DAS-TC
Function Call Drive

USER’S GUIDE

DAS-TC
Function Call Driver
User’'s Guide

Revision A — March 1996
Part Number: 84080

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday — Friday 8:00 a.m. to 5:00 p.m (EST)
Fax: (440) 248-6168

Visit our website at http://www.keithley.com

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1996.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Keithley MetraByte Division
Keithley Instruments, Inc.
440 Myles Standish Blvd. Taunton, MA 02780
Telephone: (508) 880-30Q0FAX: (508) 880-0179

Preface

The DAS-TC Function Call Driver User’s Guid#escribes how to write
application programs for DAS-TC and DAS-TC/B boards using the
DAS-TC Function Call Driver. The DAS-TC Function Call Driver
supports the following DOS-based languages:

. Microsoft” QuickBasicl (Version 4.5)

. Microsoft Professional Basic (Version 7.0 and higher)

. Microsoft C/C++ (Version 7.0 and higher)

. Borland” C/C++ (Version 4.0 and higher)

. Borland Turbo Pascalfor DOS (Version 6.0 and higher)

The DAS-TC Function Call Driver also supports the following

Windowd1 -based languages:

. Microsoft C/C++ (Version 7.0 and higher)

. Borland C/C++ (Version 4.0 and higher)

. Microsoft Visual Basic for Windows (Version 3.0 and higher)

. Microsoft Visual C++] (Version 1.5)

. Borland Turbo Pascal for Windows (Version 1.0)

The manual is intended for application programmers using a DAS-TC or
DAS-TC/B board in an IBM PC AT~ or compatible computer. Before
using this manual, read the user’s guide for your btafdmiliarize

yourself with the board’s features and complete the appropriate hardware
installation and configuration. It is assumed that you are experienced in

programming in your selected language and that you are familiar with
data acquisition principles.

Vii

viii

The DAS-TC Function Call Driver User’s Guide organized as follows:

Chapter 1 contains the information needed to get started using the
DAS-TC Function Call Driver and to get help.

Chapter 2 contains the background information needed to use the
functions included in the DAS-TC Function Call Driver.

Chapter 3 contains programming guidelines and language-specific
information related to using the DAS-TC Function Call Driver.

Chapter 4 contains detailed descriptions of the DAS-TC Function
Call Driver functions, arranged in alphabetical order.

Appendix A contains a list of the error codes returned by DAS-TC
Function Call Driver functions.

Appendix B contains information on the data formats used.

An index completes this manual.

Keep the following conventions in mind as you use this manual:

References to BASIC apply to all DOS-based BASIC languages
(Microsoft QuickBasic and Microsoft Professional Basic). When a
feature applies to a specific language, the complete language name is
used. References to Visual Basic for Windows apply to Microsoft
Visual Basic for Windows.

Keyboard keys are represented in bold.

Table of Contents

Preface
Getting Started

Available Operations

System OPerationSovvoeeeee e [.]..2-1
Initializing the Driver col.2-2
InitializingaBoard 1.2-2
Retrieving RevisionLevels...................... . .1.2-3
Handling Errors.24

Analog Input Operations e, .. [..2-4
OperationModes. 4..2-5

SingleMode. o L. .|..2-5
SynchronousMode.|..2-6
InterruptMode1 .2-6
Memory Allocation and Management.2-7
Dimensioning a Local Array |.2-7
Dynamically Allocating a Memory Buffer. ;2—8
Assigning the Starting Address2-9
Channels, Gains,and Inputs I...l.2-10
Specifying a Single Channel or a Group of Consecutive
Channels. i ... |.2-11
Specifying Channels in a Channel-Gain Queue. . .| .. .[.2-12
BufferingModes2-13

Programming with the Function Call Driver

How the Driver WOrks [].31

Programming Overview., .. .|..3-5

Preliminary Tasks.]..3-6

Analog Input Programming Tasks3-6
Single-Mode Operations.,3-6
Synchronous-Mode Operations. {..3-7
Interrupt-Mode Operations L. .]..3-9

C/C++ Programming Information e
Dimensioning and Assigning a Local Array S

Dynamically Allocating and Assigning a Memory Buffef . .

Allocating a Memory Buffer

(%)

AccessingtheData.ciunn. S
Creating a Channel-GainQueue

3-11
3-11
-12

.3-12

.3-13
.3-13

Handling Errors.

.[.3-14

Programming in Microsoft C/C++ (for DOS).| ..

.8-15

Programming in Microsoft C/C++ (for Windows)

3-16

Programming in Borland C/C++ (for DOS)

. [3-17

Programming in Borland C/C++ (for Windows).

..3-18

Turbo Pascal Programming Information

Dimensioning and Assigning a Local Array
Dynamically Allocating and Assigning a Memory Buffey . .

.[.3-20

3-20
-20

Reducing the MemoryHeap

.[.3-21

Allocating a Memory Buffer

.3-22

AccessingtheData.ciiunn. S
Creating a Channel-GainQueue

.3-23
.3-23

Handling Errors. i

Programming in Borland Turbo Pascal (for DOS)|. ..

|- 3-24

3-24

Programming in Borland Turbo Pascal for Windows . .|. . .

3-25

Visual Basic for Windows Programming Information. . . .

Dimensioning and Assigning a Local Array ce
Dynamically Allocating and Assigning a Memory Buffef . .

[@%)

. .B-26

3-26
-26

Allocating a Memory Buffer

.B-27

Accessing the Data from Buffers with Fewer than
64K Bytes3-27
Accessing the Data from Buffers with More than

BAK Bytes

3-28

Creating a Channel-GainQueue

.3-30

Handling Errors. i

Programming in Microsoft Visual Basic for Windows . .|. . .

[.3-31

8-31

BASIC Programming Information. e
Dimensioning and Assigning a Local Array c
Dynamically Allocating and Assigning a Memory Buffef . .

(%)

3-32
3-32
-32

Reducing the MemoryHeap
Allocating a Memory Buffer
Accessing the Data from Buffers with Fewer

.[-3-33

.3-33

than 64K Bytes

Accessing the Data from Buffers with More

than 64K Bytes

3-34

3-34

Creating a Channel-GainQueue

.3-37

Handling Errors. i .. .[.3-38
Programming in Microsoft QuickBasic L. . [3-39
Programming in Microsoft Professional Basic.13-40

Function Reference

DASTC DEeVOPEN . . .t ottt e et ’: .4-5
DASTC GETCJIC e ..4-8
DASTC_GetDevHandle.[.4-11
K ADRead. e ... |.4-13
K ADReadL,4-16
K_ADReadR4-19
K ClearFrame i, ... | .4-22
K CloseDriver. e ..|.4-24
K CIrContRun., ...|.4-26
K_DASDevInit.14-28

K_FormatChnGAry e ...l.4-30
K FreeDevHandle 1.4-32
K FreeFrame iy ...} .4-34
K GetADFrame.[.4-36
K GetDevHandle.|.4-38
K_GEetEIMMSg. . . oo e|.4-40
K_GetShellVer. L .. |.4-42
K Gt er . . e ...J|.4-45
K INtAIlOCo ...14-48

KIntFree. e e ...1|.4-51
KontStart. |.4-53
KontStatus.o ... |.4-55
KONtStop.).4-58
K _MoveBufToArrayL[4-61

K _MoveBufToArrayR i ...14-63

K OpenDriver e ...|.4-65
K_RestoreChnGAry. L. . .|.4-68
K SetBufJ.4-70
K _SetBufL...... ... i .. .4-72
K_SetBUufR. i ... |.4-74
K SetChnGAry e4-76
K SetContRun. 1.4-79
K_SetStartStopChn}.4-81
K_SyncStart.1.4-84

vi

Error/Status Codes

Data Formats

Integer Number Types
Floating-Point Number Types A

Index

List of Figures

Figure 3-1.
Figure 3-2.

Single-Mode Function.

Interrupt-Mode Operation

List of Tables

Table 2-1.
Table 2-2.
Table 2-3.
Table 3-1.
Table 3-2.

Table 3-3.

Table 3-4.
Table 3-5.
Table 4-1.
Table 4-2.
Table A-1.
Table B-1.
Table B-2.

Supported Operations

Input Types

Gain Codes for Voltage Inputs

A/D Frame Elements..................

Setup Functions for Synchronous-Mode
Analog Input Operations
Setup Functions for Interrupt-Mode
Analog Input Operations

Protected-Mode Memory Architecture|. ..

Real-Mode Memory Architecture

Functions
Data Type Prefixes.
Error/Status Codes.

Integer Input Error Conditions.

Floating-Point Input Error Conditions.

. B-1
B-2

1

Getting Started

The DAS-TC Function Call Driver is a library of data acquisition and
control functions (referred to as the Function Call Driver or FCD
functions). It is part of the following two software packages:

DAS-TC standard software package This is the software package
that is shipped with the DAS-TC and DAS-TC/B boards; it includes
the following:

Libraries of FCD functions for Microsoft QuickBasic and
Microsoft Professional Basic.

Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

Utility programs (DOS-based only) that allow you to configure
and test the features of DAS-TC and DAS-TC/B boards.

Language-specific example programs.

ASO-TC software package This is the advanced software option
for the DAS-TC boards. It includes the following:

Libraries of FCD functions for Microsoft C/C++, Borland
C/C++, and Borland Turbo Pascal.

Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
C/C++, Borland C/C++, Microsoft Visual Basic for Windows,
Microsoft Visual C++, and Borland Turbo Pascal for Windows.

Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

11

1-2

— Utility programs (DOS-based and Windows-based) that allow
you to configure and test the features of the DAS-TC and
DAS-TC/B boards.

— Language-specific example programs.

Before you use the Function Call Driver, make sure that you have
installed the software and your board using the procedures described in
the user’s guide for your board.

If you need help installing or using the DAS-TC Function Call Driver,
call your local sales office or call the following number for technical
support:

(508) 880-3000

Monday - Friday, 8:00A.m. - 6:00r.Mm., Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

Getting Started

Please make sure that you have the following information available before
you call:

DAS-TC/B board Model
Serial #
Revision code
Base Address
Interrupt Level
Thermocouple type

Computer Manufacturer
CPU type 386 486 Pentium___
Clock speed (MHz)
Math coprocessor Yes No
Amount of RAM
Video system EGA VGA SVGA
BIOS type
Memory manager

Operating DOS version
system Windows version 3.0 31 95

Software Name

package Serial #
Version

Invoice/Order #

Compiler Language

(if applicable) Manufacturer
Version

Accessories Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number

1-3

2

Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DAS-TC and DAS-TC/B boards.
Table 2-1 lists the supported operations.

Table 2-1. Supported Operations

Operation Page Reference
System page 2-1
Analog input page 2-4

System Operations

System Operations

This section describes the miscellaneous and general maintenance
operations that apply to DAS-TC and DAS-TC/B boards and to the

DAS-TC Function Call Driver. It includes information on the following
operations:

Initializing the driver
Initializing a board
Retrieving revision levels

Handling errors

2-1

Initializing the Driver

You must initialize the DAS-TC Function Call Driver and any other
Keithley DAS Function Call Drivers you are using in your application
program. To initialize the drivers, use tkeOpenDriver function. You
specify the driver you are using and the configuration file that defines the
use of the driver. The driver returns a unique identifier for the driver; this
identifier is called the driver handle.

You can specify a maximum of 30 driver handles for all the Keithley
MetraByte drivers initialized from all your application programs. If you
no longer require a driver and you want to free some memory or if you
have used all 30 driver handles, you can us&tt@&oseDriver function

to free a driver handle and close the associated driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver are
shut down and unloaded from memory.)

Note: If you are programming in BASIC or Turbo Pascal,
K_OpenDriver andK_CloseDriver are not available. You must use the
DASTC_DevOpenfunction insteadDASTC_DevOpeninitializes the
DAS-TC Function Call Driver according to the configuration file you
specify. Refer to page 4-5 for more information. In BASIC and Turbo
Pascal, closing the DAS-TC Function Call Driver is not required.

Initializing a Board

2-2

The DAS-TC Function Call Driver supports up to two DAS-TC or
DAS-TC/B boards. You must use tKe GetDevHandle function to

specify the boards you want to use. The driver returns a unique identifier
for each board; this identifier is called the device handle.

Device handles allow you to communicate with more than one Keithley

MetraByte DAS board. You use the device handle returned by
K_GetDevHandle in subsequent function calls related to the board.

Available Operations

You can specify a maximum of 30 device handles for all the Keithley
MetraByte DAS boards accessed from all your application programs. If a
board is no longer being used and you want to free some memory or if
you have used all 30 device handles, you can udé theeeDevHandle
function to free a device handle.

Note: If you are programming in BASIC or Turbo Pascal,
K_GetDevHandleandK_FreeDevHandleare not available. You must
use theDASTC_GetDevHandlefunction instead. Refer to page 4-11 for
more information. In BASIC or Turbo Pascal, freeing a device handle is
not required.

UseK_GetDevHandle or DASTC_GetDevHandlethe first time you
initialize a DAS-TC or DAS-TC/B board only. Once you have a device
handle, you can reinitialize a board as needed by using the
K_DASDevilnit function.

Retrieving Revision Levels

If you are using functions from different Keithley DAS Function Call
Drivers in the same application program or if you are having problems
with your application program, you may want to verify which versions of
the Function Call Driver, Keithley DAS Driver Specification, and
Keithley DAS Shell are used by your Keithley MetraByte DAS board.

TheK_GetVer function allows you to get both the revision number of the
Function Call Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms.

TheK_GetShellVer function allows you to get the revision number of

the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that are shared by all Keithley MetraByte DAS boards).

System Operations 2-3

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is
recommended that you check the returned code after the execution of
each function. If the status code equals 0, the function executed
successfully and your program can proceed. If the status code does not
equal 0, an error occurred; ensure that your application program takes the
appropriate action. Refer to Appendix A for a complete list of error codes.

Each supported language uses a different procedure for error checking;
refer to the following pages for more information:

C/C++ page 3-14

Turbo Pascal page 3-24

Visual Basic for Windows page 3-31
BASIC page 3-38

For C-language application programs only, the Function Call Driver
provides th&k_GetErrMsg function, which gets the address of the string
corresponding to an error code.

Analog Input Operations

This section describes the following:
. Analog input operation modes available.
. How to allocate and manage memory for analog input operations.
. How to specify the following for an analog input operation:
— Channels and input range

— Buffering mode

Available Operations

Operation Modes

Single Mode

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the DAS-TC and
DAS-TC/B boards to computer memory. You can perform analog input
operations in single mode, synchronous mode, and interrupt mode, as
described in the following sections.

In single mode, the board acquires a single sample from an analog input
channel. The driver initiates the conversion; you cannot perform any other
operation until the single-mode operation is complete.

Use theK_ADRead function that is appropriate to your programming
language to start an analog input operation in single mode. For each
function you specify the board you want to use, the analog input channel
to read, the gain for that channel (for voltage inputs only), and the
variable in which to store the converted data.

Note: For thermocouple inputs, specify 0 for the gain; the gain is ignored
for thermocouple inputs.

Depending on your configuration, the data is returned as a single voltage
or temperature value in engineering units. Refer to Appendix B for more
information on the format of the data returned.

If you wish, you can usel@ ADRead function with software looping to
acquire more than one value from one or more channels. Typically, when
acquiring more than one value you want more control over the data
transfer than is possible with a single-mode function; in such cases, use
either synchronous or interrupt mode, described in the next sections.

Note: To read the value of the CJC (cold junction compensation)
channel, use the single-mode funct@ASTC_GETCJC. You can use
the resulting value to correct a temperature reading when you want to
perform your own linearization.

Analog Input Operations 2-5

Synchronous Mode

Interrupt Mode

2-6

In synchronous mode, the board acquires a single sample or multiple
samples from one or more analog input channels. After transferring the
specified number of samples to computer memory, the driver returns
control to the application program. You cannot perform any other
operation until a synchronous-mode operation is complete.

The DAS-TC and DAS-TC/B boards transfer data in blocks, where the
block size equals the number of channels specified. Suppose, for
example, you requested 43 samples using 10 channels. The Function Call
Driver actually acquires 50 values in five blocks of 10 samples each. The
first 40 values are transferred from the first four blocks that were acquired
and the remaining three samples are transferred from the fifth acquired
block of 10 samples.

Use theK_SyncStart function to start an analog input operation in
synchronous mode.

Depending on your configuration, the data is returned as voltage or
temperature values in engineering units. Refer to Appendix B for more
information on the format of the data returned.

In interrupt mode, the board acquires a single sample or multiple samples
from one or more analog input channels. Once the analog input operation
begins, control returns to your application program. The hardware
transfers the data from the board to a user-defined buffer in computer
memory using an interrupt service routine.

As in synchronous mode, in interrupt mode, the DAS-TC and DAS-TC/B
boards transfer data in blocks, where the block size equals the number of
channels specified.

Use theK_IntStart function to start an analog input operation in
interrupt mode.

Depending on your configuration, the data is returned as voltage or

temperature values in engineering units. Refer to Appendix B for more
information on the format of the data returned.

Available Operations

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-13 for more information on
buffering modes. Use th€ IntStop function to stop a continuous-mode
interrupt operation. Use th€ IntStatus function to determine the
current status of an interrupt operation.

Memory Allocation and Management

Synchronous-mode and interrupt-mode analog input operations on the
DAS-TC and DAS-TC/B boards require a single array or memory buffer
in which to store acquired data. The ways you can allocate and manage
memory are described in the following sections.

Dimensioning a Local Array

For the DAS-TC and DAS-TC/B boards, the simplest way to reserve a
memory buffer is to dimension an array within your application program.
The advantage of this method is that the array is directly accessible to
your application program. The limitations of this method are as follows:

. Certain programming languages limit the size of local arrays.

. Local arrays occupy permanent memory areas; these memory areas
cannot be freed to make them available to other programs or
processes.

Make sure that the array you dimension matches the data type (long
integer or floating point) specified in the configuration file. A single
sample is four bytes long. Therefore, you should declare a local array as
an array of four byte elements, the size of which is at least equal to the
number of samples you are acquiring. For example, if you want to acquire
16,384 samples, you must dimension a 64K byte array.

Analog Input Operations 2-7

Dynamically Allocating a Memory Buffer

If you wish, you can also reserve a memory buffer by allocating it
dynamically outside of your application program’s memory area. The
advantages of this method are as follows:

. The size of the buffer is limited by the amount of free physical
memory available in your computer at run time.

. A dynamically allocated memory buffer can be freed to make it
available to other programs or processes.

The limitation of this method is that for Visual Basic for Windows and
BASIC, the data in a dynamically allocated memory buffer is not directly
accessible to your program. You must usekh®oveBufToArrayL

function (for long integer arrays) or th€ MoveBufToArrayR function

(for floating-point arrays) to move the data from the dynamically
allocated memory buffer to the program’s local array. For Visual Basic for
Windows, refer to page 3-26 for more information; for BASIC, refer to
page 3-32 for more information.

Use theK_IntAlloc function to dynamically allocate a memory buffer for

a synchronous-mode or interrupt-mode operation. You specify the
operation requiring the buffer and the number of samples to store in the
buffer. The driver returns the starting address of the buffer and a unique
identifier for the buffer; this identifier is called the memory handle. When
the buffer is no longer required, you can free the buffer for another use by
specifying this memory handle in tKe IntFree function.

Make sure that the pointers to the buffers allocateld_bptAlloc are

appropriate to the number type (long integer or floating point) specified in
the configuration file.

2-8 Available Operations

Notes: For DOS-based languages, the area used for dynamically
allocated memory buffers is referred to as the far heap; for
Windows-based languages, this area is referred to as the global heap.
These heaps are areas of memory left unoccupied as your application
program and other programs run.

For DOS-based languages, fadntAlloc function uses the DOS Int 21h
function 48h to dynamically allocate far heap memory. For
Windows-based languages, #elntAlloc function calls the
GlobalAlloc API function to allocate the desired buffer size from the
global heap.

For Windows-based languages, dynamically allocated memory is
guaranteed to be fixed and locked in memory.

Assigning the Starting Address

After you dimension your array or allocate your buffer, you must assign
the starting address of the array or buffer and the number of samples to
store in the array or buffer. Each supported programming language
requires a particular function and procedure for assigning the starting
address; refer to the following table for more information:

Language Function Refer to

CIC++ K_SetBuf | page 3-11

Turbo Pascal K_SetBuf | page 3-20

Visual Basic for Windows K_SetBufL! page 3-26
K_SetBufR

BASIC K_SetBufL | page 3-32
K_SetBufR

Notes
LUseK_SetBufL for long integer arrays or buffers; use
K_SetBufR for floating-point arrays or buffers.

Analog Input Operations 2-9

Channels, Gains, and Inputs

DAS-TC and DAS-TC/B boards are software-configurable for up to 16
differential analog input channels (numbered 0 through 15). You can mix
and match thermocouple and voltage inputs. You configure the channels
using the DASTCCFG.EXE configuration utility; refer to the user’s guide
for your board for more information. Table 2-2 lists the input types
supported by the DAS-TC and DAS-TC/B boards.

Table 2-2. Input Types

Voltage Inputs -25Vto 10V

-20 mV to 80 mV

-15 mV to 60 mV
-6.25 mV to 25 mV

Thermocouple Type J
Inputs

Type K

Type E

Type T

Type R

Type S

Type B

The input range is usually determined by the settings in the configuration
file. However, for voltage inputs only, you can specify an input range
using the gain and gain code, shown in Table 2-3. (The gain code is used
by the FCD functions to represent the gain.) For thermocouple inputs, the
gain is ignored; specify a gain code of 0 for thermocouple inputs.

2-10 Available Operations

Table 2-3. Gain Codes for Voltage Inputs

Gain Voltage
Code |Gain Input Range

0 1 -25Vto 10V

1 125 -20 mV to 80 mV
2 166.67 | =15 mV to 60 mV
3 400 -6.25 mV to 25 mV

Depending on the settings in the configuration file, data is returned in
volts, degrees Celsius, or degrees Fahrenheit, as appropriate for the input
types configured. Refer to Appendix B for information on the data
formats.

How you specify a channel and the input range differs depending on the
operation mode and the sequence of channels you want to use, as
described in the following sections.

Specifying a Single Channel or a Group of Consecutive Channels

For single-mode operations, you can acquire a single sample from a
single channel. Use theé_ADRead function appropriate to your
programming language to specify an analog input channel and the gain
for the channel (for voltage inputs only).

Note: For thermocouple inputs, the gain is ignored; specify a gain code
of 0 for channels configured as thermocouple inputs.

For synchronous-mode and interrupt-mode analog input operations, you
can acquire samples from a single channel or a group of consecutive
channels. Use th¢_SetStartStopChnfunction to specify the first and

last channels in the group; to read a single channel, specify the same
channel as both the start and the stop channel. The input ranges of the
channels are determined by the settings in the configuration file.

Analog Input Operations 2-11

The channels are sampled in order from the first to the last. For example,
if the start channel is 10 and the stop channel is 15, the channels are
sampled in the following order: 10, 11, 12, 13, 14, 15. If the start channel
is 10 and the stop channel is 3, the channels are sampled in the following
order: 10, 11, 12, 13, 14, 15, 0, 1, 2, 3. The channels are repeatedly
sampled in the specified order until the required number of samples is
read.

Note: When you use thK_SetStartStopChnfunction, the Function

Call Driver reads the configuration file to determine whether the signal
connected to the specified channel is a voltage input or a thermocouple
input and to determine the appropriate gain for that channel. If you want
to change the gain without changing the configuration file, use a
channel-gain queue, as described in the next section.

Specifying Channels in a Channel-Gain Queue

2-12

For synchronous-mode and interrupt-mode analog input operations, you
can acquire samples from channels in a software channel-gain queue. In
the channel-gain queue, you specify the channels you want to sample, the
gain for the channels (voltage inputs only), and the order in which you
want to sample them.

Note: For thermocouple inputs, the gain is ignored; specify a gain code
of 0 for channels configured as thermocouple inputs.

You can set up the channels in a channel-gain queue either in consecutive
or nonconsecutive order. You can also specify the same channel more than
once.

The channels are sampled in order from the first channel in the queue to
the last channel in the queue; the channels in the queue are then sampled
again until the specified number of samples is read.

Available Operations

The
ont

way that you specify the channels in a channel-gain queue depends
he language you are using. Refer to the following pages for more

information:

C/C++ page 3-13

Tur

bo Pascal page 3-23

Visual Basic for Windows| page 3-30

BASIC page 3-37

After you create the channel-gain queue in your program, use the
K_SetChnGAry function to specify the starting address of the

cha

Buffering Modes

nnel-gain queue.

The buffering mode determines how the driver stores the converted data
in the array or buffer. For interrupt-mode analog input operations, you can

spe

Analog Input Operations

cify one of the following buffering modes:

Single-cycle modeln single-cycle mode, after the board converts the
specified number of samples and stores them in the array or buffer,
the operation stops automatically. Single-cycle mode is the default
buffering mode. To reset the buffering mode to single-cycle, use the
K_ClIrContRun function.

Continuous mode - In continuous mode, the board continuously
converts samples and stores them in the array or buffer until it
receives a stop function; any values already stored in the array or
buffer are overwritten. Use thé SetContRun function to specify
continuous buffering mode.

If you are using continuous buffering, as soon as the last block of
samples is transferred, the following occur:

— the transfer count and buffer pointer are reset to zero

— K _IntStatus returns zero instead of the requested sample size in
theindexparameter

— the driver begins to overwrite your buffer’s data

2-13

Therefore, if your application requires consecutive blocks of data,
you should begin processing the buffer before the buffer is full, using
K_IntStatus to determine how many blocks have been transferred
(this function’'sindexparameter increments by the block size).

Note: Buffering modes are not meaningful for synchronous-mode
operations, since only single-cycle mode applies.

2-14 Available Operations

3

Programming with the
Function Call Driver

This chapter contains an overview of the structure of the Function Call
Driver, as well as programming guidelines and language-specific
information to assist you when writing application programs with the
Function Call Driver.

How the Driver Works

When writing application programs, you can use functions from one or
more Keithley MetraByte DAS Function Call Drivers. You initialize each
driver according to a particular configuration file. If you are using more
than one driver or more than one configuration file with a single driver,
the driver handle uniquely identifies each driver or each use of the driver.

You can program one or more boards in your application program. Up to
two DAS-TC or DAS-TC/B boards are supported. You initialize each
board using a unique device handle to identify each board. Each device
handle is associated with a particular driver.

The Function Call Driver allows you to perform operations in various
operation modes. For single mode, the operation is performed with a
single call to a function; the attributes of the operation are specified as
arguments to the function. Figure 3-1 illustrates the syntax of the
single-mode, analog input operation functtbnADRead. The
K_ADReadL andK_ADReadR functions have the same syntax.

How the Driver Works 3-1

Single-Mode Function Attrib utes of Operation
K_ADRead (board, <— > Board number

channel, @~ <—— > Analog input channel
gain, <— > Gain applied to channel
buffer) <— > Buffer for data

Figure 3-1. Single-Mode Function

For other operation modes, such as interrupt mode, the driver uses frames
to perform the operation. A frame is a data structure whose elements
define the attributes of the operation. Each frame is associated with a
particular board, and therefore, with a particular driver.

Frames help you create structured application programs. You set up the
attributes of the operation in advance, using a separate function call for
each attribute, and then start the operation at an appropriate point in your
program.

Frames are useful for operations that have many defining attributes, since
providing a separate argument for each attribute could make a function’s
argument list unmanageably long. In addition, some attributes, such as the
buffering mode, are available only for operations that use frames.

You indicate that you want to perform an operation by getting an
available frame for the driver. The driver returns a unique identifier for the
frame; this identifier is called the frame handle. You then specify the
attributes of the operation by using setup functions to define the elements
of the frame associated with the operation. For example, to specify the
channels on which to perform an operation, you would use the
K_SetStartStopChnsetup function.

Programming with the Function Call Driver

You use the frame handle you specified when accessing the frame in all
setup functions and other functions related to the operation. This ensures
that you are defining the same operation.

When you are ready to perform the operation you have set up, you can
start the operation in the appropriate operation mode, referencing the
appropriate frame handle. Figure 3-2 illustrates the syntax of the
interrupt-mode operation functid&_IntStart .

K_IntStart (frameHandle)

|

Frame Attrib utes of Operation
Start Channel <«———> Firstanalog input channel
Stop Channel <—— > Last analog input channel
Buffering Mode <——> Single cycle or continuous

Figure 3-2. Interrupt-Mode Operation

For DAS-TC and DAS-TC/B boards, synchronous-mode and
interrupt-mode analog input operations require frames, called A/D
(analog-to-digital) frames. Use tie GetADFrame function to access
an available A/D frame.

If you want to perform a synchronous-mode or interrupt-mode analog
input operation and all A/D frames have been accessed, you can use the
K_FreeFrame function to free a frame that is no longer in use. You can
then redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You

can also use th€ ClearFrame function to reset all the elements of a
frame to their default values.

How the Driver Works 3-3

3-4

Table 3-1 lists the elements of an A/D frame for DAS-TC and DAS-TC/B
boards. This table also lists the default value of each element and the
setup function used to define each element.

Table 3-1. A/D Frame Elements

Element Default Value Setup Function
Buffer! 0 (NULL) K SetBuf
K_SetBufL
K_SetBufR
Number of Samples | 0 K_SetBuf
K_SetBufL
K_SetBufR
Buffering Mode Single-cycle K_SetContRun
K_CIrContRur?
Start Channel 0 K_SetStartStopChn
Stop Channel 0 K_SetStartStopChn
Gain 0 Not applicablé
Channel-Gain Queue | 0 (NULL) K_SetChnGAry
Notes

Lyou must set this element.

2 UseK_SetBuf for C/C++ and Turbo Pascal languages; KisBetBufL (for
long integer arrays) ¢¢_SetBufR (for floating-point arrays) for Visual Basic
and BASIC languages.

3 Use this function to reset the value of this particular frame element to its
default setting without clearing the frame or getting a new frame. Whenever
you clear a frame or get a new frame, this frame element is set to its default
value automatically.

4The gain value is ignored; the driver reads the value from the configuration
file.

Note: The DAS-TC Function Call Driver provides many other functions
that are not related to controlling frames, defining the elements of frames,
or reading the values of frame elements. These functions include
initialization functions, memory management functions, and
miscellaneous functions.

Programming with the Function Call Driver

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4.

Programming Overview

To write an application program using the DAS-TC Function Call Driver,
perform the following steps:

1. Define the application's requirements. Refer to Chapter 2 for a
description of the operations supported by the Function Call Driver
and the functions that you can use to define each operation.

2. Write your application program. Refer to the following for additional
information:

Preliminary Tasks, the next section, which describes the
programming tasks that are common to all application programs.

Analog Input Programming Tasks on page 3-6, which describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

Chapter 4, which contains detailed descriptions of the FCD
functions.

The example programs in the DAS-TC standard software
package and the ASO-TC software package. The FILES.TXT file
in the installation directory lists and describes the example
programs.

3. Compile and link the program. Refer to the following pages for
information on compile and link statements and other
language-specific considerations:

C/C++ page 3-11
Turbo Pascal page 3-20
Visual Basic for Windows | page 3-26
BASIC page 3-32

Programming Overview

Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1.

Include the function and variable type definition file for your
language. Depending on the specific language you are using, this file
is included in the DAS-TC standard software package or the ASO-TC
software package.

Declare and initialize program variables.

Use a driver initialization functioriK(OpenDriver or
DASTC_DevOpen to initialize the driver.

Use a board initialization functioK (GetDevHandle or
DASTC_GetDevHandlg to specify the DAS-TC or DAS-TC/B

board you want to use and to initialize the board. If you are using two
DAS-TC or DAS-TC/B boards, repeat this step.

After completing the preliminary tasks, perform the appropriate
operation-specific programming tasks. The operation-specific tasks for
analog input operations are described in the following sections.

Analog Input Programming Tasks

The following sections describe the operation-specific programming tasks
required to perform single-mode, synchronous-mode, and interrupt-mode
analog input operations.

Single-Mode Operations

3-6

For a single-mode analog input operation, perform the following tasks:

1.

Declare the array or variable in which to store the single analog input
value.

Use the appropriate_ADRead function to read the single analog
input value; specify the attributes of the operation as arguments to the
function.

Programming with the Function Call Driver

The following table lists the thrd€ ADRead functions and explains
when to use each function. For details on each function, refer to

Chapter 4.

Function Use with

K_ADRead C/C++, Turbo Pascal, and Turbo Pascal for
Windows for any single-mode operation.

K_ADReadL Visual Basic for Windows and BASIC, when ypu
want to store the value read as a long integer.

K_ADReadR Visual Basic for Windows and BASIC, when you
want to store the value read as a floating-point
number.

Synchronous-Mode Operations

For a synchronous-mode analog input operation, perform the following
tasks:

1. Use th&K _GetADFrame function to access an A/D frame.

2. Dimension the array in which to store the acquired data. (Use the
K_IntAlloc function if you want to allocate the buffer dynamically
outside your program's memory area.)

3. If you want to use a channel-gain queue to specify the channels
acquiring data define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-12 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-2.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list
of the default values of A/D frame elements.

Analog Input Programming Tasks 3-7

3-8

Table 3-2. Setup Functions for Synchronous-Mode
Analog Input Operations

Attribute Setup Functions

Buffer K_SetBuf
K_SetBufL
K_SetBufR

Number of Samples | K_SetBuf
K_SetBufL
K_SetBufR

Start Channel K_SetStartStopChn

Stop Channel K_SetStartStopChn

Channel-Gain Queue | K_SetChnGAry

Notes

LUseK_SetBuf for C/C++ and Turbo Pascal languages;
useK_SetBufL (for long integer arrays) d&¢_SetBufR
(for floating-point arrays) for Visual Basic and BASIC
languages.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

Use theK_SyncStart function to start the synchronous-mode
operation.

If you are programming in Visual Basic for Windows or BASIC and
you used _IntAlloc to allocate your bufferuse the
K_MoveBufToArrayL function (for long integer arrays) or the
K_MoveBufToArrayR function (for floating-point arrays) to

transfer the acquired data from the allocated buffer to the program’s
local array.

If you used_IntAlloc to allocate your bufferuse thek IntFree
function to deallocate the buffer.

Use thek_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Programming with the Function Call Driver

Interrupt-Mode Operations

For an interrupt-mode analog input operation, perform the following
tasks:

1. Use the&K _GetADFrame function to access an A/D frame.

2. Dimension the array in which to store the acquired data. (Use the
K_IntAlloc function if you want to allocate a buffer dynamically
outside your program's memory area.)

3. If you want to use a channel-gain queue to specify the channels
acquiring data define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-12 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-3.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list
of the default values of A/D frame elements.

Table 3-3. Setup Functions for Interrupt-Mode
Analog Input Operations

Attribute Setup Functions
Buffer K_SetBuf
K_SetBufL
K_SetBufR
Number of Samples | K_SetBuf
K_SetBufL
K_SetBufR
Buffering Mode K_SetContRun

K_ClIrContRun

Start Channel K_SetStartStopChn

Analog Input Programming Tasks 3-9

Table 3-3. Setup Functions for Interrupt-Mode
Analog Input Operations (cont.)

Attribute Setup Functions

Stop Channel K_SetStartStopChn
Channel-Gain Queue K_SetChnGAry

Notes

1UseK_SetBuf for C/C++ and Turbo Pascal
languages; usé_SetBufL (for long integer arrays)
or K_SetBufR (for floating-point arrays) for Visual
Basic and BASIC languages.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

5. Use theK_IntStart function to start the interrupt-mode operation.

6. Use theK IntStatus function to monitor the status of the
interrupt-mode operation.

7. If you specified continuous buffering mpdse theK_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been acquired.

8. If you are programming in Visual Basic for Windows or BASIC and
you used _IntAlloc to allocate your bufferuse the
K_MoveBufToArrayL function (for long integer arrays) or the
K_MoveBufToArrayR function (for floating-point arrays) to
transfer the acquired data from the allocated buffer to the program’s
local array.

9. If you used_IntAlloc to allocate your bufferuse thek_IntFree
function to deallocate the buffer.

10. Use thek FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

3-10 Programming with the Function Call Driver

C/C++ Programming Information

The following sections contain information you need to dimension an
array or allocate a memory buffer, to create channel-gain queues, and to
handle errors in C or C++, as well as other language-specific information
for Microsoft C/C++ and Borland C/C++.

Notes: Make sure that you use proper typecasting to prevent C/C++
type-mismatch warnings.

Make sure that linker options are set so that case-sensitivity is disabled.

Dimensioning and Assigning a Local Array

This section provides code fragments that describe how to dimension and
assign a local array when programming in C or C++. Refer to the example
programs on disk for more information.

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations. The following code fragment
illustrates how to dimension an array of 10,000 samples for the frame
defined by hFrame and how to uéeSetBuf to assign the starting
address of the array.

DWORD Data[10000];//Dimension array of 10,000 samples

wDasErr = K_SetBuf (hFrame, Data, 10000);

C/C++ Programming Information 3-11

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to allocate and
assign a dynamically allocated memory buffer when programming in C or
C++. Refer to the example programs on disk for more information.

Note: If you are using a large memory buffer, you may be limited in the
amount of memory you can allocate. It is recommended that you install
the Keithley Memory Manager before you begin programming to ensure
that you can allocate a large enough buffer. Refer to the user’s guide for
your board for more information on the Keithley Memory Manager.

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to #sdntAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to useK_SetBuf to assign the starting address of the buffer.

void far *AcqBuf; /[Declare pointer to buffer
WORD hMem; //Declare word for memory handle

wDasErr = K_IntAlloc (hFrame, Samples, &AcqgBuf, &hMem);
wDasErr = K_SetBuf (hFrame, AcqgBuf, Samples);

The following code illustrates how to uke IntFree to later free the
allocated buffer, using the memory handle store# biyntAlloc .

wDasErr = K_IntFree (hMem);

3-12 Programming with the Function Call Driver

Accessing the Data

You access the data stored in a dynamically allocated buffer through
C/C++ pointer indirection. For example, assume that you want to display
the first 10 samples of the buffer described in the previous section
(AcqBuf). The following code fragment illustrates how to access and
display the data.

int huge *pData; //Declare a pointer called pData
pData = (int huge*) AcqBuf; //Assign pData to buffer

for (i=0;i<10; i++)
printf ("Sample #%d %X", i, *(pData+i));

Note: Declaring pData as a huge pointer allows the program to directly
access all data in the buffer regardless of the buffer size.

Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type
(GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable
{
WORD num_of_codes;
struct{
byte Chan;
char Gain;
} GainChanAry[256];
} GainChanTable;

C/C++ Programming Information 3-13

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-TC or DAS-TC/B board by
declaring and initializing a variable of type GainChanTable:

GainChanTable MyChanGainQueue =

{8, /INumber of entries

0,0, /IChannel 0, gain is ignored for

/lthermocouples
13, /[Channel 1, gain of 400
2,2, /[Channel 2, gain of 166.67
3,1, /[Channel 3, gain of 125
3,0, /IChannel 3, gain of 1
2,3, /[Channel 2, gain of 400
13, /[Channel 1, gain of 400
0, 0} /[Channel 0, gain is ignored
[[for thermocouples

Note: Gain for thermocouple inputs is ignored; specify a gain code of 0
for channels configured as thermocouple inputs.

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

wDasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);

When you start the next analog input operation (uKingyncStart or
K_IntStart), the channels are sampled in the following order: channel 0,
1,2,3,3,2,1,0.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value ofkh&etDevHandle
function.

if (wDasErr = K_GetDevHandle (hDrv, BoardNum, &hDev)) | = 0)

{

printf ("Error %X during K_GetDevHandle", wDasErr);
exit (1);

}

3-14 Programming with the Function Call Driver

The following code fragment illustrates how to useKh&etErrMsg
function to access the string corresponding to an error code.

if (WDasErr = K_SetStartStopChn (hAD, 2, 15) ! = 0)

{
Error = K_GetErrMsg (hDev, wDasErr, &pMessage);

printf ("%s", pMessage);
exit (1);
}

Programming in Microsoft C/C++ (for DOS)

To program in Microsoft C/C++ (for DOS), you need the following files;
these files are provided in the ASO-TC software package.

File Description

DASTC.LIB Linkable driver
DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C
DTCDECL.H Include file when compiling in C
DASDECL.HPP Include file when compiling in C++
DASTC.HPP Include file when compiling in C++

USEDASTC.OBJ Linkable object

To create an executable file in Microsoft C/C++ (for DOS), use the
following compile and link statements. Note thbgnameindicates the
name of your application program.

Type of Compile Compile and Link Statements

C CL /cfilenamec
LINK filename-usetc.obj,,,dastc+dasrface;

C++ CL /cfilenamecpp
LINK filename-usetc.obj,,,dastc+dasrface;

C/C++ Programming Information 3-15

Programming in Microsoft C/C++ (for Windows)

To program in Microsoft C/C++ (for Windows), including Microsoft
Visual C++, you need the following files; these files are provided in the
ASO-TC software package.

File Description

DASSHELL.DLL Dynamic Link Library
DASSUPRT.DLL Dynamic Link Library

DASTC.DLL Dynamic Link Library
DASDECL.H Include file when compiling in C
DTCDECL.H Include file when compiling in C
DASDECL.HPP Include file when compiling in C++
DASTC.HPP Include file when compiling in C++
DASIMP.LIB DAS Shell Imports

DASTCIMP.LIB DAS-TC Imports

To create an executable file in Microsoft C/C++ (for Windows), use the
following compile and link statements. Note tfilsnameindicates the
name of your application program.

Type of Compile Compile and Link Statements

C CL /cfilenamec

LINK filename,dtcimp+dasimgilenamedef;
RC -r filenamerc

RCfilenameres

C++ CL /cfilenamecpp

LINK filename,dtcimp+dasimgilenamedef;
RC —r filenamerc

RCfilenameres

3-16 Programming with the Function Call Driver

To create an executable file in the Microsoft C/C++ (for Windows)
environment, perform the following steps:

1. Create a project file by choosing New from the Project menu.

2. Add all necessary files to the project make file by choosing Edit from
the Project menu. Make sure that you inclitlmamec (or
filenamecpp),filenamerc, filenamedef, DASIMP.LIB, and
DTCIMP.LIB, wherefilenameindicates the name of your application
program.

3. From the Project menu, choose Rebuild All FILENAME.EXE to
create a stand-alone executable file (.EXE) that you can execute from
within Windows.

Programming in Borland C/C++ (for DOS)

To program in Borland C/C++ (for DOS), you need the following files;
these files are provided in the ASO-TC software package.

File Description

DASTC.LIB Linkable driver
DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C
DTCDECL.H Include file when compiling in C
DASDECL.HPP Include file when compiling in C++
DASTC.HPP Include file when compiling in C++

USEDASTC.OBJ Linkable object

C/C++ Programming Information 3-17

To create an executable file in Borland C/C++ (for DOS), use the
following compile and link statements. Note tfilgnameindicates the
name of your application program.

Type of

Compile |Compile and Link Statements 1

C BCC filenamec usetc.obj dastc.lib dasrface.lib
C++ BCCfilenamecpp usetc.obj dastc.lib dasrface.lib
Notes

1 These statements assume a large memory model; however, any memory
model is acceptable.

Programming in Borland C/C++ (for Windows)

To program in Borland C/C++ (for Windows), you need the following
files; these files are provided in the ASO-TC software package.

File Description

DASSHELL.DLL Dynamic Link Library
DASSUPRT.DLL Dynamic Link Library
DASTC.DLL Dynamic Link Library
DASDECL.H Include file when compiling in C
DTCDECL.H Include file when compiling in C
DASDECL.HPP Include file when compiling in C++
DASTC.HPP Include file when compiling in C++
DASTCIMP.LIB DAS Shell Imports

DTCIMP.LIB DAS-TC Imports

3-18 Programming with the Function Call Driver

To create an executable file in Borland C/C++ (for Windows), use the
following compile and link statements. Note tfilgnameindicates the
name of your application program.

Type of Compile Compile and Link Statements

C BCC -cfilenamec
TLINK filename,,dtcimp+dasimpfilenamedef;
BRC -rfilenamerc
BRC filenameres

C++ BCC -cfilenamecpp

TLINK filename,,dtcimp+dasimpfilenamedef;
BRC -rfilenamerc
BRC filenameres

To create an executable file in the Borland C/C++ (for Windows)
environment, perform the following steps:

1.
2.

Create a project file by choosing New from the Project menu.

Inside the Project window, select the project name and click on the
right mouse button.

Select the Add node option and add all necessary files to the project
make file. Make sure that you inclufilenamec (orfilenamecpp),
filenamerc, filenamedef, DASIMP.LIB, and DTCIMP.LIB, where
filenameindicates the name of your application program.

From the Options menu, select Project.

From the Project Options dialog box, select Linker\General and make
sure that you turn OFF both the Case sensitive link and Case sensitive
exports and imports options.

From the Project menu, choose Build All to create a stand-alone
executable file (.EXE) that you can execute from within Windows.

C/C++ Programming Information 3-19

Turbo Pascal Programming Information

The following sections contain information you need to dimension an
array or allocate a memory buffer, to create channel-gain queues, and to
handle errors when programming in Turbo Pascal, as well as
language-specific information for Borland Turbo Pascal (for DOS) and
Borland Turbo Pascal for Windows.

Dimensioning and Assigning a Local Array

This section provides code fragments that describe how to dimension and
assign a local array when programming in Turbo Pascal. Refer to the
example programs on disk for more information.

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations.

The following code fragment illustrates how to dimension an array of

10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array.

Data : Array[0..9999] of Longint;

wDasErr ;= K_SetBuf (hFrame, Data(0), 10000);

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to allocate and
assign a dynamically allocated memory buffer when programming in
Turbo Pascal. Refer to the example programs on disk for more
information.

3-20 Programming with the Function Call Driver

Note: If you are using a large buffer and you are programming in
Borland Turbo Pascal for Windows, you may be limited in the amount of
memory you can allocate. It is recommended that you use the Keithley
Memory Manager before you begin programming to ensure that you can
allocate a large enough buffer. Refer to the user’s guide for your board for
more information about the Keithley Memory Manager.

Reducing the Memory Heap

Note: Reducing the memory heap is recommended for Borland Turbo
Pascal (for DOS) only; if you are programming in Borland Turbo Pascal
for Windows, reducing the memory heap is not required.

By default, when Borland Turbo Pascal (for DOS) programs begin to run,
Pascal reserves all available DOS memory for use by the internal memory
manager; this allows you to perfoi@etMem andFreeMem operations.
Pascal uses the compiler directive $M to distribute the available memory.
The default configuration is {$M 16384, 0, 655360}, where 16384 bytes
is the stack size, 0 bytes is the minimum heap size, and 655360 is the
maximum heap size.

It is recommended that you use the compiler directive $M to reduce the
maximum heap reserved by Pascal to zero bytes by entering the
following:

{$M (16384, 0, 0)}

Reducing the maximum heap size to zero bytes makes all far heap
memory available to DOS (and therefore available to the driver) and
allows your application program to take maximum advantage of the
K_IntAlloc function. You can reserve some space for the internal
memory manager or for DOS, if desired. Refer to your Borland Turbo
Pascal (for DOS) documentation for more information.

Turbo Pascal Programming Information 3-21

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to ksdntAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to useK_SetBuf to assign the starting address of the buffer.

It is recommended that you declare a dummy type array of Integer. The
dimension of this array is irrelevant; it is used only to satisfy Pascal’s
type-checking requirements.

{$m (16384, 0, 0)} { Turbo Pascal for DOS only }
Type
IntArray = Array[0..1] of Longint;
Var
AcqBuf : MIntArray; { Declare buffer of dummy type }
hMem : Word; { Declare word for memory handle, hMem }
wDaskErr := K_IntAlloc (hFrame, Samples, @AcqBuf, hMem));
wDaskErr := K_SetBuf (hFrame, AcqgBuf, Samples);

The following code illustrates how to uke IntFree to later free the
allocated buffer, using the memory handle store# biyntAlloc .

wDasErr := K_IntFree (hMem);

3-22 Programming with the Function Call Driver

Accessing the Data

You access the data stored in a dynamically allocated buffer through
Pascal pointer indirection. For example, assume that you want to display
the first 10 samples of the buffer in the operation described in the previous
section (AcqgBuf). The following code fragment illustrates how to access
and display the data.

fori:=0to 9 do begin
writeln ('Sample #', i,” =', AcqBuf/[i]);
End,;

Creating a Channel-Gain Queue

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-TC or DAS-TC/B board by
defining a Record as a new type. You mustisBetChnGAry to assign
the starting address of MyChanGainQueue to the frame defined by
hFrame.

Type
GainChanTable = Record
num_of codes : Integer;
queue : Array[0..255] of Byte;
end;
Const
MyChanGainQueue : GainChanTable = (
num_of codes : (8); { Number of entries }
queue :(0, O, { Channel 0, gain is ignored for thermocouples}
{ Channel 1, gain of 400}
{ Channel 2, gain of 166.67}
{ Channel 3, gain of 125}
{ Channel 3, gain of 1}
{ Channel 2, gain of 400}
{ Channel 1, gain of 400}
{ Channel 0, gain is ignored for thermocouples}

OFRPNWWN K
OCWWO R NW

~—~ -

);

wDasErr ;= K_SetChnGAry (hFrame, MyChanGainQueue.num_of _codes);

Turbo Pascal Programming Information 3-23

Note: Gain for thermocouple inputs is ignored; specify a gain code of 0
for channels configured as thermocouple inputs.

When you start the next analog input operation (uKingyncStart or

K_IntStart), the channels are sampled in the following order: channel O,
1,2,3,3,2,1,0.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the
DASTC_GetDevHandlefunction.

wDasErr := DASTC_GetDevHandle (0, hDev);
if wDasErr <> 0 then
BEGIN

FormatStr (HexErr, ' %4x ', wDasErr);

writeln (‘Error', HexErr, 'during DASTC_GetDevHandle");
Halt (1);
END;

Programming in Borland Turbo Pascal (for DOS)

To program in Borland Turbo Pascal, you need the file DASTC.TPU,
which is the Turbo Pascal unit for Version 6.0. This file is provided in the
ASO-TC software package.

To create an executable file in Borland Turbo Pascal, use the following
compile and link statement:

TPC filename.pas

wherefilenameindicates the name of your application program.

3-24 Programming with the Function Call Driver

Programming in Borland Turbo Pascal for Windows

To program in Borland Turbo Pascal for Windows, you need the
following files; these files are provided in the ASO-TC software package.

File Description

DASSHELL.DLL | Dynamic Link Library
DASSUPRT.DLL Dynamic Link Library

DASTC.DLL Dynamic Link Library
DASDECL.INC Include file
DASTC.INC Include file

To create an executable file in Borland Turbo Pascal for Windows,
perform the following steps:

1. Loadfilenamepas into the Borland Turbo Pascal for Windows
environment, wherélenameindicates the name of your application
program.

2. From the Compile menu, choose Make.

Turbo Pascal Programming Information 3-25

Visual Basic for Windows Programming Information

The following sections contain information you need to dimension an
array or allocate a memory buffer, to create channel-gain queues, and to
handle errors in Microsoft Visual Basic for Windows, as well as other
language-specific information for Microsoft Visual Basic for Windows.

Dimensioning and Assigning a Local Array

This section provides code fragments that describe how to dimension and
assign a local array when programming in Microsoft Visual Basic for
Windows. Note that the code fragments assume Option Base 0. Refer to
the example programs on disk for more information.

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations. The following code fragment
illustrates how to dimension a long integer array of 10,000 samples for
the frame defined by hFrame and how tokKis8etBufL to assign the
starting address of the long integer array.

Global Data(9999) As Long " Allocate array

wDasErr = K_SetBufL (hFrame, Data(0), 10000)

Dynamically Allocating and Assigning a Memory Buffer

3-26

This section provides code fragments that describe how to allocate and
assign a dynamically allocated memory buffer when programming in
Microsoft Visual Basic for Windows. Refer to the example programs on
disk for more information.

Note: If you are using a large buffer, you may be limited in the amount of
memory you can allocate. It is recommended that you use the Keithley
Memory Manager before you begin programming to ensure that you can
allocate large enough buffers. Refer to the user’s guide for your board for
more information about the Keithley Memory Manager.

Programming with the Function Call Driver

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to ksdntAlloc to

allocate a long integer buffer of size Samples for the frame defined by
hFrame and how to us€e SetBufL to assign the starting address of the
buffer.

Global AcgBuf As Long ' Declare pointer to buffer
Global hMem As Integer ' Declare integer for memory handle

wDasErr = K_IntAlloc (hFrame, Samples, AcqBuf, hMem)
wDasErr = K_SetBufL (hFrame, AcqBuf, Samples)

The following code illustrates how to uke IntFree to later free the
allocated buffer, using the memory handle store& biyntAlloc .

wDasErr = K_IntFree (hMem)

Accessing the Data from Buffers with Fewer than 64K Bytes

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in a dynamically allocated memory buffer. You must
use either th&_MoveBufToArrayL function (for long integer arrays) or
theK_MoveBufToArrayR function (for floating-point arrays) to move a
subset (up to 32,767 samples) of the data into a local array as required.
The following code fragment illustrates how to move the first 100
samples of the buffer in the operation described in the previous section
(AcgBuf) to a local array.

Dim Buffer(1000) As Long’ Declare local memory buffer

wDasErr = K_MoveBufToArrayL (Buffer(0), AcqBuf, 100)

Visual Basic for Windows Programming Information 3-27

Accessing the Data from Buffers with More than 64K Bytes

When Windows is running, the CPU operates in 16-bit protected mode.
Memory is addressed using a 32-bit selector:offset pair. The selector is
the CPU’s handle to a 64K byte memory page; it is a code whose value is
significant only to the CPU. No mathematical relationship exists between
a selector and the memory location it is associated with. In general, even
consecutively allocated selectors have no relationship to each other.

When a memory buffer of more than 64K bytes is used, multiple selectors
are required. Under Windowk, IntAlloc uses a “tiled” method to

allocate memory whereby a mathematical relationship does exist among
the selectors. Specifically, if you allocate a buffer of more than 64K bytes,
each selector that is allocated has an arithmetic value that is eight greater
than the previous one. The format of the address is a 32-bit value whose
high word is the 16-bit selector value and low word is the 16-bit offset
value. When the offset reaches 64K bytes, the next consecutive memory
address location can be accessed by adding eight to the selector and
resetting the offset to zero; to do this, add &h80000 to the buffer starting
address.

Table 3-4 illustrates the mapping of consecutive memory locations in

protected-mode “tiled” memory, whexexxxxxxndicates the address
calculated by the CPU memory mapping mechanism.

Table 3-4. Protected-Mode Memory Architecture

Selector:Offset 32-Bit Linear Address

32E6:FFFE XXXXXXXX

32E6:FFFF XXXXXXX¥ 1
32EE:0000 XXXXXXX¥ 2
32EE:0001 XXXXXXX¥ 3

3-28 Programming with the Function Call Driver

The following code fragment illustrates moving 1,000 values from a
memory buffer (AcgBuf) allocated with 50,000 values to the program’s
local array (Array), starting at the sample at buffer index 40,000. First,
start with the buffer address passe&irSetBufL. Then, determine how
deep (in 64K byte pages) into the buffer the desired starting sample is
located and add &h80000 to the buffer address for each 64K byte page.
Finally, add any additional offset after the 64K byte pages to the buffer
address.

Dim AcgBuf As Long
Dim NumSamps As Long

Dim Array(999) As Long

NumSamps = 50000
wDasErr = K_IntAlloc (hFrame, NumSamps, AcgBuf, hMem)
'Acquisition routine

DesiredSamp = 40000

DesiredByte = DesiredSamp * 4 'Number of bytes into buffer
AddSelector = DesiredByte / &h10000 'Number of 64K pages into buffer
RemainingOffset = DesiredByte Mod &h10000 'Additional offset

DesiredBuffLoc = AcqBuf + (AddSelector * &h80000) + RemainingOffset
wDasErr = K_MoveBufToArrayL (Array(0), DesiredBuffLoc, 1000)

To move more than 32,767 values from the memory buffer to the
program’s local array, the program must ¢alMoveBufToArrayL

more than once. For example, assume that pBuf is a pointer to a
dynamically allocated buffer that contains 65,536 values. The following
code fragment illustrates how to move 65,536 values from the
dynamically allocated buffer to the program’s local array:

Dim Data [2, 32768] As Long
wDasErr = K_MoveBufToArrayL (Data(0,0), pBuf, 32768)

'Add 8 to selector, offset = 0: add &h80000
wDasErr = K_MoveBufToArrayL (Data(1,0), pBuf + &h80000, 32768)

'Add 8 to selector, offset=0: add &h100000
wDasErr = K_MoveBufToArrayL (Data(2,0), pBuf + &nh100000, 32768)

Visual Basic for Windows Programming Information 3-29

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you mustugeormatChnGAry to
reformat the channel-gain queue so that it can be used by the DAS-TC
Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-TC or

DAS-TC/B board and how to use SetChnGAry to assign the starting
address of MyChanGainQueue to the frame defined by hFrame.

Global MyChanGainQueue(9) As Integer '(4 channels x 2) + 1

MyChanGainQueue(0) =4 ' Number of channel-gain pairs

MyChanGainQueue(1) = 0 " Channel 0
MyChanGainQueue(2) = 0 " Gain ignored for thermocouples
MyChanGainQueue(3) = 1 " Channel 1
MyChanGainQueue(4) = 3 " Gain of 400
MyChanGainQueue(5) = 2 " Channel 2
MyChanGainQueue(6) = 2 ' Gain of 166.67
MyChanGainQueue(7) = 2 " Channel 2
MyChanGainQueue(8) = 0 " Gain of 1

wDasErr = K_FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))

Note: Gain for thermocouple inputs is ignored; specify a gain code of 0
for channels configured as thermocouple inputs.

3-30 Programming with the Function Call Driver

Once formatted, your Visual Basic for Windows program can no longer
read the channel-gain queue. To read or modify the array after it has been
formatted, you must ud€ RestoreChnGAry as follows:

wDasErr = K_RestoreChnGAry (MyChanGainQueue(0))

When you start the next analog input operation (ukin8yncStart or
K_IntStart), the channels are sampled in the following order: channel 0,
1,2, 2.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value ofkh&etDevHandle

function.

wDasErr = K_GetDevHandle (hDrv, BoardNum, hDev)
If (wDasErr <> 0) Then
MsgBox "K_GetDevHandle Error: " + Hex$ (wDaskErr),
MB_ICONSTOP, "DAS-TC/B ERROR"
End
End If

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the ASO-TC software package.

File Description

DASSHELL.DLL Dynamic Link Library
DASSUPRT.DLL Dynamic Link Library

DASTC.DLL Dynamic Link Library
DASDECL.BAS Include file; must be added to the project
DTCDECL.BAS Include file; must be added to the project

Visual Basic for Windows Programming Information 3-31

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the File menu.

BASIC Programming Information

The following sections contain information you need to dimension an
array or allocate a memory buffer, to create channel-gain queues, and to
handle errors in BASIC, as well as other language-specific information
for Microsoft QuickBasic and Microsoft Professional Basic.

Dimensioning and Assigning a Local Array

This section provides code fragments that describe how to dimension and
assign a local array when programming in BASIC. Refer to the example
programs on disk for more information.

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations. The following code fragment
illustrates how to dimension a long array of 10,000 samples for the frame
defined by hFrame and how to us8etBufL to assign the starting

address of the long integer array.

Dim Data(9999) As Long " Allocate array

wDasErr = KSetBufL% (hFrame, Data(0), 10000)

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to allocate and
assign a dynamically allocated memory buffer when programming in
BASIC. Refer to the example programs on disk for more information.

3-32 Programming with the Function Call Driver

Reducing the Memory Heap

By default, when BASIC programs run, all available memory is left for
use by the internal memory manager. BASIC provides the SetMem
function to distribute the available memory (the Far Heap). It is necessary
to redistribute the Far Heap if you want to use dynamically allocated
buffers. It is recommended that you include the following code at the
beginning of BASIC programs to free the Far Heap for the driver's use.

FarHeapSize& = SetMem(0)
NewFarHeapSize& = SetMem(-FarHeapSize&/2)

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to #datAlloc to allocate
a buffer of size Samples for the frame defined by hFrame and how to use
KSetBufL to assign the starting address of the buffer.

Dim AcqgBuf As Long ' Declare pointer to buffer
Dim hMem As Integer ' Declare memory handle

wDasErr = KintAlloc% (hFrame, Samples, AcqBuf, hMem)
wDasErr = KSetBufL% (hFrame, AcqBuf, Samples)

The following code illustrates how to ukéntFree to later free the
allocated buffer, using the memory handle store&lmyAlloc .

wDasErr = KintFree% (hMem)

BASIC Programming Information 3-33

Accessing the Data from Buffers with Fewer than 64K Bytes

In BASIC, you cannot directly access analog input samples stored in a
dynamically allocated memory buffer. You must use either the
KMoveBufToArrayL function (for long integer arrays) or the
KMoveBufToArrayR function (for floating-point arrays) to move a

subset of the data (up to 32,767 samples) into a local array. The following
code fragment illustrates how to move the first 100 samples of the buffer
in the operation described in the previous section (AcgBuf) into a local
memory buffer.

Dim Buffer(99) As Long ' Declare local memory buffer

wDasErr = KMoveBufToArrayL% (Buffer(0), AcqBuf, 100)

Accessing the Data from Buffers with More than 64K Bytes

Under DOS, the CPU operates in real mode. Memory is addressed using a
32-bit segment:offset pair. Memory is allocated from the far heap, the
reserve of conventional memory that occupies the first 640K bytes of the
1M byte of memory that the CPU can address in real mode. In the
segmented real-mode architecture, the 16-bit segment:16-bit offset pair
combines into a 20-bit linear address using an overlapping scheme. For a
given segment value, you can address 64K bytes of memory by varying
the offset.

When a memory buffer of more than 64K bytes (32K values) is used,
multiple segments are required. When an offset reaches 64K bytes, the
next linear memory address location can be accessed by adding &h1000
to the buffer segment and resetting the offset to zero.

Table 3-5 illustrates the mapping of consecutive memory locations at a
segment page boundary.

3-34 Programming with the Function Call Driver

Table 3-5. Real-Mode Memory Architecture

Segment:Offset 20-Bit Linear Address

74E4:FFFE 84E3E
7AE4:FFFF 84E3F
84E4:0000 84E40
84E4:0001 84E41

The following code fragment illustrates how to move 1,000 values from a
memory buffer (AcgBuf) allocated with 50,000 values to the program’s
local array (Array), starting at the sample at buffer index 40,000. You
must first calculate the linear address of the buffer’s starting point, then
add the number of bytes deep into the buffer that the desired starting
sample is located, and finally convert this adjusted linear address to a
segment:offset format.

Dim AcgBuf As Long

Dim NumSamps As Long
Dim LinAddrBuff As Long
Dim DesLocAddr As Long
Dim AdjSegOffset As Long

Dim Array(999) As Long
'Initialize array with desired values

NumSamps = 50000
wDasErr = KIntAlloc% (hFrame, NumSamps, AcqBuf, hMem)

DesiredSamp = 40000
DesiredByte = DesiredSamp * 4 'Number of bytes into buffer

"To obtain the 20-bit linear address of the buffer, shift the
'segment:offset to the right 16 bits (leaves segment only),
'multiply by 16, then add offset

LinAddrBuff = (AcqBuf / &h10000) * 16 + (AcgBuf AND &hFFFF)

BASIC Programming Information 3-35

'20-bit linear address of desired location in buffer
DesLocAddr = LinAddrBuff + DesiredByte

'Convert desired location to segment:offset format
AdjSegOffset = (DesLocAddr / 16) * &h10000 + (DesLocAddr AND &hF)

wDasErr = KMoveBufToArrayL% (Array(0), AdjSegOffset, 1000)

To move more than 32,767 values from the memory buffer to the
program’s local array, the program must ¢dloveBufToArrayL more

than once. For example, assume that pBuf is a pointer to a dynamically
allocated buffer that contains 65,536 values. The following code fragment
illustrates how to move 65,536 values from the memory buffer to the
program’s local array (Data).

Although it is recommended that you perform all calculations on the

linear address and then convert the result to the segment:offset format (as
shown in the previous code fragment), this example illustrates an
alternative method of calculating the address by working on the
segment:offset form of the address directly. You can use this method if
you already know how deep you want to go into the buffer with each

move and the offset of the starting address is 0, as is the case when the
buffer is allocated withKIntAlloc .

In this method, you add &h10000000 to the buffer address for each 64K
byte page and then add the remainder of the buffer.

Dim Data [2, 32768] As Long
wDasErr = KMoveBufToArrayL% (Data(0,0), pBuf, 32768)

'Add 8 to selector, offset = 0: add &h80000
wDasErr = KMoveBufToArrayL% (Data(1,0), pBuf + &h80000, 32768)

’Add 8 to selector, offset=0: add &h100000
wDasErr = KMoveBufToArrayL% (Data(2,0), pBuf + &h100000, 32768)

3-36 Programming with the Function Call Driver

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you muskiiEEmatChnGAry to
reformat the channel-gain queue so that it can be used by the DAS-TC
Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-TC or
DAS-TC/B board and how to usSetChnGAry to assign the starting
address of MyChanGainQueue to the frame defined by hFrame.

Dim MyChanGainQueue(9) As Integer '(4 channels x 2) + 1

MyChanGainQueue(0) = 4 " Number of channel-gain pairs
MyChanGainQueue(1) = 0 " Channel 0
MyChanGainQueue(2) = 0 " Gain ignored for thermocouples
MyChanGainQueue(3) = 1 " Channel 1
MyChanGainQueue(4) = 3 " Gain of 400
MyChanGainQueue(5) = 2 " Channel 2
MyChanGainQueue(6) = 2 ' Gain of 166.67
MyChanGainQueue(7) = 2 " Channel 2
MyChanGainQueue(8) = 0 " Gain of 1

wDasErr = KFormatChnGAry% (MyChanGainQueue(0))
wDasErr = KSetChnGAry% (hFrame, MyChanGainQueue(0))

Note: Gain is ignored for thermocouple inputs; specify a gain code of 0
for channels configured as thermocouple inputs.

BASIC Programming Information 3-37

Once formatted, your BASIC program can no longer read the
channel-gain array. To read or modify the array after it has been
formatted, you must ud€RestoreChnGAry as follows:

wDasErr = KRestoreChnGAry% (MyChanGainQueue(0))

When you start the next analog input operation (ukiBgncStart or
KlintStart), the channels are sampled in the following order: channel 0, 1,
2, 2.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value oflA&TCGetDevHandle
function.

wDasErr = DASTCGETDEVHANDLE% (BoardNum, hDev)

IF (wDasErr <> 0) THEN

BEEP

PRINT "Error";HEX$(wDasErr);"occurred during'DASTCGETDEVHANDLE%™
END

END IF

3-38 Programming with the Function Call Driver

Programming in Microsoft QuickBasic

To program in Microsoft QuickBasic, you need the following files; these
files are provided in the DAS-TC standard software package.

File Description

DTCQ45.LIB Linkable driver for QuickBasic (Version 4.5)
stand-alone, executable (.EXE) programs

DTCQ45.QLB Command-line loadable driver for the QuickBasic
(Version 4.5) integrated environment

QB4DECL.BI Include file

DASDECL.BI Include file

DASTC.BI Include file

For Microsoft QuickBasic, you can create an executable file from within
the programming environment, or you can use a compile and link
statement.

To create an executable file from within the programming environment,
perform the following steps:
1. Enter the following to invoke the environment:
QB /L DTCQ45 filename.bas
wherefilenameindicates the name of your application program.

2. From the File menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filenamebas /O
Link filenameobj,,,DTCQ45.lib+BCOM45.lib;

wherefilenameindicates the name of your application program.

BASIC Programming Information 3-39

Programming in Microsoft Professional Basic

To program in Microsoft Professional Basic, you need the following files;
these files are provided in the DAS-TC standard software package.

File Description

DTCQBX.LIB Linkable driver for Professional Basic,
stand-alone, executable (.EXE) programs

DTCQBX.QLB Command-line loadable driver for the Professional
Basic integrated environment

DASDECL.BI Include file

DASTC.BI Include file

For Microsoft Professional Basic, you can create an executable file from
within the programming environment, or you can use a compile and link
statement.

To create an executable file from within the programming environment,
perform the following steps:
1. Enter the following to invoke the environment:
QBX /L DTCQBX filename.bas
wherefilenameindicates the name of your application program.

2. From the File menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filenamebas /o;
Link filenameobj,,,DTCQBX.lib;

wherefilenameindicates the name of your application program.

3-40 Programming with the Function Call Driver

A

Function Reference

The FCD functions are organized into the following groups:

Initialization functions
Operation functions

Frame management functions
Memory management functions
Buffer address functions
Buffering mode functions
Channel and gain functions

Miscellaneous functions

The particular functions associated with each function group are presented
in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-2

Table 4-1. Functions

Function Type Function Name Rage Number
Initialization DASTC_DevOpen page 4-5
DASTC_GetDevHandle page 4-11
K_OpenDriver page 4-65
K_CloseDriver page 4-24
K_GetDevHandle page 4-38
K_FreeDevHandle page 4-32
K_DASDevInit page 4-28
Operation K_ADRead page 4-13
K_ADReadL page 4-16
K_ADReadR page 4-19
K_SyncStart page 4-84
K_IntStart page 4-53
K_IntStatus page 4-55
K_IntStop page 4-58
Frame Management | K_GetADFrame page 4-36
K_FreeFrame page 4-34
K_ClearFrame page 4-22
Memory Managemen| K_IntAlloc page 4-48
K_IntFree page 4-51
K_MoveBufToArrayL page 4-61
K_MoveBufToArrayR page 4-63
Buffer Address K_SetBuf page 4-70
K_SetBufL page 4-72
K_SetBufR page 4-74

Function Reference

Table 4-1. Functions (cont.)

Function Type Function Name Page Number
Buffering Mode K_SetContRun page 4-79
K_ClIrContRun page 4-26
Channel and Gain K_SetStartStopChn page 4-81
K_SetChnGAry page 4-76
K_FormatChnGAry page 4-30
K_RestoreChnGAry page 4-68
Miscellaneous K_GetErrMsg page 4-40
K_GetVer page 4-45
K_GetShellVer page 4-42
DASTC_GETCJC page 4-8

Keep the following conventions in mind throughout this chapter:

Although the function names are shown with underscores, do not use
the underscores in the BASIC languages.

The data types DWORD, WORD, and BYTE are defined in the
language-specific include files.

Variable names are shown in italics.

The return value for all FCD functions is an integer error/status code.

Error/status code O indicates that the function executed successfully.

A nonzero error/status code indicates that an error occurred. Refer to
Appendix A for additional information.

In the usage section, the variables are not defined. It is assumed that
the variables are defined as shown in the prototype. The name of each
variable in both the prototype and usage sections includes a prefix
that indicates the associated data type. These prefixes are described in
Table 4-2.

4-3

Table 4-2. Data Type Prefixes

Prefix |Data Type Comments
sz Pointer to string terminated by | This data type is typically used for variables that
Zero specify the driver's configuration file name.
h Handle to device, frame, and | This data type is used for handle-type variables. You
memory block declare handle-type variables in your program as long
or DWORD, depending on the language you are using.
The actual variable is passed to the driver by value.
ph Pointer to a handle-type variabl¢ This data type is used when calling the FCD functions
to get a driver handle, a frame handle, a memory
handle, or a device handle. The actual variable is
passed to the driver by reference.

p Pointer to a variable This data type is used for pointers to all types of
variables, except handles (h). It is typically used when
passing a parameter of any type to the driver by
reference.

n Number value This data type is used when passing a number,
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with
other prefixes listed here; for exammaVardenotes
an array of numbers.

f Float This data type denotes a single-precision floating-point
number.

d Double This data type denotes a double-precision
floating-point number.

dw 32-bit double word This data type is typically used when passing an
unsigned long to the driver by value.

4-4 Function Reference

DASTC_DevOpen

Purpose

Prototype

Parameters

Return Value

Remarks

Initializes the DAS-TC Function Call Driver.

C/C++
DASErr far pascal DASTC_DevOpen (char fazCfgFile
char far*pBoards;

Turbo Pascal
Function DASTC_DevOpen (VazCfgFile: char;
Var pBoards: Integer) : Word; far; external 'DASTC";

Turbo Pascal for Windows
Function DASTC_DevOpen (VazCfgFile: char;
Var pBoards: Integer) : Word; far; external 'DASTC";

Visual Basic for Windows
Declare Function DASTC_DevOpen Lib "DASTC.DLL"
(ByVal szCfgFileAs String,pBoardsAs Integer) As Integer

BASIC

DECLARE FUNCTION DASTCDEVOPEN% ALIAS
"DASTC_DevOpen" (BYVALszCfgFileAS LONG,
SEGpBoardsAS INTEGER)

szCfgFile Driver configuration file.
Valid values: The name of a configuration file.

pBoards Number of boards defined §zCfgFile
Value stored:1 or 2

Error/status code. Refer to Appendix A.

This function initializes the driver according to the information in the
configuration file specified bgzCfgFileand stores the number of
DAS-TC or DAS-TC/B boards defined szCfgFilein pBoards

4-5

DASTC_DevOpen (cont.)

You create a configuration file using the DASTCCFG.EXE utility. If
szCfgFile= 0, DASTC_DevOpenlooks for the DASTC.CFG

configuration file in the current directory.dfCfgFile= -1,
DASTC_DevOpenuses the default configuration settings. Refer to the
user’s guide for your board for more information about configuration files
and settings.

See Also K_OpenDriver

Usage C/C++
#include "DTCDECL.H" // Use DASTC.HPP for C++

char nBoards;

wDasErr = DASTC_DevOpen ("DASTC.CFG", &nBoards);

Turbo Pascal
uses DTCTPU;

szCfgName : String;
nBoards : Integer;

szCfgName := 'DASTC.CFG' + #0;
wDasErr := DASTC_DevOpen (szCfgName[1], nBoards);

Turbo Pascal for Windows
{$I DASTC.INC}

szCfgName : String;
nBoards : Integer;

szCfgName := 'DASTC.CFG' + #0;
wDasErr := DASTC_DevOpen (szCfgName[1], nBoards);

4-6 Function Reference

DASTC_DevOpen (cont.)

Visual Basic for Windows
(Add DTCDECL.BAS to your project)

DIM szCfgName AS STRING
DIM nBoards AS INTEGER

szCfgName = "DASTC.CFG" + CHR$(0)
wDasErr = DASTC_DevOpen(szCfgName, nBoards)

BASIC
'$INCLUDE: 'DASTC.BI'

DIM szCfgName AS STRING
DIM nBoards AS INTEGER

szCfgName = "DASTC.CFG" + CHR$(0)
wDasErr = DASTCDEVOPEN%(SSEGADD(szCfgName),nBoards)

4-7

DASTC_GETCJC

Purpose Returns the value of the CJC on the DAS-TC or DAS-TC/B board in
degrees Celsius; this value is used to correct temperature input values.

Prototype C/C++
DASErr far pascal DASTC_GETCJC (inBrdNum
float far*pCJCtemp;

Turbo Pascal
Function DASTC_GETCJMBrdNum: Integer;
Var pCJCtemp Real) : Word; far; external 'DASTC,

Turbo Pascal for Windows
Function DASTC_GETCJ@BrdNum: Integer;
Var pCJCtemp Single) : Word; far; external 'DASTC,

Visual Basic for Windows
Declare Function DASTC_GETCJC Lib "DASTC.DLL"
(ByVal nBrdNumAs IntegerpCJCtempAs Single) As Integer

BASIC
DECLARE FUNCTION DASTCGETCJC% ALIAS "DASTC_GETCJC"
(BYVAL nBrdNumAS INTEGER, BYVAL pCJCtempAS SINGLE)

Parameters nBrdNum Board number.
Valid values: O or 1

pCJCtemp CJC sensor temperatures in degrees Celsius.
Return Value Error/status code. Refer to Appendix A.
Remarks For the DAS-TC or DAS-TC/B board specifieditgrdNum this function

reads the cold junction compensation temperature at the STA-TC,
STC-TC, STA-TC/B, or STC-TC/B terminals connected to the board and
stores the value ipCJCtemp

The board number specifiediBrdNumrefers to the board number
specified in the configuration file.

4-8 Function Reference

DASTC_GETCJC (cont.)

The value stored ipCJCtemgs floating point regardless of the format
specified in the configuration file.

In order to obtain a temperature reading from a thermocouple type not
recognized by the Function Call Driver, you need to perform your own
linearization by callindASTC_GETCJC and using the resulting value
to correct the linearization.

Depending on the volatility of the ambient temperature where the CJC
resides, usBASTC_GETCJC more often as you take more samples.

Usage C/C++
#include "DTCDECL.H" // Use DASTC.HPP for C++

float hTemp;
wDasErr = DASTC_GETCJC (0, &hTemp);

Turbo Pascal
uses DTCTPU;

hTemp : Real; {CJC Temperature}

wDasErr := DASTC_GETCJC (0, hTemp);

Turbo Pascal for Windows
{$| DASDECL.INC}

hTemp : Single; { CJC Temperature }

wDasErr := DASTC_GETCJC (0, hTemp);

Visual Basic for Windows
(Add DTCDECLBAS to your project)

Global hTemp As Single ' CJC Temperature

wDasErr = DASTC_GETCJC (0, hTemp)

4-9

DASTC_GETCJC (cont.)

BASIC
'$INCLUDE: 'DASTC.BI

DIM hTemp AS Single' CJC Temperature

wDasErr = DASTCGETDEVHANDLE% (0, hTemp)

4-10 Function Reference

DASTC_GetDevHandle

Purpose Initializes a DAS-TC or DAS-TC/B board.

Prototype C/C++
DASErr far pascal DASTC_GetDevHandle (WORBrdNum
void far * far*phDeV);

Turbo Pascal
Function DASTC_GetDevHandl@BrdNum: Word;
Var phDev: Longint) : Word; far; external 'DASTC";

Turbo Pascal for Windows
Function DASTC_GetDevHandl@BrdNum: Word;
Var phDev: Longint) : Word; far; external 'DASTC";

Visual Basic for Windows
Declare Function DASTC_GetDevHandle Lib "DASTC.DLL"
(ByVal nBrdNumAs IntegerphDevAs Long) As Integer

BASIC

DECLARE FUNCTION DASTCGETDEVHANDLE% ALIAS
"DASTC_GetDevHandle" (BYVALNBrdNumAS INTEGER,
SEGphDevAS LONG)

Parameters nBrdNum Board number.
Valid values: O or 1

phDev Handle associated with the board.
Return Value Error/status code. Refer to Appendix A.
Remarks This function initializes the DAS-TC or DAS-TC/B board specified by

nBrdNumand stores the device handle of the specified bogrDev

The board number specifiednBrdNumrefers to the board number
specified in the configuration file.

The value stored iphDevis intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored phDev

4-11

DASTC_GetDevHandle (cont.)

See Also

Usage

4-12

K_GetDevHandle

C/C++
#include "DTCDECL.H" // Use DASTC.HPP for C++

DWORD hDev;

wDasErr = DASTC_GetDevHandle (0, &hDev);

Turbo Pascal
uses DTCTPU;

hDev : Longint; { Device Handle }

wDasErr := DASTC_GetDevHandle (0, hDev);

Turbo Pascal for Windows
{$| DASTC.INC}

hDev : Longint; { Device Handle }

wDasErr := DASTC_GetDevHandle (0, hDev);

Visual Basic for Windows
(Add DTCDECLBAS to your project)

Global hDev As Long ' Device Handle

wDasErr = DASTC_GetDevHandle (0, hDev)

BASIC
'$INCLUDE: 'DASTC.BI'

DIM hDev AS LONG ' Device Handle

wDasErr = DASTCGETDEVHANDLE% (0, hDev)

Function Reference

K_ADRead

Purpose For use with the C/C++, Turbo Pascal, and Turbo Pascal for Windows
languages only, reads a single analog input value.

Prototype C/C++
DASErr far pascal K_ADRead (DWOREDey BYTE nChan
BYTE nGain, void far*pData);

Turbo Pascal
Function K_ADReadHhDev: Longint;nChan: Byte;nGain: Byte;
pData: Pointer) : Word,;

Turbo Pascal for Windows
Function K_ADReadHhDev: Longint;nChan: Byte;nGain: Byte;
pData: Pointer) : Word; far; external ' DASSHELL";

Visual Basic for Windows
Not supported. UsK_ADReadL or K_ADReadR instead.

BASIC
Not supported. UsK_ADReadL or K_ADReadR instead.

Parameters hDev Handle associated with the board.

nChan Analog input channel.
Valid values: 0 to 15

4-13

K_ADRead (cont.)

Return Value

Remarks

See Also

Usage

4-14

nGain Gain code.
Valid values are listed in the table below. For
thermocouple inputs, gain is ignored; specify a
gain code of O for thermocouple inputs.

Gain Gain | Voltage

Code Input Range

0 1 -25Vto 10V

1 125 -20 mV to 80 mV
2 166.67 | —15 mV to 60 mV
3 400 —-6.25 mV to 25 mV

pData Acquired analog input value.
Error/status code. Refer to Appendix A.

This function reads the analog input charm@hanon the DAS-TC or
DAS-TC/B board specified byDevand stores the value pbata

Depending on the input type specified in the configuration file, the value
stored inpDatais in microvolts or in hundredths of degrees for integer
types and is not scaled for floating point. Refer to Appendix B for more
information on the format of acquired data.

K_IntStart, K_SyncStart

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

long dwADValue;

wDasErr = K_ADRead (hDev, 0, 0, &dwADValue);

Function Reference

K_ADRead (cont.)

Turbo Pascal
uses DTCTPU;

dwADValue : Long;

wDasErr := K_ADRead (hDev, 0, 0, @dwADValue);

Turbo Pascal for Windows
{$| DASDECL.INC}

dwADValue : Long;

wDasErr := K_ADRead (hDev, 0, 0, @dwADValue);

4-15

K_ADReadL

Purpose For use with the Visual Basic for Windows and BASIC languages only,
reads a single analog input value. BséADReadL when you want to
store the value as a long integer.

Prototype C/C++
Not supported. UsK ADRead instead.

Turbo Pascal
Not supported. UsK_ADRead instead.

Turbo Pascal for Windows
Not supported. UsK_ADRead instead.

Visual Basic for Windows

Declare Function K_ADReadL Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByVainChanAs Integer,

ByVal nGainAs IntegerpDataAs Long) As Integer

BASIC

DECLARE FUNCTION KADREADL% ALIAS "K_ADRead"
(BYVAL hDevAS LONG, BYVAL nChanAS INTEGER,
BYVAL nGainAS INTEGER, SEGDataAS LONG)

Parameters hDev Handle associated with the board.

nChan Analog input channel.
Valid values: 0to 15

4-16 Function Reference

K_ADReadL (cont.)

Return Value

Remarks

See Also

Usage

nGain Gain code.
Valid values are listed in the table below. For
thermocouple inputs, gain is ignored; specify a
gain code of 0 for thermocouple inputs.

Gain Gain | Voltage

Code Input Range

0 1 -25Vto 10V

1 125 -20 mV to 80 mV
2 166.67 | =15 mV to 60 mV
3 400 -625 mV to 25 mV

pData Acquired analog input value.
Error/status code. Refer to Appendix A.

This function reads the analog input cham@hanon the DAS-TC or
DAS-TC/B board specified hyDevand stores the value pData

Depending on the input type specified in the configuration file, the value
stored inpDatais in microvolts or in hundredths of degrees for long
integer types. Refer to Appendix B for more information on the format of
acquired data.

K_ADReadR, K_IntStart, K_SyncStart

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global dwADValue As Long

wDasErr = K_ADReadL (hDev, 0, 0, dwADValue)

4-17

K_ADReadL (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM dwADValue AS LONG

wDasErr = KADREADL% (hDev, 0, 0, dwADValue)

4-18 Function Reference

K_ADReadR

Purpose For use with the Visual Basic for Windows and BASIC languages only,
reads a single analog input value. BseADReadR when you want to
store the value using a floating-point (real) data type.

Prototype C/C++
Not supported. UsK ADRead instead.

Turbo Pascal
Not supported. UskK ADRead instead.

Turbo Pascal for Windows
Not supported. UskK ADRead instead.

Visual Basic for Windows

Declare Function K_ADReadR Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByValnChanAs Integer,

ByVal nGainAs IntegerpDataAs Single) As Integer

BASIC

DECLARE FUNCTION KADREADR% ALIAS "K_ADRead"
(BYVAL hDevAS LONG, BYVAL nChanAS INTEGER,
BYVAL nGainAS INTEGER, SEGQDataAS SINGLE)

Parameters hDev Handle associated with the board.

nChan Analog input channel.
Valid values: 0 to 15

4-19

K_ADReadR (cont.)

Return Value

Remarks

See Also

Usage

4-20

nGain Gain code.

Valid values are listed in the table below. For
thermocouple inputs, gain is ignored; specify a
gain code of O for thermocouple inputs.

Gain Gain | Voltage

Code Input Range

0 1 -25Vto 10V

1 125 -20 mV to 80 mV

2 166.67 | =15 mV to 60 mV

3 400 —-6.25 mV to 25 mV
pData Acquired analog input value.

Error/status code. Refer to Appendix A.

This function reads the analog input charm@hanon the DAS-TC or
DAS-TC/B board specified byDevand stores the value pbata

The value stored ipDatais not scaled for floating point. Refer to
Appendix B for more information on the format of acquired data.

K_ADReadL, K_IntStart, K_SyncStart

Visual Basic for Windows

(Add DASDECL.BAS to your project)

Global dwADValue As Single

wDasErr = K_ADReadR (hDev, 0, 0, dwADValue)

Function Reference

K_ADReadR (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM dwADValue AS SINGLE

wDasErr = KADREADR% (hDev, 0, 0, dwADValue)

4-21

K_ClearFrame

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-22

Sets the elements of a frame to their default values.

C/C++
DASEtr far pascal K_ClearFrame (DWORiBrams);

Turbo Pascal
Function K_ClearFramenframe: Longint) : Word,;

Turbo Pascal for Windows
Function K_ClearFramehfFrame: Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KCLEARFRAME% ALIAS "K_ClearFrame"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function sets the elements of the frame specifiduHgmeto their
default values.

Refer to Table 3-1 on page 3-4 for the default values of an A/D frame.

K_GetADFrame

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_ClearFrame (hAD);

Function Reference

K_ClearFrame (cont.)

Turbo Pascal
uses DTCTPU;

wDaskErr := K_ClearFrame (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr ;= K_ClearFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_ClearFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KCLEARFRAME% (hAD)

4-23

K_CloseDriver

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-24

Closes a previously initialized Keithley DAS Function Call Driver.

C/C++
DASETr far pascal K_CloseDriver (DWORDrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_CloseDriveriDrv : Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal hDrv As Long) As Integer

BASIC
Not supported

hDrv Driver handle you want to free.
Error/status code. Refer to Appendix A.

This function frees the driver handle specifiechByv and closes the
associated use of the Function Call Driver. This function also frees all
device handles and frame handles associatednibitia

If hDrv is the last driver handle specified for the Function Call Driver, the
driver is shut down (for all languages) and unloaded (for Windows-based
languages only).

K_FreeDevHandle

Function Reference

K_CloseDriver (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CloseDriver (hDrv);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr ;= K_CloseDriver (hDrv);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_CloseDriver (hDrv)

4-25

K_CIrContRun

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-26

Specifies single-cycle buffering mode.

C/C++
DASErr far pascal K_ClrContRun (DWORIFrams);

Turbo Pascal
Function K_CIrContRunh(Frame: Longint) : Word;

Turbo Pascal for Windows
Function K_ClrContRunhFrame: Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_CIrContRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KCLRCONTRUN% ALIAS "K_CIrContRun"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function sets the buffering mode for the operation defindtdFame
to single-cycle mode and sets the Buffering Mode element in the frame
accordingly.

K_GetADFrame andK_ClearFrame also enable single-cycle buffering
mode.

Refer to page 2-13 for more information on buffering modes.

K_SetContRun

Function Reference

K_ClIrContRun (cont.)

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CIrContRun (hAD);

Turbo Pascal
uses DTCTPU;

wDasErr := K_CIrContRun (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_CIrContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_CIrContRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KCLRCONTRUN% (hAD)

4-27

K_DASDevInit

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

4-28

Reinitializes a Keithley MetraByte DAS board.

C/C++
DASErr far pascal K_DASDevInit (DWORBDeV);

Turbo Pascal
Function K_DASDevlInit iDev: Longint) : Longint;

Turbo Pascal for Windows
Function K_DASDevInitiDev: Longint) : Longint; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_DASDevlInit Lib "DASSHELL.DLL"
(ByVal hDevAs Long) As Integer

BASIC
DECLARE FUNCTION KDASDEVINIT% ALIAS "K_DASDevInit"
(BYVAL hDevAS LONG)

hDev Handle associated with the board.
Error/status code. Refer to Appendix A.

UseK_GetDevHandle or DASTC_GetDevHandlethe first time you
initialize the board only. Once you have a device handle, use this function
to reinitialize the board.

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_DASDevInit (hDev);

Turbo Pascal
uses DTCTPU;

wDasErr := K_DASDevInit (hDev);

Function Reference

K_DASDevlInit (cont.)

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_DASDevInit (hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_DASDevlInit (hDev)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KDASDEVINIT% (hDev)

4-29

K_FormatChnGAry

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-30

Converts the format of a channel-gain queue.

C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KFORMATCHNGARY% ALIAS
"K_FormatChnGAry" (SEGArray AS INTEGER)

pArray Channel-gain queue starting address.
Error/status code. Refer to Appendix A.

This function converts a channel-gain queue created in BASIC or Visual
Basic for Windows using 16-bit values to a channel-gain queue of 8-bit
values that th&_SetChnGAry function can use, and stores the starting
address of the converted channel-gain quepaimay.

After you use this function, your program can no longer read the
converted channel-gain queue. You must us&ttieestoreChnGAry
function to return the queue to its original format. Refer to page 3-30 for
more information on creating channel-gain queues in Visual Basic; refer
to page 3-37 for more information on creating channel-gain queues in
BASIC.

K_SetChnGAry, K_RestoreChnGAry

Function Reference

K_FormatChnGAry (cont.)

Usage

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global ChanGainArray(16) As Integer ' Chan/Gain array

' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 3
wDasErr = K_FormatChnGAry (ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array

' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 3

wDasErr = KFORMATCHNGARY% (ChanGainArray(0))

4-31

K_FreeDevHandle

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-32

Frees a previously specified device handle.

C/C++
DASErr far pascal K_FreeDevHandle (DWORBDeV;

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_FreeDevHandI@liDev: Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal phDevAs Long) As Integer

BASIC
Not supported

phDev Device handle you want to free.
Error/status code. Refer to Appendix A.

This function frees the device handle specifiegphbpevas well as all
frame handles associated wjithDev

K_GetDevHandle

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_FreeDevHandle (hDev);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_FreeDevHandle (hDev);

Function Reference

K_FreeDevHandle (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_FreeDevHandle (hDev)

4-33

K_FreeFrame

Purpose Frees a frame.

Prototype C/C++
DASEtr far pascal K_FreeFrame (DWORIDBrams);

Turbo Pascal
Function K_FreeFraménFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_FreeFramdnFrame: Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KFREEFRAME% ALIAS "K_FreeFrame"
(BYVAL hFrameAS LONG)

Parameters hFrame Handle to frame you want to free.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the frame specifiedlifsrame making the frame

available for another operation.
See Also K_GetADFrame

Usage CIC++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_FreeFrame (hAD);

4-34 Function Reference

K_FreeFrame (cont.)

Turbo Pascal
uses DTCTPU;

wDaskErr := K_FreeFrame (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr ;= K_FreeFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_FreeFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KFREEFRAME% (hAD)

4-35

K_GetADFrame

Purpose

Prototype

Parameters

Remarks

See Also

4-36

Accesses an A/D frame for an analog input operation.

C/C++
DASErr far pascal K_GetADFrame (DWORiDey
DWORD far *phFramg;

Turbo Pascal
Function K_GetADFramehDev: Longint;
Var phFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_GetADFramehDev: Longint;
Var phFrame: Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,phFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KGETADFRAME% ALIAS "K_GetADFrame"
(BYVAL hDevAS LONG, SEGphFrameAS LONG)

hDev Handle associated with the board.

phFrame Handle to the frame that defines the operation.

This function specifies that you want to perform a synchronous-mode or
interrupt-mode analog input operation on the DAS-TC or DAS-TC/B
board specified biiDey and accesses an available A/D frame with the
handlephFrame

The frame is initialized to its default settings; refer to Table 3-1 on page
3-4 for a list of the default settings.

The value stored iphFrameis intended to be used exclusively as an
argument to functions that require a frame handle. Your program should
not modify the value stored phFrame

K_ClearFrame, K_FreeFrame

Function Reference

K_GetADFrame (cont.)

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hAD;

wDasErr = K_GetADFrame (hDev, &hAD);

Turbo Pascal
uses DTCTPU;

hAD : Longint;
wDasErr := K_GetADFrame (hDev, hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

hAD : Longint;
wDasErr := K_GetADFrame (hDev, hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global hAD As Long

wDasErr = K_GetADFrame (hDev, hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM hAD AS LONG

wDasErr = KGETADFRAME% (hDev, hAD)

4-37

K_GetDevHandle

Purpose Initializes any Keithley MetraByte DAS board.

Prototype C/C++
DASErr far pascal K_GetDevHandle (DWORIDrv,
WORD nBoardNum DWORD far *phDeV;

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_GetDevHandlenDrv : Longint;nBoardNum Integer;
Var phDev: Longint) : Word,; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetDevHandle Lib "DASSHELL.DLL"
(ByVal hDrv As Long, ByValnBoardNumAs Integer,phDevAs Long)

As Integer
BASIC
Not supported
Parameters hDrv Driver handle of the associated Function Call
Driver.
nBoardNum Board number.
Valid values0 or 1
phDev Handle associated with the board.
Return Value Error/status code. Refer to Appendix A.
Remarks This function initializes the DAS-TC or DAS-TC/B board associated with

hDrv and specified bpBoardNumand stores the device handle of the
specified board iphDev

The board number specifiednBoardNunrefers to the board number
specified in the configuration file.

4-38 Function Reference

K_GetDevHandle (cont.)

The value stored iphDevis intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored phDev

See Also K_FreeDevHandle

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDeyv;

wDasErr = K_GetDevHandle (hDrv, 0, &hDev);

Turbo Pascal for Windows
{$| DASDECL.INC}

hDev : Longint;

wDasErr := K_GetDevHandle (hDrv, 0, hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global hDev As Long

wDasErr = K_GetDevHandle (hDrv, 0, hDev)

4-39

K_GetErrMsg

Purpose Gets the address of an error message string.

Prototype C/C++
DASETr far pascal K_GetErrMsg (DWORIDey shortnDASETrt
char far * far *pszErrMsg;

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Not supported
BASIC
Not supported
Parameters hDev Handle associated with the board.
NDASErr Error message number.
pszErrMsg Address of error message string.
Return Value Error/status code. Refer to Appendix A.
Remarks For the DAS-TC or DAS-TC/B board specified ey this function

stores the address of the string corresponding to the error message number
NDASETrrin pszErrMsg

Refer to page 2-4 and to page 3-14 for more information about error
handling. Refer to Appendix A for a list of error codes and their meanings.

4-40 Function Reference

K_GetErrMsg (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

char far *pszErrMsg;

wDasErr = K_GetErrMsg (hDev, nDASErr, &pszErrMsg);

4-41

K_GetShellVer

Purpose

Prototype

Parameters

Return Value

Remarks

4-42

Gets the current DAS shell version.

C/C++
DASErr far pascal K_GetShellVer (WORD fgsVersion);

Turbo Pascal
Function K_GetShellVer (VgoVersion: Word) : Word;

Turbo Pascal for Windows
Function K_GetShellVer (Vago\Version: Word) : Word,; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(pVersionAs Integer) As Integer

BASIC
DECLARE FUNCTION KGETSHELLVER% ALIAS "K_GetShellVer"
(SEGpVersionAS INTEGER)

pVersion A word value containing the major and minor
version numbers of the DAS shell.

Error/status code. Refer to Appendix A.
This function stores the current DAS Shell versiopVersion
To obtain the major version number of the DAS shell, dipdersionby

256. To obtain the minor version number of the DAS shell, perform a
Boolean AND operation witpVersionand 255 (OFFh).

Function Reference

K_GetShellVer (cont.)

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wShellVer;

wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

Turbo Pascal
uses DTCTPU;

wShellVer : Word,;
wDasErr := K_GetShellVer (wShellVer);

FormatStr(VerStr, ' %4x ',nShellVer / 256, '.', nShellVer And $ff);
writeln (* Shell Ver ', VerStr);

Turbo Pascal for Windows
{$| DASDECL.INC}

wShellVer : Word,
wDaskErr := K_GetShellVer (wShellVer);

FormatStr(VerStr,' %4x ', nShellVer / 256, '.', nShellVer And $ff);
writeln (* Shell Ver ', VerStr);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wShellVer As Integer

wDasErr = K_GetShellVer (wShellVer)

ShellVer$ = LTRIMS$ (STR$ (INT (wShellVer / 256))) + "." +:
LTRIM$ (STR$ (wShellVer AND &HFF))

MsgBox "Shell Ver: " + ShellvVer$

4-43

K_GetShellVer (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM wShellVer AS INTEGER
wDasErr = KGETSHELLVER% (wShellVer)
ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." +:

LTRIMS (STR$ (wShellVer AND &HFF))
PRINT "Shell Ver: " + ShellVer$

4-44 Function Reference

K_GetVer

Purpose

Prototype

Parameters

Return Value

Remarks

Gets revision numbers.

C/C++
DASE'r far pascal K_GetVer (DWORBDey short far *pSpecVer
short far *pDrv\er);

Turbo Pascal
Function K_GetVerl{Dev: Longint; VarpSpecVer Word;
Var pDrvVer: Word) : Word;

Turbo Pascal for Windows
Function K_GetVerl{Dev: Longint; VarpSpecVer Word;
Var pDrvVer: Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_GetVer Lib "DASSHELL.DLL"

(ByVal hDevAs Long,pSpecVeAs IntegerpDrvVerAs Integer)
As Integer

BASIC

DECLARE FUNCTION KGETVER% ALIAS "K_GetVer"
(BYVAL hDevAS LONG, SEGpSpecVeAS INTEGER,
SEGpDrvVerAS INTEGER)

hDev Handle associated with the board.

pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.

pDrvVer Driver version number.
Error/status code. Refer to Appendix A.

For the DAS-TC or DAS-TC/B board specified ey this function
stores the revision number of the Function Call DrivgsDmvVerand the
revision number of the driver specificationp8pecVer

4-45

K_GetVer (cont.)

The values stored ipSpecVeandpDrv\Verare two-byte (16-bit) integers;

the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.10, the major revision level is 2 and the minor revision level
is 10; therefore, the high byte pbrv\Ver contains the value & (512)

and the low byte gbDrvVer contains the value df0; the value of both

bytes is 522.

To obtain the major version number of the Function Call Driver, divide
pDrvVerby 256; to obtain the minor version number of the Function Call
Driver, perform a Boolean AND operation wipidrvVerand 255 (OFFh).

To obtain the major version number of the driver specification, divide
pSpecVeby 256; to obtain the minor version number of the driver
specification, perform a Boolean AND operation wiBpecVeand 255
(OFFh).

Usage

C/IC++
#include "DASDECL.H" // Use DASDECL.HPP for C++

short nSpecVer, nDrvVer;

wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Turbo Pascal
uses DTCTPU;

nSpecVer : Word,;
nDrvVer : Word;

wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);

FormatStr (VerStr, ' %4x ', nDrvVer / 256, "', nDrvVer And $ff);
writeln (* Driver Ver ', VerStr);

4-46 Function Reference

K_GetVer (cont.)

Turbo Pascal for Windows
{$| DASDECL.INC}

nSpecVer : Word,;
nDrvVer : Word;

wDaskErr := K_GetVer (hDev, nSpecVer, nDrvVer);
FormatStr(VerStr, ' %4x ', nDrvVer / 256, "', nDrvVer And $ff);
writeln (* Driver Ver ', VerStr);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global nSpecVer As Integer
Global nDrvVer As Integer

wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)

DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." +:
LTRIMS (STR$ (nDrvVer AND &HFF))

MsgBox "Driver Ver: " + DrvVer$

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM nSpecVer AS INTEGER
DIM nDrvVer AS INTEGER

wDasErr = KGETVER% (hDev, nSpecVer, nDrvVer)

DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." +:
LTRIM$ (STR$ (nDrvVer AND &HFF))

PRINT "Driver Ver: " + DrvVer$

4-47

K_IntAlloc

Purpose Allocates a buffer for an interrupt-mode or synchronous-mode operation.

Prototype C/C++
DASETr far pascal K_IntAlloc (DWORMDFrame DWORDdwSamples
void far * far*pBuf, WORD far*phMenm);

Turbo Pascal
Function K_IntAlloc fbiFrame: Longint;dwSamples Longint;
pBuf: Pointer; VaphMem: Word) : Word;

Turbo Pascal for Windows
Function K_IntAlloc fbiFrame: Longint;dwSamples Longint;
pBuf: Pointer; VaphMem: Word) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_IntAlloc Lib "DASSHELL.DLL"

(ByVal hFrameAs Long, ByValdwSample#s Long,pBufAs Long,
phMemAs Integer) As Integer

BASIC

DECLARE FUNCTION KINTALLOC% ALIAS "K_IntAlloc"
(BYVAL hFrameAS LONG, BYVAL dwSample&S LONG,
SEGpBUfAS LONG, SEGphMemAS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of samples.
Valid values:1 to 65535

pBuf Starting address of the allocated buffer.
phMem Handle associated with the allocated buffer.
Return Value Error/status code. Refer to Appendix A.

4-48 Function Reference

K_IntAlloc (cont.)

Remarks

See Also

Usage

For the operation defined Wrame this function allocates a buffer of
the size specified bywSamplesand stores the starting address of the
buffer inpBufand the handle of the buffer plmMem

BASIC and Turbo Pascal (for DOS) require that you redistribute available
memory before you dynamically allocate a buffer. Refer to page 3-32
(BASIC) or page 3-21 (Turbo Pascal) for additional information.

The value stored iphMemis intended to be used exclusively as an
argument to functions that require a memory handle. Your program
should not modify the value storedphMem

K_IntFree, K_SetBuf, K_SetBufL, K_SetBufR

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer
WORD hMem; /I Memory Handle to buffer

wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);

Turbo Pascal
uses DTCTPU;

TYPE

BufType = Array [0..1] of Longint;
VAR

pBuf : *BufType; { buffer pointer }
hMem : Word; { Handle to buffer }

wDasErr := K_IntAlloc (hAD, 1000, Addr(pBuf), hMem);

4-49

K_IntAlloc (cont.)

Turbo Pascal for Windows
{$| DASDECL.INC}

TYPE

BufType = Array [0..1] of Longint;
VAR

pBuf : "BufType; { buffer pointer }
hMem : Word; {Handle to buffer }

wDasErr := K_IntAlloc (hAD, 1000, Addr(pBuf), hMem);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global pBuf As Long
Global hMem As Integer

wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM pBuf AS LONG
DIM hMem AS INTEGER

wDasErr = KINTALLOC% (hAD, 1000, pBuf, hMem)

4-50 Function Reference

K_IntFree

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

Frees a buffer allocated for an interrupt-mode or synchronous-mode
operation.

C/C++
DASErr far pascal K_IntFree (WOREMenj;

Turbo Pascal
Function K_IntFreeiMem: Word) : Integer;

Turbo Pascal for Windows
Function K_IntFreel{Mem: Word) : Integer; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL"
(ByVal hMemAs Integer) As Integer

BASIC
DECLARE FUNCTION KINTFREE% ALIAS "K_IntFree"
(BYVAL hMemAS INTEGER)

hMem Handle to buffer.
Error/status code. Refer to Appendix A.

This function frees the buffer specified lbylem the buffer was
previously allocated dynamically usikg IntAlloc .

K_IntAlloc

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_IntFree (hMem));

4-51

K_IntFree (cont.)

4-52

Turbo Pascal
uses DTCTPU;

wDasErr := K_IntFree (hMem);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_IntFree (hMem);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_IntFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KINTFREE% (hMem)

Function Reference

K_IntStart

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Starts an interrupt-mode operation.

C/C++
DASErr far pascal K_IntStart (DWORBFrame);

Turbo Pascal
Function K_IntStarti{fFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_IntStartl{fFrame: Longint) : Word; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KINTSTART% ALIAS "K_IntStart"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function starts the interrupt-mode operation definedHsgme

The acquired values are stored at the location identified by the Buffer
Address element of the frame identifiedHiyrame

Depending on the settings in the configuration file, the values are stored
in microvolts or in hundredths of degrees for integer types and are not
scaled for floating point.

Refer to page 3-9 for a discussion of the programming tasks associated
with interrupt-mode analog input operations.

K_IntStatus, K_IntStop

4-53

K_IntStart (cont.)

Usage

4-54

C/C++

#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_IntStart (hAD);

Turbo Pascal
uses DTCTPU;

wDasErr := K_IntStart (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDaskErr := K_IntStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_IntStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KINTSTART% (hAD)

Function Reference

K_IntStatus

Purpose Gets the status of an interrupt-mode operation.

Prototype C/C++
DASETrr far pascal K_IntStatus (DWORiFrame short farpStatus
DWORD far*pIindex);

Turbo Pascal
Function K_IntStatushfFrame: Longint; VarpStatus Word;
Var plndex: Longint) : Word;

Turbo Pascal for Windows
Function K_IntStatushfFrame: Longint; VarpStatus Word;
Var pindex: Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, pStatusAs IntegerplndexAs Long)
As Integer

BASIC

DECLARE FUNCTION KINTSTATUS% ALIAS "K_IntStatus"
(BYVAL hFrameAS LONG, SEGpStatusAS INTEGER,
SEGpIndexAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt-mode operation.
Valid values:0 = Interrupt operation idle
1 = Interrupt operation active

plndex Buffer array index.
Return Value Error/status code. Refer to Appendix A.
Remarks For the interrupt-mode operation definednfyame this function stores

the status ipStatusand the index of the next element in the buffer or
array to be written to iplndex

4-55

K_IntStatus (cont.)

See Also

Usage

4-56

In continuous buffering operation@ndexis reset to zero when the last
block transfer has been completed and another acquisition cycle is
initiated.

K_IntStart, K_IntStop

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wStatus;
DWORD dwlindex;

wDasErr = K_IntStatus (hAD, &wStatus, &dwindex);

Turbo Pascal
uses DTCTPU;

wStatus : Word;
dwindex : Longint;

wDasErr ;= K_IntStatus (hAD, wStatus, dwindex);

Turbo Pascal for Windows
{$| DASDECL.INC}

wStatus : Word;
dwindex : Longint;

wDaskErr := K_IntStatus (hAD, wStatus, dwindex);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wStatus As Integer
Global dwindex As Long

wDasErr = K_IntStatus (hAD, wStatus, dwindex)

Function Reference

K_IntStatus (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwindex AS LONG

wDasErr = KINTSTATUS% (hAD, wStatus, dwindex)

4-57

K_IntStop

Purpose Stops an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStop (DWORBFrame short farpStatus
DWORD far*pindex);

Turbo Pascal
Function K_IntStoplfFrame: Longint; VarpStatus Word,;
Var pindex: Longint) : Word,;

Turbo Pascal for Windows
Function K_IntStoplfFrame: Longint; VarpStatus Word,;
Var pindex: Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_IntStop Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, pStatusAs IntegerplndexAs Long)
As Integer

BASIC

DECLARE FUNCTION KINTSTOP% ALIAS "K_IntStop"
(BYVAL hFrameAS LONG, SEGStatusAS INTEGER,
SEGpIndexAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt-mode operation.
Valid values:0 = Interrupt operation idle
1 = Interrupt operation active

pindex Buffer array index.
Return Value Error/status code. Refer to Appendix A.
Remarks This function stops the interrupt-mode operation definedHogime,

stores the status of the interrupt-mode operatigrsiatus and stores the
index of the next element in the buffer or array to be written pdridex

4-58 Function Reference

K_IntStop (cont.)

See Also

Usage

In continuous buffering operationsindexis reset to zero when the last
block transfer has been completed and another acquisition cycle is
initiated.

If an interrupt-mode operation is not in progrd&sintStop is ignored.

K_IntStart, K_IntStatus

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wsStatus;
DWORD dwlindex;

wDasErr = K_IntStop (hAD, &wStatus, &dwindex);

Turbo Pascal
uses DTCTPU;

wStatus : Word;
dwindex : Longint;

wDasErr ;= K_IntStop (hAD, wStatus, dwindex);

Turbo Pascal for Windows
{$| DASDECL.INC}

wStatus : Word;
dwindex : Longint;

wDasErr := K_IntStop (hAD, wStatus, dwindex);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wStatus As Integer
Global dwindex As Long

wDasErr = K_IntStop (hAD, wStatus, dwindex)

4-59

K_IntStop (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwindex AS LONG

wDasErr = KINTSTOP% (hAD, wStatus, dwindex)

4-60 Function Reference

K_MoveBufToArrayL

Purpose For use with the Visual Basic for Windows and BASIC languages only,
transfers data from a buffer allocated throkghntAlloc to the
program’s local array. Us€_MoveBufToArrayL when you want to
store the data in a long-integer array.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArrayL Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByValpDestAs Long, ByValpSourceAs Long,
ByVal nCountAs Integer) As Integer

BASIC

DECLARE FUNCTION KMOVEBUFTOARRAYL% ALIAS
"K_MoveDataBuf" (SEQDestAS LONG, BYVAL pSourceAS LONG,
BYVAL nCountAS INTEGER)

Parameters pDest Address of destination array.
pSource Address of source buffer.
nCount Number of samples to transfer.

Valid values: 0t0 32767

Return Value Error/status code. Refer to Appendix A.

4-61

K_MoveBufToArrayL (cont.)

Remarks This function transfers the number of bytes specified®@guntfrom the
buffer at addresgSourceto the array at addrep®est

If the buffer used to store acquired data for your program was allocated
throughK_IntAlloc , the buffer is not accessible to your program and you
must use this function to move the data from the allocated buffer to the
program’s local array. If the array used to store acquired data for your
program was dimensioned locally within the program’s memory area, the
array is accessible to your program and you do not have to use this

function.
See Also K_IntAlloc, K_MoveBufToArrayR
Usage Visual Basic for Windows

(Add DASDECL.BAS to your project)

Dim ADArray (1000) As Long
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

wDasErr = K_MoveBufToArrayL (ADArray(0), pBuf, 1000)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM ADArray (1000) AS LONG
wDasErr = KINTALLOC% (hAD, 1000, pBuf, hMem)

wDasErr = KMOVEBUFTOARRAYL% (ADArray(0), pBuf, 1000)

4-62 Function Reference

K_MoveBufToArrayR

Purpose For use with the Visual Basic for Windows and BASIC languages only,
transfers data from a buffer allocated throkghntAlloc to the
program’s local array. Us€_MoveBufToArrayR when you want to
store the data in a floating-point (real) array.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArrayR Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByValpDestAs Single, ByValpSourceAs Long,
ByVal nCountAs Integer) As Integer

BASIC

DECLARE FUNCTION KMOVEBUFTOARRAYR% ALIAS
"K_MoveDataBuf" (SEGDestAS SINGLE,

BYVAL pSourceAS LONG, BYVAL nCountAS INTEGER)

Parameters pDest Address of destination array.
pSource Address of source buffer.
nCount Number of samples to transfer.

Valid values: 0t0 32767

Return Value Error/status code. Refer to Appendix A.

4-63

K_MoveBufToArrayR (cont.)

Remarks This function transfers the number of bytes specified®@guntfrom the
buffer at addresgSourceto the array at addrep®est

If the buffer used to store acquired data for your program was allocated
throughK_IntAlloc , the buffer is not accessible to your program and you
must use this function to move the data from the allocated buffer to the
program’s local array. If the array used to store acquired data for your
program was dimensioned locally within the program’s memory area, the
array is accessible to your program and you do not have to use this

function.
See Also K_IntAlloc, K_MoveBufToArrayL
Usage Visual Basic for Windows

(Add DASDECL.BAS to your project)

Dim ADArray (1000) As Single
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

wDasErr = K_MoveBufToArrayR (ADArray(0), pBuf, 1000)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM ADArray (1000) AS SINGLE
wDasErr = KINTALLOC% (hAD, 1000, pBuf, hMem)

wDasErr = KMOVEBUFTOARRAYR% (ADArray(0), pBuf, 1000)

4-64 Function Reference

K_OpenDriver

Purpose

Prototype

Parameters

Return Value

Remarks

Initializes any Keithley DAS Function Call Driver.

C/C++

DASErr far pascal K_OpenDriver (char faszDrvName
char far *szCfgNameDWORD far *phDrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_OpenDriver (VaszDrvName char; VarszCfgName char;
Var phDrv : Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDrvNameAs String, ByValszCfgNamds String,
phDrvAs Long) As Integer

BASIC
Not supported
szDrvName Driver name.
Valid value: "DASTC" (for DAS-TC or
DAS-TC/B boards)
szCfgName Driver configuration file.
Valid value: The name of a configuration file
0 if driver has already been
opened.
phDrv Handle associated with the driver.

Error/status code. Refer to Appendix A.

This function initializes the DAS-TC Function Call Driver according to
the information in the configuration file specified $gCfgNamgeand
stores the driver handle phDrv.

4-65

K_OpenDriver (cont.)

You can use this function to initialize the Function Call Driver associated
with any Keithley MetraByte DAS board.

For DAS-TC or DAS-TC/B boards, the string storegabrvNameanust
be DASTC.

You create a configuration file using the DASTCCFG.EXE utility. If
szCfgName= 0,K_OpenDriver checks whether the driver has already
been opened and linked to a configuration file and if it has, uses the
current configuration; this is useful in the Windows environment. Refer to
the user’s guide for your board for more information about configuration
files.

The value stored iphDrvis intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored phDrv.

See Also DASTC_DevOpen
Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDry;

wDasErr = K_OpenDriver ("DASTC", "DASTC.CFG", &hDrv);

Turbo Pascal for Windows
{$| DASDECL.INC}

szDrvName : String;
szCfgName : String;
hDrv : Longint;

szDrvName :='DASTC' + #0;

szCfgName := 'DASTC.CFG' + #0;
wDasErr := K_OpenDriver (szDrvName[1], szCfgName[1], hDrv);

4-66 Function Reference

K_OpenDriver (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

DIM hDrv As Long

wDasErr = K_OpenDriver ("DASTC", "DASTC.CFG", hDrv)

4-67

K_RestoreChnGAry

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-68

Restores a converted channel-gain queue.

C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KRESTORECHNGARY% ALIAS
"K_RestoreChnGAry" (SE@Array AS INTEGER)

pArray Channel-gain queue starting address.
Error/status code. Refer to Appendix A.

This function restores the channel-gain queue at the address specified by
pArray to its original format so that it can be used by your BASIC or
Visual Basic for Windows program. The channel-gain queue was
converted usingd_FormatChnGAry .

K_FormatChnGAry, K_SetChnGAry

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global ChanGainArray(16) As Integer ' Chan/Gain array

wDasErr = K_RestoreChnGAry (ChanGainArray(0))

Function Reference

K_RestoreChnGAry (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array

wDasErr = KRESTORECHNGARY% (ChanGainArray(0))

4-69

K_SetBuf

Purpose Specifies the starting address of a previously allocated buffer or
dimensioned array and the number of samples to acquire.

Prototype C/C++
DASETr far pascal K_SetBuf (DWORDBFrame void far*pBuf,
DWORD dwSamples

Turbo Pascal
Function K_SetBuft{fFrame: Longint; pBuf: Pointer;
dwSamples Longint) : Word;

Turbo Pascal for Windows
Function K_SetBuft{fFrame: Longint; pBuf: Pointer;
dwSamples Longint) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Not supported
BASIC
Not supported
Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer or array.
dwSamples Number of samples.
Valid values:1 to 65535
Return Value Error/status code. Refer to Appendix A.
Remarks For the operation defined rame this function specifies the starting

address of a previously allocated buffer or arragBufand the number
of samples to acquire twSamples

For C/C++ and Turbo Pascal application programs, use this function
whether you dimensioned your array locally or allocated your buffer
dynamically usind_IntAlloc .

4-70 Function Reference

K_SetBuf (cont.)

For Visual Basic for Windows and BASIC, uke SetBufL for long
integer arrays or buffers & SetBufR for floating point arrays or
buffers.

ThepBufvariable sets the value of the Buffer element,diw&les
variable sets the value of the Number of Samples element.

See Also K_IntAlloc, K_SetBufL, K_SetBufR

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

long far *pBuf; // Pointer to allocated buffer

wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);
wDasErr = K_SetBuf (hAD, pBuf, 1000);

Turbo Pascal
uses DTCTPU;

TYPE

BufType = Array [0..1] of Longint;
VAR

pBuf : *BufType; { buffer pointer }

wDasErr := K_IntAlloc (hAD, 1000, Addr(pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, 1000);

Turbo Pascal for Windows
{$| DASDECL.INC}

TYPE

BufType = Array [0..1] of Longint;
VAR

pBuf : *BufType; { buffer pointer }

wDasErr := K_IntAlloc (hAD, 1000, Addr(pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, 1000);

4-71

K_SetBufL

Purpose Specifies the starting address of a long integer array or buffer and the
number of samples to acquire.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_SetBufL Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrameAs Long,pBufAs Long, ByValdwSample#s Long)

As Integer

BASIC

DECLARE FUNCTION KSETBUFL% Alias "K_SetBuf"
(BYVAL hFrameAS LONG, SEGoBUfAS LONG,
BYVAL dwSampleé&S LONG)

Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of the long integer array or
buffer.
dwSamples Number of samples.

Valid values:1 to 65535
Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined yframe this function specifies the starting
address of the long integer array or buffepBufand the number of
samples to acquire mwSamples

For C/C++ and Turbo Pascal application programsKusgetBuf.

4-72 Function Reference

K_SetBufL (cont.)

See Also

Usage

For Visual Basic for Windows and BASIC, use this function only for long
integer arrays or buffers; for floating point arrays or buffers, use
K_SetBufR.

ThepBufvariable sets the value of the Buffer element,diw&les
variable sets the value of the Number of Samples element.

K_IntAlloc, K_SetBuf, K_SetBufR

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Dim ADData(2000) As Long

wDasErr = K_SetBufL (hAD, ADData(0), 2000)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM ADData(2000) AS Long

wDasErr = KSETBUFL% (hAD, ADData(0), 2000)

4-73

K_SetBufR

Purpose Specifies the starting address of a floating point array or buffer and the
number of samples to acquire.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows

Declare Function K_SetBufR Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrameAs Long,pBufAs Single, ByVadwSample#s Long)

As Integer

BASIC

DECLARE FUNCTION KSETBUFR% Alias "K_SetBuf"
(BYVAL hFrameAS LONG, SEGBUfAS Single,
BYVAL dwSampleé&S LONG)

Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of the floating point array or
buffer.
dwSamples Number of samples.

Valid values:1 to 65535
Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined yframe this function specifies the starting
address of a floating point arraypBufand the number of samples to
acquire indwSamples

For C/C++ and Turbo Pascal application programsKusgetBuf.

4-74 Function Reference

K_SetBufR (cont.)

See Also

Usage

For Visual Basic for Windows and BASIC, use this function only for
floating point arrays and buffers; for long integer arraysKusgetBufL.

ThepBufvariable sets the value of the Buffer elementdiwSamples
variable sets the value of the Number of Samples element.

K_IntAlloc, K_SetBuf, K_SetBufL

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Dim ADData(2000) As Single

wDasErr = K_SetBufR (hAD, ADData(0), 2000)

BASIC
'$INCLUDE: 'DASDECL.BI'

DIM ADData(2000) AS Single

wDasErr = KSETBUFR% (hAD, ADData(0), 2000)

4-75

K_SetChnGAry

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-76

Specifies the starting address of a channel-gain queue.

C/C++
DASETr far pascal K_SetChnGAry (DWORHFrame void far*pArray);

Turbo Pascal
Function K_SetChnGAryhFrame: Longint;
Var pArray : Integer) : Word;

Turbo Pascal for Windows
Function K_SetChnGAryhFrame: Longint;
Var pArray : Integer) : Word; far; external 'DASSHELL",

Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KSETCHNGARY% ALIAS "K_SetChnGAry"
(BYVAL hFrameAS LONG, SEGpArray AS INTEGER)

hFrame Handle to the frame that defines the operation.

pArray Channel-gain queue starting address.
Error/status code. Refer to Appendix A.

For the operation defined rame this function specifies the starting
address of the channel-gain queupAmray.

ThepArray variable sets the Channel-Gain Queue element.
Refer to page 2-12 for information on setting up a channel-gain queue.

If you created your channel-gain queue in BASIC or Visual Basic for
Windows, you must uge_FormatChnGAry to convert the channel-gain
queue before you specify the address WitlsetChnGAvry.

K_FormatChnGAry, K_RestoreChnGAry

Function Reference

K_SetChnGAry (cont.)

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

// DECLARE AND INITIALIZE CHAN/GAIN PAIRS
I/l (GainChanTable-TYPE IS DEFINED IN dasdecl.h)
GainChanTable ChanGainArray= {2, // # of entries
0,3, //chan O, gainis 400
1, 0}; // chan 1, gain is ignored for thermocouples

wDasErr = K_SetChnGAry (hAD, &ChanGainArray);

Turbo Pascal
uses DTCTPU;

{ Define Gain/Channel array type }

TYPE GainChanTable = Record
num_of codes : Integer;
queue : Array[0..15] of Byte;
END;

CONST ChanGainArray : GainChanTable = (
num_of _codes : (8); { # of chan/gain pairs }
queue : (0,2, 1,1)

)i

wDasErr := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);

4-77

K_SetChnGAry (cont.)

Turbo Pascal for Windows
{$| DASDECL.INC}

{ Define Gain/Channel array type }

TYPE GainChanTable = Record
num_of codes : Integer;
queue : Array[0..15] of Byte;
END;

CONST ChanGainArray : GainChanTable = (
num_of codes : (8); {# of chan/gain pairs }
queue : (0,2, 1,3)

)i

wDasErr := K_SetChnGAry (hAD, ChanGainArray.num_of codes);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global ChanGainArray(5) As Integer

' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 3
ChanGainArray(3) = 1: ChanGainArray(4) = 2
wDasErr = K_FormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hAD, ChanGainArray(0))

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(5) AS INTEGER

' Create the array of channel/gain pairs
ChanGainArray(0) =2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 1
ChanGainArray(3) = 1: ChanGainArray(4) = 3

wDasErr = KFORMATCHNGARY% (ChanGainArray(0))
wDasErr = KSETCHNGARY% (hAD, ChanGainArray(0))

4-78 Function Reference

K_SetContRun

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

Specifies continuous buffering mode.

C/C++
DASErr far pascal K_SetContRun (DWORIPrams;

Turbo Pascal
Function K_SetContRurhfFrame: Longint) : Word;

Turbo Pascal for Windows
Function K_SetContRurhframe: Longint) : Word,; far;
external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SetContRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KSETCONTRUN®Y% ALIAS "K_SetContRun"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

For the operation defined Ifrrame this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame andK_ClearFrame specify single-cycle as the default
buffering mode.

Refer to page 2-13 for a description of buffering modes.

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetContRun (hAD);

4-79

K_SetContRun (cont.)

4-80

Turbo Pascal
uses DTCTPU;

wDasErr := K_SetContRun (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr := K_SetContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetContRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSETCONTRUN% (hAD)

Function Reference

K_SetStartStopChn

Purpose

Prototype

Parameters

Return Value

Specifies the first and last channels in a group of consecutive channels.

C/C++
DASETrr far pascal K_SetStartStopChn (DWORErame shortnStart
shortnStop);

Turbo Pascal
Function K_SetStartStopChhKRrame: Longint; nStart: Word;
nStop: Word) : Word;

Turbo Pascal for Windows
Function K_SetStartStopChhKrame: Longint; nStart: Word;
nStop: Word) : Word; far; external 'DASSHELL";

Visual Basic for Windows

Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnStartAs Integer,

ByVal nStopAs Integer) As Integer

BASIC

DECLARE FUNCTION KSETSTARTSTOPCHN% ALIAS
"K_SetStartStopChn" (BYVALhFrameAS LONG,

BYVAL nStartAS INTEGER, BYVAL nStopAS INTEGER)

hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values: 0to 15

nStop Last channel in a group of consecutive channels.
Valid values: 0to 15

Error/status code. Refer to Appendix A.

4-81

K_SetStartStopChn (cont.)

Remarks

See Also

Usage

4-82

For the operation defined Iyrrame this function specifies the first
channel in a group of consecutive channelsStartand the last channel
in the group of consecutive channelatop To specify a single channel,
enter the same channel numben8tartandnStop

ThenStartvariable sets the value of the Start Channel elementStap
variable sets the value of the Stop Channel element.

When you use thK_SetStartStopChnfunction, the Function Call
Driver reads the configuration file to determine whether the signal
connected to the specified channel is configured for voltage input or
thermocouple input and to determine the appropriate gain for that
channel. If you want to change the gain without changing the
configuration file, use a channel-gain queue.

K_GetADFrame andK_ClearFrame set the Start Channel and Stop
Channel elements to 0.

K_SetChnGAry

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetStartStopChn (hAD, 0, 7);

Turbo Pascal
uses DTCTPU;

wDaskErr := K_SetStartStopChn (hAD, 0, 7);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDaskErr := K_SetStartStopChn (hAD, 0, 7);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetStartStopChn (hAD, 0, 7)

Function Reference

K_SetStartStopChn (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSETSTARTSTOPCHN% (hAD, 0, 7)

4-83

K_SyncStart

Purpose Starts a synchronous-mode operation.

Prototype C/C++
DASErr far pascal K_SyncStart (DWORiFrame;

Turbo Pascal
Function K_SyncStarhframe: Longint) : Word,;

Turbo Pascal for Windows
Function K_SyncStarthframe: Longint) : Word;
far; external 'DASSHELL";

Visual Basic for Windows
Declare Function K_SyncStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KSYNCSTART% ALIAS "K_SyncStart"
(BYVAL hFrameAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
Return Value Error/status code. Refer to Appendix A.
Remarks This function starts the synchronous-mode operation defineétayne

Refer to page 3-7 for information on the programming tasks associated
with synchronous-mode analog input operations.

See Also K_IntStart

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SyncStart (hAD);

4-84 Function Reference

K_SyncStart (cont.)

Turbo Pascal
uses DTCTPU;

wDasErr := K_SyncStart (hAD);

Turbo Pascal for Windows
{$| DASDECL.INC}

wDasErr ;= K_SyncStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SyncStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSYNCSTART% (hAD)

4-85

A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the DAS-TC
Function Call Driver, possible causes for error conditions, and possible
solutions for resolving error conditions.

If you cannot resolve an error condition, contact Keithley MetraByte for

technical support.

Table A-1. Error/Status Codes

|

ard

Error Code

Hex Decimal Cause Solution

0 0 No error has been detected. Status only; no action is necessary.

6000 24576 Error in configuration file: The | Check that the file exists at the
configuration file you specified in| specified path. Check for illegal
the driver initialization function is| keywords in file; you can avoid illega
corrupt, does not exist, or contair, keywords by using the configuration
one or more undefined keywordg utility to create and modify

configuration files.

6001 24577 lllegal base address in Use the configuration utility to chang
configuration file: The base I/0 | the base 1/O address of the card/bo
address of the card/board in the | to one that matches the base addre
configuration file is illegal and/or | switches on the card/board, if
does not match the base addresg applicable.
switches on the card/board.

6002 24578 lllegal IRQ level in configuration | Use the configuration utility to chang
file: The interrupt level in the the interrupt level to a legal one for
configuration file is illegal. your card/board. Refer to the user’s

guide for legal interrupt levels.

A-1

Table A-1. Error/Status Codes (cont.)

er

he

= O

le.

14

er

ed

Error Code

Hex Decimal | Cause Solution

6003 24579 lllegal DMA channel in Use the configuration utility to chang
configuration file: The DMA the DMA channel to a legal one for
channel in the configuration file i§ your card/board. Refer to the user’s
illegal. guide for legal DMA channels.

6005 24581 lllegal channel number:; The Specify a legal channel number. Re
specified channel number is illeg| to the user’s guide or to the
for the card/board and/or for the | description oK_SetStartStopChnin
range type (unipolar or bipolar). | Chapter 4 for legal channel number

6006 24582 lllegal gain code:The specified | Specify a legal gain code. Refer to t
analog I/0 channel gain code is | user’s guide or to the description of
illegal for this card/board. K_SetGin Chapter 4 for a list of lega

gain codes.

6007 24583 lllegal DMA address: An FCD Use theK_DMAAIloc function to
function specified a buffer addreg allocate dynamic buffers for DMA
that is not suitable for a DMA operations. In Windows, make sure
operation for the number of that the Keithley Memory Manager i
samples required. installed; refer to the user’s guide fo

information.

6008 24584 lllegal number in configuration | Use the configuration utility to check
file: The configuration file contain| and then change the configuration fi
one or more numeric values that
are illegal.

600A 24586 Configuration file not found: The | Check that the file exists at the
driver cannot find the specified path. Check that the file
configuration file specified as an | name is spelled correctly in the drive
argument to the driver initializatio| initialization function parameter list.
function.

600B 24587 Error returning DMA buffer: Check that the memory handle pass
DOS returned an error in INT 21} as an argument & DMAFree was
function 49H during the executiol previously obtained using
of K_DMAFree. K_DMAAlloc .

600C 24588 Error returning interrupt Check the memory handle stored by
buffer: The memory handle K_IntAlloc and make sure that it was
specified inK_IntFree is invalid. | not modified.

A-2

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal | Cause Solution

600D 24589 lllegal frame handle: The Check that the frame handle exists.
specified frame handle is not vali Check that you are using the
for this operation. appropriate frame handle.

600E 24590 No more frame handles:No UseK_FreeFrameto free a frame
frames are left in the pool of that the application is no longer usin
available frames.

600F 24591 Requested buffer size too large: | Specify a smaller buffer size; refer t
The requested buffer cannot be | the description oK_IntAlloc in
dynamically allocated because o{ Chapter 4 for the legal range. If in
its size. Windows Enhanced mode with the

Keithley Memory Manager installed
use KMMSETUP.EXE to increase th
reserved buffer heap size.

6010 24592 Cannot allocate interrupt buffer: | Remove some Terminate and Stay
(Windows-based languages only] Resident programs (TSRs) that are
K_IntAlloc failed because there | longer needed.
was not enough available DOS
memory.

6012 24594 Interrupt buffer deallocation Make sure that the memory handle
error: (Windows-based languagg passed as an argumenktolntFree
only) An error occurred when was previously obtained using
K_IntFree attempted to freea | K_IntAlloc .
memory handle.

6015 24597 DMA Buffer too large: The Refer to the description of
number of samples specified in | K_DMAAIloc in Chapter 4 for the
K_DMAAlloc is too large. buffer size range.

6016 24598 VDS - Region not contiguousAn | Refer to the user’s guide for
error occurred while using information on how to install and se
Windows Virtual DMA Services. | up the Keithley Memory Manager.
You tried to us&K_DMAAIloc in
Windows Enhanced mode and th
Keithley Memory Manager was ng
installed.

6017 24599 VDS - DMA wraparound: See See error 6016.
error 6016.

g.

A-3

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

6018 24600 VDS - Unable to lock region:See | See error 6016.
error 6016.

6019 24601 VDS - No buffer available:See | See error 6016.
error 6016.

601A 24602 VDS - Region too largeSee error| See error 6016.
6016.

601B 24603 VDS - Buffer in use: See error See error 6016.
6016.

601C 24604 VDS - lllegal region: See error | See error 6016.
6016.

601D 24605 VDS - Region not lockedSee See error 6016.
error 6016.

601E 24606 VDS - lllegal page:See error See error 6016.
6016.

601F 24607 VDS - lllegal buffer: See error | See error 6016.
6016.

6020 24608 VDS - Copy out of range:See See error 6016.
error 6016.

6021 24609 VDS - lllegal DMA channel: See | See error 6016.
error 6016.

6022 24610 VDS - Count overflow: See error | See error 6016.
6016.

6023 24611 VDS - Count underflow: See See error 6016.
error 6016.

6024 24612 VDS - Function not supported: | See error 6016.
See error 6016.

6025 24613 lllegal OBM mode: The mode Specify a legal mode value; refer to
number specified in the description oK_SetOBMMode.
K_SetOBMMode is illegal.

A-4 Error/Status Codes

Table A-1. Error/Status Codes (cont.)

2]

172

Error Code

Hex Decimal | Cause Solution

6026 24614 lllegal DMA structure: An error | Try usingKk_DMAFree again. If the
occurred during the execution of | error continues, contact Keithley
K_DMAFree. MetraByte for technical support.

6027 24615 DMA allocation error: See error | See error 6026.
6026.

6028 24616 NULL DMA handle: See error See error 6026.
6026.

6029 24617 DMA unlock error: See error See error 6026.
6026.

602A 24618 DMA free error: See error 6026., See error 6026.

602B 24619 Not enough memory to Specify a smaller number of samples.
accommodate requestThe Free a previously allocated buffer. U
number of samples you requeste the KMMSETUP utility to expand thg¢
in the Keithley Memory Manager| reserved heap.
is greater than the largest
contiguous block available in the
reserved heap.

602C 24620 Requested buffer size exceeds | Specify a value within the legal range
maximum: The number of when callingk_DMAAlIloc or
samples you requested from the | K_IntAlloc in Windows Enhanced
Keithley Memory Manager is mode. Refer to Chapter 4 for legal
greater than the allowed maximur values.

602D 24621 lllegal device handle:A bad Check the device handle value.
device handle was passed to a
function such ak_GetADFrame.
The handle used was not initializ¢
through a call to the card/board
initialization function (such as
K_GetDevHandle) or it was
corrupted by your program.

602E 24622 lllegal setup option: An illegal Check the option value passed to the
option was specified to a functior function where the error occurred.
that accepts a user option, such
K_SetDITrig .

A-5

Table A-1. Error/Status Codes (cont.)

Error/Status Codes

g

Error Code

Hex Decimal Cause Solution

6030 24624 DMA word-page wrap: During | Reduce the number of samples and
K_DMAAlloc , a DMA word-page| retry. If in Windows Enhanced mode
wrap condition occurred and the | install and configure the Keithley
allocation attempt failed since Memory Manager.
there is not enough free memory
accommodate the allocation
request.

6031 24625 lllegal memory block handle:A | Restart your program and monitor the
bad memory handle was passed| memory handle values.

K_IntFree orK_DMAFree. The
handle used was not initialized
through a call t&_IntAlloc or
K_DMAAlloc , or it was corrupted
by your program.

6032 24626 Out of memory handles:An UseK_IntFree or K_DMAFree to
attempt to allocate a memory blo¢ free previously allocated memory
usingK_IntAlloc or blocks before allocating again.
K_DMAAlloc failed because the
maximum number of handles has
already been assigned.

6034 24628 Memory corrupted: Int 21H Recheck the parameters set by
function 48H, used to allocate a | K_ DMAAIlloc andK_SetDMABuUf.
memory block from the DOS far | If a fatal system error, restart your
heap, returned the DOS error 7; | computer.
this means that memory is
corrupted. It is likely that you
stored data (through a DMA-mod
or interrupt-mode operation) into
an illegal area of DOS memory.

6035 24629 Driver in use: You attempted to | To continue using the driver with the
initialize a driver that was already same configuration, pass a null strin
initialized by a call to as the second argument to
K_OpenDriver. (This can occur | K_OpenDriver. To use the driver
since, under Windows, it is with a different configuration, close
possible to open the same driver| any application programs currently
from multiple programs that are | accessing the driver, and then open the
running simultaneously.) driver again (using{_OpenDriver).

Table A-1. Error/Status Codes (cont.)

U
-

fer

ay
fer

Error Code
Hex Decimal Cause Solution
6036 24630 lllegal driver handle: The Someone may have closed the driver;
specified driver handle is not vali(if so, useK_OpenDriver to reopen
the driver with the desired driver
handle. Try again using another driv
handle.
6037 24631 Driver not found: The specified | Check your link statement to make
driver cannot be found. sure the specified driver is included
Make sure that the device name stri
is entered correctly in
K_OpenDriver.
6038 24632 Invalid source pointer: Check the pointer to the source buffer
(Windows-based languages only] and the number of samples to trans
The pointer to the source buffer | that you specified in
that you passed as an argument| K_MoveBufToArrayL or
K_MoveBufToArrayL or K_MoveBufToArrayR .
K_MoveBufToArrayR is invalid
for the specified count. (The sour
pointer, when added to the numb
of samples, exceeds the
programmed addressing range o
that pointer.)
6039 24633 Invalid destination pointer: Check the dimension of the local arr
(Windows-based languages only] and the number of samples to trans
The pointer to the destination that you specified in
buffer (local array) that you pass¢ K_MoveBufToArrayL or
as an argument to K_MoveBufToArrayR .
K_MoveBufToArrayL or
K_MoveBufToArrayR is invalid
for the specified count. (The
destination pointer, when added
the number of samples, exceeds
dimension of the local array.)
603A 24634 lllegal setup value:An illegal Check the legal ranges of all
value was passed to the function| parameters passed to this function.
which the error occurred.

A-7

Table A-1. Error/Status Codes (cont.)

)

Error Code

Hex Decimal | Cause Solution

603B 24635 Error freeing buffer selector: Check that the memory buffer being
K_DMAFree or K_IntFree failed | freed was previously obtained through
because one or more of the K_DMAAlloc orK_IntAlloc.
selectors that reference the
memory buffer could not be freeg

603C 24636 Error allocating buffer selector: | Close all applications and restart
K_DMAAlIloc orK_IntAlloc Windows. If the error continues,
failed because a selector could n contact Keithley MetraByte for
be allocated from Window’s Loca technical support.

Descriptor Table.

603D 24637 Error allocating memory buffer: | Close all applications and restart
K_DMAAlloc orK_IntAlloc Windows. If the error continues,
failed because a necessary interi contact Keithley MetraByte for
buffer could not be allocated to | technical support.
complete the operation.

7000 28672 No board name The driver Specify a legal board name in the
initialization function did not find g configuration file.
board name in the specified
configuration file.

7001 28673 Bad board name The board name Specify a legal board name in the
in the specified configuration file isconfiguration file.
illegal.

7002 28674 Bad board numbe: The driver | Specify a legal board number: 0 or 1
initialization function found an
illegal board number in the
specified configuration file.

7003 28675 Bad base addressThe driver Specify a base address in the inclusjve
initialization function found an range &H200 (512) to &H3FO0 (1008)
illegal base address in the specifieith increments of 10H (16). Make sure
configuration file. that &H precedes hexadecimal

numbers.

7004 28676 Bad interrupt level: The driver | Specify a legal interrupt level: 3, 5, 7
initialization function found an 10, 11, 12, or 15 for DAS-TC/B
illegal interrupt level in the boards; 2, 3, 4, 5, 6, or 7 for DAS-T
specified configuration file. boards

A-8

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal

Cause

Solution

7005 28677

Bad Normal Mode Rejection

Frequency. You attempted to use afrequency in the configuration file
Normal Mode Rejection Frequency50 Hz, 60 Hz, or 400 Hz).

that is not supported.

Specify a legal normal mode rejection

7006 28678

Bad Number Type: You attempted
to use a number type that is not
supported.

Specify a legal number type in the
configuration file: integer or floating
point

7007 28679

Bad channel configuration: The

driver initialization function found
a channel number out of range or
an illegal channel argument.

Specify a legal channel configuratio
SeeK_SetStartStopChn

>

7008 28680

Checksum Error: The checksum
is illegal resulting in
communication failure.

Reinitialize the board using
K_DASDevilnit.

7009 28681

Board Not Initialized: A function
was called before the board was
initialized, initialization failed, or
the wrong base address was
specified.

Verify the base address and reinitialize
the board usingl_DASDevinit.

700A 28682

Initialization Failure :
Initialization of the board failed.

Reinitialize the board using

K_DASDevlInit. If the problem
persists, contact Keithley MetraByte
for technical support.

700B 28683

Protocol Communication Error:
Communication between the boar
and the computer failed.

Reinitialize the board using

& _DASDevInit. If the problem
persists, contact Keithley MetraByte
for technical support.

700C 28684

Bad Voltage to Temperature
Calculation Error: An error
occurred when converting to
engineering units.

Reinitialize the board using

K_DASDevlInit. If the problem
persists, contact Keithley MetraByte
for technical support.

8001 32769

Function not supported: You
have attempted to use a function

not supported by the Function Call

Driver.

Contact Keithley MetraByte for
technical support.

Table A-1. Error/Status Codes (cont.)

~

e
he
SS

Error Code

Hex Decimal Cause Solution

8003 32771 lllegal board number: An illegal | Refer to the description of the
card/board number was specified card/board initialization function
the card/board initialization (such ak_GetDevHandle) in
function. Chapter 4 for legal card/board

numbers.

8004 32772 lllegal error number: The error | The error number must be one the
message number specified in error numbers listed in this appendi
K_GetErrMsg is invalid.

8005 32773 Board not found at configured If applicable, make sure that the bag
address:The card/board address setting of the switches on t
initialization function does not card/board matches the base addre
detect the presence of a card/bog setting in the configuration file.

8006 32774 A/D not initialized: You attempted Always callK_ClearFrame before
to start a frame-based analog inpigetting up a new frame-based
operation without the A/D frame | operation.
being properly initialized.

8007 32775 D/A not initialized: You attempted Always callK_ClearFrame before
to start a frame-based analog setting up a new frame-based
output operation without the D/A | operation.
frame being properly initialized.

8008 32776 Digital input not initialized: You | Always callK_ClearFrame before
attempted to start a frame-based| setting up a new frame-based
digital input operation without the operation.

DI frame being properly
initialized.

8009 32777 Digital output not initialized: You | Always callK_ClearFrame before
attempted to start a frame-based setting up a new frame-based
digital output operation without th| operation.

DO frame being properly
initialized.

A-10

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

D

Error Code

Hex Decimal | Cause Solution

800B 32779 Conversion overrun: The Adjust the clock source to slow down
conversion rate is too fast or the | the rate at which the card/board
time required to service an acquires data. Remove other
interrupt is too long. application programs that are running

and using computer resources. Try
performing the operation in
synchronous mode instead of interrupt
mode.

8016 32790 Interrupt overrun : The Check the maximum throughput rat
card/board communicated a for your computer’s programming
hardware event to the software b environment and ud€_SetClkRate
generating a hardware interrupt, | to specify an appropriate rate.
but the software was still servicin
a previous interrupt. This is usual
caused by a pacer clock rate tha
too fast.

801A 32794 Interrupts already active: You UseK_IntStop to stop the first
have attempted to start an operatiayperation before starting the second
whose interrupt level is being useaperation.
by another system resource.

801B 32795 DMA already active: You UseK_ DMAStop to stop the first
attempted to start a DMA-mode | operation before starting the second
operation using a DMA channel | operation.
that is currently used by another
active operation.

8020 32800 FIFO Overflow event detected: | The conversion rate is too fast for your
During data acquisition, the computer’s programming
temporary oncard/onboard data | environment; us&_SetClkRate to
storage (FIFO) overflowed. reduce the conversion rate. If you are

using DMA-mode and your
card/board supports dual-DMA, use
the configuration utility to reconfigure
your card/board to use dual-DMA.

A-11

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

8021 32801 lllegal clock sync mode:The two | Check the synchronizing operation
operations you are trying to that you specified iK_SetSync
synchronize cannot be Make sure that your card/board
synchronized on your card/board supports the synchronization of the

two operations.

FFFF 65535 User aborted operation:You Start the operation again, if desired.
pressedCtrl+Break during a
synchronous-mode operation or
while waiting for an analog trigger
event to occur.

A-12 Error/Status Codes

B

Data Formats

The DAS-TC Function Call Driver returns data in engineering units. The
number type (integer or floating-point) specified in the configuration file
determines what the data means, as described in the following sections.

Note: Ensure that the array or buffer you dimension matches the number
type selected.

Integer Number Types

When the number type specified in the configuration file is integer, a twos
complement 32-bit long integer is returned. If a channel is configured for
thermocouple input, the value returned is in hundredths of degrees. If a
channel is configured for voltage input, the value returned is in
microvolts.

To convert hundredths of degrees to degrees, divide the value by 100. To
convert microvolts to volts, divide the value by 1,000,000.

If the input is under or over the range setting of a particular channel, the
DAS-TC or DAS-TC/B board returns the values shown in Table B-1.

Integer Number Types B-1

Table B-1. Integer Input Error Conditions

Input Type

Condition

alue Returned

\oltage

Over the range setting

-971,227,136 mV

Under the range setting

+1,176,256,512 mV

Thermocouple

Over the range setting

-971,227,136C or F

Under the range setting

+1,176,256,51ZC or F

Floating-Point Number Types

B-2

When the number type specified in the configuration file is floating-point,

an IEEE 32-bit real number is returned. If a particular channel is

configured for thermocouple input, the value returned is in degrees. If a
particular channel is configured for voltage input, the value returned is in

volts.

If the input is under or over the range setting of a particular channel, the

DAS-TC or DAS-TC/B returns the values shown in Table B-2.

Table B-2. Floating-Point Input Error Conditions

Input Type Condition alue Returned
\oltage Over the range setting | —10,000.00 V
Under the range setting | +10,000.00 V

Thermocouple

Over the range setting

—-10,000.00C or F

Under the range setting

+10,000.00C or F

Data Formats

Index

A

allocating memorf2-1
dynamically in BASIG3-32
dynamically in C/C+13-12
dynamically in Pasc&-20
dynamically in Visual Basic for
Windows3-26
locally in BASIC[3-32
locally in C/C+#+3-11
locally in PascdB-20
locally in Visual Basic for Windows
3-26
analog input channe®-10
analog input operatiofiz-4
programming tasks-6
analog input rangé2-10
array92-1
ASO-TC software packadie-1

B

BASIC[3-32
creating a channel-gain qudBe37
dimensioning local array3-32

dynamically allocating memory buffers

handling error8-38

programming in Professional BaSe4Q

programming in QuickBas[8-39
board
initialization2-2
number supportdd-2
reinitializing[2-3
Borland C/C++ (for DOSYii
programming informatiol3-17
see alsaC languages

Borland C/C++ (for Windowsyii
programming informatiof3-18
see alsaC languages

Borland Turbo Pascal (for DOS)i
programming informatio3-24
see alsdPascal

Borland Turbo Pascal for Windowsi
programming informatiof3-25
see alsdPascal

buffer addresg-9

buffer address functiofé-2

buffering mod@2-13

buffering mode functiorig-3

bufferd2-§

C

C language8-11
creating a channel-gain qudgel3
dimensioning local array@-11

dynamically allocating memory buffers

handling error8-14

programming in Borland C/C++ (for

DOS)3-17

programming in Borland C/C++ (for

Windows)3-18

programming in Microsoft C/C++ (for

DOS)3-15

programming in Microsoft C/C++ (for

Windows)3-16

programming in Microsoft Visual C++

channel and gain functiods3

channel-gain queug&s12

creating in BASIG3-37
creating in C/C+{3-13
creating in Pasci@8-23

creating in Visual Basic for Windows

channel2-10 data type&-4
multiple using a channel-gain queue default values, A/D frame elemei8

device handI®-2,[3-1
multiple using a group of consecutive dimensioning arrayg&-1
channel©-11 driverL-1
singld2-11 driver handI&-2
command®-1

see alsdunctions

common taskB-6

compile and link statements E
Borland C/C++ (for DOS3B-18
Borland C/C++ (for Windows3-19 :Iner?neenetfir?f]:2
Microsoft C/C++ (for DOS[B-13 err%r oy degﬂ
Microsoft C/C++ (for WindowsB-16 arror conditions
Professional Bas{8-40 floating-point inpulB-2

QuickBasid3-39) L
Turbo Pascal (for DOS3-24 orr Olrn L?n%rlilr?
continuous&d@ BASIC[3-38
convention BT
creating an executable fi@&15 g;:g
Borland C/C++ (for Dom Visual Basic for Window8-31
Borland C/C++ (for Windows3-19 executable file, creatiig-15
Microsoft C/C++ (for DOSB-15 ;
Microsoft C/C++ (for WindowsB-18
Professional Bas[8-40
QuickBasid3-39 E
Turbo Pascal (for DOS-24
Turbo Pascal for Windows-25% files required
Visual Basic for Window8-32 Borland C/C++ (for DOSB-17
Borland C/C++ (for Windows3-18
Microsoft C/C++ (for DOSB-15
Microsoft C/C++ (for WindowsB-16
D Professional Bas[8-40
DAS-TC Function Call Drivefi-1 %JrlggBPa;%r D024
DAS-TC standard software packdbe€l Turbo Pascal for Windov@.25
DASTC_DevOpe(2-2[4-5 Visual Basic for Window8-31

DASTC_GETCJ®-§ . ey >
- floating-point input error conditior8-2
DASTC_GetDevHandi@-3[4-11 floating-point number typd8-2

data formatiB-1] frame handIB-2
data transfer mod&s5 frame management functidAds?

X-2 Index

framed3-2

element§8-2
handle§3-2
types3-3

Function Call Drivefl-1

initialization[2-2
structuré3-1

functions

buffer addresd-2

buffering modé4-3

channel and gaj4-3
DASTC_DevOpef?-2,[4-5
DASTC_GETCJ{#-8
DASTC_GetDevHandig-3[4-11
frame managemelt2
initialization[4-2
K_ADRead2-5
K_ADReadl[4-18
K_ADReadR4-19
K_ClearFram@-3[4-22
K_CloseDriveif2-2[4-24
K_CIrContRuri2-13[4-26
K_DASDevInit2-3 [4-28
K_FormatChnGArn4-30
K_FreeDevHandIR-3,[4-32
K_FreeFramB-3[4-34
K_GetADFramé3-3,[4-36
K_GetDevHandI@-2[4-38
K_GetErrMsd2-4 [4-40
K_GetShellve2-3[4-42
K_GetVel2-3[4-45

K_IntAlloc [2-§
K_IntFree2-8[4-51
K_IntStar{2-6/[4-53
K_IntStatug2-7,[4-55
K_IntStop2-7,[4-58
K_MoveBufToArrayL[2-8
K_MoveBufToArrayR2-8[4-63
K_OpenDrivei2-2,[4-65
K_RestoreChnGArB-31,[3-38(4-68
K_SetBuf2-9,[4-70

functions (cont.)
K_SetBufL2-9
K_SetBufR2-9[4-74
K_SetChnGAn2-13[4-76
K_SetContRui2-13[4-79
K_SetStartStopCHR-11,
K_SyncStar2-6,
memory managemeit2
miscellaneoud-3
operatior4-2

G

gain code®-10
gains2-10
group of consecutive chann@sll

H

handles
devicd2-2 [3-1
driver2-2
frame3-2

memony2-8
helpfl-2

initialization function$4-2
initializing a board2-2
initializing the drivef2-2

input range-10

input type2-10

integer input error conditiorfi8-2]
integer number typds-1]

interrupt-mode analog input operatis,

X-3

K

K_ADRead2-5[4-13
K_ADReadll4-16
K_ADReadR4-19
K_ClearFram@&-3[4-22
K_CloseDrivei2-2
K_ClIrContRuri2-13[4-26
K_DASDevInit2-3,
K_FormatChnGAn#4-3Q
K_FreeDevHandIR-3[4-32
K_FreeFramB8-3
K_GetADFramé3-3,
K_GetDevHandI@-2
K_GetErrMsd2-4[4-40
K_GetShellve2-3[4-42
K_GetVer2-3[4-45
K_IntAlloc[2-§
K_IntFreg2-8,
K_IntStar{2-6,
K_IntStatu$2-4,
K_IntStop2-7[4-58
K_MoveBufT oArray@ 4-61
K_MoveBufToArray
K_OpenDrive2-2,[4-65
K_RestoreChnGArB-31,[3-38[4-68
K_SetBuf2-9[4-70
K_SetBufL2-9[4-72
K_SetBufR2-9[4-74
K_SetChnGAn2-13[4-76
K_SetContRui2-13
K_SetStartStopChR-11,
K_SyncStar2-6,[4-84

L
local array£2-1

X-4

M

maintenance operatio@s]
managing memo
see alsallocating memory
memory allocatiof2-1
see alsallocating memory
memory buffer-8
memory handI2-8
memory management functiddsd
Microsoft C/C++ (for DOSVii
programming informatiof3-15
see alsaC languages
Microsoft C/C++ (for WindowsVii
programming informatio@-16
see alsdC languages
Microsoft Professional Basidi
programming informatiof3-4Q
see alsBASIC
Microsoft QuickBasiwii,[3-39
programming informatio-39
see alsBASIC
Microsoft Visual Basic for Windowsii,
[3-31
see alsBASIC
Microsoft Visual C++Vii
programming informatio3-16
see alsdC languages
miscellaneous functiof$-3
miscellaneous operatio@s]

N

number types
floating-poin{B-2
integelB-1

Index

O

operation functiond-2
operation modd2-5
interrup{2-6
single2-5
synchronou-6
operations
analog inpu@2-4
systeni2-1

P

PascdB-20
creating a channel-gain qudae23
dimensioning local array3-20
dynamically allocating memory buffers
handling error8-24
programming in Borland Turbo Pascal
(for DOS)3-24
programming in Borland Turbo Pascal
for Windowd3-25
preliminary task8-6
Professional Basieii
programming informatiof3-4Q
see alsBASIC
programming information
Borland C/C++ (for DOSB-17
Borland C/C++ (for Windows3-18
Microsoft C/C++ (for DOSB-15
Microsoft C/C++ (for WindowsB-16
Professional Bas[8-40
QuickBasid3-39
Turbo Pascal (for DO8-24
Turbo Pascal for Window3-25
Visual Basic for Window-31
programming overviey@-g

programming tasks
analog input operatiof3-6

preliminary3-6

Q

QuickBasic
programming informatiof3-39
see alsBASIC

R

range2-10

resetting a boaf@d-3
return value®-4
revision level@-3

routines2-1

see alsdunctions

S
scan2-11

setup functions
A/D framed3-4
interrupt mod&8-9
synchronous moda-§
single channg2-17
single-cycle modR-13
single-mode analog input operatih$,[3-6
software packageéb-1
standard software packafiel
starting addre$2-9
starting analog input operatid@sg
status codd2-4,
storing dat@-13

X-5

synchronous-mode analog input operations

system operationd-1

T

tasks
analog inpu-g
preliminary[3-6

technical suppofi-2

troubleshootindL-2

Turbo Pascal (for DOS)ii
programming informatiof3-24
see alsdPascal

Turbo Pascal for Windowsgii
programming informatiof3-25
see alsdPascal

Vv

Visual Basic for Windowwii,[3-26
creating a channel-gain qudae3d
dimensioning local array3-26
dynamically allocating memory buffers
[3-26
handling error8-31
programming informatiof3-31
Visual C++vii
programming informatiol3-16
see alsaC languages

X-6

Index

	ToC:

