DASCard-1000 Series
Function Call Driver

USER’S GUIDE



DASCard-1000 Series
Function Call Driver
User’s Guide

Revision A — June 1995
Part Number: 91880



New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday — Friday 8:00 a.m. to 5:00 p.m (EST)
Fax: (440) 248-6168

Visit our website at http://www.keithley.com



The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1995.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Keithley MetraByte Division
Keithley Instruments, Inc.
440 Myles Standish Blvd. Taunton, MA 02780
Telephone: (508) 880-30Q0FAX: (508) 880-0179



Preface

This manual describes how to write application programs for the
DASCard-1000 Series using the DASCard-1000 Series Function Call
Driver. The DASCard-1000 Series Function Call Driver supports the
following DOS-based languages:

. Microsoft? QuickBasicl (Version 4.5)

. Microsoft Professional Basic (Version 7.0)
« Microsoft C/C++ (Versions 7.0 and 8.0)

. Borland” C/C++ (Versions 3.1 and 4.0)

The DASCard-1000 Series Function Call Driver also supports the
following Windows ] -based languages:

. Microsoft C/C++ (Versions 7.0 and 8.0)

. Borland C/C++ (Versions 3.1 and 4.0)

. Microsoft Visual Basi€ for Windows (Version 3.0)
« Microsoft Visual C+£1 (Version 1.5)

The manual is intended for application programmers using a
DASCard-1000 Series card in a notebook or desktop computer. It is
assumed that users have readDA&Card-1000 Series User’s Guitte
familiarize themselves with the card’s features and that they have
completed the appropriate hardware and software installation and
configuration. It is also assumed that users are experienced in
programming in their selected language and that they are familiar with
PCMCIA and data acquisition principles.



The DASCard-1000 Series Function Call Driver User’s Guisle
organized as follows:

Chapter 1 provides an overview of the Function Call Driver, describes
how to get started using the Function Call Driver, and describes how
to get help.

Chapter 2 contains the background information needed to use the
functions included in the Function Call Driver.

Chapter 3 contains programming guidelines and language-specific
information related to using the Function Call Driver.

Chapter 4 contains detailed descriptions of the functions, arranged in
alphabetical order.

Appendix A contains a list of the error codes returned by the Function
Call Driver.

Appendix B contains instructions for converting counts to voltage and
for converting voltage to counts.

An index completes this manual.

Keep the following conventions in mind as you use this manual:

References to DASCard-1000 Series cards apply to the
DASCard-1001, DASCard-1002, and DASCard-1003 cards. When a
feature applies to a particular card, that card’s name is used.

References to BASIC apply to the DOS-based BASIC languages
(Microsoft QuickBasic and Microsoft Professional Basic). When a
feature applies to a specific language, the complete language name is
used. References to Visual Basic for Windows apply to Microsoft
Visual Basic for Windows.

Keyboard keys are shown in bold typeface.



Table of Contents

Preface
Getting Started

Available Operations

System OPerationS . . .. ..ovvoeeeee e [ .]..2-1
Initializing the Driver . .......... ... . . . ... col.2-2
Initializinga Card .. .......... ... .. ... . ... . ..., ..} .2-2
Retrieving Card Information. .. ................... .. ].23
Retrieving Revision Levels. . .................... co).2-4
Handling Errors. .................... ... ... .... L. ...2-4

Analog Input Operations . .................ouuun.. .o..2-5
OperationModes. . ............... ... ... ... .. 4..2-5

SingleMode . ................ ... L L. .|..2-5
Synchronous Mode. . ......... ... ... .. ..... .....2-6
InterruptMode .. ...l ..l .26
Memory Allocation and Management. . ............ cob2-7
Dimensioning Local Arrays . .. ................. .. .27
Dynamically Allocating Memory Buffers .......... .. [2-8
Assigning the Starting Addresses. . ............. c....2-9
GainsandRanges . ............... ... .....2-10
Channels . ... ... . ...} .2-11
Specifying a Single Channel ................. ....2-13
Specifying a Group of Consecutive Channels . ...|...[.2-13
Specifying Channels in a Channel-Gain Queue. . .| .. .[.2-14
PacerClocks . ........ ... ... . . . ...|.2-15
Internal Pacer Clock. . ...................... ...].2-16
External PacerClock . ...................... L[ 217
BufferingModes . .. .......... .. . .. |2-17
THGgErS . o o ... .2-18
Analog Trigger. . ... ...}2-18
Digital Trigger .. ........ . i .. ... 12-22
Data Correction. .. ........ ... i, ... |.2-22

Digital /O Operations . . . ........ ..., .. .|.2-24
Digital Input . .. ... ... . . ... }12-25
Digital Output . . . . ........................... ...2-26




Programming with the Function Call Driver

How the Driver Works . .. ..., ] .31
Programming Overview. . . ..., L....3-6
Preliminary Tasks. . ............. ... ... ... ........ N I B
Analog Input Programming Tasks . .. ................ oL 37
Single-Mode Operations. . ...................... L. .. .37
Synchronous-Mode Operations. .. ................ ..J..3-8
Interrupt-Mode Operations . . . .................. ..|.3-10
Digital /O Programming Tasks . . . ................. ..3-12
C/C++ Programming Information . .. ................ ... 1313
Dynamically Allocating and Assigning Memory Buffers|. . .3-13
Allocating a Single Memory Buffer. . ........... | ...8-13
Allocating Multiple Memory Buffers. . ........... .. .3-14
AccessingtheData. . ...............ciunn. ... |.3-15
Dimensioning and Assigning Local Arrays. . ........ ...13-15
Dimensioning a Single Array . . .. .............. ...13-16
Dimensioning Multiple Arrays. . ............... ...B-16
Creating a Channel-GainQueue . ................ ... ).3-17
Correcting Data (forDOS) .. ...................| ....3-18
Correcting Data (for Windows). . . ................ ... |3-19
Handling Errors. . . ... ... . i ...[.3-20
Programming in Microsoft C/C++ (for DOS)....... .. ...B-20
Programming in Microsoft C/C++ (for Windows) . . . .. ... 3-21
Programming in Borland C/C++ (for DOS) ......... .. .J3-23
Programming in Borland C/C++ (for Windows). . . . .. .. .B3-24
Visual Basic for Windows Programming Information. . . .| .. .B-25
Dynamically Allocating and Assigning Memory Buffers). . .3-25
Allocating a Single Memory Buffer. . ........... | ...B-26
Allocating Multiple Memory Buffers. .. .......... .. .3-26
Accessing the Data from Buffers with
Fewerthan 64K Bytes ..................... [ ..].3-27
Accessing the Data from Buffers with
Morethan 64K Bytes. .. ........ ... ......... .. .13-28
Dimensioning and Assigning Local Arrays. . ........ ... 13-30
Dimensioning a Single Array . . . ............... ... 13-30
Dimensioning Multiple Arrays. . ............... ...B-30
Creating a Channel-Gain Queue . ... ............. ...}.3-31
CorrectingData. . ............. ... ... [.3-32
Handling Errors. . . ... ... .. .. .[-3-33
Programming in Microsoft Visual Basic for Windows . .|. . .3-33




BASIC Programming Information. . ................. ... {3-34
Dynamically Allocating and Assigning Memory Buffers|. . .3-34
Reducing the MemoryHeap ................. ...13-34
Allocating a Single Memory Buffer. . ........... | .. .8-34
Allocating Multiple Memory Buffers. .. .......... .. .3r35
Accessing the Data from Buffers with
Fewerthan 64K Bytes ..................... .[-3-36
Accessing the Data from Buffers with
Morethan 64K Bytes. .. ........ ... ......... ...13-36
Dimensioning and Assigning Local Arrays. . ........ ... J3-39
Dimensioning a Single Array . . .. .............. ... 43-39
Dimensioning Multiple Arrays. . ............... ...8-39
Creating a Channel-Gain Queue . . ............... ...1.3-40
CorrectingData. . ............ ... .. .[.3-41
Handling Errors. . . ... ... i o342
Programming in Microsoft QuickBasic ............ L .. .3-42
Programming in Microsoft Professional Basic. . . . . .. ... {3-43
Function Reference
DAS1000 _DevOpen. . . ....v ittt [..]..46
DAS1000 GetCardInfo ... .......oovuenannn.., L.J| .4-8
DAS1000_GetDevHandle . ....................... ... .4-10
K_ADRead. . ... e ... ].4-12
K_BufListAdd . ......... ... ... 14-14
K BufListReset .. ......... ... ... . i ....4-16
K ClearFrame . ... ... . . .. . . ...|.4-18
K_CloseDriver. . ......... ... .. . .. ..[.4-19
K CIrContRUN. . ... ... e ....4-20
K CorrectData. . .......cooii i i ... 1.4-22
K_DASDevInit. . .. ..o ... 14-24
K DIRead . ...... ... ...J.4-25
K DOWHIte ... ..|.4-27
K_FormatChnGAry . . ... . i .. .].4-29
K_FreeDevHandle .. ......... ... ... ... .. ... .... ... 1.4-31
K FreeFrame.......... .. ... . . . . i, ...} .4-32
K GetADConfig . ...cov i ...l.4-33
K GetADFrame. . ......... ... ... ... .[.4-35
K GetADMode . ... .. .|.4-37
KGetCalData .................... ... ... ... 1.4-39
K _GetCIKRate . .......... e co.4.4-42
K GetDevHandle. .............................. ... J.4-44
K GetErmrMsg. . ... ... .[.4-46




vi

K _GetShellVer. ... ... b 4-47
K GetVer. . e J.4-49
KIntAlloc . . ... 4-51
KntFree. ... .. . |.4-53
KintStart. . . ... ..o J|.4-54
KintStatus. .. ... .. |.4-55
KONtStop. . .. .. |.4-58
K_MoveBUfTOArray . ........... ... .. 14-60
K_OpenDriver . ... .. 4-62
K _RestoreChnGAIY. . ..o e e .4-64
K _SetADConfig. . .. oov oo . .|.4-65
K_SetADMode. . . ...t .. .|.4-67
K SetADTIIg. vttt e .|.4-69
K SetBUF . .ottt e A4-71
K_SetBufl ..... ... J.4-73
K SetCalMode. ........... ..o .4-75
K SetChn....... ... . e A4-77
K_SetChnGAry . ... i |.4-79
K SetCIK ..o .4-81
K SetCIkRate. . ... .4-83
K_SetContRun. . ..........c.iiinen]n. .4-85
K SetDITHig. . oo e e .|.4-87
K SetG. .o .4-89
K_SetStartStopChn . ............. ... ... ... ..., .4-91
K_SetStartStopG . . ... ..1.4-93
K SetTrig. . oo .. J.4-96
K_SetTrigHyst. . . ... .. ..4-98
K SyncStart. .......... . e 4-100
Error/Status Codes
Data Formats
Converting Corrected Counts to Voltage . . .. .......... .. ]. B-2
Converting Voltageto Counts. . .. ................... . . B-4
Specifying a Trigger Level . ........... ... ....... . B-4
Specifying a HysteresisValue. . .................. ..]. B-5
Index



List of Figures

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 3-1.
Figure 3-2.

List of Tables

Table 2-1.
Table 2-2.
Table 2-3.
Table 3-1.
Table 3-2.

Table 3-3.

Table 3-4.
Table 3-5.
Table 4-1.
Table 4-2.
Table A-1.
Table B-1.

Analog Input Channels . .............. ... ].2-12
Analog Trigger Conditions ............. ... 12-19
Using a Hysteresis Value. . ............ .. ].2-21
Digital InputBits . . .. ................. ... J2-25
Digital OutputBits. . .. ................ ... 12-26
Single-Mode Function. . ............... .. .32
Interrupt-Mode Operation .. ............ [..].3-3
Supported Operations .................[.. ..2-1
Analog InputRanges . . ............... ..|.2-10
LogicalChannels.................... .. .].2-12
A/D Frame Elements. . ................|.. ..34
Setup Functions for Synchronous-Mode

Analog Input Operations . . .............. [.].3-8
Setup Functions for Interrupt-Mode

Analog Input Operations . .. ............ .. 3-11
Protected-Mode Memory Architecture . .. .[...|3-28
Real-Mode Memory Architecture . . ... ... ... 13-37
Functions ............... .. ... ... ... .42
Data Type Prefixes. . . ................. ... .45
Error/Status Codes. . . ................. L.J. A1
Span Values for A/D Conversion Equations /. . | B-2

Vii



1

Getting Started

The DASCard-1000 Series Function Call Driver is a library of data
acquisition and control functions (referred to as the Function Call Driver
or FCD functions). It is part of the following two software packages:

. DASCard-1000 Series standard software packageThis is the
software package that is shipped with DASCard-1000 Series cards; it
includes the following:

— Libraries of FCD functions for Microsoft QuickBasic and
Microsoft Professional Basic.

— Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

— Ultility programs, running under DOS and Windows, that allow
you to allocate resources for, configure, calibrate, and test the
features of DASCard-1000 Series cards.

— Language-specific example programs.

— Support files for using the DASCard-1000 Series cards with
Visual Test Extensions (VTX0O).

. ASO0-1000 software package This is the advanced software option
for the DASCard-1000 Series cards. It includes the following:

— Libraries of FCD functions for Microsoft C/C++ and Borland
C/C++.

— Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
C/C++, Borland C/C++, Microsoft Visual Basic for Windows,
and Microsoft Visual C++.

— Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

11



1-2

— Utility programs, running under DOS and Windows, that allow
you to allocate resources for, configure, calibrate, and test the
features of the DASCard-1000 Series cards.

— Language-specific example programs.

— Support files for using the DASCard-1000 Series cards with
VTX.

Before you use the Function Call Driver, make sure that you have
installed the software and your DASCard-1000 Series cards using the
procedures described in Chapter 3 of ¢S Card-1000 Series User’s
Guide

If you need help installing or using the DASCard-1000 Series Function
Call Driver, call your local sales office or the Keithley MetraByte
Applications Engineering Department at:

(508) 880-3000

Monday - Friday, 8:00A.m. - 6:00rP.m., Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

Getting Started



Please make sure that you have the following information available before

you call:

DASCard-1000
Series card

Computer

Operating
system

Card and socket
services

Software
package

Compiler
(if applicable)

Accessories

Model

Serial #

Revision code

Input configuration Single-ended Differential
Input range type Unipolar Bipolar
Manufacturer

CPU type 386 486 Pentium
Clock speed (MHz) 20 25 33 50 66 75 100
Math coprocessor Yes No

Amount of RAM

Video system EGA VGA SVGA
BIOS type

PCMCIA controller

Memory manager

DOS version

Windows version 3.0 31
Windows mode Standard

Type

Enhanced

\Version

Name

Serial #

Version

Invoice/Order #

Language

Manufacturer

\Version

Type/Number

Type/Number

Type/Number

Type/Number

Type/Number

Type/Number

Type/Number

Type/Number

1-3



2

Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DASCard-1000 Series cards.
The supported operations are listed in Table 2-1.

Table 2-1. Supported Operations

Operation Page Reference
System page 2-1
Analog input page 2-5
Digital input and output (I/O) | page 2-24

System Operations

System Operations

This section describes the miscellaneous and general maintenance
operations that apply to DASCard-1000 Series cards and to the
DASCard-1000 Series Function Call Driver. It includes information on
the following operations:

Initializing the driver
Initializing a card
Retrieving card information
Retrieving revision levels

Handling errors

2-1



Initializing the Driver

You must initialize the DASCard-1000 Series Function Call Driver and
any other Keithley DAS Function Call Drivers you are using in your
application program. To initialize the drivers, use khé®penDriver

function. You specify the driver you are using and the configuration file
that defines the use of the driver. The driver returns a unique identifier for
the driver,; this identifier is called the driver handle.

You can specify a maximum of 30 driver handles for all the Keithley
MetraByte drivers initialized from all your application programs. If you
no longer require a driver and you want to free some memory or if you
have used all 30 driver handles, you can us&tt@&oseDriver function

to free a driver handle and close the associated driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver are
shut down and unloaded from memory.)

Note: If you are programming in BASI&_OpenDriver and
K_CloseDriver are not available. You must use th&S1000_DevOpen
function insteadDAS1000_DevOperinitializes the DASCard-1000
Series Function Call Driver according to the configuration file you
specify. Refer to page 4-6 for more information. In BASIC, closing the
DASCard-1000 Series Function Call Driver is not required.

Initializing a Card

2-2

The DASCard-1000 Series Function Call Driver supports up to two
DASCard-1000 Series cards. You must usekth@etDevHandle

function to specify the cards you want to use. The driver returns a unique
identifier for each card; this identifier is called the device handle.

Device handles allow you to communicate with more than one Keithley
MetraByte DAS card or board. You use the device handle returned by
K_GetDevHandle in subsequent function calls related to the card or
board.

Available Operations



You can specify a maximum of 30 device handles for all the Keithley
MetraByte DAS cards or boards accessed from all your application
programs. If a card or board is no longer being used and you want to free
some memory or if you have used all 30 device handles, you can use the
K_FreeDevHandlefunction to free a device handle.

Note: If you are programming in BASIGS_GetDevHandleand
K_FreeDevHandleare not available. You must use the
DAS1000_GetDevHandldunction instead. Refer to page 4-10 for more
information. In BASIC, freeing a device handle is not required.

To reinitialize a Keithley MetraByte DAS card or board during an
operation, use thik_DASDevInit function.DAS1000_GetDevHandle
K_GetDevHandle, andK_DASDevInit perform the following tasks:

. Abort all operations currently in progress that are associated with the
card or board identified by the device handle.

. Verify that the card or board identified by the device handle is the
device specified in the configuration file associated with the device.

Retrieving Card Information

System Operations

The Keithley MetraByte Enabler (KMENABLE.EXE) requests a base
address, interrupt level, and memory segment address for each
DASCard-1000 Series card from PCMCIA Card Services and then
provides information about the assigned resources to your application
program. To determine which system resources PCMCIA Card Services
assigned, you can use thAS1000_GetCardInfofunction in your
application program. You specify a DASCard-1000 Series card; the driver
returns the socket in which the card is installed, the interrupt level, the
base address, the memory segment address, and the card type. Refer to
the DASCard-1000 Series User’s Guitte more information about the
Enabler.

2-3



Retrieving Revision Levels

If you are using functions from different Keithley DAS Function Call
Drivers in the same application program or if you are having problems
with your application program, you may want to verify which versions of
the Function Call Driver, Keithley DAS Driver Specification, and
Keithley DAS Shell are used by your Keithley MetraByte DAS card or
board.

TheK_GetVer function allows you to get both the revision number of the
Function Call Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms.

TheK_GetShellVer function allows you to get the revision number of
the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that are shared by all Keithley MetraByte DAS cards and boards).

Handling Errors

2-4

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is
recommended that you check the returned code after the execution of
each function. If the status code equals 0, the function executed
successfully and your program can proceed. If the status code does not
equal 0, an error occurred; ensure that your application program takes the
appropriate action. Refer to Appendix A for a complete list of error codes.

Each supported language uses a different procedure for error checking;
refer to the following pages for more information:

C/C++ page 3-20

Visual Basic for Windowg page 3-33

BASIC page 3-42

For C-language application programs only, the Function Call Driver
provides th&k _GetErrMsg function, which gets the address of the string
corresponding to an error code.

Available Operations



Analog Input Operations

This section describes the following:
. Analog input operation modes available.
. How to allocate and manage memory for analog input operations.
. How to specify the following for an analog input operation:
— Channels and gains
— Clock source
— Buffering mode
— Trigger source

. How to correct analog input data using calibration factors.

Operation Modes

Single Mode

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the
DASCard-1000 Series card to computer memory. You can perform analog
input operations in single mode, synchronous mode, and interrupt mode,
as described in the following sections.

In single mode, the card acquires a single sample from an analog input
channel. The driver initiates the conversion; you cannot perform any other
operation until the single-mode operation is complete.

Use theK_ADRead function to start an analog input operation in single
mode. You specify the card you want to use, the analog input channel, the
gain at which you want to read the signal, and the variable in which to
store the converted data.

Analog Input Operations 2-5



Synchronous Mode

Interrupt Mode

2-6

In synchronous mode, the card acquires a single sample or multiple
samples from one or more analog input channels. A hardware pacer clock
initiates conversions. The hardware temporarily stores the acquired data
in the 512-word FIFO (first-in, first-out data buffer) on the card, and then
transfers the data from the FIFO to a user-defined buffer in computer
memory. After the driver transfers the specified number of samples to
computer memory, the driver returns control to the application program.
You cannot perform any other operation until a synchronous-mode
operation is complete.

Use theK_SyncStart function to start an analog input operation in
synchronous mode.

In interrupt mode, the card acquires a single sample or multiple samples
from one or more analog input channels. A hardware clock initiates
conversions. Once the analog input operation begins, control returns to
your application program. The hardware temporarily stores the acquired
data in the FIFO, and then transfers the data from the FIFO to a
user-defined buffer in computer memory using an interrupt service
routine.

Use theK_IntStart function to start an analog input operation in
interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-17 for more information on
buffering modes. Use th€ IntStop function to stop a continuous-mode
interrupt operation. Use th€ IntStatus function to determine the
current status of an interrupt operation.

Available Operations



Memory Allocation and Management

Analog input operations require memory buffers in which to store

acquired data. For synchronous mode and interrupt mode, you can
allocate a single memory buffer; for interrupt mode only, you can allocate
multiple buffers (up to a maximum of 150) to increase the number of
samples you can acquire. The ways you allocate and manage memory are
described in the following sections.

Note: For interrupt-mode operations, the hardware transfers data either
when the FIFO is half full (the number of samples is greater than or equal
to 256) or when the FIFO has any data (when the number of samples is
between 1 and 255). For best performance when using multiple-buffer or
continuous-mode operations to acquire data, it is recommended that you
allocate a buffer equal to or greater than 256 samples, even if you are not
acquiring 256 samples. For single-buffer or single-cycle operations, you
can allocate a buffer of any allowable size.

Dimensioning Local Arrays

The simplest way to reserve memory buffers is to dimension arrays within
your application program. The advantage of this method is that the arrays
are directly accessible to your application program. The limitations of this
method are as follows:

. Certain programming languages limit the size of local arrays.

. Local arrays occupy permanent memory areas; these memory areas
cannot be freed to make them available to other programs or
processes.

Since the DASCard-1000 Series Function Call Driver stores data in 16-bit

integers (12 bits of which determine the data), you must dimension all
local arrays as integers.

Analog Input Operations 2-7



Dynamically Allocating Memory Buffers

2-8

The recommended way to reserve memory buffers is to allocate them
dynamically outside of your application program’s memory area. The
advantages of this method are as follows:

. The number of memory buffers and the size of the buffers are limited
by the amount of free physical memory available in your computer at
run-time.

. Dynamically allocated memory buffers can be freed to make them
available to other programs or processes.

The limitation of this method is that for Visual Basic for Windows and
BASIC, the data in a dynamically allocated memory buffer is not directly
accessible to your program. You must usekh®loveBufToArray

function to move the data from the dynamically allocated memory buffer
to the program’s local array. For Visual Basic for Windows, refer to
page 3-27 for more information; for BASIC, refer to page 3-36 for more
information.

Use theK_IntAlloc function to dynamically allocate a memory buffer for

a synchronous-mode or interrupt-mode operation. You specify the
operation requiring the buffer and the number of samples to store in the
buffer (maximum of 5,000,000 for interrupt mode or 32,767 for
synchronous mode). The driver returns the starting address of the buffer
and a unique identifier for the buffer; this identifier is called the memory
handle. When the buffer is no longer required, you can free the buffer for
another use by specifying this memory handle irkthimtFree function.

Available Operations



Notes: For DOS-based languages, the area used for dynamically
allocated memory buffers is referred to as the far heap; for
Windows-based languages, this area is referred to as the global heap.
These heaps are areas of memory left unoccupied as your application
program and other programs run.

For DOS-based languages, fadntAlloc function uses the DOS Int 21h
function 48h to dynamically allocate far heap memory. For
Windows-based languages, #elntAlloc function calls the
GlobalAlloc API function to allocate the desired buffer size from the
global heap.

For Windows-based languages, dynamically allocated memory is
guaranteed to be fixed and locked in memory.

Assigning the Starting Addresses

After you allocate your buffers or dimension your arrays, you must assign
the starting addresses of the arrays or buffers and the number of samples
to store in the arrays or buffers. Each supported programming language
requires a particular procedure for assigning the starting addresses; refer
to the following pages for more information:

C/C++ page 3-13

Visual Basic for Windowg page 3-25

BASIC page 3-34

If you are using multiple buffers, use teBufListAdd function to add
each buffer to the list of multiple buffers associated with each operation
and to assign the starting address of each buffer. Use BigfListReset
function to clear the list of multiple buffers.

Analog Input Operations 2-9



Gains and Ranges

2-10

Each channel on a DASCard-1001 or DASCard-1002 can measure analog
input signals in one of four, software-selectable unipolar or bipolar analog
input ranges. Each channel on a DASCard-1003 can measure analog input
signals in one unipolar or bipolar analog input range. You specify the

input range type (unipolar or bipolar) for the card in the configuration file.
Refer to youlDASCard-1000 Series User’s Guifte more information.

To set the input range type in your application program, use the
K_SetADMode function.

Table 2-2 lists the analog input ranges supported by DASCard-1000

Series cards and the gain and gain code associated with each range. Gain
codes are used by the FCD functions to represent the gain.

Table 2-2. Analog Input Ranges

Analog Input Range
Gain
Card Bipolar Unipolar Gain Code
DASCard-1001 | 5.0V 00to+5.0V |1 0
0.5V 0.0to+0.5V |10 1
50 mV 0 to +50 mV 100 2
5 mVv 0to +5 mV 1000 3
DASCard-1002 |+5.0V 00to+5.0V |1 0
2.5V 00to+25V |2 1
+1.25V 0.0to +1.25V |4 2
+0.625V 0.0to +0.625V, 8 3
DASCard-1003 |+5.0V 00to+5.0V |1 0

Available Operations



For single-mode operations, you specify the gain code iK tA®Read
function.

For synchronous-mode and interrupt-mode analog input operations, you
specify the gain code in thé SetG or K_SetStartStopG function; the
function you use depends on how you specify the channels, as described
in the following section.

Channels

DASCard-1000 Series cards are software-configurable for either 16
single-ended analog input channels (numbered 0 through 15) or eight
differential analog input channels (numbered 0 through 7).

You specify the input configuration (single-ended or differential) in the
configuration file. Refer to theASCard-1000 Series User’'s Guifie
more information. To set the input configuration in your application
program, use thK_SetADConfig function.

If you require more than the 16 single-ended or eight differential
channels, you can use up to 16 EXP-1600 expansion accessories to
increase the number of available channels to a maximum of 256.

To use EXP-1600 expansion accessories, the analog input channels on the
DASCard-1000 Series card must be configured as single-ended. You
assign expansion accessories to consecutive channels on the card,
beginning with channel 0. You can also use the remaining channels on the
card. Refer to th®ASCard-1000 Series User’s Guidad to the
EXP-800/1600 User's Guider more information on using expansion
accessories.

The maximum supported configuration is 16 EXP-1600 expansion
accessories. Table 2-3 lists the software (or logical) channels associated
with each expansion accessory.

Analog Input Operations 2-11



2-12

Table 2-3. Logical Channels

Physical Software Physical Software
Channel (Logical) Channel (Logical)
on Card Channels on Card Channels
0 0to 15 8 128 to 143
1 16to 31 9 144 to 159
2 32 to 47 10 160 to 175
3 48 to 63 11 176 to 191
4 64 to 79 12 192 to 207
5 80 to 95 13 208 to 223
6 96 to 111 14 224 10 239
7 112to 127 ||15 240 to 255

Figure 2-1 illustrates the use of three EXP-1600 expansion accessories on
a DASCard-1000 Series card configured for single-ended mode.

EXP-1600
channels
0to 15

EXP-1600
0__,—> channels
. 16 to 31
DASCard-1000 3 EXP-1600
Series Card . Channels I—» channels
(on the 32 t0 47

. card)
15 | 48t060

Figure 2-1. Analog Input Channels

Available Operations



Note: Because of the overhead required to perform interrupt-mode
operations under Windows, it is recommended that you use EXP-1600
expansion accessories in single mode or synchronous mode. The
throughput of your DASCard-1000 Series card is reduced when using
EXP-1600 expansion accessories.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following sections describe how to
specify the channels you are using.

Specifying a Single Channel

You can acquire a single sample or multiple samples from a single analog
input channel.

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. Use kheADRead function to
specify the channel and the gain code.

For synchronous-mode and interrupt-mode analog input operations, you
can acquire a single sample or multiple samples from a single analog
input channel. Use the_SetChn function to specify the channel and the
K_SetG function to specify the gain code.

Specifying a Group of Consecutive Channels

For synchronous-mode and interrupt-mode analog input operations, you
can acquire samples from a group of consecutive channels. Use the
K_SetStartStopChnfunction to specify the first and last channels in the
group. The channels are sampled in order from first to last; the channels
are then sampled again until the required number of samples is read.

For example, assume that you have an EXP-1600 expansion accessory
attached to channel 0 on a DASCard-1000 Series card configured for
single-ended mode. You specify the start channel as 14, the stop channel
as 17, and you want to acquire five samples. Your program reads data first
from channels 14 and 15 (on the EXP-1600), then from channels 16 and
17 (physical channels 1 and 2 on the DASCard-1000 Series card), and
finally from channel 14 again.

Analog Input Operations 2-13



You can specify a start channel that is higher than the stop channel. For
example, assume that you are not using any expansion accessories, the
card uses a differential input configuration, the start channel is 7, the stop
channel is 2, and you want to acquire five samples. Your program reads
data first from channel 7 then from channels 0, 1, and 2, and finally from
channel 7 again.

Use theK_SetG function to specify the gain code for all the channels in
the group. (All channels must use the same gain code.) Use the
K_SetStartStopG function to specify the gain code, the start channel,
and the stop channel in a single function call.

Refer to Table 2-2 on page 2-10 for a list of the analog input ranges
supported by the DASCard-1000 Series and the gain code associated with
each range.

Specifying Channels in a Channel-Gain Queue

2-14

For synchronous-mode and interrupt-mode analog input operations, you
can acquire samples from channels in a software channel-gain queue. In
the channel-gain queue, you specify the channels you want to sample, the
order in which you want to sample them, and the gain code for each
channel.

Note: Because of the overhead required to perform interrupt-mode
operations under Windows, it is recommended that you use channel-gain
queues in synchronous mode. The throughput of the DASCard-1000
Series card is reduced when using a channel-gain queue. However,
performance is optimized when the channels in the channel-gain queue
are sequential and when the gains of all the channels are the same.

You can set up the channels in a channel-gain queue either in consecutive
order or in nonconsecutive order. You can also specify the same channel
more than once.

The channels are sampled in order from the first channel in the queue to

the last channel in the queue; the channels in the queue are then sampled
again until the specified number of samples is read.

Available Operations



Refer to Table 2-2 on page 2-10 for a list of the analog input ranges
supported by the DASCard-1000 Series and the gain code associated with
each range.

The way that you specify the channels and gains in a channel-gain queue
depends on the language you are using. Refer to the following pages for
more information:

C/C++ page 3-17

Visual Basic for Windows| page 3-31

BASIC page 3-40

After you create the channel-gain queue in your program, use the
K_SetChnGAry function to specify the starting address of the
channel-gain queue.

Pacer Clocks

For synchronous-mode and interrupt-mode analog input operations, the
pacer clock determines the period between conversions. Use the
K_SetCIk function to specify an internal or an external pacer clock. The
internal pacer clock is the default pacer clock.

The internal and external pacer clocks are described in the following
sections; refer to thBASCard-1000 Series User’s Guifte more
information.

Note: The rate at which the computer can reliably read data from the card
depends on a number of factors, including your computer, the operating
system/environment, the number of channels you are using, the gains of
the channels, and other software issues.

Analog Input Operations 2-15



Internal Pacer Clock

2-16

The internal pacer clock uses a 16-bit counter on the card. The counter is
normally in an idle state. When you start the analog input operation (using
K_SyncStart or K_IntStart ), the counter is loaded with its initial value

and begins counting down. When the counter counts down to 0, the first
conversion is initiated. After the first conversion is initiated, the counter is
loaded again and the process repeats.

Use theK_SetClkRate function to specify a count value, which

represents the number of clock ticks between conversions; each clock tick
represents 0.fis. For example, if you specify 9,876 clock ticks, the

period between conversions is 986

If you are using a DASCard-1003 or if you are using a single channel on a
DASCard-1001 or DASCard-1002, you can specify a count value
between 71 and 655,350 ({14 to 65.54 ms between conversions). If you
are using multiple channels on a DASCard-1001 or DASCard-1002, you
can specify a count value between 294 and 655,350 ((2aa@165.54 ms
between conversions).

Use the following formula to determine the number of clock ticks to
specify:

10, 00Q 000

Number of clock ticks= -
conversion rate

For example, if you want a conversion rate of 1 ksamples/s, specify
10,000 clock ticks, as shown in the following equation:

10, 00Q 000 _
1000 10, 000

The conversion rate is the rate at which the analog-to-digital converter

(ADC) initiates conversions; it does not take into account the number of

channels you are using. For example, if you are using five channels and

want a conversion rate of 1 ksamples/second per channel, specify 2,000

clock ticks, as shown in the following equation:

r10, 00Q 008, . _
1 000 0¥ 5 = 2000

Available Operations



The hardware may not be able to convert the analog input channels at the
exact rate determined by the number of clock ticks you specify. However,
the driver calculates a rate that is as close as possible to the number you
specify. To determine the actual number of clock ticks used by the
internal pacer clock, use tite GetClkRate function after you start the
analog input operation. Refer to page 4-42 for more information.

External Pacer Clock

You connect an external pacer clock to the XCLK/PIO line of the
DASCard-1000 Series card.

When you start an analog input operation (usin&yncStart or

K_IntStart ), conversions are armed. At the next falling edge of the
external pacer clock (and at every subsequent falling edge of the external
pacer clock), a conversion is initiated.

Note: For the DASCard-1001 and DASCard-1002, the ADC can acquire
samples at a maximum of 34 ksamples/s; for the DASCard-1003, the
ADC can acquire samples at a maximum of 140 ksamples/s. If you are
using an external pacer clock, make sure that the clock initiates
conversions at a rate that the ADC can handle.

Buffering Modes

The buffering mode determines how the driver stores the converted data
in the buffer. For interrupt-mode analog input operations, you can specify
one of the following buffering modes:

. Single-cycle mode In single-cycle mode, after the card converts the
specified number of samples and stores them in the buffer, the
operation stops automatically. Single-cycle mode is the default
buffering mode. To reset the buffering mode to single-cycle, use the
K_ClIrContRun function.

. Continuous mode- In continuous mode, the card continuously
converts samples and stores them in the buffer until it receives a stop
function; any values already stored in the buffer are overwritten. Use
theK_SetContRun function to specify continuous buffering mode.

Analog Input Operations 2-17



Triggers

Analog Trigger

2-18

Note: Buffering modes are not meaningful for synchronous-mode
operations, since only single-cycle mode applies.

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode and interrupt-mode analog input operations, use the
K_SetTrig function to specify one of the following trigger sources:

. Internal trigger - An internal trigger is a software trigger; the trigger
event occurs when you start the analog input operation using
K_SyncStart or K_IntStart . Note that a slight delay occurs between
the time you start the operation and the time the trigger event occurs.
The point at which conversions begin depends on the pacer clock;
refer to page 2-15 for more information on the pacer clock. The
internal trigger is the default trigger source.

. External trigger - An external trigger is either an analog trigger or a
digital trigger; when you start the analog input operation using
K_SyncStart or K_IntStart , the application program waits until a
trigger event occurs. The point at which conversions begin depends
on the pacer clock; refer to page 2-15 for more information on the
pacer clock.

Analog and digital triggers are described in the following sections.

An analog trigger event occurs when one of the following conditions is
met by the analog input signal on a specified analog trigger channel:

. The analog input signal rises above a specified voltage level
(positive-edge trigger).

. The analog input signal falls below a specified voltage level
(negative-edge trigger).

. The analog input signal is above a specified voltage level
(positive-level trigger).

. The analog input signal is below a specified voltage level
(negative-level trigger).

Available Operations



Figure 2-2 illustrates these analog trigger conditions, where the specified
voltage level is +2.5 V.

Positive-level
trigger occurs

| Negative-edge Positive-edge trigger occurs
™ or negative-level  /

: / trigger occurs

.
|
|
|
|
|
|
|
|
|

Level +25V }
ov

I
\Analog input operation

start function is executed

Figure 2-2. Analog Trigger Conditions

Use theK _SetADTrig function to specify the following:

. Analog input channel to use as the trigger channelThe trigger
channel always measures signals at a gain of 1.

. \oltage level- You specify the voltage level as a count value. For a
bipolar input range type, you specify a count value betw2648
and 2047, where2048 representss V and 2047 represents 5 V; for a
unipolar input range type, you specify a count value between 0 and
4095, where 0 represents 0 V and 4095 represents 5 V. Refer to
Appendix B for information on how to convert a voltage value to a
count value.

. Trigger polarity and sensitivity - The trigger can be a positive-edge,
negative-edge, positive-level, or negative-level trigger.

Analog Input Operations 2-19



For positive-edge and negative-edge triggers, you can specify a hysteresis
value to prevent noise from triggering an operation. Use the
K_SetTrigHyst function to specify the hysteresis value. The point at

which the trigger event occurs is described as follows:

. Positive-edge trigger- The analog signal must be below the specified
voltage level by at least the amount of the hysteresis value and then
rise above the voltage level before the trigger event occurs.

. Negative-edge trigger- The analog signal must be above the
specified voltage level by at least the amount of the hysteresis value
and then fall below the voltage level before the trigger event occurs.

The hysteresis value is an absolute number, which you specify as a count
value. For a bipolar input range type, you specify a count value between 0
and 2047, where O represents 0 V and 2047 represents 5 V; for a unipolar
input range type, you specify a count value between 0 and 4095, where 0
represents 0 V and 4095 represents 5 V. When you add the hysteresis
value to the voltage level (for a negative-edge trigger) or subtract the
hysteresis value from the voltage level (for a positive-edge trigger), the
resulting value must also be between 0 and 2047 for a bipolar input range
type or between 0 and 4095 for a unipolar input range type.

For example, assume that you are using a negative-edge trigger on a
channel configured for an analog input range of 0 to 5 V. If the voltage
level is +4.8 V (3932 counts), you can specify a hysteresis value of 0.1V
(82 counts) because 3932 + 82 is less than 4095, but you cannot specify a
hysteresis value of 0.3V (246 counts) because 3932 + 246 is greater than
4095. Refer to Appendix B for information on how to convert a voltage
value to a count value.

In Figure 2-3, the specified voltage level is +4 V and the hysteresis value
is 0.1 V. The analog signal must be below +3.9 V and then rise above

+4 V before a positive-edge trigger event occurs, the analog signal must
be above +4.1V and then fall below +4 V before a negative-edge trigger
event occurs.

2-20 Available Operations



Positive-edge
trigger occurs

Level +4V |- —-—-—------"f - ———-X-—-—--—-—-—-—— e e il
} Hysteresis = 0.1V

439V b TN

+41V  |meeee-

Negative-edge
trigger occurs

Analog input operation

|
|
Level +4V - —— = f-—-—-—-—-X-—————— == =

|

i

|

|

|

|

|

| start function is executed

Figure 2-3. Using a Hysteresis Value

Note: The analog trigger is a software-based trigger. When you start the
analog input operation (using_IntStart or K_SyncStart), the driver
samples the specified trigger channel until the trigger condition is met. If
you are performing an operation in interrupt mode, control does not
return to your application program until the trigger condition is met.

(To terminate the operation if a trigger event does not occur, press

Ctrl + Break.) In addition, a slight time delay occurs between the time
the trigger condition is met and the time the driver realizes the trigger
condition is met and begins conversions.

Analog Input Operations 2-21



Digital Trigger

A digital trigger event occurs when a negative edge is detected on the
digital trigger signal connected to the XTRIG/PI1 line of the
DASCard-1000 Series card.

Use theK_SetDITrig function to specify a digital trigger.

Data Correction

For synchronous-mode and interrupt-mode analog input operations, the
data acquired by the card must be corrected to ensure that the data stored
in the user-defined buffer is valid. The data is corrected using the
calibration factors that are stored in computer memory for each analog
input range.

The analog input data can be corrected in one of the following ways:

. Automatic correction of data - If speed is not an issue and you are
programming under Windows, the driver can automatically correct
data as it is acquired. The driver stores the corrected data in the
user-defined buffer. By default, automatic data correction is enabled.

. Caorrection of data by the driver after the operation is complete
If you cannot acquire data fast enough using automatic data
correction and you are programming under Windows, the driver can
store uncorrected data in the user-defined buffer and then correct the
data after the operation is complete. Usath8etCalModefunction
to disable automatic data correction, and then use the
K_CorrectData function to correct the data at an appropriate point in
your program. The driver overwrites the uncorrected data in the
user-defined buffer with the corrected data.

. Correction of data by the application program after the
operation is complete- If you are programming under Windows and
want more control over the correction of your data, the driver can
store uncorrected data in the user-defined buffer and the application
program can correct the data after the operation is complete. If you
are programming under DOS, the driver always stores uncorrected
data in the user-defined buffer and the application program must
correct the data after the operation is complete.

2-22 Available Operations



The application program corrects the data by performing the
following steps:

1.

If you are programming under Windows, usekh&etCalMode
function to disable automatic data correction.

Use thek _GetCalData function to return the calibration factors

for a specified analog input range to a two-element array; the first
calibration factor in the array is the gain to apply to the
uncorrected data and the second calibration factor in the array is
the offset. Note that the gain value returned represents a gain, not
a gain code. Refer to page 4-39 for more information about
K_GetCalData.

Since dealing with floating point numbers is language-dependent
in DOS, if you are programming under DQS,GetCalData

returns the gain value as a twos complement integer between
-127 and +127. Use the following formula to calculate the actual
gain to apply to the uncorrected data:

actual gain= 1.6- ( gain returned by K_GetCalData 0)001

If you are programming under Windows, the gain returned by
K_GetCalData is the actual gain, which is returned as a floating
point number; go to step 4.

Use one of the following formulas to correct a data value:

For a bipolar input range type:

corrected date= ( gaim uncorrected Jataffset

For a unipolar input range type:

corrected data= ( gaim( uncorrected data 2048offset+ 2048

Analog Input Operations

If you are programming under DOS, the gain used in the formula
is the gain value calculated in step 3. If you are programming
under Windows, the gain used in the formula is the gain value
returned byK_GetCalData.

The offset value is always the offset returnekbyetCalData.

2-23



Notes: For automatic correction of data and correction of data by the
driver after the operation is complete, you must be programming under
Windows. If you are programming under DOS, the application program
must correct data after the operation is complete. When programming
under DOS, it is not necessary to seSetCalModeto disable

automatic data correction.

If you are programming under Windows and usthddADRead to

perform a single-mode analog input operation, data is automatically
corrected before it is stored in the variable. If you are programming under
DOS and using{_ADRead, uncorrected data is stored in the variable and
the application program must correct the data.

It is recommended that you periodically update the calibration factors
stored in computer memory using the CAL1000.EXE utility. Refer to the
DASCard-1000 Series User’s Guifte more information.

Each supported language uses a different procedure for correcting data;
refer to the following pages for more information:

C/C++ page 3-19

Visual Basic for Windowg page 3-32

BASIC page 3-41

You can convert the corrected count values to voltage, if desired. Refer to
Appendix B for more information.

Digital 1/0O Operations

2-24

DASCard-1000 Series cards contain four digital input lines (XCLK/PIO,
XTRIG/PI1, PI2, and PI3) and eight digital output lines (POO through
PO7). If you are not using the digital 1/O lines to support an analog input
operation, you can use them for general-purpose digital 1/0, as described
in the following sections.

Available Operations



Digital Input

You can perform a digital input operation in single mode only. Use the
K_DIRead function to read the value of digital input channel 0, which
contains all the digital input lines. You specify the card you want to use,
the digital input channel, and the variable in which to store the value.
Only bits 0, 1, 2, and 3 of the digital input value are meaningful.

Figure 2-4 shows how the digital input bits correspond to the digital input
lines.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

PI3 PI2 XTRIG/ | XCLK/
PI1 PIO

Figure 2-4. Digital Input Bits

A value of 1 in the bit position indicates that the input is high; a value of 0
in the bit position indicates that the input is low. For example, if the value
is 5 (00000101), the input at XCLK/PIO and PI2 is high and the input at
XTRIG/PI1 and PI3 is low.

If you are using an external pacer clock, you cannot use XCLK/PIO for
general-purpose digital input operations. If you are using an external
digital trigger, you cannot use XTRIG/PI1 for general-purpose digital
input operations.

If no signal is connected to a digital input line, the input appears high
(value is 1).

Digital /0O Operations 2-25



Digital Output

2-26

You can perform a digital output operation in single mode only. Use the
K_DOWrite function to write a value to digital output channel 0, which
contains all the digital output lines. You specify the card you want to use,
the digital output channel, and the digital output value. Figure 2-5 shows
how the digital output bits correspond to the digital output lines.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

PO7 PO6 PO5 PO4 PO3 PO2 PO1 POO

Figure 2-5. Digital Output Bits

A value of 1 in the bit position indicates that the output is high; a value of
0 in the bit position indicates that the output is low. For example, if the
value written is 12 (00001100), the output at PO2 and PO3 is forced high,
while the output of all other lines is forced low.

If you are using an EXP-1600 expansion accessory for an analog input
operation, the driver uses four digital output lines (PO to P3) to specify the
expansion accessory channel that is acquiring data; in this case, you
cannot use these digital output lines for general-purpose digital output
operations while acquiring analog input data.

Available Operations



3

Programming with the
Function Call Driver

This chapter contains an overview of the structure of the Function Call
Driver, as well as programming guidelines and language-specific
information to assist you when writing application programs with the
Function Call Driver.

How the Driver Works

When writing application programs, you can use functions from one or
more Keithley MetraByte DAS Function Call Drivers. You initialize each
driver using a particular configuration file. If you are using more than one
driver or more than one configuration file with a single driver, the driver
handle uniquely identifies each driver or each use of the driver.

You can program one or more Keithley MetraByte DAS cards or boards
in your application program. You initialize each card or board using a
device handle that uniquely identifies it. Each device handle is associated
with a particular driver.

The Function Call Driver allows you to perform 1/O operations in various
operation modes. For single mode, the I/O operation is performed with a
single call to a function; the attributes of the 1/0 operation are specified as
arguments to the function. Figure 3-1 illustrates the syntax of the
single-mode, analog input operation functlbnADRead.

How the Driver Works 3-1



3-2

Single-Mode Function Attributes of Operation

K_ADRead (card, <————> Card number
channel, <———— > Analog input channel
gain, &«————> Gain applied to channel
buffer) <«— > Buffer for data

Figure 3-1. Single-Mode Function

For other operation modes, such as synchronous and interrupt mode, the
driver uses frames to perform the operation. A frame is a data structure
whose elements define the attributes of the operation. Each frame is
associated with a particular card or board, and therefore, to a particular
driver.

Frames help you create structured application programs. You set up the
attributes of the operation in advance, using a separate function call for
each attribute, and then start the operation at an appropriate point in your
program.

Frames are useful for operations that have many defining attributes, since
providing a separate argument for each attribute could make a function’s
argument list unmanageably long. In addition, some attributes, such as the
clock source and trigger source, are available only for operations that use
frames.

You indicate that you want to perform an operation by getting an
available frame for the driver. The driver returns a unique identifier for the
frame; this identifier is called the frame handle. You then specify the
attributes of the operation by using setup functions to define the elements
of the frame associated with the operation. For example, to specify the
channel on which to perform an operation, you might us& tigetChn

setup function.

You use the frame handle you specified when accessing the frame in all

setup functions and other functions related to the operation. This ensures
that you are defining the same operation.

Programming with the Function Call Driver



When you are ready to perform the operation you have set up, you can
start the operation in the appropriate operation mode, referencing the
appropriate frame handle. Figure 3-2 illustrates the syntax of the
interrupt-mode operation functidf IntStart .

K_IntStart ( frameHandle )

|

Frame Attrib utes of Operation
Start Channel <« > Firstanalog input channel
Stop Channel <—— > Last analog input channel
Clock Source <—— > Pacer clock source
Trigger Source <«———> Trigger source

Figure 3-2. Interrupt-Mode Operation

For DASCard-1000 Series cards, synchronous-mode and interrupt-mode
analog input operations require frames, called A/D (analog-to-digital)
frames. Use th&_GetADFrame function to access an available A/D
frame.

If you want to perform a synchronous-mode or interrupt-mode analog
input operation and all A/D frames have been accessed, you can use the
K_FreeFrame function to free a frame that is no longer in use. You can
then redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You
can also use the_ClearFrame function to reset all the elements of a
frame to their default values.

How the Driver Works 3-3



Table 3-1 lists the elements of an A/D frame for DASCard-1000 Series
cards. This table also lists the default value of each element and the setup
functions used to define each element.

3-4

Table 3-1. A/D Frame Elements

Element Default Value Setup Function
Buffer! 0 (NULL) K_SetBuf
K_SetBufl
K_BufListAdd
Number of Sampleg 0 K_SetBuf
K_SetBufl
K_BufListAdd
Buffering Mode Single-cycle K_SetContRun
K_CIrContRuﬁ
Start Channel 0 K_SetChn
K_SetStartStopChn
K_SetStartStopG
Stop Channel 0 K_SetStartStopChn
K_SetStartStopG
Gain 0 (gain of 1) K_SetG
K_SetStartStopG
Channel-Gain 0 (NULL) K_SetChnGAry
Queue
Clock Source Internal K_SetClk
Pacer Clock Rate |0 K_SetClkRate
Trigger Source Internal K_SetTrig
Trigger Type Digital K_SetADTrig
K_SetDITrig
Trigger Channel 0 (for analog trigger| K_SetADTrig

0 (for digital trigger)

Not applicable

Trigger Polarity

Positive edge (for
analog trigger)

K_SetADTrig

Positive edge (for
digital trigger)

Not applicablé

Programming with the Function Call Driver




Table 3-1. A/D Frame Elements (cont.)

Element Default Value Setup Function
Trigger Level 0 K_SetADTrig
Trigger Hysteresis | 0 K_SetTrigHyst
Calibration Modé | Enabled K_SetCalMode

Notes

Lyou must set this element.
2 Use this function to reset the value of this particular frame element to its

default setting without clearing the frame or getting a new frame.

Whenever you clear a frame or get a new frame, this frame element is set
to its default value automatically.
3 Since only negative-edge digital triggers are supported by the hardware,

the value of this element is ignored.
4This element is valid only when programming under Windows.

Note: The DASCard-1000 Series Function Call Driver provides many
other functions that are not related to controlling frames, defining the
elements of frames, or reading the values of frame elements. These

functions include single-mode operation functions, initialization

functions, memory management functions, data correction functions, and
miscellaneous functions.

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4.

How the Driver Works

3-5



Programming Overview

To write an application program using the DASCard-1000 Series
Function Call Driver, perform the following steps:

1. Define the application's requirements. Refer to Chapter 2 for a
description of the operations supported by the Function Call Driver
and the functions that you can use to define each operation.

2. Write your application program. Refer to the following for additional
information:

— Preliminary Tasks, the next section, which describes the
programming tasks that are common to all application programs.

— Analog Input Programming Tasks on page 3-7 and Digital I/O
Programming Tasks on page 3-12, which describe
operation-specific programming tasks and the sequence in which
these tasks must be performed.

— Chapter 4, which contains detailed descriptions of the FCD
functions.

— The example programs in the DASCard-1000 Series standard
software package and the ASO-1000 software package. The
FILES.TXT file in the installation directory lists and describes
the example programs.

3. Compile and link the program. Refer to the following for information
on compile and link statements and other language-specific
considerations:

— C/C++ Programming Information on page 3-13.

— Visual Basic for Windows Programming Information on
page 3-25.

— BASIC Programming Information on page 3-34.
— The EXAMPLES.TXT file located in the installation directory.

3-6 Programming with the Function Call Driver



Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1. Include the function and variable type definition file for your
language. Depending on the specific language you are using, this file
is included in the DASCard-1000 Series standard software package or
the ASO-1000 software package.

Declare and initialize program variables.

Use a driver initialization functioriK( OpenDriver or
DAS1000_DevOpehto initialize the driver.

4. Use a card initialization functio#( GetDevHandle or
DAS1000_GetDevHandlgto specify DASCard-1000 Series card
you want to use and to initialize the card. If you are using two cards,
use the initialization function twice.

After completing the preliminary tasks, perform the appropriate
operation-specific programming tasks. The operation-specific tasks for
analog input and digital 1/O operations are described in the following
sections.

Analog Input Programming Tasks

The following sections describe the operation-specific programming tasks
required to perform single-mode, synchronous-mode, and interrupt-mode
analog input operations.

Single-Mode Operations

Preliminary Tasks

For a single-mode analog input operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single analog input
value.

2. Use th&K_ADRead function to read the single analog input value;
specify the attributes of the operation as arguments to the function.

3-7



Synchronous-Mode Operations

For a synchronous-mode analog input operation, perform the following
tasks:

1. Use theK _GetADFrame function to access an A/D frame.

2. Allocate the buffer or dimension the array in which to store the
acquired data. Use th€ IntAlloc function if you want to allocate
the buffer dynamically outside your program's memory area.

3. If you want to use a channel-gain queue to specify the channels
acquiring data define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-14 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-2 on page 3-8.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list
of the default values of A/D frame elements.

Table 3-2. Setup Functions for Synchronous-Mode
Analog Input Operations

Attribute Setup Functions
Buffer K_SetBuf
K_SetBufl
Number of Samples K_SetBuf
K_SetBufl
Start Channel K_SetChn

K_SetStartStopChn
K_SetStartStopG

Stop Channel K_SetStartStopChn
K_SetStartStopG

3-8 Programming with the Function Call Driver



Table 3-2. Setup Functions for Synchronous-Mode
Analog Input Operations (cont.)

Attribute Setup Functions
Gain K_SetG
K_SetStartStopG
Channel-Gain Queue | K_SetChnGAry
Clock Source K_SetClk
Pacer Clock Rate K_SetClkRate
Trigger Source K_SetTrig
Trigger Type K_SetADTrig
K_SetDITrig
Trigger Channel K_SetADTrig
Trigger Polarity K_SetADTrig
K_SetDITrig
Trigger Level K_SetADTrig
Trigger Hysteresis K_SetTrigHyst
Calibration Mode K_SetCalMode

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

5. Use theK_SyncStart function to start the synchronous-mode
operation.

6. If you are programming in Visual Basic for Windows or BASIC and
you used<_IntAlloc to allocate your buffeuse the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to the program’s local array.

7. If you are programming in C/C++ for DOS or BASIGse the
K_GetCalData function to get the calibration factors, and then
correct the data. Refer to page 2-22 for more information.

Analog Input Programming Tasks 3-9



8. If you used _IntAlloc to allocate your bufferuse theél_IntFree
function to deallocate the buffer.

9. Use theK_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Interrupt-Mode Operations

For an interrupt-mode analog input operation, perform the following
tasks:

1. Use the&K _GetADFrame function to access an A/D frame.

2. Allocate the buffers or dimension the arrays in which to store the
acquired data. Use the IntAlloc function if you want to allocate
buffers dynamically outside your program's memory area.

3. If you want to use a channel-gain queue to specify the channels
acquiring data define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-14 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-3.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list
of the default values of A/D frame elements.

3-10 Programming with the Function Call Driver



Table 3-3. Setup Functions for Interrupt-Mode

Analog Input Operations

Attribute Setup Functions

Buffer K_SetBuf
K_SetBufl
K_BufListAdd

Number of Samples K_SetBuf
K_SetBufl

K_BufListAdd

Buffering Mode

K_SetContRun
K_ClIrContRun

Start Channel

K_SetChn
K_SetStartStopChn
K_SetStartStopG

Stop Channel

K_SetStartStopChn
K_SetStartStopG

Gain

K_SetG
K_SetStartStopG

Channel-Gain Queue

K_SetChnGAry

Clock Source

K_SetClk

Pacer Clock Rate

K_SetClkRate

Trigger Source K_SetTrig
Trigger Type K_SetADTrig
K_SetDITrig
Trigger Channel K_SetADTrig
Trigger Polarity K_SetADTrig
K_SetDITrig
Trigger Level K_SetADTrig

Trigger Hysteresis

K_SetTrigHyst

Calibration Mode

K_SetCalMode

Analog Input Programming Tasks

3-11



10.

11.

12.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

Use theK_IntStart function to start the interrupt-mode operation.

Use theK_IntStatus function to monitor the status of the
interrupt-mode operation.

If you specified continuous buffering mpdse thek_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been acquired.

If you are programming in Visual Basic for Windows or BASIC and
you used _IntAlloc to allocate your bufferuse the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to the program’s local array.

If you are programming in C/C++ for DOS or BASIGse the
K_GetCalData function to get the calibration factors, and then
correct the data. Refer to page 2-22 for more information.

If you used_IntAlloc to allocate your bufferuse thek_IntFree
function to deallocate the buffer.

If you used_BufListAdd to specify a list of multiple buffergse the
K_BufListReset function to clear the list.

Use thé_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Digital I/O Programming Tasks

3-12

For a single-mode digital I/O operation, perform the following tasks:

1.

Declare the buffer or variable in which to store the single digital 1/0
value.

Use one of the following digital I/O single-mode operation functions,
specifying the attributes of the operation as arguments to the function:

Function Purpose

K_DIRead Reads a single digital input value.

K_DOWrite Writes a single digital output value.

Programming with the Function Call Driver



C/C++ Programming Information

The following sections contain information you need to allocate and
assign memory buffers, to create channel-gain queues, and to handle
errors in C or C++, as well as other language-specific information for
Microsoft C/C++ and Borland C/C++.

Notes: Make sure that you use proper typecasting to prevent C/C++
type-mismatch warnings.

Make sure that linker options are set so that case-sensitivity is disabled.

Dynamically Allocating and Assigning Memory Buffers

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in C or
C++. Refer to the example programs on disk for more information.

Note: If you are using large or multiple memory buffers and you are
programming in Windows Enhanced mode, you may be limited in the
amount of memory you can allocate. It is recommended that you install
the Keithley Memory Manager before you begin programming to ensure
that you can allocate a large enough buffer or buffers. Refer to the
DASCard-1000 Series User’s Guifte more information about the
Keithley Memory Manager.

Allocating a Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to ksdntAlloc to

allocate a buffer of size Samples for the frame defined by hFrame and
how to useK_SetBuf to assign the starting address of the buffer.

C/C++ Programming Information 3-13



void far *AcqBuf; /IDeclare pointer to buffer
WORD hMem; //Declare word for memory handle

wDasErr = K_IntAlloc (hFrame, Samples, &AcqBuf, &hMem);
wDasErr = K_SetBuf (hFrame, AcqBuf, Samples);

The following code illustrates how to ukeIntFree to later free the
allocated buffer, using the memory handle store& biyntAlloc .

wDasErr = K_IntFree (hMem);

Allocating Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations.

The following code fragment illustrates how to ksdntAlloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to usé BufListAdd to assign the starting
addresses of the five buffers.

void far *AcqBuf[5]; /IDeclare 5 pointers to 5 buffers
WORD hMem([5]; /[Declare 5 words for 5 memory handles

for (i=0;i<5;i++) {
wDasErr = K_IntAlloc (hADFrame, Samples, &AcqBuffi],&hMem([i]);
wDasErr = K_BufListAdd (hADFrame, AcgBuf[i], Samples);

}

3-14 Programming with the Function Call Driver



The following code illustrates how to ukeIntFree to later free the
allocated buffers, using the memory handles stored bgtAlloc . If you
free the allocated buffers, you must also KisBufListReset to reset the
buffer list associated with the frame.

for(i=0;i<5;i++) {
wDasErr = K_IntFree (hMem(i]);

}
wDasErr = K_BufListReset (hADFrame);

Accessing the Data

You access the data stored in dynamically allocated buffers through
C/C++ pointer indirection. For example, assume that you want to display
the first 10 samples of the second buffer in the multiple-buffer operation
described in the previous section (AcgBuf [1]). The following code
fragment illustrates how to access and display the data.

int huge *pData; //Declare a pointer called pData
pData = (int huge*) AcqBuf[1]; //Assign pData to 2nd buffer

for (i=0;i<10; i++)
printf ("Sample #%d %X", i, *(pData+i));

Note: Declaring pData as a huge pointer allows the program to directly
access all data in the buffer, regardless of the buffer size.

Dimensioning and Assigning Local Arrays
This section provides code fragments that describe how to dimension and

assign local arrays when programming in C or C++. Refer to the example
programs on disk for more information.

C/C++ Programming Information 3-15



Dimensioning a Single Array

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array.

int Data[10000]; //Dimension array of 10,000 samples

wDasErr = K_SetBuf (hFrame, Data, 10000);

Dimensioning Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to allocate two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
K_BufListAdd to assign the starting addresses of the arrays.

int Datal1[32000]; /[Allocate Array #1 of 32,000 samples
int Data2[32000]; /[Allocate Array #2 of 32,000 samples

wDasErr = K_BufListAdd (hADFrame, Datal, 32000);
wDasErr = K_BufListAdd (hADFrame, Data2, 32000);

3-16 Programming with the Function Call Driver



Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type
(GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable

{
WORD num_of_codes;

struct{
char Chan;
char Gain;
} GainChanAry[256];
} GainChanTable;

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DASCard-1002 card by declaring and
initializing a variable of type GainChanTable:

GainChanTable MyChanGainQueue =

{8, /INumber of entries

0,0, /[Channel 0, gain of 1
1,1, /[Channel 1, gain of 2
2,2, /[Channel 2, gain of 4
3,3, /[Channel 3, gain of 8
3,0, /[Channel 3, gain of 1
2,1, /[Channel 2, gain of 2
1,2, /[Channel 1, gain of 4
0, 3}; /[Channel 0, gain of 8

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

wDasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);
When you start the next analog input operation (uKin8yncStart or

K_IntStart ), channel 0 is sampled at a gain of 1, channel 1 is sampled at
a gain of 2, channel 2 is sampled at a gain of 4, and so on.

C/C++ Programming Information 3-17



Correcting Data (for DOS)

If you are using C/C++ for DOS, the application program must correct the
data after the operation is complete. The following code fragment
illustrates how to correct the data and how to convert the corrected data to

volts.
void far *pIntBuf; [* Pointer to allocated buffer */
WORD hMem; /* Allocated memory handle */
int far *pData; /* Temporary pointer to data */
int nCounts;
int nCalData[2]; /* Contains calibration values */
float fGainVal;

int nOffsetVal;

[* Data pointed to by pIntBuf */
wDasErr = K_IntAlloc (hAD, dwSamples, &pintBuf, &hMem);

wDasErr = K_IntStart (hAD);

[* Gets gain and offset values */
wDasErr = K_GetCalData (hAD, 0, 0, NULL, nCalData);

[* Determines the actual gain to apply to the data */
fGainVal = (float) (1.0 + (float) nCalData[0] * 0.001);
nOffsetVal = nCalData[1];

* Corrects the data and converts counts to volts; assumes that */
[* you are using a bipolar +/-5 V analog input range */

pData = (int far *) pIntBuf; /* Pointer to 1st sample in buffer */
nCounts= (int) ((float)*pData * fGainVal) + nOffsetVal; /*Corrects*/
fVolts = (float) nCounts * (10.0 / 4096.0); [*Converts*/
printf (“Sample = %x counts, %.3f volts\n”, *pData, fVolts);

3-18 Programming with the Function Call Driver



Correcting Data (for Windows)

If you are using C/C++ for Windows and have disabled automatic data
correction, the application program must correct the data after the
operation is complete. The following code fragment illustrates how to
correct the data and how to convert the corrected data to volts.

void far *pIntBuf; [* Pointer to allocated buffer */

WORD hMem; /* Allocated memory handle */
int far *pData; /* Temporary pointer to data */

int nCounts;

float fCalData[2]; /* Contains calibration values */

float fGainVal;

float fOffsetVal,

[* Data pointed to by pIntBuf */
wDasErr = K_IntAlloc (hAD, dwSamples, &pintBuf, &hMem);

wDasErr = K_SetCalMode (hAD, 0); /* Disables correction by driver */
wDasErr = K_IntStart (hAD);

[* Gets gain and offset values */

wDasErr = K_GetCalData (hAD, 0, 0, NULL, fCalData);
fGainVal = fCalData[0];

fOffsetVal = fCalData[1];

* Corrects the data and converts counts to volts; assumes that */
[* you are using a bipolar +/-5 V analog input range */

pData = (int far *) pIntBuf; /* Pointer to 1st sample in buffer */
nCounts= (int) ((float)*pData * fGainVal) + fOffsetVal; /*Corrects*/
fVolts = (float) nCounts * (10.0 / 4096.0); [*Converts*/
printf (“Sample = %x counts, %.3f volts\n”, *pData, fVolts);

C/C++ Programming Information 3-19



Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value ofkh&etDevHandle

function.

if (WDasErr = K_GetDevHandle (hDrv, BoardNum, &hDev)) ! = 0)

{
printf (“Error %X during K_GetDevHandle”, wDasErr);

exit (1);
}

The following code fragment illustrates how to usekKh&etErrMsg
function to access the string corresponding to an error code.

if (wDasErr = K_SetChn (hAD, 2) ! = 0)
{
Error = K_GetErrMsg (hDev, wDasErr, &pMessage);
printf (“%s”, pMessage);
exit (1);
}

Programming in Microsoft C/C++ (for DOS)

To program in Microsoft C/C++ (for DOS), you need the following files;
these files are provided in the ASO-1000 software package.

File Description

DAS1000.LIB Linkable driver
DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C (.c programs)
DAS1000.H Include file when compiling in C (.c programs)
DASDECL.HPP Include file when compiling in C++ (.cpp programs)
DAS1000.HPP Include file when compiling in C++ (.cpp programs)
USE1000.0BJ Linkable object

3-20 Programming with the Function Call Driver



To create an executable file in Microsoft C/C++ (for DOS), use the
following compile and link statements. Note tfilgnameindicates the
name of your application program.

Type of Compile

Compile and Link Statements

C

CL /cfilenamec
LINK filename-use1000.0bj,,,das1000+dasrface

C++

CL /cfilenamecpp
LINK filenameruse1000.0bj,,,das1000+dasrface

Programming in Microsoft C/C++ (for Windows)

To program in Microsoft C/C++ (for Windows), including Microsoft

Visual C++, you need the following files; these files are provided in the

ASO-1000 software package.

File

Description

DASSHELL.DLL

Dynamic Link Library

DASSUPRT.DLL

Dynamic Link Library

DAS1000.DLL

Dynamic Link Library

DASDECL.H

Include file when compiling in C (.c programs)

DAS1000.H

Include file when compiling in C (.c programs)

DASDECL.HPP

Include file when compiling in C++ (.cpp programs)

DAS1000.HPP

Include file when compiling in C++ (.cpp programs)

DASIMP.LIB

DAS Shell Imports

D1000IMP.LIB

DASCard-1000 Imports

C/C++ Programming Information

3-21



To create an executable file in Microsoft C/C++ (for Windows), use the
following compile and link statements. Note tfilgnameindicates the
name of your application program.

Type of Compile Compile and Link Statements

C CL /cfilenamec

LINK filename,d1000imp+dasimfijenamedef;
RC -r filenamerc

RC -30filenameres

C++ CL /cfilenamecpp

LINK filename,d1000imp+dasimfilenamedef;
RC -r filenamerc

RC -30filenameres

To create an executable file in the Microsoft C/C++ (for Windows)
environment, perform the following steps:

1. Create a project file by choosing New from the Project menu.

2. Add all necessary files to the project make file by choosing Edit from
the Project menu. Make sure that you incltitigamec (or
filenamecpp),filenamerc, filenamedef, DASIMP.LIB, and
D1000IMP.LIB, wherdilenameindicates the name of your
application program.

3. From the Project menu, choose Rebuild All FILENAME.EXE to
create a stand-alone executable file (.EXE) that you can execute from
within Windows.

3-22 Programming with the Function Call Driver



Programming in Borland C/C++ (for DOS)

To program in Borland C/C++ (for DOS), you need the following files;
these files are provided in the ASO-1000 software package.

File Description

DAS1000.LIB Linkable driver
DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C (.c programs)
DAS1000.H Include file when compiling in C (.c programs)
DASDECL.HPP Include file when compiling in C++ (.cpp programs)
DAS1000.HPP Include file when compiling in C++ (.cpp programs)
USE1000.0BJ Linkable object

To create an executable file in Borland C/C++ (for DOS), use the
following compile and link statements. Note tfilgnameindicates the
name of your application program.

Type of

Compile |Compile and Link Statements 1

C BCC -mlfilenamec use1000.0bj das1000.lib dasrface.lib
C++ BCC -mlfilenamecpp usel1000.obj das1000.lib dasrface.lib
Notes

1 These statements assume a large memory model; however, any memory
model is acceptable.

C/C++ Programming Information 3-23



Programming in Borland C/C++ (for Windows)

To program in Borland C/C++ (for Windows), you need the following
files; these files are provided in the ASO-1000 software package.

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DAS1000.DLL Dynamic Link Library

DASDECL.H Include file when compiling in C (.c programs)
DAS1000.H Include file when compiling in C (.c programs)
DASDECL.HPP Include file when compiling in C++ (.cpp programs)
DAS1000.HPP Include file when compiling in C++ (.cpp programs)
DASIMP.LIB DAS Shell Imports

D1000IMP.LIB DASCard-1000 Imports

To create an executable file in Borland C/C++ (for Windows), use the
following compile and link statements. Note tfilsnameindicates the
name of your application program.

Type of Compile Compile and Link Statements

C BCC -cfilenamec

TLINK filename,,d1000imp+dasimgdilenamedef;
BRC -rfilenamerc

BRC -30filenameres

C++ BCC -cfilenamecpp

TLINK filename,,d1000imp+dasimgdilenamedef;
BRC -rfilenamerc

BRC -30filenameres

3-24 Programming with the Function Call Driver



To create an executable file in the Borland C/C++ (for Windows)
environment, perform the following steps:

1.
2.

Create a project file by choosing New from the Project menu.

Inside the Project window, select the project name and click on the
right mouse button.

Select the Add node option and add all necessary files to the project
make file. Make sure that you inclufienamec (orfilenamecpp),
filenamerc, filenamedef, DASIMP.LIB, and D1000IMP.LIB, where
filenameindicates the name of your application program.

From the Options menu, select Project.

From the Project Options dialog box, select Linker\General and make
sure that you turn OFF both the Case sensitive link and Case sensitive
exports and imports options.

From the Project menu, choose Build All to create a stand-alone
executable file (.EXE) that you can execute from within Windows.

Visual Basic for Windows Programming Information

The following sections contain information you need to allocate and
assign memory buffers, to create channel-gain queues, and to handle
errors in Microsoft Visual Basic for Windows, as well as other
language-specific information for Microsoft Visual Basic for Windows.

Dynamically Allocating and Assigning Memory Buffers

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in
Microsoft Visual Basic for Windows. Refer to the example programs on
disk for more information.

Visual Basic for Windows Programming Information 3-25



Note: If you are using large or multiple memory buffers and you are
programming in Windows Enhanced mode, you may be limited in the
amount of memory you can allocate. It is recommended that you use the
Keithley Memory Manager before you begin programming to ensure that
you can allocate a large enough buffer. Refer to pABCard-1000

Series User’'s Guidéor more information about the Keithley Memory
Manager.

Allocating a Single Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to ksdntAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to useK_SetBuf to assign the starting address of the buffer.

Global AcgBuf As Long ' Declare pointer to buffer
Global hMem As Integer ’ Declare integer for memory handle

wDasErr = K_IntAlloc (hFrame, Samples, AcgBuf, hMem)
wDasErr = K_SetBuf (hFrame, AcqgBuf, Samples)

The following code illustrates how to uke IntFree to later free the
allocated buffer, using the memory handle store& biyntAlloc .

wDasErr = K_IntFree (hMem)

Allocating Multiple Memory Buffers

3-26

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations.

The following code fragment illustrates how to ksdntAlloc to
allocate five buffers of size Samples each for the frame defined by
hADFrame and how to us€ BufListAdd to assign the starting
addresses of the five buffers.

Programming with the Function Call Driver



Global AcgBuf(4) As Long ' Declare 5 pointers to 5 buffers
Global hMem(4) As Integer ' Declare 5 memory handles

fori%=0to 4
wDasErr = K_IntAlloc (hFrame, Samples, AcqBuf(i%), hMem(i%))
wDasErr = K_BufListAdd (hFrame, AcqBuf(i%), Samples)

next i%

The following code illustrates how to ukeIntFree to later free the
allocated buffers, using the memory handles storggl bytAlloc ; if you
free the allocated buffers, you must also KisBufListReset to reset the
buffer list associated with the frame.

fori%=0to 4

wDasErr = K_IntFree (hMem(i%))
next i%
wDasErr = K_BufListReset (hADFrame)

Accessing the Data from Buffers with Fewer than 64K Bytes

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in dynamically allocated memory buffers. You must
useK_MoveBufToArray to move a subset (up to 32,766 samples) of the
data into a local array as required. The following code fragment illustrates
how to move the first 100 samples of the second buffer in the
multiple-buffer operation described in the previous section (AcqBuf(1))
to a local array.

Dim Buffer(1000) As Integer ' Declare local memory buffer

wDasErr = K_MoveBufToArray (Buffer(0), AcqBuf(1), 100)

Visual Basic for Windows Programming Information 3-27



Accessing the Data from Buffers with More than 64K Bytes

3-28

When Windows is running, the CPU operates in 16-bit protected mode.
Memory is addressed using a 32-bit selector:offset pair. The selector is
the CPU’s handle to a 64K byte memory page; it is a code whose value is
significant only to the CPU. No mathematical relationship exists between
a selector and the memory location it is associated with. In general, even
consecutively allocated selectors have no relationship to each other.

When a memory buffer of more than 64K bytes (32K values) is used,
multiple selectors are required. Under WindolgsintAlloc uses a

“tiled” method to allocate memory whereby a mathematical relationship
does exist among the selectors. Specifically, if you allocate a buffer of
more than 64K bytes, each selector that is allocated has an arithmetic
value that is eight greater than the previous one. The format of the address
is a 32-bit value whose high word is the 16-bit selector value and low
word is the 16-bit offset value. When the offset reaches 64K bytes, the
next consecutive memory address location can be accessed by adding
eight to the selector and resetting the offset to zero; to do this, add
&h80000 to the buffer starting address.

Table 3-4 illustrates the mapping of consecutive memory locations in

protected-mode “tiled” memory, whexexxxxxxndicates the address
calculated by the CPU memory mapping mechanism.

Table 3-4. Protected-Mode Memory Architecture

Selector:Offset 32-Bit Linear Address

32E6:FFFE XXXXXXXX

32E6:FFFF XXXXXXX¥ 1
32EE:0000 XXXXXXX¥ 2
32EE:0001 XXXXXXX¥ 3

Programming with the Function Call Driver



The following code fragment illustrates moving 1,000 values from a
memory buffer (AcgBuf) allocated with 50,000 values to the program’s
local array (Array), starting at sample number 40,000. First, start with the
buffer address passedhn SetBuf. Then, determine how deep (in 64K

byte pages) into the buffer the desired sample number (40,000) is located
and add &h80000 to the buffer address for each 64K byte page. Finally,
add any additional offset after the 64K byte pages to the buffer address.

Dim AcgBuf As Long
Dim NumSamps As Long

Dim Array (1000) As Integer
NumSamps = 50000
wDasErr = K_IntAlloc (hFrame, NumSamps, AcgBuf, hMem)

'Acquisition routine

DesiredSamp = 40000

DesiredByte = DesiredSamp * 2 'Number of bytes into buffer
AddSelector = DesiredByte / &h10000 'Number of 64K pages into buffer
RemainingOffset = DesiredByte Mod &h10000 'Additional offset

DesiredBuffLoc = AcqBuf + (AddSelector * &h80000) + RemainingOffset
wDasErr = K_MoveBufToArray (Array(0), DesiredBuffLoc, 1000)

To move more than 32,766 values from the memory buffer to the
program’s local array, the program must ¢alMoveBufToArray more

than once. For example, assume that pBuf is a pointer to a dynamically
allocated buffer that contains 65,536 values. The following code fragment
illustrates how to move 65,536 values from the dynamically allocated
buffer to the program’s local array.

Dim Data [3, 16384] As Integer
wDasErr = K_MoveBufToArray (Data(0,0), pBuf, 16384)

'Same selector, add 32,768 bytes to offset: add &h8000
wDasErr = K_MoveBufToArray (Data(1,0), pBuf + &h8000, 16384)

'Add 8 to selector, offset = 0: add &h80000

wDasErr = K_MoveBufToArray (Data(2,0), pBuf + &h80000, 16384)
'Add 8 to selector, add 32,768 bytes to offset: add &h88000
wDasErr = K_MoveBufToArray (Data(3,0), pBuf + &h88000, 16384)

Visual Basic for Windows Programming Information 3-29



Dimensioning and Assigning Local Arrays

This section provides code fragments that describe how to dimension and
assign local arrays when programming in Microsoft Visual Basic for
Windows. Refer to the example programs on disk for more information.

Dimensioning a Single Array

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBufl to assign the starting address of the array.

Global Data(9999) As Integer " Allocate array

wDasErr = K_SetBufl (hFrame, Data(0), 10000)

Dimensioning Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to dimension two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
K_BufListAdd to assign the starting addresses of the arrays.

Global Datal(31999) As Integer " Allocate Array #1
Global Data2(31999) As Integer " Allocate Array #2

wDasErr = K_BufListAdd (hADFrame, Datal(0), 32000)
wDasErr = K_BufListAdd (hADFrame, Data2(0), 32000)

3-30 Programming with the Function Call Driver



Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you mustugeormatChnGAry to
reformat the channel-gain queue so that it can be used by the
DASCard-1000 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DASCard-1002 card
and how to us&_SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Global MyChanGainQueue(9) As Integer '(4 channels x 2) + 1

MyChanGainQueue(0) = 4 " Number of channel-gain pairs
MyChanGainQueue(1) = 0 " Channel 0
MyChanGainQueue(2) = 0 " Gain of 1
MyChanGainQueue(3) = 1 " Channel 1
MyChanGainQueue(4) = 1 ' Gain of 2
MyChanGainQueue(5) = 2 " Channel 2
MyChanGainQueue(6) = 2 " Gain of 4
MyChanGainQueue(7) = 2 " Channel 2
MyChanGainQueue(8) = 3 ' Gain of 8

wDasErr = K_FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))

Once formatted, your Visual Basic for Windows program can no longer
read the channel-gain queue. To read or modify the array after it has been
formatted, you must us€ _RestoreChnGAry as follows:

wDasErr = K_RestoreChnGAry (MyChanGainQueue(0))

Visual Basic for Windows Programming Information 3-31



When you start the next analog input operation (uKin8yncStart or
K_IntStart ), channel O is sampled at a gain of 1, channel 1 is sampled at
a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Correcting Data

If you are using Visual Basic for Windows and have disabled automatic
data correction, the application program must correct the data after the
operation is complete. The following code fragment illustrates how to
correct the data and how to convert the corrected data to volts.

Dim fCalData(2) As Single ' Contains calibration values

Dim fGainVal As Single ' Gain value to apply
Dim fOffsetVal As Single ' Offset value to apply
Dim nCounts As Integer ' Count value to convert

wDasErr = K_SetCalMode (hAD, 0) ' Disables correction by driver

' Gets gain and offset values
wDasErr = K_GetCalData (hAD, 0, 0, 0, fCalData)

fGainVal = fCalData(0)
fOffsetVal = fCalData(1)

wDasErr = K_MoveBufToArray (aDataBuf(0), dwBufAddr(0), 100)

' Corrects the data and converts counts to volts; assumes that

' you are using a bipolar +/-5 V analog input range

nCounts = aDataBuf(0)

nCounts = nCounts * fGainVal + fOffsetVal " Corrects data
PRINT nCounts * 0.00244 "1 count = 0.00244 volts

3-32 Programming with the Function Call Driver



Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment

illustrates how to check the returned value ofkh&etDevHandle
function.

wDasErr = K_GetDevHandle (hDrv, BoardNum, hDev)
If (wDasErr <> 0) Then
MsgBox “K_GetDevHandle Error: ” + Hex$ (wDasErr),
MB_ICONSTOP, “DASCARD-1000 ERROR”
End
End If

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the

following files; these files are provided in the ASO-1000 software
package.

File Description

DASSHELL.DLL Dynamic Link Library
DASSUPRT.DLL Dynamic Link Library

DAS1000.DLL Dynamic Link Library
DASDECL.BAS Include file; must be added to the project
DAS1000.BAS Include file; must be added to the project

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the File menu.

Visual Basic for Windows Programming Information 3-33



BASIC Programming Information

The following sections contain information you need to allocate and
assign memory buffers, to create channel-gain queues, and to handle
errors in BASIC, as well as other language-specific information for
Microsoft QuickBasic and Microsoft Professional Basic.

Dynamically Allocating and Assigning Memory Buffers

This section provides code fragments that describe how to allocate and
assign dynamically allocated memory buffers when programming in
BASIC. Refer to the example programs on disk for more information.

Reducing the Memory Heap

By default, when BASIC programs run, all available memory is left for
use by the internal memory manager. BASIC provides the SetMem
function to distribute the available memory (the Far Heap). It is necessary
to redistribute the Far Heap if you want to use dynamically allocated
buffers. It is recommended that you include the following code at the
beginning of BASIC programs to free the Far Heap for the driver’s use.

FarHeapSize& = SetMem(0)
NewFarHeapSize& = SetMem(—FarHeapSize&/2)

Allocating a Single Memory Buffer

3-34

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to #datAlloc to allocate
a buffer of size Samples for the frame defined by hFrame and how to use
KSetBuf to assign the starting address of the buffer.

Dim AcgBuf As Long ' Declare pointer to buffer
Dim hMem As Integer " Declare integer for memory handle

wDasErr = KintAlloc% (hFrame, Samples, AcgBuf, hMem)
wDasErr = KSetBuf% (hFrame, AcgBuf, Samples)

Programming with the Function Call Driver



The following code illustrates how to ukéntFree to later free the
allocated buffer, using the memory handle store&lmyAlloc .

wDasErr = KIintFree% (hMem)

Allocating Multiple Memory Buffers

You can use multiple, dynamically allocated memory buffers for
interrupt-mode analog input operations.

The following code fragment illustrates how to #datAlloc to allocate
five buffers of size Samples each for the frame defined by hADFrame and
how to useKBufListAdd to assign the starting addresses of the five

buffers.
Dim AcqgBuf(4) As Long " Declare 5 pointers to 5 buffers
Dim hMem(4) As Integer " Declare 5 memory handles

fori%=0to 4
wDasErr = KIntAlloc% (hFrame, Samples, AcqBuf(i%), hMem(i%))
wDasErr = KBufListAdd% (hFrame, AcqBuf(i%), Samples)

next i%

The following code illustrates how to ukéntFree to later free the
allocated buffers, using the memory handles storedibtAlloc ; if you
free the allocated buffers, you must also KBefListReset to reset the
buffer list associated with the frame.

fori%c=0to 4

wDasErr = KIintFree% (hMem(i%))
next i%
wDasErr = KBufListReset% (hADFrame)

BASIC Programming Information 3-35



Accessing the Data from Buffers with Fewer than 64K Bytes

In BASIC, you cannot directly access analog input samples stored in a
dynamically allocated memory buffer. You must ¥ddoveBufToArray

to move a subset of the data (up to 32,766 samples) into a local array. The
following code fragment illustrates how to move the first 100 samples of
the second buffer in the multiple-buffer operation described in the
previous section (AcqBuf(1)) into a local memory buffer.

Dim Buffer(1000) As Integer ' Declare local memory buffer

wDasErr = KMoveBufToArray% (Buffer(0), AcqBuf(1), 100)

Accessing the Data from Buffers with More than 64K Bytes

Under DOS, the CPU operates in real mode. Memory is addressed using a
32-bit segment:offset pair. Memory is allocated from the far heap, the
reserve of conventional memory that occupies the first 640K bytes of the
1M byte of memory that the CPU can address in real mode. In the
segmented real-mode architecture, the 16-bit segment:16-bit offset pair
combines into a 20-bit linear address using an overlapping scheme. For a
given segment value, you can address 64K bytes of memory by varying
the offset.

When a memory buffer of more than 64K bytes (32K integer values) is
used, multiple segments are required. When an offset reaches 64K bytes,
the next linear memory address location can be accessed by adding
&h1000 to the buffer segment and resetting the offset to zero.

Table 3-5 illustrates the mapping of consecutive memory locations at a
segment page boundary.

3-36 Programming with the Function Call Driver



Table 3-5. Real-Mode Memory Architecture

Segment:Offset  20-Bit Linear Address

74E4:FFFE 84E3E
7AE4:FFFF 84E3F
84E4:0000 84E40
84E4:0001 84E41

The following code fragment illustrates how to move 1,000 values from a
memory buffer (AcgBuf) allocated with 50,000 values to the program’s
local array (Array), starting at the sample at buffer index 40,000. You
must first calculate the linear address of the buffer’s starting point, then
add the number of bytes deep into the buffer that the desired starting
sample is located, and finally convert this adjusted linear address to a
segment:offset format.

Dim AcgBuf As Long

Dim NumSamps As Long
Dim LinAddrBuff As Long
Dim DesLocAddr As Long
Dim AdjSegOffset As Long

Dim Array(1000) As Integer

ce 'Initialize array with desired values
NumSamps = 50000
wDasErr = KIntAlloc% (hFrame, NumSamps, AcqBuf, hMem)

'Acquisition routine

DesiredSamp = 40000
DesiredByte = DesiredSamp * 2 'Number of bytes into buffer

"To obtain the 20-bit linear address of the buffer, shift the
'segment:offset to the right 16 bits (leaves segment only),
'multiply by 16, then add offset

LinAddrBuff = (AcqBuf / &h10000) * 16 + (AcgBuf AND &hFFFF)

BASIC Programming Information 3-37



'20-bit linear address of desired location in buffer
DesLocAddr = LinAddrBuff + DesiredByte

'Convert desired location to segment:offset format
AdjSegOffset = (DesLocAddr / 16) * &h10000 + (DesLocAddr AND &hF)

wDasErr = KMoveBufToArray% (Array(0), AdjSegOffset, 1000)

To move more than 32,767 values from the memory buffer to the
program’s local array, the program must ¢@loveBufToArray more

than once. For example, assume that pBuf is a pointer to a dynamically
allocated buffer that contains 65,536 values. The following code fragment
illustrates how to move 65,536 values from the memory buffer to the
program’s local array (Data).

Although it is recommended that you perform all calculations on the

linear address and then convert the result to the segment:offset format (as
shown in the previous code fragment), this example illustrates an
alternative method of calculating the address by working on the
segment:offset form of the address directly. You can use this method if
you already know how deep you want to go into the buffer with each
move and the offset of the starting buffer address is zero, as is the case
when the buffer is allocated witintAlloc . In this method, you add
&h10000000 to the buffer address for each 64K byte page and then add
the remainder of the buffer.

Dim Data[3,16384] As Integer
wDasErr = KMoveBufToArray% (Data(0,0), pBuf, 16384)

'Same segment, add 32,768 bytes to offset: add &h8000
wDasErr = KMoveBufToArray% (Data(1,0), pBuf + &h8000, 16384)

'Next segment, offset = 0: add &h10000000
wDasErr = KMoveBufToArray% (Data(2,0), pBuf + &h10000000, 16384)

'Next segment, remainder = 32,768 bytes: add &h10008000
wDasErr = KMoveBufToArray% (Data(3,0), pBuf + &h10008000, 16384)

3-38 Programming with the Function Call Driver



Dimensioning and Assigning Local Arrays

This section provides code fragments that describe how to dimension and
assign local arrays when programming in BASIC. Refer to the example
programs on disk for more information.

Dimensioning a Single Array

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
KSetBufl to assign the starting address of the array.

Dim Data(9999) As Integer " Allocate array

wDasErr = KSetBufl% (hFrame, Data(0), 10000)

Dimensioning Multiple Arrays

You can use multiple, local arrays for interrupt-mode analog input
operations.

The following code fragment illustrates how to dimension two arrays of
32,000 samples each for the frame defined by hADFrame and how to use
KBufListAdd to assign the starting addresses of the arrays.

Dim Datal(31999) As Integer " Allocate Array #1
Dim Data2(31999) As Integer " Allocate Array #2

wDasErr = KBufListAdd% (hADFrame, Data1(0), 32000)
wDasErr = KBufListAdd% (hADFrame, Data2(0), 32000)

Note: The declaration of the second parameter okiBafListAdd
function in the DASDECL.BI file is not applicable to local arrays. You
must change the declarationpBuffrom BYVAL pBufAS LONG to
SEGpBUfAS INTEGER.

BASIC Programming Information 3-39



Creating a Channel-Gain Queue

3-40

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you

create the channel-gain queue, you muskiiEEmatChnGAry to
reformat the channel-gain queue so that it can be used by the
DASCard-1000 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry

channel-gain queue called MyChanGainQueue for a DASCard-1002 card

and how to us&SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Dim MyChanGainQueue(9) As Integer '(4 channels x 2) + 1

MyChanGainQueue(0) = 4 " Number of channel-gain pairs
MyChanGainQueue(1) = 0 " Channel 0
MyChanGainQueue(2) = 0 " Gain of 1
MyChanGainQueue(3) = 1 " Channel 1
MyChanGainQueue(4) = 1 ' Gain of 2
MyChanGainQueue(5) = 2 " Channel 2
MyChanGainQueue(6) = 2 " Gain of 4
MyChanGainQueue(7) = 2 " Channel 2
MyChanGainQueue(8) = 3 ' Gain of 8

wDasErr = KFormatChnGAry% (MyChanGainQueue(0))
wDasErr = KSetChnGAry% (hFrame, MyChanGainQueue(0))

Once formatted, your BASIC program can no longer read the
channel-gain array. To read or modify the array after it has been
formatted, you must us€RestoreChnGAry as follows:

wDasErr = KRestoreChnGAry% (MyChanGainQueue(0))

Programming with the Function Call Driver



When you start the next analog input operation (uKiBgncStart or
KintStart ), channel 0 is sampled at a gain of 1, channel 1 is sampled at a
gain of 2, channel 2 is sampled at a gain of 4, and so on.

Correcting Data

If you are using BASIC, the application program must correct the data
after the operation is complete. The following code fragment illustrates
how to correct the data and how to convert the corrected data to volts.

DIM nCalData(2) AS INTEGER ’ Contains calibration values
DIM fGainVal AS SINGLE ' Gain value to apply

DIM nOffsetVal AS INTEGER ' Offset value to apply

DIM nCounts AS INTEGER ' Count value to convert

' Gets gain and offset values
wDasErr = KGETCALDATA% (hAD, 0, 0, 0, nCalData)

' Determines the actual gain to apply to the data
fGainVal = 1! + nCalData(0) * 0.001
nOffsetVal = nCalData(1)

wDasErr = KMOVEBUFTOARRAY% (aDataBuf(0), dwBufAddr(0), 100)

" Corrects the data and converts counts to volts; assumes that

' you are using a bipolar +/-5 V analog input range

nCounts = aDataBuf(0)

nCounts = nCounts * fGainVal + nOffsetVal /* Corrects data */
PRINT nCounts * 0.00244 "1 count = 0.00244 volts

BASIC Programming Information 3-41



Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the
DAS1000GetDevHandlgunction.

wDasErr = DAS1000GETDEVHANDLE%Y (BoardNum, hDev)
IF (wDasErr <> 0) THEN
BEEP

PRINT “Error";HEX$(wDasErr);“occurred during'DAS1000GETDEVHANDLE%"™
END

END IF

Programming in Microsoft QuickBasic

To program in Microsoft QuickBasic, you need the following files; these
files are provided in the DASCard-1000 Series standard software

package.
File Description
D1000Q45.LIB Linkable driver for QuickBasic (Version 4.5)

stand-alone, executable (.EXE) programs

D1000Q45.QLB Command-line loadable driver for the QuickBasi
(Version 4.5) integrated environment

o

QB4DECL.BI Include file
DASDECL.BI Include file
DAS1000.BI Include file

3-42 Programming with the Function Call Driver



For Microsoft QuickBasic, you can create an executable file from within
the programming environment, or you can use a compile and link
statement.

To create an executable file from within the programming environment,
perform the following steps:
1. Enter the following to invoke the environment:
QB /L D1000Q45 filename .bas
wherefilenameindicates the name of your application program.

2. From the Run menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filenamebas /O
Link filenameobj,,,D1000Q45.lib+BCOMA45.lib;

wherefilenameindicates the name of your application program.

Programming in Microsoft Professional Basic

To program in Microsoft Professional Basic, you need the following files;
these files are provided in the DASCard-1000 Series standard software
package.

File Description

D1000QBX.LIB Linkable driver for Professional Basic,
stand-alone, executable (.EXE) programs

D1000QBX.QLB Command-line loadable driver for the Professional
Basic integrated environment

DASDECL.BI Include file
DAS1000.BlI Include file

BASIC Programming Information 3-43



3-44

For Microsoft Professional Basic, you can create an executable file from
within the programming environment, or you can use a compile and link
statement.

To create an executable file from within the programming environment,
perform the following steps:
1. Enter the following to invoke the environment:
QBX /L D1000QBX filename .bas
wherefilenameindicates the name of your application program.

2. From the Run menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filenamebas /o;
Link filenameobj,,,D1000QBX.lib;

wherefilenameindicates the name of your application program.

Programming with the Function Call Driver



A

Function Reference

The FCD functions are organized into the following groups:
. Initialization functions

. Operation functions

. Frame management functions

. Memory management functions

. Buffer address functions

. Buffering mode functions

. Channel and gain functions

. Clock functions

. Trigger functions

. Data correction functions

. Miscellaneous functions

The particular functions associated with each function group are presented

in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.



4-2

Table 4-1. Functions

Function Type Function Name Page Number
Initialization DAS1000_DevOpen page 4-6
DAS1000_GetDevHandle page 4-10
K_OpenDriver page 4-62
K_CloseDriver page 4-19
K_GetDevHandle page 4-44
K_FreeDevHandle page 4-31
K_DASDeviInit page 4-24
Operation K_ADRead page 4-12
K_DIRead page 4-25
K_DOWrite page 4-27
K_SyncStart page 4-100
K_IntStart page 4-54
K_IntStatus page 4-55
K_IntStop page 4-58
Frame Management | K_GetADFrame page 4-35
K_FreeFrame page 4-32
K_ClearFrame page 4-18
Memory Managemen| K_IntAlloc page 4-51
K_IntFree page 4-53
K_MoveBufToArray page 4-60
Buffer Address K_SetBuf page 4-71
K_SetBufl page 4-73
K_BufListAdd page 4-14
K_BufListReset page 4-16
Buffering Mode K_SetContRun page 4-85
K_ClIrContRun page 4-20

Function Reference



Table 4-1. Functions (cont.)

Function Type Function Name Rage Number
Channel and Gain K_SetChn page 4-77
K_SetStartStopChn page 4-91
K_SetG page 4-89
K_SetStartStopG page 4-93
K_SetChnGAry page 4-79
K_FormatChnGAry page 4-29
K_RestoreChnGAry page 4-64
K_SetADConfig page 4-65
K_SetADMode page 4-67
K_GetADConfig page 4-33
K_GetADMode page 4-37
Clock K_SetClk page 4-81
K_SetClkRate page 4-83
K_GetClkRate page 4-42
Trigger K_SetTrig page 4-96
K_SetADTrig page 4-69
K_SetTrigHyst page 4-98
K_SetDITrig page 4-87
Data Correction K_CorrectData page 4-22
K_GetCalData page 4-39
K_SetCalMode page 4-75
Miscellaneous K_GetErrMsg page 4-46
K_GetVer page 4-49
K_GetShellVer page 4-47
DAS1000_GetCardInfo page 4-8

4-3



4-4

Keep the following conventions in mind throughout this chapter:

Although the function names are shown with underscores, do not use
the underscores in the BASIC languages.

The data types DWORD, WORD, and BYTE are defined in the
language-specific include files.

Variable names are shown in italics.

The return value for all FCD functions is an integer error/status code.
Error/status code O indicates that the function executed successfully.
A nonzero error/status code indicates that an error occurred. Refer to
Appendix A for additional information.

In the usage section, the variables are not defined. It is assumed that
the variables are defined as shown in the prototype. The name of each
variable in both the prototype and usage sections includes a prefix that
indicates the associated data type. These prefixes are described in
Table 4-2.

Function Reference



Table 4-2. Data Type Prefixes

DU
ong

ONS

y
by

nen

Prefix |Data Type Comments
sz Pointer to string terminated by | This data type is typically used for variables that
Zero specify the driver's configuration file name.
h Handle to device, frame, and | This data type is used for handle-type variables. Yc
memory block declare handle-type variables in your program as |
or DWORD, depending on the language you are using.
The actual variable is passed to the driver by value.
ph Pointer to a handle-type variabl¢ This data type is used when calling the FCD functi
to get a driver handle, a frame handle, or a memor
handle. The actual variable is passed to the driver
reference.

p Pointer to a variable This data type is used for pointers to all types of
variables, except handles (h). It is typically used w
passing a parameter of any type to the driver by
reference.

n Number value This data type is used when passing a number,
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with
other prefixes listed here; for exam@eaVardenotes
an array of numbers.

f Float This data type denotes a single-precision floating-point
number.

d Double This data type denotes a double-precision
floating-point number.

dw 32-bit double word This data type is typically used when passing an

unsigned long to the driver by value.

4-5



DAS1000_DevOpen

Purpose Initializes the DASCard-1000 Series Function Call Driver.
Prototype C/C++
DASETr far pascal DAS1000_DevOpen (chartseCfgFile
char far*pBoards;

Visual Basic for Windows
Declare Function DAS1000_DevOpen Lib "DAS1000.DLL"
(ByVal szCfgFileAs String,pBoardsAs Integer) As Integer

BASIC

DECLARE FUNCTION DAS1000DEVOPEN% ALIAS
"DAS1000_DevOpen" (BYVALszCfgFileAS LONG,
SEGpBoardsAS INTEGER)

Parameters szCfgFile Driver configuration file.
Valid values: The name of a configuration file.
0 for DAS1000.CFG

pBoards Number of cards defined szCfgFile
Value stored:1 or 2

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the driver according to the information in the
configuration file specified bgzCfgFileand stores the number of
DASCard-1000 Series cards defined#CfgFilein pBoards

You create a configuration file using the CFG1000.EXE utility. If
szCfgFile= 0,DAS1000_DevOpenooks for the DAS1000.CFG
configuration file in the current directory and uses those settings, if
available. Refer to yoUDASCard-1000 Series User’s Guitte more
information about configuration files.

See Also K_OpenDriver

4-6 Function Reference



DAS1000_DevOpen (cont.)

Usage

C/C++
#include "DAS1000.H" // Use DAS1000.HPP for C++

char nBoards;

wDasErr = DAS1000_DevOpen ("DAS1002.CFG", &nBoards);

Visual Basic for Windows
(Add DAS1000.BAS to your project)

DIM szCfgName AS STRING
DIM nBoards AS INTEGER

szCfgName = "DAS1002.CFG" + CHR$(0)
wDasErr = DAS1000_DevOpen(szCfgName, nBoards)

BASIC
' $INCLUDE: 'DAS1000.BI'

DIM szCfgName AS STRING
DIM nBoards AS INTEGER

szCfgName = "DAS1002.CFG" + CHR$(0)
wDasErr = DAS1000DEVOPEN%(SSEGADD(szCfgName),nBoards)

4-7



DAS1000 GetCardInfo

Purpose

Prototype

Parameters

Return Value

4-8

Gets the system resources allocated for a DASCard-1000 Series card.

C/C++
DASErr far pascal DAS1000_GetCardInfo (WORBrdNum
short farpSocket short far PIRQ, short far pIOBase
short far pMemBasgshort far pBrdType;

Visual Basic for Windows

Declare Function DAS1000_GetCardInfo Lib "DAS1000.DLL"
(ByVal nBrdNumAs IntegerpSockefAs IntegerplRQAs Integer,
plOBaseAs IntegerpMemBasé\s IntegerpBrdTypeAs Integer)

As Integer

BASIC
DECLARE FUNCTION DAS1000GETCARDINFO% ALIAS
"DAS1000_GetCardinfo" (BYVALNBrdNumAS INTEGER,
SEGpSockeAS INTEGER, SE@IRQAS INTEGER,
SEGplOBaseAS INTEGER, SE@MemBas#\S INTEGER,
SEGpBrdTypeAS INTEGER)

nBrdNum Card number.
Valid values: 0 or 1

pSocket Socket in which the card is installed.

pIRQ Interrupt level allocated by PCMCIA software.

plOBase Base address allocated by PCMCIA software.

pMemBase Memory segment address allocated by PCMCIA
software.

pBrdType Card type.

Value stored:0 for DASCard-1001
1 for DASCard-1002
2 for DASCard-1003

Error/status code. Refer to Appendix A.

Function Reference



DAS1000_GetCardinfo (cont.)

Remarks For the DASCard-1000 Series card specifiecnBydNum this function
stores the socket numberpSocketthe interrupt level ipIRQ, the base
address iplOBase the memory segment addrespMemBasgand the
card type irpBrdType

The card number specified mBrdNumrefers to the card number
specified in the configuration file. If you are using one aaBagNumis
always 0; if you are using two carad3rdNumis the same as the socket
number.

Usage

C/IC++
#include "DAS1000.H" // Use DAS1000.HPP for C++

WORD wSock, wiRQ, wlO, wMem, wType;

wDasErr = DAS1000_GetCardInfo (0, &wSock, &wWIRQ, &wlO, &wMem, &wType);

Visual Basic for Windows
(Add DAS1000.BAS to your project)

Global wSock As Integer
Global wiRQ As Integer
Global wlO As Integer
Global wMem As Integer
Global wType As Integer

wDasErr = DAS1000_GetCardInfo (0, wSock, wiRQ, wlO, wMem, wType)

BASIC
' $INCLUDE: 'DAS1000.BI'

DIM wSock AS INTEGER
DIM WIRQ AS INTEGER
DIM wlO AS INTEGER
DIM wMem AS INTEGER
DIM wType AS INTEGER

wDasErr = DAS1000GETCARDINFO% (0, wSock, wiRQ, wlO, wMem, wType)

4-9



DAS1000_ GetDevHandle

Purpose Initializes a DASCard-1000 Series card.

Prototype C/C++
DASErr far pascal DAS1000_GetDevHandle (WORBrdNum
DWORD far*phDeV);

Visual Basic for Windows
Declare Function DAS1000_GetDevHandle Lib "DAS1000.DLL"
(ByVal nBrdNumAs IntegerphDeVvAs Long) As Integer

BASIC

DECLARE FUNCTION DAS1000GETDEVHANDLE% ALIAS
"DAS1000_GetDevHandle" (BYVAINBrdNumAS INTEGER,
SEGphDevAS LONG)

Parameters nBrdNum Card number.
Valid values: O or 1

phDev Handle associated with the card.
Return Value Error/status code. Refer to Appendix A.
Remarks This function initializes the DASCard-1000 Series card specified by

nBrdNumand stores the device handle of the specified cgstibev

The card number specified mBrdNumrefers to the card number
specified in the configuration file. If you are using one aaBagNumis
always 0; if you are using two carad3rdNumis the same as the socket
number.

The value stored iphDevis intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored phDev

See Also K_GetDevHandle

4-10 Function Reference



DAS1000_GetDevHandle (cont.)

Usage

C/C++
#include "DAS1000.H" // Use DAS1000.HPP for C++

DWORD hDeyv;

wDasErr = DAS1000_GetDevHandle (0, &hDev);

Visual Basic for Windows
(Add DAS00QBAS to your project)

Global hDev As Long ' Device Handle

wDasErr = DAS1000_GetDevHandle (0, hDev)

BASIC
' $INCLUDE: 'DAS1000.BI'

DIM hDev AS LONG ' Device Handle

wDasErr = DAS1000GETDEVHANDLE% (0, hDev)

4-11



K_ADRead

Purpose Reads a single analog input value.

Prototype C/C++
DASETr far pascal K_ADRead (DWOREBDey BYTE nChan
BYTE nGain void far*pData);

Visual Basic for Windows

Declare Function K_ADRead Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByVainChanAs Integer,

ByVal nGainAs IntegerpDataAs Integer) As Integer

BASIC

DECLARE FUNCTION KADREAD% ALIAS "K_ADRead"
(BYVAL hDevAS LONG, BYVAL nChanAS INTEGER,
BYVAL nGainAS INTEGER, SEGDataAS INTEGER)

Parameters hDev Handle associated with the card.

nChan Analog input channel.
Valid values: 0 to 255

nGain Gain code.
Valid values:
Card Gain |Gain Code
DASCard-1001| 1
10
100
500

DASCard-1002

Ol W N P O W | N | +—= | O

Rl ~|IN|PR

DASCard-1003

4-12 Function Reference



K_ADRead (cont.)

Return Value

Remarks

See Also

Usage

pData Acquired analog input value.
Error/status code. Refer to Appendix A.

This function reads the analog input chanm@hanon the
DASCard-1000 Series card specifiediiyevat the gain represented by
nGain, and stores the count valuepbata

If you are programming under Windows, the count valygDatais the
corrected count value. If you are programming under DOS, the count
value inpDatais uncorrected and the application program must correct it.
Refer to page 2-22 for information.

Refer to Appendix B for information on converting the corrected count
value stored ippDatato voltage.

K_IntStart, K_SyncStart

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

int wWADValue;

wDasErr = K_ADRead (hDev, 0, 0, &wvADValue);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wADValue As Integer

wDasErr = K_ADRead (hDev, 0, 0, wADValue)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wADValue AS INTEGER

wDasErr = KADREAD% (hDev, 0, 0, wADValue)

4-13



K_BufListAdd

Purpose Adds a buffer or array to the list of multiple buffers/arrays.
Prototype C/C++
DASETr far pascal K_BufListAdd (DWORDFrame void far*pBuf,
DWORD dwSamples

Visual Basic for Windows

Declare Function K_BufListAdd Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValpBufAs Long,

ByVal dwSampleds Long) As Integer

BASIC

DECLARE FUNCTION KBUFLISTADD% ALIAS "K_BufListAdd"
(BYVAL hFrameAS LONG, BYVAL pBufAS LONG,

BYVAL dwSampleé&S LONG)

Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer or array.
dwSamples Number of samples in the buffer or array.

Valid values:1 to 5000000
Return Value Error/status code. Refer to Appendix A.

Remarks For the interrupt-mode operation definedhifyame this function adds
the buffer or array at the address pointed tpByfto the list of multiple
buffers/arrays; the number of samples in the buffer/array is specified in
dwSamples

Since multiple buffers/arrays are not supported in synchronous mode, you
cannot use this function for synchronous-mode operations.

Before you add the buffer or array to the list, you must either allocate the
buffer dynamically usindl_IntAlloc , or dimension the array locally.

If you are programming in BASIC and using this function to specify the
starting address of a local array, the declaratiqgBaffin the

DASDECL.BI file is not applicable. You must change the declaration of
pBuffrom BYVAL pBufAS LONG to SEGQBUfAS INTEGER.

4-14 Function Reference



K_BufListAdd (cont.)

Make sure that you add buffers or arrays to the list in the order in which
you want to use them. The first buffer/array you add is #1, the second
buffer you add is #2, and so on. You can add up to 149 buffers. You can
useK_IntStatus to determine which buffer/array is currently in use.

See Also K_BufListReset, K_IntAlloc

Usage

C/IC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

void far *pBuf[5]; // Buffer pointers
WORD hMem([5]; // Buffer handles

for(i=0;i<5;i++){
wDasErr = K_IntAlloc (hAD, dwSamples, &pBuf[i], &hMem[i]);
wDasErr = K_BufListAdd (hAD, pBuf[i], dwSamples);

}

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global pBuf(4) As Long ' Buffer pointers
Global hMem(4) As Integer ' Buffer handles

Forl%=0To 4
wDasErr = K_IntAlloc (hAD, dwSamples, pBuf(1%), hMem(1%))
wDasErr = K_BufListAdd (hAD, pBuf(1%), dwSamples)

Next 1%

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM pBuf(4) AS LONG ' Buffer pointers
DIM hMem(4) AS INTEGER ' Buffer handles

FOR 1% =0TO 4
wDasErr = KINTALLOC% (hAD, dwSamples, pBuf(1%), hMem(1%))
wDasErr = KBUFLISTADD% (hAD, pBuf(1%), dwSamples)

NEXT 1%

4-15



K_BufListReset

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-16

Clears the list of multiple buffers/arrays.

C/C++
DASErr far pascal K_BufListReset (DWORIFrame;

Visual Basic for Windows
Declare Function K_BufListReset Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KBUFLISTRESET% ALIAS "K_BufListReset"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

For the interrupt-mode operation definedhifyame this function clears
all buffers or arrays from the list of multiple buffers/arrays.

This function does not deallocate buffers in the list. If dynamically
allocated buffers are no longer needed, you caiKub#Free to free the
buffers before resetting the list.

K_BufListAdd

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_BufListReset (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_BufListReset (hAD)

Function Reference



K_BufListReset (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KBUFLISTRESET% (hAD)

4-17



K_ClearFrame

Purpose Sets the elements of a frame to their default values.

Prototype C/C++
DASEtr far pascal K_ClearFrame (DWORiBrams);

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KCLEARFRAME% ALIAS "K_ClearFrame"
(BYVAL hFrameAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
Return Value Error/status code. Refer to Appendix A.
Remarks This function sets the elements of the frame specifiduHgmeto their

default values.
Refer to page 3-4 for the default values of an A/D frame.

See Also K_GetADFrame

Usage CIC++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_ClearFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_ClearFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KCLEARFRAME% (hAD)

4-18 Function Reference



K_CloseDriver

Purpose Closes a previously initialized Keithley DAS Function Call Driver.

Prototype C/C++
DASErr far pascal K_CloseDriver (DWORIDrv);

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal hDrv As Long) As Integer

BASIC
Not supported
Parameters hDrv Driver handle you want to free.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the driver handle specifiechByv and closes the

associated use of the Function Call Driver. This function also frees all
device handles and frame handles associatedniitia

If hDrv is the last driver handle specified for the Function Call Driver, the
driver is shut down (for all languages) and unloaded (for Windows-based
languages only).

See Also K_FreeDevHandle

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CloseDriver (hDrv);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_CloseDriver (hDrv)

4-19



K_CIrContRun

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-20

Specifies single-cycle buffering mode.

C/C++
DASErr far pascal K_ClrContRun (DWORIFrams);

Visual Basic for Windows
Declare Function K_CIrContRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KCLRCONTRUN®% ALIAS "K_CIrContRun"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function sets the buffering mode for the operation definddFame
to single-cycle mode and sets the Buffering Mode element in the frame
accordingly.

K_GetADFrame andK_ClearFrame also enable single-cycle buffering
mode.

Refer to page 2-17 for more information on buffering modes.
K_SetContRun

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CIrContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_CIrContRun (hAD)

Function Reference



K_ClIrContRun (cont.)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KCLRCONTRUN% (hAD)

4-21



K_CorrectData

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-22

Corrects acquired analog input values using the calibration factors stored
in computer memory.

C/C++
DASErr far pascal K_CorrectData (DWORiBrams;

Visual Basic for Windows
Declare Function K_CorrectData Lib "DAS1000.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
Not supported

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

For the operation defined yramethis function corrects the analog
data in the memory buffer or array and stores the corrected values back in
the same buffer or array.

This function is available only when programming under Windows.

To ensure accurate results, make sure that you do not modify any of the
elements in the frame specified llyramefrom the time you start the

analog input operation until the time you call this function. If you want to
perform another analog input operation before you correct data from a
previous analog input operation, make sure that you use a different frame
with a different buffer address.

K_GetCalData, K_SetCalMode

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_CorrectData (hAD);

Function Reference



K_CorrectData (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_CorrectData (hAD)

4-23



K_DASDevInit

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

4-24

Reinitializes a Keithley MetraByte DAS card or board.

C/C++
DASErr far pascal K_DASDevInit (DWORBDeV);

Visual Basic for Windows
Declare Function K_DASDevInit Lib "DASSHELL.DLL"
(ByVal hDevAs Long) As Integer

BASIC
DECLARE FUNCTION KDASDEVINIT% ALIAS "K_DASDevInit"
(BYVAL hDevAS LONG)

hDev Handle associated with the card or board.
Error/status code. Refer to Appendix A.

This function stops all current operations on the card or board specified by
hDev

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_DASDevInit (hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_DASDevInit (hDev)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KDASDEVINIT% (hDev)

Function Reference



K_DIRead

Purpose Reads a single digital input value.

Prototype C/C++
DASErr far pascal K_DIRead (DWOREDey BYTE nChan
void far*pData);

Visual Basic for Windows

Declare Function K_DIRead Lib "DASSHELL.DLL"

(ByVal hDevAs Long, ByValnChanAs Integer,pDataAs Any)
As Integer

BASIC
DECLARE FUNCTION KDIREAD% ALIAS "K_DIRead"
(BYVAL hDevAS LONG, BYVAL nChanAS INTEGER,

SEGpDataAS ANY)
Parameters hDev Handle associated with the card.
nChan Digital input channel.
Valid value: 0
pData Digital input value.
Return Value Error/status code. Refer to Appendix A.
Remarks This function reads the values of all digital input lines on the
DASCard-1000 Series card specifiediiyevand stores the value in
pData

The acquired digital value is stored in bits 0, 1, 2, and@aita; the
values in the remaining bits are not defined. Refer to page 2-25 for more
information.

See Also K_DOWrite

4-25



K_DIRead (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wDIValue;

wDasErr = K_DIRead (hDev, 0, &wDIValue);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wDIValue As Integer
wDasErr = K_DIRead (hDev, 0, wDIValue)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM wDIValue AS INTEGER

wDasErr = KDIREAD% (hDev, 0, wDIValue)

4-26 Function Reference



K_DOWrite

Purpose Writes a single digital output value to the digital output channel.
Prototype C/C++
DASErr far pascal K_DOWrite (DWORBDey BYTE nChan
DWORD dwDatg);

Visual Basic for Windows

Declare Function K_DOWrite Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByValnChanAs Integer,

ByVal dwDataAs Long) As Integer

BASIC

DECLARE FUNCTION KDOWRITE% ALIAS "K_DOWrite"
(BYVAL hDevAS LONG, BYVAL nChanAS INTEGER,
BYVAL dwDataAS LONG)

Parameters hDev Handle associated with the card.

nChan Digital output channel.
Valid value: 0

dwData Digital output value.
Valid values: 0 to 255

Return Value Error/status code. Refer to Appendix A.
Remarks This function writes the valudwDatato the digital outpulines on the
DASCard-1000 Series card specifiedhiiyev

Refer to page 2-24 for a description of the digital output lines.

See Also K_DIRead

4-27



K_DOWrite (cont.)

Usage

4-28

C/C++

#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwDOValue;

dwDOValue = 0x5;
wDasErr = K_DOWrite (hDev, 0, dwDOValue);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global dwDOValue As Long

dwDOValue = &H5
wDasErr = K_DOWrite (hDev, 0, dwDOValue)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM dwDOValue AS LONG

dwDOValue = &H5
wDasErr = KDOWRITE% (hDev, 0, dwDOValue)

Function Reference



K_FormatChnGAry

Purpose Converts the format of a channel-gain queue.
Prototype C/C++
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KFORMATCHNGARY% ALIAS
"K_FormatChnGAry" (SEGArray AS INTEGER)

Parameters pArray Channel-gain queue starting address.
Return Value Error/status code. Refer to Appendix A.
Remarks This function converts a channel-gain queue created in BASIC or Visual

Basic for Windows using 16-bit values to a channel-gain queue of 8-bit
values that th&_SetChnGAry function can use, and stores the starting
address of the converted channel-gain quepaimay.

After you use this function, your program can no longer read the
converted channel-gain queue. You must us&«theestoreChnGAry
function to return the queue to its original format. Refer to page 4-64 for
more information.

See Also K_SetChnGAry, K_RestoreChnGAry

4-29



K_FormatChnGAry (cont.)

Usage

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global ChanGainArray(16) As Integer ' Chan/Gain array

' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array

' Create the array of channel/gain pairs
ChanGainArray(0) =2 '# of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) =0
ChanGainArray(3) = 1: ChanGainArray(4) = 1

wDasErr = KFORMATCHNGARY% (ChanGainArray(0))

4-30 Function Reference



K_FreeDevHandle

Purpose Frees a previously specified device handle.

Prototype C/C++
DASErr far pascal K_FreeDevHandle (DWORDeV);

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal hDevAs Long) As Integer

BASIC
Not supported
Parameters hDev Device handle you want to free.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the device handle specifiethbgvas well as all

frame handles associated witbev
See Also K_GetDevHandle

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_FreeDevHandle (hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_FreeDevHandle (hDev)

4-31



K_FreeFrame

Purpose Frees a frame.

Prototype C/C++
DASEtr far pascal K_FreeFrame (DWORIDBrams);

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KFREEFRAME% ALIAS "K_FreeFrame"
(BYVAL hFrameAS LONG)

Parameters hFrame Handle to frame you want to free.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the frame specifiedtiframe making the frame

available for another operation.
See Also K_GetADFrame

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_FreeFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_FreeFrame (hAD)

BASIC
" $INCLUDE: 'DASDECL.BI'

wDasErr = KFREEFRAME% (hAD)

4-32 Function Reference



K_GetADConfig

Purpose Gets the analog input channel configuration.
Prototype C/C++
DASErr far pascal K_GetADConfig (DWOREDey
WORD far *pMod§;

Visual Basic for Windows
Declare Function K_GetADConfig Lib "DASSHELL.DLL"
(ByVal hDevAs Long,pModeAs Integer) As Integer

BASIC

DECLARE FUNCTION KGETADCONFIG% ALIAS
"K_GetADConfig" (BYVAL hDevAS LONG,
SEGpModeAS INTEGER)

Parameters hDev Handle associated with the card.

pMode Analog input channel configuration.
Value stored:0 for Differential
1 for Single-ended

Return Value Error/status code. Refer to Appendix A.

Remarks For the DASCard-1000 Series card specifietibgy this function stores
the code that represents the analog input channel configurapoite

See Also K_SetADConfig

Usage CIC++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wADConfig;

wDasErr = K_GetADConfig (hDev, &wADConfig);

4-33



K_GetADConfig (cont.)

4-34

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wADConfig As Integer

wDasErr = K_GetADConfig (hDev, wADConfig)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wADConfig AS INTEGER

wDasErr = KGETADCONFIG% (hDev, wADConfig)

Function Reference



K_GetADFrame

Purpose

Prototype

Parameters

Remarks

See Also

Usage

Accesses an A/D frame for an analog input operation.

C/C++

DASETr far pascal K_GetADFrame (DWORiDey
DWORD far * phFrame);

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,phFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KGETADFRAME% ALIAS "K_GetADFrame"
(BYVAL hDevAS LONG, SEGohFrameAS LONG)

hDev Handle associated with the card.

phFrame Handle to the frame that defines the operation.

This function specifies that you want to perform a synchronous-mode or
interrupt-mode analog input operation on the DASCard-1000 Series card
specified byhDey and accesses an available A/D frame with the handle
phFrame

The frame is initialized to its default settings; refer to Table 3-1 on page
3-4 for a list of the default settings.

The value stored iphFrameis intended to be used exclusively as an
argument to functions that require a frame handle. Your program should
not modify the value stored phFrame

K_ClearFrame, K_FreeFrame

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hAD;

wDasErr = K_GetADFrame (hDev, &hAD);

4-35



K_GetADFrame (cont.)

4-36

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global hAD As Long

wDasErr = K_GetADFrame (hDev, hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM hAD AS LONG

wDasErr = KGETADFRAME% (hDev, hAD)

Function Reference



K_GetADMode

Purpose Gets the analog input range type.

Prototype C/C++
DASE'r far pascal K_GetADMode (DWORBDey
WORD far *pMod§;

Visual Basic for Windows
Declare Function K_GetADMode Lib "DASSHELL.DLL"
(ByVal hDevAs Long,pModeAs Integer) As Integer

BASIC
DECLARE FUNCTION KGETADMODE% ALIAS "K_GetADMode"
(BYVAL hDevAS LONG, SEGModeAS INTEGER)

Parameters hDev Handle associated with the card.

pMode Analog input range type.
Value stored:0 for Bipolar
1 for Unipolar

Return Value Error/status code. Refer to Appendix A.

Remarks For the DASCard-1000 Series card specifietiDgy this function stores
the code that represents the analog input range typéadie.

See Also K_SetADMode

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wADMode;

wDasErr = K_GetADMode (hDev, &wADMode);

4-37



K_GetADMode (cont.)

4-38

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wADMode As Integer

wDasErr = K_GetADMode (hDev, wADMode)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wADMode AS INTEGER

wDasErr = KGETADMODE% (hDev, wADMode)

Function Reference



K_GetCalData

Purpose Gets the calibration factors and formula for correcting data.

Prototype C/C++
DASErr far pascal K_GetCalData (DWORiBrame,shortnChan
shortnGain,short far *pType,void far * pCalDatg);

Visual Basic for Windows

Declare Function K_GetCalData Lib "DAS1000.DLL"
(ByVal hFrameAs Long, ByValnChanAs Integer,

ByVal nGainAs IntegerpTypeAs IntegerpCalDataAs Single)
As Integer

BASIC

DECLARE FUNCTION KGETCALDATA% ALIAS "K_GetCalData"
(BYVAL hFrameAS LONG, BYVAL nChanAS INTEGER,

BYVAL nGainAS INTEGER, SEGTypeAS INTEGER,
SEGpCalDataAS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nChan Channel whose data you want to correct.
Valid values:0

4-39



K_GetCalData (cont.)

Return Value

Remarks

4-40

nGain Gain code.
Valid values:
Card Gain |Gain Code
DASCard-1001| 1 0
10 1
100 2
500 3
DASCard-1002| 1 0
2 1
4 2
8 3
DASCard-1003| 1 0
pType Pointer to the location of the correction formula.
pCalData Pointer to a two-element array containing the

calibration factors.
Error/status code. Refer to Appendix A.

For the operation defined yrame this function gets the calibration
factors and formula needed to correct the data sampled at the gain
specified bynGain and stores the location of the formulgifypeand the
location of the calibration factors pCalData

For DASCard-1000 Series cards, the channel number specifi€tham
is ignored; therefore, you can use the default channel number O.

The gain code specified mGain must be the same as the gain code used
when the analog input signal was sampled; if you specify a different gain
code, the wrong calibration factors may be returned and your corrected
data may be invalid.

Function Reference



K_GetCalData (cont.)

See Also

Usage

For DASCard-1000 Series cards, only one formula is supported;
therefore, you can pass a NULL pointepiype The value stored in
pTypeis always 4, which represents the formpkmx+ b. Refer to
page 2-22 for information on using this formula to correct data.

For DASCard-1000 Series carg&alDatapoints to a two-element array,
which contains the two calibration factors; the first element contains the
gain to apply to the uncorrected datg &nd the second element contains
the offset ). If you are programming under Windows, dimension an

array of floating point numbers; if you are programming under DOS,
dimension an array of integers. Note that the actual gain value is returned,
not the gain code. Refer to page 2-22 for more information.

K_CorrectData, K_SetCalMode

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pCalData;

wDasErr = K_GetCalData (hAD, 0, 0, NULL, &pCalData);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global pCalData As Integer

wDasErr = K_GetCalData (hAD, 0, 0, 0, pCalData(0))

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM pCalData AS INTEGER

wDasErr = KGETCALDATA% (hAD, 0, 0, 0, pCalData(0))

4-41



K_GetClkRate

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-42

Gets the clock rate (number of clock ticks) used by the internal pacer
clock.

C/C++
DASETr far pascal K_GetClkRate (DWORiFrame
DWORD far*pRate);

Visual Basic for Windows
Declare Function K_GetClkRate Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pRateAs Long) As Integer

BASIC
DECLARE FUNCTION KGETCLKRATE% ALIAS "K_GetClkRate"
(BYVAL hFrameAS LONG, SEGpRateAS LONG)

hFrame Handle to the frame that defines the operation.

pRate Number of clock ticks between conversions.
Error/status code. Refer to Appendix A.

For the operation defined byframe this function stores the number of
clock ticks between conversionspRate

After a synchronous-mode or interrupt-mode analog input operation
starts, the value stored [iiRaterepresents the actual count used, not
necessarily the count set Ky SetClkRate.

ThepRatevariable contains the value of the Pacer Clock Rate element.
K_SetClkRate

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwRate;

wDasErr = K_GetClkRate (hAD, &dwRate);

Function Reference



K_GetClkRate (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global dwRate As Long

wDasErr = K_GetClkRate (hAD, dwRate)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM dwRate AS LONG

wDasErr = KGETCLKRATE% (hAD, dwRate)

4-43



K_GetDevHandle

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-44

Initializes any Keithley MetraByte DAS card or board.

C/C++
DASErr far pascal K_GetDevHandle (DWORIDrv,
WORD nBoardNum DWORD far *pDeV);

Visual Basic for Windows

Declare Function K_GetDevHandle Lib "DASSHELL.DLL"
(ByVal hDrv As Long, ByValnBoardNumAs IntegerpDevAs Long)
As Integer

BASIC

Not supported

hDrv Driver handle of the associated Function Call
Driver.

nBoardNum Card number.
Valid valuesO or 1

pDev Handle associated with the card.

Error/status code. Refer to Appendix A.

This function initializes the DASCard-1000 Series card associated with
hDrv and specified bpBoardNumand stores the device handle of the
specified card ipDev

The card number specified mBoardNunrefers to the card number
specified in the configuration file. If you are using one aaBdardNum
is always 0; if you are using two carag®oardNumis the same as the
socket number.

The value stored ipDevis intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored pDev

K_FreeDevHandle

Function Reference



K_GetDevHandle (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDeyv;

wDasErr = K_GetDevHandle (hDrv, 0, &hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global hDev As Long

wDasErr = K_GetDevHandle (hDrv, 0, hDev)

4-45



K_GetErrMsg

Purpose Gets the address of an error message string.

Prototype C/C++
DASETr far pascal K_GetErrMsg (DWORIDey shortnDASETrt
char far * far *pErrMsg);

Visual Basic for Windows

Not supported
BASIC
Not supported
Parameters hDev Handle associated with the card.
NDASETrr Error message number.
pErrMsg Address of error message string.
Return Value Error/status code. Refer to Appendix A.
Remarks For the DASCard-1000 Series card specifiethbgy this function stores
the address of the string corresponding to error message noBWSErr
in pErrMsg

Refer to page 2-4 and to page 3-20 for more information about error
handling. Refer to Appendix A for a list of error codes and their
meanings.

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

char far *pErrMsg;

wDasErr = K_GetErrMsg (hDev, nDASETrr, &pErrMsg);

4-46 Function Reference



K_GetShellVer

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

C/C++

Gets the current DAS shell version.

C/C++
DASErr far pascal K_GetShellVer (WORD fgVersion);

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(pVersionAs Integer) As Integer

BASIC
DECLARE FUNCTION KGETSHELLVER% ALIAS "K_GetShellVer"
(SEGpVersionAS INTEGER)

pVersion A word value containing the major and minor
version numbers of the DAS shell.

Error/status code. Refer to Appendix A.

This function stores the current DAS Shell versiopVersion

To obtain the major version number of the DAS shell, dipdersionby
256. To obtain the minor version number of the DAS shell, perform a
Boolean AND operation witpVersionand 255 (OFFh).

#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wShellVer;

wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

4-47



K_GetShellVer (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wShellVer As Integer

wDasErr = K_GetShellVer (wShellVer)

ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." +:
LTRIM$ (STR$ (wShellVer AND &HFF))

PRINT "Driver Ver: " + ShellVer$

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wShellVer AS INTEGER
wDasErr = KGETSHELLVER% (wShellVer)
ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." +:

LTRIM$ (STR$ (wShellVer AND &HFF))
PRINT "Shell Ver: " + ShellVer$

4-48 Function Reference



K_GetVer

Purpose Gets revision numbers.

Prototype C/C++
DASE'r far pascal K_GetVer (DWORBDey short far *pSpecVer
short far *pDrv\er);

Visual Basic for Windows

Declare Function K_GetVer Lib "DASSHELL.DLL"

(ByVal hDevAs Long,pSpecVeAs IntegerpDrvVerAs Integer)
As Integer

BASIC

DECLARE FUNCTION KGETVER% ALIAS "K_GetVer"
(BYVAL hDevAS LONG, SEGpSpecVeAS INTEGER,
SEGpDrvVerAS INTEGER)

Parameters hDev Handle associated with the card.
pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.
pDrvVer Driver version number.
Return Value Error/status code. Refer to Appendix A.
Remarks For the DASCard-1000 Series card specifietiDgy this function stores

the revision number of the Function Call DrivepiDrvVerand the
revision number of the driver specificationp8pecVer

The values stored pSpecVeandpDrvVerare two-byte (16-bit) integers;

the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.10, the major revision level is 2 and the minor revision level
is 10; therefore, the high byte pbrvVer contains the value & (512)

and the low byte gbDrvVer contains the value df0; the value of both

bytes is 522.

4-49



K_GetVer (cont.)

To obtain the major version number of the Function Call Driver, divide
pDrvVerby 256; to obtain the minor version number of the Function Call
Driver, perform a Boolean AND operation wipidrvVerand 255 (OFFh).

To obtain the major version number of the driver specification, divide
pSpecVeby 256; to obtain the minor version number of the driver
specification, perform a Boolean AND operation wiBpecVeand 255
(OFFh).

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

short nSpecVer, nDrvVer;

wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global nSpecVer As Integer
Global nDrvVer As Integer

wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)

DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." +:
LTRIMS (STR$ (nDrvVer AND &HFF))

PRINT "Driver Ver: " + DrvVer$

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM nSpecVer AS INTEGER
DIM nDrvVer AS INTEGER

wDasErr = KGETVER% (hDev, nSpecVer, nDrvVer)

DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." +:
LTRIM$ (STR$ (nDrvVer AND &HFF))

PRINT "Driver Ver: " + DrvVer$

4-50 Function Reference



K_IntAlloc

Purpose Allocates a buffer for a synchronous-mode or interrupt-mode operation.

Prototype C/C++
DASETr far pascal K_IntAlloc (DWORDFrame DWORDdwSamples
void far * far*pBuf, WORD far*pMem);

Visual Basic for Windows

Declare Function K_IntAlloc Lib "DASSHELL.DLL"

(ByVal hFrameAs Long, ByValdwSampleés Long,pBufAs Long,
pMemAs Integer) As Integer

BASIC

DECLARE FUNCTION KINTALLOC% ALIAS "K_IntAlloc"
(BYVAL hFrameAS LONG, BYVAL dwSample&S LONG,
SEGpBUfAS LONG, SEGMemAS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.
dwSamples Number of samples.
Valid values:

Synchronous mode| 1t032767

Interrupt mode 1to 5000000

pBuf Starting address of the allocated buffer.
pMem Handle associated with the allocated buffer.
Return Value Error/status code. Refer to Appendix A.
Remarks For the operation defined IWrame this function allocates a buffer of

the size specified bywSamplesand stores the starting address of the
buffer inpBufand the handle of the buffer gMem

The data in the allocated buffer is stored as counts, either corrected or
uncorrected. Refer to page 2-22 for information on correcting the data, if
necessary. Refer to Appendix B for information on converting the
corrected count value to voltage.

4-51



K_IntAlloc (cont.)

See Also

Usage

4-52

BASIC requires that you redistribute available memory before you
dynamically allocate a buffer. Refer to page 3-25 for additional
information.

K_IntFree, K_SetBuf

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer
WORD hMem; // Memory Handle to buffer

wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global pBuf As Long
Global hMem As Integer

wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM pBuf AS LONG
DIM hMem AS INTEGER

wDasErr = KINTALLOC% (hAD, 1000, pBuf, hMem)

Function Reference



K_IntFree

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

Frees a buffer allocated for a synchronous-mode or interrupt-mode
operation.

C/C++
DASErr far pascal K_IntFree (WOREMenj;

Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL"
(ByVal hMemAs Integer) As Integer

BASIC
DECLARE FUNCTION KINTFREE% ALIAS "K_IntFree"
(BYVAL hMemAS INTEGER)

hMem Handle to buffer.
Error/status code. Refer to Appendix A.

This function frees the buffer specified lbylem the buffer was
previously allocated dynamically usikg IntAlloc .

K_IntAlloc

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_IntFree (hMem);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_IntFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KINTFREE% (hMem)

4-53



K_IntStart

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-54

Starts an interrupt-mode operation.

C/C++
DASErr far pascal K_IntStart (DWORBFrame);

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KINTSTART% ALIAS "K_IntStart"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function starts the interrupt-mode operation definedHigme

Refer to page 3-10 for a discussion of the programming tasks associated
with interrupt-mode analog input operations.

K_IntStatus, K_IntStop

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_IntStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_IntStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KINTSTART% (hAD)

Function Reference



K_IntStatus

Purpose Gets status of an interrupt-mode operation.

Prototype C/C++
DASETrr far pascal K_IntStatus (DWORiFrame short farpStatus
DWORD far*pCount);

Visual Basic for Windows

Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, pStatusAs IntegerpCountAs Long)
As Integer

BASIC

DECLARE FUNCTION KINTSTATUS% ALIAS "K_IntStatus”
(BYVAL hFrameAS LONG, SE(pStatusAS INTEGER,
SEGpCountAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt-mode operation; see
Remarks for value stored.

pCount Current number of samples that were transferred
for the active buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks For the interrupt-mode operation definednfyame this function stores
the status ipStatusand the number of samples transferred into the
current buffer innCount

4-55



K_IntStatus (cont.)

The value stored ipStatusdepends on the settings in the Status word, as
shown below:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Active buffer number 0 = Buffer not filled

—

1 = Buffer filled

0 = No FIFO overflow
1 = FIFO overflow

0 = Buffer A active
1 = Buffer B active

0 = Interrupt operation inactive
1 = Interrupt operation active

The bits are described as follows:

Bit O: Indicates whether an interrupt-mode operation is in progress.

Bit 1 is the Active Buffer toggle bit. If you are using multiple buffers,
this bit toggles each time samples are stored in a new buffer. If you
are using a single buffer, this bit is always 0.

Bit 2: This bit indicates whether the oncard FIFO overflowed. The
overflow event automatically stops all conversions.

Bit 4 indicates whether the buffers used for an interrupt-mode
operation running in continuous buffering mode have been filled. If
this bit is set, all the buffers have been filled at least once.

Bits 8-15 indicate which buffer in a multiple-buffer list is currently
active. To determine the active buffer number, divide the value of the
Status word by 256. The first buffer added to the list is Buffer 1, the
second buffer added to the list is Buffer 2, and so on.

Bits 3, 5, 6, and 7 are unassigned.

See Also K_IntStart, K_IntStop

4-56

Function Reference



K_IntStatus (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wsStatus;
DWORD dwCount;

wDasErr = K_IntStatus (hAD, &wStatus, &dwCount);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_IntStatus (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KINTSTATUS% (hAD, wStatus, dwCount)

4-57



K_IntStop

Purpose Stops an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStop (DWORBFrame short far*pStatus
DWORD far*pCouny;

Visual Basic for Windows

Declare Function K_IntStop Lib "DASSHELL.DLL"

(ByVal hFrameAs Long, pStatusAs IntegerpCountAs Long)
As Integer

BASIC

DECLARE FUNCTION KINTSTOP% ALIAS "K_IntStop"
(BYVAL hFrameAS LONG, SEGpStatusAS INTEGER,
SEGpCountAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt-mode operation; $&amarks
for K_IntStatus on page 4-56 for value stored.

pCount Current number of samples that were transferred
for the active buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stops the interrupt-mode operation definedHsggmeand
stores the status of the interrupt-mode operatigSiatusand the
number of samples transferred into the current buffeCaunt

If an interrupt-mode operation is not in progrdésintStop is ignored.

See Also K_IntStart, K_IntStatus

4-58 Function Reference



K_IntStop (cont.)

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

WORD wsStatus;
DWORD dwCount;

wDasErr = K_IntStop (hAD, &wStatus, &dwCount);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_IntStop (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM wStatus AS INTEGER
DIM dwCount AS LONG

wDasErr = KINTSTOP% (hAD, wStatus, dwCount)

4-59



K_MoveBufToArray

Purpose Transfers data from a buffer allocated throkghntAlloc to the
program’s local array.

Prototype C/C++
Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" pDestAs Integer, ByVapSourceAs Long,

ByVal nCountAs Integer) As Integer

BASIC

DECLARE FUNCTION KMOVEBUFTOARRAY% ALIAS
"K_MoveDataBuf" (SEGDestAS INTEGER,

BYVAL pSourceAS LONG, BYVAL nCountAS INTEGER)

Parameters pDest Address of destination array.
pSource Address of source buffer.
nCount Number of samples to transfer.
Value values0 to 32767
Return Value Error/status code. Refer to Appendix A.
Remarks This function transfers the number of samples specifieddmuntfrom

the buffer at addregsSourceto the array at addrep®est

If the buffer used to store acquired data for your program was allocated
throughK_IntAlloc , the buffer is not accessible to your program and you
must use this function to move the data from the allocated buffer to the
program’s local array. If the array used to store acquired data for your
program was dimensioned locally within the program’s memory area, the
array is accessible to your program and you do not have to use this
function.

See Also K_IntAlloc

4-60 Function Reference



K_MoveBufToArray (cont.)

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

wDasErr = K_MoveBufToArray (ADArray(0), pBuf, 1000)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KINTALLOC% (hAD, 1000, pBuf, hMem)

wDasErr = KMOVEBUFTOARRAY% (ADArray(0), pBuf, 1000)

4-61



K_OpenDriver

Purpose Initializes any Keithley DAS Function Call Driver.

Prototype C/C++
DASETr far pascal K_OpenDriver (char faszDrvName
char far *szCfgNameDWORD far *pDrv);

Visual Basic for Windows

Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDrvNameAs String, ByValszCfgNam@és String,
pDrv As Long) As Integer

BASIC
Not supported
Parameters szDrvName Driver name.
Valid value: "DAS1000"
(for DASCard-1000 Series cards)
szCfgName Driver configuration file.
Valid value: The name of a configuration file
0 if driver has already been
opened.
pDrv Handle associated with the driver.
Return Value Error/status code. Refer to Appendix A.
Remarks This function initializes the DASCard-1000 Series Function Call Driver

according to the information in the configuration file specified by
szCfgNamegand stores the driver handlepbrv.

You can use this function to initialize the Function Call Driver associated
with any Keithley MetraByte DAS card or board.

For DASCard-1000 Series cards, the string storezdrvNameanust be
DAS1000.

4-62 Function Reference



K_OpenDriver (cont.)

You create a configuration file using the CFG1000.EXE utility. If
szCfgName 0,K_OpenDriver checks whether the driver has already
been opened and linked to a configuration file and if it has, uses the
current configuration; this is useful in the Windows environment. Refer to
your DASCard-1000 Series User’s Guifte more information about
configuration files.

The value stored ipDrv is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored wDrv.

See Also DAS1000_DevOpen
Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD hDrv;

wDasErr = K_OpenDriver ("DAS1000", "DAS1002.CFG", &hDrv);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

DIM hDrv As Long

wDasErr = K_OpenDriver ("DAS1000", "DAS1002.CFG", hDrv)

4-63



K_RestoreChnGAry

Purpose Restores a converted channel-gain queue.
Prototype C/C++
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KRESTORECHNGARY% ALIAS
"K_RestoreChnGAry" (SE@Array AS INTEGER)

Parameters pArray Channel-gain queue starting address.
Return Value Error/status code. Refer to Appendix A.
Remarks This function restores the channel-gain queue at the address specified by

pArray to its original format so that it can be used by your BASIC or
Visual Basic for Windows program. The channel-gain queue was
converted using_FormatChnGAry .

See Also K_FormatChnGAry, K_SetChnGAry

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global ChanGainArray(16) As Integer ' Chan/Gain array

wDasErr = K_RestoreChnGAry (ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array

wDasErr = KRESTORECHNGARY% (ChanGainArray(0))

4-64 Function Reference



K_SetADConfig

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

Sets the analog input channel configuration.

C/C++
DASErr far pascal K_SetADConfig (DWORRDey WORDnMode;

Visual Basic for Windows
Declare Function K_SetADConfig Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByValnModeAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETADCONFIG% ALIAS "K_SetADConfig"
(BYVAL hDevAS LONG, BYVAL nModeAS INTEGER)

hDev Handle associated with the card.

nMode Analog input channel configuration.
Valid values: O for Differential
1 for Single-ended

Error/status code. Refer to Appendix A.

For the DASCard-1000 Series card specifiethbgy this function
specifies the analog input channel configuratiomhtode

K_GetADConfig

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetADConfig (hDev, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetADConfig (hDev, 1)

4-65



K_SetADConfig (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

wDasErr = KSETADCONFIG% (hDev, 1)

4-66 Function Reference



K_SetADMode

Purpose Sets the analog input range type.

Prototype C/C++
DASErr far pascal K_SetADMode (DWORIDey WORDNModg;

Visual Basic for Windows
Declare Function K_SetADMode Lib "DASSHELL.DLL"
(ByVal hDevAs Long, ByValnModeAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETADMODE% ALIAS "K_SetADMode"
(BYVAL hDevAS LONG, BYVAL nModeAS INTEGER)

Parameters hDev Handle associated with the card.

nMode Analog input range type.
Valid values: O for Bipolar
1 for Unipolar

Return Value Error/status code. Refer to Appendix A.

Remarks For the DASCard-1000 Series card specifiethbgy this function
specifies the analog input range typ@iode

See Also K_GetADMode

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetADMode (hDev, 0);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetADMode (hDev, 0)

4-67



K_SetADMode (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

wDasErr = KSETADMODE% (hDev, 0)

4-68 Function Reference



K_SetADTrig

Purpose

Prototype

Parameters

Sets up an analog trigger.

C/C++
DASErr far pascal K_SetADTrig (DWORDBFrame shortnOpt
shortnChan DWORD dwLeve);

Visual Basic for Windows

Declare Function K_SetADTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnOptAs Integer,

ByVal nChanAs Integer, ByVabwLevelAs Long) As Integer

BASIC

DECLARE FUNCTION KSETADTRIG% ALIAS "K_SetADTrig"
(BYVAL hFrameAS LONG, BYVAL nOptAS INTEGER,
BYVAL nChanAS INTEGER, BYVAL dwLevelAS LONG)

hFrame Handle to the frame that defines the operation.

nOpt Analog trigger polarity and sensitivity.
Valid values:

Value | Polarity Sensitivity

0 Positive | Edge-sensitive

Positive | Level-sensitive

1
2 Negative| Edge-sensitive
3

Negative| Level-sensitive

nChan Analog input channel used as trigger channel.
Valid values: 0 to 255

dwLevel Level at which the trigger event occurs.
Valid values:

Bipolar | —2048to 2047

Unipolar | 0to 4095

4-69



K_SetADTrig (cont.)

Return Value

Remarks

See Also

Usage

4-70

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the channel
used for an analog trigger inChan the level used for the analog trigger
in dwLeve] and the trigger polarity and trigger sensitivityni@pt

You specify the value falwLevelin counts. Refer to Appendix B for
information on converting the actual voltage to a count.

ThenOptvariable sets the value of the Trigger Polarity and Trigger
Sensitivity elements; theChanvariable sets the value of the Trigger
Channel element; triwLevelvariable sets the value of the Trigger Level
element.

K_SetADTrig does not affect the operation definechByameunless the
Trigger Source element is set to External (by a ca#l t8etTrig) before
hFrameis used as a calling argumenttoSyncStart or K_IntStart .

K_SetTrig

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetTrig (hAD, 1);
wDasErr = K_SetADTrig (hAD, 0, 0, 2047);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetTrig (hAD, 1)
wDasErr = K_SetADTrig (hAD, 0, 0, 2047)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSETTRIG% (hAD, 1)
wDasErr = KSETADTRIG% (hAD, 0, 0, 2047)

Function Reference



K_SetBuf

Purpose Specifies the starting address of a previously allocated or dimensioned
buffer and the number of samples to acquire.

Prototype C/C++
DASErr far pascal K_SetBuf (DWORBFrame void far*pBuf,
DWORD dwSamples

Visual Basic for Windows

Declare Function K_SetBuf Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValpBufAs Long,

ByVal dwSample#s Long) As Integer

BASIC
DECLARE FUNCTION KSETBUF% Alias "K_SetBuf"
(BYVAL hFrameAS LONG, BYVAL pBufAS LONG,
BYVAL dwSizeAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of buffer.
dwSamples Number of samples.
Valid values:

Synchronous mode| 1t032767

Interrupt mode 1to 5000000

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined yrame this function specifies the starting
address of a previously allocated buffepBufand the number of
samples to acquire mwSamples

For C/C++ application programs, use this function whether you
dimensioned your array locally or allocated your buffer dynamically
usingK_IntAlloc .

4-71



K_SetBuf (cont.)

See Also

Usage

4-72

For Visual Basic for Windows and BASIC, use this function only for
buffers allocated dynamically usitg IntAlloc . For locally dimensioned
arrays, us&_SetBufl.

Do not use this function if you are using multiple buffers. Use
K_BufListAdd to specify the starting addresses of multiple buffers.

ThepBufvariable sets the value of the Buffer elementdiwSamples
variable sets the value of the Number of Samples element.

K_IntAlloc, K_BufListAdd, K_SetBufl

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer

wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);
wDasErr = K_SetBuf (hAD, pBuf, 1000);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global pBuf As Long

wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)
wDasErr = K_SetBuf (hAD, pBuf, 1000)

BASIC
" $INCLUDE: 'DASDECL.BI’

DIM pBuf AS LONG

wDasErr = KINTALLOC% (hAD, 1000, pBuf, hMem)
wDasErr = KSETBUF% (hAD, pBuf, 1000)

Function Reference



K_SetBufl

Purpose Specifies the starting address of a locally dimensioned integer array and
the number of samples to acquire.

Prototype C/C++
Not supported

Visual Basic for Windows

Declare Function K_SetBufl Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrameAs Long, pBufAs Integer, ByVablwSizeAs Long)

As Integer

BASIC

DECLARE FUNCTION KSETBUFI% Alias "K_SetBuf"
(BYVAL hFrameAS LONG, SEGpBUfAS INTEGER,
BYVAL dwSizeAS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of the locally dimensioned
integer array.

dwsSize Number of samples.
Valid values:1 to 32767

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined yrame this function specifies the starting
address of a locally dimensioned integer arrayBufand the number of
samples to acquire iwSize

Do not use this function for C/C++; instead, #seSetBuf.

For Visual Basic for Windows and BASIC, use this function only for
locally dimensioned arrays. For buffers allocated dynamically using
K_IntAlloc , useK_SetBuf.

Do not use this function if you are using multiple buffers. Instead, use
K_BufListAdd to specify the starting addresses of multiple buffers.

4-73



K_SetBufl (cont.)

ThepBufvariable sets the value of the Buffer elementpiv8izevariable
sets the value of the Number of Samples element.

See Also K_IntAlloc, K_BufListAdd, K_SetBuf

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

Dim ADData(2000) As Integer

wDasErr = K_SetBufl (hAD, ADData(0), 2000)

BASIC
" $INCLUDE: 'DASDECL.BI'

DIM ADData(2000) AS INTEGER

wDasErr = KSETBUFI% (hAD, ADData(0), 2000)

4-74 Function Reference



K_SetCalMode

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Enables/disables automatic data correction.

C/C++
DASErr far pascal K_SetCalMode (DWORiBrame shortnCalMod§;

Visual Basic for Windows
Declare Function K_SetCalMode Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnCalModeAs Integer) As Integer

BASIC

Not supported

hFrame Handle to the frame that defines the operation.
nCalMode Automatic data correction mode.

Valid values: O for Disabled
1 for Enabled

Error/status code. Refer to Appendix A.

For the operation defined Iyrrame this function specifies whether
automatic data correction is enabled or disableddalMode

ThenCalModevariable sets the Calibration Mode element.

Even though automatic data correction is disabled wi@aiMode= 0,
K_GetADFrame andK_ClearFrame enable automatic data correction
(setnCalModeto 1); it is only necessary to call this function to disable
automatic data correction.

Since automatic data correction is not supported in DOS, the Calibration
Mode element is ignored when programming under DOS. It is not
necessary to disable automatic data correction when programming under
DOS.

K_CorrectData, K_GetCalData

4-75



K_SetCalMode (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetCalMode (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetCalMode (hAD, 1)

4-76 Function Reference



K_SetChn

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

Specifies a single analog input channel.

C/C++
DASErr far pascal K_SetChn (DWORFrame shortnChar);

Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnChanAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETCHN% ALIAS "K_SetChn"
(BYVAL hFrameAS LONG, BYVAL nChanAS INTEGER)

hFrame Handle to the frame that defines the operation.

nChan Channel on which to perform operation.
Valid values: 0 to 255

Error/status code. Refer to Appendix A.

For the operation defined Ifrrame this function specifies a single
analog input channel inChan

ThenChanvariable sets the Start Channel element and the Stop Channel
element.

K_SetStartStopChn, K_SetStartStopG

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetChn (hAD, 2);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetChn (hAD, 2)

4-77



K_SetChn (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

wDasErr = KSETCHN% (hAD, 2)

4-78 Function Reference



K_SetChnGAry

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Specifies the starting address of a channel-gain queue.

C/C++
DASETr far pascal K_SetChnGAry (DWORFrame void far*pArray);

Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KSETCHNGARY% ALIAS "K_SetChnGAry"
(BYVAL hFrameAS LONG, SEGpArrayAS INTEGER)

hFrame Handle to the frame that defines the operation.

pArray Channel-gain queue starting address.
Error/status code. Refer to Appendix A.

For the operation defined Irame this function specifies the starting
address of the channel-gain queupAaray.

It is recommended that you use channel-gain queues in synchronous
mode only.

ThepArray variable sets the Channel-Gain Queue element.
Refer to page 2-14 for information on setting up a channel-gain queue.

If you created your channel-gain queue in BASIC or Visual Basic for
Windows, you must us€ FormatChnGAry to convert the
channel-gain queue before you specify the addresswiBetChnGAry.

K_FormatChnGAry, K_RestoreChnGAry

4-79



K_SetChnGAry (cont.)

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

// DECLARE AND INITIALIZE CHAN/GAIN PAIRS
/I (GainChanTable-TYPE IS DEFINED IN dasdecl.h)
GainChanTable ChanGainArray= {2, // # of entries
0,0, //chanO0,gain1
1,1}; //chan 1, gain 2

wDasErr = K_SetChnGAry (hAD, &ChanGainArray);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global ChanGainArray(5) As Integer

' Create the array of channel/gain pairs
ChanGainArray(0) =2 '# of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) =0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hAD, ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM ChanGainArray(5) AS INTEGER

' Create the array of channel/gain pairs
ChanGainArray(0) =2 '# of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) =0
ChanGainArray(3) = 1: ChanGainArray(4) = 1

wDasErr = KFORMATCHNGARY% (ChanGainArray(0))
wDasErr = KSETCHNGARY% (hAD, ChanGainArray(0))

4-80 Function Reference



K_SetClk

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

Specifies the pacer clock source.

C/C++
DASErr far pascal K_SetClk (DWORBFrame shortnModse;

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnModeAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETCLK% ALIAS "K_SetCIk"
(BYVAL hFrameAS LONG, BYVAL nModeAS INTEGER)

hFrame Handle to the frame that defines the operation.

nMode Pacer clock source.
Valid values: O for Internal
1 for External

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the pacer
clock source imMode

ThenModevariable sets the Clock Source element.

The internal clock source is the output of the counter/timer circuitry on
the card; an external clock source is an external signal connected to the
XCLK/PIO line of the DASCard-1000 Series card.

Refer to page 2-15 for more information about pacer clock sources.

K_GetADFrame andK_ClearFrame specify internal as the default
clock source.

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetClk (hAD, 1);

4-81



K_SetClIk (cont.)

4-82

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetClk (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSETCLK% (hAD, 1)

Function Reference



K_SetClkRate

Purpose

Prototype

Parameters

Return Value

Remarks

Specifies the clock rate (humber of clock ticks) used by the internal pacer
clock.

C/C++
DASErr far pascal K_SetClkRate (DWORiBrame
DWORD dwDivisob);

Visual Basic for Windows
Declare Function K_SetClkRate Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValdwDivisorAs Long) As Integer

BASIC
DECLARE FUNCTION KSETCLKRATE% ALIAS "K_SetClkRate"
(BYVAL hFrameAS LONG, BYVAL dwDivisorAS LONG)

hFrame Handle to the frame that defines the operation.
dwDivisor Number of clock ticks between conversions.
Valid values:
Single Multiple
Card Channel Channels

DASCard-1001
DASCard-1002| 71to 655350 | 2940 655350

DASCard-1003| 71t0 655350 | 71to 655350

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the number
of clock ticks between conversionsdwDivisor.

The hardware may not be able to convert the analog input channels at the
exact rate determined by the number of clock ticks you specify. However,
the driver calculates a rate that is as close as possible to the number you
specify. To determine the actual number of clock ticks used by the
internal pacer clock, use tie GetClkRate function after you start the
analog input operation.

4-83



K_SetClkRate (cont.)

ThedwDivisorvariable sets the Pacer Clock Rate element.
Refer to page 2-15 for more information about the internal pacer clock.

See Also K_GetCIkRate

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

DWORD dwClIkDiv;

dwClIkDiv = 10000000 / 30000;
wDasErr = K_SetClkRate (hAD, dwClIkDiv);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global dwCIkDiv As Long

dwClkDiv = 10000000 / 30000
wDasErr = K_SetClkRate (hAD, dwClkDiv)

BASIC
' $INCLUDE: 'DASDECL.BI'

DIM dwClkDiv AS LONG

dwClkDiv = 10000000 / 30000
wDasErr = KSETCLKRATE% (hAD, dwClIkDiv)

4-84 Function Reference



K_SetContRun

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

Specifies continuous buffering mode.

C/C++
DASErr far pascal K_SetContRun (DWORIPrams;

Visual Basic for Windows
Declare Function K_SetContRun Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KSETCONTRUNY% ALIAS "K_SetContRun"
(BYVAL hFrameAS LONG)

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

For the operation defined Ifrrame this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame andK_ClearFrame specify single-cycle as the default
buffering mode.

Refer to page 2-17 for a description of buffering modes.

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetContRun (hAD)

4-85



K_SetContRun (cont.)

BASIC
" $INCLUDE: 'DASDECL.BI'

wDasErr = KSETCONTRUN% (hAD)

4-86 Function Reference



K_SetDITrig

Purpose Sets up a digital trigger.

Prototype C/C++
DASErr far pascal K_SetDITrig (DWORBFrame shorthOpt,
shortnChan DWORD nPattern;

Visual Basic for Windows

Declare Function K_SetDITrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnOptAs Integer,

ByVal nChanAs Integer, ByVahPatternAs Long) As Integer

BASIC

DECLARE FUNCTION KSETDITRIG% ALIAS "K_SetDITrig"
(BYVAL hFrameAS LONG, BYVAL nOptAS INTEGER,
BYVAL nChanAS INTEGER, BYVAL nPatternAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
nOpt Trigger polarity and sensitivity.
nChan Digital input channel.
nPattern Trigger pattern.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined Ifrrame this function specifies that you are

using an external digital trigger.

It is not necessary to change the default values ai@pe nChan and
nPatternparameters. Since DASCard-1000 Series cards support a
negative-edge digital trigger only, the valuen@ptis ignored. Since the
external digital trigger must be connected to XTRIG/PI1 line of the
DASCard-1000 Series card, the valuaGhanis meaningless. Since the
DASCard-1000 Series Function Call Driver does not currently support
digital pattern triggering, the value oPatternis meaningless.

4-87



K_SetDITrig (cont.)

See Also

Usage

4-88

K_SetDITrig does not affect the operation definedchlfyameunless the
Trigger Source element is set to External (by a cafl t8etTrig) before
hFrameis used as a calling argumenttoSyncStart or K_IntStart .

K_SetTrig

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetTrig (hAD, 1);
wDasErr = K_SetDITrig (hAD, 0, 0, 0);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetTrig (hAD, 1)
wDasErr = K_SetDITrig (hAD, 0, 0, 0)

BASIC
" $INCLUDE: 'DASDECL.BI'

wDasErr = KSETTRIG% (hAD, 1)
wDasErr = KSETDITRIG% (hAD, 0, 0, 0)

Function Reference



K SetG

Purpose Sets the gain.

Prototype C/C++
DASErr far pascal K_SetG (DWORBFrame shortnGain;

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnGainAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETG% ALIAS "K_SetG"
(BYVAL hFrameAS LONG, BYVAL nGainAS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nGain Gain code.
Valid values:

Card Gain |Gain Code
DASCard-1001| 1

10
100
500

DASCard-1002

Ol W | N | P | O W | N| | O

R0 B~ NP

DASCard-1003

Return Value Error/status code. Refer to Appendix A.

4-89



K_SetG (cont.)

Remarks

See Also

Usage

4-90

For the operation defined byrrame this function specifies the gain code
for a single channel or for a group of consecutive channel&&in

ThenGainvariable sets the Gain element.

K_GetADFrame andK_ClearFrame specify a gain of 1 (gain code 0)
as the default gain.

K_SetStartStopG

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetG (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetG (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSETG% (hAD, 1)

Function Reference



K_SetStartStopChn

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Specifies the first and last channels in a group of consecutive channels.

C/C++
DASETrr far pascal K_SetStartStopChn (DWORErame shortnStart
shortnStop);

Visual Basic for Windows

Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnStartAs Integer,

ByVal nStopAs Integer) As Integer

BASIC

DECLARE FUNCTION KSETSTARTSTOPCHN% ALIAS
"K_SetStartStopChn" (BYVALhFrameAS LONG,

BYVAL nStartAS INTEGER, BYVAL nStopAS INTEGER)

hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values: 0 to 255

nStop Last channel in a group of consecutive channels.
Valid values: 0 to 255

Error/status code. Refer to Appendix A.

For the operation defined Frame this function specifies the first
channel in a group of consecutive channelsStartand the last channel
in the group of consecutive channelsBtop

ThenStartvariable sets the value of the Start Channel elementiStop
variable sets the value of the Stop Channel element.

K_GetADFrame andK_ClearFrame set the Start Channel and Stop
Channel elements to 0.

K_SetStartStopG

4-91



K_SetStartStopChn (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetStartStopChn (hAD, 0, 7);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetStartStopChn (hAD, 0, 7)

BASIC
" $INCLUDE: 'DASDECL.BI'

wDasErr = KSETSTARTSTOPCHN% (hAD, 0, 7)

4-92 Function Reference



K_SetStartStopG

Purpose

Prototype

Parameters

Specifies the first and last channels in a group of consecutive channels
and sets the gain for all channels in the group.

C/C++
DASETr far pascal K_SetStartStopG (DWORBrame shortnStart
shortnStop shortnGain);

Visual Basic for Windows

Declare Function K_SetStartStopG Lib "DASSHELL.DLL"
(ByVval hFrameAs Long, ByValnStartAs Integer,

ByVal nStopAs Integer, ByVahGainAs Integer) As Integer

BASIC

DECLARE FUNCTION KSETSTARTSTOPG% ALIAS
"K_SetStartStopG" (BYVALhFrameAS LONG,

BYVAL nStartAS INTEGER, BYVAL nStopAS INTEGER,
BYVAL nGainAS INTEGER)

hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values: 0 to 255

nStop Last channel in a group of consecutive channels.
Valid values: 0 to 255

4-93



K_SetStartStopG (cont.)

Return Value

Remarks

Usage

4-94

nGain Gain code.
Valid values:
Card Gain |Gain Code

DASCard-1001| 1 0
10 1
100 2
500 3
DASCard-1002 1 0
2 1
4 2
8 3
DASCard-1003| 1 0

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the first
channel in a group of consecutive channelsStart the last channel in a
group of consecutive channelsritop and the gain code for all channels
in the group imGain

ThenStartvariable sets the value of the Start Channel elementStap
variable sets the value of the Stop Channel elementiGlaén variable
sets the value of the Gain element.

K_GetADFrame andK_ClearFrame set the Start Channel, Stop
Channel, and Gain elements to 0.

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetStartStopG (hAD, 0, 7, 0);

Function Reference



K_SetStartStopG (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetStartStopG (hAD, 0, 7, 0)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSETSTARTSTOPG% (hAD, 0, 7, 0)

4-95



K_SetTrig

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-96

Specifies the trigger source.

C/C++
DASETr far pascal K_SetTrig (DWORDBFrame shortnMods);

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnModeAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETTRIG% ALIAS "K_SetTrig"
(BYVAL hFrameAS LONG, BYVAL nModeAS INTEGER)

hFrame Handle to the frame that defines the operation.

nMode Trigger source.
Valid values: O for Internal trigger
1 for External trigger

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the trigger
source imMode

An internal trigger is a software trigger; the trigger event occurs when the
operation is started. An external trigger is either an analog trigger or a
digital trigger. Refer to page 2-18 for more information about internal and
external trigger sources.

If nMode= 1, an external digital trigger (positive edge) is assumed. Use
K_SetDITrig to specify a negative edge for an external digital trigger
(DASCard-1000 Series cards support a negative-edge digital trigger
only). UseK_SetADTrig to specify the conditions for an external analog
trigger.

K_GetADFrame andK_ClearFrame set the trigger source to internal.

K_SetADTrig, K_SetDITrig

Function Reference



K_SetTrig (cont.)

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetTrig (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetTrig (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSETTRIG% (hAD, 1)

4-97



K_SetTrigHyst

Purpose

Prototype

Parameters

Remarks

4-98

Specifies the hysteresis value.

C/C++
DASErr far pascal K_SetTrigHyst (DWORIFrame shortnHys;

Visual Basic for Windows
Declare Function K_SetTrigHyst Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnHystAs Integer) As Integer

BASIC
DECLARE FUNCTION KSETTRIGHYST% ALIAS "K_SetTrigHyst"
(BYVAL hFrameAS LONG, BYVAL nHystAS INTEGER)

hFrame Handle to the frame that defines the operation.
nHyst Hysteresis value.
Valid values:

Bipolar | 0to2047
Unipolar | 0to 4095

Return Value
Error/status code. Refer to Appendix A.

For the operation defined IWrrame this function specifies the hysteresis
value used for an analog triggemihlyst

You specify the hysteresis value in counts; refer to Appendix B for
information on converting the hysteresis voltage to a count.

ThenHystvariable sets the Trigger Hysteresis element.

K_SetTrigHyst does not affect the operation definedhbyameunless

the Trigger Source element is set to External (by a cill ®etTrig) and

the trigger conditions are set to either postive or negative edge (by a call
to K_SetADTrig) beforehFrameis used as a calling argument to
K_SyncStart or K_IntStart .

Refer to page 2-18 for more information about analog triggers.

Function Reference



K_SetTrigHyst (cont.)

See Also K_SetTrig, K_SetADTrig

Usage CIC++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SetTrig (hAD, 1);
wDasErr = K_SetADTrig (hAD, 0, 0, 2047);
wDasErr = K_SetTrigHyst (hAD, 50);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetTrig (hAD, 1)
wDasErr = K_SetADTrig (hAD, 0, 0, 2047)
wDasErr = K_SetTrigHyst (hAD, 50)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSETTRIG% (hAD, 1)

wDasErr = KSETADTRIG% (hAD, 0, 0, 2047)
wDasErr = KSETTRIGHYST% (hAD, 50)

4-99



K_SyncStart

Purpose Starts a synchronous-mode operation.

Prototype C/C++
DASErr far pascal K_SyncStart (DWORiFrame;

Visual Basic for Windows
Declare Function K_SyncStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

BASIC
DECLARE FUNCTION KSYNCSTART% ALIAS "K_SyncStart"
(BYVAL hFrameAS LONG)

Parameters hFrame Handle to the frame that defines the operation.
Return Value Error/status code. Refer to Appendix A.
Remarks This function starts the synchronous-mode operation defineétayne

Refer to page 3-8 for information on the programming tasks associated
with synchronous-mode analog input operations.

See Also K_IntStart

Usage CIC++
#include "DASDECL.H" // Use DASDECL.HPP for C++

wDasErr = K_SyncStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SyncStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'

wDasErr = KSYNCSTART% (hAD)

4-100 Function Reference



A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the
DA SCard-1000 Series Function Call Driver, possible causes for error
conditions, and possible solutions for resolving error conditions.

If you cannot resolve an error condition, contact the Keithley MetraByte
Applications Engineering Department.

Table A-1. Error/Status Codes

Error Code
ex Decimal Cause Solution

0 0 No error has been detected. Status only; no action is necessary.

6000 24576 Error in configuration file: Check that thefile exists at the
The configuration file you specified path. Check for illegal
specified inthedriver initialization | keywordsin file; you can avoid illegal
function is corrupt, does not exist, | keywords by using the configuration
or contains one or more undefined | utility to create and modify
keywords. configuration files.

6001 24577 Illegal base addressin Use the configuration utility to change
configuration file: Thebase | the base /O address of the card/board
I/O address of the card/board in the | to one that matches the base address
configuration fileisillegal and/or | switches on the card/board, if
does not match the base address applicable.
switches on the card/board.

6002 24578 Illegal IRQ level in Use the configuration utility to change

configuration file: The
interrupt level in the configuration
fileisillegal.

the interrupt level to alegal onefor
your card/board. Refer to the user’s

guide for legal interrupt levels.

A-1




Table A-1. Error/Status Codes (cont.)

Error Code

ex Decimal Cause Solution

6003 24579 Illegal DM A channel in Use the configuration utility to change
configuration file: The DMA | the DMA channel to alegal onefor
channel in the configuration fileis | your card/board. Refer to the user’s
illegal. guide for legal DMA channels.

6005 24581 Illegal channel number: The | Specify alegal channel number. Refer
specified channel number isillegal | to the user’s guide or to the

for the card/board and/or for the description of

range type (unipolar or bipolar). K_SetStartStopChn  in Chapter 4
for legal channel numbers.

6006 24582 Illegal gain code: The Specify alegal gain code. Refer to the
specified analog 1/0 channel gain | user’s guide or to the description of
codeisillegal for thiscard/board. | K_SetG in Chapter 4 for alist of
legal gain codes.

6007 24583 Illegal DM A address: An Usethe K_DMAAIlloc functionto
FCD function specified a buffer alocate dynamic buffersfor DMA
address that is not suitable for a operations. In Windows, make sure
DMA operation for the number of | that the Keithley Memory Manager is

sampl es required. installed; refer to the user’s guide for
information.
6008 24584 [llegal number in Use the configuration utility to check
configuration file: The and then change the configuration file.

configuration file contains one or
more numeric values that are

illegal.

600A 24586 Configuration file not Check that the file exists at the
found: Thedriver cannot find the | specified path. Check that thefile
configuration file specified asan | nameis spelled correctly in the driver
argument to thedriver initialization | initialization function parameter list.
function.

600B 24587 Error returning DMA Check that the memory handle passed
buffer: DOSreturned an error in | asanargumenttoK_DMAFree was
INT 21H function 49H during the | previously obtained using

execution of K_DMAFree . K_DMAAIlloc .
600C 24588 Error returning interrupt Check the memory handle stored by
buffer: The memory handle K_IntAlloc and make surethat it

specifiedin K_IntFree isinvalid. | was not modified.

A-2 Error/Status Codes



Table A-1. Error/Status Codes (cont.)

Error Code
ex Decimal Cause Solution

600D 24589 Illegal frame handle: The Check that the frame handle exists.
specified frame handle is not valid | Check that you are using the
for this operation. appropriate frame handle.

600E 24590 No mor e frame handles: No |UseK_FreeFrame tofreeaframe
frames are left in the pool of that the application is no longer using.
available frames.

600F 24591 Requested buffer sizetoo Specify asmaller buffer size; refer to
large: The requested buffer the description of K_IntAlloc in
cannot be dynamically allocated Chapter 4 for the legal range. If in
because of its size. Windows Enhanced mode with the

Keithley Memory Manager
(VDMAD.386) installed, use
KMMSETUPREXE to increase the
reserved buffer heap size.

6010 24592 Cannot allocate interrupt Remove some Terminate and Stay
buffer: (Windows-based Resident programs (TSRs) that are no
languages only) K_IntAlloc longer needed.
failed because there was not
enough available DOS memory.

6012 24504 I nterrupt buffer Make sure that the memory handle
deallocation error: passed asan argument toK _IntFree
(Windows-based languages only) | was previously obtained using
An error occurred when K_IntAlloc .

K_IntFree attemptedto freea
memory handle.

6015 24597 DMA Buffer too large: The | Refer to the description of
number of samples specified in K_DMAAIlloc in Chapter 4 for the
K_DMAAIlloc istoo large. buffer size range.

6016 24598 VDS - Region not Refer to the user’s guide for

contiguous:  An error occurred
while using WindowsVirtual DMA
Services. You tried to use
K_DMAAIlloc inWindows
Enhanced mode and the Keithley
Memory Manager (VDMAD.386)
was not installed.

information on how to install and set
up the Keithley Memory Manager
(VDMAD.386).

A-3




Table A-1. Error/Status Codes (cont.)

Error Code
Hex Decimal Cause Solution

6017 24599 VDS - DMA wraparound: See error 6016.
See error 6016.

6018 24600 VDS - Unableto lock See error 6016.
region: Seeerror 6016.

6019 24601 VDS - No buffer available: See error 6016.
See error 6016.

601A 24602 VDS - Region too large: See | Seeerror 6016.
error 6016.

601B 24603 VDS- Buffer in use: Seeerror | See error 6016.
6016.

601C 24604 VDS - Illegal region: See See error 6016.
error 6016.

601D 24605 VDS - Region not locked: See error 6016.
See error 6016.

601E 24606 VDS - lllegal page: Seeerror | Seeerror 6016.
6016.

601F 24607 VDS- lllegal buffer: See See error 6016.
error 6016.

6020 24608 VDS - Copy out of range: See error 6016.
See error 6016.

6021 24609 VDS-lllegal DM A channdl: See error 6016.
See error 6016.

6022 24610 VDS - Count over flow: See | Seeerror 6016.
error 6016.

6023 24611 VDS - Count under flow: See | See error 6016.
error 6016.

6024 24612 VDS - Function not See error 6016.
supported: Seeerror 6016.

6025 24613 Illegal OBM mode:  Themode | Refer to the description of
number specified in K_SetOBMMode in Chapter 4 for
K_SetOBMMode isillegal. legal mode values.

A-4 Error/Status Codes




Table A-1. Error/Status Codes (cont.)

Error Code
ex Decimal Cause Solution

6026 24614 Illegal DMA structure: An | TryusingK_DMAFree again.|fthe
error occurred during the execution | error continues, contact the Keithley
of K_ DMAFree . MetraByte Applications Engineering

Department.

6027 24615 DMA allocation error: See See error 6026.
error 6026.

6028 24616 NULL DMA handle:  Seeerror | See error 6026.
6026.

6029 24617 DMA unlock error: Seeerror | Seeerror 6026.
6026.

602A 24618 DMA freeerror:  Seeerror See error 6026.
6026.

602B 24619 Not enough memory to Specify a smaller number of samples.
accommodate request: The | Freeaprevioudly allocated buffer. Use
number of samplesyou requested | the KMMSETUP utility to expand the
in the Keithley Memory Manager | reserved heap.
is greater than the largest
contiguous block available in the
reserved heap.

602C 24620 Requested buffer size Specify a value within the legal range
exceeds maximum:  The when calling K_DMAAIlloc or
number of samplesyou requested | K_IntAlloc in Windows Enhanced
from the Keithley Memory mode. Refer to Chapter 4 for legal
Manager is greater than the values.
allowed maximum.

602D 24621 Illegal device handle: A bad | Check the device handle value.
device handle was passed to a
function such as
K_GetADFrame .Thehandle
used was not initialized through a
cal to K_GetDevHandle or
DAS1000 GetDevHandle , or
it was corrupted by your program.

A-5




Table A-1. Error/Status Codes (cont.)

Error Code

ex Decimal Cause Solution

602E 24622 Illegal Setup option: An Check the option value passed to the
illegal option was specified to a function where the error occurred.
function that accepts a user option,
suchasK_SetDITrig

6030 24624 DM A wor d-page wr ap: Reduce the number of samples and
During K_DMAAIlloc ,aDMA | retry. If in Windows Enhanced mode,
word-page wrap condition install and configure VDMAD.386.

occurred and the all ocation attempt
failed since thereis not enough free
memory to accommodate the
allocation request.

6031 24625 Illegal memory handle: A Restart your program and monitor the
bad memory handle was passed to | memory handle value(s).

K_IntFree or K_DMAFree .
The handle used was not initialized
through acall to K_IntAlloc or
K_DMAAIlloc , oritwas
corrupted by your program.

6032 24626 Out of memory handles: An | UseK IntFree or K_DMAFree
attempt to allocate amemory block | to free previously allocated memory
using K_IntAlloc or blocks before allocating again.

K_DMAAIlloc failed becausethe
maximum number of handles has
already been assigned.

6034 24628 Memory corrupted: Int 21H | Recheck the parameters set by
function 48H, used to allocate a K_DMAAIlloc and

memory block from the DOS far K_SetDMABuUf . If afatal system
heap, returned the DOS error 7; error, restart your computer.

this means that memory is
corrupted. It islikely that you
stored data (through a DMA-mode
or interrupt-mode operation) into
anillegal areaof DOS memory.

A-6 Error/Status Codes



Table A-1. Error/Status Codes (cont.)

Error Code
ex Decimal Cause Solution
6035 24629 Driver inuse:  You attempted to | To continue using the driver with the
initialize adriver that was already | same configuration, pass anull string
initialized by acall to as the second argument to
K_OpenDriver .(Thiscanoccur | K_OpenDriver . To usethedriver
since, under Windows, itis with a different configuration, close
possible to open the same driver any application programs currently
from multiple programs that are accessing the driver, and then open the
running simultaneously.) driver again (using
K_OpenDriver ).
6036 24630 Illegal driver handle: The Someone may have closed the driver;
specified driver handleis not valid. | if so, useK_OpenDriver  toreopen
the driver with the desired driver
handle. Try again using another driver
handle.
6037 24631 Driver not found:  The Check your link statement to make
specified driver cannot be found. sure the specified driver isincluded.
Make sure that the device name string
is entered correctly in
K_OpenDriver
6038 24632 Invalid source pointer: Check the pointer to the source buffer

(Windows-based languages only)
The pointer to the source buffer
that you passed as an argument to
K_MoveBufToArray is
invalid for the specified count. (The
source pointer, when added to the
number of samples, exceeds the
programmed addressing range of
that pointer.)

and the number of samplesto transfer
that you specified in
K_MoveBufToArray

A-7



Table A-1. Error/Status Codes (cont.)

Error Code
Hex Decimal Cause Solution

6039 24633 Invalid destination pointer: Check the dimension of thelocal array
(Windows-based languages only) | and the number of samples to transfer
The pointer to the destination that you specified in
buffer (local array) that you passed | K_MoveBufToArray
as an argument to
K_MoveBufToArray is
invalid for the specified count. (The
destination pointer, when added to
the number of samples, exceedsthe
dimension of thelocal array.)

603A 24634 Illegal setup value: Anillegal | Check the legal ranges of all
value was passed to the function in | parameters passed to this function.
which the error occurred.

603B 24635 Error freeing buffer Check that the memory buffer being
selector: K_DMAFree  or freed was previously obtained through
K_IntFree failed becauseoneor | K_DMAAIlloc or K_IntAlloc.
more of the selectors that reference
the memory buffer could not be
freed.

603C 24636 Error allocating buffer Close all applications and restart
selector: K_DMAAIlloc or Windows. If the error continues,
K_IntAlloc failed because a contact the Keithley MetraByte
selector could not be allocated Applications Engineering
from Window’s Local Descriptor | Department.

Table.

603D 24637 Error allocating memory Close all applications and restart
buffer: K_DMAAIlloc  or Windows. If the error continues,
K_IntAlloc failed because a contact the Keithley MetraByte
necessary internal buffer could not | Applications Engineering
be allocated to complete the Department.
operation.

7000 28672 No board name : Thedriver Specify alegal card name:
initialization function did not finda | DASCard-1001, DA SCard-1002,
card name in the specified DASCard-1003.
configuration file.

A-8

Error/Status Codes



Table A-1. Error/Status Codes (cont.)

Error Code

ex Decimal

Cause

Solution

7001 28673 Illegal board name :Thecard | Specify alegal card name:
name in the specified configuration | DASCard-1001, DASCard-1002,
fileisillegal. DASCard-1003.

7002 28674 Illegal board number  : The Specify alegal card number: O or 1.
driver initialization function found
anillegal card number in the
specified configuration file.

7006 28678 Illegal error number : The Check the 7000 Series error number
7000 Serieserror number passed to | passed to K_GetErrM sg
K_GetErrMsg wasinvalid.

7007 28679 Illegal ADC channel mode Specify alegal input range type:
The driver initialization function bipolar or unipolar.
found anillegal input rangetypein
the specified configuration file.

7008 28680 Illegal ADC channel Specify alegal input configuration:
configuration : Thedriver single-ended or differential.
initialization function found an
illegal input configuration in the
specified configuration file.

7009 28681 [llegal number of EXP-1600 Specify alegal number of EXP-1600
boards : Thedriver initialization | accessories: 1 through 16.
function found anillegal number of
EXP-1600 expansion accessories
in the specified configuration file.

700A 28682 Bad EXP-1600 number Specify alegal number for each

specified : Thedriver
initialization function found an
illegal number assigned to one of
the EXP-1600 expansion
accessoriesin the specified
configuration file.

EXP-1600 expansion accessory:
0to 15

A-9




Table A-1. Error/Status Codes (cont.)

Error Code
Hex Decimal Cause Solution
700B 28683 Bad EXP-1600 gain Specify alegal gain value for each
specified : Thedriver EXP-1600 expansion accessory:
initialization function found an 0.5, 1, 5, 10, 50, 100, 250, 500
illegal gain assigned to one of the
EXP-1600 expansion accessories
in the specified configuration file.
700E 28686 KMENABLE isnot loaded Return to DOS and |oad the Enabler.
You used K_GetDevHandle , Refer to Chapter 3 of the
DAS1000 GetDevHandle ,or | DASCard-1000 Series User’s Guide
K_DASDevlnit toinitializea | for information.
card, but the Enabler was not yet
loaded.
700F 28687 No card inserted in Make sure that your DA SCard-1000
socket(s) :You used Series card isinstalled properly. Refer
K_GetDevHandle , to Chapter 3 of the DASCard-1000
DAS1000 GetDevHandle ,or | SeriesUser’s Guide for information.
K_DASDevlnit toinitiaizea On some computers, you may have to
card, but no cards were installed. turn computer power OFF and then
ON after you install acard in order for
the computer to recognize the card.
7010 28688 Cardisnotenabled :Youused | Runthe KMINFOW.EXE utility to
K_GetDevHandle check card information. Make sure
DAS1000 GetDevHandle , or | that PCMCIA card and socket
K_DASDeviInit toinitiaizea services, the Enabler, and the card are
card, but the card was not enabled. | installed. Make sure that the specified
base address, interrupt level, and
memory segment address are not
being used by another devicein your
system. Make sure that no errors
occurred during the allocation of
system resources.

A-10

Error/Status Codes




Table A-1. Error/Status Codes (cont.)

Error Code
ex Decimal Cause Solution

7011 28689 Card in socket differsfrom Check the configuration file specified
config file :Youused in K_OpenDriver or
K_GetDevHandle DAS1000 DevOpen  and make
DAS1000 GetDevHandle , or | surethat the card name specified
K_DASDevlnit toinitidizea matches the card you are trying to
card, but the card is not the same as | initialize.
the card specified in the associated
configuration file.

7012 28690 Illegal DAS specification Make sure that you are using the
revision number:  Therevision | appropriate driver.
of the driver you are using does not
match the revision of the Keithley
DAS Driver Specification.

7013 28691 Resourcebusy: Theapplication | An attempt was made to execute
program attempted to start an interrupt-mode operations
operation while asimilar operation | simultaneously. Only one of these
was in progress. operationsis allowed at onetime. Use

K_IntStop to stop thein-progress
operation before initiating the second
operation.

7014 28692 Clock rate specified Enter avalid number of clock ticks:
exceedsmaximum:  The 294 to 655,350 (for DASCard-1001 or
number of clock ticksyou specified | DASCard-1002); 71 to 655,350 (for
inK_SetClkRate istoo low. DASCard-1003).

7015 28693 Buffer size exceeds 32K for For a synchronous-mode operation,
synchronous mode : The make sure that the number of samples
number of samplesyou specified | you specify in K_IntAlloc or
for the buffer or array used for a K_SetBuf does not exceed 32,767.
synchronous-mode operation istoo
large.

7016 28694 Cannot acquire cyclic data For a synchronous-mode operation,

in sync mode :You specified
continuous buffering mode for a
synchronous-mode operation.

either use the default setting of the
frame (single-cycle) or use
K_ClrContRun toreturnthe
buffering mode to single-cycle.

A-11




Table A-1. Error/Status Codes (cont.)

Error Code
Hex Decimal Cause Solution

7017 28695 Data has already been If you want to use K_CorrectData
corrected by driver ~ :You to correct your data, make sure that
caled K_CorrectData while you disable automatic data correction
automatic data correction was in K_SetCalMode
enabled.

7018 28696 Cannot set to differential Make sure that you are using the
with EXP-1600 :You used appropriate configuration file. If you
K_SetADConfig tosettheinput | are not using any EXP-1600
channel configuration to expansion accessories, make sure that
differential when either an none are connected to your card and
EXP-1600 expansion accessory that the configuration file indicates
was connected to your card or the | zero expansion accessories. Use
current configuration fileindicates | K_SetADConfig to set theinput
that an EXP-1600 is being used. channel configuration to single-ended.

7019 28697 Bad A/D clock pulse  : Either | Adjust the external clock source to
the external clock rateistoo fast or | slow down the rate at which the card
anoisy external clock signal is acquires data. Make sure that your
causing unwanted pulses. external clock signal is stable.

8001 32769 Function not supported: You | Contact the Keithley MetraByte
have attempted to use a function Applications Engineering
not supported by the Function Call | Department.

Driver.

8003 32771 Illegal board number: An Refer to the description of
illegal card/board number was K_GetDevHandle or
specified in the card/board DASxxxx_GetDevHandle in
initialization function. Chapter 4 for legal card/board

numbers.

8004 32772 Illegal error number: The The error number must be one the
error message number specified in | error numbers listed in this appendix.
K_GetErrMsg isinvalid.

8005 32773 Board not found at If applicable, make sure that the base
configured address: The address setting of the switches on the
card/board initialization function | card/board matches the base address
does not detect the presenceof a | setting in the configuration file.
card/board.

A-12

Error/Status Codes




Table A-1. Error/Status Codes (cont.)

Error Code
ex Decimal Cause Solution
8006 32774 A/D not initialized: You Alwayscall K_ClearFrame before
attempted to start a frame-based setting up a new frame-based
analog input operation without the | operation.
A/D frame being properly
initialized.
8007 32775 D/A not initialized: You Alwayscall K_ClearFrame before
attempted to start aframe-based setting up a new frame-based
anal og output operation without operation.
the D/A frame being properly
initialized.
8008 32776 Digital input not Alwayscal K_ClearFrame before
initialized:  You attempted to setting up a new frame-based
start aframe-based digital input operation.
operation without the DI frame
being properly initialized.
8009 32777 Digital output not Alwayscall K_ClearFrame before
initialized:  You attempted to setting up a new frame-based
start aframe-based digital output | operation.
operation without the DO frame
being properly initialized.
800B 32779 Conversion overrun: The Adjust the clock source to slow down
conversion rate is too fast or the the rate at which the card/board
time required to service an acquires data. Remove other
interrupt istoo long. application programs that are running
and using computer resources. Try
performing the operation in
synchronous mode instead of interrupt
mode.
8016 32790 Interrupt overrun : The Check the maximum throughput rate

card/board communicated a
hardware event to the software by
generating a hardware interrupt,
but the software was still servicing
apreviousinterrupt. Thisisusually
caused by a pacer clock rate that is
too fast.

for your computer’s programming
environment and use
K_SetClkRate to specify an
appropriate rate.

A-13



Table A-1. Error/Status Codes (cont.)

Error Code
Hex Decimal Cause Solution
801A 32794 Interruptsalready active: UseK IntStop to stopthefirst
You have attempted to start an operation before starting the second
operation whose interrupt level is | operation.
being used by another system
resource.
801B 32795 DMA already active  :You UseK_DMAStop to stopthefirst
attempted to start a DMA-mode operation before starting the second
operation using aDMA channel operation.
that is currently used by another
active operation.
8020 32800 FIFO Overflow event The conversion rateistoo fast for your
detected: During data computer’s programming
acquisition, the temporary environment; use K_SetClkRate to
oncard/onboard data storage reduce the conversion rate. If you are
(FIFO) overflowed. using DMA-mode and your
card/board supports dual-DMA, use
the configuration utility to reconfigure
your card/board to use dual-DMA.
8021 32801 [llegal clock sync mode: The | Check the synchronizing clock source
two operations you are trying to that you specified in K_SetSync .
synchronize cannot be
synchronized on your card/board.
FFFF 65535 User aborted operation: You | Start the operation again, if desired.
pressed Ctrl +Break during a
synchronous-mode operation or
while waiting for an analog trigger
event to occur.

A-14 Error/Status Codes



B

Data Formats

The DA SCard-1000 Series Function Call Driver can read and write
counts only. When writing avalue (asin K_SetADTrig), you must
convert the voltage value to a count; when reading avalue (asin
K_ADRead), you may want to convert the count to a more meaningful
voltage value.

To ensure valid results when converting a count value to voltage, the
count value must be the corrected count value. If you have disabled
automatic data correction and you are not using K_CorrectData to
correct the data, the application program must correct the data using the
calibration factors and the appropriate formula. For more information on
correcting data, refer to page 2-22.

This appendix contains instructions for converting corrected counts to
voltage and for converting voltage to counts.

Note: The DASCard-1000 Series Function Call Driver provides the
K _GetADM odefunction, which getsthe anal og input range type (bipolar
or unipolar). You may find this function useful when converting values.

B-1



Converting Corrected Counts to Voltage

B-2

You may want to convert corrected counts to voltage when reading an
analog input value. To convert a corrected count to an analog input
voltage, use the following equation, where count is the corrected count
value and span is the span of the analog input range. Refer to Table B-1
for alist of span values.

Voltage =

count x span

4096

Table B-1. Span Values for A/D Conversion
Equations

Card ﬁ/l/oDde Gain |Input Range Span

DASCard-1001 | Unipolar 1 0to5V 5V
10 OVto05V 0.5V
100 0to 50 mV 0.05V
1000 |0to5mV 0.005V

Bipolar 1 -5V to+5V 10V

10 -05V1t00.5V 1.0V
100 =50 mV to +50 mV 0.10V
1000 |-5mV to+5mV 0.01v

Data Formats



Table B-1. Span Values for A/D Conversion
Equations (cont.)

Card ll?\/I/oDde Gain |Input Range Span
DASCard-1002 | Unipolar 1 Oto5V 5V
2 OVto25V 25V
4 Oto1.25V 125V
8 0V to0.625V 0.625V
Bipolar 1 =50V to+5.0V 10V
2 -25Vto+25V 5V
4 -1.25V to +1.25V 25V
8 -0.65V to+0.625V | 125V
DASCard-1003 Unipolar 1 Oto5V 5V
Bipolar 1 -5.0Vto+5.0V 0oV

For example, assume that you want to read analog input datafrom a
channel on a DA SCard-1001 card configured for the unipolar input range
and again of 1. The count valueis 3072. The voltage is determined as
follows:

3072 x 5

As another example, assume that you want to read the analog input data
from a channel on a DA SCard-1002 card configured for a bipolar input
range and again of 4. The count valueis 1024. The voltage is determined
asfollows:

1024 x 2.5

00 0.625V

Converting Corrected Counts to Voltage B-3



Converting Voltage to Counts

You must convert voltage to counts when specifying an analog trigger
level or hysteresis value. The following sections describe how to convert
voltage to counts for each of these situations.

Specifying aTrigger Level

B-4

To convert avoltage value to a count when specifying an analog trigger
level, use the equation that is appropriate for your analog input range
type, substituting the desired voltage for V.

Bipolar
V. . %4096
— _ trig
Count — 10
Unipolar
Count = M
5

For example, assume that you want to specify an analog trigger level of
2.5V for achannel on a DASCard-1001 card configured for a bipolar
input range. The count is determined as follows:

2.5 x 4096

10 = 1024

Data Formats



Specifying a Hysteresis Value

To convert avoltage value to a count when specifying a hysteresis value,
use the equation that is appropriate for your analog input range type,
substituting the desired voltage for V.

Bipolar
Ve X 4096
— _ hyst
Count — 10
Unipolar
Ve X 4096
Count = —st__——

5

For example, assume that you want to specify ahysteresisvalue of 0.05V
for achannel on a DASCard-1001 card configured for a unipolar input
range. The count is determined as follows:

0.05 % 409 _

41
5

Converting Voltage to Counts B-5



Index

A

ADC: seeanalog-to-digital converter
allocating memorf2-7
dynamically in BASIG3-34
dynamically in C/C+43-13
dynamically in Visual Basic for
Windows3-25
locally in BASIC[3-39
locally in C/C++3-15
locally in Visual Basic for Windows
analog input channelseechannels
analog input operatiofz-§
programming task8-7
analog input rangé2-10
analog triggel2-18
analog-to-digital convert&-16
arrays2-1
ASO-1000 software packafel

B

base addresseeresources
BASIC

creating a channel-gain quégef(

dynamically allocated memory buffers

handling error8-42
local array$3-39

see alsdProfessional Basic, QuickBasic

[3-34
bipolar input range®-10
board:seecard

Borland C/C++ (for DOS) programming
information3-23
see alsaC languages
Borland C/C++ (for Windows) programming
information3-24
see alsdC languages
buffer addresg-9
buffer address functiofé-2
buffering mod@-17
buffering mode functiorid-2
buffers2-§

C

C languages
creating a channel-gain qudgel{
dynamically allocated memory buffers
3-13
handling error8-20
local array$3-15
see alsdBorland C/C++ (for DOS),
Borland C/C++ (for Windows),
Microsoft C/C++ (for DOS),
Microsoft C/C++ (for Windows)
calibration factor2-22
card
initialization[2-2
number supportéd-2
retrieving informatiori2-3
channel and gain functiofs3
channel-gain queugs14
creating in BASI(3-4Q
creating in C/C+8-17
creating in Visual Basic for Windows
3-3

X-1



channel-11

multiple using a channel-gain queue

multiple using a group of consecutive
channel@-13
single2-13
software (logicalR-12
clock function®-3

clock rate:seeconversion rate

clock sourceseepacer clock

clock ticks:seeconversion rate

commandsseefunctions

common task8-7

compile and link statements
Borland C/C++ (for DOS3B-23
Borland C/C++ (for Windows3-24
Microsoft C/C++ (for DOSB-21
Microsoft C/C++ (for WindowsB-22
Professional Bas[8-44
QuickBasid3-43

continuous mod@-17

convention&-4

conversion rat-16
maximum2-17

converting
counts to voltag8-2
voltage to coun{8-4

correcting dat@2-22

creating an executable file
Borland C/C++ (for DOSB-23
Borland C/C++ (for Windows3-24
Microsoft C/C++ (for DOSB-21
Microsoft C/C++ (for WindowsB-22
Professional Basig-44
QuickBasid3-43
Visual Basic for Window8-33

X-2

D

DAS1000_DevOpel2-2[4-6
DAS1000_GetCardInf2-3
DAS1000_ GetDevHand[2-3,

DASCard-1000 Series Function Call Driver:

seeFunction Call Driver
DASCard-1000 Series standard software
packagel-1
data correctiof2-22
data correction functioré-3
data formatB-1
data transfer modeseeoperation modes
data typeg-5
default values, A/D frame eleme[84
device handIR-2[3-1
differential inpu2-11
digital 1/0 line§2-24
digital input operation2-29
programming task3-12
digital output operation2-26
programming task3-12
digital triggef2-22[2-25
dimensioning array2-7
driver handl€-2, [3-1

driver: seeFunction Call Driver

E

elements of fram@&-2
error codeA-1]
error handling2-4
BASIC[3-42
C languageB8-20
Visual Basic for WindowB-33
executable fileseecreating an executable
file
EXP-1600 expansion accessosge
expansion accessaries

Index



expansion accessorigs1],
external pacer clodR-17[2-25
external triggeP-18

see als@nalog trigger, digital trigger

F

FIFO[2-8

files required
Borland C/C++ (for DOSB-23
Borland C/C++ (for Windowd3-24
Microsoft C/C++ (for DOSB-20
Microsoft C/C++ (for WindowsB-21
Professional Basi8-43
QuickBasid3-42
Visual Basic for WindowB-33

frame element3-2

frame handI8-2

frame management functidds2

framed3-2
types3-3

Function Call Driver
initialization2-2
structurd3-1

functions
buffer addresd-2
buffering modé4-2
channel and gaid-3
clock4-3
DAS1000_DevOpeR-2 [4-6
DAS1000 GetCardInf@-3[4-8
DAS1000_GetDevHand[2-3[4-10
data correctiod-3
frame managemekt-2
initialization[4-2
K_ADRead2-5[2-11,[2-13[4-12
K_BufListAdd[4-14
K_BufListResei-16
K_ClearFram@8-3[4-18
K_CloseDrivef2-2[4-19

K_ClIrContRur2-17[4-20
K_CorrectDat&®-22,
K_DASDevInit2-3[4-24
K_DIRead2-25
K_DOWrite[2-26[4-27
K_FormatChnGAn#4-29
K_FreeDevHandIR-3,
K_FreeFramB-3,
K_GetADConfig4-33
K_GetADFramé3-3,[4-35
K_GetADModé4-37,[B-1
K_GetCalDati2-23[4-39
K_GetClkRaté2-17[4-42
K_GetDevHandI@-2,
K_GetErrMsd2-4,
K_GetShellVe2-4[4-47
K_GetVer2-4,
K_IntAlloc[2-§[4-51
K_IntFree2-8[4-53
K_IntStar{2-6[4-54
K_IntStatug2-g
K_IntStofd2-6,[4-58
K_MoveBufToArray2-8 [4-60
K_OpenDrivef2-2, [4-62
K_RestoreChnGAri4-64
K_SetADConfig2-11[4-65
K_SetADMode2-10Q
K_SetADTrigl2-19 [4-69
K_SetBufd-71
K_SetBufl[d-73
K_SetCalMod®@-22[2-23
K_SetChi2-13[4-77
K_SetChnGAnZ-15[4-79
K_SetCIK2-15[4-81
K_SetClkRat@-16[4-83
K_SetContRuf2-17[4-85
K_SetDITrigl2-22,[4-87
K_Setd2-11,[2-13[2-14[4-89
K_SetStartStopCH&-13[4-91
K_SetStartStop@-11,[2-14[4-93
K_SetTrig2-18[4-96
K_SetTrigHys{2-20[4-98

X-3



K_SyncStar2-6,
memory manageme#2
miscellaneoud-3
operatior4-2

triggeri4-3

G

gain code®-10
gains2-10
group of consecutive channBs13

H

handles
devicg, 3-]
driver 3-1
framel3-2
memory2-8

hardware triggerseedigital trigger

help[L-2
hysteresi®2-20

initialization function$4-2

initializing a card2-2

initializing the drivei2-2

input configuratiof2-11

input range typ2-10[B-1

see alsipolar input ranges, unipolar

input ranges

internal pacer clock-16

internal triggef2-18

interrupt level'seeresources

interrupt-mode analog input operati@A,

X-4

K

K_ADRead2-5[2-11[2-13[4-12
K_BufListAdd
K_BufListRese@-16
K_ClearFram-3,
K_CloseDrivef2-2,
K_ClrContRur2-17,
K_CorrectDati@-22,
K_DASDevInit2-3[4-24
K_DIRead2-25[4-25
K_DOWrite[2-26
K_FormatChnGAr#4-29
K_FreeDevHandIR-3,
K_FreeFram8-3,
K_GetADConfig4-33
K_GetADFramé3-3,
K_GetADModd4-37,[B-1
K_GetCalDat&-23[4-39
K_GetClkRaté2-17,
K_GetDevHandI®-2,[4-44
K_GetErrMsd2-4,
K_GetShellVe2-4[4-47
K_GetVer2-4,
K_IntAlloc [2-§[4-51
K_IntFred2-8[4-53
K_IntStart2-6,
K_IntStatug2-6 [4-55
K_IntStop2-6,[4-58
K_MoveBufToArray2-§
K_OpenDrivef2-2,
K_RestoreChnGAri4-64
K_SetADConfid2-11,[4-65
K_SetADModd2-10,[4-67
K_SetADTrigl2-19[4-69
K_SetBufd-71
K_SetBufl4-73
K_SetCalMod&@-22,[2-23[4-75
K_SetChi2-13[4-71
K_SetChnGAnZ2-15[4-79
K_SetCIK2-15[4-81
K_SetClkRat&-16 [4-83

Index



K_SetContRu2-17,
K_SetDITrigl2-22[4-87
K_SetG2-11,[2-13[2-14[4-89
K_SetStartStopCHg-13
K_SetStartStop@-11,
K_SetTrig2-18
K_SetTrigHys[2-20Q
K_SyncStar2-6,

L

local array£2-1
logical channelR-12

M

maintenance operationseesystem
operations

managing memoryseeallocating memory

memory allocationseeallocating memory

memory buffersseebuffers

memory handIR-8

memory management functidds2

memory segment addresgeresources

Microsoft C/C++ (for DOS) programming
information3-20

see alsdC languages

Microsoft C/C++ (for Windows)

programming informatiof3-21
see alsaC languages

Microsoft Professional Basisee
Professional Basic

Microsoft QuickBasic seeQuickBasic

Microsoft Visual Basic for Windowssee
Visual Basic for Windows

miscellaneous functiofé-3

miscellaneous operatiorseesystem
operations

O

operation functiond-2
operation modd2-5
operations
analog inpu@2-5
digital inpuf2-2%
digital outpuf2-26
systeni2-1

P

pacer cloci2-13
polarity
digital triggef2-22
external pacer clodR-17
preliminary taski8-7

Professional Basic programming information

see alsBASIC
programming information
Borland C/C++ (for DOSB-23
Borland C/C++ (for Windows3-24
Microsoft C/C++ (for DOS[B-20
Microsoft C/C++ (for WindowsB-21
Professional Bas[8-43
QuickBasid3-42
Visual Basic for WindowB-33
programming overvie(@-6
programming tasks
analog input operatiof3-1
digital input operation8-12
digital output operatiori3-12
preliminaryi3-1

Q

QuickBasic programming informati@+42
see alsBASIC

X-5



R

resetting a car@-3
resource@-3

retrieving informatiof2-3
return valueR-4
revision level@-4
routines:seefunctions

S

scar2-13

setup functions
A/D framed3-4
interrupt mod&-11
synchronous moda-§

single-cycle mod@-17

single-ended inp(2-11
single-mode analog input operati@& [3-7
single-mode digital input operatio@s25,

single-mode digital output operatid@s26
software channel@-12

software packageseeASO-1000 software
package, DASCard-1000 Series
standard software package

software triggerseeinternal trigger

standard software packafiell

starting addresseebuffer address

starting analog input operatid@s3

status codé®-4,[A-1]

storing dataseebuffering mode

synchronous-mode analog input operations

system operatiofia-1
system resourceseeresources

X-6

T

tasks
analog inpuB-7
digital input3-12
digital outpuf3-12
preliminaryl3-7
technical suppoft-2
throughput rat®@-17
trigger function-3
triggerd2-18
troubleshootingl-2

U
unipolar input range2-10

Vv

Visual Basic for Windows
creating a channel-gain qudge3l
dynamically allocated memory buffers

3-25
handling error8-33
local array$3-3Q
programming informatio3-33

Index



	ToC: 


