DASDLL

Function Call Drive

USER’S GUIDE

r

DASDLL
Function Call Driver
User’'s Guide

Revision A — December 1994
Part Number: 86590

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday — Friday 8:00 a.m. to 5:00 p.m (EST)
Fax: (440) 248-6168

Visit our website at http://www.keithley.com

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1994.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Keithley MetraByte Division
Keithley Instruments, Inc.
440 Myles Standish Blvd. Taunton, MA 02780
Telephone: (508) 880-30Q0FAX: (508) 880-0179

Preface

This manual describes how to write application programs using the
DASDLL Function Call Driver. The DASDLL Function Call Driver
supports the following Windovis-based languages:

Microsoft Visual C++1 (Version 1.0 and higher)

Microsoft Visual Basic for Windows (Version 3.0 and higher)

The manual is intended for application programmers using one of the
following boards in an IBM PC AT- or compatible computer:

DAS-8 Series
DAS-16 Series
DAS-20
DAS-40 Series
DAS-HRES
DDA-06
Series 500
PI1O Series
PDMA Series

Throughout this manual, these boards are referred to as DASDLL-
supported boards.

It is assumed that users

have read the External DAS Driver user’s guide and the user’s guide
for their particular board to familiarize themselves with the board’s
features.

have completed the appropriate hardware installation and
configuration.

are experienced in programming in their selected language and are
familiar with data acquisition principles.

TheDASDLL Function Call Driver User’s Guidie organized as follows:

Chapter 1 provides an overview of the Function Call Driver and
describes the installation procedure. Information is included on
setting up the board and how to get help, if necessary.

Chapter 2 describes the available operations and contains the
background information needed to use the functions included in the
Function Call Driver.

Chapter 3 contains programming guidelines and language-specific
information related to using the Function Call Driver.

Chapter 4 contains detailed descriptions of the functions and their
usage, arranged in alphabetical order.

Appendix A contains a list of the error codes returned by the Function
Call Driver, along with specific causes and suggested solutions.

Appendix B contains instructions for converting counts to voltage and
for converting voltage to counts.

Appendix C provides board-specific operating specifications on gains
and channels.

Appendix D includes instructions for installing the Keithley Memory
Manager.

An index completes this manual.

Note: The DASDLL-supported boards vary in their features and
operating parameters. Information presented in this manual is generic to
cover every board’s requirements. For board-specific information, refer to
your board’s user’s guide and External DAS Driver user’s guide. Your
board’s user’s guide is shipped with your board; the External DAS Driver
user’s guide is shipped with the DASDLL software package.

Table of Contents

Preface

Getting Started

Installing the Softwareccov.... [.]. .12
Setting Up the Board and the Driver L.). .13
Getting Help. . .. oo oo oo L.]. .14

Available Operations

System Operations. el .22
Initializing the Driver L. ..2-2
InitializingaBoard, .. 1.2-3
Retrieving Revision Levels.} .2-5
Handling Errors. L..]..2-5

Analog InputOperations]..2-6
OperationModes.1..2-6
Memory Allocation and Management.1.2-8
ChannelsandGains.,2-10

SingleChannel2-10

Multiple Channels Using a Group of

Consecutive Channels)21

Multiple Channels Using a Channel-Gain Queue .]...|2-11
PacerClock.............).2-12
BufferingModes ool l2-14
THGgErS . o o ...).2-14

Analog Trigger.}2-15

Digital Trigger12-16

Analog Output Operations.o... co.2-17
Operation Modes., ... 4.2-17
Memory Allocation and Management. 12-18
Channels 1.2-20

SingleChannel coed.2-21
MultipleChannels 12-21
PacerClock............ 1.2-21
BufferingModes}.2-23
THQOEIS . o .. .2-24

Digital /O Operations

.1.2-25

Operation Modes.,].2-25
Memory Allocation and Management. |2-27
Channels i ... 1.2-28
PacerClock2-30
BufferingModes 12-31
THQOeIS . o ... 2-32

Programming with the Function Call Driver

How the DriverWorkso .31
Programming Overview. L. .39
Preliminary Tasks.].3-10
Operation-Specific Programming Tasks.1.3-10
Analog Input Operations.|.3-10
SingleMode3-11
Synchronous Mode.3-11
InterruptMode1.3-13
DMAMode 13-15
Analog Output Operations L [.3-17
SingleMode|.3-17
Synchronous Mode.3-18
InterruptMode1.3-19
DMAMode 13-21
Digital /O Operations., ... 1323
SingleMode..............|.3-23
Synchronous Mode., ...|.3-24
InterruptMode1.3-25
DMAMoOdE 13-27
Language-Specific Programming Information.[.3-29
Microsoft Visual C++ Language. |3-29
Allocating and Assigning Memory Buffers8-30
Allocating the Memory Buffers.8-30
AccessingtheData[.3-31
Creating a Channel-Gain Queue).3-31
Handling Errors)3-32
Programming in Microsoft Visual C++| ...B-33
Microsoft Visual Basic for Windows.B-34
Allocating and Assigning Memory Buffers | ...8-34
Allocating the Memory Buffers.8-34
AccessingtheData[.3-35

Creating a Channel-Gain Queue3-35

HandlingErrors iy ...} 3-37

Programming in Microsoft Visual Basic for Windowsg_. .3-37
Function Reference
DASDLL_DeVOPeN. . .. oot F 4-7
DASDLL_ DMAAIIOCo e 4-9
DASDLL DMAFree J4-11
DASDLL_GetBoardName. |4-12
DASDLL_GetDevHandle }14-13
K_ADRead. e ... J|.4-15
K ClearFrame i, ... |.4-17
K CloseDriver. i e ..[.4-18
K CIrContRun. i, ...[.4-19
K_DASDevInit. 14-21
K_DAWIITE . . e ... 14-22
K DIRead e ... J.4-24
K. DMAStartt . .| 4-26
K DMAStatuSo e . .|.4-27
K DMASIOP . ..ot ..|.4-30
K DOWHIEE o v e e ettt ..[.4-32
K_FormatChnGAry e .. .|.4-34
K FreeDevHandle1.4-35
K FreeFrame iy ...} .4-36
K GetADFrame.[.4-37
K GetADTHIg « v vttt i e e e4-38
K GetBUF. . .ottt .. |.4-40
K GetBufB[.4-42
K GetChn |.4-44
K GetChnGAIY . ..o e e e4-45
K GetCIK. .. L. . .|.4-46
K GetCIkRate).4-48
K GetContRun.J.4-50
K_GetDAFrame. iiiiiiiieenn|.4-52
K GetDevHandle.J.4-54
K GetDIFrame. i ... J.4-56
K GetDOFrame. i ...1|.4-58
K_GEetEIMMSg. . . oo L. . |.4-60
K GetG1.4-61
K_GetShellVer. L. . .|.4-63
K_GetStartStopChn|.4-65
K GetStartStopG 1.4-67

vi

K_GetTrig . .o oo4-69
K Gt er].4-T71
KontStart. |.4-73
KntStatus.o ... 1.4-74
K INtStop. . ..o] A-TT
K_MoveArrayToBuf 14-79
K_MoveBUfTOArray14-81
K_OpenDriver4-83
K_RestoreChnGAry.|.4-85
K SetADTrig. e ...l.4-86
K SetBuf).4-88
K SetBufB.4-90
K. SetChn. i ... 1.4-92
K_SetChnGAry e4-93
K SetCIK . e e ...J.4-95
K SetCIkRate.].4-97
K SetContRun. 1.4-99
K_SetDMABUf i4-101
K SetDMABUfB4-103
K SetG.......14-105
K_SetStartStopChn14-106
K SetStartStopG o14-108
K SetTrig. ..o 4-110
K. SyncAlloc A-112
K_SyncFree14-114
K SyncStart. e1|4-115
Error/Status Codes

Data Formats

Converting CountstoVoltage. B-1
ConvertingVoltagetoCounts.J. B4
Operating Specifications

GaINS . e ... L. C-1
Channels. e ...].. C-8

Keithley Memory Manager

Installing and Setting Upthe KMM. | D-2
Using KMMSETUPEXE|D-2
UsingaTextEditor............................ ...l D-3

Removingthe KMM D4

Index

List of Figures

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.

List of Tables

Table 1-1.
Table 2-1.
Table 2-2.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.

Table 4-1.

Logical Board Numbers. ’_I: 2-4
Analog Trigger Conditions 2-16
Single-Mode Function................. ..} .31
Interrupt-Mode Operation1.3-3
Boards Supported. L.]..11
Supported Operations 4..2-1
TimeBases.c.viiinn... | .. |.2-12
A/D Frame Elements. L. .l..3-4
D/A Frame Elements.................. .. .|..3-6
DI Frame Elements L. .. .37
DO Frame Elements. L.J..3-8
Setup Functions for Synchronous-Mode

Analog Input Operations [..]3-12
Setup Functions for Interrupt-Mode

Analog Input Operations [..]3-14
Setup Functions for DMA-Mode

Analog Input Operations [..]3-16
Setup Functions for Synchronous-Mode

Analog Output Operations. [..]3-18
Setup Functions for Interrupt-Mode

Analog Output Operations. [..]3-20
Setup Functions for DMA-Mode

Analog Output Operations. [..]3-22
Setup Functions for Synchronous-Mode

Digital Input and Output Operations.. | [...B-24

Setup Functions for Interrupt-Mode
Digital Input and Digital Output Operations . [..3-26
Setup Functions for DMA-Mode
Digital Input and Digital Output Operations . [. .3-28
FUNCHONS © .« v oo eee e e e e e L.]. .42

Vii

viii

Table 4-2.
Table A-1.
Table B-1.
Table B-2.
Table B-3.
Table C-1.
Table C-2.
Table C-3.

Data Type Prefixes. A
Error/Status Codes. L.

Data Formats (Analog Input).

Full Scale Values. A
Data Formats (Analog Output)
Gain Codes for DASDLL-Supported Boards| . .

Gain Codes for Series 500 Boards.
Channels Available on
DASDLL-SupportedBoards

1

Getting Started

The DASDLL Function Call Driver is a library of data acquisition and
control functions (referred to as the Function Call Driver or FCD

functions). Table 1-1 lists the Keithley DAS boards supported by the
DASDLL Function Call Driver.

Table 1-1. Boards Supported

Series Boards

DAS-8 DAS-8, DAS-8LT, DAS-8PGA, DAS-8PGA-G2,
DAS-8/AO

DAS-16 DAS-16, DAS-16F, DAS-16G1, DAS-16G2

DAS-20 DAS-20

DAS-40 DAS-40G1, DAS-40G2

DAS-HRES DAS-HRES

DDA-06 DDA-06

500 AMM1A, AMM2, AIM2, AIM3A, AIM4, AIM6
AIM7, AIM8, AIM9

P10 P10-12, PIO-24, P10-32, PIO-96, PIO-HV

PDMA PDMA-16, PDMA-32

Throughout this manual, the boards in Table 1-1 are referred to as
DASDLL-supported boards.

11

The DASDLL software package contains the following:

Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
Visual C++ and Microsoft Visual Basic for Windows.

Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by the
FCD functions.

Language-specific example programs.

The following sections describe how to install the software, how to set up
a board to use the DASDLL Function Call Driver, and how to get help, if
necessary.

Installing the Software

To install the DASDLL software package, perform the following steps:

1.

o~ w N

1-2

Make a backup copy of the supplied disks. Use the copies as your
working disks and store the originals as backup disks.

Insert disk #1 into the disk drive.
Start Windows, if necessary.
From the Program Manager menu, choose File and then choose Run.

Assuming that you are using disk drive A, type the following at the
command line in the Run dialog box, and then select OK:

A:SETUP

The installation program prompts you for your installation
preferences, including the drive and directory you want to copy the
software to. It also prompts you to insert additional disks, as
necessary.

Getting Started

6. Continue to insert disks and respond to prompts, as appropriate.

When the installation program prompts you for a drive designation,
enter a designation of your choosing or accept the default drive C.
When the installation program prompts you for a directory name,
enter a name of your choosing or accept the default name.

The installation program creates a directory on the specified drive and
copies all files, expanding any compressed files.

The installation program also creates a DASDLL family group; this
group includes example Windows programs.

7. When the installation program notifies you that the installation is
complete, review the following files:

— FILES.TXT lists and describes all the files copied to the hard disk
by the installation program.

— README.TXT contains information that was not available when
this manual was printed.

Setting Up the Board and the Driver

Before you use the DASDLL Function Call Driver, you must perform the
following tasks:

1. Set up your board’s hardware. Refer to your board’s user’s guide and
your External DAS Driver user’s guide for information.

Exit Windows and return to DOS.

Run the configuration program for your board from DOS. The
configuration program is shipped with the External DAS Driver for
your board. Refer to your External DAS Driver user’s guide for
information.

Note: You cannot run the configuration program or load the External
DAS Driver from the MS-DOS Prompt when in Windows. You must
exit Windows and return to DOS.

1-3

4. Load the External DAS Driver for your board from DOS. Refer to
your External DAS Driver user’s guide for information.

5. Load Windows.

Note: If you want to set up your AUTOEXEC.BAT file to
automatically load the External DAS Driver, make sure that you
include the line that loads the External DAS Driver before the line

that loads Windows.

Getting Help

If you need help installing or using the DASDLL Function Call Driver,
call your local sales office or the Keithley MetraByte Applications
Engineering Department at:

(508) 880-3000
Monday - Friday, 8:00A.m. - 6:00,.m., Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

1-4 Getting Started

Please make sure that you have the following information available before

you call:

DASDLL-supported
board configuration

Computer

Operating system

Software package

Compiler

(if applicable)

Accessories

Model

Serial #

Revision code

Base address setting
Interrupt level setting
Input configuration
Input range type
DMA channel

Other

Manufacturer

CPU type

Clock speed (MHz)
Amount of RAM
Video system
BIOS type

DOS version
Windows version
Windows mode

Serial #
\Version
Invoice/Order #

Language
Manufacturer
\ersion

Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number

single-ended, differential

unipolar, bipolar

3.0,31
Standard, Enhanced

1-5

2

Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DASDLL-supported boards. The
supported operations are listed in Table 2-1.

Table 2-1. Supported Operations

Operation Page Reference
System page 2-2
Analog input page 2-6
Analog output page 2-17
Digital input and output (1/O) | page 2-25

Note: The DASDLL-supported boards vary in their features and
operating parameters. Information presented in this chapter is generic to
cover every board’s requirements. For board-specific information, refer to
your board’s user’s guide and External DAS Driver user’s guide. Your
board’s user’s guide is shipped with your board; the External DAS Driver
user’s guide is shipped with the DASDLL software package.

2-1

The following features are not supported by the DASDLL Function Call
Driver, even though the External DAS Driver for your DASDLL may
support them:

. More than two memory buffers per frame

. Simultaneous sample-and-hold (SSH)

. Programmable external pacer clock polarity
. About-trigger acquisition

. Hardware gate

. Counter/timer functions

. Timed interrupt functions

. Time of Day (TOD) functions

System Operations

This section describes the miscellaneous and general maintenance
operations that apply to DASDLL-supported boards and to the DASDLL
Function Call Driver. It includes information on the following operations:

. Initializing the driver
. Initializing a board
. Retrieving revision levels

. Handling errors

Initializing the Driver

You must initialize the DASDLL Function Call Driver and any other
Keithley DAS Function Call Drivers you are using in your application
program. To initialize the drivers, use tkeOpenDriver function. You
specify the driver you are using; the driver returns a unique identifier for
the driver (this identifier is called the driver handle).

If a particular driver is no longer required and you want to free some
memory, you can use the CloseDriver function to free a driver handle
and close the associated driver. The driver is shut down and the DLLs
associated with the driver are shut down and unloaded from memory.

Available Operations

Note: You can also use tHeASDLL _DevOpen function to initialize the
driver and determine the number of boards found by the DASDLL
Function Call Driver.

Initializing a Board

The number of boards supported by the DASDLL Function Call Driver
depends on the number of External DAS Drivers you loaded and the
number of boards supported by each External DAS Driver. You must use
theK_GetDevHandle function to specify the boards you want to use.

The driver returns a unique identifier for each board; this identifier is
called the board handle.

Board handles allow you to communicate with more than one board. You
use the board handle returnedkoyGetDevHandlein subsequent
function calls related to the board.

You can specify a maximum of 30 board handles for all the Keithley
MetraByte boards accessed from your application program. If a board is
no longer being used and you want to free some memory or if you have
used all 30 board handles, you can us&thereeDevHandlefunction to

free a board handle.

Note: You can also use tHeASDLL_GetDevHandle function to
specify the boards you are using.

The board number you specifykn GetDevHandleis a logical board
number; it is determined by how you loaded your External DAS Drivers.
For example, Figure 2-1 illustrates a system in which you first loaded the
DAS-8 External DAS Driver (configured for two boards) and then loaded
the DAS-16 External DAS Driver (configured for two boards).

2-3

2-4

DAS-8 External DAS Driver

Board 1 ————® Logical Board Number =0
Board 2 —® Logical Board Number = 1

DAS-16 External DAS Driver

L Board 1 ——®» Logical Board Number = 2

Board 2 —— B Logical Board Number =3

Figure 2-1. Logical Board Numbers

Note: The DASDLL Function Call Driver treats Series 500 modules as
separate boards.

You can use thBASDLL_GetBoardName function to return

information about the boards and drivers loaded in your system. When
you enter a logical board number, the driver returns the name of the driver
associated with the board. A NULL pointer is returned if no driver is
associated with the board.

For example, if you set up a loop to return the names of the drivers
associated with the boards shown in Figure 2-1, the driver returns four
strings and a NULL pointer. The first two strings represent the DAS-8
External DAS Driver; the next two strings represent the DAS-16 External
DAS Diriver; the fifth string is a NULL pointer.

The returned strings indicate that your system contains four boards. The

first two logical boards, 0 and 1, are DAS-8 Series boards; the next two,
boards 2 and 3, are DAS-16 Series boards.

Available Operations

To reinitialize a board during an operation, usekh®ASDevInit
function.K_GetDevHandle, DASDLL_GetDevHandle, and
K_DASDevinit perform the following tasks:

. Abort all operations currently in progress that are associated with the
board identified by the board handle.

. Verify that the board identified by the board handle is the board
specified in the configuration file.

Retrieving Revision Levels

If you are having problems with your application program, you may want
to verify which versions of the Function Call Driver, Keithley DAS Driver
Specification, and Keithley DAS Shell are used by your board.

TheK_GetVer function allows you to get both the revision number of the
Function Call Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms.

TheK_GetShellVer function allows you to get the revision number of
the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that is shared by all DASDLL-supported boards).

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is
recommended that you check the returned code after the execution of
each function. If the status code equals 0, the function executed
successfully and your program can proceed. If the status code does not
equal 0, an error occurred; ensure that your application program takes the
appropriate action. Refer to Appendix A for a complete list of error codes.

Each supported programming language uses a different procedure for
error checking. Refer to the following for information:

Visual C++ page 3-33

Visual Basic for Windows| page 3-37

2-5

For Visual C++ only, the Function Call Driver provides the
K_GetErrMsg function, which gets the address of the string
corresponding to an error code.

Analog Input Operations

This section describes the following:
. Analog input operation modes available.
. How to allocate and manage memory for analog input operations.
. How to specify the following for an analog input operation:
— Channels and gains
— Conversion mode
— Clock source
— Buffering mode

— Trigger source

Note: The DASDLL-supported boards vary in their features and
operating parameters. For board-specific information, such as voltage
input ranges, refer to your board’s user’s guide and External DAS Driver
user’s guide.

Operation Modes

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the board to
computer memory. You can perform analog input operations in one of the
following modes:

. Single mode- In single mode, the board acquires a single sample
from an analog input channel. The driver initiates the conversion; you
cannot perform any other operation until the single-mode operation is
complete.

Available Operations

Use theK_ADRead function to start an analog input operation in
single mode. You specify the board you want to use, the analog input
channel, the gain at which you want to read the signal, and the
variable in which to store the converted data.

Synchronous mode- In synchronous mode, the board acquires a
single sample or multiple samples from one or more analog input
channels. A hardware pacer clock initiates conversions. You cannot
perform any other operation until the synchronous-mode operation is
complete. After the driver transfers the specified number of samples
to the host, the driver returns control to the application program,
which reads the data.

Use theK_SyncStart function to start an analog input operation in
synchronous mode.

Interrupt mode - In interrupt mode, the board acquires a single
sample or multiple samples from one or more analog input channels.
A hardware clock initiates conversions. Once the analog input
operation begins, control returns to your application program.

Use theK_IntStart function to start an analog input operation in
interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-14 for more information
on buffering modes. Use tlie IntStop function to stop a
continuous-mode interrupt operation. Use khéntStatus function

to determine the current status of an interrupt operation.

DMA mode - In DMA mode, the board acquires a single sample or
multiple samples from one or more analog input channels. A
hardware clock initiates conversions. Once the analog input operation
begins, control returns to your application program. DMA mode
provides the fastest data transfer rates.

Use theK_DMAStart function to start an analog input operation in
DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-14 for more information on
buffering modes. Use th€ DMAStop function to stop a
continuous-mode DMA operation. Use tkeDMAStatus function

to determine the current status of a DMA operation.

2-7

The converted data is stored as counts. For information on converting
counts to voltage, refer to Appendix B.

Memory Allocation and Management

2-8

Interrupt-mode and DMA-mode analog input operations use one or two
memory buffers to store acquired data; synchronous-mode analog input
operations use one memory buffer to store acquired data. (You can use
two memory buffers if your External DAS Driver supports double
buffering; the driver automatically switches from the primary buffer to the
secondary buffer when the primary buffer is full.)

Note: Except for DASDLL-40 Series boards, it is recommended that you
always use a single memory buffer, particularly for analog input
operations faster than 1 kHz.

Use one of the following functions to allocate memory:
. K_SyncAlloc for synchronous-mode or interrupt-mode operations.
. DASDLL DMAAlloc for DMA-mode operations.

You specify the following:
. Operation requiring the memory buffer.
. Number of samples to store in the memory buffer (up to 32,767).

The driver returns the starting address of the memory buffer and a unique
identifier for the buffer (this identifier is called the memory handle).

When the memory buffer is no longer required, you can free the buffer for
another use by specifying the memory handle in one of the following
functions:

. K_SyncFreefor synchronous-mode or interrupt-mode operations.
. DASDLL_DMAFree for DMA-mode operations.

Available Operations

If you are using two memory buffers, you can work on data in the inactive
buffer while the active buffer continues to collect data. To determine the
active buffer, use thk_IntStatus function (for interrupt mode) or the
K_DMAStatus function (for DMA mode). Depending on the speed of
your operation and the particular board you are using, data may be lost
when the driver switches from one memory buffer to the other. To
determine whether any data has been lost, us€ theStatus function

(for interrupt mode) or th&_DMAStatus function (for DMA mode).

Notes: For synchronous-mode and interrupt-mode operations and for
DMA-mode operations on DAS-16 Series boards, memory is allocated
from the first LMB of DOS memaory only; therefore, the amount of
memory you can allocate may be limited.

For DAS-20 and DAS-HRES boards that run in DMA mode, it is
recommended that you use the Keithley Memory Manager before you
begin programming to ensure that you can allocate large enough memory
buffers. Refer to Appendix D for more information about the Keithley
Memory Manager.

To eliminate page wrap conditions and to guarantee that memory is
suitable for use by the computer’s control@ASDLL_DMAAIlloc may
allocate an area twice as large as actually needed. Once the data in this
buffer is processed and/or saved elsewhereDASDLL _DMAFree to

free the memory for other uses.

For Visual Basic for Windows, the program cannot transfer data directly
from the memory buffer. You must use theMoveBufToArray function

to move the data from the memory buffer to the program’s local array;
refer to page 4-81 for more information.

After you allocate your memory buffers, you must assign the starting
address of the buffers and the number of samples to store in the buffers.
Each supported programming language requires a particular procedure
for allocating a memory buffer and assigning the starting address. Refer
to the following for information:

Visual C++ page 3-33

Visual Basic for Windows| page 3-37

Channels and Gains

Single Channel

2-10

Analog input channels on DASDLL-supported boards measure signals in
several analog input ranges. The analog input range for a particular
channel depends on the gain of the channel. The driver uses gain codes to
represent the gain.

For example, on a DAS-8PGA analog input board, an analog input range
of 0 to 10 V translates to a gain of 1 and a gain code of 9. Refer to
Appendix C for a summary of the gain codes used by DASDLL-
supported boards.

For most DASDLL-supported boards, channels can be configured as
single-ended or differential. The number of channels supported depends
on which configuration you use.

If you require more than the supported number of channels, you can use
expansion accessories to increase the number of available channels. Refer
to your board’s user’s guide and to the appropriate expansion accessory
documentation for more information.

Refer to Appendix C for a summary of the number of channels on
DASDLL-supported boards.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following subsections describe how to
specify the channels you are using.

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. Use khéADRead function to
specify the channel and the gain code.

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire a single sample or multiple samples from a
single analog input channel. Use eSetChn function to specify the
channel and thi_SetG function to specify the gain code.

Available Operations

Multiple Channels Using a Group of Consecutive Channels

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire samples from a group of consecutive
channels. Use th¢_SetStartStopChnfunction to specify the first and

last channels in the group. The channels are sampled in order from first to
last; the channels are then sampled again until the required number of
samples is read.

Use theK_SetG function to specify the gain code for all channels in the
group. (All channels must use the same gain code.) Use the
K_SetStartStopG function to specify the gain code, the start channel,
and the stop channel in a single function call.

Multiple Channels Using a Channel-Gain Queue

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire samples from channels in a channel-gain
queue. In the channel-gain queue, you specify the channels you want to
sample, the order in which you want to sample them, and a gain code for
each channel.

You can set up the channels in a channel-gain queue either in consecutive
order or in nonconsecutive order. You can also specify the same channel
more than once. The channels are sampled in order from the first channel
in the queue to the last channel in the queue; the channels in the queue are
then sampled again until the required number of samples is read.

The way that you specify the channels and gains in a channel-gain queue
depends on the language you are using. Refer to the following for
information:

Visual C++ page 3-33

Visual Basic for Windows| page 3-37

2-11

Pacer Clock

2-12

After you create the channel-gain queue in your program, use the
K_SetChnGAry function to specify the starting address of the
channel-gain queue.

Note: You can use a channel-gain queue with DMA-mode operations on
DAS-20 and DAS-40 Series boards only.

The pacer clock determines the period between the conversion of one
channel and the conversion of the next channel. For synchronous-mode,
interrupt-mode, and DMA-mode analog input operations, use the
K_SetClk function to specify one of the following pacer clocks:

. Internal pacer clock - The internal pacer clock uses an onboard
counter. You load a value into the counter to determine the period
between conversions. Depending on the time base of the counter,
each count represents a particular time period. Table 2-2 lists the time
bases available on DASDLL-supported boards.

Table 2-2. Time Bases

Board Time Base

DAS-8 Depends on PC bus clock freque]ncy
DAS-8LT 1 MHz

DAS-8PGA

DAS-8PGA-02

DAS-8/AO

DAS-16 Series| 1 MHz or 10 MHz

DAS-20 5 MHz

DAS-40 Series| 4 MHz

DAS-HRES 1 MHz, 8 MHz, or 10 MH%
DDA-06 Not applicabl%
Series 500 1 MHz

Available Operations

Table 2-2. Time Bases (cont.)

Board Time Base

PIO Series Not applicatle

PDMA Series | 10 MHz

Notes

1Specified in the External DAS Driver configuration.
2DDA-06 and P10 Series boards do not support an internal
pacer clock.

Use theK_SetCIkRate function to specify the number of counts

(clock ticks) between conversions. For example, if you are using a
DAS-8PGA board (1 MHz time base), each count represents 1.0 ps. If
you specify a count of 30, the period between conversionsyis 30
(33.33 ksamples/s).

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

time base

counts= ———————
conversiorrate

For example, if you want a conversion rate of 10 ksamples/s on a
DAS-8PGA board, specify a count of 100, as shown in the following
equation:

1, 000 000 _
10, 000 100

The internal pacer clock is the default pacer clock.

External pacer clock- You connect an external pacer clock to the
appropriate pin on the main I/O connector.

When you start an analog input operation (u¥n&yncStart,

K_IntStart , orK_DMAStart), conversions are armed. At the next
active edge of the external pacer clock (and at every subsequent active
edge of the external pacer clock), a conversion is initiated.

Refer to your DAS board’s user’s guide to determine which edge
(positive or negative) is the active edge supported for your board.

2-13

Notes: Make sure that the pacer clock initiates conversions at a rate that
the analog-to-digital converter (ADC) can handle.

The rate at which the computer can reliably read data from the board
depends on a number of factors, including your computer, the operating
system/environment, the gains of the channels, and other software issues.

Buffering Modes

The buffering mode determines how the driver stores the converted data
in the buffer. For interrupt-mode and DMA-mode analog input
operations, you can specify one of the following buffering modes:

. Single-cycle mode In single-cycle mode, after the board converts
the specified number of samples and stores them in the buffer, the
operation stops automatically. Single-cycle mode is the default
buffering mode.

. Continuous mode- In continuous mode, the board continuously
converts samples and stores them in the buffer until it receives a stop
function; any values already stored in the buffer are overwritten. Use
theK_SetContRun function to specify continuous buffering mode.

Note: Buffering modes are not meaningful for synchronous-mode
operations.

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, use the_SetTrig function to specify one of the following
trigger sources:

. Internal trigger - Aninternal trigger is a software trigger. The trigger
event occurs immediately after you start the analog input operation
(usingK_SyncStart, K_IntStart , or K_DMAStart). The point at
which conversions begin depends on the pacer clock; refer to page
2-12 for more information. The internal trigger is the default trigger
source.

2-14 Available Operations

Analog Trigger

External trigger - When you start the analog input operation (using
K_SyncStart, K_IntStart or K_DMAStart), the application

program waits until an external trigger event occurs. For Series 500
boards, the external trigger is an analog trigger; for DAS-8 Series,
DAS-16 Series, DAS-20, DAS-40 Series, and DAS-HRES boards, the
external trigger is a digital trigger. The point at which conversions
begin depends on the pacer clock; refer to page 2-12 for more
information.

Note: DDA-06 and PIO Series boards do not support an external
trigger.

Analog and digital triggers are described in the following sections.

Only Series 500 boards support an external analog trigger. An analog
trigger event occurs when a particular condition is met by the analog
input signal on a specified analog trigger channel. UsK tisetADTrig
function to specify the following:

Analog input channel to use as the trigger channel.

Voltage level. You specify the voltage level as a count value between
0 and 8191, where 0 represent® V and 8191 represents +10 V.

Trigger polarity and sensitivity. Depending on your board, the trigger
event occurs when one of the following conditions is met:

— Positive-edge trigger- The analog input signal rises above the
specified voltage level.

— Negative-edge trigger The analog input signal falls below the
specified voltage level.

Figure 2-2 illustrates these analog trigger conditions, where the
specified voltage level is +5 V.

2-15

| Positive-edge trigger occurs
N Negative-edge
| /trigger occurs
|
Level +5V t 44 4% -—--—-—-—-—-—-—-—— EA---—-\¢p-- - - ——— -
I
|
|
ov :
| _,//
, Y S
|
I
\Analog input operation
start function is executed
Figure 2-2. Analog Trigger Conditions
Digital Trigger

2-16

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, and DAS-HRES
boards support an external digital trigger. A digital trigger event occurs
when a particular condition is met by the digital trigger signal, which is
connected to the appropriate pin on the main I/O connector. Depending
on your board, the trigger event occurs when one of the following
conditions is met:

Positive-edge trigger- A rising edge occurs on the digital trigger
signal.

Negative-edge trigger A falling edge occurs on the digital trigger
signal.

Positive-level trigger- The digital trigger signal is high.

Negative-level trigger- The digital trigger signal is low.

Refer to your board’s user’s guide and External DAS Driver user’s guide
for information about the digital trigger conditions supported for your
board.

Available Operations

Analog Output Operations

This section describes the following:
. Analog output operation modes available.
. How to allocate and manage memory for analog output operations.
. How to specify the following for an analog output operation:
— Channel
— Clock source
— Buffering mode
— Digital trigger condition

Operation Modes

The operation mode determines which attributes you can specify for an
analog output operation. You can perform analog output operations in one
of the following modes:

. Single mode- In single mode, the driver writes a single value to an
analog output channel; you cannot perform any other operation until
the single-mode operation is complete.

Use theK_DAWrite function to start an analog output operation in
single mode. You specify the board you want to use, the analog output
channel, and the value you want to write.

. Synchronous mode In synchronous mode, the driver writes a single
value or multiple values to an analog output channel. A hardware
pacer clock paces the updating of the channel. You cannot perform
any other operation until the synchronous-mode operation is
complete. After the driver writes the specified number of values, the
driver returns control to the application program.

Use theK_SyncStart function to start an analog output operation in
synchronous mode.

. Interrupt mode - In interrupt mode, the driver writes a single value
or multiple values to an analog output channel. A hardware clock
paces the updating of the channel. Once the analog output operation
begins, control returns to your application program.

2-17

Use theK_IntStart function to start an analog output operation in
interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-23 for more information
on buffering modes. Use tliee IntStop function to stop a
continuous-mode interrupt operation. Use khéntStatus function

to determine the current status of an interrupt operation.

DMA mode - In DMA mode, the driver writes a single value or
multiple values to an analog output channel. A hardware clock paces
the updating of the channel. Once the analog output operation begins,
control returns to your application program. DMA mode provides the
fastest data transfer rates.

Use theK_DMAStart function to start an analog output operation in
DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-23 for more information on
buffering modes. Use tH€ DMAStop function to stop a
continuous-mode DMA operation. Use tkeDMAStatus function

to determine the current status of a DMA operation.

For an analog output operation, the values are written as counts. For
information on converting voltage to counts, refer to Appendix B.

Memory Allocation and Management

2-18

Interrupt-mode and DMA-mode analog output operations use one or two

memory buffers to store acquired data; synchronous-mode analog output
operations use one memory buffer to store acquired data. (You can use
two memory buffers if your External DAS Driver supports double

buffering; the driver automatically switches from the primary buffer to the

secondary buffer when the primary buffer is empty.)

Note: It is recommended that you always use a single memory buffer,
particularly for analog output operations faster than 1 kHz.

Available Operations

Use one of the following functions to allocate memory:
. K_SyncAlloc for synchronous-mode or interrupt-mode operations.
. DASDLL_DMAAIloc for DMA-mode operations.

You specify the following:
. Operation requiring the memory buffer.

« Number of samples to store in the memory buffer (up to 32,767).

The driver returns the starting address of the memory buffer and a unique
identifier for the buffer (this identifier is called the memory handle).

When the memory buffer is no longer required, you can free the buffer for
another use by specifying the memory handle in one of the following
functions:

. K _SyncFreefor synchronous-mode or interrupt-mode operations.
. DASDLL_DMAFree for DMA-mode operations.

If you are using two memory buffers, you can work on data in the inactive
buffer while the active buffer continues to collect data. To determine the
active buffer, use thkK_IntStatus function (for interrupt mode) or the
K_DMAStatus function (for DMA mode). Depending on the speed of
your operation and the particular board you are using, data may be lost
when the driver switches from one memory buffer to the other. To
determine whether any data has been lost, udé thStatus function

(for interrupt mode) or th&_DMAStatus function (for DMA mode).

If you are using a group of analog output channels, when you start the
analog output operation (usiikg SyncStart, K_IntStart , or

K_DMAStart), the driver simultaneously writes one value to each
channel in the group. The driver writes the first value in the memory
buffer to the first channel, the second value in the buffer to the second
channel, the third value in the buffer to the third channel, and so on. To
ensure predictable results, make sure that the number of values stored in
the memory buffer is an even multiple of the number of channels in the

group.

2-19

Channels

2-20

Notes: For synchronous-mode and interrupt-mode operations, memory
is allocated from the first LMB of DOS memory only; therefore, the
amount of memory you can allocate may be limited.

For DAS-20 boards that run in DMA mode, it is recommended that you
use the Keithley Memory Manager before you begin programming to
ensure that you can allocate large enough memory buffers. Refer to
Appendix D for more information about the Keithley Memory Manager.

To eliminate page wrap conditions and to guarantee that memory is
suitable for use by the computer’s control@ASDLL_DMAAIlloc may
allocate an area twice as large as actually needed. Once the data in this
buffer is processed and/or saved elsewhereDASDLL DMAFree to

free the memory for other uses.

For Visual Basic for Windows, the program cannot transfer data directly
to the memory buffer. You must use theMoveArrayToBuf function to
move the data from the program’s local array to the memory buffer; refer
to page 4-79 for more information.

After you allocate your memory buffers, you must assign the starting
address of the buffers and the number of samples stored in the buffers.
Each supported programming language requires a particular procedure
for allocating a buffer. Refer to the following for information:

Visual C++ page 3-30

Visual Basic for Windows | page 3-34

DASDLL-supported boards that perform analog output operations
contain one or more digital-to-analog converters (DACs). Each DAC is
associated with an analog output channel. You can perform the analog
output operation on a single channel or on a group of multiple channels.
The following subsections describe how to specify the channels you are
using.

Available Operations

Single Channel

For single-mode analog output operations, you can write a single value to
a single analog output channel. Use kh®AWrite function to specify
the channel.

For synchronous-mode, interrupt-mode, and DMA-mode analog output
operations, you can write a single value or multiple values to a single
analog output channel. Use tkkeSetChn function to specify the

channel. At each pulse of the pacer clock, the driver updates all the analog
output channels and then writes a new value to the specified channel only.

Multiple Channels

Pacer Clock

For synchronous-mode, interrupt-mode, and DMA-mode analog output
operations, you can write a single value or multiple values to a group of
consecutive analog output channels. UsekthBetStartStopChn

function to specify the first and last channels in the group. At each pulse
of the pacer clock, the driver updates all the analog output channels and
then writes new values to the channels in the group only.

For example, assume that the start channel is 0, the stop channel is 1, and
your array contains two waveforms (0, 4095, 1, 4094, 2, 4093, . . 4095,

0). At the first pulse of the pacer clock, the driver updates all the analog
output channels and then simultaneously writes 0 to channel 0 and 4095
to channel 1; at the next pulse of the pacer clock, the driver updates all the
analog output channels and then simultaneously writes 1 to channel 0 and
4094 to channel 1.

The pacer clock determines the period between updates of an analog
output channel. For synchronous-mode, interrupt-mode, or DMA-mode
analog output operations, use #eSetClk function to specify one of the
following pacer clocks:

. Internal pacer clock - The internal pacer clock uses an onboard
counter. You load a value into the counter to determine the period
between updates. Depending on the time base of the counter, each
count represents a particular time period. Refer to Table 2-2 on page
2-12 for a list of the time bases available on DASDLL-supported
boards.

2-21

Use theK_SetCIlkRate function to specify the number of counts
(clock ticks) between updates. For example, if you are using a
DAS-8/A0 board (1 MHz time base), each count represents 1.0 ps. If
you specify a count of 30, the period between updatesiis 30

(33.33 ksamples/s).

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

time base

counts = ————
update rate

For example, if you want an update rate of 10 ksamples/s on a
DAS-8/A0 hoard, specify a count of 100, as shown in the following
equation:

1, 00Q 000 _
10, 000 100

The internal pacer clock is the default pacer clock.

. External pacer clock- You connect an external pacer clock to the
appropriate pin on the main 1/O connector.

When you start an analog output operation (ugin§yncStart,

K_IntStart , orK_DMAStart), conversions are armed. At the next
active edge of the external pacer clock (and at every subsequent active
edge of the external pacer clock), the analog output channel is
updated.

Refer to your DAS board’s user’s guide to determine which edge
(positive or negative) is the active edge supported for your board.

2-22 Available Operations

Notes: At each pulse of the pacer clock, the driver updates all the analog
output channels on the board and then writes new values to the channels
specified inK_SetChn or K_SetStartStopChnonly.

You cannot use the internal pacer clock or the external pacer clock for
analog output operations if the clock is being used by another operation.

The actual update rate also depends on other factors, including your
computer, the operating system/environment, and other software issues.

Buffering Modes

The buffering mode determines how the driver writes the values in the
host buffer to the analog output channel. For interrupt-mode and
DMA-mode analog output operations, you can specify one of the
following buffering modes:

. Single-cycle mode In single-cycle mode, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

. Continuous mode - In continuous mode, the driver continuously
writes values from the buffer until the application program issues a
stop function; when all the values in the buffer have been written, the
driver writes the values again. Use #eSetContRun function to
specify continuous buffering mode.

Note: Buffering modes are not meaningful for synchronous-mode
operations.

2-23

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode, interrupt-mode, and DMA-mode analog output
operations, use the_SetTrig function to specify one of the following

trigger sources:

. Internal trigger - Aninternal trigger is a software trigger. The trigger
event occurs immediately after you start the analog output operation
(usingK_SyncStart, K_IntStart, or K_DMAStart). The point at
which the channel is updated depends on the pacer clock; refer to
page 2-21 for more information. The internal trigger is the default
trigger source.

. External trigger - DAS-8/A0O, DAS-16 Series, DAS-20, DAS-40
Series, and DAS-HRES boards support an external trigger. An
external trigger is a digital trigger signal connected to the appropriate
pin on the main I/O connector. When you start the analog output
operation (usindg<_SyncStart, K_IntStart , or K_DMAStart), the
application program waits until the trigger event occurs. Depending
on your board, the trigger event occurs when one of the following
conditions is met:

— Positive-edge trigger- A rising edge occurs on the digital trigger
signal.

— Negative-edge trigger- A falling edge occurs on the digital
trigger signal.

— Positive-level trigger- The digital trigger signal is high.
— Negative-level trigger- The digital trigger signal is low.
Refer to your board’s user’s guide and External DAS Driver user’s guide

for information about the digital trigger conditions supported for your
board.

The point at which updates begin depends on the pacer clock; refer to
page 2-21 for more information.

2-24 Available Operations

Digital 1/0 Operations

This section describes the following:

Operation Modes

Digital 1/0 operation modes available.

How to allocate and manage memory for digital I/O operations.
Digital I/0 channels.

How to specify the following for a digital 1/O operation:

— Clock source

— Buffering mode

— Digital trigger condition

The operation mode determines which attributes you can specify for a
digital I/O operation. You can perform digital I/O operations in one of the
following modes:

Single mode- In a single-mode digital input operation, the driver
reads the value of a digital input channel once; in a single-mode
digital output operation, the driver writes a value to a digital output
channel once. You cannot perform any other operation until the
single-mode operation is complete.

Use theK_DIRead function to start a digital input operation in single
mode; you specify the board you want to use, the digital input
channel, and the variable in which to store the value. Use the
K_DOWrite function to start a digital output operation in single
mode; you specify the board you want to use, the digital output
channel, and the digital output value.

2-25

2-26

Synchronous mode- In a synchronous-mode digital input operation,
the driver reads the value of a digital input channel multiple times; in
a synchronous-mode digital output operation, the driver writes a
single value or multiple values to a digital output channel multiple
times. A hardware pacer clock paces the digital /O operation. You
cannot perform any other operation until the synchronous-mode
operation is complete.

Use theK_SyncStart function to start a digital I/O operation in
synchronous mode.

Interrupt mode - In an interrupt-mode digital input operation, the
driver reads the value of a digital input channel multiple times; in an
interrupt-mode digital output operation, the driver writes a single
value or multiple values to a digital output channel multiple times.

A hardware clock paces the digital /0 operation. Once the digital I/O
operation begins, control returns to your application program.

Use theK_IntStart function to start a digital I/0O operation in
interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-31 for more information
on buffering modes. Use tle IntStop function to stop a
continuous-mode interrupt operation. Use khéntStatus function

to determine the current status of an interrupt operation.

DMA mode - In a DMA-mode digital input operation, the driver
reads the value of a digital input channel multiple times; in a
DMA-mode digital output operation, the driver writes a single value
or multiple values to a digital output channel multiple times.

A hardware clock paces the digital /0 operation. Once the digital I/O
operation begins, control returns to your application program. DMA
mode provides the fastest data transfer rates.

Use theK_DMAStart function to start a digital I/O operation in
DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-31 for more information on
buffering modes. Use tH€ DMAStop function to stop a
continuous-mode DMA operation. Use tkeDMAStatus function

to determine the current status of a DMA operation.

Available Operations

Memory Allocation and Management

Interrupt-mode and DMA-mode digital I/O operations use one or two
memory buffers to store the data to be read or written; synchronous-mode
digital I/O operations use one memory buffer to store the data to be read
or written. (You can use two memory buffers if your External DAS Driver
supports double buffering; the driver automatically switches from the
primary buffer to the secondary buffer when the primary buffer is full or

empty.)

Note: It is recommended that you always use a single memory buffer,
particularly for digital I/0O operations faster than 1 kHz.

Use one of the following functions to allocate memory:
. K _SyncAlloc for synchronous-mode or interrupt-mode operations.
. DASDLL_DMAAlloc for DMA-mode operations.

You specify the following:
. Operation requiring the memory buffer.

. Number of samples to store in the memory buffer (up to 32,767).

The driver returns the starting address of the memory buffer and a unique
identifier for the buffer (this identifier is called the memory handle).

When the memory buffer is no longer required, you can free the buffer for
another use by specifying the memory handle in one of the following
functions:

. K_SyncFreefor synchronous-mode or interrupt-mode operations.
. DASDLL DMAFree for DMA-mode operations.

If you are using two memory buffers, you can work on data in the inactive
buffer while the active buffer continues to collect data. To determine the
active buffer, use thk_IntStatus function (for interrupt mode) or the
K_DMAStatus function (for DMA mode). Depending on the speed of
your operation and the particular board you are using, data may be lost
when the driver switches from one memory buffer to the other. To
determine whether any data has been lost, udé thdStatus function

(for interrupt mode) or th&_DMAStatus function (for DMA mode).

2-27

Channels

2-28

Notes: For synchronous-mode and interrupt-mode operations, memory
is allocated from the first LMB of DOS memory only; therefore, the
amount of memory you can allocate may be limited.

To eliminate page wrap conditions and to guarantee that memory is
suitable for use by the computer’s controlASDLL_DMAAIlloc may
allocate an area twice as large as actually needed. Once the data in this
buffer is processed and/or saved elsewhereDASDLL_DMAFree to

free the memory for other uses.

For Visual Basic for Windows, the data in the memaory buffer is not
directly accessible by your program. For digital input operations, you
must use th& _MoveBufToArray function to move the data from the
memory buffer to the program’s local array; refer to page 4-81 for more
information. For digital output operations, you must use the
K_MoveArrayToBuf function to move the data from the program’s local
array to the memory buffer; refer to page 4-79 for more information.

After you allocate your memory buffers, you must assign the starting
address of the buffers and the number of samples stored in the buffers.
Each supported programming language requires a particular procedure
for allocating a buffer. Refer to the following for information:

Visual C++ page 3-30

Visual Basic for Windows | page 3-34

You can read values from or write values to one or more of the digital I/O
lines on your board. Refer to your board’s user’s guide and External DAS
Driver user’s guide for information about the number of digital 1/O lines
available on your board.

For Series 500 boards, the DASDLL Function Call Driver treats each
8-bit digital input port or 8-bit digital output port as a separate channel.

Available Operations

For DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
DDA-06, PIO Series, and PDMA Series boards, the DASDLL Function
Call Driver supports one digital input channel and one digital output
channel. When specifying your digital /0O ports in the External DAS
Driver configuration, you must make sure that all the digital I/O lines can
be accommodated on a single channel. For example, if you want to use all
24 bits on a P10-12 board for digital output, you must configure a single
24-bit channel. You cannot configure three 8-bit channels.

For single-mode digital I/O operations, use khéIRead function to
specify a single digital input channel; U6eDOWrite to specify a single
digital output channel. For synchronous-mode, interrupt-mode, and
DMA-mode digital I/O operations, use tKe SetChn function to specify
a single digital I/O channel or thé SetStartStopChnfunction to
specify multiple digital 1/O channels.

Each bit in a digital I/O channel corresponds to one of the digital I/O lines
on the board. The bits can be configured as digital inputs or digital
outputs. A value of 1 in a bit position indicates that the input or output is
high; a value of 0 in a bit position indicates that the input or output is low.
If no signal is connected to a digital input line, the input appears high
(value is 1).

Notes: On some DASDLL-supported boards, a digital I/O line may also
be used for another purpose, such as an external trigger. In these cases,
you cannot use the digital 1/O line for general-purpose digital I/O
operations.

2-29

Pacer Clock

2-30

The pacer clock determines the period between reading the digital input
channel or writing to the digital output channel. For synchronous-mode,
interrupt-mode, and DMA-mode digital I/O operations, us&thg8etClk
function to specify one of the following pacer clocks:

Internal pacer clock - The internal pacer clock uses an onboard
counter. You load a value into the counter to determine the period
between reads/writes. Depending on the time base of the counter,
each count represents a particular time period. Refer to Table 2-2 on
page 2-12 for a list of the time bases available on DASDLL-supported
boards.

Use theK_SetClkRate function to specify the number of counts

(clock ticks) between reads/writes. For example, if you are using a
DAS-8PGA board (1 MHz time base), each count represents 1.0 ps. If
you specify a count of 30, the period between reads/writesyis 30
(33.33 ksamples/s).

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

time base

counts= ——————
read/write rate

For example, if you want a read/write rate of 10 ksamples/s on a
DAS-8/A0 board, specify a count of 100, as shown in the following
equation:

1, 00Q 000 _
10, 000 100

The internal pacer clock is the default pacer clock.

External pacer clock- You connect an external pacer clock to the
appropriate pin on the main I/O connector.

When you start a digital 1/0O operation (usikgSyncStart,

K_IntStart , orK_DMAStart), conversions are armed. At the next
active edge of the external pacer clock (and at every subsequent active
edge of the external pacer clock), a conversion is initiated. Refer to
your board’s user’s guide to determine which edge (positive or
negative) is the active edge supported for your board.

Available Operations

Notes: You cannot use the internal pacer clock or the external pacer
clock for digital 1/0O operations if the clock is being used by another
operation.

The actual read/write rate also depends on other factors, including your
computer, the operating system/environment, and other software issues.

Buffering Modes

The buffering mode determines how the driver reads or writes the values
in the buffer. For interrupt-mode and DMA-mode digital I/O operations,
you can specify one of the following buffering modes:

Single-cycle mode In a single-cycle-mode digital input operation,
after the driver fills the buffer, the operation stops automatically. In a
single-cycle-mode digital output operation, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

Continuous mode- In a continuous-mode digital input operation, the
driver continuously reads a digital input channel and stores the values
in the buffer until the application program issues a stop function; any
values already stored in the buffer are overwritten. In a continuous
mode digital output operation, the driver continuously writes values
from the buffer to a digital output channel until the application
program issues a stop function; when all the values in the buffer have
been written, the driver writes the values again. You use the
K_SetContRun function to specify continuous buffering mode.

Note: Buffering modes are not meaningful for synchronous-mode
operations.

2-31

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode and interrupt-mode digital I/O operations, use the
K_SetTrig function to specify one of the following trigger sources:

. Internal trigger - An internal trigger is a software trigger. The trigger
event occurs immediately after you start the digital I/O operation
(usingK_SyncStart or K_IntStart). The point at which a value is
read or written depends on the pacer clock; refer to page 2-30 for
more information. The internal trigger is the default trigger source.

. External trigger - DAS-8 Series, DAS-16 Series, DAS-20, and
DAS-HRES boards support an external trigger. An external trigger is
a digital trigger signal connected to the appropriate pin on the main
I/O connector. When you start the digital I/O (usiagSyncStart,
K_IntStart , orK_DMAStart), the application program waits until
the trigger event occurs. Depending on your board, the trigger event
occurs when one of the following conditions is met:

— Positive-edge trigger- A rising edge occurs on the digital trigger
signal.

— Negative-edge trigger A falling edge occurs on the digital
trigger signal.

— Positive-level trigger- The digital trigger signal is high.
— Negative-level trigger- The digital trigger signal is low.
Refer to your board’s user’s guide and External DAS Driver user’s guide

for information about the digital trigger conditions supported for your
board.

The point at which updates begin depends on the pacer clock; refer to
page 2-30 for more information.

2-32 Available Operations

3

Programming with the
Function Call Driver

This chapter contains an overview of the structure of the Function Call
Driver, as well as programming guidelines and language-specific

information to assist you when writing application programs with the
Function Call Driver.

How the Driver Works

The Function Call Driver allows you to perform 1/O operations in various
operation modes. For single mode, the 1/O operation is performed with a
single call to a function; the attributes of the 1/O operation are specified as
arguments to the function. Figure 3-1 illustrates the syntax of the
single-mode, analog input operation functtbnrADRead.

Single-Mode Function Attrib utes of Operation

K_ADRead (board, Board number

channel, X Analog input channel

gain, <« > Gain applied to channel

buffer) <— > Buffer for data

Figure 3-1. Single-Mode Function

3-2

For other operation modes, such as synchronous mode, interrupt mode,
and DMA mode, the driver uses frames to perform the I/O operation. A
frame is a data structure whose elements define the attributes of the 1/0
operation. Each frame is associated with a particular board.

Frames help you create structured application programs. You set up the
attributes of the 1/0O operation in advance, using a separate function call
for each attribute, and then start the operation at an appropriate point in
your program.

Frames are useful for operations that have many defining attributes, since
providing a separate argument for each attribute could make a function’s

argument list unmanageably long. In addition, some attributes, such as the
clock source and trigger source, are only available for I/O operations that

use frames.

You indicate that you want to perform an I/O operation by getting an
available frame for the driver. The driver returns a unique identifier for the
frame; this identifier is called the frame handle. You then specify the
attributes of the I/O operation by using setup functions to define the
elements of the frame associated with the operation. For example, to
specify the channel on which to perform an 1/0O operation, you might use
theK_SetChn setup function.

For each setup function, the Function Call Driver provides a readback
function, which reads the current definition of a particular element. For
example, th&K_GetChn readback function reads the channel number
specified for the 1/0O operation.

You use the frame handle you specified when accessing the frame in all
setup functions, readback functions, and other functions related to the 1/0O
operation. This ensures that you are defining the same 1/O operation.

When you are ready to perform the I/O operation you have set up, you can
start the operation in the appropriate operation mode, referencing the
appropriate frame handle. Figure 3-2 illustrates the syntax of the
interrupt-mode operation functid&_IntStart .

Programming with the Function Call Driver

K_IntStart (frameHandle)

|

Frame Attrib utes of Operation
Start Channel <————> First analog input channel
Stop Channel < Last analog input channel
Clock Source < Pacer clock source
Trigger Source D Trigger source

Figure 3-2. Interrupt-Mode Operation

Different 1/0O operations require different types of frames. For example, to
perform a digital input operation, you use a digital input frame; to
perform an analog output operation, you use an analog output frame.

For DASDLL-supported boards, synchronous-mode, interrupt-mode, and
DMA-mode operations require frames. The DASDLL Function Call
Driver provides the following types of frames:

Analog input frames, called A/D (analog-to-digital) frames. You use
theK_GetADFrame function to access an available A/D frame and a
frame handle.

Analog output frames, called D/A (digital-to-analog) frames. You use
theK_GetDAFrame function to access an available D/A frame and a
frame handle.

Digital input frames, called DI frames. You use KeGetDIFrame
function to access an available DI frame and a frame handle.

Digital output frames, called DO frames. You use the
K_GetDOFrame function to access an available DO frame and a
frame handle.

3-3

If you want to perform a synchronous-mode, interrupt-mode, or
DMA-mode operation and all frames of a particular type have been
accessed, you can use teFreeFrame function to free a frame that is

no longer in use. You can then redefine the elements of the frame for the
next operation.

When you access a frame, the elements are set to their default values. You
can also use th¢_ClearFrame function to reset all the elements of a
frame to their default values.

For DASDLL-supported boards, the elements for each specific frame type
are listed as follows:

. A/D frame elements - Table 3-1.

. DI/A frame elements - Table 3-2 on page 3-6.

. DI frame elements - Table 3-3 on page 3-7.

. DO frame elements - Table 3-4 on page 3-8.

These tables also list the default values of each element, the setup

functions used to define each element, and the readback functions used to
read the current definition of the element.

Table 3-1. A/D Frame Elements

Element Default Value Setup Function Readback Function

Buffert 0 (NULL) K_SetBuf K_GetBuf
K_SetBufB K_GetBufB
K_SetDMABuUf
K_SetDMABuUfB

Number of 0 K_SetBuf K_GetBuf

Samples K_SetBufB K_GetBufB
K_SetDMABuUf
K_SetDMABUfB

Buffering Mode | Single-cycle K_SetContRun K_GetContRun
K_ClIrContRurf

Start Channel 0 K_SetChn K_GetChn
K_SetStartStopChn K_GetStartStopChn
K_SetStartStopG K_GetStartStopG

3-4

Programming with the Function Call Driver

Table 3-1. A/D Frame Elements (cont.)

Element Default Value Setup Function Readback Function
Stop Channel 0 K_SetStartStopChn K_GetStartStopChn
K_SetStartStopG K_GetStartStopG
Gain 0 K_SetG K_GetG
K_SetStartStopG K_GetStartStopG
Channel-Gain 0 (NULL) K_SetChnGAry K_GetChnGAry
Queue
Clock Source Internal K_SetClk K_GetClk
Pacer Clock Rafe 0 K_SetClkRate K_GetClkRate
Trigger Source | Internal K_SetTrig K_GetTrig
Trigger Type Digital K_SetADTrig K_GetADTrig
K_SetDITrig K_GetDITrig
Trigger Channel | O (for analog trigger| K_SetADTrig K_GetADTrig
0 (for digital trigger)| K_SetDITrig K_GetDITrig
Trigger Polarity | Positive edge (for | K_SetADTrig K_GetADTrig
and Sensitivity | analog trigger)
Positive edge (for | K_SetDITrig K_GetDITrig
digital trigger)
Trigger Level 0 K_SetADTrig K_GetADTrig
Trigger 0 K_SetTrigHyst K_GetTrigHyst
Hysteresis
Notes

1 This element must be set.
2 Use this function to reset the value of this particular frame element to its default setting without

clearing the frame or getting a new frame. Whenever you clear a frame or get a new frame, this frame

element is set to its default value automatically.

3-5

Table 3-2. D/A Frame Elements

Element Default Value Setup Function Readback Function
Buffert 0 (NULL) K_SetBuf K_GetBuf
K_SetBufB K_GetBufB
K_SetDMABuUf
K_SetDMABUfB
Number of Sampleg 0 K_SetBuf K_GetBuf
K_SetBufB K_GetBufB
K_SetDMABuUf
K_SetDMABUfB
Buffering Mode Single-cycle K_SetContRun K_GetContRun
K_ClrContRurf
Start Channel 0 K_SetChn K_GetChn
K_SetStartStopChn| K_GetStartStopChn
Stop Channel 0 K_SetStartStopChph K_GetStartStopChn
Clock Source Internal K_SetClIk K_GetClIk
Pacer Clock Rafe |0 K_SetClkRate K_GetClkRate
Trigger Source Internal K_SetTrig K_GetTrig
Trigger Type Digital K_SetDITrig K_GetDITrig
Trigger Channel 0 (for digital K_SetDITrig K_GetDITrig
trigger)
Trigger Polarity and Positive edge K_SetDITrig K_GetDITrig
Sensitivity
Notes

1This element must be set.

2 Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

Programming with the Function Call Driver

Table 3-3. DI Frame Elements

Element Default Value Setup Function Readback Function

Buffert 0 (NULL) K_SetBuf K_GetBuf
K_SetBufB K_GetBufB
K_SetDMABuUf
K_SetDMABUfB

Number of Sampleg 0 K_SetBuf K_GetBuf
K_SetBufB K_GetBufB

K_SetDMABuUf
K_SetDMABUfB

Buffering Mode Single-cycle K_SetContRun K_GetContRun
K_ClrContRurf

Start Channel 0 K_SetChn K_GetChn
K_SetStartStopChn| K_GetStartStopChn

Stop Channel 0 K_SetStartStopChph K_GetStartStopChn

Clock Source Internal K_SetClIk K_GetClIk

Pacer Clock Rafe |0 K_SetClkRate K_GetClkRate

Trigger Source Internal K_SetTrig K_GetTrig

Trigger Type Digital K_SetDITrig K_GetDITrig

Trigger Channel 0 (for digital K_SetDITrig K_GetDITrig

trigger)

Trigger Polarity and Positive edge K_SetDITrig K_GetDITrig

Sensitivity

Notes

L This element must be set.
2 Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

3-7

Table 3-4. DO Frame Elements

Element Default Value Setup Function Readback Function
Buffert 0 (NULL) K_SetBuf K_GetBuf
K_SetBufB K_GetBufB

K_SetDMABuUf
K_SetDMABuUfB

Number of Sampleg 0 K_SetBuf K_GetBuf
K_SetBufB
K_SetDMABuf
K_SetDMABuUfB

Buffering Mode Single-cycle K_SetContRun K_GetContRun
K_ClrContRurf

Start Channel 0 K_SetChn K_GetChn
K_SetStartStopChn| K_GetStartStopChn

Stop Channel 0 K_SetStartStopChph K_GetStartStopChn

Clock Source Internal K_SetClIk K_GetClIk

Pacer Clock Rafe |0 K_SetClkRate K_GetClkRate

Trigger Source Internal K_SetTrig K_GetTrig

Trigger Type Digital K_SetDITrig K_GetDITrig

Trigger Polarity and Positive edge | K_SetDITrig K_GetDITrig

Sensitivity

Notes

L This element must be set.

2 Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

Note: The DASDLL Function Call Driver provides many other functions
that are not related to controlling frames, defining the elements of frames,
or reading the values of frame elements. These functions include
single-mode operation functions, initialization functions, memory
management functions, and miscellaneous functions.

3-8 Programming with the Function Call Driver

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4.

Programming Overview

To write an application program using the DASDLL Function Call Driver,
perform the following steps:

1.

Define the application's requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation.

Write your application program. Refer to the following for additional
information:

— Preliminary Tasks, the next section, describes the programming
tasks that are common to all application programs.

— Operation-Specific Programming Tasks, on page 3-10, describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

— Chapter 4 contains detailed descriptions of the FCD functions.

— The DASDLL software package contains several example
programs. The FILES.TXT file in the installation directory lists
and describes the example programs.

Compile and link the program. Refer to Language-Specific
Programming Information, starting on page 3-29, for compile and
link statements and other language-specific considerations for each
supported language.

3-9

Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1. Include the function and variable type definition file for your
language. This file is included in the DASDLL software package.

Declare and initialize program variables.
Use thek_DevOpenfunction to initialize the driver.

Use theK_GetDevHandle function to specify the board you want to
use and to initialize the board. If you are using more than one board,
use theK_GetDevHandle function once for each board you are
using.

Operation-Specific Programming Tasks

After completing the preliminary tasks, perform the appropriate
operation-specific programming tasks. The operation-specific tasks for
analog and digital I/0 operations are described in the following sections.

Note: Any FCD functions that are not mentioned in the
operation-specific programming tasks can be used at any point in your
application program.

Analog Input Operations
The following subsections describe the operation-specific programming

tasks required to perform single-mode, synchronous-mode,
interrupt-mode, and DMA-mode analog input operations.

3-10 Programming with the Function Call Driver

Single Mode

For a single-mode analog input operation, perform the following tasks:

1.

Synchronous Mode

Declare the buffer or variable in which to store the single analog input
value.

Use theK_ADRead function to read the single analog input value;
specify the attributes of the operation as arguments to the function.

For a synchronous-mode analog input operation, perform the following
tasks:

1.
2.

Use theK_GetADFrame function to access an A/D frame.

Use thek_SyncAlloc function to allocate the buffers in which to
store the acquired data.

If you want to use a channel-gain queue to specify the channels
acquiring data define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-11 for more information
about channel-gain queues.

Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-5.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list
of the default values of A/D frame elements.

3-11

Table 3-5. Setup Functions for Synchronous-Mode
Analog Input Operations

Attribute Setup Functions
Buffert K_SetBuf
K_SetBufB
Number of Samples K_SetBuf
K_SetBufB
Start Channel K_SetChn

K_SetStartStopChn
K_StartStopG

Stop Channel K_SetStartStopChn
K_SetStartStopG
Gain K_SetG

K_SetStartStopG
Channel-Gain Queue | K_SetChnGAry

Clock Source K_SetClk
Pacer Clock Rafe K_SetClkRate
Trigger Source K_SetTrig
Trigger Type K_SetADTrig

K_SetDITrig
Trigger Channel K_SetADTrig

K_SetDITrig
Trigger Polarity and K_SetADTrig
Sensitivity K_SetDITrig
Trigger Level K_SetADTrig
Trigger Hysteresis K_SetTrigHyst
Notes

1This element must be set.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

3-12 Programming with the Function Call Driver

Interrupt Mode

Use theK_SyncStart function to start the synchronous-mode
operation.

If you are programming in Visual Basic for Windowse the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to the program’s local array.

Use theK_SyncFreefunction to deallocate the buffers.

Use theK_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

For an interrupt-mode analog input operation, perform the following

tasks:

1. Use th&K _GetADFrame function to access an A/D frame.

2. Use theK_SyncAlloc function to allocate the buffers in which to
store the acquired data.

3. If you want to use a channel-gain queue to specify the channels
acquiring data define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-11 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the

operation. The setup functions are listed in Table 3-6.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list
of the default values of A/D frame elements.

3-13

Table 3-6. Setup Functions for Interrupt-Mode

Analog Input Operations

Attribute Setup Functions

Buffert K_SetBuf
K_SetBufB

Number of Samples K_SetBuf
K_SetBufB

Buffering Mode

K_SetContRun
K_ClrContRurf

Start Channel

K_SetChn
K_SetStartStopChn
K_StartStopG

Stop Channel

K_SetStartStopChn
K_SetStartStopG

Gain

K_SetG
K_SetStartStop

Channel-Gain Queue

K_SetChnGAry

Clock Source

K_SetClk

Pacer Clock Rafe

K_SetClkRate

Trigger Source K_SetTrig
Trigger Type K_SetADTrig
K_SetDITrig
Trigger Channel K_SetADTrig
K_SetDITrig
Trigger Polarity and K_SetADTrig
Sensitivity K_SetDITrig
Trigger Level K_SetADTrig

Trigger Hysteresis

K_SetTrigHyst

Notes

L This element must be set.

2 Use this function to reset the value of this particular
frame element to its default setting without clearing
the frame or getting a new frame.

3-14 Programming with the Function Call Driver

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

5. Use theK_IntStart function to start the interrupt-mode operation.

6. Use theK IntStatus function to monitor the status of the
interrupt-mode operation.

7. If you specified continuous buffering mpdse theK_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been acquired.

8. If you are programming in Visual Basic for Windowse the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to the program’s local array.

9. Use theK_SyncFreefunction to deallocate the buffers.

10. Use thé&K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

DMA Mode

For a DMA-mode analog input operation, perform the following tasks:
1. Use theK _GetADFrame function to access an A/D frame.

2. Use theDASDLL DMAAlloc function to allocate the buffers in
which to store the acquired data.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-7.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list
of the default values of A/D frame elements.

3-15

Table 3-7. Setup Functions for DMA-Mode
Analog Input Operations

Attribute

Setup Functions

Buffer

K_SetDMABuf
K_SetDMABuUfB

Number of Samples

K_SetDMABuUf
K_SetDMABuUfB

Buffering Mode

K_SetContRun
K_ClrContRurf

Start Channel

K_SetChn
K_SetStartStopChn
K_StartStopG

Stop Channel

K_SetStartStopChn
K_SetStartStopG

Gain K_SetG
K_SetStartStopG
Clock Source K_SetClk

Pacer Clock Rafe

K_SetClkRate

Trigger Source K_SetTrig
Trigger Type K_SetADTrig
K_SetDITrig
Trigger Channel K_SetADTrig
K_SetDITrig
Trigger Polarity and K_SetADTrig
Sensitivity K_SetDITrig
Trigger Level K_SetADTrig

Trigger Hysteresis

K_SetTrigHyst

Notes

1This element must be set.

2 Use this function to reset the value of this particular
frame element to its default setting without clearing
the frame or getting a new frame.

3-16 Programming with the Function Call Driver

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. Use thek DMAStart function to start the DMA-mode operation.

Use thek _DMAStatus function to monitor the status of the
DMA-mode operation.

6. If you specified continuous buffering mpdse the_DMAStop
function to stop the DMA-mode operation when the appropriate
number of samples has been acquired.

7. If you are programming in Visual Basic for Windowse the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to the program’s local array.

Use thdDASDLL DMAFree function to deallocate the buffers.

Use theK_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Analog Output Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, synchronous-mode,
interrupt-mode, and DMA-mode analog output operations.

Single Mode

For a single-mode analog output operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single analog
output value.

2. Use theK_DAWrite function to write the single analog output value;
specify the attributes of the operation as arguments to the function.

3-17

Synchronous Mode

3-18

For a synchronous-mode analog output operation, perform the following
tasks:

1. Use theK_GetDAFrame function to access a D/A frame.

2. Use thek_SyncAlloc function to allocate the buffers in which to
store the data to be written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-8.

Note: When you access a new D/A frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-2 on page 3-6 for a list
of the default values of D/A frame elements.

Table 3-8. Setup Functions for Synchronous-Mode
Analog Output Operations

Attribute Setup Functions

Buffer! K_SetBuf
K_SetBufB

Number of Samples K_SetBuf
K_SetBufB

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Clock Source K_SetClk

Pacer Clock Rafe K_SetClkRate

Trigger Source K_SetTrig

Programming with the Function Call Driver

Interrupt Mode

Table 3-8. Setup Functions for Synchronous-Mode
Analog Output Operations (cont.)

Attribute Setup Functions
Trigger Type K_SetDITrig
Trigger Channel K_SetDITrig
Trigger Polarity and K_SetDITrig
Sensitivity

Notes

1This element must be set.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are programming in Visual Basic for Windowse the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

5. Use theK_SyncStart function to start the synchronous-mode
operation.

6. Use theK_SyncFreefunction to deallocate the buffer.

7. Use theK_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

For an interrupt-mode analog output operation, perform the following
tasks:

1. Use th&K _GetDAFrame function to access a D/A frame.

2. Use theK_SyncAlloc function to allocate the buffers in which to
store the data to be written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-9.

3-19

3-20

Note: When you access a new D/A frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-2 on page 3-6 for a list
of the default values of D/A frame elements.

Table 3-9. Setup Functions for Interrupt-Mode
Analog Output Operations

Attribute Setup Functions
Buffer! K_SetBuf
K_SetBufB
Number of Samples K_SetBuf
K_SetBufB
Buffering Mode K_SetContRun
K_ClrContRurf
Start Channel K_SetChn
K_SetStartStopChn
Stop Channel K_SetStartStopChn
Clock Source K_SetClIk
Pacer Clock Rafe K_SetClkRate
Trigger Source K_SetTrig
Trigger Type K_SetDITrig
Trigger Channel K_SetDITrig
Trigger Polarity and K_SetDITrig
Sensitivity
Notes

L This element must be set.

2 Use this function to reset the value of this particular
frame element to its default setting without clearing
the frame or getting a new frame.

Programming with the Function Call Driver

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are programming in Visual Basic for Windowse the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

Use thek_IntStart function to start the interrupt-mode operation.

Use th&K_IntStatus function to monitor the status of the
interrupt-mode operation.

7. If you specified continuous buffering mpdse thd<_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been written.

Use thek_SyncFreefunction to deallocate the buffers.

Use theK_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

DMA Mode

For a DMA-mode analog output operation, perform the following tasks:
1. Use th&K_GetDAFrame function to access a D/A frame.

2. Use theDASDLL DMAAlloc function to allocate the buffers in
which to store the data to be written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-10.

Note: When you access a hew D/A frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-2 on page 3-6 for a list
of the default values of D/A frame elements.

3-21

3-22

Table 3-10. Setup Functions for DMA-Mode
Analog Output Operations

Attribute Setup Functions

Buffert K_SetDMABuUf
K_SetDMABuUfB

Number of Samples K_SetDMABuUf
K_SetDMABuUfB

Buffering Mode K_SetContRun
K_ClrContRurf

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Clock Source K_SetClk

Pacer Clock Rafe K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetDITrig

Trigger Channel K_SetDITrig

Trigger Polarity and K_SetDITrig

Sensitivity

Notes

L This element must be set.

2 Use this function to reset the value of this particular
frame element to its default setting without clearing
the frame or getting a new frame.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are programming in Visual Basic for Windowse the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

5. Use th&k_DMAStart function to start the DMA-mode operation.

Programming with the Function Call Driver

6. Use thek DMAStatus function to monitor the status of the
DMA-mode operation.

7. If you specified continuous buffering mpdse thé_DMAStop
function to stop the DMA-mode operation when the appropriate
number of samples has been written.

8. Use theDASDLL_DMAFree function to deallocate the buffers.

Use theK_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Digital I/O Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, synchronous-mode,
interrupt-mode, and DMA-mode digital I/O operations.

Single Mode

For a single-mode digital I/O operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single digital /0
value.

2. Use one of the following digital /O single-mode operation functions,
specifying the attributes of the operation as arguments to the function:

Function Purpose

K_DIRead Reads a single digital input value.

K_DOWrite | Writes a single digital output value.

3-23

Synchronous Mode

For a synchronous-mode digital I/O operation, perform the following
tasks:

1. Use theK_GetDIFrame function to access a DI frame; use the
K_GetDOFrame function to access a DO frame.

2. Use theK_SyncAlloc function to allocate the buffers in which to
store the data to be read or written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-7.

Note: When you access a new DI or DO frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-3 on page 3-7 for a list
of the default values of DI frame elements. Refer to Table 3-4 on page
3-8 for a list of the default values of DO frame elements.

Table 3-11. Setup Functions for Synchronous-Mode
Digital Input and Output Operations

Attribute Setup Functions

Buffert K_SetBuf
K_SetBufB

Number of Samples K_SetBuf
K_SetBufB

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Clock Source K_SetCIlk

Pacer Clock Rafe K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetDITrig

3-24 Programming with the Function Call Driver

Interrupt Mode

Table 3-11. Setup Functions for Synchronous-Mode
Digital Input and Output Operations (cont.)

Attribute Setup Functions

Trigger Channel K_SetDITrig

Trigger Polarity and K_SetDITrig
Sensitivity

Notes
1This element must be set.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

If you are performing a digital output operation and you are
programming in Visual Basic for Windowsse the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

Use theK_SyncStart function to start the synchronous-mode
operation.

If you are performing a digital input operation and you are
programming in Visual Basic for Windowsse the
K_MoveBufToArray function to transfer the data from the allocated
buffer to the program’s local array.

Use theKk_SyncFreefunction to deallocate the buffers.

Use theK_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

For an interrupt-mode digital 1/O operation, perform the following tasks:

1.

Use thek_GetDIFrame function to access a DI frame; use the
K_GetDOFrame function to access a DO frame.

Use theK_SyncAlloc function to allocate the buffers in which to
store the data to be read or written.

Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-12.

3-25

Note: When you access a new DI or DO frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-3 on page 3-7 for a list
of the default values of DI frame elements. Refer to Table 3-4 on page
3-8 for a list of the default values of DO frame elements.

Table 3-12. Setup Functions for Interrupt-Mode
Digital Input and Digital Output Operations

Attribute Setup Functions
Buffer! K_SetBuf
K_SetBufB
Number of Samples K_SetBuf
K_SetBufB
Buffering Mode K_SetContRun
K_CIrContRuﬁ
Start Channel K_SetChn
K_SetStartStopChn
Stop Channel K_SetStartStopChn
Pacer Clock Rafe K_SetClkRate
Trigger Source K_SetTrig
Trigger Type K_SetDITrig
Trigger Channel K_SetDITrig
Trigger Polarity and K_SetDITrig
Sensitivity
Notes

L This element must be set.

2 Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame.

3-26 Programming with the Function Call Driver

DMA Mode

10.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

If you are performing a digital output operation and you are
programming in Visual Basic for Windowsse the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

Use thek_IntStart function to start the interrupt-mode operation.

Use theK_IntStatus function to monitor the status of the
interrupt-mode operation.

If you specified continuous buffering mopdse thé<_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been written.

If you are performing a digital input operation and you are
programming in Visual Basic for Windowsse the
K_MoveBufToArray function to transfer the data from the allocated
buffer to the program’s local array.

Use theK_SyncFreefunction to deallocate the buffers.

Use th&_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

For a DMA-mode digital I/O operation, perform the following tasks:

1.

Use theK_GetDIFrame function to access a DI frame; use the
K_GetDOFrame function to access a DO frame.

Use thdDASDLL _DMAAIloc function to allocate the buffers in
which to store the data to be read or written.

Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-13.

3-27

Note: When you access a new DI or DO frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-3 on page 3-7 for a list
of the default values of DI frame elements. Refer to Table 3-4 on page
3-8 for a list of the default values of DO frame elements.

Table 3-13. Setup Functions for DMA-Mode
Digital Input and Digital Output Operations

Attribute Setup Functions

Buffer! K_SetDMABuUf
K_SetDMABUfB

Number of Samples K_SetDMABuUf
K_SetDMABuUfB

Buffering Mode K_SetContRun
K_CIrContRuﬁ
Start Channel K_SetChn
K_SetStartStopChn
Stop Channel K_SetStartStopChn
Pacer Clock Rafe K_SetClkRate
Trigger Source K_SetTrig
Trigger Type K_SetDITrig
Trigger Channel K_SetDITrig
Trigger Polarity and K_SetDITrig
Sensitivity
Notes

L This element must be set.

2 Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame.

3-28 Programming with the Function Call Driver

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are performing a digital output operation and you are
programming in Visual Basic for Windowsse the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

Use theK_DMAStart function to start the DMA-mode operation.

Use thek _DMAStatus function to monitor the status of the
DMA-mode operation.

7. If you specified continuous buffering mpdse thé_DMAStop
function to stop the DMA-mode operation when the appropriate
number of samples has been written.

8. If you are performing a digital input operation and you are
programming in Visual Basic for Windowsse the
K_MoveBufToArray function to transfer the data from the allocated
buffer to the program’s local array.

9. Use thdDASDLL DMAFree function to deallocate the buffers.

10. Use thé&K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Language-Specific Programming Information

This section provides programming information for each of the supported
languages. Note that the compilation procedures for each language
assumes that the paths and/or environment variables are set correctly.

Microsoft Visual C++ Language

The following sections contain information you need to allocate and
assign memory buffers and to create a channel-gain queue when
programming in Microsoft Visual C++, as well as language-specific
information for Microsoft Visual C++.

3-29

Note: When programming in Microsoft Visual C++, proper typecasting
may be required to avoid C++ type-mismatch warnings.

Allocating and Assigning Memory Buffers

void far *AcqBufA,;
void far *AcqBufB;
WORD hMemA,;
WORD hMemB;

This section provides code fragments that describe how to allocate and
assign memory buffers when programming in Visual C++. Refer to the
example programs on disk for more information.

Note: The code fragments assume that you are using DMA mode; the
code for synchronous-mode and interrupt mode is identical, except that
you use the appropriate synchronous-mode or interrupt-mode functions
instead of the DMA-mode functions.

Allocating the Memory Buffers

You can use a single memory buffer or two memory buffers for
synchronous-mode, interrupt-mode, and DMA-mode analog I/O and
digital I/O operations.

The following code fragment illustrates how to use
DASDLL_DMAAIloc to allocate two buffers of size Samples for the
frame defined by hFrame and how to Ks&etDMABuf and
K_SetDMABUfB to assign the starting addresses of the buffers.

/[Declare pointer to first buffer
//Declare pointer to second buffer
/IDeclare word for first memory handle
//Declare word for second memory handle

wDasErr = DASDLL_DMAAIloc (hFrame, Samples, &AcqBufA, &hMemA);
wDasErr = K_SetDMABuUf (hFrame, AcqBufA, Samples);

wDasErr = DASDLL_DMAAIloc (hFrame, Samples, &AcqBufB, &hMemB);
wDasErr = K_SetDMABUfB (hFrame, AcqBufB, Samples);

3-30

Programming with the Function Call Driver

The following code illustrates how to uBASDLL_DMAFree to later
free the allocated buffers, using the memory handles stored by
DASDLL_DMAAlloc .

wDasErr = DASDLL_DMAFree (hMemA);
wDasErr = DASDLL_DMAFree (hMemB);

Accessing the Data

You access the data stored in an allocated buffer through pointer
indirection. For example, assume that you want to display the first 10
samples of the first buffer described in the previous section (AcqBufA).
The following code fragment illustrates how to access and display the
data.

int far *pData; /IDeclare a pointer called pData

pData = (int far *) AcqBufA; //Assign pData to 1st buffer
for (i=0;i<10; i++)
printf ("Sample #%d %X", i, *(pData+i));

Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type
(GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable
{
WORD num_of_codes;
struct{
char Chan;
char Gain;
} GainChanAry[256];
} GainChanTable;

3-31

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-40G2 board by declaring and
initializing a variable of type GainChanTable.

GainChanTable MyChanGainQueue =
/INumber of entries
/IChannel 0, gain of 1
/IChannel 1, gain of 2
/[Channel 2, gain of 4
/IChannel 3, gain of 8
/IChannel 3, gain of 1
/IChannel 2, gain of 2
/[Channel 1, gain of 4
/[Channel 0, gain of 8

—
©

OFRPNWWNRFRO
WNPRPOWNRO

— -

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

wDasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);

When you start the next analog input operation (uUKin§yncStart,
K_IntStart, or K_DMAStart), channel O is sampled at a gain of 1,
channel 1 is sampled at a gain of 2, channel 2 is sampled at a gain of 4,
and so on.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value ofkh&etDevHandle

function.

if (DASErr = K_GetDevHandle (hDrv, BoardNum, &hDev))! = 0)

{
printf (“Error %X during K_GetDevHandle”, DASETrr);

exit (1);
}

3-32 Programming with the Function Call Driver

Programming in Microsoft Visual C++

To program in Microsoft Visual C++, you need the following files; these
files are provided in the DASDLL software package.

File Description
DASSHELL.DLL Dynamic Link Library
DASSUPRT.DLL Dynamic Link Library
DASDLL.DLL Dynamic Link Library
DASDECL.H Include file for C
DASDLL.H Include file for C
DASDECL.HPP Include file for C++
DASDLL.HPP Include file for C++
DASIMP.LIB DAS Shell Imports
DASDLL.LIB DASDLL Imports

To create an executable file in Visual C++, perform the following steps:

1. Create a project file by choosing New from the Project menu. The
project file should contain all necessary files, includilegamec,
filenamerc, filenamedef, DASIMP.LIB, and DASDLL.LIB, where
filenameindicates the name of your application program.

2. From the Project menu, choose Rebuild All FILENAME.EXE to
create a stand-alone executable file (.EXE) that you can execute from
within Windows.

3-33

Microsoft Visual Basic for Windows

The following sections contain information you need to allocate and
assign memory buffers and to create a channel-gain queue when
programming in Microsoft Visual Basic for Windows, as well as
language-specific information for Microsoft Visual Basic for Windows.

Allocating and Assigning Memory Buffers

This section provides code fragments that describe how to allocate and
assign memory buffers when programming in Microsoft Visual Basic for
Windows. Refer to the example programs on disk for more information.

Note: The code fragments assume that you are using DMA mode; the
code for synchronous-mode and interrupt mode is identical, except that
you use the appropriate synchronous-mode or interrupt-mode functions
instead of the DMA-mode functions.

Allocating the Memory Buffers

You can use a single memory buffer or two memory buffers for
synchronous-mode, interrupt-mode, and DMA-mode analog 1/0 and
digital I/O operations.

The following code fragment illustrates how to use
DASDLL_DMAAlloc to allocate two buffers of size Samples for the
frame defined by hFrame and how to Ks&etDMABuf and
K_SetDMABUfB to assign the starting addresses of the buffers.

Global AcgBufA As Long ' Declare pointer to first buffer

Global AcgBufB As Long ' Declare pointer to second buffer

Global hMemA As Integer ' Declare integer for first memory handle
Global hMemB As Integer ' Declare integer for second memory handle

wDasErr = DASDLL_DMAAIloc (hFrame, Samples, AcqgBufA, hMemA)
wDasErr = K_SetDMABuf (hFrame, AcqBufA, Samples)
wDasErr = DASDLL_DMAAIloc (hFrame, Samples, AcqBufB, hMemB)
wDasErr = K_SetDMABuf (hFrame, AcqBufB, Samples)

3-34 Programming with the Function Call Driver

The following code illustrates how to uBASDLL_DMAFree to later
free the allocated buffers, using the memory handles stored by
DASDLL_DMAAlloc .

wDasErr = DASDLL_DMAFree (hMemA)
wDasErr = DASDLL_DMAFree (hMemB)

Accessing the Data

In Microsoft Visual Basic for Windows, you cannot directly access
samples stored in an allocated memory buffer. For analog input
operations, you must uge MoveBufToArray to move a subset of the
data into the program’s local array as required. The following code
fragment illustrates how to move the first 100 samples of the first buffer
described in the previous section (AcqBufA) to the program’s local array.

Dim Buffer(1000) As Integer " Declare local memory buffer

wDasErr = K_MoveBufToArray (Buffer(0), AcqBufA, 100)

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you mustugeormatChnGAry to
reformat the channel-gain queue so that it can be used by the DASDLL
Function Call Driver.

3-35

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-16G2 board
and how to us&_SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Global MyChanGainQueue(9) As Integer 'Maximum # of entries

MyChanGainQueue(0) = 4 " Number of channel-gain pairs
MyChanGainQueue(1) =0 " Channel O
MyChanGainQueue(2) =0 " Gain of 1
MyChanGainQueue(3) = 1 " Channel 1
MyChanGainQueue(4) = 1 ' Gain of 2
MyChanGainQueue(5) = 2 " Channel 2
MyChanGainQueue(6) = 2 " Gain of 4
MyChanGainQueue(7) = 2 " Channel 2
MyChanGainQueue(8) = 3 " Gain of 8

wDasErr = K_FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))

Once the channel-gain queue is formatted, your Visual Basic for Windows
program can no longer read it. To read or modify the array after it has
been formatted, you must uke RestoreChnGAry as follows:

wDasErr = K_RestoreChnGAry (MyChanGainQueue(0))

When you start the next analog input operation (uKin§yncStart,
K_IntStart, or K_DMAStart), channel 0 is sampled at a gain of 1,
channel 1 is sampled at a gain of 2, channel 2 is sampled at a gain of 4,
and so on.

3-36 Programming with the Function Call Driver

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value ofkh&etDevHandle

function.

DASE(r = K_GetDevHandle (hDrv, BoardNum, hDev)
If (DASErr <> 0) Then
MsgBox “K_GetDevHandle Error: “ + Hex$ (DASETrr),
MB_ICONSTOP, “DASDLL ERROR”
End
End If

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the DASDLL software package.

File Description

DASSHELL.DLL Dynamic Link Library
DASSUPRT.DLL Dynamic Link Library

DASDLL.DLL Dynamic Link Library
DASDECL.BAS Include file; must be added to the Project List
DASDLL.BAS Include file; must be added to the Project List

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the Run menu.

3-37

A

Function Reference

The FCD functions are organized into the following groups:

Initialization functions
Operation functions

Frame management functions
Memory management functions
Buffer address functions
Buffering mode functions
Channel and gain functions
Clock functions

Trigger functions

Miscellaneous functions

The particular functions associated with each function group are presented
in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-1

4-2

Table 4-1. Functions

Function Type Function Name Page Number
Initialization K_OpenDriver page 4-83
K_CloseDriver page 4-18
DASDLL_DevOpen page 4-7
K_GetDevHandle page 4-54
K_FreeDevHandle page 4-35
DASDLL_GetDevHandle page 4-13
DASDLL_GetBoardName page 4-12
K_DASDevlInit page 4-21
Operation K_ADRead page 4-15
K_DAWrite page 4-22
K_DIRead page 4-24
K_DOWrite page 4-32
K_DMAStart page 4-26
K_DMAStatus page 4-27
K_DMAStop page 4-30
K_IntStart page 4-73
K_IntStatus page 4-74
K_IntStop page 4-77
K_SyncStart page 4-115
Frame Management | K_GetADFrame page 4-37
K_GetDAFrame page 4-52
K_GetDIFrame page 4-56
K_GetDOFrame page 4-58
K_FreeFrame page 4-36
K_ClearFrame page 4-17

Function Reference

Table 4-1. Functions (cont.)

Function Type Function Name Rage Number
Memory Managemen| DASDLL_DMAAIlloc page 4-9
DASDLL_DMAFree page 4-11
K_SyncAlloc page 4-112
K_SyncFree page 4-114
K_MoveArrayToBuf page 4-79
K_MoveBufToArray page 4-81
Buffer Address K_SetBuf page 4-88
K_SetBufB page 4-90
K_GetBuf page 4-40
K_GetBufB page 4-42
K_SetDMABuf page 4-101
K_SetDMABUfB page 4-103
Buffering Mode K_SetContRun page 4-99
K_ClIrContRun page 4-19
K_GetContRun page 4-50

4-3

4-4

Table 4-1. Functions (cont.)

Function Type Function Name Page Number
Channel and Gain K_SetChn page 4-92
K_SetStartStopChn page 4-106
K_SetG page 4-105
K_SetStartStopG page 4-108
K_SetChnGAry page 4-93
K_FormatChnGAry page 4-34
K_RestoreChnGAry page 4-85
K_GetChn page 4-44
K_GetStartStopChn page 4-65
K_GetG page 4-61
K_GetStartStopG page 4-67
K_GetChnGAry page 4-45
Clock K_SetClk page 4-95
K_SetClkRate page 4-97
K_GetClk page 4-46
K_GetClkRate page 4-48
Trigger K_SetTrig page 4-110
K_SetADTrig page 4-86
K_GetTrig page 4-69
K_GetADTrig page 4-38
Miscellaneous K_GetErrMsg page 4-60
K_GetVer page 4-71
K_GetShellVer page 4-63

Function Reference

Keep the following conventions in mind throughout this chapter:

If DAS-8 Series, DAS-16 Series, DAS-40 Series, PIO Series, or
PDMA Series is listed in the Boards Supported section, all boards in
the series are supported. For Series 500, refer to your Series 500
documentation for information on which specific Series 500 modules
are supported for a particular function.

The data types DWORD, WORD, and BYTE are defined in the
language-specific include files.

Variable names are shown in italics.

For valid value and value stored information, refer to the board’s
user’s guide and the External DAS Driver user’s guide for that board.

The return value for all FCD functions is an integer error/status code.

Error/status code O indicates that the function executed successfully.

A nonzero error/status code indicates that an error occurred. Refer to
Appendix A for additional information.

In the usage section, the variables are not defined. It is assumed that
they are defined as shown in the syntax. The name of each variable in
both the prototype and usage sections includes a prefix that indicates
the associated data type. These prefixes are described in Table 4-2.

Table 4-2. Data Type Prefixes

Prefix |Data Type Comments
sz Pointer to string terminated by | This data type is typically used for variables that
Zero specify the driver's configuration file name.
h Handle to device, frame, and | This data type is used for handle-type variables. You
memory block declare handle-type variables in your program as long
or DWORD, depending on the language you are using.
The actual variable is passed to the driver by value.
ph Pointer to a handle-type variabl{ This data type is used when calling the FCD functions
to get a driver handle, a frame handle, or a memory
handle. The actual variable is passed to the driver by
reference.

p Pointer to a variable This data type is used for pointers to all types of
variables, except handles (h). It is typically used when
passing a parameter of any type to the driver by
reference.

n Number value This data type is used when passing a humber,
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with
other prefixes listed here; for exammaVardenotes
an array of numbers.

f Float This data type denotes a single-precision floating-point
number.

d Double This data type denotes a double-precision
floating-point number.

dw 32-bit double word This data type is typically used when passing an

unsigned long to the driver by value.

4-6

Function Reference

DASDLL_DevOpen

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Opens the driver and returns the number of boards found.

Visual C++
DASETr far pascal DASDLL_DevOpen (char fas*CfgFile
char far pBoards;

Visual Basic for Windows
Declare Function DASDLL_DevOpen Lib "DASDLL.DLL"
(ByVal szCfgFileAs String,pBoardsAs Integer) As Integer

szCfgFile Driver configuration file.

pBoards Number of boards found.

Error/status code. Refer to Appendix A.

This function opens the DASDLL Function Call Driver and stores the
number of boards found pBoards

The DASDLL Function Call Driver does not use a configuration file. It is

recommended that you enter a NULL stringg$aCfgFile.

K_OpenDriver

4-7

DASDLL_DevOpen (cont.)

Usage

4-8

Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
#include "DASDLL.H" // Use DASDLL.HPP for C++
char nBoards;

wDasErr = DASDLL_DevOpen (", &nBoards);

Visual Basic for Windows
(Include DASDECL.BAS and DASDLL.BAS in your program make file)

DIM nBoards AS INTEGER

wDasErr = DASDLL_DevOpen (", nBoards)

Function Reference

DASDLL_DMAAlIlloc

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series

Allocates a buffer for a DMA-mode operation.

Visual C++

DASErr far pascal DASDLL_DMAAlloc (DWORDMFrame
DWORD dwSamplesvoid far * far*pBuf, WORD far *phMen);

Visual Basic for Windows

Declare Function DASDLL_DMAAIloc Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValdwSample#s Long,pBufAs Long,
phMemAs Integer) As Integer

hFrame Handle to the frame that defines the operation.

dwSamples Number of samples.
Valid values: 11032767

pBuf Starting address of the allocated buffer.

phMem Handle associated with the allocated buffer.
Error/status code. Refer to Appendix A.

For the operation defined Wrame this function allocates a memory
block (a buffer of the sizédwSamplesfrom the available memory heap.
On returnpBufcontains the address of a buffer that is suitable for a
DMA-mode operation andhMemcontains the handle associated with
the allocated buffer.

UseK_SetDMABuf or K_SetDMABUfB to assigrpBufto a frame. You
can usephMemito free the allocated memory block by calling
DASDLL_DMAFree .

DASDLL_DMAFree, K_SetDMABuUf, K_SetDMABuUfB

4-9

DASDLL_DMAAIloc (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated DMA buffer
WORD hMem; /I Memory Handle to buffer

wDasErr = DASDLL_DMAAIloc (hFrame, dwSamples, &pBuf, &hMem);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global pBuf As Long
Global hMem As Integer

wDasErr = DASDLL_DMAAIloc (hFrame, dwSamples, pBuf, hMem)

4-10 Function Reference

DASDLL_DMAFree

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series

Frees a buffer allocated for a DMA-mode operation.

Visual C++

DASErr far pascal DASDLL_DMAFree (WORBMemn);

Visual Basic for Windows
Declare Function DASDLL_DMAFree Lib "DASSHELL.DLL"
(ByVal hMemAs Integer) As Integer

hMem Handle to DMA buffer.
Error/status code. Refer to Appendix A.

This function frees the buffer specified lhiylem the buffer was
previously allocated usingASDLL_DMAAlloc .

DASDLL_DMAAIlloc, K_SetDMABuUf, K_SetDMABuUfB

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = DASDLL_DMAFree (hMem);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = DASDLL_DMAFree (hMem)

4-11

DASDLL_GetBoardName

Boards All

Supported

Purpose Returns information about the boards and drivers loaded in your system.
Prototype Visual C++

DASErr far pascal DASDLL_GetBoardName (WORBrdNum,
char far*far* pDrvNamé;

Visual Basic for Windows

Not supported
Parameters nBrdNum Logical board number.
pDrvName Driver associated with board.
Return Value Error/status code. Refer to Appendix A.
Remarks This function gets the name of the driver associated with the board

specified bynBrdNumand stores the name DrvName.
See Also K_GetDevHandle, DASDLL GetDevHandle

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

char *pDrvName;

wDasErr = DASDLL_GetBoardName (0, &pDrvName);

4-12 Function Reference

DASDLL_GetDevHandle

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

All

Initializes a DASDLL-supported board.

Visual C++
DASErr far pascal DASDLL_GetDevHandle (WORIBrdNum
DWORD far *phDeV;

Visual Basic for Windows
Declare Function DASDLL_GetDevHandle Lib "DASDLL.DLL"
(ByVal nBrdNumAs IntegerphDevAs Long) As Integer

nBrdNum Logical board number.

phDev Handle associated with the board.
Error/status code. Refer to Appendix A.

This function initializes the board specified tgrdNum and stores the
board handle of the specified boardbhDev

The value stored iphDevis intended to be used exclusively as an
argument to functions that require a board handle. Your program should
not modify the value stored phDev

K_GetDevHandle, DASDLL GetBoardName, K_DASDevInit

4-13

DASDLL_GetDevHandle (cont.)

Usage

4-14

Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
#include "DASDLL.H" // Use DASDLL.HPP for C++
void far *phDev;

wDasErr = DASDLL_GetDevHandle (0, &phDev);

Visual Basic for Windows
(Include DASDECL.BAS and DASDLL.BAS in your program make file)

Global hDev As Long ' Device Handle

wDasErr = DASDLL_GetDevHandle (0, hDev)

Function Reference

K_ADRead

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-8 Series, DAS-16 Series, DAS-20 , DAS-40 Series, DAS-HRES,
Series 500

Reads a single analog input value.

Visual C++
DASErr far pascal K_ADRead (DWOREDey BYTE nChan
BYTE nGain void far*pData);

Visual Basic for Windows

Declare Function K_ADRead Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByValnChanAs Integer,

ByVal nGainAs IntegerpDataAs Integer) As Integer

hDev Handle associated with the board.
nChan Analog input channel.

nGain Gain code.

pData Acquired analog input value.

Error/status code. Refer to Appendix A.

This function reads the analog input chanm@hanon the board
specified byhDevat the gain represented bgain and stores the count
in pData

Refer to Appendix B for information on converting the count stored in
pDatato voltage.

Refer to your External DAS Driver user’s guide for a description of the
data that can be storedpData.

Refer to Appendix C for board-specific operating specifications on gains
and channels.

K_DMAStart, K_IntStart, K_SyncStart

4-15

K_ADRead (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

int wWADValue;

wDasErr = K_ADRead (hDev, 0, 0, &wADValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wADValue As Integer

wDasErr = K_ADRead (hDev, 0, 0, wADValue)

4-16 Function Reference

K_ClearFrame

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Sets the elements of a frame to their default values.

Visual C++
DASErr far pascal K_ClearFrame (DWORiBrame;

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function sets the elements of the frame specifidoFogmeto their
default values.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_ClearFrame (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_ClearFrame (hFrame)

4-17

K_CloseDriver

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-18

All

Closes a previously initialized Keithley DAS Function Call Driver.

Visual C++
DASErr far pascal K_CloseDriver (DWORIDrv);

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal hDrv As Long) As Integer

hDrv Driver handle you want to free.
Error/status code. Refer to Appendix A.

This function frees the driver handle specifiechByv and closes the
associated use of the Function Call Driver. This function also frees all
board handles and frame handles associatedhiith

If hDrv is the last driver handle specified for the Function Call Driver, the
driver is shut down and unloaded.

K_OpenDriver

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CloseDriver (hDrv);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_CloseDriver (hDrv)

Function Reference

K_CIrContRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Enables single-cycle buffering mode.

Visual C++
DASErr far pascal K_ClrContRun (DWORIFrams;

Visual Basic for Windows
Declare Function K_CIrContRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function sets the buffering mode for the operation definédriame
to single-cycle mode and sets the Buffering Mode element in the frame
accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, andK_ClearFrame also enable single-cycle
buffering mode.

This function is not meaningful for synchronous-mode operations.

For more information on buffering modes, refer to page 2-14 (for analog
input operations), page 2-23 (for analog output operations), and page 2-31
(for digital I/O operations).

K_SetContRun, K_GetContRun

4-19

K_CIrContRun (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CIrContRun (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_CIrContRun (hFrame)

4-20 Function Reference

K_DASDevInit

Boards All

Supported

Purpose Reinitializes a board.
Prototype Visual C++

DASErr far pascal K_DASDevInit (DWORBDeV);

Visual Basic for Windows
Declare Function K_DASDevInit Lib "DASSHELL.DLL"
(ByVal hDevAs Long) As Integer

Parameters hDev Handle associated with the board.
Return Value Error/status code. Refer to Appendix A.
Remarks This function stops all current operations and resets the board specified by

hDevand the driver to their power-up states.
See Also K_GetDevHandle, DASDLL_GetDevHandle

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_DASDevInit (hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_DASDevlInit (hDev)

4-21

K_DAWrite

Boards DAS-8/A0, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Supported DDA-06, Series 500
Purpose Writes a single analog output value.
Prototype Visual C++
DASETr far pascal K_DAWrite (DWORDDey BYTE nChan
DWORD dwData);

Visual Basic for Windows

Declare Function K_DAWrite Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByVainChanAs Integer,

ByVal dwDataAs Long) As Integer

Parameters hDev Handle associated with the board.
nChan Analog output channel.
dwData Analog output value.
Return Value Error/status code. Refer to Appendix A.
Remarks This function writes the valudwDatato the analog output channel

specified bynChanon the board specified inDev
Refer to Table C-3 in Appendix C for supported channels.

Refer to Appendix B for information on converting data for analog output
operations.

Refer to your External DAS Driver user’s guide for a description of the
data that can be storeddwData.

Refer to page 2-17 for more information on analog output operations.

See Also K_DMAStart, K_IntStart, K_SyncStart

4-22 Function Reference

K_DAWrite (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwDAValue;

dwDAValue = ((DWORD) (5.0 * 4096 / 20) + 2048) << 4;
wDasErr = K_DAWrite (hDev, 0, &dwDAValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global dwDAValue As Long

dwDAValue = (INT (5.0 * 4096! / 20!) + 2048) * 16
wDasErr = K_DAWrite (hDev, 0, dwDAValue)

4-23

K_DIRead

Boards All

Supported

Purpose Reads a single digital input value.
Prototype Visual C++

DASErr far pascal K_DIRead (DWOREBDey BYTE nChan
void far*pData);

Visual Basic for Windows
Declare Function K_DIRead Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByValnChanAs Integer,pDataAs Any)

As Integer

Parameters hDev Handle associated with the board.
nChan Digital input channel.
pData Digital input value.

Return Value Error/status code. Refer to Appendix A.

Remarks This function reads the values of all digital input lines on the channel
specified bynChanon the board specified tyDevand stores the value in
pData

Refer to your External DAS Driver user’s guide for a description of the
data that can be storedpData.

See Also K_IntStart, K_SyncStart

4-24 Function Reference

K_DIRead (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wDIValue;

wDasErr = K_DIRead (hDev, 0, &wDIValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wDIValue As Integer

wDasErr = K_DIRead (hDev, 0, wDIValue)

4-25

K_DMAStart

Boards DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series
Supported

Purpose Starts a DMA-mode operation.

Prototype Visual C++

DASErr far pascal K_DMAStart (DWORDFrame);

Visual Basic for Windows
Declare Function K_DMAStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.
Return Value Error/status code. Refer to Appendix A.
Remarks This function starts the DMA operation definedhiyrame

For a discussion of the programming tasks associated with DMA-mode
operations, refer to page 3-15 (for analog input operations), page 3-21 (for
analog output operations), and page 3-27 (for digital I/O operations).

See Also K_SyncStart, K_DMAStatus, K_DMAStop

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_DMAStart (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_DMAStart (hFrame)

4-26 Function Reference

K_DMAStatus

Boards DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series
Supported
Purpose Gets status of a DMA-mode operation.
Prototype Visual C++
DASErr far pascal K_DMAStatus (DWORBFrame short farpStatus
DWORD far*pCouni);

Visual Basic for Windows
Declare Function K_DMAStatus Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pStatusAs IntegerpCountAs Long)

As Integer
Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of DMA-mode operation; sBemarks
for value stored.
pCount Number of samples in the current buffer.
Return Value Error/status code. Refer to Appendix A.

4-27

K_DMAStatus (cont.)

Remarks For the DMA operation defined thFrame this function stores the status
in pStatusand the number of samples acquireg@ount

The value stored ipStatusdepends on the settings in the Status word, as
shown below:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0=No data*ost
1 = Data lost

0 = Buffer A active
1 = Buffer B active

0 = DMA operation inactive
1 = DMA operation active

The bits are described as follows:
. Bit 0: Indicates whether a DMA-mode operation is in progress.

. Bit 1: If you are using two buffers, indicates which buffer is active. If
you are using one buffer, this bit is always O.

. Bit 2: If you are using two buffers, indicates whether data was lost
when switching from one buffer to the other.

. Bits 3 through 15: Not used.

See Also K_DMAStart, K_DMAStop

4-28 Function Reference

K_DMAStatus (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_DMAStatus (hFrame, &wStatus, &dwCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_DMAStatus (hFrame, wStatus, dwCount)

4-29

K_DMAStop

Boards DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series
Supported
Purpose Stops a DMA-mode operation.
Prototype Visual C++
DASErr far pascal K_DMAStop (DWORBFrame short farpStatus
DWORD far*pCouni;

Visual Basic for Windows
Declare Function K_DMAStop Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pStatusAs IntegerpCountAs Long)

As Integer
Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of DMA-mode operation; sBemarks
for K_DMAStatus on page 4-28 for the value
stored.
pCount Number of samples in the current buffer.
Return Value Error/status code. Refer to Appendix A.
Remarks This function stops the DMA operation definedhirameand stores the

status of the DMA operation pStatusand the number of samples
acquired inpCount

If a DMA operation is not in progresis, DMAStop is ignored.

See Also K_DMAStart, K_DMAStatus

4-30 Function Reference

K_DMAStop (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_DMAStop (hFrame, &wStatus, &dwCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_DMAStop (hFrame, wStatus, dwCount)

4-31

K_DOWrite

Boards All
Supported
Purpose Writes a single digital output value to the digital output channel.
Prototype Visual C++
DASErr far pascal K_DOWrite (DWORBDey BYTE nChan
DWORD dwDatg);

Visual Basic for Windows

Declare Function K_DOWrite Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByValnChanAs Integer,

ByVal dwDataAs Long) As Integer

Parameters hDev Handle associated with the board.
nChan Digital output channel.
dwData Digital output value.
Return Value Error/status code. Refer to Appendix A.
Remarks This function writes the valugwDatato the digital outpulines on the

channel specified byChanon the board specified Inpev
Refer to your External DAS Driver user’s guide for a description of the
data that can be storeddwData.

See Also K_IntStart, K_SyncStart

4-32 Function Reference

K_DOWrite (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwDOValue;

dwDOValue = 0x5;
wDasErr = K_DOWrite (hDev, 0, dwDOValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global dwDOValue As Long

dwDOValue = &H5
wDasErr = K_DOWrite (hDev, 0, dwDOValue)

4-33

K_FormatChnGAry

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES

Converts the format of a channel-gain queue.

Visual C++
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

pArray Channel-gain queue starting address.
Error/status code. Refer to Appendix A.

This function converts a channel-gain queue using double-byte (16-bit)
values to a channel-gain queue of single-byte (8-bit) values that the
K_SetChnGAry function can use.

After you use this function, your program can no longer read the
converted list. You must use the RestoreChnGAry function to return
the list to its original format.

K_SetChnGAry, K_RestoreChnGAry

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global ChanGainArray(16) As Integer ' Chan/Gain array

' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))

4-34

Function Reference

K_FreeDevHandle

Boards All

Supported

Purpose Frees a previously specified board handle.
Prototype Visual C++

DASErr far pascal K_FreeDevHandle (DWORDeV);

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal hDevAs Long) As Integer

Parameters hDev Board handle you want to free.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the board handle specifiethbgvas well as all

frame handles associated witbev
See Also K_GetDevHandle

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_FreeDevHandle (hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_FreeDevHandle (hDev)

4-35

K_FreeFrame

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-36

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Frees a frame.

Visual C++
DASEtr far pascal K_FreeFrame (DWORIDBrams);

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

hFrame Handle to frame you want to free.
Error/status code. Refer to Appendix A.

This function frees the frame specifiedlijrame making the frame
available for another operation.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_FreeFrame (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_FreeFrame (hFrame)

Function Reference

K_GetADFrame

Boards
Supported

Purpose

Prototype

Parameters

Remarks

See Also

Usage

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500

Accesses an A/D frame for an analog input operation.

Visual C++
DASErr far pascal K_GetADFrame (DWORiDey
DWORD far * pFramg;

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,pFrameAs Long) As Integer

hDev Handle associated with the board.

pFrame Handle to the frame that defines the operation.

This function specifies that you want to perform a DMA-mode,
interrupt-mode, or synchronous-mode analog input operation on the
board specified biiDey and accesses an available A/D frame with the
handlepFrame

K_ClearFrame, K_FreeFrame

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hAD;

wDasErr = K_GetADFrame (hDev, &hAD);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global hAD As Long

wDasErr = K_GetADFrame (hDev, hAD)

4-37

K_GetADTrig

Boards Series 500

Supported

Purpose Gets the current analog trigger conditions.
Prototype Visual C++

DASErr far pascal K_GetADTrig (DWORBFrame short farpOpt,
short farpChan, DWORD far*pLeve);

Visual Basic for Windows

Declare Function K_GetADTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pOptAs IntegerpChanAs Integer,
pLevelAs Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pOpt Analog trigger polarity and sensitivity.
Valid values: O for Positive edge
2 for Negative edge

pChan Analog input channel used as trigger channel.
pLevel Level at which the trigger event occurs.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined yrame this function stores the channel used

for an analog trigger ipChan the level used for the analog trigger in
pLeve] and the trigger polarity and sensitivityp@pt

ThepOptvariable contains the value of the Trigger Polarity element; the
pChanvariable contains the value of the Trigger Channel element; the
pLevelvariable contains the value of the Trigger Level element.

The value opbLevelis represented as a count value between 0 and 8191,
where O representd 0 V and 8181 represents +10 V.

See Also K_SetADTrig, K_GetTrig

4-38 Function Reference

K_GetADTrig (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

int nOpt, nChan;
DWORD dwLevel;

wDasErr = K_GetADTrig (hFrame, &nOpt, &nChan, &dwLevel);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nOpt As Integer
Global nChan As Integer
Global dwLevel As Long

wDasErr = K_GetADTrig (hFrame, nOpt, nChan, dwLevel)

4-39

K_GetBuf

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Supported Series 500, PIO Series, PDMA Series
Purpose Gets the address and size of the first memory buffer assigned to a frame.
Prototype Visual C++

DASETr far pascal K_GetBuf (DWORBFrame void far * far*pBuf,

DWORD far*pSample}

Visual Basic for Windows
Declare Function K_GetBuf Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pBufAs Long,pSampleé\s Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer.
pSamples Number of samples.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation specified byrrame this function stores the address of

the first memory buffer ipBufand the number of samples stored in that
buffer inpSamples

Use this function to get the address of a synchronous-mode,
interrupt-mode, or DMA-mode memory buffer whose address was
specified byK_SetBuf or KSetDMABUT .

ThepBufvariable contains the value of the Buffer elementptBamples
variable contains the value of the Number of Samples element.

See Also K_GetBufB, K_SetBuf

4-40 Function Reference

K_GetBuf (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pADBuffer;
DWORD dwSamples;

wDasErr = K_GetBuf (hFrame, &pADBuffer, &dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Dim pADBuffer As Long

wDasErr = K_GetBuf (hFrame, pADBuffer, dwSamples)

4-41

K_GetBufB

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-42

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Gets the address and size of the second memory buffer assigned to a
frame.

Visual C++
DASETr far pascal K_GetBufB (DWORBFrame void far * far*pBuf,
DWORD far*pSample}

Visual Basic for Windows
Declare Function K_GetBufB Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pBufAs Long,pSampleg\s Long) As Integer

hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer.
pSamples Number of samples.

Error/status code. Refer to Appendix A.

For the operation specified hfframe this function stores the address of
the second memory buffer pBufand the number of samples stored in
that buffer inpSamples

Use this function to get the address of an interrupt-mode or DMA-mode
memory buffer whose address was specifie b$etBufB or
K_SetDMABUfB. (Syncronous-mode operations do not support a second
memory buffer.)

ThepBufvariable contains the value of the Buffer elementptBamples
variable contains the value of the Number of Samples element.

K_GetBuf, K_SetBufB

Function Reference

K_GetBufB (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pADBuffer;
DWORD dwSamples;

wDasErr = K_GetBufB (hFrame, &pADBuffer, &dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Dim pADBuffer As Long

wDasErr = K_GetBufB (hFrame, pADBuffer, dwSamples)

4-43

K_GetChn

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-44

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Gets a single channel number.

Visual C++

DASErr far pascal K_GetChn (DWORiFrame short farspChan);

Visual Basic for Windows

Declare Function K_GetChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pChanAs Integer) As Integer

hFrame Handle to the frame that defines the operation.
pChan Channel on which to perform the operation.
Error/status code. Refer to Appendix A.

For the operation defined wrame this function stores the channel
number inpChan

ThepChanvariable contains the value of the Start Channel element.

K_SetChn, K_GetStartStopChn, K_GetStartStopG

Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
short nChan;

wDasErr = K_GetChn (hFrame, &nChan);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nChan AS Integer

wDasErr = K_GetChn (hFrame, nChan)

Function Reference

K_GetChnGAry

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES
Supported

Purpose Gets the starting address of a channel-gain queue.

Prototype Visual C++

DASErr far pascal K_GetChnGAry (DWORIiFrame
void far * far*pArray);

Visual Basic for Windows

Not supported

Parameters hFrame Handle to the frame that defines the operation.
pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined Iyrrame this function stores the starting

address of the channel-gain queupAuray.

ThepArray variable contains the value of the Channel-Gain Queue
element.

Refer to page 2-11 for information on setting up a channel-gain queue.
See Also K_SetChnGAry

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pArray;

wDasErr = K_GetChnGAry (hFrame, &pArray);

4-45

K_GetClk

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Supported Series 500, PDMA Series

Purpose Gets the pacer clock source.

Prototype Visual C++

DASErr far pascal K_GetClk (DWORBFrame short farspMode);

Visual Basic for Windows
Declare Function K_GetCIk Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pModeAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pMode Pacer clock source.
Valid values: O for Internal
1 for External

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined yrame this function stores the pacer clock
source inpMode

An internal clock source is the output of the onboard counter; an external
clock source is an external signal connected to the appropriate pin.

For more information about pacer clock sources, refer to page 2-6 (for
analog input operations), page 2-17 (for analog output operations), and
page 2-25 (for digital /0O operations).

ThepModevariable contains the value of the Clock Source element.

See Also K_SetClk, K_GetCIkRate

4-46 Function Reference

K_GetCIk (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

Word wMode;

wDasErr = K_GetClk (hFrame, &wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wMode As Integer

wDasErr = K_GetClk (hFrame, wMode)

4-47

K_GetClkRate

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-48

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PDMA Series

Gets the number of clock ticks used by the internal pacer clock.

Visual C++
DASErr far pascal K_GetClkRate (DWORiFrame
DWORD far*pRate);

Visual Basic for Windows
Declare Function K_GetClkRate Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pRateAs Long) As Integer

hFrame Handle to the frame that defines the operation.

pRate Number of clock ticks between conversions.
Error/status code. Refer to Appendix A.

For the operation defined yrame this function stores the number of
clock ticks used by the internal pacer cloclpkate

After a synchronous-mode, interrupt-mode, or DMA-mode operation, the
value stored ipRaterepresents the actual count used, not necessarily the
count set byK_SetClkRate.

ThepRatevariable contains the value of the Pacer Clock Rate element.

K_SetCIkRate, K_GetCIlk

Function Reference

K_GetClkRate (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwRate;

wDasErr = K_GetClkRate (hFrame, &dwRate);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global dwRate As Long

wDasErr = K_GetClkRate (hFrame, dwRate)

4-49

K_GetContRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-50

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Gets the buffering mode.

Visual C++
DASErr far pascal K_GetContRun (DWORibrame short farpMode);

Visual Basic for Windows
Declare Function K_GetContRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pModeAs Integer) As Integer

hFrame Handle to the frame that defines the operation.

pMode Buffering mode.
Valid values: O for Single-cycle mode
1 for Continuous mode

Error/status code. Refer to Appendix A.

For the operation defined frame this function stores the buffering
mode inpMode

For a description of buffering modes, refer to page 2-14 (for analog input
operations), page 2-23 (for analog output operations), and page 2-31 (for
digital I/O operations).

ThepModevariable contains the value of the Buffering Mode element.

K_SetContRun, K_ClrContRun

Function Reference

K_GetContRun (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wMode;

wDasErr = K_GetContRun (hFrame, &wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wMode As Integer

wDasErr = K_GetContRun (hFrame, wMode)

4-51

K_GetDAFrame

Boards DAS-8/A0, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, Series
Supported 500
Purpose Accesses a D/A frame for an analog output operation.
Prototype Visual C++
DASErr far pascal K_GetDAFrame (DWORiDey
DWORD far * pFrame;

Visual Basic for Windows
Declare Function K_GetDAFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,pFrameAs Long) As Integer

Parameters hDev Handle associated with the board.
pFrame Handle to the frame that defines the D/A
operation.
Return Value Error/status code. Refer to Appendix A.
Remarks This function specifies that you want to perform a synchronous-mode,

interrupt-mode, or DMA-mode analog output operation on the board
specified byhDey and accesses an available D/A frame with the handle
pFrame

See Also K_ClearFrame, K_FreeFrame

4-52 Function Reference

K_GetDAFrame (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDA,;

wDasErr = K_GetDAFrame (hDev, &hDA);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global hDA As Long

wDasErr = K_GetDAFrame (hDev, hDA)

4-53

K_GetDevHandle

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-54

All

Initializes any Keithley DAS board.

Visual C++
DASErr far pascal K_GetDevHandle (DWORIDrv, WORD nBrdNum
DWORD far *pDeV);

Visual Basic for Windows

Declare Function K_GetDevHandle Lib "DASSHELL.DLL"
(ByVal hDrv As Long, ByVainBrdNumAs IntegerpDevAs Long)
As Integer

hDrv Driver handle of the associated Function Call
Driver.

NBrdNum Logical board number.

pDev Handle associated with the board.

Error/status code. Refer to Appendix A.

This function initializes the board associated vhibbrv and specified by
nBrdNum and stores the board handle of the specified boguDénw

The value stored ipDevis intended to be used exclusively as an
argument to functions that require a board handle. Your program should
not modify the value stored pDev

K_FreeDevHandle, DASDLL_GetDevHandle,
DASDLL_GetBoardName, K_DASDevlInit

Function Reference

K_GetDevHandle (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDeyv;

wDasErr = K_GetDevHandle (hDrv, 0, &hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global hDev As Long

wDasErr = K_GetDevHandle (hDrv, 0, hDev)

4-55

K_GetDIFrame

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-56

DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES, Series 500,
PIO Series, PDMA Series

Accesses a DI frame for a digital input operation.

Visual C++
DASErr far pascal K_GetDIFrame (DWORiDey
DWORD far * pFramg;

Visual Basic for Windows
Declare Function K_GetDIFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,pFrameAs Long) As Integer

hDev Handle associated with the board.
pFrame Handle to the frame that defines the digital input
operation.

Error/status code. Refer to Appendix A.

This function specifies that you want to perform a synchronous-mode,
interrupt-mode, or DMA-mode digital input operation on the board
specified byhDey and accesses an available digital input frame with the
handlepFrame

K_ClearFrame, K_FreeFrame

Function Reference

K_GetDIFrame (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDil;

wDasErr = K_GetDIFrame (hDev, &hDI);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global hDI As Long

wDasErr = K_GetDIFrame (hDev, hDI)

4-57

K_GetDOFrame

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-58

DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES, Series 500,
PIO Series, PDMA Series

Accesses a DO frame for a digital output operation.

Visual C++
DASErr far pascal K_GetDOFrame (DWORiIDey
DWORD far * pFrame;

Visual Basic for Windows
Declare Function K_GetDOFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,pFrameAs Long) As Integer

hDev Handle associated with the board.

pFrame Handle to the frame that defines the digital
output operation.

Error/status code. Refer to Appendix A.

This function specifies that you want to perform a synchronous-mode,
interrupt-mode, or DMA-mode digital output operation on the board
specified bynDey and accesses an available digital output frame with the
handlepFrame

K_ClearFrame, K_FreeFrame

Function Reference

K_GetDOFrame (cont.)

Usage Visual C++
#include “DASDECL.H” // Use DASDECL.HPP for C++

DWORD hDO;

wDasErr = K_GetDOFrame (hDev, &hDO);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global hDO As Long

wDasErr = K_GetDOFrame (hDev, hDO)

4-59

K_GetErrMsg

Boards All
Supported
Purpose Gets the address of an error message string.
Prototype Visual C++
DASErr far pascal K_GetErrMsg (DWORDey shortnDASETrt
char far * far *pErrMsg);
Visual Basic for Windows
Not supported
Parameters hDev Handle associated with the board.
NDASETrr Error message number.
pErrMsg Address of error message string.
Return Value Error/status code. Refer to Appendix A.
Remarks For the board specified ey this function stores the address of the

string corresponding to error message numiEkSErrin pErrMsg

Refer to page 2-5 for more information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

char far *pErrMsg;

wDasErr = K_GetErrMsg (hDev, nDasErr, &pErrMsg);

4-60 Function Reference

K _GetG

Boards DAS-8PGA, DAS-8/A0, DAS-16 Series, DAS-20, DAS-40 Series,
Supported DAS-HRES, Series 500

Purpose Gets the gain.

Prototype Visual C++

DASETr far pascal K_GetG (DWORBFrame short farpGain);

Visual Basic for Windows
Declare Function K_GetG Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pGainAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.
pGain Gain code.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined Ifrrame this function stores the gain code

for a single channel or for a group of consecutive chann@&ain

Refer to Appendix C for specific operating specifications on gains and
channels.

See Also K_SetG, K_GetStartStopG

4-61

K_GetG (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wGain;

wDasErr = K_GetG (hFrame, &wGain);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wGain As Integer

wDasErr = K_GetG (hFrame, wGain)

4-62 Function Reference

K_GetShellVer

Boards All

Supported

Purpose Gets the current DAS shell version.
Prototype Visual C++

DASErr far pascal K_GetShellVer (WORD fgsVersion);

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(pVersionAs Integer) As Integer

Parameters pVersion A word value containing the major and minor
version numbers of the DAS shell.

Return Value Error/status code. Refer to Appendix A.

Remarks To obtain the major version number of the DAS shell, dipdersionby
256. To obtain the minor version number of the DAS shell, perform a
Boolean AND operation witpVersionand 255 (OFFh).

See Also K_GetVer

4-63

K_GetShellVer (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wShellVer;

wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wShellVer As Integer
wDasErr = K_GetShellVer (wShellVer)
ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." +:

LTRIM$ (STR$ (wShellVer AND &HFF))
PRINT "Driver Ver: " + ShellVer$

4-64 Function Reference

K_GetStartStopChn

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Gets the first and last channels in a group of consecutive channels.

Visual C++
DASErr far pascal K_GetStartStopChn (DWOREBrame
short far*pStart, short farpStop);

Visual Basic for Windows
Declare Function K_GetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pStartAs IntegerpStopAs Integer) As Integer

hFrame Handle to the frame that defines the operation.
pStart First channel in a group of consecutive channels.
pStop Last channel in a group of consecutive channels.

Error/status code. Refer to Appendix A.

For the operation defined IWrrame this function stores the first channel
in a group of consecutive channelgpiBtartand the last channel in the
group of consecutive channelsgBtop

The pStartvariable contains the value of the Start Channel element; the
pStopvariable contains the value of the Stop Channel element.

K_SetStartStopChn, K_GetChn, K_GetStartStopG

4-65

K_GetStartStopChn (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

short nStart, nStop;

wDasErr = K_GetStartStopChn (hFrame, &nStart, &nStop);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nStart As Integer
Global nStop As Integer

wDasErr = K_GetStartStopChn (hFrame, nStart, nStop)

4-66 Function Reference

K_GetStartStopG

Boards DAS-8PGA, DAS-8/A0, DAS-16 Series, DAS-20, DAS-40 Series,
Supported DAS-HRES, Series 500
Purpose Gets the first and last channels in a group of consecutive channels and the

gain for all channels in the group.

Prototype Visual C++
DASErr far pascal K_GetStartStopG (DWORBrame
short far*pStart, short farspStop short farpGain);

Visual Basic for Windows

Declare Function K_GetStartStopG Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pStartAs IntegerpStopAs Integer,
pGainAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.
pStart First channel in a group of consecutive channels.
pStop Last channel in a group of consecutive channels.
pGain Gain code.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined byrame this function stores the first channel

in a group of consecutive channelpidtart the last channel in the group
of consecutive channels fxstop and the gain code for all channels in the
group inpGain

Refer to Appendix C for the gain associated with the gain code.

The pStartvariable contains the value of the Start Channel element; the
pStopvariable contains the value of the Stop Channel elemerpGh:
variable contains the value of the Gain element.

See Also K_SetStartStopG, K_GetChn, K_GetStartStopChn

4-67

K_GetStartStopG (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

short nStart, nStop, nGain;

wDasErr = K_GetStartStopG (hFrame, &nStart, &nStop, &nGain);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nStart As Integer
Global nStop As Integer
Global nGain As Integer

wDasErr = K_GetStartStopG (hFrame, nStart, nStop, nGain)

4-68 Function Reference

K_GetTrig

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Supported Series 500

Purpose Gets the trigger source.

Prototype Visual C++

DASE'r far pascal K_GetTrig (DWORDBFrame short farrpMode);

Visual Basic for Windows
Declare Function K_GetTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pModeAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pMode Trigger source.
Valid values: O for Internal trigger
1 for External trigger

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined Ifrrame this function stores the trigger
source inpMode

ThepModevariable contains the value of the Trigger Source element.

An internal trigger is a software trigger. An external trigger is either an
analog trigger or a digital trigger. For more information about trigger
sources, refer to page 2-14 (for analog input operations), page 2-24 (for
analog output operations), and page 2-32 (for digital I/O operations.

See Also K_SetTrig

4-69

K_GetTrig (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wMode;

wDasErr = K_GetTrig (hFrame, &wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wMode As Integer

wDasErr = K_GetTrig (hFrame, wMode)

4-70 Function Reference

K_GetVer

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Gets revision numbers.

Visual C++
DASETr far pascal K_GetVer (DWORBDey short far *pSpecVer
short far *pDrvVer);

Visual Basic for Windows

Declare Function K_GetVer Lib "DASSHELL.DLL"

(ByVal hDevAs Long,pSpecVeAs IntegerpDrvVerAs Integer)
As Integer

hDev Handle associated with the board.

pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.

pDrvVer Driver version number.
Error/status code. Refer to Appendix A.

For the board specified IDey this function stores the revision number
of the Function Call Driver ipDrvVerand the revision number of the
driver specification ipSpec\Ver

The values stored pSpecVeandpDrvVerare two-byte (16-bit) integers;

the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.1, the major revision level is 2 and the minor revision level is
1; therefore, the high byte pDrvVercontains the value & (512) and

the low byte opDrvVercontains the value df, the value of both bytes is
513.

4-71

K_GetVer (cont.)

To extract the major and minor revision levels from the value stored in

pDrvVeror pSpecVeruse the following equations:

f [returnedvalue;
U

majorrevisionlevel = Int rtion
ajorrevisionleve egerportiono 556 i

minorrevisionlevel = returnedralueMOD 256

See Also K_GetShellVer

Usage

4-72

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

short nSpecVer, nDrvVer;

wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global nSpecVer As Integer
Global nDrvVer As Integer

wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)

DrvwWer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." +:
LTRIM$ (STR$ (nDrvVer AND &HFF))

PRINT "Driver Ver: " + DrvWer$

Function Reference

K_IntStart

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES,
Series 500, PIO Series, PDMA Series

Starts an interrupt-mode operation.

Visual C++
DASErr far pascal K_IntStart (DWORBFrame);

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function starts the interrupt-mode operation defineldHogme

For a discussion of the programming tasks associated with interrupt-mode
operations, refer to page 3-13 (for analog input operations), page 3-19
(for analog output operations), and page 3-25 (for digital I/O operations).

K_IntStatus, K_IntStop

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_IntStart (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_IntStart (hFrame)

4-73

K_IntStatus

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES, Series 500,
Supported PIO Series, PDMA Series
Purpose Gets status of interrupt-mode operation.
Prototype Visual C++
DASErr far pascal K_IntStatus (DWORiF-rame short farpStatus
DWORD far*pCouny;

Visual Basic for Windows
Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, pStatusAs IntegerpCountAs Long)

As Integer
Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of interrupt-mode operation; $&amarks
for value stored.
pCount Number of samples that were acquired.
Return Value Error/status code. Refer to Appendix A.

4-74 Function Reference

K_IntStatus (cont.)

Remarks For the interrupt operation defined blrame this function stores the
status inpStatusand the number of samples acquireg@ount

The value stored ipStatusdepends on the settings in the Status word, as
shown below:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0=No data*ost
1 = Data lost

0 = Buffer A active
1 = Buffer B active

0 = Interrupt operation inactive
1 = Interrupt operation active

The bits are described as follows:
. Bit 0: Indicates whether an interrupt-mode operation is in progress.

. Bit 1: If you are using two buffers, indicates which buffer is active. If
you are using one buffer, this bit is always O.

. Bit 2: If you are using two buffers, indicates whether data was lost
when switching from one buffer to the other.

. Bits 3 through 15: Not used.

See Also K_IntStart, K_IntStop

4-75

K_IntStatus (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_IntStatus (hFrame, &wStatus, &dwCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_IntStatus (hFrame, wStatus, dwCount)

4-76 Function Reference

K_IntStop

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES, Series 500,
Supported PIO Series, PDMA Series
Purpose Stops an interrupt-mode operation.
Prototype Visual C++
DASErr far pascal K_IntStop (DWORDBFrame short far*pStatus
DWORD far*pCounf);

Visual Basic for Windows
Declare Function K_IntStop Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, pStatusAs IntegerpCountAs Long)

As Integer
Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of interrupt operation; sBemarks for
K_IntStatus on page 4-75 for the value stored.
pCount Number of samples that were acquired.
Return Value Error/status code. Refer to Appendix A.
Remarks This function stops the interrupt operation definethBsameand stores

the status of the interrupt operatiorpiitatusand the number of samples
acquired inpCount

If an interrupt operation is not in progreks,IntStop is ignored.

See Also K_IntStart, K_IntStatus

4-77

K_IntStop (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_IntStop (hFrame, &wStatus, &dwCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_IntStop (hFrame, wStatus, dwCount)

4-78 Function Reference

K_MoveArrayToBuf

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-8/A0, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, Series
500, PIO Series, PDMA Series

Transfers data from the program’s local array to a buffer allocated
throughK_SyncAlloc or DASDLL_DMAAlloc .

Visual C++
Not supported

Visual Basic for Windows

Declare Function K_MoveArrayToBuf Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByValpDestAs Long,pSourceAs Integer,

ByVal nCountAs Integer) As Integer

pDest Address of destination buffer.
pSource Source array.
nCount Number of samples to transfer.

Valid values: 1t032767(0 = 32768)
Error/status code. Refer to Appendix A.

This function transfers the number of samples specifieddmuntfrom
the buffer at addregsSourceto the buffer at addregdest

The buffer used to store output data for your program is not accessible to
the program; you must use this function to move the data from the
program’s local array to the allocated buffer.

DASDLL_DMAAIloc, K_SyncAlloc

4-79

K_MoveArrayToBuf (cont.)

Usage

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SyncAlloc (hDA, dwSamples, pBuf, hMem)

wDasErr = K_MoveArrayToBuf (pBuf, DACArray[0], dwSamples)

4-80 Function Reference

K_MoveBufToArray

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Transfers data from a buffer allocated throkglSyncAlloc or
DASDLL_DMAAIlloc to your program’s local array.

Visual C++
Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" pDestAs Integer, ByVapSourceAs Long,

ByVal nCountAs Integer) As Integer

pDest Destination array.
pSource Address of source buffer.
nCount Number of samples to transfer.

Valid values: 1t032767(0 = 32768)
Error/status code. Refer to Appendix A.

This function transfers the number of samples specifieddmuntfrom
the buffer at addregsSourceto the array at addrep®est

The buffer used to store acquired data for your program is not accessible
to your program; you must use this function to move the data from the
allocated buffer to your program'’s local array.

DASDLL_DMAAIloc, K_SyncAlloc

4-81

K_MoveBufToArray (cont.)

Usage

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SyncAlloc (hAD, dwSamples, pBuf, hMem)

wDasErr = K_MoveBufToArray (ADArray[0], pBuf, dwSamples)

4-82 Function Reference

K_OpenDriver

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

All

Initializes any Keithley DAS Function Call Driver.

Visual C++
DASETr far pascal K_OpenDriver (char faszDrvName
char far *szCfgNameDWORD far *pDrv);

Visual Basic for Windows

Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDrvNameAs String, ByValszCfgNam@és String,
pDrv As Long) As Integer

szDrvName Driver name.
Valid value: "DASDLL"
(for DASDLL-supported boards)

szCfgName Driver configuration file.

pDrv Handle associated with the driver.
Error/status code. Refer to Appendix A.

This function initializes the DASDLL Function Call Driver and stores the
driver handle irpDrv.

The DASDLL Function Call Driver does not use a configuration file. It is
recommended that you enter a NULL stringgaCfgName.

You can use this function to initialize the Function Call Driver associated
with any Keithley MetraByte DAS board. For DASDLL-supported
boards, the string stored saDrvNamamust be DASDLL. Refer to other
Function Call Driver user’s guides for the appropriate string to store in
szDrvNamdor other Keithley MetraByte DAS boards.

The value stored ipDrv is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored pDrv.

4-83

K_OpenDriver (cont.)

See Also K_CloseDriver, DASDLL_DevOpen
Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDrv;

wDasErr = K_OpenDriver ("DASDLL", ", &hDrv);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

DIM hDrv As Long

wDasErr = K_OpenDriver ("DASDLL", "™, hDrv)

4-84 Function Reference

K_RestoreChnGAry

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES
Supported
Purpose Restores a converted channel-gain queue.
Prototype Visual C++
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

Parameters pArray Channel-gain queue starting address.
Return Value Error/status code. Refer to Appendix A.
Remarks This function restores a channel-gain queue that was converted using

K_FormatChnGAry to its original format so that it can be used by your
Visual Basic for Windows program.

See Also K_FormatChnGAry, K_SetChnGAry
Usage

Visual Basic for Windows
#include "DASDECL.H" // Use DASDECL.HPP for C++

Global ChanGainArray (16) As Integer

wDasErr = K_RestoreChnGAry (ChanGainArray (0))

4-85

K_SetADTrig

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

4-86

Series 500

Sets up an analog trigger.

Visual C++
DASE'r far pascal K_SetADTrig (DWORDBFrame shortnOpt
shortnChan DWORD dwLeve);

Visual Basic for Windows

Declare Function K_SetADTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnOptAs Integer,

ByVal nChanAs Integer, ByVabwLevelAs Long) As Integer

hFrame Handle to the frame that defines the operation.

nOpt Analog trigger polarity and sensitivity.
Valid values: O for Positive edge
2 for Negative edge

nChan Analog input channel used as trigger channel.

dwLevel Level at which the trigger event occurs.
Valid values: 0t0 8191

Error/status code. Refer to Appendix A.

For the operation defined Wrame this function specifies the channel
used for an analog trigger imChan the level used for the analog trigger
in dwLeve] and the trigger polarity and trigger sensitivityn@pt

You specify the value falwLevelas a count value between 0 and 8191,
where O representd 0 V and 8191 represents +10 V.

Refer to Appendix C for board-specific operating specifications on
channels.

Function Reference

K_SetADTrig (cont.)

See Also

Usage

ThenOptvariable sets the value of the Trigger Polarity and Trigger
Sensitivity elements; theChanvariable sets the value of the Trigger
Channel element; trewwLevelvariable sets the value of the Trigger Level
element.

K_SetADTrig does not affect the operation definechbByameunless the
Trigger Source element is set to External (by a cdl t8etTrig) before
hFrameis used as a calling argument¢oSyncStart, K_IntStart , or
K_DMAStart .

K_GetADTrig, K_SetTrig

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetADTrig (hFrame, 0, 0, 2047);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetADTrig (hFrame, 0, 0, 2047)

4-87

K_SetBuf

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-88

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Specifies the starting address of the first memory buffer used in
synchronous mode or interrupt mode.

Visual C++
DASETr far pascal K_SetBuf (DWORDBFrame void far*pBuf,
DWORD dwSamples

Visual Basic for Windows

Declare Function K_SetBuf Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValpBufAs Long,

ByVal dwSample#s Long) As Integer

hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer.
dwSamples Number of samples.

Valid values: 1t0 32767
Error/status code. Refer to Appendix A.

For the operation defined Ifrrame this function specifies the starting
address of the first memory buffergBufand the number of samples (the
size of the buffer) imlwSamples

Use this function for synchronous mode and interrupt mode only. For
DMA mode, use&K _SetDMABuUf.

ThepBufvariable sets the value of the Buffer element,diwS&les
variable sets the value of the Number of Samples element.

K_SetBufB, K_GetBuf

Function Reference

K_SetBuf (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer

wDasErr = K_SyncAlloc (hFrame, dwSamples, &pBuf, &hMem);
wDasErr = K_SetBuf (hFrame, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global pBuf As Long

wDasErr = K_SyncAlloc (hFrame, dwSamples, pBuf, hMem)
wDasErr = K_SetBuf (hFrame, pBuf, dwSamples)

4-89

K_SetBufB

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-90

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Specifies the starting address of the second memory buffer used in
interrupt mode.

Visual C++
DASErr far pascal K_SetBufB (DWORBFrame void far*pBuf,
DWORD dwSamples

Visual Basic for Windows

Declare Function K_SetBufB Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValpBufAs Long,

ByVal dwSample#s Long) As Integer

hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer.
dwSamples Number of samples.

Valid values: 1t0 32767
Error/status code. Refer to Appendix A.

For the operation defined Ifrrame this function specifies the starting
address of the second memory buffepBufand the number of samples
(the size of the buffer) idwSamples

Use this function for interrupt mode only. For DMA mode, use
K_SetDMABUfB. (Syncronous-mode operations do not support a second
memory buffer.)

ThepBufvariable sets the value of the Buffer element,diwS&les
variable sets the value of the Number of Samples element.

K_SetBuf, K_GetBufB

Function Reference

K_SetBufB (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer

wDasErr = K_SyncAlloc (hFrame, dwSamples, &pBuf, &hMem);
wDasErr = K_SetBufB (hFrame, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global pBuf As Long

wDasErr = K_SyncAlloc (hFrame, dwSamples, pBuf, hMem)
wDasErr = K_SetBufB (hFrame, pBuf, dwSamples)

4-91

K_SetChn

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Supported Series 500, PIO Series, PDMA Series

Purpose Specifies a single channel.

Prototype Visual C++

DASErr far pascal K_SetChn (DWORFrame shortnChar);

Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnChanAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.
nChan Channel on which to perform operation.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined Iframe this function specifies the single

channel used inChan

Refer to Appendix C for board-specific operating specifications on
channels.

ThenChanvariable sets the value of the Start Channel element and the
Stop Channel element.

See Also K_GetChn, K_SetStartStopChn, K_SetStartStopG

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetChn (hFrame, 2);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetChn (hFrame, 2)

4-92 Function Reference

K_SetChnGAry

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES

Specifies the starting address of a channel-gain queue.

Visual C++
DASETr far pascal K_SetChnGAry (DWORtiFrame void far*pArray);

Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pArray As Integer) As Integer

hFrame Handle to the frame that defines the operation.

pArray Channel-gain queue starting address.
Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the starting
address of the channel-gain queupAuray.

ThepArray variable sets the value of the Channel-Gain Queue element.
Refer to page 2-11 for information on setting up a channel-gain queue.

Refer to Appendix C for board-specific information on channels and
gains.

If you created your channel-gain queue in Visual Basic for Windows, you
must use&K_FormatChnGAry to convert the channel-gain queue before
you specify the address wikh SetChnGAry.

K_FormatChnGAry, K_RestoreChnGAry

4-93

K_SetChnGAry (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

// DECLARE AND INITIALIZE CHAN/GAIN PAIRS
/I (GainChanTable-TYPE IS DEFINED IN dasdecl.h)
GainChanTable ChanGainArray= {2, // # of entries
0,0, //chanO0,gain1
1,1}; //chan 1, gain 2

wDasErr = K_SetChnGAry (hFrame, &ChanGainArray);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global ChanGainArray(16) As Integer

' Create the array of channel/gain pairs
ChanGainArray(0) =2 '# of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) =0
ChanGainArray(3) = 1: ChanGainArray(4) = 1

wDasErr = K_FormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hFrame, ChanGainArray(0))

4-94 Function Reference

K_SetClk

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PDMA Series

Specifies the pacer clock source.

Visual C++
DASErr far pascal K_SetClk (DWORBFrame shortnModse;

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnModeAs Integer) As Integer

hFrame Handle to the frame that defines the operation.

nMode Pacer clock source.
Valid values: O for Internal
1 for External

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the pacer
clock source imMode

ThenModevariable sets value of the Clock Source element.

The internal clock source is the output of the onboard counter; an external
clock source is an external signal connected to the appropriate pin on the
main I/O connector.

For more information about pacer clock sources, refer to page 2-6 (for
analog input operations), page 2-17 (for analog output operations), and
page 2-25 (for digital /0O operations).

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, andK_ClearFrame specify internal as the default
clock source.

K_GetCIk, K_SetCIkRate

4-95

K_SetClIk (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetCIlk (hFrame, 1);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetClk (hFrame, 1)

4-96 Function Reference

K_SetClkRate

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PDMA Series

Specifies the number of clock ticks used by the internal pacer clock.

Visual C++
DASErr far pascal K_SetClkRate (DWORiBrame
DWORD dwDiviso);

Visual Basic for Windows
Declare Function K_SetClkRate Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValdwDivisorAs Long) As Integer

hFrame Handle to the frame that defines the operation.

dwDivisor Number of clock ticks between conversions.
Error/status code. Refer to Appendix A.

For the operation defined Iyrrame this function specifies the number
of clock ticks used by the internal pacer clockiwDivisor.

ThedwDivisor variable sets the value of the Pacer Clock Rate element.

For more information about the pacer clock, refer to page 2-12 (for
analog input operations), page 2-21 (for analog output operations), and
page 2-30 (for digital I/0O operations).

K_GetCIkRate, K_SetCIlk

4-97

K_SetClkRate (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwClIkDiv;

dwClkDiv = 1000000 / 10000;
wDasErr = K_SetClkRate (hFrame, dwClkDiv);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global dwClIkDiv As Long

dwClkDiv = 1000000 / 10000
wDasErr = K_SetClkRate (hFrame, dwCIkDiv)

4-98 Function Reference

K_SetContRun

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Enables continuous buffering mode.

Visual C++
DASErr far pascal K_SetContRun (DWORIBrams;

Visual Basic for Windows
Declare Function K_SetContRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

For the operation defined Ifrrame this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, andK_ClearFrame enable single-cycle buffering
mode.

For a description of buffering modes, refer to page 2-6 (for analog input
operations), page 2-17 (for analog output operations) section, and
page 2-25 (for digital /0O operations).

K_ClIrContRun, K_GetContRun

4-99

K_SetContRun (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetContRun (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetContRun (hFrame)

4-100 Function Reference

K_SetDMABuUf

Boards DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series

Supported

Purpose Specifies the starting address of the first memory buffer used in DMA
mode.

Prototype Visual C++
DASETr far pascal K_SetDMABuf (DWORBFrame void far*pBuf,
DWORD dwSamples

Visual Basic for Windows

Declare Function K_SetDMABuf Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValpBufAs Long,

ByVal dwSampleds Long) As Integer

Parameters hFrame Handle to the frame that defines the DMA-mode
operation.
pBuf Starting address of buffer.
dwSamples Number of samples.

Valid values: 1t0 32767
Return Value Error/status code. Refer to Appendix A.

Remarks For the operation specified byframe this function stores the address of
the first memory buffer ipBufand the number of samples stored in the
buffer indwSamples

Use this function for DMA mode only. For synchronous mode and
interrupt mode, usk_SetBuf.

ThepBufvariable contains the value of the Buffer element; the
dwSamplesariable contains the value of the Number of Samples
element.

See Also DASDLL_DMAAIlloc, K_SetDMABuUfB

4-101

K_SetDMABuf (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer

wDasErr = DASDLL_DMAAIloc (hFrame, dwSamples, &pBuf, &hMem);
wDasErr = K_SetDMABuUf (hFrame, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global pBuf As Long

wDasErr = DASDLL_DMAAIloc (hFrame, dwSamples, pBuf, hMem)
wDasErr = K_SetDMABuf (hFrame, pBuf, dwSamples)

4-102 Function Reference

K_SetDMABuUfB

Boards DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES

Supported

Purpose Specifies the starting address of the second memory buffer used in DMA
mode.

Prototype Visual C++
DASETr far pascal K_SetDMABuUfB (DWORBFrame void far*pBuf,
DWORD dwSamples

Visual Basic for Windows

Declare Function K_SetDMABuUfB Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValpBufAs Long,

ByVal dwSampleds Long) As Integer

Parameters hFrame Handle to the frame that defines the DMA-mode
operation.
pBuf Starting address of buffer.
dwSamples Number of samples.

Valid values: 1t0 32767
Return Value Error/status code. Refer to Appendix A.

Remarks For the operation specified bfframe this function stores the address of
the second memory buffer pBufand the number of samples stored in
the buffer indwSamples

Use this function for DMA mode only. For interrupt mode, use
K_SetBufB. (Syncronous-mode operations do not support a second
memory buffer.)

ThepBufvariable contains the value of the Buffer element; the
dwSamplesariable contains the value of the Number of Samples
element.

See Also DASDLL_DMAAIlloc, K_SetDMABuf

4-103

K_SetDMABuUfB (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer

wDasErr = DASDLL_DMAAIloc (hFrame, dwSamples, &pBuf, &hMem);
wDasErr = K_SetDMABUfB (hFrame, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global pBuf As Long

wDasErr = DASDLL_DMAAIloc (hFrame, dwSamples, pBuf, hMem)
wDasErr = K_SetDMABufB (hFrame, pBuf, dwSamples)

4-104 Function Reference

K SetG

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

DAS-8PGA, DAS-8/A0, DAS-16 Series, DAS-20, DAS-40 Series,
DAS-HRES, Series 500

Sets the gain.

Visual C++
DASErr far pascal K_SetG (DWORBFrame shortnGain;

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnGainAs Integer) As Integer

hFrame Handle to the frame that defines the operation.

nGain Gain code.
Error/status code. Refer to Appendix A.

For the operation defined IWrrame this function specifies the gain code
for a single channel or for a group of consecutive channel&ain

Refer to Appendix C for board-specific operating specifications on gains.
ThenGainvariable sets the value of the Gain element.

K_GetADFrame andK_ClearFrame specify a gain of 1 (gain code 0)
as the default gain.

K_GetG, K_SetStartStopG

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetG (hFrame, 1);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetG (hFrame, 1)

4-105

K_SetStartStopChn

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-106

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Specifies the first and last channels in a group of consecutive channels.

Visual C++
DASErr far pascal K_SetStartStopChn (DWORErame shortnStart
shortnStop);

Visual Basic for Windows

Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnStartAs Integer,

ByVal nStopAs Integer) As Integer

hFrame Handle to the frame that defines the operation.
nStart First channel in a group of consecutive channels.
nStop Last channel in a group of consecutive channels.

Error/status code. Refer to Appendix A.

For the operation defined tyrame this function specifies the first
channel in a group of consecutive channeisStartand the last channel
in the group of consecutive channelBtop

Refer to Appendix C for board-specific operating specifications on
channels.

ThenStartvariable sets the value of the Start Channel elementStap
variable sets the value of the Stop Channel element.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame andK_ClearFrame set the Start Channel and Stop
Channel elements to 0.

K_GetStartStopChn, K_SetChn, K_SetStartStopG

Function Reference

K_SetStartStopChn (cont.)

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetStartStopChn (hFrame, 0, 7);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetStartStopChn (hFrame, 0, 7)

4-107

K_SetStartStopG

Boards DAS-8PGA, DAS-8/A0, DAS-16 Series, DAS-20, DAS-40 Series,
Supported DAS-HRES, Series 500
Purpose Specifies the first and last channels in a group of consecutive channels and

sets the gain for all channels in the group.

Prototype Visual C++
DASErr far pascal K_SetStartStopG (DWORBrame shortnStart
shortnStop shortnGain);

Visual Basic for Windows

Declare Function K_SetStartStopG Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnStartAs Integer,

ByVal nStopAs Integer, ByVahGainAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.
nStart First channel in a group of consecutive channels.
nStop Last channel in a group of consecutive channels.
nGain Gain code.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined Iyrrame this function specifies the first

channel in a group of consecutive channelsStart the last channel in a
group of consecutive channelsritop and the gain code for all channels
in the group imGain

ThenStartvariable sets the value of the Start Channel elementStap
variable sets the value of the Stop Channel elementiGlaén variable
sets the value of the Gain element.

Refer to Appendix C for board-specific operating specifications on gains
and channels.

K_GetADFrame andK_ClearFrame set the Start Channel, Stop
Channel, and Gain elements to 0.

4-108 Function Reference

K_SetStartStopG (cont.)

See Also K_GetStartStopG, K_SetChn, K_SetStartStopChn

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetStartStopG (hFrame, 0, 7, 0);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetStartStopG (hFrame, 0, 7, 0)

4-109

K_SetTrig

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Supported Series 500

Purpose Specifies the trigger source.

Prototype Visual C++

DASETr far pascal K_SetTrig (DWORDBFrame shortnMods);

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnModeAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nMode Trigger source.
Valid values: O for Internal trigger
1 for External trigger

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined yrame this function specifies the trigger
source imMode

An internal trigger is a software trigger. An external trigger is either an
analog trigger or a digital trigger. For more information about trigger
sources, refer to page 2-14 (for analog input operations), page 2-24 (for
analog output operations), and page 2-32 (for digital I/O operations).

For DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, and
DAS-HRES boards, iiMode= 1, the external trigger is a digital trigger.
For Series 500 boards,iMode= 1, the external trigger is an analog
trigger; useK_SetADTrig to specify the conditions for an external analog
trigger.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, andK_ClearFrame set the trigger source to internal.

See Also K_GetTrig

4-110 Function Reference

K_SetTrig (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetTrig (hFrame, 1);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SetTrig (hFrame, 1)

4-111

K_SyncAlloc

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Supported Series 500, PIO Series, PDMA Series

Purpose Allocates a buffer for a synchronous-mode or interrupt-mode operation.
Prototype Visual C++

DASETr far pascal K_SyncAlloc (DWORDFrame
DWORD dwSamplesvoid far * far*pBuf, WORD far*pMen);

Visual Basic for Windows

Declare Function K_SyncAlloc Lib "DASSHELL.DLL"

(ByVal hFrameAs Long, ByValdwSample#s Long,pBufAs Long,
pMemAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of samples.
Valid values: 1t032767

pBuf Starting address of the allocated buffer.
pMem Handle associated with the allocated buffer.
Return Value Error/status code. Refer to Appendix A.
Remarks For the operation defined WFrame this function allocates a buffer of

the size specified bgwSamplesand stores the starting address of the
buffer inpBufand the handle of the buffer gMem

See Also K_SyncFree, K_SetBuf, K_SetBufB

4-112 Function Reference

K_SyncAlloc (cont.)

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer
WORD hMem; /I Memory Handle to buffer

wDasErr = K_SyncAlloc (hFrame, dwSamples, &pBuf, &hMem);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

Global pBuf As Long
Global hMem As Integer

wDasErr = K_SyncAlloc (hFrame, dwSamples, pBuf, hMem)

4-113

K_SyncFree

Boards DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,

Supported Series 500, PIO Series, PDMA Series

Purpose Frees a buffer allocated for a synchronous-mode or interrupt-mode
operation.

Prototype Visual C++

DASErr far pascal K_SyncFree (WORiMen);

Visual Basic for Windows
Declare Function K_SyncFree Lib "DASSHELL.DLL"
(ByVal hMemAs Integer) As Integer

Parameters hMem Handle to memory buffer.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the buffer specified lbylem the buffer was

previously allocated using_SyncAlloc.
See Also K_SyncAlloc

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SyncFree (hMem);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SyncFree (hMem)

4-114 Function Reference

K_SyncStart

Boards
Supported

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Starts a synchronous-mode operation.

Visual C++
DASErr far pascal K_SyncStart (DWORiFrame;

Visual Basic for Windows
Declare Function K_SyncStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function starts the synchronous operation defindaFoyme

For a discussion of the programming tasks associated with
synchronous-mode operations, refer to page 3-11 (for analog input
operations), page 3-18 (for analog output operations), and page 3-24 (for
digital I/O operations).

K_DMAStart

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SyncStart (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

wDasErr = K_SyncStart (hFrame)

4-115

A

Error/Status Codes

Error and status codes may be returned by either the DASDLL Function
Call Driver or your External DAS Driver. Table A-1 lists the error/status
codes that are returned by the DASDLL Function Call Driver, as well as
possible causes for errors and possible solutions for resolving errors.
Refer to your External DAS Driver user’s guide for a list of the
error/status codes returned by the External DAS Driver.

If you cannot resolve an error, contact the Keithley MetraByte
Applications Engineering Department.

Table A-1. Error/Status Codes

Error Code

Hex

Decimal

Cause

Solution

0

0

No error has been detected.

Status only; no action is necess

ary.

6000

24576

Error in configuration file: The

configuration file you specified in
the driver initialization function is
corrupt, does not exist, or contair
one or more undefined keywords

Check that the file exists at the
specified path. Check for illegal

keywords in file; you can avoid illega

keywords by using the configuration
utility to create and modify
configuration files.

6001

24577

lllegal base address in
configuration file: The board's
base 1/0 address in the
configuration file is illegal and/or
does not match the base address
switches on the board.

Use the configuration utility to change

the base I/O address to one that
matches the base address switches
the board.

on

A-1

Table A-1. Error/Status Codes (cont.)

S

S

er

[2)

le.

Error Code

Hex Decimal Cause Solution

6002 24578 lllegal IRQ level in configuration | Use the configuration utility to chang
file: The interrupt level in the the interrupt level to a legal one for
configuration file is illegal. your board. Refer to the External DA

Driver user’s guide for the board for
legal interrupt levels.

6003 24579 lllegal DMA channel in Use the configuration utility to chang
configuration file; The DMA the DMA channel to a legal one for
channel in the configuration file is your board. Refer to the External DA
illegal. Driver user’s guide for legal DMA

channels.

6005 24581 Illegal channel number: The Specify a legal channel number. Re
specified channel number is illeg| to the External DAS Drivers user’s
for the board and/or for the range guide or to Appendix C for legal
type (unipolar or bipolar). channel numbers.

6006 24582 lllegal gain code:The specified | Specify a legal gain code. Refer to t
analog I/0 channel gain code is | External DAS Driver user’s guide or
illegal for this board. to Appendix C for a list of legal gain

codes.

6007 24583 lllegal DMA address: An FCD Use theK_DMAAIloc function to
function specified a buffer addreq allocate dynamic buffers for DMA
that is not suitable for a DMA operations. In Windows, make sure
operation for the number of that the Keithley Memory Manager i
samples required. installed; refer to Appendix D for

information.

6008 24584 lllegal number in configuration | Use the configuration utility to check
file: The configuration file containsand then change the configuration fi
one or more numeric values that
are illegal.

600A 24586 Configuration file not found: The | Check that the file exists at the
driver cannot find the specified path. Check that the file
configuration file specified as an | name is spelled correctly in the drive
argument to the driver initializatio| initialization function parameter list.
function.

eI

A-2

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

ed

g.

Error Code

Hex Decimal | Cause Solution

600B 24587 Error returning DMA buffer: Check that the memory handle pass
DOS returned an error in INT 21Has an argument & DMAFree was
function 49H during the executionpreviously obtained using
of K_DMAFree. K_DMAAlloc .

600C 24588 Error returning interrupt Check the memory handle stored by
buffer: The memory handle K_IntAlloc and make sure that it wa
specified inK_IntFree is invalid. | not modified.

600D 24589 Illegal frame handle: The Check that the frame handle exists.
specified frame handle is not validCheck that you are using the
for this operation. appropriate frame handle.

600E 24590 No more frame handles:No UseK_FreeFrameto free a frame
frames are left in the pool of that the application is no longer usin
available frames.

600F 24591 Requested buffer size too large: | Specify a smaller buffer size. If in
The requested buffer cannot be | Windows Enhanced mode with the
allocated because of its size. Keithley Memory Manager

(VDMAD.386) installed, use
KMMSETUP.EXE to increase the
reserved buffer heap size.

6010 24592 Cannot allocate interrupt buffer: | Remove some Terminate and Stay
(Windows-based languages only] Resident programs (TSRs) that are
K_IntAlloc failed because there | longer needed.
was not enough available DOS
memory.

6012 24594 Interrupt buffer deallocation Make sure that the memory handle
error; (Windows-based languagegassed as an argumenktolntFree
only) An error occurred when was previously obtained using
K_IntFree attempted to freea | K_IntAlloc .
memory handle.

6015 24597 DMA Buffer too large: The Specify a smaller buffer size.
number of samples specified in
K_DMAAlloc is too large.

>

o

A-3

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

6016 24598 VDS - Region not contiguousAn | Refer to Appendix D for information
error occurred while using on how to install and set up the
Windows Virtual DMA Services. | Keithley Memory Manager
You tried to us&K_DMAAlloc in | (VDMAD.386).
Windows Enhanced mode and the
Keithley Memory Manager
(VDMAD.386) was not installed.

6017 24599 VDS - DMA wraparound: See See error 6016.
error 6016.

6018 24600 VDS - Unable to lock region:See | See error 6016.
error 6016.

6019 24601 VDS - No buffer available:See | See error 6016.
error 6016.

601A 24602 VDS - Region too largeSee error| See error 6016.
6016.

601B 24603 VDS - Buffer in use: See error See error 6016.

6016.

601C 24604

VDS - lllegal region: See error
6016.

See error 6016.

601D 24605 VDS - Region not locked:See See error 6016.
error 6016.

601E 24606 VDS - lllegal page:See error See error 6016.
6016.

601F 24607 VDS - lllegal buffer: See error | See error 6016.
6016.

6020 24608 VDS - Copy out of range:See See error 6016.
error 6016.

6021 24609 VDS - lllegal DMA channel: See | See error 6016.
error 6016.

6022 24610 VDS - Count overflow: See error | See error 6016.
6016.

A-4 Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

6023 24611 VDS - Count underflow: See See error 6016.
error 6016.

6024 24612 VDS - Function not supported: | See error 6016.
See error 6016.

6025 24613 lllegal OBM mode: The mode Refer to the description of
number specified in K_SetOBMMode for legal mode
K_SetOBMMode is illegal. values.

6026 24614 lllegal DMA structure: An error | Try usingKk_DMAFree again. If the
occurred during the execution of | error continues, contact the Keithley
K_DMAFree. MetraByte Applications Engineering

Department.

6027 24615 DMA allocation error: See error | See error 6026.
6026.

6028 24616 NULL DMA handle: See error See error 6026.
6026.

6029 24617 DMA unlock error: See error See error 6026.
6026.

602A 24618 DMA free error: See error 6026.| See error 6026.

602B 24619 Not enough memory to Specify a smaller number of samples.
accommodate requestThe Free a previously allocated buffer. Use
number of samples you requeste the KMMSETUP utility to expand the
in the Keithley Memory Manager| reserved heap.
is greater than the largest
contiguous block available in the
reserved heap.

602C 24620 Requested buffer size exceeds | Specify a value within the legal rangd
maximum: The number of when callingk_DMAAlIloc in
samples you requested from the | Windows Enhanced mode.
Keithley Memory Manager is
greater than the allowed maximuqn.

A-5

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal | Cause Solution

602D 24621 lllegal device handle:A bad Check the device handle value.
device handle was passed to a
function such ak_GetADFrame.

The handle used was not initializ¢
through a call to
DASDLL_GetDevHandle, or it
was corrupted by your program.

602E 24622 lllegal Setup option: An illegal Check the option value passed to the
option was specified to a function function where the error occurred.
that accepts a user option, such as
K_SetDITrig.

6030 24624 DMA word-page wrap: During Reduce the number of samples and
K_DMAAlloc , a DMA word-page| retry. If in Windows Enhanced mode,
wrap condition occurred and the | install and configure VDMAD.386.
allocation attempt failed since Refer to Appendix D.
there is not enough free memory
accommodate the allocation
request.

6031 24625 lllegal memory handle: A bad Restart your program and monitor the
memory handle was passed to | memory handle value.

K_IntFree, K_SyncFree,or
K_DMAFree. The handle used
was not initialized through a call to
K_IntAlloc, K_SyncAlloc, or
K_DMAAlloc , or it was corrupted
by you program.

6032 24626 Out of memory handles:An UseK_IntFree, K_SyncFree,or
attempt to allocate a memory blo¢ K_DMAFree to free previously
usingK_IntAlloc, K_SyncAlloc, | allocated memory blocks before
or K_DMAAIlloc failed because | allocating again.
the maximum number of handles
has already been assigned.

A-6

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

-

o

-

Error Code

Hex Decimal Cause Solution

6034 24628 Memory corrupted: Int 21H Recheck the parameters set by
function 48H, used to allocate a | K DMAAIloc andK_SetDMABUf.
memory block from the DOS far | If a fatal system error, restart your
heap, returned the DOS error 7; | computer.
this means that memory is
corrupted. It is likely that you
stored data (through a DMA-mode
or interrupt-mode operation) into
an illegal area of DOS memory.

6035 24629 Driver in use: You attempted to | Make sure that you initialize a driver
initialize a driver that was already only once during a single Windows
initialized by a call to session. To continue using the drive
K_OpenDriver. (This can occur | with its current configuration, pass a
since, under Windows, it is null string as the second argument {
possible to open the same driver| K_OpenDriver. To use the driver
from multiple programs that are | with a different configuration, close
running simultaneously.) the driver (usindg<_CloseDriver) and

then open the driver again (using
K_OpenDriver).

6036 24630 Illegal driver handle: The Someone may have closed the driver;

specified driver handle is not validif so, useK_OpenDriver to reopen
the driver with the desired driver
handle. Try again using another driver
handle.

6037 24631 Driver not found: The specified | Check your link statement to make
driver cannot be found. sure the specified driver is included

Make sure that the device name string
is entered correctly in
K_OpenDriver.

Table A-1. Error/Status Codes (cont.)

fer

ay
fer

~

Error Code

Hex Decimal Cause Solution

6038 24632 Invalid source pointer: Check the pointer to the source buffer
(Windows-based languages only) and the number of samples to trans
The pointer to the source buffer | that you specified in
that you passed as an argument t&_MoveBufToArray .
K_MoveBufToArray is invalid
for the specified count. (The source
pointer, when added to the number
of samples, exceeds the
programmed addressing range of
that pointer.)

6039 24633 Invalid destination pointer: Check the dimension of the local arr.
(Windows-based languages only] and the number of samples to trans
The pointer to the destination that you specified in
buffer (local array) that you pass¢ K_MoveBufToArray .
as an argument to
K_MoveBufToArray is invalid
for the specified count. (The
destination pointer, when added
the number of samples, exceeds
dimension of the local array.)

603A 24634 Illegal setup value:An illegal Check the legal ranges of all
value was passed to the function|iparameters passed to this function.
which the error occurred.

8001 32769 Function not supported: You Make sure that the function is
have attempted to use a function| supported by the board you are using.
not supported by the Function C& Contact theKeithley MetraByte
Driver. Applications Engineering

Department.

8003 32771 lllegal board number: An illegal | Specify a legal board number.
board number was specified in the
board initialization function.

8004 32772 lllegal error number: The error | The error number must be one the
message number specified in error numbers listed in this appendi
K_GetErrMsg is invalid.

A-8 Error/Status Codes

Table A-1. Error/Status Codes (cont.)

D

Error Code

Hex Decimal Cause Solution

8005 32773 Board not found at configured Make sure that the base address
address:The board initialization | setting of the switches on the board
function does not detect the matches the base address setting in the
presence of a board. configuration file.

8006 32774 A/D not initialized: You attempted Always callK_ClearFrame before
to start a frame-based analog ing setting up a new frame-based
operation without the A/D frame | operation.
being properly initialized.

8007 32775 D/A not initialized: You attempted Always callK_ClearFrame before
to start a frame-based analog setting up a new frame-based
output operation without the D/A | operation.
frame being properly initialized.

8008 32776 Digital input not initialized: You | Always callK_ClearFrame before
attempted to start a frame-based setting up a new frame-based
digital input operation without the operation.

DI frame being properly
initialized.

8009 32777 Digital output not initialized: You | Always callK_ClearFrame before
attempted to start a frame-based| setting up a new frame-based
digital output operation without theoperation.

DO frame being properly
initialized.

800B 32779 Conversion overrun: Data was | Adjust the clock source to slow down
overwritten before it was the rate at which the board acquires
transferred to the computer’s data. Remove other application
memory. programs that are running and using

computer resources.

8016 32790 Interrupt overrun : The board Check the maximum throughput rat
communicated a hardware event|tfor your computer’s programming
the software by generating a environment and ude_SetClkRate
hardware interrupt, but the to specify an appropriate rate.
software was still servicing a
previous interrupt. This is usually
caused by a pacer clock rate that is
too fast.

Table A-1. Error/Status Codes (cont.)

Error Code
Hex Decimal Cause Solution
801A 32794 Interrupts already active: You UseK_IntStop to stop the first
have attempted to start an operatj operation before starting the second
whose interrupt level is being use operation.
by another system resource.
801B 32795 DMA already active: You UseK_DMAStop to stop the first
attempted to start a DMA-mode | operation before starting the second
operation using a DMA channel | operation.
that is currently used by another
active operation.
8020 32800 FIFO Overflow event detected: | The conversion rate is too fast for your
During data acquisition, the computer’s programming
temporary on-board data storage environment; us& _SetClkRate to
(FIFO) overflowed. reduce the conversion rate. If you are
using DMA-mode and your board
supports dual-DMA, use the
configuration utility to reconfigure
your board to use dual-DMA.
FFFF 65535 User aborted operation:You Start the operation again, if desired.
pressed [Ctrl]+[Break] during a
synchronous-mode operation or
while waiting for an analog trigger
event to occur.

A-10

Error/Status Codes

B

Data Formats

The DASDLL Function Call Driver can read and write counts only. When
writing a value (as it_DAWrite), you must convert the voltage value to
a count; when reading a value (ainADRead), you may want to

convert the count to a more meaningful voltage value.

This appendix contains instructions for converting counts to voltage and
for converting voltage to counts.

Converting Counts to Voltage

You may want to convert counts to voltage when reading an analog input
value.

Perform the following steps to convert a count value to voltage when
reading an analog input value:

1. Unpack the count, if necessary. The way you unpack the count
depends on the board you are using. Table B-1 lists the data format
supported and the location of the data for each DASDLL-supported
board.

B-1

Table B-1. Data Formats (Analog Input)

Board Data Format Location of Data
DAS-8 Series Straight binary Lower 12 bits
DAS-16 Series Straight binary Upper 12 bits

DAS-20

Bipolar: twos complementUpper 12 bits

Unipolar: straight binary

DAS-40 Series

Switch-configurable

Lower 12 bits

DAS-HRES

Straight binary

All 16 bits

Series 500: AMM1A

Straight binary

Upper 12 bits

Series 500: AMM2

Straight binary

All 16 bits

For example, if you are using a DAS-16 Series board (12-bit board),
use the following equation to produce a count value that ranges from

0 through 4095.

count = (right-shift data four bits) bit-wise AND with OFFF

2. Use the equation that is appropriate for the analog input range type,
substituting the count value foountand the span of the analog input

range forspan.Thefull scale valuedepends on the number of bits
supported by the board; refer to Table B-2.

Bipolar

Voltage =

Unipolar

Voltage =

B-2

(count— half full scale valugx span

full scale value

countx span
full scale value

Data Formats

Table B-2. Full Scale Values

Number of Bits Full Scale Value
8 256

12 4096

16 65536

For example, assume that you are using a DAS-16 Series board
(12-bit board) and want to read analog input data from a channel
configured for a span of 10 V and a unipolar input range. The count
value is 3072. The voltage is determined as follows:

3072x 10 _
~1006 7.5V

As another example, assume that you are using a DAS-16 Series
board and want to read the analog input data from a channel
configured for a span of 10 V and a bipolar input range. The count
value is 1024. The voltage is determined as follows:

(1024— 204§x 10 _ _
4096 2.5V

B-3

Converting Voltage to Counts

B-4

You must convert voltage to counts when specifying an analog output
value.

Perform the following steps to convert a voltage value to a count when
specifying an analog output value:

1. Use the equation that is appropriate for the analog output range type,
substituting the desired voltage gy, ;and the span of the analog
output range fospan Thefull scale valuedepends on the number of
bits supported by the board; refer to Table B-2 on page B-3.

Bipolar
Vout X full scale value
Count = + half full scale value
span
Unipolar

Vout X full scale value

Count = -4
span

For example, assume that you are using a DAS-16 Series board
(12-bit board) and want to specify an analog output of 3V for a
channel configured for a span of 10 V and a bipolar output range. The
count is determined as follows:

3x 4096, 5048 = 3277

2. Pack the count into a variable, if necessary. The way you pack the
count depends on the board you are using. Table B-1 lists the data
format supported and the location of the data for each
DASDLL-supported board.

Data Formats

Table B-3. Data Formats (Analog Output)

Board Data Format Location of Data
DAS-8/A0 Straight binary Lower 12 bits
DAS-16 Series Straight binary Upper 12 bits

DAS-20 Twos complement | Lower 12 bits

DAS-40 Series

Straight binary

Lower 12 bits

DAS-HRES

Straight binary

All 16 bits

DDA-06

Straight binary

Lower 12 bits

Series 500: AOM1/2

Straight binary

Lower 12 bits

Series 500: AOM1/5

Straight binary

Lower 12 bits

Series 500: AOM2/1

Straight binary

Lower 12 bits

Series 500: AOM2/2

Straight binary

All 16 bits

Series 500: AOM3

Straight binary

Lower 12 bits

Series 500: AOM4

Straight binary

Lower 12 bits

Series 500: AOM5

Sign and magnitu

MSB = sign bit

je Lower 12 biteagnitude

For example, if you are using a DAS-16 Series board (12-bit board),

use the following equation:

variable data = (left-shift count four bits) bit-wise AND with FFFO

B-5

Operating Specifications

This appendix provides board-specific operating specifications on gains
and channels.

Gains

DASDLL FCD functions use gain codes to represent the gain assigned to
a particular channel on a DASDLL-supported board. These gain codes are
listed in the following tables:

. Table C-1 on page C-2 lists analog input ranges, gains, and
corresponding gain codes for DASDLL-supported boards that
support analog input operations.

. Table C-2 on page C-6 lists the gains and gain codes for Series 500
boards. Note that some Series 500 boards combine the use of local
and global gains to determine the total gain assigned to a channel.

Refer to your External DAS Driver board’s user’s guide for more
information.

C-1

C-2

Table C-1. Gain Codes for DASDLL-Supported Boards

Series Board A/D Mode Gain Input Range gg(ljne
DAS-8! DAS-8PGA Unipolar 1 Otol0V 9
DAS-8IAO 10 |0tolV 11
100 0 to 100 mV 13
500 |0to20 mV 15
Bipolar 1 10V 8
2 5V 0
20 +500 mV 10
200 | 50 mV 12
1000 | 10 mV 14
DAS-8PGA-G2| Unipolar |1 Oto 10V 9
2 Oto5V 11
4 Oto25V 13
8 Oto1.25V 15
Bipolar 1 10V 8
2 5V 0
4 25V 10
8 +1.25V 12
16 +0.625V 14

Operating Specifications

Table C-1.

Gain Codes for DASDLL-Supported Boards (cont.)

Series Board A/D Mode @Gain Input Range gsline
DAS-16 DAS-16G1 Unipolar | 1 Oto 10V 0
10 OtolV 1
100 0 to 100 mV 2
500 |0to20 mV 3
Bipolar 1 10V 0
10 1V 1
100 | £100 mV 2
500 |20 mV 3
DAS-16G2 Unipolar 1 Oto 10V 0
2 Oto5V 1
4 0to 2.5 mV 2
8 Oto1.25mV |3
Bipolar 1 +10V 0
2 BV 1
4 25V 2
8 +1.25V 3
DAS-20 DAS-20 Unipolar 1 Oto10V Oor2
10 OtolV 4
100 |0tol00mV | 6
Bipolar 0.5 +10V 1
1 BV 3
10 +0.5V 5
100 +50 mV 7

C-3

C-4

Table C-1. Gain Codes for DASDLL-Supported Boards (cont.)

Series Board A/D Mode Gain Input Range gsline
DAS-40 DAS-40G1 0to10¥ |1 0to10V 0
10 0tolV 1
100 |[0to100mV |2
500 | 0to20mV 3
+10 V3 1 +10V 0
10 +1V 1
100 | +100 mV 2
500 | +20 mV 3
+5 V3 1 +5V 0
10 + 500 mV 1
100 | +50 mV 2
500 | +10 mV 3
DAS-40G2 0to10V |1 0to10V 0
2 Oto5V 1
4 0to 2.5V 2
8 0t01.25V 3
+10 V3 1 +10V 0
2 +5V 1
4 +25V 2
8 +1.25V 3
+5 V3 1 +5V 0
2 25V 1
4 +1.25V 2
8 +625 mV 3

Operating Specifications

Table C-1. Gain Codes for DASDLL-Supported Boards (cont.)

Series Board A/D Mode Gain Input Range gg:jne
DAS-HRES | DAS-HRES Unipolar |1 Oto10V 0
2 Oto5V 1
4 0to25V 2
8 0to1.25V 3
Bipolar 1 +10V 0
2 BV 1
4 25V 2
8 +1.25V 3
Notes

1The DAS-8 and the DAS-8LT do not have programmable gains. The analog input

range for both boards is always +5 V.
2 Gains on the DAS-16 and DAS-16F boards are switch-selectable.

3Analog input range is switch-selectable.

C-5

C-6

Table C-2. Gain Codes for Series 500 Boards

Module ! |Local Gain |Global Gain Total Gain Gain Code
AMM1A 1 1 1 0
AMM2 1 5 5 1
1 5 5 2
1 10 10 3
10 1 10 4
10 2 20 5
10 5 50 6
10 10 100 7
AIM2 -- -- 1 0
AlM4
AIM9 - - z .
-- -- 5 2
-- -- 10 3
AIM3A 1 1 1 0
1 2 2 1
1 5 5 2
1 10 10 3
10 1 10 4
10 2 20 5
10 5 50 6
10 10 100 7
100 1 100 8
100 2 200 9
100 5 500 10
100 10 1000 11

Operating Specifications

Table C-2. Gain Codes for Series 500 Boards (cont.)

Module ! |Local Gain |Global Gain Total Gain Gain Code
AIM6 -- -- 50 0
-- -- 100 1
-- -- 250 2
-- -- 500 3
AIM7 -- -- 100 0
-- -- 200 1
-- -- 500 2
-- -- 1,000 3
AIM8 1 1 1 0
1 2 2 1
1 5 5 2
1 10 10 3
10 1 10 4
10 2 20 5
10 5 50 6
10 10 100 7
100 1 100 8
100 2 200 9
100 5 500 10
100 10 1000 11
1000 1 1000 12
1000 2 2000 13
1000 5 5000 14
1000 10 10000 15
Notes

1 Series 500 modules not listed in this table do not have programmable gains.

C-7

Channels

Table C-3 lists the number of available analog input and analog output
channels on DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series,
DAS-HRES, DDA-06, PIO Series, and PDMA Series boards.

Notes: For information on the number of analog input and analog output
channels supported on Series 500 boards, refer teittdey
Instruments 500/575 External DAS Driverser’s guide.

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
DDA-06, PIO Series, and PDMA Series boards support one digital input
channel (channel 0) and one digital output channel (channel 0). Series
500 boards treat each 8-bit digital input port or 8-bit digital output port as
a separate channel. For information on the number of available digital /0
channels on Series 500 boards, refer td<diehley Instruments 500/575
External DAS Driveraiser’'s guide.

Table C-3. Channels Available

A/D Channels
D/A
Series Board Type Onboard Expansion Channels
DAS-8 DAS-8 8 single-ended 128 0
DAS-8LT 8 single-ended 128 0
DAS-8PGA 8 single-ended or 8 differentiall 128 0
DAS-8PGA-G2| 8 single-ended or 8 differentfal | 128 0
DAS-8/A0 8 differential 128 2
DAS-16 DAS-16 16 single-ended or 8 differentlal 256 2
DAS-16F 16 single-ended or 8 differential 256 2
DAS-16G1 16 single-ended or 8 differentlal 256 2
DAS-16G2 16 single-ended or 8 differential256 2
C-8 Operating Specifications

Table C-3. Channels Available (cont.)

A/D Channels
D/IA

Series Board Type Onboard Expansion Channels
DAS-20 DAS-20 16 single-ended or 8 differentlal 256 2
DAS-40 DAS-40 16 single-ended or 8 differentialNot supported | 2
DAS-HRES | DAS-HRES 8 differential Not supported | 2

DDA DDA-06 0 0 6

Notes

1 switch-selectable.

C-9

D

Keithley Memory Manager

The process that Windows uses to allocate memory can limit the amount
of memory available to Keithley DAS boards operating in Windows
Enhanced mode. To reserve a memory heap large enough for the needs of
your application, use the Keithley Memory Manager (KMM) that is
included in the DASDLL software package.

The reserved memory heap is part of the total physical memory available
in your system. When you start up Windows, the KMM reserves the
memory heap. Then, whenever your application program requests
memory, the memory buffer is allocated from the reserved memory heap
instead of from the Windows global heap. The KMM is DAS board
independent and can be used by multiple Keithley DAS Windows
application programs simultaneously.

Note: The memory allocated with the KMM can be used by any DMA
controller, if applicable.

The following are supplied with the KMM:

. VDMAD.386 - Customized version of Microsoft’s Virtual DMA
Driver. This file consists of a copy of Microsoft’s Virtual DMA Driver
and a group of functions that are added to perform the KMM
functions. When you use the KMM to reserve a memory heap,
Microsoft’s Virtual DMA Diriver is replaced by the VDMAD.386 file.

Note: If you have multiple versions of VDMAD.386, it is
recommended that you install the latest version; to determine which
version is the latest version, refer to the time stamp of the file.

D-1

KMMSETUP.EXE - Windows program that helps you set up the
VDMAD.386 parameters and then modifies your SYSTEM.INI file
accordingly.

Installing and Setting Up the KMM

To install and set up the KMM whenever you start up Windows, you must
modify the SYSTEM.INI file. You can modify the SYSTEM.INI file
using either the KMMSETUP.EXE program or a text editor.

Using KMMSETUP.EXE

D-2

Using the KMMSETUP.EXE program, you can modify your Windows
SYSTEM.INI file as follows:

1.

Invoke KMMSETUP.EXE in one of the following ways:

— From the Program Manager menu, choose File and then Run, and
then type the complete path and program name for KMMSETUP.

— Select the KMMSETUP icon, if installed.

In the New VDMAD.386 box, enter the path and name of the
VDMAD.386 file, as follows:
C:\WINDOWS\VDMAD.386

The string you enter replac@glimad in thedevice=*vdmad line in
your SYSTEM.INI file.

Note: Normally, the VDMAD.386 file is stored in the WINDOWS
directory. If it is stored elsewhere, enter the correct path and name or
use the Browse button to find the file.

Notice the Current Setting box. The value specified reflects the
current size of the reserved memory heap in kilobytes.

In the Desired Setting box, enter the desired size of the reserved
memory heap in kilobytes.

The value you enter replaces ®KieIDMAHEAPSIZE=line in the
[386EnNh] section of your SYSTEM.INI file.

Keithley Memory Manager

Note: The memory size you specify is no longer available to
Windows. For example, if your computer has 8 MBytes of memory
installed and you specity{EIDMAHEAPSIZE=1000(1 MByte),
Windows can only see and use 7 MBytes.

If you specify a value less than 128, a 128K byte minimum heap size
is assumed. The maximum heap size is limited only by the physical
memory installed in your system and by Windows itself.

5. Select the Update button to update the SYSTEM.INI file with the
changes you have made.

6. Restart Windows to ensure that the system changes take effect.

Using a Text Editor
Using a text editor, you can modify your Windows SYSTEM.INI file in
the [386Enh] section, as follows:

1. Replace the lindevice=*vdmad with the following:
device=c:\windows\vdmad.386

Note: Normally, the VDMAD.386 file is stored in the WINDOWS
directory. If it is stored elsewhere, enter the correct path and name.

2. Add the following line:
KEIDMAHEAPSIZE=ssize>

wheresizeindicates the desired size of the reserved memory heap in
kilobytes.

D-3

Note: The memory size you specify is no longer available to
Windows. For example, if your computer has 8 MBytes of memory
installed and you specityfEIDMAHEAPSIZE=1000(1 MByte),
Windows can only see and use 7 MBytes.

If you do not add th&EIDMAHEAPSIZEkeyword or if the size you
specify is less than 128, a 128K byte minimum heap size is assumed.
The maximum heap size is limited only by the physical memory
installed in your system and by Windows itself.

3. Restart Windows to ensure that the system changes take effect.

Removing the KMM

If you make changes to the SYSTEM.INI file, you can always remove the
updated information from the SYSTEM.INI file and return all previously
reserved memory to Windows.

If you are using KMMSETUP.EXE, select the Remove button to remove
the updated information. If you are using a text editor, modify and/or
delete the appropriate lines in SYSTEM.INI. In both cases, make sure
that you restart Windows to ensure that the system changes take effect.

D-4 Keithley Memory Manager

Index

A

allocating memory bufferseememory
buffers

allocating memoryseememory allocation

analog input channe-10

analog input operatiofz-6
programming task8-10

analog input rangé2-10

analog output channéis2Q

analog output operatiof&11
programming task8-17

analog triggel2-15

B

board
handlg2-3
initialization[2-3
setupll-3
board, logicaR-3
boards supportedeeDASDLL-supported
boards
buffer address
analog input operatiofiz-9
analog output operatiofs20
digital I/O operationg2-28
buffer address functiof&-3
buffering mode functiorid-3
buffering modes
analog input operatiof-14
analog output operatiof&23
digital 1/0 operation®2-31

C

C++:seeVisual C++
channel and gain functiods4
channel-gain quel@-11

creating in Visual Basic for Windows

creating in Visual C+{8-31
channels

analog inpu2-10

analog outpu2-20

digital /O2-28
multiple using a channel-gain queue
2-1
multiple using a group of consecutive
channel®-11[2-19(2-21
summaryC-§
clock function$4-4
clock sourceseepacer clock
commandsseefunctions
common taskB8-10
continuous mode
analog input operatiofa-14
analog output operatiofZs23
digital 1/0 operation®2-31
convention&-5
conversion rat2-13
converting
raw counts to voltadB-1|
voltage to raw coun{B-4
counter time bag2-14
creating an executable file
Visual Basic for WindowB-37
Visual C+43-33

X-1

D

DACs: seedigital-to-analog converters
DASDLL_DevOperi2-3 [4-7
DASDLL_DMAAIloc [2-8§[2-18[2-27[4-9
DASDLL_DMAFree2-8 [2-19 [2-27[4-11
DASDLL_GetBoardNam®-4,[4-12
DASDLL_GetDevHandI®-3[4-13
DASDLL-supported board&-1

data formatB-1
data transfer modeseeoperation modes
data typegt-6
default values
A/D frame element3-4
D/A frame element3-6

DI frame elemen{3-7
DO frame elemen{3-§
digital 1/0O lines2-28
digital /0 operation@-23
programming task3-23
digital triggef2-16[2-24,[2-32
digital-to-analog convertef3-2Q
DMA mode
analog input operatiofd-74,[3-15
analog output operatios18[3-21
digital /0O operation®-26,[3-27
driver handI&-2
driver setupl-3
driver: seeFunction Call Driver

E
elements of fram@-2
error codefA-1]

error handling2-5
Visual Basic for Window8-37
Visual C++3-34
executable fileseecreating an executable
file
external pacer clodR-13[2-22[2-30
external triggeP-15[2-24

X-2

F

files required
Visual Basic for WindowB-31
Visual C++3-3

frame management functidds2

framed3-2
element8-2
handle$3-2
typed3-3

Function Call Driver
initialization[2-2
structurd3-1

functions
buffer addredd-3
buffering modé4-3
channel and gal4-4
clockl4-4
DASDLL_DevOperi2-3[4-7
DASDLL_DMAAlloc 2-§,

O
DASDLL_DMAFree2-§[2-19[2-27,
[4-11

DASDLL_GetBoardNamB-4,
DASDLL_GetDevHandI@-3,
frame managemefit-2
initialization[4-2
K_ADRead2-7[2-10[4-15
K_ClearFram&8-4,[4-17
K_CloseDrivef2-2,[4-18
K_CIrContRuri4-19
K_DASDevInit2-5,[4-21
K_DAWrite 2-17[2-21,[4-22
K_DIRead2-25[2-29[4-24
K_DMAStart2-7,[2-18 [2-26
K_DMAStatus2-7,[2-18 [2-26,4-27
K_DMAStop[2-7[2-18 [2-26[4-30
K_DOWrite2-25[2-29 [4-32
K_FormatChnGAn4-34
K_FreeDevHandIB-3 [4-35
K_FreeFramB-4,
K_GetADFramé3-3,

B

Index

K_GetADTrig[4-38
K_GetBuff4-40
K_GetBufB4-42
K_GetChri4-44
K_GetChnGAn{4-45
K_GetCIK4-46
K_GetClkRaté4-48
K_GetContRuf4-50
K_GetDAFramé3-3,
K_GetDevHandI@-3[4-54
K_GetDIFramé3-3
K_GetDOFram-3 [4-58
K_GetErrMsd2-6,[4-60
K_GetG4-61
K_GetShellve2-5,[4-63
K_GetStartStopCHA-65
K_GetStartStop@-61
K_GetTrig4-69
K_GetVel2-5,
K_IntStar{2-7, 2-28
K_IntStatug2-1, [2-26
K_IntStop2-1,[2-18[2-26[4-71
K_MoveArrayToBuf2-20/[2-28 [4-79
K_MoveBufToArray2-9,[2-28 [4-81
K_OpenDrive2-2[4-83
K_RestoreChnGAr#-85
K_SetADTrig2-15 [4-86
K_SetBuf4-88
K_SetBufB4-90
K_SetChi2-10[2-21[2-29[4-92
K_SetChnGAn2-12[4-93
K_SetCIK2-13 [2-21,[2-30[4-95
K_SetClkRat@-13 [2-22 [2-30[4-97
K_SetContRufP-142-23[2-31,[4-99
K_SetDMABufid-101
K_SetDMABUfBE-103
K_SetG2-10[2-11,[4-10%
K_SetStartStopCha-11,12-21[2-29
[4-106

K_SetStartStop@-11,[4-108
K_SetTrig2-14[2-24[2-32[4-110
K_SyncAlloc2-8 [2-18 2-27,[4-112

K_SyncFre®-§[2-19
K_SyncStai2-7,[2-17[2-26[4-115

memory manageme@t3
miscellaneougd-4
operatiori4-2
triggerf4-4

G

gain code®-10
summanC-1

gaind2-10

getting heldL-4l

group of consecutive channBsl1

H

handles
board2-3
driver2-2
memon2-8 2-19 [2-27
handling errorsseeerror handling

helpf-4

initialization function$4-2
initializing a boar@-3
initializing the drivei2-2
installing
Keithley Memory ManagdD-2
softwardl-2
internal pacer clod@-12,[2-21,[2-30
internal trigge2-14[2-24 [2-32
interrupt mode
analog input operatiof-7,[3-13
analog output operatio@s17,[3-19
digital 1/0 operation®-26[3-25

K

K_ADRead2-17,2-10
K_ClearFramé&-4,
K_CloseDrive2-2[4-18
K_ClIrContRuri4-19
K_DASDevInif2-5
K_DAWrite[2-17,[2-21,[4-22
K_DIRead2-25[2-29[4-24
K_DMAStart2-7,[2-18 [2-26 [4-28
K_DMAStatus2-17,[2-26[4-27
K_DMAStop[2-7[2-26[4-30
K_DOWrite[2-25[2-28[4-32
K_FormatChnGAn4-34
K_FreeDevHandIR-3 [4-35
K_FreeFram&-4 [4-36
K_GetADFramd3-3
K_GetADTrigl4-38
K_GetBufid-40
K_GetBufBl4-42
K_GetChri4-44
K_GetChnGAry4-43
K_GetCIH4-46
K_GetClkRaté4-48
K_GetContRuié-50
K_GetDAFramé3-3,
K_GetDevHandI@-3,
K_GetDIFramé3-3,
K_GetDOFram@-3,
K_GetErrMsd2-6,
K_GetG4-61
K_GetShellvef2-5
K_GetStartStopCHA-65
K_GetStartStop@l-67
K_GetTrigl4-69
K_GetVer2-5,
K_IntStar{2-7,[2-18[2-26,[4-73
K_IntStatu2-1,[2-18
K_IntStop2-7,2-18
K_MoveArrayToBuf2-20
K_MoveBufToArray2-9,
K_OpenDrivei2-2,

X-4

K_RestoreChnGAr#-85
K_SetADTrig[2-15[4-86
K_SetBuf4-88

K_SetBufB4-90
K_SetChii2-10[2-21[2-29 4-92
K_SetChnGAn2-12[4-93
K_SetCIH2-12[2-21[2-30 [4-95
K_SetClkRat@-13 [2-22[2-30[4-97
K_SetContRui@-14[2-23[2-31,[4-99
K_SetDMABuf{4-101
K_SetDMABuUfBE-103
K_SetG2-10[2-11,[4-105
K_SetStartStopCHR-11,[2-21,[2-29[4-106
K_SetStartStop@-11,[4-108
K_SetTrid2-14[2-24[2-32 [4-110
K_SyncAlloc2-8
K_SyncFre@-§[2-19[2-27[4-114
K_SyncSta@-7,[2-17,[2-26 [4-115
Keithley Memory ManageD-1|

KMM: seeKeithley Memory Manger

L
logical boar-3

M

maintenance operationseesystem
operations
managing memoryseememory allocation
memory allocation
analog input operatiofz-§
analog output operatiozs18
digital 1/0 operation@-27
Visual Basic for Window8-34
Visual C++3-30
memory handIR-8[2-19 [2-27

memory management functidds3

Index

memory manager
installingD-2)
removingD-4

Microsoft Visual Basic for Windowssee

Visual Basic for Windows

Microsoft Visual C++:seeVisual C++

miscellaneous functiofé-4
miscellaneous operatiorseesystem

operations
multiple channels
analog inpu@2-11
analog outpU-19[2-21
@)
operation functiong-2

operation modes
analog input operatioliz-g
analog output operatiof&s 11
digital 1/0 operationR-25
operations
analog inpu2-6
analog outpUR-17
digital I/O2-25
systeni2-2

P

pacer clock
analog input operatiof-12
analog output operatiof&s21
digital 1/0 operation2-3Q
external2-13[2-222-30
internal2-12
programming information
Visual Basic for Window8-34
Visual C+
programming overvieg-9

programming tasks
analog input operatiofz-10
analog output operatio@17
commor3-10
digital /0 operation8-23
operation-specifi8-10
preliminaryi3-10

R

read/write rat®2-30
readback functions

A/D frame3-4

D/A framel3-6

DI framel3-1

DO framd3-8
resetting a boaf@-3
retrieving revision level@-5
return valuesseeerror handling
revision level@-5
routines:seefunctions

S

scari2-11

setting up
board
driver|1-3
Keithley Memory Managdb-2

setup functions
A/D framel3-4
D/A frame[3-6
DI framel3-7
DO framd3-8

single mode

analog input operatiofiz-6,[3-11
analog output operatiofs17 [3-17

digital 1/0 operation®2-253-23

X-5

single-cycle mode
analog input operatiofiz-14
analog output operatiofs23
digital /0 operation@-31
software installatiofi-2
starting
analog input operatiofiz-6
analog output operatiofs17
digital /0 operation@-253
starting addresseebuffer address
status coddg-5,[A-1]
storing dataseebuffering modes
synchronous mode
analog input operatiofd-4,[3-11
analog output operatiofs17
digital /0 operation@-26[3-24
system operatiofa-2

T

tasks:seeprogramming tasks

technical suppo

time bas@-12

trigger
analod2-15
analog input operatiof&-14
analog output operati@@-24
digital[2-18
digital /0 operation2-32
externa2-15,
internal2-14,

trigger function&-4

trigger level:seevoltage level

troubleshootindl-4

X-6

U

unsupported featurés2
update rat®-22

Vv

Visual Basic for Window$8-34
Visual C++3-29
voltage leveR-15

Index

	ToC:

