn (cont.)

pStart First channel in a group of consecutive channels.
Valid values:

Valid channel humbers

Board Differential Single-ended
DAS-1800HC 0to31 0to 63

DAS-1800ST/HR with ¥ Not applicable 0to15(N + 1)

EXP-1800 expansion boards
attached
pStop Last channel in a group of consecutive channels,

Valid values: Same as for pStart above

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by AF'rame, this function stores the first channel
in a group of consecutive channels in pStart and the last channel in the
group of consecutive channels in stop.

The pStart variable contains the value of the Start Channel element.
The pStop variable contains the value of the Stop Channel element,

See Also K_SetStartStopChn, K_GetStartStopG
Usage C/C++
#include "DASDECL.H" // Use °"DASDECL.HPP for C++

short nS8tart, nStop;

whDasErr = K_GetStartStopChn (hAD, &nStart, &nStop):

4-1386 Function Reference

@ @

P khap04_frm Page 137 Thursday, April 14, 1994 1:57 PM

K_GetStartStopChn (cont.)

Turbo Pascal

uses D1800TP7; (* Use D1800TP& for TP ver 6.0 *)

nStart : Integer;
nstop : Integer;

wDagErr := K_GetStartStopChn (hAD, nStart,

Turbo Pascal for Windows
{$1 DASDECL.INC}

nStart : Integer;
nStop : Integer;

whasErr := K _GetStartStepChn (hAD, nStart,

Visual Basic for Windows
(Include DASDECL BAS in your program make file)

Global nStart As Inhteger
Global nStop As Integer

nStop)

nstop)

whagBErr = K_CetStartStopChn (hAD, nStart, nsStop)

BASIC
' $INCLUDE: 'DASDECL.RBT'

DIM nStart AS INTEGER
DIM nStop AS INTEGER

wDasErr = KGetStartStopChn% (hAD, nStart, nStop)

4-137

{]}Lhap{)dl_.frm Page 138 Thursday, April 14, 1994 1:57 PM

K_GetStartStopG

Boards All
Supported
Purpose Gets the first and last channels in a group of consecutive channels and the

gain for all channels in the group.

Prototype C/C++
DASEm far pascal K_GetStartStopG (DWORD hFrame,
short far *pStart, short far *pStop, short far *pGain);

Turho Pascal
Function K_GetStartStopG (hFrame : Longint; Var pStart : Word,
Var pStop : Word; Var pGain : Word) : Word;

Turbo Pascal for Windows
Function K_GetStartStopG (#Frame : Longint; Var pStart : Word,;
Var pStop : Word; Var pGain : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_GetStartStopG Lib "DASSHELL.DLL"
(ByVal hF rame As Long, pStart As Integer, pStop As Integer,
pGain As Integer) As Integer

BASIC

DECLARE FUNCTION KGetStartStopG% ALIAS "K_GetStartStopG”
(BYVAL hFrame AS LONG, SEG pStart AS INTEGER,

SEG pStop AS INTEGER, SEG pGuain AS INTEGER)

4-138 Function Reference

Q}Lhapm_.frm Page 139 Thursday, April 14, 1994 1:57 PM

K_GetStariStopG (cont.)

Parameters hFrame Handle to the frame that defines the operation.
pStart First channel in a group of consecutive channels,
Valid values:

Valid channel numbers
Board Differential Single-ended
DAS-1800HC 01031 0o 63

DAS-1800ST/HR with N Not applicable 010 15V +1)

EXP-1800 expansion boards
attached
-@ pStop Last channel in a group of consecutive channels.

Valid values: Same as for pSiart above

pGain Gain code.
Valid values: 0 to 3 for DAS board channels
0 to 7 for EXP-1800 channels
Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated with each gain code.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-139

bfehap04_frm Page 140 Thursday, April 14, 1994 1:57 PM

K_GetStartStopG (cont.)

Remarks For the operation defined by AFrame, this function stores the first channel
in a group of consecutive channels in pStart, the last channel in the group
of consecutive channels in pStop, and the gain code for all channels in the
group in pGain.

The pStart variable contains the value of the Start Channel element,
The pStop variable contains the value of the Stop Channel element,
The pGuain variable contains the value of the Gain element,

See Also K_SetStartStopG
Usage CiC+s
#include "DASDECL.H" // Use "DASDECL.HPP for C++

short nStart, nStop, nGain;

wDasErr = K_GetStartStopG (hAD, &nS8tart, &nStop,
&nGain) ;

Turbo Pascal
uses D180QTP7; (* Use D1800TP6 for TP ver 6.0 *)

nStart : Integer;
nStop : Integer;

nGain : Integer;

wDasErr := K_GetStartStopG (hAD, nStart, nStop, nGain}

Turbo Pascal for Windows
{$I DASDECL.INC)

nStart : Integer;
nsStop : Integer;

nGain : Integer;

wDasErr := K_GetStartStopG (hAD, nStart, nStop, nGain)

4-140 Function Reference

€Prkhap04_frm Page 141 Thursday, April 14, 1994 1:57 PM

K_GetStartStopG (cont.)

Visual Basic for Windows
(Include DASDECL BAS in your program make file)

Gleckal nStart As Integer
Global nStop As Integer
Global nGain As Integer

wDhasErr = K_GetStartStopG (hAD, nStart, nStop, nGain)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nStart AS INTEGER
DIM nStop AS INTEGER
DIM nGain AS INTEGER

wDasErr = KGetStartStopG% (hAD, nStart, nStop, nGain}

4-141

{B—Lhapm_.frm Page 142 Thursday, April 14, 1994 1:57 PM

K_GetTrig

Boards All
Suppotted

Purpose Gets the start trigger source.

Prototype CiC+s
DASErr far pascal K_GetTrig (DWORD hFrame, short far *pMode);

Turbo Pascal
Function K_GetTrig (hF rame : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetTrig (#F rame . Longint; Var pMode : Word) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_GetTrig Lib "DASSHELL.DLL"
@ (ByVal hFrame As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGetTrig% ALIAS "K_GetTrig"
(BYVAL AFrame AS 1LONG, SEG pMode AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

pMode Start trigger source.
Value stored: 0 for Internal trigger
1 for External trigger

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by AFrame, this function stores the trigger
source in pMode.

4-142 Function Reference

- khap04_frm Page 143 Thursday, April 14, 1994 1:57 PM

K_GetTrig (cont.)

See Also

Usage

The pMode variable contains the value of the Start Trigger Source
element.

An internal trigger is a software trigger; conversions begin when the
operation is started. An external trigger is either an analog trigger or a
digiral trigger; conversions begin when the trigger event occurs. Refer to
page 2-25 for more information about internal and external trigger
sources.

K_SetTrig

C/Ce+
#include "DASDECL.H" // Use "DASDECL.HPP for C4+

WORD wMode;
wDasErr = K_GetTrig (hAD, &wMode);

Turbo Pascal
uses D1800TP7; {* Use D1800TP6 for TP ver 6.0 *)

wMode : Woerd;
whasRErr := K_GetTrig (hAD, wMode);

Turbo Pascal for Windows
{$I DASDECL.INC)

wMode : Word;

wDasErr := K_GetTrig {hAD, wMode):

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Global wMode As Integer

wDasErr = K_GetTrig (hAD, wMode)

4-143

‘E{}Lhap()ét_.frm Page 144 Thursday, April 14,1994 1:57 PM

K_GetTrig (cont.)

BASIC
' S$INCLUDE: 'DASDECL.BI'

DIM wMode AS INTEGER

whasBErr = KCetTrigt (hAD, wMode)

4-144 Function Reference

—«E]}lchap()fl_.frm Page 145 Thursday, April 14, 1994 1:57 PM

K_GetTrigHyst

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Gets the trigger hysteresis value,

CiC++
DASErr far pascal K_GetTrigHyst (DWORD hFrame, short far *pHyst);

Turbo Pascal
Function K_GetTrigHyst (hFrame : Longint; Var pHyst : Word) : Word;

Turbo Pascal for Windows
Function K_GetTrigHyst (hFrame : Longint; Var pHyst : Word) : Word;
far; external DASSHELL';

Visual Basic for Windows
Declare Function K_GetTrigHyst Lib "DASSHELL.DLL"
(ByVal hF rame As Long, pHyst As Integer) As Integer

BASIC
DECLARE FUNCTION KGetTrigHyst% ALIAS "K_GetTrigHyst"
(BYVAL hFrame AS LONG, SEG pHyst AS INTEGER)

hErame Handle to the frame that defines the operation.

pHyst Hysteresis value.
Value stored: 0 to 4,095 for DAS-1800HC/ST
Series boards
0 to 65,535 for DAS-1800HR
Sertes boards

This function returns an integer error/status code. Error/status code @
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-145

€D khap04_.frm Page 146 Thursday, April 14,1994 1:57 PM

K_GetTrigHyst (cont.)

Remarks For the operation defined by AFrame, this function stores the hysteresis
value used for an analog trigger in pHyst. The value is represented in raw
counts; refer to Appendix B for information on converting the raw count
to voltage.

The pHyst variable contains the value of the Trigger Hysteresis element.
Refer to page 2-20 for more information about analog triggers.

See Also K_SetTrigHyst
Usage C/C++
#include "DASDECL.H" // Use “DASDECL.HPP for C++

short nHyst;
wDasFErr = K_Gelt:TrigHyst (hAD, &nHyst);

Turbo Pascal
{$} uses D1800TE7; {* Use D1800TP6 for TP ver 6.0 *)

nHyst : Intedger;

wDasErr := K_GetTrigHvyst {(hAD, nHyst);

Turbo Pascal for Windows
{$T DASDECL.INC}

nHyst : Integer;

wDasErr := K_GetTrigHyet (hAD, nHyst);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nHyst As Integer;

wDasErr = K_GetTrigHyst (hAD, nHyst)

4-146 Function Reference

»@Lhapm_.frm Page 147 Thursday, April 14, 1994 1:57 PM

K _GetTrigHyst (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nHyst AS INTEGER

wDasErr = KGetTrigHyst% (hAD, nHyst)

4-147

—@lthapofl_.frm Page 148 Thursday, April 14, 1994 1:57 PM

K _GetVer

Boards All
Supported

Purpose Gets revision numbers.

Prototype CiC++
DASETr far pascal K_GetVer (DWORD hDey, short far * pSpecVer,
short far * pDrvVer);

Turbo Pascal
Function K_GetVer (hDev ; Longint; Var pSpecVer : Word;
Var pDrvVer : Word) : Word;

Turbo Pascal for Windows
Function K_GetVer (hDev : Longint; Var pSpecVer : Word;
Var pDrvVer : Word) : Word; far; external ' DASSHELL";

{B» Visual Basic for Windows
Declare Function K_GetVer Lib "DASSHELL.DLL"
{ByVal hDev As Long, pSpecVer As Integer, pDrvVer As Integer) As
Integer

BASIC

DECLARE FUNCTION KGetVer% ALIAS "K_GetVer"
(BYVAL hDev AS LONG, SEG pSpecVer AS INTEGER,
SEG pDrvVer AS INTEGER)

Parameters hDey Handle associated with the board,

pSpecVer Revision number of the DAS Driver
Specification to which the driver conforms,

pDrvVer Driver version number.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfuily. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-148 Function Reference

@ &

) khap04_frm Page 149 Thursday, April 14, 1994 1:57 PM

K_GetVer (cont.)

Remarks For the board specified by hDev, this function stores the revision number
of the DAS-1800 Series Function Call Driver in pDrvVer and the revision
number of the driver specification in pSpecVer.

The values stored in pSpecVer and pDrvVer are two-byte (16-bit) integers;
the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.1, the major revision level is 2 and the minor revision level is
1; therefore, the high byte of pDrvVer contains the value of 2 (512) and
the low byte of pDrvVer contains the value of 1; the value of both bytes is
513.

To extract the major and minor revision levels from the value stored in
pDrvVer or pSpecVer, use the following equations:

. .) returned value
major revision level = Integer portion of 956
'EB' minor revision level = returned value MOD 256
Usage
C/C++

#include "DASDECL.H" // Use "DASDECL.HPP for C++
short nSpecVer, nDrvVer;

wDasErr = K_GetVer (hDev, &nSpecvVer, &nDrvVer);
printf {"Driver Ver %d.%d", nDrvVer >> 8, nDrvvVer & Oxff):

Turbo Pascal
uses D1800TP7; (* Use D18B0OCTPE for TP ver 6.0 *)

nSpecVer : Integer
nDrvVer : Integer

wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);

FormatStr (VerS8tr, ' %4dx ', nDrvVer / 256, ‘.‘', nbDrvVer And S$ff);
writeln(' Driver Ver ', VersStr};

4-149

P khap04_frm Page 150 Thursday, April 14, 1994 1:57 PM

K_GetVer (cont.)

Turbo Pascal for Windows
{4I DASDECL.INC}

nSpecVer : Integer
nDrvVer : Integer

wDasErr := K_GetVer {hDev, nSpecVer, nDrvVer);

FormatStr (VerStr, ' %4x ', nDrvVer / 256, '.', nDrvVer And $ff);
writeln(' Driver Ver ', VerS8tr);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nSpecVer Az Integer
Glokal nDrvVer As Integer

wDagErr = K_GetVer (hDev, nSpecVer, nDrvVer)
DrvVer$ = LTRIMS (STRS (nDrvVer / 256)) + "." +
LTRIMS (8TRS (nDrvVer AND &HFF))
{$} PRINT "Driver Ver: " + DrvVer$

BASIC
' $INCLUDE: ‘DASDECL.BI'

DIM nSpecVer AS INTEGER
DIM nDrvVer AS INTEGER

wDagsErr = KGetVer% (hDev, nSpecVer, nDrvVer)

DrvVers = LTRIMS {STRS (nDrvVer / 256)) + "." 4+
LTRIMS (STRS (nDrvVer AND &HFF))
PRINT "Driver Ver: " + DrvVer$
4-150 Function Reference

{BLhapm_.frm Page 151 Thursday, April 14,1994 1:57 PM

K_IntAlloc

Boards
Supported

Purpose

Prototype

Parameters

All

Allocates a buffer for an interrupt-mode operation.

CiC++
DASErr far pascal K_IntAlloc (DWORD /hFrame, DWORD dwSamples,
void far * far *pBuf, WORD far *pMem);

Turbo Pascal
Function K_IntAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var pMem : Word) ;: Word;

Turbo Pascal for Windows
Function K_IntAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var pMem : Word) : Word; far; external 'DASSHELL,

Visual Basic for Windows

Declare Function K_IntAlloc Lib "DASSHELL . DLL"

(ByVal hF rame As Long, ByVal dwSamples As Long, pBuf As Long,
pMem As Integer) As Integer

BASIC

DECLARE FUNCTION KlintAlloc% ALIAS "K_IntAlloc"
(BYVAL hFrame AS 1.ONG, BY VAL dwSamples AS LONG,
SEG pBuf AS LLONG, SEG pMem AS INTEGER)

hFrame Handle to the frame that defines the operation.
dwSamples Number of samples.
Valid values: 1 to 32,767 for Visual Basic for
Windows and BASIC
1 to 65,536 for all other languages
pBuf Starting address of the allocated buffer.
pPMem Handle associated with the allocated buffer.

4-151

-EB hap04__.frm Page 152 Thursday, April 14, 1994 1:57 PM

K_IntAlloc (cont.)

Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by AFrame, this function allocates a buffer of

the size specified by dwSamples, and stores the starting address of the
buffer in pBuf and the handle of the buffer in pMem.

Turbo Pascal and BASIC require that you re-distribute available memory
before you dynamically allocate a buffer. Refer to “Reducing the Memory
Heap” on page 3-32 (Turbo Pascal) or page 3-46 (BASIC) for additional

information,
See Also K_IntFree, K_SetBuf, K_BufListAdd
Usage
CiC++
#include "DASDECL.H* // Use "DASDECL.HPP for C++
void far *pRuf; // Pointer to allocated buffer
WORD hMem; // Memory Handle to buffer

wDagErr = K_TIntAlloc (haD, dwSamples, &pBuf, &hMem) ;

Turbo Pascal

uses D1800TP7; (* Use D180CTP6 for TP wver 6.0 *)
TYPE

BufType = Array [0..1] of Integer;

VAR

pBuf : *~BufType; [buffer pointer }

hMem : Word; { Handle to buffer }

whDasErr := K_IntAlloc(hAD, dwSamples, Addr (pBuf), hMem);

4-152 Function Reference

- khap04_.frm Page 153 Thursday, April 14, 1994 1:57 PM

K_IntAlloc (cont.)

Turbo Pascal for Windows
{$I DASDECL.INC)

TYPE

BufType = Array [0..1] of Integer;

VAR

pBuf : “BufType; { buffer pointer }

hMem : Word; { Handle to buffer)}

whasErr := K_IntAlloc{hAD, dwSamples, Addr{(pBuf), nhMem);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Glebal pBuf As Long
Glcbal hMem As Integer

wDasErr = K_IntAlloc (hAD, dwSamples, pBuf, hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM pBuf AS LONG
DIM hMem AS INTEGER

wDasErr = KINTAlloc% (hAD, dwSamples, pBuf, hMem)

4-153

-Q}LhapOL.frm Page 154 Thursday, April 14, 1994 1:57 PM

K _IntFree

Boards All

Supported

Purpose Frees a buffer allocated for an interrupt-mode operation.

Prototype C/C++
DASETrr far pascal K_IntFree (WORD hMem);

Turbo Pascal
Function K_IntFree (AMem : Word) : Integer;
Turbo Pascal for Windows
Function K_IntFree (kMem : Word) ; Integer; far; external ' DASSHELL;
Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL"
{E_ (ByVal hMem As Integer) As Integer
BASIC
DECLARE FUNCTION KlntFree% ALIAS "K_IntFree"
(BYVAL hMem AS INTEGER)

Parameters hMem Handle to interrupt buffer.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function frees the buffer specified by AMem; the buffer was
previously allocated dynamically using K_IntAlloc.

See Also K_IntAlloc

4-154 Function Reference

~E}}lchap04_.frm Page 155 Thursday, April 14, 1994 1:57 PM

K_IntFree (cont.)

Usage C/iC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_IntFree {hMem);

Turbo Pascal
uses D1800TET; {* Uzse D1800TP6 for TP ver 6.0 *)

wDasErr := K_IntFree {hMem);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasEry := K_IntFree (hMem);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

{i} wDhasErr = K_IntFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KIntFree% (hMem)

4-1565

{BLhapOcl_.frm Page 156 Thursday, April 14, 1994 1:57 PM

K_IntStart

Boards All
Supported

Purpose Starts an interrupt operation,

Prototype C/C++
DASEir far pascal K_IntStart (DWORD hFrame);

Turbo Pascal
Function K_IntStart (AFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStart (AFrame : Longint) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
-EB (ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KlntStart% ALIAS "K_IntStart"
(BYVAL AFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function starts the interrupt operation defined by iFrame.
Refer to Chapter 3 for a discussion of the programming tasks associated

with interrupt operations.

See Also K_IntStatus, K_IntStop

4-156 Function Reference

Q}Lhapm_.frm Page 157 Thursday, April 14, 1994 1:.57 PM

K_IntStart (cont.)

Usage

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whasErr = K_IntStart (hAD);

Turbo Pascal
uses D1800TP7; {* Use D1800TP6 for TP ver 6.0 *)

wDagErr := K_IntStart (haAD};

Turbo Pascal for Windows
{4 DASDECL.INC}

wDagErr := K_IntStart (haD);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_IntStart (haD)

BASIC
* $INCLUDE: *DASDECL.BI'

wDasErr = KIntStart% (hAD)

4-167

{]}Lhapm_.frm Page 158 Thursday, April 14, 1994 1:57 PM

K_IntStatus

Boards All

Supported

Purpose Gels status of interrupt operation.

Prototype C/Cas
DASE:T far pascal K_IntStatus (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_IntStatus (hF rame : Longint; Var pStafus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStatus (AFrame : Longint, Var pStatus : Word;
Var pCount : Longint) : Word; far; external 'DASSHELL';

{B» Visual Basic for Windows
Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal h¥rame As Long, pStatus As Integer, pCount As Long) As
Integer

BASIC
DECLARE FUNCTION KintStatus% ALIAS "K_IntStatus"
(BY VAL hFrame AS LONG, SEG pStatus AS INTEGER,

SEG pCount AS LONG)
Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of interrupt operation; see Remarks

below for value stored.

pCount Number of samples that were acquired.
Value stored: 0 to 65,536

4-158 Function Reference

) khap04_frm Page 159 Thursday, April 14, 1994 1:57 PM

K_IntStatus (cont.)

Return Value This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the interrupt operation defined by AF rame, this function stores the
status in pStatus and the number of samples acquired in pCount.

The value stored in pStatus depends on the settings in the Status word, as
shown below:

Bk 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1]

—
Actlve buffer number

0 = Buffer not flilod
1 = Buffer filled

0 = No Interrupt overrun
1 = Interrupt overrun

0 = No FIFQ overflow
1 = FFO overtlow

Y

0 = Buffer A actlve
1 = Buffer B active '

0 = Interrupt operation Inactive
1 = Interrupt operation actlve

4-158

-@Lhapm_.frm Page 160 Thursday, April 14, 1994 1:57 PM

K IntStatus (cont.)

The bits are described as follows:
¢ Bit 0: Indicates whether an interrupt-mode operation is in progress.

e Bit 1; The Buffer A/B active bit. If you are using multiple buffers, this
bit toggles each time acquisition sample storage is switched to a new
buffer. If you are using a single buffer and the operation is in
continuous mode, this bit toggles each time an acquisition sample is
stored at the beginning of the buffer,

e Bit 2: When set, this bit indicates that the onboard FIFO has
overflowed. This event automatically stops all conversions.

e Bit 3: When set, this bit indicates that the board issued an interrupt
while the CPU was processing a previous interrupt from the same
board.

e Bit 4: This bit is used during continuous buffering mode; it is set
-Q} when all data acquisition buffers that are currently assigned to the
active operation have been filled with data at least once.

¢ Bits 5-7: Unassigned.
e Bits 8-15: In multiple-buffer acquisitions, these bits indicate the

current active buffer number. The active buffer number is related to
the Status word as follows:

. Status word
active buffer = 256
See Also K_IntStart, K_IntStop
Usage C/C++
#include *DASDECL.H" // Use "DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_IntStatus (hAD, &wStatus, &dwCount};

4-160 Function Reierence

@ ©

Q} hapO4_.frm Page 161 Thursday, April 14, 1994 1:57 PM

K_IntStatus (cont.)

Turbo Pascal
uses DL80OTPE7; (* Use DL800OTPE for TP ver 6.0 *)

wStatus : Word;
dwCount : Longint;

whaskErr := RK_IntStatus (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{41 DASDECL.INC)

w3tatus : Word;
dwCount : Longint;

whDasErr := K_IntStatus (hAD, wStatus, dwCount);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

Glecbhal wStatus As Integer
Globhal dwCount As Long

whasErr = K_IntStatus (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI‘

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KIntStatus% (hAD, wStatus, dwCount)

4-161

{B—lﬁhap(]dl_.frm Page 162 Thursday, April 14, 1994 1:57 PM

K_IntStop

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-162

All

Stops an interrupt operation.

C/Cu+
DASErr far pascal K_IntStop (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_IntStop (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStop (hFrame . Longint; Var pStatus : Word;
Var pCount : Longint) : Word; far; external ' DASSHELL';

Visual Basic for Windows

Declare Function K_IntStop Lib "DASSHELL.DLL"

(ByVal hF rame As Long, pStarus As Tnteger, pCount As Long) As
Integer

BASIC

DECLARE FUNCTION KIntStop% ALIAS "K_IntStop"
(BYVAL hFrame AS LONG, SEG pS§tatus AS INTEGER,
SEG pCount AS LONG)

hFrame Handle to the frame that defines the operation.
pStatus Status of interrupt operation,
pCount Number of samples that were acquired.

Value stored: 0 to 65,536

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference

@

*\C_l} hap04_.frm Page 163 Thursday, April 14, 1994 1:57 PM

K _IntStop (cont.)

Remarks

See Also

Usage

'This function stops the interrupt operation defined by AFrame and stores
the status of the interrupt operation in pStatus and the number of samples
acquired in pCount.

Refer to page 4-159 for the meaning of the value stored in pStatus.

If an interrupt operation is not in progress, K_IntStop is ignored.
K _IntStart, K_IntStatus

C/iC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_IntStep (hAD, &wStatus, &dwCount};

Turbo Pascal
uges D18OOTE7; (* Use D1800TP6 for TP ver 6.0 *)

wStatus : Word;
dwCount : Longint;

whasErr := K_IntStop (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{41 DASDECL.INC)

wStatus : Word:
dwCount : Longint;

wDasErr := K_IntStop (hAD, wStatus, dwCount);

4-163

@

G}Lhap(){_.frm Page 164 Thursday, April 14, 1994 1:57 PM

K_IntStop (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_IntStop (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: ‘'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KIntStop% (hAD, wStatus, dwCount)

4-164 Function Reference

Q}Lhapm_.frm Page 165 Thursday, April 14, 1994 1:57 PM

KMakeDMABuf

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Converts a local array to a buffer suitable for a DMA-mode analog input
operations.

C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Not supported

BASIC

DECLARE FUNCTION KMakeDMABuf% ALIAS "K_MakeDMABuf"
(dwSamples AS LONG, pBuf AS INTEGER, pBufAddr AS LONG,
pStartly AS INTEGER)

dwSamples Number of samples,

pBuf $DYNAMIC integer array.

pBufAddr Starting address of the DMA butffer.
pStartix Index into pBuf that identifies the location in

which the first sample is stored.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-165

{[}Lhap(){.frm Page 166 Thursday, April 14, 1994 1:57 PM

KMakeDMABuf (cont.)

Remarks This function ensures that the array address provided to K_SetDM ABuf
is suitable for a DMA-mode analog input operation,

The size of the array given by pBuf must be declared so as 1o
accommodate twice the number of samples as given by dwSamples; refer
to page 3-46 for additional information,

See Also K_SetDMABuf, K_BuflistAdd

Usage
BASIC
' SINCLUDE: 'DASDECL.BI'
SDYNAMIC
DIM ADBUf(10000)As Integer
$STATIC
DIM pDMABuf AS LONG

{B— wDasErr = KMakeDMARuUf% (dwSamp, ADBuf, pDMABuf, nStartIx)
4-166 Function Reference

{B—lchapo-ﬁl_.frm Page 167 Thursday, April 14, 1994 1:57 PM

K_MoveArrayToBuf

Boards All
Supported
Purpose Transfers data from a locally dimensioned buffer to a buffer allocated

through K IntAlloc or K_DMAAlloc.

Prototype CiC++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Baslic for Windows

Declare Function K_MoveArrayToBuf Lib "DASSHELL.DLL" Alias
{I} "K_MoveDataBuf" (ByVal pDest As Long, pSource As Integer,

ByVal nCount As Integer) As Integer

BASIC

DECLARE FUNCTION KMoveArrayToBuf% ALIAS
"K_MoveArrayToBuf" (ByVal pDest As Long, SEG pSource As Integer,
ByVal nCount As Integer)

Parameters pDest Address of destination buffer.
pSource Address of source buffer.
nCotint Number of samples to transfer.

Value values: 1 to 32,767

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-167

@Lhap()fl__.frm Page 168 Thursday, April 14, 1994 1:57 PM

K_MoveArrayToBuf (cont.)

Remarks This function transfers the number of samples specified by nCount from
the buffer at address pSource to the buffer at address pDest.

If the buffer used to store output data for your program was allocated
through K_IntAlloc or K_DMA Alloc, the buffer is not accessible to the
driver and you must use this function to move the data to a buffer that the
driver can use, If the buffer ysed to store output data for your program
was dimensioned locally within the program’s memory area, the buffer is
accessible to the driver and you do not have to use this function.

See Also K_DMAAIlloc, K_IntAlloc
Usage

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_IntAlloc (hDA, dwSampies, pBuf, hMem)

whDasErr = K_MoveArrayToBuf { pBuf, DACArray(0), dwSamples)

BASIC
‘ $INCLUDE: ‘DASDECL.BI'

wDasErr

]

KIntAalloc% { hDA, dwSamples, pBuf, hMem)

wDasErr = KMoveArrayToBRuf% { pRuf, DACArrav(0), dwSamples)

4-168 Function Reference

—G}Lhapm_.frm Page 169 Thursday, April 14, 1994 1:57 PM

K_MoveBufToArray

Boards All
Supported
Purpose Transfers data from a buffer ailocated through K_IntAlloc or

K_DMA Alloc to a locally dimensioned buffer.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias
-Q} "K_MoveDataBuf" {pDest As Integer, ByVal pSource As Long,

ByVal nCount As Integer) As Integer

BASIC
DECLARE FUNCTION KMoveBufToArray% ALIAS
"K_MoveBufToArray" (SEG pDest As Integer, ByVal pSource As Long,

ByVal nCount As Integer)

Parameters pDest Address of destination buffer.
pSource Address of source buffer.
nCount Number of samples to transfer.

Value values: 1 to 32,767

Return Value This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-169

@—Lhap{)él_.frm Page 170 Thursday, April 14, 1994 1:57 PM

K_MoveBufToArray (cont.)

Remarks This function transfers the number of samples specified by nCount from
the buffer at address pSource to the array at address pDest.

If the buffer used to store acquired data for your program was allocated
through K_IntAlloc or K_DMA Alloc, the buffer is not accessible to your
program and you must use this function to move the data to an accessible
buffer. If the buffer used to store acquired data for your program was
dimensioned locally within the program’s memory area, the buffer is
accessible to your program and you do not have to use this function.

See Also K_DMAAlloc, K_IntAlloc
Usage

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDagEryr = K_IntAlloc (hAD, dwSamples, pBuf, hMem)

wDasErr = K_MoveBufToArray (ADArray (0}, pBuf, dwSamples)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr KIntAlloc% (hAD, dw3amples, pBuf, hMem)

1

whasBErr = K_MoveBufToArrav% (ADArray(0), pBuf, dwSamples)

4-170 Functicn Reference

K_OpenDriver

Boards All
Supported

Purpose Initializes any supported DAS Function Call Driver.

Prototype C/C++
DASErr far pascal K_OpenDriver (char far * szDevName,
char far * szCfgName, DWORD far * pDrv),

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_OpenDriver (Var szDevName : char; Var sz2CfgName : char,
Var pDrv . Longlnt) : Word; far; external DASSHELL';

Visual Basic for Windows

Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDASName As String, ByVal s2CfgName As String,
pDrv As Long) As Integer

BASIC
Not supported

Parameters szDASName Board name,
Valid value: "DASI800" (for DAS-1800
Series boards)

szCfgName Driver configuration file.
Valid values: The name of a configuration file

@ if driver has already been
opened

pDrv Handle associated with the driver.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status

4171

&

@

{Er[chapm_.frm Page 172 Thursday, April 14, 1994 1:57 PM

K_OpenDriver (cont.)

code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function initializes the Function Call Driver for the board associated
with szDASName according to the information in the configuration file
specified by szCfgName, and stores the driver handle in pDrv.

You can use this function to initialize the Function Call Driver associated
with any supported DAS board. For DAS-1800 Series boards, the string
stored in szDASName must be DAS1800. Refer to other Function Call
Driver user’s guides for the appropriate string to store in szDASName for
other supported DAS boards.

The value stored in pDrv is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored in pDrv.

You create a configuration file using the D1800CFG.EXE utility. Refer to
your DAS-1800 Series board user’s guide for more information.

@ If szCfgName = 0, K_OpenDriver checks whether the driver has already
been opened and linked to a configuration file and if it has, uses the
current configuration; this is useful in the Windows environment.

See Also DAS1800_DevGpen
Usage

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD hDrv;

whasErr = K OpenDriver {"DAS1800", "DAS1802.CFG", &hDrv);

4-172 Function Reference

P khap04_frm Page 173 Thursday, April 14, 1994 1:57 PM

K_OpenDriver (cont.)

Turbo Pascal for Windows
{$TI DASDECL.INC}

szDrvName : String;
gzCfgName : String;
hDrv : Longint;

szDrvName :

= 'DAS1800' + #0;
gzCfgName := 'DAS1802.CFG' + #0;
wDasErr := K_OpenDriver (szDrvName[l], szCfgName[i], hDrv)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

DIM hDrv As Long

wDasErr = K_OpenDriver ("DAS1800", "DAS1802.CFG", hDrv)

4-173

Q}Lhapm_.frm Page 174 Thursday, April 14, 1994 1:57 PM

K_RestoreChnGAry

Boards All

Supported

Purpose Restores a converted channel-gain queue.
Prototype C/C++

Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KRestoreChanG Ary% ALIAS
"K_RestoreChnG Ary" (SEG pArray AS INTEGER)

Parameters pAFrray Channel-gain queue starting address.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function restores a channel-gain queue that was converted using
K_FormatChnGAry to its original format so that it can be used by your
BASIC or-Visual Basic for Windows program,

Refer to page 4-59 for more information about the K_FormatChnG Ary
function.

See Also K_FormatChnG Ary, K_SetChnGAry

4-174 Function Reference

& &

{]}Lhapm_.frm Page 175 Thursday, April 14, 1994 1:57 PM

K_RestoreChnGAry (cont.)

Usage

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global ChanGainArray(1l6) As Integer ' Chan/Gain
array

wDasErr = K_RestoreChnGAry (ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray({1l6) AS INTEGER ' Chan/Gain array

wDasErr = KRestoreChnGArvy% (ChanGainArray(0)}

4-175

Q}Lhapm_.frm Page 176 Thursday, April 14, 1994 1:57 PM

K_SetAboutTrig

Boards All

Supported

Purpose Enables the about trigger and specifies the number of post-trigger
samples.

Prototype CiCa+
DASEtr far pascal K_SetAboutTrig (DWORD hFrame,
DWORD dwSamples);

Turbo Pascal
Function K_SetAboutTrig (hFrame : Longint;
dwSamples : Longint) : Word;

Turbo Pascal for Windows
Function K _SetAboutTrig (hF rame : Longint;
dwSamples : Longint) : Word; far; external DASSHELL",

Visual Basic for Windows
Declare Function K_SetAboutTrig Lib "DASSHELL.DLL"
(ByVal hFFrame As Long, ByVal dwSamples As Long) As Integer

BASIC
DECLARE FUNCTION KSetAboutTrig% ALIAS "K_SetAboutTrig"
(BYVAL hFrame AS LONG, BY VAL dwSamples AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of post-trigger samples.
Valid values: 1 to 65,535

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-176 Function Rafarence

D-kchap04 .frm Page 177 Thursday, April 14, 1994 1:57 PM

K_SetAboutTrig (cont.)

Remarks

See Also

Usage

For the DMA-mode analog input operation defined by #Frame, this
function enables the about trigger and specifies the number of post-trigger
samples.

K_ClIrAboutTrig, K_GetAboutTrig

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD dwSamples;

wDasBErr = K_SetAboutTrig (hAD, dwSamples);

Turbo Pascal
uses D1800TP7; {(* Use DL18O0TP6 for TP ver &.0 *)

dwSanmples : Longint;

wDasErr := K_SetAboutTrig (hAD, dwSamples);

Turbo Pascal for Windows
{$I DASDECL.INC}

dwSamples : Longint;

wDasErr := K_SetAboutTrig (hAD, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global dwSamples As Long

wDasErr = K_SetAboutTrig (hAD, dwSamples)

4177

{I}Lhap(){.frm Page 178 Thursday, April 14, 1994 1:57 PM

K_SetAboutTrig (cont.)

BASIC
' $INCLUDE: 'DASDECL.RBI'

DIM dwSamples AS LONG

wDasErr = KSetAboutTrig%® (hAD, dwSamples)

4-178 Function Reference

{BLhap(M_.frm Page 179 Thursday, April 14, 1994 1:57 PM

K_SetADCommonMode

Boards Al
Supported
Purpose Set a DAS board’s A/D common-mode ground reference.
Prototype C/C++
DASE:r far pascal K_SetADCommonMode (DWORD ADev,
WORD aMode);

Turbo Pascal
Function K_SetADCommonMode {(ADev : Longint;
nMode . Word) : Word;

Turbo Pascal for Windows
Function K_SetADCommonMode (hDev : Longint;
nMode : Word) : Word, far; externat 'DASSHELL";

ﬂ} Visual Basic for Windows
Declare Function K_SetADCommonMode Lib "DASSHELL . DLL"
(ByVal hDev As Long, ByVal pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetADCommonMode% ALIAS
"K_SetADCommonMode" (BY VAL ADev AS LONG,

BYVAL nMode AS INTEGER)
Parameters hDev Handle to the frame that defines the operation.
rMaode A/D common-maode ground reference.

Value stored: 0 for LL-GND
1 for user-defined

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-179

> khap04_frm Page 180 Thursday, April 14, 1994 1:57 PM

K_SetADCommonMode (cont.)

Remarks For the board specified by ADev, this function specifies the A/D
common-mode ground reference in nMode.

See Also K_GetADCommonMaode

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
WORD nMode;

wDasErr = K_SetADCommonMode (hDev, nMode);

Turbo Pascal
usaes D1800TP7; (* Use D1B00OTP& for TP wver 6.0 *)

nMode : Word;
wDasErr = K_SetADCommonMode (hDev, nMode);

Turbo Pascal for Wihdows
{41 DASDECL.INC}

nMode : Word;

wDasErr = K_SetADCommonMode (hDev, nMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

DIM nMode As Integer

wDagErr = K_SetADCommonMcde (hDev, nMode)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nMode AS INTEGER

wDasErr = KSetADCommonMode% (hDev, nMode)

4-180 Function Reference

& &

{I}LhapOéL.frm Page 181 Thursday, April 14, 1994 1:57 PM

K_SetADConfig

Boards All

Supported

Purpose Set a DAS board’s A/D input channel configuration.
Prototype C/C++

DASErr far pascal K_SetADConfig (DWORD hDev, WORD nMode);

Turbo Pascal
Function K_SetADConfig (hDev : Longint; nMode : Word) : Word;

Turbo Pascal for Windows
Function K_SetADConfig (hDev : Longint; ntMode : Word) : Word, far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetADConfig Lib "DASSHELL.DLL"
Q} (ByVal hDev As Long, ByVal nMode As Integer) As Integer

BASIC
DECIL.ARE FUNCTION KSetADConfig% ALIAS "K_SetADConfig"
(BYVAL hDev AS LONG, BY VAL nMode AS INTEGER)

Parameters hFrame Handle associated with the board.

nMode A/D input channel configuration.
Value stored; 0 for Differential
1 for Single-ended

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks This function specifies, in nMode, the A/D input channel configuration
for the board specified by hDev.

4-181

€D khap04_frm Page 182 Thursday, April 14, 1994 1:57 PM

K_SetADConfig (cont.)

See Also K_GetADConfig

Usage C/iC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
WORD nMode;

whasErr = K_SetADConfig {hDev, nMode);

Turbo Pascal
uzes D18C0TP7; (* Use D18COTP6 for TP ver 6.0 *)

nMode : Word;

wDasErr = K_SetADConfig (hDev, nMode);

Turbo Pascal for Windows
(4TI DASDECL.INC)

nMode : Word;

wDasErr = K_SetADConfig (hDev, nMode);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

DIM nMode As Integer

wDasErr = K_SetADConfig (hDev, nMode)

BASIC
* $INCLUDE: 'DASDECL.BI‘

DIM nMode AS INTEGER

whasErr = KSetADConfig% (hDev, nMode)

4-182 Function Reference

-EI}LhapM_.frm Page 183 Thursday, April 14, 1994 1:57 PM

K_SetADFreeRun

Boards Ali

Supported

Purpose Specifies burst conversion mode.
Prototype C/C++

DASETr far pascal K_SetADFreeRun (DWORD AF rame);

Turbo Pascal
Function K_SectADFreeRun (hF rame : Longint) : Word,;

Turbo Pascal for Windows
Function K_SetADFreeRun (hFrame : Longint) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_SetADFreeRun Lib "DASSHELL.DLL"
G} (ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KSetADFreeRun% ALIAS "K_SetADFreeRun"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value This function returns an integer error/status code. Brror/status code
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information.

Remarks This function sets the conversion mode for the operation defined by
hFrame to burst mode. Refer to page 2-15 for information on conversion
maodes,

See Also K_CIrADFreeRun, K_GetADFreeRun

4-183

{]}Lhapmm.frm Page 184 Thursday, April 14,1994 1:57 PM

K_SetADFreeRun (cont.)

Usage

4-184

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whasErr = K_SetADFreeRun (hAD, 1};

Turbo Pascal
uses D1800TP7; (* Use D180QTP& for TP ver 6.0 *)

wDasErr := K_SetADFreeRun (hAD, 1);

Turbo Pascal for Windows
{$T DASDECL.INC}

wDasErr := K_SetADFreeRun (hAD, 1);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetADFreeRun (hAD, 1)

BASIC
! SINCLUDE: 'DASDECL.BI'

wDasErr = KSetADFreeRun% (haD, 1)

Function Reference

Q}Lhapm_.frm Page 185 Thursday, April 14, 1994 1:57 PM

K_SetADMode

Boards All

Supported

Purpose Set a DAS board’s A/D input range type.
Prototype C/Ca4

DASEtr far pascal K_SetADMode (DWORD hDev, WORD nMode),

Turbo Pascal
Function X_SetADMode (#Dev : Longint; iMode : Word) : Word;

Turbo Pascal for Windows
Function K_SetADMode (hDev : Longint; ntMode : Word) : Word; far;
cxternal ' DASSHELL;

Visual Basic for Windows
Declare Function K_SetADMode Lib "DASSHELL.DLL"
ﬂ} (ByVal hDev As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetADMode% ALIAS "K_SetADMode"
(BYVAL hDev AS LONG, BYVAL nMode AS INTEGER)

Parameters hDev Handle associated with the board.
nMode A/D input range type.
Valid values: 0 for Bipolar
1 for Unipolar
Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the board specified by hDev, this function specifies the A/D input
range type in nMode.

4-185

B kchap04_.frm Page 186 Thursday, April 14, 1994 1:57 PM

K_SetADMode (cont.)

See Also K_GetADMode

Usage C/Ca+
#include "DASDECL.H" // Use "DASDECL.HEPP for C++
WORD nMode;

wDasBrr = K_gSetADMode (hDev, nMode);

Turbo Pascal
useg D1BO0TP7; (* Use D1BOOTP6 for TP ver 6.0 *)

nMode : Word;

wDasErr = K_SetaADMode (hDev, nMode) ;

Turbo Pascal for Windows
{4I DASDECL.INC}

nMode : Word;

whDasErr = K_SetADMode (hDev, nMode};

Visual Basic tor Windows
(Include DASDECL.BAS in your program make file)

DIM nMode As Integer

wDasBrr = K_SetADMode (hDev, nMode)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nMode AS INTEGER

wDagErr = KSetADMode% (hDev, nMode)

4-186 Function Retference

{BLhap(M_.frm Page 187 Thursday, April 14, 1994 1:57 PM

K_SetADTrig

Boards
Supported

Purpose

Prototype

Parameters

All

Sets up an analog start trigger,

CiC++
DASE;r far pascal K_SetADTrig (DWORD hFrame, short nOpt,
short nChan, DWORD dwl.evel),

Turbo Pascal
Function K_SetADTrig (hFrame : Longint; hOpt : Word; nChan : Word;
dwlevel ; Longint) : Word,;

Turbo Pascal for Windows
Function K_SetADTrig (hFrame : Longint; nOpt : Word; nChan : Word,
dwLevel : Longint) : Word; far; external DASSHELL;

Visual Basic for Windows

Declare Function K_SetADTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nOpt As Integer,

ByVal nChan As Integer, ByVal dwl.evel As Long) As Integer

BASIC

DECLARE FUNCTION KSetADTrig% ALIAS "K_SetADTrig"
(BYVAL hFrame AS LONG, BYVAL nOpt AS INTEGER,
BYVAL nChan AS INTEGER, BY VAL dwLevel AS LONG)

hFrame Handle to the frame that defines the operation.
nOpt Analog trigger polarity and sensitivity.
Valid values: 0 for Positive edge
2 for Negative edge
4-187

Q}Lhapoflﬁ.frm Page 188 Thursday, April 14, 1994 1:57 PM

K_SetADTrig (cont.)

nChan Analog input channel used as trigger channel.
Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-(800HC 01031 0t 63

DAS-1800ST/HR with N Not applicable 0to 15(N + 1)

EXP-1800 expansion boards
attached
dwLevel Level at which the trigger event occurs, specified
in raw counts. Valid values:
e DAS-1800HC/ST Series boards:
0 to 4,095 (Unipolar)
-2048 to 2047 (Bipolar)

DAS-1800HR Series boards:
0 to 65,535 (Unipolar)
32,768 to 32,767 (Bipolar)

Return Value This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by hFrame, this function specifies the channet
used for an analog trigger in nChan, the level used for the analog trigger
in dwLevel, and the trigger polarity and trigger sensitivity in rOpt.

You specify the value for dwLevel in raw counts, Refer to Appendix B for
information on converting the actual voltage to a raw count.

4-188 Function Reference

{]}Lhapm_.frm Page 189 Thursday, April 14, 1994 1:57 PM

K_SetADTrig (cont.)

The values you specify set the following elements in the frame identified
by hFrame:

e nOpt sets the value of the Trigger Polarity and Trigger Sensitivity
elements.

e nChan sets the value of the Trigger Channel element.
e dwLevel sets the value of the Trigger Level clement.
K_SetADTrig does not affect the operation defined by AFrame unless the

Trigger Source element is set to External (by a call to K_SetTrig) before
hFrame is vsed as a calling argument to K_IntStart or K_DMAStart,

See Also K_GetADTrig
Usage C/Ca+
{$} #include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetADTrig (hAD, 0, ¢, 2047};

Turbo Pascal
uses D1800TP7; (* Use D1800TPSs for TP ver 6.0 *)

wDasErr := K_SetADTrig (hAD, 0, 0, 2047);

Turbo Pascal for Windows
{$I DASDECL.INC)

whasErr := K_SetADTrig (hAD, 0, 0, 2047);

Visual Basic for Windows
(Include DASDECL .BAS in your program make file)

wDasErr = K_SetADTrig {hAD, G, 0, 2047)

4-189

-@lﬁhap()ét_.frm Page 190 Thursday, April 14, 1994 1:57 PM

K_SetADTrig (cont.)

BASIC
* SINCLUDE: 'DASDECL.BI’

wDasErr = KSetADTrig% (hAD, O, G, 2047}

4-190 Function Reterence

{I}Lhapm_.frm Page 191 Thursday, April 14, 1994 1:57 PM

K_SetBuf

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Specifies the starting address of a previously allocated or dimensioned
buffer.

C/C++
DASEr far pascal K_SetBuf (DWORD AFrame, void far *pBuf,
DWORD dwSamples);

Turbo Pascal
Function K_SetBuf (AFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_SetBuf (AFrame : Longini; pBuf : Pointer;
dwSamples : Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_SetBuf Lib "DASSHELL,.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

BASIC

Not supported

hFrame Handle to the frame that defines the operation.
pBuf Starting address of butfer.

dwSamples Number of samples.

Valid values: 0 to 65,535

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-191

Q}lchapm_.frm Page 192 Thursday, April 14, 1994 1:57 PM

K_SetBuf (cont.)

Remarks For the operation defined by AFrame, this function specifies the starting
address of a previously allocated buffer in pBuf and the number of
samples (the size of the buffer) in dwSamples.

Do not use this function for BASIC; for the BASIC languages, use
K_SetBufl. Refer to page 4-194 for more information,

For C and Pascal application programs, use this function whether you
dimensioned your buffer locally or allocated your buffer dynamically
using K_IntAlloc. For buffers allocated dynamically using
K_DMAAlloc, use K_SetDMABuf. For C, make sure that you use
proper typecasting to prevent C/C++ type-mismatch warnings. For
Pascal, a special procedure is needed to satisfy the type-checking
requirements; refer to page 3-33 for more information.

For Visual Basic for Windows, use this function only for buffers allocated
dynamically using K_IntAlloc. For buffers allocated dynamically using
K_DMAAIlloc, use K_SetDMABuf. For locally dimensioned buifers, use
K_SetBufl.

_q} Do not use this function if you are using multiple buffers. Use
K_BufListAdd to specify the starting addresses of multiple buffers,

The values you specify set the following elements in the frame identified
by hFrame:

e pBufsets the value of the Buffer element.

o dwSamples sets the value of the Number of Samples element.

See Also K_DMAAloc, K_IntAlloc, K_BufListAdd, K_SetBufl, K_SetDMABuf
Usage

C/C++

#include "DASDECL.H" // Use "DASDECL.HPFP for C++

void far *pBuf; // Pointer to allocated buffer

wDasErr = K_IntAlloc (hAD, dwSamples, &pBuf, &hMem) ;

wDagErr = K_SetBuf {(hAD, pBuf, dwSamples);
4-192 Function Reference

> khap04_frm Page 193 Thursday, April 14, 1994 1:57 PM

K_SetBuf (cont.)

Turbo Pascal

uses D1800TP7; (* Use DLB8OOTPE for TP ver 6.0 *)
TYPE

BufType = Array [0..1] of Integer;

VAR

pBuf : “"BufType; { buffer pointer }

whasErr := K_IntAlloc(hAD, dwSamples, Addr (pBuf),

wDasErr K_SetBuf (hAD, pRBuf, dwSamples);

Turbo Pascal for Windows
{4 DASDECL.INC}

TYPE

BufType = Array [0..1] of Integer;

VAR

pBuf : ~BufType; { buffer pointer }

wDasErr := K_IntAlloc(hAD, dwSamples, Addr (pBuf),
wDasErr := K_SetBuf (hAD, pBuf, dwSamples);

Visual Basic for Windows
{Include DASDECIL.BAS in your program make file)

Glehal pBuf As Long
whasErr
wDasErr = K_SetBuf (hAD, pBuf, dwSamples)

K_IntAlleoc (hAD, dwSanmples, pBuf, hMem)

hMem) ;

hMem}) ;

4-193

G}Lhapm_.frm Page 194 Thursday, April 14, 1994 1:57 PM

K_SetBufl

Boards All

Supported

Purpose Specifies the starting address of a locally dimensioned integer buffer,
Prototype C/iC++

Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Beclare Function K_SectBufl Lib "DASSHELL.DLL" Aklias "K_SetBuf"
(ByVal AFrame As Long, pBuf As Integer, ByVal dwSize As Long) As

@- Integer

BASIC
DECLARE FUNCTION K_SETBUFI Alias "K_SetBuf"
(BYVAL hFrame AS Long, pBuf AS Integer, BYVAL dwSize AS Long)

AS INTEGER
Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of the user-dimensioned integer
buffer.
dwSize Number of samples.
Valid values: 0 to 65,535
Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-194 Function Reference

@-Lhapm_.frm Page 195 Thursday, April 14, 1994 1:57 PM

&

K_SetBufl (cont.)

Remarks

See Also

Usage

For the operation defined by AFrame, this function specifies the starting
address of a locally dimensioned integer buffer in pBuf and the number of
samples stored in the buffer in dwSize.

Do not use this function for C and Pascal; for these languages, use
K_SetBuf.

For Visual Basic for Windows, use this function only for locally
dimensioned buffers. For buffers allocated dynamically using
K_IntAlloc, use K_SetBuf. For buffers allocated dynamically using
K_DMAAIlloc, use K_SetDMABuf.

Do not use this function if you are using multiple buffers. Instead, use
K_BufListAdd to specify the starting addresses of multiple buffers.

The values you specify set the following elements in the frame identified
by AFrame:

o pBufsets the value of the Buffer element.

e dwSize sets the value of the Number of Samples clement.
K_DMAAIlloc, K_IntAlloc, K_BufListAdd, K_SetBuf, K_SetDMABuf

Visual Basic for Windows
(fnclude DASDECL.BAS in your program make file)

Dim ADData(2000) As Integer

wDasErr = K_SetBufl (hAD, ADData{0), 2000)

BASIC
' S$INCLUDE: 'DASDECL.BI'

Dim ADData{2000) As Integer

wDasErr = KSetBufI% (hAD, ADData{Qd), 2000)

4-185

{I}Lhapoa,_.frm Page 196 Thursday, April 14, 1994 1:57 PM

K_SetBurstTicks

Boards All

Supported

Purpose Sets the burst mode conversion rate.
Prototype C/Ca+

DASErr far pascal K_SetBurstTicks (DWORD hFrame, short nTicks),

Turbo Pascal
Function K_SetBurstTicks (AFrame : Longint; nTicks : Word) : Word;

Turbo Pascal for Windows
Function K_SetBurstTicks (hFrame : Longint; nTicks : Word) : Word;
far; external DASSHELL';

Visual Basic for Windows
Declare Function K_SetBurstTicks Lib "DASSHELL.DLL"
{B— (ByVal hFrame as Long, ByVal nTicks As Integer) As Integer

BASIC
DECLARE FUNCTION KSetBurstTicks% ALIAS "K_SetBurstTicks"
(BYVAL hFrame AS LONG, BYVAL nTicks AS INTEGER)

Parameters hFrame Handle to the frame that defines the A/D
operation.
nTicks The number of clock ticks between conversions

of each channel in a scan.
Valid values: 3 to 255

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-196 Function Reference

G}Lhapoél_.frm Page 197 Thursday, April 14, 1994 1:57 PM

K_SetBurstTicks (cont.)

Remarks

See Also

Usage

For the operation defined by #F rame, this function stores the number of
clock ticks between conversions in nTicks.

Refer to page 2-17 for more information on burst mode conversion rate.
K_GetBurstTicks

CiCan
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whDasErr = K_SetBurstTicks {(hAD, 10);

Turbo Pascal
uses D18QOTP7; (* Use D180QTP6 for TP ver 6.0 *)

whagBrr := K_SetBurstTicks (hAD, 10);

Turbo Pascal for Windows
{$I DASDECL.INC}

whasErr := K_SetRurstTicks (haD, 10);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

whasErr = K_SetBurstTicks (haAD, 10)

BASIC
' $INCLUDE: 'DASDECL.BT'

wDagErr = KSetBurstTicks$ {(hAD, 10)

4-197

-@-Lhapoﬁl_.frm Page 198 Thursday, April 14, 1994 1:57 PM

K _SetChn

Boards All

Supported

Purpose Specifies a single channel.

Prototype C/Ce+
DASEir far pascal K_SetChn (DWORD AFrame, short nChan);
Turbo Pascal
Function K_SetChn (AFrame : Longint, nChan : Word} : Word,
Turbo Pascal for Windows
Function K_SetChn (AF rame : Longint; nChan : Word) : Word; far;
external DASSHELL";
Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL"

-@ (ByVal hFrame As Long, ByVal nChan As Integer) As Integer

BASIC
DECLARE FUNCTION KSetChn% ALIAS "K_SetChn"
(BYVAL hFrame AS LONG, BYVAL nChan AS INTEGER)

4-198 Function Relerance

{]}Lhapm_.frm Page 199 Thursday, April 14, 1994 1:57 PM

K_SetChn (cont.)

Parameters hFrame Handle to the frame that defines the operation.

nChan Channel on which to perform operation.
Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-18300HC 0031 0t 63

T A OOTODAAN PR BAIAAR

DAS-1R00ST/HR with ¥ Not applicable 0to15(NV + 1)

EXP-1800 expansion boards
attached
{I} Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by #F rame, this function specifies the single
channel used in nChan.

The value you specify in nChan sets the Start Channel element and the
Stop Channel element in the frame identified by hFrame.

See Also K_GetChn, K_GetStartStopChn, K_GetStartStopChnAry
Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

whasErr = K_gSetChn (hAD, 2);

4-199

{]}Lhapm_.frm Page 200 Thursday, April 14, 1994 1:57 PM

K_SetChn (cont.)

Turbo Pascal
uses D1800TP7; {* Use DL8JOQTP6 for TP ver &£.0 *)

wDasErr := ¥_SetChn {(hAD, 2};

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_SetChn (hAD, 2};

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetChn (hAD, 2)

BASIC
* $INCLUDE: 'DASDECL.BI'
%1} wDasErr = KSetChn% (hAD, 2)
4-200 Function Reference

Q}Lhapm_.frm Page 201 Thursday, April 14,1994 1:57 PM

K_SetChnGAry

Boards All
Supported
Purpose Specifies the starting address of a channel-gain queue.
Prototype C/C++
DASEmr far pascal K_SetChnGAry (DWORD hFrame,
void far *pArray);

Turbo Pascal
Function K_SetChnG Ary (hF rame : Longint;
Var pArray : Integer) : Word;

Turbo Pascal for Windows
Function K_SetChnGAry (hWFrame : Longint;
Var pArray : Integer) : Word; far; external ' DASSHELL',

—@ Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KSetChnGAry% ALIAS "K_SetChnGAry"
(BYVAL hFrame AS LONG, SEG pArray AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.
pArray Channel-gain queue starting address.
Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-201

P chap04_frm Page 202 Thursday, April 14, 1994 1:57 PM

K_SetChnGAry (cont.)

Remarks For the operation defined by hFrame, this function specifies the starting
address of the channel-gain queue in pArray.

The value you specily in pArray sets the Channel-Gain Queue element in
the frame identified by hFrame.
Refer to page 2-14 for information on setting up 4 channel-gain queue.

If you created your channel-gain queue in BASIC or Visual Basic for
Windows, you must use K FormatChnGAry to convert the
channel-gain queue before you specify the address with K_SetChnGAry.

See Also K_FormatChnG Ary, K_RestoreChnGAry
Usage
C/Cx++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
{$} // DECLARE AND INITIALIZE CHAN/GAIN PAIRS
// (GainChanTable-TYPE IS DEFINED IN dasdecl.h)
GainChanTable ChanGainArray= {2, // # of entries
0, 0, // chan 0, gain 1
1, 13}; // c¢han 1, gain 2 (DAS-1802)

wDasErr = K_SetChnGAry (hAD, &ChanGainArray);

Turbo Pascal
uses D1800TP7; {* Use D180OTPE for TP ver 6.0 *)

{ Define Gain/Channel array type }
TYPE GainChanTable = Record

num_of_codes : Integer;
queue : Array|[0..15] of Bvte;
END;
CONST ChanGainArray : GainChanTable = (
num_of_ codes : (8}); { # of ¢han/gain pairs }

queue : (0,0, 1,1)
}i

whasFErr := E_SetChnGAry (hAD, ChanGainArray.num_of_codes);

4-202 Function Reference

& ©

ﬂ} hap04_.frm Page 203 Thursday, April 14, 1994 1:57 PM

K_SetChnGAry (cont.)

Turbo Pascal for Windows
{$I DASDECL.INC}

{ Define CGain/Channel array type)}
TYPE GainChanTable = Record

num_of_codes : Integer;
queue : Array[0..15] of Byte;
END;
CONST ChanGainArray : GainChanTable = {
num_of_codes : (8); { # of chan/gain pairs }
queue : (0,0, 1,1)
)i
whasEry := K_SetChnGAry (hAD, ChanCainArray.num_of_codes);

Visual Basic for Windows
tInclude DASDECL.BAS in your program make file)

Glebal ChanGainArray(l6) As Integer

' Create the array of channel/gain pairs
ChanGainArray (0) = 2 ' # of chan/gain pairs
ChanGainArray (1) = 0: ChanGainArray (2} = 0

ChanGainArray (3} 1l: ChanCGainArray (4) 1
wDagEry = K_PormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hAD, ChanGainArray (0})

BASIC
' $INCLUDE: 'DASDECL.BIL'

DIM ChanGainArray(l6) AS INTEGER

' Create the array of channel/gain pairs

ChanGainArray (0} = 2 * # of chan/gain pairs
ChanGainArray(l) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray{4) = 1

wDasBErr = KFormatChnGAry% (ChanGainArray(0))}
whasErr = KSetChnGAry% (hAD, ChanGainArray(C))

4-203

-G}I:hap()cl_.frm Page 204 Thursday, April 14, 1994 1:57 PM

K_SetClk

Boards All
Supported

Purpose Specifies the pacer clock source.

Prototype C/C++
DASErr far pascal K_SetClk (DWORD hFrame, short nMode),

Turbo Pascal
Function K_SetClk (hFrame : Longint; nMode : Word}) : Word;

Turbo Pascal for Windows
Function K_SetClk (hF rame : Longint; nMode : Word) : Word; far,
external DASSHELL';

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL"
-a} (ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetClk% ALIAS "K_SetCIk"
(BYVAL hFrame AS LONG, BYVAL nMade AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nMode Pacer clock source,
Valid values: 0 for Internal
1 for External

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred, Refer to Appendix A for additional
information.

4-204 Function Reterence

Q}Lhapm_.frm Page 205 Thursday, April 14, 1994 1:57 PM

K_SetClk (cont.)

Remarks For the operation defined by AFrame, this function specifies the pacer
clock source in nMode.

The value you specify in nMode sets the Clock Source element in the
frame identified by hFrame.

The internal clock source is the output of the onboard counter/timer
circuitry; an external clock source is an external signal connected to the
DIO/XPCLK pin (DAS-1800HC Series) or XPCLK pin
(DAS-1800ST/HR Serics). Refer to page 2-15 (for analog input
operations), page 2-29 (for analog output operations), and page 2-36 (for
digital I/O operations) for more information about pacer clock sources.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,

K _GetDOFrame, and K_ClearFrame specify internal as the default
clock source. The default active edge is negative for an external clock
source; use K_SetExtClkEdge to specify a positive active edge.

See Also K_GetClk
‘ Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetClk (haD, 1);

Turbo Pascal
uses D1800TP7; {* Use D1800TP6 for TP ver 6.0 *)

wDasErr := K_SetClk (hAD, 1);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_SetClk (hap, 1);

Visual Basic for Windows
{Include DASDECIL.BAS in your program make file)

whasErr = K_SetClk (hAD, 1)

4-205

{B—Lhap(m_.frm Page 206 Thursday, April 14, 1994 1:57 PM

K_SetClk (cont.)

BASIC
' $INCLUDE: ‘'DASDECL.BI'

wDasErr = KSetClk% (hAD, 1)

4-206 Function Referance

Q}Ichapoa,_.frm Page 207 Thursday, April 14, 1994 1:57 PM

K_SetClkRate

Boards All

Supported

Purpose Specifies the clock divisor for the internal 5 MHz clock source.
Prototype CiCa++

DASErr far pascal K_SetClkRate (DWORD AFrame,
DWORD dwDivisor);

Turbo Pascal
Function K_SetClkRate (hFrame : Longint; dwDivisor : Longlnt) : Word;

Turbo Pascal for Windows
Function K_SetClkRate (AF rame : Longint; dwDivisor : Longlnt) : Word;
far; external ' DASSHELL';

Visual Basic for Windows
$ Declare Function K_SetClkRate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwDivisor As Long) As Integer

BASIC
DECLARE FUNCTION KSetClkRate% ALIAS "K_SetClkRate"
(BYVAL hFrame AS LONG, BY VAL dwDivisor AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

dwDivisor Number of clock ticks between conversions.
Valid values: 15 to 4,294,967,295

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-207

> chap04_frm Page 208 Thursday, April 14, 1994 1:57 PM

K_SetClkRate (cont.)

Remarks

See Also

Usage

4-208

For the operation defined by AFrame, this function specifies the number
of clock ticks between conversions in dwDivisor,

The value you specify in dwDivisor sets the Pacer Clock Rate element in
the {rame identified by hF rame.

This function applies to an internal clock source only. The tick resolution
is 0.2 ps.

Refer to page 2-15 for more information on the pacer clock.
K_GetClkRate

C/iCe»
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD dwClkDiv;

dwClkDiv = 5000000 / 10000
wDasErr = K_SetClkRate (haAD, dwClkDiv);

Turbo Pascal
uses D1800OTP7; {(* Use D1800TP6 for TP ver 6.0 *)}

dwClkDiv : Longint;

dwClkDiv := 5000000 / 10000
wDasEry := K_SetClkRate (hAD, dwClkDiv);

Turbo Pascal for Windows
{$I DASDECL.INC}

dwClkDiv : Longint;

dwClkDiv := 5000000 / 10000
wDagErr := K_SetClkRate (hAD, dAwClkDiv);

Function Reference

{B'lchap()tl_.frm Page 209 Thursday, April 14, 1994 1:57 PM

K SetClkRate (cont.)

Visual Basic for Windows

{Inciude DASDECL.BAS in your program make file)

Global dwClkDiv As Long

dwClkDiv = 5000000 / 10000

wDagErry = K_SetClkRate (hAD, dAwClkDiv);

BASIC
* $INCLUDE: 'DASDECL.BI'

DIM dwClkDiv AS LONG

dwClkDiv = 5000000 / 10000

wDasErr = KSetClkRate% (hAD, dwClkDiv)

4-209

{]}lchapm_.frm Page 210 Thursday, April 14, 1994 1:57 PM

K_SetContRun

Boards All

Supported

Purpose Specifies continuous buffering mode.
Prototype C/C++

DASE;:r far pascal K_SetContRun (DWORD AFrame);

Turbo Pascal
Function K_SetContRun (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_SetContRun (hFrame : Longint) : Word; far;
external 'DASSHELL";

Visual Basic tor Windows
Declare Function K_SetContRun Lib "DASSHELL.DLL"
-a} (ByVal nFrame As Long) As Integer

BASIC
DECLARE FUNCTION KSetContRun% ALIAS "K_SetContRun"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by hF rame, this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K _GetDOFrame, and K_ClearFrame specify single-cycle as the default
buffering mode.

4-210 Function Reference

{]}Ichapm_.frm Page 211 Thursday, April 14, 1994 1:57 PM

K_SetContRun (cont.)

See Also

Usage

Refer to page 2-38 (for analog input operations), page 2-38 (for analog
output operalions) section, and page 2-38 (for digital /O operations) for a
description of buffering modes.

K_GetContRun

C/Cs+
tinclude "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetContRun (hAD)

Turbo Pascal
uses D1800TP7; {* Use DL800TP6 for TP ver 6.0 *)

whDagErr := K_SetContRun (hAD)

Turbo Pascal for Windows
{4I DASDECL.INC}

wDasErr := K_SetContRun {hAD)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetContRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

whasErr = KSetContRun% (hAD)

4-211

{}}Ichapm_.frm Page 212 Thursday, April 14, 1994 1:57 PM

K_SetDITrig

Boards All

Supported

Purpose Sets up a digital trigger,
Prototype CiC++

DASErr far pascal K_SetDITrig (DWORD AFrame, short nOpt,
short nChan, DWORD nPattern),

Turbo Pascal
Function K_SetDITrig (AF rame : Longint; nOpt : Word; nChan : Word;
nlattern : Longint) : Word;

Turbo Pascal for Windows
Function K_SetDITrig (hF rame : Longint; nOpt : Word; nChan : Word,;
nPattern : Longint) : Word; far; external DASSHELL';

G} Visual Basic for Windows
Declare Function K_SetDITrig Lib "DASSHELL.DLL"
(ByVal hF rame As Long, ByVal nOpt As Integer,
ByVal nChan As Integer, ByVal nPattern As Long) As Integer

BASIC

DECLARE FUNCTION KSetDITrig% ALIAS "K_SctDITrig"
(BYVAL hFrame AS LONG, BYVAL nOpr AS INTEGER,
BYVAL nChan AS INTEGER, BY VAL nPattern AS LONG)

Parameters hFrame Handie to the frame that defines the operation,
nOpt Trigger polarity and sensitivity.
Valid values: 0 for Positive edge
2 for Negative edge
nChan Digital input channel.
Valid value: 0
nPattern Trigger pattern.
4-212 Function Reference

{}}Lhapm_.frm Page 213 Thursday, April 14, 1994 1:57 PM

K_SetDITrig (cont.)

Return Value

Remarks

See Also

Usage

This function returns an integer crror/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

This function specifies the use of a digital trigger for the operation
defined by AFrame.

Since the DAS-1800 Series Function Call Driver does not currently
support digital pattern triggering, the value of nPattern is meaningless;
the nPattern parameter is provided for future compatibility.

The values you specify set the following elements in the frame identified
by hFrame:

e nOpt sets the value of the Trigger Polarity and Trigger Sensitivity
elements.

e nChan sets the value of the Trigger Channel element.
e nPattern sets the value of the Trigger Pattern element,
K_SetDITrig does not affect the operation defined by AFrame unless the

Trigger Source element ig set to External (by a call to K_SetTrig) before
hFrame is used as a calling argument to K_IntStart or K_DMAStart,

K_GetDITrig

C/C++
#include “"DASDECL.H* // Use "DASDECL.HPP for C++

wDasErr = K_SetDITrig {0, 0, 0);

Turbo Pascal
uses D180GTP7; (* Use DL80CTPe for TP ver 6.0 *)

wDasErr := K_S8etDITrig (0, 0, 0);

4-213

{]}Lhapm_.frm Page 214 Thursday, April 14, 1994 1;57 PM

K_SetDITrig (cont.)

4-214

Turbo Pascal for Windows
{81 DASDECL.INC)

wDasErr := K_SetDITrig (0, 0, 0);:

Visual Basic for Windows
(Include DASDECL BAS in your program muake file)

whagBErr = K_SetDITrig (0, O, 0)

BASIC
' SINCLUDE: ‘'DASDECL.BI‘

wDasErr = KSetDITrig% (0, 0, 0)

Function Reference

-@-lchapo-ﬁl_.frm Page 215 Thursday, April 14, 1994 1:57 PM

K_SetDMABuf

Boards All

Supported

Purpose Sets the values of a DMA butfer address and number of samples
elements,

Prototype C/C++

DASErr far pascal K_SetDMABuf (DWORD AFrame, void far *pBuf,
DWORD dwSamples);

Turbo Pascal
Function K_SetDMABuf (AFrame : Longint; pBuf : Pointer;
dwSamples . Longint) : Word;

Turbo Pascal for Windows
Function K_SetDMABuf (hF rame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_SetDMABuf Lib "DASSHELL.DLL"
(ByVal iFrame As Long, ByVal pBuf As Long,

ByVal dwSamples As Long) As Integer

BASIC

DECLARE FUNCTION KSetDMABuf% ALIAS "K_SetDMARBuf"
(BYVAL hFrame AS LONG, BYVAL pBuf AS LONG,

BYVAL dwSamples AS LONG)

Parameters hFrame Handle to the frame that defines the DMA-mode
analog input operation.

pBuf Starting address of buffer.

dwSamples Number of samples.
Valid values: 0 to 65,535

4-215

B kchap04_frm Page 216 Thursday, April 14, 1994 1:57 PM

K_SetDMABuf (cont.)

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional

information.

Remarks For the operation specified by hFrame, this function stores the address of
the currently allocated buffer in pBuf and the number of samples stored in

the buffer in dwSamples.

The pBuf variable contains the value of the Buffer element.

The dwSamples variable contains the value of the Number of Samples

element.
See Also K_DMAAlloc, KMakeDMABuf, K_BufListAdd
Usage
C/Ce++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
;;id far *pBuf; // Pointer to allocated buffer
&ﬁésErr = K_DMAAlloc (hAD, dwSamples, &pBuf, &hMem);

wDagErr = K_SetDMaBuf (hAD, pBuf, dwSamples);

1

Turbo Pascal

Function Reference

uses D18COTP7; {(* Use D1800TP6 for TP ver 6.0 *)
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : "BufType; { buffer pointer)}
wDasgErr := K_DMAAlloc (hAD, dwSamplez, Addr(pBuf), hMem);
wDagErr := K_SetDMABuf (hAD, pBuf, dwSamples);
4-2186

B hap04_frm Page 217 Thursday, April 14, 1994 1:57 PM

K_SetDMABuf (cont.)

Turbo Pascal for Windows
{4T DASDECL.INC}

TYPE

BufType = Array [0..1]1 of Integer;

VAR

pBuf : "“BufType; { buffer pointer }

wDasErr := K_DMAAlloc (hAD, dwSamples, Addr (pBuf), hMem);
wDasErr := K_SetDMABuUf (hAD, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Glckal pBuf As Long

wDasEry K_DMAAlloc (hAD, dwSamples, pBuf, hMem)
wDasErr = K_SetDMABuf (hAD, pBuf, dwSamples)

It

4

BASIC
' $INCLUDE: ‘DASDECL.BI'

DIM pBuf AS LONG

wDasErr KDMAAlloc% (hAD, dwSamples, pBuf, hMem)
wDasErr = KSetDMABuf% {(hAD, pBuf, dwSamples)

4-217

-@-Lhap()él_.frm Page 218 Thursday, April 14, 1994 1:57 PM

K_SetExtClkEdge

Boards All

Supported

Purpose Specifies the active edge of the external pacer clock.
Prototype C/C++

DASErr far pascal K_SetExiClkEdge (DWORD hFrame, short nEdge);

Turbo Pascal
Function K_SetExtClkEdge (hF'rame : Longint; rEdge : Word) : Word;

Turbo Pascal for Windows
Function K_SetExtClkEdge (hFrame : Longint; nEdge : Word) : Word;
far; external ' DASSHELL";

Visual Basic for Windows
Declare Function K_SetExiClkEdge Lib "DASSHELL.DLL"
{}} (ByVal hFrame As Long, ByVal nEdge As Integer) As Integer

BASIC
DECLARE FUNCTION KSetExtCIkEdge% ALIAS "K_SetExtClkEdge”
(BYVAL AhFrame AS LONG, BYVAL nEdge AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nEdge Active edge of external pacer clock.
Valid values: 0 for Negative edge
1 for Positive edge

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully, A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by AF rame, this function sets the active edge of
the external pacer clock and sets the External Clock Edge element in the
frame accordingly.

4-218 Function Reference

{B—lzhap()él_.frm Page 219 Thursday, April 14, 1994 1:57 PM

K_SetExtClkEdge (cont.)

See Also

Usage

K_SetExtClkEdge does not affect the operation defined by hF rame
unless the Trigger Source element is set to External (by a call to
K_SetTrig) before hFrame is used as a calling argument to K_IntStart
or K_DMAStart.

K_GetExtClkEdge

C/Ce+
#inc¢lude "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetExtClkEdge (hAD, 1)

Turbo Pascal
uses D1BOOTPR7; (* Use D1800TP6 for TP ver 6.0 *)

wDasErr := K_SetExtClkEdge (hAD, 1)

Turbo Pascal for Windows
{$I DASDECL.INC)

wDasErr := K_SetExtClkFdge (hAD, 1)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDagErr = K_SetExtClkEdge (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetExtClkEdge% (hAD, 1)

4-218

{}}Lhapm_.frm Page 220 Thursday, April 14, 1994 1:57 PM

K_SetG

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-220

All

Sets the gain.

CiC++
DASErr far pascal K_SetG (DWORD AFrame, short n(Gain);

Turbo Pascal
Function K_SetG (hFrame : Longint; nGain : Word) : Word;

Turbo Pascal for Windows
Function K_SetG (hF rame : Longint, nGain : Word) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL"

(ByVal hFrame As Long, ByVal nGain As Integer) As Integer

BASIC
DECLARE FUNCTION KSetG% ALIAS "K_SetG"
(BYVAL hFrame AS LONG, BYVAL nGain AS INTEGER)

hFrame Handle to the frame that defines the operation.

nGain Gain code.
Valid values: 0 to 3 for DAS board channels
0 to 7 for EXP-1800 channels
Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated with cach gain code.

This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Function Reference

Q}Lhapm_.frm Page 221 Thursday, April 14, 1994 1:57 PM

K_SetG (cont.)

Remarks For the operation defined by /iF rame, this function specifies the gain code
for a single channel or for a group of consecutive channels in nGain.

The value you specify in n(Gain sets the Gain element in the frame
identified by hFrame.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify 1 (gain code 0) as the
default gain.

This function is valid for A/D frames only.

See Also K_GetG, K_SetStartStopG
Usage C/C++
#include *DASDECL.H" // Use "DASDECL.HPP for C++

wDaskErr = K_SetG (hAD, 1)

_a} Turbo Pascal
uses D1800TP7; (* Use D180CTP& for TP wver 6.0 *)

wDasErr := K_SetG (hAD, 1)

Turbo Pascal for Windows
(4T DASDECL.INC)

wDasErr := K_8etG (hAD, 1)

Visual Basic for Windows
{Inciude DASDECL . BAS in your program make file)

whasErr = K_SetG (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

whasErr = KSetG% (haD, 1)

4-221

-@-Lhap()él_.frm Page 222 Thursday, April 14, 1994 1:57 PM

K_SetGate

Boards All
Suppotted

Purpose Specifies the status of the hardware gate.

Prototype C/Ca+
DASErr far pascal K_SetGate (DWORD AFrame, short nMode);

Turbo Pascal
Function K_SetGate (hFrame : Longint; nMode : Word) : Word,;

Turbo Pascal for Windows
Function K_SetGate (hFrame : Longint; nMode : Word) : Word; far;
external 'DASSHELL;

Visual Basic for Windows
Declare Function K_SetGate Lib "DASSHELL.DLL"
{B— (ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetGate% ALIAS "K_SeiGate"
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nMode Status of the hardware gate.
Valid values: 0 for Gate disabled
1 for Positive gate enabled
2 for Negative gate cnabled

Return Vaiue This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4.222 Function Referance

-@—LhapOL.frm Page 223 Thursday, April 14,1994 1:57 PM

K_SetGate (cont.)

Remarks For the operation defined by AFrame, this function specifies the status of
the hardware gate in iMode.

External gating is supported for analog input operations only. Also, you
cannot enable the hardware gate if you are using an external digital
trigger.

K_GetADFrame, K_GetDAFrame, K _GetDIFrame,

K_GetDOFrame, and K_ClearFrame specify disabled as the default
gate setting.

See Also K_GetGate

Usage C/Ca+
#include *DASDECL.H" // Use "DASDECL.HPP for C++

whasErr = K_SetGate (haD, 1)

Turbo Pascal
{i} uses D180QTP7:; (* Use D1800TP6 for TP ver 6.0 *)
wDasErr := K_SetGate (hAD, 1)

Turbo Pascal for Windows
{81 DASDECL.INC}

wDagsErr := XK_SetGate (haD, 1)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetGate (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasBrr = KSetGate% (hAD, 1)

4-223

-E\[}Lhapm_.frm Page 224 Thursday, April 14, 1994 1:57 PM

K_SetSSH

Boards All
Supported

Purpose Enables and disables SSH mode.

Prototype C/C++
DASEr far pascal K_SetSSH (DWORD hFrame, WORD nMode);

Turbo Pascal
Function K_SetSSH (hFrame : Longint; nMode : Word) : Word,

TJurbo Pascal for Windows
Function K_SetSSH (hFrame : Longint; nMode : Word) : Word; far;
external DASSHELL',

Visual Basic for Windows
Declare Function K_SetSSH Lib "DASSHELL DLL"
Q} (ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetSSH% ALIAS "K_SetSSH"
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nMode Code that indicates the status of SSH mode.
Valid values: 0 for Disabled
1 for Enabied

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information,

4-224 Function Referance

{[}lchapm_.frm Page 225 Thursday, April 14, 1994 1:57 PM

K_SetSSH (cont.)

Remarks For the operation defined by hF rame, this function stores the code that
indicates the SSH mode in aMode.

K_GetADFrame and K_ClearFrame also disable SSH mode.
Refer to page 2-15 for information on SSH mode.

See Also K_GetSSH
Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wlagErr = K_SetSSH (haD, 1)

Turbo Pascal

uses D1800TP7; {(* Use D1800TP6 for TP ver 6.0 *)
wDasErr := K_SetS8sSH (hAD, 1)
{B“ Turbo Pascal for Windows

{$T DASDECL.INC}

wDasErr := K_SetSS5H (hAD, 1)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDagErr = K_SetS8sSH (hAaD, 1)

BASIC
* $INCLUDE: 'DASDECL.BI'

wDasErr = KSetS8SH% (hAD, 1)

4-225

Q}lahapm_.frm Page 226 Thursday, April 14, 1994 1:57 PM

K_SetStartStopChn

Boards All
Suppotted
Purpose Specifies the first and last channels in a group of consecutive channels.
Prototype C/Ca+
DASEIrr far pascal K_SetStartStopChn (DWORD AF rame, short nStart,
short nStop);

Turbo Pascal
Function K _SetStartStopChn (hFrame : Longint; nStart : Word,
nStop : Word) : Word;

Turbo Pascal for Windows
Function K_SetStartStopChn (hf'rame : Longint; nStart . Word;
nStop : Word) : Word,; far; external 'DASSHELL";

{B Visual Basic for Windows
Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal AFrame As Long, ByVal aStart As Integer,
ByVal nStop As Integer) As Integer

BASIC

DECLARE FUNCTION KSetStartStopChn% ALIAS
"K_SetStartStopChn" (BY VAL AFrame AS LONG,

BY VAL nStart AS INTEGER, BY VAL nStop AS INTEGER)

4-226 Function Reference

-@ Lhap()ﬁh.frm Page 227 Thursday, April 14, 1994 1:57 PM

K_SetStartStopChn (cont.)

Parameters hFrame Handle to the frame that defines the operation.
nStart First channel in a group of consecutive channels.
Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-1800HC il 0to 63

DAS-1800ST/HR with ¥ Not applicable Oto IS(N + 1)

EXP-1800 expansion boards
attached
-G} nStop Last channel in a group of consecutive channels.

Valid values: Same as for nStart above

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-227

Q}Lhapoél_.frm Page 228 Thursday, April 14, 1994 1:57 PM

&

K_SetStartStopChn (cont.)

Remarks

See Also

Usage

4-228

For the operation defined by AF rame, this function specifies the first
channel in a group of consecutive channels in aStart and the last channel
in the group of consecutive channels in nStop.

The values you specify set the following elements in the frame identified
by hFrame:

e nStart sets the value of the Start Channel element.
e nStop sets the value of the Stop Channel element.
K_GetADFrame, K_GetDAFrame, K_GetDIFrame,

K_GetDOFrame and K_ClearFrame set the Start Channel and Stop
Channel elements to 0,

K_GetStartStopChn, K_SetStartStopG

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetStartStopChn {(hAD, ¢, 7};

Turho Pascal
uses D1800TP7; (* Use D1800TP& for TP ver 6.0 *)

wDasErr := K_SetStartStepChn (haAD, 0, 7);

Turbo Pascal for Windows
{$I DASDECL.INC}

wDasErr := K_SetStartStopChn {(hAD, 0, 7);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDagErr = K_SetStartStopChn (haD, 0, 7)

Function Reference

-@Lhapm_.frm Page 229 Thursday, April 14, 1994 1:57 PM

K_SetStartStopChn (cont.)

BASIC
* $INCLUDE: 'DASDECL.BI'

wDasErr = KSetStartStopChn% (hAD, 0, 7)

4-229

Q}Lhapmm.frm Page 230 Thursday, April 14, 1994 1:57 PM

K_SetStartStopG

Boards All
Supported
Purpose Specifies the first and last channels in a group of consecutive channels

and sets the gain for all channels in the group.

Prototype C/C++
DASEr far pascal K_SetStartStopG (DWORD hFrame, short nStari,
short nStop, short nGain);

Turbo Pascal
Function K_SctStartStopG (hFrame : Longint; nStart : Word,;
nStop : Word; nGain : Word) : Word;

Turbo Pascal for Windows
Function K_SetStartStopG (hFrame : Longint; nStart : Word;
nStop : Word; nGain : Word) : Word; far; external DASSHELL';

Visual Basic for Windows

Declare Function K_SetStartStopG Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nStart As Integer,

ByVal nStop As Integer, ByVal nGain As Integer) As Integer

BASIC

DECLARE FUNCTION KSetStartStopG% ALIAS "K_SetStartStopG*"
(BYVAL hFrame AS LONG, BY VAL nStart AS INTEGER,

BYVAL nStop AS INTEGER, BYVAL nGain AS INTEGER)

4-230 Function Reference

@-Lhapoél_.frm Page 231 Thursday, April 14, 1994 1:57 PM

K_SetStartStopG (cont.)

Parameters hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values:

Valid channel numbers

Board Differential Single-ended
DAS-1800HC 01031 0to 63

Not applicable 0t 15(N+1)

EXP-1800 expansion boards
attached
-@- nStop Last channel in a group of consecutive channels.
Valid values: Same as for nStart above
nGain Gain code.
Valid values: 0 to 3 for DAS board channels
0 to 7 for EXP-1800 channels
Refer to Table 2-2 on page 2-10 for the gain and
input ranges associated with each gain code.
Return Value This function returns an integer error/status code. Error/status code 0

indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer 1o Appendix A for additional
information,

Remarks For the operation defined by AFrame, this function specifies the first
channel in a group of consecutive channels in nStars, the last channel in a
group of consecutive channels in #Stop, and the gain code for all channels
in the group in nGain.

4-231

-@Lhapotl_.frm Page 232 Thursday, April 14, 1994 1:57 PM

K_SetStartStopG (cont.)

The values you specify set the following elements in the frame identified
by hFrame:

o #nStart sets the value of the Start Channel element.
e nStop sets the value of the Stop Channel clement.
o nGain sets the value of the Gain element.

K _GetADFrame and K_ClearFrame set the Start Channel, Stop
Channel, and Gain elements to 0.

See Also K_GetStartStopG
Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasEry = K_SetStartStopG (haD, 0, 7, 0);

Turbo Pascal
uses D1800TP7; (* Use D18007TP& for TP ver 6.0 *)

wDagsErr := K_SetStartStopG (hAD, 0, 7, 0);

Turbo Pascal for Windows
{$I DASDECL.INC}

whasErr := K_SetStartStopG (haAD, 0, 7, 0);

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

wDasErr = K_SetStartStopG (hAD, 0, 7, 0)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetStartStopG% (hAD, 0, 7, O)

4-232 Function Reference

& ©

Q}Lhapm_.frm Page 233 Thursday, April 14, 1994 1:57 PM

K_SetTrig
Boards All
Supported
Purpose Specifies the trigger source.
Prototype C/C++

DASErr far pascal K_SetTrig (DWORD hFrame, short nMode);

Turbo Pascal
Function K_SetTrig (#Frame ; Longint; iMode : Word) : Word;

Turbo Pascal for Windows
Function K_SetTrig (hWFrame : Longint; nMode : Word) : Word; far;
external ' DASSHELL";

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL DLL"
O (ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSetTrig% ALIAS "K_SetTrig"
(BYVAL hFrame AS 1LONG, BYVAL nMode AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nMode Trigger source.
Valid values: 0 for Internal trigger
1 for External trigger

Return Value This function returns an integer error/status code. Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

Remarks For the operation defined by hFrame, this function specifies the trigger
source in nMode.

4-233

-Q}Lhap()ct_.frm Page 234 Thursday, April 14, 1994 1:57 PM

&

K_SetTrig (cont.)

See Also

Usage

4-234

An internal trigger is a software trigger; conversions begin when the
operation is started. An external trigger is either an analog trigger or a
digital trigger; conversions begin when the trigger event occurs. Refer to
page 2-25 for more information about internal and external trigger
sources.

When performing a pre-trigger or about-trigger acquisition operation,
mode, nMode refers to the start trigger,

If nMode = 1, an external digital trigger (positive edge on DI1/TGIN for
DAS-1800HC Series boards, positive edge on TGIN for
DAS-1800ST/HR Series boards) is assumed. Use K_SetDITrig to change
the conditions of the digital trigger. Use K_SetADTrig to specify the
conditions for an external analog trigger,

K _GetADFrame and K_ClearFrame set the trigger source to internal.
The external trigger source is relevant for analog input operations only.

K_GetTrig

CiC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasBErr = K_SetTrig (hAD, 1);

Turbo Pascal
uges D1800TP7; (* Use D1800TP& for TP ver 6.0 *)

whasErr := K_SetTrig (hAD, 1):

Turbo Pascal for Windows
{41 DASDECL.INC)

wDagErr := K_SetTrig (haAD, 1):

Visual Basic for Windows
{Include DASDECL.BAS in your program make file)

whasErr = K_SetTrig (haD, 1)

Function Reference

-Q}lchap()él_.frm Page 235 Thursday, April 14, 1994 1:57 PM

K_SetTrig (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetTrig% (hAD, 1)

4-235

{{}Lhapm_.frm Page 236 Thursday, April 14, 1994 1:57 PM

K_SetTrigHyst

Boards All

Supported

Purpose Specifies the hysteresis value.
Prototype CiC++

DASEIr far pascal K_SetTrigHyst (DWORD hFrame, short nfyst);

Turbo Pascal
Function K_SctTrigHyst (hFrame : Longint; nHyst : Word) : Word;

Turbo Pascal for Windows
Function K_SetTrigHyst (hFrame : Longint; nFyst : Word) : Word; far;
external DASSHELL';

Visual Basic for Windows
Declare Function K_SetTrigHyst Lib "DASSHELL.DLL"
{;} (ByVal AFrame As Long, ByVal nHyst As Integer) As Integer

BASIC
DECLARE FUNCTION KSetTrigHyst% ALIAS "K_SetTrigHyst"
(BYVAL hFrame AS LONG, BYVAL nHyst AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation,

nHyst Hysteresis value, specified in raw counts.
Valid values: 0 to 4,095 for DAS-1800HC/ST
Series boards
0 to 65,535 for DAS-1800HR
Series boards

Return Value This function returns an integer error/status code, Error/status code 0
indicates that the function executed successfully. A non-zero error/status
code indicates that an error occurred. Refer to Appendix A for additional
information.

4-236 Function Reference

{]}lﬁh&pm_.frm Page 237 Thursday, April 14, 1994 1:57 PM

K_SetTrigHyst (cont.)

Remarks

See Also

Usage

For the operation defined by #Frame, this function specifies the
hysteresis value used for an analog trigger in nHyst. You must specify the
hysteresis value in raw counts. Refer to Appendix B for information on
converting the hysteresis voltage to a raw count.

The value you specify in iyst sets to the Trigger Hysteresis element in the
frame identified by hFrame.,

K_SetTrigHyst does not affect the operation defined by hFrame unless
the Trigger Source element is set to External (by a call to K_SetTrig)
before hFrame is used as a calling argument to K_IntStart or
K_DMAStart.

Refer to page 2-19 for more information about analog triggers.
K_GetTrigHyst

CiCes
#include "DASDECL.H*® // Use "DASDECL.HPP for C++

wDasErr = K_SetTrigHyst (hAD, 50);

Turbo Pascal
uses D1800TP7; {* Use D1800TP6 for TP ver 6.0 *)

wDasFEry := K_SetTrigHyst (hAD, 50);

Turbo Pascal for Windows
{$I DASDECL.INC)}

wDasErr := K_SetTrigHyst (hAD, 50};

4-237

—@"chap(m_.frm Page 238 Thursday, April 14, 1994 1:57 PM

K_SetTrigHyst (cont.)

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetTrigHyst (hAD, 50)

BASIC
' $INCLUDE: 'DASDECL.BI'

whasErr = KSetTrigHyst% (hAD, S50)

4-238 Function Reference

-@Lppx_a_.frm Page | Thursday, April 14, 1994 2:07 PM

A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the DAS-1800
Series Function Call Driver, possible causes for error conditions, and
possible solutions for resolving error conditions.

If you cannot resolve an error condition, contact the factory.

Table A-1. Error/Status Codes

Error Code
Cause Solution
-El} Hex Decimal
0 0 No error has been detected. Status only; no action is necessary.

Illegal base address in lity to

configuration file: The base change the base address in the

address specified in the configuration file. The address

configuration file is invalid. must be on a 16-byte boundary
between 200h and 3F0h.

6006 24582 Illegal gain code: The gain code | Specify a legal gain code. Refer to
specified for an analog input Table 2-2 on page 2-10 for valid
operation is out of range, gain codes.

A-1

& @

{BLppx_a_.frm Page 2 Thursday, April 14, 1994 2:07 PM

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

6008 24584 Illegal number in Check all numeric entries in the

configuration file: The configuration file; make sure that

configuration file contains a &H precedes hexadecimal

numetic vatue that is not in the numbers. Use the D1800CFG.EXE

correct format. utility to modify the configuration
file,

600B 24587 Error returning DM A buffer; | Check that the memory handle
G} DOS returned an error in INT 21H | passed as an argument to
function 49H during the execution | K_DMAFree was previously
of K_DMAFree, obtained via K_DMAAlloc

600D 24589 Illegal frame handle; The Check that the frame handle exists.
specified frame handle is not valid | Check that you are using the
for this operation. appropriate frame handle.

T

600F 24591 Requested buffer size too

large: The number of samples samples; the number of samples
specified in K_IntAlloc is too must be in the range 1 to 65,536,
large.

A-2 Error/Status Codes

{[}Lppx_a_.frm Page 3 Thursday, April 14, 1994 2:07 PM

Table A-1. Error/Status Codes (cont.)

Error Code

Cause Solution

Decimal

Interrupt buffer deallocation | Remove some Terminate and Stay
error: (Windows-based Resident programs (TSRs) that are
languages only) An error occurred | no longer needed.

when K_IntFree attempred 1o [ree
a memory handle.

602B 24619 Not enough memory to Specify a smaller number of

accommodate request: The samples; free a previously
number of samples you requested | allocated buffer; use the

‘a} in the Keithley Memory Manager | KMMSETUP utility to expand the
is greater than the largest reserved heap.

contiguous block available in the
reserved heap.

..'5

602D 24621 Tllegal device handle: A bad Check device handle value.
device handle was passed to a
function such as K_GetADFrame.
The handle used was not initialized
through a call to
K_GetDevHandle or
DAS1800_GetDevHandle, or it
was corrupted by your program.

A-3

{{}Lppx_a_.frm Page 4 Thursday, April 14, 1994 2:07 PM

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

£l

6030 24624 DMA word-page wrap: During | Reduce the number of samples and
K_DMAAIlloc, a DMA word-page | retry. If in Windows enhanced
wrap condition occurred and the mode, install and configure
allocation attempt failed since VDMAD.386.

there is not enough free memory to
accommodate the allocation

request.
a081
6032 24626 Out of memory handles: An | Use K_IntFree or K_DMAFreeto
atternpt to allocate a memory block | free previously allocated memory
using K_IntAlloc or blocks before allocating again.,

K_DMAAIlloc failed because the
maximum number of handles (50)
has already been assigned.

e

A-4 Error/Status Codes

Q}Lppx_a_.frm Page 5 Thursday, April 14, 1994 2:07 PM

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution
Hex Decimal
6034 24628 Memory corrupted; Int 21H Recheck the parameters set by

function 48H, used to allocate a K_DMAAloc and

memory block from the DOS far K_SetDMABuf, If fatal system
heap, returned the DOS error 7; error; restart your compuler.
memory corrupted, It is likely that
you stored (through a DMA-mode
or interrupt-mode operation) data
into an illegal area of the DOS
memory.

Illegal driver handle: The Someone may have closed the
specified driver handle is not valid. | driver; if so, use K_OpenDriver
to reopen the driver with the
desired driver handle. Try again
using another driver handle,

Specify a legal board name in the
initialization function did not find a | configuration file.

board name in the specified
configuration file.

A-5

Q}Lppx_a_.frm Page 6 Thursday, April 14, 1994 2:07 PM

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution
Hex Decimal
7002 28674 Bad board number: The driver Specify a legal board number: 0, 1,
initialization function found an or?2
illegal board number in the
specified configuration file.

7004 28676 Bad DMA channel: The driver Specify alegal DMA channel: §, 6,

initialization function found an 7, 546, 647, or 7+5

illegal DM A channel in the
specified configuration file.

7007 28679 Bad A/D channel mode:; The
driver initialization function found
an illegal input range type in the
specified configuration file.

Specify a legal input range type:
bipolar, unipolar

28682 Bad number of SSHS: The Run D1800CFG.EXE and specify
number of S8H-8s in the the number of SSH-8s as a number
configuration file is not valid. in the range 0 to 8.

700C 28684 Bad SSH-§ gain; The SSH-8 Run D1800CFG.EXE and specify

channel gain in the configuration | the SSH-8 channel gain as (.5, §,
file is not valid. 50, or 250,
A-6 Error/Status Codes

B lappx_a_.frm Page 7 Thursday, April 14, 1994 2:07 PM

Table A-1. Error/Status Codes (cont.)

Error Code

Hex

Decimal

Cause

Solution

700F

28687

Unknown error number: The
error number passed to
K_GetErrMsg was invalid,

Check the error number passed to
K _GetErrMsg.

Error - DMA channel busy: Th
application program attempted to
start a DMA-mode analog input
operation while another

DMA -mode analog input operation
was active.

Use K_DMAStop to stop the

active operation before initiating
the second operation.

7015

Error - About count illegal; The
number of samples passed to
K_SetAboutTrig is out of range.

Specify a number of samples in the
range 1 to 65,536.

7017

28695

Illegal number of EXP-1800: The
number of EXP-1800 expansion
boards specified in the
configuration file is not vald.

Run D1800CFG.EXE and specify
the number of EXP-1800
expansion boards as a number in
the range O to 16,

A-7

@Lppx_ﬂau.frm Page 8 Thursday, April 14, 1994 2:07 PM

Table A-1. Error/Status Codes (cont.)

Error Code

Cause Solution
Hex Decimal

Iltegal board number: An Specify a legal board number: 0, 1,
illegal board number was specified | or 2.
in the board initialization function,

8005 32773 Board not found at Make sure that the base address

configured address: The board | setting of the switches on the board
initialization function does not matches the base address setting in

detect the presence of a board.

8016 32790 Interrupt overrun: During an Use K_SetClkRate to reduce the

interrupt-mode analog output or pacer clock rate. Analog output
digital /O operation, an interrupt and digital IfO operations are
was detected from a DAS-1800 limited to the following

Series board while the software throughputs: 5 kHz in DOS and
was servicing a previous interrupt | Windows Standard mode; 1 kHz
from the same board. in Windows enhanced mode (the
throughputs listed are approximate;
they are limited by the PC’s
resources and Windows setup).

A-8 Error/Status Codes

@Lppx_a_.ﬁm Page 9 Thursday, April 14, 1994 2:07 PM

Table A-1. Error/Status Codes (cont.)

Error Code

Cause Solution

Hex Decimal

801B 32795 DMA already active: You Use K_DMAStop to stop the first
attempted to start an DMA-mode | operation before starting the
analog input operation with second operation,
K_DMAStart while another was
already in progress.

User aborted operation You pressed [Ctrl]+ [Break]
while waiting for an analog trigger

EB event to occur.

A-8

{}}Lppxga_.frm Page 10 Thursday, April 14, 1994 2:07 PM

{]}Iappx_b_.frm Page 1 Thursday, April 14, 1994 2:08 PM

©

B

Data Formats

The DAS-1800 Series Function Call Driver can read and write raw counts
only. When reading a value (as in K_ADRead), you may want to convert
the raw count to a more meaningful voltage value; when writing a value
(as in K_SetTrigHyst), you must convert the voltage value to a raw
count.

The remainder of this appendix contains instructions for converting raw
counts to voltage and for converting voltage to raw counts,

Converting Raw Counts to Voltage

You may want to convert raw counts to voltage when reading an analog
input value or when reading the analog trigger level or hysteresis value.

To convert an analog input value to a voltage, use one of the following
equations, where count is the count value, and span is the appropriate
value from Table B-1 on page B-2:

Voltage ‘%Bﬁ‘ﬂ (DAS-1800HC/ST Series boards)

Voltage “’HTI?;(;TPC“’ (DAS-1800HR Series boards)

B-1

‘@Lppx_b_.frm Page 2 Thursday, April 14, 1994 2:08 PM

Table B-1. Span Values For Data Conversion Equations

Board Input Range Gain Input Range Span (V)
Type
DAS-1801HC Unipolar Dios5V 5
Bipolar
50 —-100to 100 mV
DAS-1802HC Unipolar 1 Oto 10V
DAS-1802ST R
'61} DAS-1802HR i
4
7
Bipolar 1 -10to 10V
4 ~2.5t02.5V 5
For example, assume that you want to read analog input data from a
channel on a DAS-1801HC board configured for unipolar input range
type; the channel collects the data at a gain of 1. The count value is 3072.
The voltage is determined as follows:
3072x5 V
T 375V
B-2 Data Formats

Q}Lppx_b_.frm Page 3 Thursday, April 14, 1994 2:08 PM

As another example, assume that you want to read analog input data from
a channel on a DAS-1802HC board configured for a bipolar input range
type; the channel collects the data at a gain of 2. The count value is 1024.
The voltage is determined as follows:

1024 x 10 V

2006 = 23V

Converting Voltage to Raw Counts

You must convert voltage to raw counts when specifying an analog output
value, analog trigger level or hysteresis value.

Specifying an Analog Output Value (DAS-1800HC Series only)

To convert a voltage value to a raw count when specifying an analog
output value, use the following equation, where voltage is the desired
voltage:

voltage x 4096
C()wlt - "'—'_'""2"'.?\/_ + 2048

For example, assume that you want to specify an analog output value of
5 V for a channel on a DAS-1802HC. The raw count is determined as
follows:

5V x 4096

20V +2048 = 3072

B-3

-@Lppx_b_.frm Page 4 Thursday, April 14, 1994 2:08 PM

Specifying an Analog Trigger Level

To convert a voltage value to a raw count when specifying an analog
trigger level, use one of the following equations, where V., is the desired
voltage, and span is the appropriate value from Table B-1 on page B-2:

Vi g X 4096
Count = ———— (DAS-1800HC/ST Series boards)
span
Vi g X 65536
Count = span (DAS-1800HR Series boards)

Note: When converting voltage to raw counts to specify an analog trigger
level, always use a gain of 1 to determine which span value to use from
Table B-1, no matter what the gain of the channel is.

For example, assume that you want to specify an analog trigger level of
2.5 V for a channel on a DAS-1801HC board configured for a bipolar
input range type. The raw count is determined as follows:

2.5 V x 4096

0V = 1024

B-4 Data Formats

@—Lppx_b_.frm Page 5 Thursday, April 14, 1994 2:08 PM

Specifying a Hysteresis Value

To convert a voltage value to a raw count when specifying a hysteresis
value, use one of the following equations, where V), is the desired
voltage, and span is the appropriate value from Table B-1 on page B-2:

‘/hyst x 4096

Count = spT (DAS-1800HC/ST Series boards)
Vhyst X 65536

Counti = span (DAS-1800HR Series boards)

Note: When converting voltage to raw counts to specify a hysteresis
value, always use a gain of 1 to determine which span value to use from
Table B-1, no matter what the gain of the channel is.

For example, assume that you want to specify an analog trigger hysteresis
value of 0.5 V for a channel on a DAS-1801HC board configured for a
bipolar input range type. The raw count is determined as follows:

1.25 V x 4096

0V = 512

&

Q}Lppx_b_.frm Page 6 Thursday, April 14, 1994 2:03 PM

@

Lraft?).ix Page | Thursday, April 14, 1994 2:08 PM

Index

A

allocating memory
analog input operationd 2-6
analog output operations|2-27
digital [/O operations/2-33]
analog input operations
programming tasks
analog output operations
programming tasks|3- 18
analog-to-digital converter
AS0-1800 software package[1-1]

BASIC
allocating and assigning dynamic
memory buffers |§iL6
creating a channel-gain queue(3-50
see also Professional Basic, QuickBasic,
Visual Basic for DOS
board handle[2-2]
board initialization[2-2]
Borland C/C++
programming information[3-29]
see also C languages
Borland Turbo Pascal: see Turbo Pascal
Borland Turbo Pascal for Windows: see
Turbo Pascal for Windows
buffer address
analog input operations[2-9]
analog output operations[2-28]
digitat I/O operations{2-33]
buffer address functions[4-3]
buffering mode functions(4-3]

buffering modes
analog input operations
analog output[2-30]
digital I/O operations[2-38
buffers
analog input operations|2-6
analog output operationsm
digital I/O operations[2-33]
26

multiple

Cc

C languages
allocating and assigning dynamic
memory buffers[3-23
creating a channel-gain queue

dimensioning and assigning local arrays

see also Borland C/C++, Microsoft
C/C++, QuickC for Windows,
Visual C++
channel and gain functions|4-4
channel-gain queue
channels
multiple using a channel-gain queue

multiple using a group of consecutive
channels[2-13]
number supported
clock functions [4-4
clock source
analog input operations[2-15
analog output operation[2-29]
digital I/O operations|2-36
commands; see functions
common mode ground reference|2-1

common tasks

X-1

9

ldraftS.ix Page 2 Thursday, April 14, 1994 2:08 PM

compile and link statements
Borland C/C++3-29)
Microsoft C/C++[3-28
Professional Basic[3-54
QuickBasic (Version 4.0)}(3-5
QuickBasic (Version 4,5) 3-52]
Turbo Pascal

continuous mode
analog input operations[2-18
analog output operations
digital 1/O operations[2-38]

conventionsﬁ

conversion mode functionslz?)_]

conversion rate|2-1

converting
raw counis to voltage
voltage to raw counts

creating an executable file
Borland C/C++|3-29
Microsoft C/C++3-28
Professional Basic[3-54
QuickBasic (Version 4.0) [E]
QuickBasic (Version 4.5)3-53]
QuickC for Windows[3-30)
Turbo Pascal[3-38]
Turbo Pascal for Windowsm
Visual Basic for DOS
Visual Basic for Windows|3-45

D

DAS1800_DevOpen 2-2]4-8]

DAS1800_GetDevHandle[2-3][4-11]

DAS-1800 Series Function Call Driver: see
Function Call Driver

DAS-1800 Series standard software package

data formats|B-1
data transfer modes: see operation modes

X-2

default values

frame elements(3-5]3-7)3-8 [3-9]
digital 1/0 operations[2-31]

programming tasks[3-20
digital-to-analog converter| 2-28]
dimensioning memory

analog input operations2-6]

analog output operati(w

digital 1/O operations
driver: see Function Call Driver
driver handle

E

elements of frame[3-2]

error codes

error handling[2-4]

executable file: see creating an executable
file

F

files required
Borland C/C++3-29]
Microsoft C/C++[3-28]
Professional Basic[3-53] 3-55]
QuickBasic (Version 4.0)
QuickBasic (Version 4.5)[3-32]
QuickC for Windows[3-30]
Turbo Pasca]
Turbo Pascal for Windows|3-39]
Visual Basic for W'mdows
Visual C++[3-31]
frame management functions|4-2
frames
frame elements
frame handle[3-2]
frame types|3-3|

Index

@Lraft&ix Page 3 Thursday, April 14, 1994 2:08 PM

Function Call Driver internal pacer clock[2-16]2-29]2-361
initialization[2-2)] interrupt mode
structure[3-1 analog input operations[2-5]
functions analog output operations m
buffer address[4- 1 digital /O operations[2-32]

buffering mode|4-1
channe! and gain|4- |

clock
conversion model4-1] K
f’amﬁ]a“ageme“‘ K_ADRead[2-5]2-13]2-27]2-28] 4-14]
gacia-0 = K_BufListAdd[2-94-17]
initialization K_B quistRcsct
memory management|4- K_ClearFrame[3-4]4-23]
miscellaneous[4-1] ived 201 425
operation K_CloseDrwer. -
. K_ClrAboutTrig[4-27 |
trigger K_ClrADFreeRun[4-29
K_ClrContRun[4-3]]
K_DASDevinit[2-3] 4-33]
G K_DAWrite[4-33]
K_DIRead 2-31] 4-38 |
gain codes[2-10] K_DMAAlloc[2-8/[4-41]
{B' gains[2-10] K_DMAFree[2-8/[4-45]
see also analog input ranges|2-9 K_DMAStart|4-47
gains: see Analog input ranges K_DMAStatus[4-49)
gate functions K_DMAStop(4-53
gates[2-25] K_DOWrite
group of consecutive channels|2-13 K_FormatChnG Aryl4-59]

K_FreeDevHandle 4-61

K_FreeFrame|3-4) 4-63

K_GetAboutTrigl4-65]
H K_GetADCommModem
K_GetADConfig[4-69]
K_GetADFrame
K_GetADFreeRun(4-73]
K_GetADModel4-76
K_GetADTrig[4-78]

hardware gates: see gates
hysteresis[2-21

I K_GetBuf|4-82
K“GetBurstTicksm

initialization functiond4-2] K_GetChn[4-88

initializing a board[2-2] K_GetChnG Ary[4-91]

initializing the driver[2-2] K_GetClk[4-93]

input range type[2-9

X-3

@ @

{}}L:afts.ix Page 4 Thursday, April 14, 1994 2:08 PM

K_GetClkRate[4-96]
K_GetContRun
K_GetDAFrame 4-102
K_GetDevHandle
K_GetDIFrame[4-107]
K_GetDITrig[4-110]

K GetDOCurValm
K_GetDOFrame
K_GctErrMsg
K_GetExtClkEdge[4-121
K_GetG|4-124
K_GctGatc
K_GetShellVer|2-4)4-129
K_GetSSH|4-132
K_GetStartStopChnl[4-135]
K_GetStartStopG[4-138]
K_GeTrig[4-142
K_GetTrigHyst|4-145
K_GetVer[2-4,4-148
K_IntAlloc[2-8] 2-28([2-33]4-151
K_IntFree[2-82-28][2-33 4-154]
K_IntStart 2-512-6] 2-271 2-32/4-156
K_IntStatus 2-512-6]2-27[2-37[4-158]
K_IntStop[2-5]2-6]2-27]2-32]/4-162)
K MoveArrayToBuf 167
K_MoveBufT oArra
K_Opanriverm —1

K RestoreChnGAr
K_SetAboutTri g

K SctADCommW
K_SetADConfig|4-181
K_SetADFrecRun[2-15][4-183]
K_SetADMode|4-185
K_SetADTrigl4-187]
K_SetBuf[4-191]
K_SetBufl[4-194]

K SetBurstTlcks- 4-196
K_SetChn[2-13][2-28[4-108]

K SetChnGAry-m
K SetClkm

K_SetClkRate[2-16)2-29)2-34l 4-207
K_SetContRun|2- ISJMM;M

X-4

K_SetDITrig[d-217]
K_SetDMABuf[4-215

K_SetExtCikEdge

K sm@ﬁb 4-220
K_SetGate| 2-26]4-222
K_SetSSH[4-224]

K SctStartStopChn 2-Iiiﬁ ill 4-226
K_SetStart

K_SetTrig4-233]
K_S etTrlgHyst-m
KMakeDMABuf[4-165]

M

maintenance operations: see systeimn
operations
managing memory
analog input operations[2-6]
analog output operations|2-27
digital /O operations|2-33
memory allocation
analog input operatlons-
analog output operations[2-27

digital /0 operations[2-33
in BASI

in C/CH++

in Pascal

in Visual Basic for Windows 3-40]
memory handle

analog input operations[2-8]

analog output operations[2-28]

digital I/O operationg 2-33
memory management

analog input operations

analog output operations[2-27 |

digital I/O operations[2-33]

in BASIC

in C/C++43-23]

in Pascal[3-32

in Visual Basic for Windows[3-4001

Index

E{}anfts.ix Page 5 Thursday, April 14, 1994 2:08 PM

memory management functions
Microsoft C/C++
programming information
see also C languages

Microsoft Professional Basic: see
Professional Basic

Microsoft QuickBasic (Version 4.0): see
QuickBasic (Version 4.0)

Microsoft QuickBasic (Version 4.5): see
QuickBasic (Version 4.5)

Microsoft QuickC for Windows: see QuickC
for Windows

Microsoft Visual Basic for DOS: see Visual
Basic for DOS

Microsoft Visnal Bagic for Windows: see
Visual Basic for Windows

Microsoft Visual C++: see Visual C++

Miscellaneous functions [4-3]

Miscellaneous operations: see System
operations

multiple buffers[2-6]

(o

operation functions(4-2]
operation modes
analog input operations
analog output operations|2-27
digital I/O operations|2-31
operations
analog inpu
analog output
digital I[/0|2-3
system[2-1]

P

Pascal
allocating and assigning dynamic
memory buffer
creating a channel-gain queue

dimensioning and assigning local arrays

3-35

see also Turbo Pascal, Turbo Pascal for

Windows

preliminary tasks

Professional Basic
programiming information[3-53 |
see also BASIC

programming information
Borland C/C++|3-29
Microsoft C/C++
Professional Basic
QuickBasic (Version 4.0)
QuickBasic (Version 4.5)
QuickC for Windows[3-30]
Turbo Pascal for Windows 3-39]
Visual Basic for DOS

Visual Basic for Windows[3-40

Visual C++3-31]
programming overview| 3-10)
programming tasks

analog input operations

analog output operations
commoni?’—ll

digital 1/O operations 3-2(
h3- 11

preliminary

Q

QuickBasic (Version 4.0)
programming information [3-51]
see also BASIC

QuickBasic (Version 4.5)
programming information(3-52
see also BASIC

-@-ldlaftfi.ix Page 6 Thursday, April 14, 1994 2:08 PM

QuickC for Windows
programming information
see also C languages

R
return values

revision levels|2-4
routines: see functions

S
scan IE]

single-cycle mode
analog input operations[2-18]|
analog output operations [2-30
digital I/0 operations[2-38]
software
packages |1-1
see also ASO-1800 software package,
DAS-1800 Series standard
software package
standard software package Di]
starting a digital 1/O operation[2-31
starting an analog input operation 2-5]
starting an analog output operationm
status codes[2-4]

storing data: see buffering modes

system operations[2-1]

X-6

T

tasks
operation-specific|3-11]
preliminarypm

titne base

analog input operations
analog output opcrations
digital I/O o erations

trigger functions

triggers m

Turbo Pascal for Windows
programming information[3-39]
see also Pascal

'

Visual Basic for DOS

programming information
see also BASIC
Visual Basic for Windows

allocating and assigning dynamic
memory buffers

dimensionini and assigning local arrays

programming information| 3-40][3-45]
Visual C-++

programming information |3-31

see also C languages

Index

	TOC:

