cover.frm Black 1

DAS-800 Series
Function Call Driver
User’s Guide

tilepg.frm Black 1 6}

DAS-800 Series
Function Call Driver
User’s Guide

Revision A - December 1693
Part Number: 86770

b

noticep.frm Black 1 .Q}

The information contained in this manual is believed to be accurate and reliable. However, the
manufacturer assumes no responsibility for its use; nor for any infringements or patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of the manufacturer.

THE MANUFACTURER SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS PRODUCT
IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY THAT IS SUITED
FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

All brand and preduct names are trademarks or registered trademarks of their respective companies.
© Copyright Keithley Instruments, Inc., 1993,

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

800fcd.toc Black iii

%

Table of Contents

Preface

Getting Started

Installing the Software., o ... J1-2
Installing the DAS-800 Series Standard Software Package . 1-2
Instatling the ASO-800 Software Package L 1-3

DOSInstallation.oty .1-3
Windows Installation1-4

SettingUpthe Boards o il L1-5

GettingHelp............ i i .1-6

Avallable Operations

Analog Input Operationso 2-1
Operation Modes.o vii e L 2-2
Memory Allocation and Management2-3
Input Range Typeo .2-5
Gains e . 2-3
Channels i i e e .2-6

Single Channel, .2-8
Multiple Channels Using a Group of Consecutive
Channels ... i i .29
Multiple Channels Using a Channel-Gain List, . 2-9
Conversion Clocksol 2-13
BufferingMode. o 2-16
04 T3 o T N S 2-16
Analog Triggers i 2-17
Digital Triggersot 2-20
Hardware Gates. iiiiinannn, 2-22

Digital /O Operations o i 12-24 |

Counter/Timer I/O Operations. 12-26]

System Operations.t i 2-27
Initializing the Driver L0, [2-28]
InitializingaBoardol 2-29
Retrieving the RevisionLevel.00, 2-30
HandlingErrors. oo nns 2-30

i

800fcd.toc Black iv

©

Programming with the Function Call Driver

Howthe Driver Works.,ot . 3-1
Programming Overview. oviii i e . 3-5
Preliminary Tasks. o i .3-6
Operation-Specific Programming Tasks] .3-6
Analog Input Operations.3-6
SingleMode.37
SynchronousMode i . 3-7
InterruptMode i 3-9
Digital /O Operations.ovi i 3-12
Language-Specific Programming Information 3-12
Microsoft C/C++. i i 3-13
Borland C/CH++ 3-14
Microsoft QuickC for Windows 3-15
Microsoft Visual C++ s 3-16
Borland Turbo Pascal 3-16
Borland Turbo Pascal for Windows 3-17
Specifying the Buffer Address (Pascal) 3-18
Specifying the Channel-Gain List Siarting
Address(Pascal). v i 3-19
Microsoft QuickBASIC (Version4.0) 3-20
Microsoft QuickBasic (Version4.5) 3-21
Microsoft Professional Basic (Version 7.0} 3-22
Microsoft Visual Basic forDOS 3-23
Microsoft Visual Basic for Windows 3-24
Specifying the Buffer Address (All BASIC Languages) . . [3-25
Function Reference
DASB00 DevOpen ... i .4-6
DASB00_GetADGainMode., . 4-9
DASB00_GetDevHandle 4-11
DASB00_GetB254 i 4-13
DASBO0_SetADGainMode el 4-15
DASBOD SetB254 e e 4-17
K ADRead. ... e 4-19
K BufListAdd0 i e 4-22
K BufListResett e s 4-24
K_ClearFrame oo i 1 4-26/
K o CloSeDrver . o vt i e it et e 4-28
K ClrComRuUN. .ot i e e et eiane e 4-30
K DASDevInit ...ttt i 4-32
K DIReadttt et eiiaan e 4-33

800fcd.toc Black v

K DOWIItE ..ot i e e et e 4-35
K_FormatChanGAry i 4-37
K FreeDevHandle uini.., 4-38
K _FreeFrame.t iiiiiannnanns 4-39
K GetADFrame.ccivt it nss 4-40
K GetADT g . o e e e e e 4-42
K GetBuf. ... i 4-44
K _GetChn ..o e e e 4-46
K GetChnGAry. i e 4-48
Ko GetClk, oo e i e e e e 4-50
K GetClkRateoo 1 4-52]
K GetContRun ...ttt i e i 4-54
K_GetDevHandle.o i, 4-56
K GetDITrig . ..o o e e 4-58
K GetErrMsg. . ..o 4-60
Ko GelG ot e i et e 4-61
K oGetGate . .. vttt ettt e it e e e 4-63
K GetStartStopChnio oo e 4-65
K GetStantStopG oo e e 4-67
K GetTrig e 4-70
K_GetTrigHyst. oo i 4-72
S € Y, 4-74
K_InitFrame. ...,0 e e c 4-76
K IntAlloc e 4-78
K IntFree. i i i e e e s 4-80
KoImtStart, .. e e e 4-81
KIS atus .. e e e 4-83
Ko IntStop. . 4-86
K_MoveBufToArraycc i, 4-88
K OpenDriver i, 4-89
K_RestoreChanGAry. o, 4-92
K o SetADTrig. ..o e e 4-93
K o SetBuf . ..o 4-95
K SetBufl e e e, 4-97
K o SetChn. .ot e i e e e e 4-99
K_SetChnGAry e e ey 4-101
K SetClk .o e e e 4-103
K SetCIkRateoii it eae e 4-105
K SetContRun.oiv it i i v ai i eeene s 4-107
K SetDITrg. ..o e i i 4-109
G Y1 4-111
K SetGate o .ttt e e 4-113
v

800fcd.toc Black vi

Vi

@

K_SetStartStopChn, 4-115
K_SetStartStopG o 4-117
K_SetTrig. i e e 4-120
K _SetTrigHyst. i e 4-122
K SyneStarto e i e e e 4-124
Error/Status Codes
Data Formats
Converting Raw Countsto Voltage B-2
Converting VoltagetoRaw CountsB-3

Specifying an Analog Trigger Level.B-3

Specifying a Hysteresis Value.B-5
Index
List of Figures
Figure 2-1. Analog Input Channels2-8
Figure 2-2. Channel-Gain List {CorPascal) 2-10
Figure 2-3. Sample Channel-Gain List (C or Pascal). 2-11
Figure 2-4. Channel-Gain List (BASIC) 2-12
Figure 2-5. Sample Channel-Gain List (BASIC). 2-12
Figure 2-6. Initiating Conversions 2-15
Figure 2-7. Analog Trigger Conditions 2-17
Figure 2-8. Using a Hysteresis Value. 2-19
Figure 2-9. Initiating Conversions with an External

Analog Trigger i 2-20
Figure 2-10, Initiating Conversions with an External
Digital Trigger.................. 2-21

Figure 2-11, Hardware Gate.......................... 2-23
Figure 2-12, Digital InputBits 2-24
Figure 2-13. Digital OutputBits. 2-25

800fcd.toc Black vii

b

List of Tables
Table 2-1. Supported Operations 21
Table 2-2. AnalogInputRanges...................... ,2-6
Table 2-3, Channels in Maximum Configuration......... .2-7
Table 3-1. A/DFrame¢Elements.3-3
Table 3-2. Setup Functions for Synchronous-Mode
Operationscovvue i iiieenon. .37
Table 3-3, Setup Functions for Interrupt-Mode Operations .[3-10
Table4-1. FCDFunctions.4-2
Table 4-2, Default Configuration] .4-7
Table A-1. Error/Status Codes. A-1
vii

800fcd.toc Black viii

preface.frm Black ix

Preface

The DAS-800 Series Function Call Driver User’s Guide describes how to
write application programs for DAS-800 Series boards using the

D AS-800 Series Function Call Driver. The DAS-800 Series Function Call
Driver supports the following DOS-based languages:

Microsoft® QuickBASIC (Version 4.0)

Microsoft QuickBasic™ (Version 4.5 and higher)
Microsoft Professional Basic (Version 7.0 and higher)
Microsoft Visual Basic™ for DOS (Version 1.0)
Microsoft C/C++ (Version 4.0 and higher)

Borland® C/C++ (Version 1.0 and higher)

Borland Turbo Pascal® for DOS (Version 6.0 and higher)

The DAS-800 Series Function Call Driver also supports the following
Windows™-based languages:

Microsoft Visual Basic for Windows (Version 2.0 and higher)
Microsoft QuickC® for Windows (Version 1.0)
Microsoft Visual C++™ (Version 1.0)

Borland Turbo Pascal for Windows (Version 1.0 and higher)

preface.frm Black x

7

The manual is intended for application programmers using a DAS-800,
DAS-801, or DAS-802 board in an IBM® PC/XT™, AT® or compatible
computer, {t is assumed that users have read the DAS-800 Series User's
Guide to familiarize themselves with the boards’ functions, and that they
have completed the appropriate hardware installation and configuration, It
is also assumed that users are ¢xperienced in programming in their
selected language and that they are familiar with data acquisition
principles.

The DAS-800 Series Function Call Driver User’s Guide is organized as
follows:

s Chapter | contains the information needed to install the DAS-800
Series Function Call Driver and to set up DAS-800 Scries boards.

s Chapter 2 contains the background information needed to use the
functions included in the DAS-800 Series Function Call Driver.

o Chapter 3 contains programming guidelines and language-specific
information related to using the DAS-800 Series Function Call
Driver.

e Chapter 4 contains detailed descriptions of the DAS-800 Series
Function Call Driver functions, arranged in alphabetical order.

e Appendix A contains a list of the error codes returned by DAS-800
Series Function Call Driver functions.

¢ Appendix B contains instructions for converting raw counts to
voltage and for converting voltage to raw counis.

An index completes this manual.

preface.frm Black xi

57

Keep the following conventions in mind as you use this manual:

References to DAS-800 Series boards apply to the DAS-800,
DAS-801, and DAS-802 boards. When a feature applies to a
particular board, that board’s name is used.

References to BASIC apply to all DOS-based BASIC languages
{Microsoft QuickBASIC (Version 4.0), Microsoft QuickBasic
(Version 4.5), Microsoft Professional Basic, and Microsoft Visual
Basic for DOS). When a feature applies to a specific language, the
complete language name is used. References to Visual Basic for
Windows apply to Microsoft Visual Basic for Windows.

Keyboard keys are enclosed in square brackets ([).

Xi

chapO1_.frm Black 1

1

Getting Started

The DAS-800 Series Function Call Driver is a library of data acquisition
and control functions (referred to as the Function Call Driver or FCD
functions). It is part of the following two software packages:

o DAS-800 Series standard software package - This is the software
package that is shipped with DAS-800 Series boards, it includes the
following:

— Libraries of FCD functions for Microsoft QuickBASIC
(Version 4.,0), Microsoft QuickBasic (Version 4.5), Microsoft
Professional Basic, and Microsoft Visual Basic for DOS.

~ Support files, containing such program elements as function
prototypes and definitions of variable types, which are required
by the FCD functions.

- Utility programs, running under DOS, that allow you 1o
configure, calibrate, and test the functions of DAS-800 Series
boards.

— Language-specific example programs.

s ASO-800 software package - This is the optional Advanced
Software Option for DAS-800 Series boards. You purchase the
ASO-800 software package separately from the board; it includes the
foliowing:

— Libraries of FCD functions for Microsoft C/C++, Borland
C/C++, and Borland Turbo Pascal.

1-1

S

chapO1_.frm Black 2

N

— Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
Visual Basic for Windows, Microsoft QuickC for Windows,
Microsoft Visual C++, and Borland Turbo Pascal for Windows.

— Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

— Utility programs, running under DOS and Windows, that allow
you to configure, calibrate, and test the functions of DAS-800
Series boards.

— Language-specific example programs.

This chapter contains the information needed to install the DAS-800
Series Function Call Driver in your computer and set up your DAS-800
Series boards. It also contains information on where to get help if you
have problems installing or using the Function Call Driver.

Installing the Software

Before you can use the Function Call Driver, you must install the
appropriate software package, either the DAS-800 Series standard
software package or the ASO-800 software package.

The following sections describe how to install the DAS-B(0 Series
standard software package and how to install the ASO-800 software
package from both DOS and Windows,

Installing the DAS-800 Series Standard Software Package

To install the DAS-800 Series standard software package, perform the
following steps:

1. Make a back-up copy of the supplied disks.

2. Insert disk #1 into the disk drive.

Getting Started

chap(]_.frm Black 3

©

Assuming that you are using disk drive A, enter the following at the
DOS prompt:

A:install

The installation program prompts you for your installation
preferences, including the name of the directory you want Lo copy the
software to. It also prompts you to insert additional disks, as
necessary.

Continue to insert disks and respond to prompts, as appropriate.

The installation program expands any files that are stored in a
compressed format and copies them into the directory you specified
(DASB00 directory on hard disk C if you do not specify otherwise).

Review the following files:

— FILES.TXT lists and describes all the files copied to the hard disk
by the installation program.

— README.TXT contains information that was not available when
this manual was printed.

Instailling the ASO-800 Software Package

DOS Installation

This section describes how to install the ASO-800 software package from
both DOS and Windows.

To install the ASO-800 software package from DOS, perform the
following steps:

Make a back-up copy of the supplied disks,

Insert disk #1 into the disk drive.

3. Assuming that you are using disk drive A, cnter the following at the

DOS prompt:

A:install

1-3

chapOl_.frm Black 4

©

The installation program prompts you for your installation
preferences, including the name of the directory you want to copy the
software to. It also prompts you to insert additional disks, as
necessary.

4. Continue to insert disks and respond to prompts, as appropriate.
The installation program expands any files that are stored in a
compressed format and copies them into the directory you specified

(ASO800 directory on hard drive C if you do not specify otherwise).

5. Review the following files:

— FILES.TXT lists and describes all the files copied to the hard disk
by the installation program,.

— README.TXT contains information that was not availablec when
this manual was printed.

Windows Installation

To install the ASO-800 software package from Windows, perform the
following steps:;

1. Make a back-up copy of the ASO-Windows disk.

2. Insert the ASO-Windows disk into the disk drive.

3. Start Windows.

4. From the Program Manager menu, choose File and then choose Run,

5. Assuming that you are using disk drive A, type the following at the
command line in the Run dialog box, and then select OK:

A:SETUP
The installation program prompts you for your instatlation
preferences, including the name of the directory you want to copy the
software to.

6. Type the path name and select Continue.

Getting Started

chapO1_.frm Black 5

2

The installation program expands any files that are stored in a
compressed format and copies them into the directory you specified
{ASOBONWINDQWS directory on hard drive C if you do not specify
otherwise),

The installation program also creates a DAS-800 family group; this
group includes example Windows programs and help files.

7. Review the following files:

— FILES.TXT lists and describes atl the files copied to the hard disk
by the installation program.

~ README.TXT contains information that was not available when
this manual was printed.

Setting Up the Boards

Before you use the Function Call Driver, make sure that you have
performed the following steps:

1.

Installed the software.

If not, install the appropriate software package (either the DAS-800
Series standard software package or the ASO-800 software package)
on your IBM PC/XT, AT or compatible computer. Refer to page 1-2
for information on installing the DAS-800 Series standard software
package; refer 1o page 1-3 for information on installing the ASO-800
software package.

Created a configuration file.

If not, use the DBOOCFG.EXE utility to create a configuration file for
the DAS-800 Series boards you are using. For each board, make sure
that you specify the board model, the base address, the use of
counterftimer 2 (C/T2) on the 8254 counter/timer circuitry, the input
range type (unipolar or bipolar), the input configuration (single-ended
or differential) for each channel on each DAS-801 and DAS-802
board, the interrupt level, and the expansion boards used. Refer to the
DAS-800 Series User's Guide for more information,

1-5

chap01_.frm Black 6

Getting Help

N

Configured the hardware.

If not, use switches on the boards to set the base address of each
DAS-800 Series board and the input configuration {single-ended or
differential) for each channel on each DAS-801 and DAS-802 board.
Use the jumper on the boards to set the interrupt level of each
DAS-800 Series board. Refer to the instructions in the
DB00CFG.EXE utility and the DAS-800 Series User's Guide for more
information.

Installed the board(s).

If not, with the computer powered down, install the DAS-800 Serics
boards in your computer. The DAS-800 requires a single, short slot;
the DAS-801 and DAS-R02 require a single, 1/2-slot. Refer 1o the
documentation provided with your computer for more information on
installing boards.

Note: The DAS-800 Series Function Call Driver supports a
maximum of four DAS-800 Series boards.

Tested the board(s), if desired.

If you want to test the functions of the boards before writing your
application program, use the CTL800.EXE utility (for DOS} or the
CTL800W.EXE utility (for Windows). Refer to the DAS-800 Series
User's Guide for more information.

If you need help installing or using the DAS-800 Series Function Call
Driver, contact the factory.

1-6

Getting Started

chapOl_.frm Black 7

©

An applications engineer will help you diagnose and resolve your
problem over the telephone. Please make sure that you have the following
information available before you call:

Software package

Compiler

Operating system

Computer

DAS-800 board

Expansion boards

Version
Invoice/order #

Language
Manufacturer
Version

DOS version
Windows version
mode

Manufacturer

CPU type

Clock speed (MHz)
Math coprocessor
Amount of RAM
Yideo system
BIOS type

Model

Serial #

Base address setting
Interrupt level setting
Input configuration
Input range type
8254 C/T2 usage

Type
Type
Type
Type
Type
Type
Type
Type

3.0 3.1
Standard Enhanced

8088 2R6 386 486
8 12 20 25 33
Yes No

CGA Hercules EGA VGA

800 801 802

23456 7 None
Single-ended Differential
Unipolar Bipolar
Cascaded Normal

17

chapOl_.frm Black 8

chap02_.frm Black 1

2

Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DAS-800 Series boards. The
supported operations are listed in Table 2-1.

Table 2-1. Supported Operations

Operation Page Reference

Analog input page 2-1

Counter/timer I/O page 2-26

Analog Input Operations

This section describes the following:

.

Analog input operation modes available.
How to allocate and manage memory.
How to modify the input range type.

How to specify channels and gains, a conversion clock source, a
buffering mode, and a trigger source for an analog input operation.

2-1

chap02_.frm Black 2

Operation Modes

2-2

The operation mode determines which attributes you can specify for an
analog input operation and whether the operation is performed in the
foreground or in the background. You can perform analog input
operations in one of the following modes:

Single mode - In single mode, the board acquires a single sample
from an analog input channel. The driver initiates the conversion and
the hoard acquires the data in the foreground; you cannot perform any
other operation until the single-mode operation is complete.

You use the K_ADRead function to start an analog input operation in
single mode. You specify the board you want to use, the analog input
channel, the gain at which you want to read the signal, and the
variable in which to store the converted data.

Synchronous mode - In synchronous mode, the board acquires a
single sample or multiple samples from one or more analog input
channels. A hardware conversion clock initiates conversions while
the board acquires data in the foreground; you cannot perform any
other operation until the synchronous-mode operation is complete.
After the driver transfers the specified number of samples to the host,
it returns control to the application program, which reads the data.
Synchronous mode provides the fastest acquisition of multiple
samples.

You use the K_SyncStart function to start an analog input operation
in synchronous mode. You specify the channel(s), gain(s), conversion
clock source, buffer address, and trigger source.

Interrupt mode - In interrupt mode, the board acquires a single
sample or multiple samples from one or more analog input channels.
A hardware conversion clock initiates conversions while the board
acquires data in the background; system resources can be used by
other programs. The driver transfers data to the host in the
background using an interrupt service routine.

You use the K_IntStart function to start an analog input operation in

interrupt mode. You specify the channel(s), gain(s), conversion clock
source, butfering mode, buffer address, and trigger source.

Available Operations

chap02_.frm Black 3

@

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-16 for more information
on buffering modes. You can use the K_IntStop function to stop a
continuous-mode interrupt operation.

You can use the K_IntStatus function to determine the current status
of an interrupt operation. In addition, you can use the K_InitFrame
function to determine the status of all interrupt operations on a
particular board.

For single mode, synchronous mode, and interrupt mode, the converted
data is stored as raw counts. For information on converting raw counts to
voltage, refer to Appendix B.

Note: In applications where you must accurately control the sampling
rate, it is recommended that you perform the analog input operation in
either synchronous mode or interrupt mode so that you can specify a
conversion clock source.

Q} Memory Allocation and Management

Synchronous-mode and interrupt-mode analog input operations require a
memory buffer in which to store the acquired data. You can provide the
required memory buffer in one of the following ways:

Within your application program’s memory area - The local
memory buffer is always available to your program; however, your
application program may require a large amount of memory. You can
dimension a local memory buffer for any supported language. Since
the DAS-R00 Series Function Call Driver stores data in 16-bit
integers, you must dimension all local memory buffers as integers.

Outside of your application program’s memory area - You
allocate memory as needed. For all C languages, all Pascal languages,
and Visual Basic for Windows, you can use the K_IntAlloc function
to allocate memory dynamically, outside of your program’s memory
area. You specify the operation requiring the buffer, the number of
samples to store in the buffer, the starting address of the buffer, and
the name you want to use to identify the buffer (this name is called the
memory handle). When the buffer is no longer required, you can free

2-3

chap02_.frm Black 4

2-4

@

the buffer for another use by specifying this memory handle in the
K_IntFree function.

Note: You cannot allocate memory dynamically in BASIC; in
BASIC, you must dimension the memory buffer locally.

You can use multipie buffers to increase the number of samples you can
acquire. Each synchronous-mode or interrupt-mode analog input
operation has a buffer list associated with it. You can use the
K_BufListAdd function to add a buffer to the list of multiple buffers.
You can use the K_BufListReset function to clear the list of muitiple
buffers.

Note: If you are using a Windows-based language in Enhanced mode,
you may be limited in the amount of memory you can allocate. If you are
allocating memory dynamically or if you are using multiple buffers, it is
recommended that you use the Keithley Memory Manager before you
begin programming to ensure that you can allocate a large enough buffer
or buffers, Refer to the DAS-800 Series User’s Guide for more
information about the Keithley Memory Manager.

After you allocate or dimension your buffer(s), you must specify the
starting address of the buffer(s) and the number of samples to store in the
buffer(s), as follows:

e For BASIC - You use the K_SetBufl function to specify the starting
address of a single, locally dimensioned memory buffer. When using
multiple buffers, you use the K_BufListAdd function both 10 add
buffers to the multiple-buffer list and to specify the starting address of
each buffer.

e For Visual Basic for Windows - You use the K_SetBufT function to
specify the starting address of a single, locally dimensioned integer
memory buffer; you use the K_SetBuf function to specify the starting
address of a single buffer allocated dynamically using K_IntAlloc.
When using multiple buffers, you use the K_BufListAdd function
both to add buffers to the multiple-buffer list and to specify the
starting address of each buffer.

Available Operations

chap02_.frm Black 5

©

Note: If you allocated your buffer dynamically using K_IntAlloc,
you must use the K_MoveBufToArray function to transfer the
acquired data from the dynamically allocated buffer to a local buffer
that your Visual Basic for Windows program can use. Refer to page
3-25 for more information.

¢ For C and Pascal - You use the K_SetBuf function to specify the

starting address of a single buffer, whether the buffer was
dimensioned locally or allocated dynamically using K_IntAloc.
When using multiple buffers, you use the K_BufListAdd function
both to add buffers to the multiple-buffer list and to specify the
starting address of each buffer.

Input Range Type

Gains

Normally, the driver determines the input range type for a DAS-801 or
DAS-802 board (bipolar or unipolar) by reading the configuration file.
You can change the input range type without modifying the configuration
file by using the DAS800_SetADGainMode function.

Note: The input range type of the DAS-800 board is always bipolar.

Use the DAS800_GetADGainMode function to get the current input
range type. If you never used DAS800_SetADGainMode,
DAS800_GetADGainMode reads the input range type from the
configuration file; if you have used DAS800_SetADGainMode,
DAS800_GetADGainMode reads the last input range type you
programmed through software.

DAS-800 boards measure analog input signals in the range of £5 V.
DAS-801 and DAS-802 boards measure analog input signals in one of
several software-selectable unipolar and bipolar ranges. For each channel
on a DAS-801 or DAS-802 board, you can select one of five bipolar and
four unipolar analog input ranges.

chap02_.frm Black 6 {B.

Table 2-2 lists the analog input ranges supported by DAS-800 Series
boards and the gain and gain code associated with each range. (The gain
code is used by the FCD functions to represent the gain.)

Table 2-2, Analog Input Ranges

Analog input Range

Board Bipolar Unipolar Gain Gain Code
DAS-800) |45V Not available |1 0
DAS-801 1

Not available | 0.5 |

50 mV 0-100mV 100 3

DAS-802 |45V 0-10V 1 0

625 mV

Channels

The analog input channels are the analog input connections from which
you acquire data. DAS-800 Series boards contain eight on-board analog
input channels, numbered 0 through 7. If you require additional channels,
you can use any combination of up o eight 16-channel EXP-16 or
EXP-16/A expansion boards and/or 8-channel EXP-GP expansion boards
to increase the number of available channels to 128. You can also use up
to four MB-02 backplanes to increase the number of available channels to
68.

2-6 Available Operaticns

chap02_.frm Black 7

D

Expansion boards are assigned to consecutive on-board analog input
channels, beginning with on-board channel 0. To ensure that the DAS-800
Series Function Call Driver reads the channel numbers correctly, you
must attach all EXP-16 and EXP-16/A expansion boards first, followed
by all EXP-GP expansion boards. You can also use the remaining
on-board channels. Refer to the DAS-800 Series User's Guide ot the
appropriate expansion board documentation for more information.

The maximum supported configuration is eight EXP-16 or EXP-16/A
expansion boards, eight EXP-GP expansion boards, or four MB-02
backplanes. Table 2-3 lists the software channels associated with each
expansion board.

Table 2-3. Channels in Maximum Configuration

Software Channels

EXP-16 /
EXP-GP |MB-02
On-Board Channel | EXP-16/A

0 D10 15 Oto7 Dt 15

2 2 tod7 16to 23 2w 47

4 64 to 79 321039 64

6 %tolll 48 to 55 66

Figure 2-1 illustrates the use of one EXP-16 expansion board, two
EXP-GP expansion boards, and the five remaining on-board channels.
The channels on the EXP-16 attached to analog input channel 0 are
referred to in software as channels 0 to 15; the channels on the EXP-GP
attached to analog input channel 1 are referred to in software as channels
16 to 23; the channels on the EXP-GP attached to analog input channel 2
are referred to in software as channels 24 to 31; the remaining five

chap02_.frm Black 8 @

on-hoard analog input channels (3, 4, 5, 6, and 7) are referred to in
software as channels 32, 33, 34, 35, and 36,

EXP-16
channels
0-15

d . ' »
j channels
0 16 - 23
1

2
DAS-800 3 EXP-GP
Series Board 4 On-board channels
s channels 24-31
¢ I[32-38
7

Figure 2-1. Analog input Channels

You can perform an analog input operation on a single channel or on
multiple channels. The following subsections describe how to specify the
channel(s) you are using,.

Single Channel

You can acquire a single sample or multiple samples from a single analog
input channel.

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. You use the K_ADRead function to
specify the channel and the gain code,

For synchronous-mode and interrupt-mode analog input operations, you
can acquire a single sample or multiple samples from a single analog
input channel. You use the K_SetChn function to specify the channel and
the K_SetG function to specify the gain code.

2-8 Available Operations

chap02_.frm Black 9 @-

Multiple Channels Using a Group of Consecutive Channels

For synchronous-mode and interrupt-mode analog input operations, you
can acquire samples from a group of consecutive channels. You use the
K_SetStartStopChn function to specify the first and last channels in the
group. The channels are sampled in order from first to last; the channels
are then sampled again until the required number of sampies are read.

For example, assume that you have an EXP-16/A expansion board
attached to on-board channel 0. You specify the start channel as 14, the
stop channel as 17, and you want to acquire five samples. Your program
reads data first from channels 14 and 15 (on the EXP-16/A), then from
channels 16 and 17 (on-board channels 1 and 2), and finally from channel
14 again.

If you are not using any expansion boards, you can specify a start channel
that is higher than the stop channel. For example, assume that the start
channel is 7, the stop channel is 2, and you want to acquire five samples.
Your program reads data first from channel 7, then from channels 0, 1,
and 2, and finally from channel 7 again.

You can use the K_SetG function to specify the gain code for all channels
in the group. (All channels in a group of consecutive channels must use
the same gain code.) You can also use the K_SetStartStopG function to
specify the gain code, the start channel, and the stop channel in a single
function call.

Refer to Table 2-2 on page 2-6 for a list of the analog input ranges
supported by DAS-800 Series boards and the gain code associated with
each range.

Muitiple Channels Using a Channel-Gain List

For synchronous-mode and interrupt-mode analog input operations, you
can acquire samples from channels in a channel-gain list. in the
channel-gain list, you specify the channels you want to sample, the order
in which you want to sample them, and the gain code for each channel.

2-9

chap02_.frm Black 10

2-10

&

The channels in a channel-gain list are not necessarily in consecutive
order, and you can specify the same channel more than once (up to a total
of 256 channels in the list). For the DAS-801 and DAS-802 boards, you
can use a different gain code for each channel in a channel-gain list; for
the DAS-800 board, every channel must use a gain code of 0 {gain of 1).

The channels are sampled in order from the first channel in the list to the
last channel in the list; the channels in the list are then sampled again until
the required number of samples are read.

Refer to Table 2-2 on page 2-6 for a list of the analog input ranges
supported by DAS-800 Series boards and the gain code associated with
each range,

Note: The maximum attainable conversion frequency when using a
channel-gain list is less than the maximum attainable conversion
frequency when using a group of consecutive channelis.

You specify the channels and gains in one of the foliowing ways:

+ For C and Pascal - You use two adjacent 8-bit bytes to specify a
channel and its gain code (the channel number is specified in the first
byte; the gain code is specified in the second byte). The first two
bytes in the channel-gain list specify the number of channels
(subsequent pairs of bytes) in the list. Figure 2-2 illustrates the format
of a channel-gain list for C or Pascal, where n is the number of
channels (pairs) in the list.

Byte 0 1 2 3 4 5§ | 2n 2n+ t
Value n chan galn |chan igaln | ... chan | gain
ot pairs pair 1 pair2 | ... pair n

Figure 2-2. Channel-Gain List (C or Pascal)

Available Operations

chap02_.frm Black 11

@

Figure 2-3 illustrates a channel-gain list of four channels on a
DAS-801 board: channel 5 is sampled at a gain of 0.5 (gain code = 1),
channel 2 is sampled at a gain of 10 (gain code = 2), channel 4 is
sampled at a gain of 100 (gain code = 3), and channel 2 is sampled at
a gain of 500 {gain code = 4).

Byte 0 1 2 3 4 5 -] 7 8 9

Value] 4 5 1 2 2 4 3 2 4

4 pairs palr § pair 2 pair 3 palr 4

Figure 2-3. Sample Channel-Galn List (C or Pascal)

After you create the channel-gain list in C or Pascal, use the
K_SetChnGAry function to specify the starting address of the list.

For Pascal only, you must define a record type for the channel-gain
list before you specify the starting address. Refer to page 3-19 for
more information,

For BASIC and Visual Basic for Windows - You use two adjacent
16-bit words to specify a channel and its gain code (the channel
number is specified in the first word; the gain code is specified in the
second word). The first word in the channel-gain list specifies the
number of channels (subsequent pairs of words) in the list. Figure 2-4
illustrates the format of a channel-gain list for BASIC and Visual
Basic for Windows, where » is the number of channels {(pairs) in the
list.

2-11

chap02_.frm Black 12

2-12

Word 0 1 2 | o 2n -1 2n
Value n chan galn chan gain
of pairs pair1t | e pair n
Figure 2-4. Channel-Gain List (BASIC)
Figure 2-5 illusirates a channel-gain list of three channels on a
DAS-801 board: channel 5 is sampled at a gain of 0.5 (gain code = 1),
channel 2 is sampled at a gain of 10 (gain code = 2), and channel 4 is
sampled at a gain of 100 (gain code = 3).
Word 0 2 3 4 5 6
Value 3 1 2 2 4 3
3 pairs pair 1 pair 2 pair 3

Figure 2-5. Sample Channel-Gain List (BASIC)

After you create your channel-gain list in BASIC or Visual Basic for
Windows, you must use the K_FormatChanGAry function to
convert the 16-bit values to 8-bit values that the DAS-800 Series
Function Call Driver can use. After you use K_FormatChanGAry to
convert your list, use the K_SetChn(zAry function to specify the
starting address of the list.

Your program cannot read the channel-gain list converted by the
K_FormatChanGAry function; you must use the
K_RestoreChanGAry function to restore the converted list to its
original format.

Available Operations

chap02_.frm Black 13

Conversion Clocks

The conversion clock determines the time interval between conversions,
For synchronous-mode and interrupt-mode analog input operations, you
can use the K_SetCIk function to specify an internal or an external
conversion clock source. These conversion clock sources are described as
follows:

Internal clock source - The internal clock source is the on-board
8254 counter/timer circuitry. The 8254 counter/timer circuitry is
normally in an idle state. When you start the analog input operation
(using K_IntStart or K_SyncStart), a conversion is initiated
immediately. The 8254 is loaded with a count value and begins
counting down. When the 8254 counts down to 0, another conversion
is initiated and the process repeats.

Because the 8254 counter/timer uses a § MHz time base, each count
represents 1 us, Use the K_SetClkRate to specify the number of
counts (clock ticks) between conversions. For example, if you specify
a count of 25, the time interval between conversions is 25 ps; if you
specify a count of 65535, the time interval between conversions is
65.535 ms,

The 8254 contains three counter/timers: C/T0, C/T 1, and C/T2. If you
arc using an internal clock source, the 8254 uses both C/T2 and C/T1.
The driver uses C/T2 and C/T'1 in either normal or cascaded mode, as
follows:

-~ Normal mode - The driver loads the count you specify into C/T2
of the 8254 counter/timer circuitry. Each time C/T2 reaches
terminal count, a conversion is initiated. The time interval
between conversions ranges from 25 ps to 65.535 ms,

— Cascaded mode - The driver divides the count you specify
between C/T2 and C/T1 of the 8254 counter/timer circuitry.
When C/T2 counts down to 0, C/T1 decrements by 1. C/T2 is
reloaded with its count value and begins counting down again.
Each time C/T2 counts down to 0, C/T1 decrements by . Each
time both C/T2 and C/T'I reach terminal count, a conversion is
initiated, The time interval between conversions ranges from
25 ps to 1.2 hours.

2-13

chap02_.frm Black (4

N7

Note: You configure the 8254 counter/ftimer circuitry for normal
mode or cascaded mode using the DBOOCFG.EXE configuration
utility. Refer to the DAS-800 Series User's Guide for more
information.

When using an internal clock source, use the following formula to
determine the number of counts to specify:

1 MHz
conversion frequency

counts =

For example, if you want a conversion frequency of 10 kHz, specify a
count of 100.

External clock source - Use an external clock source if you want to
sample at rates not available with the 8254 counter/timer circuitry, if
you want to sample at uneven intervals, or if you want to sample on
the basis of an external event.

You attach an external clock source to the INT_IN / XCLK pin
(pin 24), When you start the analog input operation (using

K _IntStart or K_SyncStart), conversions are armed. At the next
fatling edge of the external clock source (and at every subsequent
failing edge of the external clock source), a conversion is initiated.

Figure 2-6 illustrates the initiation of conversions when using an internal
and an external clock source. (Note that Figure 2-6 assumes that you are
not using an external trigger; refer to Figure 2-10 on page 2-21 for an
illustration of conversions when using an external trigger.)

Available Operations

chap(2_.frm Black 15

External Clock

Source

Internal Clock

Source

2

Operation is started —J Sg::e‘::::lgn-begln
n
extemal clock source

(idle state) J count ” count “ count “ count

Converslons begin
when using an -
internat clock source

Figure 2-6. Initiating Conversions

Notes: The analog-to-digital converter (ADC) acquires samples at a
maximum of 40 kHz (one sample every 25 us). If you are using an
external ciock, make sure that the clock does not initiate conversions at a
faster rate than the ADC can handie.

To achieve full measurement accuracy when using a gain of 500, you
should limit the conversion frequency to a maximum of 25 kHz {onc
sample every 40 ps).

If you are acquiring samples from multiple channels, the maximum
sampling rate for each channel is equal to 40 kHz divided by the number
of channels.

The rate at which the computer can reliably read data from the board
depends on a number of factors, including your computer, the operating
system/environment, whether you are using expansion boards, the gains
of the channels, and other software issues.

For single-mode analog input operations, the software initiates each
conversion with a call to the K_ADRead function.

2-15

chap02_.frm Black 16

Buffering Mode

Triggers

2-16

The buffering mode determines how the driver stores the converted data
in the buffer. For interrupt-mode analog input operations, you can specify
one of the following buffering modes:

Continuous mode - In continuous mode, the board continuously
converts samples and stores them in the buffer until it receives a stop
function; any values already stored in the buffer are overwritten. You
use the K_SetContRun function to specify continuous buffering
mode.

Single-cycle mode - In single-cycle mode, after the board converts
the specified number of samples and stores them in the buffer, the
operation stops automatically. You use the K_CirContRun function
to specify single-cycle buffering mode. (Note that single-cycle mode
is the default buffering mode.)

A trigger is a set of conditions that must occur before a DAS-800 Serics
board starts an analog input operation. For synchronous-mode and
interrupt-mode analog input operations, you can use the K_SetTrig
function to specify one of the following trigger sources:

Internal trigger - An internal trigger is a software trigger, when you
start the analog input operation (using K_IntStart or K_SyncStart),
conversions begin immediately.

External trigger - An external trigger is either an analog trigger or a
digital trigger; when you start the analog input operation {(using
K_IntStart or K_SyncStart), the application program waits until a
trigger event occurs and then begins conversions,

Analog and digital triggers are described in the following subsections.

Available Operations

chap02_.frm Black 17 @

Analog Triggers

An analog trigger event occurs when one of the following conditions is
met by the analog input signal on a specified analog trigger channel:

¢ The analog input signal rises above a specified voltage level
(positive-edge trigger).

e The analog input signal falls below a specified voltage level
(negative-edge trigger).

Figure 2-7 illustrates these analog trigger conditions, where the specified
voltage level is +5 V.

Negative-edge

trigger event Posliive-sdge wrigger svent
] occurs and occurs and conversions begin
™ conversions
‘/bogln

Level +5V }..

LN
A A O AN

‘\Analog input operatien
start function is executed

Figure 2-7. Analog Trigger Conditions

You use the K_SetADTrig function to specify the analog input channel to
use as the trigger channel, the voltage level, the trigger polarity, and the
trigger sense.

chap02_.frm Black 18

2-18

b

Note: You specify the voltage level as a raw count value between 0 and
4095, Refer to Appendix B for information on how to convert a voltage
value to a raw count value.

You can use the K_SetTrigHyst function to specify a hysteresis value 10
prevent noise from triggering an operation. For a positive-edge trigger,
the analog signal must fall below the specified voltage level by at least the
amount of the hysteresis value before the trigger event can occur; for a
negative-edge trigger, the analog signal must rise above the specified
voltage level by at least the amount of the hysteresis value before the
trigger event can occur.

The hysteresis value is an absolute number, which you specify as a raw
count value between 0 and 4095. When you add the hysteresis value to
the voltage level (for a negative-edge trigger) or subtract the hysteresis
value from the voltage level (for a positive-edge trigger), the resulting
value must also be between) and 4095, For exampie, assume that you arc
using a negative-edge trigger on a channel configured for a bipolar input
range type. If the voltage level is +4.8 V (4014 counts), you can specify a
hysteresis value of 0.1 V (41 counts), but you cannot specify a hysteresis
value of 0.3 V (123 counts). Refer to Appendix B for information on how
to convert a voltage value to a raw count value.

In Figure 2-8, the specified voltage level is +5 V and the hysteresis value
is 0.1 V. The analog signal must fall below +4.9 V and then rise above
+5 V before a positive-edge trigger event occurs; the analog signal must
rise above +5.1 V and then fall below +5 V before a negative-edge trigger
event occurs.

Available Operations

chap02_.frm Black 19 -Ej}

Positive-edge
trigger svent occurs

S N Y N ‘
3V \\/ \ }-Hvlhmb 201V
N

‘\Anulog Input operation
start function s executed

NRRY /\
/ } Hysteresis = 0.1V
Level +5 v e ISUTUTRTROTRRT P .
_/Nogauve-odge

trigger svent
occurs

Analog input operation
siart function Is executed

Figure 2-8. Using a Hysteresis Value

When using an analog trigger, the driver samples the specified analog
trigger channel to determine whether the trigger condition has been met.
Therefore, a slight time delay may occur between the time the trigger
condition is actually met and the time the driver realizes that the trigger
condition has been met and begins conversions. In addition, the actual
point at which conversions begin depends on whether you are using an
internal or external clock source. These considerations are described as
follows:

¢ Internal clock source - The 8254 counter/timer circuitry remains idle
until the driver detects the trigger event. When the driver detects the
trigger event, the board begins conversions immediately.

e External clock source - Conversions are armed when the driver

detects the trigger event. At the next falling edge of the external clock
source, the board begins conversions.

b

chap02_.frm Black 20 &

Figure 2-9 illustrates how conversions are started when using an external
analog trigger.

Driver pelis analog trigger channei and
Il‘riﬂgoer‘conditlom —» / realizes that trigger condltions are met

External Analog J

Trigger Conversiona bagin
a9 ! -———— when using an
extsrmnal clock source

External Clock
Source

Internal Clock l
Source (idle state) l' count ” count H count “ count l

i Conversions begin

i
|t when using an
internal clock source

Figure 2-9. Initiating Conversions with an External Analog Trigger

Digital Triggers

A digital trigger event occurs when the board detects a rising edge on the
digital trigger signal connected to the IP1 / TRIG pin (pin 25). You use the
K_SetDITrig function to specify an external digital trigger.

2-20 Available Operations

chap02_.frm Black 21 Q}

When using a digital wrigger, the actual point at which conversions begin
depends on whether you are using an internal or external clock source,
These considerations are described as follows:

¢ Internal clock source - The 8254 counter/timer circuitry remains idie
until the trigger event occurs. When the trigger event occurs, the
board begins conversions immediately.

o External clock source - Conversions are armed when the trigger
event occurs. At the next falling edge of the external clock source, the

board begins conversions,

Figure 2-10 illustrates how conversions are started when using an external
digital trigger.

Trigger event occurs

External Digitai
Trigger

Conversions begin
when using an
external clock scurce

Extarnal Clock
Source

Internal Clock
Source (idle state) J count ” count ” count n count l

Conversions begin

-lf—— when using an

internal clock source

Figure 2-10. Initiating Conversions with an External Digital Trigger

2-21

chap02_.frm Black 22

Hardware Gates

2-22

A hardware gate is an externally applied digital signal that determines
whether conversions occur, You connect the gate signal to the IP1 / TRIG
pin (pin 25) on the main /O connector. If you have started an analog input
operation (using K_IntStart or K_SyncStart) and the hardware gate is
enabled, the state of the gate signal determines whether conversions
occur.

DAS-800 Series boards support a positive gate only. Therefore, if the
signal to IP1 / TRIG is high, conversions occur; if the signal o [Pl /
TRIG is low, conversions are inhibited. You use the K_SetGate function
to enable and disable the hardware gate.

You can use the hardware gate with an external analog trigger. The
software waits until the analog trigger event occurs and then checks the
state of the gate signal. If the gate signal is high, conversions begin; if the
gate signal is low, the software waits until the gate signal goes high before
conversions begin.

If you are not using an analog trigger, the gate signal itself can act as a
trigger. If the gate signal is low when you start the analog input operation,
the software waits until the gate signal goes high before conversions
begin.

Note: You cannot use the hardware gate with an external digital trigger. {f
you use a digital trigger at one point in your application program and later
want to use a hardware gate, you must first disable the digital trigger. You
disable the digital trigger by specifying an internal trigger in K_SetTrig
or by setting up an analog trigger (using the K_SetADTrig function).

When the hardware gate is enabled, the way conversions are synchronized
depends on whether you are using an external or an internal clock source.
These considerations are described as follows:

¢ Internal clock source - The 8254 stops counting when the gate signal
goes low. When the gate signal goes high again, the 8254 is reloaded
with its initial count value and starts counting again; therefore, when
using an internal clock, conversions are synchronized to the rising
edge of the gate signal.

Available Operations

@

chap02_.frm Black 23 ﬂ}

+ External clock source - The signal from the external clock continues
uninterrupted while the gate signal is low. When the gate signal goes
high again, the software waits for the next falling edge of the external
clock before initiating another conversion; therefore, when using an
external clock, conversions are synchronized to the falling edge of the
external clock.

Figure 2-11 illustrates the use of the hardware gate with both an external
clock and an internal clock.

Gate Is high;
converslons ocecur

Gate Is low;
conversions inhibited
Gate Signal
Analog trigger
event ocours
or
software starts 18t conversion 3rd conversion
operation (external clock) (externa! clock)
)/ 2nd converslon \
(o xternai clock)
External Clock
Source _— i —
i

Internal Clock

T —

18t converslon and conversion /‘
(Internal clock) (Internal clock) 4th conversion
(internal clock}

3rd conversion
(intemmal clock)

Figure 2-11. Hardware Gate

2-23

chap02_.frm Black 24

Digital /0O Operations

DAS-800 Series boards contain three digital input lines and four digital
output lines. The digital input lines are associated with the IP1 / TRIG,
IP2, and IP3 pins on the main I/O connector; the digital output lines are
associated with the OP1, OP2, OP3, and OP4 pins on the main 1/O
connector. If the digital I/O lines are not used for an internal operation,
you can use them for general-purpose digital /O, as follows:

2-24

Digital input - The DAS-800 Series Function Call Driver provides
the K_DIRead function to read the value of digital input channel 0, a
32-bit channel that contains all the digital input lines. The K_DIRead
function stores the value of digital input channel 0 in a 32-bit
variable, where only bits 0, 1, and 2 are meaningful. As shown in
Figure 2-12, bit 0 contains the value of digital input line 1 (IP1 /
TRIG); bit 1 contains the value of digital input line 2 (IP2); bit 2
contains the value of digital input line 3 (IP3).

bit 31 hit 2 bt bito

--- ps | w2 [FLL

Figure 2-12. Digital input Bits

A value of 1 in the bit position indicates that the input is high; a value
of (in the bit position indicates that the input is low. For example, if
the value is 5 (00...00101), the input at IP1 / TRIG and IP3 is high and
the input at IP2 is low.

Available Operations

chap02_.frm Black 25

N7

Notes: If you are using an external digital trigger, you cannot use the
IP1 / TRIG pin (pin 25) for general-purpose digital input operations.

If no signal is connected to a digital input line, the input appears high
(value is 1),

Digital output - The DAS-800 Series Function Call Driver provides
the K_DOWrite function to write a value to digital output channel 0,
a 32-bit channel that contains all the digital output lines. The
K_DOWrite function writes the value to digital output channel 0 as a
32-bit variable, where only bits 0, 1, 2, and 3 are meaningful. As
shown in Figure 2-13, bit 0 contains the value written to digital cutput
line 1 (OP1}; bit 1 contains the value written to digital output line 2
(QP2); bit 2 contains the value written to digital output line 3 (CP3);
bit 3 contains the value written to digital output line 4 (OP4),

bit 31 bit3 bit2 bit1 bitod

OP4 | OP3 | OP2 | OP1

Figure 2-13. Digital Output Bits

A value of | in the bit position indicates that the output is high; a
value of 0 in the bit position indicates that the output is low. For
example, if the value written is 12 (00...01100), the output at OP1 and
OP2 is forced low and the output at OP3 and OP4 is forced high.

2-25

chap02_.frm Black 26 @

Notes: The DAS-800 Scries Function Call Driver does not provide a
function for reading the current state of the digital output lines. To
determine the last value written to the digital output lines, check your
application program.

If you are using an expansion board for an analog input operation, the
driver uses all four digital output lines to specify the expansion board
channel that is acquiring data; in this case, you cannot use the digital
output lines for general-purpose digital output operations.

Counter/Timer I/O Operations

DAS-800 Series boards contain 8254 counter/timer circuitry; the 8254
contains three countertimers: C/T0, C/T1, and C/T2, If these
counterftimers are not being used for an internal operation, you can use
them for another task, such as frequency measurement.

Note: C/TO is always available for general-purpose tasks. If you are
using an internal clock source for an analog input operation, C/T2 and
C/T1 are not available for general-purpose tasks. If you are using an
external clock source, C/T0, C/T1, and C/T2 are always available for
general-purpose tasks. Refer to page 2-13 for more information about the
use of the 8254 as an internal clock source.

2-26 Avaitable Operations

chap02_.frm Black 27

©

To configure a counter/timer on the 8254, you can use the
DAS800_Set8254 function. You specify both an initial count value to
load into the counter/timer and a counter/ftimer mode. The initial count
value can range from 2 to 65535, The following counter/timer modes are
supported:

¢ Pulse on terminal count

¢ Programmable one-shot

¢ Rate generator

¢ Sguare-wave generator

o Software-triggered strobe

e Hardware-triggered strobe

Refer to the DAS-800 Series User’s Guide for more information on the
counter/timer modes and on how to program the 8254 counterftimer
clrcaitry,

Use the DAS800_Get8254 function to obtain the counter/timer mode and
the current count value of a counter/timer on the 8254 counter/timer
circuitry.

System Operations

This section describes the miscellaneous operations and general
maintenance operations that apply to DAS-800 Series boards and 1o the
D AS-800 Series Function Call Driver. It includes information on
initializing the driver, initializing a board, retrieving the revision level,
and handling errors.

2-27

chap02_.frm Black 28 Q}

Initializing the Driver

Before you can use any of the functions included in the DAS-800 Series
Function Call Driver, you must initialize the driver using one of the
following driver initialization functions;

¢ Board-specific driver initialization function - You can use the
board-specific driver initialization function DAS800_DevOpen to
initialize the DAS-B00 Series Function Call Driver only. You specify
a configuration file; DAS800_DevOpen initializes the driver
according to the configuration file you specify. Refer to the DAS-800
Series User's Guide for information on creating and modifying
configuration files.

e Generic driver initialization function - If you want to initialize
several different DAS Function Call Drivers from the same
application program, you can use the generic driver initialization
function K_QOpenDriver. You specify the DAS board you are using
and a configuration file; K_QOpenDriver initializes the driver
according to the configuration file you specify. Refer to the DAS-800
Series User's Guide for information on creating and modifying
configuration files.

You also specify the name you want to use to identify this particular
use of the driver; this name is called the driver handle. You can
specify a maximum of 30 driver handles for all the DAS boards
accessed from your application program.

If a particular use of a driver is no longer required and you want to
free some memory or if you have used all 30 driver handles, you can
use the K_CloseDriver function to free a driver handie and close the
associated use of the driver. K_CloseDriver also frees any system
resources associated with the driver handle.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver
are shut down and unloaded from memory.)

2-28 Available Operations

chap02_.frm Black 29

Initializing a Board

The DAS-800 Series Function Call Driver supports up to four boards.
You must use a board initialization function to specify the board you want
to use and the name you want to use to identify the board; this name is
cailed the board handle. Board handles allow you to communicate with
more than one board. You use the board handle you specify in the board
initialization function in all subsequent function calls related to the board.

The DAS-800 Series Function Call Driver provides the following board
initialization functions:

¢ Board-specific board initialization function - You can use the
board-specific board initialization function DAS§00_GetDevHandie
to initialize a DAS-800 Series board only.

¢ Generic driver initialization function - If you want to initialize
several different DAS boards from the same application program, you
can use the generic board initialization function K_GetDevHandle.
You can specify a maximum of 30 board handles for ail the DAS
boards accessed from your application program.

If a board is no longer being used and you want to free some memory
or if you have used all 30 board handles, you can use the
K_FreeDevHandle function to free a board handle.

K _FreeDevHandle also frees any system resources associated with
the board handle.

To reinitialize a board during an operation, you can use the
K_DASDevInit function. DAS800_GetDevHandle, K_GetDevHandle,
and K_DASDevInit perform the following tasks:

¢ Abort all analog input operations currently in progress that are
associated with the board identified by the board handle.

e Verify that the board identified by the board handle is the board
specified in the configuration file.

Retrieving the Revision Level

If you are using functions from different DAS Function Call Drivers in
the same application program, you may want to verify which versions of

2-29

2

chap02_.frm Black 30

fo

the Function Call Drivers are installed on your board to determine if a
particular function is available to you. The K_GetVer function allows
you to get both the revision number of the DAS-800 Series Function Call
Driver and the revision number of the Keithley DAS Driver Specification
to which the driver conforms.

Handling Errors

2-30

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is recommended
that you check the returned code after the execution of each function. If
the status code equais 0, the function executed successfully and your
program can proceed. If the status code does not equal 0, an error
occurred; ensure that your application program takes the appropriate
action. Refer to Appendix A for a complete list of error codes.

For C-language application programs only, the DAS-800 Series Function

Call Driver provides the K_GetErrMsg function, which gets the address
of the string corresponding to an error code.

Availabte Operations

chap03_.frm Black |

3

Programming with the
Function Call Driver

This chapter contains an overview of the structure of the DAS-800 Series
Function Call Driver, as well as programming guidelines and
language-specific information to assist you when writing application
programs with the DAS-800 Series Function Call Driver.

How the Driver Works

The Function Call Drivers for all DAS boards allow you to perform 1/0
operations in various operation modes. For single mode, the 1/0 operation
is performed with a single call to a function; the attributes of the I/O
operation are specified as arguments to the function and a single value is
obtained. For other operation modes, such as synchroncus mode and
interrupt mode, the driver uses frames to perform the I/O operation. A
frame is a data structure whose elements define the particular /O
operation.

Frames help you create structured application programs. You set up the
attributes of the I/O operation in advance, using a separate function call
for each attribute, and then start the operation at an appropriate point in
your program. Frames are useful for operations that have many defining
attributes, since providing a separate argument for each attribute could
make a function’s argument list unmanageably long. In addition, some
attributes, such as conversion clock source and trigger source, are only
available for I/O operations that use frames.

3-1

chap03_.frm Black 2

%

You indicate that you want to perform an I/O operation by getting an
available frame for the driver and specifying the name you want to use 1o
identify the frame; this name is called the frame handle. You then specify
the attributes of the [/O operation by using setup functions to define the
elements of the frame associated with the operation. For example, to
specify the channel on which to perform an 1/O operation, you might use
the K_SetChn setup function.

For each setup function, the Function Call Driver provides a readback
function, which reads the current definition of a particular element. For
example, the K_GetChn readback function reads the channel used for the
1/O operation.

You use the frame handle you specified when accessing the frame in all
setup functions, readback functions, and other functions related to the [/O
operation. This ensures that you are defining the same [/O operation.

When you are ready to perform the I/O operation you have set up, you can
start the operation in the appropriate operation mode, referencing the
appropriate frame handle.

Different I/O operations require different types of frames. For example, to
perform a digital input operation, you use a digital input frame; to
perform an analog output operation, you use an analog output frame.

For DAS-800 Series boards, the only operations that use frames are
synchronous-mode and interrupt-mode analog input operations. The
DAS-800 Series Function Call Driver provides eight identical analog
input frames, called A/D (analog-to-digital) frames. You use the
K_GetADFrame function to access an available A/D frame and specify a
frame handle.

Note: Drivers for other DAS boards may provide additional functions for
accessing analog output, digital input, or digital output frames.

If you want to perform a synchronous-mode or interrupt-mode analog
input operation and all eight frames have been accessed, you can use the
K_FreeFrame function to free a frame that is no longer in use. You can
then redefine the elements of the frame for the next operation.

Programming with the Function Call Driver

chap03_.frm Black 3

P

Table 3-1 lists the elements of a DAS-800 A/D frame, the default value of
each element, the setup function(s) used to define each element, and the

readback function(s) used to read the current definition of the element.

Table 3-1. A/D Frame Elements

Element

Default Value

Setup Function

Readback Function

Buffering Mode

Single-cycle

K_ClrContRun
K_SetContRun

K_GetContRun

Number of Samples | 0

K_SetBuf
K_SetBufl
K_BufListAdd

K_GetBuf

Stop Channel

K_SetStartStopChn
K_SetStartStopG

K_GetStartStopChn
K_GetStartStopG

Channel-Gain List

0 (NULL)

K_SetChnGAry

K_GetChnGAry

Conversion
Frequency

25 (40 KHz)

K_SeiClkRate

K_GetClkRate

Trigger Type

Digital

K_SetADTrig
K_SetDITrig

K_GetADTrig
K_GetDITrig

3-3

chap03_.frm Black 4

3-4

Element Default Value Setup Function Readback Function
Trigger Polarity Positive (for analog | K_SetADTrig K_GetADTrig

trigger)

Positive (for digital | Not applicable2 Not applica}:nle2

trigger)

Trigger Level

0 K_SetADTrig K_GetADTrig

Trigger Pattern

Not used? Not applicable? Not applicable?

Notes

1 L o T P
LIS €IEINCHl IIUst DE Sel.

2 The default value of this element cannot be changed.

This element is not currently used; it is included for future compatibility.

When you access an A/D frame with K_GetADFrame, the clements are
set to their default values. You can also use the K_ClearFrame function
to return all the elements of a frame to their default values.

Note: The DAS-800 Series Function Call Driver provides many other
functions that are not related to controlling frames, defining the elements
of frames, or reading the values of frame elements. These functions
include single-mode operation functions, initialization functions, memory

management functions, and other miscellaneous functions,

For information about using the FCD functions in vour annlication

22 BN W 228 IRALILACRALL el aplpiaiLaiifl

i~
program, refer to the following sections of this haplcr For detailed
information about the syntax of FCD functions, refer to Chapter 4.

Programming with the Function Call Driver

chap03_frm Black 5

Programming Overview

To write an application program using the DAS-800 Series Function Call
Driver, perform the following steps:

L.

Define the application’s requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation,

Write your application program. Refer to the following for additional
information:;

Preliminary Tasks, the next section, describes the programming
tasks that are common to all application programs.

Operation-Specific Programming Tasks, on page 3-6, describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

Chapter 4 contains detailed descriptions of the FCD functions.

The DAS-800 Series standard sofiware package and the Q}
ASO-800 software package contain several example programs.
The FILES.TXT file in the installation directory lists and

describes the example programs.

Compile and link the program. Refer to Language-Specific
Programming Information, starting on page 3-12, for compile and
link statements and other language-specific considerations for each
supported language.

3-5

chap03_.frm Black 6 {B,

Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1. Include the function and variable type definition file for your
language. Depending on the specific language you arc using, this file
is included in the DAS-800 Series standard software package or the
AS0-800 software package.

2. Declare and initialize program variables.

3. Use a driver initialization function (DAS800_DevOpen or
K_OpenDriver) to initialize the driver.

4. Use a board initialization function (DAS800_GetDevHandle or
K_GetDevHandle) to specify the board you want to use and to
initialize the board. If you are using more than one board, use the
board initialization function once for each board you are using.

S

Operation-Specific Programming Tasks

After you perform the preliminary tasks, perform the appropriate
operation-specific programming tasks. The operation-specific tasks for
analog input and digital 1/O operations are described in the following
sections,

Note: Any FCD functions that are not mentioned in the
operation-specific programming tasks can be used at any point in your
application program.

Analog Input Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, synchronous-mode, and
interrupt-mode analog input operations.

3-6 Programming with the Function Call Driver

&

chap03_.frm Black 7

Single Mode

To perform a single-mode analog input operation, perform the following
tasks:

1.

Declare the buffer or variable that will hold the single value to be
read.

Use the K_ADRead function to read the single analog input vatue;
specify the attributes of the operation as arguments to the function.

Synchronous Mode

To perform a synchronous-mode analog input operation, perform the
following tasks:

1.

2.

Use the K_GetADFrame function to access an A/D frame.

Allocate or dimension the buffer(s) in which to store the acquired
data. Use the K_IntAlloc function if you want to allocate the
buffer(s) dynamically outside your program’'s memory area.

If you want to use a channel-gain list to specify the channels
acquiring data, define and assign the appropriate values to the list and
note the starting address. Refer to page 2-9 for more information
about channel-gain lists.

Use the appropriate setup functions to assign values Lo those elements

of the frame that pertain to your application. The setup functions are
listed in Table 3-2,

Table 3-2. Setup Functions for Synchronous-Mode

Operations
Element Setup Function(s)
Buffer! K_SetBuf
K_SetBufl

K_BufListAdd

3-7

chap03_.frm Black 8 @

Table 3-2. Setup Functions for Synchronous-Mode
Operations {cont.)

Element Setup Function(s)

Start Channel K_SetChn
K_SetStartStopChn
K_StartStopG

K_SetG
K_SetStariStopG

Conversion Clock K_SetClk
Source

Trigger Source

Trigger Channel K_SetADTrig

Trigger Level K_SetADTrig

Hardware Gate K_SetGale

Notes

Ly ou must assign the addresses of all allocated or
dimensioned buffers,

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions,

3-8 Programming with the Function Call Driver

P

chap03_.frmm Black 9

Interrupt Mode

@

Use the K_SyncStart function to start the synchronous operation.

If you are programming in Visual Basic for Windows and you used
K_IntAlloc to allocate your buffer(s), use the K_MoveBufToArray
function to transfer the acquired data from the atlocated buffer to a
local buffer that your program can use.

If you used K_IntAlloc to allocate your buffer(s), use the K_IntFree
function to deallocate the buffer(s).

If you used K_BufListAdd to specify a list of multiple buffers, use the
K_BufListReset function to clear the list.

Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

To perform an interrupt-mode analog input operation, perform the
following tasks:

1.

2.

Use the K_GetADFrame function to access an A/D frame.

Allocate or dimension the buffer(s) in which to store the acquired
data. Use the K_IntAlloc function if you want to allocate the
buffer(s) dynamically outside your program's memory arca.

If vou want to use a channel-gain list to specify the channels
acquiring data, define and assign the appropriate values to the list and
note the starting address. Refer to page 2-9 for more information
about channel-gain lists.

Use the appropriate setup functions to assign values to those clements

of the frame that pertain to your application. The setup functions arc
listed in Table 3-3.

3-9

chap03_.frm Black 10

3-10

b

Table 3-3. Setup Functions for Interrupt-Mode

Operations
Element Setup Function(s)
Buffer! K_SetBuf
K_SetBufl
K_BufListAdd

Buffering Mode K_ClrContRun
K_SetContRun

Stop Channel K_SetStartStopChn
K_SetStartStopG

Channel-Gain List

Conversion Frequency K_SetClkRate

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Polarity K_SetADTrig

Trigger Hysteresis K _SetTrigHyst

Notes
"'Youmust assign the addresses of all allocated or
dimensioned buffers,

Programming with the Function Call Driver

@

chap03_.frm Black 11

10

11,

%

Refer tf Chapter 2 for background information about the setup
functiorgs; refer to Chapter 4 for detailed descriptions of the setup
functio

Use thefK_IntStart function to start the interrupt operation.

Use theK_IntStatus function to monitor the status of the interrupt
operatidn.

If you sgecified continuous buffering mode, use the K_IntStop
functior] to stop the interrupt operation when the appropriate number
of samples has been acquired.

If you ale programming in Visual Basic for Windows and you used
K_IntA§loc to allocate your buffer(s), use the K_MoveBufToArray
function to transfer the acquired data from the allocated buffer to a
local buffer that your program can use.

If you ufed K_IntAlloc to allocate your buffer(s}, use the K_IntFree
functior] to deallocate the buffer(s).

If vou uled K_BufListAdd to specify a list of multiple buffers, use the
K_BufRistReset function to clear the list.

Use thegk_FreeFrame function to return the frame you accessed in
step | tq the pool of available frames,

3-11

chap03_.frm Black 12 {B

Digital I/0O Operations

You can perform digital I/O operations in single mode only. To perform a
single-mode}digital 1/O operation, perform the following tasks:

1. Declare fhe buffer or variable that will hold the single value to be read
or writteh.

2. Use onepf the following digital I/O single-mode operation functions,
specifyigg the attributes of the operation as arguments to the function:

Aunction Purpose

lﬂl_DlRead Reads a single digital input value,

l‘l_DOWrite Writes a single digital output value.

Language-Specific|Programming Information

This sectionprovides programming information for each of the supported
languages. Note that the compilation procedures for all languages assume
that the path§ and/or environment variables are set correctly.

3-12 Programming with the Function Call Driver

S

chap03_.frm Black 13

Microsoft C/C++

To program

are providedin the ASO-800 software package.

n Microsoft C/C++, you need the following files; these files

Description

Linkable driver.

Include file when compiling in C (.c programs).

DASDECLHPP

Include file when compiling in C++ (.cpp programs).

uUs

E800.0H

i

Linkable object.

Toc
com

your applic

pile an

reaie an(fxecutable file in Microsoft C/C++, use the following

link statements. Note that filename indicates the name of
ion program,

Type ofjCompile

Compile and Link Statements

C

CL /c filename.c
LINK filename+use800.0bj,,.das800+dasrface;

C++

CL /c filename.cpp
LINK filename+use8(0).0hj,, . das800+dasrface;

chap03_.frm Black 14 Q}

Borland C/C++

To program in Borland C/C++, you need the following files; these files
are provided in the ASQ-800 software package.

File Description

DASS00.LIB Linkable driver,

DASDECL.H Include file when compiiing in C {.c programs).
DASDECL.HPP Inciude file when compiling in C++ (.cpp programs),

USES00.0BJ Linkable object.

To create an executable file in Borland C/C++, use the following compile
and link statements. Note that filename indicates the name of your
application program.

g”":p‘}: o | Compile and Link Statements’

C BCC -ml filename.c use800.0bj das800.1ib dasrface.lib
C++ BCC -mil filename.cpp use800,0bj das800.1ib dasrface.lib
Notes

! These statements assume a large memory model; however, any memory
model is acceptable.

3-14 Programming with the Function Call Driver

b

chap(3_.frm Black 15

D

Microsoft QuickC for Windows

To program in Microsoft QuickC for Windows, you need the following
files; these files are provided in the ASO-800 software package.

Flle

Description

DASSHELL.DLL

Dynamic Link Library of user-interface funcrions,

DASR00.DLL

Dynamic Link Library of DAS-800 board-specific
functions,

DAS800.H

Include file,

To create an executable file in Microsoft QuickC for Windows, perform

the following steps:

1.

Load filename.c into the QuickC for Windows environment, where

filename indicates the name of your application program.

Create a project file. The project file should contain all necessary

files, including filename.c, filename rc, filename.def, and filename h,
where filename indicates the name of your application program.

From the Project menu, choose Build to create a stand-alone

executable file (EXE) that you can execute from within Windows.

chap03_.frm Black 16 Q}

Microsoft Visual C++

To program in Microsoft Visual C++, you need the following files; these
files are provided in the ASO-800 software package.

File Description

DASSHELL.DLL Dynamic Link Library of user-interface functions.

DASB00.DLL Dynamic Link Library of DAS-800 board-specific
functions.

DAS800.HPP Include file.

Refer to the README. TXT file for information about creating an
executable file in Visual C4++.

Borland Turbo Pascal

To program in Borland Turbo Pascal, you need the following files; these
files are provided in the ASO-800 software package.

File Description

DROOTPS.TPU Turbo Pascal unit for Version 6.0.

DS0OTPU.BAT! Batch file for creating a Turbo Pascal unit,

D800TPU.INC! Include file for creating a Turbo Pascal unit.

Notes

! Used for creating a new Turbo Pascal unit when compiling in Borland Turbo
Pascal for versions higher than 7.0,

316 Programming with the Function Call Driver

chap03_.frm Black 17

N

To create an executable file in Borland Turbo Pascal, use the following
compile and link statement:

TPC filename.pas
where filename indicates the name of your application program.

Refer to page 3-18 for information about specifying the buffer address
when programming in Borland Turbo Pascal. Refer to page 3-19 for
information about specifying the channel-gain list starting address when
programming in Borland Turbo Pascal.

Borland Turbo Pascal for Windows

To program in Borland Turbo Pascal for Windows, you need the
following files; these files are provided in the ASO-800 software
package.

File Description

DASSHELL.DLL Dynamic Link Library of user-interface functions.

DASS00.DLL Dynamic Link Library of DAS-800 board-specific
functions.

DASBOO.INC Include file.

To create an executable file in Borland Turbo Pascal for Windows,
perform the following steps:

1. Load filename.pas into the Borland Turbo Pascat for Windows
environment, where filename indicates the name of your application

prograrn.

2. From the Compile menu, choose Make.

317

chap03_.frm Black I8

N7

Refer 10 the next section for information about specifying the buffer
address when programming in Borland Turbo Pascal for Windows. Refer
to page 3-19 for information about specifying the channel-gain list
starting address when programming in Borland Turbo Pascal for
Windows.

Specifying the Buffer Address (Pascal)

If you are writing your application program in Borland Turbo Pascal or
Borland Turbo Pascal for Windows, perform the following steps to
specify a buffer address:

I. Reduce the memory heap reserved by Pascal by entering the
following:

{Sm (16384, 0, 0))
2. Declare a dummy type array of Alnteger, as in the following example:
Type
IntArray = Array[0..1] cof “Integer;
The dimension of this array is irrelevant; it is used only to satisfy
Pascal’s type-checking requirements.
3. Declare an array of the dummy type, as in the following example:
Var
acgBuf : IntArray;
4. Ifyou are allocating your buffer dynamically using K_IntAlloc, use
Pascal’s Addr() function, as in the following example:

err : = K_IntAllcc (frameHandle, samples,
Addr (acgBuf), memHandle};

5. Use K_SetBuf to specify the buffer address, as in the following
example:

err : = K_SetBuf (frameHandle, acgBuf, samples);

Programming with the Function Call Driver

b

chap03_.frm Black 19 @

This procedure allows you to directly access data stored in the buffer. You
can retrieve data from the buffer, as in the following example:

For I := 0 to (samples - 1} do
Begin;

data := acgBuf”[1];
End;:

Specifying the Channel-Gain List Starting Address (Pascal)
If you are writing your application program in Borland Turbo Pascal or
Borland Turbo Pascal for Windows, perform the following steps to

specify a channel-gain list starting address;

1. Define a record type for the channel-gain list, as in the following

example:
Type
ChanGainArray = Record;
num_of_codes : Integer;
gueue ; Array(0..15] of Byte;
end;

2. Define an array of type ChanGainArray, as in the following example:
Var

CGList : ChanGainlArray;

3. After this is initialized, the array can be passed to the function, as in
the following example:

err : = K_SetChnGAry (ADFramel, CGList.num_of_codes);

chap03_.frm Black 20

5%

Microsoft QuickBASIC (Version 4.0)

3-20

To program in Microsoft QuickBASIC (Version 4.0), you need the
following files; these files are provided in the DAS-800 Series standard
software package.

File Description

DROCOQB40.LIB Linkable driver for QuickBASIC, Version 4.0,
stand-alone, executable (.EXE) programs.

QB4DECL.BI Include file.

DAS800.BI Include file.

For Microsoft QuickBASIC (Version 4.0), you can create an executable
file from within the programming environment, or you can use a compile
and link statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:
QB /L DBOOQB40 filename.bas
where filename indicates the name of your application program.
2. From the Run menu, choose Make EXE File.
To use a compile and link statement, enter the following:

BC filename.bas /C
Link filename.obj,,,D8000B40.1ib+BCOM40.11ib;

where filename indicates the name of your application program.

Refer to page 3-25 for information about specifying the buffer address
when programming in Microsoft QuickBASIC (Version 4.0).

Programming with the Function Call Driver

S

chap03_.frm Black 21

&

Microsoft QuickBasic (Version 4.5)

To program in Microsoft QuickBasic (Version 4.5), you need the
following files; these files are provided in the DAS-800 Series standard
software package.

File Description

D8OOQB45.1.1B Linkable driver for QuickBasic, Version 4.5,
stand-alone, executable (.(EXE) programs.

QB4DECL.BI Include file.

DASS800.BI Include file.

For Microsoft QuickBasic (Version 4.5), you can create an executable file
from within the programming environment, or you can use a compile and
link statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:
OB /L DB0OOQR45 filename.bas
where filename indicates the name of your application program.
2. From the Run menu, choose Make EXE File.
To use a comptle and link statement, enter the following:

BC filename.bas /0
Link filename.obi,,,D800QB45.1ib+BCOM45.1ib;

where filename indicates the name of your application program.

Refer to page 3-25 for information about specifying the buffer address
when programming in Microsoft QuickBasic (Version 4.5).

3-21

5%

chap03_.frm Black 22 Q}

Microsoft Professional Basic (Version 7.0)

To program in Microsoft Professional Basic (Version 7.0), you need the
following files; these files are provided in the DAS-800 Series standard
software package.

File Description

DSOCQBX.LIB Linkable driver for Professional Basic, Versions 7.0 and
higher, stand-alone, executable ((EXE} programs,

DASDECL.BI Include file,

For Microsoft Professional Basic (Version 7.0), you can create an
executable file from within the programming environment, or you can use
a compile and link statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:
QBX /L DBO0OQBX filename.bas
where filename indicates the name of your application program.
2. From the Run menu, choose Make EXE File.
To use a compile and link statement, enter the following:

BC filename.bas /o;
Link filename.obj,,,D800QRBX.1lib;

where filename indicates the name of your application program.

Refer to page 3-25 for information about specifying the buffer address
when programming in Microsoft Professional Basic (Version 7.0).

3-22 Programming with the Function Call Driver

5

chap03_.frm Black 23

D

Microsoft Visual Basic for DOS

To program in Microsoft Visual Basic for DOS, you need the following
files; these files are provided in the DAS-800 Series standard software
package.

File Description
DASDECL.BI Include file.
DASS00.BI Include file.

To create an executable file in Microsoft Visual Basic for DOS, perform
the following steps:

1. Invoke the Visual Basic for DOS environment hy entering the
following:

VBDOS /L. DSOOVBD.QLB filename.BAS
where filename indicates the name of your application program.
2. From the Run menu, choose Make EXE File.

Refer to page 3-25 for information about specifying the buffer address
when programming in Microsoft Visual Basic for DOS.

3-23

chap03_.frm Black 24 {B

Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the ASO-800 software
package.

File Description

DASSHELL.DLL Dynamic Link Library of user-interface
functions.

DAS800.DLL Dynamic Link Library of DAS-800
board-specific functions.

DASB00.BAS Include file; must be added

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the Run menu.

Refer to the next section for information about specifying the buffer
address when programming in Microsoft Visual Basic for Windows.

3-24 Programming with the Function Catl Driver

&

chap03_.frm Black 25 {B

Specifying the Buffer Address (All BASIC Languages)

This section describes how 1o specify a buffer address when programming
in BASIC and Visual Basic for Windows.

For Visual Bagsic for Windows, if you are allocating your buffer

dynamically using K_IntAllec, perform the following steps to specify the

buffer address:

1. Declare the allocated buffer pointer, as in the following exampie:
Global AllocBuf As Long

2. Allocate the buffer, as in the following example:

errnum = K_IntAlloc (frameHandle, samples,
AllocBuf, memHandle)

Refer to page 4-78 for more information about the K_IntAlloc
function.

3. Indefining the elements of your frame, specify the buffer address, as
in the following example:

errnum = K_SetBuf (frameHandle, AllocBuf, samples)

Refer to page 4-95 for more information about the K_SetBuf
function,

4. After all your data is acquired, move the data from the allocated
buffer to a local storage buffer that your program can access, as in the
following example:

errnum = K_MoveBufToArray (Buffer(0), AlleccBuf,
samples)

Refer to page 4-88 for more information about the
K_MoveBufToArray function.

3-25

chap03_.frm Black 26

3-26

©

For BASIC and Visual Basic for Windows, if you are dimensioning your
buffer locally, perform the following steps (o specify the buffer address:

1. Declare the local buffer, as in the following example:
Global Buffer(20000) As Integer

2. In defining the elements of your frame, specify the buffer address, as
in the following example:

errnum = K_SetBufl {frameHandle, Buffer(0),
samples)

Refer to page 4-97 for more information about the K_SetBufl
function.

Notes: The local buffer is accessible to your program; you do not have to
use K_MoveBufToArray to move it.

Do not use underscores in the BASIC languages.

Programming with the Function Call Driver

D

chap04_.frm Black 1

4

Function Reference

The FCD functions are organized into the following groups:

Initialization functions
Operation functions

Frame management functions
Memory management functions
Buffer address functions
Buffering mode functions
Channel and gain functions
Conversion clock functions
Trigger functions
Counter/timer functions

Miscellaneous functions

4-1

chap04_.frm Black 2

54

The particular functions associated with each function group are
presented in Table 4-1. The remainder of the chapter presents detailed
descriptions of all the FCD functions, arranged in alphabetical order.

Table 4-1. FCD Functions

Function Type

Function Name

Page Number

Initialization

DAS800_DevOpen

page 4-6

K_CloseDriver

K_GetDevHandle

K_DASDevInit

page 4-32

Operation

K_DIRead

page 4-33

K_SyncStart

page 4-124

K_IntStatus

page 4-83

Frame Management

K_GetADFrame

page 4-40

K_ClearFrame

page 4-26

Memory Management

K_IntFree

page 4-80

Function Reference

chap04 _.frm Black 3

1%

Table 4-1. FCD Functions (cont.)

Function Type Function Name Page Number
Buffer Address K_SetBuf page 4-95
K_GetBuf page 4-44
K_BufListReset page 4-24
Buffering Mode K CirtonRun

K_SetContRun

page 4-107

Channel and Gain

K_SetChn

page 4-99

K_SetG

page 4-111

K_SetChnGAry

K_RestoreChanGAry

page 4-92

K_GetStartStopChn

page 4-65

K_GetStartStopG

page 4-67

DASB00_SetADGainMode

page 4-15

Conversion Clock

K_GetClk

page 4-50

4-3

chap04_.frm Black 4 @

Table 4-1. FCD Functions (cont.)

Function Type Function Name Page Number

Trigger K_SetTrig page 4-120

K_SetTrigHyst page 4-122

K_GelTrig page 4-70

GetTrigHyst

Gate K_SetGate page 4-113

Counter/Timer DASBO0_Set8254 page 4-17

Miscellaneous K_GetErrMsg page 4-60

K_InitFrame page 4-76

4-4 Function Reference

i
chap04_.frm Black 5

Y R g . I Y, U, R, S [P Y L

%

T L

I\CCP itne 1olIowWing conventions i mina througnout i0is cnapter:

Although the function names are shown with underscores, do not use
the underscores in the BASIC languages.

The data types DDH, FRAMEH, DWORD, WORD, and BYTE are
defined in the language-specific include files.

Variable names are shown in italics.

The return value for all FCD functions is the error/status code. Refer
to Appendix A for more information.

The syntax shows the format of the function and the data types of the
parameters. This line of code is not necessarily the exact ling of code
you would enter in your application program, In addition, data types
must be defined before you enter the line of code.

Entry parameters are parameters that are passed to the function but
not changed by the function,

Exit parameters are parameters that are modified by the function.

In the examples, the variables are not defined. It is assumed that they
are defined as shown in the syntax.

45

chap04_.frm Black 6

DAS800_DevOpen

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

Initializes the DAS-800 Series Function Call Driver.

C

DASR00_DevOpen (cfgFile, numDevices);
char *cfgFile;

char *aumDevices;

Pascal

DAS800_DevOpen (cfgFile, numDevices) : Word;
cfgFile : String;

numDevices : Integer,

Visual Basic for Windows

DAS800_DevOpen (cfgFile, numDevices) As Integer
Dim cfgFile As String

Dim numBDevices As Integer

BASIC

DASB00DevOpen% (cfgfile, numDevices)
Dim cfgFile As String

Dim numbevices As Integer

cfgFile Driver configuration file.
Valid values: 0= DASB00.CFG
—1 = Default configuration
filename = Any configuration file

numbDevices Number of boards defined in ¢fgFife.
Valid values: 1to 4

This function initializes the driver according to the information in the
configuration file specified by cfgFile and stores the number of boards
defined in numDevices.

You create a configuration file using the D80OCFG.EXE utility. Refer to
the DAS-800 Series User’s Guide for more information.

Function Reterence

chap04_.frm Black 7

N

If ¢fgFile = 0, DAS800_DevQOpen looks for the DAS800.CFG
configuration file in the current directory and uses those settings, if
available. If ¢fgFile = —1, DAS800_DevOpen initializes the driver to its
default configuration; the default configuration is shown in Table 4-2.

Table 4-2. Default Configuration

Attribute Default Configuration

Board type DAS-800

8254 C/T2 usage Cascaded

Channel 0 input configuration Single-ended

Channel 2 input configuration Single-ended

Single-ended

Channel 6 input configuration Single-ended

Interrupt level X (Disabled})

Gain of EXP-16s [N/A]

Gain of EXP-GPs [N/A]

Notes

! The default base address for board 0 is 300H. If you are using
multiple DAS-800 Series boards, the default base address for
board 1 is 308H, the default base address for board 2 is 310H, and
the default base address for board 3 is 318H.

chapO4_.frm Black 8

Example

7%

The Function Call Driver requires null terminated strings. To create null
terminated sirings in Pascal, BASIC, and Visual Basic for Windows, refer
to the following examples. These examples assume that the configuration
file {cfgFile) is DAS800.CFG.

Pascal: cfgFile : = "DASB00.CFG’ + #0,
BASIC and Visual Basic for Windows:

cfgFile = "DAS800.CFG" + CHR$(0)

After you sct up your DAS-801 board, you created a configuration file to
reflect the settings of the jumper and switches on the board. The name of
the configuration file is stored in the memory location pointed to by
CONF801. You want to initialize the DAS-800 Series Function Call
Driver according to this configuration file and store the number of boards
defined in the configuration file in a variable called NumberQOfBoards.

C
char NumberOfBoards;
err = DAS800_DevOpen (CONFEB01, &NumberOfBoards);

Pascal
err : = DASS00_DevOpen (CONF801[1], NumberQfBoards);

Visual Basic for Windows
ermmum = DAS800_DevOpen (CONF801, NumberOfBoards)

BASIC
ermmum = DAS800DevOpen% (CONF801, NumberOfBoards)

Function Referance

chap04_.frm Black 9

DAS800 GetADGainMode

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

Gets the current input range type (unipolar or bipolar).

C

DASROO_GetADGainMode (deyNumber, mode);
short devNumber;

short *mode;

Pascal

DASR00_GetADGainMode (devNumber, mode) : Word,
devNumber : Integer;

mode : Integer;

Visual Basic for Windows

DASBR0_GetADGainMode (devNumber, mode) As Integer
Dim devNumber As Integer

Dim mode As Integer

BASIC

DASBO0GetADGainMode% (devNumber, mode)
Dim devNumber As Integer

Dim mode As Integer

devNumber Board number.
Valid values: 0 to0 3

motde Input range type.
Value stored: 0 = Unipolar
1 = Bipolar

For the board specified by devNumber, this function gets the current input
range type and stores it in mode.

chap04_.frm Black 10 {}}

Example You want 1o store the current input range type for board 1 in a variable
called ADModel.

Cc
short ADModel;
err = DASS00_GetADGainMode (1, &ADMode);

Pascal
err : = DAS800_GetADGainMode (1, ADModel});

Visual Basic for Windows
errmnum = DAS800_GetADGainMode% (1, ADModel)

BASIC
errnum = DASR00GetADGainMode% (1, ADModel)

4-10 Function Reference

chap04_.frm Black 11

DAS800 GetDevHandle

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

Initializes a DAS-800 Series board.

C

DAS800_GetDevHandle (devNumber, devHandle),
shorl devNumber;

DDH *devHandle,

Pascal

DASS00_GetDevHandle (devNumber, devHandle) . Word;
devNumber : Integer;

devHandle : Longint;

Visual Basic for Windows

DASRO0Q_GetDevHandle (devNumber, devHandle) As Integer
Dim devNumber As Integer

Dim devHandle As Long

BASIC

DASBOOGetDevHandle% (devNumber, devHandle)
Dim devNumber As Integer

Dim devHandle AsL.ong

devNumber Board number,
Valid values: 0 to 3

devHandle Handle associated with the board.

This function initializes the board specified by devNumber, and stores the
board handle of the specified board in devHandle.

The value stored in devHandle is intended to be used exclusively as an
argument to functions that require a board handle. Do not modify the
value stored in devHandle.

chap04_.frm Black 12 {B

Example You want to initialize board 1 and to associate board 1 with a board
handle called BrdHd1.

c
DDH BrdHd 1;
err = DASB00_GetDevHandle (1, &BrdHd1);

Pascal
err : = DASB00_GetDevHandle (1, BrdHd1);

Visual Basic for Windows
errnum = DAS800_GetDevHandle (I, BrdHd1)

BASIC
errnum = DAS800GetDevHandle% (1, BrdHdI)

4-12 Function Reference

chap04_.frm Black 13

DAS800_Get8254

Purpose

Syntax

Entry Parameters

Gets status of the 8254 counter/timer circuitry.

C

DASB00_Get8254 (devNumber, counter, mode, count),
short devNumber;

short counter;

short *mode;

unsigned long *count,

Pascal

DAS800_Get8254 (devNumber, counter, mode, count) : Word;
devNumber : Integer;

counter : Integer;

mode : Integer;

count ; Longint;

Visual Basic for Windows

DASRO0_Get8254 (devNumber, counter, mode, count) As Integer
Dim devNumber As Integer

Dim counter As Integer

Dim mode As Integer

Dim count As Long

BASIC

DAS800Get8254% (devNumber, counter, mode, count)
Dim devNumber As Integer

Dim counter As Integer

Dim mode As Integer

Dim count As Long

devNumber Board number.
Valid values: 003

counter Counter/timer.
Valid values: 0= C/TO
1=C/T1
2=0C/T2

4-13

chap04_.frm Black 14

Exit Parameters

Notes

Example

4-14

@

mode Counter/timer mode.
Value stored: 0 = Pulse on terminal count
1 = Programmable one-shot
2 = Rate generator
3 = Square-wave generator
4 = Software-triggered strobe
5 = Hardware-triggered strobe

count Value of counter/timer,
Value stored: 0 to 65535

For the counter/timer specified by counter on the 8254 counter/timer
circuitry on the board specified by devNumber, this function stores the
counterftimer mode in mode and the current value of the counterftimer in
count,

Refer to the DAS-800 Series User's Guide for an explanation of the
counter/timer modes.

You want to store the counter/timer mode of C/T0 on board 1 in a variablc
called CTOMode and the value currently loaded in C/T0O on board | in a
variable called CTOCount.

C

short CTOMode;

unsigned long CT0OCount;

err = DASB00_Get8254 (1, G, &CT0Mode, &CT0Count);

Pascal
err : = DASB00_Get8254 (1, 0, CTOMode, CT0OCount);

Visual Basic for Windows
errnum = DASB0O0_Get8254 (1, 0, CTOMode, CTOCount)

BASIC
errnum = DAS800Get8254% (1, 0, CTOMode, CT0OCount)

Functicn Reterence

chap04_.frm Black 15

DASB800 SetADGainMode

Purpose

Syntax

Entry Parameters

Notes

Sets the input range type (unipolar or bipoiar).

C

DASB00_SetADGainMode (devNumber, mode);,
short devNumber,

short mode;

Pascal

DAS800_SetADGainMode (devNumber, mode) : Word;
devNumber : Integer;

mode : Integer;

Visual Basic for Windows

DASRO0_SctADGainMode (devNumber, mode) As Integer
Dim devNumber As Integer

Dim mode As Integer

BASIC

DASRO0SetADGainMode% (devNumber, mode)
Dim devNumber As Integer

Dim mode As Integer

devNumber Board number.
Valid values: 0to 3

mode Input range type.
Valid values: 0= Unipolar
1 = Bipolar

For the board specified by devNumber, this function sets the input range
type to mode.

This function is appropriate for DAS-801 and DAS-802 boards only. The
DAS-800 board is always configured for a £5 V bipolar analog input
range type.

4-15

chap04_.frm Black 16 @.

Example The configuration file for board | specifies a bipolar input range type.
You want to change the input range type to unipolar.

C
err = DAS800_SetADGainMode (1, 0);

Pascal
crr : = DAS800_SetADGainMode (1, 0);

Visual Basic for Windows
crrmum = DASB00_SetADGainMode (1, 0)

BASIC
ermum = DAS800SetADGainMode% (1, 0)

4-16 Function Refarence

chap04_.frm Black 17

DAS800_Set8254

Purpose

Syntax

Entry Parameters

Sets up the 8254 counter/timer circuitry.

C

DASBO0_Set8254 (deviNumber, counter, mode, count),
short devNumber,

short counter;

short mode;

unsigned long count;

Pascal

DASBQO0_Set8254 (devNumber, counter, mode, count) : Word,
devNumber : Integer;

counter : Integer;

mode : Integer;

count : Longint;

Visual Basic for Windows

DASBO0_Set8254 (devNumber, counter, mode, count) As Integer
Dim devNumber As Integer

Dim counter As Integer

Dim mode As Integer

Dim count As Long

BASIC

DAS800Set8254% (devNumber, counter, mode, count)
Dim devNumber As Integer

Dim counter As Integer

Dim mode As Integer

Dim count As Long

devNumber Board number.
Valid values: 0to 3

counter Counter/timer.
Valid values: 0= C/TO
1=C/Tl
2=C/T2

chap04_.frm Black 18 @»

mode Counter/timer mode.
Valid values: 0 = Pulse on terminal count
1 = Programmable one-shot
2 = Rate generator
J = Square-wave generator
4 = Software-triggered strobe
5 = Hardware-triggered strobe

count Value of counter/timer.
Valid values: 2 to 655358

Notes For the counter/timer specified by counter on the 8254 counter/timer
circuitry on the board specified by devNumber, this function sets the
counterftimer mode to mode and the initial count value to count.

Refer to the DAS-800 Series User’s Guide for an explanation of the
counterftimer modes and for more information about the 8254
counter/timer circuitry.

Example You want to configure C/T0 on board | as a software-triggered strobe and
load an initial count value of 100 into C/T0,

o]
err = DAS800_Set8254 (1, 0, 4, 100);

Pascal
err : = DASB00_Set8254 (1, 0, 4, 100);

Visual Basic for Windows
errnum = DAS800_Set8254 (1, 0, 4, 100}

BASIC
ermum = DAS800Set8254% (1, 0, 4, 100)

4-18 Function Reference

chap04_.frm Black 19

K_ADRead

Purpose

Syntax

Entry Parameters

Reads a single analog input value.

c

K_ADRead (devHandle, chan, gainCode, ADvalue),
DDH devHandle,

unsigned char chan;

unsigned char gainCode;

void *ADvalue;

Pascal

K_ADRead (devHandle, chan, gainCode, ADvalue) : Word,
devHandle : Longint;

chan : Byte;

gainCode : Byte;

ADvalue : Pointer;

Visual Basic for Windows

K_ADRead (devHandle, chan, gainCode, ADvalue) As Integer
Dim devHandle As Long

Dim chan As Integer

Dim gainCode As Integer

Dim ADvalue As Long

BASIC

KADRead% (devHandle, chan, gainCode, ADvalue)
Dim devHandie As Long

Dim chan As Integer

Dim gainCode As Integer

Dim ADvalue As Long

devHandle Handle associated with the board.

chan Analog input channel.
Valid values: 0 to 127

4-19

chap0O4_.frm Black 20

Exit Parameters

Notes

4-20

©

gainCode Gain code,
Valid values:

Gain | DAS-801 | DAS-B02
Code | Gain Gain

0 1 1

4 500 8

ADvalue Acquired analog input value,

This function reads the analog input channel chan on the board specified
by devHandle at the gain represented by gainCode, and stores the raw
count in ADvalue.

The range of valid values for ckan depends on the number of expansion
boards you are using. Refer to page 2-6 for more information,

A gain of 0.5 (gainCode = 1) is valid only for boards configured with a
bipolar input range type. The DAS-800 board supports a gain of | only

(gainCode must equal (). Refer to Table 2-2 on page 2-6 for a list of the
voltage ranges associated with each gain.

Make sure that the variable used to store ADvalue is dimensioned as a
16-bit integer.

Refer to Appendix B for information on converting the raw count stored
in ADvalue to voltage.

Function Reference

chap04_.frm Black 21

Example

©

You want to perform an analog input operation on a DAS-801 board that
was assigned the board handle BrdHd1. You want to read the value of the
signal connected to analog input channel 3 at a gain of 10 and store the
raw count in a variable called Chn3Val,

C
short Chn3Val;
err = K_ADRead (BrdHd1, 3, 2, &Chn3Val);

Pascal
err : = K_ADRead (BrdHdl, 3, 2, Chn3Val);

Visual Basic for Windows
errnum = K_ADRead (BrdHdl, 3, 2, Chn3Val)

BASIC
ermum = KADRead% (BrdHd1, 3, 2, Chn3Val)

4-21

chap(04_.frm Black 22

K_BufListAdd

Purpose

Syntax

Entry Parameters

Notes

4-22

Adds a buffer to the list of multiple buffers.

c

K_BuflistAdd (frameHandle, acqBuf, samplesy,
FRAMEH frameHandle;

void *acqBuf;

DWORD samples,

Pascal

K_Bufl.istAdd {(frameHandle, acgBuf, samples) . Word;
frameHandle : Longing;

acqBuf : Pointer;

samples : Longint;

Visual Basic for Windows

K_BufListAdd (frameHandle, acqBuf, samples) As Integer
Dim frameHandle As Long

Dim acqBuf As Long

Dim samples As Long

BASIC

KBufListAdd% (frameHandle, acqBuf, samples)
Dim frameHandle As Long

Dim acqBuf As Long

Dim samples As Long

frameHandle Handle to the frame that defines the A/D operation.
acqBuf Starting address of buffer.
samples Number of samples in the buffer.

For the operation defined by frameHandle, this function adds the buffer at
the address pointed to by acgBuf to the list of multiple buffers; the
number of samples in the buffer is specified in samples.

Function Reference

chap04_.frm Black 23

Example

©

You must either allocate the buffer dynamically using K_IntAlloc or
dimension the buffer locally before you add the buffer to the
multiple-buffer list.

Make sure that you add buffers to the multiple-buffer list in the order in
which you want to use them. The first buffer you add is Buffer 1, the
second buffer you add is Buffer 2, and so on. You can add up to 50
buffers. For interrupt-mode operations, you can use K_IntStatus to
determine which buffer is currently in use; refer to page 4-83 for more
information.

You allocated a 1000-sample buffer to store data for an analog input
operation defined by the frame ADFramel; the buffer starts at the
memory location pointed to by Buffer. You want to add this buffer to the
list of multiple buffers.

C
err = K_BufListAdd (ADFramel, Buffer, 1000},

Pascal
err : = K_BufListAdd (ADFrame 1, Buffer, 1000);

Visual Basic for Windows
errnum = K_BufListAdd (ADFrame1, Buffer, 1000)

BASIC
ermum = KBufListAdd% (ADFramel, Buffer, 1000)

4-23

D

chap04_.frm Black 24 @

K_BufListReset

Purpose Clears the Iist of multiple buffers.
Syntax C
K_BufListReset (frameHandle);
FRAMEH frameHandle;
Pascal

K_BufListReset (frameHandle) : Word;
frameHandle : Longint;

Visual Basic for Windows
K_BufListReset (frameHandie) As Integer
Dim frameHandle As Long

BASIC
KBufListReset% (frameHandle)
Dim frameHandle As Long

Entry Parameters frameHandle Handle to the frame that defines the A/D operation.

Notes For the operation defined by frameHandle, this function clears all buffers
from the list of multiple buffers.

This function does not deallocate the buffers in the list. If dynamically
allocated buffers are no longer needed, you can use K_IntFree to free the
buffers. Refer to page 4-80 for more information.

4-24 Function Reference

chap04_.frm Black 25 @

Example You want to clear all buffers from the multiple-buffer list associated with
the analog input operation defined by the frame ADFramel.

Cc
err = K_BufListReset {ADFramel);

Pascal
crr 1 = K_Bufl.istReset (ADFramel);

Visual Basic for Windows
ermumn = K_BufListReset (ADFramel)

BASIC
crmum = KBufListReset% (ADFramel)

4-25

<

chap04_.frm Black 26

K_ClearFrame

Purpose

Syntax

Eniry Parameters

Notes

4-26

Sets the elements of a frame to their default values.

C
K_ClearFrame (frameHandle);
FRAMEH frameHandle;

Pascal
K_ClearFrame (frameHandle) : Word;
frameHandle : Longint,

Visual Basic for Windows
K_ClearFrame (frameHandle) As Integer
Dim frameHandle As Long

BASIC
KClearFrame% {frameHandle)
Dim frameHandle As Long

frameHandle Handle to the frame that defines the A/D operation.

This function sets the elements of the frame specified by frameHandle to

their default values.

Refer to Table 3-1 on page 3-3 for a list of the default values for the

elements of an A/D frame.

Function Reference

chap(04_.frm Black 27

Example

172

You want to return all the elements of an A/D {frame called ADFramel to

their default values.

C
crr = K_ClearFrame (ADFramel);

Pascal
err : = K_ClearFrame (ADFramel);

Visual Basic for Windows
errnum = K_ClearFrame (ADFramel)

BASIC
errnum = KClearFrame% (ADFramel)

4-27

S

chap04_.frm Black 28

K_CloseDriver

Purpose

Syntax

Entry Parameters

Notes

4-28

Closes a previously initialized DAS Function Call Driver.

C
K_CloseDriver (driverHandle),
DWORD driverHandle;

Pascal (Windows Only)
K_CloseDriver (driverHandle) : Word,
driverHandle : Longint;

Visual Basic for Windows
K_CloseDriver (driverHandle) As Integer
Dim driverHandle As Long

driverHandle Driver handle you want to free,

This function frees the driver handle specified by driverHandle and closcs
the associated use of the Function Call Driver. This function also frees all
board handles and frame handles associated with driverf{andle.

If driverHandle is the last driver handle specified for the Function Call
Driver, the driver is shut down (for all languages) and unloaded (for
Windows-based languages only).

You cannot usc this function in BASIC or Borland Turbo Pascal for DOS.

Function Reference

chap04_.frm Black 29

Example

%

You have already initialized the DAS-800 Series Function Call Driver and
associated it with a driver handle called Drv800 and now want to

reinitialize the driver according to a different configuration file. You want
to first close 800Drv] to free the memory used by Drv800 for another use.

C
err = K_CloseDriver (DrvR0();

Pascal (Windows Only)
err : = K_CloseDriver (DrvR00);

Visual Basic for Windows
errnum = K_CloseDriver (DrvR00)

4-29

P

chap04_.frm Black 30

K_CirContRun

Purpose

Syntax

Entry Parameters

Notes

4-30

Specifies single-cycle buffering mode.

Cc
K_ClrContRun (frameHandle),
FRAMEH frameHandle,

Pascal
K_CIrContRun (frameHandle) : Word;
frameHandle : Longint;

Visual Basic for Windows
K_CIrContRun {frameHandle) As Integer
Dim framefandle As Long

BASIC
KClIrContRun% (frameHandle)
Dim frameHandle As Long

frameHandle Handle 1o the frame that defines the A/D operation.

This function sets the buffering mode for the operation defined by
SframeHandle to single-cycle mode and sets the Buffering Mode element

in the frame accordingly.

Refer to page 2-16 for more information about buffering modes.

The Buffering Mode element is meaningful for interrupt operations only,

Function Reference

chap04_.frm Black 31

Example

©

You want to specify single-cycle buffering mode for the analog input
operation defined by a frame called ADFramel.

Cc
err = K_ClIrContRun (ADFrame1);

Pascal
err : = K_ClrContRun (ADFramel);

Visual Basic for Windows
errmmum = K_ClrContRun (ADFramel)

BASIC
errnum = KCIrContRun% {(ADFramel)

4-31

D

chapO4_.frm Black 32

K_DASDevinit

Purpose

Syntax

Entry Parameters

Notes

Example

4-32

Reinitializes a board.

Cc
K_DASDevInit (devHandle);
DDH devHandle;

Pascal
K_DASDevInit (deviH{andie) : Word;
devHandle : Longint;

Visual Basic for Windows
K_DASDevInit (devHandle) As Integer
Dim devHandle As Long

BASIC
KDASDevInit% (devHandle)
Dim devHandle As L.ong

devHandle Handle associated with the board.

This function stops all current operations and resets the board specified by
devHandle and the driver to their power-up states.

You want to reinitialize the board associated with a board handle called
BrdHd1.

C
err = K_DASDevInit (BrdHd1);

Pascal
err : = K_DASDevInit (BrdHd 1},

Visual Basic for Windows
errnum = K_DASDevlnit (BrdHd1)

BASIC
ermum = KDASDevInit% (BrdHd1)

Function Referance

chapO4_.frm Black 33

K_DiRead

Purpose

Syntax

Entry Parameters

Exit Parameters

Reads a single digital input value.

C

K_DIRead (devHandle, chan, Divalue);
DDH devHandie;

unsigned char chan;

void *DIvalue;

Pascal

K_DIRead (devHandle, chan, Divaiue) : Word;
devHandle : Longing

chan : Byte;

Divalue ; Pointer;

Visual Basic for Windows

K_DIRead (devHandle, chan, Divalue) As Integer
Dim devHandle As Long

Dim chan As Integer

Dim Divalue As Long

BASIC

KDIRcad% (devHandle, chan, DIvaiue)
Dim devHandle As Long

Dim chan As Integer

Dim DIvalue As Long

devHandle Handle associated with the board.

chan Digital input channel,
Valid value: 9

Divalue Digital input value.

4-33

chap04_.frm Black 34 Q}

Notes This function reads the values of all digital input lines on the board
specified by devHandle, and stores the value in Divalue.

Divalue is a 32-bit variable. The acquired digital value is stored in bits 0,
1, and 2; the values in the remaining bits of Divalue are not defined. Refer
to page 2-24 for more information.

Example You want to perform a digital input operation on a board that was
assigned the board handle BrdHd1. You want to read the value of all the
bits in digital input channel 0 and store the value in a variable called
DIVal.

c
long DIVal;
err = K_DIRead (BrdHd1, 0, &DIVal);

Pascal
err : = K_DIRead (BrdHd1, 0, DIVal),

Visual Basic for Windows
ermum = K_DIRead (BrdHd1, 0, DIVal)

BASIC
errnum = KDIRead% (BrdHdl, 0, DIVal)

4-34 Function Refsrence

chap04_.frm Black 35

K_DOWrite

Purpose

Syntax

Entry Parameters

Writes a single digital output value.

c

K_DOWrite (devHandle, chan, DOvalue),
DDH devHandle;

unsigned char chan;

long DOvalue;

Pascal

K_DOWrite (devHandle, chan, DOvalue) : Word,
devHandle : Longint;

chan : Byte;

DOvalue : Longint;

Visual Basic for Windows

K_DOWrite (devHandle, chan, DOvalue) As Integer
Dim devHandle As Long

Dim char As Integer

Dim DOvalue As Long

BASIC

KDOWrite% (devHandle, chan, DOvalue)
Dim devHandle As Long

Dim chan As Integer

Dim DOvalue As Long

devHandle Handle associated with the board.

chan Digital output channel.
Valid value: 0

DOvalue Digital output value.
Valid values: 01to 15

4-35

chap04_.frm Black 36

Notes

Example

4-36

@

This function writes the value DOvalue to the digital output channel lines
on the board specified by devHandle.

DOvalue is a 32-bit variable. The value written is stored in bits 0, |, 2,
and 3; the values in the remaining bits of DOvalue are not defined. Refer
to page 2-25 for more information.

If you are using an expansion board for an analog input operation, you
cannot use this function because the driver uses all four digital output
lines to specify the expansion board channel that is acquiring data.

You want to perform a digital output operation on a board that was
assigned the board handle BrdHd1. To force the output high on OP1 and
OP2 and low on OP3 and OP4, you must write a value of 3 (00..00011) to
the digital output lines.

C
err = K_DOWrite (BrdHd 1, 0, 3);

Pascal
err : = K_DOWrite (BrdHdl, 0, 3);

Visual Basic for Windows
errnum = K_DOWrite (BrdHd1, 0, 3)

BASIC
errmum = KDOWTrite% (BrdHd1, 0, 3)

Function Relerence

chap04_.frm Black 37

K_FormatChanGAry

Purpose

Syntax

Entry Parameters

Notes

Example

Converts the format of a channel-gain list.

Visual Basic For Windows
K_FormatChanGAry (chanGainArray) As Integer
Dim chanGainArray(n) As Integer

where n = (number of channels x 2) + 1

BASIC
KFormatChanGAry% (chanGainArray)
Dim chanGainArray(n) As Integer

where n= (number of channels x 2) + 1

chanGainArray(0)) Channel-gain list starting address,

This function converts a channel-gain list created in BASIC or Visual
Basic for Windows using double-byte (16-bit) values to a channel-gain
list of single-byte (8-bit) values that the K_SetChnGAry function can
usc.

After you use this function, your program can no longer read the
converted list. You must use the K_RestoreChanGAry function to return
the list to its original format. Refer to page 4-92 for more information.

You created a channel-gain list in BASIC and named it CGList. You want
to convert the channel-gain list to single-byte values.

Visual Basic For Windows
ermum = K_FormatChanGAry (CGList(0))

BASIC
errnum = KFormatChanGAry% (CGList(())

4-37

@

chap04_.frm Black 38

K_FreeDevHandle

Purpose

Syntax

Entry Parameters

Notes

Example

4-38

Frees a previously specified board handle,

C
K_FreeDevHandle (devHandle),
DWORD devHand!le;

Pascal (Windows Only)
K_FreeDevHandle (devHandle) : Word,
devHandle ; Longint;

Visual Basic for Windows
K _FreeDevHandle (devHandle) As Integer
Dim devi{andie As Long

devHandle Board handle you want to free.

This function frees the board handle specified by devHandle. This
function also frees all frame handles associated with devHandle.

You cannot use this function in BASIC or Borland Turbo Pascal for DOS.
You have initialized your DAS-801 board 1 and associated it with a board

handle called BrdHdl. You now want to free the board handle so that it
can be used again.

C
err = K_FreeDevHandle (BrdHdl);

Pascal
err : = K_FreeDevHandle (BrdHdl);

Visual Basic for Windows
errnum = K_FreeDevHandle (BrdHdl)

BASIC
errmum = KFreeDevHandle% (BrdHdl)

Funclion Reference

<

chap04_.frm Black 39

K_FreeFrame

Purpose

Syntax

Frees a frame.

C
K_FreeFrame {(frameffandle);
FRAMEH frameHandle,

Pascal
K _FreeFrame (frameHandie) : Word,
frameHandle : Longint;

Visual Basic for Windows
K_FreeFrame (frameHandle) As Integer
Dim frameHandle As Long

BASIC
KFreeFrame% (frametandle)
Dim frameHandle As Long

Entry Parameters frameHandle Handle to frame you want to {ree.

Notes

Example

This function frees the frame specified by framef{andle, making the
frame available for another operation.

You want to perform an analog input operation, but no frames are
available. The analog input operation defined by the frame ADFramel is
complete. You can free ADFrame 1 and redefine it for your new operation.

C
err = K_FreeFrame (ADFramel};

Pascal
err : = K_FreeFrame (ADFramel);

Visual Basic for Windows
errnum = K_FreeFrame (ADFramel)

BASIC
errnum = KFreeFrame% (ADFramel)

4-39

b

chap04_.frm Black 40

K_GetADFrame

Purpose

Prototype

Entry Parameters
Exit Parameters

Notes

4-40

Accesses an A/D frame for an analog input operation,

Cc

K_GetADFrame (devHandle, frameHandle);
DDH devHandle,

FRAMEH *frameHandle,

Pascal

K_GetADFrame (devHandle, frameHandle) : Word;
devHandle : Longint;

frameHandle : Longint;

Visual Basic for Windows

K_GetADFrame (devHandle, frameHandle) As Integer
Dim devHandle As Long

Dim frameHandle As Long

BASIC

KGetADFrame% (devHandle, frameHandle)
Dim devHandle As Long

Dim frameHandle As Long

devHandle Handle associated with the board.
frameHandle Handle to the frame that defines the A/D operation.

This function specifies that you want to perform a synchronous-mode or
interrupt-mode analog input operation on the board specified by
devHandle, and accesses an available A/D frame with the handle
frameHandle.

Function Referance

chap04_.frm Black 41

Example

b

You want to perform a frame-based analog input operation on a board that
was assigned the board handle BrdHd|1 and assign the frame handle
ADFramel 1o the frame that will define the operation,

C
FRAMEH ADFramel;
err = K_GetADFrame (BrdHd1, &ADFramel);

Pascal
err : = K_GetADFrame (BrdHd1, ADFramel);

Visual Basic for Windows
errnum = K_GetADFrame (BrdHd!, ADFramel)

BASIC
errnum = KGetADFrame% (BrdHd1, ADFramel)

4-41

chapO4_.frm Black 42

K_GetADTrig

Purpose

Syntax

Reads the current analog trigger conditions.

Cc

K_GetADTrig (framehandle, trigOption, chan, level),
FRAMEH framehandle;

short *trigOption,

short *chan,

long *level;

Pascal

K_GetADTrig (frameHandle, trigQOption, chan, level) : Word,
frameHandle : Longint;

trigOption . Word,

chan : Word;

level : Longiny;

Visual Basic for Windows

K_GetADTrig (frameHandle, trigOption, chan, level) As Integer
Dim frameHandle As Long

Dim trigOption As Integer

Dim chan As Integer

Dim fevel As Long

BASIC

KGetADTrig% (frameHandle, trigOption, chan, level)
Dim frameHandle As Long

Dim trigOption As Integer

Dim chan As Integer

Dim level AsLong

Entry Parameters frameHandie Handle to the frame that defines the A/D operation.

Exit Parameters

4-42

trigOption Analog trigger polarity and sense.
Value stored: 0 = Positive edge
2 = Negative edge

chan Analog channel used as trigger channel.
Value stored; 0to 127

Function Reference

chap04_.frm Black 43

Notes

Example

D

level Level at which the trigger event occurs,
Value stored: 0 to 4095

For the operation defined by frameHandle, this function stores the
channel used for an analog trigger in chan, the level used for the analog
trigger in level, and the trigger polarity and trigger sense in trigOption.

The trigOption variable contains the value of the Trigger Polarity and
Trigger Sensc elements.

The chan variable contains the value of the Trigger Channel element. The
location of the channel stored in chan depends on the expansion boards
you ar¢ using. Refer to page 2-6 for more information.

The level variable contains the value of the Trigger Level element. The
value of Jevel is represented in raw counts, Refer to Appendix B for
information on converting the raw count stored in level 10 voltage.

You are using an analog trigger to trigger the analog input operation
defined by the frame ADFramel. You want to store the trigger polarity
and sense in a variable called TrigSens, the channel used for the analog
trigger in a variable called TrigChan, and the raw count associated with
voltage that will trigger the operation in a variable called TrigLvl.

Cc

short TrigSens;

short TrigChan;

long TrigLvl;

err = K_GetADTrig (ADFramel, &TrigSens, & TrigChan, &TrigLvl);

Pascal
err : = K_GetADTrig (ADFramel, TrigSens, TrigChan, Trighvi);

Visual Basic for Windows
errnum = K_GetADTrig (ADFramel, TrigSens, TrigChan, TrigLvl)

BASIC
errnum = KGetADTrig% (ADFramel, TrigSens, TrigChan, TrigLvl)

4-43

chap04_.frm Black 44

K_GetBuf

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-44

Reads the address of a buffer,

C

K_GetBuf (frameHandle, acqBuf, samples);
FRAMEH frameHandle;

void *acqBuf;

long *samples;

Pascal

K_GetBuf (frameHandle, acqBuf, samples) . Word;
frameHandle : Longint;

acqgBuf : Pointer;

samples : Longint;

Visual Basic for Windows

K_GetBuf (frameHandle, acqBuf, samples) As Integer
Dim frameHandle As Long

Dim acqBuf As Long

Dim samples As Long

BASIC

KGetBuf% (frameHandle, acqBuf, samples)
Dim frameHandle As Long

Dim acqgBuf As Long

Dim samples As Long

frameHandle Handle to the frame that defines the A/D operation.

acqBuf Starting address of buffer.

samples Number of samples.

For the operation specified by frameHandle, this function stores the
address of the currently allocated buffer in acgBuf and the number of

samples stored in the buffer in samples.

Function Refarence

chap04_.frm Black 45

Example

2

Use this function to read the address of a single buffer whose address was
specified by K_SetBuf or K_SetBufl.

The acqBuf variable contains the value of the Buffer element.

The samples variable contains the value of the Number of Samples
element.

You defined an analog input operation in a frame catled ADFramel. You
want to store the starting address of the buffer used to store the acquired

data in a variable called BufAddr and the number of samples acquired in a
variable called NumSamps.

C

void *BufAddr;

tong NumSamps;

err = K_GetBuf (ADFramel, & BufAddr, &NumSamps),

Pascal
err : = K_GetBuf (ADFrame1, BufAddr, NumSamps});

Visual Basic for Windows
cerrnum = K_GetBuf (ADFramel, BufAddr, NumSamps)

BASIC
errnum = KGetBuf% (ADFramel, BufAddr, NumSamps)

4-45

chap04_.frm Black 46

K_GetChn

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-46

Gets a single channel number.

Cc

K_GetChn (frameHandle, chan);
FRAMEH frameHandle;

short *chan;

Pascal

K_GetChn (frameHandle, chan) : Word;
frameHandle : Longint;

chan : Word;

Visual Basic for Windows

K_GetChn (frameHandle, chan) As Integer
Dim frameHandle As Long

Dim chan As Integer

BASIC

KGetChn% (frameHandle, chan)
Dim frameHandle As Long

Dim chan As Integer

SframeHandle Handle to the frame that defines the A/D operation.

chan Channel on which to perform operation.
Value stored: 0to 127

For the operation defined by frameHandle, this function stores the single
channel number in chan.

The chan variable contains the value of the Start Channel element. The
location of the channel stored in charn depends on the expansion boards
you ar¢ using. Refer to page 2-6 for morc information.

Function Referance

chap04_.frm Black 47

Example

572

You defined an analog input operation in a frame called ADFrame] and
want to store the number of the channel on which you are acquiring data

in a variable called SingChan.

C
short SingChan;
crr = K_GetChn (ADFramel, &SingChan);

Pascal
err : = K_GetChn (ADFramel, SingChan);

Visual Basic for Windows
ermmum = K_GetChn (ADFramel, SingChan)

BASIC
errnum = KGetChn% (ADFramel, SingChan)

4-47

chap04_.frm Black 48

K_GetChnGAry

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-48

Gets the starting address of a channel-gain list.

c

K_GetChnGAry (frameHandle, chanGainArray),
FRAMEH frameHandle,

void *chanGainArray;

Pascal

K_GetChnG Ary (frameHandle, chanGainArray) : Word;
frameHandle . Longint;

chanGainArray : Longint;

Visual Basic for Windows

K_GetChnGAry (frameHandle, chanGainArray) As Integer
Dim frameHandle As Long

Dim chanGainArray As Long

BASIC

KGetChnGAry% (frameHandle, chanGainArray)
Dim frameHandle As Long

Dim chanGainArray As Long

frameHandle Handle to the frame that defines the A/D operation.
chanGainArray Channel-gain list starting address.

For the operation defined by frameHandle, this function stores the
starting address of the channel-gain list in chanGainArray.

The chanGainArray variable contains the value of the Channel-Gain List
element.

Refer to page 2-9 for information on setting up a channel-gain list.

Function Reference

chap(04_.frm Black 49 {B»

Example You defined an analog input operation in a frame called ADFrame! and
want to store the starting address of the channel-gain list in a variable
cailed AryAddr.

c
err = K_GetChnG Ary (ADFramel, AryAddr);

Pascal
err ;= K_GetChnGAry (ADFramel, AryAddr);

Visual Basic for Windows
errnum = K_GetChnGAry (ADFramel, AryAddr)

BASIC
ermum = KGetChnGAry% (ADFramel, AryAddr)

4-49

chap04_.frm Black 50

K_GetCIk

Purpose

Syntax

Gets the conversion clock source.

C

K_GetClk (frameHandle, clkSource);
FRAMEH frameH andle;

short *cikSource,

Pascal

K_GetClk (frameHandle, clkSource) : Word;
SframeHandle : Longint;

clkSource . Word;

Visual Basic for Windows

K_GetClk (frameHandle, clkSource) As Integer
Dim frameHandle As Long

Dim ctkSource As Integer

BASIC

KGetClk% (frameHandle, ctkSource)
Dim frameHandle As Long

Dim elkSource As Integer

Entry Parameters frameHandle Handle to the frame that defines the A/D operation.

Exit Parameters

Notes

4-50

clkSource Conversion clock source.
Value stored: 0 = Internal
1 = External

For the operation defined by frameHandle, this function stores the
conversion clock source in clkSource.

Aninternal clock source is the 1 MHz time base of the 8254 counter/timer
circuitry; an external clock source is an exiernal signal connected to the
INT_IN / XCLK pin, Refer to page 2-13 for more information about
conversion clock sources.

The clkSource variable contains the value of the Conversion Clock Source
element.

Function Reference

chap04_.frm Black 51 -6}

Example You defined an analog input operation in a frame called ADFrame!l and
want to store the conversion clock source in a variable called Clock.

C
short Clock;
err = K_GetClk (ADFramel, &Clock);

Pascal
err : = K_GetClk (ADFramel, Clock);

Visual Basic for Windows
errnum = K_GetClk (ADFrame1, Clock)

BASIC
ermum = KGetClk% (ADFramel, Clock)

4-51

chap04_.frm Black 52

K_GetClkRate

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-52

Gets the clock rate (conversion frequency).

C

K_GetClkRate (frameHandle, clkTicks);
FRAMEH frameHandle;

long *ctkTicks;

Pascal

K_GetClkRate (frameHandle, cikTicks) : Word;
frameHandle : Longint;

ctkTicks : Longint;

Visual Basic for Windows

K_GetClkRate (frameHandle, clkTicks) As Integer
Dim frameHandle As Long

Dim clkTicks As Long

BASIC

KGetClkRate% (frameHandle, clkTicks)
Dim frameHandle As Long

Dim cikTicks As Long

frameHandle Handle to the frame that defines the A/D operation.

clkTicks Number of clock ticks between conversions,
Value stored: 25 to 65,535 (normal mode)
25 10 4,294,967,295 (cascaded mode)

For the operation defined by frameHandle, this function stores the
number of clock ticks between conversions in clkTicks.

The cfkTicks variable contains the value of the Conversion Frequency
element.

This function applies to an internal clock source onty.

Function Reference

chap04_.frm Black 53

Example

©

After a synchronous or interrupt operation, the value stored in clkTicks
represents the actual count, not necessarily the count set by
K_SetClkRate. The counts are different if you use cascaded mode and
specify a count in K_SetClkRate that cannot be divided between C/T1
and C/T2; in this case, the driver loads C/T1 and C/T2 as accurately as
possible,

You defined an analog input operation in a frame called ADFrame] and
want 1o store the number of clock ticks between conversions in a variable
called Ticks.

C
long Ticks;
crr = K_GetClkRate (ADFramel, &Ticks);

Pascal
err . = K_GetClkRate (ADFramel, Ticks);

Visual Basic for Windows
errnum = K_GetClkRate (ADFramel, Ticks)

BASIC
crrnum = KGetClkRate% (ADFrame |, Ticks)

4-53

chap04_.frm Black 54

K_GetContRun

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-54

Gets the buffering mode.

C

K_GetContRun (frameHandle, mode);,
FRAMEH frameHandle;

short *mode;

Pascal

K_GetContRun (frameHandle, mode) : Word;
frameHandle : Longint;

mode : Word;

Visual Basic for Windows

K_GetContRun (frameHandle, mode) As Integer
Dim frameHandle As Long

Dim mode As Integer

BASIC

KGetContRun% (frameHandle, mode)
Dim frameHandle As Long

Dim mode As Integer

frameHandle Handle to the frame that defines the A/D operation.

mode Buffering mode.
Value stored: 0 = Single-cycle
1 = Continuous

For the operation defined by frameHandle, this function stores the
buffering mode in mode.

The mode variable contains the valuc of the Buffering Mode element.
Refer to page 2-16 for a description of buffering modes.

The Buffering Mode element is meaningful for interrupt operations only.

Function Relerence

chap04_.frm Black 55

Example

54

You defined an analog input operation in a frame called ADFramel and
want to store the buffering mode in a variable called BufMode.

C
short BuftMode;
err = K_GetContRun (ADFramel, &BufMode);

Pascal
err : = K_GetContRun (ADFramel, BufMode);

Visual Basic for Windows
errnum = K_GetContRun (ADFrame 1, BufMode)

BASIC
ermum = KGetContRun% (ADFramel, BufMode)

4-55

chap04_.frm Black 56

K_GetDevHandle

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-56

Initializes any DAS board.

[o]

K_GetDevHandle (driverHandle, devNumber, devHandle);
DWORD driverHandle;

WORD devNumber;

DDH *devHandle;

Pascal (Windows Only)

K_GetDevHandle (driverHandle, devNumber, devHandle) : Word,
driverHandle : Longint;

devNumber : Integer;

devHandle : Longint;

Visual Basic for Windows

K_GetDevHandle (driverHandle, devNumber, devHandle) As Integer
Dim driverHandle As Long

Dim devNumber As Integer

Dim devHandle As Long

driverHandle Driver handle of the associated Function Call Driver,

devNumber Board number.
Valid values: 0to 3

devHandle Handle associated with the board.

This function initializes the board associated with driverHandle and
specified by devNumber, and stores the board handle of the specificd
board in devHandle.

The value stored in devHandle is intended to be used exclusively as an
argument to functions that require a board handle. Your program should
not modify the value stored in devHandle.

You cannot use this function in BASIC or Borland Turbo Pascal for DOS.

Function Reference

chap04_.frm Black 57

Example

&

You want to initialize your DAS-801 board I, which is associated with the
driver handle called Drv800, and associate this board with a board handic
called BrdHd 1.

c
err = K_GetDevHandle (Drv800, 1, &BrdHd1);

Pascal
ert : = K_GetDevHandle (Drv800, 1, BrdHd1);

Visual Basic for Windows
errnum = K_GetDevHandle (Drv800, 1, BrdHd1)

BASIC
errnum = KGetDevHandle% (Drv800, |, BrdHd1)

4-57

chap04_.frm Black 58

K_GetDITrig

Purpose

Syntax

Entry Parameters

Exit Parameters

4-58

Reads the current digital trigger conditions.

c

K_GetDITrig (frameHandle, trigOption, chan, patterny,
FRAMEH frameHandle;

short *trigQption;,

short *chan;

long *pattern;

Pascal

K_GetDITrig (frameHandle, trigOption, chan, pattern) : Word;
frameHandle : Longint;

trigOption : Word,;

chan : Word,

pattern : Longint;

Visual Basic for Windows

K_GetDITrig (frameHandle, trigOption, chan, pattern) As Integer
Dim frameHandle As Long

Dim #rigOptian As Intcger

Dim chan As Integer

Dim pattern As Long

BASIC

KGetDITrig% (frameHandle, trigOption, chan, pattern)
Dim frameHandle As Long

Dim trigOption As Integer

Dim chan As Integer

Dim pattern As Long

frameHandle Handle to the frame that defines the A/D operation.

trigOption Trigger polarity and sense.
Value stored: 0 = Positive, edge-sensitive

chan Digital input channel.
Value stored: 0

Function Reterence

@

chap04_.frm Black 59

Notes

Example

5

pattern Trigger pattern.

For the operation defined by frameHandle, this function stores the trigger
polarity and sense in trigOption, the channel used for the digital trigger in
chan, and the trigger pattern in pattern.

Since the DAS-80C Series Function Call Driver docs not currently
support digital pattern triggering, the value of patiern is meaningless; the
pattern parameter is provided for futare compatibility.

The trigOption variable contains the value of the Trigger Polarity and
Trigger Sense elements,

The chan variable contains the value of the Trigger Channel clement.

You are using a digital trigger to trigger the analog input operation
defined by the frame ADFramel. You want to store the trigger polarity
and sense in a variable called TrigSens and the channel used for the
analog trigger in a variable called TrigChan. (Reserved is a placeholder
for the trigger pattern, which is not supported at this time.)

Cc

short TrigSens;

short TrigChan;

long Reserved;

err = K_GetDITrig (ADFramel, &TrigSens, &TrigChan, &Reserved);

Pascal
err : = K_GetDITrig (ADFramel, TrigSens, TrigChan, Reserved);

Visual Basic for Windows
errnum = K_GetDITrig (ADFrame !, TrigSens, TrigChan, Reserved)

BASIC
errnum = KGetDITrig% (ADFramel, TrigSens, TrigChan, Reserved)

4-59

chap04_.frm Black 60

K_GetErrMsg

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

Example

4-60

Geis the address of an error message string.

Cc

K_GetErrMsg (devHandle, msgNum, errMsg);
DDH devHandle;

short msgNum;

char far *errMsg;

devHandle Handle associated with the board.
msgNum Error message number.
errMsg Address of error message string.

For the board specified by devHandle, this function stores the address of
the string corresponding to error message number msgNum in errMsg.

Refer to page 2-30 for more information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

This function is available for C only.

You are writing a program in C for a board that was assigned the board
handle BrdHd1 and want to store the address of the string corresponding

to error message 7801H in a variable called ErrStr.

err = K_GetErrMsg (BrdHd1, 0x7801, &ErrStr);

Function Reference

chapO4_.frm Black 61

K_GetG

Purpose

Syntax

Entry Parameters frameHandle

Gets the gain.

c

K_GetG (frameHandle, gainCode);
FRAMEH frameHandle,

short *gainCode;

Pascal

K_GetG {frameHandle, gainCode) : Word;
frameHandle : Longing;

gainCode : Word,

Visual Basic for Windows

K_GetG (frameHandle, gainCode) As Integer
Dim frameHandle As Long

Dim gainCode As Integer

BASIC

KGetG% (frameHandle, gainCode)
Dim frameHandle As Long

Dim gainCode As Integer

Handle to the frame that defines the A/D operation.

4-61

chap04_.frm Black 62

Exit Parameters

Notes

Example

4-62

b

gainCode Gain code.
Value stored:

Value of DAS-801 | DAS-B02
gainCode | Gain Gain

0 l 1

4 500 8

For the operation defined by frameHandle, this function stores the gain
code for a single channel or for a group of consecutive channels in
gainCode.

The gainCode variable contains the value of the Gain clement.

A gain of 0.5 (gainCode = 1) is valid only for boards configured with a

bipolar input range type. The DAS-800 board supports a gain of 1 only

(gainCode must equal 0). Refer to Table 2-2 on page 2-6 for a list of the
voltage ranges associated with each gain.

You defined an analog input operation in a frame called ADFramel and
want to store the gain of the channel on which you are acquiring data in a
variable called SingGain.

C
short SingGain;
err = K_GetG (ADFramel, &SingGain);

Pascal
err . = K_GetG (ADFramel, SingGain);

Visual Basic for Windows
errnum = K_GetG (ADFramel, SingGain)

BASIC
errnum = KGetG% (ADFramel, SingGain)

Function Reference

chap04_.frm Black 63

K_GetGate

Purpose Gets the status of the hardware gate.
Syntax Cc

K_GetGate (frameHandle, gateQpt),

FRAMEH frameHandle;

short *gateOpt;

Pascal

K_GetGate (frameHandle, gateOpt) : Word,

frameHandle : Longint,

gateOpt ; Integer;

Visual Basic for Windows

K_GetGate (frameHandle, gateOpt) As Integer

Dim frameHandle As Long

Dim gateOpt As Integer

BASIC

KGetGate% (frameHandle, gateOpt)

Dim frameHandle As Long

Dim gateOpt As Integer
Entry Parameters frameHandle Handle to the frame that defines the A/D operation.
Exit Parameters gateOpt Status of the hardware gate.

Value stored: 0= Disabled
1 = Enabled

Notes

For the operation defined by frameHandle, this function stores the status
of the hardware gate in gateOpt.

The gateOpt variable contains the value of the Hardware Gate element.

DAS-800 Series boards support a positive gate only. When the hardware
gate is enabled, conversions occur only while the gate signal is high.

4-63

chap04_.frm Black 64 Q}

Example You defined an analog input operation in a frame called ADFramel and
want to store the status of the hardware gate in a variable called Gate.

C
short Gate;
err = K_GetGate (ADFramel, &Gate);

Pascal
err : = K_GetGate (ADFramel, Gate);

Visual Basic for Windows
errnum = K_GetGate (ADFramel, Gate)

BASIC
errnum = KGetGate% (ADFramel, Gate)

4-64 Function Reference

chap04_.frm Black 65

K_GetStartStopChn

Purpose

Syntax

Entry Parameters

Exit Parameters

Gets the first and last channels in a group of consecutive channels.

C

K_GetStartStopChn (frameHandle, start, stop),
FRAMEH frameHandle;

short *start,

short *stop,

Pascal

K_GetStartStopChn (frameHandle, start, stop) : Word,;
frameHandle : Longint;

start : Word,;

stop : Word,;

Visual Basic for Windows

K_GetStartStopChn (frameHandle, starr, stop) As Integer
Dim frameHandle As Long

Dim start As Integer

Dim stop As Integer

BASIC

KGetStartStopChn% (frameHandle, start, stop)
Dim frameHandle As Long

Dim start As Integer

Dim stop As Integer

frameHandle Handle to the frame that defines the A/D operation.

start First channel in a group of consecutive channels.
Value stored: 010 127

stop Last channel in a group of consecutive channels.
Value stored: 0 to 127

4-65

chap04_.frm Black 66

Notes

Example

4-66

©

For the operation defined by frameHandle, this function stores the first
channel in a group of consecutive channels in start and the last channel in
the group of consecutive channels in stop.

The start variable contains the value of the Start Channel element.
The stop variable contains the value of the Stop Channel element.

The locations of the channels stored in start and stop depend on the
number of expansion boards you are using. Refer to page 2-6 for more
information,

You defined an analog input operation in a frame called ADFramel. You
want to store the first channel in your group of consecutive channels in a
variable called First and the last channel in your group of consecutive
channels in a variable cailed Last.

C

short First;

short Last;

err = K_GetStartStopChn (ADFrame 1, &First, &Last);

Pascal
err : = K_GetStartStopChn (ADFrame 1, First, Last);

Visual Basic for Windows
errnum = K_GetStartStopChn (ADFrame, First, Last)

BASIC
errnum = KGetStartStopChn% (ADFramel, First, Last)

Function Refarence

chap04_.frm Black 67

K_GetStartStopG

Purpose

Syntax

Entry Parameters

Exit Parameters

Gets the first and last channels in a group of consecutive channels and the
gain for all channels in the group.

C

K_GetStartStopG (frameHandle, start, stop, gainCode);
FRAMEH frameHandle;

short *start;

short *stop,

short *gainCode;

Pascal

K_GetStartStopG (frameH andle, start, stop, gainCode) : Word,
frameHandle ; Longint;

start : Word,

stop : Word;

gainCode ; Word,;

Visual Basic for Windows

K_GetStartStopG (frameHandle, start, stop, gainCode) As Integer
Dim frameHandle As Long

Dim start As Integer

Dim stop As Integer

Dim gainCode As Integer

BASIC

KGetStartStopG% (frameHandle, start, stop, gainCode)
Dim frameHandle As Long

Dim start As Integer

Dim stop As Integer

Dim gainCode As Integer

frameHandle Handle to the frame that defines the A/D operation.

start First channel in a group of consecutive channels.
Value stored: 0to 127

stop Last channel in a group of consecutive channels.
Value stored: 0 to 127

4-67

b

chap04_.frm Black 68

Notes

4-68

b

gainCode Gain code,
Value stored:

Value of DAS-801 | DAS-802
gainCode | Galn Gain

0 1 1

For the operation defined by frameHandle, this function stores the first
channel in a group of consecutive channels in start, the last channel in the
group of consecutive channels in stop, and the gain code for all channels
in the group in gainCode.

The start variable contains the value of the Start Channel element.
The stop variable contains the value of the Stop Channel element.

The locations of the channels stored in start and stop depend on the
number of expansion boards you are using. Refer to page 2-6 for more
information.

The gainCode variable contains the value of the Gain element.

A gain of 0.5 (gainCode = 1) is valid only for boards configured with a

bipolar input range type. The DAS-800 board supports a gain of 1 only

(gainCode must equal 0). Refer to Table 2-2 on page 2-6 for a list of the
voltage ranges associated with each gain,.

Function Reference

chapO4_.frm Black 69

Example

©

You defined an analog input operation in a frame called ADFramel. You
want to store the first channel in your group of consecutive channels in a
variable called First, the last channel in your group of consecutive
channels in a variable called Last, and the gain for all channels in the
group in a variable called ListGain.

C

short First;

short Last;

short ListGain;

err = K_GetStartStopG (ADFramel, &First, &Last, &ListGain);

Pascal
err : = K_GetStartStopG (ADFramel, First, Last, ListGain),

Visual Basic for Windows
errnum = K_GetStartStopG (ADFrame, First, Last, ListGain)

BASIC
errnum = KGetStartStopG% (ADFrame 1, First, Last, ListGain)

4-69

chap04_.frm Black 70

K_GetTrig

Purpose

Syntax

Gets the trigger source.

Cc

K_GetTrig (frameHandle, trigSource);
FRAMEH frameHandle;

short *trigSource;

Pascal

K_GetTrig (frameHandle, trigSource) : Word,
frameHandle : Longint;

trigSource : Word;

Visual Basic for Windows

K_GetTrig (frameHandle, trigSource) As Integer
Dim frameHandle As Long

Dim trigSource As Integer

BASIC

KGetTrig% (frameHandle, trigSource)
Dim frameHandle As Long

Dim trigSource As Integer

Entry Parameters frameHandle Handle to the frame that defines the A/D operation,

Exit Parameters

Notes

4-70

trigSource Trigger source.
Value stored: 0= Internal trigger
1 = External trigger

For the operation defined by frameHandle, this function stores the trigger
source in trigSource.

The trigSource variable contains the value of the Trigger Source clement.

An internal trigger is a software trigger; conversions begin when the
operation is started. An external trigger is either an analog trigger or a
digital trigger; conversions begin when the trigger event occurs. Refer to
page 2-16 for more information about internal and external trigger
sources,

Function Refarence

chap04_.frm Black 71 @

Example You defined an analog input operation in a frame called ADFrame!l and
want to store the source of the trigger that will start the operation in a
variable called Trigger.

Cc
short Trigger;

err = K_GetTrig (ADFramel, &Trigger);

Pascal
err : = K_GetTrig (ADFramel, Trigger);

Visual Basic for Windows
errnum = K_GetTrig (ADFramel, Trigger)

BASIC
crrnum = KGetTrig% (ADFramel, Trigger)

4-71

chapO4_.frm Black 72

K_GetTrigHyst

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-72

Gets the hysteresis value.

C

K_GetTrigHyst (frameHandle, hyst);
FRAMEH frameHandle;

short *hyst;

Pascal

K_GetTrigHyst (frameHuandle, hyst) : Word,
frameHandle : Longint;

hyst . Word,;

Visual Basic for Windows

K_GetTrigHyst (frameHandle, hyst) As Integer
Dim frameHandle As Long

Dim hyst As Integer

BASIC

KGetTrigHyst% (frameHandle, hyst)
Dim frameHandle As Long

Dim hyst As Integer

frameHandle Handle to the frame that defines the A/D operation.

hyst Hysteresis value.
Value stored: 0 to 4095

For the operation defined by frameHandle, this function stores the
hysteresis value used for an analog trigger in hyst. The value is
represented in raw counts; refer to Appendix B for information on
converting the raw count to voltage.

The hyst variable contains the value of the Trigger Hysteresis element.

Refer to page 2-17 for more information about analog triggers.

Function Reference

chap04_.frm Black 73

Example

%

You defined an analog input operation in a frame called ADFrame| and
want to store the hysteresis value used by the analog trigger in a variable
called HystVal.

C
short HystVal;
err = K_GetTrigHyst (ADFramel, &HystVal),

Pascal
err : = K_GetTrigHyst (ADFramel, HystVal);

Visual Basic for Windows
errnum = K_GetTrigHyst (ADFrame 1, HystVal)

BASIC
ermum = KGetTrigHyst% (ADFrame1, HystVal)

4-73

chap04_.frm Black 74

K_GetVer

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-74

Gets revision numbers,

C

K_GetVer (devHandle, spec, version),
DDH devHandle,

short *spec;

short *version;

Pascal

K_GetVer (devHandle, spec, version) : Word;
devHandle ; Longint;

spec : Word;

version : Word;

Visual Basic for Windows

K_GetVer (devHandle, spec, version) As Integer
Dim devHandle As Long

Dim spec As Integer

Dim version As Integer

BASIC

KGetVer% (devHandle, spec, version)
Dim devHandle As Long

Dim spec As Integer

Dim version As Integer

devHandle Handle associated with the board.

spec Revision number of the Keithiey DAS Driver
Specification to which the driver conforms.

version Driver version number,

For the board specified by devHandle, this function stores the revision
number of the DAS-800 Series Function Call Driver in version and the

revision number of the driver specification in spec.

Function Reference

chap04_.frm Black 75

Example

©

The values stored in spec and version are two-byte (16-bit) integers; the
high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.1, the major revision level is 2 and the minor revision level is
1; therefore, the high byte of version contains the value of 2 (512) and the
low byte of version contains the value of 1; the value of both bytes is 513,

To extract the major and minor revision levels from the value stored in
spec or version, use the following equations:

returned valuc)

major revision level = Integer portion of (256

minor revision level = returned value MOD 256

You are using functions from different DAS Function Call Drivers in your
application program. Before you include a particular function in your
program, you want to check the revision of the Function Call Driver
associated with a particular board. The board is associated with the board
handle BrdHd1. You want to store the revision number of the driver in a
variable called Brd1Rev and the revision number of the driver
specification in a variable called Brd1S5pec.

C

short Brd1Spec;

short Brd1Rev;

err = K_GetVer (BrdHd1, &Brd1Spec, &Brd1Rev);

Pascal
err : = K_GetVer (BrdHd!1, Brd1Spec, Brd1Rev});

Visual Basic for Windows
ermum = K_GetVer (BrdHd1, Brd1Spec, Brd1Rev)

BASIC
errnum = KGetVer% (BrdHd1, Brd1Spec, Brd1Rev)

4-75

D

chap04_.frm Black 76

K_InitFrame

Purpose

Syntax

Entry Parameters

Notes

4-76

Checks the interrupt status.

C
K_InitFrame (frameHandle);
FRAMEH frameHandle;

Pascal
K_InitFrame (framefandle) : Word,
frameHandle : Longint;

Visual Basic for Windows
K_InitFrame (frameHandle) As Integer
Dim frameHandle As Long

BASIC
KInitFrame% (frameHandle)
Dim frameHandle As Long

frameHandle Handle to the frame that defines the A/D operation.

This function checks the status of interrupt operations on the board

associated with frameHandle,

If no interrupt operation is active, K_InitFrame checks the validity of the
board associated with frameHandle and, if the board is valid, ecnables A/D

operations.

If an interrupt operation is active, K_InitFrame returns an error

indicating that the board is busy.

Function Reierence

chap04_.frm Black 77

Example

@

You defined an analog input operation in a frame called ADFramel.
ADFramel is associated with a board that was assigned the board handle
BrdHd1. You want to check the status of interrupt operations on the board
before starting a new analog input operation.

C
err = K_InitFrame (ADFramel);

Pascal
err : = K_InitFrame (ADFramel);

Visual Basic for Windows
errnum = K_InitFrame (ADFrame!l)

BASIC
errnum = KInitFrame% (ADFramel)

4-77

chap04_.frm Black 78

K_IntAlloc

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-78

Allocates a buffer.

C

K_IntAlloc (frameHandle, samples, acqBuf, memHandle),
FRAMEH frameHandle;

DWORD samples,

void *acqBuf;

WORD *memHandle;

Pascal

K_IntAlloc (frameHandle, samples, acqBuf, memHandle) : Word;
frameHandle : Longint;

samples : LonglInt,

acqBuf : Pointer;

memHandle : Word,

Visual Basic for Windows

K_IntAlloc (frameHandle, samples, acqBuf, memHandley As Integer
Dim frameHandle As Long

Dim samples As Long

Dim acgBuf As Long

Dim memHandle As Integer

frameHandle Handle to the frame that defines the A/D operation.

samples Number of samples.
Valid values: 0 to 32767

acqgBuf Starting address of the allocated buffer.

memHandle Handle associated with the allocated buffer.

For the operation defined by frameHandle, this function allocates a buffer
of the size specified by samples, and stores the starting address of the
buffer in acgBuf and the handle of the buffer in memHandle.

Do not use this function for BASIC; for the BASIC languages, you must
dimension your buffer locally.

Function Reference

b

chap04_.frm Black 79 @»

Example You defined an analog input operation in a frame cailed ADFramel. You
want to allocate a buffer that will store 1000 samples, store the starting
address of this buffer in a variable called Bufferl, and associate this
buffer with a memory handle called Handlel.

C
err = K_IntAlloc (ADFramel, 1000, Bufferl, Handlei);

Pascal
Refer to page 3-18 for an example of using K_IntAHoc in Pascal.

Visual Basic for Windows
errnum = K_IntAlloc (ADFramel, 1000, Bufferl, Handle1)

4-79

@

chap04_.frm Black 80

K_IntFree

Purpose

Syntax

Frees a buffer.

C
K_IntFree (memHandle);
WORD memHandle;

Pascal
K_IntFree (memfandle) : Word,
memHandle . Word;

Visual Basic for Windows
K_IntFree (memHandle) As Integer
Dim memHandle As Integer

Entry Parameters memfandie Handle to interrupt buffer.

Notes

Example

4-80

This function frees the buffer specified by memHandle; the buffer was
previously allocated dynamically using K_IntAlloc.

You defined an analog input operation in a frame called ADFramel and
atlocated a buffer associated with the memory handle Handlel. You want
to free this buffer for another usc.

C
err = K_IntFree (Handlel),

Pascal
err : = K_IntFree (Handlel);

Visual Basic for Windows
errnum = K_IntFree (Handlel)

Function Reference

D

chap04_.frm Black 81

K_IntStart

Purpose

Syntax

Entry Parameters frameHandle

Notes

Starts an interrupt operation.

C
K_InmStart (frameHandle),
FRAMEH frameHandle,

Pascal
K_IntStart (frameHandle) : Word;
frameHandle : Longint;

Visual Basic for Windows
K_IntStart {frameHandle) As Integer
Dim frameHandle As Long

BASIC
KiIntStart% (frameHandle)
Dim frameHandle As Long

Handle to the frame that defines the A/D operation.

This function starts the interrupt operation defined by frameHandle.

Refer to page 3-9 for a discussion of the programming tasks associated

with interrupt operations,

4-81

chap04_.frm Black 82 @

Exampie You defined an analog i ‘rp"t operati a frame calied ADFramel and
want to start the operation in interrupt mode
Cc

err = K_IntStart (ADFramel};

Pascal
err : = K_IntStart (ADFrametl);

Visual Basic for Windows
errnum = K_IntStart (ADFramel)

BASIC
errnum = KIntStart% (ADFramel)

4-82 Function Reference

chap04_.frm Black 83

K_IntStatus

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

Gets status of interrupt operation,

C

K_IntStatus (frameHandle, status, samples),
FRAMEH frameHandle;

short *status;

long *samples,

Pascal

K_IntStatus (frameHandle, status, samples) : Word;
frameHandle : Longint;

status : Word;

samples : Longint;

Visual Basic for Windows

K_IntStatus (frameHandle, status, sampies) As Integer
Dim frameHandle As Long

Bim status As Integer

Dim samples As Long

BASIC

KIntStatus% (frameHandle, status, samples)
Dim frameHandle As Long

Dim status As Integer

Dim samples As Long

frameHandle Handle to the frame that defines the A/D operation.
status Status of interrupt operation.
samples Number of samples that were acquired.

For the interrupt operation defined by frameHand{e, this function stores
the status in status and the number of samples acquired in samples.

4-83

chap04_.frm Black 84

4-84

&

The value stored in status depends on the settings in the Status Word, as
shown below;

15 14 13

12 11 10 9 8 7] 5 4 3 2 1 0

Active buffer number

——

0 = Butfer not tilled
1 = Buffer filled

0 = No conversion overtlow
1 = Conversion overflow

0 = Operatlon inactive
1 = Operation active

The bits are described as follows:

Rit 0 indicates whether an interrupt-mode operation is in progress.

Bit 1 indicates whether a conversion overflow occurred because the
transfer of data between the board and the computer’s memory was
slower than the rate at which the board was acquiring data. When this
bit is set, all conversions stop.

Bit 4 indicates whether the buffer(s) used for an interrupt-mode
operation running in continuous buffering mode have been filled. If
this bit is set, the buffer(s) have been fifled at least once.

Bits 8 through 15 indicate which buffer in a multipic-buffer list is
currently active. To determine the active buffer number, divide the
value of the Status word by 256. The first buffer added to the list is
Buffer 1, the second buffer added to the list is Buffer 2, and so on.

Function Reference

chap04_.frm Black 85

Example

N

You defined an analog input operation in a frame called ADFrame! and
started the operation in interrupt mode. You want to store the status of the
interrupt operation in a variable called IntStat and the number of samples
already acquired in a variable called IntSamp.

C

short IntStat;

long IntSamp;

err = K_IntStatus (ADFramel, &IntStat, &IntSamp};

Pascal
err : = K_IntStatus (ADFramel, IntStat, IntSamp);

Visual Basic for Windows
errnum = K_IntStatus (ADFramel, IntStat, IntSamp)

BASIC
errnum = KIntSiatus% (ADFramel, IntStat, IntSamp)

4-85

chap04_.frm Black 86

K_intStop

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

4-86

Stops an interrupt operation.

Cc

K_IntStop (frameHandle, status, samples);
FRAMEH frameHandle;

short *stafus;

long *samples,

Pascal

K_IntStop (frameHandle, status, samples) : Word;
frameHandle : Longint;

status : Word;

samples : Longint;

Visual Basic for Windows

K_IntStop (frameHandle, status, samples) As Integer
Dim frameHandle As Long

Dim status As Integer

Dim samples As Long

BASIC

KintStop% (frameHandle, status, samples)
Dim frameHandle As Long

Dim status As Integer

Dim samples As Long

frameHandle Handle to the frame that defines the A/D operation,

status Status of interrupt operation.
Value stored: 0 to 65535

samples Number of samples that were acquired.

This function stops the interrupt operation defined by frameHandle and
stores the status of the interrupt operation in status and the number of

samples acquired in sampies.

Function Reference

chap04_.frm Black 87 {[}

Refer to page 4-84 for the meaning of the value stored in status.

If an interrupt operation is not in progress, K_IntStop is ignored.

Example You defined an analog input operation in a frame called ADFramel and
started the operation in interrupt mode. You want to stop the interrupt
operation, store the status of the interrupt operation in a variable called
IntStat, and store the number of samples already acquired in a variable
called IntSamp.

C

short IntStat;

long IntSamp;

err = K_IntStop (ADFrame 1, &IntStat, &IntSamp);

Pascal
err ; = K_IntStop (ADFramel, IntStat, IntSamp);

Visual Basic for Windows
errnum = K_IntStop (ADFramel, IntStat, IntSamp)

BASIC
errnum = KIntStop% (ADFramel, IntStat, IntSamp)

4-87

chap0O4_.frm Black 88

K_MoveBufToArray

Purpose

Syntax

Entry Parameters

Notes

Example

4-88

Transfers data from a buffer allocated through K_IntAlloc to a locally
dimensioned buffer.

Visual Basic for Windows

K_MoveBufToArray (dest, source, samples) As integer
Dim dest As Integer

Dim source As Long

Dim samples As Integer

dest Address of destination buffer.
source Address of source buffer.
samples Number of samples to transfer.

This function transfers the number of samples specified by samples from
the buffer at address source to the buffer at address dest.

If the buffer used to store acquired data for your Visual Basic for
Windows program was allocated through K_IntAlloc, the buffer is not
accessible to your program and you must use this function to move the
data to an accessible buffer. If the buffer used to store acquired data for
your Visual Basic for Windows program was dimensioned locally within
the program’s memory area, the buffer is accessible to your program and
you do not have to use this function. This function is intended for Visual
Basic for Windows only, since other languages can access dynamically
allocated buffers.

You used K_IntAlloc to allocate a buffer to store acquired data for your
Visual Basic for Windows program, this buffer starts at the memory
location pointed to by AllocBuf. You must move the data to another
buffer that is accessible to your program. You want to move 1000 samples
from this buffer to another buffer starting at the memory location pointed
to by BasicBuf.

Visual Basic for Windows
ermum = K_MoveBufToArray (BasicBuf(0), AllocBuf, 1000)

Function Reference

chap04_.frm Black 89

K_OpenDriver

Purpose

Syntax

Entry Parameters

Exit Parameters

Notes

Initializes any DAS Function Call Driver,

C

K_OpenDriver (deviceName, cfgFile, driverHandle);
char *deviceName;

char *cfgFile,

DWORD *driverHandle;

Pascal (Windows Only)

K_OpenDriver (deviceName, c¢fgFile, driverHandle) : Word,
deviceName : String;

cfgFile : String;

driverHandle : Longint;

Visual Basic for Windows

K_OpenDriver (deviceName, cfgFile, driverHandle) As Integer
Dim deviceName As String

Dim ¢fgFile As String

Dim driverHandle As Long

deviceName Board name,
Valid value: DASS800 (for DAS-800 Series boards)

cfgFile Driver configuration file.
Valid values: 0 = Current configuration
-1 = Default configuration
filename = Any configuration file

driverHandle Handle associated with the driver,

This function initializes the Function Call Driver for the board associated
with deviceName according to the information in the configuration file
specified by cfgFile, and stores the driver handle in driverHandle.

4-89

chapO4_.frm Black 90

4-90

b

You can use this function to initialize the Function Call Driver associated
with any DAS board. For DAS-800 Series boards, the string stored in
deviceName must be DASS800. Refer to other Function Call Driver user’s
guides for the appropriate string o store in deviceName for other DAS
boards,

The value stored in driverHandle is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored in driverflandle.

You create a configuration file using the DROOCFG.EXE utility. Refer to
the DAS-800 Series User's Guide for more information.

i ¢fgFile =0, K_OpenDriver checks whether the driver has already been
opened and linked to a configuration file and if it has, uses the current
configuration; this is useful in the Windows environment. If ¢fgFile =-1,
K_OpenDriver initializes the driver to its default configuration, the
default configuration is shown in Table 4-2 on page 4-7.

You cannot use this function in BASIC or Borland Turbo Pascal for DOS.

The Function Call Driver requires null terminated strings. To create nuil
terminated strings in Pascal and Visual Basic for Windows, refer to the
following examples. These examples assume that the board is a DAS-800
Series board and that the configuration file (cfgFile) is DAS800.CFG.

Pascal (Windows Only):

deviceName : = 'DASB00’ + #0;
cfeFile . = 'DASB00.CFG’ + #(;

Visual Basic for Windows:

deviceName = "DAS800" + CHR$(0)
cfgFile ="DASB00.CFG" + CHR$(0)

Function Reference

chap04_.frm Black 91

Example

N

After you set up your DAS-801 board, you created a configuration file to
reflect the settings of the jumper and switches on the board, The
configuration file is stored in the memory location pointed to by
CONF801. You want to initialize the DAS-30(Series Function Call
Driver according to this configuration file and associate the driver with a
driver handle called Drv800.

C
DWORD 800Drv 1;
err = K_OpenDriver (DAS800, CONF801, &Drv800);

Pascal (Windows Only)
err ;. = K_OpenDriver CDASB00’ + #0, CONF801(1], Drv800);

Visual Basic for Windows
errnum = K_OpenDriver ("DAS800" + CHR$(0), CONF801, Drv800)

4-91

chap04_.frm Black 92

K_RestoreChanGAry

Purpose

Syntax

Entry Parameters

Notes

Example

4-92

Restores a converied channel-gain list,

Visual Basic For Windows
K_RestoreChanGAry (chanGainArray) As Integer
Dim chanGainArray(n) As Integer

where n = (number of channels x 2) + 1

BASIC
KRestoreChanGAry% (chanGainArray)
Dim chanGainArray(n) As Integer

where n = (number of channels x 2} + 1

chanGainArray(0) Channel-gain list starting address.

This function restores a channel-gain list that was converted using
K_FormatChanGAry to its original format so that it can be used by your
BASIC or Visual Basic for Windows program.

Refer to page 4-37 for more information about the K_FormatChanGAry
function.

You created a channel-gain list in BASIC, named it CGList, and then
converted it to single-byte values using K_FormatChanGAry. You want
to restore the channel-gain list to its original format.

Visual Basic For Windows
errnum = K_RestoreChanG Ary (CGList(0))

BASIC
errnum = KRestoreChanG Ary% (CGList(0})

Function Reference

chap04_.frm Black 93

K_SetADTrig

Purpose

Syntax

Entry Parameters

Sets up an analog trigger.

c

K_SetADTrig (framehandle, trigOption, chan, level);
FRAMEH framehandie;

short trigOption;

short cham;

long level,

Pascal

K_SetADTrig (frameHandle, trigOption, chan, level) : Word;
frameHandle : Longint;

trigOption : Word,

chan : Word,;

level ; Longint;

Visual Basic for Windows

K_SetADTrig (frameHandle, trigOption, chan, level) As Integer
Dim frameHandle As Long

Dim trigOption As Integer

Dim chan As Integer

Dim fevel AsLong

BASIC

KSetADTrig% (frameHandle, trigOption, chan, level)
Dim frameHandle As Long

Dim trigOprion As Integer

Dim chan As Integer

Dim /evel As Long

frameHandle Handle to the frame that defines the A/D operation.

trigOption Analog trigger polarity and sense,
Valid values: 0 = positive edge
2 = ncgative edge

chan Analog channel used as trigger channel.
Valid values: 0to 127

b

558

chap04_.frm Black 94

Notes

Example

4-94

%

level Level at which the trigger event occurs,
Valid values: 0 to 4095

For the operation defined by frameHandle, this function specifies the
channel used for an analog trigger in chan, the level used for the anaiog
trigger in level, and the trigger polarity and trigger sense in trigOption.

The range of valid values for chan depends on the number of expansion
boards you are using. Refer to page 2-6 for more information.

You specify the value for level in raw counts. Refer to Appendix B for
information on converting the voltage to a raw count,

The values you specify set the following elements in the frame identified
by frameHandle:

s trigOption sets the value of the Trigger Polarity and Trigger Scnse
elements.

e chan sets the value of the Trigger Channel element.

e level sets the value of the Trigger Level element.

You want to use an analog trigger to trigger the analog input operation
defined by the frame ADFramel. The board is configured for a bipolar
input range type. You want to trigger the operation when the signal
connected to analog input channel 22 rises above +2 V (positive-edge
trigger).

Cc
err = K_SetADTrig (ADFramel, 0, 22, 2867);

Pascal
err : = K_SetADTrig (ADFramel, 0, 22, 2867);

Visual Basic for Windows
errnum = K_SetADTrig (ADFramel, 0, 22, 2867)

BASIC
errnum = KSetADTrig% (ADFramel, 0, 22, 2867)

Function Referance

chap04_.frm Black 95

K_SetBuf

Purpose

Syntax

Specifics the starting address of a previously allocated or dimensioned
buffer.

Cc

K_SetBuf {frameHandle, acqBuf, samples);
FRAMEH frameHandle;

void *acqBuf,

long samples;

Pascal

K_SetBuf (frameHandle, acqBuf, samples) : Word;
frameHandle : Longint;

acgBuf : Pointer;

samples : Longint;

Visual Basic for Windows

K_SetBuf (frameHuandle, acqBuf, samples) As Integer
Dim frameHandle As Long

Dim acqBuf As Long

Dim samples As Long

Entry Parameters frameHandle Handle (o the frame that defines the A/D operation.

Notes

acgBuf Starting address of buffer.

samples Number of samples.

For the operation defined by frameHandle, this function specifies the
starting address of a previously allocated buffer in acgBuf and the number
of samples stored in the buffer in samples.

If you are specifying the starting address of a local memory buffer, make
sure that you have dimensioned the buffer as an integer.

Do not use this function for BASIC; for the BASIC languages, use
K_SetBuflI. Refer to page 4-97 for more information.

4-95

chap04_.frm Black 96

Example

4-06

b

For C and Pascal application programs, usc this function whether you
dimensioned your buffer locally or allocated your buffer dynarnically
using K_IntAlloc. For C, make surc that you use proper typecasting to
prevent C/C++ type-mismatch warnings. For Pascal, a special procedure
is needed to satisfy the type-checking requirements; refer to page 3-18 for
more information.

For Visual Basic for Windows, use this function only for buffers allocated
dynamically using K_IntAlloc, For locally dimensioned buffers, use
K_SetBufl. Refer to page 4-97 for more information.

Do not use this function if you are using multiple buffers. Use
K _BufListAdd to specify the starting addresses of multiple buffers; refer
to page 4-22 for more information,

The syntax of this function in the DAS-800 Series Function Call Driver is
slightly different from the syntax of this function in other DAS Function
Call Drivers, Therefore, you may have to modify application programs
written for other DAS boards before you use them with DAS-800 Series
boards.

The values you specify set the following elements in the frame identified
by frameHandle:

o acgBuf sets the value of the Buffer element.

o samples sets the value of the Number of Samples clement.

You allocated a 1000-sample buffer to store data for an analog input
operation defined by the frame ADFramel; the buffer starts at the
memory location pointed to by Buffer. You want to add the starting
address of the buffer and the number of samples to the definition of the
frame.

C
err = K_SetBuf (ADFramel, Buffer, 1000);

Pascal
Refer to page 3-18 for an example of using K_SetBuf in Pascal.

Visual Basic tor Windows
errnum = K_SetBuf (ADFramel, Buffer, 1000)

Function Referance

chap04_.frm Black 97

K_SetBufl

Purpose Specifies the starting address of a locally dimensioned integer buffer.
Syntax Visual Baslc for Windows
K_SetBufl (frameHandle, acqBuf, samples) As Integer
Dim frameHandle As Long
Dim acqBuf As Integer
Dim samples As Long
BASIC
KSetBufl% (frameHandle, acqBuf, samples)
Dim frameHandle As Long
Dim acgBuf As Integer
Dim samples As Long
Entry Parameters frameHandle Handle to the frame that defines the A/D operation,
acqBuf Starting address of the user-dimensioned integer
buffer.
samples Number of samples.
Notes For the operation defined by frameHandle, this function specifies the

starting address of a locally dimensioned integer buffer in acqgBuf and the
number of samples stored in the buffer in samples.

Do not use this function for C and Pascal; for these languages, use
K_SetBuf. Refer to page 4-95 for more information.

For Visual Basic for Windows, use this function only for locally
dimensioned buffers. For buffers allocated dynamically using
K_IntAlloc, use K_SetBuf. Refer to page 4-95 for more information.

Do not use this function if you are using multiple buffers. Insicad, use
K_BufListAdd to specify the starting addresses of multiple buffers; refer
to page 4-22 for more information.

4-97

chap04_.frm Black 98

Example

4-98

N

The values you specify set the following elements in the frame identified
by frameHandle:

e acgBuf sets the value of the Buffer element.

e samples sets the value of the Number of Samples element.

You dimensioned a 1000-sample local buffer called Butfer to store data
for an analog input operation defined by the frame ADFramel, You want
to add the starting address of the buffer and the number of samples to the
definition of the frame,

Visual Basic for Windows
errnum = K_SetBufl (ADFrame 1, Buffer(0), 1000)

BASIC
ermmum = KSetBufl% (ADFramel, Buffer(0), 1000)

Function Reference

chap04_.frm Black 99

K_SetChn

Purpose

Syntax

Entry Parameters

Notes

Specifies a single channel.

c

K_SetChn (frameHandle, chan),
FRAMEH frameHandle;

short chan;

Pascal

K_SetChn (frameHandle, chan) : Word;
frameHandle : Longint;

chan : Word;

Visual Basic for Windows

K_SetChn (frameHandle, chan) As Integer
Dim frameHandle As Long

Dim chan As Integer

BASIC

KSetChn% (frameHandle, chan)
Dim frameHandle As Long

Dim chan As Integer

frameHandle Handle to the frame that defines the A/D operation.

chan Channel on which to perform operation.
Valid values: 0to 127

For the operation defined by frameHandle, this function specifies the
single channe! vsed in chan.

The value you specify in chan sets the Start Channel element in the frame
identified by frameHandle,

The range of valid values for chan depends on the number of expansion
boards you are using. Refer to page 2-6 for more information.

4-99

chap04_.frm Black 100 {9

Example You are defining an analog input operation in a frame called ADFramel
and want to sample data from analog input channel 16.

C
crr = K_SetChn (ADFramel, 16);

Pascal
err : = K_SetChn (ADFrame!, 16);

Visual Basic for Windows
ermum = K_SetChn (ADFramel, 16)

BASIC
ermnum = KSetChn% (ADFramel, 16)

4-100 Function Reference

chap04_.frm Black 101

K_SetChnGAry

Purpose

Syntax

Entry Parameters

Notes

Specifies the starting address of a channel-gain list.

c

K_SetChnG Ary (frameHandle, chanGainArray);
FRAMEH frameHandle,

void *chanGainArray,;

Pascal

K_SetChnGAry (frameHandle, chanGainArray) : Word;
frameHandle : Longing;

chanGainArray : Integer;

Visual Basic for Windows
K_SetChnGAry (frameHandle, chanGainArray) As Integer
Dim frameHandle As Long
Dim chanGainArray(n) As Integer
where n = (number of channels x 2) + 1

BASIC
KSetChnG Ary% (frameHandle, chanGainArray)
Dim frameHandle As Long
Dim chanGainArray(n) As Integer
where # = (number of channels x 2} + 1

frameHandle Handle 1o the frame that defines the A/D operation.

chanGainArray Channel-gain list starting address.

For the operation defined by frameHandle, this function specifies the
starting address of the channel-gain list in chanGainArray.

The value you specify in chanGainArray sets the Channel-Gain List
element in the frame identified by framel{andle.

Refer to page 2-9 for information on setting up a channel-gain list.

4-101

chapO4_.frm Black 102

Example

4-102

©

If you created your channel-gain list in BASIC or Visual Basic for
Windows, you must use K_FormatChanGAry to convert the
channel-gain list before you specify the address with K_SetChnGAry.

You are defining an analog input operation in a frame called ADFramel
and want to sample data from the channels in a channel-gain list starting
at the memory location pointed to by CGList.

C
err = K_SetChnGAry (ADFramel, CGList);

Pascal
Refer to page 3-19 for an example of using K_SetChnGAry in Pascal.

Visual Basic for Windows
ermum = K_SetChnGAry (ADFramel, CGList(0))

BASIC
ermum = KSetChnGAry% (ADFramel, CGList(0))

Function Reference

chap04_.frm Black 103

K_SetCIlk
Purpose Specifies the conversion clock source.
Syntax c
K_SetClk (frameHandle, clkSource);
FRAMEH frameHandle;
short clkSource,
Pascal
K_SetClk (frameHandle, clkSource) : Word;
frameHandle : Longint;
clkSource : Word;
Visual Basic for Windows
K_SetClk (frameHandle, clkSource} As Integer
Dim frameHandle As Long
Dim clkSource As Integer
BASIC
KSetClk% (frameHandle, clkSource)
Dim frameHandle As Long
Dim clkSource As Integer
Entry Parameters frameHandle Handle to the frame that defines the A/D operation.
clkSource Conversion clock source.
Valid values: 0 = Internal
1 = External

Notes

For the operation defined by frameHandle, this function specifies the
conversion clock source in clkSource.

The value you specify in clkSource sets the Conversion Clock Source
element in the frame identified by framefandle.

The internal clock source is the 1 MHz time base of the 8254
counter/timer circuitry; an external clock source is an external signal
connected to the INT_IN / XCLK pin. Refer to page 2-13 for more
information about conversion clock sources,

4-103

chap04_.frm Black 104

Example

4-104

5%

You are defining an analog input operation in a frame called ADFramel
and want to use an external clock to detcrmine the time interval between

conversions,

Cc
err = K_SetClk (ADFramel, 1);

Pascal
err ; = K_SetClk (ADFramel, 1);

Visual Basic for Windows
errnum = K_SetClk (ADFramel, 1)

BASIC
errmum = KSetClk% (ADFramel, 1)

Function Referance

chap04_.frm Black 105

K_SetClkRate

Purpose

Syntax

Entry Parameters

Notes

Specifies the clock rate {conversion frequency).

C

K_SetClkRate (frameHandle, clkTicks);
FRAMEH frameHandle;

long clkTicks;,

Pascal

K_SetClkRate (frameHandle, clkTicks) : Word;
frameHandle : Longint;

clkTicks : Longint;

Visual Basic for Windows

K_SetClkRate (frameHandle, clkTicks) As Integer
Dim frameHandle As Long

Dim clkTicks As l.ong

BASIC

KSetClkRate% (frameHandle, clkTicks)
Dim frameHandle As Long

Dim clkTicks As Long

frameHandle Handle to the frame that defines the A/D operation.

clkTicks Number of clock ticks between conversions.
Valid values: 25 to 65535 (Normal)
25 to 4,294,967,295 (Cascaded)

For the operation defined by frameHandle, this function specifies the
number of clock ticks between conversions in c/kTicks.

The value you specify in clkTicks sets the Conversion Frequency element
in the frame identified by frameHandle.

This function applies to an internal clock source only.

4-105

chap04_.frm Black 106 {B

Example You are defining an analog input operation in a frame called ADFramel.
C/T2 on your board is configured for normal mode and you are using the
internal clock to determine the time interval between conversions. You
want to specify a conversion frequency of 25 kHz (40 pus between
conversions).

C
err = K_SetClkRate (ADFramel, 40);

Pascal
err : = K_SetClkRate (ADFramel, 40);

Visual Basic for Windows
errnum = K_SetClkRate (ADFramel, 40)

BASIC
ermum = KSetClkRate% (ADFramel, 40)

4-106 Function Relerence

D

chap04_.frm Black 107

K_SetContRun

Purpose

Syntax

Entry Parameters

Notes

Specifies continuous buffering mode.

c
K_SetContRun (frameHandle),
FRAMEH frameHandle;

Pascal
K_SetContRun (frameHandle) : Word;
frameHandle : Longint;

Visual Basic for Windows
K_SetContRun (frameHandle) As Integer
Dim frameHandle As Long

BASIC
K8etContRun% (frameHandle)
Dim frameHandle As Long

frameHandle Handle 1o the frame that defines the A/D operation.

For the operation defined by frameHandle, this function sets the buffering
mode to continuous mode and sets the Buffering Mode clement in the

{rame accordingly.

Refer to page 2-16 for a description of buffering modes.

The Butfering Mode element is meaningful for interrupt operations only.

4-107

chap04_.frm Black 108 @

Example You want to specify continuous buffering mode for the analog input
operation defined by a frame called ADFramel,

C
err = K_SetContRun (ADFrame1);

Pascal
err : = K_SetContRun (ADFramel);

Visual Basic for Windows
errnum = K_SetContRun (ADFramel)

BASIC
ermum = KSetContRun% (ADFramel)

4-108 Function Referance

chap04_.frm Black 109

K_SetDITrig

Purpose

Syntax

Entry Parameters

Sets up a digital trigger.

Cc

K _SetDITrig (frameHandle, trigOption, chan, pattern);
FRAMEH frameHandle;

short trigOption,

short chan;

long pattern;

Pascal

K_SetDITrig (frameHandle, trigOption, chan, pattern) : Word;
frameHandle | Longint;

trigQption : Word;

chan : Word;

pattern : Longint;

Visual Basic for Windows

K_SetDITrig (frameHandle, trigOption, chan, patterny As Integer
Dim frameHandle As Long

Dim trigOption As Integer

Dim chan As Integer

Dim pattern As Long

BASIC

KSetDITrig% (frameHandle, trigOption, chan, pattern)
Dim frameHandle As Long

Dim trigOption As Integer

Dim chan As Integer

Dim pattern As Long
frameHandle Handle to the frame that defines the A/D operation.
trigOption Trigger polarity and sense.

Valid value: 0 = Positive, edge-sensitive

chan Digital input channel.
Valid value: 0

4-109

P

chap(4_.frm Black 110

Notes

Example

4-110

D

pattern Trigger pattern,

This function specifies the use of a digital trigger for the operation
defined by frameHandle.

Since the DAS-800 Series Function Call Driver does not currently
support digital pattern triggering, the value of pattern is meaningless; the
pattern parameter is provided for future compatibility.

You cannot set up a digital trigger if the hardware gate is enabled.

The values you specify set the following clements in the frame identified
by frameHandle:

e trigOption sets the value of the Trigger Polarity and Trigger Sense
elements.

e chan sets the value of the Trigger Channel element.

o pattern scts the value of the Trigger Pattern element.

You want to use a digital trigger to trigger the analog input operation
defined by the frame ADFramel.

C
err = K_SetDITrig (ADFramel, 0, 0, 0);

Pascal
err : = K_SetDITrig (ADFramel, 0, 0, 0);

Visual Basic for Windows
errnum = K_SetDITrig (ADFramel, 0, 0, 0)

BASIC
errnum = KSetDITrig% (ADFramel, 0,0, 0)

Function Reterance

chap04_.frm Black 111

K_SetG

Purpose

Syntax

Entry Parameters frameHandle

Sets the gain.

Cc

K_SetG (frameHandle, gainCode);
FRAMEH frameHandle,

short gainCode,

Pascal

K_SetG {(frameHandle, gainCode) : Word;
frameHandle ; Longing;

gainCode : Word,

Visual Basic for Windows

K_SetG (frameHandle, gainCode) As Integer
Dim frameHandle As Long

Dim gainCode As Integer

BASIC

KSetG% (frameHandle, gainCode)
Dim frameHandle As Long

Dim gainCode As Integer

gainCode Gain code.
Valid values:

Code | Gain Gain

Galn | DAS-801 | DAS-802

0 1 1

Handle to the frame that defines the A/D operation.

4-111

chap04_.frm Black 112

Notes

Example

4-112

2

For the operation defined by frameHandle, this function specifies the gain
code for a single channel or for a group of consecutive channels in
gainCode.

A gain of 0.5 (gainCode = 1) is valid only for boards configured with a

bipolar input range type. The DAS-800 board supports a gain of 1 only

(gainCode must cqual 0). Refer to Table 2-2 on page 2-6 for a list of the
voltage ranges associated with each gain,

The value you specify in gainCode sets the Gain element in the frame
identified by frameHandle.

You are defining an analog input operation for a DAS-801 board in a
frame called ADFrame!l. You want to sample data from a group of
consecutive channels and specify a gain of 10 for all channels in the

group.

C
err = K_SetG (ADFramel, 2),

Pascal
err ; = K_SetG (ADFramel, 2),

Visual Basic for Windows
errmnum = K_SetG (ADFramel, 2)

BASIC
errmum = KSetG% (ADFramel, 2)

Function Reference

chap04_.frm Black 113

K_SetGate

Purpose Specifies the status of the hardware gate.
Syntax C

K_SetGate (frameHandle, gateOpt);

FRAMEH frameHandle,

short gateOpt,

Pascal

K_SetGate (frameHandle, gateOpt) . Word,

SframeHandle : Longint,

gateOpt : Integer;

Visual Basic for Windows

K_SetGate (frameHandle, gareOpt) As Integer

Dim frameHandle As Long

Dim gateOpt As Integer

BASIC

KSetGate% (frameHandle, gateOpt)

Dim frameHandle As L.ong

Dim gateOpt As Integer
Entry Parameters framelfandle Handle to the frame that defines the A/D operation.

gateOpt Status of the hardware gate.

Valid values: 0= Disabled
1 = Enabled

Notes

For the operation defined by frameHandle, this function specifies the
status of the hardware gate in gateOpt.

DAS-800 Series boards support a positive gate only. If you enable the
hardware gate, conversions occur while the gate signal is high and are
inhibited while the gate signal is low.

You cannot enable the hardware gate if you are using an external digital
trigger.

4-113

chap04_.frm Black 114 4\:}}

Example You are defining an analog input interrupt operation in a frame called
ADFramel and you want to enable the hardware gate.

C
err = K_SeitGate (ADFramel, 1);

Pascal
err : = K_SetGate (ADFramel, 1);

Visual Basic for Windows
errnum = K_SetGate (ADFramel, 1)

BASIC
crrnum = KSetGate% (ADFramel, 1)

4-114 Function Referance

chap04_.frm Black 115

K_SetStartStopChn

Purpose

Syntax

Entry Parameters

Notes

Specifies the first and last channels in a group of consecutive channels.

C

K_SetStartStopChn (frameHandle, start, stop),
FRAMEH frameHandle;

short start;

short stop;

Pascal

K_SeiStartStopChn (frameHandle, start, stop) : Word;
SframeHandle : Longint;

Start : Word;

stop . Word;

Visual Basic for Windows

K_SetStartStopChn (frameHandle, start, stop) As Intcger
Dim frameHandle As Long

Dim start As Integer

Dim stop As Integer

BASIC

KSetStartStopChn% (frameHandle, start, stop)
Dim frameHandle As Long

Dim start As Integer

Dim stop As Integer

frameHandle Handle to the frame that defines the A/D operation.

start First channel in a group of consecutive channels.
Valid values: 0 to 127

stop Last channel in a group of consecutive channels.
Valid values: 010127

For the operation defined by framefH andle, this function specifies the first
channel in a group of consecutive channels in start and the last channel in
the group of consecutive channels in stop.

4-115

chapO4_.frm Black 116 ﬂ}

The range of valid values for start and stop depends on the number of
expansion boards you are using. Refer to page 2-6 for more information.

The values you specify set the following elements in the frame identified
by frameHandle:

e start sets the value of the Start Channel efement.

s stop sets the value of the Stop Channel element.

Example You are defining an analog input operation in a frame called ADFramel.
You want to sample data from channels 2, 3, and 4 in order.
Cc

err = K_SetStartStopChn (ADFramel, 2, 4);

Pascal
err : = K_SetStartStopChn (ADFramel, 2, 4},

Visual Basic for Windows
errnum = K_SetStartStopChn (ADFramel, 2, 4)

BASIC
errnum = KSetStartStopChn% (ADFramel, 2, 4)

4-116 Function Refarance

chap04_.frm Black 117

K_SetStartStopG

Purpose

Syntax

Entry Parameters

Specifies the first and last channels in a group of consecutive channels
and sets the gain for all channels in the group.

C

K_SctStartStopG (frameHandle, start, stop, gainCode),
FRAMEH frameHandle;

short start;

short stop;

short gainCode,

Pascal

K_SetStartStopG (frameHandle, start, stop, gainCode) : Word;
frameHandle ; Longint;

start . Word;

stop : Word;

gainCode : Word,

Visual Basic for Windows

K_SctStartStopG (frameHandle, start, stop, gainCode) As Integer
Dim frameHandle As Long

Dim start As Integer

Dim stop As Integer

Dim gainCode As Integer

BASIC

KSetStartStopG % (frameHandle, start, stop, gainCode)
Dim frameHandle As Long

Dim start As Integer

Dim stop As Integer

Dim gainCode As Integer

frameHandle Handle to the frame that defines the A/D operation.

start First channel in the group of consecutive channcls.
Valid values: 0 to 127

stop Last channel in the group of consecutive channels.
Valid values: 0to 127

4-117

<

chap04_.frm Black 118

Notes

4-118

©

gainCode Gain code.
Valid values:

Gain | DAS-80t | DAS-802
Code | Gain Gain

o 1 l

For the operation defined by frameHandle, this function specifies the first
channel in a group of consecutive channels in start, the last channel in a
group of consecutive channels in stop, and the gain code for all channels
in the group in gainCode,

The range of valid values for start and stop depends on the number of
expansion boards you are using. Refer to page 2-6 for more information.

A gain of 0.5 (gainCode = 1) is valid only for boards configured with a
bipolar input range type. The DAS-800 board supports a gain of 1 only

{(gainCode must equal (). Refer to Table 2-2 on page 2-6 for a list of the
voltage ranges associated with each gain.

The values you specify set the following elements in the frame identified
by frameHandle:

e start sets the value of the Start Channel element.
e stop sets the value of the Stop Channel element.

o gainCode sets the value of the Gain element.

Function Ralerance

chapO4_.frm Black 119

Example

5

You are defining an analog input operation for a DAS-801! board in a
frame called ADFramel. You want to sample data from channels 5, 6, and
7 in order, at a gain of 100 for all channels.

c
err = K_SetStartStopG (ADFramel, 5.7, 3);

Pascal
err ; = K_SetStartStopG (ADFramel, 5, 7, 3);

Visual Basic for Windows
errnum = K_SetStartStopG (ADFramel, 5,7, 3)

BASIC
errnum = KSetStartStopG% (ADFramel, 5,7, 3)

4-119

chap04_.frm Black 120

K_SetTrig

Purpose

Syntax

Entry Parameters

Notes

4-120

Specifies the trigger source.,

C

K_SetTrig (frameHandle, trigSource);
FRAMEH frameHandle;

short trigSource;

Pascal

K_SetTrig (frameHandle, trigSource) : Word,
SframeHuandle : Longint;

trigSource : Word;

Visual Basic for Windows

K_SetTrig (frameHandle, trigSource) As Integer
Dim frameHandle As Long

Dim trigSource As Integer

BASIC

KSetTrig% (frameHandle, trigSource)
Dim frameHandle As Long

Dim trigSource As Integer

frameHandle Handle to the frame that defines the A/D operation,

trigSource Trigger source.
Valid values: 0= Internal trigger
1 = External trigger

For the operation defined by frameHandle, this function specifies the
trigger source in trigSource.

An internal trigger is a software trigger; conversions begin when the
operation is started. An external trigger is either an analog trigger or a
digital trigger; conversions begin when the trigger event occurs. Refer to
page 2-16 for more information about internal and external trigger
sources.

Function Reference

chap04_.frm Black 121

Exampie

©

If trigSource = 1, make sure that you use either K_SetADTrig or
K_SetDI'Trig to specify whether the external trigger source is an analog
trigger or a digital trigger.

You are defining an analog input interrupt operation in a frame called
ADFramel. You want to specify an internal trigger; you want the
operation to start as soon as K_IntStart is executed.

Cc
err = K_SetTrig (ADFramel, 0);

Pascal
err : = K_SetTrig (ADFramel, 0),

Visual Basic for Windows
errnum = K_SetTrig (ADFramel, 0)

BASIC
errnum = KSetTrigfh (ADFramel, 0)

4-121

chap04_.frm Black 122

K_SetTrigHyst

Purpose

Syntax

Specifies the hysteresis value.

c

K_SetTrigHyst (frameHandle, hyst),
FRAMEH frameH andle;

short hvsr;

Pascal

K_SetTrigHyst (frameHandle, hyst) : Word;
frameHandle : Longint,

hyst : Word;

Visual Basic for Windows

K_SetTrigHyst (frameHandle, hyst) As Integer
Dim frameHandle As Long

Dim hyst As Integer

BASIC

KSetTrigHyst% (frameHandle, hyst)
Dim frameHandle As L.ong

Dim hyst As Integer

Entry Parameters frameHandle Handle to the frame that defines the A/D operation.

Notes

4-122

hyst Hysteresis value.
Valid values: 0 to 4095

For the operation defined by frameHandle, this function specifics the
hysteresis value used for an analog trigger in Ayst. You must specify the
hysteresis value in raw counts. Refer to Appendix B for information on
converting the hysteresis voltage to a raw count,

Refer to page 2-17 for more information about analog triggers.

The value you specify in hyst sets the Trigger Hysteresis element in the
frame identified by frameHandle.

Function Reference

chap04_.frm Black 123

©

You wani 10 use an analog trigger to trigger the analog input operation
defined by the frame ADFramel. The board is configured for a unipolar
input range type. You used K_SetADTrig to specify that you want to
trigger the operation when the signal connected to analog input channel 0
rises above +4 V (positive-edge trigger). To prevent noise from causing
the trigger event to occur, you want to specify a hysteresis value of 0.1 V
to make sure that the analog signal falls below +3.9 V before it rises
above +4 V.

~
A

err = K_SetTrigHyst (ADFramel, 41);

Pascal
err : = K_SetTrigHyst (ADFramel, 41);

Visual Basic for Windows
errnum = K_SetTrigHyst (ADFramel, 41)

BASIC
errnum = KSetTrigHyst% (ADFramel, 41)

4-123

S

chap04_.frm Black 124

K_SyncStart

Purpose

Syntax

Entry Parameters

Notes

4-124

Starts a synchronous operation.

c
K_SyncStart (frameHandle);
FRAMEH frameHandle;

Pascal
K_SyncStart (frameHandle) : Word;
frameHandle : Longint;

Visual Basic for Windows
K_SyncStart (frameHandle) As Integer
Dim frameHandle As Long

BASIC
KSyncStart% (frameHandle)
Dim frameHandle As Long

frameHandle Handie to the frame that defines the A/D operation.

This function starts the synchronous operation defined by frameHandle.

Refer to page 3-7 for a discussion of the programming tasks associated

with synchronous operations.

Function Reference

chap04_.frm Black 125 g}

Example You defined an analog input operation in a frame catled ADFramel and
want to start the operation in synchronous mode,

C
err = K_SyncStart {ADFramel);

Pascal
err ; = K_SyncStart (ADFramel);

Visual Basic for Windows
ermum = K_SyncStart (ADFramcl)

BASIC
ermum = KSyncStart% (ADFramel)

4-125

chap04_.frm Black 126

————

appx_a_.frm Black 1

A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the DAS-800
Function Call Driver functions, possible causes for error conditions, and
possible solutions for resolving error conditions. The error/status codes
are returned in hexadecimal format.

If you cannot resolve an error condition, contact the factory.

Table A-1. Error/Status Codes

Error Code

Cause

Solution

0

No error has been detected.

Status only; no action is necessary,

6001

Dlegal Base Address in
Configuration File: The base address
specified in the configuration file is
invalid,

Use the DBOOCFG.EXE utility to
change the base address in the
configuration file,

6006

Hiegal Gain: The gain code specified
for an analog input operation is out of
range.

Specify alegal gain code: Oto 5
Refer to Table 2-2 on page 2-6 for
more information about the meaning
of the gain codes.

appx_a_.frm Black 2

©

Table A-1. Error/Status Codes (cont.)

Error Code

Cause

Solution

600A

Configuration File Not Found: The

driver cannot find the configuration
file specified as an argument to the
driver initialization function,

Check that the file exists at the
specified path; check that the file
name is spelled correctly in the driver
initialization function parameter list.

600D

Bad Frame Handle: The specified
frame handle is not valid for this
operation.

Check that the frame handle exists.
Check that you are using the
appropriate frame handle.

600F

Requested Interrupt Buffer Too
Large: The number of samples
specified in K_IntAlloc is roo large.

Specify a smaller number of samnples:
remove some Terminate and Stay
Resident programs (TSRs) that are no

longer needed.

6012

Interrupt Buffer Deallocation
Error: For Windows-based
languages only, an error occurred
when K_IntFree attempted to free a
memory handle.

Remove some Terminate and Stay
Resident programs (TSRs) that are no
longer needed,

A-2

Error/Status Codes

appx_a_.frm Black 3

4

Table A-1. Error/Status Codes (cont.)

Error Code

Cause

Solution

602C

greater than 65,536,

Number of Samples Too Large: The
number of samples you requested in
the Keithley Memory Manager is

Specify a value between 0 and 65,536
in the KMMSETUP utility.

Bad Driver Handle: The specified
driver handle is not valid.

Someone may have closed the driver:
if so, use K_OpenDriver 1o reopen
the driver with the desired driver
handle. Try again using another driver
handle,

7000

No Board Name: The driver
inifialization function did not find a
beard name in the specified
configuration file,

Specify a legal board name in the
configuration file: DASB00, DASROL,
DAS802

or ey

7002

Bad Board Number: The driver
initialization function found an illegal
board number in the specified
configuration file,

Specify alegal board number: 0 to 3

A-3

appx_a_.frm Black 4

@

Table A-1. Error/Status Codes (cont.)

Error Code

Cause

Solution

7004

Bad Interrupt Level: The driver
initialization function found an illegal
interrupt level in the specified
configuration file

T

Specify alegal interrupt level: 2to 7,
X (disabled)

7006

Bad A/D Gain Mode: The driver
initialization function found an illegal
input range type in the specified
configuration file

Specify a legal A/D mode: bipolar,
unipolar

7008

Bad Number of EXP-16 Expansion
Boards: The driver initialization
function found an illegal number of
EXP-16 or EXP-|6/A expansion
boards in the specified configuration
file.

Specify a legal number of EXP-16 or
EXP-16/A expansion boards: 1 to 8

700A Bad EXP-16 Expansion Board Specify alegal gain value for each
Gain: The driver initialization EXP-16 or EXP-16/A expansion
function found an illegal gain assigned | board: 0.5 to 2000
to one of the EXP-16 or EXP-16/A
expansion boards in the specified
configuration file.
A-4 Error/Status Codes

appx_a_.frm Black 5

4

Table A-1. Error/Status Codes (cont.)

Error Code

Cause

Solution

700C

Bad EXP-GP Expansion Board
Number: The driver initialization
function found an illegal number
assigned 1o one of the EXP-GP
expansion boards in the specified
configuration file.

Specify a legal number for each
EXP-GP expansion board: Oto 7

‘7100E

Bad EXP-GP Expansion Board
Channel: The driver initialization
function found an illegal gain assigned
to one of the channels on one of the
EXP-GP expansion boards in the
specified configuration file.

expansion board channel:
1, 10, 100, 1000 (1.0 series) or
2.5, 25, 250, 2500 (2.5 series)

Specify alegal gain for each EXP-GP

7800

Bad Revision Number: The revision
of the driver you are using does not
maitch the revision of the Keithley
DAS Driver Specification.

Make sure that you are using the
appropriate driver.

A-5

appx_a_.frm Black 6

N

Table A-1. Error/Status Codes (cont.)

Error Code

Cause

Solution

7803

Bad Counter Number: You specified
an illegal counter/timer in
DASS00_Set8254.

Specify alegal counterftimer: 0, 1, 2

Bad Counter Count: You specified
an illegal count value in
DAS800_Set8254.

Specify alegal count value:
210 65535

7807

Illegal Board: You are attempting to
program a board that is not a DAS-800
Series board.

Make sure that you are using the
appropriate software for the
appropriate board,

7809

Tllegal Digital Trigger: An illegal

trigger polarity and sense value is
specified in K_SetDITrig.

The trigger polarity and sense value
must be 0; only a positive-edge trigger
can be used.

Conversion Underflow: You
attempted to read data, but there was
no data to read.

Check your application program.

A-6

Error/Status Codes

appx_a_.frm Black 7

©

Table A-1. Error/Status Codes (cont.)

Error Code

Cause

Solution

3001

Function Not Supported: You have
attempted to use a function not
supported by the DAS-800 Series
Function Call Driver.

Contact the factory.

8004

Non Valid Error Number: The error
message number specified in
K_GetErrMsg is invalid,

Check the error message number and
try again.

8009

Digital Output Not Initialized: You
may have expansion boards
configured that are using the digital
output lines to determine the channel
to read.

Disconnect the expansion boards and
make the appropriate changes to the
configuration file, Do not attempt to
use the digital output lines.

RO1A

Interrupts Already Active: You have
attempted to start an operation whose
interrupt level is being used by
another system resource.

Wait and try the operation later.

A-7

appx_a_.frm Black 8

appx_b_.frm Black 1

B

Data Formats

When the DAS-800 Series Function Call driver reads data, it stores the
data in the upper 12 bits of a 16-bit integer. Before displaying, printing, or
converting the data, you may want to shift the upper 12 bits right by four
bits so that the data is right-justified. After shifting, you can AND out the
upper four bits to set them to zero. Use one of the following programming
lines, where data is the value stored by the DAS-800 Series Function Call
Driver:

For C: data = (data>>4} & OxXOFFF

For Pascal: data

(data shr 4) and $OFFF

For BASIC: data = (data / 16) And &HOFFF

Note: When you pass analog data to the Function Call Driver, the driver
always assumes that the data is a 12-bit, right-justified value. No shifting
is required.

The DAS-800 Series Function Call Driver can read and write raw counts
only. When reading a value (as in K_ADRead), you may want to convert
the raw count to a more meaningful voltage value; when writing a value
(as in K_SetTrigHyst), you must convert the voltage value to a raw
count.

The remainder of this appendix contains instructions for converting raw
counts to voltage and for converting voltage to raw counts.

B-1

appx_b_.frm Black 2 {B.

Converting Raw Counts to Voltage

You may want to convert raw counts to voltage when reading an analog
input value or when reading the analog trigger level or hysteresis value.

To convert a raw count value to voltage, you must first shift the data, as
described previously, Then, use one of the following equations, where
count is the shifted count value, 10 V is the span of the analog input
range, 4096 is the number of counts available in 12 bits, gain is the gain
of the analog input channel, and 2048 is the offset value:
DAS-800

Always bipolar input range type.

10
Voltage = t—2048) x ——
oltage {coun) 209

DAS-801/ DAS-802

For unipolar input range type:
10 ,
Voltage = (count X —— |+ gain
4096
For bipolar input range type:

1
Voltage = ((coum - 2048) x Wg()) + gain

Note: When converting raw counts to voltage to read an analog trigger
level or hysteresis value, always use a gain of 1 in your equation, no
matter what the gain of the channel is.

B-2 Data Formats

appx_b_.frm Black 3

&

For example, assume that you want to read analog input data from a
channel on a DAS-801 board configured for a unipolar input range type;
the channel collects the data at a gain of 10. The count value after shifting
is 3072. The voltage is determined as follows:

(3072 X —1—91—) +10 =075V
4096

As another example, assume that you want to read analog input data from
a channel on a DAS-802 board configured for a bipolar input range type;
the channel collects the data at a gain of 2, The count value after shifting
is 1024, The voltage is determined as follows:

10
((1024—2048) x—]+2 =-125V
4096

Converting Voltage to Raw Counts

You must convert voltage to raw counts when specifying an analog trigger
level or hysteresis value. You must specify the voltage value as a 12-bit,
right-justified raw count (0 to 4095).

Specifying an Analog Trigger Level

To convert a voltage value to a raw count when specifying an analog
trigger level, use one of the following equations, where voltage is the
desired voltage in volts, 10 V is the span of the analog input range, 4096
is the number of counts available in 12 bits, and gain is the gain (always |
in this case):

DAS-800

Always bipolar input range type.

voltage x 4096

Count = + 2048

B-3

appx_b_.frm Black 4

B-4

DAS-801/DAS-802
For unipolar input range type:

voltage x 4096

Count = (
10

) X gain

For bipolar input range type:

096
Count = ((voltagc x 4

)xgain)+2048
10

Note: The driver always interprets the count value you specify for an
analog trigger level as based on a gain of 1 (for unipolar input range type,
a count of O is interpreted as 0 V and a count of 4095 is interpreted as
+9.9976 'V, for bipolar input range type, a count of 0 is interpreted as -5 V
and a count of 4095 is interpreted as +4.9976 V).

For example, assume that you want to specify an analog trigger level of
~1.25 V for a channel on a DAS-802 board configured for a bipolar input
range type and a gain of 2. The raw count is determined as follows:

((— 1.25 x 4096

)x l)+2048 = 1536
10

Note: No matter what the gain of the channel is, always use a gain of 1 in
your equation.

Data Formats

appx_b_.frm Black 5

N

Specifying a Hysteresis Value

To convert a voltage value to a raw count when specifying a hysteresis
value, use the following equation, where voltage is the desired voltage in
volts, 10 V is the span of the analog input range, 4096 is the number of
counts available in 12 bits, and gain is the gain (always 1 in this case):

voltage x 4096

com - (
oun 10

) X gain

Note: The driver always interprets the count value you specify for a
hysteresis value as based on a gain of 1 (the span is 10 V).

For example, assume that you want to specify an analog trigger hysteresis
value of 0.05 V for a channel on a DAS-801 board configured for a
unipolar input range type and a gain of 10. The raw count is determined as
follows:

(0.05 % 4096

)x] = 20
10

Note: No matter what the gain of the channel is, always use a gain of 1 in
your equation.

B-5

appx_b_.frm Black 6

800fcd.ix Black 1

IndeXx

A

Accessory boards: see Expansion boards
ADC: see Analog-to-digital converter

Allocating memory[2-3]
Windows[2-4]
Analog input opcrations@]
programming tasks BE
Analog-to-digital converter m
Analog trigg&rs@
time dclays@

Applications Engineering Department|1-6
ASO-800 software package Eﬁ
installing from DOS|[1-3|
installing from Windows

BASIC
selting up a channel-gain list@]
specifying the buffer address[2-4][3-26
see also Professional Basic,
QuickBASIC (Version 4.0),
QuickBasic (Version 4.5),
Visual Basic for DOS
Bipolar configuration: see Input range type
Board handle|2-29
Board initialization|2-29
Borland C/C++
programming information
see also C languages
Borland Turbo Pascal: see Turbo Pascal
Borland Turbo Pascal for Windows: see
Turbo Pascal for Windows
Buffer address|2-4] 3-18)[3-25
Buffer address functions(4-3 |
Buffering mode functions[4-3]

Buffering modes[2-16
Buffers

multiple 2-4
Cc

C languages
setting up a channel-gain list
specifying the buffer address[2-§
see also Borland C/C++, Microsoft
C/C++, QuickC for Windows,
Visual C++
Cascaded mode[2-13]
Channel and gain functions
Channel-gain list[2-9J3-19)
Channels
multiple using a channel-gain lis{ 2-9]
multiple using a group of consecutive
channels[2-9]
number supported[2-6|
single[2-8]
Clocks: see Conversion clocks, External
clock source, Internal clock source
Commands: see Functions
Common tasks|3-6
Compile and link statements
Borland C/C++[3-14]
Microsoft C/C++[3-13
Professional Basic[3-22
QuickBASIC (Version 4.0)[3-20]
QuickBasic (Version 4.5)[3-21
Turbo Pascai|3-17
Configuration file default valucs[4-7]

Continuous mode|2- 16|
Conventions[4-35]

Conversion clock functions
Conversion clocks[2-13]

Conversion frequency

Conversion rate: see Conversion frequency

X-1

800fcd.ix Black 2

Converting
raw counts to voltage|B-2
voltage to raw counts
Counter/timer functions
Counter/timer I/Q operation
Counter/ftimer modes|2-27
Counter/timers: see 8254 counter/timer
circuitry
Creating an executable file
Borland C/C++
Microsoft C/C++3-13
Professional Basic
QuickBASIC (Version 4.0)[3-20)
QuickBasic (Version 4.5)[3-21
QuickC for Windows[3-15]
Turbo Pascal
Turbo Pascal for Windows
Visual Basic for DOS
Visual Basic for Windows[3-24]

D

DAS800_DevOpen[2-28] 4-6
DAS800_GetADGainMode[2-5]4-9]
DAS800_GetDevHandle[2-29][4-11
DAS800_Get8254[2-27]
DAS-800 Series Function Call Driver: see
Function Call Driver

DAS—SOO-Series standard software package

installing
DAS800_SetADGainMode[2-5][4-15]
DASB00_Set8254[2-27]4-17|
Data formats@
Data transfer modes: see Operation modes
Defaulit values

configuration file[4-7]

frame elements|3-3

X-2

%

Digital 1/0 operations
input operau’ons
output opcraiions
programming tasks
Digital triggers
Dimensioning memory
Driver: see Function Call Driver

Driver handlc

E

8254 counter/timer circuitry
used as internal clock source [2-13]

Elements of frame @

Error codes

Error handling

Executable file: see Creating an executable
file

Expansion boards@

External clock sourcel2-

used in triggered opcralio

used with hardware galc
External trigger
F
Files required
Borland C/C++[3-14
Microsoft C/C++
Professional Basic [3-23]
QuickBASIC (Version 4.0

QuickBasic (Version 4.5)
QuickC for Windows[3-15]
Turbo Pascal
Turbo Pascal for Windows|3- 17
Visual Basic for Windows[3-24]
Visual C++

Frame management functinn

Index

800fcd.ix Black 3 @

Frames|3-1 K_GetDevHandle|2-29] 4-56
frame elements[3-2 K_GetDITrig[4-58
frame handle[3-2] K_GetErrMsg
frame typcs KﬁGctG

Function Call Driver K_GetGate |[4-63
initialization[2-28] K_GetStartStopChn[4-65]
structure [3-1 K_GetStartStopG|4-67

Functions K. GetTrig4-70
buffer address [4-3] K_GetTrigH st@
buffering mode[4-3)| K_GetVer[2-30][4-
channel and gain|4-3 K_lnimram@l, 4-76
conversion clock[4-3] K_IntAlioc 4-78
counterftimer 4-4] K_IntFree [2-4|[4-80
DAS800_DevOpen|2-28][4-6] K_IntStart[2-2|[4-81]
DASB00_GetADGainMode|2-5) 4-9 K_IntStatus[2-3|[4-83
DASSOO,_GctDchandlu% 2-29 4-11 K_IntStop[2-3] 4-86
DAS800_Get8254[2-274-13 | K_MoveBufToArray|2-5
DAS800_SetADGainMode[2-3)[4-13 K_OpenDriver[2-28] 4-89
DAS800_Set8254[2-2714-17 K_RestoreChanGAry[2-12, 4-92
frame management4-2 K_SetADTrig[2-17] 4-93
gate[E K_SetBuf[2-4/[2-5]|4-95
initialization[4-2] K_SetBufl[2-4,[4-97
K_ADRead[2-2] m K_SetChn[2-8][4-99)
K_BufListAdd[2-4] K_SetChnGAry[2-11[2-12[4-101]
K_BufListReset[2-4] K_SetClk @_yl
K_ClearFrame 3-4.[4-26 K_SetClkRate[2-13
K_CloseDriver[2-28/[4-2§] K_SetContRun
K_CIrContRun|2-16 K_SetDITrig[2-20][4-109]
K_DASDevInit 14-32] K_SetG[2-8/[2-9]4-111]
K_DIRead|2-24|[4-33 K_SetGate[2-22][4-1173
K_DOWrite[2-29]4-35 K_SetStartStopChn
K_FormatChanG Ary K_SetStartStopG
K_FreeDevHandle[2-29][4-38] K_SetTrig
K_FreeFrame K_SetTrigHyst
K_GetADFram K_SyncStart
K_GetADTrigl4-42 memory management
K_GetBu miscellaneous
K_GetChn[4-46 operation
K_GetChnG A readback[3-2]3-3
K_GetClk[4-50 setup[3-2[33
K_GetClkRate(4-52 trigger|4-4

K_GetContRun|4-54

800fcd.ix Black 4

G
Gain codes
Gains

see also analog input ranges

Gains: see Analog input ranges

Gate functions
Gates

Group of consecutive channels

H

Hardware gates: see Gates
Help [1-6]
Hysteresis [2-18

Initiatization functions[4-2
Initializing a board 2-29]
Initializing the driver|2-28
Input range type[2-3]
Installing the software [1-2

Internal clock source

used in triggered operation [2-19]

used with hardware gate|2-22
Internal trigger [2-16]

Interrupt mode[2-2
programming tasks 3-9]

Interrupt status

K

K_ADRead 2-2)[2-8][4-19
K_BufListAdd @,
K_BufL.istReset[2-4] 4-24
K_ClearFrame[3-4)[4-26
K_CloseDriver

X-4

D

K_ClrContRun|2-16/ 4-30
K_DASDevInit[2-29[4-32]
K_DIRead ,
K_DOWrite[2-25|
K_FormatChanG Ary,
K_FreeDevHandle[2-29]4-38
K_FreeFrame 3-2J4-30
K_GetADFrame[3-2][4-40)
K_GetADTrig l4-
K_GetBuf|4-44
K_GeiChn|4-46
K_GetChnGAry 4-48
K_GetCik|4-50
K_GetClkRate[4-52]
K_GetContRun[4-54]
K_GetDevH andle
K_GetDITrig
K_GetErrMsg
K_GetG[4-61]
K_GetGate[4-63)
K_GetStartStopChn
K_GetStartStopG|4-67
K_GetTrig(4-70
K_GetTrigHyst|4-72
K_GetVer|2-30
K_InitFramd 2-3] 4-76
K_IntAlloc[2-3]

K_InLFrec m
K_IntStart[2-2]|4-8 1|
K_IntStatus

K_IntStop[2-3] [4-84
K_MoveBufToArray 2-5/[4-88]
K_OpenDriver
K_RestoreC hanG
K_SetADTrig 2-17}
K_SetBuf[2-4]2-5] 4-95]
K_SetBufl[2-4]4-97
K_SetChn[2-8|,[4-99

K_SetChnGAry[2-112-12{ 4-101

K_SetClk[2-13] 4-103
K_SetClkRate 4-105
K_SetContRun[2-16] 4-107!

Index

800fcd.ix Black 5

K_SetDIT I’l 0
P L P

K SetGate-m

K SctStanSmpCh@m
K SctStartSto [2-9[4-117]
K_SetTrig[2-16l[4-120]
K_SetTri gl—lyst m J[4-122]
K_SyncStart[2-2][4-124]

Maintenance operations: see System
operations
Managing memory|[2-3|
Memory allocation[2-3
Memory handle[2-3]
Memory managcmcnt
Memory management functions
Microsoft C/C++
programming information[3-13
see also C languages
Microsoft Professional Basic: see
Professional Basic

Microsoft QuickBASIC (Version 4.0): see

QuickBASIC (Version 4.0)

Microsoft QuickBasic (Version 4.5): see

QuickBasic (Version 4.5)

Microsoft QuickC for Windows: see QuickC

for Windows

Microsoft Visual Basic for DOS: see Visual

Basic for DOS

Microsoft Visual Basic for Windows: see

Visual Basic for Windows

Microsoft Visual C++: see Visual C++

Miscellaneous functions[4-4]

Miscellaneous operations: see System
operations

Multiple buffers[2-4

b

N

Normal mode[2-13

Null terminated strings
DASR00_DevOpen[4-§]
K_OpenDriver(4-90

O
Operation functions[4-2 |

Operation modes |2;_2J
Operations
analog input[2-1]
counter/timer l/O-
digital [/0[2-24]
system

Operation-specific programming taske-

P

Pacer clocks: see Conversion clocks

Pascal
setting up a channel-gain list[2-10]
specifying the buffer address[2-5),
see also Turbo Pascal, Turbo Pascal for

Windows

Preliminary tasks[3-6

Professional Basic
programming information[3-22]
see also BASIC

X-5

800fcd.ix Black 6

Programming information

Borland C/C++[3-14]
Microsoft C/C++/3-13]
Professional Basic[3-22
QuickBASIC (Version 4.0

QuickBasic (Version
QuickC for Windows|3-15
Turbo Pascal(3-16
Turbo Pascal for Windows[3-17]
Visual Basic for DOY 3-23
Visual Basic for Window
Visual C++{3-16|

Programming overview[3-3]|

Programming tasks
analog input operaﬁons@
common|3-6
digital I/O operations
interrupi-mode analog input operations
preliminary
single-mode analog input opcration
synchronous-mode analog input

operations[3-7]

Q

QuickBASIC (Version 4.0)
programming information
see also BASIC

QuickBasic (Version 4.5)
programming information 3-21
see also BASIC

QuickC for Windows
programming information[3-15l
see also C languages

X-6

D

R

Readback functions@
Retrieving data from buffer(3-19
Return values

Revision lcvcls

Routines: see Functions

S

Sampling ral
Setting up boards|1-5
Setup functions[3-2][3-3]
interrupt mode(3-10
synchronous mode 3-7
Signal range: see Input range type
Single channcl
Single-cycle mode|2-16
Single mode
programming tasks[3-7]
Software
installing
packages
see also ASO-800 software package,
DAS-800 standard software
package
Standard softwg package
installing
Starting an analog input opcration
Status codes
Status Word for interrupt-mode operations
Storing data: see Buffering modes
Synchronous modc
programming tasks

System operations

Indax

800fed.ix Black 7

T
Technical su?Eort

Time base
Trigger functiond 4-4
Trigger sources @
Triggcrs
Triggers, analog: see Analog triggers
Triggers, digital: see Digital triggers
Turbo Pascal
programming information (3-16
specifying the channel-gain list starting
address
see also Pascal
Turbo Pascal for Windows
programming information| 3-17
see also Pascal

u

Unipolar configuration: see Input range type

\'

Visual Basic for DOS
programming information
see also BASIC

Visual Basic for Windows
programming information[3-24
setting up a channel-gain Hist{2- 11
specifying the buffer address| 2-4,[3-25

Visual C++
programming information
see also C languages

D

W

Windows

allocating memory

X-7

800fcd.ix Black 8

	TOC:

