DAS-1600/1400/120C
Series
Function Call Driver

USER’S GUIDE

DAS-1600/1400/1200 Series
Function Call Driver
User’s Guide

Revision C — May 1996
Part Number: 80950

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday — Friday 8:00 a.m. to 5:00 p.m (EST)
Fax: (440) 248-6168

Visit our website at http://www.keithley.com

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1994, 1995, 1996.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Keithley MetraByte Division
Keithley Instruments, Inc.
440 Myles Standish Blvd. Taunton, MA 02780
Telephone: (508) 880-30Q0FAX: (508) 880-0179

Preface

This manual describes how to write programs for DAS-1600/1400/1200
Series boards using the DAS-1600/1400/1200 Series Function Call
Driver. The DAS-1600/1400/1200 Series Function Call Driver supports
the following DOS-based languages:

. Microsoft? QuickBasicl (Version 4.5)

. Microsoft Professional Basic (Version 7.0 and higher)

. Microsoft Visual Basit for DOS (Version 1.0)

. Microsoft C/C++ (Version 4.0 and higher)

. Borland’ C/C++ (Version 1.0 and higher)

. Borland Turbo Pascalfor DOS (Version 7.0 and higher)

The DAS-1600/1400/1200 Series Function Call Driver also supports the
following Windows -based languages:

. Microsoft C/C++ (Version 7.0 and higher)

. Borland C/C++ (Version 4.0 and higher)

. Microsoft Visual Basic for Windows (Version 3.0 and higher)

. Microsoft Visual C++1 (Version 1.0 and higher)

. Borland Turbo Pascal for Windows (Version 1.0 and higher)

The manual is intended for programmers using a DAS-1600/1400/1200
Series board in an IBMPC AT” or compatible computer. It is assumed
that you have read the user’s guide for your board to familiarize yourself

with the board’s features, and that you have completed the appropriate
hardware installation and configuration.

Xi

Xii

It is also assumed that you are experienced in programming in your
selected language and that you are familiar with data acquisition
principles.

The DAS-1600/1400/1200 Series Function Call Driver User’'s Gisde
organized as follows:

Chapter 1 provides an overview of the Function Call Driver, a
summary of the Function Call Driver functions, a series of flow
diagrams illustrating the procedures used when programming each of
the operations supported by the Function Call Driver, and information
on how to get help.

Chapter 2 contains the background information needed to use the
functions included in the Function Call Driver.

Chapter 3 contains a programming overview and language-specific
information related to using the Function Call Driver.

Chapter 4 contains detailed descriptions of the functions, arranged in
alphabetical order.

Appendix A contains a list of the error codes returned by the Function
Call Driver.

Appendix B contains instructions for converting counts to voltage and
for converting voltage to counts.

An index completes this manual.

Keep the following conventions in mind as you use this manual:

References to DAS-1600/1400/1200 Series boards apply to all
members of the family. When a feature applies to a particular board,
that board’s name is used.

References to BASIC apply to all DOS-based BASIC languages
(Microsoft QuickBasic, Microsoft Professional Basic, and Microsoft
Visual Basic for DOS). When a feature applies to a specific language,
the complete language name is used. References to Visual Basic for
Windows apply to Microsoft Visual Basic for Windows.

Keyboard keys are represented in bold.

Table of Contents

Preface

Getting Started

OVEIVIEW A P
Summary of Functions. P P
Programming Flow Diagrams1-6
Preliminary Steps for All Operations\ L. 1-7
Steps for an Analog Input Operation.]..1-8
Steps for an Analog Output Operation 1-14
Steps for a Digital Input Operation.|1-18
Steps for a Digital Output Operation L1121
GettingHelp. L2124

Available Operations

System Operations.)21
Initializing the Driver, co].2-2
InitializingaBoard} .2-2
Retrieving Revision Levels.).2-3
Handling Errors. cod]e.2-4

Analog Input Operations c.. .24
Operation Modes.2-4

SingleMode2-5
Synchronous Mode.2-5
InterruptMode} .2-5
DMAMOdE 1.2-6
Frames.1..2-6
Memory Allocation and Management.}2-10
Dimensioning a Local Array J2-10
Dynamically Allocating a Memory Buffer.2-10
Assigning a Starting Address. col)2-12
GainsandRangescciiiiiiina... colo.2-12
Channels}.2-14
Specifying a Single Channel|.2-16
Specifying a Group of Consecutive Channels |...[.2-17
Specifying Channels in a Channel-Gain Queue. . .| .. .[.2-18

Conversion Modes. co.4.2-19
PacedMode i, ...].2-19
BurstMode.}2-19
BurstModewith SSH Lo 12-21

PacerClocks i ... 1.2-21
Internal Pacer Clock. L2-22
External PacerClock|.2-23

BufferingModes 12-23
Single-CycleMode. |2-24
ContinuousMode. 2-24

THGgErS . o o co . 2-24
Internal Trigger. i .. |2-24
External Analog Trigger. |2-25
External Digital Trigger.p-28

Analog Output Operations (DAS-1600 Series Only). 12-29

Operation Modes.t cod.2-29
SingleMode................, .12-29
SynchronousMode.[.2-30
InterruptMode 12-30

Frames.|.2-31
Memory Allocation and Management. 12-32
Channels2-34
PacerClocks i ... 1.2-34
Internal Pacer Clock. L. ..]).2-35
External PacerClock|.2-36
BufferingModes 12-37
Single-CycleMode. 2-37
ContinuousMode.12-37
THGgErS . . o ... 2-37
Internal Trigger. i ...|2-38
External Digital Trigger.pP-38
Digital /O Operations, .12-39
Operation Modes. oo d.2-39
SingleMode................, .12-39
SynchronousMode.].2-40
InterruptMode 12-40
Frames.|.2-41
Memory Allocation and Management. |2-42
Digital Input/Output Channel J|2-45
PacerClocks i ...1.2-48
Internal Pacer Clock. L. . .|2-48
External PacerClock].2-50

BufferingModes 12-50
Single-CycleMode. |2-50
ContinuousMode.}2-51

THGgErS . . o2-51
Internal Trigger.|2-51
External Digital Trigger......................R-52

Counter/Timer I1/O Operations.].2-52
Programming with the Function Call Driver

Programming Overview. o]0 .32
C/C++ Programming Information 1.3-3

Dynamically Allocating a Memory Buffer| .. {3-3

Accessing Data from a Dynamically Allocated
Memory Buffer1.34

Dimensioning a Local Array.| .. {.34

Creating a Channel-GainQueue| ..J..3-5

Handling Errors.]..3-6

Programming in Microsoft C/C++ (for DOS)......... .. 137

Programming in Microsoft C/C++ (for Windows) | ..13-8

Programming in Borland C/C++ (for DOS)].3-9

Programming in Borland C/C++ (for Windows).8-10

Pascal Programming Information M c 2 i |

Reducing the Memory Heap3-11

Dynamically Allocating a Memory Buffer........... ...3-12

Accessing Data from a Dynamically Allocated
Memory Buffer 13-13

Dimensioning a Local Array. {3-13

Creating a Channel-Gain Queue 4.3-14

Handling Errors.].3-14

Programming in Borland Turbo Pascal (for DOS)|... |3-15

Programming in Borland Turbo Pascal for Windows . .|. .. |3-15

Visual Basic for Windows Programming Information. ...} ...B-16

Dynamically Allocating a Memory Buffer3-16

Accessing Data from a Dynamically Allocated
Memory Buffer with Fewer than 64 KB of Data3-17

Accessing Data from a Dynamically Allocated
Memory Buffer with More than 64 KB of Data 3-17

Accessing More than 64 KB of Data from a
Dynamically Allocated Memory Buffer3-19

Dimensioning a Local Array. {3-19

Creating a Channel-Gain Queue 4.3-19

Converting Integer Data for Digital I/O Operations . . .| ...3-21

Handling Errors.].3-22
Programming in Microsoft Visual Basic for Windows . .|. . .3-23

BASIC Programming Information. 43-24
Reducing the Memory Heap3-24
Dynamically Allocating a Memory Buffer........... ...3-24

Accessing Data from a Dynamically Allocated
Memory Buffer with Fewer than 64 KB of Data . .. |...3-25
Accessing Data from a Dynamically Allocated

Memory Buffer with More than 64 KB of Data3-25
Accessing More than 64 KB of Data from a

Dynamically Allocated Memory Buffer 3-27
Dimensioninga LocalArray.13-28
Creating a Channel-Gain Queue 4.3-28
Converting Integer Data for Digital /0 Operations . . .| .. .B-29
Handling Errors. i ...l.3-30
Programming in Microsoft QuickBasic3-31
Programming in Microsoft Professional Basic. 43-32

Programming in Microsoft Visual Basic for DOS]...3-33

Function Reference

DAS1600 _8254CONtrolviiieein] .47
DAS1600 8254GetCIkO[.4-10
DAS1600_8254GetCounter.4-13
DAS1600_8254GetTrig0., ...|.4-16
DAS1600_8254SetCIKO.,].4-19
DAS1600_8254SetCounter 1.4-21
DAS1600_8254SetTrig04-24
DAS1600 _DevOpen.4-27
DAS1600 GetDevHandle[.4-30
K_ADRead. e].4-32
K ClearFrame i, ...J.4-35
K_CloseDriver.|.4-37
K CIrADFreeRun}4-39
K CIrContRUN. e ... |.4-41
K _DASDevInit.14-43

K DAWIItE . . e ... |4-45
K DIRead4-48
K. DMAAIIOC. . ..o e eA-51

K DMAFree e e4-54
K DMAStart e ...14-56
K DMASEatus e ...|.4-58
K. DMASIOP ... oo ...14-61

K DOWHIte . ..o ... 4-64
K_FormatChnGAry e ... 4-67

K_FreeDevHandle4-69
K FreeFrame i ..] .4-71
K GetADConfigcoii i ... }4-73

K GetADFrame.|.4-75
K_GetADMode 4-TT
K GetCIkRate4-79
K_GetDAFrame.4-81
K GetDevHandle.4-83
K GetDIFrame. i4-85
K GetDOFrame. i4-87
K_GEetEIMMSg. . . oo].4-89
K _GetShellVer.[.4-91
K_GetVer.4-94
K NtAIIOCo ... 14-97

KIntFree. e 4-100
KintStart. e 4-102
KontStatus. e 4-104
KINtStop. . .. 4-107
KMakeDMABUf4110

K_MoveArrayToBuf oL 44112

K _MoveArrayToBufL 40114

K_MoveBufToArray,4-116

K_MoveBufToArrayL4t118

K MoveDataBuf4-120
K_OpenDriver e L A-122
K _RestoreChnGAIY. ..o e e 1-125
K SetADFreeRun i 4-127
K _SetADTrig. . vttt e4-129

K SetBuf 4-132
K SetBufl i ..f4-135
K SetBufL............A4-137
K_SetBurstTicks e 4-139
K SetChn...... i 14-141
K_SetChnGAryA-143
K SetCIK ... 4-146
K SetCIkRate. 4-148
K_SetContRun. 4-151
K SetDITHig. . oo4-153
K_SetDMABUf4-156

K SetG. .. . 14-159

Vii

viii

K_SetSSH
K_SetStartStopChn C
K _SetStartStopG oo C

K_SetTrig

K SetTrigHyst.

K_SyncStart

Error/Status Codes

Data Formats

Converting Voltageto Counts.
Specifyinga Trigger Level
Specifying a HysteresisValue.
Specifying an Analog Output Value

(DAS-1600 Series Only)

Converting Counts to Voltage.

Index

List of Figures

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.

Frame-Based Operation.

Analog Input Channels

Analog Trigger Conditions
Using a Hysteresis Value.
Digital Trigger Conditions.

List of Tables

Table 1-1.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.

Table 2-9.

Summary of Functions.
A/D FrameElements.................

Analog InputRanges
Channels in Maximum Configuration
Default Settling Times.

D/AFrameElements................. ...

DI Frame Elements
DO Frame Elements.
Dimensioning Arrays for Digital /0
Operations
Digital /0 Channel Usage;
No EXPs, All Ports Output

4-162

4-164

4-166

..... 4-169

A-171

..... 4-173

.| B-2
|- .- B-3

..t B-3
..l...l. B-5

L) 27
...12-16
.. J2-25
N
.. .P-28

Table 2-10. Digital I/O Channel Usage;

Table 3-1.
Table 3-2.
Table 4-1.
Table 4-2.
Table A-1.
Table B-1.
Table B-2.

EXPs Used, All Ports Output.
Table 2-11. Digital I/O Channel Usage;

No EXPs, A and B Output, CL and CH Input. . .
Table 2-12. Digital I/O Channel Usage,;
No EXPs, B and CH Output, A and CL Input. . .
Protected-Mode Memory Architecture|....
Real-Mode Memory Architecture Ce
Functions R
Data Type Prefixes. S
Error/Status Codes.

Span Values for Analog Output Equations .

Span Values for A/D Conversion Equations .. .

Table 2-1. Supported Operations [..]..2-1

Table 2-2. Analog InputRanges.................l.2-10
Table 2-3. Channels in Maximum Configuration R-12
Table 2-4. Default Setting Times. |2-17
Table 2-5. Dimensioning Arrays for Digital I/O Operatipns 2-35

Table 2-6. Digital I/O Channel Usage;

No EXPs, All Ports Output2-38

Table 2-7. Digital I/O Channel Usage;

EXPs Used, All Ports Output2-B9

Table 2-8. Digital I/O Channel Usage;

No EXPs, A and B Output, CL and CH Irjput2}-39
Table 2-9. Digital I/O Channel Usage;

No EXPs, B and CH Output, A and CL Irjput2-40

Table 3-1. A/DFrameElements.................. [..].35
Table 3-2. D/AFrameElements.................. L. .37
Table 3-3. DIFrameElements l..]..38
Table 3-4. DO Frame Elements.39

Table 3-5. Setup Functions for Synchronous-Mode
Analog Input Operatiohs3-13

Table 3-6. Setup Functions for Interrupt-Mode
Analog Input Operatiohs3-15

Table 3-7. Setup Functions for DMA-Mode

Analog Input Operatiohs3-17

Table 3-8. Setup Functions for Synchronous-Mode
Analog Output Operations3-P0

Table 3-9. Setup Functions for Interrupt-Mode
Analog Output Operations3-P2

Table 3-10. Setup Functions for Synchronous-Mode
Digital Input and Digital Output Operatidns3}24
Table 3-11. Setup Functions for Interrupt-Mode
Digital Input and Digital Output Operatidns3126

Table 3-12. Protected-Mode Memory Architecture 3-45
Table 3-13. Real-Mode Memory Architecture 3-52
Table4-1. Functions.............. ...,42
Table 4-2. Data Type Prefixes. S Y S
Table A-1. Error/StatusCodes. AL
Table B-1. Span Values for Analog Output Equations . | . .| B-3
Table B-2. Span Values for A/D Conversion Equations | . . | B-5

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 3-1.
Figure 3-2.

Analog Input Channels

..2-13

Analog Trigger Conditions C

2-23

Using a Hysteresis Value.

|.2-24

Digital Trigger Conditions. L.

[2-25

Single-Mode Function.].. .

.3-2

Interrupt-Mode Operation| ...

1

Getting Started

This chapter contains the following sections:

. Overview - a description of the DAS-1600/1400/1200 Function Call
Driver.

. Summary of Functions- a brief description of the
DAS-1600/1400/1200 Function Call Driver functions.

. Programming Flow Diagrams- an illustration of the procedures to
follow when programming a DAS-1600/1400/1200 Series board
using the DAS-1600/1400/1200 Function Call Driver.

. Getting Help - information on how to get help when installing or
using the DAS-1600/1400/1200 Function Call Driver.

Overview

The DAS-1600/1400/1200 Series Function Call Driver is a library of data
acquisition and control functions (referred to as the Function Call Driver
or FCD functions). It is part of the following two software packages:

. DAS-1600/1400/1200 Series standard software packageéhis is
the software package that is shipped with DAS-1600/1400/1200
Series boards; it includes the following:

— Libraries of FCD functions for Microsoft QuickBasic, Microsoft
Professional Basic, and Microsoft Visual Basic for DOS.

— Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

Overview 1-1

Utility programs, running under DOS, that allow you to
configure, calibrate, and test the features of
DAS-1600/1400/1200 Series boards.

Language-specific example programs.

. AS0-1600/1400/1200 software packageThis is the Advanced
Software Option for DAS-1600/1400/1200 Series boards. You
purchase the ASO-1600/1400/1200 software package separately from
the board; it includes the following:

Libraries of FCD functions for Microsoft C/C++, Borland
C/C++, and Borland Turbo Pascal.

Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
C/C++, Borland C/C++, Microsoft Visual C++, Microsoft Visual
Basic for Windows, and Borland Turbo Pascal for Windows.

Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

Utility programs, running under DOS and Windows, that allow
you to configure, calibrate, and test the functions of
DAS-1600/1400/1200 Series boards.

Language-specific example programs.

Before you use the Function Call Driver, make sure that you have
installed the software, set up the board, and created a configuration file
using the setup and installation procedures described in Chapter 3 of the
user’s guide for your board.

Summary of Functions

Table 1-1 provides a brief description of the functions in the
DAS-1600/1400/1200 Series Function Call Driver. For more detailed
information about the functions, refer to Chapter 4.

1-2

Getting Started

Table 1-1. Summary of Functions

Type of
Function Name of Function Description
Initialization DAS1600 DevOpen Initializes the DAS-1600/1400/1200 Series
Function Call Driver.
K_OpenDriver Initializes any Function Call Driver.
K_CloseDriver Closes a Function Call Driver.
DAS1600 GetDevHandle | Initializes a DAS-1600/1400/1200 Series board.
K_GetDevHandle Initializes any Keithley DAS board.
K_FreeDevHandle Frees a device handle.
K_DASDevInit Reinitializes a board.
Operation K_ADRead Reads a single analog input value.
K_DAWrite Writes a single analog output value.
K_DIRead Reads a single digital input value.
K_DOWrite Writes a single digital output value.
K_DMAStart Starts a DMA-mode operation.
K_DMAStatus Gets the status of a DMA-mode operation.
K_DMAStop Stops a DMA-mode operation.
K_IntStart Starts an interrupt-mode operation.
K_IntStatus Gets the status of an interrupt-mode operation.
K_IntStop Stops an interrupt-mode operation.
K_SyncStart Starts a synchronous-mode operation.
Frame K_GetADFrame Accesses a frame for an analog input operation.
management K_GetDAFrame Accesses a frame for an analog output operation.
K_GetDIFrame Accesses a frame for a digital input operation.
K_GetDOFrame Accesses a frame for a digital output operation|.
K_FreeFrame Frees a frame.
K_ClearFrame Sets all frame elements to their default values.

Summary of Functions

Table 1-1. Summary of Functions (cont.)

Type of
Function Name of Function escription
Memory K_DMAAlloc Dynamically allocates a memory buffer for a
management DMA-mode operation.
K_DMAFree Frees a memory buffer that was dynamically
allocated for a DMA-mode operation.
K_IntAlloc Dynamically allocates a memory buffer for an
interrupt-mode or synchronous-mode operation.
K_IntFree Frees a memory buffer that was dynamically
allocated for an interrupt-mode or
synchronous-mode operation.
KMakeDMABUuUf Converts a local array to a buffer suitable for a

DMA-mode operation.

K_MoveArrayToBuf

Transfers data from a local integer array to a
dynamically allocated memory buffer.

K_MoveArrayToBufL

Transfers data from a local long array to a
dynamically allocated memory buffer.

K_MoveBufToArray

Transfers data from a dynamically allocated
memory buffer to a local integer array.

K_MoveBufToArrayL

Transfers data from a dynamically allocated
memory buffer to a local long array.

K_MoveDataBuf

Moves data from one memory area to another.

Buffer address

K_SetBuf

Specifies the address of a local array (C/C++ or
Pascal) or a dynamically allocated memory buffe
(C/C++, Pascal, Visual Basic for Windows, or
BASIC) for an interrupt-mode or
synchronous-mode operation.

K_SetBufl

Specifies the address of a local integer array
(BASIC or Visual Basic for Windows) for an
interrupt-mode or synchronous-mode operation.

K_SetBufL

Specifies the address of a local long array (BASI
or Visual Basic for Windows) for an interrupt-mod
or synchronous-mode operation.

K_SetDMABUf

Specifies the address of a dynamically allocateq
memory buffer for a DMA-mode operation.

Getting Started

=

C
e

Table 1-1. Summary of Functions (cont.)

Summary of Functions

1-5

LA
wn

or

Type of

Function Name of Function Description

Buffering mode| K_SetContRun Specifies continuous mode.
K_CIrContRun Specifies single-cycle mode.

Conversion K_SetADFreeRun Specifies burst mode.

mode o

K_CIrADFreeRun Specifies paced mode.

K_SetSSH Specifies burst mode with SSH (simultaneous
sample-and-hold).

Channel and | K_SetChn Specifies a single channel.
ain o i .
g K_SetStartStopChn Specifies the first and last channels in a group of
consecutive channels.

K_SetG Specifies the gain for a group of consecutive
channels.

K_SetStartStopG Specifies the first and last channels in a group of
consecutive channels and the gain for all channe
in the group.

K_SetChnGAry Specifies the starting address of a channel-gain
queue.

K_FormatChnGAry Converts the format of a channel-gain queue.

K_RestoreChnGAry Restores a converted channel-gain queue.

K_GetADConfig Gets the input channel configuration (differential
single-ended).

K_GetADMode Gets the input range type (bipolar or unipolar).

Clock K_SetClk Specifies the pacer clock source.

K_SetClkRate Specifies the clock rate for the internal pacer clock.

K_GetClkRate Gets the clock rate for the internal pacer clock.

K_SetBurstTicks Specifies the count value used to adjust the settling
time.

Table 1-1. Summary of Functions (cont.)

counter/timet

Type of

Function Name of Function Description

Trigger K_SetTrig Specifies the trigger source.
K_SetADTrig Sets up an external analog trigger.
K_SetTrigHyst Specifies the hysteresis value.
K_SetDITrig Sets up an external digital trigger.

82C54 DAS1600_8254Control | Writes data to the 82C54 counter/timer control

register.

DAS1600_8254SetCounte

r Specifies the value of a counter.

DAS1600_8254SetCIkO

Specifies the clock source for counter 0.

DAS1600_8254SetTrig0

Enables/disables the gate signal.

DAS1600_8254GetCounte

Gets the value of a counter.

DAS1600_8254GetCIkO

Gets the clock source for counter 0.

DAS1600_8254GetTrig0

Gets the status of the gate signal.

Miscellaneous | K_GetErrMsg
K_GetVer

K_GetShellVer

Gets the address of an error message string.

Gets revision numbers.

Gets the current DAS shell version.

Notes

1 These functions allow you to program the 82C54 counter/timer on the DAS-1600/1400/1200 Series
board. See Appendix E of your user’s guide for more information.

Programming Flow Diagrams

This section contains a series of programming flow diagrams illustrating
the procedures used when programming each of the operations supported
by the DAS-1600/1400/1200 Series Function Call Driver. Although error
checking is not shown in the flow diagrams, it is recommended that you
check the error/status code returned by each function used in your
program.

1-6 Getting Started

Preliminary Steps for All Operations

Install all required files,
including the function and
variable type definition file

v

Declare and initialize program
variables

v

Initialize the driver
(K_OpenDriver or DAS1600_DevOpen)

y=

Initialize a board
(K_GetDevHandle or DAS1600_GetDevHandlre)

v

Using another
board?

Yes

Perform the steps appropriate to your
operation (see the operation-specific
flow diagrams)

Programming Flow Diagrams 1-7

Steps for an Analog Input Operation

Performing a
single-mode
operation?

Declare the variable
in which to store the
input value

v

No

Read the count value
(K_ADRead)

\

Convert the count value

Y

(Operation complete)

Y

Access a frame
(K_GetADFrame)

< Continued on next page)

1-8

Getting Started

Steps for an Analog Input Operation (cont.)

<Continued from previous page>

Using DMA Yes

mode?

Using a
dynamically
allocated
memory
buffer?

*No

Declare and dimension
a local array

Yes

Allocate a buffer

P> (K_DMAAlioc)

v

Specify the starting address

of the buffer
(K_SetDMABuUf)

Allocate a buffer
(K_IntAlloc)

\

Specify the
starting address
of the buffer
(K_SetBuf)

Using
C/C++ or
Pascal?

Yes

Specify the
starting address
of the array
(K_SetBuf)

*No

Specify the starting
address of the array
(K_SetBufl)

-

< Continued on next page >

Programming Flow Diagrams

Steps for an Analog Input Operation (cont.)

<Continued from previous page>

Using a
channel-
gain

Yes Define the
—p» channel-gain
queue

No

Using
Visual Basic
or BASIC?

Yes Format the
channel-gain queue
(K_FormatChnGAry)

No
Modify the Yes Restore the
chan_nel— —p| Channel-gain queue
gain (K_RestoreChnGAry)
V=

Specify the starting address
of the channel-gain queue
(K_SetChnGAry)

Using a
group of
consecutive
channels?

Specify the first and last channels

Yes and the gain for all channels
(K_SetStartStopG or

K_SetStartStopChn and K_SetG)

Specify a single channel
(K_SetChn)

Y

Specify the gain
for the single channel
(K_SetG)

V< !

< Continued on next page >

1-10 Getting Started

Steps for an Analog Input Operation (cont.)

<C0ntinued from previous page>

Y

Using burst
or burst with
SSH mode?

Using DMA
mode?

Yes

Specify the conversion mode
(K_SetADFreeRun or K_SetSSH)

Specify paced conversion mode
(K_CIrADFreeRun)

-

Specify the clock source
(K_SetCIk)

Using the
internal
clock?

Set the clock rate
(K_SetClkRate)

Using
continuous
buffering
mode?

Using DMA
or interrupt
mode?

Yes Yes

No

Specify single-cycle buffering mode
(K_CIrContRun)

Specify continuous buffering mode
(K_SetContRun)

V<
< Continued on next page >

Programming Flow Diagrams

1-11

Steps for an Analog Input Operation (cont.)

<Continued from previous page>

Using an
external
trigger?

Yes

Specify an external trigger
(K_SetTrig)

Specify an internal trigger
(K_SetTrig)

Using an
external
analog
trigger?

Yes

Specify analog
trigger conditions
(K_SetADTrig)

'

Specify digital
trigger conditions

Specify the
hysteresis value
(K_SetTrigHyst)

(K_SetDITrig)

v

v<

Start the operation
(K_DMAStart, K_IntStart, or K_SyncStart)

Using DMA
or interrupt
mode?

Yes

Monitor the status of the operation
(K_DMAStatus or K_IntStatus)

No

mode?

Using
ntin Yes
continuous 3
buffering

Stop the operation
(K_DMAStop or K_IntStop)

Yy«

< Continued on next page)

1-12

Getting Started

Steps for an Analog Input Operation (cont.)

< Continued from previous page >

Using a
dynamically
allocated
buffer?

C/C++ or

Using

Pascal?

Transfer data from the
buffer to a local array
(K_MoveBufToArray)

Read data
from the array

v

Convert data
from the array

-

Read data
from the buffer

v

Convert data
from the buffer

Free the buffer
(K_DMAFree or K_IntFree)

Free the frame
(K_FreeFrame)

< Operation complete)

Programming Flow Diagrams

1-13

Steps for an Analog Output Operation

Performing a
single-mode
operation?

e

Declare the variable
in which to store the
output value

v

Write the output value
(K_DAWrite)

Access a frame
(K_GetDAFrame)

Using a
dynamically

allocated
memory
buffer?

e

Declare and dimension
a local array

Yes

Using
C/C++ or
Pascal?

*No

Specify the starting
address of the array
(K_SetBufl)

Yes

(Operation complete)

Allocate a buffer
(K_IntAlloc)

\

Specify the
starting address

of the buffer
(K_SetBuf)

Specify the
starting address
of the array
(K_SetBuf)

V<
< Continued on next page >

1-14

Getting Started

Steps for an Analog Output Operation (cont.)

<Continued from previous page>

Writing to
both
channels?

Yes Specify both channels
(K_SetStartStopChn)

Specify a single channel
(K_SetChn)

-

Specify the clock source
(K_SetClIk)

Using the
internal
clock?

Set the clock rate
(K_SetClkRate)

Using
continuous
buffering
mode?

Using
interrupt
mode?

Yes

No

Specify single-cycle buffering mode
(K_ClIrContRun)

Yes

Specify continuous buffering mode
(K_SetContRun)

<
< Continued on next page >

Programming Flow Diagrams

1-15

Steps for an Analog Output Operation (cont.)

<Continued from previous page>

Using an

external Yes Specify an external trigger
digital (K_SetTrig)
trigger? %
No Specify the digital
trigger conditions
(K_SetDITrig)

Specify an internal trigger
(K_SetTrig)

Using
Visual Basic
or BASIC?

Yes Load output values into
program’s local array

Using a Transfer data to the
dynamically Yes dynamically allocated buffer
allocated (K_MoveArrayToBuf)
buffer?

Load output values
into array or buffer

No

-

< Continued on next page)

1-16 Getting Started

Steps for an Analog Output Operation (cont.)

<Continued from previous page>

v

Start the operation
(K_IntStart or K_SyncStart)

Using

interrupt Yes Monitor the status of the operation

) > (K_IntStatus)

No

Using
continuous

buffering
mode?

¢N0

Free the buffer
(K_IntFree)

Stop the operation
(K_IntStop)

Using a
dynamically
allocated
buffer?

Free the frame
K_FreeFrame

< Operation complete >

Programming Flow Diagrams 1-17

Steps for a Digital Input Operation

Performing a
single-mode
operation?

Declare a variable in which
to store the input value

v

Read the input value

(K_DIRead)
Access a frame #
(K_GetDIFrame)
Operation complete

Using a
dynamically
allocated

Yes Allocate a buffer
4>

(K_IntAlloc)
memory
buffer? *
No Specify the
* starting address
B B of the buffer
Declare and dimension (K_SetBuf)
a local array

Specify the

Yes starting address
» of the array

(K_SetBuf)

Using
C/C++ or
Pascal?

*No

Specify the starting
address of the array
(K_SetBufl or K_SetBufL)

V< Y

< Continued on next page >

1-18

Getting Started

Steps for a Digital Input Operation (cont.)

< Continued from previous page >

Specify the clock source
(K_SetClIk)

Using the
internal

o (K_SetCIkR
CIOCKs

Set the clock rate

ate)

Using

Using

Specify continuous buffering mode
(K_SetContRun)

b

Specify an internal trigger

interrupt Yes > continuous Yes
mode? buffering
mode?
No
Specify single-cycle buffering mode
(K_ClIrContRun)
Using an
external Yes Specify an external trigger
digital (K_SetTrig)
trigger? %
Specify the digital

trigger conditions
(K_SetDITrig)

(K_SetTrig)

B

Start the operation
(K_IntStart or K_SyncStart)

< Continued on next page >

Programming Flow Diagrams

1-19

Steps for a Digital Input Operation (cont.)

< Continued from previous page >

Using _ _
interrupt Yes Monitor the status of the operation
mode? (K_IntStatus)

No

Using
continuous

buffering
mode?

Yes Stop the operation
> (K_IntStop)

Using a Usin
: g
dynamically C/C++ or Yes Read data
allocated Pascal? » from the buffer
buffer?)

v

Free the buffer
(K_IntFree)

Transfer the data from
the buffer to a local array
(K_MoveBufToArray or
K_MoveBufToArrayL)

> ‘
Read data
from the array

-

Free the frame
(K_FreeFrame)

< Operation complete)

1-20 Getting Started

Steps for a Digital Output Operation

Performing a
single-mode
operation?

Declare the variable
in which to store the
output value

v

[

Write the output value
(K_DOWrite)

Access a frame
(K_GetDOFrame)

Using a

Y

< Operation complete >

dynamically
allocated
memory

Yes

Allocate a buffer
(K_IntAlloc)

buffer?

e

Declare and dimension
a local array

v

Specify the
starting address

of the buffer
(K_SetBuf)

Using
C/C++or
Pascal?

Yes

starting address

Specify the

of the array
(K_SetBuf)

*NO

Specify the starting
address of the array
(K_SetBufl or K_SetBufL)

4
< Continued on next page >

Programming Flow Diagrams

1-21

Steps for a Digital Output Operation (cont.)

<Continued from previous page>

Specify the clock source
(K_SetCIk)

Using the
internal
clock?

Set the clock rate
(K_SetClkRate)

Using
interrupt
mode?

Yes

No

-

Using
continuous
buffering
mode?

Yes Specify continuous buffering mode
> (K_SetContRun)

No

Specify single-cycle buffering mode
(K_CIrContRun)

Using an
external
digital
trigger?

Yes

Specify an internal trigger
(K_SetTrig)

Specify an external trigger
(K_SetTrig)

v

Specify the digital
trigger conditions
(K_SetDITrig)

>
(Continued on next page >

1-22

Getting Started

Steps for a Digital Output Operation (cont.)

<Continued from previous page>

Using
Visual Basic
or BASIC?

Yes Load output values into
program’s local array

Using a
dynamically

allocated
buffer?

Transfer the data to the
Yes dynamically allocated buffer
(K_MoveArrayToBuf or
K_MoveArrayToBufL)

Load output values

into array or buffer
No
-
Start the operation
(K_IntStart or K_SyncStart)
Using
interrupt Yes Monitor the status of the operation
mode? > (K_IntStatus)

No

Using
continuous

buffering
mode?

b ¢ No

C Continued on next page >

Stop the operation
(K_IntStop)

Programming Flow Diagrams 1-23

Steps for a Digital Output Operation (cont.)

< Continued from previous page >

Using a
dynamically
allocated
buffer?

Yesl Free the buffer
(K_IntFree)

Free the frame
(K_FreeFrame)

< Operation complete)

Getting Help

If you need help installing or using the DAS-1600/1400/1200 Series
Function Call Driver, call your local sales office or call Keithley
MetraByte at the following number for technical support:

(508) 880-3000
Monday - Friday, 8:00A.M. - 6:00r.Mm., Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

1-24 Getting Started

Please make sure that you have the following information available before

you call:

DAS-1600/1400/1200 Model

Series
board configuration

Computer

Operating system

Software package

Compiler
(if applicable)

Accessories

Getting Help

Serial #

Revision code

Base address setting
Interrupt level setting
Input configuration
Input range type
DMA channel

Manufacturer

CPU type

Clock speed (MHz)
Amount of RAM
Video system
BIOS type

DOS version
Windows version

Name

Serial #
\Version
Invoice/Order #

Language
Manufacturer
\ersion

Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number

2,3,4,5,6,7, None

single-ended, differential

unipolar, bipolar
1,3

1-25

2

Available Operations

This chapter contains conceptual information about the
DAS-1600/1400/1200 Function Call Driver functions. It includes the
following sections:

System Operations- information on initializing the Function Call
Driver, initializing a board, retrieving revision levels, and handling
errors.

Analog Input Operations - information on operation modes, frames,
memory allocation and management, gains and ranges, channels,
conversion modes, pacer clocks, buffering modes, and triggers.

Analog Output Operations (DAS-1600 Series Only) information
on operation modes, frames, memory allocation and management,
channels, pacer clocks, buffering modes, and triggers.

Digital I/0 Operations - information on operation modes, frames,
memory allocation and management, the digital I/O channel, pacer
clocks, buffering modes, and triggers.

Counter/Timer 1/0O Operations - information on using the 82C54
counter/timer circuitry of DAS-1600/1400/1200 Series boards.

System Operations

System Operations

This section describes the miscellaneous and general maintenance

operations that apply to DAS-1600/1400/1200 Series boards and to the
DAS-1600/1400/1200 Series Function Call Driver. It includes
information on initializing the driver, initializing a board, retrieving
revision levels, and handling errors.

2-1

Initializing the Driver

You must initialize the DAS-1600/1400/1200 Series Function Call Driver
and any other Keithley DAS Function Call Drivers you are using in your
program. To initialize the drivers, use tkeOpenDriver function.

Specify the driver you are using and the configuration file that defines the
use of the driver. The driver returns a unique identifier for that use of the
driver; this identifier is called the driver handle.

You can specify a maximum of 30 driver handles for all the Keithley
MetraByte drivers initialized from all your programs. If you no longer
require a driver and you want to free some memory or if you have used all
30 driver handles, use tie CloseDriver function to free a driver handle
and close the associated driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver are
shut down and unloaded from memory.)

Note: If you are programming in Turbo Pascal (for DOS) or BASIC,
K_OpenDriver andK_CloseDriver are not available. You must use the
board-specifi®AS1600_DevOperfunction instead.
DAS1600_DevOpennitializes the DAS-1600/1400/1200 Series
Function Call Driver according to the configuration file you specify. Refer
to page 4-27 for more information. In Turbo Pascal (for DOS) and
BASIC, closing the DAS-1600/1400/1200 Series Function Call Driver is
not required.

Initializing a Board

2-2

The DAS-1600/1400/1200 Series Function Call Driver supports up to two
boards. You must use tite GetDevHandle function to initialize each

board you want to use. Specify the driver handle and the board number
(0 or 1).K_GetDevHandle verifies that the board is present and sets the
board to its power-up state. (Note tKatGetDevHandle does not set the
analog output and digital output channels to a known state.)

Available Operations

K_GetDevHandlereturns a unique identifier for each board; this
identifier is called the device handle. Device handles allow you to
communicate with more than one board. Use the device handle returned
by K_GetDevHandlein subsequent function calls related to the board.

You can specify a maximum of 30 device handles for all the Keithley
DAS products accessed from all your programs. If you are no longer
using a Keithley DAS product and you want to free some memory or if
you have used all 30 device handles, us&thHereeDevHandlefunction

to free a device handle.

Note: If you are programming in Turbo Pascal (for DOS) or BASIC,
K_GetDevHandle andK_FreeDevHandleare not available. You must
use the board-specifitAS1600_GetDevHandldunction instead. Refer
to page 4-30 for more information. In Turbo Pascal (for DOS) and
BASIC, freeing a device handle is not required.

UseK_GetDevHandlethe first time you initialize a board only. To
reinitialize a board, use the DASDevInit function, specifying the

device handle returned t§; GetDevHandle K_DASDevInit stops all
operations currently in progress and sets the board back to its power-up
state. (Note thak_DASDevlInit does not reset the current analog output
and digital output values.)

Retrieving Revision Levels

System Operations

If you are using functions from different Keithley DAS Function Call
Drivers in the same program or if you are having problems with your
program, you may want to verify which versions of the Function Call
Driver, Keithley DAS Driver Specification, and Keithley DAS Shell are
used by your board.

TheK_GetVer function allows you to get both the revision number of the
Function Call Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms.

TheK_GetShellVer function allows you to get the revision number of

the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that are shared by all DAS boards).

2-3

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your program runs successfully, it is recommended that you
check the returned code after the execution of each function. If the status
code equals 0, the function executed successfully and your program can
proceed. If the status code does not equal 0, an error occurred; ensure that
your program takes the appropriate action. Refer to Appendix A for a
complete list of error codes.

Each supported language uses a different procedure for error checking;
refer to the following pages for more information:

C/C++ page 3-6

Pascal page 3-14

Visual Basic for Windows page 3-22
BASIC page 3-30

For C-language programs only, the Function Call Driver provides the
K_GetErrMsg function, which gets the address of the string
corresponding to an error code.

Analog Input Operations

This section describes analog input operations. It includes information on
the operation modes available, how to access a frame, how to allocate and
manage memory, and how to specify channels and gains, the conversion
mode, the pacer clock source, the buffering mode, and the trigger source
for an analog input operation.

Operation Modes

2-4

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the board to
computer memory. You can perform an analog input operation in single
mode, synchronous mode, interrupt mode, or DMA mode, as described in
the following sections.

Available Operations

Single Mode

In single mode, the board acquires a single sample from an analog input
channel. The driver initiates the conversion; you cannot perform any other
operation until the single-mode operation is complete.

Use theK_ADRead function to perform an analog input operation in
single mode. You specify the board you want to use, the analog input
channel, the gain at which you want to read the signal, and the variable in
which to store the converted data.

The data in the variable is stored as a count value. Refer to Appendix B
for information on converting the count value to voltage.

Synchronous Mode

Interrupt Mode

In synchronous mode, the board acquires a single sample or multiple
samples from one or more analog input channels. A hardware pacer clock
initiates conversions. The hardware transfers the data from the board to a
user-defined buffer in computer memory. After the driver transfers the
specified number of samples, the driver returns control to the program.
You cannot perform any other operation until the synchronous-mode
operation is complete.

Use theK_SyncStart function to start an analog input operation in
synchronous mode.

The data in the user-defined buffer is stored as count values. Refer to
Appendix B for information on converting the count values to voltage.

In interrupt mode, the board acquires a single sample or multiple samples
from one or more analog input channels. A hardware clock initiates
conversions. Once the analog input operation begins, control returns to
your program. The hardware transfers the data from the board to a
user-defined buffer in computer memory using an interrupt service
routine.

Use theK_IntStart function to start an analog input operation in
interrupt mode.

Analog Input Operations 2-5

DMA Mode

Frames

2-6

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-24 for more information on
buffering modes. Use th€ IntStop function to stop a continuous-mode
interrupt operation. Use th€ IntStatus function to determine the
current status of an interrupt operation.

The data in the user-defined buffer is stored as count values. Refer to
Appendix B for information on converting the count values to voltage.

DMA mode provides the fastest data transfer rates. In DMA mode, the
board acquires a single sample or multiple samples from one or more
analog input channels. A hardware clock initiates conversions. Once the
analog input operation begins, control returns to your program. The
hardware transfers the data from the board to a user-defined DMA buffer
in computer memory.

Use theK DMAStart function to start an analog input operation in
DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-24 for more information on
buffering modes. Use te_DMAStop function to stop a
continuous-mode DMA operation. Use tkeDMAStatus function to
determine the current status of a DMA operation.

The data in the user-defined buffer is stored as count values. Refer to
Appendix B for information on converting the count values to voltage.

Synchronous-mode, interrupt-mode, and DMA-mode analog input
operations require frames. A frame is a data structure whose elements
define the attributes of the operation. Usekh&etADFrame function

to access an analog input frame, called an A/D (analog-to-digital) frame.
The driver returns a unique identifier for the frame; this identifier is called
the frame handle.

Available Operations

Specify the attributes of the operation by using a separate setup function
to define each element of the A/D frame. Use the frame handle returned
by the driver in each setup function to ensure that you always define the
same operation. For example, assume that you access an A/D frame with
the frame handle ADFrame. To specify the channel on which to perform
the operation, use the€ SetChn setup function, referencing the frame
handle ADFrame; to specify the gain at which to read the channel, use the
K_SetG setup function, also referencing the frame handle ADFrame.

When you are ready to perform the operation you set up, use the
K_SyncStart, K_IntStart , orK_DMAStart function to start the

operation, again referencing the appropriate frame handle. Figure 2-1
illustrates the use of an A/D frame for a DMA-mode operation where the
frame handle is ADFrame.

K_DMAStart (ADFrame)

!

ADFrame Attributes of Operation
Start Channel <«—— > First analog input channel
Stop Channel <— > Last analog input channel
Clock Source <> Pacer clock source
Trigger Source <—— > Trigger source

Figure 2-1. Frame-Based Operation

Frames help you create structured programs. They are useful for
operations that have many defining attributes, since providing a separate
argument for each attribute could make a function’s argument list
unmanageably long. In addition, some attributes, such as the clock source
and trigger source, are only available for operations that use frames.

Analog Input Operations 2-7

2-8

If you want to perform a synchronous-mode, interrupt-mode, or
DMA-mode operation on a board and all frames have been accessed, use
the K_FreeFrame function to free a frame that is no longer in use. You

can then redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You
can also use the_ClearFrame function to reset all the elements of a
frame to their default values.

Table 2-1 lists the elements of an A/D frame, the default value of each

element, the setup functions used to define each element, and the page(s)
in this manual on which to find additional information.

Table 2-1. A/D Frame Elements

Element Default Value Setup Function Page Number
Buffer 0 (NULL) K_SetBuf page 4-132
K_SetBufl page 4-135
K_SetDMABuUf page 4-156
Number of Samples | 0 K_SetBuf page 4-132
K_SetBufl page 4-135
K_SetDMABuf page 4-156
Buffering Mode Single-cycle K_SetContRun page 4-151
K_CIrContRur‘? page 4-41
Start Channel 0 K_SetChn page 4-141
K_SetStartStopChn page 4-164
K_SetStartStop& | page 4-166
Stop Channel 0 K_SetStartStopChr page 4-164
K_SetStartStop& | page 4-166
Gain 0 (gainof1) |K_Set@ page 4-159
K_SetStartStop& | page 4-166
Channel-Gain Queug 0 (NULL) K_SetChnGAry page 4-143

Available Operations

Table 2-1. A/D Frame Elements (cont.)

Element Default Value Setup Function = Page Number
Conversion Mode Paced K_SetADFreeRun page 4-127
K_CIrADFreeRu | page 4-39
SSH Mode Disabled K_SetSSH page 4-162
Clock Source Internal K_SetClIk page 4-146
Pacer Clock Rafe |0 K_SetClkRate page 4-148
Burst Clock Rate 0 K_SetBurstTicks | page 4-139
Trigger Source Internal K_SetTrig page 4-169
Trigger Type Digital K_SetADTrig page 4-129
K_SetDITrig page 4-153
Trigger Channel 0 K_SetADTrig page 4-129
Trigger Polarity Positive edge | K_SetADTrig page 4-129
K_SetDITrig page 4-153
Trigger Level 0 K_SetADTrig page 4-129
Trigger Hysteresis | 0 K_SetTrigHyst page 4-171

Notes

1This element must be set.

2 Use this function to reset the value of this particular frame element to its default

setting without clearing the frame or getting a new frame. Whenever you clear a

frame or get a new frame, this frame element is set to its default value

automatically.

3 Not applicable to DAS-1200 Series boards.

Analog Input Operations

2-9

Memory Allocation and Management

Synchronous-mode, interrupt-mode, and DMA-mode analog input
operations require memory in which to store acquired data. The ways you
can allocate and manage memory are described in the following sections.

Dimensioning a Local Array

The simplest way to reserve memory is to dimension an array within your
program’s memory area. The advantage of this method is that the array is
directly accessible to your program. The limitations of this method are as
follows:

. Certain programming languages limit the size of local arrays.
. Local arrays are not recommended for DMA-mode operations.

. Local arrays occupy permanent memory areas; these memory areas
cannot be freed to make them available to other programs or
processes.

. You cannot use local arrays with Windows 95, 32-bit programs.

Since the DAS-1600/1400/1200 Series Function Call Driver stores data in
16-bit integers, you must dimension all local arrays as integers.

Dynamically Allocating a Memory Buffer

2-10

The recommended way to reserve memory is to dynamically allocate a
memory buffer outside of your program’s memory area. The advantages
of this method are as follows:

. The size of the buffer is limited only by the amount of free physical
memory available in your computer at run-time.

. You can free a dynamically allocated memory buffer to make it
available to other programs or processes.

The limitation of this method is that, for BASIC and Visual Basic for
Windows, data in a dynamically allocated memory buffer is not directly
accessible to your program. You must usekhi®oveBufToArray

function to move the data from the dynamically allocated buffer to a local
array within your program; refer to page 4-116 for more information.

Available Operations

Use theK_IntAlloc function to dynamically allocate a memory buffer for
synchronous-mode and interrupt-mode operations; ug€ th&AAlloc
function to dynamically allocate a memory buffer for DMA-mode
operations. Specify the number of samples to store in the buffer (up to
5,000,000 foK_IntAlloc and up to 32,767 fd_DMAAIloc). The

driver returns the starting address of the buffer and a unique identifier for
the buffer (this identifier is called the memory handle).

If you no longer require the buffer, free the buffer for another use by
specifying the memory handle in tKe IntFree function (for
synchronous-mode and interrupt-mode operations) df tiiVIAFree
function (for DMA-mode operations).

Notes: If you are writing Windows 95, 32-bit programs, you must install
the Keithley Memory Manager. Refer to your board user’s guide for
information.

For DOS-based languages, the area used for dynamically allocated
memory buffers is referred to as the far heap; for Windows-based
languages, this area is referred to as the global heap. These heaps are
areas of memory left unoccupied as your program and other programs
run.

For DOS-based languages, thelntAlloc andK_DMAAIloc functions
use the DOS Int 21H function 48H to dynamically allocate far heap
memory. For Windows-based languages,KhintAlloc and
K_DMAAIlloc functions call thé&lobalAlloc API function to allocate the
desired buffer size from the global heap.

For Windows-based languages, dynamically allocated memory is
guaranteed to be fixed and locked in memory.

To eliminate page wrap conditions and to guarantee that dynamically
allocated memory is suitable for use by the computer’'s 8237 DMA
controller,K_DMAAIlloc may allocate an area twice as large as actually
needed. Once the data in this buffer is processed and/or saved elsewhere,
useK_DMAFree to free the memory for other uses.

Analog Input Operations 2-11

Assigning a Starting Address

After you dimension your array or allocate your buffer, you must assign
the starting address of the array or buffer and the number of samples to
store in the array or buffer.

Each supported programming language requires a particular procedure
for dimensioning local arrays, allocating a memory buffer, and assigning
the starting address; refer to the following pages for more information:

C/C++ page 3-3

Pascal page 3-11

Visual Basic for Windows page 3-16

BASIC page 3-24

Gains and Ranges

Each channel on a DAS-1600/1400 Series board can measure analog
input signals in one of four, software-selectable unipolar or bipolar analog
input ranges; the input range type (unipolar or bipolar) is
switch-selectable. Each channel on a DAS-1200 Series board can
measure analog input signals in one of four, switch-selectable bipolar
analog input ranges.

Table 2-2 lists the analog input ranges supported by
DAS-1600/1400/1200 Series boards and the gain and gain code
associated with each range. Gain codes are used by the Function Call
Driver to represent the gain.

2-12 Available Operations

Table 2-2. Analog Input Ranges

Analog Input Range
Boards Bipolar Unipolar Gain Gain Code
DAS-1601 | +£10.0V 0.0to+10.0V |1 0
DAS-1401 141 ov 0.0to +1.0V |10 1
+100 mV | 0to +100 mV | 100 2
+20 mV 0to +20 mV 500 3
DAS-1602 | +10.0V 0.0to +10.0V |1 0
DAS-1402 15 0v 0.0to+5.0V | 2 1
25V 0.0to+25V |4 2
+1.25V 00to+1.25V | 8 3
DAS-1201 | +5.0V Not available | 1 Not applicable
0.5V Not available | 10 Not applicable
+0.05V Not available | 100 Not applicable
+0.01V Not available 500 Not applicable
DAS-1202 | +5.0V Not available |1 Not applicable
25V Not available |2 Not applicable
+1.25V Not available |4 Not applicable
+0.625V Not available 8 Not applicable
Notes

1The gains of DAS-1200 Series boards are switch-selectable. You do not
specify the gain through software.

For a single-mode operation, you specify the gain code in the
K_ADRead function.

For a synchronous-mode, interrupt-mode, or DMA-mode operation, you

specify the gain code in thé SetG or K_SetStartStopG function; the

function you use depends on how you specify the logical channels, as

described in the following section.

Analog Input Operations

2-13

Channels

2-14

DAS-1600/1400/1200 Series boards are switch-configurable for either 16
single-ended analog input channels (numbered 0 through 15) or eight
differential analog input channels (numbered 0 through 7).

The driver determines the channel configuration (single-ended or
differential) by reading the configuration file. If desired, you can use the
K_GetADConfig function to get the channel configuration by reading the
switches on the board.

If you require more than the 16 single-ended or eight differential onboard
channels, you can use any combination of up to eight 16-channel EXP-16
or EXP-16/A expansion accessories, and/or 8-channel EXP-GP
expansion accessories to increase the number of available channels to
128, or you can use up to 16 16-channel EXP-1600 expansion accessories
to increase the number of available channels to 256. You can also use up
to four MB02 backplanes to increase the number of available channels to
76.

Note: You cannot perform DMA-mode operations on channels on
EXP-16, EXP-16/A, EXP-GP, or EXP-1600 expansion accessories.

You assign expansion accessories to consecutive onboard analog input
channels, beginning with onboard channel 0. To ensure that the
DAS-1600/1400/1200 Series Function Call Driver reads the channel
numbers correctly, you must attach all EXP-16s and EXP-16/As first,
followed by all EXP-GPs, then all EXP-1600s. You can also use the
remaining onboard channels. Refer to your board user’s guide and to the
documentation provided with your expansion accessories for more
information.

The maximum supported configuration is eight EXP-16s or EXP-16/As,
eight EXP-GPs, 16 EXP-1600s, or four MB02 backplanes. Table 2-3 lists
the software (or logical) channels associated with each expansion
accessory.

Available Operations

Table 2-3. Channels in Maximum Configuration

Software (Logical) Channels
Onboard | EXP-16/
Channel EXP-16/A EXP-GP | EXP-1600 | MB02
0 0to 15 Oto7 Oto 15 Oto 15
1 16 to 31 81to 15 16 to 31 16 to 31
2 32 to 47 16t023 |32to47 |32to47
3 48 to 63 241031 48 to 63 48 to 63
4 64 to 79 32 to 39 64 to 79 64
5 80 to 95 40 to 47 80 to 95 65
6 96 to 111 48 to 55 96to 111 | 66
7 112 to 127 56 to 63 112to 127 67
8 Not available| 64 128 to 143 | 68
9 Not available| 65 144 t0 159 69
10 Not available| 66 160to 175| 70
11 Not available| 67 176t0 191 71
12 Not available| 68 192 to 207 | 72
13 Not available| 69 20810223 73
14 Not available| 70 224 t0 239| 74
15 Not available] 71 240t0 255 75

Figure 2-2 illustrates the use of one EXP-16, two EXP-GPs, one
EXP-1600, and the 12 remaining onboard channels on a
DAS-1600/1400/1200 Series board configured for single-ended mode.
The physical channels on the EXP-16 attached to analog input channel O
are referred to in software as logical channels 0 to 15; the physical
channels on the EXP-GP attached to analog input channel 1 are referred
to in software as logical channels 16 to 23; the physical channels on the
EXP-GP attached to analog input channel 2 are referred to in software as
logical channels 24 to 31; the physical channels on the EXP-1600
attached to analog input channel 3 are referred to in software as logical

Analog Input Operations

2-15

channels 32 to 47; the remaining 12 onboard analog input channels (4
through 15) are referred to in software as logical channels 48 through 59.

EXP-16
channels
Oto 15

EXP-GP
0__,—> channels
1. 16 to 23

EXP-GP
channels

2
DAS-1600/1400/1200 3_|

Series Board 4 Onboard hannel
channels to
T e EXP-1600
channels
32to 47

Figure 2-2. Analog Input Channels

Note: The configuration utility CFG1600.EXE is useful in determining
logical channel assignments for a given expansion accessory
arrangement.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following sections describe how to
specify the channels you are using.

Specifying a Single Channel

2-16

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. Use khéADRead function to
specify the channel and the gain code.

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire a single sample or multiple samples from a

Available Operations

single analog input channel. Use eSetChn function to specify the
channel and thi_SetG function to specify the gain code.

Refer to Table 2-2 on page 2-13 for a list of the analog input ranges
supported by DAS-1600/1400 Series boards and the gain code associated
with each range. Note that the gain code is not applicable to DAS-1200
Series boards.

Specifying a Group of Consecutive Channels

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire samples from a group of consecutive
channels. Use th¢_SetStartStopChnfunction to specify the first and

last channels in the group. The channels are sampled in order from first to
last; the channels are then sampled again until the required number of
samples is read.

For example, assume that you have an EXP-16/A attached to onboard
channel 0 on a DAS-1600/1400/1200 Series board configured for
single-ended mode. You specify the start channel as 14, the stop channel
as 17, and you want to acquire five samples. Your program reads data first
from channels 14 and 15 (on the EXP-16/A), then from channels 16 and
17 (onboard channels 1 and 2), and finally from channel 14 again.

You can specify a start channel that is higher than the stop channel in the
following cases:

. You are not using any expansion accessories.

. The analog input channels are configured as single-ended.

For example, assume that the start channel is 15, the stop channel is 2,
and you want to acquire five samples. Your program reads data first from
channel 15, then from channels 0, 1, and 2, and finally from channel 15
again.

Use theK _SetG function to specify the gain code for all channels in the
group. (All channels must use the same gain code.) Use the
K_SetStartStopG function to specify the gain code, the start channel,
and the stop channel in a single function call.

Refer to Table 2-2 on page 2-13 for a list of the analog input ranges
supported by DAS-1600/1400 Series boards and the gain code associated

Analog Input Operations 2-17

with each range. Note that the gain code is not applicable to DAS-1200
Series boards.

2-18 Available Operations

Specifying Channels in a Channel-Gain Queue

For synchronous-mode and interrupt-mode analog input operations on
DAS-1600/1400 Series boards, you can acquire samples from channels in
a software channel-gain queue. In the channel-gain queue, you specify the
channels you want to sample, the order in which you want to sample
them, and a gain code for each channel.

You can set up the channels in a channel-gain queue either in consecutive
order or in nonconsecutive order. You can also specify the same channel
more than once.

The channels are sampled in order from the first channel in the queue to
the last channel in the queue; the channels in the queue are then sampled
again until the specified number of samples is read.

Refer to Table 2-2 on page 2-13 for a list of the analog input ranges
supported by DAS-1600/1400 Series boards and the gain code associated
with each range.

The way that you specify the channels and gains in a channel-gain queue
depends on the language you are using; refer to the following pages for
more information:

C/C++ page 3-5

Pascal page 3-14

Visual Basic for Windowg page 3-19
BASIC page 3-28

After you create the channel-gain queue in your program, use the
K_SetChnGAry function to specify the starting address of the
channel-gain queue.

Note: You cannot use a channel-gain queue with DMA-mode operations
or with DAS-1200 Series boards.

Analog Input Operations 2-19

Conversion Modes

The conversion mode determines how the board regulates the timing of
conversions when you are acquiring multiple samples from a single
channel or from a group of multiple channels (known as a scan). You can
specify paced mode, burst mode, or burst mode with SSH, as described in
the following sections. Refer to your board user’s guide for more
information about conversion modes.

Paced Mode
You can specify paced mode for a synchronous-mode, interrupt-mode, or
DMA-mode analog input operation. Use paced mode if you want to
accurately control the period between conversions of individual channels
in a scan. Paced mode is the default conversion mode. To reset the
conversion mode to paced mode, usekKh€IlrADFreeRun function.

Burst Mode

You can specify burst mode for a DMA-mode analog input operation
only. Use burst mode if you want to accurately control the period between
conversions of the entire scan. Use kh&etADFreeRunfunction to

specify burst mode.

By default, conversions of individual channels in a scan are performed as
quickly as possible for the specified gain. Table 2-4 lists the default
settling times and burst mode conversion rates for each
DAS-1600/1400/1200 Series board gain.

Table 2-4. Default Settling Times

Burst Mode
Board Gain |Settling Time | Conversion Rate
DAS-1601 | 1 10 ps 100 kHz
DAS-1401 114 10ps 100 kHz
100 14 ps 71.42 kHz
500 34us 29.4 kHz

2-20 Available Operations

Table 2-4. Default Settling Times (cont.)

Burst Mode

Board Gain |Settling Time | Conversion Rate
DAS-1602 | 1 10ps 100 kHz
Bﬁgj‘z"gg 2 10us 100 kHz

4 10pus 100 kHz

8 10ps 100 kHz
DAS-1201 |1 22 us 45.45 kHz

10 22us 45.45 kHz

100 |22ps 45.45 kHz

500 102us 9.8 kHz

In some cases, you may want to adjust the rate of conversions of
individual channels in a scan (called the burst mode conversion rate or
settling time) to slow the data acquisition rate. For example, in computers
with a built-in memory cache, caching takes precedence over DMA
operations and data can be lost if you try to acquire data too quickly. You
can adjust the settling time by specifying a count value using the
K_SetBurstTicks function; you can use any count value between 2 and
255.

Use the following formula to determine the appropriate count value:

Settling Time (in microseconds) 2

Count =
u]

For example, if you want a settling time of 3§ specify a count of 7 as
shown in the following equation:

(30-2) _ 28

2 z !

Note: You cannot specify burst mode for a synchronous-mode or
interrupt-mode operation.

Analog Input Operations 2-21

Burst Mode with SSH

Pacer Clocks

2-22

You can specify burst mode with SSH for a DMA-mode analog input
operation only. Use burst mode with SSH if you are using an SSH-4/A or
SSH-8 accessory to simultaneously sample all channels in a scan and you
want to accurately control the period between conversions of the entire
scan. Use th&_SetSSHfunction to specify burst mode with SSH.

By default, conversions of individual channels in a scan are performed as
quickly as possible for the specified gain. Refer to Table 2-4 on page 2-20
for a list of the default settling times.

Notes: You cannot specify burst mode with SSH for a synchronous-mode
or interrupt-mode operation.

If you use an SSH-8 accessory, one extra count is required to allow the
SSH-8 to sample and hold the values. Refer to the SSH-8 accessory
documentation for more information.

You can specify a pacer clock for a synchronous-mode, interrupt-mode,
or DMA-mode operation. In paced mode, the pacer clock determines the
period between the conversion of one channel and the conversion of the
next channel. In burst mode or burst mode with SSH, the pacer clock
determines the period between the conversions of one scan and the
conversions of the next scan.

You can specify the internal pacer clock or an external pacer clock, as
described in the following sections; refer to your board user’s guide for
more information.

Note: The rate at which the computer can reliably read data from the
board depends on a number of factors, including your computer, the
operating system/environment, the gains of the channels, and other

software issues.

Available Operations

Internal Pacer Clock

The internal pacer clock uses two cascaded counters of the onboard
82C54 counter/timer. The counters are normally in an idle state. When
you start the analog input operation (usihgSyncStart, K_IntStart , or
K_DMAStart), a conversion is initiated. Note that a slight delay occurs
between when you start the operation and when the conversion is
initiated.

After the first conversion is initiated, the counters are loaded with a count
value and begin counting down. When the counters count down to O,
another conversion is initiated and the process repeats.

If the 10 MHz time base is specified in the configuration file, each count
represents 0.fis; if the 1 MHz time base is specified in the configuration
file, each count represents 1) Use th&k _SetClkRate function to

specify the number of counts (clock ticks) between conversions. For
example, if you specify a count of 100 with a 10 MHz time base, the
period between conversions is 19 (100 ksamples/s); if you specify a
count of 87654, the period between conversions is 8.8 ms (114.1
samples/s).

You can specify a count between 100 and 4,294,967,295 for the 10 MHz
time base and between 10 and 4,294,967,295 for the 1 MHz time base.
The period between conversions ranges fromsltd 7.16 minutes (for

the 10 MHz time base) and from {8 to 71.6 minutes (for the 1 MHz

time base).

Use the following formula to determine the number of counts to specify:

time base

counts= ————————
conversiorrate

For example, if you are using the 10 MHz time base and want a
conversion rate of 10 ksamples/s, specify a count of 1000, as shown in the
following equation:

10, 00Q 000

10,000 1000

Analog Input Operations 2-23

The internal pacer clock is the default pacer clock. To reset the pacer
clock source to an internal pacer clock, usekh8etClIk function.

Note: To avoid overrun errors when using the internal pacer clock with a
DAS-1201 Series board, specify a count value of at least 200 for the
10 MHz time base and at least 20 for the 1 MHz time base.

External Pacer Clock

You connect an external pacer clock to the IPO/TRIGO/XPCLK pin (25)
on the main I/O connector (J1).

When you start an analog input operation (usinyncStart,

K_IntStart , orK_DMAStart), conversions are armed. At the next rising
edge of the external pacer clock (and at every subsequent rising edge of
the external pacer clock), a conversion is initiated.

Use theK _SetClk function to specify an external pacer clock.

Note: The analog-to-digital converter (ADC) can acquire samples at a
maximum of 100 ksamples/s (one sample evenys)@or the DAS-1601,
DAS-1602, DAS-1401, DAS-1402, and DAS-1202 boards or

50 ksamples/s (one sample everypfor the DAS-1201 board. If you
are using an external pacer clock, make sure that the clock initiates
conversions at a rate that the ADC can handle.

Buffering Modes

2-24

The buffering mode determines how the driver stores the converted data
in the buffer. For an interrupt-mode or DMA-mode analog input
operation, you can specify single-cycle or continuous buffering mode, as
described in the following sections.

Note: Buffering modes are not meaningful for synchronous-mode
operations, since only single-cycle mode applies.

Available Operations

Single-Cycle Mode

In single-cycle mode, after the board converts the specified number of
samples and stores them in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode. To reset the buffering
mode to single-cycle mode, use #eClrContRun function.

Continuous Mode

In continuous mode, the board continuously converts samples and stores
them in the buffer until it receives a stop function; any values already
stored in the buffer are overwritten. Use KheSetContRun function to
specify continuous buffering mode.

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
a synchronous-mode, interrupt-mode, or DMA-mode analog input
operation, you can specify an internal trigger, an external analog trigger,
or an external digital trigger, as described in the following sections.

The trigger event is not significant until the operation has been started
(usingK_SyncStart, K_IntStart , orK_DMAStart). The point at which
conversions begin relative to the trigger event depends on the pacer clock;
refer to page 2-22 for more information.

Internal Trigger
An internal trigger is a software trigger. The trigger event occurs when
you start the operation. Note that a slight delay occurs between the time
you start the operation and the time the trigger event occurs.

The internal trigger is the default trigger source. To reset the trigger
source to an internal trigger, use #eSetTrig function.

Analog Input Operations 2-25

External Analog Trigger

Level +5V

ov

2-26

An analog trigger event occurs when one of the following conditions is
met by the analog input signal on a specified analog trigger channel:

. The analog input signal rises above a specified voltage level
(positive-edge trigger).

. The analog input signal falls below a specified voltage level
(negative-edge trigger).

. The analog input signal is above a specified voltage level
(positive-level trigger).

. The analog input signal is below a specified voltage level
(negative-level trigger).

Figure 2-3 illustrates these analog trigger conditions, where the specified
voltage level is +5 V. Note that a slight delay occurs between the time the
trigger condition is met and the time the driver realizes the trigger
condition is met and begins conversions.

Positive-level
trigger occurs

i Negative-edge Positive-edge trigger occurs
or negative-level
: / trigger occurs

|
KAnalog input operation

start function is executed

Figure 2-3. Analog Trigger Conditions

Available Operations

Use theK_SetTrig function to specify an external trigger. Then, use the
K_SetADTrig function to specify the following:

. Analog input channel to use as the trigger channelThe trigger
channel always measures signals at a gain of 1.

. \oltage level- You specify the voltage level as a count value between
0 and 4095. Refer to Appendix B for information on how to convert a
voltage value to a count value.

. Trigger polarity and sensitivity - The trigger can be a positive-edge,
negative-edge, positive-level, or negative-level trigger.

For positive-edge and negative-edge triggers, you can specify a hysteresis
value to prevent noise from triggering an operation. Use the
K_SetTrigHyst function to specify the hysteresis value. The point at

which the trigger event occurs is described as follows:

. Positive-edge trigger- The analog signal must be below the specified
voltage level by at least the amount of the hysteresis value and then
rise above the voltage level before the trigger event occurs.

. Negative-edge trigger The analog signal must be above the
specified voltage level by at least the amount of the hysteresis value
and then fall below the voltage level before the trigger event occurs.

The hysteresis value is an absolute number, which you specify as a count
value between 0 and 4095. When you add the hysteresis value to the
voltage level (for a negative-edge trigger) or subtract the hysteresis value
from the voltage level (for a positive-edge trigger), the resulting value
must also be between 0 and 4095.

For example, assume that you are using a negative-edge trigger on a
channel on a DAS-12020 Series board configured for an analog input
range of £5 V. If the voltage level is +4.8 VV (4014 counts), you can
specify a hysteresis value of 0.1V (41 counts) because 4014 + 41 is less
than 4095, but you cannot specify a hysteresis value of 0.3V (123 counts)
because 4014 + 123 is greater than 4095. Refer to Appendix B for
information on how to convert a voltage value to a count value.

In Figure 2-4, the specified voltage level is +4 V and the hysteresis value
is 0.1 V. The analog signal must be below +3.9 V and then rise above

+4 V before a positive-edge trigger occurs; the analog signal must be
above +4.1V and then fall below +4 V before a negative-edge trigger
event occurs.

Analog Input Operations 2-27

Level +4V

+3.9V

+4.1V

Level +4V

2-28

Positive-edge
\ trigger occurs

Negative-edge
trigger occurs

Analog input operation
start function is executed

Figure 2-4. Using a Hysteresis Value

Note: The analog trigger is a software-based trigger. When you start the
analog input operation (usi§ SyncStart, K_IntStart , or

K_DMAStart), the driver samples the specified trigger channel until the
trigger condition is met. Control does not return to your program until the
trigger condition is met. (To terminate the operation if a trigger event does
not occur, pres€trl+Break .)

Available Operations

External Digital Trigger

An external digital trigger occurs when one of the following occurs on the
digital trigger signal connected to the IP1/XTRIG pin (6) on the main I/O
connector:

. Arising edge on the IP1/XTRIG pin (positive-edge trigger).

. Afalling edge on the IP1/XTRIG pin (negative-edge trigger).

. The signal is high on the IP1/XTRIG pin (positive-level trigger).
. The signal is low on the IP1/XTRIG pin (negative-level trigger).

Use theK _SetTrig function to specify an external trigger. Then, use the
K_SetDITrig function to specify the trigger conditions. The trigger
conditions are illustrated in Figure 2-5. Note that a slight delay occurs
between the time the trigger condition is met and the time the driver
realizes the trigger condition is met and begins conversions.

Positive-level
trigger occurs

|
|
|
|
|
|
\ | Negative-edge and
. . | l-—— negative-level
Analog input operation |
|
|
|
|
|
|
|

| .
I trigger occurs
start function is executed 99

| .

| Positive-edge
- “trigger occurs
|

Trigger signal

Figure 2-5. Digital Trigger Conditions

Analog Input Operations 2-29

Note: The external digital trigger is a software-based trigger. When you
start the analog input operation (usKgSyncStart, K_IntStart , or
K_DMAStart), the driver reads the signal connected to the IP1/XTRIG
pin until the trigger condition is met. Control does not return to your
program until the trigger condition is met. (To terminate the operation if a
trigger event does not occur, prédsi+Break .)

Analog Output Operations (DAS-1600 Series Only)

This section describes analog output operations. It includes information
on the operation modes available, how to access a frame, how to allocate
and manage memory, and how to specify channels, the pacer clock
source, the buffering mode, and the digital trigger conditions for an
analog output operation.

Operation Modes

The operation mode determines which attributes you can specify for an
analog output operation and how values are written from computer
memory to the board. You can perform an analog output operation in
single mode, synchronous mode, or interrupt mode, as described in the
following sections.

Single Mode

In single mode, the driver writes a single value to one or both analog
output channels; you cannot perform any other operation until the
single-mode operation is complete.

Use theK_DAWrite function to perform an analog output operation in
single mode. You specify the board you want to use, the analog output
channels, and the value you want to write.

You specify the analog output value as a count value. Refer to

Appendix B for information on converting a voltage value to a count
value.

2-30 Available Operations

Note: The hardware does not support simultaneous updating of the
DACs. However, if you specify both analog output channels, the channels
are updated as close to simultaneously as possible. When you call
K_DAWrite , channel 0 is updated; channel 1 is updated several
microseconds later.

Synchronous Mode

Synchronous mode provides the fastest means of updating the analog
output channels. In synchronous mode, the driver writes a single value or
multiple values from a user-defined buffer in computer memory to one or
both analog output channels. A hardware pacer clock paces the updates of
the channels. After the driver writes the specified number of values, the
driver returns control to the program. You cannot perform any other
operation until the synchronous-mode operation is complete.

Use theK_SyncStart function to start an analog output operation in
synchronous mode.

You specify the analog output values as count values. Refer to
Appendix B for information on converting voltage values to count values.

Interrupt Mode

In interrupt mode, the driver writes a single value or multiple values from
a user-defined buffer in computer memory to one or both analog output
channels. A hardware clock paces the updating of the analog output
channels. Once the analog output operation begins, control returns to your
program. The driver continues to write values to the analog output
channels using an interrupt service routine.

Use theK_IntStart function to start an analog output operation in
interrupt mode.

Analog Output Operations (DAS-1600 Series Only) 2-31

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-38 for more information on
buffering modes. Use th€ IntStop function to stop a continuous-mode
interrupt operation. Use th€ IntStatus function to determine the
current status of an interrupt operation.

You specify the analog output values as count values. Refer to
Appendix B for information on converting voltage values to count values.

Frames
Synchronous-mode and interrupt-mode analog output operations require
frames. Use th&_GetDAFrame function to access an analog output
frame, called a D/A (digital-to-analog) frame. The driver returns the
frame handle for the frame. Refer to page 2-6 for more information about
frames.
Table 2-5 lists the elements of a D/A frame, the default value of each
element, the setup functions used to define each element, and the page(s)
in this manual on which to find additional information.
Table 2-5. D/A Frame Elements
Element Default Value Setup Function Page Number
Buffer! 0 (NULL) K_SetBuf page 4-132
K_SetBufl page 4-135
Number of Sampleg 0 K_SetBuf page 4-132
K_SetBufl page 4-135
Buffering Mode Single-cycle K_SetContRun page 4-151
K_ClIrContRurf page 4-41
Start Channel 0 K_SetChn page 4-141
K_SetStartStopChn| page 4-164
Stop Channel 0 K_SetStartStopChn| page 4-164
Clock Source Internal K_SetClk page 4-146

2-32

Available Operations

Table 2-5. D/A Frame Elements (cont.)

Element Default Value Setup Function Page Number
Pacer Clock Rafe |0 K_SetClkRate page 4-148
Trigger Source Internal K_SetTrig page 4-169
Trigger Type Digital K_SetDITrig page 4-153
Notes

L This element must be set.

2 Use this function to reset the value of this particular frame element to its default
setting without clearing the frame or getting a new frame. Whenever you clear a
frame or get a new frame, this frame element is set to its default value
automatically.

Memory Allocation and Management

Synchronous-mode and interrupt-mode analog output operations require
memory in which to store the data that is written to the analog output
channels.

Since analog output operations typically require small arrays of data, you
can reserve memory by dimensioning a local array within your program’s
memory area. Since the Function Call Driver writes data as 16-bit
integers, you must dimension all local arrays as integers.

If you are using both analog output channels, when you start the analog
output operation (using_SyncStart or K_IntStart), the driver writes

the first value in the array to the first channel and the second value in the
array to the second channel. To ensure predictable results, make sure that
the number of values stored in the array is a multiple of 2. For example, if
you are using both analog output channels, you can dimension an array of
100 values, but you should not dimension an array of 75 values.

Analog Output Operations (DAS-1600 Series Only) 2-33

After you dimension your array, you must assign the starting address of
the array and the number of samples stored in the array. Each supported
programming language requires a particular procedure for dimensioning
an array and assigning the starting address; refer to the following pages
for more information:

C/C++ page 3-4

Pascal page 3-13

Visual Basic for Windows page 3-19

BASIC page 3-28

You can also use th€ IntAlloc function to dynamically allocate a
memory buffer, if desired. Specify the number of values you want to store
in the buffer (up to a maximum of 5,000,000). The driver returns the
starting address of the buffer and the memory handle for the buffer. If you
no longer require the buffer, free the buffer for another use by specifying
the memory handle in th€ IntFree function.

For BASIC and Visual Basic for Windows, data in a dynamically
allocated memory buffer is not directly accessible to your program. You
must use th&_MoveArrayToBuf function to move this data from a

local array within your program to the dynamically allocated buffer; refer
to page 4-112 for more information.

Note: You cannot use a local array with Windows 95, 32-bit programs;
you must us&_IntAlloc to dynamically allocate a memory buffer. You
must also install the Keithley Memory Manager; refer to your board
user’s guide for information.

2-34 Available Operations

Channels

Pacer Clocks

DAS-1600 Series boards contain two digital-to-analog converters
(DACs), each of which is associated with an analog output channel. You
can perform an analog output operation on a single channel or on both
channels.

For single-mode analog output operations, you can write a single value to
one analog output channel or to both analog output channels. Use the
K_DAWrite function to specify the channels.

For synchronous-mode and interrupt-mode analog output operations, you
can write a single value or multiple values to a single analog output
channel. Use thK_SetChn function to specify the channel.

For synchronous mode and interrupt mode, you can also write a single
value or multiple values to both analog output channels. Use the
K_SetStartStopChnfunction to specify channel 0 as the start channel
and channel 1 as the stop channel. At each pulse of the pacer clock, the
driver writes a new value to both channels.

For example, assume that your array contains two waveforms (0, 4095, 1,
4094, 2, 4093 . .. 0, 4095). At the first pulse of the pacer clock, the driver
writes 0 to channel 0 and 4095 to channel 1, at the next pulse of the pacer
clock, the driver writes 1 to channel 0 and 4094 to channel 1, and so on.

When performing a synchronous-mode or interrupt-mode analog output
operation, you can use a pacer clock to determine the period between
updates of the analog output channels. You can specify the internal pacer
clock or an external pacer clock, as described in the following sections.

Note: The actual rate at which the analog output channels are updated
also depends on other factors, including your computer, the operating
system/environment, and other software issues.

Analog Output Operations (DAS-1600 Series Only) 2-35

Internal Pacer Clock

2-36

The internal pacer clock uses two cascaded counters of the onboard
82C54 counter/timer. The counters are normally in an idle state. When
you start the analog output operation (udthgyncStart or

K_IntStart), the specified analog output channels are updated. Note that
a slight delay occurs between when you start the operation when the
channels are updated.

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, the analog output channels are
updated again and the process repeats.

If the 10 MHz time base is specified in the configuration file, each count
represents 0.fis; if the 1 MHz time base is specified in the configuration
file, each count represents 1) Use th&k _SetClkRate function to

specify the number of counts (clock ticks) between updates. For example,
if you specify a count of 2000 with a 10 MHz time base, the period
between updates is 208 (5 ksamples/s); if you specify a count of

87654, the period between updates is 8.8 ms (114.1 samples/s).

You can specify a count between 100 and 4,294,967,295 for the 10 MHz
time base and between 10 and 4,294,967,295 for the 1 MHz time base.
The period between updates ranges fromsl® 7.16 minutes (for the

10 MHz time base) and from 16 to 71.6 minutes (for the 1 MHz time
base).

Use the following formula to determine the number of counts to specify:

time base

counts = ————
update rate

For example, if you are using the 10 MHz time base and want an update
rate of 1 ksample/s, specify a count of 10,000, as shown in the following
equation:

10, 00Q 000

1000 = 10, 000

The internal pacer clock is the default pacer clock. To reset the pacer
clock source to an internal pacer clock, usekh8etClIk function.

Available Operations

Notes: The hardware does not support simultaneous updating of the
DACs. However, if you specify both analog output channels (using
K_SetStartStopChn), the channels are updated as close to
simultaneously as possible. Each time the counters of the internal pacer
clock count down to 0, channel O is updated; channel 1 is updated several
microseconds later.

You cannot use the internal pacer clock for an analog output operation if
the clock is being used by another operation.

The driver accepts a count value as low as 10 for the 1 MHz time base and
as low as 100 for the 10 MHz time base. However, a low count value may
cause an overrun error. The maximum observed update rates for the
internal pacer clock are 1 ksamples/s when running under Windows and 5
ksamples/s when running under DOS.

External Pacer Clock

You connect an external pacer clock to the IPO/TRIGO/XPCLK pin (25)
on the main I/O connector (J1).

At the next rising edge of the external pacer clock after you start an
analog output operation (usikg SyncStart or K_IntStart) and at every
subsequent rising edge of the external pacer clock, the specified analog
output channels are updated. Note that a slight delay may occur between
the rising edge of the external pacer clock and the update of the channels.

Use theK_SetClk function to specify an external pacer clock.

Note: The hardware does not support simultaneous updating of the
DACs. However, if you specify both analog output channels (using
K_SetStartStopChn), the channels are updated as close to
simultaneously as possible. At each rising edge of the external pacer
clock, channel 0 is updated; channel 1 is updated several microseconds
later.

You cannot use an external pacer clock for an analog output operation if
the clock is being used by another operation.

Analog Output Operations (DAS-1600 Series Only) 2-37

Buffering Modes

The buffering mode determines how the driver writes the values in the
buffer to the analog output channels. For interrupt-mode analog output
operations, you can specify single-cycle or continuous buffering mode, as
described in the following sections.

Note: Buffering modes are not meaningful for synchronous-mode
operations, since only single-cycle mode applies.

Single-Cycle Mode

In single-cycle mode, after the driver writes the values stored in the
buffer, the operation stops automatically. Single-cycle mode is the default
buffering mode. To reset the buffering mode to single-cycle mode, use the
K_ClIrContRun function.

Continuous Mode

Triggers

2-38

In continuous mode, the driver continuously writes values from the buffer
until the program issues a stop function; when all the values in the buffer
have been written, the driver writes the values again. Use the
K_SetContRun function to specify continuous buffering mode.

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode and interrupt-mode analog output operations, you can
specify an internal trigger or an external digital trigger, as described in the
following sections.

The trigger event is not significant until the operation has been started
(usingK_SyncStart or K_IntStart). The point at which an analog output
channel is updated depends on the pacer clock; refer to page 2-35 for
more information.

Available Operations

Internal Trigger

An internal trigger is a software trigger. The trigger event occurs when
you start the analog output operation. Note that a slight delay occurs
between the time you start the operation and the time the trigger event
occurs.

The internal trigger is the default trigger source. To reset the trigger
source to an internal trigger, use #eSetTrig function.

External Digital Trigger

An external digital trigger occurs when one of the following occurs on the
digital trigger signal connected to the IP1/XTRIG pin (6) on the main 1/O
connector:

. Arrising edge on the IP1/XTRIG pin (positive-edge trigger).

. Afalling edge on the IP1/XTRIG pin (negative-edge trigger).

. The signal is high on the IP1/XTRIG pin (positive-level trigger).

. The signal is low on the IP1/XTRIG pin (negative-level trigger).
Use theK_SetTrig function to specify an external trigger. Then, use the

K_SetDITrig function to specify the digital trigger conditions. The
trigger conditions are illustrated in Figure 2-5 on page 2-29.

Note: The external digital trigger is a software-based trigger. When you
start the analog output operation (usihgsyncStart or K_IntStart), the
driver reads the signal connected to the IP1/XTRIG pin until the trigger
condition is met. Control does not return to your program until the trigger
condition is met. (To terminate the operation if a trigger event does not
occur, pres€tri+Break .) In addition, a slight delay occurs between the
time the trigger condition is met and the time the driver realizes the
trigger condition is met and begins updating the analog output channel.

Analog Output Operations (DAS-1600 Series Only) 2-39

Digital 1/0 Operations

This section describes digital I/O operations. It includes information on
the operation modes available, how to access a frame, how to allocate and
manage memory, how to use the digital /O channel, and how to specify
the pacer clock source, the buffering mode, and the digital trigger
conditions for a digital I/0O operation.

Operation Modes

The operation mode determines which attributes you can specify for a
digital I/O operation. You can perform digital I/O operations in single
mode, synchronous mode, or interrupt mode, as described in the
following sections.

Single Mode

In a single-mode digital input operation, the driver reads the value of
digital input channel 0 once; in a single-mode digital output operation, the
driver writes a value to digital output channel O once. You cannot perform
any other operation until the single-mode operation is complete.

Use theK_DIRead function to perform a digital input operation in single
mode; you specify the board you want to use, the digital input channel,
and the variable in which to store the value.

Use thek_DOWrite function to perform a digital output operation in

single mode; you specify the board you want to use, the digital output
channel, and the digital output value.

2-40 Available Operations

Synchronous Mode

Interrupt Mode

Synchronous mode provides the fastest means of performing a digital I/O
operation. In a synchronous mode digital input operation, the driver reads
the value of digital input channel 0 multiple times; in a synchronous mode
digital output operation, the driver writes a single value or multiple values

to digital output channel O multiple times. A hardware pacer clock paces

the digital /0 operation. You cannot perform any other operation until the

synchronous-mode operation is complete.

Use theK_SyncStart function to start a digital I/O operation in
synchronous mode.

In an interrupt-mode digital input operation, the driver reads the value of
digital input channel 0 multiple times; in an interrupt-mode digital output
operation, the driver writes a single value or multiple values to digital
output channel 0 multiple times.

A hardware clock paces the digital I/O operation. Once the digital I/O
operation begins, control returns to your program. The driver continues to
read values from or write values to the digital /O channel using an
interrupt service routine.

Use theK_IntStart function to start a digital I/O operation in interrupt
mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-51 for more information on
buffering modes. Use th€ _IntStop function to stop a continuous-mode
interrupt operation. Use th€ IntStatus function to determine the
current status of an interrupt operation.

Digital /0O Operations 2-41

Frames

2-42

Synchronous-mode and interrupt-mode digital I/O operations require
frames. Use thE_GetDIFrame function to access a digital input frame,
called a DI frame; use th€¢ GetDOFrame function to access a digital
output frame, called a DO frame. The driver returns the frame handle for
the frame. Refer to page 2-6 for more information about frames.

Table 2-6 lists the elements of a DI frame; Table 2-7 lists the elements of
a DO frame. The tables also list the default value of each element, the
setup functions used to define each element, and the page(s) in this

manual on which to find additional information.

Table 2-6. DI Frame Elements

Element Default Value Setup Function Page Number
Buffer 0 (NULL) K_SetBuf page 4-132
K_SetBufl page 4-135
K_SetBufL page 4-137
Number of Sampleg 0 K_SetBuf page 4-132
K_SetBufl page 4-135
K_SetBufL page 4-137
Buffering Mode Single-cycle K_SetContRun page 4-151
K_CIrContRurf page 4-41
Clock Source Internal K_SetClk page 4-146
Pacer Clock Rafe |0 K_SetClkRate page 4-148
Trigger Source Internal K_SetTrig page 4-169
Trigger Type Digital K_SetDITrig page 4-153
Notes

1This element must be set.

2 Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a

new frame, this frame element is set to its default value automatically.

Available Operations

Table 2-7. DO Frame Elements

Element Default Value Setup Function Page Number
Buffert 0 (NULL) K_SetBuf page 4-132
K_SetBufl page 4-135
K_SetBufL page 4-137
Number of Sampleg 0 K_SetBuf page 4-132
K_SetBufl page 4-135
K_SetBufL page 4-137
Buffering Mode Single-cycle K_SetContRun page 4-151
K_ClIrContRurf page 4-41
Clock Source Internal K_SetClk page 4-146
Pacer Clock Rafe |0 K_SetClkRate page 4-148
Trigger Source Internal K_SetTrig page 4-169
Trigger Type Digital K_SetDITrig page 4-153
Notes

L This element must be set.
2 Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a

new frame, this frame element is set to its default value automatically.

Memory Allocation and Management

Synchronous-mode and interrupt-mode digital I/O operations require

memory in which to store the data that is read or written.

Since digital I/O operations typically require small arrays of data, you can
reserve memory by dimensioning a single local array within your
program’s memory area. Your array must be able to accommodate the
digital I/O lines you are using. Table 2-8 lists the types of arrays you can
dimension. The configuration of the digital I/O lines is discussed in the
next section.

Digital /0O Operations

2-43

Table 2-8. Dimensioning Arrays for Digital I/O Operations

Number of Type of Array
Digital I/0 Lines

4 Byte (8 bits)
8

12 Integer (16 bits)
16
20 Long (32 bits)
24
28

For example, if you are using the 24 bidirectional bits for digital input and
you want to read the bits five times, dimension an array of five long-type
variables. If you are using 12 bits for digital output and you want to write
to the ports 10 times, dimension an array of 10 integer-type variables.

Note: You cannot dimension a byte-type array in BASIC or Visual Basic
for Windows. If you are using four or eight digital I/O lines, dimension an
integer-type array instead. Refer to page 3-21 (Visual Basic for Windows)
or page 3-29 (BASIC) for information on converting the integer data to
data you can use.

After you dimension your array, you must assign the starting address of
the array and the number of samples to store in the array. Each supported
programming language requires a particular procedure for dimensioning
an array and assigning the starting address; refer to the following pages
for more information:

CIC++ page 3-4

Pascal page 3-13

Visual Basic for Windows page 3-19
BASIC page 3-28

2-44 Available Operations

You can also use th€ IntAlloc function to dynamically allocate a
memory buffer, if desired. Specify the number of values to store in the
buffer (up to a maximum of 32,767). The driver returns the starting
address of the buffer and a unique identifier for the buffer (this identifier
is called the memory handle). If you no longer require the buffer, free the
buffer for another use by specifying the memory handle iKKthetFree
function.

For BASIC and Visual Basic for Windows, data in a dynamically
allocated memory buffer is not directly accessible to your program. The
number of digital I/O lines configured for the digital I/O channel
determines the function you should use to move the data to or from the
dynamically allocated buffer, as shown in the following table:

Digital 1/0 Lines

O

Function escription Page

input lines

Less than 16 digita) K_MoveBufToArray | Moves digital input data from | page 4-116

the buffer to a local integer arrg
in your program.

More than 16
digital input lines

K_MoveBufToArrayL | Moves digital input data from | page 4-118
the buffer to a local long array in
your program.

Less than 16 digi
output lines

ta| K_MoveArrayToBuf | Moves digital output data from | page 4-112
local integer array in your
program to the buffer.

More than 16

digital output lines local long array in your program

K_MoveArrayToBufL | Moves digital output data from|gage 4-114

to the buffer.

Note: You cannot use a local array with Windows 95, 32-bit programs;
you must us&_IntAlloc to dynamically allocate a memory buffer. You
must also install the Keithley Memory Manager; refer to your board
user’s guide for information.

Digital /0O Operations 2-45

Digital Input/Output Channel

2-46

DAS-1600/1400/1200 Series boards contain four unidirectional digital
input lines and four unidirectional digital output lines that are accessible
through the main I/O connector (J1). DAS-1600/1200 Series boards
provide an additional 24 bits of bidirectional digital 1/0 on the PIO cable
connector (J2 on the DAS-1600, J4 on the DAS-1200). These 24 bits are
configured as follows:

. PortA, 8-bit

. Port B, 8-bit

. Port CH (High), 4-bit
. Port CL (Low), 4-bit

Since each of these four ports is configurable for either input or output, 16
port configurations are available. In any of these configurations, the driver
concatenates data from each input port with data from the onboard digital
inputs, if they are available, into a composite value on a single digital
input channel (channel 0). Similarly, the driver concatenates data from
each output port with data from the onboard digital outputs into a
composite value on a single digital output channel (channel 0).

Data on digital input channel 0 or digital output channel 0 can be up to 28
bits wide when all ports are configured for one direction (input or output)
and the onboard digital lines are available. A value of 1 in the bit position
indicates that the input or output is high; a value of 0 in the bit position
indicates that the input or output is low. If no signal is connected to a
digital input line, the input appears high (value is 1).

Note the following limitations when using the digital I/O lines:

. If you are using an external pacer clock, you cannot use the
IPO/TRIGO/XPCLK line for general-purpose digital input operations.

. Ifyou are using an external digital trigger, you cannot use the
IPL/XTRIG line for general-purpose digital input operations.

. If you are using an expansion accessory, you cannot use any of the
unidirectional digital output lines for general-purpose digital output
operations.

. If you are using counter O as an external gate, you cannot use
IP2/CTRO GATE for general-purpose digital input operations.

Available Operations

Starting from the least significant bit of the digital I/O channel, Port A
uses the first eight bits available, Port B uses the next eight bits available,
Port CL uses the next four bits available, Port CH uses the next four bits
available, and the unidirectional bits use the next four bits available.

If a particular port is configured for input, none of the bits in the output
channel is used; if a particular port is configured for output, none of the
bits in the input channel is used.

For example, a DAS-1600/1200 Series board is configured with no EXPs
and with Port A, Port B, Port CL, and Port CH all configured for output.
Table 2-9 illustrates how the bits in the digital I/O channels are used.

Table 2-9. Digital /0O Channel Usage;
No EXPs, All Ports Output

Bits Output Channel Use Input Channel Use
Oto 3 Port A 4 unidirectional input bits
4t07

8to 11 Port B

12 to 15
16 to 19 Port CL

20to 23 Port CH

24 t0 27 | 4 unidirectional output bit

Uy

As another example, a DAS-1600/1200 Series board is configured with
one or more EXPs and with Port A, Port B, Port CL, and Port CH
configured for output. Table 2-10 illustrates how the bits in the digital /0
channels are used. Note that the four unidirectional output bits are
dedicated to EXP board control and are not available.

Digital /0O Operations 2-47

2-48

Table 2-10. Digital /O Channel Usage;
EXPs Used, All Ports Output

Bits Output Channel Use Input Channel Use
Oto3 Port A 4 unidirectional input bits
4to7

8to 11 Port B

12 to 15
16 to 19 Port CL
20to 23 Port CH

As another example, a DAS-1600/1200 Series board is configured with
no EXPs, with Port A and Port B configured for output, and with Port CL
and Port CH configured for input. Table 2-11 illustrates how the bits in
the digital I/O channels are used.

Table 2-11. Digital /O Channel Usage;
No EXPs, A and B Output, CL and CH Input

Bits Output Channel Use Input Channel Use

Oto3 Port A Port CL

4t07 Port CH

8to 11 Port B 4 unidirectional input bits
12 to 15

16to 19 |4 unidirectional output bits

As a final example, a DAS-1600/1200 Series board is configured with no
EXPs, with Port B and Port CH configured for output, and with Port A
and Port CL configured for input. Table 2-12 illustrates how the bits in the
digital I/O channels are used.

Available Operations

Pacer Clocks

Table 2-12. Digital /O Channel Usage;
No EXPs, B and CH Output, A and CL Input

Bits Output Channel Use Input Channel Use

Oto3 Port B Port A

4107

8to11 Port CH Port CL

12 to 15 4 unidirectional output bit{ 4 unidirectional input bits

When performing synchronous-mode and interrupt-mode digital 1/0O
operations, you can use a pacer clock to determine the period between
reading the digital input channel or writing to the digital output channel.

You can specify the internal pacer clock or an external pacer clock, as
described in the following sections.

Note: The actual read/write rate also depends on other factors, including
your computer, the operating system/environment, and other software
issues.

Internal Pacer Clock

The internal pacer clock uses two cascaded counters of the onboard
82C54 counter/timer. The counters are normally in an idle state. When
you start the digital I/0O operation (usikg SyncStart or K_IntStart), a

value is read or written. Note that a slight delay occurs between when you
start the operation and when the value is read or written.

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, another value is read or written and
the process repeats.

Digital /0O Operations 2-49

2-50

If the 10 MHz time base is specified in the configuration file, each count
represents 0.fis; if the 1 MHz time base is specified in the configuration
file, each count represents 1€ Use thé&_SetClkRate function to

specify the number of counts (clock ticks) between reads/writes. For
example, if you specify a count of 2000 with a 10 MHz time base, the
period between reads/writes is 2090(5 ksamples/s); if you specify a
count of 87654, the period between reads/writes is 8.8 ms (114.1
samples/s).

You can specify a count between 100 and 4,294,967,295 for the 10 MHz
time base and between 10 and 4,294,967,295 for the 1 MHz time base.
The period between reads/writes ranges fromsl® 7.16 minutes (for

the 10 MHz time base) and from {8 to 71.6 minutes (for the 1 MHz

time base).

Use the following formula to determine the number of counts to specify:

time base

counts= ———————
read/writerate

For example, if you are using the 10 MHz time base and want to write
data to digital output channel O at a rate of 500 samples/s, specify a count
of 20,000, as shown in the following equation:

10, 00Q 000_
=00 20, 000

The internal pacer clock is the default pacer clock. To reset the pacer
clock source to an internal pacer clock, usekh8etClk function.

Notes: You cannot use the internal pacer clock for a digital I/O operation
if the clock is being used by another operation.

The driver accepts a count value as low as 10 for the 1 MHz time base and
as low as 100 for the 10 MHz time base. However, a low count value may
cause an overrun error. The maximum observed read/write rates for the
internal pacer clock are 1 ksamples/s when running under Windows and 5
ksamples/s when running under DOS.

Available Operations

External Pacer Clock

You connect an external pacer clock to the IPO/TRIGO/XPCLK pin (25)
on the main I/O connector (J1).

At the next rising edge of the external pacer clock after you start a digital
I/0 operation (usindk_SyncStart or K_IntStart) and at every

subsequent rising edge of the external pacer clock, a value is read or
written. Note that a slight delay may occur between the rising edge of the
external pacer clock and the reading of or writing to the channel.

Use theK_SetClk function to specify an external pacer clock.

Note: You cannot use an external pacer clock for a digital I/O operation if
the clock is being used by another operation.

Buffering Modes

The buffering mode determines how the driver reads or writes the values
in the buffer. For interrupt-mode digital I/0O operations, you can specify
single-cycle or continuous buffering mode, as described in the following
sections.

Note: Buffering modes are not meaningful for synchronous-mode
operations, since only single-cycle mode applies.

Single-Cycle Mode

In a single-cycle-mode digital input operation, after the driver fills the
buffer, the operation stops automatically. In a single-cycle-mode digital
output operation, after the driver writes the values stored in the buffer, the
operation stops automatically.

Single-cycle mode is the default buffering mode. To reset the buffering
mode to single-cycle mode, use #eClrContRun function.

Digital /O Operations 2-51

Continuous Mode

Triggers

Internal Trigger

2-52

In a continuous-mode digital input operation, the driver continuously
reads digital input channel 0 and stores the values in the buffer until the
program issues a stop function; any values already stored in the buffer are
overwritten. In a continuous mode digital output operation, the driver
continuously writes values from the buffer to digital output channel 0

until the program issues a stop function; when all the values in the buffer
have been written, the driver writes the values again.

Use theK_SetContRun function to specify continuous buffering mode.

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode and interrupt-mode digital I/O operations, you can
specify an internal trigger or an external digital trigger, as described in the
following sections.

The trigger event is not significant until the operation has been started
(usingK_SyncStartorK_IntStart). The point at which a value is read or
written depends on the pacer clock; refer to page 2-49 for more
information.

An internal trigger is a software trigger. The trigger event occurs when
you start the digital I/O operation. Note that a slight delay occurs between
the time you start the operation and the time the trigger event occurs.

The internal trigger is the default trigger source. To reset the trigger
source to an internal trigger, use #eSetTrig function.

Available Operations

External Digital Trigger

An external digital trigger occurs when one of the following occurs on the
digital trigger signal connected to the IP1/XTRIG pin (6) on the main I/O
connector:

. Arising edge on the IP1/XTRIG pin (positive-edge trigger).

. Afalling edge on the IP1/XTRIG pin (negative-edge trigger).

. The signal is high on the IP1/XTRIG pin (positive-level trigger).

. The signal is low on the IP1/XTRIG pin (negative-level trigger).
Use theK_SetTrig function to specify an external trigger. Then, use the

K_SetDITrig function to specify the digital trigger conditions. The
trigger conditions are illustrated in Figure 2-5 on page 2-29.

Note: The external digital trigger is a software-based trigger. When you
start the digital I/0O operation (usitg SyncStart or K_IntStart), the

driver reads the signal connected to the IP1/XTRIG pin until the trigger
condition is met. Control does not return to your program until the trigger
condition is met. (To terminate the operation if a trigger event does not
occur, pres€tri+Break .) In addition, a slight delay occurs between the
time the trigger condition is met and the time the driver realizes the
trigger condition is met and begins reading or writing a value.

Counter/Timer 1/0O Operations

DAS-1600/1400/1200 Series boards contain a 82C54 counter/timer; the
82C54 contains three counters: counter 0, counter 1, and counter 2. If
these counters are not being used for an internal operation, you can use
them for another task, such as frequency measurement.

Counter/Timer 1/0O Operations 2-53

The DAS-1600/1400/1200 Series Function Call Driver provides the
following functions for programming the 82C54 counter/timer:

. DAS1600_8254Control Allows you to write to the 82C54
counter/timer control register.

. DAS1600 _8254SetCounter Sets one of the counters on the 82C54
counter/timer.

. DAS1600_8254SetCIkO Specifies whether you want counter O of
the 82C54 counter/timer to use the 100 kHz onboard clock or an
external signal connected to the CTRO CLOCK IN pin (21) of the
main 1/O connector.

. DAS1600 _8254SetTrig0 Specifies whether you want the signal at
the IPO/TRIGO/XPCLK pin (25) of the main I/O connector to act as a
hardware gate for counters 1 and 2.

. DAS1600_8254GetCounter Indicates the current count value of
one of the counters on the 82C54 counter/timer.

. DAS1600_8254GetClkG Indicates whether counter 0 of the 82C54
counter/timer is using the 100 kHz onboard clock or an external
signal connected to the CTRO CLOCK IN pin (21) of the main 1/O
connector.

. DAS1600_8254GetTrig0 Indicates whether the signal at the
IPO/TRIGO/XPCLK pin (25) of the main 1/0O connector is acting as a
hardware gate for counters 1 and 2.

Refer to Appendix E of your board user’s guide for more information on
programming the 82C54 counter/timer.

Notes: Counter 0 is always available for general-purpose tasks. If you
are using the internal pacer clock, counter 1 and counter 2 are not
available for general-purpose tasks. If you are using an external clock
source, all three counters are available for general-purpose tasks.

You cannot use the counter/timer functions with Windows 95, 32-bit
programs.

3

Programming with the
Function Call Driver

This chapter contains a programming overview and language-specific
information related to using the Function Call Driver. It includes the
following sections:

Programming Overview - an overview of the tasks required to write
a program using the DAS-1600/1400/1200 Series Function Call
Driver.

C/C++ Programming Information - language-specific information
for programming in Microsoft C/C++ (including Visual C++) and
Borland C/C++.

Pascal Programming Information - language-specific information
for programming in Borland Turbo Pascal (for DOS) and Borland
Turbo Pascal for Windows.

Visual Basic for Windows Programming Information -
language-specific information for programming in Microsoft Visual
Basic for Windows.

BASIC Programming Information - language-specific information
for programming in Microsoft QuickBasic, Microsoft Professional
Basic, and Microsoft Visual Basic for DOS.

3-1

Programming Overview

To write a program using the DAS-1600/1400/1200 Series Function Call
Driver, perform the following steps:

1. Define the program's requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation.

2. Write your program. Refer to the following for additional
information:

— Programming flow diagrams for the preliminary tasks, on
page 1-7, which illustrate the programming tasks common to all
programs.

— Programming flow diagrams for an analog input operation, on
page 1-8.

— Programming flow diagrams for an analog output operation, on
page 1-14.

— Programming flow diagrams for a digital input operation, on
page 1-18, and for a digital output operation, on page 1-21.

— Chapter 4, which contains detailed descriptions of the Function
Call Driver functions.

— The example programs in the DAS-1600/1400/1200 Series
standard software package and the ASO-1600/1400/1200
software package. The FILES.TXT file in the installation
directory lists and describes the example programs.

3. Compile and link the program. Refer to the following for information
on compile and link statements and other language-specific
considerations:

— C/C++ Programming Information on page 3-3.
— Pascal Programming Information on page 3-11.

— Visual Basic for Windows Programming Information on
page 3-16.

— BASIC Programming Information on page 3-24.

— The EXAMPLES.TXT file, which provides information on
compiling and linking example programs.

3-2 Programming with the Function Call Driver

C/C++ Programming Information

The following sections contain information you need to reserve memory,
to create a channel-gain queue, and to handle errors when programming
in C or C++, as well as language-specific information for Microsoft
C/C++ (including Visual C++) and Borland C/C++.

Notes: When programming in C/C++, make sure that you use proper
typecasting to prevent C/C++ type-mismatch warnings.

When programming in Borland C/C++, make sure that linker options are
set so that case-sensitivity is disabled.

Dynamically Allocating a Memory Buffer

Notes: The code fragments assume that you are using DMA mode; the
code for synchronous and interrupt mode is identical, except that you use
the appropriate synchronous-mode or interrupt-mode functions instead of
the DMA-mode functions.

If you are using a large buffer and programming in a Windows-based
language, it is recommended that you install the Keithley Memory
Manager before you begin programming. Refer to your board user’s
guide for more information about the Keithley Memory Manager.

The following code fragment illustrates how to KseDMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to useK_SetDMABUf to assign the starting address of the buffer.

void far *AcqBuf; /[Declare pointer to buffer
WORD hMem; //Declare word for memory handle

wDasErr = K_DMAAlloc (hFrame, Samples, &AcqBuf, &hMem);
wDasErr = K_SetDMABuf (hFrame, AcqBuf, Samples);

C/C++ Programming Information 3-3

The following code illustrates how to uke DMAFree to later free the
allocated buffer, using the memory handle store& bpMAAIlloc .

wDasErr = K_DMAFree (hMem);

Accessing Data from a Dynamically Allocated Memory Buffer

You access the data stored in a dynamically allocated buffer through
C/C++ pointer indirection. For example, assume that you want to display
the first 10 samples of the buffer described in the previous section
(AcqBuf). The following code fragment illustrates how to access and
display the data.

int huge *pData; //Declare a pointer called pData

pData = (int huge *) AcqBuf; //Assign pData to buffer
for (i=0;i<10; i++)
printf ("Sample #%d %X", i, *(pData+i));

Note: Declaring pData as a huge pointer allows the program to directly
access all data within the memory buffer, regardless of the buffer size. If
you declare pData as an integer pointer, after you store 64 KB of data, the
data currently in the buffer is overwritten.

Dimensioning a Local Array

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array.

int Data[10000]; //Dimension array of 10,000 samples

wDasErr = K_SetBuf (hFrame, Data, 10000);

Programming with the Function Call Driver

Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type
(GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable

{
WORD num_of_codes;

struct{
BYTE Chan;
char Gain;
} GainChanAry[256];
} GainChanTable;

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-1602 board by declaring and
initializing a variable of type GainChanTable.

GainChanTable MyChanGainQueue =

{8, /INumber of entries

0,0, /[Channel 0, gain of 1
1,1, /[Channel 1, gain of 2
2,2, /[Channel 2, gain of 4
3,3, /[Channel 3, gain of 8
3,0, /[Channel 3, gain of 1
2,1, /[Channel 2, gain of 2
1,2, /[Channel 1, gain of 4
0, 3}; /[Channel 0, gain of 8

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

wDasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);
When you start the next analog input operation (uKin§yncStart or

K_IntStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at
a gain of 2, channel 2 is sampled at a gain of 4, and so on.

C/C++ Programming Information 3-5

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value ofkh&etDevHandle

function.

if (WDASErr = K_GetDevHandle (hDrv, BoardNum, &hDev)) ! = 0)

{
printf ("Error %X during K_GetDevHandle", wDASErr);

exit (1);
}

The following code fragment illustrates how to usekKh&etErrMsg
function to access the string corresponding to an error code.

if (wDasErr = K_SetChn (hAD, 2) ! = 0)
{
Error = K_GetErrMsg (hDev, wDasErr, &pMessage);
printf ("%s", pMessage);
exit (1);
}

3-6 Programming with the Function Call Driver

Programming in Microsoft C/C++ (for DOS)

To program in Microsoft C/C++ (for DOS), you need the following files;
these files are provided in the ASO-1600/1400/1200 software package.

File Description

DAS1600.LIB Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C
DAS1600.H Include file when compiling in C
DASDECL.HPP Include file when compiling in C++
DAS1600.HPP Include file when compiling in C++
USE1600.0BJ Linkable object

To create an executable file in Microsoft C/C++ (for DOS), use the
following compile and link statements. Note tfilgnameindicates the
name of your program.

Type of Compile Compile and Link Statements

C CL /cfilenamec
LINK filename-use1600.0bj,,,das1600+dasrface

C++ CL /cfilenamecpp
LINK filenameruse1600.0bj,,,das1600+dasrface

C/C++ Programming Information 3-7

Programming in Microsoft C/C++ (for Windows)

The files you need to program in Microsoft C/C++ (for Windows),

including Microsoft Visual C++, depend on whether you are writing
16-bit or 32-bit programs. The following files are provided either in the
AS0-1600/1400/1200 software package or on the ASO-Win95/32-Bit
disk, which is shipped with the ASO-1600/1400/1200 software package.

Program File Description
16 bits DASSHELL.DLL | Dynamic Link Library of Shell functions
DASSUPRT.DLL Dynamic Link Library of support functions
DAS1600.DLL Dynamic Link Library of board-specific functions
DASDECL.H Include file of Shell function definitions (used when
compiling in C or C++)
DAS1600.H Include file of board-specific function definitions (used
when compiling in C)
DAS1600.HPP Include file of board-specific function definitions (used
when compiling in C++)
DASIMP.LIB Import library of Shell functions
D1600IMP.LIB Import library of board-specific functions
32 bhits DASSHL32.DLL Dynamic Link Library of Shell functions
DASSUPRT.DLL Dynamic Link Library of support functions
DASSHL16.DLL Dynamic Link Library of support functions
DASDECL.H Include file of Shell function definitions (used when
compiling in C or C++)
DASSHL32.LIB Import library of Shell functions
3-8 Programming with the Function Call Driver

To create an executable file in the Microsoft C/C++ (for Windows)
environment, perform the following steps. Refer to the documentation
supplied with your compiler for complete information.

1. Create a project file.

2. Add all necessary files to the project make file. Make sure that you
includefilenamec (orfilenamecpp),filenamerc, filenamedef,
DASIMP.LIB (or DASSHL32.LIB), and D1600IMP.LIB (16-bit
programs only), wherlenameindicates the name of your program.

3. Create a stand-alone executable file (.EXE) that you can execute from
within Windows.

Programming in Borland C/C++ (for DOS)

To program in Borland C/C++ (for DOS), you need the following files;
these files are provided in the ASO-1600/1400/1200 software package.

File Description

DAS1600.LIB Linkable driver
DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C
DAS1600.H Include file when compiling in C
DASDECL.HPP Include file when compiling in C++
DAS1600.HPP Include file when compiling in C++
USE1600.0BJ Linkable object

To create an executable file in Borland C/C++ (for DOS), use the
following compile and link statements. Note tfilgnameindicates the
name of your program.

Type of

Compile |Compile and Link Statements

C BCCfilenamec use1600.0bj das1600.lib dasrface.lib
C++ BCCfilenamecpp use1600.0bj das1600.lib dasrface.lib

C/C++ Programming Information 3-9

Programming in Borland C/C++ (for Windows)

The files you need to program in Borland C/C++ (for Windows) depend

on whether you are writing 16-bit or 32-bit programs. The following files
are provided either in the ASO-1600/1400/1200 software package or on
the ASO-Win95/32-Bit disk, which is shipped with the
AS0-1600/1400/1200 software package.

Program File Description
16 bits DASSHELL.DLL | Dynamic Link Library of Shell functions
DASSUPRT.DLL Dynamic Link Library of support functions
DAS1600.DLL Dynamic Link Library of board-specific functions
DASDECL.H Include file of Shell function definitions (used when
compiling in C or C++)
DAS1600.H Include file of board-specific function definitions (used
when compiling in C)
DAS1600.HPP Include file of board-specific function definitions (used
when compiling in C++)
DASIMP.LIB Import library of Shell functions
D1600IMP.LIB Import library of board-specific functions
32 bhits DASSHL32.DLL Dynamic Link Library of Shell functions
DASSUPRT.DLL Dynamic Link Library of support functions
DASSHL16.DLL Dynamic Link Library of support functions
DASDECL.H Include file of Shell function definitions (used when
compiling in C or C++)
DASSHL32.LIB Import library of Shell functions
3-10 Programming with the Function Call Driver

To create an executable file in the Borland C/C++ environment, perform
the following steps. Refer to the documentation supplied with your
compiler for complete information.

1. Create a project file.

2. Add all necessary files to the project make file. Make sure that you
includefilenamec (orfilenamecpp),filenamerc, filenamedef,
DASIMP.LIB (or DASSHL32.LIB), and D1600IMP.LIB (16-bit
programs only), wherlenameindicates the name of your program.

3. Make sure that you turn OFF both the Case sensitive link and the
Case sensitive exports and imports options.

4. Create a stand-alone executable file (.EXE) that you can execute from
within Windows.

Pascal Programming Information

The following sections contain information you need to reserve memory,
to create a channel-gain queue, and to handle errors when programming
in Pascal, as well as language-specific information for Borland Turbo
Pascal (for DOS) and Borland Turbo Pascal for Windows.

Reducing the Memory Heap

Note: Reducing the memory heap is recommended for Borland Turbo
Pascal (for DOS) only; if you are programming in Borland Turbo Pascal
for Windows, reducing the memory heap is not required.

By default, when Borland Turbo Pascal (for DOS) programs begin to run,
Pascal reserves all available DOS memory for use by the internal memory
manager; this allows you to perfo@etMem andFreeMem operations.
Pascal uses the compiler directive $M to distribute the available memory.
The default configuration is {$M 16384, 0, 655360}, where 16384 bytes
is the stack size, 0 bytes is the minimum heap size, and 655360 is the
maximum heap size.

Pascal Programming Information 3-11

It is recommended that you use the compiler directive $M to reduce the
maximum heap reserved by Pascal to 0 bytes by entering the following:

{$M (16384, 0, 0)}

Reducing the maximum heap size to 0 bytes makes all far heap memory
available to DOS (and therefore available to the driver) and allows your
program to take maximum advantage of khéntAlloc and

K_DMAAIlloc functions. You can reserve some space for the internal
memory manager or for DOS, if desired. Refer to your Borland Turbo
Pascal (for DOS) documentation for more information.

Dynamically Allocating a Memory Buffer

Notes: The code fragments assume that you are using DMA mode; the
code for synchronous and interrupt mode is identical, except that you use
the appropriate synchronous-mode or interrupt-mode functions instead of
the DMA-mode functions.

If you are using a large memory buffer and programming in Borland
Turbo Pascal for Windows, it is recommended that you use the Keithley
Memory Manager before you begin programming. Refer to your board
user’s guide for more information about the Keithley Memory Manager.

The following code fragment illustrates how to BlseDMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to useK_SetDMABUf to assign the starting address of the buffer.

It is recommended that you declare a dummy type array of ~integer. The

dimension of this array is irrelevant; it is used only to satisfy Pascal’s
type-checking requirements.

3-12 Programming with the Function Call Driver

{$m (16384, 0, 0)} { Turbo Pascal for DOS only }

Type
IntArray = Array[0..1] of Integer;

Var
AcqBuf : NIntArray; { Declare buffer of dummy type }
hMem : Word; { Declare word for memory handle, hMem }

wDasErr := K_DMAAIlloc (hFrame, Samples, @AcqBuf, hMem);
wDasErr := K_SetDMABuUf (hFrame, AcqBuf, Samples);

The following code illustrates how to uke DMAFree to later free the
allocated buffer, using the memory handle store& bpMAAIlloc .

wDasErr := K_DMAFree (hMem);

Accessing Data from a Dynamically Allocated Memory Buffer

You access the data stored in a dynamically allocated buffer through
Pascal pointer indirection. For example, assume that you want to display
the first 10 samples in the buffer. The following code fragment illustrates
how to access and display the data.

fori:=0to 10 do begin
writeln ('Sample #, i,” =’, AcqBuf[i]);
End;

Dimensioning a Local Array

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array.

Data : Array[0..9999] of Integer;

wDasErr := K_SetBuf (hFrame, Data(0), 10000);

Pascal Programming Information 3-13

Creating a Channel-Gain Queue

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-1602 board by defining a Record as
a new type. You must use SetChnGAry to assign the starting address

of MyChanGainQueue to the frame defined by hFrame.

Type
GainChanTable = Record
num_of codes : Integer;
queue : Array[0..15] of Byte;

end;

Const
MyChanGainQueue : GainChanTable =
num_of codes : (8); { Number of entries }

queue (0,0, {Channel0, gainofl}

{ Channel 1, gain of 2 }
{ Channel 2, gain of 4 }
{ Channel 3, gain of 8 }
{ Channel 3, gain of 1}
{ Channel 2, gain of 2 }
{ Channel 1, gain of 4 }
{ Channel 0, gain of 8 }

OFRPNWWN K
WNPRPOWNR

~—~ -

)i
wDasErr ;= K_SetChnGAry (hFrame, MyChanGainQueue.num_of codes);

When you start the next analog input operation (uKin8yncStart or
K_IntStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at
a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the
DAS1600_GetDevHandldunction.

wDasErr := DAS1600_GetDevHandle(0, hDev);
if wDasErr <> 0 then
BEGIN
FormatStr(HexErr, ' %4x ', wDasErr);
writeln('Error', HexErr,'during DAS1600_GetDevHandle');

Halt(1);
END;()

3-14 Programming with the Function Call Driver

Programming in Borland Turbo Pascal (for DOS)

To program in Borland Turbo Pascal, you need the D1600TP7.TPU file.
D1600TP7.TPU is a Turbo Pascal unit for Version 7.0 and is provided in
the ASO-1600/1400/1200 software package.

Note: If you must create a new Turbo Pascal unit when compiling in
Borland Turbo Pascal for versions higher than 7.0, refer to FILES.TXT
for a list of the files to use.

To create an executable file in Borland Turbo Pascal, use the following
compile and link statement:

TPC filename.pas

wherefilenameindicates the name of your program.

Programming in Borland Turbo Pascal for Windows

To program in Borland Turbo Pascal for Windows, you need the
following files; these files are provided in the ASO-1600/1400/1200
software package.

File Description

DASSHELL.DLL

Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library
DAS1600.DLL Dynamic Link Library
DASDECL.INC Include file
DAS1600.INC Include file

To create an executable file in Borland Turbo Pascal for Windows,
perform the following steps:

1. Loadfilenamepas into the Borland Turbo Pascal for Windows
environment, wherélenameindicates the name of your program.

2. Create an executable file (.EXE).

Pascal Programming Information

3-15

Visual Basic for Windows Programming Information

The following sections contain information you need to allocate memory,
to create a channel-gain queue, to convert integer data for digital I/O
operations, and to handle errors when programming in Microsoft Visual
Basic for Windows, as well as language-specific information for
Microsoft Visual Basic for Windows.

Dynamically Allocating a Memory Buffer

Notes: The code fragments assume that you are using DMA mode; the
code for synchronous and interrupt mode is identical, except that you use
the appropriate synchronous-mode or interrupt-mode functions instead of
the DMA-mode functions.

If you are using a large memory buffer, it is recommended that you use
the Keithley Memory Manager before you begin programming. Refer to
your board user’s guide for more information about the Keithley Memory
Manager.

The following code fragment illustrates how to k’kseDMAAIlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to useK_SetDMABUf to assign the starting address of the buffer.

Global AcgBuf As Long ' Declare pointer to buffer
Global hMem As Integer ' Declare integer for memory handle

wDasErr = K_DMAAIlloc (hFrame, Samples, AcqBuf, hMem)
wDasErr = K_SetDMABuf (hFrame, AcqBuf, Samples)

The following code illustrates how to uke DMAFree to later free the
allocated buffer, using the memory handle store& bpMAAIlloc .

wDasErr = K_DMAFree (hMem)

3-16 Programming with the Function Call Driver

Accessing Data from a Dynamically Allocated Memory Buffer
with Fewer than 64 KB of Data

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in a dynamically allocated memory buffer. You must
useK_MoveBufToArray to move a subset (up to 32,766 samples) of the
data into a local array as required. The following code fragment illustrates
how to move the first 100 samples of the buffer in the operation described
in the previous section (AcqBuf) to a local array.

Dim Buffer(1000) As Integer ' Declare local array

wDasErr = K_MoveBufToArray (Buffer(0), AcqBuf, 100)

Accessing Data from a Dynamically Allocated Memory Buffer
with More than 64 KB of Data

When Windows is running, the CPU operates in 16-bit protected mode.
Memory is addressed using a 32-bit selector:offset pair. The selector is
the CPU’s handle to a 64-KB memory page; it is a code whose value is
significant only to the CPU. No mathematical relationship exists between
a selector and the memory location it is associated with. In general, even
consecutively allocated selectors have no relationship to each other.

When a memory buffer of more than 64 KB (32,768 values) is used,
multiple selectors are required. Under Windol¢sIntAlloc uses a

“tiled” method to allocate memory whereby a mathematical relationship
does exist among the selectors. Specifically, if you allocate a buffer of
more than 64 KB, each selector that is allocated has an arithmetic value
that is eight greater than the previous one. The format of the address is a
32-bit value whose high word is the 16-bit selector value and low word is
the 16-bit offset value. When the offset reaches 64 KB, the next
consecutive memory address location can be accessed by adding eight to
the selector and resetting the offset to zero; to do this, add &h80000 to the
buffer starting address.

Table 3-1 illustrates the mapping of consecutive memory locations in

protected-mode “tiled” memory, whexaxxxxxxndicates the address
calculated by the CPU memory mapping mechanism.

Visual Basic for Windows Programming Information 3-17

Table 3-1. Protected-Mode Memory Architecture

Selector:Offset 32-Bit Linear
Address
32E6:FFFE XXXXXXXX
32E6:FFFF XXXXXXX¥E 1
32EE:0000 XXXXXXXXH 2
32EE:0001 XXXXXXXXE 3

The following code fragment illustrates moving 1,000 values from a

memory buffer (AcgBuf) allocated with 50,000 values to the program’s

local array (Array), starting at the sample at buffer index 40,000. First,
start with the buffer address passe&irSetBuf. Then, determine how
deep (in 64-KB pages) into the buffer the desired starting sample is
located and add &h80000 to the buffer address for each 64-KB page.
Finally, add any additional offset after the 64 KB pages to the buffer
address.

Dim AcgBuf As Long
Dim NumSamps As Long

Dim Array(1000) As Integer

NumSamps = 50000
wDasErr = K_IntAlloc (hFrame, NumSamps, AcgBuf, hMem)

. 'Acquisition routine

DesiredSamp = 40000

DesiredByte = DesiredSamp * 2 'Number of bytes into buffer
AddSelector = DesiredByte / &h10000 'Number of 64K pages into buffer
RemainingOffset = DesiredByte Mod &h10000 'Additional offset
DesiredBuffLoc = AcqBuf + (AddSelector * &h80000) + RemainingOffset

wDasErr = K_MoveBufToArray (Array(0), DesiredBuffLoc, 1000)

3-18 Programming with the Function Call Driver

Accessing More than 64 KB of Data from a
Dynamically Allocated Memory Buffer

To move more than 32,767 values from the memory buffer to the
program’s local array, the program must ¢alMoveBufToArray more

than once. For example, assume that pBuf is a pointer to a dynamically
allocated buffer that contains 65,536 values. The following code fragment
illustrates how to move 65,536 values from the dynamically allocated
buffer to a local array within the program:

Dim Data [3, 16384] As Integer
wDasErr = K_MoveBufToArray (Data(0,0), pBuf, 16384)

'Same selector, add 32,768 bytes to offset: add &h8000
wDasErr = K_MoveBufToArray (Data(1,0), pBuf + &h8000, 16384)
'Add 8 to selector, offset = 0: add &h80000

wDasErr = K_MoveBufToArray (Data(2,0), pBuf + &h80000, 16384)
'Add 8 to selector, add 32,768 bytes to offset; add &h88000
wDasErr = K_MoveBufToArray (Data(3,0), pBuf + &h88000, 16384)

Dimensioning a Local Array

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBufl to assign the starting address of the array.

Global Data(9999) As Integer " Allocate array

wDasErr = K_SetBufl (hFrame, Data(0), 10000)

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Visual Basic for Windows Programming Information 3-19

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you mustugeormatChnGAry to
reformat the channel-gain queue so that it can be used by the
DAS-1600/1400/1200 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1602 board and
how to useK_SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Global MyChanGainQueue(9) As Integer 'Maximum # of entries

MyChanGainQueue(0) = 4 " Number of channel-gain pairs
MyChanGainQueue(1) = 0 " Channel 0
MyChanGainQueue(2) = 0 "Gain of 1
MyChanGainQueue(3) = 1 " Channel 1
MyChanGainQueue(4) = 1 " Gain of 2
MyChanGainQueue(5) = 2 " Channel 2
MyChanGainQueue(6) = 2 " Gain of 4
MyChanGainQueue(7) = 2 " Channel 2
MyChanGainQueue(8) = 3 " Gain of 8

wDasErr = K_FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))

Once the channel-gain queue is formatted, your Visual Basic for Windows
program can no longer read it. To read or modify the array after it has
been formatted, you must uke RestoreChnGAry as follows:

wDasErr = K_RestoreChnGAry (MyChanGainQueue(0))

When you start the next analog input operation (uKingyncStart or
K_IntStart), channel O is sampled at a gain of 1, channel 1 is sampled at
a gain of 2, channel 2 is sampled at a gain of 4, and so on.

3-20 Programming with the Function Call Driver

Converting Integer Data for Digital /0O Operations

You cannot dimension a byte-type array or allocate a byte-type buffer in
Visual Basic for Windows. If you specify in your configuration file that
you are using four or eight digital 1/O lines, you must dimension an
integer-type array or allocate an integer-type buffer instead.

For digital input operations, the driver stores two samples in each integer
of the array or buffer. To convert the data to a usable format, whether you
access the data directly usikgSetBufl (if the data is stored in a locally
dimensioned array) or indirectly usikg MoveBufToArray and

K_SetBuf (if the data is stored in a dynamically allocated buffer), you
must unpack the data.

The following code fragment illustrates how to unpack 1,000 8-bit
samples that have been stored in an array of half the size, with each
element in the array holding two bytes of data.

Dim UnpackedData(1000) As Integer
Dim PackedData(500) As Integer

Forn =0 to 998 step 2
UnpackedData(n) = PackedData(n/2) AND &HFF
UnpackedData(n+1) = (PackedData(n/2) / 256) AND &HFF
Next n

For digital output operations, you must pack two samples into each
integer in the program’s local array. This ensures that when the driver
accesses the data, either directly usin&etBufl (if the driver is using a
locally dimensioned array) or indirectly usidg MoveArrayToBuf and
K_SetBuf (if the driver is using a dynamically allocated buffer), the
samples will be in consecutive memory locations as the driver expects.

The following code fragment illustrates how to pack 1,000 8-bit samples
into an array of half the size, with each element in the packed array
holding two bytes of data.

Dim UnpackedData(1000) As Integer
Dim PackedData(500) As Integer

For n =0 to 499
PackedData(n) = UnpackedData(n*2)+256*UnpackedData(n*2+1)
Nextn

Visual Basic for Windows Programming Information 3-21

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value ofkh&etDevHandle

function:

WDASETrr = K_GetDevHandle (hDrv, BoardNum, hDev)

If (WDASETrTr <> 0) Then
MsgBox "K_GetDevHandle Error: " + Hex$ (WDASETT),

MB_ICONSTOP, "DAS-1600 SERIES ERROR"
End
End If

3-22 Programming with the Function Call Driver

Programming in Microsoft Visual Basic for Windows

The files you need to program in Microsoft Visual Basic for Windows
depend on whether you are writing a 16-bit or 32-bit program. The
following files are provided either in the ASO-1600/1400/1200 software
package or on the ASO-Win95/32-Bit disk, which is shipped with the
ASO-1600/1400/1200 software package.

Program File Description

16 bits DASSHELL.DLL | Dynamic Link Library of Shell functions
DASSUPRT.DLL Dynamic Link Library of support functions
DAS1600.DLL Dynamic Link Library of board-specific functions
DASDECL.BAS Include file of Shell function definitions
DAS1600.BAS Include file of board-specific function definitions

32 bits DASSHL32.DLL Dynamic Link Library of Shell functions
DASSUPRT.DLL | Dynamic Link Library of support functions
DASSHL16.DLL Dynamic Link Library of support functions
DASDEC32.BAS | Include file of Shell function definitions

To create an executable file in Visual Basic for Windows, perform the
following steps. Refer to the documentation supplied with your compiler
for complete information.

1. Start Visual Basic for Windows.

2. Add the necessary include files to the project: DASDECL.BAS (or
DASDEC32.BAS) and DAS1600.BAS (16-bit programs only).

3. Create an executable file (.EXE).

Visual Basic for Windows Programming Information 3-23

BASIC Programming Information

The following sections contain information you need to reserve memory,
to create a channel-gain queue, to convert integer data for digital I/O
operations, and to handle errors when programming in BASIC, as well as
language-specific information for Microsoft QuickBasic, Microsoft
Professional Basic, and Microsoft Visual Basic for DOS.

Reducing the Memory Heap

By default, when BASIC programs run, all available memory is left for
use by the internal memory manager. BASIC provides the SetMem
function to distribute the available memory (the Far Heap). It is necessary
to redistribute the Far Heap if you want to use a dynamically allocated
buffer. It is recommended that you include the following code at the
beginning of BASIC programs to free the Far Heap for the driver’s use:

FarHeapSize& = SetMem(0)
NewFarHeapSize& = SetMem(-FarHeapSize&/2)

Dynamically Allocating a Memory Buffer

3-24

Note: The code fragments assume that you are using DMA mode; the
code for synchronous and interrupt mode is identical, except that you use
the appropriate synchronous-mode or interrupt-mode functions instead of
the DMA-mode functions.

The following code fragment illustrates how to k&§@MAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to useKSetDMABUf to assign the starting address of the buffer.

Dim AcgBuf As Long " Declare pointer to buffer
Dim hMem As Integer " Declare integer for memory handle

wDasErr = KDMAAIlloc% (hFrame, Samples, AcqBuf, hMem)
wDasErr = KSetDMABuf% (hFrame, AcqgBuf, Samples)

Programming with the Function Call Driver

The following code illustrates how to uE®MAFree to later free the
allocated buffer, using the memory handle store&BWAAlloc .

wDasErr = KDMAFree% (hMem)

Accessing Data from a Dynamically Allocated Memory Buffer
with Fewer than 64 KB of Data

In BASIC, you cannot directly access analog input samples stored in a
dynamically allocated memory buffer. You must ¥dd¢oveBufToArray

to move a subset of the data (up to 32,766 samples) into a local array. The
following code fragment illustrates how to move the first 100 samples of
the buffer in the operation described in the previous section (AcqBuf) into
a local array:

Dim Buffer(1000) As Integer ' Declare local array

wDasErr = KMoveBufToArray% (Buffer(0), AcqBuf, 100)

Accessing Data from a Dynamically Allocated Memory Buffer
with More than 64 KB of Data

Under DOS, the CPU operates in real mode. Memory is addressed using a
32-bit segment:offset pair. Memory is allocated from the far heap, the
reserve of conventional memory that occupies the first 64 KB of the 1 MB
of memory that the CPU can address in real mode. In the segmented
real-mode architecture, the 16-bit segment:16-bit offset pair combines
into a 20-bit linear address using an overlapping scheme. For a given
segment value, you can address 64 KB of memory by varying the offset.

When a memory buffer of more than 64 KB (32,768 values) is used,
multiple segments are required. When an offset reaches 64 KB, the next
linear memory address location can be accessed by adding &h1000 to the
buffer segment and resetting the offset to zero.

Table 3-2 illustrates the mapping of consecutive memory locations at a
segment page boundary.

BASIC Programming Information 3-25

Table 3-2. Real-Mode Memory Architecture

Segment:Offset RO-Bit Linear
Address
T4E4:FFFE 84E3E
TAE4:FFFF 84E3F
84E4:0000 84E40
84E4:0001 84E41

The following code fragment illustrates how to move 1,000 values from a
memory buffer (AcgBuf) allocated with 50,000 values to the program’s
local array (Array), starting at the sample at buffer index 40,000. You
must first calculate the linear address of the buffer’s starting point, then
add the number of bytes deep into the buffer that the desired starting
sample is located, and finally convert this adjusted linear address to a
segment:offset format:

Dim AcgBuf As Long

Dim NumSamps As Long
Dim LinAddrBuff As Long
Dim DesLocAddr As Long
Dim AdjSegOffset As Long

Dim Array(1000) As Integer
'Initialize array with desired values

NumSamps = 50000

wDasErr = KintAlloc% (hFrame, NumSamps, AcgBuf, hMem)
DesiredSamp = 40000

DesiredByte = DesiredSamp * 2 'Number of bytes into buffer

"To obtain the 20-bit linear address of buffer, shift the
'segment:offset to the right 16 bits (leaves segment only),
'multiply by 16, then add offset

LinAddrBuff = (AcqBuf / &h10000) * 16 + (AcgBuf AND &hFFFF)

3-26 Programming with the Function Call Driver

'20-bit linear address of desired location in buffer
DesLocAddr = LinAddrBuff + DesiredByte

'Convert desired location to segment:offset format
AdjSegOffset = (DesLocAddr / 16) * &h10000 + (DesLocAddr AND &hF)

wDasErr = KMoveBufToArray% (Array(0), AdjSegOffset, 1000)

Accessing More than 64 KB of Data from a
Dynamically Allocated Memory Buffer

To move more than 64 KB of data (32,767 values) from the memory
buffer to the program’s local array, the program must call
KMoveBufToArray more than once. For example, assume that pBuf is a
pointer to a dynamically allocated buffer that contains 65,536 values. The
following code fragment illustrates how to move 65,536 values from the
memory buffer to a local array (Data) in the program.

Although it is recommended that you perform all calculations on the

linear address and then convert the result to the segment;offset format (as
shown in the previous code fragment), this example illustrates an
alternative method of calculating the address by working on the
segment:offset form of the address directly. You can use this method if
you already know how deep you want to go into the buffer with each
move and the offset of the starting buffer address is zero, as is the case
when the buffer is allocated witintAlloc . In this method, you add
&h10000000 to the buffer address for each 64-KB page and then add the
remainder of the buffer:

Dim Data[3,16384] As Integer
wDasErr = KMoveBufToArray% (Data(0,0), pBuf, 16384)

'Same segment, add 32,768 bytes to offset: add &h8000
wDasErr = KMoveBufToArray% (Data(1,0), pBuf + &h8000, 16384)

'Next segment, offset = 0: add &h10000000
wDasErr = KMoveBufToArray% (Data(2,0), pBuf + &nh10000000, 16384)

'Next segment, remainder = 32,768 bytes: add &h10008000
wDasErr = KMoveBufToArray% (Data(3,0), pBuf + &nh10008000, 16384)

BASIC Programming Information 3-27

Dimensioning a Local Array

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
KSetBufl to assign the starting address of the array.

Dim Data(9999) As Integer " Allocate array

wDasErr = K_SetBufl% (hFrame, Data(0), 10000)

Creating a Channel-Gain Queue

3-28

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you muskiisEmatChnGAry to
reformat the channel-gain queue so that it can be used by the
DAS-1600/1400/1200 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1602 board and
how to useKSetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Dim MyChanGainQueue(9) As Integer 'Maximum # of entries

MyChanGainQueue(0) = 4 " Number of channel-gain pairs
MyChanGainQueue(1) = 0 " Channel 0
MyChanGainQueue(2) = 0 "Gain of 1
MyChanGainQueue(3) = 1 " Channel 1
MyChanGainQueue(4) = 1 ' Gain of 2
MyChanGainQueue(5) = 2 " Channel 2
MyChanGainQueue(6) = 2 " Gain of 4
MyChanGainQueue(7) = 2 " Channel 2

MyChanGainQueue(8) = 3 " Gain of 8

Programming with the Function Call Driver

wDasErr = KFormatChnGAry% (MyChanGainQueue(0))
wDasErr = KSetChnGAry% (hFrame, MyChanGainQueue(0))

Once the channel-gain queue is formatted, your BASIC program can no
longer read it. To read or modify the array after it has been formatted, you
must useKRestoreChnGAry as follows:

wDasErr = KRestoreChnGAry% (MyChanGainQueue(0))

When you start the next analog input operation (ukiBgncStart or
KintStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at a
gain of 2, channel 2 is sampled at a gain of 4, and so on.

Converting Integer Data for Digital /O Operations

You cannot dimension a byte-type array or allocate a byte-type buffer in
BASIC. If you specify in your configuration file that you are using four or
eight digital I/0O lines, you must dimension an integer-type array or
allocate an integer-type buffer instead.

For digital input operations, the driver stores two samples in each integer
of the array or buffer. To convert the data to a usable format, whether you
access the data directly usik&etBufl (if the data is stored in a locally
dimensioned array) or indirectly usik@d/oveBufToArray andKSetBuf

(if the data is stored in a dynamically allocated buffer), you must unpack
the data.

The following code fragment illustrates how to unpack 1,000 8-bit
samples that have been stored in an array of half the size, with each
element in the array holding two bytes of data.

Dim UnpackedData(1000) As Integer
Dim PackedData(500) As Integer

For n =0 to 998 step 2
UnpackedData(n) = PackedData(n/2) AND &HFF
UnpackedData(n+1) = (PackedData(n/2) / 256) AND &HFF
Next n

BASIC Programming Information 3-29

For digital output operations, you must pack two samples into each
integer in the program’s local array. This ensures that when the driver
accesses the data, either directly usisgtBufl (if the driver is using a
locally dimensioned array) or indirectly usid@/loveArrayToBuf and
KSetBuf (if the driver is using a dynamically allocated buffer), the
samples will be in consecutive memory locations as the driver expects.

The following code fragment illustrates how to pack 1,000 8-bit samples
into an array of half the size, with each element in the packed array
holding two bytes of data.

Dim UnpackedData(1000) As Integer
Dim PackedData(500) As Integer

Forn =0 to 499
PackedData(n) = UnpackedData(n*2)+256*UnpackedData(n*2+1)
Next n

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the
DAS1600GetDevHandlgunction.

WDASEI = DAS1600GETDEVHANDLE%Y (BoardNum, hDev)

IF (WDASETrr <> 0) THEN

BEEP

PRINT "Error";HEX$(WDASETT);"occurred during’DAS1600GETDEVHANDLE%™
END

END IF

3-30 Programming with the Function Call Driver

Programming in Microsoft QuickBasic

To program in Microsoft QuickBasic, you need the following files; these
files are provided in the DAS-1600/1400/1200 Series standard software

package.
File Description
D1600Q45.LIB Linkable driver for QuickBasic, \ersion 4.5,

stand-alone, executable (.EXE) programs

D1600Q45.QLB Command-line loadable driver for the QuickBasic,
Version 4.5, integrated environment

QB4DECL.BI Include file
DASDECL.BI Include file
DAS1600.BI Include file

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:
QB /L D1600Q45 filename.bas
wherefilenameindicates the name of your program.

2. Create an executable file (.EXE).

BASIC Programming Information 3-31

Programming in Microsoft Professional Basic

To program in Microsoft Professional Basic, you need the following files;

these files are provided in the DAS-1600/1400/1200 Series standard
software package.

File Description

D1600QBX.LIB Linkable driver for Professional Basic stand-alone,
executable (.EXE) programs

D1600QBX.QLB Command-line loadable driver for the Professional
Basic integrated environment

DASDECL.BI Include file
DAS1600.BI Include file

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:
QBX /L D1600QBX filename.bas
wherefilenameindicates the name of your program.
2. Create an executable file (.EXE).

3-32 Programming with the Function Call Driver

Programming in Microsoft Visual Basic for DOS

To program in Microsoft Visual Basic for DOS, you need the following
files; these files are provided in the DAS-1600/1400/1200 Series standard
software package.

File Description

D1600VBD.LIB Linkable driver for Visual Basic for DOS
stand-alone, executable (.EXE) programs

D1600VBD.QLB Command-line loadable driver for the Visual Basic
for DOS integrated environment

DASDECL.BI Include file
DAS1600.BI Include file

To create an executable file in Microsoft Visual Basic for DOS, perform
the following steps:

1. Invoke the Visual Basic for DOS environment by entering the
following:

VBDOS /L D1600VBD.QLB filenameBAS
wherefilenameindicates the name of your program.

2. Create an executable file (.EXE).

BASIC Programming Information 3-33

A

Function Reference

The FCD functions are organized into the following groups:
. Initialization functions

. Operation functions

. Frame management functions

. Memory management functions

. Buffer address functions

. Buffering mode functions

. Conversion mode functions

. Channel and gain functions

. Clock functions

. Trigger functions

. 82C54 counter/timer functions

. Miscellaneous functions

The particular functions associated with each function group are presented

in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-2

Table 4-1. Functions

Function Type Function Name Page Number
Initialization DAS1600_DevOpen page 4-27
K_OpenDriver page 4-122
K_CloseDriver page 4-37
DAS1600_GetDevHandle page 4-30
K_GetDevHandle page 4-83
K_FreeDevHandle page 4-69
K_DASDeviInit page 4-43
Operation K_ADRead page 4-32
K_DAWrite page 4-45
K_DIRead page 4-48
K_DOWrite page 4-64
K_DMAStart page 4-56
K_DMAStatus page 4-58
K_DMAStop page 4-61
K_IntStart page 4-102
K_IntStatus page 4-104
K_IntStop page 4-107
K_SyncStart page 4-173
Frame Management | K_GetADFrame page 4-75
K_GetDAFrame page 4-81
K_GetDIFrame page 4-85
K_GetDOFrame page 4-87
K_FreeFrame page 4-71
K_ClearFrame page 4-35

Function Reference

Table 4-1. Functions (cont.)

Function Type Function Name Rage Number
Memory Managemen| K_DMAAIlloc page 4-51
K_DMAFree page 4-54
K_IntAlloc page 4-97
K_IntFree page 4-100
KMakeDMABUuUf page 4-110
K_MoveArrayToBuf page 4-112
K_MoveArrayToBufL page 4-114
K_MoveBufToArray page 4-116
K_MoveBufToArrayL page 4-118
K_MoveDataBuf page 4-120
Buffer Address K_SetBuf page 4-132
K_SetBufl page 4-135
K_SetBufL page 4-137
K_SetDMABuf page 4-156
Buffering Mode K_SetContRun page 4-151
K_CIrContRun page 4-41
Conversion Mode K_SetADFreeRun page 4-127
K_CIrADFreeRun page 4-39
K_SetSSH page 4-162

Table 4-1. Functions (cont.)

Function Type Function Name Page Number
Channel and Gain K_SetChn page 4-141
K_SetStartStopChn page 4-164
K_SetG page 4-159
K_SetStartStopG page 4-166
K_SetChnGAry page 4-143
K_FormatChnGAry page 4-67
K_RestoreChnGAry page 4-125
K_GetADConfig page 4-73
K_GetADMode page 4-77
Clock K_SetClIk page 4-146
K_SetClkRate page 4-148
K_GetClkRate page 4-79
K_SetBurstTicks page 4-139
Trigger K_SetTrig page 4-169
K_SetADTrig page 4-129
K_SetTrigHyst page 4-171
K_SetDITrig page 4-153
82C54 DAS1600_8254Control page 4-7
Counter/Timet DAS1600_8254SetCounter | page 4-21
DAS1600_8254SetCIkO page 4-19
DAS1600_8254SetTrig0 page 4-24
DAS1600_8254GetCounter | page 4-13
DAS1600_8254GetClk0 page 4-10
DAS1600_8254GetTrig0 page 4-16

4-4

Function Reference

Table 4-1. Functions (cont.)

Function Type Function Name Rage Number
Miscellaneous K_GetErrMsg page 4-89
K_GetVer page 4-94
K_GetShellVer page 4-91
Notes

1 These functions allow you to program the 82C54 counter/timer on the
DAS-1600/1400/1200 Series board. See Appendix E of your user’s guide for
more information.

Keep the following conventions in mind throughout this chapter:

. Under “Boards SupportedAll refers to the following boards:
DAS-1601, DAS-1602, DAS-1401, DAS-1402, DAS-1201,
DAS-1202.

. Although the function names are shown with underscores, do not use
the underscores in the BASIC languages.

. The data types DWORD, WORD, and BYTE are defined in the
language-specific include files.

. Variable names are shown in italics.

. The return value for all DAS-1600/1400/1200 Series FCD functions
is an integer error/status code. Error/status code 0 indicates that the
function executed successfully. A nonzero error/status code indicates
that an error occurred. Refer to Appendix A for additional
information.

. Inthe usage section, the variables are not defined. It is assumed that
they are defined as shown in the prototype. The name of each variable
in both the prototype and usage sections includes a prefix that
indicates the associated data type. These prefixes are described in
Table 4-2.

Table 4-2. Data Type Prefixes

Prefix |DataType Comments
sz Pointer to string terminated by | This data type is typically used for variables that
Zero specify the driver's configuration file name.
h Handle to device, frame, and | This data type is used for handle-type variables. You
memory block declare handle-type variables in your program as long
or DWORD, depending on the language you are using.
The actual variable is passed to the driver by value.

ph Pointer to a handle-type variabl{ This data type is used when calling the FCD functions
to get a driver handle, a device handle, a frame handle,
or a memory handle. The actual variable is passed to
the driver by reference.

p Pointer to a variable This data type is used for pointers to all types of
variables, except handles (h). It is typically used when
passing a parameter of any type to the driver by
reference.

n Number value This data type is used when passing a humber,
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with
other prefixes listed here; for examm@e\ardenotes
an array of numbers.

f Float This data type denotes a single-precision floating-point
number.

d Double This data type denotes a double-precision
floating-point number.

dw 32-bit double word This data type is typically used when passing an
unsigned long to the driver by value.

4-6 Function Reference

DAS1600_8254Control

Boards All

Supported

Purpose Writes data to the 82C54 counter/timer control register of the specified
board.

Prototype C/C++
DASETr far pascal DAS1600_8254Control (WORBrdNum
WORD nCtriData);

Turbo Pascal
Function DAS1600_8254ContraiBrdNum: Word;
nCtriData : Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254ContraiBrdNum: Word;
nCtriData : Word) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254Control Lib "DAS1600.DLL"
(ByVal nBrdNumAs Integer, ByVahCtriData As Integer) As Integer

BASIC

DECLARE FUNCTION DAS16008254CONTROL% ALIAS
"DAS1600_8254Control" (BYVALNBrdNumAS INTEGER,
BYVAL nCtrlData AS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

nCtrIData Data value that is written to the 82C54 control
register. Only the low byte is used.

Return Value Error/status code. Refer to Appendix A.

4-7

DAS1600_8254Control (cont.)

Remarks This function sets the 82C54 counter/timer control register for the board
defined bynBrdNumto the value ohCtriData. If the counter/timer
specified in the control word is currently used by an operation, an error is
returned.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.

See Also DAS1600_8254SetCounter, DAS1600_8254GetCounter,
DAS1600_ 8254SetClk0, DAS1600_8254GetCIkO,
DAS1600_8254SetTrig0, DAS1600 8254GetTrig0

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++

WORD nCtrlData;

wDasErr = DAS1600_8254Control (0, nCtriData);

Turbo Pascal
uses D1600TP7;

nCtriData : Word;

wDasErr := DAS1600_8254Control (0, nCtriData);

Turbo Pascal for Windows
{$| DAS1600.INC}

nCtrIData : Word;

wDasErr ;= DAS1600_8254Control (0, nCtriData);

4-8 Function Reference

DAS1600_8254Control (cont.)

Visual Basic for Windows
(Add DAS1600.BAS to your project)

Global nCtriData As Integer

wDasErr = DAS1600_8254Control (0, nCtriData)

BASIC
' $INCLUDE: 'DAS1600.BI'

DIM nCtriData AS INTEGER

wDasErr = DAS16008254Control% (0, nCtriData)

4-9

DAS1600_8254GetCIkO

Boards All
Supported
Purpose Gets the clock source for counter 0 of the 82C54 counter/timer.
Prototype C/C++
DASErr far pascal DAS1600_8254GetClkO (WORBrdNum
WORD far*pCIkSro);

Turbo Pascal
Function DAS1600_8254GetClkaBrdNum: Word;
Var pClkSrc: Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254GetClkaBrdNum: Word;
Var pCIkSrc: Word) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254GetClkO Lib "DAS1600.DLL"
(ByVal nBrdNumAs IntegerpCIkSrcAs Integer) As Integer

BASIC

DECLARE FUNCTION DAS16008254GETCLKO% ALIAS
"DAS1600_8254GetCIk0" (BYVALNBrdNumAS INTEGER,
SEGpCIKSrcAS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

pClkSrc Counter 0 clock source.
Value stored:O for Internal
1 for External

Return Value Error/status code. Refer to Appendix A.

4-10 Function Reference

DAS1600_8254GetCIKO (cont.)

Remarks For the board defined mBrdNum this function stores the counter 0
clock source ipCIlkSrc

The internal clock source is the onboard clock; an external clock source is
an external signal connected to the CTR 0 CLOCK IN pin (21) of the
main 1/O connector.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.
See Also DAS1600_8254SetClk0

Usage CIC++
#include "DAS1600.H" // Use DAS1600.HPP for C++

WORD nCIkSrc;

wDasErr = DAS1600_8254GetCIk0 (0, &nCIkSrc);

Turbo Pascal
uses D1600TP7;

nCIlkSrc : Word;

wDasErr := DAS1600_8254GetCIk0 (0, nCIkSrc);

Turbo Pascal for Windows
{$| DAS1600.INC}

nClkSrc : Word;

wDasErr := DAS1600_8254GetCIk0 (0, nCIkSrc);

Visual Basic for Windows
(Add DAS1600.BAS to your project)

Global nClkSrc As Integer

wDasErr = DAS1600_8254GetCIk0 (0, nCIkSrc)

4-11

DAS1600_8254GetCIkO (cont.)

BASIC
" $INCLUDE: 'DAS1600.BI

DIM nCIkSrc AS INTEGER

wDasErr = DAS16008254GetClk0% (0, nCIkSrc)

4-12 Function Reference

DAS1600_8254GetCounter

Boards All
Supported
Purpose Gets the current value of the specified counter and writes it to the location

pointed to bypCntrData

Prototype C/C++
DASErr far pascal DAS1600_8254GetCounter (WOREIdNum
WORD nCntr, word far*pCntrData);

Turbo Pascal
Function DAS1600_8254GetCount@BfdNum: Word; nCntr : Word,;
Var pCntrData: Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254GetCount@BfdNum: Word; nCntr : Word,;
Var pCntrData: Word) : Word; far; external 'DAS1600';

Visual Basic for Windows

Declare Function DAS1600_8254GetCounter Lib "DAS1600.DLL"
(ByVal nBrdNumAs Integer, ByVahCntr As Integer,

pCntrDataAs Integer) As Integer

BASIC

DECLARE FUNCTION DAS16008254GETCOUNTER% ALIAS
"DAS1600_8254GetCounter” (BYVALOBrdNumAS INTEGER,
BYVAL nCntrAS INTEGER, SEGQCntrDataAS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

nCntr Counter that you want read.
Valid values: 0to 2

pCntrData Location where the counter value is written.

Return Value Error/status code. Refer to Appendix A.

4-13

DAS1600_8254GetCounter (cont.)

Remarks

See Also

Usage

4-14

For the board defined byBrdNum this function gets the current value of
the counter specified byCntrand writes the value to the location
specified bypCntrData

You must use thBAS1600_8254Controfunction to set up the 82C54
before you use this function. If the counter/timer is running when you use
this function, the count value may not be valid because the counter may
be changing the value during the read. Use the 82C54 counter-latch
function or the 82C54 readback function to obtain a valid count. The
82C54 returns one byte each time you use this function (in the low byte of
pCntrDatg); therefore, you must call this function twice.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.
DAS1600_8254Control, DAS1600_8254SetCounter

C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++

WORD nCntrData;

wDasErr = DAS1600_8254GetCounter (0, 0, &nCntrData);

Turbo Pascal
uses D1600TP7;

nCntrData : Word;

wDasErr := DAS1600_8254GetCounter (0, 0, nCntrData);

Turbo Pascal for Windows
{$1 DAS1600.INC}

nCntrData : Word:;

wDasErr := DAS1600_8254GetCounter (0, 0, nCntrData);

Function Reference

DAS1600_8254GetCounter (cont.)

Visual Basic for Windows
(Add DAS1600.BAS to your project)

Global nCntrData As Integer

wDasErr = DAS1600_8254GetCounter (0, 0, nCntrData)

BASIC
' $INCLUDE: 'DAS1600.BI'

DIM nCntrData AS INTEGER

wDasErr = DAS16008254GetCounter% (0, 0, nCntrData)

4-15

DAS1600_8254GetTrig0

Boards All
Supported
Purpose Indicates whether the gate signal is enabled or disabled.
Prototype C/C++
DASErr far pascal DAS1600_8254GetTrig0 (WORBrdNum
WORD far *pTrigEnabled;

Turbo Pascal
Function DAS1600_8254GetTrigBBrdNum: Word;
Var pTrigEnabled: Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254GetTrigBBrdNum: Word;
Var pTrigEnabled: Word) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254GetTrig0 Lib "DAS1600.DLL"
(ByVal nBrdNumAs IntegerpTrigEnabledAs Integer) As Integer

BASIC

DECLARE FUNCTION DAS16008254GETTRIG0% ALIAS
"DAS1600_8254GetTrig0" (BYVALNBrdNumAS INTEGER,
SEGpTrigEnabledAS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

pTrigEnabled Indicates whether the gate signal is
enabled or disabled.
Value stored:0 for Disabled
1 for Enabled

Return Value Error/status code. Refer to Appendix A.

4-16 Function Reference

DAS1600_8254GetTrig0 (cont.)

Remarks

See Also

Usage

For the board defined byBrdNum this function indicates whether the
gate signal is enabled or disablegifrigEnabled

The gate signal is the signal at the IPO/TRIGO/XPCLK pin (25) of the
main I/O connector. The gate signal determines when counters 1 and 2 of
the 82C54 counter/timer are used. If the gate signal is disabled
(pTrigenabled= 0), counters 1 and 2 are always used (counters 1 and 2
continually count down). If the gate signal is enabgltigEnabled= 1),
counters 1 and 2 are used only when the signal at the IPO/TRIGO/XPCLK
pin (25) is low; whenever the signal at the IPO/TRIGO/XPCLK pin (25)
goes high, counters 1 and 2 stop counting down.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.
DAS1600_8254SetTrig0

C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++

WORD pTrigEnabled;

wDasErr = DAS1600_8254GetTrig0 (0, &pTrigEnabled);

Turbo Pascal
uses D1600TP7;

pTrigEnabled : Word;

wDasErr := DAS1600_8254GetTrig0 (0, pTrigEnabled);

Turbo Pascal for Windows
{$| DAS1600.INC}

pTrigEnabled : Word;

wDasErr := DAS1600_8254GetTrig0 (0, pTrigEnabled);

4-17

DAS1600_8254GetTrig0 (cont.)

Visual Basic for Windows
(Add DAS1600.BAS to your project)

Global pTrigEnabled As Integer

wDasErr = DAS1600_8254GetCIk0 (0, pTrigEnabled)

BASIC
' $INCLUDE: 'DAS1600.BI'

DIM pTrigEnabled AS INTEGER

wDasErr = DAS16008254GetTrig0% (0, pTrigEnabled)

4-18 Function Reference

DAS1600_8254SetClkO

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Specifies the clock source for counter 0 of the 82C54 counter/timer.

C/C++

DASETr far pascal DAS1600_8254SetClkO (WORBrdNum
WORD nCIkSrg;

Turbo Pascal
Function DAS1600_8254SetClkaBrdNum: Word;
nClkSrc: Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254SetClkaBrdNum: Word;
nCIkSrc: Word) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254SetCIkO Lib "DAS1600.DLL"
(ByVal nBrdNumAs Integer, ByVahCIkSrcAs Integer) As Integer

BASIC

DECLARE FUNCTION DAS16008254SETCLKO0% ALIAS
"DAS1600_8254SetClk0" (BYVANBrdNumAS INTEGER,
BYVAL nCIkSrcAS INTEGER)

nBrdNum Board number.
Valid values: 0 or 1

nCIkSrc Counter 0 clock source.
Valid values: O for Internal
1 for External

Error/status code. Refer to Appendix A.

4-19

DAS1600_8254SetCIkO (cont.)

Remarks For the board defined mBrdNum this function specifies the counter 0
clock source imClkSrc

The internal clock source is the onboard clock; an external clock source is
an external signal connected to the CTR 0 CLOCK IN pin (21) of the
main 1/O connector.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.
See Also DAS1600_8254GetClk0

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++

wDasErr = DAS1600_8254SetCIkO0 (0, 1);

Turbo Pascal
uses D1600TP7; (* Use D1800TP6 for TP ver 6.0 *)

wDasErr := DAS1600_8254SetCIkO (0, 1);

Turbo Pascal for Windows
{$| DAS1600.INC}

wDasErr := DAS1600_8254SetCIkO (O, 1);

Visual Basic for Windows
(Add DAS1600.BAS to your project)

wDasErr = DAS1600_8254SetCIk0 (0, 1)

BASIC
' $INCLUDE: 'DAS1600.BI'

wDasErr = DAS16008254SetCIk0% (0, 1)

4-20 Function Reference

DAS1600_8254SetCounter

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Sets the specified counter to the valueGhtrData

C/C++

DASETr far pascal DAS1600_8254SetCounter (WOHREANum
WORD nCntr, WORDnCntrDatg);

Turbo Pascal
Function DAS1600_8254SetCounteBfdNum: Word; nCntr : Word;
nCntrData: Word) : Word,;

Turbo Pascal for Windows
Function DAS1600_8254SetCounteBfdNum: Word; nCntr : Word;
nCntrData: Word) : Word; far; external 'DAS1600';

Visual Basic for Windows

Declare Function DAS1600_8254SetCounter Lib "DAS1600.DLL"
(ByVal nBrdNumAs Integer, ByVahCntr As Integer,

ByVal nCntrDataAs Integer) As Integer

BASIC

DECLARE FUNCTION DAS16008254SETCOUNTER% ALIAS
"DAS1600_8254SetCounter” (BYVAhBrdNumAS INTEGER,
BYVAL nCntrAS INTEGER, BYVAL nCntrDataAS INTEGER)

nBrdNum Board number.
Valid values: 0 or 1

nCntr Counter that you want set.
Valid values: 0to 2

nCntrData Value that you want to set the counter to.

Error/status code. Refer to Appendix A.

4-21

DAS1600_8254SetCounter (cont.)

Remarks

See Also

Usage

4-22

For the board defined byBrdNum this function sets the counter
specified bynCntrto the value ohCntrData(least significant byte).

You must use thBAS1600_8254Controfunction before the
DAS1600_8254SetCountefunction to set up the data transfer, which
can be performed as follows:

. Least significant byte (LSB) only
. Most significant byte (MSB) only
. Least significant byte (LSB) followed by most significant byte (MSB)

The 82C54 counter/timer accepts eight bits of data each time you use this
function; therefore, you must call the function twice to program the 16
bits of each counter.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.
DAS1600_8254Control, DAS1600_8254GetCounter

C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++

WORD nCntrData;

wDasErr = DAS1600_8254SetCounter (0, 0, nCntrData);

Turbo Pascal
uses D1600TP7;

nCntrData : Word;

wDasErr := DAS1600_8254SetCounter (0, 0, nCntrData);

Turbo Pascal for Windows
{$1 DAS1600.INC}

nCntrData : Word;

wDasErr := DAS1600_8254SetCounter (0, 0, nCntrData);

Function Reference

DAS1600 8254SetCounter (cont.)

Visual Basic for Windows
(Add DAS1600.BAS to your project)

Global nCntrData As Integer

wDasErr = DAS1600_8254SetCounter (0, 0, nCntrData)

BASIC
' $INCLUDE: 'DAS1600.BI'

DIM nCntrData AS INTEGER

wDasErr = DAS16008254SetCounter% (0, 0, nCntrData)

4-23

DAS1600_8254SetTrig0

Boards All
Supported
Purpose Enables and disables the signal at the IPO/TRIGO/XPCLK pin (25) of the

main 1/O connector to act as a hardware gate signal.

Prototype C/C++
DASErr far pascal DAS1600_8254SetTrig0 (WORBrdNum
WORD nTrigEnablg;

Turbo Pascal
Function DAS1600_8254SetTrigABrdNum: Word;
nTrigEnable: Word) : Word,

Turbo Pascal for Windows
Function DAS1600_8254SetTrigABrdNum: Word;
nTrigEnable: Word) : Word,; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254SetTrig0 Lib "DAS1600.DLL"
(ByVal nBrdNumAs Integer, ByVahTrigEnableAs Integer) As Integer

BASIC

DECLARE FUNCTION DAS16008254SETTRIG0% ALIAS
"DAS1600_8254SetTrig0" (BYVALNBrdNumAS INTEGER,
ByVal nTrigEnableAS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

nTrigEnable Specifies whether the gate signal is
enabled or disabled.
Valid values: O for Disabled
1 for Enabled

Return Value Error/status code. Refer to Appendix A.

4-24 Function Reference

DAS1600_8254SetTrig0 (cont.)

Remarks

See Also

Usage

For the board defined yBrdNum this function specifies whether the
gate signal is enabled or disabledifrigEnable

The gate signal is the signal at the IPO/TRIGO/XPCLK pin (25) of the
main I/O connector. The gate signal determines when counters 1 and 2 of
the 82C54 counter/timer are used. If you disable the gate signal
(nTrigenable= 0), counters 1 and 2 are always used (counters 1 and 2
continually count down). If you enable the gate signa@tigEnable= 1),
counters 1 and 2 are used only when the signal at the IPO/TRIGO/XPCLK
pin (25) is low; whenever the signal at the IPO/TRIGO/XPCLK pin (25)
goes high, counters 1 and 2 stop counting down.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.
DAS1600_8254Control, DAS1600_8254SetTrig0

C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++

wDasErr = DAS1600_8254SetTrig0 (0, 1);

Turbo Pascal
uses D1600TP7;

wDasErr := DAS1600_8254SetTrig0 (O, 1);

Turbo Pascal for Windows
{$| DAS1600.INC}

wDasErr := DAS1600_8254SetTrig0 (0, 1);

Visual Basic for Windows
(Add DAS1600.BAS to your project)

wDasErr = DAS1600 8254SetTrig0 (0, 1)

4-25

DAS1600_8254SetTrig0 (cont.)

BASIC
" $INCLUDE: 'DAS1600.BI

wDasErr = DAS16008254SetTrig0% (0, 1)

4-26 Function Reference

DAS1600_DevOpen

Boards All
Supported
Purpose Initializes the DAS-1600/1400/1200 Series Function Call Driver.
Prototype C/C++
DASETr far pascal DAS1600_DevOpen (chartseCfgFile
char far*pBoards;

Turbo Pascal
Function DAS1600_DevOpen (VaeCfgFile: char;
Var pBoards: Integer) : Word;

Turbo Pascal for Windows
Function DAS1600_DevOpen (VaeCfgFile: char;
Var pBoards: Integer) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_DevOpen Lib "DAS1600.DLL"
(ByVal szCfgFileAs String,pBoardsAs Integer) As Integer

BASIC

DECLARE FUNCTION DAS1600DEVOPEN% ALIAS
"DAS1600_DevOpen" (BYVALszCfgFileAS STRING,
SEGpBoardsAS INTEGER)

Parameters szCfgFile Driver configuration file.
Valid values: The name of a configuration file.

pBoards Number of boards defined §zCfgFile
Value stored:1 or 2

Return Value Error/status code. Refer to Appendix A.

4-27

DAS1600_DevOpen (cont.)

Remarks

See Also

Usage

4-28

This function initializes the driver according to the information in the
configuration file specified bgzCfgFileand stores the number of boards
defined inszCfgFilein pBoards

You create a configuration file using the CFG1600.EXE utility. Refer to
your board user’s guide for more information.

You cannot use this function with Windows 95, 32-bit programs.
K_OpenDriver

C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++

char nBoards;

wDasErr = DAS1600_DevOpen ("DAS1600.CFG", &nBoards);

Turbo Pascal
uses D1600TP7;

szCfgName : String;
nBoards : Integer;

szCfgName := 'DAS1600.CFG' + #0;
wDasErr := DAS1600_DevOpen (szCfgName[1], nBoards);

Turbo Pascal for Windows
{$| DAS1600.INC}

szCfgName : String;
nBoards : Integer;

szCfgName := 'DAS1600.CFG' + #0;
wDasErr := DAS1600_DevOpen (szCfgName[1], nBoards);

Function Reference

DAS1600_DevOpen (cont.)

Visual Basic for Windows
(Add DAS1600.BAS to your project)

DIM nBoards AS INTEGER
DIM szCfgName AS STRING

szCfgName = "DAS1600.CFG" + CHR$(0)
wDasErr = DAS1600_DevOpen(szCfgName, nBoards)

BASIC
' $INCLUDE: 'DAS1600.BI'

DIM nBoards AS INTEGER
DIM szCfgName AS STRING

szCfgName = "DAS1600.CFG" + CHR$(0)
wDasErr = DAS1600DEVOPEN%(SSEGADD(szCfgName), nBoards)

4-29

DAS1600_ GetDevHandle

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

4-30

All

Initializes a DAS-1600/1400/1200 Series board.

C/C++
DASErr far pascal DAS1600_GetDevHandle (smBtdNum
void far *far *phDeV);

Turbo Pascal
Function DAS1600_GetDevHandleErdNum: Integer;
Var phDev: Longint) : Word,;

Turbo Pascal for Windows
Function DAS1600_GetDevHandleErdNum: Integer;
Var phDev: Longint) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_GetDevHandle Lib "DAS1600.DLL"
(ByVal nBrdNumAs IntegerphDevAs Long) As Integer

BASIC

DECLARE FUNCTION DAS1600GETDEVHANDLE% ALIAS
"DAS1600_GetDevHandle" (BYVAIBrdNumAS INTEGER,
SEGphDevAS LONG)

nBrdNum Board number.
Valid values: 0 or 1

phDev Handle associated with the board.
Error/status code. Refer to Appendix A.
This function initializes the board specified tgrdNum and stores the

device handle of the specified boargphDev
You cannot use this function with Windows 95, 32-bit programs.

Function Reference

DAS1600_ GetDevHandle (cont.)

The value stored iphDevis intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored phDev

See Also K_GetDevHandle

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++

void far *hDev;
wDasErr = DAS1600_GetDevHandle (0, &hDev);

Turbo Pascal
uses D1600TP7;

hDev : Longint; { Device Handle }

wDasErr := DAS1600_ GetDevHandle (0, hDev);

Turbo Pascal for Windows
{$| DAS1600.INC}

hDev : Longint; { Device Handle }

wDasErr := DAS1600_GetDevHandle (0, hDev);

Visual Basic for Windows
(Add DAS1600.BAS to your project)

Global hDev As Long ' Device Handle

wDasErr = DAS1600_GetDevHandle (0, hDev)

BASIC
' $INCLUDE: 'DAS1600.BI'

DIM hDev AS LONG ' Device Handle
wDasErr = DAS1600GetDevHandle%(0, hDev)

4-31

K_ADRead

Boards All

Supported

Purpose Reads a single analog input value.
Prototype C/C++

DASErr far pascal K_ADRead (DWOREDey BYTE nChan
BYTE nGain void far*pData);

Turbo Pascal
Function K_ADReadhDev: Longint;nChan: Byte;nGain: Byte;
pData: Pointer) : Word,

Turbo Pascal for Windows
Function K_ADReadhDev: Longint;nChan: Byte;nGain: Byte;
pData: Pointer) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_ADRead Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByValnChanAs Integer,

ByVal nGainAs IntegerpDataAs Integer) As Integer

BASIC

DECLARE FUNCTION KADREAD% ALIAS "K_ADRead"
(BYVAL hDevAS LONG, BYVAL nChanAS INTEGER,
BYVAL nGainAS INTEGER, SEGDataAS INTEGER)

Parameters hDev Handle associated with the board.

nChan Analog input channel.
Valid values: 0 to 255

4-32 Function Reference

K_ADRead (cont.)

Return Value

Remarks

See Also

Usage

nGain Gain code.
Valid values:
Board Gain |Gain Code
DAS-1601 1 0
DAS-1401 10 1
100 2
500 3
DAS-1602 1 0
DAS-1402 5 1
4 2
8 3
pData Acquired analog input value.

Error/status code. Refer to Appendix A.

This function reads the analog input chanm@hanon the board
specified byhDevat the gain represented bain and stores the value
in pData

The data stored in pData is a count value. Refer to Appendix B for
information on converting the count to voltage.

For DAS-1200 Series boards, the valua@Gfinis ignored.
K_DMAStart, K_IntStart, K_SyncStart

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

int wWADValue;

wDasErr = K_ADRead (hDev, 0, 0, &wADValue);

4-33

K_ADRead (cont.)

Turbo Pascal
uses D1600TP7;

wADValue : Integer;

wDasErr := K_ADRead (hDev, 0, 0, @wADValue);

Turbo Pascal for Windows
{$| DASDECL.INC}

wADValue : Integer;

wDasErr ;= K_ADRead (hDev, 0, 0, @wADValue);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global wADValue As Integer

wDasErr = K_ADRead (hDev, 0, 0, wADValue)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wADValue AS INTEGER

wDasErr = KADRead% (hDev, 0, 0, wADValue)

4-34 Function Reference

K_ClearFrame

Boards All

Supported

Purpose Sets the elements of a frame to their default values.
Prototype C/C++

DASEtr far pascal K_ClearFrame (DWORiBrams);

Turbo Pascal
Function K_ClearFramenframe: Longint) : Word,;

Turbo Pascal for Windows
Function K_ClearFramehfFrame: Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KCLEARFRAME% ALIAS "K_ClearFrame"
(BYVAL hFrameAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
Return Value Error/status code. Refer to Appendix A.
Remarks This function sets the elements of the frame specifiduFmgmeto their

default values.

4-35

K_ClearFrame (cont.)

See Also

Usage

4-36

The following table lists the frame types and where to look for their
default values.

A/D Table 2-1 on page 2-8

D/A Table 2-5 on page 2-32
DI Table 2-6 on page 2-42
DO Table 2-7 on page 2-43

K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_ClearFrame (hAD);

Turbo Pascal
uses D1600TP7;

wDasErr ;= K_ClearFrame (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_ClearFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_ClearFrame (hAD)

BASIC
'$INCLUDE: 'DASDECL.BI'

wDasErr = KClearFrame% (hAD)

Function Reference

K_CloseDriver

Boards All

Supported

Purpose Closes a previously initialized Keithley DAS Function Call Driver.
Prototype C/C++

DASEtr far pascal K_CloseDriver (DWORDrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_CloseDriveriDrv : Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal hDrv As Long) As Integer

BASIC
Not supported
Parameters hDrv Driver handle you want to free.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the driver handle specifiechByv and closes the

associated use of the Function Call Driver. This function also frees all
device handles and frame handles associatednibitia

If hDrv is the last driver handle specified for the Function Call Driver, the
driver is shut down (for all languages) and unloaded (for Windows-based
languages only).

See Also K_FreeDevHandle

4-37

K_CloseDriver (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CloseDriver (hDrv);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_CloseDriver (hDrv);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_CloseDriver (hDrv)

4-38 Function Reference

K_CIrADFreeRun

Boards All

Supported

Purpose Specifies paced conversion mode for an analog input operation.
Prototype C/C++

DASEtr far pascal K_CIrADFreeRun (DWORFrame);

Turbo Pascal
Function K_CIrADFreeRunhFrame: Longint) : Word,

Turbo Pascal for Windows
Function K_CIrADFreeRunhfFrame: Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_CIrADFreeRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KCLRADFREERUN% ALIAS
"K_CIrADFreeRun" (BYVAL hFrameAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
Return Value Error/status code. Refer to Appendix A.
Remarks This function sets the conversion mode for the operation defined by

hFrameto paced mode and sets the Conversion Mode element in the
frame accordingly.

K_GetADFrame andK_ClearFrame also enable paced conversion
mode.

See Also K_ClearFrame, K_GetADFrame, K_SetADFreeRun

4-39

K_CIrADFreeRun (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CIrADFreeRun (hAD);

Turbo Pascal
uses D1600TP7;

wDasErr := K_CIrADFreeRun (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_CIrADFreeRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_CIrADFreeRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KCIrADFreeRun% (hAD)

4-40 Function Reference

K_CIrContRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Specifies single-cycle buffering mode.

C/C++

DASErr far pascal K_ClrContRun (DWORIFrams);

Turbo Pascal
Function K_CIrContRunh(Frame: Longint) : Word;

Turbo Pascal for Windows
Function K_ClrContRunhFrame: Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_CIrContRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KCLRCONTRUN% ALIAS "K_CIrContRun"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function sets the buffering mode for the operation definédriame
to single-cycle mode and sets the Buffering Mode element in the frame
accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, andK_ClearFrame also enable single-cycle
buffering mode.

This function is not meaningful for synchronous-mode operations.

4-41

K_CIrContRun (cont.)

For more information on buffering modes, refer to the following pages:

Analog input operations | page 2-24

Analog output operations| page 2-38

Digital I/O operations page 2-51

See Also K_SetContRun

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CIrContRun (hAD);

Turbo Pascal
uses D1600TP7;

wDasErr := K_CIrContRun (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_CIrContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_CIrContRun (hAD)

BASIC
"$INCLUDE: 'DASDECL.BI'

wDasErr = KCIrContRun% (hAD)

4-42 Function Reference

K_DASDevInit

Boards All

Supported

Purpose Reinitializes a board.
Prototype C/C++

DASErr far pascal K_DASDevInit (DWORBDeV);

Turbo Pascal
Function K_DASDevlInitiDev: Longint) : Longint;

Turbo Pascal for Windows
Function K_DASDevInitiDev: Longint) : Longint; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_DASDevlInit Lib "DASSHELL.DLL"
(ByVal hDevAs Long) As Integer

BASIC
DECLARE FUNCTION KDASDEVINIT% ALIAS "K_DASDevInit"
(BYVAL hDevAS LONG)

Parameters hDev Handle associated with the board.
Return Value Error/status code. Refer to Appendix A.
Remarks This function stops all operations currently in progress and sets the board

specified byhDevback to its power-up state.

4-43

K_DASDevlInit (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_DASDevInit (hDev);

Turbo Pascal
uses D1600TP7;

wDasErr := K_DASDevlInit (hDev);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_DASDevInit (hDev);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_DASDevInit (hDev)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KDASDevInit% (hDev)

4-44 Function Reference

K_DAWrite

Boards
Supported

Purpose

Prototype

Parameters

DAS-1601, DAS-1602

Writes a single analog output value.

C/C++

DASETr far pascal K_DAWrite (DWORDDey BYTE nChan
DWORD dwData);

Turbo Pascal
Function K_DAWrite fiDev: Longint;nChan: Byte;
dwData: Longint) : Word;

Turbo Pascal for Windows
Function K_DAWrite fiDev: Longint;nChan: Byte;
dwData: Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_DAWrite Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByVainChanAs Integer,
ByVal dwDataAs Long) As Integer

BASIC

DECLARE FUNCTION KDAWRITE% ALIAS "K_DAWrite"
(BYVAL hDevAS LONG, BYVAL nChanAS INTEGER,
BYVAL dwDataAS LONG)

hDev Handle associated with the board.
nChan Analog output channel.
Valid values: 0 = Channel O
1=Channel 1

2 = Both channels

dwData Analog output value.
Valid values: 0 to 4095

4-45

K_DAWrite (cont.)

Return Value

Remarks

See Also

Usage

4-46

Error/status code. Refer to Appendix A.

This function writes the valugwDatato the analog output channel
specified bynChanon the board specified WDev

dwDatais a 32-bit variable, but the output value must contain only 12
bits.

The data stored in dwData is a count value. For information on converting
a voltage value to a count, refer to Appendix B.

Refer to page 2-30 for more information on analog output operations.
K_IntStart, K_SyncStart

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwDAValue;

dwDAValue = ((DWORD) (5.0 * 4096 / 20) + 2048) << 4;
wDasErr = K_DAWrite (hDev, 0, dwDAValue);

Turbo Pascal
uses D1600TP7;

dwDAValue : Longint;

dwDAValue := Round((5.0 * 4096.0 / 20.0) + 2048) shl 4;
wDaskErr := K_DAWrite (hDev, 0, dwDAValue);

Turbo Pascal for Windows
{$| DASDECL.INC}

dwDAValue : Longint;

dwDAValue := Round((5.0 * 4096.0 / 20.0) + 2048) shl 4;
wDasErr ;= K_DAWrite (hDev, 0, dwDAValue);

Function Reference

K_DAWrite (cont.)

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global dwDAValue As Long

dwDAValue = (INT (5.0 * 4096! / 20!) + 2048) * 16
wDasErr = K_DAWrite (hDev, 0, dwDAValue)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM dwDAValue AS LONG

dwDAValue = (INT (5.0 * 4096! / 20!) + 2048) * 16
wDasErr = KDAWrite% (hDev, 0, dwDAValue)

4-47

K_DIRead

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-48

All

Reads a single digital input value.

C/C++
DASErr far pascal K_DIRead (DWOREBDey BYTE nChan
void far*pData);

Turbo Pascal
Function K_DIReadHi{Dev: Longint;nChan: Byte;
pData: Pointer) : Word,

Turbo Pascal for Windows
Function K_DIReadHi{Dev: Longint;nChan: Byte;
pData: Pointer) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_DIRead Lib "DASSHELL.DLL"

(ByVal hDevAs Long, ByValnChanAs Integer,pDataAs Any)
As Integer

BASIC

DECLARE FUNCTION KDIREAD% ALIAS "K_DIRead"
(BYVAL hDevAS LONG, BYVAL nChanAS INTEGER,
SEGpDataAS ANY)

hDev Handle associated with the board.

nChan Digital input channel.
Valid value: 0

pData Digital input value.

Error/status code. Refer to Appendix A.

Function Reference

K_DIRead (cont.)

Remarks

See Also

Usage

This function reads the values of all digital input lines on the board
specified byhDevand stores the value pData

Make sure that the variable you declaregDatais large enough to
accommodate the number of digital input lines you are using. Refer to
page 2-46 for a description of the digital input lines.

K_IntStart, K_SyncStart

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wDIValue;

wDasErr = K_DIRead (hDev, 0, &wDIValue);

Turbo Pascal
uses D1600TP7;

wDIValue : Word;

wDasErr := K_DIRead (hDev, 0, @wDIValue);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDIValue : Word;

wDasErr := K_DIRead (hDev, 0, @wDIValue);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global wDIValue As Integer

wDasErr = K_DIRead (hDev, 0, wDIValue)

4-49

K_DIRead (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM wDIValue AS INTEGER

wDasErr = KDIRead% (hDev, 0, wDIValue)

4-50 Function Reference

K_DMAAIloc

Boards All

Supported

Purpose Allocates a buffer for a DMA-mode analog input operation.
Prototype C/C++

DASErr far pascal K_DMAAIlloc (DWORDhFrame
DWORD dwSamplesvoid far * far*pBuf, WORD far *phMen);

Turbo Pascal
Function K_DMAAlIloc (hFrame: Longint;dwSamples Longint;
pBuf: Pointer; VaphMem: Word) : Word;

Turbo Pascal for Windows
Function K_DMAAlIloc (hFrame: Longint;dwSamples Longint;
pBuf: Pointer; VaphMem: Word) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_DMAAIlloc Lib "DASSHELL.DLL"

(ByVal hFrameAs Long, ByValdwSample#s Long,pBufAs Long,
phMemAs Integer) As Integer

BASIC

DECLARE FUNCTION KDMAALLOC% ALIAS "K_DMAAlIloc"
(BYVAL hFrameAS LONG, BYVAL dwSample&S LONG,
SEGpBUfAS LONG, SEGphMemAS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of samples.
Valid values: 1to 32768

pBuf Starting address of the allocated buffer.

phMem Handle associated with the allocated buffer.

4-51

K_DMAAIlloc (cont.)

Return Value

Remarks

See Also

Usage

4-52

Error/status code. Refer to Appendix A.

For the operation defined rame this function allocates a memory
block (a buffer of the sizdwSamplesfrom the available memory heap.
On returnpBufcontains the far memory address of a buffer that is
suitable for a DMA-mode analog input operation phthemcontains the
handle associated with the allocated buffer.

The data in the allocated buffer is stored as counts. For information on
converting the count values to voltages, refer to Appendix B.

Turbo Pascal (for DOS) and BASIC require that you redistribute available
memory before you dynamically allocate a buffer. Refer to “Reducing the
Memory Heap” on page 3-11 (Turbo Pascal) or page 3-24 (BASIC) for
additional information.

K_DMAFree, K_SetDMABuUf

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated DMA buffer
WORD hMem; // Memory handle to buffer

wDasErr = K_DMAAlloc (hAD, dwSamples, &pBuf, &hMem);

Turbo Pascal
uses D1600TP7;

pBuf : Pointer; { DMA buffer pointer }
hMem : Word; {Handle to DMA buffer }

wDasErr := K_DMAAIlloc (hAD, dwSamples, @pBuf, hMem);

Function Reference

K_DMAAIlloc (cont.)

Turbo Pascal for Windows
{$| DASDECL.INC}

pBuf : Pointer; { DMA buffer pointer }
hMem : Word; {Handle to DMA buffer }

wDasErr := K_DMAAIlloc (hAD, dwSamples, @pBuf, hMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global pBuf As Long
Global hMem As Integer

wDasErr = K_DMAAlloc (hAD, dwSamples, pBuf, hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM pBuf AS LONG
DIM hMem AS INTEGER

wDasErr = KDMAAIloc% (hAD, dwSamples, pBuf, hMem)

4-53

K_DMAFree

Boards All

Supported

Purpose Frees a buffer allocated for a DMA-mode analog input operation.
Prototype C/C++

DASErr far pascal K_DMAFree (WORDMenj;

Turbo Pascal
Function K_DMAFree [iMem: Word) : Integer;

Turbo Pascal for Windows
Function K_DMAFree liMem: Word) : Integer;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_DMAFree Lib "DASSHELL.DLL"
(ByVal hMemAs Integer) As Integer

BASIC
DECLARE FUNCTION KDMAFREE% ALIAS "K_DMAFree"
(BYVAL hMemAS INTEGER)

Parameters hMem Handle to DMA buffer.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the buffer specified lhylem the buffer was

previously allocated dynamically usikg DMAAIlloc .

See Also K_DMAlloc, K_SetDMABuf

4-54 Function Reference

K_DMAFree (cont.)

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_DMAFree (hMem);

Turbo Pascal
uses D1600TP7;

wDasErr := K_DMAFree (hMem);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_DMAFree (hMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_DMAFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KDMAFree% (hMem)

4-55

K_DMAStart

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-56

All

Starts a DMA-mode analog input operation.

C/C++

DASErr far pascal K_DMAStart (DWORDFrame);

Turbo Pascal
Function K_DMAStart fifFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStart iFrame: Longint) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_DMAStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KDMASTART% ALIAS "K_DMAStart"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function starts the DMA-mode operation definedhBgame
K_DMAStatus, K_DMAStop

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_DMAStart (hAD);

Function Reference

K_DMAStart (cont.)

Turbo Pascal
uses D1600TP7;

wDasErr := K_DMAStart (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_DMAStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_DMAStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KDMAStart% (hAD)

4-57

K_DMAStatus

Boards All

Supported

Purpose Gets status of a DMA-mode analog input operation.

Prototype C/C++
DASErr far pascal K_DMAStatus (DWORBFrame short farpStatus
DWORD far*pCount);

Turbo Pascal
Function K_DMAStatush{Frame: Longint; VarpStatus Word,;
Var pCount: Longint) : Word,

Turbo Pascal for Windows
Function K_DMAStatush{Frame: Longint; VarpStatus Word,;
Var pCount: Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_DMAStatus Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pStatusAs IntegerpCountAs Long) As
Integer

BASIC

DECLARE FUNCTION KDMASTATUS% ALIAS "K_DMAStatus"
(BYVAL hFrameAS LONG, SEGpStatusAS INTEGER,
SEGpCountAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of DMA-mode analog input operation.
Value stored:0 for DMA operation idle
1 for DMA operation active

pCount Number of samples that were acquired into the
current buffer.

4-58 Function Reference

K_DMAStatus (cont.)

Return Value

Remarks

See Also

Usage

Error/status code. Refer to Appendix A.

For the DMA operation defined thFrame this function stores the status
in pStatusand the number of samples acquireg@ount

A DMA data overrun occurs if data is lost when the transfer of data
between memory and the board is slower than the rate at which the
hardware requests the data.

K_DMAStart, K_ DMAStop

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wsStatus;
DWORD dwCount;

wDasErr = K_DMAStatus (hAD, &wStatus, &dwCount);

Turbo Pascal
uses D1600TP7;

wStatus : Word;
dwCount : Longint;

wDasErr := K_DMAStatus (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$| DASDECL.INC}

wStatus : Word,;
dwCount : Longint;

wDasErr := K_DMAStatus (hAD, wStatus, dwCount);

4-59

K_DMAStatus (cont.)

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_DMAStatus (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KDMAStatus% (hAD, wStatus, dwCount)

4-60 Function Reference

K_DMAStop

Boards All

Supported

Purpose Stops a DMA-mode analog input operation.

Prototype C/C++
DASErr far pascal K_DMAStop (DWORBFrame short far*pStatus
DWORD far*pCouny;

Turbo Pascal
Function K_DMAStop liFrame: Longint; VarpStatus Word;
Var pCount: Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStop ljFrame: Longint; VarpStatus Word,;
Var pCount: Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_DMAStop Lib "DASSHELL.DLL"

(ByVal hFrameAs Long,pStatusAs IntegerpCountAs Long) As
Integer

BASIC

DECLARE FUNCTION KDMASTOP% ALIAS "K_DMAStop"
(BYVAL hFrameAS LONG, SEGpStatusAS INTEGER,
SEGpCountAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of DMA-mode analog input operation.
Value stored:0 for DMA operation idle
1 for DMA operation active

pCount Number of samples that were acquired into the
current buffer.

4-61

K_DMAStop (cont.)

Return Value

Remarks

See Also

Usage

4-62

Error/status code. Refer to Appendix A.

This function stops the DMA-mode operation definedhBsameand
stores the status of the DMA-mode operatiopStatusand the number
of samples acquired pCount

A DMA data overrun occurs if data is lost when the transfer of data
between memory and the board is slower than the rate at which the
hardware requests the data.

If a DMA operation is not in progresis, DMAStop is ignored.
K_DMAStart, K_DMAStatus

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_DMAStop (hAD, &wStatus, &dwCount);

Turbo Pascal
uses D1600TP7;

wStatus : Word;
dwCount : Longint;

wDasErr := K_DMAStop (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$| DASDECL.INC}

wStatus : Word;
dwCount : Longint;

wDasErr := K_DMAStop (hAD, wStatus, dwCount);

Function Reference

K_DMAStop (cont.)

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_DMAStop (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KDMAStop% (hAD, wStatus, dwCount)

4-63

K_DOWrite

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-64

All

Writes a single digital output value to the digital output channel.

C/C++
DASErr far pascal K_DOWrite (DWORBDey BYTE nChan
DWORD dwDatg);

Turbo Pascal
Function K_DOWrite iDev: Longint;nChan: Byte;
dwData: Longint) : Word;

Turbo Pascal for Windows
Function K_DOWrite iDev: Longint;nChan: Byte;
dwData: Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_DOWrite Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByValnChanAs Integer,

ByVal dwDataAs Long) As Integer

BASIC

DECLARE FUNCTION KDOWRITE% ALIAS "K_DOWrite"
(BYVAL hDevAS LONG, BYVAL nChanAS INTEGER,
BYVAL dwDataAS LONG)

hDev Handle associated with the board.

nChan Digital output channel.
Valid value: 0

dwData Digital output value.

Error/status code. Refer to Appendix A.

Function Reference

K_DOWrite (cont.)

Remarks

See Also

Usage

This function writes the valudwDatato the digital outpulines on the
board specified biiDev

Refer to page 2-46 for a description of the digital I/O lines.
K_IntStart, K_SyncStart

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwDOValue;

dwDOValue = 0x5;
wDasErr = K_DOWrite (hDev, 0, dwDOValue);

Turbo Pascal
uses D1600TP7;

dwDOValue : Longint;

dwDOValue := $5;
wDasErr := K_DOWrite (hDev, 0, dwDOValue);

Turbo Pascal for Windows
{$| DASDECL.INC}

dwDOValue : Longint;

dwDOValue = $5;
wDasErr := K_DOWrite (hDev, 0, dwDOValue);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global dwDOValue As Long

dwDOValue = &H5
wDasErr = K_DOWrite (hDev, 0, dwDOValue)

4-65

K_DOWrite (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM dwDOValue AS LONG

dwDOValue = &H5
wDasErr = KDOWrite% (hDev, 0, dwDOValue)

4-66 Function Reference

K_FormatChnGAry

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

DAS-1601, DAS-1602, DAS-1401, DAS-1402

Converts the format of a channel-gain queue.

C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KFORMATCHNGARY% ALIAS
"K_FormatChnGAry" (SEGArray AS INTEGER)

pArray Channel-gain queue starting address.
Error/status code. Refer to Appendix A.

This function converts a channel-gain queue created using BASIC or
Visual Basic for Windows using double-byte (16-bit) values into a
channel-gain queue of single-byte (8-bit) values thaKtigetChnGAry
function can use, and stores the starting address of the converted
channel-gain queue pArray.

After you use this function, your program can no longer read the
converted queue. You must use KieRestoreChnGAry function to
return the list to its original format.

You cannot use a channel-gain queue with DAS-1200 Series boards.

4-67

K_FormatChnGAry (cont.)

See Also K_SetChnGAry, K_RestoreChnGAry
Usage

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global ChanGainArray(16) As Integer ' Chan/Gain array

' Create the array of channel/gain pairs
ChanGainArray(0) =2 '# of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) =0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array

' Create the array of channel/gain pairs
ChanGainArray(0) =2 '# of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) =0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = KFormatChnGAry% (ChanGainArray(0))

4-68 Function Reference

K_FreeDevHandle

Boards All

Supported

Purpose Frees a previously specified device handle.
Prototype C/C++

DASErr far pascal K_FreeDevHandle (DWORDeV);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_FreeDevHandléDev: Longint) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal hDevAs Long) As Integer

BASIC
Not supported
Parameters hDev Device handle you want to free.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the device handle specifiethbgvas well as all

frame handles associated witbev

See Also K_GetDevHandle

4-69

K_FreeDevHandle (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_FreeDevHandle (hDev);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_FreeDevHandle (hDev);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_FreeDevHandle (hDev)

4-70 Function Reference

K_FreeFrame

Boards All

Supported

Purpose Frees a frame.
Prototype C/C++

DASEtr far pascal K_FreeFrame (DWORIBrams);

Turbo Pascal
Function K_FreeFraméfFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_FreeFrameénFrame: Longint) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KFREEFRAME% ALIAS "K_FreeFrame"
(BYVAL hFrameAS LONG)

Parameters hFrame Handle to frame you want to free.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the frame specifiedlifsrame making the frame

available for another operation.

See Also K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

4-71

K_FreeFrame (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_FreeFrame (hAD);

Turbo Pascal
uses D1600TP7;

wDasErr := K_FreeFrame (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_FreeFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_FreeFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KFreeFrame% (hAD)

4-72 Function Reference

K_GetADConfig

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Get a DAS board’s analog input channel configuration.

C/C++

DASErr far pascal K_GetADConfig (DWORBDey
WORD far *pMods);

Turbo Pascal
Function K_GetADConfigh{Dev: Longint; VarpMode: Word) : Word;

Turbo Pascal for Windows
Function K_GetADConfigh{Dev: Longint; VarpMode: Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_GetADConfig Lib "DASSHELL.DLL"
(ByVal hDevAs Long,pModeAs Integer) As Integer

BASIC

DECLARE FUNCTION KGETADCONFIG% ALIAS
"K_GetADConfig" (BYVAL hDevAS LONG,
SEGpModeAS INTEGER)

hDev Handle associated with the board.

pMode Analog input channel configuration.
Value stored:0 for Differential
1 for Single-ended

Error/status code. Refer to Appendix A.

For the board specified ey this function stores the code that
indicates the analog input channel configuratiopNtode

4-73

K_GetADConfig (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wADConfig;

wDasErr = K_GetADConfig (hDev, &wADConfig);

Turbo Pascal
uses D1600TP7;

wADConfig : Word;

wDasErr := K_GetADConfig (hDev, wADConfig);

Turbo Pascal for Windows
{$| DASDECL.INC}

wADConfig : Word;

wDasErr := K_GetADConfig (hDev, wADConfig);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global wADConfig As Integer

wDasErr = K_GetADConfig (hDev, wADConfig)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wADConfig AS INTEGER

wDasErr = KGetADConfig% (hDev, wADConfig)

4-74 Function Reference

K_GetADFrame

Boards
Supported

Purpose

Prototype

Parameters

Remarks

See Also

All

Accesses an A/D frame for an analog input operation.

C/C++

DASErr far pascal K_GetADFrame (DWORiDey
DWORD far *phFramg;

Turbo Pascal
Function K_GetADFramehDev: Longint;
Var phFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_GetADFramehDev: Longint;
Var phFrame: Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,phFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KGETADFRAME% ALIAS "K_GetADFrame"
(BYVAL hDevAS LONG, SEGphFrameAS LONG)

hDev Handle associated with the board.

phFrame Handle to the frame that defines the operation.

This function specifies that you want to perform a DMA-mode,
interrupt-mode, or synchronous-mode analog input operation on the
board specified biiDey and accesses an available A/D frame with the
handlephFrame

The frame is initialized to its default settings; refer to Table 2-1 on page
2-8 for a list of the default settings.

K_ClearFrame, K_FreeFrame

4-75

K_GetADFrame (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hAD;

wDasErr = K_GetADFrame (hDev, &hAD);

Turbo Pascal
uses D1600TP7;

hAD : Longint;
wDasErr ;= K_GetADFrame (hDev, hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

hAD : Longint;
wDasErr := K_GetADFrame (hDev, hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global hAD As Long

wDasErr = K_GetADFrame (hDev, hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM hAD AS LONG

wDasErr = KGetADFrame% (hDev, hAD)

4-76 Function Reference

K_GetADMode

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Get a DAS board’s analog input range type.

C/C++

DASErr far pascal K_GetADMode (DWORBDeV
WORD far *pMods);

Turbo Pascal
Function K_GetADModeHDev: Longint; VarpMode: Word) : Word;

Turbo Pascal for Windows
Function K_GetADModel({Dev: Longint; VarpMode: Word) : Word;
far; external 'DASSHELL'";

Visual Basic for Windows
Declare Function K_GetADMode Lib "DASSHELL.DLL"
(ByVal hDevAs Long,pModeAs Integer) As Integer

BASIC
DECLARE FUNCTION KGETADMODE% ALIAS "K_GetADMode"
(BYVAL hDevAS LONG, SEGModeAS INTEGER)

hDev Handle associated with the board.

pMode Analog input range type.
Value stored:0 for Bipolar
1 for Unipolar

Error/status code. Refer to Appendix A.

For the board specified thpDey this function stores the code that
indicates the analog input range typg@Mode.

4-77

K_GetADMode (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wADMode;

wDasErr = K_GetADMode (hDev, &wADMode);

Turbo Pascal
uses D1600TP7;

wADMode : Word;

wDasErr := K_GetADMode (hDev, wADMode);

Turbo Pascal for Windows
{$| DASDECL.INC}

wADMode : Word;

wDaskErr := K_GetADMode (hDev, wADMode);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global wADMode As Integer

wDasErr = K_GetADMode (hDev, wADMode)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wADMode AS INTEGER

wDasErr = KGetADMode% (hDev, wADMode)

4-78 Function Reference

K_GetCIkRate

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gets the number of clock ticks used by the internal pacer clock.

C/C++

DASErr far pascal K_GetClkRate (DWOR1iFrame
DWORD far*pRate);

Turbo Pascal
Function K_GetCIkRatenframe: Longint; VarpRate: Longint) : Word;

Turbo Pascal for Windows
Function K_GetClkRatehfFrame: Longint; VarpRate: Longint) : Word,
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_GetClkRate Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pRateAs Long) As Integer

BASIC
DECLARE FUNCTION KGETCLKRATE% ALIAS "K_GetClkRate"
(BYVAL hFrameAS LONG, SEGpRateAS LONG)

hFrame Handle to the frame that defines the operation.

pRate Number of clock ticks between conversions.
Error/status code. Refer to Appendix A.

For the operation defined yrame this function stores the number of
clock ticks used by the internal pacer cloclpkRate

After a synchronous-mode, interrupt-mode, or DMA-mode operation, the
value stored ipRaterepresents the actual count used, not necessarily the
count set by _SetClkRate.

ThepRatevariable contains the value of the Pacer Clock Rate element.

4-79

K_GetCIkRate (cont.)

See Also

Usage

4-80

K_SetClkRate

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwRate;

wDasErr = K_GetClkRate (hAD, &dwRate);

Turbo Pascal
uses D1600TP7;

dwRate : Longint;

wDasErr := K_GetClkRate (hAD, dwRate);

Turbo Pascal for Windows
{$| DASDECL.INC}

dwRate : Longint;

wDasErr := K_GetClkRate (hAD, dwRate);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global dwRate As Long

wDasErr = K_GetClkRate (hAD, dwRate)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM dwRate AS LONG

wDasErr = KGetClkRate% (hAD, dwRate)

Function Reference

K_GetDAFrame

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

DAS-1601, DAS-1602

Accesses a D/A frame for an analog output operation.

C/C++

DASErr far pascal K_GetDAFrame (DWORiDey
DWORD far *phFramg;

Turbo Pascal
Function K_GetDAFramehDev: Longint;
Var phFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_GetDAFramehDev: Longint;
Var phFrame: Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetDAFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,phFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KGETDAFRAME% ALIAS "K_GetDAFrame"
(BYVAL hDevAS LONG, SEGphFrameAS LONG)

hDev Handle associated with the board.

phFrame Handle to the frame that defines the analog
output operation.

Error/status code. Refer to Appendix A.

This function specifies that you want to perform a synchronous-mode or
interrupt-mode analog output operation on the board specifia@éy
and accesses an available analog output frame with the tpdrieteame

The frame is initialized to its default settings; refer to Table 2-5 on page
2-32 for a list of the default settings.

4-81

K_GetDAFrame (cont.)

See Also

Usage

4-82

K_FreeFrame, K_ClearFrame

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDA,;

wDasErr = K_GetDAFrame (hDev, &hDA);

Turbo Pascal
uses D1600TP7;

hDA : Longint;

wDasErr := K_GetDAFrame (hDev, hDA);

Turbo Pascal for Windows
{$| DASDECL.INC}

hDA : Longint;

wDaskErr := K_GetDAFrame (hDev, hDA);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global hDA As Long

wDasErr = K_GetDAFrame (hDev, hDA)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM hDA AS LONG

wDasErr = KGetDAFrame% (hDev, hDA)

Function Reference

K_GetDevHandle

Boards
Supported

Purpose

Prototype

Parameters

Return Value

All

Initializes any Keithley DAS board.

C/C++

DASErr far pascal K_GetDevHandle (DWORIDrv,
WORD nBoardNum DWORD far *phDeV;

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_GetDevHandlenDrv : Longint;nBoardNum Integer;
Var phDev: Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_GetDevHandle Lib "DASSHELL.DLL"
(ByVal hDrv As Long, ByValnBoardNumAs IntegerphDevAs Long)
As Integer

BASIC

Not supported

hDrv Driver handle of the associated Function Call
Driver.

nBoardNum Board number.
Valid values: O or 1

phDev Handle associated with the board.

Error/status code. Refer to Appendix A.

4-83

K_GetDevHandle (cont.)

Remarks This function initializes the board associated vhibbrv and specified by
nBoardNum and stores the device handle of the specified boarlev

The value stored iphDevis intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored phDev

See Also K_FreeDevHandle

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDev;

wDasErr = K_GetDevHandle (hDrv, 0, &hDev);

Turbo Pascal for Windows
{$| DASDECL.INC}

hDev : Longint;

wDasErr ;= K_GetDevHandle (hDrv, 0, hDev);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global hDev As Long

wDasErr = K_GetDevHandle (hDrv, 0, hDev)

4-84 Function Reference

K_GetDIFrame

Boards All
Supported
Purpose Accesses a DI frame for a digital input operation.
Prototype C/C++
DASErr far pascal K_GetDIFrame (DWORiDey
DWORD far *phFramg;

Turbo Pascal
Function K_GetDIFramehDev: Longint;
Var phFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_GetDIFramehDev: Longint;
Var phFrame: Longint) : Word; far; external ' DASSHELL';

Visual Basic for Windows
Declare Function K_GetDIFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,phFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KGETDIFRAME% ALIAS "K_GetDIFrame"
(BYVAL hDevAS LONG, SEGphFrameAS LONG)

Parameters hDev Handle associated with the board.
phFrame Handle to the frame that defines the digital input
operation.
Return Value Error/status code. Refer to Appendix A.
Remarks This function specifies that you want to perform a synchronous-mode or

interrupt-mode digital input operation on the board specifigtD®y and
accesses an available digital input frame with the hgritdteame

The frame is initialized to its default settings; refer to Table 2-6 on page
2-42 for a list of the default settings.

4-85

K_GetDIFrame (cont.)

See Also

Usage

4-86

K_FreeFrame, K_ClearFrame

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDl,

wDasErr = K_GetDIFrame (hDev, &hDI);

Turbo Pascal
uses D1600TP7;

hDI : Longint;

wDasErr := K_GetDIFrame (hDev, hDI);

Turbo Pascal for Windows
{$| DASDECL.INC}

hDI : Longint;

wDasErr := K_GetDIFrame (hDev, hDI);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global hDI As Long

wDasErr = K_GetDIFrame (hDev, hDI)

BASIC
"$INCLUDE: 'DASDECL.BI'

DIM hDI AS LONG

wDasErr = KGetDIFrame% (hDev, hDI)

Function Reference

K _GetDOFrame

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Accesses a DO frame for a digital output operation.

C/C++

DASErr far pascal K_GetDOFrame (DWORiIDey
DWORD far *phFramg;

Turbo Pascal
Function K_GetDOFraméhDev: Longint;
Var phFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_GetDOFraméhDev: Longint;
Var phFrame: Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetDOFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,phFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KGETDOFRAME% ALIAS "K_GetDOFrame"
(BYVAL hDevAS LONG, SEGphFrameAS LONG)

hDev Handle associated with the board.

phFrame Handle to the frame that defines the digital
output operation.

Error/status code. Refer to Appendix A.

This function specifies that you want to perform a synchronous-mode or
interrupt-mode digital output operation on the board specifidtDey
and accesses an available digital output frame with the hphBlame

The frame is initialized to its default settings; refer to Table 2-7 on page
2-43 for a list of the default settings.

4-87

K_GetDOFrame (cont.)

See Also

Usage

4-88

K_FreeFrame, K_ClearFrame

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDO;

wDasErr = K_GetDOFrame (hDev, &hDO);

Turbo Pascal
uses D1600TP7;

hDO : Longint;

wDasErr := K_GetDOFrame (hDev, hDO);

Turbo Pascal for Windows
{$| DASDECL.INC}

hDO : Longint;

wDaskErr := K_GetDOFrame (hDev, hDO);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global hDO As Long

wDasErr = K_GetDOFrame (hDev, hDO)

BASIC
"$INCLUDE: 'DASDECL.BI'

DIM hDO AS LONG

wDasErr = KGetDOFrame% (hDev, hDO)

Function Reference

K_GetErrMsg

Boards All

Supported

Purpose Gets the address of an error message string.

Prototype C/C++
DASETr far pascal K_GetErrMsg (DWORIDey shortnDASErt
char far * far *pErrMsg);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Not supported
BASIC
Not supported
Parameters hDev Handle associated with the board.
NDASErr Error message number.
pErrMsg Address of error message string.
Return Value Error/status code. Refer to Appendix A.
Remarks For the board specified thpDey this function stores the address of the

string corresponding to error message numiekSErrin pErrMsg

Refer to page 2-4 for more information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

4-89

K_GetErrMsg (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

char far *pErrMsg;

wDasErr = K_GetErrMsg (hDev, nDasErr, &pErrMsg);

4-90 Function Reference

K_GetShellVer

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gets the current DAS shell version.

C/C++

DASErr far pascal K_GetShellVer (WORD fgsVersion);

Turbo Pascal
Function K_GetShellVer (VgoVersion: Word) : Word;

Turbo Pascal for Windows
Function K_GetShellVer (VgoVersion: Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(pVersionAs Integer) As Integer

BASIC
DECLARE FUNCTION KGETSHELLVER% ALIAS "K_GetShellVer"
(SEGpVersionAS INTEGER)

pVersion A word value containing the major and minor
version numbers of the DAS shell.

Error/status code. Refer to Appendix A.

This function stores the current DAS shell versiopVersion To obtain
the major version number of the DAS shell, dividersionby 256. To
obtain the minor version number of the DAS shell, perform a Boolean
AND operation withpVersionand 255 (OFFh).

4-91

K_GetShellVer (cont.)

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wShellVer;

wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

Turbo Pascal
uses D1600TP7;

wShellVer : Word,
wDaskErr := K_GetShellVer (wShellVer);

FormatStr (VerStr, '%4x', wShellVer / 256, '.", wShellVer And $ff);
writeln(* Shell Ver ', VerStr);

Turbo Pascal for Windows
{$| DASDECL.INC}

wShellVer : Word,;
wDasErr ;= K_GetShellVer (wShellVer);

FormatStr (VerStr, '%4x’', wShellVer / 256, '.", wShellVer And $ff);
writeln(* Shell Ver ', VerStr);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global wShellVer As Integer

wDasErr = K_GetShellVer (wShellVer)

ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." +
LTRIM$ (STR$ (wShellVer AND &HFF))

MsgBox "Shell Ver: " + ShellVer$

4-92 Function Reference

K_GetShellVer (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wShellVer AS INTEGER

wDasErr = KGetShellVer% (wShellVer)

ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." +
LTRIM$ (STR$ (wShellVer AND &HFF))

PRINT "Shell Ver: " + ShellVer$

4-93

K_GetVer

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-94

All

Gets revision numbers.

C/C++
DASErr far pascal K_GetVer (DWORBDey short far *pSpecVer
short far *pDrvVer);

Turbo Pascal
Function K_GetVerl{Dev: Longint; VarpSpecVer Word;
Var pDrvVer: Word) : Word,

Turbo Pascal for Windows
Function K_GetVerl{Dev: Longint; VarpSpecVer Word;
Var pDrvVer: Word) : Word; far; external 'DASSHELL',

Visual Basic for Windows

Declare Function K_GetVer Lib "DASSHELL.DLL"

(ByVal hDevAs Long,pSpecVeAs IntegerpDrvVerAs Integer)
As Integer

BASIC

DECLARE FUNCTION KGETVER% ALIAS "K_GetVer"
(BYVAL hDevAS LONG, SEGpSpecVeAS INTEGER,
SEGpDrvVerAS INTEGER)

hDev Handle associated with the board.

pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.

pDrvVer Driver version number.

Error/status code. Refer to Appendix A.

Function Reference

K_GetVer (cont.)

Remarks For the board specified pDey this function stores the revision number
of the Function Call Driver ipDrvVerand the revision number of the
driver specification ipSpec\Ver

The values stored ipSpecVeandpDrvVerare 2-byte (16-bit) integers;

the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.10, the major revision level is 2 and the minor revision level
is 10; therefore, the high byte pbrvVercontains the value & (512)

and the low byte gbDrvVercontains the value df0; the value of both

bytes is 522.

To obtain the major version number of the Function Call Driver, divide
pDrvVerby 256; to obtain the minor version number of the Function Call
Driver, perform a Boolean AND operation wiplbrvVerand 255 (OFFh).

To obtain the major version number of the driver specification, divide
pSpecVeby 256; to obtain the minor version number of the driver
specification, perform a Boolean AND operation withpecVeand 255
(OFFh).

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

short nSpecVer, nDrvVer;

wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Turbo Pascal
uses D1600TP7;

nSpecVer : Word;
nDrvVer : Word;

wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);

FormatStr (VerStr, ' %4x ', nDrvVer / 256, '.', nDrvVer And $ff);
writeln(* Driver Ver ', VerStr);

4-95

K_GetVer (cont.)

Turbo Pascal for Windows
{$| DASDECL.INC}

nSpecVer : Word;
nDrvVer : Word;

wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);
FormatStr (VerStr, ' %4x ', nDrvVer / 256, ', nDrvVer And $ff);
writeln(* Driver Ver ', VerStr);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global nSpecVer As Integer
Global nDrvVer As Integer

wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)

DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." +
LTRIM$ (STR$ (nDrvVer AND &HFF))

MsgBox "Driver Ver: " + DrvVer$

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nSpecVer AS INTEGER
DIM nDrvVer AS INTEGER

wDasErr = KGetVer% (hDev, nSpecVer, nDrvVer)

DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." +
LTRIM$ (STR$ (nDrvVer AND &HFF))

PRINT "Driver Ver: " + DrvVer$

4-96 Function Reference

K_IntAlloc

Boards All

Supported

Purpose Allocates a buffer for an interrupt-mode or synchronous-mode operation.
Prototype C/C++

DASETr far pascal K_IntAlloc (DWORMDFrame DWORDdwSamples
void far * far*pBuf, WORD far*phMenm);

Turbo Pascal
Function K_IntAlloc fbiFrame: Longint;dwSamples Longint;
pBuf: Pointer; VaphMem: Word) : Word;

Turbo Pascal for Windows
Function K_IntAlloc fbiFrame: Longint;dwSamples Longint;
pBuf: Pointer; VaphMem: Word) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_IntAlloc Lib "DASSHELL.DLL"

(ByVal hFrameAs Long, ByValdwSample#s Long,pBufAs Long,
phMemAs Integer) As Integer

BASIC

DECLARE FUNCTION KINTALLOC% ALIAS "K_IntAlloc"
(BYVAL hFrameAS LONG, BYVAL dwSample&S LONG,
SEGpBUfAS LONG, SEGphMemAS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.
dwSamples Number of samples.
Valid values:

Analog I/O operationg 1 to 5000000

Digital I/O operations| 1to 32767

pBuf Starting address of the allocated buffer.

4-97

K_IntAlloc (cont.)

Return Value

Remarks

See Also

Usage

4-98

phMem Handle associated with the allocated buffer.
Error/status code. Refer to Appendix A.

For the operation defined Ifrrame this function allocates a buffer of
the size specified bywSamplesand stores the starting address of the
buffer inpBufand the handle of the buffer plmMem

For analog input and analog output operations, the data in the allocated
buffer is stored as counts. Refer to Appendix B for information on
converting a count value to voltage (for analog input operations) or for
converting a voltage value to a count (for analog output operations).

Turbo Pascal (for DOS) and BASIC require that you redistribute available
memory before you dynamically allocate a buffer. Refer to “Reducing the
Memory Heap” on page 3-11 (Turbo Pascal) or page 3-24 (BASIC) for
additional information.

The value stored iphMemis intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored phMem

K_IntFree, K_SetBuf

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer
WORD hMem; /I Memory Handle to buffer

wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);

Turbo Pascal
uses D1600TP7;

pBuf : Pointer; { buffer pointer }
hMem : Word; {Handle to buffer }

wDaskErr := K_IntAlloc (hAD, 1000, pBuf, hMem);

Function Reference

K_IntAlloc (cont.)

Turbo Pascal for Windows
{$| DASDECL.INC}

pBuf : Pointer; { buffer pointer }
hMem : Word; {Handle to buffer }

wDaskErr := K_IntAlloc (hAD, 1000, pBuf, hMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global pBuf As Long
Global hMem As Integer

wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM pBuf AS LONG
DIM hMem AS INTEGER

wDasErr = KintAlloc% (hAD, 1000, pBuf, hMem)

4-99

K_IntFree

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-100

All

Frees a buffer allocated for an interrupt-mode or synchronous-mode
operation.

C/C++
DASETr far pascal K_IntFree (WOREMen)j;

Turbo Pascal
Function K_IntFreeiMem: Word) : Integer;

Turbo Pascal for Windows
Function K_IntFreeiMem: Word) : Integer; far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL"
(ByVal hMemAs Integer) As Integer

BASIC
DECLARE FUNCTION KINTFREE% ALIAS "K_IntFree"
(BYVAL hMemAS INTEGER)

hMem Handle to interrupt buffer.
Error/status code. Refer to Appendix A.

This function frees the buffer specified lhylem the buffer was
previously allocated dynamically usikg IntAlloc .

K_IntAlloc

Function Reference

K_IntFree (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_IntFree (hMem));

Turbo Pascal
uses D1600TP7;

wDasErr := K_IntFree (hMem);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_IntFree (hMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_IntFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KIntFree% (hMem)

4-101

K_IntStart

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

4-102

All

Starts an interrupt-mode operation.

C/C++
DASErr far pascal K_IntStart (DWORDBFrame;

Turbo Pascal
Function K_IntStartifFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_IntStartli{fFrame: Longint) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KINTSTART% ALIAS "K_IntStart"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.
This function starts the interrupt operation definedhbsame

Refer to the following pages for an illustration of the programming tasks
associated with interrupt-mode operations:

Analog input | page 1-8

Analog output | page 1-14

Digital input page 1-18

Digital output | page 1-21

Function Reference

K_IntStart (cont.)

See Also K_IntStatus, K_IntStop

Usage CIC++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_IntStart (hAD);

Turbo Pascal
uses D1600TP7;

wDasErr := K_IntStart (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_IntStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_IntStart (hAD)

BASIC
'$INCLUDE: 'DASDECL.BI'

wDasErr = KintStart% (hAD)

4-103

K_IntStatus

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-104

All

Gets status of interrupt-mode operation.

C/C++
DASErr far pascal K_IntStatus (DWORHFrame short farpStatus
DWORD far*pCount);

Turbo Pascal
Function K_IntStatushfFrame: Longint; VarpStatus Word;
Var pCount: Longint) : Word,

Turbo Pascal for Windows
Function K_IntStatushfFrame: Longint; VarpStatus Word;
Var pCount: Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, pStatusAs IntegerpCountAs Long)
As Integer

BASIC

DECLARE FUNCTION KINTSTATUS% ALIAS "K_IntStatus"
(BYVAL hFrameAS LONG, SEGpStatusAS INTEGER,
SEGpCountAS LONG)

hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt operation.
SeeRemarks below for value stored

pCount Current number of samples transferred.

Error/status code. Refer to Appendix A.

Function Reference

K_IntStatus (cont.)

Remarks For the interrupt-mode operation definednfyame this function stores
the status ipStatusand the number of samples acquireg@ount

A data overrun/underrun occurs if data is lost when the transfer of data to
or from computer memory cannot keep up with the clock rate.

The value stored ipStatusdepends on the settings in the Status word, as
shown below:

Bit 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

\ﬂ_l
00 = No data overrun/underrun
11 = Data overrun/underrun

0 = Interrupt operation inactive
1 = Interrupt operation active

The bits are described as follows:
. Bit O0: Indicates whether an interrupt-mode operation is in progress.

. Bits 1 and 2: For input operations, these bits indicate whether a data
overrun occurred. For output operations, these bits indicate whether a
data underrun occurred. The overrun or underrun event automatically
stops all conversions.

Both bits 1 and 2 are set when the driver detects an overrun/underrun
event. It is recommended that you read bit 2 only; bit 1 is set to
provide compatibility with previous revisions of the driver.

. Bits 3 to 15: Unassigned.

See Also K_IntStart, K_IntStop

4-105

K_IntStatus (cont.)

Usage

4-106

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_IntStatus (hAD, &wStatus, &dwCount);

Turbo Pascal
uses D1600TP7;

wStatus : Word;
dwCount : Longint;

wDasErr ;= K_IntStatus (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$| DASDECL.INC}

wStatus : Word;
dwCount : Longint;

wDaskErr := K_IntStatus (hAD, wStatus, dwCount);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_IntStatus (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KIntStatus% (hAD, wStatus, dwCount)

Function Reference

K_IntStop

Boards All

Supported

Purpose Stops an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStop (DWORBFrame short farpStatus
DWORD far*pCouny;

Turbo Pascal
Function K_IntStoplfFrame: Longint; VarpStatus Word;
Var pCount: Longint) : Word;

Turbo Pascal for Windows
Function K_IntStopl{Frame: Longint; VarpStatus Word,;
Var pCount: Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_IntStop Lib "DASSHELL.DLL"

(ByVal hFrameAs Long, pStatusAs IntegerpCountAs Long)
As Integer

BASIC

DECLARE FUNCTION KINTSTOP% ALIAS "K_IntStop"
(BYVAL hFrameAS LONG, SEGpStatusAS INTEGER,
SEGpCountAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of interrupt operation.
pCount Number of samples.

Return Value Error/status code. Refer to Appendix A.

4-107

K_IntStop (cont.)

Remarks This function stops the interrupt operation definedhByameand stores
the status of the interrupt operationpitatusand the number of samples
acquired inpCount

Refer to page 4-105 for the meaning of the value storp&tiatus

A data overrun/underrun occurs if data is lost when the transfer of data
between computer memory and the board is too slow.

If an interrupt-mode operation is not in progrdésintStop is ignored.
See Also K_IntStart, K_IntStatus

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_IntStop (hAD, &wStatus, &dwCount);

Turbo Pascal
uses D1600TP7;

wStatus : Word;
dwCount : Longint;

wDasErr := K_IntStop (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$| DASDECL.INC}

wStatus : Word;
dwCount : Longint;

wDasErr := K_IntStop (hAD, wStatus, dwCount);

4-108 Function Reference

K_IntStop (cont.)

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_IntStop (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KIntStop% (hAD, wStatus, dwCount)

4-109

KMakeDMABuf

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-110

All

Converts a local array to a buffer suitable for a DMA-mode operation.

C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Not supported

BASIC
DECLARE FUNCTION KMakeDMABuUf% @wSample&S LONG,
pBuf()AS INTEGER,pBufAddrAS LONG, pStartIxAS INTEGER)

dwSamples Number of samples.

pBuf $DYNAMIC integer array.

pBufAddr Starting address of the DMA buffer.
pStartlx Index intopBufthat identifies the location in

which the first sample is stored.

Error/status code. Refer to Appendix A.

Function Reference

KMakeDMABuUf (cont.)

Remarks This function ensures that the array address providkd $2tDMABuUf
is suitable for a DMA-mode analog input operation.

Instead of using this function, it is recommended that you use the BASIC
SetMemfunction in conjunction with th& DMAAlloc function to
allocate a memory buffer. Refer to page 3-24 for more information.

See Also K_SetDMABuUf
Usage

BASIC
' $INCLUDE: 'DASDECL.BI'

$DYNAMIC DIM ADBuUf(10000)As Integer
$STATIC
DIM pDMABuUf AS LONG

wDasErr = KMakeDMABuUf% (dwSamples, ADBuf, pDMABUf, pStartlx)

4-111

K_MoveArrayToBuf

Boards All
Supported
Purpose Transfers data from a local array within the program to a buffer allocated

throughK_IntAlloc or K_DMAAIlloc .

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_MoveArrayToBuf Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByValpDestAs Long,pSourcéAs Integer,

ByVal nCountAs Integer) As Integer

BASIC

DECLARE FUNCTION KMOVEARRAYTOBUF% ALIAS
"K_MoveDataBuf" (ByValpDestAs Long, SEQSourceAs Integer,
ByVal nCountAs Integer)

Parameters pDest Address of destination buffer.
pSource Address of source array.
nCount Number of samples to transfer.

Valid values: 1t0 32767

Return Value Error/status code. Refer to Appendix A.

4-112 Function Reference

K_MoveArrayToBuf (cont.)

Remarks

See Also

Usage

This function transfers the number of samples specifieddnuntfrom
the array at addregsSourceto the buffer at addregdDest

If the buffer used to store output data for your program was allocated
throughK_IntAlloc or K_DMAAIloc , the data in the buffer is not
accessible to the program; you must KséloveArrayToBuf to move

the data from a local array within the program to a dynamically allocated
buffer. If the array used to store output data for your program was
dimensioned locally within the program’s memory area, the data in the
array is accessible to your program and you do not have to use this
function.

K_DMAAlloc, K_IntAlloc

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Dim DACArray(2000) As Integer
wDasErr = K_IntAlloc (hDA, 1000, pBuf, hMem)

wDasErr = K_MoveArrayToBuf (pBuf, DACArray(0), 1000)

BASIC
'$INCLUDE: 'DASDECL.BI'

DIM DACArray(2000) AS INTEGER
wDasErr = KIntAlloc% (hDA, dwSamples, pBuf, hMem)

wDasErr = KMoveArrayToBuf% (pBuf, DACArray(0), 1000)

4-113

K_MoveArrayToBufL

Boards All
Supported
Purpose Transfers data from a local long array within the program to a buffer

allocated througiK_IntAlloc or K_DMAAIlloc .

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_MoveArrayToBufL Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByValpDestAs Long,pSourceAs Long,

ByVal nCountAs Integer) As Integer

BASIC

DECLARE FUNCTION KMOVEARRAYTOBUFL% ALIAS
"K_MoveDataBuf" (ByValpDestAs Long, SE@SourceAs Long,
ByVal nCountAs Integer)

Parameters pDest Address of destination buffer.
pSource Address of source array.
nCount Number of samples to transfer.

Valid values: 1t0 32767

Return Value Error/status code. Refer to Appendix A.

4-114 Function Reference

K_MoveArrayToBufL (cont.)

Remarks

See Also

Usage

This function transfers the number of samples specifieddnuntfrom
the array at addregsSourceto the buffer at addregdDest

This function is intended for digital output operations when you are
writing to more than 16 digital output lines.

If the buffer used to store output data for your program was allocated
throughK_IntAlloc or K_DMAAIlloc , the data in the buffer is not
accessible to the program; you must KsdoveArrayToBufL to move

the data from a local array within the program to a dynamically allocated
buffer. If the long array used to store output data for your program was
dimensioned locally within the program’s memory area, the data in the
array is accessible to your program and you do not have to use this
function.

K_DMAAlloc, K_IntAlloc

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Dim DOArray(2000) As Integer
wDasErr = K_IntAlloc (hDO, 1000, pBuf, hMem)

wDasErr = K_MoveArrayToBufL (pBuf, DOArray(0), 1000)

BASIC
'$INCLUDE: 'DASDECL.BI'

DIM DOArray(2000) AS INTEGER
wDasErr = KIntAlloc% (hDO, dwSamples, pBuf, hMem)

wDasErr = KMoveArrayToBufL% (pBuf, DOArray(0), 1000)

4-115

K_MoveBufToArray

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-116

All

Transfers data from a buffer allocated throtgtintAlloc or
K_DMAAIlloc to a local array within your program.

C/C++

Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" pDestAs Integer, ByVapSourceAs Long,

ByVal nCountAs Integer) As Integer

BASIC

DECLARE FUNCTION KMOVEBUFTOARRAY% ALIAS
"K_MoveDataBuf" (SEGDestAs Integer, ByVapSourceAs Long,
ByVal nCountAs Integer)

pDest Address of destination array.
pSource Address of source buffer.
nCount Number of samples to transfer.

Valid values: 1t0 32767

Error/status code. Refer to Appendix A.

Function Reference

K_MoveBufToArray (cont.)

Remarks

See Also

Usage

This function transfers the number of samples specifieddnuntfrom
the buffer at addregsSourceto the array at addrep®est

If the buffer used to store acquired data for your program was allocated
throughK_IntAlloc orK_DMAAIlloc , the data in the buffer is not
accessible to your program and you mustKiskloveBufToArray to

move the data from the allocated buffer to a local array within your
program. If the array used to store acquired data for your program was
dimensioned locally within the program’s memory area, the data in the
array is accessible to your program and you do not have to use this
function.

K_DMAAlloc, K_IntAlloc

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Dim ADArray(2000) As Integer
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

wDasErr = K_MoveBufToArray (ADArray(0), pBuf, 1000)

BASIC
'$INCLUDE: 'DASDECL.BI'

DIM ADArray(2000) AS INTEGER
wDasErr = KIntAlloc% (hAD, 1000, pBuf, hMem)

wDasErr = KMoveBufToArray% (ADArray(0), pBuf, 1000)

4-117

K_MoveBufToArrayL

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-118

All

Transfers data from a buffer allocated throtgtintAlloc or
K_DMAAlloc to a local long array within your program.

C/C++

Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArrayL Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" pDestAs Long, ByValpSourceAs Long,

ByVal nCountAs Integer) As Integer

BASIC

DECLARE FUNCTION KMOVEBUFTOARRAYL% ALIAS
"K_MoveDataBuf" (SE@DestAs Long, ByValpSourceAs Long,
ByVal nCountAs Integer)

pDest Address of destination array.
pSource Address of source buffer.
nCount Number of samples to transfer.

Valid values: 1t0 32767

Error/status code. Refer to Appendix A.

Function Reference

K_MoveBufToArrayL (cont.)

Remarks

See Also

Usage

This function transfers the number of samples specifieddnuntfrom
the buffer at addregsSourceto the array at addrep®est

This function is intended for digital input operations when you are
reading more than 16 digital input lines.

If the buffer used to store acquired data for your program was allocated
throughK_IntAlloc orK_DMAAIloc , the data in the buffer is not
accessible to your program and you mustKiskloveBufToArrayL to
move the data from the allocated buffer to a local long array within your
program. If the long array used to store acquired data for your program
was dimensioned locally within the program’s memory area, the data in
the array is accessible to your program and you do not have to use this
function.

K_DMAAlloc, K_IntAlloc

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Dim DIArray(2000) As Integer
wDasErr = K_IntAlloc (hDI, 1000, pBuf, hMem)

wDasErr = K_MoveBufToArrayL (DIArray(0), pBuf, 1000)

BASIC
'$INCLUDE: 'DASDECL.BI'

DIM DIArray(2000) AS INTEGER
wDasErr = KIntAlloc% (hDI, 1000, pBuf, hMem)

wDasErr = KMoveBufToArrayL% (DIArray(0), pBuf, 1000)

4-119

K_MoveDataBuf

Boards All

Supported

Purpose Moves a specified number of samples from one memory area to another.
Prototype C/C++

DASErr far pascal K_MoveDataBuf (short fggDest
short far pSourceWORDnNCoun) ;

Turbo Pascal
Function K_MoveDataBufgDest: Longint; pSource Longint;
nCount: Word) : Integer;

Turbo Pascal for Windows
Function K_MoveDataBufgDest: Longint; pSource Longint;
nCount: Word) : Integer; far; external 'DASSHELL’;

Visual Basic for Windows

Declare Function K_MoveDataBuf Lib "DASSHELL.DLL"
(pDestAs Integer, ByVapSourceAs Long, ByValnCountAs Integer)
As Integer

BASIC

DECLARE FUNCTION KMOVEDATABUF% ALIAS
"K_MoveDataBuf" (SEQDestAS INTEGER,

BYVAL pSourceAS LONG, BYVAL nCountAS INTEGER)

Parameters pDest Address of destination buffer.
pSource Address of source buffer.
nCount Number of samples to transfer.

Value values:1to 32767

Return Value Error/status code. Refer to Appendix A.

4-120 Function Reference

K_MoveDataBuf (cont.)

Remarks This function transfers the number of samples specifieddnuntfrom
the buffer at addregsSourceto the array at addrep®est

See Also K_DMAAlloc, K_IntAlloc

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

wDasErr = K_MoveDataBuf (ADArray[0], pBuf, 1000)

BASIC
'$INCLUDE: 'DASDECL.BI'

wDasErr = KIntAlloc% (hAD, 1000, pBuf, hMem)

wDasErr = KMoveDataBuf% (ADArray[0], pBuf, 1000)

4-121

K_OpenDriver

Boards All

Supported

Purpose Initializes any Keithley DAS Function Call Driver.
Prototype C/C++

DASErr far pascal K_OpenDriver (char faszDrvName
char far *szCfgNameDWORD far *phDrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_OpenDriver (VaszDrvName char; VarszCfgName char;
Var phDrv : Longint) : Word; far; external 'DASSHELL",

Visual Basic for Windows

Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDrvNameAs String, ByValszCfgNamé\s String,
phDrvAs Long) As Integer

BASIC
Not supported
Parameters szDrvName Driver name.
Valid value: "DAS1600" (for
DAS-1600/1400/1200 Series boards)
szCfgName Driver configuration file.
Valid value: The name of a configuration file;
0 if the driver has already been opened
phDrv Handle associated with the driver.
Return Value Error/status code. Refer to Appendix A.

4-122 Function Reference

K_OpenDriver (cont.)

Remarks

See Also

Usage

C/C++

This function initializes the DAS-1600/1400/1200 Series Function Call
Driver according to the information in the configuration file specified by
szCfgNameand stores the driver handleghDrv.

You can use this function to initialize the Function Call Driver associated
with any Keithley MetraByte DAS board.

For DAS-1600/1400/1200 Series boards, the string storezDirnvName
must be DAS1600.

The value stored iphDrv is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored phDrv.

You create a configuration file using the CFG1600.EXE utility. Refer to
your board user’s guide for more informationsziCfgName= 0,
K_OpenDriver checks whether the driver has already been opened and
linked to a configuration file and if it has, uses the current configuration;
this is useful in the Windows environment.

DAS1600_DevOpen

#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDrv;

wDasErr = K_OpenDriver ("DAS1600", "DAS1600.CFG", &hDrv);

Turbo Pascal for Windows
{$| DASDECL.INC}
szDrvName : String;
szCfgName : String;

hDrv : Longint;

szDrvName :
szCfgName :

'DAS1600' + #0;
'DAS1600.CFG' + #0;

wDaskErr := K_OpenDriver (szDrvName[1], szCfgName[1], hDrv);

4-123

K_OpenDriver (cont.)

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)
DIM hDrv As Long

wDasErr = K_OpenDriver ("DAS1600", "DAS1600.CFG", hDrv)

4-124 Function Reference

K_RestoreChnGAry

Boards DAS-1601, DAS-1602, DAS-1401, DAS-1402
Supported
Purpose Restores a converted channel-gain queue.
Prototype C/C++

Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KRESTORECHNGARY% ALIAS
"K_RestoreChnGAry" (SE@Array AS INTEGER)

Parameters pArray Channel-gain queue starting address.
Return Value Error/status code. Refer to Appendix A.
Remarks This function restores the channel-gain queue at the address specified by

pArrayto its original format so that it can be used by your BASIC or
Visual Basic for Windows program. The channel-gain queue was
converted usingd_FormatChnGAry .

You cannot use a channel-gain queue with DAS-1200 Series boards.

See Also K_FormatChnGAry, K_SetChnGAry

4-125

K_RestoreChnGAry (cont.)

Usage

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global ChanGainArray(16) As Integer ' Chan/Gain array

wDasErr = K_RestoreChnGAry (ChanGainArray(0))

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array

wDasErr = KRestoreChnGAry% (ChanGainArray(0))

4-126 Function Reference

K_SetADFreeRun

Boards All

Supported

Purpose Specifies burst conversion mode.
Prototype C/C++

DASErr far pascal K_SetADFreeRun (DWORIBrame);

Turbo Pascal
Function K_SetADFreeRurnFrame: Longint) : Word,

Turbo Pascal for Windows
Function K_SetADFreeRurhFrame: Longint) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetADFreeRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KSETADFREERUN% ALIAS
"K_SetADFreeRun" (BYVALhFrameAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function sets the conversion mode for the operation defined by
hFrameto burst mode. Refer to page 2-20 for information on conversion
modes.

See Also K_CIrADFreeRun

4-127

K_SetADFreeRun (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetADFreeRun (hAD);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SetADFreeRun (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetADFreeRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetADFreeRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetADFreeRun% (hAD)

4-128 Function Reference

K_SetADTrig

Boards All

Supported

Purpose Sets up an analog trigger.
Prototype C/C++

DASErr far pascal K_SetADTrig (DWORDBFrame shortnOpt
shortnChan DWORD dwLeve);

Turbo Pascal
Function K_SetADTrig ljFrame: Longint;nOpt: Word; nChan: Word,;
dwLevel: Longint) : Word,;

Turbo Pascal for Windows
Function K_SetADTrig ljFrame: Longint;nOpt: Word; nChan: Word,;
dwLevel: Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_SetADTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnOptAs Integer,

ByVal nChanAs Integer, ByVablwLevelAs Long) As Integer

BASIC

DECLARE FUNCTION KSETADTRIG% ALIAS "K_SetADTrig"
(BYVAL hFrameAS LONG, BYVAL nOptAS INTEGER,
BYVAL nChanAS INTEGER, BYVAL dwLevelAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

4-129

K_SetADTrig (cont.)

Return Value

Remarks

See Also

4-130

nOpt Analog trigger polarity and sensitivity.
Valid values:
Value | Polarity Sensitivity
0 Positive | Edge-sensitive
1 Positive | Level-sensitive
2 Negative| Edge-sensitive
3 Negative| Level-sensitive

nChan Analog input channel used as trigger channel.
Valid values: 0 to 255

dwLevel Level at which the trigger event occurs.
Valid values: 0 to 4095

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the channel
used for an analog trigger iMChan the level used for the analog trigger
in dwLeve] and the trigger polarity and trigger sensitivityni@pt

You specify the value falwLevelin counts. Refer to Appendix B for
information on converting the actual voltage to a count.

ThenOptvariable sets the value of the Trigger Polarity and Trigger
Sensitivity elements.

ThenChanvariable sets the value of the Trigger Channel element.
ThedwLevelvariable sets the value of the Trigger Level element.

K_SetADTrig does not affect the operation definedhfyameunless the
Trigger Source element is set to External (by a cafl t8etTrig) before
hFrameis used as a calling argument¢oSyncStart, K_IntStart , or
K_DMAStart .

K_SetTrig

Function Reference

K_SetADTrig (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetADTrig (hAD, 0, 0, 2047);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SetADTrig (hAD, 0, 0, 2047);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetADTrig (hAD, 0, 0, 2047);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetADTrig (hAD, 0, 0, 2047)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetADTrig% (hAD, 0, 0, 2047)

4-131

K_SetBuf

Boards
Supported

Purpose

Prototype

Parameters

4-132

All

Specifies the starting address of a previously allocated or dimensioned
buffer and the number of samples in the buffer.

C/C++
DASETr far pascal K_SetBuf (DWORDBFrame void far*pBuf,
DWORD dwSamples

Turbo Pascal
Function K_SetBufl{Frame: Longint; pBuf: Pointer;
dwSamples Longint) : Word;

Turbo Pascal for Windows
Function K_SetBufl{Frame: Longint; pBuf: Pointer;
dwSamples Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_SetBuf Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValpBufAs Long,

ByVal dwSampleds Long) As Integer

BASIC

DECLARE FUNCTION KSETBUF% Alias "K_SetBuf"
(BYVAL hFrameAS LONG, BYVAL pBufAS LONG,
BYVAL dwSizeAS LONG)

hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer.
dwSamples Number of samples.

Valid values:

Analog I/O operations 1 to 5000000

Digital I/O operations| 1to 32767

Function Reference

K_SetBuf (cont.)

Return Value

Remarks

See Also

Usage

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the starting
address of a previously allocated buffepBufand the number of
samples (the size of the buffer)dwSamples

For C and Pascal programs, use this function whether you dimensioned
your array locally or allocated your buffer dynamically using

K_IntAlloc . For a buffer allocated dynamically usiigDMAAIloc , use
K_SetDMABuUT.

For C, make sure that you use proper typecasting to prevent C/C++
type-mismatch warnings. For Pascal, a special procedure is needed to
satisfy the type-checking requirements; refer to page 3-12 for more
information.

For Visual Basic for Windows and BASIC, use this function only for a
buffer allocated dynamically usir§ _IntAlloc . For a buffer allocated
dynamically usind<_DMAAIloc , useK_SetDMABuUf. For a locally
dimensioned array, us€ SetBufl.

ThepBufvariable sets the value of the Buffer element.

ThedwSamplevariable sets the value of the Number of Samples
element.

K_DMAAlloc, K_IntAlloc, K_SetBufl, K_SetDMABuUf

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer

wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);
wDasErr = K_SetBuf (hAD, pBuf, 1000);

4-133

K_SetBuf (cont.)

Turbo Pascal
uses D1600TP7;

TYPE

BufType = Array [0..1] of Integer;
VAR

pBuf : "BufType; { buffer pointer }

wDasErr := K_IntAlloc (hAD, 1000, Addr (pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, 1000);

Turbo Pascal for Windows
{$| DASDECL.INC}

TYPE

BufType = Array [0..1] of Integer;
VAR

pBuf : *BufType; { buffer pointer }

wDasErr := K_IntAlloc (hAD, 1000, Addr (pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, 1000);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global pBuf As Long

wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)
wDasErr = K_SetBuf (hAD, pBuf, 1000)

BASIC
" $INCLUDE: 'DASDECL.BI’

DIM pBuf AS LONG

wDasErr = KIntAlloc% (hAD, 1000, pBuf, hMem)
wDasErr = KSetBuf% (hAD, pBuf, 1000)

4-134 Function Reference

K_SetBufl

Boards All
Supported
Purpose Specifies the starting address of a locally dimensioned integer array and

the number of samples in the array.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_SetBufl Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrameAs Long,pBufAs Integer, ByVadwSizeAs Long)

As Integer

BASIC
DECLARE FUNCTION KSETBUFI% Alias "K_SetBuf"
(BYVAL hFrameAS LONG, SEGBUfAS INTEGER,
BYVAL dwSizeAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of the locally dimensioned
integer array.

dwSize Number of samples.
Valid values:1t0 32767

Return Value Error/status code. Refer to Appendix A.

4-135

K_SetBufl (cont.)

Remarks For the operation defined yrame this function specifies the starting
address of a locally dimensioned integer buffgyBufand the number of
samples stored in the bufferdwSize

Do not use this function for C and Pascal; for these languages, use
K_SetBuf.

For Visual Basic for Windows and BASIC, use this function only for a
locally dimensioned array. For a buffer allocated dynamically using
K_IntAlloc , useK_SetBuf. For a buffer allocated dynamically using
K_DMAAIlloc , useK_SetDMABUS.

The pBufvariable sets the value of the Buffer element.
ThedwsSizevariable sets the value of the Number of Samples element.

See Also K_DMAAlloc, K_IntAlloc, K_SetBuf, K_SetDMABuf

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Dim ADData(2000) As Integer

wDasErr = K_SetBufl (hAD, ADData(0), 2000)

BASIC
' $INCLUDE: 'DASDECL.BI'

Dim ADData(2000) AS LONG

wDasErr = KSetBufl% (hAD, ADData(0), 2000)

4-136 Function Reference

K_SetBufL

Boards All
Supported
Purpose Specifies the starting address of a locally dimensioned long array and the

number of samples in the array.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_SetBufL Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrameAs Long,pBufAs Long, ByValdwSizeAs Long)

As Integer

BASIC
DECLARE FUNCTION KSETBUFL% Alias "K_SetBuf"
(BYVAL hFrameAS LONG, SEGBUfAS LONG,
BYVAL dwSizeAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of the user-dimensioned long
array.
dwSize Number of samples.
Return Value Error/status code. Refer to Appendix A.

4-137

K_SetBufL (cont.)

Remarks For the operation defined yrame this function specifies the starting
address of a locally dimensioned long arrapBufand the number of
samples stored in the bufferdwSize

This function is useful for digital /0O operations when you are accessing
more than 16 of the digital input or digital output lines.

Do not use this function for C and Pascal; for these languages, use
K_SetBuf.

For Visual Basic for Windows and BASIC, use this function only for a
locally dimensioned array. For a buffer allocated dynamically using
K_IntAlloc , useK_SetBuf. For a buffer allocated dynamically using
K_DMAAIlloc , useK_SetDMABUf.

The pBufvariable sets the value of the Buffer element.
ThedwsSizevariable sets the value of the Number of Samples element.

See Also K_DMAAlloc, K_IntAlloc, K_SetBuf, K_SetDMABuf

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Dim DOData(2000) As Long

wDasErr = K_SetBufL (hAD, DOData(0), 2000)

BASIC
' $INCLUDE: 'DASDECL.BI'

Dim DOData(2000) AS LONG

wDasErr = KSetBufL% (hAD, DOData(0), 2000)

4-138 Function Reference

K_SetBurstTicks

Boards All

Supported

Purpose Specifies the count value used to adjust the settling time.
Prototype C/C++

DASErr far pascal K_SetBurstTicks (DWORiBFrame shortnTicks;

Turbo Pascal
Function K_SetBurstTickshErame: Longint; nTicks: Word) : Word,

Turbo Pascal for Windows
Function K_SetBurstTickshfFrame: Longint;nTicks: Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetBurstTicks Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnTicksAs Integer) As Integer

BASIC

DECLARE FUNCTION KSETBURSTTICKS% ALIAS
"K_SetBurstTicks" (BYVALhFrameAS LONG,

BYVAL nTicksAS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nTicks Count value used to adjust the settling time.
Valid values: 2to 255

Return Value Error/status code. Refer to Appendix A.

4-139

K_SetBurstTicks (cont.)

Remarks

See Also

Usage

4-140

For the operation defined Iyrrame this function specifies the count
value used to adjust the settling timenificks

Refer to page 2-20 for more information.
K_SetADFreeRun

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetBurstTicks (hAD, 10);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SetBurstTicks (hAD, 10);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetBurstTicks (hAD, 10);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetBurstTicks (hAD, 10)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetBurstTicks% (hAD, 10)

Function Reference

K_SetChn

Boards All

Supported

Purpose Specifies a single channel.
Prototype C/C++

DASErr far pascal K_SetChn (DWORFrame shortnChar);

Turbo Pascal
Function K_SetChnhFrame: Longint;nChan: Word) : Word,

Turbo Pascal for Windows
Function K_SetChnhfFrame: Longint;nChan: Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnChanAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETCHN% ALIAS "K_SetChn"
(BYVAL hFrameAS LONG, BYVAL nChanAS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nChan Channel on which to perform operation.
Valid values: 0 to 255 (analog input)
0 or1 (analog output)

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined tyrame this function specifies the single
channel used inChan

ThenChanvariable sets the Start Channel element and the Stop Channel
element.

4-141

K_SetChn (cont.)

See Also K_SetStartStopChn, K_SetStartStopG

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetChn (hAD, 2);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SetChn (hAD, 2);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDaskErr := K_SetChn (hAD, 2);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetChn (hAD, 2)

BASIC
" $INCLUDE: 'DASDECL.BI'

wDasErr = KSetChn% (hAD, 2)

4-142 Function Reference

K_SetChnGAry

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

DAS-1601, DAS-1602, DAS-1401, DAS-1402

Specifies the starting address of a channel-gain queue.

C/C++

DASETr far pascal K_SetChnGAry (DWORtiFrame void far*pArray);

Turbo Pascal
Function K_SetChnGAryhFrame: Longint;
Var pArray : Integer) : Word;

Turbo Pascal for Windows
Function K_SetChnGAryhFrame: Longint;
Var pArray : Integer) : Word; far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KSETCHNGARY% ALIAS "K_SetChnGAry"
(BYVAL hFrameAS LONG, SEGpArrayAS INTEGER)

hFrame Handle to the frame that defines the operation.
pArray Channel-gain queue starting address.
Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the starting
address of the channel-gain queupAuray.

ThepArray variable sets the value of the Channel-Gain Queue element.
Refer to page 2-19 for information on setting up a channel-gain queue.

4-143

K_SetChnGAry (cont.)

If you created your channel-gain queue in BASIC or Visual Basic for
Windows, you must ug€ FormatChnGAry to convert the channel-gain
queue before you specify the address WitlsetChnGAry.

You cannot use a channel-gain queue with DAS-1200 Series boards.
See Also K_FormatChnGAry, K_RestoreChnGAry
Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

// DECLARE AND INITIALIZE CHAN/GAIN PAIRS
/I (GainChanTable-TYPE IS DEFINED IN dasdecl.h)
GainChanTable ChanGainArray= {2, //# of entries
0,0, //chanO0,gain1
1,1}; //chan 1, gain 2

wDasErr = K_SetChnGAry (hAD, &ChanGainArray);

Turbo Pascal
uses D1600TP7;

{ Define Gain/Channel array type }

TYPE GainChanTable = Record
num_of _codes : Integer;
queue : Array[0..15] of Byte;
END;

CONST ChanGainArray : GainChanTable = (
num_of_codes : (8); { # of chan/gain pairs }
queue : (0,0, 1,1)

)i

wDaskErr := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);

4-144 Function Reference

K_SetChnGAry (cont.)

Turbo Pascal for Windows
{$| DASDECL.INC}

{ Define Gain/Channel array type }

TYPE GainChanTable = Record
num_of codes : Integer;
queue : Array[0..15] of Byte;
END;

CONST ChanGainArray : GainChanTable = (
num_of_codes : (8); {# of chan/gain pairs }
queue : (0,0, 1,1)

)i

wDaskErr := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global ChanGainArray(16) As Integer

' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hAD, ChanGainArray(0))

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(16) AS INTEGER

' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) =0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = KFormatChnGAry% (ChanGainArray(0))
wDasErr = KSetChnGAry% (hAD, ChanGainArray(0))

4-145

K_SetClk

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

4-146

All

Specifies the pacer clock source.

C/C++
DASErr far pascal K_SetClk (DWORBFrame shortnMode;

Turbo Pascal
Function K_SetClkl{Frame: Longint;nMode: Word) : Word;

Turbo Pascal for Windows
Function K_SetClkl{fFrame: Longint;nMode: Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnModeAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETCLK% ALIAS "K_SetCIk"
(BYVAL hFrameAS LONG, BYVAL nModeAS INTEGER)

hFrame Handle to the frame that defines the operation.

nMode Pacer clock source.
Valid values: O for Internal
1 for External

Error/status code. Refer to Appendix A.

For the operation defined wrrame this function specifies the pacer
clock source imMode

ThenModevariable sets the Clock Source element.

The internal clock source is the output of the onboard 82C54
counter/timer; an external clock source is an external signal connected to
the IPO/TRIGO/XPCLK pin (25).

Function Reference

K_SetClIk (cont.)

See Also

Usage

For more information on pacer clock sources, refer to the following
pages:

Analog input operations | page 2-22

Analog output operations| page 2-35

Digital I/O operations page 2-49

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, andK_ClearFrame specify internal as the default
clock source.

K_SetCIkRate

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetCIk (hAD, 1);

Turbo Pascal
uses D1600TP7;

wDasErr ;= K_SetCIk (hAD, 1);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetClk (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetClk (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetClk% (hAD, 1)

4-147

K_SetClkRate

Boards All
Supported
Purpose Specifies the number of clock ticks used by the internal pacer clock.
Prototype C/C++
DASErr far pascal K_SetClkRate (DWORiPrame
DWORD dwDivisot);

Turbo Pascal
Function K_SetClkRatéhfFrame: Longint;dwDivisor: Longint) : Word;

Turbo Pascal for Windows
Function K_SetCIkRatehframe: Longint;dwDivisor : Longint) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetClkRate Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValdwDivisorAs Long) As Integer

BASIC
DECLARE FUNCTION KSETCLKRATE% ALIAS "K_SetClkRate"
(BYVAL hFrameAS LONG, BYVAL dwDivisorAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

dwDivisor Number of clock ticks between conversions.
Valid values: 10t0 42949672951 MHz)
100t0 429496729510 MHz)

Return Value Error/status code. Refer to Appendix A.

4-148 Function Reference

K_SetClkRate (cont.)

Remarks

See Also

Usage

For the operation defined Wrame this function specifies the number

of clock ticks used by the internal pacer clocklwDivisor.

ThedwDivisorvariable sets the Pacer Clock Rate element.

Refer to page 2-23 for more information about the internal pacer clock.

K_SetCIk, K_GetClkRate

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwClIkDiv;

dwClkDiv = 1000000 / 10000;
wDasErr = K_SetClkRate (hAD, dwClIkDiv);

Turbo Pascal
uses D1600TP7;

dwClIkDiv : Longint;

dwClIkDiv := 1000000 / 10000;
wDasErr := K_SetClkRate (hAD, dwClIkDiv);

Turbo Pascal for Windows
{$| DASDECL.INC}

dwClIkDiv : Longint;

dwClkDiv := 1000000 / 10000;
wDasErr ;= K_SetClkRate (hAD, dwClkDiv);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global dwClIkDiv As Long

dwClkDiv = 1000000 / 10000
wDasErr = K_SetClkRate (hAD, dwClIkDiv)

4-149

K_SetClkRate (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM dwClkDiv AS LONG

dwClkDiv = 1000000 / 10000
wDasErr = KSetClkRate% (hAD, dwCIkDiv)

4-150 Function Reference

K_SetContRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Specifies continuous buffering mode.

C/C++

DASErr far pascal K_SetContRun (DWORIPrams;

Turbo Pascal
Function K_SetContRurhframe: Longint) : Word;

Turbo Pascal for Windows
Function K_SetContRurhfFrame: Longint) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetContRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KSETCONTRUN% ALIAS "K_SetContRun"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

For the operation defined yrame this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, andK_ClearFrame specify single-cycle buffering
mode.

4-151

K_SetContRun (cont.)

For more information on buffering modes, refer to the following pages:

Analog input operations | page 2-24

Analog output operations| page 2-38

Digital I/O operations page 2-51

See Also K_CIrContRun

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetContRun (hAD);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SetContRun (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDaskErr := K_SetContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetContRun (hAD)

BASIC
"$INCLUDE: 'DASDECL.BI'

wDasErr = KSetContRun% (hAD)

4-152 Function Reference

K_SetDITrig

Boards All

Supported

Purpose Sets up an external digital trigger.
Prototype C/C++

DASErr far pascal K_SetDITrig (DWORBFrame shortnOpt,
shortnChan DWORD nPattern);

Turbo Pascal
Function K_SetDITrig jFrame: Longint;nOpt: Word; nChan: Word;
nPattern: Longint) : Word;

Turbo Pascal for Windows
Function K_SetDITrig fjFrame: Longint;nOpt: Word; nChan: Word;
nPattern: Longint) : Word; far; external 'DASSHELL",

Visual Basic for Windows

Declare Function K_SetDITrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnOptAs Integer,

ByVal nChanAs Integer, ByVahPatternAs Long) As Integer

BASIC

DECLARE FUNCTION KSETDITRIG% ALIAS "K_SetDITrig"
(BYVAL hFrameAS LONG, BYVAL nOptAS INTEGER,
BYVAL nChanAS INTEGER, BYVAL nPatternAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

4-153

K_SetDITrig (cont.)

Return Value

Remarks

See Also

4-154

nOpt Trigger polarity and sensitivity.
Valid values:
Value | Polarity Sensitivity
0 Positive | Edge-sensitive
1 Positive | Level-sensitive
2 Negative | Edge-sensitive
3 Negative | Level-sensitive

nChan Digital input channel.
Valid value: 0

nPattern Trigger pattern.
Error/status code. Refer to Appendix A.

For the operation defined Ifrrame this function specifies the digital
trigger polarity and sensitivity inOpt

Since the DAS-1600/1400/1200 Series Function Call Driver does not
currently support digital pattern triggering, the valu@Bétternis
meaningless. Since the external digital trigger must be connected to
IPL/XTRIG pin (6), the value afChanis meaningless. Th&Patternand
nChanparameters are provided for future compatibility.

ThenOptvariable sets the value of the Trigger Polarity and Trigger
Sensitivity elements.

K_SetDITrig does not affect the operation definedhfyameunless the
Trigger Source element is set to External (by a cafl t8etTrig) before
hFrameis used as a calling argumenttoSyncStart, K_IntStart , or
K_DMAStart .

K_SetTrig

Function Reference

K_SetDITrig (cont.)

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetDITrig (hAD, 0, 0, 0);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SetDITrig (hAD, 0, 0, 0);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetDITrig (hAD, 0, 0, 0);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetDITrig (hAD, 0, 0, 0)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetDITrig% (hAD, 0, 0, 0)

4-155

K_SetDMABuf

Boards All
Supported
Purpose Specifies the starting address of a previously allocated buffer and the

number of samples in the buffer.

Prototype C/C++
DASETr far pascal K_SetDMABuf (DWORBFrame void far*pBuf,
DWORD dwSamples

Turbo Pascal
Function K_SetDMABuUf iFrame: Longint; pBuf: Pointer;
dwSamples Longint) : Word;

Turbo Pascal for Windows
Function K_SetDMABuUf iFrame: Longint; pBuf: Pointer;
dwSamples Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_SetDMABuUf Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValpBufAs Long,

ByVal dwSampleds Long) As Integer

BASIC

DECLARE FUNCTION KSETDMABUF% ALIAS "K_SetDMABuf"
(BYVAL hFrameAS LONG, BYVAL pBufAS LONG,

BYVAL dwSampleé&S LONG)

Parameters hFrame Handle to the frame that defines the DMA-mode
analog input operation.

pBuf Starting address of buffer.

dwSamples Number of samples.
Valid values: 1 to 32768

Return Value Error/status code. Refer to Appendix A.

4-156 Function Reference

K_SetDMABuf (cont.)

Remarks For the operation specified bfframe this function specifies the starting
address of a previously allocated buffepBufand the number of
samples stored in the bufferdwSamples

ThepBufvariable contains the value of the Buffer element.
ThedwSamplesariable contains the value of the Number of Samples

element.
See Also K_DMAAlloc, KMakeDMABuUf
Usage
C/C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
void far *pBuf; // Pointer to allocated buffer

wDasErr = K_DMAAlloc (hAD, 1000, &pBuf, &hMem);
wDasErr = K_SetDMABuUf (hAD, pBuf, 1000);

Turbo Pascal
uses D1600TP7;

TYPE

BufType = Array [0..1] of Integer;
VAR

pBuf : *BufType; { buffer pointer }

wDasErr := K_DMAAIlloc (hAD, 1000, Addr (pBuf), hMem);
wDasErr := K_SetDMABuf (hAD, pBuf, 1000);

4-157

K_SetDMABuf (cont.)

Turbo Pascal for Windows
{$| DASDECL.INC}

TYPE

BufType = Array [0..1] of Integer;
VAR

pBuf : "BufType; { buffer pointer }

wDasErr := K_DMAAIlloc (hAD, 1000, Addr (pBuf), hMem);
wDasErr := K_SetDMABuf (hAD, pBuf, 1000);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

Global pBuf As Long

wDasErr = K_DMAAIlloc (hAD, 1000, pBuf, hMem)
wDasErr = K_SetDMABuf (hAD, pBuf, 1000)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM pBuf AS LONG

wDasErr = KDMAAIloc% (hAD, 1000, pBuf, hMem)
wDasErr = KSetDMABuUf% (hAD, pBuf, 1000)

4-158 Function Reference

K SetG

Boards DAS-1601, DAS-1602, DAS1401, DAS-1402
Supported

Purpose Sets the gain.

Prototype C/C++

DASETr far pascal K_SetG (DWORBFrame shortnGain);

Turbo Pascal
Function K_SetGHFrame: Longint;nGain: Word) : Word,;

Turbo Pascal for Windows
Function K_SetGHFrame: Longint;nGain: Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnGainAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETG% ALIAS "K_SetG"
(BYVAL hFrameAS LONG, BYVAL nGainAS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

4-159

K_SetG (cont.)

nGain Gain code.
Valid values:
Board Gain |Gain Code
DAS-1601 1 0
DAS-1401
S-140 10 1
100 2
500 3
DAS-1602 1 0
DAS-1402
2 1
4 2
8 3
Return Value Error/status code. Refer to Appendix A.
Remarks For the operation defined IWrrame this function specifies the gain code

for a single channel or for a group of consecutive channel&&in
ThenGainvariable sets the Gain element.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, andK_ClearFrame specify a gain of 1 (gain code 0)

as the default gain.

Gain codes do not apply to DAS-1200 Series boards.

See Also K_SetStartStopG

4-160

Function Reference

K_SetG (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetG (hAD, 1);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SetG (hAD, 1);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetG (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetG (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetG% (hAD, 1)

4-161

K_SetSSH

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

4-162

All

Enables and disables SSH mode.

C/C++
DASErr far pascal K_SetSSH (DWORiFrame WORDnModé;

Turbo Pascal
Function K_SetSSHhframe: Longint;nMode: Word) : Word;

Turbo Pascal for Windows
Function K_SetSSHhframe: Longint; nMode: Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetSSH Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnModeAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETSSH% ALIAS "K_SetSSH"
(BYVAL hFrameAS LONG, BYVAL nModeAS INTEGER)

hFrame Handle to the frame that defines the operation.

nMode Code that indicates the status of SSH mode.
Valid values: O for Disabled
1 for Enabled

Error/status code. Refer to Appendix A.
For the operation defined Iyrrame this function stores the code that
indicates the status of SSH modenMode

K_GetADFrame andK_ClearFrame also disable SSH mode.
Refer to page 2-22 for information on SSH mode.

Function Reference

K_SetSSH (cont.)

See Also

Usage

K_SetADFreeRun, K_CIrADFreeRun

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetSSH (hAD, 1);

Turbo Pascal
uses D1600TP7;

wDasErr ;= K_SetSSH (hAD, 1);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetSSH (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetSSH (hAD, 1)

BASIC
'$INCLUDE: 'DASDECL.BI'

wDasErr = KSetSSH% (hAD, 1)

4-163

K_SetStartStopChn

Boards
Supported

Purpose

Prototype

Parameters

Return Value

4-164

All

Specifies the first and last channels in a group of consecutive channels.

C/C++

DASErr far pascal K_SetStartStopChn (DWORErame shortnStart
shortnStop);

Turbo Pascal
Function K_SetStartStopChhKrame: Longint; nStart: Word;
nStop: Word) : Word,

Turbo Pascal for Windows
Function K_SetStartStopChhKrame: Longint; nStart: Word;
nStop: Word) : Word,; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnStartAs Integer,

ByVal nStopAs Integer) As Integer

BASIC

DECLARE FUNCTION KSETSTARTSTOPCHN% ALIAS
"K_SetStartStopChn" (BYVALhFrameAS LONG,

BYVAL nStartAS INTEGER, BYVAL nStopAS INTEGER)

hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values: 0 to 255 (analog input)
0 or 1 (analog output)

nStop Last channel in a group of consecutive channels.
Valid values: 0 to 255 (analog input)
0 or 1 (analog output)

Error/status code. Refer to Appendix A.

Function Reference

K_SetStartStopChn (cont.)

Remarks

See Also

Usage

For the operation defined tyrame this function specifies the first
channel in a group of consecutive channelsSitartand the last channel
in the group of consecutive channelBtop

ThenStartvariable sets the value of the Start Channel element.
ThenStopvariable sets the value of the Stop Channel element.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame andK_ClearFrame set the Start Channel and Stop
Channel elements to 0.

K_SetStartStopG

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetStartStopChn (hAD, 0, 7);

Turbo Pascal
uses D1600TP7;

wDasErr ;= K_SetStartStopChn (hAD, 0, 7);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetStartStopChn (hAD, 0, 7);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetStartStopChn (hAD, 0, 7)

BASIC
'$INCLUDE: 'DASDECL.BI'

wDasErr = KSetStartStopChn% (hAD, 0, 7)

4-165

K_SetStartStopG

Boards DAS-1601, DAS-1602, DAS-1401, DAS-1402
Supported
Purpose Specifies the first and last channels in a group of consecutive channels and

sets the gain for all channels in the group.

Prototype C/C++
DASETr far pascal K_SetStartStopG (DWORBrame shortnStart
shortnStop shortnGain);

Turbo Pascal
Function K_SetStartStop@Gframe: Longint; nStart: Word;
nStop: Word; nGain: Word) : Word;

Turbo Pascal for Windows
Function K_SetStartStop@Gframe: Longint; nStart: Word;
nStop: Word; nGain: Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_SetStartStopG Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnStartAs Integer,

ByVal nStopAs Integer, ByVahGainAs Integer) As Integer

BASIC

DECLARE FUNCTION KSETSTARTSTOPG% ALIAS
"K_SetStartStopG" (BYVALhFrameAS LONG,

BYVAL nStartAS INTEGER, BYVAL nStopAS INTEGER,
BYVAL nGainAS INTEGER)

4-166 Function Reference

K_SetStartStopG (cont.)

Parameters

Return Value

Remarks

hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values: 0 to 255

nStop Last channel in a group of consecutive channels.
Valid values: 0 to 255

nGain Gain code.
Valid values

Board Gain |Gain Code

DAS-1601 1 0

DAS-1401 10 1
100 2
500 3

DAS-1602 1 0

DAS-1402 5 1
4 2
8 3

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the first
channel in a group of consecutive channelsStart the last channel in a
group of consecutive channelsi8top and the gain code for all channels
in the group imGain

ThenStartvariable sets the value of the Start Channel element.
ThenStopvariable sets the value of the Stop Channel element.
ThenGainvariable sets the value of the Gain element.

K_GetADFrame andK_ClearFrame set the Start Channel, Stop
Channel, and Gain elements to 0.

4-167

K_SetStartStopG (cont.)

See Also

Usage

4-168

Gain codes do not apply to DAS-1200 Series boards.
K_SetChn, K_SetStartStopChn

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetStartStopG (hAD, 0, 7, 0);

Turbo Pascal
uses D1600TP7;

wDaskErr := K_SetStartStopG (hAD, 0, 7, 0);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr ;= K_SetStartStopG (hAD, 0, 7, 0);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetStartStopG (hAD, 0, 7, 0)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetStartStopG% (hAD, 0, 7, 0)

Function Reference

K_SetTrig

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Specifies the trigger source.

C/C++

DASETr far pascal K_SetTrig (DWORDBFrame shortnMods);

Turbo Pascal
Function K_SetTrigl{Frame: Longint;nMode: Word) : Word,;

Turbo Pascal for Windows
Function K_SetTrigt{Frame: Longint;nMode: Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnModeAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETTRIG% ALIAS "K_SetTrig"
(BYVAL hFrameAS LONG, BYVAL nModeAS INTEGER)

hFrame Handle to the frame that defines the operation.

nMode Trigger source.
Valid values: 0 for Internal trigger
1 for External trigger

Error/status code. Refer to Appendix A.

For the operation defined Wrame this function specifies the trigger
source imMode

An internal trigger is a software trigger; the trigger event occurs when the
operation is started. Note that there is a slight delay between when the
operation is started and when the trigger event occurs. An external trigger

4-169

K_SetTrig (cont.)

See Also

Usage

4-170

is either an analog trigger or a digital trigger. Refer to page 2-25 for more
information about internal and external trigger sources.

If nMode=1, an external digital trigger (positive edge on the IP1/XTRIG
pin (6)) is assumed. Us€ SetDITrig to change the conditions of the
digital trigger. Us&K_SetADTrig to specify the conditions for an external
analog trigger.

K_GetADFrame andK_ClearFrame set the trigger source to internal.
K_SetADTrig, K_SetDITrig

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetTrig (hAD, 1);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SetTrig (hAD, 1);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetTrig (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetTrig (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetTrig% (hAD, 1)

Function Reference

K_SetTrigHyst

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Specifies the hysteresis value.

C/C++

DASErr far pascal K_SetTrigHyst (DWORIFrame shortnHys);

Turbo Pascal
Function K_SetTrigHysth{Frame: Longint; nHyst: Word) : Word;

Turbo Pascal for Windows
Function K_SetTrigHysthFrame: Longint; nHyst: Word) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetTrigHyst Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnHystAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETTRIGHYST% ALIAS "K_SetTrigHyst"
(BYVAL hFrameAS LONG, BYVAL nHystAS INTEGER)

hFrame Handle to the frame that defines the operation.

nHyst Hysteresis value, specified in counts.
Valid values: 0 to 4095

Error/status code. Refer to Appendix A.

For the operation defined IWFrame this function specifies the hysteresis
value used for an analog triggemihlyst

You specify the hysteresis value in counts; refer to Appendix B for
information on converting the hysteresis voltage to a count.

ThenHystvariable sets the Trigger Hysteresis element.

4-171

K_SetTrigHyst (cont.)

See Also

Usage

4-172

K_SetTrigHyst does not affect the operation definedhbyameunless
the Trigger Source element is set to External (by a c#ll ®etTrig)
beforehFrameis used as a calling argumenttoSyncStart,
K_IntStart , orK_DMAStart .

Refer to page 2-26 for more information about analog triggers.
K_SetADTrig

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetTrigHyst (hAD, 50);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SetTrigHyst (hAD, 50);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetTrigHyst (hAD, 50);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetTrigHyst (hAD, 50)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSetTrigHyst% (hAD, 50)

Function Reference

K_SyncStart

Boards All

Supported

Purpose Starts a synchronous-mode operation.
Prototype C/C++

DASErr far pascal K_SyncStart (DWORiFrame;

Turbo Pascal
Function K_SyncStarhframe: Longint) : Word,;

Turbo Pascal for Windows
Function K_SyncStarthframe: Longint) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SyncStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KSYNCSTART% ALIAS "K_SyncStart"
(BYVAL hFrameAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
Return Value Error/status code. Refer to Appendix A.
Remarks This function starts the synchronous-mode operation definbétayne

Refer to the following pages for an illustration of the programming tasks
associated with synchronous-mode operations:

Analog input | page 1-8

Analog output | page 1-14

Digital input page 1-18

Digital output | page 1-21

4-173

K_SyncStart (cont.)

See Also K_IntStart, K_DMAStart

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SyncStart (hAD);

Turbo Pascal
uses D1600TP7;

wDasErr := K_SyncStart (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDaskErr := K_SyncStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SyncStart (hAD)

BASIC
" $INCLUDE: 'DASDECL.BI'

wDasErr = KSyncStart% (hAD)

4-174 Function Reference

A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the
DAS-1600/1400/1200 Series Function Call Driver, possible causes for
error conditions, and possible solutions for resolving error conditions.

If you cannot resolve an error condition, contact Keithley MetraByte
(508-880-3000) for technical support.

Table A-1. Error/Status Codes

Error Code

Hex Decimal Cause Solution

0 0 No error has been detected. Status only; no action is necessary.

6000 24576 Error in configuration file: The | Check that the file exists at the
configuration file you specified in| specified path. Check for illegal
the driver initialization function is| keywords in file; you can avoid illega
corrupt, does not exist, or containkeywords by using the configuration
one or more undefined keywords. utility to create and modify

configuration files.

6001 24577 lllegal base address in Use the configuration utility to change
configuration file: The board's the base I/O address to one that
base 1/0 address in the matches the base address switches on
configuration file is illegal and/or | the board.
does not match the base addresg
switches on the board.

6002 24578 lllegal IRQ level in configuration | Use the configuration utility to change
file: The interrupt level in the the interrupt level to a legal one for
configuration file is illegal. your board. Refer to the user’s guid

for legal interrupt levels.

D

A-1

Table A-1. Error/Status Codes (cont.)

D

2]

14

Error Code

Hex Decimal Cause Solution

6003 24579 lllegal DMA channel in Use the configuration utility to change
configuration file: The DMA the DMA channel to a legal one for
channel in the configuration file i§ your board. Refer to the user’s guid
illegal. for legal DMA channels.

6005 24581 lllegal channel number:; The Specify a legal channel number. Refer
specified channel number is illegato the user’s guide or to the
for the board and/or for the range description oK_SetStartStopChnin
type (unipolar or bipolar). Chapter 4 for legal channel numbers.

6006 24582 Illegal gain code:The specified | Specify a legal gain code. Refer to the
analog I/0 channel gain code is | user’s guide or to the description of
illegal for this board. K_SetGin Chapter 4 for a list of lega

gain codes.

6007 24583 lllegal DMA address: An FCD Use theK_DMAAIloc function to
function specified a buffer addressallocate dynamic buffers for DMA
that is not suitable for a DMA operations. In Windows, make sure
operation for the number of that the Keithley Memory Manager i
samples required. installed; refer to Appendix D of the

user’s guide for information.

6008 24584 lllegal number in configuration | Use the configuration utility to check
file: The configuration file contain| and then change the configuration file.
one or more numeric values that
are illegal.

600A 24586 Configuration file not found: The | Check that the file exists at the
driver cannot find the specified path. Check that the file
configuration file specified as an | name is spelled correctly in the driver
argument to the driver initializationinitialization function parameter list.
function.

600B 24587 Error returning DMA buffer: Check that the memory handle passed
DOS returned an error in INT 21} as an argument & DMAFree was
function 49H during the executiol previously obtained using
of K_DMAFree. K_DMAAlloc .

600C 24588 Error returning interrupt Check the memory handle stored by
buffer: The memory handle K_IntAlloc and make sure that it was
specified inK_IntFree is invalid. | not modified.

A-2 Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal | Cause Solution

600D 24589 lllegal frame handle: The Check that the frame handle exists.
specified frame handle is not vali Check that you are using the
for this operation. appropriate frame handle.

600E 24590 No more frame handles:No The Function Call Driver supports a
frames are left in the pool of maximum of 30 frames of all types.
available frames. UseK_FreeFrameto free a frame

that the program is no longer using.
600F 24591 Requested buffer size too large: | Specify a smaller buffer size; refer to
The requested buffer cannot be | the description oK_IntAlloc in
dynamically allocated because o Chapter 4 for the legal range. If the
its size. Keithley Memory Manager is
installed, use KMMSETUP.EXE to
increase the reserved buffer heap sjze.

6010 24592 Cannot allocate interrupt buffer: | Remove some Terminate and Stay
(Windows-based languages only) Resident programs (TSRs) that are no
K_IntAlloc failed because there | longer needed.
was not enough available DOS
memory.

6012 24594 Interrupt buffer deallocation Make sure that the memory handle
error: (Windows-based languagg passed as an argumenttolntFree
only) An error occurred when was previously obtained using
K_IntFree attempted to freea | K_IntAlloc .
memory handle.

6015 24597 DMA Buffer too large: The Refer to the description of
number of samples specified in | K_DMAAIloc in Chapter 4 for the
K_DMAAlloc is too large. buffer size range.

6016 24598 VDS - Region not contiguousAn | Refer to the user’s guide for
error occurred while using information on how to install and se
Windows Virtual DMA Services. | up the Keithley Memory Manager.
You tried to us&K_DMAAlloc and
the Keithley Memory Manager wg
not installed.

6017 24599 VDS - DMA wraparound: See See error 6016.
error 6016.

A-3

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

6018 24600 VDS - Unable to lock region:See | See error 6016.
error 6016.

6019 24601 VDS - No buffer available:See | See error 6016.
error 6016.

601A 24602 VDS - Region too largeSee error| See error 6016.
6016.

601B 24603 VDS - Buffer in use: See error See error 6016.
6016.

601C 24604 VDS - lllegal region: See error | See error 6016.
6016.

601D 24605 VDS - Region not lockedSee See error 6016.
error 6016.

601E 24606 VDS - lllegal page:See error See error 6016.
6016.

601F 24607 VDS - lllegal buffer: See error | See error 6016.
6016.

6020 24608 VDS - Copy out of range:See See error 6016.
error 6016.

6021 24609 VDS - lllegal DMA channel: See | See error 6016.
error 6016.

6022 24610 VDS - Count overflow: See error | See error 6016.
6016.

6023 24611 VDS - Count underflow: See See error 6016.
error 6016.

6024 24612 VDS - Function not supported: | See error 6016.
See error 6016.

6025 24613 lllegal OBM mode: The mode Specify a legal mode value.
number specified in
K_SetOBMMode is illegal.

A-4 Error/Status Codes

Table A-1. Error/Status Codes (cont.)

2]

Error Code
Hex Decimal Cause Solution
6026 24614 lllegal DMA structure: An error | Try usingK_DMAFree again. If the
occurred during the execution of | error continues, contact Keithley
K_DMAFree. MetraByte for technical support.
6027 24615 DMA allocation error: See error | See error 6026.
6026.
6028 24616 NULL DMA handle: See error See error 6026.
6026.
6029 24617 DMA unlock error: See error See error 6026.
6026.
602A 24618 DMA free error: See error 6026.| See error 6026.
602B 24619 Not enough memory to Specify a smaller number of samples.
accommodate requestThe Free a previously allocated buffer. Use
number of samples you requeste the KMMSETUP.EXE utility to
in the Keithley Memory Manager| expand the reserved heap.
is greater than the largest
contiguous block available in the
reserved heap.
602C 24620 Requested buffer size exceeds | Specify a value within the legal range
maximum: The number of when callingk_DMAAIloc . Refer to
samples you requested from the | the description oK_DMAAIloc in
Keithley Memory Manager is Chapter 4 for legal values.
greater than the allowed maximur
602D 24621 lllegal device handle:A bad Check the device handle value.
device handle was passed to a
function such ak_GetADFrame.
The handle used was not initializ¢
through a call to
K_GetDevHandleor
DAS1600_GetDevHandleor it
was corrupted by your program.
602E 24622 lllegal setup option: An illegal Check the option value passed to the
option was specified to a functior function where the error occurred.
that accepts a user option, such
K_SetDITrig .

A-5

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal | Cause Solution

6030 24624 DMA word-page wrap: During | Reduce the number of samples and
K_DMAAlloc , a DMA word-page| retry. Install and configure the
wrap condition occurred and the | Keithley Memory Manager.
allocation attempt failed since
there is not enough free memory to
accommodate the allocation
request.

6031 24625 lllegal memory block handle:A | Restart your program and monitor the
bad memory handle was passed| memory handle value(s).

K_IntFree orK_DMAFree. The
handle used was not initialized
through a call t&_IntAlloc or
K_DMAAlloc , or it was corrupted
by you program.

6032 24626 Out of memory handles:An UseK_IntFree orK_DMAFree to
attempt to allocate a memory blockree previously allocated memory
usingK_IntAlloc or blocks before allocating again.
K_DMAAlloc failed because the
maximum number of handles has
already been assigned.

6034 24628 Memory corrupted: Int 21H Recheck the parameters set by
function 48H, used to allocate a | K_ DMAAIlloc andK_SetDMABuUf.
memory block from the DOS far | If a fatal system error, restart your
heap, returned the DOS error 7; | computer.
this means that memory is
corrupted. It is likely that you
stored data (through a DMA-mod
or interrupt-mode operation) into
an illegal area of DOS memory.

6035 24629 Driver in use: You attempted to | To continue using the driver with the
initialize a driver that was already same configuration, pass a null string
initialized by a call to as the second argument to
K_OpenDriver. (This can occur | K_OpenDriver. To use the driver
since, under Windows, it is with a different configuration, close
possible to open the same driver| any programs currently accessing the
from multiple programs that are | driver, and then open the driver agajn
running simultaneously.) (usingK_OpenDriver).

A-6 Error/Status Codes

Table A-1. Error/Status Codes (cont.)

-

Error Code
Hex Decimal Cause Solution
6036 24630 lllegal driver handle: The Someone may have closed the driver;
specified driver handle is not vali(if so, useK _OpenDriver to reopen
the driver with the desired driver
handle. Try again using another driver
handle.
6037 24631 Driver not found: The specified | Check your link statement to make
driver cannot be found. sure the specified driver is included
Make sure that the device name string
is entered correctly in
K_OpenDiriver.
6038 24632 Invalid source pointer: Check the pointer to the source buffer
(Windows-based languages only] and the number of samples to transfer
The pointer to the source buffer | that you specified in
that you passed as an argument| K_MoveBufToArray .
K_MoveBufToArray is invalid for
the specified count. (The source
pointer, when added to the numb
of samples, exceeds the
programmed addressing range o
that pointer.)
6039 24633 Invalid destination pointer: Check the dimension of the local array
(Windows-based languages only) and the number of samples to transfer
The pointer to the destination that you specified in
buffer (local array) that you passed_MoveBufToArray .
as an argument to
K_MoveBufToArray is invalid for
the specified count. (The
destination pointer, when added to
the number of samples, exceeds the
dimension of the local array.)
603A 24634 lllegal setup value:An illegal Check the legal ranges of all
value was passed to the function| parameters passed to this function.
which the error occurred.

A-7

Table A-1. Error/Status Codes (cont.)

4]

D

=

[¢]

Error Code

Hex Decimal Cause Solution

603B 24635 Error freeing buffer selector: Check that the memory buffer being
K_DMAFree or K_IntFree failed | freed was previously obtained through
because one or more of the K_DMAAlloc orK_IntAlloc.
selectors that reference the
memory buffer could not be freed.

603C 24636 Error allocating buffer selector: | Close all programs and restart
K_DMAAlIloc orK_IntAlloc Windows. If the error continues,
failed because a selector could n contact Keithley MetraByte for
be allocated from Window’s Loca technical support.

Descriptor Table.

603D 24637 Error allocating memory buffer: | Close all programs and restart
K_DMAAlloc orK_IntAlloc Windows. In Windows 95, make sur
failed because a necessary intern#hat you us&_IntAlloc or
buffer could not be allocated to | K_DMAAIlloc to dynamically allocate
complete the operation. You a memory buffer and make sure that
attempted to specify the starting | you useK_SetBuf or K_BufListAdd
address of a locally dimensioned to specify the starting address of the
array in Windows 95. dynamically allocated memory buffe

If the error continues, contact Keithley
MetraByte for technical support.

7000 28672 No board name:The driver Specify a legal board name in the
initialization function did not find g configuration file.
board name in the specified
configuration file.

7001 28673 lllegal board name: The board | Specify a legal board name in the
name in the specified configuratioronfiguration file.
file is illegal.

7002 28674 lllegal board number: The driver | Specify a legal board number:
initialization function found an Oor1.
illegal board number in the
specified configuration file.

7003 28675 lllegal base addressThe driver | Specify a base address in the inclusjve
initialization function found an range &H200 (512) to &H3FO0 (1008)
illegal base address in the specifieith increments of 10h (16). Make sur
configuration file. that &H precedes hexadecimal

numbers.

A-8

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

7004 28676 lllegal DMA channel: The driver | Specify a legal DMA channel:
initialization function found an 1or3.
illegal DMA channel in the
specified configuration file.

7005 28677 lllegal interrupt level: The driver | Specify a legal interrupt level:
initialization function found an 2 through 7.
illegal interrupt level in the
specified configuration file.

7006 28678 Illegal number of EXPs: The Specify a legal number of expansion
driver initialization function found| accessories:
an illegal number of expansion | 0 through 8.
accessories in the specified
configuration file.

7007 28679 lllegal clock select:The driver Specify a legal clock:
initialization function found an 1 MHz or 10 MHz.
illegal clock specification in the
specified configuration file.

7008 28680 lllegal wait state: The driver Specify a legal condition for wait
initialization function found an State: yes or no.
illegal wait state specification in
the specified configuration file.

7009 28681 lllegal ADC channel mode:The | Specify a legal input range type:
driver initialization function found| bipolar or unipolar.
an illegal input range type in the
specified configuration file.

700A 28682 lllegal ADC channel Specify a legal input configuration:
configuration: The driver single-ended or differential.
initialization function found an
illegal input configuration in the
specified configuration file.

700B 28683 lllegal DACO mode: The driver | Specify a legal D/A mode:
initialization function found an bipolar or unipolar.
illegal D/A mode in the specified
configuration file.

A-9

Table A-1. Error/Status Codes (cont.)

®

@

Error Code

Hex Decimal | Cause Solution

700C 28684 lllegal DAC1 mode: The driver | Specify a legal D/A mode:
initialization function found an bipolar or unipolar.
illegal D/A mode in the specified
configuration file.

700D 28685 lllegal DACO ref: The driver Specify a legal D/A reference voltag
initialization function found an 5V, 10V, or user-defined.
illegal reference voltage in the
specified configuration file.

700E 28686 lllegal DAC1 ref: The driver Specify a legal D/A reference voltag
initialization function found an 5V, 10V, or user-defined.
illegal reference voltage in the
specified configuration file.

700F 28687 lllegal port A: The driver Specify a legal digital /1O
initialization function found an configuration: input or output.
illegal digital 1/0O configuration in
the specified configuration file.

7010 28688 lllegal port B: The driver Specify a legal digital 1/0
initialization function found an configuration: input or output.
illegal digital I/O configuration in
the specified configuration file.

7011 28689 lllegal port C low: The driver Specify a legal digital /10
initialization function found an configuration: input or output.
illegal digital I/O configuration in
the specified configuration file.

7012 28690 lllegal port C high: The driver Specify a legal digital I/0
initialization function found an configuration: input or output.
illegal digital /0O configuration in
the specified configuration file.

7013 28691 lllegal EXP-16 number: The Specify a legal number of EXP-16
driver initialization function found accessories: 0 through 8.
an illegal number of EXP-16s in
the specified configuration file.

A-10

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

7014 28692 lllegal EXP-16 gain: The driver | Specify a legal gain value for the
initialization function found an EXP-16 accessories.
illegal gain value in the specified
configuration file.

7015 28693 lllegal number of EXPGP: The | Specify a legal number of EXP-GP
driver initialization function found accessories: 0 through 8.
an illegal number of EXP-GPs in
the specified configuration file.

7016 28694 lllegal EXPGP number: The Specify a legal EXP-GP number:
driver initialization function found| O through 7.
an illegal number assigned to on
of the EXP-GPs in the specified
configuration file.

7017 28695 lllegal EXPGP gain: The driver | Specify a legal gain value for the
initialization function found an EXP-GP accessories: X1 or X2.5.
illegal EXP-GP gain value in the
specified configuration file.

7018 28696 lllegal EXPGP Chan: The driver | Specify a legal gain for each EXP-G
initialization function found an channel:
illegal gain assigned to one of th¢ 1, 10, 100, 1000 (X1) or
channels on one of the EXP-GPs| 2.5, 25, 250, 2500 (X2.5)
the specified configuration file.

7019 28697 lllegal CJR: The driver Specify a legal CJR channel:
initialization function found an 1 through 7;-1 (unused)
illegal channel assigned to the
cold-junction reference (CJR)
value in the specified configuration
file.

701A 28698 lllegal rev. number: The revision | Make sure that you are using the
of the driver you are using does n appropriate driver.
match the revision of the Keithley
DAS Driver Specification.

A-11

P

Table A-1. Error/Status Codes (cont.)

A-12

Error/Status Codes

es

Error Code

Hex Decimal Cause Solution

701B 28699 Resource busyThe program An attempt was made to execute
attempted to start an operation | interrupt and DMA operations
while a similar operation was in | simultaneously. Only one of these
progress. operations is allowed at one time. Use

K_IntStop or K_DMAStop to stop
the in-progress operation before
initiating the second operation.
701C 28700 Unknown error number: A Check the error number specified in
request for an undefined messag K_GetErrMsg and try again.
string was made.

701D 28701 Channel Gain Array Not Use interrupt mode or synchronous
Supported: A DMA operation was| mode. Use a single channel or a grg
attempted with a channel-gain | of consecutive channels.
gueue.

701E 28702 DMA not supported on EXP Use interrupt mode or synchronous
Channels:A DMA operation was | mode.
attempted on an EXP board.

701F 28703 Incorrect A/D Uni/Bip switch Make sure that both settings match,
setting: The unipolar/bipolar Use the CFG1600.EXE utility to
switch on the board does not matcmodify the configuration file or
the setting in the configuration filechange the switch setting on the

board.

7021 28705 Incorrect A/D 16/8 channel Make sure that both settings match.
switch setting: The single-ended/| Use the CFG1600.EXE utility to
differential switch on the board | modify the configuration file or
does not match the setting in the| change the switch setting on the
configuration file. board.

7022 28706 lllegal settling time: An invalid Make sure that the count value
burst mode conversion rate count ispecified inK_SetBurstTicks is in
set. the range of 2 to 255.

7023 28707 lllegal number of SSH: The Check the number of SSH accessori
number of SSH accessories in th specified in the configuration file;
configuration file is not valid. should be

1 to 4 (for SSH-4/A) or
1 to 2 (for SSH-8).

Table A-1. Error/Status Codes (cont.)

ne

Error Code

Hex Decimal Cause Solution

7024 28708 lllegal SSH chan:The number of | Check the number of channels
SSH channels in the configurationspecified in the configuration file;
file is not valid. should be

0 to 3 (for SSH-4/A) or
0 to 7 (for SSH-8).

7025 28709 lllegal SSH gain: The SSH-8 or | Check the gain selection in the
SSH-4/A channel gain in the configuration file.
configuration file is not valid.

7026 28710 lllegal SSH4 mode:The SSH-4/A| Check the mode in the configuration
mode in the configuration file is nofile; should be master or slave.
valid.

7027 28711 lllegal SSH timing: The SSH Check the SSH timing selection in tf
mode in the configuration file is n¢ configuration file; should be internal
valid. or external.

7029 28713 lllegal SSH type:The SSH type in Check the SSH type in the
the configuration file is not valid. | configuration file; must be

SSHA4A or SSHS.

702A 28714 lllegal SSH pacer:The SSH clock Check the clock selection in the
selection in the configuration file | configuration file; must be 10 MHz.
not valid (for SSH-8 only).

702B 28715 lllegal Start/Stop Chan in Diff Change the start channel and stop
Mode: In differential mode, the | channel numbers.
start channel cannot be greater than
the stop channel.

702C 28716 lllegal EXP-1600 number:The | Specify a legal number of EXP-160
driver initialization function found| accessories: 0 through 16.
an illegal number of EXP-1600s i
the specified configuration file.

702D 28717 lllegal EXP-1600 gain:The driver | Specify a legal gain value for the
initialization function found an EXP-1600 accessories: 0.5, 1, 5, 10,
illegal gain value in the specified| 50, 100, 250, 500
configuration file.

A-13

Table A-1. Error/Status Codes (cont.)

se

~

the

Error Code

Hex Decimal Cause Solution

702E 28718 Burst mode is supported for UseK_CIrADFreeRun to set the
DMA only: You attempted to use| conversion mode to paced mode. U
burst or burst with SSH conversig K_DMAStart to start your operation
mode for a synchronous-mode o| in DMA mode.
interrupt-mode operation.

702F 28719 Incompatible board detected: The DAS-1600/1400/1200 Series
You attempted to use the Function Call Driver and the
DAS-1600/1400/1200 Series DAS-1600/1400/1200 Series Contrg
Function Call Driver or the Panel are intended for use with
DAS-1600/1400/1200 Series Keithley MetraByte boards only.
Control Panel with a board not | Contact Keithley MetraByte
manufactured by Keithley (508-880-3000) or your local sales
MetraByte. office for information on supported

boards.

8001 32769 Function not supported: You Contact Keithley MetraByte for
have attempted to use a function| technical support.
not supported by the Function Cé
Driver.

8003 32771 lllegal board number: An illegal | Refer to the description of
board number was specified in thek_GetDevHandle or
board initialization function. DAS1600 GetDevHandlén

Chapter 4 for legal board numbers.

8004 32772 lllegal error number: The error | The error number must be one the
message number specified in error numbers listed in this appendi
K_GetErrMsg is invalid.

8005 32773 Board not found at configured Make sure that the base address
address:The board initialization | setting of the switches on the board
function does not detect the matches the base address setting in
presence of a board. configuration file.

8006 32774 A/D not initialized: You attempted Always callK_ClearFrame before
to start a frame-based analog ing setting up a new frame-based
operation without the A/D frame | operation.
being properly initialized.

A-14

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

D

Error Code

Hex Decimal Cause Solution

8007 32775 D/A not initialized: You attempted Always callK_ClearFrame before
to start a frame-based analog setting up a new frame-based
output operation without the D/A | operation.
frame being properly initialized.

8008 32776 Digital input not initialized: You | Always callK_ClearFrame before
attempted to start a frame-based| setting up a new frame-based
digital input operation without the operation.

DI frame being properly
initialized.

8009 32777 Digital output not initialized: You | Always callK_ClearFrame before
attempted to start a frame-based setting up a new frame-based
digital output operation without theoperation.

DO frame being properly
initialized.

800B 32779 Conversion overrun: Data was | Adjust the clock source to slow down
overwritten before it was the rate at which the board acquires
transferred to the computer’s data. Remove other programs that are
memory. running and using computer

resources.

8016 32790 Interrupt overrun : The board Check the maximum throughput rat
communicated a hardware event|tfor your computer’s programming
the software by generating a environment and ugde_SetClkRate
hardware interrupt, but the to specify an appropriate rate.
software was still servicing a
previous interrupt. This is usually
caused by a pacer clock rate that i
too fast.

801A 32794 Interrupts already active: You UseK_IntStop to stop the first
have attempted to start an operatj operation before starting the second
whose interrupt level is being use operation.
by another system resource.

801B 32795 DMA already active: You UseK_DMAStop to stop the first
attempted to start a DMA-mode | operation before starting the second
operation using a DMA channel | operation.
that is currently used by another
active operation.

A-15

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

8020 32800 FIFO Overflow event detected: | The conversion rate is too fast for your
During data acquisition, the computer’s programming
temporary on-board data storage environment; us& SetClkRate to
(FIFO) overflowed. reduce the conversion rate. If you are

using DMA-mode and your board
supports dual-DMA, use the
configuration utility to reconfigure
your board to use dual-DMA.

8021 32801 lllegal clock sync mode:The | Check the synchronizing clock source
two operations you are trying to | that you specified ii_SetSync
synchronize cannot be
synchronized on your board.

FFFF 65535 User aborted operation:You Start the operation again, if desired.
pressedtrl+Break during a
synchronous-mode operation or
while waiting for an analog trigge
event to occur.

A-16

Error/Status Codes

B

Data Formats

This appendix contains the following sections:

. Converting Voltage to Counts- instructions for converting a voltage
value to a count value that the DAS-Scan Function Call Driver can
understand.

. Converting Counts to Voltage- instructions for converting a count
value returned by the DAS-Scan Function Call Driver to a voltage
value.

Converting Voltage to Counts

When specifying an analog trigger level (aKirSetADTrig), a

hysteresis value (as 0_SetTrigHyst), or an analog output value (as in
K_DAWrite), you must convert the voltage to a count value that the
DAS-1600/1400/1200 Series Function Call Driver can understand. The
following sections describe how to convert voltage to counts for each of
these situations.

Note: The DAS-1600/1400/1200 Series Function Call Driver provides
theK_GetADMode function, which gets the analog input range type
(bipolar or unipolar). You may find this function useful when converting
counts to voltage.

Converting Voltage to Counts B-1

Specifying a Trigger Level

To convert a voltage value to a count when specifying an analog trigger
level, use the equation that is appropriate for your A/D mode, substituting
the desired voltage fdfyg.

Bipolar (DAS-1600/1400 Series)

V.., x4096

= trig—+2 4
Count 0 048

Bipolar (DAS-1200 Series)

V.. %4096

_lig — "4 2048

Count = 0

Unipolar (DAS-1600/1400 Series only)

V.. %4096

_ ‘trig
nt=
Cou 10

For example, assume that you want to specify an analog trigger level of
2.5V for a channel on a DAS-1601 board configured for a bipolar input
range. The count is determined as follows:

%@ 2048 = 2560

B-2 Data Formats

Specifying a Hysteresis Value

To convert a voltage value to a count when specifying a hysteresis value,
use the equation that is appropriate for your A/D mode, substituting the
desired voltage fovy,

DAS-1600/1400 Series

\Y/ x 4096
— hyst
t= X
Coun 0
DAS-1200 Series
\/ x 4096
— hyst
t= X
Coun 0

For example, assume that you want to specify a hysteresis value of 0.05V
for a channel on a DAS-1601 board. The count is determined as follows:

0.05x 4096 _

20
10

Specifying an Analog Output Value (DAS-1600 Series Only)
Perform the following steps to convert a voltage value to a count when
specifying an analog output value:

1. Use the equation that is appropriate for your D/A mode, substituting
the desired voltage faf,, .. Refer to Table B-1 for the appropriate

spanvalue.
Bipolar
Vout X 4096
Count= ——— + 2048
Unipolar
Count = Vour* 409
span

Converting Voltage to Counts B-3

B-4

Table B-1. Span Values for Analog Output Equations

Reference
Mode Voltage Output Range Span
Bipolar -5 -5V t0 4.998 V 10
-10 -10V1t09.995V |20
Unipolar | -5 0.0Vto4.999V |5
-10 0.0Vt09.998V |10

For example, assume that you want to specify an analog output of 3V for
a DAS-1602 that is set up for a bipolar output wittbad/ reference. The
count is determined as follows:

3 x 4096

0 +2048 = 3277

2. Next, pack the count into a variable, as follows:

variable data = (left-shift count four bits) bit-wise AND with FFFO

Data Formats

Converting Counts to Voltage

The DAS-Scan Function Call Driver can read count values only. When
reading an analog input value (aKinADRead), you can convert the
count value returned by the DAS-Scan Function Call Driver to a voltage
value.

FCD functions return counts as left-justified values in the upper 12 bits of
variables declared as integers. Perform the following steps to convert a
count to an analog input voltage:

1. Use the following equation to unpack a count:

count = (right-shift data four bits) bit-wise AND with OFFF

2. This method produces a count value that ranges from 0 through 4095.
(Note that the lower four bits contain the channel number.)

3. Use the equation that corresponds to your A/D mode, substituting the
countvalue arrived at in step 1 and the approprsai@nvalue from

Table B-2.
Bipolar
Vol _ (count—2048 x span
oltage 4096
Unipolar
Voltage = countx span

4096

Converting Counts to Voltage B-5

B-6

Table B-2. Span Values for A/D Conversion Equations

Board A/D Mode Gain |nput Range Span
DAS-1601 | Unipolar |1 0.0V to 10.0V 10V
DAS-1401 10 |0.0Vto1l.0V 1V
100 0.0V to 100 mV 0.1V
500 0.0V to 20 mV 0.02V
Bipolar 1 -10V to 9.995 V 20V
10 -1.0V to0 0.9995V 2V
100 —-100 mV t0 99.95 mV | 0.2V
500 -20mV t0 19.99 mV |0.04V
DAS-1602 | Unipolar |1 0.0Vto10V 10.0V
DAS-1402 2 0.0Vto5V 5.0V
4 0.0Vto25V 25V
8 0.0Vto1.25V 1.25V
Bipolar 1 -10V to 9.995 V 20.0V
2 -5V 104.9976 V 10.0V
4 -2.5V 10 2.4988 V 50V
8 -1.25V101.2494V |25V
DAS-1201 | Bipolar 1 -5.0V t0 4.9976 V 10.0V
10 -0.5V 10 0.49976 V 1.0V
100 —0.05V to 0.049976 V| 0.1V
500 —0.01V to 0.009995 V| 0.02V
DAS-1202 | Bipolar 1 -5.0V t0 4.9976 V 10.0V
2 -2.5V 10 2.4988 V 50V
4 -1.25V 10 1.2494V |25V
8 —0.625V to0 0.62469 V| 1.250 V

Data Formats

For example, assume that you want to read analog input data from a
channel on a DAS-1601 board configured for the unipolar input range and
a gain of 1. The count value is 3072. The voltage is determined as
follows:

3072x 10 _
~006 7.5V

As another example, assume that you want to read the analog input data
from a channel on a DAS-1402 board configured for a bipolar input range
and a gain of 2. The count value is 1024. The voltage is determined as
follows:

(1024- 2048x10 _ _,
= 25V
4096 >

Converting Counts to Voltage B-7

Index

Numerics
82C54 counter/timé2-52

A

accessing a frani2-6
accessing data

BASIC[3-25[3-271

C language8-4|

Turbo PascaB-13

Visual Basic for Window8-17[3-19
accessoriég-14
ADC: seeanalog-to-digital converter
adjusting the burst mode conversion rate

adjusting the settling tini2-20
allocating memoryseememory allocation
analog input
buffering mode®-23
channel2-14
conversion modé2-19
gaing2-12
memory allocatiof2-10
operation modg¢2-4
pacer clock®2-21
programming flow diagrani-8|
range®2-12
trigger source2-24
analog outpuyB-29
buffering modeR-37
channel@-34
memory allocatio2-32
operation mode®-29
pacer clock-34
programming flow diagranm-14
trigger sourceR-37

analog trigge2-23
analog-to-digital convert&-23
AS0-1600/1400/1200 software packang]
assigning the starting address

analog input operatiofz-12

analog output operatiofzs33

digital /O operation&-43

B

BASIC
accessing dafa-25[3-27
converting integer data for digital I/O
operation§3-29
creating a channel-gain qugd€28
dimensioning a local arr&y-28
dynamically allocating a memory buffer

handling error8-3Q

programming in Professional Ba8e32
programming in QuickBasf8-31
programming in Visual Basic for DOS

reducing the memory hefp24
board initializatiof2-2|
boards supportd?-2]
Borland C/C++ (for DOS)
programming informatioi3-9
see alsdC languages
Borland C/C++ (for Windows)
programming informatio3-10
see alsaC languages
Borland Turbo Pascal (for DOS3eeTurbo
Pascal
Borland Turbo Pascal for Windowsee
Turbo Pascal
buffer address
analog input operatiofiz-12
analog output operatiof&s33
digital I/O operation®2-43

X-1

buffer address functiofi&-3
buffering mode
analog input operatiofiz23
analog output operatiof&s37
digital 1/0 operation2-50
buffering mode functio
burst mod&-19
burst mode conversion ra2e20
burst mode with SSR-21

C

C languages
accessing dafa-4
creating a channel-gain queBes
dimensioning a local arr&3-4
dynamically allocating a memory buffer
3-3
handling error8-6
programming in Borland C/C++ (for
DOS)3-9
programming in Borland C/C++ (for
Windows)3-10
programming in Microsoft C/C++ (for
DOS)3-1
programming in Microsoft C/C++ (for
Windows)3-8
channel and gain functiods4l
channel-gain quel&-18
channels
analog inpuB-14
analog outpuP-34
digital 1/0[2-45[4-138

multiple using a channel-gain queue

multiple using a group of consecutive

channel@-17
software (logical2-14
clock function$4-4
clock sourcesseepacer clocks

X-2

commandsseefunctions
compile and link statements
Borland C/C++ (for DOSB-9
Microsoft C/C++ (for DOS|B-7
Turbo Pascal (for DO§-15
continuous mode
analog input operatiofiz-24
analog output operatiof&s37
digital 1/0 operation®2-51
convention®-5
conversion mode functios3
conversion modeé2-19
conversion rat2-22
converting counts to voltaf@-5
converting data for digital I/O operations
BASIC[3-29
Visual Basic for Window-21
converting voltage to counB-1
counter/timer 1/d2-52
counter/timer 1/0 functiorid-4
counter/timerssee82C54 counter/timer
creating an executable file
Borland C/C++ (for DOS3B-9
Borland C/C++ (for Windows3-11
Microsoft C/C++ (for DOSB-1
Microsoft C/C++ (for WindowsB-9
Professional Basig-32
QuickBasi¢3-31
Turbo Pascal (for DOS-15
Turbo Pascal for Window3-158
Visual Basic for DO$-33
Visual Basic for Windowi8-23

D

DACs: seedigital-to-analog converters

DAS-1600/1400/1200 Series Function Call

Driver: seeFunction Call Driver
DAS-1600/1400/1200 Series standard
software packadé-1

Index

DAS1600_8254Contr@-53[4-1 digital trigger

DAS1600 8254GetCIK2-53 [4-10 analog input operatiofz-28
DAS1600_8254GetCount@-53[4-13 analog output operatiofZs38
DAS1600_8254GetTrig@-53 [4-16 digital /O operationf2-52
DAS1600_8254SetCIKR-53[4-19 digital-to-analog converte@-34
DAS1600_8254SetCount@53[4-21 dimensioning a local array
DAS1600_8254SetTridA-53[4-24 analog input operatiofz-10
DAS1600_DevOpeR-2 [4-27 analog output operatiofs32
DAS1600_GetDevHand2-3[4-3 digital 1/0 operation®2-42
data conversioB-1] dimensioning memoryseememory

converting counts to voltaf@-5 allocation

converting data for digital /0O operations DMA mode

in BASIC[3-29 analog input operatiofz-g
converting data for digital I/O operations driver handI&-2
in Visual Basid3-21 driver: seeFunction Call Driver

converting voltage to couriB-1] dynamically allocating a memory buffer
data transfer modeseeoperation modes analog input operatiof-10
data typeE-6 analog output operatiofzs33
default values digital 1/0 operation@-44

A/D frame element2-8

burst mode conversion ré2e19

D/A frame element2-31

DI frame element@-41 E

2_/1

00 o clnente —

. error handling2-4
device handlB-3 BASIC3-30
digital 1/0[2-39 Cl

buffering mode®-50 7 at)nguage .

channel@-45 urbo Pas_c@ .

Visual Basic for WindowB-22

converting data in BASIB-29

. S . executable fileseecreating an executable
converting data in Visual Basic for file
WindowsB3-21 expansion accessor[@s14[2-21

digital input programming flow diagrams external pacer clock

. . analog input operatiofia-23
digital oOlIJ_tarl)urtarr)T:ogrammmg flow analog output operatio@538
lagramsl-21 digital /0O operation@-50

Irlr?gmory allocatiof2-42 external trigger . ‘

. analog input operatiofiz-28
operatl?n rl? analog output operatiofZ&s38
B?ﬁ‘;ﬁ == digital /0 operation®-52
trigger source@-51

X-3

F

files required
Borland C/C++ (for DOSB-9|
Borland C/C++ (for Windows$3-10
Microsoft C/C++ (for DOSB-7
Microsoft C/C++ (for WindowsB-8
Professional Bas[8-32
QuickBasid3-31
Turbo Pascal (for DO§-15
Turbo Pascal for Windows-15
Visual Basic for DOE-33
Visual Basic for WindowB8-23
flow diagramdl-6)
frame2-6
A/D 2-6
D/A[2-31
DI[2-41
DO[2-41
handlé2-6/[2-31[2-41
frame management functiodsZ]
Function Call Driver initializatio2-2
functions
buffer addresg-3
buffering mod&-3
channel and gald-4
clocki4-4
conversion modé-3
counter/timer 1/(4-4
frame managemeii-2
initialization[4-2]
memory managemedtd
miscellaneoud-5
operatiod-2
summaryl-2|
triggeri4-4

X-4

G

gain codeR-13

gaing2-12[2-13

gate signaf-17(4-25

group of consecutive chann@&sl?

H

handle
devicd2-3
driver2-2
frame2-6[2-31,[2-41

hardware trigger
analog input operatiof-28
analog output operatios3§
digital 1/0 operation2-52

help[l-24

hysteresi®-26

initialization functiong4-2
initializing a board@-2
initializing the drivef2-2
input range typ2-12[B-1
internal pacer clock
analog input operatiofiz-22
analog output operatio@35
digital /0 operation@-48
internal trigger
analog input operatiofiz-24
analog output operatio@s38
digital 1/0 operation®2-51
interrupt mode
analog input operatiofiz-3
analog output operatio@s30
digital 1/0 operation®2-40

Index

K

K_ADRead2-5
K_ClearFram&-8 [4-35
K_CloseDrivei2-2 4-37
K_CIrADFreeRuri2-19
K_ClrContRur2-24[2-37, 4-41
K_DASDevInit4-43
K_DAWrite[2-29 [2-34 [4-45
K_DIRead2-39 [4-48
K_DMAAlloc 2-11 A-51
K_DMAFree2-11,[4-54
K_DMAStart2-6 A-56
K_DMAStatug2-6 [4-58
K_DMAStop[2-6 4-61
K_DOWrite[2-39
K_FormatChnGAnA-61
K_FreeDevHandI®-3 [4-69
K_FreeFram@-8 [4-71
K_GetADConfig2-14 [4-73
K_GetADFramé2-6|[4-73
K_GetADMode4-77B-1
K_GetClkRat¢d-79
K_GetDAFramé2-31,[4-81
K_GetDevHandI@-2[4-83
K_GetDIFramé2-41,[4-85
K_GetDOFram@-41,[4-8%
K_GetErrMsd2-4 [4-89
K_GetShellvVe2-3[4-91
K_GetVel2-3[4-94

K_IntAlloc [2-11[2-33[2-44[4-97
K_IntFree2-11,[2-33 [2-44,
K_IntStar{2-5[2-30[2-40 [4-102
K_IntStatu2-6[2-31,[2-40[4-104
K_IntStop2-6[2-31, 2-40 [4-107
K_MoveArrayToBuf2-33(2-44[4-112
K_MoveArrayToBufL2-44 4-114
K_MoveBufToArray2-10[2-44[4-116
K_MoveBufToArrayL[2-44 [4-118
K_MoveDataBu
K_OpenDrivef2-2
K_RestoreChnGArg-125%

N

K_SetADFreeRu2-19 @-127
K_SetADTrig[2-26 A-129
K_SetBufd-132
K_SetBufld-135
K_SetBufL4-137
K_SetBurstTick2-20 [4-139
K_SetChri2-16[2-34 A-141
K_SetChnGAnP-18[4-143
K_SetCIK2-23[2-35,[2-36[2-49 [2-50
[4-146
K_SetCIkRat@-22 [2-35 [2-49 [4-148
K_SetContRui@2-24[2-37[2-51, 4-151
K_SetDITrig2-28 [2-38 [2-52 @#-153
K_SetDMABuf-156
K_SetG2-16[2-17 A-159
K_SetSSH2-21,[4-162
K_SetStartStopCHR-17[2-34[2-36 A-164
K_SetStartStop@-17 4-166
K_SetTrig2-24[2-26 [2-28[2-38[2-51,
[2-52 B-16¢

)
K_SetTrigHysf2-26
K_SyncStarP-5[2-30 [2-40
KMakeDMABuf[4-110

L
logical channel@-14

M

maintenance operationseesystem
operations

managing memoryseememory allocation
memory allocation

analog input operatiofz-10

analog output operatio@s32

digital 1/0 operation®2-42 4-138
memory handI2-11

memory heap
BASIC[3-24
Turbo PascdB-11
memory management functidds3
Microsoft C/C++ (for DOS)
programming informatio@-7
see alsdC languages
Microsoft C/C++ (for Windows)
programming informatio3-8
see alsaC languages
Microsoft Professional Basisee
Professional Basic
Microsoft QuickBasicseeQuickBasic
Microsoft Visual Basic for DOSseeVisual
Basic for DOS
Microsoft Visual Basic for Windowssee
Visual Basic for Windows
miscellaneous functioré-5
miscellaneous operatiorseesystem
operations

O

operation functiond-2

operation modes
analog inpu-4
analog outpuUP-29
digital 1/0[2-39

operations
analog inpu-4
analog outpuR-29
counter/timer 1/(2-52
digital 1/0[2-39
systeni2-1

X-6

P
paced modR-19

pacer clock
analog input operatiofa-21
analog output operatios34
digital I/O operation2-48
Pascal
seeTurbo Pascal
ports2-43
preliminary procedures$-7]
procedured -6
analog inpufl-8
analog outpufl-14
digital inputfL-18
digital outputl-21
preliminary[L-7
Professional Basic
programming informatiol3-32
see alsBASIC
programming flow diagrant-6
programming information
Borland C/C++ (for DOSB-9
Borland C/C++ (for Windowsg3-10
Microsoft C/C++ (for DOS|B-7
Microsoft C/C++ (for WindowsB-8
Professional Bas[8-32
QuickBasid3-31
Turbo Pascal (for DOS-15
Turbo Pascal for Window3-15
Visual Basic for DO$-33
Visual Basic for WindowB-23
programming overvie\g-2

Index

Q

QuickBasic
programming informatio®-31
see alsBASIC

R

range typ@-12

read rat@-49
resetting a boai@-3
return value2-4
revision level@-3
routines:seefunctions

S

scari2-17[2-19

settling timg2-2Q

setup functions
A/D frame2-8
D/A frame2-31
DI frame2-41
DO frame2-42

simultaneous sample-and-hold m@i2]

simultaneous updatin2-30[2-36
single mode
analog input operatiof&-3
analog output operatio@s29
digital 1/0 operation®2-39
single-cycle mode
analog input operatiof-24
analog output operatio@s37
digital /0 operation@-50
software channe@-14

software packagesee
AS0-1600/1400/1200 software
package, DAS-1600/1400/1200

Series standard software package

SSH mod@-21
standard software packafel
starting
analog input operatiofz-4!
analog output operatio@s29
digital 1/0 operation®2-39
starting addresseebuffer address
status cod€®-4 [A-]]
storing dataseebuffering mode
summary of functiong-2
synchronous mode
analog input operatiofiz-3
analog output operatio@s30
digital I/0O operation2-40
system operationd-1

T

taskdI-6
analog inpufl-§
analog outpufl-14
digital input-18
digital outputl-21
preliminaryd-7
technical suppofi-24
time base
analog input operatiofa-22
analog output operatio@35
digital 1/0 operation®2-49
trigger function#-4
troubleshootind-24

X-7

Turbo Pascal
accessing dafa-13
creating a channel-gain quegel4
dimensioning a local arr&®-13
dynamically allocating a memory buffer

handling error8-14

programming in Borland Turbo Pascal
(for DOS)3-15

programming in Borland Turbo Pascal

for Windows3-15
reducing the memory heip11

U
update rat®-35

Vv

Visual Basic for DOS
programming informatio@-33
see alsBASIC

Visual Basic for Windows
accessing dafa-17[3-19
converting data for digital I/O operations

B-21

creating a channel-gain quéB€l9
dimensioning a local arr&y-19
dynamically allocating a memory buffer
handling error8-22
programming informatio@-23

W
write ratd2-49
X-8

Index

	ToC:

